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Summary

In this thesis, a moving boundary �nite element �uid �ow simulation method for a propul-
sion system of a Voith Water Tractor (VWT) consisting of two Voith Schneider propellers
(VSP) and a nozzle plate is developed. In order to perform a �uid �ow simulation around
the moving parts of the VWT, such as the counterrotating VSPs and the single blades
of each VSP, a moving �nite element mesh is constructed. A Shear-Slip Mesh Update
Method (SSMUM) is used to follow the motion of each VSP whereas an Elastic Mesh
Update Method (EMUM) captures the rotation of each single blade of a VSP.
The EMUM approach regards the �nite element mesh as an elastic solid and solves the

linear elasticity equation for the mesh node motions. Therefore, the element deformation
cannot be controlled explicitly and this can lead to tangling elements in regions of high
relative motion of neighbouring elements. This is especially the case in a critical region
between the bottom of the blades and the nozzle plate, which is situated just 2.6 cen-
timetres below the blades of the VSPs. While trying to partly prescribe the EMUM node
motion in the critical region in order to prevent the tangling of elements, a Concentric
Shell Mesh Motion (CSMM) approach is worked out in parallel.
The CSMM approach is designed such that the motion of every mesh node is explicitly

prescribed and tangling of an element of the mesh is impossible. However, the CSMM
concept demands a higher e�ort in programming the mesh generation compared to the
EMUM approach. In order to directly compare these two alternative mesh motion con-
cepts, a comparative re�nement study is performed wherein an unsteady Navier-Stokes
�ow around a �xed blade of the VSP is calculated. Compared to the EMUM con-
cept, worse elements in the critical region below the blades are created with the CSMM
concept. This contributes to a worse convergence behaviour of the solution of the Navier-
Stokes equations. Therefore, the EMUM approach is selected for the full ten blade VWT
proplulsion system unsteady Navier-Stokes simulation.
A re�nement study is performed for the unsteady Navier-Stokes simulation around

the VWT proplulsion system as well. Here, similar mesh resolutions around the blade
compared to the single blade re�nement study are used. The two �nest meshes show an
average force value of each single blade and also a characteristic of each force value that
agree in the range of �ve to eight percent. The average thrust of a single blade varies by
up to twelve percent compared to the measured and simulated data by Voith.
Beside the �ow simulation of the VWT propulsion system, a method for the simulation

of a free-surface �ow simulation around a hull of the VWT is presented. According to
this method the surface of the hull is divided into single subareas. The geometry of the
subareas are approximated by the use of arti�cial neural networks. Using this approach,
the implementation of a complicated CAD spline based ship hull geometry can be avoided.
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Zusammenfassung

In der vorliegenden Arbeit wird eine Methode zur Fluidsimulation eines Antriebssys-
tems eines Voith Wassertraktors (VWT) entwickelt. Das Antriebssystem besteht aus
zwei Voith-Schneider-Propellern (VSP) und einer Schutzplatte. Um eine Fluidsimula-
tion einer Strömung um die beweglichen Teile des VWT, wie die gegenläu�g rotierenden
VSP und die einzelnen Rotorblätter jedes VSP, durchzuführen, wird ein bewegliches Netz
aus �niten Elementen konstruiert. Für eine Simulation einer Drehung eines einzelnen
VSP wird eine Shear-Slip Mesh Update Methode (SSMUM) verwendet. Eine Simulation
einer Drehung einzelner Rotorblätter der VSP erfolgt mithilfe einer Elastic Mesh Update
Methode (EMUM).
Bei der Anwendung des EMUM-Konzeptes werden das Finite-Elemente-Netz als ein

elastischer Festkörper betrachtet und Gleichungen nach der linearen Elastizitätstheorie
gelöst. Dadurch sind Verformungen von Elementen des Netzes nicht explizit kontrollier-
bar, was zu degenerierten Elementen in Bereichen führen kann, wo eine hohe relative
Bewegung von benachbarten Elementen herrscht. Dies ist insbesondere in einem kritis-
chen Bereich zwischen den Unterseiten der Rotorblätter und der Düsenplatte der Fall,
welche nur 2,6 cm unterhalb der Rotorblätter angeordnet ist. Während versucht wird,
in dem kritischen Bereich zum Teil Knotenbewegungen vorzugegeben, um eine Degen-
eration von Elementen zu verhindern, wird zusätzlich ein Ansatz einer Concentric Shell
Mesh Motion (CSMM) verfolgt.
Das CSMM-Konzept ist so konzipiert, dass eine Bewegung jedes einzelnen Knotens des

Netzes explizit vorgegeben ist und eine Degeneration eines Elementes unmöglich ist. Je-
doch erfordert das CSMM-Konzept einen im Vergleich zum EMUM-Konzept höheren Pro-
grammieraufwand für die Netzgenerierung. Das CSMM-Konzept wird mit dem EMUM-
Konzept im Rahmen einer Netzverfeinerungsstudie verglichen. Bei dieser Studie wird
eine instationäre Navier-Stokes-Strömung um ein einzelnes verdrehtes Rotorblatt eines
VSPs berechnet. Im Vergleich zum EMUM-Konzept werden bei der Anwendung des
CSMM-Konzeptes Elemente mit einer schlechteren Qualität in dem kritischen Bereich
unterhalb der Rotorblätter erzeugt. Dies verursacht ein schlechteres Konvergenzverhal-
ten einer Lösung der Navier-Stokes-Gleichungen. Deshalb wird für die Fluidsimulation
des kompletten Antriebssystems des VWT mit zehn Rotorblättern das EMUM-Konzept
ausgewählt.
Um die instationäre Navier-Stokes-Strömung um das VWT Antriebssystem zu berech-

nen, wird eine weitere Netzverfeinerungsstudie durchgeführt. Hierbei werden ähnliche
Netzau�ösungen in den Bereichen um die Rotorblätter wie bei der Netzverfeinerungsstudie
zur Strömung um das einzelne verdrehte Rotorblatt verwendet. Die berechneten Strö-
mungsfelder, welche mit den zwei am höchsten aufgelösten Netzen erzielt werden, stim-
men annähernd überein. Eine jeweils mit diesen Netzen berechnete durchschnittliche
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Kraft jeweils eines einzelnen Rotorblattes sowie ein jeweiliger zeitlicher Verlauf dieser
Kraft zeigen Übereinstimmungen im Bereich von fünf bis acht Prozent. Die durchschnit-
tliche Kraft eines Rotorblattes weicht um bis zu zwölf Prozent von Mess- und Simula-
tionsdaten aus dem Hause Voith ab.
Neben der Strömungssimulation des VWT Antriebssystems wird eine Methode zur

Berechnung einer freien Ober�äche um einen Schi�srumpf des VWT beschrieben. Dabei
wird die Ober�äche des Schi�srumpfes in einzelne Teil�ächen aufgeteilt und eine jeweilige
Geometrie der Teil�ächen mithilfe von künstlichen Neuronalen Netzen approximiert.
Durch diesen Ansatz kann auf eine Implementierung einer mithilfe von Splinefunktio-
nen beschriebenen komplexen Schi�rumpfgeometrie verzichtet werden.
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1 Introduction

In the last decades, huge advances have been made by computational �uid dynamics
(CFD) and its application. On one hand, computing resources have expanded much
in facilities, from in-house clusters in companies, over big clusters in many universities,
to the development of supercomputing centers such as in Jülich or Stuttgart, just to
name those in Germany. On the other hand, engineering research and development
activities have become more complex compared to those twenty years ago. By now,
most machines and applications in the �eld of mechanical engineering have reached a
high level of complexity. The functions and behaviour of complex machines in various
operating conditions can only be fully understood and optimized when these machines
are tested in these conditions. Such tests must include all possible parameters and
their modi�cations with respect to their in�uence on the total outcome, such as fuel
consumption. Taking a propulsion system of a ship with only seven varying parameters,
e.g., the number of propeller blades, the dimensions of length, width and height, the
pro�le, the rotation per minute of the propeller blades, and the velocity of the propelled
ship, one can imagine a huge number of possible parameter value combinations. Given,
e.g., the ship's velocity, the optimal design of the propeller shape and its rotation speed
would require an enormous number of tests to optimize the whole system to operate at
that velocity. Limited time and budget conditions usually restrict these optimization
processes to only a reduced number of tests, such that only a very tiny amount of the
possible parameter value combinations could be captured by the testing. In such cases,
the use of �uid �ow simulations can considerably contribute to simulate additional tests
in the parameter space where no real tests could have been performed due to limited time.
Error sources due to scaling e�ects when performing the tests can be detected as well by
performing additional �uid �ow simulations. CFD simulation is not a straightforward
task, depending strongly on the complexity of the �ow and the object exposed to the
�ow. This becomes evident in this thesis, which reports on experiences in the �uid �ow
simulation around a Voith Water Tractor (VWT) propulsion system. On one hand, the
thesis presents the necessary theory to understand the author's simulation approach; on
the other it focuses on the individual intermediate steps and the associated di�culties
on the road to a �uid �ow simulation around a VWT propulsion system consisting of
two counterrotating Voith Schneider propellers and a nozzle plate.
Chapter 2 describes the physical governing equations, which are simulated by the �uid

�ow simulation. These are the Navier-Stokes equations wherein water is treated as an
incompressible �uid. In Chapter 3, a general overview of propeller propulsion systems
for ships is given, including a glimpse of the evolution of propeller design, starting from a
design known as the Archimedian screw to the propulsive propeller of today. In Chapter
4, the Voith Schneider propeller (VSP) is presented. The unbreakable will of Ernst
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Schneider contributed to the innovation of this kind of propulsion system. The main
idea of Ernst Schneider was to build a ship propulsion system with blades performing a
similar motion as the �ns of a swimming cat�sh. How he managed to transfer his ideas
to a mechanical reality is also explained in Chapter 4.
Chapter 5 explains the function of the Voith Water Tractor propulsion system, con-

sisting of two counterrotating VSPs and a nozzle plate. The nozzle plate is situated very
close to the single VSP such that only a small gap between the nozzle plate and the VSP
is built and thus a good duct performance is achieved. However, the small gap causes
di�culties when a �uid �ow simulation in the region between the moving VSPs and the
static nozzle plate is performed. On one hand, moving boundaries that are situated very
close to each other present di�culties in the mesh generation and the mesh motion. On
the other hand, the solution of a �uid �ow problem with moving boundaries can be di�-
cult, depending on the applied discretization scheme. Therefore, a suitable mesh moving
scheme has to be chosen in combination with an adequate discretization approach. In
Chapter 6, the basic discretization methods are described, including the �nite di�erence
method, the �nite volume method, the �nite element method and the space-time �nite
element method.
In Chapter 7, the common moving boundary methods are presented. The disadvan-

tages of the application of �xed mesh methods to moving boundary problems are de-
scribed brie�y. In a more detailed view di�erent moving mesh methods are explained.
For each method it is shown how a moving interface can be tracked.
The sliding, the clicking and the chimera mesh methods are presented, as well as the

arbitrary Lagrangian-Eulerian method. In addition, the shear-slip mesh update method
(SSMUM) and the elastic mesh update method (EMUM) are explained. The shear-slip
mesh update method is very adequate to capture in�nite rotational motions, whereas the
elastic mesh update method is very useful to capture elastic deformations like squeezing
or stretching. For the elastic mesh update method, di�erent mesh adaptation algorithms
are presented.
In Chapter 8 it is described how the SSMUM moving boundary technique is applied to

the VWT propulsion system. Herein, each single VSP of the VWT propulsion system is
encapsulated by a rotating SSMUM beaker mesh. The description of the SSMUM appli-
cation comprises not only the construction of the single moving SSMUM mesh elements,
but also the intermediate steps of the mesh generation: starting from a CAD-data �le
of the VWT propulsion system, via the surface meshes of the blades of each single VSP
and the nozzle plate of the VWT created with the mesh generation software Gridgen, to
the �nal volume mesh including the SSMUM elements. Hereby, each single data format
that is used to create the �nal volume mesh is mentioned and a tool chain is given to
show which tools are used to convert the data from each data format to another.
In Chapter 9, the application of the EMUM is described. The EMUM approach is

applied to capture the rotational motion of the single blades of each VSP by surrounding
SSMUM beaker mesh deformation elements. With the application of the EMUM tech-
nique, the deformation of each mesh element is not prescribed explicitly but is gained
implicitly by solving the elasticity equilibrium equation for the mesh. The boundary
conditions are given by the individual blade motions of the VSP blade surfaces inside
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the rotating SSMUM beaker mesh. The large relative motion between a single blade and
the SSMUM beaker has to be compensated by an elastic mesh deformation. This elastic
mesh deformation is extremely complex, as there is only a tiny deforming computational
mesh between the tips of the blades and the SSMUM beaker. This computational mesh
cannot be enlarged, as the nozzle blade is situated only 2.6 cm away from the tips of
the blades. Inside that tiny computational mesh, tangling of highly deformed elements
occurs often, such that a �uid �ow simulation on such a mesh cannot be performed. Sev-
eral di�erent surrounding meshes and their corresponding deformations are generated
and tested to achieve a proper deforming mesh motion without tangling.
Because of the risk of tangling elements, a second mesh deformation technique, the

Concentric Shell Mesh Motion (CSMM), is developed to capture the rotational motion
of the single blades of a VSP in Chapter 10. Herein the nodes of the computational mesh
around a blade are situated on moving concentric shells. The motion of every node on a
shell is prescribed explicitly. By that mesh design and mesh motion around the blades,
the phenomenon of tangling elements can be prevented.
In Chapter 10, several di�erent shell designs are presented. To be able to chose the

best mesh deformation algorithm for the mesh deformation around the single blades of
a VSP, a tool for the evaluation of the mesh quality is presented in Chapter 11. For the
�uid �ow simulation, the best possible mesh quality is required, as a low mesh quality
results in a low convergence rate of the �uid �ow simulation on that mesh. Chapter 11
describes how the mesh evaluation tool is used to improve the mesh deformation design
around a single blade with respect to the EMUM technique.
To compare the convergence behaviour of the two di�erent methods, the EMUM and

the SSMUM method, a detailed re�nement study of the �uid �ow around a single blade is
performed in chapter 12. Here, the single blade is de�ected such that the �nite elements
below the blade get in their worst possible position regarding the simulation of one full
rotation of one VSP. The result of the re�nement study suggests which of the two mesh
moving concepts is most suitable for the full ten blade simulation including the nozzle
plate.
Here, the main selection criteria is the convergence behaviour of the in-house Navier-

Stokes Solver (XNS) on the di�erent meshes. In Chapter 13 the best mesh concept is
applied to the simulation of the �uid �ow around the complete VSP propulsion system.
In that context, another re�nement study is performed and the resulting �ow �elds
obtained from each mesh are discussed. These results are compared to the experimental
and the simulation data given by Voith. Subsequently, the deviation of the results from
the reference data is discussed.
In the view of a �uid �ow simulation comprising not only the VSP propulsion system

but also the hull of the Voith Water Tractor, an interface tracking scheme to follow the
wave motion along a ship hull is presented in Chapter 14. This scheme is based on
neuronal networks and circumvents the di�culty of a representation of splines, which
de�ne the ship hull shape in the corresponding CAD model, in the software code. As a
�rst test, the wave motion is visualized along a �ctitious ship hull. Chapter 15 gives a
summary and an outlook on further development.
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2 Equations of Motion for

Incompressible Fluid Flow

Before the subject of simulation, i.e. the propulsion system of the VWT, is presented, the
mathematical equations used to express the physical motion of water will be introduced.
These are the Navier-Stokes equations for incompressible �uids, also known as the equa-
tion for the conservation of momentum. Claude-Louis Navier and George Gabriel Stokes
independently formulated the conservation of momentum for viscous �uids in the �rst
half of the nineteenth century. Within the VSP simulation approach for the motion of
water, water is treated as an incompressible �uid. The water molecules �ll a tiny water
domain Ωt ⊂ Rnsd bounded by Γt at an instant of time t ∈ (0, T ), where nsd symbolizes
the number of space dimensions. The bounded region Ωt can be of arbitrary size and this
generality is the key concept of the two most common spatial discretization methods. For
all places inside the domain Ωt the physical quantities like the velocity and the pressure,
u(x, t) and p(x, t), ful�l the conservation of mass and impulse at any instant of time
t ∈ (0, T ). The mathematical equation maintaining the conservation of mass for water,
which is equivalent to the condition of incompressibility of water, reads as follows:

∇ · u = 0 on Ωt ∀t ∈ (0, T ). (2.1)

The equation for the conservation of momentum of water is:

ρ

(
∂u

∂t
+ u · ∇u− f

)
−∇ · σ = 0 on Ωt ∀t ∈ (0, T ), (2.2)

where ρ is the constant �uid density and f(x, t) can be regarded as the sum of all external
forces , e.g., a gravitational force �eld. For water, the stress tensor σ expresses on the one
hand the forces acting among the water particles due to friction, which can be ascertained
in all directions. On the other hand, the pressure only acts normally to a water domain
surface. Taking this into account, the stress tensor for water can be written as:

σ = −pI + T, (2.3)

T = 2µε(u), (2.4)

where the viscous frictional part is de�ned by the viscosity of water µ and the strain
rate tensor ε(u), which quanti�es the variations of all the three velocity components in
all three physical directions:

ε(u) = 1
2(∇u + (∇u)T ). (2.5)
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Fluids with a constant kinematic viscosity like water are named Newtonian �uids.
According to the application of each �uid �ow simulation special boundary conditions

have to be described at the boundary Γt. These can refer either to the value of the
velocity, called Dirichlet-type boundary condition gd, in any direction or the stress in
any direction, called Neumann-type boundary condition hd:

u · ed = gd on (Γt)g, d , d = 1...nsd , (2.6)

n · σ · ed = hd on (Γt)h, d , d = 1...nsd , (2.7)

where (Γt)g, d , and (Γt)h, d , are complementary subsets of the boundary Γt, considering
each spatial dimension separately, and ed is a basis in R

nsd . Assuming the basis coincides
with the local directions normal and tangent to the boundary, then for a typical in�ow
boundary condition all three dimensions of Γt are of Dirichlet-type, so that certain values
are assigned to each velocity direction on the in�ow boundary section. Regarding a
typical out�ow boundary condition, the stresses in all directions are set to zero or, but
more uncommon, to another value, so that all three dimensions of Γt are of Neumann-
type. A further condition for solving a Navier-Stokes equation system is that the initial
velocity values must represent a divergence-free velocity �eld speci�ed over the entire
domain:

u(x, 0) = u0, ∇ · u0 = 0 on Ω0. (2.8)
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3 Ship Propulsion Systems

This chapter gives an overview of the evolution of ship propeller design and its application
to propeller propulsion concepts for ships. Probably Archimedes of Syracuse (c. 250 BC)
and Leonardo da Vinci (c. 1500) were not aware of the physics described by the Navier-
Stokes equations. However, they must have had the idea that a lateral force on a specially
shaped body was induced by moving the body through the water, and that this lateral
force could propel a ship. Both had similar ideas, namely that the special shape of that
said body should rotate around an axis parallel to the propulsive direction. Their designs
served as examples for ship propulsion engineers many years later.
In 1681, Robert Hooke followed an idea similar to the concept of da Vinci. Hooke's

propeller comprised wooden vanes geared to a central shaft, see Figure 3.1(a). The
Archimedean screw, however, was designed to be a screw-shaped body attached to
a rotating axle. In 1752, Alexis-Jean-Pierre Paucton picked up the concept of the
Archimedean screw, see Figure 3.1(b), when he competed with other famous mathe-
maticians and scientists of Europe, like d'Alembert, Euler and Bernoulli, in a research
contest in the �eld of naval architecture, organized by the Académie des Sciences in Paris.
Bernoulli's propeller wheel, suggested in 1752, can be seen in Figure 3.1(c).

(a) (b) (c)

(d) (e) (f)

Figure 3.1: The early history of propeller designs: (a) Hooke's screw propeller (1683); (b)
Archimedean screw of Paucton (1752); (c) Bernoulli's propeller wheel (1752);
(d) Bramah's screw propeller design (1785); (e) Shorter's propulsion system
(1802) and (f) Smith's Archimedean screw design (1839)[Car07].

Thirty years later, Joseph Bramah designed a concept for a screw propeller arranged
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at the stern of a ship, which is shown in Figure 3.1(d). Di�erent to Bernoulli's pro-
peller wheel, it comprised a smaller number of blades. Edward Shorter varied this con-
cept slightly, see Figure 3.1(e), and succeeded to propel the transport ship Doncaster in
Gibraltar.
Further research in propeller design led not only to contra-rotating propellers, sug-

gested by Ericsson, but also to another experiment with a propeller, which was again
similar to the Archimedean screw, performed by Francis Petit Smith. During a test with
that Archimedean screw concept in 1837, the screw broke such that only half of the screw
remained on the propeller shaft. Immediately after the accident, the ship accelerated. As
a consequence, Smith designed an improved Archimedean screw propeller with a shorter
length. The outcome can be seen in Figure 3.1(f).
In parallel, Lowes developed novel propeller designs, which were also based on the

Archimedean screw design, but had even a shorter length than those designs discovered
by Smith. In 1838, Lowes patented a propeller comprising one or more blades, where
each blade was a portion of a curve, which if continued would produce a screw. That
propeller design can be regarded as the �rst screwed propeller design. In 1840, the
�rst cargo ship was propelled with that screwed propeller concept. Afterwards, further
research in propeller design focused on the shape and number of the blades.
In 1868, another milestone in propeller history was made by H.B. Young, who patented

a method for changing the pitch of the propeller blades, and by R. Gri�ths, who invented
the adjustable pitch propeller. Adjustable pitch propellers are advantageous because the
thrust can be changed rapidly by adjusting the angle of attack of a single blade of the
propeller.
Today, the research of propeller design is still focused on the optimal shape of the

propeller, especially the propeller blade. Most ships are individual in their design and
therefore the �ow around the propeller induced by the moving ship hull is unique. As
such, often an individual propeller has to be developed for a single ship. As a consequence,
there is no optimal propeller design or propeller propulsion system in general.
In these days, propeller propulsion systems are usually designed not only to aim at

good e�ciency, but also to control cavitation. In the following, the basic concepts of ship
propeller propulsion systems are introduced.

