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We show how inverse metric tensors and rovibrational kinetic energy operators in

terms of internal bond-angle coordinates can be obtained analytically following a

factorization of the Jacobian worked out by Frederick and Woywod. The structure of

these Jacobians is exploited in two ways: On the one hand, the elements of the metric

tensor as well as its determinant all have the form
∑
rm sin(αn) cos(βo). This form

can be preserved by working with the adjugate metric tensor that can be obtained

without divisions. On the other hand, the adjugate can be obtained with less effort by

exploiting the lower triangular structure of the Jacobians. Together with a suitable

choice of the wavefunction, we avoid singularities and show how to obtain analytical

expressions for the rovibrational kinetic energy matrix elements.
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I. INTRODUCTION

Thermochemical and kinetic properties are often affected strongly by coupled large-

amplitude motions (LAMs), e.g. for loosely bonded complexes as molecular clusters1 and

transition states2. An exact treatment of the coupled anharmonic degrees of freedom (DOFs)

is tedious and has so far been limited to systems of six atoms at most3. Potential energy

functions for internal DOFs are formulated in internal coordinates that lead in turn to very

complicated expressions for the kinetic energy. In many studies, the form of the kinetic

energy operator (KEO) is worked out for the case under consideration, yielding expressions

that are several pages long4–6 or the operators are generated by a computer procedure and

evaluated numerically7.

Various researchers have proposed approximations to the coupled LAM problem: Miyoshi

incorporated the various torsional minima with their respective harmonic frequencies in a

rotational-conformer distribution partition function8. Truhlar et al. developed the Internal-

Coordinate Multi-Structural Approximation9. They showed that coupled anharmonic mo-

tion affects thermochemical and kinetic calculations in terms of partition functions and rate

constants by one to two orders of magnitude9,10. Fernández-Ramos presented an approach

to couple two hindered rotations while neglecting coupling to external rotation as well as

coupling to further internal modes11.

The foundations of exact approaches to the coupled LAM problem reach back to the early

decades of the last century. Boris Podolsky showed in 1928 how to transform the Schrödinger

Equation from Cartesian coordinates to different (e.g. internal) coordinates12. The equations

are formulated for a single moving particle of reduced mass µ, but the results are valid in

general for conservative many-particle systems. For an integration volume element du, the

Schrödinger Equation with eigenenergies E and potential energy V in internal coordinates

ui, uj with the metric tensor G reads:

∑
i,j

1
4
√

det(G)

∂

∂ui

(√
det(G)

(
G−1

)
ij

∂

∂uj

1
4
√

det(G)
ψ

)
+

8π2µ

h2
(E − V )ψ = 0 (1)

For an integration volume element
√

det(G)du in turn, the Schrödinger Equation looks

different: ∑
i,j

1√
det(G)

∂

∂ui

(√
det(G)

(
G−1

)
ij

∂

∂uj
ψ

)
+

8π2µ

h2
(E − V )ψ = 0 (2)
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In this work, we use a factorization worked out by Frederick and Woywod5 to derive

the KEO in eq. 2 and the corresponding matrix elements for the general rovibrational case

in internal coordinates. Frederick and Woywod choose the integration volume to be du,

thus working with eq. 1; they discuss other forms as well. Their specific choice yields

extrapotential terms that are tabulated in their work together with the metric elements for

the non-rotating case. The consequences of the choice of the volume element are discussed

by Nauts and Chapuisat13 in 1985. Later, the same authors and Belafhal discussed various

forms of extrapotential terms14. In this work, we will choose the volume element
√

det(G)du

that does not lead to extrapotential terms. This means that we will work with the form of

the Schrödinger equation given in eq. 2.

Frederick and Woywod5 used factorization to deduce the determinant of the metric re-

spectively the Jacobian as the simple expression:

√
det(G) = ± det(J) = ± sin β

N∏
k=2

r2k

N∏
l=3

sinφl

N∏
i=1

m3
i (3)

Here enter besides the radii r only the bond angles φ, not the torsional angles, and only one of

the Eulerian angles of overall rotation, β. Frederick and Woywod use a mass-weighted metric

that involves the product
∏N

i=1m
3
i in the Jacobian determinant while Podolsky includes

the reduced mass of his one-particle problem in the coefficient of the eigenenergies, thus

rendering the metric a purely geometrical entity. Though Frederick and Woywod obtained

the determinant very elegantly using their factorization, they formulate KEOs using an older

method from Wilson et al.15, restricting the approach to the non-rotating case. The result

for the determinant was reported at the same time by Makarewicz and Skalozub16 restricted

to internal motion; later17 rovibrational coupling was taken into account.

