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Abstract

Tangential endwall contouring is intended to improve the blading efficiency in turbomachinery. The

present thesis focusses on the influence of leakage flows on the performance of non-axisymmetric

endwall contouring in combination with a compound lean turbine blading.

All tests were conducted on a 2 stage axial turbine test rig at the Institute of Power Plant Technol-

ogy, Steam and Gas Turbines (IKDG) of RWTH Aachen University. The test rig is driven with air.

Two sealing set-ups are applied to create two different leakage mass flows. Four operating points are

investigated that represent the design point as well as overload and partload conditions.

The endwall contouring is applied on both hub and tip sides. Three configurations are compared.

A baseline design without endwall contouring, contoured stator vanes and non-contoured rotor blades

as well as contoured vanes and blades.

At first, all configurations are investigated with a negligible leakage flow rate at the casing side. The

results show that the vane contoured configuration performs best in stage 1 while the fully contoured

set-up loses in efficiency for the design point and in partload compared to the baseline configuration.

This trend is flipped in stage 2 as the fully contoured version performs best and the vane contoured

configuration loses significantly. This finding suggests that endwall contouring has the potential to

increase the efficiency of multi stage turbines.

The second focus is put on the interaction of endwall contouring and leakage flow. These investiga-

tions show that neither the vane contoured nor the fully contoured set-up show an increased efficiency

at any operating point. The trends within the first stage are similar to the measurements with the low

amount of leakage flow. In the second stage both contouring designs perform worse than the baseline,

leading to the assumption that the change in efficiency is mainly caused by the re-entering leakage

mass flow upstream the contouring and not by the flow that enters the cavities in front of the rotor

contouring.





Kurzzusammenfassung

Nicht-achssymmetrische Seitenwandkonturierung soll eingesetzt werden, um den Schaufelwirkungs-

grad in Turbomaschinen zu erhöhen. In der vorliegenden Arbeit wird der Einfluss von Leckageströ-

mung auf die Wirkungsweise der Seitenwandkonturierung in Verbindung mit einer "Compound Lean"

Turbinenbeschaufelung untersucht.

Alle experimentellen Versuche wurden mit dem 2-stufigen Axialturbinen-Prüfstand des Instituts für

Kraftwerkstechnik, Dampf- und Gasturbinen (IKDG) der RWTH Aachen University durchgeführt.

Die Versuchsturbine wird mit Luft betrieben. Zwei Dichtungskonfigurationen werden eingesetzt, um

zwei unterschiedliche Leckage-Raten zu generieren. Außerdem werden vier Betriebspunkte unter-

sucht, die den Auslegungspunkt sowie Überlast- und Teillast-Zustände repräsentieren.

Die Seitenwandkonturierung ist sowohl an der Nabe, als auch gehäuseseitig appliziert und es

werden drei Beschaufelungs-Konfigurationen verglichen. Ein Basis-Design ohne Seitenwandkon-

turierung, konturierte Statorschaufeln und nicht konturierte Rotorschaufeln, sowie eine Variante in der

sowohl Stator- als auch Rotorschaufeln konturiert sind. In einem ersten Schritt werden alle Konfigu-

rationen mit einer vernachlässigbaren gehäuseseitigen Leckage-Rate untersucht. Die Messergebnisse

zeigen, dass die Konfiguration mit konturierten Statorschaufeln den höchsten Wirkungsgrad in Stufe 1

hat, wohingegen die voll-konturierte Variante im Vergleich zum Basis-Design einen schlechteren

Wirkungsgrad im Auslegungspunkt und in Teillast aufweist. Dieser Trend kehrt sich in Stufe 2 um, in

der die voll-konturierte Konfiguration die höchste Effizienz hat und deutliche Verluste bei der Stator-

konturierten Variante zu verzeichnen sind. Hieraus lässt sich ableiten, dass diese Form der Seiten-

wandkonturierung das Potenzial bietet den Wirkungsgrad von mehrstufigen Turbinen zu erhöhen.

Aufbauend auf den zuvor beschriebenen Untersuchungen wird der weitere Fokus dieser Arbeit

auf die Interaktion von Seitenwandkonturierung und Leckageströmung gelegt. Diese Untersuchun-

gen zeigen, dass weder die am Stator konturierte, noch die voll-konturierte Konfiguration zu einem

Wirkungsgradanstieg in allen untersuchten Betriebspunkten führt. Das Verhalten in Stufe 1 ist ver-

gleichbar zu den Ergebnissen mit geringen Leckage-Raten. Dahingegen sind die Wirkungsgrade der

beiden konturierten Varianten in Stufe 2 schlechter als der Wirkungsgrad der Basis-Konfiguration.

Dies führt zu der Annahme, dass die Änderung des Wirkungsgrades primär durch den einströmenden

Leckage-Massenstrom stromauf der Seitenwandkonturierung verursacht wird und nicht durch die

Strömung, welche vor den Rotorschaufeln in die Kavitäten fließt.
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Nomenclature

Symbol Description Unit

a Specific Work J
kg

A Area m2

~A Vector perpendicular to surface area m2

c Absolute velocity m
s

~c Vector of velocity m
s

cB Gap between labyrinth tip and rotor m

cp Specific heat constant J
kgK

cl Clearance m

D Diameter m

~̇D Angular momentum flow Nm

f Field variable within the flow section −

f Volume force N
m3

F Force N

h Enthalpy kJ
kg

h Height m

Ḣ Enthalpy flow W

I Specific, intensive state variable −

k Straddle factor −

l Length m

m Mass kg

ṁ Mass flow kg

s

M Radial position of probe measurement m

Ma Mach number −

n Rotational speed 1
min

p Pressure Pa

P Power Pa

Pr Prandtl number −

r Radius Pa

~r Vectorial field coordinate m
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kgK
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kgK

S Free control surface kJ
kgK
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V Volume m3
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∆ Difference −
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λ Thermal conductivity W
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µ Passage coefficient −

υ Specific volume m3
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Φ Volume related dissipation energy W
m3

ψh Load coefficient −

ρ Density kg

m3

~~σ Stress tensor N
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ζ Loss −
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MF Main flow
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1 Motivation and primordial objective

The employment of fossil fired power plants will be necessary in future decades to secure a stable

energy supply. The global energy demand will rise up by additional 70% until 2030 according to a

forecast by the European Commission [40]. The great majority of this demand (88%) will be covered

by energy from fossil fuels in 2030. Furthermore, the increased involvement of renewable energies

requires a flexible operation of conventional power equipment, while keeping the maximum efficiency

over a wide operating range. Almost one third of the total European energy consumption is caused by

losses of the energy conversion processes [41].

Therefore, the optimization of efficiency is a major development focus for turbo machinery to re-

duce the effective fuel consumption as well as environmental pollution of the power plant. Primarily

the efficiency of power plants can be enhanced by increasing the inlet temperature as well as the inlet

pressure of the turbine. However, this method is limited by the mechanical integrity of the material.

Due to the high research costs and long development time frame of alloys, the aerodynamic optimiza-

tion of airfoils possesses a high potential to improve the efficiency by keeping the thermodynamic

boundary conditions.

Leakage losses cause inner losses of turbo machines as well as profile or secondary losses. In gen-

eral, their amount is proportional to the gap above the blade shroud. Leakage losses are caused by the

pressure difference along the sealed section. Büscher [20] showed that this pressure difference has a

substantial influence on the leakage across a stage. Thus, stator vanes of impulse blading show higher

leakage rates than rotor blades. The leakage flow impacts the main flow in different ways. On the one

hand, less fluid participates in energy conversion, on the other hand it modifies the incident flow to

the next stage. These effects cause losses due to flow interaction and mixing losses, and finally lead

to a decrease of efficiency. Figure 1.1 a) illustrates a shrouded airfoil that is sealed by means of a

labyrinth seal. A portion of the main flow splits up upstream the airfoil and passes across the shroud

through the labyrinth fins. This leakage flow re-enters the main channel and mixes with the main flow

downstream of the last cavity.

Tangential Endwall Contouring (TEWC) is a passive method to reduce secondary losses in the

main flow. The contouring is used to expand or constrict the flow area selectively to influence the

local static pressure, the resulting pressure gradient and finally the velocity profile. It is applied at

the tip side (casing) or hub side along the flow passage and has to be designed under consideration of

the airfoil shape to achieve an optimal efficiency. As one can see in Figure 1.1 b) the contouring is

applied between two airfoils along the complete flow path in the axial direction.
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b)a)

Airfoil

Tangential endwall contouringAirfoil

Flow

Shroud

Labyrinth finCavity

Shroud sealed with labyrinth seals Tangential endwall contouring

Figure 1.1: a) Schematic of a shroud sealed with labyrinth seals [108] b) Illustration of tangential end-

wall contouring [2]

At the Institute of Power Plant Technology, Steam and Gas Turbines (IKDG), experimental inves-

tigations on TEWC were conducted by Schwab [125] on a 2-stage axial turbine. Shrouded "constant

section airfoils" (2D) were investigated in a baseline configuration (BASE) without TEWC and a con-

toured design in which the TEWC is applied on rotor and stator on the hub and tip side. The contoured

design investigated is unique as it does not have any bump or constriction of the main channel. This

is caused due to the requirement that it must be applicable as a retrofit option to the turbine.

The shrouds are sealed by means of labyrinth seals (LS) which reduce the leakage flow down to

approximately 10h compared to the main flow. The performance of the turbine has been measured

in four operating points (OP). These operating points represent the design point (OP3), two overload

points (OP1 and OP2) and one part load point (OP4). Figure 1.2 shows the polytropic efficiencies of

all OPs normalized to the efficiency at design point OP3. The efficiencies were derived in two ways

(represented by the marker style). Schwab [125] calculated the efficiency using Equation 5.9, only

based on measured probe data (temperature and pressure). Bearing losses and frictional losses are

also considered in Equation 5.10. It can be seen that the efficiency is increased globally by TEWC

for a wide range of load coefficients up to a load coefficient of about +2.0.

Motivated by these findings, a research project has been conducted to improve the understanding

of this kind of endwall contouring. The investigations that are presented in this thesis are the result of

findings that were made during this project. All publications, which are shown subsequently in this

chapter, have been prepared within the framework of this research. They explain why the focus of

the present thesis is on the comparison of 3D airfoils and the impact of leakage flow interaction to

endwall contouring (see Chapter 5 and Chapter 6).

In a first step, Zimmermann et al. [161] investigated the same blading type as Schwab [125]

(2D TEWC) with brush seals on the casing side to minimize the interaction of leakage flow and
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endwall contouring. Additionally, the measurement equipment and procedure was upgraded to detect

smaller deviations that are expected to occur within the flow field when implementing TEWC. Fur-

ther details according to this topic are presented by Zimmermann et al. [162]. The investigations of

Schwab [125] were extended with the goal to suppress the mixing effects of leakage flow and main

flow. The impact of rotor - stator interaction is considered. For these investigations, the leakage flow

of the groove ridge labyrinth seal consisting of three sealing tips (10h ṁmainflow) was reduced down

to approximately 1h by means of a combined labyrinth and brush seal (BS). For this configuration

all dimensions of shroud and cavities were kept constant and the centred seal tip was replaced by a

brush seal that overlaps the shroud. This ensures a bristle contact for all OP, respectively for different

centrifugal forces.

As shown in Figure 1.3, the efficiency of the configuration with brush seal (BS) at design point

(OP3) could be improved by 1.9% points compared to the LS configuration. An even higher increase

in efficiency of 3.9% points was observed for the overload condition (OP1). These findings indicate

that the performance of the TEWC is influenced by the leakage flow. In other words, it is not fully

moistened due to the leakage flow that mixes with the main flow upstream the TEWC location. A

detailed flow analysis has shown that the flow field downstream of the first rotor is homogenized by

means of TEWC. Therefore, especially the second stage performs better due to the proper inflow from
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the first stage, and the reduced mixing effects of leakage flow and main flow. In both stages the flow

is more uniform than before.

Measurements of the surface pressure distribution along the span of one vane at two radial heights

have shown that the incidence was improved, especially at the off design point OP1. For this operat-

ing point one can see that the flow field of the LS configuration is influenced across the whole span

by a zone of inhomogeneity that nearly disappeared by reducing the leakage flow. It has to be men-

tioned that the load coefficient is twice as large as shown by Schwab [125] due to a different definition.

The investigations of Zimmermann et al. [163] focus on 2D as well as 3D airfoils in baseline and

endwall contoured configuration. All airfoil configurations are investigated in combination with BS

on the casing side. A low leakage mass flow of approximately 1h could be realized for all configura-

tions. The prior findings of a more uniform inflow to the second stage (see Zimmermann [161]) could

be validated for the 2D configuration and are also seen for the 3D airfoils. However, the beneficial

effect could not be observed in the same scale as for the 2D airfoils. This is because the 3D airfoils

are more efficient as in comparison to the 2D airfoils. A detailed analysis of the polytropic efficiency

of each stage showed that the efficiency of the first stage suffers from TEWC for both airfoil types,

while the efficiency increases in the second stage. Figure 1.4 summarizes these findings for all OP

and the four airfoil configurations. In stage one, the efficiency is nearly the same for OP1 and OP2 for

both airfoil types. In OP3 it is decreased by a similar amount however, OP4 suffers most for the 3D

configuration. Stage two shows a constant positive offset for the TEWC configurations that is higher

for the 2D airfoils. Having a look at the global efficiency of the 3D airfoils, the benefit of the second

stage can not compensate the losses of the first stage. Table 1.1 shows how the present thesis extends

the previous investigations.
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6 Motivation and primordial objective

Table 1.1: Overview of the investigations by Schwab [125] and Zimmermann [161] [163] )

2D LS 2D BS 3D BS 3D LS

BASE Schwab [125] Zimmermann [161] Zimmermann [163]
Present thesisTEWC

TEWC-V

1.1 Structure of the thesis

In Chapter 2, the physical fundamentals of secondary flow are outlined. Furthermore, the state of the

art of manipulation of the secondary flow is shown. For this purpose, advanced 3D airfoil design fea-

tures, tangential endwall contouring, leakage flow interaction and sealing technologies are explained

in detail on the basis of a literature review.

The experimental facility including its measurement technology is described in Chapter 3. There,

the test conditions of the turbine as well as its constructive design are shown. The measurement equip-

ment such as a pressure distribution vane, pressure probes and temperature probes are introduced.

The methodology to post process the measured data is explained in Chapter 4 with focus on the

derivation of leakage flow, mechanical power measurement and the calculation of efficiency. Two

"averaging methods" according to Traupel [142] and Kreitmeier [83] were applied and compared for

the present test case. The results were analysed by uncertainty analysis that also contains a theoretical

approach according to GUM [73] and an analysis of two redundant measurements conducted before

and after all measurement campaigns.

Finally, the performance of the turbine including its operating point stability is outlined in Chap-

ter 5. These findings will then be analyzed more deeply by means of a detailed flow analysis in

Chapter 6.
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2 Physical fundamentals and state of the art

This chapter is intended to give an overview of relevant research conducted over the past decades. The

focus lies on the investigation of TEWC as well as the flow phenomena that are caused by secondary

flow. In general, the physical effects of secondary flow in turbo machinery is well understood. How-

ever, the definition of secondary flow or vortex phenomena is not standardized. Section 2.1 serves to

define the basic terminology of secondary flow briefly, because the discussion of the present investi-

gation is highly related to these effects. Section 2.2 shortly describes the technical methods that are

utilized to manipulate the secondary flow. Additionally, the effects of leakage flow interaction and

sealing methods are shown in Section 2.3 and 2.4 respectively, to put the present research in the latest

context of state of the art.

2.1 Secondary flow

In general, all kinds of flow phenomena that deviate from the main flow are referred to as "secondary

flow". Secondary flow is characterized by low kinetic energy and a more complex, three dimensional

fluid motion that participates in the energy conversion only to a limited extend. An almost "two di-

mensional" secondary flow characteristic can be observed for the main flow of a turbine. However,

the flow is dominated by more complex flow structures in the peripheral zones. Such additional com-

plexity in flow structure is caused by the interaction of several effects. For example the radius of

the leading edge has a major impact on the flow [62]. According to Denton, secondary flow losses

contribute up to 30% of the total losses of a profile [25].

Optimization of the flow behaviour is a current goal of turbine development. It is pursued to mini-

mize the amount of secondary flow, which has a negative impact on the efficiency of turbo machines.

Several opinions concerning the fraction of secondary losses compared to the overall loss can be

found in literature (e.g. [52], [60] or [151]). Gregory-Smith et al. [52] stated, that up to 40% of to-

tal losses are caused by secondary flow. It is therefore, of paramount importance to understand the

physical characteristics of secondary flows to realize a targeted exertion of influences by applying

new technical features in turbo machinery. The most important "secondary flow effects" are shown in

Figure 2.1, where several vortex distributions are shown that are briefly explained.

A closer look on the main flow reveals that the centrifugal forces are caused by flow deflection

in the passage and that they are equalized by the pressure gradient that is present between suction

side (SS) and pressure side (PS) of the airfoils and across the span between hub to the shroud. The

fluid is decelerated close to the wall or airfoil due to "no slip conditions" at the very surface. In turbo

machines, the flow velocity is constantly increased in the radial direction until it reaches the velocity

of the main flow. This area of flow is known as boundary layer flow [135]. Here, flow angles and
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Figure 2.1: Secondary flow models of a stator vane [79], [86] and [111]

velocities are invariant to radial position. This causes warping of the inlet boundary layer (IBL) at the

endwall and airfoil surface that induce the cross-passage flow (CPF) and the cross-blade flow (CBF).

