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Abstract

With their rapid growth in recent years, Internet photo collections have become an in-
valuable repository of visual data. In particular, they provide detailed coverage of the
world’s landmark buildings, monuments, sculptures, and paintings. This wealth of visual
information can be used to construct landmark recognition engines that can automat-
ically tag a photo of a landmark with its name and location. Landmark recognition
engines rely on clustering algorithms that are able to group several millions of images
by the buildings or objects they depict.

This grouping problem is very challenging since the massive amount of Internet images
requires efficient and highly parallel algorithms, and the appearance variability of build-
ings caused by viewpoint, weather and lighting changes requires robust image similarity
measures. Most importantly, it is critical to define a clustering criterion that results in
meaningful object clusters. The Iconoid Shift algorithm we present in this thesis uses
a very intuitive definition: It represents each object by an iconic image, or Iconoid,
which is the image that has the highest overlap with all other images of the object. The
object cluster is then the set of all images that have a certain minimum overlap with
the Iconoid. We find Iconoids by performing mode search using a novel distance mea-
sure based on image overlap that is more robust to viewpoint and lighting changes than
traditional image distance measures. We propose efficient parallel algorithms for per-
forming this mode search. In contrast to most previous algorithms that produced a hard
clustering, Iconoid Shift produces an overlapping clustering and thus elegantly handles
images showing multiple nearby landmarks by assigning them to multiple clusters.

The increasing density of Internet photo collections allows us to go a step further
and to even discover sub-structures of buildings such as doors, spires, or facade details.
To this end, we present the Hierarchical Iconoid Shift algorithm that, instead of a flat
clustering, produces a hierarchy of clusters, where each cluster represents a building
sub-structure. This algorithm is based on a novel hierarchical variant of Medoid Shift



that tracks the evolution of modes through scale space by continuously increasing the
size of its kernel window.

But which objects can a landmark recognition engine built by automatically mining
Internet photo collections recognize? And how to construct such a system such that it
is efficient and achieves high recognition performance? To answer these questions, we
perform a large-scale evaluation of the different components of a landmark recognition
system, analyzing how different choices of components and parameters affect perfor-
mance for different object categories such as buildings, paintings or sculptures.

As a final contribution, we consider a practical problem of the image retrieval meth-
ods that our algorithms are based on: a large fraction of the photos in Internet photo
collections has visible watermarks, timestamps, or frames embedded in the image con-
tent. These artifacts often cause false-positive image matches. We present a simple but
highly efficient and effective method to detect such matches and thus prevent errors in
landmark discovery and recognition.

i



Zusammenfassung

Durch ihr rapides Wachstum in den letzten Jahren sind Foto-Sharing-Webseiten zu einer
sehr wertvollen Quelle visueller Daten geworden. Sie bieten eine Fiille von Fotos der
Denkmaler, Monumente, Skulpturen und Gemélde der Welt. Aus diesem Reichtum
visueller Informationen lassen sich Landmark Recognition Engines konstruieren, die ein
Foto von einem Denkmal automatisch mit seinem Namen und Standort versehen kénnen.
Landmark Recognition Engines bauen auf Clustering Algorithmen auf, die Millionen von
Fotos nach den abgebildeten Gebauden oder Objekten gruppieren.

Dieses Gruppierungsproblem ist sehr komplex, da die massive Menge an Internet-
fotos effiziente und hochgradig parallele Algorithmen erfordert. Zudem sorgen ver-
schiedene Blickwinkel, Tageszeiten und Wetterbedingungen fiir starke Veranderungen
im Aussehen der Geb#ude, weshalb robuste AhnlichkeitsmaBe fiir Bilder benétigt wer-
den. Letztlich ist es wichtig, ein Clustering-Kriterium zu definieren, das sinnvolle
Objektcluster ergibt. Der Iconoid Shift Algorithmus, den wir in dieser Dissertation
prasentieren, verwendet eine sehr intuitive Definition von Clustern: FEr reprasentiert
jedes Objekt durch ein ikonisches Bild, oder Iconoid. Der Iconoid eines Objekts ist
das Bild, welches die grofite Gesamtiiberlappung mit allen anderen Bildern dieses Ob-
jekts hat. Das Cluster eines Iconoid ist die Menge aller Bilder, die eine gewisse Mind-
estiiberlappung mit dem Iconoid haben. Wir finden Iconoids durch Mode Search, unter
Verwendung eines neuen AhnlichkeitsmaBes, welches auf der Bildiiberlappung basiert
und daher robuster beziiglich Verdanderungen in Blickwinkel und Beleuchtung ist als tra-
ditionelle Bildahnlichkeitsmafle. Wir schlagen effiziente parallele Algorithmen fiir diese
Mode Search vor. Im Gegensatz zu den meisten vorherigen Algorithmen zum Clus-
tern von Bildern, welche ein hartes Clustering produzieren, erzeugt Iconoid Shift ein
iiberlappendes Clustering und kann daher elegant mit Bildern umgehen, die mehrere
benachbarte Denkmaler zeigen, indem diese Bilder mehreren Clustern zugeordnet wer-
den.



Die steigende Dichte an Fotos auf Foto-Sharing-Webseiten erlaubt es uns, noch einen
Schritt weiter zu gehen und sogar Sub-Strukturen von Gebauden, wie Tiiren, Tiirme oder
Fassadendetails aufzufinden. Hierzu présentieren wir den Hierarchical Iconoid Shift Al-
gorithmus, der statt eines flachen Clustering eine Hierarchie von Clustern produziert, in
der jedes Cluster ein Gebéaude oder eine Sub-Struktur reprasentiert. Dieser Algorithmus
basiert auf einer neuen Variante von Medoid Shift, die die Evolution von Modi im Scale
Space verfolgt wahrend sie kontinuierlich die Grofle des Kernel-Fensters erhoht.

Aber welche Arten von Objekten kann eine ausschlieBlich durch Mining von Foto-
Sharing-Webseiten erstellte Landmark Recognition Engine erkennen? Und wie konstru-
iert man eine solche Engine, sodass sie moglichst effizient ist und gleichzeitig eine gute
Erkennungsrate erreicht? Um diese Fragen zu beantworten, fithren wir eine groffan-
gelegte Evaluation einer Landmark Recognition Engine durch und zeigen auf, wie die
Wahl ihrer Komponenten und Parameter die Erkennungsrate verschiedener Arten von
Objekten, wie Gebauden, Gemélden oder Skulpturen beeinflusst.

Unser letzter Beitrag bezieht sich auf ein praktisches Problem der Image Retrieval
Methoden, auf denen unsere Algorithmen basieren: Ein grofler Anteil von Internetfotos
hat sichtbare Wasserzeichen, Datums- und Uhrzeitinformationen oder Rahmen, die in
den Bildinhalt eingebettet sind. Diese Artefakte verursachen oft falsch-positive Bild-
matches. Wir prasentieren eine einfache, aber hocheffektive und effiziente Methode, um
solche Matches zu detektieren und dadurch Fehler beim Auffinden und Erkennen von
Denkmalern zu verhindern.

v
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Introduction

1.1 Motivation

The Internet has become a source of an unfathomable and ever-growing amount of visual
information. In particular, photo sharing websites like Flickr have extensive imagery of
famous buildings and historic monuments, but also a surprisingly dense coverage of
smaller tourist attractions, like individual paintings or statues, and even street art. New
photos and are being uploaded every second at a steadily accelerating pace. For example,
on an average day in 2013, 1.6M publicly available photos were posted on Flickr!, 55M
photos were posted on Instagram?, 214M photos were uploaded to Google Plus®, and
350M photos were posted on Facebook®. This growth is mostly due to the explosive
spread of smartphones in recent years. In 2013 alone, almost 1B smartphones were
sold®. Consequently, billions of people now carry Internet-connected cameras in their
pockets that they use to capture and share visual impressions of the world around them.

Computer Vision research has begun to leverage this vast amount of visual data, e.g.
to automatically learn to recognize objects or to construct 3D models of the landmark
buildings and monuments of the world. This research has enabled applications such as
automatic photo annotation, visual recognition and search, and interactive tour guides.
A prerequisite for these applications is the ability to automatically discover objects in
large and unstructured collections of photos. This is the task we address in this thesis.
Several approaches for unsupervised object discovery in large photo collections have
already been proposed in recent years. These approaches view the task as a clustering
problem and aim to divide the image collections into groups of photos of individual
buildings or objects. Despite the considerable progress in this line of work, several open

http://flickr.com/photos/franckmichel/6855169886/

2http://instagram.com/press/ (Oct. 14 2013)
3http://googleblog.blogspot.de/2013/10/google-hangouts-and-photos-save-some.html
4http://internet.org/efficiencypaper
Shttps://www.gartner.com/newsroom/id/2665715



1 Introduction

problems remain. For example, it is not clear how an object cluster should be defined
and what photos it should contain. The grouping criteria used in previous approaches
did not have a notion of an object and thus these approaches tend to under-segment or
over-segment the image collection. Moreover, most of the algorithms used in landmark
clustering so far produce a hard clustering, meaning each image can only belong to one
cluster. Therefore, if an image shows two landmarks, it is not clear which cluster to assign
it to. Furthermore, when a landmark has interesting sub-structures such as architectural
details, they cannot form their own clusters, since their photos will be contained in the
cluster of the landmark. For example, the gates of Notre Dame cathedral in Paris are
interesting objects on their own, and they in turn contain several statues that should also
be viewed as individual objects. It therefore seems that a hierarchical, soft clustering
would be more suitable than a flat, hard one. The coverage of the world’s landmarks on
Internet photo collections is dense enough to enable such a detailed clustering, but this
potential has so far been ignored.

In this thesis, we set out to address these problems: We propose an intuitive definition
of object clusters where each object is represented by an iconic image, or Iconoid, and
each cluster simply contains all images that overlap with the Iconoid by more than a
certain amount. This definition naturally allows for overlapping clusters and can thus
also handle close-by landmarks and even sub-structures elegantly. An Iconoid is an
image that has maximum mutual overlap with all other images of the same object, i.e.,
it is a view that is most favored by photographers. We view the task of object discovery
as a mode estimation problem and define a distance measure between images based on
their overlap. Iconoids are modes w.r.t. this distance measure and represent views that
are most favored by photographers.

We present an object discovery algorithm called Iconoid Shift that efficiently solves
this mode estimation problem by propagating image overlaps through locally explored
matching graphs. Building on this, we present a hierarchical image clustering algorithm,
called Hierarchical Iconoid Shift, that performs mode search on all scales and constructs
dendrograms that represent the detail hierarchies of landmarks. These algorithms rep-
resent the main contribution of this thesis.

As an additional contribution, we shift our attention to a particular application of
the resulting clustering, namely landmark recognition. Using a dataset of 500k photos
of Paris, we first investigate what objects can be discovered by a landmark discovery
algorithm. We then analyze each component of a start-of-the-art landmark recognition
engine and point out the challenges that arise at each stage of the pipeline. Moreover, we
evaluate how successfully objects of different categories can be discovered in the photo
collection and recognized in a new query photo.

We believe that this thesis both advances the start-of-the-art in object discovery in In-
ternet photo collections as well as increases our understanding of what these approaches
can achieve.



1.2 Contributions

1.2 Contributions

This thesis makes the following contributions:

We present an algorithm called Iconoid Shift that casts the task of landmark
discovery as a mode search problem. Based on Medoid Shift (Sheikh et al., 2007),
Iconoid Shift searches for iconic views, called Iconoids, that maximize the mutual
overlap with other images of the same object. We present efficient algorithms for
performing this mode search in local matching graphs and a parallelization scheme
that allows applying the algorithm to web-scale photo collections.

Taking inspiration from scale space theory (Witkin, 1984), we present a hierarchi-
cal clustering algorithm called Hierarchical Medoid Shift (HMS) that tracks the
evolution of density maxima across different scales. The result is a set of dendro-
grams that describe the density structure of the dataset. In contrast to previous
approaches, HMS increases the scale quasi-continuously and is thus completely
parameter-free.

Applying HMS to landmark discovery, we present the Hierarchical Iconoid Shift
(HIS) algorithm that is able to find interesting objects at all scales. HIS discovers
architectural details such as gates or spires as well as the landmarks they belong to
and organizes them in a cluster hierarchy. We present algorithms for performing
this clustering efficiently and in a highly distributed manner.

We perform a detailed evaluation of landmark recognition based on Internet photo
collections. Our analysis shows how many and what kinds of objects can be discov-
ered in Internet photo collections and how different choices for the components of
such a system affect the final recognition performance. In particular, we consider
different object categories like paintings, building details or museum artifacts and
point out the respective challenges that exist for them.

We address the problem of false-positive image matches caused by watermarks,
timestamps and frames (WTFs) often found in Internet photo collections. We
develop an efficient detector for such matches based on the spatial distribution
of matching image regions and show that it is effective in preventing clusters of
different objects from being merged due to false-positive matches.

We have collected a large-scale dataset of 500k photos of Paris from Flickr and
Panoramio and made it publicly available®. Moreover, we have published ground
truths for the tasks of landmark clustering and landmark recognition that we
created by investing significant manual annotation effort. These ground truths
will enable other researchers to evaluate their methods in a large-scale setting and
compare them to ours.

Shttp://www.vision.rwth-aachen.de/data/paris500k



1 Introduction

1.3 Structure of the Thesis

This thesis is structured as follows:

In Chapter 2, we begin by discussing previous work. We first look at different definitions
of iconic images from both cognitive psychology and computer vision and then review
different approaches for finding iconic images for entire object categories as well as for
specific objects. Then, we consider previous work in object clustering and compare it
to our work. Finally, we discuss different approaches to landmark recognition based on
image retrieval, classification and pose estimation, respectively.

Chapter 3 first introduces the basic techniques that our work is based on. We review
image matching with local features, image retrieval using bags-of-visual-words and in-
verted files, spatial verification using RANSAC and the construction of matching graphs.
We then introduce the PARIS 500K dataset that we use throughout the thesis. As a first
experiment, we compare two landmark discovery algorithms based on spectral cluster-
ing (Philbin and Zisserman, 2008) and min-hash (Chum and Matas, 2010), respectively,
which brings to light the challenges of landmark discovery we address with the algo-
rithms presented in the following chapters. This comparison was originally presented in
Weyand et al. (2010).

In Chapter 4, we present the Iconoid Shift algorithm for automatic landmark building
discovery in large, unstructured image collections. Casting the task as a mode estimation
problem, Iconoid Shift searches for views that have maximal mutual homography overlap
with images in their neighborhood. These modes, called Iconoids, are the images that
show the respective building or object from the most central, iconic view. Because
Iconoid Shift is based on Medoid Shift (Sheikh et al., 2007), it inherits its intuitive
parameters and its well-studied properties such as guaranteed convergence. Because our
algorithm only performs a local exploration of the matching graph, it is more efficient
than approaches that require the construction of the matching graph of the whole dataset
in advance and can easily be parallelized to run on hundreds of machines simultaneously.
Therefore, the approach is applicable for large-scale analysis of photo collections, which
we demonstrate on the PARIS 500K dataset as well as a dataset of 459k images of
Barcelona. This chapter is based on research originally presented in Weyand and Leibe
(2011).

Building on this, Chapter 5 introduces the Hierarchical Iconoid Shift (HIS) algorithm.
While previous landmark discovery algorithms were mainly focused on buildings, HIS
also discovers details like portals, statues or windows. Instead of a hard, flat clustering,
HIS produces a soft, hierarchical clustering that represents each building as a dendro-
gram of overlapping clusters where each cluster corresponds to a building part or detail.
As the basis for HIS, we introduce the Hierarchical Medoid Shift (HMS) algorithm that is
based on Medoid Shift. Taking inspiration from Scale Space theory (Witkin, 1984), HMS
tracks the evolution of density maxima using mode search while continuously increasing
the kernel scale. The result is a set of dendrograms describing the density structure of
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the input data. HMS is completely parameter-free, has the same complexity as Medoid
Shift and is easy to parallelize. HIS inherits the desirable properties of HMS and applies
it to clustering Internet photo collections. We evaluate HIS on 800k images of 34 land-
marks and show that it can extract an often surprising amount of detail and structure
that can be applied, e.g., to provide a mobile user with more detailed information on a
landmark or even to extend the landmark’s Wikipedia article. The chapter is based on
research originally presented in Weyand and Leibe (2013).

In Chapter 6, we then consider the application of a clustering returned by a landmark
discovery algorithm for landmark recognition. The task here is to identify photographed
buildings or objects in query photos and to provide the user with relevant information
on them. The process of building such a landmark recognition system typically consists
of three steps: (i) clustering large amounts of images by the objects they depict; (ii)
determining object names from user-provided tags; and (iii) building a robust, compact,
and efficient recognition index. Based on an Iconoid Shift clustering of PARIS 500K,
we analyze each component of this pipeline in order to answer the following questions:
How many and what kinds of objects can be discovered automatically? How to best use
the resulting image clusters to recognize the object in a query? How can the object be
efficiently represented in memory for recognition? How reliably can semantic information
be extracted? And finally: What are the limiting factors in the resulting pipeline from
query to semantics? We evaluate how different choices of methods and parameters for
the individual pipeline steps affect overall system performance and examine their effects
for different query categories such as buildings, paintings or sculptures. The chapter is
based on research originally published in Weyand and Leibe (2015).

Finally, in Chapter 7, we address a problem frequently encountered in computer vi-
sion approaches based on Internet photos. An increasing number of photos in Internet
photo collections comes with watermarks, timestamps, or frames (in the following called
WTFs) embedded in the image content. In image retrieval and matching such WTF's
often cause false-positive matches, which in turn harm image clustering approaches by
causing clusters of different buildings to be joined into one. This affects applications like
landmark recognition or large-scale structure-from-motion, which rely on clean build-
ing clusters. We present a simple, but highly effective detector for such false-positive
matches. Given a matching image pair with an estimated homography, we first deter-
mine photoconsistent regions in both images. Exploiting the fact that WTFs typically
appear near the border, we build a spatial histogram of the consistent regions and apply
a classifier to decide whether the match is due to a WTF. This approach is general
enough to recognize a large variety of watermarks, timestamps, and frames and is ef-
ficient enough to be applied in large-scale image clustering and retrieval settings. We
collected a challenging dataset of WTFs found in Internet photo collections and demon-
strate the efficiency and effectiveness of our detector on this dataset as well as in actual
image clustering applications. This chapter is based on research we originally presented
in Weyand et al. (2015).



1 Introduction

Note: The thesis is based on the technical contributions of my respective first author
publications (Weyand and Leibe, 2011, 2013, 2015; Weyand et al., 2010, 2015). Several
images and text passages of this thesis are taken from these articles. However, additional
content has been added in order to provide deeper insights into the approaches.



State of the Art

The task we set out to solve in this thesis is finding interesting objects in large-scale image
collections. Ideally, each object should be represented by a cluster of all photos showing
the object as well as an iconic image. In this section, we put our work in context and
discuss previous work on iconic images and image clustering. We first compare different
works from cognitive psychology that have studied which views humans perceive as
iconic. Then, we take a look at how computer vision research has approached the
problem of finding iconic images automatically. While early work has been focused on
finding iconic views of single, isolated objects, later work has harnessed the large amount
of photos available online to find iconic images of object categories as well as specific
objects like landmark buildings. We then discuss related work on object clustering,
focusing on the underlying clustering algorithms. Finally, we discuss related work in
landmark recognition, which is a common application of object clusterings. Approaches
to this task can be divided into three categories: Image retrieval, classification and pose
estimation.

2.1 Iconic Images

“What makes an image or view of an object iconic or canonical?” This question has
been the subject of research both in psychology and computer vision. In the following,
we take a look at ideas from both fields and discuss how they relate to another.

2.1.1 Cognitive Psychology

In their seminal work, Palmer et al. (1981) analyzed which views people prefer when
photographing an object, which views they see when imagining an object, which views
they most easily recognize an object from and which views they subjectively prefer.
The participants of the study consistently chose the same views for each of these four
tasks. Palmer et al. then formulated two hypotheses for what makes a view canonical:
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The frequency hypothesis states that the view that an object is seen from most often
is the canonical one, and the mazimal information hypothesis states that the view that
reveals the most information on the structure of the object is the canonical one. In
contrast with Palmer et al. (1981), Blanz et al. (1999) found that mazimal information
views are preferred when photographing the object, while the mental images people
have of objects are usually from straight frontal or side views. The experiments of
Mezuman and Weiss (2012) showed that the views that Palmer et al. (1981) identified
as canonical for a set of objects were also the views from which these objects were most
frequently depicted in Internet photos, which implies that the frequency hypothesis holds
for Internet photos. However, Mezuman and Weiss (2012) also found that Palmer et
al.’s frequency and mazimal information hypotheses do not generally hold for all object
categories. Weinshall and Werman (1997) propose two criteria for canonical images:
likelihood, which is the probability of seeing a certain view of an object, and stability,
meaning how little an object changes in appearance when changing the viewpoint. For
example, a frontal view of a building is more stable than a corner view. They proved
that if viewing directions are uniformly distributed, likelihood and stability are actually
identical. This, however, is not the case for internet photo collections.

The definition of iconic images in our work also follows the frequency definition of
Palmer et al. (1981): our Iconoid Shift algorithm selects the views that have the highest
total overlap with all other views of the same object. Because of the photographer bias
in Internet photo collections (Mezuman and Weiss, 2012), these views form modes in
the view distribution, which we find using mode search.

2.1.2 Computer Vision

Early work on finding iconic images in computer vision has focused on finding canonical
views for single, isolated objects. Denton et al. (2004) propose an approach for selecting
a small set of canonical views of a 3D object by finding views that are most similar to
the views around them, effectively maximizing the stability criterion of Weinshall and
Werman (1997). In contrast to previous definitions, Hall and Owen (2005) argue that
the front, side and top views of an object should be considered canonical, and that these
are the least likely views. They propose an algorithm that selects three orthogonal views
that explicitly minimizes the likelihood criterion.

More recently, several approaches have used large amounts of photos from the Internet
to find representative images for an object category (Berg and Berg, 2009; Jing and
Baluja, 2008; Jing et al., 2007; Raguram and Lazebnik, 2008) or iconic images for specific
objects like landmark buildings (Avrithis et al., 2010; Crandall et al., 2009; Kennedy
and Naaman, 2008; Raguram et al., 2011; Simon et al., 2007; Yang et al., 2011). In the
following we will consider these approaches in detail.

Iconic Images of Object Categories. Several papers have addressed the task of gen-
erating a set of iconic images that can serve as a visual summary for an object category.
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An application of this is summarizing the results of an image search engine into a di-
verse set of photos. Jing et al. (2007) retrieve photos of an object category from Google
images, build a matching graph by pairwise SIF'T matching, and find the image with the
highest valence in each connected component. The result is the image that matches the
most other images, which can be viewed as an approximation of the frequency criterion
(Palmer et al. (1981)). Berg and Berg (2009) collect large numbers of images for different
categories and first apply heuristic filters to select images that fulfill two criteria: (i) The
object should clearly stand out from the background. (ii) Photos should be dissimilar
from photos of other categories. They then cluster the remaining images with k-Medoids
using a distance measure based on the match score of local geometric blur features and
select the resulting cluster centers as iconic images. Raguram and Lazebnik (2008) clus-
ter the GIST descriptors (Olivia and Torralba, 2001) of the input Flickr photos using
k-Means to first create groups of similar images. To incorporate semantic information,
they intersect this clustering with a PLSA clustering based on the image tags to ob-
tain a joint visual-semantic clustering. Unlike most other approaches, they select the
iconic images for each cluster only using a quality function based on color distribution,
blur, etc. and not by their similarity with other photos. Motivated by their finding that
canonical views are the views from which objects are most frequently photographed,
Mezuman and Weiss (2012) propose an algorithm to extract canonical views for object
categories by finding modes in the distribution of their GIST descriptors. Finally, Jing
and Baluja (2008) find representative images by applying PageRank (Page et al., 1999)
to the image matching graph to find well-connected images.

Iconic Images of Specific Objects. Approaches for finding iconic images for specific
objects are typically based on tourist photos from Internet photo collections such as
Flickr. Raguram et al. (2011) first cluster the GIST descriptors of the images with k-
means, then build a matching graph from the images closest to the cluster centers by
performing SIFT matching followed by estimating epipolar geometries. The images that
have the highest number of inliers with their adjacent images in the graph are selected
as iconic images. This is similar to the valence criterion (Jing et al., 2007), but here
the incident edges of an image are weighted by the number of inliers. Simon et al.
(2007) formulate an objective function that explicitly incorporates likelihood (Palmer
et al. (1981)) and orthogonality (no two canonical views may be too similar). Here,
likelihood is formulated as the number of 3D points an image shares with other images
in a structure-from-motion reconstruction, which is related to both the weighted valence
criterion from Raguram et al. (2011) as well as the overlap measure we use in this work.
Yang et al. (2011) apply PageRank on a matching graph constructed by SIFT matching
similar to Jing and Baluja (2008) to find representative images of landmarks. Kennedy
and Naaman (2008) first cluster the input images based on global descriptors using k-
Means and then determine iconic images for each cluster based on (i) their dissimilarity
to images from other clusters (similar to Berg and Berg (2009)), (ii) their closeness to
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the cluster center and (iii) the valence criterion based on a matching graph built by
a pairwise matching of SIFT features. Crandall et al. (2009) build the full matching
graph, weight each edge by the number of homography inliers, segment it using spectral
clustering (Ng et al. (2001)) and select the image with the highest weighted valence
in each cluster. Cao and Snavely (2013) also build the matching graph of the input
image collection and then select a set of iconic images by computing its dominating
set, i.e., a minimal set of images such that each image in the dataset is adjacent to
at least one image in this set. This strategy selects images that match as many other
images as possible. Avrithis et al. (2010) use Kernel Vector Quantization (Tipping and
Scholkopf, 2001), which determines a minimal subset of photos such that each photo
in the original set has at least a certain minimum number of inliers with at least one
photo in the subset. Both the approaches by Cao and Snavely (2013) and Avrithis et al.
(2010) therefore seek a set of iconic images that covers the dataset. In Chapter 6.6, we
use these two approaches for summarizing landmark clusters and find that they yield
comparable results.

2.1.3 Discussion

In summary, most approaches for finding iconic images from Internet photo collections
optimize criteria related to frequency (Palmer et al. (1981)), sometimes combined with
additional criteria like orthogonality or aesthetic quality. A popular way of implementing
this definition is the valence criterion (Crandall et al. (2009); Frahm et al. (2010); Jing
et al. (2007); Kennedy and Naaman (2008); Philbin et al. (2011); Raguram et al. (2011);
Zheng et al. (2009)). We argue that the valence criterion is not optimal, because an
image that has many local feature matches with other images is not necessarily the best
view, since SIF'T features are designed to be viewpoint invariant. Thus, even if an image
does not show a frontal, centered view of an object, it can still have a high number
of matches. Another problem of the valence criterion is that it prefers textured image
regions since they have more SIFT features than uniform surfaces. This gives views
revealing more texture or detail a higher likelihood of being selected as the iconic view.
Finally, the valence criterion only considers views directly connected to the current one
in the matching graph. However, even images that are not directly adjacent might have
similar views, e.g., if drastic lighting changes prevent the formation of a direct match.
Our approach propagates image overlap through the matching graph, ensuring that
all overlapping images are discovered. Moreover, our approach is not biased towards
textured regions because our distance measure is a function of image overlap, not of the
number of inliers.
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2.2 Object Clustering

The task of object clustering is to group images into clusters corresponding to individual
buildings or objects. Applications of this line of research include landmark recognition
(Avrithis et al. (2010); Gammeter et al. (2009, 2010); Quack et al. (2008); Raguram et al.
(2011); Yang et al. (2011); Zheng et al. (2009), search result summarization (Berg and
Berg (2009); Jing and Baluja (2008); Jing et al. (2007); Kennedy and Naaman (2008);
Raguram and Lazebnik (2008)), scene summarization (Epshtein et al. (2007); Simon
et al. (2007)), object mining (Chum and Matas (2010); Chum et al. (2009); Crandall
et al. (2009); Philbin and Zisserman (2008); Philbin et al. (2011)), 3D reconstruction
(Agarwal et al. (2009); Frahm et al. (2010); Raguram et al. (2011); Snavely et al. (2006,
2008a)), and building interactive tour guides (Papadopoulos et al. (2010); Snavely et al.
(2006, 2008a)).

To summarize web image collections, Kennedy and Naaman (2008); Raguram and
Lazebnik (2008) simply cluster global image descriptors using k-means. Berg and Berg
(2009) use k-medoids and a similarity on geometric blur features. Most approaches first
build a matching graph of the image collection by performing a pairwise SIFT matching.
Subsequently, they use various graph clustering algorithms to partition the matching
graph into clusters that should ideally correspond to individual landmarks or objects.
While early approaches produced a hard clustering, where each image only belongs to
one cluster, newer approaches have shifted to producing a soft clustering, where an
image can belong to several overlapping clusters. Hard clustering algorithms used for
image clustering include Hierarchical Agglomerative Clustering (Gammeter et al. (2009,
2010); Quack et al. (2008); Zheng et al. (2009)), Spectral Clustering (Crandall et al.
(2009); Philbin and Zisserman (2008)), Connected Components Analysis (Agarwal et al.
(2009); Frahm et al. (2010); Raguram et al. (2011); Snavely et al. (2008a)), and SCAN
(Papadopoulos et al. (2010)).

Object clustering methods that yield an overlapping clustering include Query Ex-
pansion (Chum and Matas (2010); Chum et al. (2009)), Kernel Vector Quantization
(Avrithis et al. (2010)), Probabilistic Latent Semantic Analysis (Simon and Seitz (2008)),
Latent Dirichlet Allocation (Philbin et al. (2011)), and Medoid Shift (Weyand and Leibe
(2011, 2013)).

For many of these approaches, the definition of a cluster is not well-aligned with
the definition of an object. For example, Philbin and Zisserman (2008) use spectral
clustering, which produces an over-segmentation that breaks down single objects into
multiple clusters. Therefore, an additional merging step is required which again merges
clusters corresponding to the same object into one. On the other hand, connected
components based methods (Agarwal et al., 2009; Frahm et al., 2010; Raguram et al.,
2011; Snavely et al., 2008a) tend to under-segment the image collection, causing multiple
objects to be inside the same cluster. In our proposed algorithm, clusters have an
intuitive definition: At the center of each cluster is an iconic image of a building or

11
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object, and all images that overlap with the iconic image by at least a certain fixed
amount belong to the cluster of this iconic image.

All of the algorithms discussed so far produce a flat clustering, i.e., an unordered set
of clusters. There has been little work that produces a hierarchical image clustering.
Epshtein et al. (2007) use Mean Shift (Comaniciu and Meer (2002)) in a top-down
fashion to create a hierarchical structure of the different views of a scene. However,
their approach only operates in 2D on a top-down view of the scene, which limits its
granularity.

Several landmark clustering papers use geotags to limit the computational effort of
building the matching graph and performing the clustering by pre-grouping images based
on their location (Avrithis et al. (2010); Crandall et al. (2009); Gammeter et al. (2009,
2010); Kennedy and Naaman (2008); Quack et al. (2008); Zheng et al. (2009)). This
is often necessary to make visual clustering feasible on large-scale image collections.
For example, single-link hierarchical agglomerative clustering (Manning et al. (2008))
has quadratic complexity in the number of input images, so it can only be applied to
smaller groups of geographically close images (Quack et al. (2008); Zheng et al. (2009)).
However, this step limits the applicability of these approaches to images where geotags
are available. Our approach is inherently parallelizable and scalable to very large image
collections, making geographic pre-clustering unnecessary.

2.2.1 Discussion

In summary, most previous work on image clustering has produced a hard, flat clustering.
We argue that instead, a soft, hierarchical clustering is more suitable to the task of
object discovery in large-scale image collections. A soft clustering allows images to
belong to multiple objects at once, which is necessary for the case of nearby landmarks.
A hierarchical clustering can better represent objects with sub-structures. For example,
if a building has interesting details on its facade or in its interior, then both the whole
building and the details should form clusters, and the detail clusters should be child
nodes of the building cluster.

2.3 Landmark Recognition

A clustering of images into landmark buildings can be used for recognizing landmarks
in a given query image. There are three different approaches for this in the literature:
Image Retrieval, Classification and Pose Estimation. In the following, we will discuss
previous work for each of them and discuss their advantages and shortcomings.

12
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2.3.1 Image Matching and Retrieval

To recognize the landmark in a query image, several approaches (Gammeter et al.,
2009; Philbin et al., 2007; Quack et al., 2008; Sivic and Zisserman, 2003; Zheng et al.,
2009) implement a best match strategy where the query is matched against a database
consisting of the union of all landmark clusters. The landmark corresponding to the
cluster containing the best matching image is returned. Quack et al. (2008) perform an
expensive pairwise local feature matching against the database. To reduce the effort,
they ask the user to draw a geographic bounding box on a map and only match against
photos from this region. Zheng et al. (2009) use k-D trees to speed up local feature
matching. Gammeter et al. (2009) retrieve images using inverted indexing and bags-
of-visual-words (BoVWs, Nistér and Stewénius (2006); Philbin et al. (2007); Sivic and
Zisserman (2003)). Li et al. (2008) only want to decide whether the query image contains
a specific landmark. Given a dataset of photos of one landmark, they perform image
retrieval using either k-NN search in GIST feature space or vocabulary tree matching
(Nistér and Stewénius, 2006) using SIFT features. Then, they apply a threshold to
the retrieval score to decide if the query contains the object. Both Avrithis et al.
(2010) and Johns and Yang (2011) compress the images in a cluster into a joint BoVW
representation and perform inverted file retrieval to find the best matching scene models
for a query image.

2.3.2 Classification

An alternative approach is to view the task as a classification problem where each land-
mark is a class. Gronat et al. (2013) learn exemplar SVMs based on the BoVWs of the
visual features of the database images. Li et al. (2009) learn a multi-class SVM and
additionally use the BoWs (bags-of-words) of the textual tags of the images as features.
Bergamo et al. (2013) use a similar approach, but perform classification using 1-vs-all
SVMs. Instead of using approximate k-Means (Philbin et al., 2007) for feature quanti-
zation, they reconstruct the landmarks using structure-from-motion and train random
forests on the descriptors of each structure-from-motion feature track. These random
forests are then used for quantizing descriptors.

