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1 Introduction

1.1 Background

Engineers and scientists use a variety of simulations during product development to determine

how sophisticated the product behaves in operation. In this context, a product is an assembly, a

component or a material. To describe how these products behave, performance relevant quantities

are used. Some examples of performance quantities are: weight, stiffness, lifetime, efficiency and

energy consumption. Typically, there are two ways to determine these performance quantities as

presented in figure 1.1. One way is to simulate the behaviour of the product, the other way is

to experimentally measure the behaviour of the product. Often it is not possible to determine all

performance quantities using one way or the other. Therefore, it is necessary to combine the ex-

perimental and numerical approaches to obtain the necessary information about the real behaviour.

To obtain consistent results, it is essential that both methods represent reality accurately.

1.1.1 The experimental branch
During the development of an experimental setup to measure multiple performance quantities, it

is often discovered that the performance quantities cannot be measured directly (e.g. the gas tem-

Reality

Mathematical
model

Numerical
model

Experimental
model

Experimental
data

Simplification

Simplification Simplification

Experimental
results

Numerical
results

Uncertainty quantification

Figure 1.1: Different ways to make a statement about the behaviour of a product. (figure based on

[1])



2 1 Introduction

perature in a combustion chamber) or that measuring the performance quantities is too expensive

(e.g. crash behaviour of an aeroplane). Therefore, it is necessary to resort to a simplified represen-

tation of reality, e.g. an experiment under laboratory conditions. This experiment has to capture

the physical process of interest. Each assumption could cause the measured performance quanti-

ties to divert from reality. Therefore, it is necessary to check if each assumption is valid to ensure

the experimental results represent reality. For such checks it could be required to perform some

preliminary calculations. If it is asserted that the influence of the simplifications on the perfor-

mance quantities are insignificant, it is concluded that the experiment results represent reality. In

addition to the simplification of reality by means of laboratory conditions, it is often observed that

the measurement equipment itself has an influence on the performance quantities.

After the experimental setup is defined, it is necessary to investigate the influence of various

sources of uncertainty on the performance quantities to determine if the measurements are per-

formed accurately with respect to the requirements of the product. These uncertainties include

manufacturing variations and measurement errors, but are not limited to these sources. The com-

bination of the results of the uncertainty analysis and experimentally recorded data form the ex-

perimental results [2], as presented in figure 1.1.

To avoid confusion about possible experimental simplifications, two examples are presented be-

low. To calculate the thermal expansion coefficient of a material, one could measure the change of

length of a product due to a known temperature increase. For this method it is assumed that the

thermal expansion coefficient is constant over the measurement length. Another example of an ex-

perimental simplification is the use of scaled models to measure the performance quantities. This

is a common practice in aerodynamics, because it is often not feasible to measure the aerodynamic

behaviour at full scale due to equipment limitations and budget. However, performing aerody-

namic measurements on scaled aerodynamic models gives results at a different Mach or Reynolds

number compared to the full scale model. Thereby, the engineer assumes that the deviation in

Mach or Reynolds number is acceptable.

1.1.2 The modeling branch
To obtain performance quantities by means of a simulation, three steps are required as presented

in figure 1.1. In the first step, a mathematical model is created. This mathematical model is a set

of equations and modelling data that describes reality, which includes geometric data, governing

equations, constitutive equations, initial conditions and boundary conditions [2].

In the next step a numerical model is developed. This is a numerical implementation of the math-

ematical model to calculate the performance quantities [2]. Although a numerical model can be

an analytical solver implementation if the problem is simple enough, it is common for mechanical

engineers to use approximation methods like the boundary element method and the finite element

method to solve complex problems. Such a numerical model includes the type and degree of dis-

cretisation of the geometry, the temporal discretisation of the governing equations and the iterative

convergence criteria. It is beyond the scope of this work to explain the theory of such methods like

the boundary element method and the finite element method. The reader is referred to literature

for further details e.g. [3, 4].

In the third step, the numerical results are obtained from the numerical model and the accuracy

of these numerical results is determined by means of a convergence study. Furthermore, it is de-

termined which assumptions are unverified and which are verified. These unverified assumptions

could cause the numerical results to differ from the experimental results.
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1.1.3 Qualification, Verification and Validation
To determine if a model is an accurate representation of reality, it is mandatory to perform the

following three steps: qualification, verification and validation. [2, 5, 6, 7, 8, 9, 10, 11] These

steps are schematically presented in figure 1.2. To avoid confusion about the definition of these

terms, the following definitions are used throughout this document, which are consistent with the

definitions published by the DoD [6, 9], AIAA [10, 12] and ASME [2].

Qualification: The process of determining the adequacy of a mathematical model to provide

an acceptable level of agreement for the domain of intended application. [8]

Verification: The process of determining that a computerised model accurately represents

the underlying mathematical model and its solution. [2, 6]

Validation: The process of determining the degree to which a model is an accurate rep-

resentation of the real world from the perspective of the intended use of the

model. [2, 6]

The first step of the process to validate a computerised model is analysing the problem and defin-

ing the intended use of the model. Based on the problem analysis, a high quality mathematical

model is generated by following guidelines and documented rules. These guidelines and docu-

mented rules are used to perform qualification of the mathematical model as shown in figure 1.2.

Performing qualification ensures that an adequate mathematical model is created.

Based on the mathematical model, the numerical model is generated as presented in figure 1.1.

During programming of the numerical model, some additional simplifications or assumptions have

to be made as explained in subsection 1.1.2. In the second step, verification, it is investigated which

assumptions and simplifications of the numerical model are sound. The more assumptions and

simplifications are proven valid, the less model variables remain possibly incorrect. Verification

includes determining the adequacy of the mesh resolution and code implementation checks, but it

is not limited to these. For example, solving a similar problem with a known solution to determine

if the computerised model is implemented correctly is also called verification.

Subsequently, validation of the numerical model is performed. During validation it is determined

if the results of the numerical model differ from reality where reality is represented by the ex-

perimental results. This implies that the difference between reality and experimental results is
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Figure 1.2: Phases of Verification & Validation during model development. (figure redrawn from

[8])
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neglectable (see figure 1.1). Although validation by definition is comparing the numerical results

to the experimental results, an engineer is interested in a valid model. Therefore, it is necessary

to decrease the difference between the numerical results and the experimental results until a valid

numerical model is obtained by changing unverified assumptions of the numerical model. To min-

imise this difference an optimisation routine is used. The optimisation routine changes the possible

unverified model variables until a valid numerical model is obtained. The less unverified variables

remain after verification, the less degrees of freedom remain for the optimisation problem (min-

imising the difference between simulation and reality) which has to be solved to obtain a valid

numerical model.

In the context of validation, it is essential to point out that the performance quantities vary in reality

due to variation in the production process and the operational conditions to which the product is

subjected. [13] Therefore, it would be appropriate to compare stochastic experimental results to

stochastic numerical results [14]. The closer we operate products at their limits, the more important

it is to correctly predict the performance of these products to avoid malfunctioning products. To

correctly predict the performance of these products, it is required to use a valid numerical model.

Consequently, it becomes more important to validate numerical models.

1.2 Scope

As explained in the previous sections, the performance of a product is commonly described with

multiple quantities that are stochastic by nature. Since the performance quantities are generally

arbitrarily distributed [15, 16], it is required to use a validation method suitable for multivariate

results which are arbitrarily distributed. However, currently no validation method exists to com-

pare two multivariate arbitrarily distributed data sets. Therefore, this work is focused on validating

computerised models using experimental data and numerical results, which are multivariate arbi-

trarily distributed. Furthermore, an optimisation routine is used to decrease the difference between

numerical and experimental results if the difference is too large.

1.3 Outline of the thesis

In chapter 2 of this document, it is identified which type of validation problems can be solved and

which are currently unsolved. These unsolved issues are used to define the research goal as well

as the research approach. The essential theoretical background related to validation is presented

in chapter 3. This chapter is divided into the following four sections: Errors and uncertainties,

experimental, simulation and validation theory. The new developed validation method is presented

in chapter 4. To investigate the performance of the developed validation method, it is compared

to some of the currently used validation methods by means of benchmarks which are presented

in chapter 5. Moreover, a multivariate engineering validation problem is used to demonstrate the

developed validation method under engineering conditions, which is presented in chapter 6. By

means of this engineering problem, the problems of validation are addressed and the methods used

to solve these issues with the developed validation method are presented. In the final chapter,

the overall conclusions are drawn from the benchmark results and the results of the engineering

relevant validation example with respect to the developed validation method.
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This chapter is divided into two sections, namely a brief description of the state of the art valida-

tion methods and an explanation of the research approach. These descriptions of the state of the

art validation methods are necessary to identify currently unsolved issues. In the second section,

the research approach is presented, which is used to develop a validation method for arbitrary mul-

tivariate results. Furthermore, it is explained why these steps are necessary to answer the research

question: How to validate a numerical model using multivariate arbitrary distributed results?

2.1 State of the art

As explained in subsection 1.1.3, the goal of a validation process is to quantify the difference

between a numerical model and an experimental model as well as the minimisation of the differ-

ence between them if the difference is found to be too large [8, 10, 11, 17]. This process to obtain

a valid numerical model is presented in figure 2.1. To quantify the difference between numerical

results and experimental results, it is mandatory to define a distance measure. The next step is to

determine if the distance is too large by means of a validation criteria. If the distance is too large,

it is necessary to change unverified assumptions of the numerical model by means of an optimisa-

tion loop to obtain a valid numerical model. The optimisation process is an iterative process and

requires to solve the numerical model every time an assumption is changed.

Verified assumptions

Unverified assumptions

Distance
determination

Experimental results

Criteria
Valid

Invalid

Numerical model
Numerical

results

Optimisation loop

Valid
model

Measurement UncertaintyExperimental model Experimental data

Figure 2.1: Schematic overview of the validation process.
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2.1.1 Difference quantification and validation criteria
The first step of validation is quantifying the difference between numerical results and experimen-

tal results. To quantify the difference, it is mandatory to use a distance measure that describes

the difference adequately. However, the currently used distance measures describe the difference

only adequately if certain assumptions about the results are true. Based on these assumptions the

following cases are defined in ascending order of complexity: Deterministic performance quanti-

ties, univariate normally distributed performance quantity, univariate arbitrarily distributed perfor-

mance quantity, multivariate normally distributed quantities and multivariate arbitrarily distributed

quantities. Each case has its own specific distance measures and validation criteria as schemat-

ically presented in figure 2.2. Further details about these cases are presented in the following

subsections.

Deterministic performance quantities

The distance between two deterministic multivariate results is determined with the euclidean dis-

tance as shown in figure 2.2. To determine if the numerical model is valid, it is determined if the

euclidean distance is larger or smaller than the validation criteria. These criteria consist of a crite-

rion based on the measurement uncertainty and a criterion based on the required model accuracy.

If the absolute difference is less than the measurement uncertainty and less than the acceptable

model inaccuracy, the numerical model is valid for this response quantity. Moreover, it is possible

to validate each response quantity separately, which could lead to a partially validated model.

More common in practice is comparing the results of a deterministic numerical model to the ex-

perimental results from repeated experiments. To determine the difference between arbitrarily dis-

tributed experimental results and the results of a single numerical simulation, it is common practice

to reduce the arbitrarily distributed results to a single characteristic value as shown in figure 2.2.

This characteristic value represents the nominal experimental result which is commonly defined

as median or mean value. Since the experimental results are reduced to a single value for each

performance quantity, the problem is solved as if the problem was deterministic.

Stochastic peformance quantities

As mentioned in chapter 1, it would be appropriate to compare stochastic experimental results to

stochastic numerical results. At this point, the details regarding creating such a numerical model

are irrelevant and will be introduced in chapter 3. Assuming one could create a numerical model

that represents the stochastic nature of the experimental results, it is necessary to quantify the dis-

tance between the numerical and experimental arbitrarily distributed results for validation. Since

the experimental results are stochastic by nature, it is likely that the results of a second series of

experiments are slightly different from the first series. This will lead to variation of the measured

distance. Consequently, the distance is not deterministic but is also has a certain distribution.

Since the quantified distance is also stochastic, it is necessary to determine whether the distance

between the numerical results and the experimental results is stochastically significant. At this

point it is sufficient to know that the quantified distances are stochastic. The details concerning the

theoretical background will be presented in chapter 3.
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Figure 2.2: Overview of the types of validation problems, their distance measures and validation

criteria.
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Univariate normally distributed performance quantities

If the univariate arbitrary distributed numerical and experimental results are assumed to be normally

distributed, the distance between them is equal to the difference between the characteristic param-

eters of the normal distributions as illustrated in figure 2.2. These characteristic parameters are the

mean value and the standard deviation of the distribution. The mean value difference and the dif-

ference in standard deviation are calculated with equation 2.1 and 2.2, respectively [18, 19, 20].

d1 = µ1−µ2 (2.1)

d2 =
σ1

σ2
(2.2)

Where µ1 is the mean value of normal distribution 1 and σ1 is its standard deviation. Correspondent

variables are used for normal distribution 2. To determine if the numerical model is valid, it is

essential to determine whether the distances are stochastically significant and if the distance is

larger than the measurement uncertainty and accuracy of the numerical model.

Univariate arbitrarily distributed performance quantities

Removing the assumption that the results are normal distribution increases the complexity to mea-

sure the distance between two samples, because the distribution is unknown. To quantify the

distance between two unknown distributions, goodness of fit statistics are used. These measure the

difference between the two distribution functions on the probability axis. A few examples of such

statistics are the Kolmogorov-Smirnov statistic [19, 21], the Anderson-Darling statistic [19, 22]

and the Chi squared statistic [19]. Furthermore, it is possible to calculate the integral difference

between the two distribution functions by means of equation 2.3 [23].

dc =
∫ +∞

−∞
|F1(x)−F2(x)|dx (2.3)

Where F1 and F2 are the cumulative distribution functions of distribution 1 and 2, respectively.

An example of a method based on this principle is the P-box method [8, 17]. To conclude if the

numerical model is valid, it is necessary to determine if the distance is larger than the required

model accuracy and the measurement uncertainty as illustrated in figure 2.3.

Experimental results
Experimental results +/- measurement uncertainty
Numerical results

F
(x

)

x

F
(x

)

x

Valid Invalid

Figure 2.3: Illustration of a validation criterion for univariate arbitrarily distributed result quantities

based on the measurement uncertainty.
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Multivariate normally distributed quantities

Themultivariate normal distribution can be plotted as isoline plot, where every isoline is a n-dimen-

sional ellipsoid. The fact that every isoline is an ellipsoid leads to a difference quantification based

on the shape of the isolines using three difference measures as presented in figure 2.4 for a bivariate

normal distribution [18].

Mean value Axis ratio Rotation

Experimental results
Numerical results

�

Figure 2.4: Illustration of the differences between multivariate normally distributed performance

quantities.

These three distance measures describe the mean value difference, the difference between the

standard deviations and the rotational difference between the distributions. To determine if the

multivariate normally distributed result quantities are different, it is essential to determine if the

quantified differences are stochastically significant. Furthermore, it is necessary to determine if

the distance is larger than the measurement uncertainty and the required model accuracy.

Multivariate arbitrary distributed quantities

Currently, no mathematical distance exists to quantify the difference between numerical and ex-

perimental arbitrarily distributed results, because the distribution is unknown. If the distribution

function would be known, it would be possible to quantify the difference between the two distri-

butions by means of equation 2.4.

dp =

∫

f1(x)− f2(x)dx (2.4)

Where f1 and f2 are the multivariate probability density functions of the numerical and the exper-

imental results, respectively.

2.2 Objective and research approach

As explained in chapter 1, the goal of validation is to obtain a valid numerical model that represents

the experimental results. To determine if a model is valid, it is essential to quantify the difference

between the numerical results and the experimental results. Since these results are mostly multi-

variate and arbitrarily distributed [15, 16], it is essential to use a validationmethodwhich is suitable

for multivariate results that are arbitrarily distributed. However, currently no method exists to val-

idate a stochastic numerical model that produces arbitrarily distributed multivariate results [14].

Consequently, the goal of this work is to develop a suitable validation method that is capable to de-
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termine if there is a significant difference between numerical and experimental multivariate results

with an arbitrary distribution.

To achieve this goal, the research approach presented in figure 2.5 is developed. The first step

towards developing a validation method for arbitrarily distributed results is estimating the distri-

bution function of the arbitrarily distributed results. Retrieving the distribution function is vital to

identify shape differences between the arbitrarily distributed numerical and experimental results.

Based on the estimated distribution functions, a distance measure has to be defined that quantifies

the difference between two distribution functions. Subsequently, it is essential to determine if the

measured difference is statistically significant. Next, it is essential to define validation criteria,

which are used to determine if the numerical model is valid. One of the criteria, the most essential

one, is based on the experimental measurement uncertainty, because validating a numerical model

beyond the accuracy of the experimental results is meaningless.

After development of the new validation method, it is essential to perform a benchmark test to

quantify the effectiveness of the developed validation method. By means of a benchmark test,

it is possible to compare different validation methods to show the improvements of the devel-

oped validation method. Moreover, a multivariate numerical model is validated to demonstrate the

developed validation method under engineering conditions.

Significance levelDistribution estimation Distance Criteria

Figure 2.5: Research approach to develop a validation method for multivariate arbitrarily dis-

tributed results.
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In the previous chapters it has been explained that quantification, verification and validation are

required to determine if a numerical model is valid. To perform any of these steps, it is essen-

tial to have experimental results, a numerical model and a method to determine if the numerical

model represents reality. These experimental results scatter for two reasons. First of all, the exper-

imental results scatter due to the natural variation of the specimens. Second, every experimental

measurement has measurement uncertainties. The overall variation of the experimental results is a

superposition of the natural variation and the measurement uncertainties.

The measurement uncertainties are used to define some of the validation criteria. These criteria

are used to decide if a significant difference is present between the numerical and the experimental

results. Without a criterion based on the measurement uncertainty, there is no quantitive means

of determining the validity of a model [24]. If it is decided on basis of the validation criteria that

there is a significant difference, it is essential to minimise this difference to obtain a valid numeri-

cal model.

In the following subsections the different types of uncertainties are presented as well as the theo-

retical background of the experiments, simulations and theory required to perform validation and

minimisation of the distance between simulation and experiment.

3.1 Errors and uncertainties

In context of validation, errors have to be eliminated while uncertainties have to be taken into

account. The following definitions for error and uncertainty are used throughout this work, which

are consistent with the definitions published by ASME [2].

Error: A recognisable deficiency in any activity of modelling or experimentation that

is not due to lack of knowledge.[2]

Uncertainty: A potential deficiency in any activity of modelling or experimentation that is

due to inherent variability (aleatory uncertainty) or lack of knowledge (epis-

temic uncertainty). [2]

Since errors should be eliminated before performing validation, only uncertainties are explained

here. Uncertainties can be divided into aleatory and epistemic uncertainties [2, 8, 17, 25]. An

aleatory uncertainty represents the physical variability present in a system. It cannot be elimi-

nated, but it might be characterised more precisely by using additional measurements. Typically,

a probabilistic approach is used to characterise aleatory uncertainty [2, 8]. Epistemic uncertainties

are potential deficiencies due to lack of knowledge [2, 8, 17, 25]. This can either be recognised

lack of knowledge or unnoticed lack of knowledge. For example, assumptions are a form of lack of

knowledge that can be quantified. Unnoticed lack of knowledge is mostly caused by human error
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and it is difficult to estimate the magnitude of such uncertainties. Typically, the unnoticed lack

of knowledge is minimised using procedures and protocols, different testing facilities, equipment

calibration, various testing procedures, and multiple expert opinions to detect unnoticed lack of

knowledge [8].

Furthermore, in many cases it is impossible to measure the desired variable directly (e.g. Young’s

modulus). Therefore, it is calculated using a combination of several directly measurable variables.

Consequently, the measurement uncertainty of the variable of interest has to be determined indi-

rectly using either interval arithmetic [26] or the uncertainty propagation theory of Gauss [26, 27].

Assuming the uncertainty of the directly measured variables is much smaller then the measured

value, it is possible to determine the uncertainty ∆G of the desired quantity G using interval arith-

metic which is a Taylor series expansion of the first order as shown in equation 3.1 [26, 27].

∆G =

∣

∣

∣

∣

∂G

∂x

∣

∣

∣

∣

∆x +

∣

∣

∣

∣

∂G

∂y

∣

∣

∣

∣

∆y + ... (3.1)

The function of which one wants to determine the uncertainty is G, which depends on multiple

variables (e.g. x and y). Furthermore, ∆x and ∆y represent the maximum uncertainty of the variable

x and y respectively. If the measurements are independent of each other, it is more probable that

some uncertainties counter other uncertainties. To calculate the uncertainty of a variable including

this effect, equation 3.2 is used, which is the uncertainty propagation theory of Gauss [26].

∆G =

√

(

∂G

∂x
∆x

)2

+

(

∂G

∂y
∆y

)2

+ ... (3.2)

Where G is the quantity of which one wants to calculate its uncertainty ∆G. The variables x and y

are two of the variables on which the variable G depends. The constants ∆x and ∆y represent the
maximum uncertainty of the variable x and y respectively.

3.2 Experimental fundamentals

For this work, it was chosen to validate a numerical sphere indentation model to demonstrate the

developed validation method (see chapter 6). Besides the experimental indentation experiments,

tensile experiments have been performed to accurately determine the stress-strain behaviour of the

material. This stress-strain behaviour of the material is needed as input for the numerical model.

In this section the theory used to calculate the indirectly measured variables is presented.

3.2.1 Tensile experiments
The tensile experiments used to determine the stress-strain tensile behaviour of materials can be

performed using several standardised geometries [28]. During the experiments, the specimen elon-

gation ∆L and applied force F are measured. Using these two measurements, the engineering

stress σeng and strain εeng are calculated using respectively equation 3.3 [29, 30] and equation 3.4

[29, 30].

σeng =
F

A0
(3.3)

εeng =
∆L

L0
(3.4)
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Here is A0 the initial cross-sectional area and L0 the initial gauge length of the specimen. The

relation between engineering stress and strain is assumed to be linear for small strains. This linear

elastic behaviour is expressed by means of the Youngs modulus, which is calculated using equation

3.5 [29],

E =
dσeng

dεeng
(3.5)

where E, σeng and εeng are respectively the Youngs modulus, the engineering stress and engineer-

ing strain. Since the stress-strain behaviour of the material has to be used as input for the numerical

indentation model, it is mandatory to transform the engineering stress-strain behaviour to the true

stress-strain behaviour. The true strain is based on the rate of instantaneous increase of instanta-

neous gauge length. The relation between the engineering strain and the true strain is presented in

equation 3.6 [31, 30],

εtrue = ln(1+ εeng) (3.6)

where εtrue and εeng are respectively the true strain and the engineering strain. Assuming the

material volume remains constant and deforms homogeneously, the relation between engineering

stress and true stress is given by equation 3.7 [31, 30],

σtrue = σeng(1+ εeng) (3.7)

where σtrue is the true stress and σeng the engineering stress.

3.2.2 Instrumented indentation experiments
Instrumented indentation experiments can be used to identify local material properties [32, 33].

Depending on the type of indenter (e.g. spherical or pyramidal) being used, the obtainable material

properties vary. For this work a sphere indenter is used, which is a non-self-similar indenter. The

strain field under the indent created by a spherical indenter depends on the ratio of indentation

diameter di and indenter diameter Di. This effect can be used to obtain the hardening behaviour of

the material.

Evaluation of classical instrumented indentation experiments via the method of Oliver & Pharr

results in indentation hardness HIT and indentation modulus EIT . The indentation hardness is

calculated with equation 3.8 [32, 33],

HIT =
Fmax

Ac(hc)
, hc = hmax−

3

4

Fmax

S
(3.8)

where Fmax, hmax, Ac, hc and S are respectively the maximum applied force, the maximum inden-

tation depth, the contact area, the indentation depth and the contact stiffness. These variables are

illustrated in figure 3.1. To calculate the indentation modulus, equation 3.9 is used [32, 33].

EIT =
1−ν2

1
Er
− 1−ν2

i

Ei

, Er =
S
√

π

2
√
Ac

(3.9)

Here Ei, νi and ν are respectively the Youngs modulus of the indenter, the Poisson ratio of the

indenter and the Poisson ratio of the material being indented. The Young’s modulus and Poisson

ratio of the indenter (Ei, νi) aswell as the Poisson ratio of the material being indented (ν) must be

known to solve equation 3.9. Furthermore, the relation between contact area and indentation depth
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Figure 3.1: a) Sketch of the contact area during a spherical indentation experiment, b) Sketch of

the force indentation depth curve of a sphere indentation experiment.

is required, which can deviate from the one of an ideal indenter. Besides the classical material

properties EIT andHIT , it is possible to determine the hardening behaviour of the indented material

by means of a semi-empirical model [34] or inverse parameter identification using finite element

simulations [35, 36, 37, 38].

3.3 Simulation fundamentals

To validate a numerical model, it is mandatory to compare the experimental and numerical results

with each other as explained in chapter 2. Since the experimental results are stochastic by nature

and the numerical model should represent the experimental results (reality), it is reasonable to

assume that the numerical results are stochastic as well. To obtain these stochastic numerical

results, it is mandatory to extend the deterministic model (e.g. a finite element model) with a

probabilistic method to obtain stochastic numerical results. In order to implement the probabilistic

part of the model, it is essential to quantify the random variation of the input parameters of the

numerical model which are presented exemplarily on the left side of figure 3.2. Subsequently,

the variation of the input variables is propagated to the output variables which is illustrated with

the two arrows in figure 3.2. In order to explain further details of the probabilistic model, it is

necessary to introduce the terms population, sample and distribution. These terms are explained

in the next subsection. Details concerning the probabilistic model are presented in subsequential

subsections.

3.3.1 Population, sample and distribution
A population in statistics is referred to the total set of observations [20]. This set of observations

is often either impossible to obtain or it is too large to be practical for further stochastic analysis.

Therefore, it is common practice to use samples. A sample is a set of observations which is ran-

domly drawn from a population [20]. To determine whether a sample is an accurate representation

of the population, the distribution of the sample is compared to the distribution of the population.

A distribution assigns a probability to each possible value taken by a random variable. It can be

defined as probability density function and cumulative distribution function. The cumulative dis-
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Figure 3.2: Structure of stochastic models. (figure based on [39]).

tribution function is the integrated form of the probability density function. If the integral of the

probability density function is evaluated using the domain [−∞, ∞], it is equal to one as shown in

equation 3.10 [19, 20, 40],
∫ ∞

−∞
f (x)∂x = 1 (3.10)

where f (x) is the probability density function of the variable x.

3.3.2 Distribution identification
For a stochastic numerical model it is mandatory to randomly generate the values of the input

variables. These random values are generated based on the distribution of the input variables.

Therefore, it is essential to know the distribution of the input variables. However, only a sample of

the population of the input variables is measured experimentally. Thus, it is essential to identify the

distribution belonging to the sample. Typically, a distribution is assumed for the population which

is then compared to the discrete cumulative function of the experimentally measured sample. To

determine the goodness-of-fit of the assumed distribution of the population, the difference to the

discrete distribution of the sample is typically determined with the Kolmogorov-Smirnov (K-S)

[19, 21] or Anderson-Darling (A-D) statistic [19, 22]. The K-S statistic determines the largest

difference on the probability axis between two cumulative distribution functions. Therefore, it is

focussed on the central part of the cumulative distribution function. Since the maximum difference

is never detected in the tails of a distribution with the K-S statistic, the A-D statistic is developed.

It puts more weight at the tails of the distributions, but it is assumed that the samples are infinitely

large. The A-D statistic is calculated by means of equation 3.11 [19, 22],

A2 =
n

∑
i=1

((2i−1)(ln[Fx(xi)]+ ln[1−Fx(xn+1−i)])/n)−n (3.11)

where Fx, xi and n are respectively the proposed cumulative distribution function of the population,

the ith data point of the ascending sorted sample and the size of the sample. To correct the distance

measure with the A-D statistic for sample size effects an correction factor is added which is distri-

bution dependent. When the population is assumed to be normally distributed, than the correction

factor is calculated with equation 3.12 [19, 22],

A∗ = A2

(

1+
0.75

n
+

2.25

n2

)

(3.12)
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where A∗, A and n are respectively the corrected A-D statistic, the uncorrected A-D statistic and the

sample size. Correction factors for other distributions can be found in [19]. Based on hypothesis

tests, it is determined if the differences measured with the K-S or A-D statistic are stochastically

significant. Hypotheses and hypothesis tests are explained in section 3.4.4.

3.3.3 Probability distribution of the response quantities
In a stochastic model the probability distribution function of the output variables is calculated

using one of the following methods: First Order Reliability Method (FORM) [41, 42], Second Or-

der Reliability Method (SORM) [41, 42], response surface method [39] or Monte Carlo simulation

[39, 43].

FORM and SORM are methods to determine the probability that a product fails. These methods

approximate the border between failure and safe design using a linear or second order function, re-

spectively. The error of the approximation functions is related to the probability of failure. Conse-

quently, these methods are not suitable to determine the probability that two samples are different.

In contrast to the reliability methods (FORM/SORM), the response surface method can be used to

determine the entire distribution of the output variables. But, the accuracy of the method depends

on the accuracy of the approximated response surface.

The Monte Carlo simulation method provides the probability distribution of the responses without

additional approximations. Thereby, it guarantees that the probability distribution calculated for

the response quantities is accurate in the domain where the probability density is large. Conse-

quently, this method is the preferred method to create numerical models for validation. Further

details about a Monte Carlo simulation are presented in the next section.

3.3.4 Monte Carlo simulation
A Monte Carlo simulation uses the deterministic model as a "black box" to create a probabilistic

model. For a Monte Carlo simulation the input and output variables of the deterministic model are

considered as random variables. The values of these random input variables are taken randomly

from the population of the input variables. [43, 44] The values of the random output variables cor-

responding to these input values are obtained by solving the deterministic model multiple times.

These values for the random input variables are generated using the following steps.

First, a randomly distributed multivariate sample is generated with an uniform distribution between

zero and one for each random input variable using the Simple Random Sampling (SRS) method

[40, 43]. When it is required to generate a small sample, which represents the uniform distribu-

tion accurately, the Latin Hypercube Sampling (LHS) method is used [45]. For this method the

range [0, 1] is divided into N equal sub-ranges, where in each sub-range one random data point is

created SRS method. This results in greater numerical efficiency.