As stated by Frederick and Woywod5, “one can take advantage of the general properties

of the Jacobian determinant to produce simpler expressions that generalize to any molecular

system.” In this study, we will further explore general properties of the Jacobian matrices,

that is their triangular form (when written in 3 × 3 and 6 × 6 blocks, respectively) and

the algebraic structure of the terms of the Jacobian matrix elements. The triangular form

eases inversion. We further use fraction-free adjugates instead of inverse matrices in order

to preserve the algebraic structure (
∑
rm sin(αn) cos(βo), cf. eq. 18) of the entries of the

matrices.
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II. FACTORIZATION OF THE JACOBIAN: IDEA AND APPLICABILITY

To show the applicability of the factorization approach worked out by Frederick and

Woywod5 for the determination of not only the determinant but also of the inverse of the

metric and of KEOs, we briefly summarize the idea of factorizing the Jacobian: The metric

tensor needed in the KEO (cf. eqs. 1, 2) can be written for internal bond-angle coordinates

embedded in euclidean Cartesian space as:

G = JT · J (4)

We start from the Cartesian space-fixed coordinates xxx to construct Jacobi vectors δδδ

representing the difference between the positions of two subsequent atoms:

δδδi = xxxi − xxxi−1 (5)

A primed molecule-fixed system can be constructed from the unprimed space-fixed system

with a shift by the center-of-mass position rrrcom and external rotation by the Euler rotation

matrix Sr:

xxxi = rrrcom + Sr · xxx
′

i (6)

The primed molecule-fixed system is rotated in such a way that its x
′
-axis passes through

the first two atoms and the y
′
-axis is chosen to lie in the plane in which the first three

atoms lie. The center-of-mass position rrrcom is subtracted from all atom positions which

removes coupling to translational motion that can usually be described very well with a

quasi-classical expression. If we construct primed molecule-fixed Jacobi vectors

δδδ
′

i = xxx
′

i − xxx
′

i−1 (7)

they are not affected by the shift of the origin except the first one that reads δδδ
′
1 = xxx

′
1−xxx

′
0 =

0− (−rrrcom) = rrrcom. The Euler rotation matrix Sr reads:

Sr(α, β, γ) =
cosα cos γ − sinα cos β sin γ − cosα sin γ − sinα cos β cos γ sinα sin β

sinα cos γ + cosα cos β sin γ − sinα sin γ + cosα cos β cos γ − cosα sin β

sin β sin γ sin β cos γ cos β

 (8)

This yields the following relationship for the Jacobi vectors:

δδδi = Sr(θθθe) · δδδ
′

i (9)
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Here, the three Euler angles of external rotation are collected in θθθe = (α, β, γ).

The first coordinate transformation from {xxxi} to {rrrcom|δδδi} according to eq. 5 is collected

in the Jacobian matrix J1 (that we never need; instead we report the inverse J−11 directly),

while the second transformation from {rrrcom|δδδi} to internal coordinates {rrrcom|θθθe|uuui} collected

in J2 contains the rotation mentioned above (from δδδi to δδδ
′
i, eq. 9) as well as the transformation

of the Jacobi-vectors δδδ
′
i to internal coordinates uuuj.

The coordinates are collected in vectors of three elements, starting with the Euler angles

θeθeθe = (α, β, γ) and the first three internal coordinates uuu2,3 = (r2, r3, φ3). All further internal

coordinate vectors uuui, i ≥ 4, are composed of a distance ri, a bending angle φi and a dihedral

angle τi. The distance ri is measured between the atom i and the atom to which it is related

(i− 1 for sequential connectivity); similarly, φi would be the bending angle between atoms

i, i− 1 and i− 2 for sequential connectivity and τi the torsional, i.e. dihedral angle between

atoms i, i − 1, i − 2 and i − 3 if all atoms are sequentially connected. If the structure is

branched, the atoms that i is related to have indices lower than just i − 1, 2, 3 as outlined

in section II A. The “derivatives” of the Jacobi-vectors with respect to (wrt.) Eulerian or

internal coordinate vectors are an abbreviation for the 3×3 matrix where row m and column

n contain the derivative of Jacobi-vector element m wrt. coordinate n:

∂δδδ

∂uuu
:=

∂δm
∂un

=


∂δi,x
∂uj,r

∂δi,x
∂uj,φ

∂δi,x
∂uj,τ

∂δi,y
∂uj,r

∂δi,y
∂uj,φ

∂δi,y
∂uj,τ

∂δi,z
∂uj,r

∂δi,z
∂uj,φ

∂δi,z
∂uj,τ

 (10)

with the displayed 3×3 matrix being a showcase for an internal coordinate uuui≥4. The second

Jacobian therefore reads in terms of 3× 3 blocks:

J2 =
∂δδδi
∂uuuj

=



I 0 0 0 0 ...

0 ∂δδδ2
∂θθθe

∂δδδ2
∂uuu2,3

0 0 ...

0 ∂δδδ3
∂θθθe

∂δδδ3
∂uuu2,3

0 0 ...

0 ∂δδδ4
∂θθθe

∂δδδ4
∂uuu2,3

∂δδδ4
∂uuu4

0 ...

0 ∂δδδ5
∂θθθe

∂δδδ5
∂uuu2,3

∂δδδ5
∂uuu4

∂δδδ5
∂uuu5

...

... ... ... ... ... ...


(11)

J2 is a lower triangular matrix when the second and third column are collected into one. We

therefore group the matrix in 3× 3-blocks except in the second and third column where we

group the elements in 3× 6 and 6× 6 blocks. The overall Jacobian to be used to formulate
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the metric tensor therefore reads

J =
√
Mij

∂xi
∂uj

=
√
Mij

∑
k

∂xi
∂δk
· ∂δk
∂uj

= M
1
2 · J1 · J2 (12)

where M is a diagonal matrix containing the respective atomic masses.

