INTEGRATING VIRTUAL SUBSTITUTION
INTO STRATEGIC SMT SOLVING

Von der Fakultat fiir Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen
Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

FLORIAN CORZILIUS
aus Geldrop (Niederlande)

Berichter Prof. Dr. Erika Abrahdm
Ass.-Prof. Pascal Fontaine, PhD

Tag der miindlichen Priifung 21.10.2016

Diese Dissertation ist auf den Internetseiten der Universitatsbibliothek online verfiigbar.

Abstract

This thesis addresses the integration of real algebraic procedures as theory
solvers into satisfiability modulo theories (SMT) solvers, in order to check non-
linear real- and integer-arithmetic formulas for satisfiability. There are plenty
of procedures to choose from and we aim for a general framework that al-
lows us to select and combine them. The main part of this thesis concerns
one specific example of the aforementioned integration: the virtual substitu-
tion method. Here we also optimize this method with respect to satisfiability
checking and extend it such that it can be used for integer arithmetic.

We present the results of this thesis in the following order:

1. The design, functionality and features of the toolbox SMT-RAT, which
implements a framework for a strategical combination of procedures for,
e.g., real and integer arithmetic. This toolbox has been developed as

part of this thesis and can also be used to assemble an SMT solver.

2. An SMT compliant theory solver based on the virtual substitution, that
works incrementally and supports backtracking and infeasible subset gen-

eration.

3. Heuristics for strategic choices during a satisfiability check of this theory
solver and optimizations, which exploit local conflicts and bounds on the

variable’s domains.

4. An evaluation of the SMT compliant features, the heuristics and the
optimizations by integrating this theory solver into an SMT solver, which
we assembled with SMT-RAT. We also combine this theory solver with

other procedures and compare with state-of-the-art solvers.

5. For the purpose of checking nonlinear integer-arithmetic formulas for
satisfiability, we present and evaluate an embedding of the virtual sub-
stitution into a branch-and-bound framework, which we specifically tai-

lored for the case where a combination of procedures is used.

6. An optimization of the computation of the rational functions, which
represent the probability of reaching certain states of parametric discrete-
time Markov chains. Here we make use of a synergy of the greatest
common divisor calculation of two polynomials, polynomial factorization
and intermediate result caching.

Zusammenfassung

Diese Doktorarbeit behandelt die Integrierung reell-algebraischer Prozeduren
als Theory-Solver in Satisfiability-Modulo-Theories-Solver (SMT-Solver), um
nichtlineare reell- und ganzzahlig-arithmetische Formeln auf Erfiillbarkeit zu
tiberpriifen. Es gibt viele Prozeduren, welche sich hierfiir anbieten, und wir
streben ein generelles Framework an, mit dem man diese auswihlen und
kombinieren kann. Der Hauptteil dieser Doktorarbeit beschéftigt sich mit
einem spezifischen Beispiel fiir die obengenannte Integrierung: der Virtual-
Substitution-Methode. Hierbei wird diese Methode auch beziiglich der Erfiill-
barkeitsiiberpriifung optimiert und auf die Anwendbarkeit auf ganzzahlige
Arithmetik erweitert.

Wir stellen die Resultate dieser Doktorarbeit in der folgenden Reihenfolge vor:

1. Das Design, die Funktionsweise und die Bestandteile der Toolbox
SMT-RAT, welche ein Framework fiir die strategische Kombination von
Progeduren fiir, zum Beispiel, reelle und ganzzahlige Arithmetik imple-
mentiert. Diese Toolbox wurde als Teil dieser Doktorarbeit entwickelt
und kann auch dafiir benutzt werden einen SMT-Solver zusammenzu-

stellen.

2. Einen SMT-konformen Theory-Solver basierend auf der Virtual-
Substitution-Methode, was bedeutet, dass er inkrementell arbeitet und

Backtracking sowie das Generieren unerfiillbarer Teilmengen unterstiitzt.

3. Heuristiken fiir die vielen Wahlmoglichkeiten wéhrend der Erfiillbar-
keitsiiberpriifung dieses Theory-Solvers und Optimierungen, welche lo-

kale Konflikte und Schranken auf den Variablendomdnen ausnutzen.

4. Eine Auswertung der SMT-konformen Eigenschaften, der Heuristiken
sowie Optimierungen mittels einer Integrierung dieses Theory-Solvers

in einen SMT-Solver, welchen wir mit SMT-RAT zusammengestellt haben.

5. Zwecks der Erfiillbarkeitsiiberpriifung nichtlinearer ganzzahlig-
arithmetischer Formeln, présentieren und evaluieren wir eine
Einbettung der Virtual-Substitution-Methode in ein Branch-and-Bound-
Framework, das wir spezifisch auf den Fall der Kombination von
Prozeduren zugeschnitten haben.

6. Eine Optimierung der Berechnung rationaler Funktionen, welche die
Wahrscheinlichkeit reprdsentieren bestimmte Zustdnde parametrischer
Markow-Ketten mit diskreter Zeit zu erreichen. Hierbei verwenden wir ein
Zusammenspiel der Berechnung des grof3ten gemeinsamen Teilers zwei-
er Polynome, von Polynomfaktorisierungen und von Zwischenergebnis-
Caching.

Acknowledgements

Reminiscing recent years, I am a little bit overwhelmed. I certainly never took it for granted
that I got the chance to be a PhD-student and work on a topic I absolutely adored. I lived my
own childhood dream by being a scientist, meeting so many fantastic people with whom I share
invaluable experiences and visiting spectacular places all over the world.

I am so thankful that Erika Abrahdm gave me this chance and I thank her particularly for all
the patience, guidance and marvelous discussions. I am also deeply grateful that I was part of
her group. It was a great joy and really inspiring to work with Xin Chen, Nils Jansen, Gereon
Kremer, Ulrich Loup, Johanna Nellen and Stefan Schupp. We had a lot of fun together and some
unforgettable evenings.

I also want to thank all those I had the pleasure to collaborate with over previous years: Erika
Abraha’un, Bernd Becker, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, Gereon Kremer,
Ulrich Loup, Karsten Scheibler, Stefan Schupp, Matthias Volk and Ralf Wimmer.

Furthermore, special thanks go to Pascal Fontaine and Thomas Sturm for the many inspiring
discussions in our meetings.

Being a PhD-student involves lots of traveling, engaging projects and deadlines, but it unfortu-
nately comes at the cost of missing out on time with the ones you love. I am very thankful that
my mother, my father and my sisters, nonetheless, always supported me and for all the faith they
had in me. This holds none more so than for my wife, Becky, who was patient, if plans had to be

altered, who pushed me, if my motivation faded, and who revised every single line of this thesis.

Contents

1

Introduction 1

1.1 Contributions and structure of thisthesis

1.2 Relevantpublications. i e 11
1.2.1 Peer-reviewed publications 11
1.2.2 Technical teports o o i vttt e e e e e e 12
1.2.3 Contributions made by theauthor 12

1.3 Further publicationsttt 13

Foundations 15

2.1 Numbers, sets and functions e 15

2.2 Graphs. e 17

2.3 Real and integer arithmetic 18
231 Syntaxo e e e e e e e e e 18
2.3.2 SemantiCs v vt e e e e e e e e e 22

2.4 Normalizations. i i e 24
2.4.1 Polynomials 24
242 Formulas e 28

2.5 SATsolvIng e 35
2.5.1 Data structures and sub-procedures, 36
2.5.2 Mainalgorithm e 39
2.5.3 Correctness and completenesso v v e 40

2.6 SMT SOIVING i e e e e 41
2.6.1 Applications v v e e e e 42
2.6.2 Checking first-order formulas for satisfiability: State-of-the-art. 42
2.6.3 Theriseof SMTsolving ittt 44
2.6.4 Tools and standards (2016) @ i 50

ix

2.7 Virtual substitution e 51
2.7.1 Constructing test candidates with side condition 52
2.7.2 Substituting variables by test candidates virtually 56
2.7.3 Quantifier elimination with the virtual substitution 58

SMT-RAT: Strategic and Parallel Toolbox for SMT Solving 61

3.1 Modules 62

3.2 SHTATEEY . . v v v et e e e e e e e e e e e e e e e 63

3.3 Manager. . v v v i e e e e e e e e e e e e e e e e e e 65

3.4 Procedures implemented asmodules, 65
3.4.1 Preprocessingmodules o 65
3.4.2 SMTsolvingmodules einne.. 66
3.4.3 Branchinglemmas 69
3.4.4 Theorysolvingmodules., 69

3.5 Strategy examples and their application 71

Virtual Substitution in SMT 73

4.1 Virtual substitution for satisfiability checking 74

4.2 An SMT-compliant theory solver based on the virtual substitution 75

4.3
4.4

4.2.1 Data structure to store a depth-first search tree of the virtual substitution . 75

4.2.2 Incremental adding of constraints, 79
4.2.3 Belated removing of constraints. oL 82
4.2.4 Checking a conjunction of constraints for satisfiability 84
4.2.5 Creatingasolution. ittt ittt e 89
4.2.6 Generating small reasons for infeasibility 90
4.2.7 Example 92
Combining virtual substitution with other procedures 111
Future work e 112

4.4.1 Using an incremental and infeasible subset generating SAT solver for the
case distinCtion i . it e e e e 112

4.4.2 Using SMT-RAT backends to check virtual substitution results for satisfiability113

Improving the Performance of the Virtual Substitution in SMT 115
5.1 Choice of the elimination variable and constraint to provide test candidates for . . 115
5.1.1 Measure of quality of constraints for test candidate construction 116
5.1.2 Measure of quality of variables for elimination 118
5.2 Conflict construction and backjumping 119
5.2.1 Backjumping 120
5.3 Local conflictdetection. 121

5.4 Exploiting variablebounds L L 123

5.4.1 Interval arithmetic 125

5.4.2 Evaluation and simplification of formulas using variable bounds 126

5.4.3 Interval constraint propagationttt 128

5.4.4 Using variable bounds to filter out test candidates 132

5.4.5 Simplifying formulas with respect to variable bounds 135

6 Experimental Results for Real Arithmetic 139
6.1 Benchmarksets 139
6.2 Settings v i i e e e e 140
6.3 An SMT-compliant theory solver based on the virtual substitution 141
6.4 Choice of the elimination variable and constraint to provide test candidates for . . 142
6.5 Backjumping, local conflict detection and exploiting variable bounds 146
6.6 Comparison of SMT-RAT strategies with state-of-the-arttools 147
6.7 Parallel SMT-RAT strategiesot it ittt it e et e 151

7 Virtual Substitution for Integer Arithmetic 155
7.1 Branch-and-bound with virtual substitution 157
7.2 Experimental results 159

8 A Synergy of the Greatest Common Divisor Calculation, Factorization and Inter-

mediate Result Caching 163
8.1 Factorized polynomials: Partial factorizations as polynomial representation 164
8.2 Greatest common divisor computation of factorized polynomials 165
8.3 Using factorized polynomials in rational functions 169
8.4 Experimentalresults e 170
9 Conclusion 173

Literature 175

CHAPTER 1

Introduction

Thinking back to mathematics lessons at school, most students started struggling when it came
to solving a word problem; that is a mathematical exercise presented in text form. No doubt the
first obstacle for this task is the translation of text to mathematical notation or its geometrical
interpretation. Then we need to recognize patterns and identify techniques which might help
to find a solution to the posed question. In the majority of cases these questions ask for one
solution or maybe an optimal solution. School prepares young people using these exercises with
the assumption that they will encounter many such problems, if not in daily life but in work life,
especially if it concerns a rather complex topic.

As a university student, in particular for natural sciences, one has to deal with proving mathe-
matical statements. Although we do not aim at a single solution as for word problems, we also
need to recognize patterns and identify techniques, but this time in order to find a finite series of
implications which either prove or disprove the statement.

About 1920, the mathematician David Hilbert started a project seeking

* a precise formal language in order to specify, for instance, word problems or statements

that we want to prove, and

* afinite set of axioms, which are provably consistent and can be applied (in a finite sequence)
in order to prove any statement or solve any word problem, which could be expressed in

the formal language.

In 1931, Kurt Godel disabused the people who believed that this project could ever accomplish
its goal. He proved in his incompleteness theorems [G6d31] that, in general, there is no formal
language and set of axioms, which fulfill these needs.

Nevertheless, the foundations of computability theory were laid, which aims to classify problems

according to their decidability and (if decidable) according to the complexity of solving them.

It is undeniable how crucial it is to know about a problem’s decidability and complexity before
trying to solve it. For instance, let us have a look at the tenth problem of the famous 23 problems
published by Hilbert himself in 1900 [Hil02]:

“Given a Diophantine equation with any number of unknown quantities and with ra-
tional integral numerical coefficients: To devise a process according to which it can be
determined by a finite number of operations whether the equation is solvable in rational

integers.”

Without loss of generality, we are looking for integer values which we assign to the variables
X1,..,X, in a polynomial p(x, .., x,) such that it evaluates to zero, i. e., for an integer solution of
the equation p(x,..,x,) = 0. In 1970, Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia
Robinson showed that there is no decision procedure that always determines (in a finite number
of operations) whether an integer solution for a given equation exists [Mat70][Mat72].

If we assume that p is linear, that is we can bring it to the form a;x; +..+a,x,, where a4, .., qa,
are integers, the problem becomes decidable. Even if we consider a system of equations and
inequalities (where the relation symbol is <, <, > or >) over linear polynomials, which means
that all of these equations and inequalities have to hold at the same time, the problem is decidable.
However, the number of operations, which have to be done in order to determine whether an
integer solution exists, grows exponentially as the number of variables (n) increases. If we ask
for the existence of a real solution instead, that is we relax the requirement that the solution must
be integer, this number of operations grows only polynomially as n increases. Even if we require
this solution to be optimal (with respect to a linear objective function), it still grows polynomially.

Let us go back to our initial setting of word problem solving and theorem proving. In both
cases, it is imperative that we are able to logically connect sub-problems or sub-statements. In a
language we would usually use, e. g., the words “and”, “or”, or “implies”, which logically connect
two statements, or the word “not” in order to negate a given statement. In mathematical logic
there are equivalent Boolean operations. Regarding the just listed logical connectives, we usually
use the symbols A (and), V (or), — (implies) and — (not). If we use these Boolean operators in
order to connect propositions, which can be either true or false, we obtain a propositional formula.
For example, consider the following statements, where we have attached the translation to a

propositional formula:

(b, A by) - bs

1. If Mario is hungry and currently too lazy to cook, then he puts a frozen pizza in the oven.
by
——
2. Mario is hungry.

by

3. Mario is currently too lazy to cook.

From these three statements, it follows that Mario puts a frozen pizza in the oven, that is b; must

be true. Therefore, we obtain a solution to the above statements, if we assign the value true to
the variables b,, b, and bs.

In general, it is not easy to find solutions for propositional formulas. As we can assign either
true or false to each Boolean variable, there are clearly finitely many candidates which come into
question. Hence, we are dealing with a decidable problem. However, these candidates count 2",
if the number of variables in the formula is n. Unfortunately, this is also the worst case complexity
of any algorithm which can check whether a solution exists for a given propositional formula if
P#NP [Coo71].

Nonetheless, scientists kept on designing ever improving algorithms exploiting the inherent
structure of propositional formulas, for instance of formulas which have their origins in a scientific
or industrial application. A breakthrough was achieved by Martin Davis, Hilary Putnam, George
Logemann and Donald W. Loveland in 1962 [DLL62], which ultimately led to today’s well-known
SAT solvers [MSS99][MMZ*01]. They are designated for checking a propositional formula for
satisfiability, i. e., for finding out whether the formula has a solution (and is satisfiable) or not
(and is unsatisfiable). SAT solvers apply a combination of an inference mechanism, such as we
have applied in the previous example, and conflict driven learning. Nowadays, these solvers are
able to check propositional formulas with up to ten million variables for satisfiability in only a
few minutes or often even a few seconds [JBRS12].

The success story of SAT solvers shows that despite the high complexity, which must be accepted
in the worst case when solving such problems, we can achieve a remarkable performance with
sophisticated algorithms equipped with a learning ability. In the last decade, scientists have
started an attempt to utilize SAT solvers in order to check formulas for satisfiability, which do not
only combine propositions with Boolean operators but also constraints, e. g., the aforementioned
equations and inequalities comparing linear or nonlinear polynomials in real or integer valued
variables. We refer to these formulas as satisfiability modulo theories (SMT) formulas and present
an example in order to show their applicability.

Consider the problem in Figure 1.1. We want to know whether we can position three pizzas of
different sizes on a baking tray such that they do not overlap. We can encode this problem to an
SMT formula, which contains the real-valued variables

* 1y, ry and r3 denoting the radii of the three pizzas we choose to put onto the baking tray
and

* X1, Y1, X2, ¥9, X3 and y3 denoting the coordinates of the two-dimensional center points of
these pizzas.

Without loss of generality, we can assume that the baking tray’s bottom left corner is at (0, 0).

Then we can encode this problem by the SMT formula

Ppizza = Pchoose A Pon-baking-tray A Pno-overlapping

y
40
30
Pizza A Pizza C 20 4
@ 26cm @ 25cm
10 ~
x
Pizza B Pizza D
@ 20cm @ 27cm a
. Pizza B
Baking tray Pizza D & 20cm
60cm x 40cm @ 27cm
Pizza C
@ 25cm

Figure 1.1: The pizza problem: Can you fit three pizzas of different sizes on a baking tray?

with
3 2 3
Pchoose = Nm=1Bvrn=10vr=2vr=9) A AN A -=r)
=1 i=1 j=i+1
3
¥ on-baking-tray /\ (x;+r;, <60 A x;—1r; =20 A y;+1r; <40 A y;—r; =0)

N
I
—

|
S

Pno-overlapping

1

3
AN =X+ i —y)? = (ry + 1)
1j=i+1

The formula ¢4,00se €nsures that we can only choose three pairwise different pizzas, where
Pon-baking-tray SPecifies that the three chosen pizzas are all within the margins of the baking tray.
The formula ¢y, overlapping defines, by the use of the Euclidean distance, that these pizzas do not
overlap. Therefore, the three constraints in ¢, verlapping are nonlinear.

Asking for the satisfiability of this nonlinear real-arithmetic (NRA) formula, has been proved
to be decidable by Alfred Tarski in 1948 [Tar48]. A complete procedure for NRA, that is a
procedure which, given an NRA formula, can always determine whether it is satisfiable or not,
is the cylindrical algebraic decomposition (CAD) method introduced by George E. Collins in 1975
[Col75]. The worst case complexity of this procedure grows exponentially as the number of
variables in the formulas grows [DH88]. Indeed, the CAD method tends not to perform very
well on many examples. Fortunately, there are further incomplete procedures for NRA, which

often perform better than the CAD method. We can use Grobner bases in order to exclude that
there is a common complex solution for a set of equations, ruling out the existence of real-
valued solutions [BWK93]. Interval constraint propagation (ICP) narrows down an initially given
interval over-approximation of possible solutions and thereby might detect that no solution exists
[FHT'07][GGI"10]. However, ICP can only guarantee to find or rule out solutions within a
certain precision. The virtual substitution (VS) method, on the other hand, is limited in the
degree of the variables in a given formula [Wei97]. Nonetheless, it is applicable to a wide range
of problems.

The CAD and VS methods are originally designed as quantifier elimination procedures for NRA
formulas, where some variables are existentially or universally quantified (i.e., 3x.¢ = there
exists a value for x such that ¢ holds or Vx.¢ = for all values for x ¢ holds). Our setting, where
we want to check a formula for satisfiability, is equivalent to determining the formula’s truth
value (true or false) if we assume that all of its variables are existentially quantified (in the form
dx;..3x,.¢, where ¢ is quantifier-free and contains only the variables x, .., x,,). Therefore, we
can directly use the VS and CAD methods, if we let them eliminate all (quantified) variables
of this formula. It also works, if the formula is not conjunctive. For instance, in the previous
example, Y, baking-tray A1 Pno-overlapping aT€ conjunctive, which means that all constraints have
to hold. In contrast to this, @ 00se €ncodes a combinational problem. It is enough to fulfill at
least one equation in each of the formula’s disjunctions in order to make it satisfiable and there
are 4 - 3 -2 = 24 possible ways to achieve this. With both the CAD and the VS method we have to
deal with all constraints in the formula at once, even though it would be enough to only consider
some of them as it is the case for ¢ pose-

SMT solving has the intention that a SAT solver chooses some constraints of a given formula,
which assure that the Boolean structure of the formula is satisfied as long as they are satisfiable.
Therefore, we need to check a conjunction of constraints for satisfiability, which is achieved with
a theory solver. For NRA formulas, this theory solver could implement, for instance, the CAD
or the VS method and only has to deal with conjunctions of some of the constraints of a given
formula. There are already tools which provide implementations based on the CAD and the VS
method. These tools, which are often referred to as computer algebra systems, have their origins in
a field of research, which addresses, i. a., NRA formulas for a much longer time than SMT solving:
symbolic computation. It stands to reason that we can plug in these tools as theory solvers in an
SMT solver. However, for an optimal collaboration with the SMT solver’s SAT solver, a theory

solver needs to fulfill certain requirements.

1. The theory solver only aims to check a conjunction of constraints for satisfiability. Instead
of using, e. g., a quantifier elimination procedure, which can handle more general formulas,

the theory solver should be optimized for this special purpose.

2. During SMT solving we invoke the theory solver frequently, each time asking for the sat-

isfiability of a conjunction of constraints. Often, this conjunction is only slightly changed

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

between two consecutive theory solver invocations. Therefore, the theory solver optimally
keeps as much information from previous invocations as possible in order to speed up the
performance of the current one.

3. In case the theory solver detects that a conjunction of constraints is unsatisfiable, the SMT
solver’s SAT solver excludes this combination from its search. If the theory solver also
provides a subset of the constraints, which is still unsatisfiable, the SAT solver can exclude
all combinations, which contain these constraints instead. This can dramatically reduce

the number of theory solver invocations that are needed during the SMT solving process.

We have listed some of the existing methods, which can be utilized for checking an NRA formula
and in particular a conjunction of NRA constraints for satisfiability. However, it highly depends on
the formula, which of these methods performs best. Due to the high worst-case complexity it often
means that one method finds out the formula’s satisfiability within seconds or minutes where
the other method does not yield a result within hours, days or even much longer. Optimally, we
would be able to choose from a set of implementations for each of these methods, but it remains
the problem of which method would be the best choice for a given formula. Moreover, each of
the aforementioned methods has its own heuristics and choices of sub-procedures, which raises
opportunities for a performance tuning. Finally, we can also combine these methods as it has
been suggested in both symbolic computation [DSW98] as well as SMT solving [dMP13].

SMT solving has already been successfully applied to academic and industrial problems
[BKM14]. For instance, it made a contribution towards the detection of design errors in the
logical functioning of modern digital electronic chips. It has also been useful within the context
of safety-critical embedded software. Furthermore, SMT solvers have been employed in order to
prove correctness or detect bugs of programs, using the programmer’s invariants/assumptions or
simulating a parametrized run violating some properties. With similar techniques, we can also
find vulnerabilities for a security attack. For all of these applications it would be of great use to be
able to also pose satisfiability checks involving NRA formulas. In contrast to the already widely
used logics for SMT solving, which achieved the successes just described, we have a greater choice
of methods for NRA and, more importantly, they are fairly difficult to understand and implement.
Fortunately, plenty of expertise exists within the field of research of symbolic computation. A
recent initiative in the context of the H2020-FETOPEN-CSA project SC? aims to bring together
scientists from symbolic computation and SMT solving, with the goal that they become aware
of each other’s achievements and are able to unify their strengths in order to tackle practical
problems [AAB*16].

1.1 Contributions and structure of this thesis

In this chapter, we have already provided an insight into SMT solving of NRA formulas and the

challenges we have to deal with when designing and implementing theory solvers based on the

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

plenty and mostly rather complex methods we could use for this purpose. In Chapter 2, we
specify the syntax and semantics of the formulas we deal with and introduce the most important
procedures on which the contributions of this paper rely on: SAT solving, SMT solving and the
virtual substitution method. This lays the foundations for the contributions of this thesis, which
we explain in the chapters 4 - 8 in detail and are summarized in the following paragraphs. We

conclude this thesis in Chapter 9.

A toolbox for strategic and parallel SMT solving As mentioned before, there are many
methods which can be applied for the satisfiability check of an NRA formula. It is in general un-
clear which method performs best for a given formula and the right choice can influence whether
we are able to determine the satisfiability within seconds/minutes or hours/days. Moreover, we
want to be able to easily combine these methods.

Under these circumstances we had to rethink the common approach for SMT solving and came
up with a novel framework, which defines a common interface for implementations of procedures
that contribute to a formula’s satisfiability check. In the first place, these so called modules
were intended to provide NRA procedures in the form of theory solvers that are SMT compliant,
that is they comply with the aforementioned requirements for a performant integration into
an SMT solver. However, it turned out to be an interface which is general enough to bear the
entire interaction within an SMT solver. This extremely modular approach aims specifically at
the possibility of combining modules according to a user-defined strategy, which specifies which
module is used to solve a formula for satisfiability based on the solving history and the formula’s
properties. In addition, we allow modules to run in parallel which makes it possible to overcome
the uncertainty about which method performs best. In Chapter 3, we present our open-source
C++ toolbox SMT-RAT, which implements this framework and provides a set of modules. It can
easily be extended by further modules and provides an intuitive user-interface for the creation of
solving strategies. Such a strategy can yield, e. g., a theory solver, which can be embedded into a
state-of-the-art SMT solver. In addition, the provided modules allow us to specify a strategy that
serves as an SMT solver. Using such a strategy, SMT-RAT already took part in the international
annual competition between SMT solvers.

The work on SMT-RAT led to two publications. In [6] we contributed

* the novel design of a framework which allows us to combine modules representing theory

solvers according to a user-defined strategy,
* an SMT-compliant module implementing the virtual substitution

* and modules, which implement Grébner bases (only for equations) and the cylindrical

algebraic decomposition (only for univariate polynomials).

We carried on the development of SMT-RAT, yielding the contributions which we published in [2]

and are summarized as follows:

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

* We designed a more powerful strategy class for the combination of modules, which in
particular provides the possibility of running modules in parallel. We added a better user
interface for the creation of such a strategy.

* We added a module, which incorporates a SAT solver and extends SMT-RAT so that a user

can define a strategy that constitutes an SMT solver.

* We provided SMT-compliant modules which implement a preprocessing, the simplex method

as proposed in [DdMO06] and interval constraint propagation similar to [GGI*10].

* We further optimized the existing module, which implements the VS, and extended the
modules implementing Grébner bases (now: SMT compliant and usable for formula sim-
plification) and the CAD (now: SMT compliant and applicable on arbitrary conjunctions of
NRA constraints).

* We extended the shared interface of the modules allowing them to exchange more infor-
mation. It also provides the new feature of calling a module’s satisfiability check such that
it avoids hard obstacles during solving at the price of possibly not finding any conclusive

answer.

Virtual substitution in SMT The virtual substitution has already shown its applicability thanks
to the Redlog-package [DS97] of the computer algebra system Reduce. It performs quantifier
elimination on an NRA formula, which allows us, in particular, to check a conjunction of NRA
constraints for satisfiability due to the aforementioned reasons. Hence, it is a promising candidate
for an integration into a theory solver of an SMT solver which aims to solve NRA formulas for
satisfiability. As we also pointed out, we optimally require this theory solver to be SMT compliant,
which was not yet the case for Redlog’s implementation of the virtual substitution in 2011.

In Chapter 4 we push forward the ideas of my diploma thesis [Cor10], offering solutions for
some questions, which were left open, and generalizing the theorems, which also yields more
concise proofs. The presented contributions were published in [7] and can be summarized as

follows:

* We define an algorithm that uses the virtual substitution in order to perform a satisfiability
check of a conjunction of NRA constraints. For this more specific scenario than the one

which Redlog is dedicated for, we implement a depth-first search in order to find a solution.

* As we keep track of the origins of intermediate results and store intermediate conflicts
during this depth-first search, we are able to belatedly add and remove constraints to the

conjunction of constraints we check for satisfiability.

* Moreover, we present and prove a theorem, from which it directly follows how to construct

infeasible subsets of these constraints, in case they have no common solution.

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

Improving the performance of the virtual substitution in SMT The virtual substitution
can only be applied if the degree of at least one variable is less than three in one constraint.
Assuming that we are able to check a conjunction of NRA constraints for satisfiability with the
VS, the worst-case complexity grows exponentially as the number of variables in this conjunction
grows. There are many choices that have to be made within the algorithm we define in Chapter 4
and they are crucial to avoid this worst case. Where one choice might yield a solution in the
underlying depth-first search, the other choice can provoke a far worse performance or even the
case where the VS cannot be applied, that is all variables have a degree that is greater than two
in all constraints of interest.

We concentrate on the satisfiability check of a conjunction of NRA constraints in the algorithm,
which we present in Chapter 4. We also keep track of the origins of intermediate results and
store intermediate conflicts. This provides a lot of potential in order to exploit local information
during the satisfiability check aiming at an improvement of its performance. Local conflicts, for
instance, might help us to prune the search space of the presented depth-first search.

In Chapter 5 we present

* our ideas for the heuristics we use for the choices of concern and experimentally evaluate

different approaches for this purpose,

* a principle to guide the construction of local conflicts so that we can prune a larger part of
the search space when resolving them,

* a method to detect local conflicts before taking all possibilities into account and

* a specialization of the main theorem in [Wei97] that specifies how to eliminate a quantifier
in the virtual substitution. This specialization exploits the constraints, which are direct
sub-formulas of a conjunction and represent an upper or lower bound for a variable, in
order to narrow down the candidates to consider during a satisfiability check with the VS.

Furthermore, it simplifies intermediate results.

Virtual substitution for integer arithmetic Up to this point, we have considered NRA formulas
for a satisfiability check. If we further restrict ourselves to find integer instead of arbitrary real
solutions for the variables, we have already seen that the question of whether a given formula
is satisfiable is not decidable in general. If the formula is linear or if all variables are lower
and upper bounded, this problem becomes satisfiable. There are two approaches which take
advantage of this. The first approach adds lower and upper bounds, then encodes the problem’s
integer domains and mathematical operations upon them to a propositional formula and checks it
for satisfiability. If a solution has been detected, we can construct an integer solution. Otherwise,
we widen the lower and upper bounds and try again. The second approach applies interval
constraint propagation. Here, we can also add progressively widened lower and upper bounds

in order to increase the likeliness of a termination.

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

For linear formulas, the approach used the most in practice is branch-and-bound. Firstly, it
searches for a real solution by the use of, e. g., the simplex method. If no real solution can be
found, then there is no integer-valued solution. Otherwise, if the found solution provides a non-
integer value for any variable, which is supposed to be assigned only integers, we make a case
distinction (branch). Firstly, we check whether we can find an integer solution by recursively
invoking branch-and-bound, but with the variable in question to be upper-bounded by the next
smaller integer than the found non-integer real solution. If this does not provide an integer
solution, we analogously check if we can find one, but this time with the variable being lower-
bounded by the next greater integer than the found non-integer real solution.

This approach cannot directly be applied to a procedure, which checks the satisfiability of NRA
formulas, such as the VS and CAD method. The VS method, for instance, provides parametrized
solutions, meaning that we need to construct the numeric solution of some variables in order to
be able to construct the numeric solution of another variable. We already mentioned that we can
make use of several procedures for NRA. It is crucial for the practicability of an SMT solver for
NRA to take advantage of this choice and if we want to use branch-and-bound on top of NRA
procedures, this argument still holds.

In Chapter 7, we elaborate on the following contributions from [1]:

* We present a general framework for branch-and-bound in SMT solving providing the op-

portunity to

1. demand a branching, which is shared among all procedures involved in the SMT

solving process and affects the global reasoning process,

2. while keeping this branching locally bound to the constraints that are co-responsible

for the branching.

* We formalize how to detect the variable and value, which are necessary for an application
of the aforementioned branch-and-bound methodology, when using it on top of the vir-
tual substitution method as NRA procedure. Moreover, we specify how to construct the

constraints, which are co-responsible for the branching, in this case.

A synergy of the greatest common divisor calculation, factorization and intermediate
result caching Algebraic operations on polynomials form the foundations of procedures, such
as the virtual substitution and the cylindrical algebraic decomposition method. They also oc-
cur in other settings, for instance, when calculating the reachability probabilities of parametric
discrete-time Markov chains (PDTMCs) [Daw04]. During this calculation we constantly simplify
the intermediate results, which are rational functions, i. e., a fraction of two polynomials. This
simplification involves the rather expensive greatest common divisor computation (gcd) of two poly-
nomials and, indeed, experimental results show that this operation forms one of the bottlenecks
when it comes to the calculation of the reachability probabilities of PDTMCs.

10

1.2. RELEVANT PUBLICATIONS

In Chapter 8, we present the ideas which were published as part of [3]. It aims to speed up the

ged calculation of polynomials and thereby the simplification of rational functions by

1.2

caching a (partial) factorization of occurring polynomials,
maintaining this factorization during the usual operations on polynomials (+, -, etc.) and

exploiting this additional information in an algorithm that calculates the gcd of two poly-
nomials. Moreover, this algorithm refines the already cached polynomial factorizations as

a side effect.

Relevant publications

The aforementioned contributions yielded 7 peer-reviewed publications, which are listed in Sec-

tion 1.2.1. We also published a technical report, which is listed separately in Section 1.2.2.

Further publications, in which the author has been involved, are listed in Section 1.3.

1.2.1
[1]

[2]

(3]

[4]

(5]

(6]

[7]

Peer-reviewed publications

Gereon Kremer, Florian Corzilius, and Erika Abrahdm. A generalised branch-and-bound
approach and its application in SAT modulo nonlinear integer arithmetic. In Proc. of CASC,
volume 9890 of LNCS, pages 315-335. Springer, 2016.

Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika Abraham.
SMT-RAT: An open source C++ toolbox for strategic and parallel SMT solving. In Proc. of
SAT, volume 9340 of LNCS, pages 360-368. Springer, 2015.

Nils Jansen, Florian Corzilius, Matthias Volk, Ralf Wimmer, Erika Abrahdm, Joost-Pieter
Katoen, and Bernd Becker. Accelerating parametric probabilistic verification. In Proc. of
QEST, volume 8657 of LNCS, pages 404—420. Springer, 2014.

Sebastian Junges, Ulrich Loup, Florian Corzilius, and Erika Abrahdm. On Grébner bases
in the context of satisfiability-modulo-theories solving over the real numbers. In Proc. of
CAI, volume 8080 of LNCS, pages 186-198. Springer, 2013.

Ulrich Loup, Karsten Scheibler, Florian Corzilius, Erika Abrahdm, and Bernd Becker. A
symbiosis of interval constraint propagation and cylindrical algebraic decomposition. In
Proc. of CADE, volume 7898 of LNCS, pages 193-207. Springer, 2013.

Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika Abrahdm. SMT-RAT: An SMT-
compliant nonlinear real arithmetic toolbox. In Proc. of SAT, volume 7317 of LNCS, pages
442-448. Springer, 2012.

Florian Corzilius and Erika Abrahdm. Virtual substitution for SMT-solving. In Proc. of FCT,
volume 6914 of LNCS, pages 360-371, 2011.

11

1.2. RELEVANT PUBLICATIONS

1.2.2 Technical reports

[8] Nils Jansen, Florian Corzilius, Matthias Volk, Ralf Wimmer, Erika Abrahdm, Joost-Pieter
Katoen, and Bernd Becker. Accelerating parametric probabilistic verification. CoRR,
abs/1312.3979, 2013.

[9] Sebastian Junges, Ulrich Loup, Florian Corzilius, and Erika Abrahdm. On Grébner bases
in the context of satisfiability-modulo-theories solving over the real numbers. Technical
report at RWTH Aachen University, AIB-2013-08, 2013.

1.2.3 Contributions made by the author

For all publications, which we listed in Section 1.2.1, the author contributed to the discussions,
to the development of the ideas, to their formulation and in most cases to their implementation.
Most publications have been achieved in collaboration with many scientists, thus we emphasize
the specific contributions made by the author of this thesis.

The main focus of this thesis is clearly the virtual substitution in the context of SMT solving.
The ideas, which contribute to an SMT-compliant theory solver based on the virtual substitution
have been elaborated by the author in fruitful discussions with his supervisor Erika Abraham.
The results were published in [7] and led to a fully operative SMT compliant theory solver for
non-linear real arithmetic, which has been entirely implemented by the author.

Parallel to this, Ulrich Loup worked on an SMT compliant theory solver based on the cylindrical
algebraic decomposition. Moreover, Sebastian Junges, who was a research student at the time,
worked on an SMT-compliant theory solver using Grobner bases. One of the main goals was also
to combine these theory solvers, which yielded the ideas of the toolbox SMT-RAT in 2012. The
design of the first version of SMT-RAT was accomplished in continuous discussions between the
author, Ulrich Loup, Sebastian Junges and Erika Abrahdm. The toolbox was implemented for the
greater part by the author. This work was published in [6].

Together with Karsten Scheibler and Bernd Becker from the University of Freiburg, Ulrich
Loup, Erika Abraham and the author developed an idea for a combination of interval constraint
propagation with the cylindrical algebraic decomposition, which was published in [5]. The
corresponding implementation and realization of the publication was mostly carried out by Ulrich
Loup and Karsten Scheibler. The author transferred these ideas to the virtual substitution, which
is presented in Section 5.4.

The work of Sebastian Junges on an SMT compliant theory solver using Grobner bases yielded
the contributions, which were published in [4]. The results were mainly achieved by himself
and Ulrich Loup. Together with Erika Abrahdm, the author contributed to the discussions on this
topic. Moreover, he provided the implementation of further features in SMT-RAT.

The continuation of the work in the context of Matthias Volk’s Bachelor thesis, which has
been co-supervised by Nils Jansen and the author, resulted in the contributions, which were

published in [3]. Many discussions about this topic, as well as the writing process, have been

12

1.3. FURTHER PUBLICATIONS

supported by Ralf Wimmer, Erika Abrahdm, Joost-Pieter Katoen and Bernd Becker. The author
mainly contributed the ideas for an optimization of the greatest common divisor calculation of
polynomials and implemented these ideas together with Matthias Volk.

After its first publication in 2012, the toolbox SMT-RAT has always been under further develop-
ment. The author co-supervised the Diploma thesis of Henrik Schmitz, which led, with the aid
of discussions with Sebastian Junges and Erika Abraham, to the development of a new strategy,
which also allows sub-strategies to run in parallel. The implementation was undertaken mostly
by Henrik Schmitz. Moreover, the author co-supervised Stefan Schupp’s master thesis about the
integration of interval constraint propagation into SMT-RAT, where the implementation was ac-
complished by Stefan Schupp. Additionally, the author implemented a module in SMT-RAT, which
enables it to be used as an SMT solver, and a module, which implements an SMT-compliant theory
solver based on the simplex method as presented in [DdMO06]. All these new developments along
with a new implementation of a theory solver based on the cylindrical algebraic decomposition
implemented by Gereon Kremer, were published in [2].

Together with Gereon Kremer and Erika Abrahdm, the author developed an integration of the
virtual substitution and cylindrical algebraic decomposition into a branch-and-bound framework
such that we can use these procedures for integer arithmetic. The results of this work were pub-
lished in [1]. Here, the author specifically contributed the integration of the virtual substitution,
which is also presented in Section 7.1. The other parts of Chapter 7 are strongly oriented towards

[1], which was contributed, for the greater part, by Gereon Kremer.

1.3 Further publications

[10] Erika Abrahdm, Florian Corzilius, Einar Broch Johnsen, Gereon Kremer, and Jacopo Mauro.
Zephyrus2: On the fly deployment optimization using SMT and CP technologies. In Proc.
of SETTA, pages 229-245. Springer, 2016.

[11] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias Volk, Joost-
Pieter Katoen, Erika Abraham, and Harold Bruintjes. Parameter synthesis for probabilistic
systems. In MBMV’16, pages 72-74. Albert-Ludwigs-Universitit Freiburg, 2016.

[12] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias Volk, Harold
Bruintjes, Joost-Pieter Katoen, and Erika Abrahdm. PROPhESY: A PRObabilistic ParamEter
SYthesis Tool. In Proc. of CAV, volume 9207 of LNCS, pages 214-231. Springer, 2015.

[13] Erika Abrahdm, Nadine Bergner, Philipp Brauner, Florian Corzilius, Nils Jansen, Thiemo
Leonhardt, Ulrich Loup, Johanna Nellen, and Ulrik Schroeder. On collaboratively convey-

ing computer science to pupils. In Proc. of KOLI, pages 132-137. ACM Press, 2011.

[14] Erika Abrahdm, Florian Corzilius, Ulrich Loup, and Thomas Sturm. A lazy SMT-solver

13

1.3. FURTHER PUBLICATIONS

for a non-linear subset of real algebra. In Dagstuhl Seminar Proceedings, volume 10271.

Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany, 2010.

14

CHAPTER 2

Foundations

After some basic notations and definitions for numbers, sets, functions (Section 2.1) and graphs
(Section 2.2), we introduce the syntax and semantics of first-order arithmetic formulas in Sec-
tion 2.3, followed by some normalizations, which we can apply to these formulas in Section 2.4.
In Section 2.5, we introduce SAT solving, which is a decision procedure for a special class of
the formulas as defined in Section 2.3. With the understanding of the principles of SAT solving,
we present the general framework of an SMT solver in Section 2.6, which is capable of solving
formulas of a richer class than the one which can be solved by a SAT solver. In Section 2.7, we
introduce the virtual substitution method, which forms the basis of the contributions of this thesis

presented in the Chapters 4 - 7.

2.1 Numbers, sets and functions

Within this thesis we use Boolean constants from B := {true, false} and integer numbers /values (or
just integers) from Z := {..,—2,—1,0,1,2,..}. The (set of) natural numbers/values N := {1,2,..}
are the positive non-zero integers and by N, we refer to N U {0}. We also use the rational
numbers /values (or just rationals) from Q, which are integers or fractions of integers with a
non-zero denominator, for instance +,=,2,=2 2 22 1 21 We also make use of the real
numbers /values (or just reals) from R, which are all numbers representing a point on a continuous
and infinite line. They consist of the rationals and irrationals, where the latter can be, i.a.,
algebraic numbers, for instance v2, and transcendental numbers, for instance 7.

Given a set M, we denote the cardinality of M (the number of elements in M) by |M|, where
|[M| = oo if M is not finite. We denote the power set of a set M by P(M), which is the set of all
subsets of M. If |[M| = oo, we obtain the set of all finite subsets of M by P_,(M) and the set of

all infinite subsets of M by Py, (M) :=P(M) \ P.o(M). Subsets of R can also be represented by

2.1. NUMBERS, SETS AND FUNCTIONS

intervals. We distinguish between the following types of intervals

[Lu]l:={deR|l<d<u} (left- and right-closed)
(',u):={deR|l'<d <u'} (left- and right-open)
[Lu):={deR|l1<d<u’} (left-closed and right-open)
(I',u]:={deR|l'’<d <u} (left-open and right-closed interval)

where [€ R, I’ € RU {—o0o} form the lower bound and u € R, u’ € RU {oo} form the upper
bound. In the case that an interval is left- and right-closed we call it closed, otherwise it is open.
Moreover, if I’ = —o0, we call the interval left-unbounded and left-bounded, otherwise. If u’ = 0o,
we call the interval right-unbounded and right-bounded, otherwise. If an interval is left- and
right-bounded, we refer to it as a bounded interval, otherwise it is an unbounded interval. If [> u,
I'>u,l >u orl’ > 1, the interval is empty and we represent it by the empty interval @. The
closed interval containing exactly one element, i. e., [d,d] with d € R, is called a point interval.
We denote the set of all intervals by 1.

A function f : M — M’ maps elements from a set M, which we call the domain of f and denote
by Dom(f), to elements from a set M’, which we call the codomain of f and denote by Codom(f).
We see functions also as relations f € M x M’ with f(m) = m’ if and only if (m,m’) € f. For
a function f: M — M’ it holds that for all m € M there exists no m{,m; € M’ with m{ # mj,
f(m)=m] and f(m) =m. If f is undefined for an element m € M, i. e., there exists no m’ € M’
with (m, m’) € f, we denote this by f(m) = L and call f a partial function.

Example 1 Consider the following functions.

1. The signum function maps a real value d € R to its sign and is defined by

1 ,d>0
sgn: R— {-1,0,1}: d — -1 ,d<0
0 , otherwise.

2. We denote the greatest common divisor and least common multiple of a finite and non-empty

set of non-zero integers by
ged: Pooo(Z\{OD\ {0} - N

and
lem: Pooo(Z\ {0})\ {0} — N,

respectively.

3. The minimum and maximum of a non-empty subset of the real numbers are denoted by
min: P(R) — R and max: P(R) — R, respectively. They are partial functions, as, for
instance, max(N), max(#)), min(R) and min((0, 1]) are undefined.

16

2.2. GRAPHS

4. The floor function is defined by
|-]: R—»Z:d—max({d €z|d <d})
and the ceiling function is defined by

[-]: R=>Z:d—min({d' € Z| d’ > d}).

5. The diameter of an interval is defined by

0 , 1=10
Ap: T-oRU{oo}:I1+—{ oo , Iisunbounded

u—1 , otherwise, where l is the lower and u is the upper bound of I.

Note that the diameter of point intervals and the empty interval is 0.

2.2 Graphs

At some points in this thesis, we use graphs for illustration purposes and in the data structures of
the presented algorithms.

Definition 1 (Directed graph) A digraph or directed graph is a tuple G := (V,E) of a set V
of vertices and a set E CV x V of (directed) edges.

Two examples of directed graphs are shown in Figure 2.1.

7N

7N SN

Figure 2.1: The digraph G = ({vy, vy, v3}, {(v1, v3), (V5, v3), (Vo, v3), (v3,v;)}) on the left; The directed
tree T = ({Vv4, Vs, Vs, V7, Vg }, {(V4, V5), (Va5 v6), (Vs, v7), (5, V) }) on the right.

Definition 2 (Path, cycle) Given a digraph G = (V, E), a (finite) path w (of length n € N
from v; to v,,;) in G is a sequence

W I=VVy...VpVuiq

where v; € V (1 <i<n+1)and (v;,viy1) €E (1 <i < n). Given two vertices v,v' €V, we
say that v’ is reachable from v in G, if there is a path from v to v’ in G.

Ifn>1, vy =v,,; and vy,..,Vv, are pairwise different, we call w a simple cycle.

17

2.3. REAL AND INTEGER ARITHMETIC

In Figure 2.1 the sequences v;v,v3 and v,Vv5Vv, are paths, therefore, i. a., v5 is reachable from v;
and v,. Moreover, vs and v, are reachable from v,. The sequences v,v, and v;v,v3Vv; are simple

cycles.

Definition 3 (Directed tree) A directed tree T := (V, E) is a digraph such that either V. =)

or the following conditions hold:

1. There exists exactly one root v, € V with (v,v.) ¢ E for all v € V and all vertices

v € V\{v,.} are reachable from v, by exactly one path.
2. There exists no simple cycle in T.

If (v,v’) € E we call v the father of v’ and v’ a child of v. Vertices without children are called
leaves. Let v € V and V,, C V be the set containing all vertices reachable from v in T. Then
(V,,EN(V, x V,)) is called a subtree of T with the root v.

In Figure 2.1 the digraph on the right is a directed tree T with the root v,. In this tree, the
vertex vs has the father v, and the children v, and vg, which are leaves. The subtree of T with
root vg is defined by ({v57 V7, VS}) {(VS) V7), (VS) VS)})-

2.3 Real and integer arithmetic

As the virtual substitution and it’s adaption to SMT solving are clearly one of the major parts of
the contribution of this thesis, we do not restrict ourselves to the arithmetic formulas which SMT
solvers accept as input, but introduce the more general first-order arithmetic formulas. This is
especially necessary, as the original virtual substitution method, which we explain in Section 2.7,

operates on these formulas.

2.3.1 Syntax

Variables are one of the basic ingredients in a formula. In the context of this thesis, variables
have one of the following three domains. Firstly, variables are Boolean (or propositional) if their
domain is B. They allow us to state propositions which can be either true or false, such as “is a
certain condition/property fulfilled”. We denote the infinite set of all Boolean variables by VARg.
Secondly, variables are real-valued if their domain is R. They give us the opportunity to reason
about continuous quantities which occur, for instance, in physics, such as time, temperature,
velocity or weight. They are also imperative when proving mathematical theorems. Thirdly,
variables are integer-valued if their domain is Z. We use these variables, if we want to express,
for instance, unknown quantities of certain objects. We denote the set of all real-valued variables
by VARg and the set of all integer-valued variables by VAR;. The set of all arithmetic variables
is then VARg ; = VARg UVAR;. We define the domain of a Boolean or arithmetic variable by
Dom: VARg UVARg 7 — {B,Z,R}.

We can now construct the first order formulas, which we consider in this thesis.

18

2.3. REAL AND INTEGER ARITHMETIC

Definition 4 (Syntax of arithmetic formulas) Syntactically an (arithmetic) formula ¢ is

defined by the following abstract grammar:

p ==1| x [(+p)|(@-p) | (- -p)
¢ ==Dblp<p | (=¢p) [(vAp) |(3@x.p)

Hence, it allows us to combine Boolean variables b € VAR and constraints p < p with the
Boolean operators = and A. Moreover, we can existentially quantify an arithmetic variable
X € VARg 7 with 3x.¢p making x quantified in ¢. Constraints compare two polynomials using
the relation (symbol) < (written: “less than”). A polynomial is either the constant 1, a real-
or integer-valued variable x € VAR, 7, or the sum (+), difference (—) or product (-) of two

polynomials.

Note that in the definition of general first-order formulas as it can be found in the literature
[Bur98], the constraints correspond to predicates and polynomials correspond to terms. A formula
as defined in Definition 4 is then a Boolean combination of Boolean variables and predicates,
which are composed by possibly quantified arithmetic variables and the predicate and function
symbols of the signature 7 := {1,+,—,-, <}. Then, the set of all arithmetic formulas is denoted by
FO(7). Furthermore, the set of all arithmetic constraints is denoted by CS € FO(7) and the set of
all polynomials is denoted by POL.

We also allow syntactic sugar such as the disjunction (V), implication (—), exclusive disjunction
(®) and equivalence (<) of two formulas ¢; and ¢,. These Boolean operators can be expressed
based on the grammar in Definition 4 using the following equivalences (in this order):

0199y = (mp1) & vy 2.1)
1> ¢y = (p1 2 @) A (2= ¢1) (2.2)
P1 = P2 = (mp1) Vs (2.3)
Y1V, = ((mp1) A (2)) (2.4)

Furthermore we allow the Boolean constants true and false within a formula, where true =
¢ V 7 and false = —true for any formula ¢. We can also quantify a variable v universally in a
formula ¢ by Vv.¢ which is equivalent to =3v.(—p).

We allow further relation symbols as syntactic sugar. Besides the already introduced strict
relation <, there are the strict relations > (written: “greater than”) and # (written: “not equal
to”). Additionally, we have the weak relations <, > and = (written: “less than or equal to”,
“greater than or equal to” and “equal to”, respectively). We refer to the set of all relations by
REL := {<,>,=,#,<,>}. We call constraints with a weak relation weak constraints and strict
constraints otherwise. We obtain the set of all constraints in a formula with C.,: FO(t) — P(CS)
and the relation of a constraint with rel: CS — REL.