The uniformly distributed multivariate sample is transformed into a standard normally distributed

multivariate sample. Commonly the variables of the multivariate population are not independent

of each other. Therefore, it is essential to generate multivariate samples, which poses the corre-

lation present in the population. The multivariate variables of the standard normally distributed

sample are correlated with each other using the Cholesky decomposition shown in equation 3.13

[46, 47],

A = L
T
L, Rc = R L (3.13)

where R, Rc, A, L, L
T are respectively the uncorrelated standard normally distributed sample, the

correlated standard normally distributed sample, the correlation matrix, a lower triangular matrix

and its transpose. The correlation matrix shows the correlation coefficients between all variables
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in matrix form. The correlation coefficient between two variables is calculated using equation 3.14

[19, 20, 40],

ρxy =

N

∑
i=1

(xi− x̄)(yi− ȳ)

√

N

∑
i=1

(xi− x̄)2
N

∑
i=1

(yi− ȳ)2

(3.14)

where x and y are two random variables. For successful Cholesky decomposition, the correlation

matrix must be a hermitian positive definite matrix. Although the standard normally distributed

samples must be uncorrelated, some correlation by chance is always present when working with

random numbers. When the correlation is significant, it is required to uncorrelated the standard

normally distributed samples using the Cholesky decomposition. [46] To determine if the sam-

ples are significantly correlated, a hypothesis test is performed based on the statistic presented in

equation 3.15 [20, 48, 46],

t = r

√

N−2

1− r2
(3.15)

where N is the number of data points in the sample and r is the correlation coefficient. The quantity

t is student-t distributed with N-2 degrees of freedom under the null hypothesis r1 = r2 [20, 48, 46].

When the null hypothesis is rejected, it is concluded that the samples are still correlated. This is

an iterative process that is repeated till no significant correlation remains. These uncorrelated

standard normally distributed variables are correlated using the correlation matrix of the normally

distributed population. To obtain other distributions as the standard normal distribution, other

models as the Nataf model can be applied to transform the correlated standard normally distributed

samples [44].

3.4 Validation fundamentals

In this section the theory is presented, which is essential to develop a new validation method to

determine whether a difference exists between stochastic numerical results and stochastic experi-

mental results. To develop a validation method for arbitrary multivariate results, it is essential to

follow the steps presented in chapter 2 (on page 10). The essential theory required to implement

these steps is presented in this section and consists of the following topics: probability density

estimation functions, distance measures, distributions of distance measures and hypothesis tests.

Furthermore, some additional theoretical background of currently used validation methods is pre-

sented which is required to compare the newly developed validation method to the currently used

validation methods.

3.4.1 Estimated density functions
In this subsection several methods are presented for constructing estimated density functions based

on a sample (dataset). These methods are suitable to estimate the distribution of a sample without

assuming the distribution of the population of which the sample is drawn, but each method has its

own characteristic that could be undesired with respect to validation. To visualise the differences

between these distribution estimation methods, only one example dataset is used because the dif-

ferences are a direct consequence of the assumptions made for the methods. This example dataset

is presented in table 3.1 and figure 3.3. It contains twenty bivariate results, which are generated
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Figure 3.3: Scatter plot of the example data set containing 20 paired results.

Table 3.1: Values of the example data set.

Data point 1st natural frequency [Hz] von Mises stress [kPa]

1 16.84 563.97

2 14.35 534.38

3 15.39 574.92

4 13.42 565.35

5 14.51 536.58

6 14.98 597.18

7 13.80 552.79

8 14.06 564.07

9 13.47 579.94

10 14.09 563.44

11 12.90 536.03

12 14.75 533.43

13 13.84 548.07

14 15.79 590.68

15 14.92 527.19

16 16.17 559.65

17 13.23 505.79

18 13.43 519.58

19 14.83 570.01

20 13.28 528.54
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with a Monte Carlo simulation that calculates the first natural frequency of a simply supported plate

and the von Mises stress in a thin preloaded aluminium plate based on stochastic input variables.

The first natural frequency f11 is calculated using equation 3.16 [49],

f11 =

√

√

√

√

√





π2(1+ a2

b2
)
2

2πa2

√

Et2

12ρd(1−ν2)





2

+
F1

4ρdta
2b

+
F2

4ρdtab
2

(3.16)

where a, b, t, E, ρ , ν , F1, F2 are respectively the length of the plate, the width of the plate, the

thickness of the plate, the Youngs modulus, the density of the material, the Poisson ratio, the

applied normal force on the length of the plate and the applied force on the width of the plate. The

von Mises stress σv is calculated with equation 3.17 [31, 50],

σv =

√

F1

ta

2

+
F2

tb

2

− F1

ta

F2

tb
(3.17)

The input variables are chosen as normally distributed which produces an unknown distribution

for the first natural frequency and the von Mises stress due to the nonlinear relation between input

variables and the response quantities as presented in equation 3.16 and equation 3.17.

The histogram method

Histograms are the oldest and the most used density estimators that are created using so called bins

[15, 40]. The estimated probability density function is calculated using equation 3.18 [15],

f (x) =
1

n1wt

n

∑
i=1

ki(x) (3.18)

where f (x), n, wt and 1 are respectively the estimated probability density function, the amount

of data points, the transposed multivariate width vector of the bins and a vector with only entries

equal to 1. Furthermore, the variable ki is the indicator function that determines in which bin the

data points lie. This indicator function is calculated using equation 3.19 [15],

ki(x) =

{

1 if x0+
(⌈

x−x0
w

⌉

−1
)

w< xi ≤ x0+
⌈

x−x0
w

⌉

w

0 if x0+
(⌈

x−x0
w

⌉

−1
)

w≥ xi > x0+
⌈

x−x0
w

⌉

w
(3.19)

where ki(x), w, xi, x0 are respectively the indicator function, the vector of the bin width, the

coordinates of data point i and the origin of the histogram. Since the bins (intervals) are open on

the left side and closed on the right side, it is essential to use the ceiling function to calculate the

value of the indicator function. Although the histogram method is a common used estimator, it

has the following two drawbacks: the estimated probability density function is not continuous and

it depends on the chosen origin (x0) and bin width (w). [15] The discontinuous behaviour of the

estimated probability density function is shown in figure 3.4, which is generated using the example

data presented at the beginning of this section.
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Figure 3.4: Discretised estimated probability density function of the example dataset based on the

histogram method.

Balloon density estimator

To estimate the probability density function of a sample without a user selected start point (origin),

it is essential to use an estimation method which is based on the sample points. The simplest

possible estimator is a rotation symmetric estimator with a uniform density, which is called balloon

estimator [16] or naive estimator [15]. In this document, it is chosen to use the name balloon

estimator. The estimated probability density function based on the balloon density estimator in

d-dimensions is calculated with equation 3.20 [15],

f (x) =
1

n

n

∑
i=1

ki(x)

cd r
d

(3.20)

where n, r, d and cd are respectively the amount of sample data points, the radius of the balloon,

the dimensionality of the balloon and the n-dimensional volume of a unit sphere. If the sphere

is 2-dimensional, cd is equal to π . Furthermore, ki(x) is the indicator function which indicates

if a random value x is within the balloon around sample data point x i. This indicator function is

calculated using equation 3.21 [15],

ki(x) =

{

1 if
√

(x−xi)T (x−xi)≤ r

0 if
√

(x−xi)T (x−xi)> r
(3.21)

where xi is a vector with the coordinates of sample data point i and r is the chosen balloon radius.

By using sphere shaped balloons the method is limited to samples with an equal variance for all

components of the sample. To overcome this issue, it is mandatory to transform the spherical

balloons into an ellipsoidal balloons where the axis ratio is equal to the ratio of the variances of the

multivariate sample. The probability density function based on ellipsoidal balloons is calculated

by substituting equation 3.22 in equation 3.20 [15],

ki(x) =







1 if

√

(x−xi)T
(

1
a
(x−xi)

)

≤ r∗

0 if

√

(x−xi)T
(

1
a
(x−xi)

)

> r∗
(3.22)
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where a and r∗ are the vector of variances of the sample and the selected balloon radius r nor-

malised by the smallest standard deviation in vector a. [15]. To visualise the characteristics of

the balloon estimator, the estimated probability density function based of the example dataset

(table 3.1) is shown in figure 3.5a. The circular shape of the visualised balloons in figure 3.5a is

caused by the axis ratio of the diagram. Any other axis ratio would result in elliptical balloons.

Although the balloon estimator does not require a user selected origin, the estimated probability

density function still shows the discontinuous character of the histogram method.

Alternatively to using a constant balloon radius, it is also possible to use a variable balloon radius

based on the nearest neighbour distance [15]. Instead of using a constant balloon radius, the bal-

loon radius is different for each data point. Hence, the estimated probability density function is

calculated with equation 3.23 [15],

f (x) =
1

n

n

∑
i=1

ki(x)

cd ri
d

(3.23)

where ri is the data point dependent balloon radius. The other variables in this equation remain

identical to their definition for a constant balloon radius except the indicator function which is

calculated using equation 3.24 [15],

ki(x) =







1 if

√

(x−xi)T
(

1
a
(x−xi)

)

≤ ri

0 if

√

(x−xi)T
(

1
a
(x−xi)

)

> ri

(3.24)

where ri is the data point dependent radius. The other variables are previously defined for equation

3.21. Applying the variable balloon density estimator to the example data presented in table 3.1

gives the estimated probability density function that is shown in figure 3.5b. The main difference

between the balloon density estimator and the variable balloon density estimator is the amount of

detail preserved in different parts of the estimated probability density function.
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Figure 3.5: Discretised estimated probability function of the example dataset using 500 x 500

pixels based on: a) The balloon estimator, b) The variable balloon estimator.
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Kernel density estimator

The kernel density estimator is a generalisation of the balloon density estimator that is continuous

if and only if the kernel itself is continuous [15]. Although, any probability density function can

be used as kernel, it is common to use a symmetric kernel. A typical kernel is the multivariate

gaussian probability density function as shown in equation 3.25 [15],

ki(x) =
d

∏
j=1

1√
2πσ j

e
−0.5

(x j−xi, j)
2

σ j
2

(3.25)

where σ j, d and xi, j are the jth component of standard deviation of the multivariate gaussian kernel,

the dimensionality of the kernel and the jth component of the ith sample data point respectively.

Hence, the estimated probability density function using a gaussian kernel is calculated with equa-

tion 3.26 [15, 51],

f (x) =
1

n

n

∑
i=1

ki(x) (3.26)

where n and ki(x) are the size of the sample and the kernel density function positioned at data

point i respectively. For an optimal result, the kernel width should be chosen such that difference

between the estimated distribution function and the probability density function of the population is

minimal. Using the approximate integrated mean error, the optimal kernel width can be calculated

using equation 3.27 [15],

σd+4
j =

dC2

C1
2n

∫

(∇2 f j)2
(3.27)

where d, ∇2, C1 and C2 are the dimensionality of the problem, the laplacian operator and two

kernel dependent constants respectively. Furthermore, the function f j is the jth edge distribu-

tion of the multivariate probability density function of the population from which the sample is

drawn. The definition of the constants C1 and C2 are derived for a gaussian kernel in appendix B.

Since equation 3.27 depends on the assumed distribution of the population of which the sample is
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Figure 3.6: Discretised estimated probability function of the example dataset using 500 x 500

pixels based on the Gaussian kernel estimator.
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drawn, it is mandatory to assume a distribution type for the population. Assuming the sample is

drawn from a multivariate normal distribution, the equation to calculate the optimal kernel width

simplifies to equation 3.28 [15, 51],

σopt = σdata n
−1/(d+4) (3.28)

where d is the problem dimensionality, σdata the standard deviation of the data and n the amount

of data points in the sample. Although this solution is derived for assumed normally distributed

data, it works well for distributions which moderately deviate from normality. To investigate the

error made when using equation 3.28 instead of 3.27 when the sample is non-normally distributed,

it is necessary to evaluate both equations for several non-normally distributed samples. In liter-

ature [15], it is published that the optimal kernel width is insensitive for the kurtosis which is

investigated by using a sample that is student-t distributed. Even if the samples are drawn from

a multimodal normal distribution, the error made by using equation 3.28 is small [15]. Further-

more, it is published in literature [15] that the error is still less than 18% when the optimal kernel

width is calculated with equation 3.28 for lognormally distributed samples with a skewness up

to 1.0. Of course, for heavily skewed data or data with multiple significantly separated peaks

in the probability density function, equation 3.28 will produce a significant error. The estimated

probability density function of the example dataset (see table 3.1) is calculated with equation 3.26

and it is visualised in figure 3.6. This estimated probability density function is generated using

equation 3.28 to define the kernel width.

3.4.2 Distance measurement methods
The next step required in the validation process of a numerical model is quantification of the

difference between the numerical results and the experimental results as presented in figure 2.5.

To quantify the difference, it is essential to mathematically describe the difference between the

numerical and experimental results. This difference can be measured using many distance mea-

sures. The distance measures relevant for this work are the mean value difference, the covariance

matrix difference, the univariate distributional difference and the multivariate distributional differ-

ence. Although the goal of this work is to develop a validation method for arbitrarily distributed

multivariate samples, also some univariate distance measures are presented. These univariate dis-

tance measures are used to explain the different type of distance measures before generalising these

distance measures to the multivariate case.

Mean value and covariance matrix sample difference

The distribution of samples is commonly assumed to be normally distributed. Consequently, the

mean value difference is the mostly used distance to quantify the difference between two samples.

Whether the quantified distance is significant depends on the variation present in the samples. To

eliminate this dependancy, it is mandatory to normalise the mean value difference by means of the

sample variation. This normalisation is possible for multivariate as well as univariate samples.

For a univariate sample, the mean value difference is normalised using the sample standard deviation

as presented in equation 3.29 [18, 19, 20, 40],

Dm =
|x̄2− x̄1|

spl
(3.29)
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where x̄1, x̄1 and spl represent the mean value of sample one, the mean value of sample two and the

pooled standard deviation. The pooled variance is calculated with equation 3.30 [18, 19, 20, 40],

spl
2 =

(n1−1)s1
2+(n2−1)s2

2

n1+n2−2
(3.30)

where n1, n2, s1 and s2 are respectively the sample size of sample one and two and the standard

deviation of sample one and two. Equation 3.30 is only valid if the standard deviation of the

populations of which the samples are drawn are identical [18, 19, 20, 40, 52]. To verify this

assumption, it is necessary to calculate the difference between the standard deviation of the samples

with equation 3.31 [18, 20, 40],

Dv =
s1

2

s2
2

(3.31)

where s1 and s2 are the standard deviation of sample one and two respectively. The distance Dv

is used to measure the difference between the sample variances and is used in combination with

the mean value difference to determine the difference between two sample drawn form normal

distributions.

Similar to the univariate case is it essential to normalise the euclidean mean value distance to deter-

mine if the samples are significantly different. Such a normalised sample has a multivariate normal

distribution with unit variance and a covariance equal to zero. This transformation is expressed in

equation 3.32 [18],

z= S
-1/2

x (3.32)

where x is the multivariate normally distributed sample and S is the covariance matrix of this

sample. The variable z is the normalised sample with unit variance and a covariance of zero.

Concerning this transformation one remark has to be made. The transformation is only possible if

the covariance matrix is a positive definite matrix. Combining the euclidean distance between the

normalised samples with the transformation gives the Mahalanobis distance which is calculated

with equation 3.33 [18],

DM
2 = (z̄2− z̄1)

t(z̄2− z̄1) = (x̄2− x̄1)
t
S
−1
pl (x̄2− x̄1) (3.33)

where z̄1, z̄2, x̄1, x̄2 and Spl are respectively the normalised mean value vectors of sample one and

two, the mean value vectors of samples one and two and the pooled covariance matrix. The pooled

covariance matrix is calculated using equation 3.34 [18],

Spl =
(n1−1)S1+(n2−1)S2

n1+n2−2
(3.34)

where the variable S1, S2, n1 and n2 are the covariance matrix of sample one and two and the

sample size of the sample one and two. Moreover, it is assumed that the covariance matrices of

the populations are identical [18]. In addition, it is necessary that the condition n1+n2−2≥ d is

true in order to have a non-singular pooled covariance matrix, where d is the dimensionality of the

problem. These singularities are caused by dependent variables, which are no random variables and

should be excluded before determining the distance. Exclusion of the dependent variables leads

to a positive definite covariance matrix. Calculating the Mahalanobis distance based on such a

reduced dataset is common practice [18]. To verify whether the covariance matrices are identical of

the populations of which the samples are drawn, it is necessary to determine the difference between
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the covariance matrices of the samples. This difference is calculated with equation 3.35 [18],

M2 =

( |S1|
|Spl|

)n1−1( |S2|
|Spl|

)n2−1

(3.35)

where S1, S2, Spl are the covariance matrix of sample one and two and their pooled covariance

matrix. Furthermore, the variables n1 and n2 are respectively the size of sample one and two.

Difference between probability density and cumulative distribution functions

If the samples (experimental and numerical results) are not normally distributed, it is essential to

compare the cumulative distributions functions or the probability density functions with each other.

Classically, the difference between a measured cumulative distribution function and an assumed

cumulative distribution functions is determined with the Kolmogorov-Smirnov (K-S) statistic [19,

21] or Anderson-Darling (A-D) statistic [19, 22] which are methods to determine the goodness-

of-fit as presented in subsection 3.3.2. Another method to quantify the difference is to integrate

the difference between the two cumulative distribution functions as expressed in equation 2.3 and

illustrated in figure 3.7a. Furthermore, it is possible to incorporate the measurement uncertainties

to determine the difference that cannot be explained by measurement uncertainties, as shown in

figure 3.7b. This method is called the P-box method [8, 17]. To determine the difference between

two probability density functions, it is necessary to divide the probability density function in small

intervals which are used to calculate the probability that a value falls within that interval. This

method produces a histogram of the probability density function. The difference between two

histograms with equal bins is calculated with equation 3.36 [20, 19, 40],

Dp =
n

∑
i=1

(ei− ti)
2

ti
(3.36)

where ei, ti and n are respectively the observed probability that a data point falls in interval i, the

theoretical probability that a data point falls in interval i and the amount of intervals.
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Figure 3.7: Distance between two cumulative density functions: a) Integrated difference,

b) Difference according to the P-box method.
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Difference between arbitrary multivariate distributions

The difference between two arbitrary distributions can be measured based on the probability den-

sity functions of the multivariate distributions. Likewise the univariate probability density func-

tion, a discretisation of the multivariate probability density functions is essential to determine the

probability that a data point falls within an interval. Such a discrete probability density function

is an array of probabilities whose structure corresponds to the structure of a multidimensional

image where the pixel intensity is equal to the probability that a data point falls in this interval

(pixel). To measure the difference between two images classical graphical techniques can be used.

Biomedical researchers use these methods for example for colocalisation analysis between images

[53, 54, 55, 56]. Image based difference measurement methods are typically based on the correla-

tion between two images. A widely used colocalisation measure is the liner correlation coefficient

ρ0 which is calculated using equation 3.37 [53, 55, 54, 56],

ρ0 =

∑
i=1

(S1i−S1)(S2i−S2)

√

∑
i=1

(S1i−S1)
2

∑
i=1

(S2i−S2)
2

(3.37)

where S1i and S1 are respectively the intensity of pixel i of image one and the mean pixel intensity

of image one. Consistent notations are used for image two. This distance measure is used to

analyse if a linear correlation exists between the images [19]. The main disadvantage of this

distance measure is its sensitivity for the mean pixel intensity, which is highly dependent on the

discretisation domain. To tackle this issue, Manders et. al introduced a modified variant of the

linear correlation method by removing the subtraction of the average value as presented in equation

3.38 [53, 55, 54, 56],

ρm =
∑
i=1

(S1i)(S2i)
√

∑
i=1

(S1i)
2

∑
i=1

(S2i)
2 (3.38)

where S1i, S2i are respectively the intensity of pixel i of image one and the intensity of pixel i of

image two. This overlap coefficient is independent of the discretisation domain, but it has become

sensitive to the absolute value of a discretisation step (pixel). For image analysis in general, this

could be a problem. However, it is not a problem when comparing two discrete probability density

functions, because the integral of a probability density function is equal to one.

3.4.3 Distribution of distance measures
To determine if a difference is stochastically significant, it is essential to perform hypothesis testing

[19, 20, 40]. In order to conduct a hypothesis test to determine whether the samples are different, it

is essential to know the distribution of the distance measure. In this section, the distributions of the

distance measures are determined. These distributions are well documented, therefore the reader

is referred to literature for additional information about the distributions e.g. [19, 20, 40].

The mean value distance between two univariate samples is normally distributed for large sam-

ples according to the central limit theory [20, 40, 57, 58]. However, if the sample contains only

a few data points (less then 30 data points) the distribution of the mean value difference is not

normally distributed, due to significant fluctuations of the variance from sample to sample. If the

populations are normally distributed then the distribution of the mean value difference between

two samples is Student-t distributed. Even if small samples are taken from a non-normal distri-

bution with a bell shape, the difference between mean values of samples is still approximately
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t-distributed. [20] Hence, the mean value difference calculated with equation 3.29 is Student-t

distributed with n1+n2−2 degrees of freedom if the mean value difference is normalised using

the sample size as presented in equation 3.39 [18, 19, 20, 40],

t =
|x̄2− x̄1|

spl

√

1
n1
+ 1

n2

(3.39)

where spl, n1, n2, x̄1 and x̄2 are respectively the pooled variance of the sample, the size of sample

one and two and the mean value of sample one and two. The pooled variance is calculated with

equation 3.30, which is based on the assumption that the samples have an equal variance. To verify

if this assumption is true, it is essential to determine whether a difference between the sample

variances is present. This difference is calculated with equation 3.31 and it is Fν1,ν2 distributed

[18, 20, 40]. The variables ν1 and ν2 are respectively the degrees of freedom of sample one and

two.

For multivariate samples, the mean value difference between two samples is determined using

equation 3.33, which varies due to the sample to sample variation. The Mahalanobis distance is

normalised using the sample size as expressed in equation 3.40 [18],

T 2 =
n1n2

n1+n2
DM

2 (3.40)

where n1, n2 and DM
2 are respectively the sample size of sample one, the sample size of sample

two and the Mahalanobis distance. The variable T 2 is Hotelling-T 2 distributed with dimension-

ality d and n1+ n2− 2 degrees of freedom if the samples are normally distributed [18]. Since

the Hotelling-T 2 distribution is related to the F-distribution, it is common practice to express the

distribution of the Mahalanobis distance using equation 3.41 [18],

Fd,v−d+1 =
v−d+1

vd
T 2
d,v

v= n1+n2−2

(3.41)

where d and v are the dimensionality of the samples and the degrees of freedom. [18] To verify the

assumption that the covariance matrices are equal, which is used during definition of the pooled

covariance matrix, it is essential to measure the distance between the covariance matrices. Since

every sample drawn from one population is slightly different, also the variances vary from sample

to sample. The distribution of the difference covariance matrices is approximately Chi square

distributed with v = 1
2
d(d+ 1) degrees of freedom if the difference is calculated with equation

3.42 [18],

m=−2

(

1−
((

1

n1−1
+

1

n2−1
− 1

n1+n2−2

)(

2d2+3d−1

6(d+1)

)))

ln(M) (3.42)

where d, n1 and n2 are the dimensionality of the samples, the sample sizes of sample one and two

respectively. The variable m is the Box-M statistic and the variable M is the distance between the

covariance matrices, which is calculated with equation 3.35.

In practice, numerical and experimental results are often not normally distributed. If the samples

are non-normally distributed, the distribution of the mean value and covariance matrix difference

are unknown. In order to use the distance measures for normally distributed samples, it is required

to transform the results to normally distributed results. Some of these samples are transformable
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to a normal distribution because they are analytically related to the gaussian distribution (e.g.

the lognormal distribution) while others might be transformable to an approximately normally

distributed sample using a power transformation. An effective power transformation is the Yeo-

Johnson transformation [59, 60] which is based on the Box-Cox transformation [61]. The Yeo-

Johnson transformation is presented in equation 3.43 [59, 60],

W (x,λ ) =























(x+1)λ−1

λ if x≥ 0,λ �= 0

log(x+1) if x≥ 0,λ = 0

−((−x+1)2−λ−1)
2−λ if x< 0,λ �= 2

− log(−x+1) if x< 0,λ = 2

(3.43)

where x andW are the non-normally distributed sample and the transformed sample. Furthermore,

the variable λ is the coefficient of the power transformation. Its value is commonly between -3 and

+3 [59, 60, 61]. To determine if the transformation is successful, the goodness-of-fit is determined

between the transformed sample and the gaussian distribution. The transformation is considered

unsuccessful if either a significant difference is measured or the value of λ is outside the range

[−3;3].
If the samples are arbitrarily distributed, it is not possible to determine the distribution of the

distance measures. Even the distribution of the K-S statistic and the A-D test statistic are unknown

when the samples are univariate and arbitrarily distributed. Consequently, it is not possible to

perform a parametric hypothesis test to determine if the distance is significant.

3.4.4 Tests of hypotheses
Statistical hypothesis test are used to make a decision in acceptance or rejection of some state-

ment [20, 40]. The following definition is used for the term statistical hypothesis: A statistical

hypothesis is an assertion or conjecture concerning one or more populations [20, 40]. The truth

of a statistical hypothesis is never known with absolute certainty unless we examine the entire

population, which is impractical in most situations.

Therefore, it is common practice to use a sample to decide whether the null hypothesis is likely to

be true or false. Evidence from the sample which is inconsistent with the stated hypothesis leads to

rejection of the hypothesis. Evidence supporting the hypothesis leads to acceptance of the hypoth-

esis. An accepted hypothesis is a result of insufficient evidence to reject the hypothesis and does

not necessarily imply it is true. The hypothesis we wish to test is called the null hypothesis, which

is denoted by H0. The rejection of H0 leads to acceptance of an alternative hypothesis, which is

denoted by H1. [20, 40]

To decide whether the null hypothesis is accepted or rejected, the distance between the samples is

compared to the critical distance (critical value of the test statistic), which is based on the signif-

icance level α of the hypothesis test. Distances larger than the critical distance will be in favour

of H1 while values less or equal to the critical value will be in favour of H0 [19, 20, 40]. This

procedure leads to two possible erroneous results, a type I error and a type II error. Rejection of

the null hypothesis when it is true is called a type I error while acceptance of the null hypothesis

when it is not true is called a type II error as presented in table 3.2 [20, 40]. The absolute value of

the type I error is defined by the significance level of the hypothesis test and it is directly related to

the critical value of the hypothesis test. The type II error on the other hand is never known unless

we specify a specific alternative hypothesis and know the sample size. [20, 40]

To explain hypothesis tests in more detail, an example is presented below. In this example a mean
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Table 3.2: Possible results of a statistical hypothesis test. [20].

H0 is true H0 is false

Accept H0 Correct decision Type 2 error

Reject H0 Type 1 error Correct decision

value hypothesis test is performed using univariate normally distributed samples. The two used po-

pulations are both normally distributed with the following parameters N(5.2,0.2). The difference

between samples taken from these identical distributed populations is calculated with equation

3.39. This difference is Student-t distributed. To determine whether two random samples of 20

data points drawn from these populations are identical, a mean value hypothesis test is performed

using the null hypothesis µ1 = µ2 and the alternative hypothesis µ1 �= µ2. For this hypothesis test

an type I error of 5% is assumed which results in the two critical values as shown in figure 3.8a.

If the distance is larger than absolute critical value, the hypothesis will be falsely rejected (type I

error).

Figure 3.8: Error types of a hypothesis test based on a Student-t distributed distance using samples

containing 20 values: a) Type I error, b) Type II error.

To calculate the type II error, it is necessary to select a specific alternative hypothesis. In this case,

the alternative hypothesis µ1+ 1.0 = µ2 is selected where the constant is the distance calculated

with equation 3.39. Based on this alternative hypothesis, the probability is calculated to obtain an

absolute mean value difference less than the critical value if the populations were 1.0 separated

using equation 3.44 [20],

β =
∫ t+crit

t−crit

P(tH1
(x))dt (3.44)

where tcrit and tH1
are respectively the critical value of the null hypothesis and the distribution of

the distance if the populations were 1.0 separated. In this example, the distribution of distance
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is non-central Student-t distributed because the populations are 1.0 separated. The variable β is

called the type II error and is visually presented in figure 3.8b. To determine the probability to

reject the null hypothesis, the discriminatory power is calculated, which is defined as 1−β . Since
the value of the type II error β is depending on the random distance between the samples, it is

essential to determine the value of β for all possible differences, which can be plotted versus the

sample mean value distance Dm. This diagram is known as the operation characteristic [62, 63]

and is presented in figure 3.9.

Figure 3.9: Operation characteristic of a mean value difference which is normalised using the

standard deviation.

Similar to the hypothesis test presented in the example above, it is possible to create hypothesis

tests for the other distance measures presented in subsection 3.4.2 if the distribution of the distance

measure is known [18, 19, 20, 40, 64]. When the distribution of the distance measure is not

known, numerically intensive hypothesis test methods can be used like bootstrapping [65] and

randomisation based hypothesis tests [65]. For this work it is chosen to use the randomisation

method which is explained in the next subsection.

Randomisation hypothesis test

Randomisation hypothesis tests are used to determine if a distance is significant when the distri-

bution of the distance measure is unknown. To test whether a difference exists or not, so called

pseudo samples are used for the randomisation hypothesismethod to test the null hypothesis. These

pseudo samples are generated by switching data points from one sample with data points from the

other sample. To illustrate the principle of pseudo sample generation, all possible pseudo samples

of the original samples A and B (see table 3.3) are presented in the second column of table 3.4

together with the original samples. The total number of possible pseudo samples PS is calculated

with equation 3.45 [65],

PS=
(n1+n2)!

n1!n2!
(3.45)

where n1, n2 are respectively the sample size of sample one and two. After generation of all

possible pseudo samples, the difference between the pseudo samples is calculated. Subsequently,

the number of pseudo samples is calculated for which the difference is greater than or equal to
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the original difference. This number of pseudo samples is denoted as nge (Number Greater than

or Equal to). The number of pseudo samples for which the difference is larger than or equal to

the original difference is used to calculate the probability φ0, which is the probability that the

difference between the pseudo samples is lager than or equal to the difference between the original

sample using equation 3.46 [65],

φ0 =
nge+1

PS+1
(3.46)

where nge is the number of pseudo differences larger than or equal to the original difference and

PS is the total number of possible pseudo samples. The null hypothesis is rejected if the p-value

φ0 is smaller than the selected significance level α of the hypothesis test [65].