The constant pressure force within main flow and boundary layer, and the demand of continuity cause

the cross-blade flow (CBF) to twist [141]. As a result, a closed vortex is propagating further down-

stream that deflects the flow to the pressure side (PS) close to the wall. The flow that passes the return

flow area of this vortex is deflected towards the suction side (SS). This passage vortex (PV) starts

within the blade passage between the leading edge and the first third of the axial chord length [99]

and remains downstream the blade row [86].

The leading edge of the airfoil separates the flow to pressure side (PS) and suction side (SS) due

to accumulation of the inflow boundary layer at the stagnation point [131]. The so called horse-shoe

vortex (HV) develops also because of the lower kinetic energy of the boundary layer and the sur-

rounding pressure field that is embossed by the main flow [32]. It consists of two branches which

propagate along the suction side (SS) (HVSS) and the pressure side (HVPS). The HVPS has a greater

influence on the channel flow because it is shifted towards the channel center due to the pressure gra-

dient between suction side (SS) and pressure side (PS) [87]. The direction of rotation is identical for

the pressure sided horse shoe vortex (HVPS) and the passage vortex (PV). Thus, both vortices merge

further downstream in many cases [132]. Typically a new boundary layer is formed downwards of

a separation line located on the wall [100]. The HVSS propagates close to the SS and is lifted by

the counter rotating passage vortex (PV) towards the channel centre [78]. The intensity of the horse

shoe vortex (HV) is mainly influenced by the radial pressure gradient along the trailing edge and the

pressure distribution upstream the airfoil [16]. Sauer et al.[120] have shown that the HV can be influ-
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enced by modifications of the leading edge. The HVSS has been intensified leading to a reduction of

approximately 50% of the endwall losses.

The corner vortex (CV) (or counter vortex as named by Langston [86] in Figure 2.1) is induced

by the passage vortex (PV) and emerges due to local separation that results from the sharp geometry

between endwall and airfoil e.g. at the root [74]. Flow is accumulated in the corner and set in motion

by the passage vortex (PV) with a contrary sense of rotation, while propagating downstream [49]. In

theory the corner vortex (CV) appears on pressure side (PS) and suction side (SS). However, its pres-

ence is more likely on the suction side (SS) because of the passage vortex (PV) that moves towards

the suction side (SS) on its way through the blade passage [1]. According to Wang et al. [151] this

kind of vortex may not be seen for airfoils with fillet radii on the hub and tip side. Therefore, it can be

expected that its influence is negligible for the present investigation, as all airfoils are manufactured

with a certain rounded corner at their roots.

Another kind of vortex, which is induced at the trailing edge of an airfoil, was described by

Hawthorne et al. [61]. At the trailing edge, the fluid transport towards the suction side (SS) in-

duced by the passage vortex (PV) causes a back flow due to mass continuity from the channel centre

towards hub and tip respectively. This flow interacts with the PV and generates a shear layer close to

the trailing edge [65]. Then, a pair trailing shed vortices (TSV) emerge on hub and tip side, that are

counter rotating to the passage vortex (PV) and that can be identified in the area of the wake close to

the boundary layer [114].

Schlienger et al. [121] made investigations with a 2-stage axial turbine test rig and stated, that tran-

sient secondary flows in the "inter-stage" are mainly controlled by the hub passage vortex and the shed

secondary flow field that occur due to the upstream stator vane row. These findings are supported by

the investigations here shown (see Section 6).

More detailed explanations of the physical formation mechanism of these flow effects, especially

for subsonic axial turbines, are given e.g. by Zebner [159] or Restemeier [116].

2.2 Targeted manipulation of the secondary flow

According to Havakechian et al. [60], the secondary loss generation in a turbine is primarily influ-

enced by several design parameters of an airfoil. The aspect ratio (AR) that describes the ratio of blade

height to blade length influences the secondary flow massively. An increase in aspect ratio (AR) also

leads to an increase in profile losses due to the lager airfoil surface. However, the impact of sec-

ondary losses and endwall losses are reduced. Also, the pitch-chord ratio is of high relevance as the

kinetic energy of the secondary flow varies quadratically with a change of the blade pitch while the



10 Physical fundamentals and state of the art

blade length is constant. Furthermore, the relative flow turning, the ratio of relative velocities, the

blade loading parameter, the inlet boundary layer (IBL), the boundary layer at the trailing edge, the

Reynolds number, the Mach number or the leakage flow interaction (LI) have an influence on the

secondary flow. Figure 2.2 summarizes the aerodynamic losses of a turbine as a fraction of leakage

losses (ζLeak), caused by secondary flow (ζSec), and profile losses (ζProf ). A distinction between low

pressure (LP), intermediate pressure (IP) and high pressure (HP) turbines is made depending on the

aspect ratio (AR).

In addition, advanced 3D design features can be applied to the airfoil. Both, an inclined design

(lean) and a curved design (bow) showed the potential to improve the flow near the endwalls. It is

also advantageous to sweep the airfoil shape in axial direction [50].

Furthermore, meridional (MEWC) and tangential endwall contouring (TEWC) can be applied to

the hub and / or tip regions of the blade to influence the aerodynamic performance. For MEWC the

flow channel is e.g. constrained in axial direction and several design approaches have been investi-

gated by Dejc et al. [24], Morris et al. [97], Boletis et al. [15], Kopper et al. [81] or Haas et al. [55].

All investigations showed a reduction of the overall losses.

Due to the beneficial potential, the MEWC has been evolved into a TEWC. Here, the contouring
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Traditional linear blade cascade Lean linear blade cascadea) b)

Positively curved blade cascade Negatively curved blade cascadec) d)

Figure 2.4: Schematic of 3D shaped airfoils according to Wanjin et al. [153]

Hormouziadis et al. [67] categorized the influence of lean to the flow. They stated that lean is a

probate method to control the following features:

• Level of reaction

• Radial loading distribution

• Secondary flow

• Related effects of secondary flow downstream the blade row

Denton and Xu [27] give an explanation how changes of the pressure field influence the streamline

curvature within the flow channel in the axial direction for a non twisted blade (see Figure 2.5).

Investigations by Harrison [56] conducted in a turbine cascade with un-leaned, straight-leaned and

compound-leaned airfoil configurations led to the identifcation of five potential influences on the loss

generation in a turbine cascade due to lean or bow:
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a) b)

Figure 2.5: a) Pressure distribution in a hypothetical leaned blade row with no spanwise variation in

flow b) Effect of blade lean on streamline curvature [27]

• Flow velocities

• Blade surface boundary layer transition

• Endwall boundary layer transition

• Mixing losses

• Other effects

A significant change of the static pressure especially in the mid chord area, was demonstrated for

a positive lean configuration by Denton and Xu [27]. This effect mainly influences the pattern and

size of the inlet boundary layer (IBL) that is accelerated and becomes thinner at the low pressure

endwall. On the contrary the inlet boundary layer (IBL) is thickened on the high pressure endwall

while it is decelerated. This leads to the positive effect of loss reduction on one endwall side due to

lower velocities. However, the performance is decreased at the opposite endwall. The investigations

displayed that lean design can increase the loss coefficient slightly. No overall effects were observed

by application of compound-lean. However, the flow turning is increased, and downstream mixing

losses as well as spanwise variation of the mean flow angle are reduced. This can enhance the effi-

ciency of a turbine in a multi row environment.

Further investigations of lean and bow airfoils by Walker et al. [148], Grant et al.[51], Wan-

jin et al. [153], Wang et al. [152], Pioske et al. [110], Jansen et al. [75] or Duden et al. [34] support

the findings explained above and are summarized in detail e.g. by Beer [9]

2.2.2 Tangential endwall contouring

TEWC is applied to influence the local static pressure and with that the oblige pressure gradient and

velocity field within the blade passage. This is realized by a intentional constriction or expansion of

the local flow area. Also the driving forces of the secondary flow phenomena are effected with the
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purpose to change the load distribution and hence the efficiency. In the past decades, several design

proposals for TEWC have been investigated and published.

Bischoff [13] showed the first non-axisymmetric contour design in 1983. Later investigations by

Atkins et al. [5], Hartland et al. [57] and Harvey et al. [59] could confirm the assumption that TEWC

has the potential to increase the efficiency of turbo machines. Those investigations were conducted in

a linear cascade rig. The TEWC, studied in [5], [57] and [59], has a ridge in the area near the trailing

edge close to the suction side (SS). On the contrary, the flow channel is contracted on the pressure

side (PS). Gregory-Smith et al. [52] proceeded the investigations ([5], [57] and [59]) by omitting the

ridge close to suction side (SS) and by constraining the TEWC to the area within the blade passage.

Further investigations by Ingram et al. [71] with equivalent TEWC designs and improved measuring

technology showed higher loss reduction for TEWC design P2 by limiting TEWC to grid width in

contrast to the investigations of Gregory-Smith et al. Finally Ingram et al. [72] endeavored to develop

a design to show the limits of loss reduction by means of TEWC (P3). Despite a massive reduction of

secondary kinetic energy (SKE-43%) the authors found an increase of secondary losses downstream

the blade row. This contradicts previous findings that the reduction of secondary losses is associated

with lower SKE. The authors suspect that fluid separation caused by the frim shape of the TEWC

is responsible for this effect. Praisner [113] and Knezevici [80] studied different airfoil and TEWC

designs in an experimental cascade and could confirm that TEWC is an effective method to decrease

secondary losses.

On the basis of investigations performed in linear cascades (references [5], [52], [57], [58], [71]

and [72]), Brennan et al. [16] investigated TEWC on rotor and casing in a one stage aircraft engine

rig. They found an increase in efficiency of about 0.24% points. Rose et al. [118] studied another

TEWC design on the same test rig at different load coefficients and measured an increase in efficiency

of 0.59% ± 0.25% points. All further investigations support this tendency of superior performance of

TEWC airfoil designs as compared to conventional airfoils [10], [35], [36], [46] and [134]. However,

it is stated that TEWC shows more benefit on vanes than on blades.

Improved 3D airfoils combined with TEWC were studied by Bagshaw et al. [6], [7], [8] and by

Gregory-Smith et al. [53] in a linear cascade rig. The authors found reduced losses across a large

portion of the span and a reduction of total pressure loss by 16% (relative). Pöhler et al. [111] and

Niewöhner et al. [101] researched different blading and TEWC designs on a 1.5 stage test turbine.

They showed an overall efficiency increase of the turbine with TEWC. This investigation emphasizes

that losses are increased within the stator row while the losses in the rotor passage are lower compared

to a design without the TEWC. A detailed summary of the investigations published before 2008 is

summarized by Schwab [125]. The following Table 2.1 is intended to continue the classification of

research with focus on TEWC till 2016, however, it does not claim to be complete.
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Table 2.1: Summary of experimental investigations on TEWC (based on Schwab [125] and updated till

2016)

Classification of

the test rigs
Comments

Airfoil

type
Publication

Linear Cascade
No leakage flow interaction
No impact of blade division
No rotor - stator interaction

2D

[2], [5], [24], [52], [57], [58],
[59], [70], [71], [72], [80],
[81], [97], [99], [113], [131],
[138]

3D [6], [7], [8], [53], [54], [110]

Annular Cascade No leakage flow interaction
No rotor - stator interaction

2D [15], [154]

3D [109]

Turbine All effects are covered
2D

[42], [46], [55], [76], [96],
[123], [124], [125], [126],
[163]

3D
[10], [16], [36], [35], [101],
[111], [118], [133], [134],
[163]

2.3 Leakage flow interaction

Another important field of research is dedicated to the impact on the efficiency caused by the leakage

flow that enters the main annulus on casing or tip side. On the one hand, leakages across shrouded

airfoils re-enter the flow channel downstream as shown in Figure 2.6 a). On the other hand, purge

flows that are used to cool hot materials in gas turbines, are guided into the main flow, which is de-

picted in Figure 2.6 b).

Early investigations by Denton et al. [26] in 1976 provided two dimensional experimental data

gathered in a shrouded steam turbine. On this basis further investigations were performed to expand

the knowledge of the connection between the cavity leakage flow and the main flow in turbines. The

investigations by Pfau et al. [105] that were conducted in an annular cascade turned out that leakage

flow (LF) has an influence on the main mass flow (MF) exit angle.

The same effect was surveyed by Peters et al. [104] and Anker et al. [4] in a 1.5-stage low speed

axial turbine. They stated that the small turning of the flow within the cavity causes a lack of velocity

of the re-entering leakage flow (LF) compared to the main mass flow (MF). This leads to a suction

sided incidence of the stator downstream. The measured amount of additional losses was in good

agreement to the correlation shown by Korschunov et al. [82] that was derived by experiments in a

linear cascade, however, there were differences in the increase of losses with a growing clearance.

A numerical study in 2011 by Biester et al. [12] utilizing RANS simulations supported these experi-

ments.
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a) b)

Figure 2.6: a) Flow across a shrouded rotor tip seal [108] b) Purge flow (P) on hub side entering the

main channel through the rim seal [76]

Experimental and accompanying numerical investigations by Hunter et al. [68], [69] were con-

ducted on a 2-stage turbine rig. They showed that the low momentum fluid generated in stator one

on the hub side emerges downstream with the secondary flow of rotor 1 to 7.5% span at the rotor 1

trailing edge. The associated total pressure deficit and radial variation in circumferential flow angle

causes the formation of two additional vortices in the stator 2 passage. The two extra vortices are of

sufficient strength to confine the classical secondary flow vortex to the suction side corner in stator 2.

Later, Pfau et al. [106], [107] substantiated similar effects on a different 2-stage turbine test rig.

A more detailed distinction of the losses connected with the cavity flow is proposed by Wal-

lis et al. [150]. They identified the cavity entry, the clearance gap, the mixing with the main mass

flow (MF) and the incidence on the following row as individual contributors to cavity flow induced

loss. The authors attempted to decrease the losses caused by the mixing losses by means of different

turning device designs. Their purpose is to increase the deflection of the leakage flow (LF) before

it re-enters the main flow channel. Wallis et al. [150] succeeded to manipulate the tangential veloc-

ity of the leakage flow (LF). However, the overall performance decreased compared to the reference

configuration without turning devices. Gier et al. [47] confirmed the findings of Wallis et al. [150]

and estimated the amount of losses due to leakage flow (LF) re-entry to 60% of the overall leakage

flow (LF) losses. Mahle et al. [92] developed a device that is located at the exit of the cavity. It is

used to turn and accelerate the leakage flow (LF) before re-entering the main flow channel. By this

means the authors showed a reduction of mixing losses of about 63% resulting in an overall efficiency

enhancement of 0.1% for the 3-stage low pressure turbine investigated.

Even if purge flow is not a relevant topic for the discussion of leakage flow interaction (LI) in steam

turbines, a brief summary of the current state is given below as investigations were carried out that

consider TEWC downstream the rim seal. Therefore, these findings may support the discussion in

Chapter 5.
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McLean et al. [94], [95] and Girgis et al. [48] investigated the effects of cooling flows on the main

flow (LF = 1%MF ) in high pressure gas turbines. They stated that the injected flow causes losses

in efficiency of up to 2%. They also found a significant change in pressure coefficient, wake width,

three-dimensional velocity field, and exit angles, and therefore suggested to consider LF-effects dur-

ing the blading design process. The investigations of Lynch et al. [91] revealed that TEWC with a

platform gap shows a 12% higher "mixed out loss" compared to a configuration without gap.

Schübpach et al. [124] performed experimental and numerical investigations that were dedicated

to the leakage flow (LF) impact on the TEWC performance. Two TEWC and one baseline design

were compared. The authors found a decreased efficiency of 0.6% for the baseline case and down

to 1.2% for the TEWC design due to changes of the pressure distribution in front of the blade row.

Jenny et al. [76] used the same 1.5-staged axial turbine to investigate one TEWC design. They fo-

cussed on different injection levels (0.4%, 0.8% and 1.2% of main mass flow (MF)) and made the

statement that the static pressure increases by 1% per percent of injection flow in the hub region of

the rotor inlet. For the highest injection rate of 1.2%, an incidence change of up to −9◦, was measured

that lead to separation as shown by Yamamoto et al. [158] or Hodson et al. [63].

2.4 Sealing technology

The amount of leakage flow (LF) and the resulting leakage flow interaction (LI) in turbines is mainly

caused by the sealing of the rotating parts against the rigid counterpart. For steam turbines, shrouded

airfoils sealed by means of LS are state of the art. (In addition, the rotor is sealed against the ambient

pressure with brush seals that are capable to realize high pressure drops across a smaller axial distance

compared to LS.)

It is the goal of the present investigation to analyse the impact of tip leakage flows to the TEWC

performance. By implementation of a BS above the shroud the leakage flow (LF) could be reduced

by 89% down to 1h main mass flow (MF) compared to the LS configuration. Therefore, this section

gives an overview of these two sealing technologies. Detailed information about the mass flow calcu-

lation through both kinds of sealing approaches is given in Section 4.1 in connection with the leakage

flow (LF) determination for the present test case.

2.4.1 Labyrinth seals

Labyrinth seals (LS) are commonly used if gaps between moving and fixed parts have to be sealed

without contact. They are well suited to meet applications with high rotational speed and tempera-

ture due to their robust design. In addition, a constant sealing performance can be guaranteed for a

long operation period. The reduction of the leakage flow is realized by increasing the flow resistance.

A labyrinth seal (LS) consists of several seal tips, which are only located at the casing or tip side
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(straight through labyrinth seal (STLS)), or on both sides (full labyrinth seal (FLS)). Another type,

the so called groove ridge labyrinth seal (GRLS), is used in the present test rig and is shown on the

right hand side of Figure 2.7. The mountability of STLS is simple, however, the sealing performance

is about 40% lower compared to FLS with similar axial length. 50 - 70% of the sealing effectivity of

the FLS can be achieved with GRLS [23].

