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Chapter 1

Short Summary

Quantum dot systems controlled by external fields which are periodic in time with a frequency (2
have been subject of a lot of experimental research [Pot92,Swi99, Kael5], lately. At the same time a
broad range of theoretical approaches for its description have been developed [Tho83, Bru94, Bro98,
Spl06, Mos02, Pla04]. These systems exhibit interesting effects such as pump mechanisms, where
charge is transported due to the periodic oscillation of the confining potentials without any applied
bias voltage [Swi99, Bro98]. The adiabatic limit of a small driving frequency 2 (compared to all
other energy scales of the system) is a well studied regime, where it can be explicitly taken advantage
of the small parameter 2 [Mos04a, Spl06]. Equally, a very large driving frequency (anti-adiabatic
limit) can be exploited to set up an efficient approach [Het95, Bra08, Crol2b]. However, also the
intermediate regime shows intriguing physics [Mos02, Cav09, Bra08, Cro12b, Cro12a, Kas12]. In any
regime treating a two-particle Coulomb interaction still is an obstacle when describing time periodic
quantum systems [Bru97, Spl06].

The functional renormalization group (FRG) has proved to be an unbiased tool to study correlation
effects for small to intermediate interactions in a wide range of low-dimensional systems [Met12].
Relying on the Wilsonian renormalization group (RG) idea [Wil74], it constitutes a very flexible tool
to be set up in various bases or formulations. The main goal of the present thesis is to set up the
FRG formalism in Floquet space to treat interacting, time periodic quantum dots and to investigate
the consequential renormalization of the parameters and the transport through the dot.

Functional renormalization group in Floquet space

Building upon the time independent, steady state description in frequency space [Kar06, Karl0a,
Jak09] and a time dependent FRG formulation [Kenll, Kenl4], we tackle the steady state of peri-
odically driven quantum dots. We focus on the long time behavior where all transients have died
out, and therefore the entire system is characterized by the same periodicity as given by the driven
external fields. As a consequence, we can transform the according time dependent flow equation to
Floquet space using Floquet-Green's functions [Arr05, Arr06, Tsu08, Ste08, Genl5]. It allows us to
study quantum dot systems in the whole range of driving frequency and amplitude in the presence
of a small Coulomb interaction.

We exemplify the potential of our approach by applying it to the interacting resonant level model
(IRLM), describing an idealized single level quantum dot dominated only by charge fluctuations.
It constitutes an interesting model which is well known for its intriguing renormalization physics
resulting in power law behavior in the renormalized parameters and transport observables [Sch80a,
Sch82a, Bor07, Doy07, Bou08, Kar10c].

Renormalization in time periodic systems: Role of the driving frequency

We investigate the role of the driving frequency 2 in the RG flows of the time periodic parameters
of the IRLM. The small driving amplitude limit allows to complement our numerical solution by
analytic expressions of the renormalization of all dot parameters to the leading order of driving
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amplitude over mean value. Four different configurations are studied, where distinct combinations
of the hopping and/or onsite energy of the dot are chosen to be time periodic. The transparent
structure of the renormalization of the parameters in this limit, allows for an analytic treatment of all
higher harmonics, where k{2 is identified as the relevant energy scale in the kth harmonic, rendering
the mean value independent of the time periodicity. The various protocols reveal very different RG
flows. It ranges from a transparent infrared cutoff k2 yielding an according power law in the driving
frequency to RG flows, which are characterized by an involved interplay of all present energy scales.
Even beyond the small driving amplitude limit the RG flow is discussed with the help of an effective
reservoir distribution function which can be defined in this setup and its form is defined by the ratio
of driving amplitude and frequency [Suz15].

Transport through the interacting time periodic quantum dot

The second focus is directed to the transport in the time periodic quantum dot systems and how it
is affected by the Coulomb interaction. Based on the well studied parameter pump in the adiabatic
limit [Bro98], where two parameters are varied periodically and phase shifted, we like to investigate
the pumped charge in the whole regime of driving frequency and amplitude including interaction
in such a setup. Further a single parameter pump is realized and the charge susceptibility as well
as the mean current are studied. The latter reveals power law behavior on the driving frequency.
A quantum master equation calculation in Floquet-Liouville space complements the FRG results to
study the requirements of such a single parameter quantum pump. Finally, the conductance and
the current are considered for several time periodic hoppings of non-sinusoidal form.



Chapter 2

Introduction

Quantum information processing has recently gained a lot of interest. Its key idea is to exploit
quantum mechanical properties such as e.g. the superposition of states to perform certain numerical
tasks in a more efficient way [DiV95]. Those quantum computers are built of quantum mechanical
bits, so called qubits. One possible realization of such a qubit is a quantum dot, a nanodevice, which
constitutes a spatial confinement in all three dimensions and is therefore considered to be a zero
dimensional system [Han07]. The realization of a quantum computer, which consists of more than
a few qubits and which performs a numerical computation with a certain fidelity still poses a major
challenge asking for further theoretical and experimental research [DiV95]. Among others a detailed
understanding of the transport properties of a quantum dot is required, in particular if Coulomb
interaction is included. Thus, quantum dot systems have been subject of extensive research in
the last years, theoretically as well as experimentally [Han07], and a comprehensive insight of their
physical properties is a step on the route of the development of more complicated components for
possible quantum processing devices.

Time periodically driven systems

One active field of research concentrates on setups with time periodically varying external fields
with a driving frequency 2 [Pla04, Roc13]. A possible application is the quantum pump, where
charge is transported by periodic oscillations of the confining potentials without any applied bias
voltage. Thouless suggested an analogon of the classical peristaltic pump such that by an adiabatic
variation of the external fields, where the driving frequency is small compared to all other energy
scales in the system, quantized particle transport can be observed [Tho83]. This has stimulated
further theoretical research of pumping mechanism in the adiabatic limit [Bro98] as well as beyond
it [Bru94, Het95, Bru97]. According experiments have been realized in the adiabatic limit [Swi99] or
for larger driving frequency [Kael5,Roc13]. The quantization of the transported charge ne has then
led to the idea of a single electron pump [Pot92, Kael5] as well as single electron currents which
could be used as a new standard of the current [Pek13].

The theoretical description of time periodic systems relies mainly on the Floquet theory. It is
based on the Floquet theorem that specifies the class of solutions to periodic linear differential
equation [Flo83]. Using this theorem, the time dependent Schrédinger equation can be brought
to an effective, time independent form in the long-time limit; simplifying the solution signifi-
cantly [Shi65, Gri98, Pla04]. This renders the underlying Fourier basis the appropriate basis for
the description of time periodic problems.

One possible route to describe transport through these systems uses the scattering matrix ap-
proach of Biittiker, Thomas and Prétre [Biit94]. It has been applied to the parameter pump by
Brouwer [Bro98] in the adiabatic limit. Employing Floquet theory, it is extended to the Floquet
scattering theory for arbitrary driving frequency and amplitude [Mos02]. The so-called 'Floquet en-
gineering' constitutes an approach with which the effective, time independent Floquet Hamiltonians
are calculated to describe the dynamics of the system, including transient behavior [Buk15].
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Especially the adiabatic regime of a small driving frequency is well studied, since it can be ex-
plicitly taken advantage of the driving frequency as a small parameter [Ale98, Spl05, Spl06, Riw10,
Mos04a, Mos04b, Riw13]. In the opposite, anti-adiabatic limit the driving frequency constitutes the
largest energy scale, which can be used for an efficient description [Het95, Bra08, Cro12b]. Yet, the
intermediate regime also shows interesting effects such as single parameter pumping and reversion
of the pump direction [Cit03, Cav09, Bra08, Cro12b, Cro12a, Kas12, Kae08].

However, to include Coulomb interaction in the description of the many body problem, still poses a
major challenge [Bru94, Het95, Bru97, Cit03, Spl06, Win13, Hil10, Hil11, Her09, Suz15]. We thus aim
to develop a method with which one can approach interacting, low-dimensional quantum systems,
where the driving amplitude and frequency are not subject to any constraints.

Method Development: Functional Renormalization Group in Floquet Space

The functional renormalization group (FRG) has proven to be a versatile tool to treat low-dimensional
systems with interaction [Met12]. It provides us with an infinite hierarchy of flow equations describ-
ing the complete many body problem and which - when solved exactly - would provide the exact
solution. Only due to the necessary truncation of this hierarchy, the method is restricted to small
to intermediate interactions. FRG has been extended recently to explicitly time dependent Hamil-
tonians [Kenl2a]. With this method it is feasible to tackle the transient as well as the long time
behavior of time dependent quantum systems, including time periodic ones. However, to reach the
steady state is numerically costly in this approach as each time step is calculated explicitly and the
treatment is too involved to derive analytic expressions from this formulation. In this thesis, we aim
at the long time behavior, where all transient dynamics has died out, such that the whole system
has inherited the given periodicity. It is taken explicitly advantage of the time periodicity of the
steady state by using Floquet-Green's functions [Arr05, Arr06, Tsu08, Ste08, Gen15], such that the
flow equation is transformed from its explicitly time dependent formulation to Floquet space.

The quantum dot is modeled as an idealized, single level quantum dot by the interacting reso-
nant level model (IRLM). The influence of the time periodically varied external fields is represented
as usually by time dependent parameters p(t) (referred to as ‘signal’ in the following) in this micro-
scopic model [Bro98,Spl05, Spl06, Hil10, Her09, Haul3, Cav09, Cro12b, Kas12, Mos02, Koh05]. These
signals can be of arbitrary form, e.g.sinusoidal or triangular form, without any restrictions on the
driving amplitude.

One advantage of the method employed in the present work is the opportunity to consider the
renormalization of the dot parameters explicitly and even derive analytic expressions for them in
certain limits. This way we can first understand the renormalization of the parameters, and only
subsequently consider the resulting transport properties. The dependency of the observables on the
renormalized parameters is not always transparent, but the discovered renormalization can guide the
understanding. On the other hand, some observables can even be computed analytically. Here we
benefit from the details of the utilized truncation of the FRG which allows to derive analytic expres-
sions in the non-interacting setup and afterwards substitute the parameters by their renormalized
equivalents. As a consequence, the presentation of the results is twofold: First the renormalization
of the parameters is discussed, the second part illuminates the transport in the interacting setups.

Renormalization physics

The unbiased approach without any asssumptions concerning the time periodicity allows to tackle
the renormalization physics of the periodically driven IRLM. Since it allows to consider the whole
range of driving frequency, the role of the energy scale 2 in the RG flow can be examined. Ear-
lier studies show that the IRLM provides intriguing physics of competing energy scales, where
power law behavior can be observed in the limit of one energy scale much larger than the oth-



ers [Sch80a, Sch82a, Bor07, Bor08, Bou08, Doy07, Karl0c]. Based on this, the role of the driving
frequency 2 as an additional energy scale in the renormalization flow is approached.

First the small amplitude limit is analyzed, which allows to complement the full numerical solu-
tion of the truncated flow equations by analytic expressions for the renormalization of hopping and
onsite energy in four different driving protocols. It makes it feasible to identify the role of 2 and
detect a new power law depending on the driving frequency in one protocol.

Next, the onsite energy is driven periodically with arbitrary driving frequency and amplitude. To
illustrate the physical situation at hand an effective reservoir distribution function is defined: It is
of staircase form with steps at multiples of {2, the ratio of driving amplitude and driving frequency
defines the height of each step. As a consequence, different physical situations can be created by
a certain choice of the ratio, which enable us to examine the influence of the reservoir distribution
function and with this the driving frequency on the RG flow beyond the small amplitude limit.

Transport in periodically driven quantum dots

In the second part we focus on transport in time periodic and interacting dot systems. Transport
in the adiabatic and small amplitude limit is considered in the beginning. It is studied which of the
known physics in the time-independent steady state can be found in the time periodic setup. Starting
from the peristaltic pump [Bro98|, where analytic expressions are available in the small amplitude
limit [Spl07], we explore the pumping setup in the whole regime of frequency and amplitude. We fo-
cus mainly on the pumped charge Q, comparing results in the interacting and non-interacting regime.

Based on the rich renormalization physics observed for the hopping when only this parameter is
periodically varied, transport in this setup is considered. The charge susceptibility as well as the
mean current are examined here for a single parameter pump realized by an harmonic driving. The
dc current is calculated in two different ways: FRG calculations are supplemented by quantum mas-
ter equation calculations in Floquet space for a finite temperature. With this we demonstrate that
a finite current can be obtained already via quantum master equations. Finally, conductance and
current are regarded for non-sinusoidal signals of the hopping.

Outline

The outline of the present thesis is as follows: The subsequent Chapter 3 introduces the interacting
resonant level model as the main model of interest. A short introduction in the known equilibrium
physics is given. The Keldysh Green's functions are introduced and their generating functionals
are defined in Chapter 4. Subsequently, these Green's functions are transformed to Floquet space,
using the Fourier basis as a convenient basis to treat time periodically driven systems. This is
complemented by an explanation of the reservoir dressed Green's function to treat the open system
and finally the single-particle observables are defined. Next, the functional renormalization group is
introduced and the flow equations derived in Chapter 5. The truncation is chosen and the resulting
flow equation from the explicit time dependent formulation transformed to Floquet space. The
methodical part of the thesis is finished by the presentation of the perturbation theory calculation
in Floquet-Liouville space with the Markov approximation of Chapter 6. Thereafter the functional
renormalization group in Floquet space is used to examine the renormalization in periodically driven
quantum dots (Chapter 7) and the transport in interacting quantum dot systems is considered
(Chapter 8). In Chapter 9 we draw a conclusion and a short outlook is given.






Chapter 3

Model: Interacting Resonant Level Model

Contents
3.1 Open quantum dot system 9
3.2 Field theoretical IRLM 10
3.3 Three site IRLM 10
3.4 Transformation of the time dependency of the chemical potential 12
3.5 The equilibrium IRLM 13

The present chapter starts with introducing a general few level quantum dot model which can
be investigated employing the method devised within our work. We then focus on the interacting
resonant level model (IRLM), the main model tackled in the present thesis. It is a prototype
model of a single level quantum dot dominated by charge fluctuations. This rather simple model
shows divergencies in the wide band limit when tackled by ordinary perturbation theory, requiring for
alternative methods. Several approaches have been employed [Noz69, Fil81,Sch80a,Sch80b, Sch82a,
Sch82b,Sch82c¢, Doy07, Bor07, Bou08] including the FRG [Karl0c, Ken12a] utilized here. It has been
demonstrated that the IRLM is characterized by intriguing power law behavior in the equilibrium as
well as the non-equilibrium.

After the introduction of the well known field-theoretical realization of the IRLM, it is discussed
how it can be realized by a three site model to include the interaction as an on-dot parameter, as
necessary for our approach. For this, the wide band limit of a large structureless band is employed.
This is followed by an explanation of a gauge transformation to shift the time-dependency of the
chemical potentials of the reservoirs to a phase of the hopping elements in the wide band limit.
Finally the known physics in equilibrium is reviewed including a short discussion of the failure of
the perturbation theory and the power law behavior in equilibrium yielding to the definition of a
low-energy scale Tk.

3.1 Open quantum dot system

The method devised in the present thesis is applicable to any few level quantum dot with a Hamil-
tonian of the form

H(t) = Haot(t) + D [Heoupa(t) + Hres,al (3.1.1)

with a general dot Hamiltonian, which consists of a single particle term and the properly anti-
symmetrized matrix element of the two-particle interaction,

Haor0(t) = Z e;(t)d] d, (3.1.2)
i

Haotint(t) = Z Ujjua () d,-TdJ-Td/dk : (3.1.3)
ijki
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€j; describes the on dot hopping terms as well as the onsite energy, while the two-particle interaction
describes the Coulomb interaction. Here d(f), d are annihilation (creation) operators on the dot and
the 7, /, k, I label the levels of the dot. The two leads (« € R, L) are modeled as non-interacting and
are tunnel-coupled to the dot

Hcoup,a(t) = Z qu,‘(t) dl-Tan + H.C., (3]_4.)
i,qa

Hres,a = Z €q4 Cgu Cgor (315)
da

(1)

o

with annihilation (creation) operators ¢g,’ of reservoir electrons. Any of the parameters indicated
by the argument t can be assumed to be time periodic with the same period T.

Initial statistics

The initial density matrix at time tg is assumed to be of the form
po=p(t =to) = p5 @ Pl @ pirso @ .. ® Pl (3.1.6)

with the reservoirs in grand-canonical equilibrium

p:f’s() — e_(Hres‘a_/LaNa)/Ta /Tr e_(Hres,a_,“'aNa)/Ta . (317)
with temperature T, particle number operator N, = an cga Cq., and chemical potential p,. For

t < tp the dot is assumed to be empty and decoupled.

3.2 Field theoretical IRLM

The interacting resonant level model is characterized by the following dot and coupling Hamiltonian

Hiot = edd | (3.2.1)
_ ta(t) p, 1 bo(t) .
Heowp = > (dTcga +Hec) + <d d—3 > ~0y  Calqan  (322)
q,a=L,R Po q,9' ,a=L,R Pa

where the dot and reservoir creation (annihilation) operators are denoted by d(d) and cq,a(cj;va),
(0)

respectively. : ... : indicates normal ordering, p’ is the reservoir density of states at the Fermi level
and is specified in Eq. (3.3.5). We define the mean tunneling rate as

ra,O = 7T|ta,0|2pa(w) , (323)

where t, o indicates the time averaged mean value of t,(t), po(w) is the reservoir density of states
and is specified for the wide band limit in Eq. (3.3.4).

3.3 Three site IRLM

The field theoretical model is not of the form proposed in Egs.(3.1.1) to (3.1.5), such that an
appropriate realization of the model is necessary. Hence, we define a dot Hamiltonian

Haoro = €(t) na — [TL(t) didy + 1r(t) dids + H.c.} , (3.3.1)

= 00 [(m- D) (-2 (D) (=) 2

The IRLM is thus modeled by a three site central region where the site with index 2 models
the quantum dot and the first and third site model the first site of the left and right reservoir,
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w(t),U) =), U()

pr(t)

Figure 3.1: The three site realization of the interacting resonant level model employing the wide band limit
by v > 7 r, €. Any of the parameter as indicated can be chosen time periodic.

respectively. The quantum dot might be subject to a gate voltage determining the onsite energy ¢,
where € = 0 defines the particle hole symmetric point. The Coulomb interaction is introduced as a
density-density interaction between the electron on the dot and one on the first site of the left/right
reservoir, written in a particle hole symmetric form. We consider both cases of positive and negative
interaction. A possible realization of the latter might be a quantum dot coupled to phonons, with
the phonon frequency in the adiabatic limit [Eid13]. The bandwidth in this model is defined by

D = D, = |v[*mpa(w), (3.3.3)

where v is the k, independent coupling and p,{(w) is the reservoir density of states. The field
theoretical model can be realized properly by the three site model in the so-called wide band limit.

Wide band limit

We are not interested in the details of the reservoirs and employ the wide band limit of a structureless,
large band as well as couplings independent of the wave vector k,. The local density of states in
the reservoirs is

1
palw) = —5 > 6w — €ak — pa) . (3.3.4)
P’ g
which for convenience can be chosen as a symmetric Lorentzian
D? . 0 1

and subsequently apply the limit of D — oc. In the three site model this corresponds to setting
v > TR, €]

Relation to the field theoretical model

Next, the parameters of both models are examined to understand their relation and to demonstrate
that indeed the three site model correctly reproduces the field theoretical IRLM, when employing
the wide band limit v — oo (D — o). The hopping elements of the two models are related as
follows _

To = taVTD — s o0 . (3.3.6)

D—co
However, inserting this into the definition of the hybridization of Eq.(3.2.3), the effective hy-
bridization /7, between the dot and the first site of left/right reservoir of the (effective) one dot
structure can be defined as
2 2

T (to)*7D  tim
= &= t. 3.7
) 5 oo const.., (3.3.7)
which stays constant in this limit. As a consequence, the effective reservoir density of states when
regarding the site 2 as the dot, is of Lorentzian shape with a width of 4/14. The relation of the two
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particle interaction in both realizations of the model is U = % such that

o

Un UomD  tim
D — - t. 3.
u/ o5 D po cons (3.3.8)

Throughout the present work all functional renormalization group calculations are employed for
the three site model, while the perturbative calculation in Liouville space presented in Chapter 6

are made in the field theoretical model. One might wonder at this point that the factors t“((tg)

Pa
””(g)t) of the Hamiltonian in Eq. (3.2.2) diverge in the wide band limit. However, it still allows for a
P,

and

senseful (and even perturbative) approach, which becomes apparent, when defining the according
reservoir field operator in Eq. (6.1.20).

If the three site model is considered to be deep in the wide band limit (with a finite, but large
enough D), both models yield consistent results.

3.4 Transformation of the time dependency of the chemical
potential

Even though in general a time dependent onsite energy in the leads is not treatable, the wide band
limit allows to perform a gauge transformation that shifts the time periodicity of the reservoir onsite
energy to a phase of the hopping elements to the dot

T0 — Toeifot u(t')dt" (3.4.1)

As a consequence, for the IRLM in the wide band limit the reservoir onsite energy can be driven
time periodically as well.

The transformation follows the idea as presented in Ref. [Kenl2b], and is equivalent to the
approaches of Refs. [Spl07, KamO00, Str05, Kwal0]. In the wide band limit raising the filling of the
lead, i.e. the chemical potential is equivalent to raising the energy levels. We rewrite the reservoir
Hamiltonian in the Wannier basis [Jak09, Ken11] and include the first and third site to the effective
left/right reservoir

o

He eff res = Z(ea + /,La(t))afn’aam,a — (vaajnﬂvaam,a +H.c), (3.4.2)

m=0

with di = d; and dr = d3 as well as ap,, = do, and ami1.0 = Cma-
The gauge transformation is defined as

H= G(t)H(t)GT(t) +iG(t)Gi(t), (3.4.3)
with
6(t) = & T Tt ~ T[S 7(%“/{”%)' | (3.4.4)
a m | ’

where nm o = al, yama, Pa(0) =0 and bu(t) = pa(t).
We need to calculate the commutators

[G(t), H(t)] = [G(t), Haot,0(t)] + [G(t), Haot,int(t)] + [G(t), Hiead,a(t)] . (3.45)

assuming the known fermionic relations {am,a,aila,} = Omndaar with {-,-} denoting the anti-
commutator. Because

[Pm,as ”j,a’] =0 (3.4.6)
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for all m,j € N and o, @’ € {L, R}, the only non-vanishing commutators are of the form

[6(2), (t)of ] = [HHZW.TRWM]
a m | ’

i n i n (d)R(t)nO,R)l
= e/ 2om 2O o 3oy PR()MmR lz fvTR(t)dQTd?, , (3.4.7)
I

with the left hand side as well as the hermitian conjugate terms behaving analogously. Concentrating
on the commutator with ng g = n3 leads to

5o e (o) 4 = () DS ()40, o)+

! ! k=0
/-1

= 7r(®) Y0 OO S ) (e () 4

i ’ k=0
_ (%r(1) = (K, i ot vk
-mo S () - ey my 2y

i

= 1r(t) Z 7(¢R/(It)) [(n3 —1)" + n]

)
= rr(t)d}ds (e’¢R<"3+1> - ef¢R<"3>) . (3.4.8)

As a result the transformed Hamiltonian reads

H = G(£)Haot,0() GT(t) + Haotint(t) + Hiead a(t) + Heoupa(t) = Y D Palt)nm

[e3% m

—e(t) m + (TLemL(t)ledz +TRe—i¢R(t)d;Fd3 + H.c.)

(o) (e o) o)

+ Z Zeaainam — (vaajnﬂyaam,a +H.c), (3.4.9)

where the last term in the first line cancels the time periodic chemical potentials in the leads and
the hopping elements have gathered a phase, which can be understood as a phase acquired by an
electron when traversing an electrical field created by the chemical potentials in the leads [Spl07].

3.5 The equilibrium IRLM

Already now the basic equilibrium renormalization physics of the IRLM is discussed. An ordinary
perturbation theory calculation motivates the application of a RG method to this model, and the
known equilibrium physics is sketched in order to define the low energy scale Tk. A more detailed
discussion is presented after the FRG is introduced in Section 7.1, Sections 7.2 and 7.3 introduce
the renormalization physics of the non-equilibrium and time-dependent IRLM, accordingly.

Perturbation theory fails in the wide band limit

A naive perturbation theory calculation to the first order in the interaction U reveals why a
renormalization group approach is necessary to treat the IRLM in the wide band limit. Cal-
culating the first order self-energy contribution to the hopping element 7. = 7R = 79 results
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el /T,

Figure 3.2: The dot occupancy as a function of the onsite energy €. In the left panel € is scaled in microscopic
parameters, which is compared to € scaled with the renormalized, equilibrium energy scale Tk
in the right panel. Rescaling ¢ with Tk recovers for the interacting system the form of the
non-interacting system, such that the main effect of the interaction is encoded in the low
energy scale Tk. For vanishing interaction Tk = 4/14. We choose U/D = {0.,0.2} with
Tk = {2.5-107%,7.93-107°}.

in [Noz69, Fil81, Sch80b, Sch82a, Ken14]

T _ U To n 1—/1—872/D?
°© 0 2D\ /1-82/D 1- 812/ D2
U 278
~ T0 — 777DT0 In (DZ) . (351)

While employing the wide band limit D — oo results in a logarithmic divergency, already a large,
but finite bandwidth D restricts the valid interaction regime to a minimum. Several methods have
been devised to circumvent it [Noz69, Fil81, Sch80b, Sch82a, Sch82b, Sch82c], where one possibility
is the functional RG approach. It employs the renormalization group idea [KarlOc|, where leading
logarithmic terms are summed up throughout the renormalization flow yielding power law behavior
characteristic for the IRLM.

Low-energy scale Tk

In the equilibrium setup a renormalized hopping element can be defined and follows a power law
[Bor07, Doy07, Bor08, Kar10c]

_u 2
7.‘:;en 7 27_02 =5 +O(U7)
D2

forlef <« Tk < D, (3.5.2)

70

where we have already used the energy scale Tk, which is defined next.
Calculating the charge susceptibility

__dn

== (3.5.3)

X

e=0
with the dot occupancy defined in Eq. (4.6.3) in a non-interacting setup and substituting the param-

eters by the renormalized equivalents ! reveals that the charge susceptibility is mainly characterized
by the renormalized hoppings [Karl0Oc]. It hence reflects their power-law behavior

2U 2
7o\ =0 TOW)
~(3) (3.5.4)

IWe will show at a later stage that in the formulation of the approach employed here, non-interacting expressions
for observables still hold true for the interacting setup, when the parameters are substituted by the renormalized
ones.
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and can be used to define a renormalized, low-energy scale Ty for the equilibrium setup as

—T

Tk =—,
K 2X

(3.5.5)
which proved to be a useful definition [Kar10b,And11la,And11b,Kenl2a]. To illustrate the benefit of
this low-energy scale the occupancy is displayed in Fig. 3.2 for the setup with and without interaction.
To obtain this figure the method employed in the present thesis is used already here, where further
details are explained in Chapters 4 and 5. The dot occupancy n is depicted as a function of onsite
energy € scaled by the microscopic parameters on the one hand and scaled by the low-energy scale Tk
on the other hand. While in the former case, the characteristic step is broadened by the influence of
the interaction, rescaling with the renormalized energy scale recovers the form of the non-interacting

setup. Hence, the main effect of the interaction in the equilibrium setup is encoded in Tk. This
renormalized energy scales is the emergent low energy scale of the model.
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The functional renormalization group (FRG) method we employ in the present thesis relies on
the Green’s function formalism. This chapter is thus dedicated to revisit the concept of Green's
functions, explain the Keldysh formalism necessary for the non-equilibrium setups and introduces
coherent states and the functional integral representation of Green's functions. Subsequently the
generating functionals of the time dependent Green's functions are introduced, necessary for the
derivation of the FRG in the next chapter. In the second half of the chapter the Floquet theory is
introduced and the resulting transformation of the Green's functions to Floquet space is presented
for an efficient description of the steady state of the time periodically driven system. It will be used
at a later point to transform the flow equation accordingly. The projection method is discussed to
calculate the reservoir self-energy to obtain a reservoir dressed Green's functions that includes the

19
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—O ®-
(i) > +

t < $ : +
to t1 to

Figure 4.1: The Keldysh contour combines the forward and backward propagation to a joint one, where the
according branches are labelled by — and +, respectively.

influence of the reservoirs on the dot parameter. We conclude the chapter with the discussion of
the single-particle observables derivable of the Green's function. Similar introductions to Green's
functions can also be found in [Jak14,Sch1l, Karl0a, Ken14].

4.1 Keldysh Green’s function

4.1.1 Green’s function

Initially, we focus on the dot part of the Hamiltonian Hyot = Ho+ Hin: only, as defined in Egs. (3.1.2)
and (3.1.3). For this system the n-point Green's function is defined as an expectation value of n
different operators as

Gay ho. A, (t1, b, o b)) = —iTr [Ar[t1] Ao [to] H ... Anlta]H P)

= —i (Ai[ta]nA2[t2]H ... A,,[tn]H>p , (4.1.1)

where A[t]y denotes the time dependent operators in the Heisenberg picture and p is the density
matrix.

We focus on two-point Green's function Ga g(t1, t2) in the following, from which all objects of
relevance here can be computed. For illustration purposes we start with a simple example and
choose A and B to be A= Af and B = 1. The Green's function reduces to the expectation value
of an arbitrary observable (A)(t) which is defined as

(A)(t) = Tr[A(t)p(t)] = Tr[U(to, t)A(t) U(t, to)po] = Tr [A[t]Hpo] . (4.1.2)

with A[t]n = U(t, t)A(t)U(t, to), po = p(to) and the time evolution operator defined as

n_ TeXP[—l'ftt, H(r)dr] t>1t
uit.t) = {Texp[—i f:, H(r)dr] t >t (4.1.3)

where T is the time order operator, T is the anti-time order operator. The expectation value of
Eq. (4.1.2) thus consists of a forward and a backward propagation, which constitutes a problem
when generalizing the treatment to more than one operator. A useful definition of a diagrammatic
language includes among others a single particle propagation from one state into another, which
can only be defined properly if it consists of a single propagation in time. While in the equilibrium
situation the time translation of the system as well as the vanishing commutator of density and
Hamilton operator, makes the definition of a single propagation in time feasible, the non-equilibrium
situation is indeed more complicated and requires the so called Keldysh formalism.

