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1 Introduction

Representations of finite groups over a field K are often studied in the form of mod-
ules over the group algebra KG. Representation theory can therefore be understood
as the study of the module category of the group algebra KG. If K is a field of char-
acteristic 0, the algebra KG is semisimple. This implies that every KG-module is a
direct sum of simple modules and thus the module category of KG can be studied by
focusing on its finitely many simple modules.

Modular representation theory studies the situation where the characteristic p of
the field K divides the group order. In this case KG is not semisimple and there are
usually infinitely many non-isomorphic indecomposable modules. Nevertheless, the
algebra KG still has only finitely many simple modules.

A bridge between these two situations is given by the group algebra RG, where R is
a complete discrete valuation ring with maximal ideal m whose field of fractions K =
Quot(R) has characteristic zero and whose residue field F = R/m has characteristic p.
The algebra RG can be considered as a subalgebra of the semisimple algebra KG, and
FG is the quotient algebra RG/mG. Every simple FG-module is a simple RG-module.
On the other hand, we can use the Wedderburn decomposition of the semisimple
algebra KG to embed RG into an algebra of the form ⊕i∈I D

ni×ni

i for K-division
algebras Di. Consequently RG can be explicitly described by matrices.

The algebra RG admits a unique decomposition RG = ⊕Bj as a finite direct sum
of indecomposable algebras Bj , which are called blocks. Each block is of the form
Bj = RGεj for some central primitive idempotent εj of RG. By Hensel’s Lemma, every
central idempotent of FG lifts to a central idempotent of RG. The induced decompo-
sition FG = ⊕F ⊗RBj is therefore also the decomposition of FG into indecomposable
algebras, which we call blocks as well. Furthermore, for every indecomposable RG-
module M there is at most one block B with M.B ≠ 0. Therefore, it makes sense to
study the group algebras one block at a time. To a block B one associates its defect
group DB, see Definition 2.2.19, and we call the p-valuation of the order of D the
defect of the block.

Since we are only interested in the module category of the blocks up to equivalence
of categories, we consider the blocks up to Morita-equivalence. The lowest-dimensional
algebra in a Morita-equivalence class of algebras, called the basic algebra, is unique up
to algebra isomorphisms. Note that the basic algebra Λ of a block over FG can be
obtained by tensoring the basic algebra Λ of the corresponding block in RG with F ,
see Lemma 2.3.5. Consequently, the algebra Λ is a lift of Λ, i.e. an R-algebra Γ such
that F ⊗ Γ ≅ Λ.
One goal of this work is to give explicit descriptions of the basic algebra Λ of a

block in RG as a subalgebra in the Wedderburn decomposition KG ≅ ⊕Dni×ni

i of
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KG. Although the details of the procedure depend on Λ, the strategy is roughly the
following: First describe Λ as a quiver algebra. In our examples a description is either
readily available in the literature or we found one by hand.

As the second step, we construct an algebra Γ0 ⊂ ⊕i∈I R
ni×ni

i , where Ri is the integral
closure of R in Di, such that every algebra Γ for which

1. Γ is a lift of Λ,

2. K ⊗ Γ is semisimple with the same center as K ⊗Λ,

3. Γ has the same decomposition matrix as Λ,

4. Γ is self-dual with respect to the same form as Λ,

is isomorphic to Γ0. We call an R-algebra Γ fulfilling these conditions a Λ-lift of Λ.
Checking whether certain algebras have a unique Λ-lift is the second goal of this work.

The method outlined above can be considered as an inverse process to the construc-
tion of the basic algebra of Λ as the factor algebra F ⊗RΛ. This idea is based on work
of Wilhelm Plesken [Ple83], which uses the p-modular representation theory of a group
G to obtain information about the integral p-adic group ring ZpG. This strategy was
further developed by Gabriele Nebe [Neb99] to obtain the full ring-theoretic structure
of suitable lifts Λ of group algebras and their blocks over fields of positive character-
istic. Florian Eisele [Eis12] then studied the question for which algebras such lifts are
unique, developed methods to transfer lifts along derived equivalences of algebras and
applied them to several infinite series of examples.

Blocks with semidihedral defect

The first types of blocks we study are those with a semidihedral defect group. Their
corresponding blocks over the residue field of characteristic 2 are a special kind of
tame algebras, which have been classified by Karin Erdmann [Erd90b]. It is not com-
pletely known which tame algebras are Morita-equivalent to blocks of group algebras.
However, it is known what their decomposition matrix and their representations in
characteristic 0 would look like if they were blocks. We will use this information to
show the theorem below.

Theorem. The algebras of type SD(2B)01 and SD(2A)02 are not Morita-equivalent to
blocks of group algebras.

Proof. See Theorem 3.2.11 and Theorem 3.2.14.

We will further show that if A is either SD(2B)11 or SD(2A)12 and Λ is the basic
algebra of a block of a group algebra such that A has a Λ-lift, then A has infinitely
many Λ-lifts, see Theorem 3.2.11 and Theorem 3.2.14. For a basic algebra Λ of a block
with a semidihedral defect group such that F ⊗R Λ ≅ SD(3B)1, we will construct a
Λ-lift of F ⊗R Λ and show that it is the unique lift. Then, we will apply methods
developed by Florian Eisele [Eis12] to show the following result.
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Theorem. Let Λ be the basic algebra of a block with a semidihedral defect group.
Then every tame algebra of semidihedral type with three simple modules has at most
one Λ-lift for every given center.

Proof. See Theorem 3.2.21.

These methods use derived equivalences between those blocks, which have been
determined by Thorsten Holm [Hol01].

Defect 3 blocks of symmetric groups

The second type of block we investigate is the principal block B0 of the group algebra
ZpSp ≀ S3 for p > 3, that is the block such that TB0 ≠ 0 for the trivial ZpSp ≀ S3-
module T . We will use results by Joseph Chuang and Kai Meng Tang [CT03] about
wreath products of algebras to determine its decomposition matrix and the quiver of
the corresponding block over Fp. Then we will construct a lift of its basic algebra Λ
and obtain:

Theorem. Let Λ be the basic algebra of the principal block B0(ZpSp ≀ S3). Then the
algebra Λ has a unique Λ-lift.

Proof. See Theorem 4.4.35.

This block is of particular interest since it is Morita-equivalent to a defect 3 block of
a symmetric group and it has been shown that all defect 3 blocks of symmetric groups
in characteristic p > 3 are derived equivalent. Our result therefore lays the ground
work for further investigation of those blocks.

Outline

In Chapter 2 we will recall the theory required to achieve our results. We will start
with general properties of finite-dimensional algebras, continue to introduce properties
of algebras over discrete valuation rings R and their connection to the corresponding
algebras over the field of fractions and the residue field of R and finish by consider-
ing semisimple algebras. The second section will discuss special properties of group
algebras and define defect groups. In the third section, we introduce two notions of
equivalence of rings, Morita-equivalence and derived equivalence, and some of their
properties. We continue by introducing the theory of graduated orders and conclude
the chapter by introducing specialized methods to calculate lifts and to transfer unique
lifting results along derived equivalences.

In Chapter 3 we consider tame blocks. We will start by recalling the classification
of tame blocks by Erdmann [Erd90b] and other general properties of blocks of semidi-
hedral defect. The main results of this chapter are the construction of infinitely many
lifts for the algebra SD(2B)c1 for c = 1 and the non-existence of a lift if c = 0, see Theo-
rem 3.2.11, the construction and uniqueness of a lift of SD(3B)1, see Theorem 3.2.18,
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and the transfer of the uniqueness and non-existence of the lifts to derived equivalent
algebras, see Theorem 3.2.14 and Theorem 3.2.21.

In Chapter 4 we determine a unique lift of the basic algebra of the principal block
B0(FpSp ≀ S3), see Theorem 4.4.35. We will start the chapter by recalling the results
by Chuang and Tang about wreath products and the structure of the principal block
B0(FpSp). We continue by applying those theories to find an explicit description of
the basic algebra Λ of the block B0(ZpSp ≀ S3). This lifting will be done in roughly
three steps. At first we determine the subalgebras eΛe for primitive idempotents e of
Λ. Next we determine the exponent matrices, see Definition 2.4.4, and finally we will
give explicit descriptions of generators of the algebra.
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2 Representation theory

In this chapter we give a short introduction to the methods of representation theory
used in this work. All topics are widely covered in literature and we will therefore give
references for most proofs instead of repeating them. For a more detailed introduction
to representation theory the reader is referred to [PD77] or [NT89].

All modules we consider will be finitely generated right modules unless stated oth-
erwise. All R-algebras over a ring R will be R-free, and all modules over an R-algebra
will be R-lattices, which means they are R-free. We will use “.” to denote the multipli-
cation of a ring on its modules and “⋅” to denote multiplication inside the ring to avoid
confusion. If confusion is unlikely we will leave out the operator for any multiplication.

2.1 Finite-dimensional algebras

In this section we will introduce important properties of finite-dimensional algebras.

2.1.1 General properties

Let R be a commutative ring and A a finite-dimensional R-algebra.

Definition 2.1.1. Let B ≤ A be a subalgebra of A, V a B-module and W an A-module.

Then IndAB V ∶= V ⊗B A is an A-module with multiplication (v ⊗ a1).a2 ∶= v ⊗ a1a2
for v ∈ V, a1, a2 ∈ A, the induced module of V to A.

The A-module W becomes a B-module by restricting the multiplication of A on W

to B. We denote this restricted module by ResAB W .

Lemma 2.1.2. Let B ≤ A be a subalgebra of A, V a B-module and W an A-module.
The map

f ∶ HomB(V,ResAB W ) Ð→ HomA(IndAB V,W )

ϕz→ (v ⊗ a↦ ϕ(v).a)

is an isomorphism of R-modules.

Proof. See [NT89, Theorem 11.3 (i)]

Definition 2.1.3. 1. A system e1, . . . , en of primitive orthogonal idempotents is
called complete if

1A = e1 + . . . + en.
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2. A system P1, . . . , Pn of projective indecomposable A-modules is called complete
if

A = P1 ⊕ . . .⊕ Pn.

Remark 2.1.4. If e1, . . . , en is a complete system of primitive orthogonal idempotents,
then e1A, . . . , enA is a complete system of projective indecomposable A-modules.

Conversely, every decomposition of A into indecomposable A-modules yields a de-
composition of 1A into primitive orthogonal idempotents.

Lemma 2.1.5. Assume that R is a field. Let {P1, . . . , Pn} be a complete system of
projective indecomposable A-modules.

1. Every (finitely generated) projective indecomposable A-module is isomorphic to
Pi for some i ∈ {1, . . . , n}.

2. The head Si ∶= Pi/ rad(Pi) of Pi is simple for every i ∈ {1, . . . , n}.

3. Every simple A-module is isomorphic to Si for some i ∈ {1, . . . , n}.

Proof. The first part follows since every projective module is a direct summand of a
free module and if such a direct summand is indecomposable it has to be a direct
summand of the free A-module A. For the other parts see [NT89, Theorem 8.10].

In particular, the above lemma shows that there are only finitely many isomorphism
classes of simple A-modules and that they all occur as heads of direct summands of A.
In the semisimple case the projective indecomposable modules are themselves simple
A-modules.

Definition 2.1.6. 1. We say that two primitive orthogonal idempotents e, f ∈ A

are isomorphic (e ≅ f) if eA ≅ fA.

2. A set {P1, . . . , Pl} of non-isomorphic projective indecomposable A-modules is
called complete if for every projective indecomposable module P there is some
i ∈ {1, . . . , l} such that P ≅ Pi.

3. A set {e1, . . . , el} of non-isomorphic primitive orthogonal idempotents is called
complete if {e1A, . . . , elA} is complete.

4. A set {S1, . . . , Sl} of non-isomorphic simple A-modules is called complete if for
every simple module S there is some i ∈ {1, . . . , l} such that S ≅ Si.

Lemma 2.1.7. Assume that R is a field and let P,Q be two projective indecomposable
A-modules. Then

P / rad(P ) ≅ Q/ rad(Q)⇔ P ≅ Q.

Proof. See [PD77, Theorem 1.8].
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Corollary 2.1.8. Assume that R is a field and let {P1, . . . , Pl} be a complete set of
non-isomorphic finitely generated projective indecomposable A-modules. Then the set
{P1/ rad(P1), . . . , Pl/ rad(Pl)} is a complete set of non-isomorphic simple A-modules.

Lemma 2.1.9. Let e and f be two idempotents of A. Then the map

eAf Ð→ HomA(fA, eA)

az→ (x↦ a ⋅ x)

is an isomorphism of R-modules. If e = f then the map is a ring-isomorphism. We
therefore call the ring eAe an endomorphism ring.

Proof. See [NT89, Theorem 4.3].

Lemma 2.1.10 (Schur). Assume that R is a field and let V be a simple A-module.
Then EndA(V ) is a division algebra.

Proof. Since both the kernel and the image of an endomorphism of V are submodules,
both have to be either zero or V . Therefore, the only non-bijective endomorphism of
V is the zero-homomorphism.

Definition 2.1.11. Assume that R = K is a field. K is called a splitting field for A

if EndA(V ) =K for every simple A-module V .

2.1.2 Algebras over discrete valuation rings

Definition 2.1.12. Let p be a prime number. A p-modular system is a triple (F,R,K)
where R is a complete discrete valuation ring with maximal ideal m, the residue field
F = R/m is a field of characteristic p and the field of fractions K = Quot(R) of R has
characteristic 0.

For the rest of the section, let p be a prime number, (F,R,K) a p-modular system
and Λ a finite-dimensional R-algebra. Assume that F is a splitting field for F ⊗R Λ
and that the K-Algebra K ⊗R Λ is semisimple. Let φ ∶ Λ → Λ ∶= F ⊗R Λ denote the
natural epimorphism and denote the generator of the maximal ideal of R by π.

Lemma 2.1.13. The radical of Λ is pro-nilpotent, i.e. πR ⊆ rad(Λ) and there is
some n ∈ Z≥0 with rad(Λ)n ⊆ πR.

Proof. See [NT89, Theorem 14.1].

Lemma 2.1.14 (Hensel). Let e1, . . . , el be orthogonal primitive idempotents of Λ.
Then there are orthogonal idempotents e1, . . . , el such that φ(ei) = ei for i ∈ {1, . . . , l}.

Proof. See [NT89, Theorem 14.2].

Lemma 2.1.15. Let e, f be primitive idempotents of Λ. Then

φ(e)Λ ≅ φ(f)Λ⇔ eΛ ≅ fΛ
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Proof. See [NT89, Theorem 14.2].

Hensel’s Lemma and Lemma 2.1.15 give us a very strong connection between the
representation theory of Λ and that of Λ via the relationship between idempotents,
projective indecomposable modules and simple modules. In the following corollary we
summarise these connections.

Corollary 2.1.16. Let {e1, . . . , el} be a complete set of non-isomorphic primitive or-
thogonal idempotents of Λ. Then

1. {P1 ∶= e1Λ, . . . , Pn ∶= enΛ} is a complete set of non-isomorphic projective inde-
composable Λ-modules.

2. We have Si ∶= Pi/ rad(Pi) = Si ∶= φ(Pi)/ rad(φ(Pi)) for i ∈ {1, . . . , l} and hence
{S1, . . . , Sn} is both a complete set of non-isomorphic simple Λ-modules and non-
isomorphic simple Λ-modules.

3. {e1 ∶= φ(e1), . . . , en ∶= φ(en)} is a complete set of non-isomorphic primitive or-
thogonal idempotents of Λ.

4. {P1 ∶= e1Λ = φ(P1), . . . , Pn ∶= enΛ = φ(Pn)} is a complete set of non-isomorphic
projective indecomposable Λ-modules.

Proof. The equality of the simple Λ- and Λ-module follows from Lemma 2.1.13. The
rest follows by combining Hensel’s Lemma and Lemma 2.1.15 with Lemma 2.1.8.

Definition 2.1.17. Let S be a ring, KS = Quot(S) its field of fractions and Λ an
S-algebra which is finitely generated as an S-module. Let V be a KS ⊗S Λ-module.
Then a Λ-lattice L is called an S-form of V if KS ⊗S L ≅ V as KS ⊗S Λ-modules.

Lemma 2.1.18. Let S be a principal ideal domain, KS = Quot(S) its field of fractions
and Λ an S-algebra. Then every KS ⊗S Λ-module has an S-form.

Proof. See [NT89, Theorem II.1.6]

We fix the following notation. Let {V1, . . . , Vk} be a complete set of non-isomorphic
simple K ⊗R Λ-modules. Let Li be a Λ-lattice with K ⊗R Li = Vi for i ∈ {1, . . . , k}.

Let {e1, . . . , el} be a complete set of non-isomorphic primitive orthogonal idempo-
tents of Λ. Define for j ∈ {1, . . . , l}

ej = φ(ej)

Pj ∶= ejΛ

Pj ∶= F ⊗R Pj = ejΛ

Sj ∶= Pj/ radPj

Sj ∶= F ⊗R Sj = Pj/ radPj .

Then S1, . . . , Sk is a system of representatives of the isomorphism classes of simple
Λ-modules.

11



Notation 2.1.19. Let B be a ring for which the Krull-Schmidt theorem holds and let
M and N be two B-modules. Then we denote the multiplicity of N in a composition
series of M by [M ∶ N].
Definition 2.1.20. Let B be a ring and A be a subcategory of ModA. Let G be the free
abelian group generated by {[M] ∣M ∈ Obj(A)} where [M] denotes the isomorphism
class of M . Let

H ∶= ⟨{[M1] + [M3] − [M2] ∣ 0→M1 →M2 →M3 → 0 is a short exact sequence}⟩ ≤ G.

Then we define the Grothendieck group of A as

K0(A) = G/H.

Definition 2.1.21. 1. For i ∈ {1, . . . , k} and j ∈ {1, . . . , l} the decomposition num-
ber

dij ∶= [F ⊗R Pj ∶ Vi]
is the multiplicity of the simple module Vi as a direct summand of K ⊗R Pj.

2. The matrix D ∶= (dij)i,j is called the decomposition matrix of Λ.

3. The map

θΛ ∶K0(projΛ)Ð→K0(modK⊗RΛ)
P z→K ⊗ P

is called the decomposition map of Λ.

Note that the decomposition matrix is the matrix of the decomposition map with
respect to the isomorphism classes of the projective indecomposable modules as a basis
of projΛ and the isomorphism classes of simple modules as a basis of modK⊗RΛ.

Definition 2.1.22. For i, j ∈ {1, . . . , l} we denote by cij ∶= [P i ∶ Sj] the multiplicity
of the simple Λ-module Sj in the projective indecomposable module P i. The matrix
C ∶= (cij)i,j is called the Cartan matrix of Λ.

Lemma 2.1.23. For i, j ∈ {1, . . . , l} we have cij = dimF (HomF (P i, P j)).
Proof. See [Ben98, Lemma 1.7.6].

Lemma 2.1.24 (Brauer reciprocity). Assume that K is a splitting field for K ⊗R Λ.
Then the following equalities hold.

1. dij = [F ⊗R Li ∶ Sj]
2. C =DT ⋅D.

Proof. See [Ben98, Proposition 1.9.6].
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Definition 2.1.25. For i ∈ {1, . . . , k} and j ∈ {1, . . . , l} define
di ∶= {t ∈ {1, . . . , l} ∣ dit > 0}

cj ∶= {s ∈ {1, . . . , k} ∣ dsj > 0}.
Analogously to the decomposition of modules into indecomposable modules, we

decompose algebras into their blocks.

Definition 2.1.26. 1. Let 1Λ = ε1+ . . .+εn be a decomposition into centrally prim-
itive idempotents. Then Λ = ε1Λ ⊕ . . . ⊕ εnΛ is a decomposition of Λ into inde-
composable algebras. We call the algebras εiΛ the blocks of Λ.

2. For every indecomposable Λ-lattice L there is exactly one i ∈ {1, . . . , n} such that
Lεi ≠ 0. In that case we say that L lies in the block εiΛ.

3. Let V be a simple K ⊗R Λ-module. Then there is exactly one i ∈ {1, . . . , n} such
that V εi ≠ 0. We say that V lies in the block εiΛ.

4. Let T be the trivial Λ-module and assume that T lies in the block εiΛ. Then we
call εiΛ the principal block of Λ and denote it by B0(Λ).

2.1.3 Semisimple algebras

Lemma 2.1.27. Let K be a field, A a semisimple K-algebra and let

A =
k

⊕
i=1

ni

⊕
λ=1

eiλA

be an A-module decomposition of a such that eiλ is primitive for every i and λ and
eiλ ≅ ejµ if and only if i = j. Then we have the following.

1. The module Ui ∶=⊕
ni

i=1 eiλA is a two-sided ideal in A and therefore a block.

2. Let εi be the central primitive idempotent with Ui = εiA and let V be a simple
A-module. Then V ≅ ei1A if and only if V εi ≠ 0.

Proof. First note that since A is semisimple every module eiλA is simple.

1. Left-multiplication by an element of A is a right A-module homomorphism and
can thus only send simple modules to isomorphic modules or 0.

2. This follows since by assumptions eiλA /≅ ejλA for i ≠ j.

Lemma 2.1.28 (Wedderburn). Let K be a field, A a semisimple K-algebra and{S1, . . . , Sl} a complete set of non-isomorphic simple A-modules. Then Di ∶= EndA(Si)
is a division algebra for every i ∈ {1, . . . l} and there is an isomorphism of K-algebras

Φ ∶ AÐ→
l

⊕
i=1

Dni×ni

i ,
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where ni = dim(Si) and with Φ(εi) = I
D

ni×ni
i

for i ∈ {1, . . . , l}. We call such an

isomorphism Φ a Wedderburn decomposition of A.

Recall that if K is a splitting field for A then Di =K for every i.

Proof. See [Ben98, Theorem 1.3.5].

Definition 2.1.29. Let K be a field, A a semisimple K-algebra and {S1, . . . , Sl} a
complete set of non-isomorphic simple A-modules. Assume further that there is a
seperable field extension L/K such that L is splitting field for L ⊗K A. Then the
reduced trace Trred(a) of an element a ∈ A is defined as follows. Let

Ψ ∶ L⊗K AÐ→
l

⊕
i=1

Lmi×mi

be a Wedderburn decomposition of L ⊗K A, ι ∶ A ↪ L ⊗K A,a ↦ 1 ⊗ a and (ai)li=1 ∶=
Ψ(ι(a)). Then Trred(a) ∶= ∑l

i=1Tr(ai).
Lemma 2.1.30. Let K and A be as above. The reduced trace Trred does not depend
on the choice of the splitting field or the Wedderburn decomposition and Trred(a) ∈K
for all a ∈ A.

Definition 2.1.31. Let K be a field, A a semisimple K-algebra and u ∈ Z(A)× a
central unit in A. Then the bilinear form Tu is defined as follows:

Tu ∶ A ×AÐ→K

(a, b)z→ Trred(u ⋅ a ⋅ b).
Lemma 2.1.32. Let R be a complete discrete valuation ring with field of fractions
K = Quot(R). Let Λ be an R-algebra such that K⊗RΛ is semisimple. Let {S1, . . . , Sl}
be a complete set of non-isomorphic simple K ⊗R Λ-modules, Di ∶= EndA(Si), Ri ⊆Di

be the integral closure of R in Di and let e1, . . . , en be a complete system of primitive
orthogonal idempotents of Λ. Then there is a Wedderburn decomposition Φ of K⊗RΛ
such that both

Φ(Λ) ⊆ l

⊕
i=1

Rmi×mi

i

and the idempotents Φ(e1), . . . ,Φ(en) are diagonal.

Proof. Since Di is a finite extension of K, Ri is a discrete valuation ring and thus in
particular a principal ideal domain for every i. Let Φ be a Wedderburn decomposition.
We are going to construct an algebra automorphism Ψ of ⊕l

i=1D
mi×mi

i such that Ψ○Φ
is the required Wedderburn decomposition, that is if ιΛ ∶ Λ → K ⊗ Λ, λ ↦ 1 ⊗ λ then
Ψ ○Φ ○ ιΛ factors through ⊕l

i=1R
mi×mi

i as depicted by the following diagram:
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K ⊗R Λ ⊕l
i=1D

mi×mi

i

Λ ⊕l
i=1R

mi×mi

i

ιWιΛ

Ψ ○Φ

where ιW is the obvious inclusion. The automorphism Ψ will also be chosen in such
a way that the idempotents Ψ(Φ(e1)), . . . ,Ψ(Φ(en)) are diagonal. We construct Ψ
component wise by considering each direct summand Dmi×mi

i separately. Note that if
εi is a centrally primitive idempotent of K⊗RΛ then Φ(εiK⊗RΛ) =Dmi×mi

i , εiΛ is an
R-algebra with K ⊗R εiΛ = εiK ⊗R Λ and {εiej ∣ j ∈ {1, . . . , n}} is a set of orthogonal
idempotents.

Let εi be a centrally primitive idempotent of K ⊗R Λ with Viεi ≠ 0. Then we can
identify Φ(εiK ⊗R Λ) =Dmi×mi

i with EndDi
(Dmi

i ). With this identification Xi ∶=D
mi

i

becomes an εiK ⊗R Λ-module and thus by Lemma 2.1.18, we can find an Ri-form
L ⊆ Xi. Let B = (b1, . . . , bmi

) be an Ri-basis of L compatible with the decomposition
L = ⊕n

j=1Lεiej . Then B is a Di-basis of Xi. Let Ψi ∶ D
mi×mi

i → Dmi×mi

i be the
conjugation with the base change matrix from the standard Di-basis of Xi to B.
Then M = Ψi(Φ(a)) ∈ Ψi(Φ(K ⊗R Λ)) is the matrix describing the multiplication
of a on Xi with respect to the basis B. If a ∈ Λ then bj .a ∈ L = ⟨b1, . . . , bmi

⟩Ri

for every j ∈ {1, . . . ,mi} and thus the entries of M all lie in Ri. Now assume that
a = εiej , let k ∈ {1, . . . ,mi} and let m ∈ {1, . . . , n} such that bk ∈ Lεiem. Then
bkεiej = bkejεi = bkδmj and thus M is a diagonal matrix.

By combining these base changes as Ψ ∶=⊕l
i=1Ψi we get an algebra automorphism of

⊕l
i=1D

mi×mi

i induced by conjugation such that Ψ ○Φ is a Wedderburn decomposition
as in the statement of the lemma.

Definition 2.1.33. Let K be a field, R a subring of K and A a K-algebra. We say
that an R-subalgebra Λ of A is an R-order in A if Λ generates A as a K-vector space.

Definition 2.1.34. Let K be a field, R a subring of K and A a K-algebra. Let further
T ∶ A ×AÐ→K be a non-degenerate bilinear form on A.

For an R-order Λ in A we define its dual Λ# to be

Λ# ∶= {a ∈ A ∣ T (a,Λ) ⊆ R}.
We call Λ symmetric or self-dual in A with respect to T if Λ = Λ#.

If K = Quot(R) and A =K ⊗Λ we say Λ is self-dual omitting the reference to A.

This notion is strongly related to the usual notion of the dual space:

Lemma 2.1.35. For every R-order Λ and every non-degenerate bilinear form on K⊗Λ
we have Λ# ≅ HomR(Λ,R) = Λ∗.
Proof. As T is non-degenerate, it induces an isomorphism between A and A∗. The
order Λ∗ can be embedded in A∗ as the set of all K-homomorphisms φ from A to
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K for which φ(Λ) ⊆ R. Then Λ# is the preimage of this set under the isomorphism
induced by T .

Lemma 2.1.36. Let Λ as above be self-dual with respect to T and e, f be idempotents
in Λ. Then (eΛf)♯ = fΛe. In particular eΛe is self-dual with respect to T .

Proof. See [Thé95, Proposition 6.4].

2.2 Group algebras

In this section, we will discuss properties of group algebras. For the whole section, let
G be a finite group and R be a field or a complete discrete valuation ring.

Definition 2.2.1. We define the group algebra RG of G over R as the free R-module
with basis G, where the multiplication is given by the distributive extension of the group
operation.

Definition 2.2.2. A representation of G over R of rank n is a group homomorphism
X ∶ GÐ→ Gln(R).
Lemma 2.2.3. Let X be a representation of G over R of rank n. Then Rn becomes
an RG-module via

V ×RGÐ→ R

(v, g)z→ vX(g).
Denote this module by VX .

Conversely, let V be an RG-module with n = dimV <∞. Then the following map is
a group homomorphism.

XV ∶ GÐ→ EndR(V )∗ ≅ Gln(R)
g z→ (v ↦ v.g)

For two group homomorphisms X,Y ∶ GÐ→ Gln(R) we have VX ≅ VY if and only if
X and Y are conjugate in Gln(R). Further, we have XVX

is conjugate to X and VXV

is isomorphic to V .

Proof. This follows from straightforward calculations

Definition 2.2.4. If R = K is a field we call a representation X irreducible if the
KG-module VX is simple.

The above lemma shows that the study of RG-modules is the same as the study of
representations of the group G over R. The following Lemma of Maschke implies that
the representation theory of a group over a field of characteristic 0 is generally much
simpler than that over a field whose characteristic divides the group order.
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Lemma 2.2.5 (Maschke). Let F be a field of characteristic p ≥ 0. Then FG is
semisimple if and only if p does not divide the order of G.

Proof. See [NT89, Theorem 1.22]

Definition 2.2.6. 1. We denote the set of conjugacy classes of G by Cl(G).
2. For g ∈ G we denote the conjugacy class containing g by gG.

3. We define the class sum of a conjugacy class C ∈ Cl(G) as Ĉ ∶= ∑g∈C g ∈KG.

Over a field of characteristic 0 a lot of information about the representation theory
of a group can be gathered from the traces of the irreducible representations.

Definition 2.2.7. Let R = K be a field of characteristic 0 , V be a KG-module and
XV the corresponding representation.

1. We define the character χV of V as

χV ∶ Cl(G)Ð→K

gG z→ Tr(XV (g)).
2. The character χV is called irreducible if V is simple. Both V and χV are called

absolutely irreducible if L ⊗ V is a simple LG-module for every algebraic field
extension L/K.

3. Let K be the algebraic closure of K. For every character χ of KG, we define

K(χ) ∶=K({χ(gG) ∣ g ∈ G})
to be the character field of χ over K.

Lemma 2.2.8. Let K be a field of characteristic zero and V , W be KG-modules.
Then

1. χV (1) = dimK(V ) and
2. χV = χW ⇔ V ≅W.

Proof. See [CR62, Theorem 30.12].

Definition 2.2.9. Given a character χ, we define the module Vχ corresponding to
χ to be a module such that χVχ = χ. Lemma 2.2.8 implies that Vχ is unique up to
isomorphism.

Remark 2.2.10. With Lemma 2.2.8 it also makes sense to enumerate the rows of the
decomposition matrix of a group algebra RG by the irreducible characters of KG.
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Lemma 2.2.11. Let V be a simple KG-module and let K ⊗ V = ⊕i∈I Vi with simple
KG-modules Vi. Then

Z(EndKG(V )) ≅K(χVi
)

for every i ∈ I.

Proof. See [NT89, Theorem 6.2]

Lemma 2.2.12. Let L/K be two fields of characteristic zero, V an absolutely irre-
ducible LG-module and assume that χV (gG) ∈ K for all g ∈ G. Then there is an
m ∈ Z>0 and a K-module W such that χW =m ⋅ χV .

Proof. See [CR62, Lemma 70.12].

Lemma 2.2.13. Let H ≤ G be a subgroup, T be a right transversal of H in G, and M

be an RH−module. Then IndRG
RH M =M⊗RHRG is generated by {m⊗t ∣m ∈M, t ∈ T}

as an R-module.

Proof. It is clear that {m ⊗RH g ∣ m ∈ M,g ∈ G} generates IndRG
RH M . Now by the

choice of T there is for every g ∈ G an h ∈ H and a t ∈ T with g = h ⋅ t and thus
m⊗ g =m.h⊗ t for every m ∈M .

One important property to determine a group algebra over a discrete valuation ring
is its self-duality.

Lemma 2.2.14. Let (K,R,F ) be a p-modular system such that KG is semisimple.
We define u = (ui)i ∈ Z(KG) =⊕k

i=1EndKG(Vi) via ui ∶= dimVi

∣G∣ . Then RG is self-dual
with respect to the form Tu as in Definition 2.1.31.

Proof. See [CR62, Remark 2].

Lemma 2.2.15. Let x = ∑g∈G agg ∈KG. Then

x ∈ Z(G)⇔ ag = ah−1gh ∀g, h ∈ G.

Thus Z(KG) is generated by the class sums {Ĉ ∣ C ∈ Cl(G)}.
Proof. Since G is a basis for KG, we know that

x ∈ Z(G)↔ h−1xh = x.

The assertion follows by comparing the coefficients.

We know that every indecomposable representation of an algebra lies in a unique
block, see Definition 2.1.26. Each block B is obtained by multiplying the algebra with
a centrally primitive idempotent, which we will denote by εB. In the case of group
algebras one can also associate to each block a subgroup of G, its defect group, which
we will define below.

For the rest of the section let (K,R,F ) be a p-modular system.
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Theorem 2.2.16. Let P be a finitely generated projective FG-module.
Then pνp(∣G∣) ∣ dim(P ).
Proof. See [NT89, Theorem 1.26].

Definition 2.2.17. Let k be the number of simple KG-modules and l the number of
simple RG-modules. The Brauer graph of Λ is the graph Γ = (V,E) with V = {1, . . . , k}
and E = {(i, j) ∣ ∃x ∈ {1, . . . , l}, dixdjx ≠ 0}.
Lemma 2.2.18. 1. If V is a simple KG-module, P is a projective RG-module,

and V and P lie in different blocks of RG, then [P ∶ V ] = 0.
2. If V and W are simple KG-module lying in the same block of RG, then the

corresponding vertices in the Brauer graph are connected.

3. The Brauer graph has exactly one connected component for each block of RG.

Proof. See [PD77, Section 4.2 (d)].

Definition 2.2.19. 1. For two subsets X,Y ⊆ G of G, we write X ⊆G Y if there is
a g ∈ G such that g−1Xg ⊆ Y .

2. Let C = gG ∈ Cl(G). A p-subgroup D of G is called a defect group of C if D is
a p-Sylow subgroup in CG(g). Note that all defect groups of a conjugacy class C
are conjugate in G.

3. For a p-subgroup D of G, we define

ID ∶= ∑
C ∶DC⊆GD

FĈ ⊆ FG

where DC is a defect group of C.

Lemma 2.2.20. For every p-subgroup D of G, the set ID is a two-sided ideal in
Z(FG).
Proof. See [PD77, Lemma 4.3A].

Theorem 2.2.21. Let B be a block of FG. Then there exists a subgroup D of G such
that

1. εB ∈ ID and

2. if D′ ≤ G is a p-subgroup with εB ∈ ID′ then D ≤G D′.

This group is unique up to conjugation in G.

Proof. [PD77, Lemma 4.3A]

Definition 2.2.22. Let B be a block of FG.
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1. A group D as in Theorem 2.2.21 is called a defect group of B and is denoted by
DB.

2. We call dB ∶= νp(∣DB ∣) the defect of B.

Lemma + Definition 2.2.23. Let B be a block of FG and let a = νp(∣G∣). Then

pa−dB ∣ dimK V

for every simple KG-module V and there is one simple KG module V0 such that

pa−dB+1 /∣ dimK V0.

We define the height of an irreducible module V to be

ht(V ) ∶= dB − a − νp(dimK V )
We say that ht(χV ) = ht(V ) is the height of the corresponding character.

Proof. See [PD77, Theorem 4.5A].

Example 2.2.24. Assume that dB = 0 and thus ∣DB ∣ = 1. Then there is exactly one
simple KG-module V which lies in B. Furthermore, for an R-form L in V the module
S = F ⊗R L is simple and the only FG-module lying in B. Every block containing an
irreducible KG-module V with νp(dimV ) = νp(∣G∣) is a defect zero block. For a proof
see [PD77, Theorem 4.6A, 4.5B].

Next we consider blocks with defect 1. From now on, let ∣G∣ = paq where p /∣ q. Let
L1 = Qp(ζpmq) and L2 = Qp(ζq) where ζpmq is a primitive pmq-th and ζq a primitive
q-th root of unity and (L1,R,F ) be the corresponding p-modular system.

Lemma 2.2.25. 1. The field L1 is a splitting field for G.

2. For σ ∈ Gal(L1/L2) and an irreducible character χ of L1G, χσ is also an ir-
reducible character of L1G. We say that χ and χσ are p-conjugate and write
χ ∼p χ

σ.

3. Let χ and χσ be as above with corresponding simple L1G-modules V and Vσ and
R-forms M and Mσ. Then F ⊗RM and F ⊗RMσ have the same irreducible con-
stituents. In particular, the row of the decomposition matrix of G corresponding
to χ is equal to that corresponding to χσ.

Proof. See [PD77].

Definition 2.2.26. Let χ1, . . . , χu be a complete set of representatives of p-conjugacy
classes of characters of L1G and assume that FG has exactly l non-isomorphic simple
modules. We define the reduced decomposition matrix of L1G as D0 = (d0ij), where
d0ij = dχij is the j-th entry of the row of the decomposition matrix corresponding to χi.
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Theorem 2.2.27. Let B be a block with dB = 1, a ∶= νp(∣G∣), χ1, . . . , χk a complete set
of irreducible characters of L1G and assume (by reordering) that χ1, . . . , χu is a com-
plete set of representatives of the p-conjugacy classes of L1G-characters. Let further l

be the number of isomorphism classes of simple F ⊗RB-modules, D = (dij) the decom-
position matrix and D0 = (d0ij) the reduced decomposition matrix of B. Furthermore
define

ti ∶= ∣{j ∣ χj ∼p χi}∣,
S ∶= {χi ∣ tiχi(1) ≡ t1χ1(1) mod 2a},
T ∶= {χi ∣ tiχi(1) ≡ −t1χ1(1) mod 2a}.

Then the characters and the decomposition matrix have the following properties.

1. S ∪ T = {χ1, . . . , χk}.
2. If χi /∼p χj and we have either χi, χj ∈ S or χi, χj ∈ T , then diadja = 0 for every

a ∈ {1, . . . , l}.
3. For every i ∈ {1, . . . , k} and j ∈ {1, . . . , l}, we have dij ∈ {0,1}.
4. For j ∈ {1, . . . , l}, there are exactly two characters χi1 and χi2 with i1, i2 ∈{1, . . . , u} such that di1j , di2j ≠ 0. One of those lies in S and the other in T .

Proof. These are results by Brauer, see [Bra41].

The theory of block with defect 1 by Brauer has been generalized to blocks with a
cyclic defect group by Dade [Dad66].

2.3 Morita- and derived equivalence

2.3.1 Morita-equivalence

We are interested in the module category of algebras. We therefore introduce the
notion of Morita-equivalence and formalize what it means for two rings to have the
same module category.

Definition 2.3.1. 1. Two categories C and D are equivalent if there are two func-
tors F ∶ C → D and G ∶ D → C such that F ○ G is naturally isomorphic to IdD
and G ○F is naturally isomorphic to IdC .

2. Two rings R and S are called Morita-equivalent if the categories ModR and
ModS are equivalent.

Theorem 2.3.2. Let C and D be two categories and F ∶ C Ð→ D a functor. Then F is
an equivalence of categories if and only if F induces bijections on the homomorphism
sets and for every object D in D there is an object C in C such that D ≅ F(C).
Proof. See [Zim14, Proposition 3.1.28]
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This theorem yields the following alternative characterisation of Morita-equivalence.

Corollary 2.3.3. Two rings R and S are Morita-equivalent if and only if there is a
functor F ∶ModR Ð→ModS such that

1. For any two R-modules M,N the map HomR(M,N) → HomS(F(M),F(N))
induced by F is bijective.

2. For every S-module V there is some R-module M such that V ≅ F(M), i.e.
F induces a bijection between the isomorphism classes of R-modules and the
isomorphism classes of S-modules.

Definition 2.3.4. Let R be a field or complete discrete valuation ring, A a finite-
dimensional R-algebra and e1, . . . , en a system of primitive orthogonal idempotents
such that 1 = ∑n

i=1 ei. Then A is called basic if eiA /≅ ejA, for all i ≠ j.

Lemma 2.3.5. If R is a complete discrete valuation ring with residue field F and Λ
is a basic R-algebra, then F ⊗Λ is a basic F -algebra.

Proof. This follows from the definition and Corollary 2.1.16.

