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Abstract Deterministic global methods for flowsheet optimization have almost exclusively
relied on an equation-oriented formulation where all model variables are controlled by the
optimizer and all model equations are considered as equality constraints, which results in
very large optimization problems. A possible alternative is a reduced-space formulation sim-
ilar to the sequential modular infeasible path method employed in local flowsheet optimiza-
tion. This approach exploits the structure of the model equations to achieve a reduction in
problem size. The optimizer only operates on a small subset of the model variables and
handles only few equality constraints, while the majority is hidden in externally defined
functions from which function values and relaxations for the objective function and con-
straints can be queried. Tight relaxations and their subgradients for these external functions
can be provided through the automatic propagation of McCormick relaxations. Three steam
power cycles of increasing complexity are used as case studies to evaluate the different for-
mulations. Unlike in local optimization or in previous sequential approaches relying on in-
terval methods, the solution of the reduced-space formulation using McCormick relaxations
enables dramatic reductions in computational time compared to the conventional equation-
oriented formulation. Despite the simplicity of the implemented branch-and-bound solver
that does not fully exploit the tight relaxations returned by the external functions but relies
on further affine relaxation at a single point using the subgradients, in some cases it can
solve the reduced-space formulation significantly faster without any range reduction than
the state-of-the-art solver BARON can solve the equation-oriented formulation.
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1 Introduction

Over the past decades, mathematical programming has become a widely used tool in the
design of chemical or energy conversion processes [10,24]. Flowsheet optimization, where
the operating conditions and sizes of the units of a process are to be optimized with respect to
economic or other (e.g., ecological) objectives, has been drawing particular interest because
of the scale of the potential savings. If the flowsheet configuration itself, i.e., the selection of
the units and their interconnections, is to be optimized as well, superstructure formulations
are employed that in general result in mixed integer nonlinear programs (MINLP) including
nonconvex functions [11,35]. However, even the nonlinear programs (NLP) obtained when
optimizing the design of processes with fixed configurations can be difficult to solve and are
often multimodal.

Local methods have long become state of the art in flowsheet optimization and they are
implemented in many commercial process simulators. Solvers have been developed that treat
the equations describing the process either in the equation-oriented mode or the sequential
modular mode of flowsheet simulation (as well as some intermediate approaches) [11,24].
In the former approach, all variables are handled by the optimizer and all equations are
enforced as equality constraints. The latter approach subdivides the process into a number
of separate modules that can be evaluated in a specified order to compute all quantities
of interest, with the optimizer operating on a subset of the variables corresponding to the
degrees of freedom and variables introduced to decouple the equations [12,22,47]. In this
case, only few equations are left as equality constraints, while the majority is treated within
the modules using specialized solvers, which is a known advantage of this approach. Both
methods have been applied successfully to very large process flowsheets.

Methods for deterministic global optimization have also seen increasing interest in pro-
cess engineering, both for special sub-problems such as heat exchanger network synthesis
(see, e.g., [42,46]) and for flowsheet optimization for fixed process configurations or su-
perstructures [1,3,4,8,35,53,64]. However, almost all of these approaches are based on the
equation-oriented mode of flowsheet simulation, because the solvers used require direct ac-
cess to the nonconvex model equations in order to supply convex relaxations for providing
lower bounds to the branch-and-bound (B&B) [26,29] and related algorithms [41,55,56].
This can result in very large optimization problems for complex flowsheets that can easily
involve several thousand model variables [24], which is problematic because of the exponen-
tial worst-case runtime of B&B-based solvers. In general, it also requires the user to provide
bounds for a large number of variables, which may be hard to guess (cf., e.g., [3,4]). There-
fore, methods that operate in a reduced space of variables seem particularly interesting for
global optimization.

