
Structure Function Analysis of
Turbulent Flows

Strukturfunktionsanalyse Turbulenter Strömungen

Von der Fakultät für Maschinenwesen der
Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Jonas Peter Maria Boschung

Berichter: Univ.-Prof. Dr.-Ing. Heinz Pitsch
Univ.-Prof. Dr.-Ing. Wolfgang Schröder

Tag der mündlichen Prüfung: 26. Juni 2017

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.





Shaker  Verlag
Aachen  2017

Berichte aus der Strömungstechnik

Jonas Boschung

Structure Function Analysis of Turbulent Flows

WICHTIG: D 82 überprüfen !!!



Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: D 82 (Diss. RWTH Aachen University, 2017)

Copyright  Shaker  Verlag  2017
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-5449-1
ISSN 0945-2230

Shaker  Verlag  GmbH  •  P.O. BOX 101818  •  D-52018  Aachen
Phone:  0049/2407/9596-0   •   Telefax:  0049/2407/9596-9
Internet: www.shaker.de   •   e-mail: info@shaker.de



Für meine Eltern





Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher
Mitarbeiter am Institut für Technische Verbrennung der RWTH Aachen und
wurde teilweise durch die NRW-Forschungsschule BrenaRo (Brennstoffgewinnung
aus nachwachsenden Rohstoffen) sowie den Europäischen Forschungsrat (ERC)
unter dem Advanced Grant ”MILESTONE” (Multi-Scale Description of Non-
Univesal Behavior in Turbulent Combustion) unterstützt. Ein Großteil der
numerischen Auswertungen und Berechnungen wurden auf dem Supercomputer
Juqueen des Forschungszentrums Jülich durchgeführt; für die zur Verfügung
gestellte Rechenzeit möchte ich dem Forschungszentrum danken.

In weiten Teilen geht diese Arbeit auf eine sehr enge Zusammenarbeit mit
Prof. Norbert Peters zurück. Für die große Unterstützung, die stets offene
Tür, die vielen Freiheiten sowie die vielen Diskussionen bin ich sehr dankbar;
durch die intensive Betreuung durfte ich sehr viel lernen. Seine Begeisterung
für die Wissenschaft, die Neugierde kombiniert mit einem scharfen Blick auf das
Wesentliche bei gleichzeitiger Bescheidenheit, Freundlichkeit und Offenheit für
andere Sichtweisen haben mich sehr beeindruckt. Die etwas mehr als zweieinhalb
Jahre unserer Zusammenarbeit werden mir deshalb äußerst positiv in dauer-
hafter Erinnerung bleiben und es betrübt mich zutiefst, dass Norbert Peters die
vorliegende Arbeit nicht mehr begutachten konnte.

Sehr dankbar bin ich auch Prof. Heinz Pitsch, der die Betreuung dieser Arbeit
anschließend übernommen sowie weiterhin begleitet und damit einen aus meiner
Sicht sehr zufriedenstellenden Abschluss ermöglicht hat. Bedanken möchte ich
mich auch bei Prof. Wolfgang Schröder für die Berichterstattung sowie Prof.
Marek Behr für die Übernahme des Vorsitzes der Promotionskommission.

Für viele anregende Diskussionen (nicht nur) über Strukturfunktionen, kri-
tisches Korrekturlesen und viele Anmerkungen bin ich Reginald J. Hill sehr
dankbar. Prof. Charles Meneveau danke ich herzlich für die Möglichkeit eines
halbjährigen Aufenthalts an der Johns Hopkins University in Baltimore, für die
Unterstützung und immer offene Tür sowie viele Diskussionen und Gespräche.
Prof. Christos Vassilicos und Sylvain Laizet bin ich für viele Diskussionen über
Stromlinien dankbar, ebenso Prof. Lipo Wang. Günther Pazko danke ich für die
Hilfe bezüglich ODE-Lösern und viele weitere Gespräche über allerlei sonstige

v



Themen.
Herzlich bedanken möchte ich mich bei meinen Bureaukollegen Fabian Hennig,

Dominik Denker, Jens Henrik Göbbert, Philip Schäfer und Markus Gampert
für viele fachliche und nicht-fachliche Diskussionen, gemeinsame Abende und
Konferenzreisen. Nicht zuletzt Dank einer sehr guten Bureauatmosphäre hatte
ich eine sehr schöne Zeit und hat mir meine Arbeit immer viel Spass bereitet;
ein großer Dank geht in dieser Hinsicht auch an Michael Gauding.

Für sorgfältiges und kritisches Korrekturlesen dieser Arbeit möchte ich meinem
geschätzten Kollegen Fabian Hennig danken, ebenso meinen Hiwis David, Tobias,
Björn und Philipp für ihre Arbeit.

Abschließend bin ich meinem Bruder und meinen Eltern sehr dankbar, auf
deren Unterstützung ich mich immer verlassen konnte.

Aachen, im Juni 2017

Jonas Boschung



Publications
The present thesis is mostly based on the following articles published in peer-
reviewed scientific journals; they were redacted, where some parts have been
shortened and others expanded. Furthermore, additional material has been
included.

• J. Boschung, ”Exact relations between the moments of dissipation and
longitudinal velocity derivatives in turbulent flows”, Physical Review E,
2015, 92, 043013

• J. Boschung, F. Hennig, M. Gauding, H. Pitsch & N. Peters, ”Generalised
higher-order Kolmogorov scales”, Journal of Fluid Mechanics, 2016, 794,
233-251

• J. Boschung, N. Peters, S. Laizet & J. C. Vassilicos, ”Streamlines in station-
ary homogeneous isotropic turbulence and fractal-generated turbulence”,
Fluid Dynamics Research, 2016, 48, 021403

• N. Peters, J. Boschung, M. Gauding, J. H. Göbbert, R. J. Hill & H. Pitsch,
”Higher-order Dissipation in the Theory of Homogeneous Isotropic Turbu-
lence”, Journal of Fluid Mechanics, 2016, 803, 250-274

• J. Boschung, M. Gauding, F. Hennig, D. Denker & H. Pitsch, ”Finite
Reynolds number corrections to the 4/5-law for decaying turbulence”,
Physical Review Fluids, 2016, 1, 064403

• J. Boschung, F. Hennig, D. Denker, H. Pitsch & R. J. Hill, ”Analysis of
structure function equations up to the seventh order”, Journal of Turbu-
lence, 2017, 1-32

• J. Boschung, F. Hennig, D. Denker, H. Pitsch & R. J. Hill, ”Ratios of
same-order moments of dissipation, pseudo-dissipation and dissipation
surrogates in homogeneous isotropic turbulence”, submitted to Journal of
Turbulence

vii



Moreover, parts of the supporting material

• N. Peters, J. Boschung, M. Gauding, J. H. Göbbert & H. Pitsch, Exact
equations for structure functions and equations for source terms up to the
sixth order, arXive.org, 2015, http://arxiv.org/abs/1504.07490

• J. Boschung, F. Hennig, D.Denker, H. Pitsch & R. J. Hill, Balances of
structure function equations and their traces for the second to seventh order
for homogeneous, isotropic turbulence, 2017, http://www.tandfonline.
com/doi/suppl/10.1080/14685248.2017.1346377

were used. Additionally, the following papers were prepared during my time at
the institute:

• J. Boschung, P. Schaefer, N. Peters & C. Meneveau, ”The local topology
of stream- and vortex lines in turbulent flows”, Physics of Fluids (1994-
present), 2014, 26, 045107

• M. Gampert, J. Boschung, F. Hennig, M. Gauding & N. Peters, ”The
vorticity versus the scalar criterion for the detection of the turbulent/non-
turbulent interface”, Journal of Fluid Mechanics, 2014, 750, 578-596

• F. Hennig, J. Boschung & N. Peters, ”Statistical Description of Streamline
Segments in a Turbulent Channel Flow with a Wavy Wall”, New Results
in Numerical and Experimental Fluid Mechanics X, 2016, 135-143



Abstract
The present work focuses on structure functions in homogeneous isotropic turbu-
lence. Structure functions are statistics (more precisely, higher-order moments)
of the velocity difference evaluated at two points in space, separated by some
distance r. While most of the work found in the literature is based on phe-
nomenology and thus requires additional assumptions besides homogeneity and
continuity, the present thesis aims at examining structure functions based on the
Navier-Stokes equations, the governing equations of motion for incompressible
fluids. For that reason, firstly the system of structure function equations is
discussed and analysed, with emphasis on their dissipative and pressure source
terms. It is found that the dissipative source terms and equations derived thereof
contain the higher moments of the (pseudo-)dissipation. Next, the viscous range
is examined more closely. It is found that there are exact solutions for even-order
longitudinal structure functions, which are determined by the higher moments of
the dissipation 〈εN/2〉 and the viscosity ν. These findings are then used to define
exact order-dependent dissipative cut-off scales ηC,N and uC,N , which reduce to
the well-known Kolmogorov scales η and uη for the second order N = 2. Consider-
ing the inertial range, one may use the previous dissipative range results to match
both regimes and relate inertial range scaling exponents of longitudinal structure
functions to the Reynolds number scaling of the moments of the dissipation when
assuming Kolmogorov’s refined similarity hypothesis (RSH). Furthermore, the
inertial range scaling exponent of the trace of the fifth-order structure functions
is examined with regard to the system of equations. It is found that the fifth
order is mostly determined by the dissipation source term, which contains the
second moment of the (pseudo)-dissipation. In the inertial range, terms acting
on the large scales and viscous terms are usually neglected. However at finite
Reynolds numbers, these terms contribute to the structure function equation
balances. For that reason, their influence is examined for the second-order
equations for decaying turbulence. It is found that both the unsteady and the
viscous terms contribute significantly to the second-order balances at moderate
Reynolds numbers and their influence decreases only slowly. Finally, streamline
segment statistics are briefly considered, because the higher conditional moments
are conceptually similar to the longitudinal structure functions.
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Zusammenfassung
Gegenstand der vorliegenden Arbeit sind Strukturfunktionen in homogen isotroper
Turbulenz, die als statistische Momente der Geschwindigkeitsdifferenz zweier
Punkte mit Abstand r im Raum aufgefasst werden können. Die meisten in der
Literatur vorgelegten Arbeiten basieren auf phänomenologischen Überlegungen,
die weitere Annahmen voraussetzen. Hingegen zielt die vorliegende Arbeit auf
eine Untersuchung basierend auf Transportgleichungen der Strukturfunktionen
ab. Zunächst wird deshalb das resultierende System der Strukturfunktions-
transportgleichungen analysiert, mit Schwerpunkt auf den Dissipations- und
Druck-Quelltermen. Tatsächlich finden sich die höheren Momente der (Pseudo-)
Dissipation in den Dissipations-Quelltermen bzw. weiteren davon abgeleiteten
Transportgleichungen. Für den viskosen Bereich kann gezeigt werden, dass longi-
tudinale Strukturfunktionen gerader Ordnung exakt durch höhere Momente der
Dissipation 〈εN/2〉 sowie die Viskosität ν bestimmt sind. Damit können eindeutig
exakte ordnungsabhängige dissipative Längen- und Geschwindigkeitsskalen ηC,N

und uC,N definiert werden, die sich für die zweite Ordnung N = 2 zu den
Kolmogorovskalen η und uη ergeben. Im Hinblick auf den Inertialbereich können
diese Ergebnisse genutzt werden, um die Skalierungsexponenten longitudinaler
Strukturfunktionen mit der Reynoldszahlskalierung der höheren Momente der
Dissipation unter der Annahme von Kolmogorovs verfeinerter Ähnlichkeitshy-
pothese zu verknüpfen. Weiterhin wird der Skalierungsexponent der Spur der
Strukturfunktionen fünfter Ordnung in Hinblick auf das Gleichungssystem be-
trachtet. Es ergibt sich, dass die fünfte Ordnung hauptsächlich durch die dissi-
pativen Quellterme bestimmt ist, deren Transportgleichung das zweite Moment
der (Pseudo-)Dissipation beinhaltet. Üblicherweise werden im Inertialbereich
großskalige und viskose Terme vernachlässigt, obwohl diese bei endlichen Reynold-
szahlen zu der Bilanz der Strukturfunktionsgleichungen beitragen. Aus diesem
Grund wird der Einfluss dieser Terme für die zweite Ordnung für abklingende
Turbulenz genauer untersucht. Sowohl die instationären als auch die viskosen
Terme tragen wesentlich zu den Bilanzen bei; deren Einfluss klingt mit steigender
Reynoldszahl nur schwach ab. Schlussendlich werden kurz Statistiken von Strom-
liniensegmenten untersucht, da die höheren konditionierten Momente konzeptuell
ähnlich zu longitudinalen Strukturfunktionen aufgefasst werden können.
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1 Introduction

Most flows in nature and technical applications are turbulent. Examples include
winds in the atmosphere, internal flows in combustion engines, the mixing of milk
and coffee and many more. Despite their high importance (and consequently
much of work on the problem) and besides the fact that the governing equations
are known for more than one-hundred years, there are depressingly few exact
results. The advent of supercomputers made direct numerical simulations (DNS)
of turbulent flows feasible, which fully resolve the flow and allow detailed studies,
as one can compute all quantities of interest. However, DNS can only be carried
out for very simple flow geometries, and that situation is not likely to change in
the foreseeable future. Nevertheless, if there is some universality of turbulence,
these simple geometries should suffice to arrive at a deeper understanding.
In the present thesis, we look based on DNS at a well-established, but not
dated method known as structure function analysis in an effort to examine
fundamental properties of turbulence. Structure functions are statistics of the
velocity difference evaluated at two points in space, with the separation distance
as variable.

In this chapter, we first present the governing equations of motion before
we briefly discuss general properties of turbulence. We then review the very
successful and celebrated K41 theory by Kolmogorov, which first introduced
structure functions; they are the main focus of the present work.

1.1 Governing equations of fluid motion

In the present work, we only consider incompressible fluids with constant material
properties which can be treated by means of continuum mechanics. This implies
that the smallest scales of the flow are large in comparison to the (average)
distance between individual molecules, the so-called mean-free path length. In
general, mass conservation then gives

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (1.1)
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where ui are the components of the (instantaneous) velocity field. As the density
ρ is constant for incompressible flows∗, one has

∂ui

∂xi
= 0, (1.2)

i.e. the velocity field ui is divergence-free and solenoidal. Physically, this implies
that the rate of change of the dilatation along particle paths in the flow vanishes,
i.e. that any infinitesimal material element keeps its volume while being moved
and distorted by the flow, cf. e.g. p. 82-84 of Aris (1962). Eq. (1.2) will be
called continuity equation henceforth and throughout the remainder of this work,
Einstein’s summation convention is used. That is, any index appearing twice
implies a summation over said index†.

Assuming that fluids are continuous media and applying Newton’s second
law to an infinitesimal small fluid element results in the so-called Navier-Stokes
equations

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂℘

∂xi
+ 2ν

∂Sij

∂xj
(+fi) , (1.3)

where ℘ is the pressure, ν the kinematic viscosity and

Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(1.4)

the strain tensor which equals the symmetric part of the velocity gradient tensor
∂ui/∂xj . For a detailed derivation of the Navier-Stokes equations, see e.g. Batch-
elor (1967). Specifically, the viscous forces are assumed to be proportional to
the strain tensor. Due to continuity eq. (1.2), the divergence of the strain tensor
∂Sij/∂xj = (∂2ui/∂x2

j)/2 and the Navier-Stokes equations can also be written
as

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂℘

∂xi
+ ν

∂2ui

∂x2
j

(+fi) , (1.5)

The last term fi includes all additional forces, e.g. such stemming from a large-
scale forcing scheme for forced turbulence and are neglected hereafter; fi is only
included in eq. (1.3) and eq. (1.5) because it is helpful for some of the discussion

∗More precisely, ∂ρ/∂t + ui∂ρ/∂xi = 0.
†E.g.

∂ui

∂xi
=

3∑
i=1

∂ui

∂xi
=

∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

.
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1.1 Governing equations of fluid motion

below. In the following, because ρ = const., the density is absorbed in a modified
pressure p = ℘/ρ. While eq (1.3) and eq. (1.5) are equal for incompressible
flows, it is more convenient to use the latter eq. (1.5) for the analysis below, as
it contains the Laplacian of the velocity field rather than the divergence of the
strain tensor.

It can be shown that the Navier-Stokes equations obey several symmetries
and transformational invariances such as invariance regarding rotations and
reflections of the coordinate system. Specifically, they are also Galilean-invariant,
i.e. invariant to a moving (but not accelerated) coordinate system. However due
to the viscous forces, the Navier-Stokes equations are not time-reversible in the
sense that reversing time does not give the initial state of the system.

Taking the derivative of eq. (1.5) with respect to xi and using continuity, one
can derive an equation for the pressure

∂2p

∂x2
i

= − ∂ui

∂xj

∂uj

∂xi
. (1.6)

The solution to this Poisson equation can then be given using Green’s function,
which allows to compute the pressure p given the velocity field,

p(xi, t) = ph(xi, t) − 1
4π

∫∫∫
V

(
∂ui

∂xj

∂uj

∂xi

)
dyi

|xi − yi| (1.7)

where ph(xi, t) is a harmonic function depending on the boundary conditions.
Thus for incompressible flows, the pressure at any given point in space depends
on all other points in the domain, i.e. the pressure gradient and consequently
the Navier-Stokes equations are non-local in space.

The conservation equation for a passive scalar φ is given by

∂φ

∂t
+ uj

∂φ

∂xj
= D

∂2φ

∂x2
j

, (1.8)

where D is the diffusivity. As there are no source or sink terms in eq. (1.8), φ is
conserved and its motion is determined by convection due to the velocity field
as well as diffusion. It is also passive, because its value has no influence upon
material quantities such as the density, the viscosity or diffusivity and therefore
does not influence the velocity field.

Lastly, taking the curl of the Navier-Stokes equation (1.5) yields an equation

3
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for the vorticity ωi = εijk∂uk/∂xj where εijk is the Levi-Civita symbol,

∂ωi

∂t
+ uj

∂ωi

∂xj
= ωj

∂ui

∂xj
+ ν

∂2ωi

∂x2
j

. (1.9)

The term ωj(∂ui/∂xj) is known as vortex stretching term and acts as a source
term; it vanishes for 2D-flows. Therefore, 2D- and 3D-turbulence are fundamen-
tally different.

Further quantities of interest include the enstrophy ω2 = ω2
i and the kinetic

energy,
k = 1

2
u2

i . (1.10)

One obtains a governing equation for k by multiplying eq. (1.3) by ui,

∂k

∂t
+ uj

∂k

∂xj
= −∂ujp

∂xj
+ ν

∂uiSij

∂xj
− ε (+uifi) . (1.11)

Integrating over some fixed volume dV ,

∂

∂t

∫
kdV = −

∫
niuikdA −

∫
niuipdA +

∫
uinjSijdA −

∫
εdV (1.12)

where Gauss’ divergence theorem has been used and ni is a unit vector normal
to the surface dA, it can be seen that ε defined by

ε = 2νSijSij = ν

(
∂ui

∂xj

∂ui

∂xj
+ ∂ui

∂xj

∂uj

∂xi

)
(1.13)

is always positive and can be interpreted as dissipation of the kinetic energy
per unit volume, while the first term on the r.h.s. equals the flux of kinetic
energy across the boundary and the second and third term on the r.h.s. can be
interpreted as rate of work done on the boundary by the pressure forces and
viscous forces, respectively.
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1.2 Characteristics of turbulent flows

Using eq. (1.5), one finds rather∗

∂k

∂t
+ uj

∂k

∂xj
= −∂ujp

∂xj
+ ν

∂2k

∂x2
j

− ε (+uifi) (1.14)

where ε equals the pseudo-dissipation

ε = ν
∂ui

∂xj

∂ui

∂xj
. (1.15)

Noticeably, the pseudo-dissipation ε differs from the dissipation by the additional
term ν(∂ui/∂xj)(∂uj/∂xi)†. For incompressible flows, this contribution is related
to the second invariant Q of the velocity gradient tensor ∂ui/∂xj (cf. e.g. Chong
et al. (1990)) as well as the Laplacian of the pressure ∇2p. Statistics of ε as well
as ∇2p and joint statistics of ε and the enstrophy ω2

i were examined by Yeung
et al. (2012) for Reynolds numbers up to Reλ = 1000. They found that extreme
events of dissipation and enstrophy tend to occur together at high Reynolds
numbers. Furthermore, they found that the moments of ∇2p increase slower with
increasing Reynolds number than the corresponding moments of the dissipation.

1.2 Characteristics of turbulent flows

Non-dimensionalising the Navier-Stokes equations with suitable reference quan-
tities û, L̂ results in

∂ũi

∂t̃
+ ũj

∂ũi

∂x̃j
= ∂p̃

∂x̃i
+ 1

Re

∂2ũi

∂x̃2
j

, (1.16)

where ũi = ui/û, x̃j = xj/L̂ and t̃ = t/(L̂/û). The non-dimensional number

Re = ûL̂

ν
(1.17)

∗For homogeneous isotropic turbulence, both equations give

∂ 〈k〉
∂t

= − 〈ε〉 + 〈uifi〉 ,

because under these assumptions also 〈ε〉 = 〈ε〉.
†Of course, these differences are also contained in the term ν(∂uiSij/∂xj), so that eq. (1.11)

and eq. (1.14) are equal.
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is one of the most important characteristic numbers in fluid mechanics and can
be interpreted as the ratio of inertial to viscous forces. It is called Reynolds
number, in honour of Osbourne Reynolds and his pioneering work. With
increasing Reynolds number, laminar flows become more unstable, until there is
a transition to turbulence.

While it is difficult to give an exact definition of the phenomenon called
turbulence (see e.g. Tsinober (2009) for a collection of different definitions),
there are several properties by which turbulence can be characterised, cf. e.g.
the books of Tennekes and Lumley (1972) or Tsinober (2009):

• Intrinsic randomness and irregularity: Turbulence is chaotic. Although the
Navier-Stokes equations are deterministic, their solutions are very sensitive
to small disturbances (e.g. of initial conditions or boundary conditions).
Turbulence is strongly non-linear.

• Many degrees of freedom: Turbulence is a multi-scale problem and the
number of degrees of freedom increases with increasing Reynolds number.
Due to the non-linear nature of turbulence, the different scales interact.

• Turbulent flows are highly dissipative due to shear stresses. Without a
continuous supply of energy, turbulence decays rapidly.

• Three-dimensional and rotational: Turbulent flows are characterised by a
non-vanishing vorticity ωi. Without three-dimensionality, the dominant
production term of vorticity, the vortex stretching, would vanish.

• High rates of mixing: Turbulence strongly increases mixing processes of
momentum, energy, passive scalars (e.g. temperature) etc. It is this
property which makes turbulent flows so important for many applications.

As turbulence is chaotic and there are no known general solutions of the
Navier-Stokes equations, nearly all results and analyses are of statistical nature.
As the Reynolds number is the only characteristic number found in eq. (1.16),
one might expect some (statistical) universality of turbulent flows when scaled
with the Reynolds number, i.e. some universal behaviour independent of the
flow type and geometry when properly scaled.

1.3 Scales in turbulent flows
Turbulence is a multi-scale problem as mentioned above. The general picture is
that kinetic energy is injected at the large, integral scales and then transported
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Figure 1.1: (Model)-Spectra of kinetic energy E(κ) (blue) and dissipation D(κ)
(black).

to smaller scales, until it is dissipated at the smallest scales. This can be seen
in figure 1.1, where model spectra of the kinetic energy E(κ) (cf. pp. 232-234
of Pope (2000)) and dissipation D(κ) = 2νκ2E(κ) are shown and where the
length scale can be thought of as the inverse of the wavenumber κ. The energy
and its dissipation in a waveband is then equal to the area under the respective
spectrum. It is seen that the bulk of kinetic energy is indeed contained at small
wavenumbers (large length scales), while dissipation acts on the smallest scales
(large wavenumbers).

2D slices with cross-section 2π × 2π of the normalised kinetic energy k/〈k〉
and dissipation ln(ε/〈ε〉) are shown in figure 1.2 (Reλ = 88) and figure 1.3
(Reλ = 754), where the black lines in the lower right corner correspond to
the integral length L (figure 1.2a and figure 1.3a) and 50η (figure 1.2b and
figure 1.3b). Clearly, the dissipation is acting on much smaller scales than the
kinetic energy. Furthermore, the smallest scales are much smaller for the higher
Reynolds number.

The idea of a cascade of turbulent energy towards smaller scales was first
introduced by Richardson (1922). As energy is transported to smaller scales,
information about the large scales is more and more lost. One may therefore
expect the smallest scales to be isotropic and homogeneous. The assumptions
of (statistical) isotropy and homogeneity simplify the analysis of the equations
considerably. For that matter, the notion of isotropy was first introduced by
Taylor (1935), who considered flows which are isotropic at all scales. Since

7
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(a)

(b)

Figure 1.2: 2D slices 2π×2π of homogeneous isotropic turbulence with Reλ = 88
of instantaneous kinetic energy k/〈k〉 from 0 (white) to 5 (�) where the black line
(lower left corner) corresponds to L (a) and dissipation ln(ε/〈ε〉) from −1 (white)
to 3 (�) where the black line (lower left corner) corresponds to 50η (b).8
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(a)

(b)

Figure 1.3: 2D slices 2π×2π of homogeneous isotropic turbulence with Reλ = 754
of instantaneous kinetic energy k/〈k〉 from 0 (white) to 5 (�) where the black line
(lower left corner) corresponds to L (a) and dissipation ln(ε/〈ε〉) from −1 (white)
to 3 (�) where the black line (lower left corner) corresponds to 50η (b). 9
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turbulence is a multi-scale problem, it seems reasonable to examine two-point
correlations of the velocity field written at positions x = (x1, x2, x3) and x′ =
(x′

1, x′
2, x′

3) with separation r = x − x′ for different flows and Reynolds numbers.
Equations for the correlation functions f = 〈u1u′

1〉/〈u2
1〉 and g = 〈u2u′

2〉/〈u2
2〉

were derived by Kármán and Howarth (1938) for isotropic flows (the so-called
Kármán-Howarth equation). Hereafter, angle brackets 〈...〉 denote averages.
Noticeably, f and g fully describe the second-order two-point tensor 〈uiu

′
j〉/〈u2

k〉
under the assumption of isotropy, see e.g. Rotta (1972) for an overview. However,
the equations are unclosed due to triple correlations 〈uiujuk〉 stemming from
the non-linear transport term.

Although there are many different length scales, the following appear frequently
in theoretical, numerical and experimental work:

• Integral length scale L: The integral length scale is a large scale, charac-
terised by the flow geometry and boundary conditions. For instance in
case of a turbulent jet, a characteristic large length scale is proportional to
the nozzle diameter. The corresponding Reynolds number is

ReL = UL

ν
(1.18)

where U ∼ 〈u2
i 〉1/2 is a large scale velocity. The integral timescale is then

defined as τ = L/U .

• Taylor scale λ: The Taylor scale λ is an intermediate length scale, situated
between the large and very small scales. It was introduced by Taylor (1935)
and is related to the curvature of the velocity correlations f and g for
r → 0. It is defined by

λ =

√
10ν

〈k〉
〈ε〉 (1.19)

where 〈k〉 is the (mean) kinetic energy and 〈ε〉 the (mean) energy dissipation.
The corresponding Reynolds number is

Reλ = urmsλ

ν
, Reλ ∼ Re

1/2

L (1.20)

with urms =
√〈u2

i 〉 /3∗. In numerical studies of isotropic turbulence, the
Reynolds number of the simulation reported is usually given as the Taylor

∗This gives Reλ =
√

20/3Re
1/2
L if one defines L ≡ 〈k〉3/2/〈ε〉 and U ≡ k1/2.
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1.4 Kolmogorov’s 1941 theory

based Reynolds number Reλ. The Taylor scale can be used to scale velocity
gradients, Sij ∼ U/λ and consequently the dissipation, 〈ε〉 ∼ νU2/λ2;
however, it is not a small scale but rather an intermediate scale, since
U2 ∼ 〈k〉 is not a small scale.

• Kolmogorov scale η: Introduced by Kolmogorov (1941b) in his seminal
paper, the Kolmogorov scale η is usually taken as being proportional to
the smallest length scales in turbulent flows. It is defined as

η =
(

ν3

〈ε〉
)1/4

. (1.21)

Together with the Kolmogorov velocity uη = (ν 〈ε〉)1/4, the Reynolds
number

Reη = uηη

ν
= 1, (1.22)

indicating that it is truly a dissipative scale. We examine this in more
detail in section 4.4 below. A corresponding timescale is τη = (ν/〈ε〉)1/2.

It follows that the ratio of the different scales are determined by the Reynolds
number (here the large scale Reynolds number ReL),

λ

L
∼ Re

−1/2

L ,
η

L
∼ Re

−3/4

L . (1.23)

With increasing Reynolds number, these ratios decrease. In other words, η and
λ become smaller compared to the integral length L (as does the ratio η/λ) and
there is a scale separation. The more turbulent the flow (as characterised by
the Reynolds number), the smaller the smallest scales. This is sometimes also
referred to as an increase of the degrees of freedom of the flow.

1.4 Kolmogorov’s 1941 theory
In the following, let us briefly discuss Kolmogorov’s seminal 1941 theory (Kol-
mogorov (1941a,b)). Rather than examining correlations such as f and g,
Kolmogorov proposed to look at so-called structure functions. Structure func-
tions correspond to statistical moments of the velocity difference Δui = ui − u′

i

of the velocity at positions xi and x′
i separated by the vector ri = xi − x′

i with
magnitude |ri| = r. Assuming isotropy, the structure functions can be written
in terms of 1- and 2-components only, without loss of generality. Then, the
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structure functions are given by

Dm,n = 〈(Δu1)m (Δu2)n〉 , (1.24)

where angle brackets 〈. . .〉 indicate averages. We define N = m + n as the order
of the structure function Dm,n.

By definition,

D2,0 = 2
〈
u2

1

〉
(1 − f), D0,2 = 2

〈
u2

1

〉
(1 − g), (1.25)

i.e. the second-order structure functions are related to the correlation functions
f and g. Similarly for the third order,

D3,0 = 6
〈
u2

1

〉3/2
h, (1.26)

where h is a third-order correlation function. Using ∂〈k〉/∂t = −〈ε〉 valid
for decaying turbulence as well as using continuity (which relates f and g),
Kolmogorov then derived an equation for the longitudinal second-order structure
function D2,0 from the Kármán-Howarth equation,(

∂D3,0

∂r
+ 4

r
D3,0

)
− 6ν

(
∂2D2,0

∂r2
+ 4

r

∂D2,0

∂r

)
= −4 〈ε〉 , (1.27)

where isotropy, homogeneity and both r � L as well as decaying turbulence
have been assumed.

Kolmogorov introduced the notion of an inertial range for asymptotically large
Reynolds numbers, located in between the smallest and largest scales, where
the influence of the viscosity is negligible. On the other hand, viscous effects
dominate the dissipative range (viscous range, r → 0). Therefore, eq. (1.27)
reduces to

∂D3,0

∂r
+ 4

r
D3,0 = −4 〈ε〉 (1.28)

in the inertial range, while for the viscous range

− 6ν

(
∂2D2,0

∂r2
+ 4

r

∂D2,0

∂r

)
= −4 〈ε〉 . (1.29)

Since 〈ε〉 is independent of r under the assumption of homogeneity, it can be
treated as a flow parameter. This ties into Kolmogorov’s similarity hypotheses,
which state that structure functions should depend on 〈ε〉 in the inertial range
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1.4 Kolmogorov’s 1941 theory

(second similarity hypothesis); in the viscous range, structure functions are
postulated to depend on ν and 〈ε〉 (first similarity hypothesis). From the
first similarity hypothesis, Kolmogorov then defined on dimensional grounds
dissipative scales

η =
(

ν3

〈ε〉
)1/4

, uη = (ν 〈ε〉)1/4
, τη =

(
ν

〈ε〉
)1/2

, (1.30)

where η is the Kolmogorov scale eq. (1.21).
Integration of eq. (1.28) results in

D3,0 = −4
5

〈ε〉 r, (1.31)

valid for the inertial range under the assumptions detailed above∗. Similarly,
integrating eq. (1.29) yields

D2,0 = 1
15

〈ε〉
ν

r2 (1.32)

in the viscous range for r → 0.
Eq. (1.31) is called 4/5-law in the literature and is considered as one of the

most important results for fully developed turbulence, since it is exact and
non-trivial. Kolmogorov refined the notion of isotropy by introducing local
isotropy and local homogeneity, i.e. isotropy and homogeneity are postulated
to hold at the small scales for all kinds of flows, while the large scales depend
on boundary conditions and may be anisotropic. This implies that eq. (1.27)
should hold for all flows in the viscous and inertial range if the Reynolds number
is large enough, independent of the boundary and initial conditions. Therefore,
the results eq. (1.31) and eq. (1.32) are universal under the given assumptions.
It is worth mentioning that the 4/5-law can be derived by solid angle averaging
without assuming isotropy, cf. Nie and Tanveer (1999). Consequently, any theory
of turbulence needs to reproduce the 4/5-law.

The second similarity hypothesis postulates that any structure function in the
inertial range depends only on the mean dissipation 〈ε〉 and r, i.e. that Dm,n

follows a power-law
Dm,n ∼ (〈ε〉 r)(m+n)/3

. (1.33)

∗Technically, this results requires that D3,0(rstart) = 0 where rstart marks the beginning of
the inertial range.
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However, it should be stressed that eq. (1.33) is solely based on dimensional
grounds by using 〈ε〉 and r as the only quantities for scaling. On the other
hand, while eq. (1.31) is certainly in agreement with eq. (1.33), it was derived
from the Navier-Stokes equations and did not rely on phenomenological scaling
arguments. Indeed, subsequent analysis of inertial range behaviour of structure
functions found power-law scaling, but with exponents smaller than (m + n)/3
(cf. e.g. figure 3.3 in section 3.1 below) where the difference is increasing with
increasing order m + n; this observation has been reproduced time and again and
is usually called anomalous scaling (i.e. different from K41 scaling eq. (1.33)) in
the literature.

Finally, because 〈ε〉 is independent of r, it can be thought of as linking the
smallest, intermediate and large scales, in spirit of the energy cascade. Thus, one
can also scale the mean dissipation 〈ε〉 with the large scale quantities U ∼ k1/2

and the integral length L (cf. Taylor (1935)) although ε is a small scale quantity,

〈ε〉 ∼ U3

L
, (1.34)

where the prefactor is a constant of order unity, cf. Sreenivasan (1998) or figure 2
of Ishihara et al. (2009) (but see also Vassilicos (2015) for a discussion regarding
influences of the flow geometry).

1.5 Outline
Since the publication of Kolmogorov’s seminal papers in 1941, there has been
much work done regarding inertial range scaling of structure functions. Most
of this work is based on phenomenology, where additional assumptions are
introduced. For that reason, most subsequent theories have no connection to
the underlying Navier-Stokes equations. Here, the aim is to analyse structure
functions in the spirit of K41, i.e. based on equations derived from the Navier-
Stokes equations. That is, most of the results given below need no further
assumptions than isotropy and homogeneity.

The higher-order structure functions are first discussed in chapter 3, where
the derivation of their transport equations for homogeneous isotropic turbulence
following Hill (2001) is given. In a first step, the balances of the equations
are evaluated for different Reynolds numbers. In these equations, one finds
two different source terms, the first ones stemming from correlations between
components of the pseudo-dissipation tensor and powers of the velocity differences,
the second one from correlations between pressure gradient differences and powers
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1.5 Outline

of the velocity differences. Thus, the structure functions are determined by the
source terms in the respective equations. For that reason, the transport equation
for the dominant fourth-order source terms are exemplarily derived and the
balances discussed. It can be shown that one finds higher powers of the pseudo-
dissipation and its components in the system of consecutive equations. Moreover,
the balances of structure function equations up to the seventh order are presented
to examine the influence of the source terms.

At high enough Reynolds number, the separation into viscous and inertial
range is valid. We first look at the viscous range in chapter 4. For that range, it is
possible to derive order-dependent cut-off scales which generalise the Kolmogorov
scales η and uη for higher orders. Furthermore, from the equations derived in
chapter 3, it is possible to derive the solution for the third-order structure
functions D3,0 and D1,2 in the same spirit Kolmogorov derived the second-order
solutions for D2,0 and D0,2. Indeed, it is further possible to find exact solutions
for arbitrary higher even-order structure functions DN,0. While phenomenology
based on Kolmogorov’s first similarity hypothesis predicts that 〈ε〉N is the correct
quantity for the 2Nth order, it is found without further assumptions that rather
the moments 〈εN 〉 are the correct quantities. Empirically, it is found that all
structure functions of arbitrary order N scale with 〈εN/2〉 and ν in the viscous
range. Therefore, also the higher-order cut-off scales are valid for mixed and
transverse structure functions as well as odd orders.

In chapter 5, the inertial range is examined more closely. Using the results
of the previous chapter, one can derive a relation between the Reynolds num-
ber scaling of the moments of the dissipation and longitudinal inertial range
scaling exponents, when assuming Kolmogorov’s refined similarity hypothesis
(RSH). Moreover, it is shown that RSH postulates that DN+1,0 is determined
by 〈(Δu1)N−2ε11〉. Next, the fourth-order transport equations are examined
more closely. The fourth order is of interest, because the second moment of the
(pseudo-)dissipation is found in the transport equations of one of its source terms.
Generally, it is shown that all higher moments of the (pseudo-)dissipation are
found in higher-order equations in the system of structure function equations
and equations derived thereof. Different to the second order, the source terms
depend on r and are therefore unclosed. While one can derive equations for
the source terms, one encounters the peculiar situation that the source terms
disappear from these equations when evoking the inertial range assumptions.
Thus, closure is inherently needed. Specifically, the scaling exponent of the
fifth-order structure function trace is examined more closely.

Under the inertial range assumptions, the unsteady and viscous terms are ne-
glected. Nevertheless, these terms contribute to the structure function equations
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balances. These influences and their Reynolds number dependence are examined
for the second-order equations, where they modify the 4/5-law eq. (1.31) at finite
Reynolds numbers.

Finally, a brief comparison of longitudinal structure functions and moments of
the velocity difference of streamline segments conditioned on the segment length
is given in chapter 6. While the conditional moments of the velocity difference
determined by the segments differ significantly from the longitudinal structure
funtions, the streamline segment statistics are found to be very similar for the
isotropic and anisotropic flows examined here.
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2 Dataset Description
Direct numerical simulation (DNS) aims at solving the Navier-Stokes equa-
tions (1.5) for given initial and boundary conditions. Compared to experiments,
DNS has the advantage that the full 3D velocity field and all quantities derived
thereof such as e.g. its gradients or the pressure are at the disposal of the
researcher. On the other hand, the range of Reynolds numbers attainable is
limited.

DNS of homogeneous isotropic turbulence was first carried out by Orszag
and Patterson Jr (1972) with a Reynolds number Reλ = 35 in a periodic box
employing a pseudo-spectral method, where the Navier-Stokes equations are
solved in wavenumber space. This ensures a high accuracy compared to finite
difference methods. Usually, the non-linear transport term is computed in real
space to decrease the computational cost, where Fast Fourier Transforms (FFT)
are used to transform between physical and wavenumber space and aliasing
errors introduced by the FFT need to be removed by filtering. This procedure
requires the computational domain to be periodic; oftentimes, it is chosen to be
a cubic box with non-dimensional edge length 2π, thus limiting the simulation to
cases somewhat removed from geometries encountered in engineering problems.

Using the Kolmogorov scale η as characteristic length for the smallest scales,
one can estimate the scaling of the number of grid points required to resolve η as

N3
grid ∼ Re

9/4

L . (2.1)

Note that there are indeed smaller scales connected to intermittency of the flow
which need to be resolved if one is interested in computing higher-order statistics.
This is discussed in more detail in section 4.4.2 and yields an upper bound

N3
grid ∼ Re3

L. (2.2)

Moreover, the computational cost is higher, because one has to limit the time
step Δt because of numerical stability and accuracy, i.e. the CFL number may
not be too large. Estimating Δt = η/u†, one finds for the number of required

†Because η is not the smallest scale for reasons outlined below in section 4.4, one might need
to modify this similarly as eq. (2.1), i.e. the time step Δt may need to be smaller.
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2 Dataset Description

time steps NΔt to compute an integral time τ ∼ k/〈ε〉

NΔt ∼ τ

Δt
∼ Re

3/4

L . (2.3)

The computational cost to resolve an integral time τ then scales as NgridNΔt.
This is the reason why the Reynolds numbers attainable using DNS has only
progressed slowly since 1972∗ and very likely continues to be limited to smaller
Reynolds numbers in the foreseeable future, compared to experiments.

Below, DNS of forced homogeneous isotropic turbulence (section 2.1) is used
for most of the analysis. There, energy is introduced into the system by an
additional forcing term. Without this forcing term, the turbulence would decay.
DNS of decaying homogeneous isotropic turbulence as described in section 2.2 is
also employed in chapter 5 and chapter 6. Moreover, data of an anisotropic flow
(cf. section 2.3) is used in chapter 6.

2.1 Forced homogeneous isotropic turbulence
For the analyses carried out below, we use data from direct numerical simulations
(DNS) of forced homogeneous isotropic turbulence with seven different sets
of Taylor based Reynolds numbers ranging from Reλ = 88 to Reλ = 754.
For more details, see Gauding (2014). Here Reλ = urmsλ/ν, λ denotes the
Taylor scale λ =

√
10ν 〈k〉 / 〈ε〉, urms =

√〈uiui/3〉 is the root-mean-square
velocity, 〈k〉 = 〈uiui〉 /2 the mean kinetic energy and 〈ε〉 = 2ν 〈SijSij〉 the mean
energy dissipation, where the strain tensor Sij = (∂ui/∂xj + ∂uj/∂xi)/2. Angle
brackets 〈...〉 denote ensemble averages over the full box and several timesteps
(as given by the ratio tavg/τ) spanning more than an integral turnover time
after the simulation reached its statistically steady state. Mavg denotes the
number of times used to compute the averages. The seven datasets have been
computed on the JUQUEEN supercomputer at Forschungszentrum Jülich using a
pseudo-spectral code with MPI/OpenMP parallelisation. The three-dimensional
Navier-Stokes equations were solved in rotational form, where all terms but the
non-linear term were evaluated in spectral space. For a faster computation, the
non-linear term is evaluated in physical space. The computational domain is
a box with periodic boundary conditions and length 2π. For dealiasing, the
scheme of Hou and Li (2007) has been used. For the temporal advancement, a
second-order Adams-Bashforth scheme is used in case of the non-linear term,

∗At the moment of writing, the highest Reynolds number attained was Reλ = 2300 with
N3

grid = 122883, cf. Ishihara et al. (2016).

18



2.1 Forced homogeneous isotropic turbulence

Table 2.1: Parameters of the forced isotropic DNS.

R0 R1 R2 R3 R4 R5 R6
Ngrid 5123 10243 10243 20483 20483 40963 40963

Reλ 88 119 184 215 331 529 754
ν 0.01 0.0055 0.0025 0.0019 0.0010 0.00048 0.00027

κmaxη 3.57 4.54 2.66 4.01 2.30 2.95 1.76
〈k〉 11.15 11.38 11.42 12.70 14.35 23.95 24.42
〈ε〉 10.78 11.04 10.30 11.87 12.55 28.51 26.54
λ 0.322 0.238 0.166 0.143 0.107 0.064 0.050
η 0.0175 0.0111 0.0062 0.0049 0.0030 0.0014, 0.00093
L 1.02 0.94 0.97 1.01 0.97 1.02 1.18
τη 0.031 0.022 0.016 0.013 0.009 0.004 0.0032
τ 1.03 1.03 1.11 1.07 1.14 0.84 0.92

tavg/τ 100 30 30 10 10 2 3
Mavg 112 42 40 10 10 6 6

while the linear terms are updated using a Crank-Nicolson scheme. To keep the
simulation statistically steady, the stochastic forcing scheme of Eswaran and
Pope (1988) is applied. The 2DECOMP&FFT library (Li and Laizet (2010)) has
been used for spatial decomposition and to perform the Fast Fourier Transforms.
The only parameter varied to increase the Reynolds number is the viscosity ν;
the forcing parameters have been held constant. The properties of the DNS cases
can be found in table 2.1. The seven datasets were computed on a computational
mesh with 5123 grid points for case R0 up to 40963 grid points for case R6.
η = (ν3/ 〈ε〉)1/4 is the Kolmogorov length scale with corresponding time scale
τη = (ν/ 〈ε〉)1/2. L is the integral length scale, computed here using the energy
spectrum function

L = 3π

4

∫
κ−1E(κ)dκ∫

E(κ)dκ
(2.4)

and τ = 〈k〉 / 〈ε〉 the integral time scale. The integral length scale L is small
compared to the size of the boxes in order to reduce the influence of the periodic
boundary condition. The data is well resolved with κmaxη ≥ 1.7 for all seven
datasets, where κmax is the largest resolved wavenumber. In turn, this also
implies that the Reynolds number is not as high as other DNS with comparable
mesh size reported in the literature. We discuss this in more detail in section 4.4.2
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below.

2.2 Decaying turbulence

For some of the analysis, decaying homogeneous isotropic turbulence is used.
The direct numerical simulation has been performed on the supercomputer
JUQUEEN at research center Juelich, Germany. The incompressible Navier-
Stokes equations are solved in a triply periodic cubic box with size 2π by a
pseudo-spectral method. For numerical stability, the non-linear term of the
momentum equation is rewritten in rotational form. Using a pseudo-spectral
method, the non-linear term is computed in real space and transformed to spectral
space for temporal integration. Temporal integration is carried out by a low-
storage stability preserving third-order Runge-Kutta method. The viscous term
is treated exactly by using an integrating factor technique. A standard isotropic
truncation procedure in combination with a random phase-shift technique is
used to eliminate aliasing effects allowing us to keep all wave-numbers with
κ <

√
2N/3. The grid resolution is Ngrid = 20483, which adequately resolves

the smallest scales during the simulation. For pseudo-spectral methods, the
resolution requirement can be written in terms of the non-dimensional number
κmaxη, where again κmax is the largest wave-number appearing in the truncated
Fourier series, and η is the Kolmogorov length. The resolution condition κmaxη
for the four time steps under consideration is indicated in table 2.2 and has
been shown to be sufficient to compute second-order velocity gradient statistics
(Ishihara et al. (2007)). The flow is initialized by a prescribed isotropic energy
spectrum of the form

E(κ) ∝ κ4 exp
[

−2
(

κ

κp

)2
]

, (2.5)

where κ is the wave-number and κp is the location at which the initial energy
spectrum peaks. Here, we aim at reaching high Reynolds numbers to obtain a
well established inertial range. For this reason, κp has been set to a comparable
small value of 3.5 and small confinement effects due to the finite size of the
computational domain (Ishida et al. (2006)) are tolerated. Following Ishida et al.,
the initial state of freely decaying turbulence can be characterized by a Reynolds
number defined as

Re = 〈k(t = 0)〉1/2

κpν
, (2.6)
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2.3 Fractal flow

Table 2.2: Parameters of the decaying isotropic DNS.

D1 D2 D3 D4

Reλ 121.39 161.11 206.28 254.75
κmaxη 6.83 3.96 1.72 0.89

〈k〉 0.0378 0.149 1.00 4.67
〈ε〉 0.00308 0.0271 0.750 10.67
η 0.00741 0.00430 0.00187 0.000965
λ 0.161 0.107 0.0530 0.0303
τη 0.261 0.0880 0.0167 0.00444
τ 12.29 5.50 1.34 0.438
ν 0.00021 0.00021 0.00021 0.00021

where 〈k(t = 0)〉 =
∫ ∞

0
E(κ, t = 0)dκ denotes the initial turbulent kinetic energy,

and ν is the kinematic viscosity. From this definition and with 〈k(t = 0)〉 = 10
and ν = 0.00021, an initial Reynolds number of Re = 4302 is obtained.

The temporal evolution of 〈k〉 ∼ t−n and 〈ε〉 ∼ t−n−1 is shown in figure 2.1a
and figure 2.1b, where the dashed lines correspond to a decay exponent n = 1.45.
This value is slightly larger than the theoretical value n = 10/7 obtained for a
κ4-spectrum as in eq. (2.5), cf. e.g. the discussion in Rotta (1972) or Davidson
(2004). The times used for the present analysis are indicated by the dotted
vertical black lines in the decaying regime. We use all four times to examine
Reynolds number dependencies of the closures presented in section 5.4.2 below
and the highest (leftmost dotted black line, Reλ = 254.75) and lowest (rightmost
dotted black line, Reλ = 121.39) Reynolds number for more detailed analysis.

2.3 Fractal flow

In chapter 6, we briefly compare statistics of streamline segments for isotropic
and anisotropic flow. The anisotropic data is described below and in more detail
in Laizet and Vassilicos (2011).
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Figure 2.1: Temporal evolution of kinetic energy k and dissipation ε. Times used
in the analysis below are indicated with the dotted vertical black lines. Dashed
lines corresponds to 〈k〉 ∼ t−n (a) and 〈ε〉 ∼ t−n−1 (b) with n = 1.45.

2.3.1 Description of the grid

As shown in figure 2.2, a fractal square grid with a square pattern formed by
four bars is considered (see Hurst and Vassilicos (2007) for a detailed description
of fractal square grids). It is based on four fractal iterations (with 4j patterns
at iteration j) and the ratio tr ≡ tmax/tmin between the lateral thickness tmax

of the bars making the largest pattern and the lateral thickness tmin of the
smallest one is equal to 8.5. Lj with j = 0, 1, 2, 3 represents the length of the
bars for each fractal iteration. The blockage ratio σ of our turbulence-generating
grid is defined as the ratio of its total area in the transverse plane to the area
T 2 = Ly × Lz and is equal to 41%. Unlike regular grids, multiscale/fractal grids
do not have a well-defined mesh size. This is why Hurst and Vassilicos (2007)
introduced an effective mesh size for multiscale grids, Meff = 4T 2

√
1 − σ/LTG

where LTG is the total perimeter length in the (y − z) plane of the fractal grid.
Here, we have Meff = 8.7 tmin. Note finally that the streamwise thickness of the
bars is 3.2 tmin.

2.3.2 Numerical Methods

The incompressible Navier-Stokes equations are solved using the high-order flow
solver Incompact3d, adapted to parallel supercomputers thanks to a highly
scalable 2D domain decomposition library and a distributed FFT interface
(Laizet and Li (2011)). Sixth-order compact finite-difference schemes are used
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2.3 Fractal flow

(a)

(b)

Figure 2.2: Diagram of the fractal square grid used in this study (a) and
illustration of the computational domain where the subdomain used for this study
is highlighted in blue (b).

for the spatial differentiation whereas an explicit third-order Adams-Bashforth
scheme is used for the time integration. To treat the incompressibility condition,
a fractional step method requires solving a Poisson equation. This equation is
fully solved in spectral space, via the use of relevant 3D Fast Fourier Transforms
combined with the concept of modified wave number (Lele (1992)). Note that
the pressure mesh is staggered from that for the velocity by half a grid point, to
avoid spurious pressure oscillations. The divergence-free condition is ensured
up to machine accuracy. The modeling of the fractal grid is performed using
an Immersed Boundary Method (IBM) based on a direct forcing approach that
ensures the no-slip boundary condition at the grid walls. The idea is to force the
velocity to zero at the wall of the grid, as the particular Cartesian mesh does
conform with the geometries of the grid. It mimics the effects of a solid surface
on the fluid with an extra forcing in the Navier-Stokes equations. More details
about the present code and its validation, especially the original treatment of
the pressure in spectral space, can be found in Laizet and Lamballais (2009).

2.3.3 Numerical set-up

The computational domain in the streamwise x and the two lateral y and z
directions is Lx × Ly × Lz = 16L0 × 2L0 × 2L0 discretized on a Cartesian mesh
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using ny × nz = 720 × 720 mesh nodes in lateral planes and nx = 5761 in the
streamwise direction. This high resolution was recommended by Laizet et al.
(2015b) especially for the production region. The coordinate system’s origin is
placed at the centre of the grid which is located at a distance of 1.25L0 from
the inlet of the computational domain in order to avoid spurious interactions
between the grid and the inlet condition. We assume a fluid of uniform density
and kinematic viscosity ν. Inflow/outflow boundary conditions are used in the
streamwise direction and periodic boundary conditions are used in the two
lateral directions. The inflow and initial conditions for the velocity field are
u ≡ (u1, u2, u3) = (U∞, 0, 0) where U∞ is a constant streamwise velocity (u1

is the streamwise velocity component and (u2, u3) are the two lateral velocity
components corresponding to (y, z)). The outflow condition is a standard 1D
convection equation.

For the particular analysis of chapter 6, data are collected for 5 time-independent
snapshots of a 3D subdomain (see figure 2.2) of size 4.25L0 × 0.28L0 × 0.28L0

with 1530 × 101 × 101 mesh nodes. The 3D subdomain is centred around the
centreline of the grid starting from a distance 0.15x∗ downstream of the grid
and extending to a distance 0.55x∗, where x∗ is the wake interaction length
scale introduced by Mazellier and Vassilicos (2008) and which is equal to L2

0/t0.
The fractal flow data used in chapter 6 onwards are taken from the production
and the decay regions explicitly shown in figure 2.3. For this fractal square grid
simulation, the values of the Taylor-based Reynolds number Reλ = urmsλ/ν,
the Taylor microscale λ =

√
urms/(∂u/∂x)2 and the integral scale L are varying

with streamwise distance from the grid and their values with respect to x∗ can
be seen in figure 2.3.
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Figure 2.3: Streamwise evolution along the centreline for the fractal square
grid of the Taylor-based Reynolds numberReλ, the Taylor microscale λ and the
integral scale L. The production region (from x = 0.15x∗ to x = 0.35x∗) and
the decay region (from x = 0.15x∗ to x = 0.35x∗) where the data are collected is
highlighted around the Reλ peak.
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3 System of equations

In this chapter, exact equations for structure functions are presented and the
balances of the equations are examined, mostly based on Boschung et al. (2017a)
and the arxive material Peters et al. (2015); section 3.1.3 is redacted from Peters
et al. (2016).