3.1 Fixed Pitch Propellers

The most common ship propulsion system of today is a mono-block �xed pitch propeller.
Contrary to the built-up propeller, the mono-block propeller is cast in one casting. The
built-up propeller was used in the past for two reasons. Firstly, it was di�cult to achieve
appropriate large castings. Secondly, a built-up propeller allowed for blade pitch adjust-
ment after it was built-up. Adjusting the blade pitch by trail and error was a necessity
in the early years of the last century to improve the propeller performance. However,
built-up propellers mostly comprise a larger boss radius than their �xed pitch counter-
part. As a larger boss radius can increase the danger of cavitation in the blade root
sections, and the casting technology has advanced signi�cantly in the last decades, the
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mono-block propeller design is favoured today.
The mono-block propellers of today can be used in almost every ship type, from small

power-boats to large container ships. The propeller design di�ers considerably depending
on its application, as shown in Figure 3.2. For example, a large four-bladed propeller
is typically used to propel a bulk carrier, as shown in Figure 3.2(a). A propeller of a
high-speed patrol craft propeller is presented in Figure 3.2(b). A highly skewed propeller,
as shown in Figure 3.2(c), is commonly used for merchant and naval ships. An example
of a surface-piercing propeller of a cruiser boat is given in Figure 3.2(d).

(a) (b)

(c) (d)

Figure 3.2: Di�erent propeller designs according to their applications: (a) large four-
bladed propeller for a bulk carrier; (b) high-speed patrol craft propeller; (c)
seven-bladed balanced high-screw design for merchant and naval ships and
(d) surface piercing propeller of a cruiser boat [Car07].

3.2 Ducted Propellers

Ducted propellers are used in cases where a ship propulsion system is required to generate
high thrust at low speeds, especially in towing situations. Ducted propellers consist of
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a �xed pitch or controllable pitch propeller and an annular duct. The duct has an
aerofoil cross-section, mostly symmetric with respect to the propeller axis. Compared to
a standard non-ducted propeller, the propeller blades are modi�ed in a way that accounts
for the interaction with the �ow �eld, which is generated by the duct. At zero ship speed
the duct can contribute up to �fty percent of the thrust of the propeller propulsion system
[Car07]. With increasing ship speed the contribution of the duct is less and can even
lessen the whole propulsion system performance [Car07]. The design of the duct shape
depends on the application. One of the most common duct designs is the Wageningen
19A form (cf. the accelerating duct in Figure 3.3(a)). It is designed to perform an e�cient
acceleration when cruising ahead. However, for a tug boat application the duct should
be shaped such that the duct performance is e�cient in both cruising directions. Such
a bidirectional duct shape is the Wageningen No. 37 form (shown with the 'pull-push'
duct in Figure 3.3(b)). Of course, the astern performance is increased at expense of the
ahead cruising performance. Another design feature to improve the astern performance
of a duct is the Hannan slot, which is shown in �gure 3.3(c). When cruising ahead, the
shape of the Hannan slot allows the water to pass through the duct in a similar way as
through a duct with the Wageningen 19A shape. However, when cruising backwards, the
slot induces a water �ow through the slot, such that the e�ective hydraulic shape of the
Hannan slotted duct resembles the hydraulic shape of the duct with the Wageningen No.
37 form.

(a) (b) (c)

Figure 3.3: Duct types: (a) accelerating duct; (b) 'pull-push' duct and (c) Hannan slotted
duct [Car07].

3.3 Azimuthing Propellers

To enhance the manoeuvrability of a ship, it can be equipped with an azimuthing pro-
peller, which can turn its rotational axis relative to the ship hull. This capability of
manoeuvring is essential for ice breakers and very useful for cruise ships in landing oper-
ations. Azimuthing propellers can be realized as non-ducted and ducted propellers. An
azimuthing ducted propeller is shown in Figure 3.4. Some types of azimuthing propellers
can even perform a full rotation around their vertical axis.
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Figure 3.4: Azimuthing ducted propeller [Car07].

3.4 Controllable Pitch Propellers

As mentioned above, controllable pitch propellers (CPP) allow an adjustment of the
pitch of the blades. The adjustment is mostly performed with a hydraulic mechanism.
An example is given in Figure 3.5. Here, the hydraulic mechanism can move the pull-push
rod, which is situated in the propelling shaft. The amount of oil supplied to one of the
two channels can be controlled by a distribution box. The corresponding motion on the
rod causes an adjustment of the angle of attack of the blades, which are fastened to the
rod with the securing arrangement shown in Figure 3.5. The advantages of controllable
pitch propellers are numerous. First of all, the engine speed can be kept at constant
speed, which o�ers the opportunity to work out an engine design that is optimal for
one operating point. These kinds of engine designs result in a higher e�ciency with
less environmental pollution. Moreover, with respect to vibration issues, the hull design
is easier to develop when the engine is mostly running at constant speed. In addition
to that, the thrust of a controllable pitch propeller can be adjusted very easily and
faster compared to a �xed pitch propeller, where the engine speed has to adjust to the
required thrust. This is especially advantageous in dynamic position situations. Some
CPP designs even include the opportunity to feather the blades of a CPP, which is very
common with double-ended ferries or with small war ships.
Aside from all the research on the classic propeller concept, other ideas of ship propul-

sion arise from time to time. Among these are waterjet propulsion, the magnetohydro-
dynamic propulsion and propulsion systems including cycloidal propellers. One of the
�rst cycloidal propellers is the Kirsten-Boeing propeller, invented in the 1920s. The most
popular cycloidal propeller is the Voith-Schneider propeller. Its history and functionality
is described in the following.
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Figure 3.5: Controllable pitch mechanism [Car07].
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4 The Voith Schneider Propeller

The innovation of the Voith-Schneider propeller (VSP) is owed to Ernst Schneider and
his unceasing inventive genius. Already in the time of his studies of mechanical engi-
neering, he wanted to contribute innovation to the world of engineering, especially in
the �eld of ship propulsion. His early ideas lead him to a concept of a ship propeller,
whose blades comprised a pro�le similar to a wing of a bird. With his invention he
contacted Johann Matthäus Voith, the founder of the Voith company of today. Though
J. M. Voith was interested in that wing type pro�le, Ernst Schneider had to �nance on
his own the �rst experiments to prove the e�ciency of this propulsion system. The fact
that he gave private lessons to �nance his experiments is a proof of Ernst Schneider's
passion to innovation. Comparative tests with a conventional propeller indicated that
the new propeller could perform better than the conventional one. These results moti-
vated the Voith company to perform its own tests with that wing-type pro�le propeller
system. Unfortunately, these test results did not prove satisfactory. In retrospect, Ernst
Schneider had to confess that the conventional propeller was wrongly dimensioned to give
a reasonable chance to his invention. But Ernst Schneider did not give up, constantly
serving new ideas to the Voith company to enhance the performance of his propulsion
concept; e.g., he suggested to use a casing around the blades to achieve a nozzle e�ect.
As the Voith company did not want to support these kinds of tests, Schneider tested
the casing concept at the TH Wien with the engineer Zwerina and the support of Prof.
Richard Knoller. In 1925, Zwerina showed Ernst Schneider an article about the cat�sh
propulsion system. At that time, beside the cat�sh propulsion system no other ship
propulsion system with a parallel blade axis was known to Ernst Schneider. In the same
way as he had copied the shape of bird's wing, this time Ernst Schneider was interested
in the idea of copying the motion of a �sh's �n. The idea of the cat�sh drive is to move
the blades of the drive such that their motion corresponds to the motion of a cat�sh �n.
The principle of the cat�sh propulsion system can be seen in Figure 4.1(a). The rotation
of the axis indicated by the arrow is transferred into a horizontal motion of the �n inside
the horizontal slot combined with a swinging motion of the �n. An application of the
cat�sh drive is shown in Figure 4.1(b).
Investigating the cat�sh drive, Ernst Schneider discovered that the error angle of a

blade of a cat�sh drive reached up to thirty degrees compared to the motion a cat�sh
�n would perform. This was due to the kinematic drive of the blades. Furthermore,
this drive was not adjustable. Given these facts, Ernst Schneider started to modify the
cat�sh drive in the following way. Firstly, the size of the blades was reduced such that
the theoretical error angle was reduced. In a second step, he arranged the blades on a
circle, which is called blade circle in the following. This step is considered to be the most
crucial modi�cation to the cat�sh drive. The blades should move on a circular path, such
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(a) (b)

Figure 4.1: The cat�sh propulsion system: (a) principle; (b) application [BJ02].

that the normals of each blade traversed a single point region [BJ02]. The third step of
the invention was done by Ernst Schneider during the preparation of his experiments.
To construct the propeller he replaced the said point region with a single point. By
doing so, Ernst Schneider created a crucial innovation, the control point of the VSP.
In Figure 4.2, the normals of each blade are labeled PN and the point of intersection
of these normals is the point N , which is the control point of the VSP. By moving the
control point, e.g., from position N to N∗, the angles of attack of each single blade can be
changed simultaneously. Therefore, the motion of the control point o�ered the feasibility
to control the VSP as a whole. Figure 4.2 shows the adjustment of the normals of each
blade according to a motion of the control point to the positions N ′ and N∗.

Figure 4.2: The control point of the VSP [BJ02].

As the motion of the control point could be performed in any direction, not only
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the force of the propeller thrust but also the direction of the thrust could be changed
during the operation of the VSP. The direction of the thrust could be even inverted.
These characteristics of the VSP di�erentiated it from the known screw propellers. This
motivated Ernst Schneider to present his invention to the Voith company. Before, he
patented this special kind of ship propulsion system with the title "Schaufelrad" and
asked his former professor Karl Kobes to render an expert opinion on this invention.
He approved the claimed characteristics of the Schneider propulsion system according
to the patent. At Voith, this new propulsion system was assessed as well by three
experts. Though their opinions deviated, Walter Voith, the son of J.M. Voith, believed
that this innovation of Ernst Schneider was an important one and initiated the Voith
company's research of the VSP. So a team was set up to build various prototypes to
test the e�ciency of the VSP and to create a steering kinematic mechanism for steering
the blades according to the motion of the control point. The research covered many
tests, including the variation of the number of the blades, the blade shape, the steering
mechanism and also the location of the propeller with respect to the ship hull. The
position in relation to the ship hull was found to be crucial. Water tank tests showed
that e�ciency was strongly reduced if the propeller worked in a mixture of air and water.
Due to this, the position of the rotating plate where the single blades were attached to,
was changed to a position, where it was below the water surface. In addition, the blade
shafts had to be sealed.
The VSP was tested in a ship for the �rst time in 1927, propelling the test boat

'Torqueo', which is shown in Figure 4.3(a). The VSP arranged below the stern of the
'Torqueo' is shown in Figure 4.3(b). The tests with the 'Torqueo' exceeded all expecta-
tions. The maneouvrability of the boat was so good, that a full turn could be performed
with the boat within ten seconds. Due to these successful tests, the application of the
VSP in a ship was born. Based on the innovation of Ernst Schneider, the engineers of
the Voith company developed a ship propeller not known up to that time.

(a) (b)

Figure 4.3: The test boat Torqueo: (a) manoeuvring in operation; (b) VSP arragement
below the stern [BJ02].
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5 The Voith Water Tractor Propulsion

System

A ship propulsion system consisting of a VSP is the interest of our �uid �ow simulation.
It is a propulsion system of the Voith-Water Tractor (VWT), which is one of the most
famous tug boats. It consists of two Voith-Schneider propellers, a nozzle and a protection
plate. As said in Chapter 4, the Voith-Schneider propeller (VSP) enables a ship to change
its direction of thrust almost instantaneously. This is realized by a circulating plate at
the bottom of the ship (cf. Figure 4.3(b)), on which several vertical blades are situated
on a blade circle and rotate with that plate. During one full plate rotation, the blades
change their angle according to their position (cf. Figure 5.1, left picture). The blade
angle α of a single blade is measured from the tangent of the blade circle to the centre
line of the blade. The di�erent blade angles according to the varying positions of the
blade result in a blade angle curve, which can vary in reference to the operating point
of the ship. In the right picture of Figure 5.1 various blade angle curves are shown. The
horizontal axis in the right picture of Figure 5.1 indicates the position of a single blade
measured in degrees from 0 to 360 degrees. This degree range covers one full rotation of
a single blade. The vertical axis indicates the blade angle α, which is shown in the left
picture of Figure 5.1. The blade angle curve varies according to the performance factor
of the propeller, e.g., 0.4, 0.6 or 0.8. The right picture of Figure 5.1 shows three di�erent
blade angle curves corresponding to three di�erent operating points, i.e., performance
factors of the propeller. The operating points can be chosen such that the thrust is
generated in any direction, even sidewards.

Figure 5.1: Blade angle curve of the VSP [BJ02].

That characteristic quali�es the VSP to be a very suitable propulsion element for a
tug boat, which must be highly manoeuvrable to push or pull large container ships in
any possible direction. The propulsion system of the Voith Water Tractor is equipped
with two counterrotating VSPs, with �ve blades each, and a nozzle plate situated very
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closely below these propellers (cf. Figure 5.2).

Figure 5.2: Voith Water Tractor propulsion system [RV05].

In this way, this plate works as a nozzle plate and also protects the propellers in shallow
water. Regarding the complexity of the geometry, the most di�culties considering any
simulation approach for the VWT propulsion system are represented by the small gap
between the bottom tips of the blades and the nozzle plate, which counts just up to 2.6
cm (see Figure 5.3).

Figure 5.3: Measurements of the VSP propulsion system top and side view[RV05].

When the VSP is operated at a performance factor of 0.8, in order to generate full
thrust, a single blade must be turned to a maximal blade angle α up to 55 degrees,
according to the blade angle curve given in Figure 5.1.
During one full rotation of the VSP in this operation mode, the lower boundaries of

the blades perform a huge relative motion to the nozzle plate boundary. The simulation
method that handles the motion between moving boundaries is called a moving boundary
scheme or method. Regarding the small gap between the blades and the nozzle plate,
any successful �uid �ow moving boundary approach must compensate these huge relative
motions while still maintaining the conservation of mass and momentum in this zone,
independently of the discretization method.
The mesh moving boundary schemes this paper proposes for the �uid �ow simulation

of the VSP propulsion system can be regarded as rather general and can be applied to
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many kinds of propeller constructions. The closest application might be the simulation
of standard controllable pitch propellers, which are also often surrounded by ducts or
complex geometries close to the rotating blades (see Figure 5.4). The left picture of Figure
5.4 shows a good example of how rotating marine propellers are generally constructed
closely to stationary parts of the ship hull. Similarly, this characteristic design feature
can be observed at aircraft controllable pitch propellers (see the right picture of Figure
5.4).

Figure 5.4: Controllable pitch propellers of a Hurtigrutenschi� and a Hercules aircraft
propeller [Car07].
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6 Discretization Methods

This chapter will describe how the �ow �eld around a moving VSP propulsion system,
i.e., the velocities and the pressure, can be calculated. First, at any point of the region
Ωt at any time t, the region as well as the time have to be discretized, i.e., within the
region Ωti at a precise instant of time ti, unique values of velocity v(xj , ti) and pressure
p(xj , ti) have to be assigned to a unique position xj and its discrete environment. The
division of the region Ωti into many smaller subregions Ω(xj , tj) is called discretization;
the distance between these subregions is called resolution. The di�erence between various
discretization methods mainly arises from the manner the region is divided into smaller
ones and the method how and on which position inside the single regions physical values
like the velocities and the pressure, as well as their derivatives, are determined.
One principal aspect of the two most common discretization schemes, the �nite volume

and the �nite element method, is that, because the Equations (2.1) and (2.2) are valid
for any size of the volume Ωti or of the corresponding subregions Ω(xj , tj) , the volume
can therefore be arbitrary small, even in�nitesimal Ωti(h) . In addition, the superposition
of several generated equations considering volumes Ωti(h) ensures the conservation of the
total momentum and mass for the combined volume Ωti =

∑
Ωti(h) . If the equations

of mass and momentum conservation are written over each subvolume Ωti(h) , and the
coupling among them is established, a system of equations can be derived solvable for
each unique velocity and pressure value. In the following subchapters 6.1, 6.2 and 6.3, the
three most important spatial discretization techniques are presented: the �nite di�erence,
the �nite volume and the �nite element method. The explanation of the �nite di�erence
and the �nite volume method is a brief summary of what is described in [Oer95].

6.1 The Finite Di�erence Method

The �nite-di�erence method is a spatial discretization method wherein the computational
domain is subdivided into numerous intervals of equal size, a cartesian mesh:

(ξ1)i = ξ1,i = i · 4ξ1 ; (ξ2)j = ξ2,j = j · 4ξ2 ; (ξ3)k = ξ3,k = k · 4ξ3, (6.1)

with i, j, k being the indices along the coordinate axis and ∆ξ1, ∆ξ2, ∆ξ3 the corre-
sponding step sizes. The physical entities like velocity and pressure are assigned on the
mesh points of the cartesian mesh, its indices indicating its position like u(ξ1, ξ2, ξ3) =
ui,j,k. At each grid point, di�erential operators are used in order to transfer the dif-
ferential Equations 2.1 and 2.2 to an algebraic discretized equation system. By that,
the number of unknown values of discretized entities is equal to the number of equa-
tions. Concerning the �nite-di�erence method there can be used di�erent discretization
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schemes which can be distinguished by the di�erential operators used for the �rst and
second derivatives of the physical entities. For the �rst derivatives, the three most com-
mon di�erential operators, the forward, backward and central di�erence operator, are
shown in the following:

∂u

∂ξ1
≈ ui+1 − ui

4ξ1
forward di�erential operator, (6.2)

∂u

∂ξ1
≈ ui − ui−1

4ξ1
backward di�erential operator, (6.3)

∂u

∂ξ1
≈ ui+1 − ui−1

24ξ1
central di�erential operator. (6.4)

The di�culty in applying the �nite-di�erence method is that usually the physical co-
ordinate system embedding the object of simulation is de�ned in curvilinear coordinates
and not in cartesian ones. However, the di�erential operators are de�ned in a cartesian
coordinate system. So the derivatives of the di�erential operators formulated in the carte-
sian system must be converted to �t to the curvelinear coordinate system. Considering
real applications with complex curved geometries, the transformation matrices resulting
from this conversion are very complex and so the �nite-di�erence scheme is rarely used
for complex geometries [Oer95].

6.2 The Finite Volume Method

On the contrary, the �nite-volume method is the most widely used spatial discretization
scheme for the simulation of �uid �ows, as it does not need such a complex transformation
from the physical to the computational space. Herein, the physical space is directly
transferred to the computational domain, which is divided into �nite volumes or cells
shaped as arbitrary triangles or quadrilaterals (2D) or tetrahedrons or hexahedrons (3D),
whose edges (2D) or faces (3D) can easily adapt to the boundaries of the object to be
simulated.
To explain how a di�erential equation is discretized with the �nite-volume method,

a simpler di�erential equation than the Navier-Stokes equation is considered, i.e., the
di�erential equation expressing the conservation of momentum for a �uid, but without
considering the forces acting on the �uid particles due to friction. For simplicity, the body
force is assumed to be set to zero as well. This modi�ed equation for a �uid occupying
a volume Ωt with its boundary Γt then reads:

ρ

(
∂u

∂t
+ u · ∇u +

1

ρ
∇p
)

= 0 on Ωt ∀t ∈ (0, T ), (6.5)

or using the notation of the dyadic product:

ρ

(
∂u

∂t
+∇ · (u⊗ u) +

1

ρ
∇p
)

= 0 on Ωt ∀t ∈ (0, T ). (6.6)
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In the �rst step of the �nite-volume method, the di�erential equation is integrated
over the volume (3D) of the whole domain, which gives:∫

Ωt

ρ

(
∂u

∂t
+∇ · (u⊗ u) +

1

ρ
∇p
)

dV = 0 on Ωt ∀t ∈ (0,T). (6.7)

Applying the divergence theorem, Equation (6.7) modi�es to:

∂

∂t

∫
Ωt

ρu dV +

∫
Γt

((ρ (u⊗ u) + p) · nA) dA = 0 on Ωt and Γt ∀t ∈ (0,T). (6.8)

For a simpler notation, the state vector Fm is introduced, which is called the vector of
convective �uxes in the direction of m:

Fm =

 ρ umu1 + δ1mp
ρ umu2 + δ2mp
ρ umu3 + δ3mp

 ; where δij = 1 for i = j and δij = 0 for i 6= j. (6.9)

Considering the three-dimensional form of the momentum conservation (Equation 6.8),
the value of a physical entity u inside a volume changes over time according to the �uxes
crossing the volume surfaces like the following:

∂

∂t

∫
Ωt

ρu dV +
3∑

m=1

∫
Γt

(Fm · nA) dA = 0 on Ωt and Γt ∀t ∈ (0,T). (6.10)

Equation (6.10) holds for any volume and so also for each cell of the computational
mesh, and thus Equation (6.10) can be discretized for each cell of the computational
domain. In the course of the discretization, the physical entities like velocity and pressure
are assigned to the center of a cell, assuming that an entity is constant within a cell. Let
us consider the computational mesh consisting of cubes. Then the integral part over the
convective terms and the pressure can be transferred to a sum over the faces A1, A2, ..., A6

of a cubic volume cell. The normal vector of each face is named n1, n2, ...,n6 respectively.
For each cell, Equation (6.8) can be discretized to:

d

dt
ρu V +

3∑
m = 1

6∑
l = 1

(Fml · nl ·Al) = 0. (6.11)

The �ux Fml is the �ux in the center of the face l and is calculated via the mean value of
the physical entities of the two cells touching the face l. If considering the computational
mesh with only cubic cells, Equation (6.8) for cell i, j, k reads:

d

dt
ρuijkV ijk +

3∑
m = 1

6∑
l = 1

(Fml · nl ·Al)ijk = 0, (6.12)

where Vijk symbolizes the volume of cell i, j, k. After having built the discretized
equations for each cell, an equation system is obtained where the single equations of each
cell are coupled with those of the neighbouring cells via the �uxes because the incoming
�ux of one face of a cell is the same as the outgoing �ux of the neighbouring cell sharing
the same face.
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6.3 The Finite Element Method

Originally, the �nite-element method was mainly used in the �eld of structural mechan-
ics. In recent years however, its application to �uid �ow problems has become much more
common, partially due to the possibility of tracking moving boundaries and interfaces in
an easy manner. The concept of the �nite-element method is very general and can be ap-
plied to various partial di�erential equations. To explain this concept, this chapter gives
a rough summary of what is elaborately developed in [Hug87]. What can be considered
as the �rst step is the formulation of the variational statement of the problem; the second
step consists of the discretization of the weak formulation via �nite element functions.
To explain the basic ideas, the focus will be on a very simple di�erential equation, the
Poisson equation. The strong formulation of the Poisson boundary-value problem, (S),
can be given by:
Given f : Ω̄→ R and the constants g and h, �nd u : Ω̄→ R, such that

uxx(x) + f = 0 on Ω,
u(1) = g,
−ux(0) = h, where Ω =]0, 1[ and Ω̄ = [0, 1].