Several approaches have been suggested for operating in a reduced space by means of
selective branching, but these are only applicable to problems containing certain types of
equations [25,54], and while they reduce the dimensionality of the space to branch on, the
size of the subproblems to be solved remains unchanged and so does the number of variables
for which bounds need to be provided [43]. Therefore, it is desirable to eliminate variables
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from the optimization problem instead. The extreme is to consider a method in which only
the degrees of freedom are optimization variables. However, providing relaxations is chal-
lenging in this case because in general, the evaluation of the objective function and con-
straints involves the solution of a nonlinear equation system [54,63]. Byrne and Bogle [19]
first introduced the idea of using a sequential modular approach for global flowsheet opti-
mization by implementing modules as template functions that can be called with different
data types to supply the required bounds for a B&B algorithm. They particularly stressed
the advantages of a modular approach from a modeling perspective. However, using interval
methods to obtain bounds, they found this approach to be less computationally efficient than
equation-oriented formulations [6,7,13,18,19].

In this work, we present an approach for deterministic global flowsheet optimization
that is similar to that of Byrne and Bogle [19] in the sense that it exploits problem struc-
ture at the modeling level in analogy to the sequential modular infeasible path method in
local optimization. However, instead of interval methods, we rely on the automatic propaga-
tion of McCormick relaxations and their subgradients [43], which have been shown to have
favorable convergence properties [14,44].

In the following, we first provide some background on McCormick relaxations in Sec-
tion 2 before summarizing different formulations for deterministic global flowsheet opti-
mization and discuss their suitability for the automatic propagation of McCormick relax-
ations and subgradients in Section 3. In Section 4, the implementation of a basic B&B solver
is presented that can handle the suggested reduced-space formulation using external function
definitions. Since it is meant for demonstration purposes, it relies on further affine relaxation
at a single point and thus does not fully exploit the tight McCormick relaxations obtained
from the external functions. Finally, in Section 5 three case studies for flowsheets of increas-
ing complexity (specifically, steam power cycles for use in combined cycle power plants)
are considered in order to demonstrate the significant savings in computational time enabled
by the reduced-space formulation in comparison to the conventional equation-oriented for-
mulation because of the reduction in problem size. The latter formulation is solved both with
the same basic solver and with the state-of-the-art solver BARON [56]. The models used in
the case studies are available as Online Resources.

2 Background material

Global optimization using B&B-based approaches requires convex and concave relaxations
of the nonconvex functions involved.

Definition 1 (Relaxation of functions) Given a convex set Z ⊂Rnz and a function f : Z→
R, a convex function f cv : Z→ R is called a convex relaxation of f on Z if f cv(z) ≤ f (z)
for all z ∈ Z, and similarly a concave function f cc : Z→ R is called a concave relaxation of
f on Z if f cc(z)≥ f (z) for all z ∈ Z.

McCormick [40] introduced a method for the construction of convex and concave relax-
ations of factorable functions, i.e., functions defined by a finite recursive composition using
binary sums, binary products, and a library of univariate intrinsic functions. Tsoukalas and
Mitsos [57] extended the composition theorem to multivariate intrinsic functions. Being a
generalization of the univariate composition theorem of McCormick [40], the multivariate
composition theorem also allows deriving the known relaxations for binary sums, as well as
tighter relaxations for binary products. Therefore, we only repeat the multivariate composi-
tion here for the sake of completeness.
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Theorem 1 (McCormick relaxation of multivariate composition [57]) Let Z ⊂ Rnz and
X ⊂ Rnx be nonempty compact convex sets. Consider the composite function defined as g =
F (f(z)), where F : X → R and for i ∈ I = {1, . . . ,nx}, fi : Z→ R are continuous functions,
and let

{( f1(z), . . . , fm(z)) | z ∈ Z} ⊂ X .

Suppose that convex and concave relaxations f cv
i , f cc

i : Z→R of fi on Z are known for every
i ∈ I. Let Fcv,Fcc : X →R be convex and concave relaxations of F on X. Then the functions
gcv,gcc : Z→ R defined as

gcv(z) = min
x∈X
{Fcv(x) | f cv

i (z)≤ xi ≤ f cc
i (z), ∀i ∈ I}

gcc(z) = max
x∈X
{Fcc(x) | f cv

i (z)≤ xi ≤ f cc
i (z), ∀i ∈ I}

are convex and concave relaxations, respectively, of g on Z.