Lemma 2.3.6. Let K be a field, A be a basic K-algebra and assume that K is a
splitting field for A. Then every simple A-module is one-dimensional.

Proof. See [ASS06, Proposition I.6.2].

Lemma 2.3.7. Let A be finite-dimensional algebra.

1. There is a a basic algebra B such that A is Morita-equivalent to B. This algebra
is unique up to isomorphism and it is called the basic algebra of A.

2. There is an idempotent e ∈ A such that eAe is basic.

Proof. See [Zim14, Proposition 4.3.5]

2.3.2 Quiver algebras

As we are going to consider algebras up to Morita-equivalence, we are looking for a way
to describe the Morita-equivalence class of an algebra A. From Lemma 2.3.3 we can
see that this is equivalent to describing the isomorphism classes of A-modules together
with the homomorphisms between them. This leads to the notion of the quiver of an
algebra.

Definition 2.3.8. A quiver Q = (Q0,Q1, s, t) is given by

• a set Q0 of vertices,

• a set Q1 of arrows and

• two maps s, t ∶ Q1 → Q0 associating to each arrow a its source s(a) and target
t(a).
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This means a quiver is a directed graph, where there can be any number of edges
between two vertices.

Definition 2.3.9. Let Q = (Q0,Q1, s, t) be a quiver

1. Let a, b ∈ Q0. Then a path of length l ≥ 1 from a to b is a sequence

(a∣α1, . . . , αl∣b) (2.1)

with αi ∈ Q1 for i ∈ {1, . . . l}, s(α1) = a, t(αl) = b and t(αi) = s(αi+1) for
i ∈ {1, . . . , l − 1}.
We also define a path of length 0 for each a ∈ Q0 and denote it by εa = (a∣∣a)

2. The path algebra KQ of Q over a field K is the K-algebra having the set of all
paths in Q as a basis and the product between to paths of length l ≥ 0 is defined
as

(a∣α1, . . . αl∣b)(c∣β1, . . . , βk∣d) = δbc(a∣α1, . . . , αl, β1, . . . , βk∣d).
We extend this product distributively to KQ.

Definition 2.3.10. Let K be a field and A a finite-dimensional K-algebra. We define
the quiver QA of A to be the following quiver.

• The vertices of QA are a complete set of non-isomorphic primitive orthogonal
idempotents {e1, . . . , el} of A.

• For any pair ei, ej of vertices we have dim((ei rad(A)ej)/(ei rad2(A)ej)) arrows
from ei to ej.

The quiver QA does not depend on the choice of a complete set of non-isomorphic
primitive orthogonal idempotents of A [ASS06, Lemma 3.2].

Lemma 2.3.11. Let R be a commutative ring, A a finite-dimensional R-algebra and
A′ ⊆ A a subalgebra of A with A′ + rad2(A) = A. Then A′ = A.

Proof. See [Ben98, Proposition 1.2.8].

Lemma 2.3.12. Assume that K is an algebraically closed field and A a basic and
indecomposable K-algebra. Let further

• {e1, . . . , en} be a complete set of primitive orthogonal idempotents of A

• For i, j ∈ {1, . . . , n} let Bij ⊆ ei radAej be such that

Bij ∶= {b + ei rad2Aej ∣ b ∈ Bij}
is a basis of (ei radAej)/(ei rad2Aej).
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Then A is generated by

{e1, . . . , en} ∪ n

⋃
i,j=1

Bij .

Proof. See [Zim14, Proposition 4.5.1].

Corollary 2.3.13. Assume that K is algebraically closed, A is basic and indecompos-
able and let QA be its quiver. Then the algebra A is isomorphic to a quotient of the
path algebra of QA.

2.3.3 Derived equivalence

We will give a short introduction to derived equivalences. For more details the reader
is referred to [Zim14].

Definition 2.3.14. 1. Let A be a ring. A chain complex C over A consists of a
sequence of A-modules (Ci)i∈Z together with a sequence of A-homomorphisms(di ∶ Ci Ð→ Ci+1)i∈Z such that di+1 ○ di = 0.

2. A homomorphism between two chain complexes (C1, d1) and (C2, d2) is defined to
be a sequence (ϕi ∶ Ci

1 Ð→ Ci
2) of A-module homomorphisms such that ϕi+1 ○di1 =

di+12 ○ ϕi for every i. For the last condition we also write ϕ ○ d1 = d2 ○ϕ.

3. Composition of two homomorphisms is defined component wise and we denote the
resulting category of all chain complexes of A-modules by C(A). More generally,
for every subcategory A of ModA we denote the category of chain complexes with
objects in A by C(A).

4. For every chain complex (C,d) we define the shifted chain complex (C[i], d[i])
by C[i]j ∶= Ci+j and d[i]j ∶= (−1)idi+j.

5. We let C+(A), C−(A) and Cb(A) denote the category of left-bounded (Ci = 0
for i << 0), right-bounded (Ci = 0 for i >> 0) and bounded complexes (left- and
right-bounded) respectively.

Chain complexes are defined in such a way that Im(di) ⊆ Ker(di+1) and thus the
homology H i(C) = Ker(di+1)/ Im(di) is well-defined. Additionaly homomorphisms
induce homomorphisms on the homology. The following definition introduces a class
of homomorphisms which are zero on homology.

Definition 2.3.15. Let (C1, d1) and (C2, d2) be chain complexes over a ring A. A
sequence of A-homomorphisms (ϕi ∶ Ci

1 Ð→ Ci
2)i∈Z is called zero-homotopic if there is

a sequence (hi ∶ Ci
1 Ð→ Ci−1

2 )i∈Z of A-homomorphisms such that

ϕ = d2 ○ h + h ○ d1.
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Lemma 2.3.16. Zero-homotopic maps are homomorphisms of chain complexes. The
set of all zero-homotopic maps is closed under addition and the composition of two
homomorphisms of chain complexes is zero-homotopic whenever one of the homomor-
phisms is zero-homotopic.

Proof. This follows from straightforward calculations.

This lemma assures that the following definition is well-defined.

Definition 2.3.17. Let A be a subcategory of ModA. Then we define the homotopy
category K(A) to be the category where the objects are chain complexes and the homo-
morphisms are homomorphisms of chain complexes modulo the zero-homotopic maps.

We also define K+(A), K−(A) and Kb(A) analogously to Definition 2.3.14.

Any A-module M can be considered as an object in K(A) as the complex 0→M →

0. In the derived category this complex is isomorphic to any projective or injective
resolution of M . We define the category in such a way that any exact complex becomes
the zero complex.

Definition 2.3.18. Let A be a subcategory of ModA for some ring A. We define the
derived category as

D(A) ∶= K(A)/N
where N are the exact chain complexes in K(A). We again define D(A)−,D(A)+ and
D(A)b analogously to Definition 2.3.14. For more details about the construction of
categories as a quotient by a null-system, see [Eis12, Remark 2.65].

Lemma 2.3.19. Let ϕ be a homomorphism of chain complexes such that its induced
homomorphism on homology is an isomorphism. Then ϕ is an isomorphism in the
derived category.

Proof. See [Zim14, Remark 3.5.38]

Remark 2.3.20. Both D(A) and K(A) can be promoted to triangulated categories. As
neither the definition of a triangulated category nor the way those categories become
triangulated categories is essential for our discussions we will skip it and refer the
reader to [Zim14] for details.

Lemma 2.3.21. Let A be an algebra over a commutative ring R. When we restrict
the quotient functor

Q ∶ K−(A)Ð→ D−(A)
to complexes containing only projective modules

Qres ∶ K−(projA)Ð→ D−(A)
we obtain an equivalence of triangulated categories.
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Proof. [Zim14, Proposition 3.5.43]

Definition 2.3.22. Let A be a ring and T ∈ Kb(projA) be a chain complex. We say
that T is a tilting complex if

HomKb(projA)
(T [i], T ) = 0 for all i ∈ Z ∖ {0} and

add(T ) = Kb(projA),
where add(T ) is the smallest triangulated subcategory of Kb(projA) containing T and
being closed under taking direct summands and direct sums.

Theorem 2.3.23 (Rickard). Let A and B be algebras over a commutative ring R

which are projective as R-modules. Then the following are equivalent.

1. The bounded derived categories Db(A) and Db(B) are equivalent as triangulated
categories.

2. The right-bounded homotopy categories K−(projA) and K−(projB) are equivalent
as triangulated categories.

3. The bounded homotopy categories Kb(projA) and Kb(projB) are equivalent as
triangulated categories.

4. There is a tilting complex T ∈ Kb(projA) with B = EndKb(A)(T ).
In this case we say that A and B are derived equivalent.

Proof. See [Zim14, Theorem 6.5.1]

Lemma 2.3.24. Let A be as above and T ∈ Kb(projA) be a tilting complex. Then
there is an equivalence of triangulated categories

GT ∶ Db(A)Ð→ Db(EndDb(A)(T ))
with GT (T ) = [0Ð→ EndDb(A)(T )Ð→ 0].
Proof. See [Zim14, Theorem 6.5.1]

Definition 2.3.25. Let A and B be two rings and let (C1, d1) ∈ C(ModB) and(C2, d2) ∈ C(BModA) be two chain complexes. Then we define the tensor product
C1 ⊗B C2 to be the complex where

(C1 ⊗B C2)i = ∑
j+k=i

C
j
1 ⊗B Ck

2

(d1 ⊗B d2)i = ∑
j+k=i

d
j
1 ⊗ idCk

2

+ (−1)jid
C

j
1

⊗ dk2.

It is straight forward to check that (d1⊗B d2)i+1 ○(d1⊗B d2)i = 0 and therefore we have(C1 ⊗B C2, d1 ⊗B d2) ∈ C(ModA).
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Lemma 2.3.26. The tensor product descends to the homotopy category K(A).
Definition 2.3.27. Let A and B be two algebras over a commutative ring R.

1. Let F ∶ K−(A)Ð→ K−(B) be an exact functor. Then we call the functor

LF = Q ○F ○ (Qres)−1 ∶ D−(A)Ð→ D−(B)
the left derived functor of F .

2. We define the left derived tensor product as follows:

(−⊗LA =) ∶ D−(A) ×D−(Aop ⊗R B)Ð→ D−(B)
(C1, C2)↦ Q((Qres)−1(C1)⊗A (Qres)−1(C2)).

Then for a complex Y ∈ K−(Aop ⊗R B) the functor

− ⊗LAQ(Y ) ∶ D−(A)Ð→ D−(B)
is the left derived functor of

− ⊗A Y ∶ K−(A)Ð→ K−(B).
Now we are ready to define two-sided tilting complexes, which give us a different

way to describe derived equivalences.

Definition 2.3.28. Let A and B be R-algebras. We call X ∈ Db(Aop ⊗R B) an
invertible object if there is a complex Y ∈ Db(Bop ⊗R A) such that

X ⊗LB Y ≅ [0→ AAA → 0] and
Y ⊗LA X ≅ [0→ BBB → 0].

Theorem 2.3.29. Let A and B be two R-algebras which are projective as R-modules.

1. The algebras A and B are derived equivalent if and only if there exists an in-
vertible object X ∈ Db(Aop ⊗R B). Such an object is called a two-sided tilting
complex and

−⊗LA X ∶ Db(A)Ð→ Db(B)
is an equivalence.

2. Every equivalence of triangulated categories between Db(A) and Db(B) is induced
by a two-sided tilting complex.

Proof. See [Zim14, Proposition 6.5.5]

There is a strong connection between one- and two-sided tilting complexes.
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Theorem 2.3.30. Let A and B be as above.

1. Let X ∈ Db(Aop⊗RB) be a two-sided tilting complex. Then Q−1(X) considered as
an element of K−(B) by restriction is isomorphic to a one-sided tilting complex
in D−(B).

2. For every one-sided tilting complex T ∈ Kb(B) there is a two-sided tilting complex
X ∈ Db(Aop ⊗R B) which is isomorphic to T in Db(B).

Proof. See [Zim14, Corollary 6.1.6]

2.4 Graduated orders

In this section we introduce the notion of graduated orders. A helpful way to under-
stand group algebras is by embedding them into such graduated orders. This method
was introduced by Plesken [Ple83].

Let R be a complete discrete valuation ring with maximal ideal πR and field of
fractions K.

Definition 2.4.1. Let Γ be an R-order such that K⊗Γ is semisimple and {e1, . . . , el}
be a complete system of primitive orthogonal idempotents. Then Γ is called graduated
if eiΓei is a maximal order in ei(K ⊗ Γ)ei for all i.

Definition 2.4.2. For n = (n1, . . . , nt) ∈ Z1×t
>0 , n ∶= ∑t

i=1 and M = (mij)i,j∈{1,...,t} ∈ Zt×t

we define the algebra

Λ(n,M) = {(aij)ti,j=1 ∈Kn×n ∣ aij ∈ (πmij)ni×nj ,1 ≤ i, j ≤ t}
Lemma 2.4.3. Let Γ be a graduated order in Kn×n. Then there are t ∈ N, n =(n1, . . . , nt) ∈ Z1×t

>0 and M = (mij)i,j∈{1,...,t} ∈ Zt×t
≥0 such that Γ is isomorphic to Λ(n,M)

and

t

∑
i=1

ni = n

mij +mjk ≥mik

mii = 0

i ≠ j ⇒mij +mji > 0

for all i, j ∈ {1, . . . t}.
Proof. See [Ple83, II.3].

Definition 2.4.4. We call a matrix M such that Γ ≅ Λ(n,M) an exponent matrix of
Γ. If Γ is already of the form Λ(n,M) we say M is the exponent matrix of Γ.
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2.5 Lifting

Let (K,R,F ) be a p-modular system where πR is the maximal ideal of R and let
νπ ∶K → Z denote the valuation of R.

Definition 2.5.1. Let Λ be a finite-dimensional F -algebra.

1. We call an R-order Λ with F ⊗R Λ ≅ Λ a lift of Λ.

2. We call an element α̂ ∈ Λ a lift of α ∈ Λ if F⊗α̂ is mapped to α by the isomorphism
F ⊗R Λ→ Λ.

Definition 2.5.2. Let Λ be a finite dimensional F -algebra and Λ a lift of Λ. For i ∈{1, . . . , k} let Ki/K be a field extension, ui ∈Ki and let dij ∈ Z≥0 for every i ∈ {1, . . . , k}
and j ∈ {1, . . . , l}. Then we say that Λ fulfills the rational conditions

Z(A) u 1 . . . l

K1 u1 d11 . . . d1l
⋮ ⋮ ⋮ ⋮ ⋮

Kk uk dk1 . . . dkl

if

• A ∶=K ⊗Λ is semisimple,

• there is an isomorphism

Z(A) ≅ k

⊕
i=1

Ki,

• Λ is self-dual with respect to Tu for u ∶= (ui)ki=1 ∈ Z(A) and
• the decomposition matrix of Λ is D = (dij)i,j where the i-th row corresponds to

the i-th summand of the center.

Our goal is to classify all lifts fulfilling certain rational conditions of certain F -
algebras. This question is motivated by the following special case.

Definition 2.5.3. Let B be an R-order such that K ⊗B is semisimple and B is self-
dual with respect to Tu for u ∈ Z(K ⊗B). We say that an R-order Λ is a B-lift of B
if Λ is a lift of B and Λ and B fulfill the same rational conditions.

Thus, given an algebra B of interest, for example the basic algebra of a block of a
group algebra, our goal will be to classify all B-lifts of B and thereby in particular
gaining information about B. We will sometimes consider slight variations of this
question, but in every case we want to derive as much information as possible about
an R-order Λ given its residue algebra F ⊗Λ and its rational conditions. In this section
we will introduce some methods to achieve this goal.
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2.5.1 General methods

For this section let Λ be an R-algebra such that K⊗RΛ is semisimple. Let {ei ∣ i ∈ Ip}
be a complete set of non-isomorphic orthogonal idempotents of Λ, {Vi ∣ i ∈ I0} a
complete set of non-isomorphic simple K⊗Λ-module, Di ∶= EndA(Si) and Ri ⊆Di the
integral closure of R in Di.

Then, by Lemma 2.1.32, there are mi ∈ Z>0 such that Λ can be embedded in

Γ ∶=⊕
i∈I0

Rmi×mi

i .

We will identify Λ with the image of this embedding and for the rest of the section
assume that Λ ⊆ Γ. We also assume that all decomposition numbers of Λ are 0 or 1.

Notation 2.5.4. By Ell ∈ Kn×n we denote the matrix such that (Ell)ll = 1 and(Ell)km = 0 if (k,m) ≠ (l, l).
Lemma 2.5.5. Let u ∈ Z(K ⊗ Γ). Then the dual of Γ with respect to the form Tu is
as follows:

Γ♯ =⊕
i∈I0

π−νπ(ui)Rmi×mi

i .

Proof. Let α = (αi)i ∈⊕i∈I0 π
−νπ(ui)Rmi×mi

i and β = (βi)i ∈ Γ. Then
νπ(Tu(β,α)) = νπ(∑

i∈I0

Tr(βiαi)ui) ≥min{νπ(Tr(αiβi)ui)∣i ∈ I0}
By assumption we have νπ(Tr(αiβi)ui) = νπ(Tr(αiβi)) + νπ(ui) ≥ −νπ(ui) + νπ(ui) = 0
and thus also νπ(Tu(αβ)) ≥ 0.

Conversely let α = (αi)i ∈ K ⊗ Γ, let j ∈ I0 with νπ((αj)kl) < −νπ(uj) and let
β = (βi)i ∈ Γ with βj = Ell ∈ R

mi×mi

i and βi = 0 for i ≠ j. Then

νπ(Tu(αβ)) = νπ(Tr(αβ)uj)
= νπ((αj)kluj)
= νπ((αj)kl) + νπ(uj) < 0

and therefore α /∈ Γ.
Corollary 2.5.6. Assume that u ∈ Z(K ⊗ Γ) such that Λ is self-dual with respect to
Tu. Then the following algebra is a subalgebra of Λ:

⊕
i∈I0

π−νπ(ui)Rmi×mi

i ⊆ Λ.

Proof. By assumption it is Λ ⊆ Γ and therefore Γ♯ ⊆ Λ♯ = Λ.

Lemma 2.5.7. Let e be a primitive idempotent of Λ, ε a central primitive idempotent
of K ⊗Λ and V a simple K ⊗Λ-module with V ε ≠ 0.
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• Then εe is either zero or a primitive idempotent of K ⊗R Λ.

• If f is a primitive idempotent orthogonal to e and both εe and εf are primitive
idempotents then εeK ⊗R Λ ≅ εfK ⊗R Λ ≅ V and we obtain a K-vector space
isomorphism

εeΛf Ð→ EndK⊗Λ(V )
λz→ (x↦ x.λ)

Proof. It is easy to see that εe is an idempotent ofK⊗Λ. From Lemma 2.1.27 it follows
that every simple summand of εK ⊗R eΛ is isomorphic to V . On the other hand we
obtain a decomposition K ⊗R eΛ =⊕k∈I0 K ⊗R εeΛ. Thus, since all the decomposition
numbers of Λ are 0 or 1, εeK ⊗Λ is either 0 or isomorphic to Vk, so εe is either 0 or
primitive. The isomorphism is the one given by Lemma 2.1.9.

Lemma 2.5.8. Let e, f be two primitive orthogonal idempotents of Λ which are diag-
onal in Γ and εi the central primitive idempotent of K ⊗ Λ with εiVi ≠ 0. If both
εie and εif are non-zero then there are j1, j2 ∈ {1, . . . ,mi} with εie = Ej1j1 and
εif = Ej2j2 ∈K

mi×mi

i . Thus we can describe εifK ⊗R Λe as follows.

εifK ⊗R Λe = {(amn)m,n ∈K
mi×mi

i ∣ (m,n) ≠ (j2, j2)⇒ amn = 0}
Proof. From the previous lemma and the assumptions we know that both εie and εif

are primitive diagonal idempotents in in εiK ⊗ Γ, so they have to be of the form Ejj .
The rest follows by applying matrix multiplication.

Definition 2.5.9. Let j, k ∈ Ip and α ∈ ekΛej. From Lemma 2.5.8 we conclude that
εiα has at most one non-zero entry. We call this entry αi and define

Fkj ∶ ekΛej Ð→ ⊕i∈I0 Ri

α z→ (αi)i∈I0 .
The maps above are multiplicative in the following sense.

Lemma 2.5.10. If j, k, l ∈ Ip, α ∈ ekΛej and β ∈ elΛek then

Flk(β)Fkj(α) = Flj(βα)
In particular if l = j we obtain

Fjj(βα) = Fjj(αβ)
Proof. This follows directly by matrix multiplication.

Corollary 2.5.11. Let j1, . . . , jn ∈ Ip, αi ∈ eji+1Λeji and βi ∈ ejiΛeji+1. Then the we
obtain the following equalities:

Fj1j1(β1α1) = Fj2j2(α1β1)
Fj1j1(β1 . . . βn−1αn−1 . . . α1) = Fj1j1(β1α1) . . . Fjn−1jn−1(βn−1αn−1).
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Lemma 2.5.12. Let j ∈ Ip and α ∈ radΛ. Then

Fjj(α) ∈⊕
i∈I0

π ⋅Ri.

In particular if k ∈ Ip, β ∈ ekΛej and γ ∈ ejΛek. Then

Fjj(βγ) ∈⊕
i∈I0

π ⋅Ri

Proof. By Lemma 2.1.13, we know that some power of α lies in π ⋅Λ. Since Fjj((α)n) =(Fjj(α))n this is only possible if Fjj(α) ∈⊕i∈I0 π ⋅Ri.

Remark 2.5.13. For j ∈ Ip the algebra ejΛej is isomorphic to its image under Fjj.
We can even omit every component where dij = 0 since ej is zero in these components
and consider the image of the following homomorphism.

pr ○ Fjj ∶ ejΛej Ð→⊕
i∈cj

Ri (2.2)

Lemma 2.5.14. Let j ∈ Ip such that Ki = K for all i ∈ cj. Consider ejΛej as an
R-subalgebra of R∣cj ∣ as in Remark 2.5.13. Then there is a martix A of the form

A =

⎛⎜⎜⎜⎝

1 1 ⋯ 1
0 πa2 ⋯ ξ2kπ

a2k

⋮ ⋮ ⋱ ⋮
0 0 ⋯ πak

⎞⎟⎟⎟⎠
such that ejΛej is the row space of A. For any such matrix we have

k

∑
i=2

ak = ( k

∑
i=1

−uk)/2.
Proof. We cann assume the row-reduced form since R is a principal ideal domain. The
rest follows from the self-duality of Λ.

Lemma 2.5.15. For every i ∈ I0 such that Di =K the order εiΛ is a graduated order.

Proof. As the decomposition numbers are zero or one and the order Λ is basic, we know
that dim(εiejΛej) ≤ 1 for every i ∈ I0 and j ∈ Ip. Furthermore, if dimR(εiejΛej) =
1 then, as εej ∈ εejΛej is an idempotent, εejΛej = R. Therefore εiΛ ⊆ Kni×ni is
maximal.

Definition 2.5.16. For i ∈ I0 such that Di =K we denote the exponent matrix of εiΛ
by Mi,Λ or, if Λ is clear from the context, by Mi.
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Conjugation

Our strategy to determine the isomorphism type of an R-order will often be to show
that it can be embedded into the Wedderburn decomposition of K ⊗ Λ in a certain
way. Those proofs will often include assumptions we can obtain by base changes in
the matrix algebras Dmi×mi

i . The following lemmas show that certain properties can
be achieved this way.

Lemma 2.5.17. Let A = (aij)ni,j=1 be a matrix in Kn×n. Let

I(l, x) = diag(1, . . . ,1, x,1, . . . ,1)
be the diagonal matrix with ones in all diagonal entries except the l − th where it has
entry x ∈K. Then the matrix B = (bij)ni,j=1 ∶= Ij(x)A(Ij(x))−1 has the following form

• bij = aij if i ≠ l and j ≠ l or (i, j) = (l, l)
• blj = x ⋅ alj if l ≠ j

• bil = x
−1 ⋅ ail if l ≠ i

Proof. This follows from a straightforward calculation.

In words this means that we can by base change manipulate a particular entry of
the matrix while leaving everything but one row and one column unchanged.

Lemma 2.5.18. Let Λ be a finite-dimensional R-order such that K⊗RΛ is semisimple,
assume that the simple Λ-modules are indexed over Ip and the simple K⊗RΛ-modules
are indexed over I0. Assume that Ip is ordered by “<”, let i ∈ I0 and let di = {j1, . . . , jk}
with jh < jh+1 for h < k.

1. Let d′i ∶= di ∖ {j1} and ϕ ∶ d′i → di with ϕ(j) < j for all j. Then there is an
a ∈K ⊗Λ such that for the exponent matrix Mi =Mi,a−1Λa we get

(Mi)jϕ(j) = 0 ∀j ∈ d′i
and all other exponent matrices of a−1Λa are the same as in Λ.

For every j ∈ d′i let αj ∈ eja
−1Λaeϕ(j) with νπ((αj)i) = 0. Then there is a b ∈K⊗Λ

such that

(b−1αjb)i = 1
and the exponent matrices of b−1a−1Λab are the same as those of a−1Λa.

2. Let d′i ∶= di ∖ {jk} and ϕ ∈ d
d′i
i with ϕ(j) < j for all j. Then there is an a ∈K ⊗Λ

such that for Mi =Mi,a−1Λa we get

(Mi)ϕ(j)j = 0 ∀j ∈ d′i
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and all other exponent matrices of a−1Λa are the same as in Λ

For every j ∈ d′i let αj ∈ eϕ(j)a−1Λaej with νπ((αj)i) = 0. Then there is a
b ∈K ⊗Λ such that

((b)−1αjb)i = 1
and the exponent matrices of b−1a−1Λab are the same as those of a−1Λa.

Proof. 1. Define Ng ∈ Z
mi×mi

≥0 and Ag ∈K ⊗Λ inductively for j ∈ d′i such that

N1 =Mi,Λ

g > 1 ∶

εi′Ag = Imi′
∀i′ ∈ I0 ∖ {i}

(εiAg)xy = (Imi
)x,y if (x, y) ≠ (jg, jg)

(εiAg)jgjg = (pNjg−1 )jgϕ(jg)
ag = A2 ⋅ . . . ⋅Ag

Ng =Mi,(ag)−1Λag

Then a ∶= ak fulfils the assumptions above:

First of all we can see that no exponent matrices except that of εiΛ are changed
as a is just the identity in those components.

Further note that by lemma 2.5.17 we see that Ag leaves all entries of the expo-
nent matrix except those in row and column jg invariant. Therefore if we assume
by induction that (Ng−1)jhϕ(jh) = 0 for h < g then the same is true for Ng, as
ϕ(jh) < h < g. From lemma 2.5.17 it also follows that

(Ng)jgϕ(jg) = (Ng−1)jgϕ(jg) − (Ng−1)jgϕ(jg) = 0
With a similar approach we can achieve the second part of 1. We define Bg, Ng

and bg similar to Ag, Ng and ag above only changing

(εiBg)jgjg = b−1g−1(αjg)ibg−1
As (αjg)i is always a unit we can inductively see that b−1g−1(αjg)ibg−1 is a unit
and thus the exponent matrices will never change.

2. In this case we work inductively from k to 1.

Nk =Mi,Λ

g < k ∶

εi′Ag = Imi′
∀i′ ∈ I0 ∖ {i}

(εiAg)xy = (Imi
)x,y if (x, y) ≠ (jg, jg)

(εiAg)jgjg = (pNjg+1 )jgϕ(jg)
ag = Ak−1 ⋅ . . . ⋅Ag

Ng =Mi,(ag)−1Λag
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and Bg, Ng and bg as above. This implies the assertion with the same arguments
as in 1.

Remark 2.5.19. The first part of the lemma above assures that we can choose for
each but the first row of a matrix one entry and manipulate those entries independently
by base change. The second part assures the same thing if we choose one entry in each
column.

2.5.2 Lifting and derived equivalence

The following results due to Eisele [Eis12] show that the uniqueness of lifts can be
translated along a derived equivalence. In this section, we will state the results from
[Eis12].

We let (K,R,F ) denote a p-modular system.

Definition 2.5.20. Let Λ be a finite-dimensional F -algebra. We define the set of lifts
of Λ as follows.

L̂(Λ) ∶= {(Λ, ϕ) ∣ Λ is an R-order and ϕ ∶ F ⊗Λ
∼
Ð→ Λ is an isomorphism}/ ∼

where (Λ, ϕ) ∼ (Λ′, ϕ′) if and only if

1. There is an isomorphism α ∶ ΛÐ→ Λ′ of R-orders

2. There is an automorphism β ∈ AutF (Λ) such that the functor −⊗L
Λ βΛid fixes all

the isomorphism classes of tilting complexes in Kb(proj
Λ
) and

3. ϕ = β ○ β′ ○ (idk ⊗ α).
We define both

L̂s(Λ) ∶= {(Λ, ϕ) ∈ L̂(Λ) ∣K ⊗Λ is semisimple} and
L(Λ) ∶= {[Λ] ∣ Λ lift of Λ},

where [Λ] is the isomorphism class of Λ and

Π ∶ L̂(Λ)Ð→ L(Λ) ∶ (Λ, ϕ)z→ Λ.

Let Λ and Γ be two derived equivalent finite-dimensional F -algebras. For every
two-sided tilting complex X ∈ Db(Λop

⊗F Γ). Eisele defined a map [Eis12, Definition
3.5]

ΦX ∶ L̂(Λ)Ð→ L̂(Γ).
We introduce the abbreviation Φ = Π ○ΦX .

In the following theorem we cite the most important properties of the map ΦX .
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Theorem 2.5.21. Let (Λ, ϕ), (Λ′, ϕ′) ∈ L̂(Λ).
1. For the inverse X−1 of X the map ΦX−1 is the inverse of ΦX . In particular ΦX

is bijective.

2. The map ΦX restricts to a bijection

L̂s(Λ)←→ L̂s(Γ).
3. There is an isomorphism ηΛ ∶ Z(Λ)Ð→ Z(Φ(Λ, ϕ)).
4. Every isomorphism

γ ∶ Z(Λ)Ð→ Z(Λ′)
gives rise to the isomorphism

Φ(γ) = ηΛ′ ○ γ ○ (ηΛ)−1 ∶ Z(Φ(Λ, ϕ))Ð→ Z(Φ(Λ′, ϕ′)).
5. The map K ⊗ ηΛ ∶ Z(K ⊗Λ)Ð→ Z(K ⊗Φ(Λ, ϕ)) is an isomorphism.

6. Every isomorphism

γ ∶ Z(K ⊗Λ)Ð→ Z(K ⊗Λ′)
gives rise to the isomorphism

Φ(γ) = (K ⊗ ηΛ′) ○ γ ○ (K ⊗ ηΛ)−1 ∶ Z(K ⊗Φ(Λ, ϕ))Ð→ Z(K ⊗Φ(Λ′, ϕ′)).
7. If

γ ∶ Z(K ⊗Λ)Ð→ Z(K ⊗Λ′)
is an isomorphism such that DΛ = DΛ′ when identifying the rows via γ up to
permutation of columns, then DΦ(Λ,ϕ) = DΦ(Λ′,ϕ′) when identifying the rows via
Φ(γ) up to permutation of columns.

Proof. Part 1 is proven in [Eis12, Proposition 3.6], the rest follows from [Eis12, The-
orem 3.20].

Remark 2.5.22. From the proof of [Eis12, Theorem 3.20] we obtain an algorithm to
calculate the decomposition matrix of Φ(Λ, ϕ) given the decomposition matrix of Λ. To
do this let T be a one-sided tilting complex with EndK(Λ)(T ) = Γ. Then by Corollary

2.3.30 there is a two-sided tilting complex Y ∈ Db(Γop ⊗F Λ) such that Y restricted to
Λ is isomorphic to T . Let X = Y −1 and let Φ = Π ○ΦX .

Decompose T as

T =⊕
j∈J

Tj
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into indecomposable complexes. We obtain a decomposition corresponds via GT , see

Lemma 2.3.24, to a decomposition of Γ as

[0Ð→ ΓÐ→ 0] =⊕
j∈J

GT (T j).

Denote by Pj the projective indecomposable Γ-module with [0 Ð→ Pj Ð→ 0] = GT (T j).
Let Pj be a projective indecomposable Γ-module with F ⊗ Pj ≅ Pj. The isomorphism
between centers from Part 5 of the preceeding theorem induces a correspondence between
the simple modules of Λ and those of Φ(Λ, ϕ) and thus an isomorphism δ ∶K0(Λ) ∼

Ð→

K0(Φ(Λ, ϕ)). Then we obtain the following equality.

θΓ([Pj]) = δ(θΛ(∑
k

(−1)k[T k
j ])) ∈K0(K ⊗Φ(Λ, ϕ)).

The following theorem shows how self-duality of algebras is translated along the
map ΦX .

Theorem 2.5.23. Let Λ and Γ be two derived equivalent finite-dimensional F -algebras
and X ∈ Db(Λop

⊗F Γ) be a two-sided tilting complex. Let (Λ, ϕ) ∈ L̂(Λ) with A ∶=K⊗Λ
semisimple with simple modules {Vi ∣ i ∈ I}. Then Z(A) ≅⊕i∈I Z(EndA(Vi)). Assume
that Λ is self-dual with respect to Tu for u = (ui)i∈I ∈ Z(A). Let Γ = Φ(Λ, ϕ) and
B ∶= K ⊗ Γ. There is an isomorphism γ ∶ Z(A) Ð→ Z(B). In particular, there is a
bijection between the simple A-modules and the simple B-modules, say {Wi ∣ i ∈ I},
and we can assume that γ restrict to isomorphisms γi ∶ EndA(Vi)Ð→ EndB(Wi).
Then there are signs ξi ∈ {−1,1} for i ∈ I such that Γ is self-dual with respect to Tũ

with ũ = (ξiγi(ui)) and ξi = ξj if Vi and Vj have the same decomposition numbers.

Proof. See [Eis12, Theorem 3.19].
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3 Tame blocks

In this chapter we will investigate blocks of group algebras of semidihedral defect,
that is blocks whose defect group is a semidihedral group over an algebraically closed
field of characteristic 2. Those are a special case of tame algebras, which have been
classified up to Morita-equivalence by Erdmann [Erd90b]. Amongst the tame algebras
Erdmann singled out the ones of semidihedral type. All blocks with a semidihedral
defect group are algebras of semidihedral type and if an algebra of semidihedral type
is a block of a group algebra, then its defect group is a semidihedral group. However,
not all algebras of semidihedral type are Morita equivalent to blocks of group algebras.
Erdmann’s classification contains partial answers to the question which algebras occur
as blocks. This classification uses results by Olsson [Ols75] about character values and
heights of characters of blocks with a semidihedral defect group.

From this discussion two question arise. One is whether we can determine for more
algebras whether they can occur as blocks of group algebras. The second is if the
corresponding blocks over a discrete valuation ring are uniquely determined by the
algebras given in Erdmann’s classification.

Eisele [Eis12] completely answered the second question for tame algebras of dihedral
type which could occur as a block by Erdmann’s classification. He showed that those
blocks have unique lifts, if one assumes certain rational conditions a block of a group
algebra would fulfill. On top of that, he was able to show that for certain algebras no
such lifts exist and thus these algebras cannot be Morita-equivalent to blocks of group
algebras.

He additionally showed that tame algebras of quaternion type with three simple
modules lift uniquely in the same sense as above [Eis16].

We show that the algebras of type SD(2B)01 and SD(2A)02 are not Morita-equivalent
to blocks of group algebras. We further show that the algebras SD(2B)11 and SD(2A)12
have infinitely many lifts if they have one lift.

Additionally, we show that all blocks of semidihedral type with three simple modules
lift uniquely.

3.1 Classification

The following tables give the complete classification of tame algebras with two or three
simple modules that can occur as blocks by Erdmann’s classification [Erd90b]. The
list is taken from [Hol01] with the decomposition matrices added from [Erd90b].

For k = 2n−2 the blocks with the structure given below will have a defect group of
size 2n.
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Algebras of Dihedral Type with Two Simple Modules

Name
Quiver Relations

Cartan matrix
Decomposition

matrix
Examples

Lifting
properties

D(2A)c,
c ∈ {0,1}

0
α

1
β

γ

γβ = 0, α2 = c(αβγ)k,(αβγ)k = (βγα)k

(4k 2k
2k k + 1

)
⎛⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
2 1

⎞⎟⎟⎟⎟⎟⎟⎠∗

B0(H),
L2(q) <H,

q ≡ 1 mod 4

c = 0:
unique lift

c = 1:
no lift [Eis12]

D(2B)c,
c ∈ {0,1}

0
α

1
η

β

γ

βη = ηγ = γβ = 0,

α2 = c(αβγ), γαβ = ηk
αβγ = βγα

(4 2
2 k + 1

)
⎛⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎠∗

B0(H),
L2(q) <H,

q ≡ 3 mod 4

c = 0:
unique lift

c = 1:
no lift [Eis12]
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Algebras of Dihedral Type with Three Simple Modules

Name
Quiver Relations

Cartan matrix
Decomposition

matrix
Examples

Lifting
properties

D(3A)
1 0

β

γ

2
δ

η

βγ = ηδ = 0(γβδη)k = (δηγβ)k

⎛⎜⎝
4k 2k 2k
2k k + 1 k

2k k k + 1

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 0 1
1 1 1
2 1 1

⎞⎟⎟⎟⎟⎟⎟⎠∗
B0(PSL(q)),
q ≡ 1 mod 4

unique [Eis12]

D(3B)1
1

α
0

β

γ

2
δ

η

αβ = γα = βγ = ηδ = 0

αk = βδηγ, γβδη = δηγβ

⎛⎜⎝
4 2 2
2 k + 1 1
2 1 2

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 0 1
1 1 1
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠∗

n = 3 ∶ B0(A7),
no blocks
for n > 3

unique [Eis12]

D(3K)

0 1
β

γ

2

δ
ηκ

λ

βδ = δλ = λβ = γκ = 0

κη = ηγ = 0, (βγ)k = κλ
λκ = ηδ, δη = (γβ)k

⎛⎜⎝
k + 1 k 1
k k + 1 1
1 1 2

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 1 0
1 0 0
1 1 1
1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠∗
B0(PSL2(q))
q ≡ 3 mod 4

unique [Eis12]
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Algebras of Semidihedral Type with Two Simple Modules

Name
Quiver Relations

Cartan matrix
Decomposition

matrix
Examples

Lifting
properties

SD(2A)c1,
c ∈ {0,1}

0
α

1
β

γ

α2 = c(αβγ)k
βγβ = (αβγ)k−1αβ
γβγ = (γαβ)k−1γα(αβγ)kα = 0

(4k 2k
2k k + 2

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
0 1
2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

B1(U3(q)),
q ≡ 1 mod 4

?

SD(2B)c2,
c ∈ {0,1}

0
α

1
η

β

γ

βη = αβγαβ, ηγ = γαβγα,

γβ = ηk−1, α2 = c(αβγ)2
βη2 = η2γ = 0

(8 4
4 k + 2

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
2 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

B1(PSL3(q))
q ≡ 3 mod 4

?