We can transform a constraint comparing two polynomials p; and p, with one of these rela-

19

2.3. REAL AND INTEGER ARITHMETIC

tions to an equivalent formula as defined by the grammar in Definition 4 using the following

equivalences (in this order):

p1=p2 = (p1<paAp1=p>)
P12p2 = P2=pP1

p1<py = ~(p1>p2)

p1#p2 = (p1<p2Vp1>ps)
P1>pP2 = P2<pP

Throughout this thesis we omit parentheses and the multiplication symbol - where it does not
lead to confusion, assuming that - binds stronger than + and —, — binds stronger than A and
quantifiers bind weaker than any other Boolean operator. The product of the same arithmetic
variable x n times, with n € N, can be denoted by x", which we refer to as x to the power of n.
Moreover we allow any integer within a polynomial, which can be composed by the constant 1
and the arithmetic operations as expected. By this we do not allow non-integer rationals within
a polynomial, which forms no restriction.

We further assume that if a variable x € VARg 5 is bound by a quantifier Qx.vy (Q € {3,V})
within the formula ¢, it holds, w. L. 0. g., that x occurs in ¢ only within 1. We call such variables
bound. If a variable is not bound it is free.

We define the set of all variables in a polynomial or formula by
Vars: (POLUFO(7)) — P(VARg ; UVARg)
and the set of all free variables in a formula by
FreeVars: (POLUFO(1)) — P(VARg 7 U VARg).

Note that for any polynomial p € POL, it holds that Vars(p) N VARg = @} (polynomials contain no
Boolean variables), and for any formula ¢ € FO(7), it holds that (Vars()\FreeVars(¢))NVARg =
) (Boolean variables are always free).

Given a formula ¢ € FO(7), if all variables in Vars(y) are real-valued, all variables are
integer-valued or all variables are Boolean, ¢ is a real arithmetic, integer arithmetic, or Boolean/
propositional formula, respectively. If Vars(y) contains both integer- and real-valued variables,
but no Boolean variables we call ¢ a mixed integer-real arithmetic formula. If Vars(y) contains
Boolean variables and only real-valued, only integer-valued or both integer- and real-valued
variables, @ is a real arithmetic, integer arithmetic or mixed integer-real arithmetic formula with
Boolean variables. We call a formula ¢ quantifier-free, if Vars(y) = FreeVars(y), and a sentence,
if FreeVars(¢) = 0.

Given a polynomial p € POL (or constraint ¢ € CS), if [Vars(p)| = 0 (or |Vars(c)| = 0) we call

p (or ¢) constant, if |Vars(p)| = 1 (or |[Vars(c)| = 1) we call p (or c¢) univariate, and otherwise

20

2.3. REAL AND INTEGER ARITHMETIC

multivariate.

Example 2 Consider the formulas

w1 = (=byVby) > (b — by)

¢y = (x2+3)-(1+2x3)<0
p3 = 21=2
Y4 = 221+1=23x;
$Ys = $17@3
= ((=b1Vby) > (by = by)) — 2z =2
P = —((x% +3)-(1+ 2x%) <0V-(2z; +1=3x; — by))
vy = dx1.96
= Jx;.o((x3+3)-(1+2x}) <0V (22 + 1> 3x; — by))
Yg = Elxl.sz. X1X9 = X9

where Dom(b;),Dom(b,) = B, Dom(z;) = Z and Dom(x;) = Dom(x,) = R. Then, ¢, is a
propositional formula and ¢,, @3 and @, are constraints. Furthermore, @4 is a real arithmetic
formula, 5 is an integer arithmetic formula and ¢4 is a mixed integer-real arithmetic formula. The
formula 5 is an integer arithmetic formula with Boolean variables and g is a mixed integer-real
arithmetic formula with Boolean variables. All formulas except - and @g are quantifier-free, where
in @, the only quantified variable is x; and, hence, b,, X, and z; are free variables in . In @g all
variables are quantified, so it is a sentence. The left-hand side of ¢, is a multivariate polynomial
and its right-hand side is constant. The left-hand sides of 3 and ¢, are univariate polynomials.

Moreover, ¢, and @4 are multivariate constraints and @5 is a univariate constraint.

Definition 5 (Substitution) The substitution of an arithmetic variable by a polynomial in a

formula or polynomial is defined by

-[-/+1: (POLUFO(7)) x POL x VARg ; — POLUFO(7)

such that

1[p/x] =1

x[p/x] =p

ylp/x] =y , YFX
(p1+p2)lp/x] :=(p1lp/x] + palp/x])

(p1—p2)lp/x] :=(p1lp/x] — palp/x])

(p1-p2)lp/x] :=(palp/x] - palp/x])

blp/x] :=b

21

2.3. REAL AND INTEGER ARITHMETIC

(p1 <p2)lp/x] :=(p1lp/x] < palp/x])

(mp1)lp/x] = (=p1lp/x])

(p1 A @2)lp/x] = (p1lp/x] A @alp/x])

(3x.¢1)[p/x] = (3x.¢1)

(Jy-¢1lp/x] = Q@Qy.p1lp/x]) s YFX

with x,y € VARg 7, b € VARg, p,py,p, € POL and ¢, p, € FO(7). A substitution ¢[p/x]

means that every free occurrence of x in ¢ is replaced by p. Furthermore, we define that

@lp1/x1]. [pn/xn] = (.(@lp1/x1]). Jpn/x24),

where x1, .., X, are arithmetic variables and p+, .., p,, are polynomials.

Example 3 Consider the following substitutions in two of the formulas from Example 2:

((x2+43)- Q+2x) <0)[1/x;] = (x23+3)-(1+2-1%)<0
(x2+3)-3<0

(221 +1 = 3x1)[z1/x11[2/2] = (221 +12=3%)[2/%]
5>6

Given a formula ¢, we obtain its real relaxation = by substituting ¢’s integer-valued variables
Vars(¢) NVARy, = {21, ..,2,} by fresh real-valued variables x,.., x, ¢ Vars(y), respectively, i. e.,
©® = p[x;1/21]. .[x,/2,]. We obtain the Boolean abstraction ¢©® of a formula ¢ by replacing ¢’s
constraints C.(y) = {cy,..,c,} by fresh Boolean variables b,,.., b, ¢ Vars(y), respectively. Then,
we denote the Boolean abstraction mapping by the function abstrg : C.(p)— VARg : ¢c; — b;.

2.3.2 Semantics

In Section 2.3.1 we defined how a formula can be composed syntactically, but we have not
yet fixed how we interpret the meaning of a formula. For this purpose, we usually need an
interpretation giving all yet uninterpreted identifiers in a formula a meaning. For an arithmetic
formula ¢ € FO(1), we use the t-structure 2 mapping 1, +, —, - and < to their expected meaning,
which we do not axiomatize here and denote in the following by 1y, +¢, —g, "9 and <y. The
only unspecified identifiers which have not yet received a fixed meaning are the variables in ¢.
Therefore, we specify the semantics of an arithmetic formula only with respect to assignments of
values to the formula’s variables Vars(y), such that we assign to a variable only values from its
domain.

Definition 6 (Assignment) An assignment (of values to variables) is a possibly partial func-

tion

a: (VARg UVARg ;) = (BUR) : v +— d € Dom(v).

22

2.3. REAL AND INTEGER ARITHMETIC

We denote the set of all assignments by ASS.

Given a formula (or polynomial) y, an assignment a is called a (full) assignment for ¢ if
FreeVars(¢) € Dom(a) and a partial assignment for ¢, otherwise. The set of all full or partial
assignments for ¢ is denoted by Assigns(y) and partialAssigns(y), respectively. Note that if
FreeVars(y) = @), Assigns(p) contains the empty assignment a | with Dom(a |) = . Moreover,
the assignment o’ is called an extension of the assignment a, if Dom(a) C Dom(a’) and for all
v € Dom(a) it holds that a'(v) = a(v).

We can adapt an assignment such that it maps a variable to a given value in the variable’s domain
by
-[-/-]1: ASSx (BUR) x (VARg UVARg ;) = ASS: a[d/v]— o’

where

a(v) = { d Lifvi=v

a(v’) , otherwise.

Definition 7 (Formula and polynomial evaluation) Given a full assignment a for a polyno-

mial or an arithmetic formula ¢, we can evaluate ¢ under a by
[-1 : ((FO(r)UPOL) x ASS) — (BUR),

which is defined inductively with respect to the abstract grammar in Definition 4 by

[11* = Iy
[x1* = alx)
[p1 +p21* := [p11%+o [p21*
[p1—p21* := [p1]1%—alp21*
[p; - p.1° = [p11* -a [p1*
[o1* = a(b)
[p1 <p2]1* := [p1]1°* <o [p.1*
false , if [p;]* = true
[-¢,1* = { .
true , otherwise
[ei Apa]® == [¢1]* =true and [p,]* = true
[Av.p1* ;= exists d € Dom(v) such that [,]V = true

where x € Dom(a) is an integer- or real-valued variable, b € Dom(«a) is a Boolean variable,
p; and p, are polynomials and ¢, and @, are arithmetic formulas with Vars(p,), Vars(p,),
FreeVars(y;) and FreeVars(y,) containing only variables from Dom(a).

Now we can determine whether a formula ¢ evaluates to true or false under a given full

assignment for ¢, which leads us to the next definition.

23

2.4. NORMALIZATIONS

Definition 8 (Satisfiability of arithmetic formulas) For a given arithmetic formula ¢ we

define its set of solutions by

O(p) :={a € Assigns(¢)| [¢]1* = true}.

An arithmetic formula ¢ is satisfiable if and only if ©() # 0. If @ is not satisfiable, we call it
unsatisfiable and, if ©(y) = Assigns(y), we call ¢ valid or alternatively a tautology.

Throughout this thesis we also use the term solution space instead of set of solutions and we refer

to a formula ’s set of solutions or solution space for a variable v € Vars(y) by {d € Dom(v)| Ja €
O(p). a(v)=d}.

Example 4 Consider the following three formulas from Example 2:

v1 = (=byVby) e (b — by)
¢y = (x5+3)-(1+2x)) <0
¢s = ((0byVby) > (b —by)) — z=2

Considering Equation (2.3), the left-hand side and the right-hand side of the equivalence in @, are
indeed equivalent and, therefore, ©(p,) = Assigns(¢;), which makes it a tautology. As xf and x%
are non-negative, the left-hand side of the constraint in @, is always positive. Hence, ©(p,) = @,
which makes ¢, unsatisfiable. As ¢, which forms the left-hand side of the implication in s, is
valid, s is satisfied if and only if its right-hand side z, = 2 is satisfied. As z; = 2 can be satisfied by
assigning 2 to %1, s is satisfiable with ©(ps) = {a € Assigns(ps)| a(z;) = 2}.

2.4 Normalizations

The normalization process aims to specify a set of transformations, which can be applied to an
input, as long as it is not yet in a (unique) normal form. Thereby the transformations assure that
certain properties of the input are not changed. We want to normalize polynomials and formulas
in order to ease the generalization of procedures which operate on them. In the following, we
firstly present how we normalize polynomials. Based on normalized polynomials, we define a
unique normal form for constraints followed by three well known, but not unique, normal forms

for formulas which contain Boolean operators or quantifiers.

2.4.1 Polynomials

A polynomial p as defined in the grammar of Definition 4 is an element of the ring Z[x4, .., x,],
if we assume that Vars(p) = {x1,.., x,,}. Among others, the following axioms hold, where p,, p,

and p5 are polynomials:

p1+D, = py+p; (+ is commutative) (2.5)

24

2.4. NORMALIZATIONS

D1 Do = py-Dq (- is commutative) (2.6)

p1-(py+ps3) = (p1-p2) +(p1-p3) (- is distributive with respect to +) 2.7)

Using these axioms, we can syntactically transform a polynomial. Our aim is to define a normal
form such that it offers a unique representation for all polynomials which can be obtained by
applying a finite sequence of these transformations to this representation.

As a first step towards normalized polynomials, we have to fix an order on the arithmetic
variables which can occur in a polynomial, which we refer to as variable order.

Definition 9 (Monomial) Given a finite set of arithmetic variables {x,,..,x,} C VAR 5 and
a variable order x; < x5 < .. < X,_1 < X, a monomial is defined by the power product

€n

el-.- .
xl xn

where e; €Ny, 1 < i < n, is called the exponent (of the variable x;). We denote the set of all
monomials over the variables x;, .., x, by M[xy,.., X,] and define the degree of a monomial

as follows:

n
e
deg: M[xq,.,x,] > No: x'--- 'Xi”HZCi
i=1

In the course of this thesis, we always use indexed arithmetic variables, if more than one variable
occurs. We assume the variable order to be as presented in Definition 9, that is the variable with
the lower index is smaller in the variable order. If an integer-valued variable is compared with a
real-valued variable, we assume the integer-valued variable to be smaller in the variable order.

We now want to define a normal form for polynomials based on monomials. For this pur-
pose we need an order on monomials, which can be used analogically to the variable orders in
monomials.

Definition 10 (Reverse lexicographical order) Given two monomials my,m, € M[Xxq,..,X,]

with m; = xil’l cxy™ and my = xil’Z - x,™%, it holds that

m; < m, (in the reverse lexicographical order)
=3
die{l,...,n}.e1<ey AVje{itl,.,n}ej1=¢€j,.

Based on the variable and monomial order we can define a normal form for polynomials.

Definition 11 (Normalized polynomial, term) Let p € POL and let Vars(p) = {x,..,x,}.

Using Equations (2.5-2.7), we can transform p to the normalized polynomial
my my
— P

€1,1 €n1 €1k €nk
al-xl c Xp aF ©9 A ak-xl e Xn o,

where a,,..,a; are the coefficients with either a,,..,a; € Z \ {0} or p is the zero polynomial

25

2.4. NORMALIZATIONS

(k=1landa, =e;; =..=e,; =0). For the monomials my,..,my € M[xy,..,x,] it holds that
my <my_y <..<my <my (in reverse lexicographical order). We call the product t; := a;-m;
of a coefficient and monomial a term (1 < j < k). The term a; - m; is called the leading term
with a, being the leading coefficient. By deg(t;) := deg(m;) we denote the degree of the term
t;. If deg(ty) = O then t; = a; is constant and forms the constant part of p. Otherwise the
constant part of p is 0. We denote the set of all (normalized) polynomials over the variables
X1, X, by Z[x1,. ., x,]

The (total) degree of normalized polynomials p = t; + ..+ t; is defined by
deg: POL — Ny : p — max({deg(t;)| 1 <j <k})
and the degree of a variable in a normalized polynomial is defined by

deg: {x,..,Xx,} X Z[xq,..,x,] = Ny : (x;,p) —» max({e; ;| 1 < j <k}).
We call a polynomial p constant, if deg(p) = 0, linear, if deg(p) = 1, and nonlinear, otherwise.
Note that we do not allow rationals in polynomials as defined by the grammar of Definition 4. The
same holds for polynomials in normal form. Fortunately, this is no restriction, as we can easily
transform a polynomial with rationals to a polynomial as defined by the grammar of Definition 4,
by first transforming it to a normal form analogously to Definition 11 and then multiplying the

result’s coefficients by the least common multiple of their denominators.

Example 5 We transform the polynomial, which forms the left-hand side of the constraint in @,

from Example 2, to a normalized polynomial using Equations (2.5-2.7) as follows:

2 2
(x5 +3)-(1+2x7)

2 2 2
(x5 +3) + (x5 +3)2x7
(xg +3)+ 2x%(x§ +3)

2 2 2 2
x2+3+x2-2x1+3-2x1

Eq. 2.7
Eq. 2.6
Eq._2.7
Eq. 26 2.2 2
—2 x5+ 3+ 2x7x5 + 6x7
Eq. 2.5 2.2 .2 2
= 2x7x5 + x5 +6x7+3
The resulting polynomial is normalized, as its monomials are normalized and in reverse lexicograph-
ical order
0..0 2..0 0,.2 2.2
X7X5 < X7X, < X7Xx5 < XTX5.
The leading term is 2x%x§, the leading coefficient is 2 and the constant part is 3. The degree of the

resulting polynomial is max({4,2,2,0}) = 4 and its degree in x, and x, is 2 in both cases.

Throughout this thesis, polynomials are always expected to be in normal form no matter
whether they are from POL or we know, that they contain the variables x4, .., x,, and are from
Z[x4,..,x,]. For the sake of the ability of distinguishing normalized polynomials, we also need
an order for them.

26

2.4. NORMALIZATIONS

Definition 12 (Polynomial order) Given two polynomials p,,p, € Z[x1,..,X,] with p; =

Ay -Mmyg+..+dyg My, and py =as; - Mg +..+dy, - My, it holds that

p1 < p, (in the polynomial order)
=
di € {1,..,min({ky, ko })}. (my; <my; V(my; =my; Aay; <ay;))

A\ V] E {1,,1— 1} ml’j = mz’j /\al,j = Clz’j

with (ml,j = mZ,j) = —|(m1’]~ < mZ’j \Y mz’j < ml’j).

We use this order to distinguish two polynomials p; and p, by simply checking whether p; < p,
or py < pj.

In the context of satisfiability checking and especially the virtual substitution as explained in
Section 2.7, we are often interested in the full assignments for a polynomial p which evaluate it
to 0. We call the set of these assignments the zeros of p and denote it by

zeros: Z[xq,..,x,] — ASS:p — {a € Assigns(p)| [p]* = 0}.

We can divide a polynomial p := Zk

i—1 a;m; into the product of it’s content, which is denoted by

sgn(a)-ged({ay,.,a}) , p#0

cont: Z[xy,..,X,] > Z:p— .
0 , otherwise

and primitive part, which is denoted by

k ; .
p— Zi:l cogt(p) m; , 1fP 7é 0

rim: Z[xq{,..,X,] 2 Z[xq,..,x,]:
P [y n] [y n] { 0—0 , otherwise

i.e., p = cont(p) - prim(p). Note that the coefficients of prim(p) are integers and that zeros(p) =
zeros(prim(p)). If prim(p) = p we call p primitive.

The normal form of the result of a multiplication of two polynomials in normal form with k;
and k, terms, respectively, has in the worst case k; - k, terms. We accept this cost, as many of the
operations we perform on polynomials iterate over their terms and therefore we need to expand
the polynomial anyway. Additionally, we present an alternative representation of polynomials
in Chapter 8, which tries to avoid the complexity of polynomial multiplication while storing
polynomials as products of polynomials as introduced in Definition 13.

Definition 13 (Polynomial factorization) Given a primitive polynomial p # 0, a factoriza-

tion of p is defined by

{p,....pi"}

with the n € N, factors pfi, such that the bases p1, .., p, € {0, 1} are pairwise different primitive
polynomials, the exponents are ey, ..,e, € N and it holds that p = l_[?:1 pfi (which is defined to

27

2.4. NORMALIZATIONS

be 1 for n =0). We denote the set of all polynomial factorizations by FAC.
Note that the only factorization of the polynomial 1 is (). Note that a factorization is a set, which
is ordered by the bases of its factors according to the polynomial order of Definition 12.

The factorization of a primitive polynomial p is not unique in many cases. However, if it
is unique then the (only) factorization of p is {p'} and we call p irreducible. If the bases of all
factors in a factorization of p are irreducible, we call it a full factorization and otherwise a (partial)

factorization. Note that every non-constant primitive polynomial has a unique full factorization.

Example 6 Consider the polynomial
p = 6xfx§ + 3x%x§ + 18x1‘ + 9xf

which is the product of the result 2x%x§ + x% + 6x% + 3 from Example 5 and the polynomial 3x%.
The primitive part of p is

prim(p) = 2xfx§ + x%x% + 6x? + Sx%
and the content of p is cont(p) = 3. A valid factorization of prim(p) is, for instance,
{x%, (2x%x§ + x% + 6x% +3)1},

as x; and 2xfx§ + xg + 6xf + 3 are both primitive. The full factorization of prim(p) is

{xf, x7+ 1), (3 +3)'},
as xy, 2xf +1 and xé + 3 are all irreducible.

2.4.2 Formulas

When transforming a formula ¢ in order to attain a normal form, we have to make sure that
the result v of a transformation is equivalent to ¢, where ¢ and v are equivalent, if and only if
O(p) =0O(1). If we allow a transformation to eliminate all occurrences of some variables in ¢
or to introduce fresh variables, that is variables which are not yet elements of Vars(y), we need
a more general property than equivalence.
Definition 14 (Equisatisfiability of formulas) Two formulas ¢ and 1 are equisatisfiable if
andonly if O(p)#0 < O(Y)#0.
Note that two equisatisfiable formulas ¢ and v with Vars(yp) # Vars(vy) are not equivalent,
as O(y¢) # O(y). All transformations, which we use in the remainder of this section in order
to achieve a normal form, keep the formula to transform and the result of the transformation

equisatisfiable.

28

2.4. NORMALIZATIONS

2.4.2.1 Constraints

In general, we only apply a simple normalization to constraints with the intention of minimizing
the cases we must consider in the procedures presented in this thesis.
Definition 15 (Normalized constraint) Given a real or mixed-integer-real arithmetic con-
straint ¢ := p; ~ py (~€ REL) as defined by the grammar of Definition 4, where we also take
the relations into account which we defined as syntactic sugar, the normal form of c is depicted
in the following table, where p := prim(p; — p,) and d := cont(p; — p,):

< < = #+ > >
p=0 false true true false true false
p=1 A d<O0 true true false true false false
p=1 A d>0 false false false true true true
p¢{0,1} A d<O p>0 p=0 p=0 p#0 p<0 p<oO
p¢1{0,1} A d>0 p<0 p<0 p=0 p#0 p=0 p>0

By this normalization we either transform a constraint to a Boolean constant or reach the state
that the normalized constraint’s right-hand side is O and that it’s left-hand side is a non-constant

primitive polynomial. From here on, we assume constraints to be normalized.

Example 7 Considering the constraints occurring in Example 2 and Example 3, we normalize them

as follows:
(x2+3)-(1+2x2)<0 = 2x3xZ+x2+6x2+3<0
21 =2 = z—2=0
221 +1=3x; = 3x;—2%—1<0
(x2+3)-3<0 = x3+3<0
5=6 = false
X1Xy = Xy = X1X9—Xx5=0

In Example 5 we have already seen how to normalize the left-hand side of (x§ +3)-(1+ ZX%) <0
and the left-hand sides of z; = 2 and x1xy5 = X, are normalized polynomials straight away, if we
subtract 2 and x4 from both the left- and the right-hand side, respectively. The three constraints are
normalized, as their left-hand sides are primitive and their right-hand sides are zero (the last row of
the table in Definition 15 applies). It is a bit more complicated for 2z, + 1 > 3x;. After subtracting
its right-hand side and ordering the terms on the left-hand side, we obtain —3x; +2z; +1 > 0.
The primitive part of the left-hand side is 3x; — 2z, — 1 and its content is —1. From the table in
Definition 15 we can look up the result in the fourth row and fifth column. The primitive part of
(x% +3)-3<0is x% + 3 and its content is 3, therefore we can find its normalized version in the
last row and first column. The last constraint 5 > 6 can obviously be evaluated to false. In the

normalization process however, we would achieve this information automatically by subtracting the

29

2.4. NORMALIZATIONS

constraint by 6 resulting in —1 > 0. Here the primitive part is 1 and the content is —1, therefore we
can find the normalized version of the constraint in the second row and fifth column, which is indeed

false.

For integer arithmetic constraints, we can achieve further normalizations in addition to those
in Definition 15.

Definition 16 (Normalized integer arithmetic constraint) Let p ~ O be an integer arith-

metic constraint (in normal form according to Definition 15, therefore p = Zle a;m;). Further-

more, we assume, w. L. 0. g., that ~€ {<,<,=,>,>} (as p # 0 is equivalent (p <0V p > 0)).

The normal form of p ~ 0 is depicted in the following table:

< < = = >

deZ|r+d+1<0 r+d<0 r+d=0 r+d>0 r+d—1>0

d¢Z| r+[d]<0 r+[d]<0 false r+[d]>=0 r+[d]=0
with -
_ a ' B
_ | 2= oy e O deg(mi) =0
B k a; g
izt (@ o M otherwise
and
a o
d= el ap o ¥ deg(m) =0
0 , otherwise.

Therefore, normalized integer-arithmetic constraints contain only weak relations. Over the course
of this thesis we assume an integer arithmetic constraint to be normalized as given by Defini-
tion 16.

A similar normalization was already presented in [DDAQ09] for linear integer-arithmetic con-
straints and it is based on the fact that r + d = 0 only has a solution if d € Z. A formal proof can
be found in [NW88].

The main idea of why the normalization in Definition 16 results in an equisatisfiable constraint
can be explained as follows. We divide the left-hand side of the constraint ¢ := p ~ 0 by the
greatest common divisor g of the coefficients of p’s non-constant terms, which does not change
the set of solutions of ¢ as g is a positive rational and ¢’s right-hand side is 0. By the definition
of the greatest common divisor, we know that for all coefficients a; of p’s non-constant terms it
must hold that % € Z. Given a solution of ¢, we know that all monomials are evaluated to an
integer as the product of two integers is an integer. Hence, for a given integer solution of c, r is
also evaluated to an integer, as the sum of two integers is integral. If ¢ is an equation, it follows
that it has no solution if d is not integral (Column 3 of the table in Definition 16). If the relation
symbol of ¢ is <, any solution of ¢ must evaluate r to an integer which is strictly less than —d or,
equivalently, to an integer which is less than or equal to the next smaller integer than —d. This

is —[d], if d is not integer, or —d — 1, otherwise. If the relation symbol of ¢ is <, any solution of

30

2.4. NORMALIZATIONS

¢ must evaluate r to an integer which is less than or equal to —d, which is —[d], if d is not an
integer, or —d, otherwise. If the relation symbol of ¢ is > or >, we can simply multiply it by —1,
which results in a constraint with the relation symbol < or <, respectively, and apply the previous
reasoning.
In the remainder of this thesis, we obtain the polynomial on the left-hand side of a (normalized)
constraint by
Pol: CS—>POL:p~0—p

and define the set of all polynomials in a formula by

Pols: FO(7) — P(POL) : ¢ — {Pol(c)| ¢’ € C_(p)}.

2.4.2.2 Quantifier-free formulas with Boolean operators

In Equations (2.1-2.4) we already had a glimpse of the most important rules which we need for
syntactical transformations of a formula. This implies that we do not change the semantics when
using these equivalences for transformation, and therefore obtain an equivalent (and equisatis-
fiable) result. The last equation belongs to De Morgan’s laws, which are, given two formulas ¢,

and ¢,, defined by the following equivalences:

(01 V) = (me Ay) 2.8)
(1 Awa) = (mpg Vy) (2.9

Moreover, two subsequent negations cancel each other out, i. e.,
“(=(p)) = o, (2.10)

where ¢ is an arithmetic formula. There is one more rather natural set of equivalences, for which

we need to define how to invert a relation:

(. .

> Lif ~is <

> Lif ~is <

. # Lif ~ is =
inv: REL — REL: ~ — {) .

= ,if ~is #

< ,if ~is >

LS , otherwise.

Then the following equivalences hold:

“(p~0)= pinv(~)0 (2.11)
—(true) = false (2.12)

31

2.4. NORMALIZATIONS

—(false) = true (2.13)

Definition 17 (Negation normal form) A quantifier-free formula ¢ in negation normal form
(NNF) is defined by the abstract grammar

¢ == false [true |b |=b |c [(pA@) |(@Ve)

where b is a Boolean variable and c is a constraint.

The main characteristic of a formula in NNF is that it does not contain negations, i. ., -, except in
front of a Boolean variable. We can transform any quantifier-free formula to NNF by first applying
Equations (2.1-2.4) in order to obtain a formula containing only the Boolean operators —, A and
V. Afterwards, we apply the Equations (2.8-2.13), from left to right, respectively, until reaching
a fix-point, which is then a formula in NNE

The number of transformations to be made in order to attain a formula in NNF from a given
quantifier-free formula ¢ grows linearly as the number of Boolean operations and constraints in
(increases.

We also want to make use of the commutative, associative and distributive properties of the
Boolean operators A and V

P1A P2 =@y APy (2.14)
P11V =@,V (2.15)
(L1 AP A3 =1 A2 A ps) =1 AP AP3 (2.16)
(P1 V) Vs =91 VI(p2Ves) =PV Vs (2.17)
(p1 A P2)V 93 = (¢1V@3) Alpz V 93) (2.18)
(01 V2) Aps = (p1 A p3) V(92 A ps) (2.19)

with ¢, ¢, and @5 being formulas. We can therefore assume that nested conjunctions and
disjunctions as given on the left-hand sides of the Equations (2.16-2.17) are always transformed
to the corresponding right-hand side.

Example 8 We can transform the formula p¢, as introduced in Example 2 but with normalized

constraints, to NNF in the following steps:

(2x3x2 + x5 +6x2+3 <0V (3x;—22,—1<0 — by))

PI2E (2x2x2 4+ x2 4+ 6x2+3 < 0) A —(~(3x, —22,—1 <0 — b))
P20 (222 4 x24+6x2+3<0) A (3x;— 22, —1<0 — by)
H2T 22 42 +6x3 4320 A (3x;— 25 —1<0 - by)

P2 0522 4 x2 4 6x2 4320 A (~(3x, — 22, —1<0) Vb,)

Eq. 2.11

= 2xIxZ+x5+6x7+3>0 A (3x;—22,—1>0 Vb,)

32

2.4. NORMALIZATIONS

In the area of satisfiability checking, especially for propositional formulas, we often use a
normal form which allows us to have a supplemental definition for satisfiability.
Definition 18 (Conjunctive normal form) A quantifier-free formula ¢ in conjunctive nor-

mal form (CNF) is defined by the abstract grammar

at = b | ¢
L= at | —at
Is = [Vis |LVI
cl = (Is) | 1
¢ u= cdAp | d

where at is called an atom and is either a Boolean variable b or a constraint c. A literal [is either
an atom or its negation, which we refer to as positive and negative literal, respectively. We denote
the set of all atoms by At := VARg U CS and the set of all literals by Lit := At U {—at| at € At}.
The inverse of a literal is defined by

at ,ifl=-at

 Lit— Lit: [—)
-at |, otherwise.

A clause cl is either a disjunction of literals or consists of exactly one literal making the clause

unary. We denote the set of all clauses by

cli={\/ 1| M e P (Lit)},
leM
where we leave out infinite clauses and clauses, which contain a literal more than once. For a

clause cl € Cl, we write that | € cl, if cl contains the literal L.

We can transform any quantifier-free formula to CNF by a procedure called Tseitin’s encoding
[Tse83]. Given a formula ¢ which we want to transform to CNE the main idea of Tseitin’s
encoding is to introduce a fresh Boolean variable b for each Boolean operation in ¢ and assure
the equivalence between b and the sub-formula formed by the Boolean operation. If the formula,
which we want to transform to CNE is already in NNE it is enough to assure that b implies this
sub-formula instead. Note that the result of Tseitin’s encoding is equisatisfiable but not equivalent

to the input formula as it introduces fresh Boolean variables.

Example 9 The result of Example 8 is in CNF and, indeed, we can use the Equations (2.1-2.4,
2.8-2.10, 2.14-2.19) in order to syntactically transform a formula to CNE However, the number of
transformations to be made this way, in order to obtain a formula in CNF from a given quantifier-free
formula ¢, may grow exponentially as the number of Boolean operations in (increases.
Alternatively, we can use Tseitin’s encoding to transform pg to CNE We assume that there are no
consecutive negations, as they can easily be cancelled out by the use of Equation (2.10). Then, it is

sufficient to introduce a fresh Boolean variable b for the Boolean operations, which are not a negation.

33

2.4. NORMALIZATIONS

The formula can be represented by the following parse tree, where ¢; := 2x%x§ + x% + 6x% +3<0,
¢y :=3x; —22;—1 < 0 and b; and b, are Boolean variables, which Tseitin’s encoding introduces

for the two Boolean operations, which are not negations.

@) ()

Tseitin’s encoding transforms the formula in the following steps to CNF:

=(cy V =(ey = by))
— —by A (b3 <= (c; Vby)) A (by <= (cy — by))

FeB2 Jp A (bs— (¢ Vaba)) A (¢ V —by) — bs)
A (bgy = (c3 = by)) A ((cg — by) — by)

FELD T Spy A by V(e Vb)) A (—(cy Vbg) V by)
A (mby V (mcy V by)) A (m(=ca V by) V by)

PO Spy A by V(e Vb)) A ((y Abg) V bs)
A (=by V (7cy V by)) A ((cg Aby) V by)

Eq. (2.18)

—bg A (7b3V(c1 Vby)) A ((mey V bg) A(byV b3))
A (=g V(mca V b)) A ((cgV by) A(=by V by))

—by A (b3 Vg Vby) A (cy Vbs) A (byV bs)
A (mbsV ey Vby) A (coVby) A (mbyV by)

Eq. (2.16-2.17)

Given a clause cl and a (partial) assignment a for cl, we call cl satisfied (under the assignment
a) if at least one literal [in cl is satisfied (under the assignment o), i. e., a defines a value for [and
[1]* = true. Note that cl can be satisfied even if some variables in Vars(cl) are not assigned by a.
If a is a full assignment for cl and [cl]* = false, we call cl conflicting (under the assignment a),
which only happens, if for all literals [in cl it holds that [I1]* = false. If cl is not satisfied and a
is defined on all but one variable in Vars(cl), we call cl unit (under the assignment a). The search
for a satisfying assignment for a formula in CNF can be achieved by finding an assignment for
the formula, such that in each clause at least one literal is satisfied. State-of-the-art algorithms
for checking the satisfiability of propositional formulas, as introduced in Section 2.5, use this fact
and, for this reason, transform their input to CNFE

It is possible to apply equivalence transformations based on the Equations (2.1-2.4, 2.8-2.19) to
a formula, which is in CNF or NNE resulting in a formula which is still in CNF or NNE respectively.

34

2.5. SAT SOLVING

Therefore, neither the CNF nor the NNF of a given formula is unique.

2.4.2.3 Quantified formulas with Boolean operators

In Section 2.3.1 we already introduced an assumption on quantified formulas, which is that if
a variable v is bound by a quantifier Qv.3y (Q € {3, V}) within the formula ¢, it holds, w.1. 0. g.,
that v occurs in ¢ only within 1. We can achieve this normal form by simply substituting such a
quantified variable v in Qv.2) by a fresh variable, if v also occurs outside of 1.

If we assume that a formula as defined by the grammar of Definition 4 fulfills this criterion, we

can make use of the equivalences

=(3v.e) = VYv.(-p)
=(Vv.p) = Jv.(—p) (2.20)
QoY) = (QuleAy))

(pAQuyp) = (QuleAy))

with v being a variable, ¢ and 1 being formulas and Q € {3,V}. Applying these equivalences
from left to right, respectively, to a given formula until reaching a fix-point attains the following
normal form.

Definition 19 (Prenex normal form) A formula ¢ in prenex normal form (PNF) is defined

by the abstract grammar

Y = @ |dvay | Vv

where v is a variable and ¢ is a quantifier-free formula.

If the PNF of a formula 1) contains only existential quantifiers, i.e., is of the form Jv;...3v,.¢
with ¢ being a quantifier-free formula, v is satisfiable/valid if and only if ¢ is satisfiable/valid.

Similar to formulas in CNF and NNE we can apply equivalence transformations to a formula in
PNF such that we obtain a formula which is still in PNE Hence, there is in general also no unique

PNF of a given formula.

2.5 SAT solving

If we only consider propositional formulas, this is seemingly a huge limitation compared to
general formulas with arithmetic constraints and quantifiers as defined in Section 2.3. However,
checking propositional formulas for satisfiability, which we refer to as SAT solving, has been very
successfully applied to industry and research in recent decades. The reason for this story of
success is twofold.

Firstly, we can encode a vast quantity of diverse problems into propositional logic. In [MSO08]
and [CEST09] a wide range of applications for SAT solving is listed. In some of them, such as
computer aided design of electronic circuits [Lar92] or model-checking of finite-state systems
[BCCZ99], it is often natural to use propositional logic. In other applications, such as software

35

2.5. SAT SOLVING

verification, program termination analysis and planning, it might be necessary to abstract from
the real problem in order to achieve a propositional formula. Due to the high complexity of these
problems, an abstraction can be crucial for finding a practical solution. Unfortunately, it can be a
tedious or even impossible task to break down the problem to an encoding in propositional logic.
In the field of SAT modulo theories (SMT) solving, which is introduced in Section 2.6, we allow
more general formulas as input and check their satisfiability by an automatic and usually lazy
encoding to propositional logic which is passed interactively to an internal SAT solver. Hence,
SMT solving opens the door for further problems for SAT solving.

The second reason for the success of SAT solving is clearly the tremendous progress in improving
the performance of SAT solvers, which we have observed in the last two decades. It makes SAT
solving available for problem instances of real applications with up to ten million variables
and clauses [JBRS12]. These instances are solved within a few minutes or often even only a
few seconds, which is remarkable if we consider that checking the satisfiability of propositional
formulas was one of the first problems proven to be NP complete [Coo71]. The reason for
this performance lies in the nature of the problem instances of real applications. Compared to
randomly generated problems, they possess certain structures which are strongly exploited by
modern SAT solvers.

In the following we describe the main ideas of the algorithm which is used in almost all
state-of-the-art SAT solvers. This algorithm is based on conflict-driven clause learning (CDCL),
which extends the DPLL algorithm, introduced in 1962 by Martin Davis, Hilary Putnam, George
Logemann and Donald W. Loveland [DLL62], by non-chronological backtracking and learning.
The main algorithm and its sub-procedures, which we explain in the following, are based on
MiniSat [ES04], since we use its implementation as a basis for the SAT solver within our own
SMT solver, which we introduce in Chapter 3. We chose MiniSat as it is a compact and extensible
open-source software, which nowadays still forms the basis of some of the best performing SAT
solvers and SMT solvers. For a broad overview and further details on SAT solving we refer to
[Han09]

2.5.1 Data structures and sub-procedures

Algorithm 1 describes a procedure to check a given propositional formula for satisfiability with
a CDCL-based implementation similar to the one of MiniSat. During runtime it manipulates
certain data structures, which do not directly appear in the pseudo code.

clauses: This is the set of clauses in the CNF of the input formula.
learneds: These are the clauses, which we learn after the conflict analysis.

assigns: It stores the assignments of Boolean constants to Boolean variables. We store the
variable assignment along with the decision level in which it took place and its antecedent.
The antecedent is either the clause we used via unit propagation in order to obtain the

36

2.5.

SAT SOLVING

variable assignment or L, if the variable was assigned owing to a decision (the terms
“decision”, “decision level” and “antecedent” are explained in detail in the remainder of this

section).

activities: Activities of Boolean variables, which are used to decide to which unassigned

Boolean variable we assign a Boolean constant next.

These data structures are not only essential for the understanding of CDCL but also play an

important role at some points later in this thesis. There are further data structures defined in

MiniSat, which we do not introduce here, such as the watch lists which help to find unit and

conflicting clauses efficiently. For more details we refer to [ES04].

In the following we first explain the sub-procedures, which are used in Algorithm 1.

decide(): If an unassigned variable exists, this procedure chooses one with the highest activity

according to activities and assigns to it a heuristically determined Boolean constant. We
call this choice a decision and the variable assignment is stored in assigns with antecedent
L . Afterwards, this procedure returns true. If, however, all variables are already assigned,
this procedure just returns false. Note that we start a new decision level just before each
decision and say that a variable was assigned in the i-th decision level, if i decision levels

were already started.

propagate(): Aslong as no clause (neither in clauses nor in learneds) is conflicting under the

currently found partial assignment in assigns and a unit clause cl exists, this procedure
assigns to the unassigned variable b in cl a Boolean constant such that cl is satisfied. We call
this process Boolean constraint propagation (BCP). If during the BCP a conflicting clause is
detected, this procedure returns the pointer to this clause, otherwise, if BCP stops since no

unit clause exists, it returns null.

addClause(clause cl, bool learned): If the given clause cl is not unary, this procedure adds cl

either to clauses, if the second argument learned is false, or otherwise to learneds. If
cl is unit, we assign the yet unassigned variable such that cl is satisfied. If, otherwise, cl is

conflicting, we try to resolve this conflict:

* The literals in cl were assigned at different decision levels. Then, we backtrack to the
second highest decision level i, that is we undo all assignment which were made in a

decision level j with j > i. Afterwards we return i.

* All literals in cl were assigned at the same decision level i with i > 0. Then, we

backtrack to decision level 0 and return O.

* All literals in cl were assigned at the decision level 0. This means that we cannot

resolve the conflict and return —1.

analyzeConflict(clausePointer confl): Assume that cl is the clause to which confl points. The

procedure analyzeConflict, which we refer to as the conflict analysis, calculates and returns

37

2.5. SAT SOLVING

the conflict clause cI’ = analyze(cl), where

, if cl is asserting

1
analyze: Cl—»Cl:cl— c)
analyze(bRes(antecedent(b),cl, b)) , otherwise

with
* b being the last variable, which was assigned in cl,

* a clause being asserting if it contains exactly one literal whose variable has been

assigned in the current decision level and all literals are assigned to false,

* antecedent: VARy — Cl being defined for variables whose values were implied by
propagation and it determines the clause, which was during propagation unit and

implied the assignment for the given Boolean variable, and

* the binary resolution of two clauses cl=(I; V..VI,V-b)and cI'=(l; V..V VD)
being defined by

bRes: CGCleARB—>C1:(cl,cl',b)H(llv..VanliV..Vlr/n).

As we have used cl = antecedent(b) during propagation as a unit clause to assign false to
b, cl contains the literal =b. We furthermore know that cl’ contains b. Therefore, the result
of bRes(cl, cl’, b) does not contain b. This way we cancel out exactly one Boolean variable
of the current decision level with each recursive invocation of analyze(..) and always reach
an asserting clause in a finite number of recursive invocations. In this procedure we also
update the activities (in activities) of the variables, which took part in the conflict
analysis. According to the variable state independent decaying sum (VSIDS) decision heuristic
[MMZ*01], we increment the activities of these variables by a value and increment this
value afterwards. This ensures that the most recent conflicts influence the activities of the

variables the most.

simplify(): This procedure assumes that we are currently in decision level 0 and can therefore
(optionally) simplify the clauses in clauses and learneds regarding the assignments of
decision level 0. Note that these assignments are directly implied by unary clauses or the
propagation before any decision has been made. A valid simplification would be to remove
all clauses which are satisfied and after this we could also remove all literals, which are

assigned but not satisfied, from the clauses.

forget(): This procedure removes clauses from learneds according to some heuristics. Usually
we do not remove clauses with only two literals or clauses which recently took part in the
conflict analysis. This procedure is called if the number of learned clauses exceeds a certain
threshold. If this is the case, the threshold is increased by some factor, which ensures the

completeness of CDCL.

38

2.5. SAT SOLVING

Algorithm 1 The CDCL-based SAT solving algorithm similar to the implementation of MiniSat.

check(propositional formula ¢)

begin
1: // initialize current decision level
2: dl:=0
3: // add clauses in CNF of ¢
4: for each clause cl in CNF of ¢ do
5: if addClause(cl , false) = —1 then return unsat // conflicting unary clause added
6: end for
7: // start search for satisfying assignment
8: while true do
9: confl :=propagate() // apply unit propagation
10: if confl # null then
11: if dl = 0 then return unsat // conflict cannot be resolved
12: // create conflict clause and update activities
13: cl := analyzeConflict(confl)
14: // add clause, backtrack to its second highest decision level and store it in dl
15: dl := addClause(cl, true)
16: else
17: if dl = 0 then simplify() // try to simplify considered clauses
18: if "enough clauses learned" then forget() // try to forget learned clauses
19: if "enough conflicts occurred" then restart() // backtrack to decision level O
20: // assign a Boolean constant to an unassigned variable with highest activity
21: dl:=dl+1
22: if decide() = false then
23: return sat // all variables are assigned
24: end if
25: end while
end

restart(): This procedure is called periodically, such that the number of detected conflicts be-
tween two consecutive restarts eventually increases, which ensures the completeness of
CDCL. If it is invoked, it backtracks to decision level 0.

2.5.2 Main algorithm

Algorithm 1 first initializes a variable representing the index of the current decision level (Line 2).
Then it stores all non-unary clauses in the CNF of the input formula to clauses (Line 5). If a
conflict is detected during adding these clauses, the algorithm returns unsat.

The main loop of Algorithm 1 first applies BCP (Line 9). If it results in a conflict (Line 10), we
check whether the current decision level is O and the conflict cannot be resolved for this reason
(Line 11). In this case the algorithm returns unsat. Note that it is possible that we do not detect
a conflict at decision level 0 before BCP has been used (e. g., if we add the clauses (—b; V —b,),

(b;) and (b,) in this order). Otherwise, a conflict clause is calculated via conflict analysis and

39

2.5. SAT SOLVING

added to the learned clauses with the procedure addClause.

If BCP does not lead to a conflict, we increment the stored current decision level (Line 21)
and try to assign a Boolean constant to an unassigned variable (Line 22). If all variables are
already assigned, we have a satisfying assignment (in assigns) for the input formula and return
sat (Line 23). There are three optimizations, which we apply under certain conditions, before
we decide to which variable we assign a Boolean constant next. Firstly, we try to simplify the
considered clauses (in clauses and learneds) if the current decision level is 0 (Line 17).
Secondly, if the number of learned clauses exceeds a certain threshold, we heuristically forget
some of them and increase the threshold (Line 18). The last optimization is to periodically
backtrack to decision level O (restart), where we ensure that the number of conflicts between two

consecutive restarts eventually increases (Line 19).

2.5.3 Correctness and completeness

Theorem 1 Given a propositional formula ¢ as input, Algorithm 1 always terminates with sat if

 is satisfiable and with unsat otherwise.

Proof 1 Correctness: If the algorithm returns sat, all variables are assigned to a Boolean
constant and no clause, neither in clauses nor in learneds, is conflicting as we would
otherwise have detected a conflicting clause during propagation. The clauses in clauses
together with the unary clauses, which we directly assigned at decision level 0, form the
CNF of the input formula ¢ and they are, therefore, equisatisfiable to ¢. We conclude that
the satisfying assignment in assigns for the clauses in clauses implies that ¢ is indeed
satisfiable.

If the algorithm returns unsat in Line 5, then there exists a conflicting clause at decision
level 0. We can repeatedly apply binary resolution as it is done in the conflict analysis, but
this time until the resulting clause does not contain any variable from the current decision
level. As we are in decision level 0 the resulting clause is empty and forms a contradiction.
We obtain this contradiction by applying binary resolution, which is sound and complete
[DP60], to the clauses in clauses and 1learneds, and all clauses in 1earneds were derived
by applying binary resolution to the clauses in clauses. This means, that we can infer a

conflict from the clauses in the CNF of ¢, which forms a proof of the unsatisfiability of .

Completeness: In order to prove the completeness of Algorithm 1 we must show that we
eventually leave the main loop, which starts at (Line 8). For this purpose we consider the
current partial assignments a' € partialAssigns(¢) at decision level i for each i € {0, .., dl}
and let a/ be the empty assignment for j > dl (j € N). We define a partial order on the
sequences a; = (dl;, al.l, o a;ﬂi), such that for two sequences a4, a5 it holds that a; < a if
there exists a number k € {1,..,dl;} such that a’l‘ is an extension of ag (a’l‘ # ag) and for

ie{l,..,k—1}itholds that ozi1 = a;. If we ignore the sub-procedures forget() and restart(),

40

2.6. SMT SOLVING

it holds that the corresponding sequence a to the current partial assignment at the start
of the main loop of Algorithm 1 is in this order greater than the corresponding sequence
a4 to the current partial assignment at the end of the main loop, i.e., a;.; < a;. As
|partialAssigns(y)| is finite, there is no infinite sequence of assignments in partialAssigns(¢)
which is decreasing in our partial order and, therefore, the algorithm must terminate. It
remains to show that (1) a;,; < a; and (2) that Algorithm 1 is also complete if we do not

ignore forget() and restart().

1. As the propagation at Line 9 only extends a; in the current decision level, it holds for
a;41 that a;; < a;. If we have a conflict, we backtrack at Line 15 to the decision level
dl and extend the assignment by assigning one more variable in the decision level dl.
Therefore, the a;, is in all decision levels before dl equal to a;, but contains one more
assignment at decision level dl, which implies that a;,; < ;. If no conflict occurred
during propagation, we assign to a not yet assigned variable a Boolean constant in
a new decision level, therefore, it still holds that a;,; < a; as a;,; is equal to a; in
all decision levels but the new one where it consists of one assignment instead of
none (as in ;). Note that simplify() does not affect the current assignment but only
removes clauses which do not affect the propagation, as they are satisfied in decision

level 0.

2. The sub-procedure restart() backtracks to decision level 0 and, hence, a;,; is then
not greater in our order than a;. Howevey, it is ensured that the number of detected
conflicts between two consecutive restarts eventually increases. Therefore, this num-
ber is high enough at some point, such that the aforementioned reasoning for the
completeness of this algorithm applies. The sub-procedure forget() does not affect
the current partial assignment, but it removes learned clauses which were derived
by resolution from the original clause set. Thus, clause learning only speeds up the

search but does not affect completeness. a

2.6 SMT solving

SAT solvers, as introduced in Section 2.5, can determine the satisfiability of propositional formu-
las. Due to the fantastic performance of SAT solvers on industrial examples and the resulting
upcoming success, the question arises how to broaden their field of application. Satisfiability
modulo theories (SMT) formulas are Boolean combinations of not only Boolean variables, but
also theory predicates. In Section 2.3, we have already seen an example of theory predicates:
arithmetic constraints. In general, SMT formulas can contain theory predicates constraining
arrays, bit-vectors or uninterpreted variables/predicates and function symbols, to name but a few
possible theories. This thesis only concerns quantifier-free nonlinear real and integer arithmetic

formulas with Boolean variables as SMT formulas.

41

2.6. SMT SOILVING

2.6.1 Applications

SMT solving has a rapidly growing and already wide field of application. A very prominent
area of research, where SMT solving is widely used, is model checking [BKO8]. For instance,
we can use SMT solvers for bounded model checking on hybrid automata, which are defined in
[ACH"95]. A more recent example forms parametric probabilistic model-checking [12]. Besides
model checking, SMT solving has also proven beneficial in further techniques which are used for
program analysis. To name but a few, it has been applied in static program checking [FLLT02],
test-case generation [PVL11], model-based testing [Pel13], run-time analysis [DLT16] and termi-
nation analysis [GBE*14]. SMT solving is even used in order to automatically improve a program
[SOE14] or directly synthesize a program [SGF10]. If we transfer the techniques from program
analysis, it is also possible to find deep bugs and security vulnerabilities using symbolic execu-
tion [PC13]. Another field of research, which profits from SMT solvers, is automated theorem
proving, such as the work in [Leil3]. As a consequence, SMT solvers are already integrated as a
component in the famous theorem prover Isabelle/HOL [BBP13]. SMT solving also takes place
in recent developments in scheduling and planning. For instance, work has been done on rotat-
ing workforce scheduling [Erk13], many-core scheduling [TPGM14] and resource-constrained
project scheduling [ABP*11]. As an example for planning, SMT solvers are used in planning
problems with mixed and continuous change over time [BGMG15] or integrated task and motion
planning [NPM*14].

