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Diese Dissertation ist auf den Internetseiten der
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Abstract

The contribution of renewable energies to global energy use has significantly increased
over the past decades – completely new industry branches have developed. Among the
renewable energy technologies, concentrated solar thermal power plants are a promising
option for power generation. Their basic technical idea is quite simple: Large mirrors
are used to concentrate rays of sunlight on a receiver for heating up a fluid. The heat of
the fluid transfers water into steam, such that the steam powers a turbine to generate
electricity.

In the course of the technical progress of this young technology, permanently new issues
occur. Mathematical methods and simulation sciences offer adequate techniques for un-
derstanding some of these complex processes. They can help to develop more efficient
and thus more competitive solar power plants. Within this work, two problems out
of the construction and operation of solar thermal power plants are regarded and are
successfully solved with the help of numerics and optimization.

The first part deals with a solar tower power plant which consists of a field of hundreds
or thousands of heliostats whose mirrors concentrate the direct solar radiation onto a
receiver placed at the top of a tower. An open problem is to find the optimal place-
ment of the heliostats around the tower. Because this global optimization problem has
non-convex constraints a heuristic is needed to solve this problem. A forward solver is
modeled as a deterministic ray-tracer using ideas from the convolution method. Due
to its fast simulation speed compared to state of the art solvers, this model allows for
more complex optimization techniques. Within this work, an evolutionary algorithm
is developed, where modifications to the genotype representation and the evolutionary
operators like recombination and mutation has been made to increase the convergence
rate dramatically. Numerical results show the applicability of this approach. The op-
timization method developed within this work can be used to yield more efficient and
thus more competitive heliostat fields. This tool was already used for the optimization
of a test facility in South Africa.

In the second part, a solar thermal power plant with linear Fresnel collectors is re-
garded. Parallel rows of large mirrors are used to concentrate rays of sunlight on a long
absorber tube of about 1000 m length. Different fluids can be used as heat transfer,
e.g. thermal oil, water/steam, or molten salt. For optimal control of the power plant
there is need of accurate knowledge about the ongoing processes in the absorber tubes.
Here we regard the case of using water in the absorber tubes, like in the PE2 solar
power plant in Spain. Current numerical approaches are lacking of necessary mathe-
matical properties such as hyperbolicity or do not use thermodynamic properties like
entropy dissipation. Mathematically, two-phase flow of water can be described by a
Baer-Nunziato type PDE system. Thus, a two-velocity two-pressure seven-equations
model is developed, such that several thermodynamic and mathematical properties are
fulfilled. But here the problem occurs, that this system is in non-conservative form, such
that appropriate numerical solvers have to be developed. Within this work, a new path-
conservative entropy-preserving scheme and a Godunov solver of the Suliciu-relaxated
model are developed and compared.
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Preface

The exploitation of renewable energy supply is of increasing importance. Completely
new industry branches have developed in the field of solar, wind, and biomass energy.
Among the renewable energy technologies, concentrated solar thermal power plants are
a promising option for power generation in regions with high direct solar irradiation.

The technical design of concentrated solar thermal power plants is based on a simple
idea: Large mirrors are used to concentrate rays of sunlight on a receiver, such that a
fluid is being heated up. Today’s receiver types use thermal oil, water/steam, air or
molten salt to transport the heat. The heat is used to transfer water into steam which
finally powers a turbine to generate electricity.

Concentrated solar collectors for thermal power generation are subdivided into two types,
with respect to the concentration principle of the sunlight:

• Line-focusing systems, such as the parabolic trough collector and linear Fresnel
collector. These systems track the sun position in one dimension, see Figures 1a
and 1b.

• Point-focusing systems, such as the solar tower and solar dishes. These systems
track the sun position in two dimensions, see Figure 1c.

From mathematical point of view, many problems show up which can be solved with
the help of mathematical methods. Within this work, we regard two different problems
out of the field of solar power engineering. Both problems are solved with the help of
numerics and optimization.

◮ Heliostat field layout optimization of solar tower power plants

Solar tower power plants consist of a receiver on top of a tower and a field of hundreds
or thousands of heliostats. The heliostat field reflects and concentrates direct solar ra-
diation onto a receiver placed at the top of the tower. At the receiver the sun light is
absorbed and the resulting high-temperature thermal energy is transferred to the heat
transfer fluid in order to either directly produce electricity through a conventional ther-
modynamic cycle or to be stored. Today four large tower plants are already operating in
the US (Ivanpah 1-3 and Crescent Dunes), three in Spain (PS10, PS20 and Gemasolar)
and one is under construction in South Africa (Khi Solar One). Numerous small-scale
plants exist around the world for demonstration and research purposes (e.g. the Solar-
turm Jülich in Germany, and the facilities CESA-1 and SSTS-CRS in Spain).

Solar tower power plants technology is very well suited for converting sunlight into dis-
patchable electricity. Dispatchability is important as the electricity demand hardly ever
matches the production of renewable energies, such as wind and photovoltaics. While for
small amounts of renewable energies the effect on the electric grid is negligible, countries
with high shares of solar energy (such as Italy and Germany) face a challenge. Solar
tower systems operate at high temperatures, making thermal storage systems very cost-
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efficient. Their storage capabilities help to even out fluctuations of other renewable
plants and thus help to further increase the capacity of the non-dispatchable renewable
energy technologies.

The design of the heliostat field layout is a challenging task of exceptional importance
because it is the sub-system with the highest cost. Its optimal design highly depends
on the specifications for each project. Note, that the position of the sun varies during a
day, such that individual heliostats can be blocked or shaded by neighboring heliostats;
this affects the efficiency of the power plant. As constraint of the placement we need
to consider a minimum distance between neighbouring heliostats, such that they never
can touch each other. As objective function usually the efficiency, received irradiation
energy, thermal energy, or LCOE1 is used, which can be provided by the most of the
models in the literature, see [1]. All these models use meteorological data of a year and
simulate the received power in the receiver mounted on top of the tower. The model
plays a key role in the whole optimization process: first of all it should be ensured
that its predictions have a high accuracy, such that in a comparison of different fields
the ”better” fields can be detected. Then additionally, special attention is paid to the
simulation time, which finally decides about the optimization strategy. If the model is
very time-consuming, then the optimization strategy should be chosen such that within
a few steps an optimal solution can be found. This means, that the parameter space
must be reduced.

Within this work a tool is developed from scratch which optimizes the field layout
including new features and constraints as for instance tripod foundations for heliostats
or multi-tower layouts. The developed optimizer has the possibility to consider pattern-
based and pattern-free fields. The optimization method developed within this work can
be used to yield more efficient and thus more competitive heliostat fields. This will
hopefully lead to higher market penetration of this technology, benefiting the entire
industry.

This task is solved in Part I, where parts of this work relies on papers and conference
proceedings [2, 3, 4] which were published with coauthors. Parts of Section 2 are based
on [2], which was published in the proceedings from the ECMI conference. I was mainly
working on the ray-tracing model and the programing of the optimizer. The content
of Sections 3 and 4 is based on [4], which was published with David Laukamp, Levin
Gerdes, Martin Frank and Erika Ábrahám in the EPiC Series in Computing. I was
mainly working on the different crossover strategies, their testing and comparison. Parts
of Section 5 are based on [3], which was presented at the SolarPaces Conference 2016 and
published in the AIP Publishing. In the paper, the layout optimization of the Helio 100
test facility in South Africa was performed. The results from three different optimizers
(each from a different institute) have been compared. I was working on the development
of therein called Aachen optimizer to produce the shown results.

1Levelized costs of efficiency in Euro/kWh

xi



◮ Direct steam generation in Fresnel solar collector systems

As second problem within this work, a Fresnel solar collector system is regarded. This
technology uses parallel rows of large mirror to concentrate rays of sunlight on a long
absorber tube of about 1000 m length. The receiver absorbs the heat of the sun and
transfers it into thermal power using a fluid. Using water als heat transfer fluid means,
that steam is directly generated in the tubes through phase change. This technique is
also used in other solar thermal power plants, e.g. in line-focusing systems with Fresnel
or parabolic trough collectors. Some examples for realized direct steam generating so-
lar power plants are the Thai Solar Energy 1 (TSE1) parabolic trough power plant in
Kanchanaburi (Thailand), the Tubo Sol PE2 Fresnel power plant in Calasparra (Spain),
and the Solar One tower power plant in Barstow (USA).

So far, the control of an operating direct steam generating power plants is still a challeng-
ing task. Especially during difficult cloud situations an optimal control is not known, so
far. Because the processes at direct steam generation are very sensitive to local energy
disturbances, strong transients can occur which are supposed to lead to super-heating
events within the evaporator field. To avert a damage of the absorber tubes, the ab-
sorber tubes are completely defocused for safety reasons and energy is lost until the
loop is in normal operation again. To increase the overall efficiency of a direct steam
generating power plant efficient counter-acting control strategies must be found. The
requirement for the development of optimal control strategies is an accurate and fast
thermal-hydraulic model which predicts the ongoing processes in the absorber tubes.
Current used numerical approaches are lacking of necessary mathematical properties
such as hyperbolicity or do not use thermodynamic properties like entropy dissipation.

Thus, in Part II of this work a two-velocity two-pressure seven-equations model is de-
veloped which is consistent with the second law of thermodynamics and has some more
mathematical properties. Parts of Section 2.5 have been published in the paper [5], which
was published with Siegfried Müller and Maren Hantke in the Continuum Mechanics and
Thermodynamics journal. I was mainly working on the closures of the inter-facial ve-
locity and pressure with the usage of the entropy-entropy flux pairs, and on the entropy
dissipation. The underlying model is a Baer Nunziato [6] partial differential equation
system which is in non-conservative form, such that appropriate numerical solvers have
to be developed. So far, all existing Godunov solvers for this problem simplified the
Rankine Hugoniot conditions at the contact discontinuity of the volume fraction, e.g.
[7] [8]. Within this work, a path-conservative entropy-preserving scheme and a Godunov
solver of the Suliciu-relaxated model [9] are developed and compared. Both approaches
have the drawback, that the acoustic waves determine the step size of the simulation
time due to the CFL condition. Therefore, a semi-implicit scheme was developed, which
enables us to control the approximate speeds of sound and thus, the time step. The
schemes are tested successfully with multiphase flow problems from literature.
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Nomenclature

Water properties

α volume fraction [–]

λ thermal conductivity [W/m-K]

µ dynamic viscosity [kg/m-s]

ρ density [kg/m3 ]

σ surface tension [kg/s2 ]

c speed of sound [m/s]

cp specific isobaric heat capacity [J/kg-K]

cv specific isochoric heat capacity [J/kg-K]

g specific Gibbs free energy [J/kg]

h specific enthalpy [J/kg]

p pressure [Pa]

(p)ρ derivative of pressure with respect to density for constant specifici inner energy
[J/kg]

(p)u derivative of pressure with respect to specific inner energy with constant density
[kg/m3 ]

q heat flux [W/m2 ]

s specific entropy [J/kg-K]

u specific internal energy [J/kg]

v velocity [m/s]

E specific total energy [J/kg]

T temperature [K]

Subscripts of water properties

propk property of phase k, either liquid ℓ or steam g

propℓ property of liquid phase
propg property of steam phase
propi property at the vapour/liquid interphase
propsat property of homogeneous fluid on saturation line
propsatL property of homogeneous fluid on saturated liquid line
propsatV property of homogeneous fluid on saturated vapour line
propk sat property of phase k on saturation line
propk satL property of phase k on saturated liquid line
propk satV property of phase k on saturated vapour line
propi k property of phase k molecules (droplets or bubbles)

at the vapour/liquid interphase
p̂ropi k source property of phase k molecules (droplets or bubbles)

at the vapour/liquid interphase
propi sat property at the vapour/liquid interphase on saturation line
propi satL property at the vapour/liquid interphase on saturated liquid line
propi satV property at the vapour/liquid interphase on saturated vapour line

Further greek symbols

αw k wetted volume fraction in the wall film of phase k [–]

γcollector azimuth angle of the collector-axis [–]
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γsolar solar azimuth angle [–]

λw tube wall thermal conductivity [W/m-K]

ρcont density of the continuous phase [kg/m3 ]

ρw tube wall density [kg/m3 ]

θ central angle between vertical and stratified liquid level [–]

θsolar solar zenith angle [–]

θtrans transversal sun angle [–]

εw surface roughness of the inner tube wall [m]

ϑ elevation angle of the tube with respect to the horizontal [–]

ξ dimensionless factor [–]

Γi interfacial mass flow rate in the bulk [kg/m3-s]

Γw interfacial mass flow rate near the wall [kg/m3-s]

Further latin symbols

ai specific interfacial area [m2/m3 ]

cpw specific isobaric heat capacity of the tube wall [J/kg-K]

fw k Darcy friction factor of phase k with the wall [–]

g gravity acceleration 9.81 [m/s2 ]

hosv specific enthalpy for significant net voids [m2/s2 ]

hT,i k interfacial heat transfer coefficient of phase k [W/m2-K]

hT,w k wall heat transfer coefficient of phase k [W/m2-K]

pcrit critical pressure of water 22.064 · 106 [Pa]
Qext external heat transfer rate density from the sun [W/m2 ]

Qloss losses of the heat transfer rate density at the outer tube [W/m2 ]

t time dimension [s]

vcrit critical velocity between stratified and non-stratified flow [m/s]

x spatial dimension [m]

CD drag coefficient [–]

Din inner tube diameter [m]

Dout outer tube diameter [m]

Fi k interfacial friction density of phase k [N/m3 ]

Fw k wall friction density of phase k [N/m3 ]

G mass flux of homogeneous fluid [kg/s-m2 ]

Hi k interfacial heat transfer coefficient per unit volume of phase k [W/m3-K]

Qi k interfacial heat transfer rate density of phase k in the bulk [W/m3 ]

Qw k wall heat transfer rate density of phase k [W/m3 ]

Qboil
w k interfacial heat transfer rate density of phase k near the wall due to boiling [W/m3 ]

Qconv
w k interfacial heat transfer rate density of phase k near the wall due to convection

[W/m3 ]

Pr Prandtl number [–]

Ra Rayleigh number [–]

Re Reynolds number [–]

Tcrit critical temperature of water 647.096 [K]

Tw wall temperature around the tube [K]

Ti sat interphasic temperature at saturation [K]

Tw k temperature in the wall film of phase k [K]

We Weber number [–]
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Part I.
Heliostat Field Layout Optimization
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1. State of the art

For a fixed tower position (xt, yt) ∈ R2, a number N of heliostats and a given set Ω ⊆ R2

Figure 2: The solar power plant Gemasolar
is located in the province of Seville
in Spain.
Sources: Torresol Energy Investments S.A.

of possible two-dimensional2 heliostat po-
sitions, a layout configuration is de-
fined as a collection of positions I =
{(x1, y1), . . . , (xN , yN)} ⊆ Ω for the he-
liostat centers. To avoid collisions with
neighboring heliostats, valid layout con-
figurations must satisfy the constraints
‖(xi, yi) − (xj, yj)‖ ≥ d for each 1 ≤ i <
j ≤ N , where d is the expansion size (incl.
safety distance) of all heliostats and ‖ · ‖
is the Euclidean distance. The goodness
of a layout configuration I can be mea-
sured by some objective function F(I)
(e.g. annual performance) which can be
computed by an annual simulation of the
sun irradiation. The layout optimization
problem can be specified as follows:

max
I

F(I)
such that I = {(x1, y1), . . . , (xN , yN)} ⊆ Ω and

‖(xi, yi)− (xj, yj)‖ ≥ d for all 1 ≤ i < j ≤ N .

This global optimization problem has non-convex constraints, such that this problem
may have multiple feasible regions within each region. Furthermore, this problem has
multiple locally optimal points, due to the interchangeability of a pair of heliostats
(xi, yi) and (xj, yj) which gives two different configrations I with the same goodness.
Therefore it is extremely hard to find the global optimal solution. Thus, there is need
of an heuristic to solve this problem in appropriate time.

In the following, existing tools for simulation of solar tower plants and optimization
of the heliostat layout problem are listed. The summary is inspired by the reviews of
Garcia, Ferriere and Bezian [1] and Bode and Gauché [16].

1.1. Optical models for solar tower power plants

Starting in the 1970s, several different codes have been developed which simulate the
irradiation power of a central receiver system. They mainly differ in the flux calculation
method, where ray tracing and mathematical simulation techniques such as Hermite

2The third dimension (height) is also relevant, however, for a given parcel of land on which the plant
should be built the coordinate in the third dimension is determined by the coordinates in the first
two dimensions.
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polynomial expansion or convolution are used [17].

Monte-Carlo ray-tracers generate millions of randomized rays, where the directions of
the rays are perturbed with a certain probability. This makes the obtained results
very accurate. On the other hand, the calculations are computationally expensive and
therefore slow.

Analytical codes consider the Gaussian distribution of the reflected sun rays analytical,
such that deterministic results are obtained. To avoid the increase of computational
costs, simplifications of the models are made. Depending on these simplifications, the
obtained results may not be as accurate as the results obtained by Monte-Carlo ray-
tracers.

◮ Ray-tracers

One of the first Monte-Carlo ray-tracers was MIRVAL [18]. The development of the code
started in 1978 at the Sandia National Laboratories. Today, it is commercially available
as SPRAY through the German Aerospace Center (DLR).

SolTrace [19] is a more recent tool. It is developed by the US National Renewable En-
ergy Laboratory (NREL) since 1999 and is freely available. This Monte-Carlo ray-tracer
automatically parallelizes the simulation. It returns the simulated rays for possible
post-processing steps, but it is also capable of directly showing the flux distribution and
obtained power.

In 2004, Manuel Blanco began the development of an open-source ray-tracer called To-
natiuh [20], together with teams from the University of Texas at Brownsville and the
Spanish National Renewable Energy Center (CENER). Tonatiuh only returns the rays,
i.e. the resulting power and flux distribution need to be obtained by a post-processing
script [16].

The DLR recently developed a backward ray-tracer called STRAL [21]. The rays are
generated on the mirror surface instead of a surface above the heliostat field, thus no rays
get lost, such that the code is fast compared to the previously mentioned Monte-Carlo
ray-tracers. This tool is capable of considering highly resolved mirror surface geometries.
It is available commercially and through possible collaborations with DLR [16].

In 2011, the company Tietronix developed a tool called TieSOL, which is commercially
available. The Monte-Carlo tool makes use of Graphic Processing Units (GPUs) to de-
crease the simulation time [16]. TieSOL has an advanced visualization tool.

HPC-SA and PROMES-CNRS developed a Monte-Carlo code SOLFAST (SOLar FA-
cilities Simulation Tools), which uses an integral formulation instead of collision-based
ray-tracing. The tool was validated using SolTrace and Tonatiuh [22].

◮ Analytical simulation models

In 1974 the University of Houston started developing the code UHC, which is also called
RCELL suite [1]. The software suite was used to design the Solar One tower power
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plant [23]. An updated version of UHC is distributed commercially as TieSOL, see
above.

DELSOL is a code from 1978, developed at Sandia [24]. The model is based on Hermite
polynomial convolution. In contrast to most other first generation codes, it can optimize
additional parameters such as tower height and receiver size, since it implements an eco-
nomical model. There is a Windows adaption of the software called WINDELSOL with
more features [1].

Another code developed at Sandia is HELIOS [25]. It is based on cone optics for flux
calculation and is used where accurate flux is desired, as it uses detailed heliostat surface
descriptions. The code is difficult to use and not available anymore.

The development of HFLCAL (Heliostat Field Layout CALculation) [26] started in the
eighties at the company Interatom. Since the nineties, it is further developed and used
at DLR [27], where it is also commercially available. This computationally efficient
approach is based on the simplified convolution of the heliostats’ flux [1]. As it was
permanently improved since the eighties, HFLCAL has some appreciable features like
automatic multi-aiming and several different receiver models with secondary concentra-
tors etc. [27].

FIAT LUX [28] is a relatively new code, developed at CIEMAT [1]. Only few informa-
tion are known about the model.

At the National Autonomous University of Mexico (Universidad Nacional Autónoma
de México), the code ISOS was developed [29]. It calculates the 3D flux from a single
heliostat, such that the flux at some height above the heliostat is known. The code
requires input from an external ray-tracer [16].

HFLD, for Heliostat Field Layout Design, is a model, developed at the Chinese Academy
of Sciences [30], where it is also commercially available [16]. The code is based on the
edge-ray principle, i.e. exactly four rays per heliostat are generated, which makes this
code sufficiently fast for the use in optimization.

The model of CRS4-2 by the CRS4 research center is based on tessellation of the he-
liostats [31].

The above listed tools are either not freely available, or are Monte Carlo implementa-
tions. The problem with Monte Carlo codes is the large runtime, e.g. later it is shown
that SolTrace needs about factor 100 more computation time than the model which is
developed within this work. Due to the slow runtime of Monte Carlo codes it would be
better to avoid them in an optimization cycle. Therefore a new tool needs to be created,
which is accurate and fast enough to describe the received annual power of a solar tower
power plant.
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1.2. Heliostat layout optimization

Several approaches were proposed to solve the layout optimization problem, using dif-
ferent concepts [32]:

• The field growth method is a concept where the heliostats are added step by step
on pre-defined points of the field. The algorithm terminates when the system
requirements (e.g. minimum power output) are met. The efficiency and the run-
time of this algorithm highly depends on the number of the pre-defined points of
the field. Additionally, due to the successive approach each heliostat allocation
depends on the preceding allocations, such that the optimization can hardly be
parallelized.

Sánchez and Romero [33] employed this concept by using a greedy heuristic. The
algorithm starts with an empty field. The whole field is discretized in a set of
possible points for placing heliostats. Each point in the field is evaluated, such
that the points can be rated by their energy contribution. The best point is chosen
as position for placing the next heliostat. Due to shading and blocking effects of
the new heliostat, all free points in the field have to be evaluated again. Sánchez
and Romero called this algorithm YNES, an abbreviation for yearly normalized
energy surfaces.

• Much research has been done in the field of pattern-based method, where all he-
liostats are arranged in geometric patterns which can be described by certain ad-
justable parameters. With this approach the search domain is highly reduced from
hundreds or thousands of x and y coordinates to a handful parameters. So, instead
of optimizing the x-y coordinates, here now the pattern parameters are optimized
which though influence the x-y coordinates. Thus, the pattern method essentially
determines the best adaptation of the pattern for the problem and not necessarily
the best x-y coordinates for optimal plant performance [32]. In literature, several
different patterns have been used: rows [34], radial staggered [35], and biomimetic
patterns [36]. The disadvantage of these optimizers is the small search space by
construction.

• The free variable method follows a more classical optimization approach by di-
rectly optimizing the x-y coordinates. Due to the complexity of the problem an
appropriate heuristic is needed. There exists a large variety of optimization ap-
proaches which could be used, such as non-linear programming, general gradient-
based methods, to nature-inspired genetic, evolutionary, viral, simulated annealing,
and particle swarm algorithms.

So far, we just know from a gradient-based method [32] which was developed for
the heliostat layout optimization problem. This approach starts with a random
layout which iteratively adjusts each x-y coordinate by following the gradient in
the direction of a better function value until a certain objective is achieved. The
gradient of the simulation may be obtained by finding the partial derivatives of
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the ray tracer function with respect to each variable. In this optimization concept
the heliostats are not limited to a pattern, which means that they can freely move
through the field during the optimization process.

• The multi-step optimization strategy consists of a combination of two or more opti-
mization methods. First a meta-heuristic is used, able to search on a huge solution
space and to move towards the global maximum. Afterwards, subordinated meth-
ods like a greedy heuristic or a linear programming refine the solution locally. The
work [37] uses a pattern based optimization method and refined the results with
a greedy heuristic by perturbing each heliostat position locally. This strategy has
shown to give better results when compared to each of the two algorithms alone.

1.3. Related work

Despite this wide spectrum of achieved results, there is still a strong need for new
approaches to solve the layout optimization problem to further improve the solutions.
Because it is extremely hard to find the global optimal solution, methods from artificial
intelligence may help to successfully find a good solution. In this work, we propose a
classical optimization approach by using an evolutionary algorithm (which belongs to
the above introduced class of free variable methods). We show that it is necessary to
modify the crossover and mutation step, to increase the slow convergence rate. The new
genetic operators are tailored to the underlying problem of two-dimensional genes (the
x and y positions of the heliostats). We give a comparison of a pattern-based algorithm
with an evolutionary algorithm (with classical and modified genetic operators) to show
the efficiency of our approach.

The rest of this work paper is structured as follows. In Section 2 the hierarchical ray-
tracer is presented. Section 3 describes the optimization algorithm using the evolutionary
approach. The importance of adapting the classical operators used in evolutionary
algorithms by providing some experimental results is shown in Section 4.
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2. Model

A solar field consists of a solar tower and N heliostats Hi, each having a mirror area
Ai. The geographical location of the tower is usually given by latitude φ and longitude
θ. Locally a cartesian coordinate system is used, with x-axis facing from west to east,
y-axis from south to north, and the z-axis facing from ground to the sky, see Figure 3.
The tower is placed at the origin.

The relative position of the sun to the geographical location is time-dependent and can
be expressed by two solar angles, azimuth γsolar(t) and zenith θsolar(t). The intensity of
the sun is given by the time-dependent direct normal irradiation IDNI(t). The task of
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Figure 3: The solar position is given by solar zenith θsolar and solar azimuth γsolar.

the optical model is to compute the received energy over a year Eyear,

Eyear =

∫ 8760

0

P (t) dt =

∫ 8760

0

(
N∑

i=1

Pi(t)

)
dt, (2.1)

where 8760 is the number of hours in a year. For each heliostat Hi the time dependent
received power is defined by

Pi(t) = Ai · IDNI(t) · ηcos,i(t) · ηsb,i(t) · ηref,i(t) · ηaa,i(t) · ηspl,i(t), (2.2)

while taking cosine effects ηcos(t), shading and blocking ηsb(t), heliostat reflectivity ηref(t),
atmospheric attenuation ηaa(t) and spillage losses ηspl(t) into account. All these effects
are described below in more detail.

The value of the received optical radiation over a year Eyear is the basis for each objective
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function in the optimization process, see Section 3. For each different configuration of
the solar field, this value has to be computed by a simulation. The time integral is solved
by regarding each day separately (just the interesting part when the sun shines),

Eyear =

∫ 8760

0

P (t) dt =
365∑

d=1

(∫ sunset(d)

sunrise(d)

P (t) dt

)
, (2.3)

and then using numerical quadrature rules. In common practice, an iteration with
midpoint rule using hourly time step [24, 38, 39] is performed. For higher accuracy
other numerical quadrature rules are recommended, e.g. the Gauss-Legendre quadrature
rule, which uses non-constant time steps. Another possibility to reduce the number of
evaluation points is to select a subset of the number of days. Each selected day is
weighted with a factor (for the days which are sorted out), such that the sum of these
weights is 365. In Section 2.6 an investigation of the needed number of evaluation points
is done.

In the following, the above mentioned effects are developed.

2.1. Hierarchical ray-tracing method

The rays have their origin in the sun, hit the surface of a heliostat and are reflected in
direction of the receiver. We are interested in the reflected power of a heliostat, which
is hitting the receiver. To detect the optical flux over the heliostat’s surface we are
using a hierarchical approach of ray-tracing methods [36, 21], where the complete flux
is computed by numerical integration with the use of Gauss-Legendre quadrature rule.
Thus, each mirror surface is partitioned in a number of regions, each with a representative
ray, see Figure 4. Each ray is weighted with the area of its representative region. The
influence on the reflection by shading, blocking and ray interception at the receiver is
determined just for this single ray as representative for the whole region. Finally all
values are summed to get the power of the heliostat.

The number of representative rays per heliostat facet is given by the selected order of
the Gaussian quadrature rule. Because the effect of shading and blocking is typically
small and thus confined to the edges [36], it is advantageous to have a fine discretization
near the heliostat edge and a coarse discretization in the middle of the surface. With
the choice of Gauss-Legendre quadrature rule for placing the representative rays, this
advantage is performed.

2.2. Sun position and direct normal irradiation

There exist several models, which compute the relative position of the sun according to
the geographical location, e.g. [40, 41, 42, 43]. In an investigation of Armstrong and
Izygon [44] it was shown that all these models show a good agreement with the high
accuracy model of Meeus [43]. Now, if the solar angles are computed, the solar vector
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2.3. Tower and receiver

The tower is placed at the origin, where the receiver is mounted on top of the tower.
The position of the position is labeled with ptower. The sun rays are collected in the
receiver, which transfers the radiation into heat. In our model we distinguish between
three concepts:

• Flat tilted cavity receiver. This type represents a cavity or volumetric receiver,
which can be found for example in the CESA-1 central receiver facility in Andalu-
sia, Spain or the solar tower Jülich in Germany. The receiver is modeled as a
bounded plane in the x-z plane, which is tilted by a zenith angle θrec in the y

direction. The receiver has a width of wrec and height hrec, see Figure 6a.

• Cylindric cavity receiver An internal cylindric cavity receiver has the form of
a half-cylinder, such as the PS10 receiver in Andalusia, Spain. The receiver has a
diameter of drec in the x-y area and a height of hrec, see Figure 6b.

• Cylindric external receiver This type represents a 360◦ external receiver, which
can be found for example in the Solar One and Solar Two central receiver facilities
at Barstow in California, USA or the 19 MW plant Gemasolar in Andalusia, Spain.
The receiver is modeled as a curved surface area of a cylinder with diameter drec
in the x-y area and height hrec, see Figure 6c.

For the first two receiver types, the model assumes that each heliostat Hi aims towards
the center of the aperture. For the cylindrical external receiver the model assumes that
each heliostat Hi aims towards the closest point at the center of the aperture. The
aiming point in the receiver is labeled with prec,i. Usually, the aiming points are not
fixed for the whole time: Strategies distribute the flux over the full receiver area, to
avoid dangerous flux levels at the center.

2.4. Heliostats and pod systems

The heliostats are tracking the sun position, to concentrate the sun light on a central,
tower-mounted receiver. Each heliostat Hi is raised on a pedestal. It’s mirror center-
position is called pi. A heliostat can consist of many small mirrors, called facets, which
are arranged horizontally and vertically on a mirror frame, see Figure 7. Each facet of
a heliostat has the same length and width, where the overall mirror area Ai of heliostat
Hi is then given as sum of all facet areas. Between the facets there can be horizontal
and vertical gaps. For an overall width wi and length ℓi the heliostat’s expansion di is
the diameter of the minimum bounding sphere, di =

√
ℓ2i + w2

i .

The heliostat facets can either be flat or focused with a focal length fi. Usually the focal
length is chosen such that it corresponds to the distance of the heliostat position to the
aiming point on the receiver.
The positions and alignment of the heliostat’s facets are saved in terms of local heliostat
coordinates, with axes xi and yi and origin pi. The z-axis is the normal vector ni of
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Figure 6: Different receiver types

the heliostat scaffold.

For security reasons or to make sure every heliostat is accessible for cleaning and main-
tenance, it may be desired to have a minimal distance between two heliostats, which is
at least the diameter of the heliostats, such that they do not touch.

The heliostats can be placed everywhere in a given area Ω. This area considers also
places where no heliostats are allowed to construct, e.g. if service roads are needed, or
a pipeline crosses the area (which is the case for the solar tower in Jülich).

2.4.1. Heliostat canting

On a large heliostat, the facets are positioned and aligned in a certain way on the
heliostat scaffold. This is called canting. There are different approaches. In our model,
on-axis canting and off-axis canting are implemented.

◮ On-axis canting

With on-axis canting, the facets are aligned, such that they perfectly reflect the sun rays
for the case that the sun shines out of the receiver. Heliostat, receiver and sun are then
on one common axis. The heliostat facets are then positioned around the symmetry axis
of a paraboloid, where the receiver is the focus.
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The local coordinate system of the aligned heliostat is then determined by

xi :=
ni × (0, 0, 1)T

|ni × (0, 0, 1)T| , yi := ni × xi, and zi := ni (2.7)

Notice that just the heliostat scaffold is aligned – the single facets are fixated on the
scaffold of the heliostat.

2.4.3. Clustering in pod systems

The heliostats can be grouped by a joint pod system, where they are positioned on an
arbitrary truss construction, see Figure 8. So, instead of positioning single heliostats,
groups of heliostats with fixed relative positions are placed on the field. A pod system Si

is characterized by a truss construction, truss length, center position pi and a rotation
angle αi. The rotation angle can be restricted to a periodic rotation angle, e.g. a
triangular pod may only be rotated in steps of 60 degrees. The pod systems are not
allowed to touch each other, this includes all heliostats and the truss construction.

Figure 8: Examples of different pod systems to group heliostats on a truss construction.

2.5. Efficiencies and losses

2.5.1. Cosine effects

The heliostats are tracking the sun in such a way that the rays are reflected on the
surface to hit the receiver. Due to the tilt of the heliostat surface, the projected area is
reduced. This effect is called cosine effect and is numbered as ηcos. Cosine effects depend
on the solar position and the alignment of the heliostat. Related to the law of reflection,
the heliostat surface normal bisects the angle between the solar rays and a line from the
heliostat to the tower [17]. Thus, the effective reflection area of the mirror is reduced by
the the angle of incidence [36], so that

ηcos,i = 〈τ solar,ni〉. (2.8)

2.5.2. Shading and blocking

For each heliostat, a number of rays determine if a region of a heliostat is blocked or
shaded by neighbouring heliostats, the tower, or the terrain. This is the most expensive
part of a simulation. Especially Monte Carlo tools therefore have to use a high number
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of rays. With the herein used hierarchical approach of a ray-tracing method, for each
ray shading and blocking effects must be detected.

◮ Tower shadow

The tower is assumed to be a cuboid or cylinder. Each ray of a heliostat must be
checked, if it hits the tower shape. A subset of potentially tower-shaded heliostats can
be computed by selecting just those heliostats, which are placed in a simplified shadow
of the tower, a corridor with the width of the tower’s expansion facing in opposite
direction of the sun. Just these few heliostats in this corridor have to be checked for
tower shading. Therefore the minimum distance between the tower center (represented
as a line through the tower position ptower facing into the sky) and an incoming sun
ray through the mirror center pi has to be computed. If this distance is greater than
half of tower expansion plus the half of heliostats expansion, then the whole mirror is
not shaded by the tower. This analysis corresponds to an examination, if two infinite
long cylinders touch each other. One cylinder is the heliostat in direction of the sun
with a diameter of the heliostats expansion, and the other cylinder is the tower with a
diameter of the tower expansion. If a heliostat is possibly shaded, then each single ray
of a heliostat has to be checked.

◮ Heliostat shading

The algorithm for detecting shading heliostats is similar as for tower shading. For each
heliostat Hi, a subset of potentially shading heliostats can be computed by selecting
all heliostats which are placed in a corridor starting from the heliostat and facing in
opposite direction of the sun. The corridor has the width of the heliostat’s expansion.
Just these few heliostats Hj of this subset have to be checked for shading. Therefore the
minimum distance between the mirror center pj of each neighboring mirror Hj and an
incoming sun ray through the mirror center pi has to be computed. If this distance is
greater than half of heliostat Hi expansion plus the half of heliostat Hj expansion, then
the whole mirror is not shaded by heliostat Hj.

This analysis corresponds to an examination, if two infinite long cylinders touch each
other. Both cylinders are parallel and facing in direction of the sun. One is running
through pi with a diameter of heliostat Hi expansion, the other one is running through
pj with a diameter of heliostat Hj expansion

If a heliostat Hi is possibly shaded by another heliostat Hj, then each single ray of a
heliostat has to be checked. Therefore the line-plane intersection point of the incoming
sun ray and the neighboring heliostat’s normal plane with nj has to be computed. If
the hit point lies inside the heliostat’s borders, the heliostat Hi is partially shaded in
the ray’s represented region.

◮ Heliostat blocking

The algorithm for detecting blocking heliostats is similar as for heliostat shading. But
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instead of taking the sun vector as direction, here the reflected ray with target vector
prec,i − pi is used.

◮ Terrain blocking and shading

On hilly terrain, it is possible that rays are shaded or blocked by the terrain. To efficiently
detect terrain shading and blocking, a multi-step filter and refinement algorithm is used.
The idea is to first compute for each heliostat the set of terrain grid cells that can
potentially shade (or block) rays, and then perform a fast intersection check for each ray
with these candidate cells only.

In the first step, a 2-D corridor starting from each heliostat in direction of the sun (or
the tower, respectively) is considered, where the width of the corridor is given by the
heliostat expansion. The resulting set of candidate grid cells is refined using a 3-D filter
by placing a capsule around each candidate grid cell and checking whether the capsule
intersects the ray cylinder from the heliostat to the sun (or tower). This intersection
test boils down to detecting the closest points of the ray cylinder axis and the capsule
axis. If the distance between the closest points is larger than capsule radius plus ray
cylinder radius, the cell does not shade or block a ray from the ray cylinder, and it can
be removed from the set of candidates, see Figure 9. Only these grid cells that cannot

Figure 9: 3-D filter to refine candidate cells, depicting an isolated cell; (left) grid cell
with the true terrain, (right) bounding capsule

be pruned using these two filters are used to check the actual intersections between
individual rays and the terrain. Candidate cells between heliostats and the tower are
the same for every simulated moment, so they have to be computed only once for each
heliostat before simulating. Candidate cells between heliostats and the sun are different
for every simulated moment, since the sun moves over the terrain. They have to be
computed for every heliostat and every moment.

After having determined the sets of possibly shading and blocking cells, individual rays
need to be checked for intersection with the terrain from each candidate grid cell (in
3-D). Again, this is done in two steps. First, a bounding box is placed around the grid
cell, and the intersection between ray and bounding box is tested. If the ray does not
hit the bounding box, it does not hit the terrain and the intersection test terminates. If,
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however, the ray hits the bounding box, two cases can occur: (i) one of the two hitting
points lies below the actual terrain at the cell boundary, (ii) both hitting points lie above
the actual terrain, see Figure 10. In case (i), the ray definitely hits the terrain and the
test terminates. In case (ii), it has to be additionally checked whether the ray hits one
of the two triangles obtained from triangulating the four grid cell corner points.