To demonstrate the calculation of φ0, an example is presented below for which two samples are

taken from a normal distribution N(3.0,0.1). These samples are presented in table 3.3 and they are

extraordinarily small to limit the amount of possible pseudo samples. The mean value difference

Table 3.3: Random samples from a normal distribution N(3,0.1).

Sample number Value

A1 2.984

A2 2.780

A3 2.999

B1 3.053

B2 2.903

between the original samples and the pseudo samples are presented in table 3.4 together with the

corresponding samples. In the first row of table 3.4, the original distance between the samples is

presented. The probability for a distance at least as large as the original distance for this example is

7/10, because 6 distances between pseudo samples are larger than the original distance as shown

in table 3.4. Using a user defined significance level of α = 0.1, it is concluded that the hypothesis

is not rejected, because 0.7 is larger than the significance value. Since this sample has only a few

variables and data points, all combinations can be calculated and used to determine the probability

of the hypothesis test.

Table 3.4: Distance of all possible randomisations of the random samples presented in table 3.3.

Randomisation number Data points nr. in sample A - B Distance

1 A1,A2,A3 - B1,B2 0.057

2 A1,A2,B1 - A3,B2 0.012

3 A1,A2,B2 - A3,B1 0.137

4 A1,A3,B1 - A2,B2 0.170

5 A1,A3,B2 - A2,B1 0.045

6 A1,B1,B2 - A2,A3 0.090

7 A2,A3,B1 - A1,B2 0.001

8 A2,A3,B2 - A1,B1 0.124

9 A2,B1,B2 - A1,A3 0.079

10 A3,B1,B2 - A1,A2 0.103
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For engineering problems which have more variables or data points, the number of possible com-

binations becomes too large to include all permutations. Instead of including all possible per-

mutations, the Monte Carlo method can be used to generate a limited amount of pseudo samples

NS. [65, 66, 24] The drawback is the possibility of an extra uncertainty (a false decision) in the

probability to reject the hypothesis, which can be calculated using equation 3.47 [65],

P

(

(nge+1)

(NS+1)
≤ α

)

≤ α (3.47)

where NS is the number of pseudo samples. If the data points in the original samples are mutually

exclusive and α (NS+1) is an integer, it is shown with equation 3.47 that the Monte Carlo test is

exactly valid. This implies that a Monte Carlo test is valid, because the probability to rejected the

null hypothesis is never too large when the p-value φ is calculated with equation 3.48 [65].

φ =
nge+1

NS+1
(3.48)

Although the test is valid for every value of NS if α · (NS+1) is an integer, the power of the test

increases with increasing value of NS. This leads to the limit of the ratio, which is denoted as φ l.

The limit is calculated with equation 3.49 [65].

φl = lim
NS→∞

nge+1

NS+1
(3.49)

The null hypothesis should be rejected if φl ≤ α , but φl is unknown. It can only be estimated by

using a finite number of pseudo samples by means of φ . Fortunately, the probability that φ ≤ α
can be calculated for a given nge and NS using equation 3.50 [65],

P(φ ≤ α|nge,NS) =

φ=α

∑
φ=0

P(nge|φ ,NS)P(φ)

φ=1

∑
φ=0

P(nge|φ ,NS)P(φ)
(3.50)

When assuming φ is uniformly distributed, which is true if the null hypothesis is true, equation

3.50 simplifies to equation 3.51 [65],

P(φ ≤ α|nge,NS,uniform prior) =

φ=α
∫

φ=0

(

NS

nge

)

φnge (1−φ)NS−nge
dφ

φ=1
∫

φ=0

(

NS

nge

)

φnge (1−φ)NS−nge
dφ

(3.51)

where the expression on he right-hand side is the cumulative incomplete beta function with the

parameters nge and NS−nge+1 [65].

To determine which hypothesis test is more powerful, it is again required to determine the proba-

bility to reject the hypothesis. This probability is calculated with equation 3.52 [65].

P (reject|α,NS,φ) =
α(NS+1)−1

∑
nge=0

(

NS

nge

)

φnge (1−φ)NS−nge
(3.52)
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Since the probability is depending on φ , it is only valid for the used samples and pseudo samples.

This is not what we would like to know when comparing hypothesis tests. We would like to know

the probability to reject the hypothesis among all samples that could be drawn from the popula-

tions. To determine the probability to reject the null hypothesis based on all possible samples of the

distributions, the conditional φ must be eliminated by including the probability density function of

φ f (φ), which results in equation 3.53 [65].

P (reject|α,NS) =
α(NS+1)−1

∑
nge=0

(

NS

nge

)

∫ 1

0
φnge (1−φ)NS−nge

f (φ)dφ (3.53)

3.4.5 Optimisation
As explained in chapter 2, during validation it is determined whether a numerical model is valid.

However, an engineer or scientist is interested in a valid model after execution of the validation

process. Consequently, if the model is declared "invalid", it is essential to decrease the distance

between the experimental results and the numerical results to obtain a valid numerical model by

changing the unverified parameters (assumptions). To find the settings of the unverified parame-

ters in an automatic manner, an optimisation method is used to minimise the distance. Since the

function of the distance between the numerical and experimental results is not differentiable with

respect to the unverified parameters, only zero order methods and response surface methods can be

used. Where the zero order methods work directly with the distances, the response surface method

first approximates the function of the distance around the original distance. The main advantage of

the response surface method is that a gradient based optimiser can be used at the response surface

making it more effective than a standard zero order method. For this work the adaptive response

surface methodology of the software OptiSLang 3.2.3 is used to minimise the difference between

the numerical and experimental results [67].

The first step of the adaptive response surface method is defining a subregion around the original

distance within the limits of the parameters of the numerical model. This sub-domain is probed

with Design of Experiments to generate support points. Based on these support points, a linear or

quadratic approximation of the response function is created which can be varied locally with the

moving least square routine. The adaptive response surface method starts with a relative large sub-

domain of the bounded parameter space that continuously decreases till the solution has converged

to an optimum. The starting sub-domain is calculated with equation 3.54, [67]

x
l
0 = x0− γstartr0, x

u
0 = x0+ γstartr0 (3.54)

where x0, r0and γstart are the start point of the response surface, the size of the global parameter

domain and the ratio of the sub-domain based to the global parameter domain respectively. The

default response surface domain is equal to 50% of the global parameter domain if the response

surface remains withing the global parameter boundaries else the parameter boundary is used as

response surface boundary. Subsequently, the support points of the response surface are defined

using the Design of Experiment based on the D-optimal method. At every support point an generic

optimisation is performed to obtain best possible approximation function for the response surface.

Subsequently, the minimum of the approximation function is determined. Next, a new sub-domain

is generated based on the range of the previous sub-domain with its centre at the optimum of the

previous iteration. New sub-domains are generated till one of the termination criteria is fulfilled.

To prevent oscillation between two sub-domains, a oscillation reduction factor is introduced which

slows down the zooming of the sub-domain. [67]
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arbitrary multivariate problems

The currently available validation methods should not be used to analyse non-normally distributed

multivariate samples, because they assume that the samples are normally distributed which could

lead to incorrectly validated models. To validate numerical models with non-normally distributed

multivariate results, a new validation method has to be developed. In this chapter the development

of a distribution independent validation method is presented. This method is suitable to validate

n-dimensional numerical models with arbitrarily distributed results using experimental results. To

successfully validate a set of arbitrary results, the validation method has to meet the following

requirements:

1. Differences should be measured using a generally applicable distance measure.

2. Decisions should be based on a generally applicable decision criterion.

3. Calculation procedures should be numerically efficient.

To develop a method to validate a numerical model with arbitrarily distributed results, it is essential

to follow the steps presented in figure 4.1. Before determining the distance between multivariate

numerical and experimental results, it is required to know, estimate or assume the underlying

distributions. For the currently used methods, a multivariate normal distribution is assumed. How-

ever, the underlying distributions of the numerical and experimental results are seldommultivariate

normal and they are in general not known. Consequently, it is required to estimate the underlying

Distribution estimation

Distance measurement

Confidence level

Unverified assumptions

Numerical results

Optimisation

Significance of distance

Experimental results

Effectivity of distance measure

Other
critearia

Figure 4.1: Flowdiagram of validation for arbitrary multivariate problems.
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distribution of the numerical and experimental results using a distribution estimation method. The

distribution estimation methods relevant for this work have been presented in section 3.4.1. Fur-

ther details concerning the settings of the used methods to estimate the underlying distributions are

presented in section 4.1.

Next, the distance between the estimated distribution functions has to be determined. To determine

the distance between two distributions, both the cumulative distribution function and the probabil-

ity density function can be used. Depending on the information to emphasise, the one or the other

is in favour. Properties such as heaviness of the tails and modes are easier recognised in a probabil-

ity density function, because they are directly represented by the densities. Since these properties

are of interest for validation, a validation analysis based on the probability density function is used.

The difference between two estimated probability density functions is calculated by solving equa-

tion 2.3 numerically, because a closed form solution does not exist for this equation if the samples

are multivariate and arbitrarily distributed. To solve this integral numerically, the integration do-

main must be limited and the estimated probability density function must be discretised. Such a

multivariate discrete probability density function is mathematically identical to a N-dimensional

pixel based gray-scale image. Therefore, it is also possible to express the difference between two

estimated probability density functions using image correlation. Such an image correlation method

is used to measure the distance for the developed validation method, which leads to the name Im-

age Based Validation Method (IBVM). Further details about the used distance measure as well as

the domain and the resolution of the images are presented in section 4.2.

Subsequently, it is determined whether the measured distance between simulation and experiment

is stochastically significant by means of a randomisation hypothesis test. Since the sample might

be an extraordinary one, it is insufficient to decide if a difference is present based on only the

significance level of the hypothesis test. It is required to determine the confidence level of a de-

cision based on the hypothesis test. The details of the hypothesis test and its confidence level are

presented in section 4.3. In addition, it is determined whether IBVM is more effective than the

currently used methods by comparing the power of the methods with another. Details concerning

the effectivity of a validation method are presented in section 4.4.

When one decides on basis of the validation criteria that the measured difference is too large and

there are one or more unverified model assumptions, it might be possible to minimise the dif-

ference between simulation and experiment. Minimising the difference between simulation and

experiment improves the validity of the model provided that the experimental results are not bi-

ased and the optimisation parameters remain in their physical restricted domain. However, care

must be taken with optimisation, because neither the experiments nor the simulations are exact.

One can only gain confidence in the experimental results by performing measurement uncertainty

analysis, which are presented in section 3.1. If these uncertainty analyses show that the experimen-

tal results are measured sufficiently accurate, minimisation by changing the unverified parameters

within a meaningful range could lead to a more accurate model. In this work, minimisation of the

distance measured between simulation and experiment is performed with the Adaptive Response

Surface method of the optimisation software OptiSLang, which is described in subsection 3.4.5.

The problem specific settings of the optimisation routine are presented in the specific example, see

chapter 6.
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4.1 Distribution estimation of the numerical and

experimental results

The underlying probability density function of a sample can be estimated with different methods

as presented in section 3.4.1. For validation it is required that the estimated probability density

function is independent of the chosen origin of the diagram used to present the estimated proba-

bility density function. This is only true for the kernel based estimation methods and the balloon

estimator, which is a special case of the kernel estimator. For this work, the gaussian kernel esti-

mator is used, because it is an effective kernel estimator [15]. The width of the Gaussian kernel

can be defined using two different approaches. The first approach defines the kernel width based

on a theoretically derived optimal width while the second method defines the kernel width based

on the measurement uncertainties.

Using the first approach, the kernel width is chosen autonomously. The optimal width of the Gaus-

sian kernel density estimator is calculated using equation 3.28, which is substituted in equation

3.26 to calculate the estimated probability density function. The second method defines the kernel

based on the measurement uncertainty. Since measurement uncertainties are normally distributed

according to the central limit theory if many sources contribute to the measurement uncertainty

[20, 40, 57, 58], the kernel width is defined using the confidence intervals of the measurement

uncertainty. Furthermore, it is meaningful to define a minimum number of data points per sam-

ple when using the measurement uncertainty to define the Gaussian kernel estimator to obtain an

accurate estimated probability density function. The minimum number of data points required to

estimate the probability density function is calculated by solving equation 3.28 for n.

To illustrate the influence of the kernel width on the estimated probability density function, the

probability density function of a bimodal distribution is estimated using the gaussian kernel es-

timator for different sample sizes. The distribution parameters of the bimodal distributions are

presented in table 4.1. From this distribution a sample is drawn, which contains 7, 20 or 1000 data

points. These data points are listed in table 4.2 for the sample containing 7 and 20 data points. To

estimate the underlying distribution function, a Gaussian kernel is positioned at every data point

as shown in figure 4.2. As presented in figure 4.2a, the kernel N(0,0.8) results in a relatively wide

estimated probability density function with little detail. Consequently, the estimated probability

Table 4.1: Parameters of the bimodal distributions which are used to demonstrate the influence of

number of data points per sample and the influence of the kernel width on the estimated

probability density function.

Distribution type Mean value standard deviation weight [%]

Normal 3.65 0.55 0.75

Normal 2.45 0.45 0.25

Table 4.2: Data points of the samples drawn from the distribution specified in table 4.1 which

contain 7 or 20 data points.

i xi0 xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9

Sample 1 0 2.4 2.5 3.4 3.5 3.52 3.8 4.1

Sample 2 0 2.4 2.5 3.4 3.5 3.52 3.8 4.1 3.73 1.81 4.61

1 4.02 3.76 3.53 4.24 2.26 3.17 3.25 3.06 2.81 2.7



38 4 Development of a validation method for arbitrary multivariate problems

density function is an inaccurate representation of the underlying bimodal distribution. In contrast

to the wide kernel, the small kernel N(0,0.1) does not necessarily create a more accurate estimated

probability density function of the underlying distribution as shown in figure 4.2b. The lack of

sufficient measurements results in a spiked probability density estimate. To improve the estimated

density function, more data points have to be measured as presented in figure 4.3a. Fortunately,

one does not have to iterate till the estimated probability density function looks good. Solving

equation 3.28 for n results in the minimum amount of data required to estimate the probability

Figure 4.2: Influence of the width of the Gaussian kernel on the estimated probability density func-

tion: a) Distribution density estimate based on 7 data points using the kernel N(0,0.8),

b) Distribution density estimate based on 7 data points using the kernel N(0,0.1)
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density function accurately based on the mean value measurement uncertainty. This equation is

generally applicable if the data are not extremely skewed or multimodal as discussed in section

3.4.1. According to equation 3.28, approximately 1000 data points are required to estimate the

probability density function using the kernel N(0,0.1). The estimated probability density function

based on 1000 data points is presented in figure 4.3b.

Figure 4.3: Influence of the number of data points on the estimated probability density function:

a) Distribution density estimate based on 20 data points using the kernel N(0,0.1),

b) Optimal distribution density estimate based on 1000 data points using the kernel

N(0,0.1).
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In conclusion, validation becomes valuable if the experiments and simulations are performed

accurately and repeated many times, because only then the distributions are estimated accurately.

If no additional measurements can be performed to avoid spiked estimated probability density

functions, it is preferred to estimate the distribution using the autonomously defined gaussian ker-

nel width presented at the beginning of this section.

4.2 Distance measurement

The distance between the numerical and experimental results is measured using an image based

distance measurement technique, which lead to the name Image Based Distance Measure (IBDM).

This distance measure uses the overlap coefficient according to Manders ρm (see equation 3.38)

to determine the distance between two discrete estimated probability functions, because it is in-

sensitive to the size of the domain of discretisation as shown in appendix A. Although image

correlation coefficients can be used to determine the difference between multidimensional discrete

probability distributions, the computational recourses required to process the probability distri-

butions increase rapidly with the dimensionality. Therefore, it is preferred to use 2-dimensional

projections of n-dimensional estimated probability density function to limit the required computa-

tional resources. This requires d (d−1)/2 projections on a 2-dimensional space to fully represent

the original n-dimensional distribution, where d is the dimensionality of the original distribution.

Each projection results in one distance measure, which can be multiplied with each other, summed

or averaged to obtain the difference between the n-dimensional estimated probability density func-

tions. In this work, the averaging method is used.

To generate an image of an estimated probability density function, it is required to define the

domain of interest of the probability density function and the number of discretisation steps. This

domain must be defined such that the integral of the probability density function is approximately

one. Since the gaussian kernel has a low density at the tails of the distribution, the domain is de-

fined as [xmin−3σkernel, xmax+3σkernel]. Other domain definitions that result in a larger domain

are permitted.

Concerning the number of pixels required to ensure that the discretised estimated probability den-

sity function is an accurate representation of the estimated probability density function, it can be

said the more the better. Increasing the amount of pixels will increase the resemblance between

the discretised probability function and the continuous estimated probability density function, but

it will increase the demand on the computational resources, because more discrete probability val-

ues have to be processed during the difference calculation. To reduce the discretisation error to an

insignificant influence without consuming too much computational resources, it is mandatory to

determine the number of pixels required to measure the difference between two estimated proba-

bility density functions. The necessary amount of pixels depends on two factors: the maximum

slope of the estimated probability density function (continuous function) and the euclidean dis-

tance between the two samples. The larger the slope of the estimated probability density function,

the more pixels are required to represent the continuous probability density function accurately as

illustrated in figure 4.4a and figure 4.4b. To obtain the same discretisation error in both figures,

it is necessary to increase the amount of intervals in figure 4.4b by a factor two. Moreover, the

further the samples are separated, the larger the domain of the discrete probability function is. To

represent a large domain with the same accuracy as a small domain, it is necessary to use more

pixels for the large domain. The ratio between the two domains gives the required increase of

pixels to maintain equal accuracy. The domain of the estimated probability density functions is
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Discretisation error 2

Discretisation error 1
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Figure 4.4: Influence of the pixel width on difference between the discrete probability density

function and the estimated probability density function: a) Discretisation of two slopes

using equal pixel width, b) Discretisation of the steeper slope of sub-image a) using

more pixels.

defined using the kernel width. Consequently, the required amount of pixels also depends on the

kernel density estimator.

To determine the required amount of pixels to create an accurate discretisation of the estimated

probability density function, a convergence study is performed using an example. For this ex-

ample the difference between two estimated probability densities is measured using the overlap

coefficient according to Manders (see equation 3.38). Both samples contain 45 data points and

are drawn form a bivariate normal population. The parameters of the distribution are presented in

table 4.3 and the samples drawn from this population are presented in appendix C. To estimate

the probability density function, the width of the Gaussian kernel estimator is varied from 0.1 to

1.0 times the standard deviation of the population. This kernel range covers all optimal gaussian

kernels of practical importance (1 <N< 1000000 according to equation 3.28). Since the samples

only contain 45 data points, a spiked estimated probability density function is created when a small

kernel is used. This spiked probability density function results in a measured distance which is too

large. Although a spiked estimated probability density function is undesired for validation, it is

perfect to investigate the convergence of the distance measure for different number of pixels due

to the steep slope of the spikes.

For this example the domain of the samples is defined as [xmin−5σkernel, xmax+5σkernel], where

the maximum and minimum values of the data points are obtained from appendix C. This results

in the following domain of the descretised estimated probability density function: ([3.25, 6.91],

[6.11, 9.81]). This domain is filled with pixels, where the pixel intensity is calculated by inte-

gration of the estimated probability density function over the domain of the pixel. To determine

when the discretisation error is insignificant for this example, the overlap coefficient according to

Manders ρm is plotted versus kernel width and number of pixels as shown in figure 4.5a.

Table 4.3: Parameters of the bivariate normal distribution used to demonstrate the influence of

discretisation on distance measurements.

Variable nr. Mean value Standard deviation

1 5.0 0.25

2 8.0 0.25
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Figure 4.5: Measured distance between two samples with the Image based Distance Measure

as function of the kernel width and the number of discretisation steps: a) Bivariate

normally distributed samples, b) Bivariate lognormally distributed samples.

It can be seen in figure 4.5a that the correlation coefficient converges with increasing kernel width.

More precisely, the distance between the samples approaches its minimum value when the ker-

nel width is half of the standard deviation of the data. This value is equal to the optimal kernel

width, which is calculated using equation 3.28. Furthermore, figure 4.5a shows that as few as 40

discretisation steps (pixels) per direction could be just enough to represent the estimated normal

distribution sufficiently accurate. Certainly 160 discretisation steps are sufficient to accurately

represent this estimated probability density function, because there is no significant difference be-

tween the curve based on 160 discretisation steps and the one based on 640 discretisation steps.

To investigate the influence of a skewed probability density function on number of discretisa-

tion steps required to accurately represent the estimated probability density function, the conver-

gence study is repeated using a lognormal distribution. For this example the samples are drawn

form a bivariate lognormally distributed population which is defined using the parameters shown

in table 4.4. The domain of the discretised estimated probability density function is defined as

[xmin − 5σkernel, xmax + 5σkernel], where the maximum and minimum values of the data points

are obtained from appendix C. This results in the following domain of the discretised estimated

Table 4.4: Parameters of the bivariate lognormal distribution used to demonstrate the influence of

discretisation on distance measurements.

Variable nr. Mean value Standard deviation

1 5.0 1.25

2 8.0 2.0
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probability density function: ([1.72, 10.59], [2.91, 14.84]). Based on figure 4.5b, it is concluded

that 160 discretisation steps in each direction are sufficient to represent the estimated probability

density function accurately, because all curves generated using more discretisation steps are iden-

tical to the curve based on 160 discretisation steps. Furthermore, it can be seen that the distance

between the two estimated probability density functions does not converge to a constant value,

but approaches a linearly increasing function. This effect is caused by the shape difference be-

tween the lognormal distribution and the symmetrical kernel. Although the correlation coefficient

does not converge to a constant value, the optimal value according to equation 3.28 is still a good

compromise between maintaining the asymmetrical character of the population in the estimated

probability density function and the spikiness of the estimated probability density function.

Based on the results of both examples, it is concluded that 160 discretisation steps in each direction

are sufficient to discretise the estimated probability density function. However, this is only true if

the discretisation domain is not significantly larger than the domain of each sample (simulation

and experiment) on its own. If a mean value difference is present between the experimental and

numerical results, the number of discretisation steps (pixels) required to accurately represent the

estimated probability density functions will increase. Since the maximum distance is measured

between two estimated probability density functions if they are barely overlapping, the required

amount of pixels is increased with a factor 2 which results in 320 discretisation steps in each

direction. Moreover, data points could be present further in the tails than the data points in these

two examples. Therefore, it is chosen to enlarge the domain by defining the maximum and mini-

mum values of the data points at six standard deviations from the mean value of the distribution. To

maintain the resolution identical to the resolution used in the two examples, it is necessary to use

500 discretisation steps in each direction. It is assumed that 500 discretisation steps per direction

are sufficient to accurately represent any estimated probability density function.

4.3 Hypothesis testing

To determine whether the distance measured with the Image Based Distance Measure is stochasti-

cally significant, it is necessary to perform a hypothesis test, see subsection 3.4.4 for further general

information. Since neither the sample distribution nor the distance distribution of a multivariate

arbitrarily distributed problem are known, a distribution independent hypothesis test is required.

Such a test method is the approximate randomisation method, which is presented in section 3.4.4.

As explained in section 3.4.4, a null hypothesis and an alternative hypothesis have to be defined to

test whether the null hypothesis is rejected or not. The null hypothesis is rejected if the distance

between simulation and experimental results is larger than the critical distance Dcrit(α,Nexp,Nsim),
which depends on the sample sizes Nexp,Nsim and the significance level α . Unfortunately, the crit-

ical distance is unknown, because the distribution of IBDM is unknown. Fortunately, it is also

possible to decide if a distance is significant on basis of the p-values [65]. Consequently, the null

hypothesis is rejected if the p-value is equal or smaller than the value of α . When the p-value is

larger than α , it merely means that there is not enough evidence to reject the null hypothesis. [65]

These p-values are calculated using equation 3.48, where the value of nge is calculated using NS

pseudo samples that are generated by switching data points of the original sample as presented in

figure 4.6a. The algorithm used to calculate the value of nge is presented in figure 4.6b. If the

distance between the pseudo samples is larger than the distance between the original samples, the

value of nge is increased by one. This process is repeated for every pair of the NS pseudo samples.

Which data points are switched and how many are switched at once is not relevant for the method
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α≤(nge + 1) / (NS + 1)
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nge = CounterΣ
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Figure 4.6: a) Principle of the randomisation to create pseudo samples, b) Randomisation

hypothesis testing algorithm using NS pseudo samples.

as long as no clone of an already used sample pair is generated. For further details, the reader is

referred to section 3.4.4 on page 30.

Since the hypothesis test is performed using one sample pair, it is of interest to know how confident

one can be that the correct decision is made. To calculate the confidence level that the null hypothe-

sis is rejected correctly, equation 3.51 is used. When using this equation to calculate the confidence

level of a p-value, one assumes that the p-values are uniformly distributed. This assumption holds

only if the null hypothesis is true.

4.4 Effectivity of a validation method

To determine whether the new validation method is more effective than the currently used valida-

tion methods, it is required to compare the power of the methods with each other. The power of

a validation method is best presented using the operation characteristic of the distance measure,

which presents the probability to accept the null hypothesis despite an existing difference between

simulation and experiment. The validation method having the smallest probability to accept the

null hypothesis when a difference is present is the most powerful method among the methods being

compared [24]. To generate the operation characteristic for the Image Based Validation Method

[62, 63], the probability to accept the null hypothesis is calculated for several support points as

illustrated in figure 4.7. At every support point, the probability to accept the null hypothesis
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Figure 4.7: Sketch of an operation characteristic and the support points which are calculated using

equation 3.53.
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is calculated by means of equation 3.53, which is solved numerically using many sample pairs.

These sample pairs are used to estimate the distribution of φ , which is required to solve equation

3.53. Consequently, the accurateness of the estimated distribution of φ depends on the amount of

samples used. Further details concerning the comparison of the developed Image Based Validation

Method with the currently used validation methods are presented in chapter 5.





5 Effectiveness of the image based validation

method

As explained in chapter 4, the developed Image Based Validation Method (IBVM) should be able

to detect differences between arbitrarily distributed data. To determine under which circumstances

its Image Based Distance Measure (IBDM) is more effective than the currently used distance mea-

sures for validation, the operation characteristic of IBDM is compared to the operation character-

istic of the currently used distance measures. An operation characteristic represents the probability

to accept the null hypothesis although it is false, i.e. the probability to accept the null hypothe-

sis versus the difference between the samples (simulation and experiment). Thus, the lower the

probability to accept the null hypothesis when a difference is present, the more effective the val-

idation method is to detect the difference. Since IBDM is developed for arbitrarily distributed

results while the currently used methods are limited to normally distributed results, it is neces-

sary to determine the effectiveness of IBDM to detect differences between normally distributed

data and non-normally distributed data. Determining the effectiveness of IBDM to detect differ-

ences between normally distributed data is important to find out whether the new method performs

equally well as the currently used methods in this case. This analysis of the normally distributed

data provides the only available reference case. To determine the effectiveness of IBDM for non-

normally distributed data, a test case is selected with lognormally distributed data. The lognormal

distribution is chosen, because of its practical relevance for engineers [68, 38, 69]. The difference

between either two normally distributed samples or two lognormally distributed samples can be ex-

pressed as a mean value difference and a covariance matrix difference. Consequently, this chapter

is mainly focused on these reference cases, i.e. pure mean value differences and pure covariance

matrix differences respectively. For the sake of completeness, also the case of a combined differ-

ence between two samples will be briefly discussed.

5.1 Problem description

In case of multivariate data sets, a mean value difference is commonly measured using the Maha-

lanobis distance while a covariance matrix difference is measured with the Box-M statistic [18].

The Mahalanobis distance is a mean value distance, which is normalised using the covariance

matrix. Furthermore, the Mahalanobis distance is only insensitive for a difference between the

covariance matrices of the samples when the amount of data points in both samples are equal and

large [18]. Therefore, it has to be assumed that the covariance matrices of the underlying po-

pulations are equal and that the samples are drawn from Gaussian distributions when calculating

the probability to accept the null hypothesis µµµ sim = µµµexp based on the Mahalanobis distance. To

calculate the probability to accept the null hypothesis σσσ sim = σσσ exp using the Box-M statistic, it

must be assumed that the samples are normally distributed [18].
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Since the hypothesis tests based on the Mahalanobis distance and the Box-M statistic have been

developed specifically for multivariate normally distributed data, it is expected that these two dis-

tance measures are the most effective methods to determine such differences if no assumptions

of the hypothesis tests are violated. For cases where the assumptions are violated, measuring the

distance using IBDM could be more effective. To investigate whether this is the case, the operation

characteristic is calculated for the following cases:

1. Two normally distributed data sets that differ in mean value, but have an identical covariance

matrix.

2. Two normally distributed data sets that differ in covariance matrix, but have an identical

mean value.

3. Two normally distributed data sets that differ in mean value and covariance matrix.

4. Two lognormally distributed data sets that differ in mean value, but have an identical covari-

ance matrix.

5. Two lognormally distributed data sets that differ in covariance matrix, but have an identical

mean value.

6. Two lognormally distributed data sets that differ in mean value and covariance matrix.

To create the operation characteristic for the used methods (Mahalanobis distance, Box-M statistic

and IBDM), the probability to accept the null hypothesis has to be calculated for each of these

methods using specific null hypotheses for each distance measure. The null hypothesis for the

Mahalanobis distance is defined as µµµsim = µµµexp and the null hypothesis for the Box-M statistic

is defined as σσσ sim = σσσ exp while the null hypothesis for IBDM is defined as fexp(xxx) = fsim(xxx).
Since the distance measurement methods are developed to detect a specific difference, it is nec-

essary that the difference between the samples is defined such that one can compare the methods

with each other (the six cases defined above). These differences are specified for each case sep-

arately in sections 5.4 and 5.5. Using the defined difference between simulation and experiment,

the probability to accept the null hypothesis is calculated for each case by means of hypothesis

tests. For the classical hypothesis tests of the currently used distance measures, it is assumed that

the samples are normally distributed, which is incorrect when the samples are drawn from a bi-

variate lognormal distribution. To avoid violation of the assumptions of the hypothesis tests for

non-normally distributed data, randomisation hypothesis tests are used in this work. Another op-

tion would be transforming the lognormal distribution to the normal distribution. However, this

transformation has some side effects. For example, a mean value test performed on the transformed

normal distribution is actually a median value test in the original space [70, 71, 72]. Therefore,

only untransformed data sets are analysed in this work. In the next section, the numerical model is

presented which is used to calculate the probability to accept the null hypothesis.