(6.13)

The �rst step of the �nite element method is to convert the strong formulation to
a weak formulation. This includes multiplying the strong formulation by a weighting
function w and integrating the resulting product over the domain Ω̄. Then the full weak
form is:
Given f : Ω̄→ R, �nd u : Ω̄→ R, such that for all w in a certain function space:

0 = −
∫ 1

0
w (uxx(x) + f) dx . (6.14)

The inherent advantage of this �rst step is that the integral over the product can be
simpli�ed by integrating by parts, such that a second derivative of one function, here
u(x)xx, is converted into two �rst derivatives of two functions ux and wx, which will be
easier to discretize. This step can be compared to the reduction of the second derivatives,
applying the divergence theorem when using the �nite volume method (see Equation 6.8).
The integration by parts gives:

0 =

∫ 1

0
wx(x)ux(x)dx −

∫ 1

0
wf dx − [wux (x )]10 . (6.15)

It must be mentioned that the function w can be of any type as long as it ful�lls the
condition that it is zero on the Dirichlet part of the boundary, w(1) = 0. So, considering
all admissible functions w, one usually speaks of a set of weighting functions. In order
to prevent the integrals from being in�nity, the requirement for the derivatives of the
functions u and w is that they and their derivatives are square-integrable, that is:∫ 1

0
(ux(x))2 dx <∞, (6.16)

∫ 1

0
(wx(x))2 dx <∞. (6.17)
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Functions whose �rst derivatives are square-integrable belong to a space called H1. The
set of all possible solutions ful�lling 6.16 and the Dirichlet boundary condition in the
strong formulation, here u(1) = g, is called the collection of trial solutions, S. The set
of all admissible weighting functions ful�lling 6.17 and the condition w(1) = 0, is called
the collection of weighting functions, V. The common mathematical notation including
these properties for both the collection of trial solutions, S, and the weighting functions
V is given by:

S =
{
u | u ∈ H1, u (1) = g

}
(trial solutions), (6.18)

V =
{
w | w ∈ H1, w (1) = 0

}
(weighting functions). (6.19)

Ensuring now that the trial and weighting functions ful�l Equations (6.18) and (6.19)
respectively, the weak formulation can be stated as:
Given f, g and h, as in Equation (6.13), �nd u ∈ S such that for all w ∈ V∫ 1

0
wx(x)ux(x)dx =

∫ 1

0
wf dx − w (0 ) h. (6.20)

In the literature the following expressions are used to simplify the writing:

a (w, u) =

∫ 1

0
wx(x)ux(x)dx , (6.21)

(w, f) =

∫ 1

0
wfdx . (6.22)

So the variational formulation of the Poisson problem writes:

a (w, u) = (w, f) + w (0)h. (6.23)

For the forthcoming argumentation, it is important to state that the expressions a (·, ·)
and (·, ·) are symmetric, that is:

a (u, v) = a (v, u) , (6.24)

(u, v) = (v, u) , (6.25)

and bilinear, that is:

a (c1u+ c2v, w) = c1a (u,w) + c2a (v, w) , (6.26)

(c1u+ c2v, w) = c1 (u,w) + c2 (v, w) . (6.27)

After the weak formulation is built up, the second step of the �nite element method, the
discretization of the variational problem via �nite element functions, follows. In the 1D
case, the space is divided into n+1 nodes and n elements, where in 1D two nodes belong
to one element and the elements �ll the complete space de�ned by Ω̄. Then, to each node
A = 1, 2, ..., n+1 the same shape function NA, but a di�erent discrete value dA according
to the local value u(x) of node A, is assigned. In the 1D example, one discrete value
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is already given by the Dirichlet boundary condition u(x = 1) = 1, whereas the other
dA
′s have to be calculated by solving the linear equation system derived from the �nite

element discretization. The discretization uses n + 1 shape functions and will result in
n unknown discrete values dA. The shape functions NA(x) are designed such that u(x)
can be approximated as a sum of each nodal shape function NA multiplied by its nodal
value dA at the position x. The discretized version of u(x) is denoted uh(x) and can be
written as:

uh =
n∑

A=1

dANA + gNn+1, (6.28)

Nn+1 (1) = 1, (6.29)

gh = gNn+1, (6.30)

gh (1) = g. (6.31)

Usually, the shape functions are designed very simple, such that they have a value of one
at the position of their node and the value of zero at the next node; in between they are
linear in the simplest case. A piecewise linear shape function design of two nodes, N1

and N2, within one element for the 1D example would look like the following:

N1 = 1− ξ , N2 = ξ, ξ = [0, 1] , (6.32)

where ξ is the local coordinate of one element, starting with the value 0 at the node
number one of the element, and getting the value 1 at the node number two of the
element. How the local coordinate system is transferred to the physical one, and that
the partition of shape functions must be a partition of unity, can be read in [DH03].
Studying the design of the shape functions, it is evident that applying this partition

of shape functions is just a simple linear interpolation algorithm in between and on the
nodes. In the same way, the collection of weighting functions w(x) are discretized to
wh(x):

wh =
n∑

B=1

cBNB, (6.33)

where the shape functions NB can be the same as for the trial solutions (cf. the described
Galerkin approach [DH03]) but do not have to be the same. After the discretization of
the trial and weighting functions, the discretized form of the variational problem 1.4.10
can be expressed like:

a

(
n∑

B=1

cBNB,
n∑

A=1

dANA

)
=

(
n∑

B=1

cBNB, f

)
+

[
n∑

B=1

cBNB (0)

]
h−a

(
n∑

B=1

cBNB, gNn+1

)
.

(6.34)
Using the bilinearity of a (·, ·) the coe�cients cB can be excluded:

0 =
n∑

B=1

cBGB, (6.35)
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where

GB =
n∑

A=1

[a (NB, NA) dA − (NB, f)−NB (0)h+ a (NB, Nn+1) g]. (6.36)

Since w can be arbitrary, just ful�lling w ∈ V, wh(x) can be arbitrary. Just ful�lling
wh ∈ Vh, the cB ′s can also be arbitrary, from which it follows that each single GB,
B = 1, 2, ..., n must be identically zero. Using standard numerical integration rules, an
equation system can then be derived with n equations and n unknowns. A variational
formulation for the Navier-Stokes equations will be given in the next section. The �nite
element discretization for the three-dimensional Navier-Stokes problem is much more
complex and is not derived here. An elaborate derivation of the discretization of the
Stokes �ow problem is shown in [DH03]. Herein, the convective terms are not considered
compared to the Navier-Stokes �ow problem, but the handling of the �nite element
discretization in three dimensions becomes apparent.
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6.4 Space-Time Finite Element Method

So far, only spatial discretization methods were introduced, but in order to complete the
discretization of a partial di�erential equation with respect to time, a method for time
discretization has to be chosen. A very widely used scheme to discretize �rst-order di�er-
ential equations among the �nite di�erence schemes with respect to time is the θ family
of methods, which is explained in [DH03]. There are a huge variety of time discretiza-
tion and integration methods that cannot be explained in this thesis. A very unique
approach to handle time discretization is given by extending the concept of the spatial
�nite element method to the time dimension; this is then named the space-time �nite
element method. According to [DH03], this concept was already included by the time-
discontinuous Galerkin method proposed by Jamet (1978) and Johnson et al. (1984). A
space-time Galerkin/least-squares �nite element formulation with �xed spatial domains
was developed by Hughes et al. [HFH89], whereas a space-time �nite element approach
for a deformable spatial domain was �rstly presented by Tezduyar, Behr, Liou and Mittal
[TBL91, TBL92, TBML92]. An example of a space-time interpolation function over a
space-time slab

]
tn, tn+1

[
between two consecutive time steps, tn and tn+1, could have

the following form:

uh (x, t) =

nnp∑
A=1

NA (x)
(
(1− θ)unA + θun+1

A

)
, (6.37)

with θ = (t− tn) /
(
tn+1 − tn

)
being the time interpolation function where NA can be

considered as a standard spatial shape function of node A, as in 6.28, and the values
unA and un+1

A are the values of node A at the two consecutive time steps tn and tn+1.
Assuming that weighting functions in the time dimension can be created in a similar
way as the time interpolation functions, one can create space-time �nite elements that
have nsd + 1 dimensions, such that the multiplication with a weighting function and the
consecutive integration can be done not only in the spatial, but also in the time dimension.
Regarding a spatial one dimensional problem, two dimensional space-time elements would
be necessary as shown in Figure 6.1. Here, already a moving one-dimensional mesh is
shown, where x is the spatial domain and the six nodes move along the x-axis when the
time t progresses from the time step tn to tn+1. The local element coordinates ξ and θ
represent the reference coordinate system Rχ of one single space-time �nite element.
The conservation equations of mass and momentum 2.1 and 2.2 are written neither over

the material RX nor the spatial Rx but over the reference domain Rχ, which is given by
the computational mesh. Doing so, the material time derivatives, which are formulated in
the conservation laws, must be related to the time derivatives in the referential coordinate
system. How this is done will be explained in Section 7.2.3. The mesh nodes can move
arbitrarily, so an accurate following of moving boundaries is also possible. Usually the
mesh nodes do not move di�erently in the time dimension. This is why the nodes in
Figure 6.1 are orientated horizontally considering the time dimension. However, it must
be mentioned that the mesh nodes could move di�erently in the time dimension, which
is equal to considering di�erent time resolutions in di�erent areas of the mesh.
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Figure 6.1: Space-time �nite elements for a 1D-spatial problem [Beh92].

Considering the space-time �nite element concept, the variational formulation of the
Navier-Stokes equation as it was developed in [TBL92, TBML92] is presented in the
following. First, the time interval (0, T ) needs to be divided into subintervals In =
(tn, tn+1), where tn and tn+1 belong to an ordered series of time levels 0 = t0 < t1 < ... <
tN = T . For each time level, a corresponding domain occupied by the �uid Ωn = Ωtn

and its boundary Γn = Γtn is assigned. In between these time levels, a space-time slab
Qn is de�ned, which is enclosed by the surfaces Ωn,Ωn+1 and Pn, where Pn is the surface
described by the boundary Γt as t traverses In. A space-time slab with its surrounding
boundaries is shown in Figure 6.2.
In the same way as Γt is decomposed into a Neuman-type and a Dirichlet-type part, the

surface Pn can be divided into
(
Pn
)
g
and

(
Pn
)
h
. For each space-time slab, the following

�nite element interpolation function spaces for the velocity and the pressure are de�ned:(
Shu
)
n

=
{
uh | uh ∈

[
H1h (Qn)

]nsd
,uh

.
= gh on (Pn)g

}
, (6.38)

(
Vhu
)
n

=
{
uh | uh ∈

[
H1h (Qn)

]nsd
,uh

.
= 0 on (Pn)g

}
, (6.39)

(
Shp
)
n

=
(
Vhp
)
n

=
{
ph | ph ∈ H1h (Qn)

}
. (6.40)

Similar to Equation (6.28) and Equation (6.37), a �rst order polynomial in space
and time is used. Considering consecutive space-time slabs and its division into �nite
elements, the interpolation functions are continuous in space but discontinuous in time.
Discontinuous approximations in time allow problems to be solved independently for each
time slab instead of solving a global problem over the whole time domain [DH03]. In
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Figure 6.2: Space-time slab and its boundaries [Beh92].

doing so, the space-time �nite element mesh can cope with just two di�erent time levels.
The stabilized space-time formulation for deforming domains can be written as follows:
given

(
uh
)−
n
, �nd uh ∈

(
Shu
)
n
and ph ∈

(
Shp
)
n
such that ∀wh ∈

(
Vhu
)
n
, ∀qh ∈

(
Vhp
)
n
:

∫
Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇uh − f

)
dQ +

∫
Qn

ε(wh) : σ(ph,uh)dQ

+

∫
Qn

qh∇ · uhdQ +

∫
Ωn

(
wh
)+

n

· ρ
((

uh
)+

n
−
(
uh
)−

n

)
dΩ

+

(nel)n∑
e=1

∫
Qe

n

τmom
1

ρ

[
ρ

(
∂wh

∂t
+ uh · ∇wh

)
−∇ ·σ(qh,wh)

]
·
[
ρ

(
∂uh

∂t
+ uh · ∇uh − f

)
−∇ ·σ(ph,uh)

]
dQ

+

(nel)n∑
e=1

∫
Qe

n

τcont∇ ·whρ∇ · uhdQ =

∫
(Pn )h

wh ·hhdP . (6.41)

The notational conventions used in 6.41 are given below:(
uh
)±
n

= lim
ε→0

u (tn ± ε) , (6.42)

∫
Qn

...dQ =

∫ tn+1

tn

∫
Ωh

t

...dΩdt , (6.43)

∫
Pn

...dP =

∫ tn+1

tn

∫
Γ h

t

...dΓdt . (6.44)
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As Equation (6.41) can be solved for each time slab independently, the overall so-
lution can be calculated consecutively for all space time slabs Q1, Q2, ..., QN−1. The
computations start with (

uh
)+

0
= u0. (6.45)

Regarding the variational formulation 6.41, the �rst three terms of the left hand side,
together with the right hand side, correspond to the standard Galerkin formulation of the
problem. The fourth term weakly enforces the continuity of the velocity in time over the
lower boundary Ωn of the space-time slab Qn. The �fth term is built by the least-squares
form of the momentum equation and stabilizes as long as the residual of the momentum
equation is di�erent from zero. If the �fth term is not zero, an additional viscosity, also
dependent on the stabilization parameter τmom, is added to the water viscosity, which
stabilizes the advection-dominated cases. If the residual is getting close to zero, this
term vanishes and the consistency of the momentum equation is preserved. In addition,
the sixth term stabilizes at high Reynolds numbers. The explanation of the stabilization
schemes and its background can be read in [Beh92]. The time around the publishing date
of [Beh92] can be regarded as the advent of the use of XNS, an executable Navier-Stokes
solver, which discretizes all the terms of 6.41 with respect to time and space similar to the
theory given in this and the previous chapter. The discretized terms are then linearized
and the resulting linear equation system is solved iteratively. The solution concept of the
linearized equations used in XNS, namely the GMRES algotithm, is also presented in
[Beh92]. At the CATS institute at the RWTH Aachen, XNS has been extended for many
di�erent applications like blood �ow simulations, maritime applications and optimization.
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7 Moving Boundary Methods

Before deciding on a discretization method and a suitable moving boundary scheme for
the �uid �ow simulation of the Voith Water Tractor (VWT), a brief overview will be
given about moving boundary schemes in general, along with a short glimpse at rotor
and propeller �uid simulation approaches. Beforehand, the author would like to point
out a quite common alternative to a moving boundary approach regarding propeller
simulation. If the propeller is only surrounded by the computational domain and its
boundaries, a rotating coordinate system can be applied to simulate the �ow around
the blades of a propeller. In [Dym08], this approach is used to calculate the pressure
distribution on the suction and the pressure side of one propeller blade as well as the
probability of cavition on the blade. Herein, only one blade is simulated and periodic
boundary conditions on the circumference of the �nite volume mesh are used in order
to save computing resources. This simpli�cation does not allow to simulate the mutual
in�uence of the single blades and a wake simulation is also not possible. Since the blades
of the VWT propulsion system move individually and the nozzle plate represents another
rigid object inside the computational domain, an approach with a rotating coordinate
system is not suitable [JPSU07].

7.1 Fixed Underlying Mesh

Moving boundary methods can be categorized into two classes according to [Gue06]. The
�rst class comprises the methods using a �xed underlying grid, e.g., the Cartesian grid
[MAB03], the immersed-boundary [Pes02, LL03] and the �cticious boundary [GPHDJ01]
method. The disadvantage of these methods is that either the interface of the moving
boundary is smeared in some way, as the exact boundary can only be approximated to
a certain extent; or the mesh around the moving boundary is redesigned, which comes
along with high computational e�ort. To give an example, the Cartesian-grid method
according to [MAB03] detects where the moving boundary cuts the cells of the �xed grid
and creates irregularly shaped cells, which are then also used for the discretization of the
equations system. The detection of the cells to be recreated, as well as the remeshing in
the boundary zones, can be considered as quite complex, and still the surrounding mesh
of the moving boundary can hardly adjust as well to the moving boundary as the initial
one created by a conventional mesh generator.
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7.2 Moving Mesh

To achieve more accurate moving boundary simulations, boundary �tted conforming
meshes that move exactly with the boundary must be used [Gue06]. Considering these
moving mesh methods as a second class of moving boundary methods, the very com-
mon ones, e.g., the clicking mesh, the sliding mesh, the Chimera mesh and the general
Arbitrary Lagrangian-Eulerian (ALE) approach, will be explained below.

7.2.1 Sliding and Clicking Mesh Method

The sliding and the clicking mesh methods are suitable when it comes to regular ro-
tational motions of the boundaries. The principal idea of both methods is to divide
the computational mesh into one part, which is �xed, and another moving part, which is
attached to the moving boundary. In between, a proper interface has to be de�ned. Con-
sidering a rotating geometry, a proper interface consists of two concentric circles having
the same number of nodes, with all nodes being situated in the same angular distance to
each other (see Figure 7.1). The concept of the clicking mesh is to chose the time step
size, such that according to the rotational speed the moving inner circle just rotates that
its nodes reach exactly their successive nodes on the �xed outer circle within one time
step (see Figure 7.1).

t = t0 t = t2

Figure 7.1: Clicking mesh concept showing two di�erent positions of the inner rotating
mesh.

This approach is often found in the context of �nite volume schemes. Here, only the
values inside the rotating grid need to be updated when continuing the simulation from
one time step to the next one. The easy concept of a sliding mesh interface is followed up
in [BWS98], where the simulation of the �uid �ow is performed in a stirrer consisting of
a stator (�xed mesh) and a rotor (rotating mesh). The inherent disadvantage is that the
temporal re�nement is directly linked with the spatial one. So regarding a �xed time step
size, the mesh resolution on the interface needs to be adapted to the rotational speed, or
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vice versa. Consequently, simulations with varying rotation speeds cannot be performed
with the same mesh [Sie02, Grö00] nor can the ramp-up conditions be represented as
an initially very low rotation speed. This would correspond to a time step size almost
equal to in�nity. In [BWS98] it is reported that for low Reynolds number simulations
of the stirrer, very large time steps would have to be used, or the grid resolution in
the azimuthal direction would become very high. The sliding mesh concept avoids this
interdependence between the spatial and the time re�nement. Here, the nodes of the
moving and the �xed circle do not necessarily have to touch each other but can be
situated independently (see Figure 7.2); even the number of nodes does not necessarily
have to match [SB08], depending on the sliding mesh approach.

Figure 7.2: Section of a sliding mesh [SB08].

Of course, an interpolation algorithm has to be used to establish the communication at
the interface between the �xed and the moving mesh. In [SB08], a sliding mesh approach
implemented in a �nite volume CFD code is applied to simulate the aerodynamics of a
helicopter rotor-fuselage. It is warned in [SB08] that an interpolation algorithm at the
interface can introduce numerical artefacts and can have e�ects on the overall solution
quality.

7.2.2 Chimera Mesh Method

The most popular moving boundary technique in the �eld of �nite volume and �nite
di�erence schemes is the Chimera mesh method. Originally, it derives from the idea
to construct the most suitable meshes around single objects situated within one com-
putational domain, leading to various component grids, which together �ll the whole
computational domain but overlap at many regions (see the red, green and blue meshes
in Figure 7.3).
At the overlapping regions, interpolation algorithms are used to connect the infor-
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Figure 7.3: Chimera mesh [Gue06].

mation from one component mesh to another. Once a proper interpolation algorithm is
found, it is also possible to move the component grids relatively to each other. Using that
technique, not only simple rotations can be simulated but also rather complex motions
like eccentric rotations or rotations super-positioned with translation.
Basically, the traditional overset composite grids can be established in three steps

according to [Gue06]: geometry and component grids generation, an algorithm for deter-
mining how to cut holes in the component grids that overlap, and an algorithm for the
interpolation of the �eld data between the meshes.
According to [Gue06], the main di�culty considering the Chimera approach is the data

transfer between overlapping grids and how �uxes are treated at overlapping boundaries.
Whereas simple interpolation methods just transfer the �ow variables from a donor cell
to the receptor cell; more accurately, a trilinear interpolation scheme can be used, in
which several vertex points of the donor cell form interpolation stencil points for the
receptor point. Interpolation algorithms that maintain conservation seem to be more
sophisticated [Gue06]. Similarly to the sliding mesh concept, the Chimera approach
is not free from possible numerical artefacts due to the interpolation at the interface
between the component grids, which can �nally in�uence the overall solution.