A. Chains and branches

The first Jacobian J1 strongly depends on the “connectivity” of the molecule, i.e. the way

in which the atom positions are defined wrt. previous atoms. J1 is composed of 3× 3 blocks

of plus and minus unit matrices I and zeros. For special cases as e.g. sequential connectivity

one can give general expressions for the inverse of J1. For sequential connectivity, i.e. each

atom is related to the one before it (a “chain”), we arrive at:

J−11 =
∂δi
∂xj

=



m1

mtot
0 0 m2

M
... ... ... mN

mtot
0 0

0 m1

mtot
0 0 ... ... ... 0 mN

mtot
0

0 0 m1

mtot
0 ... ... ... 0 0 mN

mtot

−1 0 0 1 ... ... ... 0 0 0

0 −1 0 0 ... ... ... 0 0 0

0 0 −1 0 ... ... ... 0 0 0

0 0 0 −1 ... ... ... 0 0 0

... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... 1 0 0 0

... ... ... ... ... ... 0 1 0 0

... ... ... ... ... ... 0 0 1 0

... ... ... ... ... ... −1 0 0 1



(13)

Here, the symbol mtot =
∑N

i=1mi is the total mass of the system of N atoms. The first

three rows result from the derivative of the origin (in the center of nuclear mass) rrrcom wrt.

the Cartesian coordinates atom 1, 2, · · · , N . The second three rows represent the change

of δδδ2 with x1, y1, z1 and with x2, y2, z2 and so on. If all atoms are sequentially connected,

there will be a band structure below the first three rows. The product J−11 · adj(M) · J−1,T1

that we need later (eq. 14) is then made up of four blocks (cf. eq. 25 for the adjugate of

M): On the upper left, there is a 3 × 3 diagonal matrix containing det(M) =
∏
m3
i . The
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lower left (3N − 3)× 3 and upper right 3× (3N − 3) blocks are zero because in a field-free

environment intramolecular motion is decoupled from translational motion. The lower right

(3N −3)× (3N −3) matrix is a Toeplitz band matrix containing det(M)
mi

+ det(M)
mi−1

on the major

diagonal and −det(M)
mi−1

on the minor diagonals.

For branched structures, more than one atoms are linked to a precedent atom i. This

means that a later atom k is not defined wrt. j = k − 1 but wrt. e.g. the previous atom

i. In the case of a methyl group one would probably relate the three hydrogens j, k, l to

the carbon i. Then, the left neighbors to the diagonal 3 × 3 blocks j, k, l that are on the

minor diagonal in the same rows j, k, l, respectively, will not contain the −I block, but these

rows will show this −I block all in the same column i because all atoms j, k, l have defined

their Jacobi vectors by subtracting the position of atom i. The only effect on the second

Jacobian are the vanishing off-diagonal entries
∂δδδk,l
∂uuuj,k

. These zero matrices on the lower left

come from atoms k, l not being affected by rotations of all previously defined atoms, e.g.

j, k, but only by those of its branch, in our example atom i. Kinetically, there is no kind of

coupling between branches. Wilson, Decius and Cross state that if coordinates happen to

be orthogonal to each other, their common G-matrix element will be zero and that this will

clearly be the case if the two coordinates do not share a common atom15. The atoms of

different branches could even occupy the same position; hardness of the atoms arises only

from potential energy terms.

III. INVERSION OF THE METRIC TENSOR

The inverse metric tensor needed in eqs. 1, 2 can be factorized according to eq. 12 as

G−1 = J−1J−1,T = J−12 J−11 M−1J−1,T1 J−1,T2 (14)

The inverse of J1 has been already sketched in section II A. J−11 can be directly written down

similar to eq. 13.

The inverse can generally be written using the adjugate matrix, not to be confused with

the adjoint matrix:

adj (G) = det (G) · G−1 (15)

The determinant is already known generally from Frederick and Woywod5 (cf. eq. 3) for

arbitrary sequentially-connected and branched molecules. For J1, the determinant always
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amounts to ±1, so the adjugate is directly known as well. One benefit of working with

the adjugate instead of the inverse matrix is that the adjugate can be computed generally

from division-free algorithms18,19. This preserves the structure of the elements of the metric

tensor. All elements of the metric tensor are of the following form (as will be shown in

section III B):

Gij =
∑
k

ck

N∏
l=2

r
ml,k
l

2N−1∏
p=3

sin(np,kτp) cos(op,kτp) (16)

=
∑
k

ck exp

(
N∑
l=2

ml,k ln(rl) +
2N−1∑
p=3

iõp,kτp

)
(17)

=
∑
k

ck exp (oook · qqq) (18)

The trigonometric functions are expressed as complex exponentials using the imaginary

unit i. The radial coordinates r and angular coordinates τ are collected in the coordinate

vector qqq = (ln(rl)|i · τp)T and the corresponding powers ml,k and orders õp,k are collected in

the order vector oook = (ml,k|õp,k). For each order combination k there exists a coefficient ck to

form the term k in the sum. The form of the elements Gij is preserved during addition and

multiplication (and even when taking the derivative or integrating). Because the adjugate

can be obtained solely using multiplications and additions, the elements of the adjugate

metric tensor must have the same structure as the elements of the metric tensor itself — the

form presented in eq. 18. This point will be shown in detail in subsection III B. Addition

and multiplication of the terms in eq. 18 is a task of simple bookkeeping: If terms share the

same order, the coefficients ck are added; if not, they contribute separate terms to the sum.

