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Abstract

In this thesis we developed new techniques to detect, reconstruct and track

human faces from pure image data. It is divided into two parts. While the first

part considers static faces only, the second part deals with dynamic facial move-

ments. For static faces we introduce a new facial feature localization method

that determines the position of facial features relative to segments that were

uniformly distributed in an input image. In this work we introduce and train

a compact codebook that is the foundation of a voting scheme: Based on the

appearance of an image segment this codebook provides offset vectors originat-

ing form the segments center and pointing towards possible feature locations.

Compared to state-of-the-art methods, we show that this compact codebook

has advantages regarding computational time and memory consumptions with-

out losing accuracy. Leaving the two-dimensional image space, in the following

chapter we introduce and compare two new 3D reconstruction approaches that

extracts the 3D shape of a human face from multiple images. Those images

were synchronously taken by a calibrated camera rig. With the aim of generat-

ing a large database of 3D facial movements, in the second part of this thesis we

extend both systems to reconstruct and track human faces in 3D from videos

taken by our camera rig. Both systems are completely image based and do

not require any kind of facial markers. By carefully taking all requirements

and characteristics into account and discussing single steps of the pipeline, we

propose our facial reconstruction system that efficiently and robustly deforms

a generic 3D mesh template to track a human face over time. Our tracking

system preserves temporal and spatial correspondences between reconstructed

faces. Due to this fact we can use the resulting database of facial movements,

showing different facial expressions of a fairly large number of subjects, for

further statistical analysis and to compute a generic movement model for facial

actions. This movement model is independent from individual facial physiog-

nomies. In the last chapter we introduce a new marker-less 3D face tracking
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approach for 2D video streams captured by a single consumer grade camera.

Our approach tracks 2D facial features and uses them to drive the evolution of

our generic motion model. Here, our major contribution lies in the formulation

of a smooth deformation prior which we derive from our generic motion model.

We show that derived motions can be mapped back onto the individual facial

shape, which leads to a reconstruction of the facial performance as seen in the

video sequence. Additionally we show that it is possible to map the motion

to another facial shape to drive the facial performance of a different (virtual)

character. We demonstrate the effectiveness of our technique on a number of

examples.
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1. Introduction

There is a mechanism deeply ingrained in the human visual system, that re-

sponses extremely sensitive to (human) faces. This mechanism lets us, e.g.,

recognize the face of a familiar person, even if that person is still far away. It

also lets us instantaneously identify the emotional state of a person by shortly

looking at his or her face. These abilities, which were a cornerstone in human

evolution and which belong to the first skills a baby learns in life, were and

still are of particular importance in any daily social interaction essential in hu-

man lives. We can only behave appropriate towards other persons (superior,

spouse, friends, etc.), if we immediately recognize that person and rate his or

her emotional state.

Due to this sensitivity of our visual system towards (human) faces, the cre-

ation of realistic 3D facial animations is one of the hardest challenges of today’s

computer graphics. But simultaneously, it is also one of the most important

disciplines of computer graphics. This is because the success of substantially

all movie or computer game productions raise and fall with their characters,

which are expected to show more and more complex behaviors like being, e.g.,

cheerful, profound, kind, beastly, mean, sad or tender. In many today’s movies

the characters aren’t real humans anymore (like, e.g, in films of the relatively

young genre ”animation movie”, in fantasy and science-fiction films etc.), but

they show the emotional states of humans and it is especially important that

these emotional states appear believable to the audience. Seeing the generation

of 3D facial animations from a mathematical point of view, one would think

that the emotional acceptance follows a simple linear relation and is propor-

tional to the degree of realism of the 3D model. But surprisingly, psychological

studies show that this is not the case for the human visual system. The phe-

nomena is called the uncanny valley [Mor70] and is sketched in Figure 1.1.

Although just composed by a few circles and lines the emotional acceptance of

a simple smiley is surprisingly high. For 2D cartoonish drawings the acceptance
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Figure 1.1.: Illustration of the uncanny valley. There is a level of realism (red

area), where the emotional acceptance actually drops and where the human

visual system perceives the happy face of the girl as unnatural. Images ©:

Twentieth Centrury Fox Film Corporation, Pixar Animation Studios/Disney

Company, Castle Rock Entertainment.

is even higher and increases further if we add more details as it was done for

the baby Jack-Jack from the Pixar movie ”The Incredibles”. But when adding

more realistic details, something strange happens as it can be seen in the face

of a little girl from the movie ”The Polar Express”. Instead of an increased

emotional credibility the character becomes scary to us, which results in an

actually drop of the emotional acceptance. We can overcome this uncanny val-

ley, if more realistic details are added. This highest amount of realism is, e.g.,

achieved by showing a photo of a real person.

To avoid this problematic zone, todays animation systems clearly define for

which purpose they are designed and stay rather in the region left (cartoonish

animations) or in the region right (realistic facial animations) of the uncanny

valley. While the acceptance of cartoonish animations are mostly dependent on

the artistic skills of the animations experts and designers, realistic animations

require well developed technical equipment and algorithms to capture realistic

facial movements. Those capture systems all work with the same principle. An

actor performs in front of some scanning device which (partially) captures and

reconstructs the geometry of his face and his facial movements in 3D space.

Then the result can be used as it is (e.g. for a computer game where the

2



actor just needs to be digitized) or it is used to drive the facial performance of

another character, probably having a complete different facial shape than the

actor himself (e.g. the face of a dragon in a fantasy movie).

Systems that capture the facial performance of an actor, can roughly be di-

vided into marker-based and marker-less systems. When marker-based systems

are employed, the face of the actor is covered with several points, which are

easily detectable by the scanning device. Then, the facial performance of the

complete surface of the actor is approximated by the reconstructed 3D tra-

jectories of these marker points or landmarks. Such trajectories can then be

used to deform a dense reconstruction of a facial surface and thereby create

an animation. The biggest problem with such systems is, that there are no

measurements for the regions between the landmarks. Often algorithms come

into play, which simulate the physical properties of human skin, such that the

regions between the landmarks move in a plausible way. Although these al-

gorithms perform quite well, they are often doomed to trick the human visual

system, which perceives the constructed movements as unnatural.

Marker-less systems try to overcome these problems and densely reconstruct

the shape and the facial movements of an actor. Thereby they have the poten-

tial to reconstruct fine details like wrinkles or little beauty marks, which makes

the resulting, animated 3D model much more realistic and vivid.

In this thesis we focus on a marker-less animation system, whose scanning

device is purely image based. Therefore, our approaches are based on methods

from computer vision to reconstruct and track 3D facial surfaces captured in

2D images. Although future camera systems will augment the color channels

with an additional depth value, which makes the reconstruction much more

easier, this thesis focuses on pure color images, since they can be taken at a

considerably higher frame-rate. For facial animation this is an advantage, since

many facial movements (micro expressions, saccades etc. ) happen within

fractions of milliseconds. Nevertheless, they are still noticed by the human

visual system and, e.g., play a central role to decide whether another person is

telling the truth.

Realistic facial animations are not only important for the entertainment in-

dustry. Many psychological studies, which, e.g., investigate brain disorders like

schizophrenia and autism, analyze the response of a subject to a presented fa-

3



1. Introduction

cial animation [WGP∗09, MDR∗07, RMK∗14, JJC∗14]. In order to decrease

the bias introduced by the recurring presentation of the same actor or to ob-

jectively change the intensity of the stimulus, psychologists are interested in a

dynamic morphable face model of a human face to freely adjust shape param-

eters (which actor performs) and deformation parameters (which expression

is performed in which intensity). In this thesis we develop such a dynamic

morphable face model and use it to reconstruct facial movements from videos

taken by a single camera.

Thesis outline and contributions. In general, the reconstruction and tracking

of 3D objects from 2D images is a hard problem arising in the field of computer

vision. It requires various optimization techniques and image based vision tech-

niques such as 3D stereo reconstruction and video tracking. Therefore, we start

with an exhaustive overview of the important techniques used throughout this

thesis and briefly describe their principles in a comprehensible way in Chap-

ter 2. In Section 2.4 we make a contribution to the field of camera calibration

and present a very practical approach to accurately calibrate a rig of given cam-

eras, which is the basic requirement for each 3D stereo reconstruction. This was

motivated by the fact that we needed to reconstruct different facial movements

from many persons and in order to guarantee a constant accuracy, we repeated

the calibration, whenever we started a new capture session. We close Chapter 2

with a brief introduction to geometric modeling, which is fundamental to our

3D tracking approaches and the construction of the dynamic face model.

Before entering the main part of this thesis in Chapter 3 we briefly discuss re-

lated work in facial performance capture. Parts of this chapter have previously

appeared in [SHK09, SHK11, SK15, CSK15, SK].

The thesis is divided into two main parts. Part I considers static faces show-

ing a neutral facial expression. In Chapter 5 we encounter the problem of

initializing the shape of a generic face template, such that it roughly approxi-

mates a human face in a neutral pose. This initialization problem can be solved

by triangulating facial features automatically detected in the input images. In

Chapter 4 we first describe a new technique to automatically detect such facial

features. We apply a data-driven approach which estimates the location of a

facial feature by analyzing the content of a small image region. Since the ap-
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proach generates a compact codebook, the main contributions of this work are

the reduction of the memory consumption and the reduction of the time to de-

tect facial features. We experimentally show, that this approach leads to high

detection rates, even if the face is partially occluded. Parts of this chapter have

previously appeared in [CSK15]. In Section 5 we describe and compare our two

reconstruction systems that we used to reconstruct static neutral faces. The

first system was previously presented in [SHK09, SHK11], while [SK] presents

the core aspects of the second system. Therefore, parts of this chapter appear

in the respective publications.

Part II deals with dynamic facial expressions. We start this part in Chap-

ter 6 by integrating the capability to track facial shapes from videos taken by

a calibrated camera rig. Parts of this chapter presenting the first prototyp-

ical system previously appeared in [SHK09, SHK11], while parts concerning

the second system appear in [SK]. The main contribution of both tracking

systems is a new pipeline to deform a generic face template such that tempo-

ral and spatial correspondences between reconstructions are maintained during

the tracking and between individual facial shapes. By empirically comparing

both systems we clearly motivate the final system design, which is capable to

robustly reconstruct a large database of facial expressions from different indi-

viduals in a reasonable time. We propose a number of applications, where the

resulting reconstructions can be used, but the key contribution is the generation

of a large database of 3D reconstructions of facial expressions. This database

maintains temporal and spatial correspondences, that can be used to construct

our dynamic morphable face model in Chapter 7. The main contributions of

this section is a new formulation of facial movements, that decouples the facial

movements from the individual facial shapes. As we will see, we can use our

new model to capture the performance of faces filmed by a single camera. Parts

of Chapter 7 have previously appeared in [SK15, SK].
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2. Foundations

This chapter discusses the mathematical and algorithmic background needed

throughout this thesis.

Since for many proposed techniques we encounter the problem of minimiz-

ing a scalar valued function, we will first explain the basic principles of least

squares optimization and the Levenberg Marquard Algorithm [NW06]. The

second part of the mathematical basics are Statistical Models, which are par-

ticularly important to represent large data in a compact form. Such large data

are e.g. the geometric representation of facial movements performed by differ-

ent actors. In this thesis we employ the Principal Component Analysis and

Gaussian Mixture Models, which are briefly discussed in Section 2.2.

The proposed facial reconstruction approaches (cf. Chapter 5 and 6) mainly

depend on two components. The first component is image tracking, which is

based on the Lukas Kanade Tracker [BM04] to estimate the 2D movement of

single pixels from one frame to the next frame of a video stream. In Section 2.3

we will present this approach in detail and how we can reformulate the objective

function to improve its efficiency. Active Appearance Models [CET98, CET01,

MB04] are essential to find and track facial features (cf. Chapter 7). Due to its

close relation to Lucas Kanade Tracking we additionally explain its principles

in Section 2.3. The second important component of the facial reconstruction

pipeline involves multi-view stereo reconstruction [HZ03], which is described in

more detail in Section 2.5. To understand these algorithms it is essential to

know about the fundamentals of the image forming process. Therefore we will

introduce the used camera model in Section 2.4 and propose a practical and

accurate method to calibrate a given set of cameras (cf. Section 2.4.3).

We conclude the theoretical foundations by presenting mesh deformation

techniques and show how the deformation of one object can be mapped to

another object. Later in Chapter 7 we use this technique to decouple the facial
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2. Foundations

movements from the underlying facial shape and derive a statistical model of

the facial movements itself.

Notation In this thesis we denote scalars as lower-case, italic type, non-bold

letters (e.g., s, t, α, . . .). Vectors or points in higher dimensions are denoted as

lower-case, bold letters (e.g. a, f ,x, . . .) and matrices are written as upper-case,

regular letters as, e.g., M,T or P . If needed, we will introduce other notations

in the respective parts of this thesis.

2.1. Least Squares Optimization

From our perspective we mainly use least squares optimization to find a set

of parameter values x ∈ Rn minimizing a scalar valued function E(x) ∈ R,

denoted as the energy function

E(x) =
1

2

m∑
i=1

fi(x)2 =
1

2
f(x)T f(x).

The vector valued function f(x) = (f1(x), . . . , fm(x))T ∈ Rm is called the

residuals, and is in our case often interpreted as a set of differences between

measurements and a mathematical model. An example for x are the n = 2

parameter of a 2D line. In this case the residuals could be the differences of a

set of m 2D samples and the closest points on the line represented by x.

In general the minimum of this energy function can be found by setting the

derivative ∇E(x) = 0, where the n dimensional vector

∇E(x) =


∂E(x)
∂x1
...

∂E(x)
∂xn

 =


(
∂f(x)
∂x1

)T
...(

∂f(x)
∂xn

)T
 · f(x) = ∇f(x)T · f(x)

is called the gradient of E(x) and J(x) := ∇f(x) ∈ Rm×n is the Jacobian of

the residuals.

In the special case where f(x) is linear in x, the residuals can be expressed

by the linear relation f(x) = Ax + b, where A ∈ Rm×n and b ∈ Rm. Then

the optimal parameters, which minimize the energy function, can analytically

8



2.1. Least Squares Optimization

be found by setting the gradient ∇E(x) to zero, leading to the linear system

AT · (Ax + b) = 0 or as written in a more common form, that is called the

normal equation [NW06]

ATAx = −AT b.

In the more general case, where the functions f(x) are nonlinear in x, it is

often quite involved to compute an analytical solution. Moreover, in practical

applications like, e.g. multi-view stereo, it is not even possible to compute the

global optimal solution. For such problems common approaches locally find

some improvements d ∈ Rn, which are supposed to reduce the energy when

added to the parameters x, i.e. E(x+d) < E(x). Computing the second order

Taylor expansion of E(x + d) results in an quadratic function for the unknown

improvements d

E(x + d) = E(x) + dT∇E(x) +
1

2
dT∇2E(x)d

This function then can be minimized by solving the linear system

∇2E(x)d = −∇E(x) (2.1)

Now the only difficulty is to compute the Hessian ∇2E(x) ∈ Rn×n at position

x. Since the gradient of E(x) can alternatively be expressed as ∇E(x) =∑m
i=1∇fi(x) · fi(x) the reapplication of the gradient operator leads to the

Hessian of the energy function

∇2E(x) = ∇f(x)T · ∇f(x) +

m∑
i=1

fi(x) · ∇2fi(x) (2.2)

Observe that both terms in this equation have the right dimension: While the

first term is computed from the product of a n ×m and a m × n matrix, the

second term is the sum of scalar values multiplied with the Hessians of the

residual values fi(x), which is defined as

∇2fi(x) =


∂2fi(x)
∂x1∂x1

. . . ∂2fi(x)
∂x1∂xn

...
. . .

...
∂2fi(x)
∂xn∂x1

. . . ∂2fi(x)
∂xn∂xn

 ∈ Rn×n
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2. Foundations

Equation 2.1 leads to a simple iterative algorithm to find a minimum of the

objective energy function by successively adding local improvements to the

parameter values x. The Newton Method starts with an initial solution x0 and

iteratively computes xi by applying the following update rule

d = −[∇2E(xi−1)]−1 · ∇E(xi−1)

xi = xi−1 + d

The Hessian ∇2E(x) is invertible if x is close to the extremal point. Once the

optimum is reached, the gradient ∇E(x) vanishes, and the update d evaluates

to zero. In practice the iterations are stopped if ||d|| is smaller than a certain

threshold. Geometrically we can interpret this approach as follows: We locally

estimate a vector d pointing towards the extremal point and move along its

direction to lower the energy function. Since this directional vector is only

tangential to the curve of the energy function, the algorithm could oscillate

around the extremal point. Such oscillations can be reduced by introducing a

damping constant λ ∈ (0, 1) which reduces the step-size of the update [NW06]

xi = xi−1 + λ · d

In practice the computation of the Hessian in 2.2 is not always possible or can

at least be quite involved. Assuming the second derivative of the residuals

fi(x) is small, we can omit the second term of Equation 2.2 and approximate

∇2E(x) as

∇2E(x) = J(x)TJ(x)

This approximation leads to the Gauss-Newton Method where the update is

computed by solving the linear system

J(xi−1)TJ(xi−1) · d = −J(xi−1)T f(xi−1) (2.3)

and added to the previous solution for the parameters x. According to [NW06]

the convergence of this method is similar to the Newton Method but can be

unstable if the solution is far from the extremal point. Especially this approach

has the same disadvantage as the Newton Method since due to the linear ap-

proximation, the energy E(x + d) is not guaranteed to be smaller than the

energy E(x). In the worst case both approaches can diverge in practical appli-

cation, and the minimum is never found.

10
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The Levenberg Marquard Algorithm overcomes this problem and first com-

putes a possible improvement d by solving the augmented system

[J(xi−1)TJ(xi−1) + λI] · d = −J(xi−1)T f(xi−1) (2.4)

where λ ∈ R is a regularization factor and I the n×n identity matrix. Observe

that if λ is close to zero, this system is equivalent to the system used in the

Gauss-Newton Method, which quickly converges in the vicinity of the extremal

point. If λ is large the influence of the identity matrix dominates the system

and the update is close to the negative gradient d = −J(xi−1)T f(xi−1). This

update behavior is desired where the solution is far from the extremal point

and where the inverse of the Hessian JTJ is unstable to compute. The Leven-

berg Marquard Algorithm smoothly adapts the regularization factor to switch

between the two cases and accepts only updates which actually improve the

energy function. This translates to the following update rule:

xi, λ =

{
xi−1 + d, λ/10 if E(xi + d) < E(xi)

xi−1, λ · 10 else

In practical scenarios a good starting value is λ = 10−3, while decreasing

respectively increasing λ by a factor / divisor of 10 leads to stable convergence

behavior [HZ03]. The requirement that the energy function can only decrease

and the fact that the system matrix is symmetric and due to the regularization

term positive definite, make this approach a robust and efficient optimization

method for least squares optimization. Throughout this thesis it will be the

first choice method for this kind of problems.

2.2. Statistical Models

Statistical models are often used to represent large data in a compact form. In

this thesis we majorly use Principal Component Analysis and Gaussian mixture

models for this aim and detail its principals in this section.

2.2.1. Principal Component Analysis

The aim of the Principal Component Analysis (PCA) is to find the most mean-

ingful basis representing an observed set of possibly noisy data. PCA analyzes
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x

y

x

y
x′

y′

Figure 2.1.: PCA first shifts the original data (left), such that the mean of

the data is the origin of a new coordinate system (middle). Then it finds a

new basis (right) representing the data. In practical scenarios the data often

contains some redundancy and it is possible to omit basis vectors (y′ in this

case), without significantly loosing expressiveness.

the covariances of this data and computes a sorted set of orthogonal axes, i.e.

a new basis, where the largest variance observed in the data lies along the first

axis, the second largest along the second axis and so on. At first transform-

ing the data into this new basis, is just about finding a new representation

of it. In practical scenarios it is often the case, that the data contains some

redundancy, meaning that there are some axes where the variance along them

is only marginal. An example of such a data set is depicted in Figure 2.1. Here

we observe that the major variance of the 2D point distribution is along the

x′-axis, while there is nearly no variance along the y′-axis (cf. right image of

Figure 2.1). When projecting all points onto the new basis [x′,y′] and omitting

y′, we only loose a small amount of variance but are able to represent the data

in a very compact form, in this example by a single scalar value.

Lets describe this idea more precisely. The input for a PCA is a set of

d-dimensional vectors or data points

X = [x1, . . . ,xn] ∈ Rd×n

representing n observations. We first center the data by subtracting the mean

vector x̄ = 1
n

∑n
i=1 xi from all data points (cf. Figure 2.1 middle)

xi ← xi − x̄

12
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From now on we consider the matrix X to represent the centered data where

the mean was subtracted from each column. We then assemble the covariance

matrix

C =
1

n− 1
XXT ∈ Rd×d

In this form the covariance matrix can be used to compute the variance dTCd

of the scattered data with respect to a specific direction d ∈ Rd, where the

directional vector d is assumed to be normalized, i.e., ||d|| = 1. For the covari-

ance matrix associated to the example in Figure 2.1, we would expect a high

value for dTCd, if d = x′ and a low value if d = y′. In order to identify those

directions d which reveal the largest variances, we compute the Eigendecompo-

sition C = V ΣV T [QSS07], where V = [v1, . . . ,vd] is an orthonormal matrix,

storing the Eigenvectors column wise and Σ = diag(λ1, . . . , λd) is the diago-

nal matrix containing the Eigenvalues with λ1 ≥ λ2 ≥ . . . ≥ λd. Multiplying

the covariance matrix with an Eigenvector will result in the same Eigenvector

scaled by the respective Eigenvalue

Cvi = λivi

and we can easily see that the Eigenvalue λi represents the variance along

the direction vi, since vTi Cvi = λi. The key to reduce the dimensionality is

to notice that the smaller the Eigenvalue, and with it the variance along the

respective Eigenvector, the less important is that Eigenvector and we can omit

it in our new basis. This allows us to identify the k largest Eigenvalues and

define a reduced basis as V ′ = [v1, . . . ,vk]. A point x in our centered data set

can then be approximated by a k dimensional vector y = V ′Tx as

x ≈ V ′y

The question is how to choose the number of Eigenvectors in our basis? Com-

mon approaches select the amount of Eigenvectors such that a certain per-

centage (e.g. 95%) of the global variance is covered by them. Then, k is the

smallest integer such that

0.95 ≤
∑k
i=1 λi∑d
i=1 λi

(2.5)

In practical settings the observed data can often be of high dimensions. In

the case of modeling the shape of human faces one point is an individual face
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represented by the concatenation of thousands of 3D vertex positions. On the

other hand the amount of data points is often very small. In the former case

it is experimentally quite hard to collect much more than hundred individual

faces. In such cases C ∈ Rd×d is a large matrix and solving the resulting

Eigenproblem, where most Eigenvalues evaluate to zero, is computationally

too complex in practice. To tackle this problem we start with the original

solution where v is an Eigenvector for the covariance matrix C. Then the

following equations hold

Cv = λv

⇔ 1
n−1

XXTv = λv

⇔
(

1
n−1

XTX
)
XTv = λXTv

If we define C̃ = 1
n−1

XTX and ṽ = XTv we see that for all v being Eigenvec-

tors for C, ṽ are Eigenvectors for the much smaller system C̃ ∈ Rn×n. This

allows us to computationally improve the PCA for problems where the num-

ber of examples is much smaller than the number of dimensions: We simply

compute the Eigendecomposition C̃ = Ṽ Σ̃Ṽ T of this reduced system and de-

duce from its solution the Eigenvectors V of the covariance matrix C using the

relation

Ṽ = XTV

⇔ Ṽ T Ṽ V T = Ṽ TXTV V T

⇔ V = XṼ

In order to reduce the number of basis vectors we can again use Equation 2.5

to find a small k such that most of the global variance is covered.

2.2.2. Gaussian Mixture Models

Before we introduce Gaussian Mixture Models and describe how its model

parameter can be estimated from a given set of random variables using the so

called Expectation Maximization (EM) Algorithm [Bil98], we first go over some
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µ− 3σ µ− σ µ µ + σ µ + 3σ

68%

x

y

Figure 2.2.: Left: One dimensional normal distribution. Right: Gaussian Mix-

ture Model with two clusters (red and blue). The mean of each cluster are

the centers of the red and blue ellipsoids. The inner ellipsoid outlines the re-

gion within the standard deviation, while the outer ellipsoid outlines the region

within three times the standard deviation. Each sample (represented as point)

color codes the responsibility. Only in the overlapping region the responsibili-

ties of the red and the blue cluster mix.

basic terminology using the example of the one dimensional normal distribution

[Bis06]:

N (x|µ, σ) =
1√
2πσ

e
− (x−µ)2

2σ2

This continuous probability density has its maximum at the expectation or

mean value µ and drops to around 68% of that maximum at a distance ±σ to

the mean, where σ is called the standard deviation (cf. left of Figure 2.2).

The normal distribution is often used to model the natural behavior of real

valued random variables. Given a set of such variables x1, . . . xN and a normal

distribution defined by the parameters µ and σ we can compute the likelihood

function [Bis06] to compute how well this model fits to the observed data. It

is determined by multiplying the density values evaluated from the individual

random variables as

L(µ, σ|x) =

N∏
i=1

N (xi|µ, σ)

Alternatively the likelihood function can also be feed to an optimization frame-

work which then computes the best model parameters to explain the observed
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random variables xi. In this scenario practical approaches rather optimize

the logarithmic likelihood (log-likelihood) function, whose maximum equals

the maximum of the likelihood function, since the logarithm is a monotonic in-

creasing function. In case of the normal distribution the log-likelihood function

is

logL(µ, σ|x)) =

N∑
i=1

log

(
1√
2πσ

)
− (xi − µ)2

2σ2
(2.6)

The main advantage in using the log-likelihood function is, that it is much

easier to differentiate, since the products turn into simple sums. Differentiating

Equation 2.6 w.r.t to µ and σ and setting the result to zero evaluates to

∂

∂µ
logL(µ, σ|x)) =

N∑
i=1

xi − µ
σ2

= 0

∂

∂σ
logL(µ, σ|x)) =

N∑
i=1

− 1

σ
+

(xi − µ)2

σ3
= 0

from which we can deduce the closed form solution of the optimal model pa-

rameters of the normal distribution to explain the observed random variables:

Solving both equations for µ respective σ2 leads to the well known formulas for

the mean value and the variance, which is equal to the square of the standard

deviation

µ =
1

N

N∑
i=1

xi and σ2 =
1

N

N∑
i=1

(xi − µ)2

While the normal distribution is defined by a single exponential function, a

Gaussian Mixture Model is a weighted sum of multiple normal distributions and

its treatment within this framework is a bit harder. First of all random variables

x ∈ RD are of higher dimensions and therefore their normal distribution is

modeled by the multivariate normal distribution

N (x|µ,Σ) =
1√

(2π)D|Σ|
· e−

1
2

(x−µ)TΣ−1(x−µ) (2.7)

where the mean µ ∈ RD is similarly computed as in the one dimensional case:

µ =
1

N

N∑
i=1

xi
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In the one dimensional case the squared distances (x − µ)2 between a point

x and the mean are weighted by the inverse of the variance, which means

that for low variances the exponential function quickly drops to a low value

when x departs from the mean. In the multivariate case the variances are

distinct between different dimensions and to achieve here the same behavior of

the exponential function, the squared distances (x− µ)2 are exchanged by the

squared Mahalanobis distances (x− µ)TΣ−1(x− µ) [Han05, Bis06], where the

covariance matrix Σ ∈ RD×D is obtained by

Σ =
1

N

N∑
i=1

(xi − µ)(xi − µ)T

Similarly to the one dimensional case, the mean and the covariance matrix are

computed by setting the differential of the log-likelihood function w.r.t. µ and

Σ to zero. While the deduction of the mean exactly follows the procedure in

the one dimensional case the computation of the covariance matrix is more

involved, since it requires the matrix differential calculus. A complete proof for

the deduction of the covariance matrix can be found in [MN99].

The second complication comes from the afore mentioned fact that a Gaus-

sian Mixture Model is a superposition of K multivariate normal distributions

Nk(x) = N (x|µk,Σk) each having their own mean µk and covariance matrix

Σk. Each of the K clusters are weighted by parameters πk with 0 ≤ πk ≤ 1 and∑K
k=1 πk = 1, such that the probability density for a given random variable x

is given by

p(x) =

K∑
k=1

πkNk(x)

In the right part of Figure 2.2 we show a mixture model with two clusters (red

and blue). To find the best parameters πk, µk and Σk explaining a set of N

random variables x1, . . . ,xN it is again necessary to maximize the log-likelihood

function

log
N∏
i=1

p(xi) =
N∑
i=1

log

[
K∑
k=1

πkNk(xi)

]
(2.8)
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When differentiating Equation 2.8 with respect to µk and setting the result to

zero we obtain the following equation

0 = −
N∑
i=1

πkNk(xi)∑K
j=1 πjNj(xi)︸ ︷︷ ︸

:=rki

Σk(xi − µk) (2.9)

Since the normal distributions Nk(xi) also depend on the locations of the other

means µk and the covariances Σk, solving this equation for µk is problematic

and any direct solution rather unstable. The Expectation-Maximization solves

this problem by separating the optimization into two steps. In the expectation

step (E-step) it softly assigns each sample xi to a specific cluster k by computing

values rki (cf. Equation 2.9). For each sample this value describes the posterior

probability that xi belongs to cluster k or that the cluster k is responsible

for explaining the observation xi. Therefore the values rki, which are color

coded for each sample in Figure 2.2, are also denoted as responsibilities. Once

these responsibilities have been determined, they appear as constants in, e.g.,

Equation 2.9. Then, in the maximization (M-step) the EM-Algorithm solves

for optimal parameters πk, µk and Σk. For example, the optimal value for the

mean µk of cluster k is obtained by multiplying Equation 2.9 from the left side

with the inverse of the covariance and rearranging the terms such that

µk =
1

Nk

N∑
i=1

rkixi

The normalization factor Nk =
∑N
i=1 rki is interpreted as the effective num-

ber of samples associated to the cluster k. Similar derivations [Bis06] lead to

optimal values for the remaining parameters of the Gaussian Mixture Model,

which are also computed during the M-step as

πk =
Nk
N

Σk =
1

Nk

N∑
i=1

rki(xi − µk)(xi − µk)T

The EM-Algorithm stops when either the parameters do not change or the log-

likelihood converged to a certain value. In general the log-likelihood has many
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local minima and its convergence behavior depends on the number of clusters

and their initial conditions. To train a Gaussian Mixture Model in practice, the

EM-Algorithm is often performed multiple times with different, randomly set

initial conditions. Then the result with the highest likelihood score is accepted

as the final Gaussian Mixture Model.

2.3. Image based Tracking

In this section we briefly recall the principles of the Lucas Kanade Tracking

which iteratively improves an image warp to align a template image with an

observed image. We also recap the principles of the inverse compositional image

alignment, which is an alternative formulation of the Lucas Kanade Tracker,

where the role of the template and the observed image are exchanged and which

is much more efficient to compute. Active Appearance Models (AAMs) are

based on this tracking approach and before embedding them in our image based

face tracker (cf. Chapter 7), we briefly explain how to efficiently implement

AAMs.

2.3.1. Lukas Kanade Tracking

The input for this image alignment approach is a template image T and a com-

parison image I. The aim is to find parameters p ∈ Rn of a warping function

W(x; p) : R2 → R2 that maps pixel positions x ∈ R2 of the template image to

pixel positions in the comparison image, such that the objective function

E(p) = f(p)T f(p)

is minimized in the least squares sense. The residuals f = [f1, . . . , fm]T mea-

sure m intensity differences between pixels x of the template image and pixels

W(x; p) of the comparison image:

fi = I(W(xi; p))− T (xi) (2.10)

The warping function W(x; p) is uniquely identified by its parameters p ∈
Rn and differs significantly for different use cases. In the case where a 2D

point needs to be tracked in two consecutive frames of a video sequence, the
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warping function can simply be characterized by a 2D displacement of the

point position, i.e. W(x; p) = x + [p1, p2]T . In this case the number m of

measurements can be determined by the cardinality of the set of pixels within a

rectangular window around x. The surfel reconstruction approach described in

Section 2.5.3 uses homographies to map pixels from the template image to a 3D

surface element (surfel) and from there to the comparison image, leading to a

more complicated warping function. Active Appearance Models (AAMs) use an

even more complex warping function, which depends on a learned deformation

model for a set of triangles characterizing the 2D shape of an object in image

space. Notice that the pixel positions xi are constants in the objective function

and determined once before the optimization starts. Hence, we will use the

abbreviatory notations W(xi,p) = Wi(p) and T (xi) = Ti where appropriate.

Additive Image Alignment. Observe that even if W would be a linear func-

tion for the parameters p, the image function I(W(x; p)) is highly non linear.

