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1 Introduction

Representations of finite groups over a field K are often studied in the form of mod-
ules over the group algebra KG. Representation theory can therefore be understood
as the study of the module category of the group algebra KG. If K is a field of char-
acteristic 0, the algebra K G is semisimple. This implies that every KG-module is a
direct sum of simple modules and thus the module category of KG can be studied by
focusing on its finitely many simple modules.

Modular representation theory studies the situation where the characteristic p of
the field K divides the group order. In this case KG is not semisimple and there are
usually infinitely many non-isomorphic indecomposable modules. Nevertheless, the
algebra KG still has only finitely many simple modules.

A bridge between these two situations is given by the group algebra RG, where R is
a complete discrete valuation ring with maximal ideal m whose field of fractions K =
Quot(R) has characteristic zero and whose residue field F' = R/m has characteristic p.
The algebra RG can be considered as a subalgebra of the semisimple algebra K G, and
FG@G is the quotient algebra RG/mG. Every simple FG-module is a simple RG-module.
On the other hand, we can use the Wedderburn decomposition of the semisimple
algebra KG to embed RG into an algebra of the form @;e; D™ for K-division
algebras D;. Consequently RG can be explicitly described by matrices.

The algebra RG' admits a unique decomposition RG = @ B; as a finite direct sum
of indecomposable algebras Bj, which are called blocks. Each block is of the form
Bj = RGej for some central primitive idempotent €; of RG. By Hensel’s Lemma, every
central idempotent of F'G lifts to a central idempotent of RG. The induced decompo-
sition F'G = @ F ®p Bj is therefore also the decomposition of F'G into indecomposable
algebras, which we call blocks as well. Furthermore, for every indecomposable RG-
module M there is at most one block B with M.B # 0. Therefore, it makes sense to
study the group algebras one block at a time. To a block B one associates its defect
group Dp, see Definition 2.2.19, and we call the p-valuation of the order of D the
defect of the block.

Since we are only interested in the module category of the blocks up to equivalence
of categories, we consider the blocks up to Morita-equivalence. The lowest-dimensional
algebra in a Morita-equivalence class of algebras, called the basic algebra, is unique up
to algebra isomorphisms. Note that the basic algebra A of a block over FG can be
obtained by tensoring the basic algebra A of the corresponding block in RG with F,
see Lemma 2.3.5. Consequently, the algebra A is a lift of A, i.e. an R-algebra I' such
that F o = A.

One goal of this work is to give explicit descriptions of the basic algebra A of a
block in RG as a subalgebra in the Wedderburn decomposition KG = @ D™ of



KG. Although the details of the procedure depend on A, the strategy is roughly the
following: First describe A as a quiver algebra. In our examples a description is either
readily available in the literature or we found one by hand.

As the second step, we construct an algebra I'g ¢ @;¢r R;“X"i, where R; is the integral
closure of R in D;, such that every algebra I' for which

1. T is a lift of A,

2. K ®I is semisimple with the same center as K ® A,
3. T has the same decomposition matrix as A,

4. T is self-dual with respect to the same form as A,

is isomorphic to I'y. We call an R-algebra I' fulfilling these conditions a A-lift of A.
Checking whether certain algebras have a unique A-lift is the second goal of this work.

The method outlined above can be considered as an inverse process to the construc-
tion of the basic algebra of A as the factor algebra F ® g A. This idea is based on work
of Wilhelm Plesken [P1e83], which uses the p-modular representation theory of a group
G to obtain information about the integral p-adic group ring Z,G. This strategy was
further developed by Gabriele Nebe [Neb99] to obtain the full ring-theoretic structure
of suitable lifts A of group algebras and their blocks over fields of positive character-
istic. Florian Eisele [Eis12] then studied the question for which algebras such lifts are
unique, developed methods to transfer lifts along derived equivalences of algebras and
applied them to several infinite series of examples.

Blocks with semidihedral defect

The first types of blocks we study are those with a semidihedral defect group. Their
corresponding blocks over the residue field of characteristic 2 are a special kind of
tame algebras, which have been classified by Karin Erdmann [Erd90b]. It is not com-
pletely known which tame algebras are Morita-equivalent to blocks of group algebras.
However, it is known what their decomposition matrix and their representations in
characteristic 0 would look like if they were blocks. We will use this information to
show the theorem below.

Theorem. The algebras of type SD(2B)? and SD(2.A)9 are not Morita-equivalent to
blocks of group algebras.

Proof. See Theorem 3.2.11 and Theorem 3.2.14. O

We will further show that if A is either SD(2B)i or SD(2.4)3 and A is the basic
algebra of a block of a group algebra such that A has a A-lift, then A has infinitely
many A-lifts, see Theorem 3.2.11 and Theorem 3.2.14. For a basic algebra A of a block
with a semidihedral defect group such that FF ®p A 2 SD(3B);, we will construct a
A-lift of I ®r A and show that it is the unique lift. Then, we will apply methods
developed by Florian Eisele [Eis12] to show the following result.



Theorem. Let A be the basic algebra of a block with a semidihedral defect group.
Then every tame algebra of semidihedral type with three simple modules has at most
one A-lift for every given center.

Proof. See Theorem 3.2.21. 0

These methods use derived equivalences between those blocks, which have been
determined by Thorsten Holm [HolO1].

Defect 3 blocks of symmetric groups

The second type of block we investigate is the principal block By of the group algebra
ZpSp 2 S3 for p > 3, that is the block such that T'By # 0 for the trivial Z,5, v S3-
module 7. We will use results by Joseph Chuang and Kai Meng Tang [CT03] about
wreath products of algebras to determine its decomposition matrix and the quiver of
the corresponding block over F,. Then we will construct a lift of its basic algebra A
and obtain:

Theorem. Let A be the basic algebra of the principal block Bo(ZypSp 2 S3). Then the
algebra A has a unique A-lift.

Proof. See Theorem 4.4.35. 0

This block is of particular interest since it is Morita-equivalent to a defect 3 block of
a symmetric group and it has been shown that all defect 3 blocks of symmetric groups
in characteristic p > 3 are derived equivalent. Our result therefore lays the ground
work for further investigation of those blocks.

Outline

In Chapter 2 we will recall the theory required to achieve our results. We will start
with general properties of finite-dimensional algebras, continue to introduce properties
of algebras over discrete valuation rings R and their connection to the corresponding
algebras over the field of fractions and the residue field of R and finish by consider-
ing semisimple algebras. The second section will discuss special properties of group
algebras and define defect groups. In the third section, we introduce two notions of
equivalence of rings, Morita-equivalence and derived equivalence, and some of their
properties. We continue by introducing the theory of graduated orders and conclude
the chapter by introducing specialized methods to calculate lifts and to transfer unique
lifting results along derived equivalences.

In Chapter 3 we consider tame blocks. We will start by recalling the classification
of tame blocks by Erdmann [Erd90b] and other general properties of blocks of semidi-
hedral defect. The main results of this chapter are the construction of infinitely many
lifts for the algebra SD(2B){ for ¢ = 1 and the non-existence of a lift if ¢ = 0, see Theo-
rem 3.2.11, the construction and uniqueness of a lift of SD(38)1, see Theorem 3.2.18,



and the transfer of the uniqueness and non-existence of the lifts to derived equivalent
algebras, see Theorem 3.2.14 and Theorem 3.2.21.

In Chapter 4 we determine a unique lift of the basic algebra of the principal block
By(F,S, 2 S3), see Theorem 4.4.35. We will start the chapter by recalling the results
by Chuang and Tang about wreath products and the structure of the principal block
By(F,Sy,). We continue by applying those theories to find an explicit description of
the basic algebra A of the block By(Zy,S), 2S3). This lifting will be done in roughly
three steps. At first we determine the subalgebras eAe for primitive idempotents e of
A. Next we determine the exponent matrices, see Definition 2.4.4, and finally we will
give explicit descriptions of generators of the algebra.
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2 Representation theory

In this chapter we give a short introduction to the methods of representation theory
used in this work. All topics are widely covered in literature and we will therefore give
references for most proofs instead of repeating them. For a more detailed introduction
to representation theory the reader is referred to [PD77] or [NT89].

All modules we consider will be finitely generated right modules unless stated oth-
erwise. All R-algebras over a ring R will be R-free, and all modules over an R-algebra
will be R-lattices, which means they are R-free. We will use “.” to denote the multipli-
cation of a ring on its modules and “” to denote multiplication inside the ring to avoid
confusion. If confusion is unlikely we will leave out the operator for any multiplication.

2.1 Finite-dimensional algebras

In this section we will introduce important properties of finite-dimensional algebras.

2.1.1 General properties

Let R be a commutative ring and A a finite-dimensional R-algebra.

Definition 2.1.1. Let B < A be a subalgebra of A, V a B-module and W an A-module.
Then Ind’g V=V ®p A is an A-module with multiplication (v ® ay).a2 == v ® ajas
forveV ay,as € A, the induced module of V to A.
The A-module W becomes a B-module by restricting the multiplication of A on W
to B. We denote this restricted module by Resp W.

Lemma 2.1.2. Let B < A be a subalgebra of A, V a B-module and W an A-module.
The map

f:Homp(V,Ress W) — Hom 4 (Ind V, W)
pr— ('l) ®a+— <p(v).a)

s an isomorphism of R-modules.

Proof. See [NT89, Theorem 11.3 (i)] O

Definition 2.1.3. 1. A system e1,...,e, of primitive orthogonal idempotents is
called complete if

la=e1+...+epn.



2. A system Pi,..., P, of projective indecomposable A-modules is called complete

if
A=Po...0P,.

Remark 2.1.4. Ifey,..., e, is a complete system of primitive orthogonal idempotents,
then e1A,...,e, A is a complete system of projective indecomposable A-modules.

Conversely, every decomposition of A into indecomposable A-modules yields a de-
composition of 14 into primitive orthogonal idempotents.

Lemma 2.1.5. Assume that R is a field. Let {Py,...,P,} be a complete system of
projective indecomposable A-modules.

1. Every (finitely generated) projective indecomposable A-module is isomorphic to
P; for some i€ {1,...,n}.

2. The head S; := P;/rad(F;) of P; is simple for everyie {1,...,n}.
3. Every simple A-module is isomorphic to S; for some i€ {1,...,n}.

Proof. The first part follows since every projective module is a direct summand of a
free module and if such a direct summand is indecomposable it has to be a direct
summand of the free A-module A. For the other parts see [NT89, Theorem 8.10]. [

In particular, the above lemma shows that there are only finitely many isomorphism
classes of simple A-modules and that they all occur as heads of direct summands of A.
In the semisimple case the projective indecomposable modules are themselves simple
A-modules.

Definition 2.1.6. 1. We say that two primitive orthogonal idempotents e, f € A
are isomorphic (e f) if eAz fA.

2. A set {P1,...,P} of non-isomorphic projective indecomposable A-modules is
called complete if for every projective indecomposable module P there is some
ie{l,...,l} such that P = P;.

3. A set {e1,...,e} of non-isomorphic primitive orthogonal idempotents is called
complete if {e1A,...,e A} is complete.

4. A set {S1,...,S1} of non-isomorphic simple A-modules is called complete if for
every simple module S there is some i€ {1,...,l} such that S = S;.

Lemma 2.1.7. Assume that R is a field and let P,Q be two projective indecomposable
A-modules. Then

P/rad(P) zQ/rad(Q) < P = Q.

Proof. See [PD77, Theorem 1.8]. O



Corollary 2.1.8. Assume that R is a field and let {P,..., P} be a complete set of
non-isomorphic finitely generated projective indecomposable A-modules. Then the set
{P1/rad(Py),...,P/rad(P,)} is a complete set of non-isomorphic simple A-modules.

Lemma 2.1.9. Let e and f be two idempotents of A. Then the map
eAf — Homu(fA, eA)
ar— (r~a-x)

is an isomorphism of R-modules. If e = f then the map is a ring-isomorphism. We
therefore call the ring eAe an endomorphism ring.

Proof. See [NT89, Theorem 4.3]. O

Lemma 2.1.10 (Schur). Assume that R is a field and let V be a simple A-module.
Then End (V') is a division algebra.

Proof. Since both the kernel and the image of an endomorphism of V' are submodules,
both have to be either zero or V. Therefore, the only non-bijective endomorphism of
V' is the zero-homomorphism. ]

Definition 2.1.11. Assume that R = K is a field. K is called a splitting field for A
if Enda (V) = K for every simple A-module V.
2.1.2 Algebras over discrete valuation rings

Definition 2.1.12. Let p be a prime number. A p-modular system is a triple (F, R, K)
where R is a complete discrete valuation ring with maximal ideal m, the residue field
F = R/m is a field of characteristic p and the field of fractions K = Quot(R) of R has

characteristic 0.

For the rest of the section, let p be a prime number, (F, R, K) a p-modular system
and A a finite-dimensional R-algebra. Assume that F' is a splitting field for F'®gr A
and that the K-Algebra K ®p A is semisimple. Let ¢: A - A := F @ A denote the
natural epimorphism and denote the generator of the maximal ideal of R by .

Lemma 2.1.13. The radical of A is pro-nilpotent, i.e. 7R ¢ rad(A) and there is
some n € Zso with rad(A)™ € 7R.

Proof. See [NT89, Theorem 14.1]. O

Lemma 2.1.14 (Hensel). Let e1,...,e be orthogonal primitive idempotents of A.
Then there are orthogonal idempotents eq, ..., e; such that ¢(e;) =€; forie{l,...,l}.

Proof. See [NT89, Theorem 14.2]. O

Lemma 2.1.15. Let e, f be primitive idempotents of A. Then

d(e)A = o(f)A = el = fA

10



Proof. See [NT89, Theorem 14.2]. O

Hensel’s Lemma and Lemma 2.1.15 give us a very strong connection between the
representation theory of A and that of A via the relationship between idempotents,
projective indecomposable modules and simple modules. In the following corollary we
summarise these connections.

Corollary 2.1.16. Let {e1,...,e;} be a complete set of non-isomorphic primitive or-
thogonal idempotents of A. Then

1. {Py = e1A,..., P, = e, A} is a complete set of non-isomorphic projective inde-
composable A-modules.

2. We have S; := P;/rad(P;) = S; := ¢(P;)/rad(4(P;)) for i e {1,...,1} and hence
{S1,...,5n} is both a complete set of non-isomorphic simple A-modules and non-
isomorphic simple A-modules.

3. {e1:=d(e1),...,en = d(en)} is a complete set of non-isomorphic primitive or-
thogonal idempotents of A.

4. {Py:=e1A = ¢(Py),..., P, :=e,A = ¢(P,)} is a complete set of non-isomorphic

projective indecomposable A-modules.

Proof. The equality of the simple A- and A-module follows from Lemma 2.1.13. The
rest follows by combining Hensel’s Lemma and Lemma 2.1.15 with Lemma 2.1.8. [

Definition 2.1.17. Let S be a ring, Kg = Quot(S) its field of fractions and A an
S-algebra which is finitely generated as an S-module. Let V be a Kg ®5 A-module.
Then a A-lattice L is called an S-form of V if Ks®s L2V as Kg ®g A-modules.

Lemma 2.1.18. Let S be a principal ideal domain, Kg = Quot(S) its field of fractions
and A an S-algebra. Then every Kg ®g A-module has an S-form.

Proof. See [NT89, Theorem I11.1.6] O

We fix the following notation. Let {Vi,...,Vi} be a complete set of non-isomorphic
simple K @ g A-modules. Let L; be a A-lattice with K ®p L; = V; for i € {1,...,k}.

Let {e1,...,€e;} be a complete set of non-isomorphic primitive orthogonal idempo-
tents of A. Define for j e {1,...,l}

€j = ¢(¢;)

Pj:=¢;A

Fj:: F®RrP; ze_jK

Sj := Pj/rad P;
Sj=F®prS;j=P;/rad P;.

Then Si,...,S; is a system of representatives of the isomorphism classes of simple
A-modules.

11



Notation 2.1.19. Let B be a ring for which the Krull-Schmidt theorem holds and let
M and N be two B-modules. Then we denote the multiplicity of N in a composition
series of M by [M : N].

Definition 2.1.20. Let B be a ring and A be a subcategory of Mod 4. Let G be the free
abelian group generated by {{M]| M € Obj(A)} where [M] denotes the isomorphism
class of M. Let

H = ({[M1]+[M3] - [M2]|0—> My - My — M3 — 0 is a short exact sequence}) < G.
Then we define the Grothendieck group of A as
Ko(A)=G/H.

Definition 2.1.21. 1. Forie{l,...,k} and je{1,...,l} the decomposition num-
ber

dij = [F ®p P;: V;]
is the multiplicity of the simple module V; as a direct summand of K ®p pP;.
2. The matriz D = (di;); is called the decomposition matrix of A.
3. The map
0" : Ko(projy) — Ko(modxay,a)
P—K®P
is called the decomposition map of A.

Note that the decomposition matrix is the matrix of the decomposition map with
respect to the isomorphism classes of the projective indecomposable modules as a basis
of proj, and the isomorphism classes of simple modules as a basis of modxgp-

Definition 2.1.22. For i,j € {1,...,l} we denote by c;; = [P; :gj]_the multiplicity
of the simple A-module S; in the projective indecomposable module P;. The matriz
C = (cij)i,j 1s called the Cartan matrix of A.

Lemma 2.1.23. Fori,je{1,...,1} we have ¢;; = dimp(Homp(P;, P;)).
Proof. See [Ben98, Lemma 1.7.6]. O

Lemma 2.1.24 (Brauer reciprocity). Assume that K is a splitting field for K @ g A.
Then the following equalities hold.

1. dij = [F ®pr L;: Sj]
2. C=D".D.
Proof. See [Ben98, Proposition 1.9.6]. O]

12



Definition 2.1.25. Forie{l,...,k} and je{1,...,l} define
di = {tE{l,,l}|dZt>0}
cj={se{l,...,k}|ds; >0}.
Analogously to the decomposition of modules into indecomposable modules, we
decompose algebras into their blocks.

Definition 2.1.26. 1. Let1p =€1+...+¢&p be a decomposition into centrally prim-
itive idempotents. Then A = 1A & ... ® e, A is a decomposition of A into inde-
composable algebras. We call the algebras ;A the blocks of A.

2. For every indecomposable A-lattice L there is exactly one i€ {1,...,n} such that
Le; 0. In that case we say that L lies in the block &;A.

3. Let V be a simple K ® g A-module. Then there is exactly one i€ {1,...,n} such
that Ve; #0. We say that V lies in the block &;A.

4. Let T be the trivial A-module and assume that T lies in the block €;A. Then we
call ;A the principal block of A and denote it by By(A).

2.1.3 Semisimple algebras

Lemma 2.1.27. Let K be a field, A a semisimple K-algebra and let
k n;
A= ei/\A
=1 A\=1

be an A-module decomposition of a such that e;y is primitive for every i and A and
eix £ ey if and only if © = j. Then we have the following.

1. The module U; := @} ei\A is a two-sided ideal in A and therefore a block.

2. Let €; be the central primitive idempotent with U; = ;A and let V' be a simple
A-module. Then V 2 e A if and only if Ve; #0.

Proof. First note that since A is semisimple every module ¢e;) A is simple.

1. Left-multiplication by an element of A is a right A-module homomorphism and
can thus only send simple modules to isomorphic modules or 0.

2. This follows since by assumptions e;» A # ej\A for i # j.
O

Lemma 2.1.28 (Wedderburn). Let K be a field, A a semisimple K-algebra and
{S1,...,51} a complete set of non-isomorphic simple A-modules. Then D; := End 4(S;)
is a division algebra for every i € {1,...1} and there is an isomorphism of K -algebras

l
®:A— @D,
i=1

13



where n; = dim(S;) and with ®(g;) = Inixn; for i € {1,...,1}. We call such an
isomorphism ® a Wedderburn decompositilon of A.
Recall that if K is a splitting field for A then D; = K for every i.

Proof. See [Ben98, Theorem 1.3.5]. O

Definition 2.1.29. Let K be a field, A a semisimple K-algebra and {Si,...,5;} a
complete set of non-isomorphic simple A-modules. Assume further that there is a
seperable field extension L|/K such that L is splitting field for L ® x A. Then the
reduced trace Tr,.q(a) of an element a € A is defined as follows. Let

l
U:Leg A— @Lm ™
i=1

be a Wedderburn decomposition of L®x A, 1: A > L A,a~1®a and (ai)ézl =
U(u(a)). Then Trueq(a) =Y' Tr(ay).

Lemma 2.1.30. Let K and A be as above. The reduced trace Tr,.q does not depend
on the choice of the splitting field or the Wedderburn decomposition and Try.q(a) € K
for all a € A.

Definition 2.1.31. Let K be a field, A a semisimple K-algebra and u € Z(A)* a
central unit in A. Then the bilinear form T, is defined as follows:

T,:AxA— K
(a,b) — Trpeq(u-a-b).

Lemma 2.1.32. Let R be a complete discrete valuation ring with field of fractions
K = Quot(R). Let A be an R-algebra such that K ®r A is semisimple. Let {Si,...,S;}
be a complete set of non-isomorphic simple K ® g A-modules, D; := Enda(S;), R; € D;
be the integral closure of R in D; and let eq, ... e, be a complete system of primitive
orthogonal idempotents of A. Then there is a Wedderburn decomposition ® of K @ A
such that both

l
B(A) c ) R
=1

and the idempotents ®(e1),...,®(e,) are diagonal.

Proof. Since D; is a finite extension of K, R; is a discrete valuation ring and thus in
particular a principal ideal domain for every i. Let ® be a Wedderburn decomposition.
We are going to construct an algebra automorphism W of @._; D™ such that ¥o®
is the required Wedderburn decomposition, that is if 14 : A > K ® A, A\ » 1 ® \ then
W o doyp factors through @ézl RI""™i as depicted by the following diagram:

14



Vod e
K®r A —— @, D™

N Jow

A-------- S @2‘:1 leixmi

where (1 is the obvious inclusion. The automorphism ¥ will also be chosen in such
a way that the idempotents U(®(ey)),..., U (P(e,)) are diagonal. We construct ¥
component wise by considering each direct summand D™ separately. Note that if
g; is a centrally primitive idempotent of K@z A then ®(g; K ®gA) = D;mxmi, gi\ is an
R-algebra with K ® e;A = ;K ®p A and {e;e; | j € {1,...,n}} is a set of orthogonal
idempotents.

Let &; be a centrally primitive idempotent of K ® g A with V;e; # 0. Then we can
identify ®(g; K ® g A) = D"*™ with Endp,(D;""). With this identification X := D™
becomes an ;K ® g A-module and thus by Lemma 2.1.18, we can find an R;-form
LcX; Let B=(by,...,bn,) be an R;-basis of L compatible with the decomposition
L = @}, Lejej. Then B is a Dj-basis of X;. Let ¥; : DM D™ be the
conjugation with the base change matrix from the standard D;-basis of X; to B.
Then M = U;(®(a)) € ¥;(P(K ®r A)) is the matrix describing the multiplication
of a on X; with respect to the basis B. If a € A then bj.a € L = (b1,...,bm,)r,
for every j € {1,...,m;} and thus the entries of M all lie in R;. Now assume that
a = giej, let ke {1,...,m;} and let m € {1,...,n} such that b, € Le;e,. Then
breiej = breje; = brdy,; and thus M is a diagonal matrix.

By combining these base changes as ¥ := @izl U, we get an algebra automorphism of
EBi»Zl D™ induced by conjugation such that ¥ o ® is a Wedderburn decomposition
as in the statement of the lemma. O

Definition 2.1.33. Let K be a field, R a subring of K and A a K-algebra. We say
that an R-subalgebra A of A is an R-order in A if A generates A as a K-vector space.

Definition 2.1.34. Let K be a field, R a subring of K and A a K-algebra. Let further
T:AxA— K be a non-degenerate bilinear form on A.
For an R-order A in A we define its dual A™ to be

A* :={ae A|T(a,A\) C R}.

We call A symmetric or self-dual in A with respect to T if A = A7,
If K = Quot(R) and A=K ® A we say A is self-dual omitting the reference to A.

This notion is strongly related to the usual notion of the dual space:

Lemma 2.1.35. For every R-order A and every non-degenerate bilinear form on K®A
we have A¥ =~ Homp(A, R) = A*.

Proof. As T is non-degenerate, it induces an isomorphism between A and A*. The
order A* can be embedded in A* as the set of all K-homomorphisms ¢ from A to
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K for which ¢(A) € R. Then A* is the preimage of this set under the isomorphism
induced by T. O

Lemma 2.1.36. Let A as above be self-dual with respect to T and e, f be idempotents
in A. Then (eAf)' = fAe. In particular eMe is self-dual with respect to T.

Proof. See [Thé95, Proposition 6.4]. O

2.2 Group algebras

In this section, we will discuss properties of group algebras. For the whole section, let
G be a finite group and R be a field or a complete discrete valuation ring.

Definition 2.2.1. We define the group algebra RG of G over R as the free R-module
with basis G, where the multiplication is given by the distributive extension of the group
operation.

Definition 2.2.2. A representation of G over R of rank n is a group homomorphism
X :G— Gl,(R).

Lemma 2.2.3. Let X be a representation of G over R of rank n. Then R"™ becomes
an RG-module via
VxRG— R
(v,9) — vX(g).
Denote this module by Vx.
Conversely, let V be an RG-module with n =dimV < co. Then the following map is
a group homomorphism.
XV G — EndR(V)* = Gln(R)
gr— (v v.g)
For two group homomorphisms X,Y : G — Gl,(R) we have Vx = Vy if and only if

X andY are conjugate in Gl,(R). Further, we have Xy, is conjugate to X and Vx,,
18 isomorphic to V.

Proof. This follows from straightforward calculations O

Definition 2.2.4. If R = K is a field we call a representation X irreducible if the
KG-module Vx is simple.

The above lemma shows that the study of RG-modules is the same as the study of
representations of the group G over R. The following Lemma of Maschke implies that
the representation theory of a group over a field of characteristic 0 is generally much
simpler than that over a field whose characteristic divides the group order.
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Lemma 2.2.5 (Maschke). Let F be a field of characteristic p > 0. Then FG is
semisimple if and only if p does not divide the order of G.

Proof. See [NT89, Theorem 1.22] O
Definition 2.2.6. 1. We denote the set of conjugacy classes of G by Cl(G).

2. For g € G we denote the conjugacy class containing g by ¢©.

3. We define the class sum of a conjugacy class C' € C1(G) as C:= Ygec g€ KG.

Over a field of characteristic 0 a lot of information about the representation theory
of a group can be gathered from the traces of the irreducible representations.

Definition 2.2.7. Let R = K be a field of characteristic 0 , V be a KG-module and
Xy the corresponding representation.

1. We define the character xv of V as

xv: ClG) — K
g% — Tr(Xv(g)).

2. The character xv is called irreducible ¢f V' is simple. Both V and xy are called
absolutely irreducible if L ® V' is a simple LG-module for every algebraic field
extension LK.

3. Let K be the algebraic closure of K. For every character x of KG, we define
K(x)=K({x(s)|g¢G})
to be the character field of y over K.

Lemma 2.2.8. Let K be a field of characteristic zero and V., W be KG-modules.
Then

1. xy(1) =dimg (V) and
2. xv =xw e VaW.
Proof. See [CR62, Theorem 30.12]. O

Definition 2.2.9. Given a character x, we define the module V, corresponding to
X to be a module such that xv, = x. Lemma 2.2.8 implies that V, is unique up to
isomorphism.

Remark 2.2.10. With Lemma 2.2.8 it also makes sense to enumerate the rows of the
decomposition matriz of a group algebra RG by the irreducible characters of KG.
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Lemma 2.2.11. Let V be a simple KG-module and let K ® V = @1 Vi with simple
KG-modules V;. Then

Z(Endga(V)) = K(xv;)
for every i el.
Proof. See [NT89, Theorem 6.2] O

Lemma 2.2.12. Let L/K be two fields of characteristic zero, V' an absolutely irre-
ducible LG-module and assume that xyv(¢%) € K for all g € G. Then there is an
m € Zsg and a K-module W such that xyww =m- xv.

Proof. See [CR62, Lemma 70.12]. O

Lemma 2.2.13. Let H < G be a subgroup, T be a right transversal of H in G, and M
be an RH —module. Then IndES M = M®gy RG is generated by {met | m e M,t e T}
as an R-module.

Proof. Tt is clear that {m ®rm g | m € M,g € G} generates Indgg M. Now by the
choice of T there is for every g € G an h € H and a t € T with g = h-¢ and thus
m® g=m.h®t for every me M. O

One important property to determine a group algebra over a discrete valuation ring
is its self-duality.

Lemma 2.2.14. Let (K, R, F) be a p-modular system such that KG is semisimple.
We define u = (u;); € Z(KG) = @le Endga(V;) via u; = dlfg‘vi. Then RG is self-dual
with respect to the form Ty as in Definition 2.1.31.

Proof. See [CR62, Remark 2]. O
Lemma 2.2.15. Let v =% qagg € KG. Then
reZ(G) = ag=apg, Vg,heG.
Thus Z(KG) is generated by the class sums {C' | C € CI(G)}.
Proof. Since G is a basis for KG, we know that
reZ(G) < hlzh =
The assertion follows by comparing the coefficients. O

We know that every indecomposable representation of an algebra lies in a unique
block, see Definition 2.1.26. Each block B is obtained by multiplying the algebra with
a centrally primitive idempotent, which we will denote by €p. In the case of group
algebras one can also associate to each block a subgroup of G, its defect group, which
we will define below.

For the rest of the section let (K, R, F') be a p-modular system.
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Theorem 2.2.16. Let P be a finitely generated projective F'G-module.
Then p*»(SD | dim(P).

Proof. See [NT89, Theorem 1.26]. O

Definition 2.2.17. Let k be the number of simple KG-modules and | the number of
simple RG-modules. The Brauer graph of A is the graph T = (V,E) with V = {1,... k}
and E ={(i,7) | 3z e {1,...,1},dizgdjz # 0}.

Lemma 2.2.18. 1. If V is a simple KG-module, P is a projective RG-module,
and V' and P lie in different blocks of RG, then [P:V]=0.

2. If V and W are simple KG-module lying in the same block of RG, then the
corresponding vertices in the Brauer graph are connected.

3. The Brauer graph has exactly one connected component for each block of RG.
Proof. See [PD77, Section 4.2 (d)]. O

Definition 2.2.19. 1. For two subsets X,Y € G of G, we write X € Y if there is
a geG such that g ' XgcY.

2. Let C = g% e CI(G). A p-subgroup D of G is called a defect group of C if D is
a p-Sylow subgroup in Ci(g). Note that all defect groups of a conjugacy class C
are conjugate in G.

3. For a p-subgroup D of G, we define

Ip= Y FCcFG
C:DccagD

where D¢ is a defect group of C.

Lemma 2.2.20. For every p-subgroup D of G, the set Ip is a two-sided ideal in
Z(FQG).

Proof. See [PD77, Lemma 4.3A]. O

Theorem 2.2.21. Let B be a block of FG. Then there exists a subgroup D of G such
that

1. egelp and
2. if D' <G is a p-subgroup with eg € Ipr then D <g D’.
This group is unique up to conjugation in G.
Proof. [PD77, Lemma 4.3A] O

Definition 2.2.22. Let B be a block of FG.
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1. A group D as in Theorem 2.2.21 is called a defect group of B and is denoted by
Dpg.

2. We call dp := vp(|Dpl) the defect of B.

Lemma + Definition 2.2.23. Let B be a block of FG and let a = vp(|G|). Then
P | dimg V
for every simple KG-module V' and there is one simple KG module Vi such that
P24+ | dimy V.
We define the height of an irreducible module V' to be
ht(V) :=dp - a - vp(dimg V')
We say that ht(xy ) = ht(V') is the height of the corresponding character.

Proof. See [PD77, Theorem 4.5A]. O

Example 2.2.24. Assume that dg = 0 and thus |Dp| = 1. Then there is exactly one
simple KG-module V' which lies in B. Furthermore, for an R-form L in V' the module
S =F QgL is simple and the only FG-module lying in B. Fvery block containing an
irreducible KG-module V' with vy,(dimV') = 1,(|G)) is a defect zero block. For a proof
see [PD77, Theorem 4.6A, 4.5B].

Next we consider blocks with defect 1. From now on, let |G| = p®q where p [ ¢q. Let
Ly = Qp(¢pmq) and Lo = Qp(¢,) where (pmq is a primitive p™g¢-th and ¢, a primitive
g-th root of unity and (L1, R, F') be the corresponding p-modular system.

Lemma 2.2.25. 1. The field Ly is a splitting field for G.

2. For o € Gal(L1/L2) and an irreducible character x of L1G, x° is also an ir-
reducible character of L1G. We say that x and x° are p-conjugate and write

X ~p X7
3. Let x and x° be as above with corresponding simple L1G-modules V' and V, and
R-forms M and M,. Then FQr M and F ®g M, have the same irreducible con-

stituents. In particular, the row of the decomposition matriz of G corresponding
to x is equal to that corresponding to x°.

