
INTEGRATING VIRTUAL SUBSTITUTION

INTO STRATEGIC SMT SOLVING

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen
Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

FLORIAN CORZILIUS
aus Geldrop (Niederlande)

Berichter Prof. Dr. Erika Ábrahám

Ass.-Prof. Pascal Fontaine, PhD

Tag der mündlichen Prüfung 21.10.2016

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Abstract

This thesis addresses the integration of real algebraic procedures as theory

solvers into satisfiability modulo theories (SMT) solvers, in order to check non-

linear real- and integer-arithmetic formulas for satisfiability. There are plenty

of procedures to choose from and we aim for a general framework that al-

lows us to select and combine them. The main part of this thesis concerns

one specific example of the aforementioned integration: the virtual substitu-

tion method. Here we also optimize this method with respect to satisfiability

checking and extend it such that it can be used for integer arithmetic.

We present the results of this thesis in the following order:

1. The design, functionality and features of the toolbox SMT-RAT, which

implements a framework for a strategical combination of procedures for,

e. g., real and integer arithmetic. This toolbox has been developed as

part of this thesis and can also be used to assemble an SMT solver.

2. An SMT compliant theory solver based on the virtual substitution, that

works incrementally and supports backtracking and infeasible subset gen-

eration.

3. Heuristics for strategic choices during a satisfiability check of this theory

solver and optimizations, which exploit local conflicts and bounds on the

variable’s domains.

4. An evaluation of the SMT compliant features, the heuristics and the

optimizations by integrating this theory solver into an SMT solver, which

we assembled with SMT-RAT. We also combine this theory solver with

other procedures and compare with state-of-the-art solvers.

5. For the purpose of checking nonlinear integer-arithmetic formulas for

satisfiability, we present and evaluate an embedding of the virtual sub-

stitution into a branch-and-bound framework, which we specifically tai-

lored for the case where a combination of procedures is used.

6. An optimization of the computation of the rational functions, which

represent the probability of reaching certain states of parametric discrete-

time Markov chains. Here we make use of a synergy of the greatest

common divisor calculation of two polynomials, polynomial factorization

and intermediate result caching.

Zusammenfassung

Diese Doktorarbeit behandelt die Integrierung reell-algebraischer Prozeduren

als Theory-Solver in Satisfiability-Modulo-Theories-Solver (SMT-Solver), um

nichtlineare reell- und ganzzahlig-arithmetische Formeln auf Erfüllbarkeit zu

überprüfen. Es gibt viele Prozeduren, welche sich hierfür anbieten, und wir

streben ein generelles Framework an, mit dem man diese auswählen und

kombinieren kann. Der Hauptteil dieser Doktorarbeit beschäftigt sich mit

einem spezifischen Beispiel für die obengenannte Integrierung: der Virtual-

Substitution-Methode. Hierbei wird diese Methode auch bezüglich der Erfüll-

barkeitsüberprüfung optimiert und auf die Anwendbarkeit auf ganzzahlige

Arithmetik erweitert.

Wir stellen die Resultate dieser Doktorarbeit in der folgenden Reihenfolge vor:

1. Das Design, die Funktionsweise und die Bestandteile der Toolbox

SMT-RAT, welche ein Framework für die strategische Kombination von

Prozeduren für, zum Beispiel, reelle und ganzzahlige Arithmetik imple-

mentiert. Diese Toolbox wurde als Teil dieser Doktorarbeit entwickelt

und kann auch dafür benutzt werden einen SMT-Solver zusammenzu-

stellen.

2. Einen SMT-konformen Theory-Solver basierend auf der Virtual-

Substitution-Methode, was bedeutet, dass er inkrementell arbeitet und

Backtracking sowie das Generieren unerfüllbarer Teilmengen unterstützt.

3. Heuristiken für die vielen Wahlmöglichkeiten während der Erfüllbar-

keitsüberprüfung dieses Theory-Solvers und Optimierungen, welche lo-

kale Konflikte und Schranken auf den Variablendomänen ausnutzen.

4. Eine Auswertung der SMT-konformen Eigenschaften, der Heuristiken

sowie Optimierungen mittels einer Integrierung dieses Theory-Solvers

in einen SMT-Solver, welchen wir mit SMT-RAT zusammengestellt haben.

5. Zwecks der Erfüllbarkeitsüberprüfung nichtlinearer ganzzahlig-

arithmetischer Formeln, präsentieren und evaluieren wir eine

Einbettung der Virtual-Substitution-Methode in ein Branch-and-Bound-

Framework, das wir spezifisch auf den Fall der Kombination von

Prozeduren zugeschnitten haben.

6. Eine Optimierung der Berechnung rationaler Funktionen, welche die

Wahrscheinlichkeit repräsentieren bestimmte Zustände parametrischer

Markow-Ketten mit diskreter Zeit zu erreichen. Hierbei verwenden wir ein

Zusammenspiel der Berechnung des größten gemeinsamen Teilers zwei-

er Polynome, von Polynomfaktorisierungen und von Zwischenergebnis-

Caching.

Acknowledgements

Reminiscing recent years, I am a little bit overwhelmed. I certainly never took it for granted

that I got the chance to be a PhD-student and work on a topic I absolutely adored. I lived my

own childhood dream by being a scientist, meeting so many fantastic people with whom I share

invaluable experiences and visiting spectacular places all over the world.

I am so thankful that Erika Ábrahám gave me this chance and I thank her particularly for all

the patience, guidance and marvelous discussions. I am also deeply grateful that I was part of

her group. It was a great joy and really inspiring to work with Xin Chen, Nils Jansen, Gereon

Kremer, Ulrich Loup, Johanna Nellen and Stefan Schupp. We had a lot of fun together and some

unforgettable evenings.

I also want to thank all those I had the pleasure to collaborate with over previous years: Erika

Ábrahám, Bernd Becker, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, Gereon Kremer,

Ulrich Loup, Karsten Scheibler, Stefan Schupp, Matthias Volk and Ralf Wimmer.

Furthermore, special thanks go to Pascal Fontaine and Thomas Sturm for the many inspiring

discussions in our meetings.

Being a PhD-student involves lots of traveling, engaging projects and deadlines, but it unfortu-

nately comes at the cost of missing out on time with the ones you love. I am very thankful that

my mother, my father and my sisters, nonetheless, always supported me and for all the faith they

had in me. This holds none more so than for my wife, Becky, who was patient, if plans had to be

altered, who pushed me, if my motivation faded, and who revised every single line of this thesis.

Contents

1 Introduction 1

1.1 Contributions and structure of this thesis . 6

1.2 Relevant publications . 11

1.2.1 Peer-reviewed publications . 11

1.2.2 Technical reports . 12

1.2.3 Contributions made by the author . 12

1.3 Further publications . 13

2 Foundations 15

2.1 Numbers, sets and functions . 15

2.2 Graphs . 17

2.3 Real and integer arithmetic . 18

2.3.1 Syntax . 18

2.3.2 Semantics . 22

2.4 Normalizations . 24

2.4.1 Polynomials . 24

2.4.2 Formulas . 28

2.5 SAT solving . 35

2.5.1 Data structures and sub-procedures . 36

2.5.2 Main algorithm . 39

2.5.3 Correctness and completeness . 40

2.6 SMT solving . 41

2.6.1 Applications . 42

2.6.2 Checking first-order formulas for satisfiability: State-of-the-art 42

2.6.3 The rise of SMT solving . 44

2.6.4 Tools and standards (2016) . 50

ix

2.7 Virtual substitution . 51

2.7.1 Constructing test candidates with side condition 52

2.7.2 Substituting variables by test candidates virtually 56

2.7.3 Quantifier elimination with the virtual substitution 58

3 SMT-RAT: Strategic and Parallel Toolbox for SMT Solving 61

3.1 Modules . 62

3.2 Strategy . 63

3.3 Manager . 65

3.4 Procedures implemented as modules . 65

3.4.1 Preprocessing modules . 65

3.4.2 SMT solving modules . 66

3.4.3 Branching lemmas . 69

3.4.4 Theory solving modules . 69

3.5 Strategy examples and their application . 71

4 Virtual Substitution in SMT 73

4.1 Virtual substitution for satisfiability checking . 74

4.2 An SMT-compliant theory solver based on the virtual substitution 75

4.2.1 Data structure to store a depth-first search tree of the virtual substitution . 75

4.2.2 Incremental adding of constraints . 79

4.2.3 Belated removing of constraints . 82

4.2.4 Checking a conjunction of constraints for satisfiability 84

4.2.5 Creating a solution . 89

4.2.6 Generating small reasons for infeasibility . 90

4.2.7 Example . 92

4.3 Combining virtual substitution with other procedures 111

4.4 Future work . 112

4.4.1 Using an incremental and infeasible subset generating SAT solver for the

case distinction . 112

4.4.2 Using SMT-RAT backends to check virtual substitution results for satisfiability113

5 Improving the Performance of the Virtual Substitution in SMT 115

5.1 Choice of the elimination variable and constraint to provide test candidates for . . 115

5.1.1 Measure of quality of constraints for test candidate construction 116

5.1.2 Measure of quality of variables for elimination 118

5.2 Conflict construction and backjumping . 119

5.2.1 Backjumping . 120

5.3 Local conflict detection . 121

5.4 Exploiting variable bounds . 123

5.4.1 Interval arithmetic . 125

5.4.2 Evaluation and simplification of formulas using variable bounds 126

5.4.3 Interval constraint propagation . 128

5.4.4 Using variable bounds to filter out test candidates 132

5.4.5 Simplifying formulas with respect to variable bounds 135

6 Experimental Results for Real Arithmetic 139

6.1 Benchmark sets . 139

6.2 Settings . 140

6.3 An SMT-compliant theory solver based on the virtual substitution 141

6.4 Choice of the elimination variable and constraint to provide test candidates for . . 142

6.5 Backjumping, local conflict detection and exploiting variable bounds 146

6.6 Comparison of SMT-RAT strategies with state-of-the-art tools 147

6.7 Parallel SMT-RAT strategies . 151

7 Virtual Substitution for Integer Arithmetic 155

7.1 Branch-and-bound with virtual substitution . 157

7.2 Experimental results . 159

8 A Synergy of the Greatest Common Divisor Calculation, Factorization and Inter-

mediate Result Caching 163

8.1 Factorized polynomials: Partial factorizations as polynomial representation 164

8.2 Greatest common divisor computation of factorized polynomials 165

8.3 Using factorized polynomials in rational functions . 169

8.4 Experimental results . 170

9 Conclusion 173

Literature 175

CHAPTER 1

Introduction

Thinking back to mathematics lessons at school, most students started struggling when it came

to solving a word problem; that is a mathematical exercise presented in text form. No doubt the

first obstacle for this task is the translation of text to mathematical notation or its geometrical

interpretation. Then we need to recognize patterns and identify techniques which might help

to find a solution to the posed question. In the majority of cases these questions ask for one

solution or maybe an optimal solution. School prepares young people using these exercises with

the assumption that they will encounter many such problems, if not in daily life but in work life,

especially if it concerns a rather complex topic.

As a university student, in particular for natural sciences, one has to deal with proving mathe-

matical statements. Although we do not aim at a single solution as for word problems, we also

need to recognize patterns and identify techniques, but this time in order to find a finite series of

implications which either prove or disprove the statement.

About 1920, the mathematician David Hilbert started a project seeking

• a precise formal language in order to specify, for instance, word problems or statements

that we want to prove, and

• a finite set of axioms, which are provably consistent and can be applied (in a finite sequence)

in order to prove any statement or solve any word problem, which could be expressed in

the formal language.

In 1931, Kurt Gödel disabused the people who believed that this project could ever accomplish

its goal. He proved in his incompleteness theorems [Göd31] that, in general, there is no formal

language and set of axioms, which fulfill these needs.

Nevertheless, the foundations of computability theory were laid, which aims to classify problems

according to their decidability and (if decidable) according to the complexity of solving them.

It is undeniable how crucial it is to know about a problem’s decidability and complexity before

trying to solve it. For instance, let us have a look at the tenth problem of the famous 23 problems

published by Hilbert himself in 1900 [Hil02]:

“Given a Diophantine equation with any number of unknown quantities and with ra-

tional integral numerical coefficients: To devise a process according to which it can be

determined by a finite number of operations whether the equation is solvable in rational

integers.”

Without loss of generality, we are looking for integer values which we assign to the variables

x1, . ., xn in a polynomial p(x1, . ., xn) such that it evaluates to zero, i. e., for an integer solution of

the equation p(x1, . ., xn) = 0. In 1970, Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia

Robinson showed that there is no decision procedure that always determines (in a finite number

of operations) whether an integer solution for a given equation exists [Mat70][Mat72].

If we assume that p is linear, that is we can bring it to the form a1 x1+ . .+an xn, where a1, . ., an

are integers, the problem becomes decidable. Even if we consider a system of equations and

inequalities (where the relation symbol is <, ≤, > or ≥) over linear polynomials, which means

that all of these equations and inequalities have to hold at the same time, the problem is decidable.

However, the number of operations, which have to be done in order to determine whether an

integer solution exists, grows exponentially as the number of variables (n) increases. If we ask

for the existence of a real solution instead, that is we relax the requirement that the solution must

be integer, this number of operations grows only polynomially as n increases. Even if we require

this solution to be optimal (with respect to a linear objective function), it still grows polynomially.

Let us go back to our initial setting of word problem solving and theorem proving. In both

cases, it is imperative that we are able to logically connect sub-problems or sub-statements. In a

language we would usually use, e. g., the words “and”, “or”, or “implies”, which logically connect

two statements, or the word “not” in order to negate a given statement. In mathematical logic

there are equivalent Boolean operations. Regarding the just listed logical connectives, we usually

use the symbols ∧ (and), ∨ (or),→ (implies) and ¬ (not). If we use these Boolean operators in

order to connect propositions, which can be either true or false, we obtain a propositional formula.

For example, consider the following statements, where we have attached the translation to a

propositional formula:

1. If

(b1︷ ︸︸ ︷
Mario is hungry

∧︷︸︸︷
and

b2)︷ ︸︸ ︷
currently too lazy to cook,

→︷︸︸︷
then

b3︷ ︸︸ ︷
he puts a frozen pizza in the oven.

2.

b1︷ ︸︸ ︷
Mario is hungry.

3.

b2︷ ︸︸ ︷
Mario is currently too lazy to cook.

From these three statements, it follows that Mario puts a frozen pizza in the oven, that is b3 must

2

be true. Therefore, we obtain a solution to the above statements, if we assign the value true to

the variables b1, b2 and b3.

In general, it is not easy to find solutions for propositional formulas. As we can assign either

true or false to each Boolean variable, there are clearly finitely many candidates which come into

question. Hence, we are dealing with a decidable problem. However, these candidates count 2n,

if the number of variables in the formula is n. Unfortunately, this is also the worst case complexity

of any algorithm which can check whether a solution exists for a given propositional formula if

P 6=NP [Coo71].

Nonetheless, scientists kept on designing ever improving algorithms exploiting the inherent

structure of propositional formulas, for instance of formulas which have their origins in a scientific

or industrial application. A breakthrough was achieved by Martin Davis, Hilary Putnam, George

Logemann and Donald W. Loveland in 1962 [DLL62], which ultimately led to today’s well-known

SAT solvers [MSS99][MMZ+01]. They are designated for checking a propositional formula for

satisfiability, i. e., for finding out whether the formula has a solution (and is satisfiable) or not

(and is unsatisfiable). SAT solvers apply a combination of an inference mechanism, such as we

have applied in the previous example, and conflict driven learning. Nowadays, these solvers are

able to check propositional formulas with up to ten million variables for satisfiability in only a

few minutes or often even a few seconds [JBRS12].

The success story of SAT solvers shows that despite the high complexity, which must be accepted

in the worst case when solving such problems, we can achieve a remarkable performance with

sophisticated algorithms equipped with a learning ability. In the last decade, scientists have

started an attempt to utilize SAT solvers in order to check formulas for satisfiability, which do not

only combine propositions with Boolean operators but also constraints, e. g., the aforementioned

equations and inequalities comparing linear or nonlinear polynomials in real or integer valued

variables. We refer to these formulas as satisfiability modulo theories (SMT) formulas and present

an example in order to show their applicability.

Consider the problem in Figure 1.1. We want to know whether we can position three pizzas of

different sizes on a baking tray such that they do not overlap. We can encode this problem to an

SMT formula, which contains the real-valued variables

• r1, r2 and r3 denoting the radii of the three pizzas we choose to put onto the baking tray

and

• x1, y1, x2, y2, x3 and y3 denoting the coordinates of the two-dimensional center points of

these pizzas.

Without loss of generality, we can assume that the baking tray’s bottom left corner is at (0,0).

Then we can encode this problem by the SMT formula

ϕpizza = ϕchoose ∧ ϕon-baking-tray ∧ ϕno-overlapping

3

Pizza A
∅ 26cm

Pizza B
∅ 20cm

Pizza C
∅ 25cm

Pizza D
∅ 27cm

Baking tray
60cm× 40cm

y

x

10

20

30

40

10 20 30 40 50 60

(x2, y2)

r2

(x3, y3)

r3

(x1, y1)

r1

Pizza C
∅ 25cm

Pizza B
∅ 20cmPizza D

∅ 27cm

Figure 1.1: The pizza problem: Can you fit three pizzas of different sizes on a baking tray?

with

ϕchoose =
3∧

i=1
(ri = 13 ∨ ri = 10 ∨ ri =

25
2 ∨ ri =

27
2) ∧

2∧
i=1

3∧
j=i+1
¬(ri = r j)

ϕon-baking-tray =
3∧

i=1
(x i + ri ≤ 60 ∧ x i − ri ≥ 0 ∧ yi + ri ≤ 40 ∧ yi − ri ≥ 0)

ϕno-overlapping =
2∧

i=1

3∧
j=i+1

(x i − x j)
2 + (yi − y j)

2 ≥ (ri + r j)
2

The formula ϕchoose ensures that we can only choose three pairwise different pizzas, where

ϕon-baking-tray specifies that the three chosen pizzas are all within the margins of the baking tray.

The formula ϕno-overlapping defines, by the use of the Euclidean distance, that these pizzas do not

overlap. Therefore, the three constraints in ϕno-overlapping are nonlinear.

Asking for the satisfiability of this nonlinear real-arithmetic (NRA) formula, has been proved

to be decidable by Alfred Tarski in 1948 [Tar48]. A complete procedure for NRA, that is a

procedure which, given an NRA formula, can always determine whether it is satisfiable or not,

is the cylindrical algebraic decomposition (CAD) method introduced by George E. Collins in 1975

[Col75]. The worst case complexity of this procedure grows exponentially as the number of

variables in the formulas grows [DH88]. Indeed, the CAD method tends not to perform very

well on many examples. Fortunately, there are further incomplete procedures for NRA, which

4

often perform better than the CAD method. We can use Gröbner bases in order to exclude that

there is a common complex solution for a set of equations, ruling out the existence of real-

valued solutions [BWK93]. Interval constraint propagation (ICP) narrows down an initially given

interval over-approximation of possible solutions and thereby might detect that no solution exists

[FHT+07][GGI+10]. However, ICP can only guarantee to find or rule out solutions within a

certain precision. The virtual substitution (VS) method, on the other hand, is limited in the

degree of the variables in a given formula [Wei97]. Nonetheless, it is applicable to a wide range

of problems.

The CAD and VS methods are originally designed as quantifier elimination procedures for NRA

formulas, where some variables are existentially or universally quantified (i. e., ∃x .ϕ =̂ there

exists a value for x such that ϕ holds or ∀x .ϕ =̂ for all values for x ϕ holds). Our setting, where

we want to check a formula for satisfiability, is equivalent to determining the formula’s truth

value (true or false) if we assume that all of its variables are existentially quantified (in the form

∃x1. .∃xn.ϕ, where ϕ is quantifier-free and contains only the variables x1, . ., xn). Therefore, we

can directly use the VS and CAD methods, if we let them eliminate all (quantified) variables

of this formula. It also works, if the formula is not conjunctive. For instance, in the previous

example, ϕon-baking-tray and ϕno-overlapping are conjunctive, which means that all constraints have

to hold. In contrast to this, ϕchoose encodes a combinational problem. It is enough to fulfill at

least one equation in each of the formula’s disjunctions in order to make it satisfiable and there

are 4 ·3 ·2= 24 possible ways to achieve this. With both the CAD and the VS method we have to

deal with all constraints in the formula at once, even though it would be enough to only consider

some of them as it is the case for ϕchoose.

SMT solving has the intention that a SAT solver chooses some constraints of a given formula,

which assure that the Boolean structure of the formula is satisfied as long as they are satisfiable.

Therefore, we need to check a conjunction of constraints for satisfiability, which is achieved with

a theory solver. For NRA formulas, this theory solver could implement, for instance, the CAD

or the VS method and only has to deal with conjunctions of some of the constraints of a given

formula. There are already tools which provide implementations based on the CAD and the VS

method. These tools, which are often referred to as computer algebra systems, have their origins in

a field of research, which addresses, i. a., NRA formulas for a much longer time than SMT solving:

symbolic computation. It stands to reason that we can plug in these tools as theory solvers in an

SMT solver. However, for an optimal collaboration with the SMT solver’s SAT solver, a theory

solver needs to fulfill certain requirements.

1. The theory solver only aims to check a conjunction of constraints for satisfiability. Instead

of using, e. g., a quantifier elimination procedure, which can handle more general formulas,

the theory solver should be optimized for this special purpose.

2. During SMT solving we invoke the theory solver frequently, each time asking for the sat-

isfiability of a conjunction of constraints. Often, this conjunction is only slightly changed

5

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

between two consecutive theory solver invocations. Therefore, the theory solver optimally

keeps as much information from previous invocations as possible in order to speed up the

performance of the current one.

3. In case the theory solver detects that a conjunction of constraints is unsatisfiable, the SMT

solver’s SAT solver excludes this combination from its search. If the theory solver also

provides a subset of the constraints, which is still unsatisfiable, the SAT solver can exclude

all combinations, which contain these constraints instead. This can dramatically reduce

the number of theory solver invocations that are needed during the SMT solving process.

We have listed some of the existing methods, which can be utilized for checking an NRA formula

and in particular a conjunction of NRA constraints for satisfiability. However, it highly depends on

the formula, which of these methods performs best. Due to the high worst-case complexity it often

means that one method finds out the formula’s satisfiability within seconds or minutes where

the other method does not yield a result within hours, days or even much longer. Optimally, we

would be able to choose from a set of implementations for each of these methods, but it remains

the problem of which method would be the best choice for a given formula. Moreover, each of

the aforementioned methods has its own heuristics and choices of sub-procedures, which raises

opportunities for a performance tuning. Finally, we can also combine these methods as it has

been suggested in both symbolic computation [DSW98] as well as SMT solving [dMP13].

SMT solving has already been successfully applied to academic and industrial problems

[BKM14]. For instance, it made a contribution towards the detection of design errors in the

logical functioning of modern digital electronic chips. It has also been useful within the context

of safety-critical embedded software. Furthermore, SMT solvers have been employed in order to

prove correctness or detect bugs of programs, using the programmer’s invariants/assumptions or

simulating a parametrized run violating some properties. With similar techniques, we can also

find vulnerabilities for a security attack. For all of these applications it would be of great use to be

able to also pose satisfiability checks involving NRA formulas. In contrast to the already widely

used logics for SMT solving, which achieved the successes just described, we have a greater choice

of methods for NRA and, more importantly, they are fairly difficult to understand and implement.

Fortunately, plenty of expertise exists within the field of research of symbolic computation. A

recent initiative in the context of the H2020-FETOPEN-CSA project SC2 aims to bring together

scientists from symbolic computation and SMT solving, with the goal that they become aware

of each other’s achievements and are able to unify their strengths in order to tackle practical

problems [ÁAB+16].

1.1 Contributions and structure of this thesis

In this chapter, we have already provided an insight into SMT solving of NRA formulas and the

challenges we have to deal with when designing and implementing theory solvers based on the

6

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

plenty and mostly rather complex methods we could use for this purpose. In Chapter 2, we

specify the syntax and semantics of the formulas we deal with and introduce the most important

procedures on which the contributions of this paper rely on: SAT solving, SMT solving and the

virtual substitution method. This lays the foundations for the contributions of this thesis, which

we explain in the chapters 4 - 8 in detail and are summarized in the following paragraphs. We

conclude this thesis in Chapter 9.

A toolbox for strategic and parallel SMT solving As mentioned before, there are many

methods which can be applied for the satisfiability check of an NRA formula. It is in general un-

clear which method performs best for a given formula and the right choice can influence whether

we are able to determine the satisfiability within seconds/minutes or hours/days. Moreover, we

want to be able to easily combine these methods.

Under these circumstances we had to rethink the common approach for SMT solving and came

up with a novel framework, which defines a common interface for implementations of procedures

that contribute to a formula’s satisfiability check. In the first place, these so called modules

were intended to provide NRA procedures in the form of theory solvers that are SMT compliant,

that is they comply with the aforementioned requirements for a performant integration into

an SMT solver. However, it turned out to be an interface which is general enough to bear the

entire interaction within an SMT solver. This extremely modular approach aims specifically at

the possibility of combining modules according to a user-defined strategy, which specifies which

module is used to solve a formula for satisfiability based on the solving history and the formula’s

properties. In addition, we allow modules to run in parallel which makes it possible to overcome

the uncertainty about which method performs best. In Chapter 3, we present our open-source

C++ toolbox SMT-RAT, which implements this framework and provides a set of modules. It can

easily be extended by further modules and provides an intuitive user-interface for the creation of

solving strategies. Such a strategy can yield, e. g., a theory solver, which can be embedded into a

state-of-the-art SMT solver. In addition, the provided modules allow us to specify a strategy that

serves as an SMT solver. Using such a strategy, SMT-RAT already took part in the international

annual competition between SMT solvers.

The work on SMT-RAT led to two publications. In [6] we contributed

• the novel design of a framework which allows us to combine modules representing theory

solvers according to a user-defined strategy,

• an SMT-compliant module implementing the virtual substitution

• and modules, which implement Gröbner bases (only for equations) and the cylindrical

algebraic decomposition (only for univariate polynomials).

We carried on the development of SMT-RAT, yielding the contributions which we published in [2]

and are summarized as follows:

7

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

• We designed a more powerful strategy class for the combination of modules, which in

particular provides the possibility of running modules in parallel. We added a better user

interface for the creation of such a strategy.

• We added a module, which incorporates a SAT solver and extends SMT-RAT so that a user

can define a strategy that constitutes an SMT solver.

• We provided SMT-compliant modules which implement a preprocessing, the simplex method

as proposed in [DdM06] and interval constraint propagation similar to [GGI+10].

• We further optimized the existing module, which implements the VS, and extended the

modules implementing Gröbner bases (now: SMT compliant and usable for formula sim-

plification) and the CAD (now: SMT compliant and applicable on arbitrary conjunctions of

NRA constraints).

• We extended the shared interface of the modules allowing them to exchange more infor-

mation. It also provides the new feature of calling a module’s satisfiability check such that

it avoids hard obstacles during solving at the price of possibly not finding any conclusive

answer.

Virtual substitution in SMT The virtual substitution has already shown its applicability thanks

to the Redlog-package [DS97] of the computer algebra system Reduce. It performs quantifier

elimination on an NRA formula, which allows us, in particular, to check a conjunction of NRA

constraints for satisfiability due to the aforementioned reasons. Hence, it is a promising candidate

for an integration into a theory solver of an SMT solver which aims to solve NRA formulas for

satisfiability. As we also pointed out, we optimally require this theory solver to be SMT compliant,

which was not yet the case for Redlog’s implementation of the virtual substitution in 2011.

In Chapter 4 we push forward the ideas of my diploma thesis [Cor10], offering solutions for

some questions, which were left open, and generalizing the theorems, which also yields more

concise proofs. The presented contributions were published in [7] and can be summarized as

follows:

• We define an algorithm that uses the virtual substitution in order to perform a satisfiability

check of a conjunction of NRA constraints. For this more specific scenario than the one

which Redlog is dedicated for, we implement a depth-first search in order to find a solution.

• As we keep track of the origins of intermediate results and store intermediate conflicts

during this depth-first search, we are able to belatedly add and remove constraints to the

conjunction of constraints we check for satisfiability.

• Moreover, we present and prove a theorem, from which it directly follows how to construct

infeasible subsets of these constraints, in case they have no common solution.

8

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

Improving the performance of the virtual substitution in SMT The virtual substitution

can only be applied if the degree of at least one variable is less than three in one constraint.

Assuming that we are able to check a conjunction of NRA constraints for satisfiability with the

VS, the worst-case complexity grows exponentially as the number of variables in this conjunction

grows. There are many choices that have to be made within the algorithm we define in Chapter 4

and they are crucial to avoid this worst case. Where one choice might yield a solution in the

underlying depth-first search, the other choice can provoke a far worse performance or even the

case where the VS cannot be applied, that is all variables have a degree that is greater than two

in all constraints of interest.

We concentrate on the satisfiability check of a conjunction of NRA constraints in the algorithm,

which we present in Chapter 4. We also keep track of the origins of intermediate results and

store intermediate conflicts. This provides a lot of potential in order to exploit local information

during the satisfiability check aiming at an improvement of its performance. Local conflicts, for

instance, might help us to prune the search space of the presented depth-first search.

In Chapter 5 we present

• our ideas for the heuristics we use for the choices of concern and experimentally evaluate

different approaches for this purpose,

• a principle to guide the construction of local conflicts so that we can prune a larger part of

the search space when resolving them,

• a method to detect local conflicts before taking all possibilities into account and

• a specialization of the main theorem in [Wei97] that specifies how to eliminate a quantifier

in the virtual substitution. This specialization exploits the constraints, which are direct

sub-formulas of a conjunction and represent an upper or lower bound for a variable, in

order to narrow down the candidates to consider during a satisfiability check with the VS.

Furthermore, it simplifies intermediate results.

Virtual substitution for integer arithmetic Up to this point, we have considered NRA formulas

for a satisfiability check. If we further restrict ourselves to find integer instead of arbitrary real

solutions for the variables, we have already seen that the question of whether a given formula

is satisfiable is not decidable in general. If the formula is linear or if all variables are lower

and upper bounded, this problem becomes satisfiable. There are two approaches which take

advantage of this. The first approach adds lower and upper bounds, then encodes the problem’s

integer domains and mathematical operations upon them to a propositional formula and checks it

for satisfiability. If a solution has been detected, we can construct an integer solution. Otherwise,

we widen the lower and upper bounds and try again. The second approach applies interval

constraint propagation. Here, we can also add progressively widened lower and upper bounds

in order to increase the likeliness of a termination.

9

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

For linear formulas, the approach used the most in practice is branch-and-bound. Firstly, it

searches for a real solution by the use of, e. g., the simplex method. If no real solution can be

found, then there is no integer-valued solution. Otherwise, if the found solution provides a non-

integer value for any variable, which is supposed to be assigned only integers, we make a case

distinction (branch). Firstly, we check whether we can find an integer solution by recursively

invoking branch-and-bound, but with the variable in question to be upper-bounded by the next

smaller integer than the found non-integer real solution. If this does not provide an integer

solution, we analogously check if we can find one, but this time with the variable being lower-

bounded by the next greater integer than the found non-integer real solution.

This approach cannot directly be applied to a procedure, which checks the satisfiability of NRA

formulas, such as the VS and CAD method. The VS method, for instance, provides parametrized

solutions, meaning that we need to construct the numeric solution of some variables in order to

be able to construct the numeric solution of another variable. We already mentioned that we can

make use of several procedures for NRA. It is crucial for the practicability of an SMT solver for

NRA to take advantage of this choice and if we want to use branch-and-bound on top of NRA

procedures, this argument still holds.

In Chapter 7, we elaborate on the following contributions from [1]:

• We present a general framework for branch-and-bound in SMT solving providing the op-

portunity to

1. demand a branching, which is shared among all procedures involved in the SMT

solving process and affects the global reasoning process,

2. while keeping this branching locally bound to the constraints that are co-responsible

for the branching.

• We formalize how to detect the variable and value, which are necessary for an application

of the aforementioned branch-and-bound methodology, when using it on top of the vir-

tual substitution method as NRA procedure. Moreover, we specify how to construct the

constraints, which are co-responsible for the branching, in this case.

A synergy of the greatest common divisor calculation, factorization and intermediate

result caching Algebraic operations on polynomials form the foundations of procedures, such

as the virtual substitution and the cylindrical algebraic decomposition method. They also oc-

cur in other settings, for instance, when calculating the reachability probabilities of parametric

discrete-time Markov chains (PDTMCs) [Daw04]. During this calculation we constantly simplify

the intermediate results, which are rational functions, i. e., a fraction of two polynomials. This

simplification involves the rather expensive greatest common divisor computation (gcd) of two poly-

nomials and, indeed, experimental results show that this operation forms one of the bottlenecks

when it comes to the calculation of the reachability probabilities of PDTMCs.

10

1.2. RELEVANT PUBLICATIONS

In Chapter 8, we present the ideas which were published as part of [3]. It aims to speed up the

gcd calculation of polynomials and thereby the simplification of rational functions by

• caching a (partial) factorization of occurring polynomials,

• maintaining this factorization during the usual operations on polynomials (+, ·, etc.) and

• exploiting this additional information in an algorithm that calculates the gcd of two poly-

nomials. Moreover, this algorithm refines the already cached polynomial factorizations as

a side effect.

1.2 Relevant publications

The aforementioned contributions yielded 7 peer-reviewed publications, which are listed in Sec-

tion 1.2.1. We also published a technical report, which is listed separately in Section 1.2.2.

Further publications, in which the author has been involved, are listed in Section 1.3.

1.2.1 Peer-reviewed publications

[1] Gereon Kremer, Florian Corzilius, and Erika Ábrahám. A generalised branch-and-bound

approach and its application in SAT modulo nonlinear integer arithmetic. In Proc. of CASC,

volume 9890 of LNCS, pages 315–335. Springer, 2016.

[2] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika Ábrahám.

SMT-RAT: An open source C++ toolbox for strategic and parallel SMT solving. In Proc. of

SAT, volume 9340 of LNCS, pages 360–368. Springer, 2015.

[3] Nils Jansen, Florian Corzilius, Matthias Volk, Ralf Wimmer, Erika Ábrahám, Joost-Pieter

Katoen, and Bernd Becker. Accelerating parametric probabilistic verification. In Proc. of

QEST, volume 8657 of LNCS, pages 404–420. Springer, 2014.

[4] Sebastian Junges, Ulrich Loup, Florian Corzilius, and Erika Ábrahám. On Gröbner bases

in the context of satisfiability-modulo-theories solving over the real numbers. In Proc. of

CAI, volume 8080 of LNCS, pages 186–198. Springer, 2013.

[5] Ulrich Loup, Karsten Scheibler, Florian Corzilius, Erika Ábrahám, and Bernd Becker. A

symbiosis of interval constraint propagation and cylindrical algebraic decomposition. In

Proc. of CADE, volume 7898 of LNCS, pages 193–207. Springer, 2013.

[6] Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika Ábrahám. SMT-RAT: An SMT-

compliant nonlinear real arithmetic toolbox. In Proc. of SAT, volume 7317 of LNCS, pages

442–448. Springer, 2012.

[7] Florian Corzilius and Erika Ábrahám. Virtual substitution for SMT-solving. In Proc. of FCT,

volume 6914 of LNCS, pages 360–371, 2011.

11

1.2. RELEVANT PUBLICATIONS

1.2.2 Technical reports

[8] Nils Jansen, Florian Corzilius, Matthias Volk, Ralf Wimmer, Erika Ábrahám, Joost-Pieter

Katoen, and Bernd Becker. Accelerating parametric probabilistic verification. CoRR,

abs/1312.3979, 2013.

[9] Sebastian Junges, Ulrich Loup, Florian Corzilius, and Erika Ábrahám. On Gröbner bases

in the context of satisfiability-modulo-theories solving over the real numbers. Technical

report at RWTH Aachen University, AIB-2013-08, 2013.

1.2.3 Contributions made by the author

For all publications, which we listed in Section 1.2.1, the author contributed to the discussions,

to the development of the ideas, to their formulation and in most cases to their implementation.

Most publications have been achieved in collaboration with many scientists, thus we emphasize

the specific contributions made by the author of this thesis.

The main focus of this thesis is clearly the virtual substitution in the context of SMT solving.

The ideas, which contribute to an SMT-compliant theory solver based on the virtual substitution

have been elaborated by the author in fruitful discussions with his supervisor Erika Ábrahám.

The results were published in [7] and led to a fully operative SMT compliant theory solver for

non-linear real arithmetic, which has been entirely implemented by the author.

Parallel to this, Ulrich Loup worked on an SMT compliant theory solver based on the cylindrical

algebraic decomposition. Moreover, Sebastian Junges, who was a research student at the time,

worked on an SMT-compliant theory solver using Gröbner bases. One of the main goals was also

to combine these theory solvers, which yielded the ideas of the toolbox SMT-RAT in 2012. The

design of the first version of SMT-RAT was accomplished in continuous discussions between the

author, Ulrich Loup, Sebastian Junges and Erika Ábrahám. The toolbox was implemented for the

greater part by the author. This work was published in [6].

Together with Karsten Scheibler and Bernd Becker from the University of Freiburg, Ulrich

Loup, Erika Ábrahám and the author developed an idea for a combination of interval constraint

propagation with the cylindrical algebraic decomposition, which was published in [5]. The

corresponding implementation and realization of the publication was mostly carried out by Ulrich

Loup and Karsten Scheibler. The author transferred these ideas to the virtual substitution, which

is presented in Section 5.4.

The work of Sebastian Junges on an SMT compliant theory solver using Gröbner bases yielded

the contributions, which were published in [4]. The results were mainly achieved by himself

and Ulrich Loup. Together with Erika Ábrahám, the author contributed to the discussions on this

topic. Moreover, he provided the implementation of further features in SMT-RAT.

The continuation of the work in the context of Matthias Volk’s Bachelor thesis, which has

been co-supervised by Nils Jansen and the author, resulted in the contributions, which were

published in [3]. Many discussions about this topic, as well as the writing process, have been

12

1.3. FURTHER PUBLICATIONS

supported by Ralf Wimmer, Erika Ábrahám, Joost-Pieter Katoen and Bernd Becker. The author

mainly contributed the ideas for an optimization of the greatest common divisor calculation of

polynomials and implemented these ideas together with Matthias Volk.

After its first publication in 2012, the toolbox SMT-RAT has always been under further develop-

ment. The author co-supervised the Diploma thesis of Henrik Schmitz, which led, with the aid

of discussions with Sebastian Junges and Erika Ábrahám, to the development of a new strategy,

which also allows sub-strategies to run in parallel. The implementation was undertaken mostly

by Henrik Schmitz. Moreover, the author co-supervised Stefan Schupp’s master thesis about the

integration of interval constraint propagation into SMT-RAT, where the implementation was ac-

complished by Stefan Schupp. Additionally, the author implemented a module in SMT-RAT, which

enables it to be used as an SMT solver, and a module, which implements an SMT-compliant theory

solver based on the simplex method as presented in [DdM06]. All these new developments along

with a new implementation of a theory solver based on the cylindrical algebraic decomposition

implemented by Gereon Kremer, were published in [2].

Together with Gereon Kremer and Erika Ábrahám, the author developed an integration of the

virtual substitution and cylindrical algebraic decomposition into a branch-and-bound framework

such that we can use these procedures for integer arithmetic. The results of this work were pub-

lished in [1]. Here, the author specifically contributed the integration of the virtual substitution,

which is also presented in Section 7.1. The other parts of Chapter 7 are strongly oriented towards

[1], which was contributed, for the greater part, by Gereon Kremer.

1.3 Further publications

[10] Erika Ábrahám, Florian Corzilius, Einar Broch Johnsen, Gereon Kremer, and Jacopo Mauro.

Zephyrus2: On the fly deployment optimization using SMT and CP technologies. In Proc.

of SETTA, pages 229–245. Springer, 2016.

[11] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias Volk, Joost-

Pieter Katoen, Erika Ábrahám, and Harold Bruintjes. Parameter synthesis for probabilistic

systems. In MBMV’16, pages 72–74. Albert-Ludwigs-Universität Freiburg, 2016.

[12] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias Volk, Harold

Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám. PROPhESY: A PRObabilistic ParamEter

SYthesis Tool. In Proc. of CAV, volume 9207 of LNCS, pages 214–231. Springer, 2015.

[13] Erika Ábrahám, Nadine Bergner, Philipp Brauner, Florian Corzilius, Nils Jansen, Thiemo

Leonhardt, Ulrich Loup, Johanna Nellen, and Ulrik Schroeder. On collaboratively convey-

ing computer science to pupils. In Proc. of KOLI, pages 132–137. ACM Press, 2011.

[14] Erika Ábrahám, Florian Corzilius, Ulrich Loup, and Thomas Sturm. A lazy SMT-solver

13

1.3. FURTHER PUBLICATIONS

for a non-linear subset of real algebra. In Dagstuhl Seminar Proceedings, volume 10271.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2010.

14

CHAPTER 2

Foundations

After some basic notations and definitions for numbers, sets, functions (Section 2.1) and graphs

(Section 2.2), we introduce the syntax and semantics of first-order arithmetic formulas in Sec-

tion 2.3, followed by some normalizations, which we can apply to these formulas in Section 2.4.

In Section 2.5, we introduce SAT solving, which is a decision procedure for a special class of

the formulas as defined in Section 2.3. With the understanding of the principles of SAT solving,

we present the general framework of an SMT solver in Section 2.6, which is capable of solving

formulas of a richer class than the one which can be solved by a SAT solver. In Section 2.7, we

introduce the virtual substitution method, which forms the basis of the contributions of this thesis

presented in the Chapters 4 - 7.

2.1 Numbers, sets and functions

Within this thesis we use Boolean constants from B := {true, false} and integer numbers/values (or

just integers) from Z := {. .,−2,−1, 0, 1, 2, . .}. The (set of) natural numbers/values N := {1, 2, . .}
are the positive non-zero integers and by N0 we refer to N ∪ {0}. We also use the rational

numbers/values (or just rationals) from Q, which are integers or fractions of integers with a

non-zero denominator, for instance 1
1 , −1

1 , 2
1 , −2

1 , 2
2 , −2

2 , 1
2 , −1

2 , . .. We also make use of the real

numbers/values (or just reals) from R, which are all numbers representing a point on a continuous

and infinite line. They consist of the rationals and irrationals, where the latter can be, i. a.,

algebraic numbers, for instance
p

2, and transcendental numbers, for instance π.

Given a set M , we denote the cardinality of M (the number of elements in M) by |M |, where

|M | =∞ if M is not finite. We denote the power set of a set M by P(M), which is the set of all

subsets of M . If |M | =∞, we obtain the set of all finite subsets of M by P<∞(M) and the set of

all infinite subsets of M by P∞(M) := P(M) \P<∞(M). Subsets of R can also be represented by

2.1. NUMBERS, SETS AND FUNCTIONS

intervals. We distinguish between the following types of intervals

[l, u] := {d ∈ R| l ≤ d ≤ u} (left- and right-closed)

(l ′, u′) := {d ∈ R| l ′ < d < u′} (left- and right-open)

[l, u′) := {d ∈ R| l ≤ d < u′} (left-closed and right-open)

(l ′, u] := {d ∈ R| l ′ < d ≤ u} (left-open and right-closed interval)

where l ∈ R, l ′ ∈ R ∪ {−∞} form the lower bound and u ∈ R, u′ ∈ R ∪ {∞} form the upper

bound. In the case that an interval is left- and right-closed we call it closed, otherwise it is open.

Moreover, if l ′ = −∞, we call the interval left-unbounded and left-bounded, otherwise. If u′ =∞,

we call the interval right-unbounded and right-bounded, otherwise. If an interval is left- and

right-bounded, we refer to it as a bounded interval, otherwise it is an unbounded interval. If l > u,

l ′ ≥ u, l ≥ u′ or l ′ ≥ u′, the interval is empty and we represent it by the empty interval ;. The

closed interval containing exactly one element, i. e., [d, d] with d ∈ R, is called a point interval.

We denote the set of all intervals by I.

A function f : M → M ′ maps elements from a set M , which we call the domain of f and denote

by Dom(f), to elements from a set M ′, which we call the codomain of f and denote by Codom(f).

We see functions also as relations f ⊆ M × M ′ with f (m) = m′ if and only if (m, m′) ∈ f . For

a function f : M → M ′ it holds that for all m ∈ M there exists no m′1, m′2 ∈ M ′ with m′1 6= m′2,

f (m) = m′1 and f (m) = m′2. If f is undefined for an element m ∈ M , i. e., there exists no m′ ∈ M ′

with (m, m′) ∈ f , we denote this by f (m) = ⊥ and call f a partial function.

Example 1 Consider the following functions.

1. The signum function maps a real value d ∈ R to its sign and is defined by

sgn: R→ {−1, 0, 1} : d 7→






1 , d > 0

−1 , d < 0

0 , otherwise.

2. We denote the greatest common divisor and least common multiple of a finite and non-empty

set of non-zero integers by

gcd: P<∞(Z \ {0}) \ {;} → N

and

lcm: P<∞(Z \ {0}) \ {;} → N,

respectively.

3. The minimum and maximum of a non-empty subset of the real numbers are denoted by

min: P(R) → R and max: P(R) → R, respectively. They are partial functions, as, for

instance, max(N), max(;), min(R) and min((0,1]) are undefined.

16

2.2. GRAPHS

4. The floor function is defined by

⌊ · ⌋: R→ Z : d 7→max({d ′ ∈ Z| d ′ ≤ d})

and the ceiling function is defined by

⌈ · ⌉: R→ Z : d 7→min({d ′ ∈ Z| d ′ ≥ d}).

5. The diameter of an interval is defined by

∆I : I→ R∪{∞} : I 7→






0 , I = ;
∞ , I is unbounded

u− l , otherwise, where l is the lower and u is the upper bound of I .

Note that the diameter of point intervals and the empty interval is 0.

2.2 Graphs

At some points in this thesis, we use graphs for illustration purposes and in the data structures of

the presented algorithms.

Definition 1 (Directed graph) A digraph or directed graph is a tuple G := (V, E) of a set V

of vertices and a set E ⊆ V × V of (directed) edges.

Two examples of directed graphs are shown in Figure 2.1.

v1

v2

v3

v4

v5 v6

v7 v8

Figure 2.1: The digraph G = ({v1, v2, v3}, {(v1, v2), (v2, v2), (v2, v3), (v3, v1)}) on the left; The directed
tree T = ({v4, v5, v6, v7, v8}, {(v4, v5), (v4, v6), (v5, v7), (v5, v8)}) on the right.

Definition 2 (Path, cycle) Given a digraph G = (V, E), a (finite) path ω (of length n ∈ N
from v1 to vn+1) in G is a sequence

ω := v1v2 . . . vnvn+1

where vi ∈ V (1 ≤ i ≤ n+ 1) and (vi , vi+1) ∈ E (1 ≤ i ≤ n). Given two vertices v, v′ ∈ V , we

say that v′ is reachable from v in G, if there is a path from v to v′ in G.

If n> 1, v1 = vn+1 and v1, . ., vn are pairwise different, we call ω a simple cycle.

17

2.3. REAL AND INTEGER ARITHMETIC

In Figure 2.1 the sequences v1v2v3 and v4v5v7 are paths, therefore, i. a., v3 is reachable from v1

and v2. Moreover, v5 and v7 are reachable from v4. The sequences v2v2 and v1v2v3v1 are simple

cycles.

Definition 3 (Directed tree) A directed tree T := (V, E) is a digraph such that either V = ;
or the following conditions hold:

1. There exists exactly one root vr ∈ V with (v, vr) /∈ E for all v ∈ V and all vertices

v ∈ V\{vr} are reachable from vr by exactly one path.

2. There exists no simple cycle in T .

If (v, v′) ∈ E we call v the father of v′ and v′ a child of v. Vertices without children are called

leaves. Let v ∈ V and Vv ⊆ V be the set containing all vertices reachable from v in T. Then

(Vv , E ∩ (Vv × Vv)) is called a subtree of T with the root v.

In Figure 2.1 the digraph on the right is a directed tree T with the root v4. In this tree, the

vertex v5 has the father v4 and the children v7 and v8, which are leaves. The subtree of T with

root v5 is defined by ({v5, v7, v8}, {(v5, v7), (v5, v8)}).

2.3 Real and integer arithmetic

As the virtual substitution and it’s adaption to SMT solving are clearly one of the major parts of

the contribution of this thesis, we do not restrict ourselves to the arithmetic formulas which SMT

solvers accept as input, but introduce the more general first-order arithmetic formulas. This is

especially necessary, as the original virtual substitution method, which we explain in Section 2.7,

operates on these formulas.

2.3.1 Syntax

Variables are one of the basic ingredients in a formula. In the context of this thesis, variables

have one of the following three domains. Firstly, variables are Boolean (or propositional) if their

domain is B. They allow us to state propositions which can be either true or false, such as “is a

certain condition/property fulfilled”. We denote the infinite set of all Boolean variables by VARB.

Secondly, variables are real-valued if their domain is R. They give us the opportunity to reason

about continuous quantities which occur, for instance, in physics, such as time, temperature,

velocity or weight. They are also imperative when proving mathematical theorems. Thirdly,

variables are integer-valued if their domain is Z. We use these variables, if we want to express,

for instance, unknown quantities of certain objects. We denote the set of all real-valued variables

by VARR and the set of all integer-valued variables by VARZ. The set of all arithmetic variables

is then VARR,Z = VARR ∪ VARZ. We define the domain of a Boolean or arithmetic variable by

Dom: VARB ∪ VARR,Z→ {B,Z,R}.
We can now construct the first order formulas, which we consider in this thesis.

18

2.3. REAL AND INTEGER ARITHMETIC

Definition 4 (Syntax of arithmetic formulas) Syntactically an (arithmetic) formula ϕ is

defined by the following abstract grammar:

p ::= 1 | x | (p+ p) | (p− p) | (p · p)
ϕ ::= b | p < p | (¬ϕ) | (ϕ ∧ϕ) | (∃x .ϕ)

Hence, it allows us to combine Boolean variables b ∈ VARB and constraints p < p with the

Boolean operators ¬ and ∧. Moreover, we can existentially quantify an arithmetic variable

x ∈ VARR,Z with ∃x .ϕ making x quantified in ϕ. Constraints compare two polynomials using

the relation (symbol) < (written: “less than”). A polynomial is either the constant 1, a real-

or integer-valued variable x ∈ VARR,Z, or the sum (+), difference (−) or product (·) of two

polynomials.

Note that in the definition of general first-order formulas as it can be found in the literature

[Bur98], the constraints correspond to predicates and polynomials correspond to terms. A formula

as defined in Definition 4 is then a Boolean combination of Boolean variables and predicates,

which are composed by possibly quantified arithmetic variables and the predicate and function

symbols of the signature τ := {1,+,−, ·,<}. Then, the set of all arithmetic formulas is denoted by

FO(τ). Furthermore, the set of all arithmetic constraints is denoted by CS⊂ FO(τ) and the set of

all polynomials is denoted by POL.

We also allow syntactic sugar such as the disjunction (∨), implication (→), exclusive disjunction

(⊕) and equivalence (↔) of two formulas ϕ1 and ϕ2. These Boolean operators can be expressed

based on the grammar in Definition 4 using the following equivalences (in this order):

ϕ1 ⊕ϕ2 ≡ (¬ϕ1)↔ ϕ2 (2.1)

ϕ1↔ ϕ2 ≡ (ϕ1→ ϕ2)∧ (ϕ2→ ϕ1) (2.2)

ϕ1→ ϕ2 ≡ (¬ϕ1)∨ϕ2 (2.3)

ϕ1 ∨ϕ2 ≡ ¬((¬ϕ1)∧ (¬ϕ2)) (2.4)

Furthermore we allow the Boolean constants true and false within a formula, where true ≡
ϕ ∨¬ϕ and false ≡ ¬true for any formula ϕ. We can also quantify a variable v universally in a

formula ϕ by ∀v.ϕ which is equivalent to ¬∃v.(¬ϕ).
We allow further relation symbols as syntactic sugar. Besides the already introduced strict

relation <, there are the strict relations > (written: “greater than”) and 6= (written: “not equal

to”). Additionally, we have the weak relations ≤, ≥ and = (written: “less than or equal to”,

“greater than or equal to” and “equal to”, respectively). We refer to the set of all relations by

REL := {<,>,=, 6=,≤,≥}. We call constraints with a weak relation weak constraints and strict

constraints otherwise. We obtain the set of all constraints in a formula with C∼ : FO(τ)→ P(CS)

and the relation of a constraint with rel: CS→ REL.

We can transform a constraint comparing two polynomials p1 and p2 with one of these rela-

19

2.3. REAL AND INTEGER ARITHMETIC

tions to an equivalent formula as defined by the grammar in Definition 4 using the following

equivalences (in this order):

p1 = p2 ≡ (p1 ≤ p2 ∧ p1 ≥ p2)

p1 ≥ p2 ≡ p2 ≤ p1

p1 ≤ p2 ≡ ¬(p1 > p2)

p1 6= p2 ≡ (p1 < p2 ∨ p1 > p2)

p1 > p2 ≡ p2 < p1

Throughout this thesis we omit parentheses and the multiplication symbol · where it does not

lead to confusion, assuming that · binds stronger than + and −, ¬ binds stronger than ∧ and

quantifiers bind weaker than any other Boolean operator. The product of the same arithmetic

variable x n times, with n ∈ N0, can be denoted by xn, which we refer to as x to the power of n.

Moreover we allow any integer within a polynomial, which can be composed by the constant 1

and the arithmetic operations as expected. By this we do not allow non-integer rationals within

a polynomial, which forms no restriction.

We further assume that if a variable x ∈ VARR,Z is bound by a quantifier Qx .ψ (Q ∈ {∃,∀})
within the formula ϕ, it holds, w. l. o. g., that x occurs in ϕ only within ψ. We call such variables

bound. If a variable is not bound it is free.

We define the set of all variables in a polynomial or formula by

Vars: (POL∪ FO(τ))→ P(VARR,Z ∪ VARB)

and the set of all free variables in a formula by

FreeVars: (POL∪ FO(τ))→ P(VARR,Z ∪ VARB).

Note that for any polynomial p ∈ POL, it holds that Vars(p)∩ VARB = ; (polynomials contain no

Boolean variables), and for any formulaϕ ∈ FO(τ), it holds that (Vars(ϕ)\FreeVars(ϕ))∩VARB =

; (Boolean variables are always free).

Given a formula ϕ ∈ FO(τ), if all variables in Vars(ϕ) are real-valued, all variables are

integer-valued or all variables are Boolean, ϕ is a real arithmetic, integer arithmetic, or Boolean/

propositional formula, respectively. If Vars(ϕ) contains both integer- and real-valued variables,

but no Boolean variables we call ϕ a mixed integer-real arithmetic formula. If Vars(ϕ) contains

Boolean variables and only real-valued, only integer-valued or both integer- and real-valued

variables, ϕ is a real arithmetic, integer arithmetic or mixed integer-real arithmetic formula with

Boolean variables. We call a formula ϕ quantifier-free, if Vars(ϕ) = FreeVars(ϕ), and a sentence,

if FreeVars(ϕ) = ;.
Given a polynomial p ∈ POL (or constraint c ∈ CS), if |Vars(p)| = 0 (or |Vars(c)| = 0) we call

p (or c) constant, if |Vars(p)| = 1 (or |Vars(c)| = 1) we call p (or c) univariate, and otherwise

20

2.3. REAL AND INTEGER ARITHMETIC

multivariate.

