Advanced Materials for a Damage Resilient Divertor Concept for DEMO

1 Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany
2 Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany
3 Lehrstuhl für Werkstoffanwendungen im Maschinenbau, RWTH Aachen, 52062 Aachen, Germany
4 Technische Universität München, Boltzmannstrasse 15, 85748 Garching, Germany
5 CEIT-IK4 Technology Center and Tecnun (University of Navarra), E-20018 San Sebastián, Spain
6 Karlsruhe Institute of Technology, Institute for Applied Materials, Eggenstein-Leopoldshafen, Germany
7 OSRAM GmbH, Corporate Technology CT ISS MTS MET, Mittelstetter Weg 2, 88530 Schwabmünchen, Germany

Abstract

Material issues pose a significant challenge for future fusion reactors like DEMO. When using materials in a fusion environment a highly integrated approach is required. Damage resilience, oxidation resistance during accidental air ingress as well as power exhaust are driving issues when deciding for new materials. Neutron induced effects e.g. transmutation adding to embrittlement are crucial to material performance. Here advanced materials e.g. W/W or Cu/W composites allow the step towards a fusion reactor. Recent developments in the area of multi-fibre powder-metallurgical W/W mark a possible path towards a component based on standard tungsten production technologies. Field Assisted Sintering Technology (FAST) is used as production route to achieve 94% dense materials. Initial mechanical tests and micro-structural analyses show potential for pseudo-ductile behavior of materials with a reasonable (30%) fibre fraction. In the as-fabricated condition samples showed step-wise cracking while the material is still able to bear rising load, the typical pseudo-ductile behavior of a composite. Yttria is used as the interface material in order to allow the energy dissipation mechanisms required. Together W/Cu and W/W can potentially bridge the operational gap between the upper bound for strength of copper ~ 620 K and the lower bound of DBTT for tungsten ~ 850 K. W/W contributes here to advanced material strength and crack resilience even with a brittle matrix embrittlement, while W/W composites at the coolant level allow for higher strength at elevated cooling temperatures. In addition to the use of pure tungsten it is demonstrated that tungsten-based self-passivating alloys can also be used in the composite approach.

Keywords:

1. Introduction

Tungsten (W) is currently the main candidate material for the first wall of a reactor as it is resilient against erosion, has the highest melting point, shows rather benign behavior under neutron irradiation, and low tritium retention. Extensive work has been done to qualify current materials with respect to theses issues for ITER, especially for W first wall and divertor materials [1, 2]. For the next step devices, e.g. DEMO, or a future fusion reactor the limits on power exhaust, availability, lifetime and not least on fuel management are quite more stringent. Extensive studies and materials programs [3, 4, 5, 6, 7, 8] have already been performed hence it is assumed that the boundary conditions [9] to be fulfilled for the materials are in many cases above the technical feasibility limits as they are set today.

2. Advanced Materials

Efforts to establish new advanced plasma-facing material options are moving forward [2] focusing on crack resilient materials with low activation, minimal tritium uptake, long lifetime and low erosion. The operational gap (~ 620 K-850 K) be-

Figure 1: Energy dissipation mechanisms typically considered in W/W and other fibre-reinforced composites (based on [11])

Many of these materials base their advanced properties on
the use of a composite approach. With the incorporation of fibres, energy dissipating mechanisms, like ductile deformation of fibres, fibre pull out, and crack bridging and deflection are facilitated [12, 13, 14]. Figure 1 shows the typical mechanisms as discussed above.

An additional difficulty when using W in a fusion reactor is the formation of radioactive and highly volatile tungsten oxide (WO₃) compounds during accidental air ingress. In order to suppress the release of W-oxides tungsten-based self-passivating alloys can be incorporated into the composite approach [15, 16, 17, 18, 19]. In the given manuscript the main focus lies on the Powder-Metallurgical (PM) W/F/W as plasma facing material.