SD(2A)c2,
c ∈ {0,1}

0
α

1
β

γ

γβ = 0, (αβγ)k = (βγα)k
α2 = (βγα)k−1βγ + c(αβγ)k

(4k 2k
2k k + 1

)
⎛⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
2 1

⎞⎟⎟⎟⎟⎟⎟⎠∗
B0(PSL2(q)∗),

q = r2 odd

c = 0:
no lift

c = 1:
not unique,
Thm 3.2.14

SD(2B)c1,
c ∈ {0,1}

0
α

1
η

β

γ

γβ = ηγ = βη = 0,
α2 = βγ + c(αβγ)

ηk = γαβ,αβγ = βγα

(4 2
2 k + 1

)
⎛⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎠∗

B1(3 ⋅M10)
no blocks for

n > 4

c = 0:
no lift

c = 1:
not unique,
Thm 3.2.14
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Algebras of Semidihedral Type with Three Simple Modules I

Name
Quiver Relations

Cartan matrix
Decomposition

matrix
Examples

Lifting
properties

SD(3A)1
1 0

β

γ

2
δ

η

βγ = 0, δηδ = (γβδη)k−1γβδ
ηδη = (ηγβδ)k−1ηγβ

⎛⎜⎝
4k 2k 2k
2k k + 1 k

2k k k + 2

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 0 1
1 1 1
0 0 1
2 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

B0(U3(q)),
q ≡ 1 mod 4

unique, see
Thm 3.2.21

SD(3B)1
1

α
0

β

γ

2
δ

η

αβ = γα = βγ = 0

αk = βδηγ, ηδη = ηγβ

δηδ = γβδ

⎛⎜⎝
4 2 2
2 k + 1 1
2 1 3

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 0 1
1 1 1
0 0 1
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

n = 4 ∶ B0(M11)
n > 4?

unique, see
Thm 3.2.21

SD(3B)2
1

α
0

β

γ

2
δ

η

ηδ = 0, γα = δηγβδηγ

βγ = αk−1, αβ = βδηγβδη

⎛⎜⎝
8 4 4
4 k + 2 2
4 2 3

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1
1 1 1
1 1 0
1 0 0
2 1 1
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗
?

unique, see
Thm 3.2.21
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Algebras of Semidihedral Type with Three Simple Modules II

Name
Quiver Relations

Cartan matrix
Decomposition

matrix
Examples

Lifting
properties

SD(3C)a,b{a, b} ={2,2n−2}

1 0

ρ

β

γ

2
δ

η

βρ = ρδ = ηρ = ργ = 0

γβ = δη, (γβ)a = ρb(βγ)a−1βδ = 0, (ηδ)a−1ηγ = 0

⎛⎜⎝
a + b a a

a a + 1 a − 1
a a − 1 a + 1

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
0 1 0
1 0 1
0 0 1
1 1 1
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗
and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
1 1 0
0 0 1
1 0 1
1 0 0
1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

?
unique, see
Thm 3.2.21

SD(3D)
1

α
0

β

γ

2

ξ
δ

η

δξ = ξη = ηδ = 0

βγ = αk−1, γα = δηγ

αβ = βδη, ξ2 = ηγβδ

⎛⎜⎝
4 2 2
2 k + 1 1
2 1 3

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 0 1
1 1 1
0 0 1
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

B0(PSL3(q)),
q ≡ 3 mod 4

unique, see
Thm 3.2.21

SD(3H)

0 1
β

γ

2

δ
η

λ

δλ = γβγ, λβ = (ηδ)k−1η
βδη = γβδ = ηγ = 0

⎛⎜⎝
3 2 1
2 k + 2 k

1 k k + 1

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 1 0
1 0 0
1 1 1
1 1 0
0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗
?

unique, see
Thm 3.2.21
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Algebras of Quaternion Type with Two Simple Modules

Name
Quiver Relations

Cartan matrix
Decomposition

matrix
Examples

Lifting
properties

Q(2A)c,
c ∈K

0
α

1
β

γ

γβγ = (γαβ)k−1γα,
βγβ = (αβγ)k−1αβ,

α2 = (βγα)k−1βγ + c(βγα)k,
α2β = 0

(4k 2k
2k k + 2

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
0 1
2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

B0(G), SL2(q) < G
q ≡ 1 mod 4

?

Q(2B)c,a1 ,

a ∈K∗,

c ∈K

0
α

1
η

β

γ

γβ = ηk−1, βη = αβγαβ,
ηγ = γαβγα,α2β = γα2 = 0

α2 = (αβγ)2 + c(βγα)

(8 4
4 k + 2

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
2 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

B0(G), SL2(q) < G
q ≡ 3 mod 4

?
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Algebras of Quaternion Type with Three Simple Modules I

Name
Quiver Relations

Cartan matrix
Decomposition

matrix
Examples

Lifting
properties

Q(3A)2
1 0

β

γ

2
δ

η

βγβ = (βδηγ)k−1βδη,
γβγ = (δηγβ)k−1δηγ
ηδη = (ηγβδ)k−1ηγβ
δηδ = (γβδη)k−1γβδ
βγβδ = ηδηγ = 0

⎛⎜⎝
4k 2k 2k
2k k + 2 k

2k k k + 2

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 0 1
1 1 1
0 1 0
0 0 1
2 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

B0(SL2(q)),
q ≡ 1 mod 4

unique [Eis16]

Q(3B)
1

α
0

β

γ

2
δ

η

αβ = βδη, γα = δηγ

ηδη = ηγβ, δηδ = γβδ

βγ = αk−1, α2β = βδηδ = 0

⎛⎜⎝
8 4 4
4 k + 2 2
4 2 4

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 0 1
1 1 1
2 1 1
0 0 1
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

n = 4 ∶ B0(2A7),
n > 4?

unique [Eis16]

Q(3K)

0 1
β

γ

2

δ
ηκ

λ

βδ = (κλ)k−1κ, ηγ = (λκ)k−1λ
δλ = γβγ, κη = βγβ

λβ = ηδη, γκ = δηδ

γβδ = δηγ = λκη = 0

⎛⎜⎝
k + 2 k 2
k k + 2 2
2 2 4

⎞⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 1 0
1 0 0
1 1 1
0 1 1
1 0 1
1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠∗

B0(SL2(q)),
q ≡ 1 mod 4

unique [Eis16]
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3.2 Blocks of semidihedral type

Our goal in this section is to determine the basic algebra of a block of a group algebra
with semidihedral defect group over a discrete valuation ring using the classification
of the blocks over a splitting field of positive characteristic and additional information
about the decomposition matrix, character fields and character heights.

3.2.1 General properties

Let K be the 2-adic completion of the maximal unramified extension of Q2. Let(K,R,F ) be the corresponding 2-modular system. Then F is algebraically closed, see
for example [Neu92, p.162].

Let G be a finite group and let Λ be a block of RG with semidihedral defect group
SD2n for some n ≥ 3. Define A ∶= K ⊗ Λ and Λ ∶= F ⊗ Λ. First we recall some basic
results from number theory.

Lemma 3.2.1. 1. Let ζi be a primitive 2i-th root of unity in K and let Ki ∶=
K(ζi + ζ−1i ) and K ′i ∶= K(ζi − ζ−1i ). Then the Galois groups of both Ki and K ′i
over K are cyclic. The unique subfield of index 2 in both Ki and K ′i is Ki−1.
Thus, the subfields of K ′i form a chain K =K2 ⊂K3 ⊂ ⋯ ⊂Ki−1 ⊂K

′
i. We denote

by Ri and R′i the integral closure of R in Ki and K ′i, respectively.

2. The field extensions K ′i/K and Ki/K are totally ramified and the 2-valuations
of their discriminants are equal to (i − 1) ⋅ 2i−2 − 1.

Lemma 3.2.2. For any finite group H all the division algebras occurring in the Wed-
derburn decomposition of KH are commutative. This implies that for any irreducible
KH-module V and any completely irreducible constituent χ of its character

EndKH(V ) = Z(EndKH(V )) ≅K(χ)
Proof. See [Eis12, Lemma 4.1 (iii)].

Lemma 3.2.3. Let L/K be a splitting field for A.

1. Then L ⊗ A has 2n−2 + 3 or 2n−2 + 4 simple modules. Of those 2n−2 − 1 are of
height 1, 4 of height 0 and the remaining simple module, if it exists, has height
n − 2.

2. All character values of irreducible characters of L⊗A lie in K ′n−1. The characters
of height 0 and n − 2 take values in K.

The characters whose values do not lie in K are distributed into n − 3 families
F1, . . . , Fn−3, where each family is an orbit under the Galois group with ∣Fi∣ = 2i,
where i ∈ {1 . . . n − 3}. Thus, using Lemma 3.2.1 and Galois theory, we can
see that the character field of characters in Fi is Ki+2 for i < n − 3 and for the
characters in Fn−3 it is K ′n−1.
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Note that ∑n−3
i=1 2i = 2n−2 − 2 and thus we have exactly one character of height 1

with values in K =K2. We will define the family F0 to be the set containing only
this character.

3. Some multiple of the sum over the characters in one family Fj for j ∈ {0, . . . , n−3}
is a character of A.

Proof. The first part follows from [Ols75, Theorem 3.13–3.16], the second part from
[Ols75, Proposition 4.1, 4.2, 4.5] and the third part from the second part together with
Lemma 2.2.12.

Lemma 3.2.4. Let

Γ ⊆ R⊕R⊕
n−4

⊕
r=0

Rr+2 ⊕R′n−1

be a local R-order such that F ⊗ Γ is generated by a single nilpotent element η. Fur-
thermore, assume that Γ is self-dual with respect to Tu, where u = (u1, . . . , un) ∈
K ⊕ K ⊕⊕n−4

r=0 Kr+2 ⊕ K ′n−1 with ν2(u1) = ν2(u2) = −n and ν2(ui) = −n + 1 for all
i > 2. Then for some x ∈ F ∗ there exists a preimage η̂ of x ⋅ η under the residue map
Γ↦ F ⊗ Γ in Γ of the form

(0,4, π0, . . . , πn−3),
where the πr are prime elements in the ring Rr+2 for 0 ≤ r < n − 3 and in R′n−1 for
r = n − 3.

Proof. See [Eis12, Lemma 4.7].

3.2.2 Blocks with two simple modules

Let n ≥ 4 be fixed and for c ∈ {0,1} let Λc be a basic algebra of type SD(2B)c1 given
by the quiver

0
α

1
η

β

γ

with relations as follows.

γβ = 0 = ηγ = βη, α2 = βγ + c ⋅ (βγα), η2
n−2

= γαβ, αβγ = βγα

We will assume the following rational structure on the lifts:

Z(A) u P0 P1

K u1 1 0
K u1 1 0
K u2 1 1
K u2 1 1

Kr+2 u3 0 1 for r ∈ {0, . . . , n − 4}
K ′n−1 u3 0 1

(3.1)

where u1, u2, u3 ∈K with ν2(u1) = ν2(u2) = −n and ν2(u3) = −n + 1.
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Remark 3.2.5. If a lift is a block of a group algebra it will fulfill the rational conditions
(3.1) by the classification of tame algebras and Lemma 3.2.3.

Definition 3.2.6. For ξ ∈ R∗, πi ∈ Ki+2 prime for i ∈ {0, . . . , n − 4} and πn−3 ∈ K
′
i−1

prime we define Λξ(π0, . . . , πn−3) to be the subalgebra of

R⊕R⊕R2×2 ⊕R2×2 ⊕
n−4

⊕
d=0

Rd+2 ⊕R′n−1

generated by the elements

e0 = (1,1,(1 0
0 0
) ,(1 0

0 0
) ,0, . . . ,0)

e1 = (0,0,(0 0
0 1
) ,(0 0

0 1
) ,1, . . . ,1)

η̃ = (0,0,(0 0
0 0
) ,(0 0

0 4
) , π0, . . . , πn−3)

α̃ = (0,2,( 2n−2ξ 0
0 0

) ,( 2 − 2n−2ξ 0
0 0

) ,0, . . . ,0)
β̃ = (0,0,( 0 1

0 0
) ,( 0 1

0 0
) ,0, . . . ,0)

γ̃ = (0,0,( 0 0
2n−1 0

) ,( 0 0
−2n−1 0

) ,0, . . . ,0).
Theorem 3.2.7. Let Λ be a lift of Λc satisfying the rational conditions (3.1). Then
there are ξ ∈ R∗, πi ∈Ki+2 prime for i ∈ {0, . . . , n− 4} and πn−3 ∈K

′
i−1 prime such that

Λ ≅ Λξ(π0, . . . , πn−3). Furthermore α̃ is a lift of α, β̃ is a lift of β, ξγ̃ is a lift of γ
and there is some unit µ ∈ R∗ such that µη̃ is a lift of η. The existence of such a lift
implies that c = 1.

Proof. By Lemma 2.1.32 we find an embedding

Λ ⊆ Γ ∶= R⊕R⊕R2×2 ⊕R2×2 ⊕
n−4

⊕
d=0

Rd+2 ⊕R′n−1

where the primitive idempotents are mapped to

e0 = (1,1,(1 0
0 0
) ,(1 0

0 0
) ,0, . . . ,0) and

e1 = (0,0,(0 0
0 1
) ,(0 0

0 1
) ,1, . . . ,1).

We want to apply Lemma 3.2.4 to determine a lift of η. Therefore we show that
F ⊗ e1Λe1 is generated by η. Indeed we have

γβ = 0, γαβ = η2
n−2

, γαlβ = γαl−2(βγ + c ⋅ (αβγ))β = 0, ∀l ≥ 2.
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Then Lemma 3.2.4 implies that e1Λe1 is generated by an element η̂ of the form

η̂ = (0,4, π0, . . . , πn−3)
which is a lift of a scalar multiple of η and where πr is prime in Rr+2 for r ∈ {0, . . . , n−4}
and πn−3 is prime in R′n−1.

Considering e0Λe0 let us first observe some properties of the elements of F ⊗ e0Λe0.
If s > 0 is some natural number then βηsγ = 0. Thus we see that F ⊗e0Λe0 is generated
by α and βγ as an algebra. Furthermore, using the defining relations as follows, one
can see that F ⊗ e0Λe0 is generated by e0, α, βγ and αβγ as a vector space:

α2 = βγ + c ⋅ (αγβ), α2βγ = (βγ)2 + c ⋅ (α(γβ)2) = 0,
βγα = αγβ, (βγ)2 = 0, βγαβγ = βγβγα = 0,

αβγα = α2βγ = 0, α(βγ)2 = 0, (αβγ)2 = α(βγ)2α = 0.
Since, by the Cartan matrix C =DDT , the dimension of F ⊗e0Λe0 is 4, these elements
form a basis.

By Nakayama’s Lemma lifts of these elements also form a basis of e0Λe0. Since
2e0 = (2,2,2,2) ∈ 2e0Λe0 and by Lemma 2.5.12 there are a ∈ Z>0 and x, y ∈ R such that
for α̂ = (0,2a, x, y) there is a unit ρ ∈ R∗ such that ρα̂ is a lift of α. There are lifts β̂
and γ̂ of β and γ such that there are b ∈ Z>0, ζ ∈ R

∗ and z ∈ R with β̂γ̂ = (0,0, ζ2b, z).
Then

α̂β̂γ̂ − xβ̂γ̂ ∈ ⟨(0,0,0,2d)⟩R
for some d ≥ 0 and since ν2(u2) = n we know that d = n. We define z′ = ζ−1z. Then,
since x ∈ 2R, e0Λe0 is the row space of

⎛⎜⎜⎜⎝

1 1 1 1
0 2a x y

0 0 2b z′

0 0 0 2n

⎞⎟⎟⎟⎠
.

Since γβ = 0, the following product lies in 2e1Λe1.

γ̂β̂η̂ = (0, ζ ⋅ 22+b,0, . . . ,0) ∈ 2 ⋅ e1Λe1.
Since ν2(u2) = n it follows that 2+b ≥ n+1 and thus b ≥ n−1. Since, by Lemma 2.5.14,
we have a + b + n = 4n

2
and since a ≥ 1, we know that b = n − 1 and therefore a = 1. We

use the fact that Λ is self-dual to obtain some information on our open parameters:

Tu(e0, e0) = 2 ⋅ u1 + 2 ⋅ u2 = u1 ⋅ (2 + 2 ⋅ u2
u1
) ∈ R⇒ 2n∣2 + 2 ⋅ u2

u1

⇒
u1

u2
≡ −1 mod 2n−1

Tu(e0, α̂) = 2 ⋅ u1 + (x + y) ⋅ u2 = u1 ⋅ (2 + (x + y) ⋅ u2
u1
) ∈ R⇒ x + y ≡ −2 ⋅

u1

u2
mod 2n

⇒ y ≡ 2 − xmod 2n.
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Since γβ = 0 we obtain the following result for β̂γ̂:

Tu(e1, 1
2
γ̂β̂) = u2 ⋅ (2n−2ζ + z) ∈ R⇒ z ≡ −2n−2ζ mod 2n

⇒ z ≡ −2n−1ζ mod 2n+1

⇒ β̂γ̂ ≡ (0,0,2n−1ζ,−2n−1ζ)mod 2Λ.

Next we use the fact that e0Λe0 is multiplicatively closed to obtain more information on
the parameter x. Since (0,0,0,2n+1) ∈ 2Λ we can ignore the difference y−(2−x) ∈ 2nR
in the following calculation:

α̂2 − 2α̂ ≡ (0,0, x2 − 2x,x2 − 2x)mod 2Λ⇒ 2n−1 ∣ x2 − 2x

⇒ 2n−2 ∣ x or 2n−2 ∣ x − 2.

If 2n−2 ∣ x− 2 then 2n−2 ∣ y ≡ 2−xmod 2n. Therefore we can get from the second case
to the first by interchanging the third and fourth Wedderburn components of Λ. We
can do this without changing the form of any of the elements we already determined
modulo 2Λ:

η̂ = (0,4, π0, . . . , πn−3) ≡ (4,0,4 − π0, . . . ,4 − πn−3)mod 2Λ

and if πi is prime then so is 4−πi. When interchanging the third and fourthWedderburn
components β̂γ̂ gets multiplied by −1 . Therefore we can assume that 2n−2 ∣ x and let
ξ ∈ R with x = 2n−2ξ. We conclude that e0Λe0 is the row space of the following matrix

⎛⎜⎜⎜⎝

1 1 1 1
0 2 2n−2ξ 2 − 2n−2ξ
0 0 2n−1 −2n−1

0 0 0 2n

⎞⎟⎟⎟⎠
Next consider the remaining relations. Recall that α̂ was defined such that ρα̂ is a lift
of α. Therefore we obtain the following relations:

(0,0,0,−c ⋅ 2nρζ) ≡ c ⋅ ρα̂β̂γ̂
≡ ρ2α̂2 − β̂γ̂

≡ ρ2α̂2 − 2ρ2α̂ − β̂γ̂

≡ (0,0,−2n−1ξρ2 + 22n−4ξ2 − 2n−1ζ,−2n−1ξρ2 + 22n−4ξ2 + 2n−1ζ)
≡ (0,0,−2n−1ξρ2 − 2n−1ζ,−2n−1ξρ2 + 2n−1ζ)mod 2Λ

First of all this implies that 2 ∣ ξρ2 + ζ, so in particular ξ ∈ R∗ and we obtain

β̂γ̂ ≡ (0,0,2n−1ξρ2,−2n−1ξρ2)mod 2Λ and

ρ2α̂2 − β̂γ̂ ≡ (0,0,0,2nξρ2) ≡ (0,0,0,−c ⋅ 2nρξρ2)mod 2Λ.
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This implies that 2 ∣ cρ3ξ+ξρ2. Since ξ and ρ are units, we see that c ≠ 0. Then, since
c = 1, we know that 2 ∣ ρ2ξ(ρ + 1), so ρ ≡ −1 ≡ 1 mod 2. It follows that

ρα̂ ≡ α̂ mod 2Λ and

β̂γ̂ ≡ (0,0,2n−1ξ,−2n−1ξ)mod 2Λ

Now α̂, β̂, γ̂ and η̂ are lifts of scalar multiples of α,β, γ and η respectively and thus
by Nakayama’s Lemma form together with e0 and e1 a generating system for Λ. We
know that there is a factor ϑ ∈ R∗ such that

α̂ + ϑα̂β̂γ̂ ≡ (0,2,2n−2ξ,2 − 2n−2ξ)mod 2Λ

so in particular α̂ ≡ α̃ mod rad2(Λ). Furthermore α̂ fulfills the same relations as α̃

modulo 2Λ and we can therefore assume that α̃ is a lift of α. By Lemma 2.5.18 there
is an element d ∈K ⊗ Γ such that

β̂d = β̃ = (0,0,( 0 1
0 0

) ,( 0 1
0 0

) ,0, . . . ,0)
γ̂d = (0,0,( 0 0

2n−1ξ 0
) ,( 0 0

−2n−1ξ 0
) ,0, . . . ,0)

Thus we know that {e0, e1, α̃, β̃, γ̃, η̃} is a generating system for Λd and Λ is isomorphic
to Λξ(π0, . . . , πn−3).

Theorem 3.2.8. Let πi ∈ Ki+2 prime for i ∈ {0, . . . , n − 4}, πn−3 ∈ K
′
i−1 prime and

ξ, ξ′ ∈ R∗. If Λξ ∶= Λξ(π0, . . . , πn−3) is a lift of Λ1 fulfilling the rational conditions (3.1)
then so is Λξ′ ∶= Λξ′(π0, . . . , πn−3).
Proof. We denote the generators of Λξ′ by e′0, e

′
1, α̃

′, β̃′, γ̃′ and η̃′ to distinguish them
from the generators of Λξ. It is clear that Λξ′ fulfills the rational conditions (3.1). It
remains to show that Λξ′ is a lift of Λ1.

First note that since η̃ generates e1Λξe1 and η̃′ = η̃ generates e1Λξ′e1 we know that
e1Λξe1 = e

′
1Λξ′e

′
1. Let µ ∈ R

∗ such that µη̃ is a lift of η. Then

α̃β̃ξγ̃ ≡ (0,0,0,2nξ) ≡ µ2n−2η2
n−2

mod 2e1Λe1.

Since F is algebraically closed, there exists a µ′ ∈ R∗ such that µ′2
n−2

µ2n−2
≡

ξ′

ξ
mod 2 and

thus

(µ′η̂′)2n−2 ≡ (0,0,0,2nξ′)
≡ α̃′β̃′ξ′γ̃′ mod 2Λ.

Then it is easy to check that α′ ∶= F ⊗ α̃′, β′ ∶= F ⊗ β̃′, γ′ ∶= ξ′ ∶= F ⊗ γ̃′ and η′ ∶= µ′η̃
fulfill the defining relations of Λ1.
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Next we want to show that the different parameters in the previous theorem yield
non-isomorphic algebras. We do this by applying the following lemma.

Lemma 3.2.9. Let Λ,Λ′ be two R-orders with decomposition numbers 0 and 1. Let
ϕ ∶ Λ Ð→ Λ′ be an R-algebra isomorphism and Φ ∶ K ⊗R Λ Ð→ K ⊗R Λ′ be the
induced K-algebra isomorphism. Let further e be a primitive idempotent of Λ such
that Z(εK ⊗ Λ) = K for all centrally primitive idempotents ε of K ⊗R Λ with εe ≠ 0.
Then Φ ↾εK⊗ReΛe is uniquely determined by the images of ε and e.

Proof. Since the decomposition numbers are 1 or 0, we know that εaeΛe ∈ {0,Rεae}.

Theorem 3.2.10. Let πi ∈ Ki+2 prime for i ∈ {0, . . . , n − 4}, πn−3 ∈ K ′i−1 prime and
ξ, ξ′ ∈ R∗. Then

Λξ ∶= Λξ(π0, . . . , πn−3) ≅ Λξ′ ∶= Λξ′(π0, . . . , πn−3)
⇔ ξ ≡ ξ′ mod 2.

Proof. Let ϕ ∶ Λξ Ð→ Λξ′ be an isomorphism with induced isomorphism

Φ ∶K ⊗R Λξ Ð→K ⊗R Λξ′ .

Denote the primitive central idempotents of K⊗Λξ by ε1, . . . , εn+2 and those of K⊗Λξ′

by ε′1, . . . , ε
′
n+2. We further denote the primitve idempotents of Λξ′ by e′0, e

′
1. Then we

know that Φ({ε1, . . . ε4}) ⊆ {ε′1, . . . , ε′4} since ϕ(e0) = e′0, e0εi ≠ 0⇔ i ∈ {1, . . . ,4} and
e′0ε
′
i ≠ 0⇔ i ∈ {1, . . . ,4}. We can further see from the definition of the generators that

for i ∈ {1, . . . ,4} we have

εie0Λe0 − εje0Λe0 ⊆ 2n−2Γ⇔ (i, j) ∈ {(1,3), (2,4)}
and the same holds for ε′i, e

′
0. Since e1εi ≠ 0 if and only if i ≥ 3 and e′1ε

′
i ≠ 0 if and

only if i ≥ 3 this implies that Φ(εi) = ε′i for i ∈ {1, . . . ,4}. With Lemma 3.2.9 we see
that, using the notation from Remark 2.5.13, for all γ ∈ e0Λe0 we have γi = φ(γ)i for
all i ∈ {1, . . . ,4}. Therefore the row space of

⎛⎜⎜⎜⎝

1 1 1 1
0 2 2n−2ξ 2 − 2n−2ξ
0 0 2n−1 −2n−1

0 0 0 2n

⎞⎟⎟⎟⎠
is the same subspace of R4 as the row space of

⎛⎜⎜⎜⎝

1 1 1 1
0 2 2n−2ξ′ 2 − 2n−2ξ′

0 0 2n−1 −2n−1

0 0 0 2n

⎞⎟⎟⎟⎠
,
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so in particular

(0,0,2n−2(ξ − ξ′),−2n−2(ξ − ξ′)) ∈ ⟨(0,0,2n−1,−2n−1), (0,0,0,2n)⟩R
This is only the case if ξ ≡ ξ′ mod 2. In that case the algebras Λξ and Λξ′ are the same
subalgebra of Γ and thus of course isomorphic.

Theorem 3.2.11. Let B be a block with basic algebra Λ such that F ⊗Λ ≅ SD(2B)c1.
Then c = 1 and F ⊗Λ has infinitely many non-isomorphic Λ-lifts.

Proof. The rational conditions (3.1) were chosen in such a way that Λ-lifts are exactly
the ones fulfilling them. Thus, this theorem summarises Theorems 3.2.8, 3.2.10 and
3.2.7.

Lemma 3.2.12. There is a tilting complex T of SD(2A)c2 of the form

[0Ð→ P1 ⊕ P1 Ð→ P0 Ð→ 0]⊕ [0Ð→ P1 Ð→ 0]
such that End(Q) ≅ (SD(2B)c1)op.
Proof. See [Hol01, Proposition 1.3.2].

Lemma 3.2.13. Let T be the tilting complex in Lemma 3.2.12 and X be a two-sided
tilting complex whose inverse restricts to T . Then ΦX sends a lift satisfying the rational
conditions (3.1) to a lift satisfying the rational conditions

Z(A) u P0 P1

K u1 1 0
K u1 1 0
K u2 1 1
K u2 1 1

Kr+2 u3 2 1 for r ∈ {0, . . . , n − 4}
K ′n−1 u3 2 1

. (3.2)

Proof. This follows from Theorem 2.5.21, Remark 2.5.22 and the transfer of the self-
duality by Theorem 2.5.23.

Theorem 3.2.14. Let B be a block with basic algebra Λ such that F ⊗Λ ≅ SD(2A)c2.
Then c = 1 and F ⊗Λ has infinitely many non-isomorphic Λ-lifts.

Proof. With the previous lemma this follows directly from Theorem 3.2.11.

Remark 3.2.15. The centers of the algebras Λξ(π0, . . . , πn−3) and Λξ′(π0, . . . , πn−3)
coincide and it is therefore not possible to identify the algebra isomorphic to a given
block by its center.
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3.2.3 Blocks with three simple modules

Let n ≥ 3 be fixed and let Λ be a basic algebra of type SD(3B)1 given by the quiver

1
α

0
β

γ

2
δ

η

with the following relations:

αβ = γδ = βγ = 0, α2n−2 = βδηγ, ηδη = ηγβ, δηδ = γβδ.

We will only consider lifts fulfilling the following rational conditions.

Z(A) u P0 P1 P2

K u1 1 0 0
K u2 1 1 0
K u3 1 0 1
K u4 1 1 1
K u5 0 0 1

Kr+2 vr 0 1 0 for r ∈ {1, . . . , n − 4}
K ′n−1 vn−3 0 1 0

(3.3)

where u1, . . . , u5, vr ∈ Q, ν2(ui) = −n for i ∈ {1, . . . ,4}, ν2(u5) = 2 and ν2(vr) = −n + 1
for r ∈ {1, . . . , n − 3}.

Theorem 3.2.16. Let Λ be a lift of Λ satisfying the rational conditions (3.3). Then
Λ is isomorphic to the subalgebra of

Γ ∶= R⊕R2×2 ⊕R2×2 ⊕R3×3 ⊕R⊕
n−4

⊕
d=0

Rd+2 ⊕R′n−1
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generated by the elements

e0 = (1,(1 0
0 0
) ,(1 0

0 0
) ,⎛⎜⎝

1 0 0
0 0 0
0 0 0

⎞⎟⎠ ,0,0, . . . ,0),

e1 = (0,(0 0
0 1
) ,0,⎛⎜⎝

0 0 0
0 1 0
0 0 0

⎞⎟⎠ ,0,1, . . . ,1),

e2 = (0,0,(0 0
0 1
) ,⎛⎜⎝

0 0 0
0 0 0
0 0 1

⎞⎟⎠ ,1,0, . . . ,0),

η̃ = (0,0,( 0 0
2 0

) ,⎛⎜⎝
0 0 0
0 0 0

2n−1 + 2 0 0

⎞⎟⎠ ,0,0, . . . ,0),

δ̃ = (0,0,( 0 1
0 0

) ,⎛⎜⎝
0 0 1
0 0 0
0 0 0

⎞⎟⎠ ,0,0, . . . ,0),

γ̃ = (0,( 0 2n−1

0 0
) ,0,⎛⎜⎝

0 2n−1 0
0 0 0
0 0 0

⎞⎟⎠ ,0,0, . . . ,0),

β̃ = (0,( 0 0
1 0

) ,0,⎛⎜⎝
0 0 0
1 0 0
0 0 0

⎞⎟⎠ ,0,0, . . . ,0),
where πi is prime in Ki+2 for i ∈ {0, . . . , n − 4}, πn−3 is prime in Kn−1, α̃ ∈ e1 Z(Λ)e1
and α̃ generates e1Λe1.

Proof. By Lemma 2.1.32 we find an embedding Λ ⊆ Γ where the primitive idempotents
are embedded as

e0 = (1,(1 0
0 0
) ,(1 0

0 0
) ,⎛⎜⎝

1 0 0
0 0 0
0 0 0

⎞⎟⎠ ,0,0, . . . ,0),

e1 = (0,(0 0
0 1
) ,0,⎛⎜⎝

0 0 0
0 1 0
0 0 0

⎞⎟⎠ ,0,1, . . . ,1) and

e2 = (0,0,(0 0
0 1
) ,⎛⎜⎝

0 0 0
0 0 0
0 0 1

⎞⎟⎠ ,1,0, . . . ,0).

First we consider e1Λe1. Since βγ = 0 and βδηγ = α2n−2 we can see that α generates
F ⊗ e1Λe1. Thus the assumptions of Lemma 3.2.4 are fulfilled and there exists a lift α̂
of a scalar multiple of α in e1Λe1 of the form (0,4, π0, . . . , πn−3), where πr is prime in
Rr+2 for i ∈ {0, . . . , n − 4} and πn−1 is prime in R′n−1.
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Let e2Λe2 be the row space of

A =
⎛⎜⎝

1 1 1

2a 2bξ 0

0 2d 0

⎞⎟⎠
with ξ ∈ R∗ and such that (2a,2bξ,0) = η̂δ̂ where η̂ and δ̂ are lifts of scalar multiples
of η and δ. We have d = n since ν(u4) = −n. Furthermore a + n = 1

2
(n + n + 2) = n + 1

holds and thus a = 1. By the self-duality of Λ we obtain

Tu(e2, η̂δ̂) = u3 ⋅ 2 + u4 ⋅ 2bξ ∈ R⇒ 2n ∣ 2 +
u4

u3
⋅ 2bξ

We can further deduce that b = 1, as otherwise ν2(2 + u4

u3
⋅ 2bξ) ≤ 1 < n. This implies

−2 ≡ u4

u3
⋅ 2ξ mod 2n and thus e2Λe2 is the row space of the matrix

Ã =
⎛⎜⎝

1 1 1
2 −2u3

u4
0

0 2n 0

⎞⎟⎠ .

Note that

(η̂δ̂)2 − 2η̂δ̂ = (0,4(u23
u24
+
u3

u4
),0) ∈ e2Λe2

and therefore u3

u4
≡ −1 mod 2n−2. We define ũi =

ui

2n
for i ∈ {1, . . . ,4}. Then we know

that

Tu(e2, e2) = u3 + u4 + u5 = 1

2n
(ũ3 + ũ4) + 1

4
ũ5 ∈ R

so ν2(ũ3 + ũ4) = n − 2.
Since u3 and u4 are rational numbers, we know that either u3

u4
≡ −1 mod 2n−1 or u3

u4
≡

−2n−2 −1 mod 2n−1. The case u3

u4
≡ −1 mod 2n−1 is impossible since ν2(ũ3 + ũ4) = n−2

and thus 2n−1 /∣ ũ3 + ũ4. Therefore we know that u3

u4
≡ −2n−2 − 1 mod 2n−1 and e2Λe2

is the row space of

⎛⎜⎝
1 1 1
2 2n−1 + 2 0
0 2n 0

⎞⎟⎠ .

Now let e0Λe0 be the row space of the matrix

B =

⎛⎜⎜⎜⎝

1 1 1 1

0 2a 0 2bξ

0 0 2c 2dϑ
0 0 0 2n

⎞⎟⎟⎟⎠
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where ξ, ϑ ∈ R∗, (0,0,2c,2dϑ) = δ̂η̂ and (0,2a,0,2bξ) = γ̂β̂ where γ̂ and β̂ are unit
scalar multiples of lifts of γ and β respectively. Then by our previous calculation and
Lemma 2.5.11 we have c = d = 1. By Lemma 2.5.14 we have a = 1

2
(4n) − n − 1 = n − 1,

and as before we can show that e0Λe0 is the row space of the matrix

B̃ =

⎛⎜⎜⎜⎝

1 1 1 1

0 2n−1 0 2bξ
0 0 2 2n−1 + 2
0 0 0 2n

.

⎞⎟⎟⎟⎠
By self-duality and since u4 and u2 have the same 2-valuation, we have 2n∣2n−1+ u4

u2
⋅2bξ

and thus b = n − 1. Therefore e0Λe0 is the row space of the matrix

B̂ =

⎛⎜⎜⎜⎝

1 1 1 1
0 2n−1 0 2n−1ξ
0 0 2 2n−1 + 2
0 0 0 2n

⎞⎟⎟⎟⎠
.

Since 2n∣2n−1 + 2n−1ξ u4

u3
we can without loss assume that ξ ∈ R∗ ∩ Q therefore ξ ≡ 1

mod 2. Thus we can without loss assume that

B̂ =

⎛⎜⎜⎜⎝

1 1 1 1
0 2n−1 0 2n−1

0 0 2 2n−1 + 2
0 0 0 2n

⎞⎟⎟⎟⎠
There is an element c ∈K ⊗ Γ such that

η̂c = (0,0,( 0 0
2 0

) ,⎛⎜⎝
0 0 0
0 0 0
2ϑ 0 0

⎞⎟⎠ ,0,0, . . . ,0)

δ̂c = (0,0,( 0 1
0 0

) ,⎛⎜⎝
0 0 1
0 0 0
0 0 0

⎞⎟⎠ ,0,0, . . . ,0)

γ̂c = (0,( 0 2n−1

0 0
) ,0,⎛⎜⎝

0 2n−1ξ 0
0 0 0
0 0 0

⎞⎟⎠ ,0,0, . . . ,0)

β̂c = (0,( 0 0
1 0

) ,0,⎛⎜⎝
0 0 0
1 0 0
0 0 0

⎞⎟⎠ ,0,0, . . . ,0)

for some units ξ and ϑ. Therefore we will from now on assume that η̂, δ̂, γ̂ and β̂ are
as above. We have seen that by the self-duality 2ϑ ≡ 2n−1 +2 mod 2n and 2n−1ξ ≡ 2n−1
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mod 2n. Furthermore we have

η̂γ̂β̂ = (0,0,( 0 0
0 0

) ,⎛⎜⎝
0 0 0
0 0 0

2nξϑ 0 0

⎞⎟⎠ ,0,0, . . . ,0),

δ̂η̂γ̂ = (0,( 0 0
0 0

) ,0,⎛⎜⎝
0 2nξϑ 0
0 0 0
0 0 0

⎞⎟⎠ ,0,0, . . . ,0) ∈ rad(Λ)
2,

Since adding elements of rad(Λ)2 does not change the property of being a generating
system we can conclude that Λ is generated by {e0, e1, e2, α̃, β̃, γ̃, δ̃, η̃}.

All that remains to show is that α̂ ∈ e1 Z(Λ)e1. This is true since the element

(0,0,( −4u4

u3
0

0 −4u4

u3

) ,⎛⎜⎝
4 0 0
0 4 0
0 0 4

⎞⎟⎠ ,0, π0, . . . , pin−3)

lies in the center of Λ.

Definition 3.2.17. We say that two lifts Λ and Λ′ are centrally equal if there is an
isomorphism Z(Λ) ≅ Z(Λ′) such that the induced isomorphism between Z(K⊗RΛ) and
Z(K ⊗R Λ′) only relates summands of the center corresponding to equal rows in the
decomposition matrix.

Theorem 3.2.18. Let Λ and Λ′ be centrally equal lifts of Λ satisfying the rational
conditions (3.3). Then Λ ≅ Λ′.

Proof. Both Λ and Λ′ are isomorphic to algebras as in Theorem 3.2.16. Since they are
centrally equal we can assume that the elements πi are the same in both cases.

Next we will again use derived equivalences to extend our result to all blocks of
semidihedral type with three simple modules. The tilting complexes inducing those
derived equivalences in the following theorem were determined by Holm [Hol01].

Theorem 3.2.19. 1. There is a tilting complex of the form

T ∶= [0Ð→ 0Ð→ P1 Ð→ 0] + [0Ð→ P1 ⊕ P1 Ð→ P0 Ð→ 0]
+[0Ð→ P1 Ð→ P2 Ð→ 0] ∈ Kb(SD(3A)1)

with End(T )op ≅ SD(3B)1.
2. There is a tilting complex of the form

T ∶= [0Ð→ 0Ð→ P2 Ð→ 0] + [0Ð→ P2 ⊕ P2 Ð→ P0 Ð→ 0]
+[0Ð→ P2 Ð→ P1 Ð→ 0] ∈ Kb(SD(3A)1)

with End(T )op ≅ SD(3B)2.
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3. There is a tilting complex of the form

T ∶= [0Ð→ 0Ð→ P2 Ð→ 0] + [0Ð→ 0Ð→ P0 Ð→ 0]
+[0Ð→ P0 ⊕ P2 Ð→ P1 Ð→ 0] ∈ Kb(SD(3H)1)

with End(T )op ≅ SD(3D)2.
4. There is a tilting complex of the form

T ∶= [0Ð→ 0Ð→ P1 Ð→ 0] + [0Ð→ 0Ð→ P0 Ð→ 0]
+[0Ð→ P1 Ð→ P2 Ð→ 0] ∈ Kb(SD(3H))

with End(T )op ≅ SD(3C)2,I .
5. There is a tilting complex of the form

T ∶= [0Ð→ 0Ð→ P1 Ð→ 0] + [0Ð→ 0Ð→ P0 Ð→ 0]
+[0Ð→ P0 Ð→ P2 Ð→ 0] ∈ Kb(SD(3C2,II))

with End(T )op ≅ SD(3H).
6. There is a tilting complex of the form

T ∶= [0Ð→ 0Ð→ P2 Ð→ 0] + [0Ð→ P2 ⊕ P2 Ð→ P0 Ð→ 0]
+[0Ð→ P2 Ð→ P1 Ð→ 0] ∈ Kb(SD(3B2))

with End(T )op ≅ SD(3D).
Proof. See [Hol01, Proposition 1.3.3–1.3.8].

For the following discussion we fix the following notation. We say that an order Λ
satisfies the rational conditions

Z(A) ν2(u) 1 . . . l

K1 n1 d11 . . . d1l
⋮ ⋮ ⋮ ⋮ ⋮

Kk nk dk1 . . . dkl

if there is an element

u = (ui)i∈{1,...,k} ∈ k

⊕
i=1

Q ⊆ Z(K ⊗Λ) = k

⊕
i=1

Ki

with ν2(ui) = ni such that Λ satisfies the rational conditions

Z(A) u 1 . . . l

K1 u1 d11 . . . d1l
⋮ ⋮ ⋮ ⋮ ⋮

Kk uk dk1 . . . dkl

.
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Theorem 3.2.20. 1. Let Λ and Λ′ be centrally equal lifts of SD(3A)1 satisfying
the rational conditions below. Then Λ ≅ Λ′.