Proof. See [PD77]. O

Definition 2.2.26. Let x1,..., X be a complete set of representatives of p-conjugacy
classes of characters of L1G and assume that FG has exactly | non-isomorphic simple
modules. We define the reduced decomposition matrix of LiG as D° = (d%), where
dgj =dy,j 15 the j-th entry of the row of the decomposition matrixz corresponding to x;.
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Theorem 2.2.27. Let B be a block with dg =1, a = v,(|G|), x1,-.., Xk a complete set
of irreducible characters of L1G and assume (by reordering) that x1,...,Xu 1S a com-
plete set of representatives of the p-conjugacy classes of L1G-characters. Let further
be the number of isomorphism classes of simple F'® r B-modules, D = (d;;) the decom-
position matriz and D° = (d?j) the reduced decomposition matriz of B. Furthermore

define

ti =7 1 x5 ~p xi}l,
Se={xi|tixi(1) =tix1(1) mod 2},
T :={x:|tixi(1) = ~t1x1(1) mod 2°}.

Then the characters and the decomposition matrix have the following properties.
1. SuT = {X1,...,Xk}.

2. If xi tp xj and we have either x;,xj € S or Xi, xj € T, then diqdjq = 0 for every
ae{l,...,l}.

3. For everyie{l,...,k} and j e {1,...,l}, we have d;j € {0,1}.

4. For j e {1,...,l}, there are exactly two characters x;, and x;, with i1,is €
{1,...,u} such that d;,;,d;,; # 0. One of those lies in S and the other in T.

Proof. These are results by Brauer, see [Bra4l]. O

The theory of block with defect 1 by Brauer has been generalized to blocks with a
cyclic defect group by Dade [Dad66].

2.3 Morita- and derived equivalence

2.3.1 Morita-equivalence

We are interested in the module category of algebras. We therefore introduce the
notion of Morita-equivalence and formalize what it means for two rings to have the
same module category.

Definition 2.3.1. 1. Two categories C and D are equivalent if there are two func-
tors F:C —>D and G : D - C such that F oG is naturally isomorphic to Idp
and G o F is naturally isomorphic to Idc.

2. Two rings R and S are called Morita-equivalent if the categories Modgr and
Modg are equivalent.

Theorem 2.3.2. Let C and D be two categories and F : C —> D a functor. Then F is
an equivalence of categories if and only if F induces bijections on the homomorphism
sets and for every object D in D there is an object C in C such that D = F(C).

Proof. See [Zim14, Proposition 3.1.28] O
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This theorem yields the following alternative characterisation of Morita-equivalence.

Corollary 2.3.3. Two rings R and S are Morita-equivalent if and only if there is a
functor F : Modg — Modg such that

1. For any two R-modules M, N the map Homg(M,N) - Homg(F(M),F(N))
induced by F is bijective.

2. For every S-module V there is some R-module M such that V = F(M), i.e.
F induces a bijection between the isomorphism classes of R-modules and the
isomorphism classes of S-modules.

Definition 2.3.4. Let R be a field or complete discrete valuation ring, A a finite-
dimensional R-algebra and eq,...,e, a system of primitive orthogonal idempotents
such that 1= Yi"1 e;. Then A is called basic if e;A ¢ e;A, for all i # j.

Lemma 2.3.5. If R is a complete discrete valuation ring with residue field F' and A
is a basic R-algebra, then F'® A is a basic F-algebra.

Proof. This follows from the definition and Corollary 2.1.16. O

Lemma 2.3.6. Let K be a field, A be a basic K-algebra and assume that K is a
splitting field for A. Then every simple A-module is one-dimensional.

Proof. See [ASS06, Proposition 1.6.2]. O
Lemma 2.3.7. Let A be finite-dimensional algebra.

1. There is a a basic algebra B such that A is Morita-equivalent to B. This algebra
is unique up to isomorphism and it is called the basic algebra of A.

2. There is an idempotent e € A such that eAe is basic.

Proof. See [Zim14, Proposition 4.3.5] O

2.3.2 Quiver algebras

As we are going to consider algebras up to Morita-equivalence, we are looking for a way
to describe the Morita-equivalence class of an algebra A. From Lemma 2.3.3 we can
see that this is equivalent to describing the isomorphism classes of A-modules together
with the homomorphisms between them. This leads to the notion of the quiver of an
algebra.

Definition 2.3.8. A quiver @ = (Qq,Q1,s,t) is given by
e a set Qo of vertices,
e a set Q1 of arrows and

e two maps s,t: Q1 — Qo associating to each arrow a its source s(a) and target

t(a).
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This means a quiver is a directed graph, where there can be any number of edges
between two vertices.

Definition 2.3.9. Let Q = (Qo,Q1,s,t) be a quiver

1. Let a,be Qq. Then a path of length 1 > 1 from a to b is a sequence
(alai,...,qq|b) (2.1)

with o; € Q1 for i € {1,...1}, s(a1) = a, t(ay) = b and t(a;) = s(a41) for
ie{l,...,l-1}.

We also define a path of length O for each a € Qo and denote it by £, = (al|a)

2. The path algebra KQ of Q over a field K is the K-algebra having the set of all
paths in Q as a basis and the product between to paths of length | > 0 is defined
as

(alat, ... aq|b)(c|p1, - - -, Brld) = dpe(ala, ... ap, B, .., Bi|d).
We extend this product distributively to KQ.

Definition 2.3.10. Let K be a field and A a finite-dimensional K -algebra. We define
the quiver Q4 of A to be the following quiver.

e The vertices of Q4 are a complete set of non-isomorphic primitive orthogonal
idempotents {e1,...,e;} of A.

e For any pair e;,e;j of vertices we have dim((e;rad(A)e;)/(e;rad*(A)e;)) arrows
from e; to e;.

The quiver Q4 does not depend on the choice of a complete set of non-isomorphic
primitive orthogonal idempotents of A [ASS06, Lemma 3.2].

Lemma 2.3.11. Let R be a commutative ming, A a finite-dimensional R-algebra and
A’ c A a subalgebra of A with A’ +rad?(A) = A. Then A’ = A.

Proof. See [Ben98, Proposition 1.2.8]. O

Lemma 2.3.12. Assume that K is an algebraically closed field and A a basic and
indecomposable K -algebra. Let further

e {e1,...,en} be a complete set of primitive orthogonal idempotents of A
e Fori,je{l,...,n} let B;j C e;rad Ae; be such that
Bij = {b+e;rad® Ae; | be By}

is a basis of (e;rad Ae;)/(e;rad? Ae;).
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Then A is generated by

n
{61,...,€n} (@] U Bij.
1,j=1

Proof. See [Zim14, Proposition 4.5.1]. O

Corollary 2.3.13. Assume that K is algebraically closed, A is basic and indecompos-
able and let Q4 be its quiver. Then the algebra A is isomorphic to a quotient of the
path algebra of Q4.

2.3.3 Derived equivalence

We will give a short introduction to derived equivalences. For more details the reader
is referred to [Zim14].

Definition 2.3.14. 1. Let A be a ring. A chain complex C' over A consists of a
sequence of A-modules (CY)iez together with a sequence of A-homomorphisms
(d': C" — C™) ez such that d*'od' = 0.

2. A homomorphism between two chain complezes (C1,d1) and (Cy, dz) is defined to
be a sequence (' : Ct — C%) of A-module homomorphisms such that " odi =
d5t o ! for every i. For the last condition we also write pody = dg o .

3. Composition of two homomorphisms is defined component wise and we denote the
resulting category of all chain complexes of A-modules by C(A). More generally,
for every subcategory A of Mod 4 we denote the category of chain complexes with
objects in A by C(A).

4. For every chain complex (C,d) we define the shifted chain complex (C[i],d[i])
by C[i) := C™ and d[i}? = (-1)'d™™.
5. We let C*(A), C (A) and C*(A) denote the category of left-bounded (C* = 0

for i << 0), right-bounded (C* =0 for i >>0) and bounded complexes (left- and
right-bounded) respectively.

Chain complexes are defined in such a way that Im(d’) ¢ Ker(d*!) and thus the
homology H'(C) = Ker(d'*!)/Im(d") is well-defined. Additionaly homomorphisms
induce homomorphisms on the homology. The following definition introduces a class
of homomorphisms which are zero on homology.

Definition 2.3.15. Let (Cy,d;) and ‘(Cg,dg) be chain complexes over a ring A. A
sequence of A-homomorphisms (¢*: C7 —> C%);ez is called zero-homotopic if there is
a sequence (h': Ct — Ci )iz, of A-homomorphisms such that

p=dgoh+hod.
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Lemma 2.3.16. Zero-homotopic maps are homomorphisms of chain complexes. The
set of all zero-homotopic maps is closed under addition and the composition of two
homomorphisms of chain complexes is zero-homotopic whenever one of the homomor-
phisms is zero-homotopic.

Proof. This follows from straightforward calculations. O

This lemma assures that the following definition is well-defined.

Definition 2.3.17. Let A be a subcategory of Mods. Then we define the homotopy
category KC(A) to be the category where the objects are chain complexes and the homo-
morphisms are homomorphisms of chain complexes modulo the zero-homotopic maps.

We also define K*(A), K~ (A) and K°(A) analogously to Definition 2.3.14.

Any A-module M can be considered as an object in IC(A) as the complex 0 > M —
0. In the derived category this complex is isomorphic to any projective or injective
resolution of M. We define the category in such a way that any exact complex becomes
the zero complex.

Definition 2.3.18. Let A be a subcategory of Mod 4 for some ring A. We define the
derived category as

D(A) = K(A)JN

where N are the exact chain complezes in K(A). We again define D(A)~, D(A)* and
D(A)® analogously to Definition 2.3.14. For more details about the construction of
categories as a quotient by a null-system, see [Fis12, Remark 2.65].

Lemma 2.3.19. Let ¢ be a homomorphism of chain complexes such that its induced
homomorphism on homology is an isomorphism. Then ¢ is an isomorphism in the
derived category.

Proof. See [Zim14, Remark 3.5.38] O

Remark 2.3.20. Both D(A) and K(A) can be promoted to triangulated categories. As
neither the definition of a triangulated category nor the way those categories become
triangulated categories is essential for our discussions we will skip it and refer the
reader to [Zim1}] for details.

Lemma 2.3.21. Let A be an algebra over a commutative ring R. When we restrict
the quotient functor

Q:K (A — D (A)
to complexes containing only projective modules
Qpes ,C_(prOjA) - D_(A)

we obtain an equivalence of triangulated categories.
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Proof. [Zim14, Proposition 3.5.43] O

Definition 2.3.22. Let A be a ring and T € K®(proj,) be a chain complex. We say
that T is a tilting complex if

Homyeb (proj ) (T'[4], 1) = 0 for all i € Z~ {0} and
add(T) = K*(proj ),

where add(T) is the smallest triangulated subcategory of KP(proj,) containing T and
being closed under taking direct summands and direct sums.

Theorem 2.3.23 (Rickard). Let A and B be algebras over a commutative ring R
which are projective as R-modules. Then the following are equivalent.

1. The bounded derived categories D*(A) and D°(B) are equivalent as triangulated
categories.

2. The right-bounded homotopy categories K~ (proj4) and K~ (projg) are equivalent
as triangulated categories.

3. The bounded homotopy categories K?(proj,) and Kb(projg) are equivalent as
triangulated categories.

4. There is a tilting complex T € K®(proj ) with B = Ends4)(T).
In this case we say that A and B are derived equivalent.

Proof. See [Zim14, Theorem 6.5.1] O

Lemma 2.3.24. Let A be as above and T € Kb(proj,) be a tilting complex. Then
there is an equivalence of triangulated categories

Gr: D'(4) —» D" (Endps 4(T))
Proof. See [Zim14, Theorem 6.5.1] O

Definition 2.3.25. Let A and B be two rings and let (Cy,d1) € C(Modg) and
(Ca,d2) € C(gModa) be two chain complexes. Then we define the tensor product
C1 ®p Cs to be the complex where

(CrepC)' = Y ClepCh
J+k=i
(di ®pdy)' = D i ®idgy + (—l)jidci ®d.

J+k=i

It is straight forward to check that (di ®pds)™ o(di®pdy)" = 0 and therefore we have
(C1®p C2,d1 ®p da) € C(Moda).
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Lemma 2.3.26. The tensor product descends to the homotopy category KC(A).
Definition 2.3.27. Let A and B be two algebras over a commutative ring R.
1. Let F: K~ (A) — K~ (B) be an ezact functor. Then we call the functor
LF=Qo0Fo(Qes) " :D (A) — D (B)
the left derived functor of F.
2. We define the left derived tensor product as follows:
(~8% =) : D"(4) x D™(A ©5 B) — D™ (B)
(C1,Ca) = Q((Qres) (C1) @4 (Qres) ™ (C2)).
Then for a complex Y € K~ (A’ ®g B) the functor
-®} Q(Y): D (A) — D (B)
is the left derived functor of
-®4Y:K (A) — K (B).
Now we are ready to define two-sided tilting complexes, which give us a different

way to describe derived equivalences.

Definition 2.3.28. Let A and B be R-algebras. We call X € D*(A? ®r B) an
invertible object if there is a complex Y € DY(B? @ A) such that

XY 2[0-> 444 -0] and
Y ®4 X 2[0- zBp —0].
Theorem 2.3.29. Let A and B be two R-algebras which are projective as R-modules.

1. The algebras A and B are derived equivalent if and only if there exists an in-
vertible object X € DY(AP ® g B). Such an object is called a two-sided tilting
complex and

-®; X : D"(A) — D"(B)
18 an equivalence.

2. BEvery equivalence of triangulated categories between D*(A) and D°(B) is induced
by a two-sided tilting complex.

Proof. See [Zim14, Proposition 6.5.5] O

There is a strong connection between one- and two-sided tilting complexes.
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Theorem 2.3.30. Let A and B be as above.

1. Let X e DY(A?®R B) be a two-sided tilting compler. Then QY(X) considered as
an element of K~ (B) by restriction is isomorphic to a one-sided tilting complex
in D™(B).

2. For every one-sided tilting complex T € KP(B) there is a two-sided tilting complex
X e DY(A% ®p, B) which is isomorphic to T in D*(B).

Proof. See [Zim14, Corollary 6.1.6] O

2.4 Graduated orders

In this section we introduce the notion of graduated orders. A helpful way to under-
stand group algebras is by embedding them into such graduated orders. This method
was introduced by Plesken [Ple83].

Let R be a complete discrete valuation ring with maximal ideal 7R and field of
fractions K.

Definition 2.4.1. Let T" be an R-order such that K ® T is semisimple and {e1,..., e}
be a complete system of primitive orthogonal idempotents. Then I is called graduated
if e;Te; is a mazimal order in e;(K ® I')e; for all i.

Definition 2.4.2. Forn = (ny,...,n;) € Z5t, n:==Yt_, and M = (Mij)ijef1,..4} € Vg
we define the algebra

A(n,M) = {(aij);j:l e K™ | ajj e (n™3)"*" 1 <4, j <t}

Lemma 2.4.3. Let I' be a graduated order in K™™. Then there are t € N, n =
(n1,...,nq) € ZE5t and M = (Mij)ijef1,..4} € ZE such that T is isomorphic to A(n, M)
and

t
Zni:n

i=1
Myj + Mk 2 Mk
mi; = 0

iij:>mij+mji>0
foralli,j€{1,...t}.
Proof. See [Ple83, 11.3]. O

Definition 2.4.4. We call a matriz M such that T' = A(n, M) an exponent matrix of
[. IfT is already of the form A(n, M) we say M is the exponent matrix of .
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2.5 Lifting

Let (K,R,F) be a p-modular system where mR is the maximal ideal of R and let
vy : K - 7Z denote the valuation of R.

Definition 2.5.1. Let A be a finite-dimensional F-algebra.
1. We call an R-order A with F @z A = A a lift of A.

2. We call an element & € A alift of a € A if F®G is mapped to o by the isomorphism
FerA—A.

Definition 2.5.2. Let A be a finite dimensional F-algebra and A a lift of A. For i e
{1,...,k} let K;/K be a field extension, u; € K; and let d;j € Zso for everyie{1,... k}
and j € {1,...,l}. Then we say that A fulfills the rational conditions

Z(A) ‘ u ‘ 1 ...
K1 (75} d11 e dll
Kk Up dkl ce dkl

A=K ®A is semisimple,

there is an isomorphism

k
7(A) = D K;,
i=1

A is self-dual with respect to Ty, for u:= (u;)*., € Z(A) and

the decomposition matriz of A is D = (d;j);; where the i-th row corresponds to
the i-th summand of the center.

Our goal is to classify all lifts fulfilling certain rational conditions of certain F-
algebras. This question is motivated by the following special case.

Definition 2.5.3. Let B be an R-order such that K ® B is semisimple and B 1is self-
dual with respect to Ty, forueZ(K ® B). We say that an R-order A is a B-lift of B
if A is a lift of B and A and B fulfill the same rational conditions.

Thus, given an algebra B of interest, for example the basic algebra of a block of a
group algebra, our goal will be to classify all B-lifts of B and thereby in particular
gaining information about B. We will sometimes consider slight variations of this
question, but in every case we want to derive as much information as possible about
an R-order A given its residue algebra F'® A and its rational conditions. In this section
we will introduce some methods to achieve this goal.
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2.5.1 General methods

For this section let A be an R-algebra such that K ® g A is semisimple. Let {e; | i € I,}
be a complete set of non-isomorphic orthogonal idempotents of A, {V; | i € Iy} a
complete set of non-isomorphic simple K ® A-module, D; := End4(S;) and R; € D; the
integral closure of R in D;.

Then, by Lemma 2.1.32, there are m; € Zs such that A can be embedded in

I':=@ R ™.

ié]o

We will identify A with the image of this embedding and for the rest of the section
assume that A ¢ I'. We also assume that all decomposition numbers of A are 0 or 1.

Notation 2.5.4. By Ej; € K™" we denote the matriz such that (Ey)y = 1 and
(Ell)km =0 Zf (kvm) # (l7l)

Lemma 2.5.5. Let u e Z(K ®I'). Then the dual of I with respect to the form T, is
as follows:

= D g va(ui) pmixmi
(3

iEIO
Proof. Let a = ()i € @iey, ﬂ’”“(”i)Rzmxmi and 3= (B;); €. Then

Ve(Tu(B, ) = vr (D Tr(Bici)wi) > min{vy (Tr(a:Bi)wi)|i € Io}

iE]ﬁ

By assumption we have v, (Tr(o;8;)ui) = vr(Tr(if;)) + vr(u;) > —va(u;) + ve(u;) =0
and thus also v (Ty(af)) > 0.
Conversely let o = (a;); € K®T, let j € Iy with vz((a;)k) < —vr(uj) and let
B =(Bi)i el with ;= Ey e R and f; =0 for i # j. Then
ve(Tu(ap)) = vz (Tr(aB)u;)
= vr(())riuy)
= vr((0)i) +vr(u;) <0

and therefore o ¢ T O

Corollary 2.5.6. Assume that u € Z(K ® ') such that A is self-dual with respect to
Ty. Then the following algebra is a subalgebra of A:

@ W_Vﬁ(ui)R;niXmi c A

iGIO
Proof. By assumption it is A € T and therefore T'! ¢ Af = A. O

Lemma 2.5.7. Let e be a primitive idempotent of A, € a central primitive idempotent
of KA and V a simple K ® A-module with Ve # 0.
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o Then ee is either zero or a primitive idempotent of K ®g A.

e If f is a primitive idempotent orthogonal to e and both ce and ef are primitive
idempotents then ceK @p A 2 efK Qg A 2V and we obtain a K-vector space
isomorphism

€€Af —_—> EndK®A(V)
A— (x> z.))

Proof. 1t is easy to see that e is an idempotent of K®A. From Lemma 2.1.27 it follows
that every simple summand of e K ® eA is isomorphic to V. On the other hand we
obtain a decomposition K ® eA = @per, K ® g ceA. Thus, since all the decomposition
numbers of A are 0 or 1, ee K ® A is either 0 or isomorphic to V4, so ce is either 0 or
primitive. The isomorphism is the one given by Lemma 2.1.9. O

Lemma 2.5.8. Let e, f be two primitive orthogonal idempotents of A which are diag-
onal in I' and ; the central primitive idempotent of K ® A with ¢;V; # 0. If both
gie and g;f are non-zero then there are ji,jo € {1,...,m;} with ;e = Ej;, and
eif = Ejyj, € K™ . Thus we can describe ;K ® g Ae as follows.

eif K ®r Ae= {(amn)m,n € szzxml | (m,n) # (j2,72) = Gmn =0}

Proof. From the previous lemma and the assumptions we know that both €;e and ¢; f
are primitive diagonal idempotents in in ;K ® I', so they have to be of the form Fj;.
The rest follows by applying matrix multiplication. O

Definition 2.5.9. Let j,k € I, and o € epAej. From Lemma 2.5.8 we conclude that
g;a has at most one non-zero entry. We call this entry a; and define

Fij: exhe; — @ier, Ri
a o (g)ery-

The maps above are multiplicative in the following sense.
Lemma 2.5.10. If j,k,l e I,, a € eiAej and B € ejAey, then
Fii(B) Fij () = Fi;(Ba)
In particular if I = j we obtain
Fjj(Ber) = Fjj(ap)
Proof. This follows directly by matrix multiplication. O

Corollary 2.5.11. Let ji,...,jn € Ip, a; € ej,,, Aej, and f; € ej,Aej,,,. Then the we
obtain the following equalities:

Fjj, (Brar) = Fjy5, (a1 1)
Eljl(ﬁl - Pporamer 051) = F1j1j1(ﬁlal) s anfljnq (Bn—lan—l)'
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Lemma 2.5.12. Let j €1, and cerad A. Then

Fjj(a) € @TFRZ

iE]b

In particular if k € I, B € ey Aej and v € ejAey. Then

Fij(By)e @7 R;

ié[o

Proof. By Lemma 2.1.13, we know that some power of « lies in 7-A. Since Fj;((a)") =
(Fjj(a))" this is only possible if Fjj(a) € @ier, 7 Ry -

Remark 2.5.13. For j € I, the algebra e;Ae; is isomorphic to its image under Fj;.
We can even omit every component where d;; = 0 since e; is zero in these components
and consider the image of the following homomorphism.

proFjj:ejAe; — P R; (2.2)

1€Cj

Lemma 2.5.14. Let j € I, such that K; = K for all i € c;. Consider ejAej as an
R-subalgebra of Rl as in Remark 2.5.13. Then there is a martiz A of the form

A _ O 7Ta2 £2k7ra2k
0 0 Tk

such that ejAe; is the row space of A. For any such matriz we have

k !
Yak = (3 —ur)/2.
= =

Proof. We cann assume the row-reduced form since R is a principal ideal domain. The
rest follows from the self-duality of A. O

Lemma 2.5.15. For every i € Iy such that D; = K the order ;A\ is a graduated order.

Proof. As the decomposition numbers are zero or one and the order A is basic, we know
that dim(e;ejAe;) < 1 for every i € Iy and j € I,. Furthermore, if dimp(e;e;Aej) =
1 then, as ce; € cejAe; is an idempotent, eejAe; = R. Therefore g;,A ¢ K" ™ is
maximal. O

Definition 2.5.16. For i€ Iy such that D; = K we denote the exponent matriz of ;A
by M; p or, if A is clear from the context, by M.
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Conjugation

Our strategy to determine the isomorphism type of an R-order will often be to show
that it can be embedded into the Wedderburn decomposition of K ® A in a certain
way. Those proofs will often include assumptions we can obtain by base changes in
the matrix algebras Dz.”ixmi. The following lemmas show that certain properties can
be achieved this way.

Lemma 2.5.17. Let A = (a;;);;-; be a matriz in K™". Let
I(l,z) =diag(1,...,1,2,1,...,1)

be the diagonal matrix with ones in all diagonal entries except the | —th where it has
entry x € K. Then the matriz B = (bi;); ;-1 = Ii(z)A(L;(z))™" has the following form

e bjj=ay ifitlandj+1 or(i,7)= (1)
o byj=x-ay ifl+]
e by=ateay ifl+i
Proof. This follows from a straightforward calculation. O

In words this means that we can by base change manipulate a particular entry of
the matrix while leaving everything but one row and one column unchanged.

Lemma 2.5.18. Let A be a finite-dimensional R-order such that K®rA is semisimple,
assume that the simple A-modules are indexed over I, and the simple K ® g A-modules
are indexed over Iy. Assume that I, is ordered by “<”, leti € Iy and let d; = {j1,...,jk}
with jp, < jrs1 for h < k.

1. Let d} := d; ~ {j1} and ¢ : d; - d; with ¢(j) < j for all j. Then there is an
a€ K ®A such that for the exponent matriz M; = M; ,-15, we get
(M;)

oty =0 Vi e

and all other exponent matrices of a™'Aa are the same as in A.

For every j € d] let oj € eja™ Aae,jy with vy((a;);) = 0. Then there is abe K@A

such that

w(j

(bilozjb)i =1
and the exponent matrices of b-'a " 'Aab are the same as those of a™'Aa.

2. Let d:=d; ~{ji} and p € d;i; with ¢(j) <7 for all j. Then there is an a € K ® A
such that for M; = M; 415, we get

(Mi)tp(j)j =0 V] € d;
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and all other exponent matrices of a™'Aa are the same as in A

For every j € d; let o € ey,(j)a " Aae; with vy((oy);) = 0. Then there is a
be K ®A such that

()" ayb); =1
and the exponent matrices of b= 'a " 'Aab are the same as those of a™'Aa.
Proof. 1. Define Ny € ZJ;*™" and A, € K ® A inductively for j € d} such that
Ny =M; A
g>1:
eiAy = I, Vi' € I~ {i}
(eidg)ay = (Im;)ay if (z,y) # (g, Jg)
(€idg)iuis = (1) jyotin)
ag=Az-...- Ay
Ny = M; (q,)-1ra,
Then a := a;. fulfils the assumptions above:

First of all we can see that no exponent matrices except that of ;A are changed
as a is just the identity in those components.

Further note that by lemma 2.5.17 we see that A, leaves all entries of the expo-
nent matrix except those in row and column j, invariant. Therefore if we assume
by induction that (Ny-1);,,(;,) = 0 for h < g then the same is true for N, as
©(Jn) < h < g. From lemma 2.5.17 it also follows that

(Ng)jg@(jg) = (Ng_l)jgﬂo(jg) - (Ng_l)jgéo(jg) =0

With a similar approach we can achieve the second part of 1. We define By, N,
and by similar to A,, Ny and a4 above only changing

(£iBy)jyiy = bytr (@, )ibg-1

As (aj,); is always a unit we can inductively see that b;}l(aj ,)ibg—1 is a unit
and thus the exponent matrices will never change.

2. In this case we work inductively from £ to 1.

Ny, = M; A
g<k:
giAg = I, Vi' € Ig~ {i}
(EiAg):vy = (Iml )x,y lf (xay) # (jgujg)

N,
(EiAQ)jgjg = (p Tort )jg‘P(jg)
CLg:Ak_l'...'Ag
Ng = Miy(ag)ilAa’Q

34



and By, N, and by as above. This implies the assertion with the same arguments
as in 1.

0

Remark 2.5.19. The first part of the lemma above assures that we can choose for
each but the first row of a matrix one entry and manipulate those entries independently
by base change. The second part assures the same thing if we choose one entry in each
column.

2.5.2 Lifting and derived equivalence

The following results due to Eisele [Eis12] show that the uniqueness of lifts can be
translated along a derived equivalence. In this section, we will state the results from
[Eis12].

We let (K, R, F') denote a p-modular system.

De_ﬁnition 2.5.20. Let A be a finite-dimensional F-algebra. We define the set of lifts
of A as follows.

€(A) = {(A,gp) | A is an R-order and p: F ® A — A is an isomorphz’sm}/ ~

where (A, ) ~ (N, ") if and only if
1. There is an isomorphism o« : A — A’ of R-orders

2. There is an automorphism ( € Autp(A) such that the functor — ®%5K1~d fizes all

the isomorphism classes of tilting complexes in ICb(projK) and
3. =00 o(idp®a).
We define both

E(A) == {(A,9) e E(A) | K ® A is semisimple} and
2(8) = {[A] | A lift of K},

where [A] is the isomorphism class of A and
IT: £(A) — £(A) : (A, ) — A.

Let A and T be two derived equivalent finite-dimensional F-algebras. For every
two-sided tilting complex X € Db(AOp ®r I'). Eisele defined a map [Eis12, Definition
3.5]

By : S(A) — (D).

We introduce the abbreviation ® =10 ®x.
In the following theorem we cite the most important properties of the map ®x.
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Theorem 2.5.21. Let (A, ), (A, ') e £(A).

1. For the inverse X~ ' of X the map ®x-1 is the inverse of ®x. In particular ®x
is bijective.

2. The map ®x restricts to a bijection

£5(8) «— Z,(D).
3. There is an isomorphism ny : Z(A) — Z(®(A, p)).
4. Every isomorphism
Y1 Z(A) —> Z(N)
gives rise to the isomorphism
©(7) =mar oo (m) ™ Z(P(A, ) — Z(B(A', ¢)).
5. The map K®@np : Z(K® N) — Z(K @ ®(A,)) is an isomorphism.
6. Fvery isomorphism
v:Z(K®A) — Z(K®A)
gives rise to the isomorphism

(7)) = (Keny)oyoe(Ken) ' Z(K e (A, ¢)) — Z(K @ d(A,¢)).

7. If
v:Z(K®A) —>Z(K®A’)

is an isomorphism such that D" = DV when identifying the rows via v up to
permutation of columns, then D*M9) = D®AY) when identifying the rows via
®(7y) up to permutation of columns.

Proof. Part 1 is proven in [Eis12, Proposition 3.6], the rest follows from [Eis12, The-
orem 3.20]. O

Remark 2.5.22. From the proof of [Eis12, Theorem 3.20] we obtain an algorithm to
calculate thi decomposition matriz of (A, ) given the deco_mpos_ition matriz of A. To
do this let T be a one-sided tilting complex with EndK(K)(T) =T'. Then by Corollary

2.3.30 there is a two-sided tilting complex Y € DY(TP ®p A) such that Y restricted to
A is isomorphic to T. Let X =Y ™1 and let ® =110 O .
Decompose T as

T-@T

JedJ
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into indecomposable compleres. We obtain a decomposition corresponds via Gz, see
Lemma 2.3.24, to a decomposition of T as

[0—T—0]=DGx(T)).
jeJ

Denote by P; the projective indecomposable T-module with [0 — P; — 0] = G=(T;).
Let P; be a projective indecomposable I'-module with F' ® P; = F] The isomorphism
between centers from Part 5 of the preceeding theorem induces a correspondence between
the simple modules of A and those of ®(A, @) and thus an isomorphism § : Ko(A) —
Ko(®(A,p)). Then we obtain the following equality.

0" ([Py]) = 5(9A(;(—1)k[Tf])) € Ko(K ® ®(A,¢)).

The following theorem shows how self-duality of algebras is translated along the
map Px.

Theorem 2.5.23. Let A and T be two derived equivalent finite-dimensional F-algebras
and X € DP(A”®pT) be a two-sided tilting complex. Let (A, @) € E(A) with A := K®A
semisimple with simple modules {V; | i€ I}. Then Z(A) 2 @iy Z(End4(V;)). Assume
that A is self-dual with respect to T,, for u = (u;)ies € Z(A). Let T' = ®(A,p) and
B:= K®T. There is an isomorphism ~ : Z(A) — Z(B). In particular, there is a
bijection between the simple A-modules and the simple B-modules, say {W; | i € I},
and we can assume that v restrict to isomorphisms 7; : End o(V;) — Endg(W;).
Then there are signs & € {-1,1} for i eI such that T is self-dual with respect to Ty
with @ = (&7 (uw;)) and & =& if Vi and V; have the same decomposition numbers.

Proof. See [Eis12, Theorem 3.19]. O
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3 Tame blocks

In this chapter we will investigate blocks of group algebras of semidihedral defect,
that is blocks whose defect group is a semidihedral group over an algebraically closed
field of characteristic 2. Those are a special case of tame algebras, which have been
classified up to Morita-equivalence by Erdmann [Erd90b]. Amongst the tame algebras
Erdmann singled out the ones of semidihedral type. All blocks with a semidihedral
defect group are algebras of semidihedral type and if an algebra of semidihedral type
is a block of a group algebra, then its defect group is a semidihedral group. However,
not all algebras of semidihedral type are Morita equivalent to blocks of group algebras.
Erdmann’s classification contains partial answers to the question which algebras occur
as blocks. This classification uses results by Olsson [Ols75] about character values and
heights of characters of blocks with a semidihedral defect group.

From this discussion two question arise. One is whether we can determine for more
algebras whether they can occur as blocks of group algebras. The second is if the
corresponding blocks over a discrete valuation ring are uniquely determined by the
algebras given in Erdmann’s classification.