2.6.2 Checking first-order formulas for satisfiability: State-of-the-art

Research in the area of solving quantifier-free first-order formulas for satisfiability has been carried
out long before SMT solving emerged. For instance, an algorithm based on congruence closure
for solving conjunctions of equations with uninterpreted variables /predicates and function symbols
for satisfiability was published in 1980 in [NO80]. Procedures to solve quantifier-free arithmetic
formulas without multiplication in polynomials but with uninterpreted predicate and function
symbols was also presented around this time in [Sho79][Sho84].

For linear real-arithmetic formulas, work was carried out much earlier. The Fourier-Motzkin
variable elimination procedure, which dates back to 1826, was published in a work of Jean-Baptiste
Joseph Fourier [Fou26] and also independently invented by Theodore Motzkin. It can detect
the satisfiability of a conjunction of linear real-arithmetic constraints. However, its complexity is
double exponential in the number of variables, which the formula to solve contains, and therefore
has a limited applicability. A second method, which can solve these kind of formulas is the simplex
method [Dan63]. Even though its complexity is still single exponential in the number of variables
in the given formula, it is the state-of-the-art procedure used nowadays for these kind of problems.
This is due to the fact that the worst case complexity only occurs with very artificial examples. In
practice, the performance of simplex is rather comparable to a linear complexity in the number
of the formula’s variables. The ellipsoid method [Kha80] can detect the satisfiability of such

42

2.6. SMT SOLVING

conjunctions even with a polynomial worst complexity. However, in practice it tends to be slower
than the simplex method.

For the satisfiability check of nonlinear real-arithmetic formulas, there are several incomplete
as well as complete procedures available. For instance, the virtual substitution (VS), which we
introduce in greater detail in Section 2.7 and is dealt with for the most part of this thesis, is
restricted with respect to the degree of the variables in the formula, which we want to check for
satisfiability. But on the other hand, we can also use this method for quantified real-arithmetic
formulas. The same holds for the cylindrical algebraic decomposition [Col75] (CAD), which is a
complete procedure for nonlinear real-arithmetic formulas. However, we gain the completeness
at the expense of a higher worst-case complexity, which is double exponential for the CAD instead
of single exponential, as it is for the VS, in the number of variables in a quantifier-free real-
arithmetic formula, if we want to check it for satisfiability. In practice, we cannot say that either
the VS or the CAD solves a formula faster. It tends to be the case, that if the VS can determine
the satisfiability of a formula, it achieves this in the majority of the examples, which we had at
hand, faster than the CAD. Another incomplete procedure for nonlinear real-arithmetic applies a
Grobner bases [BWK93] computation, which mainly implements Buchberger’s algorithm [Buc65]
and can determine in some cases whether a conjunction of nonlinear equations is unsatisfiable.
In comparison to these algebraic procedures, the interval constraint propagation (ICP) also uses
numerical approaches, which often yields a better performance in practice than one of the alge-
braic procedures. In Section 5.4.3, we explain this method in further detail. However, it is also
incomplete for nonlinear real-arithmetic formulas and cannot handle quantifiers.

Procedures for linear integer-arithmetic or linear mixed integer-real arithmetic build upon
those for linear real-arithmetic. For example, the Omega test [Pug91] uses the idea of the
Fourier-Motzkin variable elimination and, therefore, shares the restriction that it can only detect
the satisfiability of conjunctions of arithmetic constraints. The most commonly used approach
to solve these kind of formulas, however, is branch-and-bound [Sch86], which was originally
applied on top of the simplex method. The main idea is simple: If the simplex method detects the
unsatisfiability of the given formula’s real relaxation then there is in particular no integer solution.
This observation does not only hold for the simplex method, but any procedure for real-arithmetic,
if we use it for the real relaxation of a given integer-arithmetic or mixed integer-real arithmetic
formula. In the case that we find out that the real relaxation is satisfiable and we obtain a solution
which maps all variables to integers, we also find a solution for the original formula. Again, we
can transfer this observation to any procedure for real-arithmetic formulas. If, on the contrary,
there is one integer variable z which is mapped by the solution to a value d € R \ Z, we rerun
the satisfiability check, but this time adding the constraint z < |d], and if this is unsatisfiable, we
rerun the satisfiability check adding z > [d], instead. However, this approach, which we refer to
as branch-and-bound [Sch86], does not always terminate. Moreover, it cannot be applied directly
to any procedure for real-arithmetic. For instance, the virtual substitution constructs symbolic

solutions possibly containing dedicated representatives for arbitrary small values. In order to

43

2.6. SMT SOILVING

construct a solution from this, which maps all variables to values, we would need to take the
dependencies within the virtual substitution’s solution into account. In Chapter 7 we introduce
an approach, which makes branch-and-bound applicable to the virtual substitution.

This brings us to nonlinear integer-arithmetic or nonlinear mixed integer-real arithmetic. In gen-
eral, the determination of the satisfiability of a formula of this type is undecidable [Mat70][Mat72].
If we bound the domains of the variables in the formula, that is we assure that there is a finite
upper and lower bound for each of them, which makes the variables’ domains finite, the problem
becomes obviously decidable. In the context of SMT solving and only for nonlinear integer-
arithmetic, the most common approach, which we refer to as bit-blasting [FGM*07], uses this
fact. Here we add upper and lower bounds on the variables’ domains, encode these domains and
the arithmetic operations upon them to propositional logic and check it with a SAT solver for
satisfiability. If we find a solution, we can reconstruct an integer solution for the given integer
arithmetic formula. Otherwise, we widen the added upper and lower bounds on the variables’
domains and repeat the previous step. Interval constraint propagation can also be used to detect
the satisfiability of a nonlinear integer-arithmetic and even nonlinear mixed integer-real arith-
metic formula. As already mentioned, in Chapter 6 we introduce another solution for this which
is based on the virtual substitution. This work was published together with an adaption for the

cylindrical algebraic decomposition for integer arithmetic in [1].

2.6.3 The rise of SMT solving

At the beginning of the 21st century, SAT solving became extremely successful both in research
and industry. In order to extend its field of application and to exploit its performance at the point
where problems with a complex Boolean structure are at hand, research has been conducted
towards an incorporation of SAT solvers. One of them aimed to achieve a better performing
solution for an automatic satisfiability check of first-order formulas, in particular those without
quantification.

One approach, which we refer to as eager SMT solving, encodes the given first-order formula
to a propositional formula and checks it for satisfiability with a SAT solver. If this propositional
formula is equisatisfiable to the encoded formula, we can directly imply the satisfiability of the
encoded formula. As an example, the SPARSE method [BV02] encodes an arbitrary Boolean
combination of equalities between two uninterpreted variables to an equisatisfiable propositional
formula. A second example is introduced in [SSB02] for difference logic, which concerns linear
arithmetic formulas, where the constraints are of the form x; — x5 —d ~ 0, with x;, x, being
arithmetic variables, d € Z and ~ being an arbitrary relation symbol. It might also be the case that
we can only imply the satisfiability of the original formula if the propositional formula resulting
from the encoding is detected to be either satisfiable or unsatisfiable. For instance, the previously
explained bit-blasting for nonlinear integer arithmetic uses an encoding to a propositional formula
and can only imply the encoded formula’s satisfiability if the propositional formula is satisfiable.

The greatest advantage of eager SMT solving is clearly that we can simply use the SAT solver

44

2.6. SMT SOLVING

Input formula ¢

SMT solver:

Boolean abstraction of ¢
in CNF and NNF

SAT solver { sat/unsat

(sat + solution)
Constraints (predicates) or (unsat + explanation)
or (unknown)

Theory solver(s)

Figure 2.2: Lazy SMT solving framework.

as a black box and thereby immediately benefit from the most recent performance-improving
achievements for SAT solving. Nevertheless, scientists started thinking about a tighter collabo-
ration of the SAT solver and the existing decision procedures for first-order logics such as the
ones we introduced in Section 2.6.2. The first step towards lazy SMT solving as it is known and
widely used nowadays have been done in [BDS02] and [dMRO02]. The main idea is illustrated in
Figure 2.2. A lazy SMT solver consists of two main components, a SAT solver and a collection
of theory solvers. The SAT solver implements the presented algorithm of Section 2.5 and each
theory solver implements a procedure which checks a conjunction of predicates for satisfiabil-
ity. The predicates can, for instance, be equations with uninterpreted variables and function
symbols or arithmetic constraints, where we again distinguish on the one hand between linear
and nonlinear constraints and on the other hand between real, integer and mixed integer-real
arithmetic constraints. In Section 2.6.2 we presented procedures which would be candidates for
the implementation of a theory solver.

Let us take a closer look at the functionality of a lazy SMT solver. The input formula ¢ of an
SMT solver can be an arbitrary Boolean combination of predicates and Boolean variables. Without
loss of generality, we assume that ¢ is an arithmetic formula as it was introduced in Definition 4.
First, we transform ¢ into CNE Then, we transform the result into NNF as well, which simply
resolves negations in front of constraints. The resulting formula 1 is then a conjunction of clauses,
where all constraints occur only in positive literals. Afterwards we create the Boolean abstraction
B of 1) with abstrﬁ being the corresponding Boolean abstraction mapping. Now the SAT solver
checks v)® for satisfiability. If 1® is unsatisfiable, the SMT solver returns unsat. Otherwise, the
SAT solver has found a solution ayz. Then we let the theory solver check the conjunction of
the constraints c € C_(vy) with aw(abstrﬁ (c)) = true, which are the constraints whose Boolean

abstraction variables are assigned by the SAT solver’s found solution to true. We refer to this

45

2.6. SMT SOILVING

check as a theory call. If a theory solver detects that this conjunction is satisfiable, that is it returns
sat, the SMT solver returns also sat. We also expect that the theory solver provides a solution
a in this case. The SMT solver uses a and a= in order to construct a solution for its input ¢ by
a, =aU{(b,ay:(b))| b €Vars(p)}. If the theory solver returns unsat, we exclude all Boolean
assignments of 1)® which contain this theory conflict by adding the clause

\/ ﬂabstrﬁ (c)
ceC.(Y)
e (abstr%J (c)) =true

to the set of clauses, which the SAT solver considers for a satisfiability check, as a learned clause.
For the SAT solver (and its current assignment) this clause is conflicting. We proceed the SAT
solving process at Line 13 of Algorithm 1 with this conflicting clause as explained in Section 2.5.
That means that the SAT solver tries to find a satisfying assignment which does not conflict with
this learned clause. This process is repeated until either a satisfying assignment of the Boolean
skeleton is found such that the corresponding theory call returns sat or the SAT solver detects that
the Boolean skeleton is unsatisfiable with respect to the learned clauses, which exclude theory

conflicts.

Example 10 Consider the formula
p = xX3>0AxX3—1=0A(x;—x53=0V x§<0) A(x;<0V x;—2<0).
As it is already in CNF and NNE we directly create its Boolean abstraction
Y® = by A by A(by V by) A (bs V bg).

The SAT solver then starts checking)® for satisfiability. The addition of the two unary clauses yields
that true is assigned to the variables b, and b, in decision level 0. In decision level 1 we choose to
assign false to by and BCP implies that true has to be assigned to by. In decision level 2, we assign
false to bs and BCP implies that we have to assign true to the last remaining unassigned variable

bg. As there is no conflicting clause, we obtain the satisfying assignment
ayz = {(by,true), (by,true), (bs, false), (by,true), (bs,false), (be, true)}.
Now we check the conjunction of constraints
X1>0 A x3—1=0AXx2<0AxXx—2<0
with the theory solver for satisfiability. It is unsatisfiable, hence we add the clause

(_‘bl Vv _|b2 \Y _|b4 \Y _‘b6)

46

2.6. SMT SOLVING

to the SAT solver. This clause is already asserting, therefore we backtrack to decision level 1 where
BCP implies that we must assign false to bg and as a consequence true to bs. The corresponding
theory call for

x>0 A Xx—1=0A x§<0 A x;<0

yields again unsat. The SAT solver now learns the clause
(_|b1 \Y _'b2 \Y _‘b4 \Y _'bs).

Conflict analysis additionally yields the asserting clause (—b; V =b, V —b,), hence we backtrack
to decision level 0 and imply with BCP that we must assign false to b, and therefore true to bs.
In decision level 1, we choose to assign false to bs and due to BCP we assign true to bg. The

corresponding theory call for
X1>0 A XZ_].:O A xl_X2=O A X1—2S0

yields sat this time and the SMT solver returns also sat.

The just described SMT solving framework is said to be full lazy, as it always constructs a full
satisfying assignment of the Boolean abstraction before it makes a theory call. If we invoke the

theory solver more often, for instance, every time a decision level is finished, we call it less lazy.

Example 11 Considering the input formula ¢ and its Boolean abstraction 1® of Example 10 . When

the SAT solver finishes decision level 0, its current assignment for v® is
ays = {(by, true), (by,true)}.
Less-lazy SMT solving invokes the theory solver at this point for
x1>0 A x9—1=0,
which results in sat. Afterwards the SAT solver finishes decision level 1 with
aye = {(by,true), (by,true), (bs, false), (by, true)}
and the corresponding theory call
x1>0 A x3—1=0 A x3<0
yields this time unsat. We add a clause
(mby V —by V —by)

to the SAT solver in order to exclude this theory conflict. The SAT solver backtracks to decision level

47

2.6. SMT SOILVING

0 and propagates that we must assign false to b, and therefore true to bs. This finishes decision

level 0 and we invoke the theory solver with
X1>O A Xz—].:O A xl—x2=O.

As this is satisfiable, the SAT solver starts a new decision level by choosing to assign false to bs. BCP
implies that we have to assign true to bg, which concludes this decision level. The corresponding
theory call for

X1 >0AXx3—1=0AXx;—x3=0A x1—2=Z50

returns sat, thus the SMT solver returns sat, as we have found a satisfying full assignment of 1p®

which is consistent with the theory.

Comparing full-lazy and less-lazy SMT solving, we observe in Example 10 and Example 11 that
the number of theory calls seems to be quite similar. Less-lazy SMT solving actually produces one
more theory call here. In practice, it highly depends on the example at hand. However, compared
to full-lazy SMT solving, the complexity of the theory calls with less-lazy SMT solving is reduced,
as the number of constraints to be solved is smaller. Especially for less-lazy SMT solving, we also
observe that a theory call often shares the majority of the constraints with the previous theory
call. If the theory solver could exploit this fact, that is not just starting a satisfiability check from
scratch each time it is invoked, but use the results of the previous checks and only make a minimal
effort to detect the satisfiability of the currently considered conjunction of constraints, this would
boost the performance of lazy SMT solving, especially of less-lazy SMT solving.

Hence, considering two consecutive theory calls, we have to remove some of the constraints
from the theory solver and add some new constraints to it, after the first theory call was finished
and before we invoke the second one. The ability of a theory solver to provide an interface for
a belated removing of a constraint while keeping as much information, which it gained in the
former theory calls, is referred to as the backtracking ability. Similarly, if a theory solver provides
an interface to add constraints belatedly, while keeping as much information, which it gained in
the former theory calls, we say that it supports incrementality. In [BBC*05], for instance, first
results have shown the positive impact of these features for SMT solving.

The first two theory calls in Example 10 both contained the constraint xg < 0, which itself
is already unsatisfiable. If the theory solver would have known this fact and would have been
able to communicate this, we could have saved the second theory call. In [dMRS02] the authors
dealt with this fact. Instead of simply returning unsat, we let the theory solver also return
an explanation, which is a subset of the constraints in the conjunction, which it checked for
satisfiability. We call this explanation infeasible subset (of the checked constraints). We use this
explanation in order to construct the learned clause, which excludes the discovered theory conflict
from future assignments of the SAT solver. Let ¢; A... A c, be the conjunction of constraints, for
which the theory solver detected that it is unsatisfiable, and the Boolean abstraction of c; be b;

48

2.6. SMT SOLVING

(1 <£i < n). Until now, we learned the clause =b; V...V =b,, which excludes all assignments
for the Boolean abstraction the SAT solver considers that assign true to b; (1 <i < n). Now, we
have an explanation in form of an infeasible subset C C {c;,...,c,} and, instead, we learn the

clause \/, ¢
SAT solver considers than =b; V...V =b,.

—b;, which excludes in general more assignments for the Boolean abstraction the

As a consequence, a theory solver which provides a small infeasible subset, if it detects that
its input is unsatisfiable, improves the performance of the SMT solver. Usually, the smaller the
infeasible subset is, the more we can benefit from it in the SMT solving process. Finding the
smallest infeasible subset, for instance {x% < 0} for the first theory call in Example 10, is in
practice often very hard. Instead, we usually only require an infeasible subset which is minimal,
which means, that if we remove a constraint from it, the conjunction of the remaining constraints
is satisfiable. However, even minimality is sometimes difficult to achieve, so in the end we need
to find a good trade-off between creating small infeasible subsets and reducing the effort we have
to make in the theory solver in order to construct them. This discussion also indicates that there
is often more than one infeasible subset and as long as one infeasible subset is not a subset of the
other, both are valuable information for the SMT solver.

Summarizing, a theory solver has to meet three conditions for a well performing collaboration
within a lazy (especially less-lazy) SMT solver:

1. Backtracking ability
2. Incrementality
3. Infeasible subset generation

A theory solver, which fulfills these three requirements, is called SMT compliant. There has
been a lot of work in this field of research in recent years. An SMT-compliant theory solver for
conjunctions of equations with uninterpreted variables and function symbols was introduced in
[NOO5]. The authors of [CAMNO4] presented an SMT-compliant theory solver for difference logic
and [DAMO6] contributed an SMT compliant theory solver for linear real and integer arithmetic,
which is based on an adaption of the simplex method’s first phase, branch-and-bound and the
construction of cutting planes. In [dMPO09], the authors deal with the creation of explanations,
if Grébner bases are used in order to detect the unsatisfiability of a conjunction of nonlinear
real-arithmetic equations. We contributed in [7] an SMT-compliant theory solver for nonlinear
real arithmetic, which utilizes Grobner bases. Furthermore, we introduced an SMT-compliant
theory solver also for nonlinear real arithmetic based on the virtual substitution [7]. We present
these ideas and further developments in Chapter 4 of this thesis.

There are further ideas of how we can improve the collaboration of the SMT solver’s SAT solver
and theory solver(s), such as theory propagation or theory guided decision heuristics. For more
details and a good overview of many techniques used in SMT solving, we suggest [NOT06] and
[Seb07].

49

2.6. SMT SOILVING

Recent developments brought forth an even tighter interaction of decision procedures, such as
those from Section 2.6.2, and SAT solving. A generalization of this idea is presented in [JBAM13]
and a precise implementation for nonlinear real arithmetic based on the cylindrical algebraic

decomposition was introduced in [JdAM12].

2.6.4 Tools and standards (2016)

The SMT solving community has put a lot of effort into the standardization of the SMT solver’s
input. Thanks to the international initiative SMT-LIB, most SMT solvers support a common
input language, which is specified as the SMT-LIB standard [RTO3][BFT16]. This initiative also
maintains a large library of benchmarks, which comprise thousands of input examples, and an
annual competition among the different SMT solvers. We used these and some other benchmarks,
which are briefly described in Chapter 6 and Section 7.2, for the experimental results within this
thesis.

We want to conclude this section on SMT solving giving an overview of the currently avail-
able SMT solvers and other tools which can be used to check arithmetic formulas for satisfi-
ability. In the last decade, we have been able to observe a lot of activity for linear real and
integer arithmetic. The SMT solvers, which are specifically dedicated to support these logics,
for instance, CVC4[BCD*11], MathSAT5[CGSS13], OpenSMT2[BPST10], SNTInterpol [CHN12],
veriT[BCBdODF09], Yices2[Dut14] and Z3[dMBO08], can solve real world problems with hun-
dreds of variables in often only a few seconds and they achieve this with a fantastic reliability.
To the best of our knowledge, all of these SMT solvers base their implementation, which checks
linear real- and integer-arithmetic formulas for satisfiability, on the groundbreaking contribution
of [DAMO6]. In addition, they put a lot of effort into exploiting that the input formulas show
certain characteristics, where it is possible to solve or simplify them by the use of preprocessing.
Moreover, it is essential to use smart heuristics for the countless choices that must be made during
the SMT solving process [Gri09][KBD13]. Undoubtedly, there are more ideas which contributed
to the excellent performance of the named SMT solvers, such as an integration of a linear pro-
gramming solver [KBT14], breaking symmetries [DFMP11][ADFO13] or the creation of better
cutting planes for linear integer arithmetic [DDAQ9].

Long before SMT solving was invented, nonlinear real-arithmetic formulas have been of concern
in computer algebra systems. For instance, Redlog [DS97] is capable of not only checking
quantified formulas, which are arbitrary Boolean combinations of real-arithmetic constraints
and Boolean variables, but it can also eliminate quantifiers/variables yielding an equisatisfiable
formula. To the best of our knowledge, Redlog implements an optimized combination of the
virtual substitution and the cylindrical algebraic decomposition. Furthermore, it uses Grébner
bases and other ideas in order to simplify a formula.

The tool HySAT[FHT*07] and its successor iSAT3[SKB13] can also check real- and integer-
arithmetic formulas for satisfiability but using a closer interaction of SAT and theory solving.

Their implementations are based on a close collaboration of a SAT solver and interval constraint

50

2.7. VIRTUAL SUBSTITUTION

propagation, which differs from the previously presented approach of lazy SMT solving. As ICP
is incomplete for real arithmetic (and of course also for integer arithmetic), these tools cannot
always give a conclusive answer to the question for satisfiability of a given formula. However,
they are also able to deal with constraints involving exponential or trigonometric functions. There
are further tools, which implement ICB such as dReal [GKC13] or raSAT [TVKO16].

The SMT solvers CVC4, MiniSmt [ZM10] and Z3 initially checked nonlinear real-arithmetic
formulas via linearizing them, which has the big advantage that their very performant engine
for linear arithmetic can be employed afterwards. However, it only yields an incomplete proce-
dure, which cannot determine the satisfiability of most of the nonlinear formulas in the SMT-LIB
benchmarks. Recent developments brought forth a new approach, which is based on a close
collaboration of a SAT solver and the cylindrical algebraic decomposition [JdAM12]. This ap-
proach was first implemented as part of Z3 and, in the meanwhile, it is also used in the SMT
solver Yices2. At this moment in time, it outperforms the aforementioned approaches in the
majority of the examples in the SMT-LIB benchmarks for nonlinear real arithmetic. It forms a
very good example of how CDCL reasoning can be used in algebraic procedures and has already
drawn interest in the computer algebra community [AFSW16].

Besides ICE the most common approach to check nonlinear integer-arithmetic formulas for
satisfiability is bit-blasting. It was implemented within the tool AProVE [GBE"14], which is
primarily dedicated to an automated generation of termination and complexity proofs. In the
meantime, the SMT solvers CVC4, Yices2 and Z3 also use bit-blasting for nonlinear integer-

arithmetic.

2.7 Virtual substitution

Virtual (term) substitution (VS) was first introduced in 1993 as a quantifier/variable elimination
procedure for linear real-arithmetic formulas [LW93]. In contrast to the Fourier Motzkin variable
elimination, the first version of the VS cannot only be applied to an existentially quantified
conjunction of linear real-arithmetic constraints, but even to arbitrary Boolean combinations of
such constraints where each variable can be either existentially or universally quantified.

Some years later, VS was extended to a quantifier elimination procedure for nonlinear real-
arithmetic formulas [Wei97]. However, it can only eliminate quantified variables whose degree
is not higher than 2. Furthermore, eliminating a quantifier might increase the degree of the
remaining quantified variables.

The boundary of the degree for which a quantified variable can be eliminated could be pushed
further to three [Wei94] and four [GT09]. Recently, it has been shown that quantified variables
of an arbitrary but bounded degree can be eliminated by an approach based on the VS [KS15].
Unfortunately, the higher the degree of the quantified variable we eliminate, the more complex
is the result of this elimination step in terms of the number of atoms in the resulting formula.

This is why we restrict ourselves to VS for the quadratic case as presented in [Wei97], which has

51

2.7. VIRTUAL SUBSTITUTION

proven to be a viable procedure for various applications by its first implementation in Redlog.

2.7.1 Constructing test candidates with side condition

Let ¢ be a real arithmetic constraint and A C Assigns(c) be a set of assignments for ¢ which
evaluate Pol(c) to a value with the same sign, i. e., for all a,, a, € Ait holds that sgn([Pol(c)]*') =
sgn([Pol(c)]*2). Regardless of the relation in ¢, we know that all assignments in A are either
solutions, i.e., A C ©(c) or not, i.e., AN©O(c) = @. This is due to the fact that we compare Pol(c)
in ¢ by some relation symbol to 0. If we consider a real arithmetic formula ¢® instead of a
constraint, we can make the same observation. Let us partition Assigns(¢™) into maximal sign
invariant regions A, ..,A, regarding the polynomials in Pols(¢®), such that for all a;, a, €A; it
holds for all p € Pols(¢®) that sgn([p]*) = sgn([p]*) (1 <i < n). Then A, contains either
only solutions of p¥, i.e., A; € ©(p®) or no solutions of ¥, i.e., A, NO(¢®)=0 (1 <i<n). As
a conclusion it is sufficient to check one assignment in each sign invariant region to the variables
in ¢® in order to determine the satisfiability of ¢®. As the number of maximal sign invariant
regions is for a given finite set of polynomials always finite, we obtain the main idea of decision
procedures such as the virtual substitution and the cylindrical algebraic decomposition, which
construct a finite set of assignments such that each maximal sign invariant region is covered at

least once.

Example 12 Let us consider the univariate quantifier-free real-arithmetic formula
PR =(x?—-4>0Ax—1<0)V (x>—4=0 A x—1>0)

The set of all polynomials in p® is Pols(¢®) = {x%2—4, x—1} and we illustrate them in the following
plot.

52

2.7. VIRTUAL SUBSTITUTION

We can partition Assigns(p™®) to the sign invariant regions

A; = {a€Assigns(p®)| a(x) € (—o0,—2) }
A, = {a€Assigns(p®)| a(x) e [—2,—-2]}
Ay = {a€Assigns(p®)| a(x) e (—2,1)}

A, = {a€Assigns(¢®)| a(x)e[1,1]}

As = {a€Assigns(¢®)| a(x) € (1,2) }

Ag = {a€Assigns(e®)| a(x)€[2,2]}

A, = {a€Assigns(p®)| a(x) € (2,00) }

In the univariate case of Example 12 we observe that the values of one sign invariant region,
which the assignments map to x, form either point intervals or open intervals. Moreover, the
bounds of these intervals are the zeros of the polynomials in Pols(¢™). This leads to the idea that
we could use them in order to construct the finite set of assignments covering all sign invariant
regions. In Example 12, the three assignments of the zeros of the polynomials in Pols(¢®) to x,
i.e., {a € Assigns(p®)| a(x) € {—2,1,2}} cover only the sign invariant regions A,, A, and Ag. As
the values, to which the assignments of other regions map, form open intervals, we need to find
a value which is either very close to the right of (greater than) the interval’s left bound or very
close to the left of (less than) the interval’s right bound. We decide for the former. One question
remains: How close is close enough? For instance, choosing the next greater integer would lead
to the additional assignments {a € Assigns(¢®)| a(x) € {—1,2,3}}. Now we would still not cover
the sign invariant regions A;, as its left bound is not a zero of the polynomials in Pols(®) but
—o00, and Ag, as we did not choose a value close enough to the right of the zero of x —1. Instead
of considering the entire formula in order to find suitable values, we postpone this decision by
introducing representatives for a sufficiently small value, which we denote by —00, and a value
which is sufficiently close to the right of an open left bound d, we denote by d + €. This leads
to the finite set of assignments {a € Assigns(¢®)| a(x) € {—00,—2,—2+¢€,1,1+¢€,2,2 + €}}
covering all sign invariant regions for some sufficiently small —oo and infinitesimal € (> 0) .

The relation symbols of the constraints in ¢® have no influence on the sign invariant regions
of the polynomials in ¢®. However, they define the set of solutions of . In the univariate case,
as in Example 12, the assignments which satisfy a weak constraint map to values forming a set
of closed intervals. For strict constraints they form open intervals. As we are interested in the
satisfiability of a formula, we do not need to cover sign invariant regions which are open intervals
with a left bound being a zero of a polynomial which only occurs in weak constraints. This region
is satisfied if and only if the point interval, which contains this zero, is satisfied. Moreover, we
do not need to consider sign invariant regions, which are point intervals that contain a zero of
polynomials that only occur in strict inequalities. In Example 13 we illustrate this optimization

on the formula from Example 12.

Example 13 Consider the formula p® from Example 12. The sets of solutions of the constraints in

53

2.7. VIRTUAL SUBSTITUTION

R are
O(x2—4>0) = {aeAssigns(¢®)| a(x) € (—oo0,—2]U[2,00)}
O(x2—4=0) = {aeAssigns(¢®)| a(x)e[-2,—2]uU[2,2]}
O(x—1<0) {a € Assigns(¢®)| a(x) € (—o0,1) }
O(x—1>0) = {acAssigns(¢®)| a(x)e(1,00)}

Now we can construct a finite set of assignments, such that one of them is a solution of ¢® if and
only if p® is satisfiable. For this purpose, we do not need to cover Ay and A,, as the polynomial
x2 —4 occurs only in weak constraints. We also do not need to cover the sign invariant region A4, as

the polynomial x — 1 occurs only in strict constraints. Therefore, we only check the assignments
{a € Assigns(¢®)| a(x) € {—00,—2,1 +¢,2}}
to find a solution of p® for some sufficiently small —oo and infinitesimal € (> 0).

We have seen how to construct a finite set of assignments for a given univariate real-arithmetic

R such that one of them is a solution of ¢® if and only if p® is satisfiable. This

formula ¢
construction also guarantees us, that all assignments of this set satisfy p® if and only if @® is
valid or in other words, it is satisfied by all assignments in Assigns(®). We can transfer this
principle to the multivariate case with n variables in order to achieve an equisatisfiable formula
with n — 1 variables. Once we have chosen a variable x we want to eliminate this way, we
construct a finite set of so called test candidates, which form the equivalent to the values to which
the constructed assignments for the univariate case map. The test candidates are obtained in
almost the same way as before. For each weak constraint c,, in ¢, we use the zeros of Pol(c,,)
in x as test candidates. For each strict constraint ¢, in ¢, we use the zeros of Pol(c,) in x plus
an infinitesimal € as test candidates. Furthermore, we use —oo as a test candidate, which, as
before, represents a sufficiently small value. The main difference is that the zeros are possibly
parametrized in the remaining variables and might not exist under certain conditions in the
remaining variables. We also need a solution formula to determine the parametrized zeros of a
polynomial in one variable and here lies the restriction of this method. For polynomials whose
degree in x is higher than 4, there exists no general formula to determine its zeros in x. We even
restrict ourselves to quadratic polynomials in x, as it gives us a comparably compact solution
formula for the zeros in x and we have to deal with less cases. Before we get to a general
definition of test candidates, we introduce an expression which emerges when using the solution
formula of quadratic equations.

Definition 20 (Square root expression) A square root expression is of the form

p+qyr
S b

54

2.7. VIRTUAL SUBSTITUTION

where p,q,r,s € POL. We denote the set of all square root expressions by

p+qyr
S

SqrtEx := { | p,q,7,s € POL}

and the set of all square root expressions in the variables x1, .., x, by

+
SqrtEx[xq,..,x,] := {p—qﬁl p,q,1,s € POL[xq,..,Xx,]}.
s

Given a quadratic equation p;x2 + p,x + p; = 0 in the variable x, that is p;, p,, p; € POL and
x ¢ Vars(p;) U Vars(p,) U Vars(ps), the solution formula for x in p;x2 + p,x + p; = 0 considers
the following three cases:

X = _bs Lifpy=0 A py #0 (2.21)
P2
—py+4/p3 —4p1p
X, = 2 22 13 Lif py #£0 A p2—4p;ps =0 (2.22)
P1
2
—P2—4/P3 —4P1P
Xy = 2 22 17 ,if p1 #0 A p2—4p;p3 =0 (2.23)
P1

Note that any real number is solution for x, if p; =0, p, = 0 and p; = 0, therefore this case is

covered, in particular, by —oo. Therefore, we can summarize the appearance of the symbolic

p+q/T

+—, where

zero of x in a polynomial, which is quadratic in x, by a square root expression
 for Equation (2.21), it holds that p =—p;,q=0,r =1 and s =p,,
 for Equation (2.22), it holds that p =—p,, q=1,r = p% —4p,p3 and s =2pq, and
 for Equation (2.23), it holds that p =—p,, g =—1,r = p§ —4pps and s =2p;.

This gives us the opportunity to generalize test candidates, taking into account that they can be

—oo and supplemented by an infinitesimal €.

Definition 21 (Construction of test candidates) The set of all test candidates is defined by
TCS := SqrtExU {t + €| t € SqrtEx} U {—oo}

The set of test candidates for an arithmetic variable in a constraint, which is quadratic in x, is
defined by

tcs: VARg 7 x CS — TCS :

w ——

ps —DP2Ey/P3—4p1ps }

, If ~ is weak

(9 o o 0) > P2’ 2p;
X, p1X~ T paX +p3~0)—
P3 —Paty/ P§—4P1P3 .
{—o0, 6 ——p—— t e} , otherwise,

where py, p,, p3 € POL and x ¢ Vars(p;) U Vars(p,) U Vars(ps).

55

2.7. VIRTUAL SUBSTITUTION

The side condition of a test candidate is defined by

sc(t’) ,ift=t'+e
sc: TCS—=FO(1):t—=1{ s#0AT=>0 ,ift:#
true , otherwise (t = —00)

where p, g, r and s are polynomials and t’ is a test candidate not containing .
The set of test candidates for an arithmetic variable in an arithmetic formula where the

variable occurs at most quadratically is defined by

tes: (VARg 7 x FO(7)) — TCS : (x, ¢) — U tes(x, ¢).
ceC.(p)

The side condition of a test candidate ensures that the zero, which we used to create the test
candidate, indeed exists. The side condition of the candidate —oo is valid, as it does not relate
to a zero.

Compared to the univariate case, the zeros used for the construction of the test candidates can
now contain variables. Therefore, their existence, exact location and order in an illustration such
as in Example 12 is not clear. Fortunately, this does not affect the argumentation we made for the
univariate case. No matter which real values we assign to the remaining variables in the symbolic
zero, which is used in a test candidate, it still forms the left bound of one of the sign invariant
regions. If we take into account all zeros of the polynomials of all constraints in a formula and
also these zeros plus an infinitesimal € and a sufficiently small value —0o, we ensure that for any
instantiation of the variables in the symbolic zeros all sign invariant regions for the variable, for
which we created the test candidates, are covered. Therefore, a given real arithmetic formula
(pR, which contains the variable x, is satisfiable if and only if there is one test candidate t for
x in p®, such that, on condition that x = t and t’s side condition sc(t) holds, ¢® is satisfiable.
Furthermore, ¢® is valid if and only if all test candidates t for x in ¢®, make ¢®, on condition
that x = t and sc(t) holds, satisfiable.

2.7.2 Substituting variables by test candidates virtually

Given a real arithmetic formula ¢, we would usually substitute all occurrences of a real arith-
metic variable x in ¢® by the test candidate t at hand, in order to ensure that x = t. As t can
be —oo or contain quotients, square roots of polynomials or infinitesimals €, the substitution
result would not necessarily be an arithmetic formula. Hence, we do not know how to construct
test candidates for the remaining variables in this result. Therefore, the virtual substitution
provides rules which specify an equisatisfiable formula 1® to ¢, on condition that x = t and

Vars(yp®) = Vars(¢p®) \ {x} (x does not occur in ¢)® and no further variables are introduced in

Y.

56

2.7. VIRTUAL SUBSTITUTION

Definition 22 (Virtual substitution) The virtual substitution of a real arithmetic variable

by a test candidate in a real arithmetic formula is defined by
[-//-]: FO(7) x TCS x VARg 7 — FO(7).

For a given real arithmetic formula ¥, a test candidate t and a real arithmetic variable x, we
obtain @R[t //x] from the virtual substitution rules, which can be found in [Wei97]. A more
detailed listing of these rules together with an alternative version which tries to avoid the growth

of the remaining variable’s degrees can be found in [Cor10].

Assume that we have a constraint ¢, a variable x € Vars(c) and a test candidate t which does
not contain x. The virtual substitution rules specify an equivalent quantifier-free real-arithmetic
formula to c[t//x] which depends on the form of t and the form of c. For the test candidate, we

distinguish between the four cases that t is

1. —oco

B

2. a square root expression with r =1 (is actually a fraction of two polynomials),

3. a square root expression with r # 1 (actually contains a square root) or

4. contains an infinitesimal.

For the constraint, the rules depend on its relation symbol and the degree of x in c. In order to
obtain p®[t//x] for a real arithmetic formula p®, we simply replace each constraint ¢’ in p® by
the quantifier-free real-arithmetic formula ¢’[t //x], which is specified in the virtual substitution
rules. The result is indeed an equisatisfiable real-arithmetic formula to ¢, on condition that
x = t, such that x ¢ Vars(p®[t//x]) C Vars(¢®). In the following we show two cases of the
virtual substitution rules, which can be seen as the most significant ones in order to understand
the concept.

P1t+q1 VT
$1

in the following as a square root expression. Moreover, assume we want to substitute t for x in the

Example 14 Let t be a test candidate for x with a square root, i.e., t = , which we refer to
constraint p = 0. For the virtual substitution of a test candidate being a square root expression, the
degree of x in p does not matter. If we replace all occurrences of x by t in p, we can transform the

%jﬁ (ps, g5 and s, are real arithmetic polynomials) with the

result to a square root expression
same radicand r. This transformation is possible, since the result of an addition or multiplication of
two square root expressions with the same radicand can be transformed to a square root expression

with this radicand:

P3tqsVT + Patdav™ _ sa(p3t@aV)+s3(PatqavT) _ SaD3+S3Pat(s4q3+53qq) VT
S3 S4 - $354 - 5354

PstqsvT PatdavT _ (P31q3vT)(patqavT) _ P3P4t93947+(q3p4tpP3qa) VT
S3 S4 - $354 - $354

57

2.7. VIRTUAL SUBSTITUTION

Patda VT
2

The equation =

= 0 holds if and only if p, + q54/T = 0, or equivalently, if and only if
either both p, and q, are equal to 0, or they have different signs but the same absolute value, 1. e.,

Ip2| = |qo4/T|. This can be expressed with the quantifier-free real-arithmetic formula
P22 <0 A p3—g3r =0.

Example 15 If we substitute the variable x by a test candidate t + € (so t is not —o0 and it does
not contain an infinitesimal) virtually in an inequality p < 0, such that x occurs at most quadratic
in p, it results in the quantifier-free real-arithmetic formula

plt//x]1<0 V (p[t//x]=0Ap'[t//x]<0) V (p[t//x]=0Ap'[t//x]=0Ap"[t//x]<0)
Case 1 Case 2 Case 3

where p’ and p” are the first and second derivative of p for x, respectively. Here, Case 1 states that the
polynomial p evaluates to a negative value for some assignment for p, if x has the value represented
by t. This implies that p < O[t +€//x] must hold, as due to the density of R there must be a value in
the right neighborhood of t such that, if x has this value, for any assignment for p, it still evaluates
to a negative value. In Case 2 and 3, we assume that for some assignment of p it evaluates to zero,
if x has the value represented by t. Both cases ensure that p is decreasing, if we move from x =t to
the positive x-direction. Then, the density of R implies again that there must be a value in the right

neighborhood of t, where p is negative. The three cases for univariate polynomials can be visualized

as follows:
p(x) p(x) p(x)
L b 1 e
A \
Case 1 Case 2 Case 3

Note that we still need to apply virtual substitutions in the resulting constraints p[t//x] = O,
p'[t//x] =0, p[t//x] <O, p’[t//x] <0, and p”[t//x] < 0. However, it does not involve an

infinitesimal anymore.
2.7.3 Quantifier elimination with the virtual substitution

We can now formalize how to eliminate a quantified variable with the virtual substitution.

Theorem 2 Let p® be a quantifier-free real-arithmetic formula with x € Vars(¢®), which occurs at

most quadratic in ©®. Then the following two equivalences hold:

R

e\ (@] Aseo) (2.24)

tetes(x,pR)

dx. ¢

58

2.7. VIRTUAL SUBSTITUTION

Ve o® e A\ o) - ¢RlexD) (2.25)

tetes(x,pR)

Proof 2 The proof of Equation (2.24) can be found in [Wei97] and is based on the aforementioned
explanations. Equation (2.25) can be implied by Equation (2.24) as follows:

Vax.p® = —~Ix. R
2.24
= _'(\/tetcs(x,—'q:R)(_'(PR[t//x] A sc(t)))
A /\tetcs(x,—upR)((PR[t//x] vV —sc(t))
Cu(¢®) = Cu(=9™)
’ A ’ /\tEtCS(X,(pR)(SC(t) - (pR[t//x])

59

CHAPTER 3

SMT-RAT: Strategic and Parallel Toolbox for SMT Solving

In late 2012, there was no SMT solver which could check nonlinear real-arithmetic formulas
for satisfiability in general. To the best of our knowledge, CVC4, MiniSmt and Z3 provided only
incomplete procedures based on a linearization of the input formula at that time, which enabled
them to solve some nonlinear real-arithmetic formulas. Moreover, there were also computer
algebra systems which could handle arbitrary Boolean combinations of nonlinear real-arithmetic
constraints. For instance, Redlog can even solve (or eliminate variables in) quantified nonlin-
ear real-arithmetic formulas, which includes checking purely existentially quantified formulas
for satisfiability. However, its implementation did not apply modern lazy SMT solving. More-
over, it could not be used directly as an SMT compliant theory solver, as it supported neither
incrementality nor a backtracking ability nor could it provide infeasible subsets.

Given these circumstances and due to the wide range of procedures for nonlinear real arith-
metic, as summarized in Section 2.6.2, we initiated the project SMT-RAT [6][2] which aimed to
develop a collection of SMT-compliant theory solvers for nonlinear real arithmetic. Inspired by
the ideas from [dMP13], we set ourselves the objective to also seek the ability to combine the
single implementations of this collection with respect to a user defined strategy. Moreover, we
wanted sub-strategies within such a strategy to be allowed to be run in parallel. This does not
only make sense as most computers use multi-core processors nowadays, but also as it is often
unclear which procedure promises a better performance for which characteristics of a nonlinear
real-arithmetic formula, when checking it for satisfiability. For instance, we know that a stan-
dard implementation based on Grobner bases can only (sometimes) detect that a conjunction
of nonlinear real-arithmetic equations is unsatisfiable. Hence, we would not want to use such
an implementation if no equations are involved, but if there are equations, it might be of use
to utilize Grobner bases or it might yield only additional overhead. Therefore, running the two

sub-strategies in parallel for this case, one with the theory solver based on Grobner bases and

3.1. MODULES

one without, adopts the performance of the better choice while accepting some overhead for the
use of multithreading.

The support for a strategic combination of different mathematically complex procedures puts
high requirements on the design of SMT-RAT, especially as we need a clearly modular framework
where the implementations of these procedures share a common interface. We also stressed that
this interface is not only very general but also kept simple, so that it is easy to extend SMT-RAT
by implementations of further procedures. During the design phase of SMT-RAT, it became clear
that we do not need to restrict this interface to be only shared by SMT-compliant theory solver
implementations. Instead, we further generalize it to be shared by an implementation of any
procedure which

* checks a conjunction of formulas for satisfiability®,

* is able to remove some of the formulas in this conjunction while keeping as much informa-
tion from previous satisfiability checks as possible,

* isable to add formulas to this conjunction while keeping as much information from previous
satisfiability checks as possible and

* can provide (preferably small) infeasible subsets of the formulas in the conjunction once
the satisfiability check yields that it is unsatisfiable.

This sounds very familiar and, indeed, it is very close to the definition of the three requirements
on SMT-compliant theory solvers. The only difference is that we allow conjunctions of arbitrary
formulas instead of just constraints. Therefore, we use the term SMT compliant from now on for
any procedure-implementation, which fulfills the above requirements.

In the context of this thesis, we only deal with quantifier-free arithmetic formulas, but the
concepts which we introduce in this chapter can be extended to any quantifier-free first order

formula.

3.1 Modules

In SMT-RAT, we call an SMT compliant procedure-implementation a module. A module m
has an initially empty (set of) received formulas C,.,(m). The main function of a module is
check(bool full), which either decides whether the conjunction of the received formulas in
C,,(m) is satisfiable or not, returning sat or unsat, respectively, or returns unknown. If the
function’s argument full is set to false, the underlying procedure of m is allowed to omit hard
obstacles during solving at the cost of returning unknown in more cases.

We can manipulate C,.,(m) by adding a formula ¢ with add(¢) to C,.,(m) and removing a

formula ¢ with remove(y) from C,,(m). The method add works ideally incrementally, that

!t is not a restriction to consider a conjunction of formulas instead of a general formula, as we consider a “conjunction
of one formula” as the formula itself.

62

3.2. STRATEGY

is we add the formula while keeping as much information from the last satisfiability check of
m as possible. Analogously, remove should ideally keep as much information from the last
satisfiability check of m as possible (backtracking ability). As C,.(m) is usually only slightly
changed between two consecutive check calls, their performance can be significantly improved if
m provides incrementality and a backtracking ability. However, it is not a strict requirement.

In case m determines the unsatisfiability of C,.,(m) via the procedure check, it has to return an
infeasible subset C;,{m) C C,.,(m). Note that m should at least return the trivial infeasible subset,
which is C,,(m), but m’s caller might benefit from a smaller infeasible subset or subsets.

Moreover, a module can specify lemmas, which are valid formulas. They encapsulate informa-
tion which can be extracted from a module’s internal state and collected by m’s caller. In the
course of this chapter we further specify how lemmas can be used.

Furthermore, a module can ask other modules for the satisfiability of its (set of) passed formulas
denoted by C,4;(m), if it invokes the procedure runBackends(bool full). It thereby delegates work
to modules that may be more suitable than m itself for solving the conjunction of the formulas
in C,q(m) for satisfiability. Which modules are used by this procedure is unknown to m and is
specified by a user-defined strategy.

In the course of this section we mean the conjunction of the received formulas by received

formula and analogously we mean the conjunction of the passed formulas by passed formula.

3.2 Strategy

SMT-RAT supports user-defined strategies for the composition of modules. We first define such a
strategy and then explain how to interpret it.

Definition 23 (SMT-RAT strategy) An SMT-RAT strategy (V, E, Ml, Cd, Pr) is a directed tree
(V, E) where the vertices and edges are labeled. The vertices are labeled by

* SMT-RAT modules, which is denoted by
Ml: V — SMT-RAT modules,

and the edges are labeled by

* Boolean combinations of formula properties, which we refer to as conditions and denote

by
Cd: E — (FO(7) — B),

* and priority values, which is denoted by

Pr: E— N.

63

3.2. STRATEGY

The priority values of the edges in E are pairwise different, that is it holds that

Vey, ey €E. (e; # ey — Pr(e;) # Pr(ey)).
By formula properties we mean propositions about, for instance, the Boolean structure of the
formula, about the constraints in it, e. g., whether it contains equations, or about the polynomials

in the formula, e. g., whether they are linear or not.

my
/ \
Co, W2 (3, W3
/ \
my ms
N
Cq, W4 C5,W5 Cg,We C7, W7
N RN |
my ms Mme my
/\
Cg, Wg €9, W9 €10, W1g
| /N
mg Mg My

Figure 3.1: An abstract example of an SMT-RAT strategy with the modules m,, ..., m;,, the conditions
Cy, ..., C1o and the priority values w,, ..., wig-

Consider the abstract illustration of an example for an SMT-RAT strategy in Figure 3.1. If
we check a formula ¢, for satisfiability according to this strategy, we solve it by the use of the
SMT-RAT module m;, which is the label of the root of the strategy. This means, that we pass
(1 to my via its procedure add and then invoke m;’s procedure check. While m; performs the
satisfiability check, it might need to know the satisfiability of a formula ¢, in order to continue.
At this point we make use of the strategy again. There are two edges from m; leading to the
modules m, and m5. If the formula ¢, fulfills the condition c,, but not c5, we use m,, to check ¢,
for satisfiability in the same way we have used m; for ¢;. If, otherwise, ¢, fulfills the condition
c3, but not ¢,, we use m5 instead. If p, fulfills both of these conditions, we use both modules
in parallel, if using another thread is allowed.? Otherwise, we use the successor with the higher
priority (indicated by a lower priority value), that is we use my, if w5 < w3, and ms, if w3 < W,.
Note that by Definition 23 it holds that w, # w5. The last possibility is that both conditions are

2Usually, we either disable a parallel mode, which implies that only one thread can be used during the whole solving
process, or we allow it to use as many threads as there are cores in the processor on the machine where it is run.

64

3.3. MANAGER

not fulfilled for ¢,. In this case, the satisfiability for ¢, is unknown, which might provoke that
m; is not able to detect the satisfiability of ¢;.

The root module in a strategy can also be a module, which does nothing else but copying its
set of received formulas to its set of passed formulas and invoking the backends. The backends
are in that case the roots of different strategies, which are invoked to check our input formula ¢
for satisfiability if the condition in the label of the edge to this strategy is fulfilled by ;.

We will see some examples later which point out that an SMT-RAT strategy can define a so-
phisticated framework for a satisfiability check by the use of this simple modular mechanism.
Throughout this thesis we do not specify the priority values, if it does not lead to confusion.
Moreover, if we do not specify a condition along an edge of an SMT-RAT strategy, this indicates

that the condition is true, that means it is fulfilled by any formula’s properties.

3.3 Manager

The manager holds the strategy T = (V, E, M1, Cd, Pr) and controls the aforementioned utilization
of T for an input formula Cj,,,,,,. Initially, the manager calls the procedure check of the module m,,
being the root of T, with C,,(m,) = Ci;py. Whenever a module m = MI(v) calls the procedure
runBackends for a v € V, the manager adds a solving task (Pr((v,v’)), m, m’) to its priority
queue Q of solving tasks (ordered by the increasing priorities), for every edge (v, v') € E with
m’ = MI(v’) such that Cd((v,v")) holds for C,4(m). If a core of the processor on the machine
on which SMT-RAT is executed is available, the first solving task of Q (the one with the highest
priority) is started and popped from Q. The manager thereby starts the procedure check of m’
with C,.,(m’) = C,45(m) and passes the result back to m.

This means that we obtain an implementation which checks formulas for satisfiability, if we

define a strategy and instantiate a manager with this strategy.

3.4 Procedures implemented as modules

The procedures, which are implemented as modules, form the heart of SMT-RAT. Currently, we
can classify them into three groups, preprocessing modules, SMT solving modules and theory solving

modules.

3.4.1 Preprocessing modules

Preprocessing modules implement lightweight procedures, which can detect the satisfiability of
the given formula but only in some cases. Otherwise, it passes through its input formula to its
backends and invokes them to perform the satisfiability check. In many cases, preprocessing mod-
ules can also simplify the formula beforehand, that is it invokes the backends on a equisatisfiable

simplified formula instead.