Z(A) ν2(u) P0 P1 P2

K −n 1 0 0
K −n 1 1 1
K −n 1 0 1
K −n 1 1 0
K 2 0 0 1

Kr+2 −n + 1 2 1 1 for r ∈ {1, . . . , n − 4}
K ′n−1 −n + 1 2 1 1

2. Let Λ and Λ′ be centrally equal lifts of SD(3B)2 satisfying the rational conditions
below. Then Λ ≅ Λ′.

Z(A) ν2(u) P0 P1 P2

K −n 1 0 0
K −n 1 1 0
K −n 1 1 1
K −n 1 0 1
K 2 2 1 1

Kr+2 −n + 1 0 1 0 for r ∈ {1, . . . , n − 4}
K ′n−1 −n + 1 0 1 0

3. Let Λ and Λ′ be centrally equal lifts of SD(3C)I satisfying the rational conditions
below. Then Λ ≅ Λ′.

Z(A) ν2(u) P0 P1 P2

K −n 1 1 0
K −n 0 1 0
K −n 0 0 1
K −n 1 0 1
K 2 1 1 1

Kr+2 −n + 1 1 0 0 for r ∈ {1, . . . , n − 4}
K ′n−1 −n + 1 1 0 0

4. Let Λ and Λ′ be centrally equal lifts of SD(3C)II satisfying the rational condi-
tions below. Then Λ ≅ Λ′.

Z(A) ν2(u) P0 P1 P2

K −n 1 0 1
K −n 0 1 0
K −n 0 0 1
K −n 1 1 0
K 2 1 0 0

Kr+2 −n + 1 1 1 1 for r ∈ {1, . . . , n − 4}
K ′n−1 −n + 1 1 1 1
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5. Let Λ and Λ′ be centrally equal lifts of SD(3D) satisfying the rational conditions
below. Then Λ ≅ Λ′.

Z(A) ν2(u) P0 P1 P2

K −n 1 0 0
K −n 1 1 0
K −n 1 0 1
K −n 1 1 1
K 2 0 0 1

Kr+2 −n + 1 0 1 0 for r ∈ {1, . . . , n − 4}
K ′n−1 −n + 1 0 1 0

6. Let Λ and Λ′ be centrally equal lifts of SD(3H) satisfying the rational conditions
below. Then Λ ≅ Λ′.

Z(A) ν2(u) P0 P1 P2

K −n 0 1 0
K −n 0 0 1
K −n 1 0 0
K −n 1 1 1
K 2 1 1 0

Kr+2 −n + 1 0 1 1 for r ∈ {1, . . . , n − 4}
K ′n−1 −n + 1 0 1 1

Proof. The decomposition matrices in our table at the start of this chapter are given
in such a way that the first four rows always correspond to the height zero characters,
the fifth row to the character of height n−2 and the last row to the height 1 characters
[Erd90a, Lemmas (11.4),(11.6),(11.11),(11.9)].

Let T be a tilting complex of the form as in Theorem 3.2.19 in Kb(A) with B ≅

End(T ) and X a two-sided tilting complex whose inverse restricts to T . Then straight-
forward calculations using the instructions from Remark 2.5.22 show that ΦX will send
a lift fulfilling the rational conditions given in the assertion for A to a lift fulfilling
the rational conditions given for B. Therefore, if there is only one lift fulfilling the
conditions for A there can also only be one for B and the other way round. Together
with Theorem 3.2.18 the assertion follows.

We summarise our result by the following theorem.

Theorem 3.2.21. Let Λ be the basic algebra of a block of a group algebra over R with
a semidihedral defect group and three simple modules. If Λ1 and Λ2 are two centrally
equal Λ-lifts of Λ, then Λ1 ≅ Λ2.
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4 Defect 3 blocks of symmetric groups

Blocks, and more generally the representation theory, of symmetric groups, have been
a popular subject of research. Scopes showed that Donovan’s famous conjecture is
true for blocks of symmetric groups [Sco91]. The conjecture states that for every
isomorphism type of defect groups there are only finitely many Morita-equivalence
classes of blocks with that defect group.

A special case are p-blocks with a defect d < p. All of those block have isomor-
phic defect groups [JK81, Theorem 6.2.45]. Chuang and Rouquier further proved the
following theorem [CR08, Theorem 7.2].

Theorem 4.0.1. Let R be a field of characteristic p or Zp. Let A and B be two blocks
of symmetric groups over R with isomorphic defect groups. Then, A and B are derived
equivalent.

So we see that all p-blocks of defect d < p of symmetric groups are derived equivalent.
It is therefore natural to study blocks with a small defect, especially a defect d < p.
Blocks of defect 0 and 1 have been covered by the more general research on blocks with
cyclic defect. In particular, the structure of basic algebras of blocks with a cyclic defect
group over discrete valuation rings has been described by Plesken [Ple83]. The basic
algebras of defect 2 blocks over complete discrete valuation rings have been described
by Eisele [Eis12], generalising a result by Nebe [Neb02] where the basic order of the
principal block of ZpS2p was determined.

We want to consider blocks with defect 3 for primes p > 3. We will not give a
description of all such blocks and in fact not study any block of a symmetric group
directly, but instead use the following result [CK02, Theorem 2].

Theorem 4.0.2. Given any d < p there exist blocks of defect d of symmetric groups
which are Morita equivalent to the principal block of R(Sp ≀ Sd).

Therefore, we will use results about wreath products of algebras developed by
Chuang and Tan [CT03] to investigate the basic algebra of the principal block B0

of R(Sp ≀ S3). We will first repeat important results from [CT03], then use them to
determine the decomposition numbers and the quiver of Fp⊗B0 and subsequently use
similar methods as in Chapter 3 to lift the basic algebra of Fp ⊗B0.

4.1 The representation theory of wreath products

We recall the most important results and notation from [CT03].
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In this section let R be either a field or a discrete valuation ring and let w be a
positive integer such that w! is invertible in R. Let A be a finite-dimensional R-
algebra.

Definition 4.1.1. Let G be a group and H ≤ Sn a subgroup of the symmetric group.
Then the wreath product of G and H is defined as

G ≀H ∶= Gn ×H

with multiplication

(g1, . . . , gn;σ)(h1, . . . , hn;µ) = (g1hσ−1(1), . . . , gnhσ−1(n);σµ)
We have an inclusion of H into G ≀H as follows.

ι ∶H Ð→ G ≀H

σ ↦ σ̂ ∶= (1, . . . ,1;σ)
Definition 4.1.2. 1. Let n be a positive integer. We call a sequence of integers

n = (n1, n2, . . .) a composition of n, written n ⊧ n, if ∑i∈Z>0 ni = n. We also
write n = (n1, . . . , nl) if ni = 0 for i > l. We call a composition a partition if it is
non-increasing and write n ⊢ n. Given a composition λ = (λ1, . . . , λl) we define∣λ∣ ∶= ∑l

i=1 λi.

2. Let B be a ring, V a B-module and n a positive integer. Then we let Tn(V )
denote the n-fold tensor product ⊗n V of V .

3. We define the algebra A(w) as Tw(A)⊗RSw with the following multiplication.

(a1 ⊗ . . .⊗ aw ⊗ σ)(b1 ⊗ . . .⊗ bw ⊗ ρ) = a1bσ−1(1) ⊗ . . .⊗ awbσ−1(w) ⊗ σρ

4. Let w = (w1, . . . , wl) ⊧ w. We define

Sw = Sw1
× . . . × Swl

and consider it as a subgroup of Sw by letting the factor Swr act on

{r−1∑
i=1

wi + 1, . . . ,
r

∑
i=1

wi} ⊆ {1, . . . , w}
Then we define the algebra A(w) as the subalgebra Tw(A)⊗RSw of A(w). Then
there is an isomorphism

A(w) ≅ A(w1)⊗ . . .⊗A(wl).
If V is an A(w)-module and W an A(w)-module we use the following short hand
notation for induction and restriction.

Indww(V ) ∶= IndA(w)A(w)
(V )

Resww(W ) ∶= ResA(w)A(w)
(W )
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For every field K and partition λ = (λ1, . . . , λk) of n one can define a KSn-module
Sλ, the so called Specht module. We will skip the definition and refer the reader to
[JK81]. If K is a field of characteristic 0 the Specht module Sλ is simple for every
λ ⊢ n. If char(K) = p > 0, then Sλ is simple if and only if λ is p-regular, i.e. no number
k < n appears p or more times in λ.

Example 4.1.3. 1. For n = 2 there are two Specht modules, the trivial module S(2)

and the signum representation S(1,1).

2. For n = 3 there are three Specht modules, the trivial module S(3), the signum
representation S(1,1,1) and the standard representation S(2,1).

Remark 4.1.4. If A is the group algebra of a group G then A(w) is the group algebra
of G ≀ Sw.

Lemma 4.1.5. 1. If V is an A-module then Tw(V ) becomes an A(w)-module by
letting Tw(A) act component wise and letting RSw permute the components as
follows.

v1 ⊗ . . .⊗ vn.(1⊗ σ) = vσ(1) ⊗ . . .⊗ vσ(n) ∀v1, . . . , vn ∈ A,σ ∈ Sw

We denote this module by T (w)(V ).
2. If V is an A(w)-module and S is an RSw-module then we can consider V ⊗ S

as an A(w)-module with the following action.

(v ⊗ s).(a⊗ σ) = v.(a⊗ σ)⊗ s.σ ∀v ∈ V, s ∈ S, a ∈ Tw(A), σ ∈ Sw

We will denote this module by V ⊘ S

3. Let now w ⊧ w. Similar to 2, for any A(w)-module V and any RSw-module S,
V ⊗ S becomes an A(w)-module which we will also denote by V ⊘ S.

Proof. This can be proven by straightforward calculations.

Definition 4.1.6. Let λ ⊢ w be a partition and Sλ be the corresponding Specht module
over R. Then we define the A(w)-module T λ(V ) ∶= T (w)(M)⊘ Sλ.

Definition 4.1.7. For every index set I we define

ΛI
w ∶= {λ = (λi)i∈I ∣ λi partition, ∑

i∈I

∣λi∣ = w}.
Definition 4.1.8. Let {V (i) ∣ i ∈ I} be a set of A-modules and λ = (λi)i∈I ∈ ΛI

w. Then
we obtain an A(w)-module by the following construction:

V (λ) ∶= Indw(∣λi∣)i∈I
(⊗
i∈I

T λ
i (V (i)))

Note that this definition depends on the set {V (i) ∣ i ∈ I}.
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The following theorems show that both the simple and the projective indecompos-
able modules of A(w) can be constructed in the way above.

Theorem 4.1.9. Suppose that R is a splitting field for A and let {V (i) ∣ i ∈ I} be a
complete set of representatives of isomorphism classes of simple A-modules. Then R

is a splitting field for A(w) and {V (λ) ∣ λ ∈ ΛI
w} is a complete set of representatives

of isomorphism classes of simple A(w)-modules.

Proof. See [CT03, Lemma 3.8].

Theorem 4.1.10. Let {P (i) ∣ i ∈ I} be a set of projective A-modules and let λ ∈ ΛI
w.

Then P (λ) is projective.

Proof. See [CT03, Corollary 3.9].

Lemma 4.1.11. Suppose that R is a splitting field for A and let {M(i) ∣ i ∈ I},{N(i) ∣ i ∈ I} be sets of A-modules such that each M(i) has simple head N(i) and
N(i) /≅ N(j) for i ≠ j. Then M(λ) has simple head N(λ) for any λ ∈ ΛI

w.

Proof. See [CT03, Lemma 4.5].

Lemma 4.1.12. Let w = (w1, . . . , wr) ⊧ w.
1. For i ∈ {1, . . . , r} let Vi be an A(wi)-module and Xi an RSw-module. Then

(V1 ⊘X1)⊗ . . .⊗ (Vr ⊘Xr) ≅ (V1 ⊗ . . .⊗ Vr)⊘ (X1 ⊗ . . .⊗Xr)
2. Let V be an A(w)-module and Y an RSw-module. Then

V ⊘ (Indww Y ) ≅ IndA(w)
A(w)
((ResA(w)

A(w)
V )⊘ Y ).

3. Let W be an A(w)-module and X an RSw-module. Then

(IndA(w)
A(w)

W )⊘X ≅ Ind
A(w)
A(w)
(W ⊘ReswwX)).

Proof. See [CT03, Lemma 3.2].

Lemma 4.1.13. Suppose that R is a splitting field for A.

1. We have

rad(Tw(A)) = w−1

∑
i=0

T i(A)⊗ rad(A)⊗ Tw−i−1(A).

2. Let V be an A(w)-module and n ∈ Z>0. Then

radn(V ) = radn(ResA(w)
Tw(A)

(V ))
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3. Let V be an A(w)-module, X an RSw-module and n ∈ Z>0. Then

radn(V ⊘X) = radn(V )⊘X

Proof. See [CT03, Lemma 3.4, 3.5].

Definition 4.1.14. Let n ∈ Z>0 and λ ⊢ n. Let further µ = (µi)i∈I be a sequence of
partitions with ∑i∈I ∣µi∣ = n and n ∶= (∣µi∣)i∈I . Then we define

c(λ;µ) ∶= [Resnn(Sλ) ∶⊗
i∈I

Sµi].
Further we define c((0); ((0), . . . , (0))) = 1 and c(λ;µ′) = 0 if ∑i∈I ∣µi∣ ≠ n.
Definition 4.1.15. Let λ = (λ1, λ2, . . .), µ = (µ1, µ2, . . .) be two partitions. We define
the distance between λ and µ as

d(λ,µ) =∑
i∈Z

∣λi − µi∣.
The following theorem determines the quiver of A(w).

Theorem 4.1.16. Let R = k be a splitting field for a, let {S(i) ∣ i ∈ I} be the simple
A-modules and {P (i) ∣ i ∈ I} their projective covers.

1. For every λ ∈ ΛI
w the module P (λ) is the projective cover of L(λ).

2. Let λ = (λi)i∈I ≠ µ = (µi)i∈I ∈ ΛI
w.

a) We have

dimkHomA(w)(P (λ), rad(P (λ))/ rad2(P (λ))) =
∑
i∈I

p(λi)dimkHomA(P (i), rad(P (i))/ rad2(P (i)))
where p(λi) is the number of distinct parts of λi.

b) We have

HomA(w)(P (λ), rad(P (µ))/ rad2(P (µ))) = 0
unless either

i. there exists j ∈ I such that λi = µi for all i ∈ I, i ≠ j,

ii. we have d(λj , µj) = 2 and

iii. HomA(P (j), rad(P (j))/ rad2(P (j))) ≠ 0,
in which case

dimkHomA(w)(P (λ), rad(P (µ))/ rad2(P (µ))) =
dimkHomA(P (j), rad(P (j))/ rad2(P (j)))

or
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i. there exist j, j′ ∈ I, j ≠ j′ such that λi = µi for all i ∈ I, i ≠ j, i ≠ j′,

ii. ∣µj ∣ > ∣λj ∣ and d(µj , λj) = 1
iii. ∣µj′ ∣ > ∣λj′ ∣ and d(µj′ , λj′) = 1
in which case

dimkHomA(w)(P (λ), rad(P (µ))/ rad2(P (µ))) =
dimkHomA(P (j), rad(P (j′))/ rad2(P (j′)))

Proof. See [CT03, Proposition 4.6].

4.2 The principal block of ZpSp

Recall that the simple modules of the symmetric group over any field are enumerated
by partitions. The defect one characters of the symmetric group Sp correspond to the
following partitions [JK81, 6.3.9]:

(p), (p − 1,1), (p − 2,12), . . . , (2,1p−2), (1p).
They are all in the same block, the principal block, of Sp. Furthermore, all but the
last partition are p-regular and thus correspond to irreducible modular representations.
The Brauer graph of the principal block has the following form:

V1 V2S1
Vp−1 IpSp−1

Note that the form of this graph as a single path follows from Theorem 2.2.27 since
all characters of Sp have values in Q and therefore every p-conjugacy class contains
just one element. It also follows from the theorem that all decomposition numbers are
zero or one.

Notation 4.2.1. We will denote the simple QpSp module corresponding to the parti-
tion (p − i,1i) by V (i) and the simple and projective indecomposable, module of ZpSp

corresponding to (p − i,1i) by S(i) and P (i) respectively. Furthermore, we define
M ∶= Fp ⊗M for any Zp-module M , S(i) ∶= Fp ⊗ S(i) and P (i) ∶= Fp ⊗ P (i).
Lemma 4.2.2. With the notation above, we obtain the following decompositions:

Qp ⊗ P (k) ≅ V (k)⊕ V (k + 1) (4.1)

rad(P (k))/ rad2(P (k)) ≅ S(k + 1)⊕ S(k − 1) if 1 < k < p − 1 (4.2)

rad(P (1))/ rad2(P (1)) ≅ S(2) (4.3)

rad(P (p − 1))/ rad2(P (1)) ≅ S(p − 2) (4.4)

rad2(P (k)) ≅ S(k) (4.5)

67



The ext-quiver of FpSp is

1 2
α1

β2

3
α2

β3

p − 2 p − 1
αp−2

βp−1

with relations

βi ○ βi+1 = 0, αi+1 ○ αi = 0, βi+1 ○ αi ○ βi+1 = 0, αi ○ βi+1 ○ αi = 0, αi−1 ○ βi = βi+1 ○ αi

Proof. See [EM94, Section 4.1, Lemma 4.5]).

4.3 The principal block of Fp(Sp ≀ S3)

The fields Qp and Fp are splitting fields for every symmetric group and wreath product
Sm ≀Sn [JK81] and we will therefore fix the p-modular system (K,R,F ) = (Qp,Zp,Fp).
Remark 4.3.1. With the notation from Section 4.1 we have that B0(RSp(3)) =
B0(RSp)(3).
Proof. We consider B0(RSp)(3) as a subalgebra of RSp(3). If S is the trivial RSp-
module, then the trivial RSp(3)-module is the threefold tensor product T (3)(S) of S,
so in particular it lies in B0(RSp)(3). In Corollary 4.3.15 we will further see that the
Brauer graph of B0(RSp)(3) is a connected component of the Brauer graph of RSp(3)
and therefore B0(RSp)(3) is a block by Lemma 2.2.18.

4.3.1 Simple and projective indecomposable modules

Let A an R-algebra. We introduce new notation for A(3)-modules.

Definition 4.3.2. Let I be an index set and x = (i, j, k) ∈ I3.
1. We define the type of x to be type(x) = 4 − ∣{i, j, k}∣, i.e. type(x) = n ∈ {1,2,3}

if there are n occurrences of the same index in (i, j, k) and no index occurs more
than n times.

2. Let λ ⊢ type((i, j, k)). Then we define type((i, j, k;λ)) = type((i, j, k)).
Definition 4.3.3. Let {M(i) ∣ i ∈ I} be a set of A-modules, i, j, k ∈ I, ∣{i, j, k}∣ = 3,
µ ⊢ 2 and λ ⊢ 3.

M(i, j, k) ∶=M(i, j, k; (1)) ∶=Ind(3)
(1,1,1)

(M(i)⊗M(j)⊗M(k))
M(i, i, j;µ) ∶=M(i, j, i;µ) ∶=M(j, i, i;µ) ∶=Ind(3)

(2,1)
((T (2)(M(i))⊘ Sµ)⊗M(j))

M(i, i, i;λ) ∶=T (3)(M(i))⊘ Sλ

For any i, j, k ∈ I and λ ⊢ type((i, j, k)) we define

M(i,j,k;λ) ∶=M(i, j, k;λ).
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Lemma 4.3.4. Let {M(i) ∣ i ∈ I} be a set of A-modules, i, j, k ∈ I and let λ be a
partition with ∣λ∣ = type((i, j, k)). Then the dimension of M(i, j, k;λ) can be calculated
as follows:

C(λ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

6 if λ = (1)
3 if λ ⊢ 2

2 if λ = (2,1)
1 otherwise

dim(M(i, j, k;λ)) = dim(M(i))dim(M(j))dim(M(k)) ⋅ dim(Sλ) ⋅C(λ).
Proof. We can see that the factor C(λ) is the index of the subalgebra from which
the module M(i, j, k;λ) is induced. Therefore the formula follows directly from the
definition.

Definition 4.3.5. We define two index sets:

I0 = {(i, j, k;λ) ∣ i, j, k ∈ {1, . . . , p}, i ≤ j ≤ k, λ ⊢ type((i, j, k))}
Ip = {(i, j, k;λ) ∣ i, j, k ∈ {1, . . . , p − 1}, i ≤ j ≤ k, λ ⊢ type((i, j, k))}.

We will also use the short hand notation ijkλ for (i, j, k;λ).
Theorem 4.3.6. With the notation from 4.2.1 the simple B0(LSp)(3) modules are as
follows.

1. L =K

{Va ∣ a ∈ I0}
2. L = F

{Sx ∣ x ∈ Ip}
Proof. This follows directly from Theorem 4.1.9.

Remark 4.3.7. With Theorem 4.1.10 and Lemma 4.1.11 we can see that for x ∈ Ip
the projective cover of Sx is P x.

Lemma 4.3.8. The constructions from Section 4.1 are all compatible with a change
of scalars, e.g. S(i, j, k) = k ⊗ S(i, j, k). Thus it follows that the simple/ projective
Λ ∶= B0(ZpSp)(3) modules are the following.

1. The simple Λ-modules are

{Sx ∣ x ∈ Ip}
2. and the projective indecomposable modules of Λ are

{Px ∣ x ∈ Ip}.
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Definition 4.3.9. Let a = (i, j, k;λ), b = (i′, j′, k′;λ′) ∈ I0.
1. We define the length of a as

l(a) ∶= i + j + k
2. We define a partial order ≤ on I0 as follows.

a ≤ b⇔ l(a) ≤ l(b)
4.3.2 Decomposition numbers

Recall that Q ⊗ P (i) = V (i) ⊕ V (i + 1) for every i ∈ {1 . . . p − 1}. Thus we obtain the
following decompositions for the tensor products.

K ⊗ P (i)⊗ P (j)⊗ P (k) = ⊕
i′∈{i,i+1}
j′∈{j,j+1}
k′∈{k,k+1}

V (i′)⊗ V (j′)⊗ V (k′)

Remark 4.3.10. If w ⊧ 3 is a composition, T is a right transversal of Sw in S3

and A an R-algebra where R is a discrete valuation ring or a field, then for a A(w)-
module M every element of Ind

(3)
w M is of the form m ⊗ t̂ with m ∈ M and t ∈ T ,

see Lemma 2.2.13. In the following discussions we will always write the elements of
induced modules in that form and choose T = {id, (123), (132)} if w = (2,1).

To calculate the decomposition numbers, we will first make a few observations.

Remark 4.3.11. 1. There is an isomorphism

Ind
(2)
(1,1)
(V (i)⊗ V (i)) ≅ V (i, i; (2))⊕ V (i, i; (1,1)).

2. Define an RSp ≀ S2 module V̂ (i, j) as follows:

Res
(2)
(1,1)
(V̂ (i, j)) = (V (i)⊗ V (j))⊕ (V (j)⊗ V (i))

(ai ⊗ aj , bj ⊗ bi).τ̂ = (bi ⊗ bj , aj ⊗ ai) ∀τ ∈ S3.

Then the following map is an RSp ≀ S2-module isomorphism.

ϕ ∶ V̂ (i, j)Ð→ V (i, j) = Ind(2)
(1,1)
(V (i)⊗ V (j))

(ai ⊗ aj , bj ⊗ bi)z→ ai ⊗ aj ⊗ id + (bi ⊗ bj)⊗ τ̂

3. There is a decomposition

K ⊗ T (2)(P (i)) = T (2)(V (i))⊕ V (i, i + 1)⊕ T (2)(V (i + 1)). (4.6)
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4. Define an RSp ≀ S3 module ̂V (i, i, j) as follows:

Res
(3)
(1,1,1)

( ̂V (i, i, j; (2))) =
(V (i)⊗ V (i)⊗ V (j))⊕ (V (i)⊗ V (j)⊗ V (i))⊕ (V (j)⊗ V (i)⊗ V (i))

(ai1 ⊗ ai2 ⊗ aj , bi1 ⊗ bj ⊗ bi2, cj ⊗ ci1 ⊗ ci2).τ̂
= (ai2 ⊗ ai1 ⊗ aj , ci1 ⊗ cj ⊗ ci2, bj ⊗ bi1 ⊗ bi2)
(ai1 ⊗ ai2 ⊗ aj , bi1 ⊗ bj ⊗ bi2, cj ⊗ ci1 ⊗ ci2).σ̂
= (ci1 ⊗ ci2 ⊗ cj , ai2 ⊗ aj ⊗ ai1, bj ⊗ bi2 ⊗ bi1).

Then the following map is an RSp ≀ S3-module isomorphism.

ϕ ∶ ̂V (i, i, j)Ð→ V (i, i, j; (2)) = Ind(3)
(1,1,1)

(V (i)⊗ V (i)⊗ V (j))
(ai1 ⊗ ai2 ⊗ aj , bi1 ⊗ bj ⊗ bi2, cj ⊗ ci1 ⊗ ci2)z→
ai1 ⊗ ai2 ⊗ aj + bi2 ⊗ bi1 ⊗ bj σ̂ + ci1 ⊗ ci2 ⊗ cj σ̂

2

Proof. Part 1:

Ind
(2)
(1,1)
(V (i)⊗ V (i))

= Ind
(2)
(1,1)
((V (i)⊗ V (i))⊘ (S(1) ⊗ S(1)))

= Ind
(2)
(1,1)
(Res(2)

(1,1)
(T (2)(V (i)))⊘ (S(1) ⊗ S(1)))

4.1.12.2
= T (2)(V (i))⊘ Ind

(2)
(1,1)
(S(1) ⊗ S(1))

= T (2)(V (i))⊘ (S(2) ⊕ S(1,1))
= V (i, i; (2))⊕ V (i, i; (1,1))

Part 2 and 4 are straightforward calculations.
Part 3: As a vector space K ⊗ T (2)(P (i)) decomposes as follows:

K ⊗ T (2)(P (i)) =
V (i)⊗ V (i)⊕ V (i)⊗ V (i + 1)⊕ V (i + 1)⊗ V (i)⊕ V (i + 1)⊗ V (i + 1)

Here V (i)⊗V (i) and V (i+1)⊕V (i+1) are also invariant under Sp ≀S2. The remaining
two summands form another RSp ≀ S2 submodule.

V (i)⊗ V (i + 1)⊕ V (i + 1)⊗ V (i) ≅ ̂V (i, i + 1) ≅ Ind(2)
(1,1)
(V (i)⊗ V (i + 1))

Definition 4.3.12. Let n ≤ 3 and λ ⊢ n be a partition of n.
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Then we define a set of partitions dc(λ) as follows.

dc((1)) = {λ′ ∣ λ′ ⊢m,m ≤ 3}
dc((2,1)) = {λ′ ∣ λ′ ⊢m,m ≤ 2} ∪ {(2,1)}

dc((1,1,1)) = {(1), (1,1), (1,1,1)}
dc((3)) = {(1), (2), (3)}

dc((1,1)) = {(1), (1,1), (1,1,1), (2,1)}
dc((2)) = {(1), (2), (3), (2,1)}

Remark 4.3.13. Let λ ⊢ 3 and µ ⊢ 2. Then dc(λ) and dc(µ) are defined such that
the following holds.

λ ∈ dc(µ)⇔ µ ∈ dc(λ)⇔ c(λ; ((1), µ)) > 0

Theorem 4.3.14. Let a = (i′, j′, k′;λ′) ∈ I0 and b = (i, j, k;λ) ∈ Ip. Then

dab ≠ 0⇔ i′ ∈ {i, i + 1}, j′ ∈ {j, j + 1}, k′ ∈ {k, k + 1}, and λ′ ∈ dc(λ) or
a = (i, i + 1, i + 1;µ), b = (i, i, i + 1;µ′), µ, µ′ ∈ {(2), (1,1)}.

If dab ≠ 0 then dab = 1.

Proof. We calculate the decomposition of the projective indecomposable modules by
considering several cases.

• i < j < k

K ⊗ P (i, j, k) = Ind(3)
(1,1,1)

(P (i)⊗ P (j)⊗ P (k))
= ⊕

i′∈{i,i+1}
j′∈{j,j+1}
k′∈{k,k+1}

Ind
(3)
(1,1,1)

(V (i′)⊗ V (j′)⊗ V (k′))

If ∣i− j∣ > 1 and ∣j − k∣ > 1 then this is already the decomposition into irreducible
modules. Now assume that j = i+ 1. Then for k′ ∈ {k, k + 1} we obtain a further
decomposition as follows.

Ind
(3)
(1,1,1)

(V (i + 1)⊗ V (i + 1)⊗ V (k′))
= Ind

(3)
(2,1)
(Ind(2.1)

(1,1,1)
(V (i + 1)⊗ V (i + 1)⊗ V (k′)))

= Ind
(3)
(2,1)
(Ind(2)

(1,1)
(V (i + 1)⊗ V (i + 1))⊗ V (k′))

4.3.11.1
= Ind

(3)
(2,1)
((T (2)(V (i + 1))⊕ T (1,1)(V (i + 1)))⊗ V (k′))

= Ind
(3)
(2,1)
(T (2)(V (i + 1))⊗ V (k′))⊕ Ind

(3)
(2,1)
(T (1,1)(V (i + 1))⊗ V (k′))

= V (i + 1, i + 1, k′; (2))⊕ V (i + 1, i + 1, k′; (1,1))
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Similarly, we obtain the following decomposition if k = j + 1:

Ind
(3)
(1,1,1)

(V (i′)⊗ V (j + 1)⊗ V (j + 1))
= V (i′, j + 1, j + 1; (2))⊕ V (i′, j + 1, j + 1; (1,1))

• i = j, j < k

Using Remark 4.3.11 Part 3 we obtain the following decomposition for P (i, i, k;λ)
K ⊗ P (i, i, k;λ)

≅K ⊗ Ind
(3)
(2,1)
(T (2)(P (i))⊘ Sλ ⊗ P (k))

4.3.11.3
≅ ⊕

k′∈{k,k+1}

Ind
(3)
(2,1)
(T (2)(V (i))⊕ V (i, i + 1)⊕ T (2)(V (i + 1)))⊘ Sλ ⊗ V (k′))

≅ ⊕
k′∈{k,k+1}

Ind
(3)
(2,1)
(T λ(V (i))⊗ V (k′))⊕ Ind

(3)
(2,1)
(T λ(V (i + 1))⊗ V (k′))⊕

⊕
k′∈{k,k+1}

Ind
(3)
(2,1)
((V (i, i + 1)⊘ Sλ)⊗ V (k′))

Note that V (i, i + 1) ⊘ Sλ ≅ V (i, i + 1) for λ ∈ {(2), (1,1)}. Thus, if k′ ≠ i + 1,
then the last summand is V (i, i + 1, k′) and we already have a decomposition
into simple modules.

K ⊗ P (i, i, k;λ)
≅ ⊕

k′∈{k,k+1}

V (i, i, k′;λ)⊕ V (i + 1, i + 1, k′;λ)⊕ V (i, i + 1, k′)

Now assume that k = k′ = i + 1. Then we obtain the following additional decom-
positions

Ind
(3)
(2,1)
(T λ(V (i + 1))⊗ V (i + 1))

= Ind
(3)
(2,1)
(T (2)(V (i + 1))⊘ Sλ ⊗ V (i + 1)⊘ S(1))

4.1.12.1
= Ind

(3)
(2,1)
((T (2)(V (i + 1))⊗ V (i + 1))⊘ (Sλ ⊗ S(1)))

= Ind
(3)
(2,1)
(Res(3)

(2,1)
(T (3)(V (i + 1)))⊘ (Sλ ⊗ S(1)))

4.1.12.2
= T (3)(V (i + 1))⊘ Ind

(3)
(2,1)
(Sλ ⊗ S(1))

= T (3)(V (i + 1))⊘ (S(2,1) ⊕ Sλ′)
= V (i + 1, i + 1, i + 1; (2,1)) + V (i + 1, i + 1, i + 1;λ′)

where (λ,λ′) ∈ {((2), (3)), ((1,1), (1,1,1)).
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Ind
(3)
(2,1)
(Ind(2)

(1,1)
(V (i)⊗ V (i + 1))⊘ Sλ ⊗ V (i + 1))

= Ind
(3)
(2,1)
((Ind(2)

(1,1)
(V (i)⊗ V (i + 1))⊗ V (i + 1))⊘ (Sλ ⊗ S(1)))

= Ind
(3)
(2,1)
(Ind(2.1)

(1,1,1)
((V (i)⊗ V (i + 1))⊗ V (i + 1))⊘ Sλ ⊗ S(1))

4.1.12.3
= Ind

(3)
(2,1)
(Ind(2.1)

(1,1,1)
((V (i)⊗ V (i + 1)⊗ V (i + 1))⊘ (Res(3)

(1,1,1)
(Sλ ⊗ S(1)))))

= Ind
(3)
(1,1,1)

((V (i)⊗ V (i + 1)⊗ V (i + 1))⊘ (S(1) ⊗ S(1) ⊗ S(1)))
= Ind

(3)
(1,2)
(Ind(1,2)

(1,1,1)
(V (i)⊗ V (i + 1)⊗ V (i + 1)))

= Ind
(3)
(1,2)
(V (i)⊗ Ind

(2)
(1,1)
(V (i + 1)⊗ V (i + 1)))

= Ind
(3)
(1,2)
(V (i)⊗ (T (2)(V (i + 1))⊕ T (1,1)(V (i + 1))))
= V (i, i + 1, i + 1; (2))⊕ V (i, i + 1, i + 1; (1,1))

• i < j, j = k

With similar arguments as above, we obtain the decomposition

K ⊗ P (i, j, j;λ)
≅ ⊕

i′∈{i,i+1}

V (i′, j, j;λ)⊕ V (i′, j + 1, j + 1;λ)⊕ V (i′, j, j + 1)

if j > i + 1 and

K ⊗ P (j − 1, j, j;λ)
≅ V (j − 1, j, j;λ)⊕ V (j, j, j; (2,1))⊕ V (j, j, j;λ′)
⊕V (j − 1, j + 1, j + 1;λ)⊕ V (j, j + 1, j + 1;λ)

⊕V (j − 1, j, j + 1)⊕ V (j, j, j + 1; (2))⊕ V (j, j, j + 1; (1,1))
if j = i + 1.

• i = j = k

Similarly to the decomposition of K ⊗ T (2)(P (i)) we obtain the following de-
composition.

K ⊗ T (3)(P (i)) ≅
T (3)(V (i))⊕ T (3)(V (i + 1))⊕ V (i, i, i + 1; (2))⊕ V (i, i + 1, i + 1; (2))
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For the general case, we observe the following:

V (i, i, i + 1; (2))⊘ Sλ

≅ Ind
(3)
(2,1)
(T (2)(V (i))⊗ V (i + 1))⊘ Sλ

≅ Ind
(3)
(2,1)
((T (2)(V (i))⊗ V (i + 1))⊘Res

(3)
(2,1)

Sλ)

≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V (i, i, i + 1; (2)) if λ = (3)
V (i, i, i + 1; (2)) if λ = (1,1,1)
V (i, i, i + 1; (1,1))⊕ V (i, i, i + 1; (2)) if λ = (2,1)

.

Using this and the analogous result for V (i, i + 1, i + 1; (2)) we calculate the
decomposition of K ⊗ P (i, i, i;λ):

K ⊗ P (i, i, i;λ)
=K ⊗ T (3)(P (i))⊘ Sλ

≅ (T (3)(V (i))⊕ T (3)(V (i + 1))⊕ V (i, i, i + 1; (2))⊕ V (i, i + 1, i + 1; (1,1)))⊘ Sλ

≅ V (i, i, i;λ)⊕ V (i + 1, i + 1, i + 1;λ)⊕
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V (i, i, i + 1; (2))⊕ V (i, i + 1, i + 1; (2)) if λ = (3)
V (i, i, i + 1; (1,1))⊕ V (i, i + 1, i + 1; (1,1)) if λ = (1,1,1)
V (i, i, i + 1; (1,1))⊕ V (i, i + 1, i + 1; (1,1))⊕

V (i, i, i + 1; (2))⊕ V (i, i + 1, i + 1; (2)) if λ = (2,1)
.

Corollary 4.3.15. The Brauer graph of B0(RSp)(3) is connected

Proof. For ease of notations we will label the vertices of the Brauer graph by I0. For
x = (i, j, k;λ) and y = (i′, j′, k′;λ) let dist(x, y) = ∣i − i′∣ + ∣j − j′∣ + ∣k − k′∣. We show
that the distance of the vertex x0 = (1,2,3) to every other vertex y in the Brauer
graph is at most dist(x0, y). We use induction on dist(x0, y). The induction base
for dist(x0, y) is given since there is only one λ ⊢ 1. Now let y = (i, j, k;λ) ∈ I0 with
dist(x0, y) = l > 0. Assume first that i ≠ 1. Then for every zλ′ = (i − 1, j, k;λ′) with
λ′ ⊢ type((i−1, j, k)) it is dist(x0, zλ′) < dist(x0, y). From the decomposition numbers
it is not hard to see that there is at least one λ′ such that V (y) and V (zλ′) share a
composition factor. Thus, by the induction hypothesis, the distance from x0 to y in
the quiver is at most dist(x0, z) + 1 = dist(x0, y). The cases where j ≠ 2 or k ≠ 3 work
completely analogous, with the small difference that, if j < 2 or k < 3 we have to add
1 to the differing component instead of substracting 1.

4.3.3 Quiver

Our next goal is to determine the quiver of Λ ∶= B0(FpSp)(3). Let S(1), . . . , S(p − 1)
and P (1), . . . , P (p−1) be the simple and projective indecomposable B0(FpSp)-modules
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respectively. Recall the radical series of P (i):
P (i)/ rad(P (i)) ≅ S(i)

rad(P (i))/ rad2(P (i)) ≅ S(i − 1)⊕ S(i + 1)
rad2(P (i)) ≅ S(i).

Theorem 4.3.16. Let x = (i1, i2, i3;λ), y = (j1, j2, j3;µ) ∈ Ip. Then

Hom
Λ
(P (x), rad(P (y))/ rad2(P (y)))

is non-trivial if and only if il ∈ {jl −1, jl +1} for exactly one l ∈ {1,2,3} and ik = jk for
l ≠ k ∈ {1,2,3} and we have one of the following cases:

• µ ∈ dc(λ) or
• i1 = i2 = i3 − 1 and j1 = i1, j2 = i2 + 1 = i3 = j3 or

• i1 + 1 = i2 = i3 and j1 = i1 = j2 = i2 − 1, j3 = i3.

Then dimF Hom
Λ
(P (x), rad(P (y))/ rad2(P (y))) = 1.

Proof. We apply Theorem 4.1.16. Recall that

HomB0(FpSp)(P (i), rad(P (j))/ rad2(P (j))) ≠ 0⇔ j ∈ {i + 1, i − 1}.
In particular we have for all i:

HomB0(FpSp)(P (i), rad(P (i))/ rad2(P (i))) = 0.
for all i. This means only the second case of Theorem 4.1.16.2.b applies. The rest is
just a translation of the theorem to our notation.

Next we are going to determine some relations on the quiver of Λ. Those are not all
the relations, but they suffice to show that the algebra lifts uniquely. Note that the
existence of a lift is not in question since we know that the algebra is Morita-equivalent
to a block.

We will give explicit generators for Hom
Λ
(P (x), rad(P (y))/ rad2(P (y))), x, y ∈ Ip

to determine the relations. To do this, we will use different presentations of the pro-
jective indecomposable modules. In this context we will have to differentiate between
the subalgebras of A(3) corresponding to the subgroup S{σ(1),σ(2)} × Sσ(3) of S3 for
permutations σ ∈ S3 for an algebra A. For this purpose we introduce the following
notation: For σ ∈ S3 define

A({σ(1), σ(2)}, σ(3)) ∶= {a⊗ ρ ∣ ρ ∈ Sσ(1),σ(2) × Sσ(3)} ≤ A(3),
Ind

(3)
({σ(1),σ(2)},σ(3))

(V ) ∶= IndA(3)
A({σ(1),σ(2)},σ(3))

(V ),
Res

(3)
({σ(1),σ(2)},σ(3))

(V ) ∶= ResA(3)
A({σ(1),σ(2)},σ(3))

(W ),

where V is an A({σ(1), σ(2)}, σ(3))-module and W is an A(3)-module.
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Definition 4.3.17. Let A ∶= B0(FpSp), x = (i1, i2, i3;λ) ∈ Ip and σ ∈ S3. Then we

define the A(3)-module P
′(iσ(1), iσ(2), iσ(3)) as follows.

If λ = (2,1) we define P
′(iσ(1), iσ(2), iσ(3)) = P (x). Otherwise let B be the following

subalgebra of A(3).
• If i1 = i2 = i3, then B = A(3).
• If ij = ik ≠ il, then B = A({σ−1(j), σ−1(k)}, σ−1(l)).
• If ∣{i1, i2, i3}∣ = 3, then B = A((1,1,1))

Then we define a B-module Mλ where Mλ =Fp P (iσ(1))⊗ P (iσ(2))⊗ P (iσ(3)) and the
multiplication of B on Mλ is as follows.