5.2 Numerical model

As presented in table 3.2 on page 29, the probability to accept the null hypothesis is dividable into

two cases: a case where the null hypothesis is true and a case where the null hypothesis is false.

When the null hypothesis is true, the probability to accept the null hypothesis is directly defined

by the chosen significance level α . Therefore, it is of interest to determine the probability to ac-

cept the null hypothesis when a difference between the populations is present. To determine this

probability, the steps presented in figure 5.1 are required.
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First, it is required to define a null hypothesis, an alternative hypothesis and the distance mea-

surement method. Subsequently, the numerical samples and the experimental samples are drawn

from their respective populations, which are either both bivariate normally distributed or bivariate

lognormally distributed in this case. To simplify the procedure to calculate the operation character-

istic, both samples are generated using random numbers. Here, theMonte CarloMethod (explained

in subsection 3.3.4) has been proven to be a viable tool to generate random samples. To increase

the efficiency of the numerical process, it is chosen to use the latin hyper cube method instead

of crude Monte Carlo to generate the uniformly distributed random numbers. These uniformly

distributed random numbers are transformed to either normally distributed samples or lognormally

distributed samples using the procedure presented in subsection 3.3.4. Furthermore, a seed value is

used for the random number generator to maintain the predefined nominal difference between the

support points of the operation characteristic as well as for reproducibility of the results, because

a seed value forces the random number generator to generate the same set of random numbers on

every run. In this work the seed value 123457 is used.

Next, the distance between the numerical sample and the experimental sample is measured and

a hypothesis test is performed to calculate the p-value corresponding to the measured distance.

This hypothesis test can only be performed as a classical hypothesis test when the distribution

of the distance measure is known. Otherwise, the hypothesis test must be performed using the

Distance measure and null hypothesis definition

Compute p-value test statistic
using the randomisation method

Obtain sample from population

Randomisation hypothesis testing

Calculate estimated hypothesis
acceptance probability

Distribution of distance
measure is known?

NoYes

Compute p-value test statistic
using the distribution of the

test statistic

Classical hypothesis testing

Calculate hypothesis
acceptance probability

Determine difference between samples

Figure 5.1: Flow diagram of the procedure to calculate the probability to accept the null hypothesis

for support points of the operation characteristic.
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randomisation hypothesis testing method presented in section 4.3. At this point, a note about the

randomisation hypothesis testing method has to be made. Of course, this randomisation hypothe-

sis testing method can also be used when the distribution of the distance measure is known. Each

hypothesis test results in a p-value which is compared to the significance level α . For this work, a

significance level of 5% is chosen, which is a common significance level for engineering problems

[19, 20, 40]. When the hypothesis test results in a p-value smaller than the chosen significance

level, the null hypothesis is rejected [19, 20, 40].

Subsequently, the probability to accept the null hypothesis is calculated, which depends on the

distance ccc between the populations and the number of data points in the samples. Since the prob-

ability to accept the null hypothesis depends on the distance between the populations, it is com-

monly presented as operation characteristic [63, 62]. Here, ccc could be varied from zero to infinity.

Nevertheless, it is not necessary to cover the entire range of ccc, because the operation characteristic

approaches zero quickly with increasing population separation. To further reduce the numerical

calculation time, the probability to accept the null hypothesis is only calculated at several equidis-

tant support points. These support points define the alternative hypotheses, which are used to

calculate the corresponding values of β . Subsequently, the operation characteristic is created by

linear interpolation of β between the support points. To illustrate the influence of the size of the

samples on the probability to accept the null hypothesis, the operation characteristic is calculated

for samples containing 5, 10 and 100 data points.

The procedure to calculate the probability to accept the null hypothesis depends on the distance

measure and the distribution of the populations. In case the distribution of the populations is

normally distributed, it is possible to determine the probability to accept the null hypothesis an-

alytically for the Mahalanobis distance and the Box-M statistic. When the populations are not

identical, the probability to accept the null hypothesis is equal to the type II error β . To calculate

the value of β , equation 3.44 has to be solved for a specific number of data points per sample

while assuming the alternative hypothesis is a specific alternative hypothesis. The type II error of

the Mahalanobis distance is calculated with equation 5.1 [73],

βDM
2 =

∫ xcrit

0
fd,v−d+1,λ(x)dx, x=

v−d+1(n1n2)

vd(n1+n2)
DM

2 v= n1+n2−2 (5.1)

where fd,v−d+1,λ is the probability density function of the non-central F-distribution, DM
2 is the

Mahalanobis distance, d is the dimensionality of the problem, and λ is the non-centrality param-

eter of the non-central F-distribution. Furthermore, the Mahalanobis distance is calculated with

equation 3.33 and the value of λ depends on the specific alternative hypothesis. For a mean value

difference, the specfic alternative hypothesis is of the form µµµsim = µµµexp+ccc, where ccc is the mean

value difference between the two populations. The type II error for the Box-M statistic is calculated

with equation 5.2,

βm =

∫ mcrit

0
f 1
2d(d+1),λ(m)dm (5.2)

where f 1
2d(d+1),λ and λ are the probability density function of the non-central Chi square distribu-

tion and the non-centrality parameter, respectively. The variable m must be non-central Chi square

distributed when the covariances matrices are unequal, because m is Chi square distributed when

the covariance matrices of simulation and experiment are identical [18]. The value of λ is equal

to the difference between the populations of the alternative hypothesis. The Box-M statistic m is

calculated with equation 3.42. For a covariance matrix difference, the specific alternative hypoth-

esis is of the form σσσ sim = σσσ exp+ccc, where ccc is the covariance matrix difference between the two
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populations.

In case the randomisation hypothesis test is used to calculate the probability to accept the null hy-

pothesis, equation 3.53 is used where the probability to accept the null hypothesis is equal to one

minus the probability to reject the null hypothesis. To solve this equation, it is required to estimate

the distribution of the p-values f (φ). This distribution is estimated by repeating the randomisation

hypothesis test many times with new samples. Thus the result of equation 3.53 is approximated by

using equation 5.3, where R is the amount of repeated hypothesis tests to estimate the distribution

of φ .

P (reject|α,NS,R) =
α(NS+1)−1

∑
nge=0

(

NS

nge

)

1

R

R

∑
j=0

φ j
nge

(

1−φ j

)NS−nge
(5.3)

The flow diagram of the numerical model used to solve equation 5.3 is presented in figure 5.2. First

one experimental sample and one numerical sample are drawn from their respective populations.

Next, the distance is determined between these samples and NS pseudo samples are generated from
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Distance Dj0

e.g. IBDM, M, DM

Expji Simji Distance Dji
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i = 1
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Figure 5.2: Flow diagram of the numerical model to calculate the probability to accept the null

hypothesis using the randomisation hypothesis testing method.
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these samples using randomisation. Subsequently, the distances between the NS pseudo samples

are calculated. Next, it is calculated how many of pseudo samples yield in a distance larger than

the distance between the original samples. Based on NS and the number of distances greater or

equal than the original distance nge, the p-value φ j is calculated. This process is repeated R times

which results in the approximated distribution of φ , which is used to solve equation 5.3.

When the distribution of φ is estimated based on R values of φ , the distribution of φ is subjected

to two errors. Namely, a discretisation error in the probability of φ which is related to R and an

error in the values of φ due to inaccurate hypothesis tests. This second error can be minimised by

increasing the number of randomisations used for the randomisation hypothesis tests. The other

error can be minimised by increasing R. According to [65], 999 randomisations should result in ac-

curate p-values φ . Consequently, the accuracy of the estimated distribution function of φ depends

on R. To estimate the required amount of repeated hypothesis tests R to estimate the distribution

of φ sufficiently accurate, the distribution of φ is estimated using different amounts of hypothe-

sis tests using samples drawn from identically distributed populations. Since the populations are

identically distributed, the distribution of φ is uniform distributed regardless of the used distance

measure and the type of hypothesis test [18, 65]. To ensure that the classical hypothesis test and

the randomisation hypothesis test are implemented adequately, the distribution of φ is investigated

for both types of hypothesis test. This verification is presented in the next section.

5.3 Verification of the numerical model to calculate the

probability to accept the null hypothesis

To investigate the required number of repeated hypothesis tests to calculate the type II error accu-

rately, equation 5.3 is solved using 500 and 2000 repeated hypothesis tests. These hypothesis tests

are based on the Mahalanobis distance between two bivariate normally distributed samples drawn

from two identical populations. This reflects case 1 listed in section 5.1. Each sample contains 10

data points to obtain stable numerical results for the hypothesis tests [18]. Since the samples are

drawn from identical populations, a uniform probability density function for φ is expected [18, 65].

Thus, 5% of the R φ values should be smaller than the significance level of 0.05. Consequently, an

increased number of φ values smaller than 0.05 indicates a numerical error in this algorithm.

First the algorithm of the classical hypothesis test is verified. The estimated p-value distribution

based on 500 repeated classical Mahalanobis hypothesis tests is presented in figure 5.3a whereas

the p-value distribution based on 2000 repeated tests is presented in figure 5.3b. It is observed

from figure 5.3a and figure 5.3b that the distribution of the p-values approaches the uniform dis-

tribution when the number of repeats is increased, as expected. Furthermore, it is shown that the

numerical algorithm produces p-values smaller than 0.05 more frequently than the expected 5% of

the R p-values. This error is caused by the Monte Carlo simulation and decreases with the amount

of samples being generated, as presented in figure 5.3a and figure 5.3b. Since more p-values are

smaller than 0.05 as expected, the probability to reject the null hypothesis is slightly larger than

expected. Nevertheless, the amount of p-values smaller than 0.05 is only 2 percent points larger

than expected for 500 repeated hypothesis tests. Therefore, it is assumed that the algorithm of the

classical hypothesis test used in this work is sufficiently accurate to determine the probability to

accept the null hypothesis.

Next, the p-value distribution of the Mahalanobis distance is calculated using 500 repeated ran-

domisation hypothesis tests to verify the algorithm of the randomisation hypothesis test. As shown

in figure 5.4b, the distribution of the p-values is approximately uniform distributed. Furthermore,

the amount of p-values smaller than 0.05 is equal to 6.4% of the 500 p-values, which is slightly
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Figure 5.3: The estimated p-value distribution of: a) the Mahalanobis distance using the classical

hypothesis test based on 500 samples, b) the Mahalanobis distance using the classical

hypothesis test based on 2000 samples.

less compared to the 7% of the classical hypothesis test (see figure 5.4a). Since both methods

only differ by 0.6 percent points, it is assumed that the randomisation hypothesis test is performed

sufficiently accurate to calculate the probability to accept the null hypothesis.

Figure 5.4: The estimated p-value distribution of: a) The Mahalanobis distance using the classical

hypothesis test based on 500 samples, b) The Mahalanobis distance using the

randomisation hypothesis test with 999 randomisations based on 500 samples.
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Subsequently, it is verified that the result of the randomisation hypothesis test is independent of

the distance measure, which should be the case for samples drawn from identically distributed po-

pulations. To test this case, the p-value distribution is determined using randomisation hypothesis

test based on IBDM. The resulting p-value distribution is presented in figure 5.5b. It is observed

from figure 5.5b that 7.4% of the 500 p-values are smaller than 0.05. Since the number of p-values

smaller than 0.05 is only 1 percent point larger in figure 5.5b compared to figure 5.5a, it is assumed

that the algorithm of the randomisation hypothesis test and IBDM are sufficiently accurate.

Since the algorithms based on 500 repeated hypothesis tests contains an error which could be up

to approximately 2 percent points, the difference between two operation characteristics must be

significantly greater than 2 percent points to call one distance measure more effective than another

distance measure, which is expected for the used distance measures. Therefore, it is concluded that

the numerical algorithms using 500 repeated hypothesis test are sufficiently accurate to compare

the operation characteristics of two distance measures to another.

Nevertheless, due to computational limitations, it is required to limit the settings of the algorithms

to 99 randomisations and 100 repeats to generate operation characteristics based on 20 support

points for samples containing 100 data points. To avoid accuracy differences between the oper-

ation characteristics for different sample sizes, these less accurate settings are used in the next

sections to illustrate the effect of the sample size on the operation characteristic using samples

containing 5, 10 and 100 data points. When the difference between the operation characteristics

is in the order of the numerical error of the algorithms, the calculation will be repeated using 500

repeated hypothesis tests and 999 randomisations.

Figure 5.5: The estimated p-value distribution of: a) The Mahalanobis distance using the

randomisation hypothesis test with 999 randomisations based on 500 samples,

b) IBDM using the randomisation hypothesis test with 999 randomisations based on

500 samples.
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5.4 Operation characteristics based on bivariate

normally distributed samples

In this section, the operation characteristics are presented for the Mahalanobis distance, the Box-M

statistic and the Image Based Distance Measure to determine whether IBDM is as effective as the

two currently used distance measures to detect a difference between two bivariate normally dis-

tributed samples. To investigate whether this is the case, the first three cases defined in section 5.1

are investigated. More precisely, the effectiveness of the distance measures to detect the following

three differences is determined: a mean value difference, a rotation and a combination of both

differences.

5.4.1 Operation characteristics concerning a mean value difference
To determine if one method is more effective than another to detect a mean value difference (case

1 listed in section 5.1), an actual mean value difference must be present between the populations

from which the samples are taken. Since every bivariate normal distribution can be normalised

to a normal distribution with unit variance while the probability to accept the null hypothesis is

identical for all mean value difference vectors of equal length between such samples, it is sufficient

to use the normalised distributions to generate the numerical and experimental samples that are

used to test the null hypothesis µµµsim = µµµexp. The parameters of these normalised distributions are

presented in table 5.1. The null hypothesis concerning equal sample mean values is false, when

the predefined difference between the populations is unequal to zero. As explained in section 5.2,

the probability to accept the null hypothesis is equal to the type II error β when the populations

are not identical. To calculate the type II error of an hypothesis test based on samples drawn

from normally distributed populations of which the parameters are listed in table 5.1, a specific

alternative hypothesis must be defined, which is presented in equation 5.4,

µµµsim = µµµexp+

(

2cσ1,exp

0

)

(5.4)

where c is the normalised mean value distance between the populations. The constant c is varied

in the interval [0.05, 1.0] in steps of 0.05 to create a diagram of β versus c for a specific sample

size, which is called an operation characteristic. Using the numerical model presented in section

5.2, the probability to accept the null hypothesis µµµsim = µµµexp is calculated for every combination

of the above specified sample sizes and values for c. More precisely, the probability to accept the

null hypothesis is calculated using either equation 5.1 or equation 5.3 for the Mahalanobis distance

and equation 5.3 for the Image Based Distance Measure. Connecting the support points with lines

results in a linear approximation of the operation characteristics as presented in figures 5.6 and

5.7 for samples containing respectively 5, 10 data points and 100 data points. Comparing the op-

eration characteristic of two methods to another reveals which method is more effective than the

Table 5.1: Parameters of the bivariate normal distributions.

µ1 µ2 σ1 σ2

Simulation 2c 0.0 1.0 1.0

Experiment 0.0 0.0 1.0 1.0
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Figure 5.6: Operation characteristics for bivariate normally distributed samples which differ in

mean value. Diagrams generated using the following settings for the numerical

algorithm: a) N= 5, NS = 99, R = 100, b)N = 10, NS = 99, R = 100.
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Figure 5.7: Operation characteristics for bivariate normally distributed samples which differ in

mean value. Diagram generated using the following settings for the numerical

algorithm: N= 100, NS = 99, R = 100.

other. The method belonging to the operation characteristic that approaches β = 0 the fastest is the

most powerful method among the methods being compared to detect a mean difference between

multivariate normally distributed samples of the specified size.

It is shown in figure 5.6 and 5.7 that the type II error decreases significantly with increasing number

of data points per sample. Furthermore, it is shown that the type II error decreases with increasing

predefined mean value difference between the samples. Especially in figure 5.7 it is shown that the

type II error decreases rapidly with increasing predefined distance between the mean values of the

samples, as expected [63]. Consequently, it is only possible to detect small mean value distances

with confidence if the samples contain a large number of data points. This result was expected,

because the type II error decreases with increasing number of data points [20, 63]. Moreover, it

can be seen in figures 5.6 and 5.7 that the operation characteristic of the Mahalanobis distance

based on the randomisation hypothesis test deviates from the analytical solution. Especially in

figure 5.6a and 5.6b, a significant difference is present for c > 0.4. This difference must be caused

by a numerical error, due to the limited amount of repeats (100 repeats) and the limited amount of

randomisations (NS = 99) performed to obtain the p-value distributions of the distance measures.

Since the analytical solution is correct, the numerical error can be quantified by determining the

difference between the analytical operation characteristic and the operation characteristic based on

the randomisation method of the Mahalanobis distance. Although a significant error is present in

the absolute value of β when operation characteristics are based on the randomisation method, it

is still possible to conclude which method is more effective as long as the error is smaller than

the difference between the operation characteristics being compared. Furthermore, it is shown in

section 5.3 that the difference between two probabilities to accept the null hypothesis based on

the randomisation method is affected less by the numerical error than the absolute values of the

probability to accept the null hypothesis.
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For small distances, i.e. c < 0.4, the largest difference between the effectivity of IBDM and the

Mahalanobis distance is observed for samples containing 100 data points. More precisely, IBDM

is up to 40 percent points less effective than the Mahalanobis distance, see figure 5.7. Reducing

the number of data points per sample to 10 data points decreases the difference in effectiveness

between IBDM and the Mahalanobis distance as presented in figure 5.6b. Although a significant

numerical error is present in the randomisation based solutions, the difference between IBDM and

the Mahalanobis distance is larger than the difference between the two operation characteristics of

the Mahalanobis distance. Consequently, IBDM is up to 8 percent points less effective than the

Mahalanobis distance when c is larger than 0.3. Concerning samples containing 5 data points, it

is observed that there is no significant difference between the operation characteristic of IBDM

and the operation characteristic of the Mahalanobis distance based on the randomisation method

as illustrated in 5.6a. Consequently, it is concluded that IBDM is approximately equally effective

to detect a mean value difference between normally distributed samples containing 5 data points.

Since the results based on 5 and 10 data points contain a significant numerical error, it will be

demonstrated that the difference between the operation characteristics based on the randomisation

method is not affected significantly by the numerical error to ensure that the conclusions based on

figure 5.6 are correct. For this purpose, the operation characteristics based on samples containing

10 data points are recalculated more accurately. To calculate the operation characteristics more

accurately, equation 5.3 is solved with 999 randomisations and 500 repeated hypothesis tests. Fur-

thermore, to illustrate the influence of both parameters on the operation characteristic, different

combinations of the number of repeated hypothesis tests R and the amount of randomisations NS

are used.

To determine the influence of the parameter NS on the operation characteristic, the amount of

randomisations has been increased to 999 without changing the value of R, which results in the

operation characteristics presented in figure 5.8b. Comparing figure 5.8a to figure 5.8b reveals

that the numerical error has been decreased significantly for c > 0.65. Furthermore, it is also ob-

served that the numerical error at very small differences has been increased. Using 500 repeated

hypothesis tests instead of 100 reduces the numerical error related to the estimated distribution of

φ without increasing the accuracy of the randomisation hypothesis test. This also increases the

accuracy of the operation characteristic as shown in figure 5.9a. More precisely, increasing the

number of repeats increases the smoothness of the operation characteristics as can be observed by

comparing figure 5.8a to figure 5.9a. To reduce the numerical error to an insignificant value, both

improvements have to be applied simultaneously, which results in the operation characteristics

shown in figure 5.9b.

It is shown in figure 5.9b that the operation characteristic based on the Mahalanobis distance

created with the randomisation hypothesis test converges to the theoretical operation characteristic,

which confirms that the operation characteristic can be calculated accurately using the randomi-

sation method at the cost of computational effort. Furthermore, it is observed that the difference

between the operation characteristic of IBDM and the operation characteristic of the Mahalanobis

distance has not changed significantly in figure 5.9a compared to figure 5.8a. Therefore, it is con-

cluded that the numerical error has no significant influence on the difference between the operation

characteristics based on the randomisation method, as expected. Thus, it is most likely sufficient

to use 99 randomisations and 100 repeated hypothesis tests to determine whether IBDM is more

effective than currently used distance measure for case 2 and 3 specified in section 5.1. Con-

sequently, the operation characteristics based on randomisation hypothesis tests presented in the

following two subsections are created using 99 randomisations and 100 repeated hypothesis tests.
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Figure 5.8: Operation characteristic for bivariate normally distributed samples containing 10 points

which differ in mean value. Diagrams generated using the following settings for the

numerical algorithm: a) N = 10, NS = 99, R = 100, b) N= 10, NS = 999, R = 100.
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Figure 5.9: Operation characteristic for bivariate normally distributed samples containing 10 points

which differ in mean value. Diagrams generated using the following settings for the

numerical algorithm: a) N= 10, NS = 99, R = 500, b) N= 10, NS = 999, R = 500.
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5.4.2 Operation characteristics concerning a covariance matrix

difference
To examine whether the Image Based Validation Method is more or less effective to detect a co-

variance matrix difference than the currently used validation method based on the Box-M statistic

(case 2 listed in section 5.1), such a difference must be present between the populations from

which the samples are taken. For this case the difference is defined as rotational difference, which

simulates a correlation matrix difference between the results of the experiments and the numerical

model. To test the null hypothesis σσσ sim = σσσ exp, samples are drawn from the populations of which

the parameters are presented in table 5.2. When the predefined rotational difference θ is unequal to

zero, the null hypothesis is false. Consequently, the probability to accept the null hypothesis once

more represents the type II error β , which again depends on the sample size and on the specific

alternative hypothesis. This alternative hypothesis is defined using equation 5.5,

σσσ sim =

(

cos2(θ) −sin2(θ)
sin2(θ) cos2(θ)

)

σσσ exp, θ =
c

2
π (5.5)

where σσσ exp is the covariance matrix of the experimental population, θ is the angle of rotation (see

figure 2.4) and c is the normalised angle of rotation. Varying c from 0.05 to 1.0 in steps of 0.05

gives the operation characteristic for one sample size. Once again, to include the influence of the

number of data points per sample, the operation characteristic are calculated for samples contain-

ing 5, 10 and 100 data points as defined in section 5.2.

To create the operation characteristic for the Box-M statistic and IBDM, the probability to accept

the null hypothesis is calculated for both methods at every support point. Currently the covariance

matrix difference is measured using the distance measure M2, which is calculated using equation

3.35. This distance measure can be transformed to the Box-M statistic (see equation 3.42) of which

the probability to accept the null hypothesis can be calculated using equation 5.2. Alternatively,

the probability to accept the null hypothesis based on the currently used distance measure can be

calculated with equation 5.3. For the Image Based Distance Measure, the probability to accept

the null hypothesis has to be calculated using equation 5.3, because the distribution of the distance

measure is unknown. The resulting operation characteristics are presented in figures 5.10 and 5.11.

It can be observed from figures 5.10 and 5.11 that the type II error decreases with increasing num-

ber of data points per sample as well as with increasing distance between the samples. Further-

more, it can be concluded from figures 5.10a and 5.10b that it is difficult to detect the rotational

difference when the samples contain few data points, because β decreases slowly with increas-

ing rotational difference. Even in case of Box-M (theory), which is the most effective method to

detect a covariance matrix difference, β is still approximately equal to 50% for c = 1.0, i.e. a

rotational difference of 90 degrees. The problem of being unable to detect a rotational difference

between small samples arises from the significant sample to sample covariance matrix variation,

which leads to a poor performance of all distance measures. Since it is recommended in literature

Table 5.2: Parameters of the bivariate normal distributions.

Mean value 1 Mean value 2 covariance matrix

Simulation 0.0 0.0

(

cos2(θ) −9.0sin2(θ)
sin2(θ) 9.0 cos2(θ)

)

Experiment 0.0 0.0

(

1.0 0.0
0.0 9.0

)
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to use samples that contain at least 10 data points to detect a covariance matrix difference between

bivariate normally distributed samples [18], one could already have been expecting in advance that

the distance measures would be ineffective for samples containing 5 data points.

Figure 5.10: Operation characteristics for bivariate normally distributed samples which are rotated

relatively to each other. Diagrams generated using the following settings for the

numerical algorithm: a) N= 5, NS = 99, R = 100, b) N= 10, NS = 99, R = 100.
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Figure 5.11: Operation characteristics for bivariate normally distributed samples which are rotated

relatively to each other. Diagram generated using the following settings for the

numerical algorithm: N= 100, NS = 99, R = 100.

Increasing the amount of data points per sample from 5 to 10 increases the probability to detect a

rotational difference as presented in figure 5.10b. Furthermore, the operation characteristic of the

Box-M statistic based on the randomisation hypothesis test converges to the analytical solution,

which indicates that the numerical algorithm is sufficiently accurate if the samples contain 10 or

more data points. Moreover, it is observed from figures 5.10a and 5.10b that IBDM is equally

effective compared to the Box-M statistic to detect a rotational difference up to c = 0.25, which
corresponds to a rotational difference of 22.5 degrees. For small samples and large rotational

differences IBDM is less effective than the Box-M statistic to detect large rotational differences

between normal distributions for small samples.

It was expected that IBDM is less effective than the Box-M statistic to detect a rotational difference

between small samples, because the underlying distribution of the samples cannot be estimated ac-

curately using only a few data points. When the underlying distribution function is estimated

inaccurately, it is logical that a distance measure based on these estimated distributions is inef-

fective. Likewise, it is expected that IBDM is as effective as the Box-M statistic to recognise a

rotational difference between two samples taken from a bivariate normal distribution when the

samples contain many data points. As shown in figure 5.11, this expectation is confirmed.

5.4.3 Operation characteristics concerning a combined difference
To investigate whether an established distance measure or IBDM is more effective to detect a

combined mean value difference with a covariance matrix difference (case 3 listed in section 5.1),

a test case is used. For this test case, the mean value difference and the rotational difference

are changed simultaneously to violate one assumption of the classical hypothesis test of the Ma-

halanobis distance while the operation characteristic of the Box-M statistic is unaffected by the
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additional mean value difference. Consequently, the experimental population is specified using the

parameters listed in table 5.2, while the population of the simulation is specified using equation 5.4

and equation 5.5, where c is the difference between the populations. As in the prior subsections,

the constant c is varied in the interval [0.05, 1.0] in steps of 0.05 to define support points for the op-

eration characteristics. To calculate the probability to accept the null hypothesis fexp(xxx) = fsim(xxx)
for the Mahalanobis distance, equation 5.3 has to be solved because the distribution of the Maha-

lanobis distance is unknown when the variances of populations are unequal. To calculate the type

II error of the hypothesis test based on the Box-M statistic either equation 5.2 or equation 5.3 can

be used, because the Box-M statistic is independent of the mean value of the samples. For the im-

age based validation method, it is required to calculate the probability to accept the null hypothesis

using equation 5.3. The resulting operation characteristics are presented in figures 5.12 and 5.13.

From figures 5.12 and 5.13 it can be observed that the type II error β decreases with increasing

distance between the samples and with increasing number of data points per sample. Furthermore,

it is shown in figure 5.12a that a combined difference between two normally distributed samples

containing only 5 data points is hardly detectable for any distance measure. Therefore, it is advis-

able to use samples containing sufficient data points, which can be defined as at least five times the

problem dimensionality [18]. Consequently, a sample containing 5 data points is not meaningful

to detect a difference between bivariate distributed samples. When the samples contain 10 data

points, it is observed from figure 5.12b that the Image Based Distance Measure is up to 34 per-

cent points less effective than the Box-M statistic and up to 21 percent points more effective than

the Mahalanobis distance to detect the combined difference. Furthermore, IBDM is slightly more

powerful than the Box-M statistic to detect this combined difference when c is smaller than 0.35.

When the samples contain many data points, it is found that IBDM is more effective compared to

the Mahalanobis distance and the Box-M statistic to detect this combined difference, especially for

c smaller than 0.35 as shown in figure 5.13. Based on the previous observations, it is concluded

that IBDM is more effective to detect moderate combined differences between normally distributed

samples than the currently used distance measures.

Besides the increased effectivity to detect such a combined difference, there is another advan-

tage of using IBDM to measure the distance: In contrast to the currently used distance measures,

IBDM is sensitive to rotational differences and mean value differences. More precisely, the Box-M

statistic is independent of the mean value difference, which leads to identical operation character-

istics for the Box-M statistic in figures 5.12 and 5.10 and figures 5.13 and 5.11, respectively. The

Mahalanobis distance is a mean value difference measure, which is normalised using the pooled

covariance matrix. Thereby, it measures also the covariance matrix difference as a side effect.

Comparing figures 5.12 and 5.13 to figures 5.6 and 5.7 reveals that the Mahalanobis distance is

less powerful to detect the combined difference than a pure mean value difference. Although this

loss of power decreases with increasing number of data points, it is advisable to reduce significant

covariance matrix differences using an optimisation routine based on the Box-M statistic before

a hypothesis test based on the Mahalanobis distance is performed. Consequently, it is always

necessary to measure the distance between two samples using either the Box-M statistic and the

Mahalanobis distance or IBDM, provided that the samples contain many data points, to determine

whether a significant difference is present between two samples.



5 Effectiveness of the image based validation method 65

Figure 5.12: Operation characteristics for bivariate normally distributed samples which differ in

mean value and are rotated relatively to each other. Diagrams generated using the

following settings for the numerical algorithm: a) N= 5, NS= 99, R = 100, b)N = 10,

NS= 99, R = 100.
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Figure 5.13: Operation characteristics for bivariate normally distributed samples which differ in

mean value and are rotated relatively to each other. Diagram generated using the

following settings for the numerical algorithm: N= 100, NS = 99, R = 10.