A minimal gap of 1-2% of hub diameter has to be realized to avoid contact during start up or while

passing the critical bending speed of the rotor. Concurrently, the gap has to be minimized to optimize

the sealing performance. Matthias [93] discussed the vortex phenomena within the cavities exten-

sively. The more tips that are connected in series, the better the sealing [140].

a) b) c)FLSSTLS GRLS

Figure 2.7: a) Straight through labyrinth seal b) Full labyrinth seal c) Groove ridge labyrinth seal [20]

2.4.2 Brush seals

Brush seals (BS) were initially developed for the aviation industry, improved and implemented in

stationary steam turbines in 2000 for the first time (see Pastrana et al. [103]). During the last few

years several labyrinth seals (LS) in power plants have been replaced by brush seals (BS) as part of

retrofit measures. According to Schwarz [128], combinations of labyrinth seals (LS) and brush seals

(BS) are the most effective design and are installed in new plants. Sealing of the rotor against the en-

vironment is the main application area of brush seals (BS), however, shrouded blades are sealed with

this technology too. Figure 2.8 illustrates the main components of a common BS design in lateral and

plane view.

In general brush seals (BS) can be characterized by two different designs. One design contains a

backing plate the brush and a front plate; all components are tightened together with a surrounding

weld seam. The second design consists of a brush package that is clamped between a back and front
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Figure 2.8: Illustration of brush seal parameters and geometries (Schwarz [128])

plate (as shown in Figure 2.8). A 25% reduction in installation height, a reduced weight and simpli-

fied mounting compared to the design with backing plate distinguishes this design. In addition, non

metallic materials can be used as bristles (see Gail et al. [45]). Brush seals (BS) can be mounted with

a gap or overlapping to the rotor. However, wear has to be taken into account in this case.

The flow within the brush seals (BS) is quite complex and several design parameters such as axial

inclination, lay angle, bristle diameter or the thickness of the bristle pack have to be taken into account

to implement an appropriate seal. A detailed discussion is provided by Schwarz et al. [127],[128].

The brush seal (BS) technology is not further elaborated on in this thesis because the brush seals (BS)

are used as a method to reduce leakage flow interaction (LI) rather than being a part of the current

investigation.

2.5 Scope of the present work

Various fields of research in turbo machinery have been introduced in this chapter. It has been shown

that losses can be reduced by several design approaches such as the airfoil design, endwall contoured

hub or tip areas, or reduced leakage flows. All of these methods showed a positive impact if they

were applied separately. In addition it has been shown that 3D airfoils in combination with TEWC

has the potential to enhance the efficiency in turbo machines. Furthermore, all three aspects have been

investigated for aircraft engines by taking hub sided purge flows into consideration. Here, it has been

stated that the efficiency of a formerly superior TEWC configuration drops below the performance of

a baseline design when leakage flow comes into play.
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The investigations of the airfoils and TEWC designs subject of this thesis also support the above out-

lined findings that TEWC has the potential to increase the efficiency in turbo machinery. Especially

the positive impact on the second stage is highly promising, assuming that it also occurs on all subse-

quent stages in turbines with a higher number of blade rows.

On basis of these insights, the present thesis is dedicated to transmit the previous findings to the

effect of a casing sided leakage flow (LF) in combination with 3D endwall contoured airfoils. It will

be shown that the positive impact of TEWC vanishes for 3D airfoils if a certain ratio of leakage flow

to main flow is exceeded. These new insights are used to answer the question of if a retrofit measure

of an existing turbine by means of TEWC is potentially beneficial.

Furthermore, it is investigated in detail how the endwall contouring influences the flow within each

airfoil row. By combining contoured vanes with baseline blades (TEWC-V) in both stages it is shown

where the effects of the TEWC take place.
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3 Experimental facility

A detailed overview of the test rig is presented in this chapter. The details of the supply infrastructure

and the turbine with its measurement properties are explained in Section 3.1 and Section 3.2. Also, the

probe measurement technology is described in more detail in Section 3.3 as it is of high importance

for the flow field analysis. Furthermore, due to changes compared to the previous investigations by

Schwab [126], the measurement procedure as it was conducted for the present test cases is briefly

explained.

3.1 Test bed

All experiments were conducted on a 2-stage air driven turbine that is equipped with shrouded high

pressure steam turbine airfoils. A piping plan of the test rig and all auxilary devices is shown in Fig-

ure 3.1. The turbine is driven by air, which is supplied by two radial compressors. These compressors

are operated in parallel to deliver the required mass flow. The system is designed as a closed loop

to minimize environmental impact on the measurement. Three additional compressors pressurize the

purge air system that is needed to avoid leakages through the rotor sealing. This ensures a constant

and well known mass flow through the turbine which is of high importance for the determination of

the turbine efficiency.

The design turbine inlet temperature of 90◦C can be adjusted within a tolerance range of ± 0.5K

by means of the aftercooler and a cooling bypass. A maximum air mass flow rate of 13.9kg/s enters

the test turbine at an static inlet pressure of 3.2 · 105Pa that is adjustable with a tolerance of about

3h. The turbine’s static outlet pressure is about 2.31 · 105Pa, which is equivalent to a pressure ratio

of 1.4 across the two stages. These conditions result in a Mach number of about 0.15 and a Reynolds

number (Rec) of approximately 2.5 ·105. The pressure ratio as well as the mass flow are adjusted with

the bypass and the turbine outlet valve.

The metering orifice that is needed to determine the mass flow rate has been calibrated externally as

described by Schwab [126]. The additional calibration was required because the run-in and run-out

distance upstream, respectively downstream the orifice does not meet the requirements of standard

DIN - EN ISO 5167 [30][31].

To ensure homogeneous inflow conditions of the turbine, a divergent duct with a length of 3m

(=̂ 5D) forms the connection between turbine inlet valve and the inlet of the rig. Here, the mea-

surement of total pressure by means of a pitot tube serves as reference value for the flow field. A

honeycomb structure is installed in front of the first stator row to ensure uniform flow conditions.
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Figure 3.1: Piping diagram of the experimental facility to the standard DIN2481 [29][126]
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Table 3.1 summarizes the specification of the turbine at its design point for the 3D baseline (without

TEWC) configuration with brush seals (BS). The thermodynamic boundary conditions (Tin, pin and

pout) are kept constant for all other operating points. Only rotational speed and therewith the load

coefficient ψh is varied by means of the water brake and calculated with Equation 3.1.

ψh =
2 ·∆h

u2in + u2out
(3.1)

The water break is mounted on a swing frame with hydrostatic bearings, which allows accurate

measurement of the torque with a load cell that is connected to a lever. In OP1 the engine runs at the

lowest speed (≈ 3500RPM) while the highest speed is adjusted for OP4 (≈ 5200RPM).

At the outlet of the turbine, the air stream has to be bent by 90◦ because of the presence of the water

brake. This causes a non-symmetric flow in the circumferential direction. Swirl barriers are installed

downstream of the last rotor to minimize the influence on the measurement behind the second stage.

A more detailed description of the apparatus can be found in Schwab [125].

The equipped turbine is shown in Figure 3.2a. The two casing parts are screwed at the two split

joints to allow a simplified accessibility to the internal parts that are designed as a modular structure.

As one can see in Figure 3.2b, Sealing Ring 2 is located at a fixed position of the turbine casing. The

vane carriers and Sealing Ring 1 are precisely braced against this component. This design approach

ensures the same axial positioning of the airfoils after a reconstruction of the test rig and for all con-

figurations respectively.

For the present test cases an axial distance of 0.73 axial blade length (lax) has been set between

each blade row. The casing sided shroud is sealed by means of combined labyrinth seal and brush

seal as well as with a pure GRLS as depicted in Figure 3.3. The hub side is sealed with GRLS, only,

because BS cannot be mounted on rotating parts and the radial thickness of the stator shroud is not

appropriate for the required groove.

Table 3.1: Specifications of the turbine design point of the 3D baseline configuration with BS

Parameter Unit Value

Inlet pressure [Pa] 3.2 · 105
Pressure ratio [-] 1.4
Inlet temperature [◦C] 90
Ma number [-] 0.15
Speed [RPM] 4775
Mass flow [kg/s] 12.82
Flow coefficient ϕ [-] 0.5
Load coefficient ψh [-] 2.62



24 Experimental facility

Vane carrier 1 Vane carrier 2

Sealing ring 1 Sealing ring 2

a) b) 0.73 

Figure 3.2: a) Test turbine equipped with probe adjusting devices b) Detailed view of the constructive

assembly of vane carriers and sealing rings in example for the BS configuration

Shroud of R1

Figure 3.3: Geometry of the shroud cavity above the first rotor

The second set of investigations was conducted after replacement of the centred labyrinth tip with

a brush seal (BS), as it is shown in Section 4.1. The bristles touch the rotor from the very beginning

to ensure a closed clearance for all OP. Friction losses have to be accepted, however, it will be shown

that the sealing benefit compensates for these losses. A special brush seal (BS) design of MTU is

implemented due to the small building space within the sealing rings. In contrast to the described

common designs, the bristle package is wrapped with a thin metal sheet that also builds the backing

plate. The bristles are made of Haynes25r with a diameter of 0.07mm and a laying angle λ = 45◦.

To change the sealing design from labyrinth seal (LS) to brush seal (BS), only the sealing rings

have to be replaced. For both sealing designs, the dimensions within the cavities as well as the radial
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clearance between the labyrinth fins is kept constant to ensure equivalent test conditions for the dif-

ferent airfoil types.

Furthermore, both vane carriers can be rotated in parallel by means of a lever mechanism to realize

a pitch-wise stepless measurement of the flow field. Each airfoil type is mounted in its dedicated

carrier to ensure that the circumferential position of the vanes does not change between two measure-

ment campaigns. Therefore, only the carriers are changed if another airfoil configuration has to be

investigated.

The airfoils and the TEWC were designed by Alstom Power (now General Electric). The depth

of the TEWC varies in the axial direction and a ’sudden jump’ has to be overcome by the flow that

moves from pressure side (PS) to suction side (SS). Due to limited space within the shroud of the

stator, the depth of the groove is smaller on the hub side compared to casing side. Here, the TEWC

is applied on the airfoil root. The contouring design is limited to a groove design as it is required to

be applied to an existing airfoil set during retrofit of a turbine. Figure 3.4 shows the characteristics of

the TEWC that is investigated and illustrates its shape and position within the blade passage.

A compound lean design (3D) has been chosen as it was found to be the most efficient, as mentioned

previously in Section 2.2.1. Table 3.2 shows the aspect ratio (AR) and the slenderness ratio (SR) of

the airfoils in each row and stage. The aspect ratio (AR) is defined as blade height (hb) referred to

blade length (lb) while the slenderness ratio (SR) represents the ratio of hb and the mean diameterDm

of the airfoil row. Furthermore, the ratio of axial clearance (clax) between shroud and sealing and

radial clearance (clrad) between shroud and fin referred to the hb are given.

TEWC casing side

TEWC hub side

SS

PS

TEWC shape

SS

PS

B

B

B-B (4:1)A (1:1)A

Sudden jump

SSPS
Pressure

gradient

Figure 3.4: Shape of the TEWC and illustration of the sudden jump
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creased. All measurement holes are milled perpendicularly to the airfoil surface. This ensures proper

measurements and avoids errors as they were found by Shaw [129] or Wüst [157]. The number of

measuring positions on the suction side (SS) is higher compared to the pressure side (PS) because the

accelerated flow undergoes a larger pressure gradient and a bigger turning and therefore, the measur-

ing resolution has to be increased to capture the present phenomena.

As one can see in Figure 3.5, only 4 measurements are conducted on the suction side (SS) at 50%

span. This is caused by the limited airfoil thickness and the compound lean design, which additionally

constricts the build space for the connector drilling. The aim here was to capture the transition point.

Because one focus of the present investigations is dedicated to the influence of leakage flow inter-

action on TEWC performance, the estimation of the amount of leakage flow (LF) through the casing

sided sealing is essential. Therefore, static pressure is measured at six positions in axial direction

along the flow path through the cavities to determine the pressure drop of each sealing tip and the

brush seal (BS), respectively. These measurements are conducted redundantly with an circumfer-

ential offset to take inhomogeneous flow distributions into consideration. As shown in Figure 3.3,

the radial clearance between the shroud and labyrinth fin is set to 0.025 · lax. However, variations

in this gap due to different speeds means that centrifugal forces have to be considered. Therefore,

the clearance is measured by means of an eddy current probe while the test is running. A sampling

frequency of about 500kHz meets the Shannon-Theorem fsampling ≥ 2 · fmax for all OP. A schematic

of both sealing designs including the locations of the measurement locations are depicted in Figure 3.6

At the outlet measuring plane, four total pressure Kiel-head rakes - each with 5 radial measuring

points - are used to detect the circumferential distribution of the flow downstream the second stage.

Figure 3.7 illustrates the setup described.

Wall pressure

1

2 3 4 5

6

Tip clearance

measurement

Labyrinth seal Brush seal

1

2 3 4 5

6

a) b)

Figure 3.6: Investigated sealing configurations and respective measurement locations a) LS b) BS
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Figure 3.7: Cross section of the 2-stage axial turbine
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3.3 Sensors

Figure 3.8 shows the 3-hole probes (3HP) and 5-hole probes (5HP) which were used to determine

the flow field at three measurement planes (MP). MP10 is located in front of the first stage, MP12

is located between stage 1 and stage 2 and MP22 gives information about the flow characteristics

behind the second rotor. In addition, wall pressures that serve as reference pressures, are measured in

these three planes as well. Therefore, more accurate differential sensors can be used to measure the

pressure difference at the probe head. The absolute pressure is measured separately and summed up

during the post processing process.

All probes are movable in the radial direction through the flow channel by means of a high preci-

sion probe adjusting device (PAD). The radial movement is achieved in incremental steps of 3.9µm,

while the probe can be rotated in increments as small as 0.09◦. This high positioning accuracy is

necessary as it impacts the measurement result immediately (see Restemeier [116]). Temperature

probes and pressure probes are mounted with a circumferential displacement illustrated in Figure 3.2.

This allows measurements of both temperature and pressure information simultaneously with sepa-

rate probes. This approach avoids possible errors due to modified flow conditions that could occur if

the TP is applied beneath the 5HP head on the same stem.

The measurement process is automated and all probes are adjusted simultaneously to their respec-

tive target position. This ensures that deviations in inlet temperature over time only have a negligible

influence on the calculation of the thermal efficiency. Thermal efficiency is derived from the temper-

3HPa) 5HPb)

1mm 3.5mm

Figure 3.8: Deployed pressure probes in MP10 and MP12: a) 3-hole probe b) 5-hole probe
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smaller than the Reynolds number of the present probes (Rec = 2.52 · 104). Kauke et al. [77] cali-

brated several probes at a certain Reynolds number and applied the so gained calibration coefficients

to measurements of flows with higher Reynolds numbers. They found that multi hole probes showed

deviations in total pressure caused by change of the Reynolds number and for Mach numbers higher

than 0.3. For the present test case, both the critical Reynolds number as well as the critical Mach

number are not exceeded. Therefore, the error caused by the Reynolds number is not further elabo-

rated.

Furthermore, the test procedure has been optimized as shown in Figure 3.10. Several approaches

were implemented to increase the accuracy and the reproducibility of the probe measurements. Chang-

ing the probe design from 3HP to 5HP requires an additional test day and thus each OP is investigated

redundantly. By altering the measuring sequence (3HP: OP1 → OP4, 5HP: OP4 → OP1) as well as

by inverting the clocking direction (3HP: CP1 → CP7, 5HP: CP7 → CP1), the chances of the mea-

surements of being influenced by systematic errors are reduced. Furthermore, the probes of the first

tests (3HP + TP) face the flow with different angles than the probes of the second tests (5HP + TP) as

depicted in the bottom right corner of Figure 3.10. However, the probe is rotated almost perpendicular

to the flow to guarantee that the measurement is conducted for the calibrated angle range.

3.3.2 Temperature probes

The temperature probe (TP) is designed with the goal to have a small measuring sensitivity with

respect to flow angle for an angle range of ± 20◦ according to the design proposals of Saravana-
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Figure 3.10: Measures to prevent errors and to increase quality of the measurement
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muttoo [119]. The measuring tip of a 0.2mm Type K thermocouple captures the temperature at the

stagnation point of the ball shaped probe head (Figure 3.11). This thermocouple Type K has been

chosen because of its linear behaviour up to temperatures of 1200K (see Nitsche et al. [102]). The

thermocouple is insulated to the stem and the probe head with plastic to minimize measurement errors

caused by heat conduction. Radiation can be neglected due to the low temperatures on turbine (see

Zeisberger [160]).

However, the assumption of an adiabatic stagnation can not be made for practical measurements

in turbo machinery. In case that the probe would not represent a flow resistance, the measured value

would be the local static temperature. As this is not the case, the measured temperature lies between

the total temperature and the static temperature. Therefore, the so called recovery factor (RF) has to

be determined for each probe by means of calibration [11]. A recovery factor (RF of 1 represents

the total temperature) thus a high recovery factor (RF) is desired to be [66]. For the present probes,

values of 0.8, 0.83 and 0.88 (see Appendix A) were derived for the RF that lie in good accordance

to the findings of Saravanamuttoo [119] where probes facing the flow show a recovery factor (RF) of

0.8± 0.09.

The static and dynamic calibration has been performed for the whole measuring chain consisting

of an acquisition system, cable and a temperature probe (TP) to reduce errors as they could occur by

altering the respective combination [38]. In addition, each probe cannot be manufactured identically,

thus deviations of the Reynolds number can not be avoided that influence the measured results [130].