65

3.4. PROCEDURES IMPLEMENTED AS MODULES

In the following, we present two examples for a preprocessing of a given arithmetic formula ¢.

* Replace each equation in ¢ € C_(¢) by

\/ p=o

PEFpol(c)

if the factorization Fpqy. of c’s left-hand side Pol(c) is not trivial. It would also be possible
to resolve constraints, which are not equations and where the left-hand side’s factorization
is not trivial. For instance, if the relation symbol is #, we would need to use a conjunc-
tion instead of a disjunction. For the other relation symbols, we need to consider many
combinations instead. Experimental results indicate that only resolving equations with a

factorable left-hand side yields better performances for the involved satisfiability check.

e If ¢ = (¢’ A dx +p = 0) with x being a real-valued variable, d € Q and p being a
polynomial not containing x, we can simplify ¢ to ¢’ [—%/ x].2 If a sub-formula 2 of ¢ has
this form, i.e., ¢y = (Y’ A dx + p = 0), we can replace v by

WI-L/x] A dx+p=0,

which means that we cannot drop the equation in this case.

In practice, we often observe that we can apply one kind of preprocessing several times, each
time resulting in a simpler formula. This does also hold, if we apply different kinds of prepro-
cessing. Therefore, we follow the idea of a repeated application of a series of different kinds
of preprocessing, either until we reach a fixed-point, that is the formula to preprocess does not
change by applying this series of different kinds of preprocessing, or the number of repetitions
reaches a given bound. In SMT-RAT we have implemented this as a fixed-point preprocessing

module, which we denote by Modulegp.

3.4.2 SMT solving modules

SMT solving modules employ a SAT solver. This implies that they can, in particular, check a
propositional formula for satisfiability. In general, an SMT solving module checks formulas for
satisfiability by the use of an interaction with its SAT solver and backends according to the strategy.

In SMT-RAT, there is only one SMT solving module, which is called Moduleg,r. It basically
applies the concept of a less-lazy SMT solver and additionally utilizes lemmas that are specified
by the backends (theory solvers). Algorithm 2 implements the procedure check of a Moduleg,r
m. This algorithm forms an extension of the satisfiability check of a CDCL SAT solver as given in

Algorithm 1. Therefore, m has also the members of a CDCL SAT solver, for instance,

3We did not define the substitution by a non-integer constant, but it is analog to the substitution of Definition 5. We
achieve a polynomial as defined in Definition 4, if we multiply the result by some positive constant afterwards (as
explained after Definition 11).

66

3.4. PROCEDURES IMPLEMENTED AS MODULES

* clauses representing the set of clauses in (the Boolean abstraction of the NNF of) the

input formula’s CNE
* learneds, which is the set of learned clauses after conflict analysis, and

* the current assignments assigns of Boolean constants to Boolean variables.

First, we set the current decision level to 0 and initialize the flag excl assign by false (Line 1-
2). This flag indicates that the backends could not detect the satisfiability of a conjunction of
constraints, which needed to be determined in order to find out the satisfiability of m’s received
formula. Afterwards, we calculate the NNF of the CNF of the received formula resulting in ¢, and
store its Boolean abstraction in ¢® (Line 3). The corresponding Boolean abstraction mapping is
abstrg (Line 4). Then we add each clause in the Boolean abstraction of p® to clauses.

The main loop of Algorithm 2 has the same structure as the main loop of Algorithm 1. First,
we apply Boolean constraint propagation (Line 9). In contrast to Algorithm 1, we additionally
check whether the currently found partial assignment of ¢’s Boolean skeleton is also consistent
with the theory, if no Boolean conflict occurred. As clauses considers the clauses in the Boolean
abstraction of the received formula’s CNF after transforming it also to NNE we only need to
check the conjunction of those constraints for satisfiability, where assigns assigns true to the
constraint’s Boolean abstraction (Line 12-13). We store these constraints in the passed formula
and invoke the interface runBackends in order to determine the satisfiability of their conjunction.
If it returns unsat, we add a clause to learneds for each infeasible subset of the backends.
These clauses exclude the theory conflicts, which correspond to these infeasible subsets, from the
search for a satisfying assignment just as explained in Section 2.6.3 (Line 14). From the resulting
conflicting clauses, we choose one, which is conflicting at the lowest decision level, and store it
in confl.

Afterwards, if either a Boolean or a theory conflict occurred, we analyze the conflict, backtrack
in order to resolve it and assign the asserting literal just as it is done in Algorithm 1. The only
difference is that we return unknown instead of unsat, if the conflict cannot be resolved and,
additionally, the flag excl assign is set to true. If no conflict occurred, Algorithm 2 handles the
backend’s lemmas. We distinguish between two types of lemmas, urgent lemmas and final lemmas.
Urgent lemmas are learned each time before we make a decision and start the next decision level
(Line 27). Note that it is also possible to learn urgent lemmas directly after a theory call instead,
and then jump back to Boolean constraint propagation in Line 9. This would be repeated until
either no more urgent lemmas are learned or a conflict is reached.

If no urgent lemmas are learned and some variables in ¢® are still unassigned, we make a
decision in exactly the same way as it is done in Algorithm 1. Otherwise, we must now also check
whether the last theory call confirmed theory consistency. If this is the case, we can return sat
(Line 35). Otherwise, we try to learn final lemmas. If the backends do not provide any final
lemmas, we exclude the partial assignment corresponding to the last theory call and set the flag,
which indicates that this has ever happened, to true. Note that we exclude this partial assignment

67

3.4. PROCEDURES IMPLEMENTED AS MODULES

Algorithm 2 The procedure check of a Moduleg,r m, which adapts CDCL-based SAT solving as
introduced in Algorithm 1.

check(bool full)

begin
1:

O 00 N O o1 A WN

W W W W W W W W W W KNDNMDDNDNDDNDDNDNDDNDNDDND-®RRERE R = = = = = = =
O 0 N O U1 A WNRFH O WVWOWOWNO U A WNROVLUWOO®NO UM WN— O

end

dl:=0

excl_assign := false

©B := Boolean abstraction of ¢, which is the NNF of the CNF of the received formula
abstrg := corresponding Boolean abstraction mapping

for each clause cl in ¢® do
if addClause(cl, false) = —1 then return unsat // conflicting unary clause added
end for
while true do
confl := propagate() // apply unit propagation
theory call := sat
if confl = null then // check if assigns is consistent with theory
Cpas(m) :={c € C.(p) assigns(abstrg(c)) = true}
theory call := runBackends(full)
if theory call = unsat then confl := addInfeasibleSubsets()
end if
if confl # null then
backtrack to largest decision level in confl
if dl = 0 then // conflict cannot be resolved
if excl_assign then return unknown
else return unsat

else
cl := analyzeConflict(confl) // create conflict clause
dl := addClause(cl, true) // add conflict clause
end if
else
// simplify, restart, forget .. see Algorithm 1 (Line 17-19)
if addUrgentLemmas() = false then // no urgent lemmas were added
dl:=dl+1
if decide() = false then // all variables are assigned
if theory call = unknown then
if addFinalLemmas() = false then // no final lemmas were added
excl _assign := true
excludeCurrentTheoryCall()
end if
else return sat
end if
end if
end if
end while

68

3.4. PROCEDURES IMPLEMENTED AS MODULES

in the same way as we exclude theory conflicts, that is we learn a clause which specifies that for at

least one of the constraints in the last theory call, we must assign false to its Boolean abstraction.

3.4.3 Branching lemmas

A good example for lemmas, which are provided by a theory solving module, are branching
lemmas. This happens, for instance, if we invoke a theory solving module m in order to detect
the satisfiability of a conjunction of mixed integer-real arithmetic constraints ¢ =c; A... Ac,.
Here, m might try to find out the satisfiability of ¢’s real relaxation first. If it is unsatisfiable, then
¢ is unsatisfiable and we can return unsat. If it is satisfiable, but the found solution assigns a
value d € R\ Z to an integer-valued variable z € Vars(y), m can provide a branching lemma of
the form

(i A Ac) = (< |d]vz=T[d]). (3.1)

It demands the splitting of the domain of z at d, under the condition that the branching premise
¢y A... Ac with {c],...,c;} € {cy,...,¢c,} holds. Additionally, the theory solving module can
specify which of the two branches it prefers to start with. We call the Boolean abstraction
(_'bci V...V —|bclf< V b,<|q) V by>r47) of the branching lemma in Eq. 3.1 a branching clause and its
last two (possibly fresh) literals branching literals. In our context branching lemmas are always
final lemmas.

When a branching clause is added to the set of clauses considered by a Moduleg,r, one of the
branching literals (the one that was not preferred by the theory solving module) will be assigned
false (thus, if the branching premise is true, BCP will assign true to the preferred branching
literal; this way we prevent both branching literals becoming true, which would result in a theory
conflict). Afterwards, we handle the branching clause just as any learned clause and benefit from
the usual reasoning and learning process, which yields the best performance according to our
experience.

To prevent unnecessary branchings, we always assign the value false to branching literals as
decision variables. Remember that only constraints with true abstraction variables will be passed
to the theory solving module. This means that only branching clauses, whose premise is true,

play a role in the theory, and for those clauses only one of the branching literals.

3.4.4 Theory solving modules

Theory solving modules can only check conjunctions of constraints for satisfiability. If one of
the formulas in its received formula is not a constraint or a constraint which is not supported
by the procedure which the module implements, it usually returns unknown. A theory solving
module can also return unsat in this case, if the conjunction of the constraints in the module’s
received formula, which are supported by the procedure that the module implements, is found to
be unsatisfiable. In many cases, theory solving modules implement incomplete procedures. In the

case that such a module gets into the position where it is not able to proceed with its satisfiability

69

3.4. PROCEDURES IMPLEMENTED AS MODULES

check unless it knows the satisfiability of a certain formula, the module can consult its backends
in the aforementioned process.

Moduleg;y,ie, This module implements the SMT-compliant simplex method equipped with
branch-and-bound and cutting-plane procedures as presented in [DdMO06]. We apply it
on the linear constraints of a conjunction ¢ of mixed integer-real arithmetic constraints.
If this module detects that the real relaxation apf of the linear part ¢, of the problem is
unsatisfiable, it returns unsat. If it finds a solution for tp§ that also satisfies ¢, it returns
sat. If it does not satisfy ¢ but the real-relaxation ¢y of the input conjunction, which
also means the relaxed nonlinear constraints, this module creates a branching lemma and
returns unknown. Otherwise, it forwards ¢ to another theory solving module, and passes

back the result and, if constructed, also the infeasible subsets and the lemmas to its caller.

Module;pz The implementation of this module is based on Grébner bases computation as pre-
sented in [4] and is also SMT compliant. It takes the polynomials of the equations =X in
the real relaxation @® of its received formula ¢ and applies Buchberger’s algorithm. If the
calculated Grobner base contains a constant (# 0) or more generally speaking a positive or
negative definite polynomial, we know that ¢® has no complex solution and therefore nei-
ther o® nor ¢ have a solution. Otherwise, we push ¢ to this module’s passed formula and
invoke backends, just as a Moduleg;,,., Would do. Depending on its settings, a Modulegp
passes a simplified version of ¢ to its backends.

Moduleyg This module implements an SMT-compliant version of the virtual substitution as we
present in Chapter 4.

Modulec,, The implementation of this module is based on the cylindrical algebraic decompo-
sition (CAD) and is also SMT-compliant. It can check a conjunction of mixed integer-real
arithmetic constraints for satisfiability. As the CAD is a complete procedure for real arith-
metic formulas, this module never invokes backends. Some ideas of its implementation are
presented in [5]. Moreover, [1] introduces how the CAD can be adapted in order to find

integer solutions where it also creates branching lemmas.

Module;-p This module uses interval constraint propagation (ICP) similar to the one presented
in [GGI*10], and lifts splitting decisions and contractions as lemmas to a preceding Moduleg 7.
We give a detailed example for ICP in Section 5.4.3. Given this module’s received formula
(p, it basically narrows down an over-approximation of ¢’s solution space until either reach-
ing an empty over-approximation, in which case this module returns unsat, or reaching a
certain precision. In the latter case, this module tries to guess a solution and, if it succeeds,
it returns sat. Otherwise, it invokes the backends in order to check ¢, equipped with the
found over-approximation, for satisfiability. In Section 5.4 we show how an implemen-

tation, which is based on the virtual substitution, can take advantage of this additional

70

3.5. STRATEGY EXAMPLES AND THEIR APPLICATION

Moduleg;mpiex Moduleg,r Moduleg,r
1,true 1, true 1,true

Modulevs MOduleSimplex MOduleICP
2,true 2,true 2,true

Modulecap Moduleyg Moduleysg
3, true 3,true

MOduleCAD MOduleCAD

Figure 3.2: The SMT-RAT strategy on the left assembles different theory solving modules resulting in
a composed theory solver, and the two SMT-RAT strategies on the right form SMT solvers
for quantifier-free arithmetic formulas.

information. Moreover, we presented in [5] that a CAD-based procedure can also make use

of an additional interval-based over-approximation of the solution space.

3.5 Strategy examples and their application

The SMT-RAT strategy examples in Figure 3.2 are kept very simple, that is we do not make use
of branchings in these strategies, so there is no parallel solving involved, neither do we raise
any conditions (true is fulfilled by any formula). We call this a sequential SMT-RAT strategy.
However, these strategies highlight the fact that SMT-RAT is a toolbox, which provides modules
that implement different procedures, rather than being an SMT solver.

The SMT-RAT strategy on the left in Figure 3.2 combines three theory solving modules. There-
fore, we can only use this strategy in order to solve a conjunction ¢ of constraints. This strategy
follows a simple but very useful scheme. First, it tries to use a Moduleg;mpi.,, Which might detect
that the linear part of ¢ is unsatisfiable or detect a solution which also satisfies the nonlinear
part of . If this module cannot determine the satisfiability of ¢, we invoke a Moduleyg. Either
its satisfiability check succeeds or it invokes a Modulecsp on a formula, where possibly some
variables, which occur in ¢, could be eliminated.

There are many SMT solvers available and some of them do not support solving nonlinear real
arithmetic. These SMT solvers can then integrate a theory solver based on the aforementioned
strategy, which broadens their field of application. Figure 3.3 illustrates this cooperation.

The SMT-RAT strategy example in the middle of Figure 3.2, uses the strategy on the left as
a theory solver for SMT-RAT’s in-house SMT-solving implementation Moduleg,yr. It results in a

strategy which forms an SMT solver for quantifier-free arithmetic formulas. If we extend this by

71

3.5. STRATEGY EXAMPLES AND THEIR APPLICATION

SMT solver
Manager
SAT ¢ NI Condition Condition Condition
solver L Rz 3 1
Module Module| |Module| |Module

Figure 3.3: A snapshot of an SMT-RAT composition of a theory solver embedded in an SMT solver.

SMT solver

Manager

p

Condition Condition Condition

A
L4

A~

Frontend

|->Module Module| |Module| |Module

Figure 3.4: A snapshot of an SMT-RAT composition of an SMT solver.

a front-end in order to parse SMT-LIBv2 input files, which SMT-RAT also provides, we obtain an
SMT solver that can be used according to custom straight away. We illustrate this framework in
Figure 3.4.

The rightmost SMT-RAT strategy example in Figure 3.2 forms an SMT solver as well, but this
time involving a Module;.p. Hence, we use ICP to narrow down an over-approximation of a theory
call’s solution space. This involves lemmas being lifted to a Moduleg,r, which represent splitting
decisions and contractions of the over-approximation. As backend, the module Module;.p uses
a strategy which tries to solve the input first with the virtual substitution and then with the
cylindrical algebraic decomposition. Bear in mind that Module;-p passes through its received
formula supplemented with a usually very narrow over-approximation of the received formula’s
solution space. As both Moduleyg and Modulecap highly benefit from this extra information, this
strategy is often a performant alternative to the one in the middle of Figure 3.2.

72

CHAPTER 4

Virtual Substitution in SMT

In the last decade, SMT solving has already successfully brought state-of-the-art SAT solving and
decision procedures for different logics together. As the SMT solver’s SAT solver deals with the
Boolean structure of the given SMT formula, the implementation of such a decision procedure,
which is integrated in the SMT solver as a theory solver, is only supposed to check a conjunc-
tion of theory constraints for satisfiability. As a consequence, it can be optimized in order to
speed up these checks, but we also require the theory solver to be SMT compliant for a stronger
collaboration with the SAT solver within the SMT solver as explained in Section 2.6.

For instance, a theory solver used in an SMT solver for linear real-arithmetic needs to check a
conjunction of linear real-arithmetic constraints for satisfiability. The Simplex method is originally
designed to find an optimal solution of such a conjunction. In [DAMO06], an SMT compliant
adaption of the Simplex method is presented. In this chapter, we present an SMT compliant
adaption of the virtual substitution, as introduced in Section 2.7, to check the satisfiability of a
conjunction of nonlinear real-arithmetic constraints.

In this chapter, we first explain how to use the virtual substitution in general for a satisfiability
check. Afterwards, we introduce a formal description of an SMT compliant theory solver through

the following points:

* We introduce the data structure in which the theory solver can store its solving state in
Section 4.2.1.

* In Section 4.2.2, we show how to add constraints to the theory solver incrementally, that is
possibly after performing a theory check and then keeping as much information as possible

in the theory solver’s data structure.

* In Section 4.2.3, we present how to remove constraints from the theory solver belatedly,

4.1. VIRTUAL SUBSTITUTION FOR SATISFIABILITY CHECKING

that is possibly after performing a theory check and then keeping as much information as
possible in the theory solver’s data structure.

* How to perform a satisfiability check with the theory solver on the introduced data structure
using the virtual substitution is explained in Section 4.2.4.

* The creation of infeasible subsets, in the case that the satisfiability check introduced in

Section 4.2.4 detects unsatisfiability, is presented in Section 4.2.6.

* If, on contrary, the conjunction of constraints is found to be satisfiable, we explain in
Section 4.2.5 how to obtain a solution.

* In Section 4.2.7, we illustrate all of these ideas on an extensive example.

Afterwards, we present in Section 4.3 how the virtual substitution can be combined with other
procedures. We conclude this chapter in Section 4.4 with some ideas on further improvements,
which we did not elaborate on within this thesis.

4.1 Virtual substitution for satisfiability checking

The virtual substitution as explained in Section 2.7 is a quantifier elimination procedure which
applies Equation (2.24) or Equation (2.25) of Theorem 2 until all quantified variables are elimi-
nated. With this procedure, we can decide the satisfiability/validity of real arithmetic sentences.
For SMT solving, however, we are interested in the satisfiability of an, in our case, quantifier-free
real-arithmetic formula p®. As the satisfiability of p® is equivalent to the validity of 3x;...3x,,.¢%,

if Vars(¢®) = {x1,..,x,}, we can use Theorem 2 for this purpose.

Corollary 1 Let p® be a quantifier-free real-arithmetic formula with x € Vars(p®) occurring at
most quadratic in ¢, then

@R is satisfiable < \/ (O®[t//x] A sc(t)) is satisfiable.

tetes(x,pR)

As a direct consequence, we gain a mechanism to check whether a given formula ™ is satis-
fiable. We choose a variable x,, € Vars(¢™) and need to find only one test candidate th“n for x,
in ¥, such that p& | := ch[tj?n //x,] A sc(tf?n) is satisfiable. For checking the satisfiability of
cpf_l, we do the same but now for one of the remaining variables in Vars(gof_l) and so on. If p®

is satisfiable, we find a test candidate tjgj for each variable x; € Vars(p®) = {xq, .., x,} such that
(. .((pR[t)iyn//xn] A sc(tipﬂ)). .)[ti}l//xl] A sc(t;}l) = true.

An illustration of the thereby traversed depth-first search tree is shown in Figure 4.1.

74

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

tes(x,, %) : t!

QR = @RLel J/x,] Asc(t)

= QL2 [/ xz] Ase(t)
ky

tes(xy, 1) : t! . ty .. k \

X1
Ry h1 iy —
R[] Ase(tll) = true
Figure 4.1: Possible depth-first search tree of the virtual substitution used for a satisfiability check.

4.2 An SMT-compliant theory solver based on the virtual
substitution

We aim to design a theory solver which performs a depth-first search as illustrated in Figure 4.1.
Here, we want to make use of the restriction that the formula ch, which the theory solver has
to check for satisfiability, is only a conjunction of real arithmetic constraints. Additionally, the
theory solver has to be SMT compliant. Therefore, we need to store intermediate results in order
to be able to omit their recalculation. However, it would clearly not be an option to just store
the search tree as depicted in Figure 4.1, as it grows exponentially as the number of variables
increases. Hence, we need to prune subtrees, which do not contain a satisfying assignment of test

candidates to variables for ¢®, and keep a record of the causes of these intermediate conflicts.

4.2.1 Data structure to store a depth-first search tree of the virtual substitution

Figure 4.1 gives us a rough idea of the requirements on a data structure, which we can use to
store an intermediate result of a depth-first search for a satisfying assignment of test candidates to
variables. It shows a directed tree, where the vertices are labeled by real arithmetic formulas (in
Figure 4.1 by @&, gof 12 - Lpﬂf, true) and the edges are labeled by test candidates (in Figure 4.1
by t)lcn’ t,'ﬁn o b ve)

As we want to prune unsatisfiable subtrees and store reasons for their unsatisfiability instead,

we additionally want to be able to label the vertices by conflicts. Especially, for the sake of an

75

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

incremental adding and removing of information in our data structure, we must also be able to
trace back the information’s origins.
Definition 24 A virtual substitution search tree (VSST) (V, E, ®, orig, k, elimvar, used, incompl,
TC) is a directed tree (V, E) where the vertices and edges are labeled.
The vertices are labeled by

* a set of formulas, which is denoted by

®: V - P(FO(7)),

* a function that maps formulas to a set of sets of formulas, which is denoted by

orig: V — (FO(7) — P(P(FO(71)))),

* a set of sets of formulas, which is denoted by

k: V — P(P(FO(7)))

* and a Boolean flag, which is denoted by

incompl: V — B.

Some vertices are also labeled by an arithmetic variable, which is denoted by the partial function
elimvar: V — VARg 4
and a function that maps formulas to Boolean constants, which is denoted by the partial function
used: V — (FO(7) — B).

The edges are partially labeled by a pair of a test candidate and a set of formulas, which is
denoted by the partial function

TC: E — TCS x P(FO(7)).
A VSST (V,E, ®, orig, k, elimvar, used, incompl, TC) is very similar to the search tree from Fig-
ure 4.1. The main differences are the additional labels orig, x, used and incompl of a vertex
v € V and that there is now a set of a formulas instead of just a formula, where the conjunction
of these formulas, i. e., /\weq,(v) p, corresponds to a formula in Figure 4.1. The other labels have

the following meaning:

orig : This label specifies a function orig(v) that maps each formula ¢ in ®(v) to a set of sets of

76

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

formulas from ®(v’), where v’ is the father of v. Each set in orig(v)(¢) forms a reason for
the existence of . For instance, if orig(v)(y¢) = {{¢1, ¥}, {vs}}, ¢1 and ¢, are together
responsible that we created ¢. The formula ¢4 forms another reason why we created . If
v is the root of (V, E) and, therefore, has no father, it holds that orig(v)(¢) = {{¢}}.

k : This label forms a set of conflicts, which contains infeasible subsets of the formulas in ®(v),
if the search for a satisfying assignment of test candidates to variables yields that /\ pea() P
is unsatisfiable. Otherwise, k(v) is empty.

incompl : This label specifies a Boolean flag that indicates whether the satisfiability of the con-
junction of the formulas in ®(v) cannot be determined by the virtual substitution as the

degree of some constraints is to high.

A vertex v € V can also be labeled with the variable elimvar(v), which we eliminate next from
the formulas in ®(v) according to Corollary 1. For such a vertex, the labeling function TC maps
the edges (v,v’) € E to a pair of a test candidate and a set of formulas in ®(v), which form reasons
for the existence of this test candidate. This makes sense as several constraints might provide
the same test candidate, for instance, all constraints which contain elimvar(v) provide the test
candidate —oo. Furthermore, a vertex v € V can be labeled with a function used(v) that maps
each formula in ®(v) to a Boolean constant, which specifies whether the formula (which must be
a constraint in this case) has been used to provide test candidates or not. Hereby we enable an
incremental creation of test candidates.

We use a VSST in the intended SMT-compliant theory solver and initialize it with:

Tys = (V,E,®,orig,k,elimvar, used, incompl, TC)

= (i} 0, {1, B}, {(v, D}, {(vi, D}, {(v1, D)}, 0, {(vy,false)}, 0)

We ensure that Tyg always fulfills the following invariants:

1. The labeling function TC is undefined for all edges (v,v’) € E, i.e., TC((v,Vv')) = L, if

elimvar is undefined for v, i. e., elimvar(v) = L.

2. If ®(v) contains a formula which is not a constraint, elimvar is undefined, i. e., elimvar(v) =
1, and there exists no more than one child v/ of v which is not conflicting, i. e., k(v') =0,
and whose satisfiability is not impossible to determine with the virtual substitution, i.e.,
incompl(v’) = false.

3. The function ® maps the root of (V, E) to a set of constraints.

The meaning of the first invariant is quite natural. It states that we only construct test candidates,
if the variable to eliminate next, which is the variable for which the test candidates are constructed,
is specified.

The second invariant assures that we only eliminate a variable, if the considered formulas are

just constraints. This is due to the fact that the search for a satisfying assignment of test candidates

77

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 3 Given a VSST Tyg = (V, E, ®, orig, k, elimvar, used, incompl, TC) and a vertex v € V,
this procedure creates an empty child v’ of v.

createChild(VSST Ty, vertex v € V)

begin
1: v := fresh vertex not occurring in V
2: V:i=vu{'}
3: ®:=dU{(v., 0)}
4: incompl := incompl U {(v’, false)
5: orig := origu {(v/,)}
6: xk:=xU{(v, 0}
7: E:=Eu{(v,v)}
8: return v’
end

to variables, which is presented in the course of this chapter, strictly distinguishes whether we
consider a conjunction of constraints or not. For the case that a vertex v € V is labeled by &
with a set of constraints, we present an incremental approach to eliminate a variable in /\ce<1>(v) c
according to Corollary 1 in Section 4.2.4. Here, we create a child v’ for each test candidate t
and set TC((v,v")) = (t,C), where C contains the constraints which provide t, respectively, and
®(v") = {c[t//elimvar(v)]| c € ®(v)} U {sc(t)}. If v is labeled by ¢ with a set containing formulas
not being constraints, we need a case distinction. The children of v then reflect the single cases,
such that they are labeled by ® with a set, which contains only constraints again. In this case,
only one case is considered at a time. This means, that all but one child are either conflicting or
marked by incompl(v) with true, which means that for this case the virtual substitution was not
able to determine the satisfiability.

The root in the theory solver’s VSST stores the constraints which the theory solver has to check
for satisfiability, therefore the third invariant has to hold.

Before, we can present the algorithms for adding and removing constraints to a VSST, and
the satisfiability check for the constraints in the root of a VSST, we introduce the following two

auxiliary procedures, which enable a manipulation of a VSST.

createChild We can add vertices to a VSST with Algorithm 3. For a given vertex it creates a child
with an empty set of formulas and no conflicts.

deleteSubtree We can remove vertices from a VSST with Algorithm 4. This procedure expects
the edge to the vertex to delete as input and removes this edge and all vertices and edges
in the subtree where the vertex to delete is the root.

Definition 25 (Conflicting and valid vertices in a VSST) Given a VSST Tyg = (V, E, ®, orig,
K, elimvar, used, incompl, TC) and a vertex v € V, we call it

* conflicting, if k(v) # 0, and

78

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

* valid, if it is not conflicting and ®(v) = 0.

In Figure 4.1, for instance, the leaf labeled by true corresponds to a valid vertex in a VSST.

4.2.2 Incremental adding of constraints

If we add a constraint c to the theory solver, we have to add it to the theory solver’s VSST Tyg
storing the result of the last search for a satisfying assignment of test candidates to variables. For
this purpose we invoke the procedure addys(Tys, v1,¢, {c}) as introduced by Algorithm 5, where
vy is the root of Tyg.

Given a VSST Tyg, adding a formula ¢ to a vertex v € V, where ¢ has the origins M C &(v')
in v’s father v/ (if v is not the root, otherwise M = {¢}), is accomplished in two phases. First,
we add ¢ to the vertex’s formulas ®(v) and extend the mapping of formulas to origins orig(v)
by (¢,{M}) (Line 5-6). In the case that ¢ = false we add a conflict set to x(v) consisting of
only ¢ (Line 2). If ®(v) contained only constraints and a variable to eliminate is already fixed,
we extend used(v) by (¢, false) and reset incompl(v) to false, if ¢ is a constraint (Line 9). This
indicates, that ¢ has not yet provided test candidates and, in the case that incompl(v) was true
before, we now might be able to determine the satisfiability of the conjunction of constraints in
®(v). If ¢ is not a constraint, we delete used(v), elimvar(v) and all children of v, which means,
that this vertex is now used for a case distinction instead of a variable elimination (Line 13-16).

In the second phase of Algorithm 5 we update v’s children (Line 24). If a child was introduced
by reason of a variable elimination, we extend its formulas by the result of ¢[t//elimvar(v)],
where t is the test candidate in the label of the edge from v to the child. We achieve this by
calling addyg recursively with {¢} as origin (Line 27). If the child was introduced by the result
of a case distinction, we have to extend the currently considered case, which is represented by
the only non-conflicting child (Line 30). It might happen that due to the addition of ¢ no more
cases have to be considered. Then, the formula considered by v is unsatisfiable and we create

the conflicts according to Algorithm 11.

Algorithm 4 Given a VSST Tyg = (V, E, ®, orig, , elimvar, used, incompl, TC) and an edge (v,v’) €
E, this procedure deletes the subtree in Tyg with root v’.

deleteSubtree(VSST Tyg, edge (v,v') € E)

begin

: // remove all children

while exists (v/,v”’) € E do
deleteSubtree(Tyg, (v/,v"))

end while

// remove vertex and edge to its father

E:=E\{(v,v")}

V:=V\{}

N O oW

end

79

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 5 Given a VSST Tyg = (V, E, ®, orig, k, elimvar, used, incompl, TC) and a vertex v € V,
this procedure adds the given formula ¢ to ®(v) and propagates this update in the subtree with
the root v.

addyg(VSST Ty, vertex v € V, formula g, set of formulas M)

begin
1: // add ¢ to the vertex
2: if p = false then x(v) :=x(v) U {{¢}} // formula forms trivially a conflict
3: if ¢ = true then return // does not influence the satisfiability
4. if p ¢ ®(v) then
5: d(v) :=d(v)U{p} // add the formula
6: orig(v) :=orig(v) U {(p,{M})} // add the formulas origin
7: if elimvar(v) # L then
8: if ¢ is a constraint then
9: used(v) := used(v) U {(yp, false)} // extend used-flags
10: // new constraint might make it possible to determine satisfiability
11: incompl(v) := false
12: else
13: elimvar := elimvar \ {(v, elimvar(v)} // remove elimination variable
14: used := used \ {(v, used(v)} // remove all used-flags
15: for all (v,v") € E do
16: deleteSubtree(Tyg, (v, V")) // delete all children
17: end for
18: end if
19: end if
20: else
21: orig(v)(p) :=orig(v)(¢) U {M} // formula exists: only add the origin
22: end if
23: // update the children
24: for all (v,v') €E do
25: if elimvar(v) # L then
26: (t,M,) :=TC((v,v")) // child with VS result
27: addys(Tys, V', [t //elimvar(v)], {p}) // extend the VS result
28: else if k(v') = 0 then
29: // try to extend the considered case of the child
30: if extendCase(Tyg, v) = false then createConflicts(Tyg, v)
31: end if
32: end for
end

Within Algorithm 5 we use the following sub-procedure.

extendCase Consider that we consider in a vertex v’ one case of the case distinction which we
made for the formulas considered by the father v of v/. Then assume that we add formulas
to ®(v) and, therefore, have to extend the formulas in ®(v’) as well such that it is still
a valid case of the conjunction of the formulas in ®(v). With the procedure extendCase,

80

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 6 Given a VSST Tyg = (V, E, ®, orig, k, elimvar, used, incompl, TC) and an edge (v,v’) €
E, this procedure extends the constraints considered by v’ in ®(v’) to a case of the formulas

considered by v in ®(v), such that if A

cea(y) € 18 satisfiable, so is A\ g,y ¥

extendCase(VSST Tyg, edge (v,v’) € E)

begin
1: // assumption: k(v) =10
2: V' := children of v which are not v’
3: // formulas considered by v while excluding a conflict for each child
4: Y= /\weq,(v) YA /\v,,ev,’K(v,,#@ —|(/\C€Kv” c) // for a heuristically chosen K,,,» € k(v"")
5: A /\v”EV’,K(v”)=0 _|(/\c€<1>(v”) ¢) //exclude cases with incompl(v"') = true
6: 2® := Boolean abstraction of 1
7: abstri := corresponding Boolean abstraction mapping
8: if B is satisfiable then
9: a := satisfying assignment for 2
10: // collect the constraints which have to hold according to a
11: M :={ceC.(¥)| a(abstrﬁ(c)) = true}
12: // update v’ such that it now considers the formulas in M
13: removeys(Tys, v/, @(v') \ M)
14: forallce M\ ®(v') do
15: O, :={ped(v) ceC.(p)} // create origins of ¢
16: addys(Tys, V', ¢,0.)
17: end for
18: return true
19: else
20: deleteSubtree(Tysg, (v, v"))
21 return false
22: end if
end

which we implement in Algorithm 6, we can extend the formulas in v/ and update it for
this purpose. This procedure determines a satisfying assignment a, if any exists, for the

Boolean abstraction v® of the formula

= Nern AN AN~ N SCNA o

ped(v) V'ey! c€K, i v'ev! ced(v")
k(V')£B k(v')=0

where V' are the children of v without v/ and we choose K,» € k(v"") heuristically. Thus,
we obtain a case, which is not yet excluded by one of the conflicts in one of the children of
v. Neither it is a case for which we already know that we cannot determine the satisfiability
using the virtual substitution. These cases are represented by the children of v which are
marked by incompl with true. Note, that if we invoke extendCase with the edge (v,v’) as

argument, it is ensured that for each child v/ # v’ of v either k(v"’) # @ or incompl(v"") =

81

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

true.

Let us have a closer look at how each ¢ € ®(v) is constructed. As v is a vertex which we
use for a case distinction, it cannot be the root of Tyg. Therefore, it must have a father
v and each ¢ € ®(v) is the result of c¢[t//elimvar(v,)] for some constraints ¢; € &(vy)
and TC((vf,v)) = (t,M,). Considering the rules we use to obtain this result, as depicted
in [Wei97] or [Corl0], we see that it is in NNE, where in particular all literals are positive.
If there is no ¢ € ®(v) with ¢ = false, the Boolean skeleton 5, of v’ = /\4,0€<I>(v) ¢ is then
obviously satisfiable (for instance, it is satisfied by the assignment which assigns true to all
of its variables). As a is a satisfying assignment of 1)® and, thus, in particular a satisfying
assignment of vy, it also holds that any assignment a’ which assigns true to each variable
x, if a(x) = true, is a satisfying assignment of v,. This is due to the fact, that 1} is in
NNF and only constructed by conjunctions and disjunctions. As any satisfied disjunction is
still satisfied if one of its sub-formulas is true instead of false, we can prove by induction on
the formula depth that vy is satisfied by a’. Therefore, 1)’ is satisfiable, if the conjunction
of those constraints, to whose Boolean abstraction a assigns true, is satisfiable. Hence,
we have to make sure that v’ contains these constraints. We add them to v’ (Line 16), if
they are not yet in the constraints considered by v/, and remove all constraints, which are
considered by v’ but do not have to hold according to a (Line 13). If we add a constraint ¢
to v/ we specify that its origin in v consists of all formulas in ®(v) which contain ¢ (Line 15).
In Section 4.2.6 we explain why this is sufficient in order to construct conflicts for v by
the use of the conflicts in v’ if it is conflicting. However, in many cases it still forms an
over-approximation of the actual reason why we assigned true to the Boolean abstraction

of c. We propose another idea as to how we might obtain better origins in Section 4.4.

If 4® is unsatisfiable, all cases are covered and we delete the subtree with the root v/, but
keep all the other children of v, which contain the conflicts we make use of in order to
construct conflicts for v (Line 20). If for each child v’ of v it holds that incompl(v”) = false,

/\ is indeed unsatisfiable, as the unsatisfiability of the Boolean abstraction of v implies
ped(v)
the unsatisfiability of 1), which again implies the unsatisfiability of /\ @, as /\ c)is
ped(v) ceK
a tautology for all K € k(v/) and v’ € V.

4.2.3 Belated removing of constraints

Removing a constraint ¢ from the theory solver means that we have to remove it from the theory
solver’s VSST Tyg. We can achieve this, as a VSST also stores the origins of formulas in the labels
of the vertices and the origins of test candidates in the labels of the edges. For this purpose we
invoke the procedure removeyg(Tys, V1, {c}) as introduced by Algorithm 7, where v, is the root
of Tys.

In general, we can remove the formulas in M = {¢,...,,} and everything which has its

82

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 7 Given a VSST Tyg = (V, E, ®, orig, k, elimvar, used, incompl, TC) and a vertex v € V,
this procedure removes everything from the subtree with the root v which has its origins in the
given set of formulas M.

removeyg(VSST Tyg, vertex v € V, set of formulas M)

begin
1: M =0 // set of formulas to remove from the children as origins
2: // remove origins from formulas in vertex
3: for all ¢ € &(v) do
4: N:=0 // stores the remaining origin sets
5: for all O € orig(v)(¢) do
6: ifONM =@then N :=NU{0O} //add origin, if it contains no formula to remove
7: end for
8: if N = () then
9: if used(v) # L then used(v) :=used(v) \ {(¢, used(v)(¢))}
10; orig(v) := orig(») \ {(sp, orig(v)(1))}
11: d(v) :=2(v)\ {¢}
12: // removing constraint might make it possible to determine satisfiability
13: incompl(v) := false
14: M =M U{p}
15: else
16: orig(v)(p) :=N
17: end if
18: end for
19: // remove conflicts which depend on M’
20: if k(v) # 0 then
21: k(v):={K' ex(v)|K'nM’' =@}
22: v/ := father of v
23: if k<(v) =0 A elimvar(v') = L then
24: deleteSubtree(Tyg, (v/,Vv)) // as we allow only one case at a time
25: end if
26: end if
27: // remove M’ from origins in the children
28: for all (v,v') €E do
29: if TC((v,v’)) # L then
30: (t,0.) :==TC((v,v"))
31: if O, € M’ then
32: deleteSubtree(Tysg, (v, v")) // remove child if origins of test candidate vanish
33: else
34: TC((v,v")) :=(t,0,\ M) // update origins of test candidate
35: removeys(Tys, v/, M)
36: end if
37: else removeys(Tys, v/, M)
38: end for
end

83

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

origin in ¢4, ..., ¢, from a subtree of Tyg with the root v, by invoking removeyg(Tys, v, M). This
procedure first removes all those origins in orig(v)(¢) for each formula ¢ in ®(v), which contain
formulas from the given set M of origins to remove (Line 4-16). If a formula thereby runs out
of origins, we delete it and add it to the set M’ of origins, which we remove from v’s children
later (Line 9-14). In this case we also reset incompl(v) to false as it now might be possible to
determine the satisfiability of the conjunction of formulas in ®(v) (Line 13).

If the vertex v is labeled with a non-empty conflict, we remove all conflicts from x(v) containing
formulas whose origins vanished, i.e., the formulas in M’ (Line 20-24). In the case that no
conflict remains and this vertex is a case of the case distinction made for its father v/, we delete it
(Line 24). Otherwise, v is still conflicting or it considers the result of ®(v/)[t //elimvar(v’)] Asc(t)
where t is the test candidate in the label of the edge (v/,v). Hence, we recycle conflicts and
virtual substitution results.

Finally, Algorithm 7 removes the formulas in M’ from the origins in v’s children. If the edge
from v to a child is labeled by a test candidate, we also update its origins (Line 30-35). If they

vanish, we remove the child (Line 32).

4.2.4 Checking a conjunction of constraints for satisfiability

As seen before, we can add and remove constraints to the theory solver, leaving a set of constraints
in the root of the theory solver’s VSST Tys. In order to check this set of constraints for satisfiability,
we invoke checkyg(Tys, V1), which is described in Algorithm 10, passing the VSST Tyg and its root
v; as input. If this procedure returns sat, the conjunction of constraints in ¢(v;) is satisfiable
and, if it returns unsat, this conjunction is unsatisfiable. If this procedure returns unknown, it
was not possible to determine the satisfiability of /\ ced(v,) € with the presented implementation
of the virtual substitution method. Bear in mind, that the virtual substitution is incomplete for
general real arithmetic formulas, as explained in Section 2.7. Before we go into detail about
Algorithm 10, we describe two sub-procedures, which it uses.

updateEliminationVar Let us consider a vertex v in our VSST Tysg, such that all formulas in $(v)
are constraints. As explained before, we then eliminate a variable according to Corollary 1.
The procedure updateEliminationVar, which is described in Algorithm 8, determines the
variable, which we eliminate, and updates the vertex afterwards. We choose the variable
according to certain heuristics which are purely based on the constraints in ®(v) (Line 1).
This choice is vital for the performance of the virtual substitution, as a wrong choice can
lead to more cases or the position where we cannot determine the satisfiability, while the
right choice could have prevented this. We present a detailed description of the metrics of
this heuristic choice in Section 5.1. After deciding which variable is the best to eliminate,
we update the vertex in Algorithm 8. This means, that even if the variable to eliminate
has been chosen before and some constraints in ®(v) have provided test candidates, we
might change this choice and delete everything which depended on it (Line 9-15). In the

84

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 8 Given a VSST Tyg = (V, E, ®, orig, k, elimvar, used, incompl, TC) and a vertex v € V,
this procedure updates the variable to eliminate next.

updateEliminationVar(VSST Tysg, vertex v € V)

begin
1: x := heuristically the best variable to eliminate next in ®(v)
2: if elimvar(v) = L then
3: // no elimination variable chosen yet: set it to x
4: elimvar := elimvar U {(v, x)}
5: // initialize flags to indicate if constraints were used for test candidate creation
6: used :=used U {(v, {(c, false)| c € ®(v)})}
7: else if elimvar(v) # x A changing to x improves enough then
8: // found a better elimination variable
9: elimvar(v) := x
10: // delete all children of v
11: while exists (v,v’) € E do
12: deleteSubtree(Tys, (v, V"))
13: end while
14: // update flags to indicate if constraints were used for test candidate creation
15: used(v) := {(c, false)| c € ®(v)}
16: end if
end

case, that the variable to eliminate has not yet been set, we fix the elimination variable and
ensure that all constraints are mapped by used(v) to false, which means that we have not

yet used these constraints in order to provide test candidates (Line 4-6).

createTCs In the procedure to check the satisfiability of the constraints in the root of the VSST
Tys, we also make use of the sub-procedure createTCs, which constructs for a given ver-
tex v test candidates. Here, we assume that ®(v) contains only constraints and that v’s
elimination variable elimvar(v) is already fixed. We can construct test candidates, if ®(v)
contains a constraint ¢, which has not yet been used in order to provide test candidates,
i.e., used(v)(c) = false, and which contains the variable to eliminate but its degree in ¢
is less than or equal to 2. Furthermore, we only construct a test candidate if it has not
yet been provided by another constraint, which is the case if an edge from v to one of its
children is labeled with this test candidate. Otherwise, we only extend the origins of this
test candidate (Line 8) and add the result of virtually substituting the elimination variable
by this test candidate in ¢ to this child (Line 9).! Assume that there are constraints fulfilling
the aforementioned conditions. We choose one of them according to heuristics, which are
explained in Section 5.1. Let us assume that we choose the constraint c. Then we create for

each test candidate t for the elimination variable elimvar(v) in ¢ a child (Line 11), such

Here, we can further optimize the incremental creation of the VSST, if we bookmark constraints for which we have
not yet added the result of virtually substituting the elimination variable by this test candidate in ¢ to this child,
and only add it, if we actually want to consider this child.

85

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 9 Given a VSST Tyg = (V, E, ®, orig, k, elimvar, used, incompl, TC) and a vertex v € V
and a constraint ¢ € ®(v), this procedure searches for a constraint ¢ € ®(v), which can provide
further test candidates. It then creates a child v’ of v for each test candidate t for the variable
elimvar(v) in c, such that the formulas considered by v’ in ®(v’) are the formulas considered by
v in ®(v) where elimvar(v) is virtually substituted by t and t’s side conditions. Then it holds that

if \cea(y) € s satisfiable, so is A\ ,cq(,) -

createTCs(VSST Tyg, vertex v € V)

begin
1: createdTC := false // this variable is set to true if a test candidate has been created
2: // find heuristically the best constraint which has not yet been used for test candidate creation
3: while exists ¢ € (v) with used(v)(c) = false do
4: used(v)(c) := true // constraint marked as used for test candidate creation
5: if 0 < deg(elimvar(v), Pol(c)) < 2 then
6: for all t € tes(elimvar(v),c) do
7: if exists (v, v’) € E with TC((v,v")) = (t,0,) then
8: TC((v,v")) :=(t,0, U{c})
9: addyg(Tys, V', c[t//elimvar(v)], {c}) // add c[t//elimvar(v)] to v’
10: else
11: v := createChild(Tyg, v) // create a child for t
12: TC:=TCU{((v,v"),(t,{c}))} // label new edge with t, whose origin is ¢
13: addyg(Tys, v',sc(t),{c}) // add t’s side condition to v’
14: for all ¢’ € ®(v) do
15: addyg(Tys, v/, c'[t//elimvar(v)], {c’}) // add c’[t //elimvar(v)] to v/
16: end for
17: createdTC := true
18: end if
19: end for
20: if createdTC then return true
21: else if deg(elimvar(v), Pol(c)) > 2 then
22: incompl(v) = true // we cannot determine the unsatisfiability
23: end if
24: end if
25: return false
end

that the edge leading to it is labeled with t and the origins consisting of just ¢ (Line 12).
Additionally, we add t’s side conditions and the results of virtually substituting the elimina-
tion variable by t in each constraint ¢’ in ®(v), i.e., ¢’[t//elimvar(v)], to the created child
(Line 13-15). Note that the origins of t’s side conditions in the created child v’ consist of
the constraint, which provided t, i.e., c. The origins of the virtual substitution results in v’
consist only of the constraint we substituted in. Finally, this procedure returns true if test

candidates were created, otherwise it returns false.

We can summarize the main idea of the procedure checkyyg, described in Algorithm 10, as

86

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 10 Given a VSST Ty = (V, E, ®, orig, , elimvar, used, incompl, TC) and a vertex v € V,
this procedure checks the satisfiability of the formulasin v, i.e,, /\<P€<I>(V) ®.

checkyg(VSST Tyg, vertex v € V)

begin
1: if k(v) # 0 then return unsat // v is conflicting
2: if ®(v) = () then return sat // v is valid
3: while true do
4: // choose heuristically the best child which is not conflicting
5: while exists (v,v’) € E with k(v') =@ do
6: if checkyg(Tyg, v') = sat then return sat
7: end while
8: // create new children
9: if #(v) contains only constraints then
10: updateEliminationVar(Tysg, v,) // update the elimination variable
11: if createTCs(Tyg, v) = false then
12: // all test candidates considered and hence all children are constructed
13: return createConflicts(Tyg, v) // construct infeasible subsets of ®(v) and return
14: end if
15: else
16: v' := createChild(Tyg, v) // create an empty child of v
17: if extendCase(Tys, (v, v')) = false then
18: // all cases considered and hence all children constructed
19: if v has child v"” with incompl(v"") = true then
20: incompl(v) = true
21: end if
22: return createConflicts(Tyg, v) // construct infeasible subsets of ®(v) and return
23: end if
24: end if
25: end while
end

follows. Each vertex v considers a formula, which is equisatisfiable to the disjunction of the
formulas considered by v’s children, if all children have been constructed. If ®(v) contains only
constraints, all children are constructed if all test candidates for the variable to eliminate in all
of these constraints were constructed with createTCs. Otherwise, all children are constructed if
all cases of the formula /\ pea(y) P Were considered according to the procedure extendCase.

This implies that as soon as we find a valid vertex v, the conjunction of the formulas in v’s
father is satisfiable and, therefore, the same holds for v’s father’s father and so on. It follows
that the conjunction of the formulas in the root is satisfiable and, hence, we can return sat. In
order to find a valid vertex, starting with the root, we need to alternately choose a child (and test
candidate) when eliminating a variable and then a child of this child (and case) when making a
case distinction until reaching a valid vertex.

If, on the other hand, all children of a vertex v are constructed and all of them are conflicting, it

87

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 11 Given a VSST Ty = (V, E, ®, orig, , elimvar, used, incompl, TC) and a vertex v € V,
this procedure calculates infeasible subsets of ®(v) and stores them into x(v).

createConflicts(VSST Ty, vertex v € V)
begin
: // if conjunction of formulas in v are not necessarily unsatisfiable
if incompl(v) = true then return unknown
// otherwise, find the best sets to cover all conflicts in the children
k(v) := bestConflictCoveringSets(Tyg, V)
if v is not root then // keep children of root, which can be reused after backtracking
// delete all children of v
while exists (v,v’) € E do
deleteSubtree(Tyg, (v, V"))
end while
end if

O 00 N O U1 A W N

=
o

end

follows from Theorem 2 that the conjunction of the formulas considered by v must be unsatisfiable.
It remains to fill x(v) based on the conflicts in the children with infeasible subsets of ®(v) and
delete all children, which we accomplish with Algorithm 11. We explain in Section 4.2.6 how
to achieve these infeasible subsets. Note that if ®(v) contains a formula ¢ which is false, it has
been added to v with the procedure addyg and is the result of the elimination of variable by a
test candidate (or directly added to the root). Within the procedure addyg we ensure that {¢} is
then added as a conflict to x(v).

On the basis of this concept, Algorithm 10 processes a given vertex v in the theory solvers VSST
Tys. If ®(v) is empty, the vertex is evidently satisfiable and we return sat (Line 2). If k(v) is
not empty, v is trivially conflicting and we return unsat (Line 1). Otherwise, we either construct
children of v until one of them is satisfiable or until all children are constructed and all of them
are conflicting or excluded as we cannot determine the satisfiability of their considered formulas
with the virtual substitution. In the first case, this procedure returns sat (Line 6), and in the
second case it either returns unknown, if for at least one child checkyg returned unknown, or it
creates conflicts and returns unsat (Line 13). The main loop of Algorithm 10 first checks all non
conflicting children (Line 5-6) and then constructs new children if possible. Here we distinguish
again whether ®(v) contains only constraints or not. In the first case, we want to create children
which consider further test candidates (Line 11), after we have fixed (or updated) the variable
to eliminate (Line 10). In the second case we make a case distinction. Here, we create an empty
child v/ (Line 16), i.e., ®(v') = @, and add the constraints, which correspond to the next case
we want consider, to v’ using the procedure extendCase (Line 17). If it returns false, all cases
were considered and, if we could not determine the satisfiability for one of these cases, we cannot
determine the satisfiability of the formulas represented by v (Line 20).