2.3.3 Pose Estimation

The goal of pose estimation is to determine the camera location and orientation for a
given query image. This reduces the problem of landmark recognition to checking if the
camera is pointed at a landmark. Several works solve this task by matching the query
against street level imagery such as Google Street View panoramas using local feature
based image retrieval (Baatz et al. (2010); Chen et al. (2011); Johns and Yang (2014);
Knopp et al. (2010); Schindler et al. (2007); Torii et al. (2011)). Other approaches are
based on 3D point clouds created by applying structure-from-motion on Internet photo
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collections or manually collected photos (Li et al. (2010, 2012); Sattler et al. (2009,
2011)). Since image retrieval methods cannot be applied to 3D points, these approaches
directly match the query descriptors against the descriptors of the image features that
the 3D points were reconstructed from. After a set of 2D-3D correspondences has been
established, the camera pose is determined by solving the perspective-n-point (PnP)
problem (Hartley and Zisserman (2004)). Since the descriptor matching problem be-
comes computationally expensive when matching against very large 3D models, hybrid
methods (Cao and Snavely (2013); Irschara et al. (2009); Sattler et al. (2012)) have been
proposed that first perform efficient image retrieval using inverted files and then solve
the PnP problem based on the relatively small set of 3D points associated with the 2D
features of the retrieved images. Similarly, Hao et al. (2012) match SIFT features from
the query image against structure-from-motion reconstructions of landmarks. However,
instead of point-to-point correspondences their approach tries to find matching 3D visual
phrases, i.e., triplets of close-by 3D points with a known geometric configuration.

2.3.4 Discussion

We have discussed three approaches for landmark recognition: retrieval, classification
and pose estimation.

An advantage of classification over both pose estimation and retrieval is that it requires
fewer resources at runtime because it only needs the model parameters, which usually
fit into RAM. In contrast, classification and pose estimation methods need the SIFT
descriptors of the database. Since they are too large to be stored in RAM they typically
need to be loaded from disk for every query, which slows down recognition. A major
disadvantage of discriminative models is that they need to be re-trained every time
new images and landmarks are added. Moreover, a classifier will assign every image a
landmark label regardless of whether it contains a landmark or not.

When using pose estimation for landmark recognition, it is also possible to return
their precise camera position and orientation, which can be useful in applications like
augmented reality tour guides. However, pose estimation relies on either regularly sam-
pled images (e.g. Google Street View panoramas), which are not available everywhere,
or structure-from-motion reconstructions, which cannot always be computed robustly.
Moreover, even if the camera is pointed at the landmark, it might still not be visible
due to occlusion or bad weather and lighting conditions.

While image retrieval based landmark recognition has higher storage requirements
than classification based methods, it has the desirable property that the index is easy
to extend, because new images can simply be added to it incrementally. Bag-of-visual-
words based retrieval methods have made it possible to scale image retrieval indexes to
millions of images. This may be the reason why most landmark recognition approaches
are based on image retrieval. We take a closer look at these approaches in our evaluation
of landmark recognition in Ch. 6.
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In this chapter, we introduce the basic techniques underlying the approaches we present
in the following chapters. A fundamental requirement for clustering photos is the abil-
ity to tell whether two images show the same object. We will refer to this task as
matching. Our approaches make use of local feature based matching which we introduce
in Section 3.1. In order to retrieve images matching a given query image, we use the
popular visual words based image retrieval pipeline that we explain in Section 3.2. In
Section 3.3, we introduce the PARIS 500K dataset that we will use to evaluate our al-
gorithms throughout this thesis. Finally, in Section 3.4, we perform a case study based
on two existing landmark discovery algorithms, which motivates the approaches we will
introduce in the following chapters.

3.1 Matching with Local Features

Even for humans, determining whether two images show the same object can be a very
complex task. However, since our target application is clustering tourist photos by
their depicted buildings, we can make certain simplifying assumptions. Firstly, we can
assume that the images show the same specific object instance. This makes our task
significantly easier than recognizing object classes, which are subject to a much wider
variety of appearance changes. Secondly, we can assume rigid, non-articulated objects
that do not change their shape. However, since we are dealing with tourist photos taken
at different times and from different vantage points, we need matching techniques robust
w.r.t. variations in lighting and perspective, as well as partial occlusions.

The popular local feature based matching pipeline (Grauman and Leibe, 2011; Lowe,
2004; Tuytelaars and Mikolajczyk, 2008) therefore seems best suited to our needs. Given
a pair of images, the basic idea is to establish a set of correspondences between them.
A correspondence is a pair of image regions that lie on the same part of the depicted
object in both images . If an image pair has a sufficient number of spatially coherent
correspondences, we consider it a match.

15
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Figure 3.1: Local feature based matching pipeline.

The local feature based matching pipeline consists of the following steps (Fig. 3.1):

1. We detect a set of interest regions located at salient points in the images (Sec. 3.1.1).
An important requirement for these regions is repeatability, i.e., they should be de-
tected on the same part of the object in both images.

2. We compute a descriptor for each interest region (Sec. 3.1.2), i.e., a vector that
captures the region’s appearance.

3. By matching the interest region descriptors in both images, we establish a set
of putative correspondences that have similar descriptors but are not necessarily
spatially coherent.

4. Based on these correspondences, we estimate a geometric transformation, e.g., a
homography, between the images and only keep those correspondences that are
consistent with this transformation (Sec. 3.1.3). We will refer to these correspon-
dences as inliers. If an image pair has enough inliers, we assume that the images
show the same object and call the pair a match.

We will now look at each of these steps in more detail. In this discussion, we focus
on the methods we use in our implementation and refer the reader to the literature for
other methods and further details (Lowe, 2004; Mikolajezyk and Schmid, 2004, 2005;
Szeliski, 2011; Tuytelaars and Mikolajezyk, 2008).
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3.1.1 Interest Region Detection

The first step in the matching pipeline is to detect repeatable interest regions in the
input images. Typical choices for this include the Harris detector that responds to
corners (Harris and Stephens, 1988), the Hessian (Beaudet, 1978) and Difference-of-
Gaussians (DoG) (Lowe, 2004) detectors that respond to blobs, and the MSER detector
(Maximally stable extremal regions, Matas et al. (2002)) that returns the most stable
regions in a watershed segmentation of the image. The Harris and Hessian detectors
only return interest points, i.e., 2D image locations, while the DoG and MSER detectors
return interest regions, i.e., connected groups of pixels that correspond to some object
part. (However, as will discuss later, the Harris and Hessian detectors can be extended
to also return interest regions.)

In order to be repeatable, an interest region detector must be covariant w.r.t. certain
image transformations. An operator F' is called covariant w.r.t. a transformation 7" on
an image [ if the operator and the transformation commute, i.e., T(F (1)) = F(T(1)),
or To FF = FoT. For example, if an interest region detector is rotation-covariant,
first rotating an image and then extracting interest regions yields the same result as
first extracting interest regions and then applying the rotation to them. Additionally,
a detector should be invariant w.r.t. changes in brightness and contrast, i.e., it should
yield the same result regardless of such changes.

Most interest region detectors are fully translation and rotation covariant, and are in-
variant to lighting changes to a limited degree. Many detectors are also scale-covariant
(e.g. DoG), and some (e.g. MSER) are even affine-covariant, i.e., covariant w.r.t. trans-
lation, rotation, anisotropic scaling and shearing. The latter two provide a certain level
of covariance w.r.t. perspective distortions, which is desired when matching images taken
from different camera angles. Mikolajczyk and Schmid (2004) combined the Harris and
Hessian interest point detectors with a scale selection algorithm (Lindeberg, 1998) and
an affine normalization algorithm (Lindeberg and Garding, 1997) such that they return
scale-covariant and affine-covariant interest regions, respectively.

We refer the reader to Tuytelaars and Mikolajczyk (2008) for an excellent survey on
interest region detectors. In the following, we will introduce the Hessian-Affine detector
(Beaudet, 1978; Mikolajczyk and Schmid, 2004), which we used for our experiments!.

Hessian Interest Points. The basic workflow of the Harris and Hessian detectors is
to first compute a response function of the input image and then to identify the local
maxima of this function using non-maximum suppression. The resulting image coordi-
nates are returned as interest points. While the Harris detector responds to corners, the
Hessian detector responds to blob-like structures. Given an input image I, the first step
of computing the Hessian response function is to compute the second image derivatives.

'We used the implementation by K. Mikolajczyk available from http://www.robots.ox.ac.uk/
~vgg/research/affine/detectors.html. In the meantime, M. Perdoch released an implementation
that is faster, open source, and delivers higher performance in matching benchmarks. It is available
from https://github.com/perdoch/hesaff.
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The derivative images are then convolved with a Gaussian kernel of bandwidth o such
that the value of each pixel is a weighted average of a Gaussian window around it. From
these blurred second derivatives I, I,, and I,,, the Hessian matrix at the pixel position
(z,y) is computed as

_ [mm<xay70) I$y<x7y70-)
Hw9:0) = | [ aryio) Lo(e.y.o) | (3:1)

If we imagine the image intensity as a heightmap on the x/y plane, the Hessian matrix
describes the curvature of the resulting surface at a given point. The Hessian response
function Ry (z,y) is the determinant of the Hessian matrix multiplied by a scale nor-
malization factor o2 that is required for comparability across scales

Ry (z,y) = o*det(H(z,y,0)) = o> (Im(:c, y,0) 1y (x,y,0) — Iiy(x,y, 0)) ) (3.2)

Laplacian Scale Selection. In order to compute a characteristic scale for each detected
interest point, Mikolajezyk and Schmid (2004) propose the following procedure. First,
the tmage pyramid of the input image is computed by repeatedly downscaling the image.
The Hessian detector is then run on each pyramid level to yield a set of interest points
for each scale level. Since the pyramid scales are discretized, the scales of these interest
points are only approximate. To find the exact scales, the scale selection algorithm by
Lindeberg (1998) is used. Starting with an interest point position and an initial scale,
the algorithm computes a scale signature function over a range of scales and selects the
scale s at which this signature function reaches its extremum. A typical choice of scale
signature function is the Laplacian-of-Gaussian, which, like the Hessian determinant,
has a high response for blob-like structures. The resulting interest regions are referred
to as Hesstan-Laplace interest regions.

Affine Region Estimation. Starting at the circular regions returned by the Laplacian
scale selection, Mikolajczyk and Schmid (2004) apply the affine normalization algorithm
by Lindeberg and Garding (1997) to obtain affine-covariant interest regions. The affine
shape of the interest region is estimated using the second moment matriz, often also
called the auto-correlation matrix. In contrast to the Hessian matrix that consists of
blurred second image derivatives, the second moment matrix consists of first image
derivatives blurred with a Gaussian kernel of scale op. The response is again blurred by
a Gaussian kernel with scale o; and finally weighted by a scale normalization factor o2,

L?(%%UD) Iw(‘r7y70-D)]y(x7y70-D) ) (33)
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Here, g(o7) is a Gaussian kernel with scale o;. The eigenvectors and eigenvalues of this
matrix have a geometric interpretation. The eigenvectors represent the directions of the
largest and smallest change in intensity, respectively, and the eigenvalues represent the
amount of change. This matrix can be visualized as an ellipse whose semi-major and
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Figure 3.2: FEllipse representation of the second moment matriz and eigenveclors e
and ey and eigenvalues Ay and As.

semi-minor axes (lL.e. its directions of longest and shortest diameter, respectively) are
given by the eigenvectors of the second moment matrix (Fig. 3.2).
The affine normalization algorithm alternates between the following steps:

1. Estimate the affine shape of the image region using the second moment matrix.
2. Warp the region such that its affine shape becomes a circle.

3. Correct the location and scale of the interest region by again performing Hessian
interest point detection and Laplacian scale selection in the warped region.

After the eigenvalues of the second moment matrix become equal, the algorithm has
converged and terminates. (See Lindeberg and Garding (1997) for an analysis of its con-
vergence conditions.) The resulting Hessian-Affine interest regions are ellipses defined
by five parameters: The (x,y) position of the interest point and the three parameters of
the (symmetric) 2x2 affine matrix that define the shape of the ellipse.

3.1.2 Interest Region Description and Matching

An interest region descriptor is a fixed-size vector that captures the appearance of an
image region. A descriptor should be distinctive, so that interest regions in two im-
ages can be matched by comparing their descriptors. Moreover, like an interest region
detector, a descriptor should be invariant to brightness and contrast changes.

Before the descriptor is computed, the image patch of its interest region is extracted
and normalized to a standard shape (usually a square) by applying the inverse rotation
and affine transformation of the interest region. Because of this normalization, the
descriptor does not need to have a high level of invariance w.r.t. image transformations.
In fact, too much invariance would negatively affect its distinctiveness (Tuytelaars and
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Figure 3.3: The SIFT descriptor consists of 4x4 histograms of oriented gradients that
have 8 orientation bins each.

Mikolajezyk, 2008, Sec. 1.4.1). However, some invariance to these factors is helpful to
make up for slight errors in the interest region location and shape (Lowe, 2004, Sec. 6).

There is a wide variety of interest region descriptors (Mikolajezyk and Schmid (2005)
provide a survey). The Scale-Invariant Feature Transform descriptor (SIFT, Lowe
(2004)) is arguably the most popular descriptor to date?, and several variations of it
have been proposed, e.g., SURF (Bay et al., 2008), GLOH (Mikolajezyk and Schmid,
2005) or DAISY (Tola et al., 2010).

We now briefly describe the SIFT descriptor (Fig. 3.3) which we use in our experi-
ments®. First, a 4x4 grid is overlaid over the input image patch. Inside each grid cell,
gradient directions and magnitudes are computed at 4x4 sampling positions and accu-
mulated into a gradient histogram with 8 directional bins. Gradients are weighted by a
Gaussian window such that gradients farther from the patch center have less influence
on the descriptor. Each gradient sample contributes its gradient magnitude to the 4 grid
cells closest to its own position, where contributions are weighted by the distance of the
sample position to the center of each grid cell. In each of these four gradient histograms,
the sample contributes to the two orientation bins closest to its own orientation. In total,
each gradient sample contributes to 2x2x2 = 8 histogram bins (2 spatial dimensions and
one orientation dimension) and contributions are weighted using tri-linear interpolation.
Therefore, a sample contributes its value to the same histogram bin even if the descriptor

2According to Google Scholar, SIFT (Lowe, 2004) has been cited 25,591 times as of August 2014.
3We used the implementation by K. Mikolajczyk available from http://www.robots.ox.ac.uk/
~vgg/research/affine/descriptors.html.
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3.1 Matching with Local Features

is shifted by up to two grid cells or rotated by up to 90 degrees. The orientation his-
tograms of all cells are concatenated, yielding a 128-dimensional vector. This descriptor
is invariant w.r.t. brightness changes since it is based on image gradients. To improve
invariance w.r.t. contrast, the descriptor is normalized to unit length w.r.t. the L? norm.
Additionally, to improve invariance to non-linear brightness changes, the dimensions of
the feature vector are clipped at a value of 0.2 and the resulting vector is re-normalized.
This step reduces the influence of very strong gradients on descriptor distances. Finally,
each dimension is multiplied by 256 and represented by an unsigned byte. The size of a
SIF'T descriptor is therefore 128 bytes.

Given two images and their SIF'T descriptors extracted from Hessian-Affine interest
regions, we now want to find correspondences between their interest regions. For this,
each SIFT descriptor in the first image is assigned its nearest neighbor in the second
image. Distances between SIFT descriptors can be efficiently computed by their scalar
product, which is a linear function of their squared Euclidean distance, since SIFT
descriptors have unit length*. To prevent false-positive correspondences due to repetitive
structures in the images, Lowe (2004) propose to discard correspondences that do not
pass the second nearest neighbor test. The idea of this test is to find both the nearest
and second nearest neighbor for an interest point descriptor and to compute the ratio
of their distances d;/dy. If this ratio exceeds a threshold (usually 0.8), the distances
are too similar, meaning that we cannot confidently decide whether the first or second
nearest neighbor would be the correct match. Therefore, we discard correspondences
whose distance ratio is above a certain threshold. Using the remaining correspondences,
we can now compute a spatial transformation between the input images. If this step
succeeds and a sufficient number of correspondences are consistent with the resulting
transformation, we assume that the same object is present in both images.

3.1.3 Transformation Estimation

We now want to estimate a transformation that maps the coordinates of each pixel
in the first image to its corresponding location in the second image. The choice of
transformation depends on the object geometry and how the camera moves relative to
the object. We are mainly interested in matching photos of buildings taken from different
perspectives. Assuming that we can approximate buildings as mostly flat surfaces, we
choose homographies as our transformation model. A homography is a mapping between
two perspective projections of a planar object that preserves straight lines, but not
parallel lines. It is represented by a 3 x 3 matrix with 8 degrees of freedom: scaling,
translation, shearing and perspective foreshortening along the x and y axes, respectively.

o —yl? ==l — 22Ty + yl> =2 - 22Ty
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3 Foundations

To apply a homography H to a pixel position (z,%,1)" given in homogeneous coordi-
nates, the position is multiplied by the homography and subsequently dehomogenized,
which yields the projected position (z,,y,,1)".

x x T, x' /2
v =Hly]| . |wm]|=|V/ (3.4)
2! 1 1 1

Since a homography has 8 degrees of freedom, it can be estimated from 4 or more corre-
spondences of 2D points. Inserting all correspondences into the above equation yields a
linear system that can be solved in the least squares sense using singular value decompo-
sition (SVD). This method is called the Direct Linear Transform (DLT) algorithm. We
refer the reader to Hartley and Zisserman (2004) for a detailed discussion of different
methods for estimating homographies and other image transformations.

Estimating the homography between a pair of images using the putative correspon-
dences between their interest regions is a chicken-and-egg problem. The correct homog-
raphy can only be estimated from a set of correct correspondences. However, we do not
know which correspondences are correct unless we already know the correct homogra-
phy. Simply using all correspondences and solving the resulting over-constrained least
squares problem is not likely to work, since we can expect many correspondences to be
wrong, especially if the object of interest only takes up a small fraction of the images.

A solution to this problem is the Random Sample Consensus (RANSAC, Fischler
and Bolles (1981)) algorithm. RANSAC is a randomized algorithm for estimating a
transformation in the presence of a large number of outliers, i.e., correspondences that
are not consistent with the transformation. In each iteration, RANSAC draws a mini-
mal random sample of correspondences (4 in the case of a homography), estimates the
transformation from them and then checks how many correspondences are inliers. If
the sample contains outliers, the transformation will be wrong and thus have a small
number of inliers. A homography estimated from only correct correspondences, however,
is expected to have a large number of inliers. After a certain number of iterations, the
transformation with the most inliers is therefore chosen as the correct one. The final
transformation is re-estimated from all the inliers of the best homography using least
squares.

To determine whether a correspondence is an inlier or an outlier w.r.t. a homography;,
we check how close the projection of the interest point in the first image is to its corre-
sponding interest point in the second image. This can be done, for example, using the
symmetric transfer error which measures the error of projection in both directions. Let
t(H, x) be a function that projects a point x using a homography H as in Equation (3.4).
Given a correspondence, i.e., a pair of interest point positions x; in image 1 and x5 in
image 2 and a homography H that projects from image 1 to image 2, the symmetric
transfer error is

e(3x1, %2, H) = [[6(H, x1) — xo|* + [[t(H ", x2) — x4 (3.5)
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Correspondences whose symmetric transfer error is below a certain threshold are consid-
ered inliers. An image pair that has a sufficiently large number of inliers is considered a
match.

Many RANSAC variants have been proposed in the literature (see Raguram et al.
(2008) for a comparison). We use Spatially Consistent Random Sample Consensus
(SCRAMSAC, Sattler et al. (2009)), which runs a spatial consistency pre-filter similar
to the one used in Sivic and Zisserman (2009) before applying RANSAC. In informal
experiments we found that this provides a speedup over regular RANSAC without having
a negative effect on the results.

We now have all the components required to determine whether two images show the
same object. However, if we want to know which images from a large dataset match
a given query image, we would need to perform this expensive matching procedure for
every image. In the following, we will therefore introduce an efficient image retrieval
pipeline based on local features that makes it possible to find the set of images matching
a query in very large datasets in sub-linear time w.r.t. the number of images in the
dataset.

3.2 Image Retrieval using Inverted Files

We now introduce an image retrieval framework originally proposed by Sivic and Zisser-
man (2003) that makes efficient text retrieval techniques applicable to image retrieval.
First, we explain the original text retrieval methods and then discuss how the same
methods can be applied to images by converting local features into visual words.

3.2.1 The Vector Space Model for Text Retrieval

Given a very large corpus D of text documents, e.g., the world wide web, the task of a
search engine is to quickly retrieve documents that match a given query string. A simple
(Boolean) approach for this would be to sort the documents by the number of words
they have in common with the query. To do this, we define a finite, fixed-size vocabulary
V', i.e., a sorted list of all possible words, and represent a document as a bag of words,
i.e., a histogram of word frequencies. In the Boolean vector space model, this histogram
is binary, i.e., entry w in the bag of words is 1 if word w occurs in the document and
0 otherwise. We create such a bag of words histogram for each document in our corpus
and stack them to form a term-document matriz M € {0,1}/PXIVI Entry M(d,w) in
this matrix is 1 if word w occurs in document d. Given a query document, we compute
its bag of words vector and multiply it with the term-document matrix. The result is a
vector whose dth element is the dot product of the query and document d, which is the
number of common words that document has with the query. Thus, we can now sort the
documents by their number of common words with the query and return the resulting
ranking.
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Since the term-document matrix is very sparse and would we wasteful to store in
memory, a more compact but equivalent representation is used that is called the inverted
indezx, or inverted file. For each word, the inverted index simply lists the documents that
this word appears in. Each such list is called a posting list. To compute the number of
common words of the query with each document, the posting list of each word occurring
in the query is traversed. For each document in the posting list, its number of common
words with the query is incremented by one. This can also be viewed as a voting process,
where each word from the query casts votes for the documents it appears in. The inverted
index not only saves memory, but also makes retrieval much more efficient. Instead of
all words in the dictionary, we now only need to consider the words that actually occur
in the query. Moreover, the computation time no longer depends on the number of
documents in the corpus, but only on the number of documents that have words in
common with the query. Retrieval therefore has sub-linear computational complexity in
the number of documents.

This Boolean retrieval model, while instructional, has at least three shortcomings:
Firstly, common words like “the” will have the same importance as more informative
words like “rhinoceros”. Secondly, words receive equal weight regardless of how often
they occur in a document. For example, we should expect that if a document contains
the word “cat” 50 times and the word “dog” one time, it is probably about cats and
thus much more relevant to the query “cat” than to the query “dog”. Thirdly, different
document lengths are not accounted for. Longer documents that contain more words
will have a higher likelihood of accidentally having a word in common with the query
than shorter documents. Thus, long documents have an unfair advantage in retrieval.

These problems are addressed by the tf-idf weighting scheme. In this scheme, the
weight of a term is increased if it occurs frequently in a document, i.e., if it has a high
term frequency (tf). Likewise, the weight of a term is decreased if it occurs in many
documents in the corpus, i.e., if it has a high inverse document frequency (idf). Let
df,, denote the number of documents that the term w occurs in. Then, a term w in
a document d will get the weight tf,, - idf,,, where tf,; is the frequency of term w in
document d and

D
idf,, = log <l1f_|) : (3.6)

The idf of a term is therefore lower if it occurs more frequently in the corpus and becomes
0 if the term occurs in every document.

To incorporate tf-idf weighting into the bag of words model, each term w in the bag
of words histogram of a document d is weighted by tf,q - idf,,. Given two tf-idf vectors
Va and vy, their similarity is computed as

ol tf o + tFwp - 12
sim(va, Vp) = Va Vo Do b S w (3.7)

NIl ™ i, o i
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3.2 Image Retrieval using Inverted Files

Figure 3.4: Visual words are the Voronoi cells formed by the cluster centers making
up the visual vocabulary (green). The colored dots illustrate two types of quantizalion
errors: The blue and red dots are very close in descriptor space, but are assigned different
visual words, which can lead to false-negative matches. The purple and blue dots are far
apart in descriptor space, bul are still assigned to the same visual word which can lead
to false-positive matches.

The normalization by the norms of the tf-idf vectors accounts for different document
lengths. This similarity is called the cosine similarity, because the dot product of two
unit vectors is the cosine of the angle between them. The tf-idf weighting scheme can
efficiently be incorporated into inverted file retrieval by storing the tfs in each posting
list entry. The idf of each vocabulary term and the norm of the tf-idf vector of each
document can be pre-computed for efficiency. The cosine similarities of each document
with the query can then be accumulated efficiently during retrieval.

We refer the reader to Manning et al. (2008) for a more detailed introduction to text
retrieval methods.

3.2.2 Image Retrieval with Bags of Visual Words

The basic idea that enables the application of text retrieval techniques to images is
to regard the local features of an image as wvisual words. However, since each SIFT
descriptor is a 128 byte vector, the dictionary would contain 256'%® words and thus it
would be highly unlikely for a pair of images to even have one visual word in common.
Therefore, it would be desirable to quantize the descriptor space into a more manageable
number of visual words (which is usually chosen to be between 10® and 107).

Descriptor Quantization.
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Because SIFT features are highly non-uniformly distributed, a regular lattice over
feature space (Tuytelaars and Schmid, 2007) would have mostly empty bins and thus the
vast majority of words in the dictionary would never occur. Instead, Sivic and Zisserman
(2003) quantize feature space adaptively to the data using vector quantization. For this,
a representative sample of the SIF'T descriptors of all images is clustered using k-means
(Duda et al., 2000). The resulting cluster centers are referred to as visual words and
the set of all cluster centers is called the wvisual vocabulary. A SIFT descriptor is now
represented by the index of its closest visual word in the visual vocabulary. This way,
a 128-dimensional descriptor becomes an integer between 1 and |V|, where |V] is the
size of the vocabulary. In the following, we will also refer to this index as visual word.
Two SIFT descriptors are assigned the same visual word if they are closest to the same
cluster center. The set of all SIFT descriptors with the same visual word forms a Voronoi
cell in the 128-dimensional descriptor space (Fig. 3.4). Intuitively, a visual word should
capture the appearance of a certain part of an object and its Voronoi cell should span
its variability in appearance. This quantization makes descriptor matching much more
efficient, because we only have to compare two integers instead of computing the dot
product of two 128-dimensional vectors.

Quantization Errors. A drawback of this matching procedure is that it is much less
precise than exact descriptor comparison due to quantization errors. For example, two
descriptors that are very close in feature space might still end up in different Voronoi
cells and thus not form a match. Likewise, two descriptors in the same Voronoi cell are
not necessarily close in feature space, as illustrated in Figure 3.4. Depending on the size
of the vocabulary, there will be more false-positive or false-negative feature matches.
In a too coarse vocabulary, the Voronoi cells can be so large that SIFT descriptors
of different object parts will match. In a too fine vocabulary, slightly different STFT
descriptors of the same object part might end up in different cells. To allow for a more
fine-grained matching without sacrificing the benefits of visual word matching, there are
approaches to softly assign a SIFT feature to multiple visual words (Philbin et al., 2008)
or to introduce finer levels of quantization that allow computing approximate descriptor
distances of descriptors assigned to visual words (Jégou et al., 2008, 2011).

Bags of Visual Words. An image is now converted to a bag of visual words by assigning
each of its SIFT descriptors a visual word and building a |V|-dimensional histogram of
their frequencies. The resulting representation is analogous to the bag of words represen-
tation from text retrieval and now enables us to perform image retrieval using inverted
files. tf-idf weighting is applicable here as well and has an intuitive interpretation. We
can consider visual words as parts of objects, like the wheel of a car or a corner of a
window. If an image contains a certain part more frequently, this part is likely more
important and should thus receive a higher weight. Likewise, if a part appears in many
images, it likely carries less information than a rarely occurring part and should receive
a lower weight.
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Approximate Nearest Neighbor Search. Assigning a SIFT feature to a visual word
requires finding its closest cluster center in the visual vocabulary. In a naive implemen-
tation, this would require computing |V'| scalar products, which would be very compu-
tationally expensive for typical visual vocabulary sizes (we use 1M visual words in our
experiments). Therefore, we would like to speed up the search using efficient data struc-
tures. Unfortunately, exact nearest neighbor search techniques like k-d trees (Bentley,
1975) would not bring a speed gain over linear search in 128 dimensions due to the curse
of dimensionality. However, we can use approximate nearest neighbor search methods
(Arya and Mount, 1992; Silpa-Anan and Hartley, 2008) that are more efficient than
linear search, but are not guaranteed to find the correct nearest neighbor every time.
We use an approach based on a forest of randomized k-d trees as proposed by Philbin
et al. (2007). The basic idea is to build a set of k-d tree search indices for the visual
vocabulary, where the construction of each k-d tree is randomized.

A k-d tree is a binary space partitioning tree. Each node of the tree is a hyperplane that
splits its space into two half-spaces. A k-d tree is constructed from a set of data points
(cluster centers in our case) in a top-down fashion. At each node, the dimension with the
highest variance is chosen as the splitting dimension, i.e., the dimension perpendicular
to the splitting hyperplane. The position of the splitting plane along this dimension
is chosen to be the median of the projections of all data points onto this dimension.
Therefore, each node has an associated data point that lies inside its hyperplane.

Given a query data point, we search its nearest neighbor by descending the tree. At
each node, we choose the half-space containing the query point. During the descent, we
keep track of the closest data point to the query we have encountered so far. We also
store all nodes along our path whose splitting planes are closer to the query than the
current closest point in a priority queue. This is necessary, because the nearest neighbor
might be on the other side of one of these hyperplanes. Each time we encounter a point
closer to the query point than the currently closest neighbor, we prune the priority queue
by removing all points farther from the query than the new closest point. After arriving
at a leaf, we process the nodes in the priority queue by descending the tree from each
of them, updating the current closest neighbor and priority queue along the way.

In a randomized k-d tree, the splitting dimension is chosen randomly with a probability
proportional to the variance across each dimension and the splitting position is chosen
as a random data point close to the median. When searching the nearest neighbor of
a query SIFT descriptor using a forest of k-d trees, we descend each tree as described
above and insert the alternate nodes to visit in a global priority queue. Each entry in
this priority queue stores the id of a tree and the id of a node within this tree. We also
keep track of the global nearest neighbor node over all trees. After having descended
each tree and built up the priority queue, we process only a fized number of nodes from
the priority queue, as described above.

Because we do not process all the nodes in the priority queue, we might not find
the exact nearest neighbor to the query. We can increase the probability of finding the
correct nearest neighbor by either increasing the number of backtracking steps, which
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BE>E
B

Local Feature Descriptor Inverted File Spatial
Extraction Quantization Voting Verification

Figure 3.5: Visual Word based image retrieval pipeline.

affects computation time, or the number of trees, which mainly affects memory use.
These two parameters make it possible to find a tradeoff between accuracy and speed
that fits the given computational resources. We use approximate nearest neighbor search
for both k-means clustering and the computation of the bags of visual words.

Visual Words Based Image Retrieval Pipeline. We now have all the components
required to implement an efficient image retrieval engine. To build the retrieval index
for an image corpus, we perform the following steps.

1.

Detect Hessian-Affine interest regions and extract SIFT descriptors from all im-
ages.

Draw a uniform sample of the SIFT descriptors from the database and cluster
them using approximate k-means to create a visual vocabulary.

Assign the SIFT descriptors of all images to visual words using approximate nearest
neighbor search to generate a bag of visual words for each image.

Build an inverted file index from the bags of visual words and pre-compute the idf
of each visual word as well as the norm of the tf-idf vector of each image.

Given a new query image, we then retrieve matching images using the following proce-
dure (Fig. 3.5):
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1.
2.

Detect Hessian-Affine interest regions and extract SIFT features from the query.

Assign the SIFT descriptors of the query to visual words using approximate nearest
neighbor search to generate a bag of visual words for it.

Query the inverted index with the bag of visual words and rank the results by the
cosine similarity of their tf-idf vectors to the tf-idf vector of the query.

For the top-k ranked images, perform spatial verification by matching SIFT fea-
tures to establish correspondences and estimating a homography using RANSAC.
If an image has more than a certain number of homography inliers with the query,
it is considered a match.



3.3 The Paris 500k Dataset

3.2.3 Matching Graphs

We would now like to cluster images using the local feature based matching techniques
introduced above. A popular approach for this is to build a matching graph (e.g., Avrithis
et al. (2010); Chum and Matas (2010); Quack et al. (2008); Raguram et al. (2011); Zheng
et al. (2009)). In this graph, each image is a node, and two images are connected by an
edge if they match. Sometimes, edges are also weighted, e.g., by the number of inliers.
Given an image collection, a matching graph is built by creating an inverted index
and querying it with each image. The query image is then connected to all matching
images. The resulting graph now allows us to analyze the connectivity structure of the
input image set and makes it possible to apply existing graph clustering algorithms like
connected components analysis, hierarchical agglomerative clustering (Duda et al., 2000)
or spectral clustering (Ng et al., 2001).

3.3 The Paris 500k Dataset

We now introduce our PARIS 500K dataset that we use for many experiments through-
out this thesis. PARIS 500K is a realistic large-scale dataset for evaluating landmark
discovery algorithms. Besides that, it allows for analyzing what objects can actually
be discovered in internet photo collections (see Ch. 6). Landmark discovery algorithms
aim to find often-photographed objects in large amounts of tourist photos from Internet
image collections like Flickr, Picasa, or Panoramio. However, most datasets that have
been used to evaluate these algorithms so far have not been realistic (we discuss different
landmark datasets in Section 6.2.1). For example, the OXFORD 105K dataset (Philbin
et al., 2007) consists of 5k images of different landmark buildings in Oxford and 100k
random distractor images. The Oxford part of the dataset was created by retrieving
images of the Oxford landmarks using keyword searches on Flickr. Despite the large
number of distractor images, the task of discovering landmarks in the dataset is very
easy, because it contains only 11 landmarks, all of them building-scale, meaning there
is a large number of photos of each of them. In a realistic setting, there are hundreds to
thousands of popular objects in a city, some of which as obscure as a painting in a mu-
seum or a graffiti in the street. To evaluate object discovery in a challenging real-world
setting, we created the PARIS 500K dataset.

The dataset consists of 500k images of Paris from Flickr® and Panoramio®. To avoid a
bias towards certain landmarks, we do not use keyword searches, but instead query for
a geographic region covering the inner city of Paris. Figure 3.6 shows the distribution
of the collected photos. The dataset is publicly available on the web”. We created two

Shttp://www.flickr.com
Shttp://www.panoramio.com
"http://www.vision.rwth-aachen.de/data/paris500k
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Figure 3.6: Geographical distribution of the photos in the PARIS 500K dataset.

ground truths for it, one for landmark clustering that we will introduce in the following
section and one for landmark recognition that we introduce in Chapter 6.

3.3.1 Dataset Statistics

We compute the matching graph of the dataset using the inverted file image retrieval
pipeline introduced above. To limit the memory requirements, we apply geo-spatial
binning to only mach geographically close images, similar to Quack et al. (2008). For
this, we use four overlapping grids with 200x200m cells. The grids are shifted by 100m
in latitudinal and longitudinal direction. Each image is inserted into four overlapping
cells and the matching graph of each cell is constructed using image retrieval. The
resulting matching graphs are merged into one global matching graph. While this reduces
computational requirements for matching and prevents false-positive matches to some
degree, we found that geo-spatial binning also isolates images with inaccurate geotags,
since they will end up in the wrong cell and not be matched against other images showing
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PAr1s 500k OXFORD HK

# Features 1,564,381,034 16,334,970
# Nodes 501,356 5,052

# Edges 11,356,090 11,957
avg. valence 45.3 4.7
max valence 4,100 83

Table 3.1: Statistics of PARIS 500K and OXFORD 5K and their matching graphs.