Thus, the Additive Image Alignment [BM04] is a Gauss-Newton Method which

iteratively computes improvements ∆p until the warped comparison image is

nearly identical to the template image. Following the deduction in Section 2.1

a first order Taylor expansion of the residuals f(p + ∆p) ≈ f(p) + J∆p leads

to the linear system

JTJ ·∆p = −JT f (2.11)

The Additive Image Alignment iteratively finds improvements ∆p by solving

this equation and adds them to the current parameter estimate, such that

p ← p + ∆p. The rows of the Jacobian J = ∂f
∂p

are thereby computed by

consequently applying the chain rule to Equation 2.10

Ji,· =
∂fi
∂p

= ∇Ii
∂Wi(p)

∂p

where the image gradient ∇Ii is evaluated at the pixel position Wi(p), and

the partial derivative of the warping function is evaluated at the point p. The

Taylor expansion for the Additive Image Alignment can thus be stated as

fi ≈ I(Wi(p)) +∇Ii
∂Wi(p)

∂p
∆p− Ti (2.12)
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Since in each iteration we need to recompute a (large) set of image gradients and

the partial derivatives of the warping function, the Additive Image Alignment

is computationally quite involved.

Compositional Image Alignment. The Additive Image Alignment linearizes

Equation 2.10 by computing the first order Taylor expansion of fi(p + ∆p) at

the point p and computes an additive offset ∆p for the parameters p. Instead

of this, the Compositional Image Alignment searches for an incremental warp-

ing function W(x,∆p′) and updates the warp by composing the old warping

function with that incremental warp

W(x,p)←W(x,p) ◦W(x,∆p′) = W(W(x,∆p′),p)

The parameters ∆p′ of this incremental warping function are found by mini-

mizing the linearized residuals in the least squares sense, which are computed

from the first order Taylor expansion of

fi = I(W(Wi(0 + ∆p′),p))− T (xi)

at point p = 0. Minimizing these residuals, again is equivalent to solving

a linear system of the form of Equation 2.11. The only difference regards

the Jacobian J , where we need to apply the chain rule once more due to the

concatenation of the warping functions

Ji,· =
∂fi
∂p

= ∇Ii
∂W(Wi(0),p)

∂x

∂Wi(0)

∂p

Under the assumption W(x, 0) = x, the Jacobian can be written in a more

simpler form, leading to the Taylor expansion of the residuals for the Compo-

sitional Image Alignment

fi ≈ I(Wi(p)) +∇Ii
∂Wi(p)

∂x

∂Wi(0)

∂p
∆p′ − Ti (2.13)

The core statement of Baker and Matthews [BM04] about the Additive and

the Compositional Approach is that both approaches are equivalent. This can

be seen when directly comparing the linearized residuals of the additive and
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the compositional approach. If ∆p minimizes 2.12 and ∆p′ minimizes 2.13,

then
∂Wi(p)

∂p
∆p =

∂Wi(p)

∂x

∂Wi(0)

∂p
∆p′

since these terms are the only differences between both formulations. Since

further the update of the warping function evaluates to

Wi(p + ∆p) ≈Wi(p)) +
∂Wi(p)

∂p
∆p

in the additive case and to

W(W(x,∆p′),p) ≈Wi(p)) +
∂Wi(p)

∂x

∂Wi(0)

∂p
∆p′

in the compositional case, we directly notice that both updates lead to the

same change of the warping function, i.e., to the same alignment result. Thus,

both formulations, the additive and the compositional approach, can be used

to solve the same alignment problem.

The compositional approach has the nice advantage over the additive ap-

proach, that the expression ∂Wi(0)
∂p

is a constant and needs to be evaluated

only once before the optimization starts. This property is one key ingredient

for the Inverse Compositional Image Alignment, which aims to reformulate the

problem of image alignment, such that it can efficiently be solved.

Inverse Compositional Image Alignment. The key idea of this approach is to

exchange the role of the template T and the comparison image I during the

optimization. Lets consider a simple example first where the u component of

pixels x = [u, v]T in the template image encodes the brightness value T (x) =

u. Lets further assume that the comparison image shows the template image

shifted to the right by a constant offset d, i.e. I(x) = u− d. Then the optimal

warping function minimizing I(W(x))− T (x) is W(x) = [u+ d, v]T , meaning

pixels of T are shifted to the right to find the correct lookup position in I.

Exchanging the role of both images means, we search for a warp W′ in T such

that I(x) − T (W′(x)) is minimized. Obviously this warp is the inverse warp

W′(x) = W−1(x) = [u− d, v]T , which shifts pixels of I to the left to find the

correct lookup position in T .
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As stated before, the residuals in Equation 2.10 are highly non linear and an

optimal warp can only be found incrementally. Hence, Baker and Matthews

[BM04] adapt the Compositional Image Alignment and exchange the role of

the template and the comparison image by reformulating the residuals as

fi = T (Wi(∆p))− I(Wi(p))

Similar as before the parameters ∆p are found by minimizing the linearized

residuals

fi = Ti + Ji,·∆p− I(Wi(p))

which is equivalent to solving the linear system of Equation 2.11. This formu-

lation has the big advantage that the Jacobian

Ji,· = ∇Ti
∂Wi(0)

∂p
(2.14)

is independent from the current estimate of the warp, since Ti is evaluated at

the fixed reference positions xi and that the partial derivative of the warping

function is constant since it is always computed at the point p = 0. Therefore,

the Jacobian and the factorization of the matrix JTJ needs to be computed

only once at the beginning of the optimization, which increases the performance

of this approach significantly.

The approach assumes that the warping function can be inverted. If this is

the case we can find the new warping function similar to the above, simple ex-

ample by composing the inverse of the warp Wi(∆p) with the current estimate

of the warp leading to the following update rule

Wi(p)←W(W−1
i (∆p),p) (2.15)

To summarize the Inverse Compositional Image Alignment we precompute

the Jacobian J (cf. Equation 2.14) and factorize the matrix JTJ . Then the

algorithm iterates the following steps:

1. Compute the error image f = T− I(W(p))

2. Solve JTJ∆p = −JT f

3. Compute W−1
i (∆p) and update the warp according to Equation 2.15
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2.3.2. Active Appearance Models

Real-world instances of 3D deformable objects often are highly manifold. Their

appearance depend not only on the current position and orientation, but also

on their specific shape, the color of the surface and the illumination condition.

Human faces are an example of such deformable objects, where their shape

strongly varies for different facial expressions and their appearance depend on

the look of e.g. the skin and how it is illuminated. In spite of this large

variability, it is often possible to identify some extraordinary feature points,

always observable in each deformed instance of the object. For human faces

these features are, e.g., the corners of the eyes, the tip of the nose, the contour

of the mouth and when projected to an image the contour of the face w.r.t the

background.

2D Active Appearance Models (AAMs), originally introduced by Cootes et

al. [CET98], represent the projected shape of an object as a 2D triangular

mesh M = (s, T ), where T is a set of triangles connecting n vertices with

vertex positions

s = (x1, y1, . . . , xn, yn)T

A triplet t = (i, j, k) ∈ T defines a single triangle connecting the vertices

(xi, yi)
T , (xj , yj)

T and (xk, yk)T . The topology, i.e. the set of all triangles, of

the 2D mesh is fixed for a specific AAM and usually designed such that edges

between vertices follow some contours, like lips, eyelids or the border of the

face (cf. Figure 2.3).

Shape variations. An AAM is built from a large database of images. For each

image in that training database the vertices of M have to be placed according

to the features and contours of the observed object. This results in shapes s for

each training image, which are used to fill the columns of a data matrix. The

first step in building an AAM is to use PCA (cf. Section 2.2.1) to compute the

average shape s̄ and an orthonormal basis S ∈ R2n×ks with small ks, such that

a 2D shape can be represented by a linear combination

s = s̄ + Sp (2.16)

The parameters p ∈ Rk are called shape parameters of the AAM. To stabilize

the computation of the PCA and in order to obtain pure deformation parame-
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M (Xi, Yi)
(Xj , Yj)

(Xk, Yk)

(xi, yi)

(xj , yj)

(xk, yk)

x
x′W

Figure 2.3.: Left: 2D triangular mesh. Right: Mapping of a point x from the

reference to a deformed triangle.

ters, the rigid movement of the observed 2D shapes are factored out. In [MB04]

Matthews and Baker suggest to use a Procrustes analysis [Goo91] to register

all shapes to a common shape template.

Appearance variations. In the second step of the training phase we compute

an appearance model by analyzing the content of the images in the training

database. For each image the appearance of the object could be represented by

concatenating the intensity values of all pixels, which lie inside the triangles of

M . Unfortunately the number and ordering of pixels lying inside those shapes

may strongly vary between examples and therefore this representation cannot

be used for a statistical analysis like PCA. To make the appearance vectors

usable for statistical analysis, the average shape

s̄ = (X1, Y1, . . . , Xn, Yn)T

is interpreted as a reference and rasterized. Then a rasterized point x = (x, y)T

lies in a specific triangle t = (i, j, k) where it has the barycentric coordinates

(αt,x, βt,x, γt,x)T . Assuming the positions of the reference vertices of the trian-

gle t are (Xi, Yi)
T ,(Xj , Yj)

T and (Xk, Yk)T , the barycentric coordinates of x,

which are constant for each rasterized point, are given by αt,x

βt,x

γt,x

 =

 Xi Xj Xk

Yi Yj Yk

1 1 1


−1

·

 x

y

1


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In an observed training image this triangle might have a difference shape, en-

coded by the vertex positions (xi, yi)
T ,(xj , yj)

T and (xk, yk)T . In this deformed

triangle the warped point x′ = W(x) has the same barycentric coordinates as

in the reference shape and we can compute x′ as

(
x′

y′

)
=

[
xi xj xk

yi yj yk

]
·

 αt,x

βt,x

γt,x

 = Bt,x ·



xi

yi

xj

yj

xk

yk


where we rearranged terms at the right side of the equation and defined

Bt,x =

[
αt,x 0 βt,x 0 γt,x 0

0 αt,x 0 βt,x 0 γt,x

]
as the matrix encoding the barycentric coordinates of x in the triangle t (cf.

Figure 2.3). By introducing a vertex selection matrix for each triangle t as

Nt =

· · · xi yi · · · xj yj · · · xk yk · · ·


1 0

0 1

1 0

0 1

1 0

0 1

∈ R6×2n (2.17)

we can further simplify the notation and express this mapping as an expression

linear in a given shape s: (
x′

y′

)
= Bt,x ·Nt · s (2.18)

Rasterizing the reference shape gives a unique and ordered set of m pixel

positions. When additionally the mapping from the reference shape to the

deformed shape is given, the appearance observed in each training image can

be expressed by concatenating intensity values, which are linearly interpolated

at the warped pixel positions. These m dimensional appearance vectors are

used to fill the columns of a data matrix which is again feed to a PCA to
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2.3. Image based Tracking

extract the mean appearance T̄ and an orthonormal basis T ∈ Rm×kt such

that we can express an appearance vector by the linear combination

T = T̄ + Tq

The vector q ∈ Rkt contains the so called appearance parameters.

Object tracking with AAMs. Once an AAM was built, i.e. s̄, S, T̄ and T are

determined during the training phase, it can e.g. be used for tracking. For this

task we want to reconstruct shape parameters p and appearance parameters q

for a given input image. The optimal appearance parameter then reconstruct

an appearance vector T that matches the concatenated image intensities I

interpolated in the input image at warped pixel positions which are determined

by the shape parameters. Following the notation in Section 2.3 the residual

function can be formulated as

f = T̄ + Tq− I(W(p)) (2.19)

where the warping function W(x; p) maps rasterized pixel positions x to posi-

tions in the input image an can be obtained by combining Equation 2.16 with

Equation 2.18:

W(x; p) = Bt,x ·Nt · (̄s + Sp) (2.20)

Of course, minimizing this energy function can be done with one of the

straight forward optimization techniques presented in Section 2.1, but in order

to make the tracking suitable for real-time applications, Matthews and Baker

[MB04] formulate it as an Inverse Compositional Image Alignment (cf. Sec-

tion 2.3). This requires to minimize an energy term, whose parameters occur

only in the warping function W. The formulation in Equation 2.19 does not

fulfill this yet, because it additionally depends on the appearance parameters

q occurring in the middle term.

To solve this Matthes and Baker [MB04] consider the orthonormal matrix T

as base of a subspace for all possible residuals f . When defining the orthonormal

complement to this base as T⊥ we can express a residual vector as a linear

combination f = Ta + T⊥b. Where a and b are coefficients obtained by
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projecting the residual function f on the respective base of the linear subspace.

Given this separation we can rewrite the energy function as follows

E = fT f = ||f ||2

= aT TTT︸ ︷︷ ︸
Id

a + aT TTT⊥︸ ︷︷ ︸
0

b + bT TT⊥T︸ ︷︷ ︸
0

a + bT TT⊥T⊥︸ ︷︷ ︸
Id

b

= aTa + bTb

= ||TT f ||2 + ||TT⊥ f ||2 (2.21)

When projecting the residuals f (cf. Equation 2.19) onto the orthogonal com-

plement T⊥ of the base T the middle term Tq vanish and the second term of

Equation 2.21 will be independent of the appearance parameters q. In the first

term of Equation 2.21 the residuals are projected onto the base T , which leads

to

TT f = TT [T̄− I(W(p))] + q

Finally we notice, that for any shape parameters p which minimize the second

term of Equation 2.21, there is a unique set of appearance parameters q =

−TT [T̄ − I(W(p))], for which the first energy term evaluates to zero. This

allows to formulate the whole tracking approach as a two step algorithm: First

we search for shape parameters minimizing the second energy term ||TT⊥ f ||2

and then we compute optimal appearance vectors to finally reconstruct the

observed input image.

Optimizing the shape. Since now the second term in Equation 2.21 is inde-

pendent of the appearance parameters, its optimization can be formulated as

an Inverse Compositional Image Alignment problem. For a moment we will

consider the general optimization task, where the residuals are not restricted

to the linear subspace spanned by the vectors contained in T⊥:

fi = T̄i(Wi(∆p))− I(Wi(p))

From Section 2.3 we know that for the Inverse Compositional Image Align-

ment we first needs to compute the Jacobian, which is constant throughout

the optimization. Multiplying the image gradients, evaluated in the average
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2.3. Image based Tracking

appearance image T̄ with the derivative of Function 2.20 with respect to the

parameters p, yields the rows of the Jacobian

Ji,· = ∇T̄i ·Bt,x ·Nt · S

The optimal warping function then can iteratively be found by following the

steps described in Section 2.3:

1. Compute the error image f = T̄− I(W(p))

2. Solve JTJ∆p = −JT f

3. Update the warp: W(x; p)←W(W−1(x; ∆p); p)

In order to restrict the residuals to the linear subspace spanned by the vectors

in T⊥, it is sufficient to restrict the Jacobian J to this subspace, since in Step 2

of the Inverse Compositional Image Alignment the residuals are projected onto

the columns of the Jacobian, and if these columns are restricted to a linear

subspace, f will be too. Projecting the columns J·,j to the linear subspace

spanned by T⊥, means that we need to subtract from each column, the portions

of all kt vectors stored in T column wise:

J·,j ← J·,j −
kt∑
i=1

[T·,i · J·,j ] · T·,i

Updating the warp. To obtain the new warping function, Step 3 of the algo-

rithm composes the current estimate W(x; p) of the warping function with the

inverse W−1(x; ∆p) of an incremental warping function computed from the

improvements ∆p. Before we go into detail, we look at the first order Taylor

expansion W(x; ∆p) ≈ x + ∂W
∂p

∆p of the incremental warping function and

observe that W−1(x; ∆p) ≈W(x;−∆p), since

W(W(x;−∆p); ∆p) ≈W(x;−∆p) +
∂W

∂p
∆p ≈ x− ∂W

∂p
∆p +

∂W

∂p
∆p = x

leads to the identity function.

Computing the composed warping function W(W(x;−∆p); p) means to find

new vertex locations defining a deformed version of the mesh M , since then the

barycentric mappings from triangles in the reference shape s̄ to the deformed

shape s is the new warp we searching for. For this we first deduce new vertex

positions from our shape model 2.16 and the improvements ∆p as

s′ = (x′1, y
′
1, . . . , x

′
n, y
′
n)T = s̄− S∆p
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where x′ is one vertex of the incrementally deformed reference shape. These

vertices need further to be warped with the current estimate W(x′,p) to finally

define the vertex positions of the deformed mesh. Since x′ can lie anywhere

in the reference mesh (even outside all triangles), it is not obvious, which

triangle we should use to map these points (remember for the mapping we need

barycentric coordinates w.r.t. a specific triangle). Matthews and Baker [MB04]

suggest to use all triangles surrounding a reference vertex X and argue that

this introduces an additional smoothing term to stabilize the optimization. If

the triangles adjacent to X are t1, . . . , tL, the point x′ has different barycentric

coordinates Btl,x′ with respect to the triangles tl adjacent to the reference

vertex X. Then the final position x′′ can be computed by averaging the warped

positions:

x′′ =
1

L

L∑
i=1

Btl,x′ ·Ntl · s

After assembling the new deformed shape of the mesh as s = (x′′1 , y
′′
1 , . . . , x

′′
n, y
′′
n)T

the new shape parameters defining this estimate of the warp can simply be ob-

tained by projecting s into the PCA base of our shape model, which leads

to the update p ← ST · (s − s̄) of the shape parameters, from which we can

continue the the shape optimization.

2.4. Camera Model

The outcome of an image strongly depends on the camera and the lens which

was used. In this Section we present a mathematical model describing this

image forming process and explain how we can efficiently extract the parameters

of that model to mimic the physical behavior of real-world cameras (camera

calibration). Only if we know the camera model and its parameters we can

“reverse” the image forming process and reconstruct 3D structures as seen in

2D images.

2.4.1. Pinhole Camera

The pinhole camera model (cf. Figure 2.4) mathematically describes an ideal

camera with an aperture of size zero. That means all light which emerges from
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x

u

f

z

principal point

image plane

principal axis

c
p

x
(u, v)T

Figure 2.4.: Pinhole camera model. Left: The theorem of intersecting lines

shows, that the u coordinate of the projection of x depends on its distance z

and the focal length f of the camera. Right: Projection of a 3D point x onto

the image plane.

a specific point in three dimensional space travels through one point, called the

optical center, before it hits the image plane. The focal length f of such an

ideal camera is the distance between the image plane and the optical center

and has a direct influence on the size of the projected scene. Using the theorem

of intersecting lines the relation of a point (x, y, z)T ∈ R3 and its projection

(u, v)T ∈ R2 onto the image plane is given by

(u, v)T = (f
x

z
, f
y

z
)T (2.22)

and we see that the size of an object is inverse proportional to its distance z

to the optical center (cf. left image in Figure 2.4).

Homogenous Coordinates. Most applications of computer graphics and com-

puter vision use the so called homogenous or projective coordinates to represent

such projections as simpler mappings which are linear in the point coordinates

(x, y, z)T . A two dimensional point (u, v)T can be written in homogenous co-

ordinates as a three dimensional vector (ku, kv, k)T which represents the same

point (u, v)T for all k 6= 0. The concept of homogenous coordinates also works

in higher dimensions where an n dimensional point is represented by an n+ 1

dimensional vector. In order to compute the Euclidean representation from a

homogenous vector (ku, kv, k) one needs to perform a de-homogenization, where

31



2. Foundations

the homogenous vector is divided by the homogenous component, such that the

last component evaluates to one: (ku, kv, k) → (u, v, 1) . Using homogenous

coordinates we can express the projection and, as we will see later, arbitrary

affine transformations like rotations, scaling and translations as simple linear

mappings, thus the afore mentioned projective mapping can be expressed by

the multiplication of a four dimensional vector with a 3× 4 projection matrix

 fx

fy

z

 =

 f 0

f 0

1 0

 ·


x

y

z

1


Then, the de-homogenization, i.e. in this case the division by z, of the resulting

vector leads to the coordinates computed in Equation 2.22.

Intrinsic camera parameters. The 3×4 projection matrix can be split into an

intrinsic camera matrix K ∈ R3×3 and another 3× 4 extrinsic camera matrix,

which we later use to model the position and rotation of the camera in 3D

space. In this simple version of a projective mapping the projection is split as f 0

f 0

1 0

 =

 f

f

1


︸ ︷︷ ︸

:=K

·

 1 0

1 0

1 0



where the extrinsic matrix is just the identity matrix, performing no rotation

and translation of the 3D point, and where the intrinsic camera matrix only

depends on the focal length. This projection computes image coordinates with

respect to the principal point, which is the intersection of the optical axis

with the image plane. In practice the location of the principal point on the

image plane is different for each lens and camera. Therefore two more intrinsic

parameters (px, py) are introduced which model the location of the principal

point w.r.t. the origin of the image plane, which is typically located at the top

left corner of the image. For some older cameras the pixels of the sensors do

not have a quadratic shape, which leads to a different focal length for the x and

y axis. In order to model this as an intrinsic parameter a scaling factor α is
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2.4. Camera Model

introduced. Together with the principal point the intrinsic matrix of a pinhole

camera can be described as

K =

 f 0 px

0 αf py

0 0 1

 (2.23)

Note that most cameras use sensors whose pixels have a quadratic shape.

Throughout this thesis we only use such cameras, where we can set the scaling

factor to α = 1.

Extrinsic camera parameters. The above example assumes that the optical

center of the pinhole camera lies in the origin of a world coordinate system

and that the coordinate axes of the camera is equal to the axes of the world

coordinate frame. In general the mapping of points xw = (xw, yw, zw)T in

world coordinates to points xc = (xc, yc, zc)
T in camera coordinates is defined

by an affine map xc = R · (xw−c), where R ∈ R3×3 encodes the rotation of the

camera frame w.r.t. the world coordinate system and c ∈ R3 is the position of

the optical center in world coordinates (cf. right image in Figure 2.4). Using

homogenous coordinates this affine transformation can simply be written as

xc = [R|t] ·

(
xw

1

)

where t = −R · c is a convenient abbreviation for the translational part. To-

gether with the intrinsic camera matrix K the whole projective mapping is

given by  a

b

c

 = K[R|t]︸ ︷︷ ︸
:=P

·

(
xw

1

)
(2.24)

where the intrinsic and extrinsic parameters are all combined to form one pro-

jection matrix P = [Q|q] = [KR|Kt] ∈ R3×4. After multiplying a point

in homogenous coordinates with the projection matrix P , the image coordi-

nates of the projected point are obtained by the de-homogenization (u, v)T =

(a/c, b/c)T .
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2. Foundations

Back projection. The projection matrix P allows it to map 3D points to points

on the 2D image plane. For many computer vision applications it is important

to handle the reverse direction, i.e. the construction of a ray from a given

pixel or image point (for this we assume the intrinsic and extrinsic camera

parameters to be known). Using homogenous coordinates a point (u, v)T on

the image plane is represented as an arbitrary scalable 3D vector λ · (u, v, 1)T ,

which is proportional to the projection of a 3D point xw = (xw, yw, zw)T lying

on the viewing ray through that image point:

λ ·

 u

v

1

 = Q · xw + q = Q · (xw − c) = K ·R · (xw − c)

From this we can directly see, that any point x in 3D space lying on the viewing

ray can be computed from the 2D point position as

x = c + λ ·Q−1 · (u, v, 1)T (2.25)

Notice that for the special case, where λ equals the z-component of the vector

R · (xw − c), we can directly reconstruct the position xw given its projection.

This is e.g. useful when reconstructing a point cloud from a given depth map,

where the distances w.r.t. to the camera center is stored in each pixel of an

image.

2.4.2. Real Cameras

The mathematical formulation of the pinhole camera model assumes that light

travels along a straight line through one point, the optical center, before it hits

the image plane. This means that the aperture of such a camera is infinitely

small, such that physically no light will pass through it. Real cameras therefore

must have apertures of a certain extend to capture enough light in short periods

of time. This on the other hand is problematic, since light bends at the border

of the aperture and the effect of diffraction becomes visible in the image. In

order to compensate for such effects, complex lens systems are needed, but it

is very costly to build perfect lens shapes, such that these lens system typically

introduce other distortions. Chromatic aberration, e.g., is an effect where the

refraction of light depends on its wavelength. The most significant distortions
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p p

Figure 2.5.: Left: Example of a vector field describing radial lens distortion.

Right: Vector field, that exemplary describes tangential lens distortion.

are the so called barrel and pincushion distortions [JW76] which deform the

whole image such that straight lines in object space are curved lines in the

image.

Mathematically these distortions can be separated into radial and tangential

distortions, like it is done in the Brown’s distortion model [Bro66]. This model

basically adds two vectors to the projected point position (u, v)T obtained from

the standard pinhole camera model. Radial distortion vectors dr ∈ R2 depend

on a set of radial distortion parameters k1, k2, k3, . . . and can be computed at

a point (u, v)T as

dk(u, v) =

(
ru

rv

)
· (k1 · ||r||2 + k2 · ||r||4 + k3 · ||r||6 + . . .)

where r = (ru, rv)T = (u − px, v − py)T is the vector from the principal point

p to the pixel (u, v)T . In most applications the number of radial distortion pa-

rameters is restricted to three parameters. The left image of Figure 2.5 shows

a vector field, computed from one example of a radial distortion model, where

pixels far away from the principal point also show large distortion vectors.

Tangential distortion vectors dt ∈ R2 also influence the resulting image signif-

icantly. In practical scenarios they are modeled by two tangential parameters

t1, t2, but similar to the radial parameters, more parameters can be used:

dt(u, v) =

(
t1 · (||r||2 + 2r2

u) + 2 · t2rurv
t2 · (||r||2 + 2r2

v) + 2 · t1rurv

)
· (1 + t3 · ||r||2 + t4 · ||r||4 + . . .)
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The right image of Figure 2.5 shows a vector field for tangential distortion where

vectors are majorly oriented along the x-axis of the image. If the parameters

of the distortion model are known we can compute the distorted pixel position

(ud, vd)
T , i.e. the position on the image plane, where a real Photon would end

up, as

d(u, v) =

(
ud

vd

)
=

(
u

v

)
+ dk(u, v) + dt(u, v) (2.26)

Many computer vision applications need to look up image intensities at pro-

jected point positions. Incorporating an distortion model in such applications

makes the computation of pixel positions computationally expensive and com-

plicated, since we need to evaluate higher order polynomials. This is why most

applications first convert the input images to undistorted images, where the

correct image intensities can be found at pixel positions computed with the

standard pinhole camera model. The algorithm to compute the undistorted

image iterates over all integer pixel positions (u, v)T , computes the real valued

distorted pixel position (ud, vd)
T and copies the interpolated image intensity

from that position to the pixel (u, v).

2.4.3. Camera Calibration

The process of calibrating a single camera or even a camera rig, which consist

of multiple cameras mounted on a stiff construction, always starts with a mea-

surement procedure where several images are taken from a specific calibration

pattern. Such a calibration pattern has to fulfill two basic requirements: First

of all, it must contain some extraordinary points, whose exact 3D location on

that pattern are known. Second of all it should be easy to recognize these

points in an image, which defines 3D to 2D point correspondences for each

taken image.

Once the correspondences have been collected, the task is to compute in-

trinsic and extrinsic camera parameters which describe the observed 2D point

locations, i.e. which minimize the distances of the projected 3D points and

their corresponding 2D points. The parameters to compute such projections

usually contain the intrinsic parameters of the lens distortion, the parameters

of the pinhole camera model and in case the task is to calibrate a whole cam-

era rig, the extrinsic camera parameters containing the relative translation and
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rotation between the cameras of the rig. In this thesis we adopted the method

of Zhang [Zha00] and implemented a fully automatic calibration method which

finds 3D to 2D correspondences in a fast and robust way, which will be de-

scribed next.

Estimating a homography from 3D to 2D correspondences. A homography

is a projective mapping between two projective spaces. In three dimensional

space it can be seen as the projective mapping between to planes, e.g. from

one plane in 3D space to the image plane. Using homogenous coordinates we

can represent it as a linear mapping λ · u
λ · v
λ

 =

 hr1
hr2
hr3

 ·
 x

y

1

 = H ·

 x

y

1


where H is a 3× 3 matrix with rows hr1,h

r
2,h

r
3 that maps points (x, y)T from

one plane to de-homogenized points (u, v)T of another plane. If we define

x = (x, y, 1)T and include this de-homogenization we can directly compute the

coordinates (u, v)T as (
u

v

)
=

( hr1·x
hr3·x
hr2·x
hr3·x

)
(2.27)

Since the estimation of a homography plays a central role in several steps

of the calibration process, we will shortly repeat how this can be done from

a given set of 3D to 2D correspondences. Different to computing the point

positions from a given homography, for this the parameters of an unknown ho-

mography explaining the observed projections need to be computed. Therefore

we reformulate Equation 2.27 such that we get an expression which is linear in

the parameters of the homography[
xT 0T −u · xT

0T xT −u · xT

]
· h = Li · h =

(
0

0

)

where h = [hr1,h
r
2,h

r
3]T is the vector holding the parameters of the homography.

For each corresponding point pair i we get a constraint matrix Li ∈ R2×9.

If n corresponding point pairs have been measured, the concatenation of all
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Figure 2.6.: Planar calibration patterns with 15 LED lamps. Left: under the

right illumination conditions, the lamps of the pattern are easily detectable

in an image. Middle: The convex hull of the detected points (green line)

is a polygon with at most 11 points. Among those points the corner points

(green circles) are found by identifying their characteristic large inner angles.

Right: To identify the remaining points we use the homography induced by the

detected corner points to predict the positions (green circles) of the remaining

LED lamps. A detected (black) point is then associated to the closest predicted

position of a lamp.

constraints leads to a constraint matrix L with dimension 2n× 9, from which

we can compute the optimal homography explaining the observed projections

by solving the least squares problem LTL · h → min. To avoid the trivial

solution, LTL · h is minimized subject to the constraint
∑
i h

2
i = 1. Then the

optimal solution for h is the Eigenvector of LTL corresponding to the smallest

Eigenvalue.

2.4.3.1. Automatic Identification of Correspondences

Instead of using a checker board pattern, as suggested in [Zha00], we con-

structed a planar pattern with 15 LED lamps as depicted in the left image of

Figure 2.6. The pattern was precisely fabricated such that the exact location of

each LED on that planar surface is known. Since images of this pattern, taken

in a dark environment, only show 15 glowing dots representing the LED lamps,

the detection of those extraordinary points of the pattern is much easier than

the detection of crossing sections of a checker board. This often requires manual

interaction as it is e.g. needed in the Matlab Calibration Toolbox [Bou08].
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Detecting the LED lamps. For all dots seen in an image, we observe that the

image intensity is high at their midpoints and that the intensity drops at the

border of each dot (cf. left image of Figure 2.6). This is why we model the

intensity distribution as a Gaussian function. In order to detect the midpoints

of the dots representing the LED lamps, we compute the convolution of the

captured image with that Gaussian function, which can efficiently be done

using the FFTW library [FJ05]. At the midpoints of these glowing dots the

convolution with a Gaussian function reaches a local maximum. We identify a

set of 15 pixels, representing these midpoints, by successively identifying pixels

from a set of candidates having high intensity values in the convoluted image.

After each identification step we apply a non maximum suppression and remove

all surrounding pixels from the set of candidate pixels within a user given radius

and proceed with the identification of the next LED until we found 15 LED or

the next image intensity is below a preset threshold, in which case we declare

the detection as invalid.

Computing a one-to-one correspondence is necessary to correctly calculate

the re-projection errors in later steps of the calibration pipeline. Once the

center of each glowing dot has been identified, the task is to assign a specific

LED lamp index to it. Then the 2D position of the midpoint and the 3D

position of the LED lamp on the calibration pattern define a corresponding

point pair. In order to break the symmetry of the calibration pattern and

thereby make this assignment for all LEDs unique, we omit one LED in the

grid of LEDs (cf. lower left corner of the calibration pattern in Figure 2.6).

The algorithm used to compute the correspondences of 2D midpoints and 3D

positions of the LED lamps starts with the extraction of the convex hull of the

detected midpoints. The result is a two dimensional polygon with at most 11

vertices as shown as the green border in the middle image of Figure 2.6. Among

these vertices we identify the corner points of our pattern (LEDs 0,3,8,12 and

14) by successively deleting that vertex of the 2D polygon which incident edges

enclose the largest angle. This decimation is repeated until only five vertices

remain, which are assumed to be the corners of the LED pattern. Since the

counter-clockwise ordering of the polygon equates the counter-clockwise order-

ing of the LEDs in our pattern, the possible mappings between the midpoints
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and the LED lamps at the corners reduce to five possible configurations which

can be generated by a cyclic permutation. Each of this permutations gives a

unique set of five 2D to 3D point correspondences from which we compute a ho-

mography as described in Section 2.4.3. This homography is used to project all

15 LED lamps into the image and for each LED lamp we define its correspond-

ing 2D point as that midpoint of a glowing dot having the minimal distance

to the projection of the LED. As the total error we accumulate the individual

re-projection errors and accept the set of corresponding 2D to 3D point pairs

with minimal total error as the set holding the correct correspondences.