(v1 ⊗ v2 ⊗ v3).(a1 ⊗ a2 ⊗ a3 ⊗ ρ)
=

⎧⎪⎪⎨⎪⎪⎩
vρ(1)aρ(1) ⊗ vρ(2)aρ(2) ⊗ vρ(3)aρ(3) if λ ∈ {(1), (2), (3)}
sgn(ρ) ⋅ vρ(1)aρ(1) ⊗ vρ(2)aρ(2) ⊗ vρ(3)aρ(3) if λ ∈ {(1,1), (1,1,1)}

for v1 ⊗ v2 ⊗ v3 ∈ M and a1 ⊗ a2 ⊗ a3 ⊗ ρ ∈ B. Note that B is chosen such that the
multiplication is well-defined.

We define P
′(iσ(1), iσ(2), iσ(3)) ∶= IndA(3)B Mλ.

Lemma 4.3.18. Let A ∶= B0(FpSp), x = (i1, i2, i3;λ) ∈ Ip and σ ∈ S3.

1. If ∣{i1, i2, i3}∣ = 3, then the following map is an isomorphism of A(3)-modules:

Ψσ ∶ P (x)Ð→ P
′(iσ(1), iσ(2), iσ(3)λ)

(v1 ⊗ v2 ⊗ v3)⊗ ρ̂z→ (vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ σ̂−1ρ̂.

2. Assume that i1 = i2 ≠ i3. Then the following map is an isomorphism:

Ψσ ∶ P (x)Ð→ P
′(iσ(1), iσ(2), iσ(3);λ)

((v1 ⊗ v2 ⊘ s)⊗ v3)⊗ ρ̂z→ (vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ σ̂ρ̂.

If i1 ≠ i2 = i3, then the following is an isomorphism:

Ψσ ∶ P (x) = Ind(3)(2,1) T 2(P (i2))⊘ Sλ ⊗ P (i1)Ð→ P
′(iσ(1), iσ(2), iσ(3);λ)

v2 ⊗ v3 ⊗ v1 ⊘ s⊗ ρ̂z→ (vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ σ̂ρ̂.

3. Assume that i1 = i2 = i3 and let λ ≠ (2,1). Then the following is an isomorphism.

Ψ ∶ P (x)Ð→ P
′(i1, i1, i1;λ)

v1 ⊗ v2 ⊗ v3 ⊗ sz→ v1 ⊗ v2 ⊗ v3.

If λ = (2,1) then P (x) = P ′(i1, i1, i1;λ).
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Proof. For ρ ∈ S3 define ρ̂ ∶= 1⊗ 1⊗ 1⊗ ρ ∈ A(3).
1. First note that Ψσ is the image of the homomorphism

Φ ∶ P (i1)⊗ P (i2)⊗ P (i3)Ð→ Res
A(3)
A(1,1,1)

Ind
A(3)
A((1,1,1))

P (iσ(1))⊗ P (iσ(2))⊗ P (iσ(3))
v1 ⊗ v2 ⊗ v3 z→ (vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ σ̂−1

under the isomorphism from Lemma 2.1.2. Therefore we only have to check the
homomorphism property for Φ. Let a1, a2, a3 ∈ A. Then, by definition, we have
the following relation in the algebra A(3):

(σ̂−1) ⋅ (a1 ⊗ a2 ⊗ a3 ⊗ 1)
= (1⊗ 1⊗ 1⊗ σ−1) ⋅ (a1 ⊗ a2 ⊗ a3 ⊗ 1)

= (aσ(1) ⊗ aσ(2) ⊗ aσ(3) ⊗ 1) ⋅ (1⊗ 1⊗ 1⊗ σ−1).
Now let v1 ∈ P (i1), v2 ∈ P (i2) and v3 ∈ P (i3) and a = a1 ⊗ a2 ⊗ a3 ∈ A ⊗A ⊗A.
We get

Φ(v1 ⊗ v2 ⊗ v3).(a⊗ 1)
= ((vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ σ̂−1).(a⊗ 1)
= (vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ (σ̂−1 ⋅ (a⊗ 1))

= (vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ (((a.σ)⊗ 1) ⋅ σ̂−1)
= (vσ(1)aσ(1) ⊗ vσ(2)aσ(2) ⊗ vσ(3)aσ(3))⊗ σ̂−1

= Φ((v1 ⊗ v2 ⊗ v3).(a⊗ 1)).
The map Ψσ is clearly bijective.

2. We show that

Φ ∶ T 2(P (i1))⊘ Sλ ⊗ P (i3)Ð→
Res

A(3)
A(1,1,1)

Ind
A(3)

({σ−1(1),σ−1(2)},σ−1(3))
P (iσ(1))⊗ P (iσ(2))⊗ P (iσ(3))

(v1 ⊗ v2 ⊘ s)⊗ v3 z→ (vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ σ̂−1

is a homomorphism and obtain the homomorphism property of Ψσ again by
Lemma 2.1.2. The homomorphism property for elements in A((1,1,1)) can be
proven exactly as above, as A((1,1,1)) acts neutrally on the Sλ component.
It remains to check that the map Φ commutes with multiplication with the
transposition η = (12). Let v1 ∈ P (i1), v2 ∈ P (i2) and v3 ∈ P (i3). Now one
computes

Φ(v1 ⊗ v2 ⊗ v3).η̂
= ((vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ σ̂−1).η̂

= (vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ σ̂−1 ⋅ η̂ ⋅ σ̂ ⋅ σ̂−1.
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Note that σ−1ησ = (σ−1(1)σ−1(2)) and thus

σ̂−1η̂σ̂ ∈ A({σ−1(1), σ−1(2)}, σ−1(3)).
Let ε(2) = 1 and ε(1,1) = −1. Then we get the following.

(vσ(1) ⊗ vσ(2) ⊗ vσ(3))⊗ σ̂−1 ⋅ η̂ ⋅ σ̂ ⋅ σ̂−1

= ελ ⋅ (vσ(σ−1(η(σ(1)))) ⊗ vσ(σ−1(η(σ(2)))) ⊗ vσ(σ−1(η(σ(3)))))⊗ σ̂−1

= ελ ⋅ (vη(σ(1)) ⊗ vη(σ(2)) ⊗ vη(σ(3)))⊗ σ̂−1

= Φ(ελ ⋅ vη(1) ⊗ vη(2) ⊘ s⊗ vη(3))
= Φ(vη(1) ⊗ vη(2) ⊘ ελ ⋅ s⊗ v3)
= Φ(vη(1) ⊗ vη(2) ⊘ (s.η)⊗ v3)

= Φ(v1 ⊗ v2 ⊘ s⊗ v3.η̂).
3. Let v1, v2, v3 ∈ P (i1), a1, a2, a3 ∈ A, ρ ∈ S3, s ∈ Sλ and define ε(3) = 1 and

ε(1,1,1) = sgn(ρ).
Ψ(v1 ⊗ v2 ⊗ v3 ⊗ s).(a1 ⊗ a2 ⊗ a3 ⊗ ρ)
= (v1 ⊗ v2 ⊗ v3).(a1 ⊗ a2 ⊗ a3 ⊗ ρ)

= ελ ⋅ (aρ(1)vρ(1) ⊗ aρ(2)vρ(2) ⊗ aρ(3)vρ(3))
= Ψ(ελaρ(1)vρ(1) ⊗ aρ(2)vρ(2) ⊗ aρ(3)vρ(3) ⊘ s)
= Ψ(aρ(1)vρ(1) ⊗ aρ(2)vρ(2) ⊗ aρ(3)vρ(3) ⊘ ελs)
= Ψ((v1 ⊗ v2 ⊗ v3 ⊗ s).(a1 ⊗ a2 ⊗ a3 ⊗ ρ))

Corollary 4.3.19. Let x = (i1, i2, i3;λ) ∈ Ip with λ ≠ (2,1) and σ ∈ S3.

Then P
′(iσ(1), iσ(2), iσ(3);λ) has the following properties. There is a subalgebra B

of A(3) and a B-module M such that

1. P (i1, i2, i3;λ) ≅A(3) P ′(iσ(1), iσ(2), iσ(3);λ)
2. A((1,1,1)) ⊆ B,

3. a1 ⊗ a2 ⊗ a3 ⊗ ρ̂ ∈ B ⇔ ρ(σ−1(j)) = σ−1(j) for every j ∈ {1,2,3}, ρ ∈ S3 and all
a1, a2, a3 ∈ A,

4. P
′(iσ(1), iσ(2), iσ(3);λ) = IndA(3)B M and

5. M =Fp
P (iσ(1))⊗ P (iσ(2))⊗ P (iσ(3)).
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The above Corollary assure that in all cases where S(2,1) does not occur, we only need
to define homomorphisms between modules of the form P

′(i, j, k;λ) and P
′(i′, j, k;λ′)

where i′ ∈ {i + 1, i − 1}. The homomorphisms between the standard presentations of
the projective indecomposable modules will be given by composition with the isomor-
phisms above, see Definition 4.3.22.

Remark 4.3.20. The standard representation S(2,1) of S3 will be described as follows.
Let (b1, b2, b3) be a basis of the vector space F 3, then F 3 becomes a right S3-module

via bi.σ = bσ−1(i) for σ ∈ S3. Let further x1 = b1 − b2 and x2 = b2 − b3. Then ⟨x1, x2⟩F ≅
S(2,1).

Lemma 4.3.21. Let x, y ∈ Ip i, j, k ∈ {1, . . . , p − 1}, ∣{i, j, k}∣ = 3, i′ ∈ {i + 1, i − 1} and
HomB0(FpSp)(P (i), rad(P (i′))/ rad2(P (i′))) = ⟨γ⟩.

Then β′(y,x) defined as below is a generator of

Hom
Λ
(P (x), rad(P (y))/ rad2(P (y)))

1. x = (i, i, i; (2,1)), y = (i′, i, i; (2))
a⊗ b⊗ c⊗ id⊗ x1 ↦ γ(a)⊗ b⊗ c⊗ id − γ(b)⊗ c⊗ a⊗ (132) (4.7)

a⊗ b⊗ c⊗ id⊗ x2 ↦ γ(b)⊗ c⊗ a⊗ (132) − γ(c)⊗ a⊗ b⊗ (123) (4.8)

2. x = (i, i, i; (2,1)), y = (i′, i, i, (1,1))
a⊗ b⊗ c⊗ id⊗ x1 ↦ 2γ(c)⊗ a⊗ b⊗ (123) − γ(a)⊗ b⊗ c⊗ id − γ(b)⊗ c⊗ a⊗ (132)

(4.9)

a⊗ b⊗ c⊗ id⊗ x2 ↦ 2γ(a)⊗ b⊗ c⊗ id − γ(b)⊗ c⊗ a⊗ (132) − γ(c)⊗ a⊗ b⊗ (123)
(4.10)

3. x = (i, i, i;λ), y = (i′, i, i;µ), (λ,µ) ∈ {((3), (2)), ((1,1,1), (1,1))}
a⊗ b⊗ c⊗ id↦ γ(a)⊗ b⊗ c⊗ id + γ(b)⊗ c⊗ a⊗ (132) + γ(c)⊗ a⊗ b⊗ (123)

(4.11)

4. x = (i, i′, i′; (2)), y(i′, i′, i′; (2,1))
a⊗ b⊗ c⊗ id↦ γ(a)⊗ b⊗ c⊗ id⊗ (2x1 + x2) (4.12)

5. x = (i, i′, i′; (1,1)), y = (i′, i′, i′; (2,1))
a⊗ b⊗ c⊗ id↦ γ(a)⊗ b⊗ c⊗ id⊗ x2 (4.13)

6. x = (i, j, j;µ), y = (i′, j, j;λ), λ ≠ (2,1)
a⊗ b⊗ c⊗ id↦ γ(a)⊗ b⊗ c⊗ id (4.14)
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7. x = (i, i, j; (2)), y(i′, i, j;λ)
a⊗ b⊗ c⊗ id↦ γ(a)⊗ b⊗ c⊗ id + γ(b)⊗ a⊗ c⊗ (12) (4.15)

8. x = (i, i, j; (1,1)), y = (i′, i, j;λ)
a⊗ b⊗ c⊗ id↦ γ(a)⊗ b⊗ c⊗ id − γ(b)⊗ a⊗ c⊗ (12) (4.16)

9. x = (i, j, k; (2)), y = (i′, j, k;λ)
a⊗ b⊗ c⊗ id↦ γ(a)⊗ b⊗ c⊗ id (4.17)

Proof. Let A = B0(FpSp)(3). Straightforward calculations very similar to the ones in
Lemma 4.3.18 show that the above maps are indeed homomorphisms.

All that remains is to show is that if f ∶ P 1 Ð→ P 2 is one of the homomorphisms
above, then Im(f) ⊈ rad2(P 2). This follows from Lemma 4.1.13 as follows. First

assume that P 2 = P
′(i1, i2, i3;λ) with i1, i2, i3 ∈ {1, . . . , p − 1}.

rad(P ′(i1, i2, i3;λ)) = rad(IndA(3)B (P (i1)⊗ P (j)⊗ P (k)))
= rad(ResA(3)

T 3(A)
(IndA(3)B (P (i1)⊗ P (j)⊗ P (k))))

=Res
A(3)

T 3(A)
(IndA(3)B (P (i1)⊗ P (j)⊗ P (k))).( 2

∑
i=0

T i(A)⊗ rad(A)⊗ T 2−i(A))
= Ind

A(3)
B
[(rad(P (i1))⊗ P (j)⊗ P (k))

+ (P (i1)⊗ rad(P (j))⊗ P (k)) + (P (i1)⊗ P (j)⊗ rad(P (k)))]

Applying the same argument again, we can see that an element a1 ⊗ a2 ⊗ a3 ⊗ ρ ∈

IndAB(P (i1)⊗ P (j)⊗ P (k)) lies in rad2(P ′(i1, j, k;λ)) if and only if

∃j ∈ {1,2,3} , aij ∈ rad2(P (ij)) or
∃j, k ∈ {1,2,3}, j ≠ k, aij ∈ rad(P (ij)), aik ∈ rad(P (ik)).

Thus if we choose a such that γ(a) ∉ rad2(P (i′1)) and b ∉ rad(P (i2)), c ∉ rad(P (i3))
we have f(a⊗ b⊗ c⊗ id) ∉ rad2(P 2).

The same argument works for cases including S(2,1) as we know from Lemma 4.1.13
that

rad2(T 3(P (i))⊘ S(2,1)) = rad2(T 3(P (i)))⊘ S(2,1).
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Theorem 4.3.22. Let x = (i1, i2, i3;λ), y = (i′1, i′2, i′3;λ′) ∈ Ip. Let j ∈ {1,2,3} with
i′j ∈ {ij + 1, ij − 1} and let ik = i

′
k for k ≠ j. Let further λ,λ′ be such that

Hom
Λ
(P (x), rad(P (y))/ rad2(P (y))) ≠ 0.

Let Φ1 ∶ P (x) Ð→ P
′(ij , ik, il;λ) and Φ2 ∶ P (y) Ð→ P

′(i′j , ik, il;λ′) and be the isomor-
phisms from Lemma 4.3.18 where ik ≤ il and {j, k, l} = {1,2,3}. Then

β(y,x) ∶= Φ
−1
2 ○ β

′
(i′

j
ikilλ′,ijikilλ)

○Φ1

is a generator of Hom
Λ
(P (x), rad(P (y))/ rad2(P (y)).

Proof. This is a direct consequence of Lemma 4.3.21.

Remark 4.3.23. The following diagrams depict parts of the quiver, for each index
a = (i, j, k;λ) ∈ I0 the quiver restricted to da. To improve readability, we write i− for
i − 1 and i+ for i + 1.

• i = j = k, (λ,µ) ∈ {((1,1,1), (1,1)), ((3), (2))}
i−i−i−λ i−i−iµ i−iiµ iiiλ

• i = j = k, λ = (2,1)
i−i−i−(2,1) i−i−i(1,1) i−ii(1,1) iii(2,1)

i−i−i(2) i−ii(2)
• i = j = k − 1,{µ,µ′} = {(1,1), (2)}

i−i−iµ i−iiµ iiiλ iii+µ

i−iiµ′ i−ii+

i−i−i+µ iii(2,1)
• j = k = i + 1, (λ,µ,µ′) ∈ {((1,1,1), (1,1), (2)), ((3), (2), (1,1))}

i−iiµ iiiλ iii+µ ii+i+µ

i−ii+ iii+µ′

i−i+i+µ
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• i + 1 = j = k − 1

j − 2j−j j−j−j(1,1) j−jj(1,1) j−jj+

j−j−j(2) j−jj(2)
j − 2jj(1,1) j−j−j+(1,1)
j − 2jj(2) j−j−j+(2)
j − 2j−j+ j − 2jj+

• i = j, k − j > 1, µ ∈ {(1,1), (2)}
i−i−k−µ i−ik− iik−µ iikµ

i−i−kµ i−ik

• j = i + 1, k − j > 1

i−ik− iik−(1,1) ii+k− ii+k

iik−(2) iik(1,1)
i−i+k− iik(2)
i−ik i−i+k

• j − i > 1, k − j > 1

i−j−k− ij−k− ijk− ijk

i−jk− i−jk

i−j−k ij−k

Definition 4.3.24. Let x and y be two vertices in the quiver Q
Λ
of Λ. We call an

arrow from x to y in Q
Λ
ascending (descending) if l(x) < l(y) (l(x) > l(y)). Note that

every arrow is either ascending or descending as ∣l(x) − l(y)∣ = 1 whenever an arrow
between x and y exists. We call a path in the quiver ascending (descending) if all the
arrows on the path are ascending (descending).
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Lemma 4.3.25. Let x, y, y′, z ∈ Ip with x > y, x > y′, y > z, y′ > z or x < y, x <

y′, y < z, y′ < z and assume that there is an arrow in Q
Λ

for the pairs of vertices(x, y), (x, y′), (y, z), (y′, z) and assume that dx ∩ dy ∩ dz ≠ ∅ and cx ∩ cy′ ∩ cz ≠ ∅.

β(z,y)β(y,x) = Fzyxy′β(z,y′)β(y′,x)

Where Fzyxy′ is as in Table 4.1. Note that we list every combination {x, y, y′, z} just
once since Fzyxy′ =

1
Fzy′xy

. The annotations (′,∗) can be replaced both by (+,−) and
(−,+) to cover the ascending and descending cases at the same time. Note that the
components of the indices below are not assumed to be ordered to allow us to consider
ascending and descending paths simultaneously.

Proof. We will prove that Table 4.1 covers all possible cases. If we don’t assume any
order in the components, every descending/ascending path of length 2 such that all
vertices share some composition factor will be between two vertices of the form

x = (i, j, k;ρ), z = (i′, j′, k;ρ′).
with the middle vertices being of the form

y ∈ {(i′, j, k; η), (i, j′, k; η′)}.
Now we consider several cases. We define µ(3) = (2) and µ(1,1,1) = (1,1).

1. i = j = k:

a) If x = (i, i, i; (2,1)) then
y ∈ {(i′, i, i; (2)), (i′, i, i; (1,1))}, z ∈ {(i′, i′, i; (2)), (i′, i′, i; (1,1))}

and all combinations are possible.

b) If x = (i, i, i;λ), λ ≠ (2,1) then y = y′ = (i′, i, i;µλ) and z = (i′, i′, i;µλ). So
there is just one path and we do not have to consider it.

2. i = j ≠ k:

a) If i′ = j′ = k, i.e. x = (k∗, k∗, k;ρ), then y = (k, k∗, k;µ) for some µ ⊢ 2 and
z = (k, k, k;ρ′) for some ρ′ ⊢ 3. If ρ′ = (2,1) then both options for µ are
possible. Otherwise µ = µρ′ .

b) If i′ ≠ k then there is just one possibility y = (i′, i, k) for the middle vertex
and thus a unique path which we do not have to consider.

3. i = k ≠ j (yields the same possibilities as j = k ≠ i):

a) If i′ = k′ = j, i.e. x = (i, i∗, i;ρ), then y ∈ {(i′, i∗, i), (i, i, i; η)} and z =(i′, i, i;ρ′). The partition η = (2,1) is possible independent from ρ′ but only
one of η ∈ {(3), (1,1,1)} is possible dependent on ρ′ and if ρ ≠ ρ′ that only
η = (2,1) is possible.
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x y y′ z Fzyx(i, i, i; (2,1)) (i′, i, i; (2)) (i′, i, i; (1,1)) (i′, i′, i; (2)) −3(i, i, i; (2,1)) (i′, i, i; (2)) (i′, i, i; (1,1)) (i′, i′, i; (1,1)) 1

(i, i∗, i; (2)) (i′, i, i∗) (i, i, i; (3)) (i′, i, i; (2)) 1(i, i∗, i; (2)) (i′, i, i∗) (i, i, i; (2,1)) (i′, i, i; (2)) −1(i, i∗, i; (2)) (i, i, i; (2,1)) (i, i, i; (3)) (i′, i, i; (2)) −1(i, i∗, i; (2)) (i′, i, i∗) (i, i, i; (2,1)) (i′, i, i; (1,1)) 3

(i, i∗, i; (1,1)) (i′, i, i∗) (i, i, i; (1,1,1)) (i′, i, i; (1,1)) −1(i, i∗, i; (1,1)) (i′, i, i∗) (i, i, i; (2,1)) (i′, i, i; (1,1)) 1(i, i∗, i; (1,1)) (i, i, i; (2,1)) (i, i, i; (1,1,1)) (i′, i, i; (1,1)) −1(i, i∗, i; (1,1)) (i′, i, i∗) (i, i, i; (2,1)) (i′, i, i; (2)) 1

(i, i∗, i∗; (2)) (i′, i∗, i∗; (2)) (i, i, i∗; (2)) (i′, i, i∗) 1(i, i∗, i∗; (2)) (i′, i∗, i∗; (2)) (i, i, i∗; (1,1)) (i′, i, i∗) −1(i, i∗, i∗; (2)) (i, i, i∗; (2)) (i, i, i∗; (1,1)) (i′, i, i∗) −1(i∗, i∗, i; (2)) (i, i∗, i; (2)) (i, i∗, i; (1,1)) (i, i, i(2,1)) 1

(j, i, i; (2)) (j′, i, i; (2)) (j, i′, i) (j′, i′, i) 1 ∣j − i∣ > 1
(i, i∗, i∗; (1,1)) (i′, i∗, i∗; (1,1)) (i, i, i∗; (1,1)) (i′, i, i∗) −1(i, i∗, i∗; (1,1)) (i′, i∗, i∗; (1,1)) (i, i, i∗; (2)) (i′, i, i∗) 1(i, i∗, i∗; (1,1)) (i, i, i∗; (1,1)) (i, i, i∗; (2)) (i′, i, i∗) −1(i∗, i∗, i; (1,1)) (i, i∗, i; (1,1)) (i, i∗, i; (2)) (i, i, i(2,1)) −3
(j, i, i; (1,1)) (j′, i, i; (1,1)) (j, i′, i) (j′, i′, i) 1 ∣j − i∣ > 1
(i, i∗, i′) (i′, i∗, i′(2)) (i, i, i′(2)) (i′, i, i′(2)) 1(i, i∗, i′) (i′, i∗, i′(2)) (i, i, i′(1,1)) (i′, i, i′(2)) −1(i, i∗, i′) (i, i, i′(2)) (i, i, i′(1,1)) (i′, i, i′(2)) −1(i, i∗, i′) (i′, i∗, i′(1,1)) (i, i, i′(1,1)) (i′, i, i′(1,1)) −1(i, i∗, i′) (i′, i∗, i′(1,1)) (i, i, i′(2)) (i′, i, i′(1,1)) 1(i, i∗, i′) (i, i, i′(1,1)) (i, i, i′(2)) (i′, i, i′(1,1)) −1

(j, i∗, i) (j′, i∗, i) (j, i, i; (2)) (j′, i, i; (2)) 1
j ∉ {i, i∗},
j′ ∉ {i, i∗}

(j, i∗, i) (j′, i∗, i) (j, i, i; (1,1)) (j′, i, i; (1,1)) 1
j ∉ {i, i∗},
j′ ∉ {i, i∗}

(i, i∗, j) (i′, i∗, j) (i, i, j; (2)) (i′, i, j) 1 j ∉ {i′, i, i∗}(i, i∗, j) (i′, i∗, j) (i, i, j; (1,1)) (i′, i, j) 1 j ∉ {i′, i, i∗}(i, i∗, j) (i, i, j; (2)) (i, i, j; (1,1)) (i′, i, j) 1 j ∉ {i′, i, i∗}
(i, j, k) (i′, j, k) (i, j′, k) (i′, j′, k) 1

∣{i, j, k}∣ = 3,∣j − i∣ > 1
Table 4.1: Factors
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b) If i′ ≠ j, i.e. x = (i, j, i;ρ), then y ∈ {(i, j′, i;ρ), (i′, j, i)} and z = (i′, j′, i).
4. i ≠ j ≠ k First note that i′ = j ⇒ j′ ≠ i, j′ = i ⇒ i′ ≠ j, i′ = k ⇒ j′ ≠ k and

j′ = k⇒ i′ ≠ k.

a) If i′ = j and j′ = k ((i, j, k) = (j∗, j, j′)) we have a permutation of case 4c)
below.

b) If i′ = j and j′ ≠ k ((i, j, k) = (j∗, j, k)) we have a permutation of case 4e)
below.

c) If i′ = k and j′ = i ((i, j, k) = (i, i∗, i′)) then both y and z have type 2. If
y = (i′, i∗, i′; η) then η = ρ′. Otherwise, both choices are possible.

d) If i′ = k and j′ ≠ k ((i, j, k) = (k∗, j, k)) then we have a permutation of case
4f) below.

e) If j′ = i and i′ ≠ k ((i, j, k) = (i, i∗, k)) then y and z have type 1 and y′ has
type 2. Either partition of type 2 is possible.

f) If j′ = k and i′ ≠ j ((i, j, k) = (i, k∗, k)) then then y has type 1 and y′ and z

have type 2 and it is λ′ = λ′′.

g) If j′, i′ ∉ {i, j, k} then all indices are of type 1 and all partitions are 1.

That the homomorphisms are scalar multiples of one another with the scalars above
follows from straightforward if somewhat tedious calculations. Details can be found
in the appendix.

Notation 4.3.26. Since there is at most one arrow between two vertices in the quiver
Q

Λ
of Λ we will sometimes describe paths as a sequence of vertices. For a path ρ =(x1, . . . , xn) in Q

Λ
we define the reverse path ρ−1 = (xn, . . . , x1). This will always

describe a path in Q
Λ
since there is an arrow from a vertex x to another vertex y if

and only if there is an arrow from y to x.

Lemma 4.3.27. Let a = (i, j, k;λ) ∈ I0 such that a− ∶= (i − 1, j − 1, k − 1;λ) ∈ I0. Then
there is a descending path ρ of length 3 from a to a− in the quiver Q

Λ
of Λ such that

ρρ−1 corresponds to a non-zero endomorphism of P (a−).
Proof. This follows again from straight forward calculations, which can be found in
the appendix.

4.4 The principal block of Zp(Sp ≀ S3)

Recall that we fixed the p-modular system (K,R,F ) = (Qp,Zp,Fp). Throughout this
section we let Λ be the basic algebra of the principal block of Fp(Sp ≀ S3) and Λ0 be
the basic algebra of the principal block of Zp(Sp ≀S3). Let I0 and Ip be as in Definition
4.3.5. We use the notation from 4.2.1 for the Sp-modules. Let Λ be a Λ0-lift of Λ, i.e.

1. Λ/pΛ ≅ Λ
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2. K ⊗Λ is semisimple with center Z(K ⊗Λ) =⊕a∈I0 K.

3. The decomposition matrix of Λ is the same as that of Λ0.

4. Λ is self dual in K ⊗ Λ with respect to the form Tu with u = (ua)a∈I0 and

ua =
dim(Va)
∣Sp≀S3∣

Because Λ is basic and all decomposition numbers are one or zero, we know that
ma ∶= dimVa = ∣{x ∈ Ip ∣ dax ≠ 0}∣ for every a ∈ I0. By Lemma 2.1.32 we can assume
that

Λ ⊆ ⊕
a∈I0

Rma×ma .

We write (x, y) ∈ Q
Λ
if x, y ∈ Ip and there is an arrow between x and y in the quiver

Q
Λ
of Λ. Recall that this is a symmetric property in this particular case.

Lemma 4.4.1. For every a ∈ I0 we obtain

νp(ua) = νp(dim(Va)∣Sp ≀ S3∣ ) = −3
Proof. We know that every simple KSp-module whose dimension is divisible by p lies
in a defect zero block by Example 2.2.24. Therefore every simple B0(KSp)-module
has a dimension prime to p. With the notation in Lemma 4.3.4 for a = (i, j, k;λ) ∈ I0,
the dimension of Va is

dim(Va) = dim(V (i)) ⋅ dim(V (j)) ⋅ dim(V (k)) ⋅C(λ) ⋅ dim(Sλ).
and as by assumption p > 3 we know that both C(λ) and dim(Sλ) are prime to p.

Notation 4.4.2. We denote the primitive idempotents of Λ by ex for x ∈ Ip and the
centrally primitive idempotents of K⊗Λ by εa for a ∈ I0. For x, y ∈ Ip with (x, y) ∈ Q

Λ

we let β(y,x) be as in Definition 4.3.22. Let further β̂(y,x) denote a lift of β(y,x) such

that β̂(y,x)εa = 0 for every a ∈ Ip ∖ cx ∩ cy. We further define

Γ ∶= ⊕
a∈I0

εaΛ = ⊕
a∈I0

Rma×ma .

With the notation above we know that

Gen(Λ) ∶= {ex ∣ x ∈ Ip} ∪ {β̂(y,x) ∣ x, y ∈ Ip and (x, y) ∈ Q
Λ
}

is a generating system of Λ. Our goal is to determine as much information as we can
about those generators to define a corresponding generating system of Λ that we can
determine completely.
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4.4.1 Endomorphism rings

Definition 4.4.3. To every path p = (x1, . . . , xn) in the quiver of Λ, we associate the
homomorphism

Φ(p) = β(xn,xn−1) ○ . . . ○ β(x2,x1).

Lemma 4.4.4. Let a = (i, j, k;λ) ∈ Ip such that a− = (i − 1, j − 1, k − 1;λ) ∈ Ip.
1. For any two ascending (descending) paths p1 and p2 of length two between two

vertices in the quiver there is a unit F ∈ R∗ such that Φ(p1) = FΦ(p2).
2. For any two ascending (descending) paths p1 and p2 of length 3 between a and

a− there is a unit F ∈ R∗ such that Φ(p1) = FΦ(p2).
3. For every ascending (descending) path p of length 3 between a− and a we have

Φ(pp−1) ≠ 0.
Proof. 1. This follows directly from Lemma 4.3.25.

2. Let b = (i′, j′, k′;λ′) be some vertex on an ascending path of length 3 between
a− and a. Then we have either (a−, b) ∈ Q

Λ
or (a, b) ∈ Q

Λ
, so λ′ ∈ c(λ). Also

note that i′ ∈ {i, i − 1}, j′ ∈ {j, j − 1} and k′ ∈ {k, k − 1} and therefore dab ≠ 0.
Considering the quiver restricted to a as depicted in Remark 4.3.23 it is easy
to see that any ascending path of length 3 from a− to a can be transformed to
any other such path by repeatedly exchanging ascending paths of length two.
By Part 1 these actions only change the homomorphism by multiplication with
units. The same argument works for the descending case.

3. This part follows from Part 2 together with Lemma 4.3.27.

Corollary 4.4.5. Let a = (i, j, k;λ) ∈ Ip such that a− = (i − 1, j − 1, k − 1;λ) ∈ Ip. Let

further x, y ∈ Ip with a ∈ cx ∩ cy and assume that (x, y) ∈ Q
Λ
. Then (β̂(y,x)β̂(x,y))a has

p-valuation 1.

Proof. As (β̂(y,x)β̂(x,y))a = (β̂(x,y)β̂(y,x))a we can without loss assume that x < y.
Then the arrow (x, y) lies on an ascending path p = (a−, a1, a2, a) from a− to a, so
x, y ∈ {a−, a1, a2, a}. Then

γ ∶= β(a,a2)β(a2,a1)β(a1,a−)β(a−,a1)β(a1,a2)β(a2,a)

is non-zero and therefore for the following lift of γ we get

γ̂ ∶= β̂(a,a2)β̂(a2,a1)β̂(a1,a−)β̂(a−,a1)β̂(a1,a2)β̂(a2,a) ∉ pΛ.
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In particular Lemma 2.5.6 implies that γ̂ ∉ p4Γ ⊆ pΛ. Note that ca ∩ ca− = {a} and
thus the product γ̂ is zero in every component except a. Therefore the entry γ̂a has
p-valuation at most 3. Lemma 2.5.11 implies that

Fa−a−(β̂(a−,a1)β̂(a1,a2)β̂(a2,a)β̂(a,a2)β̂(a2,a1)β̂(a1,a−)) =
Fa−a−(β̂(a−,a1)β̂(a1,a−))Fa1a1(β̂(a1,a2)β̂(a2,a1))Fa2a2(β̂(a2,a)β̂(a,a2)).

On the other hand we know that Fzz(β̂(z,t)β̂(t,z)) ∈ pR∣I0∣ for any z, t ∈ Ip. So

(β̂(z,t)β̂(t,z))a has p-valuation 1 for (z, t) ∈ {(a, a2), (a2, a1), (a1, a−)}, in particular
for (z, t) = (x, y).
Definition 4.4.6. 1. For i ∈ {1, . . . , p} or i ∈ I0 let ri = dim(V (i)).

2. For i ∈ {1, . . . , p − 1} define ξi ∶=
ri+1
ri

and ηi ∶=
ξi+1
p

, so ξi = −1 + ηip.

Lemma 4.4.7. 1. Using the notation above, we have

ξi ≡ −1 mod p and ηi ∈ Z.

2. Let x ∈ Ip. Then if an element of exΛex has exactly one non-zero entry, this
entry needs to have p-valuation at least 3.

Proof. 1. We know that dim(P (i)) = dim(V (i)) + dim(V (i + 1)) and therefore by
Theorem 2.2.16

ri + ri+1 ≡ 0 mod p⇒ ri ≡ −ri+1 mod p

⇒ ξi ≡ −1 mod p and ηi ∈ Z.

2. This follows directly from the self-duality of exΛex.

Notation 4.4.8. 1. For a ∈ I0 denote the components of a via a = (a1, a2, a3;λa)
and define Ca ∶= C(λa).

2. For x ∈ Ip and a ∈ cx define

nx
a ∶= ∣{x1, x2, x3} ∖ {a1, a2, a3}∣,

σx
a ∶=

rx1
rx2

rx3

ra1ra2ra3

ρxa ∶=
σx
a − (−1)nx

a

p
.

We will often have a context where x is fixed. We will then omit the index x and
write na, σa and ρa.
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Lemma 4.4.9. Let x ∈ Ip and a ∈ cx. Then we have

rxi

rai
≡

⎧⎪⎪⎨⎪⎪⎩
1 mod p if ai = xi

ξxi
mod p otherwise

.

In particular

σx
a ≡ (−1)nx

a mod p and ρxa ∈ Z.

Proof. If ai ≠ xi then ai = xi+1 since a ∈ cx and the assertion follows by Lemma
4.4.7.

Lemma 4.4.10. Let x ∈ Ip and a ∈ cx. Then we obtain the congruence

ra

rx1
rx2

rx3

≡ Ca(−1)nx
a mod p.

Proof. By Lemma 4.3.4 we know that ra = Cara1ra2ra3 .

Lemma 4.4.11. Let x ∈ Ip and γ ∈ exΛex. Then we obtain the congruences

∑
a∈I0

rxaγa ≡ 0 mod p3 (4.18)

0 ≡ ∑
a∈I0

Ca(−1)nx
aγa mod p2. (4.19)

Proof. Self-duality of Λ implies

Tu(γ, ex) = 1

∣Sp ≀ S3∣ ∑a∈I0 raγa ∈ R
⇒ p3∣ ∑

a∈I0

raγa

⇒ 0 ≡ ∑
a∈I0

Ca
ra

rx1
rx2

rx3

γa ≡ ∑
a∈I0

Ca(−1)naγa mod p2

where the last equivalence follows since νp(γa) ≥ 1 and thus

ra

rx1
rx2

rx3

γa −Ca(−1)naγa ≡ 0 mod p2.

Lemma 4.4.12. Let xIp, γ ∈ exΛex and assume that there is a unit βa ∈ R
∗ such that

γa = βap whenever γa ≠ 0. Define βa = 0 otherwise. Then we obtain the congruences

∑
a∈I0

rxaβa ≡ 0 mod p2 (4.20)

0 ≡ ∑
a∈I0

Ca(−1)nx
aβa mod p (4.21)

0 ≡ ∑
a∈I0

Ca(−1)nx
aβ2

a mod p. (4.22)
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Proof. The first two congruences follow from Lemma 4.4.11:

4.18 ∶ ∑
a∈I0

raγa ≡ 0 mod p3

⇒ ∑
a∈I0

raβa ≡ 0 mod p2

4.19 ∶ ∑
a∈I0

Ca(−1)naγa ≡ 0 mod p2

⇒ ∑
a∈I0

Ca(−1)naβa mod p

The third congruence follows from the same arguments as in Lemma 4.4.11 by the
considering the trace of γ with itself.

Tu(γ, γ) = 1

∣Sp ≀ S3∣ ∑a∈I0 raγ
2
a ∈ R

⇒ p3∣ ∑
a∈I0

raγ
2
a = ∑

a∈I0

raβ
2
ap

2

⇒ 0 ≡ ∑
a∈I0

Ca(−1)naβ2
a mod p

Lemma 4.4.13. Let x ∈ Ip, γ ∈ exΛex, γ
′ ∈ exΓex such that γa ≡ γ

′
a mod p2 for every

a ∈ I0 and assume that Tu(γ′,1) ∈ R. Then γ − γ′ ∈ Λ ∩ p2Γ. In particular, γ′ ∈ Λ.

Proof. It is clear that γ − γ′ ∈ p2Γ. So all that remains is to show that γ′ ∈ Λ. By
assumption we know that Tu(γ, ex) ∈ R. Now let δ ∈ exΛex ∖ exR ⊆ pΓ. Then

p3(Tu(γ′, δ) −Tu(γ, δ)) = p3Tu(γ′ − γ, δ)
∈ p3Tu(p2Γ, pΓ) ⊆ p3R.

Thus we obtain Tu(γ′, δ) ∈ R. Therefore γ′ ∈ (exΛex)♯ = exΛex which concludes the
proof.

Lemma 4.4.14. Let x, y ∈ Ip, γ = γ1 ⋅ γ2 ∈ exΛeyeyΛex and γ′ as above. Define
δ ∶= γ2γ1 ∈ eyΛey and δ′ ∈ eyΛey with δ′a = γ

′
a for every a ∈ I0. Then

δ − δ′ ∈ Λ ∩ p2Γ.

Proof. By Lemma 2.5.11 we know that γa = δa for every a ∈ I0. Furthermore Tu(δ′,1) =
Tu(γ′,1) and therefore the assumptions of Lemma 4.4.13 are fullfilled for δ, δ′.

Lemma 4.4.15. Let γ ∈ exΓex, a, b ∈ cx such that γc = 0 if c ∉ {a, b} and γa = βap
2, γb =

βbp
2 with βa, βb ∈ R

∗. Then

γ ∈ Λ⇔ (−1)naCaβa ≡ −(−1)nbCbβb mod p.
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Proof. First consider the trace of γ with ex:

∣Sp ≀ S3∣Tu(γ, ex)
rx1

rx2
rx3

≡ (−1)naCaγa + (−1)nbCbγb ≡ 0 mod p3

⇒ (−1)naCaβa + (−1)nbCbβb ≡ 0 mod p,

which implies the direction from left to right. For the converse recall that exΛex ∖
exR

∗ ⊆ pΓ. By assumption we know that Tu(γ, ex) ∈ R and γex(pΓ)ex ⊆ p3Γ, which
implies that Tu(γβ) ∈ R for any β ∈ exΛex ∖ exR

∗. Thus we conclude that γ ∈(exΛex)# = exΛex.
Lemma 4.4.16. Let x ∈ Ip, a ≠ b ∈ I0 and γ, δ ∈ exΛex ∖ exR∗ with (γδ)c ≠ 0 if and
only if c ∈ {a, b}.