4.1.2 Keldysh formalism

Main idea of the Keldysh formalism is the definition of a Keldysh contour ~y as depicted in Fig. 4.1
to combine forward and backward propagation to a single propagation. The contour starts at the
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initial time tp, propagates to oo and subsequently propagates back in time. This joint propagation
in time requires however an extra single particle like Keldysh index, labeling the forward propagation
with — and the backward propagation in time with +.

Using this notation the expectation value can be rewritten

(AY(t) =Tr Tye' o ae oM™ g
=T e ol =" 4= 50 (4.1.4)
where in the latter step a unity of the form
1= U(t,00)U(co, t) = e oM™ e Jo M (4.1.5)

has been introduced. The Keldysh index of HP indicates the direction of the propagation. In this
specific example, where A is the only operator in the propagation, its Keldysh index can be chosen
as desired, since its branch is irrelevant.

Only when generalizing this idea to two arbitrary operators A and B

G (11, t2) = —i (T, Alts]nBltalw) . (4.1.6)

with p (p’) indicating the Keldysh index of A[t1]y (B[t2]n) and T, being the time ordering with
respect to the contour, the benefit becomes apparent: Even though t; < t, the operators are
ordered along one contour propagating from pg through B to A (see Fig. 4.1).

For the specific case of the single-particle Green's functions with A = ag and B = al:, (where a/af
are fermionic annihilation/creation operator) four possible combinations arise

Chronological : G/ (t, t') = Gy (t,t') = —i<T aq[t]HaI’,[t’]H> , (4.1.7)

Po

. —+ — — i/t
Lesser : Gof(t,t') = Go(t,t') = i <aq,[t’]Haq[t]H>p0 , (4.1.8)
Larger : G/ (t,t') = G (t, ') = —i <aq[t]Ha;,[t’]H> , (4.1.9)
Po

Anti — Chronological : G/ F(t, ') = G5, (., t') = —i<7' aq[t]HaZ,[t’]H> : (4.1.10)

Po

For a compact notation, they are condensed to a matrix in Keldysh space (only respective indices

shown)
G~ G T
= (G+ G++> . (4.1.11)

Multiplying two operators in Keldysh space is defined as [Sch11]

([}

AB = Ao, B, (4.1.12)

where o, is the Paulimatrix and with integration over the internal time argument
A A o0 ~ A
(AB)(t, ') = / dn At t)B(t, ) (4.1.13)
to

The commutator relations under the action of T, are
{a8, a0} =0 {af, 20"} = bqqrdpp . (4.1.14)

where {-,-} indicates the anticommutator, confirming the single particle like nature of the extra
Keldysh index. The anti-symmetrized two-particle matrix element including the Keldysh indices
becomes

U{gipy}H{a:p2 {aspsHaaps} = Ugiaagsas X (=p1)d(p1 = p2 = p3 = pa). (4.1.15)
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The fact that the four Green's functions are not independent, but are linked due to causality as

Ge(t,t)) + GE(t,t') = G=<(t,t') + G~ (¢, 1) t#t (4.1.16)
renders one Green's function redundant and allows to perform a rotation in Keldysh space [Lar75]
- Gt  GK 1 /1 1 G° G<\ 1 1 1
6= (% o= W& &) () (41.17)
—_——— —_———
RA RB

The resulting three different Green's functions are defined as

Retarded :  Gggi(t,t') = O(t — t')(G. (. t') — G (t, 1))

— ie(t—t) <{aq[t]H, aj,,[t/]H}>p0 , (4.1.18)
Advanced : G2¥(t,t') = —O(t' — t)(G (. t') — G/ (£, 1))
= i0(t' ) ({aqtln. al [t} . (4.1.19)
Keldysh : Gl (t,t') = (G (. t') + Goo (£, 1))
= i ({agltln 2 [1141) (4.1.20)

with ({,-}) [, -] being the (anti)commutator. The retarded Green's function is known from linear
response theory, where the cause preceeding the effect is expressed by the according ©-function and
in equilibrium it is directly connected to the Matsubara Green's function [Jak14]. The advanced
Green's function is the according counterpart, both contain the spectral information [Sch11l]. While
G< describes the statistics of the particles (G~ accordingly for the holes), GK is a combination
of both [Jak14] and is used to calculate e.g. the occupancy. Besides the reduction by one Green's
function, another main advantage of the rotation will become obvious when the Dyson equation is
discussed.

4.1.3 Dyson equation

The non-interacting and the full Green’s function are defined as
Non —interacting : g/ (t,t') = —i <7ZYaq[t]Hoaj7,[t’];./o>p0 , (4.1.21)
Full: G2 (t,¢) = —i <Tvaq[t]HaZ,[t’]H>p0 , (4.1.22)

with only the non-interacting part or the full dot Hamiltonian included in the time propagation,
respectively.

The non-interacting Green's function fulfills the following differential equation (for a proof see
Ref. [Sch11] or [Kenl11])

(iaat - €(t)) gt ) =o0.6(t—1t), (4.1.23)

with

e= (G(Ot) e(ot)> (4.1.24)

and €(t) is the single-particle part of the Hamiltonian. Rotating Eq. (4.1.23) as defined in Eq. (4.1.17)
yields

<i§t - €(t)) g(t,ty=96(t—tH1, (4.1.25)
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when noting that Rao,Rg = 1.
The full Green's function can be calculated from the non-interacting Green's function via the
Dyson equation

~
Z ~

Gt t)) = §(t. ') + [Bos 50, G](t, t') (4.1.26)

with the self-energy X, which is the sum of all connected, one particle irreducible diagrams [Neg88].
The concept of the self-energy can be equally extended to the Keldysh space, yielding an object
with two Keldysh indices. It hence can also be represented by a matrix structure in the Keldysh

basis as -
2 e X
> = (}__> ZE> . (4.1.27)

Analogously as for the Green's function, also for the self-energies hold
Tt )+ Xt ) = Z<(t, ) + Z7 (¢, ) t#t, (4.1.28)

which allows to apply the same transformation for the self-energy to rotate in the {ret, adv, Keldysh}
basis.

Applying the transformation to the complete Dyson equation and noting that Rglaszl =1
yields

G(t, t')=g(t, t') + [ G](¢, ). (4.1.29)

Examining each entry independently

Gret — gret +gretzretGlret ’ (4130)
Gadv — gadv +gadvzadvGadv (4131)
GK _ gK +gretzretGK +gretZKGadv +gKZadvGadv ' (4132)

where contraction over internal indices and time arguments is assumed, another benefit of the
rotation is revealed: It decouples the retarded and advanced Green's function from the Keldysh one.

Finally, we rewrite the Dyson equation of Eq. (4.1.29) by multiplying by g~ from the left and
integrate over the entire time regime [Ken11], leading to

0 5 na
(iat - e(t)> &t t') — [ G} (t,t)=d(t —t'), (4.1.33)
a reformulation which will proof to be convenient at a later stage.

Keldysh Green’s function

The Keldysh component of the Dyson equation is of more complicated form compared to the
retarded /advanced entries, namely

GK(t, t/) _ gK(t, t/) + [gretzretGK} (t‘, t/) =+ [gretZKGadv] (t, t/) =+ [gKZadvGadv] (t, l'/). (4_1_34)

Resolving for all GK on the left hand side and utilizing g¥(t, t') = —ig™t(t, to)(1 — 2n)g>®(to, t')
as well as the Dyson equation for the retarded/advanced component, it can be reduced to [Kenll,
Ken12a]

GX(t, t') = —iG™(t, to)(1 — 2A) G*(to, t') + [G™* EXG*¥] (¢, ), (4.1.35)

where fj; = Tr p8°tdfdj is the initial occupancy of the dot. While the first part describes the transient
behavior off the initial dot state, only the second term survives in the long time limit tg — —o0.
Hence, the steady state Keldysh Green's function reads as

Glieagy (£, 1) =[G EK G ] (¢, ). (4.1.36)

steady
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4.2 Generating Functionals

Generating functionals play an important role in the derivation of the functional renormalization
group, which is the main method of the present thesis presented in the next chapter. They are set
up in the coherent state functional integral formulation introduced now. We thus start with revisiting
the basics of Grassmann algebra, coherent states and functional integrals and subsequently derive
the generating functionals of Green's and vertex functions. Equal introductions into the topic can
be found e.g.in [Neg88, Karl0a, Kenl14, Jak14].

4.2.1 Grassmann algebra and Functional integrals

Path integrals for single particle problems formulated with eigenstates of the position and momentum
operator have been introduced originally in 1933 by Paul Dirac [Dir33] and extensively developed by
Richard Feynman [Fey48, Fey49, Fey50] (thus also widely known as Feynman path integrals). The
generalization to many-particle functional integrals allow for a convenient representation of Green's
and vertex functions and form the basis of the diagrammatic language.

The main idea is to divide the finite time interval between an initial time t; and the final time
tr into infinitesimal steps. The evolution operator can be calculated at each step and the matrix
elements are subsequently chained together [Neg88]. For non-interacting terms of the Hamiltonian
(quadratic in creation/annihilation operator) the resulting Gaussian integral can be even solved
exactly. For interacting terms which are of higher order (in creation/annihilation operator) the
functional integral formalism provides the possibility to set up consistent calculations perturbative
in the interaction, which among others allows to formulate a RG procedure.

The functional integrals are formulated here by coherent states which are a convenient choice if the
initial Hamiltonian is written with operators in the second quantization notation. Coherent states
are defined as the right eigenstates of the annihilation operator

aq ) =g |},  (¥|al = (], (4.2.1)
and are constructed as
—qual
V) = Vg, gy, ..) =€ 7 lvac) , (4.2.2)
_Zaq’Zq

(Y] = (Wa, Vg, - | = (vacle = . (42.3)

where the scalar product is given by
E'J)q¢q -
(Ylg) = e =1+ qu¢¢ (4.2.4)
q

The eigenvalues 14 are Grassmann numbers, which fulfill fermionic commutation relations

{d)ql,zqu} = {wqud?qz} = {zpql, agp} =0 andthus ¢ =0, (4.2.5)

i.e.anticommute. We only state the following important relations here and refer the interested
reader to [Neg88] for the according proofs and if necessary more details. The unity operator can be
represented by the coherent state as

- _Z-qwq
1= [TLddadvalvrtvle ", (426)
q

and the trace of an arbitrary operator O is defined as

- =X et
10— [ T[ didvq (-ujofye =" (427)
q
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The 'Gaussian integral’ reads as

/ [ ddedige™ T PaOnatatEdatetas — ger 0 eZa 07, 0,00 (4.2.8)
q

which is used to describe the quadratic, i.e. non-interacting terms of the Hamiltonian.
The subdivision in infinitesimal parts - needed for the functional integral representation - is justified
by the Trotter formula stating that

N
e M = fim (: e AH/N :) , (4.2.9)
N— oo
where H is the known, normal ordered Hamiltonian and : - : indicates normal ordering. The unity

operator 1 is introduced N times between each of the infinite steps. It allows to change from
operator representation to coherent states. This procedure is now demonstrated for the Green's
function.

4.2.2 Functional Integral Representation of the Keldysh Green’s functions

Restating the Green's functions definition

’ i ’ i ;o —i§drH(T)
G:’g, (t, t’) = — <T7 ag[t]azlp [t/]>p0 — <TW aét,P}a;{t P} e 7 > v (4_2_10)
PO

where in the second step the time evolution is just rewritten with the integral to be read as

fdt,- = ;(—p)/dt,- oy (4.2.11)

to

It is then convenient to define [Ken14]

{t,p} . / {t.p} : /
gmax _ aq " if tp >, t, Jmin _ a " if tp <y t, (4.2.12)
9 —al P i, <t a al 1P i, >t
R if tp >t gmin _ o if tp <t 4213
Tt i<t Tl ot ity >t (4.213)
p’ P =7 *p’ p’ P~ tp’

where the <, is to be understood with respect the contour . This allows to rewrite the Green's
functions as
’ . ity oM . o ¢min _
GPP(t,t') = —iTr [T7 = 3 dTH(r) gmax T g min dTH gmin T, e i) drH(r) P
(4.2.14)
Using Eq. (4.2.7) the trace can be carried out, yielding to

max

/ - . r{tg.+} .ot -
62z (6 ¢) = =i [ [] e odi o~ | Ty &/ 57 drH) gran =i [ drir g
q//

. pmin _21;7// »
x T, ef'J{va*}dTH(T)pg g )e @ T (4.2.15)

At this point the key step towards a functional integral representation is employed: the Trotter
decomposition. Unity operators as defined in Eq. (4.2.6) are inserted at N — 1 positions in the upper
branch and N position in the lower branch of the Keldysh contour. Subsequently applying the limit
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N — oo, leads to

GoE (8 ') =~ lim /

H Hdwq” ,,di/’Pw anwZ nys <w1_‘ pg |w0—>

// =+ q//

zwqﬁ,m (W mia = V) + i1 ({070 (v},

Mz u:j\

X exp

1
- i [ Prnin (U’;",nﬂ — g, n) iAtH ({¢+} p1 107 )
7

n=0
Y bt YTt = Y o (4.2.16)
q” q"
with the boundary conditions as
Yy =U5 . v =Yg (4.2.17)
The Hamiltonian has been rewritten in terms of Grassmann variables as
H ({55}, {05),) = (@) = OF 130 = V). (4.2.18)

Without loss of generality the density matrix can be brought into a quadratic form, which allows
to calculate [Kar10a]

11 Pyl T,/ 11 p

(Wlp ') = (] e s ) = le[HZ © (3] g . alyag)]| )

\_v_./

m-pairs

1) n / - pgz’ T /
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:IHHW%%fW~}HZW”

_ 62‘7” exp(pq//)d)qquu ) (42]_9)

Identifying the quadratic (non-interacting) terms and terms in higher order of the Grassmann
variables, the Green's function is rewritten in a continous representation [Neg88]

GPE (£ ) = —i / DIy ()70 (t)

X exp /dT Z¢ (4 1) [0, 7)1 22 () — S b (42.20)

q1.,q2
q1q2 p1p2

with Dy = lim_ fr[ 1 [1dd2, ,dvb .

n=0 p’’=+ q"’
The non-interacting terms are combined to g~ and the interaction terms are described by S;n¢. In
case of only two-particle interaction, the respective action S;,; becomes

1

Sint = i O1,01/ 210202 Yrr, (4.2.21)
121,

1
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with the multiindex 1 = {t, p, ¢} and the two particle interaction defined as

o1, = 5(t1 — t{)(S(tl — l'2)5(t1 — l'é) X D{mpl},{qwz},{q{p{},{qépé}(tl)' (4222)

The notation g1 in the first term already implies that the quadratic parts sum up to the inverse

of the non-interacting Green's functions. To verify this Eq. (4.2.20) is calculated with Si,y =0

(gl (¢) = =i [ DIw g0 (¢ exp{ /drzzw () 2] wi )}

9192 pP1p2

[5¢p5(t’)5¢P(t /DWGXP{ /dTZZw () a0 vt ()

q1G2 P1P2

/ dr 37 (32 (768 () + 3 () ()] }]
B=g=0

q1.P1

=825 (t.1) (4.2.23)

showing that it is indeed correct.
With these definitions at hand, we will use the following shorthand notations in the following

(¥, ¢) = ’zwﬂm XT/) = IZ¢1X121/12 (4.2.24)

5o = (w, 81" —:iwl &7 (4:225)

4.2.3 Generating Functionals

With the functional integral formalism introduced, generating functionals for the Green's and vertex
function can be set up and relations between them are derived. The generating functionals are
obtained by adding additional terms to the physical Hamiltonian in which field operators are coupled
to external sources [Neg88]. From these Green's and vertex functions are obtained by taking the
derivative with respect to the external field and subsequently setting the fields to zero. We follow
here the presentation as employed in Ref. [Med02, Kar10a, Ken14].

Green’s functions

The general m-particle Green's function is defined as
G(L oo 1 o) = (=)™ <Tvasi[t{]H. el [l ag;f[tl]H> . (4.2.26)

The associated generating functional is

Wb 1) = 5 [ Dl e {0 S~ ()~ (3.6)} (4227)
such that the m-particle Green's function is generated by
Gl mi o) = (i) (), ) (42:28)
s 1 . OTjy 671 .. Oy Y n:ﬁ:O- o

The general m-particle Green's function also includes unconnected diagrams, i.e. contributions con-
sisting of two or more diagrams which are not linked to each other at all. These unlinked diagramms
are of no relevance for the propagation. Thus only connected Green’s functions are necessary,
the associated generating functional is defined via

We{a {n}) = n W7}, {n})], (4.2.29)
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where again the respective derivative is necessary

o T ey ) (4.2.30)

Gi(L..m1l..m)=(-)"—= _
( )=t )5771/---577,7« 071 .- 61)m =ii=0

Vertex functions

The m-particle vertex function is defined as the sum of all one-particle irreducible diagramms with
2m amputated, external legs. The corresponding generating functional is the Legendre transforma-
tion of W€, the effective action

F{@}{6}) = W {n}) — (b.n) — (71.6) + (3. [g] . 9) (4.231)

where the last term including the bare Green's function g has been added compared to textbook
definition which proves to be convenient [Med02]. The conjugated fields are defined via

¢ = I*WC({U} {n}) o= —IiWC({U} {n}) (4.2.32)

The m-particle vertex functions is generated by the mth derivative of the effective action as

6m om -
T el ACOR C)) R (4233)

Ym(l.om 1 .m')= (=)™

Relation between Green’s and vertex functions

Before the generating functionals for Green’s and vertex function can be used to derive the FRG,
we discuss some relations between them, which prove to be useful at a later stage. By plugging in
the definition of the effective action (Eq.(4.2.31)) and the generating fields, it is a straightforward
calculation to show [Kar06]

or OW© b2 SV 6] o2 _ Oz 5 [(g)
_Z[ WEon V_V o (¢2772_7722 ¢2[(g) 1}21”4"’771

01 > oo dp1  Oifp ¢y dp1 00
(4.2.34)
:;l - % [(g)—lu ,
2
oy oW 5772 0o 07 1 .
6¢1 22:[ b2 361 Ol 06 (¢ %50 o2 LE (&) ]12(’52)} G
(4.2.35)

—m + Z [(g)fl} . ¢2] v
dé

where one needs to keep in mind that the fields ¢ and ¢ are independent, i.e. b = 0. We consider

c 29A)¢€ = AV
i 001 8 W 2[57,251/\/ +5n25W}

S dov om 01 On20i)y Oy 0720
_Z [( —i8%r - [( ),1] ) §2Wwe _ —i6%r 52WC}

— [\Govog, 18 Jav) Gipdin ~ 060662 0707 |

where the Egs. (4.2.34) and (4.2.35) are utilized. Analog relations can be derived using 7 d¢1 = 011/

and 9% — by _ 0, which is combined to

(4.2.36)

déy — doys
1 . 62 _52WC _52Wc
—i + (&)~ —i%= &
1 5 Spd 4176 6770
( ¢ ¢ P 82T 82r _¢(¢)—1,T Sl _-1;]21/7]\/6 =1. (4.2.37)
~5¢50 5555 — (8 snon o
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Rearranging the equation allows for the definition

: iSRS
e Aoh) = (e

5non 15057
o ar (4.238)
_ <_’5q§5¢ + el ~15553 )
B - 521 . 82T -1,T .
15650 ~i5gs5 L&

While we have only stated the definitions of the Green's and vertex functions and their associated
generating functionals so far, we can now relate the full and the bare single particle Green's function
to the one-particle vertex function 7, by considering the (1,1) element of Eq. (4.2.38) at vanishing
fields

82r J70
S P - , 4.2.39
n=ij=0 { 15¢5¢ ’¢:<£:0 te } ( )

11

. 62we

Gi(1:1) = GE(1:1) = —i—
1( ) l( ) 6771/(577]_

where it is used that there is no unconnected part in a single particle Green's function. The resulting
expression is a well known relation namely the Dyson equation, which allows to identify the one-
particle vertex function
; 52r ' _
8¢ | p=d=0
as the self-energy up to a minus sign. This proves all the definitions of this section as correct and
meaningful.

= -5, (4.2.40)

4.3 Floquet theory

For the calculation of the long-time behavior of time periodically driven quantum dot systems
Floquet-Green's functions can be employed [Shi65, Win93, Arr05, Arr06, Wu08, Tsu08, Ren14, Gen15,
Wu08]. Here the Floquet theory is reviewed [Gri98] to justify the required transformations. The
Floquet theorem states that any differential equation of the form [Flo83]

d
dt

with a time periodic operator A(t) = A(t + T) and the period T has a solution
Wo(t) = e "M, (1), (4.3.2)

w(t) = A(t)W(t) (4.3.1)

where the Floquet modes ¢,,(t) have the same periodicity as the operator A(t): ¢ (t) = ¢o(t+ T).
This theorem equals the Bloch theorem used to describe space periodic structures.
The structure of the periodic solution renders it convenient to define a Floquet Hamiltonian
.0
H(t) = H(t) — ih—, (4.3.3)
ot
such that the Floquet modes ¢, (t) are its eigenfunction with the respective eigenenergy ¢,. The
resulting quasienergy eigenvalue equation has the form of the time-independent Schrodinger equation
[Gri98], which constitutes one of the main advantage of the Floquet theory based approaches.
It then becomes useful to define the Floquet space as a composite space of the real space R
and the space of time periodic functions 7. Its basis is given by

li, k) = |i) @ |k), (4.3.4)

with |i) = ¢! |0) and the Fourier basis |k) with k e Z. The respective elements of the time periodic
Hamiltonian in the space of time periodic functions are

1 /7 i
<k|H|k'>:Hk,k,:7/o dt e/ k—K)Re (). (4.3.5)
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defined via the Fourier transformation. The Fourier series of the single time dependent parameters
ik
ei(t) =) e e (4.3.6)
k

leads to a single-particle part of the Floquet Hamiltonian of the form
(i, KIH |, k') = (ej0 — k205)0rkr + €ijhr k- (4.3.7)

Time independent parameters are diagonal in T, while off-diagonal elements are given by the re-
spective Fourier coefficients.

The Floquet theorem thus states that the solution of the Dyson equation (4.1.23) in the long
time limit, where all transient behavior has died out, is of periodic form with the same period T as
given. This justifies the following transformation.

4.4 Floquet-Green’s function

4.4.1 Transformation to Floquet space

We here present the transformation of the initially double time dependent Green's function to Floquet
space [Wu08]. First one of the time dependence is Fourier transformed to the energy space

t W) / dt’ i (t t G;j((t, t/), (441)
with the respective backtransforn
X 1 ( — ) X
A / = — t—t . 442
GU (t, t ) 2 / dwe G (t,W) ( )

The remaining time dependency can be Fourier expanded

GX(t,w) Z Gli(w)e ™t (4.4.3)
with the according Fourier coefficients defined as

‘Q‘ T ikQt ~X
Gi(w) = 5~ | dte G (t,w). (4.4.4)

The initial single dependency on the new Fourier coefficient is artificially extended as

Gk = G o (4.4.5)
which by using the relation
GI;'(;kk’(w) = GI;'(;kkaO(w + k/.Q) (446)
can be generalized to
G,-jfkk/ (w) = (i, k| GX(w) lj, k) (4.4.7)

in Floquet space for X € {c, &, <, >, ret, adv, K}. It allows for a convenient matrix multiplication in
Floquet space. Nevertheless, the physical Fourier coefficient is the difference k; = k — k’. All these
transformation apply equally to the self-energy.

The here presented transform is a convenient reformulation of the transform presented in Ref.
[Tsu08, Gen15, Ren14] for the special case of only two time dependent Green's functions. A gen-
eralization to objects depending on more than two times requires the definition of relative/average
times and an according transformation of these.
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4.4.2 Symmetries

The symmetries of the Green's functions as well as the self-energies known from the explicitly time
dependent case [Ken12a]

Gi(t, t') =[Gt )] Giiwer (1. ) = =[Gyt )] (4.4.8)

() =[S o] T (6. ) = — [Tt O (4.4.9)
transform to

Githo (@) = [Gln(w)]” Gl (@) = =G ,m(w)] (44.10)

5% (@) = (@)’ Tk (@) = = [Tiu(@)” (4.4.11)

in Floquet space.

4.4.3 Dyson equation

First, we apply the transformations of Egs.(4.4.1 - 4.4.4) to the differential equation of the non-
interacting Green's function

9 P AN /
(i, —é(0))a(e.t) = ot — )1, (4.4.12)
and consider only the retarded component, which results in
(w+ k)85 (W) = Y et—k8iehr (w) = b | (4.4.13)
ki

where €, are the entries of the one particle dot Hamiltonian. This is converted to

1
W) = —————. 4414
8) = o or (4414
The double underlines indicate the objects as a matrix in Floquet space. The retarded Green's
function can be identified as the resolvent of the Floquet Hamiltonian.

In order to transform the Dyson equation

0 A o A

{/m —&(t )} G(t, t’)—/ dty 5 (t, 1) G(ty, t') = 6(t — t')1, (4.4.15)
to

to Floquet space, we employ the long time limit tg — oo and subsequently Green's function and

self-energy can be transformed by Eqs. (4.4.1 - 4.4.4) and the single particle part of the Hamiltonian

by Eq. (4.3.7).

Retarded/Advanced Green'’s function

This results in

(w + kQ);— (g+£ret(adv)(w)):| gret(adv) -1 (4.4.16)

for the retarded (advanced) component. Summation over the real space quantum numbers as well as

the Floquet index is assumed. The identity is defined accordingly as 1. i k! = 0jj0kk and ¢ indicates

the matrix of the single particle part of the Hamiltonian with the coefﬁaents defined in Eq. (4.3.7).

Keldysh Green’s function

The Keldysh Green's function is given by (t; — o)

(t,t) /dt1 /dt2 G (t, t1) [Z"(t1, t)] G*(ta, ') (4.4.17)
which transform with Eqs. (4.4.1 - 4.4.4) and the relation Eq. (4.4.6) to
6¥(w) = G (@) ZX )G (W), (4.4.18)

assuming summation over all internal indices.
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4.5 Reservoir self-energy: Dressed Green’s function

Up to now only the dot system has been considered, but we aim at the description of an open system.
In this section we thus now discuss the non-interacting reservoir Green's functions and subsequently
calculate the reservoir self-energy. The projection method is then presented to define a reservoir
dressed Green's function, which includes the influence of the reservoirs on the dot parameters exact.

4.5.1 Reservoir Green’s functions

The reservoirs are assumed to be time independent, semi-infinite baths of noninteracting electrons.
The resulting free retarded/advanced reservoir Green's functions are calculated via Eq. (4.1.25) and
can quite generally be expressed in terms of the reservoir density of states [Karl0a, Jak(09]

. res,a w’
grreest,((i‘dV)(w) = :Fm-pres,oz(w) +7{ %&d,)dwl y (451)

with P indicating the principal value. Due to the missing time dependency the non-interacting
Green's functions are diagonal in Floquet space, such that

gret(adv) (w) _ grreest,(aad\/)(w)ékvk/’ (452)

res, o, kk’

and Keldysh Green's function can be calculated by employing a dissipation-fluctuation theorem like
relation valid in equilibrium for Floquet space

grﬁs,a,kk’(w) =[1-2f(w+ k02)] [grr:st,a,kk’ (w) - gfei,va,kk'(w)] ' (4.5.3)
where f,(w) is the Fermi function of the reservoir . The retarded/advanced Green's function can
thus be calculated as in the time translational case.

Tight-binding chain
One possibility to model the semi-infinite bath is a tight-binding chain defined as

Hres,a = —Vq Z C;Cn—ﬁ-l +Hc , (4.5.4)
n=0

with annihilation (creation) operator c,() on the nth side of chain. The respective free Green's
functions are calculated to [Jak09]

ret (w)_ 1 { _Sgn(w) w2_4yg¢ ‘OJ| > 2vq }:[ adv (w)}* v (4.5'5)

8 = . 8
res.a 202 | w— iyl —w? lw] < 2v, res.a

where v, is the bandwidth of the reservoir «.

4.5.2 Projection Technique: Reservoir self-energy

We like to find now a Green's function which describes the local quantum system including the
effect of the coupled reservoirs. The Hamiltonian as defined in Section 3.1 is of the following form

H= Hdot,O + Hdot,int + Hcoupl + Hres (456)

where the sum over the different reservoirs o have been absorbed into the definition of the coupling
and reservoir Hamiltonian compared to Eq. (3.1.1). No direct link between the reservoirs is assumed.
The projection technique as described in Ref. [Tay72] is employed here [Kar10a, Ken14]. Key idea is
to divide the whole system into a local system (P) and the reservoir part (Q) such that symbolically
1 = P+ Q with P and @ as the respective projectors on the different parts of the system. Introducing
the identities in the Dyson equation yields

1G1 = 1g1 + 1g11511G1 (4.5.7)
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where all indices are suppressed. From this we can derive

Gpp = gpp + grr2 PP Gpp + 8PP 2 PQ Gop (4.5.8)
Gor = 8o XorGpp (4.5.9)

because gop = gro = Y@@ = 0. Solving this for Gpp yields

_ —1
Gep = [(grp) ' — ZrqgaaZor — Zpp] (4.5.10)

where Xpogo@Xop = Xres, Which can be calculated exactly, since Xpg originates from the coupling
between reservoir and system only. X pp covers the two-particle interaction on the dot. As a result,
we distinguish the following Green's functions (GF):

Non-interacting local GF : g = gpp,
Non-interacting reservoir GF :  gres = £00.