Example 2 Consider the formulas

ϕ1 = (¬b1 ∨ b2)↔ (b1→ b2)

ϕ2 = (x2
2 + 3) · (1+ 2x2

1)< 0

ϕ3 = z1 = 2

ϕ4 = 2z1 + 1≥ 3x1

ϕ5 = ϕ1→ ϕ3

= ((¬b1 ∨ b2)↔ (b1→ b2)) → z1 = 2

ϕ6 = ¬((x2
2 + 3) · (1+ 2x2

1)< 0∨¬(2z1 + 1≥ 3x1→ b2))

ϕ7 = ∃x1.ϕ6

= ∃x1.¬((x2
2 + 3) · (1+ 2x2

1)< 0∨¬(2z1 + 1≥ 3x1→ b2))

ϕ8 = ∃x1.∀x2. x1 x2 = x2

where Dom(b1), Dom(b2) = B, Dom(z1) = Z and Dom(x1) = Dom(x2) = R. Then, ϕ1 is a

propositional formula and ϕ2, ϕ3 and ϕ4 are constraints. Furthermore, ϕ2 is a real arithmetic

formula, ϕ3 is an integer arithmetic formula and ϕ4 is a mixed integer-real arithmetic formula. The

formula ϕ5 is an integer arithmetic formula with Boolean variables and ϕ6 is a mixed integer-real

arithmetic formula with Boolean variables. All formulas except ϕ7 and ϕ8 are quantifier-free, where

in ϕ7 the only quantified variable is x1 and, hence, b2, x2 and z1 are free variables in ϕ7. In ϕ8 all

variables are quantified, so it is a sentence. The left-hand side of ϕ2 is a multivariate polynomial

and its right-hand side is constant. The left-hand sides of ϕ3 and ϕ4 are univariate polynomials.

Moreover, ϕ2 and ϕ4 are multivariate constraints and ϕ3 is a univariate constraint.

Definition 5 (Substitution) The substitution of an arithmetic variable by a polynomial in a

formula or polynomial is defined by

· [· / ·]: (POL∪ FO(τ))× POL× VARR,Z→ POL∪ FO(τ)

such that

1[p/x] := 1

x[p/x] := p

y[p/x] := y , y 6= x

(p1 + p2)[p/x] := (p1[p/x] + p2[p/x])

(p1 − p2)[p/x] := (p1[p/x] − p2[p/x])

(p1 · p2)[p/x] := (p1[p/x] · p2[p/x])

b[p/x] := b

21

2.3. REAL AND INTEGER ARITHMETIC

(p1 < p2)[p/x] := (p1[p/x]< p2[p/x])

(¬ϕ1)[p/x] := (¬ϕ1[p/x])

(ϕ1 ∧ ϕ2)[p/x] := (ϕ1[p/x] ∧ ϕ2[p/x])

(∃x .ϕ1)[p/x] := (∃x .ϕ1)

(∃y.ϕ1)[p/x] := (∃y.ϕ1[p/x]) , y 6= x

with x , y ∈ VARR,Z, b ∈ VARB, p, p1, p2 ∈ POL and ϕ1,ϕ2 ∈ FO(τ). A substitution ϕ[p/x]

means that every free occurrence of x in ϕ is replaced by p. Furthermore, we define that

ϕ[p1/x1]. .[pn/xn] := (. .(ϕ[p1/x1]). .)[pn/xn],

where x1, . ., xn are arithmetic variables and p1, . ., pn are polynomials.

Example 3 Consider the following substitutions in two of the formulas from Example 2:

((x2
2 + 3) · (1+ 2x2

1)< 0)[1/x1] = (x2
2 + 3) · (1+ 2 · 12)< 0

= (x2
2 + 3) · 3< 0

(2z1 + 1≥ 3x1)[z1/x1][2/z1] = (2z1 + 1≥ 3z1)[2/z1]

= 5≥ 6

Given a formula ϕ, we obtain its real relaxation ϕR by substituting ϕ’s integer-valued variables

Vars(ϕ)∩ VARZ = {z1, . ., zn} by fresh real-valued variables x1, . ., xn /∈ Vars(ϕ), respectively, i. e.,

ϕR = ϕ[x1/z1]. .[xn/zn]. We obtain the Boolean abstraction ϕB of a formula ϕ by replacing ϕ’s

constraints C∼(ϕ) = {c1, . ., cn} by fresh Boolean variables b1, . ., bn /∈ Vars(ϕ), respectively. Then,

we denote the Boolean abstraction mapping by the function abstrBϕ : C∼(ϕ)→ VARB : ci 7→ bi .

2.3.2 Semantics

In Section 2.3.1 we defined how a formula can be composed syntactically, but we have not

yet fixed how we interpret the meaning of a formula. For this purpose, we usually need an

interpretation giving all yet uninterpreted identifiers in a formula a meaning. For an arithmetic

formula ϕ ∈ FO(τ), we use the τ-structure A mapping 1, +, −, · and < to their expected meaning,

which we do not axiomatize here and denote in the following by 1A, +A, −A, ·A and <A. The

only unspecified identifiers which have not yet received a fixed meaning are the variables in ϕ.

Therefore, we specify the semantics of an arithmetic formula only with respect to assignments of

values to the formula’s variables Vars(ϕ), such that we assign to a variable only values from its

domain.

Definition 6 (Assignment) An assignment (of values to variables) is a possibly partial func-

tion

α: (VARB ∪ VARR,Z)→ (B∪R) : v 7→ d ∈ Dom(v).

22

2.3. REAL AND INTEGER ARITHMETIC

We denote the set of all assignments by ASS.

Given a formula (or polynomial) ϕ, an assignment α is called a (full) assignment for ϕ if

FreeVars(ϕ) ⊆ Dom(α) and a partial assignment for ϕ, otherwise. The set of all full or partial

assignments for ϕ is denoted by Assigns(ϕ) and partialAssigns(ϕ), respectively. Note that if

FreeVars(ϕ) = ;, Assigns(ϕ) contains the empty assignment α⊥ with Dom(α⊥) = ;. Moreover,

the assignment α′ is called an extension of the assignment α, if Dom(α) ⊂ Dom(α′) and for all

v ∈ Dom(α) it holds that α′(v) = α(v).

We can adapt an assignment such that it maps a variable to a given value in the variable’s domain

by

· [· / ·]: ASS× (B∪R)× (VARB ∪ VARR,Z)→ ASS : α[d/v] 7→ α′

where

α′(v′) =

¨
d , if v′ = v

α(v′) , otherwise.

Definition 7 (Formula and polynomial evaluation) Given a full assignment α for a polyno-

mial or an arithmetic formula ϕ, we can evaluate ϕ under α by

¹ · º · : ((FO(τ)∪ POL)×ASS)→ (B∪R),

which is defined inductively with respect to the abstract grammar in Definition 4 by

¹1ºα := 1A

¹xºα := α(x)

¹p1 + p2ºα := ¹p1ºα +A ¹p2ºα

¹p1 − p2ºα := ¹p1ºα −A ¹p2ºα

¹p1 · p2ºα := ¹p1ºα ·A ¹p2ºα

¹bºα := α(b)

¹p1 < p2ºα := ¹p1ºα <A ¹p2ºα

¹¬ϕ1ºα :=

¨
false , if ¹ϕ1ºα = true

true , otherwise

¹ϕ1 ∧ϕ2ºα := ¹ϕ1ºα = true and ¹ϕ2ºα = true

¹∃v.ϕ1ºα := exists d ∈ Dom(v) such that ¹ϕ1ºα[d/v] = true

where x ∈ Dom(α) is an integer- or real-valued variable, b ∈ Dom(α) is a Boolean variable,

p1 and p2 are polynomials and ϕ1 and ϕ2 are arithmetic formulas with Vars(p1), Vars(p2),

FreeVars(ϕ1) and FreeVars(ϕ2) containing only variables from Dom(α).

Now we can determine whether a formula ϕ evaluates to true or false under a given full

assignment for ϕ, which leads us to the next definition.

23

2.4. NORMALIZATIONS

Definition 8 (Satisfiability of arithmetic formulas) For a given arithmetic formula ϕ we

define its set of solutions by

Θ(ϕ) := {α ∈ Assigns(ϕ)| ¹ϕºα = true}.

An arithmetic formula ϕ is satisfiable if and only if Θ(ϕ) 6= ;. If ϕ is not satisfiable, we call it

unsatisfiable and, if Θ(ϕ) = Assigns(ϕ), we call ϕ valid or alternatively a tautology.

Throughout this thesis we also use the term solution space instead of set of solutions and we refer

to a formula ϕ’s set of solutions or solution space for a variable v ∈ Vars(ϕ) by {d ∈ Dom(v)| ∃α ∈
Θ(ϕ). α(v) = d}.

Example 4 Consider the following three formulas from Example 2:

ϕ1 = (¬b1 ∨ b2)↔ (b1→ b2)

ϕ2 = (x2
2 + 3) · (1+ 2x2

1)< 0

ϕ5 = ((¬b1 ∨ b2)↔ (b1→ b2)) → z1 = 2

Considering Equation (2.3), the left-hand side and the right-hand side of the equivalence in ϕ1 are

indeed equivalent and, therefore, Θ(ϕ1) = Assigns(ϕ1), which makes it a tautology. As x2
1 and x2

2

are non-negative, the left-hand side of the constraint in ϕ2 is always positive. Hence, Θ(ϕ2) = ;,
which makes ϕ2 unsatisfiable. As ϕ1, which forms the left-hand side of the implication in ϕ5, is

valid, ϕ5 is satisfied if and only if its right-hand side z1 = 2 is satisfied. As z1 = 2 can be satisfied by

assigning 2 to z1, ϕ5 is satisfiable with Θ(ϕ5) = {α ∈ Assigns(ϕ5)| α(z1) = 2}.

2.4 Normalizations

The normalization process aims to specify a set of transformations, which can be applied to an

input, as long as it is not yet in a (unique) normal form. Thereby the transformations assure that

certain properties of the input are not changed. We want to normalize polynomials and formulas

in order to ease the generalization of procedures which operate on them. In the following, we

firstly present how we normalize polynomials. Based on normalized polynomials, we define a

unique normal form for constraints followed by three well known, but not unique, normal forms

for formulas which contain Boolean operators or quantifiers.

2.4.1 Polynomials

A polynomial p as defined in the grammar of Definition 4 is an element of the ring Z[x1, . ., xn],

if we assume that Vars(p) = {x1, . ., xn}. Among others, the following axioms hold, where p1, p2

and p3 are polynomials:

p1 + p2 = p2 + p1 (+ is commutative) (2.5)

24

2.4. NORMALIZATIONS

p1 · p2 = p2 · p1 (· is commutative) (2.6)

p1 · (p2 + p3) = (p1 · p2) + (p1 · p3) (· is distributive with respect to +) (2.7)

Using these axioms, we can syntactically transform a polynomial. Our aim is to define a normal

form such that it offers a unique representation for all polynomials which can be obtained by

applying a finite sequence of these transformations to this representation.

As a first step towards normalized polynomials, we have to fix an order on the arithmetic

variables which can occur in a polynomial, which we refer to as variable order.

Definition 9 (Monomial) Given a finite set of arithmetic variables {x1, . ., xn} ⊂ VARR,Z and

a variable order x1 < x2 < . .< xn−1 < xn a monomial is defined by the power product

x
e1
1 · · · ·x en

n

where ei ∈ N0, 1 ≤ i ≤ n, is called the exponent (of the variable x i). We denote the set of all

monomials over the variables x1, . ., xn by M[x1, . ., xn] and define the degree of a monomial

as follows:

deg: M[x1, . ., xn]→ N0 : x
e1
1 · · · ·x en

n 7→
n∑

i=1

ei

In the course of this thesis, we always use indexed arithmetic variables, if more than one variable

occurs. We assume the variable order to be as presented in Definition 9, that is the variable with

the lower index is smaller in the variable order. If an integer-valued variable is compared with a

real-valued variable, we assume the integer-valued variable to be smaller in the variable order.

We now want to define a normal form for polynomials based on monomials. For this pur-

pose we need an order on monomials, which can be used analogically to the variable orders in

monomials.

Definition 10 (Reverse lexicographical order) Given two monomials m1, m2 ∈ M[x1, . ., xn]

with m1 = x
e1,1

1 · · x
en,1
n and m2 = x

e1,2

1 · · x
en,2
n , it holds that

m1 < m2 (in the reverse lexicographical order)

⇔
∃i ∈ {1, . ., n}. ei,1 < ei,2 ∧ ∀ j ∈ {i + 1, . ., n}. e j,1 = e j,2.

Based on the variable and monomial order we can define a normal form for polynomials.

Definition 11 (Normalized polynomial, term) Let p ∈ POL and let Vars(p) = {x1, . ., xn}.
Using Equations (2.5-2.7), we can transform p to the normalized polynomial

a1 ·
m1︷ ︸︸ ︷

x
e1,1

1 · · x
en,1
n + · · + ak ·

mk︷ ︸︸ ︷
x

e1,k

1 · · x
en,k
n ,

where a1, . ., ak are the coefficients with either a1, . ., ak ∈ Z \ {0} or p is the zero polynomial

25

2.4. NORMALIZATIONS

(k = 1 and a1 = e1,1 = . .= en,1 = 0). For the monomials m1, . ., mk ∈ M[x1, . ., xn] it holds that

mk < mk−1 < . .< m2 < m1 (in reverse lexicographical order). We call the product t j := a j ·m j

of a coefficient and monomial a term (1≤ j ≤ k). The term a1 ·m1 is called the leading term

with a1 being the leading coefficient. By deg(t j) := deg(m j) we denote the degree of the term

t j. If deg(tk) = 0 then tk = ak is constant and forms the constant part of p. Otherwise the

constant part of p is 0. We denote the set of all (normalized) polynomials over the variables

x1, . ., xn by Z[x1, . ., xn].

The (total) degree of normalized polynomials p = t1 + . .+ tk is defined by

deg: POL→ N0 : p 7→max({deg(t j)| 1≤ j ≤ k})

and the degree of a variable in a normalized polynomial is defined by

deg: {x1, . ., xn} ×Z[x1, . ., xn]→ N0 : (x i , p) 7→max({ei, j | 1≤ j ≤ k}).
We call a polynomial p constant, if deg(p) = 0, linear, if deg(p) = 1, and nonlinear, otherwise.

Note that we do not allow rationals in polynomials as defined by the grammar of Definition 4. The

same holds for polynomials in normal form. Fortunately, this is no restriction, as we can easily

transform a polynomial with rationals to a polynomial as defined by the grammar of Definition 4,

by first transforming it to a normal form analogously to Definition 11 and then multiplying the

result’s coefficients by the least common multiple of their denominators.

Example 5 We transform the polynomial, which forms the left-hand side of the constraint in ϕ2

from Example 2, to a normalized polynomial using Equations (2.5-2.7) as follows:

(x2
2 + 3) · (1+ 2x2

1)
Eq. 2.7
= (x2

2 + 3) + (x2
2 + 3)2x2

1
Eq. 2.6
= (x2

2 + 3) + 2x2
1(x

2
2 + 3)

Eq. 2.7
= x2

2 + 3+ x2
2 · 2x2

1 + 3 · 2x2
1

Eq. 2.6
= x2

2 + 3+ 2x2
1 x2

2 + 6x2
1

Eq. 2.5
= 2x2

1 x2
2 + x2

2 + 6x2
1 + 3

The resulting polynomial is normalized, as its monomials are normalized and in reverse lexicograph-

ical order

x0
1 x0

2 < x2
1 x0

2 < x0
1 x2

2 < x2
1 x2

2 .

The leading term is 2x2
1 x2

2 , the leading coefficient is 2 and the constant part is 3. The degree of the

resulting polynomial is max({4, 2, 2, 0}) = 4 and its degree in x1 and x2 is 2 in both cases.

Throughout this thesis, polynomials are always expected to be in normal form no matter

whether they are from POL or we know, that they contain the variables x1, . ., xn and are from

Z[x1, . ., xn]. For the sake of the ability of distinguishing normalized polynomials, we also need

an order for them.

26

2.4. NORMALIZATIONS

Definition 12 (Polynomial order) Given two polynomials p1, p2 ∈ Z[x1, . ., xn] with p1 =

a1,1 ·m1,1 + . .+ a1,k1
·m1,k1

and p2 = a2,1 ·m2,1 + . .+ a2,k2
·m2,k2

it holds that

p1 < p2 (in the polynomial order)

⇔
∃i ∈ {1, . ., min({k1, k2})}. (m1,i < m2,i ∨ (m1,i = m2,i ∧ a1,i < a2,i))

∧ ∀ j ∈ {1, . ., i − 1}. m1, j = m2, j ∧ a1, j = a2, j

with (m1, j = m2, j) := ¬(m1, j < m2, j ∨m2, j < m1, j).

We use this order to distinguish two polynomials p1 and p2 by simply checking whether p1 < p2

or p2 < p1.

In the context of satisfiability checking and especially the virtual substitution as explained in

Section 2.7, we are often interested in the full assignments for a polynomial p which evaluate it

to 0. We call the set of these assignments the zeros of p and denote it by

zeros: Z[x1, . ., xn]→ ASS : p 7→ {α ∈ Assigns(p)| ¹pºα = 0}.

We can divide a polynomial p :=
∑k

i=1 aimi into the product of it’s content, which is denoted by

cont: Z[x1, . ., xn]→ Z : p 7→
¨

sgn(a1) · gcd({a1, . ., ak}) , p 6= 0

0 , otherwise

and primitive part, which is denoted by

prim: Z[x1, . ., xn]→ Z[x1, . ., xn] :

¨
p 7→
∑k

i=1
ai

cont(p)mi , if p 6= 0

0 7→ 0 , otherwise

i. e., p = cont(p) · prim(p). Note that the coefficients of prim(p) are integers and that zeros(p) =

zeros(prim(p)). If prim(p) = p we call p primitive.

The normal form of the result of a multiplication of two polynomials in normal form with k1

and k2 terms, respectively, has in the worst case k1 · k2 terms. We accept this cost, as many of the

operations we perform on polynomials iterate over their terms and therefore we need to expand

the polynomial anyway. Additionally, we present an alternative representation of polynomials

in Chapter 8, which tries to avoid the complexity of polynomial multiplication while storing

polynomials as products of polynomials as introduced in Definition 13.

Definition 13 (Polynomial factorization) Given a primitive polynomial p 6= 0, a factoriza-

tion of p is defined by

{pe1
1 , . . . , pen

n }

with the n ∈ N0 factors p
ei

i
, such that the bases p1, . ., pn 6∈ {0, 1} are pairwise different primitive

polynomials, the exponents are e1, . ., en ∈ N and it holds that p =
∏n

i=1 p
ei

i
(which is defined to

27

2.4. NORMALIZATIONS

be 1 for n= 0). We denote the set of all polynomial factorizations by FAC.

Note that the only factorization of the polynomial 1 is ;. Note that a factorization is a set, which

is ordered by the bases of its factors according to the polynomial order of Definition 12.

The factorization of a primitive polynomial p is not unique in many cases. However, if it

is unique then the (only) factorization of p is {p1} and we call p irreducible. If the bases of all

factors in a factorization of p are irreducible, we call it a full factorization and otherwise a (partial)

factorization. Note that every non-constant primitive polynomial has a unique full factorization.

Example 6 Consider the polynomial

p = 6x4
1 x2

2 + 3x2
1 x2

2 + 18x4
1 + 9x2

1

which is the product of the result 2x2
1 x2

2 + x2
2 + 6x2

1 + 3 from Example 5 and the polynomial 3x2
1 .

The primitive part of p is

prim(p) = 2x4
1 x2

2 + x2
1 x2

2 + 6x4
1 + 3x2

1

and the content of p is cont(p) = 3. A valid factorization of prim(p) is, for instance,

{x2
1 , (2x2

1 x2
2 + x2

2 + 6x2
1 + 3)1},

as x1 and 2x2
1 x2

2 + x2
2 + 6x2

1 + 3 are both primitive. The full factorization of prim(p) is

{x2
1 , (2x2

1 + 1)1, (x2
2 + 3)1},

as x1, 2x2
1 + 1 and x2

2 + 3 are all irreducible.

2.4.2 Formulas

When transforming a formula ϕ in order to attain a normal form, we have to make sure that

the result ψ of a transformation is equivalent to ϕ, where ϕ and ψ are equivalent, if and only if

Θ(ϕ) = Θ(ψ). If we allow a transformation to eliminate all occurrences of some variables in ϕ

or to introduce fresh variables, that is variables which are not yet elements of Vars(ϕ), we need

a more general property than equivalence.

Definition 14 (Equisatisfiability of formulas) Two formulas ϕ and ψ are equisatisfiable if

and only if Θ(ϕ) 6= ; ⇐⇒ Θ(ψ) 6= ; .

Note that two equisatisfiable formulas ϕ and ψ with Vars(ϕ) 6= Vars(ψ) are not equivalent,

as Θ(ϕ) 6= Θ(ψ). All transformations, which we use in the remainder of this section in order

to achieve a normal form, keep the formula to transform and the result of the transformation

equisatisfiable.

28

2.4. NORMALIZATIONS

2.4.2.1 Constraints

In general, we only apply a simple normalization to constraints with the intention of minimizing

the cases we must consider in the procedures presented in this thesis.

Definition 15 (Normalized constraint) Given a real or mixed-integer-real arithmetic con-

straint c := p1 ∼ p2 (∼∈ REL) as defined by the grammar of Definition 4, where we also take

the relations into account which we defined as syntactic sugar, the normal form of c is depicted

in the following table, where p := prim(p1 − p2) and d := cont(p1 − p2):

< ≤ = 6= ≥ >

p = 0 false true true false true false

p = 1 ∧ d < 0 true true false true false false

p = 1 ∧ d > 0 false false false true true true

p 6∈ {0, 1} ∧ d < 0 p > 0 p ≥ 0 p = 0 p 6= 0 p ≤ 0 p < 0

p 6∈ {0, 1} ∧ d > 0 p < 0 p ≤ 0 p = 0 p 6= 0 p ≥ 0 p > 0

By this normalization we either transform a constraint to a Boolean constant or reach the state

that the normalized constraint’s right-hand side is 0 and that it’s left-hand side is a non-constant

primitive polynomial. From here on, we assume constraints to be normalized.

Example 7 Considering the constraints occurring in Example 2 and Example 3, we normalize them

as follows:

(x2
2 + 3) · (1+ 2x2

1)< 0 = 2x2
1 x2

2 + x2
2 + 6x2

1 + 3< 0

z1 = 2 = z1 − 2= 0

2z1 + 1≥ 3x1 = 3x1 − 2z1 − 1≤ 0

(x2
2 + 3) · 3< 0 = x2

2 + 3< 0

5≥ 6 = false

x1 x2 = x2 = x1 x2 − x2 = 0

In Example 5 we have already seen how to normalize the left-hand side of (x2
2 + 3) · (1+ 2x2

1)< 0

and the left-hand sides of z1 = 2 and x1 x2 = x2 are normalized polynomials straight away, if we

subtract 2 and x2 from both the left- and the right-hand side, respectively. The three constraints are

normalized, as their left-hand sides are primitive and their right-hand sides are zero (the last row of

the table in Definition 15 applies). It is a bit more complicated for 2z1 + 1≥ 3x1. After subtracting

its right-hand side and ordering the terms on the left-hand side, we obtain −3x1 + 2z1 + 1 ≥ 0.

The primitive part of the left-hand side is 3x1 − 2z1 − 1 and its content is −1. From the table in

Definition 15 we can look up the result in the fourth row and fifth column. The primitive part of

(x2
2 + 3) · 3 < 0 is x2

2 + 3 and its content is 3, therefore we can find its normalized version in the

last row and first column. The last constraint 5 ≥ 6 can obviously be evaluated to false. In the

normalization process however, we would achieve this information automatically by subtracting the

29

2.4. NORMALIZATIONS

constraint by 6 resulting in −1≥ 0. Here the primitive part is 1 and the content is −1, therefore we

can find the normalized version of the constraint in the second row and fifth column, which is indeed

false.

For integer arithmetic constraints, we can achieve further normalizations in addition to those

in Definition 15.

Definition 16 (Normalized integer arithmetic constraint) Let p ∼ 0 be an integer arith-

metic constraint (in normal form according to Definition 15, therefore p =
∑k

i=1 aimi). Further-

more, we assume, w. l. o. g., that ∼∈ {<,≤,=,≥,>} (as p 6= 0 is equivalent (p < 0∨ p > 0)).

The normal form of p ∼ 0 is depicted in the following table:

< ≤ = ≥ >

d ∈ Z r + d + 1≤ 0 r + d ≤ 0 r + d = 0 r + d ≥ 0 r + d − 1≥ 0

d 6∈ Z r + ⌈d⌉ ≤ 0 r + ⌈d⌉ ≤ 0 false r + ⌊d⌋ ≥ 0 r + ⌊d⌋ ≥ 0

with

r =

(∑k−1
i=1

ai

gcd({a1,. .,ak−1}) ·mi , if deg(mk) = 0
∑k

i=1
ai

gcd({a1,. .,ak}) ·mi , otherwise

and

d =

(
ak

gcd({a1,. .,ak−1}) , if deg(mk) = 0

0 , otherwise.

Therefore, normalized integer-arithmetic constraints contain only weak relations. Over the course

of this thesis we assume an integer arithmetic constraint to be normalized as given by Defini-

tion 16.

A similar normalization was already presented in [DDA09] for linear integer-arithmetic con-

straints and it is based on the fact that r + d = 0 only has a solution if d ∈ Z. A formal proof can

be found in [NW88].

The main idea of why the normalization in Definition 16 results in an equisatisfiable constraint

can be explained as follows. We divide the left-hand side of the constraint c := p ∼ 0 by the

greatest common divisor g of the coefficients of p’s non-constant terms, which does not change

the set of solutions of c as g is a positive rational and c’s right-hand side is 0. By the definition

of the greatest common divisor, we know that for all coefficients ai of p’s non-constant terms it

must hold that ai

g ∈ Z. Given a solution of c, we know that all monomials are evaluated to an

integer as the product of two integers is an integer. Hence, for a given integer solution of c, r is

also evaluated to an integer, as the sum of two integers is integral. If c is an equation, it follows

that it has no solution if d is not integral (Column 3 of the table in Definition 16). If the relation

symbol of c is <, any solution of c must evaluate r to an integer which is strictly less than −d or,

equivalently, to an integer which is less than or equal to the next smaller integer than −d. This

is −⌈d⌉, if d is not integer, or −d − 1, otherwise. If the relation symbol of c is ≤, any solution of

30

2.4. NORMALIZATIONS

c must evaluate r to an integer which is less than or equal to −d, which is −⌈d⌉, if d is not an

integer, or −d, otherwise. If the relation symbol of c is > or ≥, we can simply multiply it by −1,

which results in a constraint with the relation symbol < or ≤, respectively, and apply the previous

reasoning.

In the remainder of this thesis, we obtain the polynomial on the left-hand side of a (normalized)

constraint by

Pol: CS→ POL : p ∼ 0 7→ p

and define the set of all polynomials in a formula by

Pols: FO(τ)→ P(POL) : ϕ 7→ {Pol(c′)| c′ ∈ C∼(ϕ)}.

2.4.2.2 Quantifier-free formulas with Boolean operators

In Equations (2.1-2.4) we already had a glimpse of the most important rules which we need for

syntactical transformations of a formula. This implies that we do not change the semantics when

using these equivalences for transformation, and therefore obtain an equivalent (and equisatis-

fiable) result. The last equation belongs to De Morgan’s laws, which are, given two formulas ϕ1

and ϕ2, defined by the following equivalences:

¬(ϕ1 ∨ϕ2)≡ (¬ϕ1 ∧¬ϕ2) (2.8)

¬(ϕ1 ∧ϕ2)≡ (¬ϕ1 ∨¬ϕ2) (2.9)

Moreover, two subsequent negations cancel each other out, i. e.,

¬(¬(ϕ))≡ ϕ, (2.10)

where ϕ is an arithmetic formula. There is one more rather natural set of equivalences, for which

we need to define how to invert a relation:

inv: REL→ REL : ∼ 7→






≥ , if ∼ is <

> , if ∼ is ≤
6= , if ∼ is =

= , if ∼ is 6=
< , if ∼ is ≥
≤ , otherwise.

Then the following equivalences hold:

¬(p ∼ 0)≡ p inv(∼) 0 (2.11)

¬(true)≡ false (2.12)

31

2.4. NORMALIZATIONS

¬(false)≡ true (2.13)

Definition 17 (Negation normal form) A quantifier-free formulaϕ in negation normal form

(NNF) is defined by the abstract grammar

ϕ ::= false | true | b | ¬b | c | (ϕ ∧ϕ) | (ϕ ∨ϕ)

where b is a Boolean variable and c is a constraint.

The main characteristic of a formula in NNF is that it does not contain negations, i. e., ¬, except in

front of a Boolean variable. We can transform any quantifier-free formula to NNF by first applying

Equations (2.1-2.4) in order to obtain a formula containing only the Boolean operators ¬, ∧ and

∨. Afterwards, we apply the Equations (2.8-2.13), from left to right, respectively, until reaching

a fix-point, which is then a formula in NNF.

The number of transformations to be made in order to attain a formula in NNF from a given

quantifier-free formula ϕ grows linearly as the number of Boolean operations and constraints in

ϕ increases.

We also want to make use of the commutative, associative and distributive properties of the

Boolean operators ∧ and ∨

ϕ1 ∧ϕ2 ≡ ϕ2 ∧ϕ1 (2.14)

ϕ1 ∨ϕ2 ≡ ϕ2 ∨ϕ1 (2.15)

(ϕ1 ∧ϕ2)∧ϕ3 ≡ ϕ1 ∧ (ϕ2 ∧ϕ3) ≡ ϕ1 ∧ϕ2 ∧ϕ3 (2.16)

(ϕ1 ∨ϕ2)∨ϕ3 ≡ ϕ1 ∨ (ϕ2 ∨ϕ3) ≡ ϕ1 ∨ϕ2 ∨ϕ3 (2.17)

(ϕ1 ∧ϕ2)∨ϕ3 ≡ (ϕ1 ∨ϕ3)∧ (ϕ2 ∨ϕ3) (2.18)

(ϕ1 ∨ϕ2)∧ϕ3 ≡ (ϕ1 ∧ϕ3)∨ (ϕ2 ∧ϕ3) (2.19)

with ϕ1, ϕ2 and ϕ3 being formulas. We can therefore assume that nested conjunctions and

disjunctions as given on the left-hand sides of the Equations (2.16-2.17) are always transformed

to the corresponding right-hand side.

Example 8 We can transform the formula ϕ6, as introduced in Example 2 but with normalized

constraints, to NNF in the following steps:

¬(2x2
1 x2

2 + x2
2 + 6x2

1 + 3< 0∨¬(3x1 − 2z1 − 1≤ 0 → b2))
Eq. 2.8
= ¬(2x2

1 x2
2 + x2

2 + 6x2
1 + 3< 0) ∧ ¬(¬(3x1 − 2z1 − 1≤ 0 → b2))

Eq. 2.10
= ¬(2x2

1 x2
2 + x2

2 + 6x2
1 + 3< 0) ∧ (3x1 − 2z1 − 1≤ 0 → b2)

Eq. 2.11
= 2x2

1 x2
2 + x2

2 + 6x2
1 + 3≥ 0 ∧ (3x1 − 2z1 − 1≤ 0 → b2)

Eq. 2.3
= 2x2

1 x2
2 + x2

2 + 6x2
1 + 3≥ 0 ∧ (¬(3x1 − 2z1 − 1≤ 0) ∨ b2)

Eq. 2.11
= 2x2

1 x2
2 + x2

2 + 6x2
1 + 3≥ 0 ∧ (3x1 − 2z1 − 1> 0 ∨ b2)

32

2.4. NORMALIZATIONS

In the area of satisfiability checking, especially for propositional formulas, we often use a

normal form which allows us to have a supplemental definition for satisfiability.

Definition 18 (Conjunctive normal form) A quantifier-free formula ϕ in conjunctive nor-

mal form (CNF) is defined by the abstract grammar

at ::= b | c

l ::= at | ¬at

ls ::= l ∨ ls | l ∨ l

cl ::= (ls) | l

ϕ ::= cl∧ϕ | cl

where at is called an atom and is either a Boolean variable b or a constraint c. A literal l is either

an atom or its negation, which we refer to as positive and negative literal, respectively. We denote

the set of all atoms by At := VARB ∪CS and the set of all literals by Lit := At∪ {¬at| at ∈ At}.
The inverse of a literal is defined by

: Lit→ Lit : l 7→
¨

at , if l = ¬at

¬at , otherwise.

A clause cl is either a disjunction of literals or consists of exactly one literal making the clause

unary. We denote the set of all clauses by

Cl := {
∨

l∈M

l| M ∈ P<∞(Lit)},

where we leave out infinite clauses and clauses, which contain a literal more than once. For a

clause cl ∈ Cl, we write that l ∈ cl, if cl contains the literal l.

We can transform any quantifier-free formula to CNF by a procedure called Tseitin’s encoding

[Tse83]. Given a formula ϕ which we want to transform to CNF, the main idea of Tseitin’s

encoding is to introduce a fresh Boolean variable b for each Boolean operation in ϕ and assure

the equivalence between b and the sub-formula formed by the Boolean operation. If the formula,

which we want to transform to CNF, is already in NNF, it is enough to assure that b implies this

sub-formula instead. Note that the result of Tseitin’s encoding is equisatisfiable but not equivalent

to the input formula as it introduces fresh Boolean variables.

Example 9 The result of Example 8 is in CNF and, indeed, we can use the Equations (2.1-2.4,

2.8-2.10, 2.14-2.19) in order to syntactically transform a formula to CNF. However, the number of

transformations to be made this way, in order to obtain a formula in CNF from a given quantifier-free

formula ϕ, may grow exponentially as the number of Boolean operations in ϕ increases.

Alternatively, we can use Tseitin’s encoding to transform ϕ6 to CNF. We assume that there are no

consecutive negations, as they can easily be cancelled out by the use of Equation (2.10). Then, it is

sufficient to introduce a fresh Boolean variable b for the Boolean operations, which are not a negation.

33

2.4. NORMALIZATIONS

The formula can be represented by the following parse tree, where c1 := 2x2
1 x2

2 + x2
2 + 6x2

1 + 3< 0,

c2 := 3x1 − 2z1 − 1 ≤ 0 and b3 and b4 are Boolean variables, which Tseitin’s encoding introduces

for the two Boolean operations, which are not negations.

¬

∨ b3

c1 ¬

→ b4

c2 b2

Tseitin’s encoding transforms the formula in the following steps to CNF:

¬(c1 ∨¬(c2→ b2))

= ¬b3 ∧ (b3↔ (c1 ∨¬b4)) ∧ (b4↔ (c2→ b2))
Eq. (2.2)
= ¬b3 ∧ (b3→ (c1 ∨¬b4)) ∧ ((c1 ∨¬b4)→ b3)

∧ (b4→ (c2→ b2)) ∧ ((c2→ b2)→ b4)
Eq. (2.3)
= ¬b3 ∧ (¬b3 ∨ (c1 ∨¬b4)) ∧ (¬(c1 ∨¬b4)∨ b3)

∧ (¬b4 ∨ (¬c2 ∨ b2)) ∧ (¬(¬c2 ∨ b2)∨ b4)
Eq. (2.8)
= ¬b3 ∧ (¬b3 ∨ (c1 ∨¬b4)) ∧ ((¬c1 ∧ b4)∨ b3)

∧ (¬b4 ∨ (¬c2 ∨ b2)) ∧ ((c2 ∧¬b2)∨ b4)
Eq. (2.18)
= ¬b3 ∧ (¬b3 ∨ (c1 ∨¬b4)) ∧ ((¬c1 ∨ b3)∧ (b4 ∨ b3))

∧ (¬b4 ∨ (¬c2 ∨ b2)) ∧ ((c2 ∨ b4)∧ (¬b2 ∨ b4))
Eq. (2.16−2.17)

= ¬b3 ∧ (¬b3 ∨ c1 ∨¬b4) ∧ (¬c1 ∨ b3) ∧ (b4 ∨ b3)

∧ (¬b4 ∨¬c2 ∨ b2) ∧ (c2 ∨ b4) ∧ (¬b2 ∨ b4)

Given a clause cl and a (partial) assignment α for cl, we call cl satisfied (under the assignment

α) if at least one literal l in cl is satisfied (under the assignment α), i. e., α defines a value for l and

¹lºα = true. Note that cl can be satisfied even if some variables in Vars(cl) are not assigned by α.

If α is a full assignment for cl and ¹clºα = false, we call cl conflicting (under the assignment α),

which only happens, if for all literals l in cl it holds that ¹lºα = false. If cl is not satisfied and α

is defined on all but one variable in Vars(cl), we call cl unit (under the assignment α). The search

for a satisfying assignment for a formula in CNF can be achieved by finding an assignment for

the formula, such that in each clause at least one literal is satisfied. State-of-the-art algorithms

for checking the satisfiability of propositional formulas, as introduced in Section 2.5, use this fact

and, for this reason, transform their input to CNF.

It is possible to apply equivalence transformations based on the Equations (2.1-2.4, 2.8-2.19) to

a formula, which is in CNF or NNF, resulting in a formula which is still in CNF or NNF, respectively.

34

2.5. SAT SOLVING

Therefore, neither the CNF nor the NNF of a given formula is unique.

2.4.2.3 Quantified formulas with Boolean operators

In Section 2.3.1 we already introduced an assumption on quantified formulas, which is that if

a variable v is bound by a quantifier Qv.ψ (Q ∈ {∃,∀}) within the formula ϕ, it holds, w. l. o. g.,

that v occurs in ϕ only within ψ. We can achieve this normal form by simply substituting such a

quantified variable v in Qv.ψ by a fresh variable, if v also occurs outside of ψ.

If we assume that a formula as defined by the grammar of Definition 4 fulfills this criterion, we

can make use of the equivalences

¬(∃v.ϕ) ≡ ∀v.(¬ϕ)
¬(∀v.ϕ) ≡ ∃v.(¬ϕ)
(Qv.ϕ ∧ψ) ≡ (Qv.(ϕ ∧ψ))
(ϕ ∧Qv.ψ) ≡ (Qv.(ϕ ∧ψ))

(2.20)

with v being a variable, ϕ and ψ being formulas and Q ∈ {∃,∀}. Applying these equivalences

from left to right, respectively, to a given formula until reaching a fix-point attains the following

normal form.

Definition 19 (Prenex normal form) A formula ϕ in prenex normal form (PNF) is defined

by the abstract grammar

ψ ::= ϕ | ∃v.ψ | ∀v.ψ

where v is a variable and ϕ is a quantifier-free formula.

If the PNF of a formula ψ contains only existential quantifiers, i. e., is of the form ∃v1.. .∃vn.ϕ

with ϕ being a quantifier-free formula, ψ is satisfiable/valid if and only if ϕ is satisfiable/valid.

Similar to formulas in CNF and NNF, we can apply equivalence transformations to a formula in

PNF such that we obtain a formula which is still in PNF. Hence, there is in general also no unique

PNF of a given formula.

2.5 SAT solving

If we only consider propositional formulas, this is seemingly a huge limitation compared to

general formulas with arithmetic constraints and quantifiers as defined in Section 2.3. However,

checking propositional formulas for satisfiability, which we refer to as SAT solving, has been very

successfully applied to industry and research in recent decades. The reason for this story of

success is twofold.

Firstly, we can encode a vast quantity of diverse problems into propositional logic. In [MS08]

and [CES+09] a wide range of applications for SAT solving is listed. In some of them, such as

computer aided design of electronic circuits [Lar92] or model-checking of finite-state systems

[BCCZ99], it is often natural to use propositional logic. In other applications, such as software

35

2.5. SAT SOLVING

verification, program termination analysis and planning, it might be necessary to abstract from

the real problem in order to achieve a propositional formula. Due to the high complexity of these

problems, an abstraction can be crucial for finding a practical solution. Unfortunately, it can be a

tedious or even impossible task to break down the problem to an encoding in propositional logic.

In the field of SAT modulo theories (SMT) solving, which is introduced in Section 2.6, we allow

more general formulas as input and check their satisfiability by an automatic and usually lazy

encoding to propositional logic which is passed interactively to an internal SAT solver. Hence,

SMT solving opens the door for further problems for SAT solving.

The second reason for the success of SAT solving is clearly the tremendous progress in improving

the performance of SAT solvers, which we have observed in the last two decades. It makes SAT

solving available for problem instances of real applications with up to ten million variables

and clauses [JBRS12]. These instances are solved within a few minutes or often even only a

few seconds, which is remarkable if we consider that checking the satisfiability of propositional

formulas was one of the first problems proven to be NP complete [Coo71]. The reason for

this performance lies in the nature of the problem instances of real applications. Compared to

randomly generated problems, they possess certain structures which are strongly exploited by

modern SAT solvers.

In the following we describe the main ideas of the algorithm which is used in almost all

state-of-the-art SAT solvers. This algorithm is based on conflict-driven clause learning (CDCL),

which extends the DPLL algorithm, introduced in 1962 by Martin Davis, Hilary Putnam, George

Logemann and Donald W. Loveland [DLL62], by non-chronological backtracking and learning.

The main algorithm and its sub-procedures, which we explain in the following, are based on

MiniSat [ES04], since we use its implementation as a basis for the SAT solver within our own

SMT solver, which we introduce in Chapter 3. We chose MiniSat as it is a compact and extensible

open-source software, which nowadays still forms the basis of some of the best performing SAT

solvers and SMT solvers. For a broad overview and further details on SAT solving we refer to

[Han09]

2.5.1 Data structures and sub-procedures

Algorithm 1 describes a procedure to check a given propositional formula for satisfiability with

a CDCL-based implementation similar to the one of MiniSat. During runtime it manipulates

certain data structures, which do not directly appear in the pseudo code.

clauses: This is the set of clauses in the CNF of the input formula.

learneds: These are the clauses, which we learn after the conflict analysis.

assigns: It stores the assignments of Boolean constants to Boolean variables. We store the

variable assignment along with the decision level in which it took place and its antecedent.

The antecedent is either the clause we used via unit propagation in order to obtain the

36

2.5. SAT SOLVING

variable assignment or ⊥, if the variable was assigned owing to a decision (the terms

“decision”, “decision level” and “antecedent” are explained in detail in the remainder of this

section).

activities: Activities of Boolean variables, which are used to decide to which unassigned

Boolean variable we assign a Boolean constant next.

These data structures are not only essential for the understanding of CDCL but also play an

important role at some points later in this thesis. There are further data structures defined in

MiniSat, which we do not introduce here, such as the watch lists which help to find unit and

conflicting clauses efficiently. For more details we refer to [ES04].

In the following we first explain the sub-procedures, which are used in Algorithm 1.

decide(): If an unassigned variable exists, this procedure chooses one with the highest activity

according to activities and assigns to it a heuristically determined Boolean constant. We

call this choice a decision and the variable assignment is stored in assigns with antecedent

⊥ . Afterwards, this procedure returns true. If, however, all variables are already assigned,

this procedure just returns false. Note that we start a new decision level just before each

decision and say that a variable was assigned in the i-th decision level, if i decision levels

were already started.

propagate(): As long as no clause (neither in clauses nor in learneds) is conflicting under the

currently found partial assignment in assigns and a unit clause cl exists, this procedure

assigns to the unassigned variable b in cl a Boolean constant such that cl is satisfied. We call

this process Boolean constraint propagation (BCP). If during the BCP a conflicting clause is

detected, this procedure returns the pointer to this clause, otherwise, if BCP stops since no

unit clause exists, it returns null.

addClause(clause cl, bool learned): If the given clause cl is not unary, this procedure adds cl

either to clauses, if the second argument learned is false, or otherwise to learneds. If

cl is unit, we assign the yet unassigned variable such that cl is satisfied. If, otherwise, cl is

conflicting, we try to resolve this conflict:

• The literals in cl were assigned at different decision levels. Then, we backtrack to the

second highest decision level i, that is we undo all assignment which were made in a

decision level j with j > i. Afterwards we return i.

• All literals in cl were assigned at the same decision level i with i > 0. Then, we

backtrack to decision level 0 and return 0.

• All literals in cl were assigned at the decision level 0. This means that we cannot

resolve the conflict and return −1.

analyzeConflict(clausePointer confl): Assume that cl is the clause to which confl points. The

procedure analyzeConflict, which we refer to as the conflict analysis, calculates and returns

37

2.5. SAT SOLVING

the conflict clause cl′ = analyze(cl), where

analyze: Cl→ Cl : cl 7→
¨

cl , if cl is asserting

analyze(bRes(antecedent(b), cl, b)) , otherwise

with

• b being the last variable, which was assigned in cl,

• a clause being asserting if it contains exactly one literal whose variable has been

assigned in the current decision level and all literals are assigned to false,

• antecedent: VARB → Cl being defined for variables whose values were implied by

propagation and it determines the clause, which was during propagation unit and

implied the assignment for the given Boolean variable, and

• the binary resolution of two clauses cl = (l1 ∨ . .∨ ln ∨¬b) and cl′ = (l ′1 ∨ . .∨ l ′m ∨ b)

being defined by

bRes: Cl×Cl× VARB→ Cl : (cl, cl′, b) 7→ (l1 ∨ . .∨ ln ∨ l ′1 ∨ . .∨ l ′m).

As we have used cl= antecedent(b) during propagation as a unit clause to assign false to

b, cl contains the literal ¬b. We furthermore know that cl′ contains b. Therefore, the result

of bRes(cl, cl′, b) does not contain b. This way we cancel out exactly one Boolean variable

of the current decision level with each recursive invocation of analyze(. .) and always reach

an asserting clause in a finite number of recursive invocations. In this procedure we also

update the activities (in activities) of the variables, which took part in the conflict

analysis. According to the variable state independent decaying sum (VSIDS) decision heuristic

[MMZ+01], we increment the activities of these variables by a value and increment this

value afterwards. This ensures that the most recent conflicts influence the activities of the

variables the most.

simplify(): This procedure assumes that we are currently in decision level 0 and can therefore

(optionally) simplify the clauses in clauses and learneds regarding the assignments of

decision level 0. Note that these assignments are directly implied by unary clauses or the

propagation before any decision has been made. A valid simplification would be to remove

all clauses which are satisfied and after this we could also remove all literals, which are

assigned but not satisfied, from the clauses.

forget(): This procedure removes clauses from learneds according to some heuristics. Usually

we do not remove clauses with only two literals or clauses which recently took part in the

conflict analysis. This procedure is called if the number of learned clauses exceeds a certain

threshold. If this is the case, the threshold is increased by some factor, which ensures the

completeness of CDCL.

38

2.5. SAT SOLVING

Algorithm 1 The CDCL-based SAT solving algorithm similar to the implementation of MiniSat.

check(propositional formula ϕ)
begin

1: // initialize current decision level

2: dl := 0
3: // add clauses in CNF of ϕ

4: for each clause cl in CNF of ϕ do

5: if addClause(cl , false) = −1 then return unsat // conflicting unary clause added

6: end for

7: // start search for satisfying assignment

8: while true do

9: confl :=propagate() // apply unit propagation

10: if confl 6= null then

11: if dl= 0 then return unsat // conflict cannot be resolved

12: // create conflict clause and update activities

13: cl := analyzeConflict(confl)
14: // add clause, backtrack to its second highest decision level and store it in dl
15: dl := addClause(cl, true)
16: else

17: if dl= 0 then simplify() // try to simplify considered clauses

18: if "enough clauses learned" then forget() // try to forget learned clauses

19: if "enough conflicts occurred" then restart() // backtrack to decision level 0

20: // assign a Boolean constant to an unassigned variable with highest activity

21: dl := dl+ 1
22: if decide() = false then

23: return sat // all variables are assigned

24: end if

25: end while

end

restart(): This procedure is called periodically, such that the number of detected conflicts be-

tween two consecutive restarts eventually increases, which ensures the completeness of

CDCL. If it is invoked, it backtracks to decision level 0.

2.5.2 Main algorithm

Algorithm 1 first initializes a variable representing the index of the current decision level (Line 2).

Then it stores all non-unary clauses in the CNF of the input formula to clauses (Line 5). If a

conflict is detected during adding these clauses, the algorithm returns unsat.

The main loop of Algorithm 1 first applies BCP (Line 9). If it results in a conflict (Line 10), we

check whether the current decision level is 0 and the conflict cannot be resolved for this reason

(Line 11). In this case the algorithm returns unsat. Note that it is possible that we do not detect

a conflict at decision level 0 before BCP has been used (e. g., if we add the clauses (¬b1 ∨¬b2),

(b1) and (b2) in this order). Otherwise, a conflict clause is calculated via conflict analysis and

39

2.5. SAT SOLVING

added to the learned clauses with the procedure addClause.

If BCP does not lead to a conflict, we increment the stored current decision level (Line 21)

and try to assign a Boolean constant to an unassigned variable (Line 22). If all variables are

already assigned, we have a satisfying assignment (in assigns) for the input formula and return

sat (Line 23). There are three optimizations, which we apply under certain conditions, before

we decide to which variable we assign a Boolean constant next. Firstly, we try to simplify the

considered clauses (in clauses and learneds) if the current decision level is 0 (Line 17).

Secondly, if the number of learned clauses exceeds a certain threshold, we heuristically forget

some of them and increase the threshold (Line 18). The last optimization is to periodically

backtrack to decision level 0 (restart), where we ensure that the number of conflicts between two

consecutive restarts eventually increases (Line 19).

2.5.3 Correctness and completeness

Theorem 1 Given a propositional formula ϕ as input, Algorithm 1 always terminates with sat if

ϕ is satisfiable and with unsat otherwise.

Proof 1 Correctness: If the algorithm returns sat, all variables are assigned to a Boolean

constant and no clause, neither in clauses nor in learneds, is conflicting as we would

otherwise have detected a conflicting clause during propagation. The clauses in clauses

together with the unary clauses, which we directly assigned at decision level 0, form the

CNF of the input formula ϕ and they are, therefore, equisatisfiable to ϕ. We conclude that

the satisfying assignment in assigns for the clauses in clauses implies that ϕ is indeed

satisfiable.

If the algorithm returns unsat in Line 5, then there exists a conflicting clause at decision

level 0. We can repeatedly apply binary resolution as it is done in the conflict analysis, but

this time until the resulting clause does not contain any variable from the current decision

level. As we are in decision level 0 the resulting clause is empty and forms a contradiction.

We obtain this contradiction by applying binary resolution, which is sound and complete

[DP60], to the clauses in clauses and learneds, and all clauses in learneds were derived

by applying binary resolution to the clauses in clauses. This means, that we can infer a

conflict from the clauses in the CNF of ϕ, which forms a proof of the unsatisfiability of ϕ.

Completeness: In order to prove the completeness of Algorithm 1 we must show that we

eventually leave the main loop, which starts at (Line 8). For this purpose we consider the

current partial assignments αi ∈ partialAssigns(ϕ) at decision level i for each i ∈ {0, . ., dl}
and let α j be the empty assignment for j > dl (j ∈ N). We define a partial order on the

sequences αi = (dli ,α
1
i
, . .,αdli

i
), such that for two sequences α1,α2 it holds that α1 < α2 if

there exists a number k ∈ {1, . ., dl1} such that αk
1 is an extension of αk

2 (αk
1 6= αk

2) and for

i ∈ {1, . ., k−1} it holds that αi
1 = α

i
2. If we ignore the sub-procedures forget() and restart(),

40

2.6. SMT SOLVING

it holds that the corresponding sequence α to the current partial assignment at the start

of the main loop of Algorithm 1 is in this order greater than the corresponding sequence

αi+1 to the current partial assignment at the end of the main loop, i. e., αi+1 < αi. As

|partialAssigns(ϕ)| is finite, there is no infinite sequence of assignments in partialAssigns(ϕ)

which is decreasing in our partial order and, therefore, the algorithm must terminate. It

remains to show that (1) αi+1 < αi and (2) that Algorithm 1 is also complete if we do not

ignore forget() and restart().

1. As the propagation at Line 9 only extends αi in the current decision level, it holds for

αi+1 that αi+1 < αi . If we have a conflict, we backtrack at Line 15 to the decision level

dl and extend the assignment by assigning one more variable in the decision level dl.

Therefore, the αi+1 is in all decision levels before dl equal to αi , but contains one more

assignment at decision level dl, which implies that αi+1 < αi . If no conflict occurred

during propagation, we assign to a not yet assigned variable a Boolean constant in

a new decision level, therefore, it still holds that αi+1 < αi as αi+1 is equal to αi in

all decision levels but the new one where it consists of one assignment instead of

none (as in αi). Note that simplify() does not affect the current assignment but only

removes clauses which do not affect the propagation, as they are satisfied in decision

level 0.

2. The sub-procedure restart() backtracks to decision level 0 and, hence, αi+1 is then

not greater in our order than αi . However, it is ensured that the number of detected

conflicts between two consecutive restarts eventually increases. Therefore, this num-

ber is high enough at some point, such that the aforementioned reasoning for the

completeness of this algorithm applies. The sub-procedure forget() does not affect

the current partial assignment, but it removes learned clauses which were derived

by resolution from the original clause set. Thus, clause learning only speeds up the

search but does not affect completeness. �

2.6 SMT solving

SAT solvers, as introduced in Section 2.5, can determine the satisfiability of propositional formu-

las. Due to the fantastic performance of SAT solvers on industrial examples and the resulting

upcoming success, the question arises how to broaden their field of application. Satisfiability

modulo theories (SMT) formulas are Boolean combinations of not only Boolean variables, but

also theory predicates. In Section 2.3, we have already seen an example of theory predicates:

arithmetic constraints. In general, SMT formulas can contain theory predicates constraining

arrays, bit-vectors or uninterpreted variables/predicates and function symbols, to name but a few

possible theories. This thesis only concerns quantifier-free nonlinear real and integer arithmetic

formulas with Boolean variables as SMT formulas.

41

2.6. SMT SOLVING

2.6.1 Applications

SMT solving has a rapidly growing and already wide field of application. A very prominent

area of research, where SMT solving is widely used, is model checking [BK08]. For instance,

we can use SMT solvers for bounded model checking on hybrid automata, which are defined in

[ACH+95]. A more recent example forms parametric probabilistic model-checking [12]. Besides

model checking, SMT solving has also proven beneficial in further techniques which are used for

program analysis. To name but a few, it has been applied in static program checking [FLL+02],

test-case generation [PVL11], model-based testing [Pel13], run-time analysis [DLT16] and termi-

nation analysis [GBE+14]. SMT solving is even used in order to automatically improve a program

[SOE14] or directly synthesize a program [SGF10]. If we transfer the techniques from program

analysis, it is also possible to find deep bugs and security vulnerabilities using symbolic execu-

tion [PC13]. Another field of research, which profits from SMT solvers, is automated theorem

proving, such as the work in [Lei13]. As a consequence, SMT solvers are already integrated as a

component in the famous theorem prover Isabelle/HOL [BBP13]. SMT solving also takes place

in recent developments in scheduling and planning. For instance, work has been done on rotat-

ing workforce scheduling [Erk13], many-core scheduling [TPGM14] and resource-constrained

project scheduling [ABP+11]. As an example for planning, SMT solvers are used in planning

problems with mixed and continuous change over time [BGMG15] or integrated task and motion

planning [NPM+14].