Mitsos et al. [43] demonstrated how the propagation of McCormick relaxations can be
automated to compute relaxations for functions defined by computer codes (similar to the
calculation of derivatives via automatic differentiation) implementing factorable functions.
This includes a broad class of algorithms with the main restriction that they are either a
sequence of explicit function evaluations or involve a finite number of iterations known a
priori (such as, e.g., the solution of a system of linear equations or numerical integration
using an explicit scheme with fixed step length).

Unlike the auxiliary variable method (AVM) [52,53,55,56], which is also used in the
state-of-the-art solver BARON, the recursive application of the composition rules yields re-
laxations in the original space of variables. However, these relaxations can be weaker than
those generated in AVM in case the latter recognizes terms occurring repeatedly [57], and
they are known to be nonsmooth. Methods for propagating subgradients of the McCormick
relaxations can be found in [43,57] and are not repeated here for brevity. These subgradi-
ents can be used either directly for solving the resulting lower bounding problems using
nonsmooth optimization methods, or for deriving affine relaxations.

Definition 2 (Subgradient) Given a nonempty convex set Z ⊂Rnz , a convex function f cv :
Z→R, and a concave function f cc : Z→R, a vector ∇s f cv ∈Rnz is called a subgradient of
f cv at z̄ ∈ Z if f cv(z) ≥ f cv(z̄)+ (∇s f cv)ᵀ(z− z̄) for all z ∈ Z, and a vector ∇s f cc ∈ Rnz is
called a subgradient of f cc at z̄ ∈ Z if f cc(z)≤ f cc(z̄)+(∇s f cc)ᵀ(z− z̄) for all z ∈ Z.

Further recent extensions that are beyond the scope of the present work include methods
for computing relaxations of bounded functions with discontinuities [62], and for providing
relaxations for the solution of ordinary differential equations and nonlinear equation sys-
tems [50,54,63]. Recently, a differentiable modification of McCormick relaxations was also
introduced [34].

3 Optimization Formulations

Flowsheets of chemical processes or energy systems typically contain a large number of
variables that describe, for example, pressures, temperatures, mass flow rates, and compo-
sitions of the process streams, heat and work transfer occurring in different units of the
process, or quantities related to the size and cost of the units. When designing (and operat-
ing) a process, one or more of these variables are degrees of freedom or design variables
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d ∈ D⊂ Rnd that can be chosen within certain bounds (i.e., D = [dL,dU], where dL and dU
denote the vectors of lower and upper bounds, respectively, on the components of d). These
may, for example, include sizes of components, split fractions, but also pressures or tem-
peratures at certain points in the process. Once these design variables have been fixed, the
values of the remaining dependent model variables x ∈ X ⊂Rnx can be determined by solv-
ing the corresponding nonlinear model equations h(d,x) = 0, h : D×X → Rnx (assuming
such a solution exists for that particular d), which typically consist of the physical relation-
ships describing the different units and the flowsheet connectivity, of cost correlations, as
well as design specifications (cf., e.g., [11,24]). The division of variables into design and
dependent model variables is usually not unique but can be chosen to facilitate the solution
of the design problem.

In general, the objective function (e.g., production cost of a chemical, or net power
output of a power plant) f (d,x), f : D×X→R depends on the design and model variables.
Additional inequality constraints g(d,x) ≤ 0, g : D×X → Rng can arise from limitations
that the design needs to fulfill, such as, e.g., material limits on pressures and temperatures or
required product purities, from physical constraints, e.g., for ensuring a positive temperature
difference in heat transfer, or from limitations on model validity. From this information,
there are several ways to formulate the desired optimization problem for deterministic global
optimization.