Multiplication leads to addition of the order vectors and multiplication of the coefficients

ck. To obtain the adjugate of the metric tensor one can thus use a simple bookkeeping

script instead of having to use a sophisticated computer algebra software. The inverse is

then simply obtained according to eq. 15 by dividing each element of the adjugate by the

generally known determinant from eq. 3.

The computation of the adjugate Jacobian matrix using the factorization of Frederick

and Woywod5 is particularly simple due to the lower triangular structure of the Jacobians

when written in 3 × 3 and 6 × 6 blocks, respectively. Before we show the inversion of J2

using its specific structure, we further motivate the use of the adjugate matrix from the

formulation of the matrix elements.
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A. Formulation of the kinetic energy matrix elements

The matrix elements for the kinetic energy follow from the KEO:

Tab = 〈ψa|T̂ |ψb〉 =

∫
dτψ∗aT̂ψb (19)

We choose the volume element to be

dτ = det(J)du (20)

Then according to Podolsky12 the KEO reads

T̂ =
−~2

2µ · det(J)

∑
i,j

∂

∂ui
det(J)

(
G−1

)
ij

∂

∂uj
(21)

In this equation for a single moving particle, the reduced mass is factored out, so the inverse

metric is a purely geometrical expression. Frederick and Woywod5 use a mass weighted

metric which is reflected in eq. 12. Therefore, in our equations no reduced mass factor

µ appears. Furthermore, the determinant of J from the volume element cancels with the

coefficient of the KEO, so the matrix element reads:

Tab =
−~2

2

∫
duψ∗a

∑
i,j

∂

∂ui
det(J)

(
G−1

)
ij

∂

∂uj
ψb

=
−~2

2

∫
duψ∗a

∑
i,j

∂

∂ui
det(J)−1adj (G)ij

∂

∂uj
ψb (22)

We can split up the adjugate computation of the metric tensor using the straightforward

factorization proposed by Frederick and Woywod5 implied by eq. 4 and eq. 12:

adj (G) = det(G) · G−1 = det(G) · J−1(J−1)T

adj (G) = det(G) · J−12 J−11 M−1(J−11 )T(J−12 )T (23)

adj (G) = adj(J2)adj(J1)adj(M)adj(J1)
Tadj(J2)

T (24)

The adjugates of J1 and M are easily computed: As stated above, since the determinant of

J1 amounts to ±1, we can insert eq. 13 for its adjugate. The adjugate of M results from

adj(M) = det(M) ·M−1 (25)

M−1 is a diagonal matrix obtained in a straightforward way from M. It simply carries the

reciprocal of the respective atomic masses. The adjugate of J2 can be computed making use

of its lower triangular form when written in 3× 3 blocks.
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B. Structure of the Jacobian of the second coordinate transformation

The computation of the adjugate metric tensor, especially of the remaining part J2 of the

Jacobian, is facilitated by two structural properties: On the one hand, all elements are of

the form of eq. 18. On the other hand, J2 is a lower triangular matrix.

The first point is evident from the following: The space-fixed Jacobi vectors δδδi are ob-

tained from the Cartesian coordinates xxxi just by subtraction via the first coordinate trans-

formation in J1 that clearly preserves the form of eq. 18 (since subtraction is multiplication

by −1 and addition). Rotated and translated molecule-fixed Jacobi vectors δδδ
′
i are obtained

by multiplication by the Euler rotation matrix Sr according to eq. 9. From eq. 8 one can

easily see that Sr is made up solely of eq. 18-elements and their form is preserved under

multiplication by matrices and vectors that as well consist of eq. 18-elements since matrix

multiplication is made up of additions and multiplications. According to Frederick and

Woywod5, the Jacobi vectors δδδ
′
i(uuu) can be expressed in terms of internal coordinates, using

rotation matrices around xxx
′

and zzz
′
, in the following way:

δδδ
′

2 = r2eeex′ (26)

δ
′
δ
′
δ
′
3 = −r3Rz′ (φ3) · eeex′ (27)

δ
′
δ
′
δ
′
4 = r4Rz′ (φ3)Rx′ (τ4)Rz′ (φ4) · eeex′ (28)

The rotation matrices Rz′ (φi) and Rx′ (τi) rotate the coordinate system so that the x
′
-axis

points in direction of the bond that carries atom i. The orientation, though, can change;

e.g. in a sequentially connected molecule, the orientation of the x
′
-axis is alternant. The

R-matrices are given by Frederick and Woywod5 as

Rz′ (φi) =


cos(φi) sin(φi) 0

− sin(φi) cos(φi) 0

0 0 1

 (29)