2.6.2 Checking first-order formulas for satisfiability: State-of-the-art

Research in the area of solving quantifier-free first-order formulas for satisfiability has been carried

out long before SMT solving emerged. For instance, an algorithm based on congruence closure

for solving conjunctions of equations with uninterpreted variables/predicates and function symbols

for satisfiability was published in 1980 in [NO80]. Procedures to solve quantifier-free arithmetic

formulas without multiplication in polynomials but with uninterpreted predicate and function

symbols was also presented around this time in [Sho79][Sho84].

For linear real-arithmetic formulas, work was carried out much earlier. The Fourier-Motzkin

variable elimination procedure, which dates back to 1826, was published in a work of Jean-Baptiste

Joseph Fourier [Fou26] and also independently invented by Theodore Motzkin. It can detect

the satisfiability of a conjunction of linear real-arithmetic constraints. However, its complexity is

double exponential in the number of variables, which the formula to solve contains, and therefore

has a limited applicability. A second method, which can solve these kind of formulas is the simplex

method [Dan63]. Even though its complexity is still single exponential in the number of variables

in the given formula, it is the state-of-the-art procedure used nowadays for these kind of problems.

This is due to the fact that the worst case complexity only occurs with very artificial examples. In

practice, the performance of simplex is rather comparable to a linear complexity in the number

of the formula’s variables. The ellipsoid method [Kha80] can detect the satisfiability of such

42

2.6. SMT SOLVING

conjunctions even with a polynomial worst complexity. However, in practice it tends to be slower

than the simplex method.

For the satisfiability check of nonlinear real-arithmetic formulas, there are several incomplete

as well as complete procedures available. For instance, the virtual substitution (VS), which we

introduce in greater detail in Section 2.7 and is dealt with for the most part of this thesis, is

restricted with respect to the degree of the variables in the formula, which we want to check for

satisfiability. But on the other hand, we can also use this method for quantified real-arithmetic

formulas. The same holds for the cylindrical algebraic decomposition [Col75] (CAD), which is a

complete procedure for nonlinear real-arithmetic formulas. However, we gain the completeness

at the expense of a higher worst-case complexity, which is double exponential for the CAD instead

of single exponential, as it is for the VS, in the number of variables in a quantifier-free real-

arithmetic formula, if we want to check it for satisfiability. In practice, we cannot say that either

the VS or the CAD solves a formula faster. It tends to be the case, that if the VS can determine

the satisfiability of a formula, it achieves this in the majority of the examples, which we had at

hand, faster than the CAD. Another incomplete procedure for nonlinear real-arithmetic applies a

Gröbner bases [BWK93] computation, which mainly implements Buchberger’s algorithm [Buc65]

and can determine in some cases whether a conjunction of nonlinear equations is unsatisfiable.

In comparison to these algebraic procedures, the interval constraint propagation (ICP) also uses

numerical approaches, which often yields a better performance in practice than one of the alge-

braic procedures. In Section 5.4.3, we explain this method in further detail. However, it is also

incomplete for nonlinear real-arithmetic formulas and cannot handle quantifiers.

Procedures for linear integer-arithmetic or linear mixed integer-real arithmetic build upon

those for linear real-arithmetic. For example, the Omega test [Pug91] uses the idea of the

Fourier-Motzkin variable elimination and, therefore, shares the restriction that it can only detect

the satisfiability of conjunctions of arithmetic constraints. The most commonly used approach

to solve these kind of formulas, however, is branch-and-bound [Sch86], which was originally

applied on top of the simplex method. The main idea is simple: If the simplex method detects the

unsatisfiability of the given formula’s real relaxation then there is in particular no integer solution.

This observation does not only hold for the simplex method, but any procedure for real-arithmetic,

if we use it for the real relaxation of a given integer-arithmetic or mixed integer-real arithmetic

formula. In the case that we find out that the real relaxation is satisfiable and we obtain a solution

which maps all variables to integers, we also find a solution for the original formula. Again, we

can transfer this observation to any procedure for real-arithmetic formulas. If, on the contrary,

there is one integer variable z which is mapped by the solution to a value d ∈ R \ Z, we rerun

the satisfiability check, but this time adding the constraint z ≤ ⌊d⌋, and if this is unsatisfiable, we

rerun the satisfiability check adding z ≥ ⌈d⌉, instead. However, this approach, which we refer to

as branch-and-bound [Sch86], does not always terminate. Moreover, it cannot be applied directly

to any procedure for real-arithmetic. For instance, the virtual substitution constructs symbolic

solutions possibly containing dedicated representatives for arbitrary small values. In order to

43

2.6. SMT SOLVING

construct a solution from this, which maps all variables to values, we would need to take the

dependencies within the virtual substitution’s solution into account. In Chapter 7 we introduce

an approach, which makes branch-and-bound applicable to the virtual substitution.

This brings us to nonlinear integer-arithmetic or nonlinear mixed integer-real arithmetic. In gen-

eral, the determination of the satisfiability of a formula of this type is undecidable [Mat70][Mat72].

If we bound the domains of the variables in the formula, that is we assure that there is a finite

upper and lower bound for each of them, which makes the variables’ domains finite, the problem

becomes obviously decidable. In the context of SMT solving and only for nonlinear integer-

arithmetic, the most common approach, which we refer to as bit-blasting [FGM+07], uses this

fact. Here we add upper and lower bounds on the variables’ domains, encode these domains and

the arithmetic operations upon them to propositional logic and check it with a SAT solver for

satisfiability. If we find a solution, we can reconstruct an integer solution for the given integer

arithmetic formula. Otherwise, we widen the added upper and lower bounds on the variables’

domains and repeat the previous step. Interval constraint propagation can also be used to detect

the satisfiability of a nonlinear integer-arithmetic and even nonlinear mixed integer-real arith-

metic formula. As already mentioned, in Chapter 6 we introduce another solution for this which

is based on the virtual substitution. This work was published together with an adaption for the

cylindrical algebraic decomposition for integer arithmetic in [1].

2.6.3 The rise of SMT solving

At the beginning of the 21st century, SAT solving became extremely successful both in research

and industry. In order to extend its field of application and to exploit its performance at the point

where problems with a complex Boolean structure are at hand, research has been conducted

towards an incorporation of SAT solvers. One of them aimed to achieve a better performing

solution for an automatic satisfiability check of first-order formulas, in particular those without

quantification.

One approach, which we refer to as eager SMT solving, encodes the given first-order formula

to a propositional formula and checks it for satisfiability with a SAT solver. If this propositional

formula is equisatisfiable to the encoded formula, we can directly imply the satisfiability of the

encoded formula. As an example, the SPARSE method [BV02] encodes an arbitrary Boolean

combination of equalities between two uninterpreted variables to an equisatisfiable propositional

formula. A second example is introduced in [SSB02] for difference logic, which concerns linear

arithmetic formulas, where the constraints are of the form x1 − x2 − d ∼ 0, with x1, x2 being

arithmetic variables, d ∈ Z and∼ being an arbitrary relation symbol. It might also be the case that

we can only imply the satisfiability of the original formula if the propositional formula resulting

from the encoding is detected to be either satisfiable or unsatisfiable. For instance, the previously

explained bit-blasting for nonlinear integer arithmetic uses an encoding to a propositional formula

and can only imply the encoded formula’s satisfiability if the propositional formula is satisfiable.

The greatest advantage of eager SMT solving is clearly that we can simply use the SAT solver

44

2.6. SMT SOLVING

Input formula ϕ

Boolean abstraction of ϕ
in CNF and NNF

sat/unsatSAT solver

Theory solver(s)

SMT solver:

Constraints (predicates)
(sat + solution)

or (unsat + explanation)
or (unknown)

Figure 2.2: Lazy SMT solving framework.

as a black box and thereby immediately benefit from the most recent performance-improving

achievements for SAT solving. Nevertheless, scientists started thinking about a tighter collabo-

ration of the SAT solver and the existing decision procedures for first-order logics such as the

ones we introduced in Section 2.6.2. The first step towards lazy SMT solving as it is known and

widely used nowadays have been done in [BDS02] and [dMR02]. The main idea is illustrated in

Figure 2.2. A lazy SMT solver consists of two main components, a SAT solver and a collection

of theory solvers. The SAT solver implements the presented algorithm of Section 2.5 and each

theory solver implements a procedure which checks a conjunction of predicates for satisfiabil-

ity. The predicates can, for instance, be equations with uninterpreted variables and function

symbols or arithmetic constraints, where we again distinguish on the one hand between linear

and nonlinear constraints and on the other hand between real, integer and mixed integer-real

arithmetic constraints. In Section 2.6.2 we presented procedures which would be candidates for

the implementation of a theory solver.

Let us take a closer look at the functionality of a lazy SMT solver. The input formula ϕ of an

SMT solver can be an arbitrary Boolean combination of predicates and Boolean variables. Without

loss of generality, we assume that ϕ is an arithmetic formula as it was introduced in Definition 4.

First, we transform ϕ into CNF. Then, we transform the result into NNF as well, which simply

resolves negations in front of constraints. The resulting formulaψ is then a conjunction of clauses,

where all constraints occur only in positive literals. Afterwards we create the Boolean abstraction

ψB of ψ with abstrBψ being the corresponding Boolean abstraction mapping. Now the SAT solver

checks ψB for satisfiability. If ψB is unsatisfiable, the SMT solver returns unsat. Otherwise, the

SAT solver has found a solution αψB . Then we let the theory solver check the conjunction of

the constraints c ∈ C∼(ψ) with αψB(abstrBψ(c)) = true, which are the constraints whose Boolean

abstraction variables are assigned by the SAT solver’s found solution to true. We refer to this

45

2.6. SMT SOLVING

check as a theory call. If a theory solver detects that this conjunction is satisfiable, that is it returns

sat, the SMT solver returns also sat. We also expect that the theory solver provides a solution

α in this case. The SMT solver uses α and αψB in order to construct a solution for its input ϕ by

αϕ = α∪ {(b,αψB(b))| b ∈ Vars(ϕ)}. If the theory solver returns unsat, we exclude all Boolean

assignments of ψB which contain this theory conflict by adding the clause

∨

c ∈ C∼(ψ)
αψB (abstrB

ψ
(c)) = true

¬abstrBψ(c)

to the set of clauses, which the SAT solver considers for a satisfiability check, as a learned clause.

For the SAT solver (and its current assignment) this clause is conflicting. We proceed the SAT

solving process at Line 13 of Algorithm 1 with this conflicting clause as explained in Section 2.5.

That means that the SAT solver tries to find a satisfying assignment which does not conflict with

this learned clause. This process is repeated until either a satisfying assignment of the Boolean

skeleton is found such that the corresponding theory call returns sat or the SAT solver detects that

the Boolean skeleton is unsatisfiable with respect to the learned clauses, which exclude theory

conflicts.

Example 10 Consider the formula

ϕ = x1 > 0 ∧ x2 − 1= 0 ∧ (x1 − x2 = 0 ∨ x2
2 < 0) ∧ (x1 < 0 ∨ x1 − 2≤ 0).

As it is already in CNF and NNF, we directly create its Boolean abstraction

ψB = b1 ∧ b2 ∧ (b3 ∨ b4) ∧ (b5 ∨ b6).

The SAT solver then starts checking ψB for satisfiability. The addition of the two unary clauses yields

that true is assigned to the variables b1 and b2 in decision level 0. In decision level 1 we choose to

assign false to b3 and BCP implies that true has to be assigned to b4. In decision level 2, we assign

false to b5 and BCP implies that we have to assign true to the last remaining unassigned variable

b6. As there is no conflicting clause, we obtain the satisfying assignment

αψB = {(b1, true), (b2, true), (b3, false), (b4, true), (b5, false), (b6, true)}.

Now we check the conjunction of constraints

x1 > 0 ∧ x2 − 1= 0 ∧ x2
2 < 0 ∧ x1 − 2≤ 0

with the theory solver for satisfiability. It is unsatisfiable, hence we add the clause

(¬b1 ∨ ¬b2 ∨ ¬b4 ∨ ¬b6)

46

2.6. SMT SOLVING

to the SAT solver. This clause is already asserting, therefore we backtrack to decision level 1 where

BCP implies that we must assign false to b6 and as a consequence true to b5. The corresponding

theory call for

x1 > 0 ∧ x2 − 1= 0 ∧ x2
2 < 0 ∧ x1 < 0

yields again unsat. The SAT solver now learns the clause

(¬b1 ∨ ¬b2 ∨ ¬b4 ∨ ¬b5).

Conflict analysis additionally yields the asserting clause (¬b1 ∨ ¬b2 ∨ ¬b4), hence we backtrack

to decision level 0 and imply with BCP that we must assign false to b4 and therefore true to b3.

In decision level 1, we choose to assign false to b5 and due to BCP we assign true to b6. The

corresponding theory call for

x1 > 0 ∧ x2 − 1= 0 ∧ x1 − x2 = 0 ∧ x1 − 2≤ 0

yields sat this time and the SMT solver returns also sat.

The just described SMT solving framework is said to be full lazy, as it always constructs a full

satisfying assignment of the Boolean abstraction before it makes a theory call. If we invoke the

theory solver more often, for instance, every time a decision level is finished, we call it less lazy.

Example 11 Considering the input formulaϕ and its Boolean abstractionψB of Example 10 . When

the SAT solver finishes decision level 0, its current assignment for ψB is

αψB = {(b1, true), (b2, true)}.

Less-lazy SMT solving invokes the theory solver at this point for

x1 > 0 ∧ x2 − 1= 0,

which results in sat. Afterwards the SAT solver finishes decision level 1 with

αψB = {(b1, true), (b2, true), (b3, false), (b4, true)}

and the corresponding theory call

x1 > 0 ∧ x2 − 1= 0 ∧ x2
2 < 0

yields this time unsat. We add a clause

(¬b1 ∨ ¬b2 ∨ ¬b4)

to the SAT solver in order to exclude this theory conflict. The SAT solver backtracks to decision level

47

2.6. SMT SOLVING

0 and propagates that we must assign false to b4 and therefore true to b3. This finishes decision

level 0 and we invoke the theory solver with

x1 > 0 ∧ x2 − 1= 0 ∧ x1 − x2 = 0.

As this is satisfiable, the SAT solver starts a new decision level by choosing to assign false to b5. BCP

implies that we have to assign true to b6, which concludes this decision level. The corresponding

theory call for

x1 > 0 ∧ x2 − 1= 0 ∧ x1 − x2 = 0 ∧ x1 − 2≤ 0

returns sat, thus the SMT solver returns sat, as we have found a satisfying full assignment of ψB

which is consistent with the theory.

Comparing full-lazy and less-lazy SMT solving, we observe in Example 10 and Example 11 that

the number of theory calls seems to be quite similar. Less-lazy SMT solving actually produces one

more theory call here. In practice, it highly depends on the example at hand. However, compared

to full-lazy SMT solving, the complexity of the theory calls with less-lazy SMT solving is reduced,

as the number of constraints to be solved is smaller. Especially for less-lazy SMT solving, we also

observe that a theory call often shares the majority of the constraints with the previous theory

call. If the theory solver could exploit this fact, that is not just starting a satisfiability check from

scratch each time it is invoked, but use the results of the previous checks and only make a minimal

effort to detect the satisfiability of the currently considered conjunction of constraints, this would

boost the performance of lazy SMT solving, especially of less-lazy SMT solving.

Hence, considering two consecutive theory calls, we have to remove some of the constraints

from the theory solver and add some new constraints to it, after the first theory call was finished

and before we invoke the second one. The ability of a theory solver to provide an interface for

a belated removing of a constraint while keeping as much information, which it gained in the

former theory calls, is referred to as the backtracking ability. Similarly, if a theory solver provides

an interface to add constraints belatedly, while keeping as much information, which it gained in

the former theory calls, we say that it supports incrementality. In [BBC+05], for instance, first

results have shown the positive impact of these features for SMT solving.

The first two theory calls in Example 10 both contained the constraint x2
2 < 0, which itself

is already unsatisfiable. If the theory solver would have known this fact and would have been

able to communicate this, we could have saved the second theory call. In [dMRS02] the authors

dealt with this fact. Instead of simply returning unsat, we let the theory solver also return

an explanation, which is a subset of the constraints in the conjunction, which it checked for

satisfiability. We call this explanation infeasible subset (of the checked constraints). We use this

explanation in order to construct the learned clause, which excludes the discovered theory conflict

from future assignments of the SAT solver. Let c1 ∧ . . .∧ cn be the conjunction of constraints, for

which the theory solver detected that it is unsatisfiable, and the Boolean abstraction of ci be bi

48

2.6. SMT SOLVING

(1 ≤ i ≤ n). Until now, we learned the clause ¬b1 ∨ . . . ∨ ¬bn, which excludes all assignments

for the Boolean abstraction the SAT solver considers that assign true to bi (1≤ i ≤ n). Now, we

have an explanation in form of an infeasible subset C ⊆ {c1, . . . , cn} and, instead, we learn the

clause
∨

ci∈C ¬bi, which excludes in general more assignments for the Boolean abstraction the

SAT solver considers than ¬b1 ∨ . . .∨¬bn.

As a consequence, a theory solver which provides a small infeasible subset, if it detects that

its input is unsatisfiable, improves the performance of the SMT solver. Usually, the smaller the

infeasible subset is, the more we can benefit from it in the SMT solving process. Finding the

smallest infeasible subset, for instance {x2
2 < 0} for the first theory call in Example 10, is in

practice often very hard. Instead, we usually only require an infeasible subset which is minimal,

which means, that if we remove a constraint from it, the conjunction of the remaining constraints

is satisfiable. However, even minimality is sometimes difficult to achieve, so in the end we need

to find a good trade-off between creating small infeasible subsets and reducing the effort we have

to make in the theory solver in order to construct them. This discussion also indicates that there

is often more than one infeasible subset and as long as one infeasible subset is not a subset of the

other, both are valuable information for the SMT solver.

Summarizing, a theory solver has to meet three conditions for a well performing collaboration

within a lazy (especially less-lazy) SMT solver:

1. Backtracking ability

2. Incrementality

3. Infeasible subset generation

A theory solver, which fulfills these three requirements, is called SMT compliant. There has

been a lot of work in this field of research in recent years. An SMT-compliant theory solver for

conjunctions of equations with uninterpreted variables and function symbols was introduced in

[NO05]. The authors of [CAMN04] presented an SMT-compliant theory solver for difference logic

and [DdM06] contributed an SMT compliant theory solver for linear real and integer arithmetic,

which is based on an adaption of the simplex method’s first phase, branch-and-bound and the

construction of cutting planes. In [dMP09], the authors deal with the creation of explanations,

if Gröbner bases are used in order to detect the unsatisfiability of a conjunction of nonlinear

real-arithmetic equations. We contributed in [7] an SMT-compliant theory solver for nonlinear

real arithmetic, which utilizes Gröbner bases. Furthermore, we introduced an SMT-compliant

theory solver also for nonlinear real arithmetic based on the virtual substitution [7]. We present

these ideas and further developments in Chapter 4 of this thesis.

There are further ideas of how we can improve the collaboration of the SMT solver’s SAT solver

and theory solver(s), such as theory propagation or theory guided decision heuristics. For more

details and a good overview of many techniques used in SMT solving, we suggest [NOT06] and

[Seb07].

49

2.6. SMT SOLVING

Recent developments brought forth an even tighter interaction of decision procedures, such as

those from Section 2.6.2, and SAT solving. A generalization of this idea is presented in [JBdM13]

and a precise implementation for nonlinear real arithmetic based on the cylindrical algebraic

decomposition was introduced in [JdM12].

2.6.4 Tools and standards (2016)

The SMT solving community has put a lot of effort into the standardization of the SMT solver’s

input. Thanks to the international initiative SMT-LIB, most SMT solvers support a common

input language, which is specified as the SMT-LIB standard [RT03][BFT16]. This initiative also

maintains a large library of benchmarks, which comprise thousands of input examples, and an

annual competition among the different SMT solvers. We used these and some other benchmarks,

which are briefly described in Chapter 6 and Section 7.2, for the experimental results within this

thesis.

We want to conclude this section on SMT solving giving an overview of the currently avail-

able SMT solvers and other tools which can be used to check arithmetic formulas for satisfi-

ability. In the last decade, we have been able to observe a lot of activity for linear real and

integer arithmetic. The SMT solvers, which are specifically dedicated to support these logics,

for instance, CVC4[BCD+11], MathSAT5[CGSS13], OpenSMT2[BPST10], SMTInterpol [CHN12],

veriT[BCBdODF09], Yices2[Dut14] and Z3[dMB08], can solve real world problems with hun-

dreds of variables in often only a few seconds and they achieve this with a fantastic reliability.

To the best of our knowledge, all of these SMT solvers base their implementation, which checks

linear real- and integer-arithmetic formulas for satisfiability, on the groundbreaking contribution

of [DdM06]. In addition, they put a lot of effort into exploiting that the input formulas show

certain characteristics, where it is possible to solve or simplify them by the use of preprocessing.

Moreover, it is essential to use smart heuristics for the countless choices that must be made during

the SMT solving process [Gri09][KBD13]. Undoubtedly, there are more ideas which contributed

to the excellent performance of the named SMT solvers, such as an integration of a linear pro-

gramming solver [KBT14], breaking symmetries [DFMP11][ADFO13] or the creation of better

cutting planes for linear integer arithmetic [DDA09].

Long before SMT solving was invented, nonlinear real-arithmetic formulas have been of concern

in computer algebra systems. For instance, Redlog [DS97] is capable of not only checking

quantified formulas, which are arbitrary Boolean combinations of real-arithmetic constraints

and Boolean variables, but it can also eliminate quantifiers/variables yielding an equisatisfiable

formula. To the best of our knowledge, Redlog implements an optimized combination of the

virtual substitution and the cylindrical algebraic decomposition. Furthermore, it uses Gröbner

bases and other ideas in order to simplify a formula.

The tool HySAT[FHT+07] and its successor iSAT3[SKB13] can also check real- and integer-

arithmetic formulas for satisfiability but using a closer interaction of SAT and theory solving.

Their implementations are based on a close collaboration of a SAT solver and interval constraint

50

2.7. VIRTUAL SUBSTITUTION

propagation, which differs from the previously presented approach of lazy SMT solving. As ICP

is incomplete for real arithmetic (and of course also for integer arithmetic), these tools cannot

always give a conclusive answer to the question for satisfiability of a given formula. However,

they are also able to deal with constraints involving exponential or trigonometric functions. There

are further tools, which implement ICP, such as dReal [GKC13] or raSAT [TVKO16].

The SMT solvers CVC4, MiniSmt [ZM10] and Z3 initially checked nonlinear real-arithmetic

formulas via linearizing them, which has the big advantage that their very performant engine

for linear arithmetic can be employed afterwards. However, it only yields an incomplete proce-

dure, which cannot determine the satisfiability of most of the nonlinear formulas in the SMT-LIB

benchmarks. Recent developments brought forth a new approach, which is based on a close

collaboration of a SAT solver and the cylindrical algebraic decomposition [JdM12]. This ap-

proach was first implemented as part of Z3 and, in the meanwhile, it is also used in the SMT

solver Yices2. At this moment in time, it outperforms the aforementioned approaches in the

majority of the examples in the SMT-LIB benchmarks for nonlinear real arithmetic. It forms a

very good example of how CDCL reasoning can be used in algebraic procedures and has already

drawn interest in the computer algebra community [ÁFSW16].

Besides ICP, the most common approach to check nonlinear integer-arithmetic formulas for

satisfiability is bit-blasting. It was implemented within the tool AProVE [GBE+14], which is

primarily dedicated to an automated generation of termination and complexity proofs. In the

meantime, the SMT solvers CVC4, Yices2 and Z3 also use bit-blasting for nonlinear integer-

arithmetic.

2.7 Virtual substitution

Virtual (term) substitution (VS) was first introduced in 1993 as a quantifier/variable elimination

procedure for linear real-arithmetic formulas [LW93]. In contrast to the Fourier Motzkin variable

elimination, the first version of the VS cannot only be applied to an existentially quantified

conjunction of linear real-arithmetic constraints, but even to arbitrary Boolean combinations of

such constraints where each variable can be either existentially or universally quantified.

Some years later, VS was extended to a quantifier elimination procedure for nonlinear real-

arithmetic formulas [Wei97]. However, it can only eliminate quantified variables whose degree

is not higher than 2. Furthermore, eliminating a quantifier might increase the degree of the

remaining quantified variables.

The boundary of the degree for which a quantified variable can be eliminated could be pushed

further to three [Wei94] and four [GT09]. Recently, it has been shown that quantified variables

of an arbitrary but bounded degree can be eliminated by an approach based on the VS [KS15].

Unfortunately, the higher the degree of the quantified variable we eliminate, the more complex

is the result of this elimination step in terms of the number of atoms in the resulting formula.

This is why we restrict ourselves to VS for the quadratic case as presented in [Wei97], which has

51

2.7. VIRTUAL SUBSTITUTION

proven to be a viable procedure for various applications by its first implementation in Redlog.

2.7.1 Constructing test candidates with side condition

Let c be a real arithmetic constraint and A ⊆ Assigns(c) be a set of assignments for c which

evaluate Pol(c) to a value with the same sign, i. e., for all α1,α2 ∈ A it holds that sgn(¹Pol(c)ºα1) =

sgn(¹Pol(c)ºα2). Regardless of the relation in c, we know that all assignments in A are either

solutions, i. e., A⊆ Θ(c) or not, i. e., A∩Θ(c) = ;. This is due to the fact that we compare Pol(c)

in c by some relation symbol to 0. If we consider a real arithmetic formula ϕR instead of a

constraint, we can make the same observation. Let us partition Assigns(ϕR) into maximal sign

invariant regions A1, . ., An regarding the polynomials in Pols(ϕR), such that for all α1,α2 ∈ Ai it

holds for all p ∈ Pols(ϕR) that sgn(¹pºα1) = sgn(¹pºα2) (1 ≤ i ≤ n). Then Ai contains either

only solutions of ϕR, i. e., Ai ⊆ Θ(ϕR) or no solutions of ϕR, i. e., Ai ∩Θ(ϕR) = ; (1≤ i ≤ n). As

a conclusion it is sufficient to check one assignment in each sign invariant region to the variables

in ϕR in order to determine the satisfiability of ϕR. As the number of maximal sign invariant

regions is for a given finite set of polynomials always finite, we obtain the main idea of decision

procedures such as the virtual substitution and the cylindrical algebraic decomposition, which

construct a finite set of assignments such that each maximal sign invariant region is covered at

least once.

Example 12 Let us consider the univariate quantifier-free real-arithmetic formula

ϕR = (x2 − 4≥ 0 ∧ x − 1< 0) ∨ (x2 − 4= 0 ∧ x − 1> 0)

The set of all polynomials in ϕR is Pols(ϕR) = {x2−4, x−1} and we illustrate them in the following

plot.

x

x2 − 4

x − 1

)|
−2
()|

1
()|

2
(

52

2.7. VIRTUAL SUBSTITUTION

We can partition Assigns(ϕR) to the sign invariant regions

A1 = {α ∈ Assigns(ϕR)| α(x) ∈ (−∞,−2) }
A2 = {α ∈ Assigns(ϕR)| α(x) ∈ [−2,−2] }
A3 = {α ∈ Assigns(ϕR)| α(x) ∈ (−2,1) }
A4 = {α ∈ Assigns(ϕR)| α(x) ∈ [1,1] }
A5 = {α ∈ Assigns(ϕR)| α(x) ∈ (1, 2) }
A6 = {α ∈ Assigns(ϕR)| α(x) ∈ [2,2] }
A7 = {α ∈ Assigns(ϕR)| α(x) ∈ (2,∞) }

In the univariate case of Example 12 we observe that the values of one sign invariant region,

which the assignments map to x , form either point intervals or open intervals. Moreover, the

bounds of these intervals are the zeros of the polynomials in Pols(ϕR). This leads to the idea that

we could use them in order to construct the finite set of assignments covering all sign invariant

regions. In Example 12, the three assignments of the zeros of the polynomials in Pols(ϕR) to x ,

i. e., {α ∈ Assigns(ϕR)| α(x) ∈ {−2, 1, 2}} cover only the sign invariant regions A2, A4 and A6. As

the values, to which the assignments of other regions map, form open intervals, we need to find

a value which is either very close to the right of (greater than) the interval’s left bound or very

close to the left of (less than) the interval’s right bound. We decide for the former. One question

remains: How close is close enough? For instance, choosing the next greater integer would lead

to the additional assignments {α ∈ Assigns(ϕR)| α(x) ∈ {−1, 2, 3}}. Now we would still not cover

the sign invariant regions A1, as its left bound is not a zero of the polynomials in Pols(ϕR) but

−∞, and A5, as we did not choose a value close enough to the right of the zero of x −1. Instead

of considering the entire formula in order to find suitable values, we postpone this decision by

introducing representatives for a sufficiently small value, which we denote by −∞, and a value

which is sufficiently close to the right of an open left bound d, we denote by d + ε. This leads

to the finite set of assignments {α ∈ Assigns(ϕR)| α(x) ∈ {−∞,−2,−2+ ε, 1, 1+ ε, 2, 2+ ε}}
covering all sign invariant regions for some sufficiently small −∞ and infinitesimal ε (> 0) .

The relation symbols of the constraints in ϕR have no influence on the sign invariant regions

of the polynomials in ϕR. However, they define the set of solutions of ϕR. In the univariate case,

as in Example 12, the assignments which satisfy a weak constraint map to values forming a set

of closed intervals. For strict constraints they form open intervals. As we are interested in the

satisfiability of a formula, we do not need to cover sign invariant regions which are open intervals

with a left bound being a zero of a polynomial which only occurs in weak constraints. This region

is satisfied if and only if the point interval, which contains this zero, is satisfied. Moreover, we

do not need to consider sign invariant regions, which are point intervals that contain a zero of

polynomials that only occur in strict inequalities. In Example 13 we illustrate this optimization

on the formula from Example 12.

Example 13 Consider the formula ϕR from Example 12. The sets of solutions of the constraints in

53

2.7. VIRTUAL SUBSTITUTION

ϕR are

Θ(x2 − 4≥ 0) = {α ∈ Assigns(ϕR)| α(x) ∈ (−∞,−2]∪ [2,∞) }
Θ(x2 − 4= 0) = {α ∈ Assigns(ϕR)| α(x) ∈ [−2,−2]∪ [2,2] }
Θ(x − 1< 0) = {α ∈ Assigns(ϕR)| α(x) ∈ (−∞, 1) }
Θ(x − 1> 0) = {α ∈ Assigns(ϕR)| α(x) ∈ (1,∞) }

Now we can construct a finite set of assignments, such that one of them is a solution of ϕR if and

only if ϕR is satisfiable. For this purpose, we do not need to cover A3 and A7, as the polynomial

x2−4 occurs only in weak constraints. We also do not need to cover the sign invariant region A4, as

the polynomial x − 1 occurs only in strict constraints. Therefore, we only check the assignments

{α ∈ Assigns(ϕR)| α(x) ∈ {−∞,−2,1+ ε, 2}}

to find a solution of ϕR for some sufficiently small −∞ and infinitesimal ε (> 0).

We have seen how to construct a finite set of assignments for a given univariate real-arithmetic

formula ϕR, such that one of them is a solution of ϕR if and only if ϕR is satisfiable. This

construction also guarantees us, that all assignments of this set satisfy ϕR if and only if ϕR is

valid or in other words, it is satisfied by all assignments in Assigns(ϕR). We can transfer this

principle to the multivariate case with n variables in order to achieve an equisatisfiable formula

with n − 1 variables. Once we have chosen a variable x we want to eliminate this way, we

construct a finite set of so called test candidates, which form the equivalent to the values to which

the constructed assignments for the univariate case map. The test candidates are obtained in

almost the same way as before. For each weak constraint cw in ϕR, we use the zeros of Pol(cw)

in x as test candidates. For each strict constraint cs in ϕR, we use the zeros of Pol(cs) in x plus

an infinitesimal ε as test candidates. Furthermore, we use −∞ as a test candidate, which, as

before, represents a sufficiently small value. The main difference is that the zeros are possibly

parametrized in the remaining variables and might not exist under certain conditions in the

remaining variables. We also need a solution formula to determine the parametrized zeros of a

polynomial in one variable and here lies the restriction of this method. For polynomials whose

degree in x is higher than 4, there exists no general formula to determine its zeros in x . We even

restrict ourselves to quadratic polynomials in x , as it gives us a comparably compact solution

formula for the zeros in x and we have to deal with less cases. Before we get to a general

definition of test candidates, we introduce an expression which emerges when using the solution

formula of quadratic equations.

Definition 20 (Square root expression) A square root expression is of the form

p+ q
p

r

s
,

54

2.7. VIRTUAL SUBSTITUTION

where p, q, r, s ∈ POL. We denote the set of all square root expressions by

SqrtEx := { p+ q
p

r

s
| p, q, r, s ∈ POL}

and the set of all square root expressions in the variables x1, . ., xn by

SqrtEx[x1, . ., xn] := { p+ q
p

r

s
| p, q, r, s ∈ POL[x1, . ., xn]}.

Given a quadratic equation p1 x2 + p2 x + p3 = 0 in the variable x , that is p1, p2, p3 ∈ POL and

x /∈ Vars(p1)∪ Vars(p2)∪ Vars(p3), the solution formula for x in p1 x2 + p2 x + p3 = 0 considers

the following three cases:

x0 = − p3

p2
, if p1 = 0 ∧ p2 6= 0 (2.21)

x1 =
−p2 +
q

p2
2 − 4p1p3

2p1
, if p1 6= 0 ∧ p2

2 − 4p1p3 ≥ 0 (2.22)

x2 =
−p2 −
q

p2
2 − 4p1p3

2p1
, if p1 6= 0 ∧ p2

2 − 4p1p3 ≥ 0 (2.23)

Note that any real number is solution for x , if p1 = 0, p2 = 0 and p3 = 0, therefore this case is

covered, in particular, by −∞. Therefore, we can summarize the appearance of the symbolic

zero of x in a polynomial, which is quadratic in x , by a square root expression p+q
p

r
s , where

• for Equation (2.21), it holds that p = −p3, q = 0, r = 1 and s = p2,

• for Equation (2.22), it holds that p = −p2, q = 1, r = p2
2 − 4p1p3 and s = 2p1, and

• for Equation (2.23), it holds that p = −p2, q = −1, r = p2
2 − 4p1p3 and s = 2p1.

This gives us the opportunity to generalize test candidates, taking into account that they can be

−∞ and supplemented by an infinitesimal ε.

Definition 21 (Construction of test candidates) The set of all test candidates is defined by

TCS := SqrtEx∪ {t + ε| t ∈ SqrtEx} ∪ {−∞}

The set of test candidates for an arithmetic variable in a constraint, which is quadratic in x, is

defined by

tcs: VARR,Z ×CS→ TCS :

(x , p1 x2 + p2 x + p3 ∼ 0) 7→






{−∞, − p3
p2

,
−p2±
q

p2
2−4p1p3

2p1
} , if ∼ is weak

{−∞, − p3
p2
+ ε,

−p2±
q

p2
2−4p1p3

2p1
+ ε} , otherwise,

where p1, p2, p3 ∈ POL and x /∈ Vars(p1)∪ Vars(p2)∪ Vars(p3).

55

2.7. VIRTUAL SUBSTITUTION

The side condition of a test candidate is defined by

sc: TCS→ FO(τ) : t 7→






sc(t ′) , if t = t ′ + ε

s 6= 0 ∧ r ≥ 0 , if t =
p+q
p

r
s

true , otherwise (t = −∞)

where p, q, r and s are polynomials and t ′ is a test candidate not containing ε.

The set of test candidates for an arithmetic variable in an arithmetic formula where the

variable occurs at most quadratically is defined by

tcs: (VARR,Z × FO(τ))→ TCS : (x ,ϕ) 7→
⋃

c∈C∼(ϕ)

tcs(x , c).

The side condition of a test candidate ensures that the zero, which we used to create the test

candidate, indeed exists. The side condition of the candidate −∞ is valid, as it does not relate

to a zero.

Compared to the univariate case, the zeros used for the construction of the test candidates can

now contain variables. Therefore, their existence, exact location and order in an illustration such

as in Example 12 is not clear. Fortunately, this does not affect the argumentation we made for the

univariate case. No matter which real values we assign to the remaining variables in the symbolic

zero, which is used in a test candidate, it still forms the left bound of one of the sign invariant

regions. If we take into account all zeros of the polynomials of all constraints in a formula and

also these zeros plus an infinitesimal ε and a sufficiently small value −∞, we ensure that for any

instantiation of the variables in the symbolic zeros all sign invariant regions for the variable, for

which we created the test candidates, are covered. Therefore, a given real arithmetic formula

ϕR, which contains the variable x , is satisfiable if and only if there is one test candidate t for

x in ϕR, such that, on condition that x = t and t ’s side condition sc(t) holds, ϕR is satisfiable.

Furthermore, ϕR is valid if and only if all test candidates t for x in ϕR, make ϕR, on condition

that x = t and sc(t) holds, satisfiable.

2.7.2 Substituting variables by test candidates virtually

Given a real arithmetic formula ϕR, we would usually substitute all occurrences of a real arith-

metic variable x in ϕR by the test candidate t at hand, in order to ensure that x = t. As t can

be −∞ or contain quotients, square roots of polynomials or infinitesimals ε, the substitution

result would not necessarily be an arithmetic formula. Hence, we do not know how to construct

test candidates for the remaining variables in this result. Therefore, the virtual substitution

provides rules which specify an equisatisfiable formula ψR to ϕR, on condition that x = t and

Vars(ψR) = Vars(ϕR) \ {x} (x does not occur in ψR and no further variables are introduced in

ψR).

56

2.7. VIRTUAL SUBSTITUTION

Definition 22 (Virtual substitution) The virtual substitution of a real arithmetic variable

by a test candidate in a real arithmetic formula is defined by

· [· // ·]: FO(τ)× TCS× VARR,Z→ FO(τ).

For a given real arithmetic formula ϕR, a test candidate t and a real arithmetic variable x, we

obtain ϕR[t//x] from the virtual substitution rules, which can be found in [Wei97]. A more

detailed listing of these rules together with an alternative version which tries to avoid the growth

of the remaining variable’s degrees can be found in [Cor10].

Assume that we have a constraint c, a variable x ∈ Vars(c) and a test candidate t which does

not contain x . The virtual substitution rules specify an equivalent quantifier-free real-arithmetic

formula to c[t//x] which depends on the form of t and the form of c. For the test candidate, we

distinguish between the four cases that t is

1. −∞,

2. a square root expression p+q
p

r
s with r = 1 (is actually a fraction of two polynomials),

3. a square root expression p+q
p

r
s with r 6= 1 (actually contains a square root) or

4. contains an infinitesimal.

For the constraint, the rules depend on its relation symbol and the degree of x in c. In order to

obtain ϕR[t//x] for a real arithmetic formula ϕR, we simply replace each constraint c′ in ϕR by

the quantifier-free real-arithmetic formula c′[t//x], which is specified in the virtual substitution

rules. The result is indeed an equisatisfiable real-arithmetic formula to ϕR, on condition that

x = t, such that x /∈ Vars(ϕR[t//x]) ⊆ Vars(ϕR). In the following we show two cases of the

virtual substitution rules, which can be seen as the most significant ones in order to understand

the concept.

Example 14 Let t be a test candidate for x with a square root, i. e., t =
p1+q1

p
r

s1
, which we refer to

in the following as a square root expression. Moreover, assume we want to substitute t for x in the

constraint p = 0. For the virtual substitution of a test candidate being a square root expression, the

degree of x in p does not matter. If we replace all occurrences of x by t in p, we can transform the

result to a square root expression
p2+q2

p
r

s2
(p2, q2 and s2 are real arithmetic polynomials) with the

same radicand r. This transformation is possible, since the result of an addition or multiplication of

two square root expressions with the same radicand can be transformed to a square root expression

with this radicand:

p3+q3
p

r

s3
+

p4+q4
p

r

s4
=

s4(p3+q3
p

r)+s3(p4+q4
p

r)

s3s4
=

s4p3+s3p4+(s4q3+s3q4)
p

r

s3s4

p3+q3
p

r

s3
· p4+q4

p
r

s4
=

(p3+q3
p

r)(p4+q4
p

r)

s3s4
=

p3p4+q3q4r+(q3p4+p3q4)
p

r

s3s4

57

2.7. VIRTUAL SUBSTITUTION

The equation
p2+q2

p
r

s2
= 0 holds if and only if p2 + q2

p
r = 0, or equivalently, if and only if

either both p2 and q2 are equal to 0, or they have different signs but the same absolute value, i. e.,

|p2|= |q2
p

r|. This can be expressed with the quantifier-free real-arithmetic formula

p2q2 ≤ 0 ∧ p2
2 − q2

2 r = 0.

Example 15 If we substitute the variable x by a test candidate t + ε (so t is not −∞ and it does

not contain an infinitesimal) virtually in an inequality p < 0, such that x occurs at most quadratic

in p, it results in the quantifier-free real-arithmetic formula

p[t//x]< 0︸ ︷︷ ︸
Case 1

∨ (p[t//x] = 0∧ p′[t//x]< 0)︸ ︷︷ ︸
Case 2

∨ (p[t//x] = 0∧ p′[t//x] = 0∧ p′′[t//x]< 0)︸ ︷︷ ︸
Case 3

where p′ and p′′ are the first and second derivative of p for x, respectively. Here, Case 1 states that the

polynomial p evaluates to a negative value for some assignment for p, if x has the value represented

by t. This implies that p < 0[t+ε//x] must hold, as due to the density of R there must be a value in

the right neighborhood of t such that, if x has this value, for any assignment for p, it still evaluates

to a negative value. In Case 2 and 3, we assume that for some assignment of p it evaluates to zero,

if x has the value represented by t. Both cases ensure that p is decreasing, if we move from x = t to

the positive x-direction. Then, the density of R implies again that there must be a value in the right

neighborhood of t, where p is negative. The three cases for univariate polynomials can be visualized

as follows:

x

p(x)

(
t

Case 1

x

p(x)

(
t

Case 2

x

p(x)

(
t

Case 3

Note that we still need to apply virtual substitutions in the resulting constraints p[t//x] = 0,

p′[t//x] = 0, p[t//x] < 0, p′[t//x] < 0, and p′′[t//x] < 0. However, it does not involve an

infinitesimal anymore.

2.7.3 Quantifier elimination with the virtual substitution

We can now formalize how to eliminate a quantified variable with the virtual substitution.

Theorem 2 Let ϕR be a quantifier-free real-arithmetic formula with x ∈ Vars(ϕR), which occurs at

most quadratic in ϕR. Then the following two equivalences hold:

∃x . ϕR ⇔
∨

t∈tcs(x ,ϕR)

(ϕR[t//x] ∧ sc(t)) (2.24)

58

2.7. VIRTUAL SUBSTITUTION

∀x . ϕR ⇔
∧

t∈tcs(x ,ϕR)

(sc(t) → ϕR[t//x]) (2.25)

Proof 2 The proof of Equation (2.24) can be found in [Wei97] and is based on the aforementioned

explanations. Equation (2.25) can be implied by Equation (2.24) as follows:

∀x .ϕR ⇔ ¬∃x .¬ϕR
2.24⇔ ¬(
∨

t∈tcs(x ,¬ϕR)(¬ϕR[t//x] ∧ sc(t)))

⇔
∧

t∈tcs(x ,¬ϕR)(ϕ
R[t//x] ∨ ¬sc(t))

C∼(ϕ
R) = C∼(¬ϕR)⇔
∧

t∈tcs(x ,ϕR)(sc(t) → ϕR[t//x])

�

59

CHAPTER 3

SMT-RAT: Strategic and Parallel Toolbox for SMT Solving

In late 2012, there was no SMT solver which could check nonlinear real-arithmetic formulas

for satisfiability in general. To the best of our knowledge, CVC4, MiniSmt and Z3 provided only

incomplete procedures based on a linearization of the input formula at that time, which enabled

them to solve some nonlinear real-arithmetic formulas. Moreover, there were also computer

algebra systems which could handle arbitrary Boolean combinations of nonlinear real-arithmetic

constraints. For instance, Redlog can even solve (or eliminate variables in) quantified nonlin-

ear real-arithmetic formulas, which includes checking purely existentially quantified formulas

for satisfiability. However, its implementation did not apply modern lazy SMT solving. More-

over, it could not be used directly as an SMT compliant theory solver, as it supported neither

incrementality nor a backtracking ability nor could it provide infeasible subsets.

Given these circumstances and due to the wide range of procedures for nonlinear real arith-

metic, as summarized in Section 2.6.2, we initiated the project SMT-RAT [6][2] which aimed to

develop a collection of SMT-compliant theory solvers for nonlinear real arithmetic. Inspired by

the ideas from [dMP13], we set ourselves the objective to also seek the ability to combine the

single implementations of this collection with respect to a user defined strategy. Moreover, we

wanted sub-strategies within such a strategy to be allowed to be run in parallel. This does not

only make sense as most computers use multi-core processors nowadays, but also as it is often

unclear which procedure promises a better performance for which characteristics of a nonlinear

real-arithmetic formula, when checking it for satisfiability. For instance, we know that a stan-

dard implementation based on Gröbner bases can only (sometimes) detect that a conjunction

of nonlinear real-arithmetic equations is unsatisfiable. Hence, we would not want to use such

an implementation if no equations are involved, but if there are equations, it might be of use

to utilize Gröbner bases or it might yield only additional overhead. Therefore, running the two

sub-strategies in parallel for this case, one with the theory solver based on Gröbner bases and

3.1. MODULES

one without, adopts the performance of the better choice while accepting some overhead for the

use of multithreading.

The support for a strategic combination of different mathematically complex procedures puts

high requirements on the design of SMT-RAT, especially as we need a clearly modular framework

where the implementations of these procedures share a common interface. We also stressed that

this interface is not only very general but also kept simple, so that it is easy to extend SMT-RAT

by implementations of further procedures. During the design phase of SMT-RAT, it became clear

that we do not need to restrict this interface to be only shared by SMT-compliant theory solver

implementations. Instead, we further generalize it to be shared by an implementation of any

procedure which

• checks a conjunction of formulas for satisfiability1,

• is able to remove some of the formulas in this conjunction while keeping as much informa-

tion from previous satisfiability checks as possible,

• is able to add formulas to this conjunction while keeping as much information from previous

satisfiability checks as possible and

• can provide (preferably small) infeasible subsets of the formulas in the conjunction once

the satisfiability check yields that it is unsatisfiable.

This sounds very familiar and, indeed, it is very close to the definition of the three requirements

on SMT-compliant theory solvers. The only difference is that we allow conjunctions of arbitrary

formulas instead of just constraints. Therefore, we use the term SMT compliant from now on for

any procedure-implementation, which fulfills the above requirements.

In the context of this thesis, we only deal with quantifier-free arithmetic formulas, but the

concepts which we introduce in this chapter can be extended to any quantifier-free first order

formula.

3.1 Modules

In SMT-RAT, we call an SMT compliant procedure-implementation a module. A module m

has an initially empty (set of) received formulas Crcv(m). The main function of a module is

check(bool full), which either decides whether the conjunction of the received formulas in

Crcv(m) is satisfiable or not, returning sat or unsat, respectively, or returns unknown. If the

function’s argument full is set to false, the underlying procedure of m is allowed to omit hard

obstacles during solving at the cost of returning unknown in more cases.

We can manipulate Crcv(m) by adding a formula ϕ with add(ϕ) to Crcv(m) and removing a

formula ϕ with remove(ϕ) from Crcv(m). The method add works ideally incrementally, that

1It is not a restriction to consider a conjunction of formulas instead of a general formula, as we consider a “conjunction
of one formula” as the formula itself.

62

3.2. STRATEGY

is we add the formula while keeping as much information from the last satisfiability check of

m as possible. Analogously, remove should ideally keep as much information from the last

satisfiability check of m as possible (backtracking ability). As Crcv(m) is usually only slightly

changed between two consecutive check calls, their performance can be significantly improved if

m provides incrementality and a backtracking ability. However, it is not a strict requirement.

In case m determines the unsatisfiability of Crcv(m) via the procedure check, it has to return an

infeasible subset Cinf(m) ⊆ Crcv(m). Note that m should at least return the trivial infeasible subset,

which is Crcv(m), but m’s caller might benefit from a smaller infeasible subset or subsets.

Moreover, a module can specify lemmas, which are valid formulas. They encapsulate informa-

tion which can be extracted from a module’s internal state and collected by m’s caller. In the

course of this chapter we further specify how lemmas can be used.

Furthermore, a module can ask other modules for the satisfiability of its (set of) passed formulas

denoted by Cpas(m), if it invokes the procedure runBackends(bool full). It thereby delegates work

to modules that may be more suitable than m itself for solving the conjunction of the formulas

in Cpas(m) for satisfiability. Which modules are used by this procedure is unknown to m and is

specified by a user-defined strategy.

In the course of this section we mean the conjunction of the received formulas by received

formula and analogously we mean the conjunction of the passed formulas by passed formula.

3.2 Strategy

SMT-RAT supports user-defined strategies for the composition of modules. We first define such a

strategy and then explain how to interpret it.

Definition 23 (SMT-RAT strategy) An SMT-RAT strategy (V, E, Ml, Cd, Pr) is a directed tree

(V, E) where the vertices and edges are labeled. The vertices are labeled by

• SMT-RAT modules, which is denoted by

Ml: V → SMT-RAT modules,

and the edges are labeled by

• Boolean combinations of formula properties, which we refer to as conditions and denote

by

Cd: E→ (FO(τ)→ B),

• and priority values, which is denoted by

Pr: E→ N.

63

3.2. STRATEGY

The priority values of the edges in E are pairwise different, that is it holds that

∀e1, e2 ∈ E. (e1 6= e2→ Pr(e1) 6= Pr(e2)).

By formula properties we mean propositions about, for instance, the Boolean structure of the

formula, about the constraints in it, e. g., whether it contains equations, or about the polynomials

in the formula, e. g., whether they are linear or not.

m1

m2

m4

m8

c8,ω8

c4,ω4

m5

c5,ω5

m6

c6,ω6

c2,ω2

m3

m7

m9

c9,ω9

m10

c10,ω10

c7,ω7

c3,ω3

Figure 3.1: An abstract example of an SMT-RAT strategy with the modules m1, . . . , m10, the conditions
c2, . . . , c10 and the priority values ω2, . . . , ω10.

Consider the abstract illustration of an example for an SMT-RAT strategy in Figure 3.1. If

we check a formula ϕ1 for satisfiability according to this strategy, we solve it by the use of the

SMT-RAT module m1, which is the label of the root of the strategy. This means, that we pass

ϕ1 to m1 via its procedure add and then invoke m1’s procedure check. While m1 performs the

satisfiability check, it might need to know the satisfiability of a formula ϕ2 in order to continue.

At this point we make use of the strategy again. There are two edges from m1 leading to the

modules m2 and m3. If the formula ϕ1 fulfills the condition c2, but not c3, we use m2 to check ϕ2

for satisfiability in the same way we have used m1 for ϕ1. If, otherwise, ϕ2 fulfills the condition

c3, but not c2, we use m3 instead. If ϕ2 fulfills both of these conditions, we use both modules

in parallel, if using another thread is allowed.2 Otherwise, we use the successor with the higher

priority (indicated by a lower priority value), that is we use m2, if ω2 <ω3, and m3, if ω3 <ω2.

Note that by Definition 23 it holds that ω2 6=ω3. The last possibility is that both conditions are

2Usually, we either disable a parallel mode, which implies that only one thread can be used during the whole solving
process, or we allow it to use as many threads as there are cores in the processor on the machine where it is run.

64

3.3. MANAGER

not fulfilled for ϕ2. In this case, the satisfiability for ϕ2 is unknown, which might provoke that

m1 is not able to detect the satisfiability of ϕ1.

The root module in a strategy can also be a module, which does nothing else but copying its

set of received formulas to its set of passed formulas and invoking the backends. The backends

are in that case the roots of different strategies, which are invoked to check our input formula ϕ1

for satisfiability if the condition in the label of the edge to this strategy is fulfilled by ϕ1.

We will see some examples later which point out that an SMT-RAT strategy can define a so-

phisticated framework for a satisfiability check by the use of this simple modular mechanism.

Throughout this thesis we do not specify the priority values, if it does not lead to confusion.

Moreover, if we do not specify a condition along an edge of an SMT-RAT strategy, this indicates

that the condition is true, that means it is fulfilled by any formula’s properties.

3.3 Manager

The manager holds the strategy T = (V, E, Ml, Cd, Pr) and controls the aforementioned utilization

of T for an input formula Cinput . Initially, the manager calls the procedure check of the module mr ,

being the root of T , with Crcv(mr) = Cinput . Whenever a module m=Ml(v) calls the procedure

runBackends for a v ∈ V , the manager adds a solving task (Pr((v, v′)), m, m′) to its priority

queue Q of solving tasks (ordered by the increasing priorities), for every edge (v, v′) ∈ E with

m′ = Ml(v′) such that Cd((v, v′)) holds for Cpas(m). If a core of the processor on the machine

on which SMT-RAT is executed is available, the first solving task of Q (the one with the highest

priority) is started and popped from Q. The manager thereby starts the procedure check of m′

with Crcv(m
′) = Cpas(m) and passes the result back to m.

This means that we obtain an implementation which checks formulas for satisfiability, if we

define a strategy and instantiate a manager with this strategy.

3.4 Procedures implemented as modules

The procedures, which are implemented as modules, form the heart of SMT-RAT. Currently, we

can classify them into three groups, preprocessing modules, SMT solving modules and theory solving

modules.

3.4.1 Preprocessing modules

Preprocessing modules implement lightweight procedures, which can detect the satisfiability of

the given formula but only in some cases. Otherwise, it passes through its input formula to its

backends and invokes them to perform the satisfiability check. In many cases, preprocessing mod-

ules can also simplify the formula beforehand, that is it invokes the backends on a equisatisfiable

simplified formula instead.

65

3.4. PROCEDURES IMPLEMENTED AS MODULES

In the following, we present two examples for a preprocessing of a given arithmetic formula ϕ.

• Replace each equation in c ∈ C∼(ϕ) by

∨

p∈FPol(c)

p = 0,

if the factorization FPol(c) of c’s left-hand side Pol(c) is not trivial. It would also be possible

to resolve constraints, which are not equations and where the left-hand side’s factorization

is not trivial. For instance, if the relation symbol is 6=, we would need to use a conjunc-

tion instead of a disjunction. For the other relation symbols, we need to consider many

combinations instead. Experimental results indicate that only resolving equations with a

factorable left-hand side yields better performances for the involved satisfiability check.

