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Abstract

This work aims to contribute to the progress and understanding of the sources of
disorder in nano-structured graphene devices. The first part of the thesis starts with
the introduction of disordered two-terminal graphene nanoribbons of different aspect
ratio, in order to unveil and characterize the amount of potential fluctuations on sili-
con dioxide (Si0O2) substrates. The experimental results reveal the diffusive nature of
the transport behavior and a Coulomb blockade dominated transport regime close to
the charge neutrality point. Besides its disordered nature, results appoint very short
graphene constrictions, with levels of conductance close to ~0.1¢2/h, as prime candi-
dates for exploring Fano resonances in graphene nano-structures.

In an attempt to reduce the contributions of the potential fluctuations to transport,
we initially identify the different sources of disorder, with bulk and edges arising as the
major contributors in nano-structured devices. The strong influence from the bulk is
characterized via the tunneling processes through magnetically confined quantum dots
arising from the aforementioned bulk disorder.

First evidences of an edge induced disorder are treated in the following section, where
we investigate the crystal structure of the nanoribbon’s edges by means of Raman spec-
troscopy experiments. Results on lithography-free graphene nanoribbons, shaped by the
exfoliation process itself, are compared to traditional plasma etched graphene ribbons.
In these pristine ribbons, the correlation length &, figure of merit to characterize the
edges, is one order of magnitude higher than on plasma etched structures. Results high-
light the strong edge-induced disorder present in traditionally plasma-etched graphene
devices.

With the edge-induced disorder identified via Raman spectroscopy measurements,
we implement in the next section an electrostatic approach to reduce its effects. Short
and relatively narrow graphene constrictions are side-gated by graphene gate electrodes.
We demonstrate the reduction in disorder by transport and bias spectroscopy measure-
ments. Results are further supported by the formation of a quasi-1D channel upon
application of a lateral electrostatic potential. The 1D-like nature of the electronic path



is justified by its Fano-like interference with a 0D-like charged puddle located at the
interface with the leads. Results represent the very first reported indications of Fano
interference phenomena in graphene.

To reduce bulk disorder, we implement a dry transfer technique for the fabrication of
encapsulated graphene devices in between a top- and a bottom-layer of hexagonal boron
nitride (hBN). Mobility values approaching 200 000 em?/(V s) confirm the high quality
achieved with our fabrication technique. The residual disorder is characterized via the
temperature dependence of the symmetry broken states in the quantum Hall regime, in
a hBN /graphene/hBN Hall bar device. The values of localization length found in the
variable-range-hopping (VRH) regime exceed 1um, one order of magnitude higher than
the reported values for graphene on SiOy substrates.

In the second part of the thesis, we demonstrate ballistic transport and quantized con-
ductance of size-confined Dirac fermions in lithographically-defined graphene quantum
point contacts (QPCs). Close to the charge neutrality point, bias voltage spectroscopy
measurements reveal a renormalized Fermi velocity (vpa21.5x 10 m/s) in our graphene
constrictions. Moreover, at low carrier densities, transport measurements allow probing
the density of localized states at the edges, thus offering a unique handle on edge physics
in graphene devices.

Direct comparison between successive cool-downs of a same QPC device reveal the
lifting of the four-fold degenerate subbands. Results are supported by bias voltage and
magnetic field dependent measurements. The amount of dopands/contaminants col-
lected by the edges during the successive cool-downs is appointed as the source of this
degeneracy breaking process. Quantum Hall measurements are used to spatially resolve
the change in capacitance profile, supporting this change in dopands/contaminants at
the edges.
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Zusammenfassung

Zielsetzung ist es, einen Beitrag zum Fortschritt und dem Verstdndnis des unklaren
Ursprungs von Un-ordnung in nanostrukturierten Graphen Proben zu leisten. Der erste
Teil der Arbeit beginnt mit der Untersuchung von Transporteigenschaften durch Unord-
nung dominierten Graphen Nanoribbons mit zwei Kontakten und verschiedenen Aspekt-
verhéltnissen, um den Einfluss der vom Siliziumdioxid SiOo Substrat induzierten Po-
tentialfluktuationen zu charakterisieren. Die Messdaten zeigen, dass die Proben durch
diffusiven Ladungstrigertransport charakterisiert sind und bei niedrigen Energien sta-
tistische Coulomb-Blockade aufweisen.Trotz des diffusiven Charakters, zeigen die kurzen
Graphen Nanoribbons seine Leitfahigkeit von ungefihr ~0.1¢2/h, und sind daher ein
vielversprechender Kandidat um Fano-Resonanzen zu studieren.

Um den Einfluss der Potentialvariationen in den Graphen Nanostrukturen zu re-
duzieren werden zunédchst Ursachen und Auswirkungen von die Potentialfluktuationen
die sowohl von Randeffekten als auch vom inneren der Probe herriihren identifiziert.
Die Prisenz von angeregten Zusténden in den Bias-Spektroskopiemessungen und die
Analyse ihrer Energien zeigt, dass Elektron-Phonon Wechselwirkung eine wichtige Rolle
fiir das Energiespektrum von quasi nulldimensionalen Graphenstrukturen auf Silizium-
dioxid spielen kénnten.

Erste Anzeichen von Randeffekten werden im n#chsten Kapitel behandelt, wo die
Kristallstruktur der Rdnder der Nanoribbons mit Raman-Spektroskopie untersucht wird.
Die Ergebnisse von "Lithographie-frei" hergestellten Graphen Nanoribbons, die durch
einen neu entwickelten Fabrikationsprozess bei der Exfolierung hergestellt wurden, zeigen
eine hohe Korrelationslinge ¢ im Vergleich mit durch Plasmaprozesse gedtzte Nano-
ribbons. Die Ergebnisse bestéatigen ein hoheres Mass an Unordnung in den Réndern der
durch Plasmadtzen hergestellten Graphen Strukturen.

Im néchsten Kapitel wird eine elektrostatische Methode entwickelt um die Effekte
von ungeordnete Réandern zu reduzieren. Wir bauen kurze und schmale Graphen Nano-
ribbons mit seitlich angeordneten Graphen Elektroden. Eine Reduktion der in den
Transportdaten sichtbaren Unordnung wird insbesondere durch Bias Spektroskopie Mes-
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sungen gezeigt.

Weiterhin zeige ich die Entstehung von quasi-eindimensionalen Kandlen bei sym-
metrisch angelegten Potentialen an den seitlich angeordneten Elektroden. Der ein-
dimensionale Charakter des Landungstransportes wird durch Fano-Interferenzen zwi-
schen dem 1D-Kanal mit Punktartigen Ladungswolken an den Kontaktbereichen gezeigt.
Diese Ergebnisse stellen die erstmalige Beobachtung von Fano-Interferenzen in Graphen
dar.

Um die Unordnung in den Proben weiter zu reduzieren wird eine trockene Trans-
fermethode genutz um Graphen geschiitzt von zwei Lagen hexagonalem Bornitrid her-
zustellen. Die Ladungstrigermobilitiiten erreichen Werte von bis zu 200.000 cm?/(V's)
in diesen Proben und unterstreichen die hohe Probenqualitdt die bei dieser Herstellungs-
methode erreicht wird. Die verbleibende Unordnung wird durch die Temperaturab-
héngigkeit von symmetriegebrochenen Quanten Hall Zustinden in einem Hallbarren
untersucht. Eine Lokalisierungsldnge von iiber 1 um wurde im variable-range-hopping
(VRH) Regime bestimmt. Dieser Wert ist mehr als eine Grossenordung grosser als fiir
ghnliche Proben auf Siliziumdioxid.

Im zweiten Teil der Dissertation zeige ich ballistischen Transport und quantisierte
Leitfahigkeit von eingeengten Dirac-Fermionen in durch Lithographie hergestellten Quan-
tenpunktkontakten (QPC). Nahe am Ladungsneutralitdtspunkt zeigen Bias Spektros-
kopie Messungen eine Fermigeschwindigkeit von vp~1.5x 10%m/s in unseren Graphen
QPCs. Bei niedrigen Ladungstrigerdichten kann die Zustandsdichte direkt durch trans-
portmessungen untersucht werden, was einen direkten Zugang zu lokalisierten Rand-
zusténden ermoglicht. Der direkte Vergleich zwischen den Daten der selben Probe,
die mehrfach abgekiihlt und vermessen wurde zeigt zweifelsfrei eine Brechung der vier-
fach entarteten Subbénder. Die Ergebnisse werden durch Bias Spektroskopie Messun-
gen und Magnetfeldabhéingige Messungen untermauert. Die bei verschiedenen Abkiihl-
vorgéngen angehduften Kontaminationen an den Réndern werden als Ursache fiir die
Symmetriebrechung angenommen. Dies wird mit Messungen zum Quanten Hall Effekt
weiter untersucht, indem ein verdnderliches Dotierprofil und eine Kapazitdtsdnderung
am Rand analysiert wird.
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Introduction

1.1 The slowing of Moore’s law

Communication has been an important cornerstone of civilization. The way we interact
with the environment and with each other has evolved over the last centuries. Owing
to the rapid development of the information technology (IT) many of the fundamental
aspects of our society, e.g. family, personal and professional relationships, entertain-
ment etc., have adapted to the new technological trends (cloud computing, portable
electronics, internet, etc...). To make it possible, tremendous efforts have been under-
taken in the development of faster, smaller and cheaper electronics. The market of
consumer electronics is nowadays so eager to the latest developments and technology
breakthroughs that its revenue is expected to reach 9.2 billion U.S. dollars by 2019 just
in the USA (forecast issued from [1]).

Although the huge electronics market has been mainly motivated by the cadence
in which technological innovations have progressed, we are recently facing a noticeable
slowdown in technology’s pace. Instead of doubling the amount of transistors on a given
area every 24 months, known as Moore’s law (estimated in 1965 by Gordon E. Moore [2]),
the rhythm has dropped to roughly 30 months, approximately a 25% increase, by the
end of 2015 and beginning of 2016 [3]. All these changes are even confirmed by Intel,
the biggest player in chip-making technology, in its latest road-map [4]. Technology
industry is therefore facing the first retraction in its amazing 50-year run.

The slowdown though does not come as a surprise, given the challenges of manu-
facturing transistors and circuits at an increasingly tiny scale. Actually, the scaling
down progress has to be attributed to manufacturing technology rather than the host
material itself: silicon (Si). However, with transistors’ latest chips already as small as
14 nanometers, it is becoming very hard to produce them cost effectively. Technology
must then look for different routes to keep increasing raw computing power. Substi-
tute materials with increased electron mobilities allowing for higher clock rate, i.e. the
number of operations per second, or fundamentally new technologies like spintronics or
tunneling transistors are right now investigated. Intel’s chief of manufacturing himself
said in February 2016 that the company needs to swap over from Si-based transistors



in about four years: "‘The new technology will be fundamentally different"’ [5].

Understandably, the urge for suitable next generation materials has had an influence
in most levels of science and fundamental research. During the last two decades, we
have seen an explosion in solid state physics and material research with the development
of new layered materials, like graphene, Molybdenum disulfide (MoS3) [6] and other
two-dimensional transition metal dichalcogenides [7]. Moreover, conceptually different
trends in computation have also been explored, like spintronics [8, 9] or majorama
fermions-based electronics [10, 11].

1.2 Graphene as a host material for electronics

Back in 2004, K. Novoselov and A. Geim were aiming to study the electronic properties
of layered graphite when they first encountered graphene [12]. The discovery came as a
big surprise since the single layer configuration of graphite, i.e. graphene, was believed
to be thermodynamically unstable [13, 14] and thus non-feasible experimentally. This
one atom-thick allotrope of carbon was quickly identified as a substitute for Silicon.
Indeed, publication volumes have been growing at exponential rates since then [15],
encouraged by the outstanding electronic and mechanical properties that theoretical
studies predicted [16]. Particularly appealing was the high electron mobility envisaged
for graphene, with values over 10° cm?(Vs)~! at room temperature [17]. This has been
one of the main reasons graphene has been considered as a suitable material for the
post-silicon revolution even at his earlier stages [18].

As usually for scientific advances, the improvements in graphene-related fabrication
techniques and the experimental findings have been following behind the pace of the
theoretical predictions. In fact, the first observation of graphene came way after the first
calculations of graphene’s band structure 19|, which at that time was rather considered
a calculation exercise.

Aside from its fundamental interest, the first experimental graphene-based devices
were far behind the expectations in carrier mobility [20, 21]. Graphene was initially
developed on Silicon dioxide (Si02) chips, a substrate later on identified to induce fair
amounts of disorder in graphene [22, 23]. Although suspending the graphene above the
substrate brought significant improvements in device quality [23, 24] this fabrication
method has some fundamental limitations. The back-gate sweeping rate and maximum
voltage loads are heavily compromised, structures are prone to bend under temperature
and electrostatic loads and the suspended devices tend to be extremely fragile and non-
reproducible [25]. Furthermore, within this fabrication method, the graphene structures
remain unprotected from the processing or ambient contaminants.

The first quality breakthrough in graphene’s short history came with the emergence
of hexagonal boron nitride (hBN) as a suitable substrate [26]. Hexagonal boron nitride
has an atomically smooth surface and it is relatively free of charge traps and dangling
bonds compared to SiOs. Moreover, hBN has a small lattice mismatch of around
1.7% with graphene [27]. The properties of this insulating 2D system [28] triggered the



theoretical investigation of 2D hBN-graphene heterostructures [27], even before having
been realized experimentally [26].

The second and latest breakthrough in graphene technology came with the full encap-
sulation of graphene between a top and a bottom layer of hBN [29]. The resulting stack
showed once again an outstanding jump in quality [30] compared to graphene on hBN
substrate [26]. The extracted mobility values even surpass the theoretical prediction
for mobility of 10° cm?(Vs)™! at room temperature [17]. These findings revealed how
sensitive graphene is to ambient impurities and processing contaminations.

Aside from the advances in fabrication, finding ways to implement graphene in semi-
conducting technology has been a major concern in graphene research. For graphene to
become a viable channel material for transistor applications, it is mandatory to open
an energy gap. A valid approach is to brake the A-B sublattice symmetry to obtain an
energy gap, owing to the same reasons hexagonal boron nitride is an insulating material
of about 7eV [28]. Another possibility is to confine the wave-like charge carriers across a
size constrained path, also known as grahene nanoribbons or constrictions. This second
method relies on the amount of discreet states across the constrictions to control the
conductance flowing along. Although the opening of a transport gap also depends on
the specific crystallographic orientation at the edges (see Section 2.3) this is the route
considered throughout the thesis.

The first section reviews the fundamentals of bulk graphene (see Section 2.1) and the
theoretical description of graphene nanoribbons (Section 2.3). We follow by introducing
the three main fabrication methods available nowadays for the fabrication of graphene
devices, e.g. graphene on SiOy substrates (Section 3.1), on hBN flakes (Section 3.2)
and encapsulated in between a top- and bottom-layer of hBN (Section 3.3). The thesis
follows the same chronological timing as graphene research, starting with the analysis
of graphene on Si0; substrates (Section 4.1) to end up with devices based on hBN-
graphene-hBN stacks (Section 5.1 and Section 6.1). Throughout the sections, we identify
the main sources of disorder, e.g. bulk (Section 4.2.1) and edge (Section 4.3) disorder.

Phase coherent transport measurements have been used to characterize disorder in
metals and semiconductors [31-34]. Within this Thesis, we keep on this tradition with
the detailed study of coherent localization (Section 4.2.1) and coherent conductance
fluctuations (Section 4.4.2). These studies reveal important information on the nature
of disorder and allow us to propose an electrostatic mechanism (Section 4.4) and a
newly developed fabrication method (Section 4.3.1) to control and reduce the sources
of disorder in graphene nanostructures.

Thesis ends up with the experimental observation, for the very first time, of robust
and reproduceable quantized conductance in hBN-graphene-hBN quantum point con-
tacts (Section 6.1). Special mention receives Section 6.3 in which we underline how
disorder/scattering couples to the special symmetries of electrons in graphene, i.e. the
‘valley’” degree of freedom (also known as pseudospin). Section 7.2 gives an outlook on
prospects for future research along these lines.
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Theory of graphene

2.1 Description of graphene

This section serves as an introduction to the electronic transport properties of graphene.
All analytical expressions are presented such that a neophyte of graphene can follow
through the development of the analysis. The purpose of every development is moti-
vated by an brief introduction and we comment the experimental implications of the
end-results. It is important to note that none of the expressions here presented has
been developed by the author, being this section a basic review on the many theoretical
efforts on the topic [1-13]. We plot the relevant mathematical expressions in Matlab
for an self-explanatory visualization of the phenomenon under discussion.

To understand to basic principles of graphene it is useful to review the bonding
structure of its carbon atoms. A single carbon atom is formed by six electrons configured
as 15225%2p? in its ground state. Hence, two electrons occupy the inner shell 1s and four
electrons fill the outer 2s and 2p shells. It is important to mention that the 2p orbitals are
roughly 4 eV higher in energy than its 2s counterpart, making it energetically favorable
to occupy completely the 2s shell (2 electrons) and leave the 2p orbitals (2ps, 2py
and 2p,) filled with the two remaining electrons. However, in the presence of other
atoms, such as Hydrogen H, Oxygen O, or other Carbon C atoms, it is energetically
favorable to excite one electron from the 2s shell up to the 2p orbitals in order to form
covalent bonds with the neighboring atoms. The four equivalent quantum mechanical
states |2s), |2pz), |2py) and [2p.) from the excited state, can therefore hybridize. A
sp™ hybridization refers to the quantum-mechanical superposition of the |2s) state with
n |2p;) states. The planar sp? hybridization is common to all graphitic allotropes
(graphite, carbon nanotubes and graphene), although other form of hybridization, e.g
sp' or sp3, are possible in organic chemistry or in a three-dimensional 3D diamond
structure, respectively. The sp? hybridized orbitals [14, 15| are oriented in 120° angles
within the z—y plane (Fig. 2.1a) and are responsible for the so called o-bonds between
carbon atoms. The remaining unhybridized 2p, orbitals (7-bonds) point perpendicular
to the z—y plane and allow the m-electron to stand delocalized over the whole crystal
lattice.



b @ Asublattice @ : B sublattice

Figure 2.1: Crystallographic description of graphene. a, Schematic representa-
tion of the sp? hybridized orbitals. b, Honeycomb lattice structure with the
vectors 1, 02 and d3 connecting the nearest-neighbor (NN) carbon atoms,
separated by a distance a=1.42 A. Vectors a; and az are the basis vectors
of a triangular Bravais sublattice (sublattice B in that case) in real space. ¢,
Spatial representation of the first Brillouin zone (BZ) (shaded gray region)
in reciprocal space (kz,ky). The reciprocal lattice vectors a1, a2 and the
nonequivalent symmetry points I', M, M’, M"”, K and K’ are also shown.
d, Graphene’s energy dispersion obtained within the tight-binding approxi-
mation. The valence band (7-band) touches the conduction band (7*-band)
at the Fermi level (gray shaded plane).

In graphene, two adjacent carbon sites are not equivalent from a crystallographic
point of view. Indeed, the nearest-neighbors (NNs) of an A-sublattice site (blue circles
in Fig. 2.1b) are found in different directions, defined by the d1, d2 and &3 vectors,
as the NNs of a B-sublattice site (yellow circles in Fig. 2.1b). The three NNs vectors
defined in real space basis (x,y) are given by:

51 = g(ﬁ, 1), da= g(—\f?), 1) and 83 = —a(0,1), (2.1)

where a = 0.142nm is the Carbon-to-Carbon bond-length, also noted ac_¢, and a4
and ag the basis vectors in real space of one sublattice (refer to Fig. 2.1b). Thus, the
honeycomb structure does not classify as a Bravais lattice but rather a combination of
two triangular Bravais lattices (sublattice A and B in Fig. 2.1b). Although one may



consider the graphene lattice as a triangular Bravais lattice with a 2-atoms (A and B)
unit cell (yellow shaded rhombus in Fig. 2.1b), it is convenient to describe it as a com-
bination of two triangular sublattices in order to intuitively understand the concept of
A-B sublattice symmetry, inversion symmetry, pseudospin and chirality.

As shown in Fig. 2.1b, the triangular Bravais lattice can be defined as a linear com-
bination of:

a1 = V3ad and az = fa (& 4+ V39). (2.2)

Both basis vectors a; and ag have the same length la1| = |az| = V3a=024nm. In
reciprocal space (Fig. 2.1c), the resulting lattice is defined by the basis vectors:

2 ~ k; 41 -
a1 = — (kg — 2 and  as = — k. 2.3
1 \/ga( \/g) 2 3a Yy ( )

The first Brillouin zone (BZ) is the gray shaded hexagonal region in Fig. 2.1c¢ and the
I-point, placed at the center of the first BZ, represents the location of the long wave-
length excitations. Sitting at the corners of the BZ, we find the two inequivalent K and
K’ points, expressed in reciprocal space (kg, ky) as
47 4
K=——(1,0 and K'=-K=-——-(1,0). 24
375 (10) s (L0 (24
The four remaining corners are equivalent to these K and K’ points, i.e. they can
be defined by translational symmetry of the reciprocal basis vectors. The K and K’
points play an important role defining the electronic properties of graphene, since the
low-energy excitations probed in transport measurements are centered around them.
For completeness, we also show the three inequivalent M, M’ and M points sitting
at the middle of the BZ’s edges (Fig. 2.1c).

Electronic band structure

As mentioned previously, the hybridization of the 2s and 2p orbitals into molecular
sp? orbitals form strong covalent o-bonds between NNs carbon atoms. On the other
hand, the so-called m-bonds are weakly bounded to the neighboring carbon atoms and
are thus responsible for the electronic properties at low energies [7]. This section aims
to describe these m- and 7w*-energy bands within a tight-binding approximation. The
dispersion relation of graphene has been originally calculated by R. Wallace [4], we will
review in this section most of his major findings.

According to the Bloch wave ansatz, we may write a wave-function for the charge
carriers in the graphene lattice as follows:

Ur(r) = ag Y (r) + b i (r) (2.5)

where ay, and by, are complex functions of momentum k and [16]:

Wi (r \ﬁ Zelk B o(r- R}, (2.6)



where i = A, B depending on the sublattice, N is the number of unit cells considered,
k is the wave-vector in reciprocal space and ®(r) are the wave functions of the 2p,
orbitals of the carbon atoms. R; = nay +masz specifies the position of the 4t unit cell
with coordinates j = (n,m) in the real space basis (x,y) and Ré» the position of the j**
i=A, B carbon atoms. For simplicity, we center the unit cell at the location of an A
atom (see Fig. 2.1):

R}!=R; and RJ=R;+3ds (2.7)

The wave-function is then expressed as:
1 &,
Ur(r) = —= > ¢* i [0, ®(r — R;) + b®(r — R; — 83)]. (2.8)
VN &

It is important to note that the complex functions a; and by denote the amplitude of the

1 wave-function of the m-orbital on the lattice sites A and B, respectively (illustrated

by the blue and yellow spheres in Fig. 2.1b). Assuming no orbital overlap between
adjacent m-states, the eingenvalue problem in the sublattice subspace reads:

€ tf*(k)\ (a a >

- k) _ k : _ ik-d;

<_tf(k) . > (bk> =F (bk) with  f(k) = ;e i (2.9)

J

where just the NNs contributions have been considered and the NN hopping amplitude
(hopping between different sublattices) can be defined as [10]:

L= /d2r B*(r) AV O(r + 5s). (2.10)

The "perturbative" term AV considers all the potential contributions other than the
atomic orbitals. The on-site energies € (diagonal terms of the Hamiltonian) are, as
expected, equal €4 = ep =€, since the atoms forming the unit cell are two equivalent
carbon atoms. In the reduced sublattice subspace, hopping is just possible from A to
B sites or vice-versa (off-diagonal terms in the Hamiltonian from Eq. 2.9). The system
has therefore a sublattice symmetry, i.e. chiral symmetry, which allows to calculate
the energy spectrum as follows €4 (k) = € £ |f(k)|, where the + sign represents the
positive/negative energy band, i.e. the 7- or 7*-band. The function f(k) = e*91 +
ek02 | k93 i5 5 complex function collecting the sum of the phase factors, where dy,
02 and 03 are the vector position of the three NNs carbon atoms B, relative to an A
atom (Fig. 2.1b). Using the (x,y) coordinates defined in Fig. 2.1b, the solution to the
Eingenvalue problem leads to the following dispersion relation:

er(k) = it\/l + 4003(\/§2kya) cos(@) + 4 cos?(kya/2), (2.11)

2

where, again, the & sign defines the bonding and anti-bonding 7 energy bands. The
on-site energies (diagonal terms of the Hamiltonian) are set to zero e=0 and the trans-
fer /hopping integral is valued t=—3.033 eV in order to represent this dispersion relation
throughout the first Brillouin zone (Fig. 2.1d). As can be observed, the two 7- and 7*-
bands are degenerate at the K-points, confirming graphene as a zero-gap material. It
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is important to note that the lack of a band gap requires the two atoms sitting at the
A and B sites to be equivalent. The highest energy separation between valence and
conductance bands happens at the I'-point, with an energy band gap of 6t ~ 18eV.
Similarly, the band gap at the M-points is 2t &~ 6 eV. This is an important value, since
it limits the maximum theoretical band gap that could be achieved by slicing graphene
into one-dimensional (1D) armchair ribbons, i.e. taking a "finite size" route in order to
open a band gap (see Section 2.3).

In this section we uncovered the semi-metallic nature and the peculiar band structure
of graphene. The linear dispersion relation close the low energy K-points is already
visible from the numerical represetation of the energy bands (Fig. 2.1). However, in
order to mathematically demonstrate the linear (k) relation for the the low-energy
excitations, we will need to "expand" the dispersion relation Eq. 2.11 around the K-
points. This approximation method, also known as k.p perturbation theory [9], will be
developed in the next section.

Low-energy electronic structure

It is general to semiconductors that, the low-energy excitations are the ones probed
by transport measurements. The relevant part of the band-structure is therefore close
to Fermi energy. The so-called k.p perturbation theory [9] allows us to conveniently
calculate the eigenvalues problem in such a low energy range and thus extract an ap-
proximate but meaningful (k) dispersion relation. More importantly, this "expansion
around K" method yields a linear mathematical expression of the k vs. € relation.

In the following part, we will restrict the analysis to the quantum states in the vicinity
of the K-points (seeEq. 2.4). Thereafter, we decompose the wave-vector in momentum
space as k = £K + g, where g can be understood as a perturbative contribution to
K [4]. Under this approximation, ¢ < K ~ 1/a, i.e. ga < 1. For the Taylor series
expansion of f(k), we will consider an approximation of f(k) up the second order term,
in other words e* ~ 1 + x/1! + 22/2!. The resulting function reads:

3
F(@)* = f(B)|h=srq =) e 0%
j=1

PN 1
~ e |14 ig -0y —5(‘1'51)2

ol 1 . (2.12)
+eF23 1 +iq- by — e 82)°

1
+ 1+iq'53—§(q'53)2

— 1905, + F@)E, + F@)F,

where f(q)?a), f(q)?tl) and f(q)?;) are the zero, first and second order expansion terms.
From the position of the K-points in reciprocal space we have f(q)?g) = f(£K)* =0.
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The first order term will contribute as:
.4 127 2 .
f(q)(il)zlg (\/§Qx+(1y)eiQ /3—(\/§q$—qy)e$2 /3] —iqya

3a

= :FE(QJJ + iQy>-

To a first order approximation, we will neglect the second-order term of the Taylor
expansion since the first term is already sufficient to obtain a linear expression for the
dispersion relation. The effective subspace Hamiltonian up to the first-order term is
now centered at the K-points and, with the calculated off-diagonal terms f(q)%, leads
to:

(2.13)

3at 0 qr — 1q 3at 0 —qz — 1q
h = — . YY), hg(q) = — . Y 2.14
)= (L o) @=L 0 ) e
where the Fingevalues solution is as follows:
3alt
cs(q) =+ g (2.15)

The group velocity is usually defined as v = h~'0e/0k. We can then re-write the
obtained dispersion relation:

,e+(q) = £hur |q|, (2.16)

where vy = 3alt|/2h. After replacing the t and a parameters by [t| = 2.9eV and
a = 1.42 A, we obtain an analytical expression for the Fermi velocity vp ~ 10m/s,
which is roughly 300 times lower than the speed of light ¢ = 3.10%m/s. As observed,
both subspace hamiltonians hx(q) and hgs(q) yield the same eingenvalues. From an
energy point of view the bands at the K- and K’-points are indistinguishable, i.e. de-
generate.

In this section, we mathematically demonstrate the linear dependence of €4 as a
function of momentum |q|. This linear energy dispersion relation in the vicinity of the
K-points plays an important role in defining the electronic properties of graphene.

Density of states

The density of states (DOS) of an electronic system is the number of available states per
energy interval dF, per unit volume (or unit area for 2D materials) [17]. To understand
the derivation of the DOS, we first consider the area of a single state in reciprocal
space (2m)2/A, with A being the area in real space. The number of states dN inside
the gray-shaded ring of radius kr and width dk (Fig. 2.2) can be estimated as dN =
(2rkpA)/(47%)dk. Through the definition of DOS [17] and the linear energy dispersion
of graphene (see Eq. 2.16), we reach the following expression:

1oN _ 2k

I 4 0E ~ wh2

where the gs = 2 and g, = 2 factors account for the spin and valley degeneraties.
The DOS of graphene appears to be linear as a function of energy (Fig. 2.2b), as

apposed to most of the 2DEGs for which the DOS is constant [17]|. This result is directly

observed in transport measurements [18] and it represents one of the characteristic traits
of graphene.

DOS = (2.17)
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\ 4
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k, DOS

Figure 2.2: Density of states and transport characteristics. a, Reciprocal space
representation of the ring of radius kr and width dk that includes dN num-
ber of states. b, Linear density of state characteristic of graphene.

High-energy electronic structure

Although the fundamental principles of graphene have been already exposed within
the first-order approximation (Eq. 2.14), it is useful to review the influence of the next
nearest-neighbor (NNNs) contributions and the second-order terms of the expanded dis-
persion relation (Eq. 2.12). As expected, the higher order corrections of the electronic
bands (Eq. 2.12) will become relevant at higher energies. In fact, in electronic trans-
port measurements, where energies are usually below ~ 0.2 eV, the linear expression of
the dispersion relation (Eq. 2.16) already describes the experimental observations [18]
pretty accurately.

The corrections within this section will include the second order contributions of the
expanded f(k), noted f(q)é) in Eq. 2.12 and the NNNs hopping term ¢'. The spectrum

around the K-points is then defined as [19]:

9t'a?  3ta? .
e+(q) ~ 3t £vp|q| — ( 1 + Sszn(30q)> \q\Q, (2.18)

where 6, = arctan(q;/qy) is the angle between the z- and y-component of the vector
momentum q in reciprocal space. As can be deduced from the analytical expression in
Eq. 2.18, the NNNs term t’ breaks the electron-hole symmetry of the electronic bands
(refer to Fig.3 from [19]). Another important aspect of this energy dispersion relation
happens at higher energies (2 1eV'), where the contribution of f(q)?;) (Eq. 2.13) forms
the so-called trigonal warping effect [1]. This Trigonal warping phenomenon is recog-
nized by an anisotropy in the energy dispersion around the K-points (Fig. 2.3). This
anisotropy stems from the sin(36,) term in Eq. 2.18 and reflects the underlying sym-
metry of the graphene lattice. In Fig. 2.3 can be seen the dispersion relation (panel a)
as well as the contour maps (panel b) in order to visualize this effect.

Up to this section, we accurately described the band structure of graphene and high-
light the differences between the K- and K’-points. Nevertheless, to understand some
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Figure 2.3: Trigonal warping of the electronic spectrum. a, Representation of the
upper m*-band from the dispersion relation in Eq. 2.18. The band touches
the Fermi energy Er = 0 at the K-points. b, Countour plot of the 7*-band
from panel a at energies ¢ = 0.6, 0.8, 1.1 and 1.4eV. The color code is
shared with panel a.

of the peculiar transport characteristics of graphene, e.g. the lack of backscattering, it
is helpful to introduce the Dirac Hamiltonian notation.

Dirac notation

Eventhough the charge carriers in graphene travel at velocities 300 times lower than
the speed of light, their behavior mimics the one of relativistic particles (see Eq. 2.16).
Hence, it appeared natural to adopt the Dirac notation to describe the graphene Hamil-
tonian [20]:

0 £z — iq )
h = hv . V) = hop (qp€os +
¢(q) F (5% iy 0 F (42802 + qyoy) (2.19)
= Ehup (quos + qy€oy),

where o, and oy are the Pauli matrices:

01 0 —i
Oy = (1 O) and o, = (Z 0 > (2.20)

In Eq. 2.19, the effective subspace Hamiltonians at the K and K’-points (Eq. 2.14) are
now described by a single expression he¢(q) (Eq. 2.19) where we introduced the valley
isospin & = + term. The K’- and K-points are now indicated by £ = + and £ = —,
respectively. The subspace eigenfunctions at the K and K’-point are called Spinors
within the Dirac notation and can be described by a single expression [19]:

A —i€0,/2
a/q’£ 1 )\6 q
= — — . 2.21
Vae (qu V2 e (2:21)

14



L.
>

q.

Energy

Figure 2.4: Pseudospin and back-scattering in graphene. The pseudospin states
|1 +])) (bonding-symmetric) and |[1)+|1) (antibonding-antisymmetric) are
represented in orange and green colors. The pseudospin degree of free-
dom protects the carriers from flipping their momentum (back-scattering)
within a Dirac cone. The quasi-particle index A and the valley isospin &
are also shown. The charge carriers wave-vector and the projection of the
pseudo-spin vector on the ¢,-axis are denoted by solid black and red arrows,
respectively.

Here A = =+ is the quasi-particle index and it represents the = and #=* bands, and 0,
is the angle between the wave-vector ¢ and the g,-axis (Fig. 2.4). In other words,
0, = arctan(qy/q.). A very important implication of this eigenfunction expression is its
dependence with the direction of the momentum. For a chosen direction of propagation,
e.g. along the g -axis direction, the wave-function components (a; ¢ ag ¢) depend on
the direction of propagation (6, = 0 or 6, = =, for the forward and backward direc-
tions, respectively). This situation is depicted in Fig. 2.3, where the pseudo-spin vector
(ag{g, agg) can be described by (1,1) or (-1,1), after substituting A, £ and 6, = 0, 7 in
Eq. 2.21. In analogy with the real spin degree of freedom of a relativistic particle, where
the spin-up |1) and spin-down [|) states are noted (1,0) and (0,1), we can understand
the combination (1,1) as a pseudo-spin up |T) + down [|) combination or vice-versa,
and (-1,1) as |1) + [1) or |}) + |{) of the two electrons per unit cells.

These results have strong implications on transport, since the charge carriers cannot
back-scatter (flip their momentum wave-vector ¢) within a Dirac cone (Fig. 2.3). Charge
carriers are therefore not affected by long-range scattering processes, which is the main
reason for having higher electron /hole mobilities compared to bi-layer graphene. Short-
range scatterers though, can result in back-scattering by giving charge carriers enough
momentum to shift from the K to the K’ cone, or vice versa.
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e : Nitride atoms 6 : Boron atoms

Figure 2.5: Crystallographic description of hBIN. a, Stacking structure of a multi-
layer hBN. The boron (B) and nitride (N) atoms are represented by green
and blue circles, respectively. b, The crystal structure of a single layer hBN
is equivalent to the one of graphene, with the B and N atoms sitting at the
A and B sublattices sites (Fig. 2.1b). ¢, Band structure of a single layer
hBN (also called 'gapped graphene’) under a tight-binding approximation.
The energy ¢ is represented as a function of momentum (k,, ky) in the first
Brillouin zone. The energy gap 2A was set to 0.15¢. d, Zoom in of the low
energy massive Dirac cones from panel c.

Hexagonal boron nitride as a suitable substrate for graphene

Hexagonal boron nitride (hBN) is conceptually very similar to graphene. Its multi-
layered crystal structure (Fig. 2.5a) also shows an hexagonal arrangement of its boron
(B) and nitride (N) elements. As shown in Fig. 2.5b for the single layer configuration,
every B and N atom occupy a sublattice site A and B, respectively. For the 3D allotrope
(Fig. 2.5a), every element of a hBN layer sits perfectly on top/bottom of the element
of the upper/lower layer. The B and N atoms are located such that every B atom sits
on top of a N element, and vice-versa (Fig. 2.5a). The bond length between two NNs
elements is aj, gy = 1.44A [21, 22|, this value is only 1.7 % larger than the carbon spacing
ac—c in graphene.

To calculate the band structure of hBN we can start from the tight-binding graphene
Hamiltonian of Eq. 2.9. We should take into account that the unit cell is now defined by
a boron and a nitride atom instead of two identical carbon atoms. The on-site energies
are therefore not equal €4 # ep # 0 [11]. The diagonal ep and 4 terms are thus added
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to the Hamiltonian Eq. 2.9. Assuming symmetry conditions e4 = —ep = A > 0, the
eingenvalues become (k) = /A2 + |f(k)|? and the low energy Hamiltonian:

He = vppy€o, + vppyoy + mv%, (2.22)

with mv% = A. The energy spectrum reads e(k) = \/(mv%)2 + (vpk)2. Tt is then

clear, that the o, term induces the Dirac fermions to acquire a mass m = A/U% and
the hBN an energy band gap. As a side note, hBN appears as a perfect example of
A-B sublattice breaking phenomenon that, in graphene, would induce an energy gap (2,
3, 12]. As stated, hBN is a semiconducting material with a band gap of 5.97eV [23].
The thin hBN flakes are therefore not visible in the visible spectra although the hBN
flakes used to support graphene are usually ~20 to 80 nm thick, making them perfectly
visible in the optical microscope (see Fig. 2.5a).

The highly insulating behavior together with an atomically flat surface, free of dan-
gling bonds, make hBN a perfect insulating material for graphene [13, 24, 25|. In the
following section we will demonstrate the impact on the electronic transport character-
istics of graphene samples encapsulated in between a top- and a bottom-layer of hBN
(see Section 5.1 and Section 6.1).