5.4.4 Discussion of the effectiveness of IBDM
In this chapter, the effectiveness of the IBDM has been compared to the effectiveness of the Box-M

statistic and theMahalanobis distance using the first three cases listed in section 5.1. In case 1, ideal

conditions are created for the hypothesis tests based on the Mahalanobis distance to detect a mean

value difference, whereas ideal conditions are created for the hypothesis tests based on the Box-M

statistic in case 2. Consequently, the Image Based Distance Measure must be less effective than

the Mahalanobis distance to detect a pure mean value difference between two normally distributed

samples due to 100% fulfilled assumptions of the hypothesis test for this case (see figures 5.6 and

5.8). Similar, it was expected that IBDM is at most as effective as the Box-M statistic to detect

a covariance matrix difference. As shown in figure 5.10, IBDM is less effective than the Box-M

statistic for small samples and equally effective for large samples. Since the rotational difference

between small samples is detected least ineffective using the Box-M statistic, it is recommended

to detect a covariance matrix difference using the Box-M statistic if the samples contain few data

points.

To investigate whether IBDM could be more effective than the Mahalanobis distance under less

ideal conditions, case 3 has been defined such that one assumption of the hypothesis tests of the

Mahalanobis distance is violated. Consequently, it is necessary to perform two hypothesis tests

to determine if the difference is significant when using the currently used methods to detect the

combined rotational and mean value difference. One to determine if the rotational difference is

significant and another hypothesis test to determine if the mean values are identical. Both tests are

required to determine if the samples are significantly different, because the Box-M statistic detects

only covariance matrix differences whereas the Mahalanobis distance is insensitive to covariance

matrix differences when the samples are equally large and contain many data points. In case the

samples contain many data points, a combined difference is detected more effectively using IBDM
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compared to the currently used distance measures as shown figure 5.12c. Even when the samples

contain relatively few data points, it is useful to measure the distance using IBDM, because it is the

only method that can detect a combined mean difference without violating the assumptions of the

hypothesis test. To further investigate the effectiveness of the Mahalanobis distance, the Box-M

statistic and IBDM, the probability to detect differences between bivariate lognormally distributed

samples is calculated in the next section.

5.5 Operation characteristics based on bivariate

lognormally distributed samples

As mentioned before, a mean value difference is typically measured using the Mahalanobis dis-

tance and a covariance matrix difference is commonly measured using the Box-M statistic. To

determine whether IBDM is more effective to detect a difference between bivariate lognormally

distributed samples than the currently used distance measures, the operation characteristic is cal-

culated for cases 4 to 6 defined in section 5.1. These operation characteristics are presented in the

following three subsections.

5.5.1 Operation characteristics concerning a mean value difference
To determine if one method is more effective than another method to detect a mean value dif-

ference between lognormally distributed samples, it is required that the populations from which

the samples are drawn are unequal. Since every lognormal distribution can be transformed to a

lognormal distribution with unit variance while the covariance matrix of both samples are equal

for case 4 defined in section 5.1, it is sufficient to calculate the probability to accept the null

hypothesis µµµsim = µµµexp using samples drawn from lognormally distributed populations defined

by the parameters presented in table 5.3.

Table 5.3: Parameters of the bivariate lognormal distributions.

λ1 λ2 ζ1
2 ζ2

2

Simulation ln(5.0)+2c−0.5ζ1
2

ln(8.0)−0.5ζ2
2

ln(2.0) ln(2.0)

Experiment ln(5.0)−0.5ζ2
2

ln(8.0)−0.5ζ2
2

ln(2.0) ln(2.0)

As for the normally distributed case, the probability to accept the null hypothesis represents the

type II error β , because the populations are not identical. The type II error again depends on the

sample size and the specific alternative hypothesis, which is defined using equation 5.6,

µµµsim = µµµexp+

(

exp(ln(5) + 2c) - 5)

0

)

(5.6)

where c is the normalised mean value distance between the populations. As before, the constant c

is variated in the interval [0.1, 1.0] in steps of 0.1 to create a diagram of β versus c for a specific

sample size. This diagram is called an operation characteristic. To calculate the type II error for

each support point of the operation characteristic, equation 5.3 is solved for each distance measure

using samples containing 5, 10 and 100 data points. The resulting operation characteristics are

presented in figures 5.14 and 5.15.
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Figure 5.14: Operation characteristics for bivariate lognormally distributed samples which differ

in mean value. Diagrams generated using the following settings for the numerical

algorithm: a) N = 5, NS = 99, R = 100, b)N = 10, NS = 99, R = 100.
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Figure 5.15: Operation characteristics for bivariate lognormally distributed samples which differ

in mean value. Diagram generated using the following settings for the numerical

algorithm: N=100, NS = 99, R = 100.

It can be observed from figures 5.14 and 5.15 that the type II error β decreases with increasing

mean value difference. Furthermore, the type II error decreases significantly when the number of

data points per sample increases. Therefore, it is only possible to detect small differences with

confidence using large samples, as already observed for normally distributed samples. When com-

paring the operation characteristics of IBDM to the operation characteristics of the Mahalanobis

distance, it is observed from figure 5.14a and figure 5.14b that IBDM is more effective than the

Mahalanobis distance to detect a mean value difference especially when c is larger than 0.6. Fur-

thermore, for large samples, it is observed from figure 5.15 that the Mahalanobis distance is more

effective than IBDM to detect a mean value difference. This result was expected, because a mean

value difference is normally distributed regardless the distribution of the samples for large sam-

ples according to the central limit theorem [20, 40, 57, 58]. Since the Mahalanobis distance is the

most effective mean value distance measure between normally distributed data (see section 5.4.1),

a similar operation characteristic is expected for the Mahalanobis distance between lognormally

distributed samples on basis of the central limit theorem. Although it is clear when IBDM is more

effective than the Mahalanobis distance, the curves in figure 5.14 are unsmooth due to the less

accurate settings used to calculate the operation characteristics.

To demonstrate that the numerical inaccuracy can be reduced to an insignificant value and to show

that the numerical inaccuracy has no significant effect on the difference between the operation

characteristics, the operation characteristics for samples containing 10 data points are recalculated

using more accurate settings. Increasing the amount of randomisations NS performed during the

randomisation hypothesis tests increases the accuracy of the p-values, which leads to slightly more

powerful operation characteristics as can be seen by comparing figure 5.16a to 5.16b. Increas-

ing the number of repetitions R of the randomisation hypothesis test increases the accuracy of the

estimated distribution of the p-values. Thereby, it increases the accuracy of the operation charac-

teristics, which results in smoother curves as shown in 5.17a. To reduce the numerical error to an
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insignificant value for large values of c, e.g. c= 1.0, it is required to combine both improvements

as presented in figure 5.17b. Since the tendencies in figure 5.16a and figure 5.17b are identical, it

is concluded that the numerical error has no influence on the conclusions drawn based on figures

5.14 and 5.15.

Figure 5.16: Operation characteristic for bivariate lognormally distributed samples containing 10

points which differ in mean value. Diagrams generated using different setting for the

numerical alogrithm: a) N= 10, NS= 99, R = 100, b)N = 10, NS = 999, R = 100.
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Figure 5.17: Operation characteristic for bivariate lognormally distributed samples containing 10

points which differ in mean value. Diagrams generated using different setting for the

numerical alogrithm: a) N= 10, NS = 99, R = 500, b) N= 10, NS = 999, R = 500.
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5.5.2 Operation characteristic of a covariance difference
To investigate whether IBDM is more powerful than the Box-M statistic to detect a covariance ma-

trix difference between lognormally distributed samples (case 5 defined in section 5.1), the prob-

ability to accept the null hypothesis σσσ exp = σσσ sim is determined. To calculate this probability, the

covariance matrix difference is defined as a rotational difference between the bivariate lognormal

distributions. The parameters of these distributions are presented in table 5.4.

Table 5.4: Parameters of the bivariate lognormal distribution.

mean value 1 mean value 2 covariance matrix

Simulation 5.0 8.0

(

cos2(θ) −9.0sin2(θ)
sin2(θ) 9.0 cos2(θ)

)

Experiment 5.0 8.0

(

1.0 0.0
0.0 9.0

)

Furthermore, the alternative hypothesis is specified by means of equation 5.5, where σσσ exp is the

covariance matrix of the experimental populations presented in table 5.4, θ is the angle of rotation

and c is the normalised angle of rotation. Varying c from 0.05 to 1.0 in steps of 0.05 gives the oper-

ation characteristic for one sample size. To illustrate the influence of the number of data points per

sample on the probability to accept the null hypothesis, the operation characteristics are calculated

using samples that contain 5, 10 or 100 data points. Since the distribution of the populations is

non-normal, it is necessary to calculate the probability to accept the null hypothesis using equation

5.3, which is solved by means of the numerical procedure presented in section 5.2. Calculating the

probability to accept the null hypothesis for the defined values of c and N results in the operation

characteristics, which are shown in figures 5.18 and 5.19.

It is observed from figures 5.18 and 5.19 that the type II error decreases with increasing rotational

difference and increasing number of data points per sample. Furthermore, it is shown in figure

5.19 that IBDM is equally effective compared to the Box-M statistic for samples containing many

data points. Moreover, the Box-M statistic is more effective than IBVM for samples containing

10 data points, because β is smaller for the Box-M statistic than for IBDM for c > 0.15 and the

curve of IBDM for c< 0.15 is too low because it does not approach the value 0.95 when c goes to

zero as shown in figure 5.18b. Since the operation characteristic does not approach the expected

value of 0.95, a numerical error must be present. Nevertheless, it is not required to recalculate the

operation characteristic using more accurate settings, because the slope of IBDM is significantly

less steep than the one of the Box-M statistic. Further reduction of the number of data points will

eventually lead to unreliable results of the hypothesis tests as shown in figure 5.18a. This figure

again shows the importance of having enough data points to determine the distance. distance.
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Figure 5.18: Operation characteristics for bivariate lognormally distributed samples which are

rotated relatively to each other. Diagrams generated using the following settings for

the numerical algorithm: a) N= 5, NS = 99, R = 100, b)N = 10, NS = 99, R = 100.
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Figure 5.19: Operation characteristics for bivariate lognormally distributed samples which are

rotated relatively to each other. Diagrams generated using the following settings for

the numerical algorithm c)N= 100, NS = 99, R = 100.

5.5.3 Operation characteristic of a combined difference
To test whether a currently used distance measure is more effective than IBDM to detect a com-

bined difference, the difference between the lognormally distributed populations for case 6 is de-

fined similar to case 3 presented in section 5.4.3. Consequently, the difference is defined as a

simultaneous translation and rotation of the simulation population. The experimental lognormally

distributed population is defined using the parameters presented in table 5.4, while the population

of the simulation is specified by means of equation 5.4 and equation 5.5. Using samples drawn

from these distributions, the probability to accept the null hypothesis f exp(xxx) = fsim(xxx) is calcu-
lated, which is equal to the type II error when the samples are not identically distributed. To

calculate the type II error of the Mahalanobis distance, the Box-M statistic and IBVM are calcu-

lated using equation 5.3, because the distributions of the distance measures are unknown. Again,

this equation is solved for samples containing 5, 10 and 100 data points for values of c in the range

[0.05, 1.0] in steps of 0.05 to obtain the operation characteristics. These operation characteristics

are presented in figures 5.20 and 5.21.

It is shown in figures 5.20 and 5.21 that the type II error decreases with increasing distance be-

tween the samples (experiment and simulation). Furthermore, it decreases with increasing number

of data points per sample. As shown in figures 5.20a and 5.20b, it is difficult to detect the differ-

ence using the Box-M statistic, because it is insensitive to a mean value difference. Furthermore,

it is shown that the Mahalanobis distance and IBDM are approximately equal effective to detect

this combined difference. When the samples contain 10 data points, it is shown that the difference

can be measured most effective using the Mahalanobis distance or IBDM, which are equally effec-

tive. Further increasing the number of data points per sample to 100 increases the effectivity of all

methods significantly, but IDBM and the Mahalanobis distance remain the most effective methods
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to detect this difference. All in all, it is concluded from figures 5.20 and 5.21 that this combined

difference can be detected equally effective with the Mahalanobis distance and IBDM.

Figure 5.20: Operation characteristics for bivariate lognormally distributed samples which differ

in mean value and are rotated relatively to each other. Diagrams generated using the

following settings for the numerical algorithm: a) N= 5, NS = 99, R = 100, b)N = 10,

NS= 99, R = 100
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Figure 5.21: Operation characteristics for bivariate lognormally distributed samples which differ

in mean value and are rotated relatively to each other. Diagram generated using the

following settings for the numerical algorithm: N= 100, NS = 99, R = 100.

5.5.4 Discussion of the effectivity of IBDM
As expected, IBDM is more effective than the Mahalanobis distance to detect a pure mean value

difference between lognormally distributed samples containing up to 10 data points as presented in

figures 5.14 and 5.16. Furthermore, it is shown in figure 5.14c that IBDM is slightly less effective

to detect a mean value difference compared to the Mahalanobis distance between large samples,

as expected on the basis of the central limit theorem. Moreover, it is shown in figure 5.18c that

IBDM can be an effective method to detect a rotational difference between lognormally distributed

samples when the samples contain many data points. In addition, it is observed from figure 5.18

that the IBDM is less effective to detect a rotational difference than the Box-M statistic when the

samples contain 10 data points or less.

More important is the effectiveness of IBDM to detect a mean value difference and covariance ma-

trix difference simultaneously. It is shown in figure 5.20 that IBDM is equally effective to detect

the combined difference for this test case, but this is only one of the many possible combinations

of a mean value difference and a rotational difference. Furthermore, it has been shown in figure

5.14 that IBDM is more effective to detect a pure mean value difference for small samples while

being equally effective for large samples to detect a pure mean value difference. Combining both

results leads to the conclusion that IBDM is more effective to detect a difference with a dominant

mean value distance for small samples. For large samples, it is concluded from figures 5.14 and

5.20 that IBDM is slightly less effective to detect a difference with a dominant mean value compo-

nent. When the covariance matrix difference dominates the difference between two lognormally

distributed samples, it is concluded from figure 5.20 and figure 5.18 that IBDM is less effective for

small samples while being equally effective for large samples.
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All in all, it can be concluded that IBDM is an effective method to detect a difference between

lognormally distributed data when the mean value distance is dominant or the samples are suf-

ficiently large. Furthermore, the currently used distance measures are only sensitive to either a

covariance matrix difference or a mean value difference. Therefore, it is necessary to perform two

hypothesis tests when the currently used distance measures are used. Since IBDM is at least as

effective as the currently used methods for most differences while being sensitive to any difference

between the samples, it is recommended to use IBDM to detect differences between non-normally

distributed samples. In addition, it is recommended to use the Box-M statistic when a large covari-

ance matrix difference is present between small samples, because IBDM is less effective than the

Box-M statistic in this situation.

5.6 The effectivity of IBDM to detect a difference

To determine whether IBDM is more effective than the conventionally used Mahalanobis distance

and Box-M statistic, the operation characteristics based on samples containing 10 and 100 data

points of the normal distribution and the lognormal distribution are compared to each other. It is

observed from figure 5.8 and figure 5.16 that IBDM is equally effective compared to the Maha-

lanobis distance to detect small mean value differences (c < 0.25) between samples containing

10 data points. Furthermore, it is shown in figure 5.16 that IBDM is at least as effective as the

Mahalanobis distance to detect a mean value difference between lognormally distributed samples

containing 10 data points. Moreover, it is shown in figures 5.6c and 5.14c that IBDM is less effec-

tive to determine a mean value difference compared to the Mahalanobis distance when the samples

contain 100 data points. Since IBDM is only significantly less effective than the Mahalanobis dis-

tance when the samples are normally distributed or contain many data points, it can be concluded

that IBDM is an effective method to detect a mean value difference between arbitrarily distributed

results.

When a covariance matrix difference is present between the samples, it is concluded on basis of

figure 5.10c and figure 5.18c that IBDM is equally effective to detect the difference compared to

the Box-M statistic when sufficient data points are available to accurately estimate the distribution

of the samples. However, IBDM is less effective than the Box-M statistic to detect rotational dif-

ferences between small samples. Therefore, it is advisable to use the Box-M statistic to determine

the covariance matrix difference between small samples, because this distance measure is least

ineffective.

Concerning the effectivity of IBDM to detect a difference that consists of a mean value differ-

ence and a rotational difference, it is found that IBDM is at least as effective as the Mahalanobis

distance when the rotational difference is smaller than approximately 30 degrees as presented in

figures 5.12 and 5.20. However, when the covariance matrix difference dominates the distance

and the samples contain less than 100 data points, it is more effective to use the Box-M statistic as

shown in figures 5.10b, 5.18b and 5.12b. Therefore, it is advisable to use the Image Based Distance

Measure to measure the difference between two arbitrarily distributed samples unless it is known

that the samples mainly differ in covariance matrix.

In summary, the Image Based Distance Measure is an effective distance measure when the samples

contain many data points to determine the distance between arbitrarily distributed results, but the

advantages of using IBDM decrease when either the samples approach normality or the samples

contain too few data points to detect shape differences between the estimated distribution function.

Although IBDM can quantify any difference between normally distributed samples, the currently
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used distance measures are in general more effective and require less computational effort com-

pared to IBDM. Therefore, it should be investigated if the results are approximately normally

distributed before using IBDM.



6 Validation of a sphere indentation model

As described in the introduction, the loads acting on a structural component, the manufactured

geometry and the local material properties can all be subjected to scatter due to actual operating

conditions, manufacturing conditions and tolerances. If these structural components are safety rel-

evant, it could be necessary to further improve the state of the art life time prediction models by

considering also local material variation.

In general, the variation of the material behaviour is caused by microstructural and morphological

aspects in the lower millimetre range [38, 68, 74, 75]. For most structural components, these local

properties cannot be determined using conventional uniaxial tests (e.g. tensile experiments), due

to experimental limitations and difficulties. Instrumented sphere indentation is a method capable

to determine local material properties in the lower millimetre range [35, 36, 37, 38]. To extract lo-

cal material properties from indentation experiments, inverse parameter identification is performed

using a numerical model of the experimental setup. Consequently, the numerical model must be an

accurate representation of the actual indentation setup to reliably extract the relevant local material

properties from an indentation test. Hence, the indentation model must be validated to ensure that

the numerical model is an accurate representation of the experimental setup.

In this chapter, the validation process is presented that is used to determine whether the numer-

ical model is an accurate representation of the experimental setup. In the first section, the flow

chart of the validation process is explained. Next, the experiments are described and the experi-

mental results are presented. Subsequently, the numerical model is outlined, which generates the

numerical results that are compared to the experimental results. In the last section, the difference

between numerical results and the experimental results is calculated and the steps taken to reduce

this difference between simulation and experiment (i.e. model optimisation) are presented.

6.1 Validation process of the sphere indentation model

As stated in the introduction, the following three components are required to validate a numerical

model: experimental results, numerical results and a validation method. Validation leads to the

conclusion that the model is either valid or invalid. Since an engineer is not interested in an invalid

model, it is very useful to extend the validation process by an optimisation loop to decrease the

difference between the experimental results and the simulated results when the model is invalid.

The validation process including an optimisation loop of the sphere indentation model is schemat-

ically presented in figure 6.1. The experimental results are measured during sphere indentation

experiments, while the numerical results are calculated using a finite element based sphere inden-

tation simulation. Validation in this work is always to be interpreted as validation in presence of

scatter, e.g. the stress-strain behaviour of the material scatters in reality. Therefore, it is necessary

to introduce random scatter in the input variables of the numerical model. To quantify and describe

the variation of the stress-strain behaviour of the material, it is necessary to perform tensile exper-
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Sphere indentation experiment Sphere indentation simulation

Validation
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parameters

Sim. results &
uncertainty

Invalid
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Initial input
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Tensile experiment

Exp. results &
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Experiment SimulationValidation process

Optimisation
loopExp. results &

uncertainty

End

Figure 6.1: Flowchart of the validation process of a sphere indentation model.

iments as presented in figure 6.1. Their results provide the initial settings for the material model

of the sphere indentation simulation.

During validation of the sphere indentation model, the simulated indentation curve (i.e. indenta-

tion depth versus load) is compared to the experimentally measured indentation curve to determine

whether the numerical model is an accurate representation of the experiments. When the model

is invalid, the unverified assumptions (see figure 2.1) are changed within their respective ranges

using an optimisation process until a valid numerical model is obtained. This optimisation loop is

performed using the adaptive response surface methodology of OptiSLang [67]. For further details

concerning this optimisation algorithm the reader is referred to subsection 3.4.5. The box named

validation in figure 6.1 is further broken down in figure 6.2.

Distance
measure

H : rejected0

Discretisation

Numerical resultsExperimental results

Discretisation

Hypothesis test

H : accepted0

Validation

D > Uncertainty

Uncertainty test D < Uncertainty

AND

OR

Invalid Valid

N-dim.
experimental results

N-dim.
numerical results

Figure 6.2: Flowchart of the steps to determine the validity of a sphere indentation model.

As shown in figure 6.2, the indentation curves are discretised at equidistant applied loads before

measuring the distance between two indentation curves. Only the loading part of the indentation

curve needs to be discretised to identify the local material hardening behaviour, because plastic

deformation is a process taking place during loading and not during unloading. These discretised
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loading curves yield the N-dimensional experimental and numerical results, i.e. the indentation

depth at several loading levels. Using the N-dimensional results of the indentation curves, the dis-

tance between numerical results and experimental results is calculated. After computation of the

distance between the numerical results and the experimental results, it is determined whether the

distance is significant by means of a hypothesis test and a uncertainty based criterion. When the

distance is statistically significant or larger than the uncertainty present in the numerical model and

the measurements, an optimisation process is started to decrease the distance between simulation

and experiment by changing the unverified assumptions of the numerical model (see figure 6.1).

The distance between numerical results and the experimental results is measured using the Image

Based Distance Measure (IBDM) (see chapter 4) and the Mahalanobis distance, which is used as

reference distance measure representing the state-of-the-art methods. The Image Based Distance

Measure requires several steps to calculate the distance between the experimental and simulated

results, as illustrated in figure 6.3.

EPDF

Discretisation

Kernel width

Gaussian kernel

Discretisation steps

Distance calculator

N-dimensional experimental results N-dimensional numerical results

EPDF

Discretisation

Output: IBDM

IBDM

Figure 6.3: Flowchart of the steps to calculate the distance using IBDM.

During the first step, the probability density functions of the experimental and simulated results

are estimated using the gaussian kernel estimator. The width of the kernel is based on either the

measurement uncertainties or it is equal to the optimal Gaussian kernel width, which is calculated

using equation 3.28 and the experimentally measured results. Subsequently, the Estimated Prob-

ability Density Functions (EPDFs) are discretised using 500 discretisation steps per direction as

explained in section 4.2, which results in a probability distribution. The distance between two

probability distributions is calculated using the overlap coefficient according to Manders, as ex-

plained in section 4.2. In case the dimensionality of the probability distribution is greater than

two, all possible 2-dimensional projections of the probability distribution are used to measure the

distance between the two multivariate probability distributions.

To calculate the Mahalanobis distance, the multivariate result spaces are used directly, as presented

in figure 6.4. The mahalanobis distance is calculated using equation 3.33.

Distance calculator

N-dimensional experimental results N-dimensional numerical results

Output: Mahalanobis distance

Mahalanobis distance

Figure 6.4: Flowchart of the steps to calculate the Mahalanobis distance.
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As presented in figure 6.2, a hypothesis test is performed to determine whether the distance be-

tween simulation and experiment is significant. The steps required to perform the randomisation

hypothesis test are schematically presented in figure 6.5. In the first step, randomisation is per-

formed to obtain NS pseudo samples, as explained in section 4.3. Next, the distance between

the pseudo samples are calculated and compared to the original distance. Based on the amount

of pseudo distances larger than original distance, the p-value φ is calculated using equation 3.48.

This p-value is compared to the user specified significance level α to determine whether the null

hypothesis fexp(xxx) = fsim(xxx) has to be rejected. When the p-value φ is smaller than the significance

level α , the null hypothesis being tested is rejected. Otherwise, the null hypothesis is accepted,

which merely means that there is not enough evidence to reject the null hypothesis.

H : rejected0

H : accepted0

Distance measure

N-dimensional experimental results N-dimensional numerical results

Randomisation

Distance measure

sig. level α

p-value

α<

<

Hypothesis test

Figure 6.5: Flowchart of the randomisation hypothesis test, which is used to determine whether a

difference is significant.

6.2 Experiments

To validate the indentation model, two kinds of experiments are performed as presented in figure

6.1. The sphere indentation experiments are used to validate the indentation model while the ten-

sile experiments are performed to determine the variation of the stress-strain behaviour of the bulk

material, which is an essential input for the sphere indentation simulations as presented in figure

6.1. To eliminate any batch-to-batch influence, the specimens are taken from the same plate. Fur-

thermore, the specimens are extracted in a clustered pattern to reduce the systematic influence of

the specimen location on the experimental results. The specimen extraction plan of the specimens

tabulated in table 6.1 is illustrated in figure 6.6.

On the indentation specimen taken from the rolled plate, sphere indentation experiments are per-

formed where the applied force versus indentation depth is measured. Using the tensile specimen,

tensile experiments are performed where the specimen elongation versus applied force are mea-

sured. Furthermore, the measurement uncertainties are determined for both experiments to investi-

gate their influence on the experimental results as shown in figure 6.1. It is necessary to determine
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Table 6.1: Specimen overview containing specimen number, material name, type of specimen and

orientation.

Specimen number Material Type of specimen Orientation

1-20 Al2024-T351 Tensile specimen perpendicular to rolling direction

21-40 Al2024-T351 Tensile specimen parallel to rolling direction

41-60 Al2024-T351 Indentation specimen -

61-80 Al2024-T351 Indentation specimen -

the measurement uncertainties, because these will be used during validation to determine whether

the distance between simulation and experiment is significant, see figure 6.2. Consequently, a

detailed uncertainty analysis is performed. The experimental results are thus a combination of the

experimental data and the measurement uncertainties as presented in figure 6.7.

In the following two subsections, the experimental setup, the experimental results and the measure-

ment uncertainties of the sphere indentation experiments and the tensile experiments are presented.
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Figure 6.6: Sketch of the specimen extraction pattern.
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Figure 6.7: a) Flowchart of the sphere indentation experiments (experiment for validation), b)

Flowchart of the tensile experiments (experiment for simulation).
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6.2.1 Sphere indentation experiments
The experimental setup to measure the indentation depth during the indentation experiments is

presented in figures 6.8a and 6.8b. It consists of a steel specimen support (I), a tungsten carbide

indenter shaft with a diamond half sphere on the tip (II), a displacement transducer (III), and spec-

imen clamps (IV). This experimental setup is installed in a universal testing rig (Instron 6665A)

equipped with a 5 kN load cell. Load and indentation depth are measured simultaneously during

the indentation experiments, which are performed using the load profile presented in figure 6.9. For

this setup, a specimen with the nominal dimensions of 40mm x 90mm x 6mm is used, see figure

6.8c. To minimise the measurement error, a high quality contact between specimen and anvil, and

indenter and specimen are essential. This is obtained through an appropriate surface preparation

process of the top and bottom side of the specimens after grinding both sides plain. The top sur-

face (where the indents will be placed) is first finished using P2500 abrasive paper whereafter it is

polished using a 3 µm diamond suspension and an oxide polishing suspension (0.05µm) while the

bottom side is finished using P1200 abrasive paper. To ensure that the indents do not influence each

other, a minimum distance of 10mm (approximately 6x the indentation diameter) is maintained

between the centres of the indentations as well as between the centres of the outer indentations and

the edges of the specimen. This results in a total of 14 indents per indentation specimen, as shown

in figure 6.8c.

20mm

a) b) c)

Specimen
IV

II III

I

IV

Figure 6.8: Experimental indentation setup: a) Photo of the experimental setup, b) Schematic

overview of the components of the setup, c) Photo of a specimen after indentation

experiments and a magnification of the indent.

To measure the indentation depth, an inductive displacement transducer is attached to the shaft of

the indenter as shown in figure 6.8a. Consequently, the measured indentation depth is affected by
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Figure 6.9: Loading curve of indentation experiments.
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the elastic deformation of the indenter shaft. Therefore, it is necessary to correct the measured

displacement for the deformation of the shaft to obtain the indentation depth accurately. This

correction factor is determined from a finite element simulation of the indenter shaft. Using the

displacement of the two points shown in figure 6.10a at several load levels, the compliance of the

indenter shaft is calculated. Point P1 represents the point where the displacement transducer is

attached to the shaft and point P2 represents the interface between the diamond tip and shaft. As

indicated by the slope of the curve in figure 6.10b, the deformation behaviour of the shaft is linear,

with a compliance equal to 0.65µm/kN.

Figure 6.10: a) Shaft deformation model sketch for the section between diamond sphere P2 and

displacement transducer attachment point P1, b) Deformation u of the shaft section.

To calculate material properties such as HIT and EIT from instrumented indentation experiments,

it is necessary to know the relation between indentation depth and contact area. Usually the con-

tact area is based on the indentation depth using the method of Oliver & Pharr [32]. For this it is

required to know the actual indenter shape, which has been measured at Fraunhofer IWMHalle by

means of white light interferometry [76, 77]. The result of this measurement is presented in figure

6.11a, where the colours represent the vertical height with respect to a reference plane. Based on

figure 6.11a, it is concluded that the indenter is rotationally symmetrical, which is recognised from

a) b)

Figure 6.11: a) Measurement of the indenter topology, b) Typical cross-section of the indenter

topology.
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the circular pattern. To compare the topology with the ideal spherical shape, the data points on

several cross-sections are compared to cross-sections of the corresponding ideal sphere. The data

points on a typical cross-section and an ideal spherical shape are presented in figure 6.11b. Based

on this typical cross-section, as well as other investigated cross-sections, it is concluded that there

is no significant difference between an ideal sphere and the actual indenter shape. Therefore, it can

be assumed that the indenter is an ideal sphere with a diameter of 3mm.

Using the instrumented indentation setup shown in figure 6.8, 560 indentation experiments are

performed to obtain an extensive database to validate the indentation model. These indents are

positioned on the 40 specimens according to the pattern shown in 6.8c. However, not every inden-

tation experiment was successful, due to incorrect displacement measurements or simply human

error during operation. Therefore, only 534 valid indentation curves are obtained which are pre-

sented in 6.12. From these indentation curves the indentation modulus is calculated using equation

3.9, with Ei=1050 [78], νi=0.2 [78] and ν=0.34 [79]. Furthermore, Ac(hc) is defined by the form

of the indenter, which is an ideal sphere in this case. The mean value and standard deviation of the

indentation moduli are shown in table 6.2. During sphere indentation experiments, the material is

deformed in all three directions of the slightly anisotropic material. Hence, the resulting material

response represents a kind of averaged response of the stiffness in transverse, longitudinal and

thickness direction. Since the Youngs modulus in thickness is approximately equal to the Youngs

modulus in transverse direction [79], it can be expected that the value of the indentation modulus

falls between the values of the transverse and longitudinal macroscopic elastic modulus, which

is confirmed by the results presented in table 6.2. Hence, it can be assumed that the indentation

experiments are accurate enough to determine the local stress-strain behaviour from the indenta-

tion depth at several load levels during loading. These indentation depths are presented in table 6.3

in terms of the mean value and the standard deviation.