Rx′ (τi) =


1 0 0

0 cos(τi) sin(τi)

0 − sin(τi) cos(τi)

 (30)

These matrices are composed of eq. 18-elements as well. The product of the rotation matrices
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can be collected in an overall rotation matrix Sv

Sv(φ3...φk, τ4...τk) := Rz′ (φ3) ·
k∏
i=4

Rz′ (φi) · Rx′ (τi) (31)

Then one can express the ith Jacobi vector as

δδδ
′

i = xxx
′

i − xxx
′

i−1 = (−1)mrni Sv(φ3...φi, τ4...τi) · eeex′ (32)

while the index m here corresponds to the different orientations of the xxx
′
-axis. Multiplication

and addition preserves the structure of the terms in eq. 18; so δδδ
′
i and δδδi from eqns. 32 and

9 must have the structure of eq. 18 as well.

Now one can expand the “derivatives” in eq. 11 according to the product rule to be

∂
∂θθθe

Sr · δδδ
′
i for columns 4 to 6 and to be Sr · ∂

∂uj
δδδ
′
i for further columns, the “derivatives” wrt.

vectors again signifying abbreviations for 3× 3 matrices explained in the context of eq. 11.

With this, we can write the second Jacobian matrix starting from eq. 11 as:

J2 =



I 0 0 0 ...

0 ∂δδδ2
∂θθθe

Sr · ∂
∂uuu2,3

δδδ
′
2 0 ...

0 ∂δδδ3
∂θθθe

Sr · ∂
∂uuu2,3

δδδ
′
3 0 ...

0 ∂δδδ4
∂θθθe

Sr · ∂
∂uuu2,3

δδδ
′
4 Sr · ∂

∂uuu4
δδδ
′
4 ...

... ... ... ... ...


(33)

Since the derivative preserves the structure of the terms in eq. 18 as well, all elements of J2

must have the structure of eq. 18 as well, q.e.d..

C. Triangular (block) matrix adjugate

Since the determinant factors for a triangular (block) matrix, we can write for the adjugate

of the block matrix:

adj

A 0

C D

 = det

A 0

C D

 ·
 A−1 0

−D−1 · C · A−1 D−1

 (34)

= det(A) · det(D) ·

 A−1 0

−D−1 · C · A−1 D−1

 (35)

=

 det(D) · adj(A) 0

−adj(D) · C · adj(A) det(A) · adj(D)

 (36)
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The blocks A and D need to be square matrices, C and 0 can be rectangular. Applied to J2

for a larger part of the molecule (at atom i), the matrix would read:

J2,i =

J2,i−1 0

Ci σi

 (37)

and its adjugate:

adj(J2,i) =

 det(σi) · adj(J2,i−1) 0

−adj(σi) · Ci · adj(J2,i−1) det(J2,i−1) · adj(σi)

 (38)

The rectangular matrix Ci can be read by choosing the appropriate row from the matrix J2

in eq. 33. Frederick and Woywod5 report the matrix σi to be:

σi = (−1)mSr · Sv ·


cos(φi) −ri sin(φi) 0

− cos(τi) sin(φi) −ri cos(τi) cos(φi) ri sin(τi) sin(φi)

sin(τi) sin(φi) ri sin(τi) cos(φi) ri cos(τi) sin(φi)

 (39)

We compute the adjugate of σi as:

adj(σi) = r2i sin(φi) · σi−1

=


r2i sin(φi) cos(φi) −r2i sin2(φi) cos(τi) r2i sin2(φi) sin(τi)

−ri sin2(φi) −ri sin(φi) cos(φi) cos(τi) ri sin(φi) cos(φi) sin(τi)

0 ri sin(τi) ri cos(τi)

 ·
· ST

v · ST
r · (−1)m

The rotation matrices S contribute a factor of 1 to the determinant and their inverse is

simply their transpose. The determinant of σi is known from the work of Frederick and

Woywod5 as

det(σi) = ±r2i sin(φi) (40)

It is worth noting that the structure of the elements of σ and of adj(σ) is of the form of

eq. 18. The adjugate of the submatrix J2,i−1 can be obtained in the same way as the adjugate

of J2,i itself. The determinant of the submatrix J2,i−1 is already known from the result of

Frederick and Woywod5 as:

det(J2,i−1) = ± sin(β)
i−1∏
n=2

r2n

i−1∏
l=3

sin(φl) (41)
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We already have computed the adjugate for the 3-atomic system (cf. appendix A). All

elements of that matrix are of the form of eq. 18. Eq. 38 therefore allows us to derive

the adjugate for a N -atomic molecule subsequently starting with the 3-atomic subsystem.

Because matrix multiplication preserves the form of eq. 18-elements, all elements of adj J2

must be of the form of eq. 18.