2.2 Graphene in strong magnetic fields

Landau level formation

Under a perpendicular and uniform magnetic field B, the cone-like band structure of
graphene (Fig. 2.1) condense into an arrangement of Landau levels (Fig. 2.6). The
Landau level spectrum can be derived by replacing the momentum q by ¢’ = q+eA(r)
in Eq. 2.19, where A(r) is the vector potential that generates the magnetic field B =
V x A(r). The resulting Hamiltonian reads [19]:

h(q) = hvro(q + eA(r)), (2.23)

where the matrice notation o = (0,; 0,) [19] has been introduced in Eq. 2.19. Solving
the energy eigenvalues [19, 26] we obtain:

e4(N) =+ hw.=t+vp\/2ehB|N| with N €N, (2.24)

where w, = \/WUF/ZB is the cyclotron frequency and lp =+/h/eB the magnetic length.
The v/B dependence of the Landau Levels’ energy £(N) is shown in Fig. 2.6¢ and the
complete DOS appear in Fig. 2.6a and b. The fact that Ip, and therefore (IN), scales
like VB is specific to graphene and it clearly diverges from non-relativistic 2DEGs,
where [p scales linearly as a function of magnetic field. These results have strong
experimental implications since, for the same value of magnetic field, e.g B =107,
the energy difference €(1) — £(0) between the two first LLs is in graphene two orders
of magnitude higher than for 2DEGs |27|. The most remarkable feature of graphene
dispersion relation at finite B-fields is the existence of a zero-energy Landau level (LLyg),
which is related to the parity anomaly of the 2D Dirac equation [11]. This zero Landau
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Figure 2.6: Band structure of massless Dirac fermions at finite B-fields. a,
The linear dispersion relation of graphene (shaded cone) condense into rel-
ativistic Landau levels (colored torus) of energy Ex(N) = Avp+/2ehB|N]|.
b, The corresponding density of states (disorder broadened) shows the +/B-
dependence of the Landau levels (LLs).

level LLj separates the electron from the hole states (Fig. 2.4). We further note that,
every landau level in graphene is four-fold degenerate owing to the contribution of the
K and K’ valleys.

Quantum Hall effect

Under finite magnetic fields, the magneto-transport fingerprints of any 2D system
evolves from the classical Hall effect to the so-called quantum Hall effect [28]. At
relatively high values of magnetic field and low temperatures, the Hall resistance de-
velops into well defined plateaus at specific values of resistance Rxy = nh/(e?), with
n € N (Fig. 2.7). Simultaneously, the longitudinal resistance drops to zero, showing an
oscillating behavior as a function of B-field, known as Shubnikov—de Haas oscillations
(Fig. 2.7). Magneto-transport measurements have been traditionally carried on Hall
bar devices (inset of Fig. 2.7). A constant current I, is applied between contacts 1 and
4 while a longitudinal V.., and a transversal V,, voltages are measured across and along
the samples, respectively. The essential longitudinal and transversal voltages are often
given as resistivities and/or conductivities:

W Ve W

Imf = IC f and Pzy = _Rl"y — Icy 5 (225)

Pzz = R

where L and W are the length and width of the Hall bar devices (inset of Fig. 2.7).
The inversion from resistivity (p) to conductivity (o) is given by [29]:

o o 1 P o)
(oo o)1 (p o) o
Ty LT Prx + pmy Pry  Prx
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Figure 2.7: Transition from Hall to quantum Hall effect. The classical magneto-
resistance trace at low magnetic fields develops into quantum Hall effect at
high values of B-field (B > 1T) (Figure re-plotted from [28]). The inset
shows the typical Hall bar geometry and connections to measure the Hall
resistance R,y =V, /I, and the longitudinal resistance Ry; = Ve /Ie.

or vice-versa, from conductivity (o) to resistivity (p) [29]:
( Pxrx pxy) _ 1 < Ozx Umy) (2 27)
—Pzy Pzx U%x + U%y “—Ozy Ouzz ' .

With the calculated values of resistivity, we can define the ohm’s law (for a 2DDEG)
by the resistivity tensor p:

E—pie ()= (b o) () e {5 ot
E, Pyx  Pzx) \Jy Ey = pyaje + pyyly

Alternatively, the current density ; can be expressed by the conductivity vector o as

follows:
e (F) = (0 o) (E) o fE =0 oy
Jy Oyz  Ozx E, Jy = Oyabir + oyy By
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Figure 2.8: Conduction model under the Quantum Hall regime. a, Cross-
sectional view (red dashed line in panel c) of the energy spectrum. b,
Broadened Landau levels. The states whose Fermi level ep lies within the
light gray region are considered extended. Otherwise, the states remain lo-
calized (dark gray region) ¢, Representation of the localized states within
the sample surface. A percolation path to counter-propagating edges states
is non-probable. d, The extended states can link counter-propagating edges
states.

The quantum Hall effect is nothing else than the experimental manifestation of the
Landau quantization introduced in Section 2.2. Indeed, the quantized steps in resistiv-
ity (Fig. 2.7) or conductivity, can be expressed as a function of the Landau levels N
(Section 2.2) or, alternatively, as a function of the filling factor v. The conductivity is

then defined as:

1.e2 e?

NS
where g; = 2 and g, = 2 are the spin and valley degeneracies and the filling factor v can
be understood as a the number of occupied states v = =4 (N —1/2). This dimensionless
parameter varies as function of B-field and charge carrier density. In fact, v strictly
defines the number of charge carriers per flux quanta in a specific material:

Opy = £ 9s 9o (N (2.30)

y— (2.31)

where n is the charge carrier density and ng = B/¢g = eB/h is nothing more than the
magnetic field in units of flux quanta ®g = h/e.

Bulk and edge model under QHE

Within the bulk and at finite B-fields, the charge carriers are expected to cycle in
cyclotron orbits and therefore not contribute to the electron transport. However, the
presence of disorder not only transforms the landau levels into a collection of broadened
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Gaussian distributions (Fig. 2.8b) but also converts the transport into extended or lo-
calized states [30]. Impurities, defects and inhomogeneities that could contribute to the
random potential fluctuations, lead to the broadening of the DOS around each of the
Landau levels. The extended states (Fig. 2.8d) have a finite amplitude within a vast
extension inside the bulk, whereas the localized states (Fig. 2.8c) are confined into small
regions [31]. Any variation in Fermi energy ep or magnetic field modifies the Landau
level occupancy (Fig. 2.8b) and thus the transport model inside the Bulk (Fig. 2.8¢
and d). For Fermi energies close the landau level energies 4 (N) (dashed blue line in
Fig. 2.8a), extended states form within the bulk. In that situation, percolating paths
are expected to exist between the two boundaries of the sample (marked in light blue
in Fig. 2.8d). Contrary, charge carriers which energies lies in the tails of a Landau level
(dashed green line in Fig. 2.8a) describe closed trajectories around closed equipotential
lines (marked green in Fig. 2.8c). This states are hence localized, they are not able to
connect both boundaries and therefore to not modify the net current.

The edge states picture, elaborated by Marcus Biittiker [32-34], follows the Landauer
approach in which conduction is viewed in terms of transmission and reflection of charge
carriers. In the quantum Hall (QH) regime, one dimensional conductance channels,
also called edge channels, are formed along the edges of a 2DEGs (Fig. 2.8c and d).
These edge channels/states are associated to the skipping orbit motion of the charge
carriers under magnetic fields. The edge states are expected to form at the edges
of the 2DEGs, where the Landau levels bend-up due to confinement of the potential
(Fig. 2.8a). At the intersections with the Fermi level (Fig. 2.8a) arise the conductive
states. The spatial separation between counter-propagating conductive channels, due to
the insulating bulk, suppresses the back-scattering of the charge carriers. This model,
develop by B. I. Halperin [35] M. Biittiker [32], is a single particle picture that does not
include electron-electron interactions or macroscopic electrostatic effects. 5. Komiyama
et. al proposed in [36] how to include electrostatic first order effects in the edge state
picture. In graphene, D. A. Abanin developt a conformal invariant approach [37] to
account for the shape-dependent potential distributions in the quantum Hall regime.

2.3 Description of graphene ribbons

From the theoretical description introduced in previous chapter, we know that graphene
has a linear density of states with no energy gap [18]. A band-gap, the defining fea-
ture of all semiconducting materials, lies at the core of every electronic logic-device
since it allows the discrete control between a conductive and an insulating state. Even
so, graphene offers other remarkable characteristics such as an unprecedented electron
mobility at room temperature that makes it appealing for electronics [38, 39]. Thus,
there has been quite an effort to overcome the lack of a band-gap since its discovery in
2004 [18].

In all materials, the band structure of the macroscopic crystal is modified as soon
its dimensions approach the length-scale of the charge carriers’ wavelength (Ar). In a
quasi-one dimensional (1D) system, the continuous band structure is transformed into
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Figure 2.9: "Particle in a box" problem. a An infinite potential barrier mimics
the effect of the infinite electrostatic potential at the edges of a 1D system.
The red traces represent the electron’s wave-functions for the first three
states (M = 1,2 and 3). b Schematic representation for the confinement
quantization in a quasi-1D graphene ribbon. The wavelengths of the allowed
subbands or modes (M), at a certain Fermi energy, appear in red (note that,
all wavelengths Ays > Ap fulfilling boundary conditions will participate to
transport).

a collection of discrete energy subbands, traditionally referred in transport experiments
as "modes" (M) [40]. The schematics shown in Fig. 2.9a illustrate the "particle in a
box" situation applied to a one-dimensional (1D) material (Fig. 2.9b), where the length
is infinite compared to the width (I > w).

The electron waves, confined in the quasi-1D quantum well, become standing waves
fulfilling periodic boundary conditions. The perpendicular (to the 1D-material axis)
wavelength and momentum for a specific mode (A ps and kj p/, respectively) are de-
finedas A |y = 2ﬁw and k| = % An estimation of the energy subband spacing (AFE)
and the energy band-gap (AE..,) are given by AE .y, = 2AE = 2hvpAk = 2 hvpr/w.
Numerically, a w =45 nm wide 1D channel would lead to an estimated energy spacing of
AFE =~ 45meV and an energy gap of AE.,, =~ 90meV. To a first order approximation
and neglecting any contribution from the crystallographic orientation of the edges, the
same analysis is valid for 1D slices of graphene, known in literature as graphene "con-
strictions" or "nanoribbons". When adding the orientation of the graphene lattice and
thus the configuration of the edges into the problem, one finds strong similarities with
the case of carbon nanotubes (CNTs). CNTs can be regarded as rolled-up stripes of
graphene, hence it is intuitive to think that the underlying physics is common to both.
In CN'T5s, the energy gap or position of the subbands depend on the diameter and the ori-
entation of the nanotube [41]. In graphene ribbons, and for the ideal situation of no dis-
order and perfect edges, the dispersion relation shows no energy band-gap for zigzag rib-
bons and either a metallic or semiconducting behavior for armchair. To understand this
statement, we first need to define the width of a N-armchair/N-zigzag graphene nanorib-
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Figure 2.10: Real-space crystallographic description. Crystal structure of zigzag
(a) and armchair (b) ribbons. In each case we indicate the number of
lines/dimers (N) for zigzag/armchair ribbons and the unit cell (emphasized
in gray). The ideal lattice constants of the ribbons are |d| = ag = V3 ac_c¢
and |c| = v/3 ao.

bon (wy-aagNrR/WN-zaNR), With N being the number of dimers/lines (Fig. 2.10):
WN_AGNR = %(N — 1)ag and wy_zgNR = ?(N — 1) ag, with ag = V3ac_c and
ac_c =1,42A (distance between carbon atoms). The real space crystal structure of a
zigzag and armchair ribbon as function of N is shown in Fig. 2.10. The unit vector ¢
(d) denotes the translational vector, or lattice constant, of an armchair (zigzag) ribbon
in real space (Fig. 2.10 and Fig. 2.11a).

In the zone-folding approximation method, it is useful to understand the unit-cell of
a N-AGNR (N-ZGNR) as a repetition of the zero-dimensional (0D) unit cell defined by
c and d (black dashed rectangle in Fig. 2.11a). In reciprocal space, the shorter (longer)
side of the rectangular Brillouin zone (BZ) (black dashed lines in Fig. 2.11b) are de-
fined by the corresponding c¢* (d*) wave-vector which describe the one-dimensional BZ
of armchair (zigzag) ribbons. The global band structure of graphene ribbons having
armchair (zigzag) edges is then predicted by projecting the 2D graphene BZ onto the
corresponding axis ¢* (d*) using the zone-folding technique (Fig. 2.11b). The linear
dispersion relation originating at the K- and K’-points are expected to appear (after
folding) at around k = 0 (k = 2m/3) for armchair (zigzag) ribbons. All ZGNR are
then metallic since their allowed k) in reciprocal space, represented as slices parallel
to the ribbon axis, will undeniably intersect the K-points at & = 0. Note that the
k = 0 represents the first harmonic of the ground state fulfilling boundary conditions.
In Fig. 2.11b, we represent the four ground states (N = 1,2,3 and 4) of the N-AGNR
and N-ZGNR.

More complex tight-binding and Dirac equation based calculations [43] are in good
agreement with the aforementioned description. Fig. 2.11c shows tight-binding simula-
tions of armchair and zigzag ribbons as function of the number of dimers/lines respec-
tively. Simulations have been performed with Kwant, a Python package for numerical
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Figure 2.11: Zone-Folding approximation. Representation of the 0D unit cell
(dashed black lines) in real (a) and reciprocal space (b). The unit cell
of 2D graphene is also plotted for comparison in (a). The vectors ¢ and
c¢* (d and d*) relate to armchair (zigzag) configurations in real (a) and
reciprocal (b) space, respectively. (b) The four ground states (N = 1,2,3
and 4) of the N-armchair (N-AGNR) and N-zigzag (N-ZGNR) ribbons are
plotted in red and green, respectively. The zone folded first Brillouin zone
of graphene leads to two double degenerate Dirac cones at the position
of null momentum. (c) Tight-binding model of the energy m-band struc-
ture of armchair and zigzag ribbons with various widths, N = 4, 5 and 30
(Calculations done in KWANT [42]).

quantum transport calculations based on a tight-binding approach [42|. As expected,
the zigzag configuration shows a metallic behavior for any given width since the K-points
are already crossed at zero momentum (Fig. 2.11b). Armchair ribbons are metallic when
the number of dimers (N) equals N = 3m — 1 and semiconducting otherwise, being m
an integer number (m € N). An armchair ribbon of N = 5 is therefore metallic, as
shown in Fig. 2.11c.
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Fabrication methods

Within this chapter I will introduce the three different fabrication methods used through-
out this thesis. I will start by the simplest process, i.e the fabrication of graphene devices
on a Si0s substrate, to end up with the more elaborated hBN-graphene-hBN structures.
Every fabrication method represented a huge step forward in device quality. This chap-
ter, together with the associated experimental findings, highlight the importance of the
fabrication technique on the transport phenomena (Section 2.1).

3.1 Graphene on SiO,

This fabrication method represents the fastest way of building graphene devices, from
the amount of processing time and difficulty involved. I will introduce the etching and
metalization steps in this part, even thought these fabrication steps are common to all
fabrication methods. A schematic overview of the process is provided in Fig. 3.1. The
process-flow starts with the evaporation of metal markers on a wafer scale. In order to
increase the yield of graphene flakes on the substrate’s surface during the exfoliation
process, it is important to maximize the distance between metal markers. The wafers
are commercially available from "NOVA Electronics materials" with a ~ 285nm dry
thermally oxidated silicon layer on top. The thickness of the oxide layer is crucial to
increase the contrast of the light through the graphene flake with respect to the sur-
roundings [1]. Silicon bulk is heavily p-doped to allow conduction at low temperatures.
Indeed, the Silicon layer is used as a back-gate electrode to tune the charge carriers
concentration in graphene.

To start with, I spin-coat a double layer of polymethyl methacrylate (PMMA) over
a 10” Si0Oy wafer and expose the designed marker field via electron beam lithography
(EBL). Prior evaporation of the 5 nm/50 nm Chromium/Gold metal markers, I immerse
the written wafers in PMMA-resist developer for ~ 60 seconds. The chromium layer
is crucial to increase the adhesion to the substrate. The process is finalized with a
lift-off of the residual metal to remove. The resulting wafer is diced in 7 x 7cm chips
prior spin-coating of a protective photo-resist layer. Graphene can then be deposited
on surface of the processed chips.
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Figure 3.1: Schematics of the fabrication process. Process flow for the fabrica-
tion of graphene devices. Graphene flakes are mechanically exfoliated from
graphite and deposited onto the Si0s substrates. The highly doped Si sub-
strate serves as a back-gate electrode. Electron beam lithography (e-ebeam)
and reactive ion etching (RIE) are used to structure the graphene devices.
An additional e-beam step and a lift-oft process are needed to electrically
contact the devices.

To exfoliate graphene flakes, I use the "scotch-tape" technique developed by Novoselov
et al. [2]. The working principle stems from the weak van der Waals forces sticking the
graphene layers together in a graphite crystal (Fig. 3.2a). An adhesive tape (Fig. 3.2b)
provides enough sticking force to progressively exfoliate the graphite crystal by repeat-
edly attach and detach the tape (Fig. 3.2b). The graphene flakes adhered to the scotch
tape are transfered into the SiOs2 chips by gently pressing the 7 x 7 e¢m chips into the
sticky tape. The yield of large flakes can be increased by extensively cleaning the surface
of the SiO; chips and/or by doing the process in a dry atmosphere. A plasma oxigen
step also helps in preparing the surface for the deposition of graphene. For further
details refer to [3]. Graphene flakes of over 50 um in length can be obtained with this
fabrication method (Fig. 3.2c).

Raman spectroscopy

Once on the substrate, although it is possible to give a good estimate on the single-
or bi-layer nature of the flakes under the optical microscope [1], the selected flakes are
analyzed by Raman spectroscopy. Raman imaging is a non invasive tool, which does
not require any other specific treatment than placing the samples under a laser spot.
Raman spectroscopy is based on the inelastic scattering of the induced electron-hole
pairs in the material.
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Figure 3.2: Mechanical exfoliation of graphene, "scotch-tape" technique. a,
Raw source material for graphene, a Highly Ordered Pyrolytic Graphic
(HOPG) crystal. b, Rests of graphite lying on top of a scotch tape. The
exfoliation process progressively splits the graphite layers until a single flake
crystal, i.e. graphene, is detached. The exfoliation process yield bigger
flakes when done in a dry atmosphere. The time in which the SiOy sub-
strate is in contact with the "scoth-tape" influences the density of graphite
residues transfer onto the Si05 substrate. ¢, Optical microscope picture of a
graphene flake with over 50 um in length, deposited onto a SiOs substrate.

A laser beam provides a monochromatic excitation energy and the scattered photons
are collected by a Charged Coupled Device (CCD) camera. The modifications in the
wave-length of the collected light (Raman shift) is intrinsically related to the scattering
processes involved. The spectrum of graphene is characterized by two well defined G-
and 2D-lines (Fig. 3.3). The 2D-line gives insightful information on the number of layers
[4]. For single-layer graphene, the 2D peak is defined by a single Lorentzian whereas for
bi-layer graphene, the line-shape is the contribution of four slightly shifted Lorentzian.
The reason of the sub-peaks contribution is understood from the degeneracy of the
dispersion relation, giving rise to additional Raman processes. For a more detailed
description of the Raman spectra refer to [5].

Patterning and contacting steps

To carve the shape of the graphene nanostructures, it is necessary to rely on precision
cutting techniques that limit the amounts of defects or contamination. For this purpose
I rely on a reactive ion etching (RIE) method in combination of a hard mask (made of Cr
or PMMA). The etching process is essentially based on the directional bombardment of
argon atoms under an argon/oxygen atmosphere. A chemical etching process, enhanced
by the plasma atmosphere, happens simultaneously. Thus, this method comprises an
anisotropic etching process with a chemical reactivity.
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Figure 3.3: Characteristic Raman spectra of exfoliated graphene. a and b,
Raman spectrum of single- (panel a) and bi-layer (panel b) graphene. The
D, G and 2D lines are indicated in panel a. ¢, Direct comparison between
the 2D peak of a single and bi-layer graphene. The 2D-line shape for single
layer graphene can be modeled by a Lorentzian. The 2D peak (red trace)
of a bi-layer flake is composed of four Lorentzians (black trace).

Prior the etching step, the samples are spin-coated with a layer of PMMA resits and
written by EBL. After development, the resulting etch mask undergoes RIE. The pro-
cess is relatively fast, as it takes ~ 8 seconds to carve the unwanted surface. The exact
recipes and a description of the processing parameters can be found in appendix A. I
note that, all fabrication methods have specific parameters and some differences, e.g 1
use a Cr etching mask for structuring the hBN-graphene-hBN devices (details in ap-
pendix A). An AFM image of a grahene device after the RIE process is shown in Fig. 3.4.

To contact the etched devices I follow a standard EBL procedure prior evaporation
of a Cr/Au layer. As a final step, the undesired metal is removed via a lift-off process.
The Chromium layer (5nm) increase the adhesion of the metal structure onto the SiOs
surface. It is know that Au does not attached properly to Si oxide. It is also worth
mentioning that Cr/Au can withstand a post-step in Hydrofluoric acid (HF'), either to
suspend the graphene structure or to clean rests of contaminants [6]. Many combina-
tions of metal have been tried to improved the contact resistance of the metal-graphene
interface [7-9]. Although lower contact resistances are desired in transport experiments,
most of the structures throughout this thesis are designed in a four-terminal configura-
tion, eliminating any contribution from the contact resistance. As a last step, the Si02
chip is glued to a standard chip carrier (Kyocera C-QFN PB-C88084) with silver-paste
and two-component glue (UHU). T wire-bond the samples with a semi-automatic wedge
bonder (TPT HB06). Samples can then be directly mounted in the probe tube of a
measuring set-up (for details refer to [10]).
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Figure 3.4: Fabricated graphene devices. a and b, Connections lines from the Bond-
pads (big gold squares) down to the graphene-based electrodes (visible in
panel ¢). The scale bars are 500 nm and 20 um in panels a and b, respec-
tively. ¢, Atomic Force Microscope (AFM) image of the contacted graphene
ribbons’ array.

3.2 Graphene on hBN

This section illustrates the fabrication steps involved in the fabrication of graphene de-
vices on hexagonal Boron Nitride (hBN) substrates. As introduced in Section 2.1, hBN
appears as a suitable substrate material for graphene. The fabrication process consist
on the mechanical exfoliation of both agents, the graphene and the hBN substrate, and
the transfer process of the former onto the later. The main idea of this transfer process
follows the guidelines presented in [11], appropriately adapted to our requirements.

Once again, I start by mechanically exfoliating some hBN flakes on top of a 7 X 7Tem
Si0Oq chip. The method is analogous to the exfoliation of graphene (see Section 3.1).
It is worth mentioning that the hBN crystals, as a 3D layered material, have a weak
interlayer binding compared to the intralayer forces. The "scotch-tape" exfoliation tech-
nique is hence as successful as for graphene. Optical picture of hBN flakes are shown in
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Figure 3.5: hBN as a suitable substrate for graphene. a and b, Optical microscope
images of hBN flakes (light blue color) on a SiOy (dark gray color). The
contrast in color of the flakes decreases the thinner the flakes are (panel
b). ¢, hBN flake showing visible traces of residues (brighter spots on the
hBN flake). Residues accumulated during the fabrication process are most
probably trapped within the hBN flake and the substrate.

Fig. 3.5, where I can see the change in contrast as a function of the layer thickness. At
that stage, it is also important to visualy inspect the hBN flakes. Flakes having rest of
residues are discarded (Fig. 3.5c). I choose hBN flakes of a thickness around 30-50nm
(colored light turquoise under the optical microscope). This value should be taken into
account when metalizing the final structures.

Even thought I could, at that stage, try to exfoliate graphene on the hBN covered
chip, the yield would be too low for making it viable. Instead, I use an alignment process
based on micro-manipulators to deposit graphene on top of a selected hBN flake. The
process allows to transfer graphene on specific spots with a precision of a few microns.

To succeed, the hBN flake have to be as large as possible, reaching average sizes
of around 10 um (Fig. 3.5) with our exfoliation method. The graphene flakes are de-
posited on a polymer stack previously spin-coated on a 7 x 7cm chip. The bottom
part is a 100 nm-thick water-soluble layer of polyvinyl alcohol (PVA) and the upper
part a ~ 200nm thick layer of PMMA. Graphene is exfoliated on top of that polymer
stack. Although the visibility is decreased, choosing the appropriate thickness of the
PMMA layer (~ 200 nm) ensures the graphene to be found under the optical microscope
(dashed lines Fig. 3.6 a and b).

To lift the PMMA layer, the chip with the polymer stack with the graphene is placed
onto the water surface, inside a petri dish (Fig. 3.5¢). The PVA layer dissolves and the
PMMA detach from the SiOs chip, resting on the surface of the water (black arrow in
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A: Optical microscope D: Fishing device
B: Micromanipulators E: Pressing device
C: susbtrate + hBN flake  F: Hotplate

Figure 3.6: "Fishing" fabrication technique. a and b, Optical microscope im-
ages of two graphene flakes deposited onto PVA/PMMA stacks. Due to
a change in contrast, the flakes are barely visible even under the optical
microscope, thus highlighted with black dashed lines. ¢, After placing the
Si02/PVA /PMMA /graphene stack (panels a and b) on the water surface,
the PVA dissolves and the SiO2 chip sinks to the bottom of the water re-
cipient. The PMMA /graphene stack remains on surface (black arrow). The
stack is visible by naked eye and can therefore be caught with the help of
a "fishing device". d, Picture of the "fishing device" used to take the float-
ing PMMA /graphene stack (panel c). d, Picture of the transfer apparatus.
The fishing and the pressing devices are operated by micro-manipulators
under an optical microscope. the PMMA+graphene stack is pressed over
the selected hBN flake. Pictures ¢ and e are reprinted from [12].

Fig. 3.5¢). With the help of a fishing device (Fig. 3.5d), the PMMA is fished and placed
under an optical microscope with a micro-manipulator setup (Fig. 3.5¢). The fishing
devices is nothing else than a metal structure with a hole in it (Fig. 3.5d). It is crucial
to place the grahene flake inside the hole of the fishing device, in order to see it under
the optical microscope afterward.

After leaving the fishing device dry (the process can be shortened by the use of a hot
plate a 40°C'), I align the graphene flake on top of the targeted hBN flake. I progres-
sively higher the chip until the Si0s surface reaches contact with the PPMA stack. To
force the contact between PMMA and chip I use a pressing device (Fig. 3.5e). Graphene
and hBN flakes have to be perfectly aligned and in close contact before applying the
pressing device, otherwise misalignment may occur. Heating up the hot plate under-
neath the chip (Fig. 3.5¢) up to 100°C helps to bring in contact the PMMA and the
Si02. The PMMA layer literally melts and stick on surface. A strong change in image
contrast is visible under the optical microscope.

Once the transfer method is finalized, the samples are heavily contaminated from
handling the samples in ambient conditions and the PMMA stack remains still on sur-
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Figure 3.7: Graphene devices on hBN substrate. a and b, AFM images of a
two-terminal graphene nanoribbons’ array (panel a) and a four-terminal
side-gated constriction (panel b) after an extensive chemical cleaning step.
Samples have been annealed in a Ho atmosphere (refer to text) to reduce
the amount of processing contaminants. Bubbles and ripples are common
to all samples fabricated with this technology. The devices are located away
from the bubbles.

face. Samples follow an extensive chemical cleaning step by immersing the StOs chips
in warm acetone for four to five hours. I rinse with isopropylic alcohol afterwards. The
chemical cleaning removes most of the residues and prepare the samples for the pattern-
ing and contacting steps. An AFM image of a set of graphene devices on hBN substrate
can be found in Fig. 3.7. I emphasize that, as a final processing step, samples undergo
a thermal annealing treatment once contacted. For further details on the annealing
process refer to [13].

3.3 Encapsulated hBN-graphene-hBN

This transfer method is based on the method develop by Wang et al. [14]. Although
the basic idea is similar to the "fishing" technique, samples issued from this fabrication
method are noticeably cleaner. In fact, the process is entirely done in clean-room. Com-
paratively, this is a less time-consuming method and the yield is higher. All in all, once
this technique is mastered and for the kind of devices we are interested in, there are
no reason to use the previous fabrication methods. A schematic representation of the
process is shown in Fig. 3.8. The process starts with a glass slide covered with tape and
spin-coated with PMMA polymer. I exfoliate hBN flakes onto this stack. The optical
picture Fig. 3.9a shows the contrast of a hBN flake on that glass structure.

Separately, I prepare a SiO4 chip with a graphen flake on top. Under the mask aligner
(Fig. 3.8), I align the graphene flake with the hBN flake located on the glass stack. Once
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Figure 3.8: "Pick up" transfer technique. Process flow illustration of the "pick up"
transfer method, also refered as "dry transfer technique" in the text. Under
the mask aligner, I bring the glass stack (tape + copolymer + hBN flake)
into contact with the selected graphene flake (step 1). I do not apply any
temperature at this point. Once released, the graphene flake sticks to the
hBN. With the added graphene layer, I press the glass stack onto a targeted
hBN flake (step 2). I finish the transfer method by chemically cleaning the
hBN-graphene-hBN heterostructure (step 3).

aligned, T bring both flakes into contact (step 2 in Fig. 3.8). Contact is recognized by
a change in contrast under the optical microscope of the mask aligner. Temperature is
not necessary, although slightly warming up (7" = 40°C') the silicon chip can help.

Right after, I release/lift the stack. Due to the strong Van-der Waals forces between
the two atomically flat materials (graphene and hBN), the graphene flake detaches with
ease from the Si0, surface.

As a next step, I prepare another SiOs chip with hBN flakes on top. Later on, I
deposit the whole glass/tape/PMMA /hBN /graphene onto the pristine hBN flake of the
freshly prepared SiOs chip (step 2 in Fig. 3.8). This step is, once again, done with the
mask aligner. Yet, the sample holder is heated up to 90°C'. The PMMA layer melts
and the whole stack attaches to the SiOs chip. The resulting hBN-graphene-hBN stack,
lying on the SiOy (step 3 in Fig. 3.8), has to be extensively cleaned with acetone for
two to three hours and thereafter rinsed with Isopropanol. The sample is then ready
for its next processing step. It is important to note that graphene does not come into
contact with organic solvents or polymers during the whole process.

Possibly, the biggest advantage of this fabrication method stems from the fact that
graphene is protected by the hBN flakes against impurities. Moreover, during the fab-
rication process of hBN-graphene-hBN nano-strutures the graphene layer is protected
against any kind of solvants.

Fig. 3.8b and ¢ show optical and AFM images of the hBN-graphene-hBN heterostruc-
ture. Visible under AFM inspection (Fig. 3.8c), we observe bubble-like features in a
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Figure 3.9: "Pick up" transfer technique. a, Optical microscope image of an hBN
flake exfoliated onto the glass/tape/copolymer stack. b, Optical image of
a finish hBN-graphene-hBN heterostructure. The graphene flake is hardly
visible. ¢, AFM image of the hBN-graphene-hBN heterostructure in panel
b. The graphene flake can be distinguish (dashed black lines), as well as the
bubbles forming in the graphene. All scale bars represent 25 um.

very similar way as for fishing fabrication method (Fig. 3.7). The bubbles are typically
found in hBN-graphene heterostructures and originated from rest of hydrocarbons that
contaminate the hBN surface. Trapped in between the hBN and graphene layers, the
aforementioned hydrocarbons agglomerate and form bubbles [15].
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Disordered graphene nano-structures

4.1 Experimental evidences of a diffusive transport behavior

This section has been partly published in:

Disorder induced Coulomb gaps in graphene constrictions with different as-
pect ratios.

B. Terrés, J. Dauber, C. Volk, S. Trellenkamp, U. Wichmann and C. Stampfer

Appl. Phys. Lett. 98, 032109 (2011).

Besides the wide-spread theoretical description of nano-structured graphene ribbons
discussed above, the transport characteristics of real devices is certainly influenced by
the presence of disorder. Even if most of graphene’s properties [1] are well described
in terms of non-interacting (or weakly interacting) Dirac fermions |2, 3|, the transport
behavior becomes heavily influenced by electron interactions once the dimensions of the
graphene devices approach the nanometer scale. [1].

The fact that disorder-associated phenomena did not show-up in bulk graphene ex-
periments remained a puzzle in the physics of graphene for a while. Klein tunneling [4],
or the unimpeded penetration of pseudo-relativistic particles through high and wide
potential barriers, revealed the physic principles of that distinctive phenomena [4]. In
nano-structured graphene though, Klein tunneling does not hold and the transport be-
havior is characterized instead by disorder-driven tunneling processes [5].

In the following section we will introduce transport measurements on lithographically
etched two-terminal graphene ribbons on SiOj substrates of different widths (w) and
lengths (1). We will initially characterize the transport behavior at high charge car-
rier densities, i.e. away from the charge neutrality point (noted Vj) and extract some
significant electrical parameters, e.g. the contact resistance R¢ and carrier mobility u.
Thereafter, we will restrict ourselves to the region of reduced conductance, i.e. transport
gap, and extract the relevant energy scales (energy gaps). These extracted energies will
be compared to the theoretically expected energy scales for the case of single-particle
wave confinement, introduced in Section 2.3.
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Figure 4.1: (a) Schematics representation of a two-terminal graphene nanoribbon. The
Au/graphene contact resistance (R.) is represented in orange as a resis-
tance in series. The bias voltage (V3) is applied symmetrically to the device.
The length (1) and the width (w) appear in red. (b) Atomic Force Mi-
croscopy (AFM) scans of the 2-terminal devices measured in panels (c) and
(d). The scale bars represent 200 nm. (c¢) and (d) Back gate characteristics
at V, = 300V of the graphene ribbons shown in (b) (dimensions indicated
in panels). The saturation (panel (c)) and the linear fits to the conductance
(panel (d)) are marked in red. The dashed black lines represent the limits
of the transport gap (AFEp) and the charge neutrality point (V4) in panel
(d). Measurements at 7' = 1.7 K.

This section is revelatory of the divergences between the theoretical expectations and
real-world measurements, supporting the conclusion that, in realistic devices, disorder
plays a major role in defining the transport behavior.

Under a Drude model approximation, the electrical transport of graphene is mainly
determined by the carrier density (n) and the carrier mobility (u). To extract mean-
ingful values of conductivity and thus mobility, it is important to identify the contact
resistance of the metal-graphene interfaces. The contact resistance in two-terminal
graphene devices can be extracted from the asymptotic saturation of the conductance
at high carrier densities. This situation is visible in short and wide ribbons (Fig. 4.1c),
where the conductance of the graphene channel (Fig. 4.1a,b) is expected to be highest.
Considering equal contact resistances at both side-ends of the ribbon (see schematic in
Fig. 4.1a), the conductance can be defined as:

1 1 1

G = = = (4.1)
R R 1 i 1 i )
G C +RC TalVo—Voll en . —+RC

nep  w w

where Rc and R are the contact and the graphene resistances, &« = 7 x 100 em =2V 1
is the lever arm (or capacitive coupling to the back gate), n the charge carrier density
and e the electron charge. From the expression above, G tend to Ral when Ro >> Rg.
Fig. 4.1c illustrates this asymptotic saturation of G. We extract a rough estimation of
the contact resistance (Reo =~ 50k€2). Note that Rc could be easily determined for a
four-terminal configuration of the contacting skim, by comparing the two- and four-
terminal conductance.
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Figure 4.2: Hlustration of the potential landscape along the graphene constriction. The
formation of charged islands or quantum dots at low densities is due to
the presence of a fluctuating potential Ag;s. The related energy scales are
discussed in the main text. Picture adapted from [6].

As shown in Fig. 4.1d, the conductance traces of narrow graphene ribbons conserve
the overall linear dependence of G as function of the back gate voltage V;. This feature
originates from the linear density of states (DOS) characteristic of bulk graphene (see
Section 2.1). As mentioned, this linear behavior is more likely to appear at moderate
carrier densities, where the effect of the contact resistance merely contributes. A linear
fit (neglecting fluctuations) to the conductance (red dasigd lines in Fig. 4.1d) gives a

11

rough estimation of the field-effect carrier mobility u = {7 - +,- The extracted values
g9

for the electrons and holes are p.~300cm?/(Vs) and ju,~360 cm?/(V's), respectively.
These values are much smaller than the typical values found in large graphene flakes
on SiOy substrate (=~ 5000 — 10000 cm?/(V's)) [1]. This first comparison suggest
graphene ribbons to be more affected by disorder than bulk graphene. At that point,
this statement is somehow vague since a proper definition of disorder is missing. We
will nonetheless describe it as a random, non-uniform potential distribution along the
conductance path. Later on we will discuss more in detail its nature and characteristics.

As observed in Fig. 4.1d, the evolution of G is superimposed with aperiodic, yet
reproducible fluctuations. These fluctuations have been commonly attributed to lo-
cal resonances and/or Universal Conductance Fluctuations (UCF) [7-11] in literature.
Both scenarios reveal the presence of a highly disordered potential landscape (Fig. 4.2)
but UCFs require the phase information of the electrons to be conserved. Phase co-
herent transport has been demonstrated in bulk graphene [8-11] as well as in graphene
nanoribbons [12, 13]|. The contribution of these coherent interferences is usually viewed
as corrections to the semi-classical conductance (4.1) and it manifests in transport
measurements at zero magnetic field (B field) as UCF or as weak localization (WL)
phenomena when measured as function of B field. Coherent transport measurements
will be introduced more in detail in the following sections, we decided to introduce
the concept of localization during this section in order to characterize the transport be-
havior and highlight the disordered nature of the electron path in graphene nanoribbons.

In diffusive systems at low temperatures, when the scattering processes are considered
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elastic due to the freeze-out of phonons modes, almost all carriers scatter-off static
potentials. In that situation, to get an estimate of the length-scale between scattering
processes, i.e. free path l., one can express the conductivity in the region of linear
conductance (Fig. 4.1d) using the Einstein relation:

o = DOS(Er)e’D, (4.2)

where o is the conductivity, D is the diffusion constant and DOS(EF) is the density of
states evaluated at the Fermi energy Ep:

B 87| EF|

DOS(EF) = hQUFQ with Er = ﬁ'l)p.\/ﬂa‘/;]. (4.3)
At Vy, = —10V we obtain a Diffusion constant D ~ 0,002 m? /s, that translates into a

mean free path of [, =~ 4nm. Note that this value is more than one order of magnitude
smaller than the ribbon width (W = 80nm), being the Diffusion coefficient D and the
mean free path [, related through:

lo =2D/vp. (4.4)

All the experimental observations discussed above (low mobility, sharp and reproducible
conductance resonances and a short mean free path) are thus revelatory of a diffusive
system.