Table 6.2: Comparison of EIT and the tension Young’s moduli of aluminium 2024-T351.

EIT [GPa] Young’s Modulus [GPa] Young’s modulus [GPa]

transverse direction longitudinal direction

72.0 ± 1.5 70.3 ± 1.7 73.1 ± 1.3

Table 6.3: Mean value and standard deviation of the indentation depth of the indentation

experiments performed on specimen of aluminium 2024-T351.

Indentation depth

Indentation load [N] mean value [mm] standard deviation [mm]

300 0.0310 0.0005

500 0.0472 0.0007

700 0.0624 0.0009

900 0.0771 0.0010

1100 0.0913 0.0011

1300 0.1052 0.0011

1500 0.1190 0.0012

1650 0.1294 0.0013

1850 0.1430 0.0013
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Figure 6.12: Illustration of the indentation curves of 534 indentation experiments in aluminium

2024-T351, the minimum indentation curve and the maximum indentation curve are

highlighted in black.

Apart from the experimental results, it is important to determine the measurement uncertainties,

because the measurement uncertainty of the indentation depth directly influences the decision

whether a distance between simulation and experiment is significant. The measurement uncer-

tainty of the load measurement system is smaller than 0.06% according to the calibration protocol

of the device. Therefore, it can be concluded that the influence of the measurement uncertainty of

the applied loads on the results is negligible. Consequently, it is assumed that the applied loads

are measured exactly. The measurement uncertainty of the displacement measurement system is

calculated using 6 calibration series. It is common practice to present measurement uncertainties

in calibration protocols using a probability interval of 95% [26, 80]. The values of this probability

interval are presented in table 6.4.

Table 6.4: Measurement uncertainty of the indentation measurements defined using the probability

interval of 95%.

Displacement Measurement uncertainty

[mm] [%]

0.05 ±2.42

0.10 ±0.91

0.15 ±1.23

0.20 ±1.33

0.25 ±1.22
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6.2.2 Tensile experiments
The tensile experiments are performed using dog-bone shaped specimens (see figure 6.6) with a

gauge section of 50mm x 12.5mm x 6mm and a radius of 34mm. These specimens are loaded

in tension with a constant test velocity of 1mm/min using an universal testing rig (Instron 4505).

During the tensile experiments, the applied load is measured using a 100kN load cell and the spec-

imen elongation is measured using a laser extensometer (Fiedler P-50) over a length of 46mm

centred at the gauge section of the specimen. Based on these two quantities, the engineering

stress and strain are calculated using equations 3.3 and 3.4, see figure 6.13. For small strains,

Figure 6.13: Tensile engineering stress - engineering strain behaviour of aluminium 2024-T351:

a) Measured in transverse direction, b) Measured in longitudinal direction.

the stress-strain behaviour is linear. This linear elastic behaviour is expressed by means of the

Youngs modulus, which is calculated using equation 3.5. The mean value and standard deviation

of the Youngs modulus are presented in table 6.5 for the transverse and longitudinal direction of

aluminium 2024-T351.

Table 6.5: Mean value and standard deviation the Youngs moduli of aluminium 2024-T351 in

transverse and longitudinal direction.

Material parameter [Units] 2024 2024

transverse longitudinal

E [GPa] 70.3 ±1.7 73.1 ±1.3

Although the tensile experiments are commonly evaluated using the engineering stress and strain,

it is necessary here to calculate the true stress and strain behaviour, because the elastic-plastic ma-

terial model of the sphere indentation model is defined using the true stress-strain behaviour. The

true strain and the true stress value are calculated using equations 3.6 and 3.7. These quantities

exhibit a monotonically increasing relation as shown in figure 6.14.

To calculate the uncertainty of engineering stress, engineering strain and Youngs modulus, the

measurement uncertainties have to be propagated through equations 3.4, 3.3 and 3.5. Here, the
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Figure 6.14: Tensile true stress - true plastic strain behaviour of aluminium 2024-T351: a) Deter-

mined in transverse direction, b) Determined in longitudinal direction.

uncertainties are calculated from the measurement uncertainties using the interval arithmetic ac-

cording to equation 3.1. The measurement uncertainty of the applied load is a combination of the

measurement uncertainty present in the measurement setup and the load cell, which are calibrated

separately. Since the applied load varies during the experiments, it is necessary to determine the

measurement uncertainty at several load levels. It is expected that the maximum relative uncer-

tainty occurs at low loading. To calculate the measurement uncertainty of the applied loads, the

measurement uncertainty of the load cell and the measurement setup have to be added together as

presented in table 6.6. The values presented in table 6.6 are obtained from calibration protocols.

It is beyond the scope of this work to explain the calibration procedures used to measure these

measurement uncertainties. On basis of table 6.6, it is concluded that the maximum measurement

uncertainty is present at 10% of the load cell capacity. At increased loading, the relative measure-

ment uncertainty decreases as shown in table 6.6.

The elongation measurements are performed with a laser extensometer, whereof only the maxi-

mum measurement uncertainty is known. The maximummeasurement uncertainty is a function of

the measured displacements and it is specified by the device manufacturer in two classes. Namely,

for elongations smaller than 300µm the measurement uncertainty is equal to 0.6µm while for

elongations larger than 300µm it is equal to 0.2% of the actual elongation.

Table 6.6: Measurement uncertainties of the tensile experiments.

Calibration load Measurement setup Load cell Applied load Cross sect. area Eng. Stress

[kN] [%] [%] [%] [%] [%]

10.0 -0.31 ± 0.65 ±0.03 -0.31 ± 0.68 ± 0.2 -0.31 ± 0.88

20.0 -0.22 ± 0.21 ±0.02 -0.22 ± 0.23 ± 0.2 -0.22 ± 0.43

30.0 -0.20 ± 0.16 ±0.02 -0.20 ± 0.18 ± 0.2 -0.20 ± 0.38

40.0 -0.19 ± 0.19 ±0.01 -0.19 ± 0.20 ± 0.2 -0.19 ± 0.40
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To calculate the uncertainty of the engineering stress and Youngs modulus, it is necessary to de-

termine the uncertainty of the cross sectional area. It is a combination of the geometrical variation

due to manufacturing tolerances and the measurement uncertainty of the geometry measurements.

The uncertainties of the geometry of the specimen in width and thickness direction are respec-

tively±7 µm and ±3 µm, which represent the 95% probability interval of scatter of the geometry

of the specimen. This variation is measured using a device which has a maximum measurement

uncertainty of 4 µm. Hence, the total uncertainty in width direction and thickness direction are

respectively ±11 µm and ±7 µm. Using the nominal thickness of 6mm and width of 12.5mm,

the uncertainty of the cross-sectional area is equal to ±0.20%. Since the uncertainty in the cross

sectional area is now known, the uncertainty of the engineering stress and Youngs modulus can

be calculated using equation 3.1. Here, the measurement uncertainty in the Youngs modulus de-

pends on the elongation of the specimen. Consequently, the uncertainty in the Youngs modulus

is equal to ±2.19% for the used specimen gauge length, material and load range to calculate the

Youngs modulus. The measurement uncertainties in the engineering stress are presented in the

corresponding column of table 6.6.

6.3 Numerical model of the indentation tests

To simulate the indentation process under influence of uncertainties, a numerical model is used

that consists of three parts as presented in figure 6.15. The deterministic model is used to simulate

the indentation process as presented in figure 6.15a. This model requires, among other things,

material parameters for the material model. To introduce scatter to the input parameters reflecting

their scatter in reality, it is necessary to describe the scatter of the input parameters by means of a

stochastic description as presented in figure 6.15b. Using the deterministic model and the stochas-

tic description of the input parameters, a probabilistic model is created as illustrated in figure 6.15c.

Basically, this stochastic model is a pre and post processing tool wrapped around the determinis-

tic model to obtain scattering results by means of a Monte Carlo simulation. Using Monte Carlo

simulation realisations, random values for the input parameters are generated according to their

respective distribution function. For each deterministic simulation of the finite element model, the

values of its input parameters are modified using random numbers which are based on the stochas-

tic descriptions. This gives the stochastic results of the simulation as shown in figure 6.15c. In the

following subsections the deterministic model, the stochastic description of the input parameters

and the stochastic results of the model are presented.

6.3.1 Deterministic model
The deterministic model is a finite element model (FEM) created with Ansys14.0 [81], which sim-

ulates the indentation process in an elastic-plastic material. To create a deterministic model that

fits its purpose, it is essential to identify the requirements put on the model by its intended use.

In this case, the indentation model is created to determine the local hardening behaviour from in-

dentation experiments via inverse parameter identification. Creating an indentation in the slightly

anisotropic material (see figure 6.14) will result in one indention curve, but it is not possible to

derive the anisotropic hardening behaviour in a unique manner from indents made with a sphere

indenter as shown in figure 6.16a. Since the intended use of the model is identifying material

parameters from sphere indents via inverse parameter identification, it is essential to simplify the

material to an isotropic material to ensure a unique relation between the indentation depth and the

flow stress as illustrated in figure 6.16b. Moreover, inverse parameter investigation is an optimisa-



6 Validation of a sphere indentation model 91

Deterministic model

Material model Finite element model
Material parameters

Output

Deterministic
model

Probabilistic model

N indentation
curves

Stochastic
description

Stochastic description

Output

a)

b)

c)

0.02 0.040.00

100

200

300

400

500

εpl [-]

σ
tr

u
e
[M

P
a]

0.06 0.120.00

100

200

300

400

500

εeng [-]

σ
tr

u
e
[M

P
a]

0.18

Input

Parameterised
stress - strain curve

Es

f
(

)
E

s

σ σ ε σy i s s= + + (1- )E epl

-γεpl

σi

f
σ(

) i

σi sE .....

..
..

. 
E

s
i

σ

covariance
matrix

....
N Random
material
parameters

Tensile
stress-strain

curves

h

F
o
rc

e

Input

N Rand.
param.

Figure 6.15: Flow chart of the stochastic sphere indentation model: a) The deterministic model,

b) The stochastic description, c) The probabilistic model.
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Figure 6.16: a) Illustration of the non-unique relation between the indentation depth and the

anisotropic hardening behaviour of the material, b) Illustration of the unique relation

between the indentation depth and the isotropic hardening behaviour of the material.
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tion procedure, which requires a numerical efficient model to determine the local material proper-

ties quickly. Consequently, a rotational symmetric model is created, as presented in figure 6.17.

The material is modelled as isotropic elastic-plastic material with isotropic hardening. Since the

material is modelled as isotropic material, a systematic error is made because the rolled plate of

aluminium 2024-T351 is slightly anisotropic. Nevertheless, in context of sphere indentation simu-

lation this error can be accepted, because the macroscopic anisotropy is relatively small (see table

6.5 and figures 6.13 and 6.14) and a unique relation must exist between the indentation depth and

the flow stress for the intended use of the model, i.e. inverse parameter identification.

The finite element model used to simulate the indentations consists of three different parts made of

different materials, namely a diamond indenter, a specimen and a steel specimen support as shown

in figure 6.17. For this model quadratic elements (Ansys element name is 183 [82]) are used with

an element size of 0.012mm x 0.012mm in the contact zone which is coarsened gradually outside

the indentation zone. The load is applied to the topside of the diamond half sphere and the nodes

on top of the diamond indenter are coupled to ensure a uniform displacement. The specimen and

the specimen support are connected to each other using shared nodes while the specimen and the

indenter are connected using contact elements with target and surface elements on both surfaces to

ensure minimal penetration of the bodies. Moreover, the indenter is modelled as an ideal sphere,

because no significant deviation has been found between the actual indenter topology and an ideal

sphere as shown in figure 6.11. In addition, a frictionless contact is assumed, because the effect

of friction is assumed to be small for such well polished surfaces. Furthermore, the coefficient of

friction has a small influence on the indents for large indentation depths [34]. The behaviour of the

contact elements is calculated using the augmented Lagrangian algorithm of Ansys14.0 with the

default settings and initial gap closure [82]. Since this model is effectively a 2-dimensional model,

it cannot represent the experimental boundaries of the specimen clamps. Therefore, the influence

of this simplified symmetrical boundary condition is investigated during model verification.

Model verification has to be performed before validation, because it ensures that the model calcu-

lates the solution accurately. Verification of this model consist of a finite element size convergence

study and an investigation of the boundary conditions. The finite element size convergence study

is used to determine the optimal trade off between model accuracy and calculation efficiency.

Based on table 6.7 and figure 6.18, it is concluded that the model with 3105 elements is the best

F

Specimen

Specimen support

A

Figure 6.17: Schematic representation of the rotational symmetric finite element model.
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compromise between computational efficiency and accuracy. It has a maximum model error of

0.24% compared to a model with 11124 elements (providing the reference solution), while being

approximately 4.5 times faster.

Table 6.7: Indentation depth and error of the finite element model for different amounts of

elements.

Elements CPU time hmax at 600N Error hmax at 1200N Error hmax at 1800N Error

[s] [mm] [%] [mm] [%] [mm] [%]

11124 1507 0.04440 - 0.07877 - 0.11099 -

8265 992 0.04432 0.18 0.07864 0.17 0.11097 0.02

5376 611 0.04426 0.32 0.07855 0.28 0.11089 0.09

3105 338 0.04434 0.14 0.07863 0.18 0.11072 0.24

1452 138 0.04426 0.32 0.07848 0.37 0.11047 0.47

417 44 0.04407 0.74 0.07790 1.11 0.10922 1.49

To estimate the influence of the simplified boundary condition on the indentation depth, both ex-

treme boundary conditions (fixed in radial direction and free) are investigated. For aluminium

2024, the difference between both boundary conditions is 0.14% for the maximum indentation

depth at 2000N using the model with 11124 elements. Therefore, it is concluded that the boundary

condition at edge A does not significantly influence the results. Since a fixed boundary condition

in radial direction is closer to reality, this boundary condition is used for all following simulations.

Consequently, all simulations related to validation of the indentation model are performed using

the finite element model with 3105 elements and fixed boundary conditions at edge A.

Figure 6.18: Simulated maximum indentation depth at 1800N versus the number of finite

elements.
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6.3.2 Stochastic description of the random input parameters
The macroscopic hardening behaviour of aluminium 2024-T351 is slightly anisotropic as presented

in figure 6.14. However for reasons mentioned in the previous section, it is necessary to simplify

the material to an isotropic material. Although simplified, the material model should still represent

the material accurately. Therefore, it is essential to estimate the hardening behaviour of the rep-

resentative isotopic material. Since hardening is measured in the plastic zone, which can be up to

5.5x larger than the contact area [83], it is concluded from figure 6.19 that the plastic zone contains

a sufficient number of grains. Since the plastic zone contains many grains, it is expected that the

mean value of the local representative hardening behaviour is approximately equal to the mean

value of the global representative hardening behaviour under equal loading conditions. During

indentation, the material is loaded in all directions. Therefore, it is expected that the representative

material hardening behaviour should fall between the individual hardening behaviour of the three

material directions, namely transverse, longitudinal and thickness direction. Although the harden-

ing behaviour in thickness direction is unknown, it is expected that the flow stress of the material

in thickness direction is lower compared to flow stress in transverse direction on basis of the shape

of the grains presented in figure 6.20a and figure 6.20b. Furthermore, it is known from the tensile

experiments that the flow stress of the material is higher in longitudinal direction. Therefore, it is

assumed that the hardening behaviour in transverse direction is an adequate rough estimate of the

corresponding representative isotropic material.

Figure 6.19: The size of a sphere indent relative to the size of the grains of aluminium 2024-T351.

a) b)

Figure 6.20: Shape and size of the grains of aluminium 2024-T351: a) Transverse direction,

b) Longitudinal direction.
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To parameterise the hardening behaviour of aluminium 2024-T351 the Voce hardening law [84]

is used, which is an isotropic hardening model that fits the hardening behaviour of aluminium

2024-T351 (shown in figure 6.14) quite well. The Voce hardening law is presented in equation

6.1,

σy(εpl) = σi+Es εpl +σs(1− e−γ εpl ) (6.1)

where εpl is the true plastic strain, σy is the flow stress of the material, σi is the initial yield stress,

Es is the slope of saturation, σs is the difference between initial yield stress and saturation stress

and γ is the hardening saturation rate of the exponential term.

Using the optimisation routine "fmin" of the Python package SciPy, the Voce hardening model is

fitted to the experimentally measured true stress plastic strain curves of aluminium 2024-T351 in

transverse direction (shown in figure 6.14a). Minimisation of the difference between the experi-

mentally measured flow stress and the flow stress based on the hardening law is performed using

the following objective function presented in equation 6.2,

dflow stress =
100

∑
i=0

(σexp,εpl −σy,εpl )
2, εpl =

i

10
% (6.2)

where σy,εpl is the flow stress according to the hardening law at εpl plastic strain and σexp,εpl is

the experimentally measured flow stress at εpl plastic strain. Furthermore, i is varied between [0,

70] with increments of 1. The mean value and standard deviation of the hardening law parame-

ters resulting from this optimisation are presented in table 6.8. These values will be used for the

stochastic description of the input parameters of the numerical model. Therefore, it is essential

to verify whether the measurement uncertainty of the tensile experiments is less than the standard

deviation of the hardening parameters. Since the measurement uncertainty is less than 1% (see

table 6.6) and the scatter of the parameters in table 6.8 is larger than 1%, it is concluded that the

tensile experiments are performed sufficiently accurate.

Table 6.8: Parameters of the material model for aluminium 2024-T351 in transverse direction.

Material parameter [Units] E [GPa] σi [MPa] Es [MPa] σs [MPa] γ [-]

70.3 ±1.7 277 ±3.3 1520 ±29.4 107 ±2.6 174 ±7.3

In order to generate random values for the input parameters of the stochastic model, it is necessary

to estimate or assume the distribution of the parameters of the material model and the correlation

between the parameters must be determined. Here, a normal distribution is assumed for all pa-

rameters. The correctness of this assumption is verified using two goodness of fit hypothesis tests.

One based on the Kolmogorov-Smirnov (K-S) test statistic and one based on the Anderson-Darling

(A-D) test statistic, which are presented in subsection 3.3.2. Using a significance level of 5% no

significant difference can be found between the empirical distribution function and the normal dis-

tribution function on basis of the K-S statistic as shown in table 6.9.

Table 6.9: Goodness of fit of the normal distribution to the material parameters.

Material test E σi Es σs γ

2024 transverse
K-S accepted accepted accepted accepted accepted

A-D rejected accepted accepted accepted accepted
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Using the Anderson-Darling test statistic, the hypothesis test is only rejected for the Youngs mod-

ulus as presented in table 6.9. Since the A-D test statistic is sensitive for differences in the tails

of the distribution while the K-S statistic is focused on the central part of the distribution, the

difference must be present between the tails of the normal distribution function and the empirical

distribution function. Even though a difference is found between the tail of the distribution of the

Youngs modulus, it is decided to use the normal distribution for the parameters because it fits the

central part of distribution well (see K-S test) and the tails of the distributions are of minor impor-

tance in this case. The assumed distributions are characterised by the mean value and the standard

deviation listed in table 6.8. To express the correlation between the parameters of the material

model that are calculated using the optimisation routine "fmin", the linear correlation coefficients

are calculated with equation 3.14. The linear correlation matrix of aluminium 2024 in transverse

direction is presented in table 6.10.

Table 6.10: Correlation matrix of the material parameters of 2024-T351 in transverse direction.

E σi Es σs γ

E 1.00 0.48 0.03 -0.17 0.22

σi 0.48 1.00 -0.08 -0.31 0.17

Es 0.03 -0.08 1.00 -0.18 -0.03

σs -0.17 -0.31 -0.18 1.00 0.79

γ 0.22 0.17 -0.03 0.79 1.00

To ensure that the random hardening curves based on these correlated material parameter distribu-

tions represent the measured hardening behaviour accurately, it is chosen to verify the stochastic

description of the hardening behaviour. For this purpose, 100 random hardening curves are gen-

erated using the simple random sampling method presented in subsection 3.3.4. These randomly

generated hardening curves and the experimentally measured hardening curves are presented in

figure 6.21. Based on figure 6.21, it is concluded that the stochastic material model represents the

measured stress - strain behaviour accurately, because the experimental results (open squares) and

the numerical results (solid circles) match very well.
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Figure 6.21: Distribution of stress-strain behaviour of 2024-T351 in transverse direction: a) True

stress - true strain curves, b) Cumulative distribution of the true stress at 5% true

plastic strain, c) Cumulative distribution of the true stress at 10% true plastic strain,

d) Cumulative distribution of the true stress at 15% true plastic strain.

6.3.3 Results of the stochastic indentation simulation
Using the deterministic model and the stochastic parameter description presented in the previous

subsections, the scatter of the indentation depth is calculated. For this purpose, 200 simulations

are performed. The results of these 200 simulations are listed in table 6.11 by means of the mean

value and the standard deviation of the indentation depth at several load levels.
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Table 6.11: Mean value and standard deviation of the indentation depth of 200 indentation simula-

tions at several load levels.

Indentation depth

Indentation load [N] mean value [mm] standard deviation [mm]

300 0.0315 0.0002

500 0.0476 0.0004

700 0.0629 0.0006

900 0.0778 0.0006

1100 0.0921 0.0007

1300 0.1061 0.0010

1500 0.1198 0.0009

1650 0.1301 0.0011

1850 0.1434 0.0011

6.4 Validation of the indentation model

To perform validation of the indentation model, the steps illustrated in figure 6.2 have to be ex-

ecuted. The first step of validation is discretisation to obtain the multivariate result space of the

indentation curves during loading. This result space is used to determine the difference between the

numerical and experimental indentation curves. To represent the indentation curve adequately, it is

discretised into the following nine load levels: 300N, 500N, 700N, 900N, 1100N, 1300N, 1500N,

1650N and 1850N.

The resulting indentation depths at these load levels are clearly correlated with each other due

to the typical shape of the indentation curve, which is shown in figure 6.12. Using more dis-

cretisation steps leads to a more accurate representation of the indentation curve, but also leads

to highly correlated results at more closely spaced load levels and thereby does not provide ad-

ditional information that is significant. To demonstrate the effect of inappropriate discretisation

on the measured distance between the numerical results and the experimental results as well as

the decisions made during validation, the indentation loading curve is also discretised using only

two load levels, namely 300N and 1850N. It is known in advance that only two load levels are

insufficient to represent the nonlinear indentation curve accurately.

Next, the distance between the result spaces is initially measured using both the Image Based Dis-

tance Measure (IBDM) and the Mahalanobis distance. The Image Based Distance Measure and the

Mahalanobis distance are used because these methods are efficient to detect differences between

multivariate result spaces as explained in chapter 5. Both methods are used for the first iteration

of the optimisation step of the validation routine and only the method with better performance

is used to fully optimise and complete the iterations towards an agreement of the numerical and

experimental results.

When the distance is measured using IBDM, it is necessary to specify two settings of the method

as presented in figure 6.3, namely the kernel width and the number of pixels used to create the im-

ages. The number of pixels used for IBDM is specified in section 6.1, while the kernel width can

be defined using either equation 3.28 or the measurement uncertainty. Here, both methods are used

to demonstrate the influence of the kernel width on the measured distance and to determine which

method is more suited for this problem. When the kernel width is defined using the measurement

uncertainty, the standard deviation of the Gaussian kernel is equal to 1/1.96 of the measurement
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uncertainty, because the measurement uncertainties specified in table 6.4 represent the central 95%

of the normally distributed measurement uncertainties. In case the Gaussian kernel width is de-

fined using equation 3.28, the number of data points is equal to the number of data points in the

smallest sample. The standard deviation is equal to the standard deviation of the sample with the

greatest scatter. Comparing the standard deviations given in table 6.11 to those given in table 6.3

reveals that the experimental results contain most scatter, thus the scatter of the experimental re-

sults is used to define the kernel width. To avoid confusion among these two approaches to define

the kernel, the Gaussian kernel based on equation 3.28 is named kernel kth and the Gaussian kernel

based on the measurement uncertainties is named kernel kunc.

After computation of the distance between the numerical results and the experimental results, a

randomisation hypothesis test is performed to determine whether this distance is significant. The

randomisation hypothesis tests are performed using 999 randomisations and a significance level of

5% (see also section 5.2). Since a hypothesis test always depends on the size of the samples, the

influence of the number of data points on validation is determined by varying the number of sam-

ples. For this purpose, subsets are drawn from the numerical and experimental results. The subsets

contain the first 200, 50 or 20 data points of the complete data set. For further details concerning

the randomisation hypothesis test, the reader is referred to section 6.1.

In the next subsections, the distance between the numerical results and the experimental results is

determined using the methods listed above. Furthermore, the influence of the settings of IBDM

on the measured distance and its significance level are investigated to determine which of these

settings is best for validation.

6.4.1 Influence of the settings of IBDM on the measured distance
To investigate the influence of the kernel width on the distance, the distances measured using

kernel kth and kunc based on the 9-dimensional result space are compared to each other and the

distances based on the 2-dimensional result space are compared to each other. To visualise the

9-dimensional results space, two 2-dimensional projections of the result space are exemplarily

shown in figure 6.22 whereas all 36 projections are included in appendix D. These figures show

the 534 experimentally measured data points and the 200 simulated data points. The resulting

measured distances are listed in table 6.12 for the previously defined result spaces and sample

sizes.

Table 6.12: Distance between simulation and experiment determined with IBDM.

Nsim Nexp Image Based Distance Measure (ρm)

2-dimensional result space 9-dimensional result space

Kernel kth Kernel kunc Kernel kth Kernel kunc

200 534 0.472 0.738 0.698 0.757

200 200 0.492 0.769 0.714 0.778

50 50 0.683 0.806 0.755 0.746

20 20 0.813 0.844 0.802 0.732

Concerning the distance between the 2-dimensional results (simulation and experiment) measured

with IBDM, it is observed from table 6.12 that the correlation coefficient ρm based on kernel

kth is always smaller than the correlation coefficient ρm based on kernel kunc. This is caused

by the difference between the kernel width of kernel kth and kernel kunc. A small correlation



100 6 Validation of a sphere indentation model

coefficient means that the distance is large while a correlation coefficient of 1.0 means that there

is no difference between the samples. Since kernel kth becomes smaller with increasing number

of data points per sample, the difference between the kernels increases with increasing number of

data points. Regarding the 9-dimensional result space, the following observations are made from

table 6.12:

1. The correlation coefficient ρm based on kernel kth is smaller than the correlation coefficient

ρm based on kernel kunc for N ≥ 200.

2. The correlation coefficient ρm based on kernel kth is larger than the correlation coefficient

ρm based on kernel kunc for N ≤ 50.

3. The correlation coefficient ρm based on kernel kth decreases with increasing number of

experimental data points.

4. The correlation coefficient ρm based on kernel kunc increases with increasing number of

experimental data points up to 200 data points whereafter it decreases.

Based on observations 1 and 2, it can be concluded that the kernels are approximately equally

wide for samples containing approximately 50 data points, because the distance is nearly identical

for samples containing 50 data points. Therefore, it is recommended to use samples containing

at least 50 data points. This amount of data points is also consistent with the necessary amount

of data points based on the rule of thumb presented in [18]. Furthermore, it can be concluded

from observation 4 that the scatter of the experimental results is larger than that of the numerical

results, because the distance between simulation and experiment increases (the value of IBDM de-

creases with increasing distance) when more than 200 experimental measurements are used. This

behaviour is not observed for kernel kth (see observation 3), because the width of kernel kth de-

creases with the number of data points by definition, which automatically decreases the correlation

coefficient (increases the distance) between the experimental and numerical results.

To investigate the influence of the amount of discretisation steps used to approximate the inden-

tation loading curve, the measured distance between the 2-dimensional results is compared to the

distance between the 9-dimensional results. Comparing the correlation coefficients reported in

table 6.12 for 20 data points reveals that the distance measured between the 2-dimensional results

is smaller than the distance measured between the 9-dimensional results (smaller correlation coef-

ficient) regardless of the used kernel. Consequently, it can be concluded that the difference at some

intermediate loading levels must be greater than the distance at the two load levels analysed for this

2-dimensional case. Therefore, it is essential to also measure the distance between the indentation

depths at intermediate loading. Since the 2-dimensional discretisation of the experimental and nu-

merical indentation curves does not contain the results at intermediate load levels, it is insufficiently

accurate to determine the distance between the indentation curves. Moreover, for large samples as

well as small indentation depths, the kernel kth is much smaller than the measurement uncertainty.

Therefore, it is concluded that IBDM should be based on the measurement uncertainties (kernel

kunc) to measure a meaningful distance.
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Figure 6.22: Two dimensional projections of the indentation depth of the 200 simulations and the

534 experiments at several load levels: a) Indentation depth at 300N versus indenta-

tion depth at 900N, b) Indentation depth at 1300N versus indentation depth at 1850N.
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6.4.2 Mahalanobis distance between simulation and experiment
The distance between the simulated and experimental results is also measured with the Maha-

lanobis distance as presented in table 6.13. As can be seen in table 6.13, the Mahalanobis distance

decreases with decreasing number of data points per sample. This tendency is in agreement with

the tendency of the distances measured with IBDM based on kernel kth (see table 6.12). Further-

more, it is observed that the difference between the 9-dimensional result space is always larger

than the difference between the 2-dimensional result space. This observation confirms the earlier

stated conclusion that the 2-dimensional discretised results space does not represent the indentation

loading curve sufficiently accurate as expected.

Table 6.13: Mahalanobis distance between numerical and experimental results.

Nsim Nexp Mahalanobis distance

2-dimensional result space 9-dimensional result space

200 534 222.89 2920.59

200 200 155.38 2326.47

50 50 15.06 472.11

20 20 3.77 340.40

6.4.3 Significance level of the measured distances
To determine whether the measured distances are significant as well as to decide which distance

measure is more appropriate for this case, it is required to perform randomisation hypothesis tests

based on the null hypothesis fexp(xxx) = fsim(xxx). Further details concerning the randomisation hy-

pothesis testing method can be found in section 6.1 and in subsection 3.4.4. Each randomisation

hypothesis test results in one p-value φ which is compared to the significance level α to determine

if the distance is significant. When the p-value φ is smaller than α , the null hypothesis is rejected.