2.4.3.2. Closed form Intrinsic Calibration

With the algorithm described in the previous section it is possible to detect

LED lamps in an image and relate the detected 2D points (u, v) to 3D point

positions (x, y, 0) located on the planar calibration pattern. We could use the

algorithm described in Section 2.4.3 to compute a special projective mapping,

i.e. a homography H, which only characterizes the relation between points

on one particular plane (the calibration pattern) and the image plane. In

order to be able to predict the 2D positions of other 3D points not lying on

the calibration pattern, we would prefer a more general model, instead of one

specific homography. For a pinhole camera this general model is the intrinsic

calibration, which is mathematically described by the shearless 3 × 3 matrix

K mapping points to squared pixels, i.e. where α = 1 (cf. Equation 2.23).

Zhang [Zha00] describes a closed form solution, how the intrinsic matrix can

be computed from a set of homographies, which are obtained from images

showing the calibration pattern at different positions and orientations w.r.t. to

the camera.

The first step to compute the intrinsic matrix K is to assume that the ho-

mographies computed for all images are composed of the constant intrinsic

matrix K and a rigid transformation, which is variable for different images.

Starting with the general projection function as described in Equation 2.24, we
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see that 3D points (x, y, 0) stored in coordinates of the calibration pattern, are

projected to the image plane as λ · u
λ · v
λ

 = K ·
[

r1 r2 r3 t
]

x

y

0

1

 = K ·
[

r1 r2 t
]

︸ ︷︷ ︸
=H

 x

y

1


where the perpendicular vectors r1 and r2 lie in the plane of the calibration

pattern and represent its orientation with respect to the camera, while t is

related to the position of the pattern. If [h1 h2 h3] are the columns of one

homography H, the two axes r1 and r2 of the pattern are related to these

columns by hi = Kri for i ∈ {1, 2}. The idea of finding the best suitable

matrix K explaining the observed homographies in all images, is to constrain

the two axes of the pattern to be orthonormal, i.e. rT1 · r1 = 1 = rT2 · r2 and

rT1 · r2 = 0, which leads to a pair of equations for each homography of the form

hT1 ·B · h2 = 0

hT1 ·B · h1 − hT2 ·B · h2 = 0 (2.28)

where B = K−TK−1 is a symmetric matrix which can more compactly be

written as a six dimensional vector b′ = [B11, B22, B33, B12, B13, B23]T only

using the three diagonal and three off-diagonal elements. When plugging in

our definition of the intrinsic matrix, B expands to

B =
1

f2
·

 1 0 −px
0 1 −py
−px −py (p2

x + p2
y + f2)


and we observe that it is possible to represent it in a more compact form using

the four dimensional vector b = [B11, B33, B13, B23]T . Once b is known, we

can directly deduce the intrinsic parameters f, px, py, as e.g. f = 1/
√
B11.

The task then is to determine the vector b from the set of Equations 2.28

which are available for each image showing the calibration pattern. Defining

the vector

vij =


h1i · h1j + h2i · h2j

h3i · h3j

h1i · h3j + h3i · h1j

h2i · h3j + h3i · h2j


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we can rewrite the Equations 2.28 in terms of the unknown vector b as[
vT12

vT11 − vT22

]
︸ ︷︷ ︸

:=V

·b = 0

Again, the optimal solution in the least squares sense is to set b to the Eigen-

vector of the matrix V TV corresponding to the smallest Eigenvalue, from which

we can compute the closed form solution for the intrinsic camera parameters.

2.4.3.3. Closed form Extrinsic Calibration

So far we only considered the calibration of a single camera, where we computed

the intrinsic matrix K from a set of homographies deduced from images which

show the calibration pattern from different positions. The intrinsic matrix,

together with the observed homographies, directly give us the position and

orientation of the calibration pattern by the relation
[

r1 r2 t
]

= K−1H,

such that we can represent the positions of the LEDs in the coordinate system

of the camera as

xr =
[

r1 r2 t
]
·

 x

y

1

 =
[

r1 r2 r3 t
]

︸ ︷︷ ︸
:=Tr

·


x

y

0

1

 (2.29)

where r3 can be computed by the cross product r1 × r2. Note that the matrix

Tr depends on the orientation of the pattern as observed in a specific image i

and should correctly noted as T ir .

Now we have all ingredients to extend our setup to a stereo system, where we

add another camera which is rigidly linked to the first camera we considered so

far. In this context rigidly linked means, that there is a fixed transformation

that maps 3D points from the coordinate system of one camera to the other.

Without loss of generality we can define the coordinate system of one camera

r of your rig to be the identity, and we call this camera the reference camera.

With respect to the coordinate system of one camera, the 3D positions of each

LED lamp observed in each image can be computed using Equation 2.29, which

42



2.4. Camera Model

gives us a list of points xjr. If the second camera is synchronized with the refer-

ence camera and observes the same pattern at the same time, we can compute

an additional list of points xjc representing the same LED lamps in the coordi-

nate system of the second camera. Observe, that when capturing n images of

a calibration pattern with 15 lamps, this would imply that both lists contain a

point cloud of 15 · n points and that both lists are in full correspondence. By

minimizing

E =
∑
j

||Rr,cxjr + tr,c − xjc||2 (2.30)

as described in [Hor87], we can compute the rigid transformation Tr,c = [Rr,c|tr,c]
that models the rigid connection between both cameras and that maps points

from the coordinate system of the reference camera to the coordinate system

of c.

To stabilize this initial estimate for a multi-camera rig, we first set the refer-

ence camera to that camera which most often sees the calibration pattern simul-

taneously with any other camera. Then we successively select a pair of cameras

c and c′, with largest corresponding point clouds and where the transformation

Tr,c to the camera c was already computed (note that the transformation to

the reference camera is the identity Tr,r = Id). Using Equation 2.30 we can

compute the rigid transformation Tc,c′ from c to c′ and thereby the transfor-

mation between the reference camera and the new camera c′ to be registered

as Tr,c′ = Tc,c′ · Tr,c.
After the initial intrinsic and extrinsic calibration, we got a first estimate for

the intrinsic parameters of all cameras (without distortion), the 3D positions of

the LED lamps w.r.t. each individual camera and transformations, describing

the rigid connections between the cameras of our rig.

2.4.3.4. Refining the Calibration

The closed form calibrations approximate the whole projection process and

especially omit an distortion model in order to derive an estimate for the in-

trinsic and extrinsic camera parameters from linear systems of equations. But

the correct computation of the projection (ud, vd)
T of a point x = (x, y, 0, 1)T

into an image i of a camera c is computationally more involved. First we apply
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a set of linear transformations to compute the homogenous representation of

the undistorted pixel coordinates w.r.t. to camera c as

 a

b

c

 =

 f 0 px 0

0 f py 0

0 0 1 0

 · Tr,c · T ir


x

y

0

1


then the distortion model described in Equation 2.26 is used to compute the

distorted pixel position as dj(a/c, b/c). After detecting the positions xj of the

LEDs (cf. Section 2.4.3.1) we know in which image i of which camera c its

projected midpoint (uj , vj) is located. This leads to a set of residuals

fj = dj −

(
uj

vj

)
∈ R2

modeling the difference between the measured point positions and the projec-

tions predicted by our mathematically model. Under the assumption, that a

number of C cameras are mounted on the rig and that each camera sees the

pattern in n images, the concatenation of all differences leads to a residual vec-

tor f ∈ R2·15·C·n. The aim is to refine the rigid transformation of the pattern,

the mounting of the cameras, the intrinsic parameters and the parameters of

the distortion model such that they minimize the energy E = fT f .

This mathematical formulation has a nice geometric interpretation. Con-

sidering the images simultaneously taken at one specific time point, we can

compute 3D viewing rays originating from the camera centers through the de-

tected midpoints, by applying the reverse projection pipeline, which is deter-

mined by its parameters. These parameters minimizing E will produce viewing

rays which exactly intersect at the 3D position of LED lamps. This is why the

application of the Levenberg-Marquard algorithm to this least squares problem

is called Bundle Adjustment [ESN06].

Although most parameters (throughout this thesis, we use two radial and two

tangential distortion parameters) are directly named in the residual function,

it is not clear how to parameterize the rigid transformations T ir and Tr,c. One
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2.5. Stereo Reconstruction

way to do this is to represent T = [R|t] by its displacement vector t and three

rotation matrices

Rα=

 cosα sinα 0

− sinα cosα 0

0 0 1

 Rβ=

 1 0 0

cosβ sinβ 0

− sinβ cosβ 0

 Rγ =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1


defined by the Euler angles (α, β, γ). To avoid a Gimbal lock at large angles,

we consider the Euler matrices as an incremental rotation added to the initial

rotation R and parameterize a rigid transformation as

T = [R ·Rα ·Rβ ·Rγ |t]

by using the six parameters (α, β, γ, tx, ty, tz).

Calibration Accuracy We evaluated this approach on four different image sets

captured with four synchronized cameras. Later we will use the same camera

rig to capture facial movements. For each calibration set we took 1500 to 2000

shots resulting in approximately 6000 images potentially seeing the calibration

pattern. All images have a resolution of 780 × 580 pixels. The calibration

result is summarized in Table 2.1. Whenever the calibration pattern could be

detected in an image, it is possible to measure the projection error (measured

in pixels) for each of the 15 LEDs, resulting in a number of 50.000 - 70.000

projections in total (cf. second column of Table 2.1 ). The last two columns

of the Table show a stable average distance of about 0.35 pixels between the

detected LED points and its projections, which are computed using the intrinsic

(with distortion) and extrinsic camera parameters.

2.5. Stereo Reconstruction

The aim of Stereo Reconstruction is to compute 3D shapes purely from two

images taken at the same time. In contrast to Section 2.4.3 where we optimized

camera parameters such that the projection of an object with known 3D shape

fits to the observed images, we now assume that the intrinsic and extrinsic

parameters of the camera are given and that we optimize for the 3D shape

of the object itself. In the end, Stereo Reconstruction approaches are based
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# Projections Ø Error σ Error

Calibration 1 60465 0.36 0.30

Calibration 2 57345 0.35 0.3

Calibration 3 69000 0.38 0.32

Calibration 4 51870 0.38 0.33

Table 2.1.: Calibration accuracy for four different calibration sets. The second

column states the number of total point projections. The Ø Error is the average

distance (in pixels) between the detected point and its computed projection

(third column). The fourth column shows the standard deviation for these

errors.

on the principal of triangulation. The idea is to identify for each pixel in the

left image an corresponding pixel in the right image. Under the assumption

that both corresponding points see the same patch of a 3D surface, we can use

Equation 2.25 to compute rays through the corresponding pixels that intersect

at a 3D point lying on that surface. In what follows we will describe how to

find the corresponding pixels and explain the principal of surfel reconstruction

which extends computation of the pure position of the patch by simultaneously

computing a surface normal to get a correctly oriented surface patch in 3D

space.

2.5.1. Epipolar Geometry

Consider a calibrated camera rig with two cameras where the left and the right

camera centers are located at the endpoints cl and cr of the so called baseline.

For any point on the left image plane Equation 2.25 defines a viewing ray,

which, together with the baseline, spans the so called epipolar plane. Projecting

the viewing ray onto the right image plane results in a 2D line, the epipolar

line. For a given point this line can be obtained by constructing the epipolar

plane using back-projection and intersecting it with the right image plane.

Figure 2.7 illustrates this geometric construction and it becomes clear that all

possible epipolar lines, constructed from any point on the left image plane,

intersect in only one point. This point is called the epipolar point and it can
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cl cr
baseline

epipolar planes

epipolar points

epipolar lines

ul
ur

ll

lr

x

el er

Figure 2.7.: Geometric construction of epipolar lines and the two unique epipo-

lar points.

be computed by projecting the camera center cl onto the right image plane

as er = Prcl. Mathematically the epipolar line can elegantly be obtained

using the so called fundamental matrix F ∈ R3×3. Representing points in

homogenous coordinates, the fundamental matrix maps points from one image

plane to epipolar lines in the other image plane:

lr = Ful ll = FTur

and is obtained from the projection matrices Pl, Pr as F = [er]xPrP
+
l , where

[er]x =

 0 −ez,r ey,r

ez,r 0 −ex,r
−ey,r ex,r 0


is a skew symmetric matrix representing the cross product and P+

l = PTl (PlP
T
l )−1

is the pseudo inverse of the left projection matrix.

Stereo reconstruction approaches find for each point ul of the left image

plane a corresponding point ur on the right image plane to compute the 3D
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position x of a surface point. Under the consideration of the epipolar geometry

this two dimensional search problem can be restricted to a one dimensional

line search, since the corresponding point ur can, by construction, only lie on

the epipolar line lr, i.e. uTr lr = 0. This is called the epipolar constraint. For

corresponding points it can be conveniently formulated using the fundamental

matrix as uTr Ful = 0.

2.5.2. Epipolar Rectification

Although the epipolar constraint simplifies the search for the corresponding

pixel considerably, there is an even more convenient setting where both cam-

eras have the same local coordinate system R (cf. Equation 2.24). Then both

image planes are coplanar resulting in parallel epipolar lines, i.e. they inter-

sect at infinity (cf. Figure 2.7). When further adjusting the cameras rotation

around the viewing direction, we can even make sure that the epipolar lines are

all parallel to the x-axis of the image plane and that corresponding epipolar

lines have the same y coordinate. Such a setting would strongly simplify the

implementation of any algorithm, which identifies corresponding image points

to reconstruct an observed 3D point: for any point (ul, v) on the left image

plane, we only need to find a corresponding point (ur, v) = (ul + d, v) on the

right image plane by adjusting a single offset parameter d = ur −ul, called the

disparity. Note, that for simplicity we express pixel coordinates relative to the

principal point, i.e. the origin of the image coordiante system is assumed to lie

on the prinicpal point (cf. Figure 2.8). In this rectified setting there is a simple

linear relation between the disparity d and the depth value z of the point to be

reconstructed. From the theorem of intersecting lines (cf. Figure 2.8) we know

that
xl
z

=
ul
f

and
xr
z

=
ur
f

where f is the common focal length of both cameras and xl (xr) is the x-

coordinate of the 3D point w.r.t. to the left (right) camera. Subtracting both

equations and substituting xl = b+ xr leads to the linear relation

xr − xl
z

=
ur − ul
f

⇔ z =
−b · f
d

(2.31)
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Figure 2.8.: The linear relation between disparity and depth follows from the

theorem of intersecting lines.

from which we can directly compute the depth value of a point from the known

disparity.

From a practical point of view it is hard to precisely construct a camera

rig with this convenient configuration. But it is possible to arbitrarily define

new projection matrices P ′l and P ′r for both cameras which project 3D points

to coplanar image planes [Sze10]. To complete the construction of the rec-

tified configuration, the associated images need to be distorted to match the

projective behavior of these new matrices. Let Pi = [Qi|qi] = Ki[Ri|ti] with

i ∈ {r, l} be the original projection matrices of the left and the right cam-

era and let P ′i = [Q′i|q′i] = K′i[R|t′i] with i ∈ {r, l} be the new projection

matrices, where both cameras share a common coordinate frame represented

by R = [x,y, z]T . To align the x and y-axis of this coordinate frame to the

horizontal and vertical axis of the image plane we define

x =
cr − cl
||cr − cl||

and y =
zl × x

||zl × x||

such that x is the normalized vector connecting both camera centers ci =

−Q−1
i qi, with i ∈ {l, r} and y is a vector perpendicular to x and the old

viewing direction zl extracted from the third row of Rl. To complete R, the

missing axis is set to z = x×y. With R and the positions of the camera centers,

the translational part of the new rigid transformation becomes t′i = −Rci where

i ∈ {l, r}.
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Since both image planes should have the same distance to the camera center

and corresponding epipolar lines should lie at the same y coordinate, we set

f = (fl + fr)/2 and py = (py,l + py,r)/2 to construct the new left and right

intrinsic matrices as

K′l =

 f 0 px,l

0 f py

0 0 1

 and K′r =

 f 0 px,r

0 f py

0 0 1


Observe, that the x coordinate of the principal points (px,l and px,r) are still

unknown. When these parameters are adjusted such that the principal point of

the original image will later be located at the same x coordinate in the distorted

image, we avoid the image to be cropped due to the rectification. To achieve

this we compute a mapping from the original image with projection matrix

P = [Q|q] to the new image with new projection matrix P ′ = [Q′|q] = K′[R|t′].
Using Equation 2.24 and 2.25 this mapping is described by the homography hx(u, v)

hy(u, v)

hz(u, v)

 = Q′

c + λQ−1

 u

v

1


+ q′ = λQ′ ·Q−1

 u

v

1


= K′ · λ ·R ·Q−1

 u

v

1

 =: K′ ·

 a(u, v)

b(u, v)

c(u, v)


where the center of the camera c is the same for both projections P and P ′.

Requiring that the mapped principal point of the original image keeps its x

coordinate in the distorted image means that the following equality must hold

hx(px, py)

hz(px, py)
= px

from which the missing values of K′ are computed for the left and right image

analogously as p′x = px − f · a(px,py)

c(px,py)
.

In order to actually rectify the image by distorting the original image, we use

an algorithm similar to undistort an image (cf. Section 2.4.2): We iterate of

all integer pixel positions (u′, v′)T and compute the real valued pixel position

(u, v)T in the original image using the inverse homography Q ·Q′−1. Then we

copy the intensity value, interpolated at (u, v)T in the original image, to the

pixel position (u′, v′)T of the distorted image.
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2.5.3. Surfel Reconstruction

One of your 3D multi-view stereo reconstruction methods is a modified ver-

sion of the surfel fitting approach introduced by Habbecke et al. [HK06]. The

input for this algorithm is a set of images obtained from calibrated cameras

and an initial estimate of a surface element (surfel) defined by a point and a

normal. To calibrate the cameras we employed the calibration method outlined

in Section 2.4.3.

The basic idea is to use the given projection matrices and the plane associated

to define a warping function, that depends on the parameters of the plane and

that maps pixels from the reference image to the comparison image. In the

optimization we can then measure the differences in pixel intensities to drive the

update of the parameters. The warping function is designed as a homography,

that maps pixels perspectively correct. Thereby, it is superior to ordinary 3D

stereo reconstruction which often compare correlation windows of a fixed size

in image space, which does not consider any perspective distortions.

From an initial point position p ∈ R3 and a normal n ∈ R3 we infer the

parameters of the plane equation N = (nT , δ)T , where δ = −nTp. We assume

that the plane is associated to a reference image T and a set of comparison

images

ref(p) = T

comp(p) = {Ic1 , . . . , Ick} c1, . . . ck ∈ {1, . . . , C}

where C is the total number of views. The reference image can, for example, be

chosen as the image where viewing direction and the vertex normal are closest

to parallel, while comparison images have to fulfill some visibility criterion. For

simplicity, from now on we consider only one comparison image I and assume

the projection matrices for the reference and the comparison image to be

Pr = [Qr|qr] and Pc = [Qc|qc]

According to [HZ03], the homography that maps pixels from the reference

image over the plane to the comparison image is defined by the 3× 3 matrix

H(N) =
(
δQc − qcn

T
)(

δQr − qrn
T
)−1

(2.32)
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Using this Equation in an optimization process is not easy, since it involves the

inversion of a 3× 3 matrix, which depends on the parameters to be optimized.

To simplify this plane induced homography we transform the whole scene,

such that the projection matrix of the reference camera equals the identity.

Therefore, we first define the matrix

B =

[
Q−1
r −Q−1

r · qr
0T 1

]
∈ R4×4

When augmenting a projection Px with the identity B ·B−1 we obtain a new

projection matrix P ′ = P · B and a transformed point x′ = B−1x, where

P ′x′ = P · B · B−1x leads to the same result. For the reference projection

matrix we obtain the wanted effect, since P ′r = Pr · B = [I3|0] equals the

identity matrix simplifying Equation 2.32. Besides transforming projection

matrices and scene points, we can also transform a plane equation N using B.

A point x = Bx′ lying on the plane fulfills

xTN = x′T ·BTN = 0

From this equation we can directly infer the new plane equation which needs

to be transformed by the transpose of B, such that N′ = BTN.

If the plane is not passing through the center of the reference camera, we

can divide all components of N by its fourth component δ and use only three

parameters to describe the plane by its normalized plane equation where δ′ = 1.

In what follows we express the transformed and normalized plane equation

by the three dimensional vector n = (nx, ny, nz)
T , which leads to a minimal

parametrization of the plane equation. Using this transformed and normalized

plane equation, we can drastically simplify Equation 2.32 and express the plane

induced homography as

H(n) = Q′c − q′cn
T

where we lost the inversion of a matrix. This homography further defines the

warping function W(x,n) which maps pixels x = (u, v)T from the reference
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2.5. Stereo Reconstruction

Pr Pc

H(N)T I

N

Figure 2.9.: The 3D plane together with the image projection matrices define

a homography H which maps image points from T to points in the image I.

image to the comparison image (cf. Figure 2.9) and which depends on the

plane parameters

W(x,n) =

(
a
c
b
c

)
with

 a

b

c

 = H(n) ·

 u

v

1

 (2.33)

Basically, we formulate the optimization process as an additive image align-

ment problem (cf. Section 2.3.1) and define a residual function that measures

intensity differences

f = I(W(n))−T

where we again used an abbreviate notation and concatenated image intensities

to get the vectors I and T (cf. Section 2.3.1). For the reference image T these

pixels are chosen from a small region (typically a window of 15 × 15 pixels)

around the projection of the input point p. Notice that when we include

multiple comparison cameras, we can simply extend the vector f by additional

measurements.

To optimize the associated energy function E(n) = fT f , we employ the

Levenberg-Marquard algorithm (cf. Section 2.1), which, in general, shows a

more stable convergence behavior [NW06]. For this we need to evaluate the

Jacobian, whose rows are computed from the derivatives of the components of

f as

Ji,· =
∂fi
∂n

= ∇I(Wi(n))
∂Wi(n)

∂n
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2. Foundations

where we made use of the short notation Wi that represents the warped po-

sition of the ith reference pixel. The first term in this equation is simply the

image gradient at the warped pixel position. The derivative of the second term

involves the quotient rule and leads to a matrix

∂Wi(n)

∂n
=


∂a
∂nx
·c−a· ∂c

∂nx
c2

∂a
∂ny
·c−a· ∂c

∂ny

c2

∂a
∂nz
·c−a· ∂c

∂nz
c2

∂b
∂nx
·c−b· ∂c

∂nx
c2

∂b
∂ny
·c−b· ∂c

∂ny

c2

∂b
∂nz
·c−b· ∂c

∂nz
c2

 ∈ R2×3

where ∂(a,b,c)T

∂nx
= −q′cu, ∂(a,b,c)T

∂ny
= −q′cv and ∂(a,b,c)T

∂nz
= −q′c.

From there we can apply the Levenberg-Marquard algorithm described in

Section 2.1 and iteratively compute updates of the plane parameters by solving

the linear system

(JTJ + λI3)∆n = −JT f (2.34)

where again λ is a damping factor controlling the influence of the regular-

ization matrix. The update ∆n is accepted and the damping factor is reduced

if they lead to a smaller energy value, i.e. if E(n + ∆n) < E(n). For stability

reasons we normalize the pixel intensities within the small image regions by

subtracting the average intensity of that region.

After the optimization is converged, the 3D position of the reconstructed

surfel is obtained by back projecting (cf. Equation 2.25) the center of the

15 × 15 pixel region to obtain a ray in 3D space. The intersection of the ray

with the Surfel leads to a reconstructed point position.

2.6. Geometry Processing

In this section we describe some basic approaches to deform triangular meshes.

Throughout this thesis, we use Laplace Mesh Editing [SCOL∗04] and As-rigid-

as-possible Mesh Editing [SA07], whenever we need to non-rigidly register one

shape to another. We use these techniques especially when we need to deform a

generic face template to fit a dense or a sparse point cloud. By carefully defining

the necessary modeling constraints, we ensure that the resulting meshes are in

full correspondence to each other. The third technique we describe at this

point is the Deformation Transfer [SP04, BSPG06] for triangle meshes, which
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2.6. Geometry Processing

pi

∆pi
N(i)

v t

pi
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pj

pk

Figure 2.10.: Left: One-ring neighborhood to compute the Laplace operator.

Middle: A vertex constraint minimizes the distance between a mesh vertex

(green) and an attraction point (red). Right: A face constraint minimizes the

distance between a point lying on a triangle (green) and an attraction point

(red).

is originally designed to map local triangle deformations from one mesh to

another. But in this thesis it is also the key technique to build our database of

dynamic facial expressions.

2.6.1. Laplace Mesh Editing

The input for this approach is a triangle mesh M = (V, T ) represented by

a set of vertices V = (q1, . . . ,qn) and a set of triangles T . The aim is to

find new vertex positions V ′ = (p1, . . . ,pn) such that on the one hand some

positional constraints for the vertices pi are fulfilled and on the other hand

that the geometric details of the mesh are as good as possible preserved. These

geometric features are represented by Laplace vectors (cf. Figure 2.10), which

can be computed from the one-ring neighborhood of a vertex as

∆pi = wi · pi −
∑

j∈N(i)

wi,j · pj

where we defined N(i) to be the set of vertices in the one-ring neighborhood of

the vertex i. This discrete Laplace Operator [DC76] approximates the second

derivative of a scalar function, stored at each vertex of the triangular mesh,

w.r.t to the spatial coordinates x, y, z. While in general the scalar function

can be an arbitrary function, in this case we consider this function to be the
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2. Foundations

vertex coordinates themselves, leading to 3 scalar functions, one for each spacial

dimension. When rearranging the components of the vertex positions into a

matrix [px,py,pz] = [p1, . . . ,pn]T , the Laplace operator can be stated for

the whole triangle mesh. This leads to a matrix L ∈ Rn×n where each row

stores the sum wi =
∑
j∈N(i) wi,j on the diagonal element and the negations

of the weights wi,j at the columns corresponding to the respective neighbor

vertices. As elaborated in [WMKG07] there is a large theory dealing with this

operator and how to define the weights wi,j . In our cases we use the well known

cotangent weights

wi,j =
cotαi,j + cotβi,j

2
to define the Laplace operator, where αi,j and βi,j are the angles opposite to

the edge connecting the vertices i and j.

With the definition of the Laplace operator, the objective to preserve geomet-

ric details means that the new vertex positions should have the same Laplace

vectors as the original vertex positions, which translates to the residual function

fx = L · px − L · qx (2.35)

Observe that in this case we defined the residual function only for the x-

component of the vertex positions, for the other components this and the fol-

lowing equations are analogous.

As described in Section 2.1, the minimization of the energy function of such

residuals leads to a linear system of equations, since the residuals are linear in

its parameters. But the resulting linear system is under-determined and does

not have an unique solution, since each mesh whose new vertices have the same

Laplace vertices as the input vertices, can arbitrarily translated in 3D space.

Therefore positional constraints need to be introduced. In our reconstruction

pipeline we deal with two kind of constraints: Vertex constraints minimize the

distance between a vertex pi and an arbitrary point in 3D space (cf. middle

of Figure 2.10). Assuming we have v vertex constraints we can write these

constraints as a new residual function of the form

gx = C · px − vx (2.36)

where vx ∈ Rv encodes all x-components of the points the vertices are attracted

to and C ∈ Rv×n is a matrix with Ci,j = 1 if the vertex j is attracted by the ith

3D point (equations for the y and z components can be defined analogously).
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2.6. Geometry Processing

The second type of constraints are face constraints. They minimize the

distance between an arbitrary point in 3D space and a point located on a

triangle of the mesh. As depicted in the right image of Figure 2.10, this point

has barycentric coordinates (α, β, γ). Having t face constraints, we can define

a third residual function as

hx = F · px − tx (2.37)

where again tx ∈ Rt encodes all x-components of the points the faces are

attracted to and F ∈ Rt×n stores the barycentric coordinates of the surface

point at those columns corresponding to the vertices adjacent to the triangle.

With both types of constraints and the residuals measuring the change of

the local detail vectors, we can setup an energy function

E = wv · gTx gx + wt · hTxhx + wL · fTx fx (2.38)

from which we can compute the least squares solution by solving the linear

system

(wv ·CTC+wt·FTF+wL·LTL)·px = wv ·CTvx+wt·FT tx+wL·LTL·qx (2.39)

where we introduced weights wv, wt and wL to control the influence of the

attractions and the flexibility of the surface.

2.6.2. As-rigid-as-possible Mesh Editing

In this thesis we use Laplace Editing when only small deformation need to be

applied in order to fit a mesh to a target surface. In those scenarios we usually

have a lot of soft constraints, e.g. a dense point cloud obtained from stereo

reconstruction, and we need to smoothly interpolate areas where no attraction

points are available. As we will see later, with a good initialization, Laplace

Mesh Editing can produce a nicely interpolated surface without holes and little

noise, that fits well to the surface to be reconstructed.

But in some other scenarios we only have given a few hard constraints, which

need to be fulfilled exactly. Additionally the surface to be constructed is far

from the input surface, such that large deformations need to be applied. When

large deformations are involved, we need to take special care of local rotations
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2. Foundations

of the Laplace vectors, which makes Laplace Mesh Editing hard to use. So, for

such scenarios with large deformations and only a few constraints we rather

use As-rigid-as-possible Mesh Editing [SA07].

As before the input for this approach is a triangular mesh M = (V, T ), where

the original vertex locations are denoted as V = (q1, . . . ,qn). The aim is to

compute new vertex locations V ′ = (p1, . . . ,pn), such that on the one hand

some vertices lie at specific locations, i.e. pj = ck for some vertices j. On the

other hand the new vertices should be distributed in 3D space such that local

rotations Ri, associated to each vertex i are as small as possible. To model the

later requirement, Sorkine et al. [SA07] defined an energy function E(Ri,pi),

that measures how the transformation of the one-ring-neighborhood deviates

from a pure rotation:

E(Ri,pi) =
∑

j∈N(i)

wi,j ||(pi − pj)−Ri(qi − qj)||2

where again N(i) denotes the one-ring-neighborhood of vertex i and wi,j are

defined as the cotangent weights [SA07] in order to make this energy formu-

lation independent from the resolution or anisotropic element distribution of

the mesh. The integration over all one-ring-neighborhoods then leads to the

surface energy:

E(V, V ′) =
∑
i

E(Ri,pi)

This energy function is highly non-linear, since the parameters to be optimized

are the new vertex locations pi and the rotations Ri of the one-rings. With

a proper parametrization of the rotational matrices we could apply one of the

optimization techniques presented in Section 2.1, but in [SA07] the authors

suggest a simpler approach, which alternates the computation of new vertex

positions given fixed rotations with updating the rotations given new vertex

locations. The key observation to make this work, is that optimal rotations

can analytically be computed independent for each one-ring from the singular

value decomposition [QSS07] of the covariance matrix

Si =
∑

j∈N(i)

wi,j(qi − qj)(pi − pj)
T = UiΣiV

T
i (2.40)

where Σi contains the singular values and Ui and Vi contain the left and right-

singular vectors. Then the optimal rotation is simply computed as Ri = ViU
T
i .
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2.6. Geometry Processing

In the second step of this alternating approach the rotations are seen as

constants. In what follows we restrict our considerations on the x-components

of the new vertex positions, but the y and z-components can be computed

analogously by solving the Laplace System

Lpx = bx (2.41)

which is deduced from the partial derivatives of the energy function w.r.t. the

new vertex locations. Again, L ∈ Rn×n is the Laplace matrix containing the

cotangent weights, px is the n-dimensional vector holding the x-coordinates of

the new vertex positions and bx is the concatenation of the x-components of

the vectors

bi =
∑

j∈N(i)

wi,j
2

(Ri +Rj)(qi − qj)

In order to constrain a vertex to a fixed position, e.g. pj = vk, we remove

the corresponding column and row from the Laplace matrix L and if pj occurs

in another row, we insert the x-component of vk and bring it on the right side

of the equation.

Both steps, the computation of new rotations of the one-rings (cf. Equa-

tion 2.40) and the computation of new vertex positions pi (cf. Equation 2.41 )

are alternated in each iterations. As common for most non-linear optimization

problems, this approach converges quickly when starting with a good initial

solution. To obtain this, we compute a global transformation that minimizes

the distance between the constraints vk and the transformed corresponding

vertices pj . As proposed by Horn [Hor87] this transformation is the composi-

tion of a rotational part R ∈ R3×3, a scaling S ∈ R3×3 and a translational part

t ∈ R3 that minimizes the energy function

E(R,S, t) =
∑
(j,k)

||R · S · qj + t− vk||2

While the translational part is simply the vector between the center of gravity

of both point clouds (qj and vk) and the scaling can be obtained from the

diameters of both point clouds, the rotational part is a bit more involved and

requires to compute the eigenvectors of a four dimensional matrix [Hor87].