Eisele [Eis12] completely answered the second question for tame algebras of dihedral
type which could occur as a block by Erdmann’s classification. He showed that those
blocks have unique lifts, if one assumes certain rational conditions a block of a group
algebra would fulfill. On top of that, he was able to show that for certain algebras no
such lifts exist and thus these algebras cannot be Morita-equivalent to blocks of group
algebras.

He additionally showed that tame algebras of quaternion type with three simple
modules lift uniquely in the same sense as above [Eis16].

We show that the algebras of type SD(2B){ and SD(2.4)9 are not Morita-equivalent
to blocks of group algebras. We further show that the algebras SD(2B)} and SD(2.A4)3
have infinitely many lifts if they have one lift.

Additionally, we show that all blocks of semidihedral type with three simple modules
lift uniquely.

3.1 Classification

The following tables give the complete classification of tame algebras with two or three
simple modules that can occur as blocks by Erdmann’s classification [Erd90b]. The
list is taken from [HolO1] with the decomposition matrices added from [Erd90b].

For k = 2772 the blocks with the structure given below will have a defect group of
size 2".
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Algebras of Dihedral Type with Two Simple Modules

Quiver Relations
Name — o
. Decomposition Lifting
Cartan matrix . Examples i
matrix properties
B 2 k
0 1 8 =0,0" = c(afy)
D(2A)¢, O‘C'O’ kL g
ce {O, 1} ~ (O[B’)/) - (B’)/O[)
1.0 c=0:
4k 2k 1o Bo(H), unique lift
% k+1 Ll Lalg) < H, :
11 g=1 mod 4 .c=1..
9 1)« no lift [Eis12]
0 ) pn=ny=76=0,
D(2B)", a(e =) o? = c(apy),yaB =1
ce{0,1} afy = fro
10 _0
c=0:
4 2 1o Bo(H), unique lift
9 k4l 1 1 Lg(q) < H,
11 ¢=3 mod 4 c=1
0 1)« no lift [Eis12]
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Algebras of Dihedral Type with Three Simple Modules

Quiver Relations
Name — o
. Decomposition Lifting
Cartan matrix . Examples .
matrix properties
D(3A) — T (vBon)"* = (dmyB)*
1 00
4k 2k 2k 1 1 0
2% k+1 k 10 1 30:(113 s Lé?i’ unique [Eis12]
2% k k+1 111 ¢==m
2 1 1)+
1 /ﬂ\o 2
O[Co\_/ovo O]jﬁ:"}/a:ﬁf}/:nézo
D(3B)1 v 1 a” = Bony,yBom = onvyp
1 00
4 2 2 110 n=3: By(Ar),
2 k+1 1 1 01 no blocks unique [Eis12]
2 1 2 1 1 1 for n >3
01 0)=
o P
o~ @@ =
Y Bo=6A=AB=7k=0
" ki =1y =0,(87)" = kA
D(3K AN 5
(3%) Ak = nd, 6n = (78)*
5
0 0 1
k+1 k 1 010
Eook+1 1 100 B 02(1;5 LQ(dqgl) unique [Eis12]
112 111 ¢=2 mo
1 1 0=

40




Algebras of Semidihedral Type with Two Simple Modules

Quiver Relations
Name Decomposition Lifting
Cartan matrix . Examples .
matrix properties
5 a® = c(afy)*
. o 1 BB = (aBy)Ftap
SCZZ({QOAS’ o — VB = (viﬁ)k’lva
’ (aB7)"a=0
10
10
(4k 2k ) 11 B1(Us(q)), )
2k k+2 11 g=1 mod4 '
0 1
2 1/ %
0 ) pn = afyaf,ny = yapya,
SD(2B)s, a e =) B8 =n"" 0% = c(afy)?
ce{0,1} B =n*y=0
10
10
(8 4 ) 11 B1(PSL3(q)) ”
4 k+2 11 g=3 mod 4 :
2 1
0 1)%
SD(QA)C a CQ/E\E 75 =0, (O‘Bry)k = (6’7a)k
ce {01} — a? = (Bya)f By + c(apy)F
1 0 c=0:
(4k 2% ) 1 (1) Bo(PSLa(g)"), no_lllft
2k k+1 L1 g=r%odd e=5
not unique,
2 1) Thm 3.2.14
0 ) VB =1y =06n=0,
SD(2B)Y, aC.O.Qn o? = By +c(aBy)
ce{0,1} 1" = yaB, aBy = fya

_— == O O

c=0:

B1(3- M) no lift

no blocks for c=1:
n>4 not unique,
Thm 3.2.14
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Algebras of Semidihedral Type with Three Simple Modules I

Quiver Relations
Name — o
. Decomposition Lifting
Cartan matrix . Examples i
matrix properties
AR P R By = 0,816 = (5on)* 185
SD(3A) — T nén = (1y88)* "y
1 00
1 1 0
;Ulz k2f1 2; 1 01 Bo(Us(q)), unique, see
1 11 g=1 mod 4 Thm 3.2.21
2k k+2
0 01
2 1 1)+
B 5 o~y = B —
aC}AQA% OQB—’YO&—B"}/—O
SD(35) T T ol = 3oy, nén =y
! 516 =736
100
1 1 0
;L k—2+ 1 i 1 01 n=4: By(Mi1) unique, see
9 1 3 1 11 n>47 Thm 3.2.21
0 0 1
0 1 0)=
1 /B\AO 9 2
al el el e n5=]9l;voz=5n%6’5m
SD(3B)2 gl 1l By =a" " af = BonyBon
1 0 1
8 4 4 i } é .
4 k+2 92 ? unique, see
i 9 3 100 Thm 3.2.21
2 11
0 1 0/x
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Algebras of Semidihedral Type with Three Simple Modules 11

Name Quiver Relations
m . Decomposition Lifting
Cartan matrix . Examples .
matrix properties
B 5
L0 ——2 Pp=pd=np=py=0
SD(3C)™" \ﬁ}Y VB =0, (v8)" = p"
{a,b} = ; (BB =0,(n6)* ny =0
2,91~
{ J 1 1 0
010
o] emd
a+b a a bl * .
1 a-1 1 00 o unique, see
S 010 ' Thm 3.2.21
a a a 110
0 01
1 01
1 00 .
1 11
. 1A9/i\2©£ 66 =€n=6=0
SD(3D) \7/ \Tl/ 6,}/ — ak—l,za — 5777
aff = Bon, & = nypo
1 00
4 2 2 1o
9 kil 1 1 01 By(PSL3(q)), unique, see
9 1 3 1 11 q=3 mod4 Thm 3.2.21
0 01
0 1 0/=
2
e U "=
7 k-1
. GA =87, AB=(nd)" "
SD(3H) A 6 Bén=~B5 =1y =0
2
0 0 1
010
g 1 JQF 9 1 1 0 0 o unique, see
Lk kel 111 ' Thm 3.2.21
1 1 0
0 1 1)+
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Algebras of Quaternion Type with Two Simple Modules

Quiver Relations
Name — o
. Decomposition Lifting
Cartan matrix . Examples .
matrix properties
5 VB = (vaﬁ)ﬁ’ya,
0 1 BB = (aBy)" ap,
2A)¢, « o e _
Qc(dg G — a? = (Bye)* By + e(Bya)*,
2
a*f=0
10
10
4k 2k 1 1 Bo(G),SLQ(q) <G 2
2k k+2 11 g=1 mod 4 '
01
2 1)+«
y 0 ) v8 =", Bn = apyap,
Q(2B)7", a( e = 7y =vafya, a?f =vya? =0
aeK*, a® = (afy)* + ¢(Bya)
ceK 10
10
8 4 1 1 BO(G),SLQ((]) <G 2
4 k+2 11 g=3 mod4 '
2 1
0 1)=%
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Algebras of Quaternion Type with Three Simple Modules I

Name Quiver Relations
. Decomposition Lifting
Cartan matrix . Examples .
matrix properties
BB = (Bony) 1 Bén,
- VB = (byB)* oy
QA e el e 77577=(n765)k_17776
gl " ond = (vBon)" B
ByBé =nony =0
100
110
4k 2k 2k 101
2% k+2 k 111 Bo(SLa(a)), unique [Eis16]
% k  k+2 010 ¢=1 mod4
00 1
2 1 1/)»
QC}/E\Q 2 aff = Bon, yar = by
Q(3B) ‘\7/ \7/ non ;_7752,5?75:’%5
By=a""" aB=p6nd=0
100
110
8 4 4 101
(4 ke +2 2) 111 n=4:B0247). | iue [Bisie]
n>47
4 2 4 2 1 1
00 1
0 1 0/
o B
! \T/ ’ B6 = (kX)L my = (AR)FIN
xn oA =Bv,km = BB
Q(3K) A ) AB =ndn, vk = dnd
VB =dny =Akn =0
>
0 0 1
010
k+2 k2 100
ko k+2 2 111 Bo(SLa(a)), unique [Eis16]
2 2 4 01 1 =1 mod4
101
1 1 0/~
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3.2 Blocks of semidihedral type

Our goal in this section is to determine the basic algebra of a block of a group algebra
with semidihedral defect group over a discrete valuation ring using the classification
of the blocks over a splitting field of positive characteristic and additional information
about the decomposition matrix, character fields and character heights.

3.2.1 General properties

Let K be the 2-adic completion of the maximal unramified extension of Qy. Let
(K, R, F) be the corresponding 2-modular system. Then F' is algebraically closed, see
for example [Neu92, p.162].

Let G be a finite group and let A be a block of RG with semidihedral defect group
SDayn for some n > 3. Define A:= K ® A and A := F ® A. First we recall some basic
results from number theory.

Lemma 3.2.1. 1. Let ¢ be a primitive 2°-th root of unity in K and let K; =
K(¢+ ¢ and K = K(¢ - ¢Y). Then the Galois groups of both K; and K]
over K are cyclic. The unique subfield of index 2 in both K; and K is K;_.
Thus, the subfields of K| form a chain K = K9 c Ky c - c K;_1 c K. We denote
by R; and R] the integral closure of R in K; and K], respectively.

2. The field extensions K!/K and K;|K are totally ramified and the 2-valuations
of their discriminants are equal to (i —1)-272 — 1.

Lemma 3.2.2. For any finite group H all the division algebras occurring in the Wed-
derburn decomposition of KH are commutative. This implies that for any irreducible
KH-module V and any completely irreducible constituent x of its character

EndKH(V) = Z(EndKH(V)) = K(X)
Proof. See [Eis12, Lemma 4.1 (iii)]. O
Lemma 3.2.3. Let L/K be a splitting field for A.

1. Then L ® A has 272 +3 or 272 + 4 simple modules. Of those 22 — 1 are of
height 1, 4 of height 0 and the remaining simple module, if it exists, has height
n—2.

2. All character values of irreducible characters of L& A lie in K _,. The characters
of height 0 and n — 2 take values in K.

The characters whose values do not lie in K are distributed into n— 3 families
Fi,...,F,_3, where each family is an orbit under the Galois group with |F;| = 2¢,
where i € {1...n—3}. Thus, using Lemma 3.2.1 and Galois theory, we can
see that the character field of characters in F; is K;,o for i <n—3 and for the
characters in F,_3 it is K],_;.
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Note that 2?2_13 2t = 272 _ 9 and thus we have ezactly one character of height 1
with values in K = Ko. We will define the family Fy to be the set containing only
this character.

3. Some multiple of the sum over the characters in one family F for j € {0,...,n-3}
is a character of A.

Proof. The first part follows from [Ols75, Theorem 3.13-3.16], the second part from
[Ols75, Proposition 4.1, 4.2, 4.5] and the third part from the second part together with

Lemma 2.2.12. OJ
Lemma 3.2.4. Let
n—-4
FrcReRe PR 20R,_,
r=0

be a local R-order such that F ® I' is generated by a single nilpotent element n. Fur-
thermore, assume that T is self-dual with respect to T,, where u = (uy,...,u,) €
Ko Ko@) KooK | with vra(u1) = va(uz) = -n and va(u;) = -n + 1 for all
i > 2. Then for some x € F'* there exists a preimage 1) of x -1 under the residue map
'>F®L inD of the form

(07477707 . .,7'('”_3),

where the m, are prime elements in the ring Ryio for 0 <r <n -3 and in R:l_l for
r=n-3.

Proof. See [Eis12, Lemma 4.7]. O

3.2.2 Blocks with two simple modules

Let n >4 be fixed and for c € {0,1} let A, be a basic algebra of type SD(2B)¢ given
by the quiver

B
e
Y

with relations as follows.

vB=0=ny=8n, a*=By+c-(Bya), 0¥ =vaB, aBy-=pya

We will assume the following rational structure on the lifts:

Z(A) u P() P1
K ui 1 0

K up 1 0
K u 1 1 (3.1)
K (%) 1 1
Ko us 0 1 forref{0,...,n—-4}
K' | w3 0 1
where uy,us,u3 € K with vo(uy) = v9(uz) = —n and vo(ug) = —n + 1.
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Remark 3.2.5. If a lift is a block of a group algebra it will fulfill the rational conditions
(3.1) by the classification of tame algebras and Lemma 3.2.3.

Definition 3.2.6. For { € R*, m; € K;.o prime for i €{0,...,n-4} and m,-3 € K]_,
prime we define A¢(mo, ..., m,-3) to be the subalgebra of

n—4
RoROR* o R™ o @ Ry ®R,_,
d=0

10 10
Y R e
0 0 0 0
B 0 e e
_ 0 0) (0 O
77—(0,0,(0 0),(0 4),7T0,...,7Tn_3)

_ 2n72§ 0
Oé—(O,Q,( O 0)7

generated by the elements

- 0 O
Y= (070’( on-1

Theorem 3.2.7. Let A be a lift of A satisfying the rational conditions (3.1). Then
there are § € R*, m; € Ko prime for i €{0,...,n—4} and m,_3 € K]_| prime such that
A 2 Ag(mo, ..., mn-3). Furthermore & is a lift of a, B is a lift of B, &Y is a lift of v
and there is some unit p € R* such that piy is a lift of n. The existence of such a lift
implies that ¢ = 1.

Proof. By Lemma 2.1.32 we find an embedding

n—4
AcT:=ReR®R* 0o R*? e @ Ry20 R, ,
d=0

where the primitive idempotents are mapped to

1 0 1 0
eo—(l,l,(o 0),(0 0),0,...,0)and

00 00
=000 (0 2

We want to apply Lemma 3.2.4 to determine a lift of . Therefore we show that
F ® e1Aeq is generated by 1. Indeed we have

¥8=0, vaB=n*", ~FalB=7a"2(By+c-(aBy))B=0, VIx2.
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Then Lemma 3.2.4 implies that e; Ae; is generated by an element 7 of the form
77 = (07477707 e ,7Tn_3)

which is a lift of a scalar multiple of » and where 7, is prime in R, for r € {0,...,n-4}
and 7,_3 is prime in R} _;.

Considering egAeq let us first observe some properties of the elements of F'® egAeq.
If s > 0 is some natural number then 8n°y = 0. Thus we see that F'®egAeg is generated
by « and (7 as an algebra. Furthermore, using the defining relations as follows, one
can see that F ® egAeg is generated by eg, «, 8y and a3y as a vector space:

a® =By +c-(ayB),a’By = (B7)* +c- (a(vB8)?) =0,
Bya = ayB, (B7)? =0, ByaBy = ByBya =0,
afya=a’By=0,a(87)* =0, (afy)’ = a(By)’a = 0.

Since, by the Cartan matrix C' = DD, the dimension of F ® egAey is 4, these elements
form a basis.

By Nakayama’s Lemma lifts of these elements also form a basis of egAeg. Since
2e0 = (2,2,2,2) € 2¢gAey and by Lemma 2.5.12 there are a € Zsg and x,y € R such that
for & = (0,2% x,y) there is a unit p € R* such that p& is a lift of a. There are lifts B
and 4 of 8 and ~ such that there are b € Zg, ( € R* and z € R with Bﬁ/ = (0,0,¢2% 2).
Then

aB4 — x4 € ((0,0,0,2%)) g

for some d > 0 and since v2(u2) = n we know that d = n. We define 2’ = ("'z. Then,
since = € 2R, egAeq is the row space of

11 1 1
0 2% = y
0 0 20 2
00 0 20

Since v8 = 0, the following product lies in 2e1Ae;.
4B = (0,¢-2%°,0,...,0) € 2- 1 Aey.

Since v2(uz) = n it follows that 2+b > n+1 and thus b > n—1. Since, by Lemma 2.5.14,

we have a +b+n = 47" and since a > 1, we know that b =n — 1 and therefore a =1. We

use the fact that A is self-dual to obtain some information on our open parameters:

Tu(eo,eo):2-u1+2-uQ:ul-(2+2-%)eR:>2"|2+2-@
Uy up
I mod 271

u2

Tu(eo,d)=2-u1+(x+y)-u2=u1-(2+(x+y)~%)eR:>x+y5—2-ﬂmod2”
u1 U2

=y =2-xmod2".
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Since v = 0 we obtain the following result for B&

1 -
Ty(eq, 5&,8) =uy- (2" +2) e R= 2= -2""2C mod 2"
= 2= -2""1¢ mod 2"*!
= (4= (0,0,2"71¢,-2"71¢) mod 2A.
Next we use the fact that egAeg is multiplicatively closed to obtain more information on

the parameter z. Since (0,0,0,2"!) € 2A we can ignore the difference y—(2-2) € 2"R
in the following calculation:

&% - 24 = (0,0,2° - 2z, 2% - 22) mod 2A = 2" | 22— 2z

=22 | zor2"? | z-2.

If 22 | -2 then 272 | y = 2—1x mod 2". Therefore we can get from the second case
to the first by interchanging the third and fourth Wedderburn components of A. We
can do this without changing the form of any of the elements we already determined
modulo 2A:

f=(0,4,70,...,mn-3) = (4,0,4 -7, ...,4 - mp_3) mod 2A

and if 7r; is prime then so is 4—m;. When interchanging the third and fourth Wedderburn
components 34 gets multiplied by —1 . Therefore we can assume that 2”72 | z and let
€ € R with = = 2"72¢. We conclude that egAeg is the row space of the following matrix

11 1 1
0 2 2n72¢ 2-2"%
00 20t —2nt
00 0 on

Next consider the remaining relations. Recall that & was defined such that p& is a lift
of a. Therefore we obtain the following relations:

(0,0,0,—¢-2"pC) = ¢+ pa3
= p*a” - By
= p?a? - 2p%a - B4
= (0,0, _on—lg 2 | 9n—dg2 _gn-le _gnlen2  on-de2 | 2n—1O
= (0,0,-2"1ep? — 2771, —2m7 e p? + 2771 ) mod 2A
First of all this implies that 2 | £p? + (, so in particular &£ € R* and we obtain

B4 = (0,0,2"1p?, 2" 1 p?) mod 2A and
p?a* 5572 (0,0,0,2"¢p%) = (0,0,0,~¢- 2" p€p”) mod 2A.
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This implies that 2 | cp3¢ +&p?. Since € and p are units, we see that ¢ # 0. Then, since
c =1, we know that 2 | p?¢(p+1), so p=-1=1mod 2. It follows that

p& = & mod 2A and
B4 =(0,0,2"71¢, —2"71¢) mod 2A

Now &, B,’y and 7 are lifts of scalar multiples of «, 3,~ and 7 respectively and thus
by Nakayama’s Lemma form together with eg and e; a generating system for A. We
know that there is a factor ¥ € R* such that

&+ 044 = (0,2,2772€,2 - 2772¢) mod 2A

so in particular & = & mod rad®(A). Furthermore & fulfills the same relations as &
modulo 2A and we can therefore assume that @ is a lift of «. By Lemma 2.5.18 there
is an element d € K ® I' such that

5d % 01 0 1
ﬂd=6=(070,(0 0),(0 0)A),...,())

i 0 0 0 0
Y _(ana(zﬂ—lg 0)7(_2n—1£ 0 707""0)

Thus we know that {eg, e1, @, B,7, 7} is a generating system for A% and A is isomorphic
to Ag(mo, ..., Th-3).
O

Theorem 3.2.8. Let w; € K;.o prime for i e_{(),...,n -4}, mp_g € K] | prime and
£, e R*. If A¢ := A¢(mo, ..., mn=3) is a lift of Ay fulfilling the rational conditions (3.1)
then so s Ag/ = Ag/(ﬂ'(), . ,7Tn_3).

Proof. We denote the generators of A¢ by ef),e],d’ 3,7 and 7 to distinguish them
from the generators of A¢. It is clear that Ag fulfills the rational conditions (3.1). It
remains to show that Ag is a lift of Aj.

First note that since 77 generates ejA¢e; and 7' = 77 generates e;Agre; we know that
e1A¢er = efAgre]. Let pe R* such that ui is a lift of 7. Then

apey = (0,0,0,27¢) = 12 1" mod 2eq Aey.

22 7
Since F is algebraically closed, there exists a u’ € R* such that ’:;T = % mod 2 and

thus

2n72

=(0,0,0,2"¢")
=& B'¢'F mod 2A.

(1)

Then it is easy to check that o/ :== F @@, f':= F ® B~ =€ = F®7 and ' := u'7f
fulfill the defining relations of Aj. O
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Next we want to show that the different parameters in the previous theorem yield
non-isomorphic algebras. We do this by applying the following lemma.

Lemma 3.2.9. Let A, A’ be two R-orders with decomposition numbers 0 and 1. Let
o : A — A’ be an R-algebra isomorphism and ® : K g A — K ®r A’ be the
induced K-algebra isomorphism. Let further e be a primitive idempotent of A such
that Z(e K ® A) = K for all centrally primitive idempotents € of K ® g A with ce # 0.
Then ® t.geggere 15 uniquely determined by the images of € and e.

Proof. Since the decomposition numbers are 1 or 0, we know that e,eAe € {0, Reqe}.
O

Theorem 3.2.10. Let m; € Ko prime for i€ {0,...,n—4}, m,_3 € K| prime and
£, e R*. Then

Ag = Ag(ﬂ'o, Ce ,7Tn_3) = Afl = Agr(ﬂ'o, e 77Tn—3)
< ¢=¢ mod 2.

Proof. Let ¢ : A¢ — Ag be an isomorphism with induced isomorphism
@ZK@RA& —>K®RA£I.

Denote the primitive central idempotents of K® A¢ by €1,...,ep4+2 and those of K®Ag

by €1,...,€),,9. We further denote the primitve idempotents of A¢s by e, e]. Then we
know that ®({ey,...e4}) € {e],..., &)} since p(ep) =€, epe; # 0 <= i€ {1,...,4} and
epe; #0=ie{l,...,4}. We can further see from the definition of the generators that

forie{1,...,4} we have
eieoleg —ejeohen € 2" < (i,5) € {(1,3),(2,4)}

and the same holds for €/, e. Since ejg; # 0 if and only if ¢ > 3 and efe} # 0 if and
only if ¢ > 3 this implies that ®(g;) = ¢} for i € {1,...,4}. With Lemma 3.2.9 we see
that, using the notation from Remark 2.5.13, for all v € egAeg we have ~; = ¢(7); for
all i€ {1,...,4}. Therefore the row space of

1 1 1 1

0 2 22 2-2n2%¢
0 0 2n—1 _2n—1
0 0 0 2"

is the same subspace of R* as the row space of

11 1 1

0 2 2n—2£l 92_ 2n—2€l

0 0 2n—1 _2n—1 )
0 0 0 2"
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so in particular

(0,0,2"2(£-¢),-2"2(¢£-¢')) €((0,0,2",-2""1),(0,0,0,2"))

This is only the case if £ = £’ mod 2. In that case the algebras A¢ and A¢ are the same
subalgebra of I' and thus of course isomorphic. O

Theorem 3.2.11. Let B be a block with basic algebra A such that F® A= SD(2B).
Then c=1 and F ® A has infinitely many non-isomorphic A-lifts.

Proof. The rational conditions (3.1) were chosen in such a way that A-lifts are exactly
the ones fulfilling them. Thus, this theorem summarises Theorems 3.2.8, 3.2.10 and
3.2.7. O

Lemma 3.2.12. There is a tilting complex T of SD(2.A)5 of the form

[0— P &P — Pp—0]®[0 — P, — 0]
such that End(Q) = (SD(2B){)P.
Proof. See [Hol01, Proposition 1.3.2]. O
Lemma 3.2.13. Let T be the tilting complex in Lemma 3.2.12 and X be a two-sided
tilting complex whose inverse restricts to T. Then ®x sends a lift satisfying the rational

conditions (3.1) to a lift satisfying the rational conditions

Z(A) u PO P1

K g 1 0
K Ul 1 0
K uy 1 1 (3.2)
K us 1 1
K.o us 2 1 forre{0,...,n-4}
K , u 2 1

Proof. This follows from Theorem 2.5.21, Remark 2.5.22 and the transfer of the self-
duality by Theorem 2.5.23. 0

Theorem 3.2.14. Let B be a block with basic algebra A such that F @ A 2 SD(2.A)5.
Then c=1 and F ® A has infinitely many non-isomorphic A-lifts.

Proof. With the previous lemma this follows directly from Theorem 3.2.11. O
Remark 3.2.15. The centers of the algebras A¢(mo, ..., mp-3) and Ag(mo, ..., Tp-3)

coincide and it is therefore not possible to identify the algebra isomorphic to a given
block by its center.

53



3.2.3 Blocks with three simple modules

Let n > 3 be fixed and let A be a basic algebra of type SD(3B); given by the quiver

1 B 0 o 2
aC./\./_\.
\_/ \_/
v "

with the following relations:

aB=v6=8y=0, o =By, non=mB, ns=~B0.

We will only consider lifts fulfilling the following rational conditions.

Z(A) u Py P P
K U1 1 0 O
K u9 1 1 0
K Uus 1 0 1
K m 1 1 1 (3.3)
K Uus 0 0 1
K,o vy 0 1 0 forre{l,...,n—-4}
K' | wvps 0 1 0
where uy,...,us, v, € Q, vo(u;) = —n for i € {1,...,4}, va(us) =2 and vo(v,) = —-n+1

forre{l,...,n-3}.

Theorem 3.2.16. Let A be a lift of A satisfying the rational conditions (3.3). Then
A is isomorphic to the subalgebra of

n—4

l=ReR*™ e R*eR“eRe@ Ry2®R,_;
d=0
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generated by the elements

1 0 0
60:(1,(5 8),((1] 8), 0 0 0],0,0,...,0),
0 0 0
0 0 0
61:(0,(8 (1)),0, 01 0],0,1,...,1),
0 0 0
0 0 O
62=(0,0,(8 (1)) 00 0],1,0,...,0),
0 0 1
0 0 0
ﬁ—(0,0,(g 8), 0 0 0 1,0,0,...,0),
2142 0 0
01 0 0 1
0=1(0,0, 00| 0 0 0 |,0,0,...,0),
0 00
0 o1 0 27! o
ﬁ:(o,(o . ),0, o o o |,00...,0),
0O 0 O
0 0 0 00
B = (0, 1 0 ,0,l 1.0 0 |,0,0,...,0),
0 00
where m; is prime in Ko fori€{0,...,n—4}, m,_3 is prime in K,_1, & € e; Z(A)e;

and & generates ejAey.

Proof. By Lemma 2.1.32 we find an embedding A € T" where the primitive idempotents

are embedded as

1 0
60:(17(0 0)7
0

0
e1‘(0’(0 1

€g = (07 O?

100
(1) 8) 0 0 0],0,0,...,0),
000
0
0
0

00
0,10 1

,0,1,...,1) and
00

000
8 (1)), 0 0 0},1,0,...,0).
0 01

First we consider e;Ae;. Since v =0 and Bdny = a2 we can see that o generates
F ®eiAeq. Thus the assumptions of Lemma 3.2.4 are fulfilled and there exists a lift &
of a scalar multiple of « in e;Ae; of the form (0,4, 7,...,7,-3), where 7, is prime in
Ryio for i € {0,...,n—4} and m,_; is prime in R]_;.
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Let esAes be the row space of

1 1 1
A=] 2% 2%¢ 0
0 2¢ 0

with € € R* and such that (2%,2%,0) = 76 where 7 and & are lifts of scalar multiples
of n and 6. We have d = n since v(uyg) = —n. Furthermore a +n = %(n +n+2)=n+1
holds and thus a = 1. By the self-duality of A we obtain

Ug

Tu(e2,1d) =uz-2+uy-2°%€ € R=2" | 2+ — . 2b¢

u3

We can further deduce that b =1, as otherwise v5(2 + -2%¢) <1 < n. This implies
-2= z—g -2¢ mod 2" and thus esAes is the row space of the matrix

1 1 1
A=[2 2% ¢
0o 2" 0
Note that
812 s uj | us
(f](S) - 2ﬁ5 = (074(_2 + _)7 0) € 62A€2
uy U4
and therefore 72 = -1 mod 2772 We define @; = $& for i € {1,...,4}. Then we know
that

1 1
Tu(e2,e2) = us +ug + us = 2—n(u~3+u~4)+1u~5eR

so vo(tg +y) =n —2.

Since ug and uy4 are rational numbers, we know that either Z—i = -1 mod 2" ! or Z—i =
-2772 1 mod 2""!. The case =-1 mod 271 is impossible since vy (@3 + 1) = n.— 2
and thus 2"°! [ @3 + @. Therefore we know that Z—i =-2"2_1 mod 2" ! and esAesy
is the row space of

1 1 1
2 onli9
0 on 0

Now let egAey be the row space of the matrix

1 1 1 1
0 2¢ 0 2%
B = 0 0 2¢ 2%
0 0 0 27
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where &,9 € R*, (0,0,2¢,2%9) = 67 and (0,2%,0,2%) = 4B where 4 and 3 are unit
scalar multiples of lifts of v and g respectively. Then by our previous calculation and
Lemma 2.5.11 we have ¢ =d = 1. By Lemma 2.5.14 we have a = %(471) -n-1=n-1,
and as before we can show that eyAeg is the row space of the matrix

1 1 1 1
.02t 0 20¢

o o0 2 2nty2-
o 0o o 2°

By self-duality and since u4 and ug have the same 2-valuation, we have 2”\2”_1 + Z—;* -2b¢
and thus b = n — 1. Therefore eyAeg is the row space of the matrix

1 1 1 1
l?__ 0 2n—l 0 2n—1£
1o o 2 242
0 0 0 on

Since 272771 + 2"‘15% we can without loss assume that £ € R* n Q therefore & = 1
mod 2. Thus we can without loss assume that

1 1 1 1
5~ |0 27t 0 2t
B=l0o 0 2 onl49
0O 0 O 2m
There is an element ¢ € K ® I'' such that
N 00 0 0 0
7° = (0,0, 9 0 | 0 0 0 ],0,0,...,0)
29 0 0
) 01 0 01
(50:(0,0,( 0 0 ), 0 0 0],0,0,...,0)
0 00
0 2n—1 0 2n—1§ 0
’?C=(0,(O 0 ),0, o 0 0 },00,...,0)
0 0 0
. 0 0 0 00
B¢ = (0, 10 ,00l 1. 0 0 ],0,0,...,0)
0 00

for some units £ and . Therefore we will from now on assume that 7, b ,4 and B are
as above. We have seen that by the self-duality 29 = 2”1 +2 mod 2" and 2" 1¢ = 271
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mod 2". Furthermore we have

) 0 0 0 0 0
77@6:(0,0,(0 0), 0 0 0 1(,0,0,...,0),
29 0 0
) 0 0 0 2"9 0
5%:(0,( ),o, 0 0 0 ],0,0,...,0) erad(A)?,
00 0 0 0

Since adding elements of rad(A)? does not change the property of being a generating
system we can conclude that A is generated by {eg,e1,e2, &, 3,%,0,7}.
All that remains to show is that & € e; Z(A)e;. This is true since the element

_qua 0 4 0 0
(0,07( OU3 g ), 0 4 0 |,0,m0,...,pin-3)
u3 0 0 4

lies in the center of A. O

Definition 3.2.17. We say that two lifts A and A’ are centrally equal if there is an
isomorphism Z(A) 2 Z(A") such that the induced isomorphism between Z(K ® g A) and
Z(K ®r N') only relates summands of the center corresponding to equal rows in the
decomposition matriz.

Theorem 3.2.18. Let A and A’ be centrally equal lifts of A satisfying the rational
conditions (3.3). Then A= A’.

Proof. Both A and A’ are isomorphic to algebras as in Theorem 3.2.16. Since they are
centrally equal we can assume that the elements m; are the same in both cases. O

Next we will again use derived equivalences to extend our result to all blocks of
semidihedral type with three simple modules. The tilting complexes inducing those
derived equivalences in the following theorem were determined by Holm [Hol01].