4.1.1 Transport characteristics close to the charge neutrality point:
Disorder-induced Coulomb gaps in graphene constrictions

From now on, we will restrict ourselves to the region of suppressed conductance, or
transport gap AEp. In this energy range around the charge neutrality point Vj, the
presence of disorder is even more pronounced. In fact, it was the experimental study of
the observed energy gaps in graphene nanoribbons [5, 14-23| that led to the disorder-
induced Coulomb blockade interpretation [5, 23, 24] of the transport behavior. The
linear fits to the conductance on the electron- and hole-sides (marked in red in Fig. 4.1d)
define the size of the transport gap AERr =~ 8 V that, once converted into energy through:

AEF(QV) = QHUF\/WAV/ = hUFV QTFAV, (45)

yields to an estimated AEr ~ 840meV. Compared with the theoretical expectations in
the absence of interactions for a w = 80nm ribbon (AE.,, ~ 50meV, see wave con-
finement in Section 2.3), the extracted gap is more than one order of magnitude higher.
This observation can be naturally justified by the formation of electron-hole puddles [26]
at low carrier densities due to the presence of the aforementioned potential fluctuations
(Fig. 4.2). Within this picture, Coulomb blockade arises from the tunneling/charging
events of the carriers from puddle to puddle. It is important to note that, even though
standard theory of Coulomb blockade (classical theory developed by Kulik and Shekter
[27, 28]) neglects an electronic/wave-confinement level spacing within the charged pud-
dle region, a confinement gap AE,,, (Fig. 4.2) is necessary to prevent Klein tunneling
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effects and assure localization within the electron-hole puddles. The schematic represen-
tation in Fig. 4.2 depicts this scenario and introduces the so-called effective energy gap
E, and the transport gap AEFr energy scales. The effective energy gap F, refers to the
charging energy of the smallest isolated islands [5, 23| and it is therefore heavily influ-
enced by the width of the ribbon. The transport gap AFEp though, is directly related to
the amplitude of the disorder potential fluctuations (marked as Ag;s in Fig. 4.2). This
energy scale corresponds to the range in Vj in which the electronic transport is char-
acterized by coulomb blockade physics. These two well-defined energy scales define the
transport around the Dirac cone of realistic nano-scaled devices. Indeed, a closer look
inside the transport gap region (Fig. 4.3b,c, or refer to [5]), reveals a series of Coulomb
resonances characteristic of tunneling processes. The strong localization of the charge
carrier wave-functions leads to the suppression of phase coherence between successive
tunneling processes. Hence, the scenario presented so far describes the observed low
temperature gaps in terms of the geometric considerations of isolated localized states,
neglecting effects associated to interference phenomena between puddles (e.g. resonant
tunneling). To justify this assumption, the line-shape of a narrow resonance inside the
transport gap (Fig. 4.3c) has been fitted by [5]:

G = cosh™?(eay6V, /2.5kpT,), (4.6)

where oy ~ 0.2 is the lever arm or capacitive coupling to the back-gate electrode and
0Vy = Vy — Vgpeak. The extracted electron temperature 7, ~ 2.1K is close to the base
temperature of the measuring system, leading to the conclusion that Coulomb blockade
is a good approximation to the tunneling processes since the broadening of the peak
is mainly limited by temperature rather than lifetime of the resonance. Under this
assumption, we will compare the extracted energy gaps F, of two-terminal graphene
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Figure 4.3: In-situ representation of the potential landscape introduced in Fig. 5 along
the length and width of the graphene nanoribbon. The formation of charged
islands (localizations) at low densities is marked in red. Picture adapted
from [25]. (b) High resolution close-up inside the transport gap showing a
large number of sharp resonances attributed to charging effects (re-printed
from [5]). (c) Close-up and line-shape fitting (red trace) of a single resonance
(see red arrow in panel (b)) (re-printed from [5]).
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Figure 4.4: (a) Scanning force microscope images of etched graphene constrictions on
Si0s substrate with different lengths (1) and widths (w). The scale bars
represents 1 um. (b) Back gate characteristics at V;, = 500uV for two
graphene constrictions with width w = 50nm and different lengths I =
50 nm (red trace) and I = 500nm (black trace). (¢) and (d) Conductance
peaks in the transport gap region for two different constrictions, w = [ =
50nm (c¢) and w = /4 = 50nm (d) at V, = 100 V.

nanoribbons with a Coulomb blockade-based model from [24]:

a _
Ey = 57e oW, (4.7)

where ¢ = 2eV and b = 0.026 nm.

In following section, we will present the systematic study of the energy gap in graphene
ribbons as function of the length [ and width w (Fig. 4.4a). In particular, we will focus
on graphene constrictions in the regime where [ =~ w. In this regime, the Coulomb
charging energy E, (also called effective energy gap previously, see Fig. 4.2) is still pre-
dominantly determined by the width [5, 23]. However, the overall conductance level is
strongly influenced by the length of the constriction. Most interestingly, we show that
in very short constrictions, Coulomb blockade-like diamonds with high transparency
can be observed.

In Fig. 4.4b, we show the conductance G as a function of the back-gate voltage V; for
two 50 nm wide constrictions with different lengths [ = 50nm and [ = 500 nm, mea-
sured at V,, = 500 V. The transport gap (roughly between 17 and 30V), separates
hole from electron transport, as indicated by the two lower inserts in Fig. 4.4b [29].
While for the 500 nm constriction the conductance is strongly suppressed in this regime
(G values down to 107°¢%/h), we observe a significantly increased conductance for the
shorter constriction. Nevertheless, a number of pronounced resonances reaching lower
conductance values characterize the gap region, in rather good agreement with the mea-
surement on the longer constriction (compare also Fig. 4.5a and Fig. 4.5b). A close-up
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Figure 4.5: (a) and (b) Color plot of the source-drain current as a function of V, and
V, for two constrictions of w = 50nm and | = 50nm (a), [ = 500nm
(b). The inset shows differential conductance measurements of the region
where the transport gap is most pronounced (see black bar in panel (a)).
A cross section through the center of the largest diamond is shown on the
right side of the inset, highlighting the definition of the gap E,. (c) and
(d) Differential conductance maps for graphene constrictions of w = 65nm
and length [ = 500nm (c) and I = 1 pm (d).

of such resonances is shown in Fig. 4.4c and d. These reproducible resonances have been
taken at V, = 100V within transport gap. We observe neither complete pinch-off nor
strong Coulomb blockade behavior, as it is found for longer constrictions with the same
width. For example, in Fig. 4.4c we show data recorded on a 50 nm long (w=>50nm)
constriction. The overall conductance level differs significantly to the 200 nm long con-
striction of the same width (Fig. 4.4d); however, the typical V, spacing between the
resonances is comparable. In Fig. 4.5a and b, we show 2D plots of current as a func-
tion of V4, and back gate voltage for the two 50 nm wide constrictions with [ = 50nm
(a) and 500nm (b). In good agreement with earlier studies [5, 15, 19, 21, 22], we
find regions of suppressed current with an extension of E,/e in the Vj, direction (see
arrows). By plotting higher-resolution measurements of the differential conductance,
one can see that the region of suppressed current is composed of individual diamonds
(see inset in Fig. 4.5a). The energy gap (Ey) corresponds to the charging energy of the
largest diamond [5, 23] as highlighted in the inset (see arrow in Fig. 4.4a). Interest-
ingly, this energy scale only weakly depends on the constriction length. By comparing
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Figure 4.6: Energy gap E, as a function of length [ for a number of different graphene
constrictions of different widths w (see labels and data points connected by
dashed lines). The horizontal gray lines represent £, = a/w e~ where
a = 2eV and b = 0.026nm~! are taken from [24]. The inset shows the
minimum value of the running averaged conductance G as function of length
(running average interval of 5V in back gate voltage).

Fig. 4.5a and Fig. 4.5b, we observe only a small difference in Eg between the 50 nm
(Ey = 13meV) and 500nm (E, = 15meV) long constriction, allowing the conclu-
sion that the smallest island or localized state is predominantly a function of the width
w. The main difference can be found in the back gate coverage of the observed gaps.
The shorter the constriction, the fewer islands (or localized -edge- states) are in the
constriction, leading to fewer charging events. Consequently, the current is suppressed
in smaller and fewer gate voltage regimes. However, the smallest island is found to be
roughly length-independent (this is also true for [ < w). The definition of the transport
gap in back-gate voltage [18, 20| used as a figure of merit in earlier work, is hard to
define for very short constrictions since it is considered to strongly depend on the disor-
der potential |5, 21, 23| which becomes very sample dependent, due to lack of averaging.

Similar behavior can also be seen for a 65nm wide, 500 nm, and 1 ym long constric-
tion, as shown in Fig. 4.5c and Fig. 4.5d, respectively. Here, we plot the differential
conductance as a function of V4, and V,. In both measurements, a maximum charging
energy of around 4.5 and 6 meV can be observed (see arrows). In total, we studied
roughly 20 graphene constrictions on three different samples. In Fig. 4.6, we summarize
the extracted energy gaps F, as a function of the length for five different widths [30]. It
can be seen that F, strongly depends on the width, finding good agreement with earlier
experiments and theoretical models |22, 24|. In particular, we compare our results with
the model from Ref. [24], where the energy gap is approximated by E, = a/we™"" (see
gray bars in Fig. 4.6) (see also Refs. [15, 20, 24]). In contrast to the weak E,-length de-
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Figure 4.7: Differential conductance vs BG voltage and bias voltage of 200 nm (a) and
50nm (b) and (c) long graphene constriction of width 50 nm. (a) Distinct
diamonds of fully suppressed conductance can be observed (see white dashed
line). (b) and (c¢) Similar data taken on a 50 nm long constriction. Dia-
monds at an elevated conductance level can be observed. Sharp resonances
(white arrow in panel (b)) and features of increased conductance inside the
diamonds (horizontal dashed lines in panel (c)) can be observed.

pendence, we observe a rather strong length dependence of the minimum conductivity,
as shown by the inset in Fig. 4.6. The minimum value of the running averaged conduc-
tance decreases exponentially with increasing constriction length. This fits well with
the scenario where localizations or tunneling processes are dominating the transport
through the constrictions. Moreover, it shows that by making graphene constrictions
very short, we can obtain a conductance level close to e?/h.

More insights on the transparency of the shorter constrictions is gained by focusing
on a small back-gate voltage range, as shown in Fig. 4.7. Here, we show high-resolution
differential conductance dI/dV; plots for different constriction lengths with constant
width (w = 50 nm). Measurements on a 200 nm long constriction (Fig. 4.6a) show well
distinguishable diamonds of suppressed conductance, in good agreement with earlier
studies. In shorter constrictions (w = 50mnm) (Fig. 4.6b and c), we observe diamonds
where the conductance is not fully suppressed, most likely because of strong coupling
to localized states or isolated charged islands. Moreover, we observe faint lines of in-
creased conductance inside the diamonds aligned with features outside the diamonds,
which might be due to inelastic co-tunneling (see, e.g., dashed lines in Fig. 4.6¢). Ac-
cording to recent experiments by Han et al. [22] the average hopping length L. is in the
range of w < L. < 2w. Consequently, it is likely that for very short constrictions, L.
exceeds [ (I < w < L.) so that transport in short constrictions is no longer effectively
one dimensional, resulting in several transport channels in the constrictions. This would
account for (i) the strong increase in conductance and (ii) the appearance of very sharp
features in the conductance (see, e.g., arrow in Fig. 4.6b), which could result from in-
terference effects or Fano resonances.
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In summary, in this section we characterize and present transport measurements on
graphene nano-constrictions with different aspect ratios. We showed that the strongly
width-dependent disorder induced energy gap is roughly length-independent, whereas
the overall conductance level depends strongly on the length. In the gap region of
very short graphene constrictions, a conductance level close to 0.1e2/h can be reached,
making these structures potential prime candidates for exploring Fano resonances, as
we will see in Section 4.4.3, and Kondo physics in graphene nanostructures.
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4.2 Evidences of a bulk-induced disorder

4.2.1 Magnetically confined quantum dots

In nano-structured graphene devices, edges and bulk contribute to the overall disor-
der. To characterize the nature of the potential fluctuations, we study the transport
characteristics of magnetically confined quantum dots arising from bulk disorder. At
finite magnetic fields, the localized states, induced by the potential fluctuations within
the bulk, i.e. bulk disorder, break into a collection of interacting equipotential regions
and/or quantum dots (QDs). Transport studies through these magnetically confined
quantum dots have been carried by scanning tunneling spectroscopy (STS) [1] as well
as by direct electronic transport measurements [2|. However, on the latter [2], the mag-
netically confined QDs were distorted by the PN-NP junctions underneath the metal
contacts as well as being partly delimited by the edges of the graphene device. Even-
though the tunneling processes in QDs are governed by Coulomb interactions and /or by
confinement of the wave-like charge carriers, the disorder induced by the rough edges
has been hindering the observation of clear wave-like phenomena [3]. Indeed, once the
edge disorder removed, the wave nature of the charge carriers emerged, both in trans-
port |4] as in optical measurements |5, 6]. More importantly, the localized states sitting
at the graphene edges are known to charge and discharge as a function of the Fermi
energy (see Section 6.2), heavily modifying the capacitive coupling and thus making
the interpretation of the charging energies unreliable. All in all, the proposed device
represents an alternative route to study QDs in graphene, where the presence of bulk
disorder and a perpendicular magnetic field assist in building QDs without the limita-
tions introduced by edges. Also in this section, and from the bias spectroscopy data of
the magnetically confined QDs, we report the observation of phonon-mediated excited
states. Results highlight the importance of electron-phonon interactions in graphene
resting on Si0y substrates.

The device under study is based on a graphene nano-constriction in series with wide
graphene leads (Fig. 4.8a). The wide leads are contacted by 5/100nm Cr/Au metal
electrodes (Fig. 4.8a). The constricted area is used to inject the charge carriers into a
magnetically confined QD forming within the lead region, in a similar way a STM tip
would locally probe a specific area on the material [1]. The magnetically confined QD
has been measured in a 2-terminal configuration (red trace in Fig. 4.8b) by applying a
constant bias voltage V, =350 uV between the source Is and drain Ip leads (Fig. 4.8a).
The two additional voltage probes (noted V4 and Vp in Fig. 4.8a) offer the possibility
to measure the device in a 4-terminal configuration (blue trace in Fig. 4.8b).

The SiO9 substrate is known to induced fair amounts of disorder in graphene on a
characteristic length-scale of £g;5 ~30—100nm [7]. SiO2 has been therefore chosen as
substrate to increase the probability of forming relatively small QDs with a diameter
in the order of the disorder length-scale (d ~ £4;5). Two symmetric side gates Vsgi and
Vsao (Fig. 4.8a) are build along the edges of the device to disclose the location of the
QDs within the sample and the overall charge carrier density is tuned via a back-gate
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Figure 4.8: Side-gated graphene constriction and doping distribution. a, False-
colored atomic force microscope (AFM) image of a 80nm-wide graphene
constriction. Metal contacts, graphene and Si(0s-substrate are shown in
yellow, blue and dark blue, respectively. The electrical transport is measured
in a 2-terminal (Ig and Ip leads) configuration. The side-gate voltages
Vsa1 and Vsgge can be operated independently. The metal contacts V4 and
Vg are kept open during the 2-terminal operation, allowing to probe the
bulk region in the quantum Hall effect (QHE) regime (refer to Fig. 4.9).
b, 4- and 2-terminal (multiplied by 10) conductance (blue and red traces,
respectively). The charge neutrality point of the leads and the constriction
are indicated by green and orange arrows, as in panels cand d. T=1.7K. c,
2-terminal conductance G*1' as a function of V;, and a symmetric side-gate
voltage Vsa = Vsg1 =Vsage at T'=1.7 K. d, Schematic representation of the
electrochemical potential V,, along the graphene device (dashed green line).
The green and orange arrows mark the position of the charge neutrality

point from leads and constriction.

voltage V, applied directly to the Si*™ layer of the Si/SiOs chip.

In this section, we report on the observation of charge localization effects through
magnetically confined quantum dots solely defined by compressible strips in the Quan-
tum Hall effect (QHE) regime. The device under study was measured in a variable
temperature insert (VTI) in magnetic fields ranging from 0 to 9 Tesla. At zero B-field,
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Figure 4.9: Magnetic field dependence. a, Landau fan of the device shown in
Fig. 4.8a, measured in a 2-terminal configuration for Vgg1 = Vggo =0V
(T'=2 K). The orange and green arrows mark the position of the transport
gap and the origin of the Landau fan, respectively. The onsets of the LLs
are indicated by black lines b, Same as panel a for Vg1 =Vsge=9V. The
position of the transport gap (orange arrow) is noticeably shifted. ¢, Landau
fan measured in a 4-terminal configuration. The position of the transport
gap (red color), coincide with the origin of the Landau fan. The dashed lines
represent the theoretical evolution of the Landau levels. d, Schematic rep-
resentation in the QHE regime of the cyclotron orbits in a 2-terminal and a
4-terminal configuration (red and black arrows, respectively). The red point
indicates the voltage drop during a 4-terminal operation. The inset shows
the PN/NP junction formation underneath the voltage probes.

conductance fluctuations (Fig. 4.8b) typical of disordered graphene (see Section 4.1)
already reveal the disordered nature of the transport characteristics. At finite magnetic
fields, onsets of Landau quantization are visible for the electron- and hole-transport
regimes of the 2- and 4-terminal configurations (see upper black lines in Fig. 4.9a-c).
Before discussing how the potential fluctuations develop under finite magnetic fields, it
is convenient to clarify the striking differences between the 2- and 4-terminal magneto-
transport data (compare panels a and b with panel ¢ in Fig. 4.9).
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Doping distribution

In the 2-terminal configuration (red trace in Fig. 4.8b) the voltage range with the lowest
level of conductance, i.e. transport gap (see Section 4.1), is attributed to the narrow-
est graphene region along the electronic path, in that case the graphene constriction
(Fig. 4.8a and d). The position of the transport gap in the back-gate voltage axis is
noted Veons &= —8.5V (orange arrows in Fig. 4.8b-d and Fig. 4.9) and it is expected
to depend on an applied side-gate potential Vgg (Fig. 4.8a). This is indeed visible in
Fig. 4.8c, where we show the 2-terminal conductance as a function of V; and a sym-
metric side-gate voltage (Vsg = Vg1 = Vsg2). The transport gap evolves as a function
of Vga whereas the overall conductance remains unchanged. A second deep in the 2-
terminal conductance, noted Vi.q =~ 16.6 V' (green arrow in Fig. 4.8b) is also visible
in the 2-terminal conductance map of Fig. 4.8c and it represents the charge neutrality
point (CNP) of the bulk graphene region, since it does not depend on the side-gate
potential Vsg. This behavior is revelatory of a PN/NP junction along the transport
path (Fig. 4.8d).

The same situation applies under finite magnetic fields (Fig. 4.9). Again, two dis-
tinctive energy scales are recognized. The transport gap (orange arrows in Fig. 4.9a
and b) depends on the applied side-gate potential (compare panel a and b of Fig. 4.9)
and its back-gate voltage value Vyys is the same as in Fig. 4.8b. The CNP of the leads
is once more indicated by green arrows (Fig. 4.9b) and it overlaps with the origin of
the Landan fan, meaning that the Landau quantization forms within the graphene leads.

The charge neutrality point of the constriction Vi,s &~ —8.5V and of the leads
Viead~16.6 V (orange and green arrows in Fig. 4.8c and Fig. 4.9a-b) have an associated
doping level neons = QconsVeons = —6 X 10" em =2 and njegg ~ 1.2 x 1012 em ™2, where
the lever arms eons and qyeqq are extracted from the Landau level fans of Fig. 4.9a and c.

All in all, we identified two regions along the graphene device having specific levels
of doping. The situation is schematically depicted in Fig. 4.8d, where the Dirac cones
of the leads and the constriction lie at different energy levels. This marked difference
in doping is expected when considering the edges of graphene as a major source of
disorder, e.g doping (see red color along the edges of the graphene device in sketch of
Fig. 4.8d). We will demonstrate this assumption later on in Section 4.4.2 by proving
the length of the graphene constrictions as being the resonant cavity of Fabry-Pérot-like
interferences.

Pathway of the edge states

At high magnetic fields, in the QHE regime, the path of the measured skipping orbits
depends on the configuration of the contacts (Fig. 4.9d). In a 4-terminal configuration,
the edge states propagate from source Ig to drain Ip (Fig. 4.8a) although the edge
state path that is effectively measured is determined by the location where the voltage
is probed via the V4 and Vp voltage terminals. The edge state path that is measured
in a 4-terminal configuration is represented by a black trace in Fig. 4.9d.
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Figure 4.10: Degeneracy lifting and asymmetry of the Hall potential. a, 4-
terminal Landau fan of the device shown in Fig. 4.8a, measured at T=2 K
(V,=350uV). b, ¢, Line-cuts of G at B=9T as a function of back-gate
voltage, for the holes (b) and electron (¢) transport regimes. d, Line-cuts at
B=+6 and —6 T (blue and red trace, respectively) of panel a, underlining
the asymmetry of the hall potential distribution between the potential
probes (V4 and Vg in panel e and Fig. 4.8a). e, Theoretical calculation
of a symmetric Hall potential distribution highlighting the formation of
hot spots (adapted from [8]). f, g Color map and conductance traces
of the v = e%/h Hall plateau for a second cool-down of the same device.
The conductance traces (from B =7 to 97 in steps of 0.17T) are shifted
horizontally for clarity.

In a 2-terminal configuration the measured path comprises the whole travel from
source Ig to drain Ip contact. In that case, two different scenarios are a priori possible.
In a first case, the edge state may continue underneath the voltage probes V4 /Vp until
reaching the Source/Drain lead. We consider this case quite unlikely since the high
carrier density of the metal contacts may screen any potential inhomogeneities in the
graphene underneath and, as shown in Fig. 4.9a-b and Fig. 4.11a-c, the 2-terminal con-
ductance is cluttered from sharp resonances related to charged puddles with dimensions
on the order of d~80nm (refer to Fig. 4.16). Moreover, the metallic nature of the volt-
age probes surely modifies the capacitive coupling of the graphene region underneath.
In that case, the origin of the Landau fan would be associated to the doping level of
the metal-covered graphene. Instead, we observe the Landau level fan developing at the
back-gate voltage value Vieqqs (green arrow in Fig. 4.8 and Fig. 4.9), which correspond
to the CNP of the leads measured at zero Tesla.

In the second case scenario, the edge state path follows the boundary of the metal
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Figure 4.11: Nature of localization in the Quantum Hall regime. a, 2-terminal
Landau fan re-plotted from Fig. 4.9a. b, Derivative 0G /0B inside the black
dashed box of panel a. The rich structure of parallel lines indicates the
position of the Landau levels (LLs). The orange arrow marks the transport
gap (also visible in panel a). ¢, High resolution map of the localized states
at v=—2 and v=—6. Each line/resonance represents the charging event
of a localized state. All lines/resonances within the same Quantum phase
have an equal slope in the B—V, plane. d, Schematic representation of
the confined incompressible patches, represented with their discrete states
for dots (blue trace) and anti-dots (red trace) arising from the disorder
fluctuations Ang, in the quantum Hall regime. The successive lower and
upper states vz, and v, see the same potential landscape. The lower Landau
level LLy, is colored in light blue.

contact as indicated in Fig. 4.9d by a red "skipping orbit" trace. In order to reach the
drain lead Ip, the charge carriers quit the graphene edge and surround the PN/NP
junction formed underneath the metal contact V4. Actually, any metal probe built over
the graphene, like the metal electrodes V4 and Vg, may create a potential difference
as schematically described in Fig. 4.9d. This build-up PN/NP junction arises from
the electric-field screening and the doping induced by the metal contacts on surface
of graphene [9, 10]. During a 2-terminal measurement (Fig. 4.9a and b) the voltage
probes V4 and Vg (Fig. 4.8a) may thus allow to probe the bulk region (marked as
"Lead" Fig. 4.9d) and measure localized states within the bulk (colored in light green
in Fig. 4.9d).

At finite B-fields and for the 4-terminal configuration the measured edge state path
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Figure 4.12: Disorder fluctuations in the (B, V) plane. a, Each localized state in
the (B, n) plane gives rise to a line that runs parallel to its associated filling
factor v. The strong potential fluctuations in our sample increase the prob-
ability to probe individual charging events (marked in green) at the limits
of the Landau level region (color shaded). b, Derivative of the transcon-
ductance 0G/0V,0B around the charge neutrality point of Fig. 4.9a. The
rich structure of parallel lines becomes denser around the LLs’ position (the
green arrow indicates the center of the LL associated to v=+2). The red
arrows mark the left and right foremost resonances, defining the amplitude
the disorder fluctuations AV,. The isolated resonances marked in green
are probed in Fig. 4.14. The resonance pairs of equal intensity associated
to localized states at v=+2 are indicated by black arrows.

(black trace in Fig. 4.9d) reflects the quantum Hall evolution of the constriction (Fig. 4.9¢).
The position of the transport gap (high resistance region in Fig. 4.9¢) superimposes with
the origin of the Landau level fan. Moreover, the capacitive coupling extracted from
the 4-terminal Landau fan aeons =7 x 101%¢m =2V ~! is higher than the value obtained
from the 2-terminal measurement jeqgs ~ 4.2 X 10%em =2V =1, These differences are
expected when we consider the narrower graphene constriction to be better coupled to
the back-gate than the bulk [11]. The lever arm, or capacitive coupling, is extracted by
comparing the Landau quantization model to the measurements (see Section 6.1).

A closer look at the magnetic evolution of the 4-terminal conductance (Fig. 4.10)
reveals insightful information on the electronic structure of the graphene constriction.
A line-cut at B=9T of the Landau fan in Fig. 4.10a reveals a strong asymmetry of
the voltage measured between the V4 and Vp probes (Fig. 4.8a). Indeed, the Landau
level quantization manifests as conductance oscillations on the hole-side of the transport
regime (Fig. 4.10b), although on the electron-side (Fig. 4.10¢) Hall conductance plateaus
are clearly visible. Same observations have been reported on 2-terminal Quantum Hall
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Figure 4.13: Isolated charging events. a, Representative sketch of the graphene
surface tearing into compressible regions in the quantum Hall regime. The
magnetically confined QDs (light red) are capacitively interacting with the
surroundings. b, Close-up of four adjacent resonance lines issued from
incompressible patchs at v=42. Inset shows four isolated charging events
associated to v=+6. ¢, Coulomb blockade peaks from the resonance lines
shown in panel b, measured at finite values of B-field. The spacing between
peaks increase as a function of B-field.

measurements on suspended graphene devices [12, 13] and the explanation has been
attributed to asymmetries in the Hall voltage distribution [8, 14]. To corroborate this
point, we measure the Landau fan for negative B-field values (Fig. 4.10a). The line cuts
at B =46 and —6 7 (blue and red traces in Fig. 4.10f, respectively) proves the conjec-
ture that asymmetric hot spots are indeed present in our graphene device (Fig. 4.10e)
and that disorder inhomogeneities lie presumably at the origin of the asymmetries in
the hall voltage distribution [13, 14].

Once discussed the observation of the QH regime in our sample, the fine details of the
electronic structure come into play. The lifting of four-fold degenerate Landau levels is
apparent for electron-side of the Landau fan (Fig. 4.10c, f and g), where the presence
of well defined Hall plateau at v = +1 confirms the broken symmetry nature of the
quantum Hall sequence.

The nature of localization at finite magnetic fields.

As mentioned in the introduction, the proposed device allows us to investigate localiza-
tion phenomena in graphene with the possibility to tune both the charge carrier density
and the magnetic field. At finite B-fields we observe sets of localization resonances
packed around the evolution of the Landau levels (Fig. 4.11b and c). This behavior is
expected to happen as a Landau level approaches initial /complete filling and the den-
sity of states available is unable to flatten the bare disorder potential (see Fig. 4.11d)
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Figure 4.14: Single electron charging of magnetically confined states. a and b,
High-resolution maps of the Landau fan shown in Fig. 4.11a. The evolution
of the charging events (resonances) in the (B,V;) plane are independent
to the configuration of the side gates (Vsg1 = Vsge =0V in panel a and
Vsa1 = Vsg2 =9V in b). The green and yellow dots indicate the reso-
nances probed in panel c¢. The yellow and red dots highlight the acquisition
points of the bias spectroscopy measurements in Fig. 4.16a-d. ¢, Bias spec-
troscopy measurements of the =42 (upper diamonds) and v=—-2 (lower
diamonds) states at B=87T and T'=15mK, as a function of bias V} and
back-gate Vj voltage for Vsg1 =Vsg2 =9 V. The number of charge carriers
is fixed in each diamond. The labels a, b and a’, b’ indicate the number of
electrons and holes, respectively. d, e, Conductance line-cuts of the con-
ductance map in panel ¢, showing the consecutive Coulomb resonances at
V=0V (black arrows in panel d) and its evolution into conductance steps
at high-bias voltages V,~—12mV (panel e).

[15, 16]. Potential barriers emerge and eventually form compressible regions enclosed
by incompressible strips [15, 17|, thus creating the so-called magnetically confined QDs
(Fig. 4.13a and Fig. 4.16f). Fig. 4.11c shows two distinct groups of localized states
around the v=—2 and v=—6. The resonances/lines are cluttered around well develop
QHE phases which therefore helps in determining the location of the LLs in the B —V,
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plane. As we can see in Fig. 4.11a, the onsets of LLs are marked by dashed black lines
at the top of the Landau fan. These positions correspond to regions with higher density
of resonances (red colored regions in Fig. 4.11b).

For the sake of completeness we will review the basics of localization under Quan-
tum Hall regime [15, 16]. We sketch the expected evolution of the localized states in
the B — V, plane in Fig. 4.12a, with a measured data set appearing in Fig. 4.12b. As
reported in literature [15], the number of states or resonance lines within each phase
should be constant and independent on the B-field. Moreover, each group of resonances
forms strips of constant width Ang that relates to the amount of disorder in the sam-
ple (Fig. 4.11d). Furthermore, the localized states with an equal slope in the B — 'V
plane belong to the same underlying phase. In fact, the slope of the resonance lines is
proportional to AB/AV, = h/ev since the filling factors are proportional to the flux
quanta enclosed by the magnetically confined area v = hn/eB (see Section 2.2). Owing
to these experimental observations, the single-particle description (wave-confinement)
of the localization phenomena does not hold. Specifically, if one considers the states
of the magnetically confined QDs arising from wave-function confinement quantization,
any increase of the B-field, and thus of the number of flux quanta through the resonant
cavity, should make shrink its dimensions in order to keep the filling factor constant.
Instead, although the filling factor is conserved for a varying B-field, the number of
localized states appears also constant, which is in clear conflict with the expected in-
crease of localized states per unit surface when their dimensions shrink as as function
of B-field. For a more detailed argumentation please refer to [15, 16].

The energy scale associated to the disorder potential fluctuations (Fig. 4.12b) is rel-
atively large Ang ~ hp\/TQeaasAVy ~ 145meV, which indicates the strong doping
fluctuations within our sample (AV,~38V, see Fig. 4.12). Although strong disorder is
usually undesired, in our case it increases the probability to probe individual localized
states at the boundaries of a quantum phase (marked by red arrows in Fig. 4.12b). An
example of isolated resonant lines are shown in Fig. 4.13b, along with line-cuts of the
conductance at finite magnetic fields (Fig. 4.13c). The bias spectroscopy of the reso-
nances shown in Fig. 4.13 can be found in Section 8.1.

It is important to note that resonances associated to a quantum phase v = +2
should evolve in pairs (see Fig. 4.14b). Similarly, the regions issued from regions at
v = +4,46, ... should evolve in groups of four (see inset of Fig. 4.13b), owing to the
spin- and valley-degeneracy of the half-integer Landau levels in graphene [1].

Eventhough the resonances should in principle run parallel to each other as a function
of magnetic fields [15], we observe them to slightly split as a function of magnetic field
(Fig. 4.14f and resonance pairs marked by a black arrow in Fig. 4.12b). Their evolution
in the V; — B plane (Fig. 4.12 indicates that the splitting may be indeed related to
the lifting of the four-fold degeneracy discussed previously for the constriction region
(Fig. 4.10). Same conclusions were suggested in [1] to account for the increased energy
splitting between charging peaks in STS experiments.
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Bias spectroscopy of localized states under B-fields.

Having isolated charging lines in the V;, — B allows to probe them via bias spectroscopy
measurements (Fig. 4.14). We study the resonance lines marked by green circles in
Fig. 4.12 and by a green and a yellow dot in Fig. 4.14b as a function of bias voltage V}.
A detailed plot of the conductance as a function of back-gate V, and bias V}, voltages
(Fig. 4.14¢) reveal diamond-like structures characteristic of Coulomb blockade physics
(dashed white lines in Fig. 4.14c). The bias spacing of each individual diamond is the
energy required to add an additional charge carrier into the system (Fyq4q). The charg-
ing phenomena is observed for an anti-dot (marked in red in Fig. 4.11d) of a v = +2
phase region, and for a dot (marked in blue in Fig. 4.11d) of a v = +2 exhaustion re-
gion. Their respective electronic filling sequence is labeled "a" and "b" for the anti-dot
system, and "a'" and "b’" for the dot (Fig. 4.14c¢). A line-cut of the conductance at
V, = 0V (Fig. 4.14d) shows the well known Coulomb resonances, where the energy
spacing between consecutive charging peaks is equal to the charging energy F,qq. At
high bias voltages (V, =~ —12mV’), the conductance develops from a Coulomb peaks
structure to equidistant steps in conductance (Fig. 4.14e). It is important to note that
the charging peaks start to develop at around B = 3.5 T (Fig. 4.14a, b and f) and
remain visible up to B = 97T, meaning that the magnetically confined QDs are stable
for a wide-range of B-fields.

Once the localized states identified, we will give further insights on where the QDs
are located within the sample. As observed in panel a and b of Fig. 4.14, the measured
Landau level evolution corresponds to a graphene region located far from the edges (i.e.
bulk graphene), since a change in the side-gate potential (Vgg1 and Vsge in Fig. 4.8a)
just modifies the position of the transport gap (associated to the edges and constric-
tion). Fig. 4.14a shows a close-up region around v = +2 for Vsg1 = Vgge =0V and
Fig. 4.14b for Vgg1 = Vsge = 9V. The same behavior is observed in the bias spec-
troscopy measurements for the two configurations of the lateral gates (Fig. 4.15). Both
for Vsg1=Vsg2 =0V (panels a-b) and Vsg1 =—Vsge =9V (panels ¢-d), the charging
events (diamonds plots inside the black rectangles in Fig. 4.15b and c) remain unaf-
fected, whereas the transport gap regions (delimited by black dashed lines) are modified.

High resolution maps of the "a" electron charging event (see bias spectroscopy data
in Fig. 4.16a-d) show clear excited states. The diamond plots have been taken at
finite values of magnetic fields (B =6.1, 6.6, 7.7 and 8T'). As observed, the charging
energy Fo= 10.5meV is constant as a function B-field, with variances in the order of
~ 0.5 meV. We conclude that the magnetic field does not modify the dimensions of the
QD and may thus be purely determined by disorder and the electrostatics. This result,
represents the first experimental demonstration supporting the hypothesis introduced
by S.Ilani in [15].

Presence of the excited states and implications.

The observation of excited states in graphene QDs has been widely reported in liter-
ature [18, 19] but it is significant the fact that excited states occur in the quantum
Hall regime. To demonstrate that the analyzed QD is in the Quantum Hall regime, we
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Figure 4.15: Side-gate dependence of the confined states. a, d, 2-terminal con-
ductance traces at V3 = 0V, extracted from the bias spectroscopy maps
shown in panel b and c, respectively. The four consecutive Coulomb peaks
are marked by black arrows. The transport gap region is delimited by
dashed black lines. b, c, Bias spectroscopy maps measured at B = 67" and
T =15mK for Vsg1 = Vsge =0V (b) and Vg1 = —Vsge =9V (¢). The
regions inside the black rectangles are qualitatively unaffected by a lateral
potential (Vsg1, Vsga).

map the position in the back-gate voltage axis of the first charging event from the "a"
diamond as a function of magnetic field (Fig. 4.16¢). The extracted values (indicated by
red dots in Fig. 4.14a-d) clearly superimpose the evolution of the magnetic resonance,
confirming that the magnetically confined QD follows the v =42 quantum phase [15,
16]. A schematic representation of a magnetically confined QD in the QHE regime is
shown in Fig. 4.16f, with the edge states represented in red.

To understand the implications of having excited states in magnetically confined
QDs we briefly review the basic operation of QDs and Single Electron Transistors
(SETs). The term SET is used when all quantum mechanical energy scales can be
neglected compared to the electrostatic contributions. For SETs, the energy needed to
tunnel one charge carrier into the system is solely determined by the addition energy
Eaqq = €2/Cior, also known as charging energy Ec [20]. In that case, Cror is the self-

64



G (107e%h)

1.2 0.8 0.4
[—— ]
e
8 L
e 7}
m
6 L
11 12 13
AW
mpressible
QD

Silicon dioxide
Silicon

Figure 4.16: B-field dependence of the magnetically localized states. a, b, c and
d, High resolution measurements of the diamond associated to the electron
"a’ " in the quantum Hall phase v =42, measured at T=15mK and B=
6.1, 6.6, 7.7 and 8 T" (panels a, b, c and d, respectively). Excited states are
visible in all diamonds. e Magnetic evolution of the first tunneling event,
noted "a" in Fig. 4.14, of the QD as a function of back-gate voltage V.
The crosses correspond to the values in back gate voltage extracted from
panels a to d (red arrows) were the charging events happen. f Schematic
representation of a magnetically confined QD. The skipping orbit inside the
confined area highlight that the QD is itself in the quantum Hall regime.

capacitance of the charged island of diameter d. In QDs though, the addition energy is
defined as Eqqq = €2/Cior + A, where A is the so-called level spacing that stems from
the size confinement of the electron wave-function.

The distinction between QDs and SET is done by comparing its dimensions to the
Fermi wave-length (Ar). For small enough charged island, i.e. for island dimensions in
the order of the Fermi wave-length (d ~ Ap), the charged island is considered to behave
as a QD and A applies in the calculation of the addition energies E,qq = €?/Ciot + A.
Otherwise, i.e. for d > Ap, we define the charged island as a SET and the size confine-
ment contribution A can be discarded for the calculation of E,qq = €2/Cio [20].

Although not strictly correct, the observation of excited states in bias spectroscopy
measurements is usually directly attributed to the presence of electronic excited states
[18]. Their associated energy-scale is calculated as a single-particle level spacing A =
hwr/(dvV/N), where vp ~ 10%m/s is the Fermi velocity [21] and N the number of charge
carriers in the dot [18, 20]. In our case (see Fig. 4.16 and Fig. 8.3), the extracted values
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of level spacing A of our magnetically confined QD for B=6.1, 6.6, 7.7, 8 T are mostly
equal, with A = 1.2 + 0.1 meV. The fact to have a constant, B-field independent A is
in contradiction with the expected (1/v/N)-dependency of A. As shown in Fig. 4.16e
and Fig. 4.14 (see red and yellow points in panel b) the charging phenomena is at-
tributed to a magnetically confined region in the quantum Hall phase v=+2. Owing to
v=(hn)/(eB) and the fact that magnetic QD is not supposed to change its dimensions
as a function of B-field (see argumentation in [15, 16]), we would therefore expect an
increase in the number of charge carriers inside the QD as a function of magnetic field.
The fact to observe a charge carrier independent energy of the excited states when the
charge island surely changes its number of carriers as a function of B-field, is already a
first indication that we are not dealing with electronic excited states.

Even though, we can still estimate the single particle level spacing using the model of
a quantum mechanical harmonic oscillator [20] for the quantized states A = hvy/2Le,
where L. is the length-scale of the resonant cavity (see Section 4.4.2). Under QHE
conditions we expect the wave-function of the charge carriers to couple to the circum-
ference L. of the QD rather than to its diameter. Furthermore, this expression for
A does not depend on the charge carriers inside the QD, which conveys with the ex-
perimental observations (Fig. 4.16). We therefore obtain a length-scale L. ~ 1.7um
from the A =~ 1.2meV extracted from measurements. The associated diameter reads
dy = L¢/7 =~ 550 nm.