Then the rotational matrix R can be obtained from the larges Eigenvector,
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2. Foundations

witch represents the optimal rotation between both point clouds as a unit

quaternion [Vic01].

The initial solution for the described iterative procedure is obtained by ap-

plying this global transformation to all vertices of the mesh M , such that

pi = R ·S ·qj + t. In practice we only use a small number of four iterations to

find the final vertex positions of the deformed mesh M ′.

2.6.3. Deformation Transfer

Deformation transfer for triangle meshes [SP04, BSPG06] is the key technique

to map the dynamic movements from one avatar face to another. The technique

represents these dynamic movements as local deformations per triangle, called

the deformation gradients. Under the assumption, that all facial models are

in full correspondence, meaning their polygonal surface meshes have the same

topology and vertices are uniquely associated to specific facial regions like the

nose or the mouth, we use deformation gradients to decouple the dynamic

movements from the individual shape of the face. Our dynamic model (cf.

Chapter 7), learned from a database of facial movements, is able to generate

new deformation gradients by adjusting a few parameters, which can in turn

be mapped to any new facial shape to animate it.

In this section we shortly recall the principals of deformation transfer for

triangle meshes and how deformations can be mapped to a new shape. Assume

a source triangle mesh S = (V, T ) is given, with V = {q1, . . . ,qn} being the

set of vertices and T = {t1, . . . , tm} the set of triangles. Further assume this

mesh was deformed into another mesh S → S ′ where new point positions in

S ′ are denoted by {q′1, . . . ,q′n}. As described in [BSPG06] we can compute a

deformation gradient St ∈ R3×3 for each triangle t that maps a point from the

undeformed to the deformed state. This deformation gradient is given by

St = (q′1 − q′3,q
′
2 − q′3,n

′) · (q1 − q3,q2 − q3,n)−1

where n, n′ and qi,q
′
i are the normals and vertex positions of an undeformed

and a deformed triangle t.
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2.6. Geometry Processing

The idea is to find a deformation for a target mesh T → T ′ such that the

deformation gradients Tt ∈ R3×3 of the target mesh match those of the source

mesh:

Tt = (p′1 − p′3,p
′
2 − p′3,n

′) · (p1 − p3,p2 − p3,n)−1 = St

Here we denote the vertices of T and T ′ as {p1, . . . ,pn} and {p′1, . . . ,p′n}.
Note that the indices of the triangles do not change since both meshes are in

full correspondence. Equivalent to this we can also require that the transposed

of these matrices should be the same:

TT
t = STt

This has the advantage that we can find an expression for Tt which is linear

in the new point positions p′i:

T̃T
t =

(
(p1 − p3,p2 − p3,n)−1)T ·

 1 0 −1

0 1 −1

0 0 0


︸ ︷︷ ︸

=:Gt

·

 p′1
T

p′2
T

p′3
T



where Gt is the constant gradient matrix of the coordinate function of a triangle

t of the target mesh T .

In order to compute the deformation transfer for all triangles we want to find

new vertex positions p′i such the all deformation gradients of the target mesh

are equal to the deformation gradients of the source mesh. This is expressed

by the global system
G1

...

Gm

 ·


p′1
T

...

p′n
T

 = G


p′1

T

...

p′n
T

 = S =


S1

T

...

Sm
T


Where G ∈ R3m×n is the global gradient matrix computed from T and S ∈
R3m×3 is a global matrix computed from the deformation S → S′. Since this

system is over determined we solve it in the least squares sense

GTG


p′1

T

...

p′n
T

 = GTS
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This system weights the deformations per triangle in a uniform way which may

lead to unwanted distortions. To avoid this, the deformation gradients are

weighted by the area of the triangle which finally yields the Poisson equation

describing the deformation transfer:

GTDG


p′1

T

...

p′n
T

 = GTDS (2.42)

where D ∈ R3m×3m is the diagonal area matrix computed from all triangles in

T . Observe that GTDG is equal to the standard Laplace matrix of the mesh

T using the cotangent weights and GTD represents the divergence operator

[BSPG06].
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3. Related work in Facial Performance Capture

Our systems to track facial movements from stereo images or single images is

related to previous work in the areas of facial modeling, face reconstruction,

tracking and animation.

Artistic animation design. A common technique to generate facial movements

for movies and computer games is Free Form Deformation (FFD). FFD pro-

vides a framework which allows artists to drag vertices of a cage to intuitively

deform the space inside the cage and thus the underlying geometry. Sophis-

ticated methods, e.g., introduced in [JMD∗07, LLCO08, BCWG09], compute

mappings in 3D space which do not induce large distortions (such as volumetric

shrinking). Using such tools, artists can be very creative when producing ani-

mation sequences. Such hand-made animations are usually applied for cartoon

like movies and often appear awkward if they are meant to be realistic, since

the degree of realism is not sufficient to leave the problematic region of the

uncanny valley [Mor70].

Physically based facial animation. One way to simulate more realistic move-

ments of a human face is to use physically based methods, which usually rebuild

some anatomical features of the human head with the aim of mimicking natural

movements. Waters [Wat87] simulates facial muscle contractions by abstract-

ing the facial action units originally introduced by Ekman and Friesen [EF78].

However, this work only uses a few muscles to reproduce basic human emotions.

Similarly, Lee et al. [LTW93] build an anatomically accurate physically based

head model with tissue, skull and synthetic muscles, which are used to deform

the tissue to produce facial expressions. Kähler et al. [KHYS02] use a similar

model to perform real-time deformations based on anthropometrically mean-

ingful landmarks. Their method is also capable of simulating aging. Sifakis et
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3. Related work in Facial Performance Capture

al. [SNF05] uses finite element methods to deform the synthetic tissues around

a skull model.

The major problem with all biomechanical models is that it is quite difficult

to build them correctly, because our anatomical knowledge about human skin,

muscles, and bone structures is still limited. Thus, models sometimes require

extensive tuning to produce a realistic output. Our animation technique is

purely data driven and does not require this special parameter tuning.

Marker-based methods. Many motion capture systems [CBMK∗06, SNF05,

BBA∗07, WL90] use special cameras to track the movements of 3D marker

points placed on the actors face. Sifakis et al. deduce muscle activities from

such sparse motion data obtained with such systems and feed the resulting

forces in their tissue model to produce anatomically plausible muscle move-

ments [SNF05]. Curio et al. computed blendshape weights from the motion

capture data to drive a morphable shape model [CBK∗06]. Using such sparse

sets of markers, wrinkles and fine details within the facial movements disappear.

Bickel et at. suggest a thin shell based mesh deformation approach to simulate

the appearance of wrinkles in a physically plausible manner [BBA∗07]. All

systems use special camera systems to track the 3D motion of marker points,

while our system only needs a simple video as input.

Besides the sparsity of the produced data, in many applications as, e.g.,

psychological studies, the original videos should appear as natural as possible,

such that markers are forbidden to use. With increased computational power,

dense reconstruction and tracking methods have moved into focus and can

roughly be divided into active sensing and passive sensing systems.

Active sensing An early active system was proposed by Zhang et al. [ZSCS04].

They reformulated space-time stereo as a global optimization problem to com-

pute a time varying disparity map between two image sequences obtained by

a structured light system. Then they fit a template mesh to the time varying

depth maps and use optical flow conditions to maintain temporal correspon-

dences. Since we use pure video data instead of structured light scanners we

deal with a different setup, which also works at high frame rates, usually not
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achievable with active systems. Ma et al. use polarized light emitted from

multiple directions (lightstage) to separately measure a diffuse and a specu-

lar normal map [MHP∗07]. In [ARL∗09] this technique was further improved

to compute high quality renderings of the facial performance of an actor in

an offline process. In [MJC∗08] Ma et al. combine active sensing with sparse

motion capture data. In their setup they use structured light scanning and

photometric stereo to capture wrinkles and fine facial features, while motion

capture markers, which make this also a marker based method, are used to

track large scale deformations and to establish correspondences between faces.

In a training phase polynomial displacement maps are computed to represent

medium-frequency facial deformations and high-frequency facial details and

are used in a synthesis phase to produce new animation sequences. Since our

marker-less capture systems (cf. Chapter 5 and 6) maintains vertex correspon-

dences between faces and through time we can use a rather simple approach,

like the one proposed by Botsch et al. [BSPG06], to transfer (blended) defor-

mations to other faces.

Other active sensing methods were proposed by Hernández et al. [HVB∗07]

which use multispectral photometric stereo to compute a dense normal field

from untextured surfaces. Weise et al. [WLG07] use active illumination based

on phase-shift to reconstruct surfaces at high frame rates. A drawback of both

approaches is that they are unable to maintain correspondences between ver-

tices in time. In [WLVP09] Weise et al. improved their system to be able to

track a generic face template at a rather high temporal resolution of 30 frames

per second. The data produced by this system were used to create an actor’s

face model in an offline process which enables to track and transfer facial move-

ments of this actor in real time to other faces. Similar to their approach, we

consider the deformation transfer [BSPG06] as a key technique and introduce

a statistical expression model by performing a principal component analysis on

the time varying deformations of the template’s triangles.

In [WBLP11] Weise et al. proposed a real-time facial performance capture

system, which requires as input depth maps obtained from Microsofts Kinect

sensor [Zha12]. This is probably the most related approach to the system pre-

sented in Chapter 7. The main difference is, that our system is purely image

based, such that it works at higher frame rates. Additionally we propose a new,
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3. Related work in Facial Performance Capture

general motion model for human faces which decouples the facial movements

from the individual facial shapes. The most recent active sensing system to

capture facial performance was proposed by Li et al. [LYYB13]. Before the

tracking phase, the system first reconstructs the neutral face by fitting a mesh

to aggregated depth maps taken from a Kinect sensor. To obtain a generic

blendshape model [WBLP11], the neutral shape is then generically deformed

using deformation transfer (cf. Section 2.6.3) to mimic facial expressions in-

spired by the facial action coding system [EF78]. Just fitting this blendshape

model to depth maps and detected facial feature points, would not lead to an

accurate tracking of the facial performance. Therefore, the authors suggest to

perform a second fitting stage where they find shape parameters of an adaptive

PCA model to reproduce the observed input data. Their main contribution

is an EM-based [Bil98] learning approach, that incrementally incorporates in-

dividual facial details in this PCA model during the tracking phase. In their

results they demonstrate the effectiveness of this one-the-fly adaption of the

PCA model to decrease the fitting error after time.

Since we do not use active sensing methods [ZSCS04, HVB∗07, WLG07,

MJC∗08, WLVP09, WBLP11, LYYB13], which in general need special hard-

ware to project light patterns or colors onto an object, we do not distract the

actor. We also get along with a rather inexpensive, simple camera setup work-

ing at high framerates.

Passive sensing In comparison to active sensing methods passive methods

usually reconstruct the facial movements from pure video data. The main ad-

vantage might be, that the actor is not distracted by flickering lights produced

by an active system and that videos can be taken at higher framerates. Since

facial movements, such as micro-expressions [RBQ14], often are very quick, this

is clearly worth to consider. A famous passive data driven approach was sug-

gested by Blanz and Vetter [BV99]. They learn shape and texture parameters

for a morphable model by performing a principal component analysis (PCA)

on a set of laser scanned human heads. In a pure image based approach, they

optimize these parameters to extract the static geometry and the texture of

a human head from a photo. In order to decouple identities, expressions and
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visemes Vlasic et al. [VBPP05] use multilinear models. They perform a statisti-

cal analysis on the captured data to obtain a multilinear face model. With this

model they were able to track facial movements from a monocular video and

transfer moods and articulation to another video. Dellepiane et al. [DPT∗08]

deform a dummy head to reconstruct the shapes of human heads from images

and use them for binaural rendering. Active Appearance Models (AAMs), as

in [OOB03, KBM∗05], are used to track motion through (multiview) image

sequences. As with all morphable models, though, the reconstructions are al-

ways restricted to the low-dimensional space spanned by the parametric model,

while our reconstruction methods (cf. Chapter 5 and 6) produce results not

restricted to such parametric spaces.

Vedula et al. introduced the term dense scene flow in [VBR∗99], which was

further improved by Li and Sclaroff [LS08]. In their pure video based ap-

proach they reformulate the optical flow problem, find corresponding pixels in

time, and use disparity to find correspondences between different views. The

extraction of geometric information which could be used for simple visibility

tests was not considered. In [FP09] Furukawa extended a previous approach

to track vertices of a mesh reconstructed in the first image of a video stream.

In order to ease the 3D stereo reconstruction and to produce compelling re-

sults they put additional paint on the faces. We designed our system such

that we always have good initial solutions for the 3D reconstruction, thus we

do not need to artificially texture human faces. Another difference is that we

use a predefined template with fixed topology, which gives us inter-subject cor-

respondences and simplifies deformation transfer and blending. Borshukov et

al. [BPL∗05] propose a system that is similar to ours. A scanned model of

a neutral expression of an actor is tracked in time. They use optical flow to

ensure temporal correspondences and use 3D stereo to triangulate 3D positions

of the models vertices. Since they are using a very expensive camera setup (>

100.000 $) and correct tracking errors in 2D and 3D manually the results look

very impressive. Furukawa and Ponce use a multiview stereo system and define

filters for the local neighborhood of a vertex to smoothly track the vertices of

a triangular mesh [FP09].

There are other expensive commercial solutions to capture facial movements

from pure video data like DI3DTM from Digital Imaging. Recently Bradley et
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3. Related work in Facial Performance Capture

al. [BHPS10] designed a passive, video based capture system which does not

need special markers. They use 7 stereo pairs of high resolution cameras to

reconstruct single patches, which are merged into a 3D point cloud. An optical

flow based tracking which involves minimal user interaction is used to establish

temporal correspondences. With this quite expensive system they are able to

create textured animated faces in a high resolution. Our method is low-cost

and the tracking part involves no manual interaction. In addition we decided

to use a mesh based 2D tracking, which allows to track, e.g., upper and lower

lips independently. In general a simple implementation of optical flow could

smooth out those contradictory up and down motions.

Among passive sensing there is a special field in computer vision, where 3D

facial movements are infered from a single video. Such systems usually de-

pend on a priori knowledge about the facial shape. Marker based methods

[WL90, LO05] produce quite robust motion parameters used to deform a mor-

phable model. In [XBMK04] Xiao et al. use a non-rigid-structure-from-motion

approach to augment a 2D Active Appearance Model (AAM) [CET01, MB04]

with additional 3D shape modes in order to track 3D facial features. Similar

to [BV99, LRF93] and [DM96] Pighin et al. build a 3D morphable model and

used it to track facial expressions in an analysis by synthesis approach [PSS99].

Chuang and Bregler present a framework to manually model facial animations

assisted by the shape and motion information of a large database [CB02]. Their

system involves an expensive search in the database and does not run in real-

time. Chai et al. track facial features to extract 2D motion control signals,

which are mapped to high quality 3D facial expressions using a preprocessed

database [CXH03].

Most recently Cao et al. [CWLZ13, CHZ14] proposed systems to capture

facial movements from videos taken by a single camera. The system presented

in [CWLZ13] required an individual training phase in which the user performs

a set of facial expressions in different poses. From automatically detected 2D

landmarks the system then automatically reconstructs user specific blendshapes

and computes a linear combination of the blendshapes to reproduce the 3D

facial shape for each image obtained during this training phase. Since the

reconstruction of 3D shapes from single images is in general an ill-conditioned

problem, they employ a huge database of facial expressions [CWZ∗14] to recover
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the user specific blendshapes. Then, image data and reconstructed facial shapes

are converted into a training set from which they learn a regression model that is

able to recover the 3D facial shape from image intensities sampled around facial

features. Similar to our approach in Chapter 7 they employ an animation prior

to stabilize the reconstruction result. Since this system had the drawback that

an individual model had to be trained, Cao et al. [CHZ14] proposed a similar

system, which learned a similar regression model from an existing database of

annotated facial images.

The biggest difference to our approach presented in Chapter 7 is that all

systems model facial expressions as some sort of shape combination. Instead

of this we use a deformation model extracted from the motion data itself (cf.

Chapter 7) to decouple the shape of a face from its dynamic motion and thereby

reduce the number of (user independent) parameters to be optimized. For a

more complete overview about facial performance capture see [PL06]. Specially

for the data-driven facial animation we recommend the book [DN].
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4. Facial Feature Localization

In this Section we propose a new approach to detect facial features in images

showing a static facial expression. This detector can provide useful clues about

the facial pose, the shown facial expression or the identity of the captured

person. Besides these applications, in the context of this thesis the detector

is of interest when roughly reconstructing a neutral face: after detecting facial

features in images, simultaneously captured by a multi-camera rig, we can

triangulate these features in 3D an fit a face template to these feature points

(cf. Chapter 5). In what follows we will first present related approaches to

detect facial features in Section 4.1. Since our approach is based on a spacific

facial feature detector [KSYY10], we will recap this approach in Section 4.2

before we present the overview and contributions of our system. Section 4.3

describes the generation of a compact codebook, which is used in Section 4.4

to infer the positions of facial features. We evaluate the performance of the

presented system in Section 4.5. Parts of this chapter previously appeared in

[CSK15].

4.1. Related Work

Beyond detection and tracking of facial regions, several methods for finding

facial feature points (center of the eyes, tip of the nose or corners of the mouth)

have been proposed, since more and more accuracy is required to recognize, e.g.,

the user’s expressions. Such algorithms can be categorized into two different

methodologies, namely iterative parameter optimization and non-parametric

localization.

Iterative parameter optimization methods [CTCG95, MN08, MB04, LWC∗09,

CO10, BV03] define the facial feature localization as a parameter optimization

problem and solve it by iteratively finding least squares solution for a prede-

fined error metric. Active shape models (ASM) [CTCG95, MN08], active ap-
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pearance models (AAM) [MB04, LWC∗09, CO10], and 3D morphable models

(3DMM) [BV03] are statistical models, which are widely used for facial feature

localization. Such approaches find optimal parameters representing shape and

texture. Although they show good results with some constraints on parame-

ters, they need to set an initial position near the optimum and require several

iterations to minimize an energy function. Especially, the calculation of a large

hessian matrix is required to fit a 3DMM and this causes high computational

complexity.

As a non-parametric localization method, Chen et al. [CZLZ04] calculate the

positions of facial feature points using pixel likelihood maps. They divide the

facial region into several segments corresponding to each feature point. Then,

likelihood maps for each feature point related to the image segments are calcu-

lated using the classifier trained by a boosting strategy. This algorithm shows

very accurate localization results and fast performance with illumination and

scale invariance. However, the method needs a large bundle of non-face train-

ing images and cannot deal with occlusion. Wiskott et al. [WFKvdM97] define

an elastic bunch graph to recognize human faces. In a refinement procedure

the nodes of an image graph are shifted across a query image such that wavelet

responses at these nodes match examples from the bunch graph. While this

approach is able to handle pose variations, it needs some manual input and is

rather time consuming. Bourdevet al. [BMBM10] use a parts model containing

poslets to detect object parts and infer relative positions of these parts. While

in general this works on a broad variety of objects, it is rather difficult to pre-

cisely locate facial features. Leibe et al. [LLS04] propose to learn a codebook

for a specific object class, which contains descriptors based on Harris interest

points and a shape model represented as a spatial probability distribution for

the positions of the object parts. Besides using a complicated voting procedure

this method is more suited for a categorization task rather than precise feature

localization. Kozaya et al. [KSTN08, KSYY10] propose a codebook-based ap-

proach and experimentally showed that their algorithm is more accurate than

the state-of-the-art approach ASM (STASM) [MN08]. For this algorithm an

exhaustive search on a large database as well as the extraction of many sig-

natures at prospective feature positions yields to problems regarding time and

memory consumption.
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4.2. Fundamental Approach to Detect Facial Features

Our technique for facial feature localization is based on the approach described

in [KSYY10]. In this approach, features are not detected directly but rather

by a voting procedure: First, a simple face detector is used to roughly identify

the location of a face in an image. Then, the face region (typically a square)

is split into a set of overlapping query segments. For each query segment a

signature (histogram of oriented gradients (HOG) [DT05]) is computed and

matched with a database of segments. This database contains a large number

of segments Hs associated with ground truth offset vectors vs,k which result

from a manually labeled training data set of faces. For each segment Hs in the

database, the corresponding offset vector vs,k is the vector from the center of

the segment to the kth feature point.

Let G1, . . . , Gn be the set of overlapping query segments covering the face

region in the query image and let c1, . . . , cn be the corresponding fragment

centers. Moreover let H1, . . . , Hn be the respective best matches from the

database and v1,k, . . . ,vn,k the associated offset vectors indicating the relative

position of the kth feature. Then each segment Gi predicts the expected feature

location to lie on the line ci+λ ·vi,k. By considering all votes, we can estimate

the feature position to be the point with minimal distance to all lines. To

increase accuracy, this procedure weights each line according to the qualtiy

of the match. The computation of these weights is rather expensive since

it involves the extraction of signatures at the numerous prospective feature

positions ci + vi,k. When it comes to occlusion this quality measurement

further has the drawback that the signature extracted at the prospective feature

location is very different from the one in the database, although the offset vector

might be very precise.

While in general this facial feature localization approach is conceptually sim-

ple and very effective in practice, it has a number of additional drawbacks, e.g.,

the memory requirements for the database of signatures are quite strong due

to the HOG-descriptors that are typically used. Moreover, empirically it has

been observed that covering a face region with 81 overlapping query fragments

leads to good results in practice which implies considerable computation costs
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Coarse face region detection

Segment H1

Block segmentation

Projection onto eigen
HOG space of segment H1

HOG of segment HS

Projection onto eigen
HOG space of segment HS

HOG of segment H1

Calculation of HOG and its projection

C1

CS

…

Weighted vector concentration
followed by linear combination of
offset variation vectors

Feature point

Figure 4.1.: The proposed facial feature localization method. The yellow rect-

angle on the first image represents the coarse face region extracted by the

Viola-Jones face detector. The green spots near eyebrows are centers of seg-

ments. The red spot on the last image is a feature point, left corner of lip. The

orange arrows are the offset vectors from the segment centers to the feature

point. Images taken from [PMRR00].

for the signature matches even if hierarchical data structures [AMN∗94] are

employed.

Since our eventual goal is to run the facial feature localization on mobile

phones in realtime, we have to be more restrictive with the memory and com-

pute resources. This is why we are applying a statistical data reduction scheme

to the database of fragments. Through a principal component analysis, we can

extract the major variation modes within the set of fragments leading to a

significantly smaller set of eigen-descriptors faithfully representing the entire

set. Accordingly we derive an offset variation vector for each eigen-descriptor.

For the feature localization the descriptor matching steps are then replaced by

a simple projection of the query descriptor into the basis of eigen-descriptors

which yield the feature location prediction vote. Since our method employs

statistical characteristics of the training set, we do not need to extract signa-

tures at the prospective feature positions to compute the quality of the match,

which saves a lot of computation time. In experiments we show that we are

still able to handle occlusions efficiently and robustly.

Overview and Contributions Figure 4.1 shows the proposed framework to

localize facial features. First, the face region within the input image is roughly

detected by the Viola-Jones face detector [VJ01]. Then, the image inside the

detected region is re-sized to a prescribed size and segmented into a number
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of regularly positioned blocks. For each block a HOG descriptor is computed

and projected into the eigen HOG (EHOG) space of that segment, which is

precalculated in the training phase. The projection coefficients are then used

to linearly combine offset variation vectors (OVV), which are also precalculated

in the training phase. This generates vectors pointing from the segments center

to the prospective feature point positions. We can robustly decide whether a

segment is occluded by simply checking if the projection coefficients are similar

to those observed in the training data. Finally, the position of each feature

point is calculated by WVC [KSYY10].

The contributions of this work are:

1. Low memory consumption: We use principal component analysis (PCA)

as a data reduction technique to compute a compact codebook. This

allows us to use the energy preserving level of PCA to control the tradeoff

between memory consumption and accuracy.

2. Fast localization: Offset vectors are simple linear combinations where

coefficients are determined by projection instead an involved search in a

large database.

3. Fast validity checking: Occlusion detection and confidence checking for

offset vectors is done in EHOG Space.

4. High accuracy: Experiments show that we achieve better accuracy than

state-of-the-art approaches.

5. Occlusion handling: Our new method to handle occlusions exploits the

distribution of the input HOGs. In experiments we demonstrate the

robustness.

4.3. A compact codebook

In the conceptional description of this approach (cf. Section 4.2) we stated

that an image segment is characterized by a descriptor, the HOG descriptor.

In what follows we describe in detail how this descriptor is assembled and how

we generate a compact codebook containing information about the descriptors

and the locations of facial features.
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5 pixels

5 pixels

Figure 4.2.: Canonical segmentation of a face region. The yellow asterisks are

the centers of the overlapping segments (red), white dashed rectangles are cells

(5x5 pixel), cyan rectangles are blocks (4x4 cells) and red rectangles are the

segments (3x3 overlapping blocks).

Histograms of oriented gradients HOG is a well-known feature for its illu-

mination invariance and high distinctiveness [DT05]. Similar to [KSYY10] we

detect the facial region in each training and input image using the Viola-Jones

face detector [VJ01]. We resize the detected facial region to 72x72 pixel and

place the centers of partial overlapping image segments on a regular 9x9 grid,

which defines a set of 81 image segments. For each image segment s we compute

a HOG descriptor.

A HOG descriptor can be computed in different ways, we use the procedure

experimentally validated in [KSYY10, DT05]. First we compute gradients gp

for each pixel p in the inner 70x70 image region. Note that therefore the

additional pixel rows and columns at the borders are needed. The gradients can

be represented as gp = (αp, rp), where αp ∈ [0, . . . , 180] encodes the unoriented

direction and rp the magnitude of the gradient. As in [DT05] we discretize the

orientations into 3 bins:

bin(αp) =


1, 0 < αp ≤ 60

2, 60 < αp ≤ 120

3, 120 < αp ≤ 180
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Then the inner region is divided into cells of 5x5 pixel (see Figure 4.2) and

for each cell c containing a set Pcellc of 25 pixel, we compute a histogram of

oriented gradients C-HOGc by adding the magnitude of each pixels gradient to

the bin corresponding to its orientation:

C-HOGc =

 ∑
p∈Pc,1

rp,
∑
p∈Pc,2

rp,
∑
p∈Pc,3

rp

 ∈ R3

Here the set Pc,i = {p ∈ Pcellc |bin(αp) = i} is the set of pixel from cell c whose

gradient orientation falls into bin i. A block is defined to be a set of 4x4 cells

with cell indices {c1, . . . , c16} (see Figure 4.2). The histogram B-HOGb of block

b is constructed by concatenating the histograms of its cells:

B-HOGb = [C-HOGc1 , . . . ,C-HOGc16 ] ∈ R48

Then this histogram is normalized. For convenience we refer to the normalized

block histogram as B-HOGb. An image segment is defined to be a set of 3x3

blocks with block indices {b1, . . . , b9}. One segment covers an image region of

30x30 pixels such that we have one cell overlap between neighboring blocks (see

Figure 4.2). The final HOG descriptor for the segment s is then computed by

concatenating the histograms of the overlapping blocks

HOGs = [B-HOGb1 , . . . ,B-HOGb9 ] ∈ R432

which is again normalized.

Using HOG patterns themselves requires a huge amount of memory because

we need to store all the high dimensional patterns, i.e., HOG patterns of train-

ing segments, HOG patterns of feature points, and their corresponding offset

vectors. Since such extensive memory consumption is far too much for a facial

feature localization application, we propose to use PCA (cf. Section 2.2.1) as

a data compression technique to reduce the codebook size.

Generating the compact codebook. In order to compute the compact code-

book, we collect a set of histograms of oriented gradients from n training images.

For each training image Ii and segment Hs, we extract a HOG descriptor ĥis.

We assume that facial features have been assigned such that we can store for
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each image Ii a set of offset vectors v̂is,k which point from the center of segment

s to the kth feature point. Here k is the index of one of the K manually anno-

tated feature points. From the histogram data, we construct for each segment

Hs a matrix M̂s =
[
ĥ1
s, . . . , ĥ

n
s

]
where the columns contain the histograms

ĥis. Running PCA on such a matrix extracts a mean histogram havg
s and eigen

histograms h1
s, . . . ,h

D
s , with D = n− 1. We assume that the eigen histograms

are sorted according to their significance, i.e. λ1
s > · · · > λDs , where λis is the

eigenvalue of the eigenvector his. To reduce dimensionality only the Ps most sig-

nificant eigenvectors are stored in the column matrix Ms =
[
havg
s ,h1

s, . . . ,h
Ps
s

]
.

Here Ps is chosen such that at least a fixed fraction f (e.g. 0.99) of variance

(energy) is preserved:

f ≤
∑Ps
d=1 λ

d
s∑D

d=1 λ
d
s

(4.1)

After PCA (Figure 4.3), EHOGs can be represented as a linear combination of

HOGs

M̂s · Cs = Ms, (4.2)

The matrix Cs ∈ Rn×(Ps+1) is a coefficient matrix. Since the dimension of the

histograms is usually much smaller than the number n of training images, Cs

is computed as the least norm solution:

Cs = M̂T
s ·
(
M̂s · M̂T

s

)−1

·Ms. (4.3)

The coefficient matrix linearly relates the histogram data to the eigen his-

tograms.

For each segment s we have a set of offset vectors pointing from the segment

center to a specific feature point k. Since we have n training images we can

build a data matrix for each feature point k and segment s:

V̂s,k =
[
v̂1
s,k, . . . , v̂

n
s,k

]
∈ R2×n

In order to compute offset variation vectors (OVVs) from these data matrices

we do not perform a PCA. Instead we deduce the OVVs from V̂s,k by using the

same linear mapping that relates M̂s and Ms:

Vs,k = V̂s,k · Cs, (4.4)
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PCA

Energy
preserving
level:

EHOGs OVVs

0

λ1
s∑D

d=1
λds

∑Ps
d=1

λds∑D
d=1

λds

Segment Hs

v̂1
s,k

v̂2
s,k

v̂ns,k

ĥ1
s

ĥ2
s

ĥns

havgs

h1
s

h2
s

vavgs,k

v1
s,k

v2
s,k

Figure 4.3.: EHOGs and OVVs: PCA is used to extract EHOGs. For each

EHOG we can compute an OVV. The Energy preserving level is increased

when adding more and more EHOGs and OVVs to the codebook. Images

taken from [PMRR00].

where the offset variation vectors are stored in the matrix

Vs,k =
[
vavg
s,k ,v

1
s,k, . . . ,v

Ps
s,k

]
∈ R2×(Ps+1).

This allows us to reproduce a pair of a histogram ĥs and a variation vector

v̂s,k, which can be observed in the training data, by linearly combine EHOGs

and OVVs using the same coefficients.

4.4. Localizing facial features

In the following we describe how we compute the position of facial features

in a query image. As during the training, we detect the facial region using
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the Viola-Jones face detector [VJ01] and resize this region to 72x72 pixel. As

pointed out in Section 4.3 we regularly position the centers of 9x9 segments

in the re-sampled face region and compute histograms of oriented gradients

gs for each query segment Gs. Each HOG can be approximated as a linear

combination of EHOGs where the coefficients are obtained by a simple and

fast projection step. We use these coefficients to compute offset vectors to all

facial features as a linear combination of OVVs and use the weighted vector

concentration approach (WVC) from [KSYY10] to infer the feature positions.

Note that one can also use a simple voting procedure, which computes the

feature position as a weighted sum of offset vectors, but we choose to use WVC

to produce comparable results.

4.4.1. Estimating offset vectors

In our method we do not rely on any time consuming search algorithm like

ANNS [AMN∗94] to compute the best matching HOG from the codebook.

Assume we want to compute the kth offset vector originating from segment Gs

with histogram gs. We can compute coefficients c1s, . . . , c
Ps
s such that

gs ≈ havg
s +

Ps∑
i=1

cish
i
s. (4.5)

The coefficients are computed by projection as cis = (gs − havg
s )T · his.

In order to compute the offset vector vs,k pointing to the kth feature we

linearly combine OVVs:

vs,k = vavg
s,k +

Ps∑
i=1

cisv
i
s,k. (4.6)

This process is demonstrated in Figure 4.4.

82



4.4. Localizing facial features

Segment G

Feature point #k

Projection to sth 

EHOG space 

Linear 
combination 
of OVVs

gs

1 · haves

c1s · h1
s

cPss · hPss

+

+
...

+

vaves,k

v1
s,k

vPss,k

vs,k

Figure 4.4.: Calculating the offset vector from one segment to a specific facial

feature point. Images taken from [PMRR00].