Figure 10: 3-D intersection test between rays and terrain cells; (left) both hitting points
lie below the terrain at the grid cell boundary, (right) both hitting points lie
above the terrain at the boundary and the ray does not intersect one of the
two triangles.

2.5.3. Heliostat reflectivity

At the surface of a mirror the rays from the sun are reflected in direction of the re-
ceiver. But some radiation is scattered in a wrong direction due to slightly cleanliness
or absorbance at the surface of the mirror. The reflectivity of a mirror depends on the
incidence angle and the solar spectrum. But in the open literature, often a constant
value is used for the heliostat reflectivity, e.g. [46]

ηref,i ≡ 0.87, (2.9)

which means that 87% of the energy is reflected as mentioned and 13% is lost at the
surface of the heliostat. In our model the reflectivity can be set to be dependent on the
incidence angle.

2.5.4. Atmospheric attenuation efficiency

The atmospheric attenuation efficiency considers the effect that the atmosphere trans-
mits progressively less light. This radiation loss depends on the distance di between the
heliostat Hi and the receiver aim point,

di = |pi − prec,i|. (2.10)

Leary and Hankins [18] adopted a simple formula for a distance of less than 1000 meter.
This formula was extended for larger distances by Schmitz et al. [47], with the goal to
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Note that the tracking error appear to both axes. So, the tracking error is a combination
of errors in azimuthal and elevation direction using the Euclidean norm. As error angles,
the following parameters are used [50, 51]

σsun = 2.35 mrad, σtracking =
√
0.9192 + 0.9192 = 1.3 mrad and σslope = 2.6 mrad,

(2.13)

which results in a standard deviation of

σbeam = 3.738 mrad. (2.14)

2.5.6. Interception efficiency

The interception efficiency of a ray is the probability that the ray hits the receiver. The
ray, represented as an error cone, causes a flux at the receivers’ surface around it’s ideal
hit point, see Figure 12. The interception efficiency (or often called spillage losses) of a
ray is described by a two-dimensional integral of the standard normal distribution,

ηrayspl =
1

2πσ2
beam

∫∫
exp

(
−x

2 + y2

2σ2
beam

)
dx dy. (2.15)

Notice that here the parameters x and y are the distances from the ideal ray in hori-
zontal and vertical direction, measured as multiples of σbeam. By converting into polar
coordinates with x = r cosϕ and y = r sinϕ, we get

ηrayspl =
1

2πσ2
beam

∫ 2π

0

∫ rϕ

0

r · exp
(
− r2

2σ2
beam

)
dr dϕ. (2.16)

Also here, the radius r is the distance from the ideal ray, measured as multiples of σbeam.
As upper integration limit rϕ of the radius, the border of the receiver is used, which
depends on the radial direction ϕ. This ensures that for a given ϕ all perturbed rays
with r ∈ [0, rϕ] are hitting the receiver. rϕ is given as arcus sinus of the minimum
distance dϕ from the ideal ray to the receiver border point, divided by the slant height
hϕ of the error cone through the border point, see also Figure 11,

rϕ = asin
dϕ
hϕ
. (2.17)

The inner integral of equation (2.16) can be computed analytically, where the outer
integral is solved numerically with the use of the trapezoidal rule using n evaluation
points:

ηrayspl =
1

2π

∫ 2π

0

∫ rϕ

0

r

σ2
beam

· exp
(
− r2

2σ2
beam

)
dr dϕ

=
1

2π

∫ 2π

0

(
− exp

(
− r2

2σ2
beam

) ∣∣∣∣
rϕ

0

)
dϕ
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with equidistant angles ϕj = j·2π
n
. For non-equidistant angles ϕj < ϕj+1, j = 0, . . . , n−1,

the efficiency is approximated by

ηrayspl ≈ 1− 1

2π
·
n−1∑

j=0

ϕj+1 − ϕj

2
·
(
exp

(
−

r2ϕj

2σ2
beam

)
+ exp

(
−
r2ϕj+1

2σ2
beam

))
, (2.19)

where ϕn := ϕ0 + 2π and rϕn
:= rϕ0 . Note that rays that shortly miss the receiver are

not counted at all, although parts of their error cones would hit the receiver.
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2.6. Reducing computational complexity

◮ Numerical approximation of the time integral

As shown in Equation (2.3), the time integral can be approximated by considering
different amounts of days in a year and using quadrature rules with different amounts
of time steps per day.
The time integral in Equation (2.3) is solved numerically. In common practice, an

iteration with constant time step [38, 24] is used, which corresponds to the midpoint rule.
Noone et al. [36] propose an iteration with constant solar angle step, which allows the
same accuracy with fewer iterations. There exist other approaches which just regard the
sun angle instead of the time integral [52]. In our model, different quadrature methods
can be used with either time or solar angle as integration variable, where the Gauss-
Legendre quadrature gives the most promising results. An investigation regarding the
number of simulated points in a year was performed. The relative error (in %) of the
computed annual performance for a place in Almerá (Spain) is shown in Figure 13.
After this investigation, for our simulations we use 30 days in a year each evaluated at
5 instants of time per day.

Figure 13: Accuracy for computing the annual energy using Gaussian quadrature rule,
with different amounts of days and time points. The colors represents the
relative error (in %) of the annual performance related to the reference solu-
tion, which considers about every minute of the year (every day of the year,
each with 1000 points).
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Figure 15: Comparison of different cell sizes of the bitboard index structure.

The model is compared to the Monte Carlo ray-tracing tool SolTrace [19], see Figure 16.
Using once again the original PS10 heliostat field layout, the accuracy vs. the needed
number of rays (measured in runtime) is investigated, see Figure 17. To compute the
accuracy, the solutions are compared to a reference solution, which was computed with
10 million rays in SolTrace. It can be seen, that SunFlower is at least 10 times faster
than SolTrace at the same accuracy.

Figure 16: The tool SolTrace is a Monte Carlo ray-tracer which needs millions of rays
for enough accuracy.
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Figure 17: Comparing the accuracy of SolTrace and SunFlower for the PS10 solar tower
power plant: The reference value corresponds to the SolTrace result with 10
million rays. For this test case, solutions for a different amount of rays is used
(measured in time), where accuracy (in %) is defined as 1 minus the relative
error.

Figure 18 shows the projection of one heliostat of 1.83 m × 1.22 m onto a 4 m2 receiver.
The model here uses 50 × 50 rays, while SolTrace simulated the same configuration
using a million rays. The previously described Gauss-Legendre ray distribution does
not change with optical errors as it does in SolTrace. Optical errors are considered by
assuming error cones instead of simple rays. The obtained flux from the same test case
is presented in Figure 19 for the case, where no optical errors are considered. Figure
20 shows the flux maps for the test case with considering optical errors. The test cases
show good agreement of both models in the eyeball norm.

Figure 18: Ray distribution on the receiver in a test case with one single heliostat ob-
tained by the SunFlower model (left) and SolTrace without optical errors
(center) and SolTrace with optical errors (right).
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Figure 19: Flux maps without considering optical errors in the model (left) and SolTrace
(right).

Figure 20: Flux maps with considering optical errors in the model (left) and SolTrace
(right).
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3. Layout optimization using evolutionary algorithms

The approach of using artificial intelligence for the optimization of solar power plant
analysis in general is still rather new. There exist just a few works on this topic, e.g.
[53, 54, 2, 55].

To solve the layout optimization problem, within this thesis an evolutionary algorithm as
a free variable method was developed from scratch. This means that the optimizer is not
based on any fixed pattern but offers the possibility to freely position heliostats inside
a given area, as long as they have a sufficient distance to each other. The advantage
is that a larger search space might contain more efficient solutions. If for any reasons
a pattern is requested, our approach could be applied to any fixed topology in a quite
straightforward manner.

The functionality of an evolutionary algorithm is inspired by the nature: In our setting,
each layout configuration (individual) is specified by its properties (genotype), each
property (gene) being either the x or the y coordinate value of a heliostat position.
A population is a set of individuals. To measure the goodness of a population, we
simulate all of its layout configurations to determine their fitness values (e.g. efficiency
or received irradiation). The fitness of a population is its highest individual fitness value,
which serves as the objective function for the optimization. The optimization algorithm
starts from an initial population (e.g. random) and iteratively derives a new population
from the previous one until some termination criterion is fulfilled. This could either be a
maximum number of iterations, the convergence of the last rounds, or just a time limit.
Upon termination, the best individual that was generated during the whole optimization
process is returned.

To not loose the best solutions at the transition from one population to the next and
thus to assure monotonicity of the population fitness, we initialize a new population to
contain a certain number of fittest individuals from the previous population (elitism).
Additionally, in order to avoid settling in a local optimum, it is also possible to introduce
a certain number of new random individuals to each population. Afterwards these steps,
we iteratively derive new individuals from the previous population and add them to the
new population if they satisfy the minimal distance requirements (otherwise they are
discarded). This procedure is repeated until the new population has the same size as
the previous population.

To derive a new individual, three major operations are used:

1. Selection: Two or more individuals are randomly selected from the previous pop-
ulation according to their fitness values.

2. Crossover: The properties of the selected individuals are recombined according to
their fitness values.

3. Mutation: Some genes of the new recombined individual might be modified before
adding it to the new population.
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Figure 22: Classical crossover operators.

Due to the strong constraints, it is not ensured that classical crossover and mutation
operators will generate valid individuals. Notice that an individual is not valid anymore,
if just one pair of heliostats has a collision. To avoid this problem of inadmissibility,
the main idea is to adapt the operators to the problem constraints. In the following we
describe the selection, crossover and mutation algorithms along with the termination
criterion that we use in our layout optimization approach.

3.1. Selection

Different techniques were proposed in literature for the selection of individuals that
should be recombined. In our work, we utilize one of the most common methods, called
the roulette wheel method. The objective of the roulette wheel method is to select
potentially useful individuals to contribute to a new population with improved fitness.
For that purpose, the fitness values are used in order to associate a probability of selection
with each individual. This means that from a population P an individual I ∈ P with
fitness value F (I) is selected with probability

p(I) = F (I)∑
I′∈P

F (I ′)
∈ [0, 1]. (3.1)

3.2. Crossover

Using the above selection technique, we choose two parent individuals to be recom-
bined into a new configuration (child). The classical crossover operators are one-point
crossover, two-point crossover or uniform crossover. All three operators, illustrated on
Figure 22, assume that the genes are stored as an ordered sequence of values. One-
point crossover determines a sequence index, and generates children having genes from
one of the parents up to the given index and from the other parents for larger indices.
Two-point crossover works similarly but cuts the gene sequences at two points; children
inherit genes from one of the parents for the indices between the two points and from
the other parent for the remaining parts. Finally, uniform crossover determines for each
gene in the sequence a parent, from which the gene is inherited, randomly using a uni-
form distribution (probability 50% for both parents).

The drawback of these crossover approaches is that many generated children violate
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the constraint of minimum distance and need to be sorted out. Additionally, these
approaches are highly sensitive to the order of the heliostats in their genotype represen-
tation. Finally, when applying these approaches for layout optimization, it is meaningful
to encapsulate heliostat positions, represented by two genes (one for the x and one for
the y coordinate value). Therefore we need to adapt both the genotype representation
as well as the crossover operators to the layout optimization problem.

◮ Genotype representation

Note that in our setting each gene is either an x or a y coordinate value. The classical
genotype representation is an ordered sequence of genes. Instead of sequences, in our
approach, the genotype representation is a set of genes, where a gene is a position (x, y).
Additionally, the set is combined with an order relation: The value of the objective
function of a configuration is determined by an annual simulation of the sun irradiation,
based on meteorological data. Besides the objective function value, the simulation also
provides information for each single heliostat, e.g., its power contribution to the overall
received power. Based on this information, we order the heliostats of a configuration by
their goodness. Using this genotype representation, we define three different crossover
operators, which are adapted to the layout optimization problem. They all base on the
strategy of a Greedy algorithm.

◮ Zero-step crossover

First the genes (the heliostat positions) from the genotype representations of both par-
ents are sorted in descending order according to their fitness. From this sorted base
list, the heliostats with the highest goodness values are step-wise inserted into the child
individual (and popped from the base list). If an inserted heliostat causes a conflict, it
is skipped and the next heliostat is chosen. If there are no more heliostats left in the
base list, the child configuration is completed with randomly generated heliostats. This
way we generate only valid individuals. Figure 23 illustrates the a zero-step crossover,
where each of the parent genotypes contains five heliostat positions.

◮ One-step crossover

One weakness of the zero-step crossover operator is that the heliostats are weighted with
their goodness in the parent individual, which does not guarantee to be a good choice
in the child configuration due to new upcoming neighboring effects like blocking and
shading. So, the heliostats’ goodness for the generated child may not correlate to the
one in the parent configuration.

In the one-step algorithm, we tackle this problem by placing all parent heliostats in
decreasing goodness order into one field (skipping those which would affect collisions)
and compute a new goodness value for each single heliostat. Based on these values,
we select the desired number of heliostats for the child individual by choosing the best
heliostats, similarly to the zero-step crossover (but now based on more appropriate
goodness values).
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Figure 23: Recombination of two parent individuals in crossover. The saturation of the
color (red or blue) is a simplified measure for the goodness of the single
heliostat.
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◮ Multi-step crossover

The one-step crossover is based on improved goodness values, however, as not all the
parent heliostats will be contained in the child configuration, these values still do not
fully reflect the unique heliostat contributions to the final fitness value of the child.
Consequently, with this approach heliostats in densely placed groups could be completely
sorted out due to neighboring effects.

Therefore, we define a third operator called multi-step crossover, which uses several
evaluation steps. First the goodness value of each single heliostat is computed as if it
would be the only one on the field, i.e., without considering neighboring effects. Based
on this ranking, the best heliostat is chosen and added to the (initially empty) child
configuration. Now for each remaining heliostat that does not collide with the already
added one we re-compute its contribution to the child fitness if it would be added to
the current (incomplete) child configuration, and insert the best one into the child’s
genotype. This process is repeated iteratively until the required number of heliostats is
reached. Again, if there are no more parent genes, we complete the child genotype with
random genes.

It is obvious that the number of “steps” reflects the computational effort for the different
crossover operators; the multi-step crossover is far more expensive to compute than the
zero- and one-step versions. The differences in the computation time are illustrated in
Figure 24.

3.3. Mutation

After the recombination of two parent individuals to one child individual by applying a
crossover operator, some child genes might be modified by random mutation. Mutation
leads to additional diversity of individuals in the new population. The classical mutation
would effect single genes in isolation, which would lead to a modification of either the
x- or the y-position of single heliostats. In our application, we encapsulate the (x, y)-
position as one gene, such that in the case of mutation the whole position is shifted with
random distance in a random direction. If a conflict appears, the mutation is repeated
again.
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4. Numerical results

We implemented our evolutionary algorithms with adapted genotype representation and
crossover and mutation operators. For testing the quality of the different crossover op-
erators, we first replaced the complex simulation-based fitness evaluation by using more
simple objective functions: For a given individual I with its genotype representation
I = {(x1, y1), . . . , (xN , yN)} ⊆ Ω we need to compute the objective function value F(I).
Instead of using the simulation model we replace it by summing up function values
f : R2 → R for each heliostat:

F(I) =
N∑

i=1

f(xi, yi). (4.1)

This test was successfully applied to all mentioned crossover operators. Figure 26
shows the results for the one-step crossover operator.

As the simulation-based fitness value computation is very time-consuming, we paral-
lelized the optimization algorithm using OpenMP. Because the main workload of our
optimization process is the calculation of the objective function values for every individ-
ual, we can apply the parallelization to this step. Due to the fact that each individual
can be processed independently, the introduced parallelization overhead due to blocking
is negligible. After these parallelized computations, an additional single-threaded pass
over all individuals is performed to compute global values describing the whole popula-
tion (e.g. min/max energy). The achieved speed-up by using parallelization is depicted
in Figure 25.

To show the applicability of our approach, we applied our algorithms to optimize two
real solar tower power plants. As objective function the annual performance is used,
which is defined as the fraction of irradiation energy received at the tower and the total
energy reaching the mirrors without shading,

F(I) =
∫ 8760

0
A ·DNI(t) · η(t) dt

∫ 8760

0
A ·DNI(t) dt

, (4.2)

where 8760 is the number of hours in a year, A is the mirror area, DNI(t) the time-
dependent direct normal irradiation, and η(t) the time-dependent efficiency of the field,
considering cosine effects, blocking & shading of neighboring heliostats, interception
efficiency and atmospheric attenuation [36, 2].

◮ Planta Solar 10 (PS10)

The PS10 solar tower power plant is placed near Seville, in Andalusia, Spain. Since 2007,
the 11 megawatt (MW) solar power tower produces electricity with 624 large heliostats.
Each heliostat has a mirror surface of 120 square meters, where the receiver is placed on
top of a tower at 115 meters height. More details about the configuration can be found
in [36].
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Part II.
Modeling and Simulation of Direct
Steam Generation
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1. State of the art

To model a two-phase flow of water in the absorber tube, the conservation of mass, mo-
mentum and energy is supposed for liquid and steam phase. Different model approaches
exist in the literature:

• The homogeneous equilibrium model [56] is based on the assumption that the two-
phase mixture behaves as a single-phase fluid. It uses mean fluid properties that
are weighted relatively to vapor and liquid content and it is assumed, that both
phases have equal velocities. Because all three conservative equations are modeled
homogeneously, the model is a so-called three-equation model.

• The drift-flux model [57] enhances the homogeneous equilibrium model by taking
different densities for both phases into account. Hence, the three partial differential
equations are extended by a fourth equation by segregating the homogeneous mass
balance equation.

• The five-equation drift-flux model is additionally segregating the energy balance
equation [58], to obtain relaxed energy equations.

• The separated two-phase flow model [59] considers the phases to be artificially seg-
regated into a liquid and a vapor stream. Therefore the model bases on a system
of six equations – three equations for each phase. These six-equations models are
widely used in nuclear thermal-hydraulic codes (RELAP55, TRAC6, CATHARE7,
SPACE8). As closure condition, equal pressure in both phases is assumed. Follow-
ing Saurel and Abgrall [60], this choice yields ill-posed mathematical models and
results in numerical instabilities.

• As extension of the six-equations two-fluid model, Drew and Passman [61] and
Saurel and Abgrall [60] propose the two-pressure two-phase model. An additional
equation for volume fraction completes the system of equations. This hyperbolic
model allows simulations of liquid phase at negative pressure, while the pressure
of the vapor phase remains positive, and vice versa.

Related work

The aim of this work is to describe the direct-steam generation in the absorber tubes of
a solar thermal power plant. Often, the two-phase flow of water is modelled using the

5Reactor Excursion and Leak Analysis Program by Idaho National Laboratory
www.inl.gov/relap5.

6Transient Reactor Analysis Code by Los Alamos National Laboratory
nuclear.lanl.gov/nrc.shtml.

7Code for Analysis of Thermalhydraulics during an Accident of Reactor and safety Evaluation by
Commisariat á l’Energie Atomique www-cathare.cea.fr.

8Safety and Performance Analysis Code by Korea Atomic Energy Research Institute
www.kaeri.re.kr.
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homogeneous equilibrium model [62], [63], [64], [65]. Just in some recent publications,
more complicated models are used by making use of nuclear thermal-hydraulic codes
[66], [67]. But notice that the therein used six-equations models are ill-posed, as already
mentioned above.

This is the motivation of this work: to derive a well-posed model and to develop an
accurate solver which is fast enough, such that it can be used for the control of solar
tower power plants. The solver has to be chosen carefully, because the underlying
problem is quite hard: We have an inhomogeneous non-conservative system, with low
Mach number and stiff source terms [68].

The rest of this work is structured as follows. In Section 2 a two-pressure two-phase
model is developed, such that thermodynamical and mathematical properties hold. This
model is compared with the widespread homogeneous equilibrium model. The problem
is solved using a finite volume method which is introduced in Section 3. Because the
underlying problem is in non-conservative form, this problem is solved using an entropy-
preserving path-conservative scheme in Section 4. In Section 5 a Godunov-type method
is developed by finding a Riemann solution of the model. To accelerate the run-time, the
relaxation model is solved by using a semi-implicit scheme 6. All solvers are validated
and compared against well-defined test cases in Section 7.

41



2. Two-phase flow model

Within this section, a two-phase flow model is derived from the three-dimensional com-
pressible Navier-Stokes equations. Due to the underlying application of a flow in a thin
tube, two spatial dimensions are neglected. The lost of information about the local fluid
structure is compensated by replacing diffusive second order terms by empirical laws
in dependency of the local flow pattern. The model fulfilles several mathematical and
thermodynamical properties, which deliver closure conditions for the freely selectable
model parameters.

In Section 2.1 the fundamental two-phase flow model is derived, averaged, and simplified.
Out of the developed one-dimensional balance laws two models are derived: a homo-
geneous equilibrium and a two-velocity two-pressure model, see Section 2.3. In Section
2.5 the models are closed by deriving properties of the models. Finally, in Section 2.4
constitutive relations for the empirical laws are derived.

2.1. Ensemble averaging

The herein presented model bases on the work of Drew and Passman [61]. While in their
original work they do not give closures for the interfacial properties, this is developed in
this section.

◮ Fundamental of two-phase flow

The motion of fluids can mathematically be described by a system of non-linear partial
differential equations of second order [61], based on the canonical form of the local
balance equations

∂(ρψ)

∂t
+∇ · (ρvψ) = ∇ · J+ ρφ, (2.1)

with fluid density ρ and fluid velocity vector v ∈ Rd in a d-dimensional space. Balance
equations are derived by choosing the conserved quantity ψ, diffusive flux J and source
density φ, The fluid flow is governed by the three balance equations per phase of mass,
momentum and energy. Their usual values for ψ, J and φ are given in Table 1.

ψ J φ
Mass 1 0 0

Momentum v (S− pI) g

Energy E (S− pI) · v − q g · v +
q̇

ρ

Table 1: Parameters of the general balance equation for conservation of mass, momentum
and energy.
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p, T, E, q are the pressure, temperature, specific total energy and the heat flux of the
fluid, I is the identity matrix, q̇ is the body heating, g is the gravitational body force,
and S the viscous stress tensor.

In a multi-phase flow, the phasic flows can be very heterogeneous: Each phase may
locally consist of many small disjoint sets, e.g. bubbles or droplets. This causes strong
disequilibria between the phases. Because small scales neither can be handled by exper-
iments nor by numerics, there is need of an averaging process.

Therefore each phase k has to be isolated theoretically. To derive the equations for
multi-phase flow, it is necessary to describe the local characteristics of the flow, where
the macroscopic properties should be obtained by means of an approriate averaging
procedure [69].

◮ Ensemble averaging

Ensemble averaging is a generalisation to the elementary averaging of Baer and Nunziato
[6] in which the observed values are added and divided by the number of observations.
To identify each phase separately, Drew and Passman [61, 70] introduced the component
indicator function Xk(x, t) as characteristic function with

Xk(x, t) =

{
1, if phase k is present at position x and time t

0, otherwise.
(2.2)

In our case, we consider just two components, the liquid phase (ℓ) and the steam phase
(g). The two-phase indicator functions are related by

Xℓ +Xg = 1. (2.3)

With the help of the Reynolds transport theorem [71], Drew and Passman derive the
topological equation,

∂Xk

∂t
+ vi∇Xk = 0, (2.4)

where vi is the velocity of the interface. The ensemble average · of the component
indicator function Xk in a small region is the local ratio of the volume of phase k to the
total volume of that region [61]. This ensemble average is called volume or void fraction
and is labeled with αk,

αk := Xk. (2.5)

It is obvious that all phasic volume fractions sum to one, see (2.3), so that for a liquid
ℓ and steam g phase it holds

αℓ + αg = 1. (2.6)
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By multiplying the averaging procedure to the canonical form of the balance equations
(2.1) with Xk, applying the averaging procedure and using the Gauss rule for (2.4), the
averaged canonical form of the balance equation for multi-phase flow is obtained:

∂Xkρψ

∂t
+∇ ·Xkρvψ = ∇ ·XkJ+Xkρφ+

(
ρψ(v − vi)− J

)
· ∇Xk, (2.7)

The last term at the right-hand side is the interfacial source of ψ. Three types of averaged
variables appear:

• The component-weighted average of a thermodynamic variable f is given by

αkfk := Xkf. (2.8)

• The mass-weighted average of a thermodynamic variable f is given by

αkρkfk := Xkρf. (2.9)

• The interfacial sources of (2.7) are interphase-weighted variables. They split in a
molecular flux −J · ∇Xk and a convective flux ρψ(v − vi) · ∇Xk. The convective
flux describes the average flow rate, where the difference (v − vi) expresses the
velocity fluctuations which may be due to turbulence, see [72] and [61]. Following
[61] (see equations (11.38) to (11.42)), we define

ρψ(v − vi) · ∇Xk = ρi kψ̂i k · (v − vi) · ∇Xk︸ ︷︷ ︸
:=Γi k/ρ̂i k

= ψ̂i kΓi k (2.10)

with interfacial mass flow rate Γi k from bulk. The parameters ρ̂i k and ψ̂i k describe
the source quantities.

◮ Volume fraction

Applying the averaging operator to the component indicator function (2.4), and using
(2.5), we get [61]:

∂Xk

∂t
+ vi · ∇Xk =

∂Xk

∂t
+ vi · ∇Xk

=
∂Xk

∂t
+ (v − (v − vi)) · ∇Xk

=
∂Xk

∂t
+ v · ∇Xk − (v − vi) · ∇Xk

=
∂αk

∂t
+ vi k · ∇αk −

Γi k

ρ̂i k
= 0, (2.11)

where vi k is the phasic velocity of the interface. The convective flux Γi k/ρ̂i k describes
the interfacial volume fraction source. Finally, the void fraction equation is given by

∂tαk + vi k · ∇αk =
Γi k

ρ̂i k
. (2.12)
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This volume fraction equation is similiar to the compaction equation of Baer and Nun-
ziato [6] (see for instance equations 53 and 59). Due to (2.6), it is clear that the gain of
one phase in time and space is equal to the loss of the other phase:

∂tαℓ = −∂tαg and ∇αℓ = −∇αg. (2.13)

◮ Averaged balance equations

The averaged balance equations are derived from the averaged canonical form of the
balance equation for multi-phase flow (2.7), combined with the values given in Table 1.

Mass

The averaged mass equation is

∂Xkρ

∂t
+∇ ·Xkρv = ρ(v − vi) · ∇Xk. (2.14)

The averaged variables are converted by using (2.8) and (2.9):

Xkρ = αkρk and Xkρv = αkρkvk. (2.15)

The convective flux at the right-hand side describes the interfacial mass flow rate, see
(2.10), such that

ρ(v − vi) · ∇Xk = Γi k. (2.16)

Finally, the averaged mass equation is given by

∂t(αkρk) +∇ · (αkρkvk) = Γi k. (2.17)

Momentum

The averaged momentum equation is

∂Xkρv

∂t
+∇ ·Xkρvv = ∇ ·Xk(S− pI) +Xkρg +

(
ρv(v − vi)− (S− pI)

)
· ∇Xk.

(2.18)

The averaged variables are converted by using (2.8) and (2.9):

Xkρv = αkρkvk, Xkρvv = αkρkvkvk, and Xkρg = αkρkgk. (2.19)

Similarly, we convert

∇ ·Xk(S− pI) = ∇ · (αkSk)−∇ · (αkpkI). (2.20)

The convective interfacial momentum source is

ρv(v − vi) · ∇Xk =: v̂i k · ρ(v − vi) · ∇Xk
(2.10)
= v̂i kΓi k (2.21)
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where v̂i k is a phase change term describing the phasic source velocity. The molecular
interfacial momentum source is given by [61]

−(S− pI) · ∇Xk = pi k∇αk − Si k · ∇αk, (2.22)

with interfacial pressure pi k and interphase shear stress Si k. So finally, the averaged
momentum equation is given by

∂t(αkρkvk) +∇ · (αkρkvkvk) = −∇ · (αkpkI) +∇ · (αkSk) + αkρkgk + v̂i kΓi k

+ pi k∇αk − Si k · ∇αk. (2.23)

Energy

The averaged total energy equation is

∂XkρE

∂t
+∇ ·XkρvE = ∇ ·Xk

(
(S− pI) · v − q

)
+Xk(ρg · v + q̇)

+
(
ρE(v − vi)− (S− pI) · v + q

)
· ∇Xk. (2.24)

The averaged variables are converted by using (2.8) and (2.9):

XkρE = αkρkEk, XkρvE = αkρkvkEk and Xk(ρg · v + q̇) = αkρkgk · vk + αkq̇k.
(2.25)

Similarly, we convert with (2.20)

∇ ·Xk

(
(S− pI) · v − q

)
= ∇ · (αkvkSk)−∇ · (αkvkpkI)−∇ · (αkqk)

= vk · ∇ · (αkSk) + αkSk : ∇vk −∇ · (αkvkpkI)−∇ · (αkqk),
(2.26)

The convective interfacial energy generation source is given by

ρE(v − vi) · ∇Xk =: Êi k · ρ(v − vi) · ∇Xk
(2.10)
= Êi kΓi k, (2.27)

where Êi k is a phase change term describing the phasic source specific total energy. The
molecular interfacial work is given by (2.22)

−(S− pI) · v · ∇Xk
(2.22)
= pi k · vi k · ∇αk − Si k · vi k · ∇αk, (2.28)

The interfacial heat source is defined by

q · ∇Xk = qi k · ∇αk, (2.29)

We finally get the averaged energy equation,

∂t(αkρkEk) +∇ · (αkρkvkEk) = −∇ · (αkvkpkI) +∇ · (αkSk) · vk + αkSk : ∇vk

−∇ · (αkqk) + αkρkgk · vk + αkq̇k + Êi kΓi k

+ pi k · vi k · ∇αk − Si k · vi k · ∇αk + qi k · ∇αk.
(2.30)
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◮ Averaged system

The volume fraction equation (2.12) and the three balance equations of mass (2.17),
momentum (2.23) and energy (2.30) describe the two-phase flow model:

∂tαk + vi k · ∇αk =
Γi k

ρ̂i k

∂t(αkρk) + ∇ · (αkρkvk) = Γi k

∂t(αkρkvk) + ∇ · (αkρkvkvk) = −∇ · (αkpkI) +∇ · (αkSk) + αkρkgk + v̂i kΓi k

+ pi k∇αk − Si k · ∇αk

∂t(αkρkEk) + ∇ · (αkρkvkEk) = −∇ · (αkvkpkI) +∇ · (αkSk) · vk + αkSk : ∇vk

−∇ · (αkqk) + αkρkgk · vk + αkq̇k + Êi kΓi k

+ pi k · vi k · ∇αk − Si k · vi k · ∇αk + qi k · ∇αk.
(2.31)

◮ Boundary conditions

For the flow of a medium through a heated tube we need to consider the friction of the
fluid at the wall, and the heat transfer from the heated tube wall to the fluid. In the
underlying problem, as external source the concentrated sun irradiation is used which
is reflected on the surface of several mirrors: for solar tower power plants heliostats are
used, for parabolic trough collectors one mirror with a parabolic shape is used, and for
linear Fresnel collectors several flat (or slightly curved) mirrors are used. For all three
concentration techniques, a non-uniform solar flux around the receiver tube is obtained.

The heat transfer from the heated tube to the fluid is modeled with the use of Fourier’s
heat diffusion equation for in-compressible medium,

∂tTw =
1

cpwρw
∇ (λw ∇Tw) , (2.32)

with wall temperature Tw, thermal conductivity λw, constant specific heat capacity cpw

and density ρw of the material (here steel is used as material). The Laplacian describes
the change of the heat transfer density through the tube wall, which can be understood
as the difference between the external heat transfer density (from the sun into the wall)
and the wall heat transfer density (from the wall into the fluid). The latter one is used
as source term for the energy balance law.

2.2. Simplifications and closures

First of all, the complexity of the model is reduced by reducing the dimension. Sub-
sequently the system is closed with additional constitutive equations where we have to
ensure that the balance laws conserve mass, momentum and energy of the total mixture.
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◮ Dimension reduction

Due to the difference in spatial scale of tube diameter (some centimeters) versus tube
length (several hundreds of meters) and in order to reduce the complexity of the problem,
we model the two-phase as one-dimensional flow in intended flow direction.
Thus, the velocity and heat flux vectors vk, vi k, v̂i k, qk, qi k are reduced to the one-

dimensional values vk, vi k, v̂i k, qk, qi k. The gravitational body force gk is reduced to the
one-dimensional quantity

g sin(ϑ), (2.33)

with gravitational acceleration g = 9.81 m/s and elevation angle ϑ of the tube with
respect to the horizontal.

◮ Volume fraction

With (2.6) and (2.13) the liquid void fraction αℓ can be expressed by the vapor void
fraction αg. Because αℓ is obsolete, we directly define

α := αg = 1− αℓ. (2.34)

We assume that the spatial change of the volume fraction happens with the same speed,
such that

vi := vi g = vi ℓ. (2.35)

This equality agrees with the assumption of Gallouët, Hérard and Seguin [8]. Due to
total conservation of volume fraction, the phasic production terms of the void fraction
balance equations have to sum to zero:

−Γi ℓ

ρ̂i ℓ

!
=

Γi g

ρ̂i g
. (2.36)

Below in (2.38) we see that the interfacial mass flow rate of one phase must be equal to
the loss of the other phase, which finally leads to the equality of the source densities,

ρ̂i := ρ̂i ℓ = ρ̂i g. (2.37)

◮ Total conservation of mass at the interface

Due to the conservation of mass in the mixture, we claim that the convective interfacial
mass production of one phase is equal to the loss of the other phase [72]. Because Γi ℓ is
obsolete we directly define

Γi := Γi g = −Γi ℓ. (2.38)
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◮ Total conservation of momentum at the interface

The viscous shear stress term ∇ · (αkSk) describes the friction density between the
two phases, considering the form drag, lift force and skin drag. This is modeled by a
constitutive equation,

Fi k := ∇ · (αkSk). (2.39)

Following [73], interfacial viscous stresses are neglected for the one-dimensional case,

Si k ≡ 0. (2.40)

So finally, the 1D momentum balance equations are given by

∂t(αkρkvk) + ∂x · (αkρkvkvk) = − ∂x · (αkpk) + Fi k + αkρk g sin(ϑ)

+ v̂i kΓi k + pi k ∂xαk. (2.41)

Due to the conservation of momentum at the interface, we expect that the interfacial
forces of both phases sum to zero, where the external forces αkρk g sin(ϑ) are not taken
into account. Therefore we claim that the force terms associated with interface mass
and momentum exchange sum to zero [73],

(Fi ℓ + Fi g) + (v̂i g − v̂i ℓ) · Γi + (pi g − pi ℓ) ∂xα
!
= 0. (2.42)

We assume that this happens independently for each term, such that interfacial friction
density of one phase is equal to the loss of the other phase, the source velocities must
be equal, and the interfacial pressures must be equal,

Fi := −Fi g = Fi ℓ, v̂i := v̂i g = v̂i ℓ, and pi := pi g = pi ℓ. (2.43)

This equality agrees with the assumption of Gallouët, Hérard and Seguin [8].

◮ Total conservation of total energy at the interface

The viscous shear stress term ∇·(αkSk) ·vk describes the specific frictional heat between
the two phases. As already suggested above in (2.39), this term is given by a constitutive
equation.

Fi k · vk = ∇ · (αkSk) · vk. (2.44)

The divergence term αkSk : ∇vk is describing the frictional heat of phase k with the
tube wall due to shear forces. We follow [73] who assume that the frictional work due
to shear forces fully provides heat to the fluid, such that the term vanishes:

αkSk : ∇vk ≡ 0. (2.45)

With (2.40), also the term Si k · vi k · ∇αk vanishes.
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The second order term ∇· (αkqk) describes the heat transfer rate density between the
two phases. This quantity is modelled by a constitutive equation,

−∇ · (αkqk) =: Qi k (2.46)

Following Ishii and Hibiki [69] and Drew and Passman [61], the body heating q̇k and the
the interfacial energy flux qi k are negligibly small in comparison with the heat flux qk of
the fluid. Therefore we assume

q̇k ≡ 0,

qi k ≡ 0. (2.47)

So finally, the 1D energy balance equations are given by

∂t(αkρkEk) +∇ · (αkρkvkEk) = −∇ · (αkvkpk) + Fi kvk +Qi k

+ αkρkvk g sin(ϑ) + Êi kΓi k + pivi · ∇αk.

Due to the conservation of total energy at the interface, we expect that the interfacial
forces of both phases sum to zero, where the external forces αkρkvk g sin(ϑ) are not taken
into account. Therefore we claim that the force terms associated with interface mass
and energy exchange sum to zero [73],

(Fivℓ − Fivg) + (Qi g +Qi ℓ) + (Êi g − Êi ℓ)Γi + (pivi − pivi) · ∇α = 0 (2.48)

If we choose the interphase mass flow rate as

Γi :=
1

Êi ℓ − Êi g

(
Fi(vℓ − vg) +Qi ℓ +Qi g

)
, (2.49)

the conservation of total energy is satisfied. This choice agrees with Berry et al. [74]

who call this a heat conduction limited model. The interphasic specific total energies Êi ℓ

and Êi g are chosen in Section 2.5.1, where we ensure that both quantities are distinct9.

◮ Boundary conditions

Due to the changes of the metric, also the original boundary conditions need to be
adjusted:

• The momentum balance equation gets an additional wall friction density term
Fw k, which causes an additional dissipative heat transfer rate density vkFw k in the
energy balance equation.