To put this diameter value d; into perspective, we will compare it to the diameter of
the the QD considering just the electrostatic contributions. Neglecting the confinement
energy, the addition energy is then solely determined by Eyqq = €2 /Cror, which enables
a much rigorous read-out of the energy scales. Here we extract an addition energy
Euqq = 12.0meV (Fig. 4.16 and Fig. 8.3), Using a disc model, we can estimate the
effective charge island diameter to be do = €2/(4ep€Eaqq) =~ 80 nm, with € = (1 + 4)/2.

This value of diameter (dy ~ 150nm) is comparatively much smaller than the di-
ameter extracted from excitation energy (dqy =~ 550nm). We attribute this strong
disagreement between both extracted diameters as a indication that the excited states
observed in the bias spectroscopy data are not issued from electronic excited states.

During recent years, conjectures arose whether the enhanced conductance lines par-
allel to the edges of the Coulomb diamonds, i.e. excited states, are undoubtedly due to
transport through excited states [22]. Possible scenarios leading to similar effect in the
bias spectroscopy measurements have been proposed, such as modulation of the tunnel
coupling due to resonances in the constrictions [23, 24| and phonon mediated transport
effects [25].

Due to the lack of constrictions in our QD system, where the QD is magnetically
confined around a potential valley, we discard fluctuations of the density of states in the
constriction as possible origin for the lines of enhanced differential conductance outside
the Coulomb diamonds. Instead, we suggest these lines as being the result of phonon
mediated transport in our graphene QDs on Silicon dioxide substrates. In fact, it has
been shown that such lines can also appear due to phonon mediated transport in sus-
pended quantum dots in different material systems [26-28]. Indeed, this results may

66



explain the lack of excited states found in graphene QDs studies on hBN substrate [3].

A rather important implication of our results, points out that the observation of
excited states does not directly implies the presence of electronic excited sates (i.e size
confinement effects) and that, in graphene QDs on Silicon dioxide substrates, phonon-
electron interactions may might be a relevant effect.

Conclusions.

In this section we developed a reliable and reproducible way of studying Coulomb
blockade-based QDs in graphene. The device under study appears as a valid exper-
imental turnaround to overcome the limitations introduced by the edges and/or the
constriction barriers in traditional etched QDs. An altered local density of states, an
A-B sub-lattice symmetry breaking or a modulation of the tunnel coupling due to reso-
nances in the constrictions, have been traditionally identified as a source of uncertainty
for the proper identification of size-confinement effects in graphene. Under finite mag-
netic fields, we firstly unveil the differences and the characteristics transport paths of
the two- and four-terminal configurations of the conductance on graphene quantum
point contacts. We identify the presence of resonances and localization effects within
the bulk region and we focus our analysis on an individual magnetically confined QD.
The magnetic evolution of the charging events and its accurate analysis allow us to
rule-out size confinement effects as the origin of the excited states. More importantly,
we suggest electron-phonon interactions as the mechanism behind the observed lines of
enhanced differential conductance outside the Coulomb diamonds.
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4.3 Evidences of an edge-induced disorder

In the following section I will analyze the crystallographic fingerprints of clean graphene
edges. Samples will be investigated by means of Raman spectroscopy experiments, al-
lowing us to characterize the edge quality of our newly developed fabrication technique.
Results will be compared to the abundant literature on Raman spectroscopy measure-
ments on scattering-related phenomena at the graphene edges [1-7].

4.3.1 Raman spectroscopy on mechanically exfoliated pristine graphene
ribbons

This section has been published in:

Raman spectroscopy on mechanically exfoliated pristine graphene ribbons
B. Terrés, S. Reichardt, C. Neumann, K. Watanabe, T. Taniguchi and C. Stampfer
Physica Status Solidi B 251, 2551-2555 (2014)

@ 2014 WILEY-VCH Verlag GmbH & Co. KGaA

Graphene nanoribons have been extensively studied in the past years [8-13], mainly
due to their promise of an electronic band-gap making them interesting for electronic
applications. Confinement of electrons in these nano-scaled structures is predicted to
form a quasi one-dimensional system [9] with its properties strongly depending on the
configuration of the edges [14, 15]. However, experimental and theoretical studies have
revealed graphene nanoribbons to be extremely sensitive to small amounts of disorder,
in particular to edge disorder [16, 17]. In fact, the transport characteristics of nano-
structured graphene ribbons are mainly dominated by statistical Coulomb blockade
effects [12, 18]. Improvements on the fabrication techniques allowing for cleaner edge
configurations are therefore of great importance and may not only improve the transport
properties [19] but also enable the investigation of the unique vibrational properties of
these graphene nanostructures [1]. Despite theoretical work [2, 3] there are - to our
knowledge - only a few optical characterization studies of graphene nanoribbons [4, 5].

Raman spectroscopy of carbon materials, in general, has been identified as a powerful
tool for determining the number of graphene layers [20, 21|, the local amount of strain
and doping [22], and for studying electron-phonon interactions [15, 23-25| and therefore
the electronic properties themselves.

In this work, we report on Raman spectroscopy measurements on non-etched graphene
ribbons of various widths (from ~ 15 to 160 nm) resulting from peeling-off a graphene
flake on the boundary region of a hexagonal boron nitride (hBN) flake and its underlying
5109 substrate. We show that the characteristic signatures of single-layer graphene are
well preserved and that the configuration of the edges is more regular compared to
previously studied graphene ribbons fabricated by state-of-the-art reactive ion etching
(RIE) techniques [4, 5]. Moreover, the analysis of the full width at half maximum
(FWHM) of the G- and 2D-line (I'¢ and I'sp) as well as the frequency of the G- and
2D-line (wg and wop) provide strong indications of finite size and/or edge effects |2, 3,
5].
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Figure 4.17: a, Optical microscope image of a ~30nm thin hBN flake (light blue color)
on top of a Si/SiOg substrate (grey color). b, ¢, and d, Scanning force
microscope (SFM) images taken in the region highlighted by the black box
in panel (a). ¢, SFM close-up image of the white-dashed box in panel (b).
In this region the ribbons are separated by a distance of around 1 pm, twice
as large as the spot-size d~ 500 nm (white circle) of the linearly polarized
laser with an angle 6. d, SFM close-ups of the ribbons (1), (2), (3) and (4),
also displayed in panel (¢). Ribbons (1) and (2) do not have a constant
width, as highlighted in the two upper subpanels of panel (d). We show
the wider and narrower ends of these ribbons. e, Characteristic Raman
spectra of bulk graphene on hBN [acquisition point B in panel (b)] and of
ribbon (2) [acquisition point A, panel (c)].

Fabrication.

The fabrication of the graphene ribbons is based on purely mechanical exfoliation of
graphite. We initially prepared Si/SiOy samples with deposited hBN flakes (Fig. 4.17a).
The hBN flakes have been mechanically exfoliated from pure hBN crystals and deposited
onto the Si/SiO9 substrate. Thereafter, the samples were immersed in a piranha solu-
tion, 3:1 mixture of sulfuric acid (H2SO4) and 30% hydrogen peroxide (H20O2), for 3
minutes and later rinsed with ultrapure water. This cleaning procedure has a similar
effect on the SiO2 surface than a plasma etching step prior deposition of the graphene
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Figure 4.18: a, Raman spectra (D- and G-line) of the ribbon (3) on SiO2 as a function
of the polarization angle 6 (see Fig. 4.17c). The difference in polarization
angle between subsequent traces is § = 22.5°. The Raman spectra are
normalized to the G-line maximum height and shifted for clarity. b, Polar
plot of I(D)/I(G) as a function of # for ribbon (3) on both hBN (blue
trace) and SiOs9 (red trace) substrates. ¢, and d, Raman spectra of ribbon
(4), on the hBN substrate, at #=0° (c) and 90° (d). The Lorentzian fits
to the data are shown in blue.

flakes. Both methods are supposed to hydroxylate the SiOy surface [26] and there-
fore increase the local adhesion of graphene to the surface. The Raman spectrum of
graphene on such a treated SiOs substrate is characterized by a very slight increase of
the FWHM of the 2D-line [27]. The hBN flakes are known to be chemically inert and
therefore not affected by the piranha solution at room temperature [28|. Interestingly,
we nonetheless observe an increase in doping of graphene on hBN compared to graphene
regions resting on SiOs,.

While the hBN flakes have been directly deposited on the SiO9 substrate, the graphene
flakes have been prepared on top of a ~300nm-thick layer of polymethylmethacrylate
(PMMA) previously spin-coated on a glass slide [29]. Raman spectroscopy was used
to identify and select individual single-layer graphene flakes [20, 30]. The resulting
graphene-PMMA-glass stamp was then mounted in a mask-aligner in such a way that
the graphene flake could be aligned on top of the hBN-SiOg piranha-treated chip [31].
Once on top of the hBN-SiOs target region, the two flakes were brought into contact.
This process was repeated until some parts of the graphene flake stuck to the hBN-SiO»
surface. This technique utilizes van der Waals adhesion to peel-off the graphene rib-
bons (shown in Fig. 4.17a), the hBN substrate is therefore important for this fabrication
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process since graphene adheres more strongly to the hBN than SiO2 [31]. The yield of
this fabrication process is nonetheless low and neither the position nor the width of the
obtained graphene ribbous is controllable. Therefore, this fabrication method is - in its
present form - irrelevant from a technological point of view, but it is extremely valuable
since it allows the Raman (and potentially transport) investigation of non-etched, i.e.
pristine, graphene ribbons. Moreover, we would like to emphasize that these graphene
ribbons were never in contact with any spin-coated polymer resist typically involved in
the fabrication of etched ribbons, nor with any solvents such as acetone, isopropanol or
even water.

An optical microscope image of a fabricated sample is shown in Fig. 4.17a. For
simplicity, we grouped the ribbons of similar width and labeled them as (1)-(4) (shown
in Fig. 4.17c). The widths were extracted from scanning force microscope (SFM) images
(Fig. 4.17b, ¢ and d), resulting in a width of W ~ 160 and 120 nm for the ribbons (4)
and (3). The widths of the ribbons (1) and (2) differ significantly between left and
right ribbon ends (see upper panels in Fig. 4.17d). Specifically, ribbons (1) and (2) have
a varying width from W ~ 40 to 15 nm [ribbon (1)] and W ~ 45 to 20 nm [ribbon
(2)]. In the following, we will therefore refer to the average width W ~ 25, 35, 120
and 160 nm of the ribbons (1), (2), (3) and (4). The Raman data were recorded using
a laser wave length of 532 nm (hwy = 2.33eV) through a single-mode optical fiber
whose spot size is limited by diffraction. The measurement setup is a commercially
available confocal Raman Microscope Alpha 300R from Witec, whose laser is linearly
polarized. The sample was fixed to a high-precision rotation mount model PRM-1
from Thorlabs, in order to manually adjust the polarization laser direction relative
to the ribbon axis (see inset in Fig. 4.17c). A long working distance focusing lens
with numerical aperture of 0.85 is used to obtain a spot size of approximately 500 nm
(circle in Fig. 4.17c). Characteristic Raman spectra of the narrow ribbon (2) and bulk
graphene, both on the hBN substrate, are presented in Fig. 4.17e. The Raman spectra
(labels A and B in Fig. 4.17b and 1c) show the prominent G-line (~1582 cm™!) as well
as the single Lorentzian-shaped 2D-line (2675 cm™!) as expected for graphene. No
defect induced D-line (=1340 cm™1!) or D’-line (=1620 cm~!) are observed on the bulk
graphene region (acquisition point B), which confirms that the fabrication method does
not induce defects into the graphene flake. In both spectra, a third prominent sharp
peak arises at ~1365 cm™!, which is attributed to the Raman-active LO phonon of
hBN [32].

Characterization of the edges

In order to characterize the edges and in particular the edge roughness of the graphene
ribbons, we performed polarization angle dependent Raman measurements. Fig. 4.18
shows the Raman spectra of the ribbons (3) (W ~ 120 nm, Fig. 4.18a and b) and (4)
(W =~ 160 nm, Fig. 4.18c and d) as function of the polarization angle 6 of the incident
light (see inset in Fig. 4.17c). For each ribbon and each polarization angle, a spectrum
has been recorded and the G-, D- and hBN-lines were fitted with a single Lorentzian
line shape (see examples in Fig. 4.18c and d). In agreement with previous work [4,
6, 7, 33|, the D-line intensity I(D) appears to be strongest for polarization parallel
to the edge and reaches a minimum for the perpendicular polarization 6§ = 90°. This
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Figure 4.19: a, Correlation between wsp and wg at T = 300 K. The descriptions of
the black and gray axis as well as the color code are introduced in the
main text. b, and ¢, False-colored Raman maps of I(hBN) and I(2D). The
boundary between the hBN and SiOs substrates in panel b is marked with
a white dashed line. The individual ribbons (1), (2), (3) and (4) are well
differentiated from each other. d, Map of the local 2D-line shifts due to
strain wyp . obtained after projecting all the Raman data points onto the
strain axis [solid black line in panel (a)] relative to its maximum value

[W’Q"L‘}g, green point in panel (a)]. The scale bar is 2um.

can be observed in Fig. 4.18a, where each Raman spectrum corresponds to a different
polarization angle 6, starting from 6 = 11.25° to § = 348.75° in steps of 22.5°. Every
trace in this plot is normalized to the maximum intensity of the G-line and shifted in
the intensity and frequency axis for clarity. For the rest of the analysis, we compare
the ratio I(D)/I(G) using the peak area of the fitted Lorentzian function as a measure
of intensity. In Fig. 4.18b we show a corresponding polar plot which illustrates the
expected mirror planes at § =0° and 6 =90° [6, 33]. Raman spectra with Lorentzian
fits for the direction of maximum and minimum D-line intensity (# =0° and 6 = 90°,
respectively) of ribbon (4) are presented in Fig. 4.18¢c and d.

According to Ref. [7] and assuming that I(G) does not depend on 6, a lower bound
for the edge disorder correlation length £ ~ 2vp/(wrb) can be estimated from the ra-
tio b= I(D)min/I(D)mar between the lowest and highest normalized D-line intensity
(I(D)min/I(G) and I(D)maz/I(G), respectively). For the ribbon (4) (Fig. 4.17c and
d), we obtain the lowest intensity ratio of b ~ 0.055 (Fig. 4.18¢c and d), which yields a
correlation length of € &~ 10nm. This value is significantly higher than the correlation
length of £ ~1nm reported on plasma etched graphene nanoribbons [4] and therefore
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suggests that the graphene ribbons have a more regular crystallographic orientation of
the edges.

Strain, doping and finite size effects

For a more detailed investigation of the dependence of the Raman spectra on the width
of the graphene ribbons, we study spatially resolved Raman maps of the sample. In
particular, we recorded a Raman map of the 6 pm by 10 pym sample region shown in
Fig. 4.17b with a spatial oversampling of 200 nm and an integration time of 15 s (with
a laser spot size of 500 nm and a laser power of ~1 mW). The corresponding Raman
maps of the hBN-line and the 2D-line intensities, [(hBN) and I(2D), are shown in
Fig. 4.19b and c. One can identify the hBN and SiOs substrates and the graphene
ribbons (1)-(4), partly crossing both substrates. In the lower right corner of Fig. 4.19c,
bulk graphene is also observed. By means of the so-called vector decomposition method
introduced by Lee et al. [22], we analyze the presence of strain and/or doping variations
in our sample. Accordingly, we plot the dependence of the G-line (wg) and the 2D-line
(wap) positions (i.e. frequencies) for all the Raman spectra recorded in the inspected
area (Fig. 4.17b) in Fig. 4.19a. The red points show the extracted Raman data from
spectra recorded on bulk graphene and ribbons, both on SiOs, whereas the light blue
points are from graphene regions resting on hBN. The blue data points with error bars
show the average values of wg and wop obtained for every individual graphene ribbon
(1)-(4) and bulk graphene (B) on the hBN substrate (see labels in Fig. 4.19a).

The solid and dashed lines indicate the slopes of the strain and large-scale doping
axis according to Ref. [22]. Please note that we do not know the exact origin of these
two axis and, for simplicity, we marked the same origin as in Ref. [22] (see green point
in Fig. 4.19a). Interestingly, the red cloud of data points clearly follows a slope of
Awap/Awg = 2.2 (solid black line), characteristic of uniaxial strain - in good agree-
ment with Lee et al. [22] -. Both red and main light blue data clouds appear to be offset
by ~2.2ecm™! in the wg axis with a direction parallel to the strain axis. This offset
is understood as a difference in induced doping [23| between the SiO2 and the hBN
substrates (extracted doping difference: An ~ 2x10' cm™?), most likely due to the
treatment with the piranha solution of the hBN surface. More interestingly, Fig. 4.19a
suggests that the narrowest ribbons [(1) and (2)] are subject to stronger doping com-
pared to bulk graphene and the wider ribbons. This is noticeable from their mean
positions [labeled (1) and (2) in Fig. 4.19al, which are at the very right of this plot (see
right gray dashed line of slope 2.2). However, there is an inconsistency with the line
width of the G-peak that will be discussed in the following section.

Interestingly, the same ribbons [(1) and (2)] seem to have also different strain values
compared to bulk graphene and the wider ribbons [(3) and (4)] (see lower dashed line).
This finding is highlighted after projecting all (wap; wg) points onto the strain axis
(the obtained values are labeled as wap.). In Fig. 4.19d we show the corresponding
spatial map of the difference wap . — wypy relative to its maximum value wypy%. Here,
we show that the strongest deviations are clearly for the two most narrow ribbons (see
yellow and red regions in Fig. 4.19d). Please note that in bulk graphene, the values
decrease close to the hBN edge and on bubbles (marked by white arrows in Fig. 4.17b
and Fig. 4.19d), which is a further sign that this quantity is indeed related to strain.
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Figure 4.20: a, and b, Local distribution of wg and I'ap, respectively. The scale bars
are 2um. ¢, Averaged wg and wep for every individual graphene ribbon
on hBN as function of 1/W. d, Averaged I'¢ and T'g9p for the individual
graphene ribbons on hBN as function of 1/W. e, Correlations between I'¢
and wg for the ribbons and bulk graphene on the hBN substrate. The light
red data points correspond to the narrowest ribbons (1) and (2) with their
respective averages marked in red. The ribbons (3), (4) and bulk graphene
(B) appear as gray data points with their average values in black. The
error bars in all the panels are half the standard deviation.

For a more quantitative analysis of the dependence of the Raman G- and 2D-modes
on the ribbon width, we analyze the changes in frequency and broadening of the G-line
as well as wop and I'sp as a function of the averaged ribbon width W. Apart from the
aforementioned difference in doping between the hBN and SiOs substrates (Fig. 4.19a),
the spatial representation of wg (Fig. 4.20a) reveals a stiffening of the G-line for the
narrower ribbons (1) and (2), which is in agreement with Fig. 4.19a and earlier work
[5]. Fig. 4.20c shows wg and wyp as a function of the inverse averaged width (1/W)
for the different ribbons. Interestingly, we observe an increase of wg as function of
1/W (see dashed line in Fig. 4.20c), meaning that the smaller the ribbon the stiffer
the G-line. This is commonly attributed to edge doping and/or confinement effects [5].
The 2D-line frequency wop does not show any substantial dependence with the width
of the ribbons (see red data points in Fig. 4.20c). In Fig. 4.20d we show that also the
G- and 2D-peak line widths (I'¢ and I'yp) increase with decreasing ribbon width W.
This width dependent broadening might be an indication of finite size effects [34]. In
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order to exclude doping effects for the increase of I', we show the dependence of wg as
function of I'¢ (re-plotting the data shown in Fig. 4.20c and d) in Fig. 4.20e. In complete
disagreement with experimental results on bulk graphene |15, 24, 25| and theory 35| on
doping dependent Landau damping, we observe an increase of wg with increasing I'g.
For bulk graphene, exactly the opposite has been observed in earlier experiments [15, 24,
25|. Finally, from Fig. 4.17a and d we can estimate a maximum strain difference in the
narrow ribbons. Assuming uniaxial strain, we extract a maximum strain difference on
the order of 0.23% [22]. It is important to note that according to Ref. [36] these values
cannot explain the observed maximum broadening of the G-line (Fig. 4.17¢), making
edge effects and/or finite size effects a prime candidate to explain our experimental
findings.

Conclusion

In summary, we discussed Raman spectroscopy measurements on lithography-free fab-
ricated graphene ribbons made by direct exfoliation of graphene on hBN flakes. Despite
a prominent doping of the hBN substrate, most probably induced by the fabrication
process, we were able to perform polarization dependent measurements that confirm
a more regular crystallographic orientation of the ribbon edges. The reported values
of correlation length & are one order of magnitude higher than on graphene ribbons
fabricated by plasma etching techniques. This direct comparison reveals the otherwise
expected roughness of the edges in plasma etched graphene nanoribbons.

Analysis of the frequency and broadening of the G- and 2D-line show prominent dif-
ferences between the narrowest ribbons (=~ 15 and 20 nm) and the widest ones (bulk
graphene included), suggesting the presence of confinement and/or edge effects in these
narrow structures. The results of this work highlight the disordered nature of the crystal-
lographic termination at the edges of traditional plasma etched graphene nanoribbons,
and emphasizes that further developments in the fabrication process yielding cleaner
graphene samples with regularly oriented edges may enhance both the vibrational and
electronic characteristics of graphene devices.

77



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

78

Saito, R. et al. Raman spectra of graphene ribbons. J. Phys.: Condens. Matter 22,
334203 (2010).

Gillen, R. et al. Vibrational properties of graphene nanoribbons by first-principles
calculations. Phys. Rev. B 80, 155418 (2009).

Bischoft, D. et al. Symmetry properties of vibrational modes in graphene nanorib-
bons. J. Appl. Phys. 109, 073710 (2011).

Gillen, R. et al. Raman spectroscopy on etched graphene nanoribbons. Phys. Rewv.
B 81, 205426 (2010).

Ryu, S. et al. Raman Spectroscopy of Lithographically Patterned Graphene Nanorib-
bons. ACS Nano 5 (5), 4123-4130 (2011).

Cancado, L. G. et al. Influence of the Atomic Structure on the Raman Spectra of
Graphite Edges. Phys. Rev. Lett. 93, 247401 (2004).

Casiraghi, C. et al. Raman Spectroscopy of Graphene Edges. Nan. Lett. 9, 1433—
1441 (2009).

Han, M. Y. et al. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys.
Rev. Lett. 98, 206805 (2007).

Lin, Y.-M. et al. Electrical observation of subband formation in graphene nanorib-
bons. Phys. Rev. B 78, 161409 (2008).

Wang, X. et al. Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanorib-
bon Field-Effect Transistors. Phys. Rev. Lett., 100, 206803 (2008).

Molitor, F. et al. Transport gap in side-gated graphene constrictions. Phys. Rev.
B 79, 075426 (2010).

Gallagher, P. et al. Disorder-induced gap behavior in graphene nanoribbons. Phys.
Rev. B 81, 115409 (2010).

Terrés, B. et al. Disorder induced Coulomb gaps in graphene constrictions with
different aspect ratios. Appl. Phys. Lett. 98, 032109 (2011).

Son, Y.-W. et al. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett. 97,
216803 (2006).

Yan, J. et al. Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene.
Phys. Rev. Lett. 98, 166802 (2007).

Wang, X. et al. Graphene nanoribbons with smooth edges behave as quantum
wires. Nature Nanotechnology 6, 563-567 (2011).

Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene
nanoribbons. Nature 458, 872-876 (2009).

Stampfer, C. et al. Energy Gaps in Etched Graphene Nanoribbons. Phys. Rewv.
Lett. 102, 056403 (2009).

Tombros, N. et al. Quantized conductance of a suspended graphene nanoconstric-
tion. Nature Physics 7, 697-700 (2011).



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

C.Ferrari, A. Raman spectroscopy of graphene and graphite: Disorder and electron
phonon coupling and doping and nonadiabatic effects. Solid State Commun. 143,
47 (2007).

Malard, L. M. et al. Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009).

Lee, J. E. et al. Optical separation of mechanical strain from charge doping in
graphene. Nature Communications 8, 1024 (2012).

Chen, C.-F. et al. Controlling inelastic light scattering quantum pathways in
graphene. Nature 471, 617-620 (2011).

Stampfer, C. et al. Raman imaging of doping domains in graphene on SiOs. Appl.
Phys. Lett. 91, 241907 (2007).

Pisana, S. et al. Breakdown of the adiabatic Born Oppenheimer approximation in
graphene. Nature Materials 6, 198-201 (2007).

Tiberj, A. et al. Reversible optical doping of graphene. Scientific Reports 3, 2355
(2013).

Wang, Q. I. et al. Understanding and controlling the substrate effect on graphene
electron-transfer chemistry via reactivity imprint lithography. Nature Chemistry
4, 724-732 (2012).

Altun, A. O. et al. Boron nitride stamp for ultra-violet nanoimprinting lithography
fabricated by focused ion beam lithography. Nanotechnology 18, 465302 (2007).

Zomer, P. J. et al. A transfer technique for high mobility graphene devices on com-
mercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).

Graf, D. et al. Spatially Resolved Raman Spectroscopy of Single-, Few-Layer
Graphene. Nano Lett. 7, 238 (2007).

Wang, L. et al. One-Dimensional Electrical Contact to a Two-Dimensional Mate-
rial. Science 842, 614-617 (2013).

Geick, R. et al. Normal Modes in Hexagonal Boron Nitride. Phys. Rev. 146, 543
(1966).

Gruneis, A. et al. Inhomogeneous optical absorption around the K point in graphite
and carbon nanotubes. Phys. Rev. B 67, 165402 (2003).

Ferrari, A. et al. Interpretation of Raman spectra of disordered and amorphous
carbon. Phys. Rev. B 61, 14095-14107 (2000).

Ando, T. et al. Anomaly of Optical Phonon in Monolayer Graphene. J. Phys. Soc.
Jpn. 75, 124701 (2006).

Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy:
G peak splitting and Griineisen parameters and sample orientation. Phys. Rev. B
79, 205433 (2009).

79



4.4 Reduction of edge-disorder via electrostatic gating

4.4.1 Electrical transport indications of a reduced disorder

The mobility of the charge carriers in graphene is strongly dependent on interactions
with impurities and/or the substrate. As introduced in Section 4.4, the transport char-
acteristic at zero Tesla of our graphene devices on SiOs is heavily influenced by the
presence of disorder. From a structural point of view, it appears rather reasonable to
differentiate between edges and bulk disorder. Whereas the later has been extensively
studied ([1-4] and Section 4.2.1), the limitations introduced by the edges of graphene
has been mostly treated in literature from crystallographic considerations [5-7]. In the-
ory, one would expect the wave-function of the charge carriers to be heavily distorted
by the anisotropic nature of the graphene edges. A locally modified density of states,
e.g. breaking of the A-B sub-lattice symmetry, as well as an irregular crystallographic
orientation of the edges [7] may hamper the observation of clear wave-function con-
finement phenomena in etched graphene nano-structures. Actually, newly developed
fabrication methods yielding to uniform edge terminations showed unambiguous signs
of wave-like phenomena, both in transport [8] as in optical measurements [9, 10]. How-
ever, eventhough such lattice considerations surely play an important role defining the
electronic properties of graphene nano-structures, the potential fluctuations introduced
by the chemical compounds attached to the edges may be more significant in real world
conditions. Ambient and/or processing impurities leading to chemical functionalization
of the edges may heavily alter the transport fingerprints [11].

Throughout this section, we study the dependence of the transport behavior of a
graphene constriction under influence of an applied side-gate voltage. We will reveal
the edges of graphene as being a major source of potential fluctuations. This section is
revelatory of an edge-characteristic disorder with a rapidly-varying spatial fluctuation
compared to bulk disorder. More importantly, we introduce a way to reduce the afore-
mentioned disorder by applying an electrostatic potential close to edges of the devices.
These findings may indeed be relevant for other 2D materials, as the abrupt termination
of the 2D material, i.e. the edges, are a common issue.

To fabricate the samples, we mechanically exfoliated graphene flakes and deposited
them onto a highly p-doped Si substrate. We verified the single-layer nature of the se-
lected graphene flakes via Raman spectroscopy measurements [12]. The nano-structured
graphene device shown Fig. 4.21a, b has been patterned by electron-beam (e-beam)
lithography of a ~ 120 nm-thick resist etching mask. The unprotected graphene was
removed by a reactive ion etching (Ar/O2 plasma) process. After removing the residual
resist, the graphene devices were contacted with Cr/Au electrodes. Prior measuring,
samples were immersed in a 1% buffered Hydrofluoric acid (HF) solution. This clean-
ing procedure proved to remove dopants and/or absorbents and therefore disorder in
graphene [13].

Samples were measured in a pumped He* system at T~ 1.6 K and in a dilution
refrigerator at T~ 15mK. The conductance through the constrictions was recorded by
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Figure 4.21: Device fabrication and electrical characterization. a, b, False-
colored Atomic Force microscope (AFM) images of a side-gated graphene
constriction of width W =70nm and length L = 150nm, contacted in a
4-terminal configuration. The Cr/Au metal electrodes, the SiOs substrate
and the graphene are represented in yellow, dark blue and blue color, re-
spectively. The conductance G is measured after applying a bias voltage
V=350 1V between the source and drain terminals (Ig, Ip). The voltage
is measured between terminals V4 and Vp. The left side-gate electrode
(Vsgr) and right side-gate electrode (Vsgr) can be tuned individually. ¢,
4-terminal (blue trace) and 2-terminal (red trace) conductance G as a func-
tion of V¢ for the graphene device shown in panels a and b. The inset
shows a close-up view inside the transport gap region. d, Color plot of the
source-drain current (Igp) as a function of Vpg and source-drain voltage
Vsp. The inset reveals the diamond-like features inside the transport gap
region.

low-frequency lock-in techniques after adding an AC bias voltage of 100 V. To locally
tune the electrostatic potential at the edges of the graphene constriction, a couple
of lateral graphene gates has been placed 40nm away (Fig. 4.21a, b). These side-
gate electrodes can be operated symmetrically (Vsgr, = Vsgr) or anti-symmetrically
(Vs¢r=—Vsqar). Samples were designed in a four-terminal configuration (Fig. 4.21a) to
withdraw any spurious contribution from the metal-graphene interface and the graphene
leads. A comparison between 2- and 4-terminal conductance is shown in Fig. 4.21c. As
expected, both traces are qualitatively similar inside the low conductance region, i.e.
transport gap (inset of Fig. 4.21c), showing that, close to the charge neutrality point,
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the graphene region of lowest conductance is actually the constriction area. At higher
charge carrier densities, the 2- and 4-terminal conductances differ substantially from
each other (Fig. 4.21c). Quantitatively, we observe high levels of conductance for the
4-terminal configuration, as well as robust and reproducible oscillations superimposed
to the conductance trace.

Even tough the current cannot be completely pinched-off in these 70 nm-wide con-
strictions (inset of Fig. 4.21c), the transport gap still exhibits a diamond-like pattern
(Fig. 4.21d), suggesting that the transport mechanism inside the transport gap is mostly
dominated by statistical Coulomb blockade, in good agreement with earlier work [14-17].

Fig. 4.22 shows the conductance G as a function of the back-gate voltage Vpg for
a symmetric (Vsgr = Vsgr) and an anti-symmetric (Vsgr = —Vsgr) configuration of
the side-gate potentials. Away from the charge neutrality point, i.e at high carrier
densities, the conductance displays robust and reproducible resonances. These quasi-
periodic oscillations of the conductance (arrows in Fig. 4.22a) are apparently undis-
turbed as a function of symmetric side-gate potentials (Fig. 4.22a,b,d, and e) and yet
become remarkably disturbed under increasing anti-symmetric potentials (Fig. 4.22¢
and f). These effects reveal a sudden and significant change in the scattering landscape
along the electronic path under application of an anti-symmetric potential. Contrary,
a symmetric side-gate potential seems to tune the charge carrier density without any
noticeable modification of the scattering/disorder landscape. These initial experimental
observation seems to indicate the prominent contribution of the potential landscape to
the conductance and its dependence with a anti-symmetric side-gate potential.

It is important to note the absence of a net contribution to the charge carrier den-
sity under anti-symmetric operation of the side-gates (Fig. 4.22c¢ and f). This can be
seen by looking at the position of the charge neutrality point (dashed white line in
Fig. 4.22¢), which remains vertical as a function of side-gate voltage potentials. This
behavior suggests that both left (Vsgr) and right (Vsgr) side-gates couple equally to
the constriction.

The same behavior is observed at different temperatures (see temperatures in Fig. 4.22).
Although at high temperatures 7'= 20 K (Fig. 4.22a and d) the resonances not only
decay in amplitude but their periodicity changes, suggesting that resonant scattering
and/or coherent contributions are present in our devices. We note that all resonances
(black arrows in Fig. 4.22a) under symmetric side-gate potentials evolve according to
the very same relative lever arm ;. as the conductance minimum, also called charge
neutrality point Vonp (white dashed lines in Fig. 4.22a, b). We are therefore dealing
with resonances happening in the constricted area. The relative lever arm a,.; is a
relative measure of the electrostatic coupling between the side-electrodes and the con-
striction Aggq, defined by comparing it to the back-gate vs constriction coupling Apq.
Basically a,.ei=AVpa/AVsa=~0.5.

Even if the overall charge carrier density is tuned by the symmetric potentials, we do
not observe at high energies any apparent modification of the transport characteristics
as a function of a symmetric side-gate potential. This can be understood looking at
the numerical simulation of the electrostatic potential distribution across the graphene
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Figure 4.22: Influence of an applied side-gate potential at high carrier den-
sities. a, b and ¢, 4-terminal conductance maps as a function of the
back-gate voltage Vpg and the left side-gate voltage Vg for a symmetric
Vsar = Vsgr (panel a and b) and an anti-symmetric Vsgr=-Vsar (panel
c¢) configuration of the side-gate potentials. The charge neutrality point
Vonp is indicated by a white dashed line. d, e, and f, 4-terminal con-
ductance traces versus Vpg for a symmetric, Vsqar,=Vsar (panel d and e),
and an anti-symmetric, Vsgr=-Vsgr (panel e), configuration of the side-
gate potentials. The traces are shifted upwards in the G-axis for clarity.
Temperatures are indicated in the panels.

nanoribbon (Fig. 4.23).

The numerical simulations within this section are performed with nextnano® soft-
ware [18, 19], a simulation package based on Fortran90-code that provides electrostatic
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Figure 4.23: Disorder-reduction in the quantum Hall regime. a, b, and ¢, Trans-
verse line-cut of the electrostatic potential around the graphene nanorib-
bon (GNR) the side-gate (SGR, SRL) and the back-gate (BG) electrodes
(represented in white), for the following configurations: Vpg = 10V,
Vsar = Vsgr = 0Vin panel a, Vg =0V and Vsgr = —Vsgr =9V in
panel b, and Vpa=—10V and Vsgr, =Vsgr=9V in panel c. The ribbon
potential is zero in all panels. d, e, and f, Transverse line-cut of the elec-
trostatic potential in the graphene nanoribbon of width W = 80nm, for
the electrode configurations shown in panels a, b and c, respectively. The
color code in panel f indicates the potential applied to the back-gate.

simulation in one, two and three dimensions, for different nanodevice geometries and an
extensive materials database, including graphene. As an important feature, we note that
quantum mechanical effects, like wave-function confinement and quantum capacitance,
are taken into account.

Fig. 4.23a,b and ¢ show the cross-section of the electrostatic potentials accross a
80 nm-wide graphene nanoribbon GN R with lateral gates SGR/SGL and a back-gate
BG (inset of Fig. 4.23d) for different potential configurations of the electrodes (see figure
captions). As observed in Fig. 4.23, the 2D nature of graphene induce a strong poten-
tial inhomogeneity along the edges. At the sharp edges of the graphene nanoribbon,
the potential develops a 1/+/z singularity (Fig. 4.23d). This strong inhomogeneity has
been analytically predicted [20, 21] and experimentally demonstrated [22]. Therefore,
at high carrier densities, the effect of the lateral gates is redundant since the back-gate
electrostatic potential already increases the local potential at the edges. Close to the
charge neutrality point though, when the back-gate electrode is tuned to zero voltage,
the influence of lateral potential is rather significant (cyan trace in Fig. 4.23e and ). We
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Figure 4.24: Reduction of disorder inside the transport gap. a, Averaged con-
ductance (G) as a function of Vggr for a back-gate voltage interval
AVpg =20V within the black dashed lines inside the transport gap of
panel b (red trace) and panel ¢ (black trace). b, ¢, Color maps of the
4-terminal conductance G for a symmetric (Vsgr = Vsgr) and an anti-
symmetric (Vsgr =-Vsgr) configuration of the side-gate potentials (panels
b and ¢, respectively), measured at T=15mK.

therefore expect to see a considerable dependence of the transport behavior as a func-
tion of the side-potentials inside the transport gap. Indeed, close the charge neutrality
point, i.e. for low back-gate voltages, the potential profile induced by the back-gate is
predominantly flat (see cyan trace in Fig. 4.23d).

Experimental evidences are found in Fig. 4.24, where we show a close-up of the con-
ductance inside the transport gap as a function of back-gate and side-gate voltages.
Sweeping the side-gate potentials anti-symmetrically (Vsgr = —Vsgr) seems to ran-
domize the conductance traces without any apparent pattern (Fig. 4.24c). In fact, this
behavior was already observed at high carrier densities (Fig. 4.22c¢ and f) where an
anti-symmetric potential appeared to change the scattering landscape and therefore its
electronic transport fingerprints (Fig. 4.27f). Contrary, for high symmetric potentials
(Vsagr= Vsgr > 4V), the overall conductance inside the transport gap gradually in-
creases (Fig. 4.24b). To evaluate the change in conductance we calculate (G) defined
as the averaged conductance within a back-gate voltage interval of AV, =20V around
the charge neutrality point (region between the dashed black lines in Fig. 4.24b and
¢). (G) is calculated for Vsgr=Vsqr and Vsgr=—Vsar (panel b and ¢ of Fig. 4.24,
respectively). At high side-gate voltages (Fig. 4.24a), the value of (G) for symmetric
potentials is ~3 times higher than for the anti-symmetric case (compare red and black
traces in Fig. 4.24).

These results confirm that a symmetric side-gate potential influences the transport be-
havior mainly around the charge neutrality point and supports the conjecture, supported
by electrostatic simulations (Fig. 4.23), that at high back-gate voltages the potential
at the edges is already augmented. This effect is known as fringe-fields in literature
[22] and it is expected to arise in 2D materials that are gated by a comparatively large
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Figure 4.25: Reduction of disorder inside the transport gap. a, b, and c, 2-
terminal differential conductance G = dI/dV in log scale, as a function
of bias V, and back gate voltage Vpg for Vsgr = Vsgr = 0V (panel a),
Vsar = Vsgr =6V (panel b) and Vggr, = —Vsgr =6V (panel ¢). The
Temperature was set to T'=15mK for all measurements.

parallel electrode. More importantly, these first results suggest an important reduction
of disorder potential under symmetrically applied lateral potentials.