4.4.2. Computing the position of a feature

After computing the offset vectors, WVC [KSYY10] is used to calculate the

positions of feature points such that they have the least sum of weighted squared

distances from the lines:

arg min
x,y

S∑
s=1

w2
s‖asx+ bsy + cs‖2, (4.7)

where (x, y) is the coordinate of the kth facial feature point, ws is the weight

of segment Gs, S is the total number of facial segments and (as, bs, cs) are the

coefficient of the linear equation asx+bsy+cs = 0 with a2
s+b2s = 1 representing

the line with directional vector
vs,k
||vs,k||

and going through the center of Gs. We

define the weight for the offset vector of segment Gs as the dot product of gs

and its approximation in the sth EHOG space:

ws = gTs ·

(
havg
s +

Ps∑
i=1

cish
i
s

)
. (4.8)

The dot product of the HOG extracted at the prospective feature position with

the HOG at the feature position observed in the training data is a good indica-

tor for the correctness of the offset vector, if the face is not occluded [KSYY10].

However, if the input face image is partially occluded, the HOG extracted at

the occluded prospective feature position is very different from the trained one

even thought the HOG patterns of the corresponding image segments are very
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LB1: left eyebrow inner corner RB1: right eyebrow inner cornery

LB2: left eyebrow center

LB3: left eyebrow outer corner

RB2: right eyebrow center

RB3: right eyebrow outer corner

LE2: left eye upper center

LE3: left eye outer corner

LE4: left eye lower center

RE2: right eye upper center

RE3: right eye outer corner

RE4: right eye lower center

RE1: right eye inner corner
LE1: left eye inner corner

LN: left nostril

LM: left mouth corner

RE1: right eye inner corner

RN: right nostril

RM: right mouth corner

CN: nose tip

TM: mouth top center BM: mouth bottom center

Figure 4.5.: Definition of the 21 facial feature points.

similar to each other. Note that we do not extract a HOG at positions pre-

dicted by each offset vector to compute ws, which is computationally quite

expensive since we need to extract KxS HOGs. We rather base our quality

measurement on the Mahalanobis distance which measures the similarity of

unknown samples to known ones. We compare the projection coefficients to

the eigenvalues λ1
s, . . . , λ

Ps
s . If one of the coefficients exceeds the eigenvalue by

a factor of 2.5, we infer that we are far away from the average HOG observed

for the corresponding segment. In such case we explicitly set ws = 0:

ws =

{
ws if |cis| < 2.5λis
0 otherwise

(4.9)

As in [RL87] we use least median of squares (LMedS) to compute the pre-

liminary feature position and refine this position using adapted weights ws.

Therefore we re-weight each line according to its distance d to the preliminary

feature position:

ws ← ws · e−
d2

L2 , (4.10)

where L is the length of the diagonal of the face region.

4.5. Evaluation

In this section we compare our method using EHOGs and OVVs to the origi-

nal approach [KSYY10], which uses HOGs and a nearest neighbor search. We
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further compare our results to those obtained using the extended active shape

model (STASM) suggested in [MN08]. In what follows we refer to the original

method as HOGs+NNS, and to our method as EHOGs+OVVs. When compar-

ing errors we use an approximation error of ε = 0 for HOGs+NNS, to ensure

best accuracy of the competitive method. When we compare the timings we

select ε = 10, as suggested in [KSYY10], to ensure low computational costs

for HOGs+NNS. For all experiments we used a Pentium 4 PC with a 2.6GHz

Quad core CPU and 2Mbyte memory.

4.5.1. Training

We gathered 969 upright frontal-view face images from various sources by using

the Viola-Jones face detector [VJ01]. We manually marked 21 facial feature

points like eyes, eyebrows, nose and mouth (see an example in Figure 4.5).

Using the 9 × 9 block design (Section 4.3) we extract 78,489 HOG patterns

(969 images, 81 segments per image) and 1,648,269 offset vectors (969 images,

81 segments per image, 21 feature points per segment) to compute our compact

codebook containing EHOGs and OVVs (Section 4.3).

In order to be able to compare our method with the original approach we

additionally extracted 20,349 local likelihood HOG patterns (969 images, 21

feature points per image) at the positions of the facial features. The set of the

local HOG patterns, the offset vectors, and the local likelihood HOG patterns

were used to generate the codebook for HOGs+NNS.

Data preparation We use the FERET duplicate I dataset [PMRR00] to collect

a set of 722 probe images and manually selected the 21 facial features to define

the ground truth for the evaluation. Note that the training set in Section 4.5.1

is independent of this probe set. The first step in each localization is to detect

[VJ01] and to subsample the face region.

4.5.2. Storage Size

As shown in Figure 4.6 the energy preserving level during PCA can be used to

control the storage size of the compact codebook. While the original codebook
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Figure 4.6.: Storage size vs. energy level.

(energy level at 100%) needs about 185 MB 1, the storage size of EHOGs+OVVs

is drastically reduced as the energy preserving level decreases. At an energy

level of 70%, the codebook has only 5% of the size of the original codebook.

Even when the level is at 99%, the storage size is less than a quarter of the

original codebook size. This means that the space of HOG patterns has a large

amount of redundancy and that applying PCA effectively reduces the storage

size.

4.5.3. Performance without occlusion

In Figure 4.7 we show how the localization error and the computational time

changes according to the energy preserving level. The computational time rep-

resents the time to extract the HOGs, to deduce offset vectors and to compute

the final feature positions. The detection error was measured as the pixel dis-

tance between the detected feature points and the manually marked ground

1We use approximately only half the number of training images as Kozakaya et al.

[KSYY10] does.
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Figure 4.7.: Localization error vs. computational time. The error level of

HOGs+NNS is computed using an approximation error of ε = 0.

truth. The mean pixel error is calculated as the average of the pixel distances

divided by the distance between the centers of the eyes. When decreasing the

energy level the computational time drops since the codebook contains less

EHOGs and OVVs which saves time in the projection step and during the

combination of OVVs (see Section 4.4.1). In order to compare the errors we

added the best error level to Figure 4.7, which was achieved by HOGs+NNS

(0.0507). Compared to this error level, it is possible to decrease the energy pre-

serving level by nearly 80% until the error is larger than that of HOGs+NNS.

Note that the localization error of the energy preserving level above 90% is

smaller than the error of HOGs+NNS. Since we combine offset vectors from

different HOGs instead of selecting the best match, we tend to smooth the final

positions of the feature points resulting in a more accurate localization.

In Figure 4.8 we show the localization result without occlusion for each in-

dividual feature point. This indicates that, compared to HOGs+NNS, the
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Figure 4.8.: Localization errors and standard deviations for individual feature

points without occlusion.

proposed method which utilizes the statistical characteristics of segments from

the training set, performs better in terms of accuracy and storage size.

In Figure 4.9 the localization error compared to STASM [MN08], another

state-of-the-art facial feature localization method, is presented. The error val-

ues of STASM are adopted from [KSYY10] because they used the same test

database. With an energy preserving level over 80%, our proposed method

produces much better localization results than STASM for most of the feature

points except the nose tip and corners where we observe a slightly larger error

using our method.

4.5.4. Performance with partial occlusion

In order to evaluate the robustness of our method against partial occlusion, we

place a white block on the test images. Its size is 10% of the area of the facial

region while its position is randomly selected. The results for HOGs+NNS

and EHOGs+OVVs are shown in Figure 4.10. The tendency of the average

accuracy is similar to the non-occluded case (Figure 4.8). However, the differ-

ence between the errors produces by HOGs+NNS and EHOGs+OVVs is often
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Figure 4.9.: Localization error comparison of our method and STASM.

much higher when parts are occluded. This holds especially, for the right eye

brow (RB3), right eye (RE1-4), and mouth (LM, RM, BM). As described in

Section 4.4.2 we use a completely different approach to compute the certainty

of a offset vector, which exploits eigenvalues obtained during PCA. This allows

EHOGs+OVVs to handle occlusions much more robustly.

Figure 4.11 shows several results (with and without occlusion) of the pro-

posed facial feature localization with 90% energy preserving level. The images

at the top row are results without occlusion and those on the bottom row show

results with 10% occlusion. The blue rectangle represents the coarse face region

detected by the Viola-Jones face detector, green dots are the segment centers

and red dots are the detected facial feature points. The proposed method lo-

calizes the feature points correctly on non-occluded faces. Even on occluded

faces, the localization of occluded feature points, inferred from offset vectors

originating at not occluded segments, works quite well. The sixth column of

Figure 4.11 shows a face rotated by 20◦. Since our training database does not

contain these images, this causes an incorrect localization of the feature points.
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Figure 4.10.: Localization errors and standard deviations of facial feature

points with 10% occlusion.

4.5.5. Summary of the evaluation

For easy comparison we summarize time consumption, required storage size,

and accuracy of EHOGs+OVVs and HOGs+NNS in Table 4.1. Our method is

very fast, accurate, and consumes low memory compared to HOGs+NNS. In

order to get optimal timings for HOGs+NNS we set the approximation error

to ε = 10 as suggested in [KSYY10].

The difference in timing is due to the fact that HOGs+NNS needs to calculate

more HOG patterns at the prospective facial feature points (81 segments x

21 feature points = 1701 HOGs) which requires several hundred milliseconds

computational time. According to Table 4.1 EHOGs+OVVs with an energy

preserving level of 80% performs best regarding the balance between storage

size (94% memory is saved compared the the original codebook) and accuracy

(slightly worse than HOGs+NNS).
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Figure 4.11.: Some exemplary results for the localization using an energy pre-

serving level of 90%. Top row: no occlusion. Bottom row: 10% occlusion. All

images are from the FERET face database.

Method
EHOGs+OVVsEHOGs+OVVsEHOGs+OVVsEHOGs+OVVsHOGs+NNsHOGs+NNs

60% 80% 95% 99% (ε = 10) (ε = 0)

HOG 3ms 483ms

OV 3 ms 7 ms 16 ms 25 ms 16 ms 1490 ms

WVC 5ms

Total 11 ms 15 ms 24 ms 33 ms 499 ms 1978 ms

Storage 5.0 MB 11.4 MB 25.5 MB 39.8 MB 185.3 MB

size (2.7%) (6.2%) (13.8%) (21.5%) (100.0%)

∅ error 0.0572 0.0526 0.0475 0.0457 0.0527 0.0507

σ error 0.0193 0.0189 0.0167 0.0156 0.0151 0.0136

(no occlusion)

∅ error 0.0593 0.0571 0.0515 0.0506 0.0631 0.0602

σ error 0.0213 0.0204 0.0192 0.0189 0.0185 0.0174

(10% occlusion)

Table 4.1.: Performance comparison. For different methods the table shows

the total time consumption (Total) to extract facial features. The total time

is split into times for extracting HOGs (HOG), deriving offset vectors (OV),

and computing the feature points positions using weighted vector concentration

(WVC). The last rows contain average errors (∅) and standard deviations (σ)

for the localization with and without occlusion.
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Although the final goal of our reconstruction pipeline is to reconstruct dynamic

facial expressions from images captured with a calibrated and synchronized

camera rig, in this chapter we first deal with the reconstruction of a static

human face showing the neutral pose. Such a neutral pose is usually shown in

the first frame of the synchronized videos. Its reconstruction will later be used

to initialize the automatic tracking and reconstruction process, which ensures

the reconstructed faces to be in full correspondence.

We basically describe two reconstruction systems. The first system, pre-

sented in [SHK09, SHK11], was a prototypical system, which was designed to

reconstruct only the inner part of the human face. It omits peripheral regions

near the cheek, the ears and the forehead. In this work we did not focus on

the performance of the system, so reconstructing a large database of facial ex-

pressions, as it was needed in the approach presented in Chapter 7, was hardly

possible using this system. While targeting at better performance and robust-

ness, we reimplemented the system to be able to efficiently reconstruct a large

database of dynamic faces.

In order to reconstruct static faces from multiple synchronized images both

systems were designed to solve the following three problems:

1. Initialization: Adaption of a generic face template to a sparse set of 3D

facial features (Section 5.3)

2. Stereo Reconstruction: Computation of a dense geometric representation

of the surface (Section 5.4)

3. Fitting: Refinement of the face template to approximate the dense surface

reconstruction (Section 5.5)

In what follows we first describe the generic face templates used for all recon-

struction and tracking approaches. Having a face template with fixed topology

enables the generation of facial reconstructions which are in full correspon-
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dence. Section 5.2 describes a morphable face model which we will later use

to stabilize the reconstruction process. In the Sections 5.3 - 5.5 we present the

afore mentioned two approaches which differently solve the three sub-problems

to reconstruct human faces showing a neutral facial expression.

5.1. Generic Face Templates

The ability to produce reconstructions that are in full correspondence is based

on a generic face template, whose topology is constant during the whole recon-

struction process. This face template is a high resolution, triangular mesh with

some extraordinary feature points, like the corners of the eyes, the tip of the

nose, some points around the mouth area and the eyebrows, which can uniquely

be identify as specific landmark points as depicted in Figure 5.1. The aim in

all the presented static and dynamic reconstruction methods is to deform this

face template, such that (a) it geometrically fits the surface to be reconstructed

and (b) the uniquely identifiably features always lie at corresponding points on

the surface to be reconstructed. Then the geometrically adapted face template

represents an individual face at a specific time, while correspondences to other

facial reconstructions can be established simply by the ordered vertices of the

generic face template.

During this thesis we employed to versions of this face template. The first

version was used in the prototypical approach presented in [SHK09, SHK11]

and covers only a relatively small area of the face (cf. left image in Figure 5.1).

We used a small area, since the implementation in [SHK09, SHK11] could not

deal with completely unseen areas like the neck and the left and right side of the

head. The improved system we used in Chapter 7, can better deal with those

hidden configuration, so we enlarged the face template to cover the complete

area of the human face (cf. right image in Figure 5.1)). Notice that both face

templates have disk topology with additional holes for the eyes and the mouth.

5.2. A Static Morphable Face Model

In general the shape of an individual face at a certain time is represented by the

adapted vertex locations of our generic face template. Since this involves the
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Figure 5.1.: Two versions of a generic face template we used in this thesis to

reconstruct and synthesize facial expressions. The left image shows the face

template we used in a prototypical reconstruction system. In Chapter 7 we

used the model depicted in the right image to better cover the facial region.

For both models we marked some extraordinary vertices (red points) as facial

feature points.

concatenation of all vertex positions, this is a high dimensional representation,

which probably contains much redundancy, since all facial shapes show some

common features like eyes or noses.

Blanz and Vetter [BV99] reduced the redundancy of the shapes by intro-

ducing a static morphable face model. Analogous to the description in Sec-

tion 2.3.2, where we used the Principal Component Analysis (cf. Section 2.2.1)

to derive a shape model from a training set of 2D meshes, Blanz and Vetter

built a shape model from a training set of high resolution 3D meshes. When

the 3D meshes of the training set have been registered to a common coordinate

system and are in full correspondence (cf. Section 5.2.1), all meshes have the

same topology. In particular, the amount of vertices is the same for all meshes

in the training set and we can represent each facial shape as a vector

s = (x1, y1, z1, . . . , xn, yn, zn)T ∈ R3n
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representing n vertex positions. Analyzing this high dimensional data using a

Principal Component Analysis, reveals the average shape s̄ of the training set

and leads to an orthonormal matrix S ∈ R3n×k with a small parameter k, such

that each facial shape in the database can be approximated by

s = s̄ + Sp (5.1)

where p ∈ Rk are called shape parameters, analogous to the shape parameter

of an Active Appearance Model. The matrix S encodes deviations from the

average facial shape and its columns are called Eigenfaces (cf. Figure 5.2). In

order to exactly reconstruct a facial shape s, one needs to use as many shape

parameters as examples in the database. In practice it is sufficient to only use

a subset of the k largest Eigenfaces to cover a large variety facial shapes.

With such a model Blanz and Vetter [BV99] were able to parametrize human

faces using only a few values instead of a large vector of vertex positions. While

they used this model to approximate the shape of human faces seen in single

images, we employ it to initialize and thereby stabilize the stereo reconstruction.

The last missing ingredient is the construction the training data containing a

registered set of corresponding 3D meshes, which is addressed in the following

Section.

5.2.1. Construction of the Training Set

In the first step to construct the training set, we laser scanned about 50 faces

showing a neutral expression. These non corresponding scans contain holes

and noise and are depicted in the top row of Figure 5.2. In those scans we

manually marked the landmark points around the eyes, the nose, mouth and

eyebrows (cf. Figure 5.2) to obtain a sparse set of 3D facial features vk for

each scan. To fit the generic face template to an individual scan we employ

both mesh editing techniques presented in Section 2.6.2 and 2.6.1. Therefore

we first define the generic face template to be the reference mesh in the as-rigid-

as-possible mesh editing approach and constrain the extraordinary vertices to

corresponding feature positions vk. Solving for new vertex positions of the

face template using the iterative procedure presented in Section 2.6.2, leads to

a mesh, whose extraordinary landmark vertices exactly lie at the user defined
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Eigenfaces Eigenfaces
Average

Figure 5.2.: Constructing a morphable face model. First row: input laserscans

with marked facial features. Second row: Adapted face template that approxi-

mates the laserscanned surfaces. Form the training data we extract an average

face and the so called Eigenfaces.

feature points of the laser scan and where local rigid rotations are smoothly

distributed over the resulting surface.

This already leads to a close approximation of the the scan, which needs to

be further refined in order to fit well to the laser scanned surface. Let the result

of the first editing approach be a mesh M = (V, T ). For each vertex pi ∈ V
we find the closest point v on the laser scanned surface. If v is not a point on

the boundary of the scan we consider it as a reliable point and use it as a soft

constraint in the Laplace mesh editing approach (cf. Section 2.6.1). Doing this

for all vertices leads to residual functions

gx = C · px − vx (5.2)
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where we again restrict the considerations on the x components of the points

and where C is the matrix selecting the constraint vertices (cf. Equation 2.36).

We slowly deform the mesh to fit the laser scanned surface by iterating the

following steps

1. Find a global rigid transformation R that minimizes point correspon-

dences

2. Transform the Laplace vectors according to R

3. Compute new vertex locations by solving

(wv · CTC + LTL) · px = wv · CTvx + LTLqx

4. Increase wv

5. Select new vertex correspondences, i.e. update Equation 5.2

To find the rigid transformation in Step 1, we use the approach presented by

[Hor87]. Then, to transform the Laplace vectors according to R, in Step 2 we

only need to apply the rotational part to the original Laplace vectors Lq of the

reference mesh. In Step 3 the mesh is deformed to better fit the laser scanned

surface. Since we increase the weight wv in Step 4 the attraction towards the

scan is increased, resulting in a closer approximation of the scanned surface in

the next iterations.

The result of this process is a set of meshes with same topology, which

are geometrically well aligned to their corresponding scans (cf. second row in

Figure 5.2). From this training set we build the morphable face model for static

faces.

5.3. Initial Reconstruction

Just using common 3D stereo approaches [SCD∗06, HZ03, HK06, ES04] to

reconstruct a human face would produce an unstructured point cloud with

holes and outliers. We deal with this problem by properly initialize our face

template to approximate the 3D surface, which can then be used as an accurate

initialization to stabilize the stereo reconstruction. As input for this we assume

a set of calibrated images, taken at the same time, where the user marked
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some feature points. The feature points can also be found by a generic Active

Appearance Model (cf. Section 2.3.2) for static human faces or by using the

method presented in Chapter 4.

Feature Point Triangulation. If a 3D feature point is seen in more than two

images, we can use Equation 2.25 to compute a 3D line with origin ol and

directional vector dl. The 3D position of this feature is then found by trian-

gulation and can be estimated as the 3D point with minimal distance to all

3D lines, obtained from the 2D image positions. Under the consideration of

Figure 5.3, the point of the line cl(p) lying closest to p can be expressed as the

linear combination

cl(p) = ol − (dTl ol)dl + (dld
T
l )p

To find the optimal 3D feature location we search for a point p minimizing the

distances to all lines, which leads to residuals of the form

fl = ol − (dTl ol)dl︸ ︷︷ ︸
bl

+ (dld
T
l − I3)︸ ︷︷ ︸
Al

p

where I3 is the 3 × 3 identity matrix. When concatenating the introduced

vectors bl ∈ R3 and matrices Al ∈ R3×3 to a large vector b and a matrix A,

the 3D feature position can be computed in the least squares sense by solving

the linear system p = −(ATA)−1ATb.

Doing this for a set ofm feature points leads to a point cloud v = (vT1 , . . . ,v
T
m)T

which represents the facial shape at a very coarse geometric level. These points

have known corresponding vertices among the vertices of our face template.

When using a consistent ordering of the feature points we can define a ma-

trix C ∈ R3m×3n that selects these vertices from the face template: Setting

the entries C3i,3j , C3i+1,3j+1 and C3i+2,3j+2 to 1 if vertex j of the face tem-

plate corresponds to the ith triangulated feature point, the vector C · s ∈ R3m

contains only the vertices of the face template that correspond to the feature

points. We will use this notation in the next Section to fit the face template

to the triangulated feature points.
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p

ol

dl

dl

cl(p)

Figure 5.3.: Computing the closest point on a line w.r.t. to a 3D point p can be

done analytically. To get the 3D location of a feature point can be formulated

as an optimization problem, that finds a point p minimizing the distances to

multiple 3D lines.

5.3.1. Approximation using a morphable model

The technique we present in this section was applied in [SHK09, SHK11]. It

uses a sparse set of 3D facial feature points to compute an approximation of the

observed surface which is later used to initialize the stereo reconstruction. The

inputs are the triangulated feature points v which have known corresponding

vertices

C · s = C · (s̄ + S · p) (5.3)

among the vertices of our morphable model (cf. Equation 5.1). The shape

parameters p only deform the surface and do not incorporate any rigid trans-

formations. In order to take this into account, we allow the morphable model to

be transformed according to three rotational and tree translational parameters.

To simplify the notation we concatenate multiple copies of the global rotation

and the global translation in a 3m× 3m block diagonal matrix R respectively

in a 3m-dimensional vector t. Then the differences between the triangulated

feature points and its corresponding vertices of the morphable model can be

measured by the residual functions

f(R, t,p) = R · C · (s̄ + S · p) + t− v (5.4)

Since the parameters of the rigid transformation appear in addition to the shape

parameters in this residual function, it is highly non-linear. Although we could
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employ the Levenberg-Marquard algorithm [NW06] to optimize for the param-

eters simultaneously, we propose an interative scheme similar to As-Rigid-As-

Possible mesh editing. Therefore we first compute an optimal alignment using

the approach presented in [Hor87]. Then we consider the rigid transformation

to be fixed and compute new shape parameter p encoding the deformation of

the surface.

Directly forcing the vertices lying at the corresponding triangulated features,

might produce large deformations. To drive the development of the deformation

towards regular shapes, i.e. in the sense of plausible facial shapes, Blanz and

Vetter [BV99] introduced additional residual functions

g = D · p (5.5)

that measure the deviation from the average shape p = 0. By setting the

elements Di,i = 1
λi

of the diagonal matrix D ∈ Rk×k to the inverse of the

eigenvalues associated to the shape parameters (cf. Section 2.2.1), they rather

penalize deviations of those shape parameters, which have only a small standard

deviation.

Using both residual functions we define the energy function

E(p) = fT f + ws · gTg (5.6)

and minimize it in the least squares sense (cf. Section 2.1). Before deriving

Equation 5.6 w.r.t. the parameters p we introduce the abbreviatory notations

SC = C · S and v′ = RT · (t − v), such that the linear system of equations

minimizing the energy function can be stated as

(STC · SC + ws ·DT ·D) · p = −STC · (C · s̄ + v′) (5.7)

Note that we omitted the term RTR on the left hand side, since this equals the

identity matrix. In each iteration, where we compute a new rigid transforma-

tion and new shape parameters, we lower the regularization value ws to allow

for a more flexible surface deformation.

5.3.2. Approximation using ARAP-Modelling

The system presented in [SHK09, SHK11] uses Surfel Fitting (cf. Section 2.5.3)

to obtain a dense reconstruction of the surface to be reconstructed. Since it
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associates to each point a normal, it is able to accurately model perspective

distortions between image pairs. Nevertheless, it needs a good initial solution,

where the image intensities around the projected point in the reference image

roughly matches the image intensities around the projected point in the com-

parison image. To allow for a more flexible and thereby more accurate surface

deformation, we included the additional degrees of freedoms of a morphable

model.

In the more advanced system, we used to compute our large database of

facial expressions (cf. Chapter 7), we were able to simplify the initialization

procedure drastically, since the stereo reconstruction is based on a searching

approach. For a reference image point we basically search for a corresponding

point in the comparison image by traversing the epipoloar line. This allows to

find corresponding image points, even if their respective regions do not overlap

at the beginning, as it was needed for Surfel Fitting.

Clearly it is not wanted to search along the whole epipolar line, visible in a

comparison image. To increase accuracy and computation time we still compute

a proper, more rough initialization of the surface to be reconstructed. For this

we use the ARAP-Modelling framework (cf. Section 2.6.2), where we require

each extraordinary vertex of the face template to lie exactly on the positions of

its corresponding triangulated feature point. This results in a set of equations

C · p = v

which serve as constraints for the ARAP-Mesh editing.

5.3.3. Results

To analyze the two initialization methods either using a morphable model (MM)

or as-rigid-as-possible mesh editing (ARAP), we compare the result of the

initialization with the reconstruction we obtain in the last step of our pipeline

(cf. Section 5.5). Thereby we substitute the missing ground truth data with

the final reconstruction, which gives us a hint how much the surface still needs

to be deformed until it approximates the observed facial surface. Figure 5.4

shows a few examples of this initialization process. Each example shows (from

left to right) an original photo, the face template deformed by MM and the

face template deformed by ARAP. In each example we color code the distance
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Figure 5.4.: Accuracy of both initialization methods (MM and ARAP). For

each individual face (x-axis), the plot shows the average vertex distance (in

mm) between initialization and final reconstruction. Examples visually indicate

MM leads to a better initialization than ARAP, but it also comes with a higher

algorithmic complexity.

between a vertex of the initial face template and the corresponding vertex of

the final reconstruction. The color coding indicates that the deformation of the

ARAP-initialization is in some regions much higher than the deformation of

the MM-initialization. We quantified this visual impression by computing an

average vertex displacement for overall 55 different individual faces. The plot

in Figure 5.4 shows the distribution of these average displacements. In nearly

all initializations we obtain lower errors when using a morphable model and

the mean of the error is with 2.5mm for the MM-initialization also lower than

3.5mm for the ARAP-initialization. Although it produces a lower error it is

noticeable that the ARAP-initialization is much simpler, since it is only based

on one face template instead of a full database of facial shapes.

5.4. Stereo Reconstruction

In this section we compare two different stereo reconstruction approaches de-

signed to compute a dense reconstruction of the facial surface. While the first

approach optimizes small planar surface patches, the second method is based

on the search for a corresponding image point lying on the epipolar line. Both
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Area lights

Camera 1

Camera 2

Camera 3

Camera 4

Figure 5.5.: The used camera rig with four cameras and two area light sources.

methods start with an approximation of the facial surface (cf. Section 5.3) in

order to properly initialize the optimization or to limit the search intervals.

Having such good initializations is not typical for stereo reconstruction meth-

ods. In some applications the user interactively specifies some initial depth

values [HK09] or the depth of the surface is estimated in some reliable regions

and propagated to neighboring regions. When reconstructing human faces,

which usually show some common geometric characteristics, we have the ad-

vantage that it is possible to compute an initial surface from which the stereo

reconstruction can be started. On the other hand, multiview stereo is espe-

cially unstable when using it to reconstruct human faces. This is because those

approaches perform best when the surface is well textured, which is usually

not the case for human skin, which appears as rather homogenous region in an

image when captured at a macroscopic level (cf. [BHPS10]).

Since our system only uses four cameras to capture the whole face at once,

we need to apply filtering and smoothing operations in order to get a reliable

surface reconstruction. The four cameras of the rig are able to capture images

at a framerate of 40 fps with a resolution of 580 × 780 pixels. The set-up

containing the four camera rig with two area light sources and examples of

four captured images are shown in Figure 5.5. In what follows we detail both

reconstruction methods and show some comparative results.
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5.4.1. Surfel based reconstruction

Our surfel based reconstruction approach optimizes small surface elements tan-

gential to all vertices of the face template using surfel fitting, which is described

in detail in Section 2.5.3. This approach emerges from the Lucas-Kanade image

alignment, which adjusts a warping function such that pixel intensities from

a reference image region correlate with the pixel intensities from a region of a

comparison image. The optimization only converges if the image regions ini-

tially show parts of the same content, meaning if the position and orientation

of the initial surfel is already close to the optimal solution. As mentioned in

Section 5.3.1, this is the reason why we use here the more accurate initialization

obtained from fitting a morphable model to the feature points.

Given the result from the fitting procedure (cf. Section 5.3.1) we initialize

a plane for every vertex i of the face template using its vertex position qi and

normal ni. This potentially leads to the same number of surfels as vertices

of the face template. As described in Section 2.5.3, for each surfel we need

a reference image and a set of comparison images. Therefore we create one

depth image of the initial face template as seen from each camera center using

the OpenGL z-Buffer [AMHH08]. This allows us to check if a specific vertex

is visible form a certain camera position by comparing the distance between

vertex position and camera center to the distance stored in the depth image. If

the distance between vertex and camera is significantly larger than the distance

stored in the depth image, the vertex is not visible w.r.t. that camera. For each

vertex, this leads to a set of images, where the vertex is visible. Among those

images we select the reference image as that image whose viewing direction is

most parallel to the vertex normal and define the remaining images of the set

to be the comparison images.

Given the initial plane parameters, a reference and a set of comparison im-

ages, we start the optimization approach described in Section 2.5.3. The result

of this optimization does not always lead to a usable result. Occasionally, due

to noise in the images or badly textured parts, this process does not succeed for

every plane. If the plane equation is numerically ill-conditioned, the Levenberg-

Marquard algorithm did not converge or if the vertex is not visible in two or

more images, we discard the result.
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5.4.2. Point based reconstruction

Stereo reconstruction is often based on a simple search procedure [HZ03] to

identify corresponding pixels in a left (reference) and a right (comparison)

image. Under the consideration of the epipolar geometry (cf. Section 2.5.1)

the two dimensional search can be restricted to one dimension: For a specific

pixel in the left image, one searches for a corresponding pixel in the right image

lying on the epipolar line associated to the left pixel.

Normalized Cross Correlation. For any pair of pixels (xl,xr) from the left

and the right image, it is essential to measure the quality of the correspon-

dence. One of the most commonly used quality criterion is the Normalized

Cross Correlation (NCC) [ES04, HZ03, HLL11, SIA∗13], which compares the

color or intensity distribution in a small image region, called correlation win-

dow, around both pixels (cf. Figure 5.6). The size of the correlation window

in image space should be selected such that it covers a reasonably sized 3D

surface patch. In our settings, where we deal with images of 580 × 780 pixels

and where we assume the subject to sit at a certain distance w.r.t. to the

camera rig, we set the correlation windows to 15 × 15 pixels. The intensity

values interpolated at the pixel positions within a correlation window can be

concatenated to form a 15 · 15 = 225 dimensional vector. For the pixel xl and

the pixel xr, this leads to two intensity vectors I(xl) and I(xr) representing

the small sub-images from the left and right images around both pixels. The

normalized cross correlation now measures the similarity of those sub-images

and compensates for differences in the illumination conditions. It is defined as

NCC(xl,xr) =
IT (xl)− ĪT (xl)

||I(xl)− Ī(xl)||
· I(xr)− Ī(xr)

||I(xr)− Ī(xr)||
∈ [−1, . . . , 1]

where Ī is a vector with same dimensionality as I, where each entry holds the

average intensity value of I. When the left and right correlation window show

the same surface patch, ideally the NCC value reaches its maximum value of

1.

Search for corresponding pixels. The biggest problem with this quality mea-

surement is the shape of the correlation window: in the simplest implementa-
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Input pair Rectified pair

Figure 5.6.: Close-ups of correlation windows around pixels of the input image

pairs and image pairs, which have been rectified. For a correlation window

in the left image (green) we search for a matching window (red) in the right

image by traversing the epipolar (red) line. In the rectified setup the correlation

windows are automatically aligned correctly.

tion of the search along the epipolar line it is assumed that the left and right

correlation windows have the same shape and that pixels are e.g. ordered from

the upper left to the lower right corner of the window. As seen for not rectified

images (cf. left of Figure 5.6) this is especially problematic if not all cameras

of the rig face upwards, as it is the case for our camera rig. In such a case one

should at least rotate the correlation window of the right camera to be aligned

with the correlation window of the left camera. It it also problematic to as-

sume a constant shape for correlation windows, since different orientations of

the surface patches would induce perspective distortions which strictly spoken

would alter the shape of the correlation window.