We already mentioned in the beginning of this section, that it would not be an option to store

88

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

all vertices of the search tree as depicted in Figure 4.1 when applying Algorithm 10. This is due
to the fact that the number of vertices grows exponentially as the number of variables in the
formula we check for satisfiability increases. Therefore, we delete in Algorithm 11 all children
of the given vertex, if we know that it is conflicting and if it is not the root of the theory solver’s
VSST. When removing a constraint from a theory solver in an SMT solver belatedly, we can differ
between two situations.

One situation is, that the SMT solver’s SAT solver encounters a Boolean conflict, backtracks
internally and then changes its Boolean assignment, which ultimately leads to the removal of
constraints in the theory solver. In this case, it is more likely that the last theory solver call
determined that its input is satisfiable. In our case, this implies that the VSST contains a path
from its root to a valid vertex and therefore, after a belated removing of a constraints with
removeysg, it might not remove a lot of information which are stored in the VSST and even keep
the solution path untouched (we explain in Section 4.2.5 what we exactly mean by solution path).

The second occasion where we remove constraints from a theory solver belatedly, is after it
detects a theory conflict and the SMT solver resolves this conflict by changing the assignment in
the SAT solver. This implies that the root of the VSST is conflicting. As we keep all children of the
root in the case that it is conflicting, a belated removing of its considered formulas and, thereby;,
resolving of the root’s conflict, is not the same as a complete restart. Many children might still
be conflicting and as a consequence there are many test candidates, which we do not need to

reconsider.

4.2.5 Creating a solution

Let us assume that we checked the set of constraints in the root v; of the theory solver’s VSST
Tys = (V,E, ®, orig, k, elimvar, used, incompl, TC) for satisfiability by invoking checkys(Tys, V1)
and that this procedure returned sat. Then, V contains a valid vertex v (k > 1) and a solution

0 can be constructed if we collect the variable eliminations along the path
W I=VVy...Vi_1Vk

in Tyg from v; to v, with

{ t Lifdie{l,...,k—1}. (TC((v;,viz1)) =t A elimvar(v;) = x)
O(x) =

0 , otherwise,

where we assume that x € | J y Vars(p). Note, that it can happen that by the elimination of

peR(y;
a variable x from a vertex v; to the vertex v; ;1 (1 <i <k, elimvar(v;) = x) further variables are
dropped out. Therefore, a solution can assign any value to these variables, for instance 0.

The constructed solution 6 maps variables to test candidates, which represent reals, but ac-

tually they can contain other variables. Moreover, test candidates can be a representative for

89

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

a sufficiently small value, i.e., —00, or contain a positive infinitesimal €. Fortunately, we can
construct a solution from this, which maps all variables to reals, using the ideas in [KSD16].

4.2.6 Generating small reasons for infeasibility

Assume that we check a conjunction of constraints c¢; A .. A ¢, with checkyg for satisfiability.
In this scenario, by the use of the procedures addyg and removeyg we ensure that the root
v, of our theory solver’s VSST Tyg contains exactly the constraints cy,..,c,. Then we invoke
checkys(Tyg, v1), which returns either sat, unknown or unsat. In the last case, we require an
SMT-compliant theory solver also to specify infeasible subsets of {c;,..,c,}, which are preferably
small.

Given any vertex v (including the root) in the VSST Ty, we know, from the explanation in
Section 4.2.4, that checkyg(Tys, v) returns false if v is conflicting. More precisely, we have the
situation where x(v) contains conflicts. This is either the result of adding a formula ¢ being
false to v or all children of v are constructed and all of them are conflicting. Then, we fill k(v)
with infeasible subsets of ®(v) based on the conflicts in the children. The following procedure

implements the construction of these infeasible subsets.

bestConflictCoveringSets Let us assume that the given VSST Tyg is (V, E, ®, orig, k, elimvar,
used, incompl, TC). Furthermore, we assume that the given vertex v is not a leaf and all of
its children V' C V are conflicting, i. e., for all v/ € V' it holds that k(v") # 0. In particular,
there exists no ¢ € ®(v) with ¢ = false, as otherwise Algorithm 5 would have directly
added ¢ to x(v) and we would not enter this procedure. It returns a set K C P(®(v)) of
subsets of v’s considered formulas such that for all of these subsets K’ € K it holds that

Vv eV’ 3K, e k(v'). V¢’ €K, .. AN € orig(v')(¢'). N CK'. (4.1)

It means that all sets in K cover at least one of the origins of each formula in at least one
of the conflicts in each child v’. Note that an origin is in general a set of formulas in ®(v)

and that there could be more than one origin to choose from.

The construction of a set covering as we need it in order to fulfill Equation (4.1) turns into an
NP-hard problem if we also require that it is optimal in any way, for instance to search for the
smallest set covering [CTFO0]. We omit this complexity by the use of an approximative approach
to find some set coverings instead. The applied heuristics are presented in Section 5.2.

It remains to prove that the thereby constructed conflicts do indeed form infeasible subsets of
the formulas in a vertex v. We again distinguish, whether ®(v) contains constraints only or also
formulas, which contain some Boolean complexity.

If (v) contains only constraints, we use v for a variable elimination according to Corollary 1.
From Theorem 3 it directly follows that all sets returned by bestConflictCoveringSets are infeasi-
ble.

90

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Theorem 3 Let & = /\?:1 ¢; be an unsatisfiable conjunction of real arithmetic constraints, which
contains the variable x. Assume that it holds that
Corollary 1

ot e \ @RLE/x] A se(t)). (4.2)

tetes(x,pR)

Then for any subset M C {cy, . .,c,} of the constraints in @® it holds that

Yt € tes(x, p®). AN C {c[t//x]| c € M} U {sc(t)}. /\weN) is unsatisfiable
=

/\C€M ¢ is unsatisfiable.

Proof 3 We show that if the right-hand side of the implication to prove does not hold, then it
follows that the left-hand side does not hold. This implies Theorem 3.

[\cen € is satisfiable

Equation (4.2)
R At e tes(x,). se(t) A A\ epy clt//x] is satisfiable

= 3t e tes(x,). VN C {c[t//x]| c € M} U {sc(t)}. /\weN 1) is satisfiable
O

If v contains formulas in ®(v), which are not constraints, we make a case distinction for v and
the children represent all cases which needed to be checked in order to ensure that /\(pet}(v) P is
unsatisfiable (for more details we refer to Section 4.2.2). From Theorem 4 it directly follows that
all sets returned by bestConflictCoveringSets are infeasible. Note that we propose an improvement

in Section 4.4 as to how we might retrieve better conflicts for the formulas in ®(v).

Theorem 4 Let o = /\?:1 p; be an unsatisfiable conjunction of real arithmetic formulas in NNE
where all literals are positive. Let ¢® be the Boolean abstraction of p® and abstri]i]R the corresponding
Boolean abstraction mapping.

Then for any subset M C {¢,.., p,} of the formulas in ©® with
C={cecC (¥®)Vje{l,..,n}. 0 EM —>c & C.(p;)} (constraints that only occur in M)

it holds that

Vae€®(p®).IN C{ceC] a(abstrgR(c)) = true}. /\CeN ¢ is unsatisfiable
=

/\%M is unsatisfiable.

Proof 4 We again show that if the right-hand side of the implication to prove does not hold, then

91

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

it follows that its left-hand side does not hold implying Theorem 4.

(%):

(xx%):

M= /\weM ¢ s satisfiable

(%)
= day € O(¢). A c is satisfiable
ceC
aM(abstIJEM (c)) = true

(%)
= 3ae o(¢®). A c is satisfiable
ceC
a(abstrER (¢)) =true

= Jac6(¢®). VN C{ceC| a(abstrﬁR(c)) = true}. /\CGN c is satisfiable

B .
Note, that ¢, is the Boolean skeleton of ¢, and abstrEM the corresponding Boolean
abstraction mapping. From ¢,, being satisfiable it follows that there exists an assignment

aj\Rj[€ ©(py)- Then, we construct a,, as follows

true ,if3c € C (p®). abstr® (c)=b A [[c]]a%{? = true
aM(b) == . PYm
false , otherwise.

As " is in NNF and all its literals occur only positively, ¢ is satisfiable (we can exclude
©® = false as <pﬁ, which consists of sub-formulas of ¢, is satisfiable). Then there exists
an assignment o’ € ©(p®). As ¢® is in NNF and all its literals occur only positively, the
assignment

true , if ay,(b) = true
ab)=1 ™ m(_)
a’(b) , otherwise

is also satisfying . Furthermore, we assume, w. 1. 0. g., that abstrgM maps the constraints,

which are mapped by abstrEM to a Boolean variable, to the same Boolean variable. Then,

it holds that
A e = A e

ceC ceC
a(abstrgm (c)) =true ay (abstri‘iM (c)) =true

is satisfiable. O

4.2.7 Example

As the data structure of the presented SMT compliant theory solver is a directed tree, we il-

lustrate it in this example as such. Let Tyg = (V, E, ®, orig, k, elimvar, used, incompl, TC) be the

theory solver’s VSST and the vertices v;, v, € V be connected by (vy,v,) € E, which is labeled

92

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

by TC((v;,v5)) = (t,0,). Then, we illustrate v;, v, and (v;,v5) as in Figure 4.2. In the case
incompl(v) = true holds for a vertex v € V, v’s borders are drawn as a dashed line.

{pol ¢ € 2(v1), u=used(v;)(¢), O = orig(v;)(¢)}

K(vl) Vi

[t//elimvar(v;)]o,

{wol v € 2(v,), u=used(v,)(¢), O = orig(v,)(¢)}

k(v2) Vy

Figure 4.2: Illustration of how we present two vertices v;,v, € V of a VSST Tyg = (V, E, ®, orig, k,
elimvar, used, incompl, TC), which are connected by a directed edge (v;,v,) € E that is
labeled by TCS(v;,v,) = (t,0,). In the case that incompl(v) = true holds for a vertex
v € V, v’s borders are drawn as a dashed line.

We now simulate a run of an SMT solver with an SMT-compliant theory solver based on this

chapter. The input formula of this SMT solver is
p = x%—xz—l =0 A 6x;—2x,—3=>0 A (xf+x§—2:o V 2x1+x9+2<0).

Note that we sometimes simplify the result of the occurring virtual substitutions slightly while
conserving the example’s expressiveness.

The SMT solver’s SAT solver considers ¢’s Boolean abstraction b; A by A (b3 V by). In the SAT
solver’s decision level 0, we assign b; and b, to true. As there is no Boolean conflict, we add the
corresponding constraints x% —X5—1=0and 6x; —2x5— 3 > 0 to the theory solver and ask it
whether x% —x;—1=0 A 6x; —2x5—3 >0 is satisfiable. The theory solver’s VSST is initially

Tyvs = (V,E,®,orig,k,elimvar, used, incompl, TC)

= (i} 0, {(v, O}, {(v, D}, {(vi, D)}, {(v1, 8}, 0, {(vy,false)}, 0)

and, hence, consists of the valid vertex v;.

Now we first invoke addys(Tys, V1, X3 —x3—1 =0, {x? —x, —1 = 0}) yielding the VSST on the
left of Figure 4.3 followed by the call addyg(Tys, v;, 6x7 —2x5—3 > 0, {6x; —2x5—3 > 0}) which
results in the VSST on the right of this figure. Considering Algorithm 5, we add the respective
constraint in both cases to ®(v;) and set their origins in orig(v;) (Line 5-6). As the elimination

variable of v; is not yet fixed and v; has no children, there is nothing more to be done.

93

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

1. ,2_ o _1—
{(#’}3 X7 —x;—1 20){@}} U loisximx-t O){wi}’
1

(pl: 6x1—2x2—320){w;} }
@ V1 g

V1

Figure 4.3: The results of first adding xf—xz—l = 0 to the VSST Tyg = (V, E, ®, orig, k, elimvar, used,
incompl: TC) = ({vl }: ﬂ; {(Vlﬁ ﬂ)}’ {(Vla 0)}: {(Vl’ ﬂ)}) {(Vl) Q)}’ ﬂ’ {(Vl’ false)}: ﬂ) by iIlVOk-

ing addyg(Tys, v1, x> —x; —1 = 0,{x? —x, —1 = 0}) (on the left) and then adding

6x; — 2x5 —3 = 0 by invoking addyg(Tys, v1,6x; —2x5—3 = 0, {6x; —2x,—3 = 0}).

Note, that we label the formulas in a vertex within this example, e. g., xf —x,—1=0is labeled
by cp% and 6x; —2x,—3 > 0 is labeled by (,0%. We use these labels in order to identify the formulas.
In order to keep things simple in the course of this example, we reuse these labels and also the
names of the vertices, after deleting them.

After adding these two constraints we invoke their satisfiability check, i. e., checkyg(Tys, V7).
Considering Algorithm 10, we enter its main loop, as v; is neither conflicting nor valid. It has
no children, so we skip the inner loop and, since ®(v;) contains only constraints, we fix an
elimination variable (Line 10). For this purpose we invoke Algorithm 8. Let us assume that we
choose to eliminate x; first. The precise heuristics for the choice of the elimination variable is
introduced later in Section 5.1. As the elimination variable has not yet been fixed for v;, we set
it to x; and initialize the flag for all constraints in ®(v;), which indicates whether a constraint
has already been used for test candidate creation, by false (Line 6). Afterwards, Algorithm 10
invokes Algorithm 9, which chooses a constraint that has not yet been used for test candidates
creation, i. e., is mapped by used(v;) to false. In our case, both constraints fulfill this criteria and
in the context of this example, we always choose the first constraint. The precise heuristics for
the choice of the next constraint providing test candidates is also introduced later in Section 5.1.
Therefore, we try to construct the test candidates for x; in xf — X5 —1=0. As the degree of x;
in this constraint is less than or equal to 2, we can construct the test candidates —oo, 4/x, + 1
and —4/x, + 1. For each of them, we create a new child v; (2 < i < 4) of v;, label the edge
to it by the respective test candidate t and its origin, i.e., cp} : xf — x5, —1 =0, and add the
result of the virtual substitution of x; by t in each constraint ¢ € ®(v;) to v;. We achieve this by
invoking addyg(Tys, (v1,v;),c[t//x1],{c}), which adds c[t//x;] to ®(v;) and sets its origin to {c}.
Afterwards we set used(vl)(ap}) to true, which means that we have used Lp% for the provision
of test candidates. The resulting vertices v,, v3 and v, are illustrated in Figure 4.4. Here, we
can see that the child v, which we constructed for —oo is already conflicting, i. e., k(vy) # 0,
which is due to p{[—00//x;] and @3[—00//x1] (p5 : 6x1 —2x,—3 > 0) both resulting in false.

94

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

X2

xf—x2—1:0

X1

.
@_
|
.
|
N
|
.
|
.
|
—/
|
N
N_
m_
N4
U‘|_
O_

found solution

-2
6x;—2x,—32>20

Figure 4.4: The solution sets of the constraints x; —x,—1 = 0 and 6x; —2x, —3 > 0 and the solution
found by checkyyg as illustrated in Figure 4.5.

Therefore, we add the formula gof : false once to ®(v,) and specify its origin by both constraints,
i.e., orig(vo)(¢]) = {{o] }, {5 }}.

At this point, Algorithm 9 returns true, and we continue in Algorithm 10 reentering its main
loop. This time, v; has two non-conflicting children. We choose v4, but in general we would
also make this choice heuristically as it is introduced later in Section 5.1, and recursively invoke
checkyg for this vertex. Similar as for v in the beginning of this example, we enter the main loop
and skip the inner loop. In contrast to ®(v;), however, ®(v5) contains formulas, which are not

constraints, i.e.,

@3 = 4x2—24x,—27 <0V (2x,+3 <0 A 4xZ—24x,—27 > 0).

Therefore, we have to make a case distinction for this vertex instead of eliminating a variable.
For this purpose we create the empty child vs for v5 and fill it with the next case invoking
extendCase(Tyg, (v3,v5)). If we take a look at Algorithm 6 and bear in mind that v; has no
further children, this case consists of the constraints, which are assigned to true by a satisfying

assignment for the Boolean abstraction of the conjunction of the formulas in v4. In Figure 4.5,

95

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

true

{(er: xf—x—1= O){w}}}’
false

o3}

[—oo//x1]ietpn (pl: 6x;—2x,—3>0)

2. @
{(f: false) oy oy } g
{{e?h} &)
[vx2+1//x1]gpn [=vxa+ Uiy
p R
;. (4.)
{(¢3: x2+120)wm, {lel: 0 +120),,
2 . 4.
3 4x5 —24x,—27<0 (30 x2 < O)W%}} ’
Y5V (2x,+3<0 } 4 2
NAX;—24x, =27 20) | (1, (#3: X3 —x,—12 0){{wé}} J
)
. 0 vsJ ~ V4/

v
true

{(p2: % +120)(0,

(03 : 4x3 —24x,~27 < 0) 5 }

13— 2 //x2)i5)

) Vs

[—00//25)145.05) [—1//x3);0) [3+ %22 //x,
{7 s false) sy o } {(o]+ false) sy, } Y
{e%}} v Hely 0 v

Figure 4.5: The resulting VSST Ty of the satisfiability check of xf —Xy—1=0Ab6x;—2x,—32=0,
which we achieved by invoking checkyg(Tys,v;) with Tyg and v; (root of Tyg) being
initially as on the right of Figure 4.3.

we indicate these constraints by underlining them. We add them to vs using addyg, where the
origins of each added constraint are the formulas in v5 in which they occur (Line 15-16).

Afterwards, extendCase returns true and we reenter the main loop for vertex v5. It now has
exactly one child, i. e., v5, which represents the just added case and, as v; is not conflicting, we
invoke checkyg(Tys, v5). This vertex has no children initially and ®(vs) contains only constraints,
which forms the same case as it was for v; in the beginning of this example. Hence, we first fix
the variable to eliminate which must be x, as it is the only remaining variable.

Then we choose the first constraint which has not been used in order to provide test candidates,

96

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

i.e., (,of : X9+ 1 >0, and create a child for v5 for each of the two test candidates —oo and
—1, which it provides, in the same way as before. The formulas in the obtained children vg
and v, are again the results of virtually substituting the two constraints in vs, i.e., (pir’ and
(pg : 4x§ —24x5,—27 < 0, by the test candidate, respectively. For —oo it yields false in both cases
making vs conflicting and for the test candidate —1 the virtual substitution results in true for cpf,
so we do not add it, and in false for (pg also making v conflicting. Therefore, we take the next
constraint gog in vs for test candidate creation into account. It provides the three test candidates
—o0, 3+ @ and 3 — @. For the first one there already exists vs’s child vg. Considering
Algorithm 6, we first add wg to the origins of —oo by updating TC((vs, ve)) and then add the
result of (pg[—OO //x5] to ®(vg) (Line 8-9). As it is false, we update the origins of cp? : false.

For the other two test candidates 3 + @ and 3 — @ we create the two new children v,
and vg. As virtually substituting x, by both of these test candidates in each constraint in ®(vs)
results in true respectively, there is nothing to be added to neither v, nor vg. Now we have two
non-conflicting children of vs, so we recursively call checkyg for one of them after reentering
the main loop of Algorithm 10. Let us assume that we choose v,. As it is a valid vertex, i.e.,
®(v;) = 0, we immediately return sat (Line 2) and jump back to the call checkyg(Tysg, vs)
(Line 6). It also returns sat, as the recursively invoked call returned sat. We jump back to the
call checkyg(Tyg, v3) and return sat again for the same reason. Now we are in the outermost call
checkyg(Tys, V1), where we also return sat, which means that the theory solver determines the
satisfiability of x% —Xx53—1=0A6x; —2xy—3 > 0. The found solution of this formula is given
by the pairs of elimination variables and test candidates along the path from the root of the VSST
to the found valid vertex. In Figure 4.4, this path consists of the edges in bold, thus the found
solution is {(x;, 1/ 4+ @), (x5, 3+ @)}. Figure 4.4 illustrates the solution spaces defined by
the two constraints and the found solution.

The SMT solver now knows that the conjunction of the constraints corresponding to the partial
assignment of its input formula ¢’s Boolean abstraction is satisfiable. As a consequence, the SMT
solver’s SAT solver can enter the next decision level afterwards. Let us assume it assigns b; to
false. It then implies by the use of Boolean constraint propagation that b, must be assigned to
true. This finishes the decision level and also forms a full assignment of ¢’s Boolean abstraction.
However, we still need to check whether the conjunction of the constraints, corresponding to the
Boolean variables which are assigned to true, is satisfiable. Thus we have to check the satisfiability
of

x2—x3—1=0 A 6x3—2x3—3>0 A 2x; +Xx,+2<0

and need to add 2x; + x, + 2 < 0 to the theory solver, beforehand. For this purpose we invoke
addyg(Tys, v1,2x7 + x5 +2 < 0,{2x; + x5 +2 < 0}).

Compared to the addition of the two constraints in the beginning of this example, the VSST
of the theory solver stores the result of the last satisfiability check instead of just consisting of

the root vertex v;. Therefore we do not only need to add the constraint to v; but also propagate

97

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

true

{(o: xf—x—1 :0){{4}}’

false

1.
[—00//x1]ip1 4 (030 6x1 =22, =32 0)(
1. false
(p}: 2% +x,+2< O)M}} }

{(L‘Df : false){{w]},{y"ﬁ}} } 0 V1
{e1}} Vo
[Vx2+1//x1]pn [—/x2 +1//x1 11

{ (pr P Xyt 12> 0){{%1}} S

4x3 —24x,—27<0
@3V (2x,+3<0 ,
A 4x35 —24x, —27 > 0)

4.
#3: %2 <0y

(
(
(pf: x2—x,—1>0)
(

{olh Heal?
((,03:x2+2<0) } el x,+2<0), }
3 e} 4 {31}

) Vs 0 V4

true

o7 x+120) 0.
true

(Ao . 2 —
(03 ¢ 403 =242, =27 <0) oy

o,)
) W [3— L8 //x5]y {7 : false) (o)}
{{e}} Vo
[—00 //x3)5 45 [—1//%2)e) [3+ L2 //x,)155
{(pS: false){{vf},{vi}}} {(¢7: false)w;}){(pg}} } {(p8: false){wg}}}
{{eth Ve {{e7}} v, {e3h Vg

Figure 4.6: The resulting VSST Tyg after adding the constraint 2x; + x, + 2 < 0 to the VSST Ty of
Figure 4.5 by invoking addyg(Tyg, v1,2x7 + x5 +2 < 0,{2x; + x5, + 2 < 0}).

it throughout its successors. This means that we first add 2x; + x5 + 2 < 0 to v; as we have
explained before, but also need to take into account the second phase of Algorithm 5 (Line 24-
30). As we use v, for eliminating the variable x, its children represent the results of virtually

substituting x; by test candidates provided by the constraints in ®(v;). Therefore, we need to

98

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

2x1+x,+2<0

X1

former found solution

-2
6x;—2x,—32>20
Figure 4.7: The solution sets of the constraints x?—x,—1 =0, 6x, —2x,—3 > 0 and 2x; +x,+2 < 0.

extend the considered virtual substitution result of each child v; (2 < i < 4) by the result of
virtually substituting x; by the test candidate on the label of the edge to this child in the added
constraint goé 1 2X7 4+ x5+ 2 < 0. Thereby we call addyg recursively.

In our case, v; has three children. The first one, v,, has been created for the test candidate
—oc. The result of go% [—o0 //x;]is true, hence we do not add anything to v,. The second child of
V1, V3, has been created for the test candidate /x5 + 1 and, here, the result of wé[m//xl]
is x5 +2 < 0. Therefore we invoke addyg(Tys,vs,x3 +2 < 0,{p3}). The vertex v; makes a
case distinction, hence we extend the currently considered case represented by vs after adding
gog ! X9+2 < 0to ®(vg). Asitis a single constraint, we have to extend the case by it, yielding the
recursive call addyg(Tyg, V5, x5 +2 <0, {gog}). Similar to v;, vs is used for a variable elimination
but this time we eliminate the variable x,. Thus, we need to extend the virtual substitution
results vg’s children consider. The first child considers the result of virtually substituting by the
test candidate —00. As x5 +2 < 0[—00 //x,] is true, there is nothing to be added. For all the other
children, virtually substituting x, by the test candidates they consider, results in false. Therefore,
we have to add this result to the children, which makes them all conflicting.

We have finished propagating the constraint x, + 2 < 0 in v; and as a consequence we also

99

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

finish the propagation of x, + 2 < 0 in v3. We finish the call addyg(Tyg, v1,2x; + xg + 2 <
0,{2x; + x5 + 2 < 0}) adding the result of 2x; + x5 + 2 < 0[—+/x, + 1//x;], which is also
X5 + 2 < 0, to the only, not yet considered child v,. In Figure 4.6, the resulting VSST can be
seen. All of the information which we gained in the previous satisfiability check with our theory
solver is preserved. However, the solution is not valid anymore, which makes perfect sense, as
the added constraint clearly excludes this solution. Figure 4.7, illustrates the solution spaces of
all three constraints x% —X9—1=0, 6x; —2x,—3>0and 2x; +x,+2 <O0.

After adding the constraint 2x; + x5 + 2 < 0, we now invoke the satisfiability check for the
conjunction of the three constraints in ®(v;). We invoke checkyg(Tys, v;) where Tyg is initially in
the state as illustrated in Figure 4.6. As v; is not conflicting nor valid and has two non-conflicting
children, we choose one of them and recursively invoke checkyg. Let us assume that we choose
v3. Just like for v;, we can find a non-conflicting child of v3, which is the only child v5. This
vertex, however, has only conflicting children, so we try to create a new one. We use vs for the
elimination of the variable x,, thus we try to find a constraint in ®(v5) which can provide test
candidates for x,. The only constraint which has not yet been used for test candidate creation is
(pg’ : Xy +2 < 0. It provides the test candidates —o0 and —2 + € for x,. The first one is already
considered by vg, so we only extend the origins in TC((vs, vg)) by <p§. The second one creates
the new child v;(and the result of virtually substituting x, in the constraints of ®(vs) by =2 + €
is always false. Hence, v;, is also conflicting and for the first time we obtain a case where all
constraints of a vertex for variable elimination were considered for test candidate creation and
all of them failed to be a solution.

This situation can be seen in Figure 4.8. In Algorithm 10, we enter Line 13 and, thus, invoke
the procedure createConflicts. According to Theorem 2 we know that the conjunction of the
constraints in ®(vs) is unsatisfiable, therefore we create in this procedure infeasible subsets of
®(v5) and add them to x(vs). The procedure thereby applies Theorem 3, hence, we can construct
infeasible subsets of k(vs) by finding set coverings of the conflicts in vs’s children after mapping
the formulas they contain to their origins in vs. In our case, all conflicts in v5’s children consist
only of the formula false, thus, for each child their conflict after mapping the formulas they

contain to their origins in v are precisely the origins of false. Considering that

5
93 $2 03

N — 2 /_/A
®(vs) = {xy+1>0, 4x; —24x,—27 <0, x5 +2 <0},

we need to find a set covering of

M, = {7}, {¢3}}

M, = {{p3}, {931}

M; = {{p3}}

M, = {{e3}}

Ms = {{g3}, {93}, {931}

100

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

true

ot i —x—1=0)0),

false

[=00//x1]i41,03 (030 61 =22, =32 0)
1. false
((,03 P2x+x,+2< 0){“1}} }

{ (e} false){m},w;}} } 0

{21} Vs
[V xo+1//x1] 01 —/Xo +1//x1](p1

{(@]3: x2+120)

(CHIN (vi
4x2 —24x,—27 <0 (
3V (2x,+3<0 , (

(

AN4x; —24x,—27 > 0)

{{o}}
((pg PXyt2< O)

{{os}} }
0 V3 0 Va

true

{(Lpf P Xy t+12> O){w?}},

5 . 2 true
(3 + 4x3 =24, —27<0) oy, ({(02": false) (o3 (e) e8]} J
—2+4€//x3]¢,5 { 10
5 . true [21{p3} V.
(93 x3+2<0) oy } 3 ot =

{03, 031 {w3, v3}} Vs \
[3— 282 /12,1155

{(¢9: false){@}}

[—00 /%3115 05 05} el
[—1//x21(45) [3+ —//Xz]{”}
{(et: false){{cpf} v {(o] = false) ey {cpg}}} {(e1: false){@}}
{{e$}} Ve {{el}} vy {{edl}

Figure 4.8: The resulting VSST Tyg until the first conflicting intermediate vertex, i. e., vs, is reached
by the satisfiability check of xf —Xx3—1=0A6x;—2x,—3 = 0A2x; +x,+2 <0, which
we invoked with checkyg(Tys, v;) where Tyg and v, are initially as in Figure 4.6.

101

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

true

o1 xf—x=1=0)n,

false

[~00 //x1Jig1 (02: 6x1-22,=320) 0y

)falsel}} }

(\,9% 2x1 +x2+2<0

{(.false) IHH}

e
VRV [~/ 1/

{(¢7: % +120) . X+ 120)
| Ag—245,-27<0 (993: 22, +3<0) oy
I (ZAXigg—<2£x2—27zo) Mn, (03 4] =24, =27 20) (.
(gpg : x2+2<0){{%1§” } ('\Pji X2+2<0){{¢};}} }
{{e3, 03} {03, 031} V3 0 2
- <

(] %2 4120) 4y

(3 + 4x3 —24x,—27 < 0) 55,

(o3 x2+2<0){@} }

({93, 93} 193, 031 e

Figure 4.9: The resulting VSST Ty until the second conflicting intermediate vertex, i. e., v3, is reached
by the satisfiability check of x? —x, —1 = 0 A 6x; —2x,—3 > 0 A 2x; + X, +2 < 0, which
we invoked with checkyg(Tys, v;) where Tyg and v; are initially as in Figure 4.8.

that is a set M C ®(vs) such that for all 1 < i < 5 there exists a set M’ € M; with M’ € M.
The two smallest set coverings are {cpf, gog} and {(pg, cpg}. How we can compute set coverings
is further explained in Section 4.2.6. In Figure 4.8, we illustrate that {Lpf, (pg} covers a set in
each M; (1 <i < 5) by underlining the covered sets. For {apg, (pg} we use an overline instead.
According to Algorithm 11 we add both set coverings as infeasible subsets of ®(vs) to k(vs) and
delete all children of vs. Thereby we remove some information, but we keep two reasons for
the infeasibility of the conjunction of the constraints in ®(vs). To keep both of them can provide

more possibilities to create set coverings in case that conjunction of the formulas in v5’s father

102

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

is also unsatisfiable. Moreover, in a later stage of the SMT solver’s satisfiability check we might
remove constraints from the VSST belatedly. If a conflict of v5 remains after this removal, we do
not need to reconsider vs as it is still conflicting.

Now we continue checkyg for the vertex v5. We reenter the main loop of Algorithm 10 and,
since we use this vertex to make a case distinction, we try to achieve a new case by creating an
empty vertex vg and invoking extendCase(Tyg, (v3,v¢)) (Line 17). This procedure tries to find a
satisfying assignment of the Boolean abstraction of the formula

vi= \ er-(\ 9

(pG(I)(Vg) CGKVS

where K, € k(vs) is chosen heuristically. Let us assume that we choose K,,, = {x3+1 >0, x,+2 <

0}, then the Boolean abstraction of) is
bs A (bg V (by A bg)) A bg A—(bs A bg).

This formula is already unsatisfiable and as a consequence extendCase cannot find a new case in
order to fill the just created empty vertex vg with the corresponding constraints. Therefore this
procedure deletes v and returns false (Line 20). We observe at this point, that the small infeasible
subset, which we created for vs, saves us from considering another case. It becomes clear that
we benefit from good infeasible subsets even in intermediate vertices and that the quality and
variety of the infeasible subsets in the children decides how good the infeasible subsets of their
father will be. In Algorithm 10 we now fulfill the condition at Line 17 for the first time, meaning
that all cases were considered. As we did not encounter any constraint with a degree higher than
2 in any variable, we conclude that the conjunction of the formulas in ®(v;) must be unsatisfiable.
We simply fill x(v5) with infeasible subsets of ®(v;) using the procedure createConflicts again
and return unsat. Figure 4.9 shows the VSST with the two resulting infeasible subsets in «(vs).

We are now back in the outermost checkyg call for the root v; of the VSST. It still has one
non-conflicting child, i. e., v4, so we invoke checkyg(Tys, v4). In Figure 4.10, we see that it results
once more in the situation that all test candidates are constructed and none of them succeeded
to be part of a solution. The procedure createConflicts yields two infeasible subsets in v,.

We reenter the main loop of Algorithm 10 for v; and, since all children are conflicting, we
have to try to construct new children. We choose a constraint in ®(v;) which has not yet been
used in order to provide test candidates, so let us assume that we take cp% T 6x1—2x9—320
for this purpose. For the first test candidate, which it provides for x;, i.e., —00, we extend the
corresponding existing child v, and for the second test candidate, which it provides for x, i.e.,

2x26+3 , we create the new child vs. Afterwards, we invoke checkyg(Tys, vs) which ultimately leads

to the situation that all children are constructed and all of them are conflicting. We can see the
gained infeasible subsets for v5 in Figure 4.11.

Again we reenter the main loop of Algorithm 10 for v;. All children are conflicting, thus we

103

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

1. 2 o true
{01 xi—x=1=0) 0y
false
[—00//x1 11 41 (1031 63,26, =32 0)(),
1. false
2 ‘ (pl: 2x]+x2+2<0){{;§}} }
{(of: false) oy o1y) 0 2!
A2
S Vo
[v/Xo ¥ 1//x1] i1 [=vxa+1//x]y
. ! (4. true h
{(‘19]J : X2+120){{;}}}1 {((pl : x2+120){{¢%}}’
. true
4x2 —24x,—27 <0 (032 22243 <0)pny.
3
992: \Y (2X2+3<0 5 4 5 true
A4X§—24X2—272 0) {olh) (903 : 4X2—24X2—27ZO){{¢%}},
3. ’ true
(\,,3 : x2+2<0){{$‘1}} } ((pi: x2+2<0){{¢§}} }
3 ..3Y (.3 3
{el e3h vy o3 V3 {{ef v3h (et i1} V4
J

[=00//x2] (4,48, 0%0%)

{(¢3: false){@} }

{{e7h} Vs
[—1//352]{4;‘1*}

[—2+ 6//3(2]{%‘;}

{(go%o : false) @ }

{(¢%: false){@,@} }

{{o$h 123

-2+ €//x2]pn

{{(P%O}} V10

[3+ 2 /)y | B= 52 /%))

{(¢7: false){@,wg},@} } {(¢8: false){{wg}’@} } {(¢?: false){{wg}’@} }

{{e]}} vy {{eih} Vg {{e?} Vo

Figure 4.10: The resulting VSST Ty until the third conflicting intermediate vertex, i. e., v,, is reached
by the satisfiability check of xf —X;—1=0A6x;—2x,—320A2x;+x,+2<0,
which we invoked with checkys(Tys, v;) where Tyg and v; are initially as in Figure 4.9.

104

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

true

o1 xt—x=1=0)

L 6x;—2x,—320),

[—00 //x1 Tt o (7% e
1. false
‘ (¢3. 2x1+x2+2<0){{;§” }

{(of: false) iy ooy } 0 vy
{{e?}} Vo
[m//xl]{p}} [*m//xﬂm

4x2 —24x,—27<0 @3 2x,+3<0)
@3:V (2x,+3<0

A4x3 —24x,—27 > 0)

{31}’

P 2 __ .
| 3 4x]—24x,—2720) L,
{{w,3}

(
(
’ (
(

(o3 X2+2<0){{;/‘}} } Q5 x2+2<0)“;"}} }
o1, w3k ps, w31} V3 {eh o3} lef, it} V4
2. 3
[Ix1]ipny
{(¢5: 4x§—24x2—27:0)w“},

(p5: 5x,+9< 0){{%}}

[—00//x3]p5,03) [—3 +e//x2)ipg)

{{el, w31} Vs
{(90$: false){@} } { (‘P? : false){@’@} }
{{eS {{e }} Vo
[3+ Y2 //x;)08 [3— 22 //x:)ip5)
{(¢7: false){@}} {(¢%: false){@}}
{{el}} Vs {{e3h Vg

Figure 4.11: The resulting VSST Tyg until the fourth conflicting intermediate vertex, i.e., vs, is
reached by the satisfiability check of xZ—x,—1 = 0A6x; —2x,—3 > 0A2x; +x,+2 < 0,
which we invoked with checkyg(Tyg, v;) where Tyg and v; are initially as in Figure 4.10.

use the last remaining constraint apsl, 1 2x7 + x5+ 2 < 0 to construct test candidates. As always,

we obtain the test candidate —oo and extend the corresponding child. The other test candidate,

which ! provides, is —*27 + €. We create the new child vg and fill ®(v) with the result of

105

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

true

{(go% : x%—xz—l = O){{w}}}’

true

1. _ —
[_OO//W (027 6x1 =22, =32 0)ny.
(pd:2x;+x,+2< 0)true }

({3} xp+2
2. —=2=+4€//x
{(of: false)) oy } | {{vl, 031} v =757 el
2
{eH v : .
{((,01 : false){@’@},
(@6‘ 5x,+9<0)
2 —
[vV/x2+1//x11ip1 VSx2+9=0) Jyy
6
_ . | {{e 1} Ve
{(¢3: x,+12 0){(%}},
- [—v xz+1//x1]{¢}}
4x3—24x,—27<0
3
51V (2x;+3<0 , - . <
N3 —246,-2720) | {(e7: X +120)),
2
3. 4.
(o3 x2+2<0){@} } (93 26, +3<0)
{{e3, 03}, {93, 31} Vs (031 4x2—24x,—2720) 0,
N) 2
(o2 x2+2<0){{%}} }
{{of, w3} {vt, w3t} ”
N — J
2 3
[X? //Xl]w;}

{(¢5: 4x2—24x,—27= 0){@},

(gogz 5x2+9<0){@} }

{{v3, w31} Ve

Figure 4.12: The resulting VSST Ty until the last conflicting intermediate vertex, i. e., v;, is reached
by the satisfiability check of x? —x, =1 =0A6x; —2x,—3 = 0A2x; + X, +2 <0,
which we invoked with checkyg(Tyg, v;) where Tyg and v; are initially as in Figure 4.11.

virtually substituting x; by this test candidate in all constraints of ®(v;). As for two constraints
the result is false, vg is conflicting. All constraints in v; have now be used in order to provide test
candidates and all of them are in conflict with some of the constraints in ®(v;). Therefore we apply
createConflicts for the last time yielding the infeasible subset {x%—xz—l =0, 2x;+x9+2 < 0} of
the constraints whose conjunction our theory solver checked for satisfiability. As a consequence,
it returns unsat. The resulting VSST is illustrated in Figure 4.12.

The SMT solver adds the clause (—b; V —b,) to its SAT solver and thereby excludes the conflict
represented by the infeasible subset, which our theory solver has constructed. The SAT solver

106

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

true

{(of: xf—xp—1= 0){{¢11}}’
true

1.
(cpz 1 6x; —2x,—32> 0){%}},

[_oo//xl]{%l,%%}

true
(¢F: 2, +x,+2<0) }
-)Pé/ 1 et [—X22+2 + 6//3(1]{}/}
{(of: false) oy oy} 73 vl 3
L J
e ,)
CE false){{i}},@} ,
(cpg :) J
Tl e}
v 6

- N / {_{Lpl}} V6

{(¢3: xy+12> 0){{%}},

4x§ —24x,—27<0

[—vxy+ 1//X1]{¢11}

3.
031V (%\xié'o‘_zfxz_yzo) {w;}}’ [{(et X+ 120)]
(¥ X +2<0) 1 } (03 26243 <0)).
| e LEes v3) (030 4x) =24, =272 0) 1)y
(y{f: X2+2<0){W} }
{{ol 03} Lol V4

2x,+3
[x? //X1:|{¢;}

{(¢5: 4x2—24x,—27= O)M}},

(yg: 5x2+9<0){%n }
Uetesl) Vs

Figure 4.13: The resulting VSST after removing the constraint 2x; + x, + 2 < 0 with
removeyg(Tys, V1, {2x; + x5 + 2 < 0}), where Tyg and v, are initally as illustrated in
Figure 4.12.

backtracks to decision level 0, which leads in particular to b, being unassigned instead of assigned
to true. Therefore we remove the corresponding constraint 2x; + x, + 2 < 0 from our theory
solver by invoking removeyg(Tys, V1, {2x; + x5 +2 < 0}).

This is the first time in this example where Algorithm 7 is applied. The algorithm seems to be
rather complicated but it is simply removing everything in our theory solver’s VSST Tyg which
can be related to cp% 1 2x7 + X9+ 2 < 0. The resulting VSST can be seen in Figure 4.13 and in
the following we explain the details on how we achieved this. We start with the origins of the

formulas in ®(v;) and remove all sets in them which contain cp%. If a formula has no origins left

107

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

1. 2 o true
{(o1: xi—x=1=0)
) 1 - - true
[—o0//x1]ip1 o1 01y (20 6x1 =20, =32 O){{Yﬂ!}}’
1. 9 false
- ‘ (903 LX +x2 2= 0) {{oll} }
{(¥7: false){w,{m,w;}}} 0
{31} Vo
Ve svENe (v + 1/,
{(ef: % +120) 1y, P12 Oy
4x; —24x, =27 <0 (*93 20+ 3 <0y,
3)
@5V (2x;+3<0 d L p2
A4X§—24X2_27 >0) o) (\Pg : 4X2 —24x,—27 = 0){{;&}}
3. .2 1 v 4. .2 _
(03 : x5 +x—-1=0), } (s G +xa—1=0)yy |}
@ VS {{\pl: V/Z}} V4
[2,\‘?)4»3//)(_1]{;;}

{(o7: 43 —24x,-27=0) 1))

(03 40x] +12x,—63=0), .y |

) Vs
Figure 4.14: The resulting VSST after adding the constraint x> + x2 — 2 = 0 with
removeyg(Tys, V1, {2x; + x5 + 2 < 0}), where Tyg and v; are initially as illustrated in

Figure 4.13.

afterwards, we remove this formula and its effects from Tyg. The only formula in ¢(v;) containing
origins with go%, is np% itself, which is a special characteristic that only holds for the root of a VSST.
As the origins of (p?l’ are now empty we remove cp% from the remaining part of Tyg. We start with
k(v;) and remove its only infeasible subset as it contains (,0% (Line 20-24).

Then, we remove cp% from the origins of the test candidates in the labels on the edges to v;’s
children and afterwards remove all of its effects by recursively invoking removeyyg for each child
(Line 28-37). If a test candidate loses all its origins, we remove the subtree with the respective
child as the root. In our case, we remove one of the three origins for the test candidate —oo, hence,
we do not remove the corresponding child v,. Afterwards, we invoke removeyg(Tysg, Vo, {apé}),
which does not change anything.

The next test candidate 1/x, + 1 does not have (p; as an origin, however, invoking removeysg

for the corresponding child v empties the origins of the formula Lp3 Hence, we remove 903 from

108

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

ound solution

-2
6x7—2x,—3>0

Figure 4.15: Intersection of the solution sets of the constraints xf —X;—1=0,6x; —2x,—3>20
and xf + xﬁ — 2 = 0 and the solution found by checkyg(,a) s illustrated in Figure 4.16.

2x,+3

z and

k(v4) yielding that no conflicts are left. We get the same result for the test candidate

the child v which represent this test candidate.

Now we consider the test candidate —4/x, + 1 and its corresponding child v,. Just as before
with the test candidate m, we remove one formula in ®(v,), but, fortunately, we only
remove one of the two infeasible subsets from x(v,). Therefore we keep the valuable information
that ®(v,) still contains a conflict and there is no need to reconsider v, and the test candidate
—Vxz +1.

Xy +2

The last test candidate —=%— + €, which has been provided by the constraints in ®(v;), loses

its only origin with goé. Thus, we delete the vertex v, which corresponds to this test candidate,
and conclude the call removeyg(Tysg, 1, {2x7 + x5 +2 < 0}).

We observe that a lot of information which is stored in the VSST Ty, can be kept after removing
the constraint, however not all results which were ever made during the previous satisfiability
check are preserved. For instance, we have to reconsider the vertices v5 and vs, which partly
makes sense as we know from our first satisfiability check which resulted in the VSST in Figure 4.4,
that v4 leads to a satisfying assignment, for instance.

In the SMT solver’s SAT solver we now apply Boolean constraint propagation. It additionally

109

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

true
{(“Pll X3 _X2_1:0){{¢$}}’
[—OO//X]]{\;}’A(%’{} true
03,93 (03 631 =20, =320y,
- 1 5 9 o false
{1 false)y oy oy oy) (os xitxi=2=0)ypy |
0 %
() v, 1
) [vx2+1//x1]{<p}} . [*m//xl]{g}}
3. - 4.
{(?: x2+1_0){{w}, {(e1: x24120) 0
2
4x% —24x, —27 <0 (03 %2 <0)nyy
3V (2x,+3<0 4. U2
NAxE—24x,-2720)) (03 =3 =120))
2
3. 5 4 4, 2 1 —
(903 DXyt Xy 1_0){{%}} } (%ﬁ C Xy X 170){{#}}}
— 5 0 (el w3}} V4
L)
(222 /%1
) | . {(¢7: 4x]—24x,—27=0))}
{(@6 X +1>O)true < 9
10272 = Ve (105 : 40 +12x, =63 =0) (1) }
6 . 2_ . true
(¢S: 4x2—24x,—27< 0){{<p§}}’ 0 Vs
6. 2 _ true
(‘Pz Xy txe—1= O){{wi}} }
. Ve {(02% false) e oy }
=
{{e?} V12
[—00//Xz]{¢§,w2,s«§/
7.
{(e]: false){{wf},ws},wg}} }
{{e7}} vy ’
/s /e @ Vi1
[=1//x2]gpsy | [3+ T %2) (g8 (3= //x2],
8. 9. 10 .
{(f : false) o) ooy } {(e]: false) o)) } {(o1°: fase) (e }
el w et w o™ o

Figure 4.16: The resulting VSST Ty of the satisfiability check of xf —X;—1=0A6x; —2x,—3 2>
0 A x?+ x3 —2 = 0, which we achieved by invoking checkys(Tys, v;) with Tyg and v;

being initially as in Figure 4.14.

110

4.3. COMBINING VIRTUAL SUBSTITUTION WITH OTHER PROCEDURES

assigns b, to false and bj to true, therefore, we have to add the constraint xf + x% —2=0to
the theory solver. We achieve this in the same way as in the beginning of this example with
addys(Tys, v1, x> + x5 —2 =0, {x] + x5 —2 =0}). It results in the VSST as given by Figure 4.14

The SMT solver now has a full satisfying assignment for the Boolean skeleton of ¢ while
excluding the conflict we have found before. Next, we want to confirm that the conjunction of the
constraints which have to hold according to this assignment, i. e., x%—xz—l =0A6x1—2x,—3 >
0A x% + x% — 2 = 0, are satisfiable. If so, ¢ is satisfiable, otherwise, it is unsatisfiable, as we
are at decision level 0. The three constraints are already added to Ty, which in particular means
that they are the elements of ®(v;). Therefore, we invoke checkyg(Tysg, v;) for the last time which
results in the VSST of Figure 4.15.

Briefly worded, we achieve this as follows. We invoke checkyg recursively for one of the non-
conflicting children of v;, where we choose v;. As we might remember from the first satisfiability
check with checkyg in this example, we use v; for a case distinction. We create the child vg for
the first case to consider and recursively invoke checkyg for this vertex. Here, we try to eliminate
the remaining variable x, gradually constructing test candidates until one leads to a valid vertex,
which is v;; in our case. Afterwards, the theory solver can return sat and so does the SMT
solver. The solution of ¢ can again be read off the edges in of Ty, which are printed in bold in
Figure 4.15. Therefore, the solution is {(x, \/TZ\/E), (x,, #)}. In Figure 4.15 the solution
spaces of the constraints x% —x,—1=0, 6x; —2x,—3>0and xf + xg —2 =0 as well as the

found solution are illustrated.

4.3 Combining virtual substitution with other procedures

Let us assume that we check the conjunction of constraints ¢ for satisfiability using the procedure
checkys. During this check we enter the sub-procedure createConflicts and fulfill the condition
at Line 2 in Algorithm 11. This means that we called createConflicts(Tyg, v) where Tyg is theory

solver’s VSST and v a vertex in Tyg with incompl(v) = true. This can have two causes.
1. The vertex v has a child v’ with incompl(v") = true.

2. The vertex v is used for the elimination of a variable x. All constraints in ¢ € ®(v), which
can be used for variable elimination, i.e., 0 < deg(x,Pol(c)) < 2, provided already test
candidates, so used(v)(c) = true, and all of these test candidates failed to lead to a solution,
which means that each of them is considered by a child v/ of v with x(v") # @. Moreover,

there exists at least one constraint ¢ € ®(v) with deg(x,Pol(c)) > 2.

Algorithm 11 returns in this case unknown, but, instead, we can also try to solve the conjunction
of formulas in ®(v) for satisfiability with another procedure. If it returns sat and a solution 6’,

we know that ¢ is satisfiable and, considering Section 4.2.5, we can construct a solution 6 for ¢

111

4.4. FUTURE WORK

as follows:
0'(x) ,ifxe Uweq,(v)Vars(z,b)
t , if x € Vars(yp)
0(x) = . .
and die{1,...,k—1}.(TC((v;,v;41)) =t A elimvar(v;) = x)
0 , if x € Vars(yp).

If the procedure returns unsat, we need it to provide infeasible subsets of ®(v), which we then
store in x(v).

An example for a procedure that can be used to check the conjunction of formulas in ®(v) for
satisfiability is an implementation which is based on the cylindrical algebraic decomposition. Such
an implementation would usually be complete for this purpose and, hence, always return either
sat or unsat. The cylindrical algebraic decomposition, which is implemented as an SMT-RAT
module provides infeasible subsets, as well.

Up to now, we presented the idea to invoke another procedure immediately if the aforemen-
tioned situation occurs where incompl(v) = true for the call createConflicts(Tyg, v). Instead we
can also delay the use of another procedure, meaning that we keep v, mark it by “conflict cre-
ation postponed” and pursue a different branch in our VSST. At some point in the process of the
satisfiability check there might only be vertices in the VSST, which are marked this way or seem

to be worse to consider than invoking another procedure for some of the marked vertices.

4.4 Future work

4.4.1 Using an incremental and infeasible subset generating SAT solver for the
case distinction

Algorithm 6 implements how we currently make a case distinction for a vertex v whose formulas
in ®(v) are not all constraints. It needs to find a satisfying assignment for the Boolean abstraction
of the conjunction of the formulas in ®(v) while excluding a conflict in each child of v. Clearly,
a SAT solver as presented in Section 2.5 can find such a satisfying assignment or determine that
the formula is unsatisfiable.

This interaction of a SAT solver and a procedure that checks the satisfiability of conjunction of
constraints, where we obtain infeasible subsets of the set of these constraints, if the conjunction
is unsatisfiable, strongly reminds us of SMT solving. What we actually need in order to replace
the functionality of Algorithm 6, is very close to the Moduleg, of SMT-RAT, as introduced in Sec-
tion 3.1. The implementation should accept a conjunction of quantifier-free arithmetic formulas,
transform it to CNF and try to find a satisfying assignment for the resulting formula’s Boolean
abstraction. It occasionally invokes a backend (theory solver) in order to check the satisfiability
of a conjunction of constraints and in the case, that it is unsatisfiable, the implementation asks

for infeasible subsets. Taking these infeasible subsets into account, the implementation searches

112

4.4. FUTURE WORK

for another satisfying assignment for the Boolean abstraction and so on.