This reduction in disorder is supported by bias spectroscopy measurement (Fig. 4.25).
At Vsar, =Vsar =0V the bias spectroscopy shows the traditional diamond-like features
of disordered graphene constrictions [14-17]. Setting the side-gate potentials to Vsgr =
Vsgr=06V and Vsgr,=—Vsagr=06V allows to compare the effects of a symmetric and
anti-symmetric potential on the transport characteristics (Fig. 4.24b and ¢, respectively)
and deduce the effects of the applied side-gate configuration on the potential landscape
(Fig. 4.26 and Fig. 4.27).

Starting with the bias spectroscopy data from Fig. 4.25 and following the model intro-
duced by Stampfer et. al. [23], we attribute the biggest diamond to the smallest charged
island along the constricted area. A zoom-in map of the biggest diamonds can be found
in Fig. 4.27a, b and c. The diamond extension Ej/e in the bias voltage direction (red
arrows in Fig. 4.27ab and c) is directly related with the dimensions of the smallest
charged island. We extract the largest energies E, ~ 10, 14 and 5meV for the config-
urations Vsagr, =Vsgr=0V, Vsgr =—Vsqgr=6V and Vsgr, =Vsgr=6V (Fig. 4.27a,
b and ¢, respectively). Which correspond to the island diameters d ~ 180, 120 and
350 nm. The diameter d of the charged island is estimated using a simple disc model,
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Figure 4.26: Sketch of the potential distribution under finite side-gate poten-
tials. a, Sketch of a graphene nanoribbon with the right and left side-gate
electrodes indicated by SGR and SGL, respectively. The dashed and solid
gray lines indicate the ribbon axis and the limits of the constriction, re-
spectively. b and c, Line-cut of the disorder fluctuations along the ribbon
axis (dashed gray line marked R, in panel a) for Vggr, =Vsgr=0V (panel
b) and Vsgr =Vsar=6V (panel c¢). The dimensions of the dots (solid and
dashed green colored) and anti-dots (solid and dashed blue colored) depend
on the disorder potential (marked AFEp), the Fermi Energy Fr and the
side-gate potentials (Vsgr, and Vsgr). d, and e, Schematic representation
of the dots’ dimensions and their spatial distribution, for a side-gate po-
tential Vsgr =Vsar=0V (panel d) and Vsgr, =Vsgr=06V (panel e). For
simplicity, we discard the representation of the anti-dots.

with d=e?/(4epecsrEy) and ecpp=(1+4)/2 = 2.5, where €.y is the effective dielectric
constant including the vacuum and Si03 contributions. We can therefore conclude that,
under high symmetric potentials, there is a substantial increase in the dimensions of
the charged islands that may also explain the overall increase in conductance. Notice
that the conductance background in Fig. 4.25b is higher than for panels a and c¢ of the
same figure.

To visualize the effects of the side-gates on the potential landscape along the graphene
ribbon, we schematically represent the evolution of the electron-hole puddles for the
symmetric configuration of the side electrodes in Fig. 4.26. Depicted in blue and green
we show the dots and anti-dots forming along the electronic path. In these sketches it is
not represented the quantum confinement energy gap separating the hole- and electron-
like charged puddles, as described in Fig. 4.2. As suggested by the bias spectroscopy
measurements of Fig. 4.25 and Fig. 4.27a-c, the increase in conductance upon applica-
tion of symmetric side potential (Fig. 4.24a) is due to the broadening of the localized
states along the electronic path. The localized states are extended (Fig. 4.26¢) owing
to a longer lengthscale of the disorder potential fluctuations AEp (Fig. 4.26¢) under
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Figure 4.27: Effect of an anti-symmetric side-potential. a, b, and ¢, Zoom-in bias
spectroscopy measurements showing the biggest diamond (dashed white
lines) inside the transport gap for Vsgr = Vsgr =0V (panel a), Vsgr =
—Vsgr=06V (panel b) and Vg =Vsgr =6V (Panel ¢). Data has been
taken at T = 1.7 K. d, Schematics of a graphene nanoribbon of width
W and length L, with the left and right side-gates electrodes indicated
by SGR and SGL, respectively. e, Line-cut of the disorder fluctuations
along the ribbon axis (red line B in panel d), the confinement energy gap
appears in orange. f, Line-cut of the disorder potential along the ribbon
width (red line A in panel d), for anti-symmetric (Vsgr = —Vsgr=6V)
and symmetric Vggr, = Vsgr = 0V side-potentials. The Fermi energy is
marked by an dashed gray line. The resulting distribution and size of the
dots (green) and anti-dots (blue) is represented aside.

symmetric side-gate potentials.

Alternatively, we represent a possible schematic representation of the localized states
distribution for an anti-symmetric potential (Fig. 4.27). In that case, the tilting of the
potential across the constriction (see simulations in Fig. 4.23e) may force an effective
splitting of the electron-hole puddle (Fig. 4.27f). This description is again (see Sec-
tion 4.1) only valid in the presence of a quantum confinement energy gap (AEg, in
Fig. 4.2 and represented in orange in Fig. 4.27e and f). This confinement energy has
been estimated in literature [23] as AEqo, (W) = ymac—c /W, where v~ 2.7eV and
ac—c =0.142nm (23, 24]. Effectively, the size of the charged islands should decrease
approximately by half after applying an anti-symmetric potential (Fig. 4.27f), which is
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Figure 4.28: Schematic interpretation of the disorder reduction process. a, See
description in Fig. 4.26a. b, Disorder fluctuations line-cut along the ribbon
edges (dashed gray line marked B in panel a). The dimensions of the dots
(solid and dashed green colors) and anti-dots (solid and dashed blue colors)
depend on the disorder potential (marked AEp) and the Fermi Energy
(Er) along the edge of the constriction. The change in Fermi energy (EF)
upon application of a symmetric potential (Vsgr = Vsgr=06V) is shown
in red and the corresponding change in the dots/anti-dots dimensions in
dashed colors. ¢, and d, Schematics representation of the dots’ dimensions
and their spatial distribution inside the black box of panel a, for a side-gate
potential Vsgr, =Vsgr =0V (panel ¢) and Vsgr =Vsgr =6V (panel d).
For simplicity, we discard the representation of the anti-dots. The light
and dark green colors highlight the localized states along the edges and the
ribbon axis, respectively.

in reasonable fair agreement with the extracted energy scales from panels a, b and ¢ of
Fig. 4.27 (see red arrows).

Up to this point, we essentially described the experimental findings and relate them
to the dimensions of the electron- hole-puddles. Although this link appeared straight-
forwardly, the connection between an applied side-gate voltage and the modification of
the potential landscape is still missing. Indeed, one may expect any applied potential
to tune the Fermi energy Er without severely modifying the potential topography. In
our case though, a locally applied potential at the edges of the graphene constrictions
appeared to heavily smooth the potential inhomogeneities. In the following, we will
introduce a conceptual description of this process by relating it to the edge-induced
disorder. Even though the description is merely an interpretation exercise and/or a
possible case scenario, it may help to the outlook and further investigations on the topic.

The graphene nanoribbons within this section are fabricated by reactive ion etching
processes. This plasma process is extremely reactive on the graphene edges and the
crystallographic orientation of the edges are expected to be highly inhomogeneous. First
experimental observation supporting this statement can be found in Section 4.3.1, where
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we found a correlation length ¢ of exfoliated graphene ribbons one order of magnitude
higher than for plasma etched ones. As shown theoretically [25], in non-regular edge
crystal structures as the one expected for RIE etched ribbons, just with three or four
zigzag sites per sequence (understanding sequence as any length with a regular crystal
pattern) are enough to exhibit a non-negligible edge state. These edge states, not to
be mistaken with the edge states in the QHE regime, can be understood as a charge
density distribution localized at the edges of the graphene ribbons [25]. In Section 6.2
we bring further evidences of these strongly edge-bounded states in ballistic graphene
nanoribbons and their charging effects in transport. We can therefore understand these
edge states as a direct consequence of the crystal disorder. We will from now on refer
to this crystal disorder and any dopants or chemical functionalization at the edges as
edge-induced disorder.

In Fig. 4.28 we depict the edge states as hole or electron-puddles (represented in
light blue and light green colors) of a length-scale much smaller than the extension of
the localized states within the ribbon center region (represented in dark green color
Fig. 4.28¢ and d). The spatial extension of the edge states is believed to be in the
nanometer scale (~ 2 to 10nm [25]) whereas the charge puddles are in the order of
~ 100nm (see Section 4.2.1, Section 4.4.1 or Section 4.4.3 for an estimation of the
charged puddle dimensions). The spatial extension of the edge states can be seen in
Fig. 4.28¢c and in Fig. 4.28b as a line-cut of the disorder potential long the ribbon edges
(black dashed line in Fig. 4.28a).

We will start by assuming that the extension of the charge puddles within the ribbon
bulk depend on the length-scale of the edge-induced disorder, also called correlation
length & (see section Section 4.3.1). We would expect that the shorter £ the smaller the
localized states within the nanoribbon bulk. In this scenario, an applied lateral poten-
tial is expected to increased the Fermi energy Ep at the edges (see Er marked in red
in Fig. 4.28b). The effect, or potential difference induced by the side-gate electrodes, is
very small at the center/axis of the ribbon (see cyan trace in Fig. 4.23f). This elevated
Er at the edges, may then enlarge the edge states, as indicated in dashed light green
color in Fig. 4.23a and f. The consequence of enlarging this edge states seems therefore
to extend the localized states (dashed dark green puddles in Fig. 4.23f). In other words,
upon application of a side-gate potential we shield the intrinsic correlation length £ of
the edges, smoothing the disorder fluctuation along the electronic path (dashed dark
green puddles in Fig. 4.23f).

This section is revelatory of the role of disorder in the transport properties of graphene
constrictions. We emphasize the direct link between conductance and bulk disorder and
propose a possible connection accounting for the effects of the edge-induced disorder
on the transport characteristics. More importantly, the experimental findings suggest
an important reduction of disorder via symmetrically applied lateral potentials. This
electrostatic approach to reduce disorder may not only be relevant for graphene but to
any 2D material where the edge/boundaries are not defined by a smooth electrostatic
potential, like in traditional 2D electron gases (2DEGs), but rather by the abrupt ter-
mination of the material.
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4.4.2 Observation of Fabry-Pérot oscillations as a proof of disorder
reduction

As stated in Section 4.2.1, close to the charge neutrality point, graphene nanodevices
show low levels of conductance superimposed with sharp but reproduceable conductance
peaks/fluctuations (see Fig. 4.1). This low energy range is known as "transport gap"
and its underlying physics is driven by statistical Coulomb blockade.

Although the conductance oscillations (Coulomb peaks) are observed all along this
low-energy range (see Section 4.2.1), its nature is sooner related to the classical diffu-
sive motion of electrons [26] rather than to quantum interference effects. In fact, these
sharp resonances arise from the potential fluctuations along the electronic path together
with the lack of coherence of the charge carriers. Inside the transport gap, the charge
carriers lose their coherence by tunneling along the conductive path, presumably due to
the weak coupling between successive charge puddles. The lack of coherence has been
demonstrated by fitting the shape of these conductance peaks by a Gaussian line-shape
[27, 28] (refer to Fig. 4.3).

At high energies though, similar conductance fluctuations are also observed, although
its underlying physics is different. Contrary to the particle-like behavior (statistical
Coulomb blockade picture) of the charge carriers inside the transport gap, at higher
energies, the oscillations mostly relate to wave-like phenomena. quantum interference
effects become increasingly important as soon as the electron phase coherence length
becomes comparable to the size of the device. Analogous results have been observed
in carbon nanotubes (CNT) [27, 29, 30|, where resonant tunneling effects, also called
Fabry-Pérot interferences, arose thanks to the coupling of the electron wave-functions
to a resonant cavity. In that case, a single conductance resonance line-shape is well de-
scribed by a Lorentzian function [27], which is related to energy uncertainty [28] rather
than thermal broadening (Coulomb blockade scenario).

As observed in Fig. 4.21c, Fig. 4.22 or Fig. 4.29a, these quasi-periodic conductance
oscillations are clearly distinguishable when represented as a function of a symmetric
side-gate potential. As we mentioned in previous section (Section 4.4.1), the symmetric
potential tunes the overall charge carrier density without modifying the scattering land-
scape. We therefore observe the resonances evolving parallel to each other, following
the same relative lever arm «,;. These oscillations have a characteristic periodicity
in the order of AVpg =~ 4V. Traditionally, the periodicity in the Vpg-axis, or as a
function of the bias voltage V4, exhibits an inverse dependence as function of the cavity
length L. Extracting the this length-scale L directly from the measurements may allow
us to determine the physical cavity where the wave-like carriers are coupling to. For
an experimental demonstration in CNTs please refer to [29]. We therefore expect to
extract the dimensions of the resonance cavity by taking a closer look at the differential
conductance Gg;fr =dG/dV, as a function of back-gate and bias voltages (Fig. 4.33). As
shown by the bias spectroscopy measurements at T'=1.7 K (Fig. 4.33b), the positions
of the dG/dV}, dips evolve smoothly as a function of V;, and Vpg, forming a mesh of
crisscrossing dark lines. The dips in dG/dV}, (dark lines) are more pronounced than the
typical dG/dV, peaks characteristic of Coulomb diamonds [26]. A change in Vpg or V},
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Figure 4.29: Energy-scale of the conductance oscillations. a, G traces for the
70 nm-wide device shown in Fig. 4.21 as a function of symmetric side-
potentials, from Vsgr = Vsgr =0V (black trace) to Vsgr = Vsgr =9V
(red trace). Traces are shifted upwards in the G-axis for clarity. Measured
at T'=1.7K. b, Differential conductance Gg;ry vs. Vpg and V; of the
characteristic conductance oscillations seen in panel a. We extract a Energy
scale Vor 16 meV (red dashed line and red arrow). Measured at T=1.7 K.
¢, and d, Differential conductance Gg;ry vs. Vpg and Vp of the same
device as in panel a, measured at T=15mK. A much lower energy scale
Vo3 meV (red dashed line and red arrow) is also observed, characteristic
of a rapidly varying conductance oscillations (panel d).

thus modulates the Fermi energy of the charge carriers in graphene and hence changes
the Fermi wave-number k& = 27/A. The dG/dV, oscillations are thus attributed to a
modification of momentum kr. We extract an energy scale E. = e V.~ 16 meV (dashed
red line in Fig. 4.29b). The resonant length L is related to the energy E. by:

_2m 2L o B _ _ hop
,\F_kF_M @Ak-L = FE.=AF=hvpAk = T (4.8)

where M is the number of modes coupling to the cavity of length L at the Fermi en-
ergy Fr, and AFE (Ak) is the energy (momentum) spacing between successive sub-
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Figure 4.30: From particle- to wave-like phenomena. a, and b, 2-terminal con-
ductance G?T as a function of Vg and a symmetric side-gate voltage
Vsar = Vsar, measured at T'=1.7 K, for two different cool-downs of the
same device. The black arrows indicate the parallel resonances arising at
high values of symmetric potential (panel b) and the green arrow the charge
neutrality point (CNP) of the leads (panel a). ¢, 4-terminal conductance
G*T as a function of Vgg and Vsar = Vsgr, measured at T=1.7K. d,
4-terminal conductance traces from Vggr, = Vsgr =0V (black trace) to
Vsar = Vsgr = 9V (red trace) in steps of 0.3V. Traces are shifted in
steps of 0.15V in the G — axis and AVpg = Vsqr X aue in the Vpg — axis
for clarity, where a,. is the relative lever arm (Fig. 4.22). e, Compari-
son between the conductance G*T at Vsqgr, =Vsar=0V (black trace) and
Vsar=Vsar=9V (red trace). The red trace is shifted Vsgr X apep = 4.5V
in the Vg —axis. f, Conductance G*T represented as a function of kp
(refer to text). g, We determine the dimensions of the resonant cavity
L ~ 160 nm via the Fourier transform (FFT) study of the trace shown in f.
Bias voltage is ;=350 uV in all panels.

bands, also known as level spacing. We thus extract a characteristic length-scale
L = hvp /2E¢ =~ 140nm from the extracted energy scale in Fig. 4.33b (red dashed
line and arrow). This dimension is in the order of the constriction length L.~ 150 nm.
We attribute the resonance path of the charge carriers to the back- and forth-scattering
along the constriction length, presumably due to the PN-NP junctions building at the
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bottle neck of the constriction with the leads (for more details see Section 4.2.1 or
Fig. 4.8d). These findings represent another experimental proof supporting the sit-
uation depicted in Fig. 4.8d. Similarly, it is also possible to extract a characteristic
length-scale L from the conductance oscillations as a function of Vpg. Once repre-
sented as a function of momentum krp = v/maVpq, the pseudo-period of the oscillations
Akp is directly proportional to the dimensions of the cavity Akp = 7/L (for more
details please refer to Section 6.1). We extract a length-scale of L ~ 160nm, which
is in fairly good agreement with the dimensions extracted from the bias spectroscopy
measurements.

Moreover, at low temperatures, we also observe conductance fluctuations with a con-
siderably smaller periodicity AVpg ~ 0.2V (Fig. 4.29c and d). After extracting their
energy scale E. ~ 16 meV (Fig. 4.29¢), we obtain a resonance length of L ~ 700nm,
in agreement with the distance between constriction and metal contacts (Fig. 4.21a).
Once the fundamental resonant periodicities in our graphene structure has been char-
acterized, we focus on the effects of a symmetric potential inside the transport gap.
As mentioned above, although the conductance traces are superimposed with resonant
oscillations of a characteristic periodicity, at Vsgr =Vsar=0V, the transport gap does
not show any traces of resonance pattern (black trace in Fig. 4.30d). By increasing the
symmetric potential, resonant oscillations gradually develop inside the transport gap
(Fig. 4.30). This effect is visible in the 2- and the 4-terminal conductance (Fig. 4.30a
and b, respectively). Qualitatively, these oscillations behave equally as the ones ob-
served at higher charge carrier densities (Fig. 4.27a). They evolve parallel to each other
with the same relative lever arm (black arrows in Fig. 4.30a and b). A direct compar-
ison of the conductance trace at Vggr, = Vsgr =0V and Vsgr = Vsgr =9V (black
and red trace in Fig. 4.30d, respectively) reveal the striking differences between the two
conductance traces close to the charge neutrality point.

Within this section we demonstrated the classical-to-quantum transition within the
whole energy range of graphene nanodevices. Results suggests the possibility for nanometer-
sized electronic elements that make use of quantum coherence. Compared to CNTs,
where the fabrication of coherence devices is limited to the metallic ones [29], graphene
devices are not limited by the chirality of their crystal structure, thus making them a
far better candidates for the realization of quantum mechanical devices.

More importantly, we proof that edge disorder is significantly reduced by applying a
symmetric side-gate potential. Close to charge neutrality point, an energy range that
has been traditionally driven by Coulomb blockade physics, the disorder fluctuations
have been reduced to the point where charge carriers started to develop hints of the
wave-like behavior, i.e. quantum interference phenomena. These findings open the door
to further reduce the effects of the edges and their inherent induced disorder potential,
in graphene and other 2D materials.
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4.4.3 Fano resonances as a proof of disorder reduction

In previous Section 4.4.1 we introduced the effects of an applied side-gate potential on
the disorder landscape. Effectively, we assumed the charged puddles along the graphene
constriction to increase in size under the effect of a symmetric side-gate potential. Thus
reducing the amount of localized states that the charge carriers need to overcome to
travel between source and drain leads (see sketch in Fig. 4.26). These assumptions
were deduced by looking at the charging energies of the biggest diamond (see Fig. 4.27)
as well as the dimensions of the transport gap in the bias spectroscopy measurements
(Fig. 4.25). At that point, we presumed the edge disorder, due to a rough crystallo-
graphic orientation at the edges and/or the presence of trap states/contaminants, as
being linked to the amount of disorder fluctuations, i.e. the number of charged pud-
dles, along the electronic path. Either way, by operating the side-gate electrodes, we
locally tune the potential at the graphene edges, which appears to enlarge the size of
the localized states along the constriction axis (see sketch in Fig. 4.28). At the limit,
under high side-gate potentials, we would thus expect the charged puddles to broaden
beyond the constriction length, effectively building a quasi-1D channel between source
and drain leads (Fig. 4.31).

In this section, we report on the experimental observation of a quasi-1D electronic
system building along a graphene constriction. The 1D nature of the conductance path
develops after shrinking the contribution of the disorder fluctuations by a symmetric
side-gate potential (see Section 4.4.1). The 1D-like channel is identified via its coherent
interference with a zero-dimensional (0D) system. The coherent interference between

VSGL

VSGR

Figure 4.31: Proposed interference path. Schematic representation of a possible
Fano system formed by a direct coherent quasi 1D-system and a resonant
path, e.g. quantum dot. The 1D system is assumed to arise along the
electronic path upon application of a symmetric side-gate potential. The
location of the QD is justified by comparing its electrostatic coupling , i.e.
relative lever arm, compared to the capacitive coupling of the Coulomb
resonances within the transport gap (see discussion in text).
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Figure 4.32: Side-gate dependence of the Fano resonances. a, b and ¢, 2-terminal
conductance traces measured at V, =250 uV (black traces) and V,=5.5mV
(red traces) for Vsgr, = Vsgr = 0V, Vsgr = Vsgr = 6V and Vsgr =
—Vsgr=06V (panels a, b and ¢, respectively). The red traces are shifted
0.5 €2/h units up in the conductance axis for clarity. d, e and f, Same as a,
b and ¢, measured in a 4-terminal configuration. The green arrows indicate
the position of quasi-periodic Fano line-shapes. All data panels have been
recorded at T'=15mK and B=0T. The red traces are shifted 0.5¢2/h
units up in the conductance axis for clarity.

the 1D and 0D systems form a Fano-like interference pattern, visible in both the 2-
and 4-terminal conductance. Results bring further evidences on the effects of a side-
gate potential in flattening the disorder (refer to Section 4.4.1). Moreover, we appoint
side-gated constrictions as a reliable route to fabricate Fano-resonance based quantum
interference devices in graphene.

The Fano resonance (FR) is a universal physical effect that was successfully de-
scribed by Fano in terms of interference between a resonant and a continuum, i.e.
a non-resonant, state. This phenomenon is thus expected to arise in two-path elec-
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Figure 4.33: Traces of Fano resonances at B=0T, VggrL=Vsgr=6V and
T=15mK. a, Bias spectroscopy measurements of the 2-terminal dif-
ferential conductance Gig} - b, Zoom-in map inside the region of elevated
conductance (dashed-line region in panel a). The Fano resonances are high-
lighted by red arrows at high bias voltages ¢, 2- and 4-terminal conductance
traces of the Fano resonances "1" and "2" (panel b), measured at V}, = 0V.
The complete 2- and 4-terminal back-gate traces can be found in Fig. 4.32
and Fig. 4.35. We label the Fano resonances from "1" to "4".

tronic transport measurements where the coherence of the charge carriers is conserved.
The observation of Fano line-shapes has previously been observed in carbon nanotubes
(CNTs), where the 1D nature of the channel and its interference with a resonant path
yielded the observation of such phenomenon [31]. In graphene though, the observation
of Fano resonances has yet to be reported, presumably due to the disordered nature
of the graphene nano-structures and hence the difficulty of building coherent quasi-1D
systems. As illustrated in Fig. 4.31, the effect of strong side-gate potential may enlarge
the size of the localized states beyond the constriction length thus creating an effective
1D channel (represented in green in Fig. 4.31). In order to produce Fano interferences,
this continuum path has to coherently interfere with a resonant path, e.g. localized
state or quantum dot. In our case we propose the QD to be located at the bottle neck
of the graphene constriction, as depicted in Fig. 4.31. We will later on support this
assumption by looking the electrostatic coupling of the QD relative to the back-gate
and side-gate electrodes.

Following the theory from Fano [32, 33], we describe the voltage-dependent conduc-
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tance G(Vpg) of a Fano line-shape as follows:
G (VBG> = Gnon + Gint (VBG’), (4.9)

where Gpon denote the non-interfering contribution of the 1D channel to the conduc-
tance and G, is the Fano, i.e. coherent contribution, defined as:
_ a(Veg — W)

2
ra” g =2V =W (4.10)

Gam (VBe) = 45709 /2

hence, the Fano resonances are expected to appear in transport measurements as sharp
dips in conductance [31] with e being a dimensionless parameter and A, V and T' the
amplitude, position and width of the Fano resonance, respectively. The lever arm «
relate in that case to the electrostatic coupling of the quantum dot to the back-gate.
The asymmetry parameter g is proportional to the ratio of the transmission amplitudes
of the resonant and non-resonant paths. Although this parameter is considered a real
quantity in the original Fano theory [34], and will be considered so in the first part of this
section, it must be treated as a complex number in general [35]. This parameter leads
to resonant (symmetric conductance peak) and anti-resonant transmission (symmetric
dip) for ¢ — 0o and g — 0, respectively. In all other situations, e.g. ¢ =1, the Fano
resonances have an asymmetric characteristic line shape (Fig. 4.34a). In our system,
the lever arm a ~ 0.27meV/mV is directly estimated from the differential conductance
at finite source-drain voltages Vj, (Fig. 4.37a) [36].

Fano resonances at zero Tesla

Initially, we will analyze the differences in the conductance traces as a function of back-
gate voltage for the different configurations of the side-gate potential (Fig. 4.32). The

a b c
— , , 32—
q=-0.18
0=040eV
G,=13¢h
A=128¢’h
2.6 V,=-22.08V
= < <
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Figure 4.34: Comparison with the Fano theory. a, Theoretical Fano line-shapes
from Eq. 4.10, represented for different values of ¢ € ®. b and ¢, Conduc-
tance of the Fano peaks noted 1 and 2 in Fig. 4.33c, measured at V;=3mV..
The data is fitted with the Fano line-shape expression in Eq. 4.10.
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Figure 4.35: Traces of Fano interference at Vggr,=Vsgr=6V, B=0T and
T=15mK. a and b, 2- and 4-terminal conductance measured at V} =
250 pV, from the measurement shown in Fig. 4.33b. The green arrows in-
dicate the position in Vg of the quasi-periodic Fano lines for the electrons
side. For the holes side, we label the Fano resonances from "1" to "4".
c, Bias evolution of the Fano line-shape labeled "4" in panel b, measured
from V,=6.7mV to V,=15.8mV in steps of 0.5mV. d, Fano line-shapes
at the bias voltages marked by a red arrow in panel c. e, Extracted R[q]
and Sg| by fitting the Fano model (see Eq. 4.11) to the Fano line-shapes
of panel c.

aim of this section is to emphasize that the application of a side-gate potential contribute
to the appearance of Fano resonances. As observed in Fig. 4.32, not only the levels of
conductance are increased upon application of a side-gate potential (compare the base
ground conductance marked by an horizontal green dashed line in panels a, b and c of
Fig. 4.32) but sharp and periodic dips in conductance are clearly distinguishable when
applying a side-gate potential, i.e. for Vggr, =Vsgr=6V or Vsgr = Vsgr=6V (see
green arrows in panels e and f of Fig. 4.32, respectively). The sharp dips in conduc-
tance are visible for both the 2- and 4-terminal measurements (compare left and right
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Figure 4.36: Traces of Fano interference at Vgsgr,= —Vsgr=6V, B=0T and
T=15mK. a and b, 2-terminal conductance map (panel a) for Vsg =
—Vsgr = 6V showing four equidistant Fano resonances. The associated
conductance line-cut at V,=—1mV (panel b) has the position of the Fano
line-shapes highlighted by black dashed lines. ¢ and d, Same as panels a
and b for the 4-terminal configuration. The periodic position of the Fano
resonances in the Vpg-axis is indicated by green arrows in panel a and ¢
and by dashed black lines in panels b and d.

panels in Fig. 4.32) and at low and high bias voltages (compare black and red traces
in Fig. 4.32). Although there are also sharp and reproducible dips in conductance for
Vsar =Vsgr =0V (panels a and d of Fig. 4.32), we do not observe any evident peri-
odic pattern. For intrinsic Fano resonances (FRs) one would expect a regular periodic
pattern of FRs to evolve as a function of energy or, alternatively, back-gate voltage
[31]. The observation of this periodic sequence of Fano resonances indicate that the
charge along the 1D-like path conserve their coherence and the QD remains stable with
equidistant Coulomb charging events within the back-gate voltage range. Without any
side-gate potential applied (Vsgr =Vsar=0V), a higher number of localized states are
supposed to contribute to transport, burying the 1D nature of the direct path and/or
randomizing their overall coherent contribution, hence obscuring any clear periodic Fano
resonance pattern.

To corroborate the sharp and reproducible dips in conductance observed in Fig. 4.32
as being Fano-based interferences, we will first turn our attention to the bias spec-
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Figure 4.37: Associated energy scales at Vggr= —-Vsgr=6V, B=0T and
T=15mK. a, Re-plotted bias spectroscopy map from Fig. 4.36c. The
diamonds are highlighted by dashed black lines and the extracted energies
are indicated inside each diamond. b and ¢, 4-terminal conductance line-
cuts from V;, =0mV (lowest trace) up to 14mV (upper trace) in steps of
0.25mV, of the Fano-lines at Vg =~ 11.5V (panel b) and Vg = 13V
(panel ¢) in panel a and Fig. 4.36¢.

troscopy measurements at high side-gate potentials (Vsgr, = Vsgr=6V) (Fig. 4.33).
In that configuration, the finite bias measurements show the same quasi periodic dis-
tribution of dips in conductance appearing in panels b and e of Fig. 4.32. Within the
high conductance region (voltage range from Vg ~ —11V to —24V of Fig. 4.33a or
Fig. 4.32b, e) the overall conductance is obove G** ~ 1e2/h (or G** ~ 0.015¢€2/h for
the 2-terminal conductance), a level of conductance comparable to the non-resonant
contribution expected for a quasi-1D channel (Eq. 4.10). The sharp resonance con-
ductance dips are on the order of ~ 1e2?/h for the 4-terminal conductance (red trace
in Fig. 4.33c). These resonance features conserve the same line-shape in both the 2-
and 4-terminal conductance (blue and red trace in Fig. 4.33c). As shown in Fig. 4.33b
(zoom-in measurement inside the dashed black box of Fig. 4.33a) the individual dips in
conductance at V, =0V linearly split as a function of bias voltage into two conductance
dips (see red arrows in Fig. 4.33b and resonances 3 and 4 in Fig. 4.33a, or in Fig. 4.36
and Fig. 4.37 for the anti-symmetric configuration of the side-gate potentials). This is
expected in Fano interferences [31], where the Fano line shapes are indeed the bound-
aries of adjacent "inverted" Coulomb blockade diamonds. For increasing bias voltages
the resonances split in order to follow a diamond-like shape [31]. In Fig. 4.34, we re-plot
the resonances number 1 and 2 of Fig. 4.33c with their corresponding fits to the model
(Eq. 4.10). The fitting procedure yields similar symmetry values of ¢ ~ —0.24 and
—0.18 and a comparable broadening of I' = 0.59 and 0.4eV for both Fano line-shapes.
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Figure 4.38: Disorder-reduction under finite magnetic fields. a, b, ¢ and d,
Diamond plots inside the transport gap measured at different values of
magnetic field B=0, 3, 6 and 97 (panels a, b, ¢ and d, respectively), for
the 4-terminal differential conductance Gég}f at Vsar, =Vsagr=0V. We
observe a gradual decrease in disorder until B=67, although the coulomb
pattern is conserved in all maps.

Although these values are noticeably broad (we appoint that resonances 3 and 4 in
Fig. 4.33c are slightly sharper, with a I" ~ 0.2V'), the height of the Fano peaks, defined
as A(1 + ¢?), is manifestly larger than ~1¢2/h.

Eventhough the Fano conductance model described by Eq. 4.10 is widely used to fit
individual Fano line-shapes [31, 36] treating the |¢| parameter as a real number conflicts
when the asymmetry of the line shape evolves cyclically [33]. This behavior is already
visible in Fig. 4.35¢ and d, where the asymmetry of the Fano line shape for resonance
4 (Fig. 4.35b) depends cyclically as a function of bias voltage. In order to extract
meaningful parameters we thus need to introduce ¢ as a complex number [33]. We
modified the expression in Eq. 4.10 as follows:

Gint (VBG) = A|€ + q’2 — A(E + RG[Q])2 + (Im[q])2

e +1 e2+1

: (4.11)

102



Gi1 (e%h)

Ve (V)

-10 -8 -6 -4
Ve (V)

Figure 4.39: Fano resonances at finite B-fields. a, b, Differential 4-terminal conduc-
tance G*T as a function of bias Vj, and back-gate voltage Vpg measured
at B = 97T under a high symmetric side potential Vsgr = Vsgr = 8V
(T'=20mK). The close-up region where the Fano resonances appear is
shown in panel b. ¢, Conductance trace at V, =0V. The Fano dips are
labeled from 1 to 4.

Fitting this model of conductance to the measured resonances (see magenta and blue
circles in Fig. 4.35¢ and d for the model and measurements, respectively) provides the
real and imaginary part of the complex parameter ¢ (R [q] and J[g], respectively in
Fig. 4.35¢), showing a periodic evolution. The rest of parameters in Eq. 4.11 extracted
from the fitting routine read A ~ 0.34€2/h and I" =~ 0.08.

The bias spectroscopy analysis of the antisymmetric case (Vsgr = —Vsgr = 6V)
also reflects the Fano nature of the interference features (Fig. 4.36). The resonances are
periodic in the Vi axis (AVpg =~ 1.5V, see distance between green arrows in Fig. 4.36a
or in Fig. 4.37) The conductance evolution of the Fano resonances as a function of bias
voltage (Fig. 4.36a, ¢) shows the characteristic splitting of the resonant dip (see dashed
lines in Fig. 4.37a) [36]. At zero bias voltage V;, = 0V the Fano line shape appears
as a single sharp dip in conductance, visible in both the 2- and 4-terminal quantities
(panels b and d of Fig. 4.36). As expected, the Fano line shape splits for increasing
bias voltages V;, (Fig. 4.36a, c) giving insightful information on the resonant path, e.g.
the charging energy FE. of the quantum dot (Fig. 4.37a). It is important to emphasize
that the differential conductance seems to follow a Coulomb blockade pattern although,
in that case, the boundaries of the coulomb diamonds are defined by dips rather than
peaks in conductance (Fig. 4.37b). The boundaries of the Coulomb diamonds are ex-
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trapolated at high bias voltages (Fig. 4.37a) to extract the energy scale of the quantum
dot (dashed black lines in Fig. 4.37a). From the charging energies E, obtained from the
size of the coulomb diamonds in the Vj-axis direction (values marked in Fig. 4.37a), we
extract the diameter of the quantum dot d = e?/(4epe, E.), where ¢, = (1 + 4)/2 [23].
The dimensions of the QD d &~ 30mm are small enough to sit within the constricted
region.

Fano resonances at finite magnetic fields

In an attempt to further reduce the influence of the disorder fluctuations and to sharpen
the Fano interferences, we analyze the transport behavior of the Fano resonances un-
der finite perpendicular magnetic fields. Finite B-fields have been shown to flatten
the contribution of potential fluctuations in electrical transport measurements through
graphene nano-structures [37, 38|. Moreover, tuning the magnetic field should allow us
to independently control the phase of the Fano interference [33]. As expected, around
the charge neutrality point (Fig. 4.38), we observe a decrease of the transport and energy
gaps, AEp and Egy, respectively (see Section 4.1 for an introduction to these terms), as
a function of magnetic fields up to B=67". Fig. 4.38 shows the differential conductance
Gairr vs. Vpg and Vj, for four different values of magnetic field B =0, 3, 6 and 97
The bias spectroscopy map at B =97 does not follow the trend and shows compara-
tively larger Coulomb diamonds (compare panel d with previous panels in Fig. 4.38).
At B=97T the Landau quantization is already established in the graphene nanoribbon
(see Landau level fan in Fig. 4.10) and the development of the insulating state v =0
may mislead the interpretation of the data.

To see whether the Fano line shapes sharpen under high magnetic fields, we repeat
the bias spectroscopy measurement shown in Fig. 4.33a now measured at B=9T and
Vsar = Vsgr = 8V (Fig. 4.39). At that levels of magnetic field we expect Landau
Level quantization to appear even within the constricted region. As expected, at ele-
vated levels of conductance we observe four characteristic Fano resonances for the hole
transport regime (Fig. 4.39). A conductance trace at V, =0V (Fig. 4.39¢c) show four
sharp conductance dips as well as equidistant Coulomb resonances inside the transport

gap.

As discussed previously when introducing the Fano model of conductance (Eq. 4.10)
the 1D path contributes to transport with a constant non-energy dependent term. This
statement is perfectly valid here, with the equidistant sharp resonances sitting at a
level of conductance of ~ 3e¢?/h. This conductance reveal the lifting of the QHE in-
troduced in Section 4.2.1 or the presence of PN-NP junctions along the electronic path
[39]. Considering that degeneracy lifting of the Landau levels applies, the sequence of
the conductance plateaus suggest the complete lifting of the first Landau level (LL), i.e
LLO, and the partial lifting of the second Landau level, i.e. LL1, in order to account for
the ~ 3 e2/h conductance plateau. The irregular degeneracy of the LL’s is in agreement
with Section 4.2.1 (Fig. 4.10). It is worth mentioning that at B =97 the magnetic
length l, = 26/+/B[T] nm ~ 9nm [40] is smaller than the diameter of the resonant QD
measured at zero Tesla (d~30nm), thus we expect the QD to be also affected by the
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Figure 4.40: Fano line-shape analysis. a, b, ¢ and d, Characterization of the Fano
line shapes appearing in Fig. 4.39. The panels a, b, ¢ and d correspond to
the Fano peaks labeled 1, 2, 3 and 4 in Fig. 4.39c. The fitting parameters
are show inside the panels.

magnetic field (Fig. 4.43d).

The fitted values G, A, T, ¢ and 1} are again extracted by fitting the Fano expression
(Eq. 4.10) to the measurements (Fig. 4.40). The Fano resonances appear sharper (I'~
0.02V in Fig. 4.40) but are on the same order of magnitude as at zero Tesla (I' ~
0.08V in Fig. 4.35, see corresponding text). Moreover, we find the sign of ¢ to vary
between consecutive Fano peaks (Fig. 4.40). These findings suggest the phase of the
Fano resonances to be de-phased in respect to each other [33], which is reasonable taking
into account that measurements are done at a fixed B=97T and that there is a constant
energy separation between resonances (AE = aAVpq in Fig. 4.41).