(a) (b)
Figure 3.7: (a) Density of the matching graph. Color encodes node valence (log scale).
(b) Connected components of the matching graph containing at least 20 images.

the same object. We consider an image pair a match if it has 15 or more inliers w.r.t. its
estimated homography. The matching graph is available online along with the dataset.

Statistics of the matching graph of PARIS 500K are shown in Table 3.1 and compared
to the matching graph of OXFORD 5K, which is the landmarks part of the OXFORD
105K dataset. The average valence of the Paris dataset is an order of magnitude higher
than the average valence of the Oxford dataset due to the extreme density of tourist
photos at the most popular places. The photo with the highest valence (4,100) is a
frontal shot of the facade of Notre Dame. Figure 3.7a visualizes the density of the
matching graph of Paris and Figure 3.7b shows its connected components. The largest
connected component (blue, 58,652 images) spans an area ranging from Notre Dame to
the Louvre. This shows that connected components can give a good initial grouping
(Philbin and Zisserman, 2008), but further segmentation is required for a building-level
clustering. The largest connected component on the Oxford dataset is All Souls College
(406 images). Table 3.2 gives statistics of the connected component sizes. For both
datasets, more than half of the images did not have a single match. This shows the
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CCs images CCs images

total 303,522 501,356 total 3,297 5,052
=1 277,490 277,490 =1 2,917 2,917
>2 26,032 223,866 > 2 380 2,135
> 20 397 150,367 > 20 11 929
> 100 63 138,122 > 100 2 518
> 500 19 129,961 > 500 0 0

(a) PARIS 500K (b) OXFORD 5K

Table 3.2: Statistics of the connected components. The middle column gives the number
of connected components with a particular size, and the right column gives the total
number of images in these components. Connected components of size 1 are images for
which no match was found.

large amount of “junk” photos present on Internet photo collections. As also observed
by Gammeter et al. (2010), the connected component sizes are power-law distributed.

3.4 Comparison of two Landmark Discovery Algorithms

For an initial experiment, we compare two landmark discovery algorithms on the PARIS
500K dataset. The first is the method by Philbin and Zisserman (2008) that builds the
matching graph of the whole dataset and applies spectral clustering (Ng et al., 2001).
The second method by Chum et al. (2009) finds a set of seed images using Geometric
min-hash, a hashing scheme for bags of visual words, and uses them as starting points
to grow clusters by query expansion. Figure 3.8 shows a schematic overview of both
pipelines. We analyze the strengths and weaknesses of both approaches which motivates
the methods we present in the following chapters.

This work was performed in collaboration with my student Jan Hosang and was pub-
lished at the ECCV’10 RMLE workshop Weyand et al. (2010). Jan contributed with
several ideas and by implementing the spectral clustering approach as well as tools for
ground truth annotation, visualization and computation of statistics. Moreover, he per-
formed several of the experiments described in this section.

3.4.1 Spectral Clustering

Philbin and Zisserman (2008) first compute the matching graph of the entire dataset as
we described in Section 3.2.3. Because they observed that the connected components of
the matching graph tend to contain several landmarks (cf. Fig. 3.7b), they then break
each connected component down into smaller clusters using spectral clustering (Ng et al.,
2001). Since spectral clustering requires the user to specify the desired number of clusters
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Feature Matching Graph Spectral Cluster
Extraction Construction Clustering Merging

(a) Spectral clustering (Philbin and Zisserman, 2008).

Feature Min- Cluster { Spectral |
—_— . —_— . — 1 . '
Extraction hashing Growing i Clustering

(b) Min-hash (Chum et al., 2009).

Figure 3.8: The two different landmark discovery pipelines we compare. The dashed
bozes denote our spectral clustering add-on for improving cluster purily.

Figure 3.9: The approach for merging spectral clusters of the same landmark proposed
by Philbin and Zisserman (2008). The green and orange clusters correspond to close-up
and full views of the building facade, respectively. The method determines whether the
clusters show the same scene by projecting the image boundaries of their iconic images
(red dots) along the shortest path in the matching graph.

in advance, Philbin and Zisserman (2008) find the optimal number of clusters for each
connected component by choosing the number of clusters that maximizes the Newman
Q measure (Newman and Girvan, 2004). They report that the resulting clusters have
high purity, but that they over-segment each landmark into several smaller clusters. To
again join clusters of the same landmark, they propose the following procedure (Fig. 3.9):

1. For each cluster, choose the image with the highest valence in the matching graph
as its canonical image.

2. For each pair of clusters, find the shortest path between their canonical images in
the matching graph.

33



3 Foundations

Input Image Permutations of (1, ..., [V)): Min-Hashes:
P oi=(12,8,[43], 22,2, ...) = mh(I) = [43
oo = (|4, 53, 49, 22, 18, ...)=>mho(I) = | 4

on = (34, 3, 5,[13], 99, ...) = mhi(I) = [13

I={[4],52,43],28,[3] }

Figure 3.10: An example min-hash computation. The input image and its bag of visual
words are shown on the left. Given a random permutation (middle), a min-hash is the
first visual word in the image that occurs in the permutation.

3. Estimate the overlap of the canonical images by projecting the image boundaries
of one of them into the other using the known homographies between the image
pairs along the shortest path.

4. If the canonical images overlap by more than a certain amount, merge their clus-
ters.

3.4.2 Min-Hash

While the spectral clustering based method first builds the whole matching graph and
then divides it into clusters, the min-hash (Chum and Matas, 2010) and Geometric
min-hash (Chum et al., 2009) methods start at seed images found by min-hashing and
grow clusters using query expansion (Chum et al., 2007b). This method performs only
a local exploration of the matching graph and is therefore expected to be faster than
the spectral clustering method that requires the construction of the full matching graph.
An overview of the pipeline is given in Figure 3.8b. The stages in dashed boxes are an
extension that we propose later in this section.

Min-hash and Geometric min-hash. Min-hash (Broder, 1997) is a technique from
text retrieval used by (Chum and Matas, 2010; Chum et al., 2008, 2009) for efficiently
discovering pairs of similar images in large image collections. The special property of
min-hash is that the probability of an image pair being discovered increases with its
similarity. This makes min-hash suitable as a near-duplicate image detector (Chum
et al., 2007a). Chum and Matas (2010) use it to discover seeds for image clustering.

A min-hash is a pseudo-random number generated from the visual words of an image.
Let V' be a visual vocabulary. Given a random permutation of the numbers {1,...,|V|},
the min-hash of an image is the first of the image’s visual words occurring in the per-
mutation. Figure 3.10 demonstrates min-hash on a toy example. The probability of two
images having the same min-hash equals the Jaccard similarity coefficient (intersection

34



3.4 Comparison of two Landmark Discovery Algorithms

42 89
1 99

3 13

52 53

Figure 3.11: Geomelric min-hash example. The min-hashes in each sketch are restricted
to come from the same affine neighborhood.

over union) of their bags of visual words (Chum et al., 2007a). To decrease the number
of random collisions, several min-hashes are summarized into s-tuples called sketches
(s =3,...,5). Each image is represented by k sketches (k = 512 in Chum and Matas
(2010)). An image pair only collides if the images have at least one identical sketch.

To efficiently find min-hash collisions, hash-tables are created that store for each min-
hash the list of images with this hash. This is comparable to an inverted index (Sec. 3.2),
but sparser. This hashing procedure enables constant-time collision detection (Chum
and Matas, 2010), however at much lower recall than with a full inverted index.

In Geometric min-hash (Chum et al., 2009), sketches are created from features in a
spatial neighborhood. This is done by selecting the first min-hash in a sketch randomly
and then restricting the search for the remaining min-hashes to the affine-covariant
interest region around the first feature (Fig. 3.11). To ensure that the first min-hash
has a unique position in the image, only the visual words that occur once in the bag
of visual words are considered when computing the first min-hash. In Geometric min-
hash, a sketch collision means that the colliding images not only have the colliding visual
words in common, but also that the corresponding features come from the same image
region. Because of this more distinctive definition of a sketch, Chum et al. (2009) report
an increagse in precision and recall over standard min-hash even with the sketch size
reduced to s = 2 and the number of min-hashes per image reduced to k£ = 60. In our
experiments, we use Geometric min-hash.

Cluster growing. Chum and Matas (2010) use the images with colliding min-hashes as
cluster seeds and grow clusters by applying query expansion (Chum et al., 2007b). For
each cluster seed image discovered by min-hash, they perform image retrieval (Sec. 3.2),
average the bags of visual words of the spatially verified results with the bag of vi-
sual words of the query and use the result as a new query. This process is performed
recursively for each of the retrieved images until no new images are found.

In our implementation of query expansion, we exploit the already computed matching
graph of the dataset. We do not perform averaging of bags of words, but simply issue
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recursive queries with all spatially verified results. By performing this process recursively,
we effectively explore the connected component of the matching graph that the initial
query image belongs to. This method is more prone to drift than the method from Chum
et al. (2007b), but much more efficient.

Extension: Spectral clustering. Because the cluster growing process explores the
connected components of the matching graph, multiple landmarks can potentially end
up in the same cluster (see Fig. 3.7b). We therefore combine the above method with the
method of Philbin and Zisserman (2008) by performing two additional steps (Fig. 3.8b).
We segment the grown connected components with spectral clustering and subsequently
merge them using the scheme described in Section 3.4.1. With this hybrid approach we
hope to combine the advantages of the two approaches. We do not need to pre-compute
the full matching graph, but avoid ending up with clusters that span multiple buildings.

3.4.3 Experiments

To evaluate both landmark discovery approaches on the PARIS 500K dataset, we created
a clustering ground truth that we introduce in the following. We compare the approaches
based on mean cluster purity and mean cluster recall as well as runtime.

Ground Truth. To establish a ground truth clustering, we first over-segmented the
matching graph using spectral clustering on the connected components (Sec. 3.4.1). As
reported by Philbin and Zisserman (2008), the resulting clusters had a high purity with
only a negligibly low number of outliers. We then asked human raters to perform two
tasks on the largest clusters returned by spectral clustering. To remove the remaining
outliers, we showed each cluster to a human rater who was asked to click on all the images
that visibly do not belong to the cluster. To join over-segmented clusters, we showed
human raters the canonical images for each pair of clusters and asked them whether
they show the same building from the same view. The resulting ground truth consists
of 79 clusters covering 94k images. It is publicly available along with the dataset.

Evaluation Measures. Using this ground truth, we evaluate landmark clustering re-
sults based on mean cluster purity and mean cluster recall, which are analogous to
precision and recall. In the following, a clustering is a set of clusters, and a cluster is a
set of images. Let G denote the ground truth clustering, and C' a clustering produced by
a landmark discovery algorithm, and let No and Ng denote the total number of images
covered by C' and G, respectively. An image is covered by a clustering if it is in at least
one of the clusters of the clustering. Then, mean cluster purity P and mean cluster
recall R are defined as

1
P=— :
NC;rggg{\cﬂgl}n (38)
1
RZN—G;%%(UCHQH- (3.9)
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Figure 3.12: Performance of the spectral clustering method (Sec. 3.4.1). Along each
line, the overlap threshold of cluster representatives is varied from 0% to 100%.

Note that these evaluation measures require non-overlapping clusterings, i.e., clusterings
in which clusters are pairwise disjoint. While the algorithms we present in the follow-
ing chapters produce overlapping clusterings, the two algorithms we analyze here each
produce non-overlapping clusterings.

Spectral Clustering. For each connected component, we perform a spectral clustering
(Sec. 3.4.1). This results in a total of 3,881 clusters. We found that the homography-
based merging step requires some tuning to produce the desired results. Because it
simply transforms the image boundary coordinates using the product of all homographies
along a path, it does not consider that each homography is only valid in its support
region. This causes projection errors that accumulate along the path. Limiting the path
length is an effective way to restrict this effect. This means that two clusters are not
merged if the shortest path between their canonical images exceeds a certain length.
Furthermore, we only merge two clusters if the overlap between their representative
images is higher than a certain lower bound. Figure 3.12 shows the effect of both
parameters on cluster purity and recall. A higher path length threshold leads to a loss
in cluster purity, since clusters are incorrectly joined. Too short paths cause us to miss
cluster pairs that should be joined, resulting in low recall. The best tradeoff is a path
length of 5. Similarly, a too high overlap threshold will cut off paths between valid
matches, while a too low threshold will allow paths between barely overlapping images.
Even for a suitable choice of these thresholds, the merging step can still perform false
merges in some problematic cases typical for internet photo collections: For example,
timestamps, watermarks or frames embedded in the photos can create false-positive
edges in the matching graph that serve as “tunnels” between unrelated landmarks. We
present a method for automatically detecting such cases in Chapter 7.

Geometric min-hash. We now evaluate the performance of the min-hash pipeline
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k  # seeds cluster purity cluster recall

1 784 50.2% 93.2%

5 4,437 51.7% 96.5%
10 8,753 51.8% 96.8%
30 20,453 51.9% 97.1%
120 51,855 51.9% 97.1%

Table 3.3: Clustering performance of the min-hash pipeline for different numbers of
sketches k. The sketch size is set to s = 2.

(Sec. 3.4.2). The parameters of min-hash seed generation are the sketch size s and the
number of sketches k. More sketches will yield more collisions and thus more seeds.
Larger sketch sizes make the algorithm more selective, causing it to return only very
similar images, which significantly decreases the number of seeds. Since we found that
a sketch size of s = 3 already yields too few useful seeds, we follow Chum et al. (2009)
and set s = 2 in our experiments.

Since the probability that two images cause a min-hash collision is proportional to the
intersection over union of their bags of visual words, most of the min-hash collisions are
duplicates and near-duplicates, i.e., very similar images with only slight differences in
color or contrast. We observed that the vast majority of near-duplicate images does not
show landmark buildings or other objects of interests, but are often portraits, photos
of animals or other non-landmark objects. Chum and Matas (2010) therefore manually
removed duplicates for their experiments. We filter out near-duplicates by removing all
min-hash collisions whose tf-idf cosine distance (Sec. 3.2.1) is above a certain threshold
(0.3) and use the remaining images as seeds from which we grow clusters.

Table 3.3 shows the cluster purity and cluster recall for different settings of k. Cluster
recall is very high even when using only a single sketch, suggesting that images forming
min-hash collisions tend to depict landmark buildings. However, the cluster purity is
only between 50% and 52%, since many connected components explored by our simple
version of query expansion cover multiple landmarks.

To examine more closely how suitable min-hash seeds are for landmark discovery, we
compare it against random seeding. Figure 3.13 (left) shows the distribution of the
min-hash seeds for £ = 60 and s = 2 (31,946 images), and Figure 3.13 (right) shows the
distribution of the same number of randomly selected images. The random images are
much more scattered over the city while the images selected by min-hash concentrate
around landmarks, which is the desired behavior for a seed selection algorithm. For a
quantitative comparison, we use the following procedure: For each number of seeds k,
we draw as many random images from the dataset as there are min-hash collisions. We
draw a set of random images 10 times for each value of k and give the average results for
the 10 sets of images. Table 3.4 compares the results of the cluster growing process for
min-hash and random seeds. The number of discovered clusters is roughly proportional
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Figure 3.13: Distribution of min-hash seeds for k = 60 and s = 2 (left) compared to
the distribution of the same number of randomly drawn seed images (right).

min-hash random (avg. of 10)

k  # seeds # CCs avg. CC size # CCs avg. CC size

1 784 58 2,158.2 590.0 222.6

2 1,883 102 1,268.9 1,407.5 97.6

3 2,570 141 941.1 1,887.9 74.5

5) 4,437 220 620.5 3,236.1 44.9
10 8,753 360 389.3 6,292.2 24.5
30 20,453 915 161.6 14,463.7 11.8
120 51,855 3,022 52.8 35,607.5 5.7

Table 3.4: Results of cluster growing starting from min-hash seeds and random images,
respectively. The sketch size is s = 2.

to the number of seeds. Comparing min-hash to a random selection of seed images shows
that roughly ten times the number of connected components are found, but their average
size is roughly ten times smaller. This shows that randomly selected images more likely
belong to small connected components than images selected using min-hash, confirming
that min-hash collisions are more likely to occur in larger clusters (Chum and Matas,
2010).

Hybrid Method. Because the clusters discovered using query expansion become too
large and thus cover multiple landmarks, we apply spectral clustering and homography-
based cluster merging on top of the min-hash pipeline. Figure 3.14 shows a comparison
of this hybrid approach with spectral clustering. The cluster recall of the hybrid method
increases with a growing number of sketches and almost reaches the recall of spectral
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Figure 3.14: Cluster recall and purity for spectral clustering (Sec. 3.4.1) and the hybrid
method that combines min-hash (Sec. 3.4.2) with spectral clustering and subsequent clus-
ter merging. Along each line, the overlap threshold is varied. The path length threshold
15 set to 5.

clustering for s = 120 sketches. For comparison, min-hash reaches at most a cluster
purity of 51.9% (Tab. 3.3).

Runtime Comparison. Since the hybrid method produces comparable results to the
spectral clustering method, we now analyze how much time is saved by only performing
a local exploration of the matching graph. We will not cover feature extraction time,
because this step is necessary for both approaches. The timings are based on a C++
implementation of image retrieval and matching, a C++/Matlab implementation of min-
hash, and a Matlab implementation of spectral clustering and homography-based cluster
merging. Computations were performed on a computing cluster with Intel processors
running between 2GHz and 3GHz.

The computation time of the spectral clustering pipeline (Fig. 3.15) includes pairwise
matching (47 days), spectral clustering (14 days) and cluster merging (12 hours). The
total computation time is 61.5 days. The computation time of the min-hash pipeline is
influenced by the sketch count k. This parameter directly affects the time for computing
the min-hashes and it indirectly affects the cluster growing time through the number
of discovered clusters. For a choice of kK = 5, the total runtime is 16.5 days, and for
k = 120, the runtime is 30 days. Depending on the parameter settings, min-hash is thus
two to four times faster.
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Figure 3.15: Runtime comparison of the spectral clustering and hybrid methods.

Figure 3.15 compares the runtime of the spectral clustering method with our hybrid
method. The additional steps of spectral clustering and cluster merging (dashed boxes)
add a total of 14.5 days to the runtime of the min-hash pipeline. Spectral clustering takes
almost the same time in both pipelines, since its runtime is highly dominated by the
largest connected components, which are discovered by both approaches. When using
k =5 sketches, the total runtime of the hybrid method is about half the runtime of the
spectral clustering method, and it is still 17 days faster when using & = 120 sketches.
Considering that this method has only slightly lower clustering performance (Fig. 3.14),
it represents a better tradeoff than the original spectral clustering method.

3.4.4 Discussion

As an initial experiment, we have evaluated two landmark discovery approaches: The
spectral clustering based approach by Philbin and Zisserman (2008) and the min-hash
based approach by Chum et al. (2009). We found that the spectral clustering approach
can produce high quality clusters, but also has high runtime requirements since it needs
to compute the full matching graph. Moreover, its heuristic cluster merging step requires
some tuning to deliver acceptable results. The min-hash pipeline (Chum and Matas,
2010) performs cluster growing from a set of seed images, and therefore does not need to
compute the full matching graph, making it faster than the spectral clustering method.
However, without appropriate control of their growth, the explored clusters tend to
cover multiple landmarks, resulting in decreased cluster purity compared to the spectral
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clustering method. We therefore used a hybrid approach that breaks down the clusters
grown by the min-hash method using spectral clustering. This method combines the
advantages of both approaches. It is faster than the full spectral clustering pipeline
since it only explores the matching graph locally, but can deliver clustering results of
comparable quality. This analysis has brought to light some of the challenges that
current landmark recognition pipelines are still facing.

Cluster Definition. The hardest challenge seems to be the cluster definition itself. The
connected components of the matching graph are an under-segmentation of the dataset,
because they often contain multiple nearby landmarks. Spectral clustering over-segments
the matching graph and requires a heuristic merging step to join clusters of the same
building. Ideally, we would like a clustering in which each cluster contains all the images
of one landmark. However, since the image matching pipeline we presented in this
chapter does not have a concept of objects, it is not clear when to stop the exploration
process.

Entry Point Selection. Given a seed image of a landmark, we can find other images
of this landmark using image retrieval (Sec. 3.2.2). However, it is not clear how to
select suitable seed images. While our analysis has confirmed the claim of Chum and
Matas (2010) that min-hash based seeds tend to lie on landmark buildings with a higher
probability than random images, they are still far from optimal. The majority of min-
hash seeds are (near) duplicates, which are usually “junk” images, and even the seeds
that show landmarks are not always well-suited for an exploration of the building. For
example, an image taken at night or from a very oblique angle might not match most
other images of the same building, because local feature based matching (Sec. 3.1) only
has limited invariance w.r.t. changes in lighting and perspective. Therefore, it has so far
remained an open question how to find suitable images as starting points for exploring
the images of a landmark.

Computational Cost. Finally, although inverted indices (Sec. 3.2) enable image re-
trieval in sub-linear time, runtime is an important issue, especially when considering
the rapid growth of the number of photos on the Internet. Even with the computa-
tional power available to companies like Google or Facebook, the construction of the full
matching graph will soon become infeasible. A local exploration like the one performed
by the min-hash method (Sec. 3.4.2) would be able to handle the growing number of
images better, since it focuses on the photos that actually show landmarks.

In the following chapter, we present a landmark discovery algorithm that addresses
these challenges. We provide answers to the questions of how to define a cluster and how
to automatically find suitable starting points for landmark exploration and propose an
algorithm that implements these ideas at low computational cost, since it only requires
a local exploration of the matching graph.

42



Iconoid Shift: Landmark Discovery by Mode Search

In this chapter, we present the Iconoid Shift algorithm for discovering landmark buildings
in Internet photo collections. In particular, we want to address the following problems
that still exist in current landmark discovery approaches:

1. High computational complexity. Many landmark discovery approaches (e.g. Avrithis
et al. (2010); Philbin and Zisserman (2008); Quack et al. (2008); Raguram et al.
(2011); Zheng et al. (2009)) require the construction of a matching graph (Sec. 3.2.3)
for the whole dataset. This can become expensive as the number of images grows
very large. Moreover, a large part of the matching effort is spent on “junk” pho-
tos, like pictures of animals or food, that will not form meaningful clusters. The
computational complexity of the clustering algorithms that are applied on this
matching graph is often very high as well. For example, single-link clustering
(Manning et al., 2008) has quadratic complexity in the number of images. Several
approaches (Avrithis et al., 2010; Crandall et al., 2009; Gammeter et al., 2009,
2010; Kennedy and Naaman, 2008; Quack et al., 2008; Zheng et al., 2009) there-
fore pre-group the input images based on their geotags and run their clustering
algorithms on each of the resulting groups. This, however, limits them to images
with geotags, and can also introduce new errors, since geotags are often inaccurate.

2. Unsuitable definitions of clusters. Cluster definitions used in previous work have
no notion of objects and therefore tend to under-segment (Agarwal et al., 2009;
Frahm et al., 2010; Raguram et al., 2011; Snavely et al., 2008a) or over-segment
(Philbin and Zisserman, 2008) objects (cf. Sec. 2.2 for a more detailed discussion).

Moreover, most approaches produce a hard clustering (e.g. Agarwal et al. (2009);
Crandall et al. (2009); Philbin and Zisserman (2008); Quack et al. (2008); Zheng
et al. (2009)) where each image can only belong to one cluster. Therefore, if an
image shows multiple landmarks, it will be arbitrarily assigned to only one of them.
Furthermore, when using a hard clustering, building details, like the windows and
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gates on, e.g., the west facade of Notre Dame, cannot form their own clusters since
their photos would be assigned to the whole building.

Finally, in most approaches, every image will be assigned to a cluster. However,
when mining images from the web, the majority of photos will be “junk” photos
that do not show an interesting building or object. Such photos should rather be
filtered out and not be included in the clustering result.

. Unintuitive parameters. Many approaches are hard to use since their parameters

often have very unintuitive interpretations, or ask the user to make almost impossi-
ble predictions about the dataset. For example, spectral clustering (Ng et al., 2001)
used in Philbin and Zisserman (2008) requires the user to specify the number of
clusters, which is not possible since the number of objects in the image collection is
unknown in advance. Single-link clustering requires the user to specify a threshold
for the linkage between two clusters, i.e., the minimum similarity any two images
in the clusters need to have in order to join the clusters. Here, image similarity is
often defined as the tf-idf score or the number of inliers of an image pair. Setting
this threshold is not trivial. Because a single link between two clusters suffices to
merge them, one would choose this threshold rather conservatively to avoid false
positive matches from joining clusters. However, a too high threshold might cause
images of the same object not to be included in the cluster. Moreover, the number
of inliers may vary depending on image size and content (we discuss this in more
detail in Section 4.1). Finally, the optimal setting might vary depending on which
pair of clusters is considered for joining.

In this chapter, we present an algorithm, called Iconoid Shift, that addresses the above

problems:
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1. Tt is fast, because (i) it does not require the construction of the full matching graph

in advance. Instead, it uses local exploration to only build the required parts of the
matching graph on demand. (ii) The computational complexity of the underlying
clustering algorithm does not depend on the number of images in the dataset, since
it operates only on local image neighborhoods. Finally, it can be implemented in
a distributed fashion to run on hundreds of machines in parallel.

. It has an intuitive definition of clusters. Each landmark is represented by an iconic

image, or Iconoid, and each cluster simply contains all images that overlap with
the Iconoid by more than a certain amount. This definition naturally allows for
overlapping clusters and can thus also handle close-by landmarks and even sub-
structures elegantly.

. It has two intuitive parameters. The kernel bandwidth simply defines the minimum

overlap an image needs to have with an Iconoid to belong to its cluster. The number
of seeds defines the tradeoff between computation time and number of discovered
objects.



Figure 4.1: A typical sample of the photos of a landmark from an Internet photo col-
lection. Which of them should be the iconic image?

Since our clusters are defined by iconic images, which image of a building should we
choose as the iconic image? We illustrate our definition of iconic images on an example
shown in Figure 4.1. An iconic image should show the whole building, and the building
should be in the center, shown from a frontal viewing angle, and fill the entire image.
Hence, in the above example, the middle image would become the Iconoid, and all other
images would be in its cluster, since they have an overlap with the Iconoid.

Now that we have defined iconic images, how do we find them automatically? For
this, we make use of the distribution of the photos in Internet photo collections. On
a city scale, the density of photos is largest around touristic landmarks (Fig. 3.6). On
a landmark scale, we observe that the density of photos is highest around iconic views
that fit the above definition (Fig. 4.2), while most other photos of a landmark will
overlap with its iconic view. Therefore, we define the Iconoid as the image with the
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(a) Pantheon (b) Palais du Luzembouryg

Figure 4.2: Distribution of tourist photos of two landmarks in Paris obtained using
structure-from-motion. Fach camera position is represented by a black pyramid. The
density of tourist photos is highest al central views of the whole building. (Figure courtesy
of Torsten Sattler)

mazimum mutual overlap with all other images of the same object. To measure image
overlap, previous distance measures based on tf-idf (Manning et al., 2008), the number
of inliers, or the distance of global descriptors like GIST (Olivia and Torralba, 2001)
are not suitable, since they do not have a direct geometric interpretation. We therefore
propose a new distance measure, the homography overlap distance that directly measures
the spatial overlap of images based on the homography support region. This allows us
to find iconic images as density modes w.r.t. this distance. Since they are the most
frequent views, our definition of iconic views is related to the frequency hypothesis of
Palmer et al. (1981) which defines iconic views as the views from which an object is
most frequently seen. (We relate our definition of iconic views to previous definitions
from cognitive psychology in Section 2.1.) However, in contrast to Palmer et al. (1981),
we did not choose this definition of iconic views because of aesthetics or the amount of
information that the view reveals, but because it allows for a meaningful and intuitively
clear definition of clusters.

Since our iconic images are density modes w.r.t. the homography overlap distance,
we can use mode search methods to find them. Specifically, our algorithm is based
on Medoid Shift (Sheikh et al., 2007), a variant of Mean Shift (Comaniciu and Meer,
2002) that is applicable to arbitrary metric spaces. Given a seed image, Iconoid Shift
explores the images within the kernel support radius by building a local matching graph
using recursive image retrieval. It then shifts the kernel center to the image that has
maximum overlap with the other images under the kernel. This procedure is repeated
until convergence. The intuitive interpretation of this algorithm is as follows: We al-

46



4.1 Related Work

ternately explore images showing the same object as the current view and shift to the
image that shows the depicted structure from the most central (and therefore iconic)
viewpoint among their neighboring images. Our algorithm inherits the properties of
the well-understood Medoid Shift (Sheikh et al., 2007) and Mean Shift (Comaniciu and
Meer, 2002) algorithms, including their guaranteed convergence, intuitive parameters
and trivial parallelization.

In summary, this chapter makes the following contributions:

e We present an algorithm that uses mode search to perform landmark discovery in
large-scale image collections.

e For this, we introduce a distance measure for images based on their overlap.

e We present efficient algorithms to propagate the overlap between images in the
local matching graph, which is faster and more robust to view changes than using
direct local feature matching.

e We show how to parallelize our algorithm to many machines.

e We evaluate our algorithm and show that it is capable of discovering popular
buildings and objects in two city-scale datasets.

The remainder of this chapter is structured as follows: In the following section, we
review the grouping criteria and clustering algorithms used by other landmark discovery
algorithms. In Section 4.2, we lay out the foundations by explaining the Mean Shift
and Medoid Shift algorithms. We then introduce our overlap-based image distance in
Section 4.3. Having all required tools in place, we present the Iconoid Shift algorithm in
Section 4.4 and efficient methods for propagating homography overlaps in the matching
graph in Section 4.5. We present our evaluation results in Section 4.6 and finally conclude
the chapter in Section 4.7.

This chapter is based on our paper (Weyand and Leibe, 2011) presented at ICCV
2011.

4.1 Related Work

Since Iconoid Shift introduces a new grouping criterion and a new clustering algorithm
for landmark discovery, we first discuss the grouping criteria and clustering algorithms
employed in previous work. We already discussed previous methods for finding iconic
images in Section 2.1 and methods for image clustering and object discovery in Sec-
tion 2.2.

4.1.1 Grouping Criteria

Previous object discovery approaches have applied different grouping criteria to cluster
images. Crandall et al. (2009) group photos by the proximity of their geotags by simply
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running Medoid Shift on their GPS coordinates. They determine the most frequently
photographed objects by photo tags and descriptions, but ignore visual similarity for
their clustering.

Some approaches group photos by their global similarity. Li et al. (2008); Raguram
and Lazebnik (2008) apply k-means clustering on GIST descriptors (Olivia and Torralba,
2001), and Kennedy and Naaman (2008) apply k-means on Gabor textures and color
moment features. While this achieves a basic image grouping by content, clustering by
global appearance typically produces clusters of highly similar images. Moreover, an
image match based on global descriptors has no geometric meaning and is no guarantee
that the images actually show the same object. Finally, global descriptors only have a
limited degree of robustness w.r.t. occlusions or lighting changes.

Berg and Berg (2009) compute an image distance based on the average matching
score of local geometric blur descriptors (Berg and Malik, 2001) and perform k-medoids
clustering (Kaufman and Rousseeuw, 1990). While local features are more invariant
w.r.t. image transformations than global features, a descriptor matching without spatial
verification cannot guarantee geometric consistency.

The most popular grouping criterion is the number of inlier feature correspondences,
w.r.t. a geometric transformation such as a homography (Agarwal et al., 2009; Avrithis
et al., 2010; Cao and Snavely, 2013; Frahm et al., 2010; Gammeter et al., 2009, 2010;
Philbin and Zisserman, 2008; Quack et al., 2008; Raguram et al., 2011; Snavely et al.,
2008a; Zheng et al., 2009). Since clustering approaches that operate in Euclidean
space such as k-means are not applicable here, these approaches build matching graphs
(Sec. 3.2.3) and apply different graph clustering algorithms (see below). While the num-
ber of inliers can allow more direct conclusions about the geometric relationship between
images, it also depends on the number of interest points extracted from the input images,
which varies depending on image resolution and the amount of texture in the scene. For
example, two images might only share a small region, but still have many inliers if this
region is highly textured. In contrast, two images can have a large area in common
although they do not have many inliers if only few interest points are detected on the
object they depict. Irschara et al. (2009) observed that unevenly distributed inliers tend
to cover a smaller fraction of the image than evenly distributed inliers and account for
this by weighting the number of inliers with the estimated fraction of the image covered
by them. However, even this weighted count will vary with the amount of texture in the
images. Another problem of using the number of inliers as a grouping criterion is that
it depends on the invariance of the underlying feature matching pipeline. While most
interest point detectors and descriptor offer some level of invariance w.r.t. perspective
and lighting changes, matching can break down if the images are taken at different times
of day or from too different vantage points (Mikolajczyk and Schmid (2004) perform an
analysis of the perspective invariance of different interest point detectors). This would
cause their amount of shared content to be underestimated. Another consequence of
this is that the number of inliers is not transitive. Although the image pairs (A, B)
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and (B, C') are matches, A and C' do not necessarily match too if the amount of change
between them is too high.

Simon et al. (2007) therefore even take a step further and first reconstruct the scene
using structure-from-motion and then define image similarity based on the number of
common 3D points that two views are seeing. This has the advantage of being a transitive
definition, because two images have shared 3D points even if they do not match. Even if
a 3D point was not triangulated from the local features of an image, they can still infer
from the camera position and orientation that this point is visible in an image. This
method is therefore not limited by the invariance of the feature matching process.

Our homography overlap distance measure directly estimates the overlap between
images. It is therefore independent of the number of inliers, has a direct geometric
interpretation and allows for a grouping on the object level. Moreover, it can even be
inferred for image pairs that do not have a direct match as long as they are connected
via a path in the matching graph.

4.1.2 Clustering Algorithms

A large number of different clustering algorithms have been used for object discovery.
Kennedy and Naaman (2008); Raguram and Lazebnik (2008) use k-means, which is
only applicable in Euclidean spaces and thus not suitable for most similarity measures
that are based on local features. Berg and Berg (2009) use k-medoids (Kaufman and
Rousseeuw, 1990), which restricts cluster centers to lie on data points. This makes it
applicable to non-Euclidean spaces and has the advantage that the cluster centers are
images and not arbitrary points in descriptor space. Berg and Berg (2009) therefore use
the medoids as iconic images. However, both k-means and k-medoids require the user to
specify the desired number of clusters in advance, which is not possible in most object
discovery applications.

Several approaches from the large scale structure-from-motion literature (Agarwal
et al., 2009; Frahm et al., 2010; Raguram et al., 2011; Snavely et al., 2008a) build a
matching graph by estimating pairwise epipolar geometries and creating an edge between
all image pairs that have a sufficient number of inliers. They then run structure-from-
motion on each connected component of this graph. As we discussed in Section 3.4, the
connected components of the matching graph typically cover multiple buildings. This is
desired in the case of structure-from-motion approaches which try to reconstruct entire
city areas. For landmark recognition applications, however, we are more interested in a
clustering on the scale of individual buildings or objects.