9Later, for each time step it has to be ensured that Γi does not represent a larger mass of liquid
(steam) than is available to boil (condensate).
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• As external source the sun irradiation is concentrated onto the tube, which gen-
erates a heat transfer from the tube into the fluid. Thus, Fourier’s heat diffusion
equation from (2.32) is approximated by [63]

∂tTw =
1

cpwρw
(Qext −Qloss −Qw k) , (2.50)

where Qext describes the external heat transfer rate density coming from the sun,
Qloss are the losses at the outer tube wall due to convection and radiation, and
Qw k is the heat transfer rate density through the tube wall into phase k of the
fluid. The latter term Qw k is used as additional heat transfer rate density in the
energy balance equation.

◮ Additional modeled source terms

The heat transfer rate density through the tube wall Qw k causes an exchange between
both phases: Due to the hot wall, boiling or condensation appears for parts of the fluid
near the wall [73]. Therefore, Qw k is partitioned into a boiling and convection part,

Qw k = Qboil
w k +Qconv

w k . (2.51)

For the vapor phase, the boiling part is always zero. Because of this near-wall boiling,
additional void fraction Γw k

ρ̂i
, mass Γw k, momentum v̂iΓw k, and energy Êi kΓw k is gener-

ated. As already discussed in (2.38), due to the conservation of mass at the near-wall
interface the interfacial mass flow rate Γw k near the wall must hold

Γw := Γw g = −Γw ℓ. (2.52)

The rate of vapor generated by boiling at the wall due to wall heat flux is then

Γw :=
1

Êi ℓ − Êi g

(
−Qboil

w ℓ −Qboil
w g

)
. (2.53)

◮ Closure of the pressure

A model for the pressure is needed. The phase rule of Gibbs [75] says that thermal
properties of a fluid are described by two independent, intensive properties. Because
our system delivers the density ρ and specific internal energy u, the fluid equations are
supplemented by the following equation of state

pk = pk(ρk, uk). (2.54)

The following relation holds,

dpk =
∂pk
∂ρk

∣∣∣∣
uk︸ ︷︷ ︸

=:(pk)ρ

dρk +
∂pk
∂uk

∣∣∣∣
ρk︸ ︷︷ ︸

=:(pk)u

duk, (2.55)
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where the derivatives of pk with respect to the two state variables depend on the underly-
ing equation of state, e.g. Tait, stiffened gas, or real gas, see Section 2.4.1. Incidentally,
the speed of sound c can be expressed in dependency of these derivatives [76],

ck =

√
∂pk
∂ρk

∣∣∣∣
sk

=

√
(pk)ρ + (pk)u ·

pk
ρ2k
. (2.56)
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2.3. Two-velocity two-pressure seven-equations model

With the above introduced simplifications, the following one-dimensional balance laws
describe the two-velocity two-pressure seven-equations model:

∂tαg + vi ∂xαg =
Γi + Γw

ρ̂i

∂t(αℓρℓ) + ∂x(αℓρℓvℓ) = − (Γi + Γw)

∂t(αℓρℓvℓ) + ∂x
(
αℓ(ρℓv

2
ℓ + pℓ)

)
+ pi ∂xαg = αℓρℓ g sin(ϑ)− v̂i(Γi + Γw)

+ Fi − Fw ℓ

∂t(αℓρℓEℓ) + ∂x
(
αℓvℓ(ρℓEℓ + pℓ)

)
+ pivi ∂xαg = αℓρℓvℓ g sin(ϑ)− Êi ℓ(Γi + Γw)

+ Fivℓ − Fw ℓvℓ +Qi ℓ +Qconv
w ℓ

∂t(αgρg) + ∂x(αgρgvg) = (Γi + Γw)

∂t(αgρgvg) + ∂x
(
αg(ρgv

2
g + pg)

)
− pi ∂xαg = αgρg g sin(ϑ) + v̂i(Γi + Γw)

− Fi − Fw g

∂t(αgρgEg) + ∂x
(
αgvg(ρgEg + pg)

)
− pivi ∂xαg = αgρgvg g sin(ϑ) + Êi g(Γi + Γw)

− Fivg − Fw gvg +Qi g +Qconv
w g .

(2.57)

These equations are generic for all materials or fluids. In order to apply the system to
liquid water and steam, additional closure equations have to be defined. Therefore, in
subsection 2.4, the equation of state for water and the closure conditions for fricition
density Fw k, Fi and heat transfer rate density Qi k, Q

conv
w k , Qboil

w k are developed. The
algebraic expressions, which base on measured data, are used to restore at least some
information that was lost in the averaging routine to simplify the model equations [74].

Because the equations for liquid and vapor volume fraction (first and fifth equation) are
describing the same variable, one equation can be neglected, see also (2.13) and (2.34).
Therefore we just use the vapor volume fraction with αg := α. The model can be written
in the general non-conservative form [77],

∂tu+ ∂xf(u) + B(u) ∂xu = s(u), (2.58)
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with independent variables u and flux vector f(u)

u :=




α

(1− α)ρℓ

(1− α)ρℓvℓ

(1− α)ρℓEℓ

αρg

αρgvg

αρgEg




, f(u) =




0

(1− α)ρℓvℓ

(1− α)(ρℓv
2
ℓ + pℓ)

(1− α)(ρℓEℓ + pℓ)vℓ

αρgvg

α(ρgv
2
g + pg)

α(ρgEg + pg)vg




, (2.59)

and non-conservative system matrix B(u)

B(u) =




vi 0 0 0 0 0 0

0 0 0 0 0 0 0

pi 0 0 0 0 0 0

pivi 0 0 0 0 0 0

0 0 0 0 0 0 0

−pi 0 0 0 0 0 0

−pivi 0 0 0 0 0 0




. (2.60)

The source vector s(u) = si(u)+sw(u) is split into internal sources and external sources,
with

si(u) =




Γi

ρ̂i

−Γi

−v̂iΓi + Fi

−Êi ℓΓi + Fivℓ +Qi ℓ

Γi

v̂iΓi − Fi

Êi gΓi − Fivg +Qi g




, (2.61)

and

sw(u) =




Γw

ρ̂i

−Γw

αℓρℓ g sin(ϑ)− v̂iΓw − Fw ℓ

αℓρℓvℓ g sin(ϑ)− Êi ℓΓw − Fw ℓvℓ +QQconv
w ℓ

Γw

αgρg g sin(ϑ) + v̂iΓw − Fw g

αgρgvg g sin(ϑ) + Êi gΓw − Fw gvg +Qconv
w g




. (2.62)
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All solutions for u are in the set of admissible states,

Ω = {u ∈ Rn | α ∈ (0, 1), ρk > 0, uk > 0, ck > 0} (2.63)

with n = 7, where uk is the specific internal energy, given by the physical law

uk = Ek − 1
2
v2k. (2.64)

To ensure that both phases are always everywhere present, the volume fraction α needs
to be in the open intervall from 0 to 1. For a transformation of the system in a closed
quasilinear form

∂tu+ A(u) ∂xu = s(u), (2.65)

with system matrix

A(u) = ∂uf(u) + B(u), (2.66)

we need to differentiate the flux vector f(u) with respect to our independent variables
u. Therefore we need the partial derivatives of the primitive variables,

∂xρk = − ρk
αk

∂xαk +
1

αk

∂x(αkρk)

∂xvk = − vk
αkρk

∂x(αkρk)
1

αkρk
∂x(αkρkvk)

∂xuk = −Ek − v2k
αkρk

∂x(αkρk)−
vk
αkρk

∂x(αkρkvk) +
1

αkρk
∂x(αkρkEk) (2.67)

and the partial derivatives of the pressure, which can be derived from the pressure
relation (2.55), such that

∂x(αkpk) = pk∂xαk + αk∂xpk
(2.55)
= pk∂xαk + αk · (pk)ρ ∂xρk + αk · (pk)u ∂xuk

(2.67)
=
(
pk − ρk · (pk)ρ

)
∂xαk +

(
(pk)ρ − (pk)u ·

Ek − v2k
ρk

)
∂x(αkρk)

− (pk)u · vk
ρk

∂x(αkρkvk) +
(pk)u
ρk

∂x(αkρkEk), (2.68)

∂x(αkvkpk) = vk ∂x(αkpk) + αkpk∂xvk
(2.68)
= vk

(
pk − ρk · (pk)ρ

)
∂xαk

+ vk

(
(pk)ρ − (pk)u ·

Ek − v2k
ρk

− pk
ρk

)
∂x(αkρk)

+
pk − (pk)u · v2k

ρk
∂x(αkρkvk) +

vk · (pk)u
ρk

∂x(αkρkEk). (2.69)
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Then we can compute the derivative of f(u) with respect to u, such that the system
matrix A(u) is given by:

A(u) = ∂uf(u) + B(u) =



vi 0 0 0 0 0 0

0 0 1 0 0 0 0

−
(
pℓ − pi − ρℓ · (pℓ)ρ

)
Amom,ρℓ Amom,ρℓvℓ Amom,ρℓEℓ

0 0 0

−
(
pℓvℓ − pivi − ρℓvℓ · (pℓ)ρ

)
Aener,ρℓ Aener,ρℓvℓ Aener,ρℓEℓ

0 0 0

0 0 0 0 0 1 0

pg − pi − ρg · (pg)ρ 0 0 0 Amom,ρg Amom,ρgvg Amom,ρgEg

pgvg − pivi − ρgvg · (pg)ρ 0 0 0 Aener,ρg Aener,ρgvg Aener,ρgEg




,

(2.70)

with

Amom,ρk := −v2k + (pk)ρ − (pk)u ·
Ek − v2k
ρk

Amom,ρkvk := 2vk +
−(pk)u · vk

ρk

Amom,ρkEk
:=

(pk)u
ρk

Aener,ρk := vk

(
(pk)ρ − (pk)u ·

Ek − v2k
ρk

− pk
ρk

− Ek

)

Aener,ρkvk := Ek +
pk − (pk)u · v2k

ρk

Aener,ρkEk
:= vk +

vk · (pk)u
ρk

(2.71)
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2.4. Two-phase flow constitutive models

The source vector s(u) depends on thermodynamical models, which describe the ex-
change in-between the phases and between the fluid and the wall (subscripts i and w).
Within this subsection constitutive models for the equation of state, tube wall friction
density Fw k, interfacial friction density Fi, wall heat transfer rate density Qw k with Q

boil
w k ,

Qconv
w k , and interfacial heat transfer rate density in the bulk Qi k, are presented.

2.4.1. Equation of state

As already introduced at the end of Section 2.1, we use the density ρ and specific
internal energy u as independent, intensive properties to provide each phase with thermal
properties as equation of state (EOS). This means that we use these two quantities to
compute other thermodynamical properties, e.g. pressure and temperature. In the
following different EOS models are presented.

◮ Stiffened gas EOS

For a compressible fluid the following stiffened gas equation of state was performed for
pressure, temperature, speed of sound and specific Gibbs free energy:

p(ρ, u) = (γ − 1)ρ(u− q)− γπ,

T (ρ, u) =
1

cv

(
u− q − π

ρ

)
,

c(ρ, u) =

√
γ
p+ π

ρ
,

g(ρ, u) = g(p, T ) = (γcv − q′)T − cvT log

(
T γ

(p+ π)γ−1

)
+ q. (2.72)

The five constants, γ > 0, q ≥ 0 as binding energy, cv ≥ 0 as specific heat at constant
volume, π ≥ 0, and q′ ≥ 0 are given for each fluid particularly. The derivatives of the
pressure and the temperature with respect to ρ and u are given by

∂p

∂ρ

∣∣∣∣
u

= (γ − 1)(u− q),
∂p

∂u

∣∣∣∣
ρ

= (γ − 1)ρ,
∂T

∂ρ

∣∣∣∣
u

=
π

cvρ2
and

∂T

∂u

∣∣∣∣
ρ

=
1

cv
.

(2.73)

◮ Ideal gas EOS

The ideal gas equation of state is performed for calorically ideal gas. It is a particular
form of the stiffened gas equation of state with q = π = 0.

◮ Data-based EOS for water and steam

For water and steam the constitutive equations of the IAPWS10 industrial formulation

10International Association for the Properties of Water and Steam

57



1997 [78] can be used. These equations of state base on a fundamental equation for the
specific Gibbs free energy. In dependency of the pressure p and the temperature T all
other thermal properties are computed, where the following range of validity is covered:

273.15 K ≤ T ≤ 1073.15 K, for p ≤ 100 MPa

1073.15 K < T ≤ 2273.15 K, for p ≤ 50 MPa.

But the equations of state cannot be closed explicitly for given density ρ and specific
inner energy u. Thus an inner loop is required to determine the temperature T and the
pressure p using a Newton-Raphson procedure. By using the temperature T0 = 700 K
as initial guess the procedure converges within approximately three to five iterations to
a residual of the order 10−8. Finally, we get the expression

p = p(ρ, u) and T = T (ρ, u).

The derivatives of pk with respect to the two state variables are given by [76]

∂p

∂ρ

∣∣∣∣
u

=
p2α2

pT + pβpcv − p2αp

cvρ2
,

∂p

∂u

∣∣∣∣
ρ

=
pαp

cv
, (2.74)

for temperature T , relative pressure coefficient αp, isothermal stress coefficient βp and
specific isochoric heat capacity cv. Incidentally, the speed of sound can be expressed in
dependency of these derivatives [76],

c(ρ, u) =

√
∂p

∂ρ

∣∣∣∣
s

=

√
∂p

∂u

∣∣∣∣
ρ

+
∂p

∂ρ

∣∣∣∣
u

· p
ρ2

=

√
p2α2

pT + pβpcv

c2ρ
. (2.75)

2.4.2. Interfacial mass transfer rate

The interfacial mass transfer rate is given by a heat conduction limited model. This
means that the mass transfer rates in the bulk and near the wall are chosen in such a
way that the conservation of total energy at the interface holds, see (2.49) and (2.53):

Γi :=
1

Êi ℓ − Êi g

(
Fi(vℓ − vg) +Qi ℓ +Qi g

)
,

and

Γw :=
1

Êi ℓ − Êi g

(
−Qboil

w ℓ −Qboil
w g

)
.
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2.4.5. Interphase friction density

According to [56, 73, 80] the interphase friction density for the liquid and vapor phase
are calculated by the drag coefficient method:

Fi

(2.43)
:= −Fi g = Fi ℓ =

1

2
ρcont(vg − vℓ)|vg − vℓ| · CD · 1

4
ai. (2.77)

In dependency of the flow pattern, the density of continuous phase ρcont, the specific
interfacial area ai, and the drag coefficient CD have to be considered.

2.4.6. Wall temperature

The wall temperature is given as ordinary differential equation in (2.50). This can be
solved numerically by simply using the explicit Euler method. Thus, the wall tempera-
ture at a new instant of time tn+1 = tn +∆t is given by

Tw(tn+1) = Tw(tn) +
∆t

cpwρw

(
Qext(tn)−Qloss(tn)−Qw k(tn)

)
. (2.78)

The three heat transfer rate densities are evaluated at the old instant of time tn. The
external heat transfer rate density Qext is given by an optical model which depends
on the collector system, e.g. [81, 82, 19]. To consider non-homogeneous flux around
the tube wall, an azimuthal discretization of the tube with different temperatures and
corresponding specific heat transfer coefficients in each tube segment has to be performed
[63].

The convective and radiative losses Qloss at the outer tube wall depend on the tube wall
temperature. The Stefan-Boltzmann law states that irradiance losses are proportional to
the fourth power of the temperature. According to this law, the losses can be described
by [83],

Qloss =
1

πr2out − πr2in
·
(
c1(Tw − 273.15[K]) + c4(Tw − 273.15[K])4

)
. (2.79)

where the first term describes the wall cross-section area. The constants c1 and c4 are
particular for every receiver and must be determined by experiments. For example,
for the absorber tubes used in the DISS11 test facility the constant values are given by
c1 = 0.16155W / mK and c4 = 6.4407 · 10−9W / mK4 [63].

Now, the heat transfer rate density Qw k through the tube wall into phase k of the fluid
is described.

2.4.7. Wall heat transfer rate density

The wall heat transfer rate density is approximated by an empirical law in dependency
of the difference of the wall temperature Tw and the temperature of the fluid near the

11Direct Solar Steam is a European research project at the Plataforma Solar de Almeŕıa in Spain.
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wall Tw k [84],

Qw k :=
αw k

Din

· hT,w k ·
(
Tw − Tw k

)
, (2.80)

The first term describes the specific wetted wall area, given by the wetted volume fraction
in the wall film αw k and the inner tube diameter Din. The convective heat transfer
coefficient hT,w k from wall to phase k and the corresponding temperature Tw k in the wall
film depend on Nukiyama’s boiling curve [85], see Figure 34. Usually these parameters
are determined under considering natural convection, forced convection, condensation,
sub-cooled nucleate boiling, saturated nucleate boiling, and film boiling.

H
ea
t
fl
u
x
q

Wall superheat Tw − Tsat

qCHF

Natural
convection

Nucleate
boiling

Transition
boiling

Film
boiling

Figure 34: A typical boiling curve showing the variation of the heat flux as a function
of the wall superheat, from [12] and [13].

The wall heat transfer rate density Qw k can be partitioned into a boiling and convection
part (2.51),

Qw k = Qboil
w k +Qconv

w k .

This is usually modeled as a fraction βk which depends on the wall temperature and the
saturated temperature,

Qboil
w k = (1− βk)Qw k and Qconv

w k = βkQw k. (2.81)

2.4.8. Interphase heat transfer rate density (in the bulk)

The interfacial heat transfer rate density Qi k resulted from bulk energy exchange is
modeled as an approximation of Fourier’s law of heat conduction,

Qi k = ai hT,i k

(
T̂i sat − Tk

)
, (2.82)
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with fluid temperature Tk, source saturated temperature T̂i sat and specific interfacial
area ai of droplets or bubbles. The corresponding convective heat transfer coefficient
hT,i k between the interphase and phase k depends on the flow pattern and on its change
of aggregate state (either boiling or condensation). Usually the following models are
used: Lee-Ryley [86], Plesset-Zwick [87], Unal [88], Lahey [89], Brown [90], Theofanous
[91] and Dittus-Boelter [92].
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2.5. Closures for the two-phase flow model

So far, for the two-phase flow model, the following parameters can be chosen arbitrarily:
interfacial velocity vi, interfacial pressure pi, source velocity v̂i, source density ρ̂i, source
specific total energies Êi k, and source saturated temperature T̂i sat. The source parame-
ters are modeled as an own phase.

To find closures for these parameters, we develop thermodynamical and mathematical
properties which our models should fulfill. In Section 2.5.1 it is shown that the model is
consistent with the second law of thermodynamics. The entropy compatibility condition
delivers a closure for the interfacial pressure pi, where the entropy dissipation helps to
develop closures for the source parameters. In Section 2.5.2 the hyperbolicity of the
model is examined, which delivers an additional constraint for the interfacial velocity
vi. This parameter is then closed in Section 2.5.3 by choosing it in such a way that the
vi-contact discontinuity is associated with a linearly degenerate field. Finally, in Section
2.5.4 it is verified that the system is symmetrizable.

2.5.1. Second law of thermodynamics

From a physical perspective, a model has to be consistent with the second law of ther-
modynamics. Therefore the entropy law is derived and the entropy production terms
are determined to be non-negative. So, the entropy inequality can be considered as a
restriction on the constitutive laws.

Due to the presence of shocks, there does not exist a continuous or smooth solution.
Hence, the definition of a solution is weakened, so that also non-smooth solutions are
allowed. These weak solutions form the basis of numerical solvers, for finding an ap-
proximate solution of the system (2.65).

An additional condition is required to select the physically relevant entropy solution
[93]. Such a condition is called admissibility condition, or more often entropy condition
in analogy with thermodynamics. The physical quantity called entropy is known to be
constant in smooth flow and to jump to a higher value for arising shocks. It can never
jump to a lower value. This is guaranteed by the second law of thermodynamics. The
behavior of such a function can be used to test a weak solution for admissibility.

We have to find Lax’s entropy-entropy flux pair (η, ψ) with an entropy function η(u) and
its corresponding entropy flux ψ(u). For smooth solutions It should hold the additional
conservation law,

∂tη(u) + ∂xψ(u) = 0. (2.83)

Additionally we demand on the entropy function to be convex, η′′(u) > 0.Note that due
to the demand, the mathematical entropy has an opposed behavior than the physical
entropy. For discontinuous solutions u the above conservation law becomes an inequality,

∂tη(u) + ∂xψ(u) ≤ 0. (2.84)
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A weak solution is said to be an entropy solution, if it satisfies the above inequality in the
distributional sense. The entropy flux ψ is chosen such that it satisfies the compatibility
condition

∂uψ(u)
T !
= ∂uη(u)

TA(u). (2.85)

By multiplying our equation system ∂tu + A(u) ∂xu = si(u) (without boundary condi-
tions) from (2.65) with the so-called entropy variables v(u) := ∂uη(u), the above entropy
inequality is obtained

∂uη(u)
T ∂tu+ ∂uη(u)

TA(u) ∂xu
(2.85)
= ∂tη(u) + ∂xψ(u) = ∂uη(u)

T si(u)
(2.84)

≤ 0.
(2.86)

So, the entropy inequality (2.84) holds iff the entropy production is negative, i.e.,

∂uη(u)
T · si(u) ≤ 0. (2.87)

For each model, the entropy-entropy flux pair η(u) and ψ(u) has to be chosen. Usually
η depends on the physical specific entropy s of the fluid, which can be expressed by its
physical law,

sT = u+
p

ρ
− g, (2.88)

with g as specific Gibbs free energy. Due to the constitutive equation of state for the
fluid (2.54) the specific entropy can be described as a function relating the density ρ and
specific internal energy u. Its partial derivatives are then given by [76],

∂s

∂ρ

∣∣∣∣
u

= − p

ρ2T
and

∂s

∂u

∣∣∣∣
ρ

=
1

T
. (2.89)

Due to the needed Hessian of the entropy function, we also need the derivatives of the
temperature with respect to the two state variables, which are given by [76],

∂T

∂ρ

∣∣∣∣
u

= −p− αppT

cvρ2
and

∂T

∂u

∣∣∣∣
ρ

=
1

cv
, (2.90)

with relative pressure coefficient αp and specific isochoric heat capacity cv.

In the following, we choose an entropy-entropy flux and show its properties to derive
conditions for the freely selectable model parameters. The compatibility condition de-
livers an expression of the interfacial pressure. For the chosen entropy-entropy flux pair
we need to show the convexity of the entropy function η(u), the compatibility condition
(2.85), and the entropy inequality of the entropy production terms (2.87).

◮ Entropy-entropy flux pair

Motivated by the thermodynamics of the system, a candidate for an entropy-entropy
flux pair for our model is the physical entropy of the mixture,

η(u) = −((1− α)ρℓsℓ + αρgsg) and ψ(u) = −((1− α)ρℓvℓsℓ + αρgvgsg). (2.91)

The physical entropy sk can be expressed by its physical law, see (2.88).
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◮ Entropy compatibility condition

The entropy variables are given by

v(u) := η′(u) =




pℓ
Tℓ

− pg
Tg

pℓ
ρℓ
+ uℓ − 1

2
v2ℓ

Tℓ
− sℓ

vℓ
Tℓ

− 1

Tℓ
pg
ρg

+ ug − 1
2
v2g

Tg
− sg

vg
Tg

− 1

Tg




(2.88)
=




pℓ
Tℓ

− pg
Tg

gℓ − 1
2
v2ℓ

Tℓ
vℓ
Tℓ

− 1

Tℓ
gg − 1

2
v2g

Tg
vg
Tg

− 1

Tg




. (2.92)

The entropy compatibility condition (2.85) delivers a condition for the unknown inter-
facial pressure:

∂uψ(u)
T !

= ∂uη(u)
T · A(u)

⇔




pℓvℓ
Tℓ

− pgvg
Tg

vℓ ·
pℓ
ρℓ
+ uℓ − 1

2
v2ℓ

Tℓ
v2ℓ
Tℓ

− sℓ

− vℓ
Tℓ

vg ·
pg
ρg

+ ug − 1
2
v2g

Tg
v2g
Tg

− sg

− vg
Tg




!
=




pℓvℓ
Tℓ

− pgvg
Tg

+ (pg−pi)(vg−vi)

Tg
− (pℓ−pi)(vℓ−vi)

Tℓ

vℓ ·
pℓ
ρℓ
+ uℓ − 1

2
v2ℓ

Tℓ
v2ℓ
Tℓ

− sℓ

− vℓ
Tℓ

vg ·
pg
ρg

+ ug − 1
2
v2g

Tg
v2g
Tg

− sg

− vg
Tg




. (2.93)

Solving the first equation for the interfacial pressure, we get the expression

pi :=
pgTℓ(vg − vi) + pℓTg(vi − vℓ)

Tℓ(vg − vi) + Tg(vi − vℓ)
. (2.94)
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◮ Convexity of the entropy function

In order to verify that η(u) is a convex function of u, we follow the proof of [94]. The
key idea is to exploit the fact that the phasic entropy functions,

Sk(uk) := −ρksk with uT

k = (ρk, ρkvk, ρkEk) (2.95)

are strictly convex functions. At first we showe that Sk(uk) is a strictly convex function,
if the specific internal energy uk is a convex function of the specific volume τk := 1

ρk
and the specific entropy sk. This can be shown by computing the Hessian matrix of the
specific internal energy,

u′′(τ, s) =

(
∂2u
∂τ2

∂2u
∂τ∂s

∂2u
∂s∂τ

∂2u
∂s2

)
=

(
pβpcv+α2

pp
2T

cv
−αppT

cv

−αppT

cv
T
cv

)
. (2.96)

for relative pressure coefficient αp, isothermal stress coefficient βp and specific iso-
choric heat capacity cv. The quadratic and symmetric Hessian matrix is positive-
definite, because the determinants associated with all upper-left sub-matrices are positive
(Sylvester’s criterion),

∂2u

∂τ 2
=
pβpcv + α2

pp
2T

cv
> 0 and det(u′′) =

∂2u

∂τ 2
· ∂

2u

∂s2
−
(
∂2u

∂τ∂s

)2

=
βppT

cv
> 0.

(2.97)

For stiffened gas, the pressure can be admissible. Thus (2.97) is a constraint for the
pressure. Therefore uk is a convex function, which implies the convexity of Sk(uk).
Each phase of the two-velocity two-pressure seven-equations model has the following
convex entropy function:

Sk(uk) := −ρksk with uT

k = (ρk, ρkvk, ρkEk) (2.98)

The derivatives of Sk(uk) are given by

S ′
k(uk) =




pk+ρk(Ek−v2
k
)

ρkTk
− sk

vk
Tk

− 1
Tk


 , (2.99)

and

S ′′
k (uk) =




Tk(pk)ρ−(pk+2ρk(Ek−v2
k
))(Tk)ρ+(Ek−v2

k)
2
(Tk)u+v2

k
Tk

ρkT
2
k

−vk
(
S ′′
13 +

1
ρkTk

)
S ′′
13

−vk
(
S ′′
13 +

1
ρkTk

)
v2
k
(Tk)u+Tk

ρkT
2
k

−vk(Tk)u
ρkT

2
k

S ′′
13

−vk(Tk)u
ρkT

2
k

(Tk)u
ρkT

2
k



,

(2.100)
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with S ′′
13 =

ρk(Tk)ρ−(Ek−v2
k
)(Tk)u

ρkT
2
k

The needed derivatives of the temperature are given in

(2.90).

In order to verify now that η(u) is a convex function of u, we rewrite the entropy function
from (2.91) and express it in terms of the phasic entropy function Sk,

η(u) = (1− α) · Sℓ(ρℓ, ρℓvℓ, ρℓEℓ) + α · Sg(ρg, ρgvg, ρgEg)

= (1− u1) · Sℓ

(
u2

1− u1

,
u3

1− u1

,
u4

1− u1

)
+ u1 · Sg

(
u5

u1

,
u6

u1

,
u7

u1

)
. (2.101)

For convexity of η(u) we need to check the positive semi-definiteness of the Hessian

η′′(u) =




ηα,α ηT(1−α)uℓ,α
ηTαug ,α

η(1−α)uℓ,α
1

1−α
S ′′
ℓ (uℓ) 0

ηαug ,α 0 1
α
S ′′
g (ug)


 (2.102)

with

ηα,α =
1

1− α
uT

ℓ S
′′
ℓ (uℓ)uℓ +

1

α
uT

g S
′′
g (ug)ug,

=
ρgTg(pg)ρ − ρgpg(Tg)ρ

αT 2
g

+
ρℓTℓ(pℓ)ρ − ρℓpℓ(Tℓ)ρ

(1− α)T 2
ℓ

η(1−α)uℓ,α =
1

1− α
S ′′
ℓ (uℓ)uℓ =




Tℓ(pℓ)ρ−
(
pℓ+ρℓ(Eℓ−v2

ℓ
)
)
(Tℓ)ρ

(1−α)T 2
ℓ

−ρℓvℓ(Tℓ)ρ
(1−α)T 2

ℓ

ρℓ(Tℓ)ρ
(1−α)T 2

ℓ



,

ηαug ,α = − 1

α
S ′′
g (ug)ug. =




−Tg(pg)ρ−
(
pg+ρg(Eg−v2g)

)
(Tg)ρ

αT 2
g

ρgvg(Tg)ρ
αT 2

g

−ρg(Tg)ρ
αT 2

g



. (2.103)

For a non-null vector xT = (a, bT, cT) ∈ R7, a ∈ R and b, c ∈ R3, it holds

xT η′′(u)x = (a, bT, cT) η′′(u)



a
b
c




=
1

1− α
(b+ auℓ)

T S ′′
ℓ (uℓ) (b+ auℓ) +

1

α
(c− aug)

T S ′′
g (ug) (c− aug)

!

≥ 0. (2.104)

Due to the convexity of S ′′
ℓ (uℓ) and S ′′

g (ug) the last inequality holds, such that finally
the entropy function η(u) is convex.
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◮ Entropy dissipation

In order to ensure the entropy inequality (2.84) it remains to verify the entropy produc-
tion inequality (2.87). This will give us conditions for the unknown source parameters

v̂i, ρ̂i, Êi k, and source saturated temperature T̂i sat.

The entropy production (including entropy production from the boundary) is given by

∂uη(u)
Tsi(u) =− Qi ℓ

Tℓ
+
Êi ℓ − Eℓ + v2ℓ − vℓv̂i +

pℓ
ρ̂i
− pℓ

ρℓ
+ sℓTℓ

Tℓ
· Γi

− Qi g

Tg
−
Êi g − Eg + v2g − vgv̂i +

pg
ρ̂i
− pg

ρg
+ sgTg

Tg
· Γi

!

≤ 0. (2.105)

To fulfill the entropy inequality, we expect that the interfacial entropy production terms
of both phases sum to less or equal zero. We have the freedom to choose our unknown
source parameters v̂i, ρ̂i, Êi k, and T̂i sat, such that the above condition holds. For this
purpose we proceed in four steps:

(1) The specific total energy Ek and specific entropy sk are expanded by their physical

laws (2.64) and (2.88). Additionally the source specific total energy Êi ℓ and Êi g

have to be derived. By physical law, a specific total energy consists of a specific
internal energy part and a specific kinetic energy part, such that we assume

Êi k := ûi k +
1
2
v̂2i = ĥi k −

p̂i
ρ̂i

+ 1
2
v̂2i , (2.106)

where the source specific enthalpy is chosen on the saturation line [74]:

ĥi ℓ := hsatL(p̂i) and ĥi g := hsatV(p̂i). (2.107)

As mentioned in Section 2.3, we have to ensure that both quantities Êi ℓ and Êi g

are distinct. This is necessary for the definition of the interphase mass flow rate
Γi in (2.49), such that the conservation of total energy in the balance equations is
satisfied. With the above chosen source specific internal energies, the denominator
of the interphase mass flow rate Γi is defined by the latent heat of vaporization,
ĥi g − ĥi ℓ. With these assumptions, the entropy production simplifies to

sαρs =− Qi ℓ

Tℓ
+

1
2
(vℓ − v̂i)

2 +
(
ĥi ℓ +

pℓ−p̂i
ρ̂i

− gℓ
)

Tℓ
· Γi

− Qi g

Tg
−

1
2
(vg − v̂i)

2 +
(
ĥi g +

pg−p̂i
ρ̂i

− gg
)

Tg
· Γi

!

≤ 0. (2.108)

(2) We expect that the factors of the interphasic mass flow Γi describe interfacial specific
entropy terms. Due to the physical meaning of specific entropy, it is clear that these
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factors should not depend on a velocity, thus the velocity terms in (2.108) must
vanish,

(vℓ − v̂i)
2

Tℓ
− (vg − v̂i)

2

Tg

!
= 0. (2.109)

This gives us a condition on the unknown source velocity. The above quadratic
equation delivers two choices for v̂i, where just one is a convex combination of vℓ
and vg:

v̂i :=

√
Tg vℓ +

√
Tℓ vg√

Tg +
√
Tℓ

. (2.110)

With these assumptions, the entropy production simplifies to

sαρs =− Qi ℓ

Tℓ
+
ĥi ℓ +

pℓ−p̂i
ρ̂i

− gℓ

Tℓ
· Γi −

Qi g

Tg
−
ĥi g +

pg−p̂i
ρ̂i

− gg

Tg
· Γi

!

≤ 0. (2.111)

(3) As mentioned at the begin of this Subsection, the source parameters are modeled

as an own phase. Thus, the source saturated temperature T̂i sat is chosen on the
saturation line,

T̂i sat = Tsat(p̂i). (2.112)

The source saturated temperature is used within the wall and the interface heat
transfer rate density, see Sections 2.4.7 and 2.4.8.

(4) It remains to select the source pressure p̂i and source density ρ̂i. Müller et al. [5]
developed a closure for the source specific internal energy and source density, such
that both parameter stay positive and that the entropy production inequality is
satisfied. But this solution holds just for the chemical potential relaxation12. Saurel,
Petitpas, and Abgrall [95] assume that phase transfer happens with an isentropic
acoustic wave, such that they choose

ρ̂i =

ρℓc
2
ℓ

(1−α)
+

ρgc2g
α

c2
ℓ

(1−α)
+

c2g
α

. (2.113)

Berry et al. [74] assume the source density on the liquid saturation line, where the
source pressure is chosen in dependency of the acoustic impedance:

ρ̂i := ρsatL(p̂i) and p̂i :=
ρgcgpℓ + ρℓcℓpg
ρℓcℓ + ρgcg

.

A suitable choice is very difficult to find and might also depend on the relevant
physical region. Therefore the choice of an appropriate closure for p̂i and ρ̂i still
remains as open problem and is therefore left to the reader.

12See [5], Section 7.3.1, equations (7.24) to (7.25).
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2.5.2. Hyperbolicity

Because the models only describe transport effects, they should be hyperbolic to ensure
that all wave speeds are finite and the system may be locally decoupled [5].

In order to characterize this mathematical property, the equation system neglecting dissi-
pative effects is transformed in quasi-conservative form in terms of primitive quantities,

∂tũ+ Ã(ũ)∂xũ = 0, (2.114)

with primitive system vector

ũ :=
(
α ρℓ vℓ pℓ ρg vg pg

)T
. (2.115)

and primitve system matrix [94]

Ã(ũ) =




vi 0 0 0 0 0 0

−ρℓ(vℓ−vi)
1−α

vℓ ρℓ 0 0 0 0

− pℓ−pi
(1−α)ρℓ

0 vℓ
1
ρℓ

0 0 0

− c2
ℓ
ρℓ(vℓ−vi)

(1−α)
0 c2ℓρℓ vℓ 0 0 0

ρg(vg−vi)

α
0 0 0 vg ρg 0

pg−pi
αρg

0 0 0 0 vg
1
ρg

c2gρg(vg−vi)

α
0 0 0 0 c2gρg vg




. (2.116)

Then, the eigenvalue decomposition of the matrix Ã(ũ) is given by

L ÃR = Λ,

where L and R are defined by the left and right eigenvectors and Λ is a diagonal matrix
with eigenvalues on the diagonal:

Λ =




vi 0 0 0 0 0 0
0 vℓ − cℓ 0 0 0 0 0
0 0 vℓ 0 0 0 0
0 0 0 vℓ + cℓ 0 0 0
0 0 0 0 vg − cg 0 0
0 0 0 0 0 vg 0
0 0 0 0 0 0 vg + cg




, (2.117)
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RT =




1 0 0 0 0 0 0

pℓ−pi−ρℓ(vℓ−vi)
2

(1−α)(c2ℓ−(vℓ−vi)2)
1
c2
ℓ

1 1
c2
ℓ

0 0 0

− (pℓ−pi−ρℓc
2
ℓ)(vℓ−vi)

(1−α)ρℓ(c2ℓ−(vℓ−vi)2)
− 1

ρℓcℓ
0 1

ρℓcℓ
0 0 0

(pℓ−pi−ρℓ(vℓ−vi)
2)c2ℓ

(1−α)(c2ℓ−(vℓ−vi)2)
1 0 1 0 0 0

−pg−pi−ρg(vg−vi)
2

α(c2g−(vg−vi)2)
0 0 0 1

c2g
0 1

c2g

(pg−pi−ρgc2g)(vg−vi)

αρg(c2g−(vg−vi)2)
0 0 0 − 1

ρgcg
0 1

ρgcg

−(pg−pi−ρg(vg−vi)
2)c2g

α(c2g−(vg−vi)2)
0 0 0 1 0 1




, (2.118)

and

L =




1 0 0 0 0 0 0

− (pℓ−pi−ρℓcℓ(vℓ−vi))cℓ
2 (1−α)(cℓ−(vℓ−vi))

0 −ρℓcℓ
2

1
2

0 0 0

0 1 0 − 1
c2
ℓ

0 0 0

− (pℓ−pi+ρℓcℓ(vℓ−vi))cℓ
2 (1−α)(cℓ+(vℓ−vi))

0 ρℓcℓ
2

1
2

0 0 0

(pg−pi−ρgcg(vg−vi))cg
2α(cg−(vg−vi))

0 0 0 0 −ρgcg
2

1
2

0 0 0 0 1 0 − 1
c2g

(pg−pi+ρgcg(vg−vi))cg
2α(cg+(vg−vi))

0 0 0 0 ρgcg
2

1
2




. (2.119)

The system admits seven real eigenvalues which are all real but not necessarily distinct:
vi, vk and vk ± ck. The corresponding eigenvectors are linearly independent, as soon as
the non-resonance condition [94, 5] is fulfilled:

vi 6= vk ± ck. (2.120)

Otherwise, the first eigenvector will not be defined due to the denominator which would
become zero. The interfacial velocity will be chosen below in (2.123) as convex com-
bination of the phasic velocities, such that vi ∈ [vℓ, vg]. With this choice and the fact
that our application deals with subsonic flow of liquid water and steam in the absorber
tubes, vk ≪ ck, the non-resonance condition is fulfilled.