An elegant way to handle rotations is to search corresponding pixels in a

rectified camera setup. For the used rig, we therefore define pairs of cameras

(cf. Figure 5.7) and perform an epipolar rectification for each pair. As outlined

in Section 2.5.2, after the rectification, epipolar lines are parallel to the x-axis

of the image coordinate system and corresponding epipolar lines are located

at the same y coorindate. In this setting the correlation windows are properly

aligned (cf. Figure 5.6), and we do not need to consider any rotations. In or-

der to compensate for perspective distortions we follow the approach presented

by Bradley [BBH08]. Their idea is to extend the search along the epipolar

line by using three differently scaled versions of the correlation window in the

right image. Since the left and the right principal point is located at the same
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Figure 5.7.: Stereo pairs we use for the point based stereo reconstruction. Since

the baseline between the left and right camera is to large, we simply omit this

pair.

y-coordinate, the perspective distortion in y direction is the same for the left

and right correlation window. Hence, Bradley only considers the scaling of

the correlation window in x direction by constant factors
√

2, 1 and 1/
√

2 to

approximate three different surface orientations. Instead of scaling the corre-

lation window to compensate for perspective distortions, it is more efficient to

scale the right (comparison) image with the inverse factors and use uniformly

shaped correlation windows with a fixed size of 15× 15 pixel.

Potentially for each left pixel, one would need to perform the search along the

whole epipolar line of the right image. Besides a decreased performance this

is also problematic since the more pixel pairs are compared, the higher is the

probability to assign the wrong correspondence. We overcome both problems

by a proper initialization of the depth values using the face template fitted to

the triangulated feature points as described in Section 5.3.2. To efficiently ob-

tain the initial depth values we use the OpenGL rendering pipeline [AMHH08]

to simulate the projective behavior of the left rectified camera. During the

rasterization step [AMHH08], a depth value is computed for each pixel and

quantized in the interval between the near and the far plane. The definition

of the projection matrix containing the values for the near and the far plane

is crucial for some functions of the OpenGL rendering pipeline. Culling, e.g.,

removes (among others) primitives that lie in front of the near or behind the
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rectification initial depth matching filtering

merged point-cloud

Figure 5.8.: Point based reconstruction pipeline. For each stereo pair (here:

two pairs), we perform an initialization step to narrow down the search inter-

val. In the matching step we use the GPU to efficiently find correspondences

between the left and the right image. The filtering step removes outliers and

smoothes the depth map. In the end the points produced by each stereo pair

contribute to a dense point cloud (right image).

far plane. To avoid quantization artifacts for the depth values, we compute a

near and far plane, that encloses the initial face template as tight as possible.

Initial depth values for each pixel of the left image are then obtained from

on single draw call. Figure 5.8 shows an example of such an initial depth map,

which additionally gives us a rough background segmentation from which we

identify pixels whose depth values need to be optimized. In order to shrink the

search interval on the epipolar line, we define a conservatively estimated depth

interval of 5 cm we expect the surface to lie in. To simplify the computation

of disparities, we again express pixels relative to the principal point of the

rectified image (cf. Section 2.5.2). Assuming the initial depth value at a pixel

xl = (ul, v) is z, we define the depth interval, the surface is expected to lie in,

as [z−, z+]. Using Equation 2.31 this interval can be mapped to a pixel interval

[u−r , u
+
r ] in the right image, where

u−r = ul −
b · f
z−

and u+
r = ul −

b · f
z+

(5.8)

If the observed surface patch lies in the assumed depth interval, the pixel in

the right image, which corresponds to the reference pixel from the left image,
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must lie in the pixel interval [u−r , u
+
r ], i.e. we can restrict our search to this

interval. Of course when scaling the right image to compensate for perspective

distortion we also need to scale the search intervals.

Finding the right pixel corresponding to a left pixel xl is then done in two

steps. First we visit each integer pixel position from the interval ([u−r , u
+
r ], v)T ,

and search for that pixel xr, which maximizes the normalized cross correlation

xr = arg max
u∈[u−r ,u

+
r ]

NCC(xl, (u, v)T )

to get an integer disparity value. After this we refine this value to sub-pixel

precision.

Refining the disparities If we would only allow for integer valued disparities,

this approach would lead to small discretization artifacts in the resulting depth

values. The lenses we used in our camera rig have a focal length of 2000

mm, while the base line is about 300 mm. Hence a disparity difference of

one pixel (for images of a resolution of 780 × 580 can lead to a variation in

depth of over 1 mm. Since this is an unwanted source of error, we follow

the approach of Bradley [BHPS10] and compute the optimal correlating pixel

position with sub-pixel accuracy. For this Bradley suggest to frequently sample

the space between two neighboring pixels and search for the optimal correlation

value. Although this leads to a high precision estimate of the location of the

corresponding pixel (they use 10 samples between two pixels) the result is not

exact. Moreover it involves many interpolation steps and evaluations of the

normalized cross correlation.

We prefer to compute the optimal position of the corresponding pixel analyt-

ically, since this involves fewer pixel look-ups and leads directly to the optimal

result. When the best integer pixel position computed so far is xr = (u, v)T ,

the sub-pixel interval can be located left from that pixel (u−1, v) or right from

that pixel (u + 1, v). In what follows we only consider the second case, since

both cases are analogous. As depicted in Figure 5.9 we can extract two intensity

vectors L = I((u, v)T ) and R = I((u + 1, v)T ), which are obtained from cor-

relation windows located at the two neighboring pixels in the right image. By

introducing an interpolation value α ∈ [0, 1] we can express any intensity vector

110



5.4. Stereo Reconstruction

L RT

(u, v) (u+ 1, v)xl

left image right image

Figure 5.9.: To refine the pixel corresponding to a position xl in the left image,

two correlation windows are extracted at neighboring pixels in the right image.

At a position between both pixels, a correlation window can be obtained by

interpolating the windows L and R. Our algorithm finds the optimal interpla-

tion weight reproducing a correlation window that best fits to the (normalized)

reference window T.

C(α) between both pixels as the linear combination C(α) = L + α(R − L).

Subtracting the average intensity value of C(α) leads to a vector

I(α) = C(α)− C̄(α) = L− L̄ + α · (R− R̄− L + L̄) = A + α ·B

where we introduced the abbreviatory vectors A and B. Together with the

normalized intensity vector T, extracted at the reference position xl (left im-

age), this allows us to define the normalized cross correlation in terms of α such

that

NCC(α) = TT · I(α)

||I(α)||

The optimal interpolation value maximizes this function and can be computed

by setting the derivative to zero, which leads to the equation

∂NCC(α)

∂α
= TT · B · ||I(α)|| − I(α) · ||I(α)||−1 · (ATB + αBTB)

||I(α)||2 = 0

When this equation is multiplied with the factor ||I(α)||3, the norms vanish

and the equation simplifies to

TT ·B · IT (α) · I(α)− I(α) · (ATB + αBTB) = 0

111



5. Reconstructing Static Faces

When we further insert the definition I(α) = A + α ·B, expand the equation

and rearrange terms w.r.t. to α we get the equation

α · (TTBATB−TTABTB) = TTAATB−TTBATA (5.9)

which is linear in α, since the coefficients of α2 cancel out each other. Solving

the last equation w.r.t. α, which is easy since T, A and B are constant, directly

leads to the optimal interpolation value and thereby to the x coordinate of the

sub-pixel

uopt = (1− α) · u+ α · (u+ 1) = u+ α

which correlates best to reference pixel.

After we identified the pixel with highest correlation value in a possible scaled

image, its x-coordinate needs to be scaled back to the original image size from

which we then compute the disparity value and thereby the new optimized

depth value.

The refinement procedure is embedded in the filtering pipeline, and needs

to be done only for those pixels, which survived the removal of outliers. An

example of the effectiveness of the presented procedure is shown in Figure 5.10

(c). Stair-stepping artifacts, which arise from integer valued disparities, are

clearly reduced after the refinement step.

Filtering the depth map. The first simple filter restricts the image region in

the left image where we search for optimal depth values. From the depth map

we used to initialize the search intervals, we identify the pixel which project

on the initial face template. As mentioned before this gives us a rough parti-

tion of the image into fore- and background. Pixels from the background are

filtered out and will not contribute to the final point cloud (cf. Image (a) of

Figure 5.10).

For the next filter we switch the role of the left and the right image. For

each pixel in the right image we search for a corresponding pixel in the left

image. Observe that for this we need to create an initial depth map w.r.t the

right image and perform the whole search procedure again. With the result

of this additional reconstruction step we then can verify the correspondence

(xl,xr) computed so far: if we obtain the same correspondence after switching

the role of the left and the right image, we consider this as a confirmation of
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(a) (b) (c) (d) (e)

585 mm

697 mm

601 mm

611 mm

Figure 5.10.: Filtering the depth map. (a) initial depth map reconstructed

form pair of images. (b) Removal of unconfirmed correspondences and bad

NCC values. (c) The analytic refinement of pixel correspondences results in

less stair-stepping artifacts. (d) Result of the median rejection filter and the

removal of isolated pixels. (e) Smoothing result of the trilateral filter. The

values of all presented depth maps are color coded according to the right chart.

Close-ups are shown in the lower row.

the correspondence. Otherwise we do not use it to augment the final point

cloud (cf. Image (b) of Figure 5.10).

For the other filters we follow the approach presented in [BHPS10]. These

filters aim at the removal of outliers and at the reduction of noise, which is

usually present in the captured images. The first obvious outlier filter is to

garantee a certain reconstruction criterion. Therefore we remove all corre-

sponding pixels (xl,xr), where the normalized cross correlation NCC(xl,xr)

drops below a certain threshold (cf. Image (b) of Figure 5.10). Then we remove

all pixels from the left image, which depth value is far from the median depth

value of its surrounding neighbors. This will produce some holes in the depth

map, which is further reduced by removing isolated pixel, i.e. pixels whose

neighbors are not properly reconstructed (cf. Image (d) of Figure 5.10). In

order to remove noise we use a bilateral filter. It is basically a Gaussian filter

where the influence of a neighboring pixel from a small region Ω is not only

affected by the distance to the center pixel, but also by the difference between

both depth values stored at the pixels. Bradly suggests to additionally inte-

grate the normalized cross correlation and increase the weight of a neighboring

depth value [BHPS10], if the NCC value is high, meaning if the reconstruction
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is very reliable. This third weighting criterion turns this filter to a trialteral

filter. With the definition of a normal distribution in Equation 2.7 this can be

stated as

z(x)← 1

W (x)

∑
y∈Ω(x)

N (y|x,Σs) · N (z(y)|z(x),Σz) ·NCC(y) · z(y)

where we slightly abused the notation NCC(y) to be the resulting normalized

cross correlation obtained after reconstructing the depth value of the neighbor-

ing pixel y and where W (x) =
∑

y∈Ω(x)N (y|x,Σs)·N (z(y)|z(x),Σz)·NCC(y)

is the sum of the computed weights. The weight depending on the distance of

two neighboring pixels is here controlled by the covariance matrix Σs while Σz

is adapted to suppress the influence of neighbors whose depth values strongly

deviate from the depth value of the center pixel x. This allows the filter to

preserve depth continuities, often caused by occlusions. The result of the final

depth map is visualized in Figure 5.10 (e). Stair-stepping artifacts are reduced

by the analytic refinement of pixel correspondences and by the trilateral filter.

Parallel computation Since all operations, like the look up of pixel intensities

and the computation of the NCC-values are rather simple and can be executed

independent for each pixel, this approach is well suited to be parallelized. We

use the CUDA framework [SK10] to efficiently compute the optimal pixel corre-

spondences on a modern GPU. The proposed algorithm to optimize the initially

computed depth values can be summarized by the following steps:

1. Undistort and rectify the input image pair

2. Compute a search interval (right image) for each pixel in the left image

using Equation 5.8

3. Generate three rescaled version of the right image to compensate for

possible perspective distortions.

4. Search for the highest NCC value within the (scaled) search intervals and

refine the correspondence using Equation 5.9

5. Take the disparity with highest NCC value and update the depth using

Equation 2.31

6. Filter the resulting depth map
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∅ NCC ( σ NCC ) ∅ points ( σ points ) ∅ µs ( σ µs )

Surfel based 0.93 (0.01) 6270 (83) 613.697 (93.562)

Point based 0.85 (0.01) 431457 (83234) 3.399 (0.585)

Table 5.1.: Comparison of the two stereo reconstructions. While surfel fitting

produces a better reconstruction quality (NCC value), the number of points

(second column) and the time to reconstruct one point or surfel (third column)

are better for the point based method.

For each camera pair (cf. Figure 5.7) we repeat this procedure and merge the

resulting point clouds as indicated in the right image of Figure 5.8.

5.4.3. Results

We compare the quality of the surfel based (SB) reconstruction and the point

based (PB) reconstruction by having a detailed look at the resulting NCC values

associated to the resulting surfels and points. Since this is never explicitly

computed for surfels (cf. Section 2.5.3), we additionally compute that value

after the optimization. The examples in Figure 5.11 color code the NCC values

for each point or surfel ranging from 0.5 to 1 (the value for a perfect match is

NCC = 1, the minimum is NCC = −1). The visual inspection indicates that

the quality of SB is much better than the result produced by PB. This is not

surprising, since perspective distortions, induced by the surfels orientations,

are inherently handled by the warping function defined in Equation 2.33. We

verify this observation by using both methods to reconstruct 55 individual

neutral faces. For each reconstruction we compute the average NCC value and

its standard deviation, and plot the result in the diagram of Figure 5.11. As

expected, the average NCC value is much higher for each face reconstructed

with the surfel based approach. In the plot we scale the error bars, visualizing

the standard deviation, by a factor of 0.1. This additionally shows that the

NCC value is less fluctuating for the surfel based reconstruction, so it seems the

the surfel based method should be preferred over the point based method. But,

when looking at the number of reconstructed points and the time to reconstruct

a single point or surfel (cf. Table 5.4.3), the point based method clearly shows
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Figure 5.11.: Plot: Average NCC values and their standard deviation for each

of the 55 performed reconstructions. The examples show color coded NCC

values for the surfel fitting method (left) and the point based method (right).

some interesting advantages, since it can reconstruct much more points in the

same amount of time. It is even fast enough to reconstruct nearly 300.000

points per second, while surfel fitting reconstructs approximately 1600 points
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per second (we run all experiments on an Intel®Core™i7-4770 with an NVIDIA

GeForce GTX 770). The hope is that due to the high number of reconstructions

the final error averages out, such that the quality of the reconstruction is still

comparable with the reconstruction produced by surfel fitting.

5.5. Fitting the Face Template

So far we deformed the face template to fit a sparse set of triangulated fea-

ture points and computed a dense point cloud representing the surface of the

observed face. The last step to obtain the reconstruction of a static face is to

Figure 5.12.: Modifyable region

fit the face template to that point

cloud. While our prototypical application

[SHK09, SHK11] uses a morphable model

for this approach, the method presented

in Chapter 7 is more simple and is based

on Laplace Editing. This improved system

also uses a more complete face template,

where additional parts of the head are vis-

ible (cf. right image of Figure 5.1). Since

the cameras of our rig only capture the

front and slightly some peripheral parts of

the human face, the resulting point clouds

will never cover the full surface of that

head model. In order to still be able to

deform this face template in a meaningful way, we explicitly mark specific tri-

angles of our face template as handle regions. These regions are depicted as red

regions in Figure 5.5. When deforming the face template to fit the point cloud,

correspondences to the face template are only established, if they fall into these

handle regions. In what follows we describe both approaches to refine the face

template to fit the reconstructed point cloud.

5.5.1. Refinement using a morphable model

The refinement of the face template using a morphable model follows the ap-

proach presented in Section 5.3.1. Here we alternated the computation of a
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rigid transformation with the adaption of the shape parameters such that a

sparse set of vertices (cf. Equation 5.3) fit well to a sparse set of triangulated

(user defined) facial features. Now we can extend this fitting approach by in-

corporating the previously computed stereo reconstruction (cf. Section 5.4.1),

which is represented as a set of point q = [qT1 , . . . ,q
T
k ]T . In contrast to Sec-

tion 5.3.1, where each triangulated facial feature points is associated to only

one vertex of the morphable model, we now do not know the association of the

reconstructed points to points of the morphable model. Therefore we need to

define new correspondences in each iteration of the optimization process. This

is done by computing the closest point on the surface of the morphable model

w.r.t. to the reconstructed points qi. In each iteration of the procedure opti-

mizing rigid and shape parameters, this leads to a matrix F ∈ R3k×3n which

analogously to Equation 5.3 is used to map the vertices of the morphable model

to a set of points which correspond to the reconstructed surface points q

F · s = C · (s̄ + S · p)

The closest point to ql always falls into a specific triangle where it has barycen-

tric coordinates w.r.t. the vertices adjacent to that triangle. To construct

the matrix F the barycentric coordinates are inserted into F as 3 × 3 block

matrices. If, e.g., j is a vertex of the closest triangle and αj is the barycen-

tric coordinate of the closest point w.r.t. to vertex j, we insert the entries

F3l,3j = F3l+1,3j+1 = F3l+2,3j+2 = αj into the matrix F . This allows us to

define an additional residual function that measures the distances between the

reconstructed points q and their closest points on the surface of the morphable

model as

h(R, t,p) = R · F · (s̄ + S · p) + t− q

where analogously to Equation 5.4 R and t encode the rigid transformation of

the morphable model. We use these residuals to extend the energy function of

Equation 5.6 and minimize

E(p) = fT f + hTh + ws · gTg (5.10)

where again g describes the deviation from the average facial shape (cf. Equa-

tion 5.5). As mentioned before we optimize this energy function by alternately

fixing the shape parameters p and the rigid transformation. In each iteration
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5.5. Fitting the Face Template

we lower the regularization factor ws and update the matrix F by comput-

ing new correspondences between the reconstructed point cloud and points on

the surface of the morphable model. While the computation of new rigid pa-

rameters is analytically found by the method presented in [Hor87], the optimal

shape parameters minimizing Equation 5.10 are found by minimizing the linear

system

(STC · SC + STF · SF + ws ·DT ·D) · p = −STC · (C · s̄ + v′)− STF · (F · s̄ + q′)

where similar to Equation 5.7 we introduced the abbreviatory notations SF =

F · S and q′ = RT · (t− q).

5.5.2. Refinement using Laplace Editing

The idea of this approach is related to the fitting procedure presented in Sec-

tion 5.5.1, where we increased the flexibility of the face template by reducing

the influence of the regularization energy in each iterations. Here we use a more

simpler approach based on Laplace mesh editing (cf. Section 2.6.1), where the

flexibility of the mesh is controlled by the influence of the residual function

which measures how the detail vectors (cf. Equation 2.35) of the initially fitted

face template chance. Refining the face template is again an iterative process,

where we increase the flexibility of the surface by decreasing the weighting

factor wL defined in the energy function

E = gTx gx + hTxhx + wL · fTx fx

of the Laplace Mesh Editing technique (cf. Equation 2.38). To define the

constraints we first of all use the already known vertex constraints described

by Equation 2.36

gx = C · px − vx

which we obtained from the correspondences between some extraordinary ver-

tices of the face template and the triangulated feature points v. Again we

denote vx as the concatenation of all x-components of v as introduced in Sec-

tion 2.6.1. Adding these constraints keeps the model globally at the right place

and avoids the face template to slide under the reconstructed point cloud.

Then we additionally introduce face constraints, which are supposed to drag
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5. Reconstructing Static Faces

a surface points (lying within triangles of the face model) towards a point of

the reconstructed point cloud. Thereby we omit correspondences if the closes

point w.r.t. a reconstructed point does not fall into the handle region of our face

model (cf. Section 5.5). As described in Section 2.6.1 these correspondences

define a residual function of the form

hx = F · px − tx

where tx encodes all x-components of points from the point cloud used to estab-

lish the point to triangle correspondences. The same notation is used to define

the concatenation vx of the x-components of the triangulated feature points.

The complete algorithm that refines the deformation of the face template with

increasing flexibility and that incorporates the computation of optimal rigid

parameters iterates the following steps:

1. Update the residuals h by establishing point to triangle correspondences

between point of the reconstructed point cloud and triangles of the handle

region of the face template

2. Find an optimal rigid transformation (R, t) using the method of Horn

[Hor87]

3. Rotate the original Laplace vectors of the initial face template using R

and denote the concatenation of the x-components of the adapted detail

vectors as L · qx
4. Solve the linear system

(CTC + FTF + wL · LTL) · px = CTvx + FT tx + wL · LTL · qx

to obtain new vertex position p of our face template.

5. Decrease wL by a constant offset of increase the flexibility of the face

template.

Using the CHOLMOD [CDHR08] solver in Step 4, we need to compute only

one Cholesky factorization of the matrix of the left hand side of the equation.

Then three forward and back substitutions [CDHR08] efficiently lead to the

x,y and z coordinates of the new vertex positions p.
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Figure 5.13.: The plot shows for each of the 55 reconstructions, the verage

point (respectively splat) distance (in mm) to the deformed faces template.

Both methods produce average errors below one millimeter.

5.5.3. Results

We visually compare the adaption of the face template to the point respectively

surfel cloud by using the parameters computed during the calibration process

(cf. Section 2.4.3) to accurately project the final face template into one image

taken by our camera rig. Each pair in Figure 5.14 shows the two versions of

our (deformed) face template. In the left image, the face template was refined

using a morphable model (cf. Section 5.5.1) before it was deformed by one

single step of the Laplace editing technique. By adding this last step we also

allow to reconstruct faces not representable by the morphable model. The right

image of each pair shows the result of the refinement described in Section 5.5.2.

For this we use the second version of the face template which covers a larger

area of the face. While the inner part is precisely reconstructed we sometimes

have problems in regions where an insufficient number of points or surfels were

generated. This usually happens in the region below the chin, if the person

was slightly looking down. To resolve this issue, it is necessary to add more

cameras to the rig.

To quantize the difference between the point (respectively surfel) cloud, we

compute for each reconstructed point the point closest to the deformed face

template. From this we compute the average distance for each of the 55 recon-

structed faces, which is visualized in Figure 5.13. As we saw in Section 5.4.3

the point based reconstruction method generally produces lower NCC values,

which should lead to additional noise in the resulting point cloud. The plot in

Figure 5.13 confirms this assumption, since it shows that the average distance

between the reconstructed points and the deformed face template is generally
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5. Reconstructing Static Faces

Figure 5.14.: Visual comparison of both reconstruction methods. After per-

forming the 3 steps to obtain the deformed face template (initialization, recon-

struction and refinement) it is projected into an image, used for the reconstruc-

tion. Both methods produce accurate matches of the captured face.
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5.5. Fitting the Face Template

higher than the average distance between reconstructed surfels and the face

template. Nevertheless, for both methods the average distance between point

(respectively splat) cloud is still below one millimeter.
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6. Reconstructing Dynamic Faces

Given the reconstruction of a static face showing a neutral expression (cf. Chap-

ter 5), the goal of this chapter is to deform the face template frame by frame to

track a facial expression in 3D, which was captured by the synchronized cameras

of our rig. Since the reconstructed movements are the basis of our dynamic

morphable face model, it is mandatory that the tracking process maintains

temporal correspondences.

Following the structure of Chapter 5, we describe and compare two multi-

view systems, designed for this purpose. The prototypical system was presented

in [SHK09, SHK11], while the second system was presented in [SK]. The second

system was used to create the large database of facial expressions, needed to

train our dynamic morphable face model (cf. Chapter 7).

To solve the 3D tracking problem both systems basically solve two sub-

problems:

1. Tracking the surface in image space to maintain temporal correspon-

dences (Section 6.1)

2. Deforming the face template such that the 3D surface is reconstructed

and projected vertices of the face template move according to the tracking

result of Step 1 (cf. Section 6.2)

In what follows we describe an approach, specially designed for faces, to solve

the 2D tracking problem, which we call mesh tracking. A main contribution is

to formulate the simple additive mesh tracking as inverse compositional mesh

tracking, which incorporates smoothness constraints for the vertices of an im-

age mesh. We show that the additive and the inverse compositional approach

lead to reliable results, while the inverse compositional mesh tracking is compu-

tationally much more efficient. In Section 6.2 we will complete the description

of both tracking systems by discussing two approaches to deform the generic

face template according to the 2D tracking result and the 3D reconstruction
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6. Reconstructing Dynamic Faces

which is either based on surfel reconstruction (cf. Section 5.4.1) or on the fast

point based reconstruction (cf. Section 5.4.2).

6.1. Video Tracking

Our capture system is majorly designed to build a database of dynamic faces.

In order to analyze the resulting data in a statistical meaningful way we need

the reconstructed faces to be in full correspondence. This includes geometric

correspondences between individual faces and also in time when tracking the

facial expressions of a specific actor. The later type of temporal correspon-

dences can be established by applying an optical flow based image tracking

[WBBP06] on each individual image sequence produced by the synchronized

cameras of the calibrated camera rig. Unlike, e.g., [ZSCS04] we do not use a

standard form of optical flow [HS80], where a displacement vector is computed

individually for each pixel and smoothed across the image in order to get a

coherent displacement field. Especially between lips and eyes, this approach

will be problematic, since there the displacement vectors are likely to point into

opposite directions, which would be suppressed by the smoothing term.

We rather use a mesh based tracking approach [SHK11, HDH∗10]. Between

two successive frames of a video sequence, this approach computes for every

vertex of a two dimensional mesh a displacement vector such that an energy

term is minimized, which is based on the formulation of the optical flow con-

dition. We call this two dimensional mesh image mesh and initialize it from

the surface reconstructed at the first frame of the video. Since the position of

eyes and mouth are known in this reconstruction, we can explicitly model the

gaps between the eye lids and the mouth, and thereby deal with the potentially

discontinuous movements at the borders of these gaps.

In what follows we will describe the tracking process only for one of the four

videos produced by our camera rig. In practice we use the described tracking

approach to establish temporal correspondences for all four sequences.

6.1.1. Initialization of the Image Mesh

To automatically generate a traceable image mesh for an image sequence, we

employ the 3D reconstruction of the neutral face, which is obtained from the
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6.1. Video Tracking

Figure 6.1.: Generation of an image mesh. Left: The projection of the initially

reconstructed face template leads to the outline of the image mesh. Middle:

A constraint Delaunay triangulation places triangles at the area covered by

the face and leaves out holes for the eyes and the mouth. Right: Re-meshed

triangulation with uniform edge lengths.

first images simultaneously taken by our camera rig (cf. Section 5.5). Using

the OpenGL rendering pipeline [AMHH08] the triangles of the adapted face

template are rasterized and projected into the first image of the sequence using

the projective function of the respective camera. This leads to a partition of

the image content into background and foreground pixels, while the later are

associated to the facial surface. The red area in Figure 6.1 shows an example

of the foreground obtained by this procedure.

From the foreground we identify the boundary of the image mesh we want to

generate. Therefore we search for all boundary pixels, which are those red pixels

having a non red neighboring pixel. Starting at an arbitrary boundary pixel,

a 2D polygon is constructed by successively conquering neighboring boundary

pixels until the starting point is reached again. Since the face template has holes

for the eyes and the mouth, this might lead to smaller boundaries enclosing

those regions. To identify the outer boundary of the facial region, we simple

identify the polygon with the longest border.

To robustly compute the afore mentioned 2D vertex displacements, the im-

age mesh has to fulfill some quality criterions. In this way triangles must not

be degenerated or cover only a small image area below a few pixels. To ensure

a good triangle quality, the outer boundary is resampled according to a target
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6. Reconstructing Dynamic Faces

edge length, we wish to reach for the image mesh. The result of the border

detection and its resampling is shown in the left image of Figure 6.1. In this

figure we also see the boundary of the eyes and the mouth, which can explic-

itly be obtained by projecting the contour of these region into the image and

resample them according to the target edge length.

Once the green polygons (cf. Figure 6.1), representing the boundaries of

the image mesh are constructed, the task is to distribute the inner vertices

such that the triangles are uniformly shaped and the edges have approximately

the desired target edge length. We achieve this by first constructing a con-

strained Delaunay triangulation [Che87]. Therefore we add the vertices of the

boundaries to a Delaunay triangulation and declare two successive vertices of

a boundary polygon to form a fixed edge in the constrained Delaunay triangu-

lation. The result of the process is depicted in the middle image of Figure 6.1,

where we already removed faces, which do not belong to the inner part of the

facial region.

This gives us a triangulation for the boundary polygons, but not a triangula-

tion with the desired quality, since triangles can have stretched shapes or cover

large image areas, which makes them impossible to use for this tracking ap-

proach. We solve this, by isotropically re-mesh this initial 2D mesh [BKP∗10].

We fix the vertices of the boundary polygons and iteratively split edges sig-

nificantly longer and collapse edges significantly shorter than the target edge

length. In each iteration we additionally smooth the inner vertices [BKP∗10]

using uniform edge weights. The result of this process is depicted in the right

image of Figure 6.1, which shows that the resulting mesh has uniformly dis-

tributed triangles and that the initially constructed boundaries are preserved.

This resulting image mesh is formally defined byM = (s, T ), where analogous

to Section 2.3.2, T encodes the topology of the image mesh by a set of triangles

connecting the n vertices with positions

s = (x1, y1, . . . , xn, yn)T

6.1.2. Tracking the Image Mesh

As indicated above the objective is to compute for two successive frames If and

If+1 a set of displacement vectors d = (dx,1, dy,1, . . . , dx,n, dy,n)T from which
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di
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dk

xi
xj

xk

x

W(x)

W

Figure 6.2.: Barycentric coordinates of a point x are constant in the reference

(left) and the deformed triangle (right). This allows to define a warping func-

tion W(x) that maps points from the reference to the deformed triangle, given

the new vertex positions xi,xj and xk.

we can update the old vertex positions sf of frame f to obtain the vertex

positions in frame f + 1:

sf+1 = sf + d

As a first step, the image mesh at frame f is rasterized according to the

resolution of the underlying image If . For each pixel x = (x, y) we thereby

identify the triangle t = (i, j, k), where x lies in, and evaluate its barycentric

coordinates (α, β, γ) w.r.t to that triangle. As described in Section 2.3.2 the

barycentric coordinates of x define a matrix Bt,x ∈ R2×6 that maps displaced

vertex positions of the triangle to a warped pixel position (cf. Figure 6.2)

W(x) =

[
αt,x 0 βt,x 0 γt,x 0

0 αt,x 0 βt,x 0 γt,x

]
︸ ︷︷ ︸

:=Bt,x

·



xi

yi

xj

yj

xk

yk


Introducing a selection matrix Nt (cf. Equation 2.17) we can write this warp

in terms of all displaced vertex positions sf+1 or rather in terms of the dis-

placements d as

W(x; d) = Bt,x ·Nt · (sf + d) (6.1)
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With this warping function we can evaluate the quality of the vertex displace-

ments by comparing the image intensities If (x) with the image intensities

If+1(W(x; d)).

Additive Mesh Tracking In [SHK09, SHK11] we used an approach similar to

the simple Additive Image Alignment (cf. Section 2.3.1). In this approach

image similarities are measured by the residual functions

f(d) = If+1(W (d))− If

where we again use the abbreviate notation for the concatenation of the image

intensities evaluated at all rasterized pixel positions. To optimize this non-

linear function, we follow the approach of the Additive Image Alignment and

compute the Taylor expansion of f(d + ∆d) to obtain the Jacobian J , which

has rows of the form

Ji,·(d) = ∇If+1
i ·Bt,x ·Nt

As described in Section 2.3.1, the residual function and its derivative are used

to iteratively improve the parameters. In this case these parameters are the

vertex displacements d, which deform the mesh of frame f to obtain the mesh

in frame f + 1. We start the optimization by initializing the displacements as

d = 0. In each iteration the displacements are improved by an update ∆d,

which is the solution of the linear system

JTJ∆d = −JT f (6.2)

This means, in each iteration we compute new displacement vectors d′ = d+∆d

by simple additions, which are used to replace the current displacements d.

Unfortunately, in practice this approach can lead to degenerated configura-

tion with sliver triangles or even fold-overs. Since this makes further updates

unstable to compute, we introduce a second residual function g, which mea-

sures how the displacement of a vertex i deviates from the displacements of its

neighbors:

gi = wi · d′i −
∑

j∈N(i)

wi,j · d′j (6.3)

As quickly noticeable, this function is based on the discrete Laplace operator for

triangle meshes [DC76], which depends on the weights wi,j between the center
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vertex i and its neighbors. Here we defined N(i) to be the set of vertices in the

one-ring neighborhood of the vertex i and compute wi as wi =
∑
j∈N(i) wi,j .