7.2.3 Arbitrary-Lagrangian Method

Aside from the clicking mesh approach, the methods described so far show drawbacks
concerning the calculation of the �uid �ow variables either at the moving boundaries due
to an insu�ciently exact representation of the boundary or at the interface between a
moving and a �xed mesh where the �uxes have to be calculated accurately leading to
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di�culties regarding mass or momentum conservation. These drawbacks are present due
to unavoidable interpolation of non-matching nodes or vertices. In the �nite element and
�nite di�erence context, the Arbitrary Lagrangian-Eulerian (ALE) formulation gives the
opportunity to move the nodes of the computational mesh arbitrarily and therefore an
interpolation can be avoided. The mesh can move in a Lagrangian way at the moving
boundaries, whereas its motion can be arbitrary or even be halted elsewhere in the com-
putational domain. In that way, the moving boundary can be represented most accurately
and the presence of a sharp interface between a moving and a �xed grid is avoided. The
ALE is realized by writing the equations of mass and momentum conservation 2.1 and
2.2 neither over the material domain RX nor the spatial one Rx, but over the reference
domain Rχ that is given by the computational mesh. In addition, the computational
mesh can move arbitrarily and its deformations are commonly de�ned by solving an
elasticity equation considering the computational mesh as an elastic solid exposed to the
deformations at the boundary given by the moving boundaries (see Section 7.2.5). If
the computational mesh is moving, the material time derivatives that are used in the
conservation laws must be related to the time derivatives in the referential coordinate
system that belongs to the mesh. This relation is called the fundamental ALE equation
in [DH03] and can be written as follows:

∂f

∂t
|X=

∂f

∂t
|χ +

∂f

∂x
· c =

∂f

∂t
|χ +c · ∇f, (7.1)

where c is the relative velocity between the material and the mesh. To interpret Equa-
tion (7.1), one can say that the variation of a physical quantity f for a given particle
X is calculated by the sum of the local variation with respect to the reference χ and a
convective contribution that includes the relative motion between the material and the
reference system multiplied by the spatial gradients of f . With respect to the discretiza-
tion, a method must be developed to relate the �uid values calculated at one node at
the beginning of a time step to the values to be calculated at the same node at the end
of the time step, including the displacement of the node within the time step. This can
be done with a �nite di�erence scheme, but is more accurately done by using the space-
time concept explained in Section 6.4. This discretization algorithm in space and time
accounts for the moving mesh within the discretization of one time step at two di�erent
time levels, saying that there is not only one spatial mesh where the partial di�erential
equations are discretized on but two; one capturing the locations of the mesh nodes at
the beginning of the time step, and another at the end of the time step. In between these
two meshes representing two subsequent time levels, the space time is spanned like visu-
alized in Figure 6.1 or 6.2 for a one-dimensional mesh in space. Within this space time,
the linear time interpolation function is used according to Equation (6.37) to interpolate
the �ow �eld values between the two di�erent time steps. In the space-time approach,
the conservation equations of mass and momentum 2.1 and 2.2 are, similarly to the ALE
approach, written neither over the material RX nor the spatial Rx but over the reference
domain Rχ, which is given by the computational mesh. When transforming the �ow
variables from the material domain to the reference element domain, a Jacobian matrix
is built where the relation shown in Equation (7.1) is included due to the character of
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the space-time approach. Therefore, this part of the space-time method can be regarded
as analogous to the ALE approach [MH97]. To apply the space-time method successfully
in the context of moving boundaries, appropriate mesh moving schemes for the moving
�nite elements have to be chosen.

7.2.4 Shear-Slip Mesh Update Method

One mesh moving scheme that has already been applied successfully with the space-time
method is the Shear-Slip Mesh Update Method (SSMUM). The SSMUM can be regarded
as the �nite element counterpart to the sliding mesh method in the �eld of �nite volumes.
Similarly, this method is ideal for the modelling of geometries that undergo large but
regular deformations, such as the rotational motion of all the propeller blades of one
Voith-Schneider propeller. The concept of the SSMUM is to create a special layer of
elements, which can undergo 'shear' deformation, so that the relative motion between
the moving and the static elements in the mesh can be compensated. In order to restrict
the element deformation to a minimum, a frequent remeshing via the regeneration of the
element connectivity is realized. The basic steps of the SSMUM concept are visualized
in Figure 7.4. The upper nodes of the SSMUM layer are moving in both cases, the two
dimensional (top row) and the three dimensional (bottom row) case, whereas the nodes
of the lower layer are static.
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Deformation Reconnect

Figure 1. Shear-slip layer concept in 2D (top) and 3D (bottom): the sequence of deformation
followed by reconnecting.

Figure 2. Shear-slip layer concept: special-purpose meshes. Regions of deforming elements
are shown in grey, and regions of rigid elements are shown in white.

an axisymmetric disk with its main axis coinciding with the axis of rotation. The disk may
or may not have openings at either of its points of intersection with the axis, depending on
whether the rotating object is free or attached, with a spindle or axle, to other objects outside
the layer. Some options for the disk layer mesh are illustrated in Figure 3. The regular,
semi-regular and unstructured designs shown can all be used with the SSMUM approach.

Of the examples shown in Figure 3, the first two have been actually constructed for the
purpose of the helicopter rotor simulation. They feature an opening at the bottom where the
rotor hub must penetrate the shear-slip layer, and the thickness of the layer is reduced in the
vicinity of that opening, so that small clearance between the fixed (exterior) and rotating
(interior) objects can be accommodated. The third example in Figure 3 is for illustration
purposes only. Both the regular and semi-regular designs have a one-to-one correspondence
between surface elements on the interior and exterior surfaces. These pairs of triangular
elements are then connected to create a prism “super-element”, which is then subdivided

Figure 7.4: SSMUM concept [BT01].

From the left to the right the mesh deforms where the second column represents the
moment of remeshing as the node positions of the new (deformed) and the original (un-
deformed) mesh overlap so that projection is not necessary. The reconnectivity changes
such that the old upper node no longer belongs to the red triangle or tetrahedron re-
spectively, but its ancestor node on the moving layer. Since only a small part of the
overall connectivity is being regenerated, the computational cost is greatly reduced com-
pared to approaches where a frequent remeshing of the whole mesh is necessary. In the
context of the space-time �nite element method applied to a 3D application, one has
to imagine a four dimensional space-time element which consists of one tetrahedron at
the bottom of a time slab and another one at the top of a time slab; then the space in
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the fourth dimension between the two tetrahedrons is �lled by interpolating the node
velocity and pressure values between the lower and the upper time slab by a time in-
terpolation function, for example that given in Equation (6.37). The SSMUM method
together with the space-time �nite element concept has been successfully employed in
[BT99, BA03, BT01] where the applications range from the �ow simulation around a
rotating cylinder, squares, a stirrer over a centrifugal blood pump to a rotating propeller
and a helicopter.

7.2.5 Elastic Mesh Update Method

When it comes to more general and not only rotating moving boundary applications, the
Elastic Mesh Update Method, together with the ALE and the space-time �nite element
approach, o�ers excellent opportunities, as the mesh can absorb even irregular deforma-
tions. The basic idea is to regard the mesh as a �ctitious elastic material occupying at
an instant t ∈ (0, T ) a bounded region Ωt ⊂ Rnsd , with boundary Γt. In that context,
the displacements v(x, t) are governed by the linear elasticity equilibrium equation:

∇ · σ#(v) = 0 on Ωt ∀t ∈ (0, T ), (7.2)

with the constitutive equation de�ned as:

σ#(v) = λ(tr ε#(v))I + 2µε#(v), (7.3)

ε#(v) =
1

2
(∇v + (∇v)T ), (7.4)

with λ and µ being the Lamé constants. Let the displacements also be subject to the
boundary conditions:

v · ed = g#,d on (Γt)g#,d
, d = 1, ..., nsd, (7.5)

n · σ# · ed = h#,d on (Γt)h#,d
, d = 1, ..., nsd, (7.6)

where (Γt)g#,d
and (Γt)h#,d

are complementary subsets of Γt. A displacement �eld
obtained with these equations leads to the new mesh coordinates x(tn+t) calculated
through:

x(tn+t) = x(tn) + v on Ωt. (7.7)

The elasticity equilibrium equation can be solved by the �nite element method. The
variational formulation of Equation (7.2) reads as follows: �nd vh ∈

(
Shv
)
t
such that

∀δvh ∈
(
Vhv
)
t
: ∫

Ωt

ε#

(
δvh

)
: σ#

(
vh
)
dΩ =

∫
(Γt)h#

δvh · hh#dΓ. (7.8)

In most applications of the elastic mesh approach, the motion of the nodes on the whole
boundary Γt is explicitly known, so all the boundary nodes get a Dirichlet-type boundary
condition. As a consequence, (Γt)h#,d

is empty and so all the boundary integral above is
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zero. Equation (7.3) itself assumes an isotropic and homogeneous linear material. This
type of material behaviour, however, "introduces a high element distortion during the
mesh updating process. Typically, elements close to the changing surfaces are constrained
to modify their shape much more than those elements located far from these surfaces.
This behaviour frequently leads to extremely distorted meshes near the boundaries and,
in the limit, to not conforming meshes and intersection elements." [CBO00]. Therefore,
it is proposed in [CBO00] to vary the Young's modulus for each element according to
geometric criterion, such that elements closer to the moving boundary get sti�er than
those further away. Beside that approach, it is suggested to sti�en smaller elements with
regard to a previous analysis. Three kinds of analysis are proposed. One preparatory
analysis determines the local strain of the elements assuming a homogeneous Young's
modulus. According to these calculated strains, the Young's modulus of the elements are
changed such that elements with higher strains obtain a higher Young's modulus. Thus,
a smooth mesh deformation can be achieved in the �nal calculation, where the �nal local
strain of the elements is calculated assuming an inhomogeneous Young's modulus. A
second preparatory analysis relates the element strain energy density, and a third one
the distortion energy density, to Young's modulus. The ball-vertex method used by
[BDS05] applies a spring sti�ness between nodes situated on one edge, which is inversely
proportional to the edge length, so that short edges are sti�er than longer ones, which
they report to be bene�cial in the control of the local element deformation.
Tezduyar, Behr and co-workers modi�ed the variational formulation of Equation (7.2)

by dropping the Jacobian of the transformation of the integrals in Equation (7.8) from
the physical domain x to the element domain ξ. The Jacobian of an element e is
Je = det (∂x/∂ξ)e, with x and ξ representing the physical and local element coordi-
nates respectively. Normally, as a standard �nite element method step, the integrals in
Equation (7.8) are not calculated as a whole in the physical domain x but as a sum of
integrals calculated within the single elements using the element domain ξ. Herein, the
Jacobian has to be used in the following way:∫

Ωt

[...] dΩ =
∑
e

∫
ξ

[...]e Jedξ. (7.9)

Excluding the element Jacobian has the e�ect that small elements get sti�er than the
bigger ones. That approach was �rst used in [TBMJ92]. A further extension to this
concept is the introduction of a scaling parameter that gives the ability to switch from
the concept of excluding the Jacobian or not, or choosing any intermediate forms (see
[ST02]).
In order to make smaller elements sti�er than larger ones, Hughes and Masud [MH97]

multiply the right side of Equation (7.9) with the following parameter:

τ e =
1− Amin

Amax

Ae
Amax

, (7.10)

where Ae, Amax and Amin represent the areas of the current, the largest, and the
smallest elements in the mesh. This approach is extended by Masud [MBK07] in consid-
ering compressibility e�ects. In a one-dimensional application this can be best described
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as forcing the nodal displacements of one element to be less than the element length.
This limit to the compressibility enters Equation (7.8) with a multiplier calculated with
respect to the element area like Equation (7.10).
In the implementation of XNS, the concept of a scaling parameter is used to transition

between including or excluding the element Jacobian in combination with a parameter,
which scales the in�uence of element sti�ening with respect to the element area similar
to Equation (7.10). A very common benchmark among authors in the �eld of elastic
mesh deformation algorithms is the pitching of an airfoil and the responsive deformation
of the surrounding unstructured mesh. Whereas the numerical experiments of Chian-
dussi show zones of strongly squeezed elements and tangling at an airfoil pitch of about
thirty degrees, the sti�ening concept chosen by Masud shows almost perfectly shaped
elements at a thirty degree pitch. The method chosen by Tezduyar seems to result in
similar element quality compared to the concept of Masud, though it cannot be com-
pared perfectly, as instead of an airfoil turned to thirty degrees a rigid beam is pitched
up to forty-�ve degrees. The ball-vertex method only uses a very coarse mesh around the
airfoil and the airfoil is just pitched up to about �fteen degrees, which makes a compar-
ison to the other methods di�cult. The XNS elastic mesh deforming approach has been
successfully applied to various free-surface �ow simulations [TBML92, BA02], where the
moving waterline prescribes the Dirichlet boundary condition for the elastic mesh. In
[BA02] the �ow through a trapezoidal channel and in a trapezoidal tank is simulated
with the EMUM approach; in [GBT99] the 2D �ow past a spillway of a dam. As a
�nal remark, it is important to mention that all the extensions regarding the sti�ening
of smaller elements introduce a nonlinear character to Equation (7.2), which results in a
irreversible mesh deformation that is especially harmful when dealing with the simulation
of various consecutive propeller rotations where a blade has to be pitched back and forth
periodically. Regarding the application of the EMUM concept in 3D together with the
space-time �nite element method, one has also to think of the use of four dimensional
space-time elements described at the end of Section 7.2.4.
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7.2.6 Conclusion

Given an adequate mesh moving scheme, a �nite element approach using the space-
time method should be more accurate than �xed-mesh or semi-discrete approaches when
simulating a �uid �ow involving moving boundaries. Firstly, the moving boundary can
be followed more precisely compared to �xed-mesh approaches. Secondly, the use of
deformable �nite elements together with a space-time approach allows to create a broader
region separating the fully moving elements from the static elements; so the motion of
the moving boundary can be smoothed out within the mesh. A Chimera or a sliding-
mesh approach does not have such a smoothing region, as the moving elements directly
touch the static elements. This increases the risk of numerical artefacts due to the
interpolation at the interface (cf. the discussions in Sections 7.2.1 and 7.2.2). Last, the
projection of the old solution to the mesh of a new time step becomes unnecessary when
using a space-time method together with a deformable �nite element approach. With
regard to the time discretization, the space-time �nite element concept can be regarded
as more accurate than conventional time discretization schemes. Overall, the space-
time �nite element implementation of the variational formulation presented in Equation
(6.41) is therefore considered as promising for the simulation of the �uid �ow around
the VSP propulsion system. The �uid �ow solver, called XNS, has also shown to be
highly parallelizable, which is an indispensable feature when simulating large �uid �ow
real world 3D applications. XNS has been used not only for the simulation of bio�uid
[TAB+96], for the �ow in ventricular assist devices [BBNP08] and therefore for the design
of medical devices [BNP07], but also for �uid �ow simulation past a spillway [GBT99].
The SSMUM and the EMUM approaches have both been successfully applied in these
applications in combination with the space-time �nite element approach (cf. Sections
7.2.4 and 7.2.5). However, the SSMUM has not yet been applied simultaneously with the
EMUM. How the knowledge of these methods can be transferred to the simulation of the
VWT propulsion system is shown in the forthcoming chapters. At �rst, the rotational
motion of each propeller shall be captured by the SSMUM approach. The motion of
the single blades with respect to the whole propeller rotation, using the EMUM and a
customized approach, is treated thereafter.
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8 Shear-Slip Mesh Update Method

Applied to the Voith-Schneider

Propeller Propulsion System

As mentioned in Section 7.2.4, the SSMUM method is well suited to capture rotating
moving boundaries such as the two counterrotating VSP propellers of the VWT. Regard-
ing the motion of the VWT system, the SSMUM layer should be shaped like a beaker
around each VSP to cover all rotating parts, e.g., all the �ve blades of one VSP. In Figure
8.1, the SSMUM layer around the far VSP is shown while the other one is not displayed.
Each of the two SSMUM layers has a thickness of one characteristic element length, as
shown in the second row of Figure 7.4.

Figure 8.1: VWT propulsion system and one of the SSMUM layers.

In order to create such SSMUM layers, structured domains covering the rotating �ve
blades of each VSP are constructed. In Figure 8.2, the beaker-shaped domain and the
rotating plate with �ve blades are partly visualized. As the static counterparts, structured
domains with the same topology but sized up by the width of the SSMUM layer are built
attached to the static volume grid of the computational domain (see Figure 8.3). Given
these two pairs of surface beaker domains, the SSMUM layer elements can be created
between the space of the inner (moving) and the outer bigger (static) beakers. The
SSMUM elements are designed prism by prism, where one prism is designed between
two opposite triangles, one situated on the inner rotating (green) and another on the
outer static (blue) beaker (see Figure 8.4). The space of the prism in between the
green triangle and the red triangle is indicated by the red lines. After the prisms are
constructed, every prism is divided into three tetrahedrons. It is important to mention
that these tetrahedrons cannot be created arbitrarily inside one prism; the direction of
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the moving beaker and the corresponding motion of each single tetrahedron has to be
considered to avoid bad-quality SSMUM elements or even tangling in the curved zone at
the bottom of the SSMUM layer during the propeller rotation.

Figure 8.2: Beaker-shaped, structured domain around one VSP.

Considering the relative motion of the SSMUM beakers, the tetrahedrons should be
constructed in such a way that the nodes within one tetrahedron are not separated by
more than two edge lengths from each other. This must hold at any time of the rotation
and for any tetrahedron inside any prism. A proper creation of tetrahedrons is shown in
the Figures 8.5.
The corresponding correct relative motion of the inner moving beaker (green) to the

outer static beaker (blue) is indicated by the red arrow. If the inner beaker moves to the
right, none of the nodes of the moving triangle would be separated more than two edge
lengths from any node of the static triangle (as can be seen in Figure 8.6).
However, if the inner moving beaker (green) moved to the left, the node at the right

bottom vertex of the blue tetrahedron would be separated more than two edge lengths
from the node attached to the moving beaker (green), resulting in a bad element quality
of the blue tetrahedron.
In our mesh generation approach, the SSMUM layers are built after the two moving

volume meshes of the two VSPs and the static volume mesh are generated. In that way,
the programme building the SSMUM layers can then also connect the three volume grids
shown in Figure 8.7, the two rotating propeller grids and the static grid, into one entire
mesh ready for simulation.
During the whole process of the mesh generation for the VSP propulsion system, many
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Figure 8.3: Beaker-shaped structured domains attached to the static mesh.

Figure 8.4: Connected opposite triangles on the inner (green) and the outer (blue) layer
building one prism.

intermediate steps have to be taken and several data formats are used. These steps are
visualized in Figure 8.8, with the data format also given after each intermediate step.
Firstly, the CAD data �le of the VSP propulsion system is imported into Gridgen

via the IGES format. IGES, abbrevation for Initial Graphics Exchange Speci�cation, is a
manufacturer-independent format for a standardized exchange among CAD programmes.
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blue tetrahedron green tetrahedron red tetrahedron

Figure 8.5: Division of a prism into three tetrahedrons.

blue tetrahedron green tetrahedron red tetrahedron

Figure 8.6: Deforming tetrahedrons during an inner beaker rotation.

It is saved in a text-based (ASCII) or in a binary format. After the import, the surface
meshes are created on the geometric surfaces of the blades and the protection plate, as
well as on the boundaries of the computational domain. These triangular surface meshes
are exported via a text-based UCD format (.grd). This format is converted by the Fortran
programme grd2mode into the Surface95 Mesh Generator format (.mod.e), which can be
read by MeshView and makelayer. The Fortran programme makelayer uses this format
to create the beaker-shaped surface meshes around the geometric surface meshes of each
VSP including the �ve blades and the rotating plate, where the blades are attached. As
a static counterpart, makelayer also constructs two beakers attached to the stationary
part of the mesh. The result is the three separated closed-surface meshes that can be
seen in Figure 8.7. The format of these three meshes is then changed by the converter
me2stl to the STL-format. By that, these meshes can be imported into Gridgen, where
the volume meshes inside the three closed surface meshes are generated; thereafter, the
reference node group (RNG) numbers of each surface entity is prescribed in Gridgen. The
three volume meshes are then exported via the �eldview unstructured (FV-UNS) format.
In order to join these three meshes easily, their format is changed into the MIXD format
by the converter fv2mixd. Finally, the Fortran programme comblayer generates the two
SSMUM layers between the three meshes as explained earlier, and exports a single mesh
in the MIXD format, which can be read by XNS. Further details about each format and
converter programme can be read in [Wal05].
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Figure 8.7: Volume meshes of the two VSP's (top) and the static volume mesh (bottom).