Again, we extract the dimensions of the resonant path, e.g. quantum dot (Fig. 4.33a),
from the evolution of the Fano resonances as a function of bias and back-gate voltage
(Fig. 4.41). The charging energies E. are obtained from the Coulomb diamond di-
mensions along the Vj-direction. The extracted E. are indicated in Fig. 4.41a. The
dimensions of the quantum dot are d~ 15nm, which is smaller than the diameter ex-
tracted at zero Tesla (d=~30nm from Fig. 4.37a).

By looking at the evolution of the Fano resonances as a function of side- and back-gate
voltages, we can learn on the electrostatic coupling of the quantum dot and therefore
its location within the constriction width. Fig. 4.41b and ¢ compares the relative lever
arm ;¢ of the coulomb resonances living inside the transport gap (panel ¢) and the
Fano resonances (panel b) measured at higher levels of conductance. We note that, al-
though we show the 2- and 4-terminal conductance in panels b and ¢ of Fig. 4.41, both
quantities are exchangeable as proven in Fig. 4.32. We decided to plot the 2-terminal
conductance in panel b to clearly differentiate the Fano resonances from the background.
We obtain ay,.¢;~AVpa/AVsg~1,25 and 1,47 for the Coulomb and Fano resonances,
respectively. A direct comparison is plotted in Fig. 4.41b with the direction of the
Coulomb resonances represented in red. Results suggest the QD responsible for the
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Figure 4.41: Characterization of the resonant path. a, Four-terminal differential
conductance as a function of bias (V;) and back-gate (Vpg) voltages. The
zero-bias conductance trace can be seen in Fig. 4.39¢c. b, ¢, Two- and four-
terminal conductance maps as a function of Vpg and the symmetrically
applied side-gate voltages Vsar =Vsar.

Fano-like interference to be weakly coupled to the side-gate potentials. We deduce the
QD to be located further away from the constriction/edge region as depicted in Fig. 4.31.

The fact that phase coherence is conserved across the Fano interferometer depicted in
Fig. 4.31 is essential in Fano theory. In order to estimate the robustness of the interfer-
ence process, we study the Fano resonances as a function of temperature Fig. 4.42. As
shown in Fig. 4.42, there is a clear broadening of the Fano resonance with temperature
although the shape is recognizable as a Fano line shape up to temperatures as high as
T ~ 2.8 K (Fig. 4.42b). This value of temperature is one order of magnitude higher than
for previously reported Fano interferometers on a 2DEG device based on AlGaAs/GaAs
[33]. This results may indicate that coherence in graphene is conserved for compara-
tively higher temperatures than in other 2DEG materials. The question arise whether
this particular robustness against temperature can be attributed to the 2D nature of
graphene and hence the lack of perpendicular temperature activated phonon modes.

One of the experimental advantages of our system is the spatial separation between
the quantum dot and the continuum (Fig. 4.31). It is therefore possible to magneti-
cally control the Fano effect by triggering a perpendicular magnetic field (Fig. 4.43).
Sweeping the B-field results in Aharonov-Bohm (AB) based oscillations proportional
to the number of flux quanta entering the enclosed region defined by the quantum dot
and the resonant path (Fig. 4.31). Fig. 4.43a shows the periodically oscillating Fano
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Figure 4.42: Temperature dependence of the Fano interference. a, b, Tempera-
ture dependence of the First Fano line shape (Fig. 4.39¢) from T'=400 mK
up to 2.8 K. ¢, Every individual conductance trace (black data points) is
fitted with the conductance model (red solid line) discussed in Eq. 4.10. d,
The parameters Gy, A, I' and ¢ are extracted from measurements by the
fitting routine shown in panel c.

interferences measured from B =7 to 97. As observed, the asymmetry of the Fano’s
line-shape evolves with magnetic field. In order to extract meaningful parameters from
the magnetic evolution we use Eq. 4.11, where ¢ is defined as a complex number [33].
Issued from the fitting procedure, the periodicity is very much apparent in the real and
imaginary part of the asymmetry parameter ¢ (R [¢] and $[g], respectively in Fig. 4.43b
and c). From those, we extract an oscillation AB period AB ~ 1T'. The diameter d of
the area enclosed by the 1D-like path and the quantum dot (Fig. 4.33a) can be calculated
as d = 24/h/mAB ~ 70nm. This value is equal to the dimensions of the ~ 70 nm-wide
constriction shown in Fig. 4.21a. This result brings further evidences that the Fano
interference phenomena may happen at the bottle neck region, most probably between
the 1D-like electronic path circulating along the ribbons axis and a 0D-like localized
state located further away from the constriction.

Conclusions

This section is revelatory of the effects of a laterally applied electrostatic potential on
the transport characteristics of graphene nanoribbons. Close to the charge neutrality
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Figure 4.43: Magnetic control of the Fano interference. a, Conductance traces
measured at T'=100mK and different values of magnetic field from B=9T
to 6.97 in steps of 0.17T. The open circles and the red solid lines are the
data and the fitting procedure, respectively. The traces are incrementally
shifted downwards in the G-axis for clarity. The upper most trace (B=91T)
has a conductance level of ~ 3¢e2/h. b, ¢, Obtained Re[q] (panel b) and
Im[q] (panel ¢) from the fitting routine (Eq. 4.11). d, The results from
panels b and ¢ are plotted in the complex ¢ plane. f, Conductance map
as a function B-field and back-gate voltage for the four resonances under

study (see Fig. 4.39¢).

point, transport evolves as a function of the side-gate potential from a Coulomb blockade
dominated behavior onto an elevated conductance regime where coherence effects start

to play an important role.
gate potential in flattening the edge-induced disorder.

Results bring further evidences on the effects of a side-

Throughout this section we

studied the Fano interference phenomena in graphene and we identified the robustness
in temperature of the interference process compared to GaAs-based interference devices.
Results appoint side-gated constrictions as a reliable route to fabricate Fano-resonance
based quantum interference devices in graphene.
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4.5 Applications: in-plane electronic interconnects

This section has been published in:

Transport in kinked bi-layer graphene interconnects

B. Terrés, N. Borgwardt, J. Dauber, C. Volk, S. Engels, S. Fringes, P. Weber, U. Wich-
mann, S. Trellenkamp and C. Stampfer

2011 IEEE International Conference Proceeding on Nano/Micro Engineered and Molec-
ular Systems (NEMS)

DOI: 10.1109/NEMS.2011.6017523

As discussed in previous sections, graphene on Silicon dioxide Si0O2 shows a rather
disordered behavior. Although the application of graphene in electronics appears thus
rather limited, it is still possible to benefit from the planar nature as well as the high
current densities withstand by graphene. Within this section, we present transport
experiments on kinked bi-layer graphene nanoribbon interconnects. The studied devices
consist of approximately 80 nm-wide and 1 um-long bi-layer graphene nanoribbons with
different kink angles. We discuss the ambipolar transport characteristics and show a
systematic dependence of the overall conductance as a function of the angle, i.e. the
shape of the etched bi-layer graphene nanoribbon. The measurements can be well
described with the self-consistent Boltzmann equation for diffusive transport, where the
kinked angle appears to have an influence on the effective charge carrier mobility, thus
revealing the presence of geometry-dependent ballistic transport effects. These results
are crucial for the design and fabrication of future single-layer or bi-layer graphene
interconnects in potential all-carbon systems.
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Figure 4.44: Device characterization. a, Atomic force microscopy (AFM) image of
a graphene interconnects array with nanoribbons of 1um in length (L)
and ~ 80nm in width (W). The angle « of the kinks range from 0° to
90°. The location for the Raman acquisition is marked by a red spot. b,
Close-up image of the «=90° nanoribbon interconnect (white area in panel
a). ¢, Schematic representation of a nanoribbon interconnect of panel b.
d, Cross-sectional analysis along the dashed line shown in panel b. The
measured width W is approximately 80 nm.
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Figure 4.45: Device characterization. a, Raman spectrum of the graphene flake
shown in Fig. 4.44 a and b, measured at the red spot shown in Fig. 4.44 a.
The laser sport is located at a distance d away from the graphene intercon-
nects (d >> dy, with dy, being the laser spot diameter, dy, ~ 500nm). The
2D peak (red trace in close-up panel) is fitted by four Lorentzians (shown
in blue), which proves the bi-layer nature of the graphene flake.

Introduction

Graphene [1], a monoatomic layer of graphite, and in particular graphene nanostructures
[2—4] exhibit unique electronic properties making these materials promising candidates
for high-frequency electronics and future nanoelectronics in general [5]. The exceptional
high carrier mobility [6] makes graphene particularly attractive not only for amplifiers
or switching devices but also for interconnects |7, allowing truly monolithic systems [8].
The improvements on graphene interconnect technology together with recent graphene
based logic device developments |9, 10| may suggest that an all-carbon microelectronic
technology is potentially achievable. Wafer-scale graphene growth on SiC' by molecular
beam epitaxy (MBE) or chemical vapor deposition (CVD) have already been reported
[11, 12], thus allowing the design of large complex electronic circuitry. Moreover, the
in-plane design could benefit from the existing semiconductor technology, i.e. the high-
resolution lithography.

During the last years extensive studies have been carried out on single-layer graphene
nanoribbons and interconnects [7, 13, 14|. Conductance models have been developed
and a high conductivity has been predicted for ultra-small graphene nanoribbons becom-
ing superior to state-of-the-art cooper interconnects [15]. Moreover, it has been shown
that graphene interconnects can withstand high current densities (superior to copper
[7]) while providing better thermal conductivity [14]. However, up to now, very little
is known about bi-layer or few-layer graphene nanoribbon interconnects. In contrast
to single-layer graphene nanoribbons, few-layer nanostructures are expected to be less
sensitive to the line edge roughness and may therefore allow higher conductance. Here
we report for thefirst time on transport experiments on bi-layer graphene nanoribbon
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Figure 4.46: Back-gate characteristics at room temperature. Source-drain cur-
rent Igp as a function of back-gate voltage V;, for the nanoribbons with
dimensions L=1 um, W =80nm and kink angles a«=0°, 15° and 90°. The
bias voltage V; is set to 300V during the measurements. Hole and elec-
tron regimes are shown. All curves exhibit a minimum in conductance at
approximately 40 V' in back-gate voltage, which corresponds to the charge
neutrality point. The shift in the charge neutrality point is most likely due
to resist residues from the fabrication step. Data from the nanoribbons
with a=0° and a=15° appear to be identical.

interconnects with different kink angles. The results are an important step towards an
all-carbon microelectronic technology.

The fabrication process of kinked nanoribbon interconnects is extensively discussed in
Section 3.1. After evaporation of metal alignment markers on a SiOs substrate, bilayer
graphene flakes are mechanically exfoliated from natural bulk graphite and deposited
onto the insulating 300 nm Si0- layer on top of the SiOs substrate. Prior deposition of
the graphene flakes, the Si substrates are chemically cleaned with Acetone, Dimethyl-
sulfoxide (DMSO) and Isopropanol and heated for 15 minutes on a hot-plate at 180°C
to reduce the presence of HoO molecules on surface. Raman spectroscopy is used to
verify the double-layer nature of the investigated graphene [16, 17| (Fig. 4.45). Inset of
Fig. 4.45 shows the four Lorentzian peaks characteristic of bi-layer graphene. Electron-
beam (ebeam) lithography is used to pattern the etch mask, a 100 nm-thick layer of
Polymethyl Methacrylate (PMMA) resist. A reactive ion etching (RIE) process based
on Ar/Os plasma is introduced to etch the unprotected bi-layer graphene. Thereafter,
the nanoribbons are contacted by e-beam patterned 5nm Cr and 50 nm Au electrodes.
An atomic force microscope (AFM) image of the resulting etched bi-layer graphene
nanoribbon interconnects can be found in Fig. 4.44a and b. AFM imaging is also used
to estimate the length L and the width W of the resulting nanoribbons (see Fig. 4.44d).
Finally the samples have been glued with silver paste onto a chip carrier and manually
wire-bonded with Au wires by an ultrasonic bonder.
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Figure 4.47: Fitting procedure Experimental transport data (yellow solid curves) and
corresponding fits of the model (black dashed curves) for the nanoribbons
with angles a =0° (a), a =15° (b), @« =90° (c¢) and o =120° (d). Data
and model are in reasonable good agreement. All traces are measured at
Vi, =300uV.

The fabricated samples are measured in a vacuum chamber with a pressure of around
P=2.10"! mbar. Measurements are performed with a constant bias voltage V3 =300 V'
applied between the source (S) and the drain (D) contacts. The source-drain current
Isp is then recorded while sweeping the back-gate voltage V4 from —60V to 60 V. In
Fig. 4.46 we show the obtained ambipolar transport characteristics for three different
nanoribbon interconnects of kink angles a=10°, 15° and 90°. Interestingly, the curves
show almost no difference between the 0° and 15° ribbons, while the current drops
significantly for the 90° one. For all three devices the transport behavior can be fully
tuned from hole to electron regimes. The observed p-doping (Igp min ~=40V) is most
likely due to the presence of PMMA resist residues.

Model and discussion

Overall, the observed ambipolar transport characteristic can be approximated by the
Drude model. The conductance G of a nanoribbon can be therefore described as G =
Ge + Gp, where the electron and hole conductance (Gep), both angle dependent, are
given by:

L -1
—1
Ge’h = |:RC + W . Ge,h:| s (412)
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Figure 4.48: Angle-dependency of the transport characteristics. a, Plot of the
contact resistance R, as a function of different kink angles o. b, Schematic
illustration of a graphene interconnect of width W =80nm and angle a.
The red circle indicates the mean free path, clearly showing that ballistic
effects matter when describing the transport mechanism in such devices. c,
d, Effective hole- (panel c¢) and electron- (panel d) mobilities as a function
of the different angles av. Both effective carrier mobilities show a significant
angle-dependency, which is a strong indication that ballistic transport plays
an important role in these devices.

The resistance R., which is back-gate voltage independent, is coming from both, source
and drain contacts. Both electron (e;-) and hole (h;+) conductivities (o) can be
approximated by a self-consistent Boltzmann equation for diffusive transport [18], ex-
cluding the long-range scattering contributions. Hence, the conductivity is defined as:

Ue,h(%g> = [e- ne,h(%g) * Pe,n Tt 0] © [:l: (Ve% - %g)] ) (4.13)

where nep(Viog) = B - [:I: (Vﬁl — Vz)gﬂ is the electron and hole carrier concentration
[1], tte,n the effective charge carrier mobility, og is the back-gate independent residual
conductivity at the charge neutrality point and © is the Heaviside function. All samples
appear to be slightly p-doped (e.g. Fig. 4.46), most likely due to residues of PMMA on
the sample. The devices have not been annealed prior measurements.

The above expression for the conductance can be fitted to the individual transport
measurements as shown in Fig. 4.47. The measurements are divided into hole- and
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Figure 4.49: Breakdown current. Source-drain current Igp versus bias voltage V, as
a function of back-gate voltage V4 for a nanoribbon with dimensions L =
1 pm, W =80nm and angle o =0°. Current densities of up to 107 A/cm?
can be repeatedly obtained without damaging the device.

electron-regime, which correspond to the left and right hand-side of the charge neu-
trality point, respectively (see Fig. 4.46). These regimes are treated independently (see
black dashed lines in Fig. 4.47). The Contact resistance (R.) as well as the residual
conductivity (op) are fixed to be equal for both holes and electrons regimes. The fit
describes the transport characteristic for the different devices reasonably well (compare
solid with dashed lines in Fig. 4.47).

In Fig. 4.48 we summarize the different fitting parameters. Results reveal that the
contact resistance R, does not depend on the kink angle o (Fig. 4.48a), whereas the ef-
fective charge carrier mobility u for electron and holes strongly decreases with increased
kink angles (Fig. 4.48c and d). Interestingly, the effective mobility is different for elec-
trons and holes, reaching a maximum value of around 850 cm?/(V.s). Compared to bulk
graphene, the conductivity achieved by our bi-layer graphene nanoribbon interconnects
is rather low. X. Hong et al. [19] claimed mobility values of around 20.000 cm?/(V.s)
for single-layer graphene sheets on SiOs substrates, whereas C. R. Dean et al. [20]
achieved values even three times higher (60.000cm?/(V.s)) for single-layer graphene
sheets on Boron Nitride substrates. Even though bi-layer graphene nanoribbon inter-
connects show a lower overall effective mobility compared to its single layer counterpart,
higher carrier densities can be easily achieved (see Fig. 4.49). During measurements,
current densities of up to 107 A/cm? were repeatedly reached without damaging the
samples.

More importantly, our transport measurements and the angle-dependency of the ef-
fective mobility for the electron and hole regimes suggest that the ballistic nature of
transport starts playing an important role in these graphene structures. In order to
compare the mean free path [, with the length-scale of the nanoribbons, we can ex-
tract I, as follows [6], l,,, =hu+/mn/|e|, where u is the effective charge carrier mobility
and n is the charge carrier density. Owing to our measurements, the effective charge
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carrier mobility can be estimated as p ~ 800cm?/(V.s), for a nanoribbon of angle
a=0° The charge carrier density, which can be derived from the capacitor model [11]
as n=eeg- Vpg/e-d, can be assumed to be in the order of n ~ 5.10'2 em 2. These values
give rise to a mean free path of approximately 20 nm, which is on the same length-scale
as the nanoribbon width W, and it is clearly exceeding the feature size of the patterned
kink structure (Fig. 4.48b). This may explain the observed angle-dependency of the
transport parameters (Fig. 4.48).

Conclusions

In this work we present transport measurements on bi-layer graphene nanoribbon in-
terconnects with different kink angles. Results reveal an angle-dependency of both
electron- and hole-effective mobilities that highlight the importance of ballistic effects
at these length scales. Comnsequently, the mean free path has to be taken into ac-
count when designing such nanoribbon interconnects. Moreover, results suggest that
the Drude model used throughout this section would not be able to accurately describe
the transport phenomena for smaller devices.
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High-mobility graphene

5.1 Characterization of the residual disorder

Graphene has emerged as a promising candidate to lead the post-silicon revolution |1,
2]. However, since its discovery, the presence of potential fluctuations has been hin-
dering the observation of a variety of fundamental phenomena expected for intrinsic
graphene [2-6]. Hence, right after its discovery, a growing interest developed in order
to find suitable substrates for graphene. A milestone was reached in 2010 [7] with the
use of hexagonal boron nitride (hBN) as a substrate material. On hBN, graphene was
able to achieve comparable performance as for suspended graphene devices [8, 9]. Even
thought the quality of graphene on this insulating material clearly surpassed the per-
formance of graphene on silicon dioxide, the major leap in device quality came with
the complete encapsulation of graphene in between a top- and a bottom-layer of hBN
(see Section 3.3 and [10]). This fabrication technology has brought graphene to the
forefront of the electronic materials, with levels of quality comparable to conventional
IT1I-V 2DEGs materials [11, 12]. Within the layered hBN heterostructure, graphene is
exceeding the highest electron mobility at room temperature of any known material to
date, with mobilities up to 150,000 cm?/V's and sheet resistivity below 40 Ohms per
square at n > 4-10'2em? [10, 13]. These values are indeed equivalent to the theoretical
limit imposed by acoustic phonon scattering [14].

Thought, for nanostructured graphene devices, comparatively lower carrier mobilities
and traces of disorder (see Section 3.3) is what experimentalist have faced so far [15,
16]. To elucidate whether this reduced performance is solely determined by the edges
or some bulk disorder still remains within the bulk, we study the remaining potential
fluctuations via the localization length ¢ in the quantum Hall regime. Measurements
are performed in Hall bar devices carved out of hBN-graphene-hBN heterosctructures.
In this section we will confirm the high quality achieved by our graphene samples issued
from patterned hBN-graphene-hBN stacks. The high quality is further demonstrated in
Section 6.1 with the electronic transport studies of hBN-graphene-hBN quantum point
contacts and nanoribbons, fabricated following the same technique (see Section 3.3).
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Figure 5.1: Device fabrication and back-gate characteristics. a, Optical micro-
scope image of an assembled hBN-graphene-hBN stack on Si0Oy substrate,
used afterward to fabricate high mobility graphene devices. b, Atomic Force
Microscope (AFM) image of the resulting Hall-bar device, after patterning
the hBN-graphene-hBN stack in panel a by reactive ion etching (RIE) tech-
niques. ¢, Schematic representation of layered Hall-bar structure. d, Mea-
sured conductivity (o) at T'=1.7 K as a function of charge carrier density
(n) of the Hall-bar shown in panel b. A constant bias voltage of V, =500 uV'
is applied between source and drain contacts. The field-effect mobility is ex-
tracted independently for the electron- and hole-side by a linear fit to the
conductivity. The inset shows an optical image of the contacted device.

As a first step, we will extract the Drude and the quantum electron mobilities of a
Hall bar device to thereafter investigate the nature of the localization phenomena in
the quantum Hall (QH) regime. The study of macroscopic Hall bar devices allows us
to pin point the limiting characteristic length within our material. In the following, we
will show the fingerprints of a well differentiated electronic hopping behavior, which is
visible in the temperature evolution of the conductance in the quantum Hall regime.

Since its discovery, the quantum Hall effect has been used in applications from physics
to metrology [17]. In graphene, the magnetic evolution of the Landau levels was even
used to spatially resolve the capacitance profile of 1D graphene nanoribbons [18]. In
this section, we study the saturation energies in a quantum Hall regime as a function of
magnetic field and filling factor, to characterize the localization length in hBN-graphene-
hBN heterostructures. The integer quantum Hall effect in a two dimensional electron
system can be understood as the localization of the states in the tails of individuals Lan-
dau levels. Within the center of an individual Landau level, the wave functions of the
electronic states are delocalized and their extension is governed by the so called local-
ization length £(E), i.e. the spatial extension of the wave function. To find out whether
&(E) lies below or above the dimensions of our sample, we extract the localization length
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Figure 5.2: Integer Landau levels quantization and quantum mobility in
graphene. a, Landau fan from the graphene Hall-bar device in Fig. 5.1b,
measured at T'= 1.7 K. The characteristic Half-integer quantum Hall ef-
fect is well defined at high B-fields. The positions of the filling factors
v==44(N + 1/2) with N = 0,1,2,..., are indicated by yellow lines. The
electrostatic coupling to the back-gate o = 6.9.10'° cm =2V ! is extracted

by comparing the data to the model Eny = :l:«/Zehv%NB. b, The QHE

oscillations v =42 are already apparent from B=50mT (blue trace).

&(E) via the low temperature evolution of the conduction in the Landau levels tails [19].

The method used to fabricate the sandwiched hBN-graphene-hBN stacks [20] is de-
scribed extensively in Section 3.3. An optical image of a hBN-graphene-hBN sandwich
is shown Fig. 5.1a, with the top- (~ 20 nm-think) and bottom-layer (~ 40 nm-think) of
hBN appearing in light-green and the Si0Oy substrate in gray. The Hall-bar geometry
is carved by reactive ion etching (RIE) (Fig. 5.1b). The resulting 6-terminal Hall-bar
device has the active graphene layer still in between the hBN sheets (Fig. 5.1c). The
structured device is afterward contacted by 5 nm Chromium (Cr) and 50 nm Gold (Au)
metal electrodes (insert of Fig. 5.1d). Measurements have been performed in a variable
temperature insert (VTI) using standard Lock-In techniques.

The back-gate characteristics of the Hall-bar device gives a first estimation of the sam-
ple quality (Fig. 5.1d). The charge-carrier mobility has been extracted using the Drude
formula by fitting the conductivity o at small charge carrier densities. We deliberately
decided to neglect the self-consistent Boltzman equation since the obtained values of
mobility are systematically higher. Hence, the extracted Drude-based values represent
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Figure 5.3: Observation of symmetry broken states in graphene. b, 0p,,/0n as
a function of magnetic field B and charge carrier density n of the Hall-bar
device shown in Fig. 5.1b, measured at 7'=1.7 K. The complete lifting of
the four-fold degenerate Landau levels is visible at high B-fields. b, Mag-
netoresistance oy, (in red, right axis) and Hall conductivity o4, (in black,
left axis) measured at B=9T and T'=1.7 K. Apart from the half-integer
quantum Hall filling sequence v =44 (N +1/2), indicated by vertical dashed
and horizontal solid blue lines, we observe the presence of symmetry broken
states.

a lower bound approximation for the electron/hole mobilities. First conductance traces
(Fig. 5.1d) at (I'=1.7 K) yield mobilities of up to pe = = =~ 190,000 cm?V s~ for
the electron-side and juy ~ 140,000 cm?V~!s~! for the hole-side. These values are at
least two orders of magnitude higher than previously reported mobilities for Hall-bars
on Si0y substrate [21] and are on the same order of magnitude to comparable hBN-
graphene-hBN devices [10, 13]. Although the analysis described above is widely used to
evaluate mobilities, it should rather be considered as an estimate. A more appropriate
measure of the carrier mobility is obtained by the B-field value in which the Landau

levels (LL) oscillations first develop [22]. This value of magnetic field (Bg) is related to
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Figure 5.4: Observation of fractional QH states in graphene. a, Magnetoresis-
tance o, (in red, right axis) and Hall conductivity o, (in black, left axis)
measured at T'=1.7 K. Apart from the symmetry broken v = +1 and the
insulating v = 0 states, we observe the fractional v = 1/4, and 5/4 states
at high B-fields. Conductance traces from B =9 to 8.87 in steps of 0.057T
are superimposed to highlight the local minimum in 0., and the plateau in

Ory-

the quantum mobility (pg) through pugBg = werg = 1, and it can be understood as the
minimal B-field in which the carriers precess along a complete cyclotron radius without
scattering. To evaluate the cyclotron radius w., one would need to carefully evaluate
the small-angle scattering time 7¢g by looking at the SdH oscillations’ amplitude as a
function of B [23, 24]. As observed in Fig. 5.2b, the LL oscillations are already visible at
B = 50mT, which yields ug = 200,000 cm?V~!s™! (Fig. 5.2b), confirming the value
of mobility extracted from the back-gate characteristics (Fig. 5.1d).

The high quality of our graphene sample is also visible in the magnetic evolution of
the measured conductance. The expected half-integer Landau levels clearly develop at
moderate values of B-field (Fig. 5.2b) and degeneracy broken states (splitting of v =
+1), usually associated to the high quality of the samples [25], are also observed (black
dashed lines in Fig. 5.2a). Note that the Landau-fan allow us to independently determine
the gate coupling («) of the Hall-bar device (Fig. 5.2). A line-cut at the highest B-field
available (B = 9T) reveal a full sequence of symmetry broken states (Fig. 5.3a).
They can be easily recognized by local minimums in the longitudinal conductivity oz,
(red trace in Fig. 5.3a) and the formation of conductance plateaus in the transversal
conductivity o,y (black trace in Fig. 5.3a). The observation of the all-integer filling
factor sequence v = 0,+1,42,£3, ... indicate the lifting of the four-fold degenerate
Landau levels, supposedly mediated by electron-electron interactions [26, 27|. In the
strong quantum limit, these electron-electron interactions can also lead to many-body
correlated states, observed as fractional filling factors in the Hall conductance [28].
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Figure 5.5: Temperature dependence of the all-integer quantum Hall states. a
Hall conductivity o, of the device in Fig. 5.1b, measured at T'=1.7 K and
B=9T b, Temperature dependence of the 0., minimum in the symmetry
broken IQHE regime, measured at B=9T. ¢, Development of the insulating
state ¥ =0 and the broken symmetry state v = 41, measured at B=97T.
Temperatures are taken from 7'=1.7 K (black trace) to T'=15 K (red trace)
in steps of 0.8 K.

We report the presence of various fractional quantum Hall states in our device (blue
horizontal lines in Fig. 5.3b), most strongly for v = 1/4 and v = 5/4. These factional
states have been previously reported in suspended graphene samples [8, 20, 28], and
its observation indicates once more the level of quality achieved by our fabrication
technique.

To quantify the energy of these all-Integer QHE states (Fig. 5.3), we measure the
temperature dependence of their associated R;, minimum (Fig. 5.5). The tempera-
ture dependence of Ry, or alternatively G., has been traditionally understood as an
activation energy process and it has been widely used to study symmetry-broken [25]
and fractional |28 sates, in graphene and in traditional 2DEGs [29, 30]. The value of
R, at its local minimum of resistance, for a given symmetry-broken state, is deter-
mined as a function of temperature from ~ 1.7 K to ~ 9 K. As shown in Fig. 5.6, the
Arrhenius plots for the R follow, in the high temperature range, a linear behavior
characteristic of an activated conduction. The activation energy A is determined from
R™" = Ryexp(—A/2T). We find that the energy gaps A of all degeneracy-lifted states
and insulator state (¥ = 0) show a simply activated temperature dependence over the
analyzed range of B-fields (Fig. 5.6). Owing to the exceptional quality of our device,
the analysis is accessible at relatively low values of magnetic field (B = 7, 8 and 97).

To start with, the Landau levels (LLs) under study, i.e. =0, +1, +3, +7, +8, +11 +
12, show an activation gap that scales approximately linear with the perpendicular B-
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Figure 5.6: Temperature dependence of symmetry broken states. a-e, Temper-
ature dependence of the R, minimum at v = —1, 0, +1, +11 and +12, in
the symmetry broken IQHE regime. Measurements are taken at B = 7, 8
and 97. The energy gaps A are extracted by linear fits to the data. f,
Perpendicular magnetic field evolution of the All-Integer QHE states. Inset
shows the enhanced g, factors that decrease with increasing LI index.

field (Fig. 5.6f). These results confirm the findings reported in literature [25]. Likewise,
the effective gyromagnetic ratio g; = 0B - ugl [25], where pp is the Bohr magneton,
are larger than the bare value g9 = 2 and decrease with increasing filling factor in-
dex (see inset of Fig. 5.6f), in agreement with quantum Hall ferromagnetism [31]. The
temperature evolution from the v = +3, +7, +11 can be found in Section 8.1. The
activation energies of all symmetry broken states is summarized in Tab. 5.1, together
with literature values [25].

127



B(T) v=-—1 v=20 v=+1 v=+43
9 9.12K (-) 30.61K (115K) 15.17K () 577K ()
8 6.36K (-) 27.36 K (97K) 11.84K (-) 5.45K (-)
7 3.19K (-) 23.40K (T9K) 816K (-) 6.12K ()
B(T) v=47 v =48 v=+I11 v=+12

9 3.49K (-) 747K (T4K) 454K () 5.05K (3.9K)
8 253K (-) 5.98K (3.5K) 3.00K (-) 3.35K (1.3K)
7 166K (-) 4.03K (-) 140K (-) 1.85K (-)

Table 5.1: Table of the activation energies A (K) as a function of B-field for the filling
factors shown in Fig. 5.6 and Fig. 8.4. For comparison, we include in paren-
thesis the values found in literature [25]. For that, we extrapolate the data
from [25] to low magnetic fields.

At the lowest temperatures though (T'~1.7-3 K), R™" deviates from a simple activa-
tion behavior, turning into a rather slowly-dependent temperature evolution (Fig. 5.6).
This deviation of the exponential trend is common to all measured filling factors and it
is visible for all measured B-fields (Fig. 5.6). Similar observations has been reported on
GaAs 2DEGs samples and have been attributed to a variable range-hopping conduc-
tance, due to a finite localization of the electrons. This interpretation is valid for the
fractional quantum Hall effect (FQHE) [30], as well as for IQHE [32, 33|, and it repre-
sents a valuable opportunity to characterize the dominating localization length-scales
within our high quality sample [34].

At low temperatures, also known as hopping regime, conduction in the Landau level
tails decreases with decreasing temperature (Fig. 5.7). At these temperatures, when
kpT is small enough to make the activation to the mobility edge and excitation across
potential barriers to neighboring states improbable, conduction is governed by a variable
range hopping type of conductance. In this regime electrons or holes are able to tunnel
between states within an energy range kg1 leading to a slightly increased conductivity.
The temperature dependence of the conductivity in this regime for non-interacting elec-
trons is given by o, o< 1/T - exp[—(Tp/T)*/?]. This equation is known as the variable
range hoping VRH Mott’s law [35]. However, in the QHE regime screening is poor and
Coulomb repulsion must be included. This is the Efros-Shklovskii (E-S) VRH regime
[36-38], where 04 o< 1/T - exp|—(To/T)"?]. The localization length at a particular
filling factor is & = Ce?/4mecokpTy (Fig. 5.7), where C is a dimensionless constant in
the order of unity [37] and € ~ 4 is the effective dielectric constant for graphene in
between hBN layers.

Fig. 5.7 shows the linear fits to the data and the extracted energies Ty, for all filling
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Figure 5.7: ES-VRH Energy gaps. Temperature dependence of the R,, mini-
mum in the hopping conductance regime (low temperature range) for
v=0, £1, +3, +7, 48, +11 and +12 , measured at B=7, 8 and 97 (pan-
els a to h, respectively). The characteristic temperature T} is extracted by
linear fits to the data.

factors v. All data points in Fig. 5.7 have been measured within a temperature range
from 1.6 K up to 25 K. The resistivity value is extracted from the local minimum of
the resistance R;, trace. An zoom-in of the resistivity trace R,; for v = —1 is shown
in Fig. 5.8a-c. Although ¢ denotes the typical extension of the electron wave-function,
we do not observe any dependence of £ on v (see Fig. 8.5). All filling factors have an
associated ¢ which is close to each other (Fig. 8.5) with an average value of ~ 1um
(Fig. 5.8e). This value is large compared to the localization lengths found in graphene
on Si09 substrates [38], and it is very close to the dimensions of the Hall bar device of
a length L ~ 2 um and width W ~ 1.2 um (Fig. 5.1). Results seems to indicate that
the localization length becomes independent of energy and becomes dominated by an
intrinsic length scale [39], possibly the ~ 1.2 ym width of the sample.

Throughout this section, we studied the quantum Hall state to Hall insulator tran-
sition by directly evaluating the localization length £ in the well understood regime of
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Figure 5.8: Localization lengths ¢ and magnetic field dependence. a-c, Tem-
perature dependence of the resistivity minimum, measured at B = 7, 8
and 97'. The temperature varies from 1.6 K (black trace) up to 25 K (red
trace) in steps of 0.5K. The local minimums (marked by a vertical blue
line) correspond to the center of the v = —1 plateau. The saturation of the
resistivity is visible for the lower temperatures and it is more pronounced
the higher the magnetic field (compare minimums of R,, in panel a and
b). d, As expected, the localization length £ is proportional to the B-field.
d, Extracted ¢ (black dots) for the different filling factors v, measured at
B=9T. The average value ({40g ~ 1pm) is indicated by a red horizontal
line.

variable-range hopping (VRH) conductivity [40]. As it has been shown, VRH dominates
the conductance at low temperatures, which allow us to extract the localization length,
i.e. the spatial extension of the wave function, as a function of magnetic field and filling
factors. We find an approximately equal localization length for all filling factors, which
seems indicate that localization in hBN-graphene-devices is limited by the dimension
rather than being limited by disorder/scattering.
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Ballistic graphene nano-structures

6.1 Ballistic transport in graphene quantum Point Contacts

This section has been published in:

Size quantization of Dirac fermions in graphene constrictions.

B. Terrés, L.A. Chizhova, F. Libisch, J. Peiro, D. Joerger, S. Engels, A. Girschik, K.
Watanabe, T. Taniguchi, S. V. Rotkin, J. Burgdoérfer and C. Stampfer

Nature Communications 7, 11528 (2016)

Quantum point contacts (QPCs) are cornerstones of mesoscopic physics and the cen-
tral building blocks for quantum electronics. Although the Fermi wave-length in high-
quality bulk graphene can be tuned up to hundreds of nanometers, the observation
of quantum confinement of Dirac electrons in nanostructured graphene systems has
proven surprisingly challenging. In this section, we show ballistic transport and quan-
tized conductance of size-confined Dirac fermions in lithographically-defined graphene
QPCs. At high charge carrier densities, the observed conductance agrees excellently
with the Landauer theory of ballistic transport, without any adjustable parameter. The
width-dependent electrical transport is characterized by reproduceable steps in conduc-
tance. Experimental data and simulations for the evolution of the conductance steps
with magnetic field unambiguously confirm the identification of size quantization in the
constriction. Bias spectroscopy and temperature dependent measurements confirm the
identification of size quantization as the origin of these steps in conductance. Close
to the charge neutrality point, bias voltage spectroscopy reveals a renormalized Fermi
velocity (vp &~ 1.5 x 105m/s) in our graphene QPCs.

The observation of novel transport phenomena in graphene, such as Klein tunnel-
ing [1], evanescent wave transport [2|, or half-integer |3, 4] and fractional |5, 6] quantum
Hall effect, are directly related to the material quality and to the intrinsic relativis-
tic nature of the charge carriers [7]. As the quality of bulk graphene has impressively
improved over the last years [8, 9], the understanding of the role and limitations of
edges on transport properties of graphene is becoming increasingly important. This is
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Figure 6.1: Width-dependent ballistic transport in etched graphene QPCs en-
capsulated in hBN. a, Schematic illustration of a hBN-graphene-hBN
sandwich device with the bottom and top layers of hBN appearing in green,
the gold contacts in yellow, the SiOs in dark blue and the Si back-gate in
purple. b, False colored atomic force microscope (AFM) image of a fabri-
cated device. Transport is measured in a four-probe configuration to elim-
inate any unwanted resistance of the one-dimensional contacts [13]. The
orange color denotes the gold contacts, yellow the top layer of hBN and
brown the S705 substrate. The scale bar is 500 nm. The differential con-
ductance G'=dI/dV = Is3/Vsq is measured from an AC excitation voltage
Vac =250 uVpp. ¢, Low-bias back-gate characteristics of a Hall bar device
(see arrow) and of five QPC devices with diff widths ranging from 850 nm
to 230nm (see color code in Fig. 6.6a). The dashed gray lines are fits to the
data.

particularly crucial in nanoscale graphene systems where edges can dominate the de-
vice properties. Indeed, the rough edges of graphene nanodevices are most probably
responsible for the difficulties in observing clear confinement quantization effects, such
as quantized conductance[10, 11] and shell filling [12]. So far, signatures of quantized
conductance have only been observed in suspended graphene, however with lacking con-
trol and information on geometry and constriction width [11]. With further progress
in fabrication methods, graphene nano-devices are expected to evolve from a disorder
dominated [14] transport behavior to a quasi-ballistic regime, where boundary effects,
crystal alignment and edge defects [15] may play a dominant role in defining the trans-
port characteristics. In fact, gaining the control over the graphene edges will open the
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Figure 6.2: Temperature dependence of the back-gate characteristics for the
310 nm-wide graphene constriction. Low-bias back-gate dependent
four-terminal conductance G as a function of temperature 7. The traces
are shifted in the conductance axis for clarity. Temperature is recorded

from 7= 2K (black trace) up to room-temperature (7'= 289 K, red trace)
in steps of 7K.

door to study interesting edge-related phenomena, such as spin polarization at zig-zag
edges [16, 17|, valleytronics [18|, an unusual Josephson effect [19], magnetic edge-state
excitons [20] as well as topologically protected quantum spin Hall states [21].