Theorem 3.2.19. 1. There is a tilting complex of the form

T'=0—0—P —0]+[0—P&P — F—0]
+[0— P, — P, — 0] e KY(SD(3A4)1)

with End(T)? 2 SD(3B);.
2. There is a tilting complex of the form

T:=[0—0—P,—0]+[0— P &P,— Py— 0]
+[0 — Py — P, — 0] e K°(SD(3A4),)

with End(T)° = SD(3B)s.
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3. There is a tilting complex of the form

T:=[0— 0—> P, — 0] +[0 — 0 — Py — 0]
+[0 — Py® P, — P — 0] e K°(SD(3H)1)

with End(T)? 2 SD(3D)a.
4. There is a tilting complex of the form
T=[0—0— P, —0]+[0—0— Py — 0]
+[0 — P, — P, — 0] e KY(SD(3H))
with End(T")? = SD(3C)2, 1.
5. There is a tilting complex of the form

P[00 P 0]+ 00— Py )
+[0 — Py — P, — 0] € K*(SD(3Co.11))

with End(T)°P 2 SD(3H).
6. There is a tilting complex of the form

T'=[0—0—P—0]+[0— PeP— F—0]
+[0 — P, — P — 0] e K"(SD(3B))

with End(T)°P = SD(3D).
Proof. See [Hol01, Proposition 1.3.3-1.3.8].

O

For the following discussion we fix the following notation. We say that an order A

satisfies the rational conditions

Z(A) ‘ vo(u) ‘ 1 .. 1
Kl ni d11 . dll
K ng dkl - dkl

if there is an element
k k
w=(ui)ieq1,..0y EPQACZ(K @A) =P K;
i=1 i=1

with v5(u;) =n; such that A satisfies the rational conditions

Z(A) | w | 1 ...
Kl Ul d11 dll
Kk Uk dkl dkl
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Theorem 3.2.20. 1. Let A and A’ be centrally equal lifts of SD(3A)1 satisfying
the rational conditions below. Then A = A’.

Z(A) I/Q(u) P() P1 P2

K -n 1 0 0

K -n 1 1 1

K -n 1 0 1

K -n 1 1 0

K 2 0 0 1
Kyyo -n+1 2 1 1 forre{l,...,n-4}
K', -n+1 2 1 1

2. Let A and A" be centrally equal lifts of SD(3B)4 satisfying the rational conditions
below. Then A = A’

Z(A) VQ(U) PO P1 P2

K -n 1 0 0

K -n 1 1 0

K -n 1 1 1

K -n 1 0 1

K 2 2 1 1
Keyo -n+1 0 1 0 forre{l,...,n-4}
K, -n+1 0 1 0

3. Let A and A" be centrally equal lifts of SD(3C) satisfying the rational conditions
below. Then A = A’

Z(A) Vg(u) PO P1 P2

K -n 1 1 0

K -n 0 1 0

K -n 0 0 1

K -n 1 0 1

K 2 1 1 1
Kyyo -n+1 1 0 0 forre{l,...,n-4}
K' |, -n+1 1 0 0

4. Let A and A’ be centrally equal lifts of SD(3C) ;1 satisfying the rational condi-
tions below. Then A= A'.

Z(A) Vg(u) Po P1 P2

K -n 1 0 1

K -n 0O 1 o0

K -n 0 0 1

K -n 1 1 0

K 2 1 0 0
Koo -n+1 1 1 1 forre{l,...,n—-4}
K' | -n+l 1 1 1
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5. Let A and A’ be centrally equal lifts of SD(3D) satisfying the rational conditions
below. Then A = A’

Z(A) w(u) P P P

K -n 1 0 0

K -n 1 1 0

K -n 1 0 1

K -n 1 1 1

K 2 0O 0 1
Ko -n+1 0 1 0 forre{l,...,n-4}
K' |, -n+1 0 1 0

6. Let A and A’ be centrally equal lifts of SD(3H) satisfying the rational conditions
below. Then A= A'.

Z(A) Vg(u) P() P1 P2

K -n 0 1 0

K -n 0 0 1

K -n 1 0 0

K -n 1 1 1

K 2 1 1 0
Kyps -n+1 0 1 1 forre{l,...,n-4}
K', -n+1 0 1 1

Proof. The decomposition matrices in our table at the start of this chapter are given
in such a way that the first four rows always correspond to the height zero characters,
the fifth row to the character of height n—2 and the last row to the height 1 characters
[Erd90a, Lemmas (11.4),(11.6),(11.11),(11.9)].

Let T be a tilting complex of the form as in Theorem 3.2.19 in K%(A) with B =
End(7') and X a two-sided tilting complex whose inverse restricts to 7. Then straight-
forward calculations using the instructions from Remark 2.5.22 show that ® x will send
a lift fulfilling the rational conditions given in the assertion for A to a lift fulfilling
the rational conditions given for B. Therefore, if there is only one lift fulfilling the
conditions for A there can also only be one for B and the other way round. Together
with Theorem 3.2.18 the assertion follows. O

We summarise our result by the following theorem.

Theorem 3.2.21. Let A be the basic algebra of a block of a group algebra over R with
a semidihedral defect group and three simple modules. If Ay and Ao are two centrally
equal A-lifts of A, then Ay = As.
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4 Defect 3 blocks of symmetric groups

Blocks, and more generally the representation theory, of symmetric groups, have been
a popular subject of research. Scopes showed that Donovan’s famous conjecture is
true for blocks of symmetric groups [Sco91]. The conjecture states that for every
isomorphism type of defect groups there are only finitely many Morita-equivalence
classes of blocks with that defect group.

A special case are p-blocks with a defect d < p. All of those block have isomor-
phic defect groups [JK81, Theorem 6.2.45]. Chuang and Rouquier further proved the
following theorem [CRO8, Theorem 7.2].

Theorem 4.0.1. Let R be a field of characteristic p or Z,. Let A and B be two blocks
of symmetric groups over R with isomorphic defect groups. Then, A and B are derived
equivalent.

So we see that all p-blocks of defect d < p of symmetric groups are derived equivalent.
It is therefore natural to study blocks with a small defect, especially a defect d < p.
Blocks of defect 0 and 1 have been covered by the more general research on blocks with
cyclic defect. In particular, the structure of basic algebras of blocks with a cyclic defect
group over discrete valuation rings has been described by Plesken [Ple83]. The basic
algebras of defect 2 blocks over complete discrete valuation rings have been described
by Eisele [Eis12], generalising a result by Nebe [Neb02] where the basic order of the
principal block of Z,Ss, was determined.

We want to consider blocks with defect 3 for primes p > 3. We will not give a
description of all such blocks and in fact not study any block of a symmetric group
directly, but instead use the following result [CK02, Theorem 2].

Theorem 4.0.2. Given any d < p there exist blocks of defect d of symmetric groups
which are Morita equivalent to the principal block of R(Sp2Sq).

Therefore, we will use results about wreath products of algebras developed by
Chuang and Tan [CTO03] to investigate the basic algebra of the principal block By
of R(S,S3). We will first repeat important results from [CT03], then use them to
determine the decomposition numbers and the quiver of [F, ® By and subsequently use
similar methods as in Chapter 3 to lift the basic algebra of I, ® By.

4.1 The representation theory of wreath products

We recall the most important results and notation from [CTO03].
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In this section let R be either a field or a discrete valuation ring and let w be a
positive integer such that w! is invertible in R. Let A be a finite-dimensional R-
algebra.

Definition 4.1.1. Let G be a group and H < .S, a subgroup of the symmetric group.
Then the wreath product of G and H is defined as

G:H:=G"xH
with multiplication
(915, Gn; o) (P1s s hns ) = (G1hg1(1)s - -+ s Gnho1(ny; O 1)
We have an inclusion of H into G: H as follows.

. H—G:H

ocra:=(1,...,1;0)

Definition 4.1.2. 1. Let n be a positive integer. We call a sequence of integers
n = (n1,n2,...) a composition of n, written n & n, if Y,z ni = n. We also

write n = (n1,...,ny) if n; =0 fori>1. We call a composition a partition if it is
non-increasing and write n + n. Given a composition A = (A1,...,\;) we define
’)\| = Zé:l Az

2. Let B be a ring, V a B-module and n a positive integer. Then we let T™(V)
denote the n-fold tensor product @V of V.

3. We define the algebra A(w) as T*(A) ® RSy, with the following multiplication.
(1®...©a,®0)(b1®...®by ®p) =a1b,-1(1) ® ... ® Awbs1(y) ® TP
4. Let w = (wn,...,w;) =w. We define
Sw = Swy X ... x Sy,

and consider it as a subgroup of Sy, by letting the factor S, act on

r—1 T
{warl,...,Zwi}9{1,...,11)}
i-i =

Then we define the algebra A(w) as the subalgebra T* (A)® RSy, of A(w). Then
there is an isomorphism

A(w) 2 A(wy) ® ... ® A(wy).

If V is an A(w)-module and W an A(w)-module we use the following short hand
notation for induction and restriction.

w A(w
Indy (V) := Ind () (V')

w . A(w)
Res,, (W) := ResA(Q)(W)
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For every field K and partition A = (A1,..., ;) of n one can define a K.S,-module
S the so called Specht module. We will skip the definition and refer the reader to
[JK81]. If K is a field of characteristic 0 the Specht module S? is simple for every
A+ n. If char(K) = p> 0, then S? is simple if and only if \ is p-regular, i.e. no number
k < n appears p or more times in A.

Example 4.1.3. 1. Forn =2 there are two Specht modules, the trivial module S
and the signum representation S1),

2. For n = 3 there are three Specht modules, the trivial module S, the signum
representation SYY) and the standard representation S,

Remark 4.1.4. If A is the group algebra of a group G then A(w) is the group algebra
of G2 Sy.

Lemma 4.1.5. 1. If V is an A-module then TV (V') becomes an A(w)-module by
letting T (A) act component wise and letting RS,, permute the components as
follows.

V1®...0Un.(1®0)=0,(1)® ... ®Vy(ry Vv1,...,0,€A,0€8y,
We denote this module by T (V).

2. If V is an A(w)-module and S is an RS,-module then we can consider V ® S
as an A(w)-module with the following action.

(v®s).(a®o)=v.(a®c)®s.c YveV,seS aeT"(A),0¢€Sy,
We will denote this module by V @ S

3. Let now w = w. Similar to 2, for any A(w)-module V' and any RS,,-module S,
V ® S becomes an A(w)-module which we will also denote by V @ S.

Proof. This can be proven by straightforward calculations. O

Definition 4.1.6. Let A — w be a partition and S* be the corresponding Specht module
over R. Then we define the A(w)-module TA(V) := T (M) @ S*.

Definition 4.1.7. For every index set I we define
AL = {X = (\)ier | Mi partition, >Nl = w}.

1el

Definition 4.1.8. Let {V (i) |i € I} be a set of A-modules and X = (\;)ier € AL. Then
we obtain an A(w)-module by the following construction:

V(Y = Indf)y ). (@ Tﬁ<v<z'>>)

Note that this definition depends on the set {V (i) |ieI}.
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The following theorems show that both the simple and the projective indecompos-
able modules of A(w) can be constructed in the way above.

Theorem 4.1.9. Suppose that R is a splitting field for A and let {V (i) |i €I} be a
complete set of representatives of isomorphism classes of simple A-modules. Then R
is a splitting field for A(w) and {V(A) | A € AL} is a complete set of representatives
of isomorphism classes of simple A(w)-modules.

Proof. See [CT03, Lemma 3.8]. O

Theorem 4.1.10. Let {P(i) |i €I} be a set of projective A-modules and let \ € AL.
Then P()) is projective.

Proof. See [CT03, Corollary 3.9]. O

Lemma 4.1.11. Suppose that R is a splitting field for A and let {M (i) | i € I},
{N(2) | i¢€I} be sets of A-modules such that each M(i) has simple head N (i) and
N(i) ¢ N(j) fori#j. Then M()\) has simple head N()) for any A e AL.

Proof. See [CT03, Lemma 4.5]. O
Lemma 4.1.12. Let w = (wy,...,w,) Ew.

1. Forie{l,...,r} let V; be an A(w;)-module and X; an RSy,-module. Then

WVMeX1)e..9(V,oX,)2(1®...0V)o(X1®...0X,)
2. Let V be an A(w)-module and Y an RSy-module. Then

w A(w A(w
Vo (Ind2y) = IndAEQ;((ResAEw; V)oY).

3. Let W be an A(w)-module and X an RS,,-module. Then

A(w A(w w
(IndAggg W)oX = IndAgwg(W @ Res? X)).

Proof. See [CT03, Lemma 3.2]. O
Lemma 4.1.13. Suppose that R is a splitting field for A.

1. We have
w-1 )
rad(T"(A)) = Y T'(A) ®rad(A) ® TV A).
=0
2. Let V be an A(w)-module and n € Z°°. Then
n n A(w
rad" (V') =rad (ResTi(L)(V))
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3. Let V be an A(w)-module, X an RSy-module and n € Z2°. Then
rad" (Vo X)=rad"(V)o X

Proof. See [CT03, Lemma 3.4, 3.5]. O

Definition 4.1.14. Let n € Zso and A = n. Let further p = (p1;)ier be a sequence of
partitions with Yicr|pil =n and n:= (|ui])ier. Then we define

(A p) = [Resi(S™) : (XI)SM].

Further we define ¢((0); ((0),...,(0))) =1 and c(A\;p') = 0 if ¥jer il # 1.

Definition 4.1.15. Let A = (A1, A2, ...), 1 = (pu1, 2, ...) be two partitions. We define
the distance between A\ and u as

d(X 1) = ) [N = -
i€

The following theorem determines the quiver of A(w).

Theorem 4.1.16. Let R =k be a splitting field for a, let {S(i) |ie€ I} be the simple
A-modules and {P(i) | i€ I} their projective covers.

1. For every A € AL the module P()) is the projective cover of L()).
2. Let A= (Ni)ier # o= (pi)ier € AL
a) We have
dimy, Hom 4 () (P(A), rad(P(A))/ rad®(P(}))) =

Z;p(ki) dimy, Hom 4 (P (i), rad(P(i))/ rad*(P(i)))

where p(\;) is the number of distinct parts of \;.
b) We have

Hom g (y) (P(A), rad(P(p) )/ rad?(P(p))) = 0
unless either
1. there exists j € I such that A\; = p; for alliel i+ 7,
ii. we have d(\j, ;) =2 and
iwi. Homy(P(5),rad(P(j))/rad®(P(5))) #0,
in which case
ditny Hom s, (P(A). rad(P()/ rad® (P(1)) =
dimy, Hom 4 (P(j), rad(P(5))/ rad*(P()))

or
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i. there exist j,j' € I,j # 7 such that \; = p; for allieI,i#j,i+j,
it |usl > [Nl and d(pj, Aj) =1
211. ’IL[/]I’ > ’)\]I’ and d(M]’, A]’) =1

i which case

dimy, Hom g () (P(A), rad(P(p))/ rad®(P(p))) =
dimy, Hom 4 (P(j), rad(P(j"))/rad®(P(j")))

Proof. See [CT03, Proposition 4.6]. O

4.2 The principal block of Z,5,

Recall that the simple modules of the symmetric group over any field are enumerated
by partitions. The defect one characters of the symmetric group S, correspond to the
following partitions [JK81, 6.3.9]:

(p)v (p_ 171)7(p_2a12)7' : .7(271p—2)7(1p).

They are all in the same block, the principal block, of S,. Furthermore, all but the
last partition are p-regular and thus correspond to irreducible modular representations.
The Brauer graph of the principal block has the following form:

W S Vo ‘/20—1 Sp_l IP

Note that the form of this graph as a single path follows from Theorem 2.2.27 since
all characters of S, have values in Q and therefore every p-conjugacy class contains
just one element. It also follows from the theorem that all decomposition numbers are
Z€ro or one.

Notation 4.2.1. We will denote the simple Q,S, module corresponding to the parti-
tion (p—1i,1%) by V(i) and the simple and projective indecomposable, module of ZipSp
corresponding to (p —i,1%) by S(i) and P(i) respectively. Furthermore, we define
M :=F,® M for any Z,-module M, S(i) :=F, ® S(i) and P(i):=F,® P(3).

Lemma 4.2.2. With the notation above, we obtain the following decompositions:

Q@ Pk)=V(k)eV(k+1) (

rad(P(k))/rad?(P(k)) 2 S(k+1)® S(k-1) if 1<k <p-1 (
rad(P(1))/rad®(P(1)) 2 S(2) (

rad(P(p-1))/rad*(P(1)) = S(p - 2) (

rad?(P(k)) = S(k) (

ol o
(& S N VN SR
T — O O —
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The ext-quiver of F),S), is

Qlpy—
1/0”\‘2/02\3 p—Z/”_Q\pi—l
[ ] L] L] L ] o

B2 B3 Bp-1

with relations
BioBir1 =0,a44100; =0, 8410050 Biv1 = 0,50 Biv1 o0 =0, 0410 = Biv1 ooy

Proof. See [EM94, Section 4.1, Lemma 4.5]). O

4.3 The principal block of F,(.S,:53)
The fields Q, and IF, are splitting fields for every symmetric group and wreath product
S ¢Sy, [JK81] and we will therefore fix the p-modular system (K, R, F') = (Qp, Zp,F,).

Remark 4.3.1. With the notation from Section 4.1 we have that Bo(RSp(3)) =
Bo(RS))(3).

Proof. We consider By(RSy)(3) as a subalgebra of RS,(3). If S is the trivial RS)-
module, then the trivial RS,(3)-module is the threefold tensor product T®)(S) of S,
so in particular it lies in Bo(RS,)(3). In Corollary 4.3.15 we will further see that the
Brauer graph of By(RS))(3) is a connected component of the Brauer graph of RS,(3)
and therefore Bo(RS,)(3) is a block by Lemma 2.2.18. O

4.3.1 Simple and projective indecomposable modules
Let A an R-algebra. We introduce new notation for A(3)-modules.
Definition 4.3.2. Let I be an index set and x = (i,4,k) € I°.

1. We define the type of x to be type(x) =4 —|{i,j,k}|, i.e. type(x) =ne€{1,2,3}
if there are n occurrences of the same indez in (i,7,k) and no index occurs more
than n times.

2. Let A+ type((i,7,k)). Then we define type((i,7,k;\)) = type((i,J,k)).

Definition 4.3.3. Let {M (i) |i € I} be a set of A-modules, i,j,k € I, [{i,j,k}| =3,
w2 and A+ 3.

M (i, j,k) = M(5, 75, k; (1)) :=1nd§f?171)(M(i) ® M(j) ® M(k))

M(i,i, ji ) 3= M (i, i 1) = M (G5 1) s=Ind ) (TP (M (i) @ S*) @ M (5))
M (i,i,i;0) =T® (M(i)) @ $*
For any i,j,k € I and \ + type((i,7,k)) we define

M(l’]akv)\) = M(Z7jv kv )‘)
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Lemma 4.3.4. Let {M(i) | i € I} be a set of A-modules, i,j,k € I and let \ be a
partition with |\ = type((¢,7,k)). Then the dimension of M (i, j, k; \) can be calculated
as follows:

if A=(1)
if A2
if A=1(2,1)
otherwise

dim(M (G, 7, k; ) = dim(M () dim(M (7)) dim(M (k)) - dim(S>) - C(N).

C(\) =

= N W O

Proof. We can see that the factor C'(\) is the index of the subalgebra from which
the module M (4,7, k;\) is induced. Therefore the formula follows directly from the
definition. O

Definition 4.3.5. We define two index sets:
Io={(i,4,k; M) i, 4.k e {1,...,p}i < j <k, A+ type((4,7,k))}
Iy ={(i, 4, ks A) i, 5.k e {1,...,p—1},i < j <k, A+ type((d, 4, k)) }-
We will also use the short hand notation ijkA for (i,j,k;\).

Theorem 4.3.6. With the notation from 4.2.1 the simple Bo(LS,)(3) modules are as
follows.

1. L=K
{(Valaelp}
2. L=F
{8z |z €1}
Proof. This follows directly from Theorem 4.1.9. O

Remark 4.3.7. Wz’th_Themzm 4.1.10 and Lemma 4.1.11 we can see that for x € I,
the projective cover of Sy is Py.

Lemma 4.3.8. The constructions from Section 4.1 are all compatible with o change
of scalars, e.g. S(i,j k) =k® S(i,j,k). Thus it follows that the simple/ projective
A = By(Z,Sp)(3) modules are the following.

1. The simple A-modules are

{Sz |z ely}

2. and the projective indecomposable modules of A are

{P, |z el,}.
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Definition 4.3.9. Let a = (i,5,k;\),b=(i', 5/, k'; \') € Iy.
1. We define the length of a as

l(a):=i+j+k

2. We define a partial order < on Iy as follows.

a<b<l(a)<i(b)

4.3.2 Decomposition numbers

Recall that Q® P(i) =V (i) @ V(i + 1) for every i € {1...p—1}. Thus we obtain the
following decompositions for the tensor products.

KeP(i)eP(j)ePk)= @ V(E)eV(i)eV(K)
i'e{i,i+1}
j'e{gg+1}
k'e{k,k+1}

Remark 4.3.10. If w £ 3 is a composition, T' is a right transversal of Sy in S3
and A an R-algebra where R is a discrete valuation ring or a field, then for a A(w)-

module M every element of Indg) M is of the form m ®t with m € M and t € T,
see Lemma 2.2.13. In the following discussions we will always write the elements of
induced modules in that form and choose T = {id, (123),(132)} if w = (2,1).

To calculate the decomposition numbers, we will first make a few observations.

Remark 4.3.11. 1. There is an isomorphism

Id(>, (Vi) ® V(i) 2 V(i,i;(2)) @ V(i,i; (1,1)).

2. Define an RSy, Sy module V (i,j) as follows:

Res(y) (V(5,7)) = (V(i) 8 V(5)) @ (V(5) @ V(i)
(CLZ‘ ® aj, bj ® bl)f' = (bz ® bj,aj ® ai) V1 eSs.

Then the following map is an RSy, So-module isomorphism.

0 V(i,j) — V(i,j) = md{ (V(E) ® V(5))

(ai®aj,bj®bi)'—>ai®aj®id+(bi®bj)®%

3. There is a decomposition

KT (P@)=TPW(@E) e V(i,i+1)eTH(V(i+1)). (4.6)

70



4. Define an RS, 1S3 module V (i,i,j) as follows:

P

Res(y) 1) (V(i,i,j; (2))) =

VeV eV e V(e V()eV(i)) e (V(j)eV(i)e V(i)
(ai1 ® aj2 ® aj,bi1 ® bj @ b, ¢; ® ¢j1 ® ¢in). T

= (aig ®a;1 ®a;j,Ci1®C; ® Cig,bj ®bj1 ® big)

(ail ® a2 ®ay, bil ® bj ® biQ, Ci®cCi1 ® CZ'Q).(AT

= (Cil ®Ci2®Cj,ai2®a; ® aﬂ,bj ® big ® bﬂ).

Then the following map is an RSy, S3-module isomorphism.

P

o V(ii,5) — V(ii,5:(2)) = Ind(Y, (Vi) @ V(i) @ V(5))
(aﬂ ® a0 ® aj,bil ® bj ® biz,Cj ®ci1 ® CZ'Q) —

a1 ® a2 ® aj + bz‘g ® bz‘l ® bj@' +C1®Cio® Cjé’z
Proof. Part 1:

nd(?, (V (i) ® V(3))
= Indg?l)((vu) @ V(i) o (SN esM))

J(Res(2 (TP)(V (i) @ (51 @ 51))

_ (2)
=Ind (1.1

(1,1
M2 TE (1 () 0 () (50 0 5O)
=TV (i) o (S? & SOD)

=V (i,i;(2)) ® V(i,i; (1,1))

Part 2 and 4 are straightforward calculations.
Part 3: As a vector space K ® T(?)(P(i)) decomposes as follows:

KeoT®(P®)) =
ViyeV(@)eV(@)eV(i+)eV(i+l)eV(i)eV(i+1)eV(i+1)

Here V(i)®V (i) and V(i+1)®V (i+1) are also invariant under S,2S5. The remaining
two summands form another RS, 2 S2 submodule.

Vi)eV(i+1)eV(i+1)eV(i)xV({,itl)= Indg?l)(va) ®V(i+1))

Definition 4.3.12. Let n <3 and A+~ n be a partition of n.
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Then we define a set of partitions dc(\) as follows.
de((1)) ={N| XN +m,m <3}
de((2,1)) ={N | XN =m,m<2}u{(2,1)}
de((1,1,1)) ={(1),(1,1),(1,1,1)}
de((3)) ={(1),(2),(3)}
de((1,1)) = {(1),(1,1),(1,1,1),(2,1)}
de((2)) ={(1),(2),(3),(2,1)}

Remark 4.3.13. Let A+ 3 and p+ 2. Then dc(\) and de(p) are defined such that
the following holds.

Aede(p) < pede(N) < ce(X((1),n))>0

Theorem 4.3.14. Let a = (i',5',k"; \") € Ip and b= (i,5,k;\) € I,. Then
dapy #0 <= i e {i,i+1},5 e {j,j+1},k e {k,k+1}, and \ e dc()\) or
a=(i,i+ 1,0+ 150),b= (00,0 + L"), up" € {(2),(1,1)}.
If dop #0 then dg, = 1.

Proof. We calculate the decomposition of the projective indecomposable modules by
considering several cases.

e <5<k

K ® P(i,5,k) = IndY, | (P(i) @ P(j) ® P(k))

- {@ } mdY, [ (V@) e V(i) eV (K))
i'e{i i+l
J'eld,g+1}
K'e{k,k+1}

If i — 7] > 1 and |j — k| > 1 then this is already the decomposition into irreducible
modules. Now assume that j =i+ 1. Then for ¥’ € {k,k + 1} we obtain a further
decomposition as follows.

(3)
Ind(lvl’l)

=Tnd(y), (Ind3 ) (V(i+ 1) @ V(i+1) @ V(K)))

(V@i+1)eV(iE+1)eV(K))

=nd® (md? (V(i+1)eV@E+1)eV(K))

(2,1) (1,1)
HE mal) (TP (Vi +1) e TED(V(i+1))) © V(K))
- Indg?l)(T(Z)(V(i +1)) e V(K)) @ Indg?l)(T(l’l)(V(i +1)) e V(K'))

=V(@i+1,i+1L,E;2)eV(E+1,i+1,k;(1,1))
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Similarly, we obtain the following decomposition if k£ = j + 1:
mdy, (Vi) eV(j+1) eV (j+1))

=V(@i',j+1,j+1(2) e V(i j+1,j+1;(1,1))

e i=j,j<k
Using Remark 4.3.11 Part 3 we obtain the following decomposition for P (i, 1, k; \)

K ® P(i,i,k;\)

= K @ Ind(y) (TP (P() @ $* © P(k))

43113 P dgg)l)(T@)(V(i)) oV(i,i+ e TV (i+1) oS eV(k))
k'e{k,k+1}

) k’e{%?wl} d(g)l)(TA(V(z)) ®V(K)) e Ind(g)l)(TA(V(l 1) e V(K))e

@ md}) (VGi+1) o) eV(K))
k'e{k,k+1}

Note that V(i,i+1) @ S* = V(i,i+ 1) for A € {(2),(1,1)}. Thus, if &' # i+ 1,
then the last summand is V(4,7 + 1,k") and we already have a decomposition
into simple modules.

K ® P(i,i,k; \)

D Vi kN eV(i+1,i+ 1K\ e V(ii+l,k)
ke{k,k+1}

112

Now assume that k =k’ =4+ 1. Then we obtain the following additional decom-
positions

Indg)l)(T’\(V(i +1)) e V(i+1))
= 1nd§§>1)(T<2>(V(z +1) oS eV(i+1)oSM)

M2 md) (TP(V(E+ 1)) e V(i+1) o (519 SM))
- Ind(3)1)(Resg)l)(T(?’)(V(z +1))) o (5* e SM)Y)
TEW (i +1)) o nd3), (5% & SO

=TAW(i+1)) o (S*Y @ 5Y)

4.1.12.2
- (2,1
=V(@i+1,i+1,i+1;(2,1))+V(i+1,5+1,i+1;\)

where (A, \) € {((2),(3)), ((1,1), (1, 1,1)).
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Ind® (1 d(Q)I)(V(z) @V(i+1) oS eV(i+1))

@21)
_ mdg)l)((lndg?l)(vu) @V(i+1)eV(i+1)) o (S*esM))
=Ind(), (nd3 P (V) e V(i+1) o V(i+1) 05 ©SM)
R O d§§>1)(1ndg-}>1)((1/(i) @V(i+1)eV(i+1))o (Resg’)m)(S)‘ ®SMY)))
_ Ind(l (V@ eV(i+1)eV(i+1) e (sMesM esm))
- Indg?Q)(Indg} ?DW(Z) @V(i+1)®V(i+1)))
= Ind(y, (V (i) @ (7 (V(i+ 1) ® V(i +1)))
=Tnd(y, (Vi) © (T/(V (i +1)) @ TV (V (i +1))))
=V(i,i+1,i+1;(2) e V(i,i+1,i+1;(1,1))

e i<jj=k

With similar arguments as above, we obtain the decomposition

K ® P(i,7,j;\)

= @ V(@ iiNeV(E i+l j+ LN e V(i ,5+1)
i'e{i,i+1}

if j>i+1 and

K®P(j_17j]7 )
*V(G-1,7.5N V(4,5 2,1)eV(§i5N)
eV(j-1Lj+1L,5+LN)eV(jj+1,7+1;))
eV(j-1,7,j+1)®V(jji+1(2)eV(jjji+1;(1,1))
ifj=i+1.
.’L’:j:k

Similarly to the decomposition of K ® T(?)(P(i)) we obtain the following de-
composition.

KeoT® (P(>i)) =
TOWE) e T (V(i+1)) @ V(i,i,i+1;:(2)@V(i,i+1,i+1;(2))



For the general case, we observe the following;:
V(i i+1;(2) oS
x Indgg?l)(:r@)(vu)) ®V(i+1)) oS

~ Indgg?l)((T(z)(V(i)) V(i+1))o Resg,)n S/\)
V(ii i +1;(2)) if A= (3)

V(iii+1;(1,1) @ V(i i+1;(2) if A=(2,1)

Using this and the analogous result for V(i,i + 1,7 + 1;(2)) we calculate the
decomposition of K ® P(i,4,1;\):

K ® P(i,i,i;\)
=KeoT®(P(i)) o s
2 (TOWVE) e TOWV(E+1) o V(iii+1;(2)eV(3,i+1,i+1;(1,1))) @S
2 V(i,i,i; )@ V(@i+1,i+1i+ 1\
V(i,i,i+1;(2) @ V(i,i+1,i+1;(2)) if A=(3)
V(i i+1;(1,1) @ V(i,i+1,i+1;(1,1)) if A=(1,1,1)
V(i,i,i+1;(1,1) e V(i,i+1,i+1;(1,1))e

V(i,i,i+1;(2)@V(i,i+1,i+1;(2))

Corollary 4.3.15. The Brauer graph of Bo(RSy)(3) is connected

Proof. For ease of notations we will label the vertices of the Brauer graph by Iy. For
x = (i,5,k; ) and y = (¢', 5/, k"; \) let dist(x,y) = |i —i'| +|j — j'| + |k — k'|. We show
that the distance of the vertex xg = (1,2,3) to every other vertex y in the Brauer
graph is at most dist(xg,y). We use induction on dist(zg,y). The induction base
for dist(xg,y) is given since there is only one A\ + 1. Now let y = (4,7, k; \) € Iy with
dist(zg,y) =1 > 0. Assume first that ¢ # 1. Then for every z) = (i — 1,7, k; \) with
N +type((i-1,7,k)) it is dist(zg, 2y ) < dist(zg,y). From the decomposition numbers
it is not hard to see that there is at least one X’ such that V(y) and V(zy) share a
composition factor. Thus, by the induction hypothesis, the distance from xy to y in
the quiver is at most dist(zg, z) + 1 = dist(zg, y). The cases where j # 2 or k # 3 work
completely analogous, with the small difference that, if j < 2 or k < 3 we have to add
1 to the differing component instead of substracting 1. O

4.3.3 Quiver

Our next goal is to determine the quiver of A = By(F,S,)(3). Let S(1),...,S(p-1)
and P(1),..., P(p-1) be the simple and projective indecomposable By (F,S),)-modules
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respectively. Recall the radical series of P(4):
P(i)/rad(P(i)) = S(3)
rad(P(i))/rad?(P(i)) 2 S(i-1) @ S(i +1)
rad?(P(i)) 2 S(4).
Theorem 4.3.16. Let x = (i1,1i2,i3; ),y = (J1,J2,J3; ) € I,. Then
Homg(P(x), rad(P(y))/rad*(P(y)))
is non-trivial if and only if i; € {ji = 1,51+ 1} for exactly one l € {1,2,3} and iy = ji for
l#ke{l,2,3} and we have one of the following cases:
e pede(N) or
e i1=1a=13—1 and j1 =11,J2 =io+ 1 =13 =73 or
e i1+1=idy=143 and j1 =11 =ja =12 — 1,73 =i3.
Then dimp Homy(P(z),rad(P(y))/rad*(P(y))) = 1.
Proof. We apply Theorem 4.1.16. Recall that
Homm, s, 5, (P(1), 1ad (P(j))/rad®(P(j))) # 0 <> j € {i + 1, - 1}.
In particular we have for all i:
Hom g, (g, s,) (P (i), rad(P(i))/ rad®(P(i))) = 0.

for all 4. This means only the second case of Theorem 4.1.16.2.b applies. The rest is
just a translation of the theorem to our notation. O

Next we are going to determine some relations on the quiver of A. Those are not all
the relations, but they suffice to show that the algebra lifts uniquely. Note that the
existence of a lift is not in question since we know that the algebra is Morita-equivalent
to a block.