Also the Prandtl number and Mach number have an impact on the measurement result and therefore

require a separate calibration for each probe with appropriate flow conditions [37].

3.5mm

Stem

Insulation

Probe head
Thermocouple

Type K

Figure 3.11: Deployed temperature probe in MP10 and MP12
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Additional information about the rig and the measurement equipment including a description of

the measurement acquisition system is given by Schwab [125]. Furthermore an error analysis for the

pressure and temperature measurement is presented in Section 4.5.

3.3.3 Angle definition and velocity triangles

To derive the incidence of a blade located downstream of each measurement plane, the flow angle

has to be specified. For the present turbine, the flow angle is 0 when the flow runs in parallel to the

machine’s axis. A deflection to the right hand side is defined positively while the yaw angle of flow

that is directed to the left shows a negative sign. Figure 3.12 illustrates this definition and also shows

the velocity vectors ~c of the rigid reference system and of the rotating system ~w. Assuming that the

incidence of the design point OP3 serves as reference, a further negative angle is respective to positive

incidence and vice versa.

Angle convention

Figure 3.12: Angle convention and velocity triangles for one stage of the test turbine
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4 Methodology

This chapter summarizes the approaches of data preparation and introduces the mathematical stan-

dards that are utilized to evaluate the performance of the different configurations investigated.

It is shown in section 4.1 how the leakage flow is calculated for both sealing technologies. The

determination of the power and the equations to derive the turbine efficiency are introduced in Sec-

tion 4.2 and in Section 4.3. Furthermore, the results of two averaging methods according to Trau-

pel [142] and Kreitmeier [83] are discussed in Section 4.4. These two averaging methods are applied

to all measurements to ensure comparability of the different airfoil configurations and to support the

discussion of the phenomena, which result due to changes of the sealing configuration or by applying

TEWC to the endwalls. Finally, the probe measurement accuracy is analyzed again and assessed in

the framework of an error analysis in Section 4.5. A constant section airfoil configuration with TEWC

and brush seal (BS) (2D TEWC BS) is used as a reference and serves as basis of these investigations.

4.1 Derivation of leakage flow

The presence of leakage flow is an inevitable consequence of the gaps between rotating and fixed

parts. The introduced labyrinth seal (LS) and brush seal (BS) are utilized to reduce this leakage flow

(LF). Two analytical approaches are introduced to calculate the leakage flow (LF) through both types

of sealings.

4.1.1 Leakage through labyrinth seals

The leakage flow (LF) through the present GRLS is calculated according to Stodola [137]. This

method has been proven to be appropriate by Deckner [23]. The labyrinth seal (LS) is modelled as an

idealised sequence of isentropic accelerations with isobaric heat recovery. A portion of the static pres-

sure is transformed to dynamic pressure in the narrowest clearance of the flow passage. This causes

a pressure drop for two consecutive cavities according to Equation 4.1 in the case of little pressure

difference across the labyrinth tip. The speed c is defined as given by Equation 4.2 [23].

∆p = ρ · c
2

2
(4.1)

c =
√
2 ·∆h (4.2)

The reduced pressure implies a reduction of the flow density. Therefore, the velocity is increased

at each clearance that has to be passed, to meet the requirement of continuity. The maximum speed is

reached at the outlet fin of the sealing (see Thomas [139]). This characteristic "Fanno-curve" is shown
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in Figure 4.1 for the subsonic range that is applicable for the present case, as only three labyrinth fins

exist and the flow does not reach sonic speed in any case.

The cross section between the fin and shroud that is passed by the leakage flow (LF) can be calcu-

lated with Equation 4.3. This approximation is allowed for the present case, as the radial clearance

clrad is significantly smaller than the shroud diameter D (clrad ≪ D = 2 · rr).

A = clrad · π ·D (4.3)

By taking the number of the measurements within the cavities into consideration (Figure 3.3),

the theoretical leakage flow (LF) through the labyrinth seal (LS) (ṁLf,Th) can be calculated with

Equation 4.4 where z is equivalent to the number labyrinth tips and υ represents the specific volume.

ṁLF,Th = A ·
√

p22 − p25
z · p1 · υ1

(4.4)

This theoretical LF has to be modified because the labyrinth seal (LS) design has a significant im-

pact on the sealing performance. Total turbulence can only be generated in FLS, thus kinetic energy

is not fully dissipated to frictional heat due to streamlines passing the gap between tip and shroud.

According to Egli [39] Equation 4.4 is extended by a factor k that allows consideration of the ratio of

clearance to labyrinth split s/t and the number of tips. As GRLS are applied in the present test case,

this factor has not to be taken into consideration and is set to a value of 1 (see Egli [39]).

Another effect to consider is the constriction of streamlines close to bottlenecks and the sealing

tips. The resulting effective cross section depends on the shape of tip edge, tip inclination and ratio

h = const

konst

(Fanno curve)

h

s

Figure 4.1: Idealized throttling process through a LS (translated from Deckner [23])
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of clearance to cavity height. These effects are captured by the factor µ that was found to be a value

of 0.7 by Trutnovski [144]. Equation 4.5 shows the extended formula that is used to determine the

leakage flow (LF) through the labyrinth seal (LS).

ṁLF,LS = k · µ · clrad · π · 2rr ·
√

p22 − p25
z · p1 · υ1

(4.5)

It will be shown in Section 5.1 that the pressure drops linearly across the three labyrinth tips. All

OP show similar pressure levels at inlet and outlet of the cavity Accordingly, the pressure can be

assumed to drop over only the sealing tips. The pressure within the first cavity (point (2)) and last

cavity (point (5)) is used to calculate the pressure drop, while the thermodynamic condition at the inlet

of the first cavity provides the required values for the denominator of Equation 4.4 and Equation 4.5.

Here, the values are measured at point (1) because the temperature within the cavity is unknown (p1

and p2 are nearly equal thus this assumption is allowable).

4.1.2 Leakage through brush seals

The calculation of leakage flow (LF) through brush seals (BS) is a special case of the determination

of leakage flows (LF) through labyrinth seal (LS) as described in Section 4.1.1. The clearance be-

tween the shroud and bristle tip varies depending on the surrounding pressure difference and cannot

assumed to be constant due to periodic and local unsteadiness. Therefore, the brush seal (BS) has

been designed overlapping to the shroud to ensure equivalent conditions for all operating points.

The present design is a combination of brush seal (BS) and labyrinth seal (LS) and is modelled

likewise. Tip leakages are calculated as shown above, while the leakage through the brush seals (BS)

is calculated according to Müller [98] using the following Equation 4.6. A combined calculation as

presented by Stodola is not possible. Thus, the leakage of tip and brush seal (BS) are calculated

separately. It was decided not to use the calculation methods used by Chupp [21] and Holle [64]

because some values are required that cannot be provided for the present turbine test rig.

ṁLF,BS = 2π · rr · cB · εB · p1
R · T1

(4.6)

The leakage flow (LF) through the brush seal (BS) is influenced by the shroud radius rr, the gap

between backing plate and rotor cB, specific outflow number εB and the thermodynamic condition

at the inlet of the cavity. It will be shown in Section 5.1 that the pressure almost exclusively drops

over the brush seal (BS) (point (3) to (4)). For this reason, the overall leakage flow is calculated with

Equation 4.6. The specific outflow number εB is calculated via the pressure drop across the brush seal

(BS) and the correlation by Egli [39] depicted in Figure 4.2.
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Figure 4.2: Specific outflow coefficient of a BS (according to Egli [39] translated from Müller [98])

A detailed analysis of the impact on the flow caused by changing the sealing configuration from a

labyrinth seal (LS) to a brush seal (BS) has been performed for two OP and the reference airfoil con-

figuration 2D TEWC by Zimmermann et al. [161] experimentally. Curkovic et al. [22] investigated

the local phaenomena by means of CFD for the same setup.

4.2 Mechanic power measurement

The power of the turbine can be derived in two different ways. An enthalpy change from MP10 to

MP22 can be calculated directly from the probe data according to Equation 4.7. Herein the MF and

the heat capacity are considered, both of which are averaged arithmetically. The turbine is assumed

to be adiabatic to the environment.

P = ṁ · c̄p · (Tt,MP22 − Tt,MP10) (4.7)

Furthermore, the power available at the waterbrake (PWB) is specified as a function of momen-

tum M and rotational speed n. The momentum M results from the force F that is measured by means

of a force cell, which is connected to a lever at the water brake. The rotational speed is measured with

an incremental rotary encoder that is attached to the shaft. This procedure is beneficial compared to

the power determination via probe data, as it also covers frictional losses caused by the brush seal

(BS) that cannot be avoided. A dedicated determination of the bearing losses (PBL) can be achieved

due to the swing frame construction of the water brake. This is an important feature, as the bearing
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losses are different for all OP. Friction losses between air and rotor within the side cavities as well

as heat conduction at the casing side are not further taken into consideration as they are of the same

order of magnitude for all investigated configurations (see Schwab [125]). The final formulation of

the turbine’s power is given in Equation 4.8.

PT = PWB + PBL (4.8)

PWB = 2π · n · lLever · F (4.9)

4.3 Calculation of the efficiency

The assessment of the efficiency of the energy conversion processes is a common way to answer the

question of if the application of a novel feature is useful. Therefore, the equations defined by Traupel

are utilized to calculate the efficiency of the turbine [142].

The isentropic efficiency describes the quality of the flow in turbo machines, however they should

not be interpreted as energetic efficiencies in the narrow sense. Instead of setting the energetic advan-

tage related the expenditure, this kind of efficiency describes an idealized process with an isentropic

pressure drop between the outlet and the inlet condition. Here, the lower enthalpy difference in com-

parison to the real process is referred to the enthalpy difference of the idealized one. It is assumed that

the constitutional change is adiabatic and the influence of potential energy can be neglected. However,

the consideration of the kinetic energy is useful. Hence, the total-to-total isentropic efficiency for the

present turbine (ηis,tt) is calculated according to Equation 4.10.

ηis,tt =
hMP22 − hMP10 + 0.5 · (c2MP22 − c2MP10)

hMP22,is − hMP10 + 0.5 · (c2MP22 − c2MP10)
(4.10)

A substance database is used to calculate the enthalpy values (h) as well as the entropy values (s)

that are required to determine the isentropic enthalpy (his). This software has been developed by the

University Zittau Görlitz [85] and combines measured data and theoretical fundamentals according

to Lemmon et al. [88] [89]. The water load of the air that runs through the turbine has been set to a

value of zero (see Schwab [125]) as it is pumped in a closed loop that includes moisture separators.

The kinetic energy is not considered to calculate the static-to-static isentropic efficiency (ηis,ss) that

is given in Equation 4.11.

ηis,ss =
hMP22 − hMP10

hMP22,is − hMP10

(4.11)

It is also a feasible option to derive the related static-to-static polytropic efficiency (ηpol,ss) as a func-
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tion of ηis,ss due to the assumption of ideal gas. The isentropic coefficient κ is derived by averaging

of κMP10 and κMP22, logarithmically.

ηpol,ss =
κ

κ− 1
·
ln

[
ηis,ss ·

((
pMP22

pMP10

)κ−1

κ

− 1

)
+ 1

]

ln

(
pMP22

pMP10

) (4.12)

Instead of exclusively using the probe measurement, the polytropic efficiency can also be calculated

referring to the power (PT) and the main mass flow (ṁMF), while taking friction and further losses

into consideration. The resulting formulation for η∗pol,ss is given in equation 4.13.

η∗pol,ss =

PT

˙mMF

− c2MP22 − c2MP10

2

PT

˙mMF

− c2MP22 − c2MP10

2
− T̃MP22 − T̃MP10

ln

(
T̃MP22

T̃MP10

) · (s2MP22 − s2MP10)

(4.13)

4.4 Data averaging

Averaging the measured data is a key factor to determine the efficiency. Several standard procedures

can be found in literature. The standard guideline VDI-4675 [145] has been utilized to select estab-

lished methods to average the measurement data of the inhomogeneous flow fields.

An investigation has shown that the averaging methods according to Reynolds [117], Favre [43] [44],

and Adamczyk [3] are not suitable to post process the present data. This is due to the fact that required

information cannot be recorded by the measurement setup. Turbulence models have to be compared

in detail to imply an exact determination of flow fluctuation that has not been realized in the last

years despite of an increased computing capacity. The methods of Truckenbrodt [143], Livesey and

Hugh [90] only consider velocity components that are directed in parallel to the machine axis. The

requirement to also interpret radial and tangential velocity components of the flow field disqualifies

these methods, because important information is not considered. The methodology of Stewart [136]

and Scholz [122] does not fulfil the balance of total momentum and total temperature for conservative

fluxes. Therefore, this approach is not further elaborated as larger deviations arise if the interaction

of blade rows downstream the measurement probe are taken into consideration.

Traupel [142] introduced a method that applies a mass averaging on an extensive number values.

Also velocity vectors, that are not parallel to the machine axis, are included. Additionally, the equa-

tions of continuity as well as the equations of energy are satisfied. For that, Traupel implements

form factors that have to be observed in detail as it is not guaranteed that aero- and thermodynamic
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processes are described precisely if the form factors become too large. However, this approach is

common standard to average data gathered in turbo machines, and is therefore further elaborated in

this thesis.

The methodology of Kreitmeier [84] also includes the conservation of momentum and swirl in

addition to the non conservative equations. Furthermore, form factors, transient fluctuation values

and related uncertainties are avoided. Kreitmeier expresses the averaging instructions in terms of

reversible and irreversible equilibration processes. The reversible calculations are based on the deter-

mination of mechanical and thermal energy losses and of entropy. The irreversible process is used to

solve energy, mass, momentum and swirl balances. Kreitmeier reduces a three dimensional problem

to a one dimensional problem by means of both types of processes. On the one hand, uncertainties

are reduced, on the other hand, inhomogeneities of the flow field are captured more detailed.

For this reason, the following sections are dedicated to apply and compare the methods of Traupel

and Kreitmeier regarding to the present case. A detailed analysis of the resulting efficiencies and

deviations between both formulations is presented for data of the reference blading.

4.4.1 Averaging methodology according to Traupel

Traupel [142] postulates that the extensive state variables have to be mass averaged. Therefore, an

extensive state value L and the related specific value I are calculated as shown in Equation 4.14.

I(t0) =
L(t0)

m(t0)
(4.14)

Here, m(t0) describes the mass that flows through an arbitrary pipe cross section at a discrete time

instance t0. Furthermore, the steady-state mean value of the specific value I is determined by means

of limit value generation for transient flows:

Ī ≡ lim
t0→∞

|I(t0)| (4.15)

If I is subject to transient fluctuations, t0 has to be chosen to be large compared to the time interval

of individual transient flow phenomena. It should be that multiple of the smallest periodic fluctuation

to allow the simplification of Equation 4.15 with sufficient accuracy.

Ī = I(t0) (4.16)

Using the above mentioned assumption for the time interval t0, an exact averaging of any state

variable can be performed using Equation 4.14.
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Ī =
1

m(t0)
·
∫
ρ cz I dA dt (4.17)

By applying Equation 4.17 on the relevant data, the averaged values of the specific volume, en-

thalpy, entropy and velocities can be defined in Cartesian coordinates as follows:

v̄ =
1

m(t0)
·
∫
ρ cz v dAdt =

1

m(t0)
·
∫
cz dAdt (4.18)

h̄ =
1

m(t0)
·
∫
ρ cz h dAdt (4.19)

s̄ =
1

m(t0)
·
∫
ρ cz s dAdt (4.20)

c̄bz =
1

m(t0)
·
∫
ρ c2z dAdt (4.21)

c̄bx =
1

m(t0)
·
∫
ρ cx cz dAdt (4.22)

c̄by =
1

m(t0)
·
∫
ρ cy cz dAdt (4.23)

On this occasion, the index b represents a momentum mean value for the calculation of the veloc-

ities. Following this, the index k is chosen for mean values of continuity and the index e describes

an energy based averaging. Velocity components that do not have an index describe the actual veloc-

ity at a certain location within the flow. These values are not averaged by any mathematical operation.

Along with the calculation of the velocity utilizing the momentum mean value, velocity may be

also calculated with the equation of continuity (Equation 4.24). Here, the velocity is expressed by the

cross sectional area A, the mass flow and the mass averaged specific volume. Furthermore, it can be

determined with an energy base method according to Equation 4.25.

c̄kz =
ṁ v̄

A
(4.24)

c̄2e =
1

m(t0)
·
∫
ρ cz

(
c2x + c2y + c2z

)
dAdt (4.25)

Traupel introduced form factors that can be used to convert the various averaged velocities into

each other to cause a connection for further calculations.

c̄2b = c̄2bx + c̄2by + c̄2bz (4.26)

c̄kz = (1 + ǫk) (4.27)

c̄e = (1 + ǫe) (4.28)
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The total enthalpy can be determined via energy equation combined with the formerly introduced

form factors:

h̄t = h̄s +
1

2
· (1 + ǫe)

2 · c̄2b = h̄s +
c̄2e
2

=
1

m(t0)
·
∫
ρ cz

(
hs +

c̄2

2

)
dAdt (4.29)

Hence, static values can be inserted in Equation 4.19 to determine the static enthalpy or total values

for the calculation of the total enthalpy respectively. Subsequently, the static enthalpy is indexed with

"s" and total values are indexed with "t". In the case that an enthalpy equation is suitable for both

conditions, the index is left out.