• If ϕ = (ϕ′ ∧ d x + p = 0) with x being a real-valued variable, d ∈ Q and p being a

polynomial not containing x , we can simplify ϕ to ϕ′[− p

d /x].3 If a sub-formula ψ of ϕ has

this form, i. e., ψ = (ψ′ ∧ d x + p = 0), we can replace ψ by

ψ′[− p

d
/x] ∧ d x + p = 0,

which means that we cannot drop the equation in this case.

In practice, we often observe that we can apply one kind of preprocessing several times, each

time resulting in a simpler formula. This does also hold, if we apply different kinds of prepro-

cessing. Therefore, we follow the idea of a repeated application of a series of different kinds

of preprocessing, either until we reach a fixed-point, that is the formula to preprocess does not

change by applying this series of different kinds of preprocessing, or the number of repetitions

reaches a given bound. In SMT-RAT we have implemented this as a fixed-point preprocessing

module, which we denote by ModuleF P .

3.4.2 SMT solving modules

SMT solving modules employ a SAT solver. This implies that they can, in particular, check a

propositional formula for satisfiability. In general, an SMT solving module checks formulas for

satisfiability by the use of an interaction with its SAT solver and backends according to the strategy.

In SMT-RAT, there is only one SMT solving module, which is called ModuleSAT . It basically

applies the concept of a less-lazy SMT solver and additionally utilizes lemmas that are specified

by the backends (theory solvers). Algorithm 2 implements the procedure check of a ModuleSAT

m. This algorithm forms an extension of the satisfiability check of a CDCL SAT solver as given in

Algorithm 1. Therefore, m has also the members of a CDCL SAT solver, for instance,

3We did not define the substitution by a non-integer constant, but it is analog to the substitution of Definition 5. We
achieve a polynomial as defined in Definition 4, if we multiply the result by some positive constant afterwards (as
explained after Definition 11).

66

3.4. PROCEDURES IMPLEMENTED AS MODULES

• clauses representing the set of clauses in (the Boolean abstraction of the NNF of) the

input formula’s CNF,

• learneds, which is the set of learned clauses after conflict analysis, and

• the current assignments assigns of Boolean constants to Boolean variables.

First, we set the current decision level to 0 and initialize the flag excl_assign by false (Line 1-

2). This flag indicates that the backends could not detect the satisfiability of a conjunction of

constraints, which needed to be determined in order to find out the satisfiability of m’s received

formula. Afterwards, we calculate the NNF of the CNF of the received formula resulting in ϕ, and

store its Boolean abstraction in ϕB (Line 3). The corresponding Boolean abstraction mapping is

abstrBϕ (Line 4). Then we add each clause in the Boolean abstraction of ϕB to clauses.

The main loop of Algorithm 2 has the same structure as the main loop of Algorithm 1. First,

we apply Boolean constraint propagation (Line 9). In contrast to Algorithm 1, we additionally

check whether the currently found partial assignment of ϕ’s Boolean skeleton is also consistent

with the theory, if no Boolean conflict occurred. As clauses considers the clauses in the Boolean

abstraction of the received formula’s CNF after transforming it also to NNF, we only need to

check the conjunction of those constraints for satisfiability, where assigns assigns true to the

constraint’s Boolean abstraction (Line 12-13). We store these constraints in the passed formula

and invoke the interface runBackends in order to determine the satisfiability of their conjunction.

If it returns unsat, we add a clause to learneds for each infeasible subset of the backends.

These clauses exclude the theory conflicts, which correspond to these infeasible subsets, from the

search for a satisfying assignment just as explained in Section 2.6.3 (Line 14). From the resulting

conflicting clauses, we choose one, which is conflicting at the lowest decision level, and store it

in confl.

Afterwards, if either a Boolean or a theory conflict occurred, we analyze the conflict, backtrack

in order to resolve it and assign the asserting literal just as it is done in Algorithm 1. The only

difference is that we return unknown instead of unsat, if the conflict cannot be resolved and,

additionally, the flag excl_assign is set to true. If no conflict occurred, Algorithm 2 handles the

backend’s lemmas. We distinguish between two types of lemmas, urgent lemmas and final lemmas.

Urgent lemmas are learned each time before we make a decision and start the next decision level

(Line 27). Note that it is also possible to learn urgent lemmas directly after a theory call instead,

and then jump back to Boolean constraint propagation in Line 9. This would be repeated until

either no more urgent lemmas are learned or a conflict is reached.

If no urgent lemmas are learned and some variables in ϕB are still unassigned, we make a

decision in exactly the same way as it is done in Algorithm 1. Otherwise, we must now also check

whether the last theory call confirmed theory consistency. If this is the case, we can return sat

(Line 35). Otherwise, we try to learn final lemmas. If the backends do not provide any final

lemmas, we exclude the partial assignment corresponding to the last theory call and set the flag,

which indicates that this has ever happened, to true. Note that we exclude this partial assignment

67

3.4. PROCEDURES IMPLEMENTED AS MODULES

Algorithm 2 The procedure check of a ModuleSAT m, which adapts CDCL-based SAT solving as
introduced in Algorithm 1.

check(bool full)
begin

1: dl := 0
2: excl_assign := false
3: ϕB := Boolean abstraction of ϕ, which is the NNF of the CNF of the received formula
4: abstrBϕ := corresponding Boolean abstraction mapping
5: for each clause cl in ϕB do

6: if addClause(cl, false) = −1 then return unsat // conflicting unary clause added

7: end for

8: while true do

9: confl := propagate() // apply unit propagation

10: theory_call := sat

11: if confl= null then // check if assigns is consistent with theory

12: Cpas(m) := {c ∈ C∼(ϕ)| assigns(abstrBϕ(c)) = true}
13: theory_call := runBackends(full)

14: if theory_call= unsat then confl := addInfeasibleSubsets()
15: end if

16: if confl 6= null then

17: backtrack to largest decision level in confl
18: if dl= 0 then // conflict cannot be resolved

19: if excl_assign then return unknown

20: else return unsat

21: else

22: cl := analyzeConflict(confl) // create conflict clause

23: dl := addClause(cl, true) // add conflict clause

24: end if

25: else

26: . . . // simplify, restart, forget .. see Algorithm 1 (Line 17-19)

27: if addUrgentLemmas() = false then // no urgent lemmas were added

28: dl := dl+ 1
29: if decide() = false then // all variables are assigned

30: if theory_call= unknown then

31: if addFinalLemmas() = false then // no final lemmas were added

32: excl_assign := true
33: excludeCurrentTheoryCall()
34: end if

35: else return sat

36: end if

37: end if

38: end if

39: end while

end

68

3.4. PROCEDURES IMPLEMENTED AS MODULES

in the same way as we exclude theory conflicts, that is we learn a clause which specifies that for at

least one of the constraints in the last theory call, we must assign false to its Boolean abstraction.

3.4.3 Branching lemmas

A good example for lemmas, which are provided by a theory solving module, are branching

lemmas. This happens, for instance, if we invoke a theory solving module m in order to detect

the satisfiability of a conjunction of mixed integer-real arithmetic constraints ϕ = c1 ∧ . . . ∧ cn.

Here, m might try to find out the satisfiability of ϕ’s real relaxation first. If it is unsatisfiable, then

ϕ is unsatisfiable and we can return unsat. If it is satisfiable, but the found solution assigns a

value d ∈ R \Z to an integer-valued variable z ∈ Vars(ϕ), m can provide a branching lemma of

the form

(c′1 ∧ . . .∧ c′
k
)→ (z ≤ ⌊d⌋ ∨ z ≥ ⌈d⌉). (3.1)

It demands the splitting of the domain of z at d, under the condition that the branching premise

c′1 ∧ . . . ∧ c′
k

with {c′1, . . ., c′
k
} ⊆ {c1, . . . , cn} holds. Additionally, the theory solving module can

specify which of the two branches it prefers to start with. We call the Boolean abstraction

(¬bc′1
∨ . . .∨¬bc′

k
∨ bz≤⌊d⌋ ∨ bz≥⌈d⌉) of the branching lemma in Eq. 3.1 a branching clause and its

last two (possibly fresh) literals branching literals. In our context branching lemmas are always

final lemmas.

When a branching clause is added to the set of clauses considered by a ModuleSAT , one of the

branching literals (the one that was not preferred by the theory solving module) will be assigned

false (thus, if the branching premise is true, BCP will assign true to the preferred branching

literal; this way we prevent both branching literals becoming true, which would result in a theory

conflict). Afterwards, we handle the branching clause just as any learned clause and benefit from

the usual reasoning and learning process, which yields the best performance according to our

experience.

To prevent unnecessary branchings, we always assign the value false to branching literals as

decision variables. Remember that only constraints with true abstraction variables will be passed

to the theory solving module. This means that only branching clauses, whose premise is true,

play a role in the theory, and for those clauses only one of the branching literals.

3.4.4 Theory solving modules

Theory solving modules can only check conjunctions of constraints for satisfiability. If one of

the formulas in its received formula is not a constraint or a constraint which is not supported

by the procedure which the module implements, it usually returns unknown. A theory solving

module can also return unsat in this case, if the conjunction of the constraints in the module’s

received formula, which are supported by the procedure that the module implements, is found to

be unsatisfiable. In many cases, theory solving modules implement incomplete procedures. In the

case that such a module gets into the position where it is not able to proceed with its satisfiability

69

3.4. PROCEDURES IMPLEMENTED AS MODULES

check unless it knows the satisfiability of a certain formula, the module can consult its backends

in the aforementioned process.

ModuleSimplex This module implements the SMT-compliant simplex method equipped with

branch-and-bound and cutting-plane procedures as presented in [DdM06]. We apply it

on the linear constraints of a conjunction ϕ of mixed integer-real arithmetic constraints.

If this module detects that the real relaxation ϕR+ of the linear part ϕ+ of the problem is

unsatisfiable, it returns unsat. If it finds a solution for ϕR+ that also satisfies ϕ, it returns

sat. If it does not satisfy ϕ but the real-relaxation ϕR of the input conjunction, which

also means the relaxed nonlinear constraints, this module creates a branching lemma and

returns unknown. Otherwise, it forwards ϕ to another theory solving module, and passes

back the result and, if constructed, also the infeasible subsets and the lemmas to its caller.

ModuleGB The implementation of this module is based on Gröbner bases computation as pre-

sented in [4] and is also SMT compliant. It takes the polynomials of the equations ϕR= in

the real relaxation ϕR of its received formula ϕ and applies Buchberger’s algorithm. If the

calculated Gröbner base contains a constant (6= 0) or more generally speaking a positive or

negative definite polynomial, we know that ϕR= has no complex solution and therefore nei-

ther ϕR nor ϕ have a solution. Otherwise, we push ϕ to this module’s passed formula and

invoke backends, just as a ModuleSimplex would do. Depending on its settings, a ModuleGB

passes a simplified version of ϕ to its backends.

ModuleVS This module implements an SMT-compliant version of the virtual substitution as we

present in Chapter 4.

ModuleCAD The implementation of this module is based on the cylindrical algebraic decompo-

sition (CAD) and is also SMT-compliant. It can check a conjunction of mixed integer-real

arithmetic constraints for satisfiability. As the CAD is a complete procedure for real arith-

metic formulas, this module never invokes backends. Some ideas of its implementation are

presented in [5]. Moreover, [1] introduces how the CAD can be adapted in order to find

integer solutions where it also creates branching lemmas.

ModuleIC P This module uses interval constraint propagation (ICP) similar to the one presented

in [GGI+10], and lifts splitting decisions and contractions as lemmas to a preceding ModuleSAT .

We give a detailed example for ICP in Section 5.4.3. Given this module’s received formula

ϕ, it basically narrows down an over-approximation of ϕ’s solution space until either reach-

ing an empty over-approximation, in which case this module returns unsat, or reaching a

certain precision. In the latter case, this module tries to guess a solution and, if it succeeds,

it returns sat. Otherwise, it invokes the backends in order to check ϕ, equipped with the

found over-approximation, for satisfiability. In Section 5.4 we show how an implemen-

tation, which is based on the virtual substitution, can take advantage of this additional

70

3.5. STRATEGY EXAMPLES AND THEIR APPLICATION

ModuleSimplex

ModuleVS

ModuleCAD

1, true

2, true

ModuleSAT

ModuleSimplex

ModuleVS

ModuleCAD

1, true

2, true

3, true

ModuleSAT

ModuleIC P

ModuleVS

ModuleCAD

1, true

2, true

3, true

Figure 3.2: The SMT-RAT strategy on the left assembles different theory solving modules resulting in
a composed theory solver, and the two SMT-RAT strategies on the right form SMT solvers
for quantifier-free arithmetic formulas.

information. Moreover, we presented in [5] that a CAD-based procedure can also make use

of an additional interval-based over-approximation of the solution space.

3.5 Strategy examples and their application

The SMT-RAT strategy examples in Figure 3.2 are kept very simple, that is we do not make use

of branchings in these strategies, so there is no parallel solving involved, neither do we raise

any conditions (true is fulfilled by any formula). We call this a sequential SMT-RAT strategy.

However, these strategies highlight the fact that SMT-RAT is a toolbox, which provides modules

that implement different procedures, rather than being an SMT solver.

The SMT-RAT strategy on the left in Figure 3.2 combines three theory solving modules. There-

fore, we can only use this strategy in order to solve a conjunction ϕ of constraints. This strategy

follows a simple but very useful scheme. First, it tries to use a ModuleSimplex , which might detect

that the linear part of ϕ is unsatisfiable or detect a solution which also satisfies the nonlinear

part of ϕ. If this module cannot determine the satisfiability of ϕ, we invoke a ModuleVS. Either

its satisfiability check succeeds or it invokes a ModuleCAD on a formula, where possibly some

variables, which occur in ϕ, could be eliminated.

There are many SMT solvers available and some of them do not support solving nonlinear real

arithmetic. These SMT solvers can then integrate a theory solver based on the aforementioned

strategy, which broadens their field of application. Figure 3.3 illustrates this cooperation.

The SMT-RAT strategy example in the middle of Figure 3.2, uses the strategy on the left as

a theory solver for SMT-RAT’s in-house SMT-solving implementation ModuleSAT . It results in a

strategy which forms an SMT solver for quantifier-free arithmetic formulas. If we extend this by

71

3.5. STRATEGY EXAMPLES AND THEIR APPLICATION

SMT solver

SAT
solver

Manager
Strategy

ConditionCondition Condition
. . .

Module Module Module Module . . .

Figure 3.3: A snapshot of an SMT-RAT composition of a theory solver embedded in an SMT solver.

SMT solver

Fr
on

te
nd

Manager
Strategy

ConditionCondition Condition
. . .

Module Module Module Module . . .

Figure 3.4: A snapshot of an SMT-RAT composition of an SMT solver.

a front-end in order to parse SMT-LIBv2 input files, which SMT-RAT also provides, we obtain an

SMT solver that can be used according to custom straight away. We illustrate this framework in

Figure 3.4.

The rightmost SMT-RAT strategy example in Figure 3.2 forms an SMT solver as well, but this

time involving a ModuleIC P . Hence, we use ICP to narrow down an over-approximation of a theory

call’s solution space. This involves lemmas being lifted to a ModuleSAT , which represent splitting

decisions and contractions of the over-approximation. As backend, the module ModuleIC P uses

a strategy which tries to solve the input first with the virtual substitution and then with the

cylindrical algebraic decomposition. Bear in mind that ModuleIC P passes through its received

formula supplemented with a usually very narrow over-approximation of the received formula’s

solution space. As both ModuleVS and ModuleCAD highly benefit from this extra information, this

strategy is often a performant alternative to the one in the middle of Figure 3.2.

72

CHAPTER 4

Virtual Substitution in SMT

In the last decade, SMT solving has already successfully brought state-of-the-art SAT solving and

decision procedures for different logics together. As the SMT solver’s SAT solver deals with the

Boolean structure of the given SMT formula, the implementation of such a decision procedure,

which is integrated in the SMT solver as a theory solver, is only supposed to check a conjunc-

tion of theory constraints for satisfiability. As a consequence, it can be optimized in order to

speed up these checks, but we also require the theory solver to be SMT compliant for a stronger

collaboration with the SAT solver within the SMT solver as explained in Section 2.6.

For instance, a theory solver used in an SMT solver for linear real-arithmetic needs to check a

conjunction of linear real-arithmetic constraints for satisfiability. The Simplex method is originally

designed to find an optimal solution of such a conjunction. In [DdM06], an SMT compliant

adaption of the Simplex method is presented. In this chapter, we present an SMT compliant

adaption of the virtual substitution, as introduced in Section 2.7, to check the satisfiability of a

conjunction of nonlinear real-arithmetic constraints.

In this chapter, we first explain how to use the virtual substitution in general for a satisfiability

check. Afterwards, we introduce a formal description of an SMT compliant theory solver through

the following points:

• We introduce the data structure in which the theory solver can store its solving state in

Section 4.2.1.

• In Section 4.2.2, we show how to add constraints to the theory solver incrementally, that is

possibly after performing a theory check and then keeping as much information as possible

in the theory solver’s data structure.

• In Section 4.2.3, we present how to remove constraints from the theory solver belatedly,

4.1. VIRTUAL SUBSTITUTION FOR SATISFIABILITY CHECKING

that is possibly after performing a theory check and then keeping as much information as

possible in the theory solver’s data structure.

• How to perform a satisfiability check with the theory solver on the introduced data structure

using the virtual substitution is explained in Section 4.2.4.

• The creation of infeasible subsets, in the case that the satisfiability check introduced in

Section 4.2.4 detects unsatisfiability, is presented in Section 4.2.6.

• If, on contrary, the conjunction of constraints is found to be satisfiable, we explain in

Section 4.2.5 how to obtain a solution.

• In Section 4.2.7, we illustrate all of these ideas on an extensive example.

Afterwards, we present in Section 4.3 how the virtual substitution can be combined with other

procedures. We conclude this chapter in Section 4.4 with some ideas on further improvements,

which we did not elaborate on within this thesis.

4.1 Virtual substitution for satisfiability checking

The virtual substitution as explained in Section 2.7 is a quantifier elimination procedure which

applies Equation (2.24) or Equation (2.25) of Theorem 2 until all quantified variables are elimi-

nated. With this procedure, we can decide the satisfiability/validity of real arithmetic sentences.

For SMT solving, however, we are interested in the satisfiability of an, in our case, quantifier-free

real-arithmetic formulaϕR. As the satisfiability ofϕR is equivalent to the validity of ∃x1.. .∃xn.ϕR,

if Vars(ϕR) = {x1, . ., xn}, we can use Theorem 2 for this purpose.

Corollary 1 Let ϕR be a quantifier-free real-arithmetic formula with x ∈ Vars(ϕR) occurring at

most quadratic in ϕR, then

ϕR is satisfiable ⇔
∨

t∈tcs(x ,ϕR)

(ϕR[t//x] ∧ sc(t)) is satisfiable.

As a direct consequence, we gain a mechanism to check whether a given formula ϕR is satis-

fiable. We choose a variable xn ∈ Vars(ϕR) and need to find only one test candidate t
in
xn

for xn

in ϕR, such that ϕRn−1 := ϕR[t in
xn
//xn] ∧ sc(t in

xn
) is satisfiable. For checking the satisfiability of

ϕRn−1, we do the same but now for one of the remaining variables in Vars(ϕRn−1) and so on. If ϕR

is satisfiable, we find a test candidate t
i j

x j
for each variable x j ∈ Vars(ϕR) = {x1, . ., xn} such that

(. .(ϕR[t in
xn
//xn] ∧ sc(t in

xn
)). .)[t i1

x1
//x1] ∧ sc(t i1

x1
) ≡ true.

An illustration of the thereby traversed depth-first search tree is shown in Figure 4.1.

74

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

ϕR

. .

t1
xn

. .

ϕRn−1 := ϕR[t in
xn
//xn]∧ sc(t in

xn
)

ϕR1 := ϕR2 [t
i2
x2
//x2]∧ sc(t i2

x2
)

. .

t1
x1

. .

ϕR1 [t
i1
x1
//x1]∧ sc(t i1

x1
) ≡ true

t
i1
x1 . .

. .

t
k1
x1

..

t
in
xn

. .

. .

t
kn
xn

tcs(xn,ϕR) :

tcs(x1,ϕR1) :

Figure 4.1: Possible depth-first search tree of the virtual substitution used for a satisfiability check.

4.2 An SMT-compliant theory solver based on the virtual

substitution

We aim to design a theory solver which performs a depth-first search as illustrated in Figure 4.1.

Here, we want to make use of the restriction that the formula ϕR, which the theory solver has

to check for satisfiability, is only a conjunction of real arithmetic constraints. Additionally, the

theory solver has to be SMT compliant. Therefore, we need to store intermediate results in order

to be able to omit their recalculation. However, it would clearly not be an option to just store

the search tree as depicted in Figure 4.1, as it grows exponentially as the number of variables

increases. Hence, we need to prune subtrees, which do not contain a satisfying assignment of test

candidates to variables for ϕR, and keep a record of the causes of these intermediate conflicts.

4.2.1 Data structure to store a depth-first search tree of the virtual substitution

Figure 4.1 gives us a rough idea of the requirements on a data structure, which we can use to

store an intermediate result of a depth-first search for a satisfying assignment of test candidates to

variables. It shows a directed tree, where the vertices are labeled by real arithmetic formulas (in

Figure 4.1 by ϕR, ϕRn−1, . ., ϕR1 , true) and the edges are labeled by test candidates (in Figure 4.1

by t1
xn

, . ., t
kn
xn

, . ., t1
x1

, . ., t
k1
x1

).

As we want to prune unsatisfiable subtrees and store reasons for their unsatisfiability instead,

we additionally want to be able to label the vertices by conflicts. Especially, for the sake of an

75

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

incremental adding and removing of information in our data structure, we must also be able to

trace back the information’s origins.

Definition 24 A virtual substitution search tree (VSST) (V, E,Φ, orig,κ, elimvar, used, incompl,

TC) is a directed tree (V, E) where the vertices and edges are labeled.

The vertices are labeled by

• a set of formulas, which is denoted by

Φ : V → P(FO(τ)),

• a function that maps formulas to a set of sets of formulas, which is denoted by

orig: V → (FO(τ)→ P(P(FO(τ)))),

• a set of sets of formulas, which is denoted by

κ: V → P(P(FO(τ)))

• and a Boolean flag, which is denoted by

incompl: V → B.

Some vertices are also labeled by an arithmetic variable, which is denoted by the partial function

elimvar: V → VARR,Z

and a function that maps formulas to Boolean constants, which is denoted by the partial function

used: V → (FO(τ)→ B).

The edges are partially labeled by a pair of a test candidate and a set of formulas, which is

denoted by the partial function

TC: E→ TCS× P(FO(τ)).

A VSST (V, E,Φ, orig,κ, elimvar, used, incompl, TC) is very similar to the search tree from Fig-

ure 4.1. The main differences are the additional labels orig, κ, used and incompl of a vertex

v ∈ V and that there is now a set of a formulas instead of just a formula, where the conjunction

of these formulas, i. e.,
∧
ϕ∈Φ(v)ϕ, corresponds to a formula in Figure 4.1. The other labels have

the following meaning:

orig : This label specifies a function orig(v) that maps each formula ϕ in Φ(v) to a set of sets of

76

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

formulas from Φ(v′), where v′ is the father of v. Each set in orig(v)(ϕ) forms a reason for

the existence of ϕ. For instance, if orig(v)(ϕ) = {{ϕ1,ϕ2}, {ϕ3}}, ϕ1 and ϕ2 are together

responsible that we created ϕ. The formula ϕ3 forms another reason why we created ϕ. If

v is the root of (V, E) and, therefore, has no father, it holds that orig(v)(ϕ) = {{ϕ}}.

κ : This label forms a set of conflicts, which contains infeasible subsets of the formulas in Φ(v),

if the search for a satisfying assignment of test candidates to variables yields that
∧
ϕ∈Φ(v)ϕ

is unsatisfiable. Otherwise, κ(v) is empty.

incompl : This label specifies a Boolean flag that indicates whether the satisfiability of the con-

junction of the formulas in Φ(v) cannot be determined by the virtual substitution as the

degree of some constraints is to high.

A vertex v ∈ V can also be labeled with the variable elimvar(v), which we eliminate next from

the formulas in Φ(v) according to Corollary 1. For such a vertex, the labeling function TC maps

the edges (v, v′) ∈ E to a pair of a test candidate and a set of formulas in Φ(v), which form reasons

for the existence of this test candidate. This makes sense as several constraints might provide

the same test candidate, for instance, all constraints which contain elimvar(v) provide the test

candidate −∞. Furthermore, a vertex v ∈ V can be labeled with a function used(v) that maps

each formula in Φ(v) to a Boolean constant, which specifies whether the formula (which must be

a constraint in this case) has been used to provide test candidates or not. Hereby we enable an

incremental creation of test candidates.

We use a VSST in the intended SMT-compliant theory solver and initialize it with:

TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC)

:= ({v1}, ;, {(v1,;)}, {(v1,;)}, {(v1,;)}, {(v1,;)}, ;, {(v1, false)}, ;)

We ensure that TVS always fulfills the following invariants:

1. The labeling function TC is undefined for all edges (v, v′) ∈ E, i. e., TC((v, v′)) = ⊥, if

elimvar is undefined for v, i. e., elimvar(v) = ⊥.

2. If Φ(v) contains a formula which is not a constraint, elimvar is undefined, i. e., elimvar(v) =

⊥, and there exists no more than one child v′ of v which is not conflicting, i. e., κ(v′) = ;,
and whose satisfiability is not impossible to determine with the virtual substitution, i. e.,

incompl(v′) = false.

3. The function Φ maps the root of (V, E) to a set of constraints.

The meaning of the first invariant is quite natural. It states that we only construct test candidates,

if the variable to eliminate next, which is the variable for which the test candidates are constructed,

is specified.

The second invariant assures that we only eliminate a variable, if the considered formulas are

just constraints. This is due to the fact that the search for a satisfying assignment of test candidates

77

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 3 Given a VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) and a vertex v ∈ V ,
this procedure creates an empty child v′ of v.

createChild(VSST TVS, vertex v ∈ V)
begin

1: v′ := fresh vertex not occurring in V

2: V := V ∪ {v′}
3: Φ := Φ∪ {(v′,;)}
4: incompl := incompl∪ {(v′, false)
5: orig := orig∪ {(v′,;)}
6: κ := κ∪ {(v′,;)}
7: E := E ∪ {(v, v′)}
8: return v′

end

to variables, which is presented in the course of this chapter, strictly distinguishes whether we

consider a conjunction of constraints or not. For the case that a vertex v ∈ V is labeled by Φ

with a set of constraints, we present an incremental approach to eliminate a variable in
∧

c∈Φ(v) c

according to Corollary 1 in Section 4.2.4. Here, we create a child v′ for each test candidate t

and set TC((v, v′)) = (t, C), where C contains the constraints which provide t, respectively, and

Φ(v′) = {c[t//elimvar(v)]| c ∈ Φ(v)}∪ {sc(t)}. If v is labeled by Φ with a set containing formulas

not being constraints, we need a case distinction. The children of v then reflect the single cases,

such that they are labeled by Φ with a set, which contains only constraints again. In this case,

only one case is considered at a time. This means, that all but one child are either conflicting or

marked by incompl(v) with true, which means that for this case the virtual substitution was not

able to determine the satisfiability.

The root in the theory solver’s VSST stores the constraints which the theory solver has to check

for satisfiability, therefore the third invariant has to hold.

Before, we can present the algorithms for adding and removing constraints to a VSST, and

the satisfiability check for the constraints in the root of a VSST, we introduce the following two

auxiliary procedures, which enable a manipulation of a VSST.

createChild We can add vertices to a VSST with Algorithm 3. For a given vertex it creates a child

with an empty set of formulas and no conflicts.

deleteSubtree We can remove vertices from a VSST with Algorithm 4. This procedure expects

the edge to the vertex to delete as input and removes this edge and all vertices and edges

in the subtree where the vertex to delete is the root.

Definition 25 (Conflicting and valid vertices in a VSST) Given a VSST TVS = (V, E,Φ, orig,

κ, elimvar, used, incompl, TC) and a vertex v ∈ V , we call it

• conflicting, if κ(v) 6= ;, and

78

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

• valid, if it is not conflicting and Φ(v) = ;.
In Figure 4.1, for instance, the leaf labeled by true corresponds to a valid vertex in a VSST.

4.2.2 Incremental adding of constraints

If we add a constraint c to the theory solver, we have to add it to the theory solver’s VSST TVS

storing the result of the last search for a satisfying assignment of test candidates to variables. For

this purpose we invoke the procedure addVS(TVS, v1, c, {c}) as introduced by Algorithm 5, where

v1 is the root of TVS.

Given a VSST TVS, adding a formula ϕ to a vertex v ∈ V , where ϕ has the origins M ⊆ Φ(v′)
in v’s father v′ (if v is not the root, otherwise M = {ϕ}), is accomplished in two phases. First,

we add ϕ to the vertex’s formulas Φ(v) and extend the mapping of formulas to origins orig(v)

by (ϕ, {M}) (Line 5-6). In the case that ϕ = false we add a conflict set to κ(v) consisting of

only ϕ (Line 2). If Φ(v) contained only constraints and a variable to eliminate is already fixed,

we extend used(v) by (ϕ, false) and reset incompl(v) to false, if ϕ is a constraint (Line 9). This

indicates, that ϕ has not yet provided test candidates and, in the case that incompl(v) was true

before, we now might be able to determine the satisfiability of the conjunction of constraints in

Φ(v). If ϕ is not a constraint, we delete used(v), elimvar(v) and all children of v, which means,

that this vertex is now used for a case distinction instead of a variable elimination (Line 13-16).

In the second phase of Algorithm 5 we update v’s children (Line 24). If a child was introduced

by reason of a variable elimination, we extend its formulas by the result of ϕ[t//elimvar(v)],

where t is the test candidate in the label of the edge from v to the child. We achieve this by

calling addVS recursively with {ϕ} as origin (Line 27). If the child was introduced by the result

of a case distinction, we have to extend the currently considered case, which is represented by

the only non-conflicting child (Line 30). It might happen that due to the addition of ϕ no more

cases have to be considered. Then, the formula considered by v is unsatisfiable and we create

the conflicts according to Algorithm 11.

Algorithm 4 Given a VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) and an edge (v, v′) ∈
E, this procedure deletes the subtree in TVS with root v′.

deleteSubtree(VSST TVS, edge (v, v′) ∈ E)
begin

1: // remove all children

2: while exists (v′, v′′) ∈ E do

3: deleteSubtree(TVS, (v′, v′′))
4: end while

5: // remove vertex and edge to its father

6: E := E \ {(v, v′)}
7: V := V \ {v′}

end

79

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 5 Given a VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) and a vertex v ∈ V ,
this procedure adds the given formula ϕ to Φ(v) and propagates this update in the subtree with
the root v.

addVS(VSST TVS, vertex v ∈ V , formula ϕ, set of formulas M)
begin

1: // add ϕ to the vertex

2: if ϕ = false then κ(v) := κ(v)∪ {{ϕ}} // formula forms trivially a conflict

3: if ϕ = true then return // does not influence the satisfiability

4: if ϕ /∈ Φ(v) then

5: Φ(v) := Φ(v)∪ {ϕ} // add the formula

6: orig(v) := orig(v)∪ {(ϕ, {M})} // add the formulas origin

7: if elimvar(v) 6= ⊥ then

8: if ϕ is a constraint then

9: used(v) := used(v)∪ {(ϕ, false)} // extend used-flags

10: // new constraint might make it possible to determine satisfiability

11: incompl(v) := false
12: else

13: elimvar := elimvar \ {(v, elimvar(v)} // remove elimination variable

14: used := used \ {(v, used(v)} // remove all used-flags

15: for all (v, v′) ∈ E do

16: deleteSubtree(TVS, (v, v′)) // delete all children

17: end for

18: end if

19: end if

20: else

21: orig(v)(ϕ) := orig(v)(ϕ)∪ {M} // formula exists: only add the origin

22: end if

23: // update the children

24: for all (v, v′) ∈ E do

25: if elimvar(v) 6= ⊥ then

26: (t, Mt) := TC((v, v′)) // child with VS result

27: addVS(TVS, v′,ϕ[t//elimvar(v)], {ϕ}) // extend the VS result

28: else if κ(v′) = ; then

29: // try to extend the considered case of the child

30: if extendCase(TVS, v) = false then createConflicts(TVS, v)

31: end if

32: end for

end

Within Algorithm 5 we use the following sub-procedure.

extendCase Consider that we consider in a vertex v′ one case of the case distinction which we

made for the formulas considered by the father v of v′. Then assume that we add formulas

to Φ(v) and, therefore, have to extend the formulas in Φ(v′) as well such that it is still

a valid case of the conjunction of the formulas in Φ(v). With the procedure extendCase,

80

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 6 Given a VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) and an edge (v, v′) ∈
E, this procedure extends the constraints considered by v′ in Φ(v′) to a case of the formulas
considered by v in Φ(v), such that if

∧
c∈Φ(v′) c is satisfiable, so is

∧
ϕ∈Φ(v)ϕ.

extendCase(VSST TVS, edge (v, v′) ∈ E)
begin

1: // assumption: κ(v) = ;
2: V ′ := children of v which are not v′

3: // formulas considered by v while excluding a conflict for each child

4: ψ :=
∧
ϕ∈Φ(v)ϕ ∧
∧

v′′∈V ′,κ(v′′) 6=;¬(
∧

c∈Kv′′
c) // for a heuristically chosen Kv′′ ∈ κ(v′′)

5: ∧
∧

v′′∈V ′,κ(v′′)=;¬(
∧

c∈Φ(v′′) c) // exclude cases with incompl(v′′) = true
6: ψB := Boolean abstraction of ψ
7: abstrBψ := corresponding Boolean abstraction mapping
8: if ψB is satisfiable then

9: α := satisfying assignment for ψB

10: // collect the constraints which have to hold according to α

11: M := {c ∈ C∼(ψ)| α(abstrBψ(c)) = true}
12: // update v′ such that it now considers the formulas in M

13: removeVS(TVS, v′,Φ(v′) \M)

14: for all c ∈ M \Φ(v′) do

15: Oc := {ϕ ∈ Φ(v)| c ∈ C∼(ϕ)} // create origins of c

16: addVS(TVS, v′, c, Oc)

17: end for

18: return true
19: else

20: deleteSubtree(TVS, (v, v′))
21: return false
22: end if

end

which we implement in Algorithm 6, we can extend the formulas in v′ and update it for

this purpose. This procedure determines a satisfying assignment α, if any exists, for the

Boolean abstraction ψB of the formula

ψ =
∧

ϕ∈Φ(v)
ϕ ∧
∧

v′′ ∈ V ′

κ(v′′) 6= ;

¬(
∧

c∈Kv′′

c)∧
∧

v′′ ∈ V ′

κ(v′′) = ;

¬(
∧

c∈Φ(v′′)
c),

where V ′ are the children of v without v′ and we choose Kv′′ ∈ κ(v′′) heuristically. Thus,

we obtain a case, which is not yet excluded by one of the conflicts in one of the children of

v. Neither it is a case for which we already know that we cannot determine the satisfiability

using the virtual substitution. These cases are represented by the children of v which are

marked by incompl with true. Note, that if we invoke extendCase with the edge (v, v′) as

argument, it is ensured that for each child v′′ 6= v′ of v either κ(v′′) 6= ; or incompl(v′′) =

81

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

true.

Let us have a closer look at how each ϕ ∈ Φ(v) is constructed. As v is a vertex which we

use for a case distinction, it cannot be the root of TVS. Therefore, it must have a father

v f and each ϕ ∈ Φ(v) is the result of c f [t//elimvar(v f)] for some constraints c f ∈ Φ(v f)

and TC((v f , v)) = (t, Mt). Considering the rules we use to obtain this result, as depicted

in [Wei97] or [Cor10], we see that it is in NNF, where in particular all literals are positive.

If there is no ϕ ∈ Φ(v) with ϕ = false, the Boolean skeleton ψ′
B

of ψ′ =
∧
ϕ∈Φ(v)ϕ is then

obviously satisfiable (for instance, it is satisfied by the assignment which assigns true to all

of its variables). As α is a satisfying assignment of ψB and, thus, in particular a satisfying

assignment of ψ′
B
, it also holds that any assignment α′ which assigns true to each variable

x , if α(x) = true, is a satisfying assignment of ψ′
B
. This is due to the fact, that ψ′

B
is in

NNF and only constructed by conjunctions and disjunctions. As any satisfied disjunction is

still satisfied if one of its sub-formulas is true instead of false, we can prove by induction on

the formula depth that ψ′
B

is satisfied by α′. Therefore, ψ′ is satisfiable, if the conjunction

of those constraints, to whose Boolean abstraction α assigns true, is satisfiable. Hence,

we have to make sure that v′ contains these constraints. We add them to v′ (Line 16), if

they are not yet in the constraints considered by v′, and remove all constraints, which are

considered by v′ but do not have to hold according to α (Line 13). If we add a constraint c

to v′ we specify that its origin in v consists of all formulas in Φ(v) which contain c (Line 15).

In Section 4.2.6 we explain why this is sufficient in order to construct conflicts for v by

the use of the conflicts in v′ if it is conflicting. However, in many cases it still forms an

over-approximation of the actual reason why we assigned true to the Boolean abstraction

of c. We propose another idea as to how we might obtain better origins in Section 4.4.

If ψB is unsatisfiable, all cases are covered and we delete the subtree with the root v′, but

keep all the other children of v, which contain the conflicts we make use of in order to

construct conflicts for v (Line 20). If for each child v′′ of v it holds that incompl(v′′) = false,∧
ϕ∈Φ(v)

ϕ is indeed unsatisfiable, as the unsatisfiability of the Boolean abstraction ofψ implies

the unsatisfiability of ψ, which again implies the unsatisfiability of
∧

ϕ∈Φ(v)
ϕ, as ¬(
∧
c∈K

c) is

a tautology for all K ∈ κ(v′′) and v′′ ∈ V ′.

4.2.3 Belated removing of constraints

Removing a constraint c from the theory solver means that we have to remove it from the theory

solver’s VSST TVS. We can achieve this, as a VSST also stores the origins of formulas in the labels

of the vertices and the origins of test candidates in the labels of the edges. For this purpose we

invoke the procedure removeVS(TVS, v1, {c}) as introduced by Algorithm 7, where v1 is the root

of TVS.

In general, we can remove the formulas in M = {ϕ1, . . . ,ϕn} and everything which has its

82

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 7 Given a VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) and a vertex v ∈ V ,
this procedure removes everything from the subtree with the root v which has its origins in the
given set of formulas M .

removeVS(VSST TVS, vertex v ∈ V , set of formulas M)
begin

1: M ′ := ; // set of formulas to remove from the children as origins

2: // remove origins from formulas in vertex

3: for all ϕ ∈ Φ(v) do

4: N := ; // stores the remaining origin sets

5: for all O ∈ orig(v)(ϕ) do

6: if O ∩M = ; then N := N ∪ {O} // add origin, if it contains no formula to remove

7: end for

8: if N = ; then

9: if used(v) 6= ⊥ then used(v) := used(v) \ {(ϕ, used(v)(ϕ))}
10: orig(v) := orig(v) \ {(ϕ, orig(v)(ϕ))}
11: Φ(v) := Φ(v) \ {ϕ}
12: // removing constraint might make it possible to determine satisfiability

13: incompl(v) := false
14: M ′ := M ′ ∪ {ϕ}
15: else

16: orig(v)(ϕ) := N

17: end if

18: end for

19: // remove conflicts which depend on M ′

20: if κ(v) 6= ; then

21: κ(v) := {K ′ ∈ κ(v)| K ′ ∩M ′ = ;}
22: v′ := father of v

23: if κ(v) = ; ∧ elimvar(v′) = ⊥ then

24: deleteSubtree(TVS, (v′, v)) // as we allow only one case at a time

25: end if

26: end if

27: // remove M ′ from origins in the children

28: for all (v, v′) ∈ E do

29: if TC((v, v′)) 6= ⊥ then

30: (t, Ot) := TC((v, v′))
31: if Ot ⊆ M ′ then

32: deleteSubtree(TVS, (v, v′)) // remove child if origins of test candidate vanish

33: else

34: TC((v, v′)) := (t, Ot \M ′) // update origins of test candidate

35: removeVS(TVS, v′, M ′)
36: end if

37: else removeVS(TVS, v′, M ′)
38: end for

end

83

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

origin in ϕ1, . . . ,ϕn from a subtree of TVS with the root v, by invoking removeVS(TVS, v, M). This

procedure first removes all those origins in orig(v)(ϕ) for each formula ϕ in Φ(v), which contain

formulas from the given set M of origins to remove (Line 4-16). If a formula thereby runs out

of origins, we delete it and add it to the set M ′ of origins, which we remove from v’s children

later (Line 9-14). In this case we also reset incompl(v) to false as it now might be possible to

determine the satisfiability of the conjunction of formulas in Φ(v) (Line 13).

If the vertex v is labeled with a non-empty conflict, we remove all conflicts from κ(v) containing

formulas whose origins vanished, i. e., the formulas in M ′ (Line 20-24). In the case that no

conflict remains and this vertex is a case of the case distinction made for its father v′, we delete it

(Line 24). Otherwise, v is still conflicting or it considers the result of Φ(v′)[t//elimvar(v′)]∧ sc(t)

where t is the test candidate in the label of the edge (v′, v). Hence, we recycle conflicts and

virtual substitution results.

Finally, Algorithm 7 removes the formulas in M ′ from the origins in v’s children. If the edge

from v to a child is labeled by a test candidate, we also update its origins (Line 30-35). If they

vanish, we remove the child (Line 32).

4.2.4 Checking a conjunction of constraints for satisfiability

As seen before, we can add and remove constraints to the theory solver, leaving a set of constraints

in the root of the theory solver’s VSST TVS. In order to check this set of constraints for satisfiability,

we invoke checkVS(TVS, v1), which is described in Algorithm 10, passing the VSST TVS and its root

v1 as input. If this procedure returns sat, the conjunction of constraints in Φ(v1) is satisfiable

and, if it returns unsat, this conjunction is unsatisfiable. If this procedure returns unknown, it

was not possible to determine the satisfiability of
∧

c∈Φ(v1)
c with the presented implementation

of the virtual substitution method. Bear in mind, that the virtual substitution is incomplete for

general real arithmetic formulas, as explained in Section 2.7. Before we go into detail about

Algorithm 10, we describe two sub-procedures, which it uses.

updateEliminationVar Let us consider a vertex v in our VSST TVS, such that all formulas in Φ(v)

are constraints. As explained before, we then eliminate a variable according to Corollary 1.

The procedure updateEliminationVar, which is described in Algorithm 8, determines the

variable, which we eliminate, and updates the vertex afterwards. We choose the variable

according to certain heuristics which are purely based on the constraints in Φ(v) (Line 1).

This choice is vital for the performance of the virtual substitution, as a wrong choice can

lead to more cases or the position where we cannot determine the satisfiability, while the

right choice could have prevented this. We present a detailed description of the metrics of

this heuristic choice in Section 5.1. After deciding which variable is the best to eliminate,

we update the vertex in Algorithm 8. This means, that even if the variable to eliminate

has been chosen before and some constraints in Φ(v) have provided test candidates, we

might change this choice and delete everything which depended on it (Line 9-15). In the

84

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 8 Given a VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) and a vertex v ∈ V ,
this procedure updates the variable to eliminate next.

updateEliminationVar(VSST TVS, vertex v ∈ V)
begin

1: x := heuristically the best variable to eliminate next in Φ(v)
2: if elimvar(v) = ⊥ then

3: // no elimination variable chosen yet: set it to x

4: elimvar := elimvar∪ {(v, x)}
5: // initialize flags to indicate if constraints were used for test candidate creation

6: used := used∪ {(v, {(c, false)| c ∈ Φ(v)})}
7: else if elimvar(v) 6= x ∧ changing to x improves enough then

8: // found a better elimination variable

9: elimvar(v) := x

10: // delete all children of v

11: while exists (v, v′) ∈ E do

12: deleteSubtree(TVS, (v, v′))
13: end while

14: // update flags to indicate if constraints were used for test candidate creation

15: used(v) := {(c, false)| c ∈ Φ(v)}
16: end if

end

case, that the variable to eliminate has not yet been set, we fix the elimination variable and

ensure that all constraints are mapped by used(v) to false, which means that we have not

yet used these constraints in order to provide test candidates (Line 4-6).

createTCs In the procedure to check the satisfiability of the constraints in the root of the VSST

TVS, we also make use of the sub-procedure createTCs, which constructs for a given ver-

tex v test candidates. Here, we assume that Φ(v) contains only constraints and that v’s

elimination variable elimvar(v) is already fixed. We can construct test candidates, if Φ(v)

contains a constraint c, which has not yet been used in order to provide test candidates,

i. e., used(v)(c) = false, and which contains the variable to eliminate but its degree in c

is less than or equal to 2. Furthermore, we only construct a test candidate if it has not

yet been provided by another constraint, which is the case if an edge from v to one of its

children is labeled with this test candidate. Otherwise, we only extend the origins of this

test candidate (Line 8) and add the result of virtually substituting the elimination variable

by this test candidate in c to this child (Line 9).1 Assume that there are constraints fulfilling

the aforementioned conditions. We choose one of them according to heuristics, which are

explained in Section 5.1. Let us assume that we choose the constraint c. Then we create for

each test candidate t for the elimination variable elimvar(v) in c a child (Line 11), such

1Here, we can further optimize the incremental creation of the VSST, if we bookmark constraints for which we have
not yet added the result of virtually substituting the elimination variable by this test candidate in c to this child,
and only add it, if we actually want to consider this child.

85

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 9 Given a VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) and a vertex v ∈ V

and a constraint c ∈ Φ(v), this procedure searches for a constraint c ∈ Φ(v), which can provide
further test candidates. It then creates a child v′ of v for each test candidate t for the variable
elimvar(v) in c, such that the formulas considered by v′ in Φ(v′) are the formulas considered by
v in Φ(v) where elimvar(v) is virtually substituted by t and t ’s side conditions. Then it holds that
if
∧

c∈Φ(v′) c is satisfiable, so is
∧
ϕ∈Φ(v)ϕ.

createTCs(VSST TVS, vertex v ∈ V)
begin

1: createdTC := false // this variable is set to true if a test candidate has been created

2: // find heuristically the best constraint which has not yet been used for test candidate creation

3: while exists c ∈ Φ(v) with used(v)(c) = false do

4: used(v)(c) := true // constraint marked as used for test candidate creation

5: if 0< deg(elimvar(v), Pol(c))≤ 2 then

6: for all t ∈ tcs(elimvar(v), c) do

7: if exists (v, v′) ∈ E with TC((v, v′)) = (t, Ot) then

8: TC((v, v′)) := (t, Ot ∪ {c})
9: addVS(TVS, v′, c[t//elimvar(v)], {c}) // add c[t//elimvar(v)] to v′

10: else

11: v′ := createChild(TVS, v) // create a child for t

12: TC := TC∪ {((v, v′), (t, {c}))} // label new edge with t, whose origin is c

13: addVS(TVS, v′, sc(t), {c}) // add t’s side condition to v′

14: for all c′ ∈ Φ(v) do

15: addVS(TVS, v′, c′[t//elimvar(v)], {c′}) // add c′[t//elimvar(v)] to v′

16: end for

17: createdTC := true
18: end if

19: end for

20: if createdTC then return true
21: else if deg(elimvar(v), Pol(c))> 2 then

22: incompl(v) = true // we cannot determine the unsatisfiability

23: end if

24: end if

25: return false
end

that the edge leading to it is labeled with t and the origins consisting of just c (Line 12).

Additionally, we add t ’s side conditions and the results of virtually substituting the elimina-

tion variable by t in each constraint c′ in Φ(v), i. e., c′[t//elimvar(v)], to the created child

(Line 13-15). Note that the origins of t ’s side conditions in the created child v′ consist of

the constraint, which provided t, i. e., c. The origins of the virtual substitution results in v′

consist only of the constraint we substituted in. Finally, this procedure returns true if test

candidates were created, otherwise it returns false.

We can summarize the main idea of the procedure checkVS, described in Algorithm 10, as

86

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 10 Given a VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) and a vertex v ∈ V ,
this procedure checks the satisfiability of the formulas in v, i. e.,

∧
ϕ∈Φ(v)ϕ.

checkVS(VSST TVS, vertex v ∈ V)
begin

1: if κ(v) 6= ; then return unsat // v is conflicting

2: if Φ(v) = ; then return sat // v is valid

3: while true do

4: // choose heuristically the best child which is not conflicting

5: while exists (v, v′) ∈ E with κ(v′) = ; do

6: if checkVS(TVS, v′) = sat then return sat

7: end while

8: // create new children

9: if Φ(v) contains only constraints then

10: updateEliminationVar(TVS, v,) // update the elimination variable

11: if createTCs(TVS, v) = false then

12: // all test candidates considered and hence all children are constructed

13: return createConflicts(TVS, v) // construct infeasible subsets of Φ(v) and return

14: end if

15: else

16: v′ := createChild(TVS, v) // create an empty child of v

17: if extendCase(TVS, (v, v′)) = false then

18: // all cases considered and hence all children constructed

19: if v has child v′′ with incompl(v′′) = true then

20: incompl(v) = true
21: end if

22: return createConflicts(TVS, v) // construct infeasible subsets of Φ(v) and return

23: end if

24: end if

25: end while

end

follows. Each vertex v considers a formula, which is equisatisfiable to the disjunction of the

formulas considered by v’s children, if all children have been constructed. If Φ(v) contains only

constraints, all children are constructed if all test candidates for the variable to eliminate in all

of these constraints were constructed with createTCs. Otherwise, all children are constructed if

all cases of the formula
∧
ϕ∈Φ(v)ϕ were considered according to the procedure extendCase.

This implies that as soon as we find a valid vertex v, the conjunction of the formulas in v’s

father is satisfiable and, therefore, the same holds for v’s father’s father and so on. It follows

that the conjunction of the formulas in the root is satisfiable and, hence, we can return sat. In

order to find a valid vertex, starting with the root, we need to alternately choose a child (and test

candidate) when eliminating a variable and then a child of this child (and case) when making a

case distinction until reaching a valid vertex.

If, on the other hand, all children of a vertex v are constructed and all of them are conflicting, it

87

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Algorithm 11 Given a VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) and a vertex v ∈ V ,
this procedure calculates infeasible subsets of Φ(v) and stores them into κ(v).

createConflicts(VSST TVS, vertex v ∈ V)
begin

1: // if conjunction of formulas in v are not necessarily unsatisfiable

2: if incompl(v) = true then return unknown

3: // otherwise, find the best sets to cover all conflicts in the children

4: κ(v) := bestConflictCoveringSets(TVS, v)

5: if v is not root then // keep children of root, which can be reused after backtracking

6: // delete all children of v

7: while exists (v, v′) ∈ E do

8: deleteSubtree(TVS, (v, v′))
9: end while

10: end if

end

follows from Theorem 2 that the conjunction of the formulas considered by v must be unsatisfiable.

It remains to fill κ(v) based on the conflicts in the children with infeasible subsets of Φ(v) and

delete all children, which we accomplish with Algorithm 11. We explain in Section 4.2.6 how

to achieve these infeasible subsets. Note that if Φ(v) contains a formula ϕ which is false, it has

been added to v with the procedure addVS and is the result of the elimination of variable by a

test candidate (or directly added to the root). Within the procedure addVS we ensure that {ϕ} is

then added as a conflict to κ(v).

On the basis of this concept, Algorithm 10 processes a given vertex v in the theory solvers VSST

TVS. If Φ(v) is empty, the vertex is evidently satisfiable and we return sat (Line 2). If κ(v) is

not empty, v is trivially conflicting and we return unsat (Line 1). Otherwise, we either construct

children of v until one of them is satisfiable or until all children are constructed and all of them

are conflicting or excluded as we cannot determine the satisfiability of their considered formulas

with the virtual substitution. In the first case, this procedure returns sat (Line 6), and in the

second case it either returns unknown, if for at least one child checkVS returned unknown, or it

creates conflicts and returns unsat (Line 13). The main loop of Algorithm 10 first checks all non

conflicting children (Line 5-6) and then constructs new children if possible. Here we distinguish

again whether Φ(v) contains only constraints or not. In the first case, we want to create children

which consider further test candidates (Line 11), after we have fixed (or updated) the variable

to eliminate (Line 10). In the second case we make a case distinction. Here, we create an empty

child v′ (Line 16), i. e., Φ(v′) = ;, and add the constraints, which correspond to the next case

we want consider, to v′ using the procedure extendCase (Line 17). If it returns false, all cases

were considered and, if we could not determine the satisfiability for one of these cases, we cannot

determine the satisfiability of the formulas represented by v (Line 20).

We already mentioned in the beginning of this section, that it would not be an option to store

88

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

all vertices of the search tree as depicted in Figure 4.1 when applying Algorithm 10. This is due

to the fact that the number of vertices grows exponentially as the number of variables in the

formula we check for satisfiability increases. Therefore, we delete in Algorithm 11 all children

of the given vertex, if we know that it is conflicting and if it is not the root of the theory solver’s

VSST. When removing a constraint from a theory solver in an SMT solver belatedly, we can differ

between two situations.

One situation is, that the SMT solver’s SAT solver encounters a Boolean conflict, backtracks

internally and then changes its Boolean assignment, which ultimately leads to the removal of

constraints in the theory solver. In this case, it is more likely that the last theory solver call

determined that its input is satisfiable. In our case, this implies that the VSST contains a path

from its root to a valid vertex and therefore, after a belated removing of a constraints with

removeVS, it might not remove a lot of information which are stored in the VSST and even keep

the solution path untouched (we explain in Section 4.2.5 what we exactly mean by solution path).

The second occasion where we remove constraints from a theory solver belatedly, is after it

detects a theory conflict and the SMT solver resolves this conflict by changing the assignment in

the SAT solver. This implies that the root of the VSST is conflicting. As we keep all children of the

root in the case that it is conflicting, a belated removing of its considered formulas and, thereby,

resolving of the root’s conflict, is not the same as a complete restart. Many children might still

be conflicting and as a consequence there are many test candidates, which we do not need to

reconsider.

4.2.5 Creating a solution

Let us assume that we checked the set of constraints in the root v1 of the theory solver’s VSST

TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) for satisfiability by invoking checkVS(TVS, v1)

and that this procedure returned sat. Then, V contains a valid vertex vk (k > 1) and a solution

θ can be constructed if we collect the variable eliminations along the path

ω := v1v2 . . . vk−1vk

in TVS from v1 to vk with

θ (x) =

¨
t , if ∃i ∈ {1, . . . , k− 1}. (TC((vi , vi+1)) = t ∧ elimvar(vi) = x)

0 , otherwise,

where we assume that x ∈
⋃
ϕ∈Φ(vi)

Vars(ϕ). Note, that it can happen that by the elimination of

a variable x from a vertex vi to the vertex vi+1 (1≤ i < k, elimvar(vi) = x) further variables are

dropped out. Therefore, a solution can assign any value to these variables, for instance 0.

The constructed solution θ maps variables to test candidates, which represent reals, but ac-

tually they can contain other variables. Moreover, test candidates can be a representative for

89

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

a sufficiently small value, i. e., −∞, or contain a positive infinitesimal ε. Fortunately, we can

construct a solution from this, which maps all variables to reals, using the ideas in [KSD16].