The KEO reads, when the adjugate metric from eq. 24 is inserted into eq. 21:

T̂ =
−~2

2
det(J)−1

∑
i,j

∂

∂ui
det(J)−1adj(J2)adj(J1)adj(M)adj(J1)

Tadj(J2)
T ∂

∂uj
(42)

=
−~2

2
det(J)−1

∑
i,j

∂

∂ui
det(J)−1

∑
k

ck exp (oook · qqq)
∂

∂uj
(43)

The form of the adjugate metric tensor from eq. 18 will be preserved under differentiation,

integration, multiplication and addition as long as no division is required. However, equa-

tion 22 shows that one division by the determinant is needed in the computation of matrix

elements. In the following section, we will show that such fractions are not allowed in the

integrals of the matrix elements so that valid wavefunctions need to be designed in a way

that the division by the determinant is cancelled.

IV. VALID WAVEFUNCTIONS

Matrix elements using the KEO from eq. 43 in eqs. 19 and 20 read:

Tab =
−~2

2

∫
duψ∗a

∑
i,j,k

∂

∂ui
det(J)−1ck exp (oook · qqq)

∂

∂uj
ψb (44)

It is desirable to formulate the wavefunction as well in the form of eq. 18

ψansatz :=
∑
κ

cκ exp (oooκ · qqq) (45)

because the form remains unchanged upon differentiation and integration. Nevertheless,

there are physical restrictions to such wavefunctions: Physically acceptable wavefunctions

ψphys need to be designed in a way that the integrals within the matrix elements do not

diverge. Convergence of the integrals for the radii rm going to ∞ can be achieved by

exponential damping terms in the wavefunction. Divergence for the radii approaching 0 or

for the angles at 0 or π arises from integration over 1/r or 1/sin. The wavefunction is thus to

be chosen such that no terms 1/r or 1/sin arise in the integrals. This can be achieved e.g. by

13



discarding all orders of 0 and 1 from the radial wavefunction or equivalently by introducing

a radial correction factor:

fr :=
N∏
l=2

r2l = exp

(
N∑
l=2

2 ln (rl)

)
(46)

The angular part of the wavefunction has to ensure that 1/ sin(φ) always vanishes, a

factor that results as well from the division by the determinant of the Jacobian. This can

be achieved by multiplying the wavefunction by sin2 φ. Then as well in the terms where the

wavefunction is differentiated once wrt. φ one sinφ is still left to cancel with the determinant

of the Jacobian. This ensures the wavefunction will be single-valued and differentiable

(without break and cusp) at the poles φ = 0, π. Thereby, the wavefunction is artificially

forced to take a value of zero at the poles. This behavior is a shortcoming of polyspherical

coordinates in general; because the determinant of the Jacobian for polyspherical internal

coordinates always will take the form of eq. 3, the wavefunction never can have a nonzero

value at the poles. According to Bramley et al. the multi-valuedness of the wavefunction

would not affect the results, because the integration volume near the poles goes to zero

anyway4. Nevertheless, taking the limit of a product for one factor approaching 0 and one

approaching ∞ may lead to any value, not necessarily to 0. In our formulation in eq. 22

one can see that the det(J)-weighting of the integration volume cancels with a part of the

KEO – so the integrand may approach different limits for different dihedral angles as the

bending angle approaches 0 or π. This unphysical behavior is prevented by the proposed

multiplication by sin2 φ. One can introduce an angular correction factor according to:

fφ :=
N∏
p=3

sin2 (φp) =
N∏
p=3

(
1

2
− 1

4
exp (2iφp)−

1

4
exp (−2iφp)

)
(47)

This product can be multiplied out and then be written in the form of eq. 18.

Fourier functions are commonly used to fit torsional potentials, e.g. in the python package

TAMkin20 for the treatment of one-dimensional internal rotations. It is therefore natural to

use the form of eq. 18 for the angular potential energy functions. The radial dependence of

the potential energy can be locally expanded in a power series in r. Then, one has to assure

the correct behavior near 0 and ∞. Since the potential energy function will be multiplied

two times by basis functions containing r to powers of at least two, as mentioned above and

additionally by a factor of r2 arising from the volume element (cf. eq. 20), one can use radial

14



potential energy functions with exponents from 0 down to −6 without producing divergent

integrals.

Multiplication of the wave functions by exponential damping terms exp (−ary) will both

allow r−m terms in the potential energy function to rise to ∞ when r → 0, making the

nuclei repel each other, and dampen all terms when r → ∞. Different dissociation limits

for different rl → ∞ are possible in V while potential energy matrix elements Vab remain

convergent. One would therefore multibly by a damping factor fdamp defined as:

fdamp :=
N∏
l=2

exp (−aryl ) (48)

The physically acceptable wavefunction ψphys can then be written as:

ψphys := frfφfdampψansatz =
∑
κ

N∏
l=2

r2l exp (−aryl )
N∏
p=3

sin2 (φp) cκ exp (oooκ · qqq) (49)

Resulting matrix elements will be of the form (where the coefficients ck and the oreder vector

oook is altered for the multiplication by fφ and fdamp):

Xa,b =

∫ r2=∞

r2=0

· · ·
∫ rN=∞

rN=0

∫ φ3=π

φ3=0

· · ·
∫ φN=π

φN=0

∫ τ4=2π

τ4=0

· · ·
∫ τN=2π

τN=0

du1 · · · du3N−6

∑
k

ck exp

(
−a

(
N∑
l=2

ryl

)
oook · qqq

)
(50)