We will give explicit generators for Homx(?(:r),rad(]_D(y))/radQ(F(y))), z,y €l
to determine the relations. To do this, we will use different presentations of the pro-
jective indecomposable modules. In this context we will have to differentiate between
the subalgebras of A(3) corresponding to the subgroup S, (1),s(2)} % Sy(3) of Sz for
permutations ¢ € S3 for an algebra A. For this purpose we introduce the following
notation: For o € S5 define

A({o(1),0(2)},0(3)) ={a®p[pe o)) xSz} < A),

) A
Ind (1) 0@1.03) (V) = Iy (01 0(2)) 03 (VD)
Res®) (V)= Res” (3 (W)

(o(D.o@ o) V) = RS (50 0(2)) 0(3)) (W)

where V' is an A({c(1),0(2)},0(3))-module and W is an A(3)-module.
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Definition 4.3.17. Let A := Bo(F,Sp), = = (i1,12,i3;A) € I, and 0 € S3. Then we
define the A(3)-module F’(ia(l),ia(m,ia(g)) as follows.

If A= (2,1) we define ]_3’(1'0(1),2'0(2),@'0(3)) = P(z). Otherwise let B be the following
subalgebra of A(3).

[ ]fil = ’i2 = i3, then B = A(3)
e Ifij=iy#iy, then B=A({o7"(j),07 (k)},a (1))
L4 If ’{il,ig,i3}| = 3, then B = A((l, 1, 1))

Then we define a B-module My where M =F, F(ia(l)) ®F(ia(2)) ®]_3(i0(3)) and the
multiplication of B on My is as follows.

(v1 ®v2®w3).(a1 ®as ®az ® p)

_ V() @p(1) ® Up(2)0p(2) ® Vp(3)0p(3) 1 A€ {(1),(2), (3)}
sgn(p) - Vp(1)@p(1) B Up(2)ap(2) ® Vp(3)ap(3) if A€ {(1,1),(1,1,1)}

forvi®@uva®@uv3 e M and a1 ® as ® az ® p € B. Note that B is chosen such that the
multiplication is well-defined.

-, . . A

We define P (ig(1y:i0(2)i0(3)) = IndB(S) My.
Lemma 4.3.18. Let A:= By(F,Sy), x = (i1,42,i3;\) € I, and o € Ss.

1. If |{i1,i2,i3}| = 3, then the following map is an isomorphism of A(3)-modules:

= =/, . .
Uyt P(2) — P (ig(1),%0(2) lo(3)A)
(V1 ®V2®V3) ®pr—> (Ua(l) ® Vy(2) ® Ug(g)) ® (3_1[3.
2. Assume that i1 = i9 # i3. Then the following map is an isomorphism:

U s P(2) — P (ig1),fa(2):T0(3)i V)
((’Ul ® v @ 3) ® 1)3) Qpr— (Uo(l) ®Vy(2) ® 00(3)) ®dp.

If i1 # 19 = 13, then the following is an isomorphism:

- /- /- /. . .
U, : P(z) = ndy) T2(P(ia)) @ S* © Pir) —> P (ig(1), i(2), io(3)i \)

V2 ® v3 ® V1 ®S®/3 — (UO'(l) ®UU(2) ®UU(3)) ®5’ﬁ

3. Assume that iy =iy = i3 and let X # (2,1). Then the following is an isomorphism.

U P(x) — P(in,i1,i150)

V1 QU ®U3®S+H—> V1 Q@ Uy ® V3.

If A= (2,1) then P(x) = ?I(i17i17i1§ A).
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Proof. For pe Ss define p:=1®1®1®pe A(3).

1. First note that ¥, is the image of the homomorphism

S - S A(3 A(3 Y 7/ - 7/ -
®: P(i1) ® P(is) @ P(is) — Res)y(, | Ind /(0] | || Plio(1)) ® Plio(z) ® Plings))

V1 @ V2 ® U3 —> (’UU(l) ® Vs(2) ® 00(3)) ® 671
under the isomorphism from Lemma 2.1.2. Therefore we only have to check the
homomorphism property for ®. Let a1, a2,a3 € A. Then, by definition, we have
the following relation in the algebra A(3):
((3_1) . (a1 ®ar®az® 1)
=(1®1®l®c ) - (a1 ®a®a3®1)
= (ao(l) ® Gy(2) ® Gy(3) ® D-(1el®l® 0'71).
Now let vy € P(iy),v2 € P(i) and vg € P(i3) and a =a; ® as ® az € A® A® A.
We get
O(v1 @v2®v3).(a®1)
= ((Vo(1) ® Vo(2) ® Up(z)) ® 6 1).(a® 1)
= (Vo(1) ® Vp(2) B Uo(3)) ® (67" - (a® 1))

= (Vo(1) ® Uy (2) ® Vp(3)) ® (((a.0) ®1)- 67"
-1

= (Vo (1)8o(1) ® Vo (2)8o(2) ® Vo (3)00(3)) ® G
=0((v1®v2®v3).(a®1)).
The map ¥, is clearly bijective.
2. We show that
®:T%(P(i1)) @ S* ® P(iz) —
Res ) nat? Plig(1)) ® Plig(z)) ® Pligs))

A(LLL) T ({omt(1),071(2) 1o (3))
(V1 ® V2 @5) ® U3 > (Vg(1) ® Vy(2) ® Vp(3)) ® 671
is a homomorphism and obtain the homomorphism property of ¥, again by
Lemma 2.1.2. The homomorphism property for elements in A((1,1,1)) can be
proven exactly as above, as A((1,1,1)) acts neutrally on the S* component.
It remains to check that the map ® commutes with multiplication with the
transposition n = (12). Let vy € P(i1),v2 € P(i2) and vz € P(i3). Now one
computes

<I>(vl ® vg ® 7)3).77

= (Vo (1) ® Vo(2) ® Vp(3)) ® ).

= (Ua(l) ® 7)0.(2) ® /UO'(S)) ® 5'_1 . ﬁ -0 6_1.
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Note that ¢~ 'no = (671(1)071(2)) and thus
6746 e A({o T (1),071(2)}, 07 (3)).
Let £y =1 and £(;1) = -1. Then we get the following.

(Vo(1) ® Vp(2) ® Vg (3)) ® 6 tp6-671

= 3 (Vo (o-1(n(0/(1)))) ® Vo(o-L(n((2)))) ® Vo (o-L(n((3))))) ®
= x (Un(o(1)) ® Un(o(2)) ® Uy(o(3))) ®F

= (ex-vy(1) ®vy(2) @ 5@ Uy(3))

= O (vy(1) ® Vy(2) @ €N~ 5 ® V3)

= O (v,(1) ® vy(2) @ (5.1) ® v3)

=®(v; ®v2 @ s®v3.1).

3. Let vy, vo,v3 € P(i1), ai,az,a3 € A, p € S3, s € S and define gy = 1 and
€(1,1,1) = sgn(p).

V(v @003 5).(a1 ® az ® azg @ p)

= (v ® V2 ®v3).(a1 ®az ®az ® p)

= x (1) Up(1) ® Ap(2) Up(2) ® Gp(3)Up(3))

= W(Eray(1)Up(1) ® Ap(2)Up(2) ® p(3)Vp(3) @ 5)
= Wa,(1)Up(1) @ Ap(2)Vp(2) ® p(3)Vp(3) @ E5)
=U((11®v2®@v3®5).(a1 ®as ®az ®p))

Corollary 4.3.19. Let x = (i1,12,13;\) € I, with X # (2,1) and o € S3.

Then ]_3’(1'0(1),2'0(2),1'”(3);)\) has the following properties. There is a subalgebra B
of A(3) and a B-module M such that

1. P(ir, i, i3, M) 2ag) P (ig (1) io(2)sio(3); A)
2. A((1,1,1)) < B,

3. a1®ay®az®pe B <= p(o(4)) =o71(j) for every j € {1,2,3}, pe S5 and all
a1,az,a3 € A,

4. ﬁ,(ia(l)a ia(Z)aia(S); )\) = Indg@) M and

5. M =g, P(iz(1)) ® P(io(2)) ® Plis(3))-
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The above Corollary assure that in all cases where S does not occur, we only need
to define homomorphisms between modules of the form ﬁ’(i, J,k; A) and ﬁ’(i’ gy ks A
where i’ € {i + 1,7 —1}. The homomorphisms between the standard presentations of
the projective indecomposable modules will be given by composition with the isomor-
phisms above, see Definition 4.3.22.

Remark 4.3.20. The standard representation S(*1) of Ss will be described as follows.

Let (by,by,b3) be a basis of the vector space F3, then F3 becomes a right S3-module
via b;.0 = b,-1(;) for o € S3. Let further x1 = by — by and x2 = by —b3. Then (z1,22)p 2
SN

Lemma 4.3.21. Let x,y €Iy i, j,ke{l,....,p—-1}, |{i,j,k}| =3, e{i+1,i-1} and
Homp, (v, s,) (P(i),rad(P(i"))/rad®(P(i))) = (7).
Then ﬁgy ) defined as below is a generator of
Homg (P(z),rad(P(y))/ rad*(P(y)))
1w =(i,4,8(2,1)),y = (¢,1,75(2))

a®b®cidor;—v(a)®b®c®id-y(b)®c®a® (132) (4.7)
a®b®c®id®re—v(b)®c®a® (132) —v(c)®a®b® (123) (4.8)

2. x=(i,i,i;(2,1)),y = (i',i,4,(1,1))

a®b®c®ider; —27(c)®a®b® (123) —v(a)®b®c®id—v(b) ® c® a ® (132)
(4.9)

a®b®c®id®ry—2v(a)®b@c®id—v(b)®c®a® (132) —-v(c)®a®b® (123)
(4.10)

3. w=(i,1,47),y = (7,4, 0), (A1) €{((3),(2)),((1,1,1),(1,1))}

a®b®c®id~y(a)®b®c®id+y(b)®c®a® (132) +y(c) ®a® b® (123)

(4.11)
4. @ = (4,1, (2)), (", 7,i" (2, 1))
a®b®c®id—v(a)®b®c®id® (2x1 + x2) (4.12)
5. = (i1’ (1,1),y = (i',i,i';(2,1))
a®b®c®id—v(a)®b®c®id® x2 (4.13)
6. x=(i,j,j;m),y = (', 5, 5;A), A#(2,1)
a®b®c®id~vy(a)®b®c®id (4.14)
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7. x=(i,1,5;(2)),y(7', i, 5; N)

a®b®c®id—v(a)®b®c®id+v(b)®a®c® (12) (4.15)

8 w=(i,4,5;(1,1)),y = (7,1, 5; A)

a®b®c®id—y(a)®b®c®id-v(b)®a®c® (12) (4.16)

9. x=(i,7,k;(2)),y = (7', 4, k; N)

a®b®c®id—v(a) ®bQ c®id (4.17)

Proof. Let A = By(F,Sy,)(3). Straightforward calculations very similar to the ones in
Lemma 4.3.18 show that the above maps are indeed homomorphisms.

All that remains is to show is that if f : Py —> P4 is one of the homomorphisms
above, then Im(f) ¢ rad®(Ps). This follows from Lemma 4.1.13 as follows. First
assume that Py = P (i1, 2, 43; \) with i1, 49,45 € {1,...,p—1}.

rad(P (i1, iz, i3; 1)) = rad(Ind 2™ (P(iy)  P(j) ® P(k)))

- rad(Resﬁga) (Ind5® (P(i1) ® P(j) ® P(k))))

2 . .
- Resﬁga) (Ind2® (P(i,) ® P(j) ® F(k))).(;)T%(A) ®@rad(A) ® T27(A))

= Ind}® [(rad(P(i1)) ® P(j) ® P(k))
+ (P(ir) ® rad(P(j)) ® P(k)) + (P(i1) ® P(j) ® rad(P(k)))]

Applyi_ng the same argument again, we > can see that an element a; ® a2 ® a3 @ p €
Inda(P(i1) ® P(j) ® P(k)) lies in rad?(P (i1, , k; \)) if and only if

35 €{1,2,3} ,a ¢ rad?(P(i;)) or
3j,k €{1,2,3},7 # k, a;, € rad(P(i;)), a;, € rad(P(ix)).
Thus if we choose a such that y(a) ¢ rad®(P(i})) and b ¢ rad(P(is)),c ¢ rad(P(i3))
we have f(a®b® c®id) ¢ rad?(Ps).
The same argument works for cases including S as we know from Lemma 4.1.13

that

rad?(T3(P(i)) @ S*) = rad* (T3 (P(i))) @ 5.
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Theorem 4.3.22. Let x = (i1,i2,i3;\),y = (i],15,15;\") € I,. Let j € {1,2,3} with
iy € {ij+1,ij -1} and let iy, =), for k #j. Let further A\, \" be such that

Homy(P(x),rad(P(y))/ rad(P(y))) # 0.

Let &, : P(z) — F,(ij,ik,il;/\) and ®o : P(y) — F’(i;,ik,il;)\') and be the isomor-
phisms from Lemma 4.3.18 where iy, <i; and {j,k,1} ={1,2,3}. Then

-1
B(y,x} = ¢2 ° /Bzi;ikil)\’,ijikil)\) °© ®1
is a generator of Homy(P(x),rad(P(y))/rad*(P(y)).
Proof. This is a direct consequence of Lemma 4.3.21. O

Remark 4.3.23. The following diagrams depict parts of the quiver, for each index
a = (i,7,k;\) € Iy the quiver restricted to d,. To improve readability, we write i~ for
i—1 and i* fori+1.

o i=j=k, ()\,,U/) € {((17 L, 1)7 (17 1))7 ((3)7 (2))}
N s i s i s iGN
o i=j=]{},)\=(2,1)
i (2,1) s imii(1,1) s (1, 1) s (2, 1)

T

i7i71(2) — i74i(2)

oi=j=Fk- 17{”7//} = {(171)7(2)}

IR — \ i / it p
i it
AT iii(2,1)

o j=k=i+1, ()\Mu‘?lu’,) € {((17 1, 1)7 (17 1)7 (2))7 ((3)a (2)7 (17 1))}

m ) it p A

it s dit

it
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ei+l=j=k-1

J=277 —— i i(L1) ———jji(L1) ——— jjj"

=275 - 2jj"

e i=jk—j>1,pe{(1,1),(2)}

R TR —— ik ik

T

e j=it+1,k—-j5>1

Z'_Z.k_ A — Zlki(l, 1) > Z'l - (—) ZZ

x
ik~ (2)

itk

ik (1, 1)

1ik(2)

iTik i7"

o j—i>1k—j>1

iJkT <—>Z]k — gk~ <—>zyk

o

1] ke——ij k

Definition 4.3.24. Let x and y be two vertices in the quiver Qx of A. We call an
arrow from x to y in Qy ascending (descending) if I(x) <I(y) (I(xz) >I(y)). Note that
every arrow is either ascending or descending as |l(x) — l(y)| = 1 whenever an arrow
between = and y exists. We call a path in the quiver ascending (descending) if all the
arrows on the path are ascending (descending).
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Lemma 4.3.25. Let z,y,y’,z € I, with x > y,x > y',y > 2,y > z or x < y,x <
y',y < 2,y < z and assume that there is an arrow in Qx for the pairs of vertices
(z,v),(z,¥"),(y,2), (¥, 2) and assume that dyndynd, + @ and c, Ncy Ne, + B.

BBy = Foyay Bz By )

Where Fyqzy is as in Table 4.1. Note that we list every combination {x,y,y’, z} just

once since Foypy = . The annotations (',*) can be replaced both by (+,~) and

F, .
zy'xzy
(—=,+) to cover the ascending and descending cases at the same time. Note that the

components of the indices below are not assumed to be ordered to allow us to consider
ascending and descending paths simultaneously.

Proof. We will prove that Table 4.1 covers all possible cases. If we don’t assume any
order in the components, every descending/ascending path of length 2 such that all
vertices share some composition factor will be between two vertices of the form

x=(i,4,k;p),z=(0",5' ki p').

with the middle vertices being of the form

y e {4, ksm), (6,57 ksn') -
Now we consider several cases. We define i3y = (2) and p1,1,1y = (1,1).
1. i=j=k:
a) If x =(4,4,7;(2,1)) then

y e {(i',1,3;(2)), (¢4, (1, 1))}, 2 € {(@', 1,33 (2)), (@', 7", 3: (1, 1))}

and all combinations are possible.

b) If x = (4,i,i;\), A # (2,1) then y =y = (¢/,i,4; uy) and 2z = (¢/,i’,4; uy). So
there is just one path and we do not have to consider it.

2.4=5+#k:
a) If i’ = j' =k, i.e. x=(k*,k* k;p), then y = (k,k*, k; n) for some p+ 2 and

z = (k,k,k;p") for some p’ + 3. If p’ = (2,1) then both options for p are
possible. Otherwise p = fi,.

b) If i’ # k then there is just one possibility y = (¢',4, k) for the middle vertex
and thus a unique path which we do not have to consider.
3. i=k+j (yields the same possibilities as j = k # i):

a) If i/ =k =j, ie. = (i,i*,i;p), then y € {(¢',i*,4),(i,4,9;m)} and 2 =
(i',4,1;p"). The partition n = (2,1) is possible independent from p’ but only
one of g€ {(3),(1,1,1)} is possible dependent on p" and if p # p’ that only
n=(2,1) is possible.
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/

T Y Y z Fy
(41,45 (2,1)) (i',1,4;(2)) (i1, (1,1))  (i"4d,6:(2)) -3
Gy (21)  (aas(2)  (ai(L1)  (@Lda1) 1
G715 (2)) (7i,") Gii(3)  (hi@) 1
(4,i*,7;(2)) (i',1,1") (i,6,4:(2,1))  (i',4,4(2)) -1
(ivi*’i; (2)) (ivivi;(Qvl)) (i’i’i; (3)) (i,aiai; (2)) -1
(i,7%,4;(2)) (i',4,1%) (i,1,1;(2,1)) (i',4,1;(1,1)) 3
(i,3%,4;(1,1)) (i',4,1%) (i,4,7;(1,1,1))  (¢',4,4;(1,1)) -1
(i,7%,4;(1,1)) (i',4,1*) (i,1,1;(2,1)) (i',4,1;(1,1)) 1
(i,3%,4;(1,1)) (i,1,1;(2,1)) (i,4,4;(1,1,1))  (¢',4,4;(1,1)) -1
(i,7%,4;(1,1)) (i',4,1*) (i,1,1;(2,1)) (i',4,1;(2)) 1
G :2)  @ei@) Gaii2) (i) I
(i,i%,i%(2))  (d%0%(2))  (6,4,4%5(1,1)) (i',1,1") -1
(ivi*7i*;(2)) (7;77;77;*;(2)) (i7i7i*;(171)) (i,7i7i*) -1
(i*,i*,3;(2)) (4,i%,5(2))  (,4%6(1,1))  (4,4,4(2,1)) 1
(4,4, (2)) (J',1,%;(2)) (,7,) (J',1',4) 1 j-i[>1
(i,2%,0%;(1,1))  (¢/,i%,4%(1,1))  (4,4,1%;(1,1)) (i',4,1%) -1
(i,3%,0%;(1,1))  (¢',4%,4%;(1,1)) (i,4,7%5(2)) (i',4,1*) 1
(i,0%,3%;(1,1))  (4,4,4%;(1,1)) (i,4,7%5(2)) (i',4,1%) -1
(¢*,3%,4;(1,1))  (4,4%,4;(1,1)) (i,7%,4;(2)) (i,4,4(2,1)) -3
(jaiai; (17 1)) (j,aiai; (17 1)) (jvilvi) (j’ailvi) 1 |] _i| >1
(i,3%,1") (i',4*,i'(2)) (i,1,1'(2)) (i',4,1'(2)) 1
(i,3%,1") (i',4i*,4'(2)) (i,4,4'(1,1)) (i',4,1'(2)) -1
(i,3%,1") (i,4,1'(2)) (i,4,4'(1,1)) (i',4,1'(2)) -1
(i,3%,1") (i',i*,4'(1,1)) (i,4,4'(1,1)) (i',4,4'(1,1)) -1
(i,3%,1") (i',4*,i'(1,1)) (i,4,1'(2)) (i',4,i'(1,1)) 1
(i,3%,1") (i,4,4'(1,1)) (i,1,1'(2)) (i',4,4'(1,1)) -1 e
o o o J¢d{i,i*},
(]77’ ’2) (] ?Z ’Z) (]71’17 (2)) (-] ’Z’Z7 (2)) ]' ],é{l,l*}
(.. i) R N CRRACRY) B ORI CI0) N U A,
(4,4%,7) (¢',1%,5) (4,1,5;(2)) (i',4,7) L ged{i'ii"}
(4,4%,7) (¢",4%, 7) (i,4,7; (1,1)) (i',4,7) L jefdi it}
(4%, 7) (4,47 (2)) (61,55 (1,1)) (i',1,4) 1 jefd i}
(1.3.8) (7.5.) Giw w1 GRS

Table 4.1: Factors
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by TE# 2 4, k. &= (i, p), then y € {(i,7",i: p), (7, 1,0} and = = (¥, 7,).
4. 1 # j # k First note that ¢/ = j = j' #4, 7' =i=>¢ #j, 1 =k =3 #k and
j=k=>i=%k.
a) If i/ =j and j' =k ((4,7,k) = (§%,7,7")) we have a permutation of case 4c)
below.
b) If i = j and j' # k ((4,7,k) = (5*,4,k)) we have a permutation of case 4e)
below.
c) If i’ =k and j' =i ((i,4,k) = (4,4%,7")) then both y and z have type 2. If
y=(i',i*,4";n) then n = p’. Otherwise, both choices are possible.
d) Ifi' =k and 5" # k ((i,7,k) = (k*,j,k)) then we have a permutation of case
4f) below.
e) If /=i and " # k ((4,5,k) = (4,i*,k)) then y and z have type 1 and 3’ has
type 2. Either partition of type 2 is possible.
f) If ' =k and i" # 5 ((4,7,k) = (i,k*,k)) then then y has type 1 and y’ and z
have type 2 and it is A" = \".

g) If j',i" ¢ {4,j,k} then all indices are of type 1 and all partitions are 1.

That the homomorphisms are scalar multiples of one another with the scalars above
follows from straightforward if somewhat tedious calculations. Details can be found
in the appendix. O

Notation 4.3.26. Since there is at most one arrow between two vertices in the quiver
Qx of A we will sometimes describe paths as a sequence of vertices. For a path p =
(z1,...,24) in Qg we define the reverse path pt = (zn,...,x1). This will always
describe a path in Qx since there is an arrow from a vertex x to another vertex y if
and only if there is an arrow from y to x.

Lemma 4.3.27. Let a = (i,j,k;\) € Iy such that a™ :=(i—-1,7 -1,k —1; )\)_e Iy. Then
there is a descending path p of length 3 from a to a™ in the quiver Qx of A such that
pp~t corresponds to a non-zero endomorphism of P(a”).

Proof. This follows again from straight forward calculations, which can be found in
the appendix. ]

4.4 The principal block of Z,(S,2.5s)

Recall that we fixed the p-modular system (K, R, F') = (Qp,Zy,F,). Throughout this
section we let A be the basic algebra of the principal block of F,(S,2S3) and Ag be
the basic algebra of the principal block of Z,(S,2S3). Let Iy and I, be as in Definition
4.3.5. We use the notation from 4.2.1 for the S,-modules. Let A be a Ag-lift of A, ie.

1. A/pA=A
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2. K ® A is semisimple with center Z(K ® A) = @y, K.
3. The decomposition matrix of A is the same as that of Ag.

4. A is self dual in K ® A with respect to the form T, with u = (ug)ger, and
_ dim(Vg)
Ya = 5,5

Because A is basic and all decomposition numbers are one or zero, we know that
mg = dimV, = |{z € I, | dgy # 0}| for every a € Iy. By Lemma 2.1.32 we can assume
that

Ac @ R™Ma*Ma,

aEI()

We write (z,y) € Q if =,y € I, and there is an arrow between = and y in the quiver
Q7 of A. Recall that this is a symmetric property in this particular case.

Lemma 4.4.1. For every a € Iy we obtain

dim(V,)

——raly_ 3
S 551

vp(ua) = vp(

Proof. We know that every simple K S)-module whose dimension is divisible by p lies
in a defect zero block by Example 2.2.24. Therefore every simple By(KS,)-module
has a dimension prime to p. With the notation in Lemma 4.3.4 for a = (i, 7, k; \) € I,
the dimension of V, is

dim(V,) = dim(V (7)) - dim(V'(5)) - dim(V (k)) - C(A) - dim(S?).
and as by assumption p > 3 we know that both C'(\) and dim(S?) are prime to p. [

Notation 4.4.2. We denote the primitive idempotents of A by e, for x € I, and the
centrally primitive idempotents of K® A by eq for a € Iy. For x,y € I,, with (x,y) € Q

we let By .y be as in Definition 4.5.22. Let further B(y,w) denote a lift of By ) such
that ﬂA(y@)sa =0 for every a € I, \ ¢y nc,. We further define

Ii=@ e, A= P R,

aEIo aEIO

With the notation above we know that

Gen(A):={ey |z elp}u {B(y,m) |,y €I, and (z,y) € Qx}
is a generating system of A. Our goal is to determine as much information as we can

about those generators to define a corresponding generating system of A that we can
determine completely.

87



4.4.1 Endomorphism rings

Definition 4.4.3. To every path p = (x1,...,2,) in the quiver of A, we associate the
homomorphism

@(p) = B(rn,xn_ﬂ 0...0 6(12,1:1)'

Lemma 4.4.4. Let a = (i,5,k;\) € I, such that a™ = (i-1,j -1,k -1;)) € I,,.

1.

For any two ascending (descending) paths p1 and pa of length two between two
vertices in the quiver there is a unit F' € R* such that ®(p1) = F®(p2).

For any two ascending (descending) paths p1 and pa of length 3 between a and
a” there is a unit F' € R* such that ®(p1) = FO(p2).

For every ascending (descending) path p of length 3 between a~ and a we have
d(pp~t) £ 0.

Proof. 1. This follows directly from Lemma 4.3.25.

2.

3.

Let b = (i',5',k"; \) be some vertex on an ascending path of length 3 between
a” and a. Then we have either (a™,b) € Qx or (a,b) € Qx, so A" € ¢(A). Also
note that i € {i,i —1},5" € {j,j -1} and k' € {k,k — 1} and therefore dy, + 0.
Considering the quiver restricted to a as depicted in Remark 4.3.23 it is easy
to see that any ascending path of length 3 from a~ to a can be transformed to
any other such path by repeatedly exchanging ascending paths of length two.
By Part 1 these actions only change the homomorphism by multiplication with
units. The same argument works for the descending case.

This part follows from Part 2 together with Lemma 4.3.27.
O

Corollary 4.4.5. Let a = (i,j,k; \) € I,, such that a™ = (i—-1,5-1,k—-1;X) € I,,. Let
further x,y € I, with a € c; N ¢y and assume that (x,y) € Qx. Then (B(y@)ﬁ(x,y))a has
p-valuation 1.

Proof. As (B(%x)ﬁ(x’y})a = (B(x,y)ﬁ(y,x))a we can without loss assume that = < y.
Then the arrow (z,y) lies on an ascending path p = (a™,a1,az2,a) from a~ to a, so
x,y € {a",a1,az,a}. Then

Y= /B(a,ag)ﬂ(ag,al)B(al,a*)ﬂ(a*,al)ﬂ(al,ag)ﬂ(ag,a)

is non-zero and therefore for the following lift of v we get
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In particular Lemma 2.5.6 implies that 4 ¢ p*T' € pA. Note that c4 N cq- = {a} and
thus the product 4 is zero in every component except a. Therefore the entry 4, has
p-valuation at most 3. Lemma 2.5.11 implies that

Fo-o- (ﬂ(a’,al)ﬂ(m,az)B(ag,a)ﬁ(a,cu)ﬁ(ag,al)B(al,a’)) =
Fo-a- (5(a’,a1)5(a1,a’))Fa1a1 (B(aLaQ)B(ag,al))FaQaQ(/8((12,0,)/6(&,(12))'

On the other hand we know that FZZ(B(z,t)B(t,z)) e pRIDl for any z,t € I,. So

(B(z,t)ﬁ(m))a has p-valuation 1 for (z,t) € {(a,a2),(az,a1),(a1,a™)}, in particular
for (z,t) = (z,y). O

Definition 4.4.6. 1. Forie{l,...,p} oriely let r; =dim(V (7)).

2. Forie{l,...,p—1} define & = "L and n; = Sitl oo &=—-1+mnp.

Ty p’

Lemma 4.4.7. 1. Using the notation above, we have

& =-1 mod p and n; € Z.

2. Let x € I,. Then if an element of e,Ae, has exactly one non-zero entry, this
entry needs to have p-valuation at least 3.

Proof. 1. We know that dim(P(7)) = dim(V (7)) + dim(V (i + 1)) and therefore by
Theorem 2.2.16

ri+7i+1=0 modp=1r;=-7r;41 modp

=& =-1 modp and n; € Z.

2. This follows directly from the self-duality of e;Ae,.
O

Notation 4.4.8. 1. For a € Iy denote the components of a via a = (a1,az,a3; )
and define Cy := C'(\y).

2. For x €I, and a € c; define

T ._

ng = {1, 22,23} \ {a1,a2, a3},
w._ TzalaoTas

TaiTasTas

T nZ

T o._ Oq — (_1) @
a " .

p
We will often have a context where x is fivred. We will then omit the index x and

write Ng, 0q and pg.
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Lemma 4.4.9. Let x € I,, and a € ¢;. Then we have

Ta;

K3

Ta, _ 1 modp ifa; =x;
- &z, mod p otherwise

In particular

(-1)"  mod p and p® € Z.

T
Cr&

Proof. If a; #+ x; then a; = x;,1 since a € ¢, and the assertion follows by Lemma
4.4.7. O

Lemma 4.4.10. Let x € I, and a € c;. Then we obtain the congruence

e . Co(~1)" mod p.
To1TzoTag
Proof. By Lemma 4.3.4 we know that r, = Cyrg, TayTas- O

Lemma 4.4.11. Let x € I, and 7y € e;Ae,. Then we obtain the congruences

Y 797 =0 mod P’ (4.18)
aEIo
0= > Co(-1)"a~, mod p?. (4.19)
aEIQ
Proof. Self-duality of A implies
1
Tu(v,€z) = ——— TaVe € R
u 13) |é;p 2 é;3| (;2;% a /a
= p3| Z Ta"a
aEIO
=0= Z Car—afya = Z Co(-1)""y, mod p?
aely Tz Tz a3 aely

where the last equivalence follows since vp(7,) > 1 and thus

"a Yo — Ca(-1)"*7, =0 mod P2

Ty TzoTas

O

Lemma 4.4.12. Let x1), v € ey Ae, and assume that there is a unit B, € R* such that
Yo = Bap whenever v, 0. Define B, =0 otherwise. Then we obtain the congruences

> 178, =0 mod p? (4.20)
ae]b
0= Cu(-1)"B, mod p (4.21)
aGIO
0= > Cu(-1)"82 mod p. (4.22)
ae[o
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Proof. The first two congruences follow from Lemma 4.4.11:

4.18: Z ¢V =0 mod p3

aEIO

= Z raBe =0 mod p?

aeIo
419: Y Co(-1)"7, =0 mod p?
aEI()
= Z Co(-1)" B, mod p
aEIo

The third congruence follows from the same arguments as in Lemma 4.4.11 by the
considering the trace of v with itself.

1 2
Tu(v,7) = E €eR
u(757) |Sp 2 55| ) TaYq

=p’| Y rave= > raBip’

aEIO aEI()

=0= ) Co(-1)™ B2 mod p

aEIo

O]

Lemma 4.4.13. Let x € I, v € egAey, v € egley such that vy, =+, mod p? for every
a €Iy and assume that T,(7',1) € R. Then v—~" € Anp?T. In particular, ' € A.

Proof. Tt is clear that v —+' € p?T'. So all that remains is to show that v’ € A. By
assumption we know that Ty (7,e,) € R. Now let § € e, Ae, N e, R € pI'. Then

PP (Tu(7,6) = Tu(7,6)) = p* Tu(y' = ,9)
ep’ Tu(p’T',pI') < p°R.

Thus we obtain Ty (7/,d) € R. Therefore v € (ezAe;)! = ez Ae, which concludes the
proof. O

Lemma 4.4.14. Let z,y € I,, v = A2 e exNeyey Aey and ' as above. Define
§ =72y eeyAey and & € eyAe, with 8, =~ for every a € Iy. Then

66" e Anpl.