The static as well as the total pressures are calculated with an area averaged method in contrary to

the mass averaged extensive variables. This is due to the fact that the standard force of an infinite ele-

ment i can be calculated by multiplication of its cross sectional area Ai and the predominant pressure

pi. Furthermore, the resulting force on an element is defined as the sum of all external forces:

~Fi = pi · Ai (4.30)

~Fsum =
∑

~Fi =
∑

piAi
!
= p̄ A (4.31)

Consequentially, the mean value of the pressure is defined according to Equation 4.32 for transient

calculations.

p̄ =
1

A t0
·
∫
ρ dAdt (4.32)

Hereafter, the thermal and caloric state equations are considered in addition to the averaging meth-

ods described above. It is not possible to satisfy all equations of the averaging method and state

equations concurrently. Therefore Traupel differentiated three strategies:

a) p̄ is calculated with Equation 4.32 and h̄ is calculated with Equation 4.19. The averaged specific

volume and the mean entropy follow as a function of the mean values and calculation of the

state equations.

v̄ = f
(
h̄, p̄
)

and s̄ = f
(
h̄, p̄
)

b) Equation 4.19 is used to determine h̄ and s̄ is calculated with equation 4.20. The averaged spe-

cific volume and the mean pressure result from a function of the averaged values and calculation

of the state equations.

v̄ = f
(
h̄, s̄
)

and p̄ = f
(
h̄, s̄
)

c) v̄ is derived with Equation 4.18 and h̄ is calculated with Equation 4.19. The mean entropy and

mean pressure are determined by calculation of the state equations and can be described as a
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function of the averaged values.

s̄ = f
(
h̄, v̄
)

and p̄ = f
(
h̄, v̄
)

Following this, the calculation method is explained for case a). The pressure and enthalpy are aver-

aged in a first step using Equation 4.19 and 4.32. In the case that the entropy and the specific volume

are calculated by means of the mean values, Equation 4.18 and 4.20 are violated. The same issue

occurs for the respective state values of case b) or c).

Traupel described the problem with an idealised example. One may consider two equivalent mass

flows running through the same cross section, which differ only by their respective temperature. Thus

the enthalpy of one mass flow is higher at the same pressure level as it is shown in Figure 4.3.

The state A results from averaging pressure and enthalpy for case a). This point differs compared

to point B that results from averaging enthalpy and entropy. The difference is substantiated due to the

fact that the mixing of two different mass flows is an irreversible process. Only case a) considers an

increase of entropy that is produced during the mixing process.

Figure 4.3: H-s-diagram showing the comparison of different averaging approaches according to Trau-

pel [142]
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The point C (calculated in case c)) is located between the two points A and B. Traupel explains this

as the mixing may be assumed as a reversible process if energy would be gained due to the temper-

ature difference. If this energy was used to compress the fluid, the resulting pressure level would be

higher at a lower entropy value.

The h-s-diagram in Figure 4.3 clearly shows that it is not possible to fulfil all thermodynamic re-

quirements concurrently and to describe a fluid state completely by means of an averaging method.

Nevertheless, Traupel stated that the differences of the introduced averaging methods are much

smaller than measurement uncertainties, thus the results are equivalent. Finally, Traupel stated that

Method a) is most suitable for turbo machinery. Therefore it is applied within the present investiga-

tion.

4.4.2 Averaging methodology according to Kreitmeier

The variety of averaging methods leads inevitably to problems with the comparability of investi-

gations from several sources. Particular problems include the form factors to calibrate the balance

equations that are partly defined differently and the time averaging of flux terms. The averaging

method according to Kreitmeier [84] is performed without using these kinds of simplifications. For

this, Kreitmeier defines a hypothetical reversible and irreversible equilibration processes by means of

the thermodynamic and aerodynamic balance equations. Below, the corresponding set of equations is

presented and explained.

General balance equations

The following general balance equations built the basis of the calculations according to Kreitmeier [83].

Mass balance:

∂

∂t

∫

V

ρ dV +

∫

A

ρ~c d ~A = 0 (4.33)

Linear momentum balance:

∫

V

∂ (ρ~c)

∂t
dV +

∫

A

ρ~c
(
~c d ~A

)
=

∫

A

~fdV +

∫

A

~~σd ~A (4.34)

Angular momentum balance:

∫

V

∂ [ρ (~r × ~c)]

∂t
dV +

∫

A

ρ (~r × ~c)
(
~c d ~A

)
=

∫

V

(
~r × ~f

)
dV +

∫

A

~r ×
(
~~σd ~A

)
(4.35)
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Mechanical energy balance:

∫

V

∂

(
ρ
~c 2

2

)

∂t
dV +

∫

A

ρ
~c 2

2

(
~c d ~A

)
=

∫

V

~c ~f dV +

∫

V

p

v

Dv

Dt
dV +

∫

A

~c~~σ d ~A−
∫

V

ΦdV (4.36)

Mechanical and thermal energy balance:

∫

V

∂

[
ρ

(
u+

~c 2

2

)]

∂t
dV +

∫

A

ρ

(
u+

~c 2

2

) (
~c d ~A

)
=

∫

V

~f ~c dV +

∫

A

~c~~σ d ~A+

∫

A

λ▽T d ~A (4.37)

Thermal energy balance expressed with the notion of intrinsic energy:

∫

V

∂ (ρ u)

∂t
dV +

∫

A

ρ u
(
~c d ~A

)
= −

∫

V

p

v

Dv

Dt
dV +

∫

V

ΦdV +

∫

A

λ▽T d ~A (4.38)

Thermal energy balance expressed with the notion of entropy:

0 = −
∫

V

ρ T
Ds

Dt
dV +

∫

V

ΦdV +

∫

A

λ▽T d ~A (4.39)

Entropy balance:

∫

V

∂ (ρ s)

∂t
dV +

∫

A

ρ s
(
~c d ~A

)
=

∫

V

Φ

T
dV +

∫

V

λ

(
▽T

T

)2

dV +

∫

A

λ

(
▽T

T

)
d ~A (4.40)

The Equations 4.33 - 4.36 are balance equations of aerodynamics while the Equations 4.38 - 4.40

are fundamentals of thermodynamics. Equation 4.37 is used in both, thermo- as well as aerodynam-

ics [156].

The first term on the left hand side of each equation describes the temporal change of the balanced

values within the control volume. The second term represents the flux of the field variables through

the control region. All given balances are universally valid for an absolute system.

Simplification of balance equations

To apply the averaging method of Kreitmeier to the test data of the turbine test rig, several assumptions

can be made that simplify the above given balance equations.

a) Quasi-steady state conditions

Most flow processes are periodically transient in common praxis. Therefore, the flow conditions
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may be assumed as "quasi-steady state" and the balance equations can be derived by means of

the mean value theorem for the integral calculus:

lim
t0→∞

1

t0
·

t0∫

0



∫

V

∂ρ

∂t
dV


 dt+ lim

t0→∞

1

t0
·

t0∫

0



∫

A

ρ~c d ~A


 dt = 0 (4.41)

The first term includes the temporal change of the balanced values becomes negligible leading

to a simplified balance equation.

b) Gas as flow medium

As the turbine is driven with air the flow medium is a gas and only gravitational force appears as

volume force. Therefore, the terms that include the vector of the volume force can be neglected

compared to the transport terms.

c) Tangential stress

The stress tensor ~~σ consists of normal (pressure) and tangential stresses (friction). The tangen-

tial stresses can be ignored at the free portion of the control surface as they are much smaller

compared to the normal stresses. This assumption leads to Equation 4.42.

~~σ d ~A = −p d ~A (4.42)

d) Heat transfer

The portion of heat conduction is negligible compared to the transport phenomena across the

control region and is therefore not considered.

Transformations of balance equations

In addition to the simplifications that are explained above, the following transformations are con-

ducted in the framework of the averaging process:

a) Notion of enthalpy

The enthalpy used for the balance equations is defined according to Equation 4.43.

h = u+
p

ρ
(4.43)

b) Pressure change and shift work

The effort that is required to cause a volumetric change is expressed by the pressure change and

the shift work of the control volume:
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∫

V

p

v

Dv

Dt
dV = −

∫

V

~c▽p dV +

∫

A

p~c d ~A (4.44)

c) System limits of the control volume The surface control volume is separated in two types as

depicted in Figure 4.4. The free control surfaces are designated with Si while wall surfaces are

labelled with Ai.

Figure 4.4: Schematic of the control volume and its defined system limits according to Kreitmeier [84]
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Resulting simplified balance equations

Simplified mass balance:

1

t0
·

t0∫

0

∫

S

ρ~c d~S dt = 0 (4.45)

Simplified linear momentum balance:

1

t0
·

t0∫

0

∫

S

ρ~c
(
~c d~S

)
dt+

1

t0
·

t0∫

0

∫

S

p d~S dt =
1

t0
·

t0∫

0

∫

A

~~σd ~Adt (4.46)

Simplified angular momentum balance:

1

t0
·

t0∫

0

∫

S

ρ (~r × ~c)
(
~c d~S

)
dt+

1

t0
·

t0∫

0

∫

S

p
(
~r × d~S

)
dt =

1

t0
·

t0∫

0

∫

A

~r ×
(
~~σd ~A

)
dt (4.47)

Simplified mechanical energy balance:

1

t0
·

t0∫

0

∫

S

ρ
~c 2

2

(
~c d~S

)
dt = − 1

t0
·

t0∫

0

∫

V

~c▽p dV dt+
1

t0
·

t0∫

0

∫

A

~c~~σ d ~Adt+
1

t0
·

t0∫

0

∫

V

ΦdV dt (4.48)

Simplified mechanical and thermal energy balance:

1

t0
·

t0∫

0

∫

S

ρ

(
h+

~c 2

2

) (
~c d~S

)
dt =

1

t0
·

t0∫

0

∫

A

~c~~σ d ~Adt+
1

t0
·

t0∫

0

∫

A

λ▽T d ~Adt (4.49)

Simplified thermal energy balance expressed with the notion of enthalpy:

1

t0
·

t0∫

0

∫

S

ρ h
(
~c d~S

)
dt =

1

t0
·

t0∫

0

∫

V

~c▽p dV dt+
1

t0
·

t0∫

0

∫

V

ΦdV dt+
1

t0
·

t0∫

0

∫

A

λ▽T d ~Adt (4.50)

Simplified thermal energy balance expressed with the notion of entropy:

0 = − 1

t0
·

t0∫

0

∫

V

ρ T ~c▽s dV dt+
1

t0
·

t0∫

0

∫

V

ΦdV dt+
1

t0
·

t0∫

0

∫

A

λ▽T d ~Adt (4.51)
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Simplified entropy balance:

1

t0
·

t0∫

0

∫

S

ρ s
(
~c d~S

)
dt =

1

t0
·

t0∫

0

∫

V

Φ

T
dV dt+

1

t0
·

t0∫

0

∫

V

λ

(
▽T

T

)2

dV dt

+

∫

A

λ

(
▽T

T

)
d ~Adt (4.52)

In Equation 4.45 - 4.52, the left hand side shows the terms of fluxes across the free surface S of the

control volume. The source productivity and the fluxes passing the control surface are given on the

right hand side of these equations [156].

Fluxes of field variables

To simplify matters, the following abbreviations are used to formulate the fluxes of the field variables

of the simplified balance equations.

Mass flow Ṁ :

Ṁ =
1

t0
·

t0∫

0

∫

S

ρ~c d~S dt (4.53)

Total linear momentum flow ~̇It:

~̇It =
1

t0
·

t0∫

0

∫

S

ρ~c
(
~c d~S

)
dt+

1

t0
·

t0∫

0

∫

S

ρ d~S dt (4.54)

Total angular momentum flow ~̇Dt:

~̇Dt =
1

t0
·

t0∫

0

∫

S

ρ (~r × ~c)
(
~c d~S

)
dt+

1

t0
·

t0∫

0

∫

S

p
(
~r × d~S

)
dt (4.55)

Total enthalpy flow ~̇Ht:

Ḣt =
1

t0
·

t0∫

0

∫

S

ρ

(
h+

~c 2

2

) (
~c d~S

)
dt (4.56)

Enthalpy flow Ḣ:

Ḣ =
1

t0
·

t0∫

0

∫

S

ρ h
(
~c d~S

)
dt (4.57)
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Flow of kinetic energy K̇:

K̇ =
1

t0
·

t0∫

0

∫

S

ρ
~c 2

2

(
~c d~S

)
dt (4.58)

Entropy flow Ṡ:

Ṡ =
1

t0
·

t0∫

0

∫

S

ρ s
(
~c d~S

)
dt (4.59)

Kreitmeier [84] defines Equations 4.53 - 4.56 as "conservation fluxes" while Equation 4.57 - 4.59

are "non conservation fluxes".

Averaged field variables

Kreitmeier [83] established three averaging methodologies utilizing various models. He defined the

irreversible, reversible and semi-reversible averaging. In the following section, the methods are in-

troduced and discussed. The assumptions and equations are described in advance to an explanation

of the model and its analytical treatment. The variety of requirements in practical applications is the

reason why more than one approach has to be considered.

a) Irreversibly averaged field variables

The resulting system of equations is developed by replacing the field variables within the surface

integrals (Equation 4.53 - 4.59) by area averaged values. These are constant across the free

surface S and over time t0.

Ṁ = ρ̄ ~̄c ~S (4.60)

~̇It = ρ̄ ~̄c
(
~̄c ~S
)
+ p̄ ~S = ~̄c Ṁ + p̄ ~S (4.61)

~̇Dt = ~̄r × ~̇It +∆~̇Dt (4.62)

Ḣt = ρ̄

(
h̄+

~̄c 2

2

) (
~̄c ~S
)
=

(
h̄+

~̄c 2

2

)
Ṁ (4.63)

Ḣ = ρ̄ h̄
(
~̄c ~S
)
+∆Ḣ = h̄ Ṁ +∆Ḣ (4.64)

K̇ = ρ̄
~̄c 2

2

(
~̄c ~S
)
+∆K̇ =

~̄c 2

2
Ṁ +∆K̇ (4.65)

Ṡ = ρ̄ s̄
(
~̄c ~S
)
+∆Ṡ = s̄ Ṁ +∆Ṡ (4.66)

h̄ = f (ρ̄ , p̄) (4.67)

s̄ = f (ρ̄ , p̄) (4.68)

The additional term ~̇Dt appears in Equation 4.62 that is required, due the linear momentum flow.
~̇It is not perpendicular to the angular momentum flow ~̇Dt in general. The remaining fluxes∆Ḣ ,
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∆K̇,∆Ṡ in Equation 4.64 - 4.66 are especially remarkable. This is a special feature of balanced

based averaging methods and of fundamental significance for the balancing process according

to Kreitmeier. The implementation of these variables is required as the equation system would

be overdetermined without them.

The model of irreversible averaging is developed by means of a flow between two control

sections that is assumed to be in quasi-steady state conditions. The inlet is indexed with 1 while

the cross section that represents the outlet is indexed with 2. The control volume V is limited

to its sides by the wall surfaces S as shown in Figure 4.4. The following equations result by

inserting the Equations 4.53 - 4.59 (definition of fluxes) into the simplified balance equations

4.45 - 4.52.

Ṁ1 + Ṁ2 = 0 (4.69)

~̇It,1 + ~̇It,2 =
1

t0
·

t0∫

0

∫

A

~~σ d ~Adt (4.70)

~̇Dt,1 + ~̇Dt,2 =
1

t0
·

t0∫

0

∫

A

~r ×
(
~~σd ~A

)
dt (4.71)

Ḣt,1 + Ḣt,2 =
1

t0
·

t0∫

0

∫

A

~c~~σ d ~Adt+
1

t0
·

t0∫

0

∫

A

λ▽T d ~Adt (4.72)

Ḣ1 + Ḣ2 =
1

t0
·

t0∫

0

∫

V

~c▽p dV dt+
1

t0
·

t0∫

0

∫

V

ΦdV dt+
1

t0
·

t0∫

0

∫

A

λ▽T d ~Adt (4.73)

0 = − 1

t0
·

t0∫

0

∫

V

ρ T ~c▽s dV dt+
1

t0
·

t0∫

0

∫

V

ΦdV dt+
1

t0
·

t0∫

0

∫

A

λ▽T d ~Adt (4.74)

K̇1 + K̇2 = − 1

t0
·

t0∫

0

∫

V

~c▽p dV dt+
1

t0
·

t0∫

0

∫

A

~c~~σ d ~Adt− 1

t0
·

t0∫

0

∫

V

ΦdV dt (4.75)

Ṡ1 + Ṡ2 =
1

t0
·

t0∫

0

∫

V

Φ

T
dV dt+

1

t0
·

t0∫

0

∫

V

λ

(
▽T

T

)2

dV dt

+
1

t0
·

t0∫

0

∫

A

λ

(
▽T

T

)
d ~Adt (4.76)

The terms on the right hand side of the equations shown above represent the resulting effects

of the walls to the balance volume or rather the effects that occur inside. The control surfaces

are adjacent close to the boundaries at an infinitesimal point of view (A → 0). Therefore, the
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surface integrals on the right hand side of the equations disappear and the walls do not effect

the volume further. Consequently the fluxes of the control surfaces 1 and 2 have to be identical.

The remaining volume integrals of Equation 4.74, 4.75 and 4.76 are defined with ∆Ḣ , ∆K̇

and ∆Ṡ as describe below:

∆Ḣ = − 1

t0
·

t0∫

0

∫

V

~c▽p dV dt− 1

t0
·

t0∫

0

∫

V

ΦdV dt (4.77)

∆K̇ =
1

t0
·

t0∫

0

∫

V

~c▽p dV dt+
1

t0
·

t0∫

0

∫

V

ΦdV dt (4.78)

∆Ṡ = − 1

t0
·

t0∫

0

∫

V

Φ

T
dV dt− 1

t0
·

t0∫

0

∫

V

λ

(
▽T

T

)2

dV dt (4.79)

The averaging process can be interpreted as a equilibration process by implementing the re-

maining fluxes. Equation 4.80 results by summation of the Equations 4.77 and 4.78.