These integrals can be evaluated analytically and, according to Fubini’s theorem21, one by

one. The argument of the exponential function contains one term per coordinate when the

radial terms are sorted into terms like rmll exp(−aryl ). Integration can thus be performed for

one coordinate after the other, treating all other coordinates as factors independent of the

current coordinate and factoring them out. Integration thus yields:

Xa,b =
∑
k

ck

∫ r2=∞

r2=0

dr2 r
m2,k

2 exp (−ary2)× · · · ×
∫ rN=∞

rN=0

drN r
mN,k
N exp (−aryN)×∫ φ3=π

φ3=0

dφ3 exp (iõ3,angleφ3)× · · · ×
∫ φN=π

φN=0

dφN exp (iõN,angleφN)×∫ τ4=2π

τ4=0

dτ4 exp (iõ4,dihedτ4)× · · · ×
∫ τN=2π

τN=0

dτN exp (iõN,dihedτN) (51)

The integrals over radial coordinates yield:∫ ∞
0

dr rm · exp (−ary) =
1

y
a−

m+1
y Γ

(
m+ 1

y

)
(52)
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For the special case of y = 1 the Gamma function yields Γ(m+ 1) = m!.

For the special case of y = 2 the Gamma function yields:

Γ

(
m+ 1

2

)
=

√
π

4m
(m)!

(m/2)!
for m even (53)

Γ

(
m+ 1

2

)
=

(
m− 1

2

)
! for m odd (54)

The integrals over angular coordinates yield in the case of õ = 0:∫ π

0

dφ exp(0)︸ ︷︷ ︸
1

= [φ]π0 = π (55)

for integration over angles. Integration over dihedral angles ranges from 0 to 2π and results

therefore in 2π. In the case of õ 6= 0 all integrals vanish except for õ = 1 for angles φ:∫ π

0

dφ exp(iφ) =

∫ π

0

dφ cos(φ) + i

∫ π

0

dφ sin(φ) = 0 + 2i (56)

For dihedral angles τ integration from 0 to 2π yields 0 again.

Both cases (õ = 0 and õ = 1) will appear frequently because one needs to use both

negative and positive orders in the Fourier expansion with complex exponentials. Then in

products of such functions the orders will frequently sum up to zero or one. All other terms

can be discarded.

In subsequent work we will test the behavior of these wavefunctions, orthonormal sets of

them and potential energy functions for some molecules.

V. CONCLUSIONS

We have shown how the inverse metric tensor and the kinetic energy operator can

be obtained analytically following a factorization proposed by Frederick and Woywod5.

The elements of the adjugate metric tensor as well as its determinant all have the form∑
rm sin(αn) cos(βo). This holds both for sequentially connected and branched molecules.

A suitable choice of the wavefunction and the potential energy function avoids singularities

and yields analytical expressions for the rovibrational kinetic energy matrix elements.
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Appendix A: Jacobian for the three-atomic case

The main problem for the three-atomic case is the determination of the inverse of the

second Jacobian matrix from Equation 11. This Jacobian matrix J2 = A reads:

A1,1 = −r2( sinα cos γ + cosα cos β sin γ)

A1,2 = r2 sinα sin β sin γ

A1,3 = −r2( cosα sin γ + sinα cos β cos γ)

A1,4 = cosα cos γ − sinα cos β sin γ

A1,5 = 0

A1,6 = 0

A2,1 = r2( cosα cos γ − sinα cos β sin γ)

A2,2 = −r2 cosα sin β sin γ

A2,3 = −r2( sinα sin γ + cosα cos β cos γ)

A2,4 = sinα cos γ + cosα cos β sin γ

A2,5 = 0

A2,6 = 0

A3,1 = 0

A3,2 = r2 cos β sin γ

A3,3 = r2 sin β cos γ

A3,4 = sin β sin γ

A3,5 = 0

A3,6 = 0

A4,1 = r3 cosα cos β(sin γ cosφ3 − cos γ sinφ3) + sinα(cos γ cosφ3 + sin γ sinφ3)

A4,2 = r3 sinα sin β(cos γ sinφ3 − sin γ cosφ3)

A4,3 = r3( sinα cos β(sin γ sinφ3 + cos γ cosφ3) + cosα(sin γ cosφ3 − cos γ sinφ3)

A4,4 = 0

A4,5 = − ( cosφ3(cosα cos γ − sinα cos β sin γ) + sinφ3(cosα sin γ + sinα cos β cos γ))

A4,6 = r3( sinφ3(cosα cos γ − sinα cos β sin γ) − cosφ3(cosα sin γ + sinα cos β cos γ))

A5,1 = −r3( cosφ3(cosα cos γ − sinα cos β sin γ) + sinφ3(cosα sin γ + sinα cos β cos γ))

A5,2 = r3 cosα sin β (sin γ cosφ3 − cos γ sinφ3)

A5,3 = −r3( sinφ3(sinα cos γ + cosα cos β sin γ − cosφ3(sinα sin γ − cosα cos β cos γ))