These exact equations for structure functions are derived from the incom-
pressible Navier-Stokes equations (1.5) and simplified for homogeneous, isotropic
turbulence. Exact equations for structure functions of arbitrary order were
derived by Hill (2001) and Yakhot (2001). In the following, we will use the
methodology of Hill, as it allows us to easily derive equations for the source terms
in the structure function equations. The underlying notion is that since the
structure function equations are exact, they might provide further insight and
lead to new results. In section 3.1, the equations for the longitudinal, mixed and
transverse structure functions and the resulting system of equations are discussed.
Special emphasis is given to the second- and fourth-order equations. For the
fourth-order structure function equations, we have also derived the transport
equation for its leading-order source terms, since they determine the solution
of the fourth-order structure function equations. The balances of the structure
function equations up to the seventh order are shown in section 3.2. Furthermore,
we have derived the transport equation for the trace of the fourth-order structure
function and its leading-order source term in section 3.3, followed by the balances
of these equations. As the system of structure function equations is unclosed,
we briefly discuss a possible closure in section 3.4. We use the equations derived
in this chapter in chapter 4 and chapter 5 below, where we examine the viscous
range and the inertial range in more detail.

In the literature, source terms of higher-order structure function equations
have been analysed by DNS simulations and, to the extent that this was possible,
by hot wire measurements. Hill and Boratav (2001) analysed the third-order
structure function equations based on DNS and experiments. From their analysis,
it appears that only the pressure source terms determine the solutions at the
third order. Kurien and Sreenivasan (2001) discussed the Yakhot (2001) paper
and the models presented therein in detail. They then used high Reynolds
number experimental data from the atmospheric boundary layer to compute the
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pressure terms from Yakhot’s model and balance the terms of the transverse and
mixed fourth-order structure function equations in the inertial range. Gotoh and
Nakano (2003) have examined on the basis of DNS data the balances between
the even-order structure functions and the pressure source terms in the odd-order
equations up to eighth order and proposed a model for the pressure source terms.
Yakhot (2003) has modified this model to obtain the same formula as in Yakhot
(2001), but now for longitudinal inertial range scaling exponents. Based on a
model for the probability density function for longitudinal velocity increments,
Yakhot (2006) discussed the closure of the structure function equations in terms
of the dissipation anomaly (cf. Polyakov (1995) and Yakhot and Sreenivasan
(2005)). Using DNS data, Nakano et al. (2003) normalised the dissipation source
terms in the longitudinal equations up to the eighth order by the next-order
structure function. They found that for all even-order equations, the normalised
dissipation source terms are of order unity. This suggests that the dissipation
source terms rather than the pressure source terms are dominant in the even-order
equations.

3.1 Structure function equations
In this section, the system of structure function equations and the resulting
coupling between the individual equations is briefly discussed.

3.1.1 General form

Assuming incompressible flow, the momentum equations written at two points
denoted by xi = (x1, x2, x3) and x′

i = (x′
1, x′

2, x′
3) are given by∗

∂ui

∂t
+ un

∂ui

∂xn
= − ∂p

∂xi
+ ν

∂2ui

∂x2
n

, i = 1, 2, 3 (3.1)

∂u′
i

∂t
+ u′

n

∂u′
i

∂x′
n

= − ∂p′

∂x′
i

+ ν
∂2u′

i

∂x′2
n

, i = 1, 2, 3 (3.2)

Here ui and u′
i are the components of the velocity, p is the pressure and ν the

kinematic viscosity. Einstein’s summation convention for indices appearing twice
is used. These equations are completed by the continuity equation which holds

∗Note that terms fi stemming from body forces or large scale forcing are neglected here and
in the following.

28



3.1 Structure function equations

at both points,
∂ui

∂xi
= 0,

∂u′
i

∂x′
i

= 0 (3.3)

Following Hill (2001), one obtains an equation for the velocity increment Δui

defined by Δui = ui(x) − u′
i(x′) by subtracting eq. (3.2) from eq. (3.1)∗,

∂Δui

∂t
+ un

∂Δui

∂xn
+ u′

n

∂Δui

∂x′
n

= −
(

∂p

∂xi
− ∂p′

∂x′
i

)
︸ ︷︷ ︸

ΔPi

+ν

(
∂2Δui

∂x2
n

+ ∂2Δui

∂x′2
n

)
(3.4)

Here the difference of the pressure gradient at the two points is defined as ΔPi.
Next, the independent variables xi and x′

i are changed to the new independent
variables

Xi = 1
2

(xi + x′
i) , ri = (xi − x′

i) . (3.5)

This coordinate transformation is very helpful in the following, since it incorpo-
rates a length scale, the separation vector ri and its magnitude r = |ri| into the
system of equations. Using the transformation rules

∂

∂xi
= ∂

∂ri
+ 1

2
∂

∂Xi
,

∂

∂x′
i

= − ∂

∂ri
+ 1

2
∂

∂Xi
(3.6)

one obtains using incompressibility (eq. (3.3)) and the observation that spatial
derivatives of quantities at xi with respect to x′

i and vice versa vanish (i.e. here
that ∂ui/∂x′

j = 0 as well as ∂u′
i/∂xj = 0),

∂Δui

∂ri
= 0,

∂Δui

∂Xi
= 0,

∂Ui

∂ri
= 0,

∂Ui

∂Xi
= 0 (3.7)

where Ui = (ui + u′
i)/2. Inserting this into the transport term in eq. (3.4), one

obtains
un

∂Δui

∂xn
+ u′

n

∂Δui

∂x′
n

= Δun
∂Δui

∂rn
+ Un

∂Δun

∂Xn
. (3.8)

∗More generally, the two points can also be separated in time by Δt, where the first eq. (3.1)
is written at t and the second eq. (3.2) at t′. Consequently, one would have a corresponding
coordinate change Δt = t − t′ and T = (t + t′)/2, cf. Hill (2006). Here, we take t = t′, i.e.
have the two points separated only in space but not in time.
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Likewise the Laplacian in eq. (3.4) becomes

∂2Δui

∂x2
n

+ ∂2Δui

∂x′2
n

= 2
(

∂2Δui

∂r2
n

+ ∂2Δui

∂X2
n

)
. (3.9)

to finally obtain

∂Δui

∂t
+ Δun

∂Δui

∂rn
+ Un

∂Δui

∂Xn
= −ΔPi + 2ν

(
∂2Δui

∂r2
n

+ ∂2Δui

∂X2
n

)
. (3.10)

To derive equations for structure functions of arbitrary order N , 〈ΔuiΔujΔuk...
Δul〉, eq. (3.10) is multiplied by ΔujΔuk...Δul and similarly equations for
Δuj , Δuk, ..., Δul. Summing up the N equations and averaging then yields

∂DN

∂t
+ ∇X · F N+1 + ∇r · DN+1 = − 〈T N 〉 − 〈EN 〉

+ 2ν

(
∇2

rDN + 1
4

∇2
XDN

)
, (3.11)

i.e. an equation for the N -rank tensor DN , where

DN = 〈ΔuiΔujΔuk...Δul〉
∇X · F N+1 = ∂

∂Xn
(〈UnΔuiΔujΔuk...Δul〉)

∇r · DN+1 = ∂

∂rn
(〈unΔuiΔujΔuk...Δul〉)

(3.12)

and the source terms

〈T N 〉 = 〈{ΔujΔuk...ΔulΔPi}〉 (3.13)

and
〈EN 〉 = 2

〈{
Δuk...Δul

(
εij + ε′

ij

)}〉
. (3.14)

Hereafter, 〈T N 〉 are called pressure source terms and 〈EN 〉 dissipation source
terms. The curly braces {...} denote summation over all combination of indices.
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For instance at the fourth order,

〈E4〉 ≡ 〈Eijkl〉
= 2

〈
ΔukΔul

(
εij + ε′

ij

)
+ ΔujΔul (εik + ε′

ik) + ΔujΔuk (εil + ε′
il)

+ΔuiΔul

(
εjk + ε′

jk

)
+ ΔuiΔuk

(
εjl + ε′

jl

)
+ ΔuiΔuj (εkl + ε′

kl)
〉

(3.15)

or at the third order

〈T 3〉 ≡ 〈Tijk〉 = 〈ΔuiΔujΔPk + ΔuiΔukΔPj + ΔujΔukΔPi〉 (3.16)

and thus e.g.

〈E3,0〉 = 6 〈Δu1 (ε11 + ε′
11)〉

〈E2,2〉 = 2
〈
(Δu2)2 (ε11 + ε′

11) + 4Δu1Δu2 (ε12 + ε′
12)

+(Δu1)2 (ε22 + ε′
22)

〉
〈T1,2〉 =

〈
2Δu1Δu2ΔP2 + (Δu2)2ΔP1

〉
〈T0,4〉 = 4

〈
(Δu2)3ΔP2

〉
,

(3.17)

where 〈E3,0〉 = 〈E111〉, 〈E2,2〉 = 〈E1122〉, 〈T1,2〉 = T122 and 〈T0,4〉 = 〈T2222〉 and

εij = ν
∂ui

∂xk

∂uj

∂xk
(3.18)

are components of the pseudo-dissipation tensor, where the pseudo-dissipation
equals the trace ε = εii, cf. eq. (1.15).

Clearly, the equations of order N are coupled to the equations of order N + 1
by the transport term ∇r ·DN+1. This set of equations can be further simplified
for homogeneous, isotropic turbulence. In case of homogeneity, all derivatives of
averaged quantities 〈...〉 with respect to Xn vanish, since they do not depend on
the position where they are measured. Then, eq. (3.11) reduces to

∂DN

∂t
+ ∇ · DN+1 = − 〈T N 〉 − 〈EN 〉 + 2ν∇2DN , (3.19)

under the assumption of isotropy and homogeneity and where possible additional
terms stemming from some large-scale forcing have been neglected. All orders
have the same general structure: In the Nth-order structure function equation,
there are transport terms containing structure functions of order N + 1 (i.e.
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Table 3.1: Relations between structure functions with 2- and 3-components.
N = 2

〈
(Δu2)2

〉
=

〈
(Δu3)2

〉
N = 3

〈
Δu1(Δu2)2

〉
=

〈
Δu1(Δu3)2

〉
N = 4

〈
(Δu1)2(Δu2)2

〉
=

〈
(Δu1)2(Δu3)2

〉〈
(Δu2)4

〉
= 3

〈
(Δu2)2(Δu3)2

〉
=

〈
(Δu4)4

〉
N = 5

〈
(Δu1)3(Δu2)2

〉
=

〈
(Δu1)3(Δu3)2

〉〈
Δu1(Δu2)4

〉
= 3

〈
Δu1(Δu2)2(Δu3)2

〉
=

〈
Δu1(Δu4)4

〉
N = 6

〈
(Δu1)4(Δu2)2

〉
=

〈
(Δu1)4(Δu3)2

〉〈
(Δu1)2(Δu2)4

〉
= 3

〈
(Δu1)2(Δu2)2(Δu3)2

〉
=

〈
(Δu1)2(Δu3)4

〉〈
(Δu2)6

〉
= 5

〈
(Δu2)4(Δu3)2

〉
= 5

〈
(Δu2)2(Δu3)4

〉
=

〈
(Δu3)6

〉
N = 7

〈
(Δu1)5(Δu2)2

〉
=

〈
(Δu1)5(Δu3)2

〉〈
(Δu1)3(Δu2)4

〉
= 3

〈
(Δu1)3(Δu2)2(Δu3)2

〉
=

〈
(Δu1)3(Δu3)4

〉〈
Δu1(Δu2)6

〉
= 5

〈
Δu1(Δu2)4(Δu3)2

〉
= 5

〈
Δu1(Δu2)2(Δu3)4

〉
=

〈
Δu1(Δu3)6

〉
N = 8

〈
(Δu1)6(Δu2)2

〉
=

〈
(Δu1)6(Δu3)2

〉〈
(Δu1)4(Δu2)4

〉
= 3

〈
(Δu1)4(Δu2)2(Δu3)2

〉
=

〈
(Δu1)4(Δu3)4

〉〈
(Δu1)2(Δu2)6

〉
= 30

〈
(Δu1)2(Δu2)4(Δu3)2

〉
= 30

〈
(Δu1)2(Δu2)2(Δu3)4

〉
=

〈
(Δu1)2(Δu3)6

〉〈
(Δu2)8

〉
= 7

〈
(Δu2)6(Δu3)2

〉
= 35

3

〈
(Δu2)4(Δu3)4

〉
= 7

〈
(Δu2)2(Δu3)6

〉
=

〈
(Δu3)8

〉

∇ · DN+1) on the l.h.s., on the r.h.s. one has pressure source terms 〈T N 〉,
dissipation source terms 〈EN 〉 as well as the viscous terms 2ν∇2DN .

For isotropic turbulence, the statistics do not depend on the orientation of the
separation vector ri, but only its magnitude r = |ri|. This leads to a reduction
of components required to completely describe the full tensor. For instance at
the fourth order, only three components of the tensor 〈ΔuiΔujΔukΔul〉 are
needed, as detailed in appendix A. This greatly simplifies both the analysis as
well as the numerical computations involved. Without loss of generality, one
may take ri = (r, 0, 0), i.e. align the separation vector with the x1-axis. This
choice of ri allows one to express the tensor DN by Δu1 and Δu2 only. For
instance, 〈Δu1(Δu3)2〉 = 〈Δu1(Δu2)2〉 and 〈(Δu2)2(Δu3)2〉 = 〈(Δu2)4〉/3 and
similarly at higher orders, cf. eq. (4.4) of Hill (2001). The resulting relations
for N = 2 to N = 8 are listed in table 3.1. This implies that we do not have to
consider transport equations for structure functions with 3-component such as
e.g. 〈(Δu3)2〉, since they do not contain additional information. It should be
stressed that the relations given in the table are exact under the assumption of
isotropy and can therefore be used to check for local isotropy as function of the
separation distance r.

In the following, the structure function of order N = m+n is therefore denoted
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3.1 Structure function equations

by
Dm,n = 〈(Δu1)m (Δu2)n〉 . (3.20)

Note that this choice is somewhat arbitrary but without loss of generality. One
could have chosen Δu3 instead of Δu2, which would give the same results.

The functional form of the gradient and Laplacian has been calculated by Hill
(2001) using a Matrix algorithm∗ and recently corrected, see https://arxiv.
org/abs/physics/0102063; they are shown in table 3.2 for N = 2 to N = 8 for
reference. Noticeably, the table suggests that the divergence in the Nth-order
structure function equations can be written as

∇ · DN+1 =
(

∂

∂r
+ n + 2

r

)
Dm+1,n − m

r

n + 2
n + 1

Dm−1,n+2 (3.21)

and the Laplacian as

∇2DN =
(

∂2

∂r2
+ 2

r

∂

∂r
− n + 2m(n + 1)

r2

)
Dm,n

+ 2
r2

n + 2
n + 1

m+n∑
Ñ=1

[
Ñ − (n + 1)

]
Dm−2,n+2 + n2 − n

r2
Dm+2,n−2. (3.22)

In eq. (3.21) and eq. (3.22), all structure functions with negative indices are
defined to vanish, e.g. D−2,2 ≡ 0.

Therefore from eq. (3.19), there is a coupling to the next higher-order structure
functions via the transport terms ∇ · DN+1 and an inter-order coupling by the
viscous terms ∇2DN while the 〈T N 〉 and 〈EN 〉 terms act as sources (or sinks,
depending on their sign). This tree-like structure is visualised in figure 3.1, where
the coupling between different orders is indicated by the red vertical arrows
(referring to the transport terms) and the inter-order coupling via the viscous
terms by the black horizontal arrows. One therefore finds a system of coupled
partial differential equations, where the solutions are obtained by advancing
the system in time (or until the system reaches its steady state ∂DN /∂t = 0
for forced turbulence) with boundary conditions as determined by the viscous
range and some initial conditions for the structure functions. However, the
resulting system of equations is unclosed due to the coupling to the higher-order

∗The computations could be carried out by hand as detailed in appendix A.1 and ap-
pendix A.2.1, but doing so is very cumbersome and time-consuming at higher orders.
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Table 3.2: Isotropic form of the transport and diffusive terms in the structure
function equations for N = 2 to N = 8 as given by Hill (2001), see https:
//arxiv.org/abs/physics/0102063 for the corrected version.

transport term ∇ · DN+1 diffusive term ∇2DN

N = 2
(
∂r + 2

r

)
D3,0 − 4

r D1,2

(
∂2

r + 2
r ∂r − 4

r2

)
D2,0 + 4

r2 D0,2(
∂r + 4

r

)
D1,2

(
∂2

r + 2
r ∂r − 2

r2

)
D0,2 + 2

r2 D2,0

N = 3
(
∂r + 2

r

)
D4,0 − 6

r D2,2

(
∂2

r + 2
r ∂r − 6

r2

)
D3,0 + 12

r2 D1,2(
∂r + 4

r

)
D2,2 − 4

3r D0,4

(
∂2

r + 2
r ∂r − 8

r2

)
D1,2 + 2

r2 D3,0

N = 4

(
∂r + 2

r

)
D5,0 − 8

r D3,2

(
∂2

r + 2
r ∂r − 8

r2

)
D4,0 + 24

r2 D2,2(
∂r + 4

r

)
D3,2 − 8

3r D1,4

(
∂2

r + 2
r ∂r − 14

r2

)
D2,2 + 2

r2 D4,0 + 8
3r2 D0,4(

∂r + 6
r

)
D1,4

(
∂2

r + 2
r ∂r − 4

r2

)
D0,4 + 12

r2 D2,2

N = 5

(
∂r + 2

r

)
D6,0 − 10

r D4,2

(
∂2

r + 2
r ∂r − 10

r2

)
D5,0 + 40

r2 D3,2(
∂r + 4

r

)
D4,2 − 12

3r D2,4

(
∂2

r + 2
r ∂r − 20

r2

)
D3,2 + 2

r2 D5,0 + 8
r2 D1,4(

∂r + 6
r

)
D2,4 − 6

5r D0,6

(
∂2

r + 2
r ∂r − 14

r2

)
D1,4 + 12

r2 D3,2

N = 6

(
∂r + 2

r

)
D7,0 − 12

r D5,2

(
∂2

r + 2
r ∂r − 12

r2

)
D6,0 + 60

r2 D4,2(
∂r + 4

r

)
D5,2 − 16

3r D3,4

(
∂2

r + 2
r ∂r − 26

r2

)
D4,2 + 2

r2 D6,0 + 16
r2 D2,4(

∂r + 6
r

)
D3,4 − 12

5r D1,6

(
∂2

r + 2
r ∂r − 24

r2

)
D2,4 + 12

r2 D4,2 + 12
5r2 D0,6(

∂r + 8
r

)
D1,6

(
∂2

r + 2
r ∂r − 6

r2

)
D0,6 + 30

r2 D2,4

N = 7

(
∂r + 2

r

)
D8,0 − 14

r D6,2

(
∂2

r + 2
r ∂r − 14

r2

)
D7,0 + 84

r2 D5,2(
∂r + 4

r

)
D6,2 − 20

3r D4,4

(
∂2

r + 2
r ∂r − 32

r2

)
D5,2 + 2

r2 D7,0 + 80
3r2 D3,4(

∂r + 6
r

)
D4,4 − 18

5r D2,6

(
∂2

r + 2
r ∂r − 34

r2

)
D3,4 + 12

r2 D5,2 + 36
5r2 D1,6(

∂r + 8
r

)
D2,6 − 8

7r D0,8

(
∂2

r + 2
r ∂r − 20

r2

)
D1,6 + 30

r2 D3,4

N = 8

(
∂r + 2

r

)
D9,0 − 16

r D7,2

(
∂2

r + 2
r ∂r − 16

r2

)
D8,0 + 112

r2 D6,2(
∂r + 4

r

)
D7,2 − 8

r D5,4

(
∂2

r + 2
r ∂r − 38

r2

)
D6,2 + 2

r2 D8,0 + 40
r2 D4,4(

∂r + 6
r

)
D5,4 − 24

5r D3,6

(
∂2

r + 2
r ∂r − 44

r2

)
D4,4 + 12

r2 D6,2 + 72
5r2 D2,6(

∂r + 8
r

)
D3,6 − 16

7r D1,8

(
∂2

r + 2
r ∂r − 34

r2

)
D2,6 + 30

r2 D4,4 + 16
7r2 D0,8(

∂r + 10
r

)
D1,8

(
∂2

r + 2
r ∂r − 8

r2

)
D0,8 + 56

r2 D2,6
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structure functions stemming from the transport term, i.e. the closure problem
of turbulence. Well-known closures to overcome this issue are the quasi-normal
(QN) approximation and its modifications (see Lesieur (1997) and references
therein for an overview), where traditionally the fourth-order structure functions
are expressed in terms of the square of the second-order structure functions
by assuming a vanishing fourth-order cumulant. A similar closure could be
conceivable introduced at higher orders. Another approach is to close the system
using an eddy viscosity ansatz of the form DN+1 = νt,(N+1)(∂DN /∂r), see
e.g. Oberlack and Peters (1993) or more recently Thiesset et al. (2013). We
briefly discuss this possibility in section 3.4 below. The closure of Oberlack
and Peters (1993) was used by Schaefer et al. (2011) and is also employed in
section 5.3 below to close the second-order equations; it is found to be in very
good agreement with DNS data. In any case, the source terms 〈T N 〉 (eq. (3.13))
and 〈EN 〉 (eq. (3.14)) need to be closed and the resulting closure may introduce
additional coupling between orders and structure functions. Source term closures
have been developed e.g. by Gotoh and Nakano (2003) and Yakhot (2001, 2003),
but are not discussed here in the following∗. Note that it is possible to derive
equations for the source terms, cf. section 3.1.3 for the fourth-order dissipation
source terms. One could similarly proceed at higher orders. However, these
equations contain additional unclosed terms.

The system of structure function equations is complemented by two equations
relating the second- and third-order structure functions,

∂D2,0

∂r
+ 2

r
D2,0 − 2

r
D0,2 = 0 (3.23)

and
∂D3,0

∂r
+ 1

r
D3,0 − 6

r
D1,2 = 0 (3.24)

derived from the continuity equation, cf. e.g. Monin and Yaglom (1975).
However, there are no analogous higher-order relations.

If the flow is statistically steady, the derivatives with respect to time may be
neglected. For that reason, the unsteady terms ∂DN /∂t are not discussed in the
numerical analysis of the structure functions below in section 3.2 and section 3.3.

∗Possible attempts at closing the source terms are briefly sketched in appendix B but not
further pursued here.
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Figure 3.1: System of structure function equations and coupling between different
orders.

Viscous range r → 0

For r → 0, DN ∼ rN to leading order as can be seen by expanding the structure
functions in Taylor series,

Dm,n =
〈(

∂u1

∂x1

)m (
∂u2

∂x1

)n〉
rN , (3.25)

since the separation vector ri and the x1-axis are aligned. Similarly, the pressure
source terms 〈T N 〉 ∼ rN , while the dissipation source terms are to leading order
〈EN 〉 ∼ rN−2, because εij + ε′

ij → 2εij for r → 0. Moreover, the transport terms
∇ · DN+1 ∼ rN as well as the viscous terms ∇2DN ∼ rN−2. Therefore, the
viscous terms are balanced by the dissipation source terms in the viscous range.
Consequently, one may neglect the convective terms of order N + 1 as well as the
pressure source terms for small r → 0. This implies that the equations of order
N are decoupled from the equations of order N + 1 (however there might be
coupling induced by closing the source terms). In other words, the viscous range
is completely determined by the dissipation source terms. At first glance, it
would seem that there are as many equations as unknown structure functions for
all orders in the viscous range if the dissipation source terms 〈EN 〉 are known, cf.
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figure 3.1 and the right column of table 3.2. However, this is not the case, as not
all equations are linearly independent. For instance, at the second order, there
are two equations for D2,0 and D0,2, which are linearly dependent, while at the
fourth order, there are three equations for the three unknowns D4,0, D2,2 and
D0,4, again one of which can be written as sum of the other two (cf. section 4.3.2
below). Note that there is an additional equation stemming from continuity at
N = 2 and N = 3, i.e. eq. (3.23) and eq. (3.24), which can be used to close the
second and third-order equations in the viscous range. The exact results for
N = 2 were first derived by Kolmogorov (1941a,b) and are briefly discussed in
section 3.1.2, while third- and fourth-order results can be found in section 4.3.
The viscous range is discussed in more detail in chapter 4 below.

Inertial range

Kolmogorov (1941b) introduced the concept of an inertial range situated between
the very small scales and the large integral scales L, η � r � L. In the
inertial range, viscosity has a negligible influence and therefore the viscous terms
2ν∇2DN can be neglected. In this limit, the structure functions of order N + 1
are determined by integrating the equations of order N and are completely
determined by the source terms 〈EN 〉 and 〈T N 〉. Particularly, there are only
enough equations to determine the structure functions for even orders, e.g. there
are four equations for four structure functions D7,0, D5,2, D3,4 and D1,6 at the
sixth order. If the source terms are known, one can then proceed to successively
integrate the equations starting with the equation with the most transversal
components (i.e. here D1,6). On the other hand, at the fifth order, there are
only three equations for four structure functions D6,0, D4,2, D2,4 and D0,6 and
the same holds for all odd orders. That is, there is the peculiar situation that
while it is possible to derive equations for all structure functions at arbitrary
order, only odd-order structure functions can be determined using inertial range
assumptions without resorting to additional closures, even if the source terms are
known. Again, the second order is special inasmuch as the pressure source terms
vanish due to isotropy (cf. e.g. Hill (1997)) and the dissipation source terms are
proportional to the pseudo-dissipation 〈ε〉, cf. eq. (3.14)∗. This is not the case for
all other orders, were the pressure source terms contribute and both source terms
depend on r. Kolmogorov (1941b) suggested in combination with dimensional
analysis a second similarity hypothesis, namely that structure functions in the

∗Noticeably, Kolmogorov’s equation eq. (1.31) contains rather the dissipation 〈ε〉 instead of
the pseudo-dissipation 〈ε〉. This apparent discrepancy is resolved due to 〈ε〉 = 〈ε〉 under
the constraints of homogeneity and isotropy, cf. e.g. section 4.2.1 below.
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inertial range should be determined by 〈ε〉 and r only; consequently, they would
follow a power-law in the inertial range,

Dm,n ∼ (〈ε〉 r)(m+n)/3
, (3.26)

i.e. have power-law scaling with order-dependent exponents ζm,n = (m + n)/3.
This implicitly assumes that there are no correlations between velocity increments
and the pseudo-dissipation, i.e. assumes that

〈EN 〉 ∼ {〈(ΔuiΔuj ...)〉 〈(εkl + ε′
kl)〉} , (3.27)

noting that due to homogeneity 〈εkl〉 = 〈ε′
kl〉 and due to isotropy 〈εkl〉 = 〈ε〉δkl,

〈ε〉 = 〈ε〉. However, this assumption does not hold for the dissipation source
terms except trivially for the second-order equations.

Indeed, the exponents ζm,n are found to be smaller than (m+n)/3 for m+n > 3,
with the deviations increasing with increasing order. This observation, which
implies a negative correlation between ΔuiΔuj ... and (εkl + ε′

kl), is known as
anomalous scaling; measurements and simulations of many different flow types
and Reynolds numbers confirm that ζm,n < (m + n)/3, cf. e.g. Anselmet et al.
(1984), Attili and Bisetti (2012), Benzi et al. (1995), and Gotoh et al. (2002) as
well as the scaling exponents computed from datasets R5 and R6 below.

Simultaneously, a lot of theoretical work has been done to determine the
longitudinal scaling exponents ζN,0

∗, the most important one probably being the
refined similarity hypothesis as presented by Kolmogorov (1962) which shaped
most consecutive work.

The K41 theory of Kolmogorov (1941b) had postulated that ν and 〈ε〉 are
the only scaling parameters for the entire distribution function of two-point
velocity differences, cf. section 1.4. Because only two quantities with different
physical units are needed to non-dimensionalise the structure function equations,
this was viewed as a claim for universality. However, Landau has argued that
universality would be violated by variations of the dissipation at the large scales
(cf. Landau and Lifshitz (1959), Frisch (1995)). To address Landau’s criticism,
Kolmogorov† suggested to replace 〈ε〉(m+n)/3 in eq. (3.26) by 〈ε(m+n)/3

r 〉, where
εr is the dissipation locally averaged over a sphere of radius r. Thus, he effectively

∗Mixed and transverse scaling exponents have received much less attention, at least regarding
theoretical work. See e.g. Chen et al. (1997) for a modification based on phenomenology
explicitly taylored for transverse structure functions, where rather sphere-averaged moments
of the enstrophy ω2

r instead of εr are used.
†Kolmogorov (1962) attributes this ansatz to Obukhov, see e.g. Obukhov (1962).
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incorporated the r-dependence of the source terms into 〈ε(m+n)/3
r 〉, i.e. assumed

that
DN,0 ∼

〈
εN/3

r

〉
rN/3. (3.28)

This ansatz is also known in the literature as refined similarity hypothesis (RSH).
Kolmogorov then assumed a log-normal distribution for εr, which yields

DN,0 ∼ 〈ε〉N/3
rN/3

( r

L

)μN(3−N)/18

, (3.29)

i.e. used this to predict the inertial range scaling exponents ζN,0 as

ζN,0 = N

3
+ μN

18
(3 − N), (3.30)

where μ is a model parameter, sometimes called intermittency constant. General
consensus is that μ = 0.25 ± 0.05 is the ”best estimate”, cf. Sreenivasan and
Kailasnath (1993). However, the log-normal model is not without its drawbacks.
It is readily seen that for any μ > 0, ζN,0 decreases after exceeding some value
of N due to the quadratic term, which is at odds with measurements and DNS
data in the literature and which violates the Hölder inequality, see p. 133f of
Frisch (1995). From another point of view, it is well-known that the pdf of
the dissipation is not log-normal. While its core (and consequently the lower
moments) can be approximated by a log-normal distribution reasonably well,
the tails differ significantly. Consequently, the log-normal assumption does not
capture the higher-order scaling exponents∗. It should be noted though that the
shortcomings of the log-normal model do not necessarily imply that eq. (3.28) is
invalid.

While this modification of Kolmogorov’s previous theory is based on phe-
nomenology, it paved the way for the multi-fractal theory, which is in excellent
agreement with experimental and numerical data, see e.g. Nelkin (1994) or
Sreenivasan and Antonia (1997) and references therein as well as Paladin and
Vulpiani (1987a) for an extensive overview. Meneveau and Sreenivasan (1989,
1991) examined multi-fractal behaviour of εr in detail, for which they found
very good agreement with their experimental data. Assuming multi-fractality
of εr, Meneveau and Sreenivasan (1987) proposed a model based on the idea
that the energy contained in one eddy is transported towards two smaller eddies,
each of which receiving a fraction p and 1 − p of the larger eddy’s energy. With

∗The connection between moments of the dissipation and scaling exponents is more closely
examined in section 5.2 below.
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eq. (3.28), the p-model then yields

ζN,0 = N

3
− log2

(
pN/3 + (1 − p)N/3

)
−
(

N

3
− 1

)
, (3.31)

where p = 0.7 gives good agreement with experimental data.
Different to the multi-fractal framework, She and Leveque (1994) proposed a

hierarchy of powers of the dissipation moments defined by successive moments
〈εM+1

r 〉/〈εM
r 〉. The She-Leveque model yields

ζN,0 = N

9
+ 2

[
1 −

(
2
3

)N/3
]

, (3.32)

which is in excellent agreement with data from the literature and does not contain
a model parameter. She and Waymire (1995) as well as Dubrulle (1994) found
that the She-Leveque model amounts to assuming a log-poisson distribution of
the dissipation.

There are many more models presented and described in the literature, e.g. the
β-model cf. Frisch et al. (1978), models based on a mean-field theory proposed
by Yakhot (Kurien and Sreenivasan (2001) and Yakhot (2001)) other models
based on multi-fractality (e.g. Schumacher et al. (2007) and Yakhot (2006)),
fusion rules which generalise from two-point differences to multi-point differences
(L’vov and Procaccia (1995, 1996a,b)) and many more not listed here.

Noticeably, most models assume eq. (3.28). While the 4/5-law eq. (1.31) is
based on the Navier-Stokes equations, RSH remains a phenomenological model.
However, since dissipation fluctuations must be contained in the Navier-Stokes
equations, the parameters describing them should be hidden somewhere in the
equations for the higher-order structure functions or in additional equations
related to them. More specifically, the moments of the dissipation distribution
function should appear in averaged two-point equations derived from the Navier-
Stokes equations. For that reason, one would expect to find the moments
〈ε(m+n)/3

r 〉 in the system of equations. For N = 2, the K62 assumption has
been proved by Hill (2002) by spherical integration of the second-order trace
equations, resulting in

D[3] = 2ν
∂D[2]

∂r
− 4r

3
〈εr〉 (3.33)

(eq. (3.22) in Hill (2002)) where D[3] = D3,0 + 2D1,2 and D[2] = D2,0 + 2D0,2

are the traces of the third and second-order structure functions. Using incom-
pressibility then yields the 4/5-law (eq. (1.31) and eq. (3.41)). However, similar
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results cannot be obtained at higher orders, as 〈εm+n
r 〉 does not equal the spher-

ical averages of the trace of the dissipation source terms 〈EN 〉. Noticeably,
the second moment 〈ε2

r〉 is implicitly found in the transport equation for the
fourth-order dissipation source terms (cf. section 3.1.3 and section 5.3), since
ε2

r is related to the correlation 〈εε′〉 which in turn is included in the two-point
sum proportional to 〈(ε + ε′)2〉 (called here the ε2-term). However, the ε2-term
is far from being the dominant term in the fourth-order dissipation source term
transport equations and indeed is nearly cancelled out from the balance by
a different term. Moreover, 〈ε2

r〉 is found in the fourth-order equations (thus
contributing to the fifth-order structure functions) and not in the fifth-order
equations which would determine the inertial range solutions of the sixth-order
structure functions m + n = 6, as discussed in section 5.3 in more detail. It
should be noted though that RSH assumes that (∂DN+1,0/∂r)/〈EN,0〉 = const.
(cf. section 5.1), which is found to be in good agreement with the DNS data of
section 2.1.

If one assumes that the structure functions follow a power-law in the inertial
range of the form

Dm,n = Cm,nrζm,n , (3.34)

the scaling exponents ζm,n (as well as the prefactors Cm,n) have to be contained
in the system of equations. Obviously, this is only the case if also the source
terms follow a power-law in the inertial range. Noticeably, the sum of two pure
power-laws P1 = A1rα1 and P2 = A2rα2 (with A1, A2 and α1 and α2 being
constants) only results exactly in a pure power-law P3 = P1 +P2 if α1 = α2 = α3.
In other words, a scaling as eq. (3.34) with r-independent Cm,n and ζm,n would
require all pressure source terms and dissipation source terms at a given order
to have pure power-law scaling with the same exponent ζm,n − 1 as well as
r-independent prefactors or cancellation of some of the terms in the balance
equations. Similarly, one can derive equations for the terms in the source term
equations, and so on ad infinitum, implying that all terms stemming from the
dissipation and pressure source terms of a certain order have to scale the same
or cancel out to have a pure power-law for the respective structure function as
defined by eq. (3.34). Then, the longitudinal, mixed and transverse structure
function exponents ζm,n will also be the same at every order by definition, since
the transverse feed into the mixed and the mixed into the longitudinal structure
functions, cf. the red vertical arrows in figure 3.1 and the left column of table 3.2.
On the other hand, if P1 � P2 or if α1 ≈ α2, the result is an approximate
power-law. By this, we mean that P3 = P1 + P2 is not a power-law, but can be
approximated by one reasonably well. This would require terms with inertial
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range scaling different from the transport terms to be negligible.
Naturally, the third-order structure functions have the same r-dependence,

since the pressure source terms vanish and the dissipation source terms are
proportional to the pseudo-dissipation 〈ε〉 and do not depend on r. The same
holds for the second-order structure functions if power-laws are assumed, since
they are related by the continuity equation (3.23). However, the situation is
different at higher orders, as their source terms are not constant but depend on
r and there are no relations between higher-order structure functions stemming
from continuity as mentioned above. Rather, there are terms in the source
term equations which are (nearly) constant. For instance the ε2-term is nearly
independent of r in the inertial range, cf. section 3.1.3, while other terms in
the fourth-order dissipation source term equations show a clear r-dependence.
Consequently, the source terms 〈E4,0〉 etc. are also mixtures of different power-
laws at best (if one approximates their source terms by power-laws in the inertial
range), i.e. cannot be pure power-laws themselves. Similar characteristics are
encountered at higher orders.

There are several approaches to determine the scaling exponents ζm,n. For
instance, one could fit eq. (3.34) to data of Dm,n. However, the range for which
such a power-law can be observed is very limited for the Reynolds numbers
obtainable from DNS as of writing, such as the DNS of chapter 2. For that reason,
it is somewhat difficult to choose the range of the fit. This issue is somewhat
mitigated by using extended self similarity (ESS), as introduced by Benzi et
al. (1993) and Benzi et al. (1995) (but see also the more critical discussion in
Grossmann et al. (1997)). Using ESS, one plots the structure functions not
over r, but rather over other structure functions, in the hope that this leads
to cancellation of errors and fluctuations. Since odd-order structure functions
can be negative or undergo a change of sign, one usually considers rather the
moments of the absolute value of the velocity difference,

D̂m,n = 〈|Δu1|m |Δu2|m〉 . (3.35)

Employing ESS, one then has to assume that the scaling exponents ξm,n of

D̂m,n = Ĉm,nrξm,n (3.36)

equal those of Dm,n, i.e. ξm,n = ζm,n. To determine ζ2,0, one would plot e.g.
D̂2,0 over D̂3,0 in a log-log graph and then fit a straight line. Since by assumption
ξ3,0 = ζ3,0 = 1, the slope of the fit equals ξ2,0 = ζ2,0. However, there is still the
issue which part to fit, which could lead to different vales of ξ2,0 = ζ2,0.
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Figure 3.2: Scaling exponents ζ5,0 (solid lines) and ξ5,0 (dashed lines) (a) and
ζ1,4 (solid lines) and ξ1,4 (dashed lines) (b) as computed by eq. (3.37) for datasets
R5 and R6.

Another approach is to compute the local slope

ζm,n = r

Dm,n

∂Dm,n

∂r
, ξm,n = r

D̂m,n

∂D̂m,n

∂r
, (3.37)

where r-independent prefactors and scaling exponents are assumed. This gives
reasonable results for even orders∗. For odd orders, however, the scaling ex-
ponents converge much slower. This can be ameliorated by again using D̂m,n

and thus computing rather ξm,n instead of ζm,n, which converge much quicker.
However, it should be kept in mind that this assumes the same scaling behaviour
of Dm,n and D̂m,n. In figure 3.2a, both ζ5,0 (solid lines) and ξ5,0 (dashed lines)
as well as ζ1,4 (solid lines) and ξ1,4 (dashed lines) (figure 3.2b) as computed by
eq. (3.37) are shown for the two datasets R5 (Reλ = 529) and R6 (Reλ = 754).
Clearly, ξ5,0 and ξ1,4 are better converged than ζ5,0 and ζ1,4 and the higher the
order and the larger n at fixed N = m + n, the larger the difference in statistical
convergence. However, it is unclear whether indeed ζ5,0 = ξ5,0 and ζ1,4 = ξ1,4.

Nevertheless, following tentatively the literature, ζm,n = ξm,n is assumed for
the rest of this section, although the different symbols are kept. The numerical
values of ξm,n up to the 10th order are listed in table 3.3 for the two cases
R5 and R6. It should be emphasised that the higher the order, the larger

∗Of course, for even orders ξm,n = ζm,n by definition.
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Table 3.3: Scaling exponents ξm,n up to the 10th order as computed by eq. (3.37)
for datasets R5/R6.

n = 0 n = 2 n = 4 n = 6 n = 8 n = 10
ζ2−n,n 0.719/0.724 0.718/0.720
ξ3−n,n 1.033/1.044 1.027/1.032
ζ4−n,n 1.317/1.335 1.308/1.315 1.292/1.299
ξ5−n,n 1.571/1.600 1.557/1.567 1.544/1.548
ζ6−n,n 1.792/1.838 1.774/1.793 1.759/1.764 1.710/1.730
ξ7−n,n 1.975/2.051 1.952/1.988 1.934/1.962 1.900/1.931
ζ8−n,n 2.125/2.236 2.095/2.169 2.080/2.143 2.065/2.102 1.961/1.987
ξ9−n,n 2.342/2.434 2.247/2.326 2.174/2.262 2.163/2.246 2.092/2.181
ζ10−n,n 2.494/2.615 2.356/2.486 2.275/2.417 2.230/2.394 2.207/2.309 2.151/2.222

the uncertainty and the less exact the values. Nevertheless, we find very good
agreement with ξm,n reported in the literature as detailed below. Noticeably,
there is still a small influence of the Reynolds number, while the differences
of longitudinal, mixed and transverse scaling exponents is more pronounced.
Particularly, ζN,0 > ζN−2,2 > ζN−4,4 > ζN−6,6 > ζN−8,8 > ζN−10,10 for all
N = 2 . . . 10 computed from both datasets R5 and R6, in agreement with
the findings of Gotoh et al. (2002) at lower Reynolds numbers. The scaling
exponents computed from the datasets R5 and R6 are plotted together with
ξm,n from the literature in figure 3.3a: forced homogeneous isotropic turbulence
(Gotoh et al. (2002)) where ξm,n were computed via the local slope (eq. (3.37)),
measurements of duct flow and two jets (Anselmet et al. (1984)), windtunnel
measurements using jets, cylinders and grids (Benzi et al. (1995)) where the
scaling exponents were computed using ESS, wind measurements using ESS
(Kurien and Sreenivasan (2001)) as well as hot wire measurements in a wind
tunnel for two different Reynolds numbers, both with shear and without (Shen
and Warhaft (2002)). In figure 3.3a, the symbols indicate the averages of the
respective scaling exponents; the bars are not error-bars, but denote the maximal
and minimal values of ξm,n found in the listed literature. Because there are less
measurements of higher-order ξm,n, the bars are narrower for higher N . This
does not mean that the higher-order ξm,n are more accurate. The exponents are
sorted by their number of 2-components: Longitudinal scaling exponents ξN,0

are denoted by a blue ◦ symbol, mixed and transverse with red � (ξN−2,2), black
� (ξN−4,4), green � (ξN−6,6), orange � (ξN−8,8) and purple � (ξN−10,10). As
can be seen in figure 3.3a, longitudinal, mixed and transverse scaling exponents
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Figure 3.3: Averaged scaling exponents from the literature and DNS cases R5
and R6 as described in the text, where the bars indicate maximum and minimum
values of ξm,n (a). Averaged longitudinal scaling exponents ζN,0 and ξN,0 as
described in the text; solid line: K41 prediction, dashed line: Log-normal model
with μ = 0.25, dotted line: p-model with p = 0.7, dash-dotted line: She-Leveque
model (b).

clearly differ and the difference increases with increasing order N .
Finally, the longitudinal exponents ξN,0 are shown in figure 3.3b together with

the model predictions eq. (3.26), eq. (3.29), eq. (3.31) and eq. (3.32) described
above. The longitudinal scaling exponents seem to collapse onto a single curve, if
one attributes the small differences to measurement uncertainties. Clearly, K41
theory ζN,0 = N/3 (solid line) does not accurately predict higher-order scaling
exponents, and similarly the K62 model (dashed line) for N > 8. While both
the She-Leveque model (dash-dotted line) and the p-model (dotted line) give
reasonable results, only the She-Leveque model seems to capture the behaviour
at large N∗. The large N limit will be briefly discussed in section 5.2 below.

3.1.2 Second- and fourth-order structure function
equations

In chapter 4 and chapter 5, we will look at the second and fourth order in more
detail. For that reason, we list here the required equations specifically. We begin
with the second-order structure function equations.

∗This should be taken cum grano salis, since there is not much data available for high N and
measurement uncertainties increase with increasing order.
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Second-order structure function equations

A second-order two-point tensor with interchangeable indices such as 〈ΔuiΔuj〉
is completely determined by two of its components under the assumption of
isotropy. Therefore, we have the two equations

∂D2,0

∂t
+ 1

r2

∂r2D3,0

∂r
− 4

r
D1,2

= 2ν

[
∂2D2,0

∂r2
+ 2

r

∂D2,0

∂r
+ 4

r2
(D0,2 − D2,0)

]
− 4

3
〈ε〉 (3.38)

and

∂D0,2

∂t
+ 1

r4

∂r4D1,2

∂r

= 2ν

[
∂2D0,2

∂r2
+ 2

r

∂D0,2

∂r
− 2

r2
(D0,2 − D2,0)

]
− 4

3
〈ε〉 , (3.39)

under the additional assumption of homogeneity, where 〈E2,0〉 = 4〈ε11〉 = 4〈ε〉/3
and 〈E0,2〉 = 4〈ε22〉 = 4〈ε〉/3, where 〈ε〉 is the mean of the pseudo-dissipation
defined by eq. (1.15) and ν the kinematic viscosity. Under the assumption of
homogeneity and continuity, 〈ε〉 = 〈ε〉, where ε is the mean dissipation of kinetic
energy, defined by eq. (1.13).

The two equations (3.38) and (3.39) are analogous to eq. (1.27) derived by
Kolmogorov (1941a) from the Kármán-Howarth equation (cf. Kármán and
Howarth (1938)). Due to isotropy, the pressure source terms 〈T2,0〉 = 0 and
〈T0,2〉 = 0, cf. Hill (1997) and the second-order dissipation source terms 〈E2,0〉
and 〈E0,2〉 are independent of r. Therefore, one can consider 〈ε〉 as external
parameter and all source terms are known at the second order. This is not the
case at higher orders, as will be seen below; there, also the pressure source terms
contribute and both 〈T N 〉 and 〈EN 〉 depend on r.

Noticeably, there are two equations for four unknowns (D2,0, D0,2, D3,0 and
D1,2). However for very large Reynolds numbers, the ratio of the largest to the
smallest scales increases, i.e. a scale separation occurs. Therefore, the viscous
terms may be neglected in the inertial range (cf. section 1.4) and there are two
equations for the two unknown third-order structure functions D3,0 and D1,2 as
discussed in section 3.1.1 if the flow is steady, i.e. when the unsteady terms are
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neglected. Then, one can integrate eq. (3.39) in r∗, which yields

D1,2 = − 4
15

〈ε〉 r (3.40)

since 〈ε〉 is constant. Inserting this in eq. (3.38), one obtains Kolmogorov
(1941a)’s famous result eq. (1.31) the so-called 4/5-law

D3,0 = −4
5

〈ε〉 r, (3.41)

if the equality 〈ε〉 = 〈ε〉 is used. Both eqs. (3.40) and (3.41) are exact results
under the assumption of isotropy and very large (infinite) Reynolds numbers.

Similarly for r → 0, one may neglect the transport terms and there are two
equations for the two unknowns D2,0 and D0,2 in the viscous range†. This then
yields the exact results for the second-order structure functions

D2,0 = 1
15

〈ε〉
ν

r2, D0,2 = 2
15

〈ε〉
ν

r2. (3.42)

Note that again the pseudo-dissipation 〈ε〉 instead of the dissipation 〈ε〉 is found
from solving the second-order equations in the viscous range. Since 〈ε〉 = 〈ε〉,
this is consistent with the result Kolmogorov (1941a) obtained from the Kármán-
Howarth equations as well as the relation

15ν

〈(
∂u1

∂x1

)2
〉

= 〈ε〉 ,
15
2

ν

〈(
∂u2

∂x1

)2
〉

= 〈ε〉 , (3.43)

derived from the general isotropic velocity gradient tensor 〈(∂ui/∂xj)(∂uk/∂xl〉)
under the constraints of homogeneity and continuity, cf. e.g. Hinze (1975) or
section 4.2 below.

∗Again, one implicitly assumes that D1,2(rstart) = 0, where rstart indicates the beginning of
the inertial range.

†From a Taylor series for r → 0, D2,0 = F1r2 and D0,2 = F2r2 where F1 = 〈(∂u1/∂x1)2〉
and F2 = 〈(∂u2/∂x1)2〉, cf. eq. (3.25). One then obtains 2ν(2F1 + 4F2) = 4

3 〈ε〉 from both
eq. (3.38) and eq. (3.39) as first equation and 2F1 = F2 from the continuity equation (3.23)
as second equation to solve for the two unknowns F1 and F2, resulting in eq. (3.42). One
can proceed similarly for the third-order equations, cf. section 4.3.1 below.
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Fourth-order structure function equations

For N = 4, there are three independent equations under the assumption of
isotropy. Specifically, for the longitudinal structure function D4,0 one obtains

∂D4,0

∂t
+ ∂D5,0

∂r
+ 2

r
D5,0 − 8

r
D3,2 = − 〈T4,0〉 − 〈E4,0〉

+ 2ν

[
∂2D4,0

∂r2
+ 2

r

∂D4,0

∂r
− 8

r2
D4,0 + 24

r2
D2,2

]
, (3.44)

for the mixed structure function D2,2

∂D2,2

∂t
+ ∂D3,2

∂r
+ 4

r
D3,2 − 8

3r
D1,4 = − 〈T2,2〉 − 〈E2,2〉

+ 2ν

[
2
r2

D4,0 + ∂2D2,2

∂r2
+ 2

r

∂D2,2

∂r
− 14

r2
D2,2 + 8

3r2
D0,4

]
(3.45)

and for the transverse structure function D0,4

∂D0,4

∂t
+ ∂D1,4

∂r
+ 6

r
D1,4 = − 〈T0,4〉 − 〈E0,4〉

+ 2ν

[
12
r2

D2,2 + ∂2D0,4

∂r2
+ 2

r

∂D0,4

∂r
− 4

r2
D0,4

]
. (3.46)

The explicit derivation of the divergence and Laplacian is given in appendix A.1
and appendix A.2.1. The pressure source terms 〈T4,0〉, 〈T2,2〉 and 〈T0,4〉 are
defined as

〈T4,0〉 =
〈

4 (Δu1)3
ΔP1

〉
(3.47)

〈T2,2〉 =
〈

2 (Δu2)2
Δu1ΔP1 + 2 (Δu1)2

Δu2ΔP2

〉
(3.48)

〈T0,4〉 =
〈

4 (Δu2)3
ΔP2

〉
, (3.49)

where ΔPi = (∂p/∂xi − ∂p′/∂x′
i) is the difference of pressure gradients at the

two points. The dissipation source terms 〈E4,0〉, 〈E2,2〉, and 〈E0,4〉 are defined
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as

〈E4,0〉 =
〈

12 (Δu1)2 (ε11 + ε′
11)

〉
, (3.50)

〈E2,2〉 =
〈

2 (Δu2)2 (ε11 + ε′
11) + 8Δu1Δu2 (ε12 + ε′

12)

+2 (Δu1)2 (ε22 + ε′
22)

〉
(3.51)

〈E0,4〉 =
〈

12 (Δu2)2 (ε22 + ε′
22)

〉
, (3.52)

respectively, with εij = ν(∂ui/∂xk)(∂uj/∂xk). Both the pressure source terms
〈T4,0〉, 〈T2,2〉 and 〈T0,4〉 as well as the dissipation source terms 〈E4,0〉, 〈E2,2〉
and 〈E0,4〉 depend on r, i.e. are not constant.

Noticeably, we have three equations for three unknown structure functions
under the inertial range assumptions. This implies that we can then integrate
the equations starting with eq. (3.46), inserting the solution into eq. (3.45),
integrating this equation and then finally solve eq. (3.44), if the source terms are
known. This characteristic is found for all even orders, but not for odd orders (cf.
also the right column of table 3.2 as well as figure 3.1). In the viscous range, the
three equations are linearly dependent, which leads to compatibility constraints
as discussed in more detail in section 4.3.2.

3.1.3 Fourth-order dissipation source term equations

The longitudinal, mixed and transverse fourth-order dissipation source term
equations are needed for the discussion in section 4.3.2, section 5.3 and to
derive an equation for the trace of the fourth-order dissipation source term
〈E[4]〉 in section 3.3.1. For that reason, they are briefly listed here. A detailed
derivation of the individual equations for the fourth-order dissipation source
terms can be found in the Archive material Peters et al. (2015) at https:
//arxiv.org/abs/1504.07490 and is not reprinted here.

For better readability, the definitions

Aij = ∂ui

∂xk

∂uj

∂xl

∂uk

∂xl
, (3.53)

χij = 2ν

[
∂

∂xk

(
∂ui

∂xl

)
∂

∂xk

(
∂uj

∂xl

)]
, (3.54)
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Pij = ∂ui

∂xk

∂2p

∂xk∂xj
(3.55)

are used in the following. Since

Aij + Aji = 2 ∂ui

∂xk
Skl

∂uj

∂xl
, (3.56)

where Sij = (∂ui/∂xj +∂uj/∂xi)/2 is the symmetric part of the velocity gradient
tensor ∂ui/∂xj , it plays a similar role as the vortex stretching term ωiSijωj , i.e.
is a production term by stretching of the velocity gradient. Furthermore, χii can
be interpreted as the dissipation of the pseudo-dissipation ε.