1. If νp((γδ)a) = 2, then νp(γb) = νp(δb) = 1.
2. Assume that (γδ)a ≡ αp2 mod p3 and δb = βp mod p2 with α,β ∈ R∗. Then

γp ≡
−(−1)naCaαp(−1)nbCbβ

mod p2.

Proof. By assumption νp(γb), νp(δb) ≥ 1. If one of them had p-valuation larger than
zero, then for ϑ ∈ exΛex with ϑb = γbδb and ϑc = 0 for all c ≠ 0 we would have ϑ ∈ exΛex
since νp(γbδb) ≥ 3. Then γδ − ϑ would be an element contradicting Lemma 4.4.7 Part
2.

For the second part, first note that we already know that p ∣ γb. Then consider the
trace of γδ with ex. We have

∣Sp ≀ S3∣
rx1

rx2
rx3

Tu(γδ, ex) = ∑
c∈I0

rc

rx1
rx2

rx3

γcδc

=
ra

rx1
rx2

rx3

γaδa +
rb

rx1
rx2

rx3

γbδb

≡ Ca ⋅ (−1)naαp2 +Cb ⋅ (−1)nb
δb

p
⋅ p ⋅ βp mod p3

⇒ γb ≡
−(−1)naCaαp(−1)nbCbβ

mod p2

Lemma 4.4.17. Let x ∈ Ip, γ ∈ exΛex, a ≠ b ∈ I0 and assume that γc ≠ 0 ⇔ c ∈{a, b} and assume further that γa = βap, γb = βbp with βa, βb ∈ R
∗. Then Ca(−1)na ≡

−Cb(−1)nb mod p.
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Proof. By congruences 4.21 and 4.22 we obtain that

0 ≡ Ca(−1)naβa +Cb(−1)nbβb mod p

0 ≡ Ca(−1)naβ2
a +Cb(−1)nbβ2

b mod p

⇒ βa ≡
Cb(−1)nbβb

Ca(−1)na
mod p

⇒ 0 ≡ Cb(−1)nbβ2
b (Cb(−1)nb

Ca(−1)na
+ 1)

⇒ Ca(−1)na ≡ −Cb(−1)nb

Notation 4.4.18. For two elements α,β ∈ Λ we write α ∼ β if there is a unit ξ ∈ R∗

such that α ≡ ξβ mod Λ ∩ p2Γ.

Definition 4.4.19. Let x, y ∈ Ip be two indices such that (x, y) ∈ Q
Λ
.

1. We call β̂(x,y)β̂(y,x) ∈ exΛex a standard endomorphism.

2. We call the elements of cx ∩ cy the relevant positions of β̂(x,y)β̂(y,x). If a ∈ I0 is

a relevant positions, we say (β̂(x,y)β̂(y,x))a is a relevant entry of β̂(x,y)β̂(y,x).

We are now going to determine the standard endomorphisms up to multiplication
with a unit and modulo p2Γ ∩Λ. For these calculations we will identify the endomor-
phism rings exΛex for x ∈ Ip with the direct sum ⊕i∈cx K as in Remark 2.5.13. We
sometimes write i+ for i + 1 and i− for i − 1.

Theorem 4.4.20. The endomorphism rings are the row spaces of the following ma-
trices. The standard endomorphisms are given up to multiplication with a unit and
modulo Λ∩p2Γ. If γ is a standard endomorphism we denote the endomorphism defined
as in the matrix below by γ′.

• eijkΛeijk for ∣i − j∣ > 1, ∣j − k∣ > 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ijk i+jk ij+k ijk+ ij+k+ i+jk+ i+j+k i+j+k+

1 1 1 1 1 1 1 1

(i+,j,k) 0 p 0 0 0 p p p

(i,j+,k) 0 0 p 0 p 0 p p

(i,j,k+) 0 0 0 p p p 0 p

0 0 0 0 p2 0 0 p2

0 0 0 0 0 p2 0 p2

0 0 0 0 0 0 p2 p2

0 0 0 0 0 0 0 p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The standard endomorphisms written as row vectors are as follows.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ijk i+jk ij+k ijk+ ij+k+ i+jk+ i+j+k i+j+k+

1 1 1 1 1 1 1 1

(i−,j,k) p 0 p p p 0 0 0

(i+,j,k) 0 p 0 0 0 p p p

(i,j−,k) p p 0 p 0 p 0 0

(i,j+,k) 0 0 p 0 p 0 p p

(i,j,k−) p p p 0 0 0 p 0

(i,j,k+) 0 0 0 p p p 0 p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• eiiiλΛeiiiλ, µ ∈ cλ

⎛⎜⎜⎜⎜⎜⎝

iiiλ iii+µ ii+i+µ i+i+i+λ

1 1 1 1

iii+µ 0 p 2p 3p

0 0 p2 3p2

0 0 0 p3

⎞⎟⎟⎟⎟⎟⎠

Standard endomorphisms:

⎛⎜⎜⎜⎝

iiiλ iii+µ ii+i+µ i+i+i+λ

1 1 1 1

i−iiµ 3p 2p p 0

iii+µ 0 p 2p 3p

⎞⎟⎟⎟⎠

• eiii(2,1)Λeiii(2,1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iii(2,1) iii+µ iii+µ′ ii+i+µ ii+i+µ′ i+i+i+(2,1)

1 1 1 1 1 1

iii+µ 0 2p 0 p 3p 3p

iii+µ′ 0 0 2p 3p p 3p

0 0 0 2p2 0 3p2

0 0 0 0 2p2 3p2

0 0 0 0 0 p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Standard endomorphisms:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

iii(2,1) iii+µ iii+µ′ ii+i+µ ii+i+µ′ i+i+i+(2,1)

1 1 1 1 1 1

i−iiµ 3p p 3p 2p 0 0

i−iiµ′ 3p 3p p 0 2p 0

iii+µ 0 2p 0 p 3p 3p

iii+µ′ 0 0 2p 3p p 3p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

• eiii+µΛeiii+µ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iii+µ ii+i+µ′ ii+i+µ ii(i+2)µ i+i+i+λ i+i+i+(2,1) ii+(i+2) i+i+(i+2)µ

1 1 1 1 1 1 1 1

ii+i+µ′ 0 2p 0 0 0 3p p 2p

ii+i+µ 0 0 2p 0 4p p p 2p

ii(i+2)µ 0 0 0 p 0 0 p p

0 0 0 0 3p2 0 0 p2

0 0 0 0 0 3p2 0 2p2

0 0 0 0 0 0 p2 2p2

0 0 0 0 0 0 0 p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Standard endomorphisms:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iii+µ ii+i+µ′ ii+i+µ ii(i+2)µ i+i+i+λ i+i+i+(2,1) ii+(i+2) i+i+(i+2)µ

1 1 1 1 1 1 1 1

iiiλ p 0 2p 0 3p 0 0 0

iii(2,1) 2p 3p p 0 0 3p 0 0

ii(i+2)µ 0 0 0 p 0 0 p p

i−ii+ 2p p p 2p 0 0 p 0

ii+i+µ′ 0 2p 0 0 0 3p p 2p

ii+i+µ 0 0 2p 0 4p p p 2p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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• ei−iiµΛei−iiµ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i−iiµ iiiλ iii(2,1) i−ii+ iii+µ′ iii+µ i−i+i+µ ii+i+µ

1 1 1 1 1 1 1 1

iiiλ 0 3p 0 0 0 2p 0 p

iii(2,1) 0 0 3p 0 3p p 0 2p

i−ii+ 0 0 0 p p p 2p 2p

0 0 0 0 p2 0 0 p2

0 0 0 0 0 p2 0 p2

0 0 0 0 0 0 p2 p2

0 0 0 0 0 0 0 p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Standard endomorphisms:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i−iiµ iiiλ iii(2,1) i−ii+ iii+µ′ iii+µ i−i+i+µ ii+i+µ

1 1 1 1 1 1 1 1

i−i−iµ′ 2p 0 3p p 2p 0 0 0

i−i−iµ 2p 4p p p 0 2p 0 0

i−2iiµ p 0 0 p 0 0 p 0

iiiλ 0 3p 0 0 0 2p 0 p

iii(2,1) 0 0 3p 0 3p p 0 2p

i−ii+ 0 0 0 p p p 2p 2p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
• eiijµΛeiijµ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iijµ ii+j iij+µ i+i+jµ ii+j+ i+i+j+µ

1 1 1 1 1 1

ii+j 0 p 0 2p p 2p

iij+µ 0 0 p 0 p p

0 0 0 p2 0 p2

0 0 0 0 p2 2p2

0 0 0 0 0 p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Standard endomorphisms:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

iijµ ii+j iij+µ i+i+jµ ii+j+ i+i+j+µ

1 1 1 1 1 1

iij−µ p p 0 p 0 0

i−ij 2p p 2p 0 p 0

ii+j 0 p 0 2p p 2p

iij+µ 0 0 p 0 p p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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• ejiiµΛejiiµ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

jiiµ j+iiµ jii+ j+ii+ ji+i+µ j+i+i+µ

1 1 1 1 1 1

j+iiµ 0 p 0 p 0 p

jii+ 0 0 p p 2p 2p

0 0 0 p2 0 2p2

0 0 0 0 p2 p2

0 0 0 0 0 p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Standard endomorphisms:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

jiiµ j+iiµ jii+ j+ii+ ji+i+µ j+i+i+µ

1 1 1 1 1 1

ji−i 2p 2p p p 0 0

j−iiµ p 0 p 0 p 0

j+iiµ 0 p 0 p 0 p

jii+ 0 0 p p 2p 2p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

• ejii+µΛejii+µ, i2 ∶= i + 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

jii+ j+ii+ ji+i+(1,1) ji+i+(2) jii2 j+i+i+(1,1) j+i+i+(2) j+ii2 ji+i2 j+i+i2

1 1 1 1 1 1 1 1 1 1

j+ii+ 0 p 0 0 0 p p p 0 p

ji+i+(1,1) 0 0 2p 0 0 2p 0 0 p p

ji+i+(2) 0 0 0 2p 0 0 2p 0 p p

jii2 0 0 0 0 p 0 0 p p p

0 0 0 0 0 2p2 0 0 0 p2

0 0 0 0 0 0 2p2 0 0 p2

0 0 0 0 0 0 0 p2 0 p2

0 0 0 0 0 0 0 0 p2 p2

0 0 0 0 0 0 0 0 0 p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Standard endomorphisms:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

jii+ j+ii+ ji+i+(1,1) ji+i+(2) jii2 j+i+i+(1,1) j+i+i+(2) j+ii2 ji+i2 j+i+i2

1 1 1 1 1 1 1 1 1 1

jii(1,1) p p 2p 0 0 2p 0 0 0 0

jii(2) p p 0 2p 0 0 2p 0 0 0

ji−i+ p p 0 0 p 0 0 p 0 0

j−ii+ p 0 p p p 0 0 0 p 0

j+ii+ 0 p 0 0 0 p p p 0 p

ji+i+(1,1) 0 0 2p 0 0 2p 0 0 p p

ji+i+(2) 0 0 0 2p 0 0 2p 0 p p

jii2 0 0 0 0 p 0 0 p p p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
• ei−ijµΛei−ijµ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i−ij iij(1,1) iij(2) i−i+j i−ij+ ii+j iij+(1,1) iij+(2) i−i+j+ ii+j+

1 1 1 1 1 1 1 1 1 1

iij(1,1) 0 2p 0 0 0 p 2p 0 0 p

iij(2) 0 0 2p 0 0 p 0 2p 0 p

i−i+j 0 0 0 p 0 p 0 0 p p

i−ij+ 0 0 0 0 p 0 p p p p

0 0 0 0 0 p2 0 0 0 p2

0 0 0 0 0 0 2p2 0 0 p2

0 0 0 0 0 0 0 2p2 0 p2

0 0 0 0 0 0 0 0 p2 p2

0 0 0 0 0 0 0 0 0 p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Standard endomorphisms:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i−ij iij(1,1) iij(2) i−i+j i−ij+ ii+j iij+(1,1) iij+(2) i−i+j+ ii+j+

1 1 1 1 1 1 1 1 1 1

i−ij− p p p p 0 p 0 0 0 0

i−i−j(1,1) p 2p 0 0 p 0 2p 0 0 0

i−i−j(2) p 0 2p 0 p 0 0 2p 0 0

i−2ij p 0 0 p p 0 0 0 p 0

iij(1,1) 0 2p 0 0 0 p 2p 0 0 p

iij(2) 0 0 2p 0 0 p 0 2p 0 p

i−i+j 0 0 0 p 0 p 0 0 p p

i−ij+ 0 0 0 0 p 0 p p p p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Proof. We will first determine the standard endomorphisms and then conclude that
the endomorphism spaces are as in the assertion. To follow the proof, the reader is
strongly adviced to follow the arguments using the matrices above.

We will do the calculations in two steps. First we will determine all entries modulo
p2. Then we will show that the assumptions of Lemma 4.4.13 are fulfilled for the
endomorphisms defined.

1. x = (i, i, i;λ), (λ,µ) ∈ {((3), (2)), ((1,1,1), (1,1))}.
First we want to show that the entries at all relevant positions have p-valuation
one for both β̂(iiiλ,iii+µ)β̂(iii+µ,iiiλ) and β̂(iiiλ,iii−µ)β̂(iii−µ,iiiλ).

This condition is fulfilled whenever p−1 > i > 1 by Corollary 4.4.5. The arguments
for the two edge cases are very similar so we we will only consider the case i = 1.
Then only γ = β̂(iiiλ,iii+µ)β̂(iii+µ,iiiλ) exists.

By Corollary 4.4.5 the entry γi+i+i+λ has p-valuation one. Assume that both
other entries have a p-valuation greater that one. By considering pγ we can see
that this would contradict Remark 4.4.7 Part 2, since p3Γ ⊆ Λ.

The case where γ has exactly one entry with p-valuation one besides γi+i+i+λ is
impossible by Lemma 4.4.17 since Ci+i+i+λ = −1, Ciii+µ = −3 and Cii+i+µ = 3.

We can conclude that for any i all relevant entries have p-valuation 1, so there
are units a, b, c, d ∈ R fulfilling the following.

iiiλ iii+µ ii+i+µ i+i+i+λ

eiiiλ = (1, 1, 1, 1)
β̂(iiiλ,iii−µ)β̂(iii−µ,iiiλ) ∼ (ap, bp, p, 0)
β̂(iiiλ,iii+µ)β̂(iii+µ,iiiλ) ∼ (0, p, cp, dp)

First, consider γ ∶= (β̂(iiiλ,iii−µ)β̂(iii−µ,iiiλ))′ = (ap, bp, p,0). From 4.21 and 4.22
we get the following two congruences.

a − 3b + 3 ≡ 0 mod p

a2 − 3b2 + 3 ≡ 0 mod p

These congruences have two solutions, a ≡ 0, b ≡ 1 mod p and a ≡ 3, b ≡ 2 mod p.
The first solution is impossible as we already know that νp(ap) = 1. Using the

same arguments for β̂(iiiλ,iii+µ)β̂(iii+µ,iiiλ) we get that c ≡ 2 mod p and d ≡ 3
mod p.

2. x = (i, i, i + 1;µ), µ,µ′ ⊢ 2, µ ≠ µ′, λ ⊢ 3, λ ∈ cµ, 1 ≤ i < p − 1
By Lemma 2.5.11 we have already determined the entries of a unit multiple of
β̂(x,iiiλ)β̂(iiiλ,x) modulo p2.

First we will use Lemma 4.4.16 Part 1 to show that the standard endomorphisms
have p-valuation 1 at some positions not covered by Lemma 4.4.5. The following
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table lists the combinations of endomorphisms and indices to which we apply
the lemma. Here y,z are indices such that we apply the lemma to γ = β̂(x,y)β̂(y,x)

and δ = β̂(x,z)β̂(z,x).

y z a b i

(i, i, i; (2,1)) (i, i+, i+;µ) (i+, i+, i+; (2,1)) (i, i+, i+;µ) 1(i, i, i; (2,1)) (i, i+, i+;µ′) (i+, i+, i+; (2,1)) (i, i+, i+;µ′) 1(i, i, i; (2,1)) (i, i, i;λ) (i, i+, i+;µ) (i, i, i+;µ) 1(i, i, i + 2;µ) (i, i+, i+;µ)) (i+, i+, i + 2;µ) (i, i+, i + 2) 1(i, i, i + 2;µ) (i, i+, i+;µ′)) (i+, i+, i + 2;µ′) (i, i+, i + 2) 1(i−, i, i+) (i, i+, i+;µ) (i, i, i+;µ) (i, i+, i + 2) p − 2(i−, i, i+) (i, i+, i+;µ′) (i, i, i+;µ′) (i, i+, i + 2) p − 2

This covers all entries except the following.

i = 1 ∶

(β̂(x,iii+2µ)β̂(iii+2µ,x))iii+2µ
i = p − 2 ∶

(β̂(x,i−ii+)β̂(i−ii+,x))iii+2µ,
(β̂(x,ii+i+µ)β̂(ii+i+µ,x))i+i+i+2µ,
(β̂(x,ii+i+µ′)β̂(ii+i+µ′,x))i+i+i+2µ

From Lemma 4.4.17 it follows that (β̂(x,113µ)β̂(113µ,x))112µ has p-valuation one.
We will not use the p-valuation of the remaining entries.

For every standard endomorphism γ in exΛex we pick one position a ∈ I0 for
which we know that νp(γa) = 1 and multiply γ with a unit to obtain another
endomorphism γ∗ for which γ∗a is a certain multiple of p:

γ∗ ∶= n(γa
p
)−1 γ

⇒ γ∗a = np

In cases where the endomorphism only exists for certain i we add a restriction
on i.

γ a γa i

β̂(x,iii(2,1))β̂(iii(2,1),x) (i, i + 1, i + 1;µ) p −
β̂(x,ii(i+2)µ)β̂(ii(i+2)µ,x) (i, i, i + 2;µ) p i < p − 2

β̂(x,i−ii+)β̂(i−ii+,x) (i, i + 1, i + 1;µ) p −
β̂(x,ii+i+µ′)β̂(ii+i+µ′,x) (i, i + 1, i + 1;µ′) 2p −
β̂(x,ii+i+µ)β̂(ii+i+µ,x) (i, i + 1, i + 1;µ) 2p i > 1

We use the congruences 4.19, 4.21 and 4.22 and Lemma 4.4.16 to determine the
remaining entries modulo p2. We will again only list the endomorphisms and
indices for which we apply the lemmas and the results. A row in the following
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table means: We apply the lemma/ congruence from the first column to γ =(β̂(x,y)β̂(y,x))∗, and δ = (β̂(x,z)β̂(z,x))∗ when we apply Lemma 4.4.16, where y, z
are given as in the second column. From this we deduce the entry γa modulo p2

at position a as in the fourth and fifth column. The last column gives restrictions
to i as above.

Lemma/
Congruence

y z a γa i

4.21,4.22 (i, i, i + 2;µ) - (i, i+, i + 2) p i < p − 2(i+, i+, i + 2;µ) p

4.4.16 (i, i, i; (2,1)) (i, i, i;λ) (i, i, i+;µ) 2p −
4.21,4.22 (i, i, i; (2,1)) - (i, i+, i+;µ′) 3p −(i+, i+, i+; (2,1)) 3p

4.4.16 (i−, i, i+) (i, i, i;λ) (i, i, i+;µ) 2p

4.4.16 (i, i+, i+;µ′) (i, i, i; (2,1)) (i+, i+, i+; (2,1)) 3p −
4.4.16 (i, i+, i+;µ) (i, i, i;λ) (i+, i+, i+;λ) 4p −
4.4.16 (i, i+, i+;µ) (i, i, i; (2,1)) (i+, i+, i+; (2,1)) p −

Now consider γ = β̂(x,i−ii+)β̂(i−ii+,x) once more.

0 ≡ ∣Sp ≀ S3∣Tu(γ, β̂(x,iii(2,1))β̂(iii(2,1),x))
≡ 3 ⋅ 2p ⋅ 2p − 3 ⋅ 3p ⋅ γii+i+µ′ − 3 ⋅ p ⋅ p

≡ 9p2 − 9γii+i+µ′p mod p3

⇒ γii+i+µ′ ≡ p mod p2

Next we consider the trace of γ and γ2 with ex.

0 ≡ 6p − 3p − 3p − 3γii(i+2)µ + 6γii+(i+2) mod p2

⇒ 3γii(i+2)µ ≡ 6γii+(i+2) mod p2

0 ≡ 12p2 − 3p2 − 3p2 − 3γ2ii(i+2)µ + 6γ
2
ii+(i+2)

≡ 6p2 − 12γ2ii+(i+2) + 6γ
2
ii+(i+2) mod p3

⇒ p2 ≡ γ2ii+(i+2) mod p3

⇒ γii+(i+2) ≡ p mod p2 and γii(i+2)µ ≡ 2p mod p2

Note that we did not need any information on the p-valuation of γii(i+2)µ so the

argument also works for i = p − 2. By using our knowledge of β̂(x,i−ii+)β̂(i−ii+,x)
we can make further deductions if i > 1.

Lemma/
Congruence

y z a γa i

4.4.16 (i, i+, i+;µ′) (i−, i, i+) (i, i+, i + 2) p i > 1
4.21 (i, i+, i+;µ′) (i+, i+, i + 2;µ) p i > 1

4.4.16 (i, i+, i+;µ) (i−, i, i+) (i, i+, i + 2) p i > 1
4.21 (i, i+, i+;µ) (i+, i+, i + 2;µ) p i > 1
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Thus we have determined all endomorphisms except β̂(112µ,122µ)β̂(122µ,112µ) and

β̂(112µ′,122µ′)β̂(122µ′,112µ′). We will determine those endomorphisms in the next
part of the proof.

In the following discussions we will use the same table notations as in this one
without further explanation.

3. x = (i−, i, i;µ), i > 1
We will give a bijection between cii+i+µ and c(p−i−1)(p−i)(p−i)µ for 1 ≤ i < p−1 and
thus p − 1 ≥ p − i > 1 along which we can transfer all the calculations from the
last part of the proof to this case..

ζ ∶ ciii+µ Ð→ c(p−i−1)(p−i)(p−i)µ

(i, i, i + 1;µ)z→ (p − i, p − i + 1, p − i + 1;µ)
(i, i + 1, i + 1;µ′)z→ (p − i, p − i, p − i + 1;µ′)
(i, i + 1, i + 1;µ)z→ (p − i, p − i, p − i + 1;µ)
(i, i, i + 2;µ)z→ (p − i − 1, p − i + 1, p − i + 1;µ)

(i + 1, i + 1, i + 1;λ)z→ (p − i, p − i, p − i;λ)
(i + 1, i + 1, i + 1; (2,1))z→ (p − i, p − i, p − i; (2,1))

(i, i + 1, i + 2)z→ (p − i − 1, p − i, p − i + 1)
(i + 1, i + 1, i + 2;µ)z→ (p − i − 1, p − i, p − i;µ)

This bijection is chosen such that Ca = Cζ(a) and (−1)na = −(−1)nζ(a) for every
a ∈ ciii+µ. Further it is a ∉ Ip⇔ ζ(a)− ∉ Ip and a− ∉ Ip⇔ ζ(a) ∉ Ip. For x ∈ Ip let

Ex = {z ∈ Ip ∣ (x, z) ∈ QΛ
}.

We define a bijection between Eiii+µ and E(p−i−1)(p−i)(p−i)µ.

ω ∶ Eiii+µ Ð→ E(p−i−1)(p−i)(p−i)µ

(i, i + 1, i + 1;µ′)z→ (p − i − 1, p − i − 1, p − i;µ′)
(i, i + 1, i + 1;µ′)z→ (p − i − 1, p − i − 1, p − i;µ)
(i, i, i + 2;µ)z→ (p − i − 2, p − i, p − i;µ)
(i, i, i;λ)z→ (p − i, p − i, p − i;λ)

(i, i, i; (2,1))z→ (p − i, p − i, p − i; (2,1))
(i − 1, i, i + 1)z→ (p − i − 1, p − i, p − i + 1)

Then

a ∈ ciii+µ ∩ cz⇔ ζ(a) ∈ c(p−i−1)(p−i)(p−i)µ ∩ cω(z).
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Therefore we can transfer all the arguments made above via the bijections to
deduce that if we transfer the choices we made by multiplication with a unit we
obtain

(β̂(iii+µ,x)β̂(x,iii+µ))∗a ≡ (β̂(i−iiµ,ω(x))β̂(ω(x),i−iiµ))∗ζ(a) mod p2

for every x such that (iii+µ,x) ∈ Q
Λ
and a ∈ I0. This yields the endomorphisms

in the assertion.

Note that this means that the endomorphisms which cannot be completely deter-
mined by these arguments are β̂((p−2)p−p−µ,(p−2)(p−2)p−µ)β̂((p−2)(p−2)p−µ,(p−2)p−p−µ)

and β̂((p−2)p−p−µ,(p−2)(p−2)p−µ)β̂((p−2)(p−2)p−µ,(p−2)p−p−µ). However these endomor-
phism were already determined in the discussion of x = (i, i, i + 1;µ) by Lemma
4.4.14. Additionally, the standard endomorphisms which were not determined
in the last part, β̂(112µ,122µ)β̂(122µ,112µ) and β̂(112µ,122µ′)β̂(122µ′,112µ), are covered
by this discussion.

4. x = (i, i, i; (2,1))
This case has already been completely determined by the other discussions.

5. x = (i − 1, i, i + 1), 1 < i < p − 1
For the following y ∈ Ip the entries of β̂(x,y)β̂(y,x) are already determined modulo
p2.

(i − 1, i, i; (1,1)), (i − 1, i, i; (2)), (i, i, i + 1; (1,1)), (i, i, i + 1; (2))
We use Lemma 4.4.16 Part 1 to show that the standard endomorphisms all have
p-valuation 1 at every relevant position.

y z a b i

(i−, i−, i+; (1,1)) (i−, i, i; (1,1)) (i, i, i+; (1,1)) (i−, i, i+) 2(i−, i−, i+; (2)) (i−, i, i; (2)) (i, i, i+; (2)) (i−, i, i+) 2(i−, i−, i+; (1,1)) (i−, i−, i+; (2)) (i−, i, i+) (i−, i, i + 2)) 2(i−, i−, i+; (1,1)) (i−, i, i + 2) (i, i, i + 2; (1,1))) (i−, i, i + 2)) 2(i−, i+, i+; (1,1)) (i−, i, i; (1,1)) (i, i+, i+; (1,1)) (i−, i+, i+(1,1)) 2(i−, i+, i+; (1,1)) (i−, i+, i+; (2)) (i, i+, i + 2) (i−, i+, i + 2) 2(i−, i+, i+; (2)) (i−, i, i; (2)) (i, i+, i+; (2)) (i−, i+, i+(2)) 2(i−, i+, i+; (1,1)) (i−, i, i + 2) (i, i+, i + 2) (i−, i+, i + 2)) 2(i−, i−, i+; (1,1)) (i−, i−, i+; (2)) (i−, i, i+)) (i−, i, i + 2) p − 2(i−, i−, i+; (1,1)) (i − 2, i, i+) (i−, i, i+) (i−, i, i + 2) p − 2(i−, i−, i+; (1,1)) (i, i, i+; (1,1)) (i, i, i+; (1,1))) (i, i, i + 2; (1,1))) p − 2(i−, i−, i+; (2)) (i, i, i+; (2)) (i, i, i+; (2)) (i, i, i + 2; (2)) p − 2(i − 2, i, i+) (i−, i+, i+; (1,1)) (i−, i+, i+; (1,1)) (i−, i+, i + 2) p − 2(i − 2, i, i+) (i−, i+, i+; (2)) (i−, i+, i+; (2)) (i−, i+, i + 2) p − 2(i−, i+, i+; (1,1)) (i−, i+, i+; (2)) (i−, i+, i + 2) (i, i+, i + 2)) p − 2

Next we choose one entry for each endomorphism.
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γ a γa i

β̂(x,i−i−i+(1,1))β̂(i−i−i+(1,1),x) (i−, i, i+) p −
β̂(x,i−i−i+(2))β̂(i−i−i+(2),x) (i−, i, i+) p −
β̂(x,(i−2)ii+)β̂((i−2)ii+,x) (i−, i, i+) p i > 2

β̂(x,i−i+i+(1,1))β̂(i−i+i+(1,1),x) (i−, i+, i+; (1,1)) 2p −
β̂(x,i−i+i+(2))β̂(i−i+i+(2),x) (i−, i+, i+; (2)) 2p −
β̂(x,i−i(i+2))β̂(i−i(i+2),x) (i−, i, i + 2) p i < p − 2

Finally we deduce the remaining entries.

Lemma/
Congruence

y z a γa i

4.4.16 (i−, i−, i+; (1,1)) (i−, i, i; (1,1)) (i, i, i+; (1,1)) 2p −
4.4.16 (i−, i−, i+; (1,1)) (i, i, i+; (1,1)) (i, i, i + 2; (1,1)) 2p −
4.21 (i−, i−, i+; (1,1)) − (i−, i, i + 2) p −
4.4.16 (i−, i−, i+; (2)) (i−, i, i; (2)) (i, i, i+; (2)) 2p −
4.4.16 (i−, i−, i+; (2)) (i, i, i+; (2)) (i, i, i + 2; (2)) 2p −
4.21 (i−, i−, i+; (2)) − (i−, i, i + 2) p −
4.4.16 (i − 2, i, i+) (i−, i, i; (1,1)) (i−, i+, i+; (1,1)) p i > 2
4.4.16 (i − 2, i, i+) (i−, i, i; (2)) (i−, i+, i+; (2)) p i > 2
4.4.16 (i − 2, i, i+) (i−, i−, i+; (1,1)) (i−, i, i + 2) p i > 2
4.21 (i − 2, i, i+) − (i−, i+, i + 2) p i > 2

4.4.16 (i−, i+, i+; (1,1)) (i−, i, i; (1,1)) (i, i+, i+; (1,1)) 2p −
4.4.16 (i−, i+, i+; (1,1)) (i, i, i+; (1,1)) (i, i+, i + 2) p −
4.21 (i−, i+, i+; (1,1)) − (i−, i+, i + 2) p −
4.4.16 (i−, i+, i+; (2)) (i−, i, i; (2)) (i, i+, i+; (2)) 2p −
4.4.16 (i−, i+, i+; (2)) (i, i, i+; (2)) (i, i+, i + 2) p −
4.21 (i−, i+, i+; (2)) − (i−, i+, i + 2) p −
4.4.16 (i−, i, i + 2) (i−, i−, i+; (1,1)) (i, i, i + 2; (1,1)) p i < p − 2
4.4.16 (i−, i, i + 2) (i−, i−, i+; (2)) (i, i, i + 2; (2)) p i < p − 2
4.4.16 (i−, i, i + 2) (i, i, i+; (1,1)) (i, i+, i + 2) p i < p − 2
4.21 (i−, i, i + 2) − (i−, i+, i + 2) p i < p − 2

6. x = (i, i, j;µ) and x = (i − 1, i, j), j > i.
We consider to cases simultaneously and use induction on j − i. If j − i = 1 then
both cases have already been covered (x = (i, i, i + 1;µ), x = (i − 1, i, i + 1)). We
will apply the induction hypothesis only to endomorphisms where the asserted
forms agree for j − i = 1 and j − i > 1.

Now assume that every entry of a standard endomorphism in ei′i′j′µΛei′i′j′µ or
ei′−i′j′Λei′−i′j′ with j′ − i′ < j − i is already determined to be as in the assertion of
the lemma mudolo p2.

First consider x = (i, i, j;µ). Here the induction hypothesis implies that that
β̂(x,iij−λ)β̂(iij−λ,x) and β̂(x,ii+j)β̂(ii+j,x) are already determined. Those endomor-
phisms have the same asserted form both if j− = i+ and if j− > i+.
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We show that some additional entries have p-valuation 1.

y z a b i/j
(i, i, j+) (i, i+, j;µ) (i+, i+, j+;µ) (i, i+, j+) i = 1, j < p − 1(i−, i, j) (i, i+, j;µ) (i, i+, j) (i, i+, j+) i > 1, j = p − 1

The entry (β̂(x,iij+)β̂(iij+,x))iij+µ has p-valuation 1 for i = 1 by Lemma 4.4.17.

We will not use the fact that νp(β̂(x,i−ij)β̂(i−ij,x))iij+µ = 1 to determine the entry
modulo p2.

We choose the following entries by multiplication with a unit.

γ a γa i,j

β̂(x,i−ij)β̂(i−ij,x) (i, i, j;µ) 2p i > 1

β̂(x,iij+)β̂(iij+,x) (i, i + 1, j + 1) p j < p − 1

Now we determine the rest of the entries.

Lemma/
Congruence

y z a γa i/j

4.4.16 (i−, i, j) (i, i, j−;µ) (i, i+, j) p i > 1
4.4.16 (i−, i, j) (i, i+, j) (i, i+, j+) p i > 1
4.19 (i−, i, j) - (i, i, j+;µ) 2p i > 1

4.4.16 (i, i, j+, µ) (i, i+, j) (i+, i+, j+;µ) p i < p − 1
4.21 (i, i, j+, µ) - (i, i, j+;µ) p i < p − 1

Next we consider x = (i − 1, i, j). For x ∈ Ip we have to additionally assume

i > 1. By the induction hypothesis we assume that β̂(x,i−ij−)β̂(i−ij−,x) is already
determined. This endomorphism has the same asserted form for j−1 = i+1 as for
j−1 > i+1. We have also already determined β̂(x,iijµ)β̂(iijµ,x) for µ ∈ {(1,1), (2)}.
Most relevant entries have p-valuation 1.

y z a b i/j
(i−, i−, j; (1,1)) (i−, i, j−) (i, i, j; (1,1)) (i−, i, j) i = 2(i−, i−, j; (2)) (i−, i, j−) (i, i, j; (2)) (i−, i, j) i = 2(i−, i−, j; (1,1)) (i−, i−, j; (2)) (i−, i, j) (i−, i, j+) i = 2(i−, i+, j) (i−, i, j−) (i, i+, j) (i−, i+, j) i = 2(i−, i, j+) (i−, i−, j; (1,1)) (i, i, j+; (1,1)) (i−, i, j+) i = 2, j < p − 1(i−, i, j+) (i−, i+, j) (i, i+, j+) (i−, i+, j+) i = 2, j < p − 1(i−, i−, j; (1,1)) (i−, i−, j; (2)) (i−, i, j) (i−, i, j+) j = p − 1(i−, i−, j; (1,1)) (i − 2, i, j) (i−, i, j) (i−, i, j+) j = p − 1, i > 2(i−, i−, j; (1,1)) (i, i, j; (1,1)) (i, i, j; (1,1)) (i, i, j+; (1,1)) j = p − 1(i−, i−, j; (2)) (i, i, j; (2)) (i, i, j; (2)) (i, i, j+; (2)) j = p − 1(i − 2, i, j) (i−, i+, j) (i−, i+, j) (i−, i+, j+) j = p − 1, i > 2(i − 2, i, j) (i−, i−, j; (1,1)) (i−, i, j) (i−, i, j+) j = p − 1, i > 2

The only entry missing is (β̂(x,12(p−1))β̂(12(p−1),x))13p.
We choose the following entries by multiplication with a unit.
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γ a γa i,j

β̂(x,i−i−j(1,1))β̂(i−i−j(1,1),x) (i − 1, i, j) p -

β̂(x,i−i−j(2))β̂(i−i−j(2),x) (i − 1, i, j) p -

β̂(x,i−2ij)β̂(i−2ij,x) (i − 1, i, j) p i > 2

β̂(x,i−i+j)β̂(i−i+j,x) (i − 1, i + 1, j) p -

β̂(x,i−ij+)β̂(i−ij+,x) (i − 1, i, j + 1) p j < p − 1

Now we determine the rest of the entries.

Lemma/
Congruence

y z a γa i/j

4.4.16 (i−, i−, j; (1,1)) (i−, i, j−) (i, i, j; (1,1)) 2p -
4.4.16 (i−, i−, j; (1,1)) (i, i, j(1,1)) (i, i, j+; (1,1)) 2p -
4.21 (i−, i−, j; (1,1)) - (i−, i, j+) p -

4.4.16 (i−, i−, j; (2)) (i−, i, j−) (i, i, j; (2)) 2p -
4.4.16 (i−, i−, j; (2)) (i, i, j(2)) (i, i, j+; (2)) 2p -
4.21 (i−, i−, j; (2)) - (i−, i, j+) p -

4.4.16 (i − 2, i, j) (i−, i, j−) (i−, i+, j) p i > 2
4.4.16 (i − 2, i, j) (i−, i−, j(1,1)) (i−, i, j+) p i > 2
4.21 (i − 2, i, j) - (i−, i+, j+) p i > 2

4.4.16 (i−, i+, j) (i−, i, j−) (i, i+, j) p -
4.4.16 (i−, i+, j) (i, i, j(1,1)) (i, i+, j+) p -
4.19 (i−, i+, j) - (i−, i+, j+) p -

4.4.16 (i−, i, j+) (i−, i−, j; (1,1)) (i, i, j+; (1,1)) p j < p − 1
4.4.16 (i−, i, j+) (i−, i−, j; (2)) (i, i, j+; (2)) p j < p − 1
4.4.16 (i−, i, j+) (i, i, j(1,1)) (i, i+, j+) p j < p − 1
4.21 (i−, i, j+) - (i−, i+, j+) p j < p − 1

7. x = (j, i, i;µ) and x = (j, i, i + 1), j < i
We will handle this case similar to the last one by induction over i − j. The
induction base for i − j = 1 is covered by previous discussions.

We assume that any entry of a standard endomorphism in ej′i′i′µΛej′i′i′µ or
ej′i′i′+Λej′i′i′+ with i′ − j′ < i− j is already determined to be as in the assertion of
the lemma mudolo p2.

First consider x = (j, i, i;µ). The induction hypothesis implies that that both
β̂(x,j+iiµ)β̂(j+iiµ,x) and β̂(x,ji−i)β̂(ji−i,x) are already determined. Those endomor-
phisms have the same asserted form both in the case where i− = j+ and where
i− > j+.

The following entries have p-valuation 1.

y z a b i/j
(j−, i, i;µ) (j, i−, i) (j, i, i;µ) (j, i, i+) i = p − 1, j > 1(j, i, i+) (j, i−, i) (j+, i, i+) (j, i, i+) j = 1, i < p − 1

Then νp((β̂(x,j−iiµ)β̂(j−iiµ,x))ji+i+µ) = 1 by Lemma 4.4.17. We will not use the
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fact that νp((β̂(x,jii+)β̂(jii+,x))ji+i+µ) = 1 to determine it modulo p2.

We make the following choices.

γ a γa i,j

β̂(x,j−iiµ)β̂(j−iiµ,x) (j, i, i;µ) p j > 1

β̂(x,jii+)β̂(jii+,x) (j, i, i + 1) p i < p − 1

Now we determine the rest of the entries.

Lemma/
Congruence

y z a γa i/j

4.4.16 (j−, i, i;µ) (j, i−, i) (j, i, i+) p j > 1
4.21 (j−, i, i;µ) (j, i+, i+;µ) p j > 1

4.4.16 (j, i, i+) (j, i−, i) (j+, i, i+) p i < p − 1
4.4.16 (j, i, i+) (j+, i, i;µ) (j+, i+, i+;µ) 2p i < p − 1
4.19 (j, i, i+) (j, i+, i+;µ) 2p j > 1

Next we consider x = (j, i, i+). For x ∈ Ip we have to additionally assume i <

p − 1. By the induction hypothesis we assume that β̂(x,j+ii+)β̂(j+ii+,x) is already
determined. This endomorphism has the same asserted form for j+1 = i−1 as for
j+1 > i−1. We have also already determined β̂(x,jiiµ)β̂(jiiµ,x) for µ ∈ {(1,1), (2)}.
The following relevant entries have p-valuation 1.

y z a b i/j
(j, i−, i+) (j, i, i; (1,1)) (j+, i, i+) (j, i, i+) j = 1(j, i−, i+) (j, i, i + 2) (j+, i, i + 2) (j, i, i + 2) j = 1, i < p − 2(j, i+, i+; (1,1)) (j, i+, i+; (2)) (j+, i+, i + 2) (j, i+, i + 2) j = 1(j, i+, i+; (1,1)) (j, i, i + 2) (j+, i+, i + 2) (j, i+, i + 2) j = 1, i < p − 2(j−, i, i+) (j+, i, i+) (j+, i, i+) (j+, i, i + 2) i = p − 2(j−, i, i+) (j, i+, i+; (1,1)) (j, i+, i+; (1,1)) (j, i+, i + 2) i = p − 2(j−, i, i+) (j, i+, i+; (2)) (j, i+, i+; (2)) (j, i+, i + 2) i = p − 2(j, i+, i+; (1,1)) (j, i+, i+; (2)) (j, i+, i + 2) (j+, i+, i + 2) i = p − 2

The missing entries are (β̂(x,ji−i+)β̂(ji−i+,x))ji(i+2) and (β̂(x,j−ii+)β̂(j−ii+,x))ji(i+2).
We choose the following entries by multiplication with a unit.