Reservoir dressed, non-interacting GF :  G° = G3» = [(grr) ' — ZpagaqZar] -

Full (reservoir dressed, interacting) GF: G = Gpp = [(gpp) ™' — ZpogoaXar — pr]_l :
(4.5.11)

The reservoir dressed, non-interacting Green's function will be used as bare Green's function in the
following, including the reservoir's effect on the dot parameters. The Dyson equation like form of the
calculation of the reservoir dressed Green's function from the non-interacting, dot Green's function
and the reservoir self-energy can also be deduced from a physical interpretation: The propagation
between two dot states can contain an arbitrary number of temporal excursions into each of the
reservoirs, where one excursion consists of tunneling into a single particle state of the reservoir, free
propagation in the reservoir and tunneling back into the dot regime [Jak09]. Summing all these
contributions by a geometric series results in the same expression.

The expression XpogoqXqp can either be evaluated in Floquet space directly, or one transforms
the known time dependent equivalent [Kenl2a] to Floquet space. Either way, the reservoir self-
energy is in general given by

ret K t K
[Z'es ij; kk’ [Xres] ij; kk’ _ * grr:s,a Bres,a .
0 [Zadv] = Vo i k—ki 0 gadv,a Vo j ki—k' - (4512)
res ij;kk’ Qo ki res ok ki

with the respective non-interacting reservoir Green's functions.

4.5.3 Dissipation Fluctuation Theorem for Reservoir Self-energy

Since for the noninteracting reservoir Green's functions the dissipation-fluctuation theorem holds,
the Keldysh self-energy follows as

Tl (@) =D Ve k[l = 2 (w + k)] [g2 (W) — 827" (W)] Vaujsa—i-  (4.5.13)
ki,qa

Only if all time dependency is on the dot, i.e.the coupling is time independent, we can find a
dissipation fluctuation like relation for the reservoir self-energy in Floquet space as

E0K(w) = [1- 2 ()] [E%™(w) - 22 (w)] | (45.14)

—res

with F%(w) ik = fa(w + k2)dk 4. In order to shift the time dependency of the chemical potential
to the hopping on the dot, a gauge transformation can be employed (see Section 3.4).
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Wide band limit

In the present thesis, all results are obtained in the wide band limit modeling a flat, structureless
band

Bie o (W) = —i/Va = —iTpres = [grmrs ()] (4.5.15)
If all time dependency is on the dot, the resulting reservoir self-energies are
Z,-Jrf,t({jdv(W) = FiDow 8;(i1 + 013), (4.5.16)

Z'K,kk’(w) = —2ID[1 — 2fL(w + kQ)]ékk/é,-jé,-l — 2ID[1 — 2fR(w + kQ)]ékk/ci,-jcSB, (4517)

U]

with D defined in Eq.(3.3.3) and f,(w) is the Fermi function of reservoir «.

The wide band limit is employed by setting v, — 0o and v, — oo, such that D = (v4)?/va
remains constant. Only subsequently the limit D — oo is applied, as described in Section 3.3 to
model the single level quantum dot.

4.6 Observables

We aim at describing the transport in time periodically driven systems. It is described by the
following single particle observables which can be calculated from the full Green's functions. We
focus here on the most simple case of only two reservoirs coupled, namely a right (R) and a left (L)
one.

4.6.1 Occupancy

The dot occupancy is defined as
1
i(t) = (el (t)e(t)) = - GF (t.1) (46.1)

Expressing it in terms of Keldysh Green’s functions and employing the Fourier series as

ni(t) = Z nj et (4.6.2)
k
the Fourier coefficients are given by
1 K 1
n,"k = rﬂ_l dWGi,';fko(W) + Eak'o . (463)

4.6.2 Charge susceptibility

For the sake of completeness, we restate the definition of the charge susceptibility

__dn

= , 46.4
Y= Tl (4.6.4)
with € as the dot onsite energy. The respective higher harmonics are defined as
dnk
= — . 4.6.5
XK= el (4.6.5)
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4.6.3 Current

Another important observable is the charge current flowing from reservoir « into the dot, which is
defined as [Mei92]

Ja(t) = FO:Na(t) = —iTr po[H(2), Na(t)] | (4.6.6)

where N, is the particle number operator of the reservoir ae. We illustrate the calculation for the
current flowing from the left reservoir, but the right current can be calculated analogously (with cr
and ds).

J(t) = —iTy <[dfq, cﬁdl} [t] — h.c.> — —TIGS (1) +cc. (4.6.7)

Pty

We again employ the projection method to compute G (t,t').

oo c / < / c / <( 4!
. e (tt) g L(r,r)) <V|_ 0 ><G11(t,t) Gll(t,t)) ,
J(t :_V/ ( es, res, > dt' +c.c.
=) i) seuee)) Lo 1) \eie ) chrin) |
— -l [ gt OG0 - (6 )G, O] o' +cc
t[)oo
— -l [ g6 V)GA(E ) - g (6 V)G 0] a4 cc
to
w2 [
= B [T g )G 0+ gl ()G ] e+ cc. (+68)
to

where the expression is recasted only by the utilization of known relations between the Green's
functions and G™(t,t') ~ O(t — t').
Using Eq. (4.5.12), it can be rewritten to

Ju(t) = —Re / de/ST (6, )G (1) — Gt (e, t) X (Y, 1) | (4.6.9)

for the steady state (typ — —o0) and with a summation over the dot indices assumed.
Applying the transformation to Floquet space yields

(1) = % Ze,-mf/“ o {ést(w)gx(w) 7£fet(w)52(w)] L [LO (4.6.10)

k oo
If the Fourier series of the currents is

Jo(t) =D Jase® (4.6.11)
k
the respective coefficients can be identified as
1 *° o o A o
Jok= > / oo [E70 (0 + K Q) BfS () — 6o+ K2 5K, ()] + [k — K"
Kkt o0

(4.6.12)

The mean value of the current Jy—g = Ji_ k=0 = Jr k=0 indicates the pumping power, i.e. the average
amount of pumped charge per unit time.

4.6.4 Pumped charge

For the discussion of quantum pumps in periodically driven systems the pumped charge per period
is of great interest and defined as

Q= %/O dt (J(t) — Jr(2)) . (4.6.13)

It is connected to the pumping power via Q = Jx—o T.
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4.6.5 Linear conductance

To study the linear response of the current to a small static bias voltage, the linear conductance
can be calculated as

L ddy(t)
Gu(t) = \Ll;no v (4.6.14)
with the Fourier coefficients defined as
. d-ja,k
Gok = \l/lmo qv (4.6.15)

4.6.6 Spectral function
In order to examine the influence of the time periodicity on the spectrum, the time averaged spectral

function is calculated by
1
Ao(w) =

™

Im GiSoo() (4.6.16)

from the zeroth component of the reservoir dressed, dot Green's function.
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The present chapter introduces the functional renormalization group (FRG) as the main method
used in this thesis. After the introduction of the general idea, the flow equations are derived, as well
as initial conditions and truncation schemes of the infinite hierarchy are discussed. Subsequently the
flow equation in Floquet space is discussed with the concrete, utilized cutoff scheme. After a short
discussion of the preservation of symmetries, the main flow equation describing the renormalization
of the hopping matrix elements as well as the onsite energy for a time independent interaction are
stated. We conclude the chapter with a few comments on the numerical implementation.

5.1 Fundamental idea

The functional renormalization group is based on the RG idea developed by Wilson [Wil74] to
tackle problems where the contributing energy scales are separated by several orders of magnitude.
The key idea is to treat the degrees of freedom with different energy scales successively to avoid
possible infrared divergencies, which perturbative approaches are often plagued when tackling low-
dimensional systems [Met12]. Even though earlier version of RG methods set up on a functional
level are known [Weg73, Pol84, Wie88], the formulation of the 'exact’ RG with a flow equation for
the effective action by Wetterich [Wet93] is the origin of the FRG formulation used in the present
thesis.

In this FRG framework the successive treatment of energy scales is realized by inserting an artificial
energy scale /A into the bare Green's function

G% — G®" such that G%"=> =0, G0 =¢G". (5.1.1)

37
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As a consequence, the effective action also depends on the flow parameter. It allows to derive an
according flow equation for the effective action. Expansion in the external fields leads to an infinite
hierarchy of differential equation for the m-particle vertex functions -y, of the form

d
A0 =F 012 Ve A) (5.1.2)

This a priori exact reformulation of the many-body problem would yield exact results if one could
solve the whole hierarchy of differential equations. The flow parameter is integrated from an exactly
solvable starting point to an effective physical system at the end of the flow, where contributions
of all energy scales are summed up throughout the flow regularizing possible infrared divergencies.
Differently than in the original Wilsonian RG not only contributions below the flow parameter are
kept, but informations on properties of all energy scales are accessible [Met12].

While it is not possible to solve the infinite hierarchy exactly (or only for anyway exactly solvable
models), different truncation schemes can be employed adjusted to the considered problem. The
main advantage of the method is that besides the truncation no approximations or assumptions need
to be plugged in, rendering it a very flexible method, where the flow equations can be set up for
very diverse problems in an according basis. The physical (comparatively) transparent flow equation
automatically handle the different energy scales successively and allow under some conditions even
for analytical insights.

5.2 Flow equation

The derivations presented here follow the route as applied in Ref. [Med02, Kar10a, Ken14, Met12].

5.2.1 Derivation

Flow of the generating functional of the Green’s function

For the derivation of the flow equation, we redefine the functional W of Eq. (4.2.27)

_ 1 - . - _
WAL (1) = 5 [ DIv e S = iS = (1) — (0D} (521)
0
by substituting Z by Zy for convenience, which changes W€ and I" only by a constant and thus does
not change the connected Green's and vertex functions G;~; and ym>1. The introduction of the

flow parameter A in the Green's function (where the exact implementation is discussed in Section
5.3.1), yields a A dependent bare action

st = (3. (6™ 1) . (5.2.2)
Taking the derivative of W = In W results in the flow equation
- 1 1 - . n _
W = Wa/\ |:Z(§\ /D¢¢ exp {56\ — iSint — (¥, ) — (7, w)}:| : (5.2.3)

To evaluate it further, we take a closer look at the A dependent part

e esé\ - I — /
i [(MA[G”]%) i Z{ U [3A[G°'A11h,1'}]

ANSA A A
Z; Z; PRy Z;

S5

(5.2.4)

&S
=7 { (¥, 0A1G®N 1) — Tr [G®0a[G*" 1]},
which simplifies the flow equation to

WA = —Tr [60,[GO ] + % (5(; {oalG*" 1} ;) wh (52.5)
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We aim at a closed expression only explicitly depending on W€, and hence rewrite

i g GO 1 0 A —WC'A i GO 1 w”
W/‘<5n e ]577)W 5778[ r

((w;/n OGO 10 ( OGO n) e

)
= (5 e ) S [ a6 ]
)

L, oweh
o)

c, N
iTr [8 [GOA] 10 } .

dijon
(5.2.6)

Finally, we obtain a flow equation for the generating functional of the connected Green's functions

WA = = Tr [GO0A[G 7] + i Tr [aA[G“]—l

+(5W AN 15W >
on

62WC,/\:|

oo (5.2.7)

Flow of the generating functional of the vertex function

For the FRG frame employed in this thesis, this is only one step on the route to the flow equation
of the vertex functions. Next we consider the flow equation of the effective action, which generates
the vertex functions. The effective action is a Legendre transform of W€, where the conjugated
fields are defined via Eq. (4.2.32). While ¢ and ¢ are the variables of the effective action, 7 and 7
acquire a /A dependency. Taking the derivative of Eq. (4.2.31) thus yields

r({e}.{s}) = *C%\WC'” {7} An"}) = (@) = (7" 8) + (6. 0al6°"]79)

. ) c,N ) c,A — . -
— WA -3 [n EVA A ZYA } — (6" = (i1" 6) + (6,0416°17"0)
1 U n
=W ({7} {n"}) + (6,016 79)
- . B 52WC,/\
Tr [GO'A@\[GO'A] 1] F iTr |:8A[GO,/\] 167—]/\5,’7/\]

Tr [GO19a[GON ] — Tr [a[G WYy ({8}, {o})] -

(5.2.8)

where the flow equation (5.2.7) has been used. In order to indicate the relation to the derivative
of " in a compact way, V{} has been used in the last step, which is the upper right element of the
matrix defined in Eq. (4.2.38), which relates the derivatives of W€ and I". The resulting expression
is the flow equation of the effective action.
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_ = -+

Figure 5.1: First two flow equations for the self-energy (grey circle) and the two-particle vertex function
(grey square). Green dot/line indicates the derivative with respect to the flow parameter A, the
grey hexagon is the three-particle vertex function.

Flow of the vertex function

To extract the flow equation of the vertex functions, Eq. (4.2.38) is reshaped to

21/ 2 A -1
5 r 0,11—-1 6 I
VA = 6¢6¢ +2[€ ] 2 A 6¢5¢
_o°r 5 r [GO/\]—l,T
'5656 T
2 A -1
_ A 6 r
_ ([G/\] 1 /? 1T>+ Z/lz ) 15363
O (el B L (5.2.9)
A (2N
=—|1- (_GA (/)\T> ’ uz A an '(_GA (/)\T>
0 [67] —ids —uh 0 [67]
—pa

where U/ is the difference of the one-particle vertex functions and the second derivative of " with
respect to its fields

21N 21N 21N 21N
SO Rl R Y
0o dpdg lp=g=0 dpdg 5¢5¢

—[6M P+ [G* . (5.2.10)
With V" = V{} the flow equation reads as
I =Tr [G®0A[GO ] — Tr [G0A[G*"] V1] (5.2.11)

which allows to expand V' in a geometric series

Vi=1-G6¢"u"+ [GAZ/{AG/‘L{/‘ G — +.. . (5.2.12)

If this is compared to the series expansion of the derivative of effective action around ¢ = ¢ = 0

({6}, {¢}) Z ' Z Z OyAL..m 1 . m )1 ... b .. b1, (5.2.13)
m=0 1.ml..m

and sorted by the order of external fields, the flow equation for each of the vertex function can be
read off. Since the flow of «y decouples from the rest of the hierarchy, we disregard its flow equation
in the following and begin with the flow of the self-energy as the lowest order equation.

Flow of the Self-Energy

In order to extract the flow equation for ~;, we consider the terms of I/, which are linear in ¢¢

. _ . . 2 62 _ _ _
urin = { (%9 i 2 B DI Gabatn = i3 2T B)on . (521)
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where it is utilized that

F(1'2/:12) = —2(2'17;12),  4(172);12) = —5 (1725 21) . (5.2.15)
The resulting flow equation reads as
o11) =Y [GOAIGYN TGN, ¥ (1'2512) = Y S5 4 (12512). (5.2.16)
22/ 22/

where we have defined the single-scale propagator

Sty =SMN151) =GP, [0aGO M, Go = —03Glly = —03GN(1';1) . (5.2.17)
22/
The resulting flow equation is depicted on the left hand side of Fig.5.1, where the grey circle
illustrates the self-energy, the grey square the two-particle vertex function and the single-scale
propagator is depicted by the crossed out line.

Flow of the effective Interaction

The flow of the effective interaction 7> is analogously identified as

op(12512) = ) Sh4(12'3;123)
33/
Z 33/ 3 4 12)G4,472(1 "2, 4'3)
3344/
(5.2.18)
— | D SH8(1'3:14) G5 (24 23)
3344/

—(e2)-1e2)+ 1«21+ 2)],

by collecting all terms quadratic in ¢¢. The structure of the flow equation reveals that it conserves
the anti-symmetrization of the bare interaction . A diagrammatic representation of the resulting
flow equation is shown on the right hand side of Fig.5.1, where the grey square indicates the
two-particle vertex function and the grey hexagon the three-particle vertex function.

Higher orders

One can now proceed further to end up with an infinite hierarchy of differential equations. All
differential equations are of the structure as stated in Eq.(5.1.2) and thus coupled. A solution of
the complete set of differential equation would yield an exact solution of the many-body problem.
This is obviously impossible and a truncation needs to be employed. The truncation employed here
is discussed in Section 5.2.3.

5.2.2 Initial condition

The initial conditions for the vertex functions need to be defined. It is of course possible to derive
them analytically rigorous as it is presented in Ref. [Med02]. We here like to follow the simple,
diagrammatic argument as employed in Refs. [Kenll, Karl0a, Kenl4]. The bare Green's function
vanishes at the beginning of the flow, i.e. G®1=> = 0 such that the effective action simplifies to

r=={¢}, {¢}) =i Sint = é Z U2t Yo hotdr (5.2.19)
12172/

All possible diagrams include at least one propagation and are thus suppressed except the lowest
order diagram of 7,, which is only the bare interaction. Thus, it results in the following initial
condition

vé\:oo = —iL_11/2112 ’)/,/1\;30 =0. (5220)
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Figure 5.2: The lowest order truncation keeps only the first flow equation for the self-energy (grey circle),
where the two particle vertex (grey square) has been substituted by the bare interaction (dark
blue dot). Green dot/line indicates the derivative with respect to the flow parameter A.

We focus now on a Coulomb, density-density type interaction between neighboring sites in the
central dot region of our model. It is of the form Ud}d, d/ d.. and leads to the bare antisymmetrized
vertex

U010 = U X (S(t{ = té =13 = t4) X (—i)(—Vl)(S(V{ = Vé =1 = V2) . (5221)

Rotating to the RKA-basis yields (with all other indices suppressed)

O mmme = D [RE nu[Re gy X [(—11)3(vf = v = 11 = 12)] X [Ry M oum [Ra uam,

/1,0
12424202

*Ex 1 nf=mAny#n V ni#nAn,=n
2 0 otherwise .
(5.2.22)

5.2.3 Truncation

From the afore discussed initial conditions it can be derived that each m-particle vertex function
Ym is generated by the interaction at least of the order O(U™) with U as the amplitude of the
interaction. Assuming the bare interaction to be a small parameter justifies a truncation of the
hierarchy, where a maximal order m. is chosen. The resulting truncation is defined as

Vrei1 = Vil = OnVmem, = F{n i n<mvm3) + Onvmsm, =0. (5.2.23)

Only the self-energy flows: m. =1

If we truncate the hierarchy already after the first differential equation by choosing m. = 1, we set
’}/2(1, 2, 1/, 2/) = —I'Ulygylfygl Ym>2 = 0. (5224)

The resulting differential equation describes a frequency independent self-energy which flows, but
the vertex U remains unrenormalized (and static). All terms to the leading order of U are included,
but due to the feedback of the self-energy into the loop, also higher order contributions are captured
partially. The physical consequence of this truncation is an effective non-interacting system with
renormalized parameters at the end of the flow.

Earlier studies have shown that the self-energy already provides the main physics in the IRLM, and
the FRG with this truncation is able to capture power-law behavior with U dependent exponents
correct to its leading order [Karl0c, Met12, Ken12a]. This is also confirmed by the results presented
in Chapter 7, which are obtained with this lowest order truncation as well.

Next higher order truncation: m; =2

In the next higher order truncation (choosing m. = 2) the effective interaction flows additionally,
such that the resulting self-energy acquires a frequency dependence [Karl0a, Jak09]. This already
requires a much higher numerical effort and is beyond the scope of this thesis.
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Figure 5.3: Auxiliary reservoir cutoff: At the beginning of the flow auxiliary reservoirs (green) are coupled
to the three sites with A = oo, which renders all other energy scales irrelevant and the bare
Green's function vanishes (left panel). Integrating down to a final, vanishing flow parameter
the initial, physical system is recovered, where the auxiliary reservoirs are completely decoupled
(right panel).

5.3 Flow equation in Floquet space

5.3.1 Cutoff scheme: Auxiliary reservoirs

In order to introduce the flow parameter, we use the known hybridization cut-off scheme as developed
by Ref. [Jak09] and extended by Refs. [Kar10a] and [Ken11]. The flow parameter is the hybridization
of auxiliary wide band reservoirs which are connected to each of the three sites. While there
are several distinct possibilities to choose the temperature and chemical potential of the auxiliary
reservoirs, we assume the temperature of the reservoirs to be infinite, which renders the chemical
potential irrelevant. The resulting reservoir distribution functions are structureless, which avoids any
imprint of an artificial energy structure [Ken12a]. It has been shown by Ref. [Kenl1] that this yields
consistent results for the steady state of the IRLM. The respective self-energies can be calculated
as

Tl ) = Fins(t — t)dy (5.3.1)
. , 1 -
IR (8 1) = —ATege (=) 3™ T2y, (5.3.2)

= sinh [Tewm(t — t/ £ i0)]

which for the T, = oo case are transformed to

Zc/t'trfyt'/;,iv/(w) = FiNj0uk (5.3.3)
Zc/:nlfu k(W) =0. (5.3.4)

The according physical situation is sketched in Fig.5.3. At the beginning of the flow the auxiliary
leads are coupled infinitely strong to the three sites, rendering all other energy scales irrelevant and
the bare Green's function is zero. Throughout the flow the couplings are weakened, such that at the
end of the flow the auxiliary reservoirs are completely decoupled. This way the initial physical system
is recovered, but with renormalized parameters. The cutoff is thus implemented by simply extending
the initial configuration, i.e. by a physical meaningful setup. As a consequence, it preserves causality,
which makes it a reasonable choice for non-equilibrium situations [Jak09, Jak10b, Kar10a].

Initial condition

After the specification of the exact form of the cut-off scheme, a reconsideration of the initial
condition is necessary. We have argued in Section 5.2.2 that the bare propagator vanishes in the
limit A — oo, as it is exponentially suppressed by the infinite coupling to the auxiliary reservoirs. But
this is indeed not true for equal time Green’s functions as it appears in the Hartree-Fock diagram
of v1 [Jak10a, Karl0a, Kenll, Ken14]. The correct initial condition reads as [Ken12a]

1
ret,adv -
/\ILm () = 25(1’— t') E/ Ui (t) (5.3.5)

K,A=00 AN
() =0, (5.3.6)
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in the time dependent form and can be transformed straightforwardly to
re OO ]‘ -
2 o (0)= 5 Z Uiljt; — k000, (5.3.7)
I
il <) =0. (5.3.8)
The initial condition for the particle-hole symmetric Hamiltonian of Eq. (3.3.2) is
Freth=ee — ¢ (5.3.9)

as the U dependent contribution to the onsite energy cancels the initial condition stated in Eq. (5.3.7).

5.3.2 Flow Equation

The starting point is now Eq.(5.2.16), which needs to be considered with the bare interaction
defined in Eq. (5.2.22). We use the single-scale propagator defined via Eq. (5.2.17), which with

OpGO" = G“aa/c\“t Go" (5.3.10)
becomes
sh c;Aaa/c\“t G". (5.3.11)

With the cutoff self-energy defined in Egs. (5.3.1) and (5.3.2) it thus reads

R I'Gret,/\ Gret,A iGret,A GK,/\ _ iGK'A Gadv,/\
SA(tv tl) = ( 0 _iGadv,A Gadv,A (tv tl) .

Equal time single-scale propagator

(5.3.12)

For the first flow equation (5.2.16), the equal time single-scale propagator needs to be evaluated.
It is then easy to see that [Kenll]

Sret,A(t’ t) _ /dtl Gret,A(t’ tl) Gret,A(tlv t) =0= Sadv'/\(t, t) (5313)

~O(t—t1) ~O(t;—t)

such that the Keldysh component of the self-energy does not flow
N A, t)=0. (5.3.14)

As a result the whole problem reduces to a single differential equation of the form [Ken12a]
OnE(E t) ZS (t,t) { u,mjn(t)] 5(t' —t). (5.3.15)

Transforming it to Floquet space yields

re dw 11
InZi(0) Z/ Spomir-40(@) (Timjn:kr000) (5.3.16)

n,m,k’
which is the central differential equation of the presented work. The structure of the equation
directly reveals that the resulting self-energy does not acquire any frequency dependence.
5.3.3 Symmetries: A short discussion

Finally, we shortly review the important symmetries and their conservation, further discussions can
be found in Refs. [Karl0a, Ken14].
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Antisymmetrization of the effective interaction

The effective interaction is antisymmetrized to ensure the anticommutation under the exchange of
fermions,

7(1,2,1,2) = — (2,1, 1,2) = —»(1',2';2,1) . (5.3.17)
By exploiting these symmetries to the vertex function in the fRG equations, it can be shown that
the equations preserve the symmetry.
Complex conjugation
The symmetries presented in the section 4.4.2 are conserved within the lowest order truncation of
the functional RG employed here.
Causality

Causality is the base of the applied rotation in the Keldysh formalism and hence should not be broken
by the flow equation. This is one of the main reasons of the choice of the hybridization cutoff scheme
as discussed in Section 5.3.1.This has been investigated extensively in Ref. [Jak09, Kar10a], where
it is contrasted to the sharp frequency cutoff, which violates causality.

5.3.4 Renormalized parameters

Throughout the present work we focus on time independent interaction amplitudes. The resulting
flow equations for the renormalization of the hoppings 7 (r)(t) and the onsite energy €(t) are

U *
iRy = T A On / dw Gllé’;\23;0k(w)v (5.3.18)
ol =0 [ dw (G54 Giss 5.3.19
Ak = T4, 9 w ( Girok(w) + Gazigi(w) (5.3.19)

where the notation 9} is used as defined in Eq. (5.2.17). Compared to the known flow equation for
the time independent steady state [Karl0c|, they only differ by an extra single-particle like index k,
indicating the Floquet channel.

In the chosen, lowest order truncation as discussed in Section 5.2.3, we obtain frequency indepen-
dent, renormalized parameters at the end of the RG procedure

=106+ T (5.3.20)
ik = Thie + Ta5or (5.3.21)
e = et + I (5.3.22)

Superscript 'init" or 'ren’ mark here the parameter at the beginning (A = 00) or at the end of the
flow (A = 0), respectively.

As a consequence of the frequency independent renormalization, the resulting setup at the end of
the flow is an effective, non-interacting system with parameters renormalized by the interaction. This
in turn, has an important implication: We can derive expressions for the single-particle observables
in the non-interacting system, which still hold true in the interacting setup, when substituting the
parameters by their renormalized equivalents. This is exact in the lowest order truncation and does
not include any further approximation.

5.3.5 Numerical implementation

The flow equations defined in Egs. (5.3.18) and (5.3.19) need to be solved to compute the renormal-
ization of the parameters. The Floquet channels are in general all coupled, rendering it necessary
to solve the full flow equation numerically with an appropriate number of higher harmonics.

The number of included higher harmonics depends crucially on the exact form and amplitude of
the applied signal for the time periodic parameters. Besides the fact that already in a non-interacting
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setup the most common signals of a sine function (kmax = 1), a triangular signal (kmax = 100) and a
square signal(kmax = 200) need a different amount of included higher harmonics for a proper signal
form, the finite interaction might create further higher harmonics throughout the flow.

We will show in Chapter 7 that for small driving amplitudes AT < 19 and Ae < Tk, the Floquet
channels decouple to the leading order of AOT or £¢. As a result, it is sufficient to include kmayx = 5
(sin), kmax = 120 (triangular) and kmax = 250 (square) higher harmonics to obtain converged results
for the respective signals.

With increasing driving amplitude the included higher harmonics need to be raised accordingly,
e.g. up to kmax = 50 for a sinusoidal signal with e.g. A7 /79 = 0.9 (as depicted in Fig.8.3).

While the integral from A = oo to A = 0 can be performed with a standard integrator for ordinary
differential equations as e.g. "integrate.ode” from the SciPy library, the energy integral on the right
hand side of the flow equations (5.3.18) and (5.3.19) poses a numerical obstacle.

Analytic solution of the energy integral

The spectral function of a time periodically driven system shows several sidebands (see Fig.7.15),
which render the numerical energy integration on the right hand side of Egs. (5.3.18) and (5.3.19)
more involved. To avoid the numerical problems of a slowly converging frequency integral in the
periodically driven setups, the respective integral is rewritten and solved analytically. We here
focus on the case of undriven reservoirs (all time dependency is on the dot), the resulting reservoir
self-energies are diagonal in the Fourier space.

The relevant integrands on the right hand site of the flow equations are either the Keldysh
Green's function (occupancy, current) or the Keldysh single-scale propagator (flow equation). By
diagonalizing the retarded/advanced Green's function with respect to a combined index, which is
introduced next, the according integrals can be brought into a simple form, which can be solved
analytically.

Calculating the eigenvalues and -vectors of the retarded Green's function allows to rewrite it
G = T T = (6**)' (5.3.23)

where T~ includes the eigenvectors as columns. Inserted in Eq. (4.4.18), this leads to

(5.3.24)

,l—lgretléKlT {(Dret)T]z (l_l)T _ (5325)

To simplify the following, we merge the site and the Floquet index to a joint index p(i, k) =
3(k + kmax) + 7 with i as site index and k as Floquet index, such that k(p, /) = (p — 1)/3 — kmax-
With the diagonal form of the reservoir self-energy, the Keldysh Green's function can be rewritten
to

G;Ifq = Z Vom dmm (@) Vimn Vpy djj (w) Vi [2n(w) — 1]iD
n,m,l
= > VomVmn[2F(m, 1, n) = G(m, N)]v;;¥iiD with j € {1,3}. (5.3.26)
n(j),m,l

where v;, is the ith entry of the mth eigenvector ( V;, the respective entry of T) and the integrals
F(m, 1, n) and G(m, ) are defined in Egs. (5.3.29) and (5.3.31). The joined index n is summed only
over those numbers resulting from a site index j € {1, 3} (as a consequence of the structure of the
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reservoir self-energy). The single-scale propagator is rewritten equivalently to
SK = Z Vom|dmm (W) Vmn Vi i (w) Vs [2fn(w) — 1]iD
n(j),m,l
- Z medmm(w)vmnV;/[dIT(w)]Qvlzpfn(W) —1]iD
n(j),m,!
= > VomVmn[2H(m, I, n) — K(m, )]v}7jiD
n(j),m,!
— > VomVmn[2H(T, m, ) — K(T, m)]vyviniD with j € {1,3}, (5.3.27)
n(j),m,!

where T indicates that the respective eigenvalue ), in the integrals of Egs. (5.3.30) and (5.3.32)

needs to be complex conjugated. For T = 0 the Fermi function is
fo(w) = Olw + k()2 + pn]

resulting in the following integrals

pn—k(n)R2 1 1
F(m,/,n):/ Y w—/\*dw
m !