The transport equation for 〈E4,0〉 reads

∂ 〈E4,0〉
∂t

+ ∂ 〈Δu1E4,0〉
∂r

+ 2
r

〈Δu1E4,0〉 − 8
r

〈Δu2E3,1〉 =

2ν

[
∂2 〈E4,0〉

∂r2
+ 2

r

∂ 〈E4,0〉
∂r

− 8
r2

〈E4,0〉 + 24
r2

〈E2,2〉
]

− ΣP E
4,0, (3.57)

where the isotropic form of the transport term ∂〈ΔuiE4,0〉/∂ri is derived in
appendix A.2.2. The sum of source terms is

ΣP E
4,0 = 24ν

〈
(Δu1)2 (A11 + A′

11)
〉

+ 12ν
〈

(Δu1)2 (χ11 + χ′
11)

〉
+ 24 〈Δu1ΔP1 (ε11 + ε′

11)〉 + 24ν 〈Δu1Δu1 (P11 + P ′
11)〉

+ 24ν

〈(
∂ (Δu1)2

∂xn

∂ε11

∂xn
+ ∂ (Δu1)2

∂x′
n

ε′
11

∂x′
n

)〉
+ 24

〈
(ε11 + ε′

11)2
〉

. (3.58)

Analogously, for the mixed dissipation source term 〈E2,2〉 one obtains the
transport equation

∂ 〈E2,2〉
∂t

+ ∂ 〈Δu1E2,2〉
∂r

+ 2
r

〈Δu1E2,2〉 + 2
r

〈Δu2E3,1〉 − 8
3r

〈Δu2E1,3〉

= 2ν

[
∂2 〈E2,2〉

∂r2
+ 2

r

∂ 〈E2,2〉
∂r

− 14
r2

〈E2,2〉 + 2
r2

〈E4,0〉 + 8
3r2

〈E0,4〉
]

− ΣP E
2,2, (3.59)
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where the sum of source terms is

ΣP E
2,2 = 2ν

〈
2 (Δu1)2

A22 + 4Δu1Δu2 (A12 + A21) + 2 (Δu2)2
A11

〉
+ 2ν

〈
2 (Δu1)2

A′
22 + 4Δu1Δu2 (A′

12 + A′
21) + 2 (Δu2)2

A′
11

〉
+ 2ν

〈
(Δu1)2 (χ22 + χ′

22) + 2Δu1Δu2 (χ12 + χ′
12) + (Δu2)2 (χ11 + χ′

11)
〉

+ 4 〈Δu1ΔP1ε22 + 2 (Δu1ΔP2 + Δu2ΔP1) ε12 + Δu2ΔP2ε11〉
+ 4 〈Δu1ΔP1ε′

22 + 2 (Δu1ΔP2 + Δu2ΔP1) ε′
12 + Δu2ΔP2ε′

11〉
+ 2ν

〈
2 (Δu1)2

P22 + 4Δu1Δu2 (P12 + P21) + 2 (Δu2)2
P11

〉
+ 2ν

〈
2 (Δu1)2

P ′
22 + 4Δu1Δu2 (P ′

12 + P ′
21) + 2 (Δu2)2

P ′
11

〉
+ 4ν

〈(
∂ (Δu1)2

∂xn

∂ε22

∂xn
+ 4∂Δu1Δu2

∂xn

∂ε12

∂xn
+ ∂ (Δu2)2

∂xn

∂ε11

∂xn

)〉

+ 4ν

〈(
∂ (Δu1)2

∂x′
n

ε′
22

∂x′
n

+ 4∂Δu1Δu2

∂x′
n

ε′
12

∂x′
n

+ ∂ (Δu2)2

∂x′
n

ε′
11

∂x′
n

)〉
+ 8 〈(ε11 + ε′

11) (ε22 + ε′
22) + 2 (ε12 + ε′

12) (ε12 + ε′
12)〉 . (3.60)

The transport equation for the transverse dissipation source term 〈E0,4〉 is

∂ 〈E0,4〉
∂t

+ ∂ 〈Δu1E0,4〉
∂r

+ 2
r

〈Δu1E0,4〉 + 4
r

〈Δu2E1,3〉 =

2ν

[
∂2 〈E0,4〉

∂r2
+ 2

r

∂ 〈E0,4〉
∂r

− 4
r

〈E0,4〉 + 12
r2

〈E2,2〉
]

−
∑

P E
0.4, (3.61)

where the sum of the source term is∑
P E

0,4 = 24ν
〈

(Δu2)2 (A2,2 + A′
2,2)

〉
+ 12ν

〈
(Δu2)2 (χ22 + χ′

22)
〉

+ 24 〈Δu2ΔP2(ε22 + ε′
22)〉 + 24ν

〈
Δu2

2(P22 + P ′
22)

〉
+ 24ν

〈
∂Δu2

2

∂xn

∂ε22

∂xn
+ ∂Δu2

2

∂x′
n

∂ε′
22

∂x′
n

〉
+ 24

〈
(ε22 + ε′

22)2
〉

. (3.62)

Again, the isotropic form of the transport terms is derived in appendix A.2.2.
Noticeably, they differ from the transport terms in the fourth-order structure
function equations, since the tensors 〈ΔuiEjklm〉 and 〈ΔuiΔujΔukΔulΔum〉

51



3 System of equations

have different symmetries. Consequently, more scalar functions are needed to
fully describe the isotropic form of the transport terms 〈ΔuiEjklm〉. However, the
Laplacian ∂〈Eijkl〉/∂r2

n has the same isotropic form as ∂〈ΔuiΔujΔukΔul〉/∂r2
n,

since Eijkl is also symmetric under interchange of all indices.
Noticeably, we find the second-order dissipation parameters 〈(εij + ε′

ij)(εkl +
ε′

kl)〉 in the fourth-order dissipation source term equations. This is discussed in
more detail in section 5.3 below.

3.2 Balances of structure function equations
In the following, we look at the balance of longitudinal, mixed and transverse
structure functions for N = 2 to N = 7 for the two datasets R0 (Reλ = 88) and
R6 (Reλ = 754). The balances for the other Reynolds numbers R1 to R5 are
not shown here, but can be found in the supporting material Boschung et al.
(2017c). Since one would obtain the (N + 1)th structure functions by integration
in the inertial range beginning with the transverse equations and feeding the
solutions into the mixed and longitudinal equations, we have indicated the mixed
or transverse part of the transport term with dotted lines where applicable. For
instance, in subfigure 3.4a, the dotted line corresponds to (∂r+2/r)D3,0, while the
solid line with the ◦ marker is the full transport term (∂r + 2/r)D3,0 − (4/r)D1,2,
i.e. D1,2 contributes to the second-order longitudinal balance. This allows to
estimate the relative influence of the source terms to the contribution by the
coupled structure function (here D1,2). It needs to be stressed that while the
divergence (i.e. the transport term) is covariant, its decomposition (here into
D3,0 and D1,2) depends on the chosen coordinate-system∗ and similarly for the
Laplacian. Dashed lines indicate that we plotted the respective terms with a
negative sign. This is necessary, since some of the terms undergo a change of
sign over the plotted range r. We normalise the structure functions of order N
with the respective power of 〈εN/2〉 and ν and the separation distance r with
respective order-dependent cut-off length scales ηC,N (cf. eq. (4.81) in section 4.4
below). We have chosen to plot the balances for the two different Reynolds
numbers in separate figures, which facilitates readability but unfortunately makes
it harder to quantify the influence of the Reynolds number. However, normalising
the ordinate with 〈εN/2〉 and ν and the abscissa with ηC,N leads to a collapse of
the dissipation source term and the viscous terms in the viscous range for both
Reynolds numbers. In the inertial range, this normalisation brings all terms
closer together (but does not lead to a collapse) compared to normalising with

∗I.e. would differ if one would write the equations e.g. in cylindrical coordinates.
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Table 3.4: Legends of even-order structure function balance figures.
Figure 3.4a, 3.4b ◦: − ∇· D3,0 �: 〈E2,0〉 �: ∇2D2,0 · · · : −(∂rD3,0 + 2

r D3,0)
Figure 3.4c, 3.4d ◦: − ∇· D1,2 �: 〈E0,2〉 �: ∇2D0,2

Figure 3.5a, 3.5b ◦: − ∇· D5,0 �: 〈T4,0〉 �: 〈E4,0〉 �: ∇2D4,0 · · · : −(∂rD5,0 + 2
r D5,0)

Figure 3.5c, 3.5d ◦: − ∇· D3,2 �: 〈T2,2〉 �: 〈E2,2〉 �: ∇2D2,2 · · · : −(∂rD3,2 + 4
r D3,2)

Figure 3.5e, 3.5f ◦: − ∇· D1,4 �: 〈T0,4〉 �: 〈E0,4〉 �: ∇2D0,4

Figure 3.6a, 3.6b ◦: − ∇· D7,0 �: 〈T6,0〉 �: 〈E6,0〉 �: ∇2D6,0 · · · : −(∂rD7,0 + 2
r D7,0)

Figure 3.6c, 3.6d ◦: − ∇· D5,2 �: 〈T4,2〉 �: 〈E4,2〉 �: ∇2D4,2 · · · : −(∂rD5,2 + 4
r D5,2)

Figure 3.6e, 3.6f ◦: − ∇· D3,4 �: 〈T2,4〉 �: 〈E2,4〉 �: ∇2D2,4 · · · : −(∂rD3,4 + 6
r D3,4)

Figure 3.7a, 3.7b ◦: − ∇· D1,6 �: 〈T0,6〉 �: 〈E0,6〉 �: ∇2D0,6

Table 3.5: Legends of odd-order structure function balance figures.
Figure 3.8a, 3.8b ◦: ∇·D4,0 �: −〈T3,0〉 �: −〈E3,0〉 �: −∇2D3,0 · · · : ∂rD4,0 + 2

r D4,0

Figure 3.8c, 3.8d ◦: − ∇· D2,2 �: 〈T1,2〉 �: −〈E1,2〉 �: −∇2D1,2 · · · : ∂rD2,2 + 4
r D2,2

Figure 3.9a, 3.9b ◦: ∇·D6,0 �: −〈T5,0〉 �: −〈E5,0〉 �: −∇2D5,0 · · · : ∂rD6,0 + 2
r D6,0

Figure 3.9c, 3.9d ◦: ∇·D4,2 �: −〈T3,2〉 �: −〈E3,2〉 �: −∇2D3,2 · · · : ∂rD4,2 + 4
r D4,2

Figure 3.9e, 3.9f ◦: − ∇· D2,4 �: 〈T1,4〉 �: −〈E1,4〉 �: −∇2D1,4 · · · : ∂rD2,4 + 6
r D2,4

Figure 3.10a, 3.10b ◦: ∇·D8,0 �: −〈T7,0〉 �: −〈E7,0〉 �: −∇2D7,0 · · · : ∂rD8,0 + 2
r D8,0

Figure 3.10c, 3.10d ◦: ∇·D6,2 �: −〈T5,2〉 �: −〈E5,2〉 �: −∇2D5,2 · · · : ∂rD6,2 + 4
r D6,2

Figure 3.10e, 3.10f ◦: − ∇· D4,4 �: 〈T3,4〉 �: −〈E3,4〉 �: −∇2D3,4 · · · : ∂rD4,4 + 6
r D2,6

Figure 3.11a, 3.11b ◦: − ∇· D2,6 �: 〈T1,6〉 �: −〈E1,6〉 �: −∇2D1,6 · · · : ∂rD2,6 + 8
r D2,6

the K41 quantities 〈ε〉 and η. Note that we have not computed terms stemming
from the large-scale forcing; consequently, the terms found in the balances as
shown in the figures do not sum exactly to zero; we implicitly assume that the
additional terms due to the forcing are negligible for our analysis. The legends
for the even-order figures may be found in table 3.4, the corresponding odd-order
figure legends in table 3.5. Furthermore, the Taylor scale λ is indicated by
vertical dash-dotted lines in the figures.

3.2.1 Even orders (N = 2, 4, 6)
The balances of the second-order structure function equations are shown in
figure 3.4, where the longitudinal balance for D2,0 is shown in figure 3.4a and
3.4b and the transverse in figure 3.4c and 3.4d. The smaller Reynolds number
case R0 corresponds to the left column, while the balances for R6 are depicted in
the right column. Since we have normalised the terms with 〈ε〉, both dissipation
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source terms 〈E2,0〉 = 〈E0,2〉 = 4〈ε〉/3 are constants over all r/η. As expected,
the dissipation source terms balance the viscous terms in the dissipative range,
while they (nearly) balance the transport terms in the inertial range. Noticeably,
the inertial range becomes broader with increasing Reynolds number in agreement
with the notion of an increasing scale separation L/η. Consequently, the 4/5-law
is more distinctive for the case R6, for which the viscous terms can be neglected
in the inertial range. For R0 (Reλ = 88), the viscous terms contribute to some
extent to the balance in the inertial range. Noticeably, For N = 2, the pressure
source terms vanish under the assumption of (local) isotropy and have therefore
not been plotted. Considering the longitudinal equation, it is clearly seen that
there is significant cancellation between the term ∂D3,0/∂r + 2D3,0/r and the
term −4D1,2/r feeding into the equation as indicated by the dotted line. Indeed,
from a straightforward calculation (which is only possible for the second-order
equations, since the dissipation source term 〈E2,0〉 = 〈E0,2〉 = 4〈ε〉/3) one finds
that −4D1,2/r contributes exactly 4/9 to the 4/5-law when one neglects the
viscous terms.

We find qualitatively similar behaviour at the fourth order N = 4, as seen in
figure 3.5. The balances for D4,0 are shown in figure 3.5a and figure 3.5b, for D2,2

in figure 3.5c and figure 3.5d and for D0,4 in figure 3.5e and figure 3.5f. Since 〈ε2〉
and ν are the correct quantities to normalise the fourth-order structure functions
in the viscous range, see eq. (4.86), we have normalised the terms with 〈ε2〉6/8ν1/2

plotted over r/ηC,4. Again, this normalisation leads to a collapse of the viscous
and dissipation source terms of the respective orders in the viscous range, where
these two terms are dominant. The mixed pressure source term 〈T2,2〉 has a
different sign in the viscous range compared to the inertial range. However, this
observation does not seem significant, as the pressure source terms are negligible
in the viscous range anyway. Noticeably, there are no r-independent terms in the
inertial range. In the transverse equation for D0,4, the transport term is nearly
balanced by the dissipation source term, while the pressure source terms are
negligible, both for the smaller and the larger Reynolds number. Consequently,
in the inertial range

∂D1,4

∂r
+ 6

r
D1,4 ≈ −〈E0,4〉. (3.63)

For the mixed and longitudinal equation, the pressure source term contributes
to the balance for the higher Reynolds number Reλ = 754, which is not the case
at the lower Reynolds number Reλ = 88. However, this is somewhat deceiving,
since there is again significant cancellation in the transport term, as indicated

54



3.2 Balances of structure function equations

10−1 100 101 102 103
10−3

10−2

10−1

100

101

r/η

(a)

100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

r/η

(b)

10−1 100 101 102 103
10−3

10−2

10−1

100

101

r/η

(c)

100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

r/η

(d)

Figure 3.4: Balances of normalised second-order structure function equations
N = 2. Left column: Reλ = 88. Right column: Reλ = 754. Ratio λ/η is indicated
by the vertical dash-dotted lines. Legend in table 3.4. All terms are divided by
〈ε〉.
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Figure 3.5: Balances of normalised fourth-order structure function equations
N = 4. Left column: Reλ = 88. Right column: Reλ = 754. Ratio λ/ηC,4 is
indicated by the vertical dash-dotted lines. Legend in table 3.4. Changes of signs
are indicated by the dashed lines. All terms are divided by 〈ε2〉6/8ν1/2.
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by the dotted lines.
Finally, we show the sixth-order equations N = 6 in figure 3.6 and figure 3.7,

where the balance for D6,0 can be found in figure 3.6a and 3.6b, D4,2 in figure 3.6c
and 3.6d, D2,4 in figure 3.6e and 3.6f and D0,6 in figure 3.7a and 3.7b, where
we have normalised the terms with 〈ε3〉8/12ν and the abscissa with ηC,6 from
eq. (4.81). Again, we observe mostly similar characteristics as for N = 4. In the
viscous range, the dissipation source term and the viscous terms dominate and
balance to leading order for all sixth-order equations. In the inertial range, the
transport term of the transverse equation for D0,6 is mostly balanced by the
dissipation source term 〈E0,6〉, i.e.

∂D1,6

∂r
+ 8

r
D1,6 ≈ −〈E0,6〉, (3.64)

similarly to the fourth order where the transverse transport term was balanced
by 〈E0,4〉 (cf. eq. (3.63) and figures 3.5e and 3.5f). While the dissipation source
terms are larger than the pressure source terms in the inertial range for all
sixth-order balances, the ratio of dissipation to pressure source terms decreases
the more longitudinal the underlying structure function is: In the equation for
D6,0, the pressure source terms are of the same order as the dissipation source
terms, while 〈T0,6〉 is negligible compared to 〈E0,6〉 in the transverse equation.
Also noteworthy is that again the mixed pressure source terms 〈T4,2〉 and 〈T2,4〉
exhibit a change of sign as indicated by the dotted lines from the viscous to the
inertial range, as did the mixed pressure source term 〈T2,2〉 in the fourth-order
equations. Finally, there is again cancellation in the transport terms of all but
the transverse equation due to the contribution by the coupling to the other
equations. As for N = 4, this is indicated by the dashed lines which are larger
than the full transport terms in the inertial range.

We may conclude with general observations regarding the even-order balances:
In the viscous range for all orders analysed here, the dissipation source terms and
the viscous terms are dominant and balance each other. As discussed above, this
is to be expected for all higher orders as well. In the inertial range, the transverse
dissipation source terms 〈E0,N 〉 balances the transport term for N = 2, 4, 6 and
probably for higher even N as well. The solution of this approximate balance
then feeds into the transverse and longitudinal equations, where these terms
lead to significant cancellation in the longitudinal and mixed transport term.
While this observation is certainly valid for all orders as well as the range of
Reynolds numbers examined here, it is not clear whether these findings generalise
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Figure 3.6: Balances of normalised sixth-order structure function equations
N = 6. Left column: Reλ = 88. Right column: Reλ = 754. Ratio λ/ηC,6 is
indicated by the vertical dash-dotted lines. Legend in table 3.4. Changes of signs
are indicated by the dashed lines. All terms are divided by 〈ε3〉8/12ν.
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Figure 3.7: Balances of normalised sixth-order structure function equations
N = 6. Left: Reλ = 88. Right: Reλ = 754. Ratio λ/ηC,6 is indicated by the
vertical dash-dotted lines. Legend in table 3.4. Changes of signs are indicated by
the dashed lines. All terms are divided by 〈ε3〉8/12ν.

as well. Caution may be warranted because the pressure source terms become
more important the higher the order and the more longitudinal the respective
equation. Since all even-order dissipation source terms 〈Em,n〉 are positive and
consequently the transport terms ∇·DN < 0, the odd-order structure functions
in the inertial range are negative.

3.2.2 Odd orders (N = 3, 5, 7)
After having looked at the even orders, the balance of odd-order equations is
presented in the following. The third-order longitudinal equations are shown
in figure 3.8a and 3.8b and the transverse in figure 3.8c and 3.8d. We have
normalised the terms with 〈ε3/2〉5/6ν1/4 and plotted them over ηC,3 as defined by
eq. (4.81). In the viscous range, there is again the balance between dissipation
source terms and viscous terms, which are dominant for the lower Reynolds
number data R0, Reλ = 88. However, for the higher Reλ = 754 (R6), both the
transport and the pressure source term are of the same order of magnitude for
our data. This seems at odds with eq. (4.86), which was found to hold for odd
orders as well, but could be resolved by plotting to smaller r, since the scaling
of the terms for r → 0 as discussed in section 3.1.1 is exact. Noticeably, the
pressure and transport term also balance each other nearly perfectly. Indeed,
the pressure source term balances the transport term not only in the viscous
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range, but also in the inertial range, where

∂D4,0

∂r
+ 2

r
D4,0− 6

r
D2,2 ≈ −〈T3,0〉, ∂D2,2

∂r
+ 4

r
D2,2− 4

3r
D0,4 ≈ −〈T1,2〉, (3.65)

i.e. the dissipation source terms may be neglected in the inertial range. As seen
from the dotted lines, there is a large cancellation in the transport terms. We note
in passing that the findings of Grauer et al. (2012) correspond to neglecting the
pressure source terms 〈T3,0〉 and 〈T1,2〉 in eq. (3.65). The third-order structure
function balances were previously examined by Hill and Boratav (2001) using
wind-tunnel data with Reλ = 208 as well as DNS of isotropic turbulence with
Reλ = 82. Their results are in good agreement with our figures 3.8. Noticeably,
the two third-order pressure source terms have different signs, 〈T3,0〉 < 0 and
〈T1,2〉 > 0 differently to the even orders. Consequently, also the transport terms
∇·D4,0 > 0 and ∇·D2,2 < 0, which implies 4D0,4/(3r) > ∂rD2,2+(4/r)D2,2 > 0
and ∂rD4,0 +(2/r)D4,0 > (6/r)D2,2 > 0 and the fourth-order structure functions
are positive as required by definition.

The N = 5 structure function equations are shown in figure 3.9, where
the terms are normalised with 〈ε5/2〉7/10ν3/4 and the abscissa with ηC,5. The
longitudinal equation for D5,0 is depicted in figure 3.9a and 3.9b, the mixed
equation for D3,2 in figure 3.9c and 3.9d and the transverse D1,4 in figure 3.9e
and 3.9f. Similar to the N = 3 equations, the viscous terms and the dissipation
source terms balance but would need to be plotted towards smaller r to be
dominant at the higher Reynolds number Reλ = 754. Both terms are negligible
in the inertial range. The pressure source terms balance the transport terms over
the full range for the longitudinal and transverse equations, cf. figures 3.9a, 3.9b,
3.9e and 3.9f. In the mixed equation, they also balance but have a zero-crossing
at different r/ηC,5. Thus, the balance between the pressure source term 〈T3,2〉
and the mixed transport term breaks down close to the respective zero-crossings.
Besides the viscous range, there is again a large cancellation of terms in the
transport terms as indicated by the dotted lines. Again, we find different signs for
the pressure source terms: The transversal 〈T1,4〉 > 0 and mixed 〈T3,2〉 > 0, while
the longitudinal and 〈T5,0〉 < 0. With the respective signs of the transport terms,
6D0,6/(5r) > ∂rD2,4 + (6/r)D2,4 > 0, ∂rD4,2 + (4/r)D4,2 > 12D2,4/(3r) > 0
and ∂rD6,0 + (2/r)D6,0 > (12/r)D4,2 > 0.

Lastly, we look at the balances for N = 7 as seen in figure 3.10 and figure 3.11.
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Figure 3.8: Balances of normalised third-order structure function equations
N = 3. Left column: Reλ = 88. Right column: Reλ = 754. Ratio λ/ηC,3 is
indicated by the vertical dash-dotted lines. Legend in table 3.5. Changes of signs
are indicated by the dashed lines. All terms are divided by 〈ε3/2〉5/6ν1/4.
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Figure 3.9: Balances of normalised fifth-order structure function equations
N = 5. Left column: Reλ = 88. Right column: Reλ = 754. Ratio λ/ηC,5 is
indicated by the vertical dash-dotted lines. Legend in table 3.5. Changes of signs
are indicated by the dashed lines. All terms are divided by 〈ε5/2〉7/10ν3/4.
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Figure 3.10: Balances of normalised seventh-order structure function equations
N = 7. Left column: Reλ = 88. Right column: Reλ = 754. Ratio λ/ηC,7 is
indicated by the vertical dash-dotted lines. Legend in table 3.5. Changes of signs
are indicated by the dashed lines. All terms are divided by 〈ε7/2〉9/14ν5/4.
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Figure 3.11: Balances of normalised seventh-order structure function equations
N = 7. Left: Reλ = 88. Right: Reλ = 754. Ratio λ/ηC,7 is indicated by the
vertical dash-dotted lines. Legend in table 3.5. Changes of signs are indicated by
the dashed lines. All terms are divided by 〈ε7/2〉9/14ν5/4.

Specifically, the longitudinal balance for D7,0 normalised with 〈ε7/2〉9/14ν5/4

is plotted over r/ηC,7 in figure 3.10a and figure 3.10b, the equally normalised
balances for D5,2 in figure 3.10c and figure 3.10d, for D3,4 in figure 3.10e
and figure 3.10f and for D1,6 in figure 3.11a and figure 3.11b. In the viscous
range, there is the same balance of dissipation source terms and viscous terms
as observed for the lower orders; while they dominate at the lower Reynolds
number, the pressure source terms and the transport terms are of the same order
of magnitude for the higher Reynolds number dataset R6. As was found for the
lower odd orders, the pressure source terms and the transport terms balance for
the full range of r/ηC,7 we have evaluated. Both the pressure source term and the
transport term dominate the inertial range, where the dissipation source terms
and the viscous terms can be neglected. Interestingly enough, only 〈T5,2〉 and the
corresponding transport term in the equation for D5,2 change their sign, while
the other mixed pressure source term 〈T3,4〉 and the transport term balanced by
it remains positive for all r/ηC,7. Moreover comparing to N = 5, the change of
sign of 〈T5,2〉 is at smaller r/ηC,7 compared to the zero-crossover of 〈T3,2〉 plotted
over r/ηC,5. For the seventh-order balance, we have 〈T7,0〉 < 0, a change of sign
of 〈T5,2〉, 〈T3,4〉 > 0 and 〈T1,6〉 > 0. Therefore, not only the transverse pressure
source terms are negative in general (as one might have conjectured from the
N = 5 balances), but also some of the mixed. We expect similar characteristics
at higher orders as well. With the signs of the transport terms in mind, one has
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8D0,8/(7r) > ∂rD2,6 + (8/r)D2,6 > 0, 18D2,6/(5r) > ∂rD4,4 + (6/r)D4,4 > 0,
∂rD6,2 + (4/r)D6,2 > 20D4,4/(3r) > 0 and ∂rD8,0 + (2/r)D8,0 > (14/r)D6,2 > 0.

Let us briefly summarise the odd orders: For r → 0, again the dissipation
source terms and viscous terms are dominant, if plotted towards small enough r.
Consequently, the order-dependent viscous scales, eq. (4.81), are also valid for the
odd orders, since the viscous terms and dissipation source terms balance. Indeed,
the normalisation with ηC,N and uC,N collapses the viscous and dissipation
source terms in the viscous range for different Reynolds numbers (not easily seen
from the figures). Noticeably, all odd-order dissipation source terms are negative
while the corresponding even-order dissipation source terms are positive. Both
contribute to the respective signs of the structure functions: The positive even-
order dissipation source terms lead to negative odd-order structure functions,
while the negative odd-order dissipation source terms add to the positive even-
order structure functions, albeit not much. In the inertial range, both the viscous
and dissipation source terms can be neglected, so that to leading order the
transport terms and the pressure source terms balance, as was also found by
Gotoh and Nakano (2003). This is also in agreement with Yakhot’s mean-field
theory (Yakhot (2001)) applied to longitudinal and mixed equations with odd N .
This leading order balance in the inertial range is much better satisfied than the
analogous balance of transport terms and dissipation source terms for the even
orders, cf. the figures above. However, under the inertial range assumptions it
is not possible to determine the solution of the even-order structure functions
from these balances, since there are more unknown structure functions than
equations. Finally, it needs to be mentioned that the dissipation source terms
have a different scaling in the inertial range than the pressure source terms
and the full transport terms, at least for balances other than the longitudinal
in the fifth- and seventh-order equations. Nevertheless, since they are much
smaller and can be neglected, power-law behaviour of the even-order structure
functions in the inertial range with equal scaling exponents does not seem out
of hand. There is one conflicting observation, though: If one approximates the
dissipation source terms with a power-law, parts of the transport term (the
dotted lines) can be approximated by a power-law with same scaling exponent
(except for N = 3)∗. This result immediately clashes with the finding that the
full transport terms collapse with the pressure source terms which would have
a different scaling exponent compared to the dissipation source terms save for
the longitudinal balances at N = 5 and N = 7. That is, even-order structure

∗This observation is relevant for the discussion in section 5.1, where the implications of RSH
regarding the dissipation source terms are discussed in more detail.
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functions have the same inertial range scaling exponents only if one neglects the
pressure source terms or assumes that they have the same inertial range scaling
as the dissipation source terms. Indeed, going back to table 3.3, the differences
of even-order ζm,n seem to be larger percentwise than those of odd-order ξm,n

(but see the caveats regarding statistical convergence and interchangeability of
ζm,n and ξm,n.)

3.3 Trace of structure function equations

In this section, we look at the balances of the traces of the structure function
equations for N = 2 to N = 7. For the even-order equations, there is an even
number of indices which are pairwise contracted leaving no free index resulting
in scalar equations. For even N , we have

D[2] =
〈
(Δui)2

〉
,

D[4] =
〈
(Δui)2(Δuj)2

〉
,

D[6] =
〈
(Δui)2(Δuj)2(Δuk)2

〉
.

(3.66)

However for the odd-order equations, there remains a single index after contract-
ing, resulting in a vector equation for the trace. As the separation vector ri has
been chosen to be aligned with the x1-axis, only the 1-component of the vector
equation does not vanish. Consequently, we define

D[3] =
〈
Δu1(Δui)2

〉
,

D[5] =
〈
Δu1(Δui)2(Δuj)2

〉
,

D[7] =
〈
Δu1(Δui)2(Δuj)2(Δuk)2

〉
.

(3.67)

Note that 〈Δu2[(Δui)2](N−1)/2〉 = 0 (N odd) due to isotropy, since we have
aligned the separation vector ri with the x1-axis, i.e. r2 = 0 and equally for the
3-component.

Together with the relations given in table 3.1 due to isotropy, one can then ex-
press the trace of the general structure function tensor 〈ΔuiΔuj ...〉 in terms of the
longitudinal, mixed and transverse structure functions Dm,n = 〈(Δu1)m(Δu2)n〉.
The resulting sums are listed in table 3.6. The tabulated trace relations apply
to any isotropic tensor that is symmetric under interchange of all indices, i.e.
also to 〈EN 〉 and 〈T N 〉, e.g. 〈E[4]〉 = 〈E4,0〉 + 4〈E2,2〉 + 8〈E0,4〉/3.
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Table 3.6: Second- to eighth-order structure function traces as defined by
eq. (3.66) and eq. (3.67) in combination with the isotropic relations from table 3.1.

N = 2 D[2] = D2,0 + 2D0,2

N = 3 D[3] = D3,0 + 2D1,2

N = 4 D[4] = D4,0 + 4D2,2 + 8
3
D0,4

N = 5 D[5] = D5,0 + 4D3,2 + 8
3
D1,4

N = 6 D[6] = D6,0 + 6D4,2 + 8D2,4 + 16
5

D0,6

N = 7 D[7] = D7,0 + 6D5,2 + 8D3,4 + 16
5

D1,6

N = 8 D[8] = D8,0 + 8D6,2 + 16D4,4 + 64
5

D2,6 + 128
5

D0,8

We examine the trace equations for two reasons: First, the trace is invariant (i.e.
independent of the coordinate system) for the even-order equations. Therefore,
one finds for instance for N = 2 the mean of the pseudo-dissipation 〈ε〉 instead
of the components 〈ε11〉 and 〈ε22〉, cf. section 3.1.2. Similarly, at N = 4 one
finds in the trace of the dissipation source term equation a term proportional
to

〈
ε2
〉

+ 〈εijεji〉 instead of sums of the components
〈
ε2

11

〉
,
〈
ε2

22

〉
and

〈
ε2

12

〉
(cf.

section 3.3.1). Second, since the even-order trace is a scalar, one always has only
a single equation for a single quantity at even N both in the viscous and inertial
range, differently to the components equations. For the odd orders, one can
project the trace equations in r-direction, but the resulting 1-components and
the additional term D22ii... depend on the coordinate system, cf. appendix A.3.

Noticeably, the structure and relations between the different orders as high-
lighted in figure 3.1 and discussed in section 3.1 above do not hold for the traces
defined in eq. (3.66) and eq. (3.67). Consider the second order, N = 2. There,
the trace of the transport term is

∂
〈
Δui(Δuj)2

〉
∂ri

= ∂D3,0

∂r
+ 2∂D1,2

∂r
+ 2

r
(D3,0 + 2D1,2) =

∂D[3]

∂r
+ 2

r
D[3], (3.68)

i.e. a similar coupling between the third- and second-order traces is found and
similar relations are easily derived for the trace of transport terms in the higher
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even-order equations. However, for the third-order trace,

∂
〈
ΔuiΔu1(Δuj)2

〉
∂ri

=
∂D[4]

∂r
+ 2

r
D[4] − 2

(
∂D2,2

∂r
+ 3

r
D2,2

)
− 8

3

(
∂D0,4

∂r
+ 3

r
D0,4

)
(3.69)

and therefore there are additional terms in the odd-order trace of the transport
terms which need to be closed. Again, similar additional terms are found for the
trace of transport terms in all odd-order equations.

This implies that it is possible to directly integrate the transport term in the
even-order trace equations,

D[N+1] = − 1
r2

∫ r

0

y2
(〈

E[N ]

〉
+
〈
T[N ]

〉)
dy + 2ν

∂D[N ]

∂r
. (3.70)

In the inertial range, the last term on the r.h.s. can be neglected and the solution
for the odd-order structure function trace then depends on the integrated sum of
the traces of the dissipation and pressure source terms. Again, a power-law for
D[N+1], N even, can only be obtained if both 〈E[N ]〉 and 〈T[N ]〉 follow the same
power-law as well. All even N can be integrated in the viscous range by solving
for the viscous term to determine the respective solutions if the dissipation source
term is known, since both terms balance each other. One then obtains for r → 0

D[N ] = 1
2νr

∫∫ r

0

y
〈
E[N ]

〉
dy2 (3.71)

or equivalently from an integration by parts

D[N ] = 1
2ν

∫ r

0

(
y − y2

r

)〈
E[N ]

〉
dy. (3.72)

For r → 0, 〈E[N ]〉 = BN rN−2 where BN is a scalar, which then gives from both
eq. (3.71) and eq. (3.72)

D[N ] = 1
2ν

〈
E[N ]

〉
N(N + 1)

r2 (3.73)

for the trace of even-order structure functions in the viscous range.
The integration of the trace of the fourth-order structure function equations
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is carried out below both in the inertial (section 5.3) and the viscous range
(section 4.3.3). One can similarly proceed for higher even orders.

For odd orders in the inertial range, one has additional terms as seen from
eq. (3.68) for N = 3 and similarly for higher odd orders. Thus, one needs to close
these additional terms and then integrate in r resulting in a solution for D[N+1]

or compute the gradient and then project in r-direction. Then, one obtains

D11ii... − 2
r2

∫ r

0

rD22ii...dy = − 1
r2

∫ r

0

y2
(〈

E[N ]

〉
+
〈
T[N ]

〉)
dy

+ 2ν
∂D[N ]

∂r
− 4ν

r2

∫ r

0

D[N ]dy (3.74)

where D11ii... = 〈(Δu1)2[(Δui)2](N−1)/2〉 and D22ii... = 〈(Δu2)2[(Δui)2](N−1)/2〉.
Note that because of N odd, 〈E[N ]〉 = 〈E1ii...〉 and 〈T[N ]〉 = 〈T1ii...〉, differently
to N even. One could then write due to isotropy

D[N+1] =
〈
(Δui)N+1

〉
= D11ii... + 2D22ii...

=
〈

(Δu1)2
[
(Δui)2

](N−1)/2
〉

+ 2
〈

(Δu2)2
[
(Δui)2

](N−1)/2
〉

(3.75)

but would need to close 〈(Δu2)2[(Δui)2](N−1)/2〉. In the viscous range, the
balance reduces to

2ν
∂D[N ]

∂r
− 4ν

r2

∫ r

0

D[N ]dy = 1
r2

∫ r

0

y2
〈
E[N ]

〉
dy (3.76)

for odd N . In the viscous range, D[N ] ∼ rN (cf. eq. (3.25)) and consequently

D[N ] = 1
2ν

E[N ]

N(N + 1) − 2
r2 (3.77)

which is consistent with the third-order solutions given in section 4.3.1.

3.3.1 Equation for the fourth-order trace of structure
functions and its dissipation source term

In this section, the fourth-order trace equations are given explicitly, both for the
structure functions as well as the dissipation source terms. These equations are
used in section 5.3 below, where they are analysed in more detail. Higher-order
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equations can be derived analogously.

Trace of fourth-order structure function equations

From eq. (3.66), the fourth-order trace amounts to the sum

D[4] = D4,0 + 4D2,2 + 8
3

D0,4. (3.78)

Consequently, the transport equation for D[4] is derived by adding the individual
structure function equations eq. (3.44), (3.45) and (3.46) as given in section 3.1.2.
This results in

∂D[4]

∂t
+ ∂

∂rn

〈
Δun (Δui)2 (Δuj)2

〉
= 2ν

∂2D[4]

∂r2
n

− 〈
T[4]

〉 − 〈
E[4]

〉
. (3.79)

Here, the second term on the left-hand side is the transport term containing
the fifth-order longitudinal, mixed, and transverse structure functions D5,0, D3,2

and D1,4, respectively. The first term on the right-hand side of eq. (3.79) is
the viscous term containing the fourth-order structure functions D4,0, D2,2 and
D0,4. The remaining two terms in the equation are the pressure source term
and the dissipation source term in that order. Eq. (3.79) is closely related to
eq. (4.3) of Falkovich et al. (2010) (also a fourth-order equation), which they
derived from the kinetic energy equation. From this, they found a new relation
for the pressure-velocity correlation in the inertial range, similar to Kolmogorov’s
4/5-law stemming from the second order.

In explicit notation, the transport term is written as

∂

∂rn

〈
Δun (Δui)2 (Δuj)2

〉
= ∂D5,0

∂r
+ 4∂D3,2

∂r
+ 8

3
∂D1,4

∂r

+ 2
r

D5,0 + 8
r

D3,2 − 16
3r

D1,4 =
∂D[5]

∂r
+ 2

r
D[5], (3.80)

where D[5] is the trace of the general fifth-order structure function tensor,

D[5] =
〈

Δu1 (Δui)2 (Δuj)2
〉

= D5,0 + 4D3,2 + 8
3

D1,4. (3.81)
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The pressure source term is given by

〈
T[4]

〉
= 4

〈
(Δui)2

ΔujΔPj

〉
= 4

〈
(Δu1)3

ΔP1

〉
+ 8

〈
(Δu2)2

Δu1ΔP1 + (Δu1)2
Δu2ΔP2

〉
+ 32

3

〈
(Δu2)3

ΔP2

〉
, (3.82)

the dissipation source term by

〈
E[4]

〉
=

〈
4 (Δui)2 (

εjj + ε′
jj

)
+ 8ΔuiΔuj

(
εij + ε′

ij

)〉
= 12

〈
(Δu1)2 (ε11 + ε′

11)
〉

+ 32 〈Δu1Δu2 (ε12 + ε′
12)〉

+ 8
〈

(Δu2)2 (ε11 + ε′
11) + (Δu1)2 (ε22 + ε′

22)
〉

+ 32
3

〈
(Δu2)2 (ε22 + ε′

22)
〉

, (3.83)

and the viscous term by

2ν
∂2D[4]

∂r2
n

= 2ν

[
∂2D4,0

∂r2
+ 2

r

∂D4,0

∂r
+ 4∂2D2,2

∂r2
+ 8

r

∂D2,2

∂r

+ 8
3

∂2D0,4

∂r2
+ 16

3r

∂D0,4

∂r

]
= 2ν

[
∂2D[4]

∂r2
+ 2

r

∂D[4]

∂r

]
. (3.84)

In eqs. (3.79) to (3.84), the definitions

ΔPi = ∂p

∂xi
− ∂p′

∂x′
i

, εij = ν
∂ui

∂xk

∂uj

∂xk
, (3.85)

have been used.

The balance of the different terms in eq. (3.79) is shown in figure 3.12a for
the case R0 (Reλ = 88) and in figure 3.12b for the case R5 (Reλ = 529) of our
DNS simulation. We will need this balance to estimate which terms we may
neglect when we integrate eq. (3.79) in the viscous range in section 4.3.3 and in
the inertial range in section 5.3 below. The terms have been normalised with
(ν2〈ε2〉3)1/4 and the separation distance r with the Kolmogorov scale η. It is
seen that in the viscous range for values of r/η up to about 5, the transport
term and the pressure source term are an order of magnitude smaller than
the viscous terms and the dissipation source term for the six datasets R0 to
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Figure 3.12: Balance of the different terms in eq. (3.79) for the case R0 (Reλ =
88) (a) and R5 (Reλ = 529) (b). ◦: -transport term, �: dissipation source term,
�: pressure source term, �: viscous term.

R5 (R1 to R4 are not shown here). These terms therefore balance to leading
order, which will lead to exact relations in the viscous range, as will be shown in
section 4.3.3. As expected, the inertial range increases with increasing Reynolds
number: beginning at r/η = 30, for the case R0 (Reλ = 88) there is only a
very small inertial range identifiable, whereas for R5 (Reλ = 529) it extends to
r/η ≈ 300. In the inertial range and for all data sets, the pressure source term
is smaller by a factor of four on average and the viscous term is much smaller.
This order of magnitude estimate will be used in section 5.3.

The dissipation term 〈E[4]〉 defined in eq. (3.83) is a correlation between
squared velocity increments Δu1 and Δu2 and the instantaneous dissipations
defined by eq. (3.85) at xi and likewise at x′

i. Since it balances the transport
term in the inertial range and the viscous term in the viscous range, 〈E[4]〉 is of
particular interest and will be further examined in the following. Furthermore,
one might expect the dissipation source term to contain dissipative fluctuations.

For very large r → ∞, D[4] → 8〈k2〉 i.e. eq. (3.79) then equals the trans-
port equation for 〈k2〉 derived from eq. (1.14), analogously to the second-order
equation where D[2] → 4〈k〉 for r → ∞.

Trace of fourth-order dissipation source term equation

Next, the transport equation for the trace of the fourth-order dissipation source
terms 〈E[4]〉 is derived. Similarly to the derivation of the trace of structure
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function, one can sum up the longitudinal, mixed and transverse transport
equations given above.

The equation for the dissipation source term〈
E[4]

〉
= 〈E4,0〉 + 4 〈E2,2〉 + 8

3
〈E0,4〉 (3.86)

reads with the equations for 〈E4,0〉, 〈E2,2〉 and 〈E0,4〉, cf. eq. (3.57), (3.59) and
(3.61) given in section 3.1.3,〈

∂E[4]

〉
∂t

+
∂
〈
ΔunE[4]

〉
∂rn

= ν
∂2

∂r2
n

〈
E[4]

〉
−
(

F[4] + Q[4] + P[4] + T[4] + D[4] + ε2
[4]

)
︸ ︷︷ ︸

ΣP E
[4]

, (3.87)

where ΣP E
[4]

is the trace of the sum of source terms in the dissipation source
term equation, where the transport term is defined as

∂
〈
ΔunE[4]

〉
∂rn

= ∂ 〈Δu1E4,0〉
∂r

+ 4∂ 〈Δu1E2,2〉
∂r

+ 8
3

∂ 〈Δu1E0,4〉
∂r

+ 2
r

〈Δu1E4,0〉 + 8
r

〈Δu1E2,2〉 + 16
3r

〈Δu1E0,4〉

=
∂
〈
Δu1E[4]

〉
∂r

+ 2
r

〈
Δu1E[4]

〉
(3.88)

with
Δu1E[4] = Δu1E4,0 + 4Δu1E2,2 + 8

3
Δu1E0,4, (3.89)

the viscous term

2ν
∂2

〈
E[4]

〉
∂r2

n

= 2ν

[
∂2

〈
E[4]

〉
∂r2

+ 2
r

∂
〈
E[4]

〉
∂r

]
, (3.90)

the F-term

F[4] = 8ν
〈

(Δui)2 (
Ajj + A′

jj

)
+ ΔuiΔuj

(
Aij + A′

ij + Aji + A′
ji

)〉
, (3.91)
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the Q-term

Q[4] = 4ν
〈

(Δui)2 (
χjj + χ′

jj

)
+ 2ΔuiΔuj

(
χij + χ′

ij

)〉
, (3.92)

the P-term

P[4] = 8
〈
ΔuiΔPi

(
εjj + ε′

jj

)
+ (ΔuiΔPj + ΔujΔPi)

(
εij + ε′

ij

)〉
, (3.93)

the T-term

T[4] = 8ν
〈

(Δui)2 (
Pjj + P ′

jj

)
+ ΔuiΔuj

(
Pij + P ′

ij + Pji + P ′
ji

)〉
, (3.94)

the D-term

D[4] = 8ν

〈(
∂ (Δui)2

∂xn

∂εjj + ε′
jj

∂xn
+ ∂ (Δui)2

∂x′
n

∂ε′
jj + ε′

jj

∂x′
n

)〉

+ 8ν

〈
2
(

∂ΔuiΔuj

∂xn

∂εij + ε′
ij

∂xn
+ ∂ΔuiΔuj

∂x′
n

∂ε′
ij + ε′

ij

∂x′
n

)〉
, (3.95)

and the ε2-term

ε2
[4] =

〈
8 (εii + ε′

ii)
(
εjj + ε′

jj

)
+ 16

(
εij + ε′

ij

)2
〉

= 8
〈

(ε + ε′)2
〉

+ 16
〈(

εij + ε′
ij

)2
〉

.
(3.96)

For better readability, the definitions

Aij = ∂un

∂xm

∂ui

∂xn

∂uj

∂xm
, Pij = ∂ui

∂xm

∂2p

∂xj∂xm
(3.97)

and
χij = 2ν

[
∂2ui

∂xn∂xm

∂2uj

∂xn∂xm

]
(3.98)

have been used in eqs. (3.91) to (3.94).
For the stationary case, the transport term on the left-hand side in eq. (3.87)

balances the viscous term and the sum of source terms ΣP E
[4]

. The source terms
are defined in eq. (3.91) to (3.96) and are shown in figure 3.13 for the cases R1
(Reλ = 119) and R4 (Reλ = 331), together with the transport term and the
viscous term. Negative terms are denoted with a minus sign, meaning that we
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Figure 3.13: Balance of the different terms in eq. (3.87) for the case R1 (Reλ =
119) (a) and case R4 (Reλ = 331) (b). ◦: -transport term, �: -F-term, �: -P-term,
�: T-term, ◦: Q-term, �: -D-term, �: ε2-term, �: viscous term.

have changed their sign in order to be able to show them in a log-log plot. As
seen in figure 3.13, the largest ones are the F-term and the Q-term, which nearly
balance each other. The F-term is a correlation between the velocity increments
squared and the triple product of velocity gradients (Aij + A′

ij). The Q-term is
a correlation between the velocity increments, and (χij + χ′

ij). χij describes the
dissipation of velocity gradients squared, while Aij describes their production
by stretching. The next two source terms, called the T-term and the P-term
containing pressure derivatives, are relatively small and will not be discussed
here in detail. Finally, there are the D-term and the ε2-term, which balance each
other in the inertial range, but strongly diverge from each other in the viscous
range. In the following, the focus will be on the ε2-term, which is the sum of
the second-order dissipation parameters.

The ε2-term is defined as 8
〈
(εii + ε′

ii)2
〉

+ 16
〈
(εij + ε′

ij)2
〉

and is a two-point
quantity depending on r. Noticeably, Hill (2002) showed that the sum of the two-
point dissipation 〈ε + ε′〉 also appears in the trace of the second-order structure
function equations, which then reduces to 4 〈ε〉 independent of r for homogeneous
flows, cf. the N = 2 equations in section 3.1.2.

Since εij becomes equal to ε′
ij for r → 0, ε2

[4]
approaches the value 32〈ε2

ii〉 +
64〈ε2

ij〉 and balances the viscous term there as seen in figure. 3.13. The quantity
〈ε2

ii〉 = 〈ε2〉 is the second-order moment of the pseudo-dissipation distribution of
ε. It is a sum of dissipation parameters which appear in the set of successive
equations. It is worth noting that the ε2-term in figure 3.13 starts as a constant
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Figure 3.14: Balances of the normalised second-order structure function trace
equation N = 2. Left: Reλ = 88. Right: Reλ = 754. Ratio λ/η is indicated by
the vertical dash-dotted lines. ◦: −∂ri 〈Δui(Δuj)2〉, �: E[2], �: 2ν∂2

rn
D[2]. All

terms are divided by 〈ε〉.

for small values of r, then decreases slightly and becomes constant again at
the large scales. In the latter range, 8〈(εii + ε′

ii)2〉 + 16〈(εij + ε′
ij)2〉 becomes

a constant; i.e., it differs from the value for r → 0 only by a constant factor.
That is, the ε2-term links the remaining terms of eq. (3.87) at the very large and
very small scales, similar to 〈ε〉 at the second order. We are mostly interested in
the influence of the ε2-term, since this term is closest to the classical picture of
dissipative fluctuations in turbulent flows in the spirit of Kolmogorov. This is
discussed im more detail in section 5.3.

3.3.2 Balance of traces of even-order structure function
equations

The balances for the traces of the structure functions for even orders as defined
by eq. (3.66) were computed by summing up the individual even-order balances
according to table 3.6. The balance for the second-order trace equations nor-
malised with 〈ε〉 is plotted over r/η and shown in figure 3.14a and 3.14b, while
the balance of the N = 4 trace∗ D[4] normalised with 〈ε2〉6/8ν1/2 over r/ηC,4 and

∗This balance was already shown and discussed in section 3.3.1 above.
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Figure 3.15: Balances of the normalised fourth-order structure function trace
equation N = 4. Left: Reλ = 88. Right: Reλ = 754. Ratio λ/ηC,4 is indicated
by the vertical dash-dotted lines. ◦: −∂ri 〈Δui[(Δuj)2]2〉, �: T[4], �: E[4], �:
2ν∂2

rn
D[4]. All terms are divided by 〈ε2〉6/8ν1/2.
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Figure 3.16: Balances of the normalised sixth-order structure function trace
equation N = 6. Left: Reλ = 88. Right: Reλ = 754. Ratio λ/ηC,6 is indicated
by the vertical dash-dotted lines. ◦: −∂ri 〈Δui[(Δuj)2]3〉, �: T[6], �: E[6], �:
2ν∂2

rn
D[6]. Changes of signs are indicated by the dashed lines. All terms are

divided by 〈ε7/2〉8/12ν.
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the N = 6 balance for D[6] normalised with 〈ε3〉8/12ν over r/ηC,6 are depicted
in figure 3.15a and 3.15b and figure 3.16a and 3.16b, respectively. Since the
trace balances are the sum of the individual balances of section 3.2.1, similar
conclusions can be drawn. For all three even orders examined here, the trace
of the dissipation source terms 〈E[N ]〉 balance the trace of the viscous source
terms in the viscous range, where the traces of the pressure source terms 〈T[N ]〉
and transport terms can be neglected. If one then derives consecutive transport
equations for 〈E[N ]〉, one finds that 〈E[N ]〉 ∼ 〈εN 〉rN−2 in the viscous range as
discussed in section 3.1.1. In the inertial range, the trace of the viscous terms
and the trace of the pressure source terms can be neglected to yield to leading
order

∂D[N+1]

∂r
+ 2

r
D[N+1] ≈ − 〈

E[N ]

〉
. (3.99)

Noticeably, this balance is better satisfied at the lower Reynolds number Reλ = 88.
For that reason, one should be somewhat cautious when neglecting the trace
of the pressure source terms at high Reynolds numbers and orders, although
neglecting 〈T[N ]〉 at the higher Reynolds number for N = 6 seems justified.
Approximating the traces in the inertial range with a power-law would result
in the same scaling exponent for 〈E[N ]〉, 〈T[N ]〉 and the transport term (cf.
figures 3.15 and 3.16) as was also found for the individual equations discussed
above in section 3.2.1.

3.3.3 Balance of traces of odd-order structure function
equations

We show the balances for the odd-order trace equations for the third order in
figure 3.17, the fifth order in figure 3.18 and the seventh order in figure 3.19,
where we have normalised the traces as the individual equations discussed in
section 3.2.2. We find similar characteristics for the odd-order trace equations
as for the respective longitudinal, mixed and transverse equations. While the
trace of the dissipation source terms and the viscous terms dominate the trace
of transport terms and pressure source terms in the viscous range for the lower
Reynolds number case R0, all terms are of the same order of magnitude in
the viscous range for the higher Reynolds number for all odd orders we have
examined. Nevertheless, the balance of the trace of the viscous and dissipative
terms holds also for the odd orders. In the inertial range, the trace of dissipation
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Figure 3.17: Balances of the normalised third-order structure function trace
equation N = 3. Left: Reλ = 88. Right: Reλ = 754. Ratio λ/ηC,3 is indicated
by the vertical dash-dotted lines. ◦: ∂ri 〈ΔuiΔu1(Δuj)2〉, �: −T[3], �: −E[3], �:
−2ν∂2

rn
D[3]. Changes of signs are indicated by the dashed lines. All terms are

divided by 〈ε3/2〉5/6ν1/4.
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Figure 3.18: Balances of the normalised fifth-order structure function trace
equation N = 5. Left: Reλ = 88. Right: Reλ = 754. Ratio λ/ηC,5 is indicated by
the vertical dash-dotted lines. ◦: ∂ri 〈ΔuiΔu1[(Δuj)2]2〉, �: −T[5], �: −E[5], �:
−2ν∂2

rn
D[5]. Changes of signs are indicated by the dashed lines. All terms are

divided by 〈ε5/2〉7/10ν3/4.
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Figure 3.19: Balances of the normalised seventh-order structure function trace
equation N = 7. Left: Reλ = 88. Right: Reλ = 754. Ratio λ/ηC,7 is indicated by
the vertical dash-dotted lines. ◦: ∂ri 〈ΔuiΔu1[(Δuj)2]3〉, �: −T[7], �: −E[7], �:
−2ν∂2

rn
D[7]. Changes of signs are indicated by the dashed lines. All terms are

divided by 〈ε7/2〉9/14ν5/4.

source terms can be neglected and the trace of pressure source terms and the
transport terms collapse. That is, 〈E[N ]〉 in eq. (3.74) can be dropped,

D[N+1] = 2
〈

(Δu2)2
[
(Δui)2

](N−1)/2
〉

+ 2
r2

∫
r

〈
(Δu2)2

[
(Δui)2

](N−1)/2
〉

dr − 1
r2

∫
r2

〈
T[N ]

〉
dr (3.100)

for all odd-order traces examined here. Noticeably, eq. (3.100) also holds in the
viscous range as does eq. (3.71), cf. the figures 3.17, 3.18, and 3.19. Furthermore,
the zero-crossing of the trace of transport and pressure source terms where their
collapse is diminished and moves to larger normalised r with increasing order
and Reynolds number. Consequently, the approximation eq. (3.100) holds over
a larger range of r with increasing order and Reλ. Assuming power-laws in the
inertial range, the trace of dissipation source terms scales differently than both
the trace of pressure source terms and transport terms, as seen from the figures.
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3.4 Eddy viscosity closure for the transport
terms

The system of equations is unclosed, as has been discussed in section 3.1 above.
Here, we briefly discuss a conceivable approach to close the system. This closure
introduces additional assumptions and it should be stressed that there are other
possible ansatzes. Furthermore, the focus of the present work is not on closing
the system. For that reason, no numerical solutions of the fully closed system
up to some order N were carried out. However, we will look at the closed
second-order equations in section 5.4.

From figure 3.1, it is clearly seen that the structure functions of order N + 1
feed into the equations for structure functions at order N via the transport
term. This coupling stems from the non-linearity of the Navier-Stokes equations
and is similar to the unclosed transport terms in RANS. Therefore, one has to
truncate the system at some order, if one is interested in solving the system of
equations numerically. Consequently, the structure functions of the next higher
order appear after truncation as unknown, unclosed quantities in the remaining
system of equations.

A straightforward approach to close the system at order N is to employ an
eddy viscosity ansatz, by writing

Dm+1,n = −νt,(m+1,n)

∂Dm,n

∂r
(3.101)

for all but the transverse structure functions D0,m+n. These can be closed by
assuming

D0,(m+n) = −νt,(0,m+n)

∂D1,(m+n−2)

∂r
. (3.102)

Thus, the (N + 1)th-order structure functions are expressed by the Nth-order
structure functions, in agreement with the red arrows in figure 3.1. Therefore,
the transport terms are closed when the νt are specified. In general, one would
expect

νt = f(r, Reλ, m, n), (3.103)

i.e. that the eddy viscosities depend on r, the Reynolds number and the order. For
this ansatz to be meaningful, one would hope that one can relax the dependence
on these parameters. For that reason, the influence of the Reynolds number and
the order are briefly examined in the following.
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Figure 3.20: Normalised eddy viscosities νt,(m,n) for Reλ = 88 (left column) and
Reλ = 754 (right column). ◦: m = 0, �: m = 1, �: m = 2, �: m = 3, �: m = 4,
x: m = 5, +: m = 6, �: m = 7, �: m = 8.
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Figure 3.21: Normalised eddy viscosities νt,(m,n) for Reλ = 88 (left column) and
Reλ = 754 (right column). ◦: m = 0, �: m = 1, �: m = 2, �: m = 3, �: m = 4,
x: m = 5, +: m = 6, �: m = 7, �: m = 8.