γ a γa i,j

β̂(x,ji−i+)β̂(ji−i+,x) (j, i, i + 1) p −
β̂(x,j−ii+)β̂(j−ii+,x) (j, i, i + 1) p −

β̂(x,ji+i+;(1,1))β̂(ji+i+;(1,1),x) (j, i + 1, i + 1; (1,1)) 2p −
β̂(x,ji+i+;(2))β̂(ji+i+;(2),x) (j, i + 1, i + 1; (2)) 2p −
β̂(x,ji(i+2))β̂(ji(i+2),x) (j, i, i + 2) p −

Now we determine the rest of the entries.

109



Lemma/
Congruence

y z a γa i/j

4.4.16 (j, i−, i+) (j, i, i; (1,1)) (j+, i, i+) p -
4.4.16 (j, i−, i+) (j+, i, i+) (j+, i, i + 2) p -
4.19 (j, i−, i+) - (j, i, i + 2) p -

4.4.16 (j−, i, i+) (j, i, i; (1,1)) (j, i+, i+(1,1)) p j > 1
4.4.16 (j−, i, i+) (j, i, i; (2)) (j, i+, i+(2)) p j > 1
4.4.16 (j−, i, i+) (j, i−, i+) (j, i, i + 2) p j > 1
4.21 (j−, i, i+) - (j, i+, i + 2) p j > 1

4.4.16 (j, i+, i+; (1,1)) (j, i, i; (1,1)) (j+, i+, i+; (1,1)) 2p -
4.4.16 (j, i+, i+; (1,1)) (j+, i, i+) (j+, i+, i + 2) p -
4.21 (j, i+, i+; (1,1)) - (j, i+, i + 2) p -

4.4.16 (j, i+, i+; (2)) (j, i, i; (2)) (j+, i+, i+; (2)) 2p -
4.4.16 (j, i+, i+; (2)) (j+, i, i+) (j+, i+, i + 2) p -
4.21 (j, i+, i+; (2)) - (j, i+, i + 2) p -

4.4.16 (j, i, i + 2) (j, i−, i+) (j+, i, i + 2) p i < p − 2
4.4.16 (j, i, i + 2) (j+, i, i+) (j+, i+, i + 2) p i < p − 2
4.21 (j, i, i + 2) - (j, i+, i + 2) p i < p − 2

8. x = (i, j, k), i < j < k
We will make an induction over the pairs (j − i, k − j) ordering them lexi-
cographically. We claim that any endomorphism β̂(ijk,i′j′k′)β̂(i′j′k′,ijk) where∣{i, j, k}∣ = ∣{i′, j′, k′}∣ = 3 has entry p modulo p2 at every relevant position.
The induction base is given since we already know ei−ii+Λei−ii+ and the entries
there fulfill this assertion. We can also assume that j − i > 1 and k − j > 1 since
we have already determined the cases where j − i = 1 or k − j = 1 and here the
assertion is fulfilled as well.

So the induction hypothesis implies that β̂(x,i+jk)β̂(i+jk,x), β̂(x,ij−k)β̂(ij−k,x) and

β̂(x,ijk−)β̂(ijk−,x) are already of the asserted form.

The following relevant entries have p-valuation 1.

y z a b i/k
(i, j+, k) (i, j, k−) (i+, j+, k) (i, j+, k) i = 1(i, j, k+) (i, j−, k) (i+, j, k+) (i, j, k+) i = 1, k < p − 1(i−, j, k) (i, j−, k) (i, j, k) (i, j, k+) k = p − 1, i > 1(i, j+, k) (i+, j, k) (i+, j+, k) (i+, j+, k+) k = p − 1

We will deduce the entries of the endomorphisms at position (i, j+, k+) without
using knowledge of their valuation.

We make the following choices.

γ a γa i

β̂(x,i−jk)β̂(i−jk,x) (i, j, k) p i > 1

β̂(x,ij+k)β̂(ij+k,x) (i, j+, k) p -

β̂(x,ijk+)β̂(ijk+,x) (i, j, k+) p k < p − 1
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We determine the remaining entries.

Lemma/
Congruence

y z a γa i

4.4.16 (i−, j, k) (i, j, k−) (i, j+, k) p i > 1
4.4.16 (i−, j, k) (i, j−, k) (i, j, k+) p i > 1
4.19 (i−, j, k) (i, j+, k+) p i > 1

4.4.16 (i, j+, k) (i, j, k−) (i+, j+, k) p -
4.4.16 (i, j+, k) (i+, j, k) (i+, j+, k+) p -
4.19 (i, j+, k) (i, j+, k+) p -

4.4.16 (i, j, k+) (i, j−, k) (i+, j, k+) p k < p − 1
4.4.16 (i, j, k+) (i+, j, k) (i+, j+, k+) p k < p − 1
4.19 (i, j, k+) (i, j+, k+) p k < p − 1

Now we have determined all entries modulo p2. Our next step will be to show
that the asserted endomorphisms fulfill the assumptions of Lemma 4.4.13 and thus are
equivalent to the standard endomorphisms modulo Λ ∩ p2Γ.

Let x, y ∈ Ip with (x, y) ∈ Q
Λ
and γ′ ∈ exΓex be the corresponding element defined

as in the assertion of the lemma.

Note that rx1
rx2

rx3
∈ Z∗p and thus Tu(γ′, ex) ∈ Zp if and only if

Tu(γ′,ex)
rx1rx2rx3

∈ Zp. We
get

∣Sp ≀ S3∣Tu(γ′, ex)
rx1

rx2
rx3

= ∑
a∈I0

ra

rx1
rx2

rx3

γ′a

= ∑
a∈I0

Ca((−1)naγ′a + (pρa)γ′a).

Our construction was done in such a way that we have always chosen the last entry such
that ∑a∈I0 Ca(−1)naγ′a = 0. So all that remains to show is that ∑a∈I0 Capρaγ

′
a ∈ p

3Zp.
We calculate pρa:

(−1)na + pρa =
rx1

rx2
rx3

ra1ra2ra3

= ∏
i∈{1,2,3}

rai
rxi

= ∏
i∈{1,2,3∣ai>xi}

rxi+1

rxi

= ∏
i∈{1,2,3∣ai>xi}

ξxi

= ∏
i∈{1,2,3∣ai>xi}

(−1 + ηip)
≡ (−1)na − ∑

i∈{1,2,3∣ai>xi}

ηxi
p mod p2.
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Since p ∣ γ′a, it suffices to consider pρa modulo p2. So it suffices to show that

∑
a∈I0

Ca( ∑
i∈{1,2,3∣ai>xi}

ηxi
p)γ′a = 0

This can be easily checked for all the endomorphisms. Here we show it in two examples
for clarification. For γ = β̂(iiiλ,iii+µ)β̂(iii+µ,iiiλ) we obtain

γ′iii+µ = p

γ′ii+i+µ = 2p

γ′i+i+i+λ = 3p

∑
a∈I0

Ca( ∑
l∈{1,2,3∣am>xm}

ηxmp)γ′a
= −3(ηip)p + 3(ηip + ηip)2p − 1(ηip + ηip + ηip)3p = 0.

In the case of γ = β̂(ijk,i−jk)β̂(i−jk,ijk) for i < j < k we obtain

γ′ijk = γij+k = γijk+ = γij+k+ = p

∑
a∈I0

Ca( ∑
i∈{1,2,3∣am>xm}

ηxmp)γ′a =
−6(ηj)p − 6(ηk)p + 6(ηj + ηk)p = 0.

This completes the proof that the standard endomorphisms are as asserted up to
multiplication by a unit and modulo p2Γ∩Λ. It remains to show that the endomorphism
spaces are the row spaces of the matrices in the assertion. Let e be a primitive
idempotent of Λ. First we see that the row space of the matrix is contained in eΛe.
The first row of the matrix corresponds to e, the rows with entries with p-valuation
1 are in eΛe by Lemma 4.4.13, the rows with p-valuation 2 are contained by Lemma
4.4.15 and the last row is always contained, as p3Γ ⊆ Λ.

For the other direction note that if n is the dimension of eΛe then the sum of the
valuations of the diagonal entries in the corresponding matrix above is always

0 +
n − 1
2
+
n − 1
2
⋅ 2 + 3 =

3n

2
.

This concludes the proof by Lemma 2.5.14.

We conclude the section by one more observation on the endomorphism rings.

Remark 4.4.21. Let x ∈ Ip, a, b ∈ cx and γ ∈ exΓex with νp(γa) = νp(γb) = 1 and γc = 0
for c /∈ {a, b}. Then γ /∈ exΛex.
Proof. The matrices are all of the following form

(A B

0 D
)
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where

A =

⎛⎜⎜⎜⎜⎝

1 1 . . . 1
0 ξ1p 0
⋮ ⋱
0 0 ξn−1

2

p

⎞⎟⎟⎟⎟⎠
, C ∈ p2R

n
2
×n

2

with ξi ∈ R
∗. We denote the rows 2 . . . n

2
by α1 . . . αn−1

2

. Then there is an element

γ′ ∈ ⟨p ⋅ ex, α1 . . . αn−1
2

⟩ such that γ ≡ γ′ mod p2Γ. Furthermore γ′ ∈ pΓ, so δ ∶= γ′

p
∈ Γ.

Then δ ∈ ⟨ex, α1

p
, . . . , αn−1

p
⟩ with exactly two unit entries.

Now we make a case distinction depending on where those two unit entries lie. First
note that by the row reduced form of the matrices at least one of the unit entries lies
in the left half of the matrix. First assume that just one of those entries lies in the left
half. As the second to n−1

2
-th rows are strictly reduced, this is only possible if either

γ′ = αi for some i or γ′ = p ⋅ex+ 1
ξ1
α1+ . . .+ 1

ξn−1
2

αn−1
2

. It is straight forward to consider

all elements of this form for all endomorphism spaces and see that neither is of this
form.

Now assume that both unit entries of δ lie in the left half of the matrix. This
would imply that the second half of the vector has only entries divisible by p. Let
B′ = B ⋅diag(1, 1

p
, . . . 1

p
), i.e. we divide all rows but the first by p. Now the existence of

a δ ∈ ⟨e, α1

p
, . . . , αn−1

p
⟩ where the only unit entries are in the left half of the vector implies

that B′ is singular modulo p. Straightforward calculations show that the determinant
of B′ is not divisible by p in all the cases above. Thus, the second case cannot occur
either.

4.4.2 Exponent matrices

The next step is to determine the generators β̂(x,y). We are going to show that there is

an automorphism of Λ such that after applying this automorphism the elements β̂(x,y)
with x < y, which correspond to descending arrows in the quiver of Λ, will have entry
1 at some positions and the other positions can be determined by our knowledge of Λ.

First, we will determine the exponent matrices of Λ.

Lemma 4.4.22. Let M be the exponent matrix of εaΛ. The rows and columns of the
matrix are assumed to be labeled by da = {x ∈ Ip ∣ dax ≠ 0}. Then M = (mxy)x,y∈da has
the following properties.

1. mxy ≤mxz +mzy ∀x, y, z ∈ da.

2. Let x, y ∈ da such that (x, y) ∈ Q
Λ
. Then mxy +myx = 1.

3. Let x, y ∈ da and assume that there is an index z ∈ Ip such that (x, z), (z, y) are
descending arrows in Q

Λ
. Then mxy +myx = 2.

4. Let x, y, y′, z ∈ da such that (x, y), (y, z), (x, y′), (y′, z) are descending arrows in
Q

Λ
. Assume further that mzy =myx = 0. Then mzy′ +my′x = 0.
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Proof. 1. This is a general property of exponent matrices, see Lemma 2.4.3.

2. We have already determined the endomorphism ring exΛex and can see that
β̂(x,y)β̂(y,x) has p-valuation 1 at position a. On the other hand the only elements
of exΛex with valuation 0 at position a are unit multiples of ex, so there is no
element of xΛyyΛx with p-valuation less than 1 at position a. This implies that
mxy +myx ≥ 1.

3. Again by considering the endomorphism rings we can see that

(β̂(x,z)β̂(z,y)β̂(y,z)β̂(z,x))a = (β̂(x,z)β̂(z,x)β̂(z,y)β̂(y,z))a
has p-valuation 2. On the other hand x any y will always have exactly 2 com-
position factors in common. Thus by Remark 4.4.21 we can see that no element
of xΛyyΛx can have p-valuation less than 2 at any position.

4. From the other parts of this lemma we can make the following deductions.

mzy = 0
2.
⇒myz = 1

myx = 0
2.
⇒mxy = 1

1.
⇒mzx ≤ 0,mxz ≤ 2

3.
⇒mzx = 0,mxz = 2

Now since νp((β̂(z,y)β̂(y,z))a) = 1 and 1 = myz ≤ νp((β̂(y,z))a) it follows that

νp((β̂(y,z))a) = 1 and νp((β̂(z,y))a) = 0. Similarly it is νp((β̂(x,y))a) = 1 and

νp((β̂(y,x))a) = 0 and in particular νp((β̂(z,y)β̂(y,x))a) = 0.
By Lemma 4.3.25 there is a unit F ∈ R∗ such that

β̂(z,y)β̂(y,x) ≡ F β̂(z,y′)β̂(y′,z) mod pΛ.

Since mzx = 0 it follows that νp((β̂(z,y′)β̂(y′,x))a) = 0, so mzy′ +my′x ≤ 0. On the
other hand 0 =mzx ≤mzy′ +my′x, which proves the assertion.

Definition 4.4.23. We define an equivalence relation on Ip:

x ∼ y⇔ l(x) = l(y)
For a ∈ I0 and i ∈ {0,1,2,3} we denote the equivalence classes in da with respect to ∼
by

cli(a) = {x ∈ da ∣ l(x) = l(a) − i}.
Then cl0(a) = {a} and cl3(a) = {a−} and there are only arrows between indices in
cli(a) and cli+1(a) where i ∈ {0,1,2}.
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Now for the determination of the exponent matrices first note that it suffices to
determine the entries corresponding to our generators β̂(x,y). Further, using Part 2 of
Lemma 4.4.22, we can see that it even suffices to determine the entries lying below
the diagonal.

Lemma 4.4.24. There is an element c ∈K ⊗Λ such that the exponent matrices of Λc

have the following property: Let a ∈ I0 and Ma = (mxy)x,y∈da be the exponent matrix
of εaΛ

c. Then mxy = 0 for all x < y ∈ da.

Proof. First assume that the cli(a) ≠ ∅ for all i, so in particular a ∈ Ip. We can pick
one entry below the diagonal in each row and there is a c ∈ K ⊗ Λ such that the
exponent matrix of εaΛ

c has entry 0 at every entry we picked by Lemma 2.5.18. This
also implies that we can choose mxa to be zero for every x ∈ cl1(a). Further we pick
for each x ∈ cl1(a) a y ∈ cl2(a) and choose myx to be 0.

Now let y ≠ y′ ∈ cl2(a). Then we can use Part 4 of Lemma 4.4.22 to deduce that
mxy′ = 0 since we know that mxy = mya = my′a = 0. Thus, we are finished for every
generator corresponding to an arrow between cl1(a) and cl2(a).

For the arrows between cl2(a) and cl3(a) we can choose one entry to be 0 and with
the same argument as above, again using Part 4 of Lemma 4.4.22, we can see that all
the entries corresponding to such arrows are zero.

If a ∈ Ip and cli(a) = ∅ for some i then clj = ∅ for all j > i. Therefore the arguments
above work for every a ∈ Ip.

The only case that remains is the one where a ∈ I0 ∖ Ip. In that case we choose one
entry corresponding to a generator in each column to be zero. This means ma−x = 0
for every x ∈ cl2. Now we use the same argument as above to show that all entries
corresponding to arrows between cl2 and cl1 are zero. Since we assumed a /∈ Ip the
class cl0 is empty.

Corollary 4.4.25. If a ∈ I0 then there is a c ∈K ⊗Λ such that the exponent matrices
of Λc look as follows. In edge cases the matrices look the same with the rows/columns
corresponding to indices not in Ip removed. The annotated + signs will be explained
later on.

⎛⎜⎜⎜⎜⎜⎝

Miiiλ iiiλ i−iiµ i−i−iµ i−i−i−λ

iiiλ . 1 2 3

i−iiµ 0+ . 1 2

i−i−iµ 0 0+ . 1

i−i−i−µ 0 0 0+ .

⎞⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Miii(2,1) iii(2,1) i−ii(2) i−ii(1,1) i−i−i(2) i−i−i(1,1) i−i−i−(2,1)

iii(2,1) . 1 1 2 2 3

i−ii(2) 0+ . 1 1 1 2

i−ii(1,1) 0+ 1 . 1 1 2

i−i−i(2) 0 0+ 0 . 1 1

i−i−i(1,1) 0 0+ 0 1 . 1

i−i−i−(2,1) 0 0 0 0+ 0 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Miii+µ iii+µ iii(2,1) iiiλ i−ii+ i−iiµ i−iiµ′ i−i−i+µ i−i−iµ

iii+µ . 1 1 1 2 2 2 3

iii(2,1) 0+ . 1 1 1 1 2 2

iiiλ 0+ 1 . 1 1 2 2 2

i−ii+ 0+ 1 1 . 1 1 1 2

i−iiµ 0 0 0 0+ . 1 1 1

i−iiµ′ 0 0 1 0+ 1 . 1 1

i−i−i+µ 0 1 1 0+ 1 1 . 1

i−i−iµ 0 0 0 0 0 0+ 0 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mii+i+µ ii+i+µ iii+µ iii+µ′ i−i+i+µ iii(2,1) iiiλ i−ii+ i−iiµ

ii+i+µ . 1 1 1 2 2 2 3

iii+µ 0+ . 1 1 1 1 1 2

iii+µ′ 0+ 1 . 1 1 2 1 2

i−i+i+µ 0+ 1 1 . 2 2 1 2

iii(2,1) 0 0 0+ 1 . 1 1 1

iiiλ 0 0+ 1 1 1 . 1 1

i−ii+ 0 0 0 0+ 1 1 . 1

i−iiµ 0 0 0 0 0 0+ 0 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Miijµ iijµ iij−µ i−ij i−ij− i−i−jµ i−i−j−µ

iijµ . 1 1 2 2 3

iij−µ 0+ . 1 1 2 2

i−ij 0+ 1 . 1 1 2

i−ij− 0 0 0+ . 1 1

i−i−jµ 0 1 0+ 1 . 1

i−i−j−µ 0 0 0 0+ 0 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mjiiµ jiiµ ji−i j−iiµ ji−i−µ j−i−i j−i−i−(2)

jiiµ . 1 1 2 2 3

ji−i 0+ . 1 1 2 2

j−iiµ 0+ 1 . 1 1 2

ji−i−µ 0 0+ 1 . 1 1

j−i−j 0 0 0+ 1 . 1

j−i−i−µ 0 0 0 0+ 0 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mijk ijk ijk− ij−k i−jk ij−k− i−jk− i−j−k i−j−k−

ijk . 1 1 1 2 2 2 3

ijk− 0+ . 1 1 1 1 2 2

ij−k 0+ 1 . 1 1 2 1 2

i−jk 0+ 1 1 . 2 1 1 2

ij−k− 0 0 0+ 1 . 1 1 1

i−jk− 0 0 1 0+ 1 . 1 1

i−j−k 0 1 0 0+ 1 1 . 1

i−j−k− 0 0 0 0 0+ 0 0 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mii+j ii+j ii+j− iij(2) iij(1,1) i−i+j iij−(2) iij−(1,1) i−i+j− i−ij i−ij−

ii+j 0 1 1 1 1 2 2 2 2 3

ii+j− 0+ . 1 1 1 1 1 1 2 2

iij(2) 0+ 1 . 1 1 1 2 2 1 2

iij(1,1) 0+ 1 1 . 1 2 1 2 1 2

i−i+j 0+ 1 1 1 . 2 2 1 1 2

iij−(2) 0 0 0+ 1 1 . 1 1 1 1

iij−(1,1) 0 0 1 0+ 1 1 . 1 1 1

i−i+j− 0 0 1 1 0+ 1 1 . 1 1

i−ij 0 1 0 0 0+ 1 1 1 . 1

i−ij− 0 0 0 0 0 0 0+ 0 0 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mjii+ jii+ jii(2) jii(1,1) ji−i+ j−ii+ ji−i j−ii(2) j−ii(1,1) j−i−i+ j−i−i

jii+ 0 1 1 1 1 2 2 2 2 3

jii(2) 0+ . 1 1 1 1 1 2 2 1

jii(1,1) 0+ 1 . 1 1 1 2 1 2 2

ji−i+ 0+ 1 1 . 1 1 2 2 1 2

j−ii+ 0+ 1 1 1 . 2 1 1 1 2

ji−i 0 0 0 0+ 1 . 1 1 1 1

j−ii(2) 0 0 1 1 0+ 1 . 1 1 1

j−ii(1,1) 0 1 0 1 0+ 1 1 . 1 1

j−i−i+ 0 1 1 0 0+ 1 1 1 . 2

j−i−i 0 0 0 0 0 0+ 0 0 0 .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

M
i−
ii
+

i−
ii
+

i−
ii
(2
)

i−
ii
(1

,1
)

i−
i−
i+
(2
)

i−
i−
i+
(1

,1
)

i−
2
ii
+

i−
i−
i(
2
)

i−
i−
i(
1
,1
)

i−
2
ii
(2
)

i−
2
ii
(1

,1
)

i−
2
i−
i+

i−
2
i−
i

i−
ii
+

.
1

1
1

1
1

2
2

2
2

2
3

i−
ii
(2
)

0
+

.
1

1
1

1
1

1
1

2
2

2

i−
ii
(1

,1
)

0
+

1
.

1
1

1
1

1
2

1
2

2

i−
i−
i+
(2
)

0
+

1
1

.
1

1
1

2
2

2
1

2

i−
i−
i+
(1

,1
)

0
+

1
1

1
.

1
2

1
2

2
1

2

i−
2
ii
+

0
+

1
1

1
1

.
2

2
1

1
1

2

i−
i−
i(
2
)

0
0

0
0
+

1
1

.
1

1
1

1
1

i−
i−
i(
1
,1
)

0
0

0
1

0+
1

1
.

1
1

1
1

i−
2
ii
(2
)

0
0

1
1

1
0+

1
1

.
1

1
1

i−
2
ii
(1

,1
)

0
1

0
1

1
0+

1
1

1
.

1
1

i−
2
i−
i+

0
1

1
0

0
0+

1
1

1
1

.
1

i−
2
i−
i

0
0

0
0

0
0

0
0+

0
0

0
.

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
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Proof. Lemma 4.4.24 implies that there is a c ∈ Λ such that the entries in the exponent
matrices of Λc below the diagonal corresponding to generators are all zero. Therefore,
by Lemma 4.4.22 Part 2, all the entries above the diagonal corresponding to generators
are 1. Now, as we have calculated the entries for all the generators, we can inductively
determine the other entries via

mij =min{mik +mkj ∣mik and mkj are already determined}.

4.4.3 Conclusion

Our next step will be to determine the entries of all generators β̂(x,y) where x, y ∈ Ip
with (x, y) ∈ Q

Λ
and x < y modulo p. We assume that the exponent matrices of Λ are

as in Corollary 4.4.25.

Definition 4.4.26. Let a = (i, j, k, λ), b = (i′, j′, k′, λ′) ∈ I0 where i ≤ j ≤ k, i′ ≤ j′ ≤ k′.
We extend our partial order on I0 to a total order as follows.

a < b⇔

l(a) < l(b) or
l(a) = l(b) and (i, j, k) <lex (i′, j′, k′) or

(i, j, k) = (i′, j′, k′) and
(λ = (2,1) or (λ = (2) and λ′ = (1,1)) or (λ = (3) and λ′ = (1,1,1)))

Lemma 4.4.27. 1. Let a ∈ Ip, y ∈ da and

x =max{z ∈ da ∣ z > y, (z, y) ∈ QΛ
}.

Then we can by conjugation without loss assume that (β̂(y,x))a = 1.
2. Let a ∈ I0 ∖ Ip and assume that a− ∈ Ip. Let further x ∈ da and

y =max{z ∈ da ∣ z < x, (y, z) ∈ QΛ
}.

Then we can by conjugation without loss assume that (β̂(y,x))a = 1.
3. Let a ∈ I0 ∖ Ip and a− ∉ Ip. Then for every x ∈ da there exists at most one y ∈ da

such that x < y and (x, y) ∈ Q
Λ
. We can assume that (β̂(y,x))a = 1

Proof. The first two parts can be achieved by Lemma 2.5.18, since in the first case
we conjugate one entry per row and in the second case one entry per column. The
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exponent matrices for the third case look as follows.

i = 1, j = p ∶

(
Miijµ iij−µ

iij−µ . )
j = 1, i = p ∶

(
Mjiiµ ji−i−µ

ji−i−µ . )
i = 1, k = p, j − i > 1, k − j > 1 ∶

⎛
⎝

Mijk ijk− ij−k−

ijk− . 1

ij−k− 0 .

⎞
⎠

i = 1, j = p ∶

⎛⎜⎜⎜⎝

Mii+j ii+j− iij−(2) iij−(1,1)

ii+j− . 1 1

iij−(2) 0 . 1

iij−(1,1) 0 1 .

⎞⎟⎟⎟⎠
j = 1, i = p − 1 ∶

⎛⎜⎜⎜⎝

Mjii+ jii(2) jii(1,1) ji−i

jii(2) . 1 1

jii(1,1) 1 . 1

ji−i 0 0 .

⎞⎟⎟⎟⎠

From now on we will assume that Λ is as in Lemma 4.4.27.

Definition 4.4.28. If a ∈ I0 and x, y ∈ da such that (β̂(y,x))a is assumed to be 1 by

Lemma 4.4.27 we say β̂(y,x) is normalized at position a.

Remark 4.4.29. In the exponent matrices above the entries myx of Ma such that

β̂(y,x) is normalized at position a are marked with a + for the cases where a ∈ Ip and
for µ = (2).
Lemma 4.4.30. 1. If x, y ∈ Ip with (x, y) ∈ Q

Λ
and y < x then (β̂(y,x))x = 1.

2. If a ∈ I0∖Ip with a− ∈ Ip and x ∈ da with x > a− and (a−, x) ∈ Q
Λ
then (β̂(a−,x))a =

1.

Proof. 1. Since (y, x) ∈ Q
Λ
and y < x we know that y ∈ dx and l(y) = l(x)−1. Thus

for every element t ∈ {z ∈ dx ∣ z > y, (z, y) ∈ QΛ
} we know that l(t) = l(x) and

x ∈ dx, so t = x. In particular, x is the maximum of this set.
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2. With similar arguments as above we see that

{z ∈ da− ∣ z < x, (x, z) ∈ QΛ
} = {a−}.

Lemma 4.4.31. Let x, y ∈ Ip with (x, y) ∈ Q
Λ
and x > y. Let further a ∈ cx ∩ cy such

that γ ∶= β̂(y,x) is not normalized at position a. Note that this implies a ≠ x.

1. Let a ∈ Ip and x′ ∈ Ip such that β̂(y,x′) is normalized at a. Then we have γa ≡ Fyxa

mod p where Fyxa ∈ Zp such that

β(y,x)β(x,a) = Fyxa ⋅ β(y,x′)β(x′,a)

2. Let a ∉ Ip but a− ∈ Ip and y′ ∈ Ip such that (β̂(y′,x))a = 1. Then we have γa ≡ Fa−yx

mod p where Fa−yx ∈ Zp such that

β(a−,y)β(y,x) = Fa−yx ⋅ β(a−,y′)β(y′,x)

3. If a ∉ Ip and a− ∉ Ip then every generator is normalized at position a.

Proof. 1. We have chosen the generators such that β̂(s,t) = β(s,t) for all s, t ∈ Ip, and
therefore we have

β̂(y,x)β̂(x,a) ≡ Fxya ⋅ β̂(y,x′)β̂(x′,a) mod pΛ.

As Λ ⊆ Γ this implies that

(β̂(y,x))a(β̂(x,a))a ≡ Fxya ⋅ (β̂(y,x′))a(β̂(x′,a))a mod p.

From the assumptions and Remark 4.4.30 we know that (β̂(x,a))a = (β̂(y,x′))a =(β̂(x′,a))a = 1 and therefore γx ≡ Fxya mod p.

2. In this case we know that (β̂(a−,y))a = (β̂(a−,y′))a = (β̂(y′,x))a = 1 and therefore
the same arguments as in Part 1 prove the assertion.

3. This follows directly from Lemma 4.4.27.

Lemma 4.4.32. Let x > y ∈ Ip with (x, y) ∈ Q
Λ
. Then for every z, t ∈ cx ∩ cy there is

an element δ ∈ ey rad
2(Λ)ex + peyΛex with νp(δt) = νp(δz) = 1 and δw = 0 for t ∉ {t, z}

Proof. First note that β̂(y,x) has unit entries at all relevant positions by Lemma 4.4.31.

Therefore β̂(x,y) has p-valuation 1 at all relevant positions. From the exponent matrix

and knowing that γ ∶= β̂(x,y) is the only element of the generating system Gen(Λ) in
exΛey, we can see that

exΛey = Rγ + p2Γ ∩ exΛey.
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By Lemma 2.1.36, we know that eyΛex = (exΛey)♯. Let t, z ∈ cx ∩ cy and let δ ∈ exΓey
such that δz = p, δt = −

rzγz
rtγt

p, δw = 0 for w ∉ {z, t}. Then
Tu(δ, rγ) = r ⋅ 1

∣Sp ≀ S3∣ ⋅ (rz ⋅ p ⋅ γz + rt ⋅ (−
rzγz

rtγt
p) ⋅ γt) = 0 ∈ R

and Tu(δ, ϑ) ∈ R for all ϑ ∈ p2Γ as δϑ ∈ p3Γ. It follows that δ ∈ (exΛey)♯ = eyΛex.
Of the generators in Gen(Λ) only β̂(y,x) lies in eyΛex. Furthermore β̂(s,t) ∈ rad(Λ)

for all s, t. Therefore eyΛex/(ey rad2(Λ)ex) is generated by products of β̂(y,x) and

idempotents. But as β̂(y,x) multiplied with any idempotent is either β̂(y,x) or zero we

can conclude that β̂(y,x) generates eyΛex/(ey rad2(Λ)ex) as a Zp-module.

On the other hand, since the exponent matrices have no entry 0 above the diagonal,
no element of ey rad

2(Λ)ex can have unit entries. Since β̂(y,x) has unit entries this

implies that any element of eyΛex ∖ (ey rad2(Λ)ex + pΛ) will have unit entries as well.
In particular it follows that δ ∈ ey rad

2(Λ)ex + pΛ.
Lemma 4.4.33. There is an element α ∈ Γ∗ and for every pair of indices x, y ∈ Ip with(x, y) ∈ Q

Λ
and x > y there is an element β̃(y,x) ∈ eyΛex with the following properties:

• ((β̃(y,x))α)a = 1 if the β̂(y,x) is normalized at a,

• ((β̃(y,x))α)a = Fyxa if β̂(y,x) is not normalized at a and a ∈ Ip,

• ((β̃(y,x))α)a = Fa−yx if β̂(y,x) is not normalized at a and a ∈ I0 ∖ Ip,

• {ex ∣ x ∈ Ip} ∪ {(β̃(y,x))α ∣ (y, x) ∈ QΛ
, y < x} ∪ {(β̂(y,x))α ∣ (y, x) ∈ QΛ

, y > x}
generate Λα as a Zp-algebra.

Proof. We will describe how to construct the new generators from the old ones.

First note that the entries of the generators β̂(y,x)β̂(x,y) already fulfill the assump-

tions modulo p. We use the fact that any set generating Λ/ rad2(Λ) also generates Λ,
see Lemma 2.3.11, and thus changing the generators by elements of rad2(Λ) does not
change the fact that they are a generating system for Λ. By Nakayama’s lemma the
same is true for changes modulo pΛ.

We will construct the generators inductively starting with the largest generators
with respect to the order β̂(y,x) < β̂(y′,x′) ⇔ x < x′. By Lemma 4.4.32 we can find

a generator β̃0
(y,x) such that β̃0

(y,x) ≡ β̂(y,x) mod rad2(Λ) + pΛ and β̃0
(y,x) fulfills the

requirements above at all positions except x. We can now choose αyx ∈ Γ
∗ such that(εxαyx)yy = (β̃(y,x))x, (εxαyx)zz = 1 if z ≠ y and εaαyx is the identity matrix if a ≠ x.

Assume that z, t ∈ Ip with (z, t) ∈ Q
Λ
and z < t and for γ = β̂(z,t) it is γ

αyx ≠ γ. Then

t = y and thus z < x and in particular γ < β̂(y,x). Also note that (β̃(y,x))x ≡ 1 mod p

so we do not change the value of γ modulo p at any position.

Therefore if we work from largest to smallest generator, this method assures the
following two points.
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• Conjugation with αyx will never change any of the β̃(y′,x′) we considered before.

• We never change any entry modulo p.

Therefore we can inductively choose αyx and β̃(y,x) for every generator β̂(y,x) such that
for α ∶=∏(y,x)∈Q(Λ),y<x αyx the conditions above are fulfilled.

Now we have determined all the generators corresponding to descending arrows.

Lemma 4.4.34. Let x, y ∈ Ip with x > y and (x, y) ∈ Q(Λ). Then there is an element
β̃(x,y) ∈ exΛey such that

1. β̃(x,y) ≡ ξβ̂(x,y) mod rad2(Λ) + pΛ for some ξ ∈ R∗.

2. β̃(x,y)β̃(y,x) = (β̂(x,y)β̂(y,x))′ as in Lemma 4.4.20.

Note that the second point means that β̃(x,y) is uniquely determined by β̃(y,x).

Proof. From the exponent matrices and since the standard endomorphisms have p-
valuation 1 at every relevant position we can deduce the p-valuations of β̂(x,y):

νp((β̂(x,y))a) =
⎧⎪⎪⎨⎪⎪⎩
1 if a ∈ dx ∩ dy
−∞ otherwise

.

Therefore γ ∶= β̂(x,y)β̃(y,x) is an element of exΛex such that

νp(γa) =
⎧⎪⎪⎨⎪⎪⎩
1 if a ∈ dx ∩ dy
−∞ otherwise

.

Following the proof of Theorem 4.4.20 we can see that this is already enough to deduce
that ξγ ≡ (β̂(x,y)β̂(y,x))′ mod p2Γ∩Λ for some ξ ∈ R∗ as this is all the information we

used about β̂(x,y)β̂(y,x). We define the entries of β̃(x,y) as follows

(β̃(x,y))a ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(β̂(x,y)β̂(y,x))

′
a

(β̃(y,x))a
if a ∈ cx ∩ cy

0 otherwise.

Now let δ ∈ p2Γ ∩Λ with ξγ = (β̂(x,y)β̂(y,x))′ + δ and define δ′ ∈ p2exΓey as

δ′a ∶=
⎧⎪⎪⎨⎪⎪⎩

δa
(β̃(y,x))a

if a ∈ cx ∩ cy

0 otherwise
.

Then ξβ̂(x,y) = β̃(x,y) + δ′. Furthermore Tu(δ′, β̃(y,x)) = Tu(δ,1) ∈ Zp and since δ′ ∈ p2Γ

this suffices to show that δ′ ∈ eyΛe
♯
x = exΛey and therefore ξβ̂(x,y) ≡ β̃(x,y) mod p2Γ∩Λ.

Since γ is the only generator in exΛey, the same arguments as in the proof of
Lemma 4.4.32 show that p2Γ ∩ exΛey ⊆ rad2(Λ) + pΛ which proves the assertion.
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All the calculations of this chapter are summarised in the following theorem.

Theorem 4.4.35. Let Λ be the basic algebra of the principal block of Fp(Sp ≀ S3) and
Λ0 be the basic algebra of the principal block of Zp(Sp ≀ S3). Let Λ be a Λ0-lift, i.e.

1. Λ/pΛ ≅ Λ
2. K ⊗Λ is semisimple with center Z(K ⊗Λ) =⊕a∈I0 K.

3. The decomposition matrix of Λ is the same as that of Λ0

4. Λ is self dual in K ⊗ Λ with respect to the form Tu with u = (ua)a∈I0 and ua =
dim(Va)
∣Sp≀S3∣

Then Λ is isomorphic to the subalgebra of

Λ ⊆ ⊕
a∈I0

Rma×ma

generated by

{ex ∣ x ∈ Ip} ∪ {β̃(y,x) ∣ x, y ∈ Ip and (x, y) ∈ Q
Λ
}

where for x, y ∈ Ip with (x, y) ∈ Q
Λ
the element β̃(y,x) is defined as in Lemma 4.4.34 if

y > x and Lemma 4.4.33 if y < x.

Proof. All the assumptions we made can be achieved by conjugation leaving the
diagonal entries invariant. Therefore the conjugation will not change the product
β̃(x,y)β̃(y,x) = (β̂(x,y)β̂(y,x))′ in Lemma 4.4.34.
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5 Appendix

The following calculations show that any two ascending / descending paths of length
two in the quiver correspond to linearly dependent homomorphisms in B0(FpSp ≀ S3).
Observe that it suffices to consider compositions of the homomorphisms β′(x,y) where
the three first components of x and y are not necessarily ordered as the isomorphisms
Φ is the definition of β(x,y) will cancel out or be the same at the start and end of the
composition for all cases we compare. We can also consider ascending and descending
paths at the same time. To do this, we write i′/i∗ instead of i−/i+. Those are to be
understood in the following way: If you consider descending paths, replace i′ by i−

and i∗ by i+, so (i∗)′ = i.
The calculations were done by a C++ program which can be found on github

(https://github.com/CorinnaL/pimhoms/). To ease the automatisation all the ho-
momorphisms of projective FpSp-modules are denoted by γ. It is always clear from
the context between which projective modules γ is defined. To see that the results are
indeed scalar multiples of one another recall the relations βi ○ βi+1 = 0, αi+1 ○ αi = 0
from the quiver of FpSp. So whenever γ is applied twice to one component in the
calculations below, the result is zero.

Homomorphisms starting in P ′(i, i, i; (2,1)) need to be considered twice, once for
each of the basis elements of S(2,1).