Because the model provides real eigenvalues and the corresponding eigenvectors are lin-
early independent, the system matrix Ã is diagonalizable and therefore the quasilinear
system is hyperbolic. In the following, we use λj as j-th eigenvalue of Λ, and the corre-
sponding eigenvector Rj as j-th column of matrix RT.

2.5.3. Characteristic fields

The solution of the n×n system (2.65) is determined by n characteristic fields, where each
consists of a characteristic speed λj and a corresponding j-wave. Depending on the type
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of the particular characteristic field, the corresponding wave has different properties [7].
T.-P. Liu classified the waves of characteristic fields into two different waves: a contact
discontinuitiy (linearly degenerated field), and a shock or rarefaction wave (genuinely
nonlinear field) [96]. For the classification we need to compute the scalar product ∂ũλj Rj

of the derivative of the eigenvalue λj and the corresponding eigenvector Rj. If this scalar
product is zero, then the associated field is linearly degenerate, otherwise it is genuinely
nonlinear.

As known for the Euler equations, just the field associated with the fluid velocity is
linearly degenerate, where the other fields are genuinely nonlinear:

∂ũλ2R2 = − 1

ρℓcℓ
, ∂ũλ5R5 = − 1

ρgcg
,

∂ũλ3R3 = 0, ∂ũλ6R6 = 0,

∂ũλ4R4 =
1

ρℓcℓ
, ∂ũλ7R7 =

1

ρgcg
. (2.121)

The field associated with the first eigenvalues vi depends on the choice of the interfacial
velocity vi. This wave corresponds to the non-conservative term vi∂xα in the volume
fraction equation, see first equation in (2.57). Because the volume fraction α should be
preserved through the vi-contact discontinuity, vi should be chosen in such a way that
this discontinuity is associated with a linearly degenerate field [97].

From a physical point of view it makes sense to assume the interfacial velocity vi as
convex combination of vℓ and vg [60, 8], such that we define:

vi := βvℓ + (1− β)vg with β ∈ [0, 1]. (2.122)

Following Saleh [97], we set β as mass fraction,

β :=
ξαℓρℓ

ξαℓρℓ + (1− ξ)αgρg
with ξ ∈ [0, 1]. (2.123)

The derivative of the interfacial velocity with respect to ũ is then given by

∂ũλ1 =




− ξ(1−ξ)ρℓρg(vg−vℓ)

(ξ(1−α)ρℓ+(1−ξ)αρg)2

− ξ(1−ξ)(1−α)αρg(vg−vℓ)

(ξ(1−α)ρℓ+(1−ξ)αρg)2

ξ(1−α)ρℓ
ξ(1−α)ρℓ+(1−ξ)αρg

0

ξ(1−ξ)(1−α)αρℓ(vg−vℓ)

(ξ(1−α)ρℓ+(1−ξ)αρg)2

(1−ξ)αρg
ξ(1−α)ρℓ+(1−ξ)αρg

0




, (2.124)
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which is orthogonal to its corresponding eigenvector, ∂ũλ1R1 = 0. This means that with
the above choice of β the field of the vi-wave is linearly degenerate.

In literature, mostly the three interfacial velocities,

vi = vg, vi = vℓ, and vi =
αℓρℓvℓ + αgρgvg
αℓρℓ + αgρg

, (2.125)

are used, see [98]. They correspond to the above defined interfacial velocity with ξ = 0,
ξ = 1, and ξ = 1

2
. For our application of one fluid (with two aggregate states) we do not

want to give one phase an advantage, such that we choose vi symmetric with ξ = 1
2
.

2.5.4. Symmetrization of the hyperbolic system

A hyperbolic system should provide the property that locally in time there exists a
smooth solution of the corresponding Cauchy problem. Godlewski and Raviart [99]
showed that for conservative problem this property comes with the existence of an
entropy-entropy flux pair. But for non-conservative problems we additionally need to
show that the system is symmetrizable. For two-phase flow this was first proven in [94]
and was extended for multi-components fluids in [5].

This means, we need to find a symmetric positive definite matrix P (ũ) such that also
the matrix P (ũ)Ã(ũ) is symmetric,

P (ũ)∂tũ+ P (ũ)Ã(ũ)︸ ︷︷ ︸
symmetric

∂xũ = P (ũ)s̃(ũ) (2.126)

with primitive variables ũ given in (2.115). Symmetry for the matrices P (ũ) and
P (ũ)Ã(ũ) is given by choosing

P (ũ) :=



Pα PT

ℓ α PT

g α

Pℓ α Pℓ 0
Pg α 0 Pg


 (2.127)

with vector

Pk α := LT

k (Λk − viI3)
−1RT

kPkÃk α (2.128)

and symmetric positiv definite matrices [5]

Pk := R−1
k Lk. (2.129)

Hereby, Λk, Rk and Lk describe the 3×3 sub-matrices from L, R and Λ, with rows/columns
2–4 for liquid, and 5–7 for steam phase. Ãk α describes the 3 × 1 sub-matrix from the
the first column of Ã, rows 2–4 for liquid, and 5–7 for steam phase. So, finally we get

Pℓ =




1 0 − 1
c2
ℓ

0
ρ2
ℓ
c2
ℓ

2
0

− 1
c2
ℓ

0 1
2
+ 1

c4
ℓ


 , Pg =




1 0 − 1
c2g

0
ρ2gc

2
g

2
0

− 1
c2g

0 1
2
+ 1

c4g


 , (2.130)
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and

Pℓ α =




0

ρℓc
2
ℓ
(pℓ−pi−ρℓc

2
ℓ
)(vℓ−vi)

2(1−α)(c2
ℓ
−(vℓ−vi)2)

− c2
ℓ
(pℓ−pi−ρℓ(vℓ−vi)

2)

2(1−α)(c2
ℓ
−(vℓ−vi)2)


 , Pg α =




0

−ρgc2g(pg−pi−ρgc2g)(vg−vi)

2α(c2g−(vg−vi)2)

c2g(pg−pi−ρg(vg−vi)
2)

2α(c2g−(vg−vi)2)


 . (2.131)

This choice for P (ũ) is realizable if the non-resonance condition (2.120) holds. It remains
to choose Pα in such a way that P (ũ) is positive definite. With a non-null vector
xT = (a, bT, cT) ∈ R7 with a ∈ R and b, c ∈ R3, it holds

xT P (ũ)x = (a, bT, cT) η′′(u)



a
b
c




= a2Pα + 2a
(
PT

ℓ αb+ PT

g αc
)
+ bTPℓb+ cTPgc

!

≥ 0. (2.132)

This polynomial is of degree 2 in a. We adapt the proof of Coquel et al. [94] who
considered a different set of variables than ũ, and determine the discriminant of this
polynomial

D = 4
∣∣PT

ℓ αb+ PT

g αc
∣∣2 − 4Pα

(
bTPℓb+ cTPgc

)

= 4
∣∣(P−1/2

ℓ Pℓ α)
TP

1/2
ℓ b+ (P−1/2

g Pg α)
TP 1/2

g c
∣∣2 − 4Pα

(∣∣P 1/2
ℓ b

∣∣2 +
∣∣P 1/2

g c
∣∣2
)

= 4
(∣∣P−1/2

ℓ Pℓ α

∣∣2 +
∣∣P−1/2

g Pg α

∣∣2 − Pα

)(∣∣P 1/2
ℓ b

∣∣2 +
∣∣P 1/2

g c
∣∣2
)

− 4
∣∣(P−1/2

ℓ Pℓ α)
TP 1/2

g c− (P−1/2
g Pg α)

TP
1/2
ℓ b

∣∣2
!
> 0 (2.133)

Because Pℓ and Pg are symmetric positive definite, there exist symmetric positive definite

matrices P
1/2
ℓ and P

1/2
g and their inverses P

−1/2
ℓ and P

−1/2
g , such that P

1/2
ℓ P

1/2
ℓ = Pℓ and

P
1/2
g P

1/2
g = Pg. The discriminant D is positive, if we choose

Pα >
∣∣P−1/2

ℓ Pℓ α

∣∣2 +
∣∣P−1/2

g Pg α

∣∣2. (2.134)

2.5.5. Summary of the chosen closures

Within the above subsections the interfacial and source parameters are developed in
such a way that the second law of thermodynamics holds for the quasilinear system.

• Interfacial velocity (2.122) and (2.123)

vi :=
ξαℓρℓvℓ + (1− ξ)αgρgvg
ξαℓρℓ + (1− ξ)αgρg

with an arbitrary ξ ∈ [0, 1]. For our application we choose ξ = 1
2
.
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• Interfacial pressure (2.94) as convex combination of pℓ and pg

pi :=
pgTℓ(vg − vi) + pℓTg(vi − vℓ)

Tℓ(vg − vi) + Tg(vi − vℓ)
=
ξαℓρℓTℓ pg + (1− ξ)αgρgTg pℓ
ξαℓρℓTℓ + (1− ξ)αgρgTg

.

with the same ξ as above.

• Source specific total energy (2.106)

Êi k := ûi k +
1
2
v̂2i = ĥi k −

p̂i
ρ̂i

+ 1
2
v̂2i

• Source specific enthalpy (2.107)

ĥi ℓ := hsatL(p̂i) and ĥi g := hsatV(p̂i).

• Source velocity (2.110)

v̂i :=

√
Tg vℓ +

√
Tℓ vg√

Tg +
√
Tℓ

.

• Source saturated temperature (2.112)

T̂i sat = Tsat(p̂i).

• The choice of an appropriate closure for the source density ρ̂i and source pressure
p̂i still remains as open problem.
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2.6. Homogeneous equilibrium two-phase flow model

In the literature, related to the underlying solar thermal problem, it is often found that
the two-phase flow is described by a simplified homogeneous equilibrium model [62], [63],
[64], [65]. For the sake of completeness, a homogeneous model is derived from the basic
equations (2.57), and its properties are shown. For better readability, the same notation
as introduced in 2.3 is used, despite that the system dimension n is now 3 instead of 7.
At first, the following mixture quantities are defined [100],

ρh := αℓρℓ + αgρg,

uh :=
1

ρh
(αℓρℓuℓ + αgρgug) ,

Eh :=
1

ρh
(αℓρℓEℓ + αgρgEg) ,

sh :=
1

ρh
(αℓρℓsℓ + αgρgsg) , (2.135)

for density, specific internal energy, specific total energy and specific entropy. The
subscript h is used for homogeneous properties. Usually the model is assumed to be at
mechanical and thermodynamical equilibrium. With this assumption no contributions
corresponding to the slip of both phases occur during the homogenization process. Thus,
the velocities, pressures and temperatures for each phase are equal [100]:

vh := vℓ = vg, ph := pℓ = pg, Th := Tℓ = Tg. (2.136)

Because the temperatures for both phase are equal the phasic densities must be on the
saturation line, such that we define

ρℓ := ρsatL(ph) and ρg := ρsatV(ph). (2.137)

Then we also get an explicit expression for the volume fraction,

α =
ρh − ρℓ
ρg − ρℓ

. (2.138)

Now, the homogeneous equilibrium model is obtained by summing up the corresponding
equations of void fraction, mass, momentum and energy equation for each phase in
(2.57):

∂tρh + ∂x(ρhvh) = 0

∂t(ρhvh) + ∂x(ρhv
2
h) = − ∂xph + ρh g sin(ϑ)− Fw ℓ − Fw g

∂t(ρhEh) + ∂x(ρhvhEh) = − ∂x(vhph) + ρhvh g sin(ϑ)− (Fw ℓ + Fw g)vh +Qw ℓ +Qw g.
(2.139)

We note that the homogenized void fraction disappears due to (2.34). Due to the choice
of the interfacial mass flow rates Γi and Γw in (2.49) and (2.53) also the interfacial
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exchange terms in the momentum and energy equation disappear. The homogeneous
equilibrium model is given by three balance laws in the form,

∂tu+ ∂xf(u) = s(u), (2.140)

the independent variables u and the flux vector f(u) are given by

u :=




ρh

ρhvh

ρhEh


 , f(u) =




ρhvh

ρhv
2
h + ph

(ρhEh + ph)vh


 , (2.141)

where the source vector s(u) = si(u) + sw(u) is given by

si(u) =



0

0

0


 , sw(u) =




0

ρh g sin(ϑ)− Fw ℓ − Fw g

ρhvh g sin(ϑ)− (Fw ℓ + Fw g)vh +Qw ℓ +Qw g


 . (2.142)

All solutions for u are in the set of admissible states,

Ω = {u ∈ Rn | ρh > 0, uh > 0, ch > 0} (2.143)

with n = 3, where uh is the specific internal energy, given by the physical law

uh = Eh − 1
2
v2h. (2.144)

To transform the system in closed quasilinear form,

∂tu+ A(u) ∂xu = s(u), (2.145)

with system matrix

A(u) = ∂uf(u), (2.146)

we need to differentiate the flux vector f(u) with respect to our independent variables
u. Therefore we need the partial derivatives of the primitives,

∂xvh = −vh
ρh
∂xρh +

1

ρh
∂x(ρhvh)

∂xuh = −Eh − v2h
ρh

∂xρh −
vh
ρh
∂x(ρhvh) +

1

ρh
∂x(ρhEh) (2.147)

and the partial derivatives of the pressure, which can be derived from the pressure
relation (2.55), such that

∂xph
(2.55)
= (ph)ρ ∂xρh + (ph)u ∂xuh
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(2.147)
=

(
(ph)ρ − (ph)u ·

Eh − v2h
ρh

)
∂xρh −

(ph)u · vh
ρh

∂x(ρhvh) +
(ph)u
ρh

∂x(ρhEh),

(2.148)

∂x(vhph) = vh ∂xph + ph∂xvh

(2.148)
= vh

(
(ph)ρ − (ph)u ·

Eh − v2h
ρh

− ph
ρh

)
∂xρh

+
ph − (ph)u · v2h

ρh
∂x(ρhvh) +

vh · (ph)u
ρh

∂x(ρhEh). (2.149)

Then we can compute the derivative of f(u) with respect to u, such that the system
matrix A(u) is given by (2.146):

A(u) = ∂uf(u) + B(u)

=




0 1 0

−v2h + (ph)ρ − (ph)u ·
Eh−v2h

ρh
2vh +

−(ph)u·vh
ρh

(ph)u
ρh

vh

(
(ph)ρ − (ph)u ·

Eh−v2h
ρh

− ph
ρh

− Eh

)
Eh +

ph−(ph)u·v
2
h

ρh
vh +

vh·(ph)u
ρh


 . (2.150)

For the two-velocity two-pressure model closures for some unknown parameters have
been found by requesting thermodynamical and mathematical properties, see Section
2.5. Now in contrast, the homogeneous equilibrium model has no unknown parameters.
Anyway, in the following it is shown that the model fulfilles the same thermodynamical
and mathematical properties like the two-velocity two-pressure model, see Section 2.5.

2.6.1. Second law of thermodynamics

A candidate for an entropy-entropy flux pair for the Euler equations is the physical
entropy of the fluid,

η(u) = −ρhsh and ψ(u) = −ρhvhsh. (2.151)

The entropy variables are given by

v(u) := η′(u) =




ph
ρh

+ uh − 1
2
v2h

Th
− sh

vh
Th

− 1

Th




(2.88)
=




gh − 1
2
v2h

Th
vh
Th

− 1

Th



, (2.152)
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such that the entropy compatibility condition (2.85) is fulfilled:

∂uψ(u)
T =




vh ·
ph
ρh

+ uh − 1
2
v2h

Th
v2h
Th

− sh

− vh
Th




= ∂uη(u)
T · A(u). (2.153)

The Hessian of the entropy function is given by

η′′(u) =




Th(ph)ρ−(ph+2ρh(Eh−v2h))(Th)ρ+(Eh−v2h)
2
(Th)u+v2hTh

ρhT
2
h

−vh
(
η′′13 +

1
ρhTh

)
η′′13

−vh
(
η′′13 +

1
ρhTh

)
v2h(Th)u+Th

ρhT
2
h

−vh(Th)u
ρhT

2
h

η′′13
−vh(Th)u
ρhT

2
h

(Th)u
ρhT

2
h



,

(2.154)

with η′′13 :=
ρh(Th)ρ−(Eh−v2h)(Th)u

ρhT
2
h

. The needed derivatives of the temperature are given in

(2.90). In order to verify now that η(u) is a convex function of u, we follow again the
proof of Godlewski and Raviart [99]. Above in (2.95), it was shown that the phasic
entropy functions Sk(uk) := −ρksk with uT

k = (ρk, ρkvk, ρkEk) are strictly convex func-
tions. This proof can be adopted one-to-one for this entropy function.

In order to ensure the entropy inequality (2.84) it remains to verify the entropy dissipa-
tion (2.87). The entropy balance law is derived by (2.86),

∂tη(u) + ∂xψ(u) = ∂uη(u)
Tsi(u) = 0. (2.155)

Thus, the entropy production is zero.

2.6.2. Hyperbolicity

In order to characterize mathematical properties, the equation systems are transformed
in quasi-conservative form (2.114)

∂tũ+ Ã(ũ)∂xũ = s̃(ũ),

with primitive system vector

ũ :=
(
ρh vh ph

)T
. (2.156)

and primitive system matrix

Ã(ũ) =



vh ρh 0

0 vh
1
ρh

0 c2hρh vh


 . (2.157)
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The eigenvalue matrix Λ and the right and left eigenvectors R and L are given by

Λ =



vh − ch 0 0

0 vh 0
0 0 vh + ch


 , (2.158)

RT =




1
c2h

1 1
c2h

− 1
ρhch

0 1
ρhch

1 0 1


 , (2.159)

and

L =



0 −ρhch

2
1
2

1 0 − 1
c2h

0 ρhch
2

1
2


 . (2.160)

The system admits three real eigenvalues, vh and vh ± ch. Because the corresponding
eigenvectors are linearly independent the quasilinear system is hyperbolic.

2.6.3. Characteristic fields

As known for the Euler equations, the field associated with the fluid velocity vh is linearly
degenerate, where the other fields associated with eigenvalues vh ± ch are genuinely
nonlinear:

∂ũλ1R1 = − 1

ρhch
, ∂ũλ2R2 = 0, ∂ũλ3R3 =

1

ρhch
. (2.161)

2.6.4. Symmetrization of the hyperbolic system

As consequence of the conservative form and the existence of an entropy-entropy flux
pair the system is symmetrizable, see Godlewski and Raviart [99]. A symmetric positiv
definite matrix P (ũ) is given by choosing [5]

P (ũ) := R−1L =




1 0 − 1
c2h

0
ρ2hc

2
h

2
0

− 1
c2h

0 1
2
+ 1

c4h


 . (2.162)

With this choice also P (ũ)Ã(ũ) is symmetric.
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3. Finite volume methods

In one space dimension, our first-order system of partial differential equations in space
x and time t has the form

∂tu+ ∂xf(u) + B(u)∂xu = s(u), (3.1)

where u ∈ Rn is the state vector of conservative variables, f(u) ∈ Rn is the corresponding
flux vector, B(u) ∈ Rn×n is the non-conservative part of the coefficient matrix, and
s(u) ∈ Rn is the source term vector. The system is called to be in conservative form,
if B(u) ≡ 0, otherwise it is in non-conservative form. If s(u) ≡ 0, the system is called
homogeneous, otherwise inhomogeneous.

In one-dimensional space, the finite volume method partitions the domain in a finite
number of grid cells. The conservation of the fluid must hold in every volume. In every
time step, the grid cells are updated by solving the conservation laws of the fluid by
integration.

The spatial and temporal space for x ∈ [0, xmax] and t ∈ [0, tmax] is covered uniformly
by a grid of I times N cells. For simplicity we assume an equidistant grid in space and
time, with a grid size of ∆x = xi+1 − xi and time step of ∆t = tn+1 − tn. The i-th grid
cell is given by

Ci :=
(
xi−1/2, xi+1/2

)
, (3.2)

with its border points xi−1/2 and xi+1/2 and grid center point xi :=
1
2
(xi−1/2 + xi+1/2), see

Figure 35. We suppose that the unknown function u = u(x, t) of the first-order PDE

t

x
x1

. . . xi−1 xi xi+1

tn

tn+1

∆x

∆t

un
i−1 un

i
un
i+1

Ci−1 Ci Ci+1

Figure 35: Schematic of grid cells in x-t space. The vector un
i is the collection of ap-

proximated mean values in grid cell Ci at time tn.

system takes its values on Ω ⊆ Rn. In one space dimension, the Cauchy problem of a
first-order system of partial differential equations in space x and time t has the form

∂tu+ ∂xf(u) + B(u)∂xu = s(u) with u(x, tn) = un
i for x ∈ Ci, t ∈ (tn, tn+1).

(3.3)
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3.1. Convergence

The effectiveness of a numerical method is described by its convergence. A method is
called convergent, if its global error at a finite time tN tends to zero for a grid refinement
(∆x→ 0 with fix ∆t

∆x
≡ λ),

lim
∆x→0

∥∥∥uN
i − 1

∆x

∫

Ci

u(x, tN) dx

︸ ︷︷ ︸
=:EN

i

∥∥∥
p

!
= 0. (3.4)

The p-norm is defined by

‖EN
i ‖p :=

(
∆x ·

I∑

i=1

|EN
i |p
)1/p

. (3.5)

The CFL condition, named after Courant, Friedrichs and Lewy [101], is a necessary
condition for stability. This condition ensures that the physical information is just
crossing one grid cell per time step. In a hyperbolic system, the eigenvalues of the system
are the velocities of the information. Therefore, with λmax as maximum eigenvalue over
all cells at a time step i, it must hold

∆t

∆x

!

≤ λmax. (3.6)

3.2. Source terms with splitting techniques

A standard approach of considering the source terms is to use a fractional-step method,
which complies with the entropy inequality [102]. The full problem is divided in two
sub-problems: A first evolution step accounts for all convective effects and dissipation,

∂tu+ ∂xf(u) + B(u)∂xu = 0. (3.7)

For given initial values un
i this step computes approximate solutions u

n+1,−
i of the hy-

perbolic homogeneous sub-problem through the time interval [tn, tn + ∆t]. Based on
these discrete cell values un+1,−

i the second relaxation step takes the source terms into
account,

∂tu = s(u). (3.8)

This ordinary differential equation system is solved with a full time step of length ∆t.
Thus, the solution of the full system is approximated by alternating between solving
the sub-problems, which is known as Godunov splitting. This approach allows us to
couple high-order methods for the homogeneous system with standard ODE solvers for
the source equations.

To solve the whole problem in higher order accuracy, it is necessary that besides the

82



numerical schemes for (3.7) and (3.8) also the splitting technique is of higher order. For
second order, the Strang splitting operator [103] can be used which consists of three
steps. At first and at last the homogeneous problem is solved with a half time step of
length ∆t

2
, and in-between the relaxation problem is solved with a full time step of ∆t.

If the source terms are stiff, then besides the CFL restriction we get here a much more
restrictive time limitation. For this case it is recommended to use implicit ODE solvers.

It remains to find a solver for the homogeneous two-phase flow models in (3.7).

3.3. Homogeneous system in conservative form

We consider the Cauchy problem of the homogeneous system of conservation laws

∂tu+ ∂xf(u) = 0 with u(x, tn) = un
i for x ∈ Ci, t ∈ (tn, tn+1). (3.9)

For its discretization the system is transformed in integral form by spatial integration
over cell Ci and temporal integration from tn to tn+1. The exact integration of the flux
derivative is evaluated at the cell interfaces xi±1/2, and the integral over the state vector
is approximated by ∆x times its mean value ui(t):

∫ tn+1

tn
∂tui(t) dt+

1

∆x

(∫ tn+1

tn
f
(
u(xi+1/2, t)

)
dt−

∫ tn+1

tn
f
(
u(xi−1/2, t)

)
dt

)
= 0. (3.10)

The exact integration of the state vector derivative is the state vector evaluated at the
time intervall values,

un+1
i = un

i −
1

∆x

(∫ tn+1

tn
f
(
u(xi+1/2, t)

)
dt−

∫ tn+1

tn
f
(
u(xi−1/2, t)

)
dt

)
. (3.11)

With an approximation of the time integral by some numerical flux function

Fn
i−1/2 ≈

1

∆t

∫ tn+1

tn
f
(
u(xi−1/2, t)

)
dt, (3.12)

the update formulation can be written in the general form of a finite volume method:

un+1
i = un

i −
∆t

∆x

(
Fn

i+1/2 − Fn
i−1/2

)
, (3.13)

In the following, different finite volume schemes are presented, where a specific method
depends on how to choose the flux function. We suppose that the numerical flux function
just depends on the cell averages of both neighboring cells, Fn

i−1/2 := F(un
i−1,u

n
i ). This

is due to the fact that in hyperbolic systems information propagate with finite speed.
In the following, some well-known centered schemes or upwind schemes (by solving the
Riemann problem) are presented. For the sake of simplicity, the numerical flux function
between two states uL and uR is denoted as F(uL,uR).
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◮ Lax-Friedrichs

The classical Lax-Friedrichs method is a forward in time, centered in space scheme. Its
numerical flux function is given by

F(uL,uR) =
1

2

(
f(uL) + f(uR)−

∆x

∆t
·
(
uR − uL

))
. (3.14)

◮ Rusanov

The Rusanov scheme is also called local Lax-Friedrichs method, because it exploits the
maximum wave speed at every cell interface. The numerical flux function is given by

F(uL,uR) =
1

2

(
f(uL) + f(uR)− λmax ·

(
uR − uL

))
. (3.15)

with maximum absolute eigenvalue in both neighboring cells

λmax = max
{
λmax

(
|A(uL)|

)
, λmax

(
|A(uR)|

)}
(3.16)

with matrix A(u) as Jacobian of the flux function A(u) = f ′(u).

◮ FORCE

The FORCE scheme is a first-order centered scheme. The numerical flux function is
given by

F(uL,uR) =
1

4

(
f(uL) + 2 · f

(
u1/2

)
+ f(uR)−

∆x

∆t
·
(
uR − uL

))
, (3.17)

with intermediate state

u1/2 =
1

2

(
uL + uR − ∆t

∆x
·
(
f(uR)− f(uL)

))
. (3.18)

Compared to the centred Lax-Friedrichs flux, the FORCE flux has smaller numerical
viscosity [104].

◮ Godunov

The Godunov method reconstructs the discrete cell averages by a simple piece-wise
constant function. As reconstruction the exact solution ur of the Riemann problem is
used and plugged into the flux function in (3.12). Along the interface at x1/2 the Riemann
solution is constant in time, such that the time integral can be solved exactly,

F(uL,uR) =
1

∆t

∫ tn+1

tn
f
(
u(x1/2, t)

)
dt

= f
(
ur(0;uL,uR)

)
. (3.19)

Notice that the reconstruction ur(
x
t
;uL,uR) only depends on the neighboring states uL

and uR.
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◮ HLL

The HLL scheme is an approximate Riemann solver proposed by Harten Lax and van
Leer. This method considers just the slowest λmin and fastest λmax wave speeds of
the system, emerging from the initial discontinuity at the interface. By applying the
Rankine-Hugoniot conditions across the left and right waves respectively, the following
intermediate state is obtained [105]:

u1/2 =
SR uR − SL uL + f(uL)− f(uR)

SR − SL

. (3.20)

Thus, the numerical HLL flux function is given by

F(uL,uR) = f(uL) + SL (u1/2 − uL)

=
SR f(uL)− SL f(uR) + SL SR (uR − uL)

SR − SL

. (3.21)

The speed of the signals SL and SR are related to the minimum and maximum eigenvalues
of the Jacobians of both neighboring states,

SL = min
{
0, λmin(fu(uL)), λ

min(fu(uR))
}
, (3.22)

and

SR = max
{
0, λmax(fu(uL)), λ

max(fu(uR))
}
. (3.23)

3.4. Finite volume method for two-phase flow model

Because the homogeneous equilibrium model (2.139) is in conservative form, the standard
finite volume methods introduced in Section 3.3 can be used. Unfortunately, the two-
velocity two-pressure model (2.57) additionally has a non-conservative coefficient matrix
B(u). Thus, the Cauchy problem is given by

∂tu+ ∂xf(u) + B(u)∂xu = 0 with u(x, tn) = un
i for x ∈ Ci, t ∈ (tn, tn+1).

(3.24)

Again (as already done in Section 3.3) the system is discretized by spatial integration
over cell Ci and temporal integration from tn to tn+1, such that

un+1
i = un

i −
∆t

∆x

(
Fn

i+1/2 − Fn
i−1/2

)
− 1

∆x

∫ tn+1

tn+1,−

∫

Ci

B(u)∂xu dx, (3.25)

with some numerical flux function, see (3.12). With an approximation of the last term

Nn
i ≈ 1

∆t

∫ tn+1

tn+1,−

∫

Ci

B(u)∂xu dx, (3.26)
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4. Path-conservative numerical solver

Because the integrand of a non-conservative term is not defined for discontinuous func-
tions u, the term is expected to produce a Dirac measure [106]. To define weak solutions
of this integral equation we need to approximate the non-conservative term. We follow
Dal Maso, LeFloch and Murat [107], who proposed the path-conservative method, where
the non-conservative term is interpreted as Borel measures over a Lipschitz continuous
path Φ : [0, 1]× Ω× Ω → Ω with

Φ(0;uL,uR) = uL, Φ(1;uL,uR) = uR, Φ(s;u,u) = u, ∀uL,uR,u ∈ Ω. (4.1)

This approach is now used to solve the Cauchy problem of the homogeneous two-velocity
two-pressure model (2.57),

∂tu+ ∂xf(u) + B(u)∂xu = 0 with u(x, tn) = un
i for x ∈ Ci, t ∈ (tn, tn+1). (4.2)

Now, the spatial derivative of the flux function is replaced by applying the chain rule.
With A(u) := ∂uf(u) + B(u) we finally get the following Cauchy problem

∂tu+ A(u) ∂xu = 0 with u(x, tn) = un
i for x ∈ Ci, t ∈ (tn, tn+1). (4.3)

Notice that for the two-velocity two-pressure model this system is in non-conservative
form, because A(u) is not a Jacobian. Non-conservative systems are regarded in integral
form

∂tui(t) +

∫

Ci

A(u) ∂xu dx dt = 0. (4.4)

The path defined in (4.1) connects two states uL and uR at its left and right limits across
a discontinuity with s ∈ [0, 1]. Hence, the matrix A(u) is interpreted as A(Φ(s;uL,uR)).
The chosen path of a weak solution influences the speed of propagation σΦ of the dis-
continuity, due to the generalized Rankine-Hugoniot condition [108, 109],

σΦ · (uR − uL) =

∫
uR

uL

A(u) du

=

∫ 1

0

A
(
Φ(s;uL,uR)

)∂Φ(s;uL,uR)

∂s
ds. (4.5)

The weak solutions now depend on the arbitrary chosen path Φ, where different families
of paths lead to different jump conditions [108]. Note, that contact discontinuities and
rarefraction waves do not depend on the path. We are looking for the physically relevant
solutions, which ensure that the jump conditions are consistent with the viscous profiles
Notice that if A(u) is the Jacobian matrix of some flux vector f(u), then σΦ does not
depend on the path, i.e. it does not depend on numerical viscosity, and (4.5) reduces to
the standard Rankine-Hugoniot condition, σ · (uR − uL) = f(uR)− f(uL).
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By choosing a segment path, Φ(s;uL,uR) := uL+s · (uR−uL), the generalized Rankine-
Hugoniot condition (4.5) simplifies to

σΦ · (uR − uL) =

∫ 1

0

A
(
Φ(s;uL,uR)

)
ds

︸ ︷︷ ︸
=:AΦ(uL,uR)

(uR − uL). (4.6)

The matrix AΦ(uL,uR) is a local linearization of the system matrix A(u) and is called
Roe matrix. For complicated hyperbolic systems it may become very tedious or even im-
possible to compute an analytical expression for the Roe matrix. Therefore, Canestrelli
et al. [110] propose to compute the integral directly along the segment path Φ by using
high order accurate Gaussian quadrature rules13,

AΦ(uL,uR) ≈
J∑

j=1

wj A
(
Φ(sj;uL,uR)

)
. (4.7)

The general idea is to decompose the total mass of this Dirac measure into two summands
D±

i+1/2, such that the scheme can be written in the following fluctuation form [111, 108],

∂tui(t) +
1

∆x

(
D−

i+1/2(t) +D+
i−1/2(t)

)
= 0, (4.8)

where the fluctuations D± : Ω×Ω → Ω are two Lipschitz continuous functions, defined
by D±

i−1/2 := D±(ui−1,ui). For an explicit Euler step in time, the update formulation
for the cell average at the next time step can be written in the form

un+1
i = un

i − ∆t

∆x

(
D−

i+1/2 +D+
i−1/2

)
. (4.9)

In the following different path-conservative schemes are presented. For notational sim-
plicity we drop the depency of the path Φ on two neighboring states uL and uR by using
Φ(s) := Φ(s;uL,uR).

4.1. Path-consistent schemes

A numerical scheme should be consistent in the usual sense. For path-conservative
schemes Parés [111] introduced an analogue property: A numerical scheme is said to be
path-consistent if the fluctuations are satisfying

D±(u,u) = 0 (4.10)

and

D−(uL,uR) +D+(uL,uR) =

∫ 1

0

A
(
Φ(s)

)
Φ′(s) ds. (4.11)

In the following, the non-conservative version of some well known finite volume schemes
are presented.

13By using e.g. a three-point Gaussian quadrature rule (J = 3), the re-scaled points are given by s1 = 1

2

and s2,3 = 1

2
±

√
15

10
, with weights w1 = 8

18
and w2,3 = 5

18
.
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◮ Path-conservative Lax-Friedrichs

The path-conservative version of the classical Lax-Friedrichs method is given by [106]

D±(uL,uR) =
1

2

(∫ 1

0

A
(
Φ(s)

)
Φ′(s) ds ± ∆x

∆t
·
(
uR − uL

))
. (4.12)

◮ Path-conservative Rusanov

The path-conservative version of the local Lax-Friedrichs method is given by [106]

D±(uL,uR) =
1

2

(∫ 1

0

A
(
Φ(s)

)
Φ′(s) ds ± λmax ·

(
uR − uL

))
. (4.13)

with maximum absolute eigenvalue in both neighboring cells

λmax = max
{
λmax

(
|A(uL)|

)
, λmax

(
|A(uR)|

)}
. (4.14)

◮ Path-conservative FORCE (PRICE-C)

The PRICE-C scheme is a primitive centred scheme for non-conservative system that
automatically reduces to a modified conservative FORCE scheme if the underlying PDE
system is a conservation law [110]. The numerical flux function of the scheme is given
by

D±(uL,uR) =
1

4

(
2 · AΦ(uL,uR)±

∆x

∆t
I ± ∆t

∆x

(
AΦ(uL,uR)

)2)
, (4.15)

with Roe matrix AΦ (4.7) and identity matrix I.

◮ Path-conservative Godunov

Again we denote with ur the exact solution of the Riemann problem, which is known to
be constant along the interface at x1/2 between two states uL and uR. With the Riemann
solution u0

r := ur(0;uL,uR), the fluctuations are given by [106]

D−(uL,uR) =

∫ 1

0

A
(
Φ
(
s;uL,u

0
r

))
Φ′(s;uL,u

0
r

)
ds

D+(uL,uR) =

∫ 1

0

A
(
Φ
(
s;u0

r ,uR

))
Φ′(s;u0

r ,uR

)
ds (4.16)

By choosing a segment path, Φ(s;uL,uR) := uL+s ·(uR−uL) the scheme can be written
in the form (3.27),

un+1
i = un

i −
∆t

∆x

(
Fn

i+1/2 − Fn
i−1/2

)
− ∆t

∆x
Nn

i ,

with numerical flux function F(uL,uR) from (3.19), and with an approximation of the
non-conservative part in (3.26),

Nn
i =

1

2

(
B(un

i−1/2) +B(un
i+1/2)

) (
un
i+1/2 − un

i−1/2

)
. (4.17)
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◮ Path-conservative HLL

The fluctuations of the non-conservative HLL scheme are given by [112]

D−(uL,uR) = − SL

SR − SL

·
∫ 1

0

A
(
Φ
(
s;uL,uR

))
Φ′(s;uL,uR

)
ds+

SL SR (uR − uL)

SR − SL

,

D+(uL,uR) = +
SR

SR − SL

·
∫ 1

0

A
(
Φ
(
s;uL,uR

))
Φ′(s;uL,uR

)
ds− SL SR (uR − uL)

SR − SL

,

(4.18)

where the speed of the signals SL and SR are related to the minimum and maximum
eigenvalues of the Jacobians of both neighboring states,

SL = min
{
0, λmin(A(uL)), λ

min(A(uR))
}
, (4.19)

and

SR = max
{
0, λmax(A(uL)), λ

max(A(uR))
}
. (4.20)

By applying the Rankine-Hugoniot conditions across the left and right waves respec-
tively, the following approximated intermediate state is obtained [112],

u1/2 =
SR uR − SL uL + f(uL)− f(uR)

SR − SL

+
1

SR − SL

·
∫ 1

0

A
(
Φ
(
s;uL,uR

))
Φ′(s;uL,uR

)
ds,

(4.21)

compare with (3.20). This intermediate state can be used to modify the integration
path.