In this section we report the observation of quantum confinement effects in the ballis-
tic conductance through graphene constrictions acting as quantum point contacts. We
prepared a group of graphene devices based on high-mobility graphene-hexagonal boron
nitride (hBN) sandwiches on SiO2/Si substrates and use reactive ion etching (RIE) tech-
nique to pattern narrow QPCs (see Section 3.3) with widths ranging from W = 230
to lum (Fig. 6.1a,b). The graphene leads are side-contacted [13] by chrome/gold elec-
trodes in a four-terminal configuration to eliminate any unwanted resistance from the
one-dimensional contacts. The differential conductance G = §I/6V = I;q/Vsq is mea-
sured using standard lock-in techniques with an applied voltage of Vao = 250 uVpp
(Fig. 6.1b). A back-gate voltage is applied to the highly-doped Si substrate to tune
the carrier density in the graphene, n = a(V, — Vgo) = aAV,, where «a is the so-called
lever arm and Vg0 is the gate voltage of minimum conductance, i.e. the charge neu-
trality point (CNP). Thus, tuning the gate voltage V; changes the Fermi wave-vector
krp = /nm of the conducting charge carriers. Fig. 6.1c shows the measured differential
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Figure 6.3: Reference hBN-graphene-hBN sandwich Hall bar device. (a)
Schematic illustration of the hBN-graphene-hBN sandwich hetero-structure
and nature of the quasi one-dimensional graphene-metal (Cr/Au) contact.
(b) Optical image of an etched and contacted ~ 1 pum-wide hBN-graphene-
hBN sandwich Hall bar device. (c¢) Four-terminal conductance as a func-
tion of back gate voltage V;, measured at a constant current of 50 nA and
a temperature of 16 K. From the linear slope near the charge neutral-
ity point (see dashed gray line), we extract a carrier mobility of around
150.000 cm?V~!s~!. The inset shows the four-terminal resistivity as a func-
tion of gate voltage at lower temperature (1.7 K).

conductance as a function of gate voltage for a number of devices with distinct widths.
The observed square-root dependence G o< /AV, (see dashed lines in Fig. 6.1c) is a
first indication of the ballistic nature of the conductance, that is indeed conserved up
to room-temperature (Fig. 6.2). Although the temperature dependent measurements
introduced in Fig. 6.2 show a progressive smoothing of the conductance traces with
increased temperature (up to T' = 289 K), the square-root dependence, i.e. the ballistic
nature of transport, remains unchanged.

To demonstrate the high electronic quality of our graphene-hBN sandwich structures
we show the back-gate characteristic of a reference Hall bar device (Fig. 6.3). From this
data (Fig. 6.3c) we extract a carrier mobility in the range of around 150.000 cm?/V's,
resulting in a mean free path exceeding 1 um at around AV, = 4.6 V. Thus, the mean
free path is expected to clearly exceed all relevant length scales in our constriction de-
vices, giving rise to ballistic transport.

According to the Landauer-Biittiker theory for ballistic transport, the conductance
through a perfect constriction increases by an additional conductance quantum e?/h
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Figure 6.4: Landau fan and capacitive coupling. (a)-(e) Second derivative of the
longitudinal conductance G /9V,0B as a function of magnetic field B and
back-gate voltage V, for six different devices of distinct widths. The red
lines follow the evolution of the Landau levels. The slopes of the lines are
proportional to the capacitive coupling . (f) The longitudinal resistivity p
as a function of B and Vj provide an alternative way to extract o from the
position of the Landau levels, marked by white lines.

whenever Wkp reaches a multiple of 7,

2 oo
a =1 0<WkF —m), (6.1)
h T

m=1

where kp = /mn is the Fermi wave-vector, 0(k) is the Heaviside step function and the
factor four accounts for valley and spin degeneracies. For simplicity, we neglected the
minor phase contributions due to specific configurations of the graphene edges [22]. The
Fourier expansion of Eq. 6.1 yields:

4e? coWk 4e2
SR Sl

G h T h

= . . G
ch sin (2jWkr — ¢;) — 50 , (6.2)
j=1

with ¢g =1, ¢ =0 and ¢; = 1/(jm) (j > 0) for an ideal constriction. In the presence of
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SEM-extracted width W (nm) a (100%ecm—2vV—1)

1000 7.00
850 5.80
590 6.75
440 6.90
310 7.00
280 7.20
250 5.40
230 7.15

Table 6.1: Lever arm « values, extracted from the Landau fans presented in Fig. 6.4,
for the seven different devices under study. The geometric widths W are
extracted from SEM images (Fig. 6.6b).

rough edges, c¢g is reduced to a value below 1 due to limited average transmission. Like-
wise, the higher Fourier components c; are expected to decay in magnitude and acquire
random scattering phases ¢ # 0. Consequently, the sharp quantization steps turn into
periodic modulations as we will show below. Averaged over these modulations, only the
zeroth order term in the expansion [Eq. 6.2] survives. This mean conductance G() of
a constriction of width W thus features a linear dependence on kg, or, equivalently, a
square-root dependence as a function of back-gate voltage:

4e? [ coWk c 4e? coW 2¢e?
0 2 [0 F_ot0) _ % “0 _ 170y _ 20
G ~ 5 ( - 2> = TV = VP) w (6.3)

assuming perfect (or energy-independent) transmission of all modes, in agreement with
Fig. 6.1.

By measuring the carrier density dependent quantum Hall effect at high magnetic
fields [4, 23], we can independently determine the gate coupling « for each device
(Fig. 6.4). The derivative of the longitudinal conductance (0G/0V,) is well suited
to identify the evolution of the Landau levels as a function of B-field and gate voltage.
The position of the filling factors (FFs) in the B-V} plane is usually determined by the
minimum of the longitudinal resistivity p, (marked in white in Fig. 6.4f). Alterna-
tively, the position of the filling factor corresponds to a maximum and minimum of
902G /0V, 0B (marked in red in Fig. 6.4) for the holes- and electrons-side of the Landau
fan, respectively. The linear dispersion Er = hvpkp of graphene and its characteristic
Landau level quantization Exy = tvp/2hNeBy (where Ey is the energy of the Nth
Landau level and vp the Fermi velocity) determines the Landau level evolution as fol-
lows: By = %Vg + Vo with an being the gate coupling of every individual Landau
level N and V{ an arbitrary offset accounting for sample doping. The values of coupling
ay diverge for the lowest Landau levels [24], i.e. close to the Dirac point, but rapidly
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Figure 6.5: Deviations from the ideal ballistic model of conductance. (a) and
(b) Low-bias four-terminal differential conductance G as a function of charge
carrier density n (panel a) and momentum kr (panel b) of the 230 nm-wide
graphene QPC. The shaded orange region denote the deviation from the
ideal Landau Biittiker model of conductance G o /kp, shown in red and
blue for the electron and hole regimes, respectively. By comparing data and
model we extract the effective width for hole W}, and electron W, regimes,
shown in blue and red, respectively.

saturates to a constant level of coupling for the higher Landau level indexes. Tab. 8.1
summarizes the extracted saturation values of the lever arms.

With the gate-coupling revealed, we can unfold the dependence of the conductance
on V, and study it as a function of the Fermi wave-number kr. To linearize the con-
ductance as a function of kr though, we must initially determine the starting values of
gate voltage or carrier density upon which G follows the ballistic model of conductance.
A closer look at the trace from the narrowest device W = 230nm (Fig. 6.5) reveals a
systematical deviation from the expected square-root dependence at low carrier concen-
trations, i.e for n < 0.45 x 10'2 cm ™2 on the electron side and n < 0.75 x 10'? cm ™2 for
the hole side (Fig. 6.5a). This deviation becomes more pronounced close to the charge
neutrality point (see orange shaded area in Fig. 6.5). In the ballistic regime, i.e. at high
carrier densities, we can fit Eq. 6.3, e.g. the Landauer-Biittiker model of conductance,
where n§ and n} (or alternatively Vgoe and Vg[]h) are the boundary density values for the
electron- and hole-side, respectively, and « the lever-arm extracted from the Landau
level fan (Fig. 6.4). As expected, the differential conductance G evolves linearly as
function of kp in the ballistic regime (Fig. 6.5b), but but large deviations between data
and model become apparent close to the charge neutrality point (see orange-shaded
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Figure 6.6: Width-dependent ballistic transport in graphene QPCs. (a) Low-
bias four-terminal differential conductance as a function of kp for six
graphene QPCs of distinct width. The electrons (holes) conductance traces
are plotted in solid (dashed) colored lines. The width is extracted, in the
high carrier density regime, by fitting the model of conductance (solid and
dashed gray lines) to the measurements. (b) Scanning Electron Microscope
(SEM) images of four devices. The scale bar is 500nm. (c) Compari-
son between the measurement’s extracted width co W of panel a, with the
SEM-measured width W of panel b.

region in Fig. 6.5b). We conclude that a linear model using a constant gate coupling
krp = \/maAVy is not directly applicable to our graphene constriction devices. Instead,
one needs to account for the additional trap states arising from the graphene edges. We
will address more in detail the deviations from the ideal model in the following chapter
(Section 6.2).

As observed in Fig. 6.6a, at high energies, the conductance evolves linearly as a
function of kg for all graphene QPCs. A linear fit to the slopes (solid and dashed gray
lines) allows to extract the product ¢o W (Eq. 6.3) for each device and compare it to the
geometrical width W (Fig. 6.6¢). The geometrical width (W) of the fabricated QPCs
is determined from scanning electron microscopy (SEM) images (Fig. 6.6b), enabling a
direct comparison with the data-extracted width ¢y W (Fig. 6.6¢). The estimates for
co W extracted from GO (Eq. 6.3) lie just below the width W, where ¢q decreases for
decreasing width. This suggests that for the narrower devices reflections, most likely
due to device geometry and edge roughness, are playing a more important role. From
the data in Fig. 6.6c we can extract ¢y ~ 0.56 for our smallest constriction.

One may also interpret that the effective width of the conduction channel could be,
in all cases, smaller than the geometrical width W. However, in the following, we will
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Figure 6.7: Indications of confinement quantization. Low-bias four-terminal dif-
ferential conductance G as a function of n for the 230 nm-wide graphene
QPC. Panel A and B are zoom-in of the dashed regions in panel a. The
level of conductance and the position in the n-axis of the conductance steps
are marked by black crosses.

show that reflections at the rough edges of the constriction are indeed responsible for
the deviation of the experimentally extracted co W from the SEM width W.

Superimposed to the overall squared-root behavior of G(n) we find reproducible mod-
ulations or steps in conductance (see crosses in Fig. 6.7 and red arrows in Fig. 6.8). The
conductance steps are reproducible for several cool-downs (Fig. 6.9) as well as for differ-
ent devices (Fig. 6.7 for W =230nm, Fig. 6.8 for W =310nm and Fig. 6.20 for W =230,
250, 280 and 310nm). The conductance steps generally show a non-equal steps in con-
ductance AG, in the range of (2 — 4) €?/h (compare conductance steps in Fig. 6.6 and
Fig. 6.8). The step height AG and its sharpness depend on the carrier density (i.e. kp).
The plateaus do not seem to degrade so heavily at elevated levels of conductance as
in traditional III-V semiconductors, conserving fairly visible conductance steps even at
conductance values of ~ 25 e2/h for the 230 nm-wide device (Fig. 6.7) and ~ 40 e?/h for
310 nm-wide one (Fig. 6.8). More importantly, AG seems to depend on the constriction
width, in strong good agreement with the transmission coefficient ¢y extracted from
the overall conductance trend (Fig. 6.6). Remarkably, we observe a spacing AG of the
steps close to AG =~ 2e%/h ~ cg x 4€%/h for the 280 nm-wide device (with cq ~ 0.56,
see Fig. 6.7) and AG ~ 4e?/h ~ ¢y x 4€?/h for the 310nm-wide one (with ¢y ~ 0.98,
see Fig. 6.7).

It is important to note the progressive broadening, in the energy axis (i.e. V, or n
axis), of the conductance steps as a function of energy. This is clearly visible in the
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Figure 6.8: Indications of confinement quantization in the back-gate charac-
teristics of the 310 nm-wide graphene constriction (a) Low-bias
four-terminal conductance G as a function of back gate voltage V;, measured
at T' = 2K. The ideal Landau Biittiker model of conductance G x /n is
marked in red. (b) Close-up of the conductance G inside the dashed-line re-
gion of panel a. The presence of reproduceable conductance steps is clearly
visible (marked by red arrows). The shaded gray-region denote deviations
from the ideal Landauer model (red trace).

electron- and hole-side of the 310 nm-wide device (Fig. 6.8), and it is a direct conse-
quence of the Dirac fermion nature of the charge carriers in graphene.

In the following, we will show that reflections at the rough edges of the constriction
are indeed respounsible for the deviation of the experimentally extracted ¢ W from the
SEM width W). We will initially characterize the nature of these conductance steps via
bias spectroscopy and magnetic field dependent measurements.

First supporting evidences of size quantization appear looking at the magnetic field
evolution of the conductance plateaus (Fig. 6.10 and Fig. 6.11). Theoretically, the
transition from size quantization at zero magnetic field to Landau quantization at high
fields is expected to happen when the cyclotron radius I, = V2N -1p is smaller than half
the device’s width W, with lp = \/h/eB being the magnetic length and N a positive
integer accounting for the Landau level index. At the crossover, when 21, = W, it
is therefore possible to extract the device’s width. It is alternatively valid to use the
semi-classical relation I = hkp/eB, although one must carefully apply this relation in
the quantum regime since its solely valid at the boundary, when Landau quantization

144



28+
26
= = |
@ o
o o 24+
22+
1 1 1 1 20 1 1 Il
0 0.4 05 1.0 15 20
n (10"%cm?) n (10"%cm?)

Figure 6.9: Cool-down dependence of the conductance steps for the 230 nm-
wide graphene constriction. (a) and (b) Four-terminal differential con-
ductance G as a function of charge carrier density n for different cool-downs
of the 230 nm-wide graphene QPC, at the low- and high- charge carrier
density regimes (panels a and b, respectively). The traces are shifted hori-
zontally for clarity.

comes into play
lo = V2N+/h/eB = hkp/eB  when N = hk%/2eB, (6.4)
N being directly issued from the Landau quantization in graphene:
E = Vphkp = VpV2NeBh <= N = hk%/2eB, (6.5)

The magnetic fields fulfilling Bp = 2hkr/eW, noted critical fields (Bf), define thus
the transition from quantized conductance to a Landau quantization regime. As ob-
served in Fig. 6.10a (black solid line), the expected boundary limit for a 230 nm-wide
ribbon is in good agreement with the beginning of landau levels’ formation. Traces of
Landau levels are directly visible above the critical fields, although at T'=1.7K and
below the crossover, the conductance is dominated by resonances that obscure the mag-
netic evolution of the high conductance plateaus. Nonetheless, for the low conductance
plateaus (see Fig. 6.10b, ¢ and d), one can track the evolution of the quantized sub-
bands (B =0T) into its corresponding Landau levels. At higher temperatures, when
resonances and scattering effects are expected to vanish, the transition is observed even
for the highest conductance plateaus (Fig. 6.11). For comparison, we calculate the
evolution of the size quantization as function of magnetic field using the shape of our
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Figure 6.10: Magnetic-field evolution of the size quantization at T = 1.7 K. (a)
Landau level fan of the 230 nm-wide graphene QPC. The formation of Lan-
dau levels emerges at high magnetic fields. For B-fields above the critical
field Bp (solid black line), i.e. for cyclotron radius [, smaller than half the
constriction’s width W, the Landau level quantization dominates over the
size quantization. (b) and (c) Derivative plots of the transconductance in
the dashed-line regions in panel a. The evolution of the lowest quantization
plateaus with magnetic field is clearly visible. (d) The magnetic field evo-
lution of the subbands is also visible in the differential conductance from a
different cool-down of the same device, also measured at 1.7 K.

device (extracted from the AFM figure) as the only adjustable parameters (green traces
Fig. 6.11b and c). We employ the modular recursive Green’s function method [25] with
the contribution of the magnetic field modeled via a Peierls phase factor. To compute the
local density of states, we superpose the calculated eigenstates using Arnoldi-Lanczos
factorization. We find remarkably good agreement with measurements, supporting the
notion that the observed kinks are, indeed, unambiguous signatures of size quantization.

More importantly, and opposed to was has been previously established [11], results
reveal that the associated confinement states are four-fold degenerate and heavily af-
fected by resonances and back-scattering across the sample. Thus, transport appears
to have a particularly reduced transmission coefficient (¢ =~ 0.5), which is also recog-
nizable from the distorted-shape of the conductance plateaus [26]. The results support
that the divergences between geometrical and extracted widths Fig. 6.6¢ are indeed due
to a reduced transmission coefficient (co ~ 0.5 for the narrowest devices).

Disorder, due to bulk imperfections (situation A in Fig. 6.12d) and crystallographic
dislocations at the edges, or "rough" edges, (situation B in Fig. 6.12d) may lead to
scattering processes which result in reflections of the charge carriers back to the reser-
voir, i.e. back-scattering. In adiabatic ITI-V heterostructures, the shape of the devices
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Figure 6.11: Magnetic-field evolution of the size quantization at T =6 K. (a)
Derivative plot of the transconductance as a function of magnetic field and
charge carrier density from a different cool-down of the 230 nm-wide de-
vice measured at T" = 6 K. The solid green lines indicate the theoretical
expectations of the magnetic evolution of the size quantization. The thick
black line indicates the crossover from confinement to a Landau quantiza-
tion regime, also visible in panel a of Fig. 6.10. (b) Zoom-in of Panel a for
small magnetic fields (B < 1T).

is defined by electrostatics (soft-confinement) with the edges of the devices merely con-
tributing to back-scattering processes. Therefore, the distribution of scattering centers
can be considered uniformly distributed within the bulk (situation A in Fig. 6.12d).
Under this assumption, the concentration of scattering points necessary to achieve low
transmission coefficients (¢ ~ 0.5), may obscure the ballistic transport since, as soon
as the average distance between scattering points (mean free path l.) is shorter than
Fermi wavelength Ap, transport enters the diffusive regime. In other words, in tradi-
tional ITI-V heterostructures, a fairly low transmission coefficient erodes the ballistic
nature of transport. On the other side, the "carved" nature of the graphene devices,
may allow the coexistence of a ballistic channel (defect-free zone at the center, away
from the device’s edges) with a highly dense region of scattering points located at the
edges of the graphene devices (red region in Fig. 6.12d), thus allowing the coexistence
of ballistic transport phenomena with an associated reduced transmission coeflicient.

Moreover, both experimental and theoretical investigations in traditional 2DEGs,
e.g. GaAs heterostructures, show very clear and pronounced quantization plateaus |28|.
In these heterostructures, and besides the aforementioned structural differences of the
material boundaries [e.g. soft edges compared to graphene’s hard edges (Fig. 6.12d)],
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Figure 6.12: Scattering mechanisms in graphene. (a) Electronic band structures
along lines of high symmetry for GaAs (reprinted from [27]). Transport in
GaAs mostly happens through carriers around the I'-point (k = 0). (b)
First Brillouin zone of GaAs highlighting the lines of the diamond struc-
ture. (c) First Brillouin zone of graphene (gray shaded region) with the
K and K’ Dirac cones represented in two of the hexagon edges. Carriers
responsible of transport do not have zero-momentum (k # 0). K — K’
inter-valley scattering processes allow shifts in momentum. (d) Schematic
representation of the transport through a graphene quantum point contact.
The scattering on a point defect in the bulk is represented in A. The scat-
tering mechanism can also occur at the boundaries of the device (situation
B). The scattering phenomena may also happen in the constricted area
(situation C). In ballistic graphene devices, the region with a high concen-
tration of scattering centers are the edges of the graphene device (region
highlighted in red).

the charge carrier wavelength Az near the I' point is very long and the lowest value
of Ar that is able to probe is limited by the square-relation of its dispersion relation
(Fig. 6.12a). All in all, in traditional III-V 2DEGs the Fermi wavelength of the charge
carriers cannot resolve disorder on the nanometer scale, like, for example, graphene’s
edge disorder. However, in graphene, the linear dispersion relation (Fig. 6.12¢) allows
the conducting charge carriers to probe disorder at a much shorter length scales, that
together with the K-K' scattering possibilities (Fig. 6.12¢) may substantially impacts
transport characteristics (energy-dependent transmission coefficient).

The temperature dependence of the quantized conductance plateaus strongly confirms
the divergences found between the magnetic evolution of the subbands at 7" = 1.7K
(Fig. 6.10) and T" = 6 K (Fig. 6.11). Fig. 6.13 shows the temperature dependence of
the back gate characteristics at both low and high carrier densities (Fig. 6.13a and b,
respectively). We do not observe major differences between the low and high density
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Figure 6.13: Temperature dependence of the differential conductance. (a) and
(b) Differential conductance as a function of back-gate voltage and temper-
ature at low (panel a) and high (panel b) carrier densities for the 230 nm-
wide QPC. Measurements are recorded at temperatures from T'= 2K to
T = 24K in steps of 0.7K. (¢) Zoom-in of the temperature evolution of
the shape of the steps in conductance.

regimes, with the interference structures (Fabry Perot-like oscillations) vanishing at
lower temperatures (T ~ 15K) and the quantized conductance plateaus surviving up
to T' =~ 24 K. Elevated temperatures appear thus, to enhance the observation of sub-
bands in ballistic graphene nano-structures, in perfect agreement with the analysis of
the evolution in B-field. Note that, the temperature dependence of the shape of the
conductance plateaus in Fig. 6.13 c is heavily temperature-dependent and has a temper-
ature behavior of the same order as the interference structures, further supporting that
resonances and scattering play an important role in our structures and may obscure the
observation of clear quantization plateaus.

We proceed with finite bias spectroscopy measurements to further support the confine-
ment nature of the observed steps in conductance and extract the energy separation be-
tween successive subbands, i.e. subband spacing AE (Fig. 6.14, Fig. 6.15 and Fig. 6.16).
Although, the plateaus in conductance do not lie at multiples of AG = 4e2/h, due to
the aforementioned reduced transmission coefficient and/or lifting of the four-fold de-
generacy (see Section 6.3), half conductance plateaus are certainly visible at high values
of bias voltage V;, (Fig. 6.15b,c). The observation of these half-conductance plateaus
(see also blue trace in Fig. 6.14c) undoubtedly confirms the confinement nature of the
observed plateaus [29-31]. As depicted in Fig. 6.30b, plateaus at intermediate values
of conductance are expected to emerge when the bias window eV} is greater than the
subband spacing AE (eV, > AE).
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Figure 6.14: Bias spectroscopy of the 230 nm-wide graphene constriction. (a)
Differential conductance G (upper panel) and differential transconductance
0G0V, (colored lower panel) as a function of back gate V, and bias V,
voltages, measured at B = 0 T and T = 6 K. The differential conduc-
tance G (top panel) is measured at V4, = 0 V in the low- carrier density
range. The vertical black dashed lines indicate the position of the sub-
bands. The transconductance 0G/0V, (bottom color-scaled panel) of the
data shown in the upper panel, is measured as a function of an applied bias
voltage V4. The kinks are characterized by high values (yellow color) of
transconductance. The diamond structures are highlighted by dashed gray
diamonds. We extract an average subband spacing AF ~ 13.5 £+ 2 meV
(green line). (b) Same as panel (a) measured at high carrier densities. (c)
Same as panel (a) for a second cool-down of the same device. The blue
trace represents the differential conductance G measured at V; = 15mV
(see blue arrow in lower colored panel). The horizontal blue dashed lines
highlight the levels of conductance of the intermediate conductance steps,
visible for energies above the subband spacing, e.g. E ~ 15meV> AF
(blue conductance trace).

The Bias voltage spectroscopy measurements yields an estimate of the energy sub-
band AFE. We analyze six diamonds associated with conductance steps at the low-
and high-conductance ranges (see Fig. 6.14). Extraction of the energy scale from the
derivative of the differential conductance (color panels) yields AE ~ 13.5 £ 2meV,
leading to vy = 2WAE/h =~ (1.5 4 0.2) x 105m/s. This is a clear signature of a sub-
stantially renormalized Fermi velocity vr in nano-structured graphene, that is in pretty
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Figure 6.15: Finite bias spectroscopy of the 230 nm-wide graphene QPC. (a)
Differential conductance G as a function of back-gate voltage, measured at
VWw=0V,B=0T and T = 6 K. The red solid line shows the ballistic
model of conductance, fitted at high carrier densities. (b) Differential
conductance G as a function of source-drain voltage V,. The traces are
taken at fixed values of back-gate voltage Vj from —0.5 V (lower trace) to
3.0 V (upper trace) in steps of 30 mV. The dense regions correspond to steps
in conductance. The intermediate steps in conductance at high bias voltage
are marked by red arrows. The subband spacing AE = 13.5 4+ 3 meV is
marked by a vertical red line. (c) Differential conductance g as a function
of source-drain voltage V}, measured at B = 140 mT. The intermediate
kinks at high bias voltage are marked by red arrows. We extract an equal
subband spacing as in panel b, AE ~ 13.5 + 3 meV (vertical red line).

good agreement with previously reported Fermi velocity renormalization values [32, 33].
Variations in the data are due to temperature effects, potential variations and uncertain-
ties in determining the exact extensions of the diamonds. All six extracted diamonds
are taken from energy regions where size quantization signatures are clearly visible and
reproducible - we are thus confident that the sample is in the quantum point contact
regime for all six diamonds. Note that modifications of the gate-lever arm do not affect
the bias spectroscopy data, since all energy scales are extracted from the bias voltage
axis (Vj) which represents a direct energy-scale. The observed changes in vp have been
previously attributed to e-e interactions due to the assumed lack of disorder in the mea-
sured suspended graphene devices [32]. Although our devices show undeniable traces
of ballistic transport, i.e lack of disorder, we can not neglect electron-phonon coupling
mechanisms as a source of vp renormalization. Indeed, the disagreement between the
geometrical and the data-extracted width (Fig. 6.6) has been treated throughout this
section as a reduced transmission coefficient problem that may be pretty well related
with electron-phonon interactions (Fig. 6.10 and Fig. 6.11).
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Figure 6.16: Finite DC bias spectroscopy of the 230 nm-wide graphene QPC.
(a) DC bias spectroscopy of the same device as in Fig. 6.15. (b) Con-
ductance GP¢ as a function of DC source-drain voltage VbD ¢ measured at
B =140mT and T = 6 K, for the same device as in panel a.

We extract similar values of subband spacing (AF ~ 13.5+2 and 13.5+3meV) in a
second (Fig. 6.14c) and a third (Fig. 6.15) cool-down of the same device. The value of
subband spacing is additionally confirmed at finite magnetic field (Fig. 6.15¢). We note
that, at B=140mT, the quantized subbands are still caused by geometric confinement
rather than magnetic confinement (i.e., the quantum Hall regime).

To discard any spurious contribution from the AC measurement technique, the bias
spectroscopy measurements have been repeated in a DC configuration, where the con-
ductance G = I/V = Ipc/Vpc is obtained from a symmetrically applied source-drain
DC bias voltage Vpe. Although the resolution of the DC conductance (Fig. 6.16) is
not sufficient to reveal the half-conductance plateaus, i.e. not suited for extracting the
subband spacing AF, the conductance plateaus are still visible at identical values of
conductance as in the AC configuration (Fig. 6.15).

In conclusion, we have demonstrated ballistic conductance of confined Dirac fermions
in high-mobility graphene quantum point contacts sandwiched by hexagonal boron ni-
tride. Away from the Dirac point, we observe a linear increase in conductance as a
function of the Fermi wave-vector with a slope proportional to constriction width. More
importantly, superimposed to the evolution of the conductance, we identified traces of
conductance quantization. Magnetic field and bias spectroscopy measurements supports
the four-fold degenerate nature of the electronic sub-bands as well as the presence of res-
onances and scattering events along the electronic path. The associated low transmission
coefficient (T" < 1) of the transport modes, disentangle the apparent disagreement be-
tween extracted and geometrical width within Landau-Biittiker framework. Moreover,
the energy extraction from the bias spectroscopy measurements shows a renormalization
of the Fermi velocity vp, with consistent values (reproducible for successive cool-downs)
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Figure 6.17: Regime of ballistic conductance. (a) Back-gate characteristic mea-
sured at B =07 and T = 1.5K as a function of charge carrier density n
for the 230 nm- (a), 310 nm- (b), 440 nm- (c) and 590 nm-wide (d) graphene
QPCs. Shaded orange regions denote deviations from the Landau-Biittiker
model G o« /kr shown in red. The extracted widths for holes and electrons
are marked in blue and red, respectively.

of up to vp ~ 1.5 x 10m/s.

6.2 Effect of edge localized states in the transport behavior

As pointed out in previous section, the transport characteristic of graphene nano-devices
follows a ballistic model of conductance only in the high-energy range. Even if, close
to the charge neutrality point, the disagreement between model and data has been al-
ready introduced (Section 6.1), we just identified the problem without discussing the
origin and implications of these findings. Moreover, although the disagreement between
data and model was clearly visible for the 230 nm and the 310nm devices (Fig. 6.5 and
Fig. 6.8), the situation is common among all measured devices (see low energy range
of the conductance traces in Fig. 6.6a and in Fig. 6.17). Note that, as introduced in
previous chapter (Section 6.1), we will differentiate between width extracted from the
conductance measurements and SEM extracted width throughout this section.

The deviation from the ideal Landau Biittiker model G o /n (gray shaded region

in Fig. 6.8 and orange shaded region in Fig. 6.5, Fig. 6.7 and Fig. 6.17) could have
its origin on a non-constant, e.g energy-dependent, transmission coefficient and/or a
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Figure 6.18: Linear conductance through graphene quantum point contacts.
a, Conductance traces of two different cool-downs (black and green curve)
of the 230 nm-wide quantum point contact as a function of charge carrier
density. For the black (green) cool-downs, shaded gray (light gray) regions
denote deviations from the ideal Landauer Biittiker model G' ox v/n shown
in red. b, Experimental conductance trace as a function of kp after correc-
tion for the density of trap states (black and green curves) and theoretical
simulations of graphene quantum point contact (blue curve). Theoretical
results are rescaled to experimental device size as determined from panel
a. Ideal linear transmission is shown in red as guide to the eye. Curves
are offset horizontally for clarity. c, Local density of states of graphene
quantum point contact from tight-binding simulations, at three different
energies (-100 meV, -30 meV and 250 meV; see also arrows in panel e). d,
Graphene density of states extracted from experiment and e from simu-
lation. Both experiment and theory find a substantial contribution from
trap states around the Dirac point.

variation from the linear density of states of ideal bulk graphene. In Fig. 6.18, we show
the conductance as function of n for two different cool-downs of the same graphene QPC
of width ~ 230 nm. The gray shaded regions highlight the cool-down dependent low
carrier density range of substantial deviation from G x y/n. We note that the square-
root relation between the Fermi wave vector kr and the gate voltage V, of Eq. 6.3
assumes constant gate coupling and the ideal linear density of states p oc |E| of Dirac
fermions. Whereas we can neglect quantum capacitance effects of ideal graphene as
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Figure 6.19: Ballistic transport regime of the 230 nm-wide graphene constric-
tions. (a) Low-bias four-terminal differential conductance G as a function
of charge carrier density n for the 230 nm-wide graphene QPC. The red
solid lines are fits to a simple capacitive coupling model [Eq. 6.3] at high
carrier densities for the holes and electrons regime, respectively. Devia-
tions appear in the gray-shaded region around the charge neutrality point.
(b) Conductance G of panel (a) as a function of kg using the ideal, linear
density of states (red solid line), or including a finite density of trap states
around the Dirac point (black solid line). The expected linear dependence
of G(kr) on kp is shown by red dashed line. (c¢) and (d) Same as (a) and
(b) for a different cool-down of the same device. After exposing the sample
to ambient conditions, the number of charge traps responsible for the flat
area around the Dirac point increased significantly.

the origin of the divergences [34], localized states at the rough edges of our device are
poorly described by the linear density of states of ideal bulk graphene [35]. While these
states do not contribute to transport, they contribute to the charging characteristics
of the back gate voltage. Consequently, the total charge carrier density n contains a
contribution np of charge carries in trap states, modifying the relation between n and
kg to:

aAVy =n = ki1 ' +nr (AV). (6.6)

Far away from the Dirac point k}% > mnr, the contribution due to trap states can well
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Figure 6.20: Width-dependence of the kinks. Four-terminal differential conduc-
tance G as a function of momentum kp, for four different devices of widths
230nm (a), 250nm (b), 280nm (c¢) and 310nm (d). The transmission
traces are shown in black (red) for electrons (holes) as a function of the
rescaled kp (see main text and Eq. 6.6). The arrows highlight the steps in
conductance, with conductance jumps of about Ty x 4e?/h. Ty has been
extracted from the overall transmission of the device, see Fig. 6.6. As
an example, Ty ~ 0.95 for the 310 nm-wide QPC. The traces are shifted
horizontally for clarity.

be neglected, and we recover the expected square root relation. However, close to the
Dirac point, oAV, will approach nrAV,. To obtain a theoretical estimate of nr, i.e.
the number of trap states, we perform tight-binding simulations of the density of states
of rough-edged devices. The calculated local density of states of a rough-edged constric-
tion show strong clustering of trap states at the device edges (see Fig. 6.18c), which
energetically lie close to the Dirac point (Fig. 6.18¢). Note that, the observed deviation
of G (Fig. 6.18a) opens up the opportunity to extract the density of trap states np from
experimental conductance data (e.g. Fig. 6.18d), and thus a new pathway for device
characterization. By using Eq. 6.3 and Eq. 6.6 we linearize G (kr) down to very low
kr values Fig. 6.18b in order to extract the trap state density nr as function of en-
ergy ¥ = +hvpkp, where vp is the Fermi velocity, or alternatively, as a function of kp
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Figure 6.21: Width dependence of the subband spacing. (a) Fourier transform
of the G — G electron conductance through the 230 nm-wide graphene
constriction, both for experiment (red trace, noted "ex") and theory (black
trace, noted "th"). The first peak of the Fourier transform (marked by red
arrows) is in agreement with the width W of the quantum point contact.
(b) Same as (a) for the hole conductance. The size of the first peak is
substantially reduced for both experiment and theory due to the presence
of localized states that lead to additional scattering. (¢) Comparison of the
width extracted from the Fourier transform (Wgpr) of the conductance
traces (see Fig. 6.20) with the geometric width W extracted from SEM
images, for five different devices.

(Fig. 6.18d). We model the density of states of the device by a linear contribution from
bulk graphene, and a number of localized trap states with a Gaussian distribution in
eigenenergy around the Dirac point. In Fig. 6.18d we show np(E) for the to traces dis-
cussed in Fig. 6.18a. We note very good qualitative agreement between simulation and
experiment (compare Fig. 6.18e and Fig. 6.18d). Quantitative correspondence would
require a detailed analysis of the chemical composition of the device edges.

Interestingly, the trap state density indeed crucially depends on edge chemistry. The
only difference between the green and black traces in Fig. 6.18a and Fig. 6.18b is that
the device as been exposed to air for several days leading to a wider n-region of substan-
tial deviation (compare light-gray and gray shaded regions in Fig. 6.18a). While the
slope is the same between both cool-downs (i.e. extracted width) and the small features
on the conductance trace are reproducible (see black arrows pointing to conductance
steps visible in the conductance trace of both cool-downs in Fig. 6.18a), the number of
trap states (i.e. region of deviation around the CNP) is significantly enhanced (compare
also green and blue trace in Fig. 6.19) for the second cool-down. Using the extracted
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Figure 6.22: Effect of the rescaling procedure on the back-gate characteris-
tics. Low-bias four-terminal differential conductance of the 230 nm-wide
graphene QPC as a function of back-gate voltage before (black trace) and
after (blue trace) applying the rescaling procedure to the charge carriers
(Eq. 6.6). The ideal Landauer-Biittiker model of conductance is marked in
red.

density of states, we can finally obtain a conductance as a linear function of kr for the
whole energy range (Fig. 6.18b and panels b and d of Fig. 6.19).

With the conductance traces G linearized as a function of kr (Fig. 6.18b), we stress
that our data agrees remarkably well with ballistic transport simulations through the
device geometry (inset of Fig. 6.18b) using our modular Green’s function approach [25]
(see blue trace in Fig. 6.18b): we simulate the 4-probe constriction geometry of width
W, taken from SEM images, scaled down by a factor of four to obtain a numerically
feasible problem size. To remove residual effects from the ideal leads, we average over
different lead widths W ~ 60—80nm. To account for the etched edges in the devices, we
include an edge roughness of AW/W = 20% for the constriction. This comparatively
large edge roughness (which is consistent with the systematic reduction of transmission
through the constriction when using the average conductance) is probably due to mi-
crocracks at the edges of the device Remarkably, theory and experiment show similar
smoothed, irregular modulations (see Fig. 6.18b), instead of sharp size quantization
steps [36]. Their origin lies in the perturbation of the quantization steps by the strong
scattering at the rough edges of the device (see Section 6.1) and/or by interference ef-
fects induced by the geometry (the adiabatic condition will be treated in Section 6.3).
We note that calculations with smaller edge disorder show a larger average conductance,
yet very similar "kink" structures. Even though our simulation does not include the full
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Figure 6.23: Sub-band position as a proof of the charge carrier rescaling pro-
cedure. (a) Low-bias four-terminal differential conductance G of the
230 nm-wide graphene constriction as a function of back-gate voltage V.
The theoretical position of the subbands in the Vj-axis is indicated by
vertical dashed lines. Close to the Dirac point (leftmost subpanel) mea-
surements deviate from the ideal Landau model G o< /kr shown in red
(orange-shaded region). (b) Derivative plot 0G/0V, of the conductance
trace shown in panel (a). The correlation between the expected position
of the subbands (vertical dashed lines) and measurements holds only at
high carrier densities. (c) Same as (a) after rescaling of the charge car-
riers (Eq. 6.6). The vertical dashed lines indicate the theoretical position
of the subbands, as in panel (a). The red arrows indicate the subbands
with lifted degeneracy (see Section 6.3). (d) Derivative plot 0G/0V, of
the conductance trace in panel (c).

range of experimental sources of scattering such as bulk disorder, electron-electron, or
electron-phonon coupling, the edge-disorder induced scattering alone is strong enough
to reduce the visibility of size quantization features. By contrast, both experimental
and theoretical investigations of, e.g., semiconducting GaAs heterostructures show very
clear, pronounced quantization plateaus [37].

More importantly, once the conductance G is linearized as a function of momentum
kr (see Fig. 6.20), we can alternatively extract the width of the devices by studying
the periodicity of the conductance steps as a function of kr. By subtracting the zeroth-
order Fourier component  kp (or o< /n), the superimposed modulations/steps in the
conductance §G(kr) = G — G provide direct information on the quantized conduc-
tance through the constriction. One key observation is that the Fourier transform of
0G(kp) offers an alternative route towards the determination of the constriction width
complementary to that from the mean conductance GO For example, the pronounced
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peak of the first harmonic at 230nm (red arrows in Fig. 6.21a,b) is consistent with the
constriction width W derived from the SEM image. Interestingly, our simulation also
correctly reproduces the experimental observation that the peak in the Fourier spectrum
of 0G(kr) is more pronounced on the electron side than on the hole side (Fig. 6.21a,b).