2.1. Tungsten-Fibre Reinforced Tungsten

To overcome the brittleness issues when using W, a W fibre enhanced W composite material (W/W), incorporating extrinsic toughening mechanisms can be used. Various methods of building and constructing W/F/W composites, either via Chemical Vapor Deposition (CVD) [20, 21, 22] or powder metallurgical processes [23, 24] are available. Based on [11] and previous work [22, 11, 23, 11, 24], the basic proof of principle for W/F/W has been achieved. It can be expected that when using doped tungsten wires even at elevated temperatures (above 1500K) W-fibres will keep their ductility [25], hence all mechanisms described above may function [11]. Should the fibres however lose their ductility, e.g. neutron embrittlement[26, 27], the pull out of fibres and the crack deflection should still be able to maintain pseudo-ductility. In W/F/Cu the fibres will most likely remain ductile.

![Figure 2: Microstructure of W/F/W generated by dry pressing and subsequent pressure-less sintering.](image)

Dry pressing of a fibre/powder mixture and subsequent pressure-less sintering would be the cheapest and simplest process, of which W/F/W would benefit greatly. Therefore our first experiments were conducted in this direction. Using a press with an instrumented cylindrical floating die [28], the fibre/powder mixture has been compacted using a maximum pressure of 700 MPa reaching a relative density of 78 %. Subsequently, the resulting green part was sintered in a tungsten tube furnace under a pure hydrogen atmosphere at 2000°C for 1 h. The resulting microstructure (cf. fig 3) shows distinctive cracking by shrinkage of the compacted powder, whereas the fibres are already at final density. From these results it is evident that additional external pressure during sintering of W/F/W is required to get a dense and crack-free sample. Field Assisted Sintering Technology (FAST) provides such additional compaction during sintering.

![Figure 3: W/F/W produced by FAST with random distributed fibre and 2.5 μm yttria interface between fibres and matrix](image)

In Figure 3 an as-produced PM-W/F/W sample is shown. Based on Field Assisted Sintering Technology (FAST) a sample with 40 mm diameter and a height of 5 mm was produced. Potassium doped W-fibres with 150 μm diameter and 1.5 mm length (OSRAM), together with pure tungsten powders (OSRAM) (average particle size 5 μm) were used as raw materials. The fibres and powders were mixed homogeneously before sintering, in order to produce a W/F/W sample with a random fibre distribution and orientation. A density of ~ 94 % was achieved after applying the sintering process at 2173 K (4 min) and 60 MPa (heating rate 200 K/min). In addition to the large samples, samples with 20 mm diameter for mechanical testing were produced based on the same parameters, but with varying used composition. Two kinds of tungsten powders have been: Pure tungsten powder (OSRAM) (average particle size 5 μm) and so called smart W-alloy powders (W-12Cr-0.5Y, provided by CEIT). The fibre size is also chosen differently in this case (240 μm x 2.4 mm). In all cases a fibre-volume-fraction of 30 % was used. The samples have been prepared to establish if and how pseudo-ductility can be established in the case of a randomly distributed short fibre W/F/W.

2.2. Interface Optimization

As part of the development of W/F/W particularly the choice of the fibre and the interface material can be crucial. With respect to the fibre, the choice of a sag-stabilized potassium doped fibre means that some ductility can be retained [?]. For the interface research on a variety of interlayers and their properties has been performed [29, 30, 31, 32, 33, 34, 35], including alumina, erbia and yttria (Y₂O₃). As the pseudo-ductility behavior relies on the interface properties, the stability of the interface needs to be established during the powder metallurgical production process. The fibre-matrix interface needs to be chosen as non activating material for fusion applications [2] - here yttria is proposed. Yttria is an ideal candidate as the interface material for the W/F/W composite due to its several advanced properties: good thermal and chemical stability, high mechanical strength and hardness. Yttrium oxide is proposed in W/F/W as well as for permeation barrier coatings in fusion reactor.
For the material samples presented here the \(\text{Y}_2\text{O}_3 \) layers were coated by a Prevac magnetron sputtering system from a yttrium metal target. Oxygen was injected into the Argon atmosphere as the reactive gas, so that \(\text{Y}_2\text{O}_3 \) could be formed.