Castro et al. [108, 113], and Abgrall and Karni [109] observed that the numerical solution
of a path-conservative scheme with a suitable consistent selected path along the viscous
profile, will not necessarily converge to the correct and physically relevant solution. This
lack of convergence has its origin in the numerical viscosity of the scheme. Thus, here
we follow the approach of entropy-conservative schemes.
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4.2. Entropy conservative path-consistent (ECPC) schemes

For a given entropy pair (η, ψ) with entropy variables v(u) := ∂uη(u) the solutions ui

in cell Ci should satisfy the discrete entropy identity

∂tη(ui) +
1

∆x

(
ψ̃i+1/2 − ψ̃i−1/2

)
= 0, (4.22)

with numerical entropy flux

ψ̃i+1/2 := ψ̃(ui,ui+1) = ψ(ui) + vT

i D
−(ui,ui+1). (4.23)

Notice that with (4.10) the numerical entropy flux ψ̃ is consistent with the entropy flux
ψ, meaning ψ̃(u,u) ≡ ψ(u). Following Castro et al. [108], a path-consistent scheme is
said to be entropy conservative if the fluctuations are satisfying

vT

L D
−(uL,uR) + vT

R D+(uL,uR) =

∫ 1

0

v
(
Φ(s)

)T
A
(
Φ(s)

)
Φ′(s) ds

= ψ(uR)− ψ(uL). (4.24)

If the above condition holds the discrete entropy identity can directly be derived from
our scheme in fluctuation form (4.8). Thus we get

∂tui = − 1

∆x

(
D−

i+1/2 +D+
i−1/2

)

⇔ vT

i ∂tui = − 1

∆x

(
vT

i D
−
i+1/2 + ψ(ui)− ψ(ui) + vT

i D
+
i−1/2

)

(4.23)
(4.24)⇔ ∂tη(ui) = − 1

∆x

(
ψ̃i+1/2 − ψ̃i−1/2

)
. (4.25)

Here we present two different ways to create an ECPC scheme.

◮ ECPC (along state vector)

Castro et al. [108] assumed the existence of matrices B−(Φ(s)
)
and B+

(
Φ(s)

)
with

B− +B+ = I and B−vL +B+vR = v(Φ), such that

D+(uL,uR) =

∫ 1

0

B+
(
Φ(s)

)T
A
(
Φ(s)

)
Φ′(s) ds,

D−(uL,uR) =

∫ 1

0

B−(Φ(s)
)T

A
(
Φ(s)

)
Φ′(s) ds. (4.26)

is an ECPC scheme. The integrals can be solved numerically with Gaussian quadrature
rule. With ξ ∈ [0, 1], the choice

B+
(
Φ(s)

)T
= ξ I +

vR − vL

|vR − vL|2
(
v
(
Φ(s)

)
− ξvR − (1− ξ)vL

)T
,
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B−(Φ(s)
)T

= (1− ξ) I − vR − vL

|vR − vL|2
(
v
(
Φ(s)

)
− ξvR − (1− ξ)vL

)T
, (4.27)

shows the existence of infinitely many ECPC schemes for a given entropy pair (η, ψ) and
familiy of paths Φ [108]. For the case of vL → vR the fluctuations D± go to zero, due
to Φ′. That’s what we expect from the path consistency condition in (4.10). For the
implementation we have to be careful with the denominator |vR − vL|2 in B±, which is
zero for the case of vL ≡ vR.

◮ ECPCs (along entropy variables)

An equivalent condition for an ECPC scheme can be given by inserting the path consis-
tency condition (4.11) into the entropy conservative condition (4.24), such that it must
hold

(
vR − vL

)T
D+(uL,uR) =

∫ 1

0

(
v
(
Φ(s)

)
− vL

)T
A
(
Φ(s)

)
Φ′(s) ds,

(
vR − vL

)T
D+(uL,uR) =

∫ 1

0

(
vR − v

(
Φ(s)

))T
A
(
Φ(s)

)
Φ′(s) ds. (4.28)

Now we choose the path Φ as a segment along the entropy variables,

Φ(s;uL,uR) := u
(
Ψ(s;vL,vR)

)

:= u
(
vL + s · (vR − vL)

)

= u
(
vR − (1− s) · (vR − vL)

)
, (4.29)

with vR := v(uR) and vL := v(uL) as entropy variables and u(v) as the inverse mapping.

With the above chosen path, the factor
(
vR−vL

)T
shows up also at the right-hand side

of (4.28). So, finally we get

D+(uL,uR) =

(∫ 1

0

s · A
(
Φ(s)

)
u′(vL + s · (vR − vL)

)
ds

)
(vR − vL),

D−(uL,uR) =

(∫ 1

0

(1− s) · A
(
Φ(s)

)
u′(vL + s · (vR − vL)

)
ds

)
(vR − vL). (4.30)

The integrals can be solved numerically applying a Gaussian quadrature rule. For this
scheme we need the inverse mapping of the entropy variables u(v) and its derivative
u′ := ∂vu. Both quantities are derived now for each model.

Because the entropy function η(u) is strictly convex, the mapping u 7→ v of the state
vector to the entropy variables is bijective, such that an inverse mapping u(v) exists.
Tadmor and Zhong [114] computed the inverse mapping for the Euler equations (one-
phase flow) under the assumption of ideal gas laws. In our case we have to find the
inverse mapping for the two-velocity two-pressure model paired with more complicated
(because more accurate) equations of state14. We call this type of solver ESPCs, where
’s’ stands for the used path along the entropy variables.

14The data-based equation of state bases on a fundamental equation for the specific Gibbs free energy
[78].
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◮ Inverse mapping of entropy variables

• Homogeneous equilibrium model

Because the entropy variables consist of non-linear derivatives of the specific en-
tropy, such that an explicit expression for the state vector u(v) cannot be given.
Therefore we need another approach. We use the fact that the density and the
specific inner energy can be expressed by the temperature and specific Gibbs free
energy15.

So, for given entropy variables v ∈ R3 with v = (v1,v2,v3)
T, we can invert the

entropy variables from (2.152), such that we get:

Th = − 1

v3

, vh = v2Th = −v2

v3

, gh = v1Th +
1
2
v2h = −v1

v3

+
v2
2

2v2
3

. (4.31)

Because the density ρh := ρh
(
Th, gh

)
and the specific inner energy uh := uh

(
Th, gh

)

are given by an equation of state in dependency of the temperature and the Gibbs
free energy, the inverse mapping of the entropy variables is given by

u
(
s;v
)
:=




ρh

ρhvh

ρhEh


 =




ρh
(
Th, gh

)

ρh
(
Th, gh

)
vh

ρh
(
Th, gh

) (
uh
(
Th, gh

)
+ 1

2
v2h
)


 (4.32)

• Two-velocity two-pressure model

For the two-velocity two-pressure model we cannot find an exact inverting of the
entropy variables. We follow the above proposed approach: For given entropy
variables v ∈ R7 with v = (v1,v2, . . . ,v7)

T, we can invert the entropy variables
from (2.92), such that we get:

Tℓ = − 1

v4

, Tg = − 1

v7

,

vℓ = v3Tℓ = −v3

v4

, vg = v6Tg = −v6

v7

,

gℓ = v2Tℓ +
1
2
v2ℓ = −v2

v4

+
v2
3

2v2
4

, gg = v5Tg +
1
2
v2g = −v5

v7

+
v2
6

2v2
7

, (4.33)

As stated above, the density ρk := ρk
(
Tk, gk

)
and the specific inner energy uk :=

uk
(
Tk, gk

)
are given by an equation of state in dependency of the temperature and

the Gibbs free energy.

It remains to compute the void fraction α from the entropy variables. Remember
that the scheme just needs the inverse mapping for computing the path

Φ(s;uL,uR) := u
(
Ψ(s;vL,vR)

)
:= u(s;v)

15From [78] the relation g(p, T ) can be inverted to get the pressure p. With known Gibbs free energy,
pressure and temperature the other properties can be derived.
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between two given states vL and vR with known uL and uR, with s ∈ [0, 1]. Because
the left and right volume fraction αL and αR are known, we have the possibility
to give an approximate expression for α. We simply approximate α by the mean
value

α(s) ≡ 1

2
(αL + αR). (4.34)

So finally, the approximate inverse mapping of the entropy variables is given by

u(v) ≈ uapprox

(
s;v
)
:=




αs

(1− αs)ρℓ

(1− αs)ρℓvℓ

(1− αs)ρℓEℓ

αsρg

αsρgvg

αsρgEg




=




αs

(1− αs) ρℓ
(
Tℓ, gℓ

)

(1− αs) ρℓ
(
Tℓ, gℓ

)
vℓ

(1− αs) ρℓ
(
Tℓ, gℓ

) (
uℓ
(
Tℓ, gℓ

)
+ 1

2
v2ℓ
)

αs ρg
(
Tg, gg

)

αs ρg
(
Tg, gg

)
vg

αs ρg
(
Tg, gg

) (
ug
(
Tg, gg

)
+ 1

2
v2g
)




.

(4.35)

Note that because of the approximation the entropy variables are not exact. In
the following, the derivative u′(v) of the inverse mapping of the entropy variables
for both models are developed. This is needed for the ESPCs scheme, see (4.30),
and later for the regularization (4.42) of ESPC and ESPCs.

◮ Derivative of inverse mapping of entropy variables

• Homogeneous equilibrium model

The derivative of inverse mapping of entropy variables can directly be derived from
the Hessian η′′(u) (2.154) by the equality

u′(v) := ∂vu =
(
∂uv

)−1
=
(
η′′(u)

)−1
. (4.36)

Thus, by computing the inverse of the Hessian we get

u′(v) =




u′
11 vhu

′
11 u′

13

vhu
′
11 vhu

′
11 + ρ2h u′

23

u′
13 u′

23 u′
33


 , (4.37)

with

u′
11 :=

(Th)uρh
3

(ph)ρ(Th)uρh − (Th)ρ
(
(Th)ρρh

2 + (Th)uph
) ,

u′
13 :=

ρh
3
(
2(Th)ρρh − (Th)u (vh

2 + 2uh)
)

2(Th)ρ
(
(Th)ρρh

2 + (Th)uph
)
− 2(ph)ρ(Th)uρh

,
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u′
23 :=

vhρh
2
(
2(Th)

2
ρρh

2 − (Th)u
(
vh

2 + 2((ph)ρ + uh)
)
ρh + 2(Th)ρ (ρh

2 + (Th)uph)
)

2(Th)ρ
(
(Th)ρρh

2 + (Th)uph
)
− 2(ph)ρ(Th)uρh

,

u′
33 :=

4(Th)
2
ρvh

2ρh
4 −

(
(Th)u (vh

2 + 2uh)
2 + 4(ph)ρ ((Th)uvh

2 + ρh)
)
ρ2h

4(Th)ρ
(
(Th)ρρh

2 + (Th)uph
)
− 4(ph)ρ(Th)uρh

+
+4(Th)ρρh

2 ((vh
2 + 2uh) ρh

2 + ph ((Th)uvh
2 + ρh))

4(Th)ρ
(
(Th)ρρh

2 + (Th)uph
)
− 4(ph)ρ(Th)uρh

. (4.38)

• Two-velocity two-pressure model

In Section 2.5.1 it was proven that there exists an entropy pair (η, ψ) with convex
entropy η which is not necessarily strictly convex.. Thus, η′′ might be not strictly
positive definite and might be locally singular such that it might not be possible
to invert η′′ as we did above for the homogeneous equilibrium model.

As ad hoc fix we propose to compute this matrix numerically by finite differences,

u′(v) := ∂vu ≈




u1(v+ε1)−u1(v−ε1)
2ε

u1(v+ε2)−u1(v−ε2)
2ε

. . . u1(v+ε7)−u1(v−ε7)
2ε

...
...

...
u7(v+ε1)−u7(v−ε1)

2ε
u7(v+ε2)−u7(v−ε2)

2ε
. . . u7(v+ε7)−u7(v−ε7)

2ε


 ,

(4.39)

with zero-vectors εj=1,...,7 ∈ R7, which just have an ε > 0 value at the j-th position.
But here we need to be carefully with the discretization εj, because for εj → 0 the
approximate matrix must become singular as well.

The influence on the solution of this ad hoc fix must be investigated and a rea-
sonable choice for the discretization step size εj needs to be found. In Section 7.2
the solution for Sod’s shock tube problem for different finite differences approxi-
mations (4.39) are considered. Because this problem bases on the homogeneous
equilibrium model, the solutions can be compared with the results using the exact
Hessian (4.37). It can be seen, that with a value of εj = 0.1 or lower the approx-
imated solution is similar to the solution with exact entropy viscosity, see Figure
47 and Table 2.
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4.3. Entropy stable path-consistent (ESPC) schemes

With the above postulated condition of an entropy identity (4.22), it is ensured that
entropy is never dissipated. But this is just what we expect in the case for smooth
solutions. Especially for the case of shocks, we would assume that entropy is dissipated.
Therefore, we can conclude that an ECPC scheme just covers the smooth solutions,
where no shocks appear. Fjordholm and Mishra [115] observed that for ECPC schemes
large oscillations appear behind a shock. Therefore we need a stronger property for our
scheme to model the dissipation at shocks.

4.3.1. Regularization

Castro et al. [108] considered the regularized equation,

∂tu+ A(u) ∂xu = εR ∂x
(
R(u) ∂xu

)
, (4.40)

with numerical viscosity coefficient εR > 0 and viscosity matrix R(u). This equation
extends the quasi-linear system (3.7) by adding numerical diffusion on the right-hand
side. The numerical viscosity R(u) is responsible for the observed lack of convergence
to the physically relevant solutions in the ECPC scheme.

A path-consistent scheme is said to be entropy stable if the fluctuations are satisfying
the following condition:

D±(uL,uR) = D±
EC(uL,uR)±

εR
∆x

R̂(vL,vR) (vR − vL). (4.41)

D±
EC are the fluctuations of the ECPC or ECPSc scheme and R̂(vL,vR) is the numerical

viscosity operator, which must be a symmetric positive definite matrix. This property is
used below in (4.47) to show the entropy stability of the scheme. Fjordholm and Mishra
[115] stated that the limit of viscous regularizations for the non-conservative system

(3.7) is sensitive to the choice of the diffusion operator R̂. Note, that for conservative
systems this is well known. To obtain convergence to a correct solution it is essential
to choose a suitable numerical diffusion operator that matches the underlying physical
viscosity.

◮ Entropy viscosity

One possibility is to choose the entropy viscosity, which is given by the derivative of the
inverse mapping of the entropy variables,

R̂(vL,vR) (vR − vL) := u′(vL,vR) (vR − vL). (4.42)

The needed derivatives are given in (4.37) and (4.39).

◮ Uniform viscosity

Besides, Fjordholm and Mishra [115] propose to use uniform viscosity, by using

R̂(vL,vR) (vR − vL) := (uR − uL). (4.43)
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◮ Navier-Stokes viscosity

Additionally, Fjordholm and Mishra propose to use the Navier-Stokes viscosity. But
Guermond and Popov [116] encountered two difficulties: Because there is no regular-
ization in the continuity equation the viscosity operator might be inconsistent with
most numerical discretizations. And additionally the Navier-Stokes equations violate
the minimum entropy principle if the thermal diffusivity is nonzero, see e.g., Serre [117],
Theorem 8.2.3.

With the above proposed choice it is ensured that R̂ is symmetric positive definite, be-
cause it can be derived from the Hessian η′′(u), compare its derivation in (4.36). The
diffusion operator is evaluated at the cell interface. Because we assume a linear path
along the entropy variables, we use the inverse mapping at the center of the mean entropy
variables, 1

2
(vL + vR).

4.3.2. Path consistency

It can easily be shown that the path consistency of the extended scheme follows from
the path consistency of the ECPC or ECPCs scheme:

D±(u,u) = D±
EC(u,u) = 0,

D−(uL,uR) +D+(uL,uR) = D−
EC(uL,uR) +D+

EC(uL,uR), (4.44)

see (4.10) and (4.11).

4.3.3. Entropy stability

We need to show that the ESPC or ESPCs scheme satisfies the discrete entropy inequal-
ity,

∂tη(ui) +
1

∆x

(
ψ̂i+1/2 − ψ̂i−1/2

)
≤ 0, (4.45)

with numerical entropy flux

ψ̂i+1/2 := ψ̂(ui,ui+1) = ψ(ui) + vT

i D
−
EC(ui,ui+1)−

εR
2∆x

(vi+1 + vi)
T R̂ (vi+1 − vi)

(4.23)
= ψ̃i+1/2 −

εR
2∆x

(vi+1 + vi)
T R̂ (vi+1 − vi). (4.46)

We notice that with (4.44) the numerical entropy flux ψ̂ is consistent with the entropy

flux ψ, meaning ψ̂(u,u) ≡ ψ(u). To show the entropy inequality, we start from our
scheme in fluctuation form (4.8):

∂tui +
1

∆x

(
D−

i+1/2 +D+
i−1/2

)
= 0

(4.41)⇔ vT

i ∂tui +
1

∆x

(
vT

i D
−
EC, i+1/2 + vT

i D
+
EC, i−1/2

)
=

εR
∆x2

vT

i R̂
(
vi−1 − 2vi + vi+1

)
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⇔ ∂tη(ui) +
1

∆x

(
vT

i D
−
EC, i+1/2 + ψ(ui)− ψ(ui) + vT

i D
+
EC, i−1/2

)

=
εR
∆x2

vT

i R̂
(
vi−1 − 2vi + vi+1

)

(4.23)
(4.24)⇔ ∂tη(ui) +

1

∆x

(
ψ̃i+1/2 − ψ̃i−1/2

)
=

εR
∆x2

vT

i R̂
(
vi−1 − 2vi + vi+1

)

(4.46)⇔ ∂tη(ui) +
1

∆x

(
ψ̂i+1/2 − ψ̂i−1/2

)
=

εR
∆x2

vT

i R̂
(
vi−1 − 2vi + vi+1

)

− εR
2∆x2

(vi+1 + vi)
T R̂ (vi+1 − vi) +

εR
2∆x2

(vi + vi−1)
T R̂ (vi − vi−1)

⇔ ∂tη(ui) +
1

∆x

(
ψ̂i+1/2 − ψ̂i−1/2

)
=

− εR
2∆x2

(vi+1 − vi)
T R̂ (vi+1 − vi)−

εR
2∆x2

(vi − vi−1)
T R̂ (vi − vi−1)

(4.47)

4.3.4. CFL condition

Because R̂ is assumed as symmetric positive definite the entropy inequality (4.45) holds.
The additional numerical viscosity changes the standard CFL condition:

∆t

∆x

(
|λmax|+

2εR
∆x

)
≤ 1, (4.48)

with λmax as the maximal absolute eigenvalue over all cells at some time t. The numerical
viscosity coefficient is chosen as

εR =
|λmax|
2

∆x, (4.49)

such that εR vanishes as the mesh is refined. This agrees with the choice of Fjordholm
and Mishra [115].
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5. Relaxation approach

In Section 4 we presented path-conservative schemes to solve the equations of the two-
phase flow model. The motivation for this Section is to find Riemann solutions of the
models, such that the Godunov solver introduced in (4.16) and (4.17) can be used.
Because the pressure is non-linear, the conventional model provides genuinely nonlinear
waves, such that the exact Riemann invariants cannot be found. Here we follow the
relaxation approach: The original two-phase flow model is extended, such that the
enlarged model is linearly degenerate. Thus, a Riemann solution is easier to find. So,
the general idea is to approximate the exact solution of the original two-phase flow model
by the Riemann solution of the relaxation system.

Suliciu [118, 9] proposed to modify only the pressure law by making the pressure a new
dependent variable. The advantage is that a quasilinear system of first order is obtained
which is consistent with the original system. Additionally, the relaxation system is
consistent with the entropy inequality in the regime of a relaxation time of zero [119].
See also Liu [120] and Chen, Levermore and Liu [121].

In general, a Suliciu relaxation scheme is obtained by adding new balance laws which
depend on a constant relaxation parameter such that all eigenvalues of the relaxation
model are associated with a linearly degenerate field. Thus, the system of conservation
laws in non-conservative form is given by

∂tu+ ∂xf(u) + B(u)∂xu = sr(u) + s(u). (5.1)

The full problem is solved using the two-step splitting strategy of Jin and Xin [122]: At
first the evolution step (which corresponds to an infinite relaxation time) accounts for all
convective effects, where the second relaxation step (which corresponds to a relaxation
time of zero) takes the relaxation source terms into account. In the following, both steps
are explained in more detail:

◮ Evolution in time (tn → tn+1,−)

The homogeneous subproblem describing all convective effects is given by

∂tu+ ∂xf(u) + B(u)∂xu = 0. (5.2)

Because all eigenvalues of the model are associated with a linearly degenerate field, at
each cell interface a sequence of non-interacting Riemann problems occur. Therefore
we regard for the homogeneous quasilinear system (5.2) simply the Riemann problem
satisfying the initial condition

u0(x) =

{
uL, x < 0,

uR, x > 0,
(5.3)

with two valid states uL and uR in Ω. A solution of the Riemann problem is a self-
similar mapping u(x, t) = ur(

x
t
;uL,uR), which is made of constant intermediate states
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Figure 37: Sketch of the solution of the Riemann problem.

separated by waves whose constant speeds are distinct eigenvalues of the system [123],
a, see Figure 37.
So, for ñ distinct eigenvalues λj=1,...ñ, the solution consists of the left state uL, ñ − 1
unknown intermediate states uj=1,...ñ−1, and the right state uR, ordered in ascend-
ing order in space. Two neighboring states uj−1 and uj are separated by a contact
discontinuity which propagates with the corresponding characteristic speed λj, where
λj(uj−1) = λj(uj). Because the corresponding j-Riemann invariants w(j) are con-
stant across the ñ contact discontinuities they are equal for both neighboring states,

w(j)(uj−1)
!
= w(j)(uj). This constraint is used to find the unknown intermediate states.

Usually the natural order of the waves is known, such that the waves can be sorted
in ascending order, with speed λj < λj+1. The constant relaxation parameter should
be chosen large enough, such that this natural order of the waves also holds for the
intermediate states, i.e.

λ1(uL) = λ1(u1) < λ2(u1) = λ2(u2)

< . . .

< λñ−1(uñ−2) = λñ−1(uñ−1)

< λñ(uñ−1) = λñ(uR). (5.4)
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The solution of the Riemann problem is then given by

u(x, t) = ur(
x
t
;uL,uR) =





uL,
x
t
< λ1(uL)

u1, λ1(u1) <
x
t
< λ2(u1)

u2, λ2(u2) <
x
t
< λ3(u2)

...
...

uñ−1, λñ−1(uñ−1) <
x
t
< λñ(uñ−1)

uR, λñ(uR) <
x
t

. (5.5)

The intermediate states uj=1,...ñ−1 are obtained using the Rankine-Hugoniot jump rela-
tions across the ñ contact discontinuities [119].

So for given initial values un
i this step computes approximate solutions un+1,−

i through
the time interval [tn, tn + ∆t]. As numerical solver the Godunov method can be used,
see Section 3. This method is called Godunov-Suliciu solver. We need to ensure that
the local solutions of neighboring cells do not interact during the time period ∆t. This
gives us the classical CFL condition

∆t

∆x
max

i
|λj(un

i )| <
1

2
, j ∈ {0, . . . , ñ}. (5.6)

Observe that under this CFL condition the constant relaxation parameter can be chosen
locally at each cell [123].

◮ Source terms at instantaneous relaxation (tn+1,− → tn+1)

In the second step the relaxation source terms are considered for an infinite relaxation
time,

∂tu = sr(u), (5.7)

with u
n+1,−
i as initial data. This step corresponds to a projection on the equilibrium

manifold. The ordinary differential equation system can be solved exactly with a full
time step of length ∆t which finally provides the solution un+1

i .

In the following, relaxation models for the homogeneous equilibrium model and the two-
velocity two-pressure model are derived, see Sections 5.1 and 5.3. For better readability,
the same notation as introduced in 2.3 is used, despite that the system dimension n is
now 4 or 9 instead of 7. In Section 5.2 and 5.4 a numerical solution of the relaxation
model is derived.
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5.1. Relaxation homogeneous equilibrium four-equations model

For the relaxation of the homogenous model, a pressure balance law is needed. It can be
derived from the pressure relation (2.55), multiplying it ρk times, and adding pk times
the mass balance equation, such that we get

∂t(ρhph) + ∂x(ρhvhph) + ρ2hc
2
h ∂xvh = ρh sph , (5.8)

with the source term

sph = −vh(pk)u
ρh

sρhvh +
(pk)u
ρh

sρhEh
. (5.9)

Suliciu introduced a new parameter πh which is defined by a Chapman-Enskog expansion
of first order,

πh := π
(0)
h︸︷︷︸

:=ph

+ εhπ
(1)
h . (5.10)

The zeroth-order approximation is taken to be the pressure such that for the relaxation
time εh → 0 it holds πh → ph. The system is at equilibrium whenever πh = ph [124].

With this expansion, the above approximate pressure balance law (5.8) will be relaxated
by replacing the pressure ph by πh. The pre-factor of the velocity derivative, ρ2hc

2
h, is

chosen to be locally (in time and space) constant, thus it is replaced by a constant
parameter a2h. Additionally, the source terms are neglected and instead a procedure
of relaxation to equilibrium is added at the right hand side. So finally, the relaxation
balance law is given by

∂t(ρhπh) + ∂x(ρhvhπh) + a2h ∂xvh = ρh
1

εh
(ph − πh)

︸ ︷︷ ︸
=−π

(1)
h

. (5.11)

Now, we can give an expression of the first-order corrector of πh by studying the asymp-
totic behavior of the relaxation pressure balance law for εh → 0. It holds:

∂t(ρhπh) + ∂x(ρhvhπh) + a2h ∂xvh + ρhπ
(1)
h

= ∂t

(
ρh(ph + εhπ

(1)
h )
)
+ ∂x

(
ρhvh(ph + εhπ

(1)
h )
)
+ a2h ∂xvh + ρhπ

(1)
h

= ∂t(ρhph) + εh ∂t(ρhπ
(1)
h )︸ ︷︷ ︸

→0

+∂x(ρhvhph) + εh ∂x(ρhvhπ
(1)
h )︸ ︷︷ ︸

→0

+a2h ∂xvh + ρhπ
(1)
h

= ∂t(ρhph) + ∂x(ρhvhph) + a2h ∂xvh + ρhπ
(1)
h

!
= ∂t(ρhph) + ∂x(ρhvhph) + ρ2hc

2
h ∂xvh, (5.12)

such that we get

−π(1)
h =

a2h − ρ2hc
2
h

ρh
∂xvh. (5.13)
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The constant parameter ah is chosen below in Section 5.1.4, such that the subcharacter-
istic condition holds.

Now, the relaxation homogeneous equilibrium model is obtained by replacing all pressure
terms ph in the mass, momentum and energy balance laws by πh. To express the system
in the general conservative form,

∂tu+ ∂xf(u) = sr(u) + s(u),

the independent variables u, the flux vector f(u) and the relaxation source vector sr(u)
are given by

u :=




ρh

ρhvh

ρhEh

ρhπh



, f(u) =




ρhvh

ρhv
2
h + πh

(ρhEh + πh)vh

ρhvhπh + a2hvh



, sr(u) =




0

0

0

ρh
1
εh
(ph − πh)



, (5.14)

where the source vector s(u) is given by

s(u) =




sρh

sρhvh

sρhEh

sρhπh




=




0

ρh g sin(ϑ) + Fw ℓ + Fw g

ρhvh g sin(ϑ) + (Fw ℓ + Fw g)vh +Qw ℓ +Qw g

0



. (5.15)

All solutions for u are in the set of admissible states,

Ω = {u ∈ Rn | ρh > 0, uh > 0, ch > 0} (5.16)

with n = 3, where uh is the specific internal energy, given by the physical law

uh = Eh − 1
2
v2h. (5.17)

To transform the system in closed quasilinear form, we need to differentiate the flux
vector f(u) with respect to our independent variables u, such that the system matrix
A(u) is given by:

A(u) = ∂uf(u) =




0 1 0 0

−πh+ρhv
2
h

ρh
2vh 0 1

ρh

− (2πh+Ehρh)vh
ρh

Eh +
πh

ρh
vh

vh
ρh

−πhvh − a2hvh
ρh

πh +
a2h
ρh

0 vh



. (5.18)

By construction of the Suliciu relaxation, the relaxation model should have the same
thermodynamical and mathematical properties as the original two-phase flow model (see
Section 2.5).
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5.1.1. Second law of thermodynamics

For the relaxation homogeneous equilibrium model the same entropy-entropy flux pair is
chosen as for the homogeneous equilibrium model (2.151):

η(u) = −ρhsh and ψ(u) = −ρhvhsh, (5.19)

such that the following entropy variables arise

η′(u) := v(u) =




ph
ρh

+ uh − 1
2
v2h

Th
− sh

vh
Th

− 1

Th
0




(2.88)
=




gh − 1
2
v2h

Th
vh
Th

− 1

Th
0




, (5.20)

The entropy compatibility condition in (2.85) is fulfilled:

∂uψ(u)
T =




vh ·
ph
ρh

+ uh − 1
2
v2h

Th
v2h
Th

− sh

− vh
Th
0




= ∂uη(u)
T · A(u). (5.21)

and the entropy production stays zero. The Hessian of the entropy function is given by

η′′(u) =




Th(ph)ρ−(ph+2ρh(Eh−v2h))(Th)ρ+(Eh−v2h)
2
(Th)u+v2hTh

ρhT
2
h

−vh
(
η13 +

Th

ρhT
2
h

)
η13 0

−ρhvh(Th)ρ+vh(Eh−v2h)(Th)u−vhTh

ρhT
2
h

v2h(Th)u+Th

ρhT
2
h

−vh(Th)u
ρhT

2
h

0

ρh(Th)ρ−(Eh−v2h)(Th)u
ρhT

2
h

−vh(Th)u
ρhT

2
h

(Th)u
ρhT

2
h

0

0 0 0 0



,

(5.22)

with η13 :=
ρh(Th)ρ−(Eh−v2h)(Th)u

ρhT
2
h

. This Hessian is similar to the Hessian of the homogeneous

equilibrium model (2.154), it has just one additional row and column with zeros. It is
obvious that η(u) is convex as it is known from the homogeneous equilibrium model, but
η(u) is not strictly convex. Therefore we need to show that the system is still hyperbolic.

5.1.2. Hyperbolicity

In order to characterize mathematical properties, the equation systems are transformed
in quasi-conservative form (2.114)

∂tũ+ Ã(ũ)∂xũ = s̃(ũ),
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with primitive system vector

ũ :=
(
ρh vh uh ph

)T
. (5.23)

and primitive system matrix

Ã(ũ) =




vh ρh 0 0

0 vh 0 1
ρh

0 πh

ρh
vh 0

0
a2h
ρh

0 vh



. (5.24)

The eigenvalue matrix Λ and the right and left eigenvectors R and L are given by

Λ =




vh − ah
ρh

0 0 0

0 vh 0 0
0 0 vh 0
0 0 0 vh +

ah
ρh


 , (5.25)

RT =




ρ2h
a2h

1 0
ρ2h
a2h

− 1
ah

0 0 1
ah

ph
a2h

0 1 ph
a2h

1 0 0 1



, (5.26)

and

L =




0 −ah
2

0 1
2

1 0 0 −ρ2h
a2h

0 0 1 − ph
a2h

0 ah
2

0 1
2



. (5.27)

The system admits four real eigenvalues, vh (double) and vh ± ah
ρh
. Because the corre-

sponding eigenvectors are linearly independent the quasilinear system is hyperbolic.

5.1.3. Characteristic fields

The motivation to construct a relaxation model was to obtain a linearly degenerate
system, such that ∂ũλj Rj = 0 for all j = 1, . . . , n. The j-Riemann invariants w(j) of
the linearly degenerate j-characteristic fields are given by

w(1) =

{
vh −

ah
ρh
, ph + vhah,−1

2
p2h + uha

2
h

}
,

w(2) = w(3) =
{
vh, ph

}
,

w(4) =

{
vh +

ah
ρh
, ph − vhah,−1

2
p2h + uha

2
h

}
. (5.28)
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5.1.4. Sub-characteristic condition

The subcharacteristic condition is fulfilled, if the eigenvalues of the homogeneous equilib-
rium model are interlaced with the eigenvalues of the relaxation homogeneous equilibrium
model. It’s obvious that with

ch ≤ ah
ρh

(5.29)

the sub-characteristic condition is fulfilled. This gives us a condition for the constant
parameter ah, such that we choose

ah ≥ ρhch. (5.30)

5.1.5. Symmetrisation of the hyperbolic system

A symmetric positiv definite matrix P (ũ) is given by choosing

P (ũ) := R−1L =




1 0 0 −ρ2h
a2h

0
a2h
2

0 0

0 0 1 − ph
a2h

−ρ2h
a2h

0 − ph
a2h

1
2
+

p2h+ρ4h
a4h



, (5.31)

With this choice also P (ũ)Ã(ũ) is symmetric.
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5.2. Riemann solver for the relaxation homogeneous equilibrium
model

As introduced at the beginning of this Section, the Riemann solution is provided in two
steps: Starting with un

i as initial data, at first the convective part is solved, such that
the solution u

n+1,−
i is provided. Then as second step, the projection on the equilibrium

manifold is solved, such that the solution un+1
i at the next time step is provided.

◮ Evolution in time

The relaxation homogeneous equilibrium model has ñ = 3 distinct eigenvalues vh and
vh± ah

ρh
, where the term ah

ρh
is dominating the magnitude. The natural order of the waves

is given by

λ1 := vh −
ah
ρh

< λ2 := vh < λ3 := vh +
ah
ρh
. (5.32)

Using now the Rankine-Hugoniot jump relations across the discontinuities16 (see Section
5.1.3) we get the equation system:

(
vh −

ah
ρh

)

L

!
=

(
vh −

ah
ρh

)

1

,

(πh + vhah)L
!
= (πh + vhah)1 ,(

−1
2

(
πh
)2

+ uha
2
h

)
L

!
=
(
−1

2

(
πh
)2

+ uha
2
h

)
1
,

(vh)1
!
= (vh)2 ,

(πh)1
!
= (πh)2 ,

(
vh +

ah
ρh

)

2

!
=

(
vh +

ah
ρh

)

R

,

(πh − vhah)2
!
= (πh − vhah)R ,(

−1
2

(
πh
)2

+ uha
2
h

)
2

!
=
(
−1

2

(
πh
)2

+ uha
2
h

)
R
. (5.33)

Solving for the parameters of the unknown intermediate states u1 and u2, a solution in
dependency of the known left uL and right state uR is obtained:

ũ1 =




(ρh)1

(vh)⋆

(uh)1

(πh)⋆



, ũ2 =




(ρh)2

(vh)⋆

(uh)2

(πh)⋆



, (5.34)

16Notice that due to the in (5.32) introduced order of the waves, the Riemann invariants in Section
5.1.3 have a different numbering than used in this Section.
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with

(vh)⋆ :=
(vh)R + (vh)L

2
− (πh)R − (πh)L

2ah
,

(πh)⋆ :=
(πh)R + (πh)L

2
− ah

(vh)R − (vh)L
2

,

(ρh)1 =
ah (ρh)L

ah + (ρh)L
(
(vh)⋆ − (vh)L

) ,

(ρh)2 =
ah (ρh)R

ah + (ρh)R
(
(vh)R − (vh)⋆

) ,

(uh)1 = (uh)L +
(πh)

2
⋆ − (πh)

2
L

2a2h
,

(uh)2 = (uh)R +
(πh)

2
⋆ − (πh)

2
R

2a2h
. (5.35)

Now, we need to ensure that the in (5.32) assumed order of the contact waves also holds
for the determined intermediate states:

λ1(u1) = (vh)L −
ah

(ρh)L

!
< λ2(u2) = (vh)⋆

!
< λ3(uR) = (vh)R +

ah
(ρh)R

. (5.36)

The validity of the two inequalities can be controlled by the constant parameter ah. The
inequalities deliver two quadratic conditions for ah and they hold, if ah is large enough
with

ah > max
{
(ρhch)L , (ρhch)R , a

⋆
h, a

⋆⋆
h

}
, (5.37)

where the first condition comes from the sub-characteristic condition (5.30), and

a⋆h =
1

4

(
− (ρh)L

(
(vh)R − (vh)L

)
±
√(

(ρh)L
)2(

(vh)R − (vh)L
)2

+ 8 (ρh)L
(
(πh)R − (πh)L

))
,

a⋆⋆h =
1

4

(
− (ρh)R

(
(vh)R − (vh)L

)
±
√(

(ρh)R
)2(

(vh)R − (vh)L
)2 − 8 (ρh)R

(
(πh)R − (πh)L

))
,

(5.38)

if the radicands are positive, otherwise a⋆h and a
⋆⋆
h are zero, respectively. With this choice

of ah it is also ensured that the intermediate densities are positive. This comes directly
from the order of the eigenvalues (5.36), and the fact that at each discontinuity it holds
λj(uj−1) = λj(uj). So, for the intermediate density (ρh)1 we know

(vh)1 −
ah

(ρh)1
< (vh)1 , (5.39)
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such that with a positive constant parameter ah in (5.37) the positivity for (ρh)1 is given.
In the same way this can be shown for (ρh)2.