We furthermore require that the implementation is incremental and is able to find infeasible
subsets of the set of checked quantifier-free arithmetic formulas, if their conjunction is unsatisfi-
able (this is not yet supported by Moduleg,r). Then we can make use of such an implementation
where we have to make a case distinction, as presented in this chapter.

4.4.2 Using SMT-RAT backends to check virtual substitution results for
satisfiability

Let us consider checking a conjunction of constraints for satisfiability, as described in Section 4.2.4.
We use the root of the theory solver’s VSST to eliminate a variable according to Corollary 1. For
each test candidate t, we create a child and add t’s side conditions as well the results of virtually
substituting the root’s elimination variable in the constraints in the root by t to it. As the added
formulas might not only be constraints but, for instance, contain a disjunction, we need to make
a case distinction. If the implementation of this theory solver is part of SMT-RAT, we can directly
use backends instead, as described in Chapter 3. The advantage would be that the backend could
be the root of an entire SMT-RAT strategy, which not only deals with the Boolean complexity by a
Moduleg, but also applies preprocessing or other modules based on, for instance, the Simplex
method or Grébner bases. As mentioned before, for a well-performing embedding, we would
require that all of these implementations are incremental and can generate infeasible subsets.
Unfortunately, this is not yet supported by Moduleg,y.

113

CHAPTER D

Improving the Performance of the Virtual Substitution in SMT

This chapter addresses optimizations of the satisfiability check as described in Chapter 4. The pre-
sented ideas can mostly be adopted to be usable in the context of the original virtual substitution
as introduced in Section 2.7.

On the one hand, we present the heuristics we make use of for the situations where we have a
choice. For instance, in Section 5.1 we describe how we select the variable to eliminate according
to Corollary 1 or the next constraint for the provision of test candidates. The construction of
conflicts as presented in Section 4.2.6 involves an approximation of the optimal set coverings.
We discuss the optimality criteria and heuristic choices we can make during this construction in
Section 5.2.

On the other hand, we present optimizations which exploit local information during the search
for a satisfying assignment as specified in Section 4.2.4. In Section 5.2, we present a mechanism
which allows us to prune larger unsatisfiable subtrees in the VSST of the theory solver during its
consistency check. Furthermore, we explain in Section 5.3 how we can detect that a vertex in the
VSST is conflicting before all of its children are constructed. Finally, we present an optimization
in Section 5.4 which takes advantage of variable bounds, that is upper and lower bounds on the
variables’ domains. As a result we can narrow down the set of test candidates we have to consider

and simplify the virtual substitution results.

5.1 Choice of the elimination variable and constraint to provide

test candidates for

Let us assume a vertex v of the VSST Tyg = (V, E, ®, orig, k, elimvar, used, incompl, TC) such that

®(v) contains only constraints. In this case, we use v for the elimination of a variable according

5.1. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

to Corollary 1 and, therefore, need to specify a variable to eliminate. Moreover, we gradually
construct the test candidates of the elimination variable for the constraints in ®(v), where we
consider them one at a time.

Firstly, we need a measure to decide how good a constraint serves for the provision of test
candidates for a given elimination variable. Based on this measure, we can decide how well a

variable is suitable as an elimination variable for a set of constraints, as given in ®(v).

5.1.1 Measure of quality of constraints for test candidate construction

Given a variable x and a constraint ¢ € ®(v) such that x € Vars(c), the following functions, we
refer to as constraint valuations, specify a value in order to represent different properties of x
in c. This value is positive and the closer it is to 0, the more preferable it is with respect to the

property it concerns.

Too high degree w,q(x,c): This value is either 1, if the degree of x is less than or equal to
2, or 2, otherwise. That way we prefer constraints for which it is possible to create test

candidates for x, that is the degree in x is not too high.

It is clearly very important to give constraints a worse (and higher) rating if x occurs with
a degree higher than 2, as this is the case where the virtual substitution might not give a
conclusive answer. However, we have to keep in mind that even though we prefer to choose
x, if it occurs in all constraints only with a degree less than or equal to 2, the remaining
variables might not satisfy this property, especially after the elimination of x.

Finitely many solutions wg,s(x,c): We rate ¢ better (with 1 instead of 2), if ¢ is an equation,
the degree of x in c is less than or equal to 2 and for at least one finite test candidate
t € tes(x,c), i.e., t # —00, it holds that sc(t) = true. According to Theorem 5, we then
have to consider only the test candidates for x in c instead of all test candidates for x in

the constraints in ®(v).

This is a very important valuation, as it drastically reduces the number of test candidates to
consider for x. In particular, there is no need to create test candidates for x in constraints,

where x occurs with a degree higher than 2.

Relation symbol w,(x,c): We rate equations best (with 1) as they restrict the solution space
most and, therefore, mutual solutions of the constraints in ®(v) are rather represented by
the test candidates for x in equations. We rate strict inequalities worse (with 3 instead
of 2) than weak inequalities, as the virtual substitution by test candidates for x in strict
inequalities, i. e., those where we add an infinitesimal €, entail a higher complexity than

the virtual substitution by test candidates for x in weak inequalities.

Elimination variable’s degree w.,q(x,c): This value equals to the degree of x in c, that is the

lower this degree is, the better we rate c.

116

5.1. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

The virtual substitution of x by test candidates, which we construct for constraints being
linear in x, result in simpler formulas compared to those we get for constraints where x

occurs quadratic.

Number of variables w,,(x,c): This value equals the number of variables in c, i. e., [Vars(c)|.
The more variables ¢ has, the worse is its rating. Test candidates for x in ¢ with a small
wyy, Prevents more complex virtual substitution results in terms of the number of variables

in each constraint in the result.

We combine constraint valuations for a given variable x and a constraint ¢ € ®(v) such that
x € Vars(c) by

n —

w((a)l, .o wn),X,C) = Z M

~ (max,,)’

where wq,..,w,; € {®Whd> Oms> Prel> Pevds Wny) are pairwise different, max,, € N and for all

i €{1,..,n} it holds that

_ { w;(x,c) ,if w;(x,c) < max,
wi(xz C) =

max,, , otherwise.

This yields a rating of a constraint with respect to one of its variables, where we prioritize the

constraint valuation w; over w,,.., w,, the constraint valuation w, over ws, .., w, and so on.

Theorem 5 Let ¢ =c; A..Ac, be a conjunction of constraints and c € {cy,..,c,} be an equation,

such that
e x € Vars(c),
* deg(x,Pol(c)) < 2 and
* there exists a test candidate t € tes(x,c) with t # —oo and sc(t) = true.

Then it holds that

¢ issatisfiable < \/ (plt//x]Asc(t)) is satisfiable.

t € tes(x,c)
t #—00
Proof 5 Let ¢y =c; A..Ac, and ¢, x and t as defined by Theorem 5.
Then c is of the form p;x? + pyXx + p3 = 0 and the virtual substitution rules in [Wei97] specify
that
(p1X* +pax +p3 =0)[—00//x] = p;=0Ap,=0Ap;=0.

From sc(t) = true it follows from Definition 21 that p; # 0 or p, # 0 and, therefore, c[—0c0 //x] =

117

5.1. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

false. Then, it holds that if a € ©(c) we know that

*+[ql*v[r]* p+
a(x)eM = {[[p]] E]:]u“ [r] | P :1‘/? e tes(x,c) \ {—oo}, [sc(t)]* = true}.
As O(p) = ﬂ?zl ©(c;), it also holds that if a € ©(¢) then a(x) € M. Hence, it is sufficient to
only check the test candidates in tcs(x, ¢) in order to determine the satisfiability of ¢. O

We still need to decide which constraint valuations we want to use and how we prioritize
them. As explained before, we expect the constraint valuation w¢,, to be the most important
one, followed by wyq as it might enable us to solve formulas where we would otherwise not
find a conclusive answer. Therefore, we always use these constraint evaluations with the highest
priority in this order. It will be interesting to see, which of the constraint valuations w,¢ and we.q
are more important, hence, we will test them, once prioritizing w, and once prioritizing weq-
The last constraint evaluation w,, seems to be the least important and we will test, whether it is
better to include or exclude it. Summarized, we are going to test the following four combinations

of constraint valuations in Section 6.4.
1. (wfms: Wihd> Prel> Pevds wnv)
2. (wfms: Wihd> Wrels wevd)
3. (wfms: Wihd> Pevds Prels wnv)

4. (wfms’ Wihd> Wevd>» wrel)

5.1.2 Measure of quality of variables for elimination

Given the set of constraints ®(v) in the vertex v, we want to identify a variable occurring in
these constraints which we eliminate next according to Corollary 1. This choice is vital for
the performance of the virtual substitution and can even decide whether we can determine the
satisfiability of a given formula or not. Therefore, we always try to choose the variable for which
the constraints in ®(v) provide the most promising test candidates with respect to the heuristic
we choose according to Section 5.1.1.

Let us assume that we decide to use the constraint valuations w1, .., w, in this order, that is cw;
has the highest priority and w,, the lowest. Given a variable x, we can then valuate its quality for

an elimination according to Corollary 1, if we consider the variable valuation

Wy 1 Wy k

(w((@1,-000),%,€1)5 -, (1, 00), X, Cr))

where cq,..,c;, € ®(v) are the constraints which contain the variable x and forall 1 <i < k

it holds that w, ; < w, ;1. A variable valuation represents the constraint valuations for the

variable x in ®(v) written as an increasing number series.

118

5.2. CONFLICT CONSTRUCTION AND BACKJUMPING

Based on variable valuations we specify an order for the variables and then choose one of the
variables which are the smallest in this order for an elimination according to Corollary 1. In
the following, we present three different orders, which try to optimize the best, the average and
the worst constraint valuation for a variable, respectively. For this purpose, we assume we are
comparing two variables x; and x, and consider their variable valuations (wy, 1, .., Wy, r,) and
(@Wy 15+ s Wy ky)-

Optimizing best constraint valuation:

3j €10, ..,min({ky, ky})}.
X1 <pest X2 & (Vl € {1: . ')j}'wxl,i = wxz,i)
A =ki Nky>j)V (j <min({ky, ko}) A @y, jr1 < @y, 41))

Optimizing average constraint valuation:

K ky
X < X2 & Oy)k < QL wg) ks

i=0 i=0
Optimizing worst constraint valuation:

3j €10, .., min({k;, ko })}.
X1 <worst X2 & (Vl € {O: . ~>j - 1}~wx1,k1—i = wxz,kl—i)
NG =ky Nk >)V (G <min({ky, ko}) A @y, g, —j < O, k,—1))

5.2 Conflict construction and backjumping

For the generation of small reasons for infeasibility, as explained in Section 4.2.6, we considered
a vertex v in the theory solver’s VSST Tyg = (V, E, ®, orig, k, elimvar, used, incompl, TC), such that
all of its children are constructed and all of them are conflicting. Let us assume that V' C V is
the set of v’s children. As mentioned before, a vertex v’ is conflicting if x(v") # @. Our goal is
to construct infeasible subsets of the set of formulas ®(v) by the use of the conflicts x(v’) of v’s
children. Note that we checked A pea(r) P for satisfiability with the result that it is unsatisfiable.
As we know from Equation (4.1), we obtain an infeasible subset K C &(v) if it covers a conflict
K, € x(v') in each child v/ € V' after mapping the formulas ¢’ € K,/ to one of its origins
N € orig(v')(¢"), i.e.,

0,(v')

A

n n
Vv eV/.IM e {U N;| (Ny,..,N,) € l_[orig(v’)(tp{), {¢],. ¢} ex(v)}. M CK.
i=1 i=1

We refer to O,.(v’) as the origins of the conflicts in the vertex v'.
This means that we have to find a set covering of {O,.(v/)| v/ € V'} C P(P(P(®(v)))), that is a

119

5.2. CONFLICT CONSTRUCTION AND BACKJUMPING

set K C ®(v) which covers an element M of each O,.(v'), i.e., M C K. It differs slightly from the
original definition of the set covering problem [CTF00], where we would require that M € &(v)
instead of M C ®(v) and that M € K instead of M C K.

Due to the aforementioned construction of O,(v’) for a v/ € V’, in the worst case it contains
[k(v')| - |N7]| - .. |N,| sets, which is a number that grows exponentially as n increases. However,
it is seldom the case that we have more than one origin for a formula considered by a vertex in
V,i.e., w

increases.

~ 1. Hence, the size of O.(v") grows linearly as the number of conflicts in x(v")

Finding the smallest set covering is an NP-hard problem [CTFOO]. Therefore, we only construct
an over-approximation of the smallest set covering invoking setCovering({0,(v/)| v/ € V’}),
which is defined in Algorithm 12. For each O’ € {O,(v')| v/ € V’}, which is a set of sets, this
algorithm adds the elements of the set M € O’ to the set covering K, which is already covered the
most by K, i.e., M NK| is minimal. This algorithm is correct, as we clearly cover a set in each
0’ € {0,.(v')| v/ € V'}. As we need to check each set in O’ once, in order to find the one which
is covered by K the most, the complexity of Algorithm 12 lies in O(n) where n is the number of
subsets of ®(v) in {0,.(v))| v/ € V'}.

Algorithm 12 Given a set O of sets of subsets of a set of formulas ®, this procedure returns a set
K C & such that for all O’ € O there exists a M € O’ such that M C K.

setCovering(a set O C P(P(P(®))) of sets of subsets of a set of formulas $)
begin

1: K:=0 // initialize set covering
2: forallO' €0 do
3: M := set in O’ with |M N K| being minimal
4: K:=KuM // update yet found set covering
5: end for
6: return K

end

5.2.1 Backjumping

Assume that we have a vertex v of our VSST Tyg with x(v) # @ being constructed as explained
in the beginning of this section. If we use v for a case distinction and, hence, v’s father v; for
test candidate generation, we can check whether a conflict K € x(v) exists which consists only
of constraints that were already considered by v, i.e., K € ®(v¢). As K is an infeasible set of
constraints, /\wefb(vf) ¢ must be unsatisfiable, therefore we can add K to x(vy) and do not need
to consider any further test candidates for the variable elimvar(v,), which we eliminate in the
constraints of ®(v;). Instead we directly jump back to the father of vy, if it is not the root, or
detect the unsatisfiability of the conjunction of the constraints in the root of Tyg, otherwise. This

is why we name this technique backjumping.

120

5.3. LOCAL CONFLICT DETECTION

With the aforementioned simple and cheap check we can clearly omit checking test candidates,
which speeds-up the search for a solution. We can adapt the construction of conflicts as given by
Algorithm 12, such that it is more likely to encounter a case where we can apply backjumping. For
this purpose we make use of the following definition in order to specify the quality of a formula
during this construction.

Definition 26 (Age of a formula in a VSST) Given a VSST Tyg = (V, E, ®, orig, k, elimvar,

used, incompl, TC) and a vertex v € V, we define the age of a formula ¢ € ®(v) (with respect

to the vertex v) by

1 , if p € ®(v) and v is root,
ager, : FO(T)xV - Ny : (¢,v)— | 1+ager, (p,vf) ,if ¢ € 2(v)and vy is father of v,

0 , Ootherwise.

The age of a formula ¢ with respect to the vertex v in the VSST Ty is the length of the path
from the vertex v/, which lies on the path from the root of Tyg to v and does not contain ¢, i.e.,
¢ € ®(v'), to v. In other words, this age tells us how long a formula has been passed from a
node to its children and to their children and so on until it got to v. In particular it means, that
the variable elimination along this path did not change ¢, which is simply based on the fact that
none of the variables in Vars(¢) have been eliminated yet.

As before, let us consider the case where we have a vertex v in the theory solver’s VSST
Tyvs = (V,E, ®, orig, k, elimvar, used, incompl, TC), such that all of its children are constructed
and all of them are conflicting. So far we added the conflicts to x(v), which we create with
setCovering(0), where O = {O,.(v/)| v/ € V'}. Now, we preprocess O before, which results in

o = {{M € 0,(v')| max({ager, (¢,V) p €M}) <m}|v' €V}

a8Crys

with
m = max({min({max({ager, (¢,v)| ¢ € M})| M € O,(v)})| v e V'}),

and then add the conflicts created by setCovering(Ogge,. S) to k(v). Here, m is the minimum of all
\%

possible set covering’s formulas’ maximum age. The preprocessing removes all sets of formulas

in O, where the formulas’ maximum age is higher than m. Note that by the construction of m it is

ensured that each set of sets in OageTVS is not empty. Consequently, invoking setCovering(OageTvs)

yields an over-approximation of the smallest set covering where its formulas’ maximum age is

minimal with respect to all possible set coverings of O.

5.3 Local conflict detection

The generation of small infeasible subsets, as one of the requirements on an SMT compliant theory
solver, might form their most important feature. Usually we have to compute the infeasible subsets

after the theory solver’s check procedure detected the unsatisfiability of the conjunction of its

121

5.3. LOCAL CONFLICT DETECTION

input constraints. In our case, where we used checkyg on the theory solver’s VSST Tyg = (V,
E, ®, orig, k, elimvar, used, incompl, TC), the infeasible subsets are already stored in the conflicts
k(v,) of Tyg’s root v, € V, if checkyg returns unsat. This is due to the fact that we calculate the
infeasible subsets as we perform the consistency check. Furthermore, we do not only calculate
them for the root but all conflicting vertices of Tyg, which is necessary in order to finally construct
the conflicts of the root.

Regarding the performance of a satisfiability check with checkyg we have already seen a scenario
where smaller conflicts in conflicting vertices might be useful for other purposes. With smaller
conflicts it is more likely that the maximum age of the formulas in a conflict is smaller, and, hence,
it is more likely that we can apply backjumping, as introduced in Section 5.2. As we explained,
backjumping saves us from considering all test candidates, which the constraints in a vertex for
variable elimination provide, and, therefore, it improves the performance of the satisfiability
check.

We would like to make more use of the thorough construction of conflicts in the vertices. Let
us assume that during the satisfiability check with checkyg we construct a conflict in a vertex
v € V using the procedure createConflicts(Tyg, v). Then, k(v) stores a set of conflicts which are
infeasible subsets of the formulas in ®(v). In the case that we use v for variable elimination,
v is conflicting and, hence, we construct its conflicts, if all children of v are constructed and
all of them are conflicting. This means that all constraints in ®(v) have already provided test
candidates and each of them led to a conflict. Now, if xk(v) contains an infeasible subset M of
&(v) with M # ®(v), which means that M C &(v), it follows from Corollary 1 that it would
have been sufficient to only consider the test candidates provided by the constraints in M in
order to detect that their conjunction is unsatisfiable. As introduced by Definition 27, we say
that the constraints in M form a local conflict. This definition generalizes the described situation
by allowing a conjunction of arbitrary formulas instead of a conjunction of constraints. A local
conflict is actually just a synonym for an infeasible subset but in context of the elimination of a
variable with the virtual substitution.

Definition 27 (Local conflict) Let p® = p; A.. A ¢, be a quantifier-free real-arithmetic for-

mula. Furthermore, let M C {¢1,..,¢,} be a strict subset of the sub-formulas of ¢® and

cp}l\‘jl = /\(peM @ with x € Vars(cp}l\‘j[) occurs at most quadratically in cpﬁ. Then the formulas in

M form a local conflict if

\/ (goﬁ[t//x] A sc(t)) is unsatisfiable.
tetes(x,ph)

With the help of the conflicts in v’s children and using a similar principle as for the construction
of conflicts with the procedure createConflicts, we can detect a local conflict before construct-
ing and checking all test candidates provided by the constraints in ®(v). For this purpose we
use the procedure which is implemented by Algorithm 13, i. e., we invoke localConflict(Tyg, v),

before we create new children in the procedure checkyg as given by Algorithm 10 (Line 8).

122

5.4. EXPLOITING VARIABLE BOUNDS

Algorithm 13 Given a VSST Ty = (V, E, ®, orig, , elimvar, used, incompl, TC) and a vertex v € V,
this procedure returns true if we have a local conflict for v.

localConflict(VSST Ty, vertex v € V)

begin
1: if elimvar(v) = L then return false // only if vertex is used for variable elimination
2: // collect all constraints, which have been used to create test candidates
3: M = {c € ®(v)| used(v)(c) = true}
4: for all (v,v') €E do
5: (t,0,) :=TC((v,v"))
6: if O, "M # () then // test candidate has origin in M
7: // if v/ is not conflicting or no conflict mapped back to its origins
8: // is covered by M, then we do not have a local conflict for M
9: if k(v')=0 or YK € O.(v'). K € M then return false
10: end if
11: end for
12: // in each child a conflict after mapping it back to its origins is covered by M,
13: // then M is a local conflict and we add it to k(v)
14: k(v):=x(v)u{M}
15: return true
end

Algorithm 13 only detects local conflicts for vertices which are used for variable elimination and
returns false (Line 1), otherwise. It then collects all constraints in ®(v), which have been used
for the provision of test candidates (Line 3), and checks whether all children are conflicting and
whether these constraints cover one of the origins of the conflicts in each child (Line 14). If this
is the case, we add the constraints as a conflict to k(v) (Line 14) and return true, which means
that a local conflict has been found.

5.4 Exploiting variable bounds

In many real world examples, we deal with variables that have upper or lower bounds. For
instance, variables which represent time, temperature, or velocity come naturally with bounds.
Time must be non-negative and, depending on the example, we can usually predict certain bounds
for the temperature or velocity (room temperature < 50 degrees, 0 < car velocity < 400 km/h

etc.). We can represent these bounds with constraints as defined in Definition 28.

Definition 28 (Variable Bound Constraint) A constraint of the form
ax—d~0

with x being an arithmetic variable, a €N, d € Z and ~€ {=, <, <,>,>} is called a (variable)
bound constraint.

123

5.4. EXPLOITING VARIABLE BOUNDS

We denote the set of all bound constraints by CSyg C CS and we refer to a bound constraint
¢ € CSyp as a lower bound constraint, if rel(c) € {=,>,>}, and as an upper bound constraint,
if rel(c) € {=, <, <}. Note that a bound constraint with the relation = forms a lower as well as
an upper bound constraint.
In the following definition, we generalize how we obtain and represent the variables’ bounds

for a given formula.
Definition 29 (Variable bounds) Let ¢ be an arbitrary arithmetic formula. Then we can,
w. L 0. g., decompose ¢ to
CINANCLNANPLNA N Qs

where n,m € Ny, n+m > 0, cy,..,c, are bound constraints and @1 A .. A ¢,,, are arithmetic
formulas which are not bound constraints.®
We obtain the bounds of a given variable in a given formula with

vb: (VARg 7 X FO(7)) = I: (i A.ACuAQI A AP, X) = vb'(x, {c1,..,c,})

where vb': (VARg z X P(CSyg)) — I maps a variable x and a set of bound constraints C as

depicted in the following table

sup(x,C,—) 1 ax—d <0 ax—d <0
inf(x, C, |)
1 (—00,00) (—o0, %] (—o0, %)

d X d d & —d - d
dx—d>0 4 o0) (4,47 ,lf;>'a (@) ,lfzzg
] , otherwise] , otherwise
.41 ,is=2 | @D .55=4
ax—d>0 g’ 0o a’a a a a’a’ a a
(@ 00) 0 , otherwise ¢ , otherwise

with

sup: (VARg 7 x P(CSyp)) — CSyg U {L}:

((ax—d <0 ,ifdax—d<0€eC.

Vadx—d' ~0ecC. ~e {=,S,<}—>%Si—:
(x,C)—= 3 ax—d~0 ,ifd ~e{=<}Aax—d~0€CA
Vax—d ~'0ecC. ~e{—<<}—>—< 2

L , otherwise

124

5.4. EXPLOITING VARIABLE BOUNDS

inf: (VARgz x P(CSyp)) = CSyp U {L}:
ax—d>0 ,ifdax—d>0€eC.
Vax—d' ~0ecC. ~e{=>>}—
(x,C)— 3 ax—d~0 ,if ~e{=,>2}Aax—d~0€CA
Vax—d ~0ecC. ~e {=,2,>}—>%>d—/

a/

d>
£>

\ L , otherwise

“Note that due to ¢ being normalized, ¢, .., ¢,, are not conjunctions.
In other words, the bounds of a variable x in a formula ¢ are defined by the strictest bound
constraints, which have to hold such that ¢ can be satisfied. These strictest bound constraints
are the strictest lower bound constraint of x, if any lower bound constraint for x exists, and the
strictest upper bound constraint of x, if any upper bound constraint for x exists. For a strictest
lower or upper bound constraint ¢ of x it holds that for all other lower respectively upper bounds
¢’ of x the formula ¢ = ¢’ is valid. We represent a variable’s bounds by an interval, where
the strictest lower bound constraint specifies the interval’s lower bound and the strictest upper

bound constraint specifies the interval’s upper bound.

5.4.1 Interval arithmetic

Similarly as with numbers (Z, Q, R, etc.), we can compute with intervals. All common arithmetic
operations, such as the addition (+), subtraction (—), multiplication (-) and division (/) of two
intervals are defined. We can also compute the i-th root (/) of an interval for i € N, as the
bounds of an interval are real valued which allows us to use arbitrarily nested root expressions,

as it can be seen in the following example.

Example 16
[-1,3) + [0,2] = [-1,5)
(1,00) — [1,1] = (0,00)
(1,2] - [3,4) = (3,8)
(—00,0] - (=2,0] = [0,00)
[1,21 / (23] =[50

VI2,v/5] = [V2,V5]

Dividing an interval by an interval, which contains zero, might not result in a convex set M. That
means there exist values d,,d, € M such that there exists a value d’ € R\ M with d; < d’ < d,.
As the convex subsets of R are exactly the sets we can represent with a single interval, there is

no interval representation for M.
Example 17

125

5.4. EXPLOITING VARIABLE BOUNDS

Therefore, interval arithmetic is not closed under division.

We will not give further details on how all of these arithmetic operations on intervals are
defined and refer to [Kul09] instead. The following property, which is always preserved by any
arithmetic operation o € {+,—,-, /} on intervals, is essential for using them in our context where

we have to guarantee correctness.

VI,[€l. Liol, = {djody|d; €1y, dy€lr}

1
VIel VI = {Jd|del, d>0} (5-1)

In the implementation of the ideas we present in the course of this section, we use IEEE
standard floating points instead of arbitrary real numbers for the bound values of the intervals.
This improves the performance of the arithmetic operations, however it does not guarantee
that the Property 5.1 is still fulfilled. Instead we have to mitigate this property such that the
arithmetic operations only include the results of all combinations of the elements of the (two)

input interval(s):

VIl,Ize]I. leeIl, dzelz. dlodzellolz

5.2
VIel Vdel,d>0. vJdeI (5-2)

Therefore, correctness can still be guaranteed, if Equation (5.2) is fulfilled.

We can also compare intervals by I; < I,, which is true if I; N I, = @} and the upper bound of I;
is less than or equal to the lower bound of I,. However, the equality of two intervals I; and I,
does not follow from —(I; < I,) A =(I; < I;) as it does for numbers. For instance, [; = (—o0o,1)
and I, = [0, 1] satisfy this condition, but are obviously not equal. As expected, two intervals
are equal if their lower bounds are equal and either both are closed or both are open and their
upper bounds are equal and either both are closed or both are open. Similar to the T-structure
2, the T-structure B8 maps +, —, - and < to the aforementioned semantics for interval arithmetic
denoted by +g, —g, ' and <g. Additionally, it maps an I €1, 4/~ and = to the just described
semantics denoted by Iy, v/ - and =y.

If we directly apply the n-th exponentiation to an interval I instead of computing 1_[?:1 I, we
might obtain a different result. More precisely, we know that I" cannot contain any negative
numbers if n is even. For instance, (—1,00)? = [0, 0o), where using the standard multiplication
of intervals yields (—1,00) - (—1,00) = (—00, 00). We call this the wrapping effect and there
are more effects which can be exploited in interval arithmetic for which we refer to [MKC09].

5.4.2 Evaluation and simplification of formulas using variable bounds

The main purpose of intervals in this thesis is to use them as an over-approximation of the solution
space of a formula for a variable. Similarly as for numbers, we also want to evaluate expressions

such as polynomials, constraints and formulas by an assignment of variables to intervals.

126

5.4. EXPLOITING VARIABLE BOUNDS

Definition 30 (Interval assignment) An assignment of intervals to real-valued variables

(short interval assignment) is defined by

B: VARg —» 1:v — I C Dom(v).

Analogously to Definition 6, we consider an interval assignment B to be full for a given formula
(or polynomial) ¢, if FreeVars(y) € Dom(B). Within this thesis we only consider full interval
assignments and denote the set of all full interval assignments by TASS.

Just as for assignments to values, we can adapt an interval assignment such that it maps a
variable to a given interval by

[-/-1: IASSx I x VARg 5, — IASS : B[I/x]— B’

where
B’(x’)Z{ I ifx'=x
B(x") , otherwise.

For the evaluation of a formula or a polynomial under an interval assignment, it is sufficient
in this context if we restrict ourselves to quantifier-free arithmetic formulas without Boolean
variables. A generalization to arbitrary arithmetic formulas is straight forward.

Definition 31 (Formula and polynomial evaluation) Given a full interval assignment B for

a polynomial or a quantifier-free arithmetic formula ¢ without Boolean variables, we can

evaluate it under B by

[-1 : (FO(7) x IASS) — FO(71),

which is defined inductively with respect to the abstract grammar in Definition 4

[x]" = B(x)p
[11° = [L1]y
[p1 +p2 1P = [p11° + [p1°
[p, —Pz]]B = [[Pl]]B B IIpz]]B
[p1-p.1° = [p:]° B [p.1°
true , if [p11° <y [po1°
[p: <p1° := false , f [p21° <o [p11°

p1 <py ,otherwise
false , if [¢,]8 = true

[-¢,1° = true , if [¢,]5 = false
P1 , Otherwise

127

5.4. EXPLOITING VARIABLE BOUNDS

false , if [, 1P = false or [,]P = false

P1 , if [@,]° = true
P2 , if [o11P =true
p1 Ay , otherwise

[o1 Apol? =

where x € Dom(B) is an arithmetic variable, p; and p, are polynomials and ¢, and 5 are

quantifier-free arithmetic formulas without Boolean variables.

Definition 31 is very similar to Definition 7, however, we cannot evaluate constraints to true
or false, if the evaluations of the left- and right-hand sides intersect. Instead, the evaluation then
keeps the constraints, which implies that the evaluation of a formula does not always result in a

Boolean constant, but can also yield a (simplified) formula.

Example 18 Consider the interval assignment B with

B(x)) = (—00,0]
and B(x,) (1,2].

Then evaluating the formula 2x;+1 < x, A —(x1x9 < 0) under B yields

([2,2]p 5 (—00,0]) +o5 [1, 1] < (1,2]55

(—00,1]y <y (1,2]y (=00,0]y *» (1,2] <o [0,0]y

true (—00,0]y <4 [0,0]5
——t~ — B
I]: 2X1+1 <X2 /_|(X1X2<0)]] = _|(X1X2<0)

5.4.3 Interval constraint propagation

Given a formula ¢ with its decomposition ¢ = ¢y A..Ac, A@; A..Ap,, according to Definition 29,
we have seen how to obtain bounds for the variables in Vars(y). However, we did only consider
the bound constraints ¢; A .. A ¢, for these bounds and ignored the other constraints {p;| 1 <
i < m, ; is a constraint}, which have to hold such that ¢ can be satisfied. In Example 19 we
illustrate the main idea of how interval constraint propagation (ICP) uses these constraints to
refine an over-approximation of ¢’s solution space for its variables step by step. We only provide
this informal illustration and refer to [FHT"07] for more details. An alternative procedure, which
uses contraction with an interval-based Newton method [HR97] instead of propagation, can be
found in [GGIT10].

Example 19 Consider the real-arithmetic formula
@ = 2x+120Ax;+1>0Ax2+x5—-2=0 A x}—x3—1=0 A 6x;—2x,—3>0

which is illustrated by Figure 5.1. Its only solution is {(xq, 1/ ‘/§2+1), (x4, @)}, which is the right

128

5.4. EXPLOITING VARIABLE BOUNDS

Xy
6x;—2x,—3=0
-
6_
5_
4 -
xf—x2—1:0 3 1
2_
/ ound solution
t t t t t d t t t t iX'
6 5 4 3 o \} [/i 9 3 4 5 6 !
2x,+12=0 \Q L
x1+x2—2:0
-2/
x3+1>0

Figure 5.1: Intersection of the solution sets of the constraints 2x,+1> 0, x;+1 > 0, xf +x§ —2=0,
xf—xz—l = 0 and 6x;—2x,—3 = 0. The dotted boxes show how we narrow down an over-
approximation of the intersection approaching its only element at (~ 1.272,~ 0.618).

of the two intersection points of the equations x% + x% —2=0and x% — X5 —1=0in Figure 5.1.

The bound constraints of ¢ are {2x,+ 12> 0, x; + 1> 0} and we obtain:

(_13 OO)

[_%s OO)

Vb(X], SD) =
Vb(XZs SD)

In the following we informally apply ICP to clarify its principle. Let us consider the constraints
x% + x% —2=0and x% — x5 —1 = 0. If we replace all nonlinear monomials, i. e., x% and xg, by

fresh real arithmetic variables x5 and x, we obtain

C1: Xg+x4—2=0
Co: X3—Xx;—1=0
C3: XS_X%ZO
Cqt x4—x§:0

Usually, we would also replace multivariate linear polynomials without their constant part, i. e.,

129

5.4. EXPLOITING VARIABLE BOUNDS

6x1—2X4, X3+ X4 and x3 — X5, by fresh real-arithmetic variables, but we omit this here for the sake
of simplicity. For the same reason, we do not use the constraint 6x; —2x, — 3 = 0 for propagation.
Using the bounds of x; and x4, which are defined by vb(xy, ¢) and vb(x,,), we initialize the
interval assignment B, mapping each variable in ¢ to an over-approximation of ’s solution space

for the variable by:
B (xl) = (_1 B OO)

B(x) = [-},00)
B(x;) = (~00,00)
B(x;) = (~00,00)

Due to the special form of the equations ¢y, ¢y, c3 and c4, we can solve them for each variable
occurring in them. For instance, if we solve c5 for x5, we get x5 = x% or; if we solve cy4 for x5, we
get xy = £,/Xy. Let sy, . define the right-hand sides of these solution equations for i,j € {1,..,4}
with Sxic; = L, if x; & Vars(c;). Otherwise, Sxic; = g with n €N, d € Z and p being a polynomial.
Then (just for this example) an ICP-step, which narrows down the over-approximating solution space

of one of the variables x; with one of the equations c; (i, j € {1,..,4}), is defined by

I , ifsxl_,cj =1
. nj/ B . n
icp: (Ix {xy,.., x4} X {c1,.,c4}) =12 (Lxj,c5) =4 IN [d[[,z]]] s lfsxl_’cj = #
VIpI? . Y
In+ [dd] ~ lfsxi;cj =+ ‘c/iﬁ

Now we can update B(x3) by an ICP-step using cs:
B(X?)) = icp(B(XB)) X3,C3) = (—OO, OO) N (_1) 00)2 = [07 OO)

With the same idea we can narrow down the over-approximation of ¢’s solution space for its

variables as follows. We also illustrate this process in Figure 5.1 by the dotted boxes.

B(xy) := icp(B(x4),x4,¢4) = (—00,00) N [—3,00)> [0, 00)
B(x3) := icp(B(xs),x3,¢;) = [0,00) N ([2,2]-[0,00)) = [0,2]
B(xy) = icp(B(xp),xz,¢5) = [—3,00) n ([0,2]—[1,1]) [—3.1]
B(x3) := icp(B(x3),x3,¢,) = [0,2] n (-3 11+[1,1) = [3,2]
B(xy) = icp(B(xy),xscq) = [0,00) N [—3,1]2 = [3,1]
B(x3) := icp(B(x3),x3,¢1) = [3,2] n ([22]-[51) =[1%
B(x;) = icp(B(x1),x1,¢3) = (=1,00) N £4/[1,Z] = [1, %]
B(xy) = icp(B(xy),xp,¢0) = [—3,1]1 N #£/[3,1] = [-3,—31U[},1]

At this point, the over-approximation of ¢’s solution space for x, is not convex and here are three

possibilities as to how we can proceed:

1. We could start to operate on non-convex sets represented by sets of intervals. Then an arith-

130

5.4. EXPLOITING VARIABLE BOUNDS

metic operation of two of these sets of intervals M, M, C I would entail applying an interval
arithmetic operation for each combination of an element from M, with an element from M,. In
our scenario, however, this is not a good option as a repeated application of such an operation

might lead to a combinatorial explosion.

2. We could form the convex hull of the intervals in M C I representing the non-convex set. This
is simply achieved by taking the minimal lower-bound of all intervals as the lower bound of
the convex hull and the maximal upper-bound of all intervals as the upper bound of the convex

hull. In many cases this can be a coarse over-approximation, though.

3. Considering that B(x,) = [—%,—%] U [%, 1], we can also try to first deal with x5 € [—%,—%]
and, if we could rule out that it contains any solution for ¢, we continue with x, € [%, 1].
Instead of handling this by a simple case splitting, we can also lift this decision to an involved

SAT solver as presented in Section 3.1.

Let us assume that we follow the third possibility and consider x5 € [—%, —%], first. Then we get a

conflict straight away if we update B(x3) using c,.
B(x3) := icp(B(x3),x3,¢2) = [L,3] n ([—3,—3]1+[1,1]) =0

Therefore, we now consider xo € [%, 1]. If we repeat the following four updates, we approach the

solution {(x1, y/ %), (x5, _1+‘/§)}, which lies approximately at (1.272,0.618) in Figure 5.1, for

both variables x; and x, from below and from above.

B(xs) := icp(B(xs),x3,¢2) =[L,3] n ([31+[L1]) = [3]]
B(xy) = iep(B(xa)xpcr) = [5,11 N (221-[3.3D = [43]
B(xy) = icp(B(xz)xp,cq) = [5,1] N £4/[4,3] = (3,51
B(x;) = icp(B(x1)xi,ca) = [LHF] 0 £4/[3,7] = 2,91

Unfortunately, we would never yield point intervals as an over-approximation of ¢’s solution space for
the variables x, and x,, if we only apply this procedure. That is, we never obtain the exact solution
in this case, but we can isolate it with an infinite precision. Furthermore, we cannot guarantee at any
point during the application of this procedure, that the over-approximation of the formula’s solution
space contains a solution. Let us assume, that we consider the formula ¢ = ¢ A xf + x% —2+e=0
where € is a very small real number with € > 0. Clearly, the equations xf + xé —2 =0 and
xf + xg — 24 € = 0 have no common solutions, as the former circle is enclosed by the latter one.
However; ICP would yield a very similar over-approximation to the one we found for ¢, but containing
an intersection point of each circle with the parabola. In order to be able to isolate both intersection
points and detect that they are not a solution, afterwards, we need to split the over-approximation of
(’s solution space for at least one of the two variables x, and x, at a point between these intersection

points and consider the two resulting halves independently.

131

5.4. EXPLOITING VARIABLE BOUNDS

This example also shows that we need to define a termination criteria in order the ensure the
completeness of ICR More precisely, we need to know when to stop approaching a possible solution as
it was the case in our example. The standard termination criteria for ICP is to check whether there
exists no ICP-step, which reduces the diameter of the over-approximation of the formula’s solution

space for a variable more than a certain contraction threshold u.

5.4.4 Using variable bounds to filter out test candidates

We have seen how to obtain an initial over-approximation B of a given formula (’s solution space
using Definition 29. Furthermore, we illustrated how to refine this over-approximation with ICP
in Example 19. Even though ICP could not determine the satisfiability of the formula in the
example, there are cases where it can. If, for instance, it refines B such that it maps a variable
to an empty interval, we know that ¢ is unsatisfiable. We could also test any assignment a such
that for each variable x it holds that a(x) € B(x). If it is a satisfying assignment, ¢ is obviously
satisfiable. It might seem to be a rather arbitrary step to do this, but especially as B might be
exactly the solution space, it makes sense to perform this cheap test.

The question remains as to how to deal with a case similar to Example 19, where we could
refine the initial over-approximation B of a given formula ¢’s solution space, but not in a way that
we can follow the satisfiability of . Of course, we can invoke another procedure for this purpose.
For instance, the CAD is a complete procedure for real-arithmetic formulas. As we expect that
the performance of ICP is better than the one of the CAD, one possible strategy for solving a real-
arithmetic formula would be to use ICP first and if it cannot determine the formula’s satisfiability,
we use the CAD. However, we would discard the valuable information that ICP possibly narrowed
down the formula’s solution space. If we invoke the CAD additionally with the constraints which
represent this tighter solution space, we must make sure that the CAD implementation makes
use of this extra information. In [5] we presented an adaption of the operations used in the CAD
such that they exploit the variables’ bounds.

In this section, we want to make use of them in order to improve the performance of the
virtual substitution. Let us consider its main idea which was defined in Theorem 2. Given a
real-arithmetic formula ¢® with the real-valued variable x € Vars(¢®), this theorem gives us an

equivalent formula which only contains the variables Vars(p) \ {x}:

Wt e\ (@Rl A se(t)

tetes(x,pR)

Remember that the equivalent formula holds if there exists a test candidate t € tes(x, o) for x
in ¢, such that the result of virtually substituting x in ¢® by t holds under consideration of t’s
side conditions sc(t).

Hence, the first possibility to improve the performance of the virtual substitution is to reduce

the number of test candidates which we have to take into account. As the following theorem

132

5.4. EXPLOITING VARIABLE BOUNDS

shows, we can use the bounds of the variables in ¢® in order to filter out the test candidates

which cannot satisfy p=.

Theorem 6 Let p® be a quantifier-free real-arithmetic formula where the real-valued variable x €
Vars(p®) occurs at most quadratic in ¢®. Then it holds that

Ix. o} & \/ (pR[t//x] A sc(t)). (5.3)
tetesy(x, R, vb(x,pR))
where
tesy: (VARg 7 x FO(T) x IASS) — TCS :
(x,,B) = {t € tes(x, c)lc € C.(p), O(x, t,B) # 0}
with

0O: (VARg 7z x TCS x IASS) — P(R) :

B(x) , if t = —o0 and B(x) is left unbounded
0 , if t = —00 and B(x) is left bounded
6B r r
6B (1 UL B if t = 2900 gpg PIHLEVIY g

B B
(I +€eNB)) U +eNB(x) |, if t =227 4 e qng LIV 7y,

and we over-approximate I + € for I € I by choosing a small value e € R (e > 0) and using the

following rules:

(a,00)+€e <€ (a,00)

[a,00)+€¢ C (a,o0)

(a,b)+e < (a,b] , b# 00
[a,b)+e¢ < (a,b] , b# 00
(a,b]+e S (a,b+e]

[a,b]+e C (a,b+e]

Proof 6 “<”: This direction is trivially fulfilled as

(e®[t//x] A sc(t))

tetesy(x,p®,vb(x,pR))

V (p=[e//x] A sc(t))

tetes(x,pR)

tesy (9%, vb(x, %)) C tes(x, ™)
=

Thm.2 R
= dx.

133

5.4. EXPLOITING VARIABLE BOUNDS

It = Vo (@F[e//x] A se(t))

tetes(x,pR)

false
) 2
= Voo @Re/xl ase) v\ (@R[e/x] A se(t))
t € tes(x, o®) t € tes(x, &)
O(x,t,B) #0 O(x,t,B)=0

«) (@RLe//x] A se(t))

tetesy(x, R, vb(x,pR))
(x) Here, we simply split the test candidates into two disjoint sets.

(xx) If for a t € tes(x, o) it holds that O(x, t,B) = @, we know that no assignment in an over-
approximation of the solution space of @& satisfies x = t. This means that wp [t//x]1is
already unsatisfiable, where @y , consists of the bound constraints which define B and share

variables with t. Therefore, we in particular know that

\/ (eR[t//x] A sc(t)) = false.
t € tes(x, oF)
O(x,t,B)=0

O

Given an over-approximation of the solution space of a real-arithmetic formula ¢, Theorem 6
states that we do not need to consider all test candidates for the variable to eliminate in ¢, but

only those which can lie in this over-approximation.

Example 20 Considering Figure 5.1 and the tighter over-approximation
B(x;) € [%,4]
B(xy) € [4,L]

which we obtained in Example 19 using ICE any test candidate provided by the constraint 6x, —

2x5—3 = 0 can be omitted. If we would, for instance, eliminate x first, 6x; —2x4—3 > 0 provides

the test candidates t; = —00 and ty = 2x26+3. As
D(X, tlJB) = @
(2235 H33] V3 v71_ 2 3443143 V7
and O(x,t,B) = Té] N [E’ T1=[5,=1n [ﬁ, 21=0

we can disregard them according to Theorem 6. In Figure 5.1, we can see that the polynomial x; —x,
defining this constraint does not intersect with B. As t; represents the points on this line, it cannot

form a solution.

134

5.4. EXPLOITING VARIABLE BOUNDS

The constraint x% + x% — 2 =0, on the other hand, provides besides —00 the test candidates

—y/—x2+2and ty=+/—xi+2

and in this case we can only disregard ts, as

O(x,t3,B) = (—/-l5 5P +[22) n [5,9]
= [_1/77)_%1 n

Sle Sl Sl
s oS
Il

-

NS
| I
I

and O(x,t4,B) = (/-[3,5P+[22D n 7.

[}

[

Sl

b

Again, we can illustrate this in Figure 5.1. Where t5 represents the points on the circle given by
xf + x% —2 =0 but with x; < 0 and, hence, left of the x5-axis, t, represents the points on this circle
with x; = 0 and, therefore, right of the x,-axis. As the only solution is on the latter half of the circle,

we only need to consider t.

5.4.5 Simplifying formulas with respect to variable bounds

In Definition 31, we have specified how to evaluate a formula under an interval assignment. In
contrast to the evaluation under a normal assignment, the result can be an interval or a simplified
formula. This is exactly what we can make use of when applying the virtual substitution. Given
a real-arithmetic formula ¢® and an over-approximation of its solution space B, the variable

elimination step as given by Theorem 6 can be reformulated to

Fle \/ [Le™T® Awp)lt//x] A se()TP A Pproco,00)/x]

tetesy(x,[RIB A@g,vb(x,[pR]B))

dx. ¢
5.4

where ¢p and @p[(_co,00)/x] are the formulas representing the variables’ bounds in B and
B[(—o00, 00)/x], respectively. Note, that for the latter we explicitly remove the variable bounds

of x.

Example 21 Consider the real-arithmetic formula from Example 19

@ = 2x3+1=0 A x;+1>0 A x}4+x3-2=0 A x?—x;—1=0 A 6x;—2x,—3>0
which is also illustrated by Figure 5.1 and the tighter over-approximation

B(x,) = [oy

B(xy) = [

Sl
NG

]

Sl

B

NI

which we obtained in Example 19 using ICP We over-approximate B in order to cast off the radical

135

5.4. EXPLOITING VARIABLE BOUNDS

expressions yielding
153 1323
B(x1) = [135 10004
1 177
B(xy) = [3,%5]

Now we replace the bound constraints
2%,4+1>0 A x;+1>0
by the bound constraints

125x1—153=0 A 1000x; —1323<0 A 2x5—1=20 A 250x,—177<0

yielding
o = 125x;—153>0 A 1000x; —1323<0 A 2x,—1>0
A 250x,—177<0 A x}+x3—2=0 A x2—x;—1=0
A 6X1—2X2_320
As
[6x,—2x,—3=0]" = [6,6]-[132, 15ea] —[2,2] (3,35 1—[3,3]1=0
— 3672 3969 500 708 1500 1500
= ([%55> %00] [200:500) — [500> 500 1 =0
— 1464 1969
= [%500,3500120
= ftrue
we can simplify ¢’ to
[oTBAps = 125x; —153>0 A 1000x;—1323<0 A 2x,—1>0
A 250x,—177<0 A x}+xi—2=0 A x}—x;—1=0

Hence, we get rid of the constraint for which we would not have created any test candidates according
to Theorem 6, anyway. In general, simplifying the formula does not make Theorem 6 superfluous.
For instance, the constraint xf + x% —2=0is still part of [¢'T® A @p, but according to Theorem 6
it only provides one test candidate instead of three, i.e., t; = \/—xg +2 € tesy(xq,[@' 15 A
©p,vb(x1, [¢'T8 A @g)). Let us compute

1/

¢" = [I'T° Awpdltal/x1] A sc(t4)]° A Ppi(—o00,00)/x1]
in order to see the impact of Equation (5.4). The side condition of t4 is sc(t4) = x% —2<0and

(L' T° Awpdltal/x1] = 2x,—=120 A 250x,—177<0
A x54+x,—1=0 A 15625x5—7841<0
A 1000000x3 — 249671 > 0

136

5.4. EXPLOITING VARIABLE BOUNDS

[15625x3 —7841 < 0]? true
and [1000000x3 —249671> 0] = true,

it follows that
o’ = 2x5,—1>0 A 250x,—177<0
A xi+x;—1=0 A x53—2<0

Without the simplification of Equation (5.4), where we also would need to virtually substitute x; by

t4 in 6x1 —2x9 — 3 > 0, we would obtain the result

2x;—1>0 A 250x,—177 <0
A x3+x;—1=0 A x3—2<0
A 15625x2—7841<0 A 1000000xZ — 249671 > 0
A ((x5 <0 A Xx3+12>0)
V x3—-1<0
V (x3-2=0 A X5 =0))

Hence, this simplification saves us from considering a further seven constraints and prevents us from
having to take a case splitting into account, as there is a disjunction involved in the non-simplified

formula.

137

CHAPTER 6

Experimental Results for Real Arithmetic

We have experimentally evaluated the contributions of Chapter 4 and Chapter 5 using our toolbox
SMT-RAT, which we introduced in Chapter 3.

6.1 Benchmark sets

In this section we describe the benchmark sets, which we used in our experimental results. We
also specify the number of variables, the maximum degree and the Boolean complexity of an
average instance for each benchmark set. The Boolean complexity of a given formula is higher
the more solutions the formula’s Boolean abstraction has, where we say that a conjunction of
constraints has no Boolean complexity.

We have used five of the seven benchmark sets for quantifier-free nonlinear real arithmetic
from the SMT competition 2016.

Hong: These are 20 crafted and dimension dependent examples as they were used in [Hon91].
The nth example (1 < n < 20) has the form

n n
S <tn] x>t
i=1 i=1

An example has therefore n variables, a maximum degree of n (because of the second
constraint) and no Boolean complexity.

Hycomp: These are 2102 instances generated by the model checker HyComp [CGMT15] for non-
linear hybrid automata using the quantifier-free SMT encoding as presented in [CMT12].
On average, an example has 44 variables, a maximum degree of 3 and almost no Boolean

complexity.

6.2. SETTINGS

Kissing: These are 45 crafted and dimension dependent examples of the kissing number problem.
Here we seek an arrangement of n non-overlapping unit spheres such that each sphere
touches another given sphere at one point only. The average number of variables per
example is 36 and each example has the maximum degree 2. The examples have no
Boolean complexity.