As elaborated in [WMKG07] there are different ways to define the weights wi,j

all having different advantages and disadvantages. Since an image mesh is

embedded into the image plane, we deal with a simple case and use the chordal

weights

wi,j = ||xi − xj ||

to define the Laplace operator. When arranging these weights in each row of a

matrix L ∈ R2n×2n, we can write the residual function in terms of the updated

displacements as g = L · d′ = L · (d + ∆d). Instead of optimizing the energy

function E = fT f , we now optimize the energy function

E = fT f + ws · gTg

where ws is a fixed, user defined parameter, that controls the influence of the

smoothing energy. The derivative of gTg w.r.t. ∆d, leads to two additional

terms which we use to expand the left and the right hand side of Equation 6.2:

(JTJ + ws · LTL)∆d = −JT f − ws · LTLd

Solving this linear system of equations in each iteration and adding the up-

date to the current solution follows the Newton Method presented described

in Section 2.1. In order to further stabilize the optimization we perform a

full Levenberg Marquard optimization by augmenting the linear system with a

2n× 2n diagonal matrix λI. This leads to the final linear system

(JTJ + ws · LTL+ λI)∆d = −JT f − ws · LTLd

we use to incrementally compute the update and thereby perform the mesh

tracking from frame to frame.

Inverse Compositional Mesh Tracking As common for the Additive Image

Alignment the main disadvantage of the Additive Mesh Tracking is, that we

need to re-evaluate the Jacobian, which depends on the image gradients at the

warped pixel positions, in each iteration. This makes this approach compu-

tationally quite involved and even if we precompute gradient images, finding
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the vertex displacements from one frame to its successor, often takes several

seconds.

In this thesis we dealt with a large database of videos showing facial ex-

pressions and so it was important to have an efficient implementation of this

tracking approach. Therefore we adopted the Inverse Compositional Image

Alignment for this purpose, which has the advantage that the Jacobian J can

be precomputed and is constant from one frame to its successor frame.

The main Idea of the Inverse Compositional Image Alignment is to compute

incremental updates ∆d for the image mesh at frame f instead of the image

mesh at frame f + 1 (cf. Section 2.3.1). This means that in each iteration of

the optimization we find a ∆d minimizing the residual function

f(d) = If (W (∆d))− If+1(W (d)) (6.4)

Now we compute the Taylor expansion of the residual function at the point

d = 0 instead of an arbitrary point d, which leads to a constant Jacobian

Ji,·(0) = ∇Ifi ·Bt,x ·Nt

evaluated at the fixed reference pixel positions at frame f .

When remembering the steps of the Inverse Compositional framework:

1. Compute the error image f = If − If+1(W(d))

2. Solve JTJ∆p = −JT f

3. Update the warp: W(x; d)←W(W−1(x; ∆d); d)

we notice (Step 3), that the computation of the updated displacements d′ de-

pends on the composition of the inverse warp W−1(x; ∆d) with the current

warp W(x; d). Therefore we first need to apply the inverse warp to the refer-

ence vertex location xi of the image mesh in frame f to obtain intermediate

vertex locations

x′i = W−1(xi; ∆d) = xi −∆di

As depicted in Figure 6.3 an incremented vertex position falls into a neighbor-

ing triangle t, where we can compute its barycentric coordinates as α

β

γ

 =

[
xi xt,1 xt,2

1 1 1

]−1

·

(
xi −∆di

1

)
(6.5)
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W(x′i; d)
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Figure 6.3.: Composition of the inverse warp with the current warp. The in-

crementally displaced vertex of the reference mesh falls into any of the sur-

rounding triangles (red dot). According to the current displacement of that

triangle (green arrows), which was computed in previous iterations of the opti-

mization, the new vertex location (green dot) can be computed. In general all

triangles can be used to define the warp to the new (green) vertex location. In

Equation 6.7 we therefore average the predictions of all neighboring triangles.

The displaced vertices [xi + di,xt,1 + dt,1,xt,2 + dt,2] of the neighboring tri-

angle t, which have been iteratively computed so far to deform the image mesh

towards frame f + 1, are interpolated by these barycentric coordinates. This

leads to the displaced vertex position xi + d′i we are searching for:

xi + d′i = α(xi + di) + β(xt,1 + dt,1) + γ(xt,2 + dt,2)

= [Mt|mt] ·

(
xi −∆di

1

)
where the matrix [Mt|mt] ∈ R2×3 abbreviates the multiplication of the dis-

placed triangle vertices with the inverse matrix occurring in Equation 6.5. Since

the reference vertex locations xi and the current estimate of the displacements

di are known, the matrix [Mt|mt] is constant for each neighboring triangle t.

Now we can express the improved vertex displacement d′i as a simple linear

combination where

d′i = −Mt ·∆di − xi +Mt · xi + mt (6.6)

Similar to the update procedure for the Active Appearance Models in Sec-

tion 2.3.2, we do not know in which neighboring triangle the vertex will fall
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into. This means that we do not know which barycentric warp to use in order

to compute the improved displacement d′i (cf. Equation 6.6). We use the same

idea as in Section 2.3.2, and average the contributions of the individual warps

defined by the displacements of the surrounding triangles. If T (i) is the set

of triangles adjacent to the vertex i, this means that we can use Equation 6.6

multiple times to compute the new (averaged) displacements d′i as

d′i =

 1

|T (i)|
∑
t∈T (i)

−Mt


︸ ︷︷ ︸

Ai

·∆di−xi +
1

|T (i)|
∑
t∈T (i)

Mt · xi + mt︸ ︷︷ ︸
bi

where we introduce the matrix Ai ∈ R2×2 and the two dimensional vector bi

to write this update in a compact form of a linear equation d′i = Ai ·∆di + bi.

Since Ai and bi only depend on the vertex location xi of the image mesh at

frame f and the displacement di, computed so far during the optimization, they

need to be evaluated in every iteration. To encode the updates of all vertices

at once we define a block diagonal matrix A ∈ R2n×2n, where the ith 2 × 2

block equals Ai, and assemble a vector b ∈ R2n by concatenating the vectors

bi. Then the improved displacements (Step 3 of the Inverse Compositional

framework) can be computed as

d′ = A∆d + b (6.7)

With this simple linear equation it is easy to extend the Inverse Composi-

tional Mesh Tracking by an additional smoothing term. To the residual func-

tions defined in Equation 6.4, we therefore add residual functions of the form

g = L · (A∆d + b)

which are similar to the ones defined in Equation 6.3. Deriving gTg w.r.t. the

updates ∆d leads to two additional terms for the left and the right hand side

of the linear system, we need to solve in each iteration. With these additional

terms, the update rule in Equation 6.7 and a damping matrix Id ∈ R2n×2n

needed for the more stable Levenberg Marquard optimization, we can summa-

rize the iterative steps needed to perform the Mesh Tracking from frame f to

frame f + 1:
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1. Compute the error image r = If − If+1(W(d))

2. Solve [JTJ + wsA
TLTLA+ λId]∆d = −JT r−ATLTLb

3. Update the warp: d← A∆d + b

Iterations are stopped if the change in displacements are small or if a maximum

of iteration numbers have been reached.

6.1.3. Results

In Figure 6.4, we compare the results of both mesh tracking approaches by

showing the deformed image mesh overlaid to four images captured at different

time points. We initialized both tracking approaches with the exact same

image mesh in order to visually compare the deformed meshes. The full video

sequence contains 77 images and shows the transition from a neutral to a happy

expression and from the happy expression back to the neutral face. The result

of the additive mesh tracking is shown in the first row of Figure 6.4, while

the result of the inverse compositional mesh tracking is depicted in the second

row. To better rate this result we additionally show close-ups: The third row

shows the close-up for the additive mesh tracking, while the forth row shows

the result of the inverse compositional mesh tracking in more detail. Since both

approaches visually produce quite similar results, we additionally investigated

the distances between corresponding vertices of the computed image meshes.

We color-coded this result in the thumbnail images between the first and second

row. While in most areas the deviation is around one pixel (the images have a

resolution of 780×580), the deviation sometimes becomes larger when the image

mesh needs to be deformed significantly. The reason for this is, that although

both approaches should be equivalent from a mathematical point of view, the

practical implementation is a bit different. More concrete, the update of the

displacement vectors are computed from the composition of the old warping

function with an inverted incremental update. In practice we approximate

this composition using Equation 6.7 and average the warping functions defined

for the triangles incident to a specific vertex. This is in fact an additional

smoothing operation, which might have influence on the stiffness of the image

mesh. This in turn would lead to the observed, slightly different tracking

behavior.
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Figure 6.4.: Tracking result for a video sequence with 77 frames. First row (and

third row): image meshes computed by the additive mesh tracking. Second row

(and fourth row): result of the inverse compositional mesh tracking.

In general both tracking approaches work very reliable, even if large displace-

ments are involved. The images of the second and third column of Figure 6.4

were taken within an interval of 50 ms. Although the eyes were blinking both
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Figure 6.5.: Timings for each frame of a video sequence to compute the ver-

tex displacements for two successive frames. The inverse compositional mesh

tracking is significantly faster than the additive method.

approaches do not produce significant drift and the vertices of the image mesh

at the last frame of the video (fourth column) are nearly at the same positions

as at the beginning of the sequence (first column).

The main advantage of the inverse compositional mesh tracking lies in the

algorithmic complexity. In Figure 6.5 we show the timings for then whole

sequence containing 77 images. As we can see, for all frames the inverse com-

positional approach is significantly faster. It needs on average 2.5 seconds while

the additive approach need on average over 15 seconds to compute the vertex

displacements between two successive frames. When we neglect the outliers,

this difference becomes even more significant: In nearly all frames the inverse

compositional approach needs less than 2 seconds to converge, while the addi-

tive approach needs more than 15 seconds to compute the update.

6.2. Surface Tracking

In Section 5 we described two approaches to reconstruct static faces showing

a neutral facial expression. In this section we follow the comparative descrip-

tion of the two systems and extend both approaches by a dynamic component

and explain how we track dynamic facial expressions. In order to increase the

robustness and the performance of the surfel based tracking approach [HK06],

which will be detailed in Section 6.2.1, we propose a new tracking approach

that is based on the simple and fast point based stereo reconstruction and that

computes a scene flow [WBV∗11] to dive the deformation of our face template.

With this system, which will be detailed in Section 6.2.2, we were able to auto-
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matically reconstruct a large database of dynamic facial expressions from video

sequences captured by our camera rig. This database plays a central role to

build our dynamic face model, which is later used to track and reconstruct facial

expressions as seen in videos taken with only a single camera (cf. Chapter 7).

6.2.1. Surfel based Tracking

The surfel based tracking is initialized with the reconstruction result produced

by the algorithm described in Section 5.5. Then, the objective is to find for

every frame of the video sequence a deformed version of this initial mesh.

Finally the sequence of the deformed face templates represent the detailed

movements of the captured face as seen in the synchronized videos produced

by the camera rig. In what follows we use frame and view to notate an image

taken from a specific camera (view) at a specific point in time (frame).

The basic principle of this approach is to distribute 2D samples in all views

at the first frame and track them through time using the 2D tracking approach

presented in Section 6.1. Then surfel fitting (cf. Section 2.5.3) is used in

every frame to reconstruct a 3D surfel for each image-sample. Finally, the

reconstructed 3D surfels form trajectories in 3D space and are used to deform

the face template and thereby track the observed facial movements.

Generating 2D trackable samples Applying the mesh-based tracking approach

described in Section 6.1 to the videos captured from every view, produces a

sequence of 2D triangle meshes Mf
c = (̂sfc , Tc) for each view c and frame f ,

where we use the notationˆto indicate the two dimensional character of point

positions. Supersampling the triangles of the meshes M1
c (first frame of each

sequence), generates 2D points that have barycentric coordinates w.r.t. the tri-

angle they are placed in. For every view c this leads to a set of points p̂1
i,c

for the first frame, where a point can uniquely be identified by its index i and

the view c it was placed in (cf. Figure 6.6). For simplicity from now on we

use the more compact notation p̂fc for an image-sample and omit its index.

The number of image-samples is a user-defined parameter and we usually place

1600 samples in one view to later obtain a dense reconstruction. As stated

in Equation 6.1 the barycentric coordinates of p̂1
c w.r.t. its associated triangle

t ∈ Tc define a matrix Bt. Together with the matrix Nt that selects the vertices
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6.2. Surface Tracking

Figure 6.6.: Uniformly distributed image samples. Each sample is associated

to a specific triangle of the image mesh, where it has barycentric coordinates.

By this the image samples can be warped to any frame, if mesh tracking was

performed over all images of a video.

adjacent to the triangle t and with the vertex positions ŝfc of the image mesh at

frame f , the mapping from frame 1 to frame f for this sample point is uniquely

defined as

p̂fc = Bt ·Nt · ŝfc (6.8)

Employing this equation on every initially placed sample and every frame

leads to 2D trajectories p̂1
c , p̂2

c , p̂3
c , . . .. In what follows we compute 3D sur-

fels from these 2D points in order to obtain 3D trajectories that drive the

deformation of our face template.

Surfel-based tracking step. The aim of one tracking step is to deform the

reconstructed face template of frame f−1 to obtain a reconstruction at frame f .

For this, the 2D trajectories computed from Equation 6.8, play a central role to

establish temporal correspondences between the successive reconstructions. We

start the surfel-based tracking by computing the initial 3D mesh M1 = (s1, T )

from the views of the first frame as described in Section 5.5. Here, sf encode

the 3D vertex positions of the mesh reconstructed at frame f . For each image-

sample p̂1
c , we introduce an anchor point on the surface of M1 by shooting a

ray through p̂1
c (cf. Equation 2.25) and determining the intersection with one

of the triangles of M1. As depicted in Figure 6.7, this anchor point is a specific

point on the surface and is uniquely defined by the intersected triangle t ∈ T
and the barycentric coordinates [α, β, γ] w.r.t. the vertices adjacent to that

triangle. For any deformed version of the face template we now can compute
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c cf − 1 ff

p̂f−1
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p̂fc

surfel

t

anchor

attraction pointsurface Mf−1

Figure 6.7.: An anchor point of a image-sample p̂1
c is obtained by intersecting

a ray with the initial face template. During tracking this anchor point is draged

towards its attraction point, which is computed by displacing the associated

2D sample in image space and reconstrucing its depth value using surfel fitting.

the 3D location of the anchor point by using the barycentric coordinates to

combine the tree vertex positions encoded in sf .

We apply the surfel fitting technique to reconstruct small surface patches

from the points of the 2D trajectories. As described in Section 2.5.3, for this

we need a few ingredients: (a) the 2D position of the center of the correlation

window within the reference view, (b) a set of comparison views and (c) a

plane equation to initialize the optimization process. To reconstruct the surface

element in frame f we employ p̂fc to be the position of the reference correlation

window, which makes its associated view c the reference view. To find the

set of comparison images, we follow the approach presented in Section 5.4.1

and render the previously reconstructed mesh Mf−1 to fill OpenGL’s depth

buffer [AMHH08]. This allows to efficiently check from which view of our

camera rig the anchor point associated to the sample position p̂f−1
c if visible.

In case the anchor point is not visible from the reference view, or the number of

comparison images is zero, we discard the reconstruction of the surface element

for this frame. To get the last ingredient for the surfel fitting technique we

initialize the normalized plane equation nf from the position of the anchor and

the normal of the triangle, which are associated to the image-sample p̂f−1
c (cf.

Figure 6.7). Then nf is iteratively optimized (cf. Equation 2.34) which leads
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6.2. Surface Tracking

to a new 3D position and orientation of the surface patch we tracked from

frame f −1 to frame f . Shooting a ray through the pixel p̂fc and computing its

intersection with the reconstructed surface patch nf (cf. Figure 6.7) leads to

the position where the anchor point of p̂f−1
c should move to according to the

2D tracking from p̂f−1
c to p̂fc and the 3D reconstruction for frame f .

Doing this for all visible image-samples leads to a set of 3D points where

anchor points should be attracted to. We simulate this attraction using Laplace

mesh editing (cf. Section 2.6.1). Since each (reconstructed) attraction point is

associated to an anchor point, we can define face constraints for Laplace mesh

editing analogous to Equation 2.37

hx = F · sfx − ax

where identical to Section 2.6.1, ax encodes the concatenation of all x-components

of the attraction points and F is the matrix storing the barycentric coordinates

of the anchor point at the columns corresponding to the vertices of the face the

anchor point is located on. Together with the basic constraint to maintain the

original Laplace vectors L · s1
x, where s1

x are the concatenated x-components

of the vertex positions of the initial mesh M1, we can compute new vertex

positions sfx by solving the linear system (cf. Equation 2.39)

(wt · FTF + LTL) · sfx = wt · FT · ax + LTL · s1
x

Notice that we need to solve two similar systems to additionally get the y

and z-components of the new vertex positions encoding the shape of the face

template Mf at frame f .

6.2.2. Scene flow based Tracking

Surfel based reconstruction tends to be more accurate than point based re-

constructions (cf. Section 5.4.2), since it warps reference pixels perspectively

correct to a pixel position in the comparison image. Nevertheless it can become

unstable, since small deviations in the plane equation (parameters) can lead to

large displacements and distortions of the correlation windows in the compar-

ison images and thereby to huge variations of the energy function. In addition

to this the optimization procedure is computationally quite involved and by
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this the presented tracking system is tedious to use when reconstructing facial

expressions from nearly 100.000 images as we did to construct our database of

facial movements (cf. Chapter 7).

In order to overcome the time limitations and some robustness issues of the

system we used in [SHK09, SHK11], we designed a new reconstruction system

for facial expressions for the purpose to automatically reconstruct facial ex-

pressions from a very large set of videos produced by our camera rig. The first

key improvement was the replacement of the Additive Mesh Tracking by the

computationally more efficient Inverse Compositional Mesh Tracking, which is

described in detail in Section 6.1. The second key improvement is the imple-

mentation of a computationally more efficient surface extraction, which is based

on the GPU assisted point cloud reconstruction (cf. Section 5.4.2). From the

reconstructed 3D surface, together with the 2D displacements obtained from

the mesh tracking, we compute a dense scene flow, that drives the evolution

of the face temple over time. In what follows we describe how we reconstruct

the surface in a particular frame and how to combine this with the 2D motion

vectors to obtain a dense field of 3D motion vectors between successive frames,

that describes the scene flow. In the last paragraph we complete the descrip-

tion of the new tracking approach by using the motion vectors to deform the

face template.

Surface extraction The fundamental technique for this reconstruction method

is the point based reconstruction method already used in Section 5.4.2 to obtain

a dense point cloud. The only difference to compute the point cloud regards

the initialization step: Unlike for static faces, where we initialize the surface

from triangulated facial feature points (cf. Section 5.3), we use the face tem-

plate of the previous frame encoded by the mesh Mf−1 = (sf−1, T ) to initialize

the face template at frame f . Then we perform the same reconstruction steps

involving (a) the pairwise rectifications of images, (b) the identification of cor-

responding pixels using normalized cross correlation (c) filtering the resulting

depth map including smoothing and outlier removal operations. An example

of the resulting point cloud can be seen in Figure 6.8 (b).

The computation of a 3D motion vector from any point in frame f − 1 to a

3D point in frame f involves, as we have seen in Section 6.2.1, the projection
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(a) (b) (c) (d) (e)

f − 1 f

Figure 6.8.: Surface extraction for a new frame f of the video sequence. (a)

To initialize depth values for the point based stereo reconstruction we use the

reconstruction of the previous frame f − 1. (b) Point cloud reconstruction. (c)

The smooth surface approximation is used to detect outlier in the point cloud.

(d) Surface which was tightly fitted to the remaining points. (e) 3D surface

of the new frame, where triangles in purely reconstructed regions have been

removed.

of an image point (which was tracked in 2D from frame f − 1 to frame f)

back to the surface. This back-projection is in principle the computation of

the intersection of a ray with the point cloud, which can be solved using the

moving least squares technique [ABCO∗01, FCOS05]. Since this involves the

approximation of small surface patches, the technique can sometimes become

unstable in regions with low point density. In this work we prefer a more

global approach to extract the surface from the given point cloud and tightly

fit a mesh to the point cloud. Therefore we first of all close all holes of our face

template [ACK13] and use isotropic re-meshing [BKP∗10] to convert Mf−1 to a

mesh M ′, where an edge has approximately the length of the average distance

between neighboring points of the point cloud (the topology of this mesh is

visualized, e.g., in Figure 6.8 (c)). Second of all we perform the Laplace Mesh

Editing two times in order to compute a deformed version of M ′ that tightly

approximates the input point cloud.

Since the point cloud was pre-filtered, in the first step we use every point

of the cloud to establish point-to-triangle correspondences to M ′ (cf. Equa-

tion 2.37). Then, using a large weighing factor for the part that reconstructs

the local detail vectors of M ′ (cf. Equation 2.35) we compute new vertex posi-

tions from the point-to-triangle constraints (see Section 2.6.1 for details). This
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f − 1 f

Mf−1
intermediate reconstruction

Figure 6.9.: Scene flow computation. A vertex of the deformed face template

at frame Mf−1
c (left, orange surface) is projected to an image and tracked to

the next frame f (middle). Then, the 3D coordinates of the sample at frame f

is computed by intersecting a viewing ray with the intermediate reconstruction

(right, blue surface).

first deformation is already close to the point cloud as seen in Figure 6.8 (c).

We improve this result by computing an error statistic on the distances be-

tween all points an the deformed surface and discard those point-to-triangle

correspondences which have a distance significantly larger than the standard

deviation of the error distribution. By this we thin out the correspondences

and only use correspondences for the second deformation step, which likely are

not outliers. Since the remaining point-to-triangle correspondences are more

reliable, we decrease the weighting factor for the reconstruction of the detail

vectors (cf. Equation 2.35) and allow for a less smooth but more interpolating

surface obtained by the second deformation step as shown in Figure 6.8 (d).

In some regions, e.g., with specular highlights, the reconstruction of points can

fail, which leaves some holes in the point cloud. It is likely that triangles in

those regions are never used for a point-to-triangle correspondence. If this is

the case, we consider the triangles to lie in such a badly reconstructed region

and delete them from the intermediate surface reconstruction, such that M ′,

used in subsequent steps of our tracking approach, will have some holes as

depicted in Figure 6.8 (e).
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Scene flow computation. Again the basis to compute 3D vectors that repre-

sent the motion of particular surface points, is the extraction of a 2D flow field

for all videos taken from the different views. For this we use the Inverse Compo-

sitional Mesh Tracking, that was detailed in Section 6.1 and extract, analogous

to Section 6.2.1, for each view a sequence of image meshes Mf
c = (̂sfc , Tc) repre-

senting the 2D motion of surface points as seen in the video. To ease visibility

checks, we render the face template Mf−1 reconstructed in the previous frame

f − 1 to obtain depth images as depicted in Figure 6.9.

Assume a point pf−1 ∈ R3 is located on the surface of Mf−1. As a first

step to compute its motion to a new position we identify the views where pf−1

projects to a valid pixel location. A pixel of an image of view c at frame f−1 is

considered to be valid, if it lies on a triangle of the image mesh Mf−1
c (cf. red

area in Figure 6.9) and if the distance between camera center and pf−1 is not

larger that the interpolated depth value at this location (visibility check). Let

c be the view where pf−1 projects to a valid pixel location p̂f−1
c ∈ R2. Since

this point lies in a triangle of the image mesh at frame f−1 we can again define

a matrix Bt holding the barycentric coordinates and a matrix Nt that selects

the vertices of the triangle. Analogous to Equation 6.8 we displace this point

by using the vertex locations ŝfc of the image mesh at frame f which leads to

p̂fc = Bt ·Nt · ŝfc

Shooting a ray through the new point position p̂fc and intersecting it with the

surface Mf
r , we already reconstructed for this frame (cf. Figure 6.9), leads to

the new location of the surface point pf we are searching for. Since the surface

Mf
r can contain holes as described before, it is not guaranteed that there is an

intersection between ray and surface. In this case we would consider pf−1 as

an invalid point for estimating the local motion of the surface.

In some cases there might be multiple views which produce valid motions for

a single point. In those cases we simply compute the average of the positions

predicted by the different views. This has also the advantage that errors of the

motion estimate can be reduced.

Deformation of the face template. The deformation of the face template now

follows the approach described in Section 6.2.1 and uses Laplace mesh editing
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(cf. Section 2.6.1) to deform the surface Mf−1 by the estimated scene flow.

But in this setting we use the more simpler vertex constraints to drive the

deformation of the face template: For each vertex of the modifiable area of the

template (cf. Figure 5.5) we try to estimate the motion vector as described

before. If this leads to a valid position the vertex should move to according to

the scene flow, we constrain the vertex to this new position, which leads to a

set of constraints analogous to Equation 2.36

gx = C · sfx − vx

where vx encodes all x-components of the positions the constraint vertices are

moving to and C is the matrix selecting the constraint vertices. Again we

include the basic requirement that all vertices should maintain their original

detail vectors (cf. Equation 2.35) and solve the linear system

(wv · CTC + LTL) · sfx = wv · CTvx + +LTL · s1
x

which is similar to the one stated in Equation 2.39.

6.2.3. Results

In what follows we show numerous examples for reconstructions produced by

our tracking systems. Surfel based tracking (cf. Section 6.2.1) uses a morphable

model to initialize the reconstruction for the first frame (cf. Section 5.3.1). The

topology of the morphable model equals the smaller face template, which covers

only a small portion of the face (cf. first and third rows of Figure 6.10 - 6.14).

The second and forth row show the result of our scene flow based tracking. As

discussed earlier we encounter sometimes problems for the larger face template,

if an insufficient number of points were reconstructed in some regions as, e.g.,

under the chin. Then the face template does not perfectly approximate the

facial shape, which can additionally result in a bad surface initialization from

which the 3D reconstruction for the next frame becomes rather unstable. Since

this is only the case if the person is slightly looking down (cf. first example

in Figure 6.12) this could be fixed by attaching additional cameras to the rig

with focus on the problematic regions.

To be able to visually inspect the reconstruction quality, we use the exact

same camera parameters computed during the calibration phase to project the
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final results into the images. In case the sequence was successfully reconstructed

the results are visually very similar. In practice the surfel based approach is a

bit more likely to fail, since it requires a better initialization than point based

reconstruction, which searches for the optimal correspondence in a larger depth

interval (cf. Section 5.4.1). In addition to this point based reconstruction is

much faster as investigated in Table 5.4.3. All previously presented experiments

regarding timings and quality and the results presented in the Figures 6.10 -

6.14 encourage us to summarize the following system design, optimal to extract

the database needed in Chapter 7:

1. Initialize the face template for the first frame of a video sequence following

the steps presented in Section 5.3.2, Section 5.4.2 and Section 5.5.2

2. Perform the inverse compositional mesh tracking for all views (cf. Sec-

tion 6.1)

3. Deform the face template using the reconstructed scene flow (cf. Sec-

tion 6.2.2)

This system needs for one frame on average around 11 seconds (a) to track

image meshes in images produced by four synchronized cameras, (b) to compute

the scene flow involving the 3D reconstruction of over 300.000 points and (c) to

perform the deformation of the face template to approximate the facial shape

shown in the next frame. In contrast to this the surfel based approach needs 6.5

seconds on average to only compute a much sparser surfel cloud. In [SHK09,

SHK11] we additionally used the additive mesh tracking, which leads on an

Intel®Core™i7-4770 with an NVIDIA GeForce GTX 770 to approximately 70

seconds for one frame.
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Figure 6.10.: Results produced by the proposed reconstruction systems.
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Figure 6.11.: Results produced by the proposed reconstruction systems.
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Figure 6.12.: Results produced by the proposed reconstruction systems.
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Figure 6.13.: Results produced by the proposed reconstruction systems.
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Figure 6.14.: Results produced by the proposed reconstruction systems.
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6.3. Applications

Since we decided to use a predefined face template with a fixed mesh topology,

we obtain meshes for each frame which are in full correspondence to each

other. This enables a variety of applications. We demonstrate some of these

applications introduced in [SHK11] and explain them in more detail in this

section.

6.3.1. Eliminating rigid transformations

Due to head movements the captured face will certainly show some rigid trans-

formations w.r.t. the first frame. For the applications described in the following

sections it is desirable to separate these rigid transformations from the defor-

mations.

Assuming the face does not scale, we compute a translation and rotation of

the face in each frame w.r.t. the face shown in the first frame. For this we

employ a variant of the algorithm provided by Horn [Hor87]. Note that the

correspondences do not need to be calculated since vertex indices of our face

template remain constant across frames. In general one can take all vertices into

account to calculate the rigid transformations, but due to highly deformable

regions on the face (like cheeks, forehead or mouth) we just consider vertices

lying on the more rigid nose region. Advantages of this step are that we can

easily replace the rigid transformation with different transformations, without

changing the deformation itself.

6.3.2. Automatic model enhancement

Since we are able to remove rigid transformations the positions of eyes, bones,

etc. remain constant across frames. Together with the fixed topology of the

moving face template, this allows for the automatic placement of eyes, eye

lids and lashes. In this section we describe a very simple way to model eyes.

Note that this does not produce realistic looking eyes, but can be seen as a

proof of concept for such an automated modeling procedure, which connects

the boundary curve of the eye to lids and lashes.
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pl,1
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Figure 6.15.: Left: The eyelid and the boundary of the eye have the same

amount of vertices, so the eyelid can be stitched to the top boundary. Right:

The closing t determines the position of each lower point ql,i on the eyeball. If

t = 1 the lid covers the whole eye, i.e., pl,i = ql,i.

As depict in Figure 6.15, the boundary around an eye consists of a lower curve

{pl,1, . . . ,pl,n} and an upper curve {pu,1, . . . ,pu,n}. We model the eyeball as

a simple sphere with a radius r = 12 mm, which is the average radius of a

human eye [Kat98]. The center c of the eye is placed such that the following

function is minimized:

F =
∑
i=l,u

n∑
j=1

(c− pi,j)
2 − r2

subject to the constraints

||pi,j − c|| ≥ r

In order to model a lid we created a small polygon mesh with an upper and lower

curve containing the vertices {qu,1, . . . ,qu,n} and {ql,1, . . . ,ql,n}. This mesh

can easily be connected to the upper boundary curve by setting qu,i = pu,i

(see Figure 6.15). We compute aperture angles for each pair of vertices on the

boundary of the eye as

θi = arccos

(
(pu,i − c)T (pl,i − c)

||pu,i − c|| · ||pl,i − c||

)
The positions of the lower points are calculated by interpolating the aperture

angle. Let t ∈ [0, 1] be the parameter controlling the closing of the eye. The
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Figure 6.16.: Simple eye model with lid and lashes. The closing of the lid

depends on the viewing direction of the eye: The lower vertices of the lid are

close to the upper point of the iris. In this example we also modeled teeth.

lower points of the lid are computed as points lying on the eyeball (Figure 6.15)

such that

t · θi = arccos

(
(pu,i − c)T (ql,i − c)

||pu,i − c|| · ||ql,i − c||

)
Note that the eye is closed, i.e., ql,i = pl,i, if t = 1. The inner vertices of the

lid are smoothly distributed over the eyeball.

Lashes can be attached to the lower points ql,i and its mesh is textured with

a semitransparent image of eyelashes. The result of our automatic modeling

example is depicted in Figure 6.16. Here we implemented a simple look-at

function for the eyes which rotates the eyeballs. The opening of the lid is

calculated such that the lower points of the lid are close to the upper point

of the iris. In this way the lid closes when the eye is looking down. Further

modeling steps could be the automatic placement of denture or the integration

into a head model.

6.3.3. Automatic Expression Modeling

In this section we demonstrate versatile applications where expressions, i.e.,

the deformation of faces, themselves are manipulated. As in Section 6.3.2,

correspondences between different faces and across frames are crucial for these

applications. As a basic technique we use a variant of the deformation transfer

for triangle meshes which was originally introduced by Sumner [SP04].
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T f

Mf

Figure 6.17.: Expression transfer. The smile M1, . . . ,MF of one face is trans-

ferred to another subject to produce a sequence T 1, . . . , T F .

Expression transfer In the area of facial animation there are many different

approaches for re-targeting facial expressions [NN01, NJ04, XCLT14], which

usually involve some kind of fitting approach. Our capture system ensures the

faces to be in full inter-subject as well as temporal correspondence such that

we can use the formalism of deformation transfer (cf. Section 2.6.3) to carry

an expression from one face over to another. Assume we used the markerless

reconstruction technique to generate a sequence of meshes M1, . . . ,MF from

F frames. For each frame f a global deformation gradient matrix Sf ∈ R3m×3

can be calculated which describes the deformation M1 → Mf . In order to

transfer this expression sequence to another face T 1 we simply compute a new

sequence of F deformed meshes T f with new vertex positions pfi :


pf1

T

...

pfn
T

 = (GTDG)−1GTD︸ ︷︷ ︸
=:K(T 1)

Sf

where 1 < f ≤ F and K(T 1) ∈ Rn×3m is a precomputed matrix only depend-

ing on T 1 (cf. Equation 2.42). In Figure 6.17 we transferred the smile of one

subject to another face.
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Figure 6.18.: Expression attenuation. The upper image shows the face at time

point zero. The images in the lower row show attenuated versions of one of

the expressions shown in Figure 6.17(top) at a particular time point > 0. To

generate the images from left to right, we set α to 1, 3
4
, 1

2
, 1

4
and 0.