4.2.6 Generating small reasons for infeasibility

Assume that we check a conjunction of constraints c1 ∧ . . ∧ cn with checkVS for satisfiability.

In this scenario, by the use of the procedures addVS and removeVS we ensure that the root

v1 of our theory solver’s VSST TVS contains exactly the constraints c1, . ., cn. Then we invoke

checkVS(TVS, v1), which returns either sat, unknown or unsat. In the last case, we require an

SMT-compliant theory solver also to specify infeasible subsets of {c1, . ., cn}, which are preferably

small.

Given any vertex v (including the root) in the VSST TVS, we know, from the explanation in

Section 4.2.4, that checkVS(TVS, v) returns false if v is conflicting. More precisely, we have the

situation where κ(v) contains conflicts. This is either the result of adding a formula ϕ being

false to v or all children of v are constructed and all of them are conflicting. Then, we fill κ(v)

with infeasible subsets of Φ(v) based on the conflicts in the children. The following procedure

implements the construction of these infeasible subsets.

bestConflictCoveringSets Let us assume that the given VSST TVS is (V, E,Φ, orig,κ, elimvar,

used, incompl, TC). Furthermore, we assume that the given vertex v is not a leaf and all of

its children V ′ ⊂ V are conflicting, i. e., for all v′ ∈ V ′ it holds that κ(v′) 6= ;. In particular,

there exists no ϕ ∈ Φ(v) with ϕ = false, as otherwise Algorithm 5 would have directly

added ϕ to κ(v) and we would not enter this procedure. It returns a set K ⊆ P(Φ(v)) of

subsets of v’s considered formulas such that for all of these subsets K ′ ∈ K it holds that

∀v′ ∈ V ′. ∃Kv′ ∈ κ(v′). ∀ϕ′ ∈ Kv′ . ∃N ∈ orig(v′)(ϕ′). N ⊆ K ′. (4.1)

It means that all sets in K cover at least one of the origins of each formula in at least one

of the conflicts in each child v′. Note that an origin is in general a set of formulas in Φ(v)

and that there could be more than one origin to choose from.

The construction of a set covering as we need it in order to fulfill Equation (4.1) turns into an

NP-hard problem if we also require that it is optimal in any way, for instance to search for the

smallest set covering [CTF00]. We omit this complexity by the use of an approximative approach

to find some set coverings instead. The applied heuristics are presented in Section 5.2.

It remains to prove that the thereby constructed conflicts do indeed form infeasible subsets of

the formulas in a vertex v. We again distinguish, whether Φ(v) contains constraints only or also

formulas, which contain some Boolean complexity.

If Φ(v) contains only constraints, we use v for a variable elimination according to Corollary 1.

From Theorem 3 it directly follows that all sets returned by bestConflictCoveringSets are infeasi-

ble.

90

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

Theorem 3 Let ϕR =
∧n

i=1 ci be an unsatisfiable conjunction of real arithmetic constraints, which

contains the variable x. Assume that it holds that

ϕR
Corollary 1
⇔
∨

t∈tcs(x ,ϕR)

(ϕR[t//x] ∧ sc(t)). (4.2)

Then for any subset M ⊆ {c1, . ., cn} of the constraints in ϕR it holds that

∀t ∈ tcs(x ,ϕR). ∃N ⊆ {c[t//x]| c ∈ M} ∪ {sc(t)}.
∧
ψ∈N ψ is unsatisfiable

⇒∧
c∈M c is unsatisfiable.

Proof 3 We show that if the right-hand side of the implication to prove does not hold, then it

follows that the left-hand side does not hold. This implies Theorem 3.

∧
c∈M c is satisfiable

Equation (4.2)
⇒ ∃t ∈ tcs(x ,ϕR). sc(t)∧

∧
c∈M c[t//x] is satisfiable

⇒ ∃t ∈ tcs(x ,ϕR). ∀N ⊆ {c[t//x]| c ∈ M} ∪ {sc(t)}.
∧
ψ∈N ψ is satisfiable

�

If v contains formulas in Φ(v), which are not constraints, we make a case distinction for v and

the children represent all cases which needed to be checked in order to ensure that
∧
ϕ∈Φ(v)ϕ is

unsatisfiable (for more details we refer to Section 4.2.2). From Theorem 4 it directly follows that

all sets returned by bestConflictCoveringSets are infeasible. Note that we propose an improvement

in Section 4.4 as to how we might retrieve better conflicts for the formulas in Φ(v).

Theorem 4 Let ϕR =
∧n

i=1ϕi be an unsatisfiable conjunction of real arithmetic formulas in NNF,

where all literals are positive. Let ϕB be the Boolean abstraction of ϕR and abstrB
ϕR

the corresponding

Boolean abstraction mapping.

Then for any subset M ⊆ {ϕ1, . .,ϕn} of the formulas in ϕR with

C = {c ∈ C∼(ϕ
R)|∀ j ∈ {1, . ., n}. ϕ j /∈ M → c 6∈ C∼(ϕ j)} (constraints that only occur in M)

it holds that

∀α ∈ Θ(ϕB). ∃N ⊆ {c ∈ C | α(abstrB
ϕR
(c)) = true}.
∧

c∈N c is unsatisfiable

⇒∧
ϕ∈M ϕ is unsatisfiable.

Proof 4 We again show that if the right-hand side of the implication to prove does not hold, then

91

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

it follows that its left-hand side does not hold implying Theorem 4.

ϕM =
∧
ϕ∈M ϕ is satisfiable

(∗)
⇒ ∃αM ∈ Θ(ϕBM).

∧

c ∈ C

αM (abstrBϕM
(c)) = true

c is satisfiable

(∗∗)
⇒ ∃α ∈ Θ(ϕB).

∧

c ∈ C

α(abstrB
ϕR
(c)) = true

c is satisfiable

⇒ ∃α ∈ Θ(ϕB). ∀N ⊆ {c ∈ C | α(abstrB
ϕR
(c)) = true}.
∧

c∈N c is satisfiable

(∗): Note, that ϕBM is the Boolean skeleton of ϕM and abstrBϕM
the corresponding Boolean

abstraction mapping. From ϕM being satisfiable it follows that there exists an assignment

αRM ∈ Θ(ϕM). Then, we construct αM as follows

αM (b) =

¨
true , if ∃c ∈ C∼(ϕ

R). abstrBϕM
(c) = b ∧ ¹cºαRM ≡ true

false , otherwise.

(∗∗): As ϕB is in NNF and all its literals occur only positively, ϕB is satisfiable (we can exclude

ϕB = false as ϕBM , which consists of sub-formulas of ϕB, is satisfiable). Then there exists

an assignment α′ ∈ Θ(ϕB). As ϕB is in NNF and all its literals occur only positively, the

assignment

α(b) =

¨
true , if αM (b) = true

α′(b) , otherwise

is also satisfying ϕB. Furthermore, we assume, w. l. o. g., that abstrBϕM
maps the constraints,

which are mapped by abstrBϕM
to a Boolean variable, to the same Boolean variable. Then,

it holds that ∧

c ∈ C

α(abstrB
ϕR
(c)) = true

c =
∧

c ∈ C

αM (abstrBϕM
(c)) = true

c

is satisfiable. �

4.2.7 Example

As the data structure of the presented SMT compliant theory solver is a directed tree, we il-

lustrate it in this example as such. Let TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) be the

theory solver’s VSST and the vertices v1, v2 ∈ V be connected by (v1, v2) ∈ E, which is labeled

92

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

by TC((v1, v2)) = (t, Ot). Then, we illustrate v1, v2 and (v1, v2) as in Figure 4.2. In the case

incompl(v) = true holds for a vertex v ∈ V , v’s borders are drawn as a dashed line.

{ϕu
O
| ϕ ∈ Φ(v1), u= used(v1)(ϕ), O = orig(v1)(ϕ)}

κ(v1) v1

{ϕu
O
| ϕ ∈ Φ(v2), u= used(v2)(ϕ), O = orig(v2)(ϕ)}

κ(v2) v2

[t//elimvar(v1)]Ot

Figure 4.2: Illustration of how we present two vertices v1, v2 ∈ V of a VSST TVS = (V, E,Φ, orig,κ,
elimvar, used, incompl, TC), which are connected by a directed edge (v1, v2) ∈ E that is
labeled by TCS(v1, v2) = (t, Ot). In the case that incompl(v) = true holds for a vertex
v ∈ V , v’s borders are drawn as a dashed line.

We now simulate a run of an SMT solver with an SMT-compliant theory solver based on this

chapter. The input formula of this SMT solver is

ϕ = x2
1 − x2 − 1= 0 ∧ 6x1 − 2x2 − 3≥ 0 ∧ (x2

1 + x2
2 − 2= 0 ∨ 2x1 + x2 + 2< 0).

Note that we sometimes simplify the result of the occurring virtual substitutions slightly while

conserving the example’s expressiveness.

The SMT solver’s SAT solver considers ϕ’s Boolean abstraction b1 ∧ b2 ∧ (b3 ∨ b4). In the SAT

solver’s decision level 0, we assign b1 and b2 to true. As there is no Boolean conflict, we add the

corresponding constraints x2
1 − x2 − 1= 0 and 6x1 − 2x2 − 3≥ 0 to the theory solver and ask it

whether x2
1 − x2 − 1= 0 ∧ 6x1 − 2x2 − 3≥ 0 is satisfiable. The theory solver’s VSST is initially

TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC)

:= ({v1}, ;, {(v1,;)}, {(v1,;)}, {(v1,;)}, {(v1,;)}, ;, {(v1, false)}, ;)

and, hence, consists of the valid vertex v1.

Now we first invoke addVS(TVS, v1, x2
1 − x2−1= 0, {x2

1 − x2−1= 0}) yielding the VSST on the

left of Figure 4.3 followed by the call addVS(TVS, v1, 6x1−2x2−3≥ 0, {6x1−2x2−3≥ 0}) which

results in the VSST on the right of this figure. Considering Algorithm 5, we add the respective

constraint in both cases to Φ(v1) and set their origins in orig(v1) (Line 5-6). As the elimination

variable of v1 is not yet fixed and v1 has no children, there is nothing more to be done.

93

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

n�
ϕ1

1 : x2
1 − x2 − 1= 0
�
{ϕ1

1}

o

; v1

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�
{ϕ1

1}
,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�
{ϕ1

2}
	

; v1

Figure 4.3: The results of first adding x2
1− x2−1= 0 to the VSST TVS = (V, E,Φ, orig,κ, elimvar, used,

incompl, TC) := ({v1},;, {(v1,;)}, {(v1,;)}, {(v1,;)}, {(v1,;)},;, {(v1, false)},;) by invok-
ing addVS(TVS, v1, x2

1 − x2 − 1 = 0, {x2
1 − x2 − 1 = 0}) (on the left) and then adding

6x1 − 2x2 − 3≥ 0 by invoking addVS(TVS, v1, 6x1 − 2x2 − 3≥ 0, {6x1 − 2x2 − 3≥ 0}).

Note, that we label the formulas in a vertex within this example, e. g., x2
1− x2−1= 0 is labeled

by ϕ1
1 and 6x1−2x2−3≥ 0 is labeled by ϕ1

2 . We use these labels in order to identify the formulas.

In order to keep things simple in the course of this example, we reuse these labels and also the

names of the vertices, after deleting them.

After adding these two constraints we invoke their satisfiability check, i. e., checkVS(TVS, v1).

Considering Algorithm 10, we enter its main loop, as v1 is neither conflicting nor valid. It has

no children, so we skip the inner loop and, since Φ(v1) contains only constraints, we fix an

elimination variable (Line 10). For this purpose we invoke Algorithm 8. Let us assume that we

choose to eliminate x1 first. The precise heuristics for the choice of the elimination variable is

introduced later in Section 5.1. As the elimination variable has not yet been fixed for v1, we set

it to x1 and initialize the flag for all constraints in Φ(v1), which indicates whether a constraint

has already been used for test candidate creation, by false (Line 6). Afterwards, Algorithm 10

invokes Algorithm 9, which chooses a constraint that has not yet been used for test candidates

creation, i. e., is mapped by used(v1) to false. In our case, both constraints fulfill this criteria and

in the context of this example, we always choose the first constraint. The precise heuristics for

the choice of the next constraint providing test candidates is also introduced later in Section 5.1.

Therefore, we try to construct the test candidates for x1 in x2
1 − x2 − 1= 0. As the degree of x1

in this constraint is less than or equal to 2, we can construct the test candidates −∞,
p

x2 + 1

and −
p

x2 + 1. For each of them, we create a new child vi (2 ≤ i ≤ 4) of v1, label the edge

to it by the respective test candidate t and its origin, i. e., ϕ1
1 : x2

1 − x2 − 1 = 0, and add the

result of the virtual substitution of x1 by t in each constraint c ∈ Φ(v1) to vi . We achieve this by

invoking addVS(TVS, (v1, vi), c[t//x1], {c}), which adds c[t//x1] to Φ(vi) and sets its origin to {c}.
Afterwards we set used(v1)(ϕ

1
1) to true, which means that we have used ϕ1

1 for the provision

of test candidates. The resulting vertices v2, v3 and v4 are illustrated in Figure 4.4. Here, we

can see that the child v2 which we constructed for −∞ is already conflicting, i. e., κ(v2) 6= ;,
which is due to ϕ1

1[−∞//x1] and ϕ1
2[−∞//x1] (ϕ1

2 : 6x1 − 2x2 − 3≥ 0) both resulting in false.

94

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�true

{{ϕ1
1}}

,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�false

{{ϕ1
2}}
	

; v1
��
ϕ2

1 : false
�
{{ϕ1

1},{ϕ1
2}}
	

{{ϕ2
1}} v2

[−∞//x1]{ϕ1
1 ,ϕ1

2}

� �
ϕ4

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,

�
ϕ4

2 : x2 < 0
�
{{ϕ1

2}}
,

�
ϕ4

3 : x2
2 − x2 − 1≥ 0
�
{{ϕ1

2}}
	

; v4

[−
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ3

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,



ϕ3
2 :

4x2
2 − 24x2 − 27≤ 0

∨ (2x2 + 3< 0
∧ 4x2

2 − 24x2 − 27≥ 0)





{{ϕ1
2}}

	

; v3

[
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ5

1 : x2 + 1≥ 0
�true

{{ϕ3
1}}

,

�
ϕ5

2 : 4x2
2 − 24x2 − 27≤ 0

�true

{{ϕ3
2}}
	

; v5

��
ϕ6

1 : false
�
{{ϕ5

1},{ϕ5
2}}
	

{{ϕ6
1}} v6

[−∞//x2]{ϕ5
1 ,ϕ5

2}

��
ϕ7

1 : false
�
{{ϕ5

2}}
	

{{ϕ7
1}} v7

[−1//x2]{ϕ5
1}

;

; v8

[3+
p

63
2 //x2]{ϕ5

2}

;

; v9
[3−

p
63
2 //x2]{ϕ5

2}

Figure 4.5: The resulting VSST TVS of the satisfiability check of x2
1 − x2 − 1= 0∧ 6x1 − 2x2 − 3≥ 0,

which we achieved by invoking checkVS(TVS, v1) with TVS and v1 (root of TVS) being
initially as on the right of Figure 4.3.

we indicate these constraints by underlining them. We add them to v5 using addVS, where the

origins of each added constraint are the formulas in v3 in which they occur (Line 15-16).

Afterwards, extendCase returns true and we reenter the main loop for vertex v3. It now has

exactly one child, i. e., v5, which represents the just added case and, as v5 is not conflicting, we

invoke checkVS(TVS, v5). This vertex has no children initially and Φ(v5) contains only constraints,

which forms the same case as it was for v1 in the beginning of this example. Hence, we first fix

the variable to eliminate which must be x2 as it is the only remaining variable.

Then we choose the first constraint which has not been used in order to provide test candidates,

96

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

i. e., ϕ5
1 : x2 + 1 ≥ 0, and create a child for v5 for each of the two test candidates −∞ and

−1, which it provides, in the same way as before. The formulas in the obtained children v6

and v7 are again the results of virtually substituting the two constraints in v5, i. e., ϕ5
1 and

ϕ5
2 : 4x2

2−24x2−27≤ 0, by the test candidate, respectively. For −∞ it yields false in both cases

making v5 conflicting and for the test candidate −1 the virtual substitution results in true for ϕ5
1 ,

so we do not add it, and in false for ϕ5
2 also making v6 conflicting. Therefore, we take the next

constraint ϕ5
2 in v5 for test candidate creation into account. It provides the three test candidates

−∞, 3 +
p

63
2 and 3 −

p
63
2 . For the first one there already exists v5’s child v6. Considering

Algorithm 6, we first add ϕ5
2 to the origins of −∞ by updating TC((v5, v6)) and then add the

result of ϕ5
2[−∞//x2] to Φ(v6) (Line 8-9). As it is false, we update the origins of ϕ6

1 : false.

For the other two test candidates 3 +
p

63
2 and 3 −

p
63
2 we create the two new children v7

and v8. As virtually substituting x2 by both of these test candidates in each constraint in Φ(v5)

results in true respectively, there is nothing to be added to neither v7 nor v8. Now we have two

non-conflicting children of v5, so we recursively call checkVS for one of them after reentering

the main loop of Algorithm 10. Let us assume that we choose v7. As it is a valid vertex, i. e.,

Φ(v7) = ;, we immediately return sat (Line 2) and jump back to the call checkVS(TVS, v5)

(Line 6). It also returns sat, as the recursively invoked call returned sat. We jump back to the

call checkVS(TVS, v3) and return sat again for the same reason. Now we are in the outermost call

checkVS(TVS, v1), where we also return sat, which means that the theory solver determines the

satisfiability of x2
1 − x2 − 1= 0∧ 6x1 − 2x2 − 3≥ 0. The found solution of this formula is given

by the pairs of elimination variables and test candidates along the path from the root of the VSST

to the found valid vertex. In Figure 4.4, this path consists of the edges in bold, thus the found

solution is {(x1,
Ç

4+
p

63
2), (x2, 3+

p
63
2)}. Figure 4.4 illustrates the solution spaces defined by

the two constraints and the found solution.

The SMT solver now knows that the conjunction of the constraints corresponding to the partial

assignment of its input formula ϕ’s Boolean abstraction is satisfiable. As a consequence, the SMT

solver’s SAT solver can enter the next decision level afterwards. Let us assume it assigns b3 to

false. It then implies by the use of Boolean constraint propagation that b4 must be assigned to

true. This finishes the decision level and also forms a full assignment of ϕ’s Boolean abstraction.

However, we still need to check whether the conjunction of the constraints, corresponding to the

Boolean variables which are assigned to true, is satisfiable. Thus we have to check the satisfiability

of

x2
1 − x2 − 1= 0 ∧ 6x1 − 2x2 − 3≥ 0 ∧ 2x1 + x2 + 2< 0

and need to add 2x1 + x2 + 2 < 0 to the theory solver, beforehand. For this purpose we invoke

addVS(TVS, v1, 2x1 + x2 + 2< 0, {2x1 + x2 + 2< 0}).
Compared to the addition of the two constraints in the beginning of this example, the VSST

of the theory solver stores the result of the last satisfiability check instead of just consisting of

the root vertex v1. Therefore we do not only need to add the constraint to v1 but also propagate

97

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�true

{{ϕ1
1}}

,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�false

{{ϕ1
2}}

,

�
ϕ1

3 : 2x1 + x2 + 2< 0
�false

{{ϕ1
3}}
	

; v1

��
ϕ2

1 : false
�
{{ϕ1

1},{ϕ1
2}}
	

{{ϕ2
1}} v2

[−∞//x1]{ϕ1
1 ,ϕ1

2}

� �
ϕ4

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,

�
ϕ4

2 : x2 < 0
�
{{ϕ1

2}}
,

�
ϕ4

3 : x2
2 − x2 − 1≥ 0
�
{{ϕ1

2}}
,

�
ϕ4

4 : x2 + 2< 0
�
{{ϕ1

3}}
	

; v4

[−
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ3

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,



ϕ3
2 :

4x2
2 − 24x2 − 27≤ 0

∨ (2x2 + 3< 0
∧ 4x2

2 − 24x2 − 27≥ 0)





{{ϕ1
2}}

,

�
ϕ3

3 : x2 + 2< 0
�
{{ϕ1

3}}

	

; v3

[
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ5

1 : x2 + 1≥ 0
�true

{{ϕ3
1}}

,

�
ϕ5

2 : 4x2
2 − 24x2 − 27≤ 0

�true

{{ϕ3
2}}

,

�
ϕ5

3 : x2 + 2< 0
�false

{{ϕ3
3}}
	

; v5

��
ϕ6

1 : false
�
{{ϕ5

1},{ϕ5
2}}
	

{{ϕ6
1}} v6

[−∞//x2]{ϕ5
1 ,ϕ5

2}

��
ϕ7

1 : false
�
{{ϕ5

2},{ϕ5
3}}
	

{{ϕ7
1}} v7

[−1//x2]{ϕ5
1}

��
ϕ8

1 : false
�
{{ϕ5

3}}
	

{{ϕ8
1}} v8

[3+
p

63
2 //x2]{ϕ5

2}

��
ϕ9

1 : false
�
{{ϕ5

3}}
	

{{ϕ9
1}} v9

[3−
p

63
2 //x2]{ϕ5

2}

Figure 4.6: The resulting VSST TVS after adding the constraint 2x1 + x2 + 2 < 0 to the VSST TVS of
Figure 4.5 by invoking addVS(TVS, v1, 2x1 + x2 + 2< 0, {2x1 + x2 + 2< 0}).

it throughout its successors. This means that we first add 2x1 + x2 + 2 < 0 to v1 as we have

explained before, but also need to take into account the second phase of Algorithm 5 (Line 24-

30). As we use v1 for eliminating the variable x1, its children represent the results of virtually

substituting x1 by test candidates provided by the constraints in Φ(v1). Therefore, we need to

98

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

finish the propagation of x2 + 2 < 0 in v3. We finish the call addVS(TVS, v1, 2x1 + x2 + 2 <

0, {2x1 + x2 + 2 < 0}) adding the result of 2x1 + x2 + 2 < 0[−
p

x2 + 1//x1], which is also

x2 + 2 < 0, to the only, not yet considered child v4. In Figure 4.6, the resulting VSST can be

seen. All of the information which we gained in the previous satisfiability check with our theory

solver is preserved. However, the solution is not valid anymore, which makes perfect sense, as

the added constraint clearly excludes this solution. Figure 4.7, illustrates the solution spaces of

all three constraints x2
1 − x2 − 1= 0, 6x1 − 2x2 − 3≥ 0 and 2x1 + x2 + 2< 0.

After adding the constraint 2x1 + x2 + 2 < 0, we now invoke the satisfiability check for the

conjunction of the three constraints in Φ(v1). We invoke checkVS(TVS, v1) where TVS is initially in

the state as illustrated in Figure 4.6. As v1 is not conflicting nor valid and has two non-conflicting

children, we choose one of them and recursively invoke checkVS. Let us assume that we choose

v3. Just like for v1, we can find a non-conflicting child of v3, which is the only child v5. This

vertex, however, has only conflicting children, so we try to create a new one. We use v5 for the

elimination of the variable x2, thus we try to find a constraint in Φ(v5) which can provide test

candidates for x2. The only constraint which has not yet been used for test candidate creation is

ϕ3
5 : x2 + 2< 0. It provides the test candidates −∞ and −2+ ε for x2. The first one is already

considered by v6, so we only extend the origins in TC((v5, v6)) by ϕ3
5 . The second one creates

the new child v10 and the result of virtually substituting x2 in the constraints of Φ(v5) by −2+ ε

is always false. Hence, v10 is also conflicting and for the first time we obtain a case where all

constraints of a vertex for variable elimination were considered for test candidate creation and

all of them failed to be a solution.

This situation can be seen in Figure 4.8. In Algorithm 10, we enter Line 13 and, thus, invoke

the procedure createConflicts. According to Theorem 2 we know that the conjunction of the

constraints in Φ(v5) is unsatisfiable, therefore we create in this procedure infeasible subsets of

Φ(v5) and add them to κ(v5). The procedure thereby applies Theorem 3, hence, we can construct

infeasible subsets of κ(v5) by finding set coverings of the conflicts in v5’s children after mapping

the formulas they contain to their origins in v5. In our case, all conflicts in v5’s children consist

only of the formula false, thus, for each child their conflict after mapping the formulas they

contain to their origins in v5 are precisely the origins of false. Considering that

Φ(v5) = {
ϕ5

1︷ ︸︸ ︷
x2 + 1≥ 0,

ϕ5
2︷ ︸︸ ︷

4x2
2 − 24x2 − 27≤ 0,

ϕ5
3︷ ︸︸ ︷

x2 + 2< 0},

we need to find a set covering of

M1 = {{ϕ5
1}, {ϕ5

2}}
M2 = {{ϕ5

2}, {ϕ5
3}}

M3 = {{ϕ5
3}}

M4 = {{ϕ5
3}}

M5 = {{ϕ5
1}, {ϕ5

2}, {ϕ5
3}}

100

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�true

{{ϕ1
1}}

,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�false

{{ϕ1
2}}

,

�
ϕ1

3 : 2x1 + x2 + 2< 0
�false

{{ϕ1
3}}
	

; v1

��
ϕ2

1 : false
�
{{ϕ1

1},{ϕ1
2}}
	

{{ϕ2
1}} v2

[−∞//x1]{ϕ1
1 ,ϕ1

2}

� �
ϕ4

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,

�
ϕ4

2 : x2 < 0
�
{{ϕ1

2}}
,

�
ϕ4

3 : x2
2 − x2 − 1≥ 0
�
{{ϕ1

2}}
,

�
ϕ4

4 : x2 + 2< 0
�
{{ϕ1

3}}
	

; v4

[−
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ3

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,



ϕ3
2 :

4x2
2 − 24x2 − 27≤ 0

∨ (2x2 + 3< 0
∧ 4x2

2 − 24x2 − 27≥ 0)





{{ϕ1
2}}

,

�
ϕ3

3 : x2 + 2< 0
�
{{ϕ1

3}}

	

; v3

[
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ5

1 : x2 + 1≥ 0
�true

{{ϕ3
1}}

,

�
ϕ5

2 : 4x2
2 − 24x2 − 27≤ 0

�true

{{ϕ3
2}}

,

�
ϕ5

3 : x2 + 2< 0
�true

{{ϕ3
3}}
	

{{ϕ5
1 ,ϕ5

3}, {ϕ5
2 ,ϕ5

3}} v5

��
ϕ6

1 : false
�
{{ϕ5

1},{ϕ5
2}}
	

{{ϕ6
1}} v6

[−∞//x2]{ϕ5
1 ,ϕ5

2 ,ϕ5
3}

��
ϕ7

1 : false
�
{{ϕ5

2},{ϕ5
3}}
	

{{ϕ7
1}} v7

[−1//x2]{ϕ5
1}

��
ϕ8

1 : false
�
{{ϕ5

3}}
	

{{ϕ8
1}} v8

[3+
p

63
2 //x2]{ϕ5

2}

��
ϕ9

1 : false
�
{{ϕ5

3}}
	

{{ϕ9
1}} v9

[3−
p

63
2 //x2]{ϕ5

2}

��
ϕ10

1 : false
�
{{ϕ5

1},{ϕ5
2},{ϕ5

3}}
	

{{ϕ10
1 }} v10

[−2+ ε//x2]{ϕ5
3}

Figure 4.8: The resulting VSST TVS until the first conflicting intermediate vertex, i. e., v5, is reached
by the satisfiability check of x2

1 − x2−1= 0∧6x1−2x2−3≥ 0∧2x1+ x2+2< 0, which
we invoked with checkVS(TVS, v1) where TVS and v1 are initially as in Figure 4.6.

101

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�true

{{ϕ1
1}}

,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�false

{{ϕ1
2}}

,

�
ϕ1

3 : 2x1 + x2 + 2< 0
�false

{{ϕ1
3}}
	

; v1

��
ϕ2

1 : false
�
{{ϕ1

1},{ϕ1
2}}
	

{{ϕ2
1}} v2

[−∞//x1]{ϕ1
1 ,ϕ1

2}

� �
ϕ4

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,

�
ϕ4

2 : 2x2 + 3< 0
�
{{ϕ1

2}}
,

�
ϕ4

3 : 4x2
2 − 24x2 − 27≥ 0

�
{{ϕ1

2}}
,

�
ϕ4

4 : x2 + 2< 0
�
{{ϕ1

3}}
	

; v4

[−
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ3

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,



ϕ3
2 :

4x2
2 − 24x2 − 27≤ 0

∨ (2x2 + 3< 0
∧ 4x2

2 − 24x2 − 27≥ 0)





{{ϕ1
2}}

,

�
ϕ3

3 : x2 + 2< 0
�
{{ϕ1

3}}
	

{{ϕ3
1 ,ϕ3

3}, {ϕ3
2 ,ϕ3

3}} v3

[
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ5

1 : x2 + 1≥ 0
�
{{ϕ3

1}}
,

�
ϕ5

2 : 4x2
2 − 24x2 − 27≤ 0

�
{{ϕ3

2}}
,

�
ϕ5

3 : x2 + 2< 0
�
{{ϕ3

3}}
	

{{ϕ5
1 ,ϕ5

3}, {ϕ5
2 ,ϕ5

3}} v5

Figure 4.9: The resulting VSST TVS until the second conflicting intermediate vertex, i. e., v3, is reached
by the satisfiability check of x2

1 − x2−1= 0∧6x1−2x2−3≥ 0∧2x1+ x2+2< 0, which
we invoked with checkVS(TVS, v1) where TVS and v1 are initially as in Figure 4.8.

that is a set M ⊆ Φ(v5) such that for all 1 ≤ i ≤ 5 there exists a set M ′ ∈ Mi with M ′ ⊆ M .

The two smallest set coverings are {ϕ5
1 ,ϕ5

3} and {ϕ5
2 ,ϕ5

3}. How we can compute set coverings

is further explained in Section 4.2.6. In Figure 4.8, we illustrate that {ϕ5
1 ,ϕ5

3} covers a set in

each Mi (1 ≤ i ≤ 5) by underlining the covered sets. For {ϕ5
2 ,ϕ5

3} we use an overline instead.

According to Algorithm 11 we add both set coverings as infeasible subsets of Φ(v5) to κ(v5) and

delete all children of v5. Thereby we remove some information, but we keep two reasons for

the infeasibility of the conjunction of the constraints in Φ(v5). To keep both of them can provide

more possibilities to create set coverings in case that conjunction of the formulas in v5’s father

102

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

is also unsatisfiable. Moreover, in a later stage of the SMT solver’s satisfiability check we might

remove constraints from the VSST belatedly. If a conflict of v5 remains after this removal, we do

not need to reconsider v5 as it is still conflicting.

Now we continue checkVS for the vertex v3. We reenter the main loop of Algorithm 10 and,

since we use this vertex to make a case distinction, we try to achieve a new case by creating an

empty vertex v6 and invoking extendCase(TVS, (v3, v6)) (Line 17). This procedure tries to find a

satisfying assignment of the Boolean abstraction of the formula

ψ :=
∧

ϕ∈Φ(v3)

ϕ ∧¬(
∧

c∈Kv5

c)

where Kv5
∈ κ(v5) is chosen heuristically. Let us assume that we choose Kv5

= {x2+1≥ 0, x2+2<

0}, then the Boolean abstraction of ψ is

b5 ∧ (b6 ∨ (b7 ∧ b6))∧ b8 ∧¬(b5 ∧ b8).

This formula is already unsatisfiable and as a consequence extendCase cannot find a new case in

order to fill the just created empty vertex v6 with the corresponding constraints. Therefore this

procedure deletes v6 and returns false (Line 20). We observe at this point, that the small infeasible

subset, which we created for v5, saves us from considering another case. It becomes clear that

we benefit from good infeasible subsets even in intermediate vertices and that the quality and

variety of the infeasible subsets in the children decides how good the infeasible subsets of their

father will be. In Algorithm 10 we now fulfill the condition at Line 17 for the first time, meaning

that all cases were considered. As we did not encounter any constraint with a degree higher than

2 in any variable, we conclude that the conjunction of the formulas in Φ(v3)must be unsatisfiable.

We simply fill κ(v3) with infeasible subsets of Φ(v3) using the procedure createConflicts again

and return unsat. Figure 4.9 shows the VSST with the two resulting infeasible subsets in κ(v3).

We are now back in the outermost checkVS call for the root v1 of the VSST. It still has one

non-conflicting child, i. e., v4, so we invoke checkVS(TVS, v4). In Figure 4.10, we see that it results

once more in the situation that all test candidates are constructed and none of them succeeded

to be part of a solution. The procedure createConflicts yields two infeasible subsets in v4.

We reenter the main loop of Algorithm 10 for v1 and, since all children are conflicting, we

have to try to construct new children. We choose a constraint in Φ(v1) which has not yet been

used in order to provide test candidates, so let us assume that we take ϕ1
2 : 6x1 − 2x2 − 3 ≥ 0

for this purpose. For the first test candidate, which it provides for x1, i. e., −∞, we extend the

corresponding existing child v2 and for the second test candidate, which it provides for x1, i. e.,
2x2+3

6 , we create the new child v5. Afterwards, we invoke checkVS(TVS, v5) which ultimately leads

to the situation that all children are constructed and all of them are conflicting. We can see the

gained infeasible subsets for v5 in Figure 4.11.

Again we reenter the main loop of Algorithm 10 for v1. All children are conflicting, thus we

103

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�true

{{ϕ1
1}}

,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�false

{{ϕ1
2}}

,

�
ϕ1

3 : 2x1 + x2 + 2< 0
�false

{{ϕ1
3}}
	

; v1

��
ϕ2

1 : false
�
{{ϕ1

1},{ϕ1
2}}
	

{{ϕ2
1}} v2

[−∞//x1]{ϕ1
1 ,ϕ1

2}

� �
ϕ4

1 : x2 + 1≥ 0
�true

{{ϕ1
1}}

,

�
ϕ4

2 : 2x2 + 3< 0
�true

{{ϕ1
2}}

,

�
ϕ4

3 : 4x2
2 − 24x2 − 27≥ 0

�true

{{ϕ1
2}}

,

�
ϕ4

4 : x2 + 2< 0
�true

{{ϕ1
3}}
	

{{ϕ4
1 ,ϕ4

2}, {ϕ4
1 ,ϕ4

4}} v4

[−
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ3

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,



ϕ3
2 :

4x2
2 − 24x2 − 27≤ 0

∨ (2x2 + 3< 0
∧ 4x2

2 − 24x2 − 27≥ 0)





{{ϕ1
2}}

,

�
ϕ3

3 : x2 + 2< 0
�
{{ϕ1

3}}
	

{{ϕ3
1 ,ϕ3

3}, {ϕ3
2 ,ϕ3

3}} v3

[
p

x2 + 1//x1]{ϕ1
1}

��
ϕ5

1 : false
�
{{ϕ4

1}}
	

{{ϕ5
1}} v5

[−∞//x2]{ϕ4
1 ,ϕ4

2 ,ϕ4
3 ,ϕ4

4}

��
ϕ6

1 : false
�
{{ϕ4

2},{ϕ4
4}}
	

{{ϕ6
1}} v6

[−1//x2]{ϕ4
1}

��
ϕ9

1 : false
�
{{ϕ4

2},{ϕ4
4}}
	

{{ϕ9
1}} v9

[3−
p

63
2 //x2]{ϕ4

3}

��
ϕ8

1 : false
�
{{ϕ4

2},{ϕ4
4}}
	

{{ϕ8
1}} v8

[3+
p

63
2 //x2]{ϕ4

3}

��
ϕ10

1 : false
�
{{ϕ4

1},{ϕ4
4}}
	

{{ϕ10
1 }} v10

[−2+ ε//x2]{ϕ4
4}

��
ϕ7

1 : false
�
{{ϕ4

1},{ϕ4
2},{ϕ4

4}}
	

{{ϕ7
1}} v7

[− 2
3 + ε//x2]{ϕ4

2}

Figure 4.10: The resulting VSST TVS until the third conflicting intermediate vertex, i. e., v4, is reached
by the satisfiability check of x2

1 − x2 − 1 = 0 ∧ 6x1 − 2x2 − 3 ≥ 0 ∧ 2x1 + x2 + 2 < 0,
which we invoked with checkVS(TVS, v1) where TVS and v1 are initially as in Figure 4.9.

104

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�true

{{ϕ1
1}}

,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�true

{{ϕ1
2}}

,

�
ϕ1

3 : 2x1 + x2 + 2< 0
�false

{{ϕ1
3}}
	

; v1

��
ϕ2

1 : false
�
{{ϕ1

1},{ϕ1
2}}
	

{{ϕ2
1}} v2

[−∞//x1]{ϕ1
1 ,ϕ1

2}

� �
ϕ4

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,

�
ϕ4

2 : 2x2 + 3< 0
�
{{ϕ1

2}}
,

�
ϕ4

3 : 4x2
2 − 24x2 − 27≥ 0

�
{{ϕ1

2}}
,

�
ϕ4

4 : x2 + 2< 0
�
{{ϕ1

3}}
	

{{ϕ4
1 ,ϕ4

2}, {ϕ4
1 ,ϕ4

4}} v4

[−
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ5

1 : 4x2
2 − 24x2 − 27= 0

�
{{ϕ1

1}}
,

�
ϕ5

2 : 5x2 + 9< 0
�
{{ϕ1

3}}
	

{{ϕ5
1 ,ϕ5

2}} v5

[
2x2+3

6 //x1]{ϕ1
2}

� �
ϕ3

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,



ϕ3
2 :

4x2
2 − 24x2 − 27≤ 0

∨ (2x2 + 3< 0
∧ 4x2

2 − 24x2 − 27≥ 0)





{{ϕ1
2}}

,

�
ϕ3

3 : x2 + 2< 0
�
{{ϕ1

3}}
	

{{ϕ3
1 ,ϕ3

3}, {ϕ3
2 ,ϕ3

3}} v3

[
p

x2 + 1//x1]{ϕ1
1}

��
ϕ6

1 : false
�
{{ϕ5

1}}
	

{{ϕ6
1}} v6

[−∞//x2]{ϕ5
1 ,ϕ5

2}

��
ϕ7

1 : false
�
{{ϕ5

2}}
	

{{ϕ7
1}} v7

[3+
p

63
2 //x2]{ϕ5

1}

��
ϕ8

1 : false
�
{{ϕ5

2}}
	

{{ϕ8
1}} v8

[3−
p

63
2 //x2]{ϕ5

1}

��
ϕ9

1 : false
�
{{ϕ5

1},{ϕ5
2}}
	

{{ϕ9
1}} v9

[− 9
5 + ε//x2]{ϕ5

2}

Figure 4.11: The resulting VSST TVS until the fourth conflicting intermediate vertex, i. e., v5, is
reached by the satisfiability check of x2

1− x2−1= 0∧6x1−2x2−3≥ 0∧2x1+ x2+2< 0,
which we invoked with checkVS(TVS, v1) where TVS and v1 are initially as in Figure 4.10.

use the last remaining constraint ϕ1
3 : 2x1 + x2 + 2< 0 to construct test candidates. As always,

we obtain the test candidate −∞ and extend the corresponding child. The other test candidate,

which ϕ1
3 provides, is − x2+2

2 + ε. We create the new child v6 and fill Φ(v6) with the result of

105

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�true

{{ϕ1
1}}

,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�true

{{ϕ1
2}}

,

�
ϕ1

3 : 2x1 + x2 + 2< 0
�true

{{ϕ1
3}}
	

{{ϕ1
1 ,ϕ1

3}} v1

��
ϕ2

1 : false
�
{{ϕ1

1},{ϕ1
2}}
	

{{ϕ2
1}} v2

[−∞//x1]{ϕ1
1 ,ϕ1

2 ,ϕ1
3}

� �
ϕ4

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,

�
ϕ4

2 : 2x2 + 3< 0
�
{{ϕ1

2}}
,

�
ϕ4

3 : 4x2
2 − 24x2 − 27≥ 0

�
{{ϕ1

2}}
,

�
ϕ4

4 : x2 + 2< 0
�
{{ϕ1

3}}
	

{{ϕ4
1 ,ϕ4

2}, {ϕ4
1 ,ϕ4

4}} v4

[−
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ5

1 : 4x2
2 − 24x2 − 27= 0

�
{{ϕ1

1}}
,

�
ϕ5

2 : 5x2 + 9< 0
�
{{ϕ1

3}}
	

{{ϕ5
1 ,ϕ5

2}} v5

[
2x2+3

6 //x1]{ϕ1
2}

� �
ϕ3

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,



ϕ3
2 :

4x2
2 − 24x2 − 27≤ 0

∨ (2x2 + 3< 0
∧ 4x2

2 − 24x2 − 27≥ 0)





{{ϕ1
2}}

,

�
ϕ3

3 : x2 + 2< 0
�
{{ϕ1

3}}
	

{{ϕ3
1 ,ϕ3

3}, {ϕ3
2 ,ϕ3

3}} v3

[
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ6

1 : false
�
{{ϕ1

1},{ϕ1
3}}

,
�
ϕ6

2 :
5x2 + 9< 0
∨ 5x2 + 9= 0)

�

{{ϕ1
2}}

	

{{ϕ6
1}} v6

[− x2+2
2 + ε//x1]{ϕ1

3}

Figure 4.12: The resulting VSST TVS until the last conflicting intermediate vertex, i. e., v1, is reached
by the satisfiability check of x2

1 − x2 − 1 = 0 ∧ 6x1 − 2x2 − 3 ≥ 0 ∧ 2x1 + x2 + 2 < 0,
which we invoked with checkVS(TVS, v1) where TVS and v1 are initially as in Figure 4.11.

virtually substituting x1 by this test candidate in all constraints of Φ(v1). As for two constraints

the result is false, v6 is conflicting. All constraints in v1 have now be used in order to provide test

candidates and all of them are in conflict with some of the constraints inΦ(v1). Therefore we apply

createConflicts for the last time yielding the infeasible subset {x2
1− x2−1= 0, 2x1+ x2+2< 0} of

the constraints whose conjunction our theory solver checked for satisfiability. As a consequence,

it returns unsat. The resulting VSST is illustrated in Figure 4.12.

The SMT solver adds the clause (¬b1 ∨¬b4) to its SAT solver and thereby excludes the conflict

represented by the infeasible subset, which our theory solver has constructed. The SAT solver

106

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�true

{{ϕ1
1}}

,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�true

{{ϕ1
2}}

,

�
��ϕ

1
3 : 2x1 + x2 + 2< 0

�true

{✟✟{ϕ1
3}}
	

{✘✘✘✘{ϕ1
1 ,ϕ1

3}} v1

��
ϕ2

1 : false
�
{{ϕ1

1},{ϕ1
2}}
	

{{ϕ2
1}} v2

[−∞//x1]{ϕ1
1 ,ϕ1

2 ,��ϕ
1
3}

� �
ϕ4

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,

�
ϕ4

2 : 2x2 + 3< 0
�
{{ϕ1

2}}
,

�
ϕ4

3 : 4x2
2 − 24x2 − 27≥ 0

�
{{ϕ1

2}}
,

�
��ϕ

4
4 : x2 + 2< 0
�
{✟✟{ϕ1

3}}
	

{{ϕ4
1 ,ϕ4

2},✘✘✘✘{ϕ4
1 ,ϕ4

4}} v4

[−
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ5

1 : 4x2
2 − 24x2 − 27= 0

�
{{ϕ1

1}
},

�
��ϕ

5
2 : 5x2 + 9< 0

�
{✟✟{ϕ1

3}}
	

{✘✘✘✘{ϕ5
1 ,ϕ5

2}} v5

[
2x2+3

6 //x1]{ϕ1
2}

� �
ϕ3

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,



ϕ3
2 :

4x2
2 − 24x2 − 27≤ 0

∨ (2x2 + 3< 0
∧ 4x2

2 − 24x2 − 27≥ 0)





{{ϕ1
2}}

,

�
��ϕ

3
3 : x2 + 2< 0
�
{✟✟{ϕ1

3}}
	

{✘✘✘✘{ϕ3
1 ,ϕ3

3},✘✘✘✘{ϕ3
2 ,ϕ3

3}} v3

[
p

x2 + 1//x1]{ϕ1
1}

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟� �
ϕ6

1 : false
�
{{ϕ1

1},{ϕ1
3}}

,
�
ϕ6

2 :
5x2 + 9< 0
∨ 5x2 + 9= 0)

�

{{ϕ1
2}}

	

{{ϕ6
1}} v6

[− x2+2
2 + ε//x1]{��ϕ

1
3}

Figure 4.13: The resulting VSST after removing the constraint 2x1 + x2 + 2 < 0 with
removeVS(TVS, v1, {2x1 + x2 + 2 < 0}), where TVS and v1 are initally as illustrated in
Figure 4.12.

backtracks to decision level 0, which leads in particular to b4 being unassigned instead of assigned

to true. Therefore we remove the corresponding constraint 2x1 + x2 + 2 < 0 from our theory

solver by invoking removeVS(TVS, v1, {2x1 + x2 + 2< 0}).
This is the first time in this example where Algorithm 7 is applied. The algorithm seems to be

rather complicated but it is simply removing everything in our theory solver’s VSST TVS which

can be related to ϕ1
3 : 2x1 + x2 + 2 < 0. The resulting VSST can be seen in Figure 4.13 and in

the following we explain the details on how we achieved this. We start with the origins of the

formulas in Φ(v1) and remove all sets in them which contain ϕ1
3 . If a formula has no origins left

107

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�true

{{ϕ1
1}}

,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�true

{{ϕ1
2}}

,

�
ϕ1

3 : x2
1 + x2

2 − 2= 0
�false

{{ϕ1
3}}
	

; v1

��
ϕ2

1 : false
�
{{ϕ1

1},{ϕ1
2},{ϕ1

3}}
	

{{ϕ2
1}} v2

[−∞//x1]{ϕ1
1 ,ϕ1

2 ,ϕ1
3}

� �
ϕ4

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,

�
ϕ4

2 : 2x2 + 3< 0
�
{{ϕ1

2}}
,

�
ϕ4

3 : 4x2
2 − 24x2 − 27≥ 0

�
{{ϕ1

2}}�
ϕ4

4 : x2
2 + x2 − 1= 0
�
{{ϕ1

3}}
	

{{ϕ4
1 ,ϕ4

2}} v4

[−
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ5

1 : 4x2
2 − 24x2 − 27= 0

�
{{ϕ1

1}
}

�
ϕ5

3 : 40x2
2 + 12x2 − 63= 0

�
{{ϕ1

3}}
	

; v5

[
2x2+3

6 //x1]{ϕ1
2}

� �
ϕ3

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,



ϕ3
2 :

4x2
2 − 24x2 − 27≤ 0

∨ (2x2 + 3< 0
∧ 4x2

2 − 24x2 − 27≥ 0)





{{ϕ1
2}}�

ϕ3
3 : x2

2 + x2 − 1= 0
�
{{ϕ1

3}}
	

; v3

[
p

x2 + 1//x1]{ϕ1
1}

Figure 4.14: The resulting VSST after adding the constraint x2
1 + x2

2 − 2 = 0 with
removeVS(TVS, v1, {2x1 + x2 + 2 < 0}), where TVS and v1 are initially as illustrated in
Figure 4.13.

afterwards, we remove this formula and its effects from TVS. The only formula in Φ(v1) containing

origins with ϕ1
3 , is ϕ1

3 itself, which is a special characteristic that only holds for the root of a VSST.

As the origins of ϕ1
3 are now empty we remove ϕ1

3 from the remaining part of TVS. We start with

κ(v1) and remove its only infeasible subset as it contains ϕ1
3 (Line 20-24).

Then, we remove ϕ1
3 from the origins of the test candidates in the labels on the edges to v1’s

children and afterwards remove all of its effects by recursively invoking removeVS for each child

(Line 28-37). If a test candidate loses all its origins, we remove the subtree with the respective

child as the root. In our case, we remove one of the three origins for the test candidate−∞, hence,

we do not remove the corresponding child v2. Afterwards, we invoke removeVS(TVS, v2, {ϕ1
3}),

which does not change anything.

The next test candidate
p

x2 + 1 does not have ϕ1
3 as an origin, however, invoking removeVS

for the corresponding child v3 empties the origins of the formula ϕ3
3 . Hence, we remove ϕ3

3 from

108

4.2. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

� �
ϕ1

1 : x2
1 − x2 − 1= 0
�true

{{ϕ1
1}}

,

�
ϕ1

2 : 6x1 − 2x2 − 3≥ 0
�true

{{ϕ1
2}}

,

�
ϕ1

3 : x2
1 + x2

2 − 2= 0
�false

{{ϕ1
3}}
	

; v1

��
ϕ2

1 : false
�
{{ϕ1

1},{ϕ1
2},{ϕ1

3}}
	

{{ϕ2
1}} v2

[−∞//x1]{ϕ1
1 ,ϕ1

2 ,ϕ1
3}

� �
ϕ4

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,

�
ϕ4

2 : x2 < 0
�
{{ϕ1

2}}
,

�
ϕ4

3 : x2
2 − x2 − 1≥ 0
�
{{ϕ1

2}}�
ϕ4

4 : x2
2 + x2 − 1= 0
�
{{ϕ1

3}}
	

{{ϕ4
1 ,ϕ4

2}} v4

[−
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ5

1 : 4x2
2 − 24x2 − 27= 0

�
{{ϕ1

1}
}

�
ϕ5

3 : 40x2
2 + 12x2 − 63= 0

�
{{ϕ1

3}}
	

; v5

[
2x2+3

6 //x1]{ϕ1
2}

� �
ϕ3

1 : x2 + 1≥ 0
�
{{ϕ1

1}}
,



ϕ3
2 :

4x2
2 − 24x2 − 27≤ 0

∨ (2x2 + 3< 0
∧ 4x2

2 − 24x2 − 27≥ 0)





{{ϕ1
2}}�

ϕ3
3 : x2

2 + x2 − 1= 0
�

{{ϕ1
3}}

	

; v3

[
p

x2 + 1//x1]{ϕ1
1}

� �
ϕ6

1 : x2 + 1≥ 0
�true

{{ϕ3
1}}

,

�
ϕ6

2 : 4x2
2 − 24x2 − 27≤ 0

�true

{{ϕ3
2}}

,

�
ϕ6

3 : x2
2 + x2 − 1= 0
�true

{{ϕ3
2}}
	

; v6

��
ϕ7

1 : false
�
{{ϕ6

1},{ϕ6
2},{ϕ6

3}}
	

{{ϕ7
1}} v7

[−∞//x2]{ϕ6
1 ,ϕ6

2 ,ϕ6
3}

��
ϕ8

1 : false
�
{{ϕ6

2},{ϕ6
3}}
	

{{ϕ8
1}} v8

[−1//x2]{ϕ6
1}

��
ϕ9

1 : false
�
{{ϕ6

3}}
	

{{ϕ9
1}} v9

[3+
p

63
2 //x2]{ϕ6

2}

��
ϕ10

1 : false
�
{{ϕ6

3}}
	

{{ϕ10
1 }} v10

[3−
p

63
2 //x2]{ϕ6

2}

;

; v11

[−1+
p

5
2 //x2]{ϕ6

3}

��
ϕ12

1 : false
�
{{ϕ6

1},{ϕ6
2}}
	

{{ϕ12
1 }} v12

[−1−
p

5
2 //x2]{ϕ6

3}

Figure 4.16: The resulting VSST TVS of the satisfiability check of x2
1 − x2 − 1 = 0∧ 6x1 − 2x2 − 3 ≥

0 ∧ x2
1 + x2

2 − 2 = 0, which we achieved by invoking checkVS(TVS, v1) with TVS and v1
being initially as in Figure 4.14.

110

4.3. COMBINING VIRTUAL SUBSTITUTION WITH OTHER PROCEDURES

assigns b4 to false and b3 to true, therefore, we have to add the constraint x2
1 + x2

2 − 2 = 0 to

the theory solver. We achieve this in the same way as in the beginning of this example with

addVS(TVS, v1, x2
1 + x2

2 − 2= 0, {x2
1 + x2

2 − 2= 0}). It results in the VSST as given by Figure 4.14

The SMT solver now has a full satisfying assignment for the Boolean skeleton of ϕ while

excluding the conflict we have found before. Next, we want to confirm that the conjunction of the

constraints which have to hold according to this assignment, i. e., x2
1−x2−1= 0 ∧ 6x1−2x2−3≥

0 ∧ x2
1 + x2

2 − 2 = 0, are satisfiable. If so, ϕ is satisfiable, otherwise, it is unsatisfiable, as we

are at decision level 0. The three constraints are already added to TVS, which in particular means

that they are the elements of Φ(v1). Therefore, we invoke checkVS(TVS, v1) for the last time which

results in the VSST of Figure 4.15.

Briefly worded, we achieve this as follows. We invoke checkVS recursively for one of the non-

conflicting children of v1, where we choose v3. As we might remember from the first satisfiability

check with checkVS in this example, we use v3 for a case distinction. We create the child v6 for

the first case to consider and recursively invoke checkVS for this vertex. Here, we try to eliminate

the remaining variable x2 gradually constructing test candidates until one leads to a valid vertex,

which is v11 in our case. Afterwards, the theory solver can return sat and so does the SMT

solver. The solution of ϕ can again be read off the edges in of TVS which are printed in bold in

Figure 4.15. Therefore, the solution is {(x1,
Ç

1+
p

5
2), (x2, −1+

p
5

2)}. In Figure 4.15 the solution

spaces of the constraints x2
1 − x2 − 1 = 0, 6x1 − 2x2 − 3 ≥ 0 and x2

1 + x2
2 − 2 = 0 as well as the

found solution are illustrated.

4.3 Combining virtual substitution with other procedures

Let us assume that we check the conjunction of constraints ϕ for satisfiability using the procedure

checkVS. During this check we enter the sub-procedure createConflicts and fulfill the condition

at Line 2 in Algorithm 11. This means that we called createConflicts(TVS, v) where TVS is theory

solver’s VSST and v a vertex in TVS with incompl(v) = true. This can have two causes.

1. The vertex v has a child v′ with incompl(v′) = true.

2. The vertex v is used for the elimination of a variable x . All constraints in c ∈ Φ(v), which

can be used for variable elimination, i. e., 0 < deg(x , Pol(c)) ≤ 2, provided already test

candidates, so used(v)(c) = true, and all of these test candidates failed to lead to a solution,

which means that each of them is considered by a child v′ of v with κ(v′) 6= ;. Moreover,

there exists at least one constraint c ∈ Φ(v) with deg(x , Pol(c))> 2.

Algorithm 11 returns in this case unknown, but, instead, we can also try to solve the conjunction

of formulas in Φ(v) for satisfiability with another procedure. If it returns sat and a solution θ ′,

we know that ϕ is satisfiable and, considering Section 4.2.5, we can construct a solution θ for ϕ

111

4.4. FUTURE WORK

as follows:

θ (x) =






θ ′(x) , if x ∈
⋃
ψ∈Φ(v) Vars(ψ)

t , if x ∈ Vars(ϕ)

and ∃i ∈ {1, . . . , k− 1}.(TC((vi , vi+1)) = t ∧ elimvar(vi) = x)

0 , if x ∈ Vars(ϕ).