3.1 Full-space formulation

A natural way of formulating a flowsheet optimization problem is to treat both design vari-
ables and dependent model variables as decision variables, and interpret the model equations
as equality constraints:

min
d∈D,x∈X

f (d,x)

s.t. h(d,x) = 0
g(d,x)≤ 0

(FS)

This full-space formulation is conceptually similar to the equation-oriented mode of flow-
sheet simulation, in which all model equations are solved simultaneously [11,24]. It has be-
come increasingly popular for local optimization and can, at least in principle, also be solved
with available deterministic global solvers such as BARON [49,55,56] or ANTIGONE [41].
For lower bounding, these solvers substitute the functions f , h, and g by convex relaxations
by means of, e.g., McCormick relaxations [40] or αBB relaxations [2,5], possibly intro-
ducing auxiliary variables. For this reason, they require direct access to all equations and
variables. However, as discussed above, this leads to very large optimization problems that
can result in long if not prohibitive run times of global solvers, as well as pose difficulties in
providing sufficiently tight bounds on variables without excluding potential solutions.

3.2 Reduced-space formulations

The fact that typically nd � nx motivates alternative formulations that operate in a reduced
space of variables.
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3.2.1 Implicit function formulation

Since the model equations h(d,x) = 0 can be solved for the dependent model variables
x for given values of d, they define an implicit function x̂ : d 7→ x̂(d) with the property
h(d, x̂(d)) = 0 ∀d ∈ D, assuming a unique solution exists for all d ∈ D. In this case, the
dependent model variables can be eliminated from problem (FS) to obtain (cf. [54,63])

min
d∈D

f (d, x̂(d))

s.t. g(d, x̂(d))≤ 0.

This leads to a significant reduction in the dimensionality of the space of decision variables
while also eliminating all equality constraints. In local optimization, similar approaches
have been known as feasible path methods that fully converge a flowsheet simulation at
each iteration of the NLP solver (i.e., they solve for x given the current values of d in that
iteration) [24]. An obvious advantage of this approach is that operation only in the degrees
of freedom leads to the smallest possible problems in terms of number of optimization vari-
ables. However, since in general the functional form of x̂(d) is not known (i.e., it is truly
implicit), providing relaxations for f (d, x̂(d)) and g(d, x̂(d)) on D is challenging and it is not
clear that these will be as tight as in explicit formulations. Additional questions arise when
there are multiple solution branches to h(d,x) = 0 [54,63]. While methods for providing
relaxations of implicit functions recently have been introduced [50,54,63], no implementa-
tion of these methods is publicly available, and this formulation is thus beyond the scope of
this work.

3.2.2 Sequential modular formulations

An alternative is to make use of the fact that the equation systems arising from process
modeling are known to be highly structured. In flowsheet simulation, this is exploited in
the so-called sequential modular mode, where the equations are grouped into modules that
describe single units (or groups of units) of a flowsheet and define a specific input-output
relationship [11,19,24]. The remaining equations mainly describe the connectivity between
the modules. Typically, both the equation systems within the modules and the equations
describing flowsheet connectivity are only coupled via few equations that need to be solved
iteratively. On the flowsheet level, iterative solution can be required because of loops in the
flowsheet, or for satisfying design specifications that prescribe a value for a variable that
is part of the output of a module rather than its input, which is to be achieved by varying a
variable belonging to a different module. Within the modules, typical examples include flash
calculations that are solved by iterating on one or few variables, depending on the property
model employed and the specified variables (see, e.g., [11]).

When simulating a flowsheet in sequential modular mode, the latter cases are treated
with specialized solution procedures within the modules as part of their input-output rela-
tionship. To treat loops in the flowsheet, certain streams (so-called tear streams) within the
loops are selected and the equations are decoupled by introducing tear variables xt ∈ Xt ⊂
Rnt that are duplicates of the model variables associated with the tear streams. The equations
that need to be solved iteratively at the flowsheet level then reduce to the fixed point equa-
tions xt = ĥt(d,xt), ĥ : D×Xt → Xt that enforce the actual connectivity of the tear streams,
where ĥt returns the values for the variables in the tear stream calculated by sequentially
evaluating the modules given values for the design and tear variables in an order that usually
corresponds to the flow of material through the process.
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In analogy, flowsheet optimization in sequential modular mode can be formulated as

min
d∈D,xt∈Xt

f̂ (d,xt)

s.t. ĥt(d,xt) = xt

ĝ(d,xt)≤ 0.