∆Ḣ +∆K̇ = 0 (4.80)

Thus, a portion of the flux of kinetic energy namely ∆K̇ merges into the enthalpy flux ∆Ḣ .

The remaining entropy flux ∆Ṡ may be deemed to be source productivity that is generated dur-

ing the equilibration process inside of the balance volume. It is composed of two dissipation

terms that are related to friction and temperature compensation. Therefore, Kreitmeier defines

this method as irreversible averaging because both sources appear at the same time.

In the following context the analytical treatment is explained. The system of the Equations 4.60

- 4.68 can be transferred into three subsystems:

Subsystem I comprises the Equations 4.60, 4.61, 4.63 and 4.67 and the unknown variables ρ̄,p̄,

h̄ and ~̄c. Two possible solutions are received by means of iteration. Substitution of the velocity

component by implementing Equation 4.61 in Equation 4.60 and 4.63 provides the following

equations:

1

ρ̄
=
It,x · Ax + It,y · Ay + It,z · Az − ρ̄

(
A2

x + A2
y + A2

z

)

Ṁ2
(4.81)
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ρ̄ 2
(
A2

x + A2
y + A2

z

)
− 2ρ̄ (It,x · Ax + It,y · Ay + It,z · Az) +

(
I2t,x + I2t,y + I2t,z

)

− 2Ṁ2

(
Ḣt

Ṁ
− h̄

)
= 0 (4.82)

The above mentioned equations are visualized in Figure 4.5 by means of a h-s-diagram. It is

evident that two mathematical solutions a subsonic and a sonic one occur. Kreitmeier suggests

to examine the following criteria to choose the physically practical solution.

i) The irreversibly averaged entropy s̄ has to be larger than the reversibly averaged one s̃ in

Equation 4.89.

ii) In case that condition i) is fulfilled, the solution with the smallest deviation to h̃ has to be

chosen. This assumption avoids an alleged existing compression shock during the equili-

bration process.

The Subsystem II consists of Equation 4.62. The unknown variables, the effective radius ~̄r and

the parameter of r̄p can be calculated directly.

Subsystem III is formed with the Equations 4.64, 4.66 and 4.68 and contains the unknown vari-

ables ∆Ḣ , ∆K̇, ∆Ṡ and s̄. All four variables can be determined if the subsystem I is solved.

Equation 4.82

2nd root

1st root

irrelevant

Equation 4.83

Compression shock

s

h

Figure 4.5: Solution curves of Equation 4.81 and 4.82 in an h-s-diagram (Kreitmeier [84])
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Therefore, the irreversible averaging methodology according to Kreitmeier enables to formu-

late the remaining fluxes and all fluxes that are defined by the balance equations by means of

irreversibly averaged field variables.

b) Reversibly averaged field variables

The handling of the above introduced remaining fluxes is circumstantial for thermodynamic

investigations where the fluxes Ḣ , K̇ amd Ṡ are utilized. Thus, it is desirable to eliminate

these terms. This can be achieved by assigning a higher priority to the thermodynamic balance

equations (Equations 4.38 - 4.40) than to the aerodynamic balance equations (Equations 4.33 -

4.36). The fluxes Ṁ , ~̇It and ~̇Dt are not formulated with mean values. Ḣt, Ḣ , K̇ and Ṡ are still

expressed by area averaged variables.

Ṁ ≡ Ṁ (4.83)

~̇It ≡ ~̇It (4.84)

~̇Dt ≡ ~̇Dt (4.85)

Ḣt =
(
h̃+ k̃

)
Ṁ (4.86)

Ḣ = h̃ Ṁ (4.87)

K̇ = k̃ Ṁ (4.88)

Ṡ = s̃ Ṁ (4.89)

The model of the reversible averaging method is described as a quasi-steady state flow between

two control surfaces as it has been also described for the irreversible averaging method.

The walls also do not have an influence on the equilibration process due the assumption that

A → 0 is valid at the boundaries. To eliminate the remaining fluxes ∆Ḣ , ∆K̇ and ∆Ṡ, the

following requirements have to be met for the Equations 4.77 - 4.79:

i) As both integrands of Equation 4.79 are always positive, each of both terms has to be

identical 0. This is realized with the border crossing Φ→ 0 (no inner friction) and λ→ 0

(no inner heat transfer).

ii) The Equations 4.77 and 4.78 imply the following additional requirement after the bound-

ary crossing Φ→ 0:

1

t0
·

t0∫

0

∫

V

~c▽p dV dt→ 0 (4.90)
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This condition cannot be interpreted directly and is therefore transformed as follows:

The convective change of the pressure can be formulated with Equation 4.91 and the imple-

mentation of the streamline coordinate x:

~c▽p = c
∂p

∂x
(4.91)

With:

dV = d ~Adx (4.92)

Equation 4.90 can be written as:

1

t0
·

t0∫

0

∫

V

~c
∂p

∂x
d ~Adx dt = 0 (4.93)

For integration between two points 1 and 2 along the streamline x and extending with pv = 1

Equation 4.90 is transformed to Equation 4.94.

1

t0
·

t0∫

0

∫

V

ρ~c d ~A

2∫

1

v
∂p

∂x
dx dt = 0 (4.94)

The Equation 4.94 can be interpreted as all the internal work that is required to change the

pressure along the streamline has to compensate each other. This means that no type of energy

is allowed to merge with another one.

Another interesting connection can be shown with Equation 4.51, which can be transformed to

Equation 4.95.

1

t0
·

t0∫

0

∫

A

ρ~c d ~A

2∫

1

T
∂s

∂x
dx dt = 0 (4.95)

This equation reveals that the areas beneath the expansion and the respective compression curve

in an T-s-diagram have to be identical. As no entropy is generated with this averaging method,

it has been named "reversible averaging method" by Kreitmeier [84].
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The Equation System 4.83 - 4.89 contains the unknown variables h̃, k̃ and s̃, which can be

calculated directly. In contrary to the irreversible averaging, only the Balance Equations 4.49 -

4.52 can be expressed by mean values.

c) Semi-reversibly averaged field variables

As already mentioned, the remaining fluxes ∆Ḣ , ∆K̇ and ∆Ṡ occur in the equations of the

irreversible averaging method. Especially the remaining entropy flux has been traced to ef-

fects within the equilibration volume that are caused by friction and temperature compensation.

These dissipation terms have been avoided for the reversible averaging method to eliminate

these remaining fluxes. Additionally, Kreitmeier introduced a third averaging method, that

only considers the source term caused by inner thermal conduction.

By applying the same procedure as described for the irreversible averaging method and consid-

ering that the remaining fluxes ∆Ḣ and ∆K̇ disappear, the following equation system can be

derived:

Ṁ ≡ Ṁ (4.96)

~̇It ≡ ~̇It (4.97)

~̇Dt ≡ ~̇Dt (4.98)

Ḣt =
(
ĥ+ k̂

)
Ṁ (4.99)

Ḣ = ĥ Ṁ (4.100)

K̇ = k̂ Ṁ (4.101)

Ṡ = ŝ Ṁ +∆Ṡλ (4.102)

Here, only Ḣt, Ḣ , K̇ and Ṡ are expressed by mean values, as described for the reversible aver-

aging method. Furthermore, a suitable model is developed for the remaining entropy flux Ṡλ.

Again, this model is described utilizing a quasi-steady state flow between two control surfaces

that are limited by the walls A. Then, the assumptions for the semi-reversible equilibration

process can be determined by applying the Balance Equations 4.69 - 4.76 on the equilibration

volume.

Also, the border crossing A → 0 is applied to eliminate the influence of the limiting walls.

Neglecting the internal friction causes Φ → 0. Additionally, Kreitmeier demands that no type

of energy is allowed to merge with another one.
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The remaining fluxes Ḣ and K̇ are close to 0 in line with these approaches and the entropy flux

can be formulated with Equation 4.103. The index λ refers to the entropy production due to

inner thermal conduction.

Ṡλ = − 1

t0
·

t0∫

0

∫

V

λ

(
▽T

T

)2

dV dt (4.103)

Equation 4.95 is still valid, as the simplified balance equation of thermal energy (4.51) has to

be satisfied. Hence, the area beneath the compression curves shown in Figure 4.5 has to be of

the same size as beneath the compression curves. As the integrand in Equation 4.103 is still

larger than zero, it can be stated that:

ŝ > s̃ (4.104)

The Equation System 4.96 - 4.102 contains the unknown variables ĥ, k̂, ŝ and Ṡλ. While the

first two variables can be determined directly, ŝ and Ṡλ have to be derived in an iterative process.

Comparison of the averaging methods

The previous paragraphs have shown how the fluxes of field variables within a defined equilibration

volume can be formulated or replaced by various balance based mean variables and by the application

of the three averaging methodologies according to Kreitmeier [84]. Table 4.1 gives an overview of

the differences between the averaged field variables for each averaging method. It can be concluded,

that one averaging approach is not sufficient to answer all questions of fluid dynamic problems. It

has been decided to choose the correct approach based on which topic of investigation needs to be

focused on

Table 4.1: Overview of the averaged field variables [83]

Fluxes of field variables
Averaged field variables

irreversible reversible semi-reversible

Ṁ ρ̄ , ~̄c
Not expressed~̇It ~̄c , p̄

~̇Dt
~̄r , r̄p

Ḣt h̄ , ~̄c h̃ , k̃ ĥ , k̂

Ḣ h̄ ,
(
h̃− h̄

)
h̃ ĥ

K̇ ~r ,
(
k̃ − k̄

)
k̃ k̂

Ṡ s̄ , (s̃− s̄) s̃ s̄ , (s̃− s̄)
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If the emphasis is placed on fluid mechanics, the irreversible approach is best suited. However, if it

is placed on thermodynamic investigations, the reversible or semi-reversible method must be chosen.

As both topics occur for the present investigation, all three averaging methods according to Kreitmeier

have to be considered. A detailed analysis for the present data will be shown in Section 4.5.

4.4.3 Definition of the measurement grid

Each measurement plane (MP) contains 55 airfoil passages called pitches, of these one pitch is sur-

veyed. It is assumed that identical flow phenomena occur in all pitches. To determine the flow field

for one pitch, the probe is moved to six discrete circumferential positions called "clocking positions"

as described in Section 3.3.1 (the sevenths CP is measured redundantly to the first one and therefore

not taken into account to calculate the MF).

The probe measurement is conducted on 56 radial measurement positions between hub and shroud

that have various distances to increase the resolution close to hub and tip. By this means, a mea-

surement grid with the shape of a circular area section is created. The probe data has to be allocated

to its respective surface element. This is important, as the area on the outer diameters is larger and

therefore the data collected at the shroud is weighted differently compared to data collected close to

the hub. This weighting factor varies for the averaging methods discussed and is further investigated

in Section 4.5.

To calculate the size of each surface element, the following Equation 4.105 has to be utilized:

dA = r dφ dt (4.105)

The surface element A2,2 will be examined below. It is assumed that the radii r1 and r2 are well

known. A2,2 results by the integration of Equation 4.105 to:

A2,2 =

r2∫

r1

φ1∫

0

r dr dφ =

r2∫

r1

r φi dr =

[
r2

2
· φi

]r2

r1

=
(
r22 − r21

) φi

2
(4.106)

The angle φi corresponds to the angle between two CP and results by the dimensions of the test

rig to 1.09◦. The limiting radii (blue coloured) of each surface are located centred between two

measurement points. The radius of the measurement point is called with M in Figure 4.6.

r2,1 =
M1,1 +M2,1

2
≈ r2,2 =

M1,2 +M2,1

2
(4.107)

The distance between two radii to the surface limits is not constant. This is because as the probe

positions vary for each CP due to the actuation accuracy of the PAD that lie in a magnitude of ≈ 4µm.





61

Table 4.2: Combined standard uncertainties of flow parameters measured according to GUM [73]

Flow parameter Unit Uncertainty

α [◦] 0.10339
γ [◦] 0.15626
Ma [-] 0.0008933
pt [Pa] 312.38
ps [Pa] 341.08
T [K] 0.1299
η [%] 0.39

4.5.1 Uncertainty of probe measurement

With the aim of proving if the present measurements lie within the range set by the theoretically de-

termined uncertainties, the reference blading 2D TEWC BS has been measured before (in 2015) and

after (in 2016) all later presented investigations. Hence, the influence of several mechanical assembly

processes and the operating time of the brush seal (BS) is taken into consideration. The analysis is

shown exemplary for the design point.

Figure 4.7 shows the angle distribution across the flow channel span of all measurement planes

(MP) for both tests. Additionally, the deviation is shown in the diagrams below to visualize the de-

viations. The yaw angle α has been chosen, as the data of all pressure holes within the probe head

is required for its determination. One can see that both tests nearly capture an equivalent distribution

in all measurement planes (MP). It can also be seen in MP12 and MP22 that the largest deviation

occur at 20% span where the channel vortex is located. As it is not exactly at the same radial position

in both tests, the deviation in this area is at its maximum due to the fact that the absolute value at a

discrete span position is compared. Therefore, the maximal mean deviation of 0.48◦ is larger than the

deviation according to GUM.

The analysis of the total pressure distribution in Figure 4.8 also shows good matching of results

for all MP. Despite the fact that the operating point stability, which is further discussed in Chapter 5,

impacts the pressure level in MP10 directly, the maximal deviation is below 2h. In MP12, the largest

discrepancy of 0.7h also occurs at 20% span while the mean deviation of 84Pa is far below the cal-

culated value of 312Pa. The highest mean deviation appears for the outlet pressure in MP22 that is

also dependent on the OP stability and refers to the inlet pressure. One can recognize that the overall

pressure level deviates by 278Pa while the radial deviations fluctuate by about ±0.5h. Nevertheless,

the mean deviation is below 1h and lies in good agreement with the predetermined value shown in

Table 4.2.
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pressure probe designs. This is justified by the fact that the total temperature is a function of the mea-

sured probe temperature, the recovery factor and the Ma-number, which is calculated by means of the

pressure probe data. Without doubt it can be seen in Figure 4.10 c) that the qualitative distribution of

the 3HP and 5HP measurement is identical. Even close to the casing the deviation is slightly above

1h and therefore negligible.

4.5.2 Uncertainty caused by averaging methodology

As the previous section focussed on the uncertainties that are caused by the measurement itself, the

influence of the post processing is analysed in this section. Therefore, both introduced averaging

methods according to Traupel (TR) and Kreitmeier (KM) are applied on the data set of the 5HP mea-

surement in 2015.

Figure 4.11 shows the distribution of the polytropic efficiency across span. It has to be mentioned

that this analysis does not claim to depict the exact change of one streamline. Here, the measured

data of each measurement plane (MP) is compared for each radial position to what is permitted as

all probes measure at the same percentage span position within their respective measurement plane

(MP). Furthermore these diagrams should serve to qualitatively visualize how the averaging methods

differ.

By looking at the turbine’s efficiency, it is observed that both methods show an equivalent distri-

bution across span. However, the deviation plot below states that both methods do not deviate just by

a constant offset. Especially in the hub area between 10% and 40% span, local differences of up to

0.4% can be seen. The same tendencies can be found by calculating the efficiencies for stage 1 and

stage 2 separately, while the maximal amplitudes are even higher compared to the turbine’s efficiency.

The global analysis of the polytropic efficiency of all OP (see Figure 4.12) shows that the trends

are captured by both averaging methods equivalently. It can be seen that the largest deviations occur

for OP1, which results from the fact that the flow shows larger secondary flow losses and the respec-

tive vortex phenomena have a major impact on the efficiency calculation as it was explained before.

Regarding all OP a scatter band of 0.157% results for the overall efficiency calculation. For stage 1, a

value of 0.227% has been found while stage 2 shows the biggest discrepancy of 0.351%. This value

is roughly of the same amount that was calculated utilizing GUM (0.39%).

In summary it can be stated that the uncertainties of the measurements are well known. The analysis

of the reference blading before and after the later presented investigations aimed to consider wear of

the brush seal (BS), the impact of the assembly processes as well as recalibration of the pressure and

temperature transducers during the testing period. Also, the influence of the probe intrusion and
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respective blocking effects have been considered by the redundant measurement with 3HP and 5HP.

The application of both averaging methods is necessary for the complex phenomena that are inves-

tigated as their sensitivity to vortices has been shown. Both methodologies, however, are evaluated

on on the results according to Traupel. This will be shown as this method is further established and

therefore more suitable to compare the present results to international investigations.

Furthermore, these validation tests have shown that the uncertainties of the rig lie in good accor-

dance to the predictions according to GUM. However, especially the temperature measurement is way

more accurate, which is of highest significance to determine the changes in efficiency of the different

blading types. Therefore, the following Table 4.3 shows the resulting uncertainties of the test data.

Table 4.3: Uncertainties of flow parameters resulting of reference tests

Flow parameter Unit Uncertainty

α [◦] 0.48
γ [◦] 0.51
Ma [-] 0.0012
pt [Pa] 280.00
ps [Pa] 292.12
T [K] 0.034
η [%] 0.108

4.6 Summary

In this chapter it was shown, how the measured data is post processed. Two methods were introduced

that allow the derivation of leakage flows trough labyrinth seals as well as through brush seals. Addi-

tionally the measurement of mechanic power was described.

The efficiency of the turbine is calculated by means of two methods. One method was shown that

includes the mechanic power and therewith bearing losses and friction losses. However, this method

is not suitable to determine the stage efficiency of both stages separately. Therefore, a second method

was introduced that is based on the probe measurements only.

Two data averaging methodologies according to Traupel [142] and Kreitmeier [83] were applied on

the present test data and compared to each other. It was shown that the efficiency calculated accord-

ing to Traupel is higher compared to the one derived with the equations of Kreitmeier. Furthermore,

a detailed analysis across the span showed that the efficiency did not just show a constant offset.