Performing such a Fourier analysis for several devices (Fig. 6.20) yields much closer
agreement with the geometric width W (Fig. 6.21¢c) as compared with an estimate based
only on the zeroth-order Fourier component G° (Fig. 6.6¢). The analysis of the position
of the conductance steps in the energy axis, or equivalently the Fourier spectroscopy
of conductance modulations as a function of kr thus allows to disentangle the reduced
transmission due to scattering at the edges (co W) from the effective width of the con-
striction.

As stated in previous Section 6.1, the observed steps in conductance are undeniably
associated with conductance quantization. In the following, we will use the position of
the individual quantization steps to corroborate the validity of our rescaling procedure
(Eq. 6.6). As previously mentioned, the square root relation between back gate voltage
and Fermi energy is modified by the presence of edge states (Fig. 6.22). Thus, the
energy position of the sub-bands is expected to diverge accordingly.

In a first order approximation, the band structure of a graphene constriction of width
W can be described as a collection of sub-bands originating from the quantization of
the wave-vector perpendicular to the transport direction,

ki =+ |M+«a| m/W, (6.7)

where M = 0,+1,+£2,... is an integer denoting the sub-band index, and 0 < |a| < 0.5
is a Maslov index related to the boundary conditions at the edges (for simplicity we
use « = 0, i.e. a zigzag ribbon). Within the energy range where the ballistic model
(marked in red in Fig. 6.23) fits the conductance trace, the theoretical position of the
subbands (marked by vertical black dashed lines) for a 230 nm-wide graphene constric-
tion (VgM = mM?/aW?) are in excellent agreement with the jumps in conductance (see
Fig. 6.23a). The agreement between model and data is also visible in the derivative of the
differential conductance 90G/0V, (Fig. 6.23b). However, at lower energies (shaded or-
ange background in Fig. 6.23a,b), we find no reasonable match between model (Eq. 6.7)
and data, although the magnetic evolution, the bias spectroscopy and the temperature
dependence measurements presented in Section 6.1 confirmed the confinement nature
of the observed jumps in conductance. Only after rescaling of the carrier density based
on the effective density of states introduced in Eq. 6.7, we obtain a much more accurate
correspondence between data and model, also for the lowest sub-bands (blue trace in
Fig. 6.23c.d).

In this section we analyzed the effects of graphene edges and conclude that a straight-
forward linear density of states model is not directly applicable in ballistic nano-structured
graphene devices. Instead, one needs to account for the additional charge carrier trap
states that, close to the charge neutrality point, distorts this linear relation.

We determined the density of localized edge states np by the linearization of the
conductance background and used the presence of quantization signatures (sub-bands
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formation) to validate our model, thus offering a unique handle on edge physics in
graphene devices.

6.3 Breaking of the four-fold degeneracy in ballistic
graphene nano-structures

One of the major interest of graphene is that low-energy carriers are well described as
2D mass-less Dirac fermions. Besides the real-spin degree of freedom, the dispersion
relation of graphene is characterized by two equivalent Dirac cones and hence by its
four-fold degenerate Dirac bands. Although the breaking of these multiple degrees of
freedom, manifested as further Hall plateaus outside the normal integer sequence, have
been well studied at high magnetic fields [38], not much is known about the robustness
of these symmetry states at zero Tesla. As reported in Section 6.1, the observation of
electronic subbands in the transport characteristics of ballistic graphene constrictions
opens the door to study, at zero Tesla, the robustness of this four-fold degenerate system.

In this section, we report on the degeneracy lifting of the electronic subbands in
graphene 1D systems. The degeneracy of the energy subbands appears to be drastically
modified by the amount of trap states at the edges. The effects are visible on the trans-
port characteristics at low temperatures (7'=2 to 20K, see Fig. 6.13) by comparing
successive cool-downs of the same device (Fig. 6.25 and Fig. 6.26). As introduced in
Section 6.2, the density of trap states np can be extracted at low energies by comparing
the conductance trace G to the model o< /n. We will show that the trap states density
ny not only influences the charging behavior (Section 6.2), and thus the conductance
through the graphene constriction, but also modifies the electronic band structure.

In Section 6.1 we proved the 1D nature of the conductance steps visible in back gate
characteristic of several devices (see Section 6.2, specially Fig. 6.20). The reduced trans-
mission probability of the quantized modes was attributed to an uncontrolled scattering
of the charge carriers at the rough edges. Thus, the quantized conductance plateaus
appear blurred, even at low temperatures (kpT < AE, see Fig. 6.13). Here on, we in-
troduce the detailed analysis of the position of the one-dimensional (1D) subbands and
its associated transmission coefficient T for two graphene nanoribbons of similar width
(W ~ 230nm) but different shapes. The lifting of the four-fold degenerate subbands,
visible in the back-gate characteristics of both devices, is confirmed by bias spectroscopy
and magnetic field dependent measurements.

The two graphene constrictions discussed in this section have different shapes. The
device shown in Fig. 6.24a and b, has a typical quantum point contact QPC geometry,
whereas the device appearing in Fig. 6.24d and e shows a rectangular pattern of constant
width, i.e a traditional nanoribbon shape. Both devices have been fabricated from
the same hBN-graphene-hBN sandwich hetero-structure. Samples are contacted in a
four-terminal configuration to avoid contributions from the metal-graphene interface
resistance (Fig. 6.24). After rescaling of the trap states as introduced in Section 6.2,
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Figure 6.24: Shape-dependent back-gate characteristics. a and d, Schematic rep-
resentation of the two different device geometries contacted in a four-probe
configuration. The differential conductance G'=dI/dV =Isp/Vsp is mea-
sured from an AC excitation voltage Vio = 250 uV on both samples. b
and e, False colored Scanning Electron Microscope (SEM) images of the
fabricated devices. The Au metal contacts appear in white, the top hBN
layer in green and the SiOs substrate in gray. The scale bar is 500 nm. ¢
and f, Low-bias differential conductance G as a function of kr from the
devices shown in panel b and e, respectively, after rescaling of the charge
carriers (see Section 6.2).

the back-gate characteristics of both devices show robust and reproducible traces of
confinement quantization equidistant in kg (see the plateaus-like features in Fig. 6.24c
and f). For the QPC device (Fig. 6.24a and b), the same conductance measurements
are repeated after a second cool-down (red trace in Fig. 6.25a and b).

In transport measurements, the position of a subband is characterized by a sudden
increase in conductance. Experimentally, we extract their position by derivating the
conductance G in respect to the back-gate voltage V;, 0G/0V, (Fig. 6.23b and d), or
alternatively G /0kp. The position of the subbands (maximum of 0G/0kr) are marked
by black and red vertical dashed lines (for the first and second cool-down, respectively)
in Fig. 6.26a, b, and by black and red circles in Fig. 6.26c. The extracted positions are
in good agreement with the theoretical expectations (green vertical in Fig. 6.26b) for
an ideal zigzag (aw=0) graphene nanoribbon of the same with W =230nm (Eq. 6.7).

Surprisingly, besides the equidistant four-fold degenerate subbands (Fig. 6.10 and
Fig. 6.11), we observe the presence of splitted subbands, marked by black arrows in
Fig. 6.26a,b, for the conductance trace of the first cool-down (black trace). This de-
generacy lifting phenomena is directly visible in the back-gate characteristic by the
formation of half conductance plateaus (black arrows in (Fig. 6.26a and b). The re-
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Figure 6.25: Rescaling of the charge carriers and cool-down dependence. (a)
Conductance traces for two different cool-downs (black and red curves) of
the QPC device shown in Fig. 6.24a and b, as a function of charge carrier
density. For the first cool-down (black trace), the shaded gray region denote
deviations from the ideal Landauer Biittiker model G' o< 1/(n) shown in
green. The second cool-down curve (red trace) is offset horizontally for
clarity. (b) Experimental conductance traces shown in panel represented
as a function of kg, after rescaling by the trap states density np. The
dashed regions A and B are analyzed in Fig. 6.26.

sulting two-fold degenerate subbands (empty circles in Fig. 6.26¢) have therefore an
associated conductance increase AG of roughly half the value of the original four-fold
subbands (compare black filled circles with empty black ones in Fig. 6.26¢). Moreover,
the analysis of the second cool-down (red trace in Fig. 6.26), indicates the complete
lifting of most of the 1D subbands (empty circles in Fig. 6.26¢). The same situation is
observed for the ribbon-shaped device (Fig. 6.24d-f), with hints of conductance plateaus
(black arrows in Fig. 6.27) developing at the position of a theoretically expected sub-
band (compare the position of the subbands marked by a black arrow, with the dashed
red lines in Fig. 6.27a).

The splitting of the subbands can be associated to the local crystallographic orien-
tation of the edges. To first a order approximation, the 1D energy subbands have each
the following dispersion relation:

Exi(ky) = £hop [k3 + k3 = ﬂwF\/k; + (M + a)2r2/W2, (6.8)

as introduced previously (Eq. 6.7). For values a # 0, every four-fold degenerate subband
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Figure 6.26: Degeneracy lifting of the sub-bands. (a) and (b) Conductance traces
as a function of kp inside the A and B dashed regions of Fig. 6.25a. The
black arrows indicate the degeneracy broken subbands of the first cool-down
(black trace). The position of the subbands in the kp-axis are character-
ized by sudden increases of conductance (local maxima of 0G/0kp) and
are indicated by horizontal dashed lines. (¢) The colored circles mark the
position of the subbands in the kr axis (vertical dashed lines in panel a)
with its associated step in conductance AG. The theoretical position of the
subbands in the kp-axis is indicated by vertical green lines. The filled and
empty circles indicate the four-fold and two-fold degenerate subbands, re-
spectively. The right Y-axis indicate the associated transmission coefficient
T.

splits into two two-fold degenerate subbands. Fig. 6.28 illustrates the splitting process
for an @ = 0.15. The conductance can be then expressed as:
2 2 W kr e? Wky

€ (&

where Int(z) represents the integer that is just smaller than z, kr is the momentum
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Figure 6.27: Observation of degeneracy-broken subbands. (a) Conductance G as
a function of kp for the 230 nm-wide graphene ribbon (Fig. 6.24e). The
black arrows indicate the degeneracy-broken subbands. The theoretical
position of the subbands (refer to Eq. 6.7) in Vj-axis is indicated by vertical
dashed red lines, in panel a and b. (b) The black circles indicate the
position in kp of the energy subbands (local maximum of 0G/0kr). Their
associated step in conductance AG is indicated in left-axis. The average
conductance step AG g4 is marked by a horizontal black dashed line. The
right Y-axis indicate the associated transmission coefficient T'.

at the Fermi energy and k; refer to the allowed transverse modes. The factor 2 corre-
sponds to the spin degree of freedom. A visual representation of the subbands lifting
process on the transport characteristics is shown in Fig. 6.28c, for o = 0.15.

To support the confinement nature of the half conductance plateaus (refer to Fig. 6.14,
Fig. 6.15 and Fig. 6.16) and thus prove the degeneracy lifting process, we study the
transport characteristics as a function of bias voltage V;,. With finite bias spectroscopy
measurements we can directly extract the subband spacing energy AFE as well as the
associated degeneracy-breaking energies AE’ and AE” (Fig. 6.29 and Fig. 6.30). The
differential conductance G of a third cool-down of the graphene QP C device as a function
of bias and back-gate voltages (Fig. 6.29) shows an unexpected sequence of conductance
plateaus at values G ~ 1.7, 2.2, 3.1, 4.4 and 5.6 €2/h. As already mentioned during Sec-
tion 6.1, the confinement features are extremely cool-down dependent mostly for the
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Figure 6.28: Degeneracy lifting of the energy subbands. (a) Calculated energy
dispersion relation of a zigzag graphene ribbon (a=0, black dashed lines)
and a randomly oriented ribbon (a=0.15, red solid lines). (b) Resulting
density of states of the zigzag and randomly oriented graphene ribbons
shown in panel a. Temperature is set to T'=3K. (c¢) Associated conduc-
tance G as a function of back-gate voltage Vj for the zigzag (black dashed
line) and randomly oriented ribbon (red solid line), at T=0K.

lower modes, i.e for energies close to the charge neutrality point (refer to Fig. 6.9), due
to resonances and/or localization of the electron wave-functions. Indeed, the conduc-
tance plateaus (Fig. 6.29) do not lie at multiples of Go=4¢?/h, since the transmission
coefficient of the modes is heavily reduced (T" =~ 0.5). Nonetheless, the trademark of
conductance quantization is still recognized by the presence of intermediate conductance
plateaus at higher Vj, (blue trace in Fig. 6.29¢). The lifting of the 1D subbands is clearly
visible in the conductance as a function of V; and in the line cut at V, = 0 (red arrows
in Fig. 6.29a and b, respectively). Even if the levels of conductance are not comparable
with the values from the first and second cool-downs (Fig. 6.26), the half-conductance
plateaus still emerge at the middle of two consecutive four-fold degenerate plateaus.
The position of the subbands are extracted via dG/0V, and we distinguish between
degenerate and lifted subbands by solid and dashed lines, respectively (Fig. 6.29b).

The differential transconductance 9G/0V; of the data in Fig. 6.29a, allows the di-
rect read-out of the energy bands. Panel d of Fig. 6.29 displays a diamond-like struc-
ture (highlighted by dashed white lines) that define the regions of high transconduc-
tance (white/yellow color) separating the zero- and high-bias plateaus, marked G, and
Gi/Giy in Fig. 6.28¢ and Fig. 6.29a, respectively. Note that G;; and Gy, represent the
value of conductance of the lower (G;;) and upper (Gy,) intermediate plateaus. The
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Figure 6.29: Bias voltage spectroscopy of the degeneracy lifting. (a) Conduc-
tance G as a function of source-drain voltage V, measured at B=0T and
T=6K. The traces are taken at fixed values of back-gate voltage V, from
—0.5V to 4.6 V in steps of 30mV. The red arrows (also shown in panel b)
indicate the degeneracy-broken plateaus. (b) Back-gate trace at V,=0V.
The vertical black solid (dashed) lines indicate the position in back-gate
voltage of the degenerate (degeneracy-broken) sub-bands. (¢) Close-up in
the dashed box of panel b (red trace) and back-gate trace at V;,=—14mV
(blue trace). The dashed red and blue horizontal lines indicate the con-
ductance value of the plateaus at V, =0V and —14mV, respectively. (d)
Transconductance 0G/0V, of the data shown in panel a. The position of
the sub-bands at zero bias voltage are marked by solid and dashed lines
for four-fold and two-fold degenerate sub-bands, respectively.

high transconductance boundaries arise when the subbands align with the source-drain
voltage V; (Fig. 6.30b). Fig. 6.30 shows a high-resolution bias spectroscopy measure-
ments of the two regions in Fig. 6.29d where the lifting of the subbands is visible. We
extract the energies from the intersection of high transconductance lines (marked by
*in Fig. 6.30a). In our case though, due to lifting of the subbands, we observe the
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Figure 6.30: Lifting of the four-fold degeneracy. (a) Two-dimensional color
plots of the differential transconductance 0G/0Vj, highlighting the broken-
degeneracy process. The intersection (indicated by *) of the high transcon-
ductance lines (marked by dashed white lines) allows the extraction of
the subband spacing AE = AE'+ AE"”/2. The position in V; of the
degenerate and broken subbands are marked by solid and dashed black
lines, respectively. The conductance values Go, Gyy and G, are specified
in Fig. 6.29c. (b) and (c) Schematic representations of the bias volt-
age spectroscopy when the source-drain electrochemical potential window
(AE=ps—pup=eVy) equals the subband spacing (AFE) for the degenerate
(panel b) and the degeneracy-lifted situations (panel c).

development of a smaller diamond-like structure of energy AE” where otherwise high
transconductance line was expected. That is, all solid black lines in Fig. 6.29b.d and
Fig. 6.30a represent the position of four-fold degenerate subband and correspond to
the intersect of adjoining diamonds. The dashed black lines denote two-fold degenerate
subbands and intersect in the midle of small diamonds of energy AE”. The subbands
spacing can be then calculated as AE = AE' + AE" /2 ~ 13meV + 3meV = 16 meV.
The schematic representation of the degenerate and lifted cases is shown in Fig. 6.30b
and c, respectively.

The confinement nature of the conductance plateaus have been confirmed in Sec-
tion 6.1 by following its transition from size quantization at zero Tesla to Landau quan-
tization at high magnetic fields. The degeneracy lifting of the subbands is also expected
to evolve as a function of magnetic field in order to recover the four-fold degeneracy
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Figure 6.31: Magnetic-field evolution of the size quantization at T=6K. (a)
Differential conductance G as a function of magnetic field B and charge
carrier density n of the 230 nm-wide graphene QPC device. Conductance
steps of reduced ~ 1e?/h units of conductance are visible at G ~ 18 ¢2/h
and 22e?/h. (b) Derivative of the differential conductance G/0B as a
function of magnetic field B and back gate voltage V, for the same device
as in panel a.

inherent of bulk graphene [3, 4]. Fig. 6.31 shows the evolution of the sub-bands as
a function of B-field. It is indeed expected to recover the four-fold degeneracy before
entering the quantum Hall Effect QHE regime since the Hall plateaus follow the half-
integer quantization sequence (v = 2, 6, 10e2/h) at relative values of magnetic field
B < 4T (see Fig. 6.10) The conductance increase AG associated to the sub-bands is
generally ~ 2¢e2/h, in agreement with a four-fold degenerate sub-band with a transmis-
sion coefficient of T ~ 0.5. Moreover, conductance steps with a smaller conductance
increase AG =~ 1¢e2/h, are also visible at G ~ 18¢2/h and 22¢€?/h. These lifted sub-
bands merge with another plateau at ~ 0.157", forming four-fold degenerate sub-bands
as expected at high magnetic fields.

Throughout this section, we introduce the lifting of the degeneracy in grapehe nano-
constrictions, highlighting the unexpected robustness of the valley degeneracy in gra-
phene nano-structures. Findings are supported by bias and B-field dependent mea-
surements. Even thought the breaking of the four-fold degeneracy can be theoretically
associated with the valley-degeneracy lifting due to a specific crystallographic orienta-
tion of the edges, no conclusive assumptions can be deduced to explain the observed
mode-dependency of the lifting process.
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Conclusion and outlook

7.1 Conclusion

This thesis presents a detailed study on the nature of disorder in graphene nano-
structures, in order to undercover its mechanism and minimize its impact in the elec-
tronic transport properties. Section 4.1 introduced the electrical transport behavior of
graphene constrictions to highlight the limitations induced by disorder. Transport has
been shown to be mainly dominated by disorder rather than reflecting the density of
states of a quasi-1D system. Section 4.2.1 focuses on characterizing bulk disorder via
magnetically confined quantum dots arising within the bulk. This section revealed the
strong contribution of electron-phonon interactions in the graphene-SiOs system.

Section 4.3.1 showed the impact of a random crystallographic orientation of the edges,
i.e. edge disorder,by a Raman spectroscopy study of pristine graphene nanoribbons with
highly oriented edges (Section 4.3.1). Results brought experimental evidences of crystal
disorientation at the edges of traditional plasma etched ribbons. Regarding its electri-
cal transport fingerprint, edge disorder and their associated localized states have been
analyzed in detail in Section 4.4, where we introduced a method to minimize the con-
tribution of the edge disorder. Results represent a valid experimental turnaround for
realistic graphene nanodevices, that are applicable to any 2D-material.

In the meanwhile, in the quest for high-mobility graphene we follow the trend of en-
capsulating graphene in between hBN layers in order to minimize bulk disorder in our
graphene nanostructures. Our fabrication method is based on a dry transfer technique
allowing for high quality graphene devices (Section 5.1). First Hall bar devices show the
broken symmetry of the Landau states under finite magnetic fields. For fields B > 17T
both the longitudinal and transversal conductances diverge as a function of magnetic
field, which indicates the opening of a field induced gap enhanced by exchange interac-
tions (Section 5.1).

This newly developed dry transfer method in combination with a four terminal con-
figuration was used to investigate 1D ballistic phenomena in graphene quantum point
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contacts (Section 6.1). Our devices show for the very first time robust and reproducible
four-fold degenerate quantized conductance steps in graphene. Results point to valley
degeneracy conservation in graphene 1D systems, which is of major importance for elec-
tronic application since it doubles the level of conductance associated to a single state.
Further studies have revealed important information about the way in which disorder
couples to the special symmetries of electrons in graphene, such as their ‘valley’ degree
of freedom (also known as pseudospin) (Section 6.3).

7.2 Outlook

Having a deep understanding on the sources and mechanism of disorder is essential
to work towards high quality graphene devices. This thesis focused mainly on the
experimental turnarounds to solve the associated limitations to the disorder. The elec-
trostatic gating proposed to overcome the edge-induced disorder and the dry-transfer
technique to fabricate hBN-graphene-hBN devices demonstrated tangible advances in
transport measurements. With the observation of ballistic and interference phenomena
in hBN-graphene-hBN devices, an interesting field of experimental research is at reach.
Transport experiments that rely on the principles of electron optics such as Veselago
lenses, Klein-tunneling transistors or ballistic rectifiers opens new perspectives in both
fundamental and industrial research, that go way beyond the current graphene fields of
application.
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Appendices

8.1 Magnetically confined QDs

Additional to the Diamonds plots presented in Section 4.2.1, we measure the localized
states of the first Landau level LL,; shown in Fig. 4.14f. The four consecutive res-
onances start at B ~ 3.57 and are visible up to B ~ 97T (Fig. 8.2). The Diamond
plot measurements show the characteristic diamond pattern (inset A, B, C and D in
Fig. 8.2).  All measurements, the magnetic evolution of the resonances and the cor-
responding diamond plots have been measured at T'=2 K. We extract the charging
energies directly from the extension of the diamonds in the Vj;,, axis (Fig. 8.2). We do
not observe marked differences between the charging energies F. evaluated at different

2 2
G,r (e/h) dG,;/dV, (e"/h.V)
2T 0.2 b C 25 2T g 15

10 15

Figure 8.1: Quantum Hall effect phase. Magnetic evolution of the four charging
events associated to a LLy;. Bias spectroscopy measurements have been
taken at B = 5.6, 5, 4.6 and 4.27T, noted A, B, C and D, respectively. All
measurements have been recorded at T=2 K.
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B(T) Ay (meV) Ay (meV) Ag(meV) Ay(meV)

5.6 4.7 4.0 4.8 5.0
5 5.1 5.9 5.0 5.5
4.6 6.2 5.0 5.7 6.4
4.2 11.6 12.0 12.5 14.2

Table 8.1: Values of charging energy FE. as a function of B-field, extracted from the
diamonds shown in Fig. 8.2. The magnetic field does not seem to modify the
dimensions of the quantum dot, in agreement with Fig. 4.16.

values of magnetic field.

8.2 Temperature dependence of symmetry broken states.

In this appendix we show the temperature dependence of the R, minimum at v =
+3, +7, and +11. The landau levels quantization at that filling factors is not as well

I,; (NA)

B (T)

Vbias (mV) Vbias (mV)

Figure 8.2: Charging energies of magnetic QDs. Magnetic evolution of the four
charging events associated to a LL, 1. Bias spectroscopy measurements have
been taken at B = 5.6, 5, 4.6 and 4.27T, noted A, B, C and D, respectively.
All measurements have been recorded at T=2 K.
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resolved as for v = 0, £1, +8, and +12 (Fig. 5.6). Nevertheless, we were able to extract
their evolution as a function of temperature (Fig. 8.4).

The fact that the conductance plateaus at o, = +3, +7, and +11e%/h, and their
associated minimum in o4, are not so well develop (Fig. 5.5), may be linked to disor-
der. As introduce in Section 5.1 the lifting of the four-fold degenerate Landau levels is
supposedly mediated by electron-electron interactions [1, 2|. It is then expected that
small perturbations may disturb the fine interactions between charge carriers. In fact,
the observation of symmetry broken states has been traditionally related to the quality
of graphene samples [3]. It could be then the case that disorder around the energy
ranges Fy,—y3, F,— 17 and E,_,11 are stronger, thus hindering the observation of clear
broken symmetry states. The results issued from Fig. 8.4 are also included in Tab. 5.1.

Fig. 8.5 shows the extracted localization lengths for the filling factors v. We do not

observe any pattern of £ on the magnetic evolution. Moreover, although ¢ denotes the
typical extension of the electron wave-function and it is usually dependent on &, we

14

(@)

(L'u?) ge/oe

-10 0 10
V, (mV) V, (mV)

Figure 8.3: Extraction of the energy-scales. Extraction of the energy-scales from
the high resolution measurements in Fig. 4.16a-d. The diamond is as-
sociated to the quantum phase v = —2, measured at T = 15mK and
B =6.1, 6.6, 7.7 and 8T (panels a, b, ¢ and d, respectively).
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Figure 8.4: Temperature dependence of symmetry broken states. a - ¢ Tem-

perature dependence of the R, minimum at v = +3, 7, and +8, in the
symmetry broken IQHE regime. Measurements are taken at B = 7, 8 and
9T, represented in blue, black and red colors, respectively. The energy gaps

A are extracted by linear fits to the data. Measurements are recorded at
T=2K.

neither observe any dependence of £ with v. The absolute values of £ lie nonetheless
around ~ 1 pum (See panel e of Fig. 5.8).

3t ]
—~— =1 —-I=+1 F=+7 —I=+11
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Figure 8.5: Magnetic evolution of the localization length. Extracted localization
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8.3 Process parameters

Process

Description of process steps

EBL markers on wa-
fer

1. Clean wafer:

. Coat with

PMMA:

. Ebeam exposure:

. Development:

a) 5 min. acetone, 5 min. ispropanol
b) Blow dry with No

a) Prebake wafer at 150 °C for 5 min.

b) Spin-coat first layer: ARP 649.04 PMMA 200K, at 6000 rpm
for 30 s, bake at 170 °C for 15 min.

¢) Spin-coat second layer: ARP 669.04 PMMA 600K, at 6000 rpm
for 30 s, bake at 170 °C for 15 min.

Write marker scheme with a dose of 480 uC/cm?, a beam cur-
rent of 5 nA and a beam step size of 12.5 nm

60 sec. AR-600-55 developer, 30 sec. isopropanol, blow dry
with Na

Marker evaporation

. Plasma asher

. Metal

evaporation

. Lift off

. Clean sample

10 s at 200W

5 nm Cr at 0.1 nm/sec., 50 nm Au at 0.2 nm/sec.

15 min. in acetone until metal starts lifting, blow acetone with
pipette and use ultra sonication (US) if necessary (up to maxi-
mum power)

a) 2 min. in acetone in US at maximum
b) 2 min. in isopropanol in US at maximum
c¢) Blow dry with Ng

Dicing wafer

. Protection resist

. Dicing

AZ-5214, 30 s at 4000 rpm. Bake for 3 min at 80°.

Dice into 7x7 mm? dies (also called "chips")

Preparing the glass
stack for the trans-

. Clean glass

a) Put glass (0656.1 Carl Roth) for 2 min. in acetone in US at
maximum power

fer of exfoliated b) Blow dry with Ng

graphene, see Sec-

tion 3.3 - Attach adhesive Attach adhesive tape (Pritt "Schluss mit Schere") in the middle
tape of the glass, try to avoid bubbles
. Coat with Spin-coat glass/tape stack with co-polymer (Elvacite 2550) for
co-polymer 30 sec. at 3000 rpm, bake at 110 °C for 5 min. (PMMA 950K

can also be used)

Preparing the . Clean Si wafer a)5 min. acetone in US at maximum power, 2 min. in US at

PVA/PMMA stack maximum power

for fabrication b) Blow dry with No

method in Sec-

tion 3.2 . Coat with a) Prebake wafer at 110 °C for 5 min.
PVA/PMMA b) Spin-coat first layer: 4 % PVA (polyvinylalcohol), at 3000 rpm

for 30 s, bake at 110 °C for 2 min.
¢) Spin-coat second layer: ARP 679.04 PMMA 950K, at 3000 rpm
for 30 s, bake at 110 °C for 10 min.
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Process Description of process steps

Depositing 1. Clean chips a) 5 min. in acetone in US at max. power

graphene/hBN (only for b) 2 min in isopropanol in US at max. power

on SiOy chip, Sit+/Si0,) ¢) 5 min plasma ashing at 600 W

PVA /PMMA-

Si0O chip or | 2.Exfoliation Exfoliate according to Section 3.1 right after plasma ashing (for

glass stack Sit+/SiO2) or spin-coating (for glass stacks, or PVA/PMMA-
SiO2 chips)

3. Cleaning a) 5 min. acteone, 2 min. isopropanol

(only for SiO2)

b) Blow dry with No

Plasma etching
of graphene on
hBN

. Clean samples

. Coat with

PMMA

. Ebeam exposure

. Development

. Reactive ion

etching (RIE1
Jiilich)

. Clean samples

. Anneal samples

2 min. in acetone, 1 min. isopropanol, blow dry with No

a) Prebake die at 170 °C for 5 min.
b) Spin-coat ARP 679.04 PMMA 200K, at 6000 rpm for 30 s, bake
at 170 °C for 15 min.

Write etching mask with a dose of 300 4C/cm?, a beam current
of 100 pA and a beam step size of 1 nm

60 sec. AR-600-55, 30 sec. isopropanol, blow dry with N

a) Without sample in chamber: Oz flow 20 sscm, Ar flow rate
20 sscm, electrode power 300 W, pressure 0.025 mbar for
15 min.

b) Without sample in chamber: Oz flow 0 sscm, Ar flow rate
40 sscm, electrode power 100 W, pressure 0.025 mbar for 5 min.

¢) With sample in chamber: Oz flow 8 sscm, Ar flow rate 32 sscm,
electrode power 60 W, pressure 0.025 mbar for 8 sec.

15 min. acetone, 30 min. DMSO (at 60 °C), 15 min. acetone,
5 min. isopropanol, blow dry with No

3 h at 450 °C at a pressure of 5x 10710 mbar (for further details
refer to [1])

Plasma etching
graphene-hBN
sandwiches
hardmask

. Clean samples

. Coat with

PMMA

. Ebeam exposure

. Development

. Metal

evaporation

. Lift off

2 min. in acetone, 1 min. isopropanol, blow dry with No

a) Pre-bake die at 170 °C for 5 min.
b) Spin-coat ARP 679.04 PMMA 200K, at 6000 rpm for 30 s, bake
at 170 °C for 15 min.

Write etch mask with a dose of 300 4C/cm?2, a beam current
of 1 nA and a beam step size of 5 nm

60 sec. AR-600-55, 30 sec. isopropanol, blow dry with No

20 nm Cr at 0.1 nm/sec.

15 min. in acetone until metal starts to lift, blow acetone with
pipette until gold is removed
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Process Description of process steps
Plasma etching | 7.Clean samples 15 min. acetone, 30 min. DMSO (at 60 °C), 15 min. acetone,
graphene-hBN 5 min. isopropanol, blow dry with No
sandwiches
hardmask R . . .
8. Reactive ion a) Without sample in chamber perform standard cleaning pro-
etching (RIE cedure
Aachen) b) With sample in chamber: 5 scem Ar 20 sccm SFg at a pressure
of 3 Pa and a power of 60 W
9.Remove Cr etch  a) Rinse 30 sec. in chrome etch (TMAH)
mask b) Rinse 10 min. in water (pre-clean basin) and 15 min. in (pure
basin)
EBL con- | 1.Clean sample a) 2 min. acetone, 1 min. ispropanol
tacts graphene b) blow dry with Na
(Jiilich)
2. Coat with a) Pre-bake sample at 170 °C for 5 min.
PMMA b) Spin-coat first layer: ARP 649.04 PMMA 200K, at 6000 rpm
for 30 s, bake at 170 °C for 15 min.
c) Spin-coat second layer: ARP 669.04 PMMA 600K, at
6000 rpm for 30 s, bake at 170 °C for 15 min.

3. Ebeam exposure  a) Small contacts: dose 450 uC/cm?, beam current 100 pA and
beam step size 1 nm (50 um around the sample)

b) Medium contacts: dose of 400 uC/cm?, a beam current of
5 nA and a beam step size of 12.5 nm (250 pum around the
sample)

¢) Large contacts and bond pads: dose of 300 uC/cm?, a beam
current of 150 nA and a beam step size of 50 nm

4. Development 60 sec. AR-600-55 developer, 30 sec. isopropanol, blow dry
with Ng

EBL con- | 1.Clean sample a) 2 min. acetone, 1 min. isopropanol
tacts graphene b) Blow dry with No
(Aachen)

2. Coat with a) Pre-bake sample at 170 °C for 5 min.

PMMA b) Spin-coat first layer: ARP 639.04 PMMA 50K, at 4000 rpm
for 30 s, bake at 180 °C for 5 min.

c) Spin-coat second layer: ARP 679.04 PMMA 950K, at
6000 rpm for 30 s, bake at 180 °C for 5 min.

3. Ebeam exposure  a) Small contacts: dose 100 uC/cm?2, beam step size 5.5 nm,
beam current 15 pA, acceleration 10 kV, aperture 7.5 um,
writing field size 350 pm (50 pm around the sample)

b) Large contacts and bond pads: dose 100 uC/cm?, beam step
size 60 nm, beam current 3.7 nA, acceleration 10 kV, aperture
120 pm, writing field size 2000 pm

4. Development 75 sec. AR-600-55 developer, 10 sec. isopropanol, blow dry
with No

Contact evapo- | 1.Metal 5 nm Cr in 0.1 nm/sec., 50-100 nm Au in 0.2 nm/sec
ration evaporation

2. Lift off 15 min. in acetone until metal starts to lift, blow acetone with

3. Clean sample

pipette until gold is removed

2 min. in acetone, 1 min. in isopropanol, blow dry with N




8.4 List of samples

The following table contains the SFM, SEM or optical images of the samples investi-
gated within the time-frame of this thesis. The samples which do not appear in the
thesis are referenced to the corresponding publication.

name picture device info measurement
NT43 e Graphene 2T nanorib- | e Aspect ratio dependence
bons on Si0; of the transport character-
e Etching: Ar/O; plasma | istics
(PMMA hard mask) - See Section 4.1
e Contacts: Cr/Au
NTO1 e Graphene 2T nanorib- | e Transport characteri-
bons on Si0; zation of HF dipped
e Etching: Ar/Oy plasma | graphene nanoribbons
(PMMA hard mask) - See reference [2]
e Contacts: Cr/Au
NT02 e Graphene 2T nanorib- | e Transport characteri-
to bons on SiOs zation of HF dipped
NTO04 e Etching: Ar/O, plasma graphene nanoribbons
(PMMA hard mask) - See reference [2]
e Contacts: Cr/Au
G30 to e Side-gated 4T graphene | e Transport character-
G38 nanoribbons on SiO, ization and effect on
e Etching: Ar/O3 plasma | the edges of HF dipped
(PMMA hard mask) side-gated graphene
e Contacts: Cr/Au nanoribbons
- See reference [2]
RF1 to ¢ Coplanar waveguides on | e RF characterization (S-
RF3 5104 parameters) of graphene
e Etching: Ar/Oy plasma based HF coplanar wave-
(PMMA hard mask) guides
e Contacts: Cr/Au - See reference [3]
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name picture device info measurement,
WAG10 o Side-gated 4T graphene | e Bulk disorder characteri-
nanoribbons on SiO; zation by probing magnet-
e Etching: Ar/Os plasma | ically confined QDs
etching using a PMMA | - See Section 4.2.1
hard mask
e Contacts: Cr/Au
WAE100 e Graphene 2T nanorib- | e Raman spectroscopy of
bons on Si0y and hBN lithography-free graphene
e Etching: No etching nanoribbons
e Contacts: No contacts - See Section 4.3
WAG11 o Side-gated 4T graphene | @ Reduction of edge disorder
nanoribbons on Si0O, via electrostatic gating
e Etching: Ar/O; plasma | - See Section 4.4
(PMMA hard mask)
e Contacts: Cr/Au
NTA1 to e Bi-layer graphene 2T |e Transport characteriza-
NTA3 nanoribbons on Si05 tion of bi-layer graphene
e Etching: Ar/O; plasma | interconnects
(PMMA hard mask) - See Section 4.5
e Contacts: Cr/Au
CSC10 o hBN-graphene-hBN e Characterization of the
Hall bar on SiO4 electrical transport behav-
e Etching: Ar-SFg ior of hBN-graphene-hBN
plasma (Cr hard mask) devices
e Contacts: Cr/Au - See Section 5.1
AD102 e hBN-graphene-hBN e Impact of thermal an-
Hall bar on SiO; nealing on the electri-
e Etching: Ar-SFs cal characteristics of hBN-
plasma (Cr hard mask) graphene-hBN devices.
e Contacts: Cr/Au e Spatial control of laser-
induced doping profiles
- See [4] and [5]
T1 ¢ 4T hBN-graphene-hBN | @ Observation of quantized

QPCs on SiO,
¢ Etching: Ar/SFs
plasma (Cr hard mask)
e Contacts: Cr/Au

conductance in ballistic
graphene QPCs

e Observation of degeneracy
lifting in ballistic graphene
nanoribbons

- See Section 6.1
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name picture device info measurement
T1 ¢ 4T hBN-graphene-hBN | @ Observation of quantized
nanoribbons on Si0Os conductance in Dballistic
e Etching: Ar/SFs | graphene QPCs
plasma (Cr hard mask) | e Observation of degeneracy
e Contacts: Cr/Au lifting in ballistic graphene
nanoribbons
- See Section 6.1
T1 ¢ 4T hBN-graphene-hBN | @ Observation of quantized
nanoribbons on Si05 conductance in Dballistic
e Etching: Ar/SFs | graphene QPCs
plasma (Cr hard mask) | e Observation of degeneracy
e Contacts: Cr/Au lifting in ballistic graphene
nanoribbons
- See Section 6.1
T1 ¢ 4T hBN-graphene-hBN | @ Observation of quantized
nanoribbons on Si05 conductance in Dballistic
e Etching: Ar/SFs | graphene QPCs
plasma (Cr hard mask) | e Observation of degeneracy
e Contacts: Cr/Au lifting in ballistic graphene
nanoribbons
- See Section 6.1
T1 ¢ 4T hBN-graphene-hBN | @ Observation of quantized
nanoribbons on Si0s conductance in Dballistic
e Etching: Ar/SFs | graphene QPCs
plasma (Cr hard mask) | e Observation of degeneracy
e Contacts: Cr/Au lifting in ballistic graphene
nanoribbons
- See Section 6.1
T2 ¢ 4T hBN-graphene-hBN | ¢ Shape-dependence of the

nanoribbons on Si0Os
e Etching: Ar/SFs
plasma (Cr hard mask)
e Contacts: Cr/Au

ballistic transport

e Observation of degeneracy
lifting in ballistic graphene
nanoribbons

- Section 6.3
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