Proof. By Lemma 2.5.11 we know that v, = d, for every a € Iy. Furthermore T, (d’,1) =
Twu(7',1) and therefore the assumptions of Lemma 4.4.13 are fullfilled for §,4’. O

Lemma 4.4.15. Let v € e;Tey, a,be ¢, such thaty. =0 if c¢ {a,b} and v = Bup®, 7y =
Byp? with Ba, By € R*. Then

vyelA e (-1)"CyB, =-(-1)""CpB, mod p.
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Proof. First consider the trace of v with e,:

|Sp 253 Ty (7, €2)

Ty TooTas

= (-1)"Cava + (-1)™"Cyp1p =0 mod p’

= (~1)"Caffu + (-1)"CyBy =0 mod p,

which implies the direction from left to right. For the converse recall that e,Ae; \
e.R* € pI'. By assumption we know that Ty (7, e;) € R and ve,(pI')e, € p°T, which
implies that T,(y5) € R for any 8 € eyAe; ~ e, R*. Thus we conclude that v e
(exNer)™ = ez ey O

Lemma 4.4.16. Let x € I,, a # be Iy and 7,0 € egAeg \ e R* with (7d). # 0 if and
only if c € {a,b}.

1. If vp((v6)a) =2, then vp() = vp(dp) = 1.
2. Assume that (76), = ap? mod p® and &, = Bp mod p? with a, B € R*. Then

_(_1)nacaap
(1) Cyp

mod p2.

Tp

Proof. By assumption vp(),vp(8) > 1. If one of them had p-valuation larger than
zero, then for ¥ € e, Ae, with 9y = 50, and 9. = 0 for all ¢ # 0 we would have 9 € e, Ae,
since vp(40p) > 3. Then 78 — ) would be an element contradicting Lemma 4.4.7 Part
2.

For the second part, first note that we already know that p | 75. Then consider the
trace of v§ with e,. We have

IS 2 S5 T
D 3 c
Tu(’)’& ez) = Z
T Tao T3 cely Te1Tzo Ty
Tq Ty
= ————%b0a+ ———— 0

Te1TxoTxs Ty TaxoTas

Co- (-1)™ap®+Cy - (-1)””@ -p-Bp mod p?*
p

'7050

_(_l)naCaap
()™ CyB

2

= v mod p

O]

Lemma 4.4.17. Let x € I,,, v € egzAey, a # b € Iy and assume that 7. #+ 0 < ¢
{a,b} and assume further that v = Bap, e = Bpp with Ba, Py € R*. Then Cy(-1)"e
-Cy(-1)™ mod p.

" m
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Proof. By congruences 4.21 and 4.22 we obtain that

0=Co(-1)"Bq+Cp(-1)"5, mod p
0=Cy(~1)" B2+ Cy(-1)" B2 mod p

_ Gy(-1)" By
= By = AET mod p
Ch(~1)™
—0= Cb(—l)"bﬁf(—cbg_gna +1)

= Cy(=1)" = -Ch(-1)™
O

Notation 4.4.18. For two elements «, 3 € A we write o ~ 3 if there is a unit £ € R*
such that a = €8 mod A n pT

Definition 4.4.19. Let x,y € I, be two indices such that (x,y) € Q3.
1. We call B(x’y)B(y,m) € exAe, a standard endomorphism.

2. We call the elements of ¢, N ¢y the relevant positions of ﬂ(x y)ﬂ(y 2)- Ifacely is
a relevant positions, we say (B(x y)ﬁ(y z))a 5 a relevant entry of ,B(x y)ﬁ(y )"

We are now going to determine the standard endomorphisms up to multiplication
with a unit and modulo p?T'n A. For these calculations we will identify the endomor-
phism rings e;Ae, for x € I, with the direct sum @, K as in Remark 2.5.13. We
sometimes write ¢* for ¢+ 1 and i~ for i — 1.

Theorem 4.4.20. The endomorphism rings are the row spaces of the following ma-
trices. The standard endomorphisms are given up to multiplication with a unit and
modulo Anp?T. If v is a standard endomorphism we denote the endomorphism defined
as in the matriz below by ~'.

e cijpleijr for li—jl>1, |j—k[>1

igk  ditjk  ijtk gkt agtkt  dtgkt vtk it tkt

1 1 1 1 1 1
@iy | 0 p 0 0 0 p D p
Gtk | 0 0 p 0 D 0 D p
Gjky| O 0 0 p D p 0 p
o 0 0 0 p? 0 0 p?
0O 0 0 0 0 p? 0 p?
0 0 0 0 0 0 p? p
0O 0 0 0 0 0 0 p
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The standard endomorphisms written as row vectors are as follows.

ijk  itjk ijtk igkt  ijtkt  itjkt itjtk itjtkt

11 1 1 1 1 1 1
Gk | p O p P P 0 0 0
Gagky |0 » 0 0 0 P p p
Gj-k) | P P 0 p 0 P 0 0
Gtk 0 0 p 0 D 0 P p
Gjk)y | P P P 0 0 0 P 0
Gjk) VO 0 0 »p D P 0 p
o eiiinMegiin, [LeEcy

QA dditp dititp o atititA

1 1 1 1

ditp | O P 2p 3p

0 0 p? 3p?

0 0 0 P>

Standard endomorphisms:
WA Gt dititp Gttt
1 1 1 1

i—iip | 3P 2p D 0
diitp \ 0 D 2p 3p

i eiii(2,1)A€z‘iz‘(2,1)

Wi(2,1)  wtp dnt dititp Gttt iritit(2,1)

1 1 1 1 1 1
Gt 0 2p 0 p 3p 3p
Gt 0 0 2p 3p P 3p
0 0 2p? 0 3p?
0 0 2p? 3p?
0 0 0 0 0 p3




Standard endomorphisms:

i(2,1)  dditp @it dititp Gt ittt (2,1)

1 1 1 1 1 1
i~ dip 3p D 3p 2p 0 0
i | 3P 3pp 0 2p 0
it 0 2p 0 P 3p 3p
diit ! 0 0 2p 3p p 3p

o eiii*,uAeiii*u

Gt it dtitp w(i2)p  itEITA dritit(2,1) it (i+2) it (i+2)p

1 1 1 1 1 1 1 1
Gt 0 2p 0 0 0 3p P 2p
dititp 0 0 2p 0 4p D P 2p
i(i+2)u | O 0 0 P 0 0 p P
0 0 0 0 3p? 0 0 p?
0 0 0 0 0 3p? 0 2p?
0 0 0 0 0 0 p? 2p?
0 0 0 0 0 0 0 P>

Standard endomorphisms:

it Gt dtite (e et A aritit(2,1) it (i+2) it (i+2)p

1 1 1 1 1 1 1 1
i P 0 2p 0 3p 0 0 0
ii2,1) | 2p 3p p 0 0 3p 0 0
#i(i+2) 0 0 0 p 0 0 p p
it 2p p p 2p 0 0 p 0
diritu! 0 2p 0 0 0 3p P 2p
it 0 0 2p 0 4p P P 2p
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o ci-iipNei-iiy

i
i4i(2,1)

17t

i~dip

1

o O O O O o O

Standard endomorphisms:

T
T
-2
XEPN
413(2,1)

17t

o eiij#AeiW

i~dip

ii*j

iij*tp

Standard endomorphisms:

iij

iitj

iij*

WA di(2,1) et dditp
1 1 1 1
3p 0 0 0
0 3p 0 3p
0 0 P P
0 0 0 p?
0 0 0 0
0 0 0 0
0 0 0 0
WX ddi(2,1) it ddity
1 1 1 1
0 3p D 2p
4p D D 0
0 0 P 0
3p 0 0 0
0 3p 0 3p
0 D P
g ity digtp ttitgu
11 1 1
0 P 0 2p
0 0 »p 0
0 0 0 p?
0 0 0 0
0 0 0 0
digp Gty dijtp ititju
11 1 1
p D 0 D
2p  p 2p 0
0 »p 2p
0 0 p 0

ity imititu
1 1
2p 0
P 0
p 2p
0 0
P’ 0
0 p2
0 0
it ittt
1 1
0 0
2p 0
0 P
2p 0
P 0
p 2p
T
1 1
D 2p
p p
0 p2
P 2
0 p3

it

dititp

1




[ ejiwAejiw

Jiip  griip gt jrat o jititp

1 1 1 1 1
jriip | O P 0 P 0
it 0 0 P P 2p
0 0 0 p? 0
0 0 0 0 p?
0o 0 0 0 0

Standard endomorphisms:

Jiip  jriip gt jrit o jititp

1 1 1 1 1

jisi |20 2p  p P 0
joiip | P 0 D 0 p
i 0 P 0 P 0
it 0 0 P P 2p

o ejiimAejiiw, ig:=1+2

jii+ j+ii+ ji+i+(1,1) ji+i+(2) _]222 j+i+i+(1,1)

1 1 1 1 1 1
it 0 p 0 0 0 p
jitira,) | 0 0 2p 0 0 2p
jitit(2) 0 0 0 2p 0
jiia 0 0 0 0 P
0 0 0 0 0 2p?
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

jrititp

1

P
2p

j+i+i+'u

1
0
0

P
2p

)

1
p

Jriiz

1

oo o o

3
)

o O

Jitia

o8B, oo s © ~

Jritia

1

LSRR R RS

N

"R BB
w
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Standard endomorphisms:

gigt  griit

1 1
gii(1,1) p b
§ii(2) p p
ji=it p p
it P 0
jriit 0 p
ji+i+(1’1) 0 0
ji+i+ (2) 0 0
jiiz 0 0

) eifijuAei—,'j#

)

1

iij,ny |0
iwj2) | 0
iy |0
it 0
0

0

0

0

0

J

Standard endomorphisms:

i

imig-
i~i=5(1,1)
i"i7j(2)
i-2ij
ii5(1,1)
iij(2)

ity

gt
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O oo o RTRRS O~

ij

jitit(1,1)  jitit(2)
1 1
2p 0
2p
p p
0 0
2p 0
0 2p
0 0
iij(1,1)  dij(2)  iTitg
1 1 1
2p 0 0
0 2p 0
0 0 P
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
Wj(1,1)  dij(2)  iTitg
1 1 1
p p p
2p 0 0
2p 0
p
2p 0
2p 0
p
0

Jita  gritit(1,1)  gritit(2)  gtiie  jitia
1 1 1 1 1
0 2p 0 0 0
0 2p 0 0
p p 0
p 0 D
0 p p p 0
0 2p 0 0o p
0 0 2p 0 p
P 0 0 P P
iTigt ity digt(1,1)  digt(2)  dTitgt

1 1 1 1 1
0 p 2p 0 0
0 p 2p 0
0 P 0 P
p 0 p D D
0 p? 0 0 0
0 0 2p? 0 0
0 0 0 2p 0
0 0 0 P>
0 0 0
iTigt Gty dagt(1,1)  digt(2) ity
1 1 1 1
0 P 0 0 0
D 0 2p 0 0
P 0 0 2p 0
P 0 0 0 P
0 p 2p 0 0
0 »p 0 2p 0
0 P 0 D
p 0 p p p

Jritia

1

VR Y8 O o © O

it gt

1
p
p
p
p

(M)

p
p?
p?
p?
J

<.
St
T
<.
¥

RBRRRRY8 O o ©o o




™
S8

~
S

~
S

]
S

]
IS

o
S

/& & & & &

I
(z+2) 02

NQ‘O

O O & & & ©O ©o o o

T
(g+2) 422

H
(z)(g+2)n

S O O & o o

dg

H
(T (g+2)n

S o o O

I
(T) 1140

S O O o O

T
(T°T) 42422

O O O O & O O O o o o

T
(g+2)r2

S O O o o o O

0

H
(3) 42422

S O O O o o o o

o &

0

T
(T°T) 42422

S O O O o o o o o

&
a

0

T
(g)+12

S O O O O O O o o O

Q(
a

I
(T°1T) 4202

S O O O O O O o o o o

i

S22

(g+1)e-z
(3) 1422
(T'T) 42422
(T)+12

(1°1) +222

+.$|.@®< +12-15 o
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o 0 o0 o o & 8 8 8 8

T
(g+2) 11

00 o 8 0 o0 8 8 9

T
(z+1) 421

o

o o O

T
(z)(g+2)n

(g+2)22

d 0 0 d 0 0 0 0 0
0 dg 0 0 dg 0 0 0 0 (2) 42421
0 0 dg 0 0 dg 0 0 0 | Dz
0 d d 0 0 0 dg 0 0 (2)+1
dg d d 0 0 0 0 dg, 0 (1) +222
0 0 0 d d d 0 0 d 1T
0 0 0 d 0 0 dg 0 d (2)+1-1-2
dg 0 0 d 0 0 0 dg a | s
0 g 0 0 dg 0 d d d (@)t
0 0 dg 0 0 dg, d d d (1) 2
I I I I I I I I I

(TD@+)n (@) (1D (@)t (@)t (T2 (@) (D u

:SUWSYALOULOPUD PADPUDIG
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Proof. We will first determine the standard endomorphisms and then conclude that
the endomorphism spaces are as in the assertion. To follow the proof, the reader is
strongly adviced to follow the arguments using the matrices above.

We will do the calculations in two steps. First we will determine all entries modulo

p?. Then we will show that the assumptions of Lemma 4.4.13 are fulfilled for the

endomorphisms defined.

Loz =(04,52), (A p) €{((3),(2)),((1,1,1),(1,1))}.
First we want to show that the entries at all relevant positions have p-valuation
one for both /B(zu)\ 7,7,7,+/J,)6(ZZZ+M 1iN) and B(zu)\ 191~ u)/B(uz 1,895 -

This condition is fulfilled whenever p—1 > ¢ > 1 by Corollary 4.4.5. The arguments
for the two edge cases are very similar so we we will only consider the case i = 1.

Then only v = Biiin iii+ ) Baii+ w,iiin) €xists.

By Corollary 4.4.5 the entry ~;+;+;+x has p-valuation one. Assume that both
other entries have a p-valuation greater that one. By considering py we can see
that this would contradict Remark 4.4.7 Part 2, since p°T" € A.

The case where v has exactly one entry with p-valuation one besides ~y;+;+;+) is
impossible by Lemma 4.4.17 since Ci*i*i*)\ = —1, C’iii*u = -3 and C’ii*i*u =3.

We can conclude that for any 7 all relevant entries have p-valuation 1, so there
are units a, b, c,d € R fulfilling the following.

PN dditp dititp dtatitA
e’L’L’L)\_ (17 ]-7 17 ]-)

B(uz}\ 14 u)ﬁ(uz it A) "~ (apa bp, b, 0)
B(mz)\,uz*,u)/B(uz*',u,ul)\) ~ (07 b, cp, dp)

First, consider v := (B(“»M’iiiw)B(Mfﬂ,im))’ = (ap,bp,p,0). From 4.21 and 4.22
we get the following two congruences.
a-3b+3=0 modp

a’-3b>+3=0 modp
These congruences have two solutions, a =0,b=1 mod p and a =3,b=2 mod p.
The first solution is impossible as we already know that v,(ap) = 1. Using the
same arguments for 5(iii>\,iii+u)B(iii*,u,iii)\) we get that ¢ = 2 modp and d = 3
mod p.

2. x=(40,0+ L), pop' w2, pEp’, A3, Aecy, 1<i<p-1

By Lemma 2.5.11 we have already determined the entries of a unit multiple of

B(w zzz)\)ﬁ(uz)\ x) modulo p

First we will use Lemma 4.4.16 Part 1 to show that the standard endomorphisms
have p-valuation 1 at some positions not covered by Lemma 4.4.5. The following

101



102

table lists the combinations of endomorphisms and indices to which we apply
the lemma. Here y,z are indices such that we apply the lemma to v = B(,.,)B(y.2)

and § = B(z,z)B(z,:B)

Y z a b i
(4,4,4:(2,1)) | (4,0 i%5p) | (,43%,0%5(2,1)) | (6d%d50) | 1
(i (2,1)) | (yi*,i%5u) | (a0t (20) | Gititsu) |1
(i,1,1;(2,1)) (i,3,7;A) (i,4%,15 1) (i,3,3%; 1) 1
(hivit2p) | (Lit,i5p) | (%2 | (itiv2) | 1
(i,8,0+ 25 ) | (48", 455 u)) | GFat i+ 2;u") | (4,07,0+2) 1

ity | ity | Ghigitip) | (yitit2) | p-2
(mii®) | Gitit) | Gty | hiti+2) | p-2
This covers all entries except the following.
1=1:

(Ba giivop) Bisiv2uz) iii+2p
1=p—2:
(B(a,i-ii+) B(imis* ) idi+2ps
(B(aiit i+ ) B(ait i o) )it i+ie2ps
(B(ayiivitpn)Bist it z) itiviv2u
From Lemma 4.4.17 it follows that (B(x,ngu)é(ll:’)u,x))112u has p-valuation one.
We will not use the p-valuation of the remaining entries.

For every standard endomorphism v in e,Ae, we pick one position a € Iy for
which we know that v,(v,) = 1 and multiply v with a unit to obtain another
endomorphism «* for which v, is a certain multiple of p:

-1
7 =n (ﬁ) gl
p
= Yo =np
In cases where the endomorphism only exists for certain ¢ we add a restriction
on 7.
g a Ya i

Bwiii(2,)) Biii(2,1),2) (Gi+ 10+ 1) | p -

Baiiti+2)m) Bliiti+2) ) (4,3, +2; 1) p|i<p-2
Bai-ir)Biir o) (Gi+1Li+ 1) | p -
Bajiiviep) Bliivit w 2) (i,i+ 10+ 1;u") | 2p -
6(x7ii+i+u)/3(ii+i+y7x) (i,i + 1,i + 1; M) 2p 1>1

We use the congruences 4.19, 4.21 and 4.22 and Lemma 4.4.16 to determine the
remaining entries modulo p?. We will again only list the endomorphisms and
indices for which we apply the lemmas and the results. A row in the following



table means: We apply the lemma/ congruence from the first column to
(ﬂ(x y)ﬂ(y m)) and § = (5(90 Z)ﬁ(z z))" when we apply Lemma 4.4.16, where y,
are given as in the second column. From this we deduce the entry ~, modulo p?
at position a as in the fourth and fifth column. The last column gives restrictions
to ¢ as above.

IR\

Lemma/ .
Congruence y “ “ a !
421,422 | (i,i,it2:p) - G i7i+2) | p |i<p-2
(%3 i+ 25u) | p
14.16 G5 20) | G N G50 20| -
421,422 | (i,i,i;(2,1)) - Gt it ) | 3p| -
(i",i",i%(2,1)) | 3p
14.16 GRS (.5, 0) G50 | 2p
1.4.16 Gitit)) | (hia(2.0) | it (2,1) | 3p ] -
44.16 Goititin) | Gody i) G it N) | dp | -
4.4.16 Gyt i) | (6,4,6(2,1)) | G0t i%5(2,1)) | p -

Now consider vy = /8(171'—1'1'-#)/6(7;—1'1'4—’:2) once more.

0=1S, 283 Tu(v, B(:piii(Z 1))5(111(2 1), z))
=3-2p-2p—3-3pViititp =3P D

= 9p = 9v;i+i+wp  mod p

= Yji+i+ =p mod p°

Next we consider the trace of v and 72 with e,.

0= 6p - 3p - 3p - 377:7:(7;+2)u + 6’}/“+ (i+2) mod p2
= 3Vii(ir2)u = 6%+ (i42) mod p?
0=12p° - 3p* - 3p” - 37i2i(i+2)u + 6%‘2@‘+(i+2)

2 2 2 3
6p" = 127+ (i42) + 6%+ (i42) mod p

= p2 = 71'2#(142) mod p3
= Yii+(i+2) =P mod p* and Yy(i42), = 2p mod p?

Note that we did not need any information on the p-valuation of 7;;(;,2) u 50 the

argument also works for ¢ = p — 2. By using our knowledge of 5(1 i—ii+) 5(1 ii+,2)
we can make further deductions if ¢ > 1.

Lemma/ .

Congruence y “ “ Ya |
1416 Giig) | L) | Giit2) | p lis1
4.21 (3,37, 0% u") (i*yi*tyi+25p) | p | i>1
4416 Gt isp | GLai) | (hihit2) | p |ist
421 (i,i*, i 1) (it it 20 | p |is1
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Thus we have determined all endomorphisms except 8(112M7122M) 6(122M7112M) and
3(112#,,12%,) B(lmul’lu/,). We will determine those endomorphisms in the next
part of the proof.

In the following discussions we will use the same table notations as in this one
without further explanation.

3. x=("1,0;m),i>1

We will give a bijection between c;j+i+y, and ¢(p_i_1)(p-i)(p-i)u for 1 <i<p-1and
thus p—1 > p -1 > 1 along which we can transfer all the calculations from the
last part of the proof to this case..

C* Ciiitpu = C(p—i=1)(p=i) (p=i)s
(iyiyi+ L) — (p—d,p—i+1,p—i+1;u)
(i+1,i+1;u)— (p-d,p—i,p—i+1;u’)
(iyi+ i+ Lpu)— (p—i,p—i,p—i+1;u)
(iyi,i+2;u)— (p—i-Lip—i+1l,p—i+1;pu)
(i+1i+1i+1L;\)— (p—i,p—i,p—1i;\)
G+ 1,0+ 1,i+1:(2,1)) — (p—i,p—i,p—i;(2,1))
(i,i+1,1+2)— (p-i-1,p—i,p—i+1)
(i+1,i+1,i+2;u)— (p—i-1,p—i,p—i;u)

This bijection is chosen such that Cy = C¢(q) and (=1)"* = —(-1)"<@ for every
a € cji+y. Further it is a ¢ I, < ((a)” ¢ Ip and a”™ ¢ I), < ((a) ¢ I,,. For x € I, let
E,={z¢el,|(x,2) e Qg}.

We define a bijection between Ejj;+,, and E,_i_1)(p-i)(p-i)u-

W Biiiep — E(p-i-1)(p-i) (p-i)n
(yi+ 1,0+ 14 ) — (p—i-1,p—i-1,p—i;u’)
(yi+ 1,0+ 14 ) — (p—i-1,p—i-1,p—i;u)
(4,0 +2;pu) —> (p—i-2,p—14,p—i;p)
(11,05 0) = (p—i,p—1,p— i3 A)
(i,1,45(2,1)) ¥ (p—i,p —i,p—4;(2,1))
(i-1,5,i+1)— (p-i-1,p—i,p—i+1)

Then

@ € Cijirp N ¢z < ((a) € Cpmim1) (p=i) (p-i)p N Cur(2)-
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Therefore we can transfer all the arguments made above via the bijections to
deduce that if we transfer the choices we made by multiplication with a unit we
obtain

5 A % _ 5 5 * 2
(ﬁ(iiim,x)ﬁ(x,iiim))a = (B(i‘ii,u,w(x))B(w(:c),i‘ii,u))((a) mod p

for every x such that (iii*p,z) € Qx and a € Iy. This yields the endomorphisms
in the assertion.

Note that this means that the endomorphisms which cannot be completely deter-
mined by these arguments are ﬁ((p 2)p~p~ 1,(p-2) (p-2)p" u)ﬁ((p 2)(p-2)p~ 1, (p-2)p"p" 1)

and B((p 2)p~p~p,(p-2) (p-2)p~ u)ﬁ((p 2)(p-2)p . (p-2)pp-p)- However these endomor-
phism were already determined in the discussion of x = (4,4, + 1; 4) by Lemma

4.4.14. Addition&}lly, the standard endomorphisms which were not determined

in the last part, B(112,,122,) 8122, 1120) a0 B(1124,12207) (122, 112,)» are covered
by this discussion.

Ca= (1,05 (2,1))
This case has already been completely determined by the other discussions.
cx=(i-1,4,i+1),1<i<p-1

For the following y € I, the entries of B(x,y) B(y@) are already determined modulo

P

(i-1,4,4;(1,1)), (i - 1,4,4;(2)), (4,4,i + 1;(1,1)), (4,4,7 + 1; (2))

We use Lemma 4.4.16 Part 1 to show that the standard endomorphisms all have
p-valuation 1 at every relevant position.

Y z a b i
(i7,i7,1%5(1,1)) (i7,i,4;(1,1)) (i,4,3%;(1,1)) (i",i,1%) 2
it @2) | (2)) (iri,i% (2)) GRRS 2
(i~ ,' it (1 1) | (i7,i7,i%5(2)) (i7,1,i") (i7,i,i+2)) 2
(i7,i7,1%5(1,1)) (i7,4,i+2) (i,4,1+2;(1,1))) (i7,i,i+2)) 2
(i7,i,1%5(1,1)) (i7,i,1;(1,1)) (i,2%,i%;(1,1)) (i7,i%,17(1,1)) 2
(i1 ,z+ (1,1)) | (i7,i*,i7;(2)) (i,i%,i+2) (i7,it,i+2) 2
itit@) | as@) | Giite) | i) |2
(i,i* z+ (1 1)) (i,i,i+2) (i,i%,i+2) (i7,i",1+2)) 2
(i~ ,z+ (1,1)) | (i7,i7,i%;(2)) (i7,,1%)) (i7,i,0+2) -
(i7,i7,1%5(1,1)) (i—2,i,1") (i7,1,i") (i"i,i+2) -
(i7,i7,1%5(1,1)) (i,,3%;(1,1)) (i,3,3%5(1,1))) | (4,4,i+2;(1,1))) -

(i7,i7,i%5(2)) (4,4,1%;(2)) (4,4, (2)) (4,1, i+2 (2))
(i—2,i,i+) (i, it (1L,1) | (Lt it (1,1)) (i, +2)
(i—2,4,1") (i7,i%,i%;(2)) (i7,i%,i%;(2)) (i",i%,i+2)

(i7,i*,a%;(1L,1)) | (i7,i%,i%5(2)) (i, z+2) (i,3%,i+2))

Next we choose one entry for each endomorphism.

BSERSERS TS B S TS S
I
NN NN NN N
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2 a Va {
Bai-imir(1,1)) Bli-i+ (1,1),2) (i7,4,7") D -
Baiimi+(2) Blimi-i+(2).2) (i7,1,") p -
B (i-2)iin) B((i-2)ii* o) (i7,1,") D ©>2
Blaimivir(1,0)BGivit(1,1),2) (i7,47,i%(1,1)) | 2p -
B(ai-ii(2)) Blimivit(2),2) (i,i%,475(2)) | 2p -
Bai-i(i+2)) Bi-i(i+2)2) (i7,4,i+2) p|i<p-2
Finally we deduce the remaining entries.
Lemma/ .
Congruence y i “ Ya !
1416 G (L) | GaaaD)) | GhisLy) (20| -
4.4.16 (i it (L)) | (hdi (L) | (hii+v2:(1,1) |20 | -
4.21 (i"i,i: (1,1)) - (i"ii+2) | p -
14.16 GRRRIO) NERGRAIP), i) |2 -
4.4.16 G0t (2) | (it (2) | (hii+2;(2) | 20| -
4.21 (i"i,i*:(2)) - (im,ii+2) | p -
14.16 G-2,4,i") Gan(LD)) | G (LD | p | @52
4.4.16 (i—2,i,i") (0,5 (2)) | G it 2) | p | 2
4.4.16 (i-2,0,0%) | Gyt (L) | (i,4,0+2) | p | i>2
421 (i —2,i,i%) - (iti+2) | p | i>2
4416 i i L)) | (LaaLD) | Gitis(L) |29 -
4.4.16 (it it (L) | (4,4 (1,1)) G,i*i+2) | p -
421 (0%, 0% (1,1)) - (imi*i+2) | p -
44.16 G5 02) | (.6602) i) 20| -
4.4.16 (i, 0%, (2)) (i,i,i"(2)) (,i*,i+2) | p _
421 (i,i*,i*;(2)) - (imiti+2) | p -
14.16 Gii+2) |G | Gait2s(L) [ p |i<p-2
4.4.16 (i",i,0+2) (i7,i7,i%;(2)) (i,,7+2;(2)) p |i<p-2
4.4.16 (i"ii +2) (i,i,i*; (1,1)) (i,i*,i+2) | p |i<p-2
121 (i ii +2) - ("t i+2) | p |i<p-2

6. x=(i,1,7;p) and = (i —1,4,7), j > .
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We consider to cases simultaneously and use induction on j —4. If j —4 =1 then
both cases have already been covered (x = (i,7,7+ 1;u),x = (i — 1,4,i+1)). We
will apply the induction hypothesis only to endomorphisms where the asserted
forms agree for j—i=1and j—1> 1.

Now assume that every entry of a standard endomorphism in e;jr,, Aejrirjr, or
eir-irjrNey-irj with j'—i' < j—i is already determined to be as in the assertion of
the lemma mudolo p?.

First consider x =

(i,4,7; ). Here the induction hypothesis implies that that

Bz,iij-2) Bliij-re) and B(aii+j)Bii+jz) are already determined. Those endomor-
phisms have the same asserted form both if j~ =i and if j~ > i*.



We show that some additional entries have p-valuation 1.

y | = | e | b | il
(i) | Gitogim) | G 5wy [ ity g®) [i=Lj<p-1
(i6,0) | Gitogsm) | %) | Gitg") [i>Lj=p-1

The entry (B(r,iiﬁ)ﬁ(ﬁf@))u‘jm has p-valuation 1 for ¢ = 1 by Lemma 4.4.17.
We will not use the fact that yp(,@(%ﬂj)ﬁ(mm))iijw =1 to determine the entry

modulo p?.

We choose the following entries by multiplication with a unit.

Y | a | Yo | i
B(aiij)Blimije) (i,4,7; 1) 2p | i>1
Ba,iijh)Bijray | (i+1,j+1) | p | j<p-1
Now we determine the rest of the entries.
Lemma/ .
Congruence y & Ya i/
4.4.16 (i7,4,7) (iyi,77 ;1) (i,i%,7) P 1>1
4.4.16 (i7,1,7) (i,i%,7) (i,3%,77) p 1> 1
4.19 (i7,4,7) - (iyi,7 ;1) | 2p i>1
4.4.16 (iyi, 5, 1) | (4,7, 7) (ityit, ) | p | i<p-1
4.21 (i7i7j+nu') - (ivivj-'-;:u) p ’L'<p_1

Next we consider « = (i —1,4,5). For x € I, we have to additionally assume
1 > 1. By the induction hypothesis we assume that B(x,i‘ij‘)é(i‘ij‘,x) is already
determined. This endomorphism has the same asserted form for j—1 =4i+1 as for
j—1>14+1. We have also already determined B(%iiju)ﬁ(iim@) for pe {(1,1),(2)}.

Most relevant entries have p-valuation 1.

Yy z a b i/j
(i7,i7,45(1,1)) (i,4,57) (4,1,5;(1,1)) (i7,1,5) i=2
(7,37, 75(2)) (i7,4,57) (44,55 (2)) (i7,4,7) i=2
(i, (1,1) | G707, 5:(2)) (i7,1,5) (i1,57) i=2
(i_7i+7j) (i_viuj_) (ivi+7j) (i_)f-?j) i=2
(i_7i7j+) (i_ai_ajS(lal)) (i>i>j+§(171)) (i_7i7j+) 1=2,j<p-1
(i_7i7j+) (i_7i+7j) (i7i+)j+) (i_7i+7j+) i1=2,7<p-1
(i_ai_aj;(lvl)) (’i_,’i_,j;(2)) (Z_,Z,]) (i_7i7j+) Jj=p-1
(i_ai_vj;(lvl)) (1_2717]) (7’_717]) (i_7i7j+) Jj=p-1i>2
(i35 (L) | G5 (L,1) | (6d,55(1,1)) | (44,5%5(1,1)) | j=p-1
(i7,i7,75(2)) (4,1,55(2)) (i,4,5:(2)) | (64,575(2)) j=p-1
(i_zaiaj) (i_af—aj) (i_’i+7j) (i_vi+7j+) J=p-l1>2
(i-2,4,5) (i7,i7,5;(1,1)) (i7,4,7) (i7,4,5%) J=p-1,1>2

The only entry missing is (,63(%12@_1))3(12(1)_1)@))13p.

We choose the following entries by multiplication with a unit.

107



Y a Ya 1,]
BiijaBa-ijane | (E=1,4,7) P -
Bla,i-ii(2))Blimi-j(2) ) (i-1,4,5) | p -
B(w,i-2i) Bi-2ij,0) (i-1,i,5) P ©>2
@(m,z‘—ﬁj)@(i-ﬁj,z) (i-Li+1,7) | p -
Ba,i-ij+)Bi-ij* ) (i-1,4,5+1) | p | j<p-1

Now we determine the rest of the entries.