Overall this means that for the relaxation homogeneous equilibrium model the solution
of the Riemann problem is known. For given initial values un

i the obtained result of this
step is denoted with u

n+1,−
i .

◮ Source terms at instantaneous relaxation (tn+1,− → tn+1)

In the second step the relaxation source terms are considered for an infinite relaxation
time, see (5.7), with u

n+1,−
i as initial data. This ordinary differential equation system

can be solved exactly. By the form of the relaxation source terms sr(u), just ρhπh evolves
according to the ordinary differential equation.

For the relaxation homogeneous equilibrium model we get

un+1
i =




(ρh)
n+1
i

(ρhvh)
n+1
i

(ρhEh)
n+1
i

(ρhπh)
n+1
i




=




(ρh)
n+1,−
i

(ρhvh)
n+1,−
i

(ρhEh)
n+1,−
i(

ρhph + exp
(
−∆t

εh

)
(ρhπh − ρhph)

)n+1,−

i



. (5.40)
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5.3. Relaxation two-velocity two-pressure nine-equations model

The two-velocity two-pressure seven-equations model is extended by appending the re-
laxation pressure balance laws. A balance law for the pressure can be derived from the
pressure relation (2.55), multiplying it αkρk times, and adding pk times the mass balance
equation, such that we get

∂t(αkρkpk) + ∂x(αkρkvkpk) + αkρ
2
kc

2
k ∂xvk + (vk − vi)ρ

2
k

(
pi
ρ2k

(pk)u + (pk)ρ

)
∂xαk

= αkρk spk + pk sαkρk , (5.41)

with source term [5]

spk = −
ρ2k(pk)ρ
αkρk

sαk
+
ρk(pk)ρ −

(
Ek − v2k

)
(pk)u

αkρk
sαkρk −

vk(pk)u
αkρk

sαkρkvk +
(pk)u
αkρk

sαkρkEk
.

(5.42)

Additionally the term with the spatial derivative of α is neglected, such that we use the
balance law

∂t(αkρkpk) + ∂x(αkρkvkpk) + αkρ
2
kc

2
k ∂xvk = 0. (5.43)

Suliciu intoduced a new parameter πk which is defined by a Chapman-Enskog expansion
of first order,

πk := π
(0)
k︸︷︷︸

:=pk

+ εkπ
(1)
k . (5.44)

The zeroth-order approximation is taken to be the pressure such that for the relaxation
time εk → 0 it holds πk → pk. The system is at equilibrium whenever πk = pk [124].

With this expansion, the above approximate pressure balance law (5.43) will be relax-
ated by replacing the pressure pk by πk and by replacing the pre-factor of the velocity
derivative, αkρ

2
kc

2
k, by a constant parameter a2k. Additionally, a procedure of relaxation

to equilibrium is added at the right-hand side, such that the relaxation balance law is
given by

∂t(αkρkπk) + ∂x(αkρkvkπk) = −a2k ∂xvk + αkρk
1

εk
(pk − πk)

︸ ︷︷ ︸
=−π

(1)
k

. (5.45)

Now, we can give an expression of the first-order corrector of πk by studying the asymp-
totic behavior of the relaxation pressure balance law for εk → 0. It holds:

∂t(αkρkπk) + ∂x(αkρkvkπk) + a2k ∂xvk + αkρkπ
(1)
k

= ∂t

(
αkρk(pk + εkπ

(1)
k )
)
+ ∂x

(
αkρkvk(pk + εkπ

(1)
k

)
+ a2k ∂xvk + αkρkπ

(1)
k
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= ∂t(αkρkpk) + εk ∂t(αkρkπ
(1)
k )︸ ︷︷ ︸

→0

+∂x(αkρkvkpk) + εk ∂x(αkρkvkπ
(1)
k )︸ ︷︷ ︸

→0

+a2k ∂xvk + αkρkπ
(1)
k

= ∂t(αkρkpk) + ∂x(αkρkvkpk) + a2k ∂xvk + αkρkπ
(1)
k

!
= ∂t(αkρkpk) + ∂x(αkρkvkpk) + αkρ

2
kc

2
k ∂xvk, (5.46)

such that we get

−π(1)
k =

a2k − αkρ
2
kc

2
k

αkρk
∂xvk. (5.47)

The constant parameter ak is chosen below in Section 5.3.4, such that the subcharacter-
istic condition holds.

The two-velocity two-pressure seven-equations model is extended by appending the re-
laxation pressure balance laws (5.45). Additionally, all pressure terms pk in the mass,
momentum and energy balance laws are replaced by πk, such that a nine-equation two-
phase flow model is reached. For the general non-conservative form,

∂tu+ ∂xf(u) + B(u) ∂xu = sr(u) + s(u), (5.48)

the independent variables u and the flux vector f(u) are given by

u :=




α

(1− α)ρℓ

(1− α)ρℓvℓ

(1− α)ρℓEℓ

(1− α)ρℓπℓ

αρg

αρgvg

αρgEg

αρgπg




, f(u) =




0

(1− α)ρℓvℓ

(1− α)(ρℓv
2
ℓ + πℓ)

(1− α)(ρℓEℓ + πℓ)vℓ

(1− α)ρℓvℓπℓ + a2ℓvℓ

αρgvg

α(ρgv
2
g + πg)

α(ρgEg + πg)vg

αρgvgπg + a2gvg




, (5.49)
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where the non-conservative system matrix B(u), the relaxation source vector sr(u) and
the source vector s(u) are given by

B(u) =




vi 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

πi 0 0 0 0 0 0 0 0

πivi 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−πi 0 0 0 0 0 0 0 0

−πivi 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




, sr(u) =




0

0

0

0

αℓρℓ
1
εℓ
(pℓ − πℓ)

0

0

0

αgρg
1
εg
(pg − πg)




, (5.50)

and

s(u) =




sα

sαℓρℓ

sαℓρℓvℓ

sαℓρℓEℓ

sαℓρℓπℓ

sαgρg

sαgρgvg

sαgρgEg

sαgρgπg




=




Γi

ρ̂i

−Γi

Fi + αℓρℓ g sin(ϑ)− v̂iΓi + Fw ℓ

Fivℓ +Qi ℓ + αℓρℓvℓ g sin(ϑ)− Êi ℓΓi + Fw ℓvℓ +Qw ℓ

0

Γi

−Fi + αgρg g sin(ϑ) + v̂iΓi + Fw g

−Fivg +Qi g + αgρgvg g sin(ϑ) + Êi gΓi + Fw gvg +Qw g

0




.

(5.51)

All solutions for u are in the set of admissible states,

Ω = {u ∈ Rn | ρk > 0, uk > 0, ck > 0} (5.52)

with n = 9, where uk is the specific internal energy, given by the physical law

uk = Ek − 1
2
v2k. (5.53)

For the closed quasilinear system ∂tu+A(u) ∂xu = sr(u)+s(u), we need to differentiate
the flux vector f(u) with respect to our independent variables u, such that the system
matrix A(u) is given by

A(u) = ∂uf(u) + B(u) =
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


vi 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

πi − πℓ −πℓ+ρℓv
2
ℓ

ρℓ
2vℓ 0 1

ρℓ
0 0 0 0

πivi − πℓvℓ − (2πℓ+Eℓρℓ)vℓ
ρℓ

Eℓ +
πℓ

ρℓ
vℓ

vℓ
ρℓ

0 0 0 0

0 −πℓvℓ − a2
ℓ
vℓ

αℓρℓ
πℓ +

a2
ℓ

αℓρℓ
0 vℓ 0 0 0 0

0 0 0 0 0 0 1 0 0

πg − πi 0 0 0 0 −πg+ρgv2g
ρg

2vg 0 1
ρg

πgvg − πivi 0 0 0 0 − (2πg+Egρg)vg
ρg

Eg +
πg

ρg
vg

vg
ρg

0 0 0 0 0 −πgvg − a2gvg

αgρg
πg +

a2g
αgρg

0 vg




.

(5.54)

Again we expect by construction of the Suliciu relaxation that the relaxation model has
the same thermodynamical and mathematical properties as the original two-phase flow
model (see Section 2.5). That this expectation holds is shown in the following.

5.3.1. Second law of thermodynamics

For the relaxation two-velocity two-pressure nine-equations model the same entropy-
entropy flux pair is chosen as for the two-velocity two-pressure seven-equations model
(2.91),

η(u) = −((1− α)ρℓsℓ + αρgsg) and ψ(u) = −((1− α)ρℓvℓsℓ + αρgvgsg), (5.55)

such that the following entropy variables arise

v(u) :=




pℓ
Tℓ

− pg
Tg

pℓ
ρℓ
+ uℓ − 1

2
v2ℓ

Tℓ
− sℓ

vℓ
Tℓ

− 1

Tℓ
0

pg
ρg

+ ug − 1
2
v2g

Tg
− sg

vg
Tg

− 1

Tg
0




(2.88)
=




pℓ
Tℓ

− pg
Tg

gℓ − 1
2
v2ℓ

Tℓ
vℓ
Tℓ

− 1

Tℓ
0

gg − 1
2
v2g

Tg
vg
Tg

− 1

Tg
0




. (5.56)
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The entropy compatibility condition in (2.85) gives the same condition on the interfacial
pressure and velocity as, for the two-velocity two-pressure seven-equations model :

∂uψ(u)
T !

= ∂uη(u)
T · A(u)

⇔




pℓvℓ
Tℓ

− pgvg
Tg

vℓ ·
pℓ
ρℓ
+ uℓ − 1

2
v2ℓ

Tℓ
v2ℓ
Tℓ

− sℓ

− vℓ
Tℓ
0

vg ·
pg
ρg

+ ug − 1
2
v2g

Tg
v2g
Tg

− sg

− vg
Tg
0




!
=




pℓvℓ
Tℓ

− pgvg
Tg

+ (pg−pi)(vg−vi)

Tg
− (pℓ−pi)(vℓ−vi)

Tℓ

vℓ ·
pℓ
ρℓ
+ uℓ − 1

2
v2ℓ

Tℓ
v2ℓ
Tℓ

− sℓ

− vℓ
Tℓ
0

vg ·
pg
ρg

+ ug − 1
2
v2g

Tg
v2g
Tg

− sg

− vg
Tg
0




. (5.57)

Therefore the interfacial pressure is defined as in (2.94). The Hessian of the entropy
function is given by

η′′(u) =




ηα,α ηT(1−α)uℓ,α
ηTαug ,α

η(1−α)uℓ,α
1

1−α
S ′′
ℓ (uℓ) 0

ηαug ,α 0 1
α
S ′′
g (ug)


 (5.58)

with phasic entropy function

Sk(uk) := −ρksk with uT

k = (ρk, ρkvk, ρkEk, πkEk), (5.59)

and derivatives

S ′
k(uk) =




pk+ρk(Ek−v2
k
)

ρkTk
− sk

vk
Tk

− 1
Tk

0



, (5.60)
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and

S ′′
k (uk) =




Tk(pk)ρ−(pk+2ρk(Ek−v2
k
))(Tk)ρ+(Ek−v2

k)
2
(Tk)u+v2

k
Tk

ρkT
2
k

−vk
(
S13 +

Tk

ρkT
2
k

)
S13 0

−ρkvk(Tk)ρ+vk(Ek−v2
k
)(Tk)u−vkTk

ρkT
2
k

v2
k
(Tk)u+Tk

ρkT
2
k

−vk(Tk)u
ρkT

2
k

0

ρk(Tk)ρ−(Ek−v2
k
)(Tk)u

ρkT
2
k

−vk(Tk)u
ρkT

2
k

(Tk)u
ρkT

2
k

0

0 0 0 0



,

(5.61)

with S13 :=
ρk(Tk)ρ−(Ek−v2

k
)(Tk)u

ρkT
2
k

. From the relaxation homogeneous equilibrium model we

already know that the phasic entropy functions Sk(uk) are strictly convex, because the
equation of state satisfies the same constraints. In order to verify now that η(u) is a
convex function of u, we follow the same proof as shown for the two-velocity two-pressure
seven-equations model.

The entropy production terms are the same as those from the two-velocity two-pressure
seven-equations model (2.105), because the additional source entries for the pressure
balance laws cancel out. This means that we get the same closures for

• source specific total energy (2.106),

• source specific enthalpy (2.107),

• source velocity (2.110), and

• source saturated temperature (2.112).

5.3.2. Hyperbolicity

In order to characterize mathematical properties, the equation systems are transformed
in quasi-conservative form (2.114)

∂tũ+ Ã(ũ)∂xũ = s̃(ũ),

with primitive system vector

ũ :=
(
α ρℓ vℓ uℓ πℓ ρg vg ug πg

)T
. (5.62)
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and primitive system matrix

Ã(ũ) =




vi 0 0 0 0 0 0 0 0

−ρℓ(vℓ−vi)
1−α

vℓ ρℓ 0 0 0 0 0 0

− πℓ−πi

(1−α)ρℓ
0 vℓ 0 1

ρℓ
0 0 0 0

−πi(vℓ−vi)
(1−α)ρℓ

0 πℓ

ρℓ
vℓ 0 0 0 0 0

0 0
a2
ℓ

(1−α)ρℓ
0 vℓ 0 0 0 0

ρg(vg−vi)

α
0 0 0 0 vg ρg 0 0

πg−πi

αρg
0 0 0 0 0 vg 0 1

ρg

πi(vg−vi)

αρg
0 0 0 0 0 πg

ρg
vg 0

0 0 0 0 0 0
a2g
αρg

0 vg




. (5.63)

The eigenvalue matrix Λ and the right and left eigenvectors R and L are given by

Λ =




vi 0 0 0 0 0 0 0 0
0 vℓ − aℓ

ρℓ
√
αℓ

0 0 0 0 0 0 0

0 0 vℓ 0 0 0 0 0 0
0 0 0 vℓ 0 0 0 0 0
0 0 0 0 vℓ +

aℓ
ρℓ
√
αℓ

0 0 0 0

0 0 0 0 0 vg − ag
ρg

√
αg

0 0 0

0 0 0 0 0 0 vg 0 0
0 0 0 0 0 0 0 vg 0
0 0 0 0 0 0 0 0 vg +

ag
ρg

√
αg




, (5.64)
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RT =




1 0 0 0 0 0 0 0 0

πℓ−πi+ρℓ

(
a2
ℓ

αℓρ
2
ℓ

−(vℓ−vi)
2

)

αℓ

(
a2
ℓ

αℓρ
2
ℓ

−(vℓ−vi)2
) αℓρ

2
ℓ

a2
ℓ

1 0
αℓρ

2
ℓ

a2
ℓ

0 0 0 0

− (πℓ−πi)(vℓ−vi)

αℓρℓ

(
a2
ℓ

αℓρ
2
ℓ

−(vℓ−vi)2
) −

√
αℓ

aℓ
0 0

√
αℓ

aℓ
0 0 0 0

π2
ℓ
−πℓπi+πiρℓ

(
a2
ℓ

αℓρ
2
ℓ

−(vℓ−vi)
2

)

αℓρ
2
ℓ

(
a2
ℓ

αℓρ
2
ℓ

−(vℓ−vi)2
) αℓπℓ

a2
ℓ

0 1 αℓπℓ

a2
ℓ

0 0 0 0

(πℓ−πi)
a2
ℓ

αℓρ
2
ℓ

αℓ

(
a2
ℓ

αℓρ
2
ℓ

−(vℓ−vi)2
) 1 0 0 1 0 0 0 0

−
πg−πi+ρg

(
a2g

αgρ
2
g
−(vg−vi)

2

)

α

(
a2g

αgρ
2
g
−(vg−vi)2

) 0 0 0 0
αgρ2g
a2g

1 0
αgρ2g
a2g

(πg−πi)(vg−vi)

αρg

(
a2g

αgρ
2
g
−(vg−vi)2

) 0 0 0 0 −
√
αg

ag
0 0

√
αg

ag

−
π2
g−πgπi+πiρg

(
a2g

αgρ
2
g
−(vg−vi)

2

)

αρ2g

(
a2g

αgρ
2
g
−(vg−vi)2

) 0 0 0 0 αgπg

a2g
0 1 αgπg

a2g

−
(πg−πi)

a2g

αgρ
2
g

α

(
a2g

αgρ
2
g
−(vg−vi)2

) 0 0 0 0 1 0 0 1




, (5.65)
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and

L =




1 0 0 0 0 0 0 0 0

−
(πℓ−πi)

aℓ
ρℓ

√
αℓ

2αℓ

(
aℓ

ρℓ
√

αℓ
−vℓ+vi

) 0 − aℓ
2
√
αℓ

0 1
2

0 0 0 0

− ρℓ
1−α

1 0 0 −αℓρ
2
ℓ

a2
ℓ

0 0 0 0

− πi

αℓρℓ
0 0 1 −αℓπℓ

a2
ℓ

0 0 0 0

−
(πℓ−πi)

aℓ
ρℓ

√
αℓ

2αℓ

(
aℓ

ρℓ
√

αℓ
+vℓ−vi

) 0 aℓ
2
√
αℓ

0 1
2

0 0 0 0

(πg−πi)
ag

ρg
√

αg

2α
(

ag
ρg

√
αg

−vg+vi

) 0 0 0 0 0 − ag
2
√
αg

0 1
2

ρg
α

0 0 0 0 1 0 0 −αgρ2g
a2g

πi

αρg
0 0 0 0 0 0 1 −αgπg

a2g

(πg−πi)
ag

ρg
√

αg

2α
(

ag
ρg

√
αg

+vg−vi

) 0 0 0 0 0 ag
2
√
αg

0 1
2




. (5.66)

The system admits nine real eigenvalues which are all real but not necessarily distinct:
vi, vk and vk± ak

ρk
√
αk
. Also here the corresponding eigenvectors are linearly independent,

as soon as the non-resonance condition is fulfilled:

vi 6= vk ±
ak

ρk
√
αk

. (5.67)

Below in (5.71) the parameter ak is chosen, such that the term ak
ρk

√
αk

is close to the

speed of sound. Thus, for subsonic flow the non-resonance condition is fulfilled.

5.3.3. Characteristic fields

The motivation to construct a relaxation model was to obtain a linearly degenerate
system, such that ∂ũλj Rj = 0 for all j = 1, . . . , n. Note that the first eigenvalue vi was
already chosen in equation (2.122), such that its associated field is linearly degenerated.

Each j-characteristic field has several j-Riemann invariants w
(j)
p , which are constant

along the trajectories of the vector field Rj:

∂ũw
(j)
p Rj

!
= 0, (5.68)

From this definition it is obvious to see that λj is also a j-Riemann invariant if the
j-characteristic field is linearly degenerated [99]. A linearly degenerated j-characteristic
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field of an eigenvalue λj with multiplicity mj has exactly (n−mj) j-Riemann invariants,
whose gradients are all linearly independent17. The j-Riemann invariants are given by

w(1) =
{
vi,

αℓρℓ(vℓ − vi),

uℓ +
πℓ
ρℓ

+ 1
2
(vℓ − vi)

2,

ug +
πg
ρg

+ 1
2
(vg − vi)

2,

αℓρℓπℓ(vℓ − vi) + a2ℓvℓ,

αgρgπg(vg − vi) + a2gvg,

αℓ

(
πℓ + ρℓvℓ(vℓ − vi)

)
+ αg

(
πg + ρgvg(vg − vi)

)
,

αℓρℓsℓ(vℓ − vi) + αgρgsg(vg − vi)
}
,

w(2) =

{
α, vℓ −

aℓ
ρℓ
√
αℓ

, πℓ + vℓ
aℓ√
αℓ

,−1
2
π2
ℓ + uℓ

a2ℓ
αℓ

, ρg, vg, ug, πg

}
,

w(3) = w(4) =
{
α, vℓ, πℓ, ρg, vg, ug, πg

}
,

w(5) =

{
α, vℓ +

aℓ
ρℓ
√
αℓ

, πℓ − vℓ
aℓ√
αℓ

,−1
2
π2
ℓ + uℓ

a2ℓ
αℓ

, ρg, vg, ug, πg

}
,

w(6) =

{
α, ρℓ, vℓ, uℓ, πℓ, vg −

ag
ρg
√
αg

, πg + vg
ag√
αg

,−1
2
π2
g + ug

a2g
αg

}
,

w(7) = w(8) =
{
α, ρℓ, vℓ, uℓ, πℓ, vg, πg

}
,

w(9) =

{
α, ρℓ, vℓ, uℓ, πℓ, vg +

ag
ρg
√
αg

, πg − vg
ag√
αg

,−1
2
π2
g + ug

a2g
αg

}
. (5.69)

An interesting point is that the last 1-Riemann invariant can be written in dependency of
the entropy-entropy flux pair as w

(1)
8 = −vi η(u)+ψ(u). This is due to the fact that the

interfacial pressure in (2.94) was chosen such that the entropy compatibility condition
holds. The special choice of pi can be seen as applying an additional conservation law to
the system. Further information about computing the Riemann invariants can be found
in [8].

5.3.4. Subcharacteristic condition

The sub-characteristic condition can be seen as a measure for the stability of an extended
system compared to the original system. This condition states that the wave velocities of
the origin system should never exceed the corresponding wave velocities in the extended
system [126], see also Whitham [127] and Liu [120].

17This was proven by Serre [125], Theorem 3.3.3.
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The sub-characteristic condition is fulfilled, if the eigenvalues of the two-velocity two-
pressure model are interlaced with the eigenvalues of the relaxation two-velocity two-
pressure model. It’s obvious that with

cℓ ≤
aℓ

ρℓ
√
αℓ

and cg ≤
ag

ρg
√
αg

(5.70)

the sub-characteristic condition is fulfilled. This gives us a condition for the constant
parameter ak, such that we choose

ak ≥
√
αkρkck. (5.71)

5.3.5. Symmetrisation of the hyperbolic system

We need to find a symmetric positive definite matrix P (ũ) such that also the matrix
P (ũ)Ã(ũ) is symmetric, Here we follow the idea from the two-velocity two-pressure seven-
equations model by choosing P (ũ) as introduced in (2.127) with the formulas (2.128)
and (2.129).

Please note that for the relaxation two-velocity two-pressure nine-equations model Λk,
Rk and Lk describe the 4× 4 sub-matrices from L, R and Λ, with rows/columns 2–5 for
liquid, and 6–9 for steam phase. Ãk α describes the 4 × 1 sub-matrix from the the first
column of Ã, rows 2–5 for liquid, and 6–9 for steam phase. So, finally we get

Pℓ =




1 0 0 −αℓρ
2
ℓ

a2
ℓ

0
a2
ℓ

2αℓ
0 0

0 0 1 −αℓπℓ

a2
ℓ

−αℓρ
2
ℓ

a2
ℓ

0 −αℓπℓ

a2
ℓ

1
2
+

α2
ℓ
(ρ4

ℓ
+π2

ℓ
)

a4
ℓ



, Pg =




1 0 0 −αgρ2g
a2g

0
a2g
2αg

0 0

0 0 1 −αgπg

a2g

−αgρ2g
a2g

0 −αgπg

a2g

1
2
+

α2
g(ρ

4
g+π2

g)

a4g



,

(5.72)

and

Pℓ α =




− ρℓ
αℓ

a2
ℓ
(πℓ−πi)(vℓ−vi)

2α2
ℓ
ρℓ

(
a2
ℓ

αℓρ
2
ℓ

−(vℓ−vi)2
)

− πi

αℓρℓ

πℓπi+ρ4
ℓ

ρℓa
2
ℓ

− a2
ℓ
(πℓ−πi)

2α2
ℓ
ρ2
ℓ

(
a2
ℓ

αℓρ
2
ℓ

−(vℓ−vi)2
)




, Pg α =




ρg
αg

− a2g(πg−πi)(vg−vi)

2α2
gρg

(
a2g

αgρ
2
g
−(vg−vi)2

)

πi

αgρg

−πgπi+ρ4g
ρga2g

+
a2g(πg−πi)

2α2
gρ

2
g

(
a2g

αgρ
2
g
−(vg−vi)2

)




.

(5.73)

Also here it holds that the choice for P (ũ) is realizable if the non-resonance condition
(5.67) holds. Pα is chosen as introduced in (2.134).
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5.4. Riemann solver for the relaxation two-velocity two-pressure
model

As introduced at the begin of this Section, the Riemann solution is provided in two
steps: Starting with un

i as initial data, at first the convective part is solved, such that
the solution u

n+1,−
i is provided. Then as second step, the projection on the equilibrium

manifold is solved, such that the solution un+1
i at the next time step is provided.

◮ Evolution in time (tn → tn+1,−)

For the relaxation two-velocity two-pressure model we would proceed in the same way as
for the homogeneous model above. Thus, we would order the eigenvalues and formulate
an equation system from the Rankine-Hugoniot jump relations across the discontinuities.
Regarding now the Riemann invariants (see Section 5.3.3) it is easy to detect that the
volume fractions αℓ and αg stay constant on the left-hand and on the right-hand side
of the vi-contact discontinuity. The other six waves act like two independent Euler
systems: they just affect their own phase without having influence on the other phase
nor the volume fraction. Just the vi-wave enforces an exchange of the liquid and steam
phase corresponding to the difference of the left and right volume fraction. That is why
the vi-discontinuity is often called the coupling wave between liquid and vapor phase
[128].

For the case of equal volume fractions αL = αR at the left-hand and right-hand side of
the Riemann problem, the spatial derivative of the volume fraction is zero, such that the
Riemann invariants of the vi-wave reduce to w

(1)
αL:=αR = {ρℓ, vℓ, uℓ, pℓ, ρg, vg, ug, pg}. This

leads to a decoupled system with two separated Euler equations such that the Riemann
solution can be computed exactly, compare with the solution of the homogeneous model.

For the general case of different volume fractions αL 6= αR at the left and right hand
side, the Riemann problem becomes more complicated. Due to the non-linearities of
the vi-Riemann invariants, the intermediate states of the Riemann problem are difficult
to determine. Since already for a simpler problem with an isentropic two-phase flow
model, Ambroso, Chalons, Coquel, and Galié [128] did not find an explicit solution,
we not either expect to find some explicit Riemann solution for the underlying nine-
equations model.

An approximate solution can be obtained by weaken the nonlinear Rankine-Hugoniot
conditions at the vi-contact discontinuity. The approximation should retain the property
that for the case of αL = αR the approximated Riemann invariants w̃(1) again reduce to
w

(1)
αL=αR . Here we propose a simplification by linearization of some Riemann invariants:

w̃(1) :=

{
αℓρℓ, vℓ, uℓ +

pℓ
ρℓ
, pℓ, αgρg, vg, ug +

pg
ρg
, pg

}
(5.74)

These simplified Riemann invariants do not affect the pressure and velocity of the liquid
and steam phase, as we already know from the vℓ–wave and vg–wave. Additionally, with
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w̃
(1)
3 := hℓ, w̃

(1)
7 := hg, and the phasic pressures we have two extensive quantities for each

phase, such that the specific entropy sℓ and sg and the speed of sound cℓ and cg do not
affect the liquid and steam phase. Thus, with the choice of these simplified Riemann
invariants w̃(1) it is ensured that at least six out of eight original Rankine-Hugoniot
conditions are fulfilled. Just the fifth w

(1)
5 and sixth w

(1)
6 Riemann invariant can be

unfilled because of the hidden α in ak. Later, these quantities can be used as a measure
for the quality of the solution.

This simplification allows now to compute an explicit solution of the Riemann problem.
The underlying model has ñ = 7 distinct eigenvalues vi, vℓ, vg, vℓ ± aℓ

ρℓ
, and vg ± ag

ρg
, see

5.71). For subsonic flow of water we can assume that the speed of sound in liquid water
is greater than the speed of sound in steam18 [78], cℓ ≫ cg, see also Figure 38. Therefore
we assume aℓ

ρℓ
≫ ag

ρg
, Additionally, we know that vi was chosen as convex combination of

vℓ and vg, see (2.122), such that vi is ordered in-between the phasic velocities. From a
physical point of view, we would assume that the liquid phase is slower than the vapor
phase, but this is not guaranteed. Therefore here we need to consider two cases. This
gives us the following order of the eigenvalues:

λ1 := vℓ −
aℓ

ρℓ
√
αℓ

< λ2 := vg −
ag

ρg
√
αg

< λ3 := min
{
vℓ, vg

}

< λ4 := vi

< λ5 := max
{
vℓ, vg

}

< λ6 := vg +
ag

ρg
√
αg

< λ7 := vℓ +
aℓ

ρℓ
√
αℓ

. (5.75)

Now an equation system from the Rankine-Hugoniot jump relations across the discon-
tinuities19 (see Section 5.3.3) can be formulated. Solving for the parameters of the
unknown intermediate states in primitive variables, ũj=1,...,6, a solution in dependency

18Notice that in our application we deal with a pressure lower than 140 bar and a temperature lower
than 700 ◦C.

19Notice that due to the in (5.75) introduced order of the waves, the Riemann invariants in Section
5.1.3 have a different numbering than used in this Section.

122



of the known left uL and right state uR is obtained:

ũ1 =




(α)L

(ρℓ)1

(vℓ)⋆

(uℓ)1

(πℓ)⋆

(ρg)L

(vg)L

(ug)L

(πg)L




, ũ2 =




(α)L

(ρℓ)2

(vℓ)⋆

(uℓ)2

(πℓ)⋆

(ρg)2

(vg)⋆

(ug)2

(πg)⋆




, ũ3 =




(α)L

(ρℓ)3

(vℓ)⋆

(uℓ)3

(πℓ)⋆

(ρg)3

(vg)⋆

(ug)3

(πg)⋆




, ũ4 =




(α)R

(ρℓ)4

(vℓ)⋆

(uℓ)4

(πℓ)⋆

(ρg)4

(vg)⋆

(ug)4

(πg)⋆




, ũ5 =




(α)R

(ρℓ)5

(vℓ)⋆

(uℓ)5

(πℓ)⋆

(ρg)5

(vg)⋆

(ug)5

(πg)⋆




, ũ6 =




(α)R

(ρℓ)6

(vℓ)⋆

(uℓ)6

(πℓ)⋆

(ρg)R

(vg)R

(ug)R

(πg)R




,

(5.76)

with velocity

(vk)⋆ =
(vk)R

√
(αk)L + (vk)L

√
(αk)R√

(αk)L +
√

(αk)R
+

√
(αk)L

√
(αk)R ((πk)L − (πk)R)

ak
(√

(αk)L +
√

(αk)R
) , (5.77)

relaxed pressure

(πk)⋆ =
ak (vk)L − ak (vk)R + (πk)L

√
(αk)L + (πk)R

√
(αk)R√

(αk)L +
√

(αk)R
, (5.78)

density

(ρℓ)1 = (ρℓ)2 =

(
1

(ρℓ)L
+
(
(vℓ)⋆ − (vℓ)L

)√(αℓ)L
aℓ

)−1

,

(ρℓ)3 =




(ρℓ)5

(αℓ)R
(αℓ)L

, if (vℓ)⋆ < (vg)⋆

(ρℓ)2 , if (vℓ)⋆ > (vg)⋆

(ρℓ)4 =





(ρℓ)5 , if (vℓ)⋆ < (vg)⋆

(ρℓ)2
(αℓ)L
(αℓ)R

, if (vℓ)⋆ > (vg)⋆

(ρℓ)5 = (ρℓ)6 =

(
1

(ρℓ)R
−
(
(vℓ)⋆ − (vℓ)R

)√(αℓ)R
aℓ

)−1

,

(ρg)2 =

(
1

(ρg)L
+
(
(vg)⋆ − (vg)L

)√(αg)L
ag

)−1

,

123



(ρg)3 =





(ρg)2 , if (vg)⋆ < (vg)⋆

(ρg)5
(αg)R
(αg)L

, if (vg)⋆ > (vg)⋆

(ρg)4 =




(ρg)2

(αg)L
(αg)R

, if (vg)⋆ < (vg)⋆

(ρg)5 , if (vg)⋆ > (vg)⋆

(ρg)5 =

(
1

(ρg)R
−
(
(vg)⋆ − (vg)R

)√(αg)R
ag

)−1

, (5.79)

and specific inner energy

(uℓ)1 = (uℓ)2 = (uℓ)L +
(
(πℓ)

2
⋆ − (πℓ)

2
L

)(αℓ)L
2a2ℓ

,

(uℓ)3 =

{
(uℓ)5 +

(αℓ)R−(αℓ)L
(αℓ)R

· (πℓ)⋆
(ρℓ)5

, if (vℓ)⋆ < (vg)⋆
(uℓ)2 , if (vℓ)⋆ > (vg)⋆

(uℓ)4 =

{
(uℓ)5 , if (vℓ)⋆ < (vg)⋆
(uℓ)2 +

(αℓ)L−(αℓ)R
(αℓ)L

· (πℓ)⋆
(ρℓ)2

, if (vℓ)⋆ > (vg)⋆

(uℓ)5 = (uℓ)6 = (uℓ)R +
(
(πℓ)

2
⋆ − (πℓ)

2
R

)(αℓ)R
2a2ℓ

,

(ug)2 = (ug)L +
(
(πg)

2
⋆ − (πg)

2
L

)(αg)L
2a2g

,

(ug)3 =

{
(ug)2 , if (vℓ)⋆ < (vg)⋆
(ug)5 +

(αg)R−(αg)L
(αg)R

· (πg)⋆
(ρg)5

, if (vℓ)⋆ > (vg)⋆

(ug)4 =

{
(ug)2 +

(αg)L−(αg)R
(αg)L

· (πg)⋆
(ρg)2

, if (vℓ)⋆ < (vg)⋆

(ug)5 , if (vℓ)⋆ > (vg)⋆ ,

(ug)5 = (ug)R +
(
(πg)

2
⋆ − (πg)

2
R

)(αg)R
2a2g

. (5.80)

The order of the fluid velocities determines the order of the inner waves, which influences
the solution of the third and fourth intermediate state. Therefore a case analysis is made,
whether (vℓ)⋆ is smaller or larger than (vg)⋆. Now, we need to ensure that the in (5.75)
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assumed order of the contact waves also hold for the determined intermediate states:

λ1(u1) := (vℓ)L −
aℓ

(ρℓ)L
√

(αℓ)L

!
< λ2(u2) := (vg)L −

ag

(ρg)L
√

(αg)L
!
< λ3(u3) := min

{
(vℓ)⋆ , (vg)⋆

}

!
< λ4(u4) := (vi)⋆

!
< λ5(u5) := max

{
(vℓ)⋆ , (vg)⋆

}

!
< λ6(u6) := (vg)R +

ag

(ρg)R
√

(αg)R

!
< λ7(uR) := (vℓ)R +

aℓ

(ρℓ)R
√
(αℓ)R

. (5.81)

First of all it is clear that the inequalities λ3(u3) < λ4(u4) < λ5(u5) hold, because the
interfacial velocity at intermediate state can be written as convex combination of (vℓ)⋆
and (vg)⋆:

(vi)⋆ = (β)L (vℓ)⋆ +
(
1− (β)L

)
(vg)⋆

= (β)R (vℓ)⋆ +
(
1− (β)R

)
(vg)⋆ (5.82)

with

(β)L =
ξ (αℓ)L (ρℓ)3

ξ (αℓ)L (ρℓ)3 + (1− ξ) (αg)L (ρg)3
(5.83)

and

(β)R =
ξ (αℓ)R (ρℓ)4

ξ (αℓ)R (ρℓ)4 + (1− ξ) (αg)R (ρg)4
. (5.84)

The validity of the other inequalities can be controlled by the constant parameters aℓ
and ag. We proceed a predictor-corrector method in three steps:

(1) At first, we can ensure that the phasic inequalities

(vk)L −
ak

(ρk)L
√
(αk)L

!
< (vk)⋆

!
< (vk)R +

ak

(ρk)R
√

(αk)R

hold by choosing ak large enough with

ak > max
{
(
√
αkρkck)L , (

√
αkρkck)R , a

⋆
k, a

⋆⋆
k

}
, (5.85)

where the first condition comes from the sub-characteristic condition (5.71), and
the last two from the inequalities (remember that (vk)⋆ also depends on ak). These
bounds are given by

125



a⋆k =
− (αk)L (ρk)L ((vk)R − (vk)L)

2
(√

(αk)L +
√

(αk)R
)

+

√
(αk)

2
L(ρk)

2
L((vk)R−(vk)L)

2+4
(√

(αk)R+
√

(αk)L

)
(αk)L

√
(αk)R(ρk)L((πk)R−(πk)L)

2
(√

(αk)L+
√

(αk)R

) ,

a⋆⋆k =
− (αk)R (ρk)R ((vk)R − (vk)L)

2
(√

(αk)L +
√

(αk)R
)

+

√
(αk)

2
R(ρk)

2
R((vk)R−(vk)L)

2−4
(√

(αk)R+
√

(αk)L

)
(αk)R

√
(αk)L(ρk)R((πk)R−(πk)L)

2
(√

(αk)L+
√

(αk)R

) ,

(5.86)

if the radicands are positive, otherwise a⋆k and a⋆⋆k are zero, respectively. The pre-
dicted quantities are used now to bound the intermediate velocity by

(vk)L −
max

{√
αkρkck, a

⋆
k, a

⋆⋆
k

}

(ρk)L
√
(αk)L

< (vk)⋆ < (vk)R +
max

{√
αkρkck, a

⋆
k, a

⋆⋆
k

}
,

(ρk)R
√

(αk)R
.