1
- [=2mi + In(pn — k(M2 — Ap) — In(n — k(1) 2 — A))]
m A
,unfk(n)_Q 1 1
H(m. 1) = [oo (W=Am)?w—A} dw

_ Q= AN (0 + k(n)2 = Am))
(Am = A7)?

2ri+In(pn — k(n)2 = A7) — In(pn — k()2 — Ap)]

1
o

e 1 1 27i
G(m,/):/ —dw = —
o W= Amw — A Am — A

> 1 1 2mi
K(m, 1) = o 2mi
(m.1) /m(w—xm)zw—x;‘dw O — A1)2

where A, / AT are the respective eigenvalues of the retarded/advanced Green's function.

(5.3.28)

(5.3.29)

(5.3.30)
(5.3.31)

(5.3.32)
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Perturbation Theory in Floquet-Liouville Space
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In this chapter a formalism is introduced which is based on superoperators acting on the Liouville
space. The method is a powerful tool to describe the time evolution of open quantum dot systems.
The central idea is to devise a kinetic equation for a reduced density matrix, where the reservoir
degrees of freedom are integrated out. An effective Liouville operator is defined, which acts only
on the local dot system, but includes information of the reservoir as well as the system-reservoir
coupling. The latter is included perturbatively in the kernel, which can be calculated in a very
transparent and efficient way with the corresponding diagrammatic rules. In general this makes it
feasible to calculate non-Markovian dynamics of open dot systems, including the computation of
typical relaxation and decoherence rates. While this formalism has led to the development of an
involved, non-equilibrium RG scheme to tackle the system in an even more comprehensive way, we
only focus on a perturbation theory calculation in the Markov approximation.

The introduction here follows very strongly the presentation as depicted in Ref. [Sch09], as well
as Ref. [Sch12,Sch14]. First, we introduce the Liouville space as well as its kinetic equation and
diagrammatics for time independent Hamiltonians are discussed. Subsequently the Floquet-Liouville
space is introduced [Sch12], where it is elaborated how to extend the diagrammatics for the time
periodic case. The Markov approximation is devised in order to set up the quantum master equation
with a kernel calculated to the first order in tunneling rate.

6.1 Liouville space and its kinetic equation

6.1.1 Liouville space

We consider Hamiltonians of the general form

Heot(t) = Hs(t) + Hres(t) + Hy(t) | (6.1.1)

49
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where Hs is the Hamiltonian of the local quantum system, H,s is the Hamiltonian of the non-
interacting reservoirs and Hy is the system reservoir coupling. The von Neumann equation
describes the time evolution of the total density matrix piot(t)

iptot(t) = [Heot(t), Prot(t)] = Leot(t)prot(t) (6.1.2)

with the total Hamiltonian Hio:(t) of Eq.(6.1.1). In the second step the Liouville operator of
the whole system Ly (t) is introduced. It is a quantum field superoperator, i.e.a linear map on an
operator, which is defined as

Liot(t)A = [Hiot (1), A] (6.1.3)

where A is any operator and [-, -] indicates the commutator. The full, effective Liouville operator
can be decomposed into the respective three parts

Liot(t) = Ls(t) + Lres(t) + Ly(2) , (6.1.4)
with
Li(t) = [Hi(t), ] (6.1.5)

and i € {S,res, V}. The Liouville operator (also called Liouvillian) acts on the Liouville space, a
linear space of operators. With {|n)}, as a complete, orthonormal basis of the Hilbert space, the
respective Liouville space basis vectors are defined as

|[nm) = |n) {m] (nm| A) = Apm | (6.1.6)

where A is again any operator in the Hilbert space. The matrix elements of the Liouvillian are thus
defined as

Lomn'me = (nm| L|n"m’)

— nn/5mm’ - Hmm’(snn’- (617)

6.1.2 Kinetic equation

To find a formally exact kinetic equation for the local density matrix, the reservoir degrees of freedom
are integrated out

p(t) = Tl’res ptot(t)- (618)
We assume an initial total density matrix of the form
ptot(to) = p(to)pfgs ' (619)
with reservoir density matrices
1
prés=Tapl  and  pfl = ——e(Homalel/To (6.1.10)

«

which are in the grand-canonical equilibrium with the respective Hamiltonian H,, temperature T,
chemical potential i, particle number operator N, and partition function Z, of reservoir «.
The time evolution of the reduced density matrix p(t) can be described by

t

ip(t) = / dt’' L= (¢, t")p(t'), (6.1.11)
to

where L*%(t, t') is the effective Liouville operator acting on the local system, but containing infor-

mation of the reservoir degrees of freedom as well as the reservoir-system interaction. It is only

defined for t > t’ as a response function related to p(t’). The formal solution of the von Neumann

equation shows one advantage of the Liouville formalism

pr(t) = 1o fi dt’Hwt(t’)ptot(to)Teift; dt'Hear(t)) _ 1= [ dt’Lwt(t')ptot(tO)y (6.1.12)
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where T indicates the time ordering operator. While in the Hamilton formalism a forward and a
backward propagation on the Keldysh contour is necessary, the Liouville operator only requires one
forward propagation taking care of both branches of the Keldysh contour, hiding the Keldysh index
in the larger dimension of Liouville space compared to the one of the quantum system. Rewriting
Eq. (6.1.8) yields

p(t) _ Trres Tefift; dt'Lmt(t’)ptot(tO)' (6113)

The effective Liouvillian Lf(t,t') = Ls(t, t') + (¢, t') is composed of the local system Liouvillian
and a kernel containing the information of the reservoir-system coupling. The kinetic equation can
thus be put to

ip(t) —/tt dt'Ls(t, t")p(t") = /ttdt’Z(t, tp(t), (6.1.14)

where the left hand side is the von Neumann equation of the isolated system, whereas the right
hand side of the equation describes the non-Markovian influence of the coupling to the reservoirs
on the dot [Sch09]. In case of a time independent Hamiltonian, it further simplifies to

t
ip(t) — Lsp(t) = / dt'(t — t')p(t). (6.1.15)
to

It is then beneficial to Laplace transform the reduced density matrix
BE = [ Do) (6.1.16)
to

where E is the Laplace variable with a positive imaginary part to ensure convergence. Using the
formal solution of the kinetic equation yields for a time independent Hamiltonian

i i

0(E) = Trres —p(tg) = Try, t
p() Ires LP( 0) resE—Lres_LS_LVp( 0)

E —
1 1 1

L Ly..lv——p(t 6.1.17
E_Lres_LS VE_Lres_LS v VE—Lres_LSp(O) ( )

~ i Trres

where in the second step the expression has been expanded in Ly by a geometric series.

In the next section, a diagrammatics is introduced, which allows to specify X(E) and to calculate
it. The goal here is to set up a perturbation theory calculation by expanding in system reservoir
coupling, but as shown in Ref. [Sch09, Kas13] the diagrammatics can straightforwardly be extended
to an involved RG scheme in the Liouville space. We start with the diagrammatics for the time-
independent Hamiltonian, and show later how these diagrammatics are extended to the time-periodic
case.

6.1.3 Diagrammatics

We will focus on fermionic systems in the following (for the bosonic expressions see e.g. Refs.
[Sch14, Sch12, Sch09]). For a compact notation a superindex is defined for the reservoir field
operators as

i=naow, i=12,.. (6.1.18)

including n = +(—) for creation (annihilation) operator, reservoir index a, channel index o (e.g. spin)
and the energy of the reservoir states measured with respect to the chemical potential w = €nok — pia
with a unique relation between w and the reservoir energy quantum number k assumed. This
compact notation will be used in the following.

The general form of the coupling between reservoir and local system can be rewritten to

1 1
Hy = m {?71...77,7} i ai1ap...ap : g12.n — mglzl_n > didap...ap . (6119)
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where

1

D 6w — €ack + fia)anack (6.1.20)
(0)

Pa

is a general reservoir field operator, which needs to be scaled properly by the reservoir density of

states at the Fermi level 4/ pg)). % takes care of all possible permutations of the reservoir operators,

Zi12..n IS an arbitrary, anti-symmetrized operator acting on the local system, where n is any integer,
implicit summation/integration is assumed over the multi-indices and : ... : denotes normal ordering
w.r.t. the equilibrium distribution of the reservoirs. In the second step (indicated by the arrow) the
expression is significantly simplified for the further usage. While this is not an exact reformulation, it
can be shown that it is correct for the calculation of the reduced density matrix and local observables
(for a detailed derivation, see Appendix of Ref. [Sch09]). Hence, it is used in the following.

From this a general form of the respective Liouvillian is derived

1 0)p...
Ly =~ Zi GOPP . AP AP (6.1.21)
b

The according superoperators of the reservoir are

b forp=
APp—gp Qo0 Torp=rt (6.1.22)
ba forp=—

as well as of the dot system are

0)p1...pn 1  for neven gi.nb forp=+
Gl(..?ﬁl P"b = Sppy---Opp, o (6.1.23)
oP for nodd —-bgi., forp=-—
which includes a sign superoperator, defined as
ot =1, O ssis, = Gsy,570s,5(—) V1 M2 (6.1.24)
The product of reservoir field operators as it appears in Eq. (6.1.21) acts as
AP AP b= 1 for n even taj..ap:b forp=+ (6.1.25)
oh, for nodd b:aj..a,: forp=—

in Liouville space.

In order to perform the trace over the reservoir degrees of freedom, Eq.(6.1.17) needs to be
brought to a form where it decomposes in a part of the local quantum system and a part of the
reservoir. For this the reservoir field operators are commuted through the resolvents m using
the commutation relation

ATLres = (Lres - Xl)Af i (6126)

with x; = ni(w;i + fta;) = @i + fi. The relation follows directly from the commutation relation of
the normal operators [a1, Hres.o] = —1(w + 1o )a1. As a result, all reservoir field superoperators are
moved to the right

1 1
E—Le—Ls E+4+x1+..+x,— Les— Ls

CADLAP CADLAR (6.1.27)
Also the trace is moved to the right subsequently, where Tr,s Les = 0 holds, which allows to set
all Les — 0. Consequently, Eq. (6.1.17) is decomposed in a system and a reservoir part, where the
latter can know be tackled using Wick's theorem, obeying the follwing rules [Sch09]:
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[ ] | |
o—0o o—0—0—9©

Figure 6.1: First and second order diagrams contributing to the kernel X(E): Black lines indicate the
contractions, green line the resolvents, dark grey dots indicate the coupling vertices.

e Contract all operators A such that no contractions occur within the normal-ordered parts.

e Disentangle the contractions into a product of pairs and give a minus sign for each interchange
of a reservoir operator.

e Sum over all possibilities to contract the reservoir operators.

We explain this with a simple example

—— 1
AT AP A A A

= -7 + (6.1.28)

(- ATTAS? = AR AL )

Pres

The contractions are then calculated using

pp’ papP’ p AP’ eq
Ny = ATAY = Tres ATAY Dres

= 511'P/Paa(w)fo€,n(w) = 011/P' Pac(W)fa(p'nw) , (6.1.29)

where i = —naow, 612 = 61m0a1000010,0 (W1 —w2) and £ (w) = £, (w) as well as £ (w) = 1—f,(w).
fo(w) is the Fermi function of reservoir a.
Finally the resolvents are defined

1
s = XL (6.1.30)

with Xj as the sum of all x, to the left of the resolvent.
The reduced density operator in Laplace space reads then

i 1 1 1
o(E —(=1)N(7 ——FG... 1.31
HE) = 5 (-0 ()6 g5 66 g5 S5 A(0) (6.1.31)

i
- T_Z(E)p(m) , (6.1.32)
where the kernel X(E) is identified as
S(E) = L(—1)% (M)t GG~ G (6.1.33)
S P E X —Ls T E+ X —Ls .

only including irreducible diagrams. The arrows indicate here the symbolically equivalence. Accord-
ingly, the following diagrammatic rules hold [Sch09]

e 5 =T[li<; my!is a symmetry factor, where mj; is the number of contractions between vertex i
and j. Two diagrams are considered to be different if they can not be mapped on each other
permuting only the field operators of each vertex.

e (—1)"» is a fermionic sign factor, where N, is the number of interchanges of fermionic field
operators A? in Liouville space which are needed to write the contractions in product form.
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o ([17)i stands for the product of all contractions which lead to irreducible diagrams. If Alf and

A" are contracted, and A? stands left to A", the contraction is given by fyff,/ (Eq. (6.1.29)).
The contractions are indicated by the upper conjunctions in a diagram (see Fig.6.1).

e To determine the energy argument X; of resolvent /i, we draw an auxiliary vertical cut at the
position of that resolvent. X; is the sum of all x-variables of the contraction, which cross the

vertical cut. The x variable of a contraction 77, is defined as x = n(w + pq), i.e. refers to
the left AT-operator of the contraction. Resolvents are drawn as green, lower lines between
the dots in a diagram (see Fig.6.1).

e G = G are the coupling vertices acting on the local quantum system, defined by
Eq.(6.1.23). Each field operator is indicated by a black dot in the diagram (see Fig.6.1).

In Figure 6.1 the first two diagrams contributing to the kernel X (E) are depicted exemplary with
coupling vertices which consist of a single field operator.

6.1.4 Observable: Current
The time evolution of the average of any observable R is
(R) (t) = Treot Rpeot(t)
— Trtot e"Htot(t*tD)R e*thot(f*to)ptot(tO)

= —iTr Tres Lre T p(19) 25, (6.1.34)
for a time-independent H,.:. Lg is the respective Liouvillian defined as
Lr = Z{R. -}, (6.1.35)

with {-, -} indicating the anticommutator. Due to the similar form, this expression can be brought
to an analogous form as Eq. (6.1.11)

(R) (6) = T+ / SR(t () (6.1.36)

where the only difference between kernel X and observable kernel X is that the first vertex G(© is
substituted by the vertex R(®) in the latter.

The main observable of interest within the present work is the particle current flowing from
reservoir « into the local system. It is defined as

L(t) = —0:No(t) = —i[Hv, No(t)] (6.1.37)
where N, is the particle number operator of reservoir a. One can show that
. ~ 0)p... 1o 0)p...
()10 =13 b 181 (R P =3 ;nmampcf..?ﬁ g (6.1.38)

The current kernel X, (E) can then be computed perturbatively in an analogous way as X (E) for a
time-independent Hamiltonian.

6.2 Floquet-Liouville space

6.2.1 Diagrammatic in Floquet space

We are interested in the steady-state of a time-periodically driven system, assuming that all operators
as well as the derived observables are time periodic and thus fulfill the relation

Alt+ T, ¢+ T)=A(tt). (6.2.1)
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The goal is to transform all objects in a combined space of Liouville space and Fourier space, which
is denoted as Floquet-Liouville space. The periodicity of the double time dependent operators allows
to rewrite them - equally as the two-time dependent Green's function in the former chapters - as

At t) =) e A (r =t — 1)), (6.2.2)
k
AK(E) = /dre"E’TAk(T). (6.2.3)
Fourier transforming Eq. (6.2.2) yields

A(E,E') = 6(E — E' — kQ)AX(E) (6.2.4)
k

which relates the double energy dependent objects to the ones in the Floquet-Liouville space.

One needs to start with the general time dependent expressions of the objects of interest. We
only state them here and refer the interested reader to Ref. [Sch12, Kas13]. The general expression
for the propagator in Laplace space is

M(E,E) = éd(E, E" + %/dElL(E, E))M(E, E'), (6.2.5)

which can be transformed to )
MNE)= ———¢p, 6.2.6
E) = 75 (626)

using the relations of Egs. (6.2.2, 6.2.3, 6.2.4). Here ; is @ matrix and [1 as well as g, are vectors
in the combined space of Fourier space and Liouville space, i.e. defined as [Sch12]

(ksyso| I (E) |K'ss}) = (s150] L5 (E + K'R) — ke |5]55) (6.2.7)
(ks152| [1(E) |s155) = (s152| [Tk (E) |s155) (6.2.8)
<k5152|§0 |S{S§> = 6,(0551,5{552,52/. (629)

Eq.(6.2.7) defines here the relation between the full matrix L and LK(E). The reduced density
matrix for the time periodic case reads then

p(t) = M1(t, to)p(to)

_ —inQ2t i —iE(t—to) 1
= e — | dEe Rl t 6.2.10
Yy <E—L<E>>nop( ? o2

in Floquet space. In order to compute the time evolution of the reduced density matrix, ; needs to
be diagonalized, solving

L(E) [ (E)) = A [xk(E)) (6.2.11)
(%(E)| L(E) = (xu(E)| . (6.2.12)

Since we only aim at the steady state of the system, only real eigenvalues need to be considered.
Imaginary eigenvalues yield to an exponential decay, which has died out already in the long-time
limit. The real eigenvalues are given by —k{2. The resulting eigenvalue equations for the right and
left eigenvectors are

Lfglsz,n’sl/sé(E)Xll:’sl’sé(E) |n5152> = 7/(_QX,,;5152(E) |n5152> ' (6213)
L o wers (E)xE o (E) (nsiss| = —kQ2xF oo/ (E) (nsiso] . (6.2.14)

nsisy,n’s{s; n’s{s,
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The left eigenvectors are
(%¢| = (kOO| + (k11| , (6.2.15)

where the kth eigenvector belongs to the eigenvalue —k 2.

Calculating the right eigenvectors is more complicated, because they depend on the energy argu-
ment E. Moreover, in order to evaluate the energy integral of Eq.(6.2.10), poles and branch cuts
of the right eigenvectors in the upper complex plane need to be located carefully. This is a difficult
task independent of the order to which the effective Liouvillian is calculated. We avoid a further
discussion of this, because the present study will employ a further approximation later on, rendering
also the right eigenvector energy independent.

The general expression of the double energy dependent kernel in Laplace space

S(EE') (—i)m’l(—l)N"é (”v)irr/D{E, E'YG(E, E1)T(E{, B1)

x G(Ey, E5)MT(E}, E>)...G(Em—2, E,_\)[T(E. |, Em_1)G(Em_1,E.)  (6.2.16)

m—1

can be transformed to Floquet space by employing Egs. (6.2.2, 6.2.3, 6.2.4)

SHE - k) — (—i)m—l(—1)’Vp%(/77),-,, > YT G (E - KR - k)G
KL K Kk
x [ (E — K2 — k2 — K2 — kp2)G* ... GFn
X [hm=1Xn-t(E — ki Q2 — ki, m202)G 00k, K] o+ ki mo1.  (6.2.17)
The resulting expressions depend on one energy argument E and an extra Fourier index (analo-

gously as the Green's function in Floquet space). This allows to use the diagrammatics derived in
Sec.6.1.3 for the time independent case and complement them by the following rules [Kenal:

e Add 3, for each vertex G and G — Gn.

e Add 3=, for each propagator [T and [1X(E) — [M**(E — 3, j'Q — 3=, j$2), where j’ runs
over all Floquet indices of Gs to the left and j runs over all Floquet indices of [Is to the left
as well as the index of the current /7 itself.

e On the left hand side add to the object an additional index k and shift the energy argument
E by —k{2 as well as add a d 5~ /45« to the right hand side.

6.2.2 General form of the RLM Liouvillian

We concentrate now on the resonant level model as defined in Eq.(3.2.2) with U = 0 in the wide
band limit. The local Hilbert space is spanned by |0}, |1), such that the Liouville space is spanned
by the basis |00), |11}, |10),]01). The kth component of the effective Liouvillian in its general form
in this basis is

il—é((E) —ilK(E) 0 0
Lé = _'Tgk (£) irlkO(E) Ek?E) : (6.2.18)
0 0 0 —[-E"]"
From the two properties

Trp(t) =0 (conservation of probability) (6.2.19)
and p(t) = p'(t) (hermiticity) (6.2.20)

of the reduced density matrix follow for the general Liouvillian
TrL*f(t, t')=0 (6.2.21)

(L)e(t, ') = —L(t, t) (6.2.22)
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where the 'c-transformation’ is defined as (A)ss s = A% z5. This in turn directly yields the
properties

Tr {N)(E)} =0 (6.2.23)

[LK(E]e = LR (—E"). (6.2.24)

The entries f and I of the upper left corner are the Fourier coefficients of the rates from the
dot state |0) to |1) and vice versa, respectively. Due to the simplicity of the model, where the charge
is the only quantum number, the off-diagonal blocks vanish, i.e. upper right block and the lower left
block decouple. This allows to focus on the the upper right block, which with

oo = Po (6225)
P11 = P1, (6226)

and Eq.(6.2.19) reduces to a master equation which only calculates the probabilities of the dot

being empty pg or full p;.

6.3 Markov approximation and Perturbation Theory
6.3.1 Perturbation Theory in RLM: First order diagramm
For the resonant level model, the superindex reduces to
i=now, i=1,2,.. (6.3.1)

i.e. omitting the spin index and @ € {R,L}. The coupling between system and reservoir is

f =
gh—elelorn== (6.3.2)
cf forn = —

where t,(t) = >, t*e™?t. With this definition, we can now apply the derived diagrammatics to
calculate the kernel to first order in the tunnel rates, i.e. evaluating the first diagram in Fig.6.1. The
first diagram is
TH(E) =417 GP 1 TTH(E + k2 — ki) G2 500k 410,k
= (P2Vi +77)013GL 1 Moo (E + k2 — ki2) G2 50k, 1k,
= X5K(E) + Z*K(E) , (6.3.3)

with the contraction divided into a symmetric and an antisymmetric part

nr = 0P +91) (6.3.4)
1 _
N = 5Pac(@) (6.3.5)
. o1
2 = 7r(@) (22 + 3
1 1 1
= Pao (& Taf - . - . : =
Pa () 2;(w—lwﬁ+w+/wﬁ> (6.36)

The Fermi distribution has been decomposed accordingly and is represented in terms of the Matsub-
ara frequencies w9 = (2n+1)7 T,,. The spectral function pae(©0) = pac(w) with @ = nw is defined
by the wide band limit in Eq. (3.3.5). These two parts are calculated separately. The antisymmetric
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part reads

TH(E) = 7i013GL 1 TToh(E + k2 — ki2) G 500, ko,
= 228y (1] P 1) Mgy (E + K2 — K1 2) (] G, 1) G

. D?
= jim_ [ @ 57z

X On Oim 013 Oky+ha,k (rs| G 1 il) (mn| G5 |Pq) O+,

1 1 1 1
7.2
azzn:w—iwg“L@Jriwg 0—z

T,m D iTom D?
= |. -
Pse Z iD+E+ k24 e D? — (wg)? Z iwe —z D? — (wpar)?

n n>0

X 01 Oim 013 (rs| G 1 |il) (mn| G225 [Pq) Okytko i

iTem iTam
- te b = - -
Z|OO><OO| k—ky Ly ;E+k29+e+iw,?‘ ;E-szﬂ—ﬁ‘i‘iwﬁ

a, ko

iTym iTym
11) (11 2, t = - "
+ [11) (11| £, i, ZE—l—kg_Q—e—i—iwﬁ ;)E—i—kgﬂ—i—e—&-iwff

iTym iTom
00) (11|t , t : -
+| >< |k—k2k2 ZE—{-/{QQ-’-E‘F/UJ% ZE—}—/Q_Q—G—‘FI.W,?

| n>0 n=0 J
iTom iTom
11) (00| t& , t@ — , (6.3.7
+ [11) ( |k—k2k2 n§>0E+k2_Q—e—|—iwﬁ‘ ;)E+k2_(2+e+iw,?‘ ( )

where summation over the double indices is assumed. The energy integral is closed in the upper half
plane, such that the residues of the Matsubara frequencies as well as the bandwidth D are summed
up, while the principal value of é with z := —(E+ k2 — k12 — H;;m + Hip) yields no contribution.
The symmetric part reads

TOH(E) = p2vid1a Gy Mgs (E + k2 — k12) G2y 014k i

lim /d' b? L
— w
D— oo D2 +@2 E+ kQ— k2 +&— Himy, + Hip

P2 .
X 5 0in Oim 013 Okko i (rs| Gty [i) {mn| G225 [PA) G4k

1
— lim =D
D " E X kQ — K2+ iD — Hy + Hiy

b2 .
X ) Oin Oim 013 Otk k (7S] G;ff,l |il) (mn] G;f’;,z |Pa) Oky ko
. P2 .
= —im = Oin Sim 013 Oks+ko.k (1] Gl [iT) (mn| G5 [PG) St

= —im Yt 4t (100) (00| + |11) (11] — |00) (11| — |11) (00| + [10) (10| + [01) (01]).

(6.3.8)

6.3.2 Markov approximation in Floquet space

Separating the time scale of the kernel from the reduced density matrix by setting p(t') — p(t) is
an often employed approximation in the time independent case [Sch94] or for time periodic system
in the adiabatic limit, where it is enhanced by corrections to the order of 2 [Spl06]. In analogy to
the time independent case, we call it Markov approximation, which needs to be contrasted to the
approximation of setting the double time dependent tunneling rate (¢, t’) to [(t) [Cav09, Win13].
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Extending the approximation to the whole range of driving frequency seems to be crude, because
the separation of the time scales is not justified anymore out of the adiabatic regime. In order to
investigate the nature of this approach we employ it as follows

w0 = [ s

to

t
(Markov) / dt' 5 (t, t')p(t)

to

= [ e [ e irk@n

to

/dTZe*’““/— ~ETSH(E)p(t)
= Y e BE(i0T)p(t). (6.3.9)

k

Q

This can be done analogously with the current kernel X,y leading to

(L) (t) = —iTr (Z e—fkﬂfzg(io+)p(t)> : (6.3.10)

The expression for the reduced density matrix becomes in this approximation

Ds,, sz(t Zefmﬂt /dEeflE (t— to)z n51$2| < ( )) |051$2> pslsz( )

1,53

—in i —iE(t— 1 : s (;
Izn:e mg/dEe =) " (nsys)| E1 k0 Xk (107)) (% (i07)] 0s153) psyss (to)

! !
k,s{,s;

(6.3.11)

where the spectral decomposition of é(iO*) is employed. For ty — —o0, the steady state is

P (1) = Z e MK (nsi 55| x40 (i07T)) (xe(10T) )| 0s1s3)ps:s:(0)

n,k,s{,s}
= e ™ (ns15] x0(i0)) ps;5; (0)

/
n,s{

= Z e M2t (ns) 55| xo(i07)) (6.3.12)

n

where we use the specific form of the left eigenvector. é(iOJr) indicates that the initial eigenvalue
equation for the upper right block

[iToin—n(E + 1 Q) = 128y ] x500(E) — iMn—n (E + 0" Q)x51; = —k2x5,0(E) (6.3.13)
[iTn—m(E + 1 Q) = 028y ] x511(E) — iToin—n (E + 0" 2)x500 = —k2xX1(E) (6.3.14)
becomes

[iTo;n—n (107) = n20nm | X500 (10F) — iM;n—mw (10T )xp 11 = — k2x%0(i0) (6.3.15)

[iTn— (107) = nQ20pm | X511 (10F) — iTo.n—mw (10T )X 00 = — k2x/51(i0) (6.3.16)

in the Markov approximation. We can deduce that only the eigenvektor for the eigenvalue A = 0

contributes to the stationary state in the Markov approximation and the higher harmonics of the
propabilites pg,; are

Pe = Xmoo(i0™) (6.3.17)

P = X0 (i0°). (6.3.18)
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6.3.3 Quantum Master equation in Floquet Space

Finally, the equations for the probabilities reduce to a quantum master equation in Floquet space

— Z e—lk.Qt ng/ps t)

= Z e (k+n)Qt(Wsl;’pg/ - Wslgspg)
kns'#s

= Z ~ilkerma Ws/;”yps’

knss’

(6.3.19)

(6.3.20)

where we have defined fiZsks‘y(s’,yg/(iO*) = Wsk'm and s,s" € {0,1}. The entries of the (current)

ps(t)
() (t)
kernel are
Woko = I'(f
Wl = ~rf
Wllz) = _/_(;<
W1k1 = l_lk

s/

Wos™ = —15"/2
Whe = e
Wig® = —Ig"/2
Wit = )2

with I'é‘/l I' 0/1 L4 /' 0/1 R and with the rates calculated in Egs. (6.3.7) and (6.3.8)

K
lo = Z e io iy

Ot,kz

= Z te—k, th

Oz,kz

with temperature T, of reservoir
Matsubara frequencies.

Zkg_Q—i—e—i—/wa Z/Q —E—I—Iwa

Z/Q —e—l—lwo‘ Zk29+€+lwa

- T

- T

(6.3.21)

a € (L,R) and wy = (2n+ 1)7 T, are the respective fermionic

It is now equivalently to solve Eq. (6.3.16) or to rewrite Eq.(6.3.19) under the assumption of a
time periodic form of the probability as well as by employing the symmetries pJ = 1—p?; pf = —p2.
Both way it leads to the follwing coupled expressions for the higher harmonics

1 -
PSZW(/—{J—Z(/_{(+/_§)P0’<),
1 0 k0
1 _
p?:m(FS—Z(I’f—kfé)plk),
1 0 k0
1
m__ /-k /—k m—k rm 0,
Po “imQ 4+ 0410 ;)(1"‘ o)y "+ 1o m #
1
m_ /-k I—k m—k rm 0.

The left mean current can be rewritten as

§ : —n,L
ILO ss’ pg’

nss’

_ Z rfanf o I—Ofn,Lpgl
n

(6.3.22)

(6.3.23)

(6.3.24)

(6.3.25)

(6.3.26)

This method is used to verify if the finite mean current of a single parameter pump can be captured
already when employing the separation of time scales. The results are presented in Section 8.4.3.