If the procedure returns unsat, we need it to provide infeasible subsets of Φ(v), which we then

store in κ(v).

An example for a procedure that can be used to check the conjunction of formulas in Φ(v) for

satisfiability is an implementation which is based on the cylindrical algebraic decomposition. Such

an implementation would usually be complete for this purpose and, hence, always return either

sat or unsat. The cylindrical algebraic decomposition, which is implemented as an SMT-RAT

module provides infeasible subsets, as well.

Up to now, we presented the idea to invoke another procedure immediately if the aforemen-

tioned situation occurs where incompl(v) = true for the call createConflicts(TVS, v). Instead we

can also delay the use of another procedure, meaning that we keep v, mark it by “conflict cre-

ation postponed” and pursue a different branch in our VSST. At some point in the process of the

satisfiability check there might only be vertices in the VSST, which are marked this way or seem

to be worse to consider than invoking another procedure for some of the marked vertices.

4.4 Future work

4.4.1 Using an incremental and infeasible subset generating SAT solver for the

case distinction

Algorithm 6 implements how we currently make a case distinction for a vertex v whose formulas

in Φ(v) are not all constraints. It needs to find a satisfying assignment for the Boolean abstraction

of the conjunction of the formulas in Φ(v) while excluding a conflict in each child of v. Clearly,

a SAT solver as presented in Section 2.5 can find such a satisfying assignment or determine that

the formula is unsatisfiable.

This interaction of a SAT solver and a procedure that checks the satisfiability of conjunction of

constraints, where we obtain infeasible subsets of the set of these constraints, if the conjunction

is unsatisfiable, strongly reminds us of SMT solving. What we actually need in order to replace

the functionality of Algorithm 6, is very close to the ModuleSAT of SMT-RAT, as introduced in Sec-

tion 3.1. The implementation should accept a conjunction of quantifier-free arithmetic formulas,

transform it to CNF and try to find a satisfying assignment for the resulting formula’s Boolean

abstraction. It occasionally invokes a backend (theory solver) in order to check the satisfiability

of a conjunction of constraints and in the case, that it is unsatisfiable, the implementation asks

for infeasible subsets. Taking these infeasible subsets into account, the implementation searches

112

4.4. FUTURE WORK

for another satisfying assignment for the Boolean abstraction and so on.

We furthermore require that the implementation is incremental and is able to find infeasible

subsets of the set of checked quantifier-free arithmetic formulas, if their conjunction is unsatisfi-

able (this is not yet supported by ModuleSAT). Then we can make use of such an implementation

where we have to make a case distinction, as presented in this chapter.

4.4.2 Using SMT-RAT backends to check virtual substitution results for

satisfiability

Let us consider checking a conjunction of constraints for satisfiability, as described in Section 4.2.4.

We use the root of the theory solver’s VSST to eliminate a variable according to Corollary 1. For

each test candidate t, we create a child and add t ’s side conditions as well the results of virtually

substituting the root’s elimination variable in the constraints in the root by t to it. As the added

formulas might not only be constraints but, for instance, contain a disjunction, we need to make

a case distinction. If the implementation of this theory solver is part of SMT-RAT, we can directly

use backends instead, as described in Chapter 3. The advantage would be that the backend could

be the root of an entire SMT-RAT strategy, which not only deals with the Boolean complexity by a

ModuleSAT but also applies preprocessing or other modules based on, for instance, the Simplex

method or Gröbner bases. As mentioned before, for a well-performing embedding, we would

require that all of these implementations are incremental and can generate infeasible subsets.

Unfortunately, this is not yet supported by ModuleSAT .

113

CHAPTER 5

Improving the Performance of the Virtual Substitution in SMT

This chapter addresses optimizations of the satisfiability check as described in Chapter 4. The pre-

sented ideas can mostly be adopted to be usable in the context of the original virtual substitution

as introduced in Section 2.7.

On the one hand, we present the heuristics we make use of for the situations where we have a

choice. For instance, in Section 5.1 we describe how we select the variable to eliminate according

to Corollary 1 or the next constraint for the provision of test candidates. The construction of

conflicts as presented in Section 4.2.6 involves an approximation of the optimal set coverings.

We discuss the optimality criteria and heuristic choices we can make during this construction in

Section 5.2.

On the other hand, we present optimizations which exploit local information during the search

for a satisfying assignment as specified in Section 4.2.4. In Section 5.2, we present a mechanism

which allows us to prune larger unsatisfiable subtrees in the VSST of the theory solver during its

consistency check. Furthermore, we explain in Section 5.3 how we can detect that a vertex in the

VSST is conflicting before all of its children are constructed. Finally, we present an optimization

in Section 5.4 which takes advantage of variable bounds, that is upper and lower bounds on the

variables’ domains. As a result we can narrow down the set of test candidates we have to consider

and simplify the virtual substitution results.

5.1 Choice of the elimination variable and constraint to provide

test candidates for

Let us assume a vertex v of the VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) such that

Φ(v) contains only constraints. In this case, we use v for the elimination of a variable according

5.1. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

to Corollary 1 and, therefore, need to specify a variable to eliminate. Moreover, we gradually

construct the test candidates of the elimination variable for the constraints in Φ(v), where we

consider them one at a time.

Firstly, we need a measure to decide how good a constraint serves for the provision of test

candidates for a given elimination variable. Based on this measure, we can decide how well a

variable is suitable as an elimination variable for a set of constraints, as given in Φ(v).

5.1.1 Measure of quality of constraints for test candidate construction

Given a variable x and a constraint c ∈ Φ(v) such that x ∈ Vars(c), the following functions, we

refer to as constraint valuations, specify a value in order to represent different properties of x

in c. This value is positive and the closer it is to 0, the more preferable it is with respect to the

property it concerns.

Too high degree ωthd(x , c): This value is either 1, if the degree of x is less than or equal to

2, or 2, otherwise. That way we prefer constraints for which it is possible to create test

candidates for x , that is the degree in x is not too high.

It is clearly very important to give constraints a worse (and higher) rating if x occurs with

a degree higher than 2, as this is the case where the virtual substitution might not give a

conclusive answer. However, we have to keep in mind that even though we prefer to choose

x , if it occurs in all constraints only with a degree less than or equal to 2, the remaining

variables might not satisfy this property, especially after the elimination of x .

Finitely many solutions ωfms(x , c): We rate c better (with 1 instead of 2), if c is an equation,

the degree of x in c is less than or equal to 2 and for at least one finite test candidate

t ∈ tcs(x , c), i. e., t 6= −∞, it holds that sc(t) = true. According to Theorem 5, we then

have to consider only the test candidates for x in c instead of all test candidates for x in

the constraints in Φ(v).

This is a very important valuation, as it drastically reduces the number of test candidates to

consider for x . In particular, there is no need to create test candidates for x in constraints,

where x occurs with a degree higher than 2.

Relation symbol ωrel(x , c): We rate equations best (with 1) as they restrict the solution space

most and, therefore, mutual solutions of the constraints in Φ(v) are rather represented by

the test candidates for x in equations. We rate strict inequalities worse (with 3 instead

of 2) than weak inequalities, as the virtual substitution by test candidates for x in strict

inequalities, i. e., those where we add an infinitesimal ε, entail a higher complexity than

the virtual substitution by test candidates for x in weak inequalities.

Elimination variable’s degree ωevd(x , c): This value equals to the degree of x in c, that is the

lower this degree is, the better we rate c.

116

5.1. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

The virtual substitution of x by test candidates, which we construct for constraints being

linear in x , result in simpler formulas compared to those we get for constraints where x

occurs quadratic.

Number of variables ωnv(x , c): This value equals the number of variables in c, i. e., |Vars(c)|.
The more variables c has, the worse is its rating. Test candidates for x in c with a small

ωnv, prevents more complex virtual substitution results in terms of the number of variables

in each constraint in the result.

We combine constraint valuations for a given variable x and a constraint c ∈ Φ(v) such that

x ∈ Vars(c) by

ω((ω1, . .,ωn), x , c) =

n∑

i=1

ωi(x , c)

(maxω)i

where ω1, . .,ωn ∈ {ωthd,ωfms,ωrel,ωevd,ωnv} are pairwise different, maxω ∈ N and for all

i ∈ {1, . ., n} it holds that

ωi(x , c) =

¨
ωi(x , c) , if ωi(x , c)<maxω
maxω , otherwise.

This yields a rating of a constraint with respect to one of its variables, where we prioritize the

constraint valuation ω1 over ω2, . .,ωn, the constraint valuation ω2 over ω3, . .,ωn and so on.

Theorem 5 Let ϕ = c1 ∧ . .∧ cn be a conjunction of constraints and c ∈ {c1, . ., cn} be an equation,

such that

• x ∈ Vars(c),

• deg(x , Pol(c))≤ 2 and

• there exists a test candidate t ∈ tcs(x , c) with t 6= −∞ and sc(t) = true.

Then it holds that

ϕ is satisfiable ⇔
∨

t ∈ tcs(x , c)

t 6= −∞

(ϕ[t//x]∧ sc(t)) is satisfiable.

Proof 5 Let ϕ = c1 ∧ . .∧ cn and c, x and t as defined by Theorem 5.

Then c is of the form p1 x2 + p2 x + p3 = 0 and the virtual substitution rules in [Wei97] specify

that

(p1 x2 + p2 x + p3 = 0)[−∞//x] ≡ p1 = 0∧ p2 = 0∧ p3 = 0.

From sc(t) = true it follows from Definition 21 that p1 6= 0 or p2 6= 0 and, therefore, c[−∞//x]≡

117

5.1. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

false. Then, it holds that if α ∈ Θ(c) we know that

α(x) ∈ M = {¹pº
α + ¹qºα
p
¹rºα
¹sºα | p+ q

p
r

s
∈ tcs(x , c) \ {−∞}, ¹sc(t)ºα ≡ true}.

As Θ(ϕ) =
⋂n

i=1Θ(ci), it also holds that if α ∈ Θ(ϕ) then α(x) ∈ M . Hence, it is sufficient to

only check the test candidates in tcs(x , c) in order to determine the satisfiability of ϕ. �

We still need to decide which constraint valuations we want to use and how we prioritize

them. As explained before, we expect the constraint valuation ωfms to be the most important

one, followed by ωthd as it might enable us to solve formulas where we would otherwise not

find a conclusive answer. Therefore, we always use these constraint evaluations with the highest

priority in this order. It will be interesting to see, which of the constraint valuationsωrel andωevd

are more important, hence, we will test them, once prioritizing ωrel and once prioritizing ωevd.

The last constraint evaluation ωnv seems to be the least important and we will test, whether it is

better to include or exclude it. Summarized, we are going to test the following four combinations

of constraint valuations in Section 6.4.

1. (ωfms,ωthd,ωrel,ωevd,ωnv)

2. (ωfms,ωthd,ωrel,ωevd)

3. (ωfms,ωthd,ωevd,ωrel,ωnv)

4. (ωfms,ωthd,ωevd,ωrel)

5.1.2 Measure of quality of variables for elimination

Given the set of constraints Φ(v) in the vertex v, we want to identify a variable occurring in

these constraints which we eliminate next according to Corollary 1. This choice is vital for

the performance of the virtual substitution and can even decide whether we can determine the

satisfiability of a given formula or not. Therefore, we always try to choose the variable for which

the constraints in Φ(v) provide the most promising test candidates with respect to the heuristic

we choose according to Section 5.1.1.

Let us assume that we decide to use the constraint valuations ω1, . .,ωn in this order, that is ω1

has the highest priority and ωn the lowest. Given a variable x , we can then valuate its quality for

an elimination according to Corollary 1, if we consider the variable valuation

(

ωx ,1︷ ︸︸ ︷
ω((ω1, . .,ωn), x , c1), . .,

ωx ,k︷ ︸︸ ︷
ω((ω1, . .,ωn), x , ck))

where c1, . ., ck ∈ Φ(v) are the constraints which contain the variable x and for all 1 ≤ i < k

it holds that ωx ,i ≤ ωx ,i+1. A variable valuation represents the constraint valuations for the

variable x in Φ(v) written as an increasing number series.

118

5.2. CONFLICT CONSTRUCTION AND BACKJUMPING

Based on variable valuations we specify an order for the variables and then choose one of the

variables which are the smallest in this order for an elimination according to Corollary 1. In

the following, we present three different orders, which try to optimize the best, the average and

the worst constraint valuation for a variable, respectively. For this purpose, we assume we are

comparing two variables x1 and x2 and consider their variable valuations (ωx1,1, . .,ωx1,k1
) and

(ωx2,1, . .,ωx2,k2
).

Optimizing best constraint valuation:

x1 ≺best x2 ⇔
∃ j ∈ {0, . ., min({k1, k2})}.

(∀i ∈ {1, . ., j}.ωx1,i =ωx2,i)

∧ ((j = k1 ∧ k2 > j)∨ (j <min({k1, k2})∧ωx1, j+1 <ωx2, j+1))

Optimizing average constraint valuation:

x1 ≺avg. x2 ⇔ (

k1∑

i=0

ωx1,i)/k1 < (

k2∑

i=0

ωx2,i)/k2

Optimizing worst constraint valuation:

x1 ≺worst x2 ⇔
∃ j ∈ {0, . ., min({k1, k2})}.

(∀i ∈ {0, . ., j − 1}.ωx1,k1−i =ωx2,k1−i)

∧ ((j = k1 ∧ k2 > j)∨ (j <min({k1, k2})∧ωx1,k1− j <ωx2,k2− j))

5.2 Conflict construction and backjumping

For the generation of small reasons for infeasibility, as explained in Section 4.2.6, we considered

a vertex v in the theory solver’s VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC), such that

all of its children are constructed and all of them are conflicting. Let us assume that V ′ ⊂ V is

the set of v’s children. As mentioned before, a vertex v′ is conflicting if κ(v′) 6= ;. Our goal is

to construct infeasible subsets of the set of formulas Φ(v) by the use of the conflicts κ(v′) of v’s

children. Note that we checked
∧
ϕ∈Φ(v)ϕ for satisfiability with the result that it is unsatisfiable.

As we know from Equation (4.1), we obtain an infeasible subset K ⊆ Φ(v) if it covers a conflict

Kv′ ∈ κ(v′) in each child v′ ∈ V ′ after mapping the formulas ϕ′ ∈ Kv′ to one of its origins

N ∈ orig(v′)(ϕ′), i. e.,

∀v′ ∈ V ′. ∃M ∈

Oκ(v
′)︷ ︸︸ ︷

{
n⋃

i=1

Ni | (N1, . ., Nn) ∈
n∏

i=1

orig(v′)(ϕ′i), {ϕ′1, . .,ϕ′n} ∈ κ(v′)} . M ⊆ K .

We refer to Oκ(v
′) as the origins of the conflicts in the vertex v′.

This means that we have to find a set covering of {Oκ(v′)| v′ ∈ V ′} ⊆ P(P(P(Φ(v)))), that is a

119

5.2. CONFLICT CONSTRUCTION AND BACKJUMPING

set K ⊆ Φ(v) which covers an element M of each Oκ(v
′), i. e., M ⊆ K . It differs slightly from the

original definition of the set covering problem [CTF00], where we would require that M ∈ Φ(v)
instead of M ⊆ Φ(v) and that M ∈ K instead of M ⊆ K .

Due to the aforementioned construction of Oκ(v
′) for a v′ ∈ V ′, in the worst case it contains

|κ(v′)| · |N1| · . . · |Nn| sets, which is a number that grows exponentially as n increases. However,

it is seldom the case that we have more than one origin for a formula considered by a vertex in

V , i. e.,
∑n

i=1 |Ni |
n ≈ 1. Hence, the size of Oκ(v

′) grows linearly as the number of conflicts in κ(v′)

increases.

Finding the smallest set covering is an NP-hard problem [CTF00]. Therefore, we only construct

an over-approximation of the smallest set covering invoking setCovering({Oκ(v′)| v′ ∈ V ′}),
which is defined in Algorithm 12. For each O′ ∈ {Oκ(v′)| v′ ∈ V ′}, which is a set of sets, this

algorithm adds the elements of the set M ∈ O′ to the set covering K , which is already covered the

most by K , i. e., |M ∩ K | is minimal. This algorithm is correct, as we clearly cover a set in each

O′ ∈ {Oκ(v′)| v′ ∈ V ′}. As we need to check each set in O′ once, in order to find the one which

is covered by K the most, the complexity of Algorithm 12 lies in O(n) where n is the number of

subsets of Φ(v) in {Oκ(v′)| v′ ∈ V ′}.

Algorithm 12 Given a set O of sets of subsets of a set of formulas Φ, this procedure returns a set
K ⊆ Φ such that for all O′ ∈ O there exists a M ∈ O′ such that M ⊆ K .

setCovering(a set O ⊆ P(P(P(Φ))) of sets of subsets of a set of formulas Φ)
begin

1: K := ; // initialize set covering

2: for all O′ ∈ O do

3: M := set in O′ with |M ∩ K | being minimal
4: K := K ∪M // update yet found set covering

5: end for

6: return K

end

5.2.1 Backjumping

Assume that we have a vertex v of our VSST TVS with κ(v) 6= ; being constructed as explained

in the beginning of this section. If we use v for a case distinction and, hence, v’s father v f for

test candidate generation, we can check whether a conflict K ∈ κ(v) exists which consists only

of constraints that were already considered by v f , i. e., K ⊆ Φ(v f). As K is an infeasible set of

constraints,
∧
ϕ∈Φ(v f)

ϕ must be unsatisfiable, therefore we can add K to κ(v f) and do not need

to consider any further test candidates for the variable elimvar(v f), which we eliminate in the

constraints of Φ(v f). Instead we directly jump back to the father of v f , if it is not the root, or

detect the unsatisfiability of the conjunction of the constraints in the root of TVS, otherwise. This

is why we name this technique backjumping.

120

5.3. LOCAL CONFLICT DETECTION

With the aforementioned simple and cheap check we can clearly omit checking test candidates,

which speeds-up the search for a solution. We can adapt the construction of conflicts as given by

Algorithm 12, such that it is more likely to encounter a case where we can apply backjumping. For

this purpose we make use of the following definition in order to specify the quality of a formula

during this construction.

Definition 26 (Age of a formula in a VSST) Given a VSST TVS = (V, E,Φ, orig,κ, elimvar,

used, incompl, TC) and a vertex v ∈ V , we define the age of a formula ϕ ∈ Φ(v) (with respect

to the vertex v) by

ageTVS
: FO(τ)×V → N0 : (ϕ, v) 7→






1 , if ϕ ∈ Φ(v) and v is root,

1+ ageTVS
(ϕ, v f) , if ϕ ∈ Φ(v) and v f is father of v,

0 , otherwise.

The age of a formula ϕ with respect to the vertex v in the VSST TVS is the length of the path

from the vertex v′, which lies on the path from the root of TVS to v and does not contain ϕ, i. e.,

ϕ 6∈ Φ(v′), to v. In other words, this age tells us how long a formula has been passed from a

node to its children and to their children and so on until it got to v. In particular it means, that

the variable elimination along this path did not change ϕ, which is simply based on the fact that

none of the variables in Vars(ϕ) have been eliminated yet.

As before, let us consider the case where we have a vertex v in the theory solver’s VSST

TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC), such that all of its children are constructed

and all of them are conflicting. So far we added the conflicts to κ(v), which we create with

setCovering(O), where O = {Oκ(v′)| v′ ∈ V ′}. Now, we preprocess O before, which results in

OageTVS
= { {M ∈ Oκ(v

′)| max({ageTVS
(ϕ, v)| ϕ ∈ M})≤ m} | v′ ∈ V ′}

with

m=max({min({max({ageTVS
(ϕ, v)| ϕ ∈ M})| M ∈ Oκ(v

′)})| v′ ∈ V ′}),

and then add the conflicts created by setCovering(OageTVS
) to κ(v). Here, m is the minimum of all

possible set covering’s formulas’ maximum age. The preprocessing removes all sets of formulas

in O, where the formulas’ maximum age is higher than m. Note that by the construction of m it is

ensured that each set of sets in OageTVS
is not empty. Consequently, invoking setCovering(OageTVS

)

yields an over-approximation of the smallest set covering where its formulas’ maximum age is

minimal with respect to all possible set coverings of O.

5.3 Local conflict detection

The generation of small infeasible subsets, as one of the requirements on an SMT compliant theory

solver, might form their most important feature. Usually we have to compute the infeasible subsets

after the theory solver’s check procedure detected the unsatisfiability of the conjunction of its

121

5.3. LOCAL CONFLICT DETECTION

input constraints. In our case, where we used checkVS on the theory solver’s VSST TVS = (V,

E,Φ, orig,κ, elimvar, used, incompl, TC), the infeasible subsets are already stored in the conflicts

κ(vr) of TVS’s root vr ∈ V , if checkVS returns unsat. This is due to the fact that we calculate the

infeasible subsets as we perform the consistency check. Furthermore, we do not only calculate

them for the root but all conflicting vertices of TVS, which is necessary in order to finally construct

the conflicts of the root.

Regarding the performance of a satisfiability check with checkVS we have already seen a scenario

where smaller conflicts in conflicting vertices might be useful for other purposes. With smaller

conflicts it is more likely that the maximum age of the formulas in a conflict is smaller, and, hence,

it is more likely that we can apply backjumping, as introduced in Section 5.2. As we explained,

backjumping saves us from considering all test candidates, which the constraints in a vertex for

variable elimination provide, and, therefore, it improves the performance of the satisfiability

check.

We would like to make more use of the thorough construction of conflicts in the vertices. Let

us assume that during the satisfiability check with checkVS we construct a conflict in a vertex

v ∈ V using the procedure createConflicts(TVS, v). Then, κ(v) stores a set of conflicts which are

infeasible subsets of the formulas in Φ(v). In the case that we use v for variable elimination,

v is conflicting and, hence, we construct its conflicts, if all children of v are constructed and

all of them are conflicting. This means that all constraints in Φ(v) have already provided test

candidates and each of them led to a conflict. Now, if κ(v) contains an infeasible subset M of

Φ(v) with M 6= Φ(v), which means that M ⊂ Φ(v), it follows from Corollary 1 that it would

have been sufficient to only consider the test candidates provided by the constraints in M in

order to detect that their conjunction is unsatisfiable. As introduced by Definition 27, we say

that the constraints in M form a local conflict. This definition generalizes the described situation

by allowing a conjunction of arbitrary formulas instead of a conjunction of constraints. A local

conflict is actually just a synonym for an infeasible subset but in context of the elimination of a

variable with the virtual substitution.

Definition 27 (Local conflict) Let ϕR = ϕ1 ∧ . .∧ϕn be a quantifier-free real-arithmetic for-

mula. Furthermore, let M ⊂ {ϕ1, . .,ϕn} be a strict subset of the sub-formulas of ϕR and

ϕRM =
∧
ϕ∈M ϕ with x ∈ Vars(ϕRM) occurs at most quadratically in ϕRM . Then the formulas in

M form a local conflict if

∨

t∈tcs(x ,ϕR
M
)

(ϕRM [t//x] ∧ sc(t)) is unsatisfiable.

With the help of the conflicts in v’s children and using a similar principle as for the construction

of conflicts with the procedure createConflicts, we can detect a local conflict before construct-

ing and checking all test candidates provided by the constraints in Φ(v). For this purpose we

use the procedure which is implemented by Algorithm 13, i. e., we invoke localConflict(TVS, v),

before we create new children in the procedure checkVS as given by Algorithm 10 (Line 8).

122

5.4. EXPLOITING VARIABLE BOUNDS

Algorithm 13 Given a VSST TVS = (V, E,Φ, orig,κ, elimvar, used, incompl, TC) and a vertex v ∈ V ,
this procedure returns true if we have a local conflict for v.

localConflict(VSST TVS, vertex v ∈ V)
begin

1: if elimvar(v) = ⊥ then return false // only if vertex is used for variable elimination

2: // collect all constraints, which have been used to create test candidates

3: M := {c ∈ Φ(v)| used(v)(c) = true}
4: for all (v, v′) ∈ E do

5: (t, Ot) := TC((v, v′))
6: if Ot ∩M 6= ; then // test candidate has origin in M

7: // if v′ is not conflicting or no conflict mapped back to its origins

8: // is covered by M, then we do not have a local conflict for M

9: if κ(v′) = ; or ∀K ∈ Oκ(v
′). K 6⊆ M then return false

10: end if

11: end for

12: // in each child a conflict after mapping it back to its origins is covered by M,

13: // then M is a local conflict and we add it to κ(v)

14: κ(v) := κ(v)∪ {M}
15: return true
end

Algorithm 13 only detects local conflicts for vertices which are used for variable elimination and

returns false (Line 1), otherwise. It then collects all constraints in Φ(v), which have been used

for the provision of test candidates (Line 3), and checks whether all children are conflicting and

whether these constraints cover one of the origins of the conflicts in each child (Line 14). If this

is the case, we add the constraints as a conflict to κ(v) (Line 14) and return true, which means

that a local conflict has been found.

5.4 Exploiting variable bounds

In many real world examples, we deal with variables that have upper or lower bounds. For

instance, variables which represent time, temperature, or velocity come naturally with bounds.

Time must be non-negative and, depending on the example, we can usually predict certain bounds

for the temperature or velocity (room temperature < 50 degrees, 0 ≤ car velocity < 400 km/h

etc.). We can represent these bounds with constraints as defined in Definition 28.

Definition 28 (Variable Bound Constraint) A constraint of the form

ax − d ∼ 0

with x being an arithmetic variable, a ∈ N, d ∈ Z and ∼∈ {=,≤,<,≥,>} is called a (variable)

bound constraint.

123

5.4. EXPLOITING VARIABLE BOUNDS

We denote the set of all bound constraints by CSVB ⊂ CS and we refer to a bound constraint

c ∈ CSVB as a lower bound constraint, if rel(c) ∈ {=,≥,>}, and as an upper bound constraint,

if rel(c) ∈ {=,≤,<}. Note that a bound constraint with the relation = forms a lower as well as

an upper bound constraint.

In the following definition, we generalize how we obtain and represent the variables’ bounds

for a given formula.

Definition 29 (Variable bounds) Let ϕ be an arbitrary arithmetic formula. Then we can,

w. l. o. g., decompose ϕ to

c1 ∧ . .∧ cn ∧ϕ1 ∧ . .∧ϕm,

where n, m ∈ N0, n+m > 0, c1, . ., cn are bound constraints and ϕ1 ∧ . . ∧ϕm are arithmetic

formulas which are not bound constraints.a

We obtain the bounds of a given variable in a given formula with

vb: (VARR,Z × FO(τ))→ I : (c1 ∧ . .∧ cn ∧ϕ1 ∧ . .∧ϕm, x) 7→ vb′(x , {c1, . ., cn})

where vb′ : (VARR,Z × P(CSVB)) → I maps a variable x and a set of bound constraints C as

depicted in the following table

sup(x , C ,→) ⊥ a′x − d ′ ≤ 0 a′x − d ′ < 0

inf(x , C ,↓)

⊥ (−∞,∞) (−∞, d ′
a′] (−∞, d ′

a′)

ax − d ≥ 0 [d
a ,∞) [d

a , d ′
a′] , if d ′

a′ >
d
a

; , otherwise

[d
a , d ′

a′) , if d ′
a′ ≥ d

a

; , otherwise

ax − d > 0 (d
a ,∞) (d

a , d ′
a′] , if d ′

a′ ≥ d
a

; , otherwise

(d
a , d ′

a′) , if d ′
a′ ≥ d

a

; , otherwise

with

sup: (VARR,Z × P(CSVB))→ CSVB ∪ {⊥} :

(x , C) 7→






ax − d < 0 , if ∃ ax − d < 0 ∈ C .

∀ a′x − d ′ ∼′ 0 ∈ C . ∼′∈ {=,≤,<} → d
a ≤ d ′

a′

ax − d ∼ 0 , if ∃ ∼∈ {=,≤}∧ ax − d ∼ 0 ∈ C∧
∀ a′x − d ′ ∼′ 0 ∈ C . ∼′∈ {=,≤,<} → d

a <
d ′
a′

⊥ , otherwise

124

5.4. EXPLOITING VARIABLE BOUNDS

inf: (VARR,Z × P(CSVB))→ CSVB ∪ {⊥} :

(x , C) 7→






ax − d > 0 , if ∃ ax − d > 0 ∈ C .

∀ a′x − d ′ ∼′ 0 ∈ C . ∼′∈ {=,≥,>} → d
a ≥ d ′

a′

ax − d ∼ 0 , if ∼∈ {=,≥}∧ ax − d ∼ 0 ∈ C∧
∀ a′x − d ′ ∼′ 0 ∈ C . ∼′∈ {=,≥,>} → d

a >
d ′
a′

⊥ , otherwise

aNote that due to ϕ being normalized, ϕ1, . .,ϕm are not conjunctions.

In other words, the bounds of a variable x in a formula ϕ are defined by the strictest bound

constraints, which have to hold such that ϕ can be satisfied. These strictest bound constraints

are the strictest lower bound constraint of x , if any lower bound constraint for x exists, and the

strictest upper bound constraint of x , if any upper bound constraint for x exists. For a strictest

lower or upper bound constraint c of x it holds that for all other lower respectively upper bounds

c′ of x the formula c =⇒ c′ is valid. We represent a variable’s bounds by an interval, where

the strictest lower bound constraint specifies the interval’s lower bound and the strictest upper

bound constraint specifies the interval’s upper bound.

5.4.1 Interval arithmetic

Similarly as with numbers (Z , Q, R, etc.), we can compute with intervals. All common arithmetic

operations, such as the addition (+), subtraction (−), multiplication (·) and division (/) of two

intervals are defined. We can also compute the i-th root (i
p ·) of an interval for i ∈ N, as the

bounds of an interval are real valued which allows us to use arbitrarily nested root expressions,

as it can be seen in the following example.
Example 16

[−1,3) + [0,2] = [−1,5)

(1,∞) − [1,1] = (0,∞)
(1,2] · [3,4) = (3,8)

(−∞, 0] · (−2,0] = [0,∞)
[1, 2] / (2, 3] = [1

3 , 1)

3
Æ
[2,
p

5] = [
3p2, 6p5]

Dividing an interval by an interval, which contains zero, might not result in a convex set M . That

means there exist values d1, d2 ∈ M such that there exists a value d ′ ∈ R \M with d1 < d ′ < d2.

As the convex subsets of R are exactly the sets we can represent with a single interval, there is

no interval representation for M .
Example 17

[1, 2] / [−2, 3] = (−∞,−1
2]∪ [1

3 ,∞)

125

5.4. EXPLOITING VARIABLE BOUNDS

Therefore, interval arithmetic is not closed under division.

We will not give further details on how all of these arithmetic operations on intervals are

defined and refer to [Kul09] instead. The following property, which is always preserved by any

arithmetic operation ◦ ∈ {+,−, ·,/} on intervals, is essential for using them in our context where

we have to guarantee correctness.

∀ I1, I2 ∈ I. I1 ◦ I2 = {d1 ◦ d2| d1 ∈ I1, d2 ∈ I2}
∀ I ∈ I.

p
I = {

p
d| d ∈ I , d ≥ 0}

(5.1)

In the implementation of the ideas we present in the course of this section, we use IEEE

standard floating points instead of arbitrary real numbers for the bound values of the intervals.

This improves the performance of the arithmetic operations, however it does not guarantee

that the Property 5.1 is still fulfilled. Instead we have to mitigate this property such that the

arithmetic operations only include the results of all combinations of the elements of the (two)

input interval(s):

∀ I1, I2 ∈ I. ∀ d1 ∈ I1, d2 ∈ I2. d1 ◦ d2 ∈ I1 ◦ I2

∀ I ∈ I. ∀ d ∈ I , d ≥ 0.
p

d ∈
p

I
(5.2)

Therefore, correctness can still be guaranteed, if Equation (5.2) is fulfilled.

We can also compare intervals by I1 < I2, which is true if I1 ∩ I2 = ; and the upper bound of I1

is less than or equal to the lower bound of I2. However, the equality of two intervals I1 and I2

does not follow from ¬(I1 < I2)∧¬(I2 < I1) as it does for numbers. For instance, I1 = (−∞, 1)

and I2 = [0,1] satisfy this condition, but are obviously not equal. As expected, two intervals

are equal if their lower bounds are equal and either both are closed or both are open and their

upper bounds are equal and either both are closed or both are open. Similar to the τ-structure

A, the τ-structure B maps +, −, · and < to the aforementioned semantics for interval arithmetic

denoted by +B, −B, ·B and <B. Additionally, it maps an I ∈ I, i
p · and = to the just described

semantics denoted by IB, i
p · B and =B.

If we directly apply the n-th exponentiation to an interval I instead of computing
∏n

i=1 I , we

might obtain a different result. More precisely, we know that In cannot contain any negative

numbers if n is even. For instance, (−1,∞)2 = [0,∞), where using the standard multiplication

of intervals yields (−1,∞) · (−1,∞) = (−∞,∞). We call this the wrapping effect and there

are more effects which can be exploited in interval arithmetic for which we refer to [MKC09].

5.4.2 Evaluation and simplification of formulas using variable bounds

The main purpose of intervals in this thesis is to use them as an over-approximation of the solution

space of a formula for a variable. Similarly as for numbers, we also want to evaluate expressions

such as polynomials, constraints and formulas by an assignment of variables to intervals.

126

5.4. EXPLOITING VARIABLE BOUNDS

Definition 30 (Interval assignment) An assignment of intervals to real-valued variables

(short interval assignment) is defined by

B : VARR→ I : v 7→ I ⊆ Dom(v).

Analogously to Definition 6, we consider an interval assignment B to be full for a given formula

(or polynomial) ϕ, if FreeVars(ϕ) ⊆ Dom(B). Within this thesis we only consider full interval

assignments and denote the set of all full interval assignments by IASS.

Just as for assignments to values, we can adapt an interval assignment such that it maps a

variable to a given interval by

· [· / ·]: IASS× I× VARR,Z→ IASS : B[I/x] 7→ B′

where

B′(x ′) =

¨
I , if x ′ = x

B(x ′) , otherwise.

For the evaluation of a formula or a polynomial under an interval assignment, it is sufficient

in this context if we restrict ourselves to quantifier-free arithmetic formulas without Boolean

variables. A generalization to arbitrary arithmetic formulas is straight forward.

Definition 31 (Formula and polynomial evaluation) Given a full interval assignment B for

a polynomial or a quantifier-free arithmetic formula ϕ without Boolean variables, we can

evaluate it under B by

¹ · º · : (FO(τ)× IASS)→ FO(τ),

which is defined inductively with respect to the abstract grammar in Definition 4

¹xºB := B(x)B

¹1ºB := [1,1]B
¹p1 + p2ºB := ¹p1ºB +B ¹p2ºB

¹p1 − p2ºB := ¹p1ºB −B ¹p2ºB

¹p1 · p2ºB := ¹p1ºB ·B ¹p2ºB

¹p1 < p2ºB :=






true , if ¹p1ºB <B ¹p2ºB

false , if ¹p2ºB <B ¹p1ºB

p1 < p2 , otherwise

¹¬ϕ1ºB :=






false , if ¹ϕ1ºB = true

true , if ¹ϕ1ºB = false

ϕ1 , otherwise

127

5.4. EXPLOITING VARIABLE BOUNDS

¹ϕ1 ∧ϕ2ºB :=






false , if ¹ϕ1ºB = false or ¹ϕ2ºB = false

ϕ1 , if ¹ϕ2ºB = true

ϕ2 , if ¹ϕ1ºB = true

ϕ1 ∧ϕ2 , otherwise

where x ∈ Dom(B) is an arithmetic variable, p1 and p2 are polynomials and ϕ1 and ϕ2 are

quantifier-free arithmetic formulas without Boolean variables.

Definition 31 is very similar to Definition 7, however, we cannot evaluate constraints to true

or false, if the evaluations of the left- and right-hand sides intersect. Instead, the evaluation then

keeps the constraints, which implies that the evaluation of a formula does not always result in a

Boolean constant, but can also yield a (simplified) formula.

Example 18 Consider the interval assignment B with

B(x1) = (−∞, 0]

and B(x2) = (1,2].

Then evaluating the formula 2x1 + 1< x2 ∧ ¬(x1 x2 < 0) under B yields

¹

([2, 2]B ·B (−∞, 0]B) +B [1, 1]B <B (1, 2]B
≡

(−∞, 1]B <B (1, 2]B
≡

true
︷ ︸︸ ︷
2x1 + 1< x2 ∧ ¬(

(−∞, 0]B ·B (1, 2]B <B [0, 0]B
≡

(−∞, 0]B <B [0, 0]B︷ ︸︸ ︷
x1 x2 < 0)ºB ≡ ¬(x1 x2 < 0)

5.4.3 Interval constraint propagation

Given a formula ϕ with its decomposition ϕ = c1∧ . .∧ cn∧ϕ1∧ . .∧ϕm according to Definition 29,

we have seen how to obtain bounds for the variables in Vars(ϕ). However, we did only consider

the bound constraints c1 ∧ . . ∧ cn for these bounds and ignored the other constraints {ϕi | 1 ≤
i ≤ m, ϕi is a constraint}, which have to hold such that ϕ can be satisfied. In Example 19 we

illustrate the main idea of how interval constraint propagation (ICP) uses these constraints to

refine an over-approximation of ϕ’s solution space for its variables step by step. We only provide

this informal illustration and refer to [FHT+07] for more details. An alternative procedure, which

uses contraction with an interval-based Newton method [HR97] instead of propagation, can be

found in [GGI+10].

Example 19 Consider the real-arithmetic formula

ϕ = 2x2 + 1≥ 0 ∧ x1 + 1> 0 ∧ x2
1 + x2

2 − 2= 0 ∧ x2
1 − x2 − 1= 0 ∧ 6x1 − 2x2 − 3≥ 0

which is illustrated by Figure 5.1. Its only solution is {(x1,
Çp

5+1
2), (x2,

p
5−1
2)}, which is the right

128

5.4. EXPLOITING VARIABLE BOUNDS

6x1−2x2, x3+ x4 and x3− x2, by fresh real-arithmetic variables, but we omit this here for the sake

of simplicity. For the same reason, we do not use the constraint 6x1 − 2x2 − 3≥ 0 for propagation.

Using the bounds of x1 and x2, which are defined by vb(x1,ϕ) and vb(x2,ϕ), we initialize the

interval assignment B, mapping each variable in ϕ to an over-approximation of ϕ’s solution space

for the variable by:

B(x1) = (−1,∞)
B(x2) = [−1

2 ,∞)
B(x3) = (−∞,∞)
B(x4) = (−∞,∞)

Due to the special form of the equations c1, c2, c3 and c4, we can solve them for each variable

occurring in them. For instance, if we solve c3 for x3, we get x3 = x2
1 or, if we solve c4 for x2, we

get x2 = ±
p

x4. Let sx i ,c j
define the right-hand sides of these solution equations for i, j ∈ {1, . ., 4}

with sx i ,c j
= ⊥, if x i /∈ Vars(c j). Otherwise, sx i ,c j

=
npp

d with n ∈ N, d ∈ Z and p being a polynomial.

Then (just for this example) an ICP-step, which narrows down the over-approximating solution space

of one of the variables x i with one of the equations c j (i, j ∈ {1, . ., 4}), is defined by

icp: (I× {x1, . ., x4} × {c1, . ., c4})→ I : (I , x i , c j) 7→






I , if sx i ,c j
= ⊥

I ∩
n
p
¹pºB
[d,d] , if sx i ,c j

=
npp

d

I ∩±
n
p
¹pºB
[d,d] , if sx i ,c j

= ±
npp

d

Now we can update B(x3) by an ICP-step using c3:

B(x3) = icp(B(x3), x3, c3) = (−∞,∞)∩ (−1,∞)2 = [0,∞)

With the same idea we can narrow down the over-approximation of ϕ’s solution space for its

variables as follows. We also illustrate this process in Figure 5.1 by the dotted boxes.

B(x4) := icp(B(x4), x4, c4) = (−∞,∞) ∩ [−1
2 ,∞)2 = [0,∞)

B(x3) := icp(B(x3), x3, c1) = [0,∞) ∩ ([2,2]− [0,∞)) = [0, 2]

B(x2) := icp(B(x2), x2, c2) = [−1
2 ,∞) ∩ ([0,2]− [1,1]) = [−1

2 , 1]

B(x3) := icp(B(x3), x3, c2) = [0,2] ∩ ([−1
2 , 1] + [1,1]) = [1

2 , 2]

B(x4) := icp(B(x4), x4, c4) = [0,∞) ∩ [−1
2 , 1]2 = [1

4 , 1]

B(x3) := icp(B(x3), x3, c1) = [
1
2 , 2] ∩ ([2,2]− [1

4 , 1]) = [1, 7
4]

B(x1) := icp(B(x1), x1, c3) = (−1,∞) ∩ ±
q
[1, 7

4] = [1,
p

7
2]

B(x2) := icp(B(x2), x2, c4) = [−1
2 , 1] ∩ ±

q
[1

4 , 1] = [−1
2 ,−1

2]∪ [1
2 , 1]

At this point, the over-approximation of ϕ’s solution space for x2 is not convex and here are three

possibilities as to how we can proceed:

1. We could start to operate on non-convex sets represented by sets of intervals. Then an arith-

130

5.4. EXPLOITING VARIABLE BOUNDS

metic operation of two of these sets of intervals M1, M2 ⊂ I would entail applying an interval

arithmetic operation for each combination of an element from M1 with an element from M2. In

our scenario, however, this is not a good option as a repeated application of such an operation

might lead to a combinatorial explosion.

2. We could form the convex hull of the intervals in M ⊂ I representing the non-convex set. This

is simply achieved by taking the minimal lower-bound of all intervals as the lower bound of

the convex hull and the maximal upper-bound of all intervals as the upper bound of the convex

hull. In many cases this can be a coarse over-approximation, though.

3. Considering that B(x2) = [−1
2 ,−1

2]∪ [1
2 , 1], we can also try to first deal with x2 ∈ [−1

2 ,−1
2]

and, if we could rule out that it contains any solution for ϕ, we continue with x2 ∈ [1
2 , 1].

Instead of handling this by a simple case splitting, we can also lift this decision to an involved

SAT solver as presented in Section 3.1.

Let us assume that we follow the third possibility and consider x2 ∈ [−1
2 ,−1

2], first. Then we get a

conflict straight away if we update B(x3) using c2.

B(x3) := icp(B(x3), x3, c2) = [1, 3
2] ∩ ([−1

2 ,−1
2] + [1, 1]) = ;

Therefore, we now consider x2 ∈ [1
2 , 1]. If we repeat the following four updates, we approach the

solution {(x1,
Ç

1+
p

5
2), (x2, −1+

p
5

2)}, which lies approximately at (1.272, 0.618) in Figure 5.1, for

both variables x1 and x2 from below and from above.

B(x3) := icp(B(x3), x3, c2) = [1, 7
4] ∩ ([1

2 , 1] + [1, 1]) = [3
2 , 7

4]

B(x4) := icp(B(x4), x4, c1) = [
1
4 , 1] ∩ ([2, 2]− [3

2 , 7
4]) = [

1
4 , 1

2]

B(x2) := icp(B(x2), x2, c4) = [
1
2 , 1] ∩ ±
q
[1

4 , 1
2] = [1

2 , 1p
2
]

B(x1) := icp(B(x1), x1, c3) = [1,
p

7
2] ∩ ±
q
[3

2 , 7
4] = [

p
3p
2
,
p

7
2]

Unfortunately, we would never yield point intervals as an over-approximation ofϕ’s solution space for

the variables x1 and x2, if we only apply this procedure. That is, we never obtain the exact solution

in this case, but we can isolate it with an infinite precision. Furthermore, we cannot guarantee at any

point during the application of this procedure, that the over-approximation of the formula’s solution

space contains a solution. Let us assume, that we consider the formula ϕ̂ = ϕ∧ x2
1 + x2

2 −2+ε = 0

where ε is a very small real number with ε > 0. Clearly, the equations x2
1 + x2

2 − 2 = 0 and

x2
1 + x2

2 − 2+ ε = 0 have no common solutions, as the former circle is enclosed by the latter one.

However, ICP would yield a very similar over-approximation to the one we found forϕ, but containing

an intersection point of each circle with the parabola. In order to be able to isolate both intersection

points and detect that they are not a solution, afterwards, we need to split the over-approximation of

ϕ̂’s solution space for at least one of the two variables x1 and x2 at a point between these intersection

points and consider the two resulting halves independently.

131

5.4. EXPLOITING VARIABLE BOUNDS

This example also shows that we need to define a termination criteria in order the ensure the

completeness of ICP. More precisely, we need to know when to stop approaching a possible solution as

it was the case in our example. The standard termination criteria for ICP is to check whether there

exists no ICP-step, which reduces the diameter of the over-approximation of the formula’s solution

space for a variable more than a certain contraction threshold µ.

5.4.4 Using variable bounds to filter out test candidates

We have seen how to obtain an initial over-approximation B of a given formula ϕ’s solution space

using Definition 29. Furthermore, we illustrated how to refine this over-approximation with ICP

in Example 19. Even though ICP could not determine the satisfiability of the formula in the

example, there are cases where it can. If, for instance, it refines B such that it maps a variable

to an empty interval, we know that ϕ is unsatisfiable. We could also test any assignment α such

that for each variable x it holds that α(x) ∈ B(x). If it is a satisfying assignment, ϕ is obviously

satisfiable. It might seem to be a rather arbitrary step to do this, but especially as B might be

exactly the solution space, it makes sense to perform this cheap test.

The question remains as to how to deal with a case similar to Example 19, where we could

refine the initial over-approximation B of a given formula ϕ’s solution space, but not in a way that

we can follow the satisfiability of ϕ. Of course, we can invoke another procedure for this purpose.

For instance, the CAD is a complete procedure for real-arithmetic formulas. As we expect that

the performance of ICP is better than the one of the CAD, one possible strategy for solving a real-

arithmetic formula would be to use ICP first and if it cannot determine the formula’s satisfiability,

we use the CAD. However, we would discard the valuable information that ICP possibly narrowed

down the formula’s solution space. If we invoke the CAD additionally with the constraints which

represent this tighter solution space, we must make sure that the CAD implementation makes

use of this extra information. In [5] we presented an adaption of the operations used in the CAD

such that they exploit the variables’ bounds.

In this section, we want to make use of them in order to improve the performance of the

virtual substitution. Let us consider its main idea which was defined in Theorem 2. Given a

real-arithmetic formula ϕR with the real-valued variable x ∈ Vars(ϕR), this theorem gives us an

equivalent formula which only contains the variables Vars(ϕ) \ {x}:

∃x . ϕR ⇔
∨

t∈tcs(x ,ϕR)

(ϕR[t//x] ∧ sc(t))

Remember that the equivalent formula holds if there exists a test candidate t ∈ tcs(x ,ϕR) for x

in ϕR, such that the result of virtually substituting x in ϕR by t holds under consideration of t ’s

side conditions sc(t).

Hence, the first possibility to improve the performance of the virtual substitution is to reduce

the number of test candidates which we have to take into account. As the following theorem

132

5.4. EXPLOITING VARIABLE BOUNDS

shows, we can use the bounds of the variables in ϕR in order to filter out the test candidates

which cannot satisfy ϕR.

Theorem 6 Let ϕR be a quantifier-free real-arithmetic formula where the real-valued variable x ∈
Vars(ϕR) occurs at most quadratic in ϕR. Then it holds that

∃x . ϕR ⇔
∨

t∈tcsI(x ,ϕR,vb(x ,ϕR))

(ϕR[t//x] ∧ sc(t)). (5.3)

where

tcsI : (VARR,Z × FO(τ)× IASS)→ TCS :

(x ,ϕ, B) 7→ {t ∈ tcs(x , c)|c ∈ C∼(ϕ), �(x , t, B) 6= ;}

with

� : (VARR,Z × TCS× IASS)→ P(R) :

(x , t, B) 7→






B(x) , if t = −∞ and B(x) is left unbounded

; , if t = −∞ and B(x) is left bounded

(I1 ∪ I2)∩ B(x) , if t =
p+q
p

r
s and
¹pºB+¹qºB

p
¹rºB
¹sºB = I1 ∪ I2

1

(I1 + ε∩ B(x))∪ (I2 + ε∩ B(x)) , if t =
p+q
p

r
s + ε and

¹pºB+¹qºB
p
¹rºB
¹sºB = I1 ∪ I2

and we over-approximate I + ε for I ∈ I by choosing a small value e ∈ R (e > 0) and using the

following rules:

(a,∞) + ε ⊆ (a,∞)
[a,∞) + ε ⊆ (a,∞)
(a, b) + ε ⊆ (a, b] , b 6=∞
[a, b) + ε ⊆ (a, b] , b 6=∞
(a, b] + ε ⊆ (a, b+ e]

[a, b] + ε ⊆ (a, b+ e]

Proof 6 “⇐”: This direction is trivially fulfilled as

∨
t∈tcsI(x ,ϕR,vb(x ,ϕR))

(ϕR[t//x] ∧ sc(t))

tcsI(x ,ϕR,vb(x ,ϕR)) ⊆ tcs(x ,ϕR)
⇒

∨
t∈tcs(x ,ϕR)

(ϕR[t//x] ∧ sc(t))

Thm.2⇔ ∃x .ϕR

133

5.4. EXPLOITING VARIABLE BOUNDS

“⇒”:

∃x .ϕR
Thm.2⇔
∨

t∈tcs(x ,ϕR)
(ϕR[t//x] ∧ sc(t))

(∗)
⇒
∨

t ∈ tcs(x ,ϕR)

�(x , t, B) 6= ;

(ϕR[t//x] ∧ sc(t)) ∨
false︷ ︸︸ ︷∨

t ∈ tcs(x ,ϕR)

�(x , t, B) = ;

(ϕR[t//x] ∧ sc(t))

(∗∗)
⇒
∨

t∈tcsI(x ,ϕR,vb(x ,ϕR))
(ϕR[t//x] ∧ sc(t))

(∗) Here, we simply split the test candidates into two disjoint sets.

(∗∗) If for a t ∈ tcs(x ,ϕR) it holds that �(x , t, B) = ;, we know that no assignment in an over-

approximation of the solution space of ϕR satisfies x = t. This means that ϕB,t[t//x] is

already unsatisfiable, where ϕB,t consists of the bound constraints which define B and share

variables with t. Therefore, we in particular know that

∨

t ∈ tcs(x ,ϕR)

�(x , t, B) = ;

(ϕR[t//x] ∧ sc(t)) ≡ false.

�

Given an over-approximation of the solution space of a real-arithmetic formula ϕR,Theorem 6

states that we do not need to consider all test candidates for the variable to eliminate in ϕR, but

only those which can lie in this over-approximation.

Example 20 Considering Figure 5.1 and the tighter over-approximation

B(x1) ∈ [
p

3p
2
,
p

7
2]

B(x2) ∈ [1
2 , 1p

2
]

which we obtained in Example 19 using ICP, any test candidate provided by the constraint 6x1 −
2x2−3≥ 0 can be omitted. If we would, for instance, eliminate x1 first, 6x1−2x2−3≥ 0 provides

the test candidates t1 = −∞ and t2 =
2x2+3

6 . As

�(x , t1, B) = ;
and �(x , t2, B) =

[2,2]·[1
2 , 1p

2
]+[3,3]

[6,6] ∩ [
p

3p
2
,
p

7
2] = [

2
3 , 3+

p
2

6]∩ [
p

3p
2
,
p

7
2] = ;

we can disregard them according to Theorem 6. In Figure 5.1, we can see that the polynomial x1− x2

defining this constraint does not intersect with B. As t1 represents the points on this line, it cannot

form a solution.

134

5.4. EXPLOITING VARIABLE BOUNDS

The constraint x2
1 + x2

2 − 2= 0, on the other hand, provides besides −∞ the test candidates

t3 = −
q
−x2

2 + 2 and t4 =
q
−x2

2 + 2

and in this case we can only disregard t3, as

�(x , t3, B) = (−
Ç
−[1

2 , 1p
2
]2 + [2,2]) ∩ [

p
3p
2
,
p

7
2]

= [−
p

7
2 ,−

p
3p
2
] ∩ [

p
3p
2
,
p

7
2] = ;

and �(x , t4, B) = (
Ç
−[1

2 , 1p
2
]2 + [2, 2]) ∩ [

p
3p
2
,
p

7
2] = [

p
3p
2
,
p

7
2].

Again, we can illustrate this in Figure 5.1. Where t3 represents the points on the circle given by

x2
1 + x2

2 −2= 0 but with x1 ≤ 0 and, hence, left of the x2-axis, t4 represents the points on this circle

with x1 ≥ 0 and, therefore, right of the x2-axis. As the only solution is on the latter half of the circle,

we only need to consider t4.

5.4.5 Simplifying formulas with respect to variable bounds

In Definition 31, we have specified how to evaluate a formula under an interval assignment. In

contrast to the evaluation under a normal assignment, the result can be an interval or a simplified

formula. This is exactly what we can make use of when applying the virtual substitution. Given

a real-arithmetic formula ϕR and an over-approximation of its solution space B, the variable

elimination step as given by Theorem 6 can be reformulated to

∃x . ϕR ⇔
∨

t∈tcsI(x ,¹ϕRºB∧ϕB ,vb(x ,¹ϕRºB))
¹(¹ϕRºB ∧ϕB)[t//x] ∧ sc(t)ºB ∧ϕB[(−∞,∞)/x]

(5.4)

where ϕB and ϕB[(−∞,∞)/x] are the formulas representing the variables’ bounds in B and

B[(−∞,∞)/x], respectively. Note, that for the latter we explicitly remove the variable bounds

of x .

Example 21 Consider the real-arithmetic formula from Example 19

ϕ = 2x2+1≥ 0 ∧ x1+1> 0 ∧ x2
1+x2

2−2= 0 ∧ x2
1−x2−1= 0 ∧ 6x1−2x2−3≥ 0

which is also illustrated by Figure 5.1 and the tighter over-approximation

B(x1) = [
p

3p
2
,
p

7
2]

B(x2) = [1
2 , 1p

2
]

which we obtained in Example 19 using ICP. We over-approximate B in order to cast off the radical

135

5.4. EXPLOITING VARIABLE BOUNDS

expressions yielding

B(x1) = [153
125 , 1323

1000]

B(x2) = [1
2 , 177

250].

Now we replace the bound constraints

2x2 + 1≥ 0 ∧ x1 + 1> 0

by the bound constraints

125x1 − 153≥ 0 ∧ 1000x1 − 1323≤ 0 ∧ 2x2 − 1≥ 0 ∧ 250x2 − 177≤ 0

yielding

ϕ′ = 125x1 − 153≥ 0 ∧ 1000x1 − 1323≤ 0 ∧ 2x2 − 1≥ 0

∧ 250x2 − 177≤ 0 ∧ x2
1 + x2

2 − 2= 0 ∧ x2
1 − x2 − 1= 0

∧ 6x1 − 2x2 − 3≥ 0

As

¹6x1 − 2x2 − 3≥ 0ºB ≡ [6,6] · [153
125 , 1323

1000]− [2, 2] · [1
2 , 177

250]− [3,3]≥ 0

≡ ([3672
500 , 3969

500]− [500
500 , 708

500])− [1500
500 , 1500

500]≥ 0

≡ [1464
500 , 1969

500]≥ 0

≡ true

we can simplify ϕ′ to

¹ϕ′ºB ∧ϕB = 125x1 − 153≥ 0 ∧ 1000x1 − 1323≤ 0 ∧ 2x2 − 1≥ 0

∧ 250x2 − 177≤ 0 ∧ x2
1 + x2

2 − 2= 0 ∧ x2
1 − x2 − 1= 0

Hence, we get rid of the constraint for which we would not have created any test candidates according

to Theorem 6, anyway. In general, simplifying the formula does not make Theorem 6 superfluous.