Figure 8.8: Toolchain of the mesh generation.
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9 Elastic Mesh Update Method Applied

to the Voith-Schneider Propeller

Propulsion System

So far, the rotation of each single propeller can be accommodated by the SSMUM ap-
proach. One could also assume that the rotation of a single blade can be handled in the
same way. However, due to the design and location of the supports of the nozzle plate (cf.
Figures 5.2 and 5.3), there is not enough space to construct concentric beakers around a
single blade; moreover, in a later simulation of the �uid �ow around the whole propulsion
system, the supports have to be integrated. Therefore, the SSMUM concept cannot be
applied in this case. As described in Section 7.2.5, the Elastic Mesh Update Method can
be used to prescribe an elastic motion of the mesh nodes given certain moving boundaries.
For the application to the VSP propulsion system, the whole interior mesh of the inner
rotating SSMUM beaker will be considered as a �ctitious elastic material. The Dirichlet
boundary conditions g#,d are given by the location of the mesh nodes on the single blades
inside each SSMUM beaker. The node displacements v are therefore a superposition of
the rotation of one propeller as a whole and the rotation of one single blade around its
axis according to the blade angle curve given in Figure 5.1. The two pictures of a very
coarse mesh in Figure 9.1 show the combined application of the SSMUM and the EMUM
concept for the two VSP's of the VWT propulsion system. For the left VSP, only the
top domain (yellow) of the deforming mesh is shown; for the right VSP, the top domain
(red) of the deforming mesh and the SSMUM beaker (yellow) is visualized. The bottom
of the ship is placed on the said top domains and a slip condition is used for the nodes
of these domains, except for the nodes attached to the moving blades, to each of which
a Dirichlet boundary condition is assigned.
The left picture of Figure 9.1 shows the two counterrotating VSPs at a �rst position,

the right picture at a second subsequent position. The right VSP rotates anticlockwise
from the �rst to the second position, the left VSP clockwise. A red bar indicates an
extension of a virtual line connecting the centre of rotation of the right VSP with the
axis of the blade, which is located to the lower right most corner of the left picture of
Figure 9.1. The distance between the black and the red bar in the right picture indicates
the segment of the circle covered by that blade, while the right VSP is moving from the
�rst to the second position. During that motion, the de�ection of that blade changes
from about �fty degrees to zero degree. The other blades also change their de�ection
during that propeller motion.
In the plane of the top domains, the mesh deformation looks well distributed and the

�ve blades motion of each VSP is fully compensated. So far, the protection plate is not
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Figure 9.1: Elastic mesh deformation of two surface meshes at two di�erent positions of
two counterrotating VSPs.

integrated into the mesh, as direct application of the EMUM approach generates mesh
tangling after a one degree turning of the blade in the small horizontal gap between
the bottom tips of the blades and the inner SSMUM beaker. As the SSMUM beaker is
�xed relative to the axis of the blade, the horizontal length of the blade measures about
half a meter, and the gap between the bottom of the blade and the protection plate
measures only 2.6 cm (cf. Figure 5.3), especially the elements close to the tips at the
bottom of the blade need to perform strong deformations, which can lead to tangling of
these elements. Regarding the tangling, the region between the bottom of the blade and
the inner SSMUM beaker is called the critical zone in the following. In Figure 9.2, the
tangling of an element in that critical zone is visualized. From time step one to time
step three the blade turns in such a way that the trailing edge of the blade moves to the
bottom part of the picture. By that, the top node of the right red tetrahedron pushes the
neighbouring node of the left red element to the left. By that motion, this node of the left
element approaches the plane spanned by the three other nodes of the left tetrahedron.
Due to the movement, this node touches this plane at time step three and this results in
a �at tetrahedron, which is explained as tangling in the following. A tangling element
inside the computational mesh deteriorates the mesh integrity and aborts the simulation.
As integration over a zero or even a negative volume of an element is not possible, or more
precisely, the Jacobian of a tangling element becomes negative, the contribution to the
whole integration process then becomes negative. Tangling predominantly occurs in zones
of high mesh deformation and when the initial elements are not optimally shaped. This is
especially the case in the critical zone between the blade bottom and the SSMUM beaker,
as mentioned above. The limited horizontal space in that critical zone not only induces
a problematic mesh deformation, but furthermore does not allow to create optimally
shaped tetrahedrons in that critical zone. Regular tetrahedrons in that zone would be so
small that the meshes of all the critical zones below the ten blades of the VWT would
contribute with a number of approximately twenty million elements to the number of
elements of the whole mesh. Due to limited computing and memory resources, such a
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mesh size cannot be used for a �uid �ow simulation.
In the hope to avoid tangling, all possible parameter combinations in�uencing the

element sti�ening are tested, both by varying the impact of the element Jacobians as well
as the element areas as described in Chapter 7.2.5. Unfortunately, these modi�cations
to the mesh deformation calculation do not show any improvement. As the implemented
mesh moving scheme is very general, it cannot take advantage of the fact that the nodes on
the bottom of the blade only move on a horizontal plane. This strictly horizontal motion
is a simpli�cation to an arbitrarily moving boundary. One could of course restrict the
node motion within the mesh to be only horizontal, but this does not prevent tangling
in general. Instead, one can use the information about the moving boundary to change
the mesh design such that tangling cannot occur. So, it was decided to construct the
upcoming mesh approaches such that the tetrahedrons in that critical zone below the
blades have all their four nodes situated only on two di�erent horizontal levels. In this
way, a node cannot pierce through the plane that is spanned by the other three nodes of
a tetrahedron assuming the motion of the nodes of that tedrahedron is prescribed to be
only horizontal.

time step=1 time step=2 time step=3

Figure 9.2: Tangling of an element in the critical zone at the blade bottom.

In [JMBF01], the elastic mesh motion is also analyzed and special restrictions for the
nodes on moving parts are set to prevent tangling. For example, mesh nodes on the
surface of a valve stem of an engine piston lead most probably to tangling when they
were prescribed to be attached to the stem. However, allowing them to slip on the stem
surface prevented tangling.
Our �rst approach uses horizontal elliptic planes parallel to the moving direction where

the nodes of one tetrahedron are situated only on two di�erent elliptic planes, and their
motion is prescribed explicitly in the form of Dirichlet boundary conditions. For geo-
metric reasons, circular planes cannot be chosen, as the diameter of the inner SSMUM
beaker is restricted in a way that it �ts inside the space given by the supports of the
nozzle plate, as explained before. That is why a horizontal circular plane with its centre
at the point of rotation of a blade, capturing just the trailing edge of the blade, would
cut into the biggest allowed SSMUM beaker. The motion of the nodes on each single
elliptic plane are prescribed in such a way that the angular velocity of the nodes goes
down from top to bottom. By that, tangling is prevented between the blades and the
inner SSMUM beaker, and the blade can be turned up to �fty degrees. Then, however,
tangling occurs at the borders of the elliptic planes, as the node motion outside the
planes is not prescribed and the elastic mesh has to compensate again strong relative
deformations, this time in the region outside the ellipsoids (see Figure 9.3).
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Figure 9.3: Tangling at the borders of the ellipsoids.

One option to solve this is prescribing the angular velocity of the nodes within one
plane in such a way that the innermost nodes exactly follow the turning of the blade, and
the nodes further away from the blade have a reduced angular velocity. As the planes
are elliptic, the angular velocity of a node within a plane would have to be related to its
distance from the axis of the blade and to its angular position on the elliptic plane. This
approach is complicated to program, and the basic idea of the EMUM approach is to gain
the necessary displacements of the nodes by solving the elasticity equilibrium equation
and not by the formulation of complex mesh-moving functions for each single node of the
mesh. Another option is trying to in�uence the distribution of shear in the critical region
with additional domains, which can a�ect the resulting deformation. These additional
domains can build a shearing body within the elastic mesh, which, for example, leads
to a smoothening of a high shearing rate close to the blade and to a lower shearing rate
close to the SSMUM beaker. Such a shearing body (red) is shown in Figure 9.4. This
body is built by the small bottom domain of the blade, a wider domain closely situated
at the SSMUM beaker, and third domain connecting the small domain with the wider
one. The motion of all nodes within this body are prescribed to be horizontal during an
elastic mesh motion. The blue elements in Figure 9.4 are elements far away from the
critical zone of mesh deformation at the blade bottom. It is evident that these elements
do not undergo strong deformations during the elastic mesh motion. These blue elements
all preserve the shape of almost regular tetrahedrons.
Through this approach, a turning angle of a single blade of 72 degrees can be achieved,

which is a de�ection higher than the required maximal blade angle of the important blade
angle curves to model for the �uid simulation. On the other hand, this concept shows
tangling when turning the blade several times back and forth.
For that reason, big horizontal discs are constructed covering the whole space between

all the �ve blades of one propeller and the inner SSMUM beaker as shown in Figure
9.5. The motion of their nodes are also restricted to be only horizontal. A mesh moving
strategy based on these parallel horizontal discs, called EMUM discs in the following, is
also free from tangling up to 72 degrees, but in addition, it is possible to turn the blade
various times back and forth, which is a necessity when simulating several full rotations
of the two VSP's. In Figure 9.5, the mesh deformation of the discs can be seen from the
top and on a vertical cut.
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20 degree turn 40 degree turn

Figure 9.4: Twisting ellipsoid as a shearing body (red) with increasing diameter.

Lateral View Top View

Figure 9.5: EMUM and horizontal discs.

As described at the end of Chapter 7.2.5, it can be observed that the mesh deformation
of the EMUM approach is not fully reversible. In Figure 9.6, a di�erent position of the
mesh nodes, especially around the trailing edge, can be observed when the initial mesh
(left picture) is compared to the mesh after having the blade turned one time back and
forth (right picture). An almost reversible mesh deformation algorithm is important
if various rotations of a propeller have to be simulated. An irreversible elastic mesh
deformation has the inherent danger to tangle at an unpredictable moment. This could
mean that the simulation cannot be continued and must be restarted interpolating the
velocity and pressure values of the tangled mesh to a new mesh. As this diminishes the
advantages given through the space-time �nite element approach, the inherent danger of
tangling does not favour the elastic mesh approach. The easy application of the EMUM
approach on the contrary does favour it.
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Figure 9.6: Irreversible mesh motion of the EMUM concept.
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10 Concentric Shell Motion Method

Due to the uncertainties of the EMUM approach regarding the danger of tangling when
turning the blade to the maximal blade angle, considering a mesh deformation with �ve
blades inside the rotating mesh of one propeller as well as the issue of non-reversibility, a
second approach is followed by developing the Concentric Shell Motion Method (CSMM).
The aim of this concept is to prescribe the motion of every single node explicitly. To
achieve this, each single blade is embedded into various increasing concentric shells,
which rotate relatively to each other. These shells cover the blade completely from the
bottom region between the blades and the inner SSMUM beaker up to the ship hull.
As all the shells have the same two dimensional grid topology consisting of triangles,
the opposite nodes of two neighbouring shells are used to construct tetrahedrons in
the volume between these shells, similarly to the construction of the SSMUM elements
between the inner and the outer SSMUM beaker. The grid motion is realized in such
a way that the mesh between the blade and the innermost shell is moving with the
same angular velocity as the blade, and the outer shells move with a decreasing angular
velocity; the outermost shell remains �xed. Considering the shape of the shells, the most
intuitive form is the elliptical one. A cylindrical shell shape is not possible, as the space
around a single blade is restricted by the diameter of the inner SSMUM beaker due to
the supports of the nozzle plate. Finding the appropriate shell shape is equal to reducing
the squeezing of the elements between the shells to the minimum, so that the blade can
be turned su�ciently without the tangling of the shell elements. By means of a custom
visualization tool, several di�erent elliptical shapes are tested; with the best one an angle
of 48 degree can be achieved. The Figures 10.1 and 10.2 show triangular elements that
represent the horizontal faces of the tetrahedrons between two neighbouring shells. It has
to be noticed that the initial constant direction of triangulation in the two-dimensional
mesh favours the anticlockwise turning (see Figure 10.1), while the clockwise turning
provokes very �at elements and almost tangling (cf. Figure 10.2).
In the next step, the shell shape is adapted so that the zone of mesh deformation has

a similar outline to the area traced by the blade whilst turning.
This butter�y shape, see Figure 10.3, only enables a 42 degree turning and is therefore

discarded, but it helps develop ideas for the design of the �nal balloon shape shown in
Figure 10.4. In the �rst place, a decreasing number of nodes from the inner shell to
the next outer one results in a better element quality in the round zones of the mesh.
Secondly, the closer distance of the leading edge of the blade to the centre of blade
rotation compared to the trailing edge allows the frontal rounded parts of the shells to
have a bigger central angle, which is the angle enclosed by two neighbouring nodes of
one shell with the centre of the blade rotation. By that, the deformation in that zone
is almost as optimal as it would be with circular shells. The shells in the zone of the
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Figure 10.1: Asymmetric triangulation and anti-clockwise turning.aktueller Winkel: -48◦exponentielle Gröÿenverteilung: 1layers = 4aktuelle Form: Ellipsen_
ir
um = 50bgHa_x = 0,8bgHa_y = 0,5smHa_x = 0,46smHa_y = 0,2875shift_x = 0

Figure 10.2: Asymmetric triangulation and clockwise turning.

trailing edge are designed similarly to the butter�y shape in that area because of the
greater distance to the centre of rotation, e.g., bigger radii and smaller central angles are
used. The left and the right circle sections are joined by a section of horizontal lines. In
addition, the mesh topology of the �nal ballon shape is symmetric to the x-axis to ensure
the same mesh quality when turning either clockwise or anticlockwise.
This kind of shell shape can be turned up to 63 degrees, shown in Figure 10.5, in both
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Figure 10.4: Final balloon shape.

directions and is regarded as the �nal shape for the Concentric Shell Method. Allowing
a �exible mesh generation for upcoming �uid �ow simulations, several parameters of this
�nal shape are programmed to be input mesh parameters. These are the number of
edges of the left inner circle section, the horizontal line section and the right inner circle
section, which can be found in Figure 10.7 as nleftCircleInner, nlineSection, nrightCir-
cleInner respectively. Considering the �gure plane comprising a vertical and a horizontal
dimension, further parameters are hleftInner, which can be identi�ed as the vertical dis-
tance of the rightmost nodes of the left circle section of the innermost shell to the centre
of blade rotation, and hrightInner and hrightOuter, which correspond each to the vertical
distances of the leftmost nodes of the right circle section of the innermost shell and the
outermost shell respectively. The parameters rleftCircleInner, rleftCircleOuter, rright-
CircleInner and rrightCircleOuter represent the inner and outer radii of the left and right
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Figure 10.5: 63 degrees turn with the balloon shape.

circle sections respectively. The left circle sections show a decreasing number of nodes
from the inner to the outer shells, so that two neighbouring nodes on one shell always
enclose the same central angle with the axis of the blade. On the right circle sections, an
increasing number of nodes on the shells suggests a better element quality. To complete
the mesh generation around the blade, a topology for the region between the bottom of
the blades and the inner SSMUM beaker must be de�ned. The above described shape
parameters are kept. In order to achieve a good element quality in the innermost zone
near the centre of rotation, the number of nodes is reduced by half from one ring of nodes
to the next inner one (see Figure 10.6).
In the following, the volume mesh generation between the blade surface and the inner

SSMUM beaker is brie�y described. At �rst, the shells around a blade are created, all
with an identical topology. The topology of the outermost shell is shown in Figure 10.7.
The nodes (red and black numbers) and the triangles (blue numbers) are enumerated
in an ascending order, starting from a node located in the uppermost plane and going
further in an anticlockwise direction. After the nodes are enumerated in the upper plane,
the nodes that are situated in the next lower plane are enumerated. As a result, there
exist several rings of enumerated nodes for each shell, each ring located on a single
horizontal plane. The triangles of the outer and the inner shell are enumerated as well.
Furthermore, to each triangle three nodes are assigned, e.g., to the triangle number one
the nodes one, nineteen and eighteen are assigned. Given these triangles on the outer
and inner shell, these domains can be used to generate a mesh of tetrahedrons between
the outer shell and the inner SSMUM beaker and the inner shell and the blade surface
using Gridgen.
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Figure 10.6: Balloon shape in the region below the blade.

For the volume mesh generation between the shells, an in-house software is used. Given
four rings of enumerated nodes, an upper and a lower ring on the inner shell (red) and
an upper and a lower ring on the outer shell (blue) (cf. Figure 10.8), prisms between two
neighbouring shells can be constructed. Figure 10.8 shows how the nodes on these four
rings are assigned to the prisms. The array "index" stores the number of six nodes for
the creation of one prism. In the upper picture of Figure 10.8, the red prism is generated
by the nodes 302, 4, 3, 322, 24 and 23. There are two di�erent types of prisms, one
with their rectangular face on the inner shell and those with their rectangular face on the
outer shell (see Figure 10.8). For the generation of another prism having its rectangular
face on the inner shell, all numbers of the stored values in the array "index" just have to
be added by one. The initial numbers of the nodes are given by the lineO�set value for
each ring of nodes. In order to create a prism having its rectangular face on the outer
shell, the values of the array "index" have to be adapted. Within the software code, this
is done by changing the Boolean innerTr from "true" to "false".
Out of one prism three tetrahedrons are built similar to the mesh generation of the

SSMUM approch.
Due to the changing geometry of two neighbouring shells in the region below the blade,

a di�erent division of the prisms is applied and can be read in [CET08]. A top view of
four surrounding shells around a turned blade is shown in Figure 10.9.
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Figure 10.7: Outer shell with enumerated nodes and triangles.

Figure 10.8: Generation of prisms between the shells.
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Figure 10.9: Shells around one blade turned at 63◦.
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11 Mesh Quality Evaluation

Given the two di�erent mesh moving schemes for the motion of the single blades of a
VSP, the feasibility of these approaches regarding their application to the simulation of
the �uid �ow have to be compared. One of the most important issues when dealing with
deforming �nite element simulations is the mesh quality in the deformation zones. If the
element quality is low, the convergence rate is low, even to a degree that a �ow solution
cannot be obtained. In section 11.1 the mesh quality criteria for the evaluation of the
mesh quality is presented. This critera is not only used to assess the �nal mesh quality
but also to assess intermediate mesh adjustments during the mesh generation process,
especially during the EMUM mesh generation process. Such an example is given in
section 11.2. Herein, the goal is to compensate the mesh deformation around the blade
and keeping an element quality of the deformed elements which is as good as possible as
well as reducing the number of elements.

11.1 Mesh Quality Criteria

In [ESW05], a proof can be found that the norm of the discretization error is directly
bounded by the inverse of the minimum angles of the triangles of a mesh, given a �nite
element approximation of the Poisson equation. To achieve a similar a priori discretiza-
tion error bound for the �nite element discretization of the Navier-Stokes equation is
generally regarded as mathematically complex [ESW05] and is not within the scope of
this thesis. However, it can be assumed that the integration rules that are implemented
for optimally shaped elements become more and more imprecise the more an element
degenerates. So, the challenge of the �nite element mesh moving approach for the VSP
propulsion system is to keep the average deformation of the elements in the critical zone
between the blades and the nozzle plate as low as possible to ensure convergence of the
�uid �ow solution. Basically, the average quality of these critical elements must be kept
as good as possible. For the evaluation of the element quality, the standard criteria taken
from the Gridgen mesh generation software are applied. These are the radius ratio, the
angle ratio and the mean ratio criterion. The radius ratio is calculated by dividing the
inner radius of a tetrahedron by the third of its outer radius; the angle ratio accounts for
each deviation of the twelve angles of the considered tetrahedron compared to an optimal
tetrahedron, where the absolute value of the greatest deviation from the optimal angle
is a measure for the quality of the element.
The mean ratio criterion depends on the eigenvalues of the matrix that maps the

element under examination to a perfect element whose edges all have equal lengths. All
criteria are formulated such that a perfect element gets a value of zero and the worst
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possible element obtains the value one. These values are calculated in a Fortran routine
and visualized in Ensight, so that scripting and faster viewing is possible. As each of
the three single criteria evaluates some critical elements with a slightly di�erent score, a
safe way to make all badly shaped elements visible is to compute the mean value out of
the three single values. This value is called MarkTotal and shall be used to compare all
upcoming mesh concepts regarding their element qualities. For example, the combined
EMUM disc approach can be discussed focusing on the MarkTotal values of the mesh.
In Figure 11.1, the most critical elements such as the strongly deformed elements in the
horizontal planes at the level of the bottom tip of the blade and one millimeter below
the blade and the SSMUM elements are shown.

General view Cut z=0.026m Cut z=0.025m

Figure 11.1: Zones of critical mesh quality at a blade angle of +55 ◦ degrees.

From the "MarkTotal" value of at least 0.8 one can observe that the elements in
both horizontal planes are highly deformed around the trailing and the leading edge of
the blade due to the large distance from the center of rotation. The bad quality of the
SSMUM elements with a MarkTotal value of almost one derives from a very small distance
between the inner and the outer SSMUM beaker. Initially, these radii were chosen in that
way in order to leave as much space as possible for the EMUM deformation and also for
the construction of the shells considering the CSMM method. Clearly, the mesh quality
of the SSMUM elements suggests that the mesh has to be improved in the SSMUM layer.
Figure 11.2 shall emphasize that the element quality is independent of the direction of
the blade turning as the mesh quality is similar for both a positive and a negative blade
angle turn of 55 degrees.

General view Cut z=0.026m Cut z=0.025m

Figure 11.2: Zones of critical mesh quality at a blade angle of −55 ◦ degrees.
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11.2 Evaluation of Various SSMUM-EMUM Mesh Concepts

In this chapter, the main steps improving the mesh quality of the EMUM disc approach
are presented. The �rst SSMUM-EMUM mesh con�guration shown in Figure 11.1 pro-
vides as much space as possible for the deformation of the EMUM elements as explained
in the last section. For that reason, and because the closely situated supports of the noz-
zle plate prescribe a maximal possible radius for the outer SSMUM beaker, the SSMUM
elements are squeezed. Observing that the strong deformation does not spread to the
most outer radius of the EMUM discs, a second mesh concept is developed which widens
up the SSMUM elements. The quality of the SSMUM elements is improved as well by
increasing the number of SSMUM elements on the circumference. However, the higher
mesh resolution, and at the same time di�erent mesh topology of the new inner SSMUM
layer compared to the lowest EMUM disc, causes the grid generation between these lay-
ers to become very problematic. This is due to fact that the �ner mesh of the SSMUM
beaker does not match well the coarser mesh of the EMUM disc, especially given the
small distance between the two di�erent layers of mesh nodes. For that reason, the lower
disc is arranged further away from the inner SSMUM beaker. Furthermore doubling the
domain mesh resolution in the plane of all the EMUM discs leads to a better element
quality between the inner SSMUM layer and the bottom EMUM disc, especially away
from the zone of high element deformation. This new mesh design should also explore
how the EMUM deformation is solved for only two discs instead of four. By that, the
total number of elements can be reduced signi�cantly, and furthermore, by reducing the
number of discs, a higher distance between the discs can be realized, which together with
the higher node resolution on the discs results in a better element quality in the space
between the discs. Comparing the four-disc with the two-disc mesh con�guration in Fig-
ure 11.3, many di�erences regarding the element quality can be observed. Firstly, the
SSMUM elements improve their "MarkTotal" grading from at least 0.8 down to below
0.6, and secondly, the elements in the zone where the deformation is not strong on the
EMUM discs also improve their quality from a MarkTotal value of about 0.78 to about
0.7 and less. In Figure 11.4, the element quality of the �rst disc attached to the bottom
of the blade (disc 1) and the disc below (disc 2) is shown for the two concepts. Because
the two disc approach has a higher mesh resolution on the discs and an increased dis-
tance between the two discs compared to that of the four-disc concept, the elements are
generally less squeezed between the discs and this ends up in a better element quality.
On the other hand, the two disc concept shows elements around the blade with a worse

quality. Here it becomes evident that a higher number of discs between the bottom of
the blade and the inner SSMUM beaker enables the EMUM solver to maintain a higher
element quality in the region of strong deformation. A zoom of the most critical region
of the mesh deformation around the bottom of the blade and its corresponding element
quality is presented in Figure 11.5 .
For the �nal EMUMmesh con�guration, all the observations regarding the achievement

of a better element quality in the critical zones are considered. In addition, the number
of elements is reduced where it is possible. So, in the region of little or no deformation
the number of elements is reduced by decreasing the mesh resolution in these zones.