First, the influence of the order is shown in figure 3.20 and figure 3.21. The
eddy viscosities up to the eighth order were sorted by the second index n. In
figure 3.20a and 3.20b, νt,(3,0), νt,(4,0), νt,(5,0), νt,(6,0), νt,(7,0) and νt,(8,0) are
plotted for the two cases R0 (left column, Reλ = 88) and R6 (right column,
Reλ = 754). Similarly, νt,(1,2), νt,(2,2), νt,(3,2), νt,(4,2), νt,(5,2) and νt,(6,2) are
shown in figure 3.20c and 3.20d and νt,(0,4), νt,(1,4), νt,(2,4), νt,(3,4) and νt,(4,4)

in figure 3.20e and 3.20f. Finally, νt,(0,6), νt,(1,6) and νt,(2,6) are plotted in
figure 3.21a and 3.21b. All eddy viscosities were normalised with the viscosity ν,
divided by r/η and plotted over r/η. νt,(0,8) is not shown, since it is the only
eddy viscosity with n = 8 up to the eighth order and therefore it is not possible
to examine the general behaviour of νt,(m,8) here. However, one might expect
that also νt,(m,8) and eddy viscosities with higher n are qualitatively similar to
those shown in figure 3.20.

In figure 3.20 and figure 3.21, an interesting characteristic can be observed:
For fixed n and increasing order N = m + n (i.e. increasing m), νt,(m,n) seems
to approach a single curve: Those with even m approach from above, while
eddy viscosities with odd m approach from below. This implies that the eddy
viscosity (with fixed n) could be modeled by a prescribed νt,(m,n) if the system
of equations is cut off at a high enough order N .

In order to analyse the influence of the Reynolds number, the eddy viscosities
at the eighth order are plotted for all datasets R0 to R6. The eighth order has
been chosen because the order-dependency discussed above suggests to close the
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Figure 3.22: Normalised eddy viscosities νt,(m,n) with m + n = 8 for different
Reynolds numbers. ◦: Reλ = 88, �: Reλ = 119, �: Reλ = 184, �: Reλ = 254, �:
Reλ = 331, x: Reλ = 529, +: Reλ = 754.
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system at higher orders; the eighth order is the highest that we have computed
numerically in the present work. νt,(8,0) is shown in figure 3.22a, νt,(6,2) in
figure 3.22b, νt,(4,4) in figure 3.22c, νt,(2,6) in figure 3.22d and νt,(0,8) is shown
in figure 3.22e. Interestingly, the eddy viscosities collapse on a single curve for
the two cases R5 and R6 (Reλ = 529 and Reλ = 754, respectively), while the
smaller datasets show a Reynolds number influence. As expected, the inertial
range for which a power-law scaling of the eddy viscosities at intermediate r/η
is observed, increases with increasing Reynolds number. Assuming tentatively a
power-law for the eddy viscosities in the inertial range,

νt,(m,n) ∼ r1+βm,n , (3.104)

it is evident that 0 < βm,n � 1 for the larger Reynolds numbers. Indeed, βm,n

becomes smaller with increasing order, cf. figure 3.20 and figure 3.22. If one
assumes a power-law scaling for the structure functions such as eq. (3.34) together
with eq. (3.101) and eq. (3.104), this is in agreement with the observation that
ζm+1,n −ζm,n → 0 with increasing N , i.e. that the difference between the scaling
exponents becomes smaller the higher the order, cf. e.g. Anselmet et al. (1984).
This is also in agreement with the Hölder inequality of the scaling exponents, cf.
the discsussion in Frisch (1995).

We may conclude that the eddy viscosity ansatz is promising inasmuch that it
may be independent of the order and Reynolds number, provided both are large
enough. Nevertheless, one needs to specify νt or make additional assumptions
relating it to other quantities appearing in the truncated system of equations.
We will use the eddy viscosity ansatz in section 5.4 below, where we truncate
at the second order, i.e. use νt,(3,0) and νt,(1,2). There, we employ an ansatz by
Oberlack and Peters (1993), which relates the eddy viscosities to the second-order
structure function equations, thereby closing the system. This is discussed in
more detail in section 5.4 below. However, one should keep in mind that this is
but one of many conceivable possibilities to close the system.
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4 Viscous range
In this chapter, we look at the viscous range in more detail. With the exception
of section 4.4.3, the chapter is based on Boschung (2015) (section 4.1), Boschung
et al. (2017b) (section 4.2), Boschung et al. (2017a,c) and Peters et al. (2016)
(section 4.3) as well as Boschung et al. (2016c) (section 4.4).

As a result, we find exact relations in the viscous range. In section 4.1, we
use a methodology introduced by Siggia (1981) to exactly relate the moments of
the dissipation to the even-order moments of the longitudinal velocity gradient.
In section 4.2, we proceed to examine the ratios of moments of the pseudo-
dissipation, its components and dissipation surrogates (proportional to moments
of longitudinal and mixed velocity gradients) to same-order moments of the
dissipation. In section 4.3, analytical results for third- and fourth-order structure
functions in the viscous range r → 0 are presented. Based on the results of
section 4.1 and section 4.2, exact order-dependent dissipative scales in the spirit
of Kolmogorov (1941b) are introduced in section 4.4. Since these scales are
smaller than the Kolmogorov scale, they have implications for the grid resolution
of DNS as discussed in section 4.4.2.

4.1 Exact relations between even moments of
the longitudinal velocity gradient and
moments of the dissipation ε

The dissipation ε of kinetic energy is thought to be one of the key quantities
characterizing turbulent flows. In 1941, Kolmogorov (1941b) postulated that
small-scale statistics depend on the viscosity ν and the dissipation ε only. This
notion received significant support by Kolmogorov (1941a)’s result that the
second-order structure function D2,0 has an analytic solution

D2,0 = 1
15

〈ε〉
ν

r2 (4.1)

for r → 0 which was derived from the Navier-Stokes equations under the
assumption of homogeneity and isotropy, see eq. (1.32) and section 1.4. It is
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4 Viscous range

noteworthy that the second-order structure function equation is unique in the
sense that it is the only order for which the mean dissipation 〈ε〉 directly acts
as source term, while higher orders are determined by correlations between
velocity increments and the dissipation (i.e. the dissipation source terms 〈EN 〉,
cf. eq. (3.14)) as well as pressure terms (the pressure source terms 〈T N 〉 defined
by eq. (3.13)), see the discussion in section 3.1. It is well-known that the higher
moments of the dissipation ε and the moments of the longitudinal velocity
gradient ∂u1/∂x1 increase with increasing Reynolds number, a phenomenon
called (internal) intermittency in the literature. Indeed, we will show that the
moments of ε and ∂u1/∂x1 are closely related.

4.1.1 Derivation of the connectors

Specifically, we need to relate the moments of the dissipation ε/(2ν) = SijSij ,
where Sij = (∂ui/∂xj + ∂uj/∂xi)/2, to the moments of the longitudinal velocity
gradient ∂u1/∂x1. That is, we need to compute the coefficients CM of

I
(M)
1 =

〈
(SijSij)M

〉
= CM

〈(
∂u1

∂x1

)2M
〉

, (4.2)

where M = 1, 2, 3, ... and M = N/2. For M = 1 and assuming isotropy, eq. (4.1)
shows that C1 = 15/2 (cf. Kolmogorov (1941b)) as 〈(Δu1)2〉 = 〈(∂u1/∂x1)2〉r2

for r → 0, cf. eq. (3.25). The same result can be obtained by writing the
general velocity gradient tensor 〈(∂ui/∂xj)(∂uk/∂xl)〉 as the sum of scalar
functions multiplied by all possible combinations of δijδkl and using homogeneity
and continuity as additional constraints, cf. eq. (4.29) below or Hinze (1975).
However, this procedure is not feasible for higher orders of M , because the number
of scalar functions quickly increases (cf. Hierro and Dopazo (2003) for illustrative
purposes, where M = 2). Siggia (1981) derived C2 = 105/4 in a different way.
Specifically, he used a generating function (the second characteristic function,
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and moments of the dissipation ε

cf. Papoulis (1991))

F = ln
[∫

δ(tr(S)) exp
(

−
∑

a

λaS2
aa − 2 (μ1S12 + μ2S13 + μ3S23)

)

×
⎛⎝∏

a≥b

dSab

⎞⎠⎤⎦
= −1

2
ln (λ1λ2 + λ2λ3 + λ1λ3) − 1

2
ln (μ1μ2μ3) , (4.3)

where tr(S) = Sii = 0 due to continuity and the symmetry Sij = Sji has been
used. We will use the procedure as outlined by Siggia (1981) in the following.
However, we rather use the characteristic function

Φ = exp(F ) = [(λ1λ2 + λ1λ3 + λ2λ3) μ1μ2μ3]−1/2
, (4.4)

since we are only interested in the moments and not the cumulants. Here, we
only need the connection between 〈(S2

11)M 〉 and I
(M)
1 , where due to isotropy

〈(S2
11)M 〉 = 〈(S2

22)M 〉 = 〈(S2
33)M 〉. I

(M)
1 is an invariant of the general velocity

gradient tensor 〈(∂ui/∂xj)(∂xk/∂xl)...〉 of order 2M , though it is not sufficient to
completely determine it for M > 1 (cf. Siggia (1981) for details). Using eq. (4.4),
it is possible to give the relations for all (even) combinations of 〈SijSkl...〉 as well,
e.g. 〈S2

11S4
12〉 = 9/80〈S6

11〉 and 〈S6
23〉 = 27/64〈S6

11〉. For instance, adding the
first derivative of Φ with respect to λi and μj for all λi and μj and then setting
λi = μj = λ due to isotropy, we find I

(1)
1 = f(λ) and similarly 〈S2

11〉 = f(λ),
resulting in I

(1)
1 = 15/2〈S2

11〉. As 〈ε〉 = 2νI
(1)
1 and 〈S2

11〉 = 〈(∂u1/∂x1)2〉, we
recover the well-known relation between the mean of the dissipation and the
square of the velocity gradient. We proceed similarly for higher M . Note that it
is not possible to use eq. (4.4) to derive connectors between moments of mixed
velocity gradients or components of the pseudo-dissipation and the longitudinal
velocity gradient, because they cannot be written in terms of SijSkl... only∗.

We list in table 4.1 the resulting CM for M up to M = 6 which have been
calculated using a simple computer script based on eq. (4.4) (higher orders could
easily be derived, although this is somewhat time-consuming) and compare them
with direct numerical simulations (DNS) of homogeneous isotropic turbulence

∗E.g. ∂u2/∂x1 �= S12 = S21 = (∂u2/∂x1 + ∂u1/∂x2)/2.
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4 Viscous range

Table 4.1: Comparison of the theoretical and numerical values of the coefficients
CM of eq. (4.6) for Reλ = 88 κmaxη = 3.57, Reλ = 215 (κmaxη = 4.01) and
Reλ = 529 (κmaxη = 2.7).

CM Theory Reλ = 88 Reλ = 215 Reλ = 529
M = 1 15/2 = 7.5 7.5009 7.4947 7.4998
M = 2 105/4 = 26.25 26.3471 26.1881 26.2499
M = 3 567/8 ≈ 70.88 69.5970 68.3641 69.3524
M = 4 2673/16 ≈ 167.1 157.8169 154.6424 160.9237
M = 5 11583/32 ≈ 362.0 336.5539 341.4591 353.9049
M = 6 47385/64 ≈ 740.4 769.1128 775.5550 734.6193

with Reynolds numbers Reλ = 88, Reλ = 215 and Reλ = 529 (i.e. datasets R0,
R3 and R5). We find satisfactory agreement with the theoretical values, as the
deviations do not exceed ±5%. The deviations from the theoretical values of
CM tend to be larger for higher M . This is to be expected and most probably
due to (numerical) resolution effects (see Donzis et al. (2008) for a study of the
influence of the resolution κmaxη on the statistics of ε), although the three DNS
cases are fairly well resolved. Particularly, we have κmaxη = 3.57, κmaxη = 4.01
and κmaxη = 2.7, respectively, where κmax is the maximal wavenumber and
η = (ν3/〈ε〉)1/4 the Kolmogorov scale, cf. section 2.1. It follows that one could
also use the ratio of the numerical values of CM to the theoretical ones as
measure of the degree of (local, small-scale) isotropy of the flow. Furthermore,
table 4.1 could be used to determine the last completely resolved order M in
DNS studies. Factorizing the theoretical values of CM suggests that they are
given by the series

CM = 3M−1(2M + 1)(2M + 3)
2M

, (4.5)

i.e. CM does not exhibit power-law behavior and strongly increases with increas-
ing M . This is to be expected as the number of bilinear combinations δijδkl...,
δikδjl..., δilδjk... and so on determining the general tensor 〈(∂ui/∂xj)(∂uk/∂xl)...〉
of order 2M also strongly increases with M , cf. Kearsley and Fong (1975).

Thus we find that there is an exact relation between the moments of the
dissipation ε and the longitudinal velocity derivative ∂u1/∂x1,

〈
εM

〉
= (2ν)M

CM

〈(
∂u1

∂x1

)2M
〉

, (4.6)
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and moments of the dissipation ε

where the CM are independent of the Reynolds number and given by table 4.1
and eq. (4.5).

4.1.2 Relation between moments of the longitudinal
velocity gradient and the dissipation

As 〈∂u1/∂x1〉 = 0 due to homogeneity, this also implies that for the even
standardised moments M2M of ∂u1/∂x1 like the flatness (M = 2), hyperflatness
(M = 3) and so on,

M2M =

〈
(∂u1/∂x1)2M

〉
〈

(∂u1/∂x1)2
〉M

= CM
1

CM

〈
εM

〉
〈ε〉M

. (4.7)

Therefore, the even standardised moments of the longitudinal velocity gradi-
ent distribution function have the same Reynolds number dependence as the
ratio of the moments of dissipation to 〈ε〉M . We note that the ratio CM

1 /CM

increases with M and M2M increases with M at constant Reynolds number
also. Schumacher et al. (2014) recently found that the ratio 〈εM 〉/〈ε〉M seems
to be universal in the sense that the same Reynolds number scaling was found
for different kinds of flows, namely homogeneous isotropic turbulence, turbulent
channel flows and Rayleigh-Bénard convection. Thus also the normalised even
moments M2M of ∂u1/∂x1 seem to be universal and the same holds for the
moments of ∂u2/∂x2 and ∂u3/∂x3 due to isotropy. This is the case at least for
the flatness of ∂u1/∂x1, cf. Ishihara et al. (2007) and Sreenivasan and Antonia
(1997) for a compilation of several different data sets. We note that even if
we assume that all moments of ε were known such that its probability density
function (pdf) could be constructed from its characteristic function, this does
not imply that the pdf of ∂u1/∂x1 could be determined, because there is no
obvious connection between the odd moments of ∂u1/∂x1 and the moments of
ε. For instance, it is well-known that the skewness of the velocity gradient is
related to the vortex stretching term 〈ωiSijωj〉, cf. Betchov (1956), and there is
no apparent connection to 〈ε3/2〉. As seen from eq. (4.7), one can only achieve a
partial collapse of the pdf P (∂u1/∂x1) if 〈εM 〉/〈ε〉M scales differently with the
Reynolds number for different M .

Furthermore, it is clearly seen from eq. (4.7) that the ratio 〈εM 〉/〈ε〉M would
be independent of the Reynolds number if ∂u1/∂x1 was Gaussian, ∂u1/∂x1 ∼
N (0, σ2). Then, all moments of ∂u1/∂x1 would be determined by the variance σ2

only. Of course, σ2 might be Reynolds number dependent, but this dependency
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Figure 4.1: Pdfs of (a) the standardised longitudinal velocity gradient (∂u1/∂x1)∗

and (b) the standardised dissipation ε∗ for Reλ = 88, Reλ = 215 and Reλ = 529.

would cancel out in eq. (4.7).
The pdfs of (∂u1/∂x1)∗ and ε∗ are plotted in figure 4.1a and figure 4.1b, respec-

tively. We normalised both variables to better compare the different Reynolds
numbers, i.e. (∂u1/∂x1)∗ = [(∂u1/∂x1) − 〈(∂u1/∂x1)〉]/√Var(∂u1/∂x1) and
ε∗ = [ε − 〈ε〉]/√Var(ε), where Var(∂u1/∂x1) = 〈(∂u1/∂x1)2〉 and Var(ε) =
〈[ε − 〈ε〉]2〉. It is well-known that the longitudinal velocity gradient is non-
gaussian (Gylfason et al. (2004) and Ishihara et al. (2007)) and that the devia-
tions increase with increasing Reynolds number, as is also highlighted by our data.
As discussed above, the pdfs do not collapse. More specifically, they overlap
at the core only, because we used the variance when we normalised the pdfs.
This behavior has been frequently observed numerically and experimentally;
specifically, the tails of both the (normalised) velocity gradient and dissipation
pdf increase with increasing Reynolds number, i.e. the moments also show a
Reynolds number dependence. We simply remark that the Reynolds number
dependence of the (even) moments of the longitudinal velocity gradient trans-
lates to the Reynolds number dependent moments of the dissipation. Without
specifying the former, the latter remains unknown and vice versa. Specifically,
any theory which determines one of these quantities makes a statement about the
other. In that sense, K41 (Kolmogorov (1941a,b)) and K62 theory (Kolmogorov
(1962)) as well as the multi-fractal theories (see Nelkin (1994) and Frisch (1995)
for an overview) specify the (even) moments of the longitudinal velocity gradient.
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Figure 4.2: Standardised moments of the dissipation M̃M for Reλ = 88, Reλ =
215 and Reλ = 529. Symbols ◦ denote the moments as evaluated from eq. (4.8), �
using eq. 4.6 with the theoretical CM from table 4.1 and � from eq. (4.13) again
with the theoretical CM . The exponents have been determined using least-square
fits.

We can also use eq. (4.7) to relate the standardised moments

M̃M =

〈
[ε − 〈ε〉]M

〉
[Var (ε)]M/2

(4.8)

of the dissipation ε and the longitudinal velocity gradient M2M . In particular,
we have for M = 3 (skewness of ε) and M = 4 (flatness)

M̃3 = C3M6 − 3C2C1M4 + 2C3
1

[C2M4 − C2
1 ]3/2

(4.9)

M̃4 = C4M8 − 4C3C1M6 + 6C2C2
1 M4 − 3C4

1

[C2M4 − C2
1 ]2

. (4.10)

Therefore, the standardised moments of the dissipation turn out to be a mixture
of all the standardised moments of the longitudinal structure functions at the
same and lower order weighted by the CM . At intermediate to high Reλ,
M6 > M4 so that P (ε) is positively skewed, cf. figure 4.1b. The flatness
M̃4 ≥ 0 always, independent of the Reynolds number. Therefore, C4M8 ≥
4C3C1M6 − 6C2

2 M4 + 3C4
1 always and similar relations between the moments

of the longitudinal velocity gradient ∂u1/∂x1 can be derived from the higher
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4 Viscous range

even moments M̃M .

We show the standardised moments M̃M of the dissipation in figure 4.2 for
M = 2 to M = 6. Noticeably, M2M increases with increasing Reynolds number
and order M and exhibits power-law behaviour, where the exponent of M4

agrees with the compiled data of Ishihara et al. (2007). We find that M̃M

consequently also increases with the Reynolds number and order M and also
follows a power-law. The differences between using eq. (4.9) and eq. (4.10)
(where we used the theoretical CM given in table 4.1) and eq. (4.8) are small as
expected. We note that for large Reynolds numbers Reλ � 1, M2M � M2M−2

and therefore

M̃3 → C3

C
3/2
2

M6

M3/2
4

(4.11)

M̃4 → C4

C2
2

M8

M2
4

, (4.12)

i.e. a single power-law behaviour is approximated. We may generalise this result
to

M̃M → CM

C
M/2
2

M2M

MM/2
4

. (4.13)

This can be seen in figure 4.2, where we also plotted eq. (4.13) using the theoretical
CM from table 4.1. We find that eq. (4.13) converges quicker for higher orders
M , as may have been expected. Therefore, the standardised moments of P (ε) are
related to the higher even standardised moments M2M and the flatness M4 of
∂u1/∂x1 for large Reynolds numbers. As the ratio of M2M /M4 increases with
increasing Reynolds number, the standardised moments of ε increase as well. We
note that the ratio CM /C

M/2
2 decreases with increasing M (cf. eq. (4.5)), so that

M2M /MM/2
4 has to increase (for fixed Reλ) for M̃M > M̃M−1 in agreement

with figure 4.1b. In other words, the ratio CM /C
M/2
2 provides a lower bound

for the order-dependency of the ratio of even standardised moments of the pdf
P (∂u1/∂x1) to the respective power of its flatness. Furthermore, if we use a
power-law

M2M ∼ Reα̃2M

λ (4.14)

and
M̃M ∼ Reβ̃M

λ (4.15)

with β̃M+1 ≥ β̃M as seen from figure 4.1b and figure 4.2, we find from eq. (4.13)
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a lower limit
α̃2M+2 ≥ α̃2M + 1

2
α̃4 (4.16)

for M ≥ 2, i.e. a lower bound for the Reynolds number dependence of both
the even standardised moments of the velocity gradient pdf M2M and the ratio
〈εM 〉/〈ε〉M , that is α̃2M is increasing with M (note that by using eq. (4.13) we
already implicitly assumed that α̃2M+2 > α̃2M but could modify this result).

Lastly, we would like to point out that it is possible to measure all moments
〈εM 〉 and not only the mean value 〈ε〉 using eq. (4.6) with the coefficients given
in table 4.1 by employing Taylor’s hypothesis, if local isotropy and homogeneity
holds. In other words, it is not necessary to resort to one-dimensional surrogates
of ε.

4.2 Relation between moments of dissipation,
pseudo-dissipation and dissipation
surrogates

The kinetic energy dissipation is defined as

ε = 2νSijSij = ν

(
∂ui

∂xj

∂ui

∂xj
+ ∂ui

∂xj

∂uj

∂xi

)
(4.17)

where the strain tensor Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the symmetric part
of the velocity gradient tensor ∂ui/∂xj . However, in the system of structure
function equations as discussed in section 3.1, the dissipation source terms
and transport equations derived thereof contain products of components of the
pseudo-dissipation tensor

εij = ν
∂ui

∂xk

∂uj

∂xk
, (4.18)

rather than the dissipation ε, where the pseudo-dissipation ε is defined as the
trace εii, i.e,

ε = εii = ν
∂ui

∂xk

∂ui

∂xk
. (4.19)

In this section, we look at the scaling of the ratio of the moments of the
pseudo-dissipation to the dissipation, 〈εM 〉/〈εM 〉 for M = 1, ..., 4 using DNS
data of forced homogeneous isotropic turbulence with Reynolds numbers from
Reλ = 88 to Reλ = 754 as described in chapter 2. If these ratios are constant,
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the moments of ε and ε can be used interchangeably.
Similarly, we also examine the ratio of the components of the pseudo-dissipation

tensor εijεkl... to the respective moments of the dissipation. In this context, it
should be emphasised that the parameters determining the viscous range should
be invariants and not depend on the choice of coordinate system. Since 〈εM 〉 is
invariant but not the components 〈εijεkl...〉, their ratios to the dissipation 〈εM 〉 as
well as to 〈εM 〉 and the corresponding Reynolds number scaling are of particular
interest. We do not explicitly show the ratios of 〈εijεkl...〉 to 〈εM 〉, though they
can be inferred from the reported data by multiplying with (〈εM 〉/〈εM 〉)−1.

Lastly, we consider the ratio of

Gp,q = νp+q

〈(
∂u1

∂x1

)2p (
∂u2

∂x1

)2q
〉

, (4.20)

where p + q = M to the moments of the dissipation
〈
εM

〉
. GM,0 is sometimes

used as 1D surrogate for the moments of the dissipation 〈εM 〉, since it is easily
measurable under the assumption of Taylor’s hypothesis. Furthermore, the
ratio Gp,q/〈εM 〉 is of some interest, since one may expand structure functions
Dm,n = 〈(Δu1)m(Δu2)n〉 of arbitrary order N for r → 0 using Taylor series, cf.
eq. (3.25). Exact relations between GM,0 and 〈εM 〉 were already derived and
discussed in section 4.1 above.

As before in section 4.1, M denotes the Mth moment of the dissipation.
This is not to be confused with the order of the underlying structure function
equation (which is N = 2M) or with the order of a tensor. For instance in case
of M = 2, 〈εijεkl〉 is a fourth-order tensor found in the fourth-order structure
function equations corresponding to the sum of components of the eighth-order
velocity gradient tensor 〈(∂ui/∂xj)(∂uk/∂xl)(∂um/∂xn)(∂uo/∂xp)〉. Since we
are interested in relations between tensor components in homogeneous isotropic
flows, we make extensive use of linear decompositions into the independent
fundamental isotropic components, cf. appendix A and e.g. Kearsley and Fong
(1975) for more details.

4.2.1 Pseudo-dissipation
We begin by examining the Reynolds number dependence of ratios of moments
of the pseudo-dissipation ε as defined by eq. (4.19) and the dissipation ε defined
by eq. (4.17). The ratio 〈εM 〉/〈εM 〉 for all seven datasets described in section 2.1
with Reλ = 88 to Reλ = 754 for M = 1, ..., 4 is shown in figure 4.3(a). We
find that the ratio increases for all M > 1 with increasing Reynolds number for
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dissipation surrogates

Table 4.2: Ratio of moments of pseudo-dissipation and dissipation. Exact value
indicated by †-symbol.

〈ε〉/〈ε〉 〈ε2〉/〈ε2〉 〈ε3〉/〈ε3〉 〈ε4〉/〈ε4〉
1† 1.1865 1.7565 2.9695

datasets R0-R4 (Reλ = 88 to Reλ = 331) and becomes a constant for the larger
Reynolds number cases R5 and R6 (Reλ = 529 and Reλ = 754).

Under the assumption of (local) homogeneity and continuity, the mean of the
pseudo-dissipation equals the mean of the dissipation, i.e.

〈ε〉 = 〈ε〉 , (4.21)

since 〈(∂ui/∂xj)(∂uj/∂xi)〉 = ∇2〈p〉 = 0, see e.g. Hill (1997). However, similar
equalities do not hold for the higher moments. This can clearly be seen from
our data (cf. figure 4.3); we have indicated 〈ε〉 / 〈ε〉 = 1 with a dashed line in
figure 4.3 and find very good agreement.

We provide the large Reynolds number asymptotic values of the ratio as
obtained from our DNS in table 4.2. As described above, these ratios become
independent of the Reynolds number, when Reλ is large enough. However,
the large Reynolds number asymptotic values increase with increasing order
M . This observation is not obvious and indicates significant cancellation due
to the additional terms like (∂ui/∂xj)(∂uj/∂xi) and the respective products
(cf. the definitions eq. (4.17) and eq. (4.19)). Consequently, one would expect
heavier tails for the pseudo-dissipation probability density function P (ε) than
the respective distribution of the dissipation P (ε); this implies that the pseudo-
dissipation ε is more intermittent than the dissipation ε, in the sense that very
large values of ε are found more frequently than equally large values of ε. This
is in agreement with the observation that ∇2p = (ε − ε)/ν is positively skewed,
cf. Yeung et al. (2012).

4.2.2 Components of the pseudo-dissipation tensor
Next, the ratio of the components of the pseudo-dissipation tensor 〈εijεkl...〉 to
the dissipation are examined. These ratios are of importance, since the moments
of the components rather than the dissipation are found in the viscous range
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Figure 4.3: Ratio of moments of 〈εM 〉/〈εM 〉 as function of the Reynolds number
Reλ. ◦ : M = 1, � : M = 2, � : M = 3, � : M = 4, −− = 1.

(r → 0) in the system of structure function equations, cf. chapter 3. On the
other hand, phenomenology in the spirit of Kolmogorov (1941a,b) assumes that
the structure functions depend on the moments of the dissipation ε, see the
discussion above in section 3.1.1 as well as section 4.4. This implies that these
ratios should be Reynolds number independent, provided the Reynolds number
is large enough. Furthermore, from another point of view, dissipation parameters
should be invariant with respect to the coordinate system and consequently
the trace 〈εM 〉 or the moments of the dissipation 〈εM 〉 should be chosen. This
implies that the ratios of the moments of components to the dissipation (or
the pseudo-dissipation) should be constant and independent of the Reynolds
number.

Since 〈εij〉 is a second-order tensor, one can write

〈εij〉 = A1δij (4.22)

under the assumption of isotropy, where A1 is a scalar and δij the Kronecker
delta (i.e. δij = 1 for i = j and δij = 0 for i �= j). This implies that
〈ε11〉 = 〈ε22〉 = 〈ε33〉 = 〈ε〉 /3 = 〈ε〉 /3, where ε = εii is the trace of the second-
order pseudo-dissipation tensor.

For M = 2 and assuming isotropy, one can write

〈εijεkl〉 = A1δijδkl + A2 (δikδjl + δilδjk) , (4.23)

since εij = εji (and εkl = εlk), i.e. one can reduce the number of scalars Ai
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required to describe the full tensor by one due to symmetry (a general fourth-
order one-point isotropic tensor is determined by three scalar functions, cf.
Kearsley and Fong (1975)). Consequently, 〈εijεkl〉 is completely determined by
e.g. 〈ε2

11〉 and 〈ε2
12〉 (or any other two independent combinations of indices in

eq. (4.23)). Using eq. (4.23) then results in 〈ε2
11〉 = 〈ε11ε22〉 + 2〈ε2

12〉, which is
derived differently in section 4.3.2 below. Note that since all powers of 〈εM 〉 are
determined by an even number of indices, components with only a single unique
index (i.e. i = 1, j = k = ... = 2) necessarily vanish for all orders (cf. eq. (4.23)
for the fourth-order tensor, e.g. 〈ε11ε12〉 = 0).

Similarly, one obtains for M = 3

〈εijεklεmn〉 = A1δijδklδmn

+ A2 (δijδkmδln + δijδknδlm)
+ A3 (δikδjlδmn + δilδjkδmn)
+ A4 (δikδjmδln + δimδjkδln + δikδjnδlm + δinδjkδlm

+δilδjmδkn + δimδjlδkn + δilδjnδkm + δinδjlδkm)
+ A5 (δimδjnδkl + δinδjmδkl)

(4.24)

again using symmetry. Thus, the full tensor is determined by five scalars,
e.g. 〈ε3

11〉, 〈ε11ε2
22〉, 〈ε11ε2

12〉, 〈ε11ε2
23〉 and 〈ε12ε13ε23〉 (other choices are possible,

though) and one finds e.g. 〈ε3
11〉 = 〈ε3

22〉, 〈ε11ε2
22〉 = 〈ε22ε2

11〉 and 〈ε11ε2
12〉 =

〈ε22ε2
12〉. Again, components such as 〈ε2

11ε12〉 vanish. One can continue for
M = 4 starting from the general tensor (cf. Kearsley and Fong (1975)), but since
this results in a sum of 105 terms, we do not want to write down the resulting
expression here.

In the system of structure function equations as detailed in chapter 3, the
higher moments of the pseudo-dissipation are found by deriving consecutive
transport equations for the source terms

〈Eij...kl〉 =
〈
ΔuiΔuj ...(εkl + ε′

kl) + ΔuiΔuk...(εjl + ε′
jl) + ...

〉
(4.25)

appearing in these equations as sketched in section 3.1. This has been done
in section 3.1.3 for the fourth-order equations (cf. also the Archive material
www.arxiv.org/abs/1504.07490 for the sixth-order equations), and could be
carried out similarly for all higher orders. In the notation used here, 〈Eij...kl〉
are the dissipation source terms defined in section 3.1. These terms dominate
the other source terms in the structure function equations in the viscous range
for r → 0, where they balance the Laplacian of the structure functions, cf. the
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figures in section 3.2.
In the following, we briefly discuss only the fourth order for simplicity, but the

findings are also valid for all higher even orders. In the fourth-order structure
function equations, one finds the dissipation source terms

〈Eijkl〉 =
〈
ΔuiΔuj (εkl + ε′

kl) + ΔuiΔuk

(
εjl + ε′

jl

)
+ ΔuiΔul

(
εjk + ε′

jk

)
+ ΔujΔuk (εil + ε′

il)
+ ΔujΔul (εik + ε′

ik) + ΔukΔul

(
εij + ε′

ij

)〉
,

(4.26)

where 〈E4,0〉 = 〈E1111〉 is found in the longitudinal, 〈E2,2〉 = 〈E1122〉 in the
mixed and 〈E0,4〉 = 〈E2222〉 in the transverse fourth-order structure function
equation, cf. eq. (3.15) and eqs. (3.50)-(3.52). Noticeably, all indices of 〈Eijkl〉
are interchangeable (e.g. 〈Eijkl〉 = 〈Eiklj〉). As carried out in section 3.1.3 above,
one can derive a transport equation for the dissipation source term 〈Eijkl〉. In
this transport equation, the term

〈Σijkl〉 = 2
[〈(

εij + ε′
ij

)
(εkl + ε′

kl)
〉

+
〈
(εik + ε′

ik)
(
εjl + ε′

jl

)〉
+

〈
(εil + ε′

il)
(
εjk + ε′

jk

)〉] (4.27)

is found, which is a two-point sum of squares of the pseudo-dissipation separated
by the distance r. 〈Σiijj〉 is the ε2-term of eq (3.96). In the viscous range,
〈Σijkl〉 then balances the Laplacian of 〈Eijkl〉, cf. section 4.3.3 below. Since
〈Eijkl〉 is symmetric under interchange of all indices, so is 〈Σijkl〉. For r → 0,
〈Σijkl〉 is a one-point tensor∗. One then finds

〈Σijkl〉 = 8 [〈εijεkl〉 + 〈εikεjl〉 + 〈εilεjk〉] = A (δijδkl + δikδjl + δilδjk) , (4.28)

which may be expressed by a single scalar function under the assumption of
isotropy. One may choose A = 8〈ε2

11〉 and consequently relate the 〈Σ1111〉,
〈Σ1122〉 and 〈Σ2222〉 found in the fourth-order equations to the second moment
of the pseudo-dissipation 〈ε2

11〉. For that reason, we abstain from plotting ratios
such as 〈Σ1111〉/〈ε2〉. One can proceed similarly for higher even orders; e.g. at
the sixth order one would find 〈ε3

11〉 which can be exactly related to 〈Σ111122〉,
say (and also to 〈ε3〉, via figure 4.5a).

The relations between the components can be used to check for isotropy: We
have computed some of the superfluous quantities such as 〈ε2

22〉 to check our
datasets and find good agreement, as detailed below. We also focus mostly

∗However, 〈Eijkl〉 ∼ O(r2) for r → 0.
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on those components which can be found in the system of structure function
equations in chapter 3, e.g. we have not computed 〈ε12ε13ε23〉/〈ε3〉. The large
Reynolds number asymptotic values of the quantities we have examined are
listed in table 4.3.

For M = 1, we show the ratios 〈ε11〉/〈ε〉 and 〈ε22〉/〈ε〉 for our datasets in
figure 4.4a, where the dashed line indicates a ratio of 1/3. We find very good
agreement with the isotropic results 〈ε11〉 = 〈ε22〉 = 〈ε〉/3 as expected. For
M = 2 (cf. eq. (4.23)), we have computed the ratios of 〈ε2

11〉/〈ε2〉, 〈ε2
22〉/〈ε2〉,

〈ε11ε22〉/〈ε2〉 and 〈ε2
12〉/〈ε2〉 as shown in figure 4.4b. We find that 〈ε2

11〉 = 〈ε2
22〉

as required by isotropy. Moreover, the numerical values in table 4.3 agree very
well with the result 〈ε2

11〉 = 〈ε11ε22〉+2〈ε2
12〉. Noticeably, 〈ε2

11〉 > 〈ε11ε22〉 > 〈ε2
12〉.

For M = 3, we have computed the ratios 〈ε3
11〉/〈ε3〉, 〈ε2

11ε22〉/〈ε3〉, 〈ε11ε2
22〉/〈ε3〉

and 〈ε3
22〉/〈ε3〉 as shown in figure 4.5a as well as the ratios 〈ε11ε2

12〉/〈ε3〉 and
〈ε22ε2

12〉/〈ε3〉, cf. figure 4.5b for all seven datasets. We find that 〈ε3
11〉 =

〈ε3
22〉, 〈ε2

11ε22〉 = 〈ε11ε2
22〉 and 〈ε11ε2

12〉 = 〈ε22ε2
12〉 in agreement with eq. (4.24).

Moreover, we find that 〈ε3
11〉 > 〈ε11ε2

12〉 > 〈ε11ε2
22〉. Nevertheless, since we have

not computed a fourth and fifth independent ratio (such as 〈ε11ε2
23〉/〈ε3〉 and

〈ε12ε13ε23〉/〈ε3〉 for instance), we cannot say that all components of the tensor
〈εijεklεmn〉 have the same Reynolds number scaling, although one would expect
that to be the case.

For M = 4, the computed ratios are shown in figure 4.6a and figure 4.6b
respectively. Similarly to N = 3, we have not computed all independent ratios
needed to completely determine the eighth-order tensor 〈εijεklεmnεop〉, but again
only those found in the system of structure function equations. Specifically,
the ratios 〈ε4

11〉/〈ε4〉, 〈ε3
11ε22〉/〈ε4〉, 〈ε2

11ε2
22〉/〈ε4〉, 〈ε11ε3

22〉/〈ε4〉 and 〈ε4
22〉/〈ε4〉

in figure 4.6a and 〈ε4
12〉/〈ε4〉, 〈ε2

11ε2
12〉/〈ε4〉 and 〈ε2

22ε2
12〉/〈ε4〉 in figure 4.6b are

shown. Isotropy requires 〈ε4
11〉 = 〈ε4

22〉, 〈ε3
11ε22〉 = 〈ε11ε3

22〉 and 〈ε2
11ε2

12〉 = 〈ε22ε2
12〉

which is in good agreement with our DNS data and we find 〈ε4
11〉 > 〈ε2

11ε2
12〉 >

〈ε3
11ε22〉 > 〈ε2

11ε2
22〉 > 〈ε2

11ε2
12〉. Noticeably, the collapse of these quantities which

are equal under the assumption of isotropy is not as good as for M = 1 to M = 3,
but still satisfactory. This is most likely due to the resolution of our DNS data,
which is sufficient for M = 4 but might not be good enough to compute higher
moments. For that reason, we have not computed higher-order statistics M > 4.
However, we have still averaged all of those ratios which are required to be equal
to compute the large Reynolds number asymptotic values given in table 4.3.
Again, we cannot say that all components of the tensor 〈εijεklεmnεop〉 have the
same Reynolds number scaling for the reasons outlined above.

Comparing the ratio of components of the pseudo-dissipation and dissipation
to the ratio of the pseudo-dissipation and dissipation, the former approach
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Figure 4.4: (a) Ratio of moments 〈εp
11εq

22〉/〈ε〉 as function of the Reynolds
number Reλ. ◦ : p = 1, q = 0, � : p = 0, q = 1, −− = 1/3. (b) Ratio of moments
〈εp

11εq
22〉/〈ε2〉 as function of the Reynolds number Reλ where ◦ : p = 2, q = 0,

� : p = 1, q = 1, � : p = 0, q = 2 and � : 〈ε2
12〉/〈ε2〉.

Reynolds number independent values quicker than the latter. This is somewhat
puzzling since the ratio of individual components at some order seem to approach
the asymptotic values equally fast and one would therefore expect the same for
their sum (e.g. the trace). However, we have not evaluated all required quantities
to fully describe the pseudo-dissipation tensor for M = 3 and M = 4. Therefore,
the ratio of quantities we have not looked at like 〈ε12ε13ε23〉/〈ε3〉 might become
constant at larger Reynolds numbers compared to e.g. 〈ε3

11〉/〈ε3〉.

4.2.3 Velocity gradients

Finally, we examine the ratio of the even moments of the velocity gradient
tensor and the dissipation. Particularly, we compare the ratio of Gp,q defined
by eq. (4.20) and the moments of the dissipation 〈εM 〉 defined by eq. (4.17). It
should be mentioned though that the Gp,q alone are not sufficient to uniquely
determine the general isotropic velocity gradient tensor of order 4M .

As seen from the Taylor series of Dm,n in the viscous range for r → 0, eq. (3.25),
the ratios of Gp,q and the moments of the dissipation are of interest, since Gp,q
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Figure 4.5: (a) Ratio of moments 〈εp
11εq

22〉/〈ε3〉 as function of the Reynolds
number Reλ. ◦ : p = 3, q = 0, � : p = 1, q = 2, � : p = 2, q = 1, � : p = 0, q = 3.
(b) Ratio of moments 〈ε11ε2

12〉/〈ε3〉 (◦) and 〈ε22ε2
12〉/〈ε3〉 (�) as function of the

Reynolds number Reλ.
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Figure 4.6: (a) Ratio of moments 〈εp
11εq

22〉/〈ε4〉 as function of the Reynolds
number Reλ. ◦ : p = 4, q = 0, � : p = 1, q = 3, � : p = 2, q = 2, � : p = 3, q = 1,
�: p = 0, q = 4. (b) Ratio of moments 〈ε4

12〉/〈ε4〉 (◦), 〈ε2
11ε2

12〉/〈ε4〉 (�) and
〈ε2

22ε2
12〉/〈ε4〉 (�) as function of the Reynolds number Reλ.
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4 Viscous range

Table 4.3: Ratio of moments of components of the pseudo-dissipation tensor and
dissipation. Exact value indicated by †-symbol.

q = 0 q = 1 q = 2 q = 3 q = 4

〈ε1−q
11 εq

22〉/〈ε〉 1/3† 1/3†

〈ε2−q
11 εq

22〉/〈ε2〉 1.999 · 10−1 9.678 · 10−2 1.999 · 10−1

〈ε3−q
11 εq

22〉/〈ε3〉 1.7503 · 10−1 5.785 · 10−2 5.785 · 10−2 1.7503 · 10−1

〈ε4−q
11 εq

22〉/〈ε4〉 1.7552 · 10−1 4.666 · 10−2 3.242 · 10−2 4.666 · 10−2 1.7552 · 10−1

〈εq
12〉/〈ε〉 5.138 · 10−2 1.068 · 10−2

〈εq
11ε2

12〉/〈εm+2〉 5.865 · 10−2 2.171 · 10−2

determines the solution of structure functions Dm,n = 〈(Δu1)m(Δu2)n〉 in the
viscous range. Consequently, Gp,q and the kinematic viscosity ν are the correct
quantities to define viscous scales, the most famous one being the Kolmogorov
length scale η = (ν3/〈ε〉)1/4 and the corresponding velocity uη = (ν〈ε〉)1/4 for
the second-order structure functions D2,0 and D0,2 for M = 1. For higher-order
structure functions, the corresponding Gp,q result in general scales ηC,N and
uC,N , cf. section 4.4.1 below. This ties into a modified similarity hypothesis
in the spirit of Kolmogorov (1941b), which states that structure function of
order 2M should be determined in the viscous range by 〈εM 〉 (instead of 〈ε〉M )
and ν only, which requires a connection between Gp,q and 〈εM 〉, where again
M = p + q. We briefly discuss this in the following.

The best-known relation is probably given by eq. (3.43), which exactly relates
the mean dissipation 〈ε〉 to the second moment of the longitudinal velocity gra-
dient 〈(∂u1/∂x1)2〉 as shown by Kolmogorov (1941b) for homogeneous isotropic
turbulence in incompressible flows. Eq. (3.43) can be easily derived by writing
the general fourth-order isotropic tensor〈

∂ui

∂xj

∂uk

∂xl

〉
= B1δijδkl + B2δikδjl + B3δilδjk

= B1 (δijδkl − 4δikδjl + δilδjk) ,

(4.29)

where in the second line homogeneity (which implies 〈(∂ui/∂xj)(∂uj/∂xi)〉 = 0)
and incompressibility (〈(∂ui/∂xi)(∂uj/∂xk)〉 = 0) have been used to further
constrain the three scalars B1, B2 and B3; see Hinze (1975) for a detailed
derivation. With eq. (4.17), one then finds that B1 = − 〈ε〉 /(30ν). Eq. (3.25)
and eq. (4.29) allowed Kolmogorov (1941a) to exactly determine the second-order
structure function D2,0 in the viscous range (cf. the discussion in section 3.1.1
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and section 3.1.2). It follows that the mean dissipation 〈ε〉 and the kinematic
viscosity ν are the two quantities to determine the characteristic second-order
dissipative scales, the Kolmogorov length η = (ν3/〈ε〉)1/4 and the corresponding
velocity uη = (ν〈ε〉)1/4.

It is possible to continue in the spirit of eq. (4.29) for higher orders, but
the number of scalar functions (the Bi) increases very quickly. For instance,
Hierro and Dopazo (2003) examined the general isotropic eighth-order velocity
gradient tensor (M = 2 in our notation) under the constraints of homogeneity
and continuity. Instead of a single independent scalar as in eq. (4.29), there are
four independent scalars at the eighth order. If all four scalars are known, one
can then derive for instance the relation between

〈
ε2
〉

and any component of
the eighth-order velocity gradient tensor in terms of the Bi.

In fact, the four independent scalars were determined by Siggia (1981) before,
who derived four invariants and related them to the eighth-order longitudinal,
mixed and transverse velocity gradient components. Furthermore, as detailed in
section 4.1 above, he derived a generating function eq. (4.3) which allows the
computation of any of the connectors of different combinations of the strain
tensor 〈SijSkl...〉 where Sij = (∂ui/∂xj +∂uj/∂xi)/2. Since ε = 2νSijSij , Siggia
effectively derived

105ν2

〈(
∂u1

∂x1

)4
〉

=
〈
ε2
〉

. (4.30)

Theoretically, one could carry out the steps given in Hierro and Dopazo (2003)
for higher-order velocity gradient tensors. However, for M = 3 one would have a
12th-order isotropic tensor (with 10395 components) and for M = 4 a 16th-order
isotropic tensor (with 2027025 components) and applying the constraints of
homogeneity, continuity and symmetry becomes very cumbersome. Nevertheless,
it is possible to use Siggia’s generating function to derive relations between
even-order moments of the longitudinal velocity gradient and the moments of
the dissipation for arbitrary orders in a much more feasible manner. This was
carried out in section 4.1 and results in eq. (4.6) with the exact CM given by
eq. (4.5). Consequently, C3 = 567 and C4 = 2673, for instance. Eq. (4.5) can be
used to determine exactly the longitudinal even-order structure functions in the
viscous range as function of the moments of the dissipation and the kinematic
viscosity as will be done in section 4.4 below. As discussed in section 4.1,
it is not possible to analytically relate the moments of mixed and transverse
velocity gradients in general because S12 = S21 �= ∂u2/∂x1, with the exception
of 〈(∂u2/∂x1)2〉 = 2〈(∂u1/∂x1)2〉 (as seen from eq. (4.29), cf. also eq. (3.43)).
Only if the ratio of Gp,q and the moments of the dissipation at fixed M have
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the same Reynolds number scaling, the characteristic scales in the viscous range
are the same for all structure functions at the same order M . Consequently also
the ratio of different Gp,q at order M would then be constant, e.g. the ratio
G2,0/G0,2 for M = 2.

While one cannot derive the exact connectors between the moments of longitu-
dinal, mixed and transverse velocity gradients, it is possible to at least determine
whether they exhibit the same Reynolds number scaling and therefore to conclude
that all structure functions at the same order have the same characteristic scales
in the viscous range. As discussed in section 3.2, the fourth-order structure
functions in the viscous range r → 0 are determined by 〈Σ1111〉, 〈Σ1122〉 and
〈Σ2222〉, which are all related via eq. (4.28) and consequently may be expressed
in terms of 〈ε2

11〉. Since the ratio of 〈ε2
11〉/〈ε2〉 is constant (cf. section 3.2),

this implies that all fourth-order structure functions D4,0, D2,2 and D0,4 in the
viscous range depend on either 〈ε2

11〉 or equivalently 〈ε2〉. Similar results are
obtained for higher even orders.

We have computed the ratio of Gp,q/〈εM 〉 for M = 1 to M = 4 for our
datasets, where M = p + q. The large Reynolds number asymptotic values can
be found in table 4.4. Again, the Gp,q are not sufficient to completely determine
the general velocity gradient tensor of order 4M . For that reason, we cannot
say that all components of the velocity gradient tensor of order M > 1 have the
same Reynolds number scaling, although one would expect that to be the case.

The ratios G1,0/〈ε〉 and G0,1/〈ε〉 for M = 1 are shown in figure 4.7a. The
exact values of 1/15 and 2/15 are indicated by the dashed and the dash-dotted
horizontal lines, respectively. We find very good agreement with these theoretical
results (cf. eq. (3.43)) obtained under the assumption of isotropy.

For M = 2, the ratios G2,0/〈ε2〉, G1,1/〈ε2〉 and G0,2/〈ε2〉 are shown in fig-
ure 4.7b. The exact result G2,0/〈ε2〉 = 1/105, cf. eq. (4.5), is indicated by a
dashed horizontal line, for which we have very good agreement with our DNS
data. We find that G0,2 > G2,0 > G1,1. All three ratios become Reynolds
number independent for the datasets R3 to R6.

Figure 4.8 shows the ratios G3,0/〈ε3〉, G2,1/〈ε3〉, G1,2/〈ε3〉 and G0,3/〈ε3〉.
Again, we have very good agreement of the ratio G3,0/〈ε3〉 as evaluated from
our DNS and the theoretical value 1/567 of eq. (4.5) (the dashed horizontal line).
We find G0,3 > G1,2 > G3,0 > G1,2.

Finally, the ratios G4,0/〈ε4〉, G3,1/〈ε4〉, G2,2/〈ε4〉, G1,3/〈ε4〉 and G0,4/〈ε4〉 are
exhibited in figure 4.8b for M = 4. We find satisfactory agreement of G4,0/〈ε4〉 as
computed from our DNS and the theoretical value 1/2673 of eq. (4.5) as indicated
by the dashed horizontal line. Moreover, G0,4 > G1,3 > G4,0 ≈ G2,2 > G1,3.
Interestingly enough, our data indicates that G2,2 ≈ G4,0 = 〈ε4〉/2673. This
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Table 4.4: Ratio of moments of components of the velocity gradient tensor and
dissipation. Exact values indicated by †-symbol.

q = 0 q = 1 q = 2 q = 3 q = 4
G1−q,q/〈ε〉 1/15† 2/15†

G2−q,q/〈ε2〉 1/105† 8.1213 · 10−3 5.9267 · 10−2

G3−q,q/〈ε3〉 1/567† 1.1163 · 10−3 1.2604 · 10−2 4.4023 · 10−2

G4−q,q/〈ε4〉 1/2673† 1.9597 · 10−4 3.7173 · 10−4 1.8901 · 10−3 4.0167 · 10−2

immediately implies that the mixed structure function D4,4 and the longitudinal
structure function D8,0 are equal in the viscous range. We have checked this
with our DNS data (not shown here), which indeed confirms this. At first
glance, the result G2,2 = G4,0 seems puzzling considering that they would seem
to correspond to different independent components of the general 16th-order
velocity gradient tensor. However, Kearsley and Fong (1975) found that 14 out
of the 105 components of the general eighth-order isotropic tensor (corresponding
here to M = 2) are linearly dependent. One might also expect similar reductions
at higher orders M > 2, so that some of the higher-order structure functions might
be equal in the viscous range; one might therefore think that these additional
constraints could lead to G2,2 = G4,0. In principle, it should be possible to show
this rigorously by writing down the general 16th-order velocity gradient tensor,
applying the constraints of homogeneity and continuity as outlined by Hierro
and Dopazo (2003) and then following the steps of Kearsley and Fong (1975).
However since this procedure is very cumbersome, we have not verified this.

Noticeably, the Gp,q/〈εM 〉 approach their large Reynolds number values much
faster than 〈εM 〉/〈εM 〉. Of course, the 〈εM 〉 are a sum of many terms, some of
which are the Gp,q. Thus, one would expect that some other components of
the general velocity gradient tensor of order 4M approach their large Reynolds
number asymptotic values slower than Gp,q.

As for the ratios of section 4.2.1 and section 4.2.2, we have not computed
higher orders M > 4∗.

∗Note that table 4.1 suggest that we could have computed Gp,q/〈εM 〉 up to M = 6.
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Figure 4.7: Ratio of moments 〈Gp,q〉 /〈εM 〉 as function of the Reynolds number
Reλ. (a) M = p + q = 1, ◦ : p = 1, q = 0, � : p = 0, q = 1, −− = 1/15, −. = 2/15.
(b) M = p + q = 2, ◦ : p = 2, q = 0, � : p = 1, q = 1, � : p = 0, q = 2, −− = 1/105.
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Figure 4.8: Ratio of moments 〈Gp,q〉 /〈εM 〉 as function of the Reynolds number
Reλ. (a) M = p + q = 3, ◦ : p = 3, q = 0, � : p = 1, q = 2, � : p = 2, q = 1,
� : p = 0, q = 3, −− = 1/567. (b) M = p + q = 4, ◦ := 4, q = 0, � : p = 1, q = 3,
� : p = 2, q = 2, � : p = 3, q = 1, �: p = 0, n = q, −− = 1/2673.
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4.3 Third- and fourth-order solutions in the viscous range

4.3 Third- and fourth-order solutions in the
viscous range

In this section, we derive exact results for the third- and fourth-order structure
functions in the viscous range in section 4.3.1 and section 4.3.2, similar to the
second-order results derived by Kolmogorov. For the third order, the trace D[3]

can easily be found by summing up the results for D3,0 and D1,2. However, as
discussed above in section 3.1, we do not have enough equations to solve for the
longitudinal, mixed and transverse structure functions D4,0, D2,2 and D0,4. For
that reason, we also look specifically at the trace of the fourth-order structure
function equations in section 4.3.3.

4.3.1 Third order structure functions in the viscous range

In the viscous range r → 0, the viscous terms and the dissipation source terms
balance. Then, from table 3.2,

2ν

[
∂2D3,0

∂r2
+ 2

r

∂D3,0

∂r
− 6

r2
D3,0 + 12

r2
D1,2

]
= 〈E3,0〉

2ν

[
∂2D1,2

∂r2
+ 2

r

∂D1,2

∂r
− 8

r2
D1,2 + 2

r2
D3,0

]
= 〈E1,2〉 .