Figure 4: The figure shows in (a) the SEM Image of a single coated fibre with yttria, before adding it to the powder for \(\text{W}_f/W \) production. Various steps of \(\text{W}_f/W \) have been used during the various development steps of \(\text{W}_f/W \). Typically 1 \(\mu \text{m} \) was established as a feasible thickness for the CVD Production Route [11, 36, 37]. For the PM-Route, both FAST and HIP, high pressures and temperatures however shown [23] that potentially a thicker interface is required. The FAST process adds additional complications as electrical insulation, pressure and temperature on the interface can cause thin interfaces to dissipate [38, 39, 40]. Here typically 2.5 \(\mu \text{m} \) thick yttria is required to establish a viable interface.

Figure 5: Yttria Interface on W-fibre in PM-\(\text{W}_f/W \) after consolidation (l) Fibre and Interface after consolidation (r) EDX Map showing Yttrium in interface

Figure 6 presents four of the measured load-displacement curves. In arbitrary units the behavior of two pure tungsten 2.5 \(\mu \text{m} \) yttria \(\text{W}_f/W \) samples is shown together with one self-passivating \(\text{(W-12Cr-0.5Y)} \) \(\text{W}_f/W \) sample measurement. In addition the catastrophic failure of a pure tungsten sample is shown. In all three \(\text{W}_f/W \) cases crack initiation is observed after which still an increased load can be handled. This means even in this simple model-systems pseudo-ductility can be observed. Here now material qualification needs to make sure that potential failure modes like cracking [3] can be overcome for future divertor materials and components.

Figure 7 shows in some detail the crack surface and highlights the individual mechanisms presented before (Fig. 1). All three mechanisms, ductile deformation of fibres, crack deflection and pull out can be observed. Based on these promising results further materials development needs now to establish the actual material parameters like, fracture toughness and ultimate tensile strength.

2.3. Pseudo-Ductile Behavior

The crucial point when considering \(\text{W}_f/W \) for applications is to establish pseudo-ductile behavior and eventually show improved mechanical behavior during operational conditions.

2.4. A new Divertor Component

In the brevity of this contribution mainly the new results on PM-\(\text{W}_f/W \) are reported, when trying to improve the per-
Figure 8: Component Design, incorporating Wf/W and W/Cu solutions at various points in the structure, based on [41, 22]

Figure 8: shows only a small variety of potential options that could potentially be used based on conventional ITER-like divertor designs only. The top row assumes a copper cooling structure and a flat tile of tungsten as armour material. The copper tube can be strengthened via introduction of fibres and the mechanical stresses on the copper structure elevated due to introduction of a graded transition between Cu and W. [47, 43, 4, 45].

It is essential that the exhaust capability of an advanced component is similar to conventional designs and does in addition show resilience against e.g. embrittlement, failure due to thermal stresses and cyclic loading. We hence propose to utilize the Wf/W composite approach together with W-alloying concepts to maximize the potential of W-based-PFCs on top of the advanced cooling options. The lifetime influenced by erosion, creep, thermal fatigue, and embrittlement, needs to be compatible to the requirements from steady state operation. This means that erosion determined by the top layer needs to be close to pure tungsten. Potentially various options introducing the composite need to be considered. Thermal stress analysis can give hints at locations within the component where a potential application of Wf/W is indicated by high stress and crack probability. [3]

3. Conclusion and Outlook

Based on initial tests for PM-Wf/W it can be said that a potential development path for enhancement of tungsten has been opened in addition to the established Wf/W production via CVD. The multi-fibre approach allows now the quick prototyping and testing of new material combinations, fibres, interfaces and alloys. Wf/W on its own can however not solve the issues of heat-exhaust in the divertor of a future fusion reactor. Here also the improvement of the typically used copper cooling structure needs to be considered. Results on W/Cu new materials are reported elsewhere [47, 43, 4, 45]. In combination both can be used to develop a new divertor component. Here rigorous testing and qualification is required with respect to heat-exhaust, thermal fatigue, cyclic loading and plasma wall interaction.

It is planned to have prototype components available within 5 years for application in existing fusion devices. In order to also establish material performance under irradiation PM - Wf/W samples (cf. fig. 3) are earmarked for irradiation in a nuclear reactor starting in 2017.

Acknowledgement

We would like to acknowledge in particular the scientific exchange with OSRAM Schwabmünchen on the supplied Base-materials for our composites.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