Dynamics in Periodically Driven
Quantum Dots

61






Chapter 7
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In this chapter renormalization in the context of time periodically driven quantum dots is discussed.
The interacting resonant level model (IRLM) used to model the quantum dot, is known to exhibit
strong renormalization physics. In particularly intriguing is the way multiple energy scales compete
in the renormalization group flow to act as an infrared cutoff [Sch80a, Doy07, Bou08, Bor07, Kar10c].
The physics reported in the literature about equilibrium, the time independent as well as the time
dependent non-equilibrium IRLM is introduced in the first three sections. Subsequently, we compare
the explicitly time dependent FRG to the one set up directly in Floquet space and elaborate in what
sense the two can be viewed as complementary methods. Motivated by the known renormalization
physics of the IRLM, we are interested in the role of the driving frequency {2 as an infrared cutoff of
the renormalization flow. To study this, we first consider four different protocols with combinations
of the hopping(s) and/or the onsite energy periodically varied in time. We focus on the limit of a
small driving amplitude, since it allows to complement the full numerical solution of the truncated
FRG flow equations with analytic expressions of the renormalization of the parameters. Secondly,
a setup where only the onsite energy is driven time periodically is treated, considering an arbitrary
driving amplitude and driving frequency. We elaborate that this scenario can be described in terms
of an effective reservoir distribution function, which exhibits a multistep form, where position and
height of the edges are defined by the ratio of driving amplitude and driving frequency. Taking
advantage of the tunability of this function, its influence on the RG flow can be investigated and we
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Figure 7.1: The reservoir distribution function in equilibrium (left panel) and the resulting renormalization
group flow of the hopping (right panel) with U/D = 0.1, Tx/D = 4.62-107%, T = 0 and
€ = 0. Yellow arrow indicates the bandwith D, the red arrow marks the low energy scale Tk.

find that the energy scales defined by the positions of the sharp edges can be related to the infrared
cutoffs of the flow.

The present chapter solely focuses on the renormalization of the dot parameters, which can be
discussed in a transparent way. Subsequently, the acquired understanding is used to comprehend
the resulting transport through the system, which is presented in the next chapter.

7.1 The equilibrium IRLM

The main physics of the equilibrium IRLM has been sketched shortly in Section 3.5 already when
discussing the model, but is now illuminated further in the context of the functional renormalization

group.
Calculating the first order contribution to the left (right) hopping for symmetric hoppings 7 o =
TR0 = To in perturbation theory in the interaction to the leading order of U/D reads! [Karl0c]

P( )0 =70 — U"12(23

='T0— 5= / wGl23) T1i(33) Gis(a3)

. f ~1)2
Dpm i@/ LR(w) —1/2

- 7.1.1
5D |0 u/p 2 (711)

The reservoir distribution function fi (w) = fr(w) = 6(—w) for T = 0 in the equilibrium (depicted
in the left panel of Fig.7.1) and thus has a sharp step at w = 0.

The step at w = 0 renders it necessary to rewrite the integral (we do not distinguish between
left/right hopping anymore, since they are equivalent in the considered setup)

1 /[ 1 1 [P 1
f/ idw"/ . (7.1.2)
2 ) pw/D 2/|T°| 2Jo w/D- 2/‘7"|

Evaluating the integral leads to
278 47'0

D>y U 27’8

which shows a logarithmic dependency on 272/D? resulting from the evaluation at w = 0 (as a
consequence of the sharp Fermi edge). The expression diverges for 75/D — 0, such that the regime

pT___Um
7o 7DD

IThe chosen integral borders 4D in the last step are a consequence of the approximation to only include the leading
1
— terms.
D
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of approachable interaction vanishes in the wide band limit D — oo, as discussed in Section 3.5.
This renders the usage of a RG method reasonable. The first order flow equation in the functional
renormalization group for the equilibrium setup and with vanishing onsite energy is given by [Kar10c]

i T({\/D
D (A/D)? + A/D + 2(ro/D)?

oty = — (7.1.4)

The respective renormalization flow of the hopping matrix element 7y is shown in the right panel
of Fig. 7.1, where two scales become apparent to characterize the flow: The ultraviolet cutoff is
the energy scale, where the flow starts to deviate from its initial value. Here the UV cutoff is given
by the bandwith D. The second scale is the infrared cutoff. An infrared cutoff is defined as the
energy scale at which the renormalization flow stops, i.e. when the flow parameter A reaches the
value of the infrared cutoff, the renormalization group flow levels off and the hopping saturates to
its final value.
Solving the differential equation (7.1.4) analytically, results in

_7rD[1 8( |n|t/D)2]71/2

v _ [1-vIZeop
t 14 /1—8(7"*/D)?

_U
D>t [ D init2 =D
>0 (TB2 ) , (7.15)

where the logarithmic divergency of perturbation theory is summed up within the renormalization
flow, yielding the discussed power law (see Eq. (3.5.2)): In equilibrium 74 cuts its own flow, resulting
in [KarlOc]

it D for [¢| < T < D. (7.1.6)

7_c;en <7_(|)n|t>_72rL£jJ+O(U2)

To

The final, renormalized value in turn depends on the infrared cutoff scale 74" in a power-law fashion.
The emergent low energy scale Tk has been defined via the charge susceptlblllty (see Chapter 3,

Eq. (3.5.4)), which directly reflects the power law. On the other hand, in the non-interacting case

it is equivalent to define the low energy scale via

. 4|Finit|2
Tk = %. (7.1.7)

The bare hopping 7g" can now be substituted by 7(" to incorporate the interaction and Tk can

be identified as the |nfrared cutoff in Eq. (7.1.6). Both definitions of the low energy scale Tk are
equivalent to the leading order in U and would be the same in the wide band limit D — oco. We
thus do not distinguish between these definitions and suppress the tilde in the following.

The renormalization of the onsite energy € shows also power law behavior in the limits € < Tx
and € > Tg. Taking the logarithmic derivative of the numerical solution of the FRG flow equation
for € (not shown) indicates that the exponent is of the order of U? in the scaling limit and hence
cannot be determined correctly within the first order truncation [Karl0a]. Moreover, if ent =0 |
then it follows €" = 0 to all orders due to the particle hole symmetric structure of the respective
flow equation. Equally the onsite energies of site 1 and 3 are only renormalized to order U?.

7.2 The time independent non-equilibrium IRLM

A well studied time independent, non-equilibrium setup in the IRLM, is one with an applied bias
voltage V. Calculating the first order contribution to the left (right) hopping (with 7o = TR0 = 70)
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Figure 7.2: The effective reservoir distribution function (left panel) for a setup with a symmetrically applied
bias voltage as well as vanishing onsite energy and the resulting renormalization group flows
(right panel) of the renormalized hopping for different amount of applied bias voltage with
U/D =0.1and Tx/D = 4.62-107°. Red (yellow) arrow indicate the low energy scale Tk (the
bandwidth D), the blue arrows mark color coded the voltage strength.

in perturbation theory in the interaction U/D for this non-equilibrium setup yields [Kar10c]

PT
TL(R),O =T0 — UI712

o(5) u re adv
=" 70— i / dWG11t(23)>—_:{(1(33) Glzd(33)
- V) b g(—w+ —1/2
Do U duw (—w+ mr)) | /2 (7.2.1)
™D J p " (w—e)/D—2iBE

where we have also included a finite onsite energy €. The reservoir distribution function of the left
(right) reservoir fi(g)(w) for T = 0 with a finite chemical potential s (r) has been expressed in
terms of a Heaviside function, which reveals the sharp step at y (). This expression can be recast
to

ro.c U b g-w+ —€e)]—-1/2
TLP(-IE{) ) D>, o — U duw [~w+ (i 6)1 / (7.2.2)
' ™D D J p w/D — 2il%]

revealing ju (r) — € as the effective positions of the sharp edge. For a compact illustration of both
relevant energy scales for the left and the right hopping, we define an effective reservoir distribution
function. For this we consider the Keldysh reservoir self-energy of the effective one-dot structure
(see Eq.(3.3.7))

SK (W) = —2iM42 — 2fi (w) — 2fx(W)] = —4il4[1 — 2f(w)] (7.2.3)
such that the effective reservoir distribution function is defined as the sum of the left and right

reservoir contribution

Fw) = 5 () + )] (7.2.4)

with a Fermi function f /g that includes the onsite energy; fir) = O(uL(r)y — € —w) for T = 0.
The resulting effective reservoir distribution function is depicted in the left panel of Fig.7.2 for a
symmetric applied bias voltage V and € = 0. It reveals the two sharp steps at w = £V//2, where
the according energy scales (defined by these positions) affect the perturbation theory contribution
of the left or right hopping, respectively. Equally as explained in the equilibrium setup, the integral
of Eq.(7.2.2) is rewritten in two parts as a consequence of the step, and thus is evaluated at
w = p/r — € besides the integral borders w = +D. This yields for y. = —pr = V/2 and
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D > |e|, 1o, /R
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(7.2.5)

The resulting expression reveals a logarithmic dependency, where the argument depends on all energy
scales present in this non-equilibrium setup: the difference between chemical potential and onsite
energy p(r) — € as well as the equilibrium, low energy scale Tk. In analogy to the equilibrium setup,
the wide band limit renders the RG method necessary.

The according flow equation for a symmetrically applied bias voltage . = —pur = V//2 is given
by [Karl0c]

U 7'|f\(R),o A/D + (T{‘(R),O/D)z + (7'|§\(|_),0/D)2

TP (V25 /P + [A/D + (i o/ DI + (8y1y0/ D]

nT{(Ryo = — (7.2.6)

including a finite onsite energy e (which is assumed to be independent of A, neglecting its weak
renormalization (see previous section)). From this the renormalization flow of 7 o can be deduced,
which is displayed in the right panel of Fig. 7.2 for several values of applied bias voltage and ¢ = 0.
It can be observed that the infrared cutoff is affected by both energy scales V and Tg, competing
with each other. As a consequence, in the limit where one energy scale is much larger than the
other, the larger one provides the infrared cutoff.

Solving the differential equation (7.2.6) analytically? yields to a regularized expression [Kar10c]

U
27 ~ 72D
2 ini ini
TL(R).0 D3>0 (V/2F€e)" + ((TL(th),o)2/D + (TR(lt_),o)Q/D) 207
init - D2 ( e )
L(R),0

where the logarithmic divergency of Eq. (7.2.5) has been summed up throughout the RG flow. The
result allows to identify three different regimes for the renormalized hopping exhibiting distinct power
law behavior [Kar10c]

Tren 7_init 7%+O(U2)

T?nit ~ ( ;’) ) for|V], |e]| < Tk < D, (7.2.8)
0

7_ren V _T%)""O(Lﬂ)

T?nit ~ (D) for Tk, |e] < |V| < D, (7.2.9)
0

0~ (5) for T, |V| < |e| < D. (7.2.10)
0

reflecting the respective infrared cutoff.

The above discussion indicates the following: The effective reservoir distribution function exhibits
sharp edges, where the discontinuous jumps yield logarithmic divergencies in a perturbation theory
calculation. The position of the sharp edges render 11, /g — € the relevant energy scale or respectively
with only a sharp edge at w = 0, the low energy scales emerges. The divergency present in the
perturbation theory calculation is summed up within the RG flow, resulting in a regularized expression
depending on all energy scales. If one energy scales is much larger than the others it provides the

20Only including the leading feedback, i.e. neglecting the feedback to 7y in the fraction.
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infrared cutoff in the RG flow of the hopping. As a consequence, the renormalized hopping depends
on the infrared cutoff in a power law fashion.

How the presented power laws are reflected in observables is discussed in the subsequent chapter,
where we discuss transport.

7.3 The time dependent non-equilibrium IRLM

Choosing the parameters of the IRLM to be time dependent allows to study a very broad range
of possible setups. One interesting problem is a quench, where the transient behavior for t > tg
is investigated, when e.g. interaction and coupling to the reservoirs are switched on at ty abruptly.
Those setups can be approached by several methods, among others by the explicitly time dependent
FRG (t-FRG) [Kenl2a, Kenl2b, Kenl13, Kas13] and the real time renormalization group (RTRG)
[And1la,Andl1b, Kenl13, Kasl3].

We like to sketch shortly at this point the transient behavior of the hopping and the renormalization
effects found in these quenched setup. The t-FRG has proven to capture the intriguing physics of
these systens, where we only give a brief overview, a comprehensive discussion can be found in the
according references and in [Ken14]. Several quench setups have been investigated, but we mainly
focus on the interaction quench, as it yields the most intriguing physics [Ken13, Kas13]. These
systems are very involved rendering it difficult to derive analytic expressions for the time dependent
renormalization of the parameters from the FRG flow equations. As a consequence - despite the
dominant route of the present chapter, where we nearly exclusively focus on the renormalization
of the parameters - we here discuss the observable occupancy as well to give an impression on
renormalization in a time dependent quench setup.

If an initially empty dot is considered and coupling to the leads and interaction is turned on at ty,
the transient behavior of the three site system is expected to be equal to the field theoretical IRLM
if t > D!, This scale corresponds to the time needed to fill the sites 1 and 3, which renders them
proper reservoir sites.

If a bias voltage V is applied and |e + V/ /2| > T, the renormalized hoppings T[?E)(t) begin to
oscillate after a rather short time around the respective steady state value, where the left (right)
hopping exhibits only the smaller frequency e — V/ /2 (the larger frequency € + V/2), i.e. they show
different behavior characterized by the chemical potential of the respective side. The relaxation of
the occupancy towards its stationary value is governed by two different (RTRG renormalized) decay
rates I and I, describing the broadening of the hybridization to the leads and the charge relaxation
on the level, respectively. The frequency of the oscillatory behavior is given by € &= V/ /2. This is
accompanied by an exponential decay and a 1/t'~8 decay with an interaction dependent exponent
g =2U/(nD) + O(U?) [And11la,And11b, Ken12a]. Similar behavior can be found when quenching
the onsite energy € to a value much larger than Ty, where € defines the frequency of the oscillating
contribution. While for small times weak oscillations above an exponential decay are observed, for
longer times the oscillations become more dominant [Kas13]. Further quench setups are discussed
in Ref. [Ken12b].

The most interesting physics is observed when quenching the interaction, for example from positive
to negative interaction or vice versa. While the rough understanding of the time evolution of the dot
occupancy indicates that the time evolution is coherent, i.e.damped oscillatory for U/D > 0 and
incoherent, i.e. a purely decaying for U/D < 0, the discussion below reveals that this understanding
needs to be refined [Ken13, Kas13].

In the short time regime Tkt < 1, the renormalization of the hopping term can be calculated by
means of the flow equation [Ken14]

S EENE ) /1/D dt’ﬁégd""\(t', ol (7.3.1)

()

TA(t) = Ula/\

where G are Green's functions obtained in the effective single dot structure and the index 0 indicates
that the bare (time independent) value of 7 is used in the calculation of the corresponding Green's
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function. Solving this flow equation (see [Ken14] for the technical details) yields the expression

ren _u
TL/‘R.(t) _ & ©D e,% exp(f2l'1df)e*%51(rldt) (732)
Tt”/'tR D

for an initially unoccupied dot, with the exponential integral £1(z) = .~ eT_tdt, |Arg(z)| < 7. Using
Eq. (4.6.1), the according dot occupancy can be calculated

) 1)(m)gﬂ . (7.3.3)

n2(t) ~

The interaction dependent exponent is given by g = 2U/(wD) + O(U?), which can be extracted
from the FRG to its leading order.

To consider the general times t Tk it is necessary to complement the FRG results by RTRG resultsS.
The comparison allows to derive analytic expressions, where it benefits from the different nature
of the perturbative approaches. The resulting analytic expression for the transient dot occupancy
[Ken13, Kas13]

1

m(t) = 5 + % (Minc(t) + neon(t)) (7.3.4)

consists of two parts, where n;,. constitutes the incoherent relaxation, while n.,, denotes the coherent
relaxation. The two contributions are given by

ninc(t) ~ llm {e_'YfEl <|:;/_2* _ A/:| t)} Y = e—i‘n’gtg , (735)
™
Neoh(t) = 21 —& cos(wt)e~ 1t O(g) (7.3.6)
coh 1+g g). 9.

with the exponential integral E;(z), the decay rates I;f and the frequency w of the oscillatory part

.| 78

fz'v{zsmm)

where the interaction dependent exponent g = 2U/(wD) + O(U?) can be extracted from the FRG
to its leading order. A detailed examination of these analytic expressions for the different U regimes
reveal that the understanding of the different regimes of time evolution must be refined such that
an 0 < U. < 1 can be specified, classifying three different regimes: asymptotically coherent time
evolution for 1 > U > U,, partially coherent time evolution for U. > U > 0 and incoherent time
evolution for U < 0 [Kenl4].

This is especially interesting as the IRLM can be mapped to the Ohmic spin-boson model (SBM)
for small interactions, which relates the interaction U to the dimensionless coupling constant «
(which couples the spin system to the phonon bath) and simultaneously the dot occupancy of the
IRLM to the spin expectation value (SBM). As a consequence, it relates different magnitudes of spin-
bath coupling to different regimes of time evolution for the spin expectation value [Ken13, Kas13].

1/(1+g)
} Wil ~ elimtin2s/(te) (7.3.7)

7.4 From transient behavior to the periodic steady state

With the t-FRG arbitrary time dependent dot setups can be treated, including time periodically
driven ones. Calculating the long time behavior of these systems with the t-FRG is possible, but
each time step needs to be computed explicitly. The required computing time scales with the number
of time steps to the power of 2, which becomes rather costly in the adiabatic limit, where the period

3The real time RG is a renormalization group method working in the Liouville space and perturbative in the interaction
U and the tunneling rates 4. The method presented in chapter 6 lies the basic ground for the more involved
RTRG. A didactical introduction to the method can be found in [Sch09].
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Figure 7.3: Comparison of the explicitly time dependent FRG procedure and the Floquet FRG: While only
the first can describe the transient behavior as depicted in the inset, in the long time behavior
both results coincide, displaying a dot occupancy that follows the oscillating onsite energy with
the same period T. The onsite energy is driven as €(t) = — Tk + Ae cos(£2t) with Ae/ Tk = 0.2,
2/(2n Tk) = 100 for U/D = 0.2 and Tx/D =7.93-107°.

T > Tk. The FRG set up in Floquet space takes advantage of the periodicity and is thus the more
efficient choice of a basis. As a consequence, we have now two complementary methods at hand
to consider the whole time regime: While the transient behavior is calculated by the t-FRG, the
Floquet FRG is employed to calculate the long time behavior. This is exploited here to present the
dot occupancy in the full time regime including the transient behavior and to compare the t-FRG
results to the Floquet FRG results in the long time limit, depicted in Figure 7.3. The inset of the
figure displays the increase of the occupancy from an initially half filled quantum dot due to the
decrease of the onsite energy (eg = — Tk) compared to the initial state. This happens on a rather
short time scale of tyans Tk = 5. Subsequently the occupancy follows the periodically varying onsite
energy and oscillates with the same period around a finite mean value. Once all transient behavior
has died out, the explicit time dependent FRG can be compared to the FRG set up in Floquet space.
The latter has been shifted for an appropriate comparison since the initial time to — —oo (rendering
it independent of the initial setup (compare Eq.(4.1.36))). An excellent agreement of the results
obtained with the two different methods is observed.

7.5 Time periodically driven IRLM in the limit of small driving
amplitude

After understanding the power law behavior in the time independent or quenched setups, we like
to investigate now periodically driven dot setups and the role of the newly introduced energy scale
(inverse time scale) 2 in the renormalization flow, which might lead to a novel power law. Whereas
we can consider arbitrary driving frequency and amplitude with the employed method, we now focus
on the small driving amplitude since we like to complement our numerical results with analytic
expressions. We still consider arbitrary driving frequency and the line shape of the applied signals
can be of any form, as e.g. rectangular or sinusoidal form. We study four different protocols in this
limit specified in the following.

7.5.1 Setup and Protocols

We aim at analytic expressions for the renormalization of the hoppings 7, /r(t) and the onsite energy
e(t) in the time periodic interacting resonant level model in the limit of small driving amplitudes
AT, Ae to gain an understanding of the underlying renormalization flow of our FRG approach
and the role of the driving frequency 2 in it. We focus on left right symmetric mean hoppings
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TLk=0 = TR k=0 = To and the particle hole symmetric point ex—o = 0. The left-right symmetry
of the mean hoppings as well as the interaction simplifies the analytic expressions, but analogous
consideration can be made for more general expression of asymmetric setups. We will consider four
different protocols in the following:

e In protocol 1 only the left hopping 7.(t) is chosen to be time periodic, while the right hopping
7r(t) and the onsite energy €(t) are assumed to be time independent, i.e. 7r(t) = 7o and
e(t) = 0.

e In protocol 2 the left and the right hopping 7 (r)(t) are chosen to be time periodic, while the
onsite energy €(t) is assumed to be time independent and €(t) = 0.

e In protocol 3 the left and the right hopping are assumed to be time independent, i.e. 7r(t) =
TL(t) = 7o, while the onsite energy €(t) is chosen to be time periodic.

e In protocol 4 the left hopping 7i.(t) and the onsite energy €(t) are assumed to be time periodic,
while the right hopping is assumed to be time independent with 7r(t) = 7o.

The flow equations of the hopping and the onsite energy are
U
A * KA
TRk = T ani I / dw G553, (W), (7.5.1)

Ui,
onct =~ 0 [ do (Gl () + Gl () (752)
for time independent interaction U with the initial values
TRk = TRk eh =€t (7.5.3)

For the simplicity, we will suppress the superscript 'init" in the following and assume if not indicated
otherwise the parameter to be the initial one.

7.5.2 Keldysh Green’s function in the limit of small driving amplitudes

For the analytic description of GK(w) on the right hand side of the flow equation in the limit of
small amplitudes, a dimensionless parameter p = 722 = <2 is defined, which is kept small p < 1
for all calculations. The Keldysh Green's function is thus calculated perturbatively in p, where we
keep only the leading order of p.

The inverse of the retarded reservoir dressed dot Green's function in Floquet space is defined as

/:/A—1—1 f:/A—lo 0
(gret,/\)—l = Hy_1 Hoo Hoi | » (754)
0 Hipo Hu

where only the Floquet indices k, k’ are shown, while each /:/k,k/ is itself a matrix in real space.
The infinite Fourier space is already truncated after the first higher harmonic i.e. only the subspace
spanned by k = 0,+1 is included. This is a consistent approximation to O(p) if we focus on the
renormalization of the k = 0, £1 coefficients.

The diagonal elements in the Fourier space I:Ik,k are the k = 0 components of the 'reservoir
dressed’ Floquet Hamiltonian defined in Eq. (4.3.3)

R w+kQ+i(D+/\) TL,0 0
Hk,k = Tlik,O wH+ k2 —e+iN TR,0 , (755)
0 e w+ k2 +i(D + A)

the respective off-diagonal elements Iilk,k/ for k #£ k' are

0 TL,k’fk 0
How = | L=k —€—k  TRK'—k | (7.5.6)
0 TRk’ —k 0
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with the corresponding k’ — k Fourier coefficients as defined in Eq. (4.3.7). As we are interested in
the left right symmetric case around the particle hole symmetric point, we set 7 k=0 = TR k=0 = To
and ex—g = 0 in the following.

Neglecting all terms O(p?) the retarded Green's function is given by

t,A r /;I;I_Al 1 _I:I:II_AII:lIOlH&) 0 19 -1
G = | —Hyg' HhoH—{_, R 11-19—0 . *H&AHollHﬁ , (7.5.7)
0 —H1 HioHyg Hp

with only the Floquet indices shown and summation over the quantum numbers of the real space
assumed and where we have already used that I:Im = I:Io,l. It shows a notably transparent structure:
The diagonal elements only feature the inverse of the respective Hamiltonian entry and are not
affected by any other entry. The off-diagonal elements with an effective (or physical) Fourier
coefficient k; = k — k' # 0, depend on the kith coefficient of the Hamiltonian as well as k and k’
diagonal elements of the inverse Hamiltonian.

The respective entries of the inverse of the Hamiltonian (diagonal in Floquet space) in real space
are given by

A 1 . .
Likk = {0+ kQ+i(A+ D) [w+ k2 +iA] = o[}

N 1 _
L2k = D {ro[w + k2 +i(D + A)]}

r— 1

H1,31;k,k = D {rom0}

>

- 1 * .
b Lok D {70 [w+ k2 +i(A+ D)}

>

ik = 5 (I + k24 i(A+ D) ) (7.5.8)

>

-1 1 .
k= 75 ([0 + k2 +i(D + A}

N
@

L1— 1 * %

H3,11;k,k = D {7070}

N 1., )

H3,21;k,k ) {76 [w+ k2 +i(D+ )]}

~ 1 . .

Hyspn = o {lw+ k2 +i(D+ M w + k2 +iA] = |70]}

with
D = [w+ k2 +i(D + A [w + k2 + iA] — 2|70|* [w + k2 + i(D + N)]. (7.5.9)

The Keldysh reservoir self-energy is given in the k = 0, £1 Fourier space as

SK., 0 0

=1 o 5K o0 |, (7.5.10)
0 0 5K

where each 3§, is again a matrix in R

R O]—(w+k2)] -1 0 0
5K =4iD 0 0 0 . (7.5.11)
0 0 O—(w+k2)]—3

Utilizing Eq. (4.4.18) the Keldysh Green's function becomes to linear order in p

" K
Goq GG O

M= &, G G (7.5.12)
0 G GK
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with

and /:Ik_,f defined as in Eq. (7.5.8). Again summation over suppressed real space quantum numbers
is assumed.

A transparent structure of each of the elements becomes apparent, which allows to generalize the
expression to

G = H SR (AL, (7.5.13)
Gl = —H S Ho b Fe H — At A At S8 ok (7.5.14)
for all k # k’. Analyzing this structure leads to a key point in the analytic description: The
diagonal elements of GK only depend on diagonal elements with the same kk indices, whereas the
off-diagonal elements with the effective Fourier coefficient k; = k — k' depend on diagonal elements
with coefficients kk or k'k’ and exclusively on off-diagonal elements with the same effective Fourier
coefficient ky. Since any other contributions of a different higher harmonic would be of higher order
in p, the different k channels decouple and hence can be considered independently. As a result,
these expressions can be generalized from k = 0, =1 to the entire Fourier space. These approximate
@,5(/ are inserted on the right hand side of the full flow equations to compute the renormalization
analytically to the leading order of O(p) for each Fourier channel.

Before we proceed to consider the renormalization of each channel individually, we note the
following: The Fourier series in general relates the driving frequency 2 directly to its factor m, such
that the relevant energy scale (or inverse time scale) is m{2. This is trivial to understand by the fact
that each T periodic function is also nT periodic, rendering it possible to decompose the series by
2/n as well. The resulting prefactors for a certain signal form would be m-n in the according Fourier
series, such that always only the combination mf{2 appears. From the expression in Eq. (7.5.14) we
can derive a stronger restriction on the {2 dependency in the limit of small driving amplitudes: The
G,'f,d with the effective k; = k — k’ Fourier coefficient depends on k;£2 only. We thus can conclude
that the renormalization of kth harmonic only depends on k{2 and is independent of the other higher
harmonics.

7.5.3 Mean value: kK =0 component

To calculate the k = 0 component, i.e.the mean value of the parameters, we can consider any of
the diagonal entries in Fourier space of the Keldysh Green's function GK, as they are all equivalent.
The zeroth channel is completely independent of the driving frequency and unaffected by higher
harmonics and thus independent of the exact driving setup, i.e. it is the same for all four protocols.

We consider the mean values of the hopping matrix element. Sorting all contributions to the
Keldysh Green's function by O (%) we only include the leading order for a consistent expansion in
%, which results in

Gl5(23).00 = Hﬂ%)/;oozlfoo"’f(léioo (7.5.15)
Inserting it in the flow equation leads to
Ui Mw +iN) 4iDO(—w) — 2iD
oo =9y | dw — 0 . (75.16
AT A/ “ Ar w+ (A + D)(w + iA) = 2|15]? (w — i(A+ D)) (w — iA) — 2|1o|? ( )
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Figure 7.4: Renormalization flow of 7 x—o for any of the protocols (here obtained in protocol 1) for U/D =
0.1and Tx/D = 4.62-107° for two different values of driving frequency. The flow is independent
of the driving frequency or the exact form of the time dependence, but resembles the flow of
the equilibrium, stationary setup. The analytic description (crosses) is in good agreement with
the full numerical solution (solid line), where the difference arises from higher order corrections
in U and p.

Next, the star derivative needs to be carried out. In order to only take the derivative of the explicit
flow parameter, Ty in the denominator is set to its initial value and 74 is moved in front of the
derivative, which allows to substitute 9} by O

(w+iA)/D O(—w) — %

A UTé\ w
Ono =7 pe a”/d (w+ i(A+ D))/D(w + iA)/D — 2L (& — i(A+ D))/ D(w — i/\)/D(— 2,;22)'
7.5.17

Additionally all parameters are divided by D. Including all contributions to the order of # in the
denominator the expression can be evaluated to

v /D
7D (A/D)? + A/D + 2(m9/D)?
reproducing the differential equation for the time independent equilibrium setup [KarlOc]. Solving

the differential equation analytically, results in the same power law as discussed in Sect. 7.1 for the
stationary, equilibrium IRLM

8/\7-(;\ - _ (7.5.18)

ren

—20=0
Tgo ~ (%’) . o = 77% +O(LR). (7.5.19)

As depicted in Fig. 7.4 the flow is always cut by the low energy scale Ty independent of the
applied driving frequency. The analytic result captures nicely the full numerical solution, where
the differences results from higher order effects in p and %, which are beyond the scope of our
analytics. In Fig. 7.7 the exponent ak—g of the power law of the hopping is displayed (+ symbols).
It has been extracted from the full numerical solution via a logarithmic derivative d In(7{)/d In(70),
implemented as centered differences, which is a numerical very sensitive measure. The resulting
exponent is in good agreement with the analytic prediction in the regime of small interactions. The
deviation in the regime of larger interaction results from (U/D)? contributions.

An analogous consideration shows that the renormalization ex—q is also independent of {2 and
unaffected by the time dependency. The resulting renormalization of order U? has been discussed
in Section 7.1.