Several papers aimed at landmark recognition (Gammeter et al., 2009, 2010; Quack
et al., 2008; Zheng et al., 2009) use Single-Link Clustering (Manning et al., 2008). This
enables clustering at a finer scale, but requires the choice of a linkage threshold, which
is far from trivial (see above). Furthermore, single-link clustering has quadratic com-
putational complexity in the number of input images, making it unsuitable for larger
image collections unless a pre-grouping based on geotags is performed. Crandall et al.
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(2009); Philbin and Zisserman (2008) apply Spectral Clustering (Ng et al., 2001) on the
matching graph. We analyzed this algorithm in Section 3.4 and could confirm the obser-
vation of Philbin and Zisserman (2008) that it tends to produce an over-segmentation of
the dataset, making it necessary to join clusters of the same object in a post-processing
step. Moreover, its high computational complexity makes it unsuitable for large-scale
image collections and, like k-means, it requires choosing the desired number of clusters
in advance.

The above algorithms all produce a hard clustering, where each image is assigned to
exactly one cluster. Therefore, these algorithms cannot handle images showing multiple
landmarks or represent buildings with sub-structures. Since they assign every image
to a cluster, they also do not discard junk images. We now look at object discovery
approaches that produce an overlapping clustering.

The object discovery algorithm of Chum and Matas (2010); Chum et al. (2009), which
we analyzed in detail in Section 3.4, first applies min-hashing to generate a set of seed
images. It then uses recursive Query Ezpansion (Chum et al., 2007b) to discover object
clusters. While the resulting clusters can be overlapping, query expansion is prone to
object drift, which can still cause clusters to contain multiple objects. Avrithis et al.
(2010) use Kernel Vector Quantization (Tipping and Schélkopf, 2001) for visual clus-
tering, which selects a minimal subset of the input images such that each image has
a certain minimum number of inliers with the cluster center. Its definition therefore
allows for an image to be in multiple clusters. However, Kernel Vector Quantization
does not select density maxima, but an arbitrary subset of images whose kernels cover
the dataset. The clusters are therefore not necessarily meaningful objects. Moreover,
by its definition, it does not allow images to be discarded, so junk images will still form
clusters.

To the best of our knowledge, ours is the first object discovery approach that uses
Medoid Shift, which has several desirable properties for this application. (i) It converges
to local density maxima, which correspond to popular views. (ii) It is able to han-
dle images showing multiple landmarks as well as sub-structures since it produces an
overlapping clustering. (iii) Images that are outside of the radius of any Iconoid are
considered “junk” and are not included in the clustering result, and (iv) it is efficient
and easily parallelizable, because it only operates on local neighborhoods.

4.2 Mode Search

To lay the foundations for Iconoid Shift, we first give a brief review of mode search
based on Mean Shift (Cheng, 1995) and Medoid Shift (Sheikh et al., 2007) and introduce
the homography overlap distance in Section 4.3. We then introduce the Iconoid Shift
algorithm in Section 4.4.
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4.2.1 Mean Shift

In mode search, we seek to find the density maxima, or modes, in a dataset. Addition-
ally, we want to associate each point in the dataset with one of the modes to create a
clustering. The density modes of a given dataset {x;}, are the the maxima of its kernel
density estimate f(x):

f(x) = CZ@(d(x, x;)). (4.1)

Here, ®(-) is a kernel, e.g. a Gaussian, d(-) is a distance function, e.g. the Euclidean
distance, and ¢ is a normalization constant, such that f(x) integrates to 1. We can
think of this function as a mountainous terrain where f(x) gives the height at each
point x. Starting at any point, we can find a maximum simply by walking uphill, i.e.,
by performing gradient ascent. The maxima of the kernel density are the density modes
of the data.

In their influential work, Fukunaga and Hostetler (1975) proposed an algorithm called
Mean Shift that finds the density maxima by iteratively shifting a kernel window to the
weighted mean of the points within it. That is, given the current point yj, we shift to
the new point yx; given by:

_ Zi x;p(d(yr, X))
Yit+1 = S o(d(yr %) (4.2)

Cheng (1995) showed that Mean Shift is equivalent to gradient ascent in the kernel
density if the kernel ¢(-) is the negative derivative of the kernel ®(-). The kernel ®(-) is
then referred to as the shadow of ¢(-)

o) = —'(x). (4.3)

To cluster a dataset with Mean Shift, the algorithm is initialized once with each data
point and the update rule (Eq. (4.2)) is repeated until convergence at a mode. Then,
each data point is associated with the mode it converged to. The resulting clusters are
therefore sets of points that converge to the same mode. If the goal is not a complete
clustering of the dataset, but only to find the modes, the algorithm can be initialized
with only a smaller set of seed data points. This has the risk of missing modes, but
brings significant savings in computation time.

In computer vision, Mean Shift has become a popular algorithm with applications in
image segmentation (Comaniciu and Meer, 2002) and tracking (Comaniciu et al., 2000).
It is often preferred over k-means since it does not require the user to specify the desired
number of clusters in advance and because it is not limited to convex clusters.

4.2.2 Medoid Shift

Mean Shift, despite its success, has two problems that limit its applicability: (i) It can
only be used in Euclidean spaces, and (ii) the resulting modes do not necessarily lie on
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data points and therefore do not always have a direct interpretation. An example for the
latter is clustering of global image descriptors, where only the data points themselves
correspond to images, but other points in space do not have a meaningful interpretation.
The Medoid Shift algorithm by Sheikh et al. (2007) solves these problems. They
observed that the Mean Shift minimization (Eq. (4.2)) is equivalent to shifting the
kernel center to the point with lowest sum of weighted distances under the kernel:

Yi+1 = argymin {Z d(y, x:)p(d(yr, Xi))} : (4.4)

The only formal difference in Medoid Shift is that the kernel center must always lie on
a data point:

Yk+1 = argmin {Z d(y, %) (d(ys, Xi))} : (4.5)

ye{xi}

This small change generalizes Mean Shift from Euclidean spaces to general metric spaces
(e.g. fully connected graphs). The Medoid Shift algorithm only requires a distance metric
to be defined between each pair of data points. It therefore suffices to have a distance
d(-,-) that fulfills:

e Symmetry: d(z,y) = d(y,x)
e Identity of indiscernibles: d(z,z) =0
e Triangle inequality: d(z,z) < d(z,y) + d(y, 2)

The price for this generality is a higher computational complexity. While Mean Shift
only requires linear time to compute the weighted mean of the data points under the
kernel window, Medoid Shift requires quadratic time, since it needs to compute the
weighted sum of distances from each point under the kernel window to each other point.

4.3 Homography Overlap Distance

Iconoid Shift applies Medoid Shift to find iconic views in large community photo collec-
tions such as Flickr or Panoramio. These views, called Iconoids, are modes w.r.t. the
homography overlap distance, which we define in the following. Here, x;; is the bounding
box around the inlier features in image j and x;; is the bounding box around the inlier
features in image 7 (see Fig. 4.4). Since the modes we are searching for are images hav-
ing maximal overlap with their neighborhood, we need a distance measure that rewards
similar views while penalizing view changes like panning and zooming. To determine the
overlap region between two images i and j, we estimate a homography H;; (Sec. 3.1.3)
that maps from image 7 to 7. In order for the overlap regions to be consistent with
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T X

RS X X

Figure 4.3: Two possible definitions of the overlap regions. Blue: Azis-aligned bounding
box in image i, projected into image j. Green: Azis-aligned bounding box in image j,
projected into image 1.

the homography, we cannot simply define both overlap regions as axis-aligned bounding
boxes, because the overlap regions would not be aligned when applying the homography.
We therefore define only one overlap region as an axis-aligned bounding box and the
other as its image w.r.t. the homography. As shown in Figure 4.3, we have two choices
for this. We choose the pair of boxes that encloses the set of inliers better, i.e., the
pair whose sum of areas is smaller (the blue boxes in Fig. 4.3). This makes the overlap
regions consistent with the homography,.

We then compute the relative size of the overlap regions in both images and define
the homography overlap distance as one minus the minimum of these relative sizes:

. . 2l | [|24]|
dow(i,7) =1 — mm{ , ) (4.6)
[[Rill " 1711

Here, ||R;|| and ||R,|| denote the area of image i and j, respectively.

4.3.1 Properties

Some examples of computing the homography overlap distance are shown in Figure 4.4.
If the images are identical (Fig. 4.4a) their overlap distance is 0, since both inlier bound-
ing boxes fill the whole images. If we pan the view (Fig. 4.4b), the size of the overlap
region decreases equally in both images and d,,; increases. In the case of zooming out
(Fig. 4.4¢) or zooming in (Fig. 4.4d), the relative size of the smaller overlap region de-
termines the value of d,,;. As illustrated in Figure 4.4d, this method can sometimes
underestimate the overlap due to homogeneous image regions where no interest points
are present. We take these small errors into account in our experiment and leave more
exact methods for estimating the overlap, e.g. based on photoconsistency or structure-
from-motion, for future work.
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Figure 4.4: Estimation of the homography overlap distance. Red crosses denote inlier
features. Blue boxes denote the overlap regions.

4.3.2 Transitive Homography Overlap Distance

To determine local modes, Medoid Shift requires the pairwise distances of all images
within the kernel radius. However, computing these pairwise distances by direct feature
matching (as done, e.g., in Quack et al. (2008)) is very costly. Instead, we compute the
minimum spanning tree of the images within the kernel radius and infer the distances
of all image pairs using their connecting path in the tree.

A simple approach to compute the overlap of two images would be to multiply all
homographies along their connecting path in the minimum spanning tree, computing the
set of inliers of the images w.r.t. this homography, and determining the overlap region
based on them. However, our experiments (Sec. 4.6.4) show that this method is not
robust due to the limited invariance of the interest point detectors and descriptors and
thus strongly underestimates the overlap. Furthermore, this method is computationally
expensive, because it needs to determine the homography inliers for every image pair.

In contrast, the method we present in the following is independent of feature matches
and avoids the costly step of determining the homography inliers. Therefore, it is able
to bridge much larger variations in both viewing angle and lighting, because it directly
transforms the overlap region itself.
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Figure 4.5: Transitive homography overlap computation. The intersection of z;; and
xy; ts projected into both i and k and the homography overlap distance (Eq. (4.6)) is
computed using rp; and ;..

This scheme is inspired by the homography-based cluster merging scheme by Philbin
and Zisserman (2008) that we described in Section 3.4.1. However, our propagation
scheme avoids errors in overlap estimation by not projecting the whole image region,
but instead restricting the projected region to only the homography support.

In the following, assume there exists a direct correspondence between the image pairs
(1,7) and (4, k) and our goal is to infer the homography overlap distance of (i, k). As a
simple example, consider Figure 4.5. We estimate the overlap regions z; and z;; (purple
regions in images ¢ and k) by intersecting z,; with x;; (the green and blue regions in
image j), and projecting the intersected region into images ¢ and k using the known
homographies. The homography overlap distance can then be computed as in Eq. (4.6)
without explicitly matching ¢ and k. Likewise, we can easily compute the homography
from i to k as

Hy; = HyHy;. (4.7)
We denote the projection of an overlap region by

In this notation, the whole area of the overlap region is projected by the homography.
To define this scheme formally, let 2 Ny be the intersection between two regions x and
y. We then define the overlap region of image i in image k as

Tip - — ij(xij N .ij>. (49)
Now, x;; can be computed analogously:

By applying this scheme recursively, we can propagate overlap regions along paths. As
an example, consider a path of four images (i, j, k, [) with correspondences only between
adjacent images (Fig. 4.6). We can compute x; using Eq. (4.9) twice:

xi = Hy(Hpj(2i5 N zrs) O 2i) (4.11)
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(f) x4 is projected back into i, yielding xy;.
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4.4 Iconoid Shift

®(d) «—> v(d) 6
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Figure 4.7: Profiles of our used kernel pair. Left: Shadow kernel (hinge function),
right: Medoid Shift kernel (step function).

By alternating intersection and projection in this way, we can determine the transitive
homography overlap distance between any pair of images that are connected through a
path of pairwise correspondences. In the algorithm that we will present in Section 4.5.2,
we compute the overlaps of all image pairs within the kernel radius by propagating
their overlap through their connecting path in a minimum spanning tree. By computing
homography overlap distances using this propagation scheme, we can guarantee that
the triangle inequality is fulfilled. In practice, violations only occur in cases where the
polygon intersection algorithm fails due to degenerated polygons. Those cases are so
rare that they do not have any effect on the algorithm’s convergence and can easily be
filtered out.

4.3.3 Hinge Kernel

Having introduced our distance function on images, we define the shadow (Sec. 4.2.1)
kernel ®(-) as a hinge function that is 0 for all distances above a threshold g (Fig. 4.7).
The kernel o(d) = —®'(d) then becomes a step function that cuts off all distances greater
than g:

o(d) = (1 — %) if d < B, 0 otherwise (4.12)

1
old) = 3 if d < B, 0 otherwise (4.13)

4.4 lconoid Shift

Now, we have all the components that are needed to define Iconoid Shift. It is based
on Medoid Shift, but makes some extensions to incorporate image retrieval and overlap
distance computation.

The basic principle of the lIconoid Shift algorithm is visualized in Figure 4.8. Starting
from an initial seed image, the root, we construct a minimum spanning tree of its support
set, i.e., all images within its kernel window, by locally exploring its neighborhood using
recursive image retrieval. Matches are verified by computing their homography overlap
distance (Eq. (4.6)) with the root node. For the children of the root, this is done directly
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Figure 4.8: Steps of the Iconoid Shift algorithm. Dashed boxes denote images outside
the current kernel window.

(Fig. 4.3). For nodes farther away, the overlap is propagated transitively (Fig. 4.6). In
the second step, we compute the pairwise distances between all images in the graph.
This can be performed very efficiently (cf. Sec. 4.5) by again exploiting the transitive
definition of the homography overlap distance (Fig. 4.6). Finally, we determine the
image with the smallest sum of weighted overlap distances (Eq. (4.5)) and iterate this
procedure using this image as the new root. This is repeated until a convergence point,
the Iconoid, is reached. This mode search is performed for a previously selected group
of seed images and the set of resulting Iconoids and their support sets are returned. The
full algorithm is shown in Alg. 1. It can easily be parallelized by distributing the mode
search for different seeds to multiple threads or compute nodes.

The algorithm’s steps have an intuitive interpretation: Starting with a seed image,
we explore the set of images overlapping with it and compute their pairwise overlaps.
Then, we compute the weighted sum of overlap distances for each image (Eq. (4.5)).
This sum is lowest for the image that has the highest overlap with all other images.
This image is the most iconic view of the object under the current kernel window. The
search converges at the Iconoid, which is the most popular view of the object in the
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4.5 Efficient Implementation

Algorithm 1 Iconoid Shift.
// Input: A collection C' of tourist photos.
// Output: The set of P Iconoids and their support sets.
S < draw a set of seed images from C.
for s € S do
Vo0, y1 s, k1
while y; 1 # yi do
Build minimum spanning tree T starting from yj. (Sec. 4.5.1)
Complete missing edges in 7' by propagating overlaps. (Sec. 4.5.2)
Vi+1 < the image in 7" minimizing Eq. (4.5).
E+—Fk+1
end while
If yy, is a new Iconoid, add (yx,7T) to P.
end for

local neighborhood of the initial seed image. The Iconoid tends to be the most frontal
and centered view on an object (see Fig. 4.10).

In contrast to Mean Shift or Medoid Shift, our approach produces an overlapping
clustering, since we define the clusters as the Iconoid support sets, i.e., all images whose
overlap with the Iconoid is larger than 1 — 5. The cluster definition of the original Mean
Shift would not make sense in this case, since the seed image might not have an overlap
with its Iconoid. Unlike, e.g., Agarwal et al. (2009); Philbin and Zisserman (2008) we
do not compute the full matching graph but only the local neighborhoods of the images
along the kernel trajectory, which reduces computation time.

4.5 Efficient Implementation

We now introduce efficient algorithms for both the exploration and the distance com-
putation steps of Iconoid Shift. The proposed exploration procedure builds a minimum
spanning tree of images overlapping with a central image, which enables an efficient
implementation of the pairwise distance computation by homography overlap propaga-
tion (HOP). In particular, by interleaving the distance computation and Medoid Shift
minimization steps, the memory requirements of our algorithm are linear in the number
of images within the kernel window.

4.5.1 Local Exploration and Minimum Spanning Tree Construction

The exploration procedure works by querying an image retrieval system (Sec. 3.2) with
the root node r to obtain potentially matching images. Each match ¢ is verified by
computing the homography overlap distance with the root node d, (7, 7). If this distance
is within the kernel radius, i.e., ¢(dow (i, 7)) > 0, the match is accepted and added to the
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(a) (b)

Figure 4.9: Homography overlap propagation. (a) Computing the overlap of the root r
with a new node k. (b) Distances between nodes in different sub-trees are propagated via
their lowest common parent 1.

graph. This procedure is executed recursively, building up a local matching graph in a
breadth-first manner (Fig. 4.8, step 1). In order to efficiently compute the homography
overlap distances with the root node, each node i stores its overlap region with the root
z,; and its homography with the root H;.. After a new match k has been retrieved for
an inner node 7 in the graph, its overlap with the root is computed as follows (Fig. 4.9a):
First, the overlap of k and i (green) is computed and intersected with the known overlap
region of the image i with the root (blue). The intersected region (purple) is then
projected into k& using the homography that has been estimated by the image retrieval
engine and into the root using the known homography H;, that is stored in . Finally, the
overlap distance d,; (7, r) is computed using Eq. (4.6). This way, only O(N) propagation
steps have to be performed, where N is the number of images within the kernel radius.
After the distances of all nodes from the root are known, we can pre-compute the kernel
weights ¢©(dyy(r, 7)) for each node j that we need for the following step. Finally, we
compute the minimum spanning tree of the local matching graph, using overlap distances
as edge weights.
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4.5.2 Homography Overlap Propagation (HOP)

Having constructed the minimum spanning tree, we now compute the distances between
all pairs of nodes (Fig. 4.8, step 2) and determine the medoid using Eq. (4.5). A naive
implementation of this step would require runtime and storage cost in O(N?) which
quickly becomes infeasible for large image sets. Instead, we propose an efficient divide-
and-conquer algorithm that requires only linear space.

Our algorithm exploits the transitive homography overlap distance (Sec. 4.3.2) to
propagate overlaps in the minimum spanning tree. The central idea is that for two
images in different subtrees, propagation always goes through the lowest common parent.
The overlap of this parent with all images under it can be pre-computed and re-used
for all pairs of images below it. In the homography overlap propagation algorithm,
we iterate through the graph in a breadth-first fashion, making each node the lowest
common parent once.

For each lowest common parent ¢, we proceed in two steps: First, we propagate the
homography overlap of i to all nodes j in its sub-tree in the same way as in the exploration
stage (Fig. 4.9a). Second, we compute the distances between all pairs of nodes (j, k)
that are connected via 7, that is all nodes in different sub-trees of i. This step is shown
in Figure 4.9b. The overlaps of k with i and j with ¢ (blue regions in image i) were
already computed in the first step. We intersect them to obtain the purple region that
we project into both k£ and j using the homographies we computed during the first step.
Then, we compute the distance d(j, k) using Eq. (4.6). The summation of weighted
distances (Eq. (4.5)) is performed on the fly after each distance computation using the
weights we computed in the local exploration stage. Finally, we return the node with
the minimum weighted sum of distances. The full algorithm is given in Alg. 2.

This algorithm has O(/N) memory complexity in the number of nodes N, because we
directly accumulate the kernel-weighted sums of distances (Eq. (4.4)) instead of storing
all N2/2 pairwise distances and computing the weighted sums in a separate step. The
time complexity of this algorithm is O(N?). Each overlap propagation step enables us to
compute the homography overlap distance between two nodes. There are N propagation
targets and N lowest common parents overall. Thus, O(N?) top-down propagation steps
are performed. The number of pairwise distance calculations in different sub-trees is also
O(N?), because one distance calculation is performed for each pair of nodes where no
node is an ancestor of the other.

4.5.3 Parallel Tree Traversal

To cluster a set of data points, Medoid Shift (Sheikh et al., 2007) first computes the
successor for each input data point by performing the minimization from Equation (4.5).
This produces a directed graph with one outgoing edge per data point. Then, by simply
following edges in this graph, the algorithm determines the modes of the dataset.
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Algorithm 2 Homography Overlap Propagation (HOP).

// Input: A minimum spanning tree T with root r.

// Output: The medoid m.

var {D;} // Sums of weighted distances for all images i

D; + 0 for all images ¢ in T’

for all images 7 in T traversed breadth-first starting at r do

// Step 1: Propagate root overlap (Fig. 4.9a)
for all images j under ¢ traversed breadth-first do
Compute H;j, z;;, xj; by recursive propagation (Eq. (4.9))
Dj — Dj + dovl(i’j)w(dovl(rvi)) (Eq' (4'5))
D; <+ D; + dovl(iaj)@(dovl(rr?j)) (Eq- (4'5))
end for
// Step 2: Compute pairwise distances (Fig. 4.9Db)
for all image pairs (m,n) in different subtrees of i do
Compute X, and X, by intersecting x,; and X,,;. (Fig. 4.9Db)
D,y, < Dy, + doyi(m,n)p(doy(r,n)) (Eq. (4.5))
Dy, < Dy, + dovl(ma n)(p(dovl(’r? m)) (Eq (45))
end for
end for

m <— argmin;{D; }

The parallel implementation of Iconoid Shift follows the same principle. However,
because we only initialize the algorithm with a subset of the input images as seeds, we
do not need to exhaustively compute the successor of each image. Instead, we initialize
each Iconoid Shift worker with a seed image and compute its successor by performing an
iteration of the Iconoid Shift algorithm. We then check if the successor has already been
visited by another job. If not, we perform the next iteration with this image. If it has
been visited already by another worker, we know that our current worker will follow the
same path from now on and therefore initialize the current worker with another seed.
We proceed in this way until the set of seeds is empty.

As illustrated in Figure 4.11, each run of Iconoid Shift follows a branch in a tree whose
leaves are the seeds and whose roots are the Iconoids. Each worker follows a branch until
it finds a node that has already been visited. This way, the tree is built up in parallel
and each transition is only performed once.

We now present two speedups to increase the efficiency of Iconoid Shift further.

4.5.4 Memorizing Overlaps

We can avoid repeating retrieval and propagation steps in different iterations by re-using
previous results. For this, we memorize the corona images, i.e., the images outside the
support set that are adjacent to images within the support set (dashed boxes in Fig-
ure 4.8). After shifting the medoid, we re-build the minimum spanning tree re-using
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previously determined homographies and overlap regions. Since some of the corona im-
ages will now enter the support set, we can use their known overlaps and homographies.
Images that are no longer inside the support set but are still adjacent to an image inside
the support set now become corona images. Finally, corona images no longer adjacent
to an image inside the support set are removed. This way, the nodes known from the
previous iteration can be processed at much lower cost, because we do not need to per-
form image retrieval and propagation of homographies and overlap regions. However,
this method requires to store pairwise overlaps in memory, increasing the memory usage
from linear to quadratic in the number of images under the kernel. In our implementa-
tion, we therefore did not make use of this idea, but we use it in Hierarchical Iconoid

Shift (Ch. 5).

4.5.5 Basin of Attraction

A common speedup used in Mean Shift is to associate the basin of attraction, i.e., the
points within a narrow radius around the mode, with the mode directly instead of
performing an extra mode search for them. This can save computation time because a
mode search from a point very close to a mode will likely converge to the same mode.
This speedup can be used in Iconoid Shift by removing the basin-of-attraction images
of each Iconoid from the seed set each time a new Iconoid is found.

4.6 Experimental Results

We now present our experimental results. We show that Iconoid Shift actually converges
to views that suit our definition of iconic images and we compare them to the views
selected by the valence criterion. By running it on the PARIS 500K dataset (Sec. 3.3)
and a dataset of 459k images from Barcelona, we demonstrate that Iconoid Shift can
automatically discover meaningful object clusters in a fully unsupervised way in a large
collection of photos.

4.6.1 Does Iconoid Shift actually select iconic views?

Our first question is whether our definition of Iconoids fits the intuitive concept of an
iconic image. Figure 4.10 shows four typical runs of Iconoid Shift starting with views of
landmark buildings taken at oblique angles or large distances (left column). Each run
took three iterations to converge to an Iconoid (right column), which typically shows
a frontal, centered and full view. Starting with a given view of a landmark building,
Iconoid Shift tends to tilt, zoom and orbit around the object until it reaches a view
that is favored by human photographers. As an interesting side effect, it automatically
selects whether a portrait or landscape format photo fits the object better, because a
photo that is completely filled by the object has higher mutual overlap with its neighbors.
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Seed Image

Figure 4.10: Ezamples of Iconoid Shift sequences with the support set sizes at each step.

The support set size (given below the images) is often higher for more “iconic” views,
because the more typical a view is the more images overlap with it. However, since
we optimize the mutual overlap and not the number of images in the support set, this
number does not increase consistently.

Figure 4.11 shows a number of Iconoid Shift runs starting from different seed views
(leaves) that each converge in the same Iconoid (root). Each path from a leaf to the
root is a convergence path of Iconoid Shift.

For a comparison of the iconic images selected by Iconoid Shift with the images hu-
mans select to depict landmark buildings, we use the images in the Wikipedia article of
Barcelona. Figure 4.12 shows that the views selected by our algorithm are generally very
similar to those selected by the Wikipedia authors, which suggests that our maximum
mutual overlap criterion corresponds to the human notion of iconic views. However, a
noticeable systematic difference is that the weather is always better in the images from
Wikipedia, which makes them more aesthetically pleasing. This could motivate a future
extension of the algorithm that also takes into account features related to aesthetics,
such as the color distribution.
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Figure 4.11: Iconoid Shift runs converging in the same Iconoid.

4.6.2 How does lconoid Shift compare to the valence criterion?

A very popular approach for finding iconic images is the valence criterion (Sec. 2.1.2),
which selects the images with the highest (weighted) valence in the matching graph
(Crandall et al., 2009; Frahm et al., 2010; Jing et al., 2007; Kennedy and Naaman, 2008;
Philbin et al., 2011; Raguram et al., 2011; Zheng et al., 2009). We compare our work
with two approaches: Crandall et al. (2009) build the full matching graph, weigh each
edge by the number of homography inliers, segment it using spectral clustering, and se-
lect the image with the highest weighted valence in each cluster. Philbin and Zisserman
(2008) additionally merge the spectral clusters showing the same building by trying
to propagate a homography between their images with maximum wunweighted valence
(Sec. 3.4). A qualitative comparison is given in Figure 4.13. In general, Iconoid Shift
tends to select more central views than the weighted and unweighted valence criteria,
which are based only on feature similarity and do not have a direct geometric interpre-
tation. The numbers show the neighborhood sizes w.r.t. the respective neighborhood
criterion (membership in the support set vs. adjacency in the matching graph). We define
neighborhood using the geometric overlap that is propagated independently of feature
matches and thus discover more images of the same object than direct feature-based
matching.
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Wikipedia

Iconoid Shift

Wikipedia

Iconoid Shift

Figure 4.12: Comparison of images used to depict popular landmarks of Barcelona from
the Wikipedia article of Barcelona and the iconic images selected for these landmarks by

Iconoid Shift.

4.6.3 How are the Minimum Spanning Trees structured?

Iconoid Shift returns both the Iconoid and its minimum spanning tree (Fig. 4.14). Since
this tree was constructed by recursive image retrieval, its branch structure reveals the
structure of the Iconoid’s neighborhood. For example, branches may contain specific
views of the object or depict the object in certain lighting conditions. This has interesting
applications such as navigating the scene of an Iconoid by following paths in the tree.
Figure 4.15 shows a path where the perspective gradually moves from below the Eiffel
Tower to a complete view of it.

4.6.4 Is the simple propagation scheme sufficient?

In order to verify that the transitive overlap propagation scheme (Fig. 4.5) is necessary to
fully explore an Iconoid’s neighborhood, we compare it to the simple scheme (Sec. 4.3.2)
that multiplies homographies along the path and determines the inlying feature matches.
We use a smaller dataset of 100k images of Paris and initialize Iconoid Shift with a set
of 25 seed images generated by Geometric min-Hash. The simple scheme discovered 17
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751

Crandall et al. (2009)

4005 374 2401 427 91 170 113 54 260 670

Figure 4.13: Comparison of Iconoids (top) and the spectral clustering approaches of
Crandall et al. (2009) and Philbin and Zisserman (2008) which select the images with
maximum (weighted) valence. Numbers denote the number of images associated with
the iconic by membership of the support set (top) and adjacency in the matching graph
(middle and bottom).

clusters with an average size of 137.9, while the transitive scheme discovered 16 clusters
with an average size of 230.8. Visual inspection showed that in general, the images
discovered by the simple method cover a lower variety of viewpoints, because it relies
on direct feature matches and thus on the invariance of the interest point descriptor
and detector, while the transitive scheme propagates the overlap region independently
of direct feature matches. Furthermore, computation using the simple scheme took 24x
longer than the transitive scheme, because direct overlap computations are more costly
and require local features to be loaded from disk. We can therefore conclude that the
transitive scheme is preferable both in terms of results and computation time.

4.6.5 Large-Scale Results

In order to show that Iconoid Shift can automatically identify the tourist hotspots of
an entire city, we apply it to the full 500k images of Paris as well as to a dataset of
469k images from the inner city of Barcelona. Since we found that Geometric min-hash
(Chum et al., 2007b) yields good starting points for growing clusters (Sec. 3.4), we use
it to generate the set of seed images. We generate the seeds using min-Hash sketches of
size 2. From the resulting set of colliding images, we remove duplicates by applying a
tf-idf threshold and filter out multiple seeds of the same object by building a matching
graph of the min-Hash seeds using image retrieval (Sec. 3.2.2), identifying its connected
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b0

Figure 4.14: Part of the minimum spanning tree of Les Invalides (921 images) with its
Iconoid (green border) at the root.

components and choosing one representative for each connected component. Since we
only build such components for the seed set, this step is inexpensive. This reduced set
of images is used to seed Iconoid Shift. We use the hinge kernel (Eq. (4.13)) and set
B = 0.9, such that all images in the support set of an Iconoid need to have at least 10%
overlap with it.

Statistics of the two experiments are shown in Table 4.1. By visual inspection we did
not find any false positives in the support sets except for those caused by watermarks,
timestamps, and frames that some users have added to their photos. As we show in
Chapter 7, these artificial overlays can effectively be detected and the resulting matches
can be discarded. On the Barcelona dataset, it was necessary to use a much larger
number of Geometric min-hash sketches to obtain a number of seeds comparable to
Paris. Interestingly, although they have similar numbers of Iconoids, the number of
images covered by the Barcelona clustering is less than a third of the images covered by
the clustering of Paris. This is because the most popular landmarks of Paris form larger
clusters than the landmarks of Barcelona, as can be seen when comparing the number
of Iconoids with 100 or more images as well as the mean and median cluster sizes.
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6476 259 317 789 7804 446 192

Figure 4.16: Map of Iconoids and their cluster sizes discovered automalically by our
algorithm in the PARIS 500K datasel.
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Figure 4.17: Map of Iconoids and their cluster sizes discovered automatically by our
algorithm in the Barcelona dataset.

Figure 4.16 and Figure 4.17 show maps of the discovered Iconoid support sets and some
example Iconoids of varying types and support set sizes. The top landmarks of Paris are
the Eiffel Tower (7 Iconoids covering 16,342 images), Notre Dame (4 Iconoids covering
13,369 images) and the Arc the Triomphe (4 Iconoids covering 7,764 images). The top
landmarks of Barcelona are Sagrada Familia (3 Iconoids, 5,584 images), Park Giiell (2
Iconoids, 1,851 images) and Casa Battlo (1 Iconoids, 1,698 images). We perform a more
detailed analysis of the clusters produced by Iconoid Shift and the objects it discovers
in Chapter 6.
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Paris Barcelona

Dataset size 501,356 458,980

min-hash sketches 5 120
Colliding images 10,487 17,213
Seeds 477 521

Iconoids 359 471

Iconoids > 10 210 250
Iconoids > 100 101 43
Images Covered 76,787 23,009
Mean Cluster Size 626.8 70.3
Median Cluster Size 18 10

Table 4.1: Statistics of large-scale runs of Iconoid Shift on Paris and Barcelona.
“Iconoids > 107 is the number of Iconoids having 10 or more images in their support
set. “Images Covered” is the total number of images in at least one Iconoid support set.

4.6.6 Runtime analysis

The large-scale clustering of PARIS 500K finished within a couple of hours on a small
computing cluster with 10 nodes. On a single PC, the whole process would have taken
64h3m. Of these, 51h21m were required for image retrieval (inverted file queries and
RANSAC verification). The remaining 11h42m are mostly due to bounding box trans-
formations and clipping.

Note that the process can be sped up further by employing the basin of attraction
speedup (Sec. 4.5.5). Finally, since we used a Matlab/Mex implementation, we expect
further speedups from a pure C/C++ implementation.

4.6.7 Structure from Motion Reconstruction

The clusters produced by Iconoid Shift can be used to reconstruct buildings in 3D using
structure-from-motion (Fig. 4.18). Because landmark buildings typically have several
popular photo taking spots, Iconoid Shift often discovers multiple Iconoids of the same
building or object. Since they overlap, clusters showing the same building can easily be
identified (Fig. 4.19) and their union can be used as input for a structure-from-motion
reconstruction.

Since structure-from-motion also reconstructs the camera positions and orientations of
the input images, we can visualize the Iconoid positions in 3D to get a spatial impression
of the favorite picture taking spots of a landmark (Fig. 4.20).
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(a) Arc de Triomphe

(b) Notre Dame

Figure 4.18: 3D reconstructions from Iconoid support sets created using Bundler
(Snavely et al., 2006) and PMVS (Furukawa and Ponce, 2009).

4.7 Conclusion

In this chapter, we have presented the Iconoid Shift algorithm for discovering landmark
buildings and other frequently photographed objects in large-scale image collections.
We defined a distance measure for images based on their overlap that can be efficiently
propagated through a graph. This propagation scheme also makes the distance measure
more invariant to changes in viewing angle and lighting conditions than distances defined
using a feature-based matching. Iconoid Shift performs mode search in the overlap space,
where the modes, called Iconoids, correspond to the most popular views of a building.
Clusters are formed by images within a certain distance radius to the mode. Intuitively,
clusters are simply all images that have a certain minimum overlap with their Iconoid.
Iconoid Shift is based is the well-studied Mean Shift (Fukunaga and Hostetler, 1975)
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Figure 4.19: Overlapping clusters of the Fiffel Tower. FEach cluster is represented by
its Iconoid. Two clusters are linked if they overlap.

Figure 4.20: 3D reconstruction of the Iconioid camera positions for Notre Dame Cathe-
dral. (Figure courtesy of Torsten Saltler)

and Medoid Shift (Sheikh et al., 2007) algorithms and inherits their properties such as
their intuitive interpretation of kernels and their proven convergence.