(4.31)

For r → 0, the structure functions can be expanded as

D3,0 = F1r3 + O(r4), D1,2 = F2r3 + O(r4), (4.32)

cf. eq. (3.25), i.e. F1 = 〈(∂u1/∂x1)3〉 and F2 = 〈(∂u1/∂x1)(∂u2/∂x1)2〉. Insert-
ing eq. (4.32) into eq. (4.31) then yields

F1 + 2F2 = 〈E3,0〉
12νr

(4.33)

as well as the relation 〈E3,0〉 = 3 〈E1,2〉. From incompressibility, one has

r
∂D3,0

∂r
+ D3,0 − 6D1,2 = 0, (4.34)
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4 Viscous range

i.e. eq. (3.24), which yields the additional constraint 2F1 = 3F2. The third-order
dissipation source terms are defined as

〈Eijk〉 = 2
〈
Δui

(
εjk + ε′

jk

)
+ Δuj (εik + ε′

ik) + Δuk

(
εij + ε′

ij

)〉
, (4.35)

where 〈E3,0〉 = 〈E111〉 and 〈E1,2〉 = 〈E122〉. Consider 〈Δui(εjk + ε′
jk)〉. For

r → 0, 〈Δui(εjk + ε′
jk)〉 = 2〈Δuiεjk〉 and the Taylor expansion yields

〈Δuiεjk〉 =
〈

∂ui

∂x1

εjk

〉
r + O(r2) (4.36)

Therefore, inserting this into eq. (4.35) yields

Eijk = 4
〈

∂ui

∂x1

εjk + ∂uj

∂x1

εik + ∂uk

∂x1

εij

〉
r + O(r2) (4.37)

for r → 0. Then,

D3,0 = 3
7ν

〈
∂u1

∂x1

ε11

〉
r3, D1,2 = 2

7ν

〈
∂u1

∂x1

ε11

〉
r3 (4.38)

in the viscous range and 〈(∂u1/∂x1)ε11〉 = 〈(∂u1/∂x1)ε22 + 2(∂u2/∂x1)ε12〉 as
well as D3,0 = 3D1,2/2 satisfying the continuity equation. Moreover,〈(

∂u1

∂x1

)3
〉

= 3
7

〈
∂u1

∂x1

(
∂u1

∂xi

)2
〉

, (4.39)〈
∂u1

∂x1

(
∂u2

∂x1

)2
〉

= 2
7

〈
∂u1

∂x1

(
∂u1

∂xi

)2
〉

(4.40)

in agreement with the isotropic expression of the general third-order velocity
gradient tensor as given on p. 206 of Pope (2000).

4.3.2 Relations between fourth-order structure functions
and second-order dissipation parameters in the
viscous range

Next, we will show how the second-order dissipation parameters 〈ε2
11〉, 〈ε2

22〉 and
〈ε11ε22〉 + 2〈ε2

12〉 are related to 〈ε2〉. We will also show how they are related
to the fourth-order moments of the velocity gradient distribution and to the
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4.3 Third- and fourth-order solutions in the viscous range

solutions of the fourth-order structure function equations in the viscous range.

Again, in the viscous range we need to consider only the balance between the
viscous terms and the dissipation source terms in the fourth-order longitudinal,
mixed and transverse structure functions, cf. figure 3.5 and therefore with
table 3.2,

2ν

[
∂2D4,0

∂r2
+ 2

r

∂D4,0

∂r
− 8

r2
D4,0 + 24

r2
D2,2

]
= 〈E4,0〉 (4.41)

2ν

[
2
r2

D4,0 + ∂2D2,2

∂r2
+ 2

r

∂D2,2

∂r
− 14

r2
D2,2 + 8

3r2
D0,4

]
= 〈E2,2〉 (4.42)

2ν

[
12
r2

D2,2 + ∂2D0,4

∂r2
+ 2

r

∂D0,4

∂r
− 4

r2
D0,4

]
= 〈E0,4〉 . (4.43)

Similarly to the balance of the trace 〈E[4]〉 shown in figure 3.13, the viscous
terms in the equations for 〈E4,0〉, 〈E2,2〉 and 〈E0,4〉 also balance the respective
ε2-terms, cf. figure 3.5. Therefore in the equations for the 〈E4,0〉, 〈E2,2〉 and
〈E0,4〉 given in section 3.1.3, the balance between these terms is given by

2ν

[
∂2 〈E4,0〉

∂r2
+ 2

r

∂ 〈E4,0〉
∂r

− 8
r2

〈E4,0〉 + 24
r2

〈E2,2〉
]

= 24
〈
(ε11 + ε′

11)2
〉

(4.44)

2ν

[
2
r2

〈E4,0〉 + ∂2 〈E2,2〉
∂r2

+ 2
r

∂ 〈E2,2〉
∂r

− 14
r2

〈E2,2〉 + 8
3r2

〈E0,4〉
]

= 8 〈(ε11 + ε′
11)(ε22 + ε′

22)〉 + 16
〈
(ε12 + ε′

12)2
〉

(4.45)

2ν

[
12
r2

〈E2,2〉 + ∂2 〈E0,4〉
∂r2

+ 2
r

∂ 〈E0,4〉
∂r

− 4
r2

〈E0,4〉
]

= 24
〈
(ε22 + ε′

22)2
〉

. (4.46)
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Expanding the structure functions as

D4,0 = F1r4 + . . . =
〈(

∂u1

∂x1

)4
〉

r4 + . . . (4.47)

D2,2 = F2r4 + . . . =
〈(

∂u1

∂x1

)2 (
∂u2

∂x1

)2
〉

r4 + . . . (4.48)

D0,4 = F3r4 + . . . =
〈(

∂u2

∂x1

)4
〉

r4 + . . . (4.49)

as in eq. (4.32) and similarly for the dissipation source terms as

〈E4,0〉 = β0
4,0r2 + . . . = 24

〈(
∂u1

∂x1

)2

ε11

〉
r2 + . . . (4.50)

〈E2,2〉 = β0
2,2r2 + . . . =

(
4
〈(

∂u2

∂x1

)2

ε11

〉

+16
〈(

∂u1

∂x1

)(
∂u2

∂x1

)
ε12

〉
+ 4

〈(
∂u1

∂x1

)2

ε22

〉)
r2 + . . . (4.51)

〈E0,4〉 = β0
0,4r2 + . . . = 24

〈(
∂u2

∂x1

)2

ε22

〉
r2 + . . . , (4.52)

we obtain to leading order the relations for F1, F2 and F3 after inserting eq. (4.47)
to eq. (4.49) into eq. (4.41) to eq. (4.43),

12F1 + 24F2 =
β0

4,0

2ν
(4.53)

2F1 + 6F2 + 8
3

F3 =
β0

2,2

2ν
(4.54)

12F2 + 16F3 =
β0

0,4

2ν
. (4.55)

Gauss elimination leads to a singular system and thereby to the compatibility
condition

β0
4,0 + β0

0,4 = 6β0
2,2 (4.56)

By inserting eq. (4.50)and eq. (4.51) into the equations for the fourth-order
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dissipation source terms we obtain to leading order the relations

−2β0
4,0 + 24β0

2,2 = 24
〈
ε2

11

〉
2ν

(4.57)

2β0
4,0 − 8β0

2,2 + 8
3

β0
0,4 =

8 〈ε11ε22〉 + 16
〈
ε2

12

〉
2ν

(4.58)

12β0
2,2 + 2β0

0,4 = 24
〈
ε2

22

〉
2ν

(4.59)

Gauss elimination leads again to a singular system and a compatibility condition
relating the dissipation parameters

3
〈
ε2

11

〉
+ 〈ε11ε22〉 + 2

〈
ε2

12

〉
= 4

〈
ε2

22

〉
(4.60)

Note that there is no incompressibility equation analogous to eq. (3.23) for the
second and eq. (3.24) for the third order. Therefore, it is not possible to solve
the system at hand, which is only possible for the second and third order. Since
due to isotropy

〈
ε2

11

〉
=

〈
ε2

22

〉
, eq. (4.60) may be written as〈

ε2
11

〉 − 〈ε11ε22〉 − 2
〈
ε2

12

〉
= 0, (4.61)

cf. eq (4.23) and eq. (4.28). By using eqs. (4.53) and (4.54) in eq. (4.57) one
obtains a relation between F1, F2, F3 and

〈
ε2

11

〉
as

4F1 + 16F2 + 32
3

F3 =
〈
ε2

11

〉
ν2

. (4.62)

Siggia (1981) has identified the four invariants of the fourth order velocity
gradient tensor as

I1 ≡ 〈
s4
〉

, I2 ≡ 〈
s2ω2

〉
, I3 ≡ 〈ωiSijωkSkj〉 , I4 ≡ 〈

ω4
〉

(4.63)

where s = Sii is the trace of the rate of strain tensor and ω2 = ω2
i the enstrophy

with vorticity ωi = εijk(∂uk/∂xj) where εijk is the Levi-Civita symbol. Then,
we have

F1 = 4I1/105 (4.64)
F2 = I1/105 + I2/70 − I3/105 (4.65)
F3 = 3I1/140 + 11I2/140 − 3I3/35 + I4/80 (4.66)
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Table 4.5: Ratios of invariants of the fourth-order velocity derivative tensor.

Reλ 88 119 184 215 331 529 680 (Ishihara et al. (2007))
I2/I1 1.6726 1.6951 1.40015 1.7247 1.7347 1.7443 1.75
I3/I1 0.2132 0.2181 0.2236 0.2267 0.2294 0.2341 0.24
I4/I1 6.6402 7.0349 7.3893 7.5573 7.7334 7.9494 8.0

and all second-order dissipation parameters may be expressed in terms of Siggia’s
invariants〈

ε2
11

〉
ν2

=
〈
ε2

22

〉
ν2

=
〈ε11ε22〉 + 2

〈
ε2

12

〉
ν2

= 8
15

I1 + 16
15

I2 − 16
15

I3 + 2
15

I4 (4.67)

As noted by Siggia (1981), the ratios I2/I1, I3/I1 and I4/I1 should be Reynolds
number independent for large Reynolds numbers. This is shown to be approx-
imately true for the Reynolds numbers of our DNS calculations as shown in
table 4.5, where the ratios are also compared to the values obtained by Ishihara
et al. (2007) calculated at Reλ = 680, see also section 4.2. Taking the numbers
of Ishihara et al. for these ratios we obtain with I1 = 〈ε2〉/(4ν2)〈

ε2
11

〉
=

〈
ε2

22

〉
= 〈ε11ε22〉 + 2

〈
ε2

12

〉 ≈ 0.8
〈
ε2
〉

. (4.68)

All second-order dissipation parameters should therefore scale with the Reynolds
number in the same way as 〈ε2〉, in agreement with section 4.2.2 and section 4.2.3.

4.3.3 Relations between the trace of fourth-order
structure functions D[4] and 〈ε2

[4]〉 in the viscous
range

Here, we look at the trace D[4] in the viscous range. Different to the individual
equations in section 4.3.2, we have one equation for one unknown trace which
allows us to solve for it. We find that for r → 0, D[4] is exactly determined by
ε2

[4]
, ν and r.

As discussed in section 3.1.1, the transport term of the fourth-order structure
function eq. (3.79) as well as the pressure source terms are proportional to r4 for
r → 0, while the viscous term and the dissipation source term are proportional
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to r2 in the viscous range. Therefore, to leading order the transport and pressure
source terms may be neglected in the viscous range and eq. (3.79) simplifies to

2ν

(
∂2D[4]

∂r2
+ 2

r

∂D[4]

∂r

)
=

〈
E[4]

〉
. (4.69)

Similarly, from the equation for
〈
E[4]

〉
in section 3.3.1, the viscous term and

ε2-term balance,

2ν

(
∂2

〈
E[4]

〉
∂r2

+ 2
r

∂
〈
E[4]

〉
∂r

)
= ε2

[4]. (4.70)

where ε2
[4]

is constant in the viscous range. Solving eq. (4.70) and inserting the
result into eq. (4.69) then gives

D[4] =
ε2

[4]

480ν2
r4,

〈
E[4]

〉
=

ε2
[4]

12ν
r2. (4.71)

Since D[4] is the sum of D4,0, D2,2 and D0,4, all of which are also proportional to
r4 for r → 0, the individual structure functions are also determined by ε2

[4]
in the

viscous range. Since D[4] = D4,0 + 4D2,2 + 8D1,3/3, one can use the expansions
given in eq. (4.47) to eq. (4.49) to relate ε2

[4]
/ν2 to the sum of F1, F2 and F3 as

well as Siggia’s invariants defined in eq. (4.63) resulting in

ε2
[4]

480ν2
= F1 + 4F2 + 8

3
F3 = 2

15
I1 + 4

15
I2 − 4

15
I3 + 1

30
I4. (4.72)

With eq. (4.67) above, the trace ε2
[4]

is related in the viscous range to the
dissipation parameters

ε2
[4] = 120

〈
ε2

11

〉
= 120

〈
ε2

22

〉
= 120 〈ε11ε22〉 + 240

〈
ε2

12

〉
. (4.73)

A similar analysis can be carried out for higher even orders in the viscous
range. However, there are more intermediate equations linking the higher-order
moments of the dissipation to the higher-order dissipation source term and
ultimately to the structure function, cf. the Archive material (http://arxiv.
org/abs/1504.07490) for the sixth-order equations. For instance, one then finds
for the sixth order D[6] ∼ r6ε3

[6]
/ν3 in the viscous range, with two intermediate

equations.
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4.4 Order-dependent cut-off length and velocity
scales ηC and uC

We have seen in section 4.1 that there are exact relations between even moments
of the longitudinal velocity gradient 〈(∂u1/∂x1)2M 〉 and the moments of the
dissipation 〈εM 〉. Furthermore, it was shown in section 4.2 that also the moments
of the mixed velocity gradients Gp,q as well as the components of the pseudo-
dissipation tensor 〈εijεkl...〉 have the same Reynolds number scaling as the
respective moments of the dissipation 〈εM 〉. Additionally, it has been shown
in section 4.3 that higher-order structure functions in the viscous range are
determined by higher moments of the dissipation. This implies that the mean 〈ε〉
is not the correct quantity to define higher-order dissipative scales, i.e. that basic
K41 scaling does not hold at higher orders. In this section, exact order-dependent
dissipative scales are introduced.

The notion of order-dependent cut-off length scales is also related to the
multi-fractal framework, cf. e.g. Paladin and Vulpiani (1987a,b), who used the
multi-fractal model to estimate grid resolution scaling. Frisch and Vergassola
(1991) used the notion of scales smaller than the Kolmogorov scale to modify the
second-order structure function as well as the energy spectrum in the so-called
intermediate dissipation range (situated in between the Kolmogorov scale and the
smallest scale determined by the lowest fractal exponent). They then proposed
a renormalisation of the energy spectrum to collapse it to an universal curve.

Meneveau (1996) examined the viscous range by employing an order-dependent
interpolation formula accompanied by using a multi-fractal model to examine
order- and Reynolds number dependent collapse of structure functions in the
viscous range. He showed that order-dependent cut-off length scales as given
by a multi-fractal model are consistent with extended self-similarity (ESS, cf.
Benzi et al. (1993)) for small Reynolds numbers, but that the collapse of ESS
worsens for high Reynolds numbers and orders.

Yakhot (2003) derived order-dependent cut-off length scales by matching
the viscous range and the inertial range and related these cut-off scales to the
inertial range exponents ζN,0. Yakhot and Sreenivasan (2005) then used Yakhot’s
result and derived additional constraints on the inertial range scaling exponents.
Furthermore, they considered the implications regarding the grid resolution of
numerical studies in the context of Yakhot’s theory. More recently, Schumacher
et al. (2007) examined structure functions using highly resolved DNS and found
that they collapse in the dissipation range when normalised with the cut-off
lengths defined by the inertial range exponents given by Yakhot (2003).
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The approach presented here differs from those described above inasmuch
as we derive cut-off scales by using information gained from the (isotropic)
tensorial properties of the velocity gradient tensor, for which we do not need
any specific assumptions other than isotropy, homogeneity and incompressibility.
This allows to define the cut-off scales with dissipative quantities only (namely
the moments of the dissipation), and we find exact relations for the longitudinal
structure functions of arbitrary even order, using only the same assumptions as
in Kolmogorov’s seminal 1941 work.

4.4.1 Dissipative cut-off scales
Kolmogorov’s first similarity hypothesis states that ’For the locally isotropic
turbulence the distributions Fn are uniquely determined by the quantities ν and
〈ε〉’, where Fn are the distributions of the velocity increments, cf. Kolmogorov
(1941b)∗. In other words, all structure functions Dm,n = 〈(Δu1)m(Δu2)n〉
(where Δuj = uj(xi + ri) − uj(xi) and the separation vector ri with magnitude r
is aligned without loss of generality with the x1-axis) are supposed to be uniquely
determined by the viscosity ν and the mean dissipation 〈ε〉 for r → 0. Kolmogorov
backed this claim by determining the solution for the second-order structure
functions in the viscous range, eq. (3.42). Figure 4.9 shows the second-order
structure function D2,0 normalised with the second-order dissipative scales uη

and η (i.e. the Kolmogorov scales defined in eq. (1.30)) for the different Reynolds
numbers given in section 2.1, which we show here to allow a visual comparison
with higher-order structure functions normalised with the Kolmogorov scales
η and uη as presented below. In that spirit, the ’goodness of collapse’ of the
different curves onto a single curve as seen in fig. 4.9 can be used as reference
for the collapse or non-collapse of higher orders. We find that D2,0 collapses
indeed as expected and scales as r2 for r → 0. The viscous range extends to
r/η ∼ 10 and is followed by a transitional region. For larger r/η, there is the
inertial range which increases with increasing Reynolds number, in agreement
with the classical picture of turbulent flows.

Generalising Kolmogorov’s first similarity hypothesis implies

DN,0 = KN,0
〈ε〉N/2

νN/2
rN , (4.74)

where the constant KN,0 should depend on the order N only and is supposed to be
∗Note that Frisch (1995) interprets Fn more generally as ’small-scale properties’.
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Figure 4.9: Longitudinal structure function D2,0 normalised with η and uη. 

Reλ = 88, � Reλ = 119, � Reλ = 184, � Reλ = 215, � Reλ = 331, ◦ Reλ = 754.
Dashed line corresponds to eq. (4.83) with K̃2,0 = 1/15.

independent of the Reynolds number. Non-dimensionalising this relation with the
Kolmogorov velocity uη = (ν 〈ε〉)1/4 and the Kolmogorov length η = (ν3/ 〈ε〉)1/4

gives
DN,0

(uη)N
= KN,0

(
r

η

)N

. (4.75)

This implies that the structure functions should collapse for small r → 0 ac-
cording to eq. (4.75) if normalised with uη and η. In the following, we focus on
longitudinal structure functions, for which there are exact results as presented
below. We then have for r → 0 from eq. (3.25)

DN,0 =
〈(

∂u1

∂x1

)N
〉

rN . (4.76)

Similarly to Kolmogorov’s approach for the second order, we proceed to relate the
moments of the longitudinal velocity gradient to the moments of the dissipation.
One would immediately estimate that〈(

∂u1

∂x1

)N
〉

∼
〈
εN/2

〉
νN/2

, (4.77)

i.e. 〈(
∂u1

∂x1

)N
〉

=

〈
(SijSij)N/2

〉
C̃N,0

, (4.78)
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in disagreement with Kolmogorov’s first similarity hypothesis and eq. (4.74),
as the exponent and the averaging operator do not commute. The question
then becomes whether C̃N,0 is Reynolds number independent. For even N , it is
possible to find the exact values of C̃N,0 following Siggia (1981), as described in
section 4.1 above. From this, we have C̃2,0 = 15/2 (cf. eq. (3.42)), C̃4,0 = 105/4
(cf. Siggia (1981), C̃6,0 = 567/8, C̃8,0 = 2673/16 and so on, cf. eq. (4.2) and
eq. (4.5) for N even. Consequently, for even N we have

DN,0 = K̃N,0

〈
εN/2

〉
νN/2

rN , (4.79)

with K̃N,0 = (2N/2 C̃N,0)−1 and where the C̃N,0 are exact, Reynolds number
independent values as given by eq. (4.5). Therefore, the even longitudinal
structure function of order N is determined by the moment

〈
εN/2

〉
of the

dissipation and the viscosity ν for r → 0. In other words, we have found the
exact solution for arbitrary even-order longitudinal structure functions in the
viscous range analogously to Kolmogorov’s result at the second order. Note that
it is not possible to arrive at these conclusions simply on dimensional grounds,
because 〈εN 〉 and 〈ε〉N have the same dimensions.

What about the mixed and transversal structure functions at even orders? We
note that these structure functions are not uniquely determined this way except
for the second order N = 2, because the mixed derivatives 〈(∂u1/∂x1)m(∂u2/∂x1)n〉
are not completely determined by 〈εN/2〉. In other words, the higher-order ten-
sors are not determined by only a single scalar function under the constraints
of homogeneity and incompressibility. For instance, the general eighth-order
velocity gradient tensor is determined by the four invariants I1, I2, I3 and I4

given by Siggia (1981) (cf. also Hierro and Dopazo (2003)), see eq. (4.64) to
eq. (4.66). The invariants I1, I2, I3 and I4 are independent and therefore there
are no relations between I1, ..., I4 and similarly at higher orders; consequently,
the fourth-order mixed and transversal structure functions depend also on I2, I3

and I4 and not solely on I1 ∼ 〈ε2〉/ν2. However, Ishihara et al. (2007) found that
the ratios I2/I1, I3/I1 and I4/I1 are constant if the Reynolds number is large
enough, cf. also table 4.5. This implies that all fourth-order structure functions
scale with 〈ε2〉 for r → 0 with universal prefactors including the mixed and
transversal structure functions, although their prefactors cannot be determined
analytically as multiples of the longitudinal prefactor and the same holds at
higher orders, see the discussion as well as the tables and figures in section 4.3.2.
Furthermore, the present approach cannot relate odd moments of the velocity
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4 Viscous range

gradients to moments of the dissipation. For the third order, we have the exact
result eq. (4.38) given in section 4.3.1 as well as 〈(∂u1/∂x1)3〉 = −2〈ωiSijωj〉/35,
which can be derived from the general sixth-order velocity gradient tensor, see
Pope (2000) and which leads to the well-known relation between vortex-stretching
and the negative skewness of the velocity gradient (cf. e.g. Betchov (1956),
Rotta (1972), and Townsend (1951)). As we have seen that the even longitudinal
orders are determined by the moments of the dissipation, we will try to use
〈ε3/2〉 and its generalisation, i.e. we will assume eq. (4.79) to hold also for odd
orders (albeit with unknown, but Reynolds number independent K̃N,0). The only
justification for odd orders up to this point is that this equation has the correct
dimensions. Rather, we would expect the odd orders to scale with 〈ωiSijSjk...ωl〉
(or a generalisation of the above result for D3,0), as these terms can be given in
terms of the general velocity gradient tensor while terms like 〈ε3/2〉 cannot.

We show higher even orders D4,0, D6,0 and D8,0 normalised by uη and η in
the left column of figure 4.10 for different Reynolds numbers. Noticeably, these
higher orders do not collapse and the disparity increases with Reynolds number
and order N . This was anticipated by Landau and Lifshitz (1959) (cf. also
Frisch (1995)), who argued that 〈ε〉 could not be the relevant quantity for all
orders N , which implies that the proportionality factor KN of eq. (4.75) should
be flow dependent. Normalising eq. (4.79), K41 scaling then implies

DN,0

(uη)N
= K̃N,0

〈
εN/2

〉
〈ε〉N/2

(
r

η

)N

. (4.80)

where the Reynolds number dependence of
〈
εN/2

〉
/ 〈ε〉N/2 increases with in-

creasing order N∗. Consequently, Kolmogorov scaling cannot collapse structure
functions different than those at the second-order (N = 2) in the viscous range,
as is clearly seen in the left column of figure 4.10. By introducing a modified
order-dependent cut-off length scale

ηC,N =
(

ν3〈
εN/2

〉2/N

)1/4

(4.81)

and a cut-off velocity

uC,N =
(

ν
〈

εN/2
〉2/N

)1/4

(4.82)

∗K41 theory would imply that 〈εN/2〉/〈ε〉N/2 �= f(Reλ) so that uη and η would collapse all
orders.
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4.4 Order-dependent cut-off length and velocity scales ηC and uC

we find a normalised eq. (4.79)

DN,0

(uC,N )N
= K̃N,0

(
r

ηC,N

)N

, (4.83)

in the spirit of Kolmogorov’s 1941 work on the viscous range for the second
order, where the prefactor is constant. This scaling is shown in the right column
of figure 4.10 again for D4,0, D6,0 and D8,0 for different Reynolds numbers.
Thus, eq. (4.83) indeed collapses the structure functions for r → 0 and K̃N,0 is
universal in the sense that it does not depend on the Reynolds number but is
an order-dependent constant with the exact values K̃2,0 = 1/15, K̃4,0 = 1/105
and so on. This collapse also serves as a numerical confirmation of the relation
between the moments of the dissipation and the even moments of the longitudinal
velocity gradient derived in section 4.1 and as seen in figure 4.7 and figure 4.8.
We find eq. (4.83) to hold for r = 0 to r/ηC,N ≈ 10 independent of the order.
That is, the order-dependent dissipation range scales with ηC,N as expected. As
seen in figure 4.10, this clearly holds for even orders in general, due to eq. (4.79).
We note in passing that

ReC,N = uC,N ηC,N

ν
= 1 (4.84)

as we might have expected, i.e. that inertial and viscous forces balance. Conse-
quently, ηC,N and uC,N are indeed viscous scales; for order N = 2, K41 scaling
(i.e. the classical Kolmogorov scaling) is recovered, as ηC,2 = η and uC,2 = uη.

Let us look at the cut-off length from a slightly different point of view.
Considering only the longitudinal even-order structure functions, which are
determined by the velocity gradients 〈(∂u1/∂x1)N 〉 with dimensional units [s−m],
one needs a second quantity with dimensions [mαsβ ] (with α �= 0 and β �= 0)
to find a characteristic length scale lN with dimensional units [m]. As we are
concerned with the viscous range, the viscosity ν with dimensions [m2s−1] is a
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Figure 4.10: Longitudinal structure functions DN,0. Left column: Kolmogorov
scaling with η and uη. Right column: Scaling with ηC (eq. (4.81)) and uC

(eq. (4.82)). (a) and (b) D4,0, (c) and (d) D6,0, (e) and (f) D8,0. 
 Reλ = 88, �
Reλ = 119, � Reλ = 184, � Reλ = 215, � Reλ = 331, ◦ Reλ = 754. Dashed
lines correspond to eq. (4.83) with K̃4,0 = 1/105 (b), K̃6,0 = 1/567 (d) and
K̃8,0 = 1/2673 (f).
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4.4 Order-dependent cut-off length and velocity scales ηC and uC

natural choice. We then have

lN =

⎡⎣ νN〈
(∂u1/∂x1)N

〉
⎤⎦ 1

2N

=

⎡⎣ ν(3/2)N

νN/2

〈
(∂u1/∂x1)N

〉
⎤⎦ 1

2N

∼
[

ν3〈
εN/2

〉2/N

]1/4

= ηC,N (4.85)

and similarly for uC,N . That is, when choosing the viscosity as second quantity
to build the length scale, ηC,N and uC,N naturally follow. Different scales can
only be obtained by choosing a different quantity than ν.

Different to the viscous range it is not possible to determine a priori how to
normalise DN,0 = CN,0rζN,0 in the inertial range so that CN,0 does not depend
on the Reynolds number. This is due to the fact that we do not know the exact
value of ζN,0 and thus cannot choose a suitable velocity and length scale so that
CN,0 is non-dimensional; therefore we cannot expect the structure functions to
collapse in the inertial range. The only exception is of course the third-order
structure function D3,0 = −4/5 〈ε〉 r, which collapses using the K41 scales uη and
η. Deviations from K41 for the second-order structure functions in the inertial
range are usually attributed to intermittency effects. For higher orders, it is
therefore necessary to consider deviations of the higher-order structure functions
normalised in a way that they collapse for r → 0 (as do the second-order structure
functions when normalised with the K41 quantities), i.e. not with η and uη

but with ηC,N (eq. (4.81)) and uC,N (eq. (4.82)). If one examines deviations of
higher-order structure functions normalised with the second-order quantities η
and uη, one includes the well known increase of higher-order derivative moments
scaled by the second moment. These effects are not present when using ηC,N

and uC,N , as with these scales the Reynolds number dependence cancels out.
Next, we also look at the odd orders, which should be determined by 〈ωiSijωj〉

(third order), 〈ωiSijSjkSklωl〉 (fifth order) and so on∗. We find that their
behaviour resembles that of the even orders, inasmuch as Kolmogorov scaling
eq. (4.75) does not collapse the structure functions for r → 0, cf. the left column
of figure 4.11. Again, we find that deviations increase with increasing order and
Reynolds number, as was the case for the even orders. Using ηC,N (eq. (4.81))
and uC,N (eq. (4.82)) collapses the data and again we have an order-dependent
dissipation range up to r/ηC,N ∼ 10. Thus, the general relation eq. (4.83)

∗Or by ν2/(N−1)〈ε(N−1)/2
11 (∂u1/∂x1)〉 in the spirit of section 4.3.1.
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4 Viscous range

also holds for odd orders, although we cannot determine the prefactors K̃N,0

analytically. Furthermore, we would expect the odd moments of the (longitudinal)
velocity gradient pdf to scale with 〈εN/2〉/〈ε〉N/2, if 〈(∂u1/∂x1)N 〉 ∼ νN/2〈εN/2〉
for odd orders as well, as our data suggests. Ishihara et al. (2007) found a
scaling exponent of 0.11 ± 0.1 for Reynolds number dependence of the skewness
of ∂u1/∂x1, which agrees with the scaling 〈ε3/2〉/〈ε〉3/2 ∼ Re0.12

λ from our DNS.
This implies that 〈ε3/2〉 ∼ ν3/2〈ωiSijωj〉 and so on, with constant proportionality
factors. However, these factors cannot be determined by the isotropic form of
the general velocity gradient tensor, as 〈ε3/2〉 etc. cannot be expressed in terms
of it.

In view of section 4.3.1, this implies that the ratio 〈(∂u1/∂x1)ε11〉/〈ε3/2〉
is constant as well and similarly at higher odd orders. Moreover, all ratios
〈(∂u1/∂x1)m(∂u2/∂x1)n〉/〈εN/2〉 should be constant at sufficiently large Reynold
numbers, cf. section 4.2.3, even though only those of the even order longitudinal
velocity gradient can be derived analytically. This implies that all structure
functions in the viscous range can be written as

Dm,n = K̃m,n

〈
εN/2

〉
νN/2

rN , (4.86)

where K̃N,0 = (2N/2CN )−1 with CN from eq. (4.5) for even N . Consequently,
the dissipative scales defined by eq. (4.81) and eq. (4.82) hold for all structure
functions of order N and not only the longitudinal DN,0. Furthermore, Kol-
mogorov (1941b)’s first similarity hypothesis needs to be modified by replacing
〈ε〉 by the respective moments 〈εN/2〉.

To summarise, ηC,N and uC,N are the right quantities to normalise structure
functions of order N in the viscous range, as shown in figure 4.10 and figure 4.11.
Using the new scales ηC,N and uC,N collapses the higher orders as well as η
and uη in case of the second order, cf. figure 4.9. Moreover, the probability
density function (pdf) of the dissipation ε in combination with the viscosity ν can
therefore be thought of as boundary conditions r → 0 for the structure functions
in the system of partial differential equations equations shown in figure 3.1.

Naturally, the question arises how ηC,N scales with η. From eq. (4.81) we find

ηC,N

η
=

(
〈ε〉N/2〈
εN/2

〉) 1
2N

∼ Re
−(αN/2)/(2N)

λ . (4.87)
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Figure 4.11: Longitudinal structure functions DN,0. Left column: Kolmogorov
scaling with η and uη. Right column: Scaling with ηC (eq. (4.81)) and uC

(eq. (4.82)). (a) and (b) D3,0, (c) and (d) D5,0, (e) and (f) D7,0. 
 Reλ = 88, �
Reλ = 119, � Reλ = 184, � Reλ = 215, � Reλ = 331, ◦ Reλ = 754.
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Figure 4.12a shows the scaling of
〈
εN/2

〉
/ 〈ε〉N/2 as function of the Reynolds

number Reλ as evaluated from our DNS,〈
εN/2

〉
〈ε〉N/2

∼ Re
αN/2
λ , (4.88)

where the dashed lines correspond to a least-squares fit and we use the values of
αN/2 from our DNS in the following. Noticeably, the scaling exponent αN/2 of
eq. (4.88) increases with N , in agreement with the notion of intermittency of ε.
Donzis et al. (2008) compared 〈εN/2〉, 〈ε〉N/2 as well as the ratio for different
orders N/2 = 2, 3, 4 as function of the Reynolds number and grid resolution.
They found that a grid resolution κmaxη somewhere between κmaxη = 1 and
κmaxη = 3 is sufficient to resolve the second to fourth moments of ε. Interestingly
enough, the sensitivity of the normalised moments with respect to the resolution
κmaxη seems to decrease with increasing Reynolds number, at least for the
two cases Reλ = 140 and Reλ = 240 they considered (their figure 4 and
table 2). For that matter, we feel rather confident that the data shown in
our figures 4.12a and 4.12b is adequate for the issues addressed here (cf. also
the discussion and figures of section 4.3), although we cannot claim that there
might be no (small) errors in the values of αN/2 used below. In a recent paper,
Schumacher et al. (2014) compared different flows for N/2 = 2, 3, 4 and found
that the Reynolds number dependence of 〈εN/2〉/〈ε〉N/2 is the same for the
different flows they examined (homogeneous isotropic turbulence, a turbulent
channel flow and turbulent Rayleigh-Bénard convection). This implies that
the moments of the (longitudinal) velocity gradient should also have the same
Reynolds number dependence for the different flow types. This seems to be
case; Sreenivasan and Antonia (1997) and Ishihara et al. (2007) compiled data
of different flows and found a good collapse of the skewness and flatness of
the longitudinal velocity gradient. Moreover, from eq. (4.7) with M = 2, the
Reynolds number dependence of 〈ε2〉/〈ε〉2 must be the same as the Reynolds
number dependence of 〈(∂u1/∂x1)4〉/〈(∂u1/∂x1)2〉2, i.e. the normalised second
moment of the dissipation must scale the same as the flatness of the longitudinal
velocity gradient. From our data, we find a scaling 〈ε2〉/〈ε〉2 ∼ Re0.33

λ , while
Ishihara et al. (2007) reported 〈(∂u1/∂x1)4〉/〈(∂u1/∂x1)2〉2 ∼ Re0.34±0.03

λ , i.e.
we find excellent agreement.

Thus, the cut-off length ηC,N decreases with increasing Reynolds number Reλ,
while the order-dependency needs to be examined more closely. Figure 4.12b
shows the ratio αN/2/(2N) for N = 1, ..., 8 where αN/2 has been obtained by
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Figure 4.12: (a) Scaling of 〈εN/2〉/〈ε〉N/2 as function of the Reynolds number.
(b) αN/2/2N as function of N/2. Symbols: DNS data, solid line: Log-normal
model with μ = 0.25, dashed line: p-model with p1 = 0.7, dotted line: She-Leveque
model. Model predictions are described in section 5.2 below.

fitting the data of figure 4.12a. We find that αN/2/(2N) plotted over N/2 is
concave and non-decreasing, at least for the orders observed. This can also be
seen in figure 4.10, where the transitional range is shifted towards smaller scales
with increasing order. This immediately raises the question of the asymptotic
behaviour of αN/2 at high orders, as it would imply that there is a myriad of
smaller and smaller scales (N/2 is unbounded in principle). If there is no upper
limit of αN/2/(2N) for N → ∞, then the smallest scale ηN→∞ → 0 independent
of the Reynolds number, as seen from eq. (4.87). Indeed, there is an upper limit
αN/2/(2N) ≤ 1/2, as discussed in section 5.1.

4.4.2 Implications for the resolution of DNS
From the existence of scales smaller than the Kolmogorov scale, it follows that
this might influence the resolution requirements of direct numerical simulations,
as characterised by the product κmaxη, where κmax is the maximum wavenumber
resolved by the simulation. Different to earlier work e.g. by Yakhot and
Sreenivasan (2005), where the multi-fractal model was used to determine the
cut-off scales, we use here the exact length scales eq. (4.81). It is therefore
worthwhile to examine the required grid resolution in some detail, although
it has been studied in the literature by employing different approaches before.
Naturally, there is a trade-off for a given number of grid points corresponding
to a given κmax between a highly resolved simulation (i.e. a large κmaxη) and a
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high Reynolds number implying a low κmaxη. Common wisdom is to resolve at
least κmaxη = 1 and usually, κmaxη = 1.3 is considered high enough. Note that
some studies require a higher resolution, especially if the examined quantities
depend on higher-order derivatives of the velocity field. An example is the study
of Jiménez et al. (1993), which required κmaxη = 2.

It is evident that κmaxη > 1 is needed to resolve the higher moments of the
velocity gradient pdf, as these are linked to the higher moments of the dissipation.
The higher the order of the moment, the higher the required resolution. This can
also be seen from the data of Ishihara et al. (2007) as well as Donzis et al. (2008),
where the velocity gradient pdf did not collapse at similar Reynolds number
with κmaxη = 1 and κmaxη = 2; the dissimilarity is less in the core of the pdf
and stronger in the tails, which are determined by the higher moments.

From eq. (4.87), we see that the cut-off lengths ηC,N are less resolved for a
given κmaxη with increasing order N . In order to compare these influences, the
normalised resolution

[κmaxηC,N ]∗ = κmaxηC,N

κmaxη
(4.89)

is provided in table 4.6, where we have used the values of 〈εN/2〉/〈ε〉N/2 from
our data. We also give extrapolated resolutions for Reλ = 103 and Reλ = 104,
which were computed using the fits shown in figure 4.12a. These resolutions are
not meant to give exactly the required resolution to resolve the eighth order at
Reλ = 103, say, but rather to provide an estimate and to show the influence
of the Reynolds number and order. For instance, κmaxη = 1.3 would suggest
that the fourth-order structure function (and with it the flatness of the velocity
gradient pdf) is completely resolved at Reλ = 104, while higher orders are only
partially resolved. Equivalently, we would expect κmaxη = 1.3 at Reλ = 215 to
fully resolve the sixth-order structure function, i.e. this rule of thumb ensures a
well-enough resolved DNS, if one is interested in lower-order moments at (from
the present point of view) low to intermediate Reynolds numbers.

To summarise, if κmaxη = κmaxηC,2 = 1 completely resolves the second-order
structure function, the variance of the velocity gradient pdf, the mean dissipation
〈ε〉 and low-order statistics like the mean kinetic energy 〈k〉 (cf. Yeung and
Pope (1989)), then κmaxηC,3 = 1 additionally completely resolves the third-order
structure function, skewness of the velocity gradient pdf and the vortex stretching
〈ωiSijωj〉, while κmaxηC,4 = 1 also resolves the flatness of the velocity gradient
pdf, the variance of the pdf P (ε) and the fourth-order structure function and so
on.

Thus, we need more grid points to resolve a certain order when increasing the
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Table 4.6: Normalised resolution [κmaxηC,m]∗ = κmaxηC,m/κmaxη as function of
Reynolds number Reλ and order m.

R0 R1 R2 R3 R4 R6 Reλ =103 Reλ =104

[κmaxη]∗ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[κmaxηC,4]∗ 0.894 0.883 0.871 0.864 0.849 0.819 0.805 0.738
[κmaxηC,6]∗ 0.806 0.785 0.763 0.749 0.725 0.678 0.663 0.551
[κmaxηC,8]∗ 0.730 0.700 0.672 0.652 0.623 0.571 0.551 0.424

Reynolds number than the classical estimate using K41 would suggest. There
are several estimates of the scaling of numbers of grid points with the Reynolds
number, see for instance Davidson (2004), Paladin and Vulpiani (1987b), and
Yakhot and Sreenivasan (2005). In the following, we will use eq. (4.87). If we
assume that αN/2/(2N) converges to a finite number for N → ∞, we can use
eq. (4.87) to estimate the number of grid points to completely resolve all scales,
sometimes also called the number of degrees of freedom of the flow. That is, we
can estimate the scaling of grid points with the Reynolds number via

Ngrid ∼
(

LBox

Δx

)3

∼
(

LBox

L

)3 (
L

ηC,N→∞

)3

∼
(

LBox

L

)3 (
L

η

)3 (
η

ηC,N→∞

)3

∼
(

LBox

L

)3

Re
9/4[1+αN/2/(3N)]

L ,

(4.90)

where Δx is the grid spacing, LBox the length of the DNS box (cube) and
L the integral length. Consequently, Ngrid is larger than the K41 estimate
Ngrid ∼ Re

9/4

L since αN/2 ≥ 0 and the scaling of Ngrid depends on the asymptotic
behaviour of αN/2/(2N) for N/2 → ∞. From eq. (5.22), αN/2/(2N) ≤ 1/2 (i.e.
αN/2/(3N) ≤ 1/3) and therefore

Ngrid ∼
(

LBox

L

)3

Re3
L, (4.91)

as upper bound. Paladin and Vulpiani (1987b) used the multi-fractal framework
to also obtain N ∼ Re3

L as the largest Reynolds number scaling possible (see
also Yakhot and Sreenivasan (2005), where also a Re3

L scaling has been found).
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For the She-Leveque model, αN/2/(2N) → 3/10 (cf. eq. (5.25)) and one obtains
N ∼ Re

27/10

L . Paladin and Vulpiani (1987b) reported N ∼ Re2.3
L using data

from Anselmet et al. (1984).

4.4.3 A short remark on passive scalar cut-off scales

Let us briefly digress and discuss the passive scalar φ. One might have expected
that similar results as eq. (4.81) and eq. (4.82) existed for the passive scalar.
Furthermore, one might have also hoped that the scalar analogon is easier to
derive, since the passive scalar is by definition a scalar quantity and not a vectorial
quantity like the velocity field, which simplifies the necessary computations
regarding isotropic tensor calculus.

From a Taylor series, one obtains for even N for r → 0

〈
(Δφ)N

〉
=

〈(
∂φ

∂x1

)N
〉

rN + . . . , (4.92)

similarly to eq. (3.25) for the structure functions, where Δφ = φ − φ′ is the
passive scalar increment separated by the vector ri, analogous to the velocity
increment Δui = ui − u′

i. Consequently, 〈(Δφ)N 〉 are passive scalar structure
functions of order N .

Assuming tentatively that the passive scalar is isotropic for r → 0, there are
exact relations of the form〈

χN/2
〉

= 1
CN

DN/2

〈(
∂φ

∂x1

)N
〉

(4.93)

for even N in analogy to eq. (4.86), where

χ = 2D
∂φ

∂xi

∂φ

∂xi
(4.94)

is the scalar dissipation with D as scalar diffusion coefficient. Therefore for
r → 0, 〈

(Δφ)N
〉

= CN

〈
χN/2

〉
DN/2

rN , (4.95)

for even N . Indeed, one can compute the CN rather easily. In the following, we
briefly sketch the derivation of C2 and C4. For N = 2, one can write assuming
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isotropy 〈
∂φ

∂xi

∂φ

∂xj

〉
= A1δij , 〈χ〉 = 2DA1δii = 6DA1. (4.96)

Consequently, 〈(
∂φ

∂x1

)2
〉

= 〈χ〉
6D

(4.97)

and C2 = 1/6. For N = 4, one can write assuming isotropy〈
∂φ

∂xi

∂φ

∂xj

∂φ

∂xk

∂φ

∂xl

〉
= A1δijδkl + A2δikδjl + A3δilδjk

= A (δijδkl + δikδjl + δilδjk)
(4.98)

since all indices are interchangeable and therefore A1 = A2 = A3 = A. This
is also true at higher N , which is one of the main differences compared to the
general velocity gradient tensor; all CN can be uniquely determined by isotropy
alone, since they depend on a single scalar function which can be related to the
higher moments of χ. One then finds〈

χ2
〉

= 4D2A (δiiδjj + 2δijδij) = 60D2A (4.99)

which yields 〈(
∂φ

∂x1

)4
〉

=
〈
χ2

〉
20D2

(4.100)

and C4 = 1/20. Similarly, higher order CN can be easily computed. We now
continue as for the velocity field. Normalising eq. (4.95) then gives〈

(Δφ)N
〉

(φC,N )N
= CN

(
r

ηφ,N

)N

(4.101)

with the Nth-order cut-off scale

ηφ,N = φC,N D1/2〈
χN/2

〉1/N
(4.102)

where φC,N is the Nth-order cut-off scalar. Here, an apparent difference to
eq. (4.86) is observable: φC,N is a-priori undetermined. From dimensional
analysis, this is due to the fact that there are three dimensional units, [m], [s]
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and [K] (the unit of the passive scalar) but only two scaling quantities D and
〈χN/2〉 with dimensions [m2/s] and [K2/s], while in eq. (4.86) there are only
two dimensional units [m] and [s] and two scaling quantities ν and 〈εN/2〉 with
dimensions [m2/s] and [m2/s3]. Consequently, ηφ,N cannot be expressed solely
in terms of D and 〈χN/2〉, while ηC,N can be expressed by ν and 〈εN/2〉. From
a physical point of view, ηφ,N cannot be determined by D and 〈χN/2〉 alone,
because they do not describe the influence of the velocity field on the passive
scalar (since the passive scalar is passive and not active, it does not influence
the velocity field and therefore eq. (4.86) remains unchanged, i.e. there is no
influence of the passive scalar on the velocity field cut-off scales ηC,N and uC,N ).

That is, in order to proceed, one has to further specify φC,N
∗. It is well known

that the Schmidt-number
Sc = ν

D
(4.103)

plays a crucial role, i.e. the cases Sc � 1 and Sc � 1 differ physically. For Sc > 1,
ν > D and the passive scalar diffusion is less effective than the kinematic diffusion.
Therefore, one would expect a fine-scale structure of φ with ηφ,N < ηC,N . On the
other hand, if Sc < 1 and D > ν, the passive scalar diffusion is more effective and
ηφ,N > ηC,N . The differences between the small and large Schmidt-number cases
are easily seen when examining the spectra for Sc � 1 (figure 4.13a) and Sc � 1
(figure 4.13b), where Γ is the scalar spectrum and E the energy spectrum. In
case of Sc < 1, Γ falls rapidly off at wavenumbers κ ∼ η−1

φ,2 while the energy
spectrum still exhibits inertial range scaling. The slope of Γ ∼ κ−17/3 in the
range η−1

φ,2 < κ < η−1 was derived by Batchelor et al. (1959). For Sc > 1, passive
scalar fluctuations are rather dissipated at a wavenumber κ ∼ η−1

φ,2 > η−1 and
Batchelor (1959) found that Γ ∼ κ−1 in the range η−1 < κ < η−1

φ,2.
In general, one would expect that

φC,N = f(χ, D, ε, ν). (4.104)

One issue immediately arises: from dimensional analysis alone, it is not possible
to distinguish between

〈
ε2
〉

and 〈ε〉2, say. Therefore, additional analysis needs
to be carried out.

Indeed for N = 2, the exact results for ηφ,2 are known as detailed below. For
Sc < 1, the corresponding ηφ,2 was independently derived by Obukhov and
Corrsin (see the discussion in Batchelor (1959)), while the high Schmidt-number

∗Or, equivalently, the cut-off scale ηφ,N .
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(a) (b)

Figure 4.13: Scalar and energy spectra for Sc � 1 (a) and Sc 	 1 (b). Figures
adapted from Batchelor (1959) and Batchelor et al. (1959).

result was derived by Batchelor (1959).

• For Sc � 1, one would expect that the viscosity ν plays no role, because
the cut-off of the scalar spectrum occurs at a much lower wavenumber than
the cut-off of the velocity spectrum, i.e. φC,N = f(χ, D, ε). Furthermore
since N = 2, one would assume 〈ε〉 and 〈χ〉 to be the relevant quantities
and not higher moments such as 〈ε2〉 or 〈χ2〉. Dimensional analysis then
yields

φC,2 = 〈χ〉1/2
D1/4

〈ε〉1/4
, ηφ,2 =

(
D3

〈ε〉
)1/4

= Sc−3/4η (4.105)

where η = ηC,2 is the second-order velocity cut-off scale, i.e. the Kol-
mogorov scale. This result is consistent with the scaling reported in the
literature by Obukhov and Corrsin for Sc � 1.

• For Sc = 1, one would expect the cut-off of both the scalar spectrum and
the velocity spectrum at the same wavenumber, and consequently ηφ,2 = η.
Thus from eq. (4.102),

φC,2 = 〈χ〉1/2
η

D1/2
, (4.106)

i.e. the viscosity also plays a role as expected and φC,N = f(χ, ε) and
either ν or D, since ν = D.
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• Lastly, for Sc � 1, the energy spectrum falls off rapidly and viscosity plays
an important role in teasing out very thin sheets or ribbons of φ upon which
the scalar viscosity acts as detailed by Batchelor. Thus, φC,2 = f(ν, ε, χ),
i.e.

φC,2 = 〈χ〉1/2
ν1/4〈

ε1/4
〉 , ηφ,2 =

(
νD2

〈ε〉
)1/4

= Sc−1/2η. (4.107)

For Sc � 1, the scale ηφ,2 = Sc−1/2η is known as Batchelor scale.

These results can be used to collapse second-order passive scalar structure
functions for r → 0. However, there are no known results at higher orders. For
instance in case of ηφ,4, it is not clear whether to scale φC,4 with 〈ε2〉, 〈ε〉2 or
both, i.e. whether ηφ,4 = η, ηφ,4 = ηC,4 or a combination of the two. For that
matter, any assumption φC,N = f(χ, D, ε, ν) would need to be checked against
DNS data or experiments with different Reynolds and Schmidt number∗. Such
an endeavour is out of the scope of the present analysis. We may conclude that
the correct cut-off scales of the passive scalar cannot be determined by the same
procedure as for the velocity field, although deriving the CN is much easier than
the analogous connectors Cm,n of eq. (4.86).

Finally, it should be mentioned that the assumption of isotropy might not be
correct regarding the passive scalar, even in the range r → 0, cf. the discussion
in Sreenivasan (1991) as well as Warhaft (2000). Isotropy requires that the
gradient pdf P (∂φ/∂x1) = P (∂φ/∂x2) = P (∂φ/∂x3), i.e. all gradients have the
same statistics. Furthermore, all odd moments of the scalar gradient must vanish
because they are determined by odd-order tensors†. Hence, the scalar gradient
pdf would be symmetric. Specifically, isotropy thus implies that P (∂φ/∂x1) as
well as P (∂φ/∂x2) and P (∂φ/∂x3) are unskewed. However, the implications of
isotropy are at odds with experiments, cf. e.g. Mydlarski and Warhaft (1998) or
Tong and Warhaft (1994).

Moreover, for odd orders N ,
〈
(Δφ)N

〉
would scale as rN+1 for r → 0, which is

why we have limited the discussion to even orders in this section. For instance
∗Note that this would require a more refined computational grid, since the ratio ηφ,N /ηC,N < 1

for Sc � 1, which would modify eq. (4.90).
†Assuming isotropy, odd-order tensors such as 〈(∂φ/∂xi)(∂φ/∂xj)(∂φ/∂xk)〉 or similar higher-

order tensors vanish, because the only odd-order isotropic tensor is the ε-tensor εijk (third
order) or combinations thereof such as δijεklm, see appendix A. Since εijk changes sign
under interchange of two of its indices, e.g. εijk = −εikj , odd-order tensors vanish since
statistics are supposed to be invariant not only with respect to rotations of the coordinate
system, but also with respect to reflections when assuming isotropic flows.
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for N = 3, one finds

〈
(Δφ)3

〉
= 3

2

〈(
∂φ

∂x1

)2 (
∂2φ

∂x2
1

)〉
r4 + O(r5) (4.108)

and similarly for higher order, i.e. is dependent on combinations of higher
derivatives of φ and not only (∂φ/∂x1)N . We note in closing that this is different
for the velocity gradient pdf, because there the odd moments such as 〈(∂u1/∂x1)3〉
are determined by even-order tensors, i.e. do not vanish. Therefore, the odd-
order moments of the velocity gradient pdf do not vanish under the assumption
of isotropy and consequently 〈(Δu1)m(Δu2)n〉 ∼ 〈(∂u1/∂x1)m(∂u2/∂x1)n〉rN

for r → 0 for both even and odd N .
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After having discussed the viscous range in chapter 4, let us now turn to the
inertial range in the present chapter, mostly based on Boschung et al. (2016c)
(section 5.2), Peters et al. (2016) (section 5.3) and Boschung et al. (2016a)
(section 5.4).

In section 5.1, it is shown that assuming RSH implicitly implies that the ratio
(∂DN+1/∂r)/〈EN,0〉 = const., i.e. that the longitudinal structure functions of
order N + 1 are determined by the longitudinal dissipation source terms of order
N . This assumption is found to be in good agreement with the DNS data of
section 2.1.

In section 5.2, we look at the connection between normalised moments of the
dissipation 〈εM 〉/〈ε〉M as discussed in chapter 4 and longitudinal inertial range
scaling exponents ζN,0. We find very good agreement with the scaling exponents
reported in section 3.1.1 as well as those found in the literature.

In section 5.3, we will investigate the effect of dissipation parameters such as
〈(ε11+ε′

11)N/2〉 on the inertial range scaling exponents by integrating the structure
function equations in the inertial range. Since there are exact results stemming
from the second-order structure function equations (Kolmogorov’s 4/5-law, cf.
section 1.4), it seems promising to examine the higher-order equations. Here, we
focus specifically on the fourth order. Using order-of-magnitude estimates for
the different source terms, we determine the fifth-order scaling exponents. We
will also look at the connection between dissipation fluctuations traditionally
represented by the volume-averaged dissipation εr and its connection to the
dissipation parameters identified in the dissipation source term equations given
in section 3.1.3. We focus on the trace of the fourth-order structure function
equations rather than the component’s equations, because it simplifies the
treatment of the equations. Additionally, there is an analogy to the trace of the
second-order structure function equations, which contain the mean dissipation
〈ε〉. We may therefore expect to find the second moment 〈ε2〉 in the fourth-order
equations. In this context, it is also worth mentioning that the trace is of
particular interest because it is invariant, i.e., independent of the coordinate
system, as are 〈ε〉 and Siggia’s invariants (Siggia (1981)). This is especially
important if one is interested in scaling parameters such as

〈
εM

〉
. For instance,
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Hill (2002) showed that the mean dissipation 〈ε〉 is found in the trace of the
second-order structure function equations (those quantities being invariants),
while the equations for the components of the second-order structure function
contain the pseudo-dissipation tensor 〈εij〉. Kolmogorov’s K41 eq. (1.28) relating
a component of the third-order structure function to the invariant 〈ε〉 is obtained
because of the incompressibility relation eq. (3.24). Analogous incompressibility
relations do not exist at higher order such that one should not expect equations
relating individual components of higher-order structure functions to an invariant
quantity analogous to 〈ε〉. We further find that the approach of using εr is
consistent with the two-point theory of small-scale turbulence in the sense that
εr appears in the system of the newly derived equations.