Expression attenuation In the previous section we used the deformation gra-

dients Sf from a source sequence to generate a new target sequence showing

the same expression as the source sequence. When using the identity matrix I3

as source deformation gradients per triangle, the target mesh would not change

at all. By linearly blending between both possibilities we can attenuate the ex-

pression. We start with a face T 1 in neutral position which might be identical

to M1 and compute new vertex positions pfi as
pf1

T

...

pfn
T

 = K(T 1)

α ·


Sf1
T

...

Sfm
T

+ (1− α) ·


I3

...

I3




where α ∈ [0, 1]. In Figure 6.18 we show a smile in four different intensities by

setting α to 0, 1
3
, 2

3
and 1.

Expression blending In this scenario we compute a weighted sum of defor-

mation gradients from different subjects and compose a new sequence from

the sum of these weighted gradients. Besides the geometric correspondence we

therefore also need temporal correspondence, i.e., the same number of frames

in each sequence. In our experiments the subject performed facial expressions
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Mf
3

Mf
2

Mf
1

Figure 6.19.: Expression blending. Left: Three ’smile’ sequences captured by

our system. Right: Each row shows images from a blended sequence, where

T 1 is the average shape of (M1
1 ,M

1
2 ,M

1
3 ). The first row averages the smile of

(M1,M2,M3), the second row averages (M2,M3) and in the third and fourth

row one can see the average of (M1,M3) and (M1,M2).

from neutral to an expressed face. Since this took almost the same time for ev-

ery subject, we immediately get temporal coherence by a simple cut, common

in video editing, without interpolating between frames or scaling time.

For expression blending we consider k source sequences Mi = {M1
i , . . . ,M

F
i }

where i ∈ 1, . . . , k. For each frame f in every sequence i we precompute a

deformation gradient Sfi ∈ R3m×3 which describes the deformation M1
i →Mf

i .

Starting with a target mesh T 1, which might be a new individual showing

a neutral face, a blending between faces like done by a morphable model or

simply the first mesh of one of the source sequences, we compute a new sequence

from the convex combination of the deformation gradients. This generates new

meshes T f with new point positions:


pf1

T

...

pfn
T

 = K(T 1)

(
k∑
i=1

wi · Sfi

)
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6.3. Applications

where
∑k
i=1 wi = 1, wi ≥ 0 are some given weights. In Figure 6.19 we show

the result of such a convex combination of the source deformation gradients.
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7. Face Tracking from Single Images

In Chapter 5 and Chapter 6 we described systems to reconstruct dynamic facial

expressions using a multi-camera rig. In general this approach produces high

quality and detailed 3D surfaces, but unfortunately it needs a rather complex

setup with calibrated cameras and laboratory lighting conditions. Therefore it

can hardly be used in consumer level applications, where often only a single

camera, like e.g. a webcam, is available. From the usability point of view a

system would be preferable which tracks 3D faces from simple videos captured

with only one consumer level camera.

In this Chapter we propose such a system which captures the facial perfor-

mance of an actor from simple 2D images. Since this problem is ill-conditioned,

we use the motion data contained in a large database of different facial expres-

sions as a deformation prior to stabilize the tracking process. Different to other

approaches we derive a deformation model from the database, which separates

the facial movements from the individual face geometries. During the tracking

this automatically ensures that we do not blend between different faces as a

conventional shape model would do, but only deform an individual face accord-

ing to our deformation model. One big advantage of this is, that the computed

facial deformations can directly be applied to other faces, which instantaneously

enables re-targeting of facial animations. Furthermore we analyze the defor-

mation data in our database and compute a general time dependent movement

model for facial expressions which is used as a temporal prior for facial move-

ments. Similar to a shape model [BV99], which is able to reconstruct plausible

facial shapes not contained in the input database, this movement model is also

applicable to new persons and requires no individual training per person. The

most related approach is the system proposed by Weise et al. [WBLP11]. But

instead of using an active sensing method based on Microsofts Kinect [Zha12],

our capture system is completely image based. Additionally we use a complete

different motion model to predict plausible facial movements.
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7. Face Tracking from Single Images

In what follows we present details of our database of facial expressions in

Section 7.1.1 before we introduce the deformation space for faces and explain

how the deformation parameters are related to the appearance of a face (cf.

Section 7.1.2). In Section 7.2 we detail the actual tracking process which tries

to find deformation parameters and a rigid transformation such that projected

feature points are close to feature points observed by a 2D Active Appearance

Model (cf. Section 2.3.2) and such that the previously reconstructed motion

sequence is continued in a plausible way according to our motion model. In

Section 7.3 we show how the computed deformation can be used for facial re-

targeting and present results in Section 7.4. Parts of this chapter previously

appeared in [SK15].

Contributions

• Instead of optimizing shape parameters and thereby blending between

different faces, we run our optimization in a deformation space represen-

tation, which decouples the dynamic motion from the individual shapes of

the faces, and which makes re-targeting of facial animations particularly

easy.

• Our system is purely image based and computationally not involved. It

can easily be integrated in a facial feature tracker like AAMs, which runs

at high frame rates even on mobile devices.

• Our system uses a general deformation and motion model derived from a

large database. It does not need an individual training phase per persons,

which makes it interesting for simple consumer level applications.

7.1. Deformation Space

Our tracking approach is based on a new representation of facial expressions:

Each expression is encoded as a deformation of the neutral reference face. The

set of all possible deformations of all possible reference faces is called deforma-

tion space. In what follows we describe our input database, which samples the

deformation space and explain how deformations are modeled and converted

back to actual facial shapes.
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7.1. Deformation Space

7.1.1. Database of Facial Movements

To collect the motion data for our deformation model, we used a rig of 4

cameras to capture moving faces at 40 frames per second. We recorded 60 sub-

jects performing 20 facial expressions related to the extreme poses suggested in

[EF78]. On average a facial expression took 2 seconds to perform, which leads

to a total number of about 96.000 frames to be reconstructed. To robustly and

automatically perform this reconstruction and tracking task for this amount of

frames we used a system similar to the one suggested in [SHK11] and generated

for each subject and each dynamic facial expression a sequence of meshes Mf .

Here f represents the frame number within the respective dynamic facial ex-

pressions. Sliding a time window of length k over an animation with F frames

we can extract F −k+1 animation snippets of equal length k. Each animation

in our database is split into such sets of animation snippets, each containing

exactly k frames.

7.1.2. Deformation Space Representation

Given a triangle mesh A and a deformed version A′ having the same mesh

connectivity, we can compute a deformation gradient S(t) ∈ R3×3 for each

triangle t as presented in detail in Section 2.6.3. The precondition to compute

deformation gradients is that both meshes are in full correspondence. That is

why we designed our facial capture system to be able to produce the required

consistent mesh topology where each mesh has m triangles and n vertices. The

concatenation of all gradients to a matrix S ∈ R3m×3 encodes the deformation

of A to A′ [BSPG06].

Since deformation gradients represent motion only and factor out the under-

lying facial geometry, we encode each reconstructed mesh Mf in a sequence by

its deformation gradient Sf w.r.t. the neutral pose M0 of the respective per-

son. We do this for all sequences of our database. The resulting matrix Sf for

each frame can be represented as a 9 ·m dimensional vector. We feed the entire

database of 96.000 frames into a Principal Component Analysis (PCA). By this

we extract the average deformation gradient S̄ ∈ R3m×3 and a matrix of the

l most important eigen-gradients Seg ∈ R3m×3l encoding the main deviations

from S̄ (Fig. 7.1).

165



7. Face Tracking from Single Images

Figure 7.1.: The eight largest eigen-gradients represent meaningful facial ac-

tions. For each pair the left and the right face show the lower and upper range

of a specific deformation parameter.

Given l deformation parameters (s1, . . . , sl), we assemble a 3l× 3 parameter

matrix

s =


s1

s1
s1

...
sl

sl
sl


and express an deformation gradient S as a linear combination of eigen-gradients:

S = S̄ + Seg · s

We approximate each deformation gradient Sf by such a low dimensional pa-

rameter matrix sf , represented as a point sf = (sf,1, . . . , sf,l)
T in deformation

space. In the following derivation we switch between the matrix and vector no-

tation where appropriate, but since a deformation gradient S is always encoded

as a matrix it will become clear from the context which notation is meant. An

166



7.1. Deformation Space

animation snippet then is a trajectory in this deformation space represented as

a k · l dimensional vector (sT1 , . . . , s
T
k )T .

7.1.3. Transforming Deformations to Shapes

For our face tracking algorithm we need to be able to compute the actual

geometry, i.e. the vertex positions of a mesh, given a point in deformation

space. As described in [BSPG06], deformation gradients S computed from a

pair (A,A′) can be applied to a new mesh B – having the same topology as A

– to produce a mesh B′ showing a similar deformation. The vertex positions

p′ ∈ Rn×3 of the mesh B′ are computed by solving the linear system

GTDGp′ = GTDS ,

where G ∈ R3m×n and D ∈ R3m×3m are the gradient and area matrix of B.

Observe that GTDG evaluates to the well known cotangent Laplace matrix.

Since this matrix does not have full rank, one normally augments the linear

system with additional constraints, e.g., by fixing some vertex to a certain

position in space. Instead of fixing the position of an arbitrary vertex, we

suggest to use a Tikhonov regularization [PTVF07], which adds the identity

matrix I scaled by a small value ε to the system. We select ε = trace(GTDG) ·
10−6, which affects the solution of the system only slightly:

(GTDG + ε · I)p = GTDS .

Now the system is invertible and we can express the new vertex positions as a

linear combination of deformation parameters s:

p = (GTDG + ε · I)−1GTD(S̄ + Seg · s)

= MDS · s + bDS

with

MDS = (GTDG + ε · I)−1GTDSeg ∈ Rn×3l

bDS = (GTDG + ε · I)−1GTDS̄ ∈ Rn×3 .

Note that the gradient and area matrices need to be derived only once from

the reference mesh – i.e. the mesh of the neutral face of a specific person –
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Figure 7.2.: Approximation error obtained using different numbers of eigenvec-

tors in a standard shape space and in our suggested deformation space. For a

small number of parameters the deformation space is able to approximate faces

significantly better than a standard shape model.

and so MDS and bDS have to be precomputed once for each person but the

deformation gradient model (S̄,Seg) itself is independent from the individual

person.

A standard shape model, computed from the distribution of the vertex posi-

tions, simultaneously encodes individual shapes as well as deformations. There-

fore the variance in such a model is higher than the variance of the pure de-

formation gradient data, where we factor out the “shape” component leading

to more coherence. This in turn results in a more compact representation in

deformation space and thus requires fewer parameters for the actual tracking

procedure. In Figure 7.2 we compare the approximation power of the deforma-

tion gradient space with that of shape space. For this we successively used more

and more eigenvectors to approximate the faces in our database and measured

the error based on the vertex distances between reconstruction and original

mesh. To compute the matrices MDS and bDS we used the mesh of the neu-

tral face of the respective person. When employing only a few eigen-gradients,

the deformation space representation actually shows a much better approxima-

tion error than a standard shape model which allows us to use fewer parameters

during tracking. Thus our deformation space representation is a very natural
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7.2. Expression tracking

model for face tracking where the deformation state of the face changes over

the sequence but not the underlying physiognomy.

7.2. Expression tracking

The input to our tracking procedure is a sequence of facial images. To get the

initial shape of the neutral face, as seen in the first frame, one can, e.g., use

an approach similar to [BV99] to optimize shape parameters of a morphable

model obtained from the neutral expressions of the database. From such a

reconstruction we compute the constant gradient and diagonal matrices G and

D, and thereby MDS and bDS .

To each frame of our video sequence we fit an 2D AAM [MB04] in order

to detect the facial features around the eyes, the nose and the mouth. This

captures the individual features of the person to be tracked. The remaining

part of the tracking algorithm is completely independent from the individual

face. Let the 2D feature positions in the current frame f be a = (a1, . . . ,a|a|).

For the rigid motion we allow three degrees of freedom for the translation

t = (tx, ty, tz)
T and three degrees of freedom for the rotations, parametrized

by Euler angles ωωω = (α, β, γ)T , such that rigid motion parameters are defined

by r = (α, β, γ, tx, ty, tz)
T . Given the 2D feature positions we want to compute

the most probable deformation parameters s as well as rigid motion parameters

r, such that

1. The projections of the 3D feature points – i.e. vertices of the resulting

face template corresponding to the 2D features – are close to the points

a in image space.

2. The sequence r̃ = (rTf−k+1, . . . , r
T
f−1)T of rigid motion parameters already

computed for the k − 1 previous frames is smoothly extended

3. The sequence s̃ = (sTf−k+1, . . . , s
T
f−1)T of deformation parameters en-

coding the already computed animation of the k − 1 previous frames is

reasonably continued
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7. Face Tracking from Single Images

Similar to Weise [WBLP11], we formulate this optimization as a maximum a

posteriori estimation

(s, r)∗ = arg max
s,r

p(s, r|a, s̃, r̃)

where p(·|·) represents the conditional probability. Using Bayes’ rule and the

independence of rigid motion and deformation we can split this into three

probabilities

(s, r)∗ = arg max
s,r

p(a|s, r)︸ ︷︷ ︸
likelihood

· p(r, r̃)︸ ︷︷ ︸
rigid prior

· p(s, s̃)︸ ︷︷ ︸
shape prior

and iteratively maximize this probability by computing the minimum of its

negative logarithm:

E(s, r) = − ln p(a|s, r)− ln p(r, r̃)− ln p(s, s̃) (7.1)

In what follows we explain the individual terms of this energy function and

show how to minimize it using least squares optimization (cf. Section 2.1).

Therefore we express the terms by residual functions and give their derivatives

w.r.t. the parameters s and r.

7.2.1. Likelihood of the AAM

Intuitively, the observed facial feature positions ai are a probable explanation

of the projected feature points qi, if the distances between those points in

image space are small. This can be modeled by the probability

p(a|s, r) =

|a|∏
i=1

1

2πσaam
e
− ‖qi−ai‖

2

(2σaam)2 ,

where σaam controls the kernel size of the probability function. The negative

logarithm of this expression evaluates to an energy term of the form

Eaam(s, r) = λaam ·
|a|∑
i=1

‖qi − ai‖2 = λaam · gTg

where λaam is a constant dependent on the kernel parameter σaam and g is

the concatenation of the residuals gi = qi − ai. In order to compute the 2D
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7.2. Expression tracking

positions qi we only need to project those 3D vertices pj of the face model,

corresponding to the facial feature points ai. Therefore we define a selection

matrix N ∈ R|a|×n as

Ni,j =

{
1 if ai corresponds to pj

0 otherwise

By taking the respective rows Ni,· we can directly compute the 3D positions

of the i-th facial feature point given a set of deformation parameters

pj = [ Ni,· · (MDS · s + bDS) ]T

Then the points are transformed according to the rigid motion parameters and

projected into the image by using the camera’s intrinsic calibration matrix

K ∈ R3×3, such that

qi =

(
a

c
,
b

c

)T
(7.2)

where (
a
b
c

)
= K · (R0 ·Rα ·Rβ ·Rγ · pj + t) (7.3)

In order to avoid the problem of a Gimbal lock, we compute an initial rotation

R0 ∈ R3×3 for the first frame of the sequence and start the tracking with

α = β = γ = 0.

Jacobian of the residual function. Since the positions ai of the 2D feature

points are constant, the gradient of the residual function g(s, r) simply evalu-

ates to
∂gj
∂(s, r)

=
∂qj
∂(s, r)

∈ R2×(l+6)

where we restrict the computation to only one feature point i. With Equa-

tion 7.2 and 7.3, the gradient of the projected vertex positions w.r.t. any

parameter x ∈ (s, r) can be computed as

∂qj
∂x

=

 ∂a
∂x
·c− ∂c

∂x
·a

c2
∂b
∂x
·c− ∂c

∂x
·b

c2


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7. Face Tracking from Single Images

While the derivative w.r.t. to the parameter α (the remaining parameters of

the rigid motion r are computed analogously) is given by

∂
(
a
b
c

)
∂α

= K ·R0 ·
∂Rα

∂α
·Rβ ·Rγ · pj

the derivative w.r.t. to the deformation parameters s evaluates to

∂
(
a
b
c

)
∂si

= K ·R0 ·Rα ·Rβ ·Rγ ·

 MDS(j, 3 · i)
MDS(j, 3 · i+ 1)

MDS(j, 3 · i+ 2)


7.2.2. Rigid motion prior

We consider the rigid motion of an animation as probable, if linear and rota-

tional acceleration are small. Acceleration can be estimated by computing the

second derivative of the position and rotation w.r.t. time. Instead of using

a higher order interpolation taking k − 1 previous frames into account we de-

cided to use a simple backwards scheme to estimate the acceleration from two

previous frames only:

ẗ =
t− 2tf−1 + tf−2

dt2

ω̈ωω =
ωωω − 2ωωωf−1 +ωωωf−2

dt2

The probability of a plausible rigid movement, i.e. with low acceleration, then

is given by

p(r, r̃) =
1

(2π)3 · √σt · σω
· e−

‖ẗ‖2
2σt
− ‖ω̈ωω‖

2

2σω

which again boils down to a simple energy term Erigid when applying the

negative logarithm

Erigid(r, r̃) = λt · ẗT · ẗ + λω · ω̈ωωT · ω̈ωω

where λt and λω are constants controlling the influence of this energy term and

depending on the kernel parameters σr and σω.
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7.2. Expression tracking

Figure 7.3.: Our tracking approach allows to directly transfer an expression

to other faces. In this example we demonstrate the re-targeting of facial ex-

pressions by carrying over an tracking result of an intermediate frame to four

different facial shapes.

Jacobians of the residual functions. The Jacobians of the residual functions

ẗ and ω̈ are both of dimension R3×(6+l). Since both functions depend only on

the rigid parameters t or ω they can be handled analogously and for simplicity

we only present the Jacobean of ẗ w.r.t to the parameter tx which evaluates to

∂ẗ

∂tx
=

1

dt2

7.2.3. Shape deformation prior

In Section 7.1.1 we explained how to split the animations in our database into

snippets. Each snippet can be represented by concatenating its sequence of

deformation parameters (s̃T , sT )T to a k ·l dimensional vector. Similar to Weise

et al. [WBLP11] we compute a Gaussian Mixture Model (cf. Section 2.2.2)

to estimate the likelihood of a given animation snippet w.r.t. our observed

animation data stored in the database. The main difference to the original

approach of Weise is that our deformation gradient model is independent of

individual faces and needs to be computed only once.

A Gaussian Mixture Model is able to approximate complex data distributions

by a set of local Gaussian models. Given weights πi, center positions of local

Gaussian kernels µµµi and covariance matrices ΣΣΣi one can compute the probability

of a point x ∈ Rd as a sum of normal distributions

pGM (x) =
∑
i

πi
1√

(2π)d|ΣΣΣi|
e−

1
2

(x−µµµi)TΣΣΣ−1
i (x−µµµi) (7.4)
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7. Face Tracking from Single Images

In our setting the goal is to compute a probability value for a given animation

snippet. The snippet representation still contains a lot of redundancy and with

typical values for k = 3 and l = 15 is rather high dimensional. Silverman

theoretically derived that the number of samples, needed to compute a density

distribution function, grows exponentially with the dimensions of the samples

[Sil86]. So we decided to learn the Gaussian Mixture Model in a space of

reduced dimensionality obtained by a PCA and thereby stabilize the learning

procedure.

Training the parameters of the mixture model. Performing a PCA on the

snippet coefficients y = (s̃T , sT )T results in a vector ȳ ∈ Rk·l representing

the average coefficient and a matrix A ∈ R(k·l)×d storing the main variations

modes w.r.t. the average deformation. Keeping 99% of the energy reduces the

dimensionality with the above parameters to d = 20. We define the sample

points x to be the compact representation of the snippet coefficients y

x = AT · (y − ȳ)

and employ the EM Algorithm [Bil98] to robustly learn the parameters πi ∈ R,

µµµi ∈ Rd and ΣΣΣi ∈ Rd×d in this reduced space. Finally we define the last energy

term as

Eshape(s, s̃) = − ln(pGM (AT · (y − ȳ)))

Considering this equation, it becomes clear, that it does not directly fit the

requirements of a quadratic function, needed to directly apply the Levenberg

Marquard algorithm. We therefore introduce a the residual function

h =
√
− ln(pGM (AT · (y − ȳ))) ∈ R

and write the energy of the shape deformation prior as Eshape = hT ·h instead.

Jacobian of the residual function. Similar to separating the snippet coeffi-

cients y ∈ Rk·l into a part s̃ (previous frames) and a part s (actual frame)

we similarly divide the matrix A =

[
As̃

As

]
∈ Rk·l×d and the vector ȳ =
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7.3. Re-Targeting Facial Animations

[
ȳs̃

ȳs

]
∈ Rk·l, where As ∈ Rl×d and ȳs ∈ Rl. Then we can rewrite the

exponent of Equation 7.4 and express this as a quadratic function of the form

f(y) = (x−µµµi)TΣΣΣ−1
i (x−µµµi)

= sTEEEis + 2 ·FFFTi s + bi

where

EEEi = As ·ΣΣΣ−1
i · A

T
s ∈ Rl×l

FFF i = As ·ΣΣΣ−1
i · λλλi ∈ Rl

bi = λλλTi ·ΣΣΣ−1
i · λλλi ∈ R and

λλλi = ATs̃ · s̃ +AT · ȳ −µµµi ∈ Rd

are constant matrices and vectors. Since the derivative of the residual function

h w.r.t. to the rigid parameters is zero, we restrict the computation of the

Jacobian to the deformation parameters s, which is given by

h(s, s̃)

∂s
=

1

2
√
Eshape(s, s̃) · pGM (x)

·
∑
i

πi
e−

1
2
f(y)√

(2π)d|ΣΣΣi|
·
(
sTEi + Fi

T
)
∈ R1×l

7.2.4. Optimization

Using the residual functions and their Jacobians defined in the previous sec-

tions, we can rewrite Equation 7.1 and formulate the tracking as a least squares

optimization problem

E(r, s) = λaam · gTg + λt · ẗT · ẗ + λω · ω̈ωωT · ω̈ωω + hTh

We use the Levenberg Marquard Algorithm, which is detailed in Section 2.1,

to iteratively compute updates (∆s,∆t) for the rigid transformation and the

deformation parameters.

7.3. Re-Targeting Facial Animations

Mapping the tracking result (s, r) of a single frame to another physiognomy

encoded as a mesh B is peculiar easy. Therefore we only need to precompute
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7. Face Tracking from Single Images

the matrix MDS and the vector bDS depending on the shape of B (cf. Section

7.1.3) and compute the new vertex positions of B as

p(s, r) = Rα ·Rβ ·Rγ · (MDS · s + bDS) + t

In Figure 7.3 we exemplarily re-target a facial expression from an intermediate

frame to the faces of four different persons.

7.4. Results

We run all our experiments on an Intel® Core™ i7 CPU with 2.67GHz and

used a Stingray F-046B camera for the capture. Since the suggested sys-

tem has only to fulfill a few constraints (AAM vertex positions) and is mini-

mally parametrized using the deformation space formulation, our Levenberg-

Marquard [PTVF07] implementation only needs 16 milliseconds on average to

optimize the energy function in each frame. Using the approach of Matthews

[MB04] fitting an AAM to one frame takes 20ms. By parallelizing the 3D face

tracking in a given frame with the AAM computation of the next frame we

obtain a frame rate of 40 fps with one frame latency.

Our experiments indicated that using rather small snippets (k = 3) is a good

choice to predict the facial movement. This is not surprising when considering

the fact that facial movements are quite fast: even at capture rates of 40 frames

it takes only 3 to 5 frames to change a facial expression from, e.g., “neutral”

to “surprised”. For all our experiments we used 45 Gaussians to train the

Gaussian Mixture Model.

In Figure 7.5 and the accompanying video we used sequences of a length of up

to 10 seconds and show results produced with our system. In each experiment

we excluded the facial movements of the tracked person from the database. The

left image in each example shows one image of a video sequence overlayed with

the detected facial feature points. The middle image shows the result produced

by our tracking approach. Since we used our own multiview stereo capture

system to acquire the database we are able to compare our result with a ground

truth 3D stereo reconstruction obtained from a 4 cameras rig (right image). We

use the stereo reconstruction of the neutral face as reference mesh to initialize

the tracking procedure. One can see that the resulting deformations are quite
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7.4. Results

Figure 7.4.: Average distance and standard deviation (in mm) between vertices

of the tracked mesh and a ground truth stereo reconstruction.

similar to the ground truth reconstructions. To quantify this a bit more, we

took the tracking result of one subject performing different facial expressions

and measured in each frame the error as the average distance between vertices of

the tracked mesh and their corresponding vertices of the stereo reconstruction.

This allows us to compute an average error and its standard deviation for each

sequence of approximately 2 seconds length, as shown in Figure 7.4. Except

for the expression ”Vocal O” we observe a rather small average error of about

10-15 millimeters.

Limitations Due to the resolution of our face template, the presented approach

is not intended to generate high quality 3D models from videos and fails to

reproduce details like e.g. wrinkles. In this work we focus on the benefit of

our deformation model for tracking and re-targeting of facial expressions and

only incorporate a simplistic AAM model, which is not trained for large head

rotations and does not incorporate visibility checks. Due to this the tracking

can become unstable if large head rotations are involved.
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7. Face Tracking from Single Images

Figure 7.5.: Results produced with our system. Each block contains an image

of the video sequence (left), the result produced with our system (middle) and

the corresponding 3D stereo reconstruction as a ground truth comparison. The

results of our system are quite similar to the baseline.
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8. Conclusion

In this thesis we studied image based techniques to realistically reconstruct and

synthesize dynamic facial expressions. We designed new reconstruction systems

for the purpose to obtain a large database of facial expressions performed by a

wide variety of different actors. Based on this data, we proposed a new dynamic

model for facial movements and studied its applicability for facial performance

capture. In what follows we will summarize our contributions in detail and

discuss possible future work as an outlook.

Summary

To better solve the initialization process of any 3D stereo reconstruction ap-

proach, which involves the triangulation of facial feature points (i.e. extraor-

dinary points around the nose, the eyes and the mouth), we proposed a new

method to localize those facial features in 2D image space. Adopting the frame-

work of Kozakaya [KSYY10], we introduced a new way to deduce offset vectors

pointing to facial feature, without using any time consuming search algorithm.

The key contribution was a compact codebook learned by performing a princi-

pal component analysis on a set of HOGs and offset vectors pointing towards

the facial features. After the codebook was algorithmically learned, we could

use it to obtain the most probable offset vectors from a specific image segment

towards facial features. Doing this for many image segments leads to many

votes for the location of facial features, from which we could precisely deter-

mine the positions of the facial features. By using PCA to compute the compact

codebook we can control the tradeoff between storage size and accuracy of the

localization process and show that even on low memory consumption, it can

compete with state-of-the-art detection methods regarding accuracy and de-

tection time. Our experiments additionally showed that the approach is able

to handle partial occlusion of the face very robustly.
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8. Conclusion

We introduced and compared new systems to marker-less reconstruct dy-

namic facial expressions. Both systems are able to establish inter-subject

correspondences as well as temporal correspondence and we showed that this

property is important for application like automatic facial modeling, expression

blending, attenuation and transfer. The systems use 3D stereo reconstruction

to compute 3D surfaces from 2D images. Since this requires accurately cali-

brated cameras we introduced a new, practical and fully automatic calibration

technique, which is based on Zhang’s camera calibration method [Zha00]. It

robustly detects LED lamps embedded in a planar surface and automatically

computes the intrinsic and extrinsic camera parameters for a multi-camera rig.

The quality of most 3D stereo approaches usually strongly depends on the

initially estimated depth of the surface to be reconstructed w.r.t. to the camera.

To stabilize stereo reconstruction for human skin, which often appears quite ho-

mogeneous in low resolution images, we introduced initialization methods which

are based on triangulated facial feature points. We showed that a morphable

model for a static, neutral face is able to produce a more accurate initialization

than simple deformation techniques. Nevertheless, it comes with the expense

of a more complicated setup, which involves the scanning of several different

faces, followed by a PCA-based learning approach. Seen from a practical point

of view, we come to the conclusion, that in combination with a simple point

based stereo reconstruction technique, the initialization based on an as-rigid-

as-possible deformation step is superior to the more accurate morphable model

initialization, combined with a sufel based reconstruction approach. Although

the surfel based reconstruction is mathematicaly more elegant and potentially

produces much more accurate reconstructions, which we showed in our exper-

iments, in practice it has more problems with bad surface initializations than

the point based approach. This is because the surfel based technique can only

find the optimal correspondences, if the correlation window partially overlaps

with the image region, which contains the optimal correspondence. In contrast

to this, point based reconstruction is searching for the best correspondences by

traversing different image regions.

Instead of using optical flow methods [HS80] to establish temporal correspon-

dences, we proposed a new mesh based tracking approach. It has the advantage

that it can handle discontinuities at the eyes and the mouth very naturally: By
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changing the topology of the image mesh we insert holes at mouth and the

eyes, such that we simply remove the smoothness constraint in those regions.

More concretely this means that upper and lower parts of the eyes and lips can

move independently from each other. Our new mesh based tracking approach

is based on the inverse compositional image alignment [BM04]. By changing

the role of reference and the comparison mesh, we significantly improved the

running time, while still obtaining accurate tracking results.

Our final system design uses this tracking approach in combination with point

based stereo reconstruction to compute a scene flow that drives the deformation

of a generic face template. The system maintains temporal correspondences and

we showed that this allows us to automatically enhance our model by placing

eyes, lids and lashes. It additionally allows us to use deformation transfer for

triangle meshes [SP04] to transfer expressions from one subject to another, to

attenuate expressions or to blend expressions of different subjects.

We used the proposed system design and reconstructed facial expressions

from over 60 different persons. Besides the 6 basic emotions, each persons

performed additional facial expressions, exploiting the numerous degrees of

freedoms of the human face. Finally, the resulting database of facial expressions

was used to introduce a new dynamic morphable face model. By analyzing per

triangle deformation gradients, which encode the difference between a reference

(neutral) face to a face showing a facial expression, we decouple the dynamic

movements of a facial expression from the individual facial shapes. This allows

us to compute a general motion model for facial expressions from the given

database. We show that this model can be used to extrapolate the 3D motion

from the tracking of 2D facial features seen in a single video stream.

Outlook

In future work it would be interesting to further investigate the suggested de-

formation space and the derived motion model. Since it is independent from

individual shapes, it could be used to create better indicator functions to rec-

ognize facial expressions [Bet12]. It would also be interesting to have an even

more complete database containing all possible visems [Fis68] a human face is

able to do. From this database we then could learn more general models for
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8. Conclusion

each of the visems. In combination with speech recognition or speech synthe-

sis, these models could be used to instantaneously transfer facial actions to any

facial shape. By this we could drive any avatar in a computer game, a movie

or in a virtual chatroom.

Our current tracking system focus on the facial region only. But just creating

a realistic facial animation is not a guarantee to overcome the uncanny valley.

For this the whole appearance of the avatar has to be right. This also includes

realistic movements of the head, the eyes and also the neck [LT06, KBB∗08].

Therefore it would be interesting to extend the reconstruction system to re-

liably reconstruct the neck part and to better deal with large head rotations,

which are currently assumed to be rather small. To handle large head rotations

and to capture the neck, the camera rig has to be significantly extended. Addi-

tionally we need automatic reinitialization methods which are able to identify

facial features to compensate for drift and occlusions during video tracking (cf.

Section 6.1).

Besides the installation of additional cameras, the cameras itself should be

improved. To additionally capture fine details of the facial area and the neck, it

is necessary to increase the resolution of the cameras (currently we only capture

images with a resolution of 780×580). We focused in this thesis on pure image

based methods, which are generally able to record data at higher frame rates

than RGB-d cameras (in our setting we captured at 40 fps). But in order to

realistically capture faces including important micro expressions and saccades

[RBQ14, LBB02] one should prefer a setup capable to capture faces at even

higher frame rates.

With additional movements of the head, eyes and the neck at high temporal

and spacial resolutions, the deformation space would be sampled more accurate

and more densely by the captured database. This in turn would not only

stabilize and improve our suggested face tracking approach from single images

but would also produce much more realistic virtual avatars in general.
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