The smaller the p-value, the more confident one can be that the samples are different. The results

of the hypothesis tests for all measured distances are presented in table 6.14. Based on table 6.14,

the following observations are made:

1. The p-value of IBDM based on kernel kunc is smaller than or equal to the corresponding

p-value of IBDM based on kernel kth.

2. All p-values of IBDM are smaller than 0.05

3. The p-value of the 2-dimensional Mahalanobis distance is larger than or equal to the corre-

sponding p-value of the 9-dimensional Mahalanobis distance.

4. The p-value of the 2-dimensional Mahalanobis distance is larger than 0.05 when the samples

contain 20 data points.

5. The p-value of the 9-dimensional Mahalanobis distance is smaller than 0.05.

6. The p-value of IBDM is smaller than the p-value of the Mahalanobis distance when the

2-dimensional samples contain 20 data points.

It can be concluded from observation 1 that the difference is detected easier with IBDM when

based on kernel kunc, because a larger p-value leads to a lower probability to reject the null hypoth-

esis. Since all distances measured with IBDM resulted in a p-value smaller than the significance
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Table 6.14: P-values of the distances measured between simulation and experiment with either

IBDM or the Mahalanobis distance.

Nsim Nexp 2-dimensional result space 9-dimensional result space

φ(IBDM) φ(DM
2) φ(IBDM) φ(DM

2)
Kernel kth Kernel kunc Kernel kth Kernel kunc

200 534 0.001 0.001 0.001 0.001 0.001 0.001

200 200 0.001 0.001 0.001 0.001 0.001 0.001

50 50 0.001 0.001 0.002 0.001 0.001 0.001

20 20 0.049 0.023 0.192 0.025 0.008 0.001

level of 0.05 (see observation 2), it can be concluded that the experimental results and the numeri-

cal results do not belong to the same distribution.

Concerning the Mahalanobis distance, it is concluded on basis of observation 4 that there is in-

sufficient evidence to reject the null hypothesis using the 2-dimensional Mahalanobis distance for

samples containing 20 data points, because the p-value is larger than 0.05. However, on basis of

observation 5, it is concluded that there is sufficient evidence to reject the null hypothesis on ba-

sis of the 9-dimensional result space. Furthermore, it can be concluded from observation 3 that

a 2-dimensional discretisation of the result space is insufficient to validate the indentation model,

because the p-values of the Mahalanobis distance for samples containing 20 data points are sig-

nificantly larger for a 2-dimensional discretisation compared to the 9-dimensional discretisation.

Therefore, it is concluded on basis of observations 3, 4 and 5 that the difference is significant,

i.e. the numerical results are not consistent with the experimental results.

Since IBDM and the Mahalanobis distance (normalised mean value difference) are both signifi-

cant, at least a mean value difference must be present between the numerical results and the ex-

perimental results. Therefore, it is required to adjust parameters of the numerical model using the

optimisation loop presented in figure 6.1. This optimisation loop uses one of the distance measure

for the objective function. Thus, it is required to decide which distance measurement method is

more appropriate for this case. On basis of observation 6 and observation 4, it is concluded that

IBDM is more effective to detect the difference between the numerical and experimental results,

because a possibly incorrect outcome of the hypothesis test is avoided. Consequently, it is chosen

to use the Image Based Distance Measure based on kernel kunc to optimise the simulation model,

i.e. to minimise the distance between the numerical results and the experimental results.

6.5 Adjustment of the mean values of the input

parameters of the numerical model

To improve the numerical model, some of the parametric input values of the numerical model have

to be adjusted within their respective parameter range. From the unverified assumptions (the de-

scription of the local hardening behaviour), it is chosen to adjust the mean values of the hardening

parameters first, because the mean hardening behaviour has the largest influence on the indentation

depth. This is only true when the material under the indenter is significantly plastically deformed,

which is the case for the performed experiments. Adjusting the mean value of the hardening pa-

rameters such that the distance between the numerical results and the experimental results becomes
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minimal leads to an improved numerical model. This improved model has to be checked again for

its validity.

To determine whether the optimisation routine yields meaningful results, the distance between

simulation and experiments is measured again using a new set of experimental data. To avoid ad-

ditional experiments, it is chosen to define subseries of the 534 experimental results. Up to four

series of 20, 50 or 200 data points are drawn sequentially from the 534 measurements, where each

measurement can be in one series only. The first series of experiments is used for the optimisation

routine while the other series are used to verify the results of the optimisation routine. As explained

in the previous section, the distance between these subseries of experimental results and the nu-

merical results is measured using IBDM based on kernel kunc using a 9-dimensional discretised

result space. The measured distances between the subsamples of the experimental and numerical

results are presented in table 6.15.

Table 6.15: Original distance between the numerical results and different samples taken from the

experimental results.

Number of data points IBDM based on kernel kunc
Sample 1 Sample 2 Sample 3 Sample 4

200 0.778 0.692 - -

50 0.746 0.929 0.723 0.309

20 0.732 0.665 0.903 0.768

6.5.1 Minimising the distance between simulation and experiment
To minimise the distance between the numerical results and the experimental results, an optimisa-

tion routine is used which is illustrated in figure 6.23. This optimisation routine changes the mean

values of the parameters of the Voce hardening law σi, Es, σs and γ within their respective ranges,

which are presented in table 6.16.

Experimental results
IBDM

Change mean value of
input parameters

Numerical model
Numerical results

Optimisation termination
criteria fulfilled

NY

Hypothesis test

Figure 6.23: Flowchart of the optimisation loop used to adjust the mean values of the hardening

parameters of the numerical model.

Table 6.16: Range of the optimisation parameters.

Parameter σi [MPa] Es [MPa] σs [MPa] γ [-]

Minimum value 280 1000 95 160

Maximum value 320 1200 120 190
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Since the derivatives of IBDM with respect to the input parameters are not available to the optimi-

sation routine and a robust optimisation routine is desired, it is chosen to use the adaptive response

surface method of the software OptiSLang 3.2 to minimise the difference between simulation and

experiment. For details concerning the adaptive response surface method, the reader is referred

to subsection 3.4.5. In the following, only the settings of the algorithm are presented. For this

specific problem, the response surface of the adaptive response surface method is generated using

the moving least square algorithm with the allowance to use previous support points (within the

complete response space) to improve the possibly highly nonlinear response surface function. The

optimisation loop is terminated when at least 3 iterations are performed and one of the following

conditions is satisfied:

• the Image Based DistanceMeasure changes less than 0.1% compared to the previous iteration

• the input parameters change less than 0.1% compared to the previous iteration

• 150 designs are generated (sometimes necessary to limit the computation time)

To determine the optimal values of the optimisation parameters for 200, 50 and 20 data points,

it would be required to perform three optimisations, which is very time consuming. However, in

the used optimisation software, it is possible to reevaluate the previously performed optimisation

for smaller samples using a new objective function without additional calculations. Consequently,

a reevaluation is not a real optimisation and can only determine which of the evaluated designs

would be the most optimal design. Since the changes in the objective function are rather small in

this case, it is expected that it is possible to find an "optimum" near the true optimum without ad-

ditional computational effort using the numerical efficient reevaluation routine. For further details

about the reevaluation routine, the reader is referred to the manual of OptiSLang [67].

The results of the optimisation and reevaluation process are presented in table 6.17. It is obvi-

ous from table 6.17 that the optimal parameter set is identical for all sample sizes, which indicates

that the samples represent the experimentally measured mean indentation behaviour approximately

equally well. To visualise the achieved distance reduction, one projection of the 36 possible pro-

jections of the original numerical model and the optimised numerical model are presented in figure

6.24. All other projections of the optimised numerical model are included in appendix D. Com-

paring figure 6.24a (original numerical results, i.e. before optimisation) to figure 6.24b indicates

that the distance between the numerical results and the experimental results has been reduced by

adjustment of the numerical model.

Table 6.17: Optimal mean values of the parametric material model of aluminium 2024-T351.

Adjusted model parameter

Nr. data points σi [MPa] Es [MPa] σs [MPa] γ [-]

200 297 1150 108 166

50 297 1150 108 166

20 297 1150 108 166
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Figure 6.24: Two dimensional projection of the indentation depth at 300N versus the indentation

depth at 900N of the 200 simulations and 534 experiments: a) Original numerical

model versus experiment, b) Optimised numerical model versus experiment.
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To ensure that the adjusted material hardening behaviour is still within a reasonable range from the

macroscopic hardening behaviour, the identified hardening behaviour is compared to the mean

hardening curves of aluminium 2024-t351 in transverse and longitudinal direction, which are

shown in figure 6.25. It can be observed from figure 6.25 that the hardening behaviour described

by the optimised parameters is within range of the macroscopically measured hardening behaviour.

Therefore, it is concluded that the results of the optimisation routine are plausible.

Figure 6.25: Macroscopic and local hardening behaviour of aluminium 2024-T351.

6.5.2 Measured distance between optimised numerical model and

experiments
The measured distances between the experimental results and the results of the optimised numer-

ical model are presented in table 6.18 together with the originally measured distances. Here, a

larger value means a smaller distance. As mentioned before, experimental sample 1 is used to

adjust the numerical model via the optimisation loop whereas sample 2 to 4 contain new exper-

imental results which are used to verify that the optimisation loop produced meaningful results.

From table 6.18, the following observations are made:

1. The distance between the results of the optimised numerical model and the experimental

results has been reduced for samples containing 200 data points, because the correlation

coefficient of IBDM increases.

2. The distance between the results of the optimised numerical model and the experimental

results has been reduced for most samples containing 50 or 20 data points.

3. The distance between the results of the optimised numerical model and the experimental

results has not been reduced for sample 2 containing 50 data points.
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4. The distance between the results of the optimised numerical model and the experimental

results has not been reduced for sample 3 containing 20 data points.

It could be concluded from observation 1 that the optimisation improved the numerical model, be-

cause the distance between the numerical results and experimental results has been reduced when

the samples contain 200 data points. However, the opposing conclusion could be drawn from

observation 3 and 4. To explain these two opposing conclusions, it is essential to realise that all

samples are drawn by chance from the underlying distribution. Since all samples are drawn by

chance, there is a chance that two samples match each other even though the underlying distri-

butions are not identical. An example of such a sample could be sample 3 containing 20 data

points, because the distance increases (decreasing correlation coefficient) for this sample while it

decreases for all other samples containing an equal amount of data points. Since the probability

to draw an unrepresentative subsample from the experimental results decreases with an increasing

number of data points per sample, it can be concluded that observations 2, 3 and 4 are a conse-

quence of randomly drawing subsamples. Therefore, it is concluded on basis of observations 1 and

2 that the model adjustment has improved the numerical model.

Table 6.18: The distance between the numerical results and the experimental results for different

experimental samples based on IBDM.

Nr. data points Numerical model Sample 1 Sample 2 Sample 3 Sample 4

200
Original 0.778 0.692 - -

Optimised 0.944 0.902 - -

50
Original 0.746 0.929 0.723 0.309

Optimised 0.929 0.841 0.925 0.712

20
Original 0.732 0.665 0.903 0.768

Optimised 0.888 0.902 0.639 0.923

6.5.3 Significance level of the measured distance
To determine whether the measured distances between the optimised numerical results and the

experimental results are significant, it is necessary to perform randomisation hypothesis tests based

on the null hypothesis fexp(xxx) = fsim(xxx). As before, each hypothesis test results in one p-value

where a p-value smaller than 0.05 means that the null hypothesis can be rejected. The smaller the

p-value, the more confident one can be that the null hypothesis is rejected correctly. The p-values

of these hypothesis tests are presented in table 6.19. From this table the following is observed:

1. For samples containing 50 or 200 data points, all p-values based on the optimised numerical

model are smaller than 0.05.

2. For samples containing 200 data points, the p-values based on the optimised numerical

model are equal to the p-values based on the original numerical model.

3. For samples containing 20 data points, the p-values based on sample 1, 2 and 4 of the

optimised numerical model containing 20 data points are larger than 0.05
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Table 6.19: The p-values of the hypothesis tests based on IBDM for different samples.

Nr. data points Numerical model Sample 1 Sample 2 Sample 3 Sample 4

200
Original 0.001 0.001 - -

Optimised 0.001 0.001 - -

50
Original 0.001 0.015 0.001 0.001

Optimised 0.016 0.001 0.018 0.001

20
Original 0.008 0.001 0.191 0.002

Optimised 0.185 0.079 0.002 0.177

Based on observation three, it is concluded that the distance between the numerical results and

the experimental results is insignificant for this number of data points, because the null hypothesis

fexp(xxx) = fsim(xxx) could not be rejected for 3 out of 4 samples. This does not mean there is no dif-

ference, because each hypothesis test has the possibility to make a type II error. When the amount

of data points is increased, the probability to not reject the null hypothesis when the underlying

distributions are different decreases. Consequently, the null hypothesis is rejected correctly more

often for larger samples, which is supported by observations one and two.

For this work, a numerical model is called valid when either the distance is not stochastically sig-

nificant or when the distance between any experimental data point and the nearest simulated data

points is smaller than the combined uncertainty in the numerical model and the experiments. The

first condition has been met for some samples containing 20 data points. However, the probability

is not zero that the outcome of the hypothesis test is actually a type II error. Therefore, the sec-

ond criterion is tested by comparing the minimum distances between the 534 experimental data

points and their nearest neighbour of the 200 numerical data points to the uncertainty present in

the numerical and experimental results.

6.5.4 Distance versus measurement uncertainty
To determine whether any numerical data point is in range of the experimental data points with

respect to the uncertainty in the numerical results and the experimental results, the minimum dis-

tance between the numerical data points and the experimental data points is normalised using

the combined uncertainty. Since the uncertainties are always expressed with respect to the result

quantities, the combined uncertainty is obtained by summation of the numerical and experimental

uncertainty as illustrated in figure 6.26. The experimental ellipse is defined using 1σ or 2σ of

the measurement uncertainties, where the values of 2σ at several indentation depths are presented

in table 6.4. The numerical error is equal to the numerical error due to size of the finite elements

plus the error due to the boundary conditions. Using the values for these two errors presented in

subsection 6.3.1, a value of 0.38% is obtained for the numerical error.

To calculate the normalised minimum euclidian distance between the experimental data points and

the simulated data points, equation 6.3 is used,

dunc, j =
∑9
i=1

(

min
(

|xxxsim,i− xexp,i j|
))2

∑9
i=1 ui

2
(6.3)



110 6 Validation of a sphere indentation model

Measurement
uncertainty

Simulation
uncertainty

+ =
uexp,1

uexp,2

usim,1

usim,2

u1

u2

u u + u1 exp,1 sim,1=

2 exp,2 sim,2u  = u + u

Combined
uncertainty

Figure 6.26: Definition of the combined uncertainty between numerical results and experimental

results.

where xxxsim,i is the result vector of the i-th result quantity of the numerical results, xexp,i j is the j-th

data point of the i-th result quantity of the experimental results and u i is the combined uncertainty

of the i-th result quantity. The combined uncertainty is the uncertainty of the numerical model

added to the experimental uncertainty. The discrete cumulative density function of the normalised

distance based on the 1σ interval of the measurement uncertainties is presented in figure 6.27a

whereas the discrete cumulative density function of the normalised distance based on the 2 σ in-

terval of the measurement uncertainties is presented in figure 6.27b. Here, F(dunc) is the discrete
cumulative distribution function of dunc. It is shown in figure 6.27 that not all experimental data

points are within range of acceptance of the numerical results, because the curves contain nor-

malised distances larger than 1.0. Nevertheless, the amount of numerical data points within range

of acceptance of the experimental data points has increased significantly compared to the original

numerical model as presented in figure 6.27a. Therefore, it is concluded that this optimisation can

be interpreted as a kind of first step in the correct direction.

This conclusion is supported by the decreased distance measured with IBDM based on 200 data

points (see table 6.18), but the p-values presented in table 6.19 indicate that there is still a signifi-

cant difference between the numerical results and the experimental results, which is also supported

by figure 6.27. This diagram shows that some experimental data points are not near any numerical

data point, because the normalised distance is greater than 1.0. As apparent in figure 6.24, this

difference is caused by a difference in the amount of scatter present in the results. Up to this point

it was assumed that the scatter of the local material properties are identical to the scatter of the

globally measured material properties, which are presented in table 6.8. However, the amount of

scatter of local material properties is always larger than the scatter of the global material proper-

ties, because the global material properties represent the average of the local material properties.

According to the central limit theorem [20, 40, 57, 58], an averaged material property (global)

always exerts a smaller scatter than the local material property, because the larger deviations from

the mean value are averaged out. Therefore, the amount of scatter of the local material input

parameters should be scaled in accordance with the corresponding zone of influence activated dur-

ing different types of experiments (tensile experiments, indentation experiments). This scaling is

presented in the next section.
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Figure 6.27: Discrete cumulative density function of the minimum distance between the exper-

imental data points and the numerical data points, normalised using the combined

uncertainty: a) Combined uncertainty based on the 1σ interval of the measurement

uncertainties, b) Combined uncertainty based on the 2σ interval of the measurement

uncertainties.

6.6 Adjustment of the variance of the input parameters

of the numerical model

As recognised in the previous section, the amount of scatter of the experimental results is larger

than the scatter of the numerical results. One likely source for this deviation is the fact that the

local hardening behaviour exerts a larger scatter than the averaged global hardening behaviour

taken from the tensile experiments. To investigate wether the remaining difference between the

numerical model and the experiments could be caused by this effect, it is required to quantify

this effect based on the zone of influence of the sphere indentation experiments and the tensile

experiments. Here, the zone of influence is the domain where hardening and plasticisation take

place.

6.6.1 Scaled variance of the hardening behaviour
Since the size of the zone of influence is not exactly known for both experiments, it will be esti-

mated using the upper bound and the lower bound of the size of the zone of influence. The lower

bound of the size of the zone of influence is defined by the averaged slip line area in the plastically

deformed zone. For the upper bound, the size of the zone of influence is defined as the represen-

tative volume of plastically deformed material. In the following, the upper and the lower bound of

the zone of influence are quantified for the tensile experiments and the indentation experiments.

The volumetric zone of influence of the indentation experiment is equal to the size of the plastic

zone, which is calculated using the deterministic model based on the material parameters listed in

table 6.17. The volume of the plastic zone in this finite element model is equal to 15.06mm3 as

shown in figure 6.28. For tensile specimen plasticisation occurs in the entire gauge length of the
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Figure 6.28: Finite element based illustartion of the plastic strain in aluminium 2024-T351 when a

load of 2000N is applied to the sphere indenter.

specimen when the yield stress is reached. However, the plastic strain at an equivalent loading level

of the indentation experiments would be 8% [34], which causes necking in the tensile specimen.

Since the zone where necking occurs is not exactly known, it is assumed that the maximum length

of the specimen where necking occurs is equal to the thickness of the specimen. Hence, the zone

of influence is equal to 6 x 6 x 12.5 = 450mm3. Therefore, the ratio of the zones of influence based

on the upper boundary is equal to 29.88.

Next, the averaged slip line area of the tensile specimen and the sphere indentation are quanti-

fied to quantify the lower bound of the difference between both zones of influence. The averaged

slip line area of a tensile specimen At is the cross sectional area under 45 degrees in thickness

direction averaged over the parallel zone of the tensile specimen [30], which is calculated using

equation 6.4,

At =
1

l0

∫ l0

y=0
As(y)dy=

1

l0

∫ l0

y=0

√
2Ady (6.4)

where As(y) is the slip line area at position y of the specimen (see figure 6.29a) and l0 is the gauge

length of the tensile specimen. Since the cross-sectional area A is constant over the gauge length,

At is equal to
√
2A which is equal to 106mm2. To calculate the averaged slip line area for a sphere

indentation, the plastic zone under the indenter is first simplified to be a half sphere [85, 86, 87].

Subsequently, the averaged slip line area of a sphere indentation experiment ASIE is calculated

using equation 6.5,

ASIE =
1

2rp

∫ rp

x=−rp

∫ 2π

θ=0

∫ 0

y=−(x cos(φ)+
√
R2−x2)

1

cos(φ)
∂y∂θ∂x (6.5)

where rp is the radius of the plastic zone and φ is the bottom angle of the cone, which is illustrated

in figure 6.29b. The angle φ of the cone at which the slip lines occur varies between 0 and 90

degrees due to the multiaxial stress state in the plastic zone. Therefore, it is necessary to consider

all bottom angles from 0 to 90 degrees. Solving equation 6.5 for any angle φ between 0 and 90

degrees results in the same result, which is illustrated for 45 degrees in figure 6.29b, for 90 degrees

in figure 6.29c and for 0 degrees in figure 6.29d. Assuming that the plastic zone is a half sphere,
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a)                   b)                                  c)                                   d)

Figure 6.29: a) Slip line area under 45 degrees in a tensile specimen, b) The area of a possible slip

line at φ = 45◦ under a sphere indent, c) The area of a possible slip line at φ = 90◦

under a sphere indent (a hollow cylinder), d) The area of a possible slip line at φ = 0◦

under a sphere indent.

the radius of the plastic zone rp is calculated from the volume of the plastic zone and it is equal

to 1.93mm. Hence, the averaged slip line area based on equation 6.5 is equal to 7.8mm2. Conse-

quently, the ratio of the averaged slip line area (tensile experiment versus indentation experiments)

is equal to 13.59.

By means of the central limit theorem, it is possible to scale properties using the ratio of the zone

of influence if these properties are based on a summation. For stiffnesses, there exist models that

can be described using a summation to calculate the global stiffness based on local stiffnesses,

e.g. the model of Voigt-Reuss-Hill [38, 88, 89]. Since the variance of the stiffness scales identi-

cally for the model of Voigt and Reuss, there is no need to differentiate between the models of

Voigt and Reuss. To calculate the stiffness according to the model of Voigt, equation 6.6 is used

where [38, 88],

Eg =
n

∑
i=1

El,i
Ai

At
, At =

n

∑
i=0

Ai (6.6)

Ai, At and El,i are respectively the size of the i-th local area, the total area and the local stiffness

of the i-th local area as shown in figure 6.30. Assuming Ai is constant, equation 6.6 simplifies to

equation 6.7,

Eg =
n

∑
i=1

El

n
(6.7)

El,i El,n

Ai
An

F

F

Figure 6.30: Illustration of the model of Voigt.
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where El is the local stiffness and Eg the global stiffness. According to the central limit theorem,

the variable Eg is normally distributed if sufficiently independent local stiffnesses E l are averaged

and El is an independent and identically distributed variable that is drawn from a distribution with

expected values µ with and σ . More precisely, the central limit theorem states that the difference

between the sample average Eg and its expected value µ when multipliedwith
√
n is approximately

normally distributed with mean value zero and variance σ 2. Consequently, the variable Eg is close

to normally distributed with mean value µ and variance σ 2/n regardless of the distribution of the

variable El . This consideration only applies to stiffnesses or compliances. Hence, the hardening

behaviour must be expressed as instantaneous stiffness. The instantaneous stiffness of the material

is calculated by differentiating the flow stress (equation 6.1) with respect to the plastic strain as

presented in equation 6.8.
∂σy

∂εpl
= Es+σs γ e−γ εpl (6.8)

Using the previously calculated lower and upper bound of the ratio of the zone of influence, the

standard deviation of the global instantaneous hardening behaviour (tensile experiments) is
√
13.59

to
√
29.89 times smaller than the local measured hardening behaviour according to the central limit

law. Here, the lower bound is calculated using the tensile-to-indentation ratio of average slip line

area while the upper bound is calculated using the tensile-to-indentation ratio of the volumetric

zone of influence. Scaling equation 6.8 with these factors on the left side and the right side of

the equation gives the local standard deviation of the parameters of the Voce hardening law. Con-

sequently, only Es and σs are scaled as presented in table 6.20. Using the mean values of the

hardening parameters given in table 6.17 and the scaled standard deviations of the hardening pa-

rameters given in table 6.20, 200 simulations are preformed to obtain the numerical results based

on the scaled hardening behaviour.

Table 6.20: Original and scaled standard deviation of the Voce hardening law parameters for

aluminium 2024-T351.

Standard deviation of model parameter

Scaling method Scaling factor σi [MPa] Es [MPa] σs [MPa] γ [-]

none 1.0 3.3 29.4 2.6 7.3

Average slip line area
√
13.59 3.3 108.5 9.6 7.3

Volumetric zone of influence
√
29.89 3.3 153.8 13.6 7.3

6.6.2 Distance between numerical results and experimental results
The distance between the numerical results and the experimental results is measured using IBDM

for both scaled hardening models for up to 4 samples with 20, 50 or 200 data points per sample.

The results are presented in table 6.21, where a value of 1.0 for IBDM indicates that no difference

is present between simulation and experiment while 0.0 indicates that simulation and experiment

are completely different. In addition, the results of the mean value optimised model presented in

table 6.18 are included in table 6.21 to make it easier to compare the scaled numerical models to

the optimised numerical model of section 6.5. From table 6.21, the following can be observed:

1. For samples containing 200 data points, scaling the hardening behaviour using the aver-

aged slipe line area resulted in a decreased distance between the numerical results and the

experimental results.
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2. For samples containing 200 data points, scaling the hardening behaviour using the volumetric

scaling method resulted in a larger distance between the numerical results and the experi-

mental results compared to results based on the average slip line area.

3. For most samples containing 20 or 50 data points, scaling the hardening behaviour resulted

in a larger distance between the numerical results and the experimental results.

4. For sample 4 containing 50 data points, scaling the hardening behaviour decreased the

distance between the numerical results. In this case, the smallest distance is obtained using

the average slip line area scale factor.

5. For sample 3 containing 20 data points, scaling the hardening behaviour decreased the

distance between the numerical results. In this case, the smallest distance is obtained using

the average slip line area scale factor.

Based on observations 1 and 2 as well as figures 6.31 and 6.32, it is concluded that the local vari-

ance of the hardening behaviour is better approximated using the area method than the volumetric

method because this scaling method resulted in the smallest distance between the numerical results

and the experimental results. Furthermore, observation 3, 4 and 5 indicate that the scatter of the

numerical results is still different from the experimentally observed scatter. As shown in figures

6.31 and 6.32, scaling hardening parameters changed the numerical cloud mainly in one direction

without widening the numerical cloud regardless of the scaling method. Therefore, one could con-

clude that there is another difference between the numerical model and the experiments, which is

still not considered in the validation model. To determine the plausibility of the above conclusion

that there is another important difference, the null hypothesis fexp(xxx) = fsim(xxx) is tested using a

randomisation hypothesis test. When there is another superior difference, the distance between the

scaled numerical model and the experiments should be significantly different.

Table 6.21: Distance between the scaled numerical model and the experimental results according

to IBDM for different numerical models and experimental samples.

Nr. data points Numerical model Sample 1 Sample 2 Sample 3 Sample 4

200

Optimised 0.944 0.902 - -

Area scaled 0.944 0.941 - -

Volume scaled 0.906 0.922 - -

50

Optimised 0.929 0.841 0.925 0.712

Area scaled 0.868 0.757 0.883 0.795

Volume scaled 0.775 0.646 0.806 0.776

20

Optimised 0.888 0.902 0.639 0.923

Area scaled 0.812 0.727 0.739 0.780

Volume scaled 0.789 0.683 0.696 0.729
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Figure 6.31: Two dimensional projection of the indentation depth at 1300N versus the indentation

depth at 1850N of the 200 simulations and 534 experiments: a) Optimised numerical

Model versus experiment, b) Numerical model of which the hardening parameters are

scaled using the average slip line area versus experiment.
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Figure 6.32: Two dimensional projection of the indentation depth at 1300N versus the indentation

depth at 1850N of the 200 simulations and 534 experiments: a) Optimised numerical

Model versus experiment, b) Numerical model of which the hardening parameters are

scaled using the volume of the plastic zone versus experiment.



118 6 Validation of a sphere indentation model

6.6.3 Significance of the distance
The p-values of the randomisation hypothesis tests are listed in table 6.22. From this table, it can

be observed that the distance between the numerical results and the experimental results is signif-

icantly different for most samples regardless of the method used for scaling. The distance is only

not significant for sample 1 containing 20 data points. Since most p-values are still smaller than

0.05, it must be concluded that there is a significant difference and that the influence of the scaled

variance is most likely not as pronounced as some other difference between the numerical model

and the experiments. Although, the distance is significant, it could be that the distance is smaller

than the combined uncertainty in the experimental and numerical results. To ensure the distance

is larger than the combined uncertainty, the minimum Euclidean distance between the experimen-

tal results and the simulated results is compared to the combined uncertainty, which consists of

the measurement uncertainty and the numerical uncertainty. The results of this comparison are

presented in the next subsection.

Table 6.22: The p-values of the hypothesis tests based on the distance (IBDM) between the

numerical results and the experimental results for different numerical models and

experimental samples.

Nr. data points Numerical model Sample 1 Sample 2 Sample 3 Sample 4

200

Optimised 0.001 0.001 - -

Optimised + area scaled 0.002 0.002 - -

Optimised + volume scaled 0.001 0.001 - -

50

Optimised 0.016 0.001 0.018 0.001

Optimised + area scaled 0.004 0.001 0.011 0.001

Optimised + volume scaled 0.001 0.001 0.001 0.001

20

Optimised 0.185 0.079 0.002 0.177

Optimised + area scaled 0.087 0.005 0.017 0.010

Optimised + volume scaled 0.143 0.001 0.008 0.005

6.6.4 Distance versus measurement uncertainty
The discrete cumulative density function of the normalised distance based on the 1σ interval of

the measurement uncertainty is presented in figure 6.33a whereas the discrete cumulative proba-

bility density function of the normalised distance based on the 2σ interval of the measurement

uncertainty is presented in figure 6.33b. As shown in figure 6.33, not all experimental data points

are within range of the numerical results after scaling of the variance of the hardening parameters.

Moreover, the amount of experimental data points that are in the range of the numerical results has

not significantly increased compared to the numerical model without scaling. This supports the

conclusion presented in subsection 6.6.3, that the scaled variance has an inferior effect on the dis-

tance between the numerical results and the experimental results. Consequently, there is a different

reason for the difference between the numerical results and the experimental results. To identify

possible invalidated assumption, the assumptions of the numerical model are revised in the next

section.
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Figure 6.33: Minimum distance between the experimental data points and the numerical data

points, normalised using the measurement uncertainty: a) Measurement uncertainty

based on 1σ , b) Measurement uncertainty based on 2σ .