For instance, the constraint x2
1 + x2

2 − 2= 0 is still part of ¹ϕ′ºB ∧ϕB, but according to Theorem 6

it only provides one test candidate instead of three, i. e., t4 =
q
−x2

2 + 2 ∈ tcsI(x1,¹ϕ′ºB ∧
ϕB, vb(x1,¹ϕ′ºB ∧ϕB)). Let us compute

ϕ′′ = ¹(¹ϕ′ºB ∧ϕB)[t4//x1] ∧ sc(t4)ºB ∧ϕB[(−∞,∞)/x1]

in order to see the impact of Equation (5.4). The side condition of t4 is sc(t4) = x2
2 − 2≤ 0 and

(¹ϕ′ºB ∧ϕB)[t4//x1] = 2x2 − 1≥ 0 ∧ 250x2 − 177≤ 0

∧ x2
2 + x2 − 1= 0 ∧ 15625x2

2 − 7841≤ 0

∧ 1000000x2
2 − 249671≥ 0

136

5.4. EXPLOITING VARIABLE BOUNDS

As

¹15625x2
2 − 7841≤ 0ºB ≡ true

and ¹1000000x2
2 − 249671≥ 0ºB ≡ true,

it follows that

ϕ′′ = 2x2 − 1≥ 0 ∧ 250x2 − 177≤ 0

∧ x2
2 + x2 − 1= 0 ∧ x2

2 − 2≤ 0

Without the simplification of Equation (5.4), where we also would need to virtually substitute x1 by

t4 in 6x1 − 2x2 − 3≥ 0, we would obtain the result

2x2 − 1≥ 0 ∧ 250x2 − 177≤ 0

∧ x2
2 + x2 − 1= 0 ∧ x2

2 − 2≤ 0

∧ 15625x2
2 − 7841≤ 0 ∧ 1000000x2

2 − 249671≥ 0

∧ ((x2 < 0 ∧ x2
2 + 1≥ 0)

∨ x2
2 − 1≤ 0

∨ (x2
2 − 2= 0 ∧ x2 = 0))

Hence, this simplification saves us from considering a further seven constraints and prevents us from

having to take a case splitting into account, as there is a disjunction involved in the non-simplified

formula.

137

CHAPTER 6

Experimental Results for Real Arithmetic

We have experimentally evaluated the contributions of Chapter 4 and Chapter 5 using our toolbox

SMT-RAT, which we introduced in Chapter 3.

6.1 Benchmark sets

In this section we describe the benchmark sets, which we used in our experimental results. We

also specify the number of variables, the maximum degree and the Boolean complexity of an

average instance for each benchmark set. The Boolean complexity of a given formula is higher

the more solutions the formula’s Boolean abstraction has, where we say that a conjunction of

constraints has no Boolean complexity.

We have used five of the seven benchmark sets for quantifier-free nonlinear real arithmetic

from the SMT competition 2016.

Hong: These are 20 crafted and dimension dependent examples as they were used in [Hon91].

The nth example (1≤ n≤ 20) has the form

n∑

i=1

x2
i < 1 ∧

n∏

i=1

x i > 1.

An example has therefore n variables, a maximum degree of n (because of the second

constraint) and no Boolean complexity.

Hycomp: These are 2102 instances generated by the model checker HyComp [CGMT15] for non-

linear hybrid automata using the quantifier-free SMT encoding as presented in [CMT12].

On average, an example has 44 variables, a maximum degree of 3 and almost no Boolean

complexity.

6.2. SETTINGS

Kissing: These are 45 crafted and dimension dependent examples of the kissing number problem.

Here we seek an arrangement of n non-overlapping unit spheres such that each sphere

touches another given sphere at one point only. The average number of variables per

example is 36 and each example has the maximum degree 2. The examples have no

Boolean complexity.

MetiTarski: These are 7713 examples, which are proof obligations generated by automatic

the theorem prover Meti-Tarski for real-valued special functions [AP10]. The number of

variables averages 3 and the maximum degree is on average 3, but measures 44 for some

examples. Almost all examples have no Boolean complexity.

Zankl: These are 166 examples, mostly generated by the termination analysis of term rewriting

systems [FGM+07]. The average number of variables in the examples is 81, so it is relatively

high, and the average maximum degree is 3. All examples have no Boolean complexity.

For the two benchmark sets of the SMT competition 2016, which we did not use, none of the

presented techniques of this thesis can solve any instance. Therefore, we did not consider them

for a comparison.

Additionally, we tested on the following benchmark sets.

Bounce: These 180 examples describe whether a thrown ball (starting at an initial height and

moving with a decreasing vertical motion along some direction), which is allowed to bounce

n times, eventually falls into a hole in the ground at a given distance. The average number

of variables in the examples is 35. All examples have the maximum degree 3 and a relatively

high Boolean complexity.

Keymaera: These are 421 examples, which were mostly generated by the verification tool

KeYmaera for hybrid systems in the context of [PQR09]. On average, the number of vari-

ables in an example is 9 and the maximal degree is 2. The examples have a relatively low

Boolean complexity.

Rect: These 91 examples describe whether we can fit a given set of rectangles within a certain

rectangular area. The average number of variables in the examples is 15 and the maximum

degree of each example is 2. All examples have a high Boolean complexity.

Witness: These 100 examples were generated in a formal verification process as described in

[RS15]. The average number of variables and average maximum degree are both 3. The

examples have no Boolean complexity.

6.2 Settings

The experiments, which we report on in this chapter, are structured as follows. First we evaluate

the ideas from Chapter 4 and Chapter 5 in order to work out how much they contribute on different

140

6.3. AN SMT-COMPLIANT THEORY SOLVER BASED ON THE VIRTUAL SUBSTITUTION

benchmark sets. For this purpose we always use a simple SMT-RAT strategy consisting only of

a ModuleSAT with a ModuleVS as backend. This represents an SMT solver with a theory solver

based on the virtual substitution as presented in Chapter 4 and equipped with the optimizations

of Chapter 5. Afterwards, we compare different strategies with and without a ModuleVS for the

purpose of seeing how well it contributes to a better performance of a strategic combination of

procedures for real arithmetic. Finally, we compare these strategies to state-of-the-art tools that

can be used to check the satisfiability of a real arithmetic formula.

All experiments were carried out on AMD Opteron 6172 processors. Every solver was allowed

to use up to 4 GB of memory and 200 seconds of wall clock time.

6.3 An SMT-compliant theory solver based on the virtual

substitution

First, we evaluate the ideas from Chapter 4, which adapt the virtual substitution for a better

performing integration into an SMT solver. Here, we test the ModuleVS

1. supporting incrementality and backtracking (instead of starting each theory call from

scratch) and

2. generating an infeasible subset if a conjunction of constraints is found to be unsatisfiable

(instead of simply returning the infeasible subset containing all of these constraints).

We test one setting, where the ModuleVS supports: neither of the two features (Module
✘✘SMT
VS), only

the first (ModuleInc
VS), only the second (ModuleIS

VS) and both features (ModuleSMT
VS). We compare

these settings by employing each of them in a simple SMT-RAT strategy, consisting of a ModuleSAT

and a ModuleVS as illustrated in Figure 6.1. We only use the two benchmark sets BOUNCE and

RECT, which provide a suitable Boolean complexity in order to illustrate the use of these SMT

related features.

ModuleSATRAT✟✟SMT
VS :

Module✟✟SMT
VS

ModuleSATRATInc
VS :

ModuleInc
VS

ModuleSATRATIS
VS:

ModuleIS
VS

ModuleSATRATSMT
VS :

ModuleSMT
VS

Figure 6.1: Four SMT-RAT strategies, which combine a ModuleSAT with a ModuleVS of different set-
tings as backend

Table 6.1 displays the experimental results for this comparison. The first column shows how

the theory solver based on the virtual substitution, as presented in Chapter 4, performs neither

supporting incrementality, backtracking nor infeasible subset generation. In the second column,

where just incrementality and backtracking are supported, we only gain 7 instances for the bench-

mark BOUNCE, however, we win 18 satisfiable and lose 11 unsatisfiable examples. Interestingly,

141

6.4. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

Solvers→ RAT✟✟SMT
VS RATInc

VS RATIS
VS RATSMT

VS
Benchmarks↓ # time # time # time # time

BOUNCE (180) 147 374.6 154 763.0 161 1811.9 165 809.7
- sat 105 360.0 123 757.2 119 1797.2 123 750.0
- unsat 42 14.5 31 5.8 42 14.7 42 59.8
- unkn. 0 0.0 26 288.2 0 0.0 15 297.3

RECT (91) 20 282.0 20 281.2 26 407.2 28 758.4
- sat 14 79.1 14 90.2 19 381.3 21 733.8
- unsat 6 202.9 6 190.9 7 25.9 7 24.6
- unkn. 0 0.0 0 0.0 0 0.0 0 0.0

ALL (271) 167 656.6 174 1044.2 187 2219.1 193 1568.1
- sat 119 439.2 137 847.4 138 2178.5 144 1483.8
- unsat 48 217.4 37 196.7 49 40.6 49 84.3
- unkn. 0 0.0 26 288.2 0 0.0 15 297.3

Table 6.1: Comparison of the four SMT-RAT strategies of Figure 6.1 (the column # contains the
number of solved instances and the column time contains the amount of seconds needed
for solving these instances).

none of the examples in BOUNCE lead to a timeout with the additional features. Instead, we end

up in a case where the virtual substitution cannot be applied and unknown is returned for 26 ex-

amples. This is due to the fact that incrementality can influence the solving process. For instance,

if we have to choose the next variable to eliminate or next constraint to create test candidates for,

there might be several choices of the same quality according to our heuristics. Let us assume that

in one theory call we choose the variable x for elimination for a given vertex in the VSST of our

theory solver. In the next theory call, if we consider the same vertex, the variable y has now an

identical quality according to our heuristics for a variable elimination, so we could choose either

x or y . In an incremental call, where x has already been chosen, we do not change this decision

in order to reuse results gained already. If incrementality is not supported, we start from scratch

and, in this case, we might choose y instead. If we are unlucky, as for many instances of BOUNCE,

this leads to a worse performance or the case, where the virtual substitution cannot determine

the satisfiability of the given conjunction of constraints. More thorough heuristics could avoid

this behavior.

In the third column of Table 6.1, we only support infeasible subset generation. Compared to

the first column, this feature clearly improves the performance, as we can solve a further 12% of

the examples. For BOUNCE, the infeasible subsets are on average 45% smaller than just returning

all checked constraints and for RECT even 50% smaller. In the last column, the results were

achieved with an entirely SMT-compliant setting of the ModuleVS gaining us almost 16% solved

examples in comparison to using a non-SMT-compliant setting.

6.4 Choice of the elimination variable and constraint to provide

test candidates for

The choice of the next variable to eliminate, as well as the choice of the next constraint to create

test candidates for, have a significant influence on the performance of an implementation of the

142

6.4. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

Solvers→ Optavg +CVRDV Optavg +CVRD Optavg +CVDRV Optavg +CVDR
Benchmarks↓ # time # time # time # time

BOUNCE sat 108 865.0 108 862.0 108 941.3 108 925.8
(180) unsat 17 0.9 17 0.9 17 1.0 17 1.0

unkn. 29 759.9 29 829.9 29 969.2 29 954.1
HONG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 1 0.1 1 0.2 1 0.1 1 < 0.1

unkn. 19 3.9 19 6.3 19 4.5 19 5.4
HYCOMP sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1398 5975.1 1415 7390.0 1435 6773.3 1464 7506.6

unkn. 0 0.0 0 0.0 0 0.0 0 0.0
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 381 19.0 381 23.3 381 18.3 381 16.3

unkn. 14 165.1 14 174.3 13 5.9 12 5.5
KISSING sat 7 36.1 7 46.3 7 27.0 7 53.5
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0

unkn. 0 0.0 0 0.0 0 0.0 0 0.0
METITARSKI sat 3709 659.2 3709 794.9 3716 619.8 3713 612.4
(7713) unsat 1511 70.5 1508 119.5 1527 76.4 1521 70.5

unkn. 2493 792.1 2496 900.7 2470 744.8 2479 741.5
RECT sat 20 1089.6 20 617.5 19 515.2 18 477.7
(91) unsat 7 36.3 7 35.8 7 36.7 7 35.8

unkn. 0 0.0 0 0.0 0 0.0 0 0.0
WITNESS sat 28 15.1 28 15.1 28 15.6 28 15.2
(100) unsat 0 0.0 0 0.0 0 0.0 0 0.0

unkn. 72 2086.4 72 2084.0 72 2093.0 72 2089.4
ZANKL sat 19 225.7 20 485.3 19 169.3 19 371.6
(166) unsat 9 8.9 9 13.5 8 1.8 8 0.8

unkn. 6 11.0 6 10.4 8 85.4 8 82.9

ALL 7215 9001.4 7230 10404.5 7273 9195.7 7292 10087.3
(10838) sat 3891 2890.7 3892 2821.2 3897 2288.2 3893 2456.3

unsat 3324 6110.7 3338 7583.3 3376 6907.5 3399 7631.0
unkn. 2633 3818.3 2636 4005.7 2611 3902.8 2619 3878.7

Table 6.2: Comparison of four different constraint valuations for the variable valuation Optavg (the
column # contains the number of solved instances and the column time contains the
amount of seconds needed for solving these instances).

virtual substitution as introduced in Chapter 4. We can combine the constraint valuations as

introduced in Section 5.1.1 in various ways and, moreover, use each of these combinations with

the strategies for choosing the next variable to eliminate as introduced in Section 5.1.2. For the

constraint valuations we confine ourselves to the four combinations, which we introduced at the

end of Section 5.1.1. Hence, given a constraint and an elimination variable, which occurs in this

constraint, we use the constraint valuations:

1. CVRDV = (ωfms,ωthd,ωrel,ωevd,ωnv) (rate the constraint’s relation symbol higher than

the elimination variable’s degree and take the number of variables in the constraint into

account)

2. CVRD = (ωfms,ωthd,ωrel,ωevd) (rate the constraint’s relation symbol higher than the elimi-

nation variable’s degree)

3. CVDRV = (ωfms,ωthd,ωevd,ωrel,ωnv) (rate the elimination variable’s degree higher than

the constraint’s relation symbol and take the number of variables in the constraint into

account)

143

6.4. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

Solvers→ Optworst +CVRDV Optworst +CVRD Optworst +CVDRV Optworst +CVDR
Benchmarks↓ # time # time # time # time

BOUNCE sat 105 1481.7 108 1763.7 119 742.5 123 717.7
(180) unsat 17 0.8 17 0.9 27 71.8 9 0.4

unkn. 29 793.4 29 1212.4 30 726.4 48 505.0
HONG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 1 < 0.1 1 < 0.1 1 < 0.1 1 < 0.1

unkn. 19 5.0 19 6.1 19 5.3 19 4.7
HYCOMP sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1531 9341.2 1584 10028.4 1595 10683.2 1543 8716.7

unkn. 0 0.0 0 0.0 0 0.0 0 0.0
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 379 16.0 380 18.7 405 57.0 406 74.1

unkn. 18 321.2 17 24.8 15 284.3 15 108.9
KISSING sat 8 168.9 8 170.6 8 173.7 8 190.6
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0

unkn. 0 0.0 0 0.0 0 0.0 0 0.0
METITARSKI sat 3797 558.8 3797 580.8 3807 552.5 3805 551.6
(7713) unsat 1519 60.8 1520 71.1 1522 60.9 1525 59.7

unkn. 2397 653.9 2396 670.3 2384 648.8 2383 643.0
RECT sat 23 794.1 21 483.2 24 997.8 20 261.1
(91) unsat 8 211.6 9 374.2 7 25.3 9 360.9

unkn. 0 0.0 0 0.0 0 0.0 0 0.0
WITNESS sat 28 15.3 28 15.4 28 15.4 28 15.4
(100) unsat 0 0.0 0 0.0 0 0.0 0 0.0

unkn. 72 2084.9 72 2093.2 72 2106.6 72 2101.6
ZANKL sat 23 540.9 25 240.8 20 199.6 24 300.4
(166) unsat 13 34.6 14 154.1 11 4.5 15 259.2

unkn. 7 228.4 5 1.1 7 108.4 6 100.9

ALL 7452 13224.8 7512 13902.1 7574 13584.3 7516 11507.8
(10838) sat 3984 3559.7 3987 3254.6 4006 2681.6 4008 2036.7

unsat 3468 9665.1 3525 10647.5 3568 10902.7 3508 9471.2
unkn. 2542 4086.8 2538 4007.9 2527 3879.7 2543 3464.1

Table 6.3: Comparison of four different constraint valuations for the variable valuation Optworst (the
column # contains the number of solved instances and the column time contains the
amount of seconds needed for solving these instances).

4. CVDR = (ωfms,ωthd,ωevd,ωrel) (rate the elimination variable’s degree higher than the con-

straint’s relation symbol)

We combine these four constraint valuations with the three heuristics for choosing the next

variable to eliminate. For a given set of constraints (considered by a vertex in the VSST of the

theory solver) they optimize

1. the average constraint valuation (Optavg),

2. the worst constraint valuation (Optworst) and

3. the best constraint valuation (Optbest).

Therefore, we tested 12 different settings for a ModuleVS in an SMT-RAT strategy, which again

only combine a ModuleSAT with a ModuleVS as backend. We tested on all benchmark sets1 and

1We do not show the results for the benchmark sets HONG and WITNESS, as all settings performed equally on these
examples (1 unsatisfiable instance of HONG in less than 0.1 seconds and 28 satisfiable instances of WITNESS in
∼ 15 seconds).

144

6.4. CHOICE OF THE ELIMINATION VARIABLE AND CONSTRAINT TO PROVIDE TEST
CANDIDATES FOR

Solvers→ Optbest +CVRDV Optbest +CVRD Optbest +CVDRV Optbest +CVDR
Benchmarks↓ # time # time # time # time

BOUNCE sat 119 324.9 123 813.6 103 1574.8 123 1001.9
(180) unsat 24 2.5 42 57.0 9 0.4 31 7.5

unkn. 33 241.5 15 301.9 33 1651.5 26 629.6
HONG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 1 0.1 1 < 0.1 1 < 0.1 1 < 0.1

unkn. 19 4.2 19 1.4 19 7.9 19 4.3
HYCOMP sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1518 7219.7 1813 6461.0 1682 5388.7 1812 8333.4

unkn. 0 0.0 0 0.0 0 0.0 0 0.0
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 399 110.6 399 50.9 374 22.3 401 31.7

unkn. 19 78.7 21 328.4 28 190.6 20 139.3
KISSING sat 7 35.8 7 56.8 7 28.1 7 54.7
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0

unkn. 1 114.7 1 49.3 1 87.2 1 69.7
METITARSKI sat 3831 635.2 3819 509.3 3792 620.9 3808 582.2
(7713) unsat 1467 69.9 1465 22.8 1458 68.9 1465 60.3

unkn. 2415 498.2 2429 422.2 2463 479.9 2440 454.0
RECT sat 17 248.2 15 221.8 18 471.1 17 394.7
(91) unsat 8 213.5 7 31.5 7 23.3 7 23.0

unkn. 0 0.0 0 0.0 0 0.0 0 0.0
WITNESS sat 28 15.3 28 14.8 28 15.4 28 15.7
(100) unsat 0 0.0 0 0.0 0 0.0 0 0.0

unkn. 72 2092.7 72 2073.3 72 2107.1 72 2110.0
ZANKL sat 19 364.1 18 237.4 18 202.0 18 380.3
(166) unsat 10 58.3 6 1.7 8 61.7 7 18.2

unkn. 7 60.9 8 78.7 6 14.9 7 45.5

ALL 7448 9298.1 7743 8441.7 7505 8477.6 7725 10903.7
(10838) sat 4021 1623.6 4010 1853.7 3966 2912.3 4001 2429.6

unsat 3427 7674.5 3733 6588.0 3539 5565.3 3724 8474.2
unkn. 2566 3090.9 2565 3255.3 2622 4539.2 2585 3452.3

Table 6.4: Comparison of four different constraint valuations for the variable valuation Optbest (the
column # contains the number of solved instances and the column time contains the
amount of seconds needed for solving these instances).

the results are presented in Table 6.2 (Optavg+[CVRDV, CVRD, CVDRV, CVDR]), Table 6.3 (Optworst+

[CVRDV, CVRD, CVDRV, CVDR]) and Table 6.4 (Optbest + [CVRDV, CVRD, CVDRV, CVDR]).

Summarizing all results, Optavg does not seem to be a good choice. It is not superior to Optworst

or Optbest in any the benchmark sets, apart from the unsatisfiable instances of METITARSKI. Here,

it can solve, in combination with the constraint valuation CVDRV, 2 more instances than the second

best combination for these instances, Optworst + CVDR. Considering the best results of Optworst

and Optbest, Optbest solves 7758 examples where Optworst solves 7574. If we have a look at the

single benchmark sets, Optbest performs especially well on HYCOMP if combined with CVRD or

CVDR. Here it solves over 200 examples more than the best setting with Optworst. However, on

all the other benchmark sets, apart from BOUNCE and the satisfiable instances of METITARSKI,

Optworst is better for at least one setting.

We can also observe a significant impact of the choice of constraint valuation. Comparing, for

instance, Optbest in combination with CVRDV or CVRD shows a difference of 302 solved instances

just for HYCOMP. The disparity between the combinations Optbest+CVRD and Optbest+CVDRV are

also considerable. The same holds, if we use Optworst as heuristics for choosing the next variable

145

6.5. BACKJUMPING, LOCAL CONFLICT DETECTION AND EXPLOITING VARIABLE BOUNDS

to eliminate. Here, using CVDRV solves more satisfiable instances of BOUNCE than using CVDR,

but at the same time fewer unsatisfiable instances. Moreover, using CVDRV or CVDR instead of

CVRDV or CVRD solves 405/406 in contrast to 379/380 instances of KEYMAERA.

Another interesting fact is that there is no setting, which is superior in the majority of the

benchmark sets. The best candidate varies not only when changing the benchmark set but also if

we only consider the satisfiable or unsatisfiable instances, respectively.

The experimental results confirm that settings, which involve Optworst instead of Optbest tend

to omit ending up in a case, where the virtual substitution cannot detect the satisfiability. This

makes sense, as we try to avoid vertices in the VSST with constraints which are worse according

to our heuristics. A setting with Optbest, though, aims at finding a solution and, indeed, it solves

more satisfiable instances than with Optworst. However, the difference is marginal.

Two of the settings with Optbest solve many more unsatisfiable instances than any other setting,

which mainly relies on the good performance on the benchmark set HYCOMP. For these instances

it is important in which order we eliminate the variables and, if we use Optbest in combination with

a constraint valuation which does not take the number of variables in the constraints into account,

we achieve a better variable elimination order in this specific case. For all further experiments

we use Optbest +CVRD.

6.5 Backjumping, local conflict detection and exploiting variable

bounds

Table 6.5 shows the results of the evaluation of the last three contributions from Chapter 5, which

aim to improve the performance of the virtual substitution in SMT. For all results in this table

we used an SMT-RAT-based SMT solver combining a ModuleSAT with a theory solving module

ModuleVS, as introduced in Chapter 4. Additionally, we enabled backjumping (Section 5.2), local

conflict detection (Section 5.3) and variable bounds exploitation (Section 5.4) in the columns 2, 3

and 4, respectively. This means that the difference between the solvers which produced the results

in the first and the second (third, fourth) column is only the additional usage of backjumping

(local conflict detection, variable bounds exploitation).

The results indicate that backjumping has almost no effect. It slightly improves the overall

performance and, hence, we can solve one more instance. Backjumping takes a minor short cut

as it detects unsatisfiability before checking all test candidates. However, for the given examples

and chosen heuristics, it only comes into use for less than one percent of the instances of our

benchmark sets.

Local conflict detection introduces some overhead but, compared to backjumping, it can detect

conflicting vertices more often and in most cases earlier. The test results show that due to the

overhead we run into timeout for some satisfiable instances of METITARSKI and one unsatisfiable

instance of KEYMAERA where, without backjumping, we can solve these instances. However it

enables us to solve a further 59 unsatisfiable instances of METITARSKI.

146

6.6. COMPARISON OF SMT-RAT STRATEGIES WITH STATE-OF-THE-ART TOOLS

Solvers→ plain with backjumping with local conflict with variable bounds
Benchmarks↓ # time # time # time # time

BOUNCE sat 123 813.6 123 811.6 123 812.6 122 1598.1
(180) unsat 42 57.0 42 56.9 42 56.6 37 15.7

unkn. 15 301.9 15 300.9 15 306.5 20 669.1
HONG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 1 < 0.1 1 < 0.1 1 < 0.1 1 < 0.1

unkn. 19 1.4 19 1.1 19 1.3 19 1.2
HYCOMP sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1813 6461.0 1813 6453.0 1813 6685.1 1805 7025.3

unkn. 0 0.0 0 0.0 0 0.0 0 0.0
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 399 14.0 399 14.0 398 11.7 403 113.2

unkn. 21 328.4 21 326.5 20 326.9 18 280.5
KISSING sat 7 56.8 7 56.7 7 57.6 7 69.1
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0

unkn. 1 49.3 1 49.3 1 49.3 1 104.6
METITARSKI sat 3819 509.3 3819 509.4 3815 519.4 3906 453.5
(7713) unsat 1465 22.8 1465 22.7 1524 23.6 1776 24.9

unkn. 2429 422.2 2429 422.7 2374 393.4 2031 379.2
RECT sat 15 221.8 16 421.4 16 572.2 17 316.2
(91) unsat 7 31.5 7 31.4 7 29.2 7 34.5

unkn. 0 0.0 0 0.0 0 0.0 0 0.0
WITNESS sat 28 14.8 28 14.8 28 14.8 28 10.0
(100) unsat 0 0.0 0 0.0 0 0.0 0 0.0

unkn. 72 2073.3 72 2068.4 72 2074.9 72 2407.0
ZANKL sat 18 237.4 18 236.6 18 234.4 22 218.2
(166) unsat 6 1.7 6 1.7 6 0.9 16 3.5

unkn. 8 78.7 8 78.3 8 92.3 6 106.4

all 7743 8441.7 7744 8630.1 7798 9017.9 8147 9882.4
(10838) sat 4010 1853.7 4011 2050.4 4007 2210.9 4102 2665.2

unsat 3733 6588.0 3733 6579.7 3791 6807.0 4045 7217.2
unkn. 2565 3255.3 2565 3247.4 2509 3244.6 2167 3948.0

Table 6.5: Results of the evaluation of additionally using the backjumping, local conflict detection
and the employment of variable bounds (the column # contains the number of solved
instances and the column time contains the amount of seconds needed for solving these
instances).

The utilization of variable bounds as explained in Section 5.4 is a cheap filter and significantly

narrows down the set of test candidates. We are able to solve a further 404 instances, which is

clearly a considerable improvement. It only slightly worsens the performance for the benchmark

sets HYCOMP and BOUNCE, due to an unlucky influence on the variable elimination order.

6.6 Comparison of SMT-RAT strategies with state-of-the-art tools

We evaluated the three SMT-RAT strategies on the left of Figure 6.2. These strategies do not

involve a ModuleCAD. We compare them with Redlog2, for which we also disabled the use of the

cylindrical algebraic decomposition method (by means of “off rlqefb;”). In constrast to the

previously used SMT-RAT strategies in this chapter, the first SMT-RAT strategy of Figure 6.2 uses

a ModuleSimplex before a ModuleVS is invoked. It only detects whether the linear constraints of

a theory call already form a conflict and occasionally finds a solution for the linear constraints,

2(from http://svn.code.sf.net/p/reduce-algebra, Revision 3758)

147

6.6. COMPARISON OF SMT-RAT STRATEGIES WITH STATE-OF-THE-ART TOOLS

ModuleSATSIM+VS:

ModuleSimplex

ModuleVS

ModuleF P
FP
SIM+VS:

ModuleSAT

ModuleSimplex

ModuleVS

ModuleF P
FP
ICP+VS:

ModuleSAT

ModuleIC P

ModuleVS

ModuleSATSIM+
CAD
VS :

ModuleSimplex

ModuleVS

ModuleCAD

ModuleF P
FP
ICP+

CAD
VS :

ModuleSAT

ModuleIC P

ModuleVS

ModuleCAD

Figure 6.2: SMT-RAT strategies, which combine the modules ModuleF P , ModuleSAT , ModuleSimplex ,
ModuleIC P and ModuleCAD with the ModuleVS in different ways.

which also satisfies the nonlinear constraints. The second strategy uses a preceding ModuleF P ,

which tries to simplify the input SMT formula. The third strategy only differs from the second one,

in that it uses a ModuleIC P instead of a ModuleSimplex . This module can detect unsatisfiability

in many cases. Moreover, it refines the variables’ lower and upper bounds, which in turn can be

exploited by a ModuleVS, as explained in Section 5.4.

The results are depicted in Table 6.6. Comparing the first and the last column, we can see that

an SMT solver using a theory solver as presented in this thesis, does not only solve more examples

with high Boolean complexity (BOUNCE and RECT), but also performs better on most of the other

benchmark sets. Altogether, this strategy solves more than 1000 additional instances if compared

with Redlog (where the cylindrical algebraic decomposition method is disabled) and this is

achieved in a fifth of the time Redlog requires. Nonetheless, Redlog solves more unsatisfiable

examples, especially for the benchmark sets HYCOMP and ZANKL. One explanation for this is

that the polynomial factorization, which Redlog uses, can factorize polynomials which cannot

be factorized with the factorization of GiNaC [BFK02], on which SMT-RAT relies. In case we can

factorize a polynomial in a constraint, for which we want to create test candidates, we construct

them by the use of the zeros of the single factors (modulo multiplicity). This way the virtual

substitution can also cope with constraints, in which the variable to eliminate has a degree that

is higher than 2. Note that by the additional use of a ModuleSimplex we solve 150 examples more

than without the use of a ModuleSimplex . These are mostly those examples, for which a solution

of the linear constraints also satisfies the nonlinear ones. It also improves the performance on

RECT. In fact, without the use of this module our approach performs less well than Redlog. This

is rather surprising, as this benchmark set has a high Boolean complexity. Having a closer look at

these examples, they are a conjunction of one nonlinear inequality and some clauses, in which all

constraints are linear. Redlog seems to handle the nonlinear constraint first, that is it eliminates

its two variables first, resulting in a formula that can be drastically simplified.

148

6.6. COMPARISON OF SMT-RAT STRATEGIES WITH STATE-OF-THE-ART TOOLS

Solvers→ SIM+VS
FP
SIM+VS

FP
ICP+VS Redlog✟✟CAD

Benchmarks↓ # time # time # time # time

BOUNCE sat 123 1042.9 123 543.1 91 469.7 117 2139.5
(180) unsat 57 158.4 57 82.9 57 22.3 56 1056.6

unkn. 0 0.0 0 0.0 0 0.0 − −
HONG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 1 < 0.1 1 0.1 20 11.1 1 0.5

unkn. 19 1.3 19 7.8 0 0.0 − −
HYCOMP sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1814 8781.5 1587 9275.1 1634 9990.9 1958 28267.0

unkn. 0 0.0 0 0.0 0 0.0 − −
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 410 62.6 409 27.5 410 26.6 415 216.9

unkn. 10 8.5 9 2.5 0 0.0 − −
KISSING sat 7 73.7 7 74.0 13 79.7 4 2.2
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0

unkn. 1 113.9 1 111.7 0 0.0 − −
METITARSKI sat 4187 393.8 4041 989.0 4620 5932.9 2958 11770.8
(7713) unsat 1887 30.0 1927 107.0 2368 293.7 1922 7583.4

unkn. 1636 242.9 1744 384.5 356 3060.0 − −
RECT sat 26 336.7 22 468.8 16 806.3 21 307.7
(91) unsat 14 368.2 11 277.9 7 31.1 12 829.8

unkn. 0 0.0 0 0.0 2 10.9 − −
WITNESS sat 28 10.3 28 11.2 66 2078.8 5 69.4
(100) unsat 0 0.0 0 0.0 15 1057.6 0 0.0

unkn. 72 2877.3 72 2880.4 0 0.0 − −
ZANKL sat 26 244.9 25 167.3 24 145.2 66 816.1
(166) unsat 17 21.5 19 7.2 19 6.9 44 385.1

unkn. 4 1.1 4 0.5 3 0.1 − −
all 8597 11524.6 8257 12031.1 9360 20952.9 7579 53444.9
(10838) sat 4397 2102.3 4246 2253.4 4830 9512.7 3171 15105.7

unsat 4200 9422.2 4011 9777.7 4530 11440.2 4408 38339.2
unkn. 1742 3245.0 1849 3387.4 361 3071.0 − −

Table 6.6: Comparison of the first three SMT-RAT strategies from Figure 6.2, which do not involve
the CAD, with Redlog when disabling that it uses the CAD (the column # contains the
number of solved instances and the column time contains the amount of seconds needed
for solving these instances).

As it can be seen in the second column, the preprocessing of the ModuleF P has a negative effect

on the virtual substitution, in particular if we consider the benchmark set HYCOMP. As we have

seen in the experimental results for the comparison of the heuristics of the virtual substitution,

this benchmark set is specifically sensitive for minor changes of the variable elimination order and

the preprocessing seems to trigger a disadvantageous one. For the benchmark set METITARSKI,

however, we can solve more unsatisfiable instances with preprocessing, which mainly relies on

the fact that the preprocessing itself can already solve many instances. On the other hand, we

lose a lot of satisfiable instance for this set.

The use of a ModuleIC P , as with the third strategy, solves many additional unsatisfiable ex-

amples. In the benchmark set HONG, for instance, we do not even need to involve the virtual

substitution. Nonetheless, the collaboration of interval constraint propagation with the virtual

substitution that exploits variable bounds is a fruitful one. For the benchmark sets KISSING , METI-

TARSKI and WITNESS, we can solve considerably more examples. In particular, examples from

METITARSKI and WITNESS often specify upper and lower bounds for the variables, which they

149

6.6. COMPARISON OF SMT-RAT STRATEGIES WITH STATE-OF-THE-ART TOOLS

involve. This increases the chances that ICP can effectively refine these bounds. Note that by

disabling the techniques that exploit the variable bounds in the virtual substitution we can solve

103 examples less.

Solvers→ SIM+
CAD
VS

FP
ICP+

CAD
VS Redlog Z3

Benchmarks↓ # time # time # time # time

BOUNCE sat 123 1028.9 91 466.6 118 446.9 123 8.9
(180) unsat 57 153.4 57 22.0 56 85.1 57 3.5
HONG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 3 0.1 20 10.3 6 12.4 8 5.6
HYCOMP sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1788 7233.3 1589 6626.0 1959 28622.9 2091 2894.8
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 415 125.1 411 55.2 419 217.9 420 10.6
KISSING sat 7 74.6 13 79.6 6 3.7 31 1247.0
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0
METITARSKI sat 4871 1018.2 4717 3070.4 4898 6471.2 5025 296.2
(7713) unsat 2488 2681.4 2588 1162.2 2628 3612.1 2682 384.8
RECT sat 26 404.3 14 391.2 21 308.8 48 35.2
(91) unsat 14 486.8 7 50.0 12 834.3 12 12.4
WITNESS sat 65 1975.3 28 11.2 5 68.6 4 99.8
(100) unsat 0 0.0 0 0.0 0 0.0 18 45.8
ZANKL sat 29 236.6 27 113.9 71 308.7 60 120.4
(166) unsat 17 13.7 19 7.0 48 57.5 27 2.2

all 9903 15431.7 9581 12065.5 10247 41050.0 10606 5167.0
(10838) sat 5121 4737.8 4890 4132.8 5119 7607.8 5291 1807.3

unsat 4782 10693.9 4691 7932.7 5128 33442.2 5315 3359.7

Table 6.7: Comparison of the last two SMT-RAT strategies from Figure 6.2 with the state-of-the-art
solvers Redlog and Z3 (the column # contains the number of solved instances and the
column time contains the amount of seconds needed for solving these instances).

We also evaluated SMT-RAT strategies (the two rightmost strategies in Figure 6.2) that involve

our implementation of the cylindrical algebraic decomposition method. This procedure is com-

plete for nonlinear real arithmetic, therefore both strategies always determine the satisfiability of

a given example, if they terminate within the timeout. We compared them to Redlog3, which also

uses the virtual substitution method in combination with the CAD method, and Z3 (Version 4.4.1),

which is the currently fastest SMT solver for nonlinear real arithmetic. Z3 uses an interaction of

SAT solving and the CAD method, which is even tighter than the usual framework for less-lazy

SMT solving.

Table 6.7 shows that Redlog and Z3 can solve 344 and 703 examples more, respectively, than

the best SMT-RAT strategy. However, one SMT-RAT strategy (which corresponds to the second

column) solves more instances of the benchmark set HONG, which we must accredit to the interval

constraint propagation used. Moreover, the other SMT-RAT strategy (which corresponds to the

first column) can solve the most unsatisfiable examples of RECT and the most satisfiable instances

of WITNESS. For the latter, the third SMT-RAT strategy of Figure 6.2, which does not involve a

ModuleCAD, solves even more instances and additionally some of the unsatisfiable examples (see

the third column of Table 6.6). Overall, Z3 performs best in most of the benchmark sets.

As mentioned before, SMT-RAT would benefit a lot from a polynomial factorization that is as

3(from http://svn.code.sf.net/p/reduce-algebra, Revision 3758)

150

6.7. PARALLEL SMT-RAT STRATEGIES

good as those used by Redlog or Z3. Using the CAD method, Redlog solves many more examples

than without. From the previous results in Table 6.6, we conclude that their implementation

of the CAD method performs better than the one in SMT-RAT, which raises our hopes to catch

up with Redlog and maybe Z3 as soon as we compensate this deficit. Due to the very good

performance of Z3, we seek to integrate a similar approach into the SMT-RAT framework. Here,

we would not only be able to use the CAD method, but also the virtual substitution method, for

such an integration.

6.7 Parallel SMT-RAT strategies

ModuleF P
FP
SIM+

CAD
VS‖VS:

ModuleSAT

ModuleSimplex

ModuleVS

ModuleCAD

ModuleCAD

ModuleF P
FP
SIM+

CAD
VS‖VS∗:

ModuleSAT

ModuleSimplex

ModuleVS

ModuleCAD

ModuleCAD

*

ModuleF P
FP
SIM‖ICP+

CAD
VS :

ModuleSAT ModuleSAT

ModuleIC P

ModuleVS

ModuleCAD

ModuleSimplex

ModuleVS

ModuleCAD

Figure 6.3: Parallel SMT-RAT strategies, which combine the modules ModuleF P , ModuleSAT ,
ModuleSimplex , ModuleIC P and ModuleCAD with the ModuleVS in different ways. By ∗ we
denote the condition that the all constraints of the given formula are strict inequalities.

In the previous experiments we concentrated on the contributions of this thesis for a theory

solver based on the virtual substitution. We also evaluated combinations of it with other pro-

cedures. However, we have not yet used all features, which SMT-RAT strategies provide, and

specifically left out the option to use parallel sub-strategies and conditions within an SMT-RAT

strategy. These features provide us with an immense number of possibilities and we only illustrate

the most prominent strengths and weaknesses of parallel SMT-RAT strategies in this section.

We tested how much impact the approaches from this thesis have on the currently best per-

forming SMT-RAT strategy from Figure 6.2 (the fourth strategy with the results in the first column

of Table 6.7). Here, we simply removed the ModuleVS from the strategy. The results seem to be

clear, as we can solve approximately 1500 additional examples and this within less time, when

using a ModuleVS. However, there are still hundreds of instances, where the strategy without a

ModuleVS performs better. Therefore, we test by use of the first strategy from Figure 6.3 running

both options in parallel, that is when invoking a theory call, we run after an initial check with

the ModuleSimplex on the one hand a ModuleCAD and on the other hand a ModuleVS followed by

151

6.7. PARALLEL SMT-RAT STRATEGIES

a ModuleCAD. In contrast to the best strategy from Figure 6.2, we now use a ModuleF P before

applying a ModuleSAT . Just as a ModuleVS, a ModuleF P can eliminate variables which reduces

the dimension of the problem. In contrast to a ModuleVS, a ModuleF P only uses equations, which

can be solved for one variable, for this purpose. For some examples, a ModuleCAD prefers only a

preceding elimination of equations instead of a more thorough variable elimination by the cost

of more complex polynomials in the constraints as it is done by a ModuleVS. With this strategy

we try to trigger exactly these examples.

Solvers→ FP
SIM+

CAD
VS‖CAD

FP
SIM+

CAD
VS‖CAD∗

FP
SIM‖ICP+

CAD
VS SIM+

CAD
VS ‖FP

ICP+
CAD
VS

Benchmarks↓ # time # time # time # time

BOUNCE sat 22 293.3 66 49.5 122 720.8 123 731.1
(180) unsat 57 73.1 24 3.1 57 30.0 57 31.5
HONG sat 0 0.0 0 0.0 0 0.0 0 0.0
(20) unsat 3 0.1 3 0.1 20 0.8 20 1.0
HYCOMP sat 0 0.0 0 0.0 0 0.0 0 0.0
(2102) unsat 1253 3557.8 1260 4478.8 1576 7314.3 1833 7543.5
KEYMAERA sat 0 0.0 0 0.0 0 0.0 0 0.0
(421) unsat 381 16.7 382 208.2 381 16.7 408 16.2
KISSING sat 14 40.8 14 39.2 13 106.7 12 110.6
(45) unsat 0 0.0 0 0.0 0 0.0 0 0.0
METITARSKI sat 4876 1918.0 4948 1847.5 4921 1271.6 4862 1159.2
(7713) unsat 2474 2550.7 2476 2112.4 2591 1088.1 2556 950.1
RECT sat 6 9.4 10 165.6 28 677.6 30 327.1
(91) unsat 2 0.8 3 1.1 13 387.3 11 194.4
WITNESS sat 4 1.5 4 1.5 62 1962.6 47 1023.6
(100) unsat 0 0.0 0 0.0 0 0.0 0 0.0
ZANKL sat 14 6.7 14 4.1 28 222.8 26 14.9
(166) unsat 18 55.8 18 54.1 18 1.3 18 3.2

all 9124 8524.6 9222 8965.2 9830 13800.6 10003 12106.6
(10838) sat 4936 2269.7 5056 2107.4 5174 4962.1 5100 3366.5

unsat 4188 6255.0 4166 6857.7 4656 8838.5 4903 8740.0

Table 6.8: Comparison of the parallel SMT-RAT strategies from Figure 6.3 and the strategy, which runs
the last two strategies from Figure 6.2 in parallel (the column # contains the number of
solved instances and the column time contains the amount of seconds needed for solving
these instances).

The results are depicted in the first column of Table 6.8. For METITARSKI, we could solve more

satisfiable instances than any other SMT-RAT strategy. The same holds for KISSING . In general,

this strategy performs worse, although we have to bear in mind that the preceding ModuleF P

distorts the result. However, there is a second explanation, why for many instances, we do not

always perform as well as the best option when running two sub-strategies in parallel (when

ignoring the overhead for multithreading). Instead there are some examples where we actually

adopt the worst performance. In the case we run modules as backends in parallel and one of

them determines the satisfiability of the formula in question, we need to terminate the other

modules’ satisfiability checks. We require that modules then terminate in a consistent state such

that we can reuse them later (incrementally). In general, we achieve this by a recurring query

in these backends that checks whether they are allowed to stop their satisfiability check. The

more frequent a backend makes this query, the faster all backends terminate after one of them

determined the satisfiability. Unfortunately, more queries worsen the performance, hence, we

152

6.7. PARALLEL SMT-RAT STRATEGIES

should not make them in the most basic operations which are invoked very often. In a ModuleVS,

for instance, such an operation could be the squaring of an extremely large polynomial, which

might take a very long time. In a ModuleCAD, we also rely on arithmetic operations on polynomials

and, moreover, need to refine real algebraic number representations when comparing them. Both

operations can take again a long time, if applied on large polynomials, that is polynomials with

many terms, huge coefficients or a high degree.

Considering the examples, on which a ModuleCAD performs better than the combination of a

ModuleVS with a ModuleCAD, we observe that they often only contain strict inequalities. This is a

perfect situation to use the conditions, which SMT-RAT strategies provide. Adding this condition to

the branch, which only uses a ModuleCAD, disables its invocation for all conjunctions of constraints,

which also contain weak inequalities or equations. This strategy corresponds to the second one

from Figure 6.3 and the results are given by the second column in Table 6.8. It shows that the

addition of this condition improves the performance for almost all benchmark sets gaining us

almost a hundred additional solved instances.

The last two columns in Table 6.8 show the results for the last strategy from Figure 6.3 and a

strategy which simply runs the last two strategies from Figure 6.2 in parallel. For both strategies

we can find benchmark sets, in which they perform better, and the second strategy solves overall

more examples than any other SMT-RAT strategy we have used so far.

153

CHAPTER 7

Virtual Substitution for Integer Arithmetic

A popular approach to check quantifier-free linear integer arithmetic formulas ϕZ for satisfiability

is the branch-and-bound framework [Sch86]. It first considers ϕZ’s real relaxation ϕR. If it is

unsatisfiable then the integer problem is unsatisfiable too. Otherwise, if there exists a real solution

then it is either integer-valued, in which case ϕZ is satisfiable, or it contains a non-integer value

d ∈ R \ Z for an integer-valued variable z. In the latter case a branching takes place: branch-

and-bound reduces the relaxed solution space by excluding all values between ⌊d⌋ and ⌈d⌉ in the

z-dimension, described by the formula

ϕ′ = ϕ ∧ (z ≤ ⌊d⌋ ∨ z ≥ ⌈d⌉).

This procedure is applied iteratively, i. e., branch-and-bound will now search for real-valued

solutions of ϕ′. It terminates if either an integer solution is found or the relaxation is unsatisfiable.

Note that branch-and-bound is incomplete in general even for the decidable logic quantifier-free

linear arithmetic.

The most well-known applications combine branch-and-bound with the simplex method. As

branching introduces disjunctions and thus in general non-convexity, branching is implemented

by case splitting: in one search branch we assume z ≤ ⌊d⌋, and in a second search branch we

assume z ≥ ⌈d⌉. Depending on the heuristics, the search can be depth-first (full check of one of

the branches, before the other branch is considered), breadth-first (check real relaxations in all

current open branches before further branching is applied), or it can follow a more sophisticated

strategy.

The combination of branch-and-bound with the simplex method was also explored in the SMT-

solving context [DdM06]. The advantage in this setting is that we have more possibilities to

design the branching.

• We can integrate a theory solver based on the simplex method as described above, imple-

menting branch-and-bound internally in the theory solver by case splitting. It comes with

the advantage that case splitting is always local to the current problem of the theory solver

and does not affect later problems, and with the disadvantage that we cannot exploit the

advantages of learning, i. e., to remember reasons of unsatisfiability in certain branches and

use this information to speed up the search in other branches.

• Alternatively, given a non-integer solution d for a variable z found by the theory solver on

a relaxed problem, we can lift the branching to the SAT solver by extending the current

formula with a new clause (z ≤ ⌊d⌋ ∨ z ≥ ⌈d⌉) [BNOT06]. The newly added clause must

be satisfied in order to satisfy the extended formula. Therefore, the SAT solver assigns (the

Boolean abstraction variable of) either z ≤ ⌊d⌋ or z ≥ ⌈d⌉ to true, i. e., the branching takes

place. On the positive side, lifting branching information and branching decisions to the

SAT solver allows us to learn from information collected in one branch, and to use this

learned information to speed up the search in other branches. On the negative side, the

branching is not local anymore as it is remembered in a learned clause. Therefore, it might

cause unwanted splittings in later searches.

To unify advantages, MathSAT5 [Gri12] implements a combined approach with theory-internal

splitting up to a given depth and splitting at the logical level beyond this threshold.

Following the branch-and-bound approach in combination with the simplex method, we can

also transfer the idea to nonlinear integer arithmetic: We can use decision procedures for nonlin-

ear real arithmetic to find solutions for the relaxed problem and branch at non-integer solutions

of integer-valued variables. However, there are some important differences. Most notably, the

computational effort for checking the satisfiability of nonlinear real-arithmetic problems is much

higher than in the linear case. If we have found a real-valued solution and apply branching to

find integer solutions, the branching will refine the search in the virtual substitution: it will create

additional test candidates, which will serve as roots for new sub-trees in the search tree. However,

the search trees in both branches have a lot in common, that means, a lot of the same work has

to be done for both sides of the branches. To prevent the solvers from doing much unnecessary

work, we have to carefully design the branch-and-bound procedure. Here, we can make use of

branching lemmas as they are provided by SMT-RAT, which we introduced in Section 3.4.3.

• Branching has to be lifted to the SAT solver level to enable learning, both in the form of

branching lemmas as well as explanations (infeasible subsets) for unsatisfiability in different

branches.

• Learning explanations will allow us to speed up the search by transferring useful information

between different branches. However, we need to handle branching lemmas thoughtfully

and assure that learned branching lemmas will not lead to branching for all future sub-

problems, but only for “similar” ones where the branching will probably be useful.

156

7.1. BRANCH-AND-BOUND WITH VIRTUAL SUBSTITUTION

• As branching refines the search, it has to work in an incremental fashion without resetting

solver states.

• If possible, the search strategies of the underlying decision procedures for nonlinear real-

arithmetic have to be tuned to prefer integer solutions (and if they can choose between

different integer values, they must choose the most “promising” one).

• Last but not least, as the performance of solving quantifier-free nonlinear real-arithmetic

formulas for satisfiability highly improves if different theory solvers implementing different

procedures are used in combination, a practically relevant branch-and-bound approach for

nonlinear integer arithmetic should support this option.

7.1 Branch-and-bound with virtual substitution

In this section we present how the virtual substitution method can be embedded into the branch-

and-bound framework to check the satisfiability of a given quantifier-free (nonlinear) integer-

arithmetic formula. Note that the concepts of this chapter are not built upon the data structure

(VSST), which we introduced in Section 4.2, but upon the more general setting of a satisfiability

check with the virtual substitution which we formulated in Section 4.1. Nonetheless, all of

the following ideas can be directly applied to an SMT-compliant theory solver based on the

specifications of Section 4.2.

Assume that we want to check the quantifier-free integer-arithmetic formulaϕZn for satisfiability

such that Vars(ϕZn) = {z1, . . . , zn}. Then we first apply the virtual substitution on the real relax-

ation ϕRn of ϕZn . If we determine unsatisfiability, we know that ϕZn is also unsatisfiable. Otherwise,

if we have found a solution S with the virtual substitution for ϕRn , as illustrated in Figure 4.1, then

S maps the variables Vars(ϕRn) = {z1, . . . , zn} to test candidates S(z j) = t
i j

z j
(1≤ j ≤ n). For integer

arithmetic formulas we can omit considering strict inequalities as described in Definition 16. This

saves us from considering test candidates with infinitesimals as introduced in [Wei97] and the

comparably more cases they entail. Therefore, S(z j) is either −∞ or of the form
q j,1+q j,2

p
q j,3

q j,4

with q j,1, . . . , q j,4 ∈ Z[z1, . . . , z j−1] (roots parametrized in some polynomials).

If a solution S for the relaxation ϕR is found then there is a true leaf in the search tree, as

illustrated in Figure 4.1. We now try to construct an integer solution S∗ from the parametrized

solution S, as illustrated in Figure 7.1, traversing the solution path from the true leaf backwards. If

the test candidate t
i1
z1

for z1 is not −∞, it does not contain any variables, thus we can determine

whether its value is an integer and set S∗(z1) to this value. If t
i1
z1
= −∞, we can take any

integer which is strictly smaller than all the other test candidates in tcs(z1,ϕR1). Now we iterate

backwards: for each test candidate t
i j

z j
on the solution path, which is not −∞, we substitute the

values S∗(z1), . . . , S∗(z j−1) for the variables z1, . . . , z j−1, resulting in

S∗(z j) := S(z j)[S
∗(z1)/z1] . . . [S∗(z j−1)/z j−1],

157

7.1. BRANCH-AND-BOUND WITH VIRTUAL SUBSTITUTION

true t
i1
z1

∈ Z
ϕR1 t

i2
z2

∈ Z
t

i j

z j

6∈ Z
ϕR

j
. . . t

in
zn

ϕRn

[t
i1
z1
//z1] [t

i2
z2
//z2]

. . .

. . .

Figure 7.1: Solution path from Figure 4.1 traversed backwards from the leaf to the root.

which again does not contain any variables and we can evaluate whether its value is integer.

If t
i j

z j
= −∞ then we evaluate all test candidates from tcs(z j ,ϕ

R
j
) whose side conditions hold

by substituting S∗(z1), . . . , S∗(z j−1) for z1, . . . , z j−1 in the test candidate expressions, and we set

S∗(z j) to an integer value that is strictly smaller than all those test candidate values. We repeat

this procedure until either a full integer solution is found or the resulting value is not integer in

one dimension.

If all test candidate values are integer then VS returns sat. Otherwise, if we determine that

S∗(z j) for some j is not integer-valued, then there is some d ∈ Z such that S∗(z j) ∈ (d − 1, d). In

this case we return the branching lemma

(
∧

ψ∈Origz j
(S(z j))

ψ)→ (z j ≤ d − 1∨ z j ≥ d),

where Origz j
(S(z j)) denotes the VS module’s received constraints being responsible for the cre-

ation of the test candidate S(z j). We can determine this set recursively with Origz j
(S(z j)) :=

Origz j
(c) if we used constraint c ∈ C∼(ϕ

R
j
) for generating the test candidate S(z j), and where

Origz j
(c) :=






c , if j = n

Origz j+1
(c) , if z j 6∈ Vars(c)

Origz j+1
(S(z j+1))∪Origz j+1

(c′) , if c′ ∈ C∼(ϕ
R
j+1) such that

c ∈ C∼(c
′[S(z j+1)//z j+1])

Origz j+1
(S(z j+1)) , otherwise.

Note that the last case occurs if the given constraint is introduced through a test candidate’s side

condition.

Basically, if we have found a non-integer valued test candidate S∗(z j) /∈ Z, we can still continue

the procedure to determine all other non-integer-valued test candidates. It would gain us the

flexibility of being able to select heuristically on which variable value we want to branch, but

it comes at high computational costs, as we need to compute with nested fractions and square

roots. Therefore, we do not consider other heuristics but always branch on the first detected

non-integer value.

This procedure is sound, as we do not prune any integer solutions. It is not complete, as it

might branch infinitely often for the same variable at an always increasing or always decreasing

158

7.2. EXPERIMENTAL RESULTS

value. This procedure can also be used to check a quantifier-free mixed integer-real arithmetic

formula for satisfiability, if we eliminate real-valued variables first.