The occurring vortex phenomena impact both averaging methodologies significantly. Therefore, the

methodology of Traupel has been chosen to be used for the following analysis at it is used more often

in common literature.
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An uncertainty analysis of the flow parameters has been conducted according to GUM [73]. Two

redundant tests were carried out before and after all measurement campaigns to evaluate the consis-

tency of each data set. The results of the comparison of both tests were in good agreement with the

theoretical approach according to GUM. However, especially the temperature measurement showed

better consistency than it was calculated theoretically. The resulting uncertainty of the efficiency that

was derived to 0.108 is much smaller than the uncertainty calculated via GUM (0.39). Therefore, it is

reasonable to discuss the influence of TEWC on the turbine’s efficiency.
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5 Performance of the turbine

All methodologies introduced previously are applied to determine the performance of the turbine and

therewith, also to analyse the various blading and endwall configurations regarding their influence to

the flow.

In this section it will be shown that all investigations were conducted with equal boundary condi-

tions by comparing the operating point stability of each test day. Furthermore, the amount of leakage

flow of each labyrinth as well as the brush seal test is analysed to verify an equal impact for the dif-

ferent airfoil investigations.

Then, the efficiency of the turbine is benchmarked. At first, the differences between the BASE,

TEWC, and TEWC-V set ups are analysed for labyrinth seal (LS) and brush seal (BS) separately to

highlight the characteristics of the endwall contouring feature regarding its sensitivity to leakage flow

(LF) interaction. Later, the airfoil configurations are kept and the comparison is conducted for both

sealing configurations to put the focus on the leakage flow interaction, exclusively.

5.1 Operating point stability

Due to the small changes in efficiency that are expected by application of TEWC, constant inlet and

outlet conditions are of highest importance. Figure 5.1 shows the deviations of all values, which are

required for estimation of efficiency, during the measurement time of all operating points (OP) and

configurations.

It can be seen, that the inlet temperature of 90◦C varies with a maximal amplitude of about ±0.3K

during a test day, which is equivalent to 0.83h. The spread of the pressure level at the inlet and outlet

lies in a range of ±300Pa. This corresponds to a relative deviation of 0.94h, referred to the inlet

pressure level of 3.2bar and 1.3h referred to 2.3bar outlet pressure respectively. The resulting pres-

sure ratio of 1.387 deviates by about 2.16h from its mean value. The four diagrams in the bottom of

Figure 5.1 show the rotational speed of the turbine at each operating point (OP). Here it can be seen

that the highest deviation from its mean is about 8RPM, which is 2.25h in OP1 and 1.55h in OP4.

Consequently, the deviations at OP2 and OP3 lie in between these values.

On basis of the data shown here, it can be stated that all tests were conducted under similar op-

erating conditions. Therefore, the differences between the different configurations that are further

discussed, can be related to the respective feature that lies in the focus of the present analysis.
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In addition to the conditions that are set during the test, the resulting LF has to be analysed in

advance of the investigations of other features. Figure 5.2 shows for the design point OP3, how the

pressure drops within the cavities that are located above the shroud of rotor 1. It can be seen that for

the brush seal (BS) configuration, which is shown in the left bottom of this very figure, the pressure

drops nearly exclusively between measuring position 3 and 4, where the brush seal (BS) is located.

It has to be kept in mind that the pressure level at the inlet and outlet of the sealing is set by the

main flow pressure level. Despite these finding, the pressure drops linearly across all cavities for the

labyrinth seal (LS) configuration where the brush seal (BS) is replaced by a third fin that is designed

equal to the adjacent ones. These effects also occur for the other operating points (OP), similarly.

Applying Equations 4.5 and 4.6 to the measured data provides the resulting leakage flow (LF) for

both sealing configurations (depicted in Figure 5.3).

It can be seen that the leakage flow (LF) of all BS tests lies in a range of 0.105% - 0.115% in refer-

ence to the respective main flow (MF) of each operating points (OP). Only small variations below 1g/s

are a result of the variation of the operating point (OP) and speed respectively. Also a change of the

airfoil configuration does not show significant changes in leakage flow (LF) due to the overlapping

bristles that ensure equal contact to the shroud surface at any circumferential velocity.

Another picture is drawn by comparison of the labyrinth seal (LS) test. On the one hand, the leak-

age flow of all configurations is significantly higher and lies between 0.805% to 0.828% at the design

point. Moreover, the different operating points (OP) have more significant influence that result in a

range of 0.04%. Also the manufacturing tolerances of the airfoils and therewith the shroud diameter

impact the resulting leakage flow (LF) as the clearance between the fins changes. That is the reason

why the BASE and the TEWC-V configuration that were measured with the same rotor, show an

equivalent leakage flow (LF) while the level of the TEWC configuration is slightly lower.

The here shown results justify two statements:

Firstly, it can be stated that the difference in leakage flow (LF) between both sealing configurations

is large enough to identify the impact of leakage flow (LF) to the TEWC due to the nearly non existent

leakage flow (LF) of the brush seal (BS) configuration.

Secondly it has to be considered, that the deviation of about 5% between all operating points (OP)

as well as the different airfoil configurations seems to be large for the labyrinth seal (LS) configuration

on a first view. However, it has to be considered that the resulting difference of 0.5% is of the same

for the brush seal (BS) configuration if it is referred to the overall leakage flow (LF) level. This is due

to the fact that the leakage flow (LF) is ≈8 times higher for the labyrinth seal (LS)
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configurations. Therefore, it is justified to discussed equal leakage flow (LF) conditions for all

configurations and the respective operating point (OP).

5.2 Benchmark of efficiencies

It was shown in the previous Section 5.1 that all investigations were conducted with nearly equal

boundary conditions. The following subsection is dedicated to answer questions of the TEWC per-

formance as well as to investigate the influence of leakage flow (LF) in combination with endwall

contoured blading. The design point OP3 serves as reference for all subsequent discussions in its

respective configuration. The left hand side of each figure shows the absolute distribution of the in-

vestigated value while a detailed plot of the present deviations is given on the right hand side. To

evaluate if the endwall contouring has the potential to increase the aerodynamic efficiency of tur-

bines, the test results of a configuration with hub and tip sided contoured vanes (3D TEWC-V) and

contoured vanes as well as contoured blades (3D TEWC) are compared against a reference design of

this kind of airfoil (3D BASE) that does not have any contouring. These investigations are carried out

separately with a brush seal (BS) and a labyrinth seal (LS). The prefix "3D" is omitted for purpose of

a better legibility. Figure 5.4 illustrates the configurations described.

3D BASE

BS

3D TEWC

3D TEWC-V

LS

Brush seal TEWC Leakage flow

Figure 5.4: Summarizing illustration of all investigated configurations and the occuring leakage flow
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Having a look at the main flow (MF) it can clearly be stated that the main flow (MF) level of

the TEWC-V configuration is ≈100g/s higher compared to the BASE configuration for all operating

points (OP) due to the increased cross-sectional flow area. This lies in good accordance with the mea-

sured main flow (MF) of the TEWC configuration that is also contoured at the rotor and has therewith

twice the amount of surface extension as compared to the TEWC-V design. Therefore, the resulting

main flow (MF) is ≈200g/s larger than BASE for all operating points (OP). It has to be added, that all

of the data shown here is gathered with the orifice upstream the turbine and not calculated by means

of the probe data.

Both parameters, power and main flow (MF), are utilized to determine the polytropic efficiency

according to Equation 4.13. Therefore, all effects such as friction between the shroud and brush seal

(BS), bearing losses and so on are taken into consideration. The resulting efficiencies for all operating

points (OP) are shown in Figure 5.6 in the first line. One can see, that TEWC-V lies on the same level

as the BASE configuration for OP1 and OP2 while the efficiency drops by about ≈0.25% for the DP

and in part load. The same tendencies can be seen for the fully contoured blading (TEWC), however,

also the efficiency of OP1 suffers and the efficiency in part load (OP4) drops by about ≈0.6%.

In the following section, the efficiencies that are calculated with Equation 4.12, are discussed.

Equation 4.13 can only be applied for the whole turbine and a discussion of each stage based on

Equation 4.13 is not possible. The efficiencies shown are calculated with the probe data and do not

include frictional losses. That is why the curve of the TEWC design in Figure 5.6 is shifted slightly

towards higher efficiencies, while the tendencies are the same as in previous diagrams. On a first sight

it appears that endwall contouring is not an appropriate method to increase the efficiency of turbines.

Having an individual look at both stages it turns out that this statement cannot be made that easily.

In stage 1, the endwall contoured vane (TEWC-V) causes an obvious increase in efficiency for

OP1 to OP3 with values of more than 1% and even almost 1% for the design point (OP3). In contrary,

the fully contoured blading is on the same level as the reference blading in OP1 and OP2 and then

performs worse down to ≈1.8% in part load. That leads to the assumption that the contouring of the

vane optimizes the inflow and the performance of the first rotor row, significantly. An additional con-

touring of the rotor seems to compensate this beneficial upstream condition thus the resulting output

of the stage gets worse.

More interesting is the analysis of the efficiency of stage 2 as this stage operates under more realistic

inflow conditions than stage 1 (which can be expected to prevail in a multi-stage environment of

deployed turbines). Here, the trend is flipped and the TEWC configuration shows the best results.

Furthermore, it is worth mentioning that all operating points (OP) shown nearly the same gain in

efficiency of about ≈0.7%. The TEWC-V performance lies far below baseline and especially the
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design point (OP3) looses nearly 1.8%.

Due to the fact that the behaviour between stage 1 and stage 2 differs so much, a detailed analysis

of the efficiency across span is performed to determine where benefits and losses occur within the

flow channel to further optimize the endwall contouring. These diagrams do not claim to depict the

efficiency of a streamline, as this is not a feasible option for the test. Instead, the reader may interpret

these diagrams qualitatively to identify regions across span, that are influenced by the rotor or the

casing sided contouring.

Considering both stages by comparing the turbine’s efficiency it can seen in Figure 5.7 that for

TEWC-V almost no change occurs for OP1 and OP2. For OP3 the overall level is lower and a neg-

ative peak can be seen in the hub region at ≈35% span. For OP4 this is also the case, however,

no deviation can be seen in the upper channel area. The distribution of the full contoured blading

(TEWC) is much more complex. An increased efficiency can be observed for all operating points

(OP) close to the casing as well as in the centre area because losses occur at the hub and near the

casing at ≈85% span.

An isolated view of stage 1 shows, that the benefit for TEWC-V is mainly caused by changes of

flow in the hub region up to ≈40% span for OP1 to OP3. Small losses can be seen close to the casing.

The worse overall tendencies of the TEWC configuration result from losses close to the casing as well

as between 0 and 30% span where the passage vortex (PV) is located.

In stage 2, TEWC-V losses occur especially for OP2 and OP3 nearly across the whole span with

peaks in the PV area at 30% span that also exist in OP1 and OP4. For TEWC, a massive increase in

efficiency can be identified close to the casing and also improvements in the centre region, especially

in OP4. However, also negative peaks exist close to the PV.

By taking into consideration that the first stage of the turbine is placed downstream a honeycomb

structure and therefore, does not have realistic inflow conditions and due to the fact that common

turbo machines are running with multiple stages, it can be stated that the TEWC configuration has the

potential to increase the efficiency of turbines in case that the effect that is measured in stage 2 can

be reproduced within the following stages. The detailed investigation of the reason for these findings

are presented later on in Chapter 6.

However, these findings do not consider any influences of leakage flow (LF) that occur in reality.

Therefore, the results with labyrinth seal (LS) are discussed in detail.
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Another picture is drawn for stage 2. While TEWC showed an increased efficiency for all OP with

brush seal (BS), it is now lower with labyrinth seal (LS) by about ≈1% for all operating points (OP).

Also TEWC-V lies in this range, however, it did not show beneficial tendencies for brush seal (BS),

as well.

As the change of the casing sided sealing configuration does not have an impact on the trends in

stage 1, two assumptions can be made:

On the one hand, the impact of fluid that is sucked out of the main channel into the cavity up-

stream the TEWC can be neglected. On the other hand the TEWC does not work properly if a certain

amount of leakage flow (LF) re-enters the annulus upstream as the boundary layer is thickened up

and the TEWC is not fully moistened or passed by the flow correctly. Interestingly, this does not

affect the stator performance directly as shown by comparing TEWC-V BS and LS. That implies that

the guidance within the stator and the resulting incidence of the downstream located rotor is the key

driver of the benefit that can be seen for TEWC BS.

This finding leads to the statement that the amount of leakage flow (LF) in an existing turbine has

to be known in advance to decide whether TEWC should be applied in a retrofit measure to increase

the turbine’s effiency.

The detailed analysis of the efficiency across the span in Figure 5.10 shows that the impact of leak-

age flow (LF) at the casing impacts the TEWC performance in such a significant way, that also the

centre area of the flow channel is influenced. For TEWC-V the effects compared to the brush seal

(BS) configuration can be repeated. No significant changes can be identified between casing and the

centre of the annulus while losses occur close to the casing. For TEWC the changes are even larger

and have to be discussed more in detail.

By comparing the brush seal (BS) and labyrinth seal (LS) one can see that two effects seem to

be influencing each other. The benefit close to the casing that can be seen for the brush seal (BS)

set up does not occur any more, if a certain amount of leakage flow (LF) is present (LS set up).

In addition the overall level is decreased, which leads to a shift to the left hand side and an overall

negative efficiency compared to the baseline. Therefore, the distribution between brush seal (BS)

and labyrinth seal (LS) looks that different for TEWC that has lost its overall positive impact on the

turbine’s efficiency. That also implies that the main impact, of course can be seen close to the casing,

where the sealing is switched.This leads to the assumption that changes in the hub area are mainly

caused by an overall drop in performance. However, also variations of the incidence in this span

region that result due to the impact on the PV are responsible for the losses shown here.
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Equation 4.13 and 4.12 indicates that the efficiency of each configuration drops for higher leakage

flow (LF) (labyrinth seal (LS) configurations) within the considered range of operation. Hereby the

efficiency of BASE and TEWC-V is decreased by ≈0.8% while the fully contoured blading (TEWC)

is more sensitive to the re-entering leakage flow (LF) and losses are ≈1.5%.

A detailed look at stage 1 reveals that all airfoil types suffer by about ≈1.5% due to less fluid that

participates the energy conversion.

The level of efficiency for the BASE configuration in stage 2 remains constant. Also the TEWC-V

set up, which has an efficiency level lying significantly below BASE does not show an inpact for OP3

and OP4, while the efficiency for OP1 and OP2 is increased by about ≈0.5%. The benefit that was

generated by applying TEWC in combination with brush seal (BS) shows an opposite trend if leakage

flow (LF) is also taken into consideration. Therefore, a loss of 1.5% for OP1, OP2 and OP4 down to

2% for the design point can be seen.

Also the detailed analysis of the turbine’s efficiency across span that is shown in Figure 5.13 states

that TEWC losses are nearly constant from the hub up to a span of 80% and further close to the casing.

The negative impact between 60 - 80% can also be recognized for the BASE and TEWC-V set up,

however, the efficiency does not change from the centre passage to the hub.

By analysing both stages independently, it is clearly shown that all configurations mainly show

losses close to the casing in stage 1 and then by nearly the same amount across the remaining flow

passage.

In stage 2, the gain in efficiency in the centre channel for BASE and TEWC-V is sufficient to cover

the upstream losses leading to the previously discussed distribution of the turbine’s efficiency. Only

the efficiency of the TEWC configuration drops again.
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has been chosen as a representative case as its inflow is more likely to depict the realistic behaviour

of commercial turbo machinery.

This benefit gain changes and the efficiency of TEWC suffers with the presence of a re-entering

leakage flow (LF) upstream the second stage. Also the investigation of each airfoil type with both seal-

ing configurations showed that endwall contoured blading (TEWC) is much more sensitive to leakage

flow interaction (LI) than a blading with divergent cylindrical walls (BASE). The measurement of

the intermediate set up TEWC-V supported these findings. Here it was shown that the application

of contouring on the vane exclusively results in a comparable dependency to leakage flow interaction

(LI) than was seen for the BASE set up. The sensitivity to LI can be dedicated to endwall contouring

that is applied on the rotor. All these findings are summarized in Figure 5.14 and Figure 5.15.
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Figure 5.14: Summary of changes in efficiency of TEWC and TEWC-V compared to BASE for all con-

figurations with brush seals
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Figure 5.15: Summary of changes in efficiency of TEWC and TEWC-V compared to BASE for all con-

figurations with labyrinth seals
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6 Detailed analysis of the flow field

The previous chapter has shown that TEWC and also the influence of leakage flow interaction have

a significant impact on the turbine’s performance. Therefore, the flow fields of each configuration

are investigated in detail across the span to identify potential physical reasons for the global changes.

This is done by means of contour plots that show a 2D section of one airfoil passage. Furthermore,

this data is averaged circumferentially and plotted against different configurations to visualize devia-

tions at certain span locations. The yaw angle α, total pressure pt and total entropy ∆st (in reference

to the environmental conditions) have been chosen for this purpose. Also, the pressure distribution is

compared across one vane of stator 2 at two discrete span positions at 90% and 50% of the span.

OP1 has been chosen to show the further described flow phenomena, as the changes here are the

highest. Therefore, it is the best example for visualization purposes. The results of all remaining OP

are given in Appendix B to compare the respective values for all OP in a single one page figure. For

this reason the scaling of some axes does not seem well suited for OP1 within this chapter. Please note

that the markers for the TEWC-V configuration have been left out for the circumferentially averaged

data plots for purpose of illustration.