Given a seed image, Iconoid Shift performs a local exploration of the images within its
kernel support, computes the pairwise overlaps of all image pairs and shifts the kernel
window to the image with the highest overlap with all other images. We introduced an
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efficient algorithm for performing the pairwise overlap computation through propagation.
This algorithm is much faster than computing all overlaps based on homography inliers
and has only linear memory complexity. Since Iconoid Shift instances that are initialized
with different seeds are completely independent from one another, Iconoid Shift can
trivially be applied in parallel on separate compute nodes, which makes it applicable to
very large image sets.

Our experiments have shown that Iconoid Shift indeed converges to frontal and cen-
tered views, that are often a better depiction of the object than the views chosen by
the popular valence criterion. We have applied Iconoid Shift on a large-scale dataset of
500k photos of Paris and have shown that it discovers a large number of popular objects,
including all of the major landmarks of Paris, but also smaller objects such as statues or
paintings. We give a detailed analysis of what objects Iconoid Shift discovers in Chap-
ter 6 and show how the resulting clustering can be applied in a landmark recognition
system.

We can think of Iconoid Shift as a self-correcting query expansion process. In their
min-hash based clustering algorithm, Chum and Matas (2010) propose to use query
expansion for exploring clusters. However, this approach tends to explore large compo-
nents typically covering several buildings, as we found in Section 3.4. Instead, Iconoid
Shift explores only a local neighborhood in which all images have a certain overlap with
the Iconoid. The subsequent mode shift can be seen as a correction of the entry point
in a direction that captures the depicted landmark better and that also typically has a
larger neighborhood. This not only leads to higher quality clusters, but also saves the
computational effort of exploring entire connected components of the matching graph.

A problem that Iconoid Shift inherits from Medoid Shift is the use of a fixed kernel
bandwidth. This is an oversimplification of the problem because on realistic datasets
different modes will have different scales. When choosing a too large bandwidth, we
might miss smaller modes, since they are simply “blurred out” in the resulting kernel
density. When choosing a too small bandwidth, the kernel density will have too many
local maxima, simply caused by the uneven data distribution. We have used a relatively
large kernel bandwidth for our experiments that was suitable for finding building-scale
objects, but this likely caused us to miss many smaller objects. In the following chapter,
we introduce a variant of Medoid Shift that is able to find clusters at all scales. We
apply this algorithm in the Iconoid Shift framework we introduced in this chapter and
show that it is capable of also discovering smaller objects like building details.

While our method of estimating the overlap between two images using bounding boxes
around the inlier features is efficient, it is also prone to overestimating or underestimat-
ing the true overlap between the images due to low-textured areas, as we have shown
in Figure 4.4d. To estimate the overlap more precisely, future directions could be using
the convex hull around the inliers instead of bounding boxes, or using high photoconsis-
tency regions or the commonly seen 3d points of a structure-from-motion reconstruction
instead of homography inliers.
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Another problem we observed in our experiments was caused by watermarks, times-
tamps or frames that have been added to the photos by the users that uploaded them.
These artificial overlays can cause false-positive image matches that can cause unrelated
objects to be joined into the same cluster. In Chapter 7, we therefore introduce a de-
tector for such overlays that can be used to filter out such false-positive matches before
performing the clustering.
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Hierarchical Iconoid Shift: Discovering Details by
Hierarchical Mode Search

A common problem of many landmark discovery algorithms, including Iconoid Shift, is
that the user has to specify the granularity of the desired clustering in advance. For
example, single-link clustering (Manning et al., 2008), which is used in, e.g., Gammeter
et al. (2009); Quack et al. (2008); Zheng et al. (2009), requires the user to specify a
linkage threshold. Kernel Vector Quantization (Tipping and Schélkopf, 2001), used in
Avrithis et al. (2010), and Medoid Shift (Sheikh et al., 2007), which Iconoid Shift is
based on, require the user to specify a kernel bandwidth. Not only is this choice far
from trivial, but different objects may require different clustering granularities to be
discovered. Because in most landmark discovery engines the granularity is optimized for
building-level objects, they often miss many of the smaller, less popular objects.

Building details are a particularly challenging case, since they form smaller clusters
within a larger building cluster. Figure 5.1 illustrates the problem on a toy example.
The large cluster, Notre Dame Cathedral, has two sub-clusters corresponding to facade
details. When applying Iconoid Shift with a too high kernel bandwidth (Fig. 5.1a),
only the building itself will form a cluster, since the large kernel will “blur out” the
details. Therefore, they will not form local maxima in the estimated kernel density
distribution and will thus not be discovered by mode search. When using a too small
bandwidth (Fig. 5.1b), the building and its details will each form clusters, but the
building cluster will not contain all images of the building, because only images with
a very high overlap with the Iconoid will be in its cluster. Moreover, it is not clear
how clusters are related and there is no notion of the scale or importance of a cluster.
Ideally, we would like a clustering that automatically picks the correct bandwidth for
each mode and that produces a hierarchy describing which clusters are sub-structures
of other clusters (Fig. 5.1c).

The dilemma of choosing the correct bandwidth does not only affect landmark dis-
covery, but is a general problem of Mean Shift and Medoid Shift, because the scale of
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Figure 5.1: The bandwidth dilemma. Blue dols represent images and orange circles
represent the kernel support radii. (a) A clustering performed with a too high bandwidth
will miss details. (b) A too low bandwidth will yield too small clusters for larger modes.
(c) An ideal clustering would adapt the bandwidth to the data distribution and output
clusters as a hierarchy.

clusters is not always known in advance and can vary across the dataset. Consequently,
hierarchical variants of Mean Shift have been proposed (Chakravarthy and Ghosh, 1996;
Leung et al., 2000). These approaches run Medoid Shift several times, each time increas-
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ing the kernel bandwidth by a fixed amount and using the modes resulting from each
run as the seeds of the next run. If two seeds converge to the same mode, their clusters
are merged. This way, a hierarchy of clusters is constructed. This approach, however,
replaces the problem of how to choose the bandwidth with the problem of how to choose
the bandwidth increment. If the bandwidth is incremented in too fine steps, there will
be almost no change between subsequent iterations resulting in a waste of computing
power. If the bandwidth increment is chosen too large, this approach might miss merge
events and skip over the bandwidth that is suitable to discover certain clusters.

In this chapter, we introduce a hierarchical variant of Medoid Shift that does not
require the choice of a fixed bandwidth increment, but instead increases the bandwidth in
a quasi-continuous way, meaning the result is the same as if the bandwidth were increased
continuously. Taking inspiration from Scale Space Filtering (Witkin, 1984), Hierarchical
Medoid Shift follows the evolution of density maxima as the kernel bandwidth increases
and builds a dendrogram from their merging behavior. This dendrogram serves as a
hierarchical description of the input dataset. Each branch corresponds to a cluster and
the bandwidth at which a branch merges into another branch determines the kernel
bandwidth of its cluster. The algorithm is completely parameter-free, has the same
complexity as Medoid Shift and is just as easy to parallelize.

We apply Hierarchical Medoid Shift to landmark clustering using the homography
overlap distance introduced in Chapter 4. We will present an efficient propagation
scheme to incrementally compute pairwise image overlaps as the kernel bandwidth in-
creases and a parallelization scheme to perform this hierarchical clustering in a highly
distributed manner. The resulting algorithm, called Hierarchical Iconoid Shift builds
cluster hierarchies that describe landmarks and their details more accurately than the
flat clustering that previous landmark clustering algorithms produced. Moreover, it has
the same computational complexity and scalability as Iconoid Shift.

We evaluate this algorithm on a large-scale dataset of 802k Flickr photos of 36 historic
landmarks and show that it produces detailed dendrograms that reflect the structure of
the scene. Using Wikipedia as a source for landmark details, we show that our algorithm
discovers many more details than a flat clustering at a fixed bandwidth.

The resulting landmark dendrograms can serve many interesting applications. Firstly,
since Hierarchical Iconoid Shift discovers full views as well as details, it can be used to
improve the number of objects a landmark recognition system can recognize. Since the
relative positions of the parts w.r.t. the full building are known, it can also be used for
building interactive tour guides or to provide a user of a landmark recognition system
with much more details than current systems.
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This chapter makes the following contributions:

e A scale-continuous Hierarchical Medoid Shift algorithm that has the same complex-
ity as regular Medoid Shift, but, instead of a flat clustering, produces dendrograms
reflecting the density structure across all scales. The algorithm is parameter-free
and can easily be implemented in a distributed manner to scale to a large number
of machines.

e We present a hierarchical landmark clustering algorithm called Hierarchical Iconoid
Shift, based on the Iconoid Shift framework (Ch. 4), that applies Hierarchical
Medoid Shift to landmark clustering in Internet photo collections.

e We propose to apply the resulting hierarchical landmark clustering to automat-
ically creating summaries of touristic landmarks that could be used in mobile
recognition apps. Moreover, we show how the hierarchies can be used to extend
Wikipedia articles of landmark buildings with new details.

The remainder of this chapter is structured as follows: In the following section, we
present related work. We then introduce the Hierarchical Medoid Shift algorithm in
Section 5.2 and apply it to landmark clustering in the Hierarchical Iconoid Shift algo-
rithm in Section 5.3. We show the results of applying this algorithm on a large-scale
landmark dataset in Section 5.4.1, compare the results to Iconoid Shift and outline po-
tential applications. Finally, we conclude the chapter and discuss future directions in
Section 5.5.

5.1 Related Work

In landmark clustering, there are only few approaches with similar goals as Hierarchical
Iconoid Shift, which we will discuss in the following. After that, we consider previous
work in hierarchical clustering and hierarchical mode search in particular.

5.1.1 Landmark Clustering

Crandall et al. (2009) cluster photos from Internet photo collections by geo-location
both at the city level and at the landmark level. For this, they perform geographical
bucketing with different bucket sizes for the two scales and sub-sample the photos such
that each bucket contains at most one photo from each user. Then, they find density
modes by running Medoid Shift on the sub-sampled photos. The result is a multi-scale
clustering, but not a hierarchical one, since the approach by Crandall et al. does not
establish connections between clusters at different scales. In contrast to their work, we
perform clustering based on photo content, not metadata, and we are interested in a
much finer clustering granularity, relating buildings and details as opposed to cities and
landmarks.
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Epshtein et al. (2007) share our goal of creating a hierarchical summary of a scene.
They first perform a structure-from-motion reconstruction and then create a 2D top-
down view of the scene called the “geo-relevance image” in which the intensity of each
pixel corresponds to the relevance of its scene position. This image is created by accu-
mulating 2D projections of the view frustums of all the cameras in the scene such that
the value of each pixel is the number of cameras whose view frustums overlap at its
position. Then, the geo-relevance image is segmented hierarchically by applying Mean
Shift in a top-down fashion. The first run of Mean Shift performs a coarse clustering,
and recursive runs are performed that further segment each of the resulting clusters
using a smaller kernel bandwidth. As for our approach, the result of their method is a
tree of clusters describing the scene. However, since their approach operates on a 2D
top-down view of the scene and uses discrete bandwidth increments for clustering, the
detail granularity it can discover is limited. Furthermore, view frustums do not solely
determine what a photo is actually showing, and two view frustums can intersect even
though their images have no overlap which might cause some regions to be falsely con-
sidered relevant. Our approach directly uses image overlap as its grouping criterion and
performs a scale-continuous hierarchical clustering.

Like Hierarchical Iconoid Shift, the “3D Wikipedia” system by Russell et al. (2013)
produces a fine-grained description of a landmark building an its details. To achieve
this goal, they perform web searches for all noun phrases in the Wikipedia article of the
landmark and localize the retrieved images in its structure-from-motion reconstruction
using pose estimation. The result is a browseable 3D model of the scene with bounding
boxes around prominent details that have hyperlinks to the paragraph in Wikipedia that
describes them. This approach however relies on Wikipedia, which in our experience
often provides only an incomplete list of details of a landmark. Also, this approach does
not produce a hierarchy, but only a set of links between an article and a 3D model.

While we take a bottom-up approach to detail discovery, Mikulik et al. (2014) discover
details in a top-down fashion. Starting with the full view of a facade, their Hierarchical
Query Expansion approach mines increasingly detailed images of the building.

5.1.2 Hierarchical Clustering

One of the most popular hierarchical clustering algorithms is Hierarchical Agglomerative
Clustering (Manning et al., 2008) that iteratively merges the two closest clusters and
thus builds a dendrogram with each data point as a leaf and a cluster containing the
whole dataset as the root. The landmark clustering approaches that use this method
(Gammeter et al., 2009, 2010; Quack et al., 2008; Zheng et al., 2009) ignore the resulting
hierarchy and instead simply use the clustering that results after stopping at a prede-
termined cluster similarity threshold. Apart from its high computational complexity
(cubic in general, quadratic when using the single-linkage criterion), a disadvantage of
Hierarchical Agglomerative Clustering is that clusters do not have an intuitive inter-
pretation in the context of object discovery. For example, the clusters of Single-Link
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clustering are actually the connected components of the matching graph when removing
all edges whose weight is below the linkage threshold. As we have shown in Section 3.4,
connected components are not necessarily limited to single objects, but in practice often
cover entire city areas. The reason for this is that two objects will already be in the same
cluster if at least one image exists that shows them together. Therefore, clusters do not
necessarily have a single “subject”. In contrast, when using a density-based method like
Iconoid Shift, each cluster has a mode that serves as a representative for it and defines
its subject. Several approaches for performing a density-based hierarchical clustering
have been proposed: Paris and Durand (2007) create a hierarchical image segmentation
by first performing Mean Shift clustering using a single fized scale, and then succes-
sively merging the resulting clusters using a criterion derived from Morse theory. Yuan
et al. (2012) propose a hierarchical agglomerative version of Mean Shift that works by
iteratively summarizing points that are assumed to converge to the same mode. Both
algorithms only operate in Euclidean space and, despite being hierarchical, only operate
on one fixed kernel bandwidth.

The key inspiration for our work is the Scale Space Filtering algorithm by Witkin
(1984). It builds the Scale Space of a 1D signal by blurring it with a continuously grow-
ing Gaussian, then tracks inflection points and builds a dendrogram from their merging
behavior. Leung et al. (2000) apply this idea to 2D images by tracking density maxima
with a procedure similar to Mean Shift while increasing the kernel bandwidth in discrete
steps. Given a set of bandwidth steps [y, ..., O, their approach iteratively performs
mode search, using the modes of the run at f; as seeds for the run at 3;,,. Chakravarthy
and Ghosh (1996) propose a similar approach that estimates the density using a Radial
Basis Function network. Their approach is applicable to higher-dimensional Euclidean
spaces, but also still requires fixed bandwidth steps. Later works (DeMenthon, 2002;
Vatturi and Wong, 2009) applied this approach of alternately performing mode search
and incrementing the bandwidth to video segmentation and category detection, respec-
tively. However, all of these works are not applicable to non-Euclidean metric spaces,
which severely limits the image distance measures that can be used to apply them for ob-
ject clustering. Moreover, they all require the choice of fixed bandwidth steps. However,
choosing these bandwidth steps is far from trivial. If the intervals between bandwidths
are chosen too coarse, some cluster merging events might be missed. If the intervals
are chosen too fine, many unnecessary mode searches will be performed, increasing the
computational effort unnecessarily. In fact, different parts of the dataset might require
different bandwidth increments.

5.1.3 Discussion

In contrast to the above approaches, Hierarchical Medoid Shift increases the bandwidth
in a quasi-continuous way. It chooses the bandwidth increment dynamically and locally
based on the data instead of forcing the user to decide on a fixed increment. Finally,
because it relies on Medoid Shift, it works in arbitrary metric spaces.
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Figure 5.2: The bandwidths at which dala points enter the growing kernel window are
their distances to the medoid.

5.2 Hierarchical Medoid Shift

We now introduce the Hierarchical Medoid Shift (HMS) algorithm that is based on
Medoid Shift, but produces a hierarchical clustering by continuously growing the kernel
window and tracking the merging behavior of density maxima. Like Medoid Shift, HMS
is a general clustering algorithm that can likely be useful for many different clustering
tasks. In this chapter, we focus on its application to clustering Internet photo collections
and leave other applications as future work.

5.2.1 Quasi-continuous Kernel Growth

In the following, we will assume that the kernel profile is a step function (Eq. (4.13)),
which is a common choice in practical applications of Mean Shift and Medoid Shift. This
allows us to make the following observations:

1. Since the kernel profile is piecewise constant, the weights of the points under the
kernel will not change when its bandwidth is increased. Therefore, the weighted
distance sums in the Medoid Shift minimization (Eq. (4.5)) will only change when
a new point enters the kernel window.

2. Because the kernel has finite support and the dataset is finite, there is only a finite
number of bandwidth steps at which a new data point enters the kernel window
(Fig. 5.2). These steps are the distances of the points in the dataset to the medoid.

These observations enable continuously growing the kernel by examining only a finite
number of bandwidth steps. Because the medoid cannot change unless a new data point
enters the kernel window, the resulting clustering is the same as if the kernel bandwidth
were grown continuously.
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Figure 5.3: Hierarchical Medoid Shift. After being initialized with a seed (left), HMS
iterates between two steps: Increasing the kernel bandwidth until a new point enters the
kernel window (middle), and seeking the medoid using Medoid Shift (right).

Algorithm 3 Hierarchical Medoid Shift.
// Input: Point set {x}, seed point yq
// Output: Sequence of modes and bandwidths S = ((Bk,Yk))
k:=0, Bo:=0,S = ((Bo,y0))
while 3x : d(x,yr) > 8k do
Brr1 := Miny.qx y,)>p, 14X, ¥k)} // Grow kernel
k=k+1
/| Perform Medoid Shift
y:i=10
while y # y;, do
Y i=Yk
Vi = argminge oy {55 A, 905, (a0} (Fa. (45)
end while

Append (B, yk) to S
end while

5.2.2 The Hierarchical Medoid Shift Algorithm

We now formulate the Hierarchical Medoid Shift algorithm that grows the kernel band-
width in a quasi-continuous way (Fig. 5.3): We start from a seed point at kernel band-
width f = 0 and build a priority queue of its nearest neighbors, ordered by their distances
to the seed. These distances define the discrete steps in which the kernel window grows.
In each step, we pop an element from the priority queue, increase the kernel bandwidth
to its distance from the seed and check if the current kernel center is still the medoid.
If not, we find the new medoid by performing Medoid Shift iterations (Eq. (4.5)) until
convergence and re-build the priority queue. Then, we continue with the next growing
operation. We repeat this procedure until the queue is empty, i.e., all data points are
inside the kernel window. The detailed algorithm is given in Alg. 3.
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B C

Figure 5.4: Relalionship between clusters and dendrograms in Hierarchical Medoid Shift.

Every time a point enters the kernel, we compute its distances to all points under
the kernel support. Thus, in total, the number of distance computations performed is
quadratic in the number of points under the final kernel window. The computational
complexity is therefore the same as for standard Medoid Shift. However, in contrast to
Medoid Shift, HMS is completely parameter-free.

The algorithm is initialized once with every data point. Similar to the evolution of
local maxima in scale space (Witkin, 1984), medoids corresponding to small maxima will
merge to form larger maxima (Fig. 5.4). The resulting convergence sequences therefore
form a dendrogram of the density structure of the dataset at all scales. A horizontal
slice through this dendrogram yields the set of medoids at a particular scale.

5.2.3 Two Clustering Definitions

In Mean Shift (Cheng, 1995) and Medoid Shift (Sheikh et al., 2007), a cluster is the set of
all points that converge in the same mode. This results in a hard clustering, since every
point is assigned to one cluster. For Iconoid Shift (Ch. 4), we used a different cluster
definition that is more suitable to our application. Here, a cluster consists of all points
under the kernel support of a mode. This definition yields an overlapping clustering. For
Hierarchical Medoid Shift, both hard and overlapping cluster definitions are possible as
well. In both definitions, each point forms its own cluster at the lowest scale. If we use
the hard cluster definition, then every merging of two branches in the dendrogram will
simply cause the clusters of the two merging branches to be joined. The resulting cluster
hierarchy will therefore be nested, since clusters at lower bandwidths are always subsets
of clusters at higher bandwidths. In the overlapping cluster definition, the resulting
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cluster hierarchy is non-nested, since kernel windows can shift when the bandwidth is
increased. When the kernel window shifts, points that have been within the kernel radius
of a mode at a lower bandwidth might not be in its radius at a higher bandwidth. In this
definition, at each kernel bandwidth, the set of modes defines an overlapping clustering.
In summary, we have the choice between a hard, nested clustering and an overlapping,
non-nested clustering. Like in Iconoid Shift, we use the overlapping cluster definition
for Hierarchical Iconoid Shift, but there might be other applications of HMS where the
hard clustering definition is more suitable.

5.2.4 Parallelization

HMS can be parallelized to run on multiple machines by initializing each worker with
one seed. We then run HMS independently on each worker. We can imagine each run of
the algorithm as tracing out a branch of the dendrogram from bottom to top, where we
move upwards each time we increase the kernel bandwidth § and we move horizontally
each time we shift (Fig. 5.4). We keep track of the dendrogram branches in a central data
structure. There is no need to keep the bandwidths of concurrent runs synchronized.
We only need to check for collisions with existing branches before growing or shifting
operations. As soon as the current branch collides with another branch, we know that it
will follow the same path. Therefore, we stop its corresponding worker and re-initialize
it with a new seed.

5.2.5 Computational Complexity

We now show that both Medoid Shift and HMS have a worst-case complexity of O(N?)
in the dataset size N. In the following, we assume the pairwise distances of all data
points are already known. If not, they can be precomputed in O(N?) time, which would
not dominate the runtime of the algorithm.

Medoid Shift. In practice, Medoid Shift is not run by initializing it with a seed and
performing iterations until it converges at a Medoid. Instead, its implementation exploits
the fact that the algorithm can only have a finite number of states because the kernel
always has to be centered on a data point. Medoid Shift therefore exhaustively computes
for each point in the dataset the next point to shift to. (In Mean Shift (Cheng, 1995),
it would not be possible to exhaustively pre-compute the shifts, because the kernel
center can lie at any position in space.) The next point is found by the Medoid Shift
minimization (Eq. (4.5)). The result of this is a directed graph in which each point has
an outgoing edge to the next point, except for the medoids, which are the convergence
points of the algorithm. The minimization requires at most O(N?) operations and is
done for each of the N data points. Hence, the shift computation step requires at most
O(N?) operations for the whole dataset. Then, each point is associated with a mode by
following its path in the directed graph until reaching a mode. This step takes at most
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O(N?) operations. Because the computation time of the algorithm is dominated by the
shift computation, its overall complexity is O(N?).

Hierarchical Medoid Shift. Although it produces a hierarchical clustering instead of
a flat one, HMS also has a worst-case complexity of O(N?3). We show that HMS visits
at most O(N?) states and that the worst-case computation time spent in each state is in
O(N). For the latter, we introduce an incremental scheme that allows HMS to perform
the Medoid Shift minimization (Eq. (4.5)) based on memorized partial results from lower
bandwidths.

Given the current data point y, and current bandwidth 5,, HMS computes a set of
weighted distance sums S’;yn for each point y under the kernel window of the current
data point:

Sy = Z d(y, xi)e(d(ye, xi))- (5.1)

Instead of computing this sum explicitly in each step, we compute it incrementally each
time the kernel bandwidth is increased. When we pop the next closest point x,, from
the priority queue, we increase the kernel bandwidth to the distance of this new point
from the current data point y,. Then, we update the distance sum Skn of each data

point y under the kernel window of y; by adding to it the distance d(y, Xm) between y
and the new point x,,, which is weighted by the kernel window:

Sy o =S5 01+ Ay, Xm)e(d(yr, Xm)). (5.2)

We then determine the new medoid y1 by finding the point with the lowest distance
sum:

Vik+1 = arg min {S’;n} : (5.3)
y

This is equivalent to the original Medoid Shift minimization (Eq. (4.5)), but only
requires us to perform O(N) additions at each bandwidth step.

Since there are N data points, and for each data point, there are N possible band-
widths (given by the distances of the current point to all other points), there is a total
of O(N?) possible states of HMS. A toy example for the set of HMS states is shown in
Fig. 5.5. When running HMS in practice, only a subset of these states is actually visited,
because smaller modes merge into larger modes as the bandwidth increases.

Having shown that there are O(N?) possible states and that incremental computation
of distance sums requires O(NN) steps in each state, we still need to show that no more
than O(N) computations are performed in each state. We assume that HMS is run
linearly, i.e., that it is initialized with one seed at a time. As soon as we either reach
the maximum kernel bandwidth or merge into an already processed state, we initialize
it with the next seed. In any state, we decide whether to shift or grow by checking if
the current medoid still has the lowest distance sum (Eq. (5.3)). This check has O(N)
complexity. If we decide to grow, we add one point to the kernel window and update the
distance sums as above, which has O(N) complexity, as explained above. If we decide
to shift, there are two possible cases.
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Figure 5.5: The set of states of HMS for a dalaset of 3 points. Fach point has three
states (denoted by the colored dots above it): One at f = 0 and two at the distances
of the other two data points. Arrows indicate state transitions. The states marked by
dashed circles are never visited, because A and C merge into B before reaching them.

1. We transition to a state that has already been visited in a previous run. In this
case, we do not need to do anything else in this state and can continue with the
next seed.

2. We transition to a state that has not yet been visited. To compute its weighted
distance sums incrementally, we would need the weighted distance sums at the
next lower bandwidth for the current point. However, this bandwidth might not
yet have been visited either. We therefore compute the weighted distance sums
incrementally, starting at the lowest bandwidth for the current data point for which
weighted distance sums exist, or at § = 0 if the point has not yet been visited at
all. This, however, would require O(N?) operations, and we only want to spend
O(N) operations per state. But since we memorize the weighted distance sums we
compute for each state along the way, we do not need to perform these computation
steps in future runs. So, we effectively only change the order in which we compute
the weighted distance sums. For example, if we need to perform the incremental
computation for k& bandwidths below the current one, we do not need to perform
this computation in & future states, meaning only the incremental computation
from the next lower bandwidth to the current state needs to be counted in this
step. Therefore, shifting operations effectively require O(N') computation time.

In summary, since HMS visits at most O(N?) states and in each state it performs at
most O(N) operations, the worst-case complexity of applying HMS on a dataset of N
points is therefore O(N?).
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5.3 Hierarchical Iconoid Shift

We now describe the Hierarchical Iconoid Shift (HIS) algorithm that applies Hierarchi-
cal Medoid Shift to produce a hierarchical clustering of large amounts of photos from
Internet photo collections. For this, we present efficient schemes for growing the kernel
bandwidth and shifting the mode that use the HOP algorithm (Sec. 4.5.2) to propagate
overlaps to new images, re-using previously computed overlaps where possible.

Recall that the corona (Sec. 4.5.4) is the set of images whose overlap distance to
the medoid is greater than the kernel bandwidth £, but that match at least one image
from the support set (i.e. the dashed images in Figure 5.6). The overlaps of the corona
images with the medoid define the discrete scale steps for growing the kernel. Upon
being discovered by querying an image retrieval system (Sec. 3.2.2), the corona images
are inserted into a priority queue and prioritized by their overlap with the medoid. HIS
maintains a minimum spanning tree (MST) of all images in the corona and support set.
New images are added to this tree incrementally using the linear time algorithm by Chin
and Houck (1978).

Figure 5.6 shows the steps of the HIS algorithm. We start with a single seed image
in the support set and an initial kernel bandwidth 5 = 0. Then, we query an image
retrieval engine with the seed and add its matching images to the corona. We compute
the overlaps of the new corona images with the seed and add the images with non-empty
overlap to the priority queue. At the start of each iteration, we first take the top image
from the priority queue and increase the kernel bandwidth to the overlap distance of
this image from the medoid. Then, we compute the image’s pairwise distances to all
images in the support set using HOP (cf. Sec. 4.5.2) in the MST. Next, we complete the
corona by retrieving images matching the newly added image, computing overlaps with
the medoid using HOP, and inserting them into the priority queue. Finally, we check
whether the medoid has shifted by performing the Medoid Shift minimization (Eq. (4.5)).
If not, we directly continue with the next growing step. Otherwise, we perform Iconoid
Shift iterations until convergence. After converging to a mode, we continue growing
the kernel. The HIS algorithm is finished when the corona is empty, i.e., all images
overlapping with the medoid are in the support set.

In the Iconoid Shift iterations, we re-use previously computed overlaps as described
in Section 4.5.4 to save computation time (Fig. 5.6, left). The support set update is
done in three steps: 1. We move support set images that are no longer within the kernel
radius to the corona. 2. We remove corona images with no match in the support set. 3.
While there are images in the corona whose overlap distance to the medoid is smaller
than (8, we add them to the support set, compute their overlaps with all support set
images and retrieve new corona images as above.
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Figure 5.6: Hierarchical Iconoid Shift. (top) The corona image closest to the medoid
(yellow) is added to the support set. The kernel bandwidth is expanded to the distance of
the new image to the medoid. (right) The pairwise distances between the new image and
all other support sel images are computed using HOP. (bottom) Images matching the
new image are retrieved, inserted into the corona and added to the priority queue. (left)
The medoid is shifted until convergence at a mode and the MST and priority queue are
updated accordingly. If the mode did not change after adding the new image, this step is
skipped.

5.3.1 Computational Requirements

HIS can easily be parallelized in the same way as HMS (Fig. 5.4). Since adding an image
to a support set has linear complexity in the number of images currently in the support
set, the total complexity of growing a branch is quadratic in the number of images in
the final support set, i.e., the number of images overlapping with the Iconoid. Since we
can stop processing a branch if a worker merges into an existing branch (Sec. 5.2.4),
the overall runtime of HIS depends on the branching factor of the dendrogram, and
thus on the density distribution in the dataset. We observed that typically, there are
a few prominent Iconoids that grow for a large range of bandwidths that most other
branches merge into after a few growing steps. Like Iconoid Shift, Hierarchical Iconoid
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Figure 5.7: Camera motion estimation based on the area and centroid of the overlap
region (blue).

Shift can be implemented with linear memory complexity in the number of images under
the final support set. However, in our implementation, we decided to re-use previously
computed overlaps (see above), which yields a performance improvement, but requires
storing pairwise overlaps, and thus leads to quadratic memory complexity.

5.3.2 Dendrogram Simplification

We found that, in practice, the dendrograms produced by HIS often contain redundant
seeming branches, e.g., branches that show only a slightly different view from the branch
they merge into. This redundancy is mainly caused by two factors:

1. Each input image initially forms its own cluster. These clusters are the leaves of
the dendrograms. The clusters gradually merge as the bandwidth is increased,
but on the lower levels of the dendrogram, merging clusters are very similar in
appearance.

2. If a landmark is photographed under different lighting conditions, the same view
can have multiple modes, e.g., for day and night.

Since we are interested in creating compact hierarchical scene descriptions, we perform
two measures to simplify the dendrograms that the algorithm produces.

1. We remove clusters with less than three images from the dendrograms. We choose
three as the threshold since at least three images are required such that a cluster
can have a unique Iconoid.

2. Since redundant dendrogram branches usually show very little change in perspec-
tive, we use a simple but effective scheme to simplify them. We descend each
dendrogram from the root in a breadth-first fashion and estimate the camera mo-
tion for each outgoing edge of the current node. If the camera motion is too small,
we collapse the edge, i.e., we remove the child and attach its children to the current
node. We estimate the camera motion using a scheme similar to the one proposed
by Ladikos et al. (2010): Since each child is in the support set of its parent, we can
compute their overlap region using HOP. We then use the change in relative size
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Figure 5.8: Part of a dendrogram from Trinity College before (left) and after (right)
simplification.

of the overlap region as an estimate of the zoom and the relative movement of the
centroid of the overlap region to estimate the amount of panning or tilt (Fig. 5.7).
An example result of this simplification is shown in Figure 5.8. We collapse an
edge if the size of the overlap region changes by less than 50% and its center shifts
by less than 33% of the image size.

5.4 Experiments

We now perform experiments with Hierarchical Iconoid Shift on a large-scale dataset of
36 historic landmarks. We quantitatively and qualitatively analyze the dendrograms our
algorithm produces for these landmarks. Moreover, we compare the resulting clustering
to the clustering produced by Iconoid Shift in terms of the amount of discovered details.
For this, we rely on Wikipedia authors to provide a list of details of each building
and compare the number of details discovered by each algorithm. Finally, we discuss
two potential applications: Extending Wikipedia articles and automatically building
landmark summaries.

5.4.1 Dataset

To test the ability of our algorithm to discover details of landmarks, we collected a
dataset of 36 landmarks that have a large number of details depicted on their Wikipedia
pages and downloaded Flickr images in a geographic bounding box around them. The
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dataset is divided into a total of 802,129 images. In two cases ( Westminster Palace /
Westminster Abbey and Piazza San Marco | Basilica San Marco), we combined two
close-by landmarks. Thus, the resulting dataset has a total of 34 image sets.

5.4.2 Results

Dendrogram Structure. We apply HIS on the 34 image sets by seeding it once with
each image and run the algorithm in parallel on a computing cluster (Sec. 5.2.4). We
then perform dendrogram simplification (Sec. 5.3.2), which reduces dendrogram size by
55.6% on average. HIS typically produces one dendrogram for each facade or view of
a landmark and several smaller ones covering individual isolated objects. Figure 5.9
and Figure 5.10 show some typical examples of dendrograms produced by HIS. Some
example paths from leaf to root are shown in Figure 5.11. It can be seen that the details
discovered at lower bandwidth levels generally merge into more global structures when
moving further up the dendrogram and thus to higher kernel bandwidths §. However,
when increasing the bandwidth, sometimes the algorithm also shifts to more popular
structures close to the current Iconoid (e.g. rows 3 and 4 of Fig. 5.11). Iconoids higher
up in the hierarchy are therefore not necessarily show superordinate structures of their
children, but might also be views where the camera has panned or tilted from a less
popular view to a more popular one.

Dendrogram Statistics. Statistics of all dendrograms of the dataset are given in
Table 5.1 and Table 5.2. The mean size of the dendrograms of a landmark can be
an indication of how fragmented a scene is. For example, the mean dendrogram size
of the Louvre and Museée d’Orsay is low, because every individual artwork in these
museums will form its own (very shallow) dendrogram. The Angkor Wat and Wat Phra
Kaew temples are spread over a larger geographical area and are therefore fragmented
into several scenes that each form smaller dendrograms. The largest dendrograms are
formed by landmarks that consist of a single, complex structure such as the Pantheon,
the Church on Spilt Blood and the Trevi Fountain.

Singletons are single Iconoids whose dendrograms were either collapsed into a single
node by the dendrogram simplification step or that contain only 3 images. They are
typically objects with no superordinate structures, e.g., paintings in a museum, which
explains the high number of singletons in the Louvre. Another cause of singletons are
“junk” photos, which were either wrongly geotagged as being close to the landmark, or
simply do not depict the landmark.