P ′(i, i, i; (2,1))→ P ′(i′, i, i; (2)) ≅ P ′(i, i′, i; (2))→ P ′(i′, i′, i; (2))
(a⊗ b⊗ c)⊗ id⊗ x1 ↦ (γ(a)⊗ b⊗ c)⊗ id − (γ(b)⊗ c⊗ a)⊗ (132)

↦ −(c⊗ a⊗ γ(b))⊗ (123) + (b⊗ c⊗ γ(a))⊗ (132)
↦ (γ(a)⊗ b⊗ γ(c))⊗ id − (γ(c)⊗ a⊗ γ(b))⊗ (123)

P ′(i, i, i; (2,1))→ P ′(i′, i, i; (1,1)) ≅ P ′(i, i′, i; (1,1))→ P ′(i′, i′, i; (2))
(a⊗ b⊗ c)⊗ id⊗ x1 ↦ −(γ(a)⊗ b⊗ c)⊗ id + 2(γ(c)⊗ a⊗ b)⊗ (123)

− (γ(b)⊗ c⊗ a)⊗ (132)
↦ −2(a⊗ b⊗ γ(c))⊗ id + (c⊗ a⊗ γ(b))⊗ (123)

+ (b⊗ c⊗ γ(a))⊗ (132)
↦ −3(γ(a)⊗ b⊗ γ(c))⊗ id + 3(γ(c)⊗ a⊗ γ(b))⊗ (123)
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P ′(i, i, i; (2,1))→ P ′(i′, i, i; (2)) ≅ P ′(i, i′, i; (2))→ P ′(i′, i′, i; (2))
(a⊗ b⊗ c)⊗ id⊗ x2 ↦ −(γ(c)⊗ a⊗ b)⊗ (123) + (γ(b)⊗ c⊗ a)⊗ (132)

↦ −(a⊗ b⊗ γ(c))⊗ id + (c⊗ a⊗ γ(b))⊗ (123)
↦ −(γ(a)⊗ b⊗ γ(c))⊗ id + (γ(b)⊗ c⊗ γ(a))⊗ (132)

P ′(i, i, i; (2,1))→ P ′(i′, i, i; (1,1)) ≅ P ′(i, i′, i; (1,1))→ P ′(i′, i′, i; (2))
(a⊗ b⊗ c)⊗ id⊗ x2 ↦ 2(γ(a)⊗ b⊗ c)⊗ id − (γ(c)⊗ a⊗ b)⊗ (123)

− (γ(b)⊗ c⊗ a)⊗ (132)
↦ (a⊗ b⊗ γ(c))⊗ id + (c⊗ a⊗ γ(b))⊗ (123)

− 2(b⊗ c⊗ γ(a))⊗ (132)
↦ 3(γ(a)⊗ b⊗ γ(c))⊗ id − 3(γ(b)⊗ c⊗ γ(a))⊗ (132)

P ′(i, i, i; (2,1))→ P ′(i′, i, i; (2)) ≅ P ′(i, i′, i; (2))→ P ′(i′, i′, i; (1,1))
(a⊗ b⊗ c)⊗ id⊗ x1 ↦ (γ(a)⊗ b⊗ c)⊗ id − (γ(b)⊗ c⊗ a)⊗ (132)

↦ −(c⊗ a⊗ γ(b))⊗ (123) + (b⊗ c⊗ γ(a))⊗ (132)
↦ −(γ(a)⊗ b⊗ γ(c))⊗ id − (γ(c)⊗ a⊗ γ(b))⊗ (123)

+ 2(γ(b)⊗ c⊗ γ(a))⊗ (132)
P ′(i, i, i; (2,1))→ P ′(i′, i, i; (1,1)) ≅ P ′(i, i′, i; (1,1))→ P ′(i′, i′, i; (1,1))

(a⊗ b⊗ c)⊗ id⊗ x1 ↦ −(γ(a)⊗ b⊗ c)⊗ id + 2(γ(c)⊗ a⊗ b)⊗ (123)
− (γ(b)⊗ c⊗ a)⊗ (132)

↦ −2(a⊗ b⊗ γ(c))⊗ id + (c⊗ a⊗ γ(b))⊗ (123)
+ (b⊗ c⊗ γ(a))⊗ (132)

↦ −(γ(a)⊗ b⊗ γ(c))⊗ id − (γ(c)⊗ a⊗ γ(b))⊗ (123)
+ 2(γ(b)⊗ c⊗ γ(a))⊗ (132)

P ′(i, i, i; (2,1))→ P ′(i′, i, i; (2)) ≅ P ′(i, i′, i; (2))→ P ′(i′, i′, i; (1,1))
(a⊗ b⊗ c)⊗ id⊗ x2 ↦ −(γ(c)⊗ a⊗ b)⊗ (123) + (γ(b)⊗ c⊗ a)⊗ (132)

↦ −(a⊗ b⊗ γ(c))⊗ id + (c⊗ a⊗ γ(b))⊗ (123)
↦ −(γ(a)⊗ b⊗ γ(c))⊗ id + 2(γ(c)⊗ a⊗ γ(b))⊗ (123)

− (γ(b)⊗ c⊗ γ(a))⊗ (132)
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P ′(i, i, i; (2,1))→ P ′(i′, i, i; (1,1)) ≅ P ′(i, i′, i; (1,1))→ P ′(i′, i′, i; (1,1))
(a⊗ b⊗ c)⊗ id⊗ x2 ↦ 2(γ(a)⊗ b⊗ c)⊗ id − (γ(c)⊗ a⊗ b)⊗ (123)

− (γ(b)⊗ c⊗ a)⊗ (132)
↦ (a⊗ b⊗ γ(c))⊗ id + (c⊗ a⊗ γ(b))⊗ (123)

− 2(b⊗ c⊗ γ(a))⊗ (132)
↦ −(γ(a)⊗ b⊗ γ(c))⊗ id + 2(γ(c)⊗ a⊗ γ(b))⊗ (123)

− (γ(b)⊗ c⊗ γ(a))⊗ (132)

P ′(i, i∗, i; (2))→ P ′(i′, i∗, i) ≅ P ′(i∗, i′, i)→ P ′(i, i′, i; (2)) ≅ P ′(i′, i, i; (2))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id + (γ(c)⊗ b⊗ a)⊗ (13)

↦ (b⊗ γ(c)⊗ a)⊗ (132) + (b⊗ γ(a)⊗ c)⊗ (12)
↦ (c⊗ γ(a)⊗ γ(b))⊗ (123) + (γ(b)⊗ γ(c)⊗ a)⊗ (132)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(c)⊗ a⊗ γ(b))⊗ (123)

P ′(i, i∗, i; (2)) ≅ P ′(i∗, i, i; (2))→ P ′(i, i, i; (3)) ≅ P ′(i, i, i; (3))→ P ′(i′, i, i; (2))
(a⊗ b⊗ c)⊗ id↦ (b⊗ c⊗ a)⊗ (132)

↦ (a⊗ γ(b)⊗ c)⊗ id

↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(c)⊗ a⊗ γ(b))⊗ (123)
+ (γ(γ(b))⊗ c⊗ a)⊗ (132)

P ′(i, i∗, i; (2)) ≅ P ′(i∗, i, i; (2))→ P ′(i, i, i; (2,1)) ≅ P ′(i, i, i; (2,1))→ P ′(i′, i, i; (2))
(a⊗ b⊗ c)⊗ id↦ (b⊗ c⊗ a)⊗ (132)

↦ −(a⊗ γ(b)⊗ c)⊗ id⊗ x1 + (a⊗ γ(b)⊗ c)⊗ id⊗ x2

↦ −(γ(a)⊗ γ(b)⊗ c)⊗ id − (γ(c)⊗ a⊗ γ(b))⊗ (123)
+ 2(γ(γ(b))⊗ c⊗ a)⊗ (132)

P ′(i, i∗, i; (2))→ P ′(i′, i∗, i) ≅ P ′(i∗, i′, i)→ P ′(i, i′, i; (1,1)) ≅ P ′(i′, i, i; (1,1))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id + (γ(c)⊗ b⊗ a)⊗ (13)

↦ (b⊗ γ(c)⊗ a)⊗ (132) + (b⊗ γ(a)⊗ c)⊗ (12)
↦ −(c⊗ γ(a)⊗ γ(b))⊗ (123) + (γ(b)⊗ γ(c)⊗ a)⊗ (132)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id − (γ(c)⊗ a⊗ γ(b))⊗ (123)

P ′(i, i∗, i; (2)) ≅ P ′(i∗, i, i; (2))→ P ′(i, i, i; (2,1)) ≅ P ′(i, i, i; (2,1))→ P ′(i′, i, i; (1,1))
(a⊗ b⊗ c)⊗ id↦ (b⊗ c⊗ a)⊗ (132)

↦ −(a⊗ γ(b)⊗ c)⊗ id⊗ x1 + (a⊗ γ(b)⊗ c)⊗ id⊗ x2

↦ 3(γ(a)⊗ γ(b)⊗ c)⊗ id − 3(γ(c)⊗ a⊗ γ(b))⊗ (123)
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P ′(i, i∗, i; (1,1))→ P ′(i′, i∗, i) ≅ P ′(i∗, i′, i)→ P ′(i, i′, i; (1,1)) ≅ P ′(i′, i, i; (1,1))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id − (γ(c)⊗ b⊗ a)⊗ (13)

↦ −(b⊗ γ(c)⊗ a)⊗ (132) + (b⊗ γ(a)⊗ c)⊗ (12)
↦ −(c⊗ γ(a)⊗ γ(b))⊗ (123) − (γ(b)⊗ γ(c)⊗ a)⊗ (132)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(c)⊗ a⊗ γ(b))⊗ (123)

P ′(i, i∗, i; (1,1)) ≅ P ′(i∗, i, i; (1,1))→ P ′(i, i, i; (1,1,1))→ P ′(i′, i, i; (1,1))
(a⊗ b⊗ c)⊗ id↦ −(b⊗ c⊗ a)⊗ (132)

↦ −(a⊗ γ(b)⊗ c)⊗ id

↦ −(γ(a)⊗ γ(b)⊗ c)⊗ id − (γ(c)⊗ a⊗ γ(b))⊗ (123)
− (γ(γ(b))⊗ c⊗ a)⊗ (132)

P ′(i, i∗, i; (1,1)) ≅ P ′(i∗, i, i; (1,1))→ P ′(i, i, i; (2,1))→ P ′(i′, i, i; (1,1))
(a⊗ b⊗ c)⊗ id↦ −(b⊗ c⊗ a)⊗ (132)

↦ (a⊗ γ(b)⊗ c)⊗ id⊗ x1 + (a⊗ γ(b)⊗ c)⊗ id⊗ x2

↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(c)⊗ a⊗ γ(b))⊗ (123)
− 2(γ(γ(b))⊗ c⊗ a)⊗ (132)

P ′(i, i∗, i; (1,1))→ P ′(i′, i∗, i) ≅ P ′(i∗, i′, i)→ P ′(i, i′, i; (2)) ≅ P ′(i′, i, i; (2))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id − (γ(c)⊗ b⊗ a)⊗ (13)

↦ −(b⊗ γ(c)⊗ a)⊗ (132) + (b⊗ γ(a)⊗ c)⊗ (12)
↦ (c⊗ γ(a)⊗ γ(b))⊗ (123) − (γ(b)⊗ γ(c)⊗ a)⊗ (132)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id − (γ(c)⊗ a⊗ γ(b))⊗ (123)

P ′(i, i∗, i; (1,1)) ≅ P ′(i∗, i, i; (1,1))→ P ′(i, i, i; (2,1))→ P ′(i′, i, i; (2))
(a⊗ b⊗ c)⊗ id↦ −(b⊗ c⊗ a)⊗ (132)

↦ (a⊗ γ(b)⊗ c)⊗ id⊗ x1 + (a⊗ γ(b)⊗ c)⊗ id⊗ x2

↦ (γ(a)⊗ γ(b)⊗ c)⊗ id − (γ(c)⊗ a⊗ γ(b))⊗ (123)

P ′(i, i∗, i∗; (2))→ P ′(i′, i∗, i∗; (2)) ≅ P ′(i∗, i′, i∗; (2))→ P ′(i, i′, i∗) ≅ P ′(i′, i, i∗)
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ (c⊗ γ(a)⊗ b)⊗ (123)
↦ (γ(c)⊗ γ(a)⊗ b)⊗ (123) + (γ(b)⊗ γ(a)⊗ c)⊗ (12)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(a)⊗ γ(c)⊗ b)⊗ (23)
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P ′(i, i∗, i∗; (2)) ≅ P ′(i∗, i, i∗; (2))→ P ′(i, i, i∗; (2))→ P ′(i′, i, i∗)
(a⊗ b⊗ c)⊗ id↦ (c⊗ a⊗ b)⊗ (123)

↦ (a⊗ γ(b)⊗ c)⊗ id + (γ(c)⊗ a⊗ b)⊗ (123)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(γ(c))⊗ a⊗ b)⊗ (123)

+ (γ(γ(b))⊗ a⊗ c)⊗ (12) + (γ(a)⊗ γ(c)⊗ b)⊗ (23)
P ′(i, i∗, i∗; (2)) ≅ P ′(i∗, i, i∗; (2))→ P ′(i, i, i∗; (1,1))→ P ′(i′, i, i∗)
(a⊗ b⊗ c)⊗ id↦ (c⊗ a⊗ b)⊗ (123)

↦ −(a⊗ γ(b)⊗ c)⊗ id + (γ(c)⊗ a⊗ b)⊗ (123)
↦ −(γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(γ(c))⊗ a⊗ b)⊗ (123)

+ (γ(γ(b))⊗ a⊗ c)⊗ (12) − (γ(a)⊗ γ(c)⊗ b)⊗ (23)

P ′(i∗, i∗, i; (2))→ P ′(i, i∗, i; (2)) ≅ P ′(i∗, i, i; (2))→ P ′(i, i, i; (2,1))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id + (c⊗ a⊗ γ(b))⊗ (123)

↦ (a⊗ γ(b)⊗ c)⊗ id + (b⊗ c⊗ γ(a))⊗ (132)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id⊗ x1 + 2(γ(a)⊗ γ(b)⊗ c)⊗ id⊗ x2

P ′(i∗, i∗, i; (2))→ P ′(i, i∗, i; (1,1)) ≅ P ′(i∗, i, i; (1,1))→ P ′(i, i, i; (2,1))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id − (c⊗ a⊗ γ(b))⊗ (123)

↦ (a⊗ γ(b)⊗ c)⊗ id − (b⊗ c⊗ γ(a))⊗ (132)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id⊗ x1 + 2(γ(a)⊗ γ(b)⊗ c)⊗ id⊗ x2

P ′(j, i, i; (2))→ P ′(j′, i, i; (2)) ≅ P ′(i, j′, i; (2))→ P ′(i′, j′, i) ≅ P ′(j′, i′, i)
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ (c⊗ γ(a)⊗ b)⊗ (123)
↦ (γ(c)⊗ γ(a)⊗ b)⊗ (123) + (γ(b)⊗ γ(a)⊗ c)⊗ (12)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(a)⊗ γ(c)⊗ b)⊗ (23)

P ′(j, i, i; (2)) ≅ P ′(i, j, i; (2))→ P ′(i′, j, i) ≅ P ′(j, i′, i)→ P ′(j′, i′, i)
(a⊗ b⊗ c)⊗ id↦ (c⊗ a⊗ b)⊗ (123)

↦ (γ(c)⊗ a⊗ b)⊗ (123) + (γ(b)⊗ a⊗ c)⊗ (12)
↦ (a⊗ γ(b)⊗ c)⊗ id + (a⊗ γ(c)⊗ b)⊗ (23)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(a)⊗ γ(c)⊗ b)⊗ (23)
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P ′(i, i∗, i∗; (1,1))→ P ′(i′, i∗, i∗; (1,1)) ≅ P ′(i∗, i′, i∗; (1,1))→ P ′(i, i′, i∗) ≅ P ′(i′, i, i∗)
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ −(c⊗ γ(a)⊗ b)⊗ (123)
↦ −(γ(c)⊗ γ(a)⊗ b)⊗ (123) + (γ(b)⊗ γ(a)⊗ c)⊗ (12)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id − (γ(a)⊗ γ(c)⊗ b)⊗ (23)

P ′(i, i∗, i∗; (1,1)) ≅ P ′(i∗, i, i∗; (1,1))→ P ′(i, i, i∗; (1,1))→ P ′(i′, i, i∗)
(a⊗ b⊗ c)⊗ id↦ −(c⊗ a⊗ b)⊗ (123)

↦ −(a⊗ γ(b)⊗ c)⊗ id − (γ(c)⊗ a⊗ b)⊗ (123)
↦ −(γ(a)⊗ γ(b)⊗ c)⊗ id − (γ(γ(c))⊗ a⊗ b)⊗ (123)

+ (γ(γ(b))⊗ a⊗ c)⊗ (12) + (γ(a)⊗ γ(c)⊗ b)⊗ (23)
P ′(i, i∗, i∗; (1,1)) ≅ P ′(i∗, i, i∗; (1,1))→ P ′(i, i, i∗; (2))→ P ′(i′, i, i∗)
(a⊗ b⊗ c)⊗ id↦ −(c⊗ a⊗ b)⊗ (123)

↦ (a⊗ γ(b)⊗ c)⊗ id − (γ(c)⊗ a⊗ b)⊗ (123)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id − (γ(γ(c))⊗ a⊗ b)⊗ (123)

+ (γ(γ(b))⊗ a⊗ c)⊗ (12) − (γ(a)⊗ γ(c)⊗ b)⊗ (23)

P ′(i∗, i∗, i; (1,1))→ P ′(i, i∗, i; (1,1)) ≅ P ′(i∗, i, i; (1,1))→ P ′(i, i, i; (2,1))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id + (c⊗ a⊗ γ(b))⊗ (123)

↦ −(a⊗ γ(b)⊗ c)⊗ id − (b⊗ c⊗ γ(a))⊗ (132)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id⊗ x1

P ′(i∗, i∗, i; (1,1))→ P ′(i, i∗, i; (2)) ≅ P ′(i∗, i, i; (2))→ P ′(i, i, i; (2,1))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id − (c⊗ a⊗ γ(b))⊗ (123)

↦ −(a⊗ γ(b)⊗ c)⊗ id + (b⊗ c⊗ γ(a))⊗ (132)
↦ −3(γ(a)⊗ γ(b)⊗ c)⊗ id⊗ x1

P ′(j, i, i; (2))→ P ′(j′, i, i; (2)) ≅ P ′(i, j′, i; (2))→ P ′(i′, j′, i) ≅ P ′(j′, i′, i)
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ (c⊗ γ(a)⊗ b)⊗ (123)
↦ (γ(c)⊗ γ(a)⊗ b)⊗ (123) + (γ(b)⊗ γ(a)⊗ c)⊗ (12)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(a)⊗ γ(c)⊗ b)⊗ (23)
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P ′(j, i, i; (2)) ≅ P ′(i, j, i; (2))→ P ′(i′, j, i) ≅ P ′(j, i′, i)→ P ′(j′, i′, i)
(a⊗ b⊗ c)⊗ id↦ (c⊗ a⊗ b)⊗ (123)

↦ (γ(c)⊗ a⊗ b)⊗ (123) + (γ(b)⊗ a⊗ c)⊗ (12)
↦ (a⊗ γ(b)⊗ c)⊗ id + (a⊗ γ(c)⊗ b)⊗ (23)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(a)⊗ γ(c)⊗ b)⊗ (23)

P ′(i, i∗, i′)→ P ′(i′, i∗, i′; (2)) ≅ P ′(i∗, i′, i′; (2))→ P ′(i, i′, i′; (2)) ≅ P ′(i′, i, i′; (2))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ (b⊗ c⊗ γ(a))⊗ (132)
↦ (γ(b)⊗ c⊗ γ(a))⊗ (132)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id

P ′(i, i∗, i′) ≅ P ′(i∗, i, i′)→ P ′(i, i, i′; (2)) ≅ P ′(i, i, i′; (2))→ P ′(i′, i, i′; (2))
(a⊗ b⊗ c)⊗ id↦ (b⊗ a⊗ c)⊗ (12)

↦ (a⊗ γ(b)⊗ c)⊗ id

↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (c⊗ a⊗ γ(γ(b)))⊗ (123)
P ′(i, i∗, i′) ≅ P ′(i∗, i, i′)→ P ′(i, i, i′; (1,1)) ≅ P ′(i, i, i′; (1,1))→ P ′(i′, i, i′; (2))

(a⊗ b⊗ c)⊗ id↦ (b⊗ a⊗ c)⊗ (12)
↦ −(a⊗ γ(b)⊗ c)⊗ id

↦ −(γ(a)⊗ γ(b)⊗ c)⊗ id + (c⊗ a⊗ γ(γ(b)))⊗ (123)

P ′(i, i∗, i′)→ P ′(i′, i∗, i′; (1,1)) ≅ P ′(i∗, i′, i′; (1,1))→ P ′(i, i′, i′; (1,1)) ≅ P ′(i′, i, i′; (1,1))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ −(b⊗ c⊗ γ(a))⊗ (132)
↦ −(γ(b)⊗ c⊗ γ(a))⊗ (132)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id

P ′(i, i∗, i′) ≅ P ′(i∗, i, i′)→ P ′(i, i, i′; (1,1)) ≅ P ′(i, i, i′; (1,1))→ P ′(i′, i, i′; (1,1))
(a⊗ b⊗ c)⊗ id↦ (b⊗ a⊗ c)⊗ (12)

↦ −(a⊗ γ(b)⊗ c)⊗ id

↦ −(γ(a)⊗ γ(b)⊗ c)⊗ id − (c⊗ a⊗ γ(γ(b)))⊗ (123)
P ′(i, i∗, i′) ≅ P ′(i∗, i, i′)→ P ′(i, i, i′; (2)) ≅ P ′(i, i, i′; (2))→ P ′(i′, i, i′; (1,1))

(a⊗ b⊗ c)⊗ id↦ (b⊗ a⊗ c)⊗ (12)
↦ (a⊗ γ(b)⊗ c)⊗ id

↦ (γ(a)⊗ γ(b)⊗ c)⊗ id − (c⊗ a⊗ γ(γ(b)))⊗ (123)
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P ′(j, i∗, i)→ P ′(j′, i∗, i) ≅ P ′(i∗, j′, i)→ P ′(i, j′, i; (2)) ≅ P ′(j′, i, i; (2))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ (b⊗ γ(a)⊗ c)⊗ (12)
↦ (c⊗ γ(a)⊗ γ(b))⊗ (123)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id

P ′(j, i∗, i) ≅ P ′(i∗, j, i)→ P ′(i, j, i; (2)) ≅ P ′(j, i, i; (2))→ P ′(j′, i, i; (2))
(a⊗ b⊗ c)⊗ id↦ (b⊗ a⊗ c)⊗ (12)

↦ (c⊗ a⊗ γ(b))⊗ (123)
↦ (a⊗ γ(b)⊗ c)⊗ id

↦ (γ(a)⊗ γ(b)⊗ c)⊗ id

P ′(j, i∗, i)→ P ′(j′, i∗, i) ≅ P ′(i∗, j′, i)→ P ′(i, j′, i; (1,1)) ≅ P ′(j′, i, i; (1,1))
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ (b⊗ γ(a)⊗ c)⊗ (12)
↦ −(c⊗ γ(a)⊗ γ(b))⊗ (123)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id

P ′(j, i∗, i) ≅ P ′(i∗, j, i)→ P ′(i, j, i; (1,1)) ≅ P ′(j, i, i; (1,1))→ P ′(j′, i, i; (1,1))
(a⊗ b⊗ c)⊗ id↦ (b⊗ a⊗ c)⊗ (12)

↦ −(c⊗ a⊗ γ(b))⊗ (123)
↦ (a⊗ γ(b)⊗ c)⊗ id

↦ (γ(a)⊗ γ(b)⊗ c)⊗ id

P ′(i, i∗, j)→ P ′(i′, i∗, j) ≅ P ′(i∗, i′, j)→ P ′(i, i′, j) ≅ P ′(i′, i, j)
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ (b⊗ γ(a)⊗ c)⊗ (12)
↦ (γ(b)⊗ γ(a)⊗ c)⊗ (12)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id

P ′(i, i∗, j) ≅ P ′(i∗, i, j)→ P ′(i, i, j; (2)) ≅ P ′(i, i, j; (2))→ P ′(i′, i, j)
(a⊗ b⊗ c)⊗ id↦ (b⊗ a⊗ c)⊗ (12)

↦ (a⊗ γ(b)⊗ c)⊗ id

↦ (γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(γ(b))⊗ a⊗ c)⊗ (12)
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P ′(i, i∗, j) ≅ P ′(i∗, i, j)→ P ′(i, i, j; (1,1)) ≅ P ′(i, i, j; (1,1))→ P ′(i′, i, j)
(a⊗ b⊗ c)⊗ id↦ (b⊗ a⊗ c)⊗ (12)

↦ −(a⊗ γ(b)⊗ c)⊗ id

↦ −(γ(a)⊗ γ(b)⊗ c)⊗ id + (γ(γ(b))⊗ a⊗ c)⊗ (12)

P ′(i, j, k)→ P ′(i′, j, k) ≅ P ′(j, i′, k)→ P ′(j′, i′, k) ≅ P ′(i′, j′, k)
(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ (b⊗ γ(a)⊗ c)⊗ (12)
↦ (γ(b)⊗ γ(a)⊗ c)⊗ (12)
↦ (γ(a)⊗ γ(b)⊗ c)⊗ id

P ′(i, j, k) ≅ P ′(j, i, k)→ P ′(j′, i, k) ≅ P ′(i, j′, k)→ P ′(i′, j′, k)
(a⊗ b⊗ c)⊗ id↦ (b⊗ a⊗ c)⊗ (12)

↦ (γ(b)⊗ a⊗ c)⊗ (12)
↦ (a⊗ γ(b)⊗ c)⊗ id

↦ (γ(a)⊗ γ(b)⊗ c)⊗ id
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The following calculations prove Lemma 4.3.27.

P ′(i, i, i; (3))→ P ′(i−, i, i; (2)) ≅ P ′(i, i−, i; (2))→ P ′(i−, i−, i; (2)) ≅ P ′(i, i−, i−; (2))
→ P ′(i−, i−, i−; (3))→ P ′(i, i−, i−; (2)) ≅ P ′(i−, i−, i; (2))
→ P ′(i, i−, i; (2)) ≅ P ′(i−, i, i; (2))→ P ′(i, i, i; (2))

(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id + (γ(c)⊗ a⊗ b)⊗ (123) + (γ(b)⊗ c⊗ a)⊗ (132)
↦ (a⊗ b⊗ γ(c))⊗ id + (c⊗ a⊗ γ(b))⊗ (123) + (b⊗ c⊗ γ(a))⊗ (132)
↦ 2(γ(a)⊗ b⊗ γ(c))⊗ id

+ 2(γ(c)⊗ a⊗ γ(b))⊗ (123) + 2(γ(b)⊗ c⊗ γ(a))⊗ (132)
↦ 2(a⊗ γ(b)⊗ γ(c))⊗ id + 2(c⊗ γ(a)⊗ γ(b))⊗ (123)

+ 2(b⊗ γ(c)⊗ γ(a))⊗ (132)
↦ 6(γ(a)⊗ γ(b)⊗ γ(c))⊗ id

↦ 6(δ(γ(a))⊗ γ(b)⊗ γ(c))⊗ id + 6(δ(γ(c))⊗ γ(a)⊗ γ(b))⊗ (123)
+ 6(δ(γ(b))⊗ γ(c)⊗ γ(a))⊗ (132)

↦ 6(γ(a)⊗ γ(b)⊗ δ(γ(c)))⊗ id + 6(γ(c)⊗ γ(a)⊗ δ(γ(b)))⊗ (123)
+ 6(γ(b)⊗ γ(c)⊗ δ(γ(a)))⊗ (132)

↦ 12(δ(γ(a))⊗ γ(b)⊗ δ(γ(c)))⊗ id

+ 12(δ(γ(c))⊗ γ(a)⊗ δ(γ(b)))⊗ (123)
+ 12(δ(γ(b))⊗ γ(c)⊗ δ(γ(a)))⊗ (132)

↦ 12(γ(a)⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id

+ 12(γ(c)⊗ δ(γ(a))⊗ δ(γ(b)))⊗ (123)
+ 12(γ(b)⊗ δ(γ(c))⊗ δ(γ(a)))⊗ (132)

↦ 36(δ(γ(a))⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id

P ′(i, i, i; (1,1,1))→ P ′(i−, i, i; (1,1)) ≅ P ′(i, i−, i; (1,1))
→ P ′(i−, i−, i; (1,1)) ≅ P ′(i, i−, i−; (1,1))→ P ′(i−, i−, i−; (1,1,1))
→ P ′(i, i−, i−; (1,1)) ≅ P ′(i−, i−, i; (1,1))
→ P ′(i, i−, i; (1,1)) ≅ P ′(i−, i, i; (1,1))→ P ′(i, i, i; (1,1))

(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id + (γ(c)⊗ a⊗ b)⊗ (123) + (γ(b)⊗ c⊗ a)⊗ (132)
↦ −(a⊗ b⊗ γ(c))⊗ id − (c⊗ a⊗ γ(b))⊗ (123) − (b⊗ c⊗ γ(a))⊗ (132)
↦ −2(γ(a)⊗ b⊗ γ(c))⊗ id − 2(γ(c)⊗ a⊗ γ(b))⊗ (123)

− 2(γ(b)⊗ c⊗ γ(a))⊗ (132)
↦ 2(a⊗ γ(b)⊗ γ(c))⊗ id + 2(c⊗ γ(a)⊗ γ(b))⊗ (123)

+ 2(b⊗ γ(c)⊗ γ(a))⊗ (132)
↦ 6(γ(a)⊗ γ(b)⊗ γ(c))⊗ id
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↦ 6(δ(γ(a))⊗ γ(b)⊗ γ(c))⊗ id + 6(δ(γ(c))⊗ γ(a)⊗ γ(b))⊗ (123)
+ 6(δ(γ(b))⊗ γ(c)⊗ γ(a))⊗ (132)

↦ −6(γ(a)⊗ γ(b)⊗ δ(γ(c)))⊗ id − 6(γ(c)⊗ γ(a)⊗ δ(γ(b)))⊗ (123)
− 6(γ(b)⊗ γ(c)⊗ δ(γ(a)))⊗ (132)

↦ −12(δ(γ(a))⊗ γ(b)⊗ δ(γ(c)))⊗ id − 12(δ(γ(c))⊗ γ(a)⊗ δ(γ(b)))⊗ (123)
− 12(δ(γ(b))⊗ γ(c)⊗ δ(γ(a)))⊗ (132)

↦ 12(γ(a)⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id + 12(γ(c)⊗ δ(γ(a))⊗ δ(γ(b)))⊗ (123)
+ 12(γ(b)⊗ δ(γ(c))⊗ δ(γ(a)))⊗ (132)

↦ 36(δ(γ(a))⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id

P ′(i, i, i; (2,1))→ P ′(i−, i, i; (2)) ≅ P ′(i, i−, i; (2))
→ P ′(i−, i−, i; (2)) ≅ P ′(i, i−, i−; (2))→ P ′(i−, i−, i−; (2,1))
→ P ′(i, i−, i−; (2)) ≅ P ′(i−, i−, i; (2))
→ P ′(i, i−, i; (2)) ≅ P ′(i−, i, i; (2))→ P ′(i, i, i; (2))

(a⊗ b⊗ c)⊗ id⊗ x1 ↦ (γ(a)⊗ b⊗ c)⊗ id − (γ(b)⊗ c⊗ a)⊗ (132)
↦ −(c⊗ a⊗ γ(b))⊗ (123) + (b⊗ c⊗ γ(a))⊗ (132)
↦ (γ(a)⊗ b⊗ γ(c))⊗ id − (γ(c)⊗ a⊗ γ(b))⊗ (123)
↦ −(a⊗ γ(b)⊗ γ(c))⊗ id + (b⊗ γ(c)⊗ γ(a))⊗ (132)
↦ −3(γ(a)⊗ γ(b)⊗ γ(c))⊗ id⊗ x1

↦ −3(δ(γ(a))⊗ γ(b)⊗ γ(c))⊗ id + 3(δ(γ(b))⊗ γ(c)⊗ γ(a))⊗ (132)
↦ 3(γ(c)⊗ γ(a)⊗ δ(γ(b)))⊗ (123) − 3(γ(b)⊗ γ(c)⊗ δ(γ(a)))⊗ (132)
↦ −3(δ(γ(a))⊗ γ(b)⊗ δ(γ(c)))⊗ id + 3(δ(γ(c))⊗ γ(a)⊗ δ(γ(b)))⊗ (123)
↦ 3(γ(a)⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id − 3(γ(b)⊗ δ(γ(c))⊗ δ(γ(a)))⊗ (132)
↦ 9(δ(γ(a))⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id⊗ x1
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P ′(i, i, i; (2,1))→ P ′(i−, i, i; (2)) ≅ P ′(i, i−, i; (2))
→ P ′(i−, i−, i; (2)) ≅ P ′(i, i−, i−; (2))→ P ′(i−, i−, i−; (2,1))
→ P ′(i, i−, i−; (2)) ≅ P ′(i−, i−, i; (2))
→ P ′(i, i−, i; (2)) ≅ P ′(i−, i, i; (2))→ P ′(i, i, i; (2))

(a⊗ b⊗ c)⊗ id⊗ x2 ↦ −(γ(c)⊗ a⊗ b)⊗ (123) + (γ(b)⊗ c⊗ a)⊗ (132)
↦ −(a⊗ b⊗ γ(c))⊗ id + (c⊗ a⊗ γ(b))⊗ (123)
↦ −(γ(a)⊗ b⊗ γ(c))⊗ id + (γ(b)⊗ c⊗ γ(a))⊗ (132)
↦ (c⊗ γ(a)⊗ γ(b))⊗ (123) − (b⊗ γ(c)⊗ γ(a))⊗ (132)
↦ −3(γ(a)⊗ γ(b)⊗ γ(c))⊗ id⊗ x2

↦ 3(δ(γ(c))⊗ γ(a)⊗ γ(b))⊗ (123) − 3(δ(γ(b))⊗ γ(c)⊗ γ(a))⊗ (132)
↦ 3(γ(a)⊗ γ(b)⊗ δ(γ(c)))⊗ id − 3(γ(c)⊗ γ(a)⊗ δ(γ(b)))⊗ (123)
↦ 3(δ(γ(a))⊗ γ(b)⊗ δ(γ(c)))⊗ id

− 3(δ(γ(b))⊗ γ(c)⊗ δ(γ(a)))⊗ (132)
↦ −3(γ(c)⊗ δ(γ(a))⊗ δ(γ(b)))⊗ (123)

+ 3(γ(b)⊗ δ(γ(c))⊗ δ(γ(a)))⊗ (132)
↦ 9(δ(γ(a))⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id⊗ x2

i < j

P ′(i, i, j; (2))→ P ′(i−, i, j) ≅ P ′(i, i−, j)
→ P ′(i−, i−, j; (2)) ≅ P ′(j, i−, i−; (2))→ P ′(j−, i−, i−; (2))
→ P ′(j, i−, i−; (2)) ≅ P ′(i−, i−, j; (2))
→ P ′(i, i−, j) ≅ P ′(i−, i, j)→ P ′(i, i, j; (2))

(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id + (γ(b)⊗ a⊗ c)⊗ (12)
↦ (a⊗ γ(b)⊗ c)⊗ id + (b⊗ γ(a)⊗ c)⊗ (12)
↦ 2(γ(a)⊗ γ(b)⊗ c)⊗ id

↦ 2(c⊗ γ(a)⊗ γ(b))⊗ (123)
↦ 2(γ(c)⊗ γ(a)⊗ γ(b))⊗ (123)
↦ 2(δ(γ(c))⊗ γ(a)⊗ γ(b))⊗ (123)
↦ 2(γ(a)⊗ γ(b)⊗ δ(γ(c)))⊗ id

↦ 2(δ(γ(a))⊗ γ(b)⊗ δ(γ(c)))⊗ id + 2(δ(γ(b))⊗ γ(a)⊗ δ(γ(c)))⊗ (12)
↦ 2(γ(a)⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id + 2(γ(b)⊗ δ(γ(a))⊗ δ(γ(c)))⊗ (12)
↦ 4(δ(γ(a))⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id

137



i < j

P ′(i, i, j; (1,1))→ P ′(i−, i, j) ≅ P ′(i, i−, j)
→ P ′(i−, i−, j; (1,1)) ≅ P ′(j, i−, i−; (1,1))→ P ′(j−, i−, i−; (1,1))
→ P ′(j, i−, i−; (1,1)) ≅ P ′(i−, i−, j; (1,1))
→ P ′(i, i−, j) ≅ P ′(i−, i, j)→ P ′(i, i, j; (1,1))

(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id − (γ(b)⊗ a⊗ c)⊗ (12)
↦ −(a⊗ γ(b)⊗ c)⊗ id + (b⊗ γ(a)⊗ c)⊗ (12)
↦ −2(γ(a)⊗ γ(b)⊗ c)⊗ id

↦ 2(c⊗ γ(a)⊗ γ(b))⊗ (123)
↦ 2(γ(c)⊗ γ(a)⊗ γ(b))⊗ (123)
↦ 2(δ(γ(c))⊗ γ(a)⊗ γ(b))⊗ (123)
↦ −2(γ(a)⊗ γ(b)⊗ δ(γ(c)))⊗ id

↦ −2(δ(γ(a))⊗ γ(b)⊗ δ(γ(c)))⊗ id

+ 2(δ(γ(b))⊗ γ(a)⊗ δ(γ(c)))⊗ (12)
↦ 2(γ(a)⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id − 2(γ(b)⊗ δ(γ(a))⊗ δ(γ(c)))⊗ (12)
↦ 4(δ(γ(a))⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id

j < i

P ′(j, i, i; (2))→ P ′(j−, i, i; (2)) ≅ P ′(i, j−, i; (2))
→ P ′(i−, j−, i) ≅ P ′(i, j−, i−)→ P ′(i−, j−, i−; (2))
→ P ′(i, j−, i−) ≅ P ′(i−, j−, i)
→ P ′(i, j−, i; (2)) ≅ P ′(j−, i, i; (2))→ P ′(j, i, i)

(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ (c⊗ γ(a)⊗ b)⊗ (123)
↦ (γ(c)⊗ γ(a)⊗ b)⊗ (123) + (γ(b)⊗ γ(a)⊗ c)⊗ (12)
↦ (c⊗ γ(a)⊗ γ(b))⊗ (123) + (b⊗ γ(a)⊗ γ(c))⊗ (12)
↦ 2(γ(c)⊗ γ(a)⊗ γ(b))⊗ (123)
↦ 2(δ(γ(c))⊗ γ(a)⊗ γ(b))⊗ (123) + 2(δ(γ(b))⊗ γ(a)⊗ γ(c))⊗ (12)
↦ 2(γ(c)⊗ γ(a)⊗ δ(γ(b)))⊗ (123) + 2(γ(b)⊗ γ(a)⊗ δ(γ(c)))⊗ (12)
↦ 4(δ(γ(c))⊗ γ(a)⊗ δ(γ(b)))⊗ (123)
↦ 4(γ(a)⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id

↦ 4(δ(γ(a))⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id
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j < i

P ′(j, i, i; (1,1))→ P ′(j−, i, i; (1,1)) ≅ P ′(i, j−, i; (1,1))
→ P ′(i−, j−, i) ≅ P ′(i, j−, i−)→ P ′(i−, j−, i−; (1,1))
→ P ′(i, j−, i−) ≅ P ′(i−, j−, i)
→ P ′(i, j−, i; (1,1)) ≅ P ′(j−, i, i; (1,1))→ P ′(j, i, i)

(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ −(c⊗ γ(a)⊗ b)⊗ (123)
↦ −(γ(c)⊗ γ(a)⊗ b)⊗ (123) + (γ(b)⊗ γ(a)⊗ c)⊗ (12)
↦ (c⊗ γ(a)⊗ γ(b))⊗ (123) − (b⊗ γ(a)⊗ γ(c))⊗ (12)
↦ 2(γ(c)⊗ γ(a)⊗ γ(b))⊗ (123)
↦ 2(δ(γ(c))⊗ γ(a)⊗ γ(b))⊗ (123) − 2(δ(γ(b))⊗ γ(a)⊗ γ(c))⊗ (12)
↦ −2(γ(c)⊗ γ(a)⊗ δ(γ(b)))⊗ (123) + 2(γ(b)⊗ γ(a)⊗ δ(γ(c)))⊗ (12)
↦ −4(δ(γ(c))⊗ γ(a)⊗ δ(γ(b)))⊗ (123)
↦ 4(γ(a)⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id

↦ 4(δ(γ(a))⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id

i < j < k

P ′(i, j, k)→ P ′(i−, j, k) ≅ P ′(j, i−, k)→ P ′(j−, i−, k) ≅ P ′(k, i−, j−)→ P ′(k−, i−, j−)
→ P ′(k, i−, j−) ≅ P ′(j−, i−, k)→ P ′(j, i−, k) ≅ P ′(i−, j, k)→ P ′(i, j, k)

(a⊗ b⊗ c)⊗ id↦ (γ(a)⊗ b⊗ c)⊗ id

↦ (b⊗ γ(a)⊗ c)⊗ (12)
↦ (γ(b)⊗ γ(a)⊗ c)⊗ (12)
↦ (c⊗ γ(a)⊗ γ(b))⊗ (123)
↦ (γ(c)⊗ γ(a)⊗ γ(b))⊗ (123)
↦ (δ(γ(c))⊗ γ(a)⊗ γ(b))⊗ (123)
↦ (γ(b)⊗ γ(a)⊗ δ(γ(c)))⊗ (12)
↦ (δ(γ(b))⊗ γ(a)⊗ δ(γ(c)))⊗ (12)
↦ (γ(a)⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id

↦ (δ(γ(a))⊗ δ(γ(b))⊗ δ(γ(c)))⊗ id
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