Lemma/ .
Congruence y & “ o i/
4.4.16 (i",i7,7;(1,1)) (i"yi,77) (iyi,7;(1,1)) | 2p -
4.4.16 (i",i7,7;(1,1)) (i,4,7(1,1)) (i,3,7%;(1,1)) | 2p -
4.21 (i",i7,7;(1,1)) - (i7,i,7%) P -
4.4.16 (7,775 (2)) (i7,4,57) (4,1,5:(2)) | 2p -
4.4.16 (i7,47,5:(2)) (4,1,5(2)) (i,1,57:(2)) | 2p -
4.21 (i",77,7;(2)) - (i7,4,5") P -
4.4.16 (i-2,1,7) (i"yi,77) (i7,i*,7) p 1> 2
4.4.16 (i-2,1,7) (i7,i7,7(1,1)) (i7,i,7%) p 1> 2
4.21 (i-2,1,7) - (i7,i*,5"%) P 1> 2
4.4.16 (i",i*,7) (i"yi,77) (i,i%,7) p -
4.4.16 (i7,i",7) (i,7,7(1,1)) (i,7%,7%) p -
4.19 (i",i*,7) - (i7,i*,5") p -
4.4.16 (i"yi,77) (i"yi,7;(1,1)) | (4,4,57;(1,1)) | p | j<p-1
4.4.16 (i7,4,5%) (i7,47,5:(2)) | (4,4,55(2) | p |ji<p-1
4.4.16 (i"yi,77) (i,4,7(1,1)) (i,i%,7%) p | j<p-1
4.21 (i7,i,37) - (i7,i",5"%) p|lj<p-1

7. x=(j,4,9;p) and x = (j,4,i+ 1), j<i
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We will handle this case similar to the last one by induction over ¢ — 5. The
induction base for i — j =1 is covered by previous discussions.

We assume that any entry of a standard endomorphism in e

i’

A(Ej

13151

iity OF

ejririr Aejrrre with 4" — ' <0 - j is already determined to be as in the assertion of
the lemma mudolo p?.

First consider x = (j,4,4; ). The induction hypothesis implies that that both
Ba,j+iip) Bi+iip,ae) and B ji-i)B(ji-i,z) are already determined. Those endomor-
phisms have the same asserted form both in the case where i~ = j* and where

i >t

The following entries have p-valuation 1.

y | = | e | b | il
Gt | G ) | Guain) | (i) [ i=p-1,j>1
Goii®) | Goiyd) | (Gai) | (Gii®) | j=Li<p-1

Then Vp((/é(x,j‘iiu)é(j‘iiu,x))ji*i*u) =1 by Lemma 4.4.17. We will not use the



fact that Vp((B(m,jii*)B(jii*,z))ji*#,u) =1 to determine it modulo p?.

We make the following choices.

Y a | v| ij
ng,j-iw)@(j-im,x) (Jyiyisp) | p Jj>1
Bajiit)Biitay | (Urdi+1) | p |i<p-1
Now we determine the rest of the entries.
Lemma/ .
Congruence y § @ o i/
4416 G i) | Gaiad) Git) | p | j>1
4.21 (37,3, 05 1) (41" %) | p | j>1
4.4.16 (j,i,f’) (4,i7,1) (57,4,1) p |i<p-1
4.4.16 (4,,0%) | (GFayasp) | (5,05 d50) | 2p | i<p—1
4.19 (4,4,1%) (7,3, i%501) | 2p i>1

Next we consider x = (j,i,4"). For z € I, we have to additionally assume i <
p—1. By the induction hypothesis we assume that B(wﬁ-ﬂ) B(ﬁiﬂ,x) is already
determined. This endomorphism has the same asserted form for j+1 =i—1 as for
j+1>i-1. We have also already determined B(:c,jiiu)ﬁ(jiiu,w) for pe {(1,1),(2)}.

The following relevant entries have p-valuation 1.

y z a b i/j
(]7Z_7Z+) (]7272;(17 1)) (]+’2’2+) (]7z7l+) j =
(i) (juiyi+2) (G ii+2) | (hii+2) |j=li<p-2

(i (L) | (5,07,075(2)) (G507 i+2) | (GiT,i+2) J=
Goitits(LD) | Guii+2) | (hiti+2) | Gyitit2) |j=Ti<p-2
(j_aiai+) (j+?ivi+) (j+,i,i+) (j+,i,i+2) i=p-2
(J7,4,4%) (g%, (1,1) | (G,i, %5 (1,1)) | (7,0 +2) i=p-2
(j7,4,4%) (J,17,175(2)) (4,i7,1%5(2)) | (i7,i+2) i=p-2

(i % (L) | (5,07,075(2)) (Gyiti+2) | (57,070 +2) i=p-2

The missing entries are (B(x,jrﬁ)ﬁ(g‘mnx))jz’(i+2) and (B(x,j*ii*)B(j*ii*,x) )ji(i+2)-
We choose the following entries by multiplication with a unit.

_ Y a Ya | 4]
@(x,ji—#)@(ﬂ-#,x) (J,i,i+1) p -

R ﬁ(z,j-z‘ﬁ)@(j-m,x) (4,4,i+1) p | -
B(a,jirivs(1,0)BGirit1,1),2) (Jryi+1,i+1;(1,1)) | 2p | -
Bla.jirivs(2)) Bljirivs(2),2) (Jyi+1Li+1;(2)) | 2p| -
B(a,ji(i+2))BGiti+2),2) (J,1,1+2) p | -

Now we determine the rest of the entries.
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Lemma/

Congruence y i “ o i3
1.4.16 G | Gihai) Gri i) o -
4.4.16 (Gyim,it) (G*i,i") Gt ii+2) | p ;
4.19 Gimyit) ] (joiyi+2) » ]
1.4.16 G i) | GaaLD) | Gy | p | jo1
14,16 G | Gai@) | Ginit@) | p | ds1
4.4.16 Giyit) (Gim,i) (jii+2) p | j>1
421 (G i,i") ; Goitit2) | p | j>1
4.4.16 (i, d%5 (L) | (Ghd,4(1,1)) | (GF,a,d%5(1,1)) | 2p -
4.4.16 Gyt (1L,10) | (%) G+ it,i+2) | p -
421 Grit,it:(1,1)) ; Gyiti+2) | p ;
4.4.16 Gty it (2)) | G*iyit) Giti+2) | p ;
421 Goit,it:(2)) ; Gyiti+2) | p ;
4416 (Griit2) G (Gii+2) | p |i<p-2
4.4.16 (i i+2) G*i,i") (G*,it,i+2) | p |i<p-2
421 (i i+2) ; Gyiti+2) | p |i<p-2

8. x=(i,5,k), i<j<k

110

We will make an induction over the pairs (j — i,k — j) ordering them lexi-
We claim that any endomorphism B(l’jk’i/j/k/)B(iljlklﬂ']’k) where
[{i,5,k} = |{i',5',k'}| = 3 has entry p modulo p? at every relevant position.
The induction base is given since we already know e;-;;+Ae;—;+ and the entries
there fulfill this assertion. We can also assume that j —i¢ > 1 and k- j > 1 since
we have already determined the cases where j —7 =1 or k£ —j =1 and here the
assertion is fulfilled as well.

cographically.

So the induction hypothesis implies that B(xji+jk)/3(i+jk’z), B(mj-k)/g’(ij-k@) and

B(a:,z‘jk*)B(ijk*,;v) are already of the asserted form.

The following relevant entries have p-valuation 1.

Yy | z | a | b i/k
(6,57, k) | (6,5,k7) | (% 0% k) | (2,57, F) i=1
(i7j7k+) (Z.uj_ak) (i+7j7k+) (i7j7k+) i=17k<p_1
(i7,4,k) | (,57,k) | (i,4,k) (i,5,k7) | k=p-1,i>1
(Z.aj+7k) (i+7j7k) (i+7j+ak) (i+’j+7k+) k=p—1

We will deduce the entries of the endomorphisms at position (4,j", k") without
using knowledge of their valuation.

We make the following choices.

o e || i
@(z,i‘jk)@(i‘jk,x) (Lj? k) p i>1
Bw,ij k) Bjhay | (1,57 K) | p -
Ba,ijk)Blijerzy | (65,E7) | p | k<p-1



We determine the remaining entries.

Lemma/

Congruence y i “ o !
4.4.16 (i7,7,k) | (i,5,k7) (i,57,k) P 1>1
4.4.16 (i7,7,k) | (4,57, k) (i,7,k%) P 1>1

4.19 (i7,7,k) (i, 55,k) | p 1>1
4.4.16 (3,55 k) | (i,5,k7) | (%, 5% k) | p -
4.4.16 (i, 57, k) | (i 5,k) | G 4TkT) | p -

4.19 (i,57,k) (i, 55, k%) | p -
4.4.16 (i,5,k%) | (i,57,k) | (i%,4,k") p | k<p-1
4.4.16 (i,9,k%) | G*5,k) | (G505 kT) | p | k<p-1

4.19 (i,7,k%) (i,55,k) | p | k<p-1

Now we have determined all entries modulo p?. Our next step will be to show
that the asserted endomorphisms fulfill the assumptions of Lemma 4.4.13 and thus are
equivalent to the standard endomorphisms modulo A n p?T.

Let z,y € I, with (z,y) € Qx and 7' € e,T'e; be the corresponding element defined
as in the assertion of the lemma.

Note that ry, 74,7z, € Zy; and thus Ty (7', ex) € Z, if and only if Tulvles) ¢ Zp. We

Tz TzgTag
get

TU/ ,7 el‘ ra/
|511>253|—(7 ) >

ToiTaoTas  gely To1TaoTas

Y. Cal(=1)" 75 + (PPa)Va)-

aEI()

Our construction was done in such a way that we have always chosen the last entry such
that ¥ 4e7, Ca(=1)"v, = 0. So all that remains to show is that ¥ ucz, Cappay € P°Zp.
We calculate ppg:

T TpsT
n _ TayTaoTas
(1) +ppg = —22
Ta1TazTas
Ta;

ie{1,2,3} Tz

T:Q‘#—l

ie{1,2,3[a;>z;} i

Ea

i€{1,2,3|ai>mi}

[T (1+mp)

i6{1,2,3|a¢>:c,~}

(=1)" - Z Ne;p mod p2.
i€{1,2,3|a¢>zi}
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Since p | 74, it suffices to consider pp, modulo p?. So it suffices to show that

Z Co( Z Uxip)’)/(lz =0

aelp 1€{1,2,3la;>x;}

This can be easily checked for all the endomorphisms. Here we show it in two examples
for clarification. For Y= /B(iii)\,iiﬁp,)B(iiiJr/L,’ii’i)\) we obtain

%{z‘z‘m =p
!
Viitity = 2p
’Yz{+z‘+z'+)\ =3p
> Cal Y NemP) Vo

aely 1e{1,2,3lam>zm}

==3(mip)p + 3(nip + nip)2p — 1(nip + mip + nip)3p = 0.
In the case of ~y = B(ijk’i-jk)ﬁ(i-jmjk) for ¢ < j < k we obtain

'Yz{jk = Yigtk = Vigkt = Yijtkt =P
> C( Y Meap)Va =

acly 1€{1,2,3lam>Tm }

—6(n;)p — 6(nk)p + 6(n; +m1)p = 0.

This completes the proof that the standard endomorphisms are as asserted up to
multiplication by a unit and modulo p?I'nA. It remains to show that the endomorphism
spaces are the row spaces of the matrices in the assertion. Let e be a primitive
idempotent of A. First we see that the row space of the matrix is contained in eAe.
The first row of the matrix corresponds to e, the rows with entries with p-valuation
1 are in eAe by Lemma 4.4.13, the rows with p-valuation 2 are contained by Lemma
4.4.15 and the last row is always contained, as p3T' C A.

For the other direction note that if n is the dimension of eAe then the sum of the
valuations of the diagonal entries in the corresponding matrix above is always

n-1 n-1 3n

+——.243="
2 2

This concludes the proof by Lemma 2.5.14. O

0+

We conclude the section by one more observation on the endomorphism rings.

Remark 4.4.21. Let z € I,, a,b e c; and v € exl'ey with vp(v,) = vp() =1 and 7. =0
forc¢{a,b}. Then v ¢ ezAe,.

Proof. The matrices are all of the following form
A B
0 D
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where

1 1 1
0

a-" &ip CepPRE
0 0 Enp

with § € R*. We denote the rows 2...5 by aj...ana. Then there is an element
2

v e(p-es an.. .a%-l) such that v =+" mod p?T. Furthermore ~' € pI', s0 § := % el.
Then § € (e,, %, e %) with exactly two unit entries.

Now we make a case distinction depending on where those two unit entries lie. First
note that by the row reduced form of the matrices at least one of the unit entries lies
in the left half of the matrix. First assume that just one of those entries lies in the left
half. As the second to "T_l—th rows are strictly reduced, this is only possible if either

~" = «; for some i or v =p-e, + gilal +...+ g%an—l. It is straight forward to consider
n—1 2
2

all elements of this form for all endomorphism spaces and see that neither is of this
form.

Now assume that both unit entries of  lie in the left half of the matrix. This
would imply that the second half of the vector has only entries divisible by p. Let
B’ = B-diag(1, %, . %), i.e. we divide all rows but the first by p. Now the existence of
ade e, %, ey %) where the only unit entries are in the left half of the vector implies
that B’ is singular modulo p. Straightforward calculations show that the determinant
of B’ is not divisible by p in all the cases above. Thus, the second case cannot occur
either. O

4.4.2 Exponent matrices

The next step is to determine the generators B(w,y)' We are going to show that there is
an automorphism of A such that after applying this automorphism the elements B(:t,y)

with <y, which correspond to descending arrows in the quiver of A, will have entry
1 at some positions and the other positions can be determined by our knowledge of A.
First, we will determine the exponent matrices of A.

Lemma 4.4.22. Let M be the exponent matriz of eqA. The rows and columns of the
matriz are assumed to be labeled by dq = {x € I}, | doy # 0}. Then M = (Myy)syed, has
the following properties.

1. Mgy <My + My VX,y,2 €d,.
2. Let x,y €dy such that (x,y) € Qx. Then mgy +my, = 1.

3. Let x,y € dq and assume that there is an index z € I,, such that (x,2), (z,y) are
descending arrows in Qx. Then myy +my, = 2.

4. Let x,y,y',z € dy such that (z,y),(y,2),(x,y"), (¥, z) are descending arrows in
Q. Assume further that m.y = my, =0. Then myy +my, = 0.
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Proof.

2.

1. This is a general property of exponent matrices, see Lemma 2.4.3.

We have already determined the endomorphism ring e,Ae, and can see that
ﬁ(x ) B(y ) has p-valuation 1 at position a. On the other hand the only elements
of e;Ae, with valuation 0 at position a are unit multiples of e, so there is no
element of zAyyAx with p-valuation less than 1 at position a. This implies that
Mgy + Myz > 1.

Again by considering the endomorphism rings we can see that

(/B(a:,z)ﬁ(z,y)ﬁ(y,z)B(z,a:) )a = (B(x,z)ﬁ(z,x)ﬁ(z,y)ﬂ(y,z) )a

has p-valuation 2. On the other hand x any y will always have exactly 2 com-
position factors in common. Thus by Remark 4.4.21 we can see that no element
of AyyAx can have p-valuation less than 2 at any position.

. From the other parts of this lemma we can make the following deductions.

2.
Moy =0=my, =1

2.
Myz =0 =>myy =1

1.
= My <0,mMy, <2

i Mye =0,my, =2
Now since Vp((é(z’y),é(y’z))a) =1land 1 =my, < Vp((B(y,Z))a) it follows that
I/p((ﬂA(y,Z))a) =1 and Z/p((ﬁ(zhy))a) = Q SiIAnilarly it is Vp((ﬁ(w,y))a) =1 and
Vp((B(y,e))a) = 0 and in particular v,((8(;,)B8(y,2))a) = 0.
By Lemma 4.3.25 there is a unit F' € R* such that

B(zyy)/é(y,m) = FB(z,y')B(y/,z) mod pA.
Since m,; = 0 it follows that Vp((/é(zgl)é(yl’z))a) =0, 80 My + My, <0. On the

other hand 0 = m_, < m_y +my,, which proves the assertion.
O

Definition 4.4.23. We define an equivalence relation on I,,:

z~y < l(z) =1(y)

Foraely and i€ {0,1,2,3} we denote the equivalence classes in d, with respect to ~

by

Then

cli(a) ={x edy | l(x) =1l(a)-1i}.

clo(a) = {a} and clz(a) = {a”} and there are only arrows between indices in

cli(a) and cliz1(a) where i € {0,1,2}.
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Now for the determination of the exponent matrices first note that it suffices to
determine the entries corresponding to our generators B(:p,y). Further, using Part 2 of
Lemma 4.4.22, we can see that it even suffices to determine the entries lying below
the diagonal.

Lemma 4.4.24. There is an element c € K ® A such that the exponent matrices of A€
have the following property: Let a € Iy and M, = (m$y)m7y€da be the exponent matriz
of eq\°. Then myy =0 for all <y ed,.

Proof. First assume that the cl;(a) # @ for all ¢, so in particular a € I,. We can pick
one entry below the diagonal in each row and there is a ¢ € K ® A such that the
exponent matrix of £,A° has entry 0 at every entry we picked by Lemma 2.5.18. This
also implies that we can choose Mg, to be zero for every z € clj(a). Further we pick
for each z € cli(a) a y € cla(a) and choose my, to be 0.

Now let y # ¢’ € cla(a). Then we can use Part 4 of Lemma 4.4.22 to deduce that
Myy = 0 since we know that mgy, = my, = my, = 0. Thus, we are finished for every
generator corresponding to an arrow between clj (a) and cly(a).

For the arrows between cls(a) and clz(a) we can choose one entry to be 0 and with
the same argument as above, again using Part 4 of Lemma 4.4.22, we can see that all
the entries corresponding to such arrows are zero.

If a € I and cl;(a) = @ for some ¢ then cl; = & for all j > i. Therefore the arguments
above work for every a € I,.

The only case that remains is the one where a € Ip \ I),. In that case we choose one
entry corresponding to a generator in each column to be zero. This means mg-, =0
for every x € cly. Now we use the same argument as above to show that all entries
corresponding to arrows between cly and cl; are zero. Since we assumed a ¢ I, the
class cly is empty. O

Corollary 4.4.25. If a € Iy then there is a c € K ® A such that the exponent matrices
of A€ look as follows. In edge cases the matrices look the same with the rows/columns
corresponding to indices not in I, removed. The annotated + signs will be explained
later on.

Miiin  iiin  iiip  iiip i A

i~dip 0* . 1 2
v | O 07 1

i—i—i-u \ 0 0 0*
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Miii2,1)  wi2,1)  ii(2)  i(L1) ii(2) imii(Ll) imicie(2,1)

1) : 1 1 2 2 3
i5(2) o+ . 1 1 1 P
ii(L1) 0* 1 . 1 1 2
i-i-i(2) 0 0" 1 1
i—imi(1,1) 0 0* 0 1 : 1
i~imi(2,1) 0 0 0 0+ 0

Miiivy diitp wi(2,1)  diih it aciip idg it iicip

i . 1 1 1 2 2 P 3
e . 11 1 1 P p
i 0t 1 11 2 P P
it 0* 1 1 . 1 1 1 2
i~ dip 0 0 0 of . 1 1 1
i | O 0 1 0t 1 1 1
a0 1 1 0t 11 . 1
0 0 0 0 0 0* 0

i

Miivivy  iivivp  diitp  wit ittt wi(2,l) @A it i

i : 11 1 2 2 2 3
it 0* . 1 1 1 1 1 2
it 0t 1 . 1 1 2 1 2
i | 071 1 2 2 1 2
i(2.1) 0o 0 0 1 111
G 0o 0 1 1 1 11
i—iit 0 0* 1 1 1
i 0 0 0 0 0" 0

Miiju  iijp dijp g i iijp i

i 112 2 3
iioe |00 .11 2 2
i-ij ot 1 . 1 1 2
i 0 0 ot . 1 1
e | O 1 00 1 1
i VO 0 0 0t 0
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Proof. Lemma 4.4.24 implies that there is a ¢ € A such that the entries in the exponent
matrices of A° below the diagonal corresponding to generators are all zero. Therefore,
by Lemma 4.4.22 Part 2, all the entries above the diagonal corresponding to generators
are 1. Now, as we have calculated the entries for all the generators, we can inductively
determine the other entries via

mi; = min{my, + my;j|m;, and my; are already determined}.

4.4.3 Conclusion

Our next step will be to determine the entries of all generators B(x,y) where x,y € I,
with (z,y) € @y and x <y modulo p. We assume that the exponent matrices of A are
as in Corollary 4.4.25.

Definition 4.4.26. Let a = (i,7,k,\),b= (', 5", k', \') € Iy where i < j <k,i' <j <k'.
We extend our partial order on Iy to a total order as follows.

a<b<e

I(a) <1U(D) or

I(a) =1(b) and (i,5,k) <ex (i',5',K") or

(i,5,k)=(',5" k") and

(A=(2,1) or (A=(2) and X" = (1,1)) or (A=(3) and X' =(1,1,1)))

Lemma 4.4.27. 1. Letacel,, yed, and
r=max{zed, | 2>y, (z,y) € Qx}.
Then we can by conjugation without loss assume that (B(y,x))a =1.
2. Let a € Ip~ I, and assume that a” € I,. Let further x € d, and
y=max{zed,|z<x (y,2)€Qx}
Then we can by conjugation without loss assume that (B(y@))a =1.

3. Letaelg~1, and a” ¢ I,. Then for every x € d, there exists at most one y € d,
such that x <y and (z,y) € Q. We can assume that (B(y,ac))a =1

Proof. The first two parts can be achieved by Lemma 2.5.18, since in the first case
we conjugate one entry per row and in the second case one entry per column. The
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exponent matrices for the third case look as follows.

1=1,7=p:
Miijp iijp

i ()

j=li=p:
Mjiip  jirip

P

i=l,k=p,j—i>1,k—j>1:

M ijk- ik~
ik ( . 1 )
ik 0 .
1=1,7=p:
M+ ii* 5 iij=(2) iij=(1,1)
i . 1 1
iij=(2) 0 - 1
iij=(1,1) 0 1
j=li=p-1:
M+ i (2) jii(1,1) jivi
jii(2) . 1 1
jii(1,1) 1 . 1
jimi 0 0

From now on we will assume that A is as in Lemma 4.4.27.
Definition 4.4.28. If a € Iy and z,y € d, such that (,/Jé’(y@))a is assumed to be 1 by
Lemma 4.4.27 we say B(y,x) 1s normalized at position a.

Remark 4.4.29. In the exponent matrices above the entries my, of M, such that
B(y,e) s normalized at position a are marked with a + for the cases where a € I, and

Jor p=(2).
Lemma 4.4.30. 1. Ifx,y eI, with (z,y) € Q5 and y <z then (B(yﬂ:))x =1.

2. Ifae IgN1y, with a™ € I, and x € dq with x> a” and (a™,x) € Qf then (B(a*,x))a =
1.

Proof. 1. Since (y,z) € Q1 and y < x we know that y € d, and I(y) = [(z) - 1. Thus
for every element t € {z € d, | z > y,(z,y) € @} we know that [(t) = I(x) and
T €dy, sot=x. In particular, x is the maximum of this set.
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2. With similar arguments as above we see that
{zede |2<0,(2.2) € Qg) = {a}.
O

Lemma 4.4.31. Let x,y € I, with (z,y) € Qx and x >y. Let further a € c, N ¢, such
that v := B(y,+) is not normalized at position a. Note that this implies a # x.

1. Leta €I, and ' € I, such that B(y,x/) is normalized at a. Then we have v, = Fyzq
mod p where Fyzq € Zy, such that

By)Ba,a) = Fyza - By,a)Bar a)

2. Leta¢ I, but a” € I,, and y' € I, such that (B(y,’m))a =1. Then we have v, = Fy-yz
mod p where Fy-y, € Zy, such that

Bla ) Ply) = Farya - Bla ) By @)

3. Ifa¢ I, and a” ¢ I, then every generator is normalized at position a.

Proof. 1. We have chosen the generators such that B(s,t) = B(s,p) for all s,t € I, and
therefore we have

ﬂ(y,x)ﬁ(x,a) = Fzya : ﬁ(wa)ﬁ(a;/’a) mod pA.
As A cT this implies that

(B(y,z))a(B(x,a))a = Fa@ya ) (B(y,z’))a(/@(:v’,a))a mod p.

From the assumptions and Remark 4.4.30 we know that (BA(NL))G = (B(y@/))a =
(B(x,ja))a =1 and therefore vy, = F,y, mod p.

2. In this case we know that (B(a_ﬂ))a = (B(a_,y,))a = (B(y,@))a =1 and therefore
the same arguments as in Part 1 prove the assertion.

3. This follows directly from Lemma 4.4.27.
O

Lemma 4.4.32. Let x >y € I, with (z,y) € Qx. Then for every z,t € c; N ¢y, there is
an element § € e, rad®(A)e, + peyAey with vy(3;) = vp(6.) =1 and 6, = 0 for t ¢ {t, 2}

Proof. First note that B(y@,) has unit entries at all relevant positions by Lemma 4.4.31.
Therefore 3(x’y) has p-valuation 1 at all relevant positions. From the exponent matrix

and knowing that ~ := B(a:,y) is the only element of the generating system Gen(A) in
ezAey, we can see that

exNey = Ry + p’I'n ezNey.
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By Lemma 2.1.36, we know that e,Ae; = (eery)Ii Let t,z € c; Ncy and let 0 € e, ey

such that 6, = p,d; = :f::fp, 0w =0 for w ¢ {2,t}. Then

Tu(8,77) R (rspve +re (—2p) - y) =0€ R
|Sp 2 SB| Tt
and T,,(6,9) € R for all ¥ € pT" as 69 € p°T. Tt follows that J € (ezAey)! = e, Aey.

Of the generators in Gen(A) only B(y z) lies in e, Ae;. Furthermore B(S y € rad(A)
for all s,t. Therefore e, Ae,/(ey rad?(A)e,) is generated by products of ,B(y ) and
idempotents. But as B(y ) multiplied with any idempotent is either ﬁ(y x) OT Zero we
can conclude that 5(y,w) generates e,Ae,/(e,rad?(A)e,) as a Z,-module.

On the other hand, since the exponent matrices have no entry 0 above the diagonal,
no element of e,rad*(A)e, can have unit entries. Since B(y@) has unit entries this
implies that any element of e,Ae; \ (e, rad?(A)e, +pA) will have unit entries as well.
In particular it follows that ¢ € e, rad?(A)e, + pA. O

Lemma 4.4.33. There is an element € I'" and for every pair of indices x,y € I, with
(z,y) € Qg and x >y there is an element B(y,x) € eyNes with the following properties:

. ((B(y,x))a)a =1 if the B(y,x) is normalized at a,
i ((5(y,m)) )a = Fyza if B(y 2) 18 not normalized at a and a € I,

. ((B(y 2))%)a = Famyz if B(y z) 18 not normalized at a and a € Ip \ I,

i {e;v | T € Ip} U {(B(y,z))a | (y,l‘) € QKvy < ‘T} U {(B(y,m))a | (y7$) € QX7y > ZL‘}

generate A® as a Zy,-algebra.

Proof. We will describe how to construct the new generators from the old ones.

First note that the entries of the generators ﬁ(y ) B(m y) already fulfill the assump-
tions modulo p. We use the fact that any set generating A/ rad? (A) also generates A,
see Lemma 2.3.11, and thus changing the generators by elements of radQ(A) does not
change the fact that they are a generating system for A. By Nakayama’s lemma the
same is true for changes modulo pA.

We will construct the generators inductively Starting with the largest generators
with respect to the order B(y @) < ,B(y 2y & T < x'. By Lemma 4.4.32 we can find
a generator 5( such that B(y ) = B(y z) mod rad?(A) + pA and ﬁ( fulfills the
requirements above at all positions except . We can now choose oy, € F such that
(Exyz)yy = (ﬁ(y o))z (ExQyz)z. = 1if 2 # y and €40, is the identity matrix if a # .

Assume that z,t € I, with (2,t) € Qy and 2z <t and for v = ﬂ(z’t) it is y*v* # ~. Then
t =y and thus z < x and in particular v < B(y,m)‘ Also note that (B(yg))z =1 mod p
so we do not change the value of v modulo p at any position.

Therefore if we work from largest to smallest generator, this method assures the
following two points.
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e Conjugation with ay, will never change any of the B(ycwl) we considered before.
e We never change any entry modulo p.

Therefore we can inductively choose ay, and B(W;) for every generator B(y’x) such that
for a:= 1 (y,2)eQ(A),y<a Qy= the conditions above are fulfilled. O

Now we have determined all the generators corresponding to descending arrows.

Lemma 4.4.34. Let z,y € I, with x >y and (x,y) € Q(A). Then there is an element
Ba,y) € exley such that

1. B(x,y) = §B(x,y) mod rad?(A) + pA for some £ € R*.

2. B(x,y)B(y,x) = (B(x,y)B(y,x)), as in Lemma 4420
Note that the second point means that B(z,y) 15 uniquely determined by B(y@).

Proof. From the exponent matrices and since the standard endomorphisms have p-
valuation 1 at every relevant position we can deduce the p-valuations of 5, ,:

1 if aed,nd,

—oo otherwise

VP((B(m,y))a) = {

Therefore ~ := B(Ly)ﬁ(y’x) is an element of e;Ae, such that

1 ifaed,nd,

—oo otherwise

Vp(’)/a) = {

Following the prqof of Theorem 4.4.20 we can see that this is already enough to deduce
that &y = (B(4.4)B(y,e))’ mod p?T N A for some € € R* as this is all the information we

used about B, ,yB(y,z)- We define the entries of B(x’y) as follows

(B(z,y)B(y,z))ZL

(B(x,y) )a = (B(y,x))a
0 otherwise.

ifaec,ney

Now let 6 € p’I' n A with &y = (B(x,y)B(y,x)), +6 and define ¢’ € p?e,I'e, as

K} .

—Lfo faec,ne

5; = (ﬁ(yyr))’l * Y .
0 otherwise

Then §B(x7y) = B(I,y) +¢'. Furthermore T, (¢, B(y,x)) =Ty(6,1) € Z, and since §’ € p°T
this suffices to show that §’ € eyAegs = e;Aey and therefore fﬁ(x’y) = B(r,y) mod p’T'nA.

Since v is the only generator in e;Ae,, the same arguments as in the proof of
Lemma 4.4.32 show that p’I' n ezNey C radQ(A) + pA which proves the assertion. [
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All the calculations of this chapter are summarised in the following theorem.

Theorem 4.4.35. Let A be the basic algebra of the principal block of F, (S, S3) and
Ao be the basic algebra of the principal block of Z,(Sp:S3). Let A be a Ao-lift, i.e.

1. A/pA=A

2. K®A is semisimple with center Z(K ® A) = @ger, K.

3. The decomposition matriz of A is the same as that of Ag

4. A is self dual in K ® A with respect to the form T, with u = (ug)qer, and ug =

dim(V,)
|SpeSs|

Then A is isomorphic to the subalgebra of

Ac @ RMexMe

(ZEIO

generated by
{633 | T e IP} U {B(y,x) | z,Y € Ip and (337y) € QK}

where for x,y € I, with (z,y) € Qx the element B(y’m) 1s defined as in Lemma 4.4.34 if
y>x and Lemma 4.4.38 if y < x.

Proof. All the assumptions we made can be achieved by conjugation leaving the
diagonal entries invariant. Therefore the conjugation will not change the product

BB = (Bay)Bryry) in Lemma 4.4.34. O
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5 Appendix

The following calculations show that any two ascending / descending paths of length
two in the quiver correspond to linearly dependent homomorphisms in By(F,S, 2 53).
Observe that it suffices to consider compositions of the homomorphisms ﬁEx’y) where
the three first components of x and y are not necessarily ordered as the isomorphisms
® is the definition of 3, ,) will cancel out or be the same at the start and end of the
composition for all cases we compare. We can also consider ascending and descending
paths at the same time. To do this, we write i’/i* instead of i~ /i*. Those are to be
understood in the following way: If you consider descending paths, replace i’ by i~
and ¢* by i, so (i) = .

The calculations were done by a C++ program which can be found on github
(https://github.com/Corinnal./pimhoms/). To ease the automatisation all the ho-
momorphisms of projective IF,,S,-modules are denoted by . It is always clear from
the context between which projective modules -y is defined. To see that the results are
indeed scalar multiples of one another recall the relations 3; o 841 = 0,441 0o ; = 0
from the quiver of F,S,. So whenever v is applied twice to one component in the
calculations below, the result is zero.

Homomorphisms starting in P’(4,4,4;(2,1)) need to be considered twice, once for
each of the basis elements of §(1).