Figure 5.12 (left) shows the development of the number of clusters as a function of
8. As [ increases, HIS converges to larger scale structures, causing more and more
dendrogram branches to merge, which in turn decreases the number of clusters. The
steep drop in the beginning is caused by the quick formation of Iconoids as well as the
dropout of images that do not have a match.
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(b) Aachen Cathedral

Figure 5.9: Example dendrograms of detail hierarchies automatically discovered by Hi-
erarchical Iconoid Shift (part 1).
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(¢) The Great Gate of Trinily College

Figure 5.10: Fxample dendrograms of cluster structures automatically discovered by
Hierarchical Iconoid Shift (part 2).

How many details does HIS find? We would now like to know how many of the
details actually present in a scene are automatically discovered by our algorithm. To
answer this question, we rely on Wikipedia authors to provide a list of the relevant details
of a building. For each landmark, we downloaded the Wikipedia article in the language
version having most details (This is usually the language of the country where the
landmark is located). For the two joint image sets Westminster Palace and Westminster
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Figure 5.11: Example convergence paths from seed (left) to root (right). Captions show
cluster bandwidth and size.

Abbey and Piazza San Marco and Basilica San Marco, we downloaded both Wikipedia
articles. We then extracted a textual label for each detail based on its HTML alt-
tag or image caption. Since only a part of the photos in the Wikipedia article of a
landmark depict details, we manually removed non-detail photos like floor plans or
portraits of people associated with the landmark. We then matched the Wikipedia
details against our discovered details using visual word based image retrieval (Sec. 3.2.2).
A Wikipedia image matches an Iconoid if they are related by a homography with at least
15 inliers and their homography overlap distance is less than 0.9. To ensure high recall for
this matching, we additionally consider matches between Wikipedia details and images
directly adjacent to the Iconoid in its matching graph. For these matches, we compute
the overlap between the Wikipedia image and the Iconoid using HOP (Sec. 4.5.2). If
an Iconoid had multiple Wikipedia matches, we keep the one with the lowest overlap
distance.
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We note that there are two caveats with this approach: Firstly, we cannot expect
an exhaustive list of details from Wikipedia, and secondly, SIFT-based matching and
spatial verification using homographies is not suitable for all details. For example, many
of the details of Milan Cathedral and Notre Dame are statues, which were discovered by
HIS, but that could not successfully be matched, because they are weakly textured and
highly non-planar. Here, specialized matching techniques for weakly-textured objects
would be necessary (Arandjelovic and Zisserman, 2011). Therefore, the numbers we
provide should be considered a pessimistic measure of the recall of detail discovery.

The results of this experiment are shown in the bottom two rows of Table 5.1 and
Table 5.2. Wikipedia Details is the number of details depicted in each article and
WP — Iconoid is the number of Wikipedia images with at least one matching Iconoid.
Generally, the number of details discovered depends on the number of images available
for the landmark, since a dense enough coverage of the landmark is needed to identify
density modes. HIS therefore finds a large fraction of the details of Piazza € Basilica
San Marco and Notre Dame, but almost none for Nidaros Cathedral, which has only 581
images. Overall, about half of the Wikipedia details have a matching Iconoid.

Which details does HIS miss? As we noted above, the number of matched Wikipedia
details is a pessimistic measure of the number of details discovered by our algorithm.
Nevertheless, there were several cases where our algorithm missed details that are present
on Wikipedia. We identified three main reasons for this (see Fig. 5.13):

e Some details, like the ones depicted in Figure 5.13a, are historically relevant and
therefore mentioned in Wikipedia, but not visually striking enough to attract pho-
tographers. Without a tourist guide or guidebook, people visiting a landmark
might even be unaware of those details. Therefore, there are not enough photos of
them to form a mode. Such details simply violate our assumption that details are
frequently photographed objects and thus our algorithm cannot discover them by
design.

e Other details, like the ones depicted in Figure 5.13b, are too small to be pho-
tographed in isolation. For example, the bottom right detail is a part of the ceiling
mural in the Sistine Chapel. With a standard camera, like a cheap consumer
camera or smartphone, it is impossible to photograph this part in isolation. This
would require either a telephoto lens, or cropping the detail out afterward. For
such details, only the superordinate structure will form a cluster. Moreover, de-
tails like ornaments (left) that are found all over a building are unlikely to form a
cluster since every photographer will focus on a different part and the photos of it
do not overlap.

e Finally, some building details, like the ones depicted in Figure 5.13c, are hard to
access, e.g., because they can only be seen when taking a (possibly paid) guided
tour. Other objects, like the church bell, might not even be accessible to the public
at all. Finally, in many touristic attractions, like churches, photography is simply
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Images 2,077 55,532 26,485 33,128 964 34,684 9,176 3,588 21,104
Dendrograms 40 562 445 176 22 290 124 21 210
Mean Dend. Size 7.28 11.22 6.88 12.77 6.86 7.93 8.56 17.33 11.44
Singletons 47 563 409 198 16 391 122 20 264
Iconoids 277 5801 2,850 2,137 128 2,321 1,003 335 2,267
Images Covered 1,192 32,783 13,641 23,731 552 14,221 5,422 2,459 12,900
Wikipedia Details 22 12 5 23 52 9 19 7 18
WP — Iconoid 10 9 2 14 10 4 7 6 9
g 9 —
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Images 28,349 17,832 40,654 7,689 22,064 17,249 31,337 30,345 32,882
Dendrograms 242 105 331 64 181 176 312 200 304
Mean Dend. Size 10.83 20.41 12.71 8.48 10.59 13.52 11.53 14.32 12.31
Singletons 283 95 408 96 224 162 242 268 228
Iconoids 2,485 1,677 4,009 546 1,866 2,173 3,245 2,735 3,361
Images Covered 19,399 13,960 22,780 2,522 11,013 12,554 25,606 20,367 26,509
Wikipedia Details 9 12 36 7 11 37 41 10 52
WP — Iconoid 7 9 21 3 4 22 14 5 31
Iconoid Shift
Iconoids 411 645 387
Images Covered 16,468 10,569 21,038
WP — Iconoid 13 8 2

Table 5.1: Results of HIS on 34 landmarks (part 1). Images Covered is the total number
of images in Iconoid support sets. Singletons are individual Iconoids that are not part
of a dendrogram.

forbidden, which severely limits the amount of photos of them that are available
in Internet photo collections.

The missed details revealed some interesting hidden assumptions that are not only
present in our algorithm, but also in other visual object discovery approaches. In order
to be discovered by visual clustering, an object must be visually striking, accessible to
photographers, and it must be possible to photograph it in isolation.

How does HIS compare to Iconoid Shift? We compare HIS to Iconoid Shift (Ch. 4)
on a subset of 7 landmarks (lower block of Tab. 5.1 and Tab. 5.2). The Iconoid Shift
clustering covers almost the same number of images, but has a much coarser granularity,
resulting in significantly less Iconoids. The reason for this is that IS performs mode
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Iconoid Shift
Iconoids 606 279 161 218
Images Covered 7,307 6,869 1,286 3,143
WP — Iconoid 14 4 3 6

Table 5.2: Results of HIS on 34 landmarks (part 2).

search only on a single fixed scale (8 = 0.9 in our experiment), while HIS finds modes
on all scales. Comparing the number of discovered Wikipedia details, it can be seen
that especially for landmarks like Sagrada Familia or the Sistine Chapel that have many
close-by details, IS finds significantly less details. On the other hand, for landmarks like
Zwinger where the objects on Wikipedia are mostly non-hierarchical, e.g. several distinct
buildings, the advantage of HIS is smaller. Figure 5.14 compares objects discovered by
both algorithms (left) to objects only discovered by HIS.

How to name the discovered details? We found that the Wikipedia image captions
can serve as very accurate labels for the Iconoids. As we will show in Chapter 6, high-
quality labels for smaller, less popular objects, cannot be reliably found by examining
frequently occurring terms in photo titles and tags (Quack et al., 2008; Simon et al., 2007;
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Figure 5.12: Development of the number of clusters as the kernel bandwidth 5 increases
(for Trinity College). At 5 =0, the number of clusters equals the number of images in
the dataset. At =1, the number of clusters equals the number of dendrograms, because
only the roots of the dendrograms survive until a kernel bandwidth of 1.

Figure 5.13: Building details thal are mentioned on Wikipedia, but not discovered by
HIS. (a) Details that are historically relevant, but not visually striking. (b) Details that
are hard to photograph in isolalion without a telephoto lens or cropping them out. Top
left and bottom left: ornaments. Top right: part of a larger stained glass window. Bottom
right: small part of the ceiling mural in the Sistine Chapel. (c) Delails that are hard to
access or not always open to the public.

Zheng et al., 2009), since photographers often do not (correctly) label landmark details.
Some examples of Iconoids with matching Wikipedia details are shown in Figure 5.15.
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Figure 5.14: Objects discovered by both HIS and IS (left) vs. objects discovered only
by HIS (right). While both algorithms find larger-scale structures, only HIS also finds
small-scale details.

5.4.3 Applications

We now outline two potential applications for the cluster hierarchies produced by HIS.

Extending Wikipedia. While HIS did not discover some of the details present on
Wikipedia (see above), many of the details it discovered were not mentioned in the
articles. A potential application of HIS would therefore be to suggest new details to
be added to Wikipedia. Our prototype implementation of this idea uses the section
structure of Wikipedia articles to build a Wikipedia graph for each landmark. In this
tree, the landmark is the root node, its children are the top-level sections, the children
of each section are its sub-sections, and so on. Each image is inserted as a leaf under
its respective (sub-)section node. We then match the Wikipedia images against the
discovered Iconoids as described above to create links between the Wikipedia graphs
and the HIS dendrograms. By exploiting these links and the estimated camera motion
between dendrogram nodes (Sec. 5.3.2), it is sometimes possible to propose the article
section where a new detail should be added.

As an example, Figure 5.16 shows the main gate of Bamberg Cathedral that has two
figure groups on the left and right side of the entrance. In the HIS dendrogram, both
of them were correctly discovered as children of the entrance itself, but only the left one
is mentioned in Wikipedia and is therefore the only child of the gate in the Wikipedia
graph. By matching Iconoids to Wikipedia details, we established links between the
gate nodes (yellow) and the left figure group nodes (orange). We know that the right
figure group is a part of the gate since the gate is its parent in the dendrogram and the
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29

camera motion associated with the edge is “zoom out”. We can therefore propose to
add this node to the article section describing the main gate.

Landmark Summaries. Another application is depicted in Figure 5.17 and Figure 5.18.
Using the discovered dendrograms describing the scene structure, as well as the image
clusters associated with each node, we can build visualizations of landmark building
facades that are far more useful to the user of a mobile visual search application than
the name of the main landmark alone. The images in the Iconoid clusters can serve
two purposes here. Firstly, they help localize the details on the facade using either
homography overlap propagation or structure-from-motion. Secondly, as in Gammeter
et al. (2010), the clusters provide additional images for each detail showing it under
different lighting conditions and viewing angles and can thus be used for “offline query
expansion” to make recognition of these details more robust compared to matching
against the Wikipedia images alone.

In contrast to “3D Wikipedia” (Russell et al., 2013), which produces similar summaries
by associating bounding boxes in the structure-from-motion reconstruction of a landmark
with noun phrases from its Wikipedia article, our approach does not rely on Wikipedia
articles, but only on the distribution of tourist photos from Internet photo collections.
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Figure 5.16: Finding new details to add to Wikipedia. The right child of the node
showing the gate is not present on Wikipedia, but we can propose a place to insert il into
the article based on ils parent and sibling in the dendrogram and the estimated camera
motion between them.

It therefore also finds details not mentioned on Wikipedia and works on landmarks for
which no Wikipedia article exists.

5.5 Conclusion

In this chapter, we have presented the Hierarchical Iconoid Shift (HIS) algorithm that
automatically discovers details of landmark buildings in large-scale collections of tourist
photos from the Internet. HIS is based on the Hierarchical Medoid Shift (HMS) algo-
rithm, a new variant of Medoid Shift (Sheikh et al., 2007) that, instead of a flat clustering
at a single scale, produces a dendrogram of clusters. Similar to the Scale Space Filtering
algorithm (Witkin, 1984), HMS follows the evolution of density maxima as the kernel
bandwidth increases and builds a dendrogram from their merging behavior. However, in
contrast to previously proposed hierarchical variants of Mean Shift, HMS increases the
bandwidth in a quasi-continuous way, which eliminates the need to choose a bandwidth
increment and makes parallel execution more efficient, since different threads can work
on different bandwidth levels simultaneously. HMS is completely parameter-free and
has the same computational complexity as Medoid Shift. We have presented a scheme
to parallelize HMS to many machines that makes it applicable to large-scale datasets.
Hierarchical Iconoid Shift applies HMS to the task of clustering large-scale image
collections. HIS produces a hierarchical clustering of the photos of a landmark where
the lower nodes correspond to individual details and the root is a full view of the building.
Given a seed image, HIS iteratively adds new images to the kernel window and performs
mode search to find the new lconoid. We have presented a linear-time algorithm for
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Figure 5.17: While Google Goggles only recognizes the entire building, the details dis-
covered by our algorithm could be used to provide the user with more useful information.

performing the growing operation and a scheme for shifting the medoid that makes use
of previously computed overlaps to save computation time.

We have demonstrated our algorithm on a set of 36 landmarks with a large amount
of detail and shown that it discovers many of the details depicted on Wikipedia and
outperforms Iconoid Shift (Ch. 4) in terms of the number of discovered details. The
scene hierarchies produced by HIS could be useful for a large range of applications
including landmark description and visual recognition of detail structures.

A problem of the dendrograms produced by Hierarchical Iconoid Shift is redundancy,
which we addressed by eliminating nodes whose perspective is too similar to their parent
(Sec. 5.3.2). However, even after this simplification not all dendrogram nodes are mean-
ingful objects. A still open question is therefore if it is possible to automatically rate
the relevance of a node. For example, Leung et al. (2000) propose several measures such
as lifetime, compactness, isolation and outlierness to characterize the clusters produced
by their hierarchical mode search algorithm that might be applicable in our case.

Another future direction for both IS and HIS would be to extend them to enable
incremental clustering. Since the amount of tourist photos on the Internet is increasing
rapidly, restarting the clustering process from scratch every time new images become
available may soon become prohibitive. A scheme to update an existing IS or HIS clus-
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Figure 5.18: Details of the Arc de Triomphe and the Sistine Chapel mural discovered
by Hierarchical Iconoid Shift. Captions were automatically obtained from Wikipedia.

tering with new photos that re-uses previously computed overlaps could save significant
amounts of computation time.

Ultimately, Hierarchical Iconoid Shift could be used to produce knowledge graphs of
landmark buildings that represent the knowledge of a building in a structured way. Such
a graph could be used in a system like Wolfram Alpha! to answer questions like “What is
the name of the leftmost portal of Notre Dame?” or “How many spires does the Church
on Spilt blood have?”. This graph could be constructed by combining the semantic
information encoded in the Wikipedia articles (What are the details called? What object
categories do they belong to?) with the spatial information in the HIS dendrograms
(Where are the details located relative to each other? Which details are parts of which
other details?) While such a graph could be very useful for many applications, we believe
that the methods required for semantically parsing articles on landmarks have to go far
beyond simply parsing the document structure. Here, methods from the field of natural
language processing will be necessary to understand the article on a deeper level and
build a detailed graph of the mentioned entities and their relationships.

http://www.wolframalpha.com
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Evaluation of Landmark Recognition based on
Internet Photo Collections

In the previous chapters, we have presented algorithms for clustering large sets of photos
from Internet photo collections to discover landmarks, their details, and other objects
of interest. There are several applications for the resulting clusters, including landmark
recognition, 3D reconstruction or interactive tourist guides. In this chapter, we focus on
landmark recognition, i.e., recognizing landmarks and other objects in a new query photo.
Applications of landmark recognition include photo auto-annotation and mobile visual
search. A photo auto-annotation system recognizes objects in a user’s photo albums and
labels them accordingly, saving the user the effort of manually labeling them. A mobile
visual search system provides a user with information on an object that they took a
picture of with their smartphone.

Constructing the database of objects underlying a landmark recognition system au-
tomatically from Internet photo collections has several advantages: Firstly, objects are
discovered in an unsupervised, fully automatic way, making it unnecessary to manually
create a list of objects and collecting photos for each of them. Secondly, the level of
detail of the object representation is automatically adapted to the demand. The most
popular objects will be represented by the most photos in the database, increasing their
chance of successful recognition, while only little memory is used on less popular objects.
Thirdly, in the case of photo auto-annotation, the database is built from the data it is
meant to be applied to, namely photos from Internet photo collections. Therefore, the
resulting set of objects is likely to be much better adapted to the queries a photo auto-
annotation or visual search system might receive than a hand-collected set of objects.
The approach to construct landmark recognition systems from Internet photo collections
has gained popularity in the research community (Avrithis et al., 2010; Gammeter et al.,
2009; Kalantidis et al., 2011; Quack et al., 2008; Weyand and Leibe, 2011) and is also
being used in applications such as Google Goggles (Zheng et al., 2009).

The first step of constructing a landmark recognition system from Internet photos
is to discover interesting objects in the image collection using a landmark clustering

107



6 Evaluation of Landmark Recognition based on Internet Photo Collections

algorithm. Each discovered object is represented as a cluster of photos. Then, a name or
description for each of these objects is determined, typically by examining user-provided
titles and tags. After this, a compact retrieval index for efficient recognition is built from
the photos of the discovered objects. To identify the object in a query image, matching
images from the database are retrieved. Based on the matches, the system determines
which object is present in the query.

In this chapter, we evaluate this whole process of constructing landmark recognition
systems from Internet photos and provide answers to the following questions:

e How many and what kinds of objects are present in Internet photo collections and
what is the difficulty of discovering different landmark types (Sec. 6.4)?

How to decide which landmark was recognized given a list of retrieved images
(Sec. 6.5)7

How to efficiently represent the discovered objects in memory for recognition
(Sec. 6.6)7

Are the user-provided tags reliable enough for determining accurate object names
(Sec. 6.7)7

Given the entire retrieval, recognition and semantic labeling pipeline, what are the
factors effectively limiting the recognition of different object categories (Sec. 6.8)7

We evaluate landmark recognition in a realistic, large-scale setting using the PARIS
500K dataset (Sec. 3.3). Using Iconoid Shift (Ch. 4) as an analysis tool we determine
how many and what kinds of objects are present in the dataset and use the resulting
clustering as the basis for landmark recognition. To evaluate the quality of landmark
recognition, we collected a query set of almost 3,000 Flickr images from Paris and created
an exhaustive ground truth for the relevance of each of the discovered landmarks with
respect to each of the 3,000 queries. To give a detailed performance analysis for different
types of objects, we introduce a taxonomy for the objects landmark recognition systems
are able to recognize. Throughout our evaluation, we report both summary performances
over the entire database and detailed findings for different object categories that show
how their recognition is affected by the different stages of the system.

This chapter is based on our paper ¢ Visual Landmark Recognition from Internet
Photo Collections: A Large-Scale Evaluation” (Weyand and Leibe, 2015).

6.1 Engine Architecture

The architecture of a typical landmark recognition engine such as the ones presented by
Avrithis et al. (2010); Gammeter et al. (2010); Quack et al. (2008); Zheng et al. (2009)
is shown in Figure 6.1. Large amounts of tourist photos are clustered, resulting in a set
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Figure 6.1: The architecture of a landmark recognition system. 1. Objects are dis-
covered by visually clustering touristic photos (Sec. 6.4). We call the photos in an ob-
ject cluster ils representatives. 2. Semantic annotalions are mined from user-provided
tags (Sec. 6.7). 8. The search index is made more compact by eliminaling redundancy
(Sec. 6.6). 4. The object in a query photo is recognized by retrieving similar photos and
exploiting the knowledge of their cluster memberships (Sec. 6.5).

of objects. By object, we denote a cluster of images that show the same entity. We will
refer to the images in each object cluster as its representatives. Since the clusters may
overlap, a representative can belong to multiple objects. Each object is then associated
with semantics (typically its name), e.g., by mining frequently used image tags. The set
of representatives for each cluster is often decimated by eliminating redundant images in
order to save memory and computation time. To recognize the object in a query image,
a visual search index (Sec. 3.2.2) containing all representatives is queried, producing a
ranked list of matches. Based on this list, objects are ranked w.r.t. their relevance to
the query and the corresponding semantics are returned.

In this chapter, we evaluate different choices for the components of this framework and
demonstrate how they affect the system’s overall performance. Section 6.4 considers the
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stage of determining a set of objects by clustering images from internet photo collections
and shows how many objects from which categories can be discovered. Given a ranking of
the representatives for a query, Section 6.5 analyzes different schemes for determining the
object shown in the query image. In Section 6.6, we consider different ways of speeding
up search and reducing memory requirements by removing redundant representatives.
Finally, in Section 6.7 we analyze the stage of semantic annotation based on frequent
tags and perform an end-to-end analysis of the performance of the whole pipeline from
query to semantics.

6.2 Related Work

We now give an overview how the individual parts of the pipeline introduced above
have been approached in previous work. For a general discussion of previous work in
landmark recognition, we refer the reader to Section 2.3.

6.2.1 Datasets

We created our own query set and ground truth for the experiments in this chapter,
because the available benchmarks did not support such an evaluation. Most datasets
only cover very few, mostly building-scale, landmarks (e.g., EUROPEAN CITIES 1M
(Avrithis et al., 2010), STATUE OF LIBERTY, NOTRE DAME and SAN MARCO (Li et al.,
2008), OxrFOrRD BUILDINGS (Philbin et al., 2007), PARIS BUILDINGS (Philbin et al.,
2008)). Another problem is that their ground truths are designed for other tasks. Image
retrieval datasets (e.g. OXFORD BUILDINGS (Philbin et al., 2007), PARIS BUILDINGS
(Philbin et al., 2008), INRIA HOLIDAYS (Jégou et al., 2008)) are not suitable for our
evaluation, because we want to evaluate object recognition, i.e., recognizing the object(s)
in a query image, and not image retrieval, i.e., retrieving images similar to a query from
a database. Image-based localization datasets (AACHEN (Sattler et al., 2012), VIENNA
(Irschara et al., 2009), DUBROVNIK and ROME (Li et al., 2010)) evaluate how accurately
the camera pose of the query image can be estimated. While this is more related to our
problem, our goal differs from pose estimation, because camera pose does not necessarily
determine what object the camera is really seeing (we discuss this difference in more
detail in Sec. 2.3.3). The SAN FRANCISCO (Baatz et al., 2010) and LANDMARKS 1K
(Li et al., 2012) datasets are closest to our requirements, but both of them focus on
large, building-level landmarks while we are explicitly interested in also evaluating the
recognition of smaller, non-building objects.

6.2.2 Landmark Discovery

Landmark Recognition Engines are typically based on a visual search index from objects
discovered in Internet photo collections (Avrithis et al., 2010; Gammeter et al., 2010;
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Quack et al., 2008; Zheng et al., 2009). Since we already discussed previous work in
landmark discovery in previous chapters, we refer the reader to the following sections:
We gave an overview of the underlying clustering approaches in Section 2.2 and analyzed
them w.r.t. their grouping criteria and clustering algorithms in Section 4.1. Moreover,
we evaluated the approaches by Chum and Matas (2010) and Philbin and Zisserman
(2008) in Section 3.4.

6.2.3 Eliminating Redundancy

Several methods have been proposed to reduce the size of the visual search index. An
obvious method is to apply standard compression techniques (Jégou et al., 2009b), which
reduces memory consumption at the cost of computational efficiency. Instead, we are
interested in eliminating redundancy already before index construction.

Several works have addressed this problem at the image level, i.e., by removing re-
dundant images from the index. Li et al. (2008) summarize the input image collection
in a set of iconic images by applying k-means clustering (Duda et al., 2000) based in
GIST descriptors (Olivia and Torralba, 2001), and use only these images to represent a
landmark in retrieval. (Gammeter et al., 2010) identify sets of very similar images using
complete-link hierarchical agglomerative clustering and replace them by just one image.
This step yields a slight compression of the index without loss in performance. Instead
of performing clustering, Yang et al. (2011) only determine a set of canonical views by
applying PageRank (Page et al., 1999) on the matching graph of the image collection.
They then discard all other views and match the query only against the canonical views.

Other works have addressed the problem at the feature level. Turcot and Lowe (2009)
perform a full pairwise matching of the images in the dataset and remove all features that
are not at least once inliers w.r.t. a homography. They report a significant reduction of
the number of features while maintaining similar retrieval performance. Avrithis et al.
(2010) and Johns and Yang (2011) combine the images in a cluster into a joint bag-
of-visual-words representation. Avrithis et al. (2010) use Kernel Vector Quantization
(Tipping and Schélkopf, 2001) to cluster redundant features and keep only the cluster
centers. While this method only yields a slight compression, the aggregation of features
into a scene map brings significant improvements in recognition performance. (Johns
and Yang, 2011) perform structure-from-motion and summarize features that are part
of the same feature track. (Gammeter et al., 2009) estimate bounding boxes around the
landmark in each image in a cluster and remove every visual word from the index that
never occurs inside a bounding box. This is reported to yield an index size reduction of
about a third with decreasing precision.

There is also work in pose estimation that aims to eliminate redundancy in the dataset.
In their hybrid 2D-3D pose estimation approach, Irschara et al. (2009) generate a set of
synthetic views by projecting the points of a structure-from-motion reconstruction onto
a set of virtual cameras placed at regular intervals in the scene. They then decimate
the set of synthetic views using a greedy set cover approach that finds a minimal subset
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of views such that each view in the subset has at least 150 3D points in common with
an original view. Cao and Snavely (2014) use a similar criterion, but instead of views,
they decimate the set of points in an SfM point cloud used for localization. Instead of
set cover, they use a probabilistic variant of the k-cover algorithm.

6.2.4 Semantic Annotation

The most common approach to perform semantic annotation of the discovered landmark
clusters is by statistical analysis of user-provided image tags, titles and descriptions. In
order to remove uninformative tags like “vacation”, Quack et al. (2008) first apply a
stoplist and then perform frequent itemset analysis (Agrawal et al., 1993) to generate
candidate names. These names are verified by querying Wikipedia and matching images
from retrieved articles against the landmark cluster. Zheng et al. (2009) also apply a
stoplist and then simply use the most frequent n-gram in the cluster. Crandall et al.
(2009) deal with uninformative tags in a more general way by dividing the number
of occurrences of a tag in a cluster by its total number of occurrences in the dataset.
Simon et al. (2007) additionally account for tags that are only used by individual users
by computing a conditional probability for a cluster given a tag, marginalizing out the
users.

Unfortunately, a much larger problem, also observed by Simon et al. (2007), exists for
the task of semantic assignment that is much harder to fix: For most clusters accurate
tags are simply not available. In our analysis (Sec. 6.7), we will show for which clusters
these methods will still result in accurate descriptions and point out the sources of this
problem.

6.3 Evaluation Setup

6.3.1 Dataset

Our evaluation is based on the PARIS500K dataset (Sec. 3.3). In contrast to many other
datasets (Sec. 6.2.1) the images were retrieved using a geographic bounding box query
rather than keyword queries to ensure an unbiased distribution of touristic photos.

6.3.2 Query set, Categories and Evaluation

To collect realistic queries for the task of automatic annotation of photos uploaded to a
photo sharing website, we downloaded 10k images from the same geographic region as
PARr1s 500k from Flickr and ensured that they were no (near) duplicates of any image
in the original dataset. Since we consider the task of specific object recognition, not
object categorization, we filtered out unsuitable queries like food, pets, plants or cars.
To only include objects that have a chance of being recognized based on the PARIS 500K
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Figure 6.2: Our set of query categories and the number of query images in each calegory
(bottom right).

dataset, we also exclude queries that do not match any image in PARIS 500K, leaving
2,987 queries. We manually grouped the queries into the categories of Figure 6.2 in order
to enable an analysis of the recognition performance for each query type. We summarize
non-building objects such as bridges, fountains or columns under the Landmark Objects
category. The Artifacts category contains historic objects such as sarcophagi or ancient
tools. Objects that do not fit into any other category were categorized as Other. Note
that there is a large variance in the number of query images for each category (given
on the bottom right of Fig. 6.2). The average scores over all query images we provide
in this paper therefore have a bias towards the larger categories. This effect is desired,
since we want the query distribution to be representative of a real application in a photo
auto-annotation system. In addition to this, however, we will also provide a detailed
analysis for all 13 categories, focusing on four categories representative of different use
cases, namely Landmark Buildings, Paintings, Building Details and Windows.
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Figure 6.3: (a) Number of Iconoid clusters in each category. (b) Average cluster size.
(¢) Total number of images in clusters. Categories are in the same order as in Fig. 6.2.

6.3.3 Scoring

We would like to evaluate the performance of a landmark recognition system in a real-
istic scenario. In a photo auto-annotation application, the system should assign a user’s
photos reliable labels without supervision. A mobile visual search app like Google Gog-
gles can also give the user a small selection of objects and let them pick the correct one.
Therefore, we consider only the top-3 objects returned by the system.

For annotating recognition results, we showed the query and the iconic image of the
recognized object to raters and asked them to rate the object’s relevance to the query
as “good” if it is the exact object in the query image, “ok”, if it is somewhat relevant
to the query, and “bad” if it is irrelevant. An object should be rated as “ok”, e.g., if the
query image shows a whole building, but the match only shows a detail of that building,
or vice versa. In case the query is a detail of a building and the recognized object is a
different detail of the same building, the match should be rated as “bad”. If the query
shows multiple landmarks, and the object is one of them, the match should still be rated
as “good”.

Based on this rating, we define four scores: good-1 is the fraction of queries with a
“good” top-1 match; ok-1 is the fraction of queries with an “ok” or “good” top-1 match;
good-3 is the fraction of queries with a “good” match in the top-3; and o0k-8 is the
fraction of queries with an “ok” or “good” match in the top-3.

6.3.4 Baseline Recognition Performance

For an estimate of the difficulty of the different query categories, we perform image
retrieval (Sec.3.2.2) against the full PARIS 500K dataset and manually rate the relevance
of the top-3 images for each query according to the above scheme (Tab. 6.1). Note that
these results only show the relevance of retrieved images, not recognized objects, but can
serve as upper bounds for the recognition performance for each category. In total, the
top-1 match was “good” for 92.74% and at least “ok” for 96.42% of the queries. Since
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Category %good-1  %ok-1  %good-3  %ok-3
Landmark Buildings 94.32  98.22 97.62  98.42
Panoramas 87.70  95.15 91.59  95.79
Sculptures 92.15  95.56 94.20  96.25
Interior Views 85.25  89.07 89.07  92.35
Building Details 87.76  91.84 89.80  91.84
Paintings 97.58  98.39 98.39  98.39
Windows 95.38  95.38 95.38  95.38
Landmark Objects 93.75  96.88 96.88  96.88
Murals 100.00  100.00 100.00 100.00
Cafes / Shops 80.56  80.56 83.33  83.33
Artifacts 91.67 91.67 94.44  94.44
Other 92.50 97.50 97.50  97.50
Multiple Objects 98.44  98.44 98.44  98.44
Total 92.74  96.42 95.58  96.92

Table 6.1: Performance of plain image retrieval using the full dataset.

images that did not have a match in the database are not used in the query set, the
remaining 3.58% had only false-positive matches in the top-3.

6.4 Landmark Object Discovery

The first step of building a landmark recognition system is to cluster the image collection
into objects (Sec. 6.1). A guiding question for our evaluation is: What object types can
be discovered by such a clustering? As we motivated in Section 6.2.2, we choose Iconoid
Shift (Ch. 4) as our analysis tool to answer this question, since it produces a set of
overlapping clusters, which can represent “overlapping” objects, e.g., both the entire
facade of Notre Dame and individual statue groups on it. In addition, it has intuitive
parameters for controlling the granularity and number of discovered clusters by varying
the kernel bandwidth g and the number of seeds, respectively.

6.4.1 Clusters Discovered per Category

To analyze what objects can be discovered by visual clustering, we run Iconoid Shift on
the PARIS 500K dataset. We choose a kernel bandwidth of § = 0.9, meaning that an
image needs to have at least 10% overlap with an Iconoid to belong to its cluster. We
perform several runs of the algorithm using different numbers of seed images selected
randomly from PARIS 500K in order to analyze the tradeoff between runtime and the
number of objects discovered.
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Figure 6.4: Distribution of categories for different numbers of seeds counting only clus-
ters of size 5 or larger. (a) absolute (b) relative.

To examine what kinds of objects the algorithm finds, we categorize all resulting
Iconoid clusters of at least size 5 using the scheme from Figure 6.2. Figure 6.3 shows
the number of discovered clusters for each category, their average size and the number
of images covered by clusters. Landmark Buildings are the largest category with 826
clusters covering 71k images. The average cluster size of Building Detail is surprisingly
large, because some clusters include many photos of the full facades due to our low
choice of overlap threshold for Iconoid Shift. Painting clusters are small on average,
while Windows have fewer but larger clusters.

Figure 6.4 shows the effect of the number of seeds on the number of clusters discov-
ered per category. When using only 1k or 10k seeds, the category distribution remains
relatively constant. The share of Landmark Buwilding clusters decreases with increas-
ing number of seeds (Fig. 6.4b), since more of the smaller objects such as Paintings or
Sculptures are discovered.

6.4.2 Distribution of Cluster Sizes and Performance Gap

The effect of the number of seeds on the distribution of cluster sizes is shown in Fig-
ure 6.5a. As reported by Gammeter et al. (2010), the cluster sizes are power law dis-
tributed. We can observe that the distribution shifts towards smaller clusters when more
seeds are used. Figure 6.5b shows that the number of large clusters flattens out more
quickly than the number of small clusters when increasing the number of seeds. This is
because large landmark clusters are found first, but more seeds help find more obscure
places and objects. When using 100k seeds, 12,776 Iconoids are returned, but only 3,088
of them contain 5 or more images.
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Figure 6.5: (a) Cluster size distribution for different numbers of seeds (Note that both
azes are logarithmic.) (b) Comparison of growth rates for different cluster sizes. (c)
Total number of images covered by the clustering.

Figure 6.5¢ shows the total number of database images covered for different numbers
of seeds. Using 100k seeds, a total of 137,291 images (27.4% of the dataset) are covered
by the clustering. The remaining images are either irrelevant or missed by the clustering.
To estimate how many and which objects the clustering missed, we compare the retrieval
performance using this reduced set of images to the full set (cf. Tab. 6.1). The result
(Fig. 6.6) shows in which categories performance is lost and gives an upper bound on
what a landmark recognition system can achieve based on this clustering. While for
some categories, such as Landmark Buildings or Windows, the loss in performance is
small, other categories like Paintings, Landmark Objects or Cafes show a strong decrease,
because their clusters are small and thus more likely to be missed by the seeding process.
This effect is the main cause of the total performance gap of 17.05% between the full
database and the cluster images.