In section 5.4 we examine the influence of the unsteady/forcing terms and the
viscous terms in the inertial range, exemplified for the second-order equations.
Both the unsteady/forcing terms and viscous terms have been neglected in the
inertial range thus far. Here, we use rather DNS of decaying homogeneous
isotropic turbulence as described in section 2.2 as compared to the forced
turbulence (described in section 2.1) employed up to this point, for two reasons:
First, using decaying turbulence means that there is no contribution by the
large-scale forcing to the balance equations, but rather the unsteady term which
can be rewritten after normalising the equations to make it amenable for closer
examination. Second, while the unsteady term vanishes after averaging for the
forced turbulence, it plays a very similar role for decaying turbulence as the
forcing term for forced turbulence, i.e. is acting on the large-scales in a similar
way.

5.1 Kolmogorov’s refined similarity hypothesis
and the dissipation source terms

In this section, we briefly show that Kolmogorov’s refined similarity hypothesis
implicitly assumes that longitudinal structure functions of order N + 1 are
determined by the longitudinal dissipation source terms of order N found in the
structure function equations.

As discussed in section 3.1, the K41 postulate eq. (1.33),

DN,0 = AN 〈ε〉N/3
rN/3, (5.1)

where AN are order-dependent prefactors which may depend on the Reynolds
number, was found to be in disagreement with measurements and simulations of
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higher-order structure functions, cf. e.g. figure 3.3b. For that reason, Kolmogorov
(1962) introduced the refined similarity hypothesis (RSH) eq. (3.28),

DN,0 = ÃN

〈
εN/3

r

〉
rN/3, (5.2)

where ÃN is another order-dependent constant and εr given by

εr = 1
r

∫
εdr. (5.3)

In this framework, deviations from K41 scaling are then due to the r-dependence
of 〈εN/3

r 〉. More specifically, RSH states that

Δu1 = V ε1/3
r r1/3, (5.4)

where V is a stochastic variable which is postulated to be independent of εr

and r, but depends only on a local Reynolds number Rer = (εrr)1/3r/ν. For
Rer � 1, V is furthermore supposed to be independent of Rer (second refined
similarity hypothesis). Therefore, ÃN =

〈
V N

〉
. One then has a power-law

eq. (3.34), DN,0 ∼ rζN,0 with ζN,0 = N/3 + γN/3, if one assumes a power-law
〈εN/3

r 〉 ∼ rγN/3 . The validity of eq. (5.2) has been checked by Chen et al. (1993,
1995), Stolovitzky et al. (1992), Thoroddsen (1995), and Thoroddsen and Van
Atta (1992) mostly by examining statistics of V , in support of RSH. Note that
eq. (5.2) has been questioned by Hosokawa (2007), who discussed an apparent
paradox of RSH. However under closer inspection of his argument, the ansatz
eq. (5.2) and eq. (5.4) is not self-contradictory, since Hosokawa’s eq. (5) is equal
to the 4/5-law and therefore combined with eq. (5.4) (which results in his eq. (8))
then yields 〈V 3〉 = −4/5. Only if 〈V 3〉 �= −4/5, there would be an inconsistency.

For some time, there has been an expectation that the connection between the
Navier-Stokes equations and RSH would be discovered one day or, as Kaneda and
Morishita (2013) proffered: The link between these models and the NS dynamics
governing the fluid motion appears still to be missing. This would require that a
correlation exists between εr and the terms representing dissipation fluctuations
in the Navier-Stokes equations. If one wanted to reconcile RSH with the two-
point equations, one would have to develop a closure between the moments of εr

and the dominating source terms in the structure function equations.

The exact transport equations for the structure functions DN,0 of arbitrary
order N under the assumptions of (local) homogeneity and (local) isotropy are
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given by eq. (3.19). For the longitudinal component, they read

∂DN,0

∂t
+ ∇rD(N+1),0 = − 〈EN,0〉 − 〈TN,0〉 + ν∇2

rDN,0, (5.5)

where 〈EN,0〉 are the longitudinal dissipation source terms and 〈TN,0〉 the longi-
tudinal pressure source terms defined by eq. (3.14) and eq. (3.13), respectively.
As detailed in section 3.1.1, the longitudinal transport terms are defined as

∇rD(N+1),0 = ∂DN+1,0

∂r
+ 2

r
DN+1,0 − 2N

r
DN−1,2 (5.6)

and the longitudinal dissipation source terms as

〈EN,0〉 = CN

〈
(Δu1)N−2 (ε11 + ε′

11)
〉

= 2CN

〈
(Δu1)N−2

ε11

〉
,

(5.7)

where CN = CN−1 + (N − 1) with C2 = 1 are order-dependent prefactors
independent of the Reynolds number and where 〈(Δu1)N−2ε11〉 = 〈(Δu1)N−2ε′

11〉
due to symmetry (this has been checked with the DNS data of section 2.1).
Assuming an inertial range η � r � L, where η is the Kolmogorov scale and L
a large scale, the diffusive term ν∇2

rDN,0 as well as possible contributions by
large-scale forcing may be neglected. For statistically stationary flows, one then
obtains

∇rDN+1,0 = − 〈EN,0〉 − 〈TN,0〉 . (5.8)

Since eq. (3.19) is derived from the Navier-Stokes equations, its solution deter-
mines the structure functions of order N . In other words, eq. (5.2) should be
compatible with eq. (5.8).

It was shown in section 3.1.3, as well as section 5.3 below, that the higher
moments 〈(ε11 + ε′

11)N/2〉 are contained in the structure function equations of
order N with N even, where they are found in consecutive transport equations
for the longitudinal dissipation source terms 〈EN,0〉. Thus, one would expect
that RSH is connected to the dissipation source terms or equations derived
therefrom.
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Taking the derivative of 〈ε(N+1)/3
r 〉r(N+1)/3 with respect to r yields

∂

∂r

(〈
ε(N+1)/3

r

〉
r(N+1)/3

)
= ∂

∂r

〈[∫ r

0

ε(x)dx

](N+1)/3
〉

=
〈

N + 1
3

[∫ r

0

ε(x)dx

](N−2)/3
∂

∂r

[∫ r

0

ε(x)dx

]〉

= N + 1
3

〈
(εrr)(N−2)/3

ε
〉

(5.9)

and after inserting the RSH assumption eq. (5.4) into eq. (5.9), we find

∂DN+1,0

∂r
= N + 1

3

〈
V N+1

〉
〈V N−2〉

〈
(Δu1)N−2

ε
〉

. (5.10)

As expected, N = 2 recovers after integration the 4/5-law eq. (1.31). Note that
RSH states that 〈V 〉 = 0 due to homogeneity, because then also 〈Δu1〉 = 0.
That is, eq. (5.10) breaks down for N = 3, i.e. the fourth-order longitudinal
structure function D4,0 cannot be determined by eq. (5.10).

Eq. (5.10) should be compared to the dissipation source term eq. (5.7). If one
rather defines

εr = 1
r

∫
ε11dr, (5.11)

then there would be ε11 instead of ε in eq. (5.10)∗. Sometimes, also the surrogate
ν(∂u1/∂x1)2 is used instead of ε11 in eq. (5.11), because it can be measured more
easily using Taylor’s hypothesis. The choice at hand may impact the scaling of
〈εN/3

r 〉, though one would surmise that the ratios of 〈(Δu)N−2ε〉/〈(Δu)N−2ε11〉
and 〈(Δu)N−2ε〉/〈(Δu)N−2ν(∂u1/∂x1)2〉 do not depend on r in the inertial
range. In any way, there is no ambiguity if one uses eq. (5.11) instead of eq. (5.3).
Similarly, eq. (5.10) and eq. (3.14) suggest that if one would try to extend
eq. (5.2) for mixed and transverse structure functions, one should choose ε22

for the transverse and combinations of ε11, ε22 and ε12 for the mixed structure
functions.

Thus, we find that RSH implicitly assumes that

∂DN+1,0/∂r

〈EN,0〉 = const. (5.12)

∗This would then require that 〈V 3〉 = −12/5 to recover the 4/5-law, because 〈ε11〉 = 〈ε〉/3.
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Figure 5.1: Ratio eq. (5.12) for N = 4 (a) and N = 6 (b) as evaluated from
DNS for datasets R3, R4, R5 and R6. Higher Reλ are indicated by lighter colours.

if eq. (5.11) is employed. In other words, if this ratio is constant in the inertial
range, then RSH is compatible with the system of structure function equations.
That is, RSH implies that (longitudinal) structure functions are determined by the
(longitudinal) dissipation source terms. It should be stressed that ∂DN+1,0/∂r �=
∇rDN+1,0, but is only a part of the divergence, cf. eq. (5.6). This seems
reasonable, because RSH has been postulated for longitudinal structure functions
only, while the full transport term eq. (5.6) also contains mixed structure
functions and cannot be integrated to solve for DN+1,0 without DN−1,2.

Both eq. (5.10) and eq. (5.12) are a-priori independent of any particular model
for the statistics of εr. Nevertheless, a bad model for 〈εN/3

r 〉 could theoretically
still yield reasonable values for ζN,0 if it sufficiently compensates deficiencies of
eq. (5.12) and similarly a good model for 〈εN/3

r 〉 may result in large deviations
from measured ζN,0 if eq. (5.12) does not hold. In the following, eq. (5.12) is
numerically analysed using the dataset R3, R4, R5 and R6.

The ratio eq. (5.12) for even orders N = 4 and N = 6 are shown in fig. 5.1a
and fig. 5.1b, respectively. While the lower Reynolds number cases show
a clear r-dependence both for N = 4 and N = 6, (∂D5,0/∂r)/〈E4,0〉 and
(∂D7,0/∂r)/〈E6,0〉 are constant for the highest Reynolds number Reλ = 754 ex-
amined here. This is not that surprising considering that the dissipation source
terms dominate the pressure source terms for even N , cf. section 3.2.1. While it
is also found that the influence of 〈TN,0〉 to the balance eq. (5.8) increases with
increasing N , both 〈TN,0〉 and 〈EN,0〉 are found to have the same r-dependence
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Figure 5.2: Ratio eq. (5.12) for N = 5 (a) and N = 7 (b) as evaluated from
DNS for datasets R3, R4, R5 and R6. Higher Reλ are indicated by lighter colours.

in the inertial range, cf. the figures 3.5a, 3.5b, 3.6a and 3.6b.
Compared to the even orders, the ratios eq. (5.12) for odd N are found to be

slightly dependent on r in the inertial range, where we find a scaling r0.13 for
N = 5 and r0.05 for N = 7. Noticeably, the r-dependence is smaller for N = 7
than for N = 5. The reason might be that while the pressure source terms are
much larger than the dissipation source terms in the odd-order structure function
equations (5.8) (cf. section 3.2.2 and Gotoh and Nakano 2003), the higher the
order N the more similar is the scaling of EN,0 and TN,0 as function of r as is found
for the even orders, cf. the figures 3.9a, 3.9b, 3.10a and 3.10b. Consequently,
the assumption that the ratio (∂DN+1/∂r)/〈EN,0〉 = const. is better satisfied at
higher odd N . Moreover, it has been observed in section 3.2.2 that the odd-order
dissipation source terms scale similarly as ∂DN+1/∂r + 2DN+1/r.

A similar ratio as eq. (5.12) has been examined by Nakano et al. (2003) (their
fig. 8), which in the notation used here is given by (DN+1,0/r)/〈EN,0〉. They
found that this ratio is constant in the inertial range for even N , while the ratio
depends on r for small odd N with decreasing r-dependence for increasing odd
N . This is consistent with the figures 5.2a and 5.2b if one assumes a power-law
DN+1,0 ∼ rζN+1,0 , which implies ∂DN+1,0/∂r = ζN+1,0DN+1,0/r, cf. eq. (3.37).
Thus, we find that RSH works very well because it is a good approximation for
the longitudinal dissipation source terms, which are found to scale similarly as
the longitudinal structure functions. However, the question remains how the
dissipation source terms depend on the higher moments of the pseudo-dissipation,
〈(ε11 + ε′

11)N 〉 and whether and how they connect to RSH. We look at this in
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5 Inertial range

more detail in section 5.3 below.

Finally, let us briefly discuss the different underlying assumptions of K41 and
K62. As discussed in section 3.1.1, K41 theory eq. (5.1) implies

∂D(N+1),0

∂r
= N + 1

3
AN+1

AN−2

〈
(Δu1)N−2

〉
〈ε〉 , (5.13)

cf. eq. (3.27). This should be compared to

N + 1
3

〈
V N+1

〉
〈V N−2〉

〈
(Δu1)N−2

ε
〉

= N + 1
3

〈
V N+1

〉
〈V N−2〉 BN (r)

〈
(Δu1)N−2

〉
〈ε〉 , (5.14)

where BN (r) is the correlation of (Δu1)N−2 and ε and depends on r. Note
that isotropy implies that 〈ε〉 = 3〈ε11〉, i.e. choosing eq. (5.11) instead of
eq. (5.3) is consistent with the following analysis. Thus, K41 implies that the
correlation of (Δu1)N−2 and ε does not depend on r, while anomalous scaling
in the K62 framework is due to the r-dependence of BN (r). This is clearly seen
by integrating eq. (5.10), from which one obtains

DN+1,0 = CN 〈ε〉
∫

BN (r)DN−2,0dr. (5.15)

Together with D3,0 = C2〈ε〉r, this results in a hierarchy coupling every third
structure function. For instance,

D6,0 = C5C2 〈ε〉2

∫
B5(r)rdr,

D9,0 = C8C5C2 〈ε〉3

∫
B8(r)

(∫
B5(r)rdr

)
dr

(5.16)

and so on. A similar hierarchy would also hold for the other longitudinal structure
functions such as D5,0, D8,0, ... and D7,0, D10,0, ... and so on; however, because
neither D2,0 nor D4,0 can be obtained from eq. (5.10) or, more precisely, because
no exact solutions for N = 1 and N = 3 are known, the start of the consecutive
iteration is missing. If one assumes a power-law scaling of BN (r) in the inertial
range, BN (r) ∼ rβN , one obtains e.g. D6,0 ∼ r2+β5 , D9,0 ∼ r3+β5+β8 and so
on. Thus, γ2 = β6 and all other γN/3 are related to the βN as well. Moreover,
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5.2 Scaling of the normalised dissipation

βN < 0 for all N ≥ 4, if ζN,0 = f(N) is concave and vice versa.

5.2 Scaling of the normalised dissipation

In this section, we relate the longitudinal structure function scaling exponents
to the Reynolds number scaling of the normalised moments of the dissipation
〈εN/2〉/〈ε〉N/2.

With the definition of the scales ηC,N given in eq. (4.81), it is natural to write

〈
εN/2

〉
〈ε〉N/2

∼
〈

ε
N/2
r

〉
〈ε〉N/2

∣∣∣∣∣∣
r→ηC,N

∼
(

ηC,N

η

)γN/2 ( η

L

)γN/2
, (5.17)

where εr is the volume-averaged dissipation as proposed by Obukhov (1962), cf.
eq. (5.3) as well as section 5.1, and where γN/2 is the scaling exponent of the
normalised dissipation 〈

ε
N/2
r

〉
〈ε〉N/2

∼
( r

L

)γN/2
. (5.18)

With eq. (4.87) and (4.88), we then find with η/L ∼ Re
−3/2

λ that

αN/2 = −3
2

(
γN/2

1 + γN/2/(2N)

)
, (5.19)

and consequently any model specifying γN/2 can be used to determine αN/2. If
one assumes together with Kolmogorov (1962) the ansatz

DN,0 ∼
〈

εN/3
r

〉
rN/3 ∼ rζN,0 (5.20)

as is widely accepted (cf. eq. (3.34)), also γN/2 = ζ3(N/2),0 − N/2 and therefore
any theory predicting the structure function scaling exponents ζ3(N/2),0 predicts
αN/2. One could also look at α in a different way: Given α, e.g. by some theory
or measurements, one can solve for γ and then use γN/2 = ζ3(N/2),0 − N/2 to
compute the scaling exponents

ζ3(N/2),0 = N

2

(
1 − 4

αN/2

αN/2 + 3N

)
(5.21)
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and the larger αN/2, the larger the deviations from K41 scaling ζ3(N/2),0 = N/2
for a given N . As larger values of αN/2 imply larger higher moments of the
dissipation, this is consonant with the notion that anomalous scaling is connected
to the intermittency of the dissipation. From this point of view, K41 scaling
implies αN/2 = 0, i.e. 〈εN/2〉/〈ε〉N/2 = const.∗. Hence, K41 scaling assumes that
there is no intermittency of the flow.

Since ζ3(N/2),0 > 0 for all N , we find from eq. (5.21) an upper limit for the
scaling of the normalised dissipation as well as the ratio of the order-dependent
scales

αN/2 ≤ N,
αN/2

2N
≤ 1

2
. (5.22)

Because αN/2 increases with increasing N/2 and α1 = 0, this implies that
αN/2/(2N) is concave and that αN/2 increases linearly for large N . Together
with eq. (5.19) this then implies that 0 ≤ γN/2 ≤ −N/2.

Let us now briefly look at some well-known theories found in the literature
and compare their predictions with our DNS†. For the rest of this section, we
consider even N , i.e. N/2 = M = 1, 2, 3, . . .‡.

As described in section 3.1.1, Kolmogorov (1962) assumed a log-normal distri-
bution for the dissipation which gives with eq. (3.29)

αM,LN = 6μM(M − 1)
8 + μ(1 − M)

. (5.23)

where μ is a coefficient parametrising the intermittency. Sreenivasan and Kailas-
nath (1993) concluded that μ = 0.25 ± 0.05 from a comparison of different
datasets in the literature. From eq. (5.23), α1,LN = 0 as required. However, the
log-normal model gives αM,LN → ∞ for M → 8/μ + 1 and negative αM,LN2 for
M > 8/μ + 1. Similarly, the ratio ηC,N /η → 0 for M → 8/μ + 1, while ηC,N > η
for M > 8/μ + 1. This is at odds with the observation that the normalised
moments 〈εM 〉/〈ε〉M increase with increasing Reynolds number for M > 1, i.e.
αM > 0 for all M > 1. When using the log-normal model, at first the moments
〈εM 〉 strongly increase with Reλ and then strongly decrease when M is increased
further. Similarly, the order-dependent scales ηC,N become smaller and smaller
than the Kolmogorov scale and then jump to ηC,N > η after a critical threshold.
With μ = 0.25, we find the singularity for the 33th moment of the normalised

∗Note that K41 makes no statement regarding the shape of the pdf P (ε), since the constants
may depend on N .

†Predictions of αN/2 for other models or theories can be derived easily by inverting eq. (5.21).
‡I.e. eq. (5.22) is now αM ≤ 2M , αM /(4M) ≤ 1/2.
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5.2 Scaling of the normalised dissipation

dissipation and a reduced intermittency for M > 33.
Multi-fractality of the dissipation eq. (5.18) has been examined in detail by

Meneveau and Sreenivasan (1991). An example for such a multi-fractal model is
e.g. the p-model (see Meneveau and Sreenivasan (1987) and cf. (3.31)), which
assumes that an eddy breaks up in two smaller eddies receiving a fraction p and
1 − p of energy. The p-model then yields

αM,p = 6
M − {

1 − log2

[
pM +

(
1 − pM

)]}
3 + 1

M {1 − log2 [pM + (1 − pM )]} . (5.24)

The p-model then gives α1,p = 0 while for M → ∞, αM,p → 2M because the
parameter p ≤ 1.

Different to the (multi-)fractal framework, She and Leveque (1994) proposed a
hierarchy of powers of the dissipation moments 〈εM+1

r 〉/〈εM
r 〉. The She-Leveque

model yields with eq. (3.32)

αM,SL = 6
M − 3

[
1 − (

2
3

)M
]

5 + 3
M

[
1 − (

2
3

)M
] , (5.25)

which contains no parameters, different to the two other models examined
here. The She-Leveque model has been found to be in excellent agreement
with structure function exponents obtained by measurements and DNS (see e.g.
Anselmet et al. (1984), Benzi et al. (1995), and Gotoh et al. (2002)). Similarly
to the log-normal and the p-model, the She-Leveque model gives α1,SL = 0 and
for M → ∞, αM,SL → 6M/5, i.e. for very large M , 〈εM 〉/〈ε〉M scales linearly.
Therefore, the order-dependent cut-off scales ηC,N /η scale as αM /(4M) → 3/10
for large M and the She-Leveque model satisfies eq. (5.22), i.e. the cut-off scales
remain bounded at finite Reynolds numbers.

The αM as computed from the three models above are shown in fig. 4.12b.
While the log-normal model overpredicts αM as expected, both the p-model and
the She-Leveque model are in very good agreement with our DNS∗. Structure
function exponents as computed with eq. (5.21) using the αM from our DNS are
shown in table 5.1, together with the measurements of Anselmet et al. (1984)
and Gotoh et al. (2002), which we have averaged when more than one value was
reported. Moreover, there is good agreement with the data reported in table 3.3

∗It should be emphasised though that they differ for larger M and the She-Leveque model is
likely better suited for higher orders, cf. figure 3.3b and figure 4.12b, although no definitive
conclusion can be drawn here.
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Table 5.1: Comparison of ζ3M,0 computed with eq. (5.21) using αM from our
DNS and values from the literature.

M eq. (5.21) Anselmet et. al. Gotoh et. al.
1 ζ3,0 = 1 ζ3,0 = 1 ζ3,0 = 1.015
2 ζ6,0 = 1.7871 ζ6,0 = 1.8 ζ6,0 = 1.78
3 ζ9,0 = 2.3904 ζ9,0 = 2.465 ζ9,0 = 2.35
4 ζ12,0 = 2.8696 ζ12,0 = 2.84 -

as computed from the datasets R5 and R6. While we find very good agreement,
it should be kept in mind that the higher orders (both for the measurements
of Anselmet et al. (1984) and the DNS of Gotoh et al. (2002) as well as the
ones computed from our data) might be subject to significant error bands. It is
also worth mentioning that numerical errors in αM translate to smaller errors
in ζ3M,0, at least up to M = 4. This error decreases with increasing M : For
instance, α2 ± 10% yields ζ6,0 ± 3.77% while α4 ± 10% yields ζ12,0 ± 1.16%.

5.3 Relation between dissipation fluctuations
and inertial range scaling exponents

In the inertial range, Kolmogorov (1962) included dissipation fluctuations by
using a locally averaged dissipation εr as structure function scaling parameter
instead of only the mean value 〈ε〉, as discussed in section 5.1. One would
therefore think that εr must appear in the system of equations of section 3.3.1∗.
That is, we look for a connection between 〈εN/3

r 〉 and the dissipative fluctuations
such as 〈(ε11 + ε′

11)N/2〉 contained in the structure function equations. For that
reason, we examine in this section a connection between the ε2-term and the
second moment of εr. Therefore, in order to analyse the effect of the dissipation
parameter ε2

[4]
on the inertial range scaling exponent ζ[5], we must consider the

dissipation source term equation. In a first step, we will integrate eq. (3.79) in the
inertial range in order to calculate the fifth-order scaling exponent ζ[5] implicitly
defined by assuming a power-law D[5] ∼ rζ[5] . The idea is that because there are

∗In section 5.1, it was shown that RSH implicitly assumes that longitudinal structure functions
depend on the longitudinal dissipation source terms. This is not the same as finding εr in
the system of equations. For eq. (5.10) to hold, one has to assume eq. (5.4).
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equations for the structure functions as well as equations for their source terms,
the scaling exponent has to be contained in the system of equations.

In the two-point equations derived systematically from the Navier-Stokes
equations in the Archive material (http://arxiv.org/abs/1504.07490), from
which we derived eq. (3.87), we have identified the terms describing dissipation
fluctuations as ε2-terms. They contain moments of the sum of components of
the dissipation at two points, for instance, the moments 〈(ε + ε′)M 〉. An integral
expression such as

ε̃r = 1
V

∫
ε(x)dx, (5.26)

where V ∼ O(r3) is a volume of dimension r3, or the corresponding one-
dimensional expression

εr = 1
r

∫
ε(x)dx, (5.27)

where the integral is over any length r, does not appear directly in these equations.
On the other hand, properties such as inertial range scaling exponents should,

as a matter of principle, result from the two-point equations. If a power-law
scaling can be assumed for the source terms in the structure function equations,
the scaling exponents would follow from equations like eq. (5.32) below, to which
both the pressure source term and the dissipation source term contribute. For
even-order scaling exponents resulting from the odd-order structure function
equations, Yakhot (2003) has argued that the dissipation source terms can be
neglected and has proposed an algebraic closure relating the pressure source
terms of arbitrary order to the structure functions. A similar closure could
conceivably be developed for the odd-order scaling exponents in the even-order
structure function equations. In these equations, the closure would be between the
dissipation source terms and structure functions, while the pressure source terms
can be neglected. The two-point equations show that dissipation fluctuations
are represented by the dissipation parameters appearing in the successive source
term equations and not by the source terms in the structure function equations.

It can be shown that the second moment of εr is related to the dissipation
correlation 〈εε′〉 under the assumption of homogeneity by

〈εε′〉 = 1
2

∂2

∂r2

[
r2

〈
ε2

r

〉]
, (5.28)

cf. Nelkin (1994), and similar relations can be found for the higher moments of εr.
We only discuss the second moment, because we examine here the fourth-order
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structure function equations. Particularly, we only look at the trace eq. (3.87),
but our findings carry over to the individual equations for longitudinal, mixed,
and transverse dissipation source terms as well. If one assumes a power-law
for 〈ε2

r〉 ∼ rγ , cf. eq. (5.18) where the scaling exponent and the prefactor are
independent of r, as one is apt to do and which is at the very core of RSH and
similar theories, one also finds by virtue of eq. (5.28) that 〈εε′〉 ∼ rγ and hence
has the same r-scaling. The first term of the ε2-term in eq. (3.96) can be written
as the sum of constants and correlations; i.e.,〈

(ε + ε′)2
〉

= 2
〈
ε2
〉

+ 2 〈εε′〉 . (5.29)

In other words, the r-dependence of εr is manifested in the ε2-terms in the
dissipation source terms by virtue of eq. (5.28) and eq. (5.29).

We begin with the integration of eq. (3.79) to link the structure function
exponent to the source terms. We will neglect the diffusive and unsteady terms
in eq. (3.79) and eq. (3.87) and perform an order of magnitude estimate of the
source terms. If we assume in eq. (3.79) a power-law scaling for the source terms
of the form∗ 〈

T[4]

〉
= AT

[4]r
ξT

[4] (5.30)〈
E[4]

〉
= AE

[4]r
ξE

[4] (5.31)

which is consistent with Fig. 3.12, the trace of the fifth-order structure functions
D[5] can be determined from eq. (3.79) by integration. Of course, eq. (5.30) and
eq. (5.31) are approximations. However, without these assumptions, a power-law
of the form D[5] = C[5]r

ζ[5] is not compatible with eq. (3.79) as discussed in
section 3.1.1. In other words, only if the source terms follow a power-law in the
inertial range, so do the structure functions. The range of integration will be
divided into two parts. The first part ranges from r = 0 to r∗ ≈ 30η, where the
power-law in the inertial range starts to be valid. The second part ranges from
there on to the value r of interest in the inertial range. The integration then

∗In the following, ξT
[4] and ξE

[4] are scaling exponents of the traces of the fourth-order source
terms and should not be confused with the ξm,n of section 3.1.1.
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yields

−D[5] = 1
r2

r∗∫
0

r2
(〈

T[4]

〉
+
〈
E[4]

〉)
dr

− 1
r2

⎧⎨⎩AT
[4]

r3+ξT
[4]

3 + ξT
[4]

+
AE

[4]
r3+ξE

[4]

3 + ξE
[4]

⎫⎬⎭
r=r∗

(5.32)

+
AT

[4]
r1+ξT

[4]

3 + ξT
[4]

+
AE

[4]
r1+ξE

[4]

3 + ξE
[4]

.

Since the diffusion terms have been neglected from the very beginning, the first
integral is incomplete, cf. eq. (3.70). The purpose here is to show that this
and the second term on the right-hand side of eq. (5.32) can be neglected for
large r � r∗ because of the term r−2 in front of them. Then, only the last two
terms on the right-hand side of eq. (5.32) remain, and we find the trace of the
structure functions to be given as a weighted sum of the two power-laws eq. (5.30)
and eq. (5.31). More specifically, there are several possible contributions to the
inertial range which have been neglected: The integral from 0 to r over the
viscous term might not be negligible in the inertial range at r; the integral of
the dissipation and pressure source terms over 0 to r∗ might not be negligible in
the inertial range at some r; the value of the transport term at r = r∗ might not
be small compared to its inertial range value. Additionally, because η is not the
correct dissipative length scale for the fourth-order equations (cf. section 4.4),
r∗/η is dependent on the Reynolds number and this dependence is required to
be small. While the importance of some of these contributions may already be
estimated from the balance Fig. 3.12, it is more advantageous to look at the
integrated balance, in the spirit of eq. (5.32) and the present section. For that
reason, the numerical integration of eq. (3.79) over r is presented in Fig. 5.3.
The integrated balance for the datasets R0 (Reλ = 88) and R5 (Reλ = 529)
normalised by 〈ε2〉 and ν are plotted over r/η. Indeed, the integrated viscous
terms are negligible compared to all other integrated terms in the inertial range
after r/η = 30. Also, the integrated dissipation source term, pressure source
term and transport term are much smaller in the viscous range than in the
inertial range. This holds for all datasets and not only the cases R0 and R5
shown in Fig. 5.3a. Lastly as shown in Fig. 5.3b, both the integrated dissipation
source terms as well as the integrated viscous terms cross over to the inertial

151



5 Inertial range

10−1 100 101 102 103 104
10−4

102

108

r/η

te
rm

/
(〈ε

2 〉5
/

8 ν5/
4 )

(a)

10−1 100 101 102 103 104

101

104

107

r/η

te
rm

/
(〈ε

2 〉5
/

8 ν5/
4 )

(b)

Figure 5.3: Terms of eq. (3.79) numerically integrated over r for cases R0 (grey)
and R5 (black), where ◦: transport term, �: dissipation source term, �: pressure
source term and �: viscous term (a). Integrated dissipation source term � and
integrated viscous terms � for all cases R0 to R5 (from light grey to black) are
shown in (b).

range at approximately the same value of r/η for the datasets analysed here,
i.e. the true viscous cut-off length scale depends only weakly on the Reynolds
number. Therefore, the simplifications with regard to the integration carried out
in eq. (5.32) as described above seem justifiable.

The sum of two power-laws with constant prefactor and exponent does not
give a power-law with constant prefactor and exponent. Only if ξT

[4]
= ξE

[4]
or if

one of the two terms is much smaller than the other one, the scaling of D[5] will
result in an (approximate) power-law. We will explore the second possibility by
approximating the scaling exponent ζ[5] by neglecting the pressure source term
(cf. Fig. 3.12, where the pressure source term is smaller than the dissipation
source terms by a factor of four and also Fig. 5.3), resulting in

ζ[5] = 1 + ξE
[4]. (5.33)

This relationship between ζ[5] and ξE
[4]

is consistent with fusion rules, cf. Benzi
et al. (1998) and L’vov and Procaccia (1996a), where the same relation for
the fifth-order structure function is provided for the case when one of the two
separation distances is in the viscous and the other in the inertial range. Here,
eq. (5.33) follows directly from neglecting the pressure source term. We have
calculated the scaling exponent ξE

[4]
of 〈E[4]〉 already introduced in eq. (5.31) for
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Figure 5.4: Scaling exponent ξE
[4] for the cases R1-R6 with Reλ ranging from

119 to 754 (higher Reynolds numbers indicated by darker shading). Dashed black
horizontal line: ξE

[4] = 0.56.

all our DNS cases by using

ξE
[4] = r〈

E[4]

〉 ∂
〈
E[4]

〉
∂r

. (5.34)

As seen from Fig. 5.4, ξE
[4]

= 0.56 in the inertial range for our datasets R1 to
R6. The trace of the fifth-order structure functions D[5] is shown in Fig. 5.5
in compensated form; i.e., divided by (r/η)1.56 and normalized by ν and 〈ε2〉.
Since 〈ε2〉 represents the dissipation parameters at the fourth-order level, 〈ε2〉
provides indeed a better scaling than 〈ε〉 for quantities at that level. We plot
the scaling exponents ζ[5] in Fig. 5.5, as computed by

ζ[5] = r

D[5]

∂D[5]

∂r
, (5.35)

where again implicitly a power-law for D[5] with constant prefactors and expo-
nents is assumed. The dashed black horizontal line indicates the value ζ[5] = 1.56.

In the next step, a relation between ξE
[4]

and the ε2-term is needed. Therefore,
we need to look at the transport equation of the dissipation source term 〈E[4]〉
in more detail. However, under the assumption of stationarity, there is no term
containing 〈E[4]〉 in its transport equation when the inertial range assumptions
are invoked, as both the unsteady and the viscous terms are neglected. That is,
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Figure 5.5: Compensated structure function D[5] in the inertial range for the
cases R0-R6 with Reλ ranging from 88 to 754 (a) and scaling exponent ζ[5] (b).
Higher Reynolds numbers are indicated by darker shading. Horizontal dashed
black line in (b): ζ[5] = 1.56.

information is lost by averaging, and hence, additional assumptions and closures
are needed. The situation is similar to the second-order structure function
equations, where one finds in the inertial range a solution for the third-order
structure functions (i.e. the 4/5-law), but all connections to the second order
are lost. If one is interested in the solution of the second order in the inertial
range, one has to make additional assumptions such as Kolmogorov’s constant
skewness assumption∗.

That is, we would now need a relation between 〈Δu1E[4]〉 and 〈E[4]〉, e.g. by
employing a gradient flux ansatz. In the following, we rather use a slightly
different approach. In analogy to K41 and K62 theory, one might postulate
that fluctuations of the dissipation are the relevant scaling parameter in the
inertial range. Since the transport equation for 〈E[4]〉 contains the ε2-term, which
represents dissipation fluctuations, it seems reasonable to scale the dissipation
source term with ε2

[4]
and r. It should be mentioned that the r-dependence

of the ε2-term is cancelled out by the D-term in the sum of the source terms.
However, neither of the other terms combined with only r is sufficient to provide
a scaling of the dissipation source term without an additional parameter like

∗Defining a velocity difference skewness S = D3,0/(D2,0)3/2, one can write together with
eq. (1.31)

D2,0 =
(

− 4/5
S

)2/3
〈ε〉2/3 r2/3,

which gives K41 scaling for D2,0 in the inertial range provided S �= f(r).
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δE
[4]

and the same holds for the cancellations of D[4] + ε2
[4]

and F[4] + Q[4]. This
indicates that some combination of the source terms in eq. (4.69) is needed to
scale the dissipation source term and ultimately D[5]. Consequently, not only the
dissipation fluctuations characterised by the ε2-term are relevant, but also the
other source terms in eq. (4.69). However, the necessary combination of source
terms cannot be determined by scaling arguments alone, because there are only
two dimensions [m] and [s] and more than two scaling quantities. Furthermore,
all terms are needed if the prefactor is also of interest.

In the following, we proceed to look only at the dissipation fluctuations,
because they remain a quantity of high interest. We generalize the scaling of
〈E[4]〉 with ε2

[4]
and r by adding a prefactor (r/r∗)δE

[4] , i.e. use the ansatz

〈
E[4]

〉
= cE

[4]

(
ε2

[4]

)5/6

r2/3+δE
[4] (5.36)

Here, r∗δE
[4] is contained in cE

[4]
. Of course, this is an ad-hoc ansatz and only one

of many possibilities. We do not want to claim that this is the best or only way
to close the equations; rather, we use it for its simplicity. We use this closure for
analytical purposes only, i.e. do not want to make predictions regarding higher
orders, other datasets or flows. Because there are other source terms in eq. (3.87)
which contribute to the balance, one cannot expect that δE

[4]
vanishes. Indeed

from our DNS, we find that δE
[4]

= −0.09. The numerical values of δE
[4]

for R1 to
R6 are shown in Fig. 5.6a, where

δE
[4] = r

(
ε2

[4]

)5/6 〈
E[4]

〉−1 ∂

∂r

(〈
E[4]

〉 (
ε2

[4]

)−5/6
)

− 2
3

(5.37)

and the dashed horizontal black line corresponds to δE
[4]

= −0.09. This value
is empirically determined and not claimed to be universal or to carry over to
other flows. Also, its exact value is not important in the present context. We
will now insert eq. (5.36) into eq. (5.32) and integrate. That is, we now examine
the scaling of the dissipation source term 〈E[4]〉 compared to the scaling of the
ε2-term, ε2

[4]
, which contains 〈ε2

r〉. Using the ansatz eq. (5.36), we find that this
ratio should scale as r2/3+δE

[4] in the inertial range, under the assumption that
we may approximate the terms by power-laws in the inertial range. The ratio
〈E[4]〉/(ε2

[4]
r2/3+δE

[4]) is shown in Fig. 5.6b for the cases R1 to R6. We find a
scaling range in the inertial range. In short, we have now replaced the dissipation
source terms with ε2

[4]
r2/3+δE

[4] , which has the same r-scaling in the inertial range.
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Figure 5.6: δE
[4] as evaluated by eq. (5.37) for R1 to R6 (a). Plot of the ratio

〈E[4]〉/(ε2
[4]r

2/3−δE
[4] ) with δE

[4] = −0.09 (b). Higher Reynolds numbers are indicated
by darker shading.

If the ε2-term has a power-law scaling in the inertial range, we can now integrate
to obtain for the structure function trace

D[5] ∼ r5/3+δE
[4]
(

ε2
[4]

)5/6

. (5.38)

This should be compared to RSH, for which

D[5] ∼ r5/3〈ε5/3
r 〉. (5.39)

That is, from the system of equations we would rather have a contribution from
〈ε2

r〉, which is contained in ε2
[4]

, instead of 〈ε5/3
r 〉. As RSH gives satisfactory

results when compared to experimental data, the differences have to be contained
in the parameter δE

[4]
, which contains empirically the influence of the other source

terms in eq. (4.69) on the dissipation source term 〈E[4]〉. Note that eq. (5.39)
implies 〈E[4]〉 ∼ r2/3〈ε5/3

r 〉, if a power-law for εr can be assumed. However, there
is no term containing 〈ε5/3

r 〉 in either the fourth- or the fifth-order equations.
We may conclude that the RSH assumption of using εr instead of the K41

ansatz using 〈ε〉 is compatible with the results of our approach here, in the sense
that εr appears in the ε2-term. However, we find in the system of equations a
contribution to the fifth-order structure functions by 〈ε2

r〉; i.e., the connection to
〈εN/3

r 〉 is still missing. We expect similar results at higher orders, which should
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5.3 Relation between dissipation fluctuations and inertial range scaling
exponents

then be related to higher moments of εr. However, the pressure source terms
also might be important at higher orders (cf. the discussion and balances in
chapter 3), which one would then need to close as well. Furthermore, we find that
the r-scaling of the ε2-term is cancelled out by the D-term in the full system of
equations. We are left with the fact that while we have found all higher moments
of εr in the dissipation source term equations and further equations derived
thereof, we cannot say why Nth-order structure functions should be determined
by 〈εN/3

r 〉, i.e. why the RSH assumption eq. (5.12) is valid. While the numerical
values obtained either way agree fairly well (at least for the fourth order we
examined here), such a connection cannot be obtained from the Navier-Stokes
equations without additional, empirical closures.

The analysis can be carried to higher orders. It can easily be shown that the
third successive equation for dissipation source terms in the trace of the eighth-
order structure function equations contains a term 〈(εii + ε′

ii)(εjj + ε′
jj)(εkk +

ε′
kk)(εll + ε′

ll)〉, which generates a dissipation parameter 〈ε4〉. As one continues
further, one will find all moments of the dissipation distribution function in the
system of averaged equations. On the basis of the equations at the sixth-order
structure function level, for instance, one could perform similar integrations
as for the fourth-order level. For instance, in the Archive material at http:
//arxiv.org/abs/1504.07490, we have derived an equation for the dissipation
source term 〈E6,0〉 = 30〈(Δu1)4(ε11 + ε′

11)〉 which appears in the sixth-order
longitudinal structure function equation. In the equation for 〈E6,0〉 a source term
〈F6,0〉 = 60〈(Δu1)2(ε11 + ε′

11)2〉 appears. In the equation for 〈F6,0〉, the term
120〈(ε11 + ε′

11)3〉 appears, which generates the new dissipation parameter 〈ε3
11〉,

and combined with the mixed and transverse equations, one finds a ε3
[6]

term
which contains 〈(ε + ε′)3〉, i.e. one would expect to find a contribution by 〈ε3

r〉
in the sixth-order equations. In order to calculate seventh-order inertial range
scaling coefficients from the sixth-order structure function equations and their
dissipation source terms, the trace of the structure function equations and two
successive source term equations would have to be integrated. An ansatz similar
to eq. (5.36) would provide at leading order the exponent 7/3. The deviation
from this K41 scaling exponent would then involve more empirical terms. Similar
arguments will hold for all other odd-order scaling exponents. Because there are
no dissipation parameters in the odd-order source term equations, even-order
scaling exponents cannot be determined this way.
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5 Inertial range

5.4 Finite Reynolds number corrections of the
4/5-law for decaying turbulence

In this section, the finite Reynolds number influence of the unsteady and viscous
terms in the inertial range are examined in more detail, as neglecting both
the viscous and unsteady terms in the derivation of the eq. (3.40) as well as
the 4/5-law eq. (3.40) amounts to assuming an infinite Reynolds number. The
analysis is carried out for the second-order equations (3.38) and eq. (3.39), since
they are easier to handle than the higher-order equations and the source terms
are known. We use DNS data of decaying isotropic turbulence as described in
section 2.2 rather than the forced isotropic datasets of section 2.1. Therefore,
we have to include the unsteady terms ∂D2,0/∂t and ∂D0,2/∂t instead of a
contribution 〈Δuifj〉 by the large-scale forcing fj . While both the unsteady and
the forcing terms play similar roles, the former can be rewritten as function of r
instead of t, while the latter depend on the forcing scheme and remain unclosed.

Noticeably, the range for which eq. (3.40) and eq. (3.41) are found to hold
is rather small for experiments at finite Reynolds numbers (see e.g. Anselmet
et al. (1984), Antonia and Burattini (2006), Gagne et al. (2004), and Zhou and
Antonia (2000)). For that reason, modifications of the asymptotic results which
include the finite Reynolds number effects were proposed for different kinds of
flows. In the following, we use 〈ε〉 rather than 〈ε〉 for convenience.

Lindborg (1999) considered the isotropic second-order equations of Kolmogorov
and kept the unsteady term ∂D2,0/∂t. He then proceeded to express it using
Kolmogorov’s second similarity hypothesis, i.e. assumed that

∂D2,0

∂t
= C

2
3

∂ 〈ε〉
∂t

〈ε〉−1/3
r2/3, (5.40)

where C is a constant. Employing the k-ε-model

∂ 〈ε〉
∂t

= −Cε2

〈ε〉2

〈k〉 (5.41)

to solve for ∂〈ε〉/∂t and assuming a decay of the kinetic energy∗ 〈k〉 ∼ t−n

enabled him to obtain solutions for different kind of flows and Reynolds numbers
with good qualitative agreement of measurements and his model. Lundgren
(2002, 2003) used asymptotic expansions to derive the longitudinal third-order
structure function in the inertial range. He found the same Reynolds number

∗For the remainder of this section, n denotes the decay exponent.
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5.4 Finite Reynolds number corrections of the 4/5-law for decaying turbulence

dependence as Lindborg.
Qian (1997, 1999) examined the approach of the 4/5-law in the inertial range

using the energy spectrum equation. He found that the asymptotic results are
approached rather slowly. Danaila et al. (1999) examined the inhomogeneous
second-order structure function equations of Hill (1997) adapted for grid turbu-
lence and looked at the balance of the respective terms. They found that the
inhomogeneities contribute significantly for larger r. Similar conclusions were
drawn by Zhou et al. (2000). Danaila et. al. measured the second-order structure
function balance for channel flows (Danaila et al. (2001)) as well as homogeneous
shear turbulence (Danaila et al. (2004)) and obtained similar results as for grid
turbulence, in the sense that the inhomogeneities are important at large r and
also in the inertial range.

Here, we will use the isotropic equations eq. (3.38) and eq. (3.39) and examine
the influence of the unsteady and viscous terms, i.e. their contribution to the
inertial range solutions for the third-order structure functions. While we keep the
unsteady term as did Lindborg, our approach differs inasmuch that we transform
eq. (3.38) and (3.39) into a self-preserving form depending only on a normalised
length scale r̃, similarly to the work of Schaefer et al. (2011) on the velocity
correlation, and the unsteady term is reformulated assuming a decay of the
kinetic energy 〈k〉 ∼ t−n. Lundgren used the same coordinate transform, but
neglected the unsteady term. Rather, he matched the leading-order terms of
the asymptotic expansions of the structure functions for an outer and an inner
region. Corrections to the 4/5-law eq. (3.41) then follow from the second-order
terms of the expansion.

The (normalised) second-order structure function equations used here are
derived in section 5.4.1. We then close the resulting system of equations using
two different approaches as outlined in section 5.4.2. The second-order balances
as computed using the DNS data of section 2.2 are presented in section 5.4.3.
This allows a comparison with the closure results, which are used to examine both
the Reynolds number scaling as well as to make predictions about large Reynolds
number behaviour. This is discussed in more detail in section 5.4.4, were the
balances of the (normalised) system of equations are examined using DNS data
in order to check for the validity of the assumptions made in section 5.4.2.

5.4.1 Unsteady terms
To examine the influence of the unsteady terms ∂D2,0/∂t and ∂D0,2/∂t, we use
the identity

D2,0 =
〈
(Δu1)2

〉
= 2

〈
u2

1

〉
(1 − f(r, t)), (5.42)
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5 Inertial range

where f(r, t) is the longitudinal correlation function

f(r, t) = 〈u1(x1 + r, x2, x3, t) u1(x1, x2, x3, t)〉
〈u2

1〉 (5.43)

and similarly for the transverse structure function

D0,2 =
〈
(Δu2)2

〉
= 2

〈
u2

2

〉
(1 − g(r, t)), (5.44)

where g(r, t) is the transverse correlation function

g(r, t) = 〈u2(x1 + r, x2, x3, t) u2(x1, x2, x3, t)〉
〈u2

2〉 . (5.45)

Under the assumption of isotropy,
〈
u2

1

〉
=

〈
u2

2

〉 ≡ U2. Taking the derivative of
eq. (5.42) gives

∂D2,0

∂t
= 2∂U2

∂t
(1 − f(r, t)) − 2U2 ∂f(r, t)

∂t
(5.46)

and a similar expression for the transverse structure function eq. (5.44). In the
following, r is normalised with a large scale in the spirit of Kármán and Howarth
(1938), Lundgren (2003), and Schaefer et al. (2011), defined as

L(t) ≡ U3

〈ε〉 , (5.47)

where U =
√

〈u2
1〉. Then, the normalised length scale

r̃ = r

L(t)
, t̃ = t (5.48)

and therefore
∂r̃

∂t
= − r̃

L(t)
dL(t)

dt
. (5.49)

Consequently,

∂f(r̃, t)
∂t

= ∂f(r̃, t̃)
∂t̃

− r̃

L(t)
dL(t)

dt

∂f(r̃, t̃)
∂r̃

= − r̃

L(t)
dL(t)

dt

∂f

∂r̃
(5.50)
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5.4 Finite Reynolds number corrections of the 4/5-law for decaying turbulence

and

∂g(r̃, t)
∂t

= ∂g(r̃, t̃)
∂t̃

− r̃

L(t)
dL(t)

dt

∂g(r̃, t̃)
∂r̃

= − r̃

L(t)
dL(t)

dt

∂g

∂r̃
(5.51)

where ∂f(r̃, t̃)/∂t̃ and ∂g(r̃, t̃)/∂t̃ vanish if f(r̃, t̃) and g(r̃, t̃) are self-similar. We
will see in section 5.4.2 below that neglecting ∂f/∂t̃ and ∂g/∂t̃ has very little
impact on the balance equations, i.e. that the assumption is well justified. From
eqs. (5.42) and (5.44), we then have

∂f(r̃, t̃)
∂r̃

= −1
2

∂D̃2,0

∂r̃
,

∂g(r̃, t̃)
∂r̃

= −1
2

∂D̃0,2

∂r̃
, (5.52)

as
〈
u2

1

〉
and

〈
u2

2

〉
do not depend on r̃ and where D̃2,0 = D2,0/U2 and D̃0,2 =

D0,2/U2 are the normalised second-order structure functions. Similarly for the
third-order structure functions, D̃3,0 = D3,0/U3 and D̃1,2 = D1,2/U3.

For decaying homogeneous isotropic turbulence, the energy balance eq. (1.11)
reduces after averaging to∗

∂U2

∂t
= −2

3
〈ε〉 . (5.53)

In the self-similar decay state, U2 = U2
0 (t/t0)−n, where n is a decay exponent

(cf. fig. 2.1) and consequently 〈ε〉 = 〈ε0〉(t/t0)−n−1 in agreement with eq. (5.53).

Substituting eq. (5.53) and eq. (5.43) into eq. (5.46) and normalising with 〈ε〉
yields

1
〈ε〉

∂D2,0

∂t
= −2

3
D̃2,0 − r̃

U

dL(t)
dt

∂D̃2,0

∂r̃
(5.54)

and similarly,
1

〈ε〉
∂D0,2

∂t
= −2

3
D̃0,2 − r̃

U

dL(t)
dt

∂D̃0,2

∂r̃
. (5.55)

Finally, from eq. (5.47)

1
U

dL(t)
dt

= 2
3

(
1
n

− 1
2

)
. (5.56)

∗By definition, here 〈k〉 ≡ 3U2/2.
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5 Inertial range

Dividing eq. (3.38) and eq. (3.39) by 〈ε〉 then gives the following equations

unsteady︷ ︸︸ ︷
−2

3
D̃2,0 − 2

3

(
1
n

− 1
2

)
r̃

∂D̃2,0

∂r̃
+

transport︷ ︸︸ ︷
1
r̃2

∂r̃2D̃3,0

∂r̃
− 4

r̃
D̃1,2 = −

diss.︷︸︸︷
4
3

+ 2
ReL

[
∂2D̃2,0

∂r̃2
+ 2

r̃

∂D̃2,0

∂r̃
+ 4

r̃2

(
D̃0,2 − D̃2,0

)]
︸ ︷︷ ︸

viscous

(5.57)

and

unsteady︷ ︸︸ ︷
−2

3
D̃0,2 − 2

3

(
1
n

− 1
2

)
r̃

∂D̃0,2

∂r̃
+

transport︷ ︸︸ ︷
1
r̃4

∂r̃4D̃1,2

∂r̃
= −

diss.︷︸︸︷
4
3

+ 2
ReL

[
∂2D̃0,2

∂r̃2
+ 2

r̃

∂D̃0,2

∂r̃
− 2

r̃2

(
D̃0,2 − D̃2,0

)]
︸ ︷︷ ︸

viscous

(5.58)

where ReL = UL/ν is a large scale Reynolds number. That is, the derivative
with respect to t of the second-order structure functions has been reformulated
in terms of spatial derivatives and the decay of kinetic energy expressed by the
decay exponent n. Therefore, the partial differential equations are reduced to
ordinary differential equations. This allows for an integration of eq. (5.57) and
(5.58) in r̃, if D̃2,0 and D̃0,2 are known as function of r̃.

Equations eq. (5.57) and eq. (5.58) are also valid for grid turbulence, when
invoking Taylor’s hypothesis. Specifically, one obtains

∂D2,0

∂t
= U1

∂D2,0

∂X1

,
∂D0,2

∂t
= U1

∂D0,2

∂X1

(5.59)

with U1 as mean velocity and X1 = ((x1 + r) + x1)/2 and where the x1-
coordinate corresponds to the streamwise direction. This leads to the equations
also considered by Danaila et al. (1999), where the large scales are now determined
by inhomogeneities in x1-direction.
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5.4 Finite Reynolds number corrections of the 4/5-law for decaying turbulence

5.4.2 Description of possible closures

As eq. (5.57) and eq. (5.58) are unclosed, anything besides computing and
comparing the individual terms from DNS requires additional closure assumptions.
For this, we introduce two different approaches to close the system of equations
in the following. First, we assume that the second-order structure functions
follow a power-law, which allows us to directly integrate the two equations,
finding explicit expressions for the third-order structure functions in the inertial
range. The drawback of this approach is of course that the scaling range of
the second-order structure functions is small at low Reynolds numbers and
therefore the range for which the resulting third-order expressions hold is also
quite limited. However interestingly enough, the same results derived differently
by Lindborg (1999) and Lundgren (2003) are then recovered. Second, we close
the equations by employing an eddy viscosity ansatz as presented by Oberlack
and Peters (1993), which relates the second- and third-order structure functions.
This allows us to also compare overall agreement and extrapolate the results to
higher Reynolds numbers. We cannot rule out that the decay exponent has some
influence on the parameters of the closures discussed in the following. However,
we have varied the decay exponent while keeping all other parameters constant
and have found no significant influence on the numerical solutions, as long as the
decay exponent is not unrealistically large or small. Specifically, we compared
n = 1.4, n = 1.45 and n = 1.5. For that reason, we are confident that the
deviation from n = 10/7 is negligible.