From this discussion, we derive that the driving frequency {2 does not provide an infrared cutoff for
the k = 0 component of the hopping. This is consistent with the consideration we made at the end
of the previous section that the effective scale for the kth component is k2. The zeroth component
is even completely unaffected by any time periodicity in the limit of small driving amplitudes,
reproducing the steady state of the time independent, equilibrium IRLM and the according power
law.
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Figure 7.5: Renormalization flow of 7 -1 for protocol 1 with U/D = 0.1 and Tx/D = 4.62 - 107° for
several values of driving frequency. Full numerical solution (solid lines) is compared to the
analytic description (crosses). A clear dependency on the driving frequency (2 is observed: It
provides the infrared cutoff as long as 2 > Tk.

7.5.4 Protocol 1: Time periodic 7, (t)

In protocol 1 the left hopping is time periodically varied with an arbitrary signal shape, setting
TL k=0 7 0, while €420 = Tr k20 = 0. The analytic calculations in Sec.7.5.2 showed that the Fourier
components decouple from each other to the leading order in p, rendering it reasonable to consider
the renormalization of each channel individually. In particular, a general expression for the Fourier
components of the Keldysh Green's function (Eq.(7.5.14)) has been derived, revealing that the
k1 = k — k" component has an effective, general dependence on ki £2 only.

The renormalization of 7, is described by the flow equation

U
Ol =~ 4 0; / duw G (w) . (7.5.20)

Utilizing Eq.(7.5.14) to calculate the respective Keldysh Green's function on the right hand side,
we take only contributions of the leading order of % into account, which reads as

' (w+ k2 — i(A+ D))
(w+ k2 —i(D + A))(w + k2 — iA) — 2|72
(w— iA) 4iD [0(—w) — 1/2] (w + iA)
(W —i(D+A))(w—iA) =272 (w+i(D+ A)(w+ iA) = 2|n)2

GlK2’;/(\)k(w) =

(7.5.21)

Weighting each parameter by dividing through the bandwith D, only contributions to the order of
1/D? need to be included consistently in the denominator. The star derivative is rewritten as in
Eq. (7.5.17), which leads to

U (w—1iN)/D[O(~w) —1/2]
D DN T iR L 2l ek A wih Il
- D 5~ + "o (5 +“5°) + "o

N0 = — (7.5.22)

The integral on the right hand side can be performed using the substitution z = w — i/ to cancel
the integral and derivative, yielding

U i, N/D?
R T o

The resulting differential equation describes the flow of all higher harmonics for a time periodically
driven left hopping, showing a general functional dependence on k{2 for the kth harmonic. In
Fig. 7.5 the analytic expression (symbols) is compared to the full numerical solution (solid line) for
TLk=1- 1he analytic expression completely captures the full numerical solution and the role of k{2
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Figure 7.6: Renormalized 710 for protocol 1 with U/D = 0.1 and Tx/D = 4.62-107°. The left hopping
is periodically driven with a signal of the form 7. = 70+ 3_,%, A7 sin(k£2t), such that all higher
harmonics have the same initial value. All solid lines (full numerical solution) lie on top of each
other showing the same dependence on k2. A comparison to the analytic description (crosses)
shows excellent agreement especially in the large driving frequency limit. The inset shows that
renormalization bends to a {2 independent value in the adiabatic limit.

as an infrared cutoff, such that the renormalization flow bends at the respective value A =~ k2 (for
k£ > Tk). The analytic description is improved by including the feedback of 7", i.e. substituting
the mean hopping matrix elements by their renormalized values of Eq. (7.5.19). This has no impact
in the regime of k{2 > Ty, but improves the agreement of the analytic description with the numerical
solution of the full flow equation in the small frequency limit, where all components (including 7o)
are cut by Tk.

The differential equations for the higher harmonics can be solved analytically, yielding

2 U(kR—2i|y|?/D)
2|7_0|2 2 27Dk

(k_Q)2+(D—|—>

D

—2iU o |2 — U(kQ—2i|7g|?%/D)

—2ilme|” 2 27Dk
Tk (2ik 24 ) arctan (7455 <2702> (kQ)2+<2TO|2) ]
D

D
U
k‘g/D) |:(k.Q)2 +4(To|2/D)2:| D e—iU/(wD)arctan(Ml;%)

2iU| g
ren 2 2 2
T _U (9 Almol” k@ 217 7D2(kQ2)
L, k#£0 e2me(2le+ D )arctan(D+27_02/D)<D+ ‘ 0|

TL k0 D

X e

2
—U 4|7
D>ZTkez7rDm ‘Do‘ a"Cta"(

2|mo
D2
Ulrgl?/D
O T (72) S
K222 + 4(|ro[?/ D)2

(7.5.24)

where in the last step we took advantage of the wide band limit. Substituting 79 by its renormalized
value again, enhances the analytic description of the full numerical solution.
Two regimes can be identified, showing different power-law behavior

Tkt To | ~ 2% u 2

: ~ (= -1 =——+ 0O(U?), k2 Ty 7.5.25
TL,k#£0 (D) =1 wD + ( ) | | < Tk ( )
T (k@) T
Tikzo (K82 , — 2 L o), kQ| > T, 7.5.26
e (8 op=-C L OWD), (k2| T (7.5.26)

the small frequency regime of k2 < Tk and the large frequency regime with |kf2| > Tk. In the
small frequency regime the 7, are cut by the energy scale Tk, resulting in the same power law as for
7o. If the driving frequency |k{2| is much larger than Tk, it provides the cutoff of the renormalization
flow resulting in a power law in the driving frequency. Hence, as discussed in Sec. 7.2, both energy
scales kf2 and Tk affect the infrared cutoff and compete with each other. In the limit of one energy
scale much larger than the other, the larger one provides the infrared cutoff. This is immediately
reflected in the power-law scaling of 7/
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As a consequence the renormalized signal 7/*"(t) with several non-vanishing higher harmonics
depends on both infrared scales, such that there is a crossover from Fourier coefficients, whose RG
flow is cut by Tk to coefficients whose RG flow is cut by k2. For £2 > Tk, the low energy scale only
provides the infrared cutoff for the zeroth component, whereas all higher harmonics are cut by k(2.
The crossover is thus just between k = 0 and k = £1. However, for a fixed small to intermediate
(2, there is a crossover of the infrared scale within the various Fourier coefficients. While the RG
flows of all kth coefficients with |k2| < Tk are cut by Tk, there are higher harmonics in the same
signal, where |kf2| > Tk and therefore the according infrared cutoff is k2. In this case it is a
smooth crossover such that there are intermediate coefficients, which are cut by an infrared scale
that depends on both energy scales Tk and k{2, which are about the same size.

In Fig. 7.7 the exponents of the power laws 7""(7p) and 7""({2) are displayed, which have been
computed by a logarithmic derivative of the numerical solution of the full flow equation. Both
exponents ak—1 and ag show excellent agreement with the analytic prediction. The higher order
corrections with increasing interaction strength are smaller for a; than for ag—1.

The renormalized higher harmonics at the end of the flow are depicted as a function of k2 in
Fig. 7.6, where the analytic expression (crosses) is compared to the full numerical solution (solid line).
Here the left hopping is designed as 7.(t) = 70 + 210:1 At sin(kf2t) such that all non-vanishing
Fourier coefficients have the same initial value. A universal dependence on k{2 is recognized for
each kth harmonic, such that all shown solid lines lie on top of each other. We only display the
first five Fourier coefficients for simplicity, but all higher harmonics have the same dependency. The
inset shows the limit of small frequencies, where all curves level off to an {2 independent value due
to the infrared scale Tk.

The dependency of the renormalization of the kth higher harmonic on k{2 has interesting impli-
cations for the renormalized signal 7/*"(¢):

U
™

" (¢) AR init [ k€2 v
LT[eS = Z %emt ~ ZTk t <TK> e 2t for |02 > Tk (7.5.27)
, % L, K

First, due to the k dependency, each of the component is renormalized differently. With increasing
Floquet index k, the infrared cutoff grows, resulting in a weaker renormalization. The different
strength of renormalization changes the ratio between the Fourier coefficients and thus modifies the
line shape.

Second, the renormalization depends on the driving frequency 2. While a positive sign of the
interaction decreases the amplitude with increasing (2, the opposite is true for a negative interaction.
Thus, depending on the sign of the interaction, a rectification or amplification of the effective signal
amplitude is observed.

To illuminate this further, we define three of the typical signal shapes by their dependencies on k
with s(t) = Y, g Ske™

sin Sgn(k)

sum of sinusoidal fcts. : " = TAS
i
2As sgn(k)
fct.: s ="—"—"02 7.5.28
square fc s, — ( )
- —14A k
triangular fct. . sy = (—1)%—'95@( ) .

T

Assuming for example an initial signal of rectangular shape 7"t = s?% the renormalized signal is
k k

22 for U/D= =
e~ siq”(kQ)_% = g(sgn(k)) As Q w0k 17D~ {A,;—Z_Q for U;D =—7

(7.5.29)

For an interaction U/D = =+, there is a precise renormalization of one signal form into the other:
For U/D = 7 the renormalized signal is of triangular form with a rectified amplitude by the factor
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Figure 7.7: The exponents ak—o, ak=1, @ are depicted. They are obtained via a logarithmic derivative of
the full numerical solution. The deviation of the analytic description for the larger interaction
U are higher order corrections.
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Figure 7.8: Two different input signals for positive and negative interaction are defined to illustrate the
interesting implications of the k{2 dependent renormalization. U/D = £0.5 and Tx/D =
2.87 -107* as well as Tx/D = 4.41-1077, respectively. The initial odd Fourier coefficients
are defined as :—: = %kTUD_I such that the renormalized signal is of rectangular shape. For
positive interaction U the driving amplitude becomes rectified by the interaction, while for
negative interaction the renormalized driving amplitude is amplified compared to the initial

signal.
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Figure 7.9: Full numerical solution (crosses) and analytic description (solid lines) of the renormalization
flow of 7i_x—1 for protocol 2 with U/D = 0.1 and Tx/D = 4.62-107°. The analytic description
is the same as derived for protocol 1, because the feedback of 7r =1 into 7 k=1 is of higher
order and vice versa. These higher order effects are only observed in the adiabatic limit resulting
in a deviation between analytical and numerical solution.

271 (2> Tk). For U/D = —m, the k-dependency vanishes and the renormalized signal is a sum
of sinusoidal functions with different frequencies kf2. The amplitude is enhanced by a factor of (2
(.Q > TK).

However, this interaction strength is beyond the accessible regime for our FRG approach, but the
respective trends can be deduced for small to intermediate interactions: For U/D > 0 the amplitude
is rectified by a factor of 271Y/(7D)l and the effective k dependency is k=1~1V/(7D)l j e the effective
signal tends towards a triangular form with increasing interaction. For U/D < 0 the amplitude is
enhanced by a factor of 2FIU/(7D)l while the k dependency becomes k—1*IU/(D)l " tending to a
sum of sinusoidal signals.

The respective opposite renormalization towards a square function also holds true, such that the
trend of the renormalization can be summed up as:

U/D>0 U/D>0
triangular function U/p<o SAuare function U/p<g SUM of sinusoidal functions .
L — L —

Knowledge of the described renormalization can be utilized to cancel its effect, i.e. the initial signal
is designed such that the renormalized one is of the required form. In order to illustrate this we
design the initial signal with odd Fourier coefficients as

Te 0L b1 podd (7.5.30)
70 ™
for a renormalized signal of rectangular shape. The initial and renormalized signals are displayed in
Fig.7.8. As anticipated, the line shape of the signal is changed to a rectangular form and the driving
amplitude is amplified for negative interaction and rectified for a positive interaction. In Section 8.5
the linear conductance is discussed for the bare and the renormalized signal shape.

Finally, we mention that the discussed power law in the regime of larger driving frequency is also
reflected in an observable, the mean current Jy of a single parameter pump. We postpone the
detailed discussion to Section 8.4 in the next chapter, where transport is discussed in more detailed
for several different setups.

7.5.5 Protocol 2: Time periodic 7. (t) and 7x(t)

An analogous treatment as described in the previous section but for the setup of left and right
hoppings driven periodically in time shows that there is no contribution of the higher harmonics of
the right hopping to renormalization of the higher harmonics of the left hopping and vice versa to the
order O(%, p, U). As a consequence, the flow of the left and right hoppings 7 (r) « are described by
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the same analytic expression as derived for 7, in protocol 1. We compare this analytic description
to the full numerical solution for 7_x—1 of the setup, which is depicted in Fig.7.9. The agreement in
the large driving frequency regime is excellent and only in the adiabatic regime there is a deviation
due to higher order effects. The Egs. (7.5.23), (7.5.25) and (7.5.26) hold equally in this setup.

7.5.6 Protocol 3: Time periodic €(t)

In protocol 3 only the onsite energy € is periodically varied in time. Since the renormalization
of the higher harmonics of the hopping in this protocol turns out to be more involved, due to a
complicated interplay of several energy scales, we here focus on a fairly simple signal of sinusoidal
form and choose

€(t) = Aecos(2t). (7.5.31)

Renormalization of ¢,_;

The flow equation of the first higher harmonic of the onsite energy is

Ui
oy = 1 0 / e (Glhy() + Gl ()) (75.32)
such that we need to evaluate
G/;(;m = H/ooZ// OO(H/m 1) Hmn;Ol(Hn_j;loo)* H:o ooHop 01’:/;;71;112_:;;;11( q?lll)* (7.5.33)

at i =/ =1and i =j = 3. Collecting all contributions of leading order % once again, results in
the following differential equation for €_,;

e, = 8A/d ig Ele
[ (w—+iA)/D |70|?/D? [0(—w) —1/2]
i(w+iA)/D —2|7]2/D? —i(w+ 2 — iA)/D — 2|10|>/D? —i(w — iA)/ D — 2|7|?/D?
n |7o[?/ D [0(-w - 2) - 1/2] (w+2—iN/D .
i(w+iN)/D —2|10|2/D? i(w+ 2+ iN)/D — 2|1]?/D? —i(w + 2 — iA)/D — 2|19|?/ D?

(7.5.34)

The differential equations 7.5.17 and 7.5.22 have been approximated to the order of # in the
denominator, which in turn allowed to simplify the right hand side by an appropriate substitution.
This approximation is not possible here, but also not necessary. If we set all parameters on the
right hand side of the flow equation to their respective initial values, the resulting expression can
be integrated straight forwardly for A = 0 as it is not plagued by logarithmic divergencies. The
resulting expression thus is a first order perturbation theory calculation

ren D>7/R2 U Tk 6',?“1 I(TK/2+I.Q)/D TI% Y E
9@ =" 053 b o/b(re )b "\ T ra) " Hre ()|
(7.5.35)

where the feedback of the k = 0 channel has been included by substltutlng by Tk. This analytic
expression indeed captures the numerical solution of the full flow equation very well, as illustrated in
the left panel of Fig. (7.10). While the imaginary part is mainly renormalized in the regime 2 ~ T,
the real part is renormalized for {2 é Tk; in both cases the renormalization is minor. This also holds
for the higher harmonics of more general setups.

Replica picture

For the discussion of the renormalization of the first higher harmonic of 7 () in this setup, we
introduce the replica picture to consider time periodically driven systems [Shi65, Zel67,GL13]. The
key idea is to make explicitly use of the infinite copies of the initial system which arise in the Floquet
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Figure 7.10: Renormalization of €4—; in Protocol 3: The left panel shows the respective renormalization
flows, the right panel the renormalized real and imaginary part of ex—1. The renormalization of
the (initially non-vanishing) real part increases for intermediate {2 and is mainly renormalized
in the adiabatic limit. The imaginary part vanishes in the large driving frequency limit as
well as in the adiabatic limit. It is only finite in the intermediate regime. In any case the
renormalization is minor and need not to be fed back in the analytic description of 7{{g) 1

All four panels are calculated with U/D = 0.1 and T/D = 4.62-107°.

formalism, each indicated by the extra single particle like Floquet index. Treating the Floquet index
as a spatial index and hence consider the Floquet channels as an extra spatial dimension, the non-
interacting, time-periodically driven d dimensional system is mapped on a non-interacting, time
independent d + 1 dimensional system with an infinite number of replicas of the system. All energy
levels are shifted by k{2 for the kth replica, resulting in an effective chemical potential of u = k2.
The various replicas are coupled via the higher harmonics of the time periodic parameters, where the
index k indicates the range of the coupling in the auxiliary direction. This means that two replicas
ki and k» are coupled, if a finite Fourier coefficient k, — k; exists.

We demonstrate this with the specific case of interest here: In the top, left panel of Fig.7.11 the
replica picture is illustrated for the three site system with an harmonically driven onsite energy. Here
the replicas k = 0, +1, 42 are displayed of the infinite numbers of copies. On the right hand side
the effective chemical potentials k{2 of each of the replica is indicated. Within one replica the sites
and reservoirs are coupled as known from the undriven system, neighbouring replicas are coupled at
site 2 by €x—1.

Renormalization of 7,

The calculation of the renormalization of 7 (r) k=1 is more interesting compared to €;;: While

their initial values are zero, they become finite throughout the renormalization flow. Due to the
complicated interplay of several energy scales, which are not clearly separated anymore, it proofs
to be more advantageous to calculate the renormalization in an effective model than following the
procedure applied in Section 7.5.4 for the renormalization of the hopping.

Once again we focus on the left hopping, since due to the left-right symmetry of the setup, left
and right hoppings are equivalent. G1K2,01 is evaluated and shows that it does not depend on 7 k-1
to the linear order in U. Thus, its feedback into its own flow equation is of order O(U?), which
is beyond our considerations. As a result the renormalization of 7_ -1 is computed in a first order
perturbation theory calculation in U

TLk=1 = —Unmg k=1, (7.5.36)

where the replica idea is employed to calculate it in an effective, undriven model. The infinite
replicas of the initial system are - due to the sinusoidal driving of the onsite energy - only coupled to
neighboring copies at the central site via ei‘:il. This is depicted in the left, upper panel of Fig. 7.11.
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Figure 7.11: The time periodically driven one-dimensional system is mapped to an effective time-
independent, two-dimensional system with replicas shifted by 2. Neighboring replicas are
coupled via ex—1 for the setup with sinusoidally driven onsite energy. Main goal is the calcula-
tion of the renormalization of 7—1, where only the zeroth and the first replica are of relevance
to order O(p). The initially vanishing hopping 7 =1 is generated throughout the flow, here
indicated by the red, dashed line. To realize the compact effective model (as depicted in the
lower row), we take advantage of the left-right symmetry and finally include the first side into
an effective reservoir in the k = 0 channel. The resulting effective model allows to set up the
required lesser Green's function straight forwardly.

We focus on the first higher harmonic of the left hopping, which can be identified as the coupling
between the first site of the k = 1 replica and the second site of the k = 0 channel. It is initially
zero and only generated by the interaction (indicated by a dashed red line in the top right panel
of Fig.7.11). We can concentrate on the channels k = 0,1 only (marked deep blue in the top
right panel of Fig.7.11), since contributions of the other channels would be of higher order in p.
The afore discussed left-right symmetry allows to fold the system with respect to the central site,
simplifying the system to a four site model of doubled parameters 27 ¢ and 2D, respectively. The
resulting setup is displayed in the left, lower panel of Fig.7.11.

Within this four site model, the A dependent flow of the parameter is calculated, where the
auxiliary reservoirs can be added to each of the four sites of the model. T{fk:l is then computed as

ey =755 = —Un$y = 7# / dw G5\ w), (7.5.37)
i

with 7¢™/n®™ as hopping/occupation in the effective model. G1<4’A can be set up straightforwardly
in the effective model with four sites and the w integral is evaluated numerically for each value of
N

In the left panel of Fig.7.12 the result of this perturbative calculation (crosses) is compared to
the full numerical solution (solid line) for the renormalization flow of 7, x—1. The flow diagram
shows more structure compared to the afore discussed ones. The flow is affected by a complex
interplay of 2, ex—1, Tk and the flow parameter /A and thus does not depend on a single infrared
cutoff. Three regimes can be identified: For large driving frequencies the hoppings are barely
renormalized, resulting in minor renormalization of 7 (r) x—1. In the adiabatic regime on the contrary,
the renormalization is sizable, but decreases again when the flow parameter reaches the regime
A < Tk. In the regime of moderate driving frequency 2 &~ Tk (dark red line) renormalization is the
strongest.

Finally, the renormalization at the end of the flow is calculated. For this, the fourth site of the
central region is incorporated into the right reservoir. The effective model hence has a central region
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Figure 7.12: Renormalization of 7 x—1 in protocol 3 with U/D = 0.1 and Tx/D = 4.62-107°
Left panel: The renormalization flow shows a much more involved structure as a result of a
complex interplay of the contributing energy scale, the flow hence does not feature a single
infrared cutoff.
Right panel: Renormalized 7 =1 as a function of 2. While in the limits of small and large
driving frequency no renormalization is observed, in the regime 2 =~ Tk 7 k=1 is renormalized
prominently.

consisting of three sites, which is coupled on the one side to the reservoir with a flat density of states
with the coupling 2D and on the other side, it is coupled with an effective hybridization 274 to the
right reservoir with an a Lorentzian shaped density of states. This is depicted in the lower, right
panel of Fig.7.11.

In this effective model,

ren em em U
T %=1 = T3 = —Un{3 = ~5 / dw G5(w) (7.5.38)

with 7°™/n®™ as hopping/occupation in the effective model. Thus G5(w) is set up in the effective
non-interacting model

/dw G5(w)
_ /dw [(w — _Q)(OJ + 2il'1d) - Ei:1]2TL'0€k:1[4I'D@(—(w — Q))]
(w -1 + 2ID)(OJ + 2I'/—1d)(w — _Q) — (27‘[_’0)2(0.) + 2’/—1d) — 6,2(:1(0.) -1 + 2ID)
[(w—02—-2iD)(w—N2)— 4730]271_,0@(:1[4il_1d@(—w)]
(w—02—=2iD)(w —2ilMq)(w— 2) — (271,0)*(w — 2i[14) — €2_,(w — 2 — 2iD)

X

. 4i2 — -0 1 1
Dz k/dw @(_UJ—FQ)EI Tngk ! “ D 472 472
2i(w — 2)/D — T —2i(w — 2)/D — e
4i 142 — 1 1 1
+ 6w El% Tngkil 2iM4)/D (0 + 2il1g)/D ar?
(w— ] ld)/ (w—|— 1 ld)/ 2i(w—Q)/D— DL2,0
(7.5.39)

and integrating results in (D > 7, 2)

ren

ren p>n/ U 73 =1 | . Tk . T +402°
TRk=1 = 272D (Tx +12)/D D [ 2j arctan (29) +im+1In (T}% )

(7.5.40)

where 414 has been replaced by Tk, incorporating the feedback of 75. The result has also been
generalized to the right hopping element 7 =1 as the calculation holds equally true. The marginal
renormalization of €x—; renders it unnecessary to include its feedback.

The renormalized hopping is shown in the right panel of Fig.7.12, where the analytic expression
(crosses) and the full numerical solution (solid line) are presented for 7_x—1. The real and imaginary
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Figure 7.13: Renormalization flow for protocol 4 with U/D = 0.1 and Tx/D = 4.62 - 107°. The analytic
description is in excellent agreement with the full numerical solution. In the limit of large
driving frequency the flow is mainly dominated by the renormalization due to the driven left
hopping, while in the adiabatic limit the effect of the driven ex—1 is apparent.
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Figure 7.14: Renormalization of 7 k-1 in protocol 4 and for U/D = 0.1 and TK/D =4.62-107>. In the
limiting cases of very large or very small driving frequency the renormalization is similar as
observed for protocol 1, while in the regime 2 ~ Tk the influence of the driven onsite energy
on the renormalization becomes visible. The driving amplitudes of both driven parameters
have been chosen differently to emphasize the effect of €x=1 on the renormalization.

parts are shown featuring the most prominent renormalization for 2 &~ Tk and no renormalization
in the adiabatic (£2 — 0) as well as the antiadabiatic (2 — oo) limit. The difference between the
analytic expression and the numerical data is of order O(U?) and thus beyond the scope of our
considerations.

7.5.7 Protocol 4: Time periodic 7. (t) and €(t)

In protocol 4, we assume both left hopping and onsite energy to be time periodic

TL(t) = 10 + AT sin(£2t),
€(t) = Aecos(£2t).

To describe the renormalization of 7_ -1 in this protocol, we can combine the results of the protocols
1 and 3. Setting up the differential equations shows, that the renormalization to leading order in
U, consists of the independent summation of the two contributions of both protocols. This is a
consequence of the fact that the feedback of 7 x—; into its own renormalization is of order O(U?)
(and thus beyond the scope of our calculations ) when only the onsite energy is driven periodically
(as discussed for protocol 3). The renormalization of e,—; is the same as in protocol 3, since there
is no contribution to it generated in protocol 1.
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Figure 7.15: The effective reservoir distribution function for a time periodically varied onsite energy shows a
multistep form. Three different cases are depicted here. Case (a): The edge at w = 0 is tuned
to zero, such that the first effective reservoir distribution function resembles in the regime of
small energies |w| the form of a time independent setup with an applied bias voltage V = 202.
Case (b): The edge at w = £ is tuned to zero. Case (c): The steps at w = 0,2 have
equal height. The respective spectral function of the reservoir dressed dot for all three cases
exhibit peaks at the position of the sharp edges in the reservoir distribution function.

The flow of the left hopping 7 k=1 is depicted in Fig.7.13, comparing the analytic expression
(symbols) and the numerical solution (solid line). For large driving frequency the renormalization
flow is mainly characterized by the contribution of protocol 1, featuring the driving frequency as the
infrared cutoff. In contrast to this, the renormalization flows of 2 = 0.1Tk and 2 = 0.01 T sheer
off, reflecting pronouncedly the contribution to the renormalization induced by €x—1.

In Fig.7.14, the analytic expression and the full numerical solution of the renormalized 7 -1 is
presented. In the limits £2 — 0 and 2 — oo the renormalization is defined by the contribution of
the time periodic left hopping (from protocol 1), the contribution of the time periodic €(t) manifests
itself as a bump in the intermediate regime of 2 ~ Tk.

7.6 Tuning the effective reservoir distribution function

In this section, a setup is discussed, where neither the driving amplitude nor the driving frequency are
limited. It is shown that the effective reservoir function is influenced by the ratio of driving amplitude
and driving frequency. At the beginning of this chapter we have discussed that we know from the
equilibrium situation as well as the non-equilibrium situation that the sharp edges of the according
reservoir distribution functions at vanishing temperature T = 0, result in logarithmic divergencies,
which are summed up throughout the RG flow. The respective energy scales (defined by the position
of the steps) are hence reflected in the infrared cutoff of the according renormalization flow. We
here take advantage of the tunability of the reservoir distribution function in time periodically driven
quantum dots to investigate its effect on the renormalization flow further. It allows to create a
situation where the driving frequency appears as energy scale already in the zeroth component of
the hopping Tk—g.

7.6.1 Setup and lllustration of the physical situation
The setup where only the onsite energy is varied time periodically

€(t) = Aecos(2t) (7.6.1)

around the particle-hole symmetric point, is considered again, but the driving amplitude can be of
arbitrary size.
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In order to illustrate the physical situation at hand the time dependency of the dot is shifted to the
effective reservoir couplings 7(t) = 7o exp(iftz Aecos(2t')dt’) as described by Eq.(3.4.1) and in
Refs. [Str05,Kwal0,Suz15]. This transformation is not performed for the numerical implementation
but only serves for the demonstration. The Keldysh self-energy of the effective one dot structure is

Sho(w) = =2ilMa[Suer — 2fe (W), (7.6.2)

where the effective reservoir distribution function (also referred to as the generalized distribution
function) from Eq.(7.2.4) is generalized to

ook ( ZJk " () fo(w + k22) Jir—gq <?;) (7.6.3)

with fier (w) = 32, 1/2F, g (w). Here Jm(x) is the mth Bessel function. We focus on the effect on

the mean value of the hopping matrix elements and consider the k = 0 component of f,(w), which
is given as the weighted sum of the Fermi distribution function

Fao(w) =" {J,,, (?;ﬂ 2 fo(w + M), (7.6.4)

where f,(w) = (e®>% +1)71. At T = 0 it shows a multistep structure with steps of width £ and
a height specified by the nth Bessel function
(2]
"\

at w = n2 [Het95, Suz15, Bru94]. It is thus possible to tune the effective reservoir distribution by
selecting a certain ratio of amplitude and driving frequency g = %. We study here three different
cases:

hy = (7.6.5)

e Case (a): The ratio is fixed by Jy(g) =0 (g = 2.405), i.e. no step at w = 0.

()
e Case (b): The ratio is fixed by J1(q) = 0 (g ~ 3.830), i.e. no steps at w = £2.
(c)

e Case (c): The ratio is fixed by Jo(q) = J1(q) with g =~ 1.435, i.e. equal height for the steps
at w=10,+0.

7.6.2 Effect on the Renormalization flow

Case (a)

In case (a) the resulting effective reservoir distribution of the k = 0 channel (left top of Fig.7.16)
shows no step at w = 0, but steps at w = +£2. This way we have designed an effective reser-
voir function that resembles in the regime of small energies |w| the form of the effective reservoir
distribution of the time independent dot model with an applied bias voltage V = 202.

The renormalization group flow of the k = 0 component of the left hopping is depicted as the
solid line in the upper panel of Fig.7.16 for several values of the driving frequency. The flow is
clearly characterized by an infrared cutoff at 2(2 as long as the driving frequency is larger than Tk.
This follows from the positions of the steps in the reservoir distribution function located at the
driving frequency in strict analogy to a time-independent setup with a driving bias voltage. The
resulting divergencies at {2 are summed up to a cutoff in the infrared for the renormalization flow
of the k = 0 coefficient of 7. The steps at larger w do not affect the flow significantly due to their
smaller heights.