6.4.3 Discussion

Since often-photographed objects are discovered first, seed-based clustering can be com-
putationally much more efficient than computing the whole matching graph (Sec. 3.4).
However, to sufficiently cover seldom photographed objects such as museum exhibits, a
large number of seeds is necessary. The coverage of such objects could also be increased
by seeding strategies that avoid the bias to large clusters. Small object discovery ap-
proaches (Chum et al., 2009; Letessier et al., 2012) or approaches that crawl tourist guide
websites (Zheng et al., 2009) might also help cover these objects better and close the
above performance gap further. Whatever strategy is chosen, the results in Figure 6.6
show that such additional steps are necessary if Landmark Objects, Cafes / Shops or
Artifacts shall be recognized. For most of the following experiments, we choose to use
100k seeds to ensure good coverage of details and small objects.
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Figure 6.6: good-1 retrieval performance for the full database vs. only the images dis-
covered by Iconoid Shift using 100k seeds.

6.5 Landmark Object Recognition

By clustering a large collection of tourist photos, we have discovered numerous inter-
esting objects and set of representative images for each of them. To recognize a new
object in a query image, a landmark recognition system performs retrieval in the set of
discovered object representatives (Fig. 6.1). The open question here is: Given a rank-
ing of representatives, how to rank the objects they belong to by their relevance to the
query? To this end, we compare five object scoring methods and evaluate their respec-
tive tradeoffs of performance vs. database size and their suitability for different object
categories.

6.5.1 Ground Truth Generation

For this evaluation, we introduce a new ground truth containing relevance ratings
(Sec. 6.3.3) of the Iconoids discovered with 100k seeds w.r.t. the query set. An ex-
haustive relevance annotation of the 12,776 Iconoids for each of the 2,987 query images
would require about 883 person-days of human work, assuming 2s of annotation effort
per query-Iconoid pair. Therefore, we took two measures to reduce the amount of man-
ual labor. (1) We summarized queries showing exactly the same view into 2,042 groups,
since the same Iconoids are relevant for them. For this, we computed a pairwise match-
ing of the queries and manually inspected each pair of matching images, discarding all
pairs that do not show exactly the same view. We then constructed a matching graph
from the verified edges and computed its connected components. During annotation,
each group was represented by one image, and annotations for it were transferred to
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all other members of the group. (2) We automatically rated an Iconoid as irrelevant
for a group of queries if none of the Iconoid’s representatives were spatially verified at
least once when querying an image retrieval system with each query in the group. Since
the landmark with the largest number of images in the PARIS 500K dataset is the Eiffel
Tower with about 20k images, any query can have at most 20k relevant images. To leave
some room for ranking errors, we performed spatial verification for the top-30k retrieved
images ranked w.r.t. their tf-idf scores. The 26.8k remaining pairs of query groups and
Iconoids were manually annotated according to the rating scheme introduced in Sec-
tion 6.3.3. Annotations were performed by 28 people over a period of 8 weeks. Each
pair was shown to 3 people who were asked to rate it as good, ok or bad according to
the scoring scheme we introduced in Section 6.3.3, and the final annotation was decided
by majority voting. In the 1.8k cases where all three annotations were inconsistent, the
image pair was passed to a fourth annotation for a definite annotation?.

6.5.2 Methods

We evaluate five object scoring methods:

e Center represents objects only by the cluster center (i.e., Iconoid) of each object
and discards all other representatives, as done in Yang et al. (2011). The object
ranking is then simply the same as the representative ranking.

e Size returns all objects with at least one matching representative, and scores them
by their cluster size, i.e., by the number of times they were photographed.

e Voting lets each matching representative cast a vote for each object it belongs
to (note that clusters can overlap). Objects are then ranked by their number of
votes.

e Best Match returns the object with the highest scoring representative, as done
in, e.g., Gammeter et al. (2009, 2010); Quack et al. (2008); Zheng et al. (2009).
A difference in our case is that we are using a soft clustering, so a representative
can belong to multiple objects. In this case, we return the object with the largest
cluster size. This method can therefore also be viewed as a variant of the Size
method that only uses the best matching representative.

e Overlap uses Homography Overlap Propagation (Sec. 4.5.2) to compute the over-
lap of the query with each Iconoid. The method first computes the overlap region
of the query with the matching representative and then propagates this region into
the Iconoid via the shortest path in the Iconoid cluster’s matching graph. This
is done using homography overlap propagation. If a query matches multiple rep-
resentatives of the same Iconoid, the overlap is computed for each of them and

'The ground truth, including including the query images, the Iconoid clusters, the query-Iconoid
relevance annotations, and the query category annotations is available at http://www.vision.
rwth-aachen.de/data/parisb00k/paris-dataset.
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Figure 6.7: Top-scoring objects for different object scoring methods. “X” means that
no objects were recognized.

the largest overlap is used. Objects are then ranked in decreasing order of their
Iconoids’ overlaps with the query.

We now first compare these methods using the objects discovered with 100k Iconoid
Shift seeds and then show the effect of the number of seeds on their performance.

6.5.3 Results

We evaluated the five approaches based on the ground truth introduced in Section 6.5.1.
To estimate the error introduced by the image retrieval pre-filter we used to reduce
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% good-1 % ok-1 % good-3 % ok-3

Centers 39.60  45.56 4299  46.03
Size o7.11 73.32 66.42  76.26

Voting 59.42  76.00 69.80 77.64
Best Match 60.40  75.39 67.26  77.10

Overlap 63.71 75.93 71.78 77.13

Table 6.2: Performance of different object scoring methods.

annotation effort (Sec. 6.5.1), we performed a small control experiment. We manually
rated the relevance of the top-3 Iconoids retrieved for each query using the Voting method
(Sec. 6.5.2) and found that 0.7% of the Iconoids rated “good” or “ok” were filtered out.
We believe this small false-negative rate is still acceptable, since the simplified annotation
procedure significantly reduced the amount of manual labor.

The recognition performance of the different methods is compared in Table 6.2. Fig-
ure 6.7 shows the top scoring objects for typical queries. Center finds images closely
resembling the query, but often fails to find any matching objects, because the cluster
centers are not sufficient to recognize all objects under different viewing conditions due
to the limited invariance of the matching process. However, since it only requires one
image per object, it is by far the fastest and most memory efficient method. Because
Size chooses the largest cluster, it often finds a viewpoint more popular than the query
(popular landmarks are often represented by multiple clusters from different viewpoints).
Sometimes this effect is desired since the largest cluster usually depicts the object best,
but it can also cause drift (Fig. 6.7b-f), i.e., instead of the query object, a nearby object
is recognized. Voting finds the clusters with the most matching representatives. This
makes it less prone to drift (Fig. 6.7b,e,f) and causes it to achieve higher performance
than Size. Despite being simpler than Size, Best Match outperforms it. The reason is
that Best Match considers only the closest matching representative to the query, mak-
ing it less prone to drift than Size that also looks at farther away matches (Fig. 6.7c,e).
Overlap has the best good-1 performance, because it computes the actual overlap of the
query image with each cluster’s iconic image and selects the iconic whose view is closest
to the query (Fig. 6.7a-f).

The good-1 performances by query type are shown in Figure 6.8. Size compares well to
the other methods on Landmark Buildings and Cafes / Shops, where the largest cluster
is often the correct one (e.g., the full view of a facade). On Paintings, all methods
including Center have similar performance, because Paintings are flat objects and are
usually photographed under the same viewing conditions. Since this makes painting
retrieval very easy, multiple representatives do not bring an advantage, explaining the
relatively good performance of Center. Size performs worse than Voting and Best Match
on Panoramas (Fig. 6.7e), because it tends to drift to more popular nearby views, moving
the query object out of the field of view. The same effect occurs on Building Details
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Figure 6.8: Performance of object scoring methods by query type.

(Fig. 6.7b), where Size tends to return views of the whole building instead. QOwverlap
has a particular advantage on classes where other methods tend to drift (Panoramas,
Building Details, Multiple Objects), since it usually finds the iconic image that best
matches the photographed part (Fig. 6.7a-f). Center works relatively well for Windows
and Murals, because, like Paintings, they are only photographed from a limited range
of viewing angles, making them easy to match.

6.5.4 Effect of the Number of Seeds

We now analyze the effect of the number of object clusters (which depends on the
number of seeds) on the performance of the five methods and compare object retrieval
performance by category. As Figure 6.9a shows, the performance of the methods does
not differ much for 1k and 10k seeds, except that Center consistently performs worst for
the reasons explained above. The differences become slightly more pronounced at 100k
seeds, where the density of objects is very high and methods that are less prone to drift
to nearby objects gain an advantage. Conversely, this shows that simpler methods are
sufficient if the object density is low. Figure 6.9b shows the performance for different
query types when using the Voting method. Sculptures, Paintings, Windows and Murals
show the steepest improvement since they require more seeds to be sufficiently covered by
the clustering, while Landmark Buildings can already be recognized when using a smaller
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Figure 6.9: (a) good-1 performance of object scoring methods for different numbers of
Iconoid Shift seeds. (b) good-1 performance by query type using the Voting method.

number of seeds since they form large clusters that are discovered early. Surprisingly,
Windows have the highest recognition rate overall. The reasons for this are that (i)
they are easy to recognize since they are flat, highly textured objects, and (ii) they get
discovered already with few seeds, since Window clusters are almost three times the size
of Painting clusters (Fig. 6.3b).

6.5.5 Discussion

The ideal choice of method varies by application: Center provides high performance for
flat objects at low computational and memory cost. Voting has high accuracy across all
categories and its speed makes it applicable, e.g., for mobile visual search. The popular
Best Match method has similar performance and efficiency, but is outperformed by
QOwverlap, which has the highest performance overall but also the highest computational
cost. Querlap is therefore better suited for offline applications requiring high accuracy,
e.g., photo auto-annotation.

Even when looking at the best performing method, Ouverlap, there is still a difference
of 11.98 percent points between the good-1 performance of object retrieval (63.71%) and
the good-1 performance of 75.69% of plain image retrieval (Fig. 6.6). The cause for this
clustering gap could be either a too coarse clustering or imprecise object ranking. If we
consider that the difference between good-1 and good-3 for Overlap (8.07%) is larger
than the gap of 3.91 percent points between the good-3 performance of Overlap and the
good-1 performance of plain image retrieval, it becomes apparent that the main part of
the clustering gap is due to the object ranking. Hence, there is still room for improved
object ranking methods to close this gap.
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Figure 6.9a shows diminishing returns in performance when the number of clusters
increases (note the logarithmic x-axis), since the most popular queries are covered first
and the long tail of queries requires exponentially more effort.

The performance gap between Center and other methods shows that the representa-
tives are necessary for ensuring invariance to different viewing conditions. However, it
is desirable to reduce the set of representatives, since it determines the memory use and
speed of the retrieval index. This is examined more closely in the following section.

6.6 Efficient Representations for Retrieval

Since the discovered landmark representatives are highly redundant, subsampling them
can save memory and computation time. The goal here is to reduce the set of repre-
sentatives in a way that still preserves as much visual variability as possible in order
to ensure good retrieval performance. The methods we present in the following work
by summarizing groups of similar images, as in e.g., Avrithis et al. (2010); Gammeter
et al. (2010), which can be done efficiently by exploiting the similarity information that
is already available from the matching graph constructed during clustering (Sec. 3.2.3).
We evaluate four approaches and compare them against a random baseline. We use the
number of homography inliers as edge weights for the matching graph (as done in, e.g.,
Avrithis et al. (2010); Gammeter et al. (2010); Quack et al. (2008)).

6.6.1 Methods

We compare the following five methods for reducing redundancy in the sets of represen-
tatives:

e Complete-Link (Gammeter et al., 2010) performs hierarchical agglomerative
clustering and replaces each complete link component containing at least 3 im-
ages by its image with the most neighbors.

e Kernel Vector Quantization (KVQ) (Tipping and Schélkopf, 2001) is a clus-
tering method that selects a minimum number of points such that each point in
the dataset is within radius r of at least one selected point. It is used by Avrithis
et al. (2010) to reduce the set of features in a cluster after projecting features from
all images into a single iconic image, called Scene Map. Applying the same idea on
the image level, we use it to find a minimal subset of representative images such
that each image in a cluster has a given minimum matching score with at least
one image in the subset.

e Dominating Set chooses a subsample such that each representative is adjacent
to at least one image in the original cluster. This subset is found by solving the
corresponding set cover problem using the greedy set cover algorithm (Johnson,

1974).
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e Fine Iconoids performs a second, finer Iconoid Shift clustering at bandwidth g =
0.7 that covers the image collection at a very fine granularity. The representatives
for each (coarse) cluster are then chosen to be all the fine Iconoids in it. This is
similar to the approach of Raguram et al. (2011) that represents objects by a set
of iconic images found by clustering GIST descriptors.

e Random is the baseline method that simply draws a random subsample of the
representative images.

6.6.2 Results

We now compare the tradeoffs between the number of representatives and recognition
performance of these methods using the Voting method (Sec. 6.5.2) for object scoring
(Fig. 6.10 and Fig. 6.11). The number of representatives that the Complete-Link, KV ()
and Dominating Set methods return can be controlled by first deleting edges below a
certain edge weight threshold to make the matching graph sparser and then running
the algorithm. We generated 3 sets of representatives with each method by applying
thresholds of 15, 30 and 50 inliers.

As reported in Gammeter et al. (2010), Complete Link only slightly reduces the rep-
resentative set while maintaining high recognition performance. Dominating Set and
KV(Q yield comparable results since they optimize similar criteria. They represent a
good tradeoff, allowing for a reduction to about 40% while still achieving a 60.9% good-1
performance (at threshold 50). An interesting result is that Fine Iconoids performs well
on Paintings and Building Details, but lower than Random on Landmark Buildings. Vi-
sual inspection showed that Iconoids do not cover the more obscure viewing conditions
necessary for robust recognition, since the algorithm is designed to converge to popular
views. It therefore performs higher on categories with a limited range of possible viewing
conditions.

6.6.3 Discussion

In this evaluation, we focused on reduction methods that work on the image level. We
have shown that in particular KV and Dominating Set methods can achieve high
compression at only a small loss in precision. Some recent approaches also perform
this reduction on the feature level, usually combined with offline query expansion, i.e.,
projecting features into matching images, which is reported to even improve precision
over baseline retrieval (Avrithis et al., 2010; Turcot and Lowe, 2009). An evaluation of
these methods would be an interesting task for future work.
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Figure 6.10: Performance / index size tradeoff of cluster summarization methods using
edge weight thresholds of 15, 30 and 50. (Part 1)
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6.7 Interfacing Images with Semantics

To find suitable descriptions for the discovered objects, and thus to enable linking them
with information on the web, the usual method is to perform statistical analysis of the
tags and titles that users provided for the photos in a cluster (Crandall et al., 2009;
Quack et al., 2008; Simon et al., 2007; Zheng et al., 2009). Quack et al. (2008) mine
frequent itemsets (Agrawal et al., 1993) in all tags of a cluster to generate candidate
names. The top-15 candidates are then used to query Wikipedia, and the retrieved
articles are verified by matching the images occurring in them against the images in the
cluster. In a small informal experiment we found that frequent itemsets returns many
noisy and non-descriptive names like “vacation”, “photo”, “canon”, or “europe”, which
need to be filtered by a comprehensive stoplist. Furthermore, tags that are frequently
used by the same user like “summer vacation 2008” can be ranked higher than correct
but less frequent terms.

The method of Simon et al. (2007) is specifically designed to handle both of these
problems. It probabilistically computes a score score(c,t) for each pair of tag ¢ and
cluster c¢. This score is based on the conditional probability of cluster ¢ given tag t,
resulting in tags that mainly occur in cluster ¢. By marginalizing over the users, tags
that are frequent in the cluster, but used by only few users are ranked low. We use
the method of Simon et al. (2007) in our evaluation since we found that it yields more
reliable tags than the method of Quack et al. (2008). We analyze for which objects we
can reliably find semantics and examine the performance gap between object retrieval
and semantic annotation.

6.7.1 Data Preparation

We first need to define a set of tags for each image based on the metadata provided by
the respective photo sharing website. The PARIS 500K dataset consists of images from
Flickr and Panoramio. Images on Flickr have both tags and a title, so we treated the
title as an additional tag. Since images on Panoramio have no tags, we used the titles as
their sole tag. We preprocessed image tags by applying a very small stoplist containing
terms such as “Paris” and “France” and removing filenames like “DSC002342.JPG”.

6.7.2 Tag Quality Annotation

In order to analyze tag quality, we manually rated the quality of the top-3 tags for each
object cluster containing 6 or more images. On average, annotation of a single object-
tag pair took about 30-60 seconds, since often a web search was necessary to verify the
correctness of a tag. This annotation was performed by six people who annotated a
total of 2,536 objects. The annotators were asked to rate each image-tag pair as “good”
if the tag accurately describes what is visible in the iconic image (e.g., the full name of
a building, the title and painter of a painting) and as “ok” if it provides at least some
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Figure 6.13: Tuag quality of different object categories for Iconoid clusters of size 6 and
higher.

helpful information, such as the creator of a sculpture, but not its name, or if the tag is
accurate, but contains noise terms like “me in front of Notre Dame”. This annotation
allows us to re-use the evaluation measures we used for object retrieval in Sec. 6.5.
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Figure 6.14: Different spellings of “Musée d’Orsay” encountered in the dataset.

6.7.3 Tag Mining

We first analyze the influence of the number of users contributing photos to a cluster on
the reliability of automatic semantic annotation. The method of Simon et al. (2007) out-
puts a ranking of potential names for each cluster, allowing us to examine the accuracy
of the top-1 and the top-3 tags. Figure 6.12 shows that tag reliability clearly increases
with more users. In particular, over 80% of clusters with over 1k users have a good
top-1 tag. With increasing user count, descriptions also become more precise, since the
fraction of ok tags decreases. Figure 6.13 shows the tag quality for different categories.
The tags determined for Landmark Buildings, Landmark Objects and Cafes / Shops are
most reliable, since their names are typically well-known. Cafes / Shops are particularly
easy to tag since their name is usually directly visible. Murals, Windows, Sculptures and
Building Details are usually lacking proper annotations since photographers often do not
know their names and only label them with generic tags. For example, Building Details
are often tagged with the name of the entire building. This causes the large difference
in the good-1 and ok-1 scores of these categories.

6.7.4 Discussion

While for most large clusters suitable semantics can be found, for small and medium
sized clusters the difference in ok-1 and good-1 scores (Fig. 6.12) suggests that better tag
ranking could greatly help the recognition of less popular objects. Significant improve-
ments can likely be made by increasing robustness w.r.t. different languages, spelling
errors and tag noise. For example, Figure 6.14 shows a selection of different spellings of
“Musée d’Orsay” from our dataset that would all be treated as separate tags by current
methods. Mining Wikipedia (as done in Quack et al. (2008)) or tourist guide websites
(as done in Zheng et al. (2009)), or performing specialized per-category metadata min-
ing (as done in Arandjelovi¢ and Zisserman (2012a) for sculptures) might also help in
naming the less popular objects.
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6.8 End-to-End Performance

In Section 6.5, we analyzed different methods for assigning objects to queries and mea-
sured accuracy on a visual level. In this section, we perform this analysis on a semantic
level, based on the labels assigned in the previous section.

6.8.1 Setup

To evaluate the system from end to end, we cluster the PARIS 500K dataset with Iconoid
Shift using 100k seeds and mine semantics for the clusters using the method of Simon
et al. (2007). We use the Voting object scoring method (Sec. 6.5) to rank objects w.r.t. a
query. Subsampling (Sec. 6.6) is not used. We then rate the relevance of the top-scoring
tag of the top-scoring object for each query as either good, ok or bad (Sec. 6.7.2).

6.8.2 Results

Figure 6.15 shows the results of semantic annotation and compares it to the plain ob-
ject recognition performance (yellow bars in Fig. 6.8). Landmark Buildings have the
highest performance, because their large cluster size enables robust recognition and se-
mantic assignment. The reason semantic assignment has even higher performance than
plain object recognition is that semantic assignment sometimes corrects errors of object
recognition: It often happens that the query image shows the whole building, but the
matching object is a detail of the building, e.g., a door of Notre Dame or a leg of the
Eiffel Tower. This occurs, e.g., because the detail is most prominent in the query due
to perspective, or because large parts of the building are occluded, but the detail is still
visible. However, photos of building details are often labeled with the name of the whole
building, since photographers do not know, e.g., the name of a particular door of Notre
Dame. Therefore, the query is correctly assigned the name of the whole building even
though the recognized object was a detail.

For categories with smaller clusters, there are different bottlenecks: Artifacts and
Landmark Objects are hard to recognize, because they are compact objects and form
only small clusters. However, they typically have high quality tags (Fig. 6.13). In other
cases, a relevant object can reliably be retrieved, but low tag quality prevents success-
ful semantic annotation. This problem is most prominent for Windows and Murals
(Fig. 6.15). They are flat and photographed under a limited range of conditions, making
them easy to recognize, but they suffer from low quality semantics, since information
on them is not easily available. In total, 51.8% of the queries could be assigned good
semantics, while for 59.4% a good object was retrieved; 61.9% of queries were assigned
ok tags, while for 76.0% an ok object was retrieved. In the following, we summarize the
causes of this gap and discuss possible solutions.
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Figure 6.15: Quality of good (left) and ok (right) semantics assigned to queries, com-
pared to the quality of the objects retrieved.

6.9 Discussion and Conclusion

We now sum up the findings of our evaluation by answering the questions posed in the
introduction and discuss the areas where improvements can still be made.

How many and what kinds of objects are present in Internet photo
collections and what is the difficulty of discovering objects of
different object categories?

The question how many objects there are cannot be answered based directly on the
number of clusters, because there can be multiple clusters of the same object show-
ing different views, and clusters of non-objects, e.g., party photos, pictures of animals
and food, or photo bursts. We performed an annotation experiment (Sec. 6.4.1) and
labeled the 3,088 clusters containing five or more images discovered in the PARIS500K
dataset. 2,585 (83.7%) clusters were labeled as objects and 503 (16.3%) were labeled
as non-objects (Note that this ratio will shift more strongly towards non-objects when
also considering clusters containing less than 5 images.) Approaches for detecting and
removing such non-object clusters could be a direction for future work, since they un-
necessarily increase the size of the retrieval index and increase the chance of recognition
errors. The distribution of object categories (Fig. 6.3a) shows that, not surprisingly,
Landmark Buildings form the largest category, followed by Sculptures, Panoramas and
Paintings. Seed-based object discovery algorithms (Chum and Matas, 2010; Chum et al.,
2009; Weyand and Leibe, 2011) find the most photographed objects first, because when
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drawing a random image from an Internet photo collection, the likelihood of drawing
an often photographed object is higher. Therefore, much more effort is required to also
discover objects in the long tail of the size distribution. This could be addressed in
future work, e.g., by seeding methods that avoid the bias to large clusters, or methods
that explicitly mine for small objects (Chum et al., 2009; Letessier et al., 2012).

How to decide which landmark was recognized given a list of
retrieved images?

We analyzed five methods for this task (Sec. 6.5). Our experiments clearly showed
that having a set of representative images for each cluster is necessary to recognize it
under difficult conditions such as extreme viewpoint changes, occlusion, lighting changes,
blur, etc. (first two rows of Fig. 6.16). This can be viewed as a form of offline query
expansion. However, like query expansion, this method is also prone to drift (Fig. 6.17,
top row), which can cause confusion between nearby objects. While the often-used
Best Match method (Gammeter et al., 2009, 2010; Quack et al., 2008; Zheng et al.,
2009) avoids drift better than some other methods, we found that by using a method
that explicitly maximizes the Homography Overlap between the query and the object’s
iconic image, even higher precision can be achieved. However, the ranking gap (good-1
vs. good-3 performance) remains relatively large, suggesting that there is potential for
more accurate object ranking methods.

How to efficiently represent the discovered objects in memory for
recognition?

We analyzed four image level techniques for eliminating redundancy in the database
(Sec. 6.6). Our analysis revealed that it is important to keep representatives showing
obscure views and extreme lighting conditions. Therefore, representing the object by
a set of popular views (as done in our Fine Iconoids method or in Raguram et al.
(2011)) did not perform better than random subsampling. We proposed two methods
that achieve an acceptable tradeoff between database size and recognition performance,
but observed that there is still potential for better methods. A comparative analysis of
methods that eliminate redundancy at the feature level (Avrithis et al., 2010; Gammeter
et al., 2009; Turcot and Lowe, 2009) would also be an interesting future direction.

Are the user-provided tags reliable enough for determining accurate
object names?

The largest room for improvement of the overall performance of landmark recognition
is in semantic annotation. We determined two reasons for the performance loss at this
step (Sec. 6.7): (1) User-provided tags come in different languages, have spelling errors
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3éme étage de la tour eiffel

Figure 6.16: Ezamples of successful recognition and annotation.

and contain noise terms (Fig. 6.14). Methods robust to these factors could provide more
reliable semantics even for small clusters. (2) Often, insufficient information is available
to photographers, causing non-descriptive tags (Fig. 6.17, bottom right). This might be
addressed by crawling relevant encyclopedia (Quack et al., 2008) or tourist guide articles
(Zheng et al., 2009) or using image search engines (Arandjelovi¢ and Zisserman, 2012a).
However, sometimes, the presence of accurate tags in small clusters can also lead to
surprisingly accurate results (Fig. 6.16, rows 3 and 4).

What are the factors effectively limiting the recognition of different
landmark types?

Our end-to-end analysis (Sec. 6.8) showed that the factors that limit recognition perfor-
mance are quite varied and strongly depend on the object category. Some objects like
Windows or Murals are easy to recognize visually, but often lack accurate tags, which

134



6.9 Discussion and Conclusion

prevents semantic assignment. This could be addressed using the methods mentioned
above. Other objects such as Artifacts or Landmark Objects do have accurate tags,
but are harder to recognize due to their spatial structure and small cluster size. Their
recognition could be improved by mining more photos of them from the web (Gammeter
et al., 2010). Finally, improvements to image retrieval and matching, e.g., improved
feature representation (Arandjelovi¢ and Zisserman, 2012b), improved feature quanti-
zation (Jégou et al., 2008, 2011), or ranking methods robust to problems like repeated
patterns (Jégou et al., 2009a) (Fig. 6.17, bottom left) or watermarks, timestamps and
frames (Ch. 7)), will directly benefit both landmark clustering and recognition.

6.9.1 Limitations

While our evaluation has brought to light several opportunities for progress, its scope
could still be broadened in future work. Due to our choice of dataset our taxonomy of
queries is certainly biased towards the landmarks of Paris. A larger dataset from several
cities would increase the generality of the evaluation. Our query set was collected from
Internet photo collections and is therefore representative for the task of photo auto-
annotation. While this bias only affects the score average and not the per-category
scores, a second query set for the task of mobile visual search would make it possible to
identify problems specific for that task. The set of methods we analyzed was carefully
chosen, but an analysis of other approaches (e.g., for clustering or semantic annotation)
may bring further insights into how the component choices affect overall performance.

6.9.2 Conclusion

In this chapter, we have evaluated the automatic construction of visual landmark recog-
nition engines from Internet image collections. We used our large-scale PARIS 500K
dataset of 500k photos from Paris, collected a set of 3k typical query images, and created
a ground truth for evaluating large-scale photo auto-annotation. For each component of
the pipeline, we evaluated how different methods and parameters affect overall perfor-
mance as well as the performance for individual query categories. We proposed several
novel methods for various sub-tasks, some of which outperform literature approaches.
In our analysis, we have identified areas where such a system performs well, as well as
areas where improvement is still possible.
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Figure 6.17: Examples of failure modes. Top row: Drift due to dominance of nearby
objects. Bottom left: Failed retrieval caused by repeating patterns. Bottom right: Too
generic description.
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As a last contribution of this thesis, we now consider a problem that we have encountered
several times throughout our work and for which no satisfactory solutions exist so far. We
found that the main cause of false-positive image matches we encountered were different
types of artificial overlays that users have added to their photos (see Fig. 7.1). For
example, many amateur and professional photographers add visible watermarks in the
shape of logos or signatures to their photos for copyright reasons. Another problem are
frames, which are becoming increasingly common because of smartphone camera apps
like Instagram or Snapseed that allow the user to add photo frames or worn-out border
effects to their photos to simulate a vintage look. Moreover, despite the availability of
date and time information in EXIF tags, many users set their cameras to embed a visible
timestamp in the image’s pixel data itself.

These watermarks, timestamps and frames, or WTFs for short, particularly affect
local feature based image retrieval and matching methods (Sec. 3.1), because a small
geometrically consistent region is sufficient to form a match. If, for example, the same
frame is added to two images, it will likely cause the same set of interest regions to
be detected in both images. These interest regions are probably going to have very
similar SIFT descriptors which will form geometrically consistent correspondences and
thus cause the images to match. This was also reported by Miiller et al. (2005) who
observed that logos and frames in X-ray images are a frequent cause of false-positive
matches in medical image retrieval. In Iconoid Shift (Ch. 4), frames are particularly
problematic, because they will cause the overlap, which is estimated using a bounding
box around the inliers (Fig. 4.4), to be almost 100%.

Furthermore, WTFs affect image clustering and landmark mining approaches (Sec. 2.2)
based on matching graphs (Sec. 3.2.3). A WTF can cause two images to share an edge,
even though they show different objects, and this false-positive edge can cause unrelated
clusters to be joined into one (Fig. 7.9). Such clusters would not be suitable as a basis
for Landmark Recognition systems (Sec. 2.3), since they rely on pure clusters that each
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Figure 7.1: Examples of Watermarks (left), Timestamps (middle), Frames (right). Top:
Original images, Bottom: WTFs in higher resolution.

contain just one object or building. If this is not the case due to WTFs randomly linking
unrelated images, a recognition system will confuse the joined buildings.

Moreover, WTFs can form non-object clusters. For example, Chum et al. (2009)
report that timestamps form pseudo-clusters when performing small object discovery
with Geometric min-hash (Sec. 3.4.2) on the OXFORD 105K dataset (Philbin et al.,
2007). But WTFs practically affect all vision datasets crawled from the web, such
as OXFORD 5K (Philbin et al., 2007) and PARIS BUILDINGS (Philbin et al., 2008),
IMAGENET (Deng et al., 2009), the DUBROVNIK and ROME datasets (Li et al., 2010),
EUROPEAN CITIES 1M Avrithis et al. (2010), and PARIS 500K (Sec. 3.3), to name but
a few. Moreover, companies like Google, Facebook or Yahoo (Flickr) rely on massive
corpora of Internet images to build their vision-based services.

Finally, WTF's can disturb large-scale structure-from-motion engines based on Inter-
net photos (Agarwal et al., 2009; Crandall et al., 2011; Frahm et al., 2010; Furukawa
et al., 2012; Snavely et al., 2006, 2008a,b). If WTFs are present in the input pho-
tos, reconstruction will either fail completely or produce incorrect reconstructions where
unrelated buildings are connected by photos containing WTFs.

We present an approach to detect whether an image match was caused by a WTF.
This method can be applied to filter image retrieval results and to prevent false-positive
matches when building a matching graph for image clustering. Given an image pair
and its estimated homography, our approach computes a map of highly similar image
regions and builds a spatial histogram from it. This histogram serves as input for a binary
classifier that decides whether the match was caused by a WTF. This approach is general
enough to detect watermarks, timestamps, and frames alike, while being fast enough to
be integrated into an existing retrieval or clustering system without introducing too
much computational overhead.

While several approaches exist for detecting and reading timestamps in photos (Chen
and Zhang, 2003; Fumin et al., 2004; Li, 2006; Shahab et al., 2011), most approaches for
detecting visible watermarks are targeted at videos (Kuo et al., 2008; Meisinger et al.,
2005; Yan et al., 2005). Because they make strong assumptions about the appearance
and position of the timestamps or watermarks, they would fail when applied to the
variety of WTFs present in Internet photos. So far, there is no unified approach for
detecting watermarks, timestamps, and frames. Metadata, like user-ids or GPS, can
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potentially help identify WTF matches, but this data is not always available and often
unreliable. We compare our method against a GPS-based approach in Section 7.3.
This chapter makes the following contributions:

e We present a simple and efficient method for detecting whether an image match
was caused by watermarks, timestamps or frames.

e For training and evaluation of this detector, we collected a dataset of 3.6k real-
world WTF and 33k non-WTF image pairs mined from Internet photos of Paris.

e We perform a detailed evaluation showing the effect of different parameters of the
method.

e We apply our detector in a clustering setting and show that it can fix several prob-
lems caused by WTFs such as falsely joined clusters, clusters containing unrelated
images and pseudo-clusters formed by WTFs.

e We made the source code of the method as well as the dataset publicly available
at http://www.vision.rwth-aachen.de/projects/fixing-wtfs.

The chapter is structured as follows. First, we review previous work for detecting
watermarks, timestamps or frames in images and videos. In Section 7.2, we present
our WTF detection pipeline. We introduce our dataset and evaluate our approach in
Section 7.3 and apply it in a clustering setting on the PARIS 500K and OXFORD 105K
datasets. We conclude the chapter in Section 7.4.

This chapter is based on our paper Weyand et al. (2015) presented at WACV 2015.
The research for the paper was done in collaboration with my student Chih-Yun Tsai.
Chih-Yun contributed to this work with several ideas as well as by performing the
implementation work and experiments.

7.1 Related Work

Most of the work on detecting and reading timestamps in photos has focused on scanned
analog photos and thus on dot font and 7-segment timestamps exposed onto the analog
film. While Chen and Zhang (2003) and Fumin et al. (2004) perform template matching
with manually created digit templates, Li (2006) uses Self-Generating Neural Networks
(SGNNs) to model digit appearance. In contrast to Chen and Zhang (2003) who make
no assumptions on timestamp position, Fumin et al. (2004) and Li (2006) limit their
search to only the four image corners, while Shahab et al. (2011) learn location priors
from a training set. Unlike these works, our goal is not to segment or read timestamps,
but merely to detect their presence.

Miiller et al. (2005) observed that false positives in radiological image retrieval are
often caused by text, logos and frames in the X-ray images. Because in this applica-
tion, the overlays are separated from the content and the background is always black,
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connected components analysis and thresholding suffice to remove the WTFs. While
the goal and motivation of Miiller et al. (2005) are very similar to ours, general Internet
photos require more elaborate methods since content and overlays have a much higher
variability in appearance.

A related line of research is to detect text and timestamps in videos. Sato et al. (1998)
and Yin et al. (2002) exploit the fact that the background behind the text constantly
changes and apply a running temporal minimum over the image intensity to isolate
timestamps. This is not applicable in our setting where only two images with an overlay
are given that might not have as much background variation. Another approach that
only works on videos was used by Li et al. (2006) and Yu et al. (2013). In both their
cases, the timestamp includes seconds, which enables searching for parts of the image
that change every second. Li et al. (2006) do not even use OCR, but infer the passed
time based on the changing pattern of the clock digits.

Meisinger et al. (2005) and Yan et al. (2005) address the problem of removing TV
station logos from videos. Both use a simple frame differencing approach, which is
however only effective with dynamic backgrounds and non-transparent logos. Therefore,
Yan et al. (2005) additionally use a Bayesian classifier with a location prior that favors
the image corners.