Power-law closure

Here, we assume that the normalised second-order structure functions D̃0,2 and
D̃2,0 follow a power-law of the form

D̃2,0 = C̃2,0r̃ζ2,0 , D̃0,2 = C̃0,2r̃ζ0,2 (5.60)

in the inertial range (cf. eq. (3.34)), where both the prefactors C̃2,0 and C̃0,2

as well as the exponents ζ2,0 and ζ0,2 are assumed to be independent of the
separation distance r̃. Power-laws for the second-order structure functions were
introduced by Kolmogorov (1941a,b). In his theory (K41 theory), he assumed
that in the inertial range the structure functions are only dependent on the mean
dissipation 〈ε〉 and the scale r: Since the inertial range is situated in between the
small scales and the large scales, the solution should not depend on either the
viscosity ν, the dissipative length η or the integral length L. From dimensional
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5 Inertial range

arguments, one then obtains power-laws with ζ2,0 = 2/3 and ζ0,2 = 2/3 as
exponent. However, the use of the mean dissipation as scaling parameter has
been questioned in an argument rooted in a remark of Landau (cf. e.g. the
discussion in Frisch (1995)), namely that fluctuations of the dissipation may
influence the scaling of the structure functions and consequently the scaling
exponents may differ from 2/3. From experiments (see e.g. Antonia et al. (2000)
and Attili and Bisetti (2012)) and DNS (e.g. Boratav and Pelz (1997) and Gotoh
et al. (2002)), ζ2,0 > 2/3 and ζ0,2 > 2/3 have been found.

One of the advantages of the power-law ansatz is that it allows analytical
integration of eq. (5.57) and eq. (5.58), i.e. the Reynolds number scaling of the
respective terms can be examined explicitly. The exponents ζ2,0 and ζ0,2 are
assumed to be Reynolds number independent, while the prefactors might vary
slightly with the Reynolds number. Then, the exponents ζ2,0 = ζ0,2 = ζ2 are the
same for both the longitudinal and transverse second-order structure functions,
because they are linked via the continuity equation

r̃

2
∂D̃2,0

∂r̃
+ D̃2,0 − D̃0,2 = 0, (5.61)

i.e. the normalised eq. (3.23). Noticeably, the power-laws eq. (5.60) are solutions
of eq. (5.61). We define μ = ζ2 − 2/3 as deviation from the K41 value ζ2 = 2/3.
Note that only for μ = 0 the prefactors C̃2,0 = C2,0 and C̃0,2 = C0,2, i.e. equal
the Kolmogorov constant(s) C2,0 = D2,0/(〈ε〉r)2/3 and C0,2 = D0,2/(〈ε〉r)2/3.
For μ �= 0, the differences are probably small, as μ is small.

Substituting the power-laws eq. (5.60) into eq. (5.58) for the transverse second-
order structure function then gives after integration

D̃1,2

r̃
= D1,2

〈ε〉 r
= − 4

15
+ A1,2Re

−1−3μ/2

λ

(
r

η

)2/3+μ

+ B1,2Re
−3μ/2

λ

(
r

η

)μ−4/3

(5.62)

where Reλ = (15ReL)1/2 is the Taylor-scale Reynolds number Reλ = uλ/ν (the
prefactor

√
15 is due to the definition L = U3/〈ε〉). The prefactors A1,2 and

B1,2 are then constants and given by

A1,2 = 2
3

C̃0,2

μ + 17/3

(
1 + 2 − n

2n

(
μ + 2

3

))(
1
15

)−3μ/4−1/2

(5.63)
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B1,2 = 2
μ + 11/3

[
C̃0,2

(
μ2 + 7

3
μ − 8

9

)
+ 2C̃2,0

](
1
15

)−3μ/4

(5.64)

Substituting the result for D1,2 into eq. (5.57) yields then similarly after integra-
tion

D̃3,0

r̃
= D3,0

〈ε〉 r
= −4

5
+ A3,0Re

−1−3μ/2

λ

(
r

η

)2/3+μ

+ B3,0Re
−3μ/2

λ

(
r

η

)μ−4/3

(5.65)

with prefactors

A3,0 = 2
3

1
μ + 11/3

[
1 + 2 − n

2n

(
μ + 2

3

)](
C̃2,0 + 4C̃0,2

μ + 17/3

)

×
(

1
15

)−3μ/4−1/2

(5.66)

B3,0 = 2
μ + 5/3

[
4C̃0,2

μ + 11/3

(
μ2 + 10

3
μ + 25

9

)

+C̃2,0

(
μ2 + 7

3
μ − 26

9
+ 8

μ + 11/3

)](
1
15

)−3μ/4

(5.67)

The resulting equations (5.62) and (5.65) are very similar to the ones derived
by Lindborg (1999). Combining eq. (5.40) and (5.41), one finds

∂D2,0

∂t
∼ 〈ε〉

〈k〉 (〈ε〉 r)2/3 ∼ D2,0

τ
, (5.68)

with the integral time τ = 〈k〉/〈ε〉 and where K41 scaling ζ2 = 2/3 has been
assumed in agreement with the ansatz eq. (5.40). A similar equation can be
derived under the same assumptions for the transverse structure function D0,2.
Comparing with the unsteady term of eq. (5.57), it is readily seen that eq. (5.68)
leads to the same results eq. (5.62) and (5.65) if D2,0 and D0,2 follow a power-law
and μ = 0.

The numerical values of C̃2,0, C̃0,2 and ζ2 for the data we use here are shown
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5 Inertial range

in table 5.2. Noticeably, there is a small trend for the prefactors to increase with
the Reynolds number, although we cannot say whether they would approach
a constant for very large Reλ. As the Kolmogorov constant has been found to
vary only slightly (if at all) with increasing Reynolds number, cf. Sreenivasan
(1995), this might be due to the fact that μ �= 0.

Table 5.2: Numerical values of prefactors C̃2,0 and C̃0,2 and scaling exponent ζ2
for datasets D1 to D4 of section 2.2.

D1 D2 D3 D4

C̃2,0 1.68 1.72 1.75 1.81
C̃0,2 2.25 2.31 2.34 2.42
ζ2 0.67 0.67 0.67 0.67

Eddy viscosity closure

Another approach to close the coupled system is to directly relate the second-
and third-order structure functions, for which there are different approaches in
the literature. One way to close the equations is to employ an eddy viscosity
ansatz (see section 3.4), as e.g. discussed recently by Thiesset et al. (2013).
Here, the formula of Oberlack and Peters (1993) is used. They proposed an eddy
viscosity closure of the form

D̃3,0 = −ν̃t,(3,0)

∂D̃2,0

∂r̃
, D̃1,2 = −ν̃t,(1,2)

∂D̃0,2

∂r̃
(5.69)

with the eddy viscosities

ν̃t,(3,0) = κ1r̃

√
D̃2,0, ν̃t,(1,2) = κ2r̃

√
D̃0,2. (5.70)

Since both κ1 and κ2 as well as D̃2,0 and D̃0,2 are positive (and consequently
also ν̃t,(3,0) ≥ 0 and ν̃t,(1,2) ≥ 0), the closure implies that (Δu1)2 and (Δu2)2

are transported towards smaller r, in agreement with the notion of the energy
cascade towards smaller scales.

Together with eq. (5.57) and eq. (5.58) we then have a closed set of equations
for D̃2,0 and D̃0,2, with the Reynolds number ReL, the decay exponent n and
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5.4 Finite Reynolds number corrections of the 4/5-law for decaying turbulence

the coefficients κ1 and κ2 as parameters. The solution of D̃3,0 and D̃1,2 is then
obtained by inserting the computed D̃2,0 and D̃0,2 into eq. (5.69) and eq. (5.70).
It is readily checked that this closure gives ζ2 = 2/3 in the inertial range if the
unsteady terms are neglected.

We need boundary conditions for r̃ → 0 to solve the system of equations
at hand. Specifically, four boundary conditions are needed as we have two
second-order ODEs. For homogeneous isotropic turbulence, Kolmogorov (1941a)
showed that for r̃ → 0

D̃2,0 = 1
15

ReLr̃2, D̃0,2 = 2
15

ReLr̃2, (5.71)

see section 3.1.2, eq. (4.86) and the discussion in section 4.4.1 and therefore also

∂D̃2,0

∂r̃
= 2

15
ReLr̃,

∂D̃0,2

∂r̃
= 4

15
ReLr̃ (5.72)

for r̃ → 0, which provides the four required boundary conditions. Consequently,
D̃3,0 ∼ r̃3, D̃1,2 ∼ r̃3 in the viscous range, i.e. the model reproduces the correct
r̃-scaling for r̃ → 0. Finally, the model parameters κ1 and κ2 have to be specified.

The values of κ1 and κ2 used here are shown in table 5.3. Noticeably, κ1 and
κ2 do not vary much with the Reynolds number and no trend is observable,
where it needs to be kept in mind that the considered range of Reynolds numbers
is not that large. This observation is in line with the original formulation of
Oberlack and Peters (1993), who related κ1 to the Kolmogorov constant C2,0.
Here, κ1 and κ2 are rather directly computed from DNS via eq. (5.69) and
eq. (5.70).

Combining both equations, one obtains

κ1

κ2

= D̃3,0

D̃1,2

(
D̃0,2

D̃2,0

)1/2

∂D̃0,2/∂r̃

∂D̃2,0/∂r̃
. (5.73)

Again assuming power-laws eq. (5.60) in the inertial range and writing D̃3,0 =
−(4/5)r̃ +Δ3,0 and D̃1,2 = −(4/15)r̃ +Δ1,2, where Δ3,0 and Δ1,2 are corrections
due to the unsteady and viscous terms, then

κ1

κ2

= −(4/5)r̃ + Δ3,0

−(4/15)r̃ + Δ1,2

(
C̃0,2

C̃2,0

)3/2

≈ 3
(

C̃0,2

C̃2,0

)3/2

, (5.74)
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if the corrections are small. Using the values of table 5.2 with eq. (5.74), one
finds that κ1/κ2 ≈ 4.6, which is close to the value κ1/κ2 ≈ 4.5 from table 5.3.
Consequently, κ1 and κ2 (and their ratio) weight the prefactors of the longitudinal
and transverse structure functions. Noticeably, the continuity equation eq. (5.61)
constrains the ratio C̃0,2/C̃2,0. Then,

C̃0,2 = C̃2,0

(
1 + ζ2

2

)
(5.75)

as function of the exponent ζ2 only, which is thought to be independent of the
Reynolds number (but not necessarily the flow configuration).

Table 5.3: Numerical values of model parameters κ1 and κ2 for datasets D1 to
D4 of section 2.2.

D1 D2 D3 D4

κ1 0.3661 0.3697 0.3853 0.3817
κ2 0.0784 0.0916 0.0867 0.0847

5.4.3 DNS results
To quantify the influence of the unsteady terms, the balance of eq. (5.57) and
eq. (5.58) as evaluated from our DNS for the lowest and largest Reynolds number
are shown in figure 5.7a and 5.7b (Reλ = 121.39) and figure 5.8a and 5.8b
(Reλ = 254.75), respectively. The terms of the balances of both second-order
structure function equations exhibit qualitatively the same behaviour. The first
two terms on the l.h.s. of eq. (5.57) and eq. (5.58) are contributions by the
unsteady terms, while the remaining term(s) are transport terms in r-space. On
the r.h.s., the first term (the −4/3) is the dissipative term, as we normalised the
equation by 〈ε〉, while the terms in square brackets are viscous terms.

For small r̃ in the viscous range, the dissipative term is balanced by the
viscous terms, while the transport and the unsteady terms are negligible. Solving
eq. (5.57) and eq. (5.58) neglecting these terms then leads to eq. (5.71). The
viscous terms are negligible for r̃ outside the viscous range. At intermediate r̃
in the inertial range, the largest terms are the transport terms, which give the
leading-order solutions eq. (3.41) and eq. (3.40) after integration. However, the
contribution of the unsteady terms is not negligible, as the transport terms alone
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Figure 5.7: Balance of the longitudinal second-order structure function equation
(5.57) (a) and of the transverse second-order structure function equation (5.58)
(b) for Reλ = 121.39. ◦ unsteady term, � transport term, � dissipation, � viscous
term.

are not sufficient to balance the dissipative term (the 4/3). For larger r̃, the
transport terms become smaller and the unsteady terms larger. For very large
scales r̃ > 1 the unsteady terms are dominant and balance the dissipation. We
also plot the sum of the unsteady, transport and viscous terms as indicated by
the dashed black line and find that it balances the 4/3 very well (i.e. the dashed
lines nearly coincide with the 4/3). In other words, the assumption that the
temporal changes ∂f/∂t̃ and ∂g/∂t̃ in eq. (5.52) are negligible is well justified.

With increasing Reynolds number, the range of r̃ for which the transport
terms are larger than the viscous and the unsteady terms (i.e. the inertial range)
increases (note that because of the normalisation with large scale quantities, the
inertial range is shifted to smaller r̃). Consequently, the scaling range of the
transport terms for Reλ = 254.75 is larger than at Reλ = 121.39, but still very
limited. Thus, the unsteady terms may not be neglected, as they contribute
significantly at intermediate to large r̃.
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Figure 5.8: Balance of the longitudinal second-order structure function equation
(5.57) (a) and of the transverse second-order structure function equation (5.58)
(b) for Reλ = 254.75. ◦ unsteady term, � transport term, � dissipation, � viscous
term.

5.4.4 Numerical results of the closures

Numerical results of the power-law closure

Let us first look at the power-law closure. The first term on the r.h.s. of
eqs. (5.62) and (5.65) corresponds to Kolmogorov’s asymptotic results in the
inertial range for very large Reynolds numbers, while the second term on the
r.h.s. is the contribution due to the unsteady term and the third term on the
r.h.s. stems from the viscous terms. Indeed, the unsteady corrections (the
second terms on the r.h.s.) become smaller with increasing Reynolds number.
However, they increase with increasing r/η. As A3,0 and A1,2 are positive, |D̃3,0|
and |D̃1,2| then become smaller than 4/5 and 4/15 at a fixed Reynolds number;
the deviations are not negligible for r/η larger than a certain threshold and
the higher the Reynolds number, the higher the threshold value of r/η. This
behaviour is exactly the same as observed from our DNS data, cf. figures 5.7 and
5.8. Noticeably, the influence of μ, i.e. deviations from the K41 value ζ2 = 2/3
play only a marginal role, as μ is small. As μ is found to be positive (see table 5.2
for our DNS and e.g. Anselmet et al. (1984), Benzi et al. (1995), and Gotoh et al.
(2002) in the literature) and small, 0 < μ � 4/3, the viscous terms decrease
much faster with increasing r and are therefore negligible as expected (r/η � 1
in the inertial range). For K41 scaling, μ = 0 and there is no Reynolds number
dependence of the viscous terms. Physically, μ = 0 corresponds to the statement

170



5.4 Finite Reynolds number corrections of the 4/5-law for decaying turbulence

10−1 100 101 102 103
10−3

10−2

10−1

100

r/η

-D̃
3

,0
/r̃

(a)

10−1 100 101 102 103
10−3

10−2

10−1

100

r/η

-D̃
1

,2
/r̃

(b)

Figure 5.9: Third-order structure functions D̃3,0 (a) and D̃1,2 (b) for Reλ =
121.39 as evaluated from DNS (◦) and compared to the power-law closures eq. (5.65)
and (5.62) (�) with parameters from table 5.4.

that the second-order structure functions are determined in the inertial range
solely by the scale r (with dimension [m]) as well as another quantity with
dimensions [m2/s3] which is usually taken to equal the mean dissipation 〈ε〉, cf.
K41 theory. In this spirit, μ �= 0 implies that there are more (albeit a-priori
unknown) quantities which influence the second-order structure functions in the
inertial range.

We compare eq. (5.65) and eq. (5.62) to our DNS for Reλ = 121.39 (figures 5.9a
and 5.9b) and Reλ = 254.75 (figures 5.10a and 5.10b) as shown in figure 5.9 and
figure 5.10. The values of the coefficients A3,0, A1,2, B3,0 and B1,2 as well as μ

and n determined from the DNS are given in table 5.4. Because C̃2,0 and C̃0,2

vary with the Reynolds number, the coefficients A and B do so as well. The
closure agrees better with the transverse D̃1,2 than the longitudinal D̃3,0. This is
probably due to the fact that D̃1,2 feeds into D̃3,0, so that any errors of eq. (5.62)
are carried over to eq. (5.65). Nevertheless, we find good qualitative agreement,
also for the lower Reynolds number. As expected, the closure improves with
increasing Reynolds number, because the scaling range of the second-order
structure functions increases. However, the deviations from Kolmogorov’s results
eq. (3.40) and eq. (3.41) (the dashed black lines) are significant. At Reλ = 254.75,
the difference of −D̃3,0 and −D̃1,2 to 4/5 and 4/15 has only slightly decreased
compared with Reλ = 121.39. Also, the range for which D̃3,0/r̃ ≈ const. and
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Figure 5.10: Third-order structure functions D̃3,0 (a) and D̃1,2 (b) for Reλ =
254.75 as evaluated from DNS (◦) and compared to the power-law closures eq. (5.65)
and (5.62) (�) with parameters from table 5.4.

D̃1,2/r̃ ≈ const. is quite small.

Table 5.4: Numerical values of the power-law closure parameters for datasets
D1 to D4 of section 2.2.

D1 D2 D3 D4

A3,0 2.61 2.67 2.71 2.81
B3,0 4.84 4.98 5.04 5.21
A1,2 1.16 1.19 1.21 1.25
B1,2 0.76 0.77 0.79 0.82

n 1.45 1.45 1.45 1.45
μ 3.34 · 10−3 3.34 · 10−3 3.34 · 10−3 3.34 · 10−3

Numerical results of the eddy viscosity closure

The results of the eddy viscosity closure are shown in figures 5.11 and 5.12,
where we compare the numerical solutions of D̃3,0 and D̃1,2 for the system of
equations both with and without the unsteady terms to the DNS data. The
model solution has been computed using an explicit Runge-Kutta solver. We
use constant values of κ1 and κ2 throughout the numerical integration, which
have been determined from DNS in the (presumed) inertial range. As the
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Figure 5.11: Third-order structure functions D̃3,0 (a) and D̃1,2 (b) for Reλ =
121.39 as evaluated from DNS (◦) and compared to the eddy viscosity closure
(solid line) with parameters from table 5.3. Dashed lines correspond to model
solutions without the unsteady terms.

transport terms are small in the viscous range, the deviations of the constants
κ1 and κ2 from their true viscous range values do not play a crucial role for the
model performance, although they lead to small deviations in the viscous range.
The model parameters used here are listed in table 5.3 where for our DNS the
decay exponent n = 1.45. We observe striking agreement of the model with the
DNS data when the unsteady terms are included for both Reλ = 121.39 and
Reλ = 254.75. Without the unsteady terms, the difference between DNS and
model increases with r̃. This is not that surprising, because the contributions
of the unsteady terms to the balances as seen by figure 5.7 and 5.8 increase
with increasing r̃. As discussed above, the model gives ζ2 = 2/3 and ζ3 = 1 (i.e.
eq. (3.40) and eq. (3.41)) if the unsteady terms are neglected. Consequently,
their absence at the intermediate and large scales then results in an infinitely
long inertial range for the model, even at finite Reynolds numbers. This is in
agreement with the observation that the unsteady term is the only term in the
eqs. (5.57) and (5.58) which explicitly contains the large scales.

After having established that the eddy viscosity closure agrees very well
with the DNS data when the unsteady corrections are included, we proceed to
extrapolate towards higher Reynolds numbers. As κ1 and κ2 evaluated from
our DNS (cf. table 5.3) do not show a clear Reynolds number dependence,
we keep the values of κ1 and κ2 evaluated at Reλ = 254.75 and increase the
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Figure 5.12: Third-order structure functions D̃3,0 (a) and D̃1,2 (b) for Reλ =
254.75 as evaluated from DNS (◦) and compared to the eddy viscosity closure
(solid line) with parameters from table 5.3. Dashed lines correspond to model
solutions without the unsteady terms.

Reynolds number. We have then computed the solution of the model for Reλ =
625, 1250, 2500, 5000, 10000. The resulting D̃3,0 and D̃1,2 are shown in figure 5.13
and agree with the characteristics observed from DNS as described in section 5.4.2.
As expected, the range for which −D̃3,0 and −D̃1,2 are approximately equal to
4/5 and 4/15 increases with increasing Reynolds number. However, the range
one might call inertial range based on fig. 5.13 is quite small even at Reλ = 10000.
We show the unsteady and viscous terms of eq. (5.57) and eq. (5.58) computed
using the modeled D̃2,0, D̃0,2, D̃3,0 and D̃1,2 in figure 5.14. We find that the
range for which the transport terms dominate increases with increasing Reynolds
number, in agreement with Kolmogorov’s classical notion of the inertial range
and fig. 5.13. The transport terms peak close to the intersection of the unsteady
and viscous terms, which we briefly discuss in the following. We find that the
intersection point (r̃C , ỹC), i.e. the crossover after which the unsteady terms
are larger than the viscous terms, scales with the Reynolds number as indicated
with the dashed black line in figure 5.14a and figure 5.14b. We may thus write

r̃C,‖ = Ar,‖Re
Br,‖
λ , ỹC,‖ = Ay,‖Re

By,‖
λ (5.76)

and
r̃C,⊥ = Ar,⊥Re

Br,⊥
λ , ỹC,⊥ = Ay,⊥Re

By,⊥
λ , (5.77)

where ‖ indicates the cross-over of the terms of eq. (5.57) and ⊥ the cross-over
of the terms of eq. (5.58). Using a least square fit, the model then gives the
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Figure 5.13: Normalised third-order structure functions D̃3,0 (a) and D̃1,2 (b)
extrapolated towards higher Reynolds numbers Reλ = 625, 1250, 2500, 5000, 10000
(lighter to darker colour) using the eddy viscosity closure.

parameters shown in table 5.5 and the longitudinal and transverse exponents
are found to be approximately equal for both r̃C and ỹC . Noticeably, only the
prefactors of the cross-over length but not the corresponding values of the ordinate
differ. That is, the inertial range of the longitudinal and transverse structure
function is approached equally fast, but its location in r̃ differs. Particularly, the
inertial range of the transverse structure function D̃1,2 is shifted towards smaller
r̃ than the corresponding inertial range of D̃3,0 and we have r̃C,‖/r̃C,⊥ ≈ 1.55
and ỹC,‖/ỹC,⊥ ≈ 1.15 independent of the Reynolds number. We also find good
agreement of the scaling as given by table 5.5 with the lower Reynolds numbers
of our DNS.

As r̃ = r/L, for both the longitudinal and transverse non-normalised cross-over
length

rC ∼ λ, (5.78)

where the prefactor is O(1). In other words, the transport terms of eq. (5.57)
and eq. (5.58) peak at the Taylor scale λ. That is, Kolmogorov’s inertial range
assumption that both the viscous and unsteady terms are small is best fulfilled
at r on the order of the Taylor scale λ. This result is in agreement with the
observation that λ is an intermediate length scale, smaller than the integral
length L and larger than the dissipative scale η.
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Figure 5.14: Unsteady and viscous terms of eq. (5.57) and eq. (5.58) as evaluated
for the extrapolated Reynolds numbers Reλ = 625, 1250, 2500, 5000, 10000 using
the eddy viscosity closure. Reynolds numbers are indicated by the same colouring
as in figure 5.13.

Table 5.5: Numerical values of the scaling of eq. (5.76) and eq. (5.77).

Ar Br Ay By

‖ 12.99 -1.02 4.63 -0.62
⊥ 8.37 -1.05 4.04 -0.63
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6 Streamline segment analysis

In this chapter, we will briefly look at the statistics of the velocity difference
Δu = u(2) − u(1) for streamline segments, where the subscripts indicate the
segment endpoints and u =

√
u2

i . In section 6.1, general properties of streamlines
are presented. A brief overview of results found in the literature is given
in section 6.1.2, where also the analogon to the structure function transport
equations is derived. Since streamlines are tangent to the velocity field, they
may not be Galilean invariant. This is briefly discussed in section 6.1.3.

Streamline segments were introduced by Wang (2010) and are described in
more detail below. Different to longitudinal structure functions, where the
velocity differences Δu1 = u1 − u′

1 and Δu2 = u2 − u′
2 are along fixed lines (ri

is aligned with x1), the orientation of Δu depends on the local flow geometry.
For that reason, the higher moments of Δu are of interest.

In a first step, we compare the segment statistics of the forced and the decaying
isotropic datasets D1, D3, R5 and R6, i.e. two different Reynolds numbers for
both flows types in section 6.2. Subsequently, streamline segments for anisotropic
data are examined in section 6.3, based on Boschung et al. (2016b).

6.1 Properties of Streamlines
First, we briefly introduce the streamline coordinate system in section 6.1.1.
We proceed to review known results found in the literature in section 6.1.2.
Streamlines may not be Galilean invariant, the implications of which we discuss
in section 6.1.3.

6.1.1 Streamline coordinate system

It is useful to describe curves with their intrinsic curvilinear coordinate system,
as introduced below. For more details, see e.g. Kreyszig (1963) or Aris (1962).

In cartesian coordinates, a point can be uniquely identified by its position,

x = (x1, x2, x3). (6.1)
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The vector function
x = x(s) (6.2)

can be thought of as the set of points which, if ordered by increasing s, forms a
curve with x(s) being its parametric representation; s denotes the arc length of
said curve. Then the tangent vector at any point of the curve is

ti = ∂xi

∂s
(6.3)

and is a unit vector. Field lines (e.g. streamlines) of a vector field vi are tangent
to the unit vector ti = vi/v, where v =

√
v2

i . For streamlines, vi represents the
components of the velocity field (i.e. vi = ui).

By the rules of partial differentiation, the derivative in direction of the arc
length s is

∂

∂s
= ∂xi

∂s

∂

∂xi
= ti

∂

∂xi
, (6.4)

i.e. the projection of the gradient onto the curve. Now, a new coordinate system
may be found by choosing ti as its first axis. As titi = 1,

ti
∂ti

∂s
= 0, (6.5)

i.e. the vectors ti and ∂ti/∂s are orthogonal. Thus, the unit vector pi can be
defined as

pi = ∂ti/∂s

|∂ti/∂s| = κi

κ
, (6.6)

where κ =
√

κi
2 =

√
(∂ti/∂s)2 denotes the curvature of the curve and its

reciprocal R = 1/κ is the local radius of the line. pi is called the unit principal
normal vector and, being perpendicular to ti, may be chosen as the second unit
vector of the curvilinear coordinate system. The curvature κ is a measure for
the change of the unit vector ti along the curve and can be interpreted as the
deviation of the curve from its tangent vector.

A third unit vector which is orthogonal to ti and pi can be found from the
vector product bi = εijktkpj and is called the unit binormal vector. Both pi

and bi lie in the plane normal to ti (the so-called normal plane). From bibi = 1,
biti = 0 and the definition of pi, it may be concluded that −∂bi/∂s ∼ pi and
thus ∂bi/∂s = −τpi, where τ is called the torsion of the curve. Figure 6.1 shows
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6.1 Properties of Streamlines

Figure 6.1: The curvilinear coordinate system, where e1, e2 and e3 are the
Cartesian coordinate system unit vectors.

the curvilinear coordinate system with unit vectors ti, pi and bi.
As κ relates pi and ∂ti/∂s and τ relates ∂bi/∂s and pi, the derivatives of ti,

pi and bi along the curve can be expressed as functions of ti, pi, bi, κ and τ ;
these relations are known as the formulae of Frenet,

∂ti

∂s
= κpi,

∂pi

∂s
= −κti + τbi,

∂bi

∂s
= −τpi. (6.7)

6.1.2 Streamline segments
Definition and known results

Streamlines are in principle infinitely long, unless they hit a stagnation point
where all three velocity components vanish. This is why Wang (2010) proposed
to split streamlines into streamline segments which extend between local extreme
points of u along the streamline. Streamline segments are bound by two extrema,
i.e. points where the velocity derivative with respect to the arc length s van-
ishes. Wang further characterized streamline segments as positive or negative,
depending on the sign of the gradient: within positive segments ∂u/∂s > 0;
within negative segments ∂u/∂s < 0. Thus the flow along positive segments
is accelerated, while it is decelerated along negative segments. Streamline seg-
ments are therefore characterised by the velocity difference Δu between two
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6 Streamline segment analysis

Figure 6.2: Projection of the velocity field ui onto a streamline. Streamline
segments are defined by the local minima � and maxima ◦ of the projected velocity
u = tiui and characterised by their curvilinear length l along the streamline
coordinate s and velocity difference Δu.

local extrema and the arc distance l between them, see figure 6.2, where Δu > 0
for positive segments and Δu < 0 for negative segments. Positive segments are
stretched (on average) due to the positive velocity difference at their endpoints
along the local streamline direction while negative segments are contracted. As
a result stemming from this kinematic mechanism, positive segments are found
to be longer than negative ones in agreement with the negative skewness of the
longitudinal velocity derivative, cf. the discussion in Wang (2010). Because
there are no segments with Δu = 0, the joint pdf P (Δu, l) is wing-shaped, see
section 6.2.1 below, where the jpdf for the datasets D1, D3, R5 and R6 are
shown.

Wang (2012) then applied this method to vortex lines and vortex tubes,
analogous to the streamline segmentation (i.e. choosing the extrema of the
vorticity projected onto the vortex line for the segmentation). However, an
inherent kinematic mechanism of stretching positive and compressing negative
segments is missing and therefore both positive and negative segments are found
to have the same mean length.

Schaefer et al. (2012a) pursued the ideas of Wang and adapted the stochastic
model of Wang and Peters (2006, 2008) to model the length distribution of
streamline segments, based on slow changes by diffusional and convective drift
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in phase space as well as fast changes by cutting and reconnection of segments.
The underlying physical process is that very small elements are determined by
diffusion, medium-length segments are stretched by strain and large segments are
cut. That is, the segment length can change due to slow processes (by diffusion)
or very fast processes when a segment is either cut or reconnects with another
segment. The model agrees well with results from direct numerical simulations
(DNS). Based on dimensional grounds, Schaefer et al. (2012b) proposed that the
mean segment length scales with the geometrical mean of the Taylor scale λ and
the Kolmogorov scale η, i.e. lm ∼ √

λη.
Statistics of dissipation and vorticity conditioned on the curvature and torsion

of streamlines have been reported by Braun et al. (2006). However, only a weak
correlation between dissipation and curvature has been found. Schaefer (2012)
examined the probability density function (pdf) of the curvature of streamlines
and the mean curvature and derived a power-law scaling for the tails of both
distributions.

Streamlines, transporting mass, belong to a larger family of field lines based on
transport fields. Meyers and Meneveau (2013) proposed the use of momentum
lines (tangent to the total flux of momentum in an arbitrary but fixed direction)
and energy lines (tangent to the total flux of the kinetic energy) to visualize the
momentum and energy flux in various flows, such as wind farms.

Boschung et al. (2014) introduced a general classification scheme for the local
behaviour of field lines based on the first and second invariant

H = − ∂ti

∂xi
, K = 1

2

(
∂ti

∂xi

∂tj

∂xj
− ∂ti

∂xj

∂tj

∂xi

)
(6.8)

of the tensor ∂ti/∂xj . Noticeably, the third invariant I = −det|∂ti/∂xj | = 0 for
all vector fields vi, because ti(∂ti/∂s) = 0.

This H-K-classification is somewhat similar to the P -Q-R flow topology
classification scheme of Chong et al. (1990) based on the velocity gradient tensor
∂ui/∂xj . While the latter describes the local topology of the flow around a point
in space moving with its local velocity (and is therefore Galilean invariant), the
former characterises the local behaviour of field lines based on the underlying
vector field vi and is therefore only Galilean invariant if vi is.

Navier-Stokes equation projected onto streamlines

Following Wang (2010), one can derive an equation for the magnitude of the
velocity u along streamlines by multiplying the Navier-Stokes equation eq. (1.5)
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with the unit vector ti = ui/u. This results in

∂u

∂t
+ u

∂u

∂s
= −∂p

∂s
+ ν

∂2u

∂x2
j

− uν
∂ti

∂xj

∂ti

∂xj
, (6.9)

where the projection of the viscous term on the r.h.s. of the Navier-Stokes
equations leads to the two terms ν(∂2u/∂x2

j ) and uν(∂ti/∂xj)(∂ti/∂xj), where
the latter term is always positive and can be interpreted as a dissipative quantity.
Noticeably, eq. (6.9) does not depend on the arc length s only, due to the viscous
term: Since the Laplace operator ∇2 = ∂2/∂x2

i can be interpreted as a local
averaging operator, it includes information in all directions and not only along ti,
but also in pi- and bi-direction. For stationary, inviscid flows, eq. (6.9) reduces
after integration from s(1) to s(2) to Bernoulli’s equation

1
2

Δ
(
u2
)

+ Δp = 0, (6.10)

where Δ is the difference between two points s(2) and s(1) along the streamline∗.
One can also project the Navier-Stokes equation in the other two principal
directions by multiplying with the unit vectors pi and bi, respectively†. However,
the resulting equations are not examined here.

It is possible to derive an equation for Δu along s from eq. (6.9) in the spirit
of section 3.1. Consider two points (2) and (1) with coordinates s(2) and s(1)

along the line and define
S = 1

2
(
s(2) + s(1)

)
(6.11)

as middle position and
Δs =

(
s(2) − s(1)

)
(6.12)

∗Since body forces such as gi = gei where g is the gravitational acceleration and ei = (0, 0, 1),
say, were neglected in the Navier-Stokes equation (1.5), the term gΔx3 does not appear in
eq. (6.10).

†For instance, multiplying the Navier-Stokes equations with the normal vector pi gives

pi
∂ui

∂t
+ uκ = − ∂p

∂n
+ νpi

∂2ui

∂x2
j

,

where ∂/∂n is the derivative in pi-direction. For stationary, inviscid flows this reduces to
the well-known relation

uκ = − ∂p

∂n
,

which relates the curvature κ of a streamline to the pressure gradient normal to it.
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as arc length distance between the two points. This results in a coordinate
transform equivalent to eq. (3.5),

∂

∂s1

= 1
2

∂

∂S
− ∂

∂Δs
,

∂

∂s2

= 1
2

∂

∂S
+ ∂

∂Δs
. (6.13)

Writing the projected Navier-Stokes equations (6.9) at s(2) and s(1) gives

∂u(2)

∂t
+ u(2)

∂u(2)

∂s(2)

= −∂p(2)

∂s(2)

+ νD(2)

∂u(1)

∂t
+ u(1)

∂u(1)

∂s(1)

= −∂p(1)

∂s(1)

+ νD(1)

(6.14)

where the viscous term νD is defined as

νD = νti
∂2ui

∂x2
j

. (6.15)

Introducing Δu = u(2) − u(1), Δp = p(2) − p(1), ΔD = D(2) − D(1) and noting
that the derivative of quantities at s(2) with respect to s(1) vanish and vice versa
then yields after subtracting both equations and using the coordinate transform

∂Δu

∂t
+ Δu

∂Δu

∂Δs
+ US

∂Δu

∂S
= −∂Δp

∂S
+ νΔD, (6.16)

where US = (u(2)+u(1))/2 has been used. Therefore, eq. (6.16) may be considered
as analogon to eq. (3.10) for the velocity difference along streamlines. One would
therefore hope that one could multiply eq. (6.16) by some power of (Δu)N−1,
average and then integrate in Δs to determine

〈
(Δu)N+1

〉
. However, eq. (6.16)

is not suitable to examine streamline segments, because by definition ∂u/∂s = 0
at the two segment endpoints. Consequently, the transport term(s) in eq. (6.14)
vanish, if both equations are evaluated at the segment endpoints; one is left with
an equation where Δu is only contained in the unsteady and viscous term, both
of which cannot be integrated in Δs analytically.

6.1.3 Galilean invariance?

It is well known that the Navier-Stokes equations are Galilean-invariant, i.e. do
not change under a continuous movement of the coordinate system. Also, all
quantities derived from velocity gradients, such as the dissipation or the vorticity,
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6 Streamline segment analysis

are Galilean-invariant as well. However, streamlines based on the instantaneous
velocity field are clearly not. For instance, adding a very large uniform velocity
in x1-direction, say, leads to the streamlines being aligned with the x1-axis,
since the streamline unit vector approaches ti → (1, 0, 0). If one is interested in
analysing Galilean-invariant quantities such as the dissipation, streamlines based
on the instantaneous velocity field seem not suited. However, one can choose the
fluctuating velocity field, since adding a constant velocity changes only the mean
velocity field; the fluctuating velocity field can be considered Galilean-invariant.
In case of isotropic turbulence, the mean velocity vanishes by definition, i.e.
there is no difference between the instantaneous and the fluctuating velocity∗.
This is not the case for other flows such as the fractal grid data used below. For
that reason, we have subtracted the mean flow for the analysis in section 6.3.
It should be mentioned that Hennig et al. (2016) compared streamline segment
statistics based on the instantaneous velocity field for isotropic turbulence and a
wavy channel flow and found very good agreement for the length and velocity
difference pdfs after normalising with the mean segment length lm and the
standard deviation σ of the velocity difference Δu, although the non-normalised
pdfs differed significantly. These findings are remarkable because the streamlines
are orientated mostly in downstream direction in case of the wavy wall flow,
i.e. have a preferred orientation while those for the isotropic turbulence do not.
The reason might be that effects introduced by the curvature of the streamlines
are not significant after normalisation for these specific cases; indeed, the mean
segment length for the isotropic flow was found to be much shorter than for the
wavy wall.

Finally, it should be mentioned that there are fields which are always Galilean-
invariant, such as the vorticity field ωi = εijk∂uk/∂xj or all other vector quanti-
ties based solely on velocity gradients. For that reason, examining statistics of
vorticity segments (defined similarly to streamline segments, cf. section 6.1.2)
seems very interesting. Vortex segments have been studied by Wang (2012) and
Boschung et al. (2014). Further analysis is not carried out here, but remains for
future studies.

∗Adding a constant velocity would then lead to a non-zero mean velocity and would break
the isotropy of the instantaneous velocity field, while the fluctuating velocity field would
remain isotropic.
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(a) (b)

(c) (d)

Figure 6.3: Normalised joint pdfs P (Δu/σ, l/lm). (a) decaying turbulence
dataset D1, (b) decaying turbulence dataset D3, (c) forced turbulence dataset R5,
(d) forced turbulence dataset R6.

6.2 Segment statistics for isotropic flows

6.2.1 Probability density functions

Joint pdfs

The normalised joint pdfs P (Δu/σ, l/lm) are shown in figure 6.3 for the isotropic
datasets D1, D3, R5 and R6, where σ =

√〈(Δu − 〈Δu〉)2〉 is the standard
deviation of the velocity difference Δu of the segment endpoints and lm is the
mean segment length and are found to be in good agreement with the results of
Wang (2010). For all four datasets, we find the same shape with two distinct
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6 Streamline segment analysis

wings, since Δu �= 0 by definition. Noticeably, positive segments with Δu > 0
are longer on average than negative segments Δu < 0. The notion is that
positive segments are stretched because Δu > 0 while negative segments are
compressed, Δu < 0. This is in agreement with the negative skewness of the
velocity derivative as discussed by Wang (2010). Because positive and negative
segments alternate along a streamline, this implies that |Δu| is larger on average
for negative segments compared to positive segments due to continuity (i.e.
〈u〉 = const. in isotropic turbulence).

As |Δu| > 0, both wings of the jpdf should be separated. This is not the case
for the jpdfs in figure 6.3 due to finite binning. A model for the jpdf has been
given by Schaefer et al. (2013a), which shows good qualitative agreement with
data from DNS.

On first sight, the conditional means 〈(Δu)N |l〉 appear to be similar to the
longitudinal structure functions DN,0 = 〈(Δu1)N |r〉. However, they differ for
several reasons:

1. Because 〈(Δu)N |l〉 is computed along streamlines, the separation l which
equals the arc length of the segment is not aligned with a fixed axis such
as ri = (r, 0, 0) and differs in orientation for every segment, although it
might be argued that there is also no preferred direction when averaging
over multiple streamlines.

2. As a corollary to 1., the arc length l differs from the shortest distance in
space between the two streamline endpoints. One could easily imagine a
very curved segment with large l but short distance between its endpoints.
On the other hand, the separation vector ri is the shortest distance between
the two points x and x′ used to compute the structure functions DN,0.

3. Streamlines may locally converge or diverge, so that not every part of the
volume is equally weighted when averaging even when the streamlines are
started at equidistant points. This is different to the structure functions
which uniformly sample the volume.

4. Probably most important, streamline segments introduce an intrinsic local
length scale l. In case of structure functions, on the other hand, the
separation distance is not a random variable but can be rather thought
of as a parameter. It might be argued that streamline segments are thus
better suited to reflect the local flow structure. Moreover because of the
segmentation, it follows that |Δu| > 0 always, while the difference u1 − u′

1

can vanish.
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(a) (b)

Figure 6.4: Joint pdfs log(P (Δu1/uη, r/η)) (a) and log(P (Δu/σ, l/lm)) (b) for
dataset R4.

These differences are best highlighted by comparing the jpdf P (Δu1/uη, r/η)
and the jpdf P (Δu/σ, r/lm), cf. figure 6.4 for dataset R4 where P (Δu1, r) has
been normalised with uη and η. While l can be thought of as a stochastic variable,
P (r) = const., i.e. every r is equally sampled by definition∗, P (Δu1, r) =
P (r)P (Δu1|r) ∼ P (Δu1|r). Moreover, the maximal segment length l is bounded
by intrinsic physical processes such as the cutting of large segments while the
maximal separation distance r is determined by the experimental apparatus of
the measurement in question. This is clearly seen in figure 6.4b, where there are
hardly any segments with l/lm ≥ 4 while r is evenly distributed. Furthermore,
there is no separation into two distinct regions for Δu1 > 0 and Δu1 < 0.
Also note that because of the asymmetry of the jpdf P (Δu, l), the conditional
mean 〈Δu|l〉 does not vanish, different to the first-order structure function
D1,0 = 〈u1 − u′

1〉, which vanishes due to homogeneity. However, this does not
imply that P (Δu1, r) is symmetric although one might think so at first glance,
since odd-order structure functions do not vanish in general.

We look at 〈(Δu)N |l〉 in more detail in section 6.2.2 and section 6.3.3.

∗That is, P (r) = 1/(rmax −rmin) where rmin and rmax are the shortest and longest separation
distance evaluated. For the DNS used here, rmin = 0 and rmax = π as the periodic box
has an edge length of 2π.
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Marginal pdfs

Next, the normalised marginal pdfs P (l/lm) and P (Δu/σ) are compared, again
for the datasets D1, D3, R5 and R6. In figure 6.5a and figure 6.5b, P (l/lm)
is shown, where D1 corresponds to the blue, D3 to the red, R5 to the black
and R6 to the green lines, respectively. Here, the statistics were computed with
all segments, i.e. positive and negative segments were not distinguished when
calculating the pdfs.

For l/lm → 0, P (l/lm) increases linearly due to the viscous drift of small
segments (cf. Schaefer et al. (2012a) and Schaefer et al. (2013b)) while for large
l/lm, the pdfs have an exponential tail characteristic for a random cutting process
modeled by a poisson-distribution (see e.g. Wang and Peters (2006, 2008)).

Normalising the pdfs with the mean length lm leads to collapsing cores of the
pdfs, while the tails are longer the higher the Reynolds number. That is, the
length distribution of small segments up to l/lm ∼ 4 seems to be independent
of the Reynolds number and the flow type (here forced isotropic and decaying
isotropic turbulence), while the large segments differ. This observation is in
agreement with the notion of local isotropy, namely that the small scales should
be universal, while large scales are determined by boundary conditions such as
the flow geometry.

Similarly, P (Δu/σ) is shown in figure 6.5c and figure 6.5d, where the same
colouring for the different datasets is used. Again, the normalised pdfs collapse
for small Δu/σ and differ for |Δu|/σ � 4. As larger |Δu| are correlated with
longer segments, cf. the jpdfs above, this is again consonant with local isotropy.

Note that the non-collapsing tails of the pdfs imply that also the jpdfs do not
perfectly collapse when normalised with lm and σ∗.

6.2.2 Scaling of
〈
(Δu)N |l

〉
First conditional moment 〈Δu|l〉
As discussed above, 〈Δu|l〉 �= 0, different to the first-order longitudinal structure
function. For that reason, we examine the first conditional moment here. 〈Δu|l〉
is shown in figure 6.6 for the datasets D1 (blue), D3 (red), R5 (black) and R6
(green). Again we do not discriminate between positive and negative segments.

∗However, the statistics of positive and negative segments might collapse when normalised
with their individual mean length lm and standard deviation σ, i.e. when analysing the
statistics of positive and negative segments separately (Lipo Wang, private communication).
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Figure 6.5: Normalised pdfs P (l/lm) (a) and (b) and P (Δu/σ) (c) and (d) for
datasets D1 (◦), D3 (�), R5 (�) and R6 (�).
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Figure 6.6: Normalised conditional mean 〈Δu/σ|l/lm〉 plotted as function of
l/lm for datasets D1, D3, R5 and R6.

The conditional mean 〈Δu|l〉 is small and positive for small l, where it is
determined by viscous effects. At intermediate l ∼ lm, 〈Δu|l〉 < 0, cf. figure 6.6b,
because in this range more negative than positive segments are found (cf. also
the jpdfs). In the range 3 	 l/lm 	 5, 〈Δu|l〉 is linear. At larger l/lm, another
linear range is found, but with different slope.

As was found for the normalised pdfs P (l/lm) and P (Δu/σ), the conditional
means collapse for small l/lm, while they differ for larger l/lm.

Let us now briefly look at the first linear range, 3 < l/lm < 5. Writing

u(2) = u(S) + ∂u

∂s

∣∣∣∣
s=S

(
s(2) − S

)
+ O

((
s(2) − S

)2
)

,

u(1) = u(S) − ∂u

∂s

∣∣∣∣
s=S

(
S − s(1)

)
+ O

((
S − s(1)

)2
) (6.17)

and subtracting yields

Δu = ∂u

∂s

∣∣∣∣
s=S

Δs + O((Δs)3) (6.18)

with s(2) − S = S − s(1) = Δs/2 and where ∂u/∂s is evaluated at the segment
midpoint S. We drop the subscript in the following. Consequently,

〈Δu|Δs = l〉 =
〈

∂u

∂s

∣∣∣∣ l

〉
l ∼ a∞l. (6.19)
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On first glance, the expansion eq. (6.17) seems somewhat disheartening, since
it is a Taylor series around the segment midpoint S for small Δs aimed at
examining the conditional mean for large segments l > lm. However as saving
grace, one should keep in mind that because the segments are bound by extrema,
the velocity u is monotonic and consequently the mean curvature∗ of u and the
higher moments 〈∂nu/∂sn〉 are also highest at the segment endpoints but small
inside the segment†. Indeed, eq. (6.17) is more accurate, the larger the length
l of the segments, cf. figure 3 of Schaefer et al. (2013a) where the averaged
non-dimensional profile of segments with l/lm > 1.5 is approximately linear
whereas the average non-dimensional profile of segments with l/lm < 0.25 is
sinusoidal.

Since a∞ can be interpreted as strain induced by the large scales stretching
intermediate segments (and should therefore not depend on the segment length
l for the range under consideration), it can be expressed by the inverse of the
integral timescale τ = 〈k〉/〈ε〉, i.e.

a∞τ ∼ const. (6.20)

This is shown in figure 6.7, where indeed a∞τ becomes constant for the larger
Reynolds numbers and where a∞ was computed by fitting the linear range of
〈Δu|l〉 at intermediate 3 < l/lm < 5‡. That is, a∞ is not evaluated at l/lm → ∞,
although another linear scaling can be observed in that limit. This is because
intermediate segments are stretched while large segments are cut, i.e. stretching
as characterised by a∞ does not determine the length of large segments. One
would rather expect that for very large segments, Δu/l ∼ fcut, where fcut is the
characteristic cutting frequency.

Higher-order conditional moments
〈
(Δu)N |l〉 , N = 2, 3, 4

Next, the higher moments 〈(Δu)N |l〉 normalised with σ and lm for N = 2, 3, 4 are
shown in figure 6.8, while the corresponding structure functions were shown in
figure 4.10 and figure 4.11 in chapter 4. To better compare the plots, 〈(Δu)N |l〉

∗I.e. ∂2u/∂s2, not to be confused with the curvature κ of the streamline.
†Because the segments are not symmetric, the mean curvature 〈∂2u/∂s2〉 does not exactly

vanish at S, but is small.
‡Noticeably, Gampert et al. (2011) were able to collapse the conditional mean 〈Δu|l〉 along

dissipation elements for five different flow types (shear flow, forced turbulence, decaying
turbulence, channel flow and Kolmogorov flow) also using the timescale τ = 〈k〉/〈ε〉 and
the strain rate α∞.
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Figure 6.7: Plot of a∞τ over Reλ for the forced datasets R4, R5 and R6 (◦) and
decaying datasets D1, D2, D3 and D4 (�).

are also shown logarithmically. The colours are the same as previously, i.e. D1
correspond to the blue lines, D3 to the red lines, R5 to the black lines and R6
to the green lines. As for the first conditional moment 〈Δu|l〉, we find similar
qualitative behaviour for the higher orders for the different Reynolds numbers
and flow cases examined here.

The second conditional moment N = 2 is shown in figure 6.8a and figure 6.8b,
〈(Δu)3|l〉 in figure 6.8c and figure 6.8d and 〈(Δu)4|l〉 in figure 6.8e and figure 6.8f.
Noticeably, the conditional moments do not differ much at small l/lm, which
is in line with collapsing cores of the normalised pdfs P (l/lm) and P (Δu/σ).
Identifying power-law scaling is somewhat challenging, since corresponding
scaling ranges are very short (if existent). If there is scaling, it differs significantly
from K41 scaling N/3 as seen in figure 6.8b and figure 6.8f∗.

While the even conditional moments are always positive by definition, the odd
moments such as 〈(Δu)3|l〉 are negative at l ∼ lm, due to the asymmetry of the
jpdfs. However different to odd-order structure functions, the range for which
〈(Δu)N |l〉 < 0 with N odd is very limited and a scaling exponent can hardly
be identified. While it can be seen from eq. (4.38) that D3,0 < 0 for r → 0,
an analogous result for 〈(Δu)3|l〉 for l → 0 is missing†. Similarly, D3,0 < 0 in
the inertial range (cf. section 1.4) and D3,0 → 0 for very large r, because the
velocities u1 and u′

1 at the two points are then decorrelated. On the other hand,
〈(Δu)3|l〉 > 0 for large l, because there are many more positive than negative
segments for large l. Moreover, this range seems to increase with increasing
Reynolds number (albeit not much). From these observations, one might thus

∗Of course, also ζ2 �= 2/3 and ζ4 �= 4/3, cf. e.g. table 3.3, but the differences are much
smaller.

†Indeed as seen from figure 6.8d, 〈(Δu)3|l〉 > 0 for l → 0.
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muse whether the range at l ∼ lm for which 〈(Δu)3|l〉 < 0 plays a similar role
as the inertial range regarding cascades. This is briefly discussed in the next
section, where streamline statistics of anisotropic, fractal-generated turbulence
are examined.

6.3 Comparison with fractal flows

Lastly, streamline statistics in stationary homogeneous isotropic turbulence and
in turbulence generated by a fractal square grid are compared. The fractal
grid is described in more detail in section 2.3. We have split the domain of the
fractal DNS into two equal subdomains, the first one called the production region
directly behind the grid. The second subdomain is located further downstream
and hereafter called decaying region∗, where the flow is further away from
the grid and more isotropic. The streamline segment statistics of these two
subdomains are compared to those of the forced homogeneous isotropic dataset
R2 (statistically stationary periodic turbulence), which has been chosen because
of its similar Reynolds number Reλ compared to the fractal flow. We also briefly
look at streamline segment statistics calculated from an artificial dataset with
vanishing skewness. This velocity field was obtained by randomising the phases of
the Fourier-transformed velocity components of R2 while keeping the amplitude
fixed. Continuity is then retained by projecting the Fourier-transformed velocity
in the plane normal to the wave vector. The skewness of the longitudinal velocity
gradient is then decreased to −0.00295 as compared to −0.54 for the original
dataset R2.

We find close agreement between the stationary homogeneous isotropic tur-
bulence and the decay region of the fractal-generated turbulence as well as the
production region of the fractal flow for small segments. The statistics of larger
segments are very similar for the isotropic turbulence and the decay region,
but differ for the production region. Specifically, we examine the first, second
and third conditional mean 〈(Δu)N |l〉. Noticeably, non-vanishing 〈(Δu)N |l〉 for
N = 1 and N = 3 also found for the anisotropic flows and are due to the same
asymmetry of positive and negative segments as for the isotropic datasets. This
asymmetry is not only kinematic, but also due to dissipative effects and therefore
〈(Δu)N |l〉 contains cascade information.

∗Not to be confused with the decaying isotropic turbulence described in section 2.2.
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Figure 6.8: Normalised conditional moments 〈(Δu)N /σ|l/lm〉 for isotropic
datasets D1, D3, R5 and R6. (a) and (b) N = 2, (c) and (d) N = 3, (e)
and (f) N = 4.
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6.3 Comparison with fractal flows

6.3.1 Joint pdf
Figure 6.9 shows the joint probability density function (jpdf) P (Δu, l) for the
forced turbulence case R2 (figure 6.9a), the fractal flow in the production
region close to the grid (figure 6.9b) and in the near-field decay region further
downstream (figure 6.9c) normalised by their respective mean segment length
lm and standard deviation σ = 〈(Δu − 〈Δu〉)2〉1/2.

For dataset R2 (fig. 6.9a), we find the same shape as Wang (2010) and the other
isotropic datasets D1, D3, R5 and R6 above, namely a noticeable asymmetry.
Specifically, positive segments are longer on average than negative segments.
This is consistent with their positive velocity difference Δu > 0 which stretches
positive segments, while negative segments are compressed by their negative
velocity difference Δu < 0. It follows that the absolute mean velocity difference
of positive segments is necessarily smaller than that of negative segments, as
positive and negative segments along a streamline alternate and the velocity u
is finite. This is confirmed by the shape of the jpdf as also previously found for
the isotropic datasets above.

The jpdf for the production region close to the fractal grid looks qualita-
tively similar compared to the isotropic case, albeit more symmetrical. Further
downstream, in the near-field decay region where the turbulence is out of
Richardson-Kolmogorov equilibrium, the jpdf (fig. 6.9c) approaches that of the
statistically stationary periodic turbulence (i.e. R2) which is in equilibrium by
virtue of the near-instantaneous balance between dissipation and power input
required to keep it statistically stationary.

Finally, we show the jpdf of the artificial, vanishing velocity derivative skewness
data in figure 6.9d. The shape of the jpdf is symmetric, i.e. positive and negative
segments have the same statistics. As the energy cascade causes the velocity
derivative skewness to be non-zero (and negative), this result suggests that the
asymmetry of the jpdf in figures 6.9a, 6.9b and 6.9c is a reflection of the energy
cascade at length-scales which are multiples/fractions but of the order of the
mean segment length lm. This is not a trivial result, in particular because lm
is a dissipative range length scale since lm =

√
ηλ, where η is the Kolmogorov

length scale and λ is the Taylor length scale, see Schaefer et al. (2012b).