A5,4 = 0

A5,5 = − ( cosφ3(sinα cos γ + cosα cos β sin γ) + sinφ3(sinα sin γ − cosα cos β cos γ))

A5,6 = r3( sinφ3(sinα cos γ + cosα cos β sin γ) − cosφ3(sinα sin γ − cosα cos β cos γ))

A6,1 = 0

A6,2 = r3 cos β(cos γ sinφ3 − sin γ cosφ3)

A6,3 = −r3 sin β(cos γ cosφ3 + sin γ sinφ3)

A6,4 = 0

A6,5 = sin β(cos γ sinφ3 − sin γ cosφ3)

A6,6 = r3 sin β(cos γ cosφ3 + sin γ sinφ3)

The inverse of A times its determinant of r22r
2
3 sin(β) sin(φ3) will be called adj(A) =
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B = r22r
2
3 sin(β) sin(φ3) · A−1 and reads (when we multiply by the determinant, eventually a
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preceding unity matrix block would be multiplied by this as well):

B1,1 = r2r
2
3 sin(α) sin(β)(cos(φ3) sin(γ)− sin(φ3) cos(γ))

B1,2 = −r2r23 cos(α) sin(β)(cos(φ3) sin(γ)− sin(φ3) cos(γ))

B1,3 = r2r
2
3 cos(β)(cos(φ3) sin(γ)− sin(φ3) cos(γ))

B1,4 = r22r3 sin(α) sin(β) sin(γ)

B1,5 = −r22r3 cos(α) sin(β) sin(γ)

B1,6 = r22r3 cos(β) sin(γ)

B2,1 = r2r
2
3 sin(α) sin(β)2(cos(φ3) cos(γ) + sin(φ3) sin(γ))

B2,2 = −r2r23 cos(α) sin(β)2(cos(φ3) cos(γ) + sin(φ3) sin(γ))

B2,3 = r2r
2
3 cos(β) sin(β)(cos(φ3) cos(γ) + sin(φ3) sin(γ))

B2,4 = r22r3 sin(α) sin2(β) cos(γ)

B2,5 = −r22r3 cos(α) sin2(β) cos(γ)

B2,6 = r22r3 cos(β) sin(β) cos(γ)

B3,1 = −r2r23 sin(γ) sin(β)(cos(φ3) sin(α) cos(β) + sin(φ3) cos(α))

B3,2 = r2r
2
3 sin(γ) sin(β)(cos(φ3) cos(α) cos(β)− sin(φ3) sin(α))

B3,3 = −r2r23(cos(φ3) sin(γ) cos(β)2 − sin(φ3) cos(γ))

B3,4 = −r22r3 sin(α) sin(β) cos(β) sin(γ)

B3,5 = r22r3 cos(α) sin(β) cos(β) sin(γ)

B3,6 = −r22r3 cos2(β) sin(γ)

B4,1 = r22r
2
3 sin(φ3) sin(β)(cos(α) cos(γ)− sin(α) cos(β) sin(γ))

B4,2 = r22r
2
3 sin(φ3) sin(β)(sin(α) cos(γ) + cos(α) cos(β) sin(γ))

B4,3 = r22r
2
3 sin(φ3) sin2(β) sin(γ)

B4,4 = 0

B4,5 = 0

B4,6 = 0

B5,1 = 0

B5,2 = 0

B5,3 = 0

B5,4 = r22r
2
3 sin(β)(cos2(φ3)(sin(α) cos(β) cos(γ) + cos(α) sin(γ)) + cos(φ3) sin(φ3)×

× (sin(γ) sin(α) cos(β)− cos(α) cos(γ))− sin(α) cos(β) cos(γ)− cos(α) sin(γ))

B5,5 = r22r
2
3 sin(β)(− cos2(φ3)(cos(α) cos(β) cos(γ)− sin(α) sin(γ))− cos(φ3) sin(φ3)×

× (sin(γ) cos(α) cos(β) + sin(α) cos(γ)) + cos(α) cos(β) cos(γ)− sin(α) sin(γ))

B5,6 = r22r
2
3 sin2(β)(cos(γ) sin2(φ3)− sin(γ) sin(φ3) cos(φ3))

B6,1 = −r2r23 sin(φ3) sin(β)(cos(α) sin(γ) + sin(α) cos(β) cos(γ))

B6,2 = −r2r23 sin(φ3) sin(β)(sin(α) sin(γ)− cos(α) cos(β) cos(γ))

B6,3 = r1r
2
3 sin(φ3) sin2(β) cos(γ)

B6,4 = −r22r3 sin(φ3) sin(β)(sin(α) cos(β)(cos(γ) cos(φ3) +

+ sin(γ) sin(φ3)) + cos(α)(cos(φ3) sin(γ)− sin(φ3) cos(γ)))

B6,5 = r22r3 sin(φ3) sin(β)(cos(α) cos(β)(cos(γ) cos(φ3) +

+ sin(γ) sin(φ3)) + sin(α)(sin(φ3) cos(γ)− cos(φ3) sin(γ)))

B6,6 = r22r3 sin(φ3) sin2(β)(cos(γ) cos(φ3) + sin(γ) sin(φ3))
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