7.2 Experimental results

We evaluated different sequential strategies for solving quantifier-free nonlinear integer arithmetic

formulas (QF_NIA), using the following modules Mi:

• The SAT solver module ModuleSAT behaves as explained in Section 3.4.2.

• ModuleSATStop
works similarly except that it returns unknown if an invoked theory solver

module returns unknown, instead of continuing the search for further Boolean assignments.

The module ModuleSATStop
provides us a reference: if this module is able to solve a problem

then the problem can be considered irrelevant for branch-and-bound (as branch-and-bound

was not involved).

• The module ModuleSimplex implements the simplex method with branching lemma genera-

tion, as explained in Section 3.4.4.

• The theory solver modules ModuleVS (implementing VS) and ModuleCAD (implementing

CAD) check the real relaxation of a QF_NIA input formula. If the relaxation is unsatisfiable

they return unsat, if they coincidentally find an integer solution they return sat, otherwise

they return unknown (without applying branch-and-bound).

• The VS module ModuleVSZ constructs branching lemmas as explained in Section 7.1.

• The CAD module ModuleCADZ constructs branching lemmas as introduced in [1].

• Bit-blasting is implemented in the module ModuleIntBlast . In our strategies it will be

combined with a preceding incremental variable bound widening module ModuleIncWid th,

which constrains, for instance, first that all variables are in [−1,2], if no solution can be

found, it requires all variables to be in [−3,4] etc.

All experiments were carried out on AMD Opteron 6172 processors. Every solver was allowed to

use up to 4 GB of memory and 200 seconds of wall clock time.

For our experiments we used the largest benchmark sets for QF_NIA from the last SMT-COMP:

APROVE, LEIPZIG (both generated by automated termination analysis) and CALYPTO (generated

by sequential equivalence checking). Additionally, we crafted a new benchmark set CALYPTO∞
by removing all variable bound constraints from CALYPTO and thereby obtaining unbounded

problems (together 8572 problem instances, see headline in Figure 7.5 for the size of each set).

Selection of a VS heuristic The SMT-RAT strategy ModuleSATStop
→ ModuleVS could solve 7215

sat and 84 unsat instances, ran out of time or memory for 1146 instances, and returned unknown

159

7.2. EXPERIMENTAL RESULTS

ModuleF PRAT
Z

:

ModuleSAT

ModuleSimplex

ModuleVSZ

ModuleCADZ

ModuleF PRAT
blast

:

ModuleIncWid th

ModuleIntBlast

ModuleF PRAT
blast.Z:

ModuleIncWid th

ModuleIntBlast

RAT
Z

Figure 7.2: The SMT-RAT strategies used for the experimental results.

VSR VSZ
time # time

sat 30 714.2 93 487.3
unsat 0 0.0 10 9.2

Figure 7.3: Comparison of 2 VS heuristics on 126 (101 sat, 25 unsat) for branch-and-bound relevant
instances (the column # contains the number of solved instances and the column time

contains the number of seconds needed for solving these instances).

for 127 instances. Applying the SMT-RAT strategy ModuleSAT → ModuleVS to those 127 instances,

we can solve an additional 30 sat instances. If we replace the module ModuleVS by the ModuleVSZ

module, which applies branching lemmas, we can solve a further 63 sat and 10 unsat instances

(see Figure 7.3).

Combined strategies We crafted three strategies, depicted in Figure 7.2, to combine different

theory solver modules1. The strategy RAT
blast.Z combines RAT

blast
and RAT

Z
by first using bit-

blasting up to a width of 4 bits. If this does not yield a solution, it continues to use RAT
Z
.

We compared these three strategies with the two fastest SMT solvers from the 2015 SMT-

COMP for QF_NIA: Z3 and AProVE. Though CVC4 performed worse than these two solvers, its

experimental version solved slightly more instances than AProVE in about half of the time; we

did not include it here but expect it to perform between Z3 and AProVE. Figure 7.5 shows that

RAT
Z

and RAT
blast

complement each other well, especially for satisfiable instances. Compared to

Z3 and AProVE, RAT
blast.Z solves more satisfiable instances and does this even faster by a factor

of more than 10 and 6, respectively. The strategy RAT
Z

solves less instances, but, as shown in

Figure 7.4, this strategy solves the first 85 percent of the examples faster than any other SMT-RAT

strategy or SMT solver. On unsatisfiable instances, however, Z3 is still better than SMT-RAT while

1Additionally, all of these strategies employ a common preprocessing.

160

7.2. EXPERIMENTAL RESULTS

70% 72% 74% 76% 78% 80% 82% 84% 86% 88% 90% 92% 94% 96% 98% 100%

102s

103s

104s

RAT
Z Z3 4.4.1

RAT
blast

AProVE

RAT
blast.Z

Figure 7.4: Cumulative time to solve instances from all benchmark sets.

Benchmark→ APROVE (8129) CALYPTO (138) LEIPZIG (167) CALYPTO∞ (138) all (8572)
Solver↓ # time # time # time # time # time

RAT
Z

sat 7283 2294.8 67 71.2 9 260.4 133 298.9 7492 2925.3
unsat 73 14.3 52 40.7 0 0.0 3 < 0.1 128 55.1

RAT
blast

sat 8025 866.3 21 35.6 156 603.3 87 16.0 8289 1521.2
unsat 12 0.4 5 0.1 0 0.0 0 0.0 17 0.5

RAT
blast.Z sat 8025 780.7 79 122.3 156 511.5 134 21.8 8394 1436.3

unsat 71 42.6 46 127.5 0 0.0 3 0.1 120 170.2

Z3 sat 7992 14695.5 78 19.1 158 427.6 126 57.3 8354 15199.5
unsat 102 595.9 57 117.6 0 0.0 3 2.3 162 715.8

AProVE sat 8025 7052.2 74 559.1 159 696.5 127 685.2 8385 8993.0
unsat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

Figure 7.5: Comparison of 3 SMT-RAT strategies to currently fastest SMT solvers for QF_NIA (the
column # contains the number of solved instances and the column time contains the
amount of seconds needed for solving these instances).

AProVE is not able to deduce unsatisfiability due to its pure bit-blasting approach.

We also tested all SMT-RAT strategies which use branch-and-bound, once with and once without

using a branching premise. Here we could not detect any notable difference, which we mainly

relate to the fact that those problem instances, for which branch-and-bound comes to application,

are almost always pure conjunctions of constraints and involve only a small number of branching

lemma liftings. For a more reliable evaluation a larger set of QF_NIA benchmarks would be

needed.

161

CHAPTER 8

A Synergy of the Greatest Common Divisor Calculation, Factorization and

Intermediate Result Caching

Data structures and operations on polynomials form a vital part of the foundations of, e. g., com-

puter algebra systems or implementations of procedures based on Gröbner bases, the cylindrical

algebraic decomposition or the virtual substitution. We also highly depend on polynomials, if we

aim to calculate the reachability probabilities of parametric discrete-time Markov chains (PDTMCs).

This is a parametrized version of discrete-time Markov chains (DTMCs), which is a modeling for-

malism for systems exhibiting probabilistic behavior. For more details on DTMCs we refer to

[BK08]. In contrast to the state transition systems which are used to model a DTMC, a PDTMC

allows us to label transitions not only with probabilistic quantities but also with rational functions

over real-valued variables instead.

Definition 32 (Rational function) A rational function is a quotient f =
p1
p2

of two polynomi-

als p1, p2 with p2 6= 0a.

ap2 6= 0 means that p2 cannot be simplified to 0.

We can compute the reachability probabilities for a PDTMC as introduced in [Daw04, HHZ11],

where we iteratively replace states and their incident transitions by direct transitions from the

predecessors to the successors. It yields a model having only initial and absorbing states and

the transitions between these states carry—as rational functions over the real-valued model

parameters—the probability of reaching the absorbing states from the initial states. In [3], where

we transfer the ideas from [ÁJW+10] for DTMCs to PDTMCs, we presented an alternative ap-

proach. Here, we use a state elimination strategy based on a recursive graph decomposition of the

PDTMC into strongly connected subgraphs, which we refer to as strongly connected components

(SCCs). Each (sub-)SCC is replaced by abstract transitions that lead from its ingoing states to its

outgoing states. The resulting rational functions describe the probability of entering the SCC and

8.1. FACTORIZED POLYNOMIALS: PARTIAL FACTORIZATIONS AS POLYNOMIAL
REPRESENTATION

eventually leaving it.

The two aforementioned procedures build rational functions representing a given PDTMC’s

reachability probabilities. These rational functions might grow rapidly in the process of both

procedures and thereby form one of the major bottlenecks of this methodology. As already

argued in [HHZ11], the best way to stem this blow-up is the cancellation of the rational functions

in every computation step, which involves—apart from addition, multiplication, and division of

rational functions—the rather expensive calculation of the greatest common divisor (gcd) of two

polynomials.

In this chapter we present how we can handle this problem: Additional maintenance and

storage of (partial) polynomial factorizations can lead to remarkable speed-ups in the gcd com-

putation, especially when dealing with symmetrically structured benchmarks where many similar

polynomials occur. We present an optimized algorithm called gcdF which operates on the (partial)

factorizations of the polynomials to compute their gcd. During the calculations, the factorizations

are also refined. On this account we reformulate the arithmetic operations on rational functions

such that they preserve their numerator’s and denominator’s factorizations, if it is possible with

reasonable effort.

8.1 Factorized polynomials: Partial factorizations as polynomial

representation

We can represent a polynomial p by a factorization of p as introduced in Definition 13, where we

use the set {01}, if p = 0. We denote the set of all polynomial factorizations where the polynomial

can be 0 by FAC0 = FAC∪ {{01}}.
Given a polynomial p’s factorization Fp = {pe1

1 , . . . , p
en
n } ∈ FAC0 we can obtain the bases with

bases: FAC0→ P<∞(POL \ {1}) : {pe1
1 , . . . , pen

n } 7→ {p1, . . . , pn}

and we get the exponent of a base q with

exp: POL× FAC0→ N0 : (q, {pe1
1 , . ., pen

n }) 7→
¨

ei , ∃i ∈ {1, . ., n}. pi = q,

0 , otherwise.

Using the auxiliary function

· red : P<∞(POLN0)→ FAC0 : Fp 7→
¨
{pei

i
∈ Fp | |pi | 6= 1∧ ei > 0} , 0 /∈ bases(Fp),

{01} , otherwise.

in order to achieve a well-defined polynomial factorization (or {01}), we can specify the following

operations on polynomial factorizations (and {01}):

• The operation Fp1
∪

F
Fp2

results in a factorization of a (not necessarily least) common

164

8.2. GREATEST COMMON DIVISOR COMPUTATION OF FACTORIZED POLYNOMIALS

multiple of two nonzero polynomials p1 and p2 and is defined by

· ∪
F
· : FAC× FAC→ FAC :

(Fp1
,Fp2

) 7→ {qmax({exp(q,Fp1
),exp(q,Fp2

)}) | q ∈ bases(Fp1
)∪ bases(Fp2

)}red

• The operation Fp1
∩

F
Fp2

yields a factorization of a (not necessarily greatest) common

divisor of two nonzero polynomials p1 and p2 and is defined by

· ∩
F
· : FAC× FAC→ FAC :

(Fp1
,Fp2

) 7→ {qmin({exp(q,Fp1
),exp(q,Fp2

)}) | q ∈ bases(Fp1
)∩ bases(Fp2

)}red

• The binary operations ·
F

, +
F

correspond to multiplication and addition, respectively, and

are defined by

· ·
F
· : FAC0 × FAC0→ FAC0 :

(Fp1
,Fp2

) 7→ {qexp(q,Fp1
)+exp(q,Fp2

) | q ∈ bases(Fp1
)∪ bases(Fp2

)}red

· +
F
· : FAC0 × FAC0→ FAC0 :

(Fp1
,Fp2

) 7→






Fp2
, p1 = 0

Fp1
, p2 = 0

D ·
F

��∏
p′1∈(Fp1

:F D) p′1
�
+
�∏

p′2∈(Fp2
:F D) p′2
�	red

, otherwise

where D = Fp1
∩

F
Fp2

.

• The operation :
F

calculates the polynomial factorization of the quotient of a polynomial p1

and a nonzero polynomial p2 via their factorizations Fp1
and Fp2

. Note that Fp1
:
F
Fp2

is

a factorization of p1/p2 only if Fp1
and Fp2

are sufficiently refined and p2 divides p1.

· :
F
· : FAC0 × FAC→ FAC0 :

(Fp1
,Fp2

) 7→ {qmax({0,e−exp(q,Fp2
)}) | qe ∈ Fp1

}red

Example 22 illustrates the application of the above operations.

8.2 Greatest common divisor computation of factorized

polynomials

Given the factorizations Fp1
and Fp2

, Algorithm 14 calculates the factorizations Fg , F p1
g

, and

F p2
g

. Intuitively, the algorithm maintains the fact that G ·
F

F1 ·F F ′1 is a factorization of p1, where

G contains common factors of p1 and p2, F1 is going to be checked whether it contains further

common factors, and F ′1 does not contain any common factors. In the outer while-loop, an

element q
e1
1 to be checked is taken from F1. In the inner while-loop, a factorization G ·

F
F2 ·F F ′2

165

8.2. GREATEST COMMON DIVISOR COMPUTATION OF FACTORIZED POLYNOMIALS

Algorithm 14 gcd computation with factorization refinement

gcdF(factorization Fp1
, factorization Fp2

)
begin

1: G := (Fp1
∩

F
Fp2
)

2: Fi := Fpi
:
F

G and F ′
i

:= ; for i = 1, 2
3: while exists q

e1
1 ∈ F1 with q1 6= 1 do

4: F1 := F1 \ {qe1
1 }

5: while q1 6= 1 and exists q
e2
2 ∈ F2 with q2 6= 1 do

6: F2 := F2 \ {qe2
2 }

7: if ¬irreducible(q1)∨¬irreducible(q2) then p := gcd(q1, q2)

8: else p := 1
9: if p = 1 then

10: F ′2 := F ′2 ·F {q
e2
2 }

11: else

12: q1 := q1
p

13: Fi := Fi ·F {pei−min(e1,e2)} for i = 1,2
14: F ′2 := F ′2 ·F {(

q2
p)

e2}
15: G := G ·

F
{pmin(e1,e2)}

16: end if

17: end while

18: F ′1 := F ′1 ·F {q
e1
1 }

19: F2 := F2 ·F F ′2
20: F ′2 := ;
21: end while

22: return (F ′1, F2, G)
end

of p2 is maintained such that F ′2 does not contain any common factors with q1, and F2 is still to

be checked.

Now we explain the algorithm in more detail. Initially, a factorization G of a common divisor of

p1 and p2 is set to Fp1
∩

F
Fp2

(Line 1). The remaining factors of p1 and p2 are stored in F1 resp.

F2. The sets F ′1 and F ′2 contain factors of p1 and p2, respectively, whose greatest common divisor

is 1 (Line 2). The algorithm now iteratively adds further common divisors of p1 and p2 to G until

it is a factorization of their gcd. For this purpose, we consider all factors in F2 for each factor in

F1 and calculate the gcd of their bases using standard gcd computation for polynomials (Line 7).

Note that the main concern of Algorithm 14 is to avoid the application of this expensive operation

as far as possible and to apply it to preferably simple polynomials otherwise. Where the latter

is entailed by the idea of using factorizations, the former can be achieved by excluding pairs of

factors for which we can cheaply decide that both are irreducible, i. e., they have no non-trivial

divisors. If factors q
e1
1 ∈ F1 and q

e2
2 ∈ F2 with p := gcd(q1, q2) = 1 are found, we just shift q

e2
2

from F2 to F ′2 (Line 10). Otherwise, we can add pmin(e1,e2), which is the gcd of q
e1
1 and q

e2
2 , to

G and extend the factors F1 and F2, respectively, which could still contain common divisors, by

166

8.2. GREATEST COMMON DIVISOR COMPUTATION OF FACTORIZED POLYNOMIALS

pe1−min(e1,e2) resp. pe2−min(e1,e2) (Line 12-15).

Furthermore, F ′2 obtains the new factor (q2
p)

e2 , which certainly has no common divisor with

any factor in F ′1. Finally, we set the basis q1 to q1
p , excluding the just found common divisor. If all

factors in F2 have been considered for common divisors with q1, we can add it to F ′1 and continue

with the next factor in F1, for which we must reconsider all factors in F ′2 and, therefore, shift

them to F2 (Line 18-20). The algorithm terminates, if the last factor of F1 has been processed,

returning the factorizations Fp, F p1
p

and F p2
p

, which we can use to refine the factorizations of p1

and p2 via Fp1
:= F p1

p
·
F

G and Fp2
:= F p2

p
·
F

G.

Example 22 Assume we want to apply Algorithm 14 to the factorizations Fx1 x2 x3
= {(x1 x2 x3)

1}
and Fx1 x2

= {(x1)
1, (x2)

1}. We initialize G = F ′1 = F ′2 = {(1)1}, F1 = Fx1 x2 x3
and F2 = Fx1 x2

.

First, we choose the factors (q1)
e1 = (x1 x2 x3)

1 and (x1)
1 and remove them from F1 resp. F2. The

gcd of their bases is x1, hence we only update q1 to (x2 x3)
1 and G to {(x1)

1}. Then we remove

the next and last element (x2)
1 from F2. Its basis and q1 have the gcd x2 and we therefore update

q1 to (x3)
1 and G to {(x1)

1, (x2)
1}. Finally, we add (x3)

1 to F ′1 and return the expected result

({(x3)
1}, {(1)1}, {(x1)

1, (x2)
1}). Using these results, we can also refine Fx1 x2 x3

= F ′1 ·F G =

{(x1)
1, (x2)

1, (x3)
1} and Fx1 x2

= F2 ·F G = {(x1)
1, (x2)

1}.

Theorem 7 Let p1 and p2 be two polynomials with factorizations Fp1
resp. Fp2

. Applying Algo-

rithm 14 to these factorizations results in gcd(Fp1
, Fp2

) = (Fq1
, Fq2

, G)with G being a factorization

of the greatest common divisor p of p1 and p2, and Fq1
and Fq2

being factorizations of
p1
p resp.

p2
p .

Proof 7 We denote the product of a factorization Fp by P(Fp) =
∏

qe∈Fp
qe and the standard

greatest common divisor computation for polynomials by gcd.

We define the following Hoare-style assertion network:

GCD(factorization Fp1
, factorization Fp2

)

begin

1: {true}

2: G := (Fp1
∩

F
Fp2
)

3: {G =Fp1
∩F Fp2

}

4: Fi := Fpi
:
F

G and F ′
i

:= ; for i = 1,2

5: {Fp1
= G ·F F1 ·F F ′1 ∧Fp2

= G ·F F2 ·F F ′2 ∧P(F ′1) = 1∧P(F ′2) = 1}

6: while exists q
e1
1 ∈ F1 with q1 6= 1 do

7: {Fp1
= G ·F F1 ·F F ′1 ∧Fp2

= G ·F F2 ·F F ′2 ∧

gcd(P(F ′1),P(F2 ·F F ′2)) = 1∧ gcd(qe1
1 ,P(F ′2)) = 1∧ q

e1
1 ∈ F1}

8: F1 := F1 \ {qe1
1 }

9: {Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 } ∧Fp2

= G ·F F2 ·F F ′2 ∧

gcd(P(F ′1),P(F2 ·F F ′2)) = 1∧ gcd(qe1
1 ,P(F ′2)) = 1}

10: while q1 6= 1 and exists q
e2
2 ∈ F2 with q2 6= 1 do

11: {Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 } ∧Fp2

= G ·F F2 ·F F ′2 ∧

167

8.2. GREATEST COMMON DIVISOR COMPUTATION OF FACTORIZED POLYNOMIALS

gcd(P(F ′1),P(F2 ·F F ′2)) = 1∧ gcd(qe1
1 ,P(F ′2)) = 1∧ q

e2
2 ∈ F2}

12: F2 := F2 \ {qe2
2 }

13: {Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 } ∧Fp2

= G ·F F2 ·F F ′2 ·F {q
e2
2 } ∧

gcd(P(F ′1),P(F2 ·F F ′2 ·F {q
e2
2 })) = 1∧ gcd(qe1

1 ,P(F ′2)) = 1}

14: if ¬irreducible(q1)∨¬irreducible(q2) then p := gcd(q1, q2)

15: else p := 1

16: {Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 } ∧Fp2

= G ·F F2 ·F F ′2 ·F {q
e2
2 } ∧

gcd(P(F ′1),P(F2 ·F F ′2 ·F {q
e2
2 })) = 1∧ gcd(qe1

1 ,P(F ′2)) = 1∧ p = gcd(q1, q2)}

17: if p = 1 then

18:{Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 } ∧Fp2

= G ·F F2 ·F F ′2 ·F {q
e2
2 } ∧

gcd(P(F ′1),P(F2 ·F F ′2 ·F {q
e2
2 })) = 1∧ gcd(qe1

1 ,P(F ′2)) = 1∧ gcd(q1, q2) = 1}

19: F ′2 := F ′2 ·F {q
e2
2 }

20:{Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 } ∧Fp2

= G ·F F2 ·F F ′2 ∧

gcd(P(F ′1),P(F2 ·F F ′2)) = 1∧ gcd(qe1
1 ,P(F ′2)) = 1}

21: else

22:{Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 } ∧Fp2

= G ·F F2 ·F F ′2 ·F {q
e2
2 } ∧

gcd(P(F ′1),P(F2 ·F F ′2 ·F {q
e2
2 })) = 1∧ gcd(qe1

1 ,P(F ′2)) = 1∧ p = gcd(q1, q2)}

23: q1 := q1
p

24:{Fp1
= G ·F F1 ·F F ′1 ·F {(q1 · p)e1} ∧Fp2

= G ·F F2 ·F F ′2 ·F {q
e2
2 } ∧

gcd(P(F ′1),P(F2 ·F F ′2 ·F {q
e2
2 })) = 1∧ gcd((q1 · p)e1 ,P(F ′2)) = 1∧ p = gcd((q1 · p), q2)}

25: Fi := Fi ·F {pei−min(e1,e2)} for i = 1,2

26:{Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 , pmin(e1 ,e2)} ∧Fp2

= G ·F F2 ·F F ′2 ·F {(
q2
p)

e2 , pmin(e1 ,e2)} ∧

gcd(P(F ′1),P(F2 ·F F ′2 ·F {(
q2
p)

e2 , pmin(e1 ,e2)})) = 1∧ gcd((q1 · p)e1 ,P(F ′2)) = 1∧

p = gcd((q1 · p), q2)}

27: F ′2 := F ′2 ·F {(
q2
p)

e2}
28:{Fp1

= G ·F F1 ·F F ′1 ·F {q
e1
1 , pmin(e1 ,e2)} ∧Fp2

= G ·F F2 ·F F ′2 ·F {pmin(e1 ,e2)} ∧

gcd(P(F ′1),P(F2 ·F F ′2 ·F {pmin(e1 ,e2)})) = 1∧ gcd((q1 · p)e1 ,P(F ′2)) = 1}

29: G := G ·
F
{pmin(e1,e2)}

30:{Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 } ∧Fp2

= G ·F F2 ·F F ′2 ∧

gcd(P(F ′1),P(F2 ·F F ′2)) = 1∧ gcd(qe1
1 ,P(F ′2)) = 1}

31: end if

32: {Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 } ∧Fp2

= G ·F F2 ·F F ′2 ∧

gcd(P(F ′1),P(F2 ·F F ′2)) = 1∧ gcd(qe1
1 ,P(F ′2)) = 1}

33: end while

34: {Fp1
= G ·F F1 ·F F ′1 ·F {q

e1
1 } ∧Fp2

= G ·F F2 ·F F ′2 ∧

gcd(P(F ′1),P(F2 ·F F ′2)) = 1∧ gcd(qe1
1 ,P(F ′2)) = 1∧ (q1 = 1∨P(F2) = 1)

35: F ′1 := F ′1 ·F {q
e1
1 }

36: {Fp1
= G ·F F1 ·F F ′1 ∧Fp2

= G ·F F2 ·F F ′2 ∧ gcd(P(F ′1),P(F2 ·F F ′2)) = 1}

37: F2 := F2 ·F F ′2

168

8.3. USING FACTORIZED POLYNOMIALS IN RATIONAL FUNCTIONS

38: {Fp1
= G ·F F1 ·F F ′1 ∧Fp2

= G ·F F2 ∧ gcd(P(F ′1),P(F2)) = 1}

39: F ′2 := ;
40: {Fp1

= G ·F F1 ·F F ′1 ∧Fp2
= G ·F F2 ∧ gcd(P(F ′1),P(F2)) = 1∧P(F ′2) = 1}

41: end while

42: {Fp1
= G ·F F ′1 ∧Fp2

= G ·F F2 ∧ gcd(P(F ′1),P(F2)) = 1}

43: return (F ′1, F2, G)

end

The above assertion network is inductive.

• For the assignments, their preconditions imply their postconditions after substituting the

assigned expression for the assigned variables. (For simplicity, we handle the first if-then-

else statement in lines (14)-(15) as atomic assignment as well.)

• For the if-then-else statement in lines (17)-(31), its precondition (16) implies the precon-

dition (18) of the if-branch if the branching condition holds, and the precondition (22) of

the else-branch if the condition does not hold. The postconditions (20) and (30) of both

branches imply the postcondition (32) of the if-then-else statement.

• For the outer while-loop (6)-(41), its precondition (5) as well as the postcondition (40) of

its body imply the precondition (7) of the body if the loop condition holds, and they both

imply the postcondition (42) of the while-loop if the loop condition does not hold.

• The inner while-loop’s inductivity can be shown similarly. �

That means, the assertion (42) always holds before returning, implying the correctness of the

algorithm.

The algorithm is also complete, since it always terminates: We can use the sum of the degrees

of all polynomials in F1 for the outer loop as ranking function and in F2 for the inner loop to

show their termination.

8.3 Using factorized polynomials in rational functions

We represent a rational function p1
p2

by separate factorizations Fp1
and Fp2

for the numerator p1

and the denominator p2, respectively. For multiplication p1
p2
=

q1
q2
· r1

r2
, we compute Fp1

= Fq1
·
F
Fr1

and Fp2
= Fq2

·
F
Fr2

. Division is reduced to multiplication according to q1
q2

: r1
r2
=

q1
q2
· r2

r1
.

For the addition p1
p2
=

q1
q2
+

r1
r2

, we compute p2 with Fp2
= Fq2

∪
F
Fr2

as a common multiple of

q2 and r2, such that p2 = q2 ·q′2 with Fq′2
= Fp2

:
F
Fq2

, and p2 = r2 · r ′2 with Fr ′2
= Fp2

:
F
Fr2

. For

the numerator p1 we first determine a common divisor s of q1 and r1 by Fs = Fq1
∩

F
Fr1

, such

that q1 = s · q′1 with Fq′1
= Fq1

:
F
Fs, and r1 = s · r ′1 with Fr ′1

= Fr1
:
F
Fs. The numerator p1 is

s · (q′1 · q′2 + r ′1 · r ′2) with factorization Fs ·F (Fq′1
·
F
Fq′2
+

F
Fr ′1
·
F
Fr ′2
).

169

8.4. EXPERIMENTAL RESULTS

The rational function p1
p2

resulting from the addition is further simplified by cancellation, i. e.,

dividing p1 and p2 by their greatest common divisor.

8.4 Experimental results

We developed a C++ prototype implementation of our approach using the arithmetic library

GiNaC [BFK02]. Moreover, we implemented the state-elimination approach used by PARAM

[HHWZ10] using our optimized factorization approach to provide a more distinct comparison.

All experiments were run on an Intel Core 2 Quad CPU 2.66 GHz with 4 GB of memory. We

defined a timeout (TO) of 14 hours (50400 seconds) and a memory bound (MO) of 4 GB.

We report on three case studies:

• The bounded retransmission protocol (BRP) [HSV93] models the sending of files via an

unreliable network, manifested in two lossy channels for sending and acknowledging the

reception. This model is parametrized in the probability of reliability of those channels.

• The crowds protocol (CROWDS) [RR98] is designed for anonymous network communication

using random routing, parametrized in how many members are “good” or “bad” and the

probability of whether a good member delivers a message or randomly routes it to another

member.

• NAND multiplexing (NAND) [HJ02] models how reliable computations are obtained using

unreliable hardware by having a certain number of copies of a NAND unit all doing the

same job. Parameters are the probabilities of faultiness of the units and of erroneous inputs.

In our experiments we compare the following two implementations with the tool PARAM:

STATE ELIM : This implementation uses the state elimination approach as it is implemented in

PARAM and additionally uses the optimized factorization of polynomials as presented in

Section 8.1 and Section 8.2. Comparing this implementation with PARAM shows how well

the techniques of this chapter speed up the performance in general.

SCC MC : This implementation uses the SCC-based approach as briefly described in the be-

ginning of this chapter and specified in detail in [3]. It thereby also uses the optimized

factorization of polynomials and shows the quality of its applicability in a different setting.

Note that no bisimulation reduction was applied to any of the input models, which would improve

the feasibility of all approaches likewise.

For all instances we list the number of states and transitions; for each tool we give the running

time in seconds and the memory consumption in MB; the best time is boldfaced. Moreover, for

our approaches we list the number of polynomials which are intermediately stored.

170

8.4. EXPERIMENTAL RESULTS

Graph SCC MC STATE ELIM PARAM

Model States Trans. Time Poly Mem Time Poly Mem Time Mem

BRP 3528 4611 29.05 3283 48.10 4.33 8179 61.17 98.99 32.90
BRP 4361 5763 511.50 4247 501.71 6.87 9520 78.49 191.52 58.43
BRP 7048 9219 548.73 6547 281.86 25.05 16435 216.05 988.28 142.66
BRP 10759 13827 147.31 9231 176.89 85.54 26807 682.24 3511.96 304.07
BRP 21511 27651 1602.53 18443 776.48 718.66 53687 3134.59 34322.60 1757.12
CROWDS 198201 348349 60.90 13483 140.15 243.07 27340 133.91 46380.00 227.66
CROWDS 482979 728677 35.06 35916 478.85 247.75 65966 297.40 TO —
CROWDS 726379 1283297 223.24 36649 515.61 1632.63 73704 477.10 TO —
CROWDS 961499 1452537 81.88 61299 1027.78 646.76 112452 589.21 TO —
CROWDS 1729494 2615272 172.59 97655 2372.35 1515.63 178885 1063.15 TO —
CROWDS 2888763 5127151 852.76 110078 2345.06 12326.80 224747 2123.96 TO —
NAND 7393 11207 8.35 15688 114.60 17.02 140057 255.13 5.00 10.67
NAND 14323 21567 39.71 25504 366.79 59.60 405069 926.33 15.26 16.89
NAND 21253 31927 100.32 35151 795.31 121.40 665584 2050.67 29.51 24.45
NAND 28183 42287 208.41 44799 1405.16 218.85 925324 3708.27 50.45 30.47
NAND 78334 121512 639.29 184799 3785.11 — — MO 1138.82 111.58

For BRP, STATE ELIM always outperforms PARAM and SCC MC by up to two orders of magnitude.

On larger instances, SCC MC is faster than PARAM while on smaller ones PARAM is faster and

has a smaller memory consumption.

In contrast, the crowds protocol always induces a nested SCC structure, which is very hard for

PARAM since many divisions of polynomials have to be carried out. On larger benchmarks, it is

therefore outperformed by more than three orders of magnitude while SCC MC performs best.

This is actually measured by the timeout; using PARAM we could not retrieve results for larger

instances.

To give an example where PARAM mostly performs better than our approaches, we consider

NAND. Its graph is acyclic consisting mainly of single paths leading to states that have a high

number of outgoing edges, i. e., many paths join at these states and diverge again. Together

with a large number of different probabilities, this involves the addition of many polynomials,

whose factorizations are completely stored. The SCC approach performs better here, as for

acyclic graphs just the linear equation system is solved. This seems to be superior to the state

elimination as implemented in our tool. We do not know about PARAM’s interior for these special

cases. As a solution, our implementation offers the possibility to limit the number of stored

polynomials, which decreases the memory consumption at the price of losing information about

the factorizations. However, an efficient strategy to manage this bounded pool of polynomials

is not yet implemented. Therefore, we refrain from presenting experimental results for this

scenario.

171

CHAPTER 9

Conclusion

Using the example of the virtual substitution, this thesis demonstrated the challenges we have to

cope with when adapting a single procedure for nonlinear real arithmetic to SMT solving. As a

side effect it also yields a deeper analysis of the procedure towards satisfiability checking, which

helped us to provide rather general contributions, such as the detection of infeasible subsets

or local conflicts and the employment of variable bounds. Moreover, we could make use of a

commonly applied technique in SMT solving, branch-and-bound, in order to enable the utilization

of the virtual substitution for integer arithmetic.

We experimentally evaluated the single techniques, showing that each of them improves the

performance of an SMT solver with a theory solver based on the virtual substitution for most

of the tested benchmark sets. We also compared our implementation to another state-of-the-art

tool, which is purely based on virtual substitution, emphasizing that we can solve many more of

the tested examples and this within far less time.

The presented heuristics for choosing the next variable to eliminate or next constraint to provide

a test candidate for, have an immense influence on the performance of the virtual substitution.

With more analysis of the solving process for examples, which could not be solved within the

timeout, we might detect specific adaptions of these heuristics such that it possible to determine

the satisfiability of the given example within this timeout.

One of the main messages of this thesis is that there is no overall best performing approach for

SMT solving of nonlinear arithmetic formulas. Therefore, it is essential to be able to choose from

a set of different procedures and optimally combine them according to some solving strategy.

Within the work in the context of this thesis, we contributed the toolbox SMT-RAT, which provides

exactly what we need for this purpose. The experimental results showed that, although the SMT

solver Z3 implements an approach, which seems to be the most performant alternative for most

of the used benchmark sets, for some of them we can solve more instances with other approaches.

[ÁAB+16] Erika Ábrahám, John Abbott, Bernd Becker, Anna M. Bigatti, Martin Brain, Bruno

Buchberger, Alessandro Cimatti, James H. Davenport, Matthew England, Pascal

Fontaine, Stephen Forrest, Alberto Griggio, Daniel Kroening, Werner M. Seiler,

and Thomas Sturm. SC2: Satisfiability checking meets symbolic computation. In

Proc. of CICM, volume 9791 of LNCS, pages 28–43. Springer, 2016.

[ABP+11] Carlos Ansótegui, Miquel Bofill, Miquel Palahí, Josep Suy, and Mateu Villaret.

Satisfiability modulo theories: An efficient approach for the resource-constrained

project scheduling problem. In Proc. of SARA. AAAI, 2011.

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-

Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The

algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1):3 –

34, 1995.

[ADFO13] Carlos Areces, David Deharbe, Pascal Fontaine, and Ezequiel Orbe. SyMT: Finding

symmetries in SMT formulas. In Proc. of SMT, 2013.

[ÁFSW16] Erika Ábrahám, Pascal Fontaine, Thomas Sturm, and Dongming Wang. Symbolic

Computation and Satisfiability Checking (Dagstuhl Seminar 15471). Dagstuhl

Reports, 5(11):71–89, 2016.

[ÁJW+10] Erika Ábrahám, Nils Jansen, Ralf Wimmer, Joost-Pieter Katoen, and Bernd Becker.

DTMC model checking by SCC reduction. In Proc. of QEST, pages 37–46. IEEE

Computer Society, 2010.

[AP10] Behzad Akbarpour and Lawrence C. Paulson. Metitarski: An automatic theo-

rem prover for real-valued special functions. Journal of Automated Reasoning,

44(3):175–205, 2010.

[BBC+05] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Peter

Rossum, Stephan Schulz, and Roberto Sebastiani. An incremental and layered

procedure for the satisfiability of linear arithmetic logic. In Proc. of TACAS, volume

3440 of LNCS, pages 317–333. Springer, 2005.

[BBP13] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending

sledgehammer with SMT solvers. Journal of Automated Reasoning, 51(1):109–

128, 2013.

[BCBdODF09] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal

Fontaine. veriT: An open, trustable and efficient SMT-solver. In Proc. of CADE,

volume 5663 of LNCS, pages 151–156. Springer, 2009.

175

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic

model checking without BDDs. In Proc. of TACAS, volume 1579 of LNCS, pages

193–207. Springer, 1999.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Proc. of CAV,

volume 6806 of LNCS, pages 171–177. Springer, 2011.

[BDS02] Clark Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of first-order

formulas by incremental translation to SAT. In Proc. of CAV, volume 2404 of LNCS,

pages 236–249. Springer, 2002.

[BFK02] Christian Bauer, Alexander Frink, and Richard Kreckel. Introduction to the GiNaC

framework for symbolic computation within the C++ programming language.

Journal of Symbolic Computation, 33(1):1–12, 2002.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo

Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[BGMG15] Daniel Bryce, Sicun Gao, David Musliner, and Robert Goldman. SMT-based non-

linear PDDL+ planning. In Proc. of AAAI, pages 3247–3253. AAAI Press, 2015.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,

2008.

[BKM14] Clark Barrett, Daniel Kroening, and Thomas Melham. Problem Solving for the 21st

Century: Efficient Solvers for Satisfiability Modulo Theories. Technical Report 3,

London Mathematical Society and Smith Institute for Industrial Mathematics and

System Engineering, 2014. Knowledge Transfer Report.

[BNOT06] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting

on demand in SAT modulo theories. In Proc. of LPAR, volume 4246, pages 512–

526. Springer, 2006.

[BPST10] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. The

OpenSMT solver. In Proc. of TACAS, volume 6015 of LNCS, pages 150–153.

Springer, 2010.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Rest-

klassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University

of Innsbruck, 1965.

[Bur98] Stanley Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998.

176

[BV02] Randal E. Bryant and Miroslav N. Velev. Boolean satisfiability with transitivity

constraints. ACM Transactions on Computational Logic, 3(4):604–627, 2002.

[BWK93] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner bases: A Com-

putational Approach to Commutative Algebra. Graduate texts in mathematics.

Springer, 1993.

[CAMN04] Scott Cotton, Eugene Asarin, Oded Maler, and Peter Niebert. Some progress in

satisfiability checking for difference logic. In Proc. of FORMATS, volume 3253 of

LNCS, pages 263–276. Springer, 2004.

[CES+09] Koen Claessen, Niklas Eén, Mary Sheeran, Niklas Sörensson, Alexey Voronov, and

Knut Åkesson. SAT-solving in practice, with a tutorial example from supervisory

control. Discrete Event Dynamic Systems, 19(4):495–524, 2009.

[CGMT15] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Hycomp:

An SMT-based model checker for hybrid systems. In Proc. of TACAS, volume 9035

of LNCS, pages 52–67. Springer, 2015.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Se-

bastiani. The MathSAT5 SMT solver. In Proc. of TACAS, volume 7795 of LNCS,

pages 93–107. Springer, 2013.

[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An inter-

polating SMT solver. In Proc. of SPIN, volume 7385 of LNCS, pages 248–254.

Springer, 2012.

[CMT12] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. A quantifier-free SMT

encoding of non-linear hybrid automata. In Proc. of FMCAD, pages 187–195. IEEE,

2012.

[Col75] George E. Collins. Quantifier elimination for real closed fields by cylindrical

algebraic decomposition. In Automata Theory and Formal Languages, volume 33

of LNCS, pages 134–183. Springer, 1975.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proc. of

STOC, pages 151–158. ACM Press, 1971.

[Cor10] Florian Corzilius. Virtual Substitution in SMT Solving. Master’s thesis (Diplomar-

beit), RWTH Aachen University, 2010.

[CTF00] Alberto Caprara, Paolo Toth, and Matteo Fischetti. Algorithms for the set covering

problem. Annals of Operations Research, 98(1):353–371, 2000.

177

[Dan63] George B. Dantzig. Linear Programming and Extensions. Princeton University

Press, 1963.

[Daw04] Conrado Daws. Symbolic and parametric model checking of discrete-time Markov

chains. In Proc. of ICTAC, volume 3407 of LNCS, pages 280–294. Springer, 2004.

[DDA09] Isil Dillig, Thomas Dillig, and Alex Aiken. Cuts from proofs: A complete and

practical technique for solving linear inequalities over integers. In Proc. of CAV,

volume 5643 of LNCS, pages 233–247. Springer, 2009.

[DdM06] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for

DPLL(T). In Proc. of CAV, volume 4144 of LNCS, pages 81–94. Springer, 2006.

[DFMP11] David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo.

Exploiting symmetry in SMT problems. In Proc. of CADE, volume 6803 of LNCS,

pages 222–236. Springer, 2011.

[DH88] James H. Davenport and Joos Heinz. Real quantifier elimination is doubly expo-

nential. Journal of Symbolic Computation, 5(1/2):29–35, 1988.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DLT16] Normann Decker, Martin Leucker, and Daniel Thoma. Monitoring modulo theories.

STTT, 18(2):205–225, 2016.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proc. of

TACAS, volume 4963 of LNCS, pages 337–340. Springer, 2008.

[dMP09] Leonardo de Moura and Grant Olney Passmore. On locally minimal Nullstellensatz

proofs. In Proc. of SMT, pages 35–42. ACM Press, 2009.

[dMP13] Leonardo de Moura and Grant Olney Passmore. The strategy challenge in SMT

solving. In Automated Reasoning and Mathematics, volume 7788 of LNCS, pages

15–44. Springer, 2013.

[dMR02] Leonardo de Moura and Harald Rueß. Lemmas on demand for satisfiability solvers.

In Proc. of SAT, pages 244–251, 2002.

[dMRS02] Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem proving for

bounded model checking over infinite domains. In Proc. of CADE, volume 2392

of LNCS, pages 438–455. Springer, 2002.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.

Journal of the ACM, 7(3):201–215, 1960.

178

[DS97] Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets com-

puter logic. SIGSAM Bulletin, 31(2):2–9, 1997.

[DSW98] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. Real quantifier

elimination in practice. In Algorithmic Algebra and Number Theory, pages 221–

247. Springer, 1998.

[Dut14] Bruno Dutertre. Yices 2.2. In Proc. of CAV, volume 8559 of LNCS, pages 737–744.

Springer, 2014.

[Erk13] Christoph Erkinger. Rotating Workforce Scheduling as Satisfiability Modulo The-

ories. Master’s thesis (Diplomarbeit), Technische Universität Wien, 2013.

[ES04] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc. of SAT,

volume 2919 of LNCS, pages 502–518. Springer, 2004.

[FGM+07] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, Réne Thie-

mann, and Harald Zankl. SAT solving for termination analysis with polynomial

interpretations. In Proc. of SAT, volume 4501 of LNCS, pages 340–354. Springer,

2007.

[FHT+07] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schu-

bert. Efficient solving of large non-linear arithmetic constraint systems with

complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Com-

putation, 1(3-4):209–236, 2007.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.

Saxe, and Raymie Stata. Extended static checking for Java. In Proc. of PLDI, LNCS,

pages 234–245. ACM Press, 2002.

[Fou26] Jean-Baptiste Joseph Fourier. Solution d’une question particulière du calcul des

inégalités. Oeuvres II, pages 317–328, 1826.

[GBE+14] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs,

Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Steffi

Swiderski, and René Thiemann. Proving termination of programs automatically

with AProVE. In Proc. of IJCAR, volume 8562 of LNCS, pages 184–191. Springer,

2014.

[GGI+10] Sicun Gao, Malay K. Ganai, Franjo Ivancic, Aarti Gupta, Sriram Sankara-

narayanan, and Edmund M. Clarke. Integrating ICP and LRA solvers for deciding

nonlinear real arithmetic problems. In Proc. of FMCAD, pages 81–89. IEEE, 2010.

179

[GKC13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for

nonlinear theories over the reals. In Proc. of CADE, volume 7898 of LNCS, pages

208–214. Springer, 2013.

[Göd31] Kurt Gödel. Über formal Unentscheidbare Sätze der Principia Mathematica und

Verwandter Systeme. Monatshefte für Math. u. Physik, 38:173–198, 1931.

[Gri09] Alberto Griggio. An Effective SMT Engine for Formal Verification. PhD thesis, DISI

- University of Trento, 2009.

[Gri12] Alberto Griggio. A practical approach to satisfiability modulo linear integer arith-

metic. Journal on Satisfiability, Boolean Modeling and Computation, 8:1–27, Jan-

uar 2012.

[GT09] Chrysida Galanaki and Elias Tsigaridas. Quantifier elimination for small degree

polyomials. In Proc. of PLS, 2009.

[Han09] Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and

Applications. IOS Press, 2009.

[HHWZ10] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. PARAM:

A model checker for parametric Markov models. In Proc. of CAV, volume 6174 of

LNCS, pages 660–664. Springer, 2010.

[HHZ11] Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability

for parametric Markov models. STTT, 13(1):3–19, 2011.

[Hil02] David Hilbert. Mathematical problems. Bulletin of the American Mathematical

Society, 8(10):437–479, 1902.

[HJ02] Jie Han and Pieter Jonker. A system architecture solution for unreliable nanoelec-

tronic devices. IEEE Transactions on Nanotechnology, 1:201–208, 2002.

[Hon91] Hoon Hong. Comparison of Several Decision Algorithms for the Existential Theory

of the Reals. Technical Report 91-41, Research Institute for Symbolic Computation,

Johannes Kepler University Linz, 1991.

[HR97] Stefan Herbort and Dietmar Ratz. Improving the Efficiency of a Nonlinear-System-

Solver Using a Componentwise Newton Method. Technical Report 151241, Insti-

tut für Angewandte Mathematik, Universität Karslruhe (TH), 1997.

[HSV93] Leen Helmink, Alex Sellink, and Frits W. Vaandrager. Proof-checking a data link

protocol. In Proc. of TYPES, volume 806 of LNCS, pages 127–165. Springer, 1993.

180

[JBdM13] Dejan Jovanovic, Clark Barrett, and Leonardo de Moura. The design and imple-

mentation of the model constructing satisfiability calculus. In Proc. of FMCAD,

pages 173–180. IEEE, 2013.

[JBRS12] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The inter-

national SAT solver competitions. AI Magazine, 33:89–92, 2012.

[JdM12] Dejan Jovanovic and Leonardo de Moura. Solving non-linear arithmetic. In Proc.

of IJCAR, volume 7364 of LNCS, pages 339–354. Springer, 2012.

[KBD13] Tim King, Clark Barrett, and Bruno Dutertre. Simplex with sum of infeasibilities

for SMT. In Proc. of FMCAD, pages 189–196. IEEE, 2013.

[KBT14] Tim King, Clark Barrett, and Cesare Tinelli. Leveraging linear and mixed integer

programming for SMT. In Proc. of FMCAD, pages 139–146. IEEE, 2014.

[Kha80] Leonid Genrikhovich Khachiyan. Polynomial algorithms in linear programming.

USSR Computational Mathematics and Mathematical Physics, 20(1):53 – 72, 1980.

[KS15] Marek Košta and Thomas Sturm. A generalized framework for virtual substitution.

CoRR, abs/1501.05826, 2015.

[KSD16] Marek Košta, Thomas Sturm, and Andreas Dolzmann. Better answers to real

questions. Journal of Symbolic Computation, 74:255 – 275, 2016.

[Kul09] Ulrich W. Kulisch. Complete interval arithmetic and its implementation on the

computer. In Numerical Validation in Current Hardware Architectures: Interna-

tional Dagstuhl Seminar, Dagstuhl Castle, Germany, January 6-11, 2008. Revised

Papers, volume 5492 of LNCS, pages 7–26. Springer, 2009.

[Lar92] Tracy Larrabee. Test pattern generation using Boolean satisfiability. IEEE Trans.

on CAD of Integrated Circuits and Systems, 11(1):4–15, 1992.

[Lei13] K. Rustan M. Leino. Automating theorem proving with SMT. In Proc. of ITP,

volume 7998 of LNCS, pages 2–16. Springer, 2013.

[LW93] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination.

Computer Journal, 36(5):450–462, 1993.

[Mat70] Yuri V Matiyasevich. Enumerable sets are diophantine. Doklady Akademii Nauk

SSSR, 191(2):279–282, 1970.

[Mat72] Yuri V. Matiyasevich. Diophantine representation of enumerable predicates. Math-

ematical notes of the Academy of Sciences of the USSR, 12(1):501–504, 1972.

181

[MKC09] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to Interval

Analysis. Society for Industrial and Applied Mathematics, 2009.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an efficient SAT solver. In Proc. of DAC, pages 530–535.

ACM Press, 2001.

[MS08] Joao P. Marques-Silva. Practical applications of Boolean satisfiability. In Proc. of

WODES, pages 74–80. IEEE, 2008.

[MSS99] Joao P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for

propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence

closure. Journal of the ACM, 27(2):356–364, 1980.

[NO05] Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure.

In Proc. of RTA, volume 3467 of LNCS, pages 453–468. Springer, 2005.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT

modulo theories: From an Abstract Davis–Putnam–Logemann–Loveland Proce-

dure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

[NPM+14] Srinivas Nedunuri, Sailesh Prabhu, Mark Moll, Swarat Chaudhuri, and Lydia E.

Kavraki. SMT-based synthesis of integrated task and motion plans from plan

outlines. In Proc. of ICRA, pages 655–662. IEEE, 2014.

[NW88] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Opti-

mization. Wiley Interscience Series in Discrete Mathematics and Optimization.

Wiley, 1988.

[PC13] Hristina Palikareva and Cristian Cadar. Multi-solver support in symbolic execution.

In Proc. of CAV, volume 8044 of LNCS, pages 53–68. Springer, 2013.

[Pel13] Jan Peleska. Industrial-strength model-based testing - state of the art and current

challenges. In Proc. of MBT, volume 111 of EPTCS, pages 3–28, 2013.

[PQR09] André Platzer, Jan-David Quesel, and Philipp Rümmer. Real world verification.

In Proc. of CADE, volume 5663 of LNCS, pages 485–501. Springer, 2009.

[Pug91] William Pugh. The Omega test: A fast and practical integer programming algo-

rithm for dependence analysis. In Proc. of ACM/IEEE Conference on Supercomput-

ing, pages 4–13. ACM Press, 1991.

182

[PVL11] Jan Peleska, Elena Vorobev, and Florian Lapschies. Automated test case generation

with SMT-solving and abstract interpretation. In Proc. of NFM, volume 6617 of

LNCS, pages 298–312. Springer, 2011.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions.

ACM Transactions on Information and System Security, 1(1):66–92, 1998.

[RS15] Hadi Ravanbakhsh and Sriram Sankaranarayanan. Counterexample guided

synthesis of switched controllers for reach-while-stay properties. CoRR,

abs/1505.01180, 2015.

[RT03] Silvio Ranise and Cesare Tinelli. The SMT-LIB format: An initial proposal. In Proc.

of PDPAR, pages 94–111, 2003.

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[Seb07] Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability,

Boolean Modeling and Computation, 3:141–224, 2007.

[SGF10] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verifi-

cation to program synthesis. In Proc. of POPL, pages 313–326. ACM Press, 2010.

[Sho79] Robert E. Shostak. A practical decision procedure for arithmetic with function

symbols. Journal of the ACM, 26(2):351–360, 1979.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,

31(1):1–12, 1984.

[SKB13] Karsten Scheibler, Stefan Kupferschmid, and Bernd Becker. Recent improvements

in the SMT solver iSAT. In Proc. of MBMV, pages 231–241. Institut für Angewandte

Mikroelektronik und Datentechnik, Fakultät für Informatik und Elektrotechnik,

Universität Rostock, 2013.

[SOE14] Roopsha Samanta, Oswaldo Olivo, and E. Allen Emerson. Cost-aware automatic

program repair. In Proc. of SAS, volume 8723 of LNCS, pages 268–284. Springer,

2014.

[SSB02] Ofer Strichman, Sanjit A. Seshia, and Randal E. Bryant. Deciding separation for-

mulas with SAT. In Proc. of CAV, volume 2404 of LNCS, pages 209–222. Springer,

2002.

[Tar48] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. University

of California Press, 1948.

183

[TPGM14] Pranav Tendulkar, Peter Poplavko, Ioannis Galanommatis, and Oded Maler. Many-

core scheduling of data parallel applications using SMT solvers. In Proc. of DSD,

pages 615–622. IEEE Computer Society, 2014.

[Tse83] Grigorii S. Tseitin. On the complexity of derivation in propositional calculus. In

Automation of Reasoning, Symbolic Computation, pages 466–483. Springer, 1983.

[TVKO16] Vu Xuan Tung, To Van Khanh, and Mizuhito Ogawa. raSAT: An SMT solver for

polynomial constraints. In Proc. of IJCAR, volume 9706 of LNCS, pages 228–237.

Springer, 2016.

[Wei94] Volker Weispfenning. Quantifier elimination for real: the cubic case. In Proc. of

ISSAC, pages 258–263. ACM Press, 1994.

[Wei97] Volker Weispfenning. Quantifier elimination for real algebra - the quadratic case

and beyond. Applicable Algebra in Engineering, Communication and Computing,

8(2):85–101, 1997.

[ZM10] Harald Zankl and Aart Middeldorp. Satisfiability of non-linear (ir)rational arith-

metic. In Proc. of LPAR, volume 6355 of LNCS, pages 481–500. Springer, 2010.

184

Index

SMT-RAT strategy, 63

Arithmetic formula, 19

Assignment, 22

Atom, 33

Backtracking ability (theory solver), 48

Boolean abstraction, 22

Boolean abstraction mapping, 22

Clause, 33

Conjunctive normal form, 33

Constant polynomial, constraint, 20

Constraint, 19

Construction of test candidates, 55

Convex set, 125

Cylindrical algebraic decomposition, 43

Digraph, 17

Directed tree, 18

Discrete-time Markov chain (DTMC), 163

Eager SMT solving, 44

Ellipsoid method, 42

Equisatisfiability of formulas, 28

Final lemma, 67

Formula evaluation, 23

Formula interval evaluation, 127

Fourier-Motzkin variable elimination, 42

Full-lazy SMT solving, 47

Incrementality support (theory solver), 48

Infeasible subset generation (theory solver),

48

Integer arithmetic, 20

Interval assignment, 127

Interval constraint propagation, 128

Interval diameter, 17

Less-lazy SMT solving, 47

Literal, 33

Local conflict, 122

Mixed integer-real arithmetic, 20

Monomial, 25

Multivariate polynomial, constraint, 21

Negation normal form, 32

Normalized constraint, 29

Normalized integer-arithmetic constraint, 30

Normalized polynomial, 25

Parametric discrete-time Markov chain (PDTMC),

163

Path, cycle, 17

Polynomial, 19

Index

Polynomial evaluation, 23

Polynomial factorization, 27

Polynomial interval evaluation, 127

Polynomial order, 27

Prenex normal form, 35

Rational function, 163

Real arithmetic, 20

Real relaxation, 22

Relation (symbol), 19

Reverse lexicographical order, 25

Satisfiability, 24

Sequential SMT-RAT strategy, 71

Simplex method, 42

SMT compliant procedure, 62

SMT compliant theory solver, 49

SMT-LIB standard, 50

Solution space, 24

Square root expression, 54

Strongly connected component (SCC), 163

Substitution, 21

Tautology, 24

Term, 25

Unit clause, 34

Univariate polynomial, constraint, 20

Urgent lemma, 67

Validity, 24

Variable bound constraint, 123

Variable bounds, 124

Virtual substitution, 51

186