The structure of this chapter is related to the previous one, starting with an analysis of the influence

of TEWC neglecting leakage flow interaction (brush seal configurations). Then, leakage flow interac-

tion is considered by comparing the resulting flow fields of the labyrinth seal measurements. Finally,

the influence of labyrinth and brush seal set ups is analysed for each airfoil type separately.

6.1 Baseline vs. tangential endwall contouring

Figure 6.1 illustrates the contour plots of the yaw angle α in MP12 for the brush seal configurations.

Especially for OP1 it can be seen that the yaw angle changes across the whole span for the BASE

configuration and therewith the incidence of stator two that is located downstream of MP12. For

TEWC-V this variation gets thinner in circumferential direction, however, vortices at 20 and 80%

span seem to be strengthened. For TEWC the downsizing of this area can also be recognized. The

vortices at 20 and 80% span are less distinct as for TEWC-V. Overall, the flow field is homogenized in

the span wise direction especially in the hub area. This effect can also be seen for the other operating

points shown in Figure B.1 and it can be stated that the downsizing of the inhomogeneous area is

mainly impacted by the contouring of the vane.

In MP22, the flow field is much more homogeneous for all configurations because rotor stator in-

teraction does not take place here. Figure 6.2 (respectively Figure B.2) reveal that endwall contouring

has a strong impact on the hub area at 20% span.
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This change is stronger for TEWC than for TEWC-V, which means that both vane and rotor con-

touring effect this deviation.

Averaging these flow fields circumferentially (see Figure 6.3 and Figure B.3), supports that TEWC

and TEWC-V cause a shift of the incidence to the suction side (SS) in MP12 due to the homoge-

nizing process. Additionally, these plots show that the rotor contouring of the TEWC configurations

mainly causes changes close to the casing. The amount of deflection caused by the passage vortex

between 5 to 25% span is of the same amount for TEWC and TEWC-V while the peak at 20% span

is shifted slightly further towards the channel centre for the TEWC configuration. In MP22 the differ-

ence between all airfoil types is smaller than in MP12, however, all described effects occur as well.

Especially for OP3 and OP4 in Figure B.3) it can be seen clearly, that the channel vortex is shifted

away from the hub compared to the BASE airfoils.

Also the shift of the incidence due to the different loading of each OP can be clearly seen. There-

fore, the data is additionally averaged across span shown in Figure 6.4. Here, the resulting yaw angle

is plotted for each OP in all three measurement planes. In MP10 the angle is 0 due to the honeycomb

structure upstream the first stage that redirects the flow parallel to the machine’s axis. The angle

level of all OP is lower in MP12 than in MP22 and one can see that TEWC and TEWC-V differ by

roughly 5◦ compared to the BASE configuration. Taking the convention introduced in Figure 3.12 of

Section 3.3.3 into consideration, one can also see that OP4 causes negative incidence whereas OP1

and OP2 lead to positive incidence downstream of each measurement plane.

The total pressure distributions in MP12 that are shown in Figure 6.5 and Figure B.4, reveal a pres-

sure drop of 0.35% close to the casing for the TEWC configuration compared to BASE. TEWC-V

lies in between, while its overall level within the main channel is the lowest. One can also see that

the peak at 90% span is shifted towards the channel centre as it was discussed for the passage vortex

above. Furthermore, TEWC and TEWC-V show an increase in pressure close to the hub that cannot

be seen for the BASE measurements. An equivalent picture is drawn in MP22.

By looking at the pressure distribution across the vane downstream MP12 that is given in Figure 6.6

as well as Figure B.5 turns out that TEWC does not have an impact on the pressure side (PS) that is

represented by the upper curve at a pressure level of ≈0.83. This can be explained as the pressure

gradient within the flow passage is directed from pressure side (PS) to suction side (SS) as it is shown

in Figure 3.4. The impact of the sudden jump therefore mainly influences the suction side (SS).

The discrete measurement at 90% span on the left hand side of Figure 6.6 shows that deviations

mainly occur at the leading edge of the airfoil located at x/l=0. It is also visible that the deceleration

(increasing static pressure) between x/l=0.7 and 0.9 of the BASE configuration is weaker for the

TEWC-V and TEWC design.
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Following, the labyrinth seal configurations are investigated to see whether the additional leakage

flow impacts the influence of the endwall contouring.

For the angle distribution in MP12 shown in Figure 6.10 and Figure B.9, it can also be seen that

the incidence changes across the whole channel height for the BASE design. Again, this area is sig-

nificantly smaller for the TEWC and TEWC-V designs. Also the trend in change at 20% span is

reproduced and it can be seen that the vortex areas at 20% and 80% span are more intense for TEWC-

V than for TEWC.

Figure 6.11 and Figure B.10 illustrate the angle distribution in MP22. In the off design condition

OP1, a more non uniform flow field can be seen for TEWC-V compared to BASE and TEWC. The

increasing change at 20% span from BASE to TEWC is repeated. Furthermore, the flow is deflected

close to the casing significantly for the BASE design. This effect decreases for TEWC and TEWC-V

as it can be seen best for OP2 in Figure B.10.

By observing the circumferentially averaged yaw angle distribution in Figure 6.12 and Figure B.11,

one can see that the incidence changes most for the TEWC-V configuration in MP12 and also in

MP22. However, the amount is much smaller. A change of the radial position of the peak at 20%

span cannot be seen in MP12 in any OP. In MP22 this phenomenon can be detected.

Figure 6.13 shows the results of additional averaging the distributions of each configuration radially

for all OP and in each measurement plane. As already mentioned, the inflow angle to the first stage is

set to 0 due to the honeycomb structure. For MP12 it is remarkable to see that the shift between both

endwall contoured configurations is less strong as the BASE level lies roughly 3◦ higher. However,

the trend that contouring deflects the flow leading to more negative incidence, has been repeated com-

pared to the brush seal investigations. Also the different outflow angle range of MP22 can be seen.

Here, the trend has changed and the contoured versions show an smaller angle for the outflow of the

second stage. In general, the overall level of both OP has changed by +3 − 4◦ in both measurement

planes compared to Figure 6.4. This supports the statements that were made in Section 5.2 assuming

that endwall contouring is affected by leakage flow interaction.

The total pressure distribution of all configurations is given in Figure 6.14 and Figure B.12. In

MP12 the total pressure level of TEWC is the lowest close to the casing followed by TEWC-V and

BASE. In the interstage TEWC-V has a lower pressure level than the other configurations between

40% and 90% span. A shift of the casing sided eddy can be recognized for TEWC and TEWC-

V. Between 0 and 30% span it is remarkable that the BASE configuration shows a nearly constant

increase in Figure B.12 for OP2 to OP4, while both contoured configurations have a peak at 20%

span and a decreasing pressure level towards the channel centre.
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centre area between 20% and 80% span. Here, all configurations show nearly the same entropy

level, however, TEWC has the highest value of all set ups in both measurement planes.

6.2 Labyrinth seal vs. brush seal

To isolate the impact of leakage flow interaction, the measured data of each airfoil type is compared

separately with both sealing configurations LS and BS. Please note that the markers for the BS con-

figuration have been left out for the circumferentially averaged data plots for purpose of illustration.

Furthermore only the plots of the BASE configuration are shown in this section. The complete set of

figures for all airfoil types and all OP is given in Figure B.17 to Figure B.34.

An analysis of the yaw angle in MP12 (see Figure 6.19 and Figure B.17) shows that the BS con-

figurations turn the trend to negative angles close to the casing. As one can see in the contour plot,

this is mainly caused by the droplet shaped area between 90% and 100% span. This effect can also

be observed for TEWC-V (Figure B.18) and TEWC (Figure B.19) thus it is not rather caused by the

endwall contouring than by the re-entering of the leakage flow.

This effect is also visible in Figure 6.20 (respective in Figure B.20) that shows the contour plots

and circumferentially averaged flow fields in MP22. In contrary the incidence changes on a certain

radial position across the whole pitch and it does not show the droplet shape as it was discussed in

MP12. The same trends can be seen for TEWC-V in Figure B.21 and for TEWC in Figure B.22. All

airfoil types have in common, that the amount of change in incidence decreases from OP1 to OP4

close to the casing.

Figure 6.21 summarizes the global changes in incidence caused by the different sealing set ups for

all measurement planes. It can be seen that the incidence is shifted by ≈-5◦ for all OP due to the

higher leakage flow rate that is present for the LS configurations. This trend can also be observed

in both measurement planes for TEWC-V in Figure B.24, however, the deviation is reduced down to

≈-2◦. That is also the case in MP22 for TEWC, shown in Figure B.25 whereas alsmost no change

occurs in MP12.

This finding is remarkable as one has to consider that main mass flow of TEWC almost does not

change, and that the change was the highest for BASE with about 90g/s (see Figure 5.11). TEWC-V

lies in between, thus the change in incidence appears to be related to the change in main mass flow.

This statement further leads to the assumption that the previously discussed impact of the endwall

contouring could also just be related to the changes in main mass flow that is ≈100g/s higher for

TEWC-V and ≈200g/s for TEWC in BS configuration (compare Figure 5.5). By looking at the mean

averaged yaw angles for all configurations and BS in Figure 6.4, again, it turns out that all configura-
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continues thus for TEWC (see Figure B.34) because the overall level of BS is below LS as it would

be expected regarding the efficiency discussion in Figure 5.12. Here, an improvement close to the

casing can also be found.

6.3 Summary

The findings of this chapter showed that endwall contouring is sensitive to leakage flow interaction.

By taking into consideration that leakages are hard to avoid in commercial turbo machinery, altering

the position of endwall contouring within the flow channel could be an appropriate response. By this

means the beneficial tendencies, which were accounted for in stage 2, could be kept and the negative

impact of a re-entering leakage flow could be avoided. Additionally, the manufacturing costs could be

reduced by about 50% as only the casing side has to be modified at the rotor and the hub for the stator,

respectively. Nevertheless, the leakage flow of a turbine has to be properly known in advance of the

decision to perform a retrofit with TEWC. However, this is mainly required if optimized compound

lean airfoils are applied.

The results of Schwab [125] and Zimmermann [161], [163] have shown that TEWC is beneficial

in combination with constant section airfoils for both sealing designs and repective higher ratios of

leakage flow.
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7 Conclusion

The focus of this thesis lies in the investigation of how tangential endwall contouring is a proper

method to increase the efficiency of turbomachines with advanced compound lean blading (3D). The

speciality of the investigated contouring lies in the requirement to be applied along with a retrofit

measure of an existing turbine. Therefore, it is designed to be milled into the casing or rotor sided

material.

The motivation is based on the thesis of Schwab [125] who focussed on a constant section blading

and a test set up that uses labyrinth sealing within the cavities at shroud and hub. Two configu-

rations have been investigated in baseline (2D BASE LS) and in endwall contoured configuration

(2D TEWC LS). Schwab stated an increased efficiency of up to 0.55% for the design point.

To allow the measurement of even smaller deviations that were expected for a 3D airfoil design,

the same 2-stage axial turbine test rig has been upgraded with a newly developed probe adjusting

device and improved measurement technology. Also the measurement procedure has been changed

to ensure redundant results and systematic errors are avoided. A study of the measurement grid has

been conducted to ensure a proper measurement of all occuring phenomena. By these means, the

measurement resolution has been improved by 400% while the measurement time has been reduced

down to 25% of the previous set up. The results of this study have been published by Zimmermann

et al. [162]

Furthermore, a second sealing design at the casing side has been utilized that contains a brush seal

instead of a centred labyrinth seal fin. The resulting leakage mass flow could be reduced by the factor

of eight down to 0.12% of the corresponding leakage flow in each operating point. This measure was

motivated to separate the influence of the endwall contouring and leakage flow interaction. Zimmer-

mann et al. [161] have shown for two operating points of the 2D TEWC design that the leakage flow

interaction has an significant impact on the performance.

Following, 2D and 3D airfoils were investigated with improved measurement methodology in base-

line and endwall contoured design and the minimized leakage flow of the brush seal configuration

(2D BASE BS, 2D TEWC BS, 3D BASE BS, 3D TEWC BS). On the one hand, the results by Schwab

were confirmed for the 2D airfoils, on the other hand it was shown that for 3D airfoils the trends were

equivalent to the 2D configuration. The first stage efficiency suffered due to the application of TEWC,

however, the second stage showed beneficial tendencies. This study was presented by Zimmermann

et al. [163] and served to compare both airfoil types as the present thesis focusses on 3D airfoils ex-

clusively
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Therefore, the previous investigations have been extended for the present thesis to understand how

endwall contouring is affecting the flow and to also determine the impact of leakage flow on the

performance of the contouring. A configuration with an exclusive vane contouring is investigated ad-

ditionally to see, whether rotor or vane or both have to be contoured in order to improve the turbine’s

efficiency. For this purpose the discussion of the results is split into three parts:

At first, only the brush seal configurations are compared. The results show that TEWC-V performs

best in stage 1 while TEWC loses in efficiency for the design point and in part load compared to

BASE. This trend is flipped in stage 2 as TEWC performs best and TEWC-V loses significantly down

to 2%.

The second focus is put on the interaction of endwall contouring and leakage flow. Here, all

labyrinth seal configurations are compared and it turned out that neither TEWC-V nor TEWC showed

an increased efficiency at any operating point. The trends within the first stage are similar to the brush

seal results. In the second stage both contouring designs perform worse than BASE leading to the

assumption, that the change in efficiency is mainly caused by the re-entering leakage mass flow up-

stream and not by the flow that is sucked into the cavities in front of the rotor contouring.

Thirdly, each airfoil type is investigated in isolation regarding it’s performance corresponding to

the leakage flow. It is shown that in stage 1, all labyrinth seal configurations loose in efficiency by

the same amount, due to less flow that participates the energy conversion. For stage two, the BASE

design shows no difference by comparing the labyrinth with the brush seal configuration TEWC-V

LS performs slightly better in OP1 and OP2, while OP3 and OP4 don’t show a change. Despite these

findings TEWC-LS is worse than TEWC-BS.

All discussed phenomena lead to the assumption that the present design methodology of endwall

contouring has the potential to increase the efficiency of a compound lean blading that already shows

a good aerodynamic performance. However, the leakage to main flow ratio of a turbine has to be

evaluated in advance to decide whether a retrofit measure is applied as the performance is decreased

for ratios ≥0.1.

Furthermore, future investigations have to clarify if the beneficial impact of TEWC-BS within the

second stage is repeated in following stages. Also a study of the performance behaviour for leakage

flow ratios between 0.01 (BS) and 0.1 (LS) would be useful to quantify the exact amount of leakage

that is allowed to achieve a benefit due to a retrofit of an engine by means of TEWC. It also has to be

studied, whether the contouring design itself can be improved and if a selective contouring on rotor

shroud and stator hub for example reduces the losses that are caused by the leakage flow interaction.
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A Probe calibration

Calibration is a process that is used to determine the deviation of the measured data to the exact value.

The temperature and pressure probes that have been used for the present investigations have been pre-

viously calibrated in the open jet wind tunnel of the Institute of Jet Propulsion and Turbomachinery,

RWTH Aachen University.

Before calibration, the probes are adjusted in the centre of the outflow nozzle facing the flow per-

pendicularly. The calibration is performed within an angle range of ±20◦ in yaw and pitch direction

in steps of 4◦ for several Ma-numbers (0.1, 0.15 and 0.2) that have been chosen according to the

occuring flow within the turbine.

A.1 Pressure probe calibration

The pressure probe calibration is explained exemplary for the 5HP as the methodology is the same

for the 3HP.

As one can see in Figure A.1 the pressure at each bore within the probe head is measured separately

(p0, .., p4). After the probes have been installed perpendicular to the nozzle, the pressure differences

of bore 1 and 3 are compared and the probe is rotated slightly to realize an aerodynamic zero position

of the yaw angle α. The resulting deviation has to be considered for the post processing as it results

from the manufacturing process. The same procedure is performed for the pitch angle γ (bore 2 and

4) in advance to the calibration process.

The pressures p0, ..., p4 are a function of the total state of the flow, α, γ and the Ma-number. There-

fore, the measured pressures clearly depend on α, γ and Ma thus dimensionless factors can be derived

to formulate their mathematical relation:

Kα =
p3 − p1
∆p

, Kγ =
p4 − p2
∆p

, KMach =
∆p

p0
, KStat =

pStat − p

∆p
, KTot =

pTot − p0
∆p

with

∆p = p0 −
p1 + p3

2

These so called K-factors separate the influence to only one of the given parameters and therefore

allow to recalculate the required flow condition by awareness of all K-factors. To correct the geometry

of the probe head, the method by Vinnemeier et al. [146] is applied during the post processing. For

the present test rig, the software implementation of the mathematical approach has been published by

Schwab [125] and is therefore not further elaborated.
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Figure A.1: 5-hole probe with semi-sphere shaped head according to Bohn et al. [14])

A.2 Temperature probe calibration

According to Burns et al. [19] the TP have been calibrated in an oil bath in advance to the wind

tunnel calibration. Furthermore, the wind tunnel calibration has been performed using the same MAS,

connector cables and cold junction compensation as it is used for the measurement within the turbine.

This calibration is performed to determine the recovery factor RF of each single probe [11]. For

this purpose, the probe temperature (TProbe) is recorded for each angle position and Ma-number by

simultaneously measuring the total temperature (TTot) within the upstream located equalising tank.

By this means, the RF is calculated using Equation A.1

RF =

TProbe

TTot

·
(
1 + κ−1

2
·Ma2

)
− 1

κ−1
2

·Ma2
(A.1)

During the tests, the total temperature as well as the static temperature can be determined via

multiple parameter approximation and in combination with the pressure probe data that serves to

determine the flow angle as well as the Ma number [14].
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B Detail analysis of the flow field
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