(2) Now, we need to regard the coupling of the phasic inequalities. To ensure that
the intermediate liquid velocity is in-between the slowest and fastest steam wave,
(vg)L −

ag

(ρg)L

√
(αg)L

< (vℓ)⋆ < (vg)R + ag

(ρg)R

√
(αg)R

, we bound (vℓ)⋆ from (5.77) by

(vℓ)
−
⋆ < (vℓ)⋆ < (vℓ)

+
⋆ (5.87)

with

(vℓ)
±
⋆ =

(vℓ)R

√
(αℓ)L+(vℓ)L

√
(αℓ)R√

(αℓ)L+
√

(αℓ)R
±
∣∣∣∣∣

√
(αℓ)L

√
(αℓ)R((πℓ)L−(πℓ)R)

max
{√

αℓρℓcℓ, a⋆
ℓ
, a⋆⋆

ℓ

}(√
(αℓ)L+

√
(αℓ)R

)

∣∣∣∣∣.

(5.88)

These bounds also hold if aℓ is again increasing.

ag > a⋆⋆⋆g :=
(
(vg)L − (vℓ)

−
⋆

)
(ρg)L

√
(αg)L,

ag > a⋆⋆⋆⋆g :=
(
(vℓ)

+
⋆ − (vg)R

)
(ρg)R

√
(αg)R. (5.89)

(3) Finally we adjust aℓ again, such that the overall slowest and fastest wave is given
by the the liquid phase. This means, we require

(vℓ)L −
aℓ

(ρℓ)L
√

(αℓ)L
< (vg)L −

ag

(ρg)L
√

(αg)L
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(vg)R +
ag

(ρg)R
√

(αg)R
< (vℓ)R +

aℓ

(ρℓ)R
√
(αℓ)R

. (5.90)

such that

aℓ > a⋆⋆⋆ℓ :=
√
(αℓ)L (ρℓ)L

(
ag√

(αg)L (ρg)L
− (vg)L + (vℓ)L

)
,

aℓ > a⋆⋆⋆⋆ℓ :=
√

(αℓ)R (ρℓ)R

(
ag√

(αg)R (ρg)R
+ (vg)R − (vℓ)R

)
, (5.91)

Because both parameters aℓ and ag are known, finally the order of the intermediate
velocities (vℓ)⋆ and (vg)⋆ can be decided.

It remains to show the positivity of the intermediate densities (ρk)2 , (ρk)3 , (ρk)4 and
(ρk)5, which can be derived from the order of the eigenvalues (5.81):

• From the inequalities

λ1(u1) < λ3(u3) < λ5(u4) < λ7(u6) and λ2(u2) < λ3(u3) < λ5(u4) < λ6(u5)
(5.92)

we get the relation

(vk)⋆ −
ak

(ρk)2
√

(αk)L
< (vk)⋆ < (vk)⋆ +

ak

(ρk)5
√

(αk)L
a (5.93)

such that with a positive constant parameter ak in (5.85) the positivity for (ρk)2
and (ρk)5 is given.

• To show the positivity of (ρk)3 and (ρk)4, we regard at first the case of (vℓ)⋆ <
(vg)⋆. Then the positivity of (ρg)3 and (ρℓ)4 is directly given by (5.79), because
(ρg)3 = (ρg)2 and (ρℓ)4 = (ρℓ)5. From the inequalities

λ3(u3) < λ4(u3) < λ5(u4)

λ3(u3) < λ4(u4) < λ5(u4) (5.94)

we get with (5.82) the relations

(vℓ)⋆ < (β)L (vℓ)⋆ +
(
1− (β)L

)
(vg)⋆ < (vg)⋆

(vℓ)⋆ < (β)R (vℓ)⋆ +
(
1− (β)R

)
(vg)⋆ < (vg)⋆ (5.95)

which holds for (β)L , (β)R ∈ (0, 1). For some w, w̃ ∈ (0, 1) the intermediate

densities can be derived from the relation (β)L
!
= w and (β)R

!
= w̃,

(ρℓ)3 =
w(1− ξ) (αg)L
(1− w)ξ (αℓ)L

(ρg)3 ,
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◮ Source terms at instantaneous relaxation (tn+1,− → tn+1)

In the second step the relaxation source terms are considered for an infinite relaxation
time, see (5.7), with u

n+1,−
i as initial data. This ordinary differential equation system

can be solved exactly. By the form of the relaxation source terms sr(u), just αρkπk
evolves according to the ordinary differential equation.

For the relaxation two-velocity two-pressure model we get

un+1
i =




(αg)
n+1
i

(αℓρℓ)
n+1
i

(αℓρℓvℓ)
n+1
i

(αℓρℓEℓ)
n+1
i

(αℓρℓπℓ)
n+1
i

(αgρg)
n+1
i

(αgρgvg)
n+1
i

(αgρgEg)
n+1
i

(αgρgπg)
n+1
i




=




(αg)
n+1,−
i

(αℓρℓ)
n+1,−
i

(αℓρℓvℓ)
n+1,−
i

(αℓρℓEℓ)
n+1,−
i(

αℓρℓpℓ + exp
(
−∆t

εℓ

)
(αℓρℓπℓ − αℓρℓpℓ)

)n+1,−

i

(αgρg)
n+1,−
i

(αgρgvg)
n+1,−
i

(αgρgEg)
n+1,−
i(

αgρgpg + exp
(
−∆t

εg

)
(αgρgπg − αgρgpg)

)n+1,−

i




. (5.99)
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6. Semi-Implicit solver

In Section 3 and 5 path-conservative schemes and a relaxation scheme have been pre-
sented for the two-phase flow model. Both approaches have the drawback that the
acoustic waves determine the step size of the simulation time due to the CFL condition.
To avoid this disadvantage, implicit schemes can be used for time integration. For a fully
implicit scheme the nonlinear closures of large models are hard to solve. Iterative proce-
dures like the Newton method are usually required such that high computational costs
arise. A compromise between explicit and implicit solvers is the class of semi-implicit
solvers, as proposed by Coquel et al. [129]: A time implicit-explicit Lagrange projection
strategy is used to decouple the fast acoustic waves and the slow material waves. With
a time-implicit treatment of the fast acoustic waves, we remove a too restrictive CFL
condition. Additionally, an explicit treatment of the slow contact waves is provided in
order to preserve accuracy.

6.1. Semi-Implicit solver for the homogeneous equilibrium model

The relaxation homogeneous equilibrium model can be understood as quasi-classical gas
dynamics system and is given in (5.14),

∂tρh + ∂x(ρhvh) = 0,

∂t(ρhvh) + ∂x(ρhv
2
h + πh) = 0,

∂t(ρhEh) + ∂x
(
(ρhEh + πh)vh

)
= 0,

∂t(ρhπh) + ∂x(ρhvhπh) + a2h ∂xvh = ρh
1
εh
(ph − πh).

The constant parameter ah is chosen in (5.30), such that the sub-characteristic condition
is fulfilled, ah ≥ ρhch. This system can be split into two subsystems describing acoustic
effects,

∂tρh + ρh ∂xvh = 0,

∂t(ρhvh) + ρhvh ∂xvh + ∂x πh = 0,

∂t(ρhEh) + ρhEh ∂xvh + ∂x(vhπh) = 0,

∂t(ρhπh) + ρhπh ∂xvh + a2h ∂xvh = ρh
1
εh
(ph − πh). (6.1)

and transport processes,

∂tρh + vh ∂xρh = 0,

∂t(ρhvh) + vh ∂x(ρhvh) = 0,

∂t(ρhEh) + vh ∂x(ρhEh) = 0,

∂t(ρhπh) + vh ∂x(ρhπh) = 0. (6.2)

We note that the conservative variables in the transport subsystem are transported with
the velocity vh, where the characteristic speeds of the acoustic subsystem appears at
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sound speed. The whole system is now solved in a two step splitting strategy, where the
acoustic subsystem (6.1) is solved implicitly in a first step and the transport subsystem
(6.2) explicitly in the second step. Both steps will be solved over the same time interval
∆t. In the following, numerical solvers for both subsystems are developed.

6.1.1. Properties of the acoustic subsystem

This system can be transformed into a Lagrangian system by using the specific volume
τh := 1

ρh
[130], such that

∂tτh − τh ∂xvh = 0,

∂tvh + τh ∂xπh = 0,

∂tEh + τh ∂x(vhπh) = 0,

∂tπh + a2hτh ∂xvh = 1
εh
(ph − πh).

Now, a mass variable formulation dm = 1
τ(x,t)

dx is used. With this Lagrangian reformu-
lation we obtain

∂tτh − ∂mvh = 0,

∂tvh + ∂mπh = 0,

∂tEh + ∂m(vhπh) = 0,

∂tπh + a2h ∂mvh = 1
εh
(ph − πh). (6.3)

The acoustic subsystem (6.3) can be expressed in the following fully conservative form

∂tu+ ∂mf(u) = sr(u), (6.4)

where u = (τh, vh, Eh, πh)
T and f(u) = (−vh, πh, vhπh, a2hvh)T. This subsystem is hy-

perbolic with ñ = 3 distinct eigenvalues ±ah and 0 (double) and right eigenvectors (as
column vectors)

RT =




− 1
a2h

1 0 − 1
a2h

− 1
ah

0 0 1
ah

πh−ahvh
a2h

0 1 πh+ahvh
a2h

1 0 0 1



. (6.5)

The natural order of the waves is given by

λ1 := −ah < λ2,3 := 0 < λ4 := ah, (6.6)

which is always fulfilled for a positive ah. It is obvious that the characteristic fields of
the subsystem are linearly degenerate. The j-Riemann invariants w(j) of the linearly
degenerate j-characteristic fields are given by

w(1) = {vh − ahτh, πh + vhah, vhπh + Ehah} ,
w(2,3) =

{
vh, ph

}
,

w(4) = {vh + ahτh, πh − vhah, vhπh − Ehah} . (6.7)
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6.1.2. Approximate Riemann solver of the acoustic subsystem
(tn → tn+1,− → tn+1,=)

To solve the acoustic subsystem, we proceed in the same way as we did for the relaxation
homogeneous equilibrium model in Section 5.2. Related to the Cauchy problem for time
t ∈ (tn, tn+1,=), again the two-step splitting strategy of Jin and Xin [122] is used to
approximate the solution at time tn+1,=: At first the convective part is solved (such
that the solution at time tn+1,− is provided), and then the instantaneous relaxation as
projection on the equilibrium manifold is solved (solution at time tn+1,=).

For the evolution of time of the convective part the Godunov method can be used. With
given left uL and right state uR the solution of the Riemann problem is defined as

u(m, t) = ur(
m
t
;uL,uR) =





uL,
m
t
< −ah

u1, −ah < m
t
< 0

u2, 0 < m
t
< ah

uR, ah <
m
t

. (6.8)

The Riemann solution consists of three contact discontinuities propagating with the
speed of the eigenvalues, which separate two intermediate states u1 and u2. These states
are obtained by solving the equation system of the Rankine-Hugoniot jump relations
across the discontinuities:

(vh − ahτh)L
!
= (vh − ahτh)1 ,

(πh + vhah)L
!
= (πh + vhah)1 ,

(vhπh + Ehah)L
!
= (vhπh + Ehah)1 ,

(vh)1
!
= (vh)2 ,

(πh)1
!
= (πh)2 ,

(vh + ahτh)2
!
= (vh + ahτh)R ,

(πh − vhah)2
!
= (πh − vhah)R ,

(vhπh + Ehah)2
!
= (vhπh + Ehah)R . (6.9)

Solving for the parameters of the unknown intermediate states, a solution in dependency
of the known left and right state is obtained:

(vh)⋆ := (vh)1 = (vh)2 =
(vh)R + (vh)L

2
− (πh)R − (πh)L

2ah
,

(πh)⋆ := (πh)1 = (πh)2 =
(πh)R + (πh)L

2
− ah

(vh)R − (vh)L
2

,
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(τh)1 = (τh)L +
(vh)⋆ − (vh)L

ah
,

(τh)2 = (τh)R +
(vh)R − (vh)⋆

ah
,

(Eh)1 = (Eh)L +
(vh)L (πh)L − (vh)⋆ (πh)⋆

ah
,

(Eh)2 = (Eh)R − (vh)R (πh)R − (vh)⋆ (πh)⋆
ah

. (6.10)

◮ Godunov method with explicit operator splitting (tn → tn+1,−)

The finite volume method considers a time step ∆t and a spatial step, which is expressed
through the mass variable ∆mi =

1
τni
∆x. So, in analogy to (3.13), the update formulation

is given by

u
n+1,−
i = un

i −
∆t

∆mi

(
Fn

i+1/2 − Fn
i−1/2

)

= un
i −

∆t

∆x
τni

(
Fn

i+1/2 − Fn
i−1/2

)
. (6.11)

Following the Godunov method in Section 3, the flux vector Fn
i−1/2 := F(un

i−1,u
n
i ) is

given in dependency of the Riemann solution u0
r := ur(0;uL,uR),

F(uL,uR) = f
(
u0
r

) (6.8)
=

(6.10)




− (vh)⋆
(πh)⋆

(vh)⋆ (πh)⋆
a2h (vh)⋆


 . (6.12)

We need to ensure that the local solutions of neighboring cells do not interact during
the time period ∆t. This gives us the classical CFL condition

∆t

∆x
max

i
|λj(un

i )| <
1

2
, j ∈ {0, . . . , n}. (6.13)

max
i

(
∆t

∆mi

ah

)
= max

i

(
∆t

∆x
τni ah

)
<

1

2
, (6.14)

where the constant parameter ah can be chosen locally at each cell (such that locally
the sub-characteristic condition is fulfilled).

◮ Godunov method with implicit operator splitting (tn → tn+1,−)

For an implicit representation of the Godunov method, the update formulation is given
by

u
n+1,−
i = un

i −
∆t

∆mi

(
F

n+1,−
i+1/2 − F

n+1,−
i−1/2

)
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= un
i −

∆t

∆x
τni

(
F

n+1,−
i+1/2 − F

n+1,−
i−1/2

)
, (6.15)

where the flux vectors at the new time step are used,

F
n+1,−
i−1/2 = F(un+1,−

i−1 ,un+1,−
i ) = f

(
ur

(
0;un+1,−

i−1 ,un+1,−
i

) ) (6.8)
=

(6.10)




− (vh)⋆
(πh)⋆

(vh)⋆ (πh)⋆
a2h (vh)⋆




n+1,−

i−1/2

.

(6.16)

From the implicit update formulation and the Riemann solution we can see that the two
quantities vh and πh are independent from the other two quantities τh and Eh. Thus, at
first the velocity and relaxation pressure at the next time step are computed from the
relation (6.15) by solving a tridiagonal linear system:

(vh)
n+1,−
i = (vh)

n
i −

∆t

∆x
τni

(
(πh)⋆

n+1,−
i+1/2 − (πh)⋆

n+1,−
i−1/2

)

(6.10)
= (vh)

n
i −

∆t

∆x

τni
2

(
(πh)

n+1,−
i+1 − (πh)

n+1,−
i−1

− ah(vh)
n+1,−
i+1 + 2ah(vh)

n+1,−
i − ah(vh)

n+1,−
i−1

)
,

(πh)
n+1,−
i = (πh)

n
i −

∆t

∆x
τni

(
a2h(vh)⋆

n+1,−
i+1/2

− a2h(vh)⋆
n+1,−
i−1/2

)

(6.10)
= (πh)

n
i −

∆t

∆x

τni
2

(
a2h(vh)

n+1,−
i+1 − a2h(vh)

n+1,−
i−1

− ah(πh)
n+1,−
i+1 + 2ah(πh)

n+1,−
i − ah(πh)

n+1,−
i−1

)
. (6.17)

This gives a linear system of two times the number of cells N . The matrix of the equation
system is sparse with six entries around the diagonal.

With the knowledge of (vh)
n+1,−
i and (πh)

n+1,−
i also the intermediate states (vh)⋆

n+1,−
i±1/2

and (πh)⋆
n+1,−
i±1/2

at the next time step are known. Now, the specific volume τh and specific
total energy Eh at the next time step can explicitly be computed from the implicit update
formulation:

(τh)
n+1,−
i = (τh)

n
i +

∆t

∆x
τni

(
(vh)⋆

n+1,−
i+1/2

− (vh)⋆
n+1,−
i−1/2

)

(Eh)
n+1,−
i = (Eh)

n
i −

∆t

∆x
τni

(
(vh)⋆

n+1,−
i+1/2 (πh)⋆

n+1,−
i+1/2 − (vh)⋆

n+1,−
i−1/2 (πh)⋆

n+1,−
i−1/2

)
. (6.18)

◮ Instantaneous relaxation (tn+1,− → tn+1,=)

In the second step the relaxation source terms are considered for an infinite relaxation
time with u

n+1,−
i as initial data. This ordinary differential equation system can be solved
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exactly. By the form of the relaxation source terms sr(u), just π evolves according to
the ordinary differential equation, such that

u
n+1,=
i =




(τh)
n+1,=
i

(vh)
n+1,=
i

(Eh)
n+1,=
i

(πh)
n+1,=
i




=




(τh)
n+1,−
i

(vh)
n+1,−
i

(Eh)
n+1,−
i(

ph + exp
(
−∆t

εh

)
(πh − ph)

)n+1,−

i



. (6.19)

6.1.3. Upwind solver of the transport subsystem (tn+1,= → tn+1)

In the last stage the transport subsystem (6.2) has to be solved. This equation system
can be expressed in the form,

∂tu+ vh ∂xu = 0,

with the independent variables u := (ρh, ρhvh, ρhEh, ρhπh)
T. This subsystem only in-

volves the transport of the conservative variables with the velocity vh, such that it is
obvious that this subsystem is hyperbolic. To approximate the solution a standard
upwind finite volume method can be used, [131],

un+1
i = u

n+1,=
i − ∆t

∆x

(
(vh)⋆i+1/2

u
n+1,=
i+1/2 − (vh)⋆i−1/2

u
n+1,=
i−1/2

)

+
∆t

∆x
u
n+1,=
i

(
(vh)⋆i+1/2

− (vh)⋆i−1/2

)
, (6.20)

which depends on the direction of the flow at each interface,

u
n+1,=
i+1/2 =

{
u
n+1,=
i , if (vh)⋆i+1/2 ≥ 0

u
n+1,=
i+1 , if (vh)⋆i+1/2 < 0,

(6.21)

where (vh)⋆i+1/2 is the speed of the Riemann problem at the interface xi+1/2, see (6.10).
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6.2. Semi-Implicit solver for the two-velocity two-pressure model

The relaxation two-phase flow model is given in (5.49),

∂tαk + vi ∂xαk = 0,

∂t(αkρk) + ∂x(αkρkvk) = 0,

∂t(αkρkvk) + ∂x(αkρkv
2
k + αkπk)− πi ∂xαk = 0,

∂t(αkρkEk) + ∂x
(
αk(ρkEk + πk)vk

)
− πivi ∂xαk = 0,

∂t(αkρkπk) + ∂x(αkρkvkπk) + αkρ
2
kc

2
k ∂xvk = αkρk

1
εk
(pk − πk).

In the original equation system, the pressure balance law consists of constant parameters
a2k which replace the pre-factors αkρ

2
kc

2
k. This replacement is done in a later step. This

system can be split into three subsystems describing acoustic effects,

∂tαk = 0,

∂t(αkρk) + αkρk ∂xvk = 0,

∂t(αkρkvk) + αkρkvk ∂xvk + αk ∂xπk = 0,

∂t(αkρkEk) + αkρkEk ∂xvk + αk ∂x(vkπk) = 0,

∂t(αkρkπk) + αkρkπk ∂xvk + αkρ
2
kc

2
k ∂xvk = αkρk

1
εk
(pk − πk). (6.22)

transport processes,

∂tαk = 0,

∂t(αkρk) + vk ∂x(αkρk) = 0,

∂t(αkρkvk) + vk ∂x(αkρkvk) = 0,

∂t(αkρkEk) + vk ∂x(αkρkEk) = 0,

∂t(αkρkπk) + vk ∂x(αkρkπk) = 0. (6.23)

and a genuinely nonconservative subsystem [132],

∂tαk + vi ∂xαk = 0,

∂t(αkρk) = 0,

∂t(αkρkvk) + (πk − πi) ∂xαk = 0,

∂t(αkρkEk) + (πkvk − πivi) ∂xαk = 0,

∂t(αkρkπk) = 0, (6.24)

Similar to Section 6.1, the whole system is solved in a three step splitting strategy,
where the acoustic subsystem (6.22) is solved implicitly in a first step, then the transport
subsystem (6.23) explicitly, and in a last step the genuinely non-conservative subsystem.
All steps will be solved over the same time interval ∆t. In the following, numerical
solvers for the three subsystems are developed.
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6.2.1. Properties of the acoustic subsystem

The acoustic system (6.22) can be transformed into a Lagrangian system by using the
specific volume τh := 1

ρh
[132], such that

∂tαk = 0,

∂tτk − τk ∂xvk = 0,

∂tvk + τk ∂xπk = 0,

∂tEk + τk ∂x(vkπk) = 0,

∂tπk + a2kτk ∂xvk =
1
εk
(pk − πk).

The constant parameters ak is chosen such that the subcharacteristic condition is ful-
filled, ak ≥ ρkck [132]. Now, a mass variable formulation dm = 1

τ(x,tn)
dx is used. With

this reformulation we obtain

∂tαk = 0,

∂tτk − ∂mvk = 0,

∂tvk + ∂mπk = 0,

∂tEk + ∂m(vkπk) = 0,

∂tπk + a2k ∂mvk =
1
εk
(pk − πk). (6.25)

The acoustic subsystem (6.25) can be expressed in the following fully conservative form

∂tu+ ∂mf(u) = sr(u), (6.26)

with
u = (α, τℓ, vℓ, Eℓ, πℓ, τg, vg, Eg, πg)

T

and
f(u) = (0,−vℓ, πℓ, vℓπℓ, a2ℓvℓ,−vg, πg, vgπg, a2gvg)T.

This subsystem is hyperbolic with ñ = 5 distinct eigenvalues, ±ak and 0 (fivefold). The
natural order of the waves is given by

λ1 := −aℓ < λ2 := −ag < λ3 := 0 < λ4 := ag < λ5 := aℓ, (6.27)

which is always fulfilled for positive ak. For the order of the liquid and steam eigenvalues,
the reader is referred to (5.75). The corresponding right eigenvectors are given (as
column vectors) by

RT =




0 0 1 0 0 0 0 0 0
− 1

a2
ℓ

0 0 1 0 0 0 0 − 1
a2
ℓ

− 1
aℓ

0 0 0 0 0 0 0 1
aℓ

πℓ−aℓvℓ
a2
ℓ

0 0 0 1 0 0 0 πℓ+aℓvℓ
a2
ℓ

1 0 0 0 0 0 0 0 1
0 − 1

a2g
0 0 0 1 0 − 1

a2g
0

0 − 1
ag

0 0 0 0 0 1
ag

0

0 πg−agvg
a2g

0 0 0 0 1 πg+agvg
a2g

0

0 1 0 0 0 0 0 1 0




, (6.28)
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The characteristic fields of the subsystem are linearly degenerate. The j-Riemann in-
variants w(j) of the linearly degenerate j-characteristic fields are given by

w(1) = {α, vℓ − aℓτℓ, πℓ + vℓaℓ, vℓπℓ + Eℓaℓ, τg, vg, Eg, πg} ,
w(2) = {α, τℓ, vℓ, Eℓ, πℓ, vg − agτg, πg + vgag, vgπg + Egag} ,
w(3) =

{
vℓ, πℓ, vg, πg

}
,

w(4) = {α, τℓ, vℓ, Eℓ, πℓ, vg + agτg, πg − vgag, vgπg − Egag} ,
w(5) = {α, vℓ + aℓτℓ, πℓ − vℓaℓ, vℓπℓ − Eℓaℓ, τg, vg, Eg, πg} . (6.29)

6.2.2. Approximate Riemann solver of the acoustic subsystem
(tn → tn+1,− → tn+1,=)

To solve the acoustic subsystem, we proceed in the same way as we did for the relaxation
two-velocity two-pressure model in Section 5.4. Related to the Cauchy problem for time
t ∈ (tn, tn+1,=), again the two-step splitting strategy of Jin and Xin [122] is used to
approximate the solution at time tn+1,=: At first the convective part is solved (such
that the solution at time tn+1,− is provided), and then the instantaneous relaxation as
projection on the equilibrium manifold is solved (solution at time tn+1,=).

For the evolution of time of the convective part the Godunov method can be used. With
given left uL and right state uR the solution of the Riemann problem is defined as

u(m, t) = ur(
m
t
;uL,uR) =





uL,
m
t
< −aℓ

u1, −aℓ < m
t
< −ag

u2, −ag < m
t
< 0

u3, 0 < m
t
< ag

u4, ag <
m
t
< aℓ

uR, aℓ <
m
t

. (6.30)

The Riemann solution consists of five contact discontinuities propagating with the speed
of the eigenvalues, which separate four intermediate states uj=1,...,4. These states are
obtained by solving the equation system of the Rankine-Hugoniot jump relations across
the discontinuities, such that a solution in dependency of the known left uL and right
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state uR is obtained:

u1 =




(α)L

(τℓ)1

(vℓ)⋆

(Eℓ)1

(πℓ)⋆

(τg)L

(vg)L

(Eg)L

(πg)L




, u2 =




(α)L

(τℓ)2

(vℓ)⋆

(Eℓ)2

(πℓ)⋆

(τg)2

(vg)⋆

(Eg)2

(πg)⋆




, u3 =




(α)R

(τℓ)3

(vℓ)⋆

(Eℓ)3

(πℓ)⋆

(τg)3

(vg)⋆

(Eg)3

(πg)⋆




, u4 =




(α)R

(τℓ)4

(vℓ)⋆

(Eℓ)4

(πℓ)⋆

(τg)R

(vg)R

(Eg)R

(πg)R




, (6.31)

with velocity

(vk)⋆ =
(vk)R + (vk)L

2
− (πk)R − (πk)L

2ak
, (6.32)

relaxed pressure

(πk)⋆ =
(πk)R + (πk)L

2
− ak

(vk)R − (vk)L
2

, (6.33)

specific volume

(τℓ)1 = (τℓ)2 = (τℓ)L +
(vℓ)⋆ − (vℓ)L

aℓ
,

(τℓ)3 = (τℓ)4 = (τℓ)R +
(vℓ)R − (vℓ)⋆

aℓ
,

(τg)2 = (τg)L +
(vg)⋆ − (vg)L

ag
,

(τg)3 = (τg)R +
(vg)R − (vg)⋆

ag
, (6.34)

and specific total energy

(Eℓ)1 = (Eℓ)2 = (Eℓ)L +
(vℓ)L (πℓ)L − (vℓ)⋆ (πℓ)⋆

aℓ
,

(Eℓ)3 = (Eℓ)4 = (Eℓ)R − (vℓ)R (πℓ)R − (vℓ)⋆ (πℓ)⋆
aℓ

(Eg)2 = (Eg)L +
(vg)L (πg)L − (vg)⋆ (πg)⋆

ag
,

(Eg)3 = (Eg)R − (vg)R (πg)R − (vg)⋆ (πg)⋆
ag

. (6.35)
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◮ Godunov method with explicit operator splitting (tn → tn+1,−)

The finite volume method considers a time step ∆t and a spatial step, which is expressed
through the mass variable ∆mi =

1
τni
∆x. So, in analogy to (3.13), the update formulation

is given by

u
n+1,−
i = un

i −
∆t

∆mi

(
Fn

i+1/2 − Fn
i−1/2

)

= un
i −

∆t

∆x
τni

(
Fn

i+1/2 − Fn
i−1/2

)
. (6.36)

Following the Godunov method in Section 3, the flux vector Fn
i−1/2 := F(un

i−1,u
n
i ) is

given in dependency of the Riemann solution u0
r := ur(0;uL,uR),

f(u) = (0,−vℓ, πℓ, vℓπℓ, a2ℓvℓ,−vg, πg, vgπg, a2gvg)T.

F(uL,uR) = f
(
u0
r

) (6.30)
=

(6.31)




0
− (vℓ)⋆
(πℓ)⋆

(vℓ)⋆ (πℓ)⋆
a2ℓ (vℓ)⋆
− (vg)⋆
(πg)⋆

(vg)⋆ (πg)⋆
a2g (vg)⋆




. (6.37)

We need to ensure that the local solutions of neighboring cells do not interact during
the time period ∆t. This gives us the classical CFL condition

∆t

∆x
max

i
|λj(un

i )| <
1

2
, j ∈ {0, . . . , ñ}. (6.38)

max
i

(
∆t

∆mi

ak

)
= max

i

(
∆t

∆x
τni ak

)
<

1

2
, (6.39)

where the constant parameter ak can be chosen locally at each cell (such that locally
the sub-characteristic condition is fulfilled).

◮ Godunov method with implicit operator splitting (tn → tn+1,−)

For an implicit representation of the Godunov method, the update formulation is given
by

u
n+1,−
i = un

i −
∆t

∆mi

(
F

n+1,−
i+1/2 − F

n+1,−
i−1/2

)

= un
i −

∆t

∆x
τni

(
F

n+1,−
i+1/2 − F

n+1,−
i−1/2

)
, (6.40)
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where the flux vectors at the new time step are used,

F
n+1,−
i−1/2 = F(un+1,−

i−1 ,un+1,−
i ) = f

(
ur

(
0;un+1,−

i−1 ,un+1,−
i

) ) (6.30)
=

(6.31)




0
− (vℓ)⋆
(πℓ)⋆

(vℓ)⋆ (πℓ)⋆
a2ℓ (vℓ)⋆
− (vg)⋆
(πg)⋆

(vg)⋆ (πg)⋆
a2g (vg)⋆




n+1,−

i−1/2

.

(6.41)

From the implicit update formulation and the Riemann solution we can see that the two
quantities vk and πk are independent from the other two quantities τk and Ek. Thus, at
first the velocity and relaxation pressure at the next time step are computed from the
relation (6.40) by solving a doubled tridiagonal linear systems:

(vk)
n+1,−
i = (vk)

n
i −

∆t

∆x
τni

(
(πk)⋆

n+1,−
i+1/2

− (πk)⋆
n+1,−
i−1/2

)

(6.33)
= (vk)

n
i −

∆t

∆x

τni
2

(
(πk)

n+1,−
i+1 − (πk)

n+1,−
i−1

− ak(vk)
n+1,−
i+1 + 2ak(vk)

n+1,−
i − ak(vk)

n+1,−
i−1

)
,

(πk)
n+1,−
i = (πk)

n
i −

∆t

∆x
τni

(
a2k(vk)⋆

n+1,−
i+1/2

− a2k(vk)⋆
n+1,−
i−1/2

)

(6.32)
= (πk)

n
i −

∆t

∆x

τni
2

(
a2k(vk)

n+1,−
i+1 − a2k(vk)

n+1,−
i−1

− ak(πk)
n+1,−
i+1 + 2ak(πk)

n+1,−
i − ak(πk)

n+1,−
i−1

)
. (6.42)

With the knowlege of (vk)
n+1,−
i and (πk)

n+1,−
i also the intermediate states (vk)⋆

n+1,−
i±1/2

and

(πk)⋆
n+1,−
i±1/2 at the next time step are known. Now, the specific volume τk and specific total

energy Ek at the next time step can explicitly be computed from the implicit update
formulation:

(τk)
n+1,−
i = (τk)

n
i +

∆t

∆x
τni

(
(vk)⋆

n+1,−
i+1/2

− (vk)⋆
n+1,−
i−1/2

)

(Ek)
n+1,−
i = (Ek)

n
i −

∆t

∆x
τni

(
(vk)⋆

n+1,−
i+1/2 (πk)⋆

n+1,−
i+1/2 − (vk)⋆

n+1,−
i−1/2 (πk)⋆

n+1,−
i−1/2

)
. (6.43)

◮ Instantaneous relaxation (tn+1,− → tn+1,=)

In the second step the relaxation source terms are considered for an infinite relaxation
time with u

n+1,−
i as initial data. This ordinary differential equation system can be solved
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exactly. By the form of the relaxation source terms sr(u), just π evolves according to
the ordinary differential equation, such that

u
n+1,=
i =




(α)n+1,=
i

(τℓ)
n+1,=
i

(vℓ)
n+1,=
i

(Eℓ)
n+1,=
i

(πℓ)
n+1,=
i

(τg)
n+1,=
i

(vg)
n+1,=
i

(Eg)
n+1,=
i

(πg)
n+1,=
i




=




(α)n+1,−
i

(τℓ)
n+1,−
i

(vℓ)
n+1,−
i

(Eℓ)
n+1,−
i(

pℓ + exp
(
−∆t

εℓ

)
(πℓ − pℓ)

)n+1,−

i

(τg)
n+1,−
i

(vg)
n+1,−
i

(Eg)
n+1,−
i(

pg + exp
(
−∆t

εg

)
(πg − pg)

)n+1,−

i




. (6.44)

6.2.3. Upwind solver of the transport subsystem (tn+1,= → tn+1,≡)

The transport subsystem (6.23) can be expressed in the form,





∂tα = 0,

∂tuℓ + vℓ ∂xuℓ = 0,

∂tug + vg ∂xug = 0,

where

uk = (αρk, αρkvk, αρkEk, αρkπk)
T. (6.45)

This subsystem only involves the transport of the conservative variables with the velocity
vk, such that it is obvious that this subsystem is hyperbolic. To approximate the solution
a standard upwind finite volume method can be used, [131],

(uk)
n+1,≡
i = (uk)

n+1,=
i − ∆t

∆x

(
(vk)⋆i+1/2(uk)

n+1,=
i+1/2 − (vk)⋆i−1/2(uk)

n+1,=
i−1/2

)

+
∆t

∆x
(uk)

n+1,=
i

(
(vk)⋆i+1/2 − (vk)⋆i−1/2

)
, (6.46)

which depends on the direction of the flow at each interface,

(uk)
n+1,=
i+1/2 =

{
(uk)

n+1,=
i , if (vk)⋆i+1/2

≥ 0

(uk)
n+1,=
i+1 , if (vk)⋆i+1/2

< 0,
(6.47)

where (vk)⋆i+1/2
is the speed of the Riemann problem at the interface xi+1/2, see (6.32).
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6.2.4. Upwind solver of the genuinely nonconservative subsystem (tn+1,≡ → tn+1)

The genuinely non-conservative subsystem (6.24)

∂tαk + vi ∂xαk = 0,

∂t(αkρk) = 0,

∂t(αkρkvk) + (πk − πi) ∂xαk = 0,

∂t(αkρkEk) + (πkvk − πivi) ∂xαk = 0,

∂t(αkρkπk) = 0,

is solved by using an upwind solver. This subsystem only involves the transport of the
volume fraction, each equation can be expressed in the form,

∂tuj + vj ∂xα = 0,

with

u = (α, αℓρℓ, αℓρℓvℓ, αℓρℓEℓ, αℓρℓπℓ, αgρg, αgρgvg, αgρgEg, αgρgπg)
T (6.48)

and

v = (vi, 0,−(πℓ − πi),−(πℓvℓ − πivi), 0, 0, (πg − πi), (πgvg − πivi), 0)
T . (6.49)

To approximate the solution a standard upwind finite volume method can be used,

(uj)
n+1
i = (uj)

n+1,≡
i − ∆t

∆x

(
(vj)⋆i+1/2

(uj)
n+1,≡
i+1/2 − (vj)⋆i−1/2

(uj)
n+1,≡
i−1/2

)

+
∆t

∆x
(uj)

n+1,≡
i

(
(vj)⋆i+1/2

− (vj)⋆i−1/2

)
, (6.50)

which depends on the direction of the flow at each interface,

(uj)
n+1,≡
i+1/2 =

{
(uj)

n+1,≡
i , if (vj)⋆i+1/2

≥ 0

(uj)
n+1,≡
i+1 , if (vj)⋆i+1/2

< 0,
(6.51)

where (vj)⋆i+1/2
is given by the solution of the Riemann problem at the interface xi+1/2,

see (6.32) and (6.33).
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7. Case studies

Several test cases have been performed to investigate the behavior of the developed
schemes. Because the path-conservative schemes ESPC and ESPCs need a CFL number
of lower than 0.5, here we use for comparability for all schemes a CFL number of 0.45.

In Subsection 7.1 the coupled Burgers’ equation is used to show the advantages of the
ESPC scheme over the traditional path-conservative schemes. This test case was pro-
posed by Castro, Fjordholm, Mishra, and Parés [108]. Subsection 7.2 deals with the
investigation of the quality of path-conservative schemes in comparison to standard con-
servative schemes regarding Sod’s shock tube problem [133]. Additionally, the entropy
dissipation is investigated and for the ESPC and ESPCs scheme different regularizations
are compared.

In Subsection 7.3, the isolated coupling wave is performed as a first test for the two-phase
flow model. This problem was proposed by Gallouët, Hérard, and Seguin [8]. Further-
more, the convergence for the pressure relaxation time of the Godunov-Suliciu solver
is shown. In Subsection 7.4 the pressure disequilibrium test case [8] was performed to
investigate the Riemann invariants at the vi-contact discontinuity. In Subsection 7.5 the
impact of the parameter ξ (which defines the interfacial pressure pi and vi) is investi-
gated regarding the mixture at rest with increase in the volume fraction test case. This
test case was proposed by Schwendeman, Wahle and Kapila [134]. In Subsection 7.6 the
influence of source terms in a vertical tube are investigated. This water faucet problem
test case was proposed by Ransom [135].