MetiTarski: These are 7713 examples, which are proof obligations generated by automatic
the theorem prover Meti-Tarski for real-valued special functions [AP10]. The number of
variables averages 3 and the maximum degree is on average 3, but measures 44 for some
examples. Almost all examples have no Boolean complexity.

Zankl: These are 166 examples, mostly generated by the termination analysis of term rewriting
systems [FGM™*07]. The average number of variables in the examples is 81, so it is relatively

high, and the average maximum degree is 3. All examples have no Boolean complexity.

For the two benchmark sets of the SMT competition 2016, which we did not use, none of the
presented techniques of this thesis can solve any instance. Therefore, we did not consider them
for a comparison.

Additionally, we tested on the following benchmark sets.

Bounce: These 180 examples describe whether a thrown ball (starting at an initial height and
moving with a decreasing vertical motion along some direction), which is allowed to bounce
n times, eventually falls into a hole in the ground at a given distance. The average number
of variables in the examples is 35. All examples have the maximum degree 3 and a relatively
high Boolean complexity.

Keymaera: These are 421 examples, which were mostly generated by the verification tool
KeYmaera for hybrid systems in the context of [PQR09]. On average, the number of vari-
ables in an example is 9 and the maximal degree is 2. The examples have a relatively low
Boolean complexity.

Rect: These 91 examples describe whether we can fit a given set of rectangles within a certain
rectangular area. The average number of variables in the examples is 15 and the maximum
degree of each example is 2. All examples have a high Boolean complexity.

Witness: These 100 examples were generated in a formal verification process as described in
[RS15]. The average number of variables and average maximum degree are both 3. The
examples have no Boolean complexity.

6.2 Settings

The experiments, which we report on in this chapter, are structured as follows. First we evaluate

the ideas from Chapter 4 and Chapter 5 in order to work out how much they contribute on different

140

6.3. AN SMT-COMPLIANT THEORY SOILVER BASED ON THE VIRTUAL SUBSTITUTION

benchmark sets. For this purpose we always use a simple SMT-RAT strategy consisting only of
a Moduleg,r with a Moduleyg as backend. This represents an SMT solver with a theory solver
based on the virtual substitution as presented in Chapter 4 and equipped with the optimizations
of Chapter 5. Afterwards, we compare different strategies with and without a Moduleyg for the
purpose of seeing how well it contributes to a better performance of a strategic combination of
procedures for real arithmetic. Finally, we compare these strategies to state-of-the-art tools that
can be used to check the satisfiability of a real arithmetic formula.

All experiments were carried out on AMD Opteron 6172 processors. Every solver was allowed
to use up to 4 GB of memory and 200 seconds of wall clock time.

6.3 An SMT-compliant theory solver based on the virtual

substitution

First, we evaluate the ideas from Chapter 4, which adapt the virtual substitution for a better
performing integration into an SMT solver. Here, we test the Moduleyg

1. supporting incrementality and backtracking (instead of starting each theory call from
scratch) and

2. generating an infeasible subset if a conjunction of constraints is found to be unsatisfiable

(instead of simply returning the infeasible subset containing all of these constraints).

We test one setting, where the Moduleyg supports: neither of the two features (Module“\slhsﬁ), only
the first (Module('s), only the second (Modulely) and both features (Modulely). We compare
these settings by employing each of them in a simple SMT-RAT strategy, consisting of a Moduleg,r
and a Moduleyg as illustrated in Figure 6.1. We only use the two benchmark sets BOUNCE and
RECT, which provide a suitable Boolean complexity in order to illustrate the use of these SMT

related features.

RATSMT: Modulegar RATIY: Modulegar RATL:: Modulegsr RATSMT: Modulegyr
Module%bsdf Module{,“sC Module{,sS Module\sll\sﬂ

Figure 6.1: Four SMT-RAT strategies, which combine a Moduleg,; with a Moduleyg of different set-
tings as backend

Table 6.1 displays the experimental results for this comparison. The first column shows how
the theory solver based on the virtual substitution, as presented in Chapter 4, performs neither
supporting incrementality, backtracking nor infeasible subset generation. In the second column,
where just incrementality and backtracking are supported, we only gain 7 instances for the bench-
mark BOUNCE, however, we win 18 satisfiable and lose 11 unsatisfiable examples. Interestingly,

141

6.4. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

Solvers— RATSHT RATIRC RATSS, RATSMT
Benchmarks| # time # time # time # time
BOUNCE (180) 147 374.6 154 763.0 161 1811.9 165 809.7
- sat 105 360.0 123 757.2 119 1797.2 123 750.0
- unsat 42 14.5 31 5.8 42 14.7 42 59.8
- unkn. 0 0.0 26 288.2 0 0.0 15 297.3
RECT (91) 20 282.0 20 281.2 26 407.2 28 758.4
- sat 14 79.1 14 90.2 19 381.3 21 733.8
- unsat 6 202.9 6 190.9 7 25.9 7 24.6
- unkn. 0 0.0 0 0.0 0 0.0 0 0.0
ALL (271) 167 656.6 174 1044.2 187 2219.1 193 1568.1
- sat 119 439.2 137 847.4 138 2178.5 144 1483.8
- unsat 48 217.4 37 196.7 49 40.6 49 84.3
- unkn. 0 0.0 26 288.2 0 0.0 15 297.3

Table 6.1: Comparison of the four SMT-RAT strategies of Figure 6.1 (the column # contains the
number of solved instances and the column time contains the amount of seconds needed
for solving these instances).

none of the examples in BOUNCE lead to a timeout with the additional features. Instead, we end
up in a case where the virtual substitution cannot be applied and unknown is returned for 26 ex-
amples. This is due to the fact that incrementality can influence the solving process. For instance,
if we have to choose the next variable to eliminate or next constraint to create test candidates for,
there might be several choices of the same quality according to our heuristics. Let us assume that
in one theory call we choose the variable x for elimination for a given vertex in the VSST of our
theory solver. In the next theory call, if we consider the same vertex, the variable y has now an
identical quality according to our heuristics for a variable elimination, so we could choose either
x or y. In an incremental call, where x has already been chosen, we do not change this decision
in order to reuse results gained already. If incrementality is not supported, we start from scratch
and, in this case, we might choose y instead. If we are unlucky, as for many instances of BOUNCE,
this leads to a worse performance or the case, where the virtual substitution cannot determine
the satisfiability of the given conjunction of constraints. More thorough heuristics could avoid
this behavior.

In the third column of Table 6.1, we only support infeasible subset generation. Compared to
the first column, this feature clearly improves the performance, as we can solve a further 12% of
the examples. For BOUNCE, the infeasible subsets are on average 45% smaller than just returning
all checked constraints and for RECT even 50% smaller. In the last column, the results were
achieved with an entirely SMT-compliant setting of the Moduleyg gaining us almost 16% solved

examples in comparison to using a non-SMT-compliant setting.

6.4 Choice of the elimination variable and constraint to provide

test candidates for

The choice of the next variable to eliminate, as well as the choice of the next constraint to create
test candidates for, have a significant influence on the performance of an implementation of the

142

6.4. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST

CANDIDATES FOR

Solvers— Opt,yg + CVrpy Opt,yg + CVrp Opt,yg + CVpry Opt,yg + CVpr
Benchmarks] # time # time # time # time
BOUNCE sat 108 865.0 108 862.0 108 941.3 108 925.8
(180) unsat 17 0.9 17 0.9 17 1.0 17 1.0
unkn. 29 759.9 29 829.9 29 969.2 29 954.1
HONG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 1 0.1 1 0.2 1 0.1 1 <0.1
unkn. 19 3.9 19 6.3 19 4.5 19 5.4
Hycowmp sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1398 5975.1 1415 7390.0 1435 6773.3 1464 7506.6
unkn. 0 0.0 0 0.0 0 0.0 0 0.0
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 381 19.0 381 23.3 381 18.3 381 16.3
unkn. 14 165.1 14 174.3 13 5.9 12 5.5
KISSING sat 7 36.1 7 46.3 7 27.0 7 53.5
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0
unkn. 0 0.0 0 0.0 0 0.0 0 0.0
METITARSKI sat 3709 659.2 3709 794.9 3716 619.8 3713 612.4
(7713) unsat 1511 70.5 1508 119.5 1527 76.4 1521 70.5
unkn. 2493 792.1 2496 900.7 2470 744.8 2479 741.5
RECT sat 20 1089.6 20 617.5 19 515.2 18 477.7
91 unsat 7 36.3 7 35.8 7 36.7 7 35.8
unkn. 0 0.0 0 0.0 0 0.0 0 0.0
WITNESS sat 28 15.1 28 15.1 28 15.6 28 15.2
(100) unsat 0 0.0 0 0.0 0 0.0 0 0.0
unkn. 72 2086.4 72 2084.0 72 2093.0 72 2089.4
ZANKL sat 19 225.7 20 485.3 19 169.3 19 371.6
(166) unsat 9 8.9 9 13.5 8 1.8 8 0.8
unkn. 6 11.0 6 10.4 8 85.4 8 82.9
ALL 7215 9001.4 7230 10404.5 7273 9195.7 7292 10087.3
(10838) sat 3891 2890.7 3892 2821.2 3897 2288.2 3893 2456.3
unsat 3324 6110.7 3338 7583.3 3376 6907.5 3399 7631.0
unkn. 2633 3818.3 2636 4005.7 2611 3902.8 2619 3878.7

Table 6.2: Comparison of four different constraint valuations for the variable valuation Opt

(the

avg

column # contains the number of solved instances and the column time contains the
amount of seconds needed for solving these instances).

virtual substitution as introduced in Chapter 4. We can combine the constraint valuations as

introduced in Section 5.1.1 in various ways and, moreover, use each of these combinations with

the strategies for choosing the next variable to eliminate as introduced in Section 5.1.2. For the

constraint valuations we confine ourselves to the four combinations, which we introduced at the

end of Section 5.1.1. Hence, given a constraint and an elimination variable, which occurs in this

constraint, we use the constraint valuations:

1. CVppy = (Wfms» Wthds @rel> Pevd, Wny) (rate the constraint’s relation symbol higher than

the elimination variable’s degree and take the number of variables in the constraint into

account)

2. CVpp = (Wms> Othd> Wrel, Wevq) (rate the constraint’s relation symbol higher than the elimi-

nation variable’s degree)

3. CVprv = (Wens> Wihd> Wevd> Wrel> Wpy) (rate the elimination variable’s degree higher than

the constraint’s relation symbol and take the number of variables in the constraint into

account)

143

6.4. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST

CANDIDATES FOR

Solvers— Optyorst + CVrpy Optyorst + CVrp Optyorst + CVpry Optyorst + CVpr
Benchmarks| # time # time # time # time
BOUNCE sat 105 1481.7 108 1763.7 119 742.5 123 717.7
(180) unsat 17 0.8 17 0.9 27 71.8 9 0.4
unkn. 29 793.4 29 1212.4 30 726.4 48 505.0
HonG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 1 <0.1 1 <0.1 1 <0.1 1 <0.1
unkn. 19 5.0 19 6.1 19 5.3 19 4.7
Hycowmp sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1531 9341.2 1584 10028.4 1595 10683.2 1543 8716.7
unkn. 0 0.0 0 0.0 0 0.0 0 0.0
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 379 16.0 380 18.7 405 57.0 406 74.1
unkn. 18 321.2 17 24.8 15 284.3 15 108.9
KISSING sat 8 168.9 8 170.6 8 173.7 8 190.6
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0
unkn. 0 0.0 0 0.0 0 0.0 0 0.0
METITARSKI sat 3797 558.8 3797 580.8 3807 552.5 3805 551.6
(7713) unsat 1519 60.8 1520 71.1 1522 60.9 1525 59.7
unkn. 2397 653.9 2396 670.3 2384 648.8 2383 643.0
RECT sat 23 794.1 21 483.2 24 997.8 20 261.1
on unsat 8 211.6 9 374.2 7 25.3 9 360.9
unkn. 0 0.0 0 0.0 0 0.0 0 0.0
WITNESS sat 28 15.3 28 15.4 28 15.4 28 15.4
(100) unsat 0 0.0 0 0.0 0 0.0 0 0.0
unkn. 72 2084.9 72 2093.2 72 2106.6 72 2101.6
ZANKL sat 23 540.9 25 240.8 20 199.6 24 300.4
(166) unsat 13 34.6 14 154.1 11 4.5 15 259.2
unkn. 7 228.4 5 1.1 7 108.4 6 100.9
ALL 7452 13224.8 7512 13902.1 7574 13584.3 7516 11507.8
(10838) sat 3984 3559.7 3987 3254.6 4006 2681.6 4008 2036.7
unsat 3468 9665.1 3525 10647.5 3568 10902.7 3508 9471.2
unkn. 2542 4086.8 2538 4007.9 2527 3879.7 2543 3464.1

Table 6.3: Comparison of four different constraint valuations for the variable valuation Opt,, (the
column # contains the number of solved instances and the column time contains the
amount of seconds needed for solving these instances).

4. CVpr = (Wems» Wind> Wevd> Wre1) (rate the elimination variable’s degree higher than the con-

straint’s relation symbol)

We combine these four constraint valuations with the three heuristics for choosing the next

variable to eliminate. For a given set of constraints (considered by a vertex in the VSST of the

theory solver) they optimize

1. the average constraint valuation (Optavg),

2. the worst constraint valuation (Opt,,,) and

3. the best constraint valuation (Optyeg,)-

Therefore, we tested 12 different settings for a Moduleyg in an SMT-RAT strategy, which again

only combine a Moduleg,; with a Moduleyg as backend. We tested on all benchmark sets' and

We do not show the results for the benchmark sets HONG and WITNESS, as all settings performed equally on these
examples (1 unsatisfiable instance of HONG in less than 0.1 seconds and 28 satisfiable instances of WITNESS in

~ 15 seconds).

144

6.4. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

Solvers— Optpes; + CVrpy Optyest + CVrp Optpest + CVpry Optpes; + CVpr
Benchmarks| # time # time # time # time
BOUNCE sat 119 324.9 123 813.6 103 1574.8 123 1001.9
(180) unsat 24 2.5 42 57.0 9 0.4 31 7.5
unkn. 33 241.5 15 301.9 33 1651.5 26 629.6
HonG sat 0 0.0 0 0.0 0 0.0 0 0.0
20) unsat 1 0.1 1 <0.1 1 <0.1 1 <0.1
unkn. 19 4.2 19 1.4 19 7.9 19 4.3
Hycowmp sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1518 7219.7 1813 6461.0 1682 5388.7 1812 8333.4
unkn. 0 0.0 0 0.0 0 0.0 0 0.0
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 399 110.6 399 50.9 374 22.3 401 31.7
unkn. 19 78.7 21 328.4 28 190.6 20 139.3
KISSING sat 7 35.8 7 56.8 7 28.1 7 54.7
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0
unkn. 1 114.7 1 49.3 1 87.2 1 69.7
METITARSKI sat 3831 635.2 3819 509.3 3792 620.9 3808 582.2
(7713) unsat 1467 69.9 1465 22.8 1458 68.9 1465 60.3
unkn. 2415 498.2 2429 422.2 2463 479.9 2440 454.0
RECT sat 17 248.2 15 221.8 18 471.1 17 394.7
on unsat 8 213.5 7 31.5 7 23.3 7 23.0
unkn. 0 0.0 0 0.0 0 0.0 0 0.0
WITNESS sat 28 15.3 28 14.8 28 15.4 28 15.7
(100) unsat 0 0.0 0 0.0 0 0.0 0 0.0
unkn. 72 2092.7 72 2073.3 72 2107.1 72 2110.0
ZANKL sat 19 364.1 18 237.4 18 202.0 18 380.3
(166) unsat 10 58.3 6 1.7 8 61.7 7 18.2
unkn. 7 60.9 8 78.7 6 14.9 7 45.5
ALL 7448 9298.1 7743 8441.7 7505 8477.6 7725 10903.7
(10838) sat 4021 1623.6 4010 1853.7 3966 2912.3 4001 2429.6
unsat 3427 7674.5 3733 6588.0 3539 5565.3 3724 8474.2
unkn. 2566 3090.9 2565 3255.3 2622 4539.2 2585 3452.3

Table 6.4: Comparison of four different constraint valuations for the variable valuation Opty, (the
column # contains the number of solved instances and the column time contains the
amount of seconds needed for solving these instances).

the results are presented in Table 6.2 (Opt,y, +[CVrpy, CVip, CVpry, CVpr]), Table 6.3 (Optyyors: +
[CVroy> CVrp, CVpgry, CVpr]) and Table 6.4 (Opty. + [CVrpys CVrp, CVpry> CVpr D).
Summarizing all results, Opt,,, does not seem to be a good choice. It is not superior to Opt,qy
or Opty,.; in any the benchmark sets, apart from the unsatisfiable instances of METITARSKI. Here,
it can solve, in combination with the constraint valuation CVpgy, 2 more instances than the second

best combination for these instances, Opt,,,.

+ CVpg. Considering the best results of Opt,, .«
and Opty,eg;, Opty,es: SOlves 7758 examples where Opt,,,.; solves 7574. If we have a look at the
single benchmark sets, Opty.,; performs especially well on Hycomp if combined with CVyp, or
CVpg. Here it solves over 200 examples more than the best setting with Opt,,,... However, on
all the other benchmark sets, apart from BOUNCE and the satisfiable instances of METITARSKI,
Opt,,.rst iS better for at least one setting.

We can also observe a significant impact of the choice of constraint valuation. Comparing, for
instance, Opty,, in combination with CVypy or CVgp shows a difference of 302 solved instances
just for Hycomp. The disparity between the combinations Opty,y + CVgp and Opty,., + CVpgry are

also considerable. The same holds, if we use Opt,,,, as heuristics for choosing the next variable

145

6.5. BACKJUMPING, LOCAL CONFLICT DETECTION AND EXPLOITING VARIABLE BOUNDS

to eliminate. Here, using CVpgy solves more satisfiable instances of BOUNCE than using CVpp,
but at the same time fewer unsatisfiable instances. Moreover, using CVpgy or CVpy instead of
CVppy or CVyp solves 405/406 in contrast to 379/380 instances of KEYMAERA.

Another interesting fact is that there is no setting, which is superior in the majority of the
benchmark sets. The best candidate varies not only when changing the benchmark set but also if
we only consider the satisfiable or unsatisfiable instances, respectively.

The experimental results confirm that settings, which involve Opt,,,, instead of Opty,,, tend
to omit ending up in a case, where the virtual substitution cannot detect the satisfiability. This
makes sense, as we try to avoid vertices in the VSST with constraints which are worse according
to our heuristics. A setting with Opty, though, aims at finding a solution and, indeed, it solves
more satisfiable instances than with Opt,,... However, the difference is marginal.

Two of the settings with Opt,.; solve many more unsatisfiable instances than any other setting,
which mainly relies on the good performance on the benchmark set Hycomp. For these instances
it is important in which order we eliminate the variables and, if we use Opty,, in combination with
a constraint valuation which does not take the number of variables in the constraints into account,
we achieve a better variable elimination order in this specific case. For all further experiments

we use Opty,eq + CVip.

6.5 Backjumping, local conflict detection and exploiting variable

bounds

Table 6.5 shows the results of the evaluation of the last three contributions from Chapter 5, which
aim to improve the performance of the virtual substitution in SMT. For all results in this table
we used an SMT-RAT-based SMT solver combining a Moduleg,r with a theory solving module
Moduleysg, as introduced in Chapter 4. Additionally, we enabled backjumping (Section 5.2), local
conflict detection (Section 5.3) and variable bounds exploitation (Section 5.4) in the columns 2, 3
and 4, respectively. This means that the difference between the solvers which produced the results
in the first and the second (third, fourth) column is only the additional usage of backjumping
(local conflict detection, variable bounds exploitation).

The results indicate that backjumping has almost no effect. It slightly improves the overall
performance and, hence, we can solve one more instance. Backjumping takes a minor short cut
as it detects unsatisfiability before checking all test candidates. However, for the given examples
and chosen heuristics, it only comes into use for less than one percent of the instances of our
benchmark sets.

Local conflict detection introduces some overhead but, compared to backjumping, it can detect
conflicting vertices more often and in most cases earlier. The test results show that due to the
overhead we run into timeout for some satisfiable instances of METITARSKI and one unsatisfiable
instance of KEYMAERA where, without backjumping, we can solve these instances. However it

enables us to solve a further 59 unsatisfiable instances of METITARSKI.

146

6.6. COMPARISON OF SMT-RAT STRATEGIES WITH STATE-OF-THE-ART TOOLS

Solvers— plain with backjumping with local conflict with variable bounds
Benchmarks| # time # time # time # time
BOUNCE sat 123 813.6 123 811.6 123 812.6 122 1598.1
(180) unsat 42 57.0 42 56.9 42 56.6 37 15.7
unkn. 15 301.9 15 300.9 15 306.5 20 669.1
HONG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 1 <0.1 1 <0.1 1 <0.1 1 <0.1
unkn. 19 1.4 19 1.1 19 1.3 19 1.2
Hycowmp sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1813 6461.0 1813 6453.0 1813 6685.1 1805 7025.3
unkn. 0 0.0 0 0.0 0 0.0 0 0.0
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 399 14.0 399 14.0 398 11.7 403 113.2
unkn. 21 328.4 21 326.5 20 326.9 18 280.5
KISSING sat 7 56.8 7 56.7 7 57.6 7 69.1
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0
unkn. 1 49.3 1 49.3 1 49.3 1 104.6
METITARSKI sat 3819 509.3 3819 509.4 3815 519.4 3906 453.5
(7713) unsat 1465 22.8 1465 22.7 1524 23.6 1776 24.9
unkn. 2429 422.2 2429 422.7 2374 393.4 2031 379.2
RECT sat 15 221.8 16 421.4 16 572.2 17 316.2
91 unsat 7 31.5 7 31.4 7 29.2 7 34.5
unkn. 0 0.0 0 0.0 0 0.0 0 0.0
WITNESS sat 28 14.8 28 14.8 28 14.8 28 10.0
(100) unsat 0 0.0 0 0.0 0 0.0 0 0.0
unkn. 72 2073.3 72 2068.4 72 2074.9 72 2407.0
ZANKL sat 18 237.4 18 236.6 18 234.4 22 218.2
(166) unsat 6 1.7 6 1.7 6 0.9 16 3.5
unkn. 8 78.7 8 78.3 8 92.3 6 106.4
all 7743 8441.7 7744 8630.1 7798 9017.9 8147 9882.4
(10838) sat 4010 1853.7 4011 2050.4 4007 2210.9 4102 2665.2
unsat 3733 6588.0 3733 6579.7 3791 6807.0 4045 7217.2
unkn. 2565 3255.3 2565 3247.4 2509 3244.6 2167 3948.0

Table 6.5: Results of the evaluation of additionally using the backjumping, local conflict detection
and the employment of variable bounds (the column # contains the number of solved
instances and the column time contains the amount of seconds needed for solving these

instances).

The utilization of variable bounds as explained in Section 5.4 is a cheap filter and significantly

narrows down the set of test candidates. We are able to solve a further 404 instances, which is

clearly a considerable improvement. It only slightly worsens the performance for the benchmark

sets Hycomp and BOUNCE, due to an unlucky influence on the variable elimination order.

6.6 Comparison of SMT-RAT strategies with state-of-the-art tools

We evaluated the three SMT-RAT strategies on the left of Figure 6.2. These strategies do not

involve a Modulec,p. We compare them with Redlog?, for which we also disabled the use of the

cylindrical algebraic decomposition method (by means of “off rlqefb;”). In constrast to the

previously used SMT-RAT strategies in this chapter, the first SMT-RAT strategy of Figure 6.2 uses

a Moduleg;ppi., before a Moduleysg is invoked. It only detects whether the linear constraints of

a theory call already form a conflict and occasionally finds a solution for the linear constraints,

%(from http://svn.code.sf .net/p/reduce-algebra, Revision 3758)

147

6.6. COMPARISON OF SMT-RAT STRATEGIES WITH STATE-OF-THE-ART TOOLS

smtys: Modulegar E 4o Modulepp otys: Modulepp o +GAP: Modulegyr [op+ysD: Modulepp
Moduleg;mplex Modulegr Modulegyr Moduleg;mpex Modulegsr
Moduleysg Moduleg;mpiex Module;cp Moduleyg Modulercp

Moduleyg Moduleyg Modulecap Moduleysg

Modulecap

Figure 6.2: SMT-RAT strategies, which combine the modules Modulegp, Moduleg,r, Moduleg;ypiexs
Module;.p and Modulec,p with the Moduleyg in different ways.

which also satisfies the nonlinear constraints. The second strategy uses a preceding Moduleyp,
which tries to simplify the input SMT formula. The third strategy only differs from the second one,
in that it uses a Module,p instead of a Moduleg;ye- This module can detect unsatisfiability
in many cases. Moreover, it refines the variables’ lower and upper bounds, which in turn can be
exploited by a Moduleysg, as explained in Section 5.4.

The results are depicted in Table 6.6. Comparing the first and the last column, we can see that
an SMT solver using a theory solver as presented in this thesis, does not only solve more examples
with high Boolean complexity (BOUNCE and RECT), but also performs better on most of the other
benchmark sets. Altogether, this strategy solves more than 1000 additional instances if compared
with Redlog (where the cylindrical algebraic decomposition method is disabled) and this is
achieved in a fifth of the time Redlog requires. Nonetheless, Redlog solves more unsatisfiable
examples, especially for the benchmark sets Hycomp and ZANKL. One explanation for this is
that the polynomial factorization, which Redlog uses, can factorize polynomials which cannot
be factorized with the factorization of GiNaC [BFK02], on which SMT-RAT relies. In case we can
factorize a polynomial in a constraint, for which we want to create test candidates, we construct
them by the use of the zeros of the single factors (modulo multiplicity). This way the virtual
substitution can also cope with constraints, in which the variable to eliminate has a degree that
is higher than 2. Note that by the additional use of a Moduleg;,,.x We solve 150 examples more
than without the use of a Moduleg;mp.x. These are mostly those examples, for which a solution
of the linear constraints also satisfies the nonlinear ones. It also improves the performance on
RECT. In fact, without the use of this module our approach performs less well than Redlog. This
is rather surprising, as this benchmark set has a high Boolean complexity. Having a closer look at
these examples, they are a conjunction of one nonlinear inequality and some clauses, in which all
constraints are linear. Redlog seems to handle the nonlinear constraint first, that is it eliminates

its two variables first, resulting in a formula that can be drastically simplified.

148

6.6. COMPARISON OF SMT-RAT STRATEGIES WITH STATE-OF-THE-ART TOOLS

Solvers— smHvs s tus 1 s Redlogcay
Benchmarks] # time # time # time # time
BOUNCE sat 123 1042.9 123 543.1 91 469.7 117 2139.5
(180) unsat 57 158.4 57 82.9 57 22.3 56 1056.6
unkn. 0 0.0 0 0.0 0 0.0 — =
HonG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 1 <0.1 1 0.1 20 11.1 1 0.5
unkn. 19 1.3 19 7.8 0 0.0 — =
Hycowmp sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1814 8781.5 1587 9275.1 1634 9990.9 1958 28267.0
unkn. 0 0.0 0 0.0 0 0.0 - —
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 410 62.6 409 27.5 410 26.6 415 216.9
unkn. 10 8.5 9 2.5 0 0.0 — =
KISSING sat 7 73.7 7 74.0 13 79.7 4 2.2
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0
unkn. 1 113.9 1 111.7 0 0.0 - =
METITARSKI sat 4187 393.8 4041 989.0 4620 5932.9 2958 11770.8
(7713) unsat 1887 30.0 1927 107.0 2368 293.7 1922 7583.4
unkn. 1636 242.9 1744 384.5 356 3060.0 - -
RECT sat 26 336.7 22 468.8 16 806.3 21 307.7
on unsat 14 368.2 11 277.9 7 31.1 12 829.8
unkn. 0 0.0 0 0.0 2 10.9 — =
WITNESS sat 28 10.3 28 11.2 66 2078.8 5 69.4
(100) unsat 0 0.0 0 0.0 15 1057.6 0 0.0
unkn. 72 2877.3 72 2880.4 0 0.0 — =
ZANKL sat 26 2449 25 167.3 24 145.2 66 816.1
(166) unsat 17 21.5 19 7.2 19 6.9 44 385.1
unkn. 4 1.1 4 0.5 3 0.1 — =
all 8597 11524.6 8257 12031.1 9360 20952.9 7579 53444.9
(10838) sat 4397 2102.3 4246 2253.4 4830 9512.7 3171 15105.7
unsat 4200 9422.2 4011 9777.7 4530 11440.2 4408 38339.2
unkn. 1742 3245.0 1849 3387.4 361 3071.0 — =

Table 6.6: Comparison of the first three SMT-RAT strategies from Figure 6.2, which do not involve
the CAD, with Redlog when disabling that it uses the CAD (the column # contains the
number of solved instances and the column time contains the amount of seconds needed
for solving these instances).

As it can be seen in the second column, the preprocessing of the Moduleyp has a negative effect
on the virtual substitution, in particular if we consider the benchmark set Hycomp. As we have
seen in the experimental results for the comparison of the heuristics of the virtual substitution,
this benchmark set is specifically sensitive for minor changes of the variable elimination order and
the preprocessing seems to trigger a disadvantageous one. For the benchmark set METITARSKI,
however, we can solve more unsatisfiable instances with preprocessing, which mainly relies on
the fact that the preprocessing itself can already solve many instances. On the other hand, we
lose a lot of satisfiable instance for this set.

The use of a Module;.p, as with the third strategy, solves many additional unsatisfiable ex-
amples. In the benchmark set HONG, for instance, we do not even need to involve the virtual
substitution. Nonetheless, the collaboration of interval constraint propagation with the virtual
substitution that exploits variable bounds is a fruitful one. For the benchmark sets KiSSING, METI-
TARSKI and WITNESS, we can solve considerably more examples. In particular, examples from
METITARSKI and WITNESS often specify upper and lower bounds for the variables, which they

149

6.6. COMPARISON OF SMT-RAT STRATEGIES WITH STATE-OF-THE-ART TOOLS

involve. This increases the chances that ICP can effectively refine these bounds. Note that by
disabling the techniques that exploit the variable bounds in the virtual substitution we can solve

103 examples less.

Solvers— SIM +\C,‘;D ngP +\(}’§‘D Redlog Z3
Benchmarks] # time # time # time # time

BOUNCE sat 123 1028.9 91 466.6 118 446.9 123 8.9
(180) unsat 57 153.4 57 22.0 56 85.1 57 3.5
HoNG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 3 0.1 20 10.3 6 12.4 8 5.6
Hycowmp sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1788 7233.3 1589 6626.0 1959 28622.9 2091 2894.8
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 415 125.1 411 55.2 419 217.9 420 10.6
KISSING sat 7 74.6 13 79.6 6 &7/ 31 1247.0
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0
METITARSKI sat 4871 1018.2 4717 3070.4 4898 6471.2 5025 296.2
(7713) unsat 2488 2681.4 2588 1162.2 2628 3612.1 2682 384.8
RECT sat 26 404.3 14 391.2 21 308.8 48 35.2
on unsat 14 486.8 7 50.0 12 834.3 12 12.4
WITNESS sat 65 1975.3 28 11.2 5 68.6 4 99.8
(100) unsat 0 0.0 0 0.0 0 0.0 18 45.8
ZANKL sat 29 236.6 27 113.9 71 308.7 60 120.4
(166) unsat 17 13.7 19 7.0 48 57.5 27 2.2
all 9903 15431.7 9581 12065.5 10247 41050.0 10606 5167.0
(10838) sat 5121 4737.8 4890 4132.8 5119 7607.8 5291 1807.3

unsat 4782 10693.9 4691 7932.7 5128 33442.2 5315 3359.7

Table 6.7: Comparison of the last two SMT-RAT strategies from Figure 6.2 with the state-of-the-art
solvers Redlog and Z3 (the column # contains the number of solved instances and the
column time contains the amount of seconds needed for solving these instances).

We also evaluated SMT-RAT strategies (the two rightmost strategies in Figure 6.2) that involve
our implementation of the cylindrical algebraic decomposition method. This procedure is com-
plete for nonlinear real arithmetic, therefore both strategies always determine the satisfiability of
a given example, if they terminate within the timeout. We compared them to Redlog>, which also
uses the virtual substitution method in combination with the CAD method, and Z3 (Version 4.4.1),
which is the currently fastest SMT solver for nonlinear real arithmetic. Z3 uses an interaction of
SAT solving and the CAD method, which is even tighter than the usual framework for less-lazy
SMT solving.

Table 6.7 shows that Redlog and Z3 can solve 344 and 703 examples more, respectively, than
the best SMT-RAT strategy. However, one SMT-RAT strategy (which corresponds to the second
column) solves more instances of the benchmark set HONG, which we must accredit to the interval
constraint propagation used. Moreover, the other SMT-RAT strategy (which corresponds to the
first column) can solve the most unsatisfiable examples of RECT and the most satisfiable instances
of WITNESS. For the latter, the third SMT-RAT strategy of Figure 6.2, which does not involve a
Modulec,p, solves even more instances and additionally some of the unsatisfiable examples (see
the third column of Table 6.6). Overall, Z3 performs best in most of the benchmark sets.

As mentioned before, SMT-RAT would benefit a lot from a polynomial factorization that is as

3(from http://svn.code.sf.net/p/reduce-algebra, Revision 3758)

150

6.7. PARALLEL SMT-RAT STRATEGIES

good as those used by Redlog or Z3. Using the CAD method, Redlog solves many more examples
than without. From the previous results in Table 6.6, we conclude that their implementation
of the CAD method performs better than the one in SMT-RAT, which raises our hopes to catch
up with Redlog and maybe Z3 as soon as we compensate this deficit. Due to the very good
performance of Z3, we seek to integrate a similar approach into the SMT-RAT framework. Here,
we would not only be able to use the CAD method, but also the virtual substitution method, for

such an integration.

6.7 Parallel SMT-RAT strategies

FP , CAD . FP L CAD . FP CAD.
SIM+VS||VS' Modulegp SIM+VSHVS*' Modulepp SIM||ICP+VS : Moduleit
Modulegar Modulegur
Modulegar Modulegur
Modulejcp Moduleg;mplex
Modulesl-mplex Modulesimplex
Moduleyg Modulecpp Moduleysg Modulecap Moduleyg Moduleyg
Modulecap Modulecap Modulecap Modulecap

Figure 6.3: Parallel SMT-RAT strategies, which combine the modules Modulepp, Moduleg,r,
Moduleg;ppiexs Module cp and Modulecsp with the Moduleyg in different ways. By * we
denote the condition that the all constraints of the given formula are strict inequalities.

In the previous experiments we concentrated on the contributions of this thesis for a theory
solver based on the virtual substitution. We also evaluated combinations of it with other pro-
cedures. However, we have not yet used all features, which SMT-RAT strategies provide, and
specifically left out the option to use parallel sub-strategies and conditions within an SMT-RAT
strategy. These features provide us with an immense number of possibilities and we only illustrate
the most prominent strengths and weaknesses of parallel SMT-RAT strategies in this section.

We tested how much impact the approaches from this thesis have on the currently best per-
forming SMT-RAT strategy from Figure 6.2 (the fourth strategy with the results in the first column
of Table 6.7). Here, we simply removed the Moduleyg from the strategy. The results seem to be
clear, as we can solve approximately 1500 additional examples and this within less time, when
using a Moduleys. However, there are still hundreds of instances, where the strategy without a
Moduleyg performs better. Therefore, we test by use of the first strategy from Figure 6.3 running
both options in parallel, that is when invoking a theory call, we run after an initial check with

the Moduleg;ppi, ON the one hand a Modulecap and on the other hand a Moduleyg followed by

151

6.7. PARALLEL SMT-RAT STRATEGIES

a Modulec,p. In contrast to the best strategy from Figure 6.2, we now use a Moduleypp before
applying a Moduleg,r. Just as a Moduleysg, a Moduleyp can eliminate variables which reduces
the dimension of the problem. In contrast to a Moduleyg, a Modulegp only uses equations, which
can be solved for one variable, for this purpose. For some examples, a Modulec,p prefers only a
preceding elimination of equations instead of a more thorough variable elimination by the cost
of more complex polynomials in the constraints as it is done by a Moduleyg. With this strategy
we try to trigger exactly these examples.

Solvers— ng +\$[s\\]\)c AD ng +\%\ \]\)c ADs EFM”ICP +$/[§D SIM +\%\ b | | ng +$/[§D
Benchmarks] # time # time # time # time

BOUNCE sat 22 293.3 66 49.5 122 720.8 123 731.1
(180) unsat 57 73.1 24 3.1 57 30.0 57 31.5
HoNG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 3 0.1 3 0.1 20 0.8 20 1.0
Hycowmp sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1253 3557.8 1260 4478.8 1576 7314.3 1833 7543.5
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 381 16.7 382 208.2 381 16.7 408 16.2
KISSING sat 14 40.8 14 39.2 13 106.7 12 110.6
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0
METITARSKI sat 4876 1918.0 4948 1847.5 4921 1271.6 4862 1159.2
(7713) unsat 2474 2550.7 2476 2112.4 2591 1088.1 2556 950.1
RECT sat 6 9.4 10 165.6 28 677.6 30 327.1
o@n unsat 2 0.8 3 1.1 13 387.3 11 194.4
WITNESS sat 4 1.5 4 1.5 62 1962.6 47 1023.6
(100) unsat 0 0.0 0 0.0 0 0.0 0 0.0
ZANKL sat 14 6.7 14 4.1 28 222.8 26 14.9
(166) unsat 18 55.8 18 54.1 18 1.3 18 3.2
all 9124 8524.6 9222 8965.2 9830 13800.6 10003 12106.6
(10838) sat 4936 2269.7 5056 2107.4 5174 4962.1 5100 3366.5

unsat 4188 6255.0 4166 6857.7 4656 8838.5 4903 8740.0

Table 6.8: Comparison of the parallel SMT-RAT strategies from Figure 6.3 and the strategy, which runs
the last two strategies from Figure 6.2 in parallel (the column # contains the number of
solved instances and the column time contains the amount of seconds needed for solving
these instances).

The results are depicted in the first column of Table 6.8. For METITARSKI, we could solve more
satisfiable instances than any other SMT-RAT strategy. The same holds for KISSING. In general,
this strategy performs worse, although we have to bear in mind that the preceding Modulegp
distorts the result. However, there is a second explanation, why for many instances, we do not
always perform as well as the best option when running two sub-strategies in parallel (when
ignoring the overhead for multithreading). Instead there are some examples where we actually
adopt the worst performance. In the case we run modules as backends in parallel and one of
them determines the satisfiability of the formula in question, we need to terminate the other
modules’ satisfiability checks. We require that modules then terminate in a consistent state such
that we can reuse them later (incrementally). In general, we achieve this by a recurring query
in these backends that checks whether they are allowed to stop their satisfiability check. The
more frequent a backend makes this query, the faster all backends terminate after one of them

determined the satisfiability. Unfortunately, more queries worsen the performance, hence, we

152

6.7. PARALLEL SMT-RAT STRATEGIES

should not make them in the most basic operations which are invoked very often. In a Moduleysg,
for instance, such an operation could be the squaring of an extremely large polynomial, which
might take a very long time. In a Modulec,p, we also rely on arithmetic operations on polynomials
and, moreover, need to refine real algebraic number representations when comparing them. Both
operations can take again a long time, if applied on large polynomials, that is polynomials with
many terms, huge coefficients or a high degree.

Considering the examples, on which a Modulec,p, performs better than the combination of a
Moduleyg with a Modulec,p, we observe that they often only contain strict inequalities. This is a
perfect situation to use the conditions, which SMT-RAT strategies provide. Adding this condition to
the branch, which only uses a Modulec,p, disables its invocation for all conjunctions of constraints,
which also contain weak inequalities or equations. This strategy corresponds to the second one
from Figure 6.3 and the results are given by the second column in Table 6.8. It shows that the
addition of this condition improves the performance for almost all benchmark sets gaining us
almost a hundred additional solved instances.

The last two columns in Table 6.8 show the results for the last strategy from Figure 6.3 and a
strategy which simply runs the last two strategies from Figure 6.2 in parallel. For both strategies
we can find benchmark sets, in which they perform better, and the second strategy solves overall

more examples than any other SMT-RAT strategy we have used so far.

153

CHAPTER [

Virtual Substitution for Integer Arithmetic

A popular approach to check quantifier-free linear integer arithmetic formulas (Z for satisfiability
is the branch-and-bound framework [Sch86]. It first considers p?’s real relaxation @®. If it is
unsatisfiable then the integer problem is unsatisfiable too. Otherwise, if there exists a real solution
then it is either integer-valued, in which case ¢Z is satisfiable, or it contains a non-integer value
d € R\ Z for an integer-valued variable z. In the latter case a branching takes place: branch-
and-bound reduces the relaxed solution space by excluding all values between |d | and [d] in the

z-dimension, described by the formula
o = o A@E<L|d]Vz>[d).

This procedure is applied iteratively, i.e., branch-and-bound will now search for real-valued
solutions of ¢’. It terminates if either an integer solution is found or the relaxation is unsatisfiable.
Note that branch-and-bound is incomplete in general even for the decidable logic quantifier-free
linear arithmetic.

The most well-known applications combine branch-and-bound with the simplex method. As
branching introduces disjunctions and thus in general non-convexity, branching is implemented
by case splitting: in one search branch we assume z < |d|, and in a second search branch we
assume z > [d]. Depending on the heuristics, the search can be depth-first (full check of one of
the branches, before the other branch is considered), breadth-first (check real relaxations in all
current open branches before further branching is applied), or it can follow a more sophisticated
strategy.

The combination of branch-and-bound with the simplex method was also explored in the SMT-
solving context [DdAMO06]. The advantage in this setting is that we have more possibilities to

design the branching.

* We can integrate a theory solver based on the simplex method as described above, imple-
menting branch-and-bound internally in the theory solver by case splitting. It comes with
the advantage that case splitting is always local to the current problem of the theory solver
and does not affect later problems, and with the disadvantage that we cannot exploit the
advantages of learning, i. e., to remember reasons of unsatisfiability in certain branches and

use this information to speed up the search in other branches.

 Alternatively, given a non-integer solution d for a variable z found by the theory solver on
a relaxed problem, we can lift the branching to the SAT solver by extending the current
formula with a new clause (z < |d|V z = [d]) [BNOT06]. The newly added clause must
be satisfied in order to satisfy the extended formula. Therefore, the SAT solver assigns (the
Boolean abstraction variable of) either 2 < |d | or z > [d] to true, i. e., the branching takes
place. On the positive side, lifting branching information and branching decisions to the
SAT solver allows us to learn from information collected in one branch, and to use this
learned information to speed up the search in other branches. On the negative side, the
branching is not local anymore as it is remembered in a learned clause. Therefore, it might

cause unwanted splittings in later searches.

To unify advantages, MathSAT5 [Gril2] implements a combined approach with theory-internal
splitting up to a given depth and splitting at the logical level beyond this threshold.

Following the branch-and-bound approach in combination with the simplex method, we can
also transfer the idea to nonlinear integer arithmetic: We can use decision procedures for nonlin-
ear real arithmetic to find solutions for the relaxed problem and branch at non-integer solutions
of integer-valued variables. However, there are some important differences. Most notably, the
computational effort for checking the satisfiability of nonlinear real-arithmetic problems is much
higher than in the linear case. If we have found a real-valued solution and apply branching to
find integer solutions, the branching will refine the search in the virtual substitution: it will create
additional test candidates, which will serve as roots for new sub-trees in the search tree. However,
the search trees in both branches have a lot in common, that means, a lot of the same work has
to be done for both sides of the branches. To prevent the solvers from doing much unnecessary
work, we have to carefully design the branch-and-bound procedure. Here, we can make use of

branching lemmas as they are provided by SMT-RAT, which we introduced in Section 3.4.3.

* Branching has to be lifted to the SAT solver level to enable learning, both in the form of
branching lemmas as well as explanations (infeasible subsets) for unsatisfiability in different

branches.

* Learning explanations will allow us to speed up the search by transferring useful information
between different branches. However, we need to handle branching lemmas thoughtfully
and assure that learned branching lemmas will not lead to branching for all future sub-

problems, but only for “similar” ones where the branching will probably be useful.

156

7.1. BRANCH-AND-BOUND WITH VIRTUAL SUBSTITUTION

* As branching refines the search, it has to work in an incremental fashion without resetting

solver states.

* If possible, the search strategies of the underlying decision procedures for nonlinear real-
arithmetic have to be tuned to prefer integer solutions (and if they can choose between

different integer values, they must choose the most “promising” one).
g y p g

* Last but not least, as the performance of solving quantifier-free nonlinear real-arithmetic
formulas for satisfiability highly improves if different theory solvers implementing different
procedures are used in combination, a practically relevant branch-and-bound approach for

nonlinear integer arithmetic should support this option.

7.1 Branch-and-bound with virtual substitution

In this section we present how the virtual substitution method can be embedded into the branch-
and-bound framework to check the satisfiability of a given quantifier-free (nonlinear) integer-
arithmetic formula. Note that the concepts of this chapter are not built upon the data structure
(VSST), which we introduced in Section 4.2, but upon the more general setting of a satisfiability
check with the virtual substitution which we formulated in Section 4.1. Nonetheless, all of
the following ideas can be directly applied to an SMT-compliant theory solver based on the
specifications of Section 4.2.

Assume that we want to check the quantifier-free integer-arithmetic formula cpf for satisfiability
such that Vars(gof) = {24,...,2,}. Then we first apply the virtual substitution on the real relax-
ation cpf of cpf. If we determine unsatisfiability, we know that gof is also unsatisfiable. Otherwise,
if we have found a solution S with the virtual substitution for cpf, as illustrated in Figure 4.1, then
S maps the variables Vars(goff) = {21,...,2,} to test candidates S(z;) = t;’J (1 £ j < n). For integer
arithmetic formulas we can omit considering strict inequalities as described in Definition 16. This

saves us from considering test candidates with infinitesimals as introduced in [Wei97] and the

9j1%45,24/95,3

comparably more cases they entail. Therefore, S(z;) is either —oo or of the form o

with qj1,...,9j4 € Z[21,...,%j_1] (roots parametrized in some polynomials).

If a solution S for the relaxation ¢® is found then there is a true leaf in the search tree, as
illustrated in Figure 4.1. We now try to construct an integer solution S* from the parametrized
solution S, as illustrated in Figure 7.1, traversing the solution path from the true leaf backwards. If
the test candidate t:;l1 for z; is not —o0, it does not contain any variables, thus we can determine
whether its value is an integer and set S*(z;) to this value. If téll = —o00, we can take any
integer which is strictly smaller than all the other test candidates in tcs(z;, c,a]f). Now we iterate
backwards: for each test candidate t;f) on the solution path, which is not —oo, we substitute the

values §*(21),...,5%(zj_;) for the variables 2,,...,2;_;, resulting in

§*(z) == S(z))[S"(z1)/21]...[S¥(2j-1)/53j-1],

157

7.1. BRANCH-AND-BOUND WITH VIRTUAL SUBSTITUTION

[t /2] (62 //2,]

: R FE R :
true— d T @R T T T R e
EZ EZ &7

Figure 7.1: Solution path from Figure 4.1 traversed backwards from the leaf to the root.

which again does not contain any variables and we can evaluate whether its value is integer.
If t;’J = —oo then we evaluate all test candidates from tcs(z;, (p}R) whose side conditions hold
by substituting §*(z1),...,5%(2j_1) for 2q,...,2;_; in the test candidate expressions, and we set
S*(z;) to an integer value that is strictly smaller than all those test candidate values. We repeat
this procedure until either a full integer solution is found or the resulting value is not integer in
one dimension.

If all test candidate values are integer then VS returns sat. Otherwise, if we determine that
S*(z;) for some j is not integer-valued, then there is some d € Z such that S*(z;) € (d —1,d). In

this case we return the branching lemma

(/\ YP)—(z;<d—1Vz >d),
yeOrig, (S(z))

where Origzj (S(z;)) denotes the VS module’s received constraints being responsible for the cre-
ation of the test candidate S(z;). We can determine this set recursively with Origzj (S(z))) ==

Origzj(c) if we used constraint ¢ € CN((p;R) for generating the test candidate S(z;), and where

[
c

,if j=n

Origzjﬂ(c) , if z; & Vars(c)

Orig, (c) := X Origsz(S(sz)) u Origzj+1(c’) ,ifc’ e CN(np}RH) such that
c € C.(c'[S(zj+1)//2j+1])

| Origsz(S(sz)) , otherwise.

Note that the last case occurs if the given constraint is introduced through a test candidate’s side
condition.

Basically, if we have found a non-integer valued test candidate S*(z;) ¢ Z, we can still continue
the procedure to determine all other non-integer-valued test candidates. It would gain us the
flexibility of being able to select heuristically on which variable value we want to branch, but
it comes at high computational costs, as we need to compute with nested fractions and square
roots. Therefore, we do not consider other heuristics but always branch on the first detected
non-integer value.

This procedure is sound, as we do not prune any integer solutions. It is not complete, as it

might branch infinitely often for the same variable at an always increasing or always decreasing

158

7.2. EXPERIMENTAL RESULTS

value. This procedure can also be used to check a quantifier-free mixed integer-real arithmetic
formula for satisfiability, if we eliminate real-valued variables first.

7.2 Experimental results

We evaluated different sequential strategies for solving quantifier-free nonlinear integer arithmetic
formulas (QF_NIA), using the following modules ¥;:

* The SAT solver module Moduleg,r behaves as explained in Section 3.4.2.

* Modulegar works similarly except that it returns unknown if an invoked theory solver
module returns unknown, instead of continuing the search for further Boolean assignments.
The module Modulegay stop provides us a reference: if this module is able to solve a problem
then the problem can be considered irrelevant for branch-and-bound (as branch-and-bound

was not involved).

* The module Moduleg;,., implements the simplex method with branching lemma genera-

tion, as explained in Section 3.4.4.

* The theory solver modules Moduleyg (implementing VS) and Modulecsp (implementing
CAD) check the real relaxation of a QF NIA input formula. If the relaxation is unsatisfiable
they return unsat, if they coincidentally find an integer solution they return sat, otherwise
they return unknown (without applying branch-and-bound).

* The VS module Moduleyg, constructs branching lemmas as explained in Section 7.1.
* The CAD module Modulecyp, constructs branching lemmas as introduced in [1].

* Bit-blasting is implemented in the module Module;,;p;.;- In our strategies it will be
combined with a preceding incremental variable bound widening module Module;,.widih
which constrains, for instance, first that all variables are in [—1, 2], if no solution can be

found, it requires all variables to be in [—3, 4] etc.

All experiments were carried out on AMD Opteron 6172 processors. Every solver was allowed to
use up to 4 GB of memory and 200 seconds of wall clock time.