Zhang et al. (2010) aim to detect objects that have been pasted onto images. Like
ours, their method works on pairs of images related by a homography. Assuming that
the estimated homography describes the transformation of the background object, while
the pasted object does not obey the homography, they warp the images onto each other
and subtract them. Image regions with high pixel-wise difference are assumed to be the
pasted object. In contrast to our work, their method assumes that the image pair shows
the same subject and an additional pasted object. WTF matches, on the other hand,
have different subjects and the homography describes the transformation of the WTF
itself. Therefore, in our case, WTFs are the most similar image regions.

In summary, most previous work has focused on either detecting timestamps in photos
or watermarks (station logos) in videos, but these approaches are too specialized to their
application domains and thus not applicable to our problem. Moreover, to the best of
our knowledge, no one has addressed the problem of detecting frames in photos, and
we are not aware of any previous paper that addresses the detection of watermarks,
timestamps, and frames with a single approach.

7.2 Method

The design goals of our detector were that it should be general enough for all kinds of
watermarks, timestamps and frames, it should have high accuracy since a single missed
WTF can already cause clusters of unrelated objects to be merged (Fig. 7.9), and it
should be fast so it can be applied in large-scale settings. Our detector is meant to be
used as a post-processing step in an image retrieval system. Given an image match, i.e.,
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Figure 7.2: Workflow of the WTF detector. Top: WTF match, bottom: non-WTF
match.

a pair of images related by a homography, it decides whether it is caused by a WTF.
An alternative would be to detect WTFs in every single image. However, we would like
to make the decision per match instead of per image because an image that has a WTF
can still have valid matches.

Although WTFs come in many shapes and sizes (Fig. 7.1), we can make certain as-
sumptions about them. Watermarks and frames always have the exact same appearance,
since they are simply templates pasted onto the image. Timestamps are slightly more
challenging since the background is usually still visible behind them and their appear-
ance differs depending on the time. All WTFs are typically close to the border of the
image, but they may have varying positions and scales in each of the two matching
images. For example, a professional photographer might always place her logo such that
it does not occlude the subject.

Based on the above assumptions, we now propose a method to detect WTF matches.
Our detector takes as input a match, i.e., a pair of images and a homography relat-
ing them. Since the detector plugs into a visual word based image retrieval pipeline
(Sec. 3.2.2) directly after the spatial verification stage, the homography as well as its
inliers will be directly available at no extra cost. Our detector then outputs a binary
decision (WTF or not) and two similarity maps, i.e., segmentations of the input images
into WTF and non-WTF pixels.

The basic steps of our detector are as follows (Fig. 7.2):

1. Detect highly similar image regions.

2. Compute a feature vector consisting of a spatial histogram of the similar regions
and some summary statistics.

3. Classify the match as WTF or non-WTF.

In this section, we propose different choices for each of these three steps and evaluate
them in Section 7.3.
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Figure 7.3: Similarity map computation based on photoconsistency.

7.2.1 Detecting similar image regions

In the first step, we compute an image similarity map that we later extract features from.
We propose two approaches for this: one based on photoconsistency and one based on
homography inliers. In the following, we refer to the images in a match as image 1 and
image 2.

Photoconsistency. The process of computing similarity maps based on photoconsis-
tency is illustrated in Figure 7.3. Because WTFs can appear at different positions in
the image, we first warp image 2 onto image 1 using the homography between them. We
then compute pixel-wise photoconsistency scores based on normalized cross-correlation
(NCC) by sliding a window of radius r over both images. At each position, we serialize
the pixel luminances in both windows into the vectors f and g and compute their NCC
as

fo=F—1F 9=9—3g, NCC(f.g9) = (fo/llfoll, 90/ llg0ll) . (7.1)

where f and g denote the mean of f and g, respectively, (.,.) denotes the dot product
and |.|| denotes the Ly norm. Black image frames often cause both f and g to be 0.
Since we want to detect this case, we still want them to have a high photoconsistency
score and define NCC(0,0) := 1.

To isolate WTF regions, we set all NCC values below a threshold 6 to 0. Finally,
we use morphological opening to eliminate small regions that likely do not belong to
a WTF. Figure 7.4 (3rd column) shows example similarity maps computed with this
method. While this method generally yields very precise results, we found that uniform
image regions with high NCC can often occur randomly across the image. Moreover,
this method is expensive and requires the choice of three parameters, namely the NCC
window size r, the NCC threshold 6, and the size of the structuring element for mor-
phological opening.

Inliers. Another way to find similar image regions exploits the fact that the homography
inliers, i.e., corresponding local features that obey the homography transformation, are
available to our detector at no extra cost since it is intended to be run after the spatial
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Figure 7.4: Similarity maps computed with the photoconsistency and inlier methods.

verification step in an image retrieval system (Sec. 3.2.2). Assuming that feature corre-
spondences are a sufficient indication of the similarity of their respective image regions,
we create the similarity map simply by forming the union of the interest regions of all
inliers in image 1. That is, for each inlier, we set all pixels in its interest region to 1
and leave the rest at 0. In contrast to the photoconsistency-based method, the resulting
similarity map is binary. This method is much faster than the photoconsistency-based
method above and is completely parameter-free. While it yields less precise similarity
maps than photoconsistency, it does not randomly fire in uniform regions. Figure 7.4
(4th column) shows some example similarity maps computed with this method.

7.2.2 Spatial Histogram of Similar Regions

Based on these similarity maps, we now compute feature vectors suitable as input for
a classifier. It seems reasonable to assume that for WTFs, similar regions will appear
mainly at the image borders, while for valid matches, similar regions will appear all
over the image (Fig. 7.4). Therefore, we compute spatial histograms of the similarity
maps. We investigate four histogram shapes (Fig. 7.5). The bins of the dist2border
and dist2centre histograms are bands of the distance to the image border and center,
respectively. The bins of cake correspond to the angle w.r.t. the center, and dartboard
is the combination of dist2centre and cake. The value of a histogram bin is computed
as the sum over all similarity map values in it, divided by the total number of pixels in
the bin.

We also experiment with additional attributes, namely the mean photoconsistency
(only for the photoconsistency method) and the coverage, i.e., the fraction of active
pixels in the similarity map. We concatenate these values to the histogram. The resulting
feature vector serves as input for AdaBoost with decision trees as weak classifiers. This
delivered performance superior to both linear SVMs and SVMs with RBF kernels.
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Figure 7.5: Spatial histogram shapes.

7.2.3 Two-way Matching

Sometimes the matching region between two images is at the border of one image but in
the middle of the other (See Fig. 7.7b). In such a case, depending on which of the images
we choose for computing the similarity map, the image pair can be falsely detected as a
WTF. To prevent this, we compute the similarity maps and histograms in two directions;
once by projecting image 2 onto image 1, and once by projecting image 1 onto image 2.
We then only call the image pair a WTF if both feature vectors are labeled as positive
by the classifier. This way, we enforce that the WTF regions are close to their learned
positions in both images. This not only reduces the number of false positives, but also
doubles the amount of training data, since each image pair now generates two training
samples.

7.2.4 Integration into Image Retrieval and Clustering.

In visual-words-based image retrieval Philbin et al. (2007); Sivic and Zisserman (2003),
potential matches of a query image are ranked w.r.t. their tf-idf score and then verified by
fitting a geometric transformation. Our detector is simply used as a second verification
step that rejects WTF matches. This integration directly benefits image clustering
approaches that are based on a matching graph. This graph is built by performing
image retrieval and linking matching images by edges. By performing WTF detection
after image retrieval, false-positive edges in the matching graph can be avoided directly
during graph construction.

7.3 Experiments and Results

We now first give a detailed analysis of our method and its parameters in a classification
setting and then show how it can improve image clustering results by filtering false
matches.
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7.3.1 Dataset and Ground Truth

We collected a realistic dataset of 36,240 image matches for evaluating our WTF detec-
tor. Each image pair has a binary label: 90% of the matches are correct, or non-WTF
matches, and 10% are WTF matches. We sampled the matches from the matching graph
(Sec. 3.2.3) we computed for the PARIS 500K dataset (Sec. 3.3) using four methods:

e We searched for users whose photos frequently match among themselves.
e We searched for image pairs where all inliers are in one of the four image corners.

e We clustered the dataset using Iconoid Shift (Ch. 4) and identified clusters contain-
ing multiple unrelated buildings, since these are typically caused by WTF matches
that create invalid edges in the matching graph.

e We manually went through a large number of images from the dataset and collected
the matches of all images containing a WTF.

Note that the first method exploits the availability of author data. While this data could
also be of use in detecting WTFs, we deliberately designed our method based on just
image data so it can also be applied in settings where this data is not available.

After having collected this initial pool of matches, we then manually inspected all of
them and filtered out the remaining non-WTF matches. Because we found that some
users were responsible for a large number of matches in the pool, we limited the number
of WTF matches from the same user to 250 to avoid a bias towards certain kinds of
WTFs. The resulting set of 3,624 image matches consists of 61% Watermarks, 23%
Timestamps and 16% Frames. We then added 32,616 random non-WTF matches from
the matching graph, so the final dataset has 10% WTF matches. For cross-validation,
we then split up the dataset into 5 folds, taking care that WTFs from the same user are
all in the same fold to avoid training on the test data. The dataset is publicly available
at http://www.vision.rwth-aachen.de/projects/fixing-wtfs.

7.3.2 Evaluation Procedure

We now evaluate our method in a binary classification setting using 5-fold cross-validation.
We plot receiver operator characteristic (ROC) curves by vertical averaging, i.e., we av-

erage the true positive rates of the five folds for each false positive rate. Additionally,

we consider the area under the ROC curve (AUC) and the false positive rate at a true

positive rate of 0.99, which we call f99. This is motivated by our target application,

image clustering. While the effect of a few missing matches is negligible since an image

cluster is usually very densely connected, a single false-positive match caused by a WTF

can already result in the merging of two unrelated clusters (Fig. 7.9). Our primary goal

is therefore to reach high recall. We now analyze the different parameters and design

choices introduced in Section 7.2 and how they affect performance and efficiency.
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Figure 7.6: Effect of different parameters on classification performance. (Note that the
y-axis ranges from 0.9 to 1.0.) (a) Photoconsistency wvs. inlier similarity maps (using a
dist2border histogram (Fig. 7.5) with 5 bins). (b) Effect of additional features. (using
0=0.75 for photoconsistency) (c¢) Effect of two-way matching.

Figure 7.7: (a) Top: WTF match. Middle: Closeup of WTF. Bottom left: photoconsis-
tency map. Bottom right: inlier map. (b) False-positive WTFs that two-way matching
prevents (similarity map overlaid in green). (c¢) Two unusual false-positive WTF de-
tections in PARIS 500K. Top: A planted facade resembling a frame. Bottom: Two
paintings with similar physical frames.

7.3.3 Photoconsistency vs. Inliers

The first pipeline step is detecting similar image regions (Sec. 7.2.1). We compare the
photoconsistency and inliers methods using different NCC thresholds 6 for photoconsis-
tency (Fig. 7.6a). Surprisingly, inliers outperforms photoconsistency by a large margin
(0.18 f99 vs. 0.35 f99). Analyzing the similarity maps showed that the reason why
photoconsistency is much more prone to false-positives is that high photoconsistency
regions are likely to occur by accident, e.g., in uniform regions (Fig. 7.7a). Inliers does
not have this problem, because interest points are mainly detected in textured regions
and because SIFT matching is more discriminative than photoconsistency.
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7.3.4 Efficiency

The photoconsistency method needs to compute the NCC by applying a sliding window
over both images and computing their dot product. Let N be the number of pixels in
the overlap of the warped images and r be the window size, then NCC computation
requires O(N * r?) operations. The inliers method only needs to fill the interest re-
gions of the inlier features. Let s be the average diameter of an interest region and R
the number of interest regions, then the similarity map computation takes O(R x s?)
operations. Since there are much less interest points than pixels (R < N), the inliers
method is much faster. In our measurements, the average time to compute the feature
vector for an image pair is 1.5 seconds for photoconsistency and 0.15 seconds for inliers.
Both methods were implemented in Matlab, except for the NCC computation in the
photoconsistency method, which was implemented in C. Timings were taken on a 2.7
GHz Intel Core i7 CPU. We expect significant speedups from a full C implementation,
but NCC computation will remain the bottleneck of photoconsistency. Therefore, inliers
is highly preferable both in terms of performance and efficiency.

7.3.5 Additional Features

The effect of the additional features coverage and mean is shown in Figure 7.6b. While
coverage has only a small effect on both methods, the mean strongly increases the
performance of the photoconsistency method, because it helps eliminate false-positive
detections due to accidentally photoconsistent regions.

7.3.6 Two-way Matching

Two-way matching (Sec. 7.2.3) yields a large performance improvement (Fig. 7.6¢). The
f99 improves from 0.18 to 0.10 for inliers and from 0.35 to 0.23 for photoconsistency.
This is because firstly, twice the amount of training data is available, and secondly,
image matches where the similar region is at the center in one image, but at the border
in the other are filtered out by this method. In the examples in Figure 7.7b, only the left
images were considered when not using two-way matching, causing them to be falsely
classified as WTFs.

7.3.7 Histogram Shapes

We now compare the performance of different shapes of spatial histograms (Sec. 7.2.2).
As Figure 7.8a shows, dist2centre performs highest. Although dartboard with (5,16)
bins achieves similar performance, it has a dimensionality of 80, whereas dist2centre
only has a dimensionality of 5, making it preferable. Figure 7.8b shows the effect of
the number of bins for the dist2centre histogram and the inliers method. The strong
performance increase from 3 to 5 bins shows that a certain spatial resolution is required
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Figure 7.8: (a) Performance of different histogram shapes (using inliers and the re-
spective best-performing bin counts). (b) Performance of different histogram sizes. (c)
Comparison with two baseline methods. For our detector, we use the best performing
setup: dist2centre, 5-bin, inliers, 2way. (Note that the y-axis is scaled differently in
this plot, so the curves of the other methods are visible.)

2-way hist. f99 AUC 2-way hist. 99 AUC

d2c¢ 0.228 0.989 d2c¢ 0.045 0.995
X d2c¢ 0.184 0.993 X d2c¢ 0.034 0.998

d2b 0.355 0.961 d2b 0.183 0.991
X d2b 0.228 0.983 X d2b 0.095 0.995
(a) Photoconsistency (b) Inliers

Table 7.1: Comparison of different detector settings.

to reliably detect WTFs. However, more bins do not bring an advantage, which again
allows us to keep feature dimensionality low.

7.3.8 Summary

Table 7.1 summarizes our results. For both photoconsistency and inliers, dist2centre
with 2-way matching performs highest. The best setup achieves 3.4% f99.

7.3.9 Comparison against Baselines

Since the task of detecting watermarks, timestamps and frames has not been addressed
before and previous methods are not applicable to Internet photos (Sec. 7.1), we compare
against two simple methods used in practice.

The first method is to use GPS tags to restrict the candidate matches for an image
to geographically close images (Avrithis et al., 2010; Quack et al., 2008; Zheng et al.,
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Figure 7.9: Two clusters successfully split by our algorithm. All images in (a) and (b),
respectively, were initially in the same cluster due to WTF maltches (red, closeups on the
right and bottom, respectively) that linked images of different buildings. Both clusters
were split into three clusters denoted by the dashed rectangles.

2009), assuming that images taken far apart cannot show the same object. If they match
anyway, it must be a false positive. Since geotags are available for our images, we apply
this method by classifying all image pairs with a geographic distance above a threshold
t as WTFs. Figure 7.8c shows the ROC curve drawn by varying ¢, compared against our
best performing setup. We found that the main reasons for the much lower performance
of this method are: (i) Inaccurate GPS tags causing false-positive WTF detections. For
example, two pictures of a sculpture in a museum may have far-away geotags due to
bad GPS reception, causing the match to be classified as a WTF. (ii) Although two
images have close-by geotags, they do not always show the same object. Hence, matches
between them can still be caused by a WTF.

We also compare the performance of our detector with a heuristic method we have used
in our experiments before, in combination with the GPS-based method. We removed
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Figure 7.10: A cluster in the OXFORD 105K dataset that contains unrelated images due
to false-positive matches caused by timestamps (example on the right). The crossed-out
images were removed by our detector, leaving only the relevant images.

Figure 7.11: Sample images from removed pseudo-clusters from PARIS 500k (left)
OXFORD 105K (right). Closeups of the WTFs causing the clusters are shown below.

image matches if at least 50% of its inliers are in the top or bottom 10% of the image.
While this additional step drastically increases the tpr, its performance, especially the
199, is still not comparable to our WTF detector.

7.3.10 Application to Clustering

We now demonstrate how our detector can improve the results of image clustering and
thus benefit applications such as landmark recognition or structure-from-motion. We
evaluate our algorithm on two datasets, PARIS 500K (Sec. 3.3) and OXFORD 105K
(Philbin et al., 2007). For each dataset, we build one baseline matching graph using
standard image retrieval and one using image retrieval with subsequent WTF removal.
We then cluster both graphs using Iconoid Shift (Ch. 4). The clustering based on the
baseline matching graph is called clustering 1 and the clustering based on the match-
ing graph with WTF removal is called clustering 2. We now compare these clusterings
for both datasets. For WTF removal, we use inlier similarity maps, dist2border his-
tograms with 5 bins and two-way matching. We selected the classifier score threshold to
an operating point of 0.99 tpr determined using cross-validation on the WTF dataset.

Results on Paris 500k. Clustering 1 of PARIS 500K has 14,254 clusters covering a
total of 111,892 images. 87 clusters, and in particular the three largest clusters, are
affected by WTFs. For example, the largest cluster (5,435 images) contains the Eiffel
Tower, the Louvre, Notre Dame, the Arc de Triomphe, several paintings and sculptures,
as well as many non-landmark tourist photos such as portraits or pictures of food. In
clustering 2, 38 of these clusters are completely removed since they only contained WTF's
(Fig. 7.11). Two WTF clusters survived unharmed, but they contained only 2 and 3
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Figure 7.12: Images from OXFORD 105K that were in the same cluster because a
timestamp (below) caused false-positive matches between them. The cluster was split
into the four individual clusters denoted by dashed boxes.

images respectively. 39 clusters, covering 17,857 images, were split into a total of 317
clusters. Only 14 of them still contained WTF matches, but all of these clusters were
smaller than 5 images. The remaining 303 clusters were all pure, each containing only
one object. Figure 7.9 shows two successfully split clusters. 8 clusters from clustering 1
contained only a small fraction of WTF images, but were pure otherwise. In clustering
2, all WTFs were removed from these clusters.

Due to false positives, 79 non-WTF clusters were removed, but all of them were
very small: 70 of them had only size 2 and the largest had size 7. False positive that
are removed in larger clusters usually do not have any effect, since these clusters are
densely connected. Most false positive WTF detections are due to image pairs that have
matching features only at the border. This can happen, e.g., if there is extreme panning
between the two photos such that they have only very little overlap. Figure 7.7c¢ shows
two rather unusual cases.

Results on Oxford 105k. The OXFORD 105K dataset, used to evaluate image cluster-
ing in (Chum and Matas, 2010; Chum et al., 2009; Philbin and Zisserman, 2008), consists
of 5k images of Ozford showing 11 landmarks, and 100k distractor images collected from
Flickr by random keyword searches. Clustering 1 of OXFORD 105K has 6,225 clusters
covering 17,599 images. Since the Ozford part of the dataset is relatively clean of WTFs,
none of the Oxford building clusters were falsely merged. We found that 7 clusters in
clustering 1 were merged by WTFs, 8 contained only WTFs, and one cluster contained
some WTFs but was otherwise pure. In clustering 2, 6 of the 7 merged clusters were
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Figure 7.13: Image pair from a WTF cluster that was not removed due to a com-
mon background object. The watermark in the lower right was hardly detected since the
homography is on the poster.

successfully split (see Fig. 7.12 for an example). In the remaining cluster, all photos had
a common background object that caused them to match (Fig. 7.13). 7 of 8 clusters
containing only WTFs were removed (see Fig. 7.11 for examples). The missed cluster
contained 4 identical images with a frame, which were not detected because they had
inliers over the whole image area. Finally, the cluster consisting partially of WTFs was
successfully cleaned of unrelated images (Fig. 7.10). 203 clusters were removed although
they did not contain WTFs, but all of them contained four or less images.

Summary. We have shown that our method prevents the formation of clusters whose
images match only due to WTFs and prevents clusters to be merged due to WTF's.
Though trained on PARIS 500K, our detector was able to generalize to OXFORD 105K
where it was just as successful in removing WTF's.

7.4 Conclusion

In this chapter, we have presented a simple method to detect whether a match between
two images was caused by a watermark, timestamp or frame (WTF) that is present in
both images. If this is the case, the match should not be returned by an image retrieval
system since the retrieved image is not relevant to the query and the match will cause
harm in applications like image clustering or structure-from-motion.

Our method first warps the input images onto each other using their known homog-
raphy and computes a map of their similar regions. We presented two methods for
this, one based on photoconsistency and one based on inliers. Then, our detector com-
putes a spatial histogram and summary statistics of the similar regions and classifies the
resulting feature vector using AdaBoost.

We created a realistic dataset for training and evaluation of our detector and showed
that it can achieve high performance while being computationally efficient enough to
be integrated into the spatial verification phase of an existing image retrieval engine.
We showed that when applied in an image clustering application, our detector can suc-
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cessfully fix the problems such as falsely merged clusters, clusters containing unrelated
images, and clusters that are only formed by WTFs.

One remaining problem of our method is that false-positive detections can be caused
by an image pair that has extreme pan or tilt such that only the borders of the images
match. Since our detector is based on spatial histograms of similar regions, such a match
will “look” like a WTF match to our detector. As we found in our clustering evaluation
these false-positives do not have a profound effect since images are typically linked via
many paths in the matching graph. However, a method for avoiding such detections
would be desirable.

Finally, our method does not detect all possible WTF's. Because the vast majority of
WTFs are close to the image border, AdaBoost learns that spatial histograms with high
values near the image border are likely to be WTFs. Therefore, our detector will miss
watermarks or logos that are placed in the middle of the image. In order to distinguish
such cases from correct matches, it might be necessary to not only model the position but
also the appearance of WTFs, which should be possible since watermarks, timestamps
and frames are designed to stand out from the image content.
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Conclusion

In this thesis, we have addressed the problem of discovering landmarks in large collections
of tourist photos from photo sharing websites such as Flickr or Panoramio.

Previous work has approached this task by partitioning the image collection into
clusters, each corresponding to a landmark. In contrast, our Iconoid Shift algorithm
casts this task as a mode search problem, where the modes, called Iconoids, correspond
to the most frequently photographed views. This novel view of the problem has several
appealing advantages. It has an intuitive cluster definition: a cluster is defined as the set
of all images that overlap with an iconic view of a landmark. Iconoid Shift is efficient,
because it only performs a local exploration of the matching graph. The algorithm
is based on well-understood mode search methods and inherits their proven properties
such as their intuitive parameters and guaranteed convergence. Finally, Iconoid Shift is
inherently parallel and can be distributed to hundreds of machines.

Iconoid Shift, like most other previous landmark discovery approaches, is aimed at
discovering clusters that correspond to building-scale objects. However, Internet photo
collections contain much more fine-grained information, also revealing the many archi-
tectural details of the world’s landmark buildings, like sculptures and reliefs on their
facades and murals on their walls and ceilings. These details were missed by previous
algorithms that performed a hard clustering at a single, fixed scale. In contrast, our
Hierarchical Iconoid Shift algorithm produces an overlapping clustering and discovers
clusters at multiple scales, resulting in a hierarchical description of a building. The al-
gorithm shares the desirable properties of Iconoid Shift, but does not require the user
to set the clustering scale by hand, making it completely parameter-free. The basis of
Hierarchical Iconoid Shift is our Hierarchical Medoid Shift algorithm. Inspired by Scale
Space theory, this algorithm extends Medoid Shift to perform a hierarchical clustering
by following density maxima while continuously increasing the clustering scale.

In order to analyze the potential of landmark recognition systems based on landmarks
that were automatically discovered in Internet photo collections, we performed a large-
scale evaluation on a dataset of 500k images of Paris. We first inspected how many and
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what kinds of objects can automatically be discovered and then considered each stage
of a typical landmark recognition pipeline to find out where such systems perform well,
which factors limit their performance, and how different parameter choices affect the
recognition result. Our analysis showed that that performance can vary significantly
across different object categories. For example, while recognition generally performs
well for building-scale landmarks, the lack of reliable semantic information can limit the
performance of smaller landmarks such as murals or building details. For each of the
components of such a system, we analyzed several methods from the literature as well as
some of our own methods and pointed out directions where progress can still be made.

8.1 Summary and Contributions

After introducing fundamental techniques in Chapter 3, we analyzed two existing land-
mark discovery algorithms based on min-hash (Chum and Matas, 2010) and Spectral
Clustering (Philbin and Zisserman, 2008), respectively. This analysis brought to light
some of the challenges that existing methods are facing. For example, the clustering al-
gorithms and grouping criteria these approaches use are not ideally suited to the problem
and often lead to an over- or under-segmentation. Moreover, some methods require the
construction of a matching graph for the full dataset, which can become a computational
bottleneck, especially when considering the rapid growth of Internet photo collections.

In Chapter 4, we introduced the Iconoid Shift algorithm that addresses the above
challenges. We defined clusters as set of all images overlapping with a central, iconic
view of a building, called Iconoid. Iconoids are the views of buildings most favored by
photographers. We find these views by an iterative mode search procedure that seeks
photos with minimum total homography overlap distance to other photos of the same
object. This distance measure allows us to efficiently compute the overlap between pho-
tos without performing an explicit matching for each image pair, and enables computing
the overlap of photos that do not form a match due to extreme lighting or perspective
changes. We presented efficient algorithms to propagate pairwise overlaps in a local
matching graph that is explored on-the-fly along the convergence trajectory of the mode
search. In experiments on large-scale datasets of photos from Paris and Barcelona, we
demonstrated that Iconoid Shift discovers views of landmarks that are often more frontal
and centered than views selected by other algorithms and comparable to views selected
by the authors of the Wikipedia articles of the respective landmark.

Based on this, we then presented the Hierarchical Iconoid Shift (HIS) algorithm in
Chapter 5. HIS is based on Hierarchical Medoid Shift (HMS), a hierarchical extension
of the Medoid Shift (Sheikh et al., 2007) clustering algorithm. HMS is inspired by
Scale Space Filtering (Witkin, 1984) that tracks the evolution of infliction points of a
signal while increasing the bandwidth of a Gaussian kernel applied to it. Similarly,
HMS tracks the evolution of density maxima while increasing the bandwidth of the
underlying kernel density estimator. The key insight of HMS is that, for certain kernels,
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the density maximum cannot change unless a new point enters the kernel window. This
allows the algorithm to achieve the same result as if the kernel were grown continuously
by only visiting a finite number of events. HMS produces a dendrogram describing
the density structure of the dataset, and each level of the dendrogram represents an
overlapping clustering at a particular scale. The algorithm can easily be distributed to
many machines, has the same worst-case complexity as Medoid Shift, but is completely
parameter-free. HIS extends Iconoid Shift to apply HMS to the task of discovering
landmarks and their details by alternately performing mode search and increasing the
kernel scale. The latter is done efficiently by incrementally adding new images to the
kernel window and propagating their overlap to all images already under the kernel
support. We evaluated HIS on a large-scale dataset of 36 landmarks and showed that its
resulting dendrograms capture the relationships of their details. Moreover, we outlined
two potential applications, namely landmark building summarization and proposing new
details to be added to Wikipedia articles.

In Chapter 6, we then considered a specific application of landmark discovery, namely
the automatic construction of landmark recognition engines. While several papers have
proposed such systems, and they are already in productive use in applications like Google
Goggles, there has not been an evaluation of the performance they can achieve. We
therefore performed a large-scale evaluation of such a landmark recognition pipeline to
find answers to the following questions: How many and what kinds of objects are present
in Internet photo collections and what is the difficulty of discovering objects of different
object categories? How to decide which landmark was recognized given a list of retrieved
images? How to efficiently represent the discovered objects in memory for recognition?
Are the user-provided tags reliable enough for determining accurate object names? What
are the factors effectively limiting the recognition of different landmark types? We
invested significant effort into creating ground truths for landmark retrieval, recognition
and semantic annotation. Our analysis resulted in a number of interesting insights.
For instance, we found that the main performance bottleneck is semantic annotation,
since user-provided tags are noisy and sparse, which particularly hurts accuracy for less
frequently photographed objects. In a more fine-grained analysis on an object category
level, we found that different bottlenecks exist for different categories. For example, some
objects like murals are easy to recognize using standard image retrieval techniques, but
semantic information is often missing or unreliable for them. For other objects, like
museum exhibits, the opposite is the case: User-provided tags are more reliable, but
their spatial structure and limited number of photos makes them hard to recognize
visually. We also analyzed different methods for reducing the memory footprint of a
landmark recognition engine by removing redundant photos from its index and found
different reduction strategies to be optimal for different object categories. Our analysis
showed that when using a seeding-based algorithm like Iconoid Shift, larger objects, like
landmark buildings, are discovered already with few seeds while smaller objects are only
discovered with more seeds. The number of seeds can therefore be used to trade off the
efficiency of object discovery and the comprehensiveness of the resulting index.
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Finally, in Chapter 7 we considered an emerging problem of image retrieval in Internet
photo collections. More and more users are adding artificial overlays, like watermarks,
timestamps or frames to their images, which cause false-positive image matches. In
image clustering algorithms that rely on accurate image retrieval, these matches can
in turn cause clusters of unrelated objects to be joined into one. We often observed
this problem with Iconoid Shift and therefore presented a method to filter false-positive
matches that are due to watermarks, timestamps or frames (WTFs). The method works
by first computing a map of similar regions in a matching pair of photos and performing
spatial binning. Then, we train an AdaBoost classifier on the resulting feature vectors to
distinguish between WTF-matches and valid matches. The intuition here is that WTF's
mostly cause image matches near the image border, while valid matches are more likely
to occur towards the image center. The regions where WTFs occur are automatically
learned by the classifier. For our evaluation, we created a dataset of WTF matches
based on PARIS 500K. We demonstrated that the method successfully avoids unrelated
clusters from being merged, and prevents pseudo-clusters caused, e.g., by timestamps,
from being formed.

8.2 Future Work

There are several potential future directions to extend and improve the work presented
in this thesis:

Incorporating Image Weights. Our evaluation of Iconoid Shift has shown that the
algorithm is well-suited for choosing iconic images of buildings or objects. However,
Iconoid Shift only optimizes for the best view, but does not necessarily find the most
aesthetically pleasant picture (Fig. 4.12). While the viewing angle plays a role, several
other factors such as contrast, color or sharpness also affect how aesthetic an image is.
One future direction could therefore be a generalization of Iconoid Shift that incorporates
a per-image weight, where images with higher weights are more likely to be selected as
Iconoids. This weight could be determined , e.g., by a scoring system trained on human
judgments of how aesthetically pleasant an image is. This extension could also be used to
avoid certain images from being selected as an iconic image. For example, an image with
recognizable people in front of a touristic landmark might not be suitable to represent
this landmark in a tour guide for anonymity reasons.

Incremental Clustering. In order to have an up-to-date index of the tourist attractions
of the world, the operator of a landmark recognition engine might want to regularly re-
run landmark discovery to add new popular buildings and objects, and to incorporate
new images of existing ones. However, the rapidly increasing number of photos on photo
sharing websites may soon make it computationally prohibitive to do this regularly.
Therefore, an incremental version of Iconoid Shift or Hierarchical Iconoid Shift that
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8.2 Future Work

updates an existing clustering by incorporating new images and deleting old ones might
be of practical use.

More precise Overlap Estimation. Currently, Iconoid Shift approximates the overlap
between a pair of images by simply drawing bounding boxes around the inlier features
of the homography between the images. In cases where the object of interest does not
have rectangular shape, this will lead to an overestimation of the overlap. In cases
where no inliers are present at the object borders, the overlap might be underestimated.
Here, a more precise method of computing the overlap might be helpful. For example,
the overlap region could be estimated as the convex hull around the inlier features or
the union of their interest regions. This might improve the accuracy of the algorithm
and make the estimated overlap regions more useful for determining the location of the
object of interest in a photo.

Reduced Complexity. Although we have presented efficient algorithms for propagat-
ing image overlaps in the local matching graph, this step remains the main bottleneck of
Iconoid Shift due to its quadratic complexity in the number of images under the current
kernel window. This complexity cannot simply be reduced, since the homography over-
lap distance requires computing the overlap region between any pair of images under
the kernel. Therefore, a future direction could be the development of other distance
measures and propagation schemes that are equally well-suited to finding iconic views
via mode search, but that allow performing the Medoid Shift minimization (Eq. 4.5) in
sub-quadratic time.

Extension to other Object Classes. Iconoid Shift and other landmark discovery
algorithms cannot discover arbitrary types of objects, because they rely on visual word
based image retrieval and matching techniques. Due to the assumptions underlying
visual word based image retrieval (Sec. 3.1), it can only match images of the same
object instance (e.g., a specific painting), and can only handle rigid objects, i.e., objects
that do not change their shape. Therefore, visual word based image retrieval has been
successfully used for recognizing buildings, paintings, CD-covers, or movie posters, but
is not suitable, e.g., for recognizing animals or plants. In principle, Iconoid Shift is not
limited to rigid objects, and could be extended to more general object classes by replacing
the underlying matching procedure by something more generic. However, recognizing
that two images show the same (possibly deformable) object class, is a more fundamental
problem of computer vision and therefore outside the scope of this thesis.

Hierarchical Medoid Shift Applications. We presented Hierarchical Medoid Shift
(Sec. 5.2), an extension of the Medoid Shift algorithm (Sheikh et al., 2007) that we
applied to discovering landmarks and their details in the Hierarchical Iconoid Shift al-
gorithm (Sec. 5.3). However, HMS is not limited to this application and can in principle
be used to perform hierarchical clustering of all kinds of data where a distance metric

can be defined.
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8 Conclusion

Building Knowledge Graphs. A potential application for Hierarchical Iconoid Shift
is to generate knowledge graphs that encode relational information about buildings and
their details. In such a graph, the full building as well as its details are nodes, and each
edge encodes a relation between the connected nodes. Examples of such relations could
be “is a part of”, “is left of”, or “is inside of”. These relations could automatically be
discovered by estimating the camera movement between two Iconoids in a dendrogram
produced by HIS. More information like object names and categories could be added
to the resulting graphs by parsing Wikipedia articles and other related websites about
a building. The resulting graph could then be used to automatically infer answers to
questions such as “What is the name of the leftmost gate on the west facade of Notre
Dame?”, or “How many spires does the Church on Spilt Blood have?”.

Incorporate appearance into WTF detection. Our detector for invalid matches
that are due to watermarks, timestamps and frames (Ch. 7) currently relies only on the
spatial position of matching image regions to determine whether an image match is due
to a WTF. This can lead to false-negative detections when the WTF is not near the
image border, and can lead to false-positive detections if the images of a match only
overlap by a small fraction. It might be possible to prevent these cases by incorporating
appearance-based features, since some WTFs, like timestamps, have a characteristic
appearance. This would further improve the accuracy of the detector and thus also the
quality of the results of image retrieval and clustering.
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