67



4-disc concept 2-disc concept

Figure 11.3: Re�nement of the SSMUM elements.

Disc 1 (4-disc concept) Disc 1 (2-disc concept)

Disc 2 (4-disc concept) Disc 2 (2-disc concept)

Figure 11.4: Disc re�nement.

Furthermore, the number of discs is set to three in order to enable the EMUM solver to
maintain a better quality of the elements in the region below the bottom of the blade
compared to the two disc approach. The high resolution around the blades is kept as well,
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Zoom disc 1 (4-disc concept) Zoom disc 1 (2-disc concept)

Figure 11.5: Deformation on the top disc around the bottom of the blade.

because the aspect ratio of these elements is better the higher the resolution of the disc
mesh is, and a higher element quality of initial non-deformed elements is a prerequisite
to a better element quality in the deformed state. The high number of SSMUM elements
in the circumference is reduced again in order to position the lowest of the three discs
closer to the inner SSMUM beaker, which gives more space for the EMUM deformation.
The fact that the deformation does not reach the outer radii of the discs allows a smaller
diameter of the inner SSMUM beaker. This gives enough possibility to improve the
element quality of the SSMUM layer. The quality of the �nal SSMUM-EMUM mesh
con�guration can be seen in Figures 11.6 and 11.7.

Disc 1 Disc 2

Disc 3

Figure 11.6: Element quality on the discs in the �nal mesh con�guration.
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Overview Zoom disc 1

Figure 11.7: Element quality of the �nal mesh con�guration.

The overall element quality of the �nal mesh con�guration is better in the SSMUM
region and in the close region of the bottom of the blade compared to the four disc and
the two disc approach. On the bottom of the SSMUM layer and on the bottom EMUM
disc no improvement can be achieved due to the di�erent mesh topologies of the lowest
EMUM disc and the inner SSMUM beaker and their very close distance to each other. It
has to be emphasized that the mesh quality, especially at the leading and trailing edge of
the blade, is also improved when using the �nal mesh con�guration. In addition to that,
the three disc concept reduces the number of elements by the factor of two compared to
the four-disc concept.
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12 Comparison of the CSMM and the

EMUM Methods in the Context of a

Re�nement Study

The last two chapters showed how to develop two di�erent mesh moving approaches,
the CSMM and the EMUM concept, to account for the blade motion inside the rotating
SSMUM beaker mesh, ensuring lack of tangling and good-quality mesh motion at the
same time. In this chapter, these two approaches are compared regarding their feasibility
in the context of a re�nement study of the �ow around a single de�ected blade. The aim
of this chapter is to provide arguments for either the CSMM or the EMUM concept
application when setting up the mesh for the �nal ten-blade Voith Schneider propeller
�ow simulation. These two methods should be evaluated according to their feasibility
regarding a practicable mesh generation involving various mesh resolutions on the blade
surface and their smooth transition to the coarser outer zones of the entire mesh. In
addition to this detailed comparison of these two mesh moving approaches, the outcome
of two independent re�nement studies of two di�erent mesh structures can provide more
knowledge about the discretization error due to the resolution of the mesh and the mesh
quality. Depending on the results, the �uid �ow simulation could be regarded as mesh-
independent in a twofold sense, independent of mesh resolution and mesh structure.

12.1 Scope of the Re�nement Study

In the course of this re�nement study, the absolute value of the force exerted by one
single blade of the VSP propulsion system without the nozzle plate on the �uid should
be determined; the nozzle plate is not included in the re�nement study due to limited
computing resources. The �uid enters the computational domain with a velocity of 1
m/sec at the in�ow, which corresponds to the left wall in Figure 12.1, and hits the
blade, which is turned to 55 degrees according to the maximal angle of blade de�ection
considering the blade angle curve for the operating point "open water speed" given by
Voith, compare Figure 5.1. In this way, the worst possible element quality that can be
encountered during a full ten-blade simulation is taken into account if an almost reversible
mesh EMUM deformation during various consecutive VSP rotations is assumed. In the
scope of the re�nement study, meshes with continuously increasing resolutions are created
and the above described �uid �ow simulation is performed on each mesh. In the course
of these simulations, the absolute values of any �uid �ow variables and especially the
force exerted by a single de�ected blade of the VSP propulsion system on the �uid
should show a continuously decreasing deviation with an increasing mesh resolution.
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By that, an estimation of the discretization error of the speci�c �uid �ow simulation
with respect to the mesh resolution can be made. Taking these errors into account, the
most adequate mesh resolution for the full ten-blade VSP propulsion system �uid �ow
simulation considering the computing resources and the expected discretization error can
be chosen.

12.2 Mesh Design

For both methods, the CSMM and the EMUM, four di�erent resolutions on the blade
surface are designed. Due to limited computing resources, only the �ow around a single
blade instead of all ten blades of the propulsion system is examined. Compared to the
mesh concept in Figure 8.7, the surrounding mesh volume is reduced, whereas the rest
of the entire mesh concept is kept, e.g., the SSMUM beakers, the EMUM discs and the
shells of the CSMM method, see Figure 10.9. By that, the observations made during the
single blade simulations can be transferred to the full ten blade �uid �ow simulations.
In order to resolve the �uid �ow, which evolves closely to the blade surface as well, the
mesh resolution there is chosen to be the most �ne of the whole mesh. To save computing
resources, the resolution at the exterior zones of the mesh is set coarser; the coarsest at
the bounding walls of the computational domain. In between the interior zones of the
mesh around the blade and the exterior zones close to the bounding walls, the transition
of the mesh resolutions should be as smooth as possible. The common mesh design, here
for the blade surface resolution of 40 mm, can be seen in Figure 12.1, the customized one
for both the EMUM and the CSMM approach in Figure 12.2.

Figure 12.1: Common mesh design for the re�nement study.

The meshes are labelled according to their resolution on the blade surface, e.g. EMUM.05
or CSMM.40 would correspond to an EMUM mesh with a blade surface node distance
of 5 mm and a CSMM mesh with a node distance of 40 mm on the blade.
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EMUM mesh CSMM mesh

Figure 12.2: Customized mesh designs for the re�nement study.

In a further re�nement study, the in�uence of the squeezed and distorted elements be-
tween the bottom part of the blade and the interior SSMUM beaker on the resulting �uid
�ow is examined. This is realized by comparing the results of the �rst re�nement study
with the results of a re�nement study where the elements below the bottom of the blade
have a better quality. To achieve this, these meshes are constructed with arbitrarily large
space for the elements below the blade. The SSMUM beakers are not excluded from the
mesh, but they are changed in shape in order to prescribe the mesh resolution in region
around the blade to aim a smoother distribution of the mesh resolution from the �ne
blade surface to the coarser outer regions of the mesh. The common mesh concept of the
second re�nement study can be seen in Figure 12.3. These meshes are called modi�ed
meshes in the following; e.g., EMUM.20.mod would label a modi�ed EMUM mesh with
a blade surface mesh resolution of 20 mm.

Figure 12.3: Common modi�ed mesh design for the re�nement study.
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12.3 General Mesh Parameters

In order to realize di�erent mesh resolutions for the above described mesh designs, various
surface domain and mesh volume solver parameters are used, which are explained in
the following. As mentioned, four di�erent mesh resolutions on the blade surface have
to be created, so the node distances (dsWings) of 40, 20, 10 and 5 mm are chosen.
Corresponding to these four di�erent mesh resolutions on the blade, the resolutions on
the SSMUM beakers and on the outer domains of the volume (dsBox) are adapted. The
topology of the SSMUM beakers is varied by the parameters ncircum, which is equal to
the number of nodes around the circumferential, ncylinder, which is equal to the number
of nodes along the vertical part of the SSMUM beaker, and ncone, which is equal to the
number of nodal rings on the horizontal bottom of the SSMUM beakers. All these surface
mesh parameters are shown in Figure 12.4. Once the surface mesh parameters are set,

Figure 12.4: General mesh parameters.

the parameters for the volume mesh generation can be selected. The most important
one is the parameter boundary decay, which weighs the in�uence of the bounding surface
mesh resolutions on the inner parts of a volume mesh. The in�uence is maximal when
this parameter is set equal to one and minimal when it is set equal to zero. A good
example how this parameter a�ects the mesh resolution is given in Figure 12.5. Using
a boundary decay value of 0.25, the highly resolved blade surface does not in�uence the
inner parts of the volume mesh, whereas a value of 1.0 results in a highly re�ned inner
volume mesh. The parameter boundary decay can be used in the same way when setting
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the in�uence of the resolution of bounding lines, de�ned as connectors in Gridgen, of a
surface mesh to the resulting inner resolution of that surface mesh.

Boundary decay = 0.25 Boundary decay = 1.0

Figure 12.5: In�uence of the mesh parameter boundary decay.

12.4 EMUM Meshes

For the re�nement study, the EMUM mesh concept presented in Figures 11.6 and 11.7
is slightly modi�ed. As mentioned in the last paragraph, the resolution of the SSMUM
beaker is adapted to the resolution on the blade. The EMUM discs are then modi�ed
in such a way that the transition of the resolution between the bottom EMUM disc and
the SSMUM beaker is as smooth as possible. This is realized by setting the resolution
of the connectors of the bottom EMUM discs equal to the resolution on the SSMUM
beaker. In order to create a smooth transition to the blade surface resolution, the pa-
rameter boundary decay is set to one when creating the top EMUM disc domain. As a
consequence, the meshes of the top and the bottom EMUM disc di�er considerably (see
Figure 12.6).
Another modi�cation to the EMUM concept shown in Figure 12.6 includes the exten-

sion of the highly resolved zones around the blade. This is a necessity as the smaller
zones of the former version cause tangling with �ner meshes when turning the blade. The
number of EMUM discs, however, is not changed and remains three. As the described
variations of the EMUM concept are independent of the blade resolutions, the mesh can
be generated via a Glyph script, and so the whole mesh generation for any new resolution
on the blade is easy, but the surface mesh parameters have to chosen carefully and often
iteratively in order to achieve smooth transitions in the mesh resolution. It can be seen
in Figure 12.7 that the transition from the �ne region around the blade to the coarser
zones of the SSMUM beaker is quite smooth, for both the blade resolution of dsWings
equal to 40mm and 20mm. The �ner meshes however present a quite dense mesh around
the blade and quite a hard transition from the dense mesh to the coarser outer mesh. In
Figure 12.8, a horizontal cut at the height of the blade bottom visualizes quite well the
element quality in that region. The quality in that critical region is almost independent
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Top EMUM disc Bottom EMUM disc

Figure 12.6: New EMUM discs.

of the blade resolution. At least, it is not getting worse with a higher resolution on the
blade surface. Instead, the coarsest blade resolution of dsWings equal to 40 mm gener-
ates worse elements in the EMUM discs. With the same vertical node distance between
the EMUM discs, the aspect ratio is worse, in this case because of the bigger horizontal
element size caused by the bigger node distances on the blade. Compared to the element
deformation obtained by the deformation algorithm proposed by Chiandussi [CBO00]
shown in Figure 12.9, this approach shows similar squeezing at the trailing edge, but the
foil pitch shown in Figure 12.8 is almost doubled.
A comparison to the numerical experiments done by Masud [MBK07] as shown in Fig-

ure 12.10 demonstrates the element quality in the horizontal plane to be better than that
shown in Figure 12.8. However, it must be mentioned that considering the application
shown in 12.10 the horizontal space to absorb the deformation is much bigger than in the
VSP application with the limited space for the deforming mesh around the blades. Fur-
thermore, the pitch in the VSP application is almost doubled, �fty-�ve degrees compared
to thirty degrees and lastly, a 3D deformation is considered here compared to the 2D
applications in the aforementioned literature. Nevertheless, a study including all possi-
ble parameter variations regarding the element sti�ening factors as described in Chapter
7.2.5 was carried out for the VSP application but did not show any improvement of the
element quality.
The �gures in Subsections 16.1.1 and 16.1.2 of the appendix will show the �nal EMUM

meshes and their mesh generation parameters used for the re�nement study. The hor-
izontal cuts taken at the middle of the blade as well as the zoomed mesh area at the
bottom of the blade again show quite smooth transitions between the regions of di�erent
mesh resolutions.
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EMUM.40 EMUM.20

EMUM.10 EMUM.05

Figure 12.7: Vertical element distribution.
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EMUM.40 EMUM.20

EMUM.10 EMUM.05

Figure 12.8: Horizontal element distribution at the blade bottom.
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Figure 12.9: Element deformation at the trailing edge of a NACA0012 aerofoil [CBO00].
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Figure 12.10: Zoomed view of the tip and tail of an airfoil at various stages of motion
[MBK07].
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12.5 CSMM Meshes

Considering the CSMM approach, a smooth distribution of the mesh resolution inside
the volume mesh is much more di�cult. As consecutive �ner resolutions on the blade
surface require a �ner resolution in the closer regions of the blade, the number of shells
around the blade have to be increased. But a higher number of shells automatically
creates �atter elements in the critical zone between the bottom of the blade and the
inner SSMUM beaker. For all four dsWings values (5 mm, 10 mm, 20 mm and 40 mm)
this results in a worse element quality in this region, indicated by a mainly red zone
referring to a MarkTotal value close to one in the horizontal plane at the bottom of the
blade shown in Figure 12.11. On the contrary, the EMUM approach does not result in
such bad quality elements (cf. Figure 12.8). As an alternative, the number of shells of the
CSMM approach could be kept constant for di�erent dsWings values while constructing
the shells closer to each other, but very closely situated shells produce tangling when
assuming a constant relative rotation between the shells.

CSMM.40 CSMM.20

CSMM.10 CSMM.05

Figure 12.11: Horizontal element distribution and quality at the blade bottom.

Another inherent disadvantage of the CSMM concept implemented so far is that the
vertical resolution of the shells cannot be changed from an inner to the next outer shell.
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By that, the shells constitute an obstacle for the smooth distribution of the mesh reso-
lution from the �ne part at the blade to the coarser part at the inner SSMUM beaker;
this is shown by the vertical planes through the mesh in Figure 12.12.

CSMM.40 CSMM.20

CSMM.10 CSMM.05

Figure 12.12: Vertical element distribution.

The mostly yellow coloured shell elements in the whole region from the top of the
blade to its bottom indicate that the single elements inside the shells get more deformed
and have a worse quality than the elements of the EMUM concept in that zone; compare
Figure 12.12 with Figure 12.7. In addition, the mesh generation between the inner shell
and the blade surface is di�cult, as it is hardly possible to create a smooth transition
from the �ne resolution on the blade surface to the coarser resolution of the most inner
shell. A boundary decay value of one gives too much in�uence to the coarse resolution
on the inner shell, which results in too coarse meshes in the closer region around the
blade; compare the left picture of Figure 12.13. Various combinations of boundary decay
values create meshes with too many elements and considerably big holes, as seen in the
right picture of Figure 12.13, and therefore must be discarded. Overall, these parts of
the CSMM meshes take a lot of time to �nd the proper mesh generation parameter set
varying the values of boundary decay. The same accounts for the mesh between the outer
shells and the inner SSMUM beaker. In Subsections 16.1.3 and 16.1.4 of the appendix,
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Figure 12.13: Element distribution between the blade and the inner shell.

the �nal CSMM meshes and their mesh generation parameters, which are used for the
re�nement study, will be shown.
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12.6 The CSMM and the EMUM Method Applied to a Flow

Simulation in the Context of a Re�nement Study

The previous section shows that the CSMM approach is much more di�cult to handle
when it comes to the creation of smooth meshes with good quality elements. In this
section, the sixteen meshes of both methods as generated in Sections 12.4 and 12.5 are
used to simulate the �ow around one turned blade as described in Sections 12.1 and
12.2. The �uid enters the computational domain with an x-velocity of 1 m/sec at the
in�ow, hits the blade and leaves the computational domain at the out�ow, the right wall
of Figure 12.1. There is a no-slip condition on the blade and a slip condition on the side
walls as well as on the upper and the lower wall of the bounding domain. On the out�ow,
a no-stress condition is applied according to [DH03] :

−p+ 2ν
∂vn
∂n

= tn = 0, (12.1)

ν

(
∂vτ
∂n

+
∂vn
∂τ

)
= tτ = 0. (12.2)

As the time-dependent Navier-Stokes problem requires an initial velocity �eld that must
be divergence free, see Equation 2.8 in Chapter 2, a stationary Stokes problem needs to
be solved in the �rst place, which can be formulated as the following:

−ν∇2u +∇p = 0 in Ω (equilibrium), (12.3)

∇ · u = 0 in Ω (incompressibility), (12.4)

u = uD on ΓD (Dirichlet b.c.), (12.5)

−pn + ν (n · ∇) u = t on ΓN (Neumann b.c.). (12.6)

The resulting divergence free velocity �eld of the Stokes problem is then used as an
initial �ow �eld for the Navier-Stokes problem. However, as the Stokes solution generally
varies too much from the real Navier-Stokes solution, a direct Navier-Stokes simulation of
the water �ow with the real water viscosity of ν = 10−6m2

s would become too unstable,
and therefore a convergence of that type of computation is rather di�cult. For that
reason, intermediate consecutive Navier-Stokes simulations with decreasing viscosities
such as ν = 10−2m2

s and ν = 10−4m2

s are performed, where the resulting �ow �eld of a
simulation with a higher viscosity serves as an initial �ow �eld for next �ow simulation
with a lower viscosity. In order to equally compare the four di�erent meshes of each mesh
moving method, the EMUM and the CSMM approach, the Krylov space size (ninner)
for the solver of the linearized equation system within one single nonlinear iteration (nit)
within one time step is equal for all meshes and only varies depending on the value of the
viscosity. The number of nonlinear iterations used within one time step is the same as
well for each mesh. Only when the required computational time gets too high, and when
there is no convergence detectable, a simulation is aborted in the sense that the number
of nonlinear iterations is reduced. Of course, convergence problems can be solved if the
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Krylov space size is increased, but this is not guaranteed and the computational cost is
high as the computational time increases more than linearly with the Krylov space size.
In Figure 12.14 a case is shown where an augmentation of the Krylov space size im-

proves signi�cantly the convergence rate. The left and the right chart of Figure 12.14
show each a plot of the residual of a nonlinear equation system over four single nonlin-
ear iterations, which are performed to simulate one time step of a �uid �ow simulation.
The left chart corresponds to a simulation where a Krylov space size of 250 is used to
solve the linearized equation system within each nonlinear equation, whereas the right
chart corresponds to a simulation where a Krylov space size of 500 is used to solve the
linearized equation system within each nonlinear equation. As it can be seen, the con-
vergence behaviour improves signi�cantly by the augmentation of the Krylov space size,
as the residual of the fourth nonlinear iteration declines from 10−6 to below 10−11 by
doubling the Krylov space size.

Krylov space size 250 Krylov space size 500

Figure 12.14: Convergence behaviour with varying Krylov space sizes over four nonlinear
iterations.

The corresponding values for the number of nonlinear iterations and the Krylov space
size for each single simulation step regarding all the di�erent meshes are chosen such
that convergence is guaranteed in most cases and are presented in Table 12.1. The above
described boundary conditions are the same for each mesh and each single simulation.
Also, the number of time steps (nts) are the same for each simulation.

type of simulation nit nts ninner

Stokes 10 1 500

Navier-Stokes (ν = 10−2m2

s ) 10 1 500

Navier-Stokes (ν = 10−4m2

s ) 10 1 1000

Navier-Stokes (ν = 10−6m2

s ) 25 1 500

Navier-Stokes (ν = 10−6m2

s ) 3 50 500

Table 12.1: Simulation solver parameters.
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According to Table 12.1, a Stokes �ow simulation is performed, then an intermediate
one-time-step unsteady Navier-Stokes simulation with a viscosity of ν = 10−2m2

s and a
time step size of 0.1 sec is done, then the viscosity is decreased in another two successive
intermediate simulations to reach the water viscosity of ν = 10−6m2

s . Finally, a �fty-
time-step unsteady Navier-Stokes simulation is performed in order to calculate the value
of the forces applied from the turned blade on the �uid over the time. The time step size
is 0.1 sec and constant for all unsteady simulations.
The left charts of the following Figures 12.15, 12.16, 12.17 and 12.18 show the forces

exerted from the blade on the �uid in all three dimensions over the last �fty time steps of
the unsteady Navier-Stokes simulation with the water viscosity ν = 10−6m2

s calculated
on the sixteen meshes. The force values orientated in the x-direction, y-direction and
z-direction are visualized by the red, green and blue charts respectively.
The presented results of all sixteen meshes also include the convergence chart of the

nonlinear residual of each simulation on the single meshes, including the Stokes �ow
simulation, the unsteady Navier-Stokes simulation with a viscosity of ν = 10−2m2

s , ν =

10−4m2

s and ν = 10−6m2

s shown in right chart of Figures 12.15, 12.16, 12.17 and 12.18.
A peak in the chart corresponds to the start of a new intermediate simulation or a new
time step.
Comparing the simulations on the EMUM meshes according to Figures 12.15 and

12.16, the curve of each component of the blade force shows a similar behaviour. From
an initial lower force in the x- and y-direction resulting from the unsteady Navier-Stokes
simulation with the viscosity ν = 10−4m2

s , the absolute values of the force components
increase and reach their maximum between the 20th and the 22nd time step; the values
can be considered as nearly converged at the last time step. All intermediate simulations
start from a residual value higher than 10−6 and terminate at a residual value lower than
10−10, which we regard as a satisfying convergence behaviour. During the �fty-time-step
simulations, the residuals do not decrease that much, because there are only 3 nonlinear
iterations performed within one time step due to limited computing resources. To ensure
that three nonlinear iterations are su�cient the calculated force values of two di�erent
simultations of seven time steps are compared; one done with three nonlinear iterations
per time step and another with nine. It becomes apparent that the di�erence is negligible.
Looking at the results of the simulations on the CSMMmeshes according to the Figures

12.17 and 12.18, an oscillating curve of the value of the force components can be detected
in most of the cases. Obviously, the resulting nonlinear equation system of the unsteady
Navier-Stokes equation is unstable and can therefore not be solved correctly. In those
cases, already the Stokes �ow cannot be computed with a su�ciently small residual. An
augmentation of the Krylov space size from �ve hundred to one thousand does not show
any improvement. However, the continuing Navier-Stokes simulations are performed with
the unconverged Stokes �ow �elds as an initial �ow �eld in the hope that the equation
system is getting more stable in the course of several time steps. In fact, the values of
the force components converge for all CSMM meshes and the residual values for the �fty
time step simulations are similar to the ones performed on the EMUM meshes.
The high instability of the Navier-Stokes equation system computed on the CSMM
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meshes probably derives from the zones where a smooth distribution of the element sizes
in the mesh cannot be achieved. Such zones occur at the transition from the inner
SSMUM beaker to the outer shell (e.g., zones one and three indicated in Figure 12.19)
and at the transition at the inner shell to the mesh around the blade (zone two).
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12.6.1 EMUM Mesh Simulation Results

Forces EMUM.40 Residual EMUM.40

Forces EMUM.20 Residual EMUM.20

Forces EMUM.10 Residual EMUM.10

Forces EMUM.05 Residual EMUM.05

Figure 12.15: EMUM meshes: Calculated forces of the blade and residuals of the �ow
solution.
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12.6.2 EMUM Modi�ed Mesh Simulation Results

Forces EMUM.40.mod Residual EMUM.40.mod

Forces EMUM.20.mod Residual EMUM.20.mod

Forces EMUM.10.mod Residual EMUM.10.mod

Forces EMUM.05.mod Residual EMUM.05.mod

Figure 12.16: EMUM modi�ed meshes: Calculated forces of the blade and residuals of
the �ow solution.
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12.6.3 CSMM Mesh Simulation Results

Forces CSMM.40 Residual CSMM.40

Forces CSMM.20 Residual CSMM.20

Forces CSMM.10 Residual CSMM.10

Forces CSMM.05 Residual CSMM.05

Figure 12.17: CSMM meshes: Calculated forces of the blade and residuals of the �ow
solution.
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12.6.4 CSMM Modi�ed Mesh Simulation Results

Forces CSMM.40.mod Residual CSMM.40.mod

Forces CSMM.20.mod Residual CSMM.20.mod

Forces CSMM.10.mod Residual CSMM.10.mod

Forces CSMM.05.mod Residual CSMM.05.mod

Figure 12.18: CSMM modi�ed meshes: Calculated forces of the blade and residuals of
the �ow solution.
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Figure 12.19: Non-conforming zones 1, 2 and 3 of the CSMM approach.