For our experiments we used the largest benchmark sets for QF NIA from the last SMT-COMP:
APROVE, LEIPZIG (both generated by automated termination analysis) and CALYPTO (generated
by sequential equivalence checking). Additionally, we crafted a new benchmark set CALYPTO
by removing all variable bound constraints from CALYPTO and thereby obtaining unbounded
problems (together 8572 problem instances, see headline in Figure 7.5 for the size of each set).
Selection of a VS heuristic The SMT-RAT strategy Modulegar =~ — Moduleys could solve 7215

sat and 84 unsat instances, ran out of time or memory for 1146 instances, and returned unknown

159

7.2. EXPERIMENTAL RESULTS

RAT,: Modulepp RAT,, ;¢ Modulepp RAT,, ¢ z: Modulepp
Moduleg,r Module cwideh Modulejncwiden
Moduleg;mpiex Moduler,;giast Moduley, piqst
Moduleys, RAT,
Modulecap,

Figure 7.2: The SMT-RAT strategies used for the experimental results.

VSg VS,
time # time
sat 30 714.2 93 487.3
unsat 0 0.0 10 9.2

Figure 7.3: Comparison of 2 VS heuristics on 126 (101 sat, 25 unsat) for branch-and-bound relevant
instances (the column # contains the number of solved instances and the column time
contains the number of seconds needed for solving these instances).

for 127 instances. Applying the SMT-RAT strategy Moduleg,; — Moduleyg to those 127 instances,
we can solve an additional 30 sat instances. If we replace the module Moduleyg by the Moduleyg,
module, which applies branching lemmas, we can solve a further 63 sat and 10 unsat instances
(see Figure 7.3).

Combined strategies We crafted three strategies, depicted in Figure 7.2, to combine different
theory solver modules!. The strategy RAT,, ., , combines RAT, . and RAT, by first using bit-
blasting up to a width of 4 bits. If this does not yield a solution, it continues to use RAT,,.

We compared these three strategies with the two fastest SMT solvers from the 2015 SMT-
COMP for QF_NIA: Z3 and AProVE. Though CVC4 performed worse than these two solvers, its
experimental version solved slightly more instances than AProVE in about half of the time; we
did not include it here but expect it to perform between Z3 and AProVE. Figure 7.5 shows that
RAT, and RAT,, . complement each other well, especially for satisfiable instances. Compared to
Z3 and AProVE, RAT, .tz

of more than 10 and 6, respectively. The strategy RAT,, solves less instances, but, as shown in

solves more satisfiable instances and does this even faster by a factor

Figure 7.4, this strategy solves the first 85 percent of the examples faster than any other SMT-RAT

strategy or SMT solver. On unsatisfiable instances, however, Z3 is still better than SMT-RAT while

! Additionally, all of these strategies employ a common preprocessing.

160

7.2. EXPERIMENTAL RESULTS

= ‘ : | | |
L — RAT, oo 734.4.1 :
I T RATblasr ----AProVE |
| RATblast.Z |
10%s t
10%s t
10%s [t
‘ ‘ ‘ | |]

70% 72% 74% 76% 78% 80% 82% 84% 86% 88% 90% 92% 94% 96% 98% 100%

Figure 7.4: Cumulative time to solve instances from all benchmark sets.

Benchmark— APROVE (8129) CALYPTO (138) LEIPZIG (167) CALYPTO4, (138) all (8572)
Solver], # time # time # time # time # time
RAT, sat 7283 2294.8 67 71.2 9 260.4 133 298.9 7492 2925.3

unsat 73 14.3 52 40.7 0 0.0 3 <0.1 128 55.1
RAT,, sat 8025 866.3 21 35.6 156 603.3 87 16.0 8289 1521.2
unsat 12 0.4 5 0.1 0 0.0 0 0.0 17 0.5
RAT,, .~ sat 8025 780.7 79 122.3 156 511.5 134 21.8 8394 1436.3
unsat 71 42.6 46 127.5 0 0.0 3 0.1 120 170.2
Z3 sat 7992 14695.5 78 19.1 158 427.6 126 57.3 8354 15199.5
unsat 102 595.9 57 117.6 0 0.0 3 2.3 162 715.8
AProVE sat 8025 7052.2 74 559.1 159 696.5 127 685.2 8385 8993.0
unsat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

Figure 7.5: Comparison of 3 SMT-RAT strategies to currently fastest SMT solvers for QF NIA (the
column # contains the number of solved instances and the column time contains the
amount of seconds needed for solving these instances).

AProVE is not able to deduce unsatisfiability due to its pure bit-blasting approach.

We also tested all SMT-RAT strategies which use branch-and-bound, once with and once without
using a branching premise. Here we could not detect any notable difference, which we mainly
relate to the fact that those problem instances, for which branch-and-bound comes to application,
are almost always pure conjunctions of constraints and involve only a small number of branching
lemma liftings. For a more reliable evaluation a larger set of QF NIA benchmarks would be

needed.

161

CHAPTER 8

A Synergy of the Greatest Common Divisor Calculation, Factorization and

Intermediate Result Caching

Data structures and operations on polynomials form a vital part of the foundations of, e. g., com-
puter algebra systems or implementations of procedures based on Grébner bases, the cylindrical
algebraic decomposition or the virtual substitution. We also highly depend on polynomials, if we
aim to calculate the reachability probabilities of parametric discrete-time Markov chains (PDTMCs).
This is a parametrized version of discrete-time Markov chains (DTMCs), which is a modeling for-
malism for systems exhibiting probabilistic behavior. For more details on DTMCs we refer to
[BKO8]. In contrast to the state transition systems which are used to model a DTMC, a PDTMC
allows us to label transitions not only with probabilistic quantities but also with rational functions
over real-valued variables instead.

Definition 32 (Rational function) A rational function is a quotient f = 1’;—; of two polynomi-

als p;, py with py # 0%

?p, # 0 means that p, cannot be simplified to 0.

We can compute the reachability probabilities for a PDTMC as introduced in [Daw04, HHZ11],
where we iteratively replace states and their incident transitions by direct transitions from the
predecessors to the successors. It yields a model having only initial and absorbing states and
the transitions between these states carry—as rational functions over the real-valued model
parameters—the probability of reaching the absorbing states from the initial states. In [3], where
we transfer the ideas from [AJW*10] for DTMCs to PDTMCs, we presented an alternative ap-
proach. Here, we use a state elimination strategy based on a recursive graph decomposition of the
PDTMC into strongly connected subgraphs, which we refer to as strongly connected components
(SCCs). Each (sub-)SCC is replaced by abstract transitions that lead from its ingoing states to its

outgoing states. The resulting rational functions describe the probability of entering the SCC and

8.1. FACTORIZED POLYNOMIALS: PARTIAL FACTORIZATIONS AS POLYNOMIAL
REPRESENTATION

eventually leaving it.

The two aforementioned procedures build rational functions representing a given PDTMC’s
reachability probabilities. These rational functions might grow rapidly in the process of both
procedures and thereby form one of the major bottlenecks of this methodology. As already
argued in [HHZ11], the best way to stem this blow-up is the cancellation of the rational functions
in every computation step, which involves—apart from addition, multiplication, and division of
rational functions—the rather expensive calculation of the greatest common divisor (gcd) of two
polynomials.

In this chapter we present how we can handle this problem: Additional maintenance and
storage of (partial) polynomial factorizations can lead to remarkable speed-ups in the gcd com-
putation, especially when dealing with symmetrically structured benchmarks where many similar
polynomials occur. We present an optimized algorithm called ged » which operates on the (partial)
factorizations of the polynomials to compute their gcd. During the calculations, the factorizations
are also refined. On this account we reformulate the arithmetic operations on rational functions
such that they preserve their numerator’s and denominator’s factorizations, if it is possible with

reasonable effort.

8.1 Factorized polynomials: Partial factorizations as polynomial

representation

We can represent a polynomial p by a factorization of p as introduced in Definition 13, where we
use the set {0'}, if p = 0. We denote the set of all polynomial factorizations where the polynomial
can be 0 by FAC, = FAC U {{0'}}.

Given a polynomial p’s factorization J,, = { pil, ..., Py} € FAC, we can obtain the bases with

bases: FAC) — P.oo(POL\ {1}): {p{',...,p{"} = {P1,...,Pn}
and we get the exponent of a base g with

e. ,die{l,..,n}t.p;,=q,
exp: POLxFACy, — Ny : (q,{p]’,...pir})—1{ { . b-pi=a
0 , otherwise.

Using the auxiliary function

(p{' € F, | Ipil #1Ae;> 0}, 0¢ bases(F,),

red Noy _, F_o—
- P POL™ FAG, :
<oo() 0-p { {01} , otherwise.

in order to achieve a well-defined polynomial factorization (or {0'}), we can specify the following

operations on polynomial factorizations (and {0'}):

* The operation]-"p1 Ux]-'p2 results in a factorization of a (not necessarily least) common

164

8.2. GREATEST COMMON DIVISOR COMPUTATION OF FACTORIZED POLYNOMIALS

multiple of two nonzero polynomials p; and p, and is defined by

- Uy - : FACXFAC—TFAC:

(Fp» Fp,) ™ {qmex({exp(a. 7y,)exp(@Fp,)D) | g e bases(F,,) U b.'slses(]-"pz)}red

* The operation F, Ny F,, yields a factorization of a (not necessarily greatest) common
divisor of two nonzero polynomials p; and p, and is defined by

Nz - : FACxFAC— FAC:
(Fp,, Fp,) — {qmintexp@7p).exe(@. 7,1 | g e bases(F,,) N bases(F,,)}
* The binary operations -, 4+, correspond to multiplication and addition, respectively, and
are defined by

-+ + : FACy x FACy — FAC; :
(Fpy> Fp,) = {qexp(q,fp1)+exp(q,}'p2) | q € bases(F,) U bases(fpz)}red
-+, - : FACy x FAC; — FAC; :
Fo, ,P1=0
(Fplnfpz)H]:P1 ’ P2:O

red .
D {(npge(fpl :xD) pi) + (]_[pée(]_-P2 #D) pé)} , otherwise
where D = F, NxFp,.

* The operation :, calculates the polynomial factorization of the quotient of a polynomial p;
and a nonzero polynomial p, via their factorizations F, and ,,. Note that F, :. F,, is
a factorization of p, /p, only if 7, and F,, are sufficiently refined and p, divides p;.

i - @ FACy x FAC — FAC, :
(]:p erz) — {qmax({O,e—exp(q,]-'pz)}) | q¢ G‘Fpl }red

l’

Example 22 illustrates the application of the above operations.

8.2 Greatest common divisor computation of factorized
polynomials

Given the factorizations ., and F, , Algorithm 14 calculates the factorizations F,,]-'%1 , and
Frz . Intuitively, the algorithm maintains the fact that G - F; - F; is a factorization of p;, where
G iontains common factors of p; and p,, F; is going to be checked whether it contains further
common factors, and F; does not contain any common factors. In the outer while-loop, an

element qil to be checked is taken from F;. In the inner while-loop, a factorization G - F; -» F,

165

8.2. GREATEST COMMON DIVISOR COMPUTATION OF FACTORIZED POLYNOMIALS

Algorithm 14 gcd computation with factorization refinement

ged £ (factorization F, " factorization Fp,)
begin
1: G :=(Fp, NxFp,)

2: F:=F, :;Gand F/:=@fori=1,2
3: while exists ¢}' € F; with ¢; # 1 do
4: Fy:=F \{q}
5: while ¢, # 1 and exists g, € F, with g, # 1 do
6: Fy:=F3\{q
7: if mirreducible(q;) Vv —irreducible(q,) then p := gcd(q;,q,)
8: elsep:=1
9: if p =1 then
10: F):=Fy - {q;}
11: else
12 q =
13 F;:=F; -, {pe™inlee2)} for j = 1,2
14 Byi= Fy e (2)%)
15: G := G -, {pmin(ere)}
16: end if
17: end while
18: F{:=F] {qil}
19: Fy:=F, -+ F,
20: Fy:=0
21: end while
22: return (F;,F,, G)
end

of p, is maintained such that F, does not contain any common factors with q;, and F, is still to
be checked.

Now we explain the algorithm in more detail. Initially, a factorization G of a common divisor of
p1 and p, is set to F, Ny F, (Line 1). The remaining factors of p; and p, are stored in F; resp.
F,. The sets F; and F, contain factors of p; and p,, respectively, whose greatest common divisor
is 1 (Line 2). The algorithm now iteratively adds further common divisors of p; and p, to G until
it is a factorization of their gcd. For this purpose, we consider all factors in F, for each factor in
F; and calculate the ged of their bases using standard ged computation for polynomials (Line 7).
Note that the main concern of Algorithm 14 is to avoid the application of this expensive operation
as far as possible and to apply it to preferably simple polynomials otherwise. Where the latter
is entailed by the idea of using factorizations, the former can be achieved by excluding pairs of
factors for which we can cheaply decide that both are irreducible, i. e., they have no non-trivial
divisors. If factors qil € F; and qu € F, with p := gcd(q;,9,) = 1 are found, we just shift qu
from F, to F, (Line 10). Otherwise, we can add p™in(ere2) which is the ged of qil and qu, to

G and extend the factors F; and F,, respectively, which could still contain common divisors, by

166

8.2. GREATEST COMMON DIVISOR COMPUTATION OF FACTORIZED POLYNOMIALS

permin(enes) pagp pezmin(eres) (Line 12-15).

Furthermore, Fé obtains the new factor (%2)‘32, which certainly has no common divisor with
any factor in F;. Finally, we set the basis q; to %1, excluding the just found common divisor. If all
factors in F, have been considered for common divisors with g, we can add it to F; and continue
with the next factor in F;, for which we must reconsider all factors in Fé and, therefore, shift
them to F, (Line 18-20). The algorithm terminates, if the last factor of F; has been processed,
returning the factorizations F,, F n and F 2, which we can use to refine the factorizations of p,
and p, via F, := .7-'% +Gand F, = .7-'%2 = G.

Example 22 Assume we want to apply Algorithm 14 to the factorizations Fy. x,x, = {(x1x9x3)'}
and Fy ., = {(x1)', (x2)'}. We initialize G = F; = F; = {(1)'}, F; = Fy y,x, and Fy = Fy .
First, we choose the factors (q,)® = (x,x5x3)' and (x1)! and remove them from F; resp. F,. The
ged of their bases is x,, hence we only update q; to (x5x3)' and G to {(x;)'}. Then we remove
the next and last element (x5)! from F,. Its basis and q; have the ged x, and we therefore update
q; to (x3)! and G to {(x1)}, (x,)!}. Finally, we add (x3)! to F{ and return the expected result
{(x3)'), (D, {(x1)?Y, (xx)'}). Using these results, we can also refine Frrxpxs = Fl+G =
{(X1)1, (Xz)l, (X3)1} and ‘7:x1x2 =F+G= {(x1)1, (Xz)l}-

Theorem 7 Let p; and p, be two polynomials with factorizations J, resp. JF, . Applying Algo-

rithm 14 to these factorizations results in ged(Fp,, Fp,) = (Fy,, Fq,» G) with G being a factorization

p1
p

1)

o p
of the greatest common divisor p of py and p,, and F,, and JF,, being factorizations of < resp. ?2.

Proof 7 We denote the product of a factorization F, by P(F,) =]_[qge 7, q¢ and the standard
greatest common divisor computation for polynomials by ged.

We define the following Hoare-style assertion network:

GCD(factorization F, " factorization Fp,)
begin
1: {true}
2 G:=(Fp, NrFp,)
3: {G=F, NxrFp,}
4: Fi:=F, :»Gand F/ :=0 fori=1,2
5: {Fp), =G5 Fyx F{AF,, =G5 Fyx Fy NP(F}) = 1 A P(F}) = 1}
6 while exists qil € F, with g; #1 do
7: {Fp =G5 Fy 5 F{ AFy, =G5 Fy o Fj A
ged(P(F)), P(Fy -+ F3)) = 1 Aged(q5l, P(F))) =1Aq5! € F}
8: Fy 3=F1\{CI?}
9: {Fp, =Gz F1 2w F x {q'}AFp, =Gz Fy - x Fy A
ged(P(F}), P(Fy - F5)) =1 A ged(qy', P(F3)) = 1}
10: while g, # 1 and exists g, € F, with g, # 1 do

11:{F), =G » Fy 5 F] -z {q]' YA Fp, =Gz Fy -z F) A

167

8.2. GREATEST COMMON DIVISOR COMPUTATION OF FACTORIZED POLYNOMIALS

ged(P(F}), P(Fy -5 F3)) =1 Aged(q;', P(F})) = 1 Aqy? € Fp}

12: Fy:=F,\{q;’}

13:{F), =Gz F1 5 F} s {4} Y A Fp, = G 5 Fo 5 Fy 2 {q32} A
ged(P(F)), P(Fy -z Fy 7 {g5°})) = 1 Aged(qy', P(F5)) = 1}

14: if mirreducible(q;) V —irreducible(q,) then p := gecd(q;,95)

15: elsep:=1

16:{F), =Gz F1 5 F} -z {4} Y A Fp, = G 5 Fay 5 Fy 2 {q32} A
ged(P(Fy), P(Fy -+ Fy -5 {g2 1)) = 1 A ged(qy', P(F3)) = 1 Ap = ged(q1,92)}

17: if p =1 then

18:{F), =Gz F1 s F s {q)' YA Fp, =G 5 Fy 5 F) 2 {q2} A
ged(P(F)), P(Fy = Fj - {q5° 1)) = 1 A ged(qy', P(F3)) = 1 A ged(qs,42) = 1}

19: Fy:=F,) {qu}

20:{F, =G £ F 2 F| w {qS'}ANF), =Gz Fy -z F5 A
ged(P(Fy), P(Fy = F3)) = 1 Aged(qy', P(F})) = 1}

21: else

22:4Fp =G £ F1 2 F{ s {q] YN Fpy =Gz Fy x Fy 2 {q2} A
ged(P(F)), P(Fy -+ Fy -7 {45’ 1)) = 1 Aged(qy', P(Fy)) = 1A p = ged(q1,92)}

23: =2

24:4{F, =G F1 2 F] x {(q1 - P2} AFy, =Gz Fy -z Fy -2 {q2} A
ged(P(Fy), P(Fy -+ F -5 {g32 1)) = 1 Aged((qy - p)*, P(F3)) = 1 Ap = ged((q1 - p), 42)}

25: F;:=F; -, {ps™inlee2)} for i = 1,2

26:{Fp, =G5 Fy 5 F{ - {q]", p" VDY N Fp, = G oy Fy 5 Fy o {(%2)2, pminCerely o
ged(P(Fy), P(Fy -z Fy 5 {(£)2, pmnre2)})) = 1 A ged((q1 -), P(Fy)) = 1A
p=ged((q1 - p), q2)}

27: Fy = Fy - {(£)%}

28:{Fp, =G 5 Fy 5 Fy 2 {q], p™ MY N F) = G op Fy oy Fy o {p™in(e12)} A
ged(P(F})), P(Fy -z F} -z {p™n1:¢2)})) = 1 A ged((qy -), P(F,)) = 1}

29: G:=G-, {pmin(ese2)}

30:{F,, =G £ F1 2 F{ 2 {qS'}ANFp, =Gz Fy x F5 A
ged(P(F)), P(Fy - F5)) =1 A ged(qy', P(F5)) = 1}

31: end if

32:{F, =Gz F F| w {q'}AF), =Gz Fa -z F5 A
ged(P(Fy), P(Fy = F3)) = 1 Aged(qy', P(F5)) = 1}

33: end while

34: {Fp =Gz F1 2 F| 2 (a5 YN Fp, =G £ Fy x Fy A

gcd(P(F}), P(Fy -5 F3)) =1 Aged(q;', P(F)) = 1A(q =1V P(F,) =1)

/. ! e
35: Fi:=F;x{q;'}
36: {Fp, =Gz Fy z F| AF,, =Gz Fyx Fj Aged(P(F}), P(Fy 5 F3)) = 1}
37: F2 = FZ 'J:Fé

168

8.3. USING FACTORIZED POLYNOMIALS IN RATIONAL FUNCTIONS

38: {Fp, =G5 Fy - F{ AT, = G - Fy Aged(P(F}), P(Fy)) = 1}

39: Fy:=10

40: (F,, =G x Fy - F| AF,, =Gz Fy Aged(P(F}), P(Fy)) = 1 AP(F}) = 1}
41: end while

42: (F, =Gz F| AFp, =G5 Fy Agcd(P(F]), P(Fy)) = 1}

43: return (F;, F,,G)

end

The above assertion network is inductive.

* For the assignments, their preconditions imply their postconditions after substituting the
assigned expression for the assigned variables. (For simplicity, we handle the first if-then-

else statement in lines (14)-(15) as atomic assignment as well.)

* For the if-then-else statement in lines (17)-(31), its precondition (16) implies the precon-
dition (18) of the if-branch if the branching condition holds, and the precondition (22) of
the else-branch if the condition does not hold. The postconditions (20) and (30) of both
branches imply the postcondition (32) of the if-then-else statement.

* For the outer while-loop (6)-(41), its precondition (5) as well as the postcondition (40) of
its body imply the precondition (7) of the body if the loop condition holds, and they both
imply the postcondition (42) of the while-loop if the loop condition does not hold.

* The inner while-loop’s inductivity can be shown similarly. a

That means, the assertion (42) always holds before returning, implying the correctness of the
algorithm.

The algorithm is also complete, since it always terminates: We can use the sum of the degrees
of all polynomials in F; for the outer loop as ranking function and in F, for the inner loop to

show their termination.

8.3 Using factorized polynomials in rational functions

We represent a rational function f;—; by separate factorizations 7, and F,, for the numerator p;
and the denominator p,, respectively. For multiplication 5—; = Z—; . %, we compute F, = F, = Fp
L L o ingtod. 1 —d. 2
and F, = Fg, -z F,,. Division is reduced to multiplication according to LT

For the addition g—; = g—; + :—;, we compute p, with 7, = F, U, F, asacommon multiple of
q, and ry, such that p, = q, - ¢, with Foy, =Fp, 7 Fq,pand py=ry- r, with Fry =TFp, 17 Jr,. For
the numerator p; we first determine a common divisor s of q; and r; by F; = F;, N F,. , such
that ¢; = s - ¢} with Fq =Fq iz Fand ry =s- r; with Fr =F, 17 F5. The numerator p, is

s-(qq - gy + 17 - 5) with factorization F; -» (Fg = Fgy +5 Frt 2 Frp)-

169

8.4. EXPERIMENTAL RESULTS

The rational function 5—; resulting from the addition is further simplified by cancellation, i. e.,

dividing p; and p, by their greatest common divisor.

8.4 Experimental results

We developed a C++ prototype implementation of our approach using the arithmetic library
GiNaC [BFKO02]. Moreover, we implemented the state-elimination approach used by PARAM
[HHWZ10] using our optimized factorization approach to provide a more distinct comparison.
All experiments were run on an Intel Core 2 Quad CPU 2.66 GHz with 4 GB of memory. We
defined a timeout (T O) of 14 hours (50400 seconds) and a memory bound (MO) of 4 GB.

We report on three case studies:

* The bounded retransmission protocol (BRP) [HSV93] models the sending of files via an
unreliable network, manifested in two lossy channels for sending and acknowledging the

reception. This model is parametrized in the probability of reliability of those channels.

* The crowds protocol (CROWDS) [RR98] is designed for anonymous network communication
using random routing, parametrized in how many members are “good” or “bad” and the
probability of whether a good member delivers a message or randomly routes it to another

member.

* NAND multiplexing (NAND) [HJ02] models how reliable computations are obtained using
unreliable hardware by having a certain number of copies of a NAND unit all doing the

same job. Parameters are the probabilities of faultiness of the units and of erroneous inputs.
In our experiments we compare the following two implementations with the tool PARAM:

STATE ELIM : This implementation uses the state elimination approach as it is implemented in
PARAM and additionally uses the optimized factorization of polynomials as presented in
Section 8.1 and Section 8.2. Comparing this implementation with PARAM shows how well

the techniques of this chapter speed up the performance in general.

SCC MC: This implementation uses the SCC-based approach as briefly described in the be-
ginning of this chapter and specified in detail in [3]. It thereby also uses the optimized

factorization of polynomials and shows the quality of its applicability in a different setting.

Note that no bisimulation reduction was applied to any of the input models, which would improve
the feasibility of all approaches likewise.

For all instances we list the number of states and transitions; for each tool we give the running
time in seconds and the memory consumption in MB; the best time is boldfaced. Moreover, for

our approaches we list the number of polynomials which are intermediately stored.

170

8.4. EXPERIMENTAL RESULTS

Graph SCC MC STATE ELIM PARAM
Model States Trans. Time Poly Mem Time Poly Mem Time Mem
BRP 3528 4611 29.05 3283 48.10 433 8179 61.17 98.99 32.90
BRP 4361 5763 511.50 4247 501.71 6.87 9520 78.49 191.52 58.43
BRP 7048 9219 548.73 6547 281.86 25.05 16435 216.05 988.28 142.66
BRP 10759 13827 147.31 9231 176.89 85.54 26807 682.24 3511.96 304.07
BRP 21511 27651 1602.53 18443 776.48 718.66 53687 3134.59 34322.60 1757.12
CROWDS 198201 348349 60.90 13483 140.15 243.07 27340 133.91 46380.00 227.66
CROWDS 482979 728677 35.06 35916 478.85 247.75 65966 297.40 TO —
CROWDS 726379 1283297 223.24 36649 515.61 1632.63 73704 477.10 TO —
CROWDS 961499 1452537 81.88 61299 1027.78 646.76 112452 589.21 TO —
CROWDS 1729494 2615272 172.59 97655 2372.35 1515.63 178885 1063.15 TO —
CROWDS 2888763 5127151 852.76 110078 2345.06 12326.80 224747 2123.96 TO —
NAND 7393 11207 8.35 15688 114.60 17.02 140057 255.13 5.00 10.67
NAND 14323 21567 39.71 25504 366.79 59.60 405069 926.33 15.26 16.89
NAND 21253 31927 100.32 35151 795.31 121.40 665584 2050.67 29.51 24.45
NAND 28183 42287 208.41 44799 1405.16 218.85 925324 3708.27 50.45 30.47
NAND 78334 121512 639.29 184799 3785.11 — — MO 1138.82 111.58

For BRB STATE ELIM always outperforms PARAM and SCC MC by up to two orders of magnitude.
On larger instances, SCC MC is faster than PARAM while on smaller ones PARAM is faster and
has a smaller memory consumption.

In contrast, the crowds protocol always induces a nested SCC structure, which is very hard for
PARAM since many divisions of polynomials have to be carried out. On larger benchmarks, it is
therefore outperformed by more than three orders of magnitude while SCC MC performs best.
This is actually measured by the timeout; using PARAM we could not retrieve results for larger
instances.

To give an example where PARAM mostly performs better than our approaches, we consider
NAND. Its graph is acyclic consisting mainly of single paths leading to states that have a high
number of outgoing edges, i.e., many paths join at these states and diverge again. Together
with a large number of different probabilities, this involves the addition of many polynomials,
whose factorizations are completely stored. The SCC approach performs better here, as for
acyclic graphs just the linear equation system is solved. This seems to be superior to the state
elimination as implemented in our tool. We do not know about PARAM’s interior for these special
cases. As a solution, our implementation offers the possibility to limit the number of stored
polynomials, which decreases the memory consumption at the price of losing information about
the factorizations. However, an efficient strategy to manage this bounded pool of polynomials
is not yet implemented. Therefore, we refrain from presenting experimental results for this

scenario.

171

CHAPTER 9

Conclusion

Using the example of the virtual substitution, this thesis demonstrated the challenges we have to
cope with when adapting a single procedure for nonlinear real arithmetic to SMT solving. As a
side effect it also yields a deeper analysis of the procedure towards satisfiability checking, which
helped us to provide rather general contributions, such as the detection of infeasible subsets
or local conflicts and the employment of variable bounds. Moreover, we could make use of a
commonly applied technique in SMT solving, branch-and-bound, in order to enable the utilization
of the virtual substitution for integer arithmetic.

We experimentally evaluated the single techniques, showing that each of them improves the
performance of an SMT solver with a theory solver based on the virtual substitution for most
of the tested benchmark sets. We also compared our implementation to another state-of-the-art
tool, which is purely based on virtual substitution, emphasizing that we can solve many more of
the tested examples and this within far less time.

The presented heuristics for choosing the next variable to eliminate or next constraint to provide
a test candidate for, have an immense influence on the performance of the virtual substitution.
With more analysis of the solving process for examples, which could not be solved within the
timeout, we might detect specific adaptions of these heuristics such that it possible to determine
the satisfiability of the given example within this timeout.

One of the main messages of this thesis is that there is no overall best performing approach for
SMT solving of nonlinear arithmetic formulas. Therefore, it is essential to be able to choose from
a set of different procedures and optimally combine them according to some solving strategy.
Within the work in the context of this thesis, we contributed the toolbox SMT-RAT, which provides
exactly what we need for this purpose. The experimental results showed that, although the SMT
solver Z3 implements an approach, which seems to be the most performant alternative for most
of the used benchmark sets, for some of them we can solve more instances with other approaches.

[AAB*16]

[ABP*11]

[ACH"95]

[ADFO13]

[AFSW16]

[AJW*10]

[AP10]

[BBC*05]

[BBP13]

[BCBAODF09]

Erika Abrahdm, John Abbott, Bernd Becker, Anna M. Bigatti, Martin Brain, Bruno
Buchberger, Alessandro Cimatti, James H. Davenport, Matthew England, Pascal
Fontaine, Stephen Forrest, Alberto Griggio, Daniel Kroening, Werner M. Seiler,
and Thomas Sturm. SC2: Satisfiability checking meets symbolic computation. In
Proc. of CICM, volume 9791 of LNCS, pages 28-43. Springer, 2016.

Carlos Ansotegui, Miquel Bofill, Miquel Palahi, Josep Suy, and Mateu Villaret.
Satisfiability modulo theories: An efficient approach for the resource-constrained
project scheduling problem. In Proc. of SARA. AAAI, 2011.

Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-
Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The
algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1):3 —
34, 1995.

Carlos Areces, David Deharbe, Pascal Fontaine, and Ezequiel Orbe. SyMT: Finding
symmetries in SMT formulas. In Proc. of SMT, 2013.

Erika Abrahdm, Pascal Fontaine, Thomas Sturm, and Dongming Wang. Symbolic
Computation and Satisfiability Checking (Dagstuhl Seminar 15471). Dagstuhl
Reports, 5(11):71-89, 2016.

Erika Abrahdm, Nils Jansen, Ralf Wimmer, Joost-Pieter Katoen, and Bernd Becker.
DTMC model checking by SCC reduction. In Proc. of QEST, pages 37-46. IEEE
Computer Society, 2010.

Behzad Akbarpour and Lawrence C. Paulson. Metitarski: An automatic theo-
rem prover for real-valued special functions. Journal of Automated Reasoning,
44(3):175-205, 2010.

Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Peter
Rossum, Stephan Schulz, and Roberto Sebastiani. An incremental and layered
procedure for the satisfiability of linear arithmetic logic. In Proc. of TACAS, volume
3440 of LNCS, pages 317-333. Springer, 2005.

Jasmin Christian Blanchette, Sascha Bohme, and Lawrence C. Paulson. Extending
sledgehammer with SMT solvers. Journal of Automated Reasoning, 51(1):109—
128, 2013.

Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal
Fontaine. veriT: An open, trustable and efficient SMT-solver. In Proc. of CADE,
volume 5663 of LNCS, pages 151-156. Springer, 2009.

175

[BCCZ99]

[BCD*11]

[BDS02]

[BFKO02]

[BFT16]

[BGMG15]

[BKOS]

[BKM14]

[BNOTO6]

[BPST10]

[Buc65]

[Bur98]

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In Proc. of TACAS, volume 1579 of LNCS, pages
193-207. Springer, 1999.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Proc. of CAV,
volume 6806 of LNCS, pages 171-177. Springer, 2011.

Clark Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of first-order
formulas by incremental translation to SAT. In Proc. of CAV, volume 2404 of LNCS,
pages 236-249. Springer, 2002.

Christian Bauer, Alexander Frink, and Richard Kreckel. Introduction to the GiNaC
framework for symbolic computation within the C++ programming language.
Journal of Symbolic Computation, 33(1):1-12, 2002.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

Daniel Bryce, Sicun Gao, David Musliner, and Robert Goldman. SMT-based non-
linear PDDL+ planning. In Proc. of AAAI, pages 3247-3253. AAAI Press, 2015.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008.

Clark Barrett, Daniel Kroening, and Thomas Melham. Problem Solving for the 21st
Century: Efficient Solvers for Satisfiability Modulo Theories. Technical Report 3,
London Mathematical Society and Smith Institute for Industrial Mathematics and

System Engineering, 2014. Knowledge Transfer Report.

Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting
on demand in SAT modulo theories. In Proc. of LPAR, volume 4246, pages 512—
526. Springer, 2006.

Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. The
OpenSMT solver. In Proc. of TACAS, volume 6015 of LNCS, pages 150-153.
Springer, 2010.

Bruno Buchberger. FEin Algorithmus zum Auffinden der Basiselemente des Rest-
klassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University
of Innsbruck, 1965.

Stanley Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998.

176

[BV02]

[BWK93]

[CAMNO4]

[CES*09]

[CGMT15]

[CGSS13]

[CHN12]

[CMT12]

[Col75]

[Coo71]

[Corl0]

[CTF00]

Randal E. Bryant and Miroslav N. Velev. Boolean satisfiability with transitivity
constraints. ACM Transactions on Computational Logic, 3(4):604-627, 2002.

Thomas Becker, Volker Weispfenning, and Heinz Kredel. Grobner bases: A Com-
putational Approach to Commutative Algebra. Graduate texts in mathematics.
Springer, 1993.

Scott Cotton, Eugene Asarin, Oded Maler, and Peter Niebert. Some progress in
satisfiability checking for difference logic. In Proc. of FORMATS, volume 3253 of
LNCS, pages 263-276. Springer, 2004.

Koen Claessen, Niklas Eén, Mary Sheeran, Niklas Sorensson, Alexey Voronov, and
Knut Akesson. SAT-solving in practice, with a tutorial example from supervisory
control. Discrete Event Dynamic Systems, 19(4):495-524, 2009.

Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Hycomp:
An SMT-based model checker for hybrid systems. In Proc. of TACAS, volume 9035
of LNCS, pages 52-67. Springer, 2015.

Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Se-
bastiani. The MathSAT5 SMT solver. In Proc. of TACAS, volume 7795 of LNCS,
pages 93-107. Springer, 2013.

Jiirgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An inter-
polating SMT solver. In Proc. of SPIN, volume 7385 of LNCS, pages 248-254.
Springer, 2012.

Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. A quantifier-free SMT
encoding of non-linear hybrid automata. In Proc. of FMICAD, pages 187-195. IEEE,
2012.

George E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Automata Theory and Formal Languages, volume 33
of LNCS, pages 134-183. Springer, 1975.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proc. of
STOC, pages 151-158. ACM Press, 1971.

Florian Corzilius. Virtual Substitution in SMT Solving. Master’s thesis (Diplomar-
beit), RWTH Aachen University, 2010.

Alberto Caprara, Paolo Toth, and Matteo Fischetti. Algorithms for the set covering
problem. Annals of Operations Research, 98(1):353-371, 2000.

177

[Dan63]

[Daw04]

[DDA09]

[DAMO6]

[DFMP11]

[DH88]

[DLL62]

[DLT16]

[dMBO8]

[dMP09]

[dMP13]

[dMRO2]

[dMRS02]

[DP60]

George B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

Conrado Daws. Symbolic and parametric model checking of discrete-time Markov
chains. In Proc. of ICTAC, volume 3407 of LNCS, pages 280-294. Springer, 2004.

Isil Dillig, Thomas Dillig, and Alex Aiken. Cuts from proofs: A complete and
practical technique for solving linear inequalities over integers. In Proc. of CAV,
volume 5643 of LNCS, pages 233-247. Springer, 2009.

Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Proc. of CAV, volume 4144 of LNCS, pages 81-94. Springer, 2006.

David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo.
Exploiting symmetry in SMT problems. In Proc. of CADE, volume 6803 of LNCS,
pages 222-236. Springer, 2011.

James H. Davenport and Joos Heinz. Real quantifier elimination is doubly expo-
nential. Journal of Symbolic Computation, 5(1/2):29-35, 1988.

Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394-397, 1962.

Normann Decker, Martin Leucker, and Daniel Thoma. Monitoring modulo theories.
STTT, 18(2):205-225, 2016.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In Proc. of
TACAS, volume 4963 of LNCS, pages 337-340. Springer, 2008.

Leonardo de Moura and Grant Olney Passmore. On locally minimal Nullstellensatz
proofs. In Proc. of SMT, pages 35-42. ACM Press, 2009.

Leonardo de Moura and Grant Olney Passmore. The strategy challenge in SMT
solving. In Automated Reasoning and Mathematics, volume 7788 of LNCS, pages
15-44. Springer, 2013.

Leonardo de Moura and Harald Ruef3. Lemmas on demand for satisfiability solvers.
In Proc. of SAT, pages 244-251, 2002.

Leonardo de Moura, Harald Ruef3, and Maria Sorea. Lazy theorem proving for
bounded model checking over infinite domains. In Proc. of CADE, volume 2392
of LNCS, pages 438-455. Springer, 2002.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201-215, 1960.

178

[DS97]

[DSW98]

[Dutl4]

[Erk13]

[ES04]

[FGM107]

[FHT'07]

[FLL*02]

[Fou26]

[GBE*14]

[GGIT10]

Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets com-
puter logic. SIGSAM Bulletin, 31(2):2-9, 1997.

Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. Real quantifier
elimination in practice. In Algorithmic Algebra and Number Theory, pages 221—
247. Springer, 1998.

Bruno Dutertre. Yices 2.2. In Proc. of CAV, volume 8559 of LNCS, pages 737-744.
Springer, 2014.

Christoph Erkinger. Rotating Workforce Scheduling as Satisfiability Modulo The-

ories. Master’s thesis (Diplomarbeit), Technische Universitat Wien, 2013.

Niklas Eén and Niklas Sérensson. An extensible SAT-solver. In Proc. of SAT,
volume 2919 of LNCS, pages 502-518. Springer, 2004.

Carsten Fuhs, Jiirgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, Réne Thie-
mann, and Harald Zankl. SAT solving for termination analysis with polynomial
interpretations. In Proc. of SAT, volume 4501 of LNCS, pages 340-354. Springer,
2007.

Martin Fréanzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schu-
bert. Efficient solving of large non-linear arithmetic constraint systems with
complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Com-
putation, 1(3-4):209-236, 2007.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In Proc. of PLDI, LNCS,
pages 234-245. ACM Press, 2002.

Jean-Baptiste Joseph Fourier. Solution d'une question particuliere du calcul des
inégalités. Oeuvres II, pages 317-328, 1826.

Jiirgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs,
Carsten Otto, Martin Pliicker, Peter Schneider-Kamp, Thomas Stroder, Steffi
Swiderski, and René Thiemann. Proving termination of programs automatically
with AProVE. In Proc. of IJCAR, volume 8562 of LNCS, pages 184-191. Springer,
2014.

Sicun Gao, Malay K. Ganai, Franjo Ivancic, Aarti Gupta, Sriram Sankara-
narayanan, and Edmund M. Clarke. Integrating ICP and LRA solvers for deciding
nonlinear real arithmetic problems. In Proc. of FMICAD, pages 81-89. IEEE, 2010.

179

[GKC13]

[G6d31]

[Gri09]

[Gril2]

[GT09]

[Han09]

[HHWZ10]

[HHZ11]

[Hil02]

[HJO2]

[Hon91]

[HR97]

[HSV93]

Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for
nonlinear theories over the reals. In Proc. of CADE, volume 7898 of LNCS, pages
208-214. Springer, 2013.

Kurt Godel. Uber formal Unentscheidbare Sitze der Principia Mathematica und
Verwandter Systeme. Monatshefte fiir Math. u. Physik, 38:173-198, 1931.

Alberto Griggio. An Effective SMT Engine for Formal Verification. PhD thesis, DISI
- University of Trento, 2009.

Alberto Griggio. A practical approach to satisfiability modulo linear integer arith-
metic. Journal on Satisfiability, Boolean Modeling and Computation, 8:1-27, Jan-
uar 2012.

Chrysida Galanaki and Elias Tsigaridas. Quantifier elimination for small degree
polyomials. In Proc. of PLS, 2009.

Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications. 10S Press, 2009.

Ernst Moritz Hahn, Holger Hermanns, Bjorn Wachter, and Lijun Zhang. PARAM:
A model checker for parametric Markov models. In Proc. of CAV, volume 6174 of
LNCS, pages 660-664. Springer, 2010.

Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability
for parametric Markov models. STTT, 13(1):3-19, 2011.

David Hilbert. Mathematical problems. Bulletin of the American Mathematical
Society, 8(10):437-479, 1902.

Jie Han and Pieter Jonker. A system architecture solution for unreliable nanoelec-
tronic devices. IEEE Transactions on Nanotechnology, 1:201-208, 2002.

Hoon Hong. Comparison of Several Decision Algorithms for the Existential Theory
of the Reals. Technical Report 91-41, Research Institute for Symbolic Computation,
Johannes Kepler University Linz, 1991.

Stefan Herbort and Dietmar Ratz. Improving the Efficiency of a Nonlinear-System-
Solver Using a Componentwise Newton Method. Technical Report 151241, Insti-
tut fiir Angewandte Mathematik, Universitdt Karslruhe (TH), 1997.

Leen Helmink, Alex Sellink, and Frits W. Vaandrager. Proof-checking a data link
protocol. In Proc. of TYPES, volume 806 of LNCS, pages 127-165. Springer, 1993.

180

[JBAM13]

[JBRS12]

[JdAM12]

[KBD13]

[KBT14]

[Kha80]

[KS15]

[KSD16]

[Kul09]

[Lar92]

[Leil3]

[LW93]

[Mat70]

[Mat72]

Dejan Jovanovic, Clark Barrett, and Leonardo de Moura. The design and imple-
mentation of the model constructing satisfiability calculus. In Proc. of FMCAD,
pages 173-180. IEEE, 2013.

Matti Jarvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The inter-
national SAT solver competitions. Al Magazine, 33:89-92, 2012.

Dejan Jovanovic and Leonardo de Moura. Solving non-linear arithmetic. In Proc.
of IJCAR, volume 7364 of LNCS, pages 339-354. Springer, 2012.

Tim King, Clark Barrett, and Bruno Dutertre. Simplex with sum of infeasibilities
for SMT. In Proc. of FMCAD, pages 189-196. IEEE, 2013.

Tim King, Clark Barrett, and Cesare Tinelli. Leveraging linear and mixed integer
programming for SMT. In Proc. of FMCAD, pages 139-146. IEEE, 2014.

Leonid Genrikhovich Khachiyan. Polynomial algorithms in linear programming.
USSR Computational Mathematics and Mathematical Physics, 20(1):53 — 72, 1980.

Marek Kosta and Thomas Sturm. A generalized framework for virtual substitution.
CoRR, abs/1501.05826, 2015.

Marek Kosta, Thomas Sturm, and Andreas Dolzmann. Better answers to real
questions. Journal of Symbolic Computation, 74:255 — 275, 2016.

Ulrich W. Kulisch. Complete interval arithmetic and its implementation on the
computer. In Numerical Validation in Current Hardware Architectures: Interna-
tional Dagstuhl Seminar, Dagstuhl Castle, Germany, January 6-11, 2008. Revised
Papers, volume 5492 of LNCS, pages 7-26. Springer, 2009.

Tracy Larrabee. Test pattern generation using Boolean satisfiability. IEEE Trans.
on CAD of Integrated Circuits and Systems, 11(1):4-15, 1992.

K. Rustan M. Leino. Automating theorem proving with SMT. In Proc. of ITP,
volume 7998 of LNCS, pages 2-16. Springer, 2013.

Riidiger Loos and Volker Weispfenning. Applying linear quantifier elimination.
Computer Journal, 36(5):450-462, 1993.

Yuri V Matiyasevich. Enumerable sets are diophantine. Doklady Akademii Nauk
SSSR, 191(2):279-282, 1970.

Yuri V. Matiyasevich. Diophantine representation of enumerable predicates. Math-
ematical notes of the Academy of Sciences of the USSR, 12(1):501-504, 1972.

181

[MKC09]

[MMZ*01]

[MS08]

[MSS99]

[NOSO]

[NOO5]

[NOTO06]

[NPM*14]

[NW88]

[PC13]

[Pell3]

[PQRO9]

[Pug91]

Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to Interval

Analysis. Society for Industrial and Applied Mathematics, 2009.

Matthew W. Moskewicz, Conor E Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proc. of DAC, pages 530-535.
ACM Press, 2001.

Joao P Marques-Silva. Practical applications of Boolean satisfiability. In Proc. of
WODES, pages 74-80. IEEE, 2008.

Joao P Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506-521, 1999.

Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM, 27(2):356-364, 1980.

Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure.
In Proc. of RTA, volume 3467 of LNCS, pages 453-468. Springer, 2005.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
modulo theories: From an Abstract Davis—Putnam-Logemann-Loveland Proce-
dure to DPLL(T). Journal of the ACM, 53(6):937-977, 2006.

Srinivas Nedunuri, Sailesh Prabhu, Mark Moll, Swarat Chaudhuri, and Lydia E.
Kavraki. SMT-based synthesis of integrated task and motion plans from plan
outlines. In Proc. of ICRA, pages 655-662. IEEE, 2014.

George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Opti-
mization. Wiley Interscience Series in Discrete Mathematics and Optimization.
Wiley, 1988.

Hristina Palikareva and Cristian Cadar. Multi-solver support in symbolic execution.
In Proc. of CAV, volume 8044 of LNCS, pages 53-68. Springer, 2013.

Jan Peleska. Industrial-strength model-based testing - state of the art and current
challenges. In Proc. of MBT, volume 111 of EPTCS, pages 3-28, 2013.

André Platzer, Jan-David Quesel, and Philipp Riimmer. Real world verification.
In Proc. of CADE, volume 5663 of LNCS, pages 485-501. Springer, 2009.

William Pugh. The Omega test: A fast and practical integer programming algo-
rithm for dependence analysis. In Proc. of ACM/IEEE Conference on Supercomput-
ing, pages 4-13. ACM Press, 1991.

182

[PVL11]

[RR98]

[RS15]

[RTO3]

[Sch86]

[Seb07]

[SGF10]

[Sho79]

[Sho84]

[SKB13]

[SOE14]

[SSB02]

[Tar48]

Jan Peleska, Elena Vorobeyv, and Florian Lapschies. Automated test case generation
with SMT-solving and abstract interpretation. In Proc. of NFM, volume 6617 of
LNCS, pages 298-312. Springer, 2011.

Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions.
ACM Transactions on Information and System Security, 1(1):66-92, 1998.

Hadi Ravanbakhsh and Sriram Sankaranarayanan. Counterexample guided
synthesis of switched controllers for reach-while-stay properties. CoRR,
abs/1505.01180, 2015.

Silvio Ranise and Cesare Tinelli. The SMT-LIB format: An initial proposal. In Proc.
of PDPAR, pages 94-111, 2003.

Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability,
Boolean Modeling and Computation, 3:141-224, 2007.

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verifi-
cation to program synthesis. In Proc. of POPL, pages 313-326. ACM Press, 2010.

Robert E. Shostak. A practical decision procedure for arithmetic with function
symbols. Journal of the ACM, 26(2):351-360, 1979.

Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1-12, 1984.

Karsten Scheibler, Stefan Kupferschmid, and Bernd Becker. Recent improvements
in the SMT solver iSAT. In Proc. of MBMV, pages 231-241. Institut fiir Angewandte
Mikroelektronik und Datentechnik, Fakultit fiir Informatik und Elektrotechnik,
Universitiat Rostock, 2013.

Roopsha Samanta, Oswaldo Olivo, and E. Allen Emerson. Cost-aware automatic
program repair. In Proc. of SAS, volume 8723 of LNCS, pages 268-284. Springer,
2014.

Ofer Strichman, Sanjit A. Seshia, and Randal E. Bryant. Deciding separation for-
mulas with SAT. In Proc. of CAV, volume 2404 of LNCS, pages 209-222. Springer,
2002.

Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, 1948.

183

[TPGM14]

[Tse83]

[TVKO16]

[Wei94]

[Wei97]

[ZM10]

Pranav Tendulkar, Peter Poplavko, loannis Galanommatis, and Oded Maler. Many-
core scheduling of data parallel applications using SMT solvers. In Proc. of DSD,
pages 615-622. IEEE Computer Society, 2014.

Grigorii S. Tseitin. On the complexity of derivation in propositional calculus. In

Automation of Reasoning, Symbolic Computation, pages 466—483. Springer, 1983.

Vu Xuan Tung, To Van Khanh, and Mizuhito Ogawa. raSAT: An SMT solver for
polynomial constraints. In Proc. of IJCAR, volume 9706 of LNCS, pages 228-237.
Springer, 2016.

Volker Weispfenning. Quantifier elimination for real: the cubic case. In Proc. of
ISSAC, pages 258-263. ACM Press, 1994.

Volker Weispfenning. Quantifier elimination for real algebra - the quadratic case
and beyond. Applicable Algebra in Engineering, Communication and Computing,
8(2):85-101, 1997.

Harald Zankl and Aart Middeldorp. Satisfiability of non-linear (ir)rational arith-
metic. In Proc. of LPAR, volume 6355 of LNCS, pages 481-500. Springer, 2010.

184

Index

SMT-RAT strategy, 63

Arithmetic formula, 19
Assignment, 22
Atom, 33

Backtracking ability (theory solver), 48
Boolean abstraction, 22

Boolean abstraction mapping, 22

Clause, 33

Conjunctive normal form, 33
Constant polynomial, constraint, 20
Constraint, 19

Construction of test candidates, 55
Convex set, 125

Cylindrical algebraic decomposition, 43

Digraph, 17
Directed tree, 18

Discrete-time Markov chain (DTMC), 163

Eager SMT solving, 44
Ellipsoid method, 42
Equisatisfiability of formulas, 28

Final lemma, 67
Formula evaluation, 23

Formula interval evaluation, 127

Fourier-Motzkin variable elimination, 42
Full-lazy SMT solving, 47

Incrementality support (theory solver), 48

Infeasible subset generation (theory solver),
48

Integer arithmetic, 20

Interval assignment, 127

Interval constraint propagation, 128

Interval diameter, 17

Less-lazy SMT solving, 47
Literal, 33
Local conflict, 122

Mixed integer-real arithmetic, 20
Monomial, 25

Multivariate polynomial, constraint, 21

Negation normal form, 32
Normalized constraint, 29
Normalized integer-arithmetic constraint, 30

Normalized polynomial, 25

Parametric discrete-time Markov chain (PDTMCQC),

163
Path, cycle, 17
Polynomial, 19

Index

Polynomial evaluation, 23
Polynomial factorization, 27
Polynomial interval evaluation, 127
Polynomial order, 27

Prenex normal form, 35

Rational function, 163

Real arithmetic, 20

Real relaxation, 22

Relation (symbol), 19

Reverse lexicographical order, 25

Satisfiability, 24

Sequential SMT-RAT strategy, 71
Simplex method, 42

SMT compliant procedure, 62
SMT compliant theory solver, 49
SMT-LIB standard, 50

Solution space, 24

Square root expression, 54

Strongly connected component (SCC), 163

Substitution, 21

Tautology, 24
Term, 25

Unit clause, 34

Univariate polynomial, constraint, 20

Urgent lemma, 67

Validity, 24

Variable bound constraint, 123
Variable bounds, 124

Virtual substitution, 51

186