Even though the present chapter is dedicated to the renormalization of the parameters solely,
we like to shortly discuss an observable at this point to support the prior discussion. The charge
susceptibility x is determined by the renormalized hoppings, thus x of case (a) and of a setup
with an applied bias voltage as discussed in Ref. [KarlOc] are compared in the lower panel of
Fig.7.16. It shows equal behavior for both situations, which confirms the discussed similarity in
the renormalization flows. The small difference arises from the influence of the other steps in the
reservoir distribution function in the time periodic setup.
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Figure 7.16: Upper panel: Renormalization flows of the zeroth component of 7 demonstrating a transpar-
ent dependency on the driving frequency (2 for three different effective reservoir distribution
function (shown in Fig.7.15). Lower panel: Charge susceptibility in case (a) is compared to
the charge susceptibility in (the time independent) case of an applied bias voltage. We choose
U/D = 0.2 with Tx/D = 7.93-107°.

Case (b)

The effective distribution function for case (b) is shown in the right top panel of Fig. 7.15. It features
steps at w = 0 and w = £22. Consequentially, the flow (dashed line in Fig.7.16) exhibits two cut
off scales, which is indicated by a change in the slope of the curve: It is first cut at the scale 212
reflecting the edge at w = 22 and then subsequently saturates around Tk, reflecting the edge at
w = 0.

Case (c)

Finally, in case (c), the ratio g is chosen such that Jy(q) = J1(q) with g ~ 1.435, i.e. with edges at
w = 0,102 with equal height. The resulting effective reservoir distribution function is displayed in
the bottom left panel of Fig.7.15. As a consequence of the equal heights, each of the equidistant
edges contributes likewise and they are reflected as multiple, equally distant energy scales cutting
the RG flow (dotted line). While the curve for 2/Tx = 100. features two changes in the slope,
reflecting a cutoff at 2 and one by Tk, the other curves for smaller driving frequencies do not
feature one pronounced infrared cutoff but are bend in a long tail as the several equal contributions
are not resolved.

Here three different situations have been discussed to show the influence of the effective reservoir
distribution function on the renormalization flow. The unbiased RG method we employ here is indeed
capable to tackle this kind of question as no further assumptions have been made in the process of
setting up the RG equations. Steps with a comparably high edge are reflected in the flow as infrared
cutoff confirming the understanding known from the equilibrium and non-equilibrium situations. In
this situation, the kth component of the hopping is no longer only defined by a dependency on k{2,
but already 74x—¢ reveals a dependency on 2.
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7.7 Conclusion

In this chapter the renormalization physics arising in the periodically driven interacting resonant
level model has been discussed. It reveals that the energy scale (2 is reflected in the RG flows and
depending on the exact conditions of the regarded setup, can play very different roles. We have
focused solely on the renormalization of the parameters here, where we were able to provide analytic
expressions in the small amplitude limit. Even beyond this limit, it is a reasonable route to first
consider the renormalized parameters and only subsequently regard the transport, as it allows for a
transparent path towards the rather involved observables.

New power law in small amplitude limit

First, four different protocols have been discussed in the small amplitude limit, where we have shown
that the Floquet channels decouple and can be described independently. Moreover, the effective
energy scale for the kth higher harmonic has been identified to be k2. The considered limit made it
feasible to find analytic expressions for the renormalization of 7 (g)(t) and €(t) in all four protocols,
which show excellent agreement in comparison with the full numerical solution. The protocol of
only one hopping element time periodically varied reveals a new power law in the higher harmonics
depending on k{2, i.e.the renormalization in the high frequency regime depends not only on the
driving frequency, but differs for the various higher harmonics. This allows to design the initial
signals to be renormalized into a required form. In contrast to this, the periodically driven onsite
energy exhibits a renormalization flow for 7\ (r) -1, which is affected by an involved interplay of
several energy scales and not determined by a single infrared cutoff.

Influence of the effective reservoir distribution function on the RG flow

Second, we employed a setup, where only the onsite energy is varied time periodically, but driving
amplitude and frequency are not restricted in any way. It has been discussed that the physical situ-
ation can be illustrated by an effective reservoir distribution function revealing a multistep function
determined by the ratio of driving amplitude and frequency. It was elaborated that the sharp edges
in the distribution function yield the logarithmic divergencies, which are summed up through the RG
procedure and consequentially the energy scales defined by the positions of the edges are reflected
as infrared cutoffs in the RG flow.

FRG reveals full potential

Since the approach presented here follows a transparent renormalization group procedure and is not
biased by any assumption made in the process of setting up the RG equations, it is capable to tackle
the questions presented in this chapter. Especially here the FRG can show its full potential. While
unequivocal dependencies in the RG flow such as the k{2 dependency in the kth coefficient in the
small amplitude limit might be captured by alternative RG methods, identifying dependencies, which
result from a more involved interplay of cut-off scales, as observed for the driven onsite energy in
the small amplitude limit as well as for arbitrary large driving amplitudes is a complicated task which
can be approached by unbiased methods such as the FRG.
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The present chapter is dedicated to the discussion of the transport properties of time periodically
driven quantum dots. The occupancy and the current are discussed in the time independent non-
equilibrium setup to afterwards investigate which of their properties still hold true in the adiabatic
limit of the periodic configuration. Subsequently, we review the known physics of parameter pumps
as analyzed by Brouwer, in the limit of small driving amplitudes and frequency [Bro98,Spl07]. Based
on this, we explore the pumped charge of the parameter pump beyond the adiabatic as well as the
small amplitude limit. The phase difference between the two time periodically varied parameters is
decreased to gradually evolve into an in-phase quantum pump, where both parameters are varied
in phase. This is followed by a discussion of a single parameter pump, realized when only one
hopping oscillates harmonically. The first higher harmonic of the charge susceptibility x; and the
pumping power Jy are examined, looking for an observable that reflects the power law of 7 in
the driving frequency 2. The discussion of Jy and its possible power law is supported by an analytic
expression. A perturbation theory calculation of Jy in Floquet-Liouville space is devised to examine
the conditions of a finite pumping power in this setup. Finally, the current and conductance for
non-sinusoidal signals are discussed, where among others the conductance for the designed signal
of the preceding chapter is considered.

8.1 Transport in the time independent non-equilibrium IRLM

The steady state of the non-equilibrium IRLM in the wide band limit driven by an applied bias
voltage V' was studied in [KarlOc, Andlla, And11b]. General expressions for the dot occupancy
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[Karl0c, And11a, And11b]
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as well as the current leaving the left reservoir [KarlOc, And11la, And11b]
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1.1)

have been derived. Here we take advantage of the effective non-interacting setup at the end of the
flow. As discussed in Section 5.3.4 it allows us to use the non-interacting expressions and substitute
the parameters by their renormalized ones. The renormalization behavior of /14 (r) can be derived

from Eq.(7.2.7)
I3\ (r) _ ( L(R), k= o)
[14.L(R) TL(R),k=0

where the infrared cutoff is influenced by all energy scales and in the according limits the largest
energy scale provides the cutoff, as discussed in Section 7.2. Here already the emergent low energy
scales has been used. Inserting it into Eq. (8.1.2), the power law behavior of the mean hopping matrix
element manifests in an observable. Two interesting regimes of different behavior are identified in
the limit of |V| > Tk [Karl0a].

(8.1.3)

(V2T e + (TK/z)Z] e
D2

Zero impurity energy

For an onsite energy |¢| <[V the renormalization of the left and the right hybridizations [T, g,
is characterized by the infrared cutoff V and hence the current features the respective power law
behavior [Karl0a, Kar10c]

J v U )
?K ~ (TK> ay = D + O(U ) (8-1-4)

depending on the bias voltage.

Onsite energy at resonance

If the onsite energy is fixed on resonance, i.e.e = HLR) = +V/2, it results in different infrared
cutoffs for the left and right effective hybridization /14, (r). Assuming e.g.the onsite energy to be
at the left chemical potential e = V/2, e — u. = 0, while e — ug = V/, such that 4 is cut by Tk,
4R is cut by the bias voltage. As a consequence, the factor of Eq. (8.1.2) combines two different
power laws yielding the following behavior [Kar10a]

J 1
- 20tres
Tk g4 (%)

for the current. It thus only features a power law for a very large bias voltage, orders of magnitude
larger than necessary for the power law of Eq. (8.1.4). This is due to the additional constant in the
denominator, which results from the two different energy cutoffs in the problem.

Qres =

U
— O(U?) (8.1.5)

8.2 Transport in the adiabatic limit

Periodically driven quantum dots have been studied extensively in the limit of a driving frequency
2 much smaller than the characteristic energy scale of the system, the so called adiabatic limit. If
additionally the driving amplitude is chosen to be small, the setup can be considered as quasi static.
This allows to employ and generalize methods and some properties from the time independent steady
state to the periodic one and consider the setup e.g. with a scattering method [Bro98].
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Figure 8.1: Onsite energy varying adiabatically between the resonances in a quantum dot with a sym-
metrically applied bias voltage for U/D = {0.,0.05,0.1,0.15,0.2, } with Tx/D = 2.5-107°,
Tk/D = 3.43-107°, Tx/D = 4.62-107°, Tx/D = 6.10-107° and Tx/D = 7.93-107°,
respectively. In the left panel the current signal is depicted for several values of interaction U,
the right panels show the power law behavior for V >> Tk at resonance (A) and around the
particle hole symmetric point (B). The driving frequency is chosen to be /(27 Tk) = 0.001
and the applied bias voltage in the left panel is V/Tx = 200.

8.2.1 Dot Occupancy

As discussed in Section 8.1 the dot occupancy in the time independent IRLM can be described by
Eq. (8.1.1). This expression can be generalized to describe the time periodic steady state dot occu-
pancy in the adiabatic limit with small driving amplitudes by substituting the respective parameters
by their time periodic ones,

AL (t) = 1. % [arctan ( p(t) — Gren(t)t)) + arctan ( pr(t) — €(¢) )] C (821)

2 M (8) + Igk( M (8) + IHgr(t)

An analogous generalization of the current formula to the adiabatic time periodic setup is not
possible

St (t) # 2 Mg () ik (1) {arctan < ) = € (t) ) — arctan ( iR(t) — (1) )]
m g (8) + MgR(2) g (8) + Igw(t) g (8) + Igw(t)
(8.2.2)
We can directly read off that expression that there is no current for equal u;(t) = ug(t), i.e. no
current at all for configurations where the onsite energy and/or hybridization are varied periodic
in time. While the expression at least describes the mean current correct for setups with a single
parameter varied, the finite mean current of the parametric pump is not captured (see Section 8.2.3).
Analogous expressions for the mean current and occupancy can be found in Ref. [Kwal0] for an
harmonically driven onsite energy.
However, as we elaborate in the next part, in case of a finite bias voltage the mean current in the
adiabatic limit shows the same behavior as derived from the static current expression (8.1.2).

8.2.2 Current for a varying onsite energy

In Section 8.1 the power law behavior of the current for V > Ty for two level points has been
discussed, where either the onsite energy is set to zero or the onsite energy is fixed to one of the
chemical potentials, i.e. is on resonance. While in the regime of vanishing onsite energy a clear power
law in the current can be observed, the on-resonance situation is characterized by the combination
of two infrared scales featuring no clear power-law behavior.

Motivated by this, we vary the onsite energy time periodically between the left and right chemical
potential adiabatically, and thus pass the two resonance positions as well the zero impurity energy
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point. It is now examined whether the current in this situation exhibits the same behavior in the
respective regimes as discussed for the time independent problem (see Section 8.1).

A bias voltage is applied symmetrically with u. = —ur = V//2 and a periodically varied onsite
energy € = Accos(2t), where Ae = V/ /2 and the driving frequency is chosen to be in the adiabatic
limit 2/(27 Tk) = 0.001. The resulting current signal is depicted on the left hand side of Fig.8.1
for several values of interaction U. The non-interacting setup exhibits a current that varies between
a plateau around zero onsite energy and a sharp minimum at the resonance positions. A positive
interaction levels down the plateau to a local minimum at the particle hole symmetric point and
decreases the sharp minimum at the resonance positions further. In order to investigate whether
we can extract the same behavior as known from the time independent situation at these two
points, the time periodic setup is considered for a large range of the applied bias voltage. We
then focus on the two special points A ( € at resonance) and B (zero onsite energy) accordingly
marked in the time dependent current on the left hand side of Fig.8.1. The respective values of
the current at this point are then displayed as a function of voltage (situation A, at resonance) and
as function of the inverse of voltage (situation B, zero onsite energy) to examine the respective
behavior. The numerical solution (symbols) is compared to the analytic prediction (dashed line) on
the right hand side of Fig. 8.1 to reveal that the current in both situations follows the behavior as
predicted. The current when ¢(t) passes adiabatically the resonance point shows the dependence on
V as defined in Eq.(8.1.5) and the current when €(t) ~ 0 reveals power law behavior (Eq. (8.1.4)).
This demonstrates that the adiabatic situation can be considered as a sequence of effectively time
independent setups, where the mean current is only affected by the effective configuration at each
point in time.

8.2.3 Parametric quantum pumps

The realization of a quantum pump is one of the main interest in the field of periodically driven
quantum dots. In the adiabatic limit it can be achieved by varying two or more parameters periodi-
cally with a phase shift between the respective signals. The resulting parametric pump resembles the
classic peristaltic pump. Accordingly, the transport mechanism of the electrons from one reservoir
to the other can be understood in a completely classical picture, rendering no quantum mechan-
ical property crucial for a finite pumped charge. It can be obtained in case of no interaction by
a scattering approach, assuming an effective equilibrium situation at any point [Bro98]. For two
traditional setups, where either one reservoir dot coupling and the onsite energy is varied or both
reservoir dot couplings are varied, exact analytic expressions of the pumped charge can be derived
from the Brouwer formula in the limit of small driving amplitudes (with e = 1) [Spl07]:

(T renL‘*‘ 14 R)E
p
[ + (T + T1R)?]

2 ren ren
QFLJ—R - ( 1d,R: I_ ) (8'2'3)

rren ren \[ren
(& + Har)iaw

&+ (Frge + Trg)?)°

2
Qrie=—n(lgr€) (8.2.4)

where l_'{f,’j(L(R) = l—lrceir,]L(R),k:O' € = €xk—o and n is the according directed, enclosed area in the
phase space of one pumping cycle. While the expressions have been derived initially for the non-
interacting case U/D = 0, where I'lf/",_ ®(U=0)= F'”'L(R) the renormalized hybridizations are
deployed already. Once again, the non-interacting expression can be generalized to the interacting
case by substituting the parameters by their renormalized equivalents (as discussed in Section 5.3.4).
The weak renormalization of € can be neglected (compare Section 7.1).

In the simple cases of

[1a.(t) = I__ld,L + Algsin(£2t)
e(t) = g + Aecos(2t) or Tar(t) = I_—ld,R + Alg cos(2t)
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Figure 8.2: Pumped charge of the parametric pump with 7 (t) = 7o+ A7 sin(£2t) and €(t) = o+ Ae cos(£2t)
in the adiabatic limit (£2/(27 Tk) = 100) and with small driving amplitudes At /7 = 0.01 and
Ae = 0.05Tk with Tx/D = 2.625-10"" for U/D = 0.2. The pumped charge of the interacting
setup is described by the non-interacting analytic formula, when it is rescaled with Tk.

the respective 7 is calculated to

77(/—1[“_, 6) = 7TA/_1dy|_ AE
N(May, Mar) = 1AMgL Algr .

The analytic expressions are derived in the macroscopic model and accordingly depend on the
hybridization 4. Nevertheless, within our approach the hoppings are periodically driven as

7L(t) =710+ A7sin(R2t) and
7L(t) = 10 + ATsin(2t)  and

e(t) = €g + Aecos(2t) (Protocol I) or
TrR(t) = TR0 + A7 cos(2t) (Protocol I1) .

They are linked to the hybridization via Eq.(3.3.7), such that the latter varies sinusoidal to the
leading order in the limit of small amplitudes as well. It renders the analytic expression still valid for
this setup.

In Figure 8.2 the analytic expression (symbols) of the pumped charge Q as a function of the
onsite energy €g is compared to the numerical solution (solid line) of the interacting setup for both
protocols of time periodically driven parameters. Both protocols are symmetric around the particle
hole symmetric point. The combination of driven onsite energy and left hopping (Protocol 1), results
in a maximal pumped charge at zero onsite energy, which drops with increasing absolute value of
€o. For a finite pumped charge in the setup of both hoppings time periodically varied (Protocol Il),
the particle hole symmetry needs to be broken, featuring maximal pumping at € = :I:%. Both
protocols result in no pumped charge for a large onsite energy.

The extension of the generalization of the analytic expression to the interacting setup proofs to be
valid. We make use of the relation 47" = Ty (compare Eq.(7.1.7)) and scale Q with T2/, where
the low energy scale captures the effect of the interaction in this setup. These pump setups are the
starting point of our considerations of pumping out of the adiabatic and small driving amplitude
limit, where we mainly concentrate on Protocol I.

8.3 Quantum pumps: Two parameter pump

The afore discussed traditional pump setup shows maximal pumped charge from the left to the right
reservoir, if the signal of the left hopping is retarded by 7/2 compared to the signal of the onsite
energy. We want to examine a gradual evolution from this case into an in-phase quantum pump
by decreasing the phase difference between the signals of the two periodically driven parameters
in the whole regime of driving frequency with and without interaction. Starting with a maximal
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Figure 8.3: Top row: Comparison of the pumped charge Q for several phase differences gradually evolving
into an in-phase quantum pump, for a small (left panel) and a large driving amplitude (right
panel) for U/D = {0.,0.2,} with Tx/D = 2.5-107° and Tx/D = 7.93 - 107>, respectively.
The qualitatively behavior is the same in both case, where the interaction only manifests in the
renormalization of Tk. For the comparison the pumped charge is scaled per Al;4A¢, showing
that the relative pumped charge is even larger for the smaller driving amplitude. Bottom row:
Pumped charge per AlqAe as a function of Ar/7g in the adiabatic limit (left panel) and for
intermediate driving frequency (right panel).
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phase difference § = 7/2, 0 is decreased gradually. For & = 0 we end up in an in-phase quantum
pump with two time periodic parameters, which are varied with the same signal, i.e.oscillate in
phase. The in-phase quantum pump is sometimes also called single parameter quantum pump in
the literature [Cav09], since it might be realized by one periodically varying external field controlled
by a single gate voltage experimentally [Kae08]. Here we use a different nomenclature, where a
single parameter pump is defined by having only one time periodic model parameter. It will be
discussed in the next section.

The whole range of driving frequency

The pumped charge @ is depicted for the whole range of possible driving frequency in the left, top
panel of Fig.8.3 for a small driving amplitude. Since the definition of 7 as the enclosed area in
the phase space looses its meaning when leaving the small driving amplitude and frequency regime,
for a useful comparison the pumped charge is scaled by the sinusoidal part of the amplitude of the
effective coupling Ay = ?72 Tk and the amplitude of the onsite energy Ae.

For the maximal phase difference § = 7/2, Q is maximal in the adiabatic limit and decreases
monotonously and rapidly as the driving frequency {2 approaches the low energy scale Tk. Inde-
pendent of the phase difference, no charge is pumped in the limit of large driving frequency, already
at 2 = 10Tk a negligibly small pumped charge is obtained. As 6 decreases, the function becomes
non-monotonic and establishes a minimum with a negative sign, such that for 6 = 0, maximal charge
is pumped in the opposite direction for a moderate driving frequency of 2 < Tk [Crol2a]. The
in-phase pump can no longer be understood in terms of a peristaltic pump but rather as a conse-
quence of {2 being of the same scale as the hybridization /4, such that the pumped charge vanishes
in the adiabatic limit. The consequence of the interaction on the behavior manifests mainly in the
renormalization of the low energy scale Tk, since a finite pumped charge is only obtained in the small
to intermediate regime, where 2 has no or only a small effect on the parameter renormalization.

Next, the pumped charge for the same setup is compared with a comparably large driving amplitude
of Ar/79 = Ae/ Tk = 0.9. The phase difference 6 is decreased as before. This is depicted in the
right, top panel of Fig. 8.3. Here we refrain from reducing the driving frequency below 2/ Tx = 0.1 to
avoid numerical instabilities. The pumped charge (scaled by the amplitudes as before) is diminished
compared to the small amplitude limit for the same setup with a phase difference of 8 = 7/2.
The qualitative behavior is the same as before, exhibiting maximal pumping towards the adiabatic
regime, which decreases with increasing {2 and no pumping is observed in the large 2 regime. With
decreasing phase difference the same non-monotonic behavior is developed as before, where the
in-phase setup shows maximal pumping in the opposite direction in the moderate driving frequency
regime. The interaction manifests again in the renormalization of the low energy scale Tk, only.

The whole range of driving amplitude

The effect of the driving amplitude on the pumped charge is examined in the adiabatic limit for
2/(2n Tk) = 0.01 (left, bottom panel of Fig.8.3) and for moderate driving frequency 2/Tx = 1.
(right, bottom panel of Fig. 8.3). In the adiabatic limit the pumped charge per Al4Ae for § = 7/2
decreases with increasing pumping amplitude, where the pumped charge is about half its initial value
at around At/79 = 0.8. As the initial Q value in the small driving amplitude limit diminishes with
decreasing phase difference 6, the negative slope reduces accordingly. For the in-phase quantum
pump (6 = 0), the initial value is negative (indicating the opposite direction of the pumped charge as
dicussed), the absolute value of pumped charge is lowered as well with increasing driving amplitude,
but the respective slope is much smaller. The impact of the interaction is again covered by the
correct scaling with the renormalized Tx. For a moderate driving frequency the pumped charge
in the limit of small A7/7g is smaller than observed for 2/(27 Tx) = 0.01. The pumped charge
for the in-phase quantum pump equals the one for # = /2 in the small driving amplitude (but in
the opposite direction), where the pumped charge for the in-phase pump diminishes less strongly
with increasing amplitude. The pumped charge for all phase differences between them is diminished
accordingly. While the main interaction effect is still covered by the renormalization of Tk, this
frequency regime shows the largest offset, as can be already observed in the panels of the upper
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Figure 8.4: Pumped charge for both pump protocols plotted against the onsite energy for several values of
driving frequency for U/D = {0.,0.1,0.2, } with Tx/D =25-107°, Tx/D = 4.62-107° and
Tk/D = 7.93-107°, respectively. With increasing 2 the maximal pumped charge for Protocol
| (left panel) is decreased and shifted to positive onsite energy eo. In intermediate frequency
regimes maximums are developed non-symmetrically around the particle hole symmetric point.
This is contrasted to pumped charge of Protocol Il (right panel), which is decreased as well but
stays symmetrically around the particle hole symmetric point.

row.

Off the particle hole symmetric point

All previous considerations are made at a zero mean onsite energy, as for the initial peristaltic pump
it has been identified as maximal pumping point. Next, it is investigated if this still holds true out
of the adiabatic regime. The pumped charge as a function of onsite energy for several values of
{2 is depicted in the left panel of Fig.8.4. With increasing driving frequency the pumped charge
decreases and the peak becomes broader, with the maximum slightly shifted towards positive onsite
energies breaking the symmetry observed in the adiabatic limit. For intermediate driving frequencies
2 = Tk (see inset) small maximums away from the particle hole symmetric point are featured. In
contrast to this, the right panel pictures the pumped charge for Protocol I, which equally reduces
with increasing driving frequency, but stays symmetrical around ¢y due to the symmetrical driving
setup. Consistent with the previous observation the applied interaction has almost no effect on the
pumped charge @ besides the renormalization of Ty .

8.4 Quantum pumps: Single parameter pump
A single parameter pump is realized here by driving only the left hopping with a sinusoidal signal as
7L(t) = 70 + AT sin(2t) (8.4.1)

at a finite € # 0. Left and right reservoir are held at the same chemical potential, such that a finite
mean current only arises due to the periodic oscillation of the left hopping. All the renormalization
of the parameters discussed for Protocol 1 in Section 7.5.4 of the previous chapter holds here,
revealing one interesting question: Is there an observable reflecting the power law of the Fourier
components of the hopping? Additionally an obvious key interest lies in the mean current flowing
through the dot in order to check whether or not a pump is realized in this setup. This is supported
by an analytic expression for the mean current derived in an effective model employing the replica
picture. Finally, we like to better understand the conditions under which a finite mean current can
be obtained in this setup by using an alternative method and supplement the previous findings with
a perturbative treatment in Floquet-Liouville space.
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8.4.1 Susceptibility

The renormalization and the resulting power law in the higher harmonics of the hopping matrix
element have been discussed in Section 7.5.4. An obvious choice for an observable, where this power
law might manifest in is the charge susceptibility x, because we know from the time independent case
that the respective power law of 7y is reflected in . To support this idea, the charge susceptibility
is calculated to the leading order in p in the effective one site dot structure. This does not change
the observed physics, but simplifies significantly the calculation, as the initial three by three matrix
in the site indices reduces to a scalar. We thus only have to consider the Floquet index here. The
retarded self-energy is calculated as )__[f’sl(w) = TL,08007L,1 + 7L 181171 0.In the one site dot structure
the retarded and Keldysh self-energy in the kK = 0, £1 subspace are

Z|Ie(t)o( ) Z[11 —Xret -1= —il14

Zret Zret = 92l E
Lor(w) = o(w) 114 o (8.4.2)

T —
io(w) = 5%y (w) = —2iTg LLol

and accordingly
Too(w) = 4ilMq [0(—w) — 1/2]
W) =4iMg[0(-w - 2) - 1/2]
(W) =4iMg[6(-w + 2) - 1/2]
on(w) = F_po(w+ 2) = 4if1d% [O(~w) —1/2] + 4ir1dE [O(~w — 2) — 1/2]

Tp(w) = Ty (w - 2) = 4,'r1dT;L—01 [O(—w) — 1/2] +4il14 " —01 [O(~w—2) —1/2] .
(8.4.3)
With these, the retarded Green's functions
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and the Keldysh Green's functions
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are calculated.
The first higher harmonic of the charge susceptibility is defined as

i = lim 9 (8.4.6)

eg—0 €0

The respective harmonic of the onsite energy is calculated in the one site dot structure to the order
p,

1
m = R/dw@'ﬁ(w)
1
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Taking the derivative with respect to the onsite energy €y and employing the limit ¢¢ — 0, leads to

2r2, 71 [ —1 1 1 2 1
_ , 1) _ 8.4.8
e e e G2t Q) T 2ing T 2@ Q) (848)

to the leading order in p.
In the large driving limit of 2 > I14, this yields
1 ren

Yim—— L2 (8.4.9)

where the parameter are substituted by the renormalized one in the last step. The resulting expression
suggests that the power law behavior of 7 ; is directly reflected in the first higher harmonic of the
charge susceptibility.

In the upper panel of Fig. 8.5 the logarithmic derivative of the full numerical solution of x; (solid
line) is depicted together with the analytic prediction (dashed line) color coded for the different
values of U. Even though for small absolute values of the interaction (|U/D| < 0.1) the logarithmic
derivative shows a constant value over an order of magnitude of (2 indicating power law behavior,
its value does not coincide with the analytic prediction. Furthermore, the plateau vanishes with
increasing interaction. Thus, the numerical solution does not exhibit the predicted power law. This
renders a further discussion of the analytic expression necessary.

The lower panel of Figure 8.5 shows the absolute value of x; comparing the numerical solution
(solid line) and the analytic description (symbols) in the high driving frequency and adiabatic limit
(inset). The analytic expression is shown here in three different ways: (A) The numerical calculated
Tx are inserted in the analytic expression (circles). (B) The analytic expression is used with the
analytic expressions for all renormalized 7, (pluses). (C) The analytic expressions is used where
7o is not fed back by its analytic expression but via Tk calculated from the equilibrium charge
susceptibility (filled dots).
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Figure 8.5: Analytic expression (symbols) and numerical solution (solid line) of the first Fourier coefficient
of the charge susceptibility are compared revealing no power law behavior in x; for U/D =
{-0.2,-0.1,-0.05,0.,0.05,0.1,0.2, } with Tx/D =5.54-107°, Tx/D =1.24.107°, Tx/D =
1.78-107°%, Tx/D = 2.5-10"°, Tx/D = 3.43-107°, Tx/D = 4.62-10"% and Tx/D = 7.93-107°,
respectively. The upper panel shows the logarithmic derivative of the full numerical solution
not exhibiting the power law as predicted by the analytic expression (see main text for details).
The lower panel compares full numerical solution and analytic prediction for |x1|. While the
non-interacting curve is full captured by the analytic expression, with increasing interaction U
higher order corrections become relevant and spoil the analytic description. See main text for
the description of the distinct analytic expressions.

The full numerical solution includes the leading order of U correctly due to the chosen truncation,
but also partially includes higher order corrections. For the small driving amplitude limit no assump-
tions are made in the numerical flow equation, i.e. p is included to all orders. On the other hand,
the analytic expressions is correct to the leading order of U and p. Furthermore, for its derivation
an effective one site dot structure is employed.

For the noninteracting case the analytic expression captures the numerical solution, exemplifying
the mere expression to be correct. In this case the different analytic approaches coincide. With
increasing interaction nevertheless the analytic description becomes poorer, revealing higher order
corrections in U to play a not negligible role. Hence three different approaches are used: While the
purely analytic expressions ((B), pluses) captures the leading order U, the expressions (A) (circles)
and (C) (filled dots) include the (partial) higher corrections (of the full flow equation) through the
numerically determined 74 or respectively Tk. These two further demonstrate the subtle higher order
corrections in U for the definitions of Tk (compare Egs.(3.5.5) and (7.1.7)). As a consequence,
the different analytic approaches lead to the same qualitative behavior, but different quantitative
values.

From the analytic description, where the numerically calculated 74 are fed back ((A), circles) we
can derive that the mismatch between analytic description and full numerical solution not only arises
from higher order corrections in U to 7y itself, but also to higher order corrections in Up to the one
site effective model.