In addition to these zones, the region between the bottom of the blade and the inner
SSMUM beaker is a non-conforming one regarding a smooth element size distribution (see
Figure 12.11). The direct relationship between the element quality and the local element
residuals of a mesh is evident when Figures 12.11, 12.12, 12.8 and 12.7 are compared with
Figure 12.20. Studying these �gures, the element quality of the EMUMmeshes EMUM.40
and EMUM.10 in the region below the gap (�gure 12.8) and in a horizontal plane in the
midth height of the blade (Figure 12.7), and similarly for the CSMM meshes CSMM.40
and CSMM.10 (Figures 12.11 and 12.12) can be compared to the local element residuals
of the pressure values at the 50th time step of the Navier-Stokes simulation (Figure
12.20). In all mesh regions where the CSMM meshes show a worse element quality than
the EMUMmeshes, the local element residuals of the pressure values are higher. Whereas
for the coarser meshes (EMUM.40 and CSMM.40) this is directly evident and showing
strongly red and blue coloured elements inside the CSMM meshes, it must be stressed
that residuals for the �ner CSMM meshes are also about one hundred times higher in
the regions of the shells, but the residuals have a highly negative value and are not as
visible as if they had both highly positive and negative values as in case of the coarser
meshes.
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EMUM.40

CSMM.40

EMUM.10

CSMM.10

Figure 12.20: Residuals of the pressure, EMUM.40/10 and CSMM.40/10.
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In addition, the resulting �ow �elds are compared. As the EMUM mesh simulations
show a signi�cantly better convergence behaviour, mostly the �ow results of these grids
are visualized. The �ow �eld at the last time step, e.g., after 5.3 seconds, of the unsteady
Navier-Stokes simulation calculated on the two �nest EMUM meshes, EMUM.05 and
EMUM.10, are compared. The �ow pattern is practically the same, see Figure 12.21,
except the velocity in the z-direction behind the blade. The z-velocities calculated with
the EMUM.05 mesh are about twice as high as those calculated with the EMUM.10
mesh, which indicates that the vortices behind the blade are signi�cantly better resolved
by the EMUM.05 mesh. Compared to the simulations of the EMUM.40 mesh in Figure
12.22, these z-velocities are about three times higher, which indicates a successively more
accurate calculation of the vortices in the wake of the blade when increasing the mesh
resolution.
The remaining �ow �eld calculated via the EMUM.40 mesh also di�ers considerably

from the �ow �elds of the two �nest meshes, taking into account all �ow variables,
x-, y- and z-velocities and the pressure, which is not visualized here. In comparison
with the results of the �nest modi�ed EMUM mesh, EMUM.05.mod, the EMUM.05
mesh simulation shows only some minor di�erences (see Figure 12.23). Considering the
visualization of the z-velocity, the small vortex furthest away from the blade is resolved by
the EMUM.05 mesh simulation but not from the one performed with the EMUM.05.mod
mesh. Also, the minimal and maximal values of the z-velocites are higher than those of
the EMUM.05 mesh simulation.
Looking at the �ow �elds generated via the CSMM meshes, there cannot be found any

similarities when comparing the resulting �ow �elds of the simulations with an increasing
mesh resolution (cf. Figure 12.24). The �ow pattern resulting from the �nest CSMM
mesh simulation does not resemble the one from the next coarser CSMM mesh and so
forth.
Also the �ow �eld of the �nest CSMM mesh does not resemble the one of the �nest

EMUM mesh (cf. Figure 12.25), e.g., the vortices behind the blade resolved by the
EMUM.05 mesh are not resolved by the CSMM.05 mesh.
In addition, the coarsest CSMM mesh CSMM.40 shows an oscillating pressure around

the blade over the computed time, which again gives hint that there are stability problems
of the CSMM approach due to bad element qualities around the blade (see Figure 12.26).
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EMUM.05 EMUM.10

Figure 12.21: Flow �eld after 5.3 sec.
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EMUM.05 EMUM.40

Figure 12.22: Comparison of the z-velocity downstream of the blade.
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EMUM.05 EMUM.05mod

Figure 12.23: Flow �eld after 5.3 sec.
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CSMM.40 CSMM.20

CSMM.10 CSMM.05

Figure 12.24: CSMM pressure �eld after 5.3 sec.

EMUM.05 CSMM.05

Figure 12.25: Comparison of the pressure �eld after 5.3 sec.
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1.3 sec 2.3 sec

4.3 sec 5.3 sec

Figure 12.26: CSMM : quasi-periodic pressure �eld.
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12.7 Comparison of the Blade Forces

In this chapter, the values of the blade force components calculated via each Navier-
Stokes simulation of the �uid �ow around the blade are compared in order to determine
the relationship between the mesh size and its e�ect on the resulting �uid �ow solution.
The viscosity of the simulated �uid is that of water, ν = 10−6m2

s . In Table 12.2, the
absolute forces exerted from the blade on the �uid are listed, as well as the deviation
of each force component value with respect to the value of the previous coarser mesh.
The bold mesh labels indicate the simulations of the CSMM approach with insu�cient
convergence behaviour.

mesh Fx Fy Fz ∆Fx ∆Fy ∆Fz

EMUM.40 −0, 549 0, 346 −0, 0015

EMUM.20 −0, 585 0, 380 0, 0027 6, 5% 9, 9% −280%

EMUM.10 −0, 598 0, 393 0, 0028 2, 2% 3, 2% 3, 7%

EMUM.05 −0, 611 0, 403 0, 0030 2, 1% 2, 6% 11%

EMUM.40.mod −0, 596 0, 383 0, 0051

EMUM.20.mod −0, 618 0, 405 0, 0068 3, 6% 5, 7% 34%

EMUM.10.mod −0, 636 0, 421 0, 0074 2, 8% 4, 0% 7, 9%

EMUM.05.mod −0, 635 0, 422 0, 0063 −0, 16% 0, 23% −15%

CSMM.40 −0, 633 0, 398 −0, 0045

CSMM.20 −0, 691 0, 449 0, 0064 6, 6% 12% 242%

CSMM.10 −0, 655 0, 423 0, 0075 −9, 2% −5, 8% 17%

CSMM.05 −0, 784 0, 508 0, 0175 19% 19% 135%

CSMM.40.mod −0, 592 0, 369 0, 0031

CSMM.20.mod −0, 706 0, 458 0, 0110 19% 24% 259%

CSMM.10.mod −0, 719 0, 466 0, 0120 1, 8% 1, 8% 9, 0%

CSMM.05.mod −0, 634 0, 419 0, 0088 −11% −10% −27%

Table 12.2: Forces from the blade on the �uid after 5.3 sec.

Considering the EMUM meshes, a decreasing deviation of the force components can
be observed when the mesh re�nement is increased. This holds for the normal meshes as
well as for the modi�ed ones. The simulations on the CSMM meshes, however, do not
show a decreasing deviation but even an increasing one. Therefore, the CSMM meshes
cannot be used to determine the proper mesh resolution. Taking the results of the
EMUM simulations into account, already coarser meshes seem to solve the Navier-Stokes
problem quite well (see line 2 and 3 of Table 12.2). To see this, the deviations of the
values achieved with the simulations on the coarser meshes EMUM.40 and EMUM.20 are
compared to the values achieved with the simulation on the �nest mesh EMUM.05 in line
2 and 3 of Table 12.3. Comparing the EMUM meshes with the modi�ed EMUM meshes,
the deviations of the force values comparing a coarse mesh with the next �ner mesh
are less with respect to the modi�ed EMUM meshes. Even the deviation comparing
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the resulting force values of the EMUM.40.mod mesh with the EMUM.05.mod mesh
are smaller than the deviations comparing the results of the EMUM.40 mesh with the
results of the EMUM.20 mesh (see line 4 of Table 12.3 and line 3 of Table 12.2). In the
cases where the CSMM meshes show a satisfying convergence, the CSMM.40.mod and
CSMM.05.mod meshes, the results gained with these meshes deviate only very little from
those gained with the EMUM counterpart meshes (see line 5 and 6 of Table 12.3).

mesh ∆Fx |∆Fx| ∆Fy |∆Fy| ∆Fz |∆Fz|
EMUM.05 - EMUM.40 10% 0, 062 14% 0, 057 50% 0, 0015

EMUM.05 - EMUM.20 4, 4% 0, 026 5, 5% 0, 023 10% 0, 0003

EMUM.05.mod - EMUM.40.mod 6, 1% 0, 039 9, 2% 0, 039 18% 0, 0011

EMUM.40.mod - CSMM.40.mod −0, 6% −0, 004 3, 6% 0, 014 39% 0, 002

EMUM.05.mod - CSMM.05.mod 0, 2% 0, 001 2, 6% 0, 011 42% 0, 0026

Table 12.3: Comparison of the force value deviations among selected EMUM meshes.

The in�uence of the squeezed elements below the blade on the resulting values of
the force components can be judged looking at Table 12.4, where the results of the
modi�ed EMUM meshes are compared against the results achieved with the normal
EMUM meshes.

mesh ∆Fx |∆Fx| ∆Fy |∆Fy| ∆Fz |∆Fz|
EMUM.40.mod - EMUM.40 7, 8% 0, 047 11% 0, 037 129% 0, 0066

EMUM.20.mod - EMUM.20 5, 3% 0, 033 6, 1% 0, 025 57% 0, 0039

EMUM.10.mod - EMUM.10 5, 9% 0, 038 6, 6% 0, 028 62% 0, 0045

EMUM.05.mod - EMUM.05 3, 8% 0, 024 4, 5% 0, 019 52% 0, 0032

Table 12.4: Deviations of the force values comparing EMUM and modi�ed EMUM
meshes.

It can be concluded that the in�uence of the bad element quality lessens with an
increasing resolution in the critical region between the bottom of the blade and the inner
SSMUM beaker. Considering the results of the simulations with the modi�ed EMUM
meshes, it can be assumed that the �ow solution gained on the EMUM.05.mod mesh is
the closest to the real �uid �ow, as the element quality is the best inside the modi�ed
meshes. To have a glimpse on the deviations from the force values taken from that
best simulation, Table 12.5 is presented where all results gained from the non-modi�ed
EMUM meshes are compared with the results of the EMUM.05.mod mesh.
Overall, the results of the EMUM approach are much more convincing, as the blade

forces really converge with an increasing mesh resolution around the blade. In addition,
the in�uence of the squeezed elements diminishes with a higher re�nement. For the
CSMM concept, this is neither the case for normal nor the modi�ed meshes. To conclude,
the EMUM approach can be regarded as more suitable for the ten blade VWT �uid �ow
simulation.
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Mesh ∆Fx |∆Fx| ∆Fy |∆Fy| ∆Fz |∆Fz|
EMUM.05.mod - EMUM.40 14% 0, 086 18% 0, 076 124% 0, 0077

EMUM.05.mod - EMUM.20 7, 8% 0, 050 10% 0, 042 56% 0, 0035

EMUM.05.mod - EMUM.10 5, 8% 0, 037 6, 9% 0, 029 55% 0, 0034

EMUM.05.mod - EMUM.05 3, 8% 0, 024 4, 5% 0, 019 52% 0, 0032

Table 12.5: Deviations of the force values compared to the results of mesh
EMUM.05.mod.
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13 Simulation of the VWT Propulsion

System

According to the results of the last chapter, the EMUM approach is chosen for the �uid
simulation of the operating point �open water speed�, considering the complete ten blade
propulsion system of the Voith Water Tractor including the nozzle plate. The speed
of the entire VWT at that operating point is 7.2 m/sec, and the two Voith-Schneider
propellers counterrotate at a speed of 80.2 rotations per minute. The corresponding blade
angle curve for each of the ten blades was shown in Figure 5.1. The boundary conditions
are the same as those used in the single blade re�nement study, except for the in�ow
and the out�ow; these are swapped and the in�ow x-velocity is -7.2 m/sec. Considering
this simulation, the water streams then from the upstream to the downstream side of
the domain. The VWT propulsion system is placed closer to the upstream side (in�ow)
(see �gure 13.4). By that, the simulation domain downstream of the VWT is enlarged in
order to better resolve the wake behind the VWT. Worth mentioning is that the velocity
of each single surface node of the blades must be calculated in order to prescribe a no-
slip boundary condition on the blade surfaces. Also for the ten blade VWT simulation a
re�nement study is performed. The range of the mesh resolution on the blade surfaces
from the coarsest resolution of 40 mm to the �nest resolution of 5 mm seems to be
suitable, as the force components in the x- and y-direction di�er only less than three
percent comparing the results of the two �nest meshes of the single blade re�nement
study. All the mesh parameters used for the mesh generation of the single blade meshes
are kept (cf. Section 12.3 and 12.4). The mesh in the closer region of the blades is shown
for all the four meshes in Figure 13.1.
Regarding the simulations on these meshes, a similar set of intermediate simulations,

starting with the Stokes �ow simulation and a continuation with decreasing kinematic
viscosities, is not successful, as �nding a proper set of solver parameters for a converging
�ow simulation for each intermediate simulation has shown to be too much e�ort. How-
ever, as we observed convergence of the �uid �ow simulation in an earlier simulation,
where only the SSMUM approach was applied to the VWT propulsion system, we used
that simulation setup including the same solver parameters for the simulation including
the SSMUM and EMUM approach. Eventually, that direct Navier-Stokes simulation
with the water viscosity ν = 10−6m2

s using a Krylov space size of 200 and ten nonlinear
iterations within one time step, converges after about 130 time steps. The time step size
is 0.002078 seconds and by that each propeller rotates by one degree within one time
step. This holds for all the four di�erent mesh sizes. Figure 13.2 shows the residual chart
of each single nonlinear iteration during the simulation on the �nest mesh. Here, the
convergence behaviour improves signi�cantly after seventy time steps, which corresponds
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Resolution 40 mm Resolution 20 mm

Resolution 10 mm Resolution 5 mm

Figure 13.1: Four di�erent resolutions of the 10 blade mesh.

to nonlinear iteration number seven hundred as ten nonlinear iterations are performed
per time step.

Figure 13.2: Residual over the nonlinear iterations.

On all four meshes, two full rotations where simulated and after one rotation already a
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periodic behaviour can be observed, as the values of the force exerted from the blades on
the �uid already show a periodic behaviour after one rotation; cf. Figure 13.3 where the
graph of the force of one single blade exerted on the �uid is shown from time step 130, at
which the solution on all four meshes converges. The time step number 130 corresponds
to a 130 degree rotation. The position of one blade at zero degree is considered as the
position of the blade closest to the symmetry line on the left picture of Figure 5.3.

Resolution 40 mm Resolution 20 mm

Resolution 10 mm Resolution 5 mm

Figure 13.3: Graph of the force components of a single blade.