P'(i,i,i;(2,1)) - P'(i',4,i;(2)) = P'(i,4',4;(2)) - P'(i,4',4; (2))
(a®boc)®id®xr; —~ (Y(a)®b®c)®id- (v(b) ® c®a) ® (132)
> —(c®a®y(h)®(123) + (bec®y(a)) ® (132)
= (v(a) @ b®y(c)) ®id - (v(c) ® a®~(b)) ® (123)
P(i,i,;(2,1)) » P'(i',i,i; (1,1)) = P'(4,4',i; (1,1)) - P'(i,4',i; (2))
(a®b®c)®id®zr) » —(y(a)®b®c)®id+2(v(c) ®a®b) ® (123)
-(v(b)®c®a)®(132)
> —-2(a®b®7y(c))®id+ (c®a®y(b)) ® (123)
+(be®cey(a)) ® (132)
> =3(v(a) ®b®~(c)) @ id+3(v(c) ®a® (b)) ® (123)
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P(i,i,i;(2,1)) = P'(i',i,4;(2)) = P'(4,4,4; (2)) - P'(i',4',i; (2))
(a®b®c)®id®zry—> —(v(c)®a®b)®(123) + (v(b) ® c®a) ® (132)
> —(a®b®y(c))®id+ (c®a®y(b)) ® (123)
> ~(1(a) ®b® () ®id + (1(b) ® c®(a)) ® (132)
P'(i,i,i;(2,1)) - P'(i',4,4; (1,1)) = P'(i,4',i; (1,1)) = P'(i',i,i; (2))
(a®b®c)®id®xrys—2(y(a)®b®c)®id- (v(c) ®a®b) ® (123)
-(v(b)®c®a)® (132)
> (a®@b®y(c))®id+ (c®a®y(b)) ® (123)
-2(b®c®v(a))® (132)
> 3(v(a)®@b®y(c)) ®id-3(y(b) @ c®v(a)) ® (132)

P'(i,i,i;(2,1)) - P'(i',4,4;(2)) = P'(4,4',3; (2)) - P'(¢',i,i; (1,1))
(a®b®c)®id®zr; ~ (Y(a)®b®c)®id—- (v(b) ® c®a) ® (132)
> —(c®a®y(b)®(123)+ (b®c®~(a)) ® (132)
= —(v(a) ®b®7(c)) ®id - (v(c) ®a®7(b)) ® (123)
+2(y(b) ® c®~(a)) ® (132)
P'(i,i,i;(2,1)) - P'(i,4,4; (1,1)) = P"(i,4',i; (1,1)) — P'(i',i,i; (1,1))
(a®b®c)®id®xr; » —(y(a)®b®c)®id+2(v(c) ®a®b) ® (123)
-(v(b)®c®a)® (132)
> -2(a®b®v(c))®id+ (c®a®y(b)) ® (123)
+(bec®vy(a))®(132)
= —(7(a) ®b®7(c)) ®@id - (v(c) ® a®~(d)) ® (123)
+2(y(b) ® c®v(a)) ® (132)

P(i,i,0;(2,1)) = P'(i',i,i;(2)) = P'(i,i',i;(2)) — P'(¢',i',i; (1,1))
(a®b®c)®id®xy > —(v(c) ®a®b) ® (123) + (7(b) ® c® a) ® (132)
> —(a®b®y(c))®id+(c®a®y(b)) ® (123)
> —(y(a) ®b®7v(c)) ®id+2(v(c) ®a® (b)) ® (123)
- (v(b) ® c®v(a)) ® (132)
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P(i,i,i;(2,1)) = P'(i',i,4;(1,1)) = P/ (i,4',i; (1,1)) - P'(i',4',4; (1,1))
(a®b®c)®id®zy—>2(v(a)®b®c)®id—- (v(c) ®a®b) ® (123)
-(v(b)®c®a)® (132)
> (a®b®y(c))®@id+ (c®@a®~(b)) ® (123)
-2(bec®vy(a))® (132)
> —(v(a)®@b®y(c)) ®id+2(y(c) ®a® (b)) ® (123)
-(v(b)ecey(a)) ®(132)

P(i,i*,i;(2)) » P'(i',i*,i) = P'(i*,4',i) - P'(i,i',i;(2)) = P'(',i,4; (2))
(a®b®c)®id~ (y(a)®b®c)®id+ (v(c) ®b®a) ® (13)
> (bey(c)®a)® (132) + (b y(a) ®c) ® (12)
H (c®vy(a)®y(b)) ® (123) + (7(b) ® v(c) ® a) ® (132)
> (v(a)®@vy(b)®c)®id+ (y(c) ®a® (b)) ® (123)
P'(i,i*,i;(2)) = P'(i*,4,4;(2)) = P'(4,,i; (3)) = P'(4,1,4; (3)) = P'(i',i,4; (2))
(a®b®c)®id~ (b®c®a)® (132)
> (a®vy(b)®c)®id
> (v(a)®v(b)®c)®id+ (y(c) ®a®v(b)) ® (123)
+(y(v(b)) ®c®a) ®(132)
P(i,i*,i;(2)) = P'(i*, 4,45 (2)) = P'(i,i,4;(2,1)) = P'(4,4,4;(2,1)) = P'(i',4,4;(2))
(a®b®c)®id~ (b®c®a)® (132)
> —(a®y(b)®c)®id®z1+(a®(b) ®c) ®id® 2
= —(7(a) ®v(b) ® c) ®id - (v(c) ®a® (b)) ® (123)
+2(y(v(b)) ®c®a) ®(132)

Pr(i,i*,i;(2)) - P/(d',i*,i) = P'(3*,4',i) - P'(i,4',4; (1,1)) = P'(4',4,4; (1,1))
(a®b®c)®id~ (y(a)®b®c)®id+ (y(c) ®b®a) ® (13)

> (bev(c)®a)®(132) + (b®v(a)®c) ® (12)

= —(c@y(a) ®y(b)) @ (123) + (v(b) ®(c) ® a) ® (132)

= (7(a) ®y(b) ® ¢) ®@id - (v(c) ® a® (D)) ® (123)
P(i,i*,i;(2)) = P'(i*, 4,45 (2)) - P'(i,4,4;(2,1)) = P'(4,4,4;(2,1)) - P'(i,4,4; (1,1))
(a®b®c)®id~ (b®c®a)® (132)

> —(a®y(b)®c)®id®z+ (a®y(b) ®c) ®id ® 2

> 3(v(a)®@vy(b)®c)®id-3(y(c) ®a® (b)) ® (123)
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P'(i,i*,i;(1,1)) - P'(d',i*,i) = P'(3*,i' i) —» P'(4,4',4; (1,1)) = P'(4',i,4; (1,1))
(a®b®c)®idr (y(a)®b®c)®id— (y(c) ®b®a) ® (13)
> —(bev(c)®a)® (132) + (b y(a) ®c) ® (12)
= =(c®y(a) ®7(b)) ® (123) - (7(b) ®v(c) ® a) ® (132)
= (v(a) ®y(b) ® c) ®id + (y(c) ®a® (b)) ® (123)
P(i,i*,4;(1,1)) = P'(i*,4,4; (1,1)) » P'(4,4,4; (1,1,1)) - P'(i',4,4; (1,1))
(a®b®c)®id— -(b®c®a)® (132)
> —(a®vy(b)®c)®id
= —(v(a)@y(b) ®c)®@id-(y(c) ®a®@~(b)) ® (123)
-(v(y(b))@cea)®(132)
P(i,i*,i;(1,1)) =2 P'(i*,4,4; (1,1)) - P'(i,4,4;(2,1)) - P'(i',i,4; (1,1))
(a®b®c)®id— -(b®c®a)® (132)
H(a®@y(b)®c)®id®x; + (a®v(b) ®c) ®id® x2
> (v(a)®y(b)®c)®id+ (y(c) ®a®v(b)) ® (123)
-2(7(v(b)) @ c®a)® (132)

P(i,i*,4;(1,1)) - PI(d',i*,4) = P'(i*,i',i) - P'(i,i',i;(2)) = P'(i',4,4; (2))
(a®@b®c)®id— (y(a)®b®c)®id— (v(c)®b®a) ® (13)
> —-(b®v(c)®a)®(132)+ (b®v(a) ®c) ® (12)
= (c@v(a) ® (b)) ® (123) - (v(b) ®¥(c) ® a) ® (132)
= (v(a) ®y(b) ® c) ® id - (y(c) ®a® (b)) ® (123)
P(i,i*,4;(1,1)) = P'(i*,i,4; (1,1)) = P'(i,i,4; (2,1)) = P'(i',i,i;(2))
(a®b®c)®id~>—-(b®c®a)® (132)
> (a®@y(b)®c)®id®x; +(a®vy(b) ®c) ®id® x2
= (v(a) ®y(b) ® ¢) ® id - (y(c) ®a® (b)) ® (123)

P(i,i*,i%;(2)) = PI(d',i%,i*;(2)) = P'(i*,i',i*;(2)) » P'(4,i',i*) = P'(i',4,i*)
(a®boc)®id~ (y(a)®b®c)®id

— (c®v(a)®b) ® (123)

= (v(c) @ v(a) ®b) ® (123) + (7(b) ® y(a) ® ¢) ® (12)

= (y(a) @ y(b) ® ) @ id + (y(a) ® y(c) ® b) ® (23)
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P(i,i*,i*;(2)) =2 P/(i*,i,i%5(2)) = P'(i,i,i;(2)) - P'(i,i,i%)
(a®b®c)®id~ (c®a®b)® (123)
> (a®@y(b)®c)®id+ (y(c)®a®b) ® (123)
H (v(a)®@y(b)®c)®@id+ (v(y(c)) ® a®b) ® (123)
+(1(v(b)) ®a®c)® (12) + (v(a) ®y(c) ® D) ® (23)
P(i,i*,i%(2)) 2 P'(i*,4,3*;(2)) = P'(i,i,i*; (1,1)) = P'(',i,i%)
(a®b®c)®id~ (c®a®b)® (123)
> —(a®vy(b)®c)®id+ (y(c)®a®b) ® (123)
> —(y(a) ®y(b)®c) ®id+ (v(v(c)) ®a®b) ® (123)
+(v(v(b)) ®a®c)® (12) - (y(a) ®y(c) ® D) ® (23)

Pr(i*,i*,i;(2)) = P'(4,4*,i;(2)) = P'(i*,4,4; (2)) = P'(4,4,4;(2,1))
(a®b®c)®id— (y(a)®b®c)®id+ (c®a® (b)) ® (123)

> (a@y(b)®c)®id+ (b®c®y(a)) ® (132)

> (y(a)®@v(b)®c)®id® x1 +2(y(a) ® (b)) ® ¢) ® id ® o
Pr(i*,i%,4;(2)) = P'(i,i*,4;(1,1)) = P'(3*, 4,45 (1,1)) = P'(4,4,4; (2,1))
(a®b®c)®id~ (y(a)®b®c)®id— (c®a®y(b)) ® (123)

> (a®@y(b)®c)®id— (b®c®y(a)) ® (132)

H (v(a)@v(b)®c)®id®x; +2(y(a) @ y(b) ® ¢) ®id ® x2

P(4,4,3;(2)) = P'(§',,i;(2)) 2 P'(i,5',i; (2)) » P'(¢', i) = P'(§',4',0)
(a®boc)®idm (v(a)®b®c)®id
> (c®v(a)®b) ® (123)
= (v(c) ®7(a) ®b) ® (123) + (v(b) ® y(a) ® ¢) ® (12)
= (v(a) @ v(b) ® ¢) ®id + (v(a) ®7(c) ® b) ® (23)
P1(j,4,1(2)) 2 P'(4, 4,55 (2)) - P'(i', ) 2 P'(j.',0) > P'(§',4',1)
(a®@b®c)®id~ (c®a®b) ® (123)
> (Y(c)®@a®b)®(123) + (v(b) ® a® ¢) ® (12)
> (a®vy(b)®c)®id+ (a®v(c) ®b) ® (23)
= (v(a) @v(b) ® ¢) ®id + (v(a) ®v(c) ® b) ® (23)



Pr(iyi*,i*;(1,1)) - P/(i' i, 0% (1,1)) 2 PP(i*, a0 i%5 (1,1)) = Pr(i,i’ %) = PI(d' 0,07
(a®b®c)®id~ (y(a)®b®c) ®id
> —(c®v(a)®b) ® (123)
= —(v(c) ®v(a) ®b) ® (123) + (7(b) ® v(a) ® c) ® (12)
= (y(a) @ y(b) ® c) ® id — (v(a) ® ¥(c) ® b) ® (23)
Pr(i,i*,i%5(1,1)) = P/(i*,4,i%; (1,1)) - P'(i,4,3%;(1,1)) = P'(i',i,i%)
(a®b®c)®id~> —(c®a®b) ® (123)
> —(a®y(b)®c)®id- (y(c)®a®b) ® (123)
= —(v(a) ®@v(b) ® c) ®id - (v(7(c)) ® a®b) ® (123)
+(v(v(b)) ®@a®c)® (12) + (v(a) ® y(c) ®b) ® (23)
P(iyi*,i%(1,1)) = PI(i*,0,i% (1,1)) = P'(i,i,i%5(2)) » P/(i,,i%)
(a®b®c)®id~ -(c®a®b)®(123)
> (a®vy(b)®c)®id-(y(c) ®a®b) ® (123)
= (v(a) ® y(b) ® c) ®id - (y(7(c)) ® a®b) ® (123)
+(y(v(b)) ®a®c)® (12) - (v(a) ®y(c) ®b) ® (23)

Pr(i* i (1,1)) = P(6,0%,6; (1,1)) 2 PP(i 4,45 (1,1)) = P'(i,i,3; (2, 1))
(a®b®c)®idr (v(a)®boc)®id+ (c®a®y(b)) ® (123)
> —(a®@y(b)®c)®id— (b®c®y(a)) ® (132)
= (v(a)®v(b) ®c) ®id® x1
Pr(i*,i*,i;(1,1)) - P(i,i%,4;(2)) = P'(i%,4,4; (2)) = P'(i,i,4; (2,1))
(a®b®c)®id~ (y(a)®b®c)®id— (c®a® (b)) ® (123)
> —(a®v(b)®c)®id+(b®c®v(a)) ® (132)
> =3(y(a) ®y(b) ® ¢) ®id ® 11

P(j,i,45(2)) = P'(§',4,4;(2)) 2 P'(4, 5,5, (2)) = P'(i",',4) = P'(5',i',4)
(a®b®c)®idr (v(a)®b®c)®id
— (c®v(a)®b) ® (123)
= (7(c) ®y(a) ®b) ® (123) + (7(b) ® v(a) ® c) ® (12)
= (y(a) @ y(b) ® c) ®id + (v(a) ® y(c) ®b) ® (23)
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P'(j,1,4;(2)) 2 P'(i, 5,4 (2)) = P'(', j,4) 2 P'(4,4',3) - P'(5',7',0)
(a®b®c)®idr (c®a®b)® (123)
> (Y(c)®@a®b)®(123) + (v(b) ® a® c) ® (12)
P (a®@y(b)®c)®id+ (a®vy(c)®b) ® (23)
= (v(a) ® y(b) ® c) ®id + (y(a) ®(c) ®b) ® (23)

Pl(i,i*,i") - P/(i',i%,4d"(2)) = P'(3*,4',i';(2)) — P'(i,d',i';(2)) = P'(i',i,4"; (2))
(a®b®c)®id~ (y(a)®b®c)®id
> (bec®y(a))® (132)
= (7(b) ® c®7(a)) ® (132)
> (v(a) ®y(b) ®c) ®id
Pr(i,i*,i") 2 P'(i%,4,i") - P'(i,1,i';(2)) = P'(i,i,4"; (2)) - P'(i',i,i'; (2))
(a®b®c)®id— (b®a®c)® (12)
~(a®v(b)®c)®id
> (v(a)®@v(b)®c)®id+ (c®a®~y(y(bh))) ® (123)
Pr(i,i*, ") 2 P'(i*,i,4") - P'(i,i,4";(1,1)) 2 P'(4,4,i';(1,1)) - P'(i',i,4"; (2))
(a®b®c)®id~ (b®a®c)® (12)
> —(a®y(b)®c)®id
= —(v(a) ®y(b) ®c) ®@id+ (c®a®(y(bh))) @ (123)

Pr(i,i*,i") - P'(i',i*, i’ (1,1)) 2 PP(i*,d' i’ (1,1)) — P(4,4,4"; (1,1)) = P/(¢',i,i";(1,1))
(a®b®c)®id~ (y(a) ®b®c) ®id
»—-(b®c®v(a)) ® (132)
= —(v(b) ® c®v(a)) ® (132)
~ (v(a) ®y(b) ®c) ®id
P'(i,i*, i) 2 P'(i*,i,4") - P'(i,i,4"; (1,1)) = P'(4,4,i';(1,1)) - P'(i',4,4"; (1,1))
(a®b®c)®id~ (b®a®c)® (12)
> —(a®y(b)®c)®id
= —(v(a)®@v(b) ®c)®id-(c®a®y(v(D))) ® (123)
Pr(i,i*,i") 2 P(i*,i,i") — P'(i,i,i';(2)) = P'(i,4,i"; (2)) — P'(4',i,4"; (1,1))
(a®b®c)®id~ (b®a®c)® (12)
~ (a®vy(b)®c)®id
= (v(a) @ y(b) ®c) ®id - (c®a®y(v(D))) ® (123)
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PI(j.a,i) - P'(j %, 0) 2 PI(i%, j',0) = P'(i, 5,5 (2)) 2 P'(5.4,45 (2))
(a®b®c)®id~ (y(a)®b®c) ®id
> (b®vy(a)®c)®(12)
= (c®y(a) @v(b)) ® (123)
— (v(a) ®@v(b) ® ¢c) ®id
Pr(j,i",4) 2 P'(i*, j,i) — P(3, 5,45 (2)) 2 P'(4,4,4;(2)) = P'(5',1,3; (2))
(a®b®c)®id~ (b®a®c)® (12)
— (c®a®vy(b)) ® (123)
— (a®@vy(b)®c)®id
= (v(a) @ v(b) ® c) ®id

Pr(j,i*,i) = P'(5',i*,i) 2 P'(i*,§' i) - P'(i, ', (1,1)) 2 P'(5",,4; (1,1))
(a®b®c)®idm (v(a)®b®c)®id
— (b®v(a)®c)® (12)
> —(c®(a) (b)) @ (123)
» (@) ®y(b) @c)@id
Pi(j,i*,i) 2 PI(i*, i) = (i, 5,43 (1,1)) 2 P14, (1,1)) > PI(5 65 (1,1))
(a®b®c)®id (b®a®c)® (12)
> —(c®a®y(b)) ® (123)
— (a®vy(b)®c)®id
= (v(a) @ y(b) ®c) ®id

P'(i,i*,j) » P'(i',i*,§) = P'(i*,i',j) - P'(4,i',7) = P'(i',i,5)
(a®b®c)®id~ (y(a)®b®c)®id
> (bevy(a)®c)® (12)
= (7(b) ®y(a) ® c) ® (12)
= (y(a) ®(b) ® c) ®id
Pr(i,i*,j) 2 P'(i*,i,5) - P'(i,i,5; (2)) 2 P'(i,i,4; (2)) = P'(i',i,5)
(a®b®c)®id~ (b®a®c)® (12)
~ (a®vy(b)®c)®id
= (v(a) @ y(b) ® c) ®id + (y(7(b)) ® a®c) ® (12)
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Pr(i,i*, ) = P'(i",4,4) > P'(ii,; (1,1)) 2 P'(3,4,55 (1,1)) > P'(i' i, j)
(a®boc)®id— (b®a®c)®(12)
> —(a®vy(b)®c)®id
= =(7(a) ®7(b) ® c) ®@id + (v(v(b)) ® a® c) ® (12)

Pi(i,j,k) - P'(i, j, k) 2 P'(j,i', k) = P'(5', ¢, k) 2 P'(¢', j', k)
(a®b®c)®id~ (v(a)®b®c)®id
— (b®vy(a)®c)®(12)
= (7(b) ®y(a) ® c) @ (12)
= (v(a) @ v(b) ® ¢) ®id
P'(i,§,k) = P'(j,i,k) - P'(§',i,k) 2 P'(4,5', k) - P'(i',5', k)
(a®b®c)®id— (b®a®c)® (12)
> (y(b)®a®c)®(12)
> (a®vy(b)®c)®id
= (y(a) ®y(b) ® c) ®id
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The following calculations prove Lemma 4.3.27.
P’(iyi,i;(3)) = P'(i",i,4;(2)) = P'(4,i,4;(2)) » P'(i7,i",4;(2)) 2 P'(4,i",i;(2))
- P(i,i7,i7;(3)) = P'(i,i7,i7;(2)) = P'(i",i7,i;(2))
- P'(i,i,4;(2)) 2 P'(i",4,4; (2)) — P'(i,i,4; (2))
(a®boc)®idr (v(a)®@boc)®id+ (y(c)®a®b) ® (123) + (v(b) ® c® a) ® (132)
> (a®b®y(c))®id+(c®a®vy(b)) ® (123) + (b®c®v(a)) ® (132)
> 2(y(a) ®b®y(c)) ®id
+2(y(c)®@a®~v(b)) ® (123) + 2(y(b) ® c®v(a)) ® (132)

> 2(a®y(b) ®v(c)) ®id+2(c®~v(a) ®v(b)) ® (123)
+2(b®v(c)®~(a)) ® (132)

= 6(7(a) ®7(b) ®v(c)) ®id

= 6(6(v(a)) @ v(b) ®7(c)) ®id+6(3(7(c)) ® y(a) @ v(D)) ® (123)
+6(0(7(b)) ® v(c) ®7(a)) ® (132)

= 6(7(a) @ v(b) ® 6(7v(c))) ®id+6(v(c) ® y(a) ®5(7(b))) ® (123)
+6(7(b) @ v(c) ®0(7(a))) ® (132)

= 12(5(v(a)) ®v(b) ® 6(v(c))) ®id
+12(6(v(c)) @ v(a) ®5(7(b))) ® (123)
+12(6(v(b)) @ v(c) ® 6(7(a))) ® (132)

= 12(7(a) ® 6(7(b)) ® 6(v(c))) ®id
+12(v(c) ® 6(7(a)) ®5(7(b))) ® (123)
+12(7(0) ® 6(7(c)) ® 6(7(a))) ® (132)

= 36(6(7(a)) ®6(7(b)) ®6(7(c))) ®id

P(i,i,4;(1,1,1)) - P'(i",4,4; (1,1)) = P'(4,i",4; (1,1))

- P'(i,i 05 (1,1)) = P'(i,i,i75(1,1)) » P'(i",4 7,45 (1,1,1))

- P'(i,i",i;(1,1)) =2 P(i",i,i;(1,1))

- P'(i,i",i;(1,1)) = P'(i",4,4; (1,1)) = P'(i,4,4; (1,1))

(a®@b®c)®id— (y(a)®b®c)®id+ (v(c)®a®b) ® (123) + (7(b) ® c® a) ® (132)

> —(a®b®y(c))®id—(c®a®y(b)) ®(123) - (b c®y(a)) ® (132)

> -2(v(a)®@b®y(c)) ®id-2(y(c) ®a® (b)) ® (123)
~2(7(b) ® c®~(a)) ® (132)

> 2(a®v(b)®y(c)) ®id+2(c®vy(a) ®v(b)) ® (123)
+2(b®vy(c)®v(a)) ® (132)

= 6(y(a) ®v(b) ®(c)) ®id
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= 6(3(7(a)) @ (b)) ®7(c)) ®id +6(5(7(c)) ® y(a) @ 7(D)) ® (123)
+6(5(7(0)) ®7(c) ®7(a)) ® (132)

= —6(y(a) @ 7(b) ®6(7(c))) ®id - 6(7(c) @ v(a) ®6(7(0))) ® (123)
—6(7(b) ®7(c) ®d(7(a))) ® (132)

= —12(6(7(a)) @ 7(b) ® 6(7(c))) ®@id - 12(6(v(c)) @ v(a) ® 6(7(D))) ® (123)
—12(0(7(b)) @ y(c) ® 6(7(a))) ® (132)

= 12(7(a) ® 6(7(b)) ® 6(7(c))) ®id +12(y(c) ® 6(7(a)) ® 6(7(b))) ® (123)
+12(y(b) ® (7(c)) ® (7(a))) ® (132)

= 36(3(v(a)) @ 3(7(b)) ® d(7(c))) ®id

P(i,i,i;(2,1))

(a®b®c)®id® x;
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- P'(i7,4,4;(2)) = P'(i,i",i;(2))

- P'(i7,i7,i;(2)) =2 P'(4,i",i7;(2)) - P'(i7,i,i;(2,1))

- P(i,i",i7;(2)) 2 P'(i",i,4;(2))

- P'(i,i,4;(2)) 2 P'(i",4,4; (2)) — P'(i,1,4;(2))

> (v(a)®@bec)®id - (y(b) ®c®a) ® (132)

> —(c®a®y(h)® (123) + (bec®~v(a)) ® (132)

= (v(a)@b@v(c)) ®id - (v(c) ®a®(b)) ® (123)

= —(a®y(b) ®7(c)) ®id+ (bev(c) ®(a)) ® (132)

= =3(7(a) ®7(b) ®v(c)) ®id ® x1

= =3(6(v(a)) ®7(b) ® ¥(c)) ®id + 3(5(v(b)) @ v(c) ®y(a)) ® (132)

= 3(v(c) ®y(a) ® 6(7(b))) ® (123) = 3(7(b) @ v(c) ® 6(7(a))) ® (132)

= =3(6(v(a)) @ v(b) ® 6(7(c))) ® id +3(5(7(c)) ® y(a) ® 6(7(b))) ® (123)
= 3(v(a) ®6(7(b)) ® 6(7(c))) ®id - 3(7(b) ® 6(7(c)) ® 6(v(a))) ® (132)
= 9(6(v(a)) @ 6(v(D)) ®6(v(c))) ®@id® x1



P'(i,i,i;(2,1))

(a®b®c)®id® x

1<J

- P'(i",i,i;(2)) 2 P'(i,i",i;(2))
- P'(i",i7,i;(2)) =2 P'(4,i",i7;(2)) = P'(i",i,i;(2,1))
- P'(i,i7,i7;(2)) 2 P'(i7,i7,i;(2))
- P'(i,i",i;(2)) 2 P'(i",4,; (2)) = P'(i,14,4;(2))
> —(v(c)®a®b)® (123) + (v(b) ® c®a) ® (132)
> —(a®b®y(c))®id+ (c®a®v(b)) ® (123)
> —(v(a)®@bey(c)) ®@id+ (y(b) ® c®~v(a)) ® (132)
= (c®7y(a) ® (b)) ® (123) - (b®v(c) ®v(a)) ® (132)
= =3(v(a) ®v(b) ®7(c)) ® id ® x5
= 3(0(v(c)) ®v(a) ®v(b)) ® (123) = 3(5((b)) ® v(c) ® v(a)) ® (132)
= 3(7v(a) ® y(b) ® 6(7(c))) ® id - 3(v(c) ® v(a) ® (7(D))) ® (123)
= 3(0(v(a)) ®v(b) ® 6(v(c))) ®id
=3(5(v(b)) ®v(c) ®6(7v(a))) ® (132)
= =3(v(c) ®5(v(a)) ®3(y(b))) ® (123)
+3(v(b) @ 3(7(c)) ®6(v(a))) ® (132)
= 9(0(v(a)) ®6(v(b)) ® 6(7(c))) ® id ® a2

Pi(i,i,5:(2)) = P'(i",4,5) 2 P'(i,i, )

— P'(i7,i,5;(2)) 2 P'(j,i,i73(2)) = P'(§7,i7,i75(2))
= P/(j,i,i73(2)) 2 P'(i7,4, 53 (2))
- P'(i,i",j) 2 P'(i",4,5) = P'(i,1,5; (2))

(a®@b®c)®id— (y(a)®b®c)®id+ (v(b) ®a®c) ® (12)
> (a®v(b)®c)®id+ (b®vy(a) ®c) ® (12)
> 2(y(a) ®y(b) ®c) ®id
~2(c®v(a)®v(b)) ® (123)
= 2(7(c) ®v(a) ® v(b)) ® (123)
= 2(0(7(c)) @v(a) ® v(b)) ® (123)
= 2(7(a) ®7(b) ® 6(7(c))) ®id
= 2(6(v(a)) @ 7(b) ® 6(7(c))) ® id +2(5(7(b)) ® y(a) ® 5(7(c))) ® (12)
= 2(7(a) @ 6(7(b)) ® 6(7(c))) ®id +2(y(b) ® 6(7(a)) ® 6(7(c))) ® (12)
= 4(0(7(a)) ® 6(v(b)) ® 6(v(c))) ®id
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1<]
P(i,i,g;(1,1)) = P'(i",i,5) = P'(i,i",j)
- P'(i",i7,5;(1,1)) 2 P'(j,i7,i 5 (1,1)) > P'(j7,i,i 5 (1,1))
- P'(j,i,i75(1,1)) 2 P'(i,4, 55 (1,1))
- P'(i,i",j) = P'(i",i,j) - P'(i,i,5; (1,1))
(a®b®c)®id~ (y(a)®b®c)®id— (v(b) ®a®c) ® (12)
> —(a®y(b)®c)®id+ (b®y(a) ®c)® (12)
- =2(y(a) ®y(b) ® c) ® id
—2(c®vy(a)®7v(b)) ® (123)
= 2(y(c) ®v(a) ®v(b)) ® (123)
= 2(0(v(c)) ®v(a) ® (b)) ® (123)
= =2(y(a) ®v(b) ® 6(v(c))) ®id
= =2(6(v(a)) ®v(b) ® 6((c))) ® id
+2(0(7(b)) ®y(a) @ 6(v(c))) ® (12)
= 2(v(a) ®6(7(b)) ®6(7(c))) ®id - 2(7(b) ® 6(7(a)) ® 6(7(c))) ® (12)
= 4(6(v(a)) @ 6(v()) ®6(7(c))) ®id

<1
P1(j,i,i;(2)) = P'(§7,i,3;(2)) 2 P(4, 57,45 (2))
- PI(i7,j7,8) 2 P'(i,j7,i7) > P'(i", 57,575 (2))
— P'(i,j7,i7 )2 P'(i",57,1)
— P'(i,57,1;(2)) 2 P'(j7,i,4;(2)) - P'(j,4,1)
(a®b®c)®id~ (y(a)®b®c)®id
~ (c®v(a) ®b) ® (123)
= (7(e) ®y(a) ®b) ® (123) + (v(b) ® v(a) ® ¢) ® (12)
= (c®y(a)®v(b)) ® (123) + (b v(a) ®(c)) ® (12)
= 2(y(c) ®@v(a) @ v(b)) ® (123)
= 2(6(v(c)) ®v(a) ®v(b)) ® (123) +2(0(v (b)) ® v(a) ®v(c)) ® (12)
= 2(y(c) @ v(a) ® 5(7(b))) ® (123) +2(7(b) ® v(a) ® 6(7(c))) ® (12)
= 4(6(v(c)) ®v(a) ® 5((b))) ® (123)
= 4(v(a) ® 6(7(b)) ® 6(v(c))) ® id
= 4(0(v(a)) ®6(v(b)) ® 5(v(c))) ®id
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j<1
P10 (1,1)) = P'(57 4,45 (1,1)) = P'(i,57,4; (1, 1))
- P'(i7,57,1) 2 P'(i,57,i7) > P'(i",j7,i;(1,1))
- P'(i,57,i7 )2 P'(i",j,%)
= P(i,j7,i;(1,1)) 2 P'(57,4,4; (1, 1)) = P'(j,4,4)
(a®b®c)®id~ (y(a) ®b®c) ®id
> —(c®v(a)®b) ® (123)
= =(7(c) ®v(a) ®b) ® (123) + (v(b) ®v(a) ® ¢) ® (12)
= (c®y(a)®v(b)) ® (123) - (bev(a) ®v(c)) ® (12)
= 2(y(c) ®v(a) ®v(b)) ® (123)
= 2(0(v(c)) @ v(a) ®v(b)) ® (123) = 2(0(v(b)) ® v(a) ® v(c)) ® (12)
= =2(v(c) ®y(a) ® 3(7(b))) ® (123) +2(v(b) ® v(a) ® 5(7(c))) ® (12)
= —4(6(v(c)) ®y(a) ® 3(7(b))) ® (123)
= 4(v(a) ®6(v(b)) ® 6(v(c))) ®id
= 4(6(v(a)) ®6(v(b)) ® 5(v(c))) ® id

1<j<k
P'(i,§, k) = P'(i",§, k)= P'(4,i",k) - P'(57,i",k) 2 P"(k,i",j7) - P"(k™,i",j§7)
- Pl(k,i",j )2 P'(j7,i,k) > P'(j,i", k)= P'(i",j,k) — P'(4,5,k)
(a®@b®c)®id— (y(a) ®b®c) ®id
> (b®v(a)®c)®(12)
= (v(b) ® v(a) ®c) ® (12)
= (c®@v(a) ® (b)) ® (123)
= (v(c) ® v(a) ® (b)) ® (123)
= (6(v(c)) ®v(a) ® (b)) ® (123)
= (7(b) ® v(a) ®3(v(c))) ® (12)
= (6(7(0)) ® v(a) ®6(v(c))) ® (12)
= (v(a) ® 6(7(b)) ® 6((c))) ®id
= (0(v(a)) @ 0(v(b)) ®0(v(c))) ®id
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