6.7 Revision of the assumptions of the numerical model

The assumptions concerning the boundary conditions, the contact friction, and the amount of finite

elements are considered to be plausible, because their influence is significantly smaller than the

difference between the numerical results and the experimental results. Furthermore, these assump-

tions would influence all indentations equally, which would result in a mean value shift.

Regarding the material model, some assumptions are made, which could have a significant influ-

ence on the numerical results. First of all, the material is assumed to be isotropic and governed by

the Voce hardening law even though it is slightly anisotropic. However, identical indents can be

created in different slightly anisotropic materials when their behaviour can be represented with the

same equivalent isotropic material, because a sphere indenter cannot differ between the material

behaviour along different directions due to its indenter form. Therefore, it is concluded that it is

adequate to assume an isotropic representative material hardening behaviour to calculate the in-

dentation behaviour. The difference in variance could be caused by inaccurate tensile experiments,

but these experiments are performed sufficiently accurate and with a large number of samples to

measure the variance of the stress-strain behaviour as shown in table 6.6. Also the Voce harden-

ing law fits the experimental tensile curves well as presented in figure 6.19. Although all these

assumptions are plausible, there is another issue with the description of the hardening behaviour

based on the Voce Hardening law, namely the distribution of parameters of the hardening law. It

is assumed that the hardening parameters are normally distributed with a correlation between each

other on basis of the tensile experiments. Subsequently, the argument is raised that the variation of

the local hardening behaviour is larger than that of the global hardening behaviour. Although it is

possible to scale the variance using the central limit theorem from local to global, it is not possible

to scale the variance from global to local without assuming the distribution function of the local

properties, because the central limit theory states that a global property which is a summation of
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many local properties is normally distributed regardless of the distribution of the local properties.

Therefore, it was assumed that the local parameters are Gaussian distributed, which is most likely

an incorrect assumption according to current validation results. Furthermore, the parameters σi

and γ have not been scaled at all, and the correlation coefficients between the parameters have not

been changed. All this indicates that the stochastic description of the local material behaviour is

most likely incorrect.

Furthermore, all finite elements in the finite element model have the same material properties,

which is incorrect because the elements near the indent are much smaller than the grain size of

aluminium 2024. Therefore, it is required to use a constitutive crystal plasticity model and to

vary the material properties between the elements. However, a simulation using the material prop-

erties of the grains of aluminium 2024 is not consistent with the intended use of the numerical

model, namely identification of the representative local hardening behaviour from indentation ex-

periments. Even though it is not consistent with the intended use of the numerical model, it might

be required to investigate the microscopic hardening behaviour to model the representative local

hardening behaviour. However, the goal of this work was to develop a validation method for mul-

tivariate results, which has been demonstrated under engineering conditions. Further investigation

of the cause of the difference is therefore beyond the scope of this work.



7 Conclusions

The aim of this work was to develop a new validation method that is suitable to match multi-

variate numerical results with experimental results under the existence of scatter and uncertainty

described. It is shown in this work that the newly developed Image Based Validation Method

(IBVM) is a general applicable method to validate numerical models, which becomes increasingly

valuable when the results deviate from normality and the results are subjected to uncertainty. Using

this validation method, it is now possible to validate numerical models that generate multivariate

arbitrarily distributed results using experimental results and uncertainties.

One of the key features of IBVM is its general applicability, due to its distance measure that quan-

tifies the distributional difference between simulation and experiment using estimated probability

density functions. Another key feature of IBVM is its capability to measure the distance between

the numerical results and the experimental results based on the measurement uncertainty. It is

found that the distance between simulation and experiment can be determined better when the un-

derlying distributions are estimated using the measurement uncertainties instead of a theoretical

derived estimator. However, this is only true when the samples contain sufficient data points to ac-

curately estimate the underlying distribution of the samples. In case no measurement uncertainty

is known, it is still possible to measure the difference between two estimated probability density

functions using a theoretical Gaussian kernel.

To determine whether the Image Based Validation Method is an effective method to validate nu-

merical models, the effectiveness of its Image Based Distance Measure (IBDM) has been deter-

mined and compared to the effectivity of the typically used distance measures, i.e. the Mahalanobis

distance and the Box-M statistic. It is shown in this work that IBDM is at least as effective as the

Mahalanobis distance to detect a mean value difference between non-normally distributed results

using bivariate lognormally distributed results. However, IBDM is less effective than the Maha-

lanobis distance to detect a mean value difference between normally distributed samples. Fur-

thermore, it has been shown that IBDM can be as effective as the Box-M to detect a difference in

scatter between the samples when this difference is moderately large or when both samples contain

sufficient data points.

Obviously, a difference between simulation and experiment in reality is most likely a combination

of several differences. Using a combination of a rotational difference with a mean value difference

as an example of such a difference, it is found that IBDM can be more effective than the Box-M

statistic and the Mahalanobis distance. Especially when the results (experiment and simulation)

contain many data points, it is found that IBDM is at least as effective as the Box-M statistic and

the Mahalanobis distance. Furthermore, it has been shown using the sphere indentation exam-

ple that IBDM is more effective than the Mahalanobis distance to detect a difference in scatter and

mean value for moderately large samples. A similar behaviour is observed for normally distributed

samples.

Overall, it can be concluded that IBDM is an effective method to measure the distance between two

samples for two reasons. First, it can detect the difference between multivariate non-normally dis-
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tributed samples at least as effective as the Mahalanobis distance. Second, in contrary to typically

used distance measures, IBDM is capable to measure any difference between multivariate arbitrar-

ily distributed data. Since numerical and experimental results are often non-normally distributed

and contain (measurement) uncertainties, it can be concluded that the Image Based Validation

Method is an adequate method to determine whether numerical results deviate from experimental

results.



8 Outlook

The developed method can be used in future research to validate numerical models of which the

results are multivariate and arbitrarily distributed without assuming a distribution. Furthermore,

using this method, IBVM, it is possible to include the measurement uncertainty and the numerical

uncertainty in its distance measure.

The effectivity of the developed validation method has been demonstrated for bivariate normal

and bivariate lognormally distributed samples by benchmarking the method versus typically used

methods, i.e. the Mahalanobis distance and the Box-M statistic. Furthermore, it has been shown

that IBDM detected a difference between the numerical sphere indentation results and the ex-

perimental results where the Mahalanobis distance did not detect the difference. To gain further

insight in the effectivity of IBVM, the benchmark test should be expanded by investigating the

effectiveness of IBDM to detect differences between several other non-normally distributed sam-

ples, e.g. bimodal bivariate distributions. Also the influence of the measurement uncertainty and

the numerical (simulation) uncertainty on the detectability of the distance has not been fully ex-

plored, because the difference between the theoretical kernel and the uncertainty based kernel is

only investigated using several samples. To better understand the influence of the uncertainties on

the effectivity of IBDM, a possible next step would be to systematically investigate the advantages

of using IBVM based on the measurement uncertainty over IBDM based on a theoretical Gaussian

kernel. For example, by means of comparing the operation characteristics of both methods.

To demonstrate the engineering relevance of IBVM, the sphere indentation problem has been cho-

sen due to its abilities to generate multivariate experimental results. However, due to the large

amount of assumptions and the measurement uncertainty on the experimental side, it was not pos-

sible to show that the numerical model is valid, i.e. a good representation of the experimental

results. A possible next step would be to begin validation at the material model to determine

whether the assumptions made concerning the local material behaviour of the material model are

correct for sphere indentation modelling.

Finally, the Image Based ValidationMethod has been created for multivariate arbitrarily distributed

results. But, it can also be used to compare numerical result fields to experimental result fields.

For example, determining the resemblance between a numerically calculated strain field and an

experimental strain fields measured using optical measurement systems.





9 Summary

During product development, engineers and scientist use a variety of numerical models to deter-

mine how assemblies, components or parts behave. To describe the behaviour of these products,

multiple performance relevant quantities are used such as weight, stiffness, lifetime, efficiency

and energy consumption. These performance quantities can be estimated using experiments or

numerical models. However, it is often not possible to obtain all performance quantities using

one approach. Therefore, it is necessary to combine the experimental and the numerical approach

to obtain the performance quantities of interest. Consequently, it is necessary to ensure that both

approaches represent reality accurately. To determine whether the numerical results differ from

reality, validation is performed. During validation it is determined whether the distance between

the numerical results and reality is significant, where reality is represented by the experimental

results.

In context of validation, it is necessary to point out that experimental results scatter due to vari-

ations in the production process and the operation conditions to which the product is subjected.

Therefore, it would be appropriate to compare the stochastic experimental results to stochastic

numerical results. Since these results are generally multivariate and arbitrarily distributed, it is

required to use a validation method that is suitable for arbitrarily distributed multivariate results.

However, currently no validation method exists to compare such results.

In this work, a method is developed to validate numerical models using arbitrarily distributed

multivariate results. To quantify the shape difference between the samples without assuming a

distribution, the underlying distributions of the experimental and numerical results are estimated

based on the results. Furthermore, the measurement uncertainties and the numerical uncertainties

can be used explicitly in the distance measure for additional information. To determine whether the

numerical model is valid, it is determined whether the numerical model is significantly different

from the experimental results using a hypothesis test. Furthermore, it is determined whether the

distance between the numerical results and the experimental results is larger than the uncertainties

present in the numerical and experimental results.

To investigate whether the developed validation method is more effective than the typically used

methods for multivariate problems, benchmark tests are performed. Since these distance measures

were developed for multivariate normally distributed data, the benchmarks are performed using

normally distributed data and a test data set that represents non-normally distributed data. Using

these benchmark tests, it is evidenced that the developed method is more effective to determine

the distance between the numerical and the experimental results than the typically used distance

measures. Furthermore, it is demonstrated by means of an example, that it is meaningful to use the

developed validation method for engineering problems.

Using the developed method, it is now possible to validate stochastic numerical models without

assuming distributions for the experimental and numerical results. In this method, it is also pos-

sible to incorporate the measurement uncertainties and the simulation uncertainties in its distance

measure.





A Probability density difference determination

The difference between two discrete estimated probability functions can be determined using the

linear correlation coefficient, the rank correlation coefficient and the overlap coefficient according

to Manders. The differences between these methods are investigated using the set of samples

shown in table A.1. Of these samples a probability density function is estimated using the bivariate

gaussian kernel and the balloon estimator to investigate the effect of a continuous and a discrete

probability density function.

Table A.1: Samples to compare different image comparison methods

Sample nr./Data point nr. Variable 1 Variable 2

1/1 1.2 3.4

1/2 1.6 2.4

1/3 1.9 3.1

2/4 1.3 3.2

2/5 1.4 2.6

2/6 1.7 2.9

The first difference investigated is the sensitivity of the correlation coefficients for scaling of the

image object (zoom). If the object remains identical and the zoom factor is changed in both im-

ages equally, while assuming the discretisation is still adequate, the correlation between the images

should be approximately equal. Using the balloon estimator, shown in equation 3.20 where cdr
d is

equal to πr2, the influence of zoom at the correlation coefficients is investigated if the distribution

estimator is discrete. For the data presented in table A.1, a radius of 0.4 is chosen. To investigate

the influence difference between a continuous kernel estimator and a discrete estimator (the bal-

loon estimator), a bivariate kernel estimator with a chosen standard deviation equal to 0.15 and 0.3

for respectively variable 1 and variable 2. Furthermore, the discretisation of the probability den-

sity estimate is calculated using 500 x 500 discretisation steps to ensure an accurate discretisation.

These settings do not influence the correlation coefficients significantly if the discretisation error

remains insignificant and the distribution estimation is not under smoothed.

The difference between the set of estimated probability density functions is determined using the

linear correlation (ρ0), rank correlation (ρr), and the correlation coefficient according to Manders

(ρm). When comparing the linear correlation coefficient and the correlation coefficient according

to Manders presented in table A.2 of this example, there is no significant difference between these

measurements when a large domain is selected because the mean density value converges to zero

for infinitely large domains. When zooming in on the object of interest (the probability density

function), the linear correlation coefficient changes significantly compared to the zoomed out sit-

uation. This dependency is undesired for validation since the object of interest should be in focus

not the background of the object. Comparing the linear correlation coefficient and the rank corre-

lation coefficient shows that the rank correlation method cannot find the difference because it is too
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focussed on the background. Moreover, using the balloon estimator multiple discretisation steps

with an absolute density value of zero are present, which makes a rank determination impossible.

Since the linear and the rank correlation coefficient are ineffective in determining the difference

between two objects of interest(without background influence), the overlap coefficient according

to Manders is chosen as distance measurement method.

Table A.2: Correlation coefficients for different domains

Discretisation domain Method ρm ρ0 ρr

(-4.5, 7.5], (-3.0, 9.0] Balloon 0.61 0.60 0.68

(0.0, 3.0], (1.5, 4.5] Balloon 0.61 0.55 0.63

(-4.5, 7.5], (-3.0, 9.0] Kernel 0.70 0.70 0.95

(0.0, 3.0], (1.5, 4.5] Kernel 0.70 0.64 0.96



B Optimal kernel width

Assuming the kernel K(t) is a radial symmetrical probability density function and that the unknown

density f has bounded and continuous second derivatives, the kernel width can be determined ob-

jectively using the mean integrated square error. It is equal to the summation of the integrated

square bias and the integrated variance. Using the multidimensional Taylor’s theorem, the bias

error and variance can be estimated as shown in equations B.2 and B.3. For mathematical simpli-

fication, the following constantsC1 and C2 are defined by:

C1 =
∫

t1
2K(t)dtC2 =

∫

K(t)2dt (B.1)

biash(x)≈
1

2
h2C1∇2 f (x) (B.2)

var f̂ (x)≈ n−1h−dC2 f (x) (B.3)

Hence the mean integrated square error is equal to:

MISE( f̂ ) =
1

4
h4C1

2
∫

∇2 f (x)dx+n−1h−dC2 (B.4)

Minimising the mean integrated square error provides the optimal kernel width, which is presented

in equation B.5.

hd+4 =
dC2

C1
2n1

∫

(∇2 f (x))2dx
(B.5)

To determine a numerical value for the optimal kernel width, it is mandatory to choose the prob-

ability density function of the kernel and assume a probability density function for the data. This

is required to determine the second derivatives of the probability density function. Assuming the

data is taken from a standard normal distribution, the optimal kernel width is equal to:

hd+4 =
dC2(2

√
π)2

C1
2n1(1

2
d+ 1

4
d2)

(B.6)

If a gaussian kernel is used to estimate the probability density function of the data, the optimal

kernel width is equal to:

σopt = σ n−1/(d+4) (B.7)





C Sample data points related to table 4.3
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Table C.1: Normally distributed sample data points to determine the influence of discretisation on

distance measurements

Data point number Sample 1 Sample 2

1 ( 4.84 , 8.17) ( 4.96 , 7.45)

2 ( 4.87 , 7.66) ( 5.25 , 7.90)

3 ( 4.72 , 7.90) ( 5.02 , 8.13)

4 ( 5.30 , 7.82) ( 4.81 , 7.57)

5 ( 4.96 , 8.21) ( 4.84 , 8.57)

6 ( 5.03 , 7.62) ( 4.78 , 8.10)

7 ( 4.64 , 8.25) ( 5.12 , 7.81)

8 ( 4.97 , 7.71) ( 4.92 , 8.32)

9 ( 5.40 , 8.05) ( 5.00 , 8.13)

10 ( 5.08 , 8.09) ( 4.51 , 7.90)

11 ( 5.41 , 8.05) ( 4.79 , 8.19)

12 ( 5.01 , 8.38) ( 4.89 , 8.23)

13 ( 5.18 , 7.90) ( 4.50 , 7.92)

14 ( 5.22 , 8.12) ( 4.83 , 8.03)

15 ( 4.50 , 8.34) ( 4.51 , 8.21)

16 ( 5.00 , 7.77) ( 5.10 , 7.92)

17 ( 5.03 , 8.22) ( 4.76 , 7.91)

18 ( 5.02 , 8.26) ( 5.42 , 7.38)

19 ( 5.17 , 8.08) ( 4.96 , 8.05)

20 ( 5.02 , 7.81) ( 5.06 , 7.94)

21 ( 5.46 , 8.34) ( 4.92 , 8.04)

22 ( 5.00 , 8.10) ( 4.55 , 8.11)

23 ( 5.30 , 8.03) ( 5.09 , 7.79)

24 ( 4.88 , 8.34) ( 4.77 , 7.98)

25 ( 4.66 , 8.41) ( 4.97 , 7.86)

26 ( 5.66 , 7.71) ( 5.34 , 7.37)

27 ( 5.00 , 8.06) ( 4.75 , 8.23)

28 ( 5.66 , 7.81) ( 4.95 , 8.47)

29 ( 5.11 , 8.33) ( 4.84 , 8.07)

30 ( 5.18 , 8.05) ( 4.67 , 7.49)

31 ( 5.12 , 8.20) ( 4.72 , 7.87)

32 ( 5.10 , 8.17) ( 5.04 , 8.42)

33 ( 4.97 , 7.93) ( 4.92 , 7.79)

34 ( 4.77 , 8.11) ( 4.67 , 8.17)

35 ( 5.49 , 8.17) ( 5.49 , 7.97)

36 ( 4.78 , 8.02) ( 5.10 , 7.73)

37 ( 4.78 , 7.99) ( 5.40 , 8.07)

38 ( 5.19 , 8.14) ( 4.80 , 8.24)

39 ( 5.41 , 8.30) ( 5.11 , 7.96)

40 ( 5.35 , 8.21) ( 5.18 , 7.92)

41 ( 5.12 , 7.88) ( 5.10 , 8.03)

42 ( 5.12 , 7.97) ( 5.01 , 7.99)

43 ( 4.65 , 8.21) ( 4.85 , 7.96)

44 ( 5.18 , 8.11) ( 4.82 , 8.09)

45 ( 4.89 , 8.16) ( 4.78 , 7.79)
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Table C.2: Lognormally distributed sample data points to determine the influence of discretisation

on distance measurements

Data point number Sample 1 Sample 2

1 (4.66 , 4.51) (4.13 , 9.22)

2 (4.84 , 8.84) (7.19 , 8.15)

3 (3.82 , 7.14) (5.01 , 9.68)

4 (4.71 , 6.75) (3.47 , 11.57)

5 (5.07 , 11.78) (5.34 , 9.16)

6 (5.40 , 7.44) (7.29 , 10.38)

7 (6.21 , 7.00) (4.28 , 5.54)

8 (3.00 , 7.06) (5.24 , 8.48)

9 (7.31 , 4.21) (4.95 , 9.98)

10 (6.77 , 4.16) (9.34 , 5.80)

11 (4.49 , 6.30) (4.73 , 7.21)

12 (5.79 , 7.19) (6.88 , 9.57)

13 (4.95 , 8.82) (3.68 , 7.08)

14 (3.94 , 9.39) (7.25 , 8.17)

15 (4.65 , 8.13) (5.71 , 8.42)

16 (3.78 , 9.18) (4.84 , 8.26)

17 (3.49 , 9.16) (3.88 , 8.62)

18 (5.35 , 7.99) (5.48 , 6.89)

19 (4.04 , 5.06) (6.53 , 6.49)

20 (4.35 , 9.69) (4.92 , 11.26)

21 (5.14 , 7.29) (4.94 , 6.41)

22 (4.63 , 12.37) (9.26 , 6.43)

23 (7.89 , 7.54) (7.88 , 9.21)

24 (4.91 , 7.69) (5.48 , 7.51)

25 (4.16 , 13.59) (4.66 , 9.56)

26 (2.97 , 7.17) (5.80 , 7.02)

27 (4.48 , 8.08) (7.65 , 10.84)

28 (4.16 , 8.34) (5.43 , 10.70)

29 (5.35 , 5.92) (3.89 , 7.91)

30 (4.19 , 7.49) (3.45 , 9.53)

31 (3.92 , 8.56) (4.99 , 5.33)

32 (4.09 , 7.96) (6.07 , 8.73)

33 (3.11 , 8.66) (4.86 , 8.55)

34 (3.50 , 4.69) (5.79 , 8.15)

35 (7.20 , 8.34) (3.90 , 7.67)

36 (4.05 , 8.48) (5.79 , 8.63)

37 (5.46 , 6.43) (3.40 , 9.96)

38 (2.99 , 9.58) (2.99 , 10.89)

39 (5.30 , 6.33) (6.54 , 8.02)

40 (3.70 , 6.86) (5.43 , 9.49)

41 (4.00 , 9.82) (5.84 , 8.88)

42 (3.92 , 6.29) (4.35 , 9.10)

43 (4.48 , 10.66) (4.72 , 5.85)

44 (5.37 , 7.18) (4.85 , 6.16)

45 (3.87 , 7.57) (4.32 , 10.87)





D Projections of the sphere indentation results

This appendix includes the results of the original numerical model and the results of the optimised

numerical model, which will be compared to the original results in section 6.5. These figures illus-

trate the difference between the experimental results and the numerical results. The experimental

results and the numerical results of the original numerical model (see section 6.4) are presented on

the left hand side while the experimental results and the results of the optimised numerical model

(see section 6.5) are shown on the right hand side.

Figure D.1: The indentation depth at 300N versus the indentation depth at 500N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.2: The indentation depth at 300N versus the indentation depth at 700N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.3: The indentation depth at 300N versus the indentation depth at 900N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.4: The indentation depth at 300N versus the indentation depth at 1100N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.5: The indentation depth at 300N versus the indentation depth at 1300N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.



138 D Projections of the sphere indentation results

Figure D.6: The indentation depth at 300N versus the indentation depth at 1500N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.7: The indentation depth at 300N versus the indentation depth at 1650N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.8: The indentation depth at 300N versus the indentation depth at 1850N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.9: The indentation depth at 500N versus the indentation depth at 700N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.10: The indentation depth at 500N versus the indentation depth at 900N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.11: The indentation depth at 500N versus the indentation depth at 1100N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.12: The indentation depth at 500N versus the indentation depth at 1300N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.13: The indentation depth at 500N versus the indentation depth at 1500N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.14: The indentation depth at 500N versus the indentation depth at 1650N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.15: The indentation depth at 500N versus the indentation depth at 1850N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.16: The indentation depth at 700N versus the indentation depth at 900N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.17: The indentation depth at 700N versus the indentation depth at 1100N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.18: The indentation depth at 700N versus the indentation depth at 1300N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.19: The indentation depth at 700N versus the indentation depth at 1500N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.20: The indentation depth at 700N versus the indentation depth at 1650N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.21: The indentation depth at 700N versus the indentation depth at 1850N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.22: The indentation depth at 900N versus the indentation depth at 1100N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.23: The indentation depth at 900N versus the indentation depth at 1300N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.24: The indentation depth at 900N versus the indentation depth at 1500N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.25: The indentation depth at 900N versus the indentation depth at 1650N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.



148 D Projections of the sphere indentation results

Figure D.26: The indentation depth at 900N versus the indentation depth at 1850N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.27: The indentation depth at 1100N versus the indentation depth at 1300N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.28: The indentation depth at 1100N versus the indentation depth at 1500N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.29: The indentation depth at 1100N versus the indentation depth at 1650N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.30: The indentation depth at 1100N versus the indentation depth at 1850N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.31: The indentation depth at 1300N versus the indentation depth at 1500N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.



D Projections of the sphere indentation results 151

Figure D.32: The indentation depth at 1300N versus the indentation depth at 1650N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.33: The indentation depth at 1300N versus the indentation depth at 1850N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.34: The indentation depth at 1500N versus the indentation depth at 1650N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.

Figure D.35: The indentation depth at 1500N versus the indentation depth at 1850N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Figure D.36: The indentation depth at 1650N versus the indentation depth at 1850N: a) Difference

between the 534 experimental results and the 200 numerical results of the original

numerical model, b) Difference between the 534 experimental results and the 200

numerical results of the optimised numerical model.
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Summary

During product development, engineers and scientist use a variety of numerical models to deter-

mine how assemblies, components or parts behave. To describe the behaviour of these products,

multiple performance relevant quantities are used such as weight, stiffness, lifetime, efficiency

and energy consumption. These performance quantities can be estimated using experiments or

numerical models. However, it is often not possible to obtain all performance quantities using

one approach. Therefore, it is necessary to combine the experimental and the numerical approach

to obtain the performance quantities of interest. Consequently, it is necessary to ensure that both

approaches represent reality accurately. To determine whether the numerical results differ from

reality, validation is performed. During validation it is determined whether the distance between

the numerical results and reality is significant, where reality is represented by the experimental

results.

In context of validation, it is necessary to point out that experimental results scatter due to vari-

ations in the production process and the operation conditions to which the product is subjected.

Therefore, it would be appropriate to compare the stochastic experimental results to stochastic

numerical results. Since these results are generally multivariate and arbitrarily distributed, it is

required to use a validation method that is suitable for arbitrarily distributed multivariate results.

However, currently no validation method exists to compare such results.

In this work, a method is developed to validate numerical models using arbitrarily distributed mul-

tivariate results. To quantify the shape difference between the samples without assuming a distribu-

tion function, the underlying distributions of the experimental and numerical results are estimated

based on the results. Furthermore, the measurement uncertainties and the numerical uncertainties

can be used explicitly in the distance measure for additional information. To determine whether

the numerical model is valid, it is determined if the numerical model is significantly different from

the experimental results using a hypothesis test. Furthermore, it is determined whether the distance

between the numerical results and the experimental results is larger than the uncertainties present

in the numerical and experimental results.

To investigate if the developed validation method is more effective than the typically used meth-

ods for multivariate problems, benchmark tests are performed. Since these distance measures

were developed for multivariate normally distributed data, the benchmarks are performed using

normally distributed data and a test data set that represents non-normally distributed data. Using

these benchmark tests, it is shown that the developed method is more effective to determine the

distance between the numerical and the experimental results than the typically used distance mea-

sures. Furthermore, it is demonstrated that it is meaningful to use the developed validation method

for engineering problems by an example of a spherical indentation model.

Using the developed method, it is now possible to validate stochastic numerical models without

assuming distribution functions for the experimental and numerical results. It is also possible to

incorporate the measurement uncertainties and the simulation uncertainties in the distance measure

of this method.





Kurzfassung

Während der Produktentwicklung verwenden Ingenieure und Wissenschaftler eine Vielfalt an nu-

merischen Modellen um vorherzusagen, wie sich Systeme, Baugruppen und Bauteile verhalten.

Um das Verhalten dieser Produkte zu beschreiben werden mehrere relevante Eigenschaften ver-

wendet, zum Beispiel: Masse, Steifigkeit, Lebensdauer, Effizienz und Energieverbrauch. Diese

Eigenschaften können numerisch oder experimentell bestimmt werden. Es ist aber meistens nicht

möglich alle relevanten Eigenschaften mittels einer dieser Methoden zu bestimmen. Deswegen ist

es notwendig, die numerische und die experimentelle Methode zu kombinieren um die relevanten

Eigenschaften zu bestimmen. Hierfür müssen Experiment und Simulation die Realität gut ab-

bilden. Um festzustellen, ob das numerische Modell der Realität entspricht, wird eine Validierung

durchgeführt. Hierbei werden die numerischen Ergebnisse mit der Realität verglichen, die durch

die experimentellen Ergebnisse dargestellt wird.

Im Zusammenhangmit Validierung ist es notwendig zu erwähnen, dass die experimentellen Ergeb-

nisse durch Variationen in der Produktion und in den Betriebsbedingungen streuen. Da die ex-

perimentellen Ergebnisse schwanken, ist es sinnvoll, stochastische experimentelle Ergebnisse mit

stochastischen numerischen Ergebnissen zu vergleichen. Hinzu kommt, dass die experimentellen

und die numerischen Ergebnisse im Allgemeinen multivariat und beliebig verteilt sind, deswegen

muss die Validierungsmethode für multivariate beliebig verteilte Ergebnisse geeignet sein. Derzeit

gibt es keine Methode für diesen allgemeinen Fall.

In der vorliegenden Arbeit wurde eine Methode entwickelt, welche numerische Modelle mit Hilfe

von beliebig verteilten, multivariaten Ergebnissen validieren kann. Um den Unterschied zwischen

den numerischen und den experimentellen Ergebnissen mittels eines Abstandsmaßes zu quan-

tifizieren, werden die jeweiligen Verteilungen, basierend auf den vorhandenen Ergebnissen, mit

geeigneten Methoden geschätzt. Hierbei ist es möglich, die Messungenauigkeit und die Un-

sicherheit in der Simulation explizit bei der Bestimmung des Abstands zwischen Experiment

und Simulation zu berücksichtigen. Um festzustellen ob das numerische Modell valide ist, wird

mit Hilfe eines Hypothese-Tests bestimmt, ob der Abstand zwischen Simulation und Experiment

signifikant ist und ob der Abstand zwischen den numerischen und den experimentellen Ergebnis-

sen größer ist als die Unsicherheiten der jeweiligen Ergebnisse.

Um zu untersuchen, ob die neu entwickelte Validierungsmethode effektiver ist als die typischer-

weise verwendetenMethoden für mehrdimensionale Probleme, wurden Benchmark-Tests durchge-

führt. Da diese typischen Methoden für normalverteilte Größen entwickelt wurden, werden die

Benchmark-Tests an normalverteilten Daten und an einem Datensatz, der nicht normalverteilt

ist, durchgeführt. Mittels dieser Benchmark-Tests wird gezeigt, dass die entwickelte Methode

in einigen Fällen den Abstand zwischen den numerischen und experimentellen Ergebnissen besser

bestimmen kann als die typischerweise verwendeten Abstandsmaße. Darüber hinaus wird am

Beispiel eines Kugeleindruckmodells gezeigt, dass die neu entwickelte Validierungsmethode im

Rahmen von Ingenieurfragestellungen sinnvoll angewendet werden kann.

Mittels der neu entwickelten Validierungsmethode ist es jetzt möglich, stochastische numerische

Modelle mit Hilfe von beliebig verteilten, mehrdimensionalen, experimentellen und numerischen

Ergebnissen zu validieren. Mit dieser Methode ist es auch möglich die Messunsicherheit und

die Simulationsunsicherheit bei der Bestimmung des Abstands zwischen Modell und Experiment

direkt zu berücksichtigen.