For further investigation of Figure 13.3, the characteristics of the x-component of the
force exerted from the blade on the �uid between the 400 degrees and the 540 degree
position of the blade will be examined. In the course of that part of the propeller
rotation, a strong deviation of the force characteristics is visible comparing the three
coarsest meshes to each other. On the contrary, the two �nest grids hardly show any
deviation considering the chart of the force values. Nevertheless, the two �nest meshes
show some minor di�erences regarding the calculated �ow �eld after two full propeller
rotations. The pressure �eld at the low pressure sides of the blades di�er slightly looking
at a horizontal cut of the computational domain (cf. Figure 13.4), and looking at the
vertical cut some di�erences in the x-velocity values at the near blade surface can be seen.
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A further re�ned mesh simulation was not possible due to limited computing resources.
The most important �gure resulting from the simulation of the VWT propulsion system
is the averaged thrust generated by a single blade of a VSP during one full rotation
of a VWT propeller. This value is comparable with the values measured by Voith in
water tank experiments, real experiments and their simulation with the CFD software
COMET. In Table 13.1, the calculated averaged forces of each single blade for all the
four di�erent meshes are presented. The units of these forces is kN. It can be seen that
the resembling force values of the two �nest meshes within each time step result in a
similar averaged thrust generated by the single blades during one full propeller rotation
(see Table 13.1).

`````````````̀Mesh resolution
Blade

1 2 3 4 5 6 7 8 9 10

40 mm 16 17 16 17 17 16 17 16 16 16
20 mm 22 22 21 22 21 21 23 22 22 21
10 mm 25 24 25 25 24 24 24 25 25 24
5 mm 27 26 26 26 26 26 26 26 26 26

Table 13.1: Averaged forces of each single blade for the four di�erent mesh resolutions.

The measured averaged thrust of one single blade measured by Voith is 23 kN, which
corresponds to a deviation of about 12 per cent compared to the thrust values simulated
with the �nest mesh. This deviation we regard as a good result, but according to Voith
the characteristics of the force values di�er considerably compared to the measured ones
and the curves obtained by the COMET �uid �ow simulations done by Voith.
Precisely, the blades generate too much thrust in the negative x-direction in the po-

sitions where they move against the motion of the ship to be propelled. In Figure 13.3,
these positions would correspond to the region from a 360 degree position to a 540 degree
position of a single blade. Referring to Figure 13.4, it was suggested that the pressure
distributions around the blades at the 72 and the 144 degrees position, which corresponds
to the 432 degree and the 504 degree position in Figure 13.3, show that the blades at
these positions would generate a total force on the ship in the negative x-direction. How-
ever, according to the experiments and �ow simulations at Voith, the blades generate at
these positions a positive total force on the ship. In Figure 13.3, it can be seen that the
blades generate a positive force on the �uid in the positions between the 72 and the 144
degree position. This corresponds to a thrust contribution in the negative x-direction
by the blades moving from the 72 to the 144 degree position or from the 432 to the 504
degree position respectively.
Obviously, the direct �ow around the blades is not simulated like it is with the CFD

�ow solver used at Voith and how the experimental data gained by Voith suggests. One
main e�ect is assumed to be responsible for this deviation.
Di�erent to commercial CFD codes like COMET or ANSYS, the �ow solver XNS

does not yet account for the modelling of a boundary layer close to walls where a noslip
boundary condition has to be set due to the wall friction, as on a propeller blade. Com-
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pressure, resolution 10 mm pressure, resolution 5 mm

x-velocity, resolution 10 mm x-velocity, resolution 5 mm

Figure 13.4: Pressure and x-velocity distribution of the propulsion system.

mercial CFD codes do this in using the universal wall log law. The universal wall log
law stems from the boundary layer theory and concepts of Ludwig Prandtl introduced
in 1904, which are regarded as a milestone in the history of �uid dynamics [Sch04]. His
concepts were followed up by Karman and Blasius modelling the velocity distribution in
the turbulent boundary layer. Given the resulting formulas of their work, it is possible
to approximate the thickness of the turbulent boundary layer, the distance from the wall
where the turbulent layer joins the viscous sublayer and the shear stress in the turbulent
layer. Within commercial CFD codes, the universal wall log law is used to place the
closest grid node of the mesh next to the wall still inside the logarithmic wall log law
region of the turbulent boundary layer. The codes then determine the wall shear stress at
this position according to the universal wall log law, which is then imposed as boundary
condition at the �rst grid points next to the wall. By that the di�cult resolution of the
near-wall turbulent �ow is avoided [OK95]. The boundary layer concepts developed by
Prandtl, Karman and Blasius use various dimensionless variables to determine the thick-
ness of the turbulent boundary layer and of the viscous sublayer. These variables will be
employed in the rest of this section but will not be explained fully. A detailed derivation
of the universal wall log law and its use to determine the velocity distribution in the
turbulent layer and its thickness can be reviewed in [Sch04]. In the following, it will be
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shown that it is impossible to resolve the turbulent boundary layer by �ne meshes around
the blade of the VWT propulsion system given the computational resources. Using the
resulting formulas of the boundary layer concepts presented in [Sch04] it will be shown
that the grid spacing next to the blade surface would be too small, such that the meshes
with ten blades would become too big if the turbulent boundary layer was resolved by
the �uid �ow simulation. As the �rst grid point would need to be placed at the border
of the viscous sublayer to the turbulent boundary layer, the following is set:

ū

u∗
= y+ = 1, (13.1)

with ū being the velocity in the viscous sublayer and u∗ the friction velocity inside the
viscous sublayer, de�ned as

u∗ =

√
τw
ρ
, (13.2)

where τw is de�ned as the shear stress at the wall, which is assumed to be equal to
the shear stress in the viscous sublayer, as this layer is very thin [Sch04]. The y+ is the
dimensionless distance to the wall de�ned by:

y+ =
yu∗
ν
, (13.3)

with y being the distance to the wall whereas y is equal to one at the position where
the viscous sublayer adjoins the turbulent boundary layer. Given these formulas and the
derived formulas in [Sch04] for the friction coe�cient cf as well as the formula for the
wall shear stress, the distance y between the wall and the position where the viscous
sublayer adjoins the turbulent boundary layer can be calculated. At this distance to the
wall y, the �rst grid point must be positioned if the �uid dynamics e�ects inside the
turbulent boundary layer have to be resolved without using the universal wall log law.
The wall shear stress is related to the friction coe�cient cf :

cf =
τw

1
2%U

2
∞
, (13.4)

where U∞ is the free stream velocity outside the boundary layer. Using the boundary
layer theory given in [Sch04], cf can be expressed as:

cf =
0.072

(ReL)
1
5

. (13.5)

Setting Equation (13.4) equal to (13.5) yields the following term for the wall shear
stress:

τw =
0.072

(ReL)
1
5

1

2
%U2
∞. (13.6)
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Replacing the friction velocity with the wall shear stress and the density according to
Equation (13.2) and solving Equation (13.3) for y with y+ = 1 yields:

y =

√
ρν2

τw
=

√√√√2(ReL)
1
5 ν2

0.072U2
∞
≈ 10−6m, (13.7)

considering a blade velocity of about 10 m
sec at a rotation speed of 80.2 rotations per

minute and a blade length of 0.5m. That calculated node distance y would correspond
to a mesh resolution �ve thousand times �ner than the resolution of the �nest mesh used
for the simulation of the whole VWT propulsion system so far, and the mesh size of that
mesh is already about ten million elements. Given the computing resources of today,
it is evident that an adequate turbulence model must be employed, which proves to be
beyond the scope of this thesis.
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14 Ship Hull Approximation with Neural

Networks

So far, the described mesh moving algorithms allow simulating a �ow around the VWT
propulsion system. As the XNS �ow solver has also successfully been used to simulate
3D free-surface �ows of a trapezoidal channel [BA02], a spillway of a dam of the Ohio
River [Beh00, Beh01], and around a circular cylinder [GBT99], the goal is to extend the
free-surface capabilities of XNS so that a free-surface motion along the hull of the VWT,
which is shown in Figure 14.1, can be simulated. Conversely to the CSMM, EMUM and

Figure 14.1: Hull of the Voith Water Tractor.

SSMUM methods, where the mesh nodes on the moving boundaries do not move relative
to the boundary, a free-surface �nite element �uid �ow simulation of a ship hull needs to
apply a mesh moving technique where mesh nodes can move arbitrarily along the ship
hull according to the calculated wave touching the ship hull. As a consequence, to follow
exactly the air water interface, the surface geometry where the free surface moves along
must be known exactly in terms of a function. Regarding the implementation of XNS,
this function has to be coded inside the programme. So far, the functions for the tracking
of a free-surface motion along straight lines or planes like the boundaries of a trapezoidal
channel and along semi-cylindrical shapes are implemented. The representation of the
shape of a ship hull gets very complicated if a one to one implementation of the CAD
splines is carried out. This chapter presents an easy and rather unconventional approach
to enable a �nite element �ow simulation around a ship hull. Generally, the surface
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function originating from the design process can be represented by an IGES �le, NURBS
patches or in many other ways. Assuming an internal di�erent geometry representation
within a �nite element �ow solver, a conversion of the given design format of the ship
geometry to the customized format of the �ow solver must be made. However, there
are �nite element �uid solver approaches based on NURBS shape functions where such
a conversion is obsolete (see [BH08]). In the cases where a conversion is a necessity,
the following approach should give a good example how to deal with a conversion of an
IGES ship hull format to a simpler geometry representation. In the context of a ship hull
simulation, the �rst key point of this approach is that most of the ship hull part shown
in Figure 14.1 can be described with a convex function, where one pair of x and y values
matches only one z value, especially in the vicinity of the waterline. Therefore, a direct
mapping from the x- and y-coordinates to the z-coordinate is possible. This function is
called hull function in the following. With such a given hull function, the motion of the
waves along the ship hull can be easily calculated. In order to explain how a wave motion
can be tracked, only a section of a very simple ship hull shape is considered, compare
the blue body in Figure 14.2. Within this chosen section, the mapping from the x- and
y-coordinates to the z-coordinate can be done with one single convex function, especially
in the zone close to the waterline, which is indicated with red points in Figure 14.2.

Figure 14.2: Section of a simple ship hull shape.

In the zone close to the waterline, for each node on the water surface attached to the
ship hull a given ∆z is computed by the elevation equation and can then be transferred to
a ∆x and ∆y using the normal vector on the ship hull. The normal vector can be calcu-
lated via the hull function at any position on the hull. A second key point of our approach
is the generation of the hull function based on the IGES �le. Here the IGES data is used
to create a surface mesh in GRIDGEN, so that an arbitrarily large set of surface mesh
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nodes and their coordinates can be exported. This data set of mesh node coordinates is
then used to �t the parameters of a neural network based hull function. Generally, any
type of function can be used to �t the mesh node data set, e.g., polynomials. However,
polynomials are known for oscillations in the region between and further away from the
given data points. Neural networks, however, are known for their smooth representa-
tion of high-dimensional functions and for their compact representation of data, which is
important when the limitation of computer memory resources is considered. Therefore,
neural networks are applied for the generation of the hull function.
Though neural networks are widely used in all �elds of technical applications as well

as in the ship design process, the method of �tting the geometry data of a ship hull is
not known to the author. A very common application of neural networks, however, is the
�tting of CFD simulation input data to the calculated CFD output data. For example,
a �ow around several ship hull designs, which are parametrized, is simulated, and the
corresponding drag of the hull designs are calculated by conventional CFD software.
The ship hull parameter values serve as input and the calculated drag as output data
for the �tting of the neural network. Based on this speci�c use of neural networks, an
optimization framework where a neural network replaces an extensive CFD computer
model is described in [BSHS07]. In [ZHS02], neural networks are used to predict the
damage in a ship structure, and in [Kou03], to predict the wash and ship resistance.
The concept of neural networks can be regarded in two ways. From the mathemati-

cal point of view, an assembled function consisting of sums and single subfunctions like
hyperbolic tangents is �tted to a given data set by varying the parameters of the sub-
functions and the weights of the single sums. From the biological point of view, arti�cial
neural networks (ANN) can be considered as a simple copy from what is known on how
the human brain might work. It is believed that the human brain is powerful because of
its massive parallelism combined with a complex connectivity on the one hand and the
simple operations of single neurons on the other hand [Zel94].
Within an ANN, the simple single operation of a neuron is translated from the bi-

ological archetype, where chemical processes trigger an electrical pulse, to very simple
mathematical operations like a hyperbolic tangents, a multiplication and a summation.
The high connectivity among the neurons is modelled by connecting the mathematical
output of an arti�cial neuron to the inputs of many other neurons. There are many
di�erent types of ANNs, but in this chapter only the architecture and algorithm of the
most commonly used [Zel94] is presented; a feed-forward multi-layer perceptron (MLP)
neural network. Applied to the data-�tting of the hull function, the MLP in this case has
two input neurons corresponding to the x- and y-values of one mesh node and one output
neuron corresponding to the z-value of the mesh node. In between, there are many layers
of neurons, which have direct connection to the neurons of the next layer but not to the
further ones (cf. Figure 14.3).
How an input value passes through the neural network and creates an output value

is explained in the following. As the calculation of the output value, the z-coordinate
in this example, requires some vector-matrix multiplications, �rstly the sizes of these
vectors and matrices are given in Tables 14.1 and 14.2 below:
At �rst, the input values x and y are passed each separately to two input neurons, the x-
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Figure 14.3: Architecture of a multi-layer perceptron neural network.

value to the upper one and the y-value to the lower one (see Figure 14.3). In a forthcoming
matrix-vector operation and summation, the input values temp are calculated for the
neurons of the �rst hidden layer, Layer 1 in Figure 14.3. The vector biasinput→1 indicates
the bias vector. The bias vector biasinput→1 includes the single bias that has to be added
to the matrix-vector operation in order to pass the temp values from the input layer to
the �rst hidden layer:

temp = biasinput→1 + IW ·
(
x
y

)
, (14.1)

OutL1,i = tanh (tempi). (14.2)

Then, in each neuron i of the �rst hidden layer, the hyperbolic tangent of the single scalar
value tempi is evaluated. The output values of each neuron OutL1,i are then gathered to
the input vector for the next hidden layer OutL1 and multiplied by the matrix LW1→2,
weighting the outputs of each neuron from the preceding layer individually:

temp = bias1→2 + LW1→2 ·OutL1, (14.3)
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Abbr. Name Size
IW Input weights 10× 2
LW Layer weights 10× 10 from layer j to layer j + 1
OW Output weights 1× 10

Table 14.1: Dimensions of the neural network weights.

Input of the neural network Output of the neural network Output for a hidden layer(
x
y

)
(2× 1) z (1× 1) OutL (10× 1)

Table 14.2: Dimensions of the neural network input and output vectors.

OutL2,i = tanh (tempi). (14.4)

A general conversion from the values of one hidden layer j to the next hidden layer
j + 1 is:

temp = biasj→j+1 + LWj→j+1 ·OutLj , (14.5)

OutLj+1 i = tanh (tempi). (14.6)

The output is then generated by a vector times vector operation:

z = bias10→output +OW ·OutL10. (14.7)

The process of �tting the ANN according to the data set consisting of hundreds of mesh
node coordinates is called training. Herein, the entries, also called weights, of the matrices
IW and LW and the output weight vector OW are adapted such that all input pairs
of x- and y-values produce the lowest residual E, that is the sum of the square of each
deviation of zNN from the correct single output zdata as possible:

E =
1

2

∑
(zNN − zdata)2. (14.8)

A simple adaptation mechanism ∆wLWij for each weight wLWij within a weight matrix
LW is based on the derivative of the square of the output error with respect to each single
weight variation dwLWij , and can be formulated like the following:

∆wLWij = −λ dE

dwLWij

, (14.9)

where λ is an overall training parameter, which can be adapted manually according to
the performance. There are many variations of this simple �tting algorithm; typically,
the more sophisticated ones prevent oscillations during the training phase and over�tting.
Over�tting occurs when the training parameters are too strongly adapted to the training
data, which then leads to a bad performance in the region where there is no training data
available; this is also called a bad generalization performance. In [Ney00] it is proven
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that a training algorithm for neural network can optimize the network so that at best the
conditional probabilities of the training events can be met exactly, where one data set, in
this case the presence of one x-, y- and z-value is considered as an event where the value
z has a certain likelihood under the condition that the values x and y are given. For the
shown geometry, a 10-layer MLP with 10 neurons in each hidden layer can be trained in
that way that the maximal single error of all of the data points zNN − zdata is less than
0.01 percent. Therefore, the normal vector of each node can be calculated precisely so
that a wave motion along the ship hull can be computed without crossing node paths on
the hull (see Figure 14.4), where a wave motion (red nodes) along an imaginary ship hull
is followed over four time steps. In the case of extreme wave motions along the hull of
the VWT, where the waterline reaches the uppermost part of the hull, a direct mapping
from the x- and y-coordinates to a z-coordinate for the entire hull shape is not possible.
Then the hull must be subdivided in various parts so that a direct mapping is possible
for the single parts of the hull. The training and testing of the neural networks for single
parts of the hull showed good results. Therefore, this method is regarded as very e�ective
for the embedding of ship hull data into �ow simulation.
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Wave along ship hull at time step 1. Wave along ship hull at time step 2.

Wave along ship hull at time step 3. Wave along ship hull at time step 4.

Figure 14.4: Wave along a �ctitious ship hull.
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15 Summary and Outlook

In this thesis, a mesh-moving strategy was developed for an unsteady Navier-Stokes �uid
�ow simulation around the propulsion system of a Voith Water Tractor (VWT) consisting
of two Voith Schneider propellers (VSP) and a nozzle plate. In the beginning, the gov-
erning equations of water in motion, which is modelled as an incompressible �uid, were
introduced, along with a brief description of the three most common spatial discretization
approaches and an explanation of the space-time �nite element discretization concept.
Furthermore, it was shown that ensuring mass and momentum conservation and follow-
ing a moving boundary within the �uid domain at the same time is a challenging task
within the �eld of CFD. Given the broad variety of mesh moving schemes and also the
choice of the discretization approaches, it was argued that, for the �uid �ow simulation
around the VWT propulsion system, the in-house space-time �nite element �uid solver
promises to have the highest accuracy when tracking the interface of the moving blades
compared to alternatives like a solver combined with a moving Chimera mesh concept.
Based on already implemented mesh moving schemes like the Shear-Slip Update Mesh

method (SSMUM) and the Elastic Mesh Update Method (EMUM), the necessary steps
were followed to apply these methods to the given CFD 3D real-world problem. Whereas
the application of the SSMUM approach did not reveal major di�culties, that of the
EMUM approach did. The EMUM approach regards the �nite element mesh as an elas-
tic solid and solves the linear elasticity equation for the node motion. Therefore, the
element deformation cannot be controlled explicitly and this can lead to tangling ele-
ments in regions of high relative motion of neighbouring elements, especially in a critical
region between the bottom of the blades and the nozzle plate, which is situated just 2.6
centimetres below the blades of the VSP. There, the EMUM algorithm even produced
tangling elements when only turning a single blade of a VSP a few degrees. It is impor-
tant to mention that the generation of various meshes with di�erent resolutions and the
application of varying mesh motion parameters did not show a signi�cant improvement
of this EMUM behaviour.
While trying to partly prescribe the EMUM node motion in the critical region, a

Concentric Shell Mesh Motion (CSMM) approach was worked out in parallel, where the
motion of every mesh node was explicitly prescribed. On the one hand, the CSMM
concept demands a high e�ort in programming the whole mesh generation, whereas the
mesh motion algorithm is the simplest and cannot tangle. On the other hand, the EMUM
approach goes along with an easier mesh generation, as commercial mesh generation tools
like Gridgen can be used, but this method always shows an inherent danger of tangling
and unpredictable mesh motion when a blade is turned back and forth several times. In
order to directly compare these two alternative mesh motion concepts, a comparative
re�nement study was performed wherein the unsteady Navier-Stokes �ow around a �xed
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blade was calculated. For both methods, meshes with consecutively �ner resolutions are
created around a single blade of a VSP and then deformed when the blade was turned
to the maximal angle of attack, regarding one full VSP rotation at the operation point
of maximal thrust when the VWT runs on open water speed. The comparison between
the EMUM and the CSMM approach revealed that the CSMM concept created worse
elements in the critical region below the blade bottom and was very hard to handle when
it came to the creation of smooth transitions from the most �nest mesh resolution at
the blade surface to the coarser zones of the mesh further away from the blade. This
resulted in an overall worse mesh quality of the CSMM concept, and as a result the �uid
�ow re�nement study performed with consecutively �ner CSMM meshes did not show
convergent force values exerted on the blade. In addition, when solving the �uid �ow on
most of the CSMM meshes, spurious oscillations of pressure could be observed in the �rst
unsteady simulations due to the bad element quality, and for some meshes, a convergent
�uid �ow simulation could never be achieved.
On the contrary, the re�nement study on the EMUM meshes showed a converging

behaviour of the forces on the blade and that the two most �nest meshes showed force
values which varied only less than three percent from each other. Additionally, a sec-
ond study proved that, considering the �nest meshes of the EMUM concept, the highly
deformed elements between the blade bottom and the nozzle plate did not in�uence the
calculated force values more than four percent. For these reasons, the EMUM approach
was selected for the full ten blade VWT proplulsion system �uid �ow simulation.
Here again, a re�nement study was performed with the similar mesh resolutions around

the blade, as it was done with the single blade re�nement study. Again, the two �nest
meshes showed average force values and also characteristics of the force values that agree
very well. The force values within the horizontal plane parallel to the main �uid �ow
direction did not deviate more than �ve percent at any time, considering a simulation
where the two VSPs were turned several full rotations. The average thrust of a single
blade varied by only twelve percent compared to the measured and simulated data by
Voith, but the characteristics of the force values deviated signi�cantly according to Voith.
A probable reason for these strong deviations might be that the boundary layer, which

evolves at the blade surfaces as a result of surface friction and attachment of the water
molecules, was not resolved properly, even with the �nest meshes used in the re�nement
studies. Using the boundary layer theory based on the work of Prandtl, Karman and
Blasius, it was shown that it is essential to use the universal wall log law when simulat-
ing the �uid �ow around the VWT propulsion system, considering the given computing
resources. According to the author, the implementation of a wall log law function would
be the next promising step of a further development of the XNS solver towards a more
accurate simulation of the �ow around the VWT propulsion system. Fortunately, the
di�culties regarding a reliable mesh motion approach are overcome as the EMUM ap-
proach combined with the SSMUM and the space-time �nite element discretization has
proven to be robust and show good convergence behaviour.
Beside the �ow simulation of the VWT propulsion system, �rst ideas about a free-

surface �ow simulation around the hull of the VWT were presented. The di�cult task of
representing the ship hull shape within the �uid �ow solver could be overcome by the use
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of arti�cial neural networks and a very special division of the ship hull, such that each
geometric part can be approximated with a simple function, which maps two independent
coordinates to the third one within a 3D space. Using this approach, the implementation
of the complicated CAD spline based ship hull geometry could be avoided.
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16 Appendix - Re�nement Study Meshes

16.1 Meshes for the Single Blade Re�nement Study

16.1.1 EMUM Meshes

# elements 1204352
dsWings 40
dsBox 200

boundary_decay 1, 0
n_circum 100

n_cylinder 18
n_cone 25
ratio 2, 0

Table 16.1: EMUM.40 mesh and mesh generation parameters
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# elements 2959924
dsWings 20
dsBox 150

boundary_decay 1, 0
n_circum 120

n_cylinder 20
n_cone 50
ratio 1, 0

Table 16.2: EMUM.20 mesh and mesh generation parameters

# elements 5382674
dsWings 10
dsBox 150

boundary_decay 1, 0
n_circum 140

n_cylinder 30
n_cone 60
ratio 1, 0

Table 16.3: EMUM.10 mesh and mesh generation parameters
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# elements 12653669
dsWings 5
dsBox 150

boundary_decay 1, 0
n_circum 180

n_cylinder 40
n_cone 65
ratio 2, 0

Table 16.4: EMUM.05 mesh and mesh generation parameters
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16.1.2 Modi�ed EMUM Meshes

# elements 1204665
dsWings 40
dsBox 200

boundary_decay 1, 0
n_circum 70

n_cylinder 20
n_cone 40
ratio 1, 0

Table 16.5: EMUM.40.mod mesh and mesh generation parameters

# elements 2661962
dsWings 20
dsBox 150

boundary_decay 1, 0
n_circum 100

n_cylinder 25
n_cone 40
ratio 1, 0

Table 16.6: EMUM.20.mod mesh and mesh generation parameters

123



# elements 4630671
dsWings 10
dsBox 150

boundary_decay 1, 0
n_circum 120

n_cylinder 30
n_cone 60
ratio 1, 0

Table 16.7: EMUM.10.mod mesh and mesh generation parameters

# elements 12457247
dsWings 5
dsBox 150

boundary_decay 1, 0
n_circum 150

n_cylinder 40
n_cone 90
ratio 1, 0

Table 16.8: EMUM.05.mod mesh and mesh generation parameters
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16.1.3 CSMM Meshes

# elements 1204352
dsWings 40
dsBox 200

boundary_decay 1, 0
n_circum 100

n_cylinder 18
n_cone 25
ratio 2, 0

Table 16.9: CSMM.40 mesh and mesh generation parameters

# elements 2959924
dsWings 20
dsBox 150

boundary_decay 1, 0
n_circum 120

n_cylinder 20
n_cone 50
ratio 1, 0

Table 16.10: CSMM.20 mesh and mesh generation parameters
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# elements 5382674
dsWings 10
dsBox 150

boundary_decay 1, 0
n_circum 140

n_cylinder 30
n_cone 60
ratio 1, 0

Table 16.11: CSMM.10 mesh and mesh generation parameters

# elements 12653669
dsWings 5
dsBox 150

boundary_decay 1, 0
n_circum 180

n_cylinder 40
n_cone 65
ratio 2, 0

Table 16.12: CSMM.05 mesh and mesh generation parameters
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16.1.4 Modi�ed CSMM Meshes

# elements 1204665
dsWings 40
dsBox 200

boundary_decay 1, 0
n_circum 70

n_cylinder 20
n_cone 40
ratio 1, 0

Table 16.13: CSMM.40.mod mesh and mesh generation parameters

# elements 2661962
dsWings 20
dsBox 150

boundary_decay 1, 0
n_circum 100

n_cylinder 25
n_cone 40
ratio 1, 0

Table 16.14: CSMM.20.mod mesh and mesh generation parameters

127



# elements 4630671
dsWings 10
dsBox 150

boundary_decay 1, 0
n_circum 120

n_cylinder 30
n_cone 60
ratio 1, 0

Table 16.15: CSMM.10.mod mesh and mesh generation parameters

# elements 12457247
dsWings 5
dsBox 150

boundary_decay 1, 0
n_circum 150

n_cylinder 40
n_cone 90
ratio 1, 0

Table 16.16: CSMM.05.mod mesh and mesh generation parameters
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