In Section 7.7 we turn to the application and simulate the evaporation in a solar absorber
tube is simulated. Here all source terms are used which has been developed in Section
2.4. Finally, in Section 7.8 all results are analyzed.
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7.1. Coupled Burgers equation

As a first test for the path-conservative methods a non-conservative test case of the
coupled Burgers equations is used,

∂tu+ u ∂x(u+ v) = 0,

∂tv + v ∂x(u+ v) = 0, (7.1)

or equivalently

(
u
v

)

t

+

(
u u
v v

)(
u
v

)

x

= 0. (7.2)

On the domain x ∈ [−2, 10.5] a Riemann problem is defined at x = 0, where the initial
values are given by [108]:

u v
Left 7.99 11.01
Right 0.25 0.75

Berthon [136] computed the exact viscous profile of the regularized system which gives
in the limit the entropy solution of the Riemann problem. This solution is used as

reference solution. For the ESPC scheme, the entropy function η(u, v) = (u+v)2

2
with

corresponding entropy flux ψ(u, v) = (u+v)3

3
is used. The entropy variables are then

given by v(u, v) = (u+ v, u+ v)T. For the regularization, we either choose the entropy
viscosity (4.42) with viscosity matrix

R̂ =

(
1
2

0
0 1

2

)
,

or the uniform viscosity (4.43).

Because with this choice of the entropy-entropy flux pair, the mapping u 7→ v of the
state vector to the entropy variables is not bijective, such that an inverse mapping u(v)
does not exist. Thus, here we cannot apply the ESPCs scheme.

The results for different path-conservative schemes 1500 cells at time t = 0.5 are shown
in Figure 39. It can be seen, contrary to the simple path-conservative schemes that the
entropy stable path-conservative (ESPC) scheme approximates the reference solution.
Thus, the numerical viscosity operator of the ESPC scheme matches with the underlying
viscosity.

It can be seen, that the ESPC scheme with entropy viscosity simulates the correct shock.
The kink at about x = 0 appears because the chosen numerical viscosity is zero at this
position. The kink can be avoided by choosing a different visocity operator, e.g. see
[115]. That this problem highly depends on the viscosity operator can also be seen by
the poor results of the ESPC scheme with uniform viscosity.
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Figure 39: Coupled Burgers Equation at t = 0.5.
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7.2. Sod’s shock tube problem

The shock tube problem of Sod [133] can be used to test and compare the path-
conservative schemes ESPC and ESPCs for the homogeneous equilibrium model, which
is in conservative form. On the domain x ∈ [0, 1] a Riemann problem is defined at
x = 0.5, where the initial values are given by:

ρh ρhvh ρhEh

Left 1 0 2.5
Right 0.125 0 0.25

As closure ideal gas with γ = 1.4 and cv = 718 J/kgK is chosen.

For the ESPC and ESPCs scheme, the entropy/entropy flux pair is given by (2.151),
with corresponding entropy variables (2.152). For the regularization, we either choose
the entropy viscosity (4.42) with (4.37), or the uniform viscosity (4.43).

Because this problem is in conservative form, once again we can investigate the quality
of path-conservative schemes in comparison to standard conservative schemes. In the
following Figures 40, 41, 42, 43, 44, and 45 grid refinement results for the Rusanov, HLL,
ESPC, ESPCs, Godunov-Suliciu, and Semi-Implicit scheme are shown. It can be seen
that all methods converge to the exact solution. But the Semi-Implicit scheme shows
overshoots in the plot for the specific internal energy. From the plots of the ESPC and
ESPCs results it can be seen that the different numerical viscosities result in a compa-
rable solution.

In Figure 46 the total entropy dissipation η(tn) := ∆x ·∑N
i=1 η(u

n
i ) against simulation

time for different meshes is plotted. It can be seen, that the total entropy dissipation
of the ESPC and ESPCs scheme converges in direction of the reference solution. ESPC
converges slightly faster than ESPCs. The regularization, whether uniform or entropy
viscosity, has no influence on the solution. Also the Godunov-Suliciu solution converges
against the reference solution, where the Semi-Implicit schemes does a poor job and in
fact generates entropy for coarser meshes. Thus, at least one subsystem, which was used
for the derivation of the Semi-Implicit scheme, does not satisfy the entropy inequality.

Additionally, for the ESPC and ESPCs scheme the influence on the solution is investi-
gated by using the exact Hessian (4.37) and its finite differences approximation (4.39)
for computing the derivative of the inverse mapping of entropy variables. In Figure 47
the results for different discretization steps ε for the ESPCs are shown. It can be seen,
that for a coarser discretization jumps are generated at the contact discontinuity for
velocity and pressure. These jumps are not present for the ESPC scheme with entropy
viscosity. Furthermore, it can be seen, that a value of ε = 0.1 gives similar results to
the ESPC scheme with entropy viscosity, see Table 2.
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Discretization ε of ESPCs ‖ · ‖2 error to ESPC
100 1.2894
80 0.9828
60 0.6700
40 0.3520
20 0.0991
10 0.0258
1 0.0027
0.1 0.0027

Table 2: Comparison of the ESPC scheme (with entropy viscosity) with the ESPCs
scheme using different discretization step sizes ε for computing the inverse map-
ping of entropy variables. As example the pressure of Sod’s shock tube problem
with 400 cells is used.
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Figure 40: Grid refinement of the HLL solver for Sod’s shock tube problem at t = 0.2.
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Figure 41: Grid refinement of the Rusanov solver for Sod’s shock tube problem at t = 0.2.
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Figure 42: Grid refinement of the ESPC solver for Sod’s shock tube problem at t = 0.2.
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Figure 43: Grid refinement of the ESPCs solver for Sod’s shock tube problem at t = 0.2.
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Figure 44: Grid refinement of the Godunov-Suliciu solver for Sod’s shock tube problem
at t = 0.2.
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Figure 45: Grid refinement of the Semi-Implicit solver for Sod’s shock tube problem at
t = 0.2.
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Figure 46: Total entropy dissipation of the ESPC, ESPCs, Godunov-Suliciu and Semi-
Implicit scheme for different meshes for for Sod’s shock tube problem.
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Figure 47: ESPCs scheme for Sod’s shock tube problem. The derivative of the inverse
mapping of entropy variables is approximated with finite differences at dis-
cretization step size ε. 156



7.3. Isolated coupling wave

As a first test for the two-phase flow model, a problem of Gallouët, Hérard, and Seguin [8]
is used with the interfacial parameter ξ = 0.5, see (2.123). On the domain x ∈ [0, 1000]
a Riemann problem is defined at x = 500, where the initial values are given by:

αg ρℓ vℓ pℓ ρg vg pg
Left 0.1 1 100 105 1 100 105

Right 0.5 0.125 100 105 0.125 100 105

As closure ideal gas with γℓ = γg = 1.4 and cvℓ = cvg = 718 J/kgK is chosen. Because
all velocities are chosen equal, the volume fraction propagates with constant speed, such
that we can give the exact solution for α [8]:

α(x, t) = α(0, x− 100t). (7.3)

Thus, after a simulation time of t = 3 sec, the shock position moved from x = 500
to x = 800. For the ESPC and ESPCs scheme, the entropy/entropy flux pair is given
by (2.91), with corresponding entropy variables (2.92). For the regularization uniform
viscosity (4.43) is chosen.

Within this test case, the pressure relaxation time εk of the Godunov-Suliciu solver is
investigated, compare with equation (5.50). In Figure 48 it can be seen that the solution
converges for εk → 0. In Figure 49 grid refinement results of the two path-conservative
solvers ESPC and ESPCs, the Godunov-Suliciu solver from Section 5 and the Semi-
Implicit solver from Section 6 is shown. It can be seen that all methods converge to the
exact solution.

740 760 780 800 820 840 860

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 48: Isolated coupling wave problem at t = 3: Investigation of the pressure re-
laxation parameter ε of the Godunov-Suliciu solver with 2000 cells (zoomed
around the shock position).
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Figure 49: Grid refinement for the isolated coupling wave problem at t = 3 (zoomed
around the shock position).
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7.4. Pressure disequilibrium

In the above test case, a difference in quality can be seen between the path-conservative
schemes (ESPC and ESPCs) and the relaxation schemes (Godunov-Suliciu and Semi-
Implicit). Gallouët, Hérard, and Seguin [8] made this test case more difficult such that
differences between all four solvers can be observed.

To investigate the behavior of a strong disequilibrium between both phases, the in 7.3
defined test case is modified by using the following initial values [77]:

αg ρℓ vℓ pℓ ρg vg pg
Left 0.1 1 0 105 10 0 104

Right 0.5 0.125 0 104 1.25 0 103

Again, as closure ideal gas with γℓ = γg = 1.4 and cvℓ = cvg = 718 J/kgK is chosen. As
reference solution, the Godunov-Suliciu solver with 100 000 cells is used. For the ESPC
and ESPCs scheme, the entropy/entropy flux pair is given by (2.91), with corresponding
entropy variables (2.92). For the regularization uniform viscosity (4.43) is chosen.

In the following Figures 50, 51, 52, and 53, grid refinement results for the ESPC, ESPCs,
Godunov-Suliciu, and Semi-Implicit scheme are shown. It can be seen that all methods
converge to the reference solution. In the plot for the void fraction α the ESPC scheme
creates a peak, where the ESPCs is smoother. But again, the path-conservative schemes
converge slower than the relaxation schemes.

In Figure 54 the Riemann invariants at the vi contact discontinuity defined in equations
(5.69) are shown (just zoomed around the position of the corresponding wave) for all
four schemes. At the contact discontinuity we expect a smooth behavior of the Riemann
invariants. Due to the simplification we made in (5.74), we expect that the fifth w

(1)
5

and sixth w
(1)
6 Riemann invariant have a jump.

It can be seen that at the contact discontinuity (where x is around 605) the Godunov-
Suliciu and the Semi-Implicit solver do not show jumps. For the fifth and sixth Riemann
invariant we see some ”delayed corrections” between x = 605 and x = 615, which may
be caused by the simplified Riemann invariants.

It is interesting to see that the ESPC and the ESPCs have jumps in every Riemann
invariant. It may be that the used uniform viscosity in (4.43) is not the best choice for
this problem.
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Figure 50: Grid refinement of the ESPC solver for the pressure disequilibrium problem
at time t = 0.7.
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Figure 51: Grid refinement of the ESPCs solver for the pressure disequilibrium problem
at time t = 0.7.
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Figure 52: Grid refinement of the Godunov-Suliciu solver for the pressure disequilibrium
problem at time t = 0.7.
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Figure 53: Grid refinement of the Semi-Implicit solver for the pressure disequilibrium
problem at time t = 0.7.
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Figure 54: Riemann invariants at the vi-contact discontinuity for pressure disequilibrium
at t = 0.7 (just zoomed around the position of the corresponding wave).
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7.5. Mixture at rest with increase in the volume fraction

The interfacial pressure and velocity was derived, such that the entropy compatibility
condition is fulfilled, and that the vi-contact discontinuity is linearly degenerate, see
(2.94) and (2.123). This still gave us some freedom by choosing a parameter ξ ∈ [0, 1],
which can be seen as a weighting between the liquid phase and the vapor phase.

This test case by Schwendeman, Wahle and Kapila [134] is used to show the influence of
the parameter ξ on the solution. On the domain x ∈ [0, 1] a Riemann problem is defined
at x = 0.5, where the initial two-phase mixture is at rest with an increase in the volume
fraction:

αg ρℓ vℓ pℓ ρg vg pg
Left 0.2 1 0 1 0.2 0 0.3
Right 0.7 1 0 1 1 0 1

As closure ideal gas with γℓ = γg = 1.4 and cvℓ = cvg = 718 J/kgK is chosen. For
the ESPC and ESPCs scheme, the entropy/entropy flux pair is given by (2.91), with
corresponding entropy variables (2.92). For the regularization uniform viscosity (4.43)
is chosen.

In Figure 55 the spatial convergence for different parameters ξ ∈ [0, 1] is shown. As
expected, the limit depends on ξ because this directly influences the speed of propagation
of the vi-wave. In the following Figures 56, 57, 58, and 59, results with different values
for ξ for the ESPC, ESPCs, Godunov-Suliciu, and Semi-Implicit scheme are shown. The
solution strongly depends on the choice of the parameter ξ ∈ [0, 1]. In the eyeball norm
the solutions of the Semi-Implicit solver show a different behavior than the solutions of
the ESPC, ESPCs, and Godunov-Suliciu solvers, which show a good agreements among
themselves.

In Figure 60 the total entropy dissipation η(tn) := ∆x ·
∑N

i=1 η(u
n
i ) against simulation

time for different meshes is plotted, where ξ was chosen to be 0.5. As already observed
for the homogeneous equilibrium model with Sod’s shock tube problem, the entropy
dissipation for the ESPC, ESPCs, and Godunov-Suliciu schemes converges against the
reference solution. And again, the Semi-Implicit scheme does a poor job and in fact
generates entropy for coarser meshes.
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Figure 55: Mixture at rest with increase in the volume fraction using the Godunov-
Suliciu scheme with different values for ξ at t = 0.2.
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Figure 56: Mixture at rest with increase in the volume fraction using the ESPC scheme
with 16 000 cells and different values for ξ at t = 0.2.
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Figure 57: Mixture at rest with increase in the volume fraction using the ESPCs scheme
with 16 000 cells and different values for ξ at t = 0.2.
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Figure 58: Mixture at rest with increase in the volume fraction using the Godunov-
Suliciu scheme with 16 000 cells and different values for ξ at t = 0.2.
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Figure 59: Mixture at rest with increase in the volume fraction using the Semi-Implicit
scheme with 16 000 cells and different values for ξ at t = 0.2.
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Figure 60: Total entropy dissipation of the ESPC, ESPCs, Godunov-Suliciu and Semi-
Implicit scheme for different meshes.
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7.6. Water faucet problem

So far, we just regarded homogeneous test cases. Because the goal is to simulate so-
lar thermal power plants, here a test case is presented which considers mass transfer,
momentum transfer and friction. The water faucet problem regards the flow through a
vertical tube of 12 m in length [135], where the following source terms are considered,

s(u) =




1
θ

αℓαg

pℓ+pg
(pg − pℓ)

0
αℓρℓg

αℓρℓvℓg +
1
θ

αℓαg

pℓ+pg
pi(pg − pℓ)

0
αgρgg

αgρgvgg − 1
θ

αℓαg

pℓ+pg
pi(pg − pℓ)




, (7.4)

with gravity g = 9.81m/s2, and pressure relaxation θ = 5 · 10−4s. The interfacial
parameter is chosen as ξ = 0.5 which has an influence on the interfacial velocity vi
(2.123) and interfacial pressure pi (2.94). Initially, the values of the domain x ∈ [0, 12]
are given by:

αg ρℓ vℓ pℓ ρg vg pg
Initial 0.2 1000 10 105 1 0 105

This initial datum may be interpreted as a flow of water without gravity, where the
gravity field is introduced with the start of the simulation. The top boundary (x = 0)
has the same values as the initial values, where the bottom (x = 12) of the tube is open
to atmospheric conditions [8]:

αg ρℓ vℓ pℓ ρg vg pg
Top 0.2 1000 10 105 1 0 105

Bottom – – – 105 – – 105

The undefined boundary values at the bottom are taken from inside using extrapolation.
As closure ideal gas with γℓ = 1.0005, γg = 1.4, and cvℓ = cvg = 718 J/kgK is chosen
[77]. For the ESPC and ESPCs scheme, the entropy/entropy flux pair is given by (2.91),
with corresponding entropy variables (2.92). For the regularization uniform viscosity
(4.43) is chosen.

As reference solution, the Semi-Implicit scheme with 10 000 cell is used. In Figure 64
can be seen that this reference solution is converged. In the following Figures 61 to
64 results with different resolutions for the ESPC, ESPCs, Godunov-Suliciu, and Semi-
Implicit scheme at time t = 0.5 are shown. It can be seen that all solutions converge to
the reference solution, where the Godunov-Suliciu and the Semi-Implicit solver converge
faster than the ESPC and ESPCs scheme. While the Godunov-Suliciu solver already
shows good agreement with the reference solution by using just 300 grid cells, the ESPC
and ESPCs scheme would need 8000 cells instead, compare the results for parameter αg

in Figure 62 and 63. This is due to the fact that ESPC and ESPCs are more dissipative
schemes.
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Figure 61: Water faucet problem at t = 0.5 using the ESPC scheme for different resolu-
tions.
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Figure 62: Water faucet problem at t = 0.5 using the ESPCs scheme for different reso-
lutions.
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Figure 63: Water faucet problem at t = 0.5 using the Godunov-Suliciu scheme for dif-
ferent resolutions.
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Figure 64: Water faucet problem at t = 0.5 using the Semi-Implicit scheme for different
resolutions.
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7.7. Evaporation in a solar absorber tube

To simulate the evaporation in a solar absorber tube, the source terms s(u) developed in
Section 2.3 are used, which describe the mass transfer, friction and heat transfer in the
tube. The single terms base on constitutive physical models, which have been developed
in Section 2.4. For the underlying two-phase flow model the interfacial parameter is
chosen as ξ = 0.5. In the following, the free parameters of the constitutive models are
specified.

Figure 65: A parabolic trough solar power plant in Almeŕıa (left) and a Fresnel solar
collector (right) using water in the absorber tubes for direct steam generation.
Sources: DLR/Ernsting and Novatec Solar GmbH

◮ Absorber tube

The water-steam fluid flows through a solar heated steel tube. The tube parameters are
specified in the following Table 3:

Parameter Value
Outer diameter Dout 0.070 [m]

Inner diameter Din 0.050 [m]

Tube length ℓw 1000 [m]

Surface roughness εw 0.1 · 10−3 [m]

Thermal conductivity λw 38 [W/m K]

Density ρw 7500 [kg/m3 ]

Specific heat capacity cpw 540 [J/kg K]

Table 3: Absorber tube parameters.

◮ Equation of state

As equation of state stiffened gas (2.72) is used. The values for liquid water and vapor
are given in Table 4. These parameter values appear to yield reasonable approximations
over a temperature range from 298 to 473 Kelvin [95].
The thermal conductivity [W/mK] and dynamic viscosity [kg/m s] are given by λℓ = 0.5,
λg = 0.026, µℓ = 281.8·10−6, and µg = 134.4·10−7. The phasic isobaric specific heats cp k
are determined from the corresponding phasic isochoric specific heats as cp k = γk cv k.

177



γ q q′ π cv
Liquid 2.35 −1167 · 103 0 109 1816
Vapor 1.43 2030 · 103 −23 · 103 0 1040

Table 4: Stiffened gas parameters for liquid water and water vapor.

◮ Wall friction density

The constitutive model of the wall friction density is given by (2.76),

Fw k =
1

2
ρkvk|vk| fw k

αw k

Din

,

where the wetted volume fraction in the wall film αw k and the wall friction factor fw k

need to be modeled. Usually, the wetted volume fraction in the wall film needs to be
modeled in dependency of the flow pattern. Here we simply choose the volume fraction
as a measure,

αw k = αk. (7.5)

The wall friction factor fw k is modelled as a piecewise-defined function [74]:

fw k =





fmax(Rew k), 0 ≤ Rew k < 64

flam(Rew k), 64 ≤ Rew k < 2200

ftrans(Rew k), 2200 ≤ Rew k < 3000

fturb(Rew k), 3000 ≤ Rew k

(7.6)

with phasic Reynolds number

Rew k =
|vk|ρk
µk

· αkDin

αw k

, (7.7)

where the last term is called hydraulic diameter. The laminar friction factor is calculated
as

flam(Rew k) :=
64

Rew k

, (7.8)

and is limited by the fmax friction factor

fmax(Rew k) := flam(64) ≡ 1. (7.9)

The turbulent friction factor is usually given by an approximation of the Colebrook-
White equation [137]. We are using the approximation of Zigrang and Sylvester [138],

fturb(Rew k) :=

(
−2 log10

(
εw

3.7Din

+
2.51

Rew k

(
1.14− 2 log10

( εw
Din

+
21.25

Re0.9w k

))))−2

(7.10)
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with surface roughness εw of the inner tube wall. To link the laminar and turbulent
flow region an interpolation between the two states at the border of the laminar and
turbulent region is used [74],

ftrans = (1− ξf ) · flam(2200) + ξf · fturb(3000) (7.11)

with weight

ξf =
3000 (Rew k −2200)

Rew k (3000− 2200)
. (7.12)

◮ Interphase friction density

The constitutive model of the wall friction density is given by (2.77),

Fi

(2.43)
:= −Fi g = Fi ℓ =

1

2
ρcont(vg − vℓ)|vg − vℓ| · CD · 1

4
ai,

with density ρcont = αgρg, drag coefficient CD = 0.05, and specific interfacial area as

ai =
3.6 · αg

Din

, (7.13)

◮ Wall temperature

Usually the wall temperature is computed by the concentrated external solar irradiation
and its losses, see Section 2.4.6. For this test case the wall temperature is chosen to
increase linearly from 500 to 550 Kelvin,

Tw(x) = 500 [K]+ 50 [K] · x

1000 [m]
. (7.14)

◮ Wall heat transfer rate density

The constitutive model for the wall heat transfer rate density is given by (2.80)

Qw k :=
αw k

Din

· hT,w k ·
(
Tw − Tw k

)
,

with its partitioning (2.81)

Qboil
w k = (1− βk)Qw k and Qconv

w k = βkQw k. (7.15)

The convective heat transfer coefficient hT,w k from wall to phase k and the corresponding
temperature Tw k in the wall film are chosen as

hT,w k =
4.36 · λk
Din

, (7.16)
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and

Tw k = Tk. (7.17)

For the partitioning into boiling and convection heat transfer, the parameter βk has to
be modeled. For the vapor phase we choose βg ≡ 1 which means, that the boiling part
is always zero. For the liquid phase, a distinction is made, if a subcooled or superheated
wall is there [74],

βℓ = min
(
1, exp

(
− 1

4
(Tw − Tsat ℓ)

))
. (7.18)

◮ Interphase heat transfer rate density (in the bulk)

The constitutive model for the interphase heat transfer rate density (in the bulk) is given
by (2.82)

Qi k = ai hT,i k

(
T̂i sat − Tk

)
,

The convective heat transfer coefficient is chosen as

hT,i k =
Nuk ·λk
Dbub

. (7.19)

with bubble diameter

Dbub =
6αg

ai
. (7.20)

While for the vapor phase the Nusselt number is chosen constant with Nuℓ = 2.5, it is
given for the liquid phase by

Nuℓ = 2 + 0.6 Re0.5ℓ Pr0.33ℓ , (7.21)

with Reynolds and Prandtl number

Reℓ =
ρℓDbub|vℓ − vg|

µℓ

and Prℓ =
µℓ cp ℓ

λℓ
. (7.22)

◮ Interfacial mass transfer rate

The interfacial mass transfer rate is defined in Section 2.4.2 by a heat conduction limited
model:

Γi :=
1

Êi ℓ − Êi g

(
Fi(vℓ − vg) +Qi ℓ +Qi g

)
,

and

Γw :=
1

Êi ℓ − Êi g

(
−Qboil

w ℓ −Qboil
w g

)
.
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◮ Initial values

Initially, the values of the domain x ∈ [0, 1000] are given by a pressure of 30 bar, a
temperature of Tℓ = 471 [K] and Tg = 475 [K] and a flow velocity of vℓ = 1 [m/s] and
vg = 18 [m/s]:

αg Tℓ vℓ pℓ Tg vg pg
Initial 0.02 471 1 30 · 105 475 18 30 · 105

The temperatures are chosen, such that they are close to the saturation temperature.
This initial datum may be interpreted as a flow of water without mass transfer, friction
and heat tranfer in the tube. With the start of the simulation, the source terms start to
influence the solution.

◮ Boundary conditions

From the eigenspace we know, that the solution information propagates along seven
wave directions. For the flow in a tube we can assume, that the fluid is flowing with a
positive velocity, such that two characteristics are facing backwards and five forward in
flow direction. For the case of a solar power plant it is the condenser which determines
the outlet pressure. At the inlet the phasic temperatures and velocities are given by the
cooling part of the power plant and the pump.

The boundary values on the left hand side (x = 0) and right hand side (x = 1000) are
the same values as the initial values, where the undefined boundary values are taken
from inside using extrapolation.

αg Tℓ vℓ pℓ Tg vg pg
Left inflow boundary 0.02 471 1 – 475 18 –
Right outflow boundary – – – 30 · 105 – – 30 · 105

◮ Numerical results

In Figure 66 the temporal convergence to the steady state solution for the ESPC, ES-
PCs, Godunov-Suliciu, and Semi-Implicit scheme are shown. The temporal residual for
quantities of the vapor phase converges faster than the temporal residual for quantities
of the liquid phase. But the temporal residuals of the vapor quantities do not reach a
value of zero, they just stagnate. This is already known for explicit methods due to the
time step restriction. Furthermore, the liquid quantities are still not stationary, which
not necessarily means that there will be larger changes. A surprising observation is that
the temporal residual of the ESPC and ESPCs schemes converges more than two times
faster than the Godunov-Suliciu and the Semi-Implicit scheme. This can also be seen in
Figure 67, where the temporal convergence to the steady state solution of the volume
fraction α is shown.
In Figure 68 the steady state results are shown for an integration time of t = 500

seconds. Due to low order and high numerical disspiation of the ESPC and ESPCs
scheme we use here a higher resolution of 900 grid cells in comparison to 300 grid
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cells for the Godunov-Suliciu and Semi-Implicit scheme. The liquid and vapor pressure
decrease due to the influence of the friction, and the liquid temperature increases due to
heat transfer from the hot tube wall and from the vapor phase. This directly influences
the phasic densities which therefore decrease.

The following observations can be made: At first, it would be expected, that more
vapor is generated inside the absorber tube. This can be understood as a hint for using
more accurate closures of the constitutive models which influence the interfacial mass
transfer rates Γi and Γw. There are more complex models, e.g. those used in the nuclear
thermal-hydraulic code RELAP [74], which consider the flow regime for the interaction
between the phases and Nukiyama’s boiling curve for the wall heat transfer. Second, it is
interesting that the path-conservative schemes (ESPC and ESPCs) generate once again
similar results in the eyeball norm. The same holds for the Godunov-Suliciu and the
Semi-Implicit scheme. But it is curious, that both different solution families show such
different results. Only the results for the liquid pressure pℓ and the velocities vℓ and vg
show a good agreement. A reason for the uneven results may be the observation which
we already did in the water faucet test case in Section 7.6. There we remarked, that the
ESPC and ESPCs scheme need about 25 times more grid cells than the Godunov-Suliciu
and Semi-Implicit schemes, to produce results of the similar quality (300 grid cells of
Godunov-Suliciu vs. 8000 grid cells of ESPCs). Thus, the path-conservative results have
not converged so far in space because they are more dissipative.

This can be seen for the mesh refinement for the ESPCs and Godunov-Suliciu scheme,
see Figure 69 and 70. For the Godunov-Suliciu solver the solution with 300 grid cells
already converged to the steady state solution. The solutions of the ESPCs scheme
move into the direction of the Godunov-Suliciu solution, but some are still far away
from convergence20. Taking a closer look at the solutions of e.g. the vapor density ρg
and vapor temperature Tg, it can be seen that they are already close to the Godunov-
Suliciu solution, see Figure 71.

20Due to computation time restrictions the mesh refinement of the ESPCs scheme is done up to a
factor of three (900 grid cells) in comparison to the converged mesh size (300 grid cells) of the
Godunov-Suliciu solver.

182



0 500 1000 1500

10
-5

10
0

ESPC

0 500 1000 1500

10
-5

10
0

ESPCs

0 500 1000 1500

10
-5

10
0

Godunov-Suliciu

0 500 1000 1500

10
-5

10
0

Semi-Implicit

Figure 66: Evaporation in a solar absorber tube. Temporal convergence to the steady
state solution for the ESPC, ESPCs, Godunov-Suliciu, and Semi-Implicit
scheme with a maximum simulation time of tmax = 1500 seconds for physical
values f(x, t) with f = α, ρℓ, ρg, Tℓ, Tg.
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Figure 67: Evaporation in a solar absorber tube. Temporal convergence to the steady
state solution of the volume fraction α for the ESPC, ESPCs, Godunov-
Suliciu, and Semi-Implicit scheme.
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Figure 68: Evaporation in a solar absorber tube using the ESPC, ESPCs, Godunov-
Suliciu, and Semi-Implicit scheme with 900 grid cells for t = 500 seconds.
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Figure 69: Grid refinement results of the ESPCs scheme for the evaporation in a solar
absorber tube at t = 500.
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Figure 70: Grid refinement results of the Godunov-Suliciu scheme for the evaporation in
a solar absorber tube at t = 500.
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Figure 71: Spatial convergence of the vapor density and vapor temperature computed
with the ESPCs scheme for the evaporation in a solar absorber tube at t =
500.
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7.8. Analysis of the results

Within this Section, we compared the four schemes ESPC, ESPCs, Godunov-Suliciu
and Semi-Implicit. In several test cases the qualitative behavior of the schemes has been
investigated.

There are just minor differences between the ESPC and ESPCs scheme. The main
difference has been found in the pressure disequilibrium test case in Section 7.4, where
the ESPC scheme created a small kink at the shock position. In all other test cases
both schemes created the same results (in the eyeball norm). Remember, that the only
difference between both schemes is the path: while ESPC takes the straight path along
the state variables, ESPCs takes the straight path along the entropy variables. This
underlines once again the statement of Castro et al. [108], that for practical purposes it
is often sufficient to use a simple path. Incidentally, the solution of a path-conservative
scheme depends heavily on the numerical viscosity, e.g. compare with the results of
the coupled Burgers equation in Section 7.1. For the two-phase flow test cases it can
be seen that the path-conservative schemes not necessarily show a smooth behavior of
the Riemann invariants, see Section 7.4. In contrast, the Godunov-Suliciu and Semi-
Implicit scheme fulfill at least six of eight Rankine-Hugoniot conditions at the vi contact
discontinuity.

The convergence speed of the schemes is investigated for the isolated coupling wave test
case from Section 7.3. Because the exact solution of the volume fraction α is known,
this parameter is used as a measure for the accuracy in the L1, L2 and L∞ norm. In
Figure 72, the L2-error is plotted against the number of grid cells. It can be seen that the
empirical order of convergence is the same for all schemes, whereas the path-conservative
schemes are more dissipative. The accuracy of the different schemes related to the CPU
run-time is depicted in Figure 73. It can be seen, that the convergence speed of the
Godunov-Suliciu and the Semi-Implicit scheme are higher than the convergence speed
of the ESPC and ESPCs scheme. It is clear, that the run-time highly depends on the
implementation. Here we want to point out, that no code optimization has been done
so far, e.g. every grid cell evaluates both fluxes without re-using information from the
neighboring cell. The path-conservative schemes approximate the integral along the path
with a numerical quadrature rule. Thus, here the run-time depends on the number of
chosen evaluation points. To speed-up this part, it is recommended to write the system
in the form (3.1), where the conservative terms are stored in integral form in the flux
vector f(u), and the non-conservative terms are stored in matrix B(u), which is less
dense21 than A(u).

It is interesting to see, that the Godunov-Suliciu is faster than the Semi-Implicit scheme.
This observation highly depends on the Mach number of the test case. For the isolated
coupling wave stiffened gas was used in a region, where the speed of sound is just twice
as fast as the flow velocity. Thus, the Semi-Implicit scheme needs just half of the time
steps in comparison to the Godunov-Suliciu solver. But solving the implicit equation

21In the case of the two-velocity two-pressure model, B(u) ∈ R7×7 has just 5 non-zero entries, see
(2.60), where A(u) has 17 entries which need to be computed (2.70).
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system needs more than twice the time of one Godunov-Suliciu time step. Thus, for
applications with lower Mach numbers than 0.5, we expect that the Semi-Implicit scheme
will be faster than the Godunov-Suliciu solver. For the solar application with real water
equations we expect a Mach number of O(10−2).

The total entropy dissipation for all schemes was investigated for Sod’s shock tube test
case in Section 7.2. While the ESPC and ESPCs schemes behave according to their
their entropy stable property, the Semi-Implicit scheme surprisingly is very inaccurate
and even generates entropy for coarser meshes. Fortunately, also the Godunov-Suliciu
scheme dissipates entropy with a high convergence rate. This observation was once again
confirmed for the two-phasic mixture at rest test case in Section 7.5.

For the two test cases with source terms, the water faucet problem in Section 7.6 and the
evaporation in a solar absorber tube in Section 7.7, it was observed that the ESPC and
ESPCs schemes need a finer mesh than the Godunov-Suliciu and Semi-Implicit scheme.

Number of ESPC ESPCs
grid cells L1 L2 L∞ L1 L2 L∞

500 0.026474 0.055776 0.0003962 0.026481 0.055784 0.00039638
1000 0.01878 0.046908 0.00019866 0.018784 0.046913 0.00019873
2000 0.013281 0.039445 9.9525e-05 0.013283 0.039448 9.9551e-05
4000 0.0093911 0.03317 4.9832e-05 0.0093921 0.033171 4.9842e-05
8000 0.0066405 0.027892 2.4941e-05 0.006641 0.027893 2.4944e-05

Number of Godunov-Suliciu Semi-Implicit
grid cells L1 L2 L∞ L1 L2 L∞

500 0.0076614 0.029954 0.0003908 0.0076614 0.029954 0.0003908
1000 0.005419 0.025194 0.00019675 0.005419 0.025194 0.00019675
2000 0.0038323 0.021188 9.885e-05 0.0038323 0.021188 9.885e-05
4000 0.00271 0.017818 4.9593e-05 0.00271 0.017818 4.9593e-05
8000 0.0019164 0.014984 2.4856e-05 0.0019164 0.014984 2.4856e-05

Table 5: Convergence analysis of the ESPC, ESPCs, Godunov-Suliciu, and Semi-Implicit
scheme using the L1, L2, and L∞ norm to measure the error. The Lp error of
the ESPC and ESPCs scheme are similar. Also the Godunov-Suliciu and Semi-
Implicit scheme have an similar Lp error.
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Figure 72: L2-error against the number of grid cells for the ESPC, ESPCs, Godunov-
Suliciu, and Semi-Implicit scheme.
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Conclusion and Outlook

Within this work, two problems out of the construction and operation of solar thermal
power plants are regarded. A tool for the heliostat field layout optimization, and stable
solvers for describing the two-phase flow of water/steam in the absorber tubes of a
Fresnel solar collector system are developed. Both works can be used to help to develop
more efficient and thus more competitive solar power plants.

◮ Heliostat field layout optimization of solar tower power plants

The heliostat layout optimization problem of solar tower power plants is a global, non-
convex optimization problem with constraints. Usually this kind of problem is solved
using a pattern-based optimizer. The drawback of these methods is the small search
space by construction, as the solution is always a regular heliostat field. Within this
work we used an evolutionary algorithm to improve the solution of the heliostat layout
problem. Because the classical crossover operators lead to invalid layouts, and addition-
ally are highly sensitive to the order of the heliostats, we introduced three new crossover
operators. All operators are successfully tested and applied to two benchmarks, showing
the applicability of our approach.

In the last section, the usage of a post-processing step was proposed, such that the
complete optimization algorithm can be seen as a multi-step strategy. Even if with this
Greedy approach the efficiency was improved, the achieved heliostat layouts still offer
space for further improvements. One might investigate the usage of a gradient descent
method where the gradients are computed using algorithmic differentiation.
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Figure 74: Layout of the Horns Rev offshore wind farm.
Sources: Aeolus, [15]

It is thinkable to use the optimizer also for other positioning problems, e.g. the layout
optimization of an offshore wind farm [139]. Here we need to find for a given piece of land
(under water) the best positions of N wind turbines, such that some objective function
(e.g. efficiency) is optimized. Due to wind shading effects the wake of each wind turbine
has to be considered. Actually, this approach was already checked in a Bachelor’s thesis
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by Gregor Heiming [15], which has been co-supervised by the author of this work. In
future, this optimization can be applied and tested against existing offshore wind farms,
where public data is available, e.g. Horns Rev see Figure 74.

◮ Direct steam generation in Fresnel solar collector systems

Within this work a two-velocity two-pressure seven-equations model is developed, such
that important mathematical and thermodynamic properties hold. Different approaches
are developed to solve the non-conservative parts of the PDE system. To increase the
simulation time, a semi-implicit scheme is used which allows to control the time step.
The new schemes are tested with multiphase flow problems from literature. As last
test case, flow through a 1000 m long heated tube was simulated, where mass transfer,
interfacial friction, wall friction, interfacial heat transfer, and wall heat transfer is con-
sidered. It is shown, that the entropy-stable path-conservative scheme and the developed
Godunov-Suliciu are a good choice to solve this type of problem.

The path-conservative schemes ESPC and ESPCs show a slow convergence. To stabilize
them, numerical dissipation for higher order has to be introduced. Furthermore, the
reason for the entropy generation of the Semi-Implicit solver needs to be investigated
in-depth. Then, the existing large time-step solver should be extended for low-Mach
number flows and the source terms should be considered by a well-balanced scheme.
This method should be parallelized for CPUs and/or GPUs. Depending on the length
of the tube one could think about adaptive mesh refinement techniques (AMR). The
schemes should be extended for higher order in time and space. For this purpose also
the splitting operator needs to be solved at higher order (e.g. Strang splitting has 2nd
order).

Figure 75: Network of tubes in the Noor solar
power station near Ouarzazate in Mo-
rocco. Source: ACWA Power

The motivation for these improve-
ments are a desired increase of effi-
ciency and accuracy, such that later
this code can be used as a real-
time simulation tool within a solar
tower power plant, e.g. in EBL’s
Puerto Errado 2. Therefore, the
tool needs to be extended to a net-
work of tubes, which considers dif-
ferent tube types, non-homogeneous
heat flux around the tube, pumps,
and other power plant components.
For this purpose more application
tests with real data of a solar power
plant are needed. It may be useful
to use the tabulated water equations
as equation of state. If so, here some
work is needed to speed-up their computation, e.g. Spline interpolation of precomputed

194



points. Additionally the source terms need to be developed more precisely related to
the underlying flow pattern.

Altogether, within this work a well-posed thermal-hydraulic model for a real-world ap-
plication was derived. The developed solvers allow to predict the ongoing processes
in the absorber tubes. Thus, with this work the stage is set for the computer-based
development of optimal control strategies for solar thermal power plants.
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