6.3.2 Marginal pdfs
The marginal probability density functions (pdfs) of l and Δu normalised by lm
and σ are shown in figure 6.10 both plotted linearly and semi-logarithmically.
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(a) (b)

(c) (d)

Figure 6.9: Joint pdf P (Δu/σ, l/lm). (a) Periodic dataset, (b) production region,
(c) decay region, (d) vanishing skewness.
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Figure 6.10: Normalised marginal pdfs. (a) and (b) P (l), (c) and (d) P (Δu).
Blue: Periodic isotropic dataset, red: production region, black: decay region.
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The vanishing velocity skewness data has been used to make the connection
between turbulence cascade and the streamline segment statistics and is not
needed any longer. It is therefore not included in the figures and discussion of
this and the next subsection.

Noticeably, the normalised pdf of the segment length collapses for the three
cases of homogeneous isotropic turbulence and the production and decay region
of the fractal flow. The pdfs peak at l/lm ∼ 0.6 and show a linear behaviour for
l/lm → 0 and an exponential tail for l/lm → ∞. This exponential tail is especially
highlighted in figure 6.10b and corresponds to a random cutting-/reconnection
process acting on large segments, cf. Schaefer et al. (2012a). Small segments
l/lm → 0 are dominated by a drift towards smaller l due to molecular diffusion,
in agreement with the linear rise observed in figure 6.10a, cf. Schaefer et al.
(2012a). Schaefer et al. (2012a) derived a model for the pdf of l, which agrees
very well with DNS data. Noticeably, their model includes a small Reynolds
number dependence of the cutting-/reconnection process. Note that there are
not that many segments with very high l and that their number is even less in
the case of the fractal dataset. We can therefore not rule out that the tails may
not be converged and that they would collapse if we had more data. Hence, we
can not conclude whether the production and the non-equilibrium decay regions
have same or different marginal distributions for segment lengths l/lm > 3 when
normalised with lm. Comparing to P (l/lm) for the isotropic datasets D1, D3, R5
and R6, the pdfs for the periodic dataset, production region and decay region
seem to better collapse. This is likely due to their very similar Reλ.

The marginal pdf of the velocity difference Δu at the end points of the segments
normalised by σ is shown in figure 6.10c and 6.10d. We find that the normalised
P (Δu) significantly deviate from a normal distribution and that they collapse for
small velocity differences Δu as observed for D1, D3, R5 and R6 in section 6.2.1
above. Also, the tails of the pdfs do not collapse; especially negative segments
differ. We find the production region pdf to be more symmetric than for both the
statistically stationary periodic turbulence and the near-field decaying turbulence,
in agreement with their joint pdfs in figure 6.9. It should be mentioned that the
non-normalised pdfs P (Δu) and P (l) of all three cases differ wildly (not shown)
and that they are only similar when normalised with lm and σ, respectively.

6.3.3 Conditional means
Finally, we consider the conditional means 〈(Δu)N |l〉 for N = 1, 2, 3 for the
fractal flow. As discussed above, the separation vector ri is fixed in space
when evaluating structure functions, independent the local flow topology. This is
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6.3 Comparison with fractal flows

obviously not the case for 〈(Δu)N |l〉, where the separation is equal to the segment
length and orientated along the streamline. We may thus expect that 〈(Δu)N |l〉
takes the local flow into account and that the velocity along the streamline is
more correlated than along the arbitrary separation vector ri. However, we
must keep in mind that the separation vector ri is arbitrarily large whereas the
streamline length l has a maximum value. Hence we should not expect the range
of l to be comparable to an inertial range. The streamline segment statistics
mostly explore the dissipation range.

The first moment 〈Δu|l〉 is shown in both figure 6.11a and figure 6.11b.
Note that, unlike structure functions, the first moment does not vanish even in
statistically stationary periodic turbulence due to the characteristic differences
between positive and negative segments as highlighted by the asymmetry of the
jpdfs, cf. section 6.2.1 and section 6.3.1. For statistically stationary periodic
turbulence and near-field grid-generated decaying turbulence, we find that for very
small segments l/lm 	 0.5, 〈Δu|l〉 ∼ 0. Intermediate segments 0.5 	 l/lm 	 2
have a negative mean velocity difference, while 〈Δu|l〉 > 0 for large segments
2 	 l/lm. In agreement with section 6.2.2 and the findings of Wang (2009) and
Wang and Peters (2010), we find a linear relation of the form 〈Δu/σ|l/lm〉 ∼
(l/lm) for large l/lm also for the fractal flow. Wang (2009) showed that the
velocity difference along scalar trajectories (i.e. dissipation elements) does scale
linearly with l when l is large. As dissipation elements and streamline segments
are conceptually related inasmuch as that they depend on the flow structure,
the linear increase as seen in figure 6.11a is not completely surprising, although
the theory can not be carried over straightforwardly. Thus, figure 6.11a implies
that intermediate segments are compressed while larger segments are stretched,
in agreement with the jpdfs figure 6.9c above and section 6.2.2. In fact, there
is very good agreement between the isotropic data and the downstream fractal
flow. The production region data show qualitatively similar behaviour, but with
a wider range of segment lengths with negative mean velocity difference and
a smaller slope for large segments. This might indicate in conjunction with
figure 6.7 that it could be possible to collapse all three plots at intermediate
l/lm in the first linear range if normalised with suitable quantities such as the
integral timescale τ . Figure 6.11b highlights the region for which 〈Δu|l〉 < 0.
We find a remarkably good agreement between all our data for intermediate
segment lengths.

The second moment 〈(Δu)2|l〉 is shown in figure 6.11c and figure 6.11d. Simi-
larly to the first moment, the statistically stationary periodic turbulence data
and the grid-generated turbulence decay data agree very well, while the produc-
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Figure 6.11: Conditional moments 〈(Δu)N |l〉 normalised with σ and the mean
length lm. (a) and (b) N = 1, (c) and (d) N = 2, (e) and (f) N = 3. Blue:
Periodic isotropic dataset, red: production region, black: decay region.
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tion region data close to the grid exhibits a different slope for large segments.
Curiously, for small l/lm, the periodic turbulence data agrees better with the
production region data than with the decay region data. However, for l/lm � 0.5,
the periodic and the decay data agree very well, cf. figure 6.11d. For large l,
we find a linear increase of 〈(Δu)2|l〉 with l. If there is power-law scaling, it
differs significantly from the scaling of the second-order structure function D2,0,
ζ2 ≈ 2/3, cf. also figure 6.8a.

The third moment 〈(Δu)3|l〉 is presented in figure 6.11e and figure 6.11f. As
expected, we find a similar behaviour as in case of the first moment. However,
the range of l/lm for which 〈(Δu)3|l〉 < 0 is larger than the corresponding range
for the first moment. This agrees with the jpdfs inasmuch as large values of
Δu for a certain l are now higher weighted and that |Δu| was found to be
higher for negative segments than for positive segments. Again, we find that
the statistically stationary periodic turbulence and the grid-generated decaying
turbulence data agree very well and collapse for all l/lm, while the production
region data shows qualitatively similar behaviour.

The range 〈(Δu)3|l〉 < 0 is of particular interest, as the asymmetry in the
joint PDF of figure 6.9 is related to the turbulence cascade process (see end of
section 6.3.1) and one might ask whether the negative sign of 〈(Δu)3|l〉 reflects
the forward nature of this process at dissipative scales in the same way that
the negative sign in Kolmogorov’s 4/5-law D3,0 = −4/5〈ε〉r reflects the forward
nature of the cascade process in inertial scales. The scaling with l of −〈Δu)3|l〉 is
shown in figure 6.11f. There is no such power-law scaling range for the periodic
and the decaying turbulence data, but there may be a very short one with
exponent 1 for the highly non-Gaussian data in the production region of the grid-
generated turbulence exhibits. This observation is consonant with the finding of
Laizet et al. (2013), Gomes-Fernandes et al. (2015) and Laizet et al. (2015a) that
the best −5/3 power-law spectrum over the entire grid-generated turbulence
is found in the production region. It may be that the non-Gaussianity in the
production region has the same cause as these well-defined power-laws, namely
the sharp interfaces between alternating potential and vortical flow patches. The
cause of these well-defined power-laws has nothing to do with Kolmogorov’s
theory as already noted by Laizet et al. (2013), Gomes-Fernandes et al. (2015)
and Laizet et al. (2015a).

The asymmetry in Figure 6.9 which shows that there are longer streamline
segments with positive than with negative velocity difference Δu is a dynamic
effect reflecting inertial cascade processes at dissipative scales. The turbulence
cascade mechanism is expressed in terms of structure functions and their power-
law dependence on two-point separation distance in the so-called inertial range
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6 Streamline segment analysis

of length-scales. The statistical quantities 〈(Δu)N |l〉 studied here are defined
over a range of streamline segment lengths which extends up to no more than an
order of magnitude higher than lm =

√
ηλ. Hence, the range of scales sampled by

the streamline segments statistics 〈(Δu)N |l〉 is mostly dissipative. Nevertheless,
the asymmetry in the jpdf underlying these statistics is an asymmetry between
strain and compression and can only reflect the time-irreversible energy cascade
from large to small scales. Hence, the streamline segment statistics 〈(Δu)N |l〉
are capable of picking up cascade information but at the dissipation range level.
They are also capable of displaying approximate linear dependencies on l if l is
not much smaller than one or two lm.

The comparison we have made suggests that, even if sensitive to the average
direction of the cascade, streamline statistics are not very sensitive to the
difference between equilibrium and non-equilibrium cascades. Indeed, the grid-
generated decaying turbulence and the statistically stationary periodic turbulence
have very similar such statistics.

The similarities of streamline segment statistics between isotropic and anisotropic
datasets are very promising, although they differ significantly from longitudinal
structure functions DN,0. As the analysis presented in this chapter is rather
brief and only qualitative, more research regarding the streamline segments and
their conditional moments 〈(Δu)N |l〉 would be very welcome.
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7 Summary

Hereinafter, the most important findings of the main body are summarised.
As detailed in chapter 3, transport equations for structure functions DN of

arbitrary order as well as their trace can be derived from the Navier-Stokes
equations. The structure functions are then solutions of the coupled system of
equations, where the boundary conditions for r → 0 are known. The coupling
of the system is two-fold: First, there is a coupling via the transport term
in the equations which stems from the non-linear term in the Navier-Stokes
equations. These terms couple structure functions of the next higher order N + 1
to the Nth order. Therefore, the system is unclosed and closure needs to be
introduced if one is interested in solving the complete system. Second, there is
an inter-order coupling between longitudinal, mixed and transverse structure
functions of the same order N in the Nth-order equations; this coupling is due to
the viscous terms stemming form the Laplacian of the Navier-Stokes equations.
Noticeably, the boundary conditions of DN for r → 0 are known. It has been
shown that all longitudinal, even-order structure functions collapse for r → 0
when normalised with 〈εN/2〉 and ν with known, exact prefactors. Similarly, it
has been empirically found that also mixed and transverse structure functions
as well as odd-order structure functions collapse with 〈εN/2〉 and ν for r → 0,
albeit with empirical prefactors. That is, the pdf of the dissipation P (ε) and the
viscosity ν provide the boundary conditions r → 0 for the system of equations.

Furthermore, there are two kind of source terms found in the system of equa-
tions: The first called dissipation source terms 〈EN 〉 correspond to correlations
of velocity differences of order N − 2 and components of the pseudo-dissipation
tensor εij . The second called pressure source terms 〈T N 〉 are given by corre-
lations of velocity differences of order N − 1 and pressure gradient differences.
The source terms 〈EN 〉 and 〈T N 〉 are a-priori unknown and need to be closed.
They are important since they determine the solution of the system and one can
derive transport equations for 〈EN 〉 and 〈T N 〉 to further analyse them. This has
been done exemplarily for the fourth-order source terms 〈E4〉 and their trace.

In this framework, the inertial range assumptions correspond to a special
truncation of the system. Indeed, all terms containing structure functions of
order N are then neglected in the Nth-order equations and one obtains balances
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for DN+1 as function of the Nth-order source terms. Noticeably, only for even
orders there are enough equations to solve for DN+1 even if the source terms are
known. In the viscous range for r → 0, the Laplacian of the Nth-order structure
functions is balanced by the dissipation source term 〈EN 〉, while all other terms
can be neglected. However, it is not possible to solve for DN in general, because
the resulting equations are linearly dependent. Only the second and third order
can be completely solved, because the continuity equation provides an additional
equation for N = 2 and N = 3.

Furthermore, balances of structure function equations and their traces up
to the seventh order using DNS of homogeneous isotropic flow with Reynolds
number up to Reλ = 754 were computed and analysed. For even orders, the
dissipation source terms 〈EN 〉, which are related to correlations between velocity
differences and the pseudo-dissipation, were found to be the dominant source
terms. In the viscous range, they balance the viscous terms, while they balance
the transport terms in the inertial range to leading order. Interestingly, there
are as many equations as unknown structure functions in the inertial range at
even orders, similarly to the K41 result for the second-order equations leading
to the 4/5-law. That is, one can integrate the even-order equations under the
inertial range assumptions and could solve for all odd orders, if the source terms
were known. Again, the second order is very special, since the pressure source
terms vanish due to isotropy and the dissipation source terms can be written
as 〈ε〉, i.e. become a one-point quantity independent of r, thus facilitating the
integration resulting in the 4/5-law. There are no analogous results for higher
even orders, since the pressure source terms do not vanish (but may be negligible
at not too high orders) and the dissipation source terms remain two-point
quantities depending on r, thus immediately prohibiting simple phenomenology
such as K41. Noticeably, the coupling in the mixed and longitudinal equations
contributes significantly to the balance, to the effect that one could neglect
also the dissipation source term in these equations for the orders examined
here. However, the ratio of pressure source terms to the dissipation source
terms TN,0/EN,0 in the longitudinal equations increases with increasing order,
so that these approximations may not be warranted at higher-order N . On the
other hand, odd orders are different inasmuch that there is one less equation
than unknown structure functions DN+1 under the inertial range assumptions,
even if the source terms were known. Noticeably, the pressure source terms are
dominant in the odd-order equations and balance the transport terms nearly
perfectly. Remarkably, this seems to hold even in the viscous range, where
still the dissipation source terms balance the viscous terms as in the even-order
equations.
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The balances of the traces of the structure function equations up to the seventh
order were also examined. The trace equations are of interest, because they
contain the higher moments of the pseudo-dissipation in equations for the trace
of te dissipation source terms. For instance, the dissipation source term of
the second-order trace equation equals the mean of the pseudo-dissipation 〈ε〉.
Similarly, one finds the second moment 〈ε2〉 in the transport equation of the
trace of fourth-order dissipation source terms, 〈ε3〉 in the transport equation of
one of the source terms of the trace of sixth-order dissipation source terms and
so on. Since the trace is either a scalar for even orders or the 1-component of
a vector for odd orders, one can always solve the trace equation in the inertial
and viscous range if the source terms are known, as there is one equation for
one unknown. However, there is no coupling via the transport terms between
trace equations of N + 1 and N for N odd. That is, there is no system of trace
equations as compared to the individual equations analogous to figure 3.1 in the
sense that one cannot compute the trace D[N+1] for odd N and insert them into
the transport term of the even-order trace equations. Since the trace is the sum
of the longitudinal, mixed and transverse structure functions, the trace balances
are qualitatively similar to the individual balances. For even orders, the trace of
dissipation source terms balance the trace of viscous terms in the viscous range
and to leading order the trace of transport terms in the inertial range, while
the pressure source terms are negligible. For odd orders, the dissipation source
terms are negligible, while still balancing the trace of viscous terms for r → 0.
However, the trace of pressure source terms balance the trace of transport terms
nearly perfectly both in the viscous and inertial range.

After having discussed the system of equations, the viscous range was examined
more closely in chapter 4. Since components of the pseudo-dissipation are
found in the system of equations, the Reynolds number scaling of the ratios
of the moments of pseudo-dissipation to the dissipation, 〈εM 〉/〈εM 〉, the ratio
of their components to 〈εM 〉 and the ratio of the velocity gradients Gp,q/〈εM 〉
for M = 1, ..., 4 with M = p + q have been examined. All these ratios become
constant when the Reynolds number is large enough. This implies that one can
use the moments of the pseudo-dissipation and the kinetic energy dissipation
interchangeably, although their ratio needs to be determined empirically (except
for the mean 〈ε〉 = 〈ε〉). Similarly, all components of the moments of the
pseudo-dissipation have the same Reynolds number scaling as the moments
of the dissipation 〈εM 〉. This is comforting, since their sum appears in the
system of structure function equations in the viscous range, which may then
be replaced by the invariant quantity 〈εM 〉. Again, the numerical values of the
ratios need to be determined empirically. The same conclusion is drawn for the
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ratio of moments of velocity gradients and dissipation, Gp,q/〈εM 〉. Indeed, it
has been shown analytically that the ratio of longitudinal velocity gradients
and dissipation GM,0/〈εM 〉 is independent of the Reynolds number and can be
derived exactly under the assumptions of homogeneity and isotropy. Empirically,
this also holds for mixed and transverse velocity gradients. Moreover, there are
exact result for the third-order structure functions D3,0 and D1,2 in the viscous
range.

Using the relations between the moments of the longitudinal velocity gradient
and the moments of the dissipation, exact solutions of longitudinal structure
functions in the viscous range were determined without ambiguity or any free
parameters for arbitrary even orders, where the prefactors are known universal
(Reynolds number independent) constants. The only required assumptions are
(local) isotropy, (local) homogeneity and incompressibility. From this, generalised
cut-off scales ηC,N and uC,N as given by eq. (4.81) and eq. (4.82) were defined.
These scales are exact under the above assumptions and can be interpreted as
a generalisation of the Kolmogorov scales η and uη; they are determined by
dissipative quantities (the moments of the dissipation and the kinematic viscosity)
only. The question then becomes whether the same results hold for mixed and
transversal structure functions as well as odd orders. As found empirically
from the DNS data, this is indeed the case for the mixed and transversal
structure functions, because the ratio of the velocity gradients 〈(∂u2/∂x1)p+q〉
and 〈(∂u1/∂x1)p(∂u2/∂x1)q〉 to 〈(∂u1/∂x1)p+q〉 is constant at sufficiently high
Reynolds number. Also, it has been found that using moments 〈εN/2〉 with odd
N collapses the odd-order structure functions, although the required connectors
again cannot be derived and remain empirical. As the normalised moments of
the dissipation increase with increasing Reynolds number and order, the cut-off
length scales ηC,N decrease. This implies that K41 scaling is only correct for
the second order (and for the third order in the inertial range), while for higher
orders the new scales ηC,N and uC,N should be used, which were defined without
any ambiguity or additional assumptions.

As there is a myriad of order (and Reynolds number) dependent cut-off length
scales, the grid needs to be finer with increasing order and Reynolds number,
an effect well-known in the literature, which is not captured by K41. The exact
cut-off lengths ηC,N and the DNS data were used to estimate the grid resolution
at a given order, which gives satisfactory agreement with previous results in
the literature. Thus when carrying out DNS studies, one should consider the
desired Reynolds number one is aiming at as well as the order which needs
to be fully resolved. Resolving the (K41) Kolmogorov scale η is sufficient to
resolve the transport of kinetic energy down the cascade and its dissipation.
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Higher resolution is required if one is interested in higher-order statistics, which
consequently need higher orders fully resolved. This is evident inasmuch that
the moments of the velocity gradient pdf can be obtained from the limit of
Dm,n/rm+n for r → 0.

In chapter 5, the inertial range was examined more closely. It has been
shown that Kolmogorov’s refined similarity hypothesis (RSH) predicts that
the longitudinal N + 1th-order structure functions DN+1,0 = 〈(Δu1)N+1〉 are
determined by the longitudinal dissipation source terms 〈EN,0〉 ∼ 〈(Δu1)N−2ε11〉
of order N in the inertial range, for all N ≥ 4. Therefore, RSH is consistent
with the structure function equations if (∂DN+1,0/∂r) (but not necessarily the
full transport terms ∇rDN+1,0) and 〈EN,0〉 have the same r-dependency in the
inertial range. Anomalous scaling, i.e. deviations from K41 scaling ζ = N/3
can then be interpreted to stem from the correlations of (Δu1)N−2 and ε11,
which depend on r. Indeed from DNS, the ratio (∂DN+1,0/∂r)/〈EN,0〉 is found
to be constant in the inertial range for even N . On the other hand, the ratios
for odd-order N exhibit a slight r-dependence, which decreases with increasing
N , consistent with fig. 8 of Nakano et al. 2003. This is probably due to the
observation that the dominant source terms in the odd-order equations, the
pressure source terms 〈TN,0〉, scale differently from 〈EN,0〉 in the inertial range
for lower N ; the differences in scaling (but not necessarily in magnitude) are
found to decrease with increasing N in agreement with the balances of section 3.2.
Thus, one may conclude that the RSH prediction (∂DN+1,0/∂r)/〈EN,0〉 = const.
is in good agreement with the even-order balances for all N ; for the odd orders,
the agreement increases with increasing N .

At scales r ∼ O(ηC,N ), the normalised moments of the dissipation cross over
to the volume-averaged dissipation εr. Consequently, any theory predicting the
scaling of εr or the structure function exponents in the inertial range can be used
to determine the scaling of ηC,N . It is found that the log-normal model makes
unphysical predictions, while both the multi-fractal p-model as well as the She-
Leveque model agree very well with the DNS. Similarly, one can compute inertial
range scaling exponents from the Reynolds number scaling of the moments
of the dissipation. It is then seen that anomalous scaling is due to internal
intermittency.

In addition to ν and 〈ε〉, all higher-order moments of the dissipation distri-
bution function appear as dissipation parameters in the extended system of
two-point equations for small-scale turbulence. The effect of the higher-order
dissipation parameters on the solutions of these equations is demonstrated for
the trace of the fourth-order structure function equations, which are invariant,
independent of the coordinate system. The procedure can also be carried over to
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7 Summary

the individual structure function equations at higher even orders; for example, in
the sixth-order equations, the third-order dissipation parameters 〈(ε11 + ε′

11)3〉
etc. are found. The analysis uses exact equations, but because of the inherent
closure problem needs to apply empirical closure assumptions between some of
the terms. It can be concluded that the trace of the dissipation parameters in the
system of equations contains the moments of εr. However, the relation of 〈εN/3

r 〉
for the Nth-order structure functions in the inertial range to the dissipation
parameters such as 〈(ε11 + ε′

11)N/2〉 derived from the Navier-Stokes equations is
missing.

Under the inertial range assumptions, the unsteady and viscous terms are
neglected. However at finite Reynolds numbers, they contribute to the structure
function equation balances in the inertial range. These contributions were
examined for the second order and one might expect similar contributions
at higher orders. After normalising the unsteady terms in the second-order
equations of Hill (2002) with the large scale L, they can be written as function
of r̃ = r/L only. Evaluating the balance of the second order using DNS, the
unsteady terms contribute significantly to the inertial range solution of the
third-order structure functions D3,0 and D1,2 in agreement with previous results
in the literature. Using a power-law closure, it is seen that the contribution of
the unsteady terms increases with increasing r/η, but decreases with increasing
Reynolds number in agreement with the notion of an inertial range. If the
second-order structure functions follow K41 scaling, the same result as previously
reported by Lundgren (2002) and Lindborg (1999) is recovered. Closing the
system of equations by directly coupling the second- and third-order structure
functions using an eddy-viscosity ansatz gives very good agreement with the
DNS when the unsteady terms are included. This model also allows for solving
the equations for higher Reynolds numbers for which no DNS is available while
retaining the influence of the unsteady and viscous terms. From the model, it is
found that the intersection of these two terms scales with the Taylor scale λ, i.e.
λ is situated in the inertial range.

Finally, streamline segment statistics were briefly examind in chapter 6. The
endpoints of streamline segments are defined by local minima and maxima of
u along the streamlines and are characterised by the velocity difference Δu of
the endpoints as well as the arclength l. Conceptually, the conditional means
〈(Δu)N |l〉 are somewhat similar to the longitudinal structure functions DN,0

because u = tiui is the projection of the velocity ui onto the streamline. Whereas
the separation vector ri of structure functions can be considered as a parameter,
the streamlines depend on the local flow field and consequently their length l
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is an intrinsic quantity linked to the flow; thus, they might be a more suitable
candidate to examine turbulent structures and explore the multi-scale behaviour
of turbulent flows.

It is found that streamline segment statistics differ from longitudinal structure
functions for several reasons. Most importantly, the segment length l is a stochas-
tic variable while the separation vector can be thought of as a parameter with
uniform distribution. Additionally, streamline segments may locally converge
or diverge, so that the segment statistics do not sample the volume uniformly.
Moreover, the velocity difference |Δu| > 0 always, whereas u1(x + r) − u1(x)
may vanish. Thus, the joint pdf P (Δu, l) is separated into two distinct regions
for positive (Δu > 0) and negative (Δu < 0) segments. Positive segments are
found to be longer on average than negative segments. As a result, one finds an
asymmetric wing-shaped jpdf P (Δu, l) which differs significantly from P (Δu1, r).
Remarkably enough, the shape of P (Δu, l) is quantitatively similar for both
the homogeneous isotropic datasets with different Reynolds numbers as well as
for an anisotropic fractal grid flow also examined and is linked to the negative
skewness of the velocity gradients. Indeed, for an artificial flow with vanishing
skewness the jpdf P (Δu, l) was found to be symmetric.

The normalised marginal pdfs P (l/lm) and P (Δu/σ) (where lm is the mean
segment length and σ the standard deviation of u) were found to collapse for
small l and u but exhibit Reynolds number dependent tails.

Considering the conditional means 〈(Δu)N |l〉, it is found that odd-order
moments are negative in a limited range close to l/lm ∼ 1 due to the asymmetry
of the jpdf P (Δu, l). This is reminiscent of the odd-order structure functions
DN,0, which are also negative. However, power-law scaling of 〈(Δu)N |l〉 is not
evident. Rather, 〈(Δu)N |l〉 are found to increase linearly for larger l. Remarkably
enough, it has been found that streamline segment statistics of isotropic and
anisotropic flows are qualitatively very similar, which is very promising for future
research.
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Appendix A

Isotropic tensors

In the following, isotropic tensors are briefly discussed. For an overview, see
Kearsley and Fong (1975) and Robertson (1940) as well as the books by Aris
(1962) and Schade and Neemann (2009).

Formally, the components of an isotropic tensor remain unchanged under a
rotation of the frame of reference. It can be shown that the only fundamental
isotropic tensors are the Kronecker delta δij ,

δij =
{

1, if i = j,

0, if i �= j.
(A.1)

and the ε-tensor εijk
†, where

εijk =

⎧⎪⎨⎪⎩
1, if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),
−1, if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),
0, otherwise,

(A.2)

i.e. εijk = 1 for even permutations of (1, 2, 3), εijk = −1 for odd permutations
of (1, 2, 3) and εijk = 0 if an index is repeated.

In case of isotropic turbulence, statistics should also be invariant with respect
to reflections of the coordinate system, which is a stronger constraint than
solely invariance with respect to rotations of the coordinate system. Then, the
statistics do not depend on linear combinations of εijk, because after reflection
e.g. ε123 = 1 �= ε132 = −1, say; the statistics depend only on linear combinations
of δij = δji.

Thus, the one-point tensor Aijkl... can be written assuming isotropic turbulence

Aijkl... = A1δijδkl... + A2δikδjl... + A3δilδjk... + ..., (A.3)

†Here, εijk should not be confused with the pseudo-dissipation tensor εij .
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Appendix A Isotropic tensors

i.e. by writing down all possible combinations of δijδkl... multiplied by scalar
functions Am. This implies that there are no odd-order one-point tensors when
assuming isotropic turbulence.

Following Robertson (1940), two-point tensors which depend on the separation
distance r can be similarly written as combinations of δij and the separation
vector rk/r multiplied with scalar functions Al(r). For instance assuming
isotropic turbulence,

Aijkl...(r) = A1(r)ri

r

rj

r

rk

r

rl

r
... + A2(r)ri

r

rj

r
δkl... + A3(r)ri

r

rk

r
δjl...

+ A4(r)ri

r

rl

r
δjk... + A5(r)rj

r

rk

r
δil... + A6(r)rj

r

rl

r
δik...

+ A7(r)rk

r

rl

r
δij ... + A8(r)δijδkl... + A9(r)δikδjl...

+ A10(r)δilδjk... + ....

(A.4)

In the following, the explicit notation (r) is dropped but implied for two-point
tensors. Noticeably, two-point tensors are determined by more scalar functions
than same-order one-point tensors. Furthermore, odd-order two-point tensors
do not vanish. For instance the third-order tensor

Aijk = A1

ri

r

rj

r

rk

r
+ A2

ri

r
δkl + A3

rj

r
δik + A4

rk

r
δij (A.5)

is completely determined by the four scalar functions A1, A2, A3 and A4, which
depend on r.

One can proceed and derive the gradient and Laplacian of any isotropic tensor
by taking derivatives of eq. (A.4) with respect to ri and specifying the scalar
functions Aj . When taking the derivatives, the following relations are helpful:

rnrn

r2
= 1

∂

∂rn

(ri

r

)
=

(
δin − rirn

r2

) 1
r

∂

∂rn

(rn

r

)
=

(
δnn − rnrn

r2

) 1
r

= 2
r

∂A(r)
∂rn

= rn

r

∂A(r)
∂r

∂

∂rn

(
1
r

)
= − 1

r2

∂
√

r2
i

∂rn
= − 1

r2

ri√
r2

i

∂ri

∂rn
= − 1

r2

ri

r
δin = −rn

r3

(A.6)
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A.1 Laplacian of the fourth-order structure function tensor

Consequently, also

rn

r

∂

∂rn

(ri

r

)
=

(
rnδin − rnrirn

r2

) 1
r2

= (ri − ri)
1
r2

= 0, (A.7)

which simplifies the derivation.

Without loss of generality, one may choose ri = (r, 0, 0), i.e. align the
separation vector with the x1-axis. Further simplifications occur when the tensor
〈Aijkl...〉 is symmetrical under interchange of some or all of its indices.

Next, the Laplacian of the fourth-order structure function tensor D4 =
〈ΔuiΔujΔukΔul〉 and the gradient of the fifth-order structure function tensor
D5 which are found in the fourth-order structure function equations as discussed
in section 3.1.2 are exemplary derived.

A.1 Laplacian of the fourth-order structure
function tensor

Here, we give the derivation of the isotropic form of the Laplacian of a fourth-
order tensor, specifically the fourth-order structure function tensor. The same
procedure can be applied to tensors of higher (or lower) order. From eq. (A.4), a
fourth-order tensor of two-point type which is invariant to rotation and reflection
of the coordinate system (as is the case for isotropic turbulence) is given by

Aijkl = A1

rirjrkrl

r4
+ A2δij

rkrl

r2
+ A3δik

rjrl

r2
+ A4δil

rjrk

r2
+ A5δjk

rirl

r2

+ A6δjl
rirk

r2
+ A7δkl

rirj

r2
+ A8δijδkl + A9δikδjl + A10δjkδil,

(A.8)

where Ai are scalar functions depending on the separation distance r, δij is the
Kronecker delta, i.e. δij = 1 for i = j and δij = 0 for i �= j and ri a separation
vector with magnitude r.

In the following, let Aijkl = D4 = Dijkl = 〈ΔuiΔujΔukΔul〉, i.e the fourth-
order structure function tensor. As the tensor is symmetrical under interchange
of all indices, Dijkl = Djikl = Dijlk = Djlik = ..., one finds from eq. (A.8) that
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Appendix A Isotropic tensors

A1 = Ã1, A2 = A3 = ... = A7 = Ã2 and A8 = A9 = A10 = Ã3, and we then have

Dijkl = Ã1

rirjrkrl

r4

+ Ã2

(
δij

rkrl

r2
+ δik

rjrl

r2
+ δil

rjrk

r2
+ δjk

rirl

r2
δjl

rirk

r2
+ δkl

rirj

r2

)
+ Ã3 (δijδkl + δikδjl + δjkδil) .

(A.9)

That is, the number of scalar functions needed to fully describe the complete
tensor is reduced significantly because of the symmetries of the tensor.

Next, the scalar functions Ã1, Ã2, Ã3 need to be determined. Without loss of
generality, let r1 = r, r2 = r3 = 0, i.e. the separation vector is aligned with the
x1-axis. Choosing D4,0 = D1111, eq. (A.9) then yields

D1111 = Ã1 + Ã2 + 3Ã3, (A.10)

while D2,2 = D1122 gives
D1122 = Ã2 + Ã3 (A.11)

and D0,4 = D2222 yields
D2222 = 3Ã3. (A.12)

Thus, the three scalar functions Ã1, Ã2 and Ã3 are determined by the three
tensor components D1111, D1122 and D2222 and solving for them gives

Ã1 = D1111 − 6D1122 + D2222,

Ã2 = D1122 − 1
3

D2222,

Ã3 = 1
3

D2222.

(A.13)

Next, ∂2Dijkl/∂r2
n depending on the scalar functions Ã1, Ã2, Ã3 and the

separation vector ri is derived. Thus, taking the derivative of the first term on
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A.1 Laplacian of the fourth-order structure function tensor

the r.h.s. of eq. (A.9),

∂

∂rn

(
Ã1

rirjrkrl

r4

)
= rirjrkrl

r4

∂Ã1

∂rn

+ Ã1

[
rirjrk

r3

(
δln − rlrn

r2

) 1
r

+ rirjrl

r3

(
δkn − rkrn

r2

) 1
r

+ rirkrl

r3

(
δjn − rjrn

r2

) 1
r

+ rjrkrl

r3

(
δin − rirn

r2

) 1
r

]
= rirjrkrlrn

r5

∂D1

∂r

+ Ã1

r

[rirjrk

r3

(
δln − rlrn

r2

)
+ rirjrl

r3

(
δkn − rkrn

r2

)
+ rirkrl

r3

(
δjn − rjrn

r2

)
+ rjrkrl

r3

(
δin − rirn

r2

)]
.

(A.14)

Taking the second derivative with respect to rn and using eq. (A.6) and
eq. (A.7) then results in

∂2

∂r2
n

(
Ã1

rirjrkrl

r4

)
= rirjrkrl

r4

(
∂2Ã1

∂r2
+ 2

r

∂Ã1

∂r

)

+ 2
r2

Ã1

[rkrl

r2

(
δij − rirj

r2

)
+ rjrl

r2

(
δik − rirk

r2

)
+rjrk

r2

(
δil − rirl

r2

)
+ rirl

r2

(
δjk − rjrk

r2

)
+ rirk

r2

(
δjl − rjrl

r2

)
+rirj

r2

(
δkl − rkrl

r2

)]
− 8

r2
Ã1

rirjrkrl

r4
.

(A.15)
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Similarly, one finds for the second line of eq. (A.9)

∂2

∂r2
n

[
Ã2

(
δij

rkrl

r2
+ δik

rjrl

r2
+ δil

rjrk

r2
+ δjk

rirl

r2
+ δjl

rirk

r2
+ δkl

rirj

r2

)]
=

(
δij

rkrl

r2
+ δik

rjrl

r2
+ δil

rjrk

r2
+ δjk

rirl

r2

+ δjl
rirk

r2
+ δkl

rirj

r2

)(∂2D2

∂r2
+ 2

r

∂Ã2

∂r

)

+ 2 Ã2

r2

[
δij

((
δkl − rkrl

r2

)
− 2rkrl

r2

)
+δik

((
δjl − rjrl

r2

)
− 2rjrl

r2

)
+ δil

((
δjk − rjrk

r2

)
− 2rjrk

r2

)
+δjk

((
δil − rirl

r2

)
− 2rjrl

r2

)
+ δjl

((
δik − rirk

r2

)
− 2rirk

r2

)
+δkl

((
δij − rirj

r2

)
− 2rirj

r2
.
)]

(A.16)

Finally, the third line of eq. (A.9) gives

∂2

∂r2
n

[
Ã3 (δijδkl +δikδjl + δjkδil)]

= (δijδkl + δikδjl + δjkδil)
(

∂2Ã3

∂r2
+ 2

r

∂Ã3

∂r

)
.

(A.17)

Now, adding eq. (A.15), eq. (A.16) and eq. (A.17) and substituting i = j =
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A.1 Laplacian of the fourth-order structure function tensor

k = l = 1 gives

∂2D1111

∂r2
n

=
(

∂2Ã1

∂r2
+ 2

r

∂D1

∂r

)
− 8

r2
Ã1

+ 6
(

∂2Ã2

∂r2
+ 2

r

∂Ã2

∂r

)
− 24

r2
D2

+ 3
(

∂2Ã3

∂r2
+ 2

r

∂Ã3

∂r

)
.

(A.18)

Using the relations eq. (A.13) yields

∂2D1111

∂r2
n

=
(

∂2D1111

∂r2
+ 2

r

∂D1111

∂r

)
− 8

r2
D1111 + 24

r2
D1122. (A.19)

Setting i = j = 1, k = l = 2 in the summation of eq. (A.15), eq. (A.16) and
eq. (A.17) yields

∂2D1122

∂r2
n

= 2
r2

Ã1 +
(

∂2Ã2

∂r2
+ 2

r

∂D2

∂r

)
− 2

r2
D2

+
(

∂2Ã3

∂r2
+ 2

r

∂Ã3

∂r

) (A.20)

and with the relations eq. (A.13)

∂2D1122

∂r2
n

=
(

∂2D1122

∂r2
+ 2

r

∂D1122

∂r

)
+ 2

r2
D1111 − 14

r2
D1122

+ 8
3r2

D2222. (A.21)

In the same way, setting i = j = k = l = 2 gives

∂2D2222

∂r2
n

= 12
r2

Ã2 + 3
(

∂2Ã3

∂r2
+ 2

r

∂Ã3

∂r

)
, (A.22)
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i.e. using eq. (A.13)

∂2D2222

∂r2
n

=
(

∂2D2222

∂r2
+ 2

r

∂D2222

∂r

)
+ 12

r2
D1122 − 4

r2
D2222. (A.23)

We therefore have the Laplacian of the structure functions D4,0 = D1111, D2,2 =
D1122 and D0,4 = D2222 in agreement with table 3.2 and the matrix algorithm
by Hill (2001).

The longitudinal (eq. (A.19)) and transverse equations (eq. (A.23)) have been
compared and checked against DNS data. Specifically, the r.h.s. ∂2Dijkl/∂r2

n

has been computed by rewriting

∂2D1111

∂r2
n

=
∂2

〈
(Δu1)4

〉
∂r2

n

= 1
2

〈(
∂2(Δu1)4

∂x2
n

+ ∂2(Δu1)4

∂x′2
n

)〉
= 2

〈
(Δu1)3

(
∂2u1

∂x2
n

− ∂2u′
1

∂x′2
n

)〉
+ 6

〈
(Δu1)2

(
∂u1

∂xn

∂u1

∂xn
+ ∂u′

1

∂x′
n

∂u′
1

∂x′
n

)〉
,

(A.24)

∂2D2222

∂r2
n

= 2
〈

(Δu2)3

(
∂2u2

∂x2
n

− ∂2u′
2

∂x′2
n

)〉
+ 6

〈
(Δu2)2

(
∂u2

∂xn

∂u2

∂xn
+ ∂u′

2

∂x′
n

∂u′
2

∂x′
n

)〉
,

(A.25)

and compared with the results one obtains by taking the respective combination
of derivatives of the structure functions with respect to r. Specifically, the l.h.s.
of eq. (A.19) and eq. (A.23) have been evaluated by computing D4,0 = 〈(Δu1)4〉,
D2,2 = 〈(Δu1)2(Δu2)2〉 and D0,4 = 〈(Δu2)4〉 as function of r from DNS and
then using a finite difference scheme to calculate the first and second derivative
∂D4,0/∂r, ∂2D4,0/∂r2 and so forth. Eq. (A.19) and eq. (A.24) are plotted in
figure A.1, while eq. (A.23) and eq. (A.25) are plotted in figure A.2. We find
very good agreement, also at larger r. It should be stressed that all derivatives
and terms evaluated in chapters 3 to chapter 6 were computed similarly to the
calculation of eq. (A.24) and eq. (A.25) where the derivatives computed using
FFT and only the dashed red lines in figure A.1 and figure A.2 were produced
employing a finite difference scheme.
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Figure A.1: Eq. (A.19) computed with a finite difference scheme (dashed red
line) and eq. (A.24) computed using FFT from DNS (solid blue line) as function
of r/η.
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Figure A.2: Eq. (A.23) computed with a finite difference scheme (dashed red
line) and eq. (A.25) computed using FFT from DNS (solid blue line) as function
of r/η.
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A.2 Fifth-order gradient

Here, we give the isotropic form for the gradient of a tensor of fifth order, first
with interchangeable indices and second where only some of the indices may be
interchanged. The first case corresponds to the transport terms in the fourth-
order structure function equations as discussed in section 3.1.2; the second kind
of tensor appears for the gradient of the structure function source terms when
deriving the higher-order source term equations, cf section 3.1.3. Again, the
same steps can be carried out for higher-order tensors.

Consider the general form of a fifth-order tensor Anijkl of two-point type, cf.
eq. (A.4),

Anijkl = A1

rn

r
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r
+ A19δnkδil
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r
+ A20δnkδjl

ri

r

+ A21δnlδij
rk

r
+ A22δnlδik

rj

r
+ A23δnlδjk

ri

r

+ A24δijδkl
rn

r
+ A25δikδjl

rn

r
+ A26δilδjk

rn

r

(A.26)

where again Ai are scalar functions of the separation distance r.
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A.2 Fifth-order gradient

A.2.1 Fourth-order structure function equation transport
term

If Anijkl = D[5] = 〈ΔunΔuiΔujΔukΔul〉, all indices are interchangeable and

A1 = Ã1

A2 = A3 = A4 = A5 = A6 = A7 = A8 = A9 = A10 = A11 = Ã2

A12 = A13 = A14 = A15 = A16 = A17 = A18 = A19 = A20

= A21 = A22 = A23 = A24 = A25 = A26 = Ã3.

(A.27)

Inserting D5,0 = D11111, D3,2 = D11122 and D1,4 = D12222 into eq. (A.26), one
finds that the scalar functions

Ã1 = D5,0 − 10D3,2 + 5D1,4

Ã2 = D3,2 − D1,4

Ã3 = 1
3

D1,4,
(A.28)

where again ri = (r, 0, 0) without loss of generality.

Inserting eq. (A.27) into eq. (A.26) and taking the derivative with respect to
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rn results in

∂Anijkl

∂rn
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r
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∂r
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Ã3

)
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(

∂Ã2

∂r
+ 4

r
Ã2 + 2∂Ã3

∂r
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r
Ã3

)
δik

rjrl

r2
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(

∂Ã2

∂r
+ 4

r
Ã2 + 2∂Ã3

∂r
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r
Ã3

)
δil

rjrl
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+
(

∂Ã2

∂r
+ 4

r
Ã2 + 2∂Ã3

∂r
− 2

r
Ã3

)
δjk

rirl

r2

+
(

∂Ã2

∂r
+ 4

r
Ã2 + 2∂Ã3

∂r
− 2

r
Ã3

)
δjl

rirk

r2

+
(

∂Ã2

∂r
+ 4

r
Ã2 + 2∂Ã3

∂r
− 2

r
Ã3

)
δkl

rirj

r2

+
(

∂Ã3

∂r
+ 6

r
Ã3

)
δijδkl +

(
∂Ã3

∂r
+ 6

r
Ã3

)
δikδjl

+
(

∂Ã3

∂r
+ 6

r
Ã3

)
δilδjk.

(A.29)

where eq. (A.6) and eq. (A.7) were used. Then, setting i = j = k = l = 1,
i = j = 1, k = l = 2 and i = j = k = l = 2 with the relations eq. (A.28), one has

∂Dn1111

∂rn
= ∂D5,0

∂r
+ 2

r
D5,0 − 8

r
D3,2 (A.30)

∂Dn1122

∂rn
= ∂D3,2

∂r
+ 4

r
D3,2 − 8

3r
D1,4 (A.31)

∂Dn2222

∂rn
= ∂D1,4

∂r
+ 6

r
D1,4, (A.32)

for the gradient ∇ · D5 in agreement with table 3.2 and the matrix algorithm
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by Hill (2001).

A.2.2 Fourth-order dissipation source term equation
transport term

Now, let the indices i, j, k, l be interchangeable, while n may not be interchanged
with any other index, i.e. Anijkl = 〈ΔunEijkl〉, cf. section 3.1.3. This implies
that

A1 = Ã1

A2 = A3 = A4 = A5 = Ã2

A6 = A7 = A8 = A9 = A10 = A11 = Ã3

A12 = A13 = A14 = A15 = A16 = A17 = A18 = A19 = A20

= A21 = A22 = A23 = Ã4

A24 = A25 = A26 = Ã5,

(A.33)

i.e. the tensor is determined by five scalar functions (if n could be interchanged
as well, there would be only three scalar functions, cf. eq. (A.27) above resulting
in eq. (A.30) to eq. (A.32)).

In the next step, the scalar functions have to be chosen. Let again r1 = r,
r2 = r3 = 0 without loss of generality. Then,

A11111 = Ã1 + 4Ã2 + 6Ã3 + 12Ã4 + 3Ã5

A11122 = Ã3 + 2Ã4 + 1Ã5

A12222 = 3Ã5

A22111 = Ã1 + 3Ã4

A21222 = 3Ã4

(A.34)

Other choices of components of Anijkl would also be viable, leading to different
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scalar functions. Solving for Ãi then gives

Ã1 = A11111 − 6A11122 + A12222 − 4A22111 + 4A21222

Ã2 = A22111 − A21222

Ã3 = A11122 − 2
3

A21222 − 1
3

A12222

Ã4 = 1
3

A21222

Ã5 = 1
3

A12222.

(A.35)

Here, A11111 = 〈Δu1E4,0〉, A11122 = 〈Δu1E2,2〉, A1222 = 〈Δu1E0,4〉, A22111 =
〈Δu2E3,1〉 and A21222 = 〈Δu2E1,3〉.

Next, the derivative of the tensor with respect to rn is computed resulting in
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(A.36)
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and similarly for the other terms, resulting in
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∂r
+ 2

r
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∂r
− 2

r
Ã4
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(A.37)

Therefore,

∂An1111

∂rn
= ∂Ã1

∂r
+ 2

r
Ã1 + 4∂Ã2

∂r
+ 6∂Ã3

∂r
+ 12

r
Ã3 + 12∂Ã4

∂r
+ 3∂Ã5

∂r

+ 6
r

Ã5 (A.38)
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and inserting Ãi

∂ 〈ΔunE4,0〉
∂rn

= ∂ 〈Δu1E4,0〉
∂r

+ 2
r

〈Δu1E4,0〉 − 8
r

〈Δu2E3,1〉 . (A.39)

Similarly,

∂An1122

∂rn
= 2

r
Ã2 + ∂Ã3

∂r
+ 2

r
Ã3 + 2∂Ã4

∂r
+ 2

r
Ã4 + ∂Ã5

∂r
+ 2

r
Ã5 (A.40)

i.e.

∂ 〈ΔunE2,2〉
∂rn

= ∂ 〈Δu1E2,2〉
∂r

+ 2
r

〈Δu1E2,2〉 + 2
r

〈Δu2E3,1〉

− 8
3r

〈Δu2E1,3〉 (A.41)

and
∂An1122

∂rn
= 3

(
4
r

Ã4 + ∂Ã5

∂r
+ 2

r
Ã5

)
(A.42)

resulting in

∂ 〈ΔunE0,4〉
∂rn

= ∂ 〈Δu1E0,4〉
∂r

+ 2
r

〈Δu1E0,4〉 + 4
r

〈Δu2E1,3〉 . (A.43)

A.3 Divergence and Laplacian of the odd-order
trace equations

Here, the divergence and the Laplacian of the trace equations are briefly discussed.
Note that for odd N , a more general equation is

∂

∂t

〈
Δuj

[
(Δuk)2

](N−1)/2
〉

+ ∂

∂ri

〈
ΔuiΔuj

[
(Δuk)2

](N−1)/2
〉

= . . . (A.44)

which is a transport equation for the two-point vector 〈Δuj [(Δuk)2](N−1)/2〉 and
contracting with rj/r then yields a transport equation for

rj

r

〈
Δuj

[
(Δuk)2

](N−1)/2
〉

= D[N ]. (A.45)
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This is equivalent to multiplying the odd-order longitudinal, mixed and transverse
equations with the respective prefactors given in table 3.6 and summing up, e.g.
for N = 5

∂D[5]

∂t
= ∂

∂t

〈
Δu1

[
(Δuj)2

]2
〉

= ∂D5,0

∂t
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+ 8

3
∂D1,4

∂t

= ri

r

∂

∂t

〈
Δui

[
(Δuj)2

]2
〉

, (A.46)

because we have chosen ri = (r, 0, 0) without loss of generality.

A.3.1 Divergence

In the odd-order trace equations, the transport term is a component of the
more general tensor ∂(〈ΔuiΔuj [(Δuk)2](N−1)/2〉)/∂ri, i.e. corresponds to the
divergence of a two-point tensor

Aij = C1

ri

r

rj

r
+ C2δij , (A.47)

where isotropy is assumed, C1 and C2 are scalar functions depending on r and
δij is the Kronecker symbol, δij = 1 if i = j and δij = 0 otherwise. Thus,
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, (A.48)

where the relations
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(A.49)

were used. Contracting with rj/r then gives

rj

r

∂Aij

∂ri
= ∂C1

∂r
+ 2

r
C1 + ∂C2

∂r
. (A.50)

From eq. (A.47),

A11 = 〈(Δu1)2[(Δuk)2](N−1)/2〉 = C1 + C2,

A22 = 〈(Δu2)2[(Δuk)2](N−1)/2〉 = C2

(A.51)
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and therefore
rj

r

∂Aij

∂ri
= ∂A11

∂r
+ 2

r
(A11 − A22) , (A.52)

which has the same form as the second-order structure function relation stemming
from continuity as expected. Consequently,
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. (A.53)

A.3.2 Laplacian
The Laplacian in the odd-order structure function trace equations is given by
∂〈Δui(Δuk)N−1〉/∂r2

n which is the Laplacian of a two-point vector. Assuming
isotropy, this vector can be written as

Ai = C1

ri

r
, (A.54)

where again C1 is a scalar function. Therefore using the relations given in
eq. (A.49),
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(A.55)

and contracting with ri/r then yields
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(A.56)
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where due to eq. (A.54)

C1 =
〈

Δu1

[
(Δuk)2

](N−1)/2
〉

= D[N ] (A.57)

for odd N .
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Appendix B

Source term closures

Here, we briefly sketch possible closures for the dissipation source terms and the
pressure source terms. Of course, the approaches presented here are only two of
many possible and viable closures and remain qualitative. In the following, 〈ÊN 〉
and 〈T̂N 〉 are not necessarily the full source terms 〈EN 〉 and 〈T N 〉 but may be
some of their components. Similarly, Δ̂u and D̂N may refer to any suitable
velocity difference or structure function of order N .

B.1 dissipation source term
From eq. (3.14), the dissipation source terms have the form〈

ÊN

〉
∼

〈(
Δ̂u

)N−2

(ε + ε′)
〉

. (B.1)

In the viscous range r → 0, 〈ÊN 〉 ∼ 〈εN/2〉ν1−N/2rN−2 and one would have

〈
ÊN

〉
∼ D̂N

D̂2

〈ε〉 . (B.2)

This gives the correct result D̂N ∼ 〈εN/2〉ν−N/2rN for the structure functions
after integrating twice as seen from the balance ν∇2D̂N ∼ ÊN for r → 0, cf.
eq. (4.86)†.

On the other hand, it has been found by Nakano et al. (2003), that in the
inertial range the ratio

r
〈

ÊN

〉
D̂N+1

∼ const. (B.3)

†I.e. 〈ε〉 is cancelled out in eq. (B.2) by D̂2 ∼ (〈ε〉/ν)r2.
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is constant, see also section 5.1. From eq. (B.2), in the viscous range r → 0, one
has

r
〈

ÊN

〉
D̂N+1

∼ D̂N

D̂2

r 〈ε〉
D̂N+1

(B.4)

and inserting the results eq. (4.86) for r → 0 yields

r
〈

ÊN

〉
D̂N+1

∼ ν3/2
〈
εN/2

〉〈
ε(N+1)/2

〉 r−2. (B.5)

Thus merging both eq. (B.3) and eq. (B.5),

r
〈

ÊN

〉
D̂N+1

∼ AN

(
ν3/2

〈
εN/2

〉〈
ε(N+1)/2

〉 r−2 + δN

)
(B.6)

where AN and δN are model parameters. This closure captures the viscous and
inertial range behaviour of 〈ÊN 〉, but may not be accurate in the transitional
region between the two regimes.

B.2 Pressure source term

From eq. (3.13), the pressure source terms are given by

〈
T̂N

〉
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〉

−
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∂p

∂x(k)

∂p′

∂x′
(k)

)〉]1/2

∼ AN (r)D̂N−1

(
Cχχ − A(kk)

)1/2
,

(B.7)

where Cχ is a constant and AN (r) depends on r and possibly the Reynolds
number. Here, there is no summation over (k) and (kk) as indicated by the
brackets, i.e. ∂p/∂x(k) is a suitable pressure gradient. As shown by Hill and
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Wilczak (1995), χ is given by

χ = 4
∫ ∞

0

r−3 [D4,0 + D0,4 − 6D2,2] dr (B.8)

and A(kk) by

A11 = χ

3
− 1

6
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∂r2
− 2

3r

∂
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− 2
3r2

(D4,0 + 2D0,4 − 9D2,2)

− 4
3

∫ r

0

y−3 (D4,0 + D0,4 − 6D2,2) dy

(B.9)

and
A22 = A33 = χ

3
− 1

6r

∂D4,0

∂r
− 2

3r2
(D4,0 − 3D2,2)

− 4
3

∫ r

0

y−3 (D4,0 + D0,4 − 6D2,2) dy.
(B.10)

Thus, the pressure difference is determined by the fourth-order structure functions
and the pressure source terms are closed if the prefactors AN (r) and the constants
Cχ are given. Noticeably, inserting this closure in the system of structure function
equations then results in a set of integro-differential equations. The appearance of
the integrals from 0 to r and from 0 to ∞ in eq. (B.8), eq. (B.9) and eq. (B.10) is
not that surprising considering the nature of pressure in incompressible flows, cf.
eq. (1.7). Nevertheless, numerically solving coupled integro-differential equations
is expensive and cumbersome and a different closure for the pressure source
terms seems desirable.
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