We thus deduce that the higher order corrections in Up to the first higher harmonic of the charge
susceptibility are not negligible here, such that the analytic calculations employed does not capture
the numerical solution. Higher order calculations in p would be required to clarify their contribution,
but moreover higher order calculations in U would be necessary to investigate whether the correct
exponent of |x1| includes higher order contributions in U with a large factor.
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Figure 8.6: For the derivation of an analytic expression of the current the replica picture is employed (left
panel). Identifying the main contribution to the current flowing from the left reservoir into the
dot, the system can be condensed to be an effective three terminal setup as depicted in the
right panel. Applying the Landauer - Biittiker formula to this situation leads to the correct
analytic description.

8.4.2 Pumping power

A single parameter pump is realized if a non-vanishing pumped charge is observed even though only
a single parameter is varied periodically in time and no bias voltage is applied. We start with the
derivation of an analytic expression for the mean current in this setup employing the replica picture
and subsequently examine the numerical solution for power law behavior.

Current formula

The main goal is to find an analytic expression for the pumping power J x—o to order p? and in
the high driving frequency regime. The replica picture as discussed in Section 7.5.6 is employed for
the derivation where the Floquet index k takes the role of an additional spatial index. It maps the
initial, time periodically driven, one-dimensional system to a two-dimensional static system, where
an infinite number of replicas are included. With the sinusoidal driving of 7 (t) solely 7, 11 is non-
zero, which thus couples only neighboring replicas. The mapping is sketched in the left panel of
Fig.8.6.

For the analytic description of the current J, leaving the left reservoir through the central channel
k = 0 of the mapped system to the order p?, only the replicas k = +1 are of relevance, all other
replicas can be neglected. There is no mean current to the order p°, because the left and right
reservoirs are held at the same chemical potential. A finite mean current only arises due to the
periodic oscillation of the left hopping and hence results from temporary excursions of the particles
in the k = &1 channels (and back) leading to a contribution of O(p?).

For a finite current, the particle hole symmetry needs to be broken (by a finite onsite energy)
and only those processes contribute, which break left right symmetry. Only a single process can
be identified to fulfill this: The particle tunnels from the first side of the k = 0 channel to the
second site of the k = +1 channel and back. Additionally the first side of the k = 0 channel is
coupled much stronger to the left reservoir ~ D than to the right, central site (~ 73/D), which
allows to neglect the coupling to the right side. As a result the effective model is condensed to the
three terminal setup depicted in the right panel of Figure 8.6. The (former first) site of the central
channel is coupled on the left hand side to the reservoir with chemical potential x = 0 and a flat
density of states and on the right hand side to two reservoirs with chemical potentials y = +£2 and
a Lorentzian shaped density of states.

Using the standard Landauer-Biittiker formula for multi-terminal scattering problems [Lan96,
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Biit86], one now finds

Jk=0 = 5= / dE [f(E) -~ F(E- D) 5 (EeTL’fl?|)2Ti/(2TK/2)2
|71l T /2
+*/dE [F(E) = F(E+ 1) D(E 6+L;2)2-|K-(TK/2)2

(8.4.10)

for || < 2 < D and |7.1| = |71,—1| and where Ty = 472/D.
For T = 0 this simplifies to

JLk=0 = 217T dE [O(-E) - @(_E—F‘Q)]E(Ee|TL'-;L?|)2Ti/(27-K/2)2
2
+— / dE [O(— O(—E — -Q)] D( _6+L;2|)2T4K_/(2TK/2)2

= |TL1| Tk |arctan & +larctan M —larctan w
- 27r To K T) 2 Tk 2 Tk

(8.4.11)

An expansion in the limit of small driving frequency 2 yields the leading contribution ~ € £22, which
shows that an adiabatic approach is insufficient to describe the pumped charge and thus underlines
the relevance of the non-adiabatic physics at play. In the opposite limit of large driving frequency
2> |e|, plugging in the renormalized values for 7 o and 71 yields

ren
2> krh 1] ( 2¢ )
Nk & — T arctan . 8.4.12
Lk=0 o <T[eg ) K Tk ( )

Note the role of the onsite energy € in the resulting expression: It is similar to the steady state
expression for the time independent non-equilibrium system of an applied bias voltage (Eq. (8.1.2)),
where the onsite energy takes the role of the bias voltage, such that no dc current flows without a
finite onsite energy.

Finite pumping power and Power law

The power law in the driving frequency of the higher harmonics then manifests through 7' in the
pumping power as

JLk=0 2\ ™ u 2

In the upper left panel of Fig. 8.7 the full numerical solution of the pumping power is depicted as a
function of the driving frequency £2. The finite value shows that a single parameter pump is realized
by this setup already for a vanishing interaction. The current in case of finite interaction shows clear
power law behavior as it increases/decreases with increasing 2 with U dependent slopes. For a more
rigorous confirmation the logarithmic derivative is computed as d In(J_xk—o)/d In(£2) and depicted
in the lower left panel. The constant effective exponents over orders of magnitudes of (2 confirms a
clear power law. The resulting exponent « is also shown on the right hand side as a function of the
interaction and compared to the exponents of the previous chapter. Equally as observed for a—1

the agreement with the analytic prediction is excellent, showing hardly any higher order corrections
in U.



104 CHAPTER 8. TRANSPORT IN PERIODICALLY DRIVEN QUANTUM DOTS

10 0 T — T T T T ™3
« u U/D ={-0.1,-0.2,-0.3,-0.4,-0.5} ]
Fo F E
17 - i
et
10 E
—=° F U/D ={0.1,0.2, 0.3, 0.4, 0.5} ]

10.15

o
—
exponents

10.05

eff. exponent

* _ analytical U/(nD)

0 0102030405
U/D

Figure 8.7: A single parameter pump is realized by sinusoidal variation of the left hopping for U/D =
{-0.5,-0.4,-0.3,-0.2,-0.1,0.,0.1,0.2,0.3,0.4,0.5} with Tx/D = 4.41-107", Tx/D =
8.4-1077, T«/D =22-107% Tx/D =5.54-107° Tyx/D =1.24-107° Tx/D =25-10""°,
Tk/D = 4.62-107°, Tx/D = 7.93-107° Tx/D = 1.28-107*, Tx/D = 1.96 - 10™* and
Tk/D = 2.86 - 107, respectively. The upper left panel shows the finite mean current as a
function of the driving frequency for 2 > Tk at ¢¢ = 0.4Tk. The mean current reflects the
power law behavior of 7 x=1. The lower left panel shows the logarithmic derivative of the current
revealing the power law behavior. On the right hand side, the exponents are shown as a function
of the interaction U/D compared to the ones discussed for the renormalized parameters in the
previous chapter.

8.4.3 Perturbation Theory in Liouville space: Mean current

The afore discussed finite current in this setup cannot be obtained by methods, which rely on
tunneling rates (hybridization, Eq. (3.3.7)) with a single time argument as e.g. used in Ref. [Cav09]
for the regime 2 < [14. The single time dependency neglects the temporary excursions of the
electron to the k = +1 Floquet channel, which lead to the finite pump current, as discussed in the
previous section. A different approach was put forward in Ref. [Bra08]. The authors consider the
two-time structure of tunneling in and out, but integrate out one time argument using time scale
separation in the anti-adiabatic limit. This approach allows to compute a finite current in a spinful
single level setup in the anti-adiabatic limit for the same protocol as considered here.

In order to relate to these results and understand our setup in the context of quantum master
equations, where the time scale of the kernel and the density matrix are separated, the master
equation are set up in Floquet space. They have been introduced in Chapter 6, where the kernel
WE, is computed to the first order in tunneling rates (see Section 6.3.1). The mean value of the
left current (Eq. (6.3.26)) is calculated numerically in this setup for the case of no interactions and
the whole range of driving frequency 2.

These results (solid lines) are compared in the left panel of Fig. 8.8 to the analytic formula (dashed
line) obtained via Landauer-Biittiker formalism in the replica picture (Eq.(8.4.10)), which is valid
for finite temperature as long as T < 2. The left mean current as a function of onsite energy
is displayed. The quantum master equation is indeed able to reproduce the finite mean current
with a correct qualitative behavior. The perturbative expansion in the tunneling rates improves with
increasing temperature leading to a good agreement in the regime T > Ty, where the tunneling rate
can be considered as a small parameter. Since the discussion of the renormalization in the previous
chapter has shown that the relevant energy scale is k{2 and hence the mean value of the involved
parameters is not influenced by (2, a large temperature is still required for a correct perturbative
treatment even in the limit 2 > Tk.

The right panel of Fig. 8.8 compares the quantum master equation results to the analytic formula
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Figure 8.8: Mean left current of the non-interacting single parameter pump calculated perturbatively (in
") in Floquet Liouville space compared to the analytic expression (Eq. (8.4.10)) for Tx = 0.01.
The left panel shows the results as a function of the onsite energy at a driving frequency
2/(2m Tk) = 200. The perturbative calculation obtains qualitatively good results, which with
increasing temperature are in compliance with the analytic expression Eq.(8.4.10). The right
panel shows the dependence on the driving frequency for ¢g¢ = 0.4 Tk, where a finite current
can only be obtained in the high frequency limit. The perturbative calculation in the small
temperature regime cannot be trusted for the whole range of driving frequency.

as a function of the driving frequency f2. It needs to be noted that also the analytic expression
might not be correct in the limit T > (2, it still can be used as a rough estimate. Again we
observe that the compliance between the analytic expression and the numerical results increases
with increasing temperature. The results of the quantum master equation in the small temperature
regime do not only not coincide with the quantitative prediction in the high frequency regime, but
even yield unreasonable results in the small to intermediate regime of a mean current that flows in
the opposite direction.

8.5 Current and Conductance of non-sinusoidal signals

As discussed in Section 7.5.4 the renormalization of 71 (t) leads to a changed effective lineshape and
amplitude. We here discuss how this affects transport observables resulting from a non-sinusoidal
signal for 7(t).

Designed signal

In the upper panel of Fig. 8.9 the conductance for the bare, i.e. non-interacting setup are considered
for the designed input signals with

250 Ar .
TL(t):T0+ Z 7k(—1+U/(7TD))eIth (8.5.1)
™
k=—250

for k, At /19 = 0.1. The initial signal is designed to cancel the renormalization effect and therefore
U dependent, such that the renormalized signal is of rectangular form as it has been discussed in
Sect.7.5.4. The bare conductance reflects the form of the initial signal (compare Figure 7.8). The
renormalized conductance signal shows a weak amplification (U/D < 0) or rectification (U/D > 0)
in the high frequency regime, as discussed for the renormalized signal itself.

Triangular signal

The left hopping is varied as

_ T kimod2 1 ik
n(t)=mn+-— > sgn(k)(—1)lkIme e (8.5.2)
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Figure 8.9: Conductance signal for the initial hopping (upper panel) with the line shape defined in Eq. (8.5.1)
and the respective renormalized one (lower panel). The different initial signals depending on
the sign of the interaction are reflected in the bare conductance. The renormalized conductance
shows weak amplification or rectification in the anti-adiabatic frequency regime. The interaction
is chosen to be U/D = 40.5 with the emergent low energy scales Tx/D = 4.41-10"" and
Tk/D = 2.865 - 107*, respectively.

i.e.with a triangular signal. The RG flow suppresses (enhances) higher harmonics of the signal with
respect to the initial harmonics, resulting in a different line shape as discussed in Section 7.5.4.
The renormalized signal is presented in the first panel of Fig.8.10 for several values of positive and
negative interaction. While the amplification (for U/D < 0) and rectification (for U/D > 0) of
the signal amplitude is very pronounced, the change of line shape is only minor, it is still mainly
characterized by a triangular form.

The linear conductance is considered for the same setup, where the static bias is chosen to be so
small not to interfere with the renormalization as discussed. The resulting conductance is displayed
in the middle panel of Fig.8.10 for positive and negative interactions and compared to the bare
conductance (black line) for no interaction. The line shape of the conductance for an intermediate
interaction of U/D = +0.2, only differs very little from the bare conductance, for positive interaction
more than for negative interaction. However, for large interaction values of U/D = +0.5 the
difference is quite prominent, where especially the negative interaction demonstrates already a very
distinct line shape. While the amplification/rectification effect of the renormalized signal is enhanced
by the scaling with the renormalized mean value, this effect is less pronounced in the conductance as
the mean value of the conductance is not renormalized at the particle hole symmetric point [Kar10c].
For large absolute values of the interaction, the amplitude of the renormalized conductance signal
is reduced compared to the bare one independent of the sign of the interaction. This is consistent
with the behavior the individual higher harmonics exhibit, which is discussed in the next section.

Next, the current is calculated for a finite mean onsite energy ¢ = 0.4 Tk and displayed in the two
lowest panel of Fig.8.10. We observe a finite mean current of Jo/ Tk = 4.47 -107° for U/D =0
(Jo/ Tk = {2.81-107%,9.75-107°,2.07 - 1075,6.47 - 107¢} for U/D = {-0.5,-0.2,0.2,0.5})
due to the finite onsite energy, where the current amplitudes are orders of magnitudes larger. The
curves for positive and negative interaction have been separated to better illustrate the effects of
the renormalization (note the different y-axis scales). It exhibits a strong renormalization of the
amplitude reflecting the renormalization of the underlying hopping signal. Equally as the line shape
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Figure 8.10: Renormalized signal 7™"(t), conductance G(t) and current J(t) for a triangular signal for
7.(t) for U/D = {-0.5,-0.2,0.,0.2,0.5} with Tx/D = 4.41-1077, Tx/D = 5.54 - 1075,
Tk/D =25-10"° Tx/D =7.93-107° and T«/D = 2.86 - 10~* respectively. The current is
calculated for a finite € = 0.4 Tk, renormalized signal and conductance for € = 0.

of the hopping signal, also the shape of the current signal is renormalized. While for the negative
interaction the effective line shape of the current seems to resememble the form of the corresponding
hopping signal, for positive interaction, a difference of the effective line shape to the bare signal is
a little more pronounced, moreover a pronounced phase shift is observed for U/D = 0.5.

Nevertheless, we can only discuss our observation of the numerical results here, the complexity
of the observables, where the current and conductance signal depends in a non-trivial way on
the corresponding hopping signal, prevents us from a derivation of an analytic description of the
according relation.

Scalability in the Conductance

Finally, we consider each of the higher harmonics of the renormalized conductance individually for
two different applied signal forms of the left hopping

10
7L(t) =70 + AT Y _sin(kf2t) (i)
k=0
e (8.5.3)
m(t) =m0+ A7 Y wkTHU/ PR for kodd (i)
k=—250

such that the first has even and odd higher harmonics, which are all of the same size, while the
second, designed signal has only odd higher harmonics, which are separated by ~ k—1+U/(7D),
The resulting higher harmonics of the conductance for U/D = {—0.2,0,0.2,0.5} are displayed in
Fig.8.11. Here we can benefit from the discussion of the renormalization of the Fourier coefficients
of the hopping 7k in Section 7.5.4, from which we know that the respective, effective energy
scales is k2. We hence multiply the kth coefficient’'s argument by a factor k. To compensate the
k—1+U/(7D) dependency of the higher harmonics of the initial signal (i), the higher harmonics are
multiplied by k'~Y/(7D) accordingly. In both cases the higher harmonics collapse, i.e. are completely
rescaled by these multiplications. Despite the involved dependence on the dot parameters, the
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Figure 8.11: Higher harmonics of the resulting conductance if 7. (t) is driven with two different signals
(defined in Eq.(8.5.3)) with Ar/79 = 0.05. We choose U/D = {-0.2,0.,0.2,0.5} with
T«/D = 554-107° T«/D = 25-107°, Tgx/D = 7.93-107° and Tx/D = 2.86 - 107*,
respectively. A universal dependency on k{2 is observed.

coefficients thus depend on the energy scale kf2 in a universal way and the initial k dependency
of the Fourier coefficients of the hopping is preserved in the renormalized higher harmonics of the
linear conductance. Hence, we observe also for the time periodic case a universal scaling as observed
in earlier, time independent setups of the interacting resonant level model [Doy07, Bor07, Bou08,
Karl0c]. While the curves for a positive interaction ease off with increasing interacting, the curve for
U/D = —0.2 in the right panel of Fig. 8.11 shows that the dependency is composed of more than one
contribution, as it first increases with increasing k{2, but exhibits a maximum around k{2 ~ 20Tk
and then decreases. The coefficients seem to be a superposition of several contributions, which add
up for U/D > 0, but generate the more involved dependency for U/D < 0. This is also consistent
with the diminished amplitude of the renormalized conductance signal for U/D = —0.5, discussed
in the previous section. Taking the logarithmic derivative of the numerical solution confirms that
there is no power law in the higher harmonics of the conductance (not shown).

If the signal initially only consists of odd higher harmonics, whose initial value decreases for
increasing Fourier index (as e.g.in the designed signal depicted in the right panel of Fig.8.11), we
see universal scaling even beyond the high frequency regime. This needs to be contrasted to the
sum of sinusoidal functions (shown in the left panel of Fig.8.11), where all (even and odd) higher
harmonics are of the same initial size. The various higher harmonics interfere with each other around
2 ~ Ty yielding non-universal bumps in this regime (left panel of Fig.8.11).

8.6 Conclusion

Transport within the steady state of the periodically driven interacting resonant level model has been
discussed in this chapter. Based on the known transport of the time independent non-equilibrium for
finite interaction, we have started with transport in the adiabatic limit with small amplitudes of the
driven parameters creating quasi-static configurations. The known expression for the static, steady
state occupancy have been extended to the periodic steady state by substituting the parameters
by their time periodic ones for adiabatic driving. For a symmetrically applied bias voltage and an
onsite energy adiabatically oscillating between the two chemical potentials, we have observed that
the mean current at each point in time is characterized by the effectively static situation. As a
consequence, the dependency of the mean current on the applied bias voltage, when the onsite
energy either vanishes or is tuned to be on resonance with one of the chemical potentials, has been
reproduced in the periodic setup as known from the time independent case.

Two parameter pumps in the whole regime of driving frequency and amplitude

One major interest in the time periodic setups focuses on quantum pumps, which are realized by two
or more oscillating parameters where the according signals are phase shifted. The known adiabatic
expressions for the pumped charge in two different traditional setups have been compared to our
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results when including interaction. The analytic expressions have been generalized to the interacting
setup by substituting the parameters in the relation by their renormalized ones, i.e. rescaling it with
the renormalized low energy scale Tk. Starting from this, the pumped charge has been calculated
in the protocol, where onsite energy and left hopping are varied periodically in time. The whole
range of driving frequency and amplitude have been studied and results of the non-interacting and
the interacting regime are compared. Additionally, the phase difference 6 between both signals is
gradually diminished towards an in-phase quantum pump with § = 0. For a meaningful comparison
the pumped charge is divided by the driving amplitudes of the effective hybridization and the onsite
energy.

The adiabatic limit with a small driving amplitude leads to the largest pumped charge per driving
amplitude for a phase difference § = 7/2. Increasing the driving frequency reduces the relative
pumped charge, such that no pumped charge is observed in the high frequency regime. Decreasing
the phase differences a non-monotonically reduction of Q as a function of driving frequency is
observed. This yields up to an maximal pumped charge of the in-phase pump in the opposite
direction (compared to the pump direction of the parametric pump) in the intermediate regime
2 < Tk. This behavior is observed independent of the amount of the driving amplitude, but
increasing the driving amplitude yields to a reduced pumped charge per driving amplitude.

Since a finite pumped charge is only obtained in the small to intermediate driving frequency
regime, the main effect of the interaction is covered by the renormalization of the low energy scale
Tk. When rescaling the pumped charge @ accordingly, the interacting and non-interacting curves
coincide.

Pumping power in the single parameter pump reflects power law in (2

Subsequently, a single parameter pump has been examined, which is realized by an harmonically
varied left hopping. The first higher harmonics of the charge susceptibility has been computed
analytically to the order O(p), which suggests to reflect the power law depending on the driving
frequency. The full numerical solution however does not show this predicted power law behavior
indicating that higher orders in Up, which are not captured by the analytic solution, but included in
the numerical result, play a non-negligible role in this observable.

Next, the finite pumping power has been analyzed to demonstrate that indeed already without
interaction a single parameter pump is achieved. An effective model has been employed, where it
has been used explicitly that within the Floquet formalism a time periodic d-dimensional system
can be mapped to d + 1-dimensional system with an infinite number of copies of the initial system.
The temporary excursions of the electrons to replicas of higher order Floquet channels have been
identified to yield the finite dc current. It renders the pump of true quantum nature. An analytic
expression of the mean current to the leading order of O(p?) has been derived by condensing the
system to a three-terminal setup, which has been treated by Landauer-Biittiker formalism. The
resulting expression reveals that the pumping power reflects the (2 dependent power law in Tyo.
The FRG results have been complemented by a calculation of the mean current in the same setup
(but U/D = 0) with perturbation theory in Floquet Liouville space. Here the approximation of
separated time scales of the kernel and the density operator is assumed. We have demonstrated
that a finite mean current can already be obtained within this approach, where the mean current is in
good agreement with the analytic expression obtained in the effective model for a finite temperature.

Current and conductance for non-sinusoidal signals: Scalability

In the last section current and conductance for non-sinusoidal signal forms have been discussed.
Renormalized signal as well as resulting current and linear conductance have been discussed for an
initial bare line shape of triangular form. Linear conductance has been considered for the designed
signal that compensates the renormalization effect for an effective square signal, discussed in the
previous chapter. The discussed amplification/rectification for the hopping is reflected minorly in
the conductance, but the various higher harmonics show universal scaling when considered as a
function of k2.
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Chapter 9

Conclusion & Qutlook

The thesis at hand presents the methodical extension of the functional renormalization group method
to Floquet space. It enabled us to describe the steady state of an interacting quantum dot with
time periodic parameters. Introducing Floquet-Green's functions allowed for a transformation of
the explicit time dependent flow equation to Floquet space. This way the FRG has been set up in
a convenient basis to tackle the long time behavior in the whole regime of driving frequency and
amplitude of interacting quantum dots.

The approach has been applied to the interacting resonant level model to tackle the following
two main questions: What role does the driving frequency play in the renormalization group proce-
dure as a possible infrared cutoff? And how does the interaction affect transport in these periodically
driven systems?

Renormalization in the time periodically driven IRLM

We have started by examining the renormalization of the dot parameters in the limit of a small
driving amplitude. The full numerical solution has been complemented by an analytic description
of the renormalization, which has been calculated perturbatively to the leading order of the ratio of
driving amplitude over its mean value. It has been shown that the Floquet channels decouple in this
limit and thus can be considered independently. This allowed for an analytic treatment of all Fourier
components of the renormalized parameters 7"(t) and €""(t). Four different protocols have been
examined, where different combinations of the hoppings and/or the onsite energy are chosen to be
time periodic. k{2 has been identified to be the effective energy scale in these systems, rendering
the mean value independent of the driving frequency. Moreover, it has been demonstrated that the
renormalization of the mean value is described by the same differential equation as known for the
steady state of the static, equilibrium situation. As a consequence, the same power law behavior
was observed. The renormalization of the k = 0 component is thus completely independent of any
time dependency regardless of the explicit protocol.

The most interesting effects have been observed in the setup, where only one hopping is chosen to
be time periodic with an arbitrary signal. An analytic expression for the renormalized Fourier coeffi-
cients has been found. In the high frequency limit k{2 provides the infrared cutoff of the respective
kth harmonic yielding a new power law in the argument k2. It has interesting implications on the
renormalized 7""(t): On the one hand each of the higher harmonics is renormalized differently (as
a consequence of the dependency on k), which results in a renormalized signal of modified shape
compared to the bare (non-interacting) one. Knowing the renormalization, the initial signal can be
designed to cancel the interaction effect, such that the renormalized one is of desired form. On
the other hand, the dependency on {2 of the infrared cutoff leads - depending on the sign of the
interaction - to rectified or amplified signal amplitudes.

This can be contrasted to the protocol, where only the onsite energy is driven periodically in time with
a sinusoidal signal. While the higher harmonic of the onsite energy itself is only weakly renormalized,
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the renormalization flow of 74x—; reveals an interesting and involved interplay of several energy scales
not featuring a single infrared cutoff anymore. Even though this renders the analytic description
slightly more complicated, an expression for its renormalization has been found in an effective model.

The renormalization for the two protocols, where either left and right hopping or left hopping
and onsite energy are chosen to be time periodic, have been deduced from the two protocols where
only a single parameter is periodic in time. The respective contributions have been added up, since
there is no feedback of the involved parameters into each other to the considered order of U and p.

Renormalization beyond the small amplitude limit has been treated for an harmonically driven onsite
energy. An effective reservoir distribution function has been defined in this setup. It is a sum of
weighted Fermi function with arguments shifted by kf2. The resulting staircase appearance is speci-
fied by the ratio of driving amplitude and driving frequency and allowed us to examine the influence
of the effective reservoir distribution function on the renormalization flow. We have focused on the
renormalization of the k = 0 coefficient, where considering three different configurations it has been
demonstrated that the energy scales set by the positions of the sharp edges are reflected as infrared
scales in its RG flow. As a consequence, in this setup the driving frequency acts as an infrared cutoff
already in the zeroth component in contrast to the small amplitude limit.

The functional renormalization group provides us with an unbiased RG procedure capable to tackle
renormalization in the whole regime of driving frequency and amplitude. While the infrared cutoff
k£2 in the small amplitude limit might be approachable by less general RG methods, FRG shows its
full potential in those setups, where there is not a single infrared cutoff, but the flow is characterized
by a combination of several energy scales.

Transport in the time periodically driven IRLM

A good knowledge of the renormalization of the parameters lays the foundation to the understanding
of the transport in time periodically driven quantum dots. The starting point is the well studied
adiabatic regime, where the driving frequency is chosen to be much smaller than any other energy
scale. The resulting time dependent system can be considered as a sequence of effectively static
situations. It allows to extend the static dot occupancy expression [Andlla, And11b] to the time
periodic steady state. Also the mean current has been observed to show similar behavior as a func-
tion of the bias voltage as known from the time independent steady state [KarlOc]. It has been
shown that the known analytic expression of the pumped charge for the non-interacting parametric
pump [Spl07] is still valid, when substituting the parameters by their renormalized ones.

Based on this, the parametric pump setup with the hopping and the onsite energy varied peri-
odic in time has been examined out of the adiabatic and small amplitude limit. Here the phase
differences between the applied signals is gradually reduced, leading up to an 'in-phase pump’, where
both parameters are varied in phase. The reduction of the phase difference yields a non-monotonic
function in £2, which when the phase difference vanishes, establishes a negative bump at around
2 < Tk, i.e.leads to pumping in the opposite direction compared to the parametric pump. This
qualitative behavior is observed for small as well as for large driving, where with increasing amplitude
the relative pumped charge (per driving amplitude) reduces. Since a finite pumped charge is only
observed in the small to intermediate regime of the driving frequency, the main renormalization
effect is covered by the rescaling with the renormalized low energy scale Tk.

Next, a single parameter pump has been treated, realized by an harmonically driven hopping in
the small amplitude limit. From the consideration of the renormalization in this setup, the power
law behavior of the Fourier coefficients is known, motivating us to study the first higher harmonic of
the charge susceptibility. It has been revealed that the observable cannot be described sufficiently
by a first order calculation in the ratio of the amplitude and the mean value. While the analytic
description predicts the charge susceptibility to reflect the power law of 7/, this has not been
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confirmed by the full numerical solution. It includes partially higher order contribution in U and all
orders of p, which here have been demonstrated to play a non-negligible role.

However, the pumping power Jy of the single parameter pump not only has been proven to be
finite in the anti-adiabatic limit, but also reflects the power law dependency on the driving fre-
quency. This has been confirmed by an analytic calculation of the mean current in an effective
model of the time periodic systems. To investigate the prerequisites of a finite current in such a
setup, it has been calculated with quantum master equations in the Floquet Liouvillian space for
a finite temperature. Despite the approximation of a separated time scale for kernel and density
matrix, a finite current has been obtained in the high driving frequency regime which is consistent
with our analytic prediction for larger temperatures.

Finally, non-sinusoidal signals for the time periodic hopping have been applied and the resulting
current and conductance in this setup were considered. While the involved dependency of the
observables on the dot parameters prevents us from presenting analytic relations, the amplifica-
tion/rectification as well as the change of the line shape is partially reflected in the renormalized
signal of the current and the conductance. In addition, an universal dependency of the higher har-
monics of the conductance on k{2 has been found.

The presented Floquet FRG has been proven to be a powerful tool to tackle the time periodic
systems revealing interesting renormalization physics as well as making it feasible to consider trans-
port in the interaction setup, where the frequency and the amplitude are unlimited.

Outlook

In this work we focused exclusively on the application of the developed method on the interacting
resonant level. However, since the approach follows from a straightforward transformation of the
explicitly time dependent flow equation [Ken12a] without any further assumptions, the method can
be applied to other low-dimensional systems. Among others time periodically driven one-dimensional
lattices constitute systems of particular interest, where the FRG has been vital in understanding,
e.g. the boundary and impurity physics of Luttinger liquids in [Med08, Met12] and out-of [Jak07]
equilibrium. This possible further route is already followed by Dante Kennes [Kenb].

Additionally, the presented approach relies on the lowest order truncation of the hierarchy of flow
equations of the FRG. An extension to higher order truncation scheme is possible with a more gen-
eral transformation to Floquet space [Tsu08] to treat the four time dependent two-particle vertex
function. Nevertheless, the numerical effort to include the resulting full frequency dependency and
a sufficient number of Fourier channels, is rather high rendering it necessary to use e.g.ladder ap-
proximations as presented in Ref. [Kar08, Jak10a] to keep it numerically manageable.

The perturbative (in ") calculation in Floquet-Liouville space has been set up under the assumption
of the separation of the time scales of the kernel and the density operator which simplifies the
calculation significantly. A full perturbation theory calculation including the search for the correct
poles and branch cuts in the complex plane would be a next step. For a more comprehensive study
and to include interaction, the real time renormalization group could be set up in Floquet space to
complement the FRG results accordingly. First steps on this route have been pursued by Herbert
Schoeller and Dante Kennes.
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