(RS)

Here, the objective function and inequality constraints have been reformulated in a similar
manner as the model equations. This way, most of the original model variables x and model
equations h(d,x) = 0 have been moved to the modules and are effectively hidden from the
optimizer, which only controls the design and tear variables (note that usually nt � nx).
This approach is widely used in local optimization of flowsheets (termed infeasible path
method, since convergence of the flowsheet simulation is only enforced as the optimizer
converges) and is implemented in commercial flowsheet simulators [11,12,24]. Compared
to a fully implicit approach, this leads to larger optimization problems that do contain equal-
ity constraints. However, in local optimization it avoids the computational effort required for
conducting full flowsheet simulations at each iteration, and is therefore often considered a
good compromise [10,24]. In global optimization, it avoids having to treat the entire model
as an implicit function as discussed in Section 3.2.1. Nevertheless, some method is still
needed for providing relaxations of the functions f̂ , ĥt and ĝ that are defined by some com-
puter code that sequentially evaluates the modules involved. While Byrne and Bogle [19]
used interval methods, we choose to utilize McCormick relaxations [40] that can be au-
tomatically propagated through such codes along with their subgradients [43], as long as
the codes implement factorable functions1 (cf. Section 2). An additional advantage of this
approach is that bounds on intermediate variables (i.e., those not visible to the optimizer)
are not required, since they are propagated along with the relaxations. In case no equations
within the modules and no design specifications require iterative solution, problem (RS) can
be solved with a B&B solver by using these methods to propagate relaxations through the
module implementations and deriving the required bounding information.

In case some modules do contain equation systems that need to be solved iteratively, the
equations coupling these systems along with the corresponding variables can be handed to
the optimizer in addition to the ones contained in problem (RS). Since by assumption the
remaining module equations can be solved explicitly for the remaining module variables,
this ensures the applicability of the propagation of McCormick relaxations without resorting
to implicit functions. The resulting problem is

min
d∈D,xt∈Xt ,xm∈Xm

f̃ (d,xt ,xm)

s.t. h̃t(d,xt ,xm) = xt

h̃m(d,xt ,xm) = 0
g̃(d,xt ,xm)≤ 0,

(RS*)

where xm ∈ Xm ⊂ Rnxm are the additional module variables handled by the optimizer and
h̃m(d,xt ,xm) = 0, h̃m : D× Xt × Xm → Xm are the corresponding module equations (i.e.,
only the residual of the equation coupling the system within the module is returned to the
optimizer as a component of h̃m). Such additional equations and variables can also serve to
satisfy design specifications, which in some infeasible path methods of local optimization

1 Note that the recent extension of this approach to multivariate outer functions [57] also enables the use
of functions that are not typically considered part of this class, such as, e.g., min(x,x2).



8 Dominik Bongartz, Alexander Mitsos

are also left to the optimizer [11]. To achieve this, the deviation of the calculated value (by
sequentially solving the modules) from the specified target value is added as a component
of hm, and the variable to be varied to satisfy this constraint is added as a component of xm.
Note that (RS*) does not introduce additional multimodality compared to (FS) as is shown
in Appendix A.

While these formulations were motivated with a modular implementation of the model
in mind (c.f. also [19]), this is neither a prerequisite nor is it specific to this formulation.
From a solution point of view, the essential feature of formulation (RS*) is that it collects
all explicit parts in externally defined functions that the optimizer has no direct access to.
These functions can internally have a modular structure in the sense that they utilize sub-
models that have been implemented separately, but they can also just contain the model
equations arranged to allow sequential explicit evaluation. On the other hand, a modular
implementation could also be utilized for the full-space formulation (FS) given a suitable
implementation of the external functions.

4 Implementation

Since available deterministic global solvers to our knowledge do not currently support the
use of external function definitions, a simple solver was implemented to compare formula-
tions (FS) and (RS*). Consider the NLP

min
p∈P=[pL,pU]

f̄ (p)

s.t. h̄(p) = 0
ḡ(p)≤ 0,

(NLP)

where f̄ : P→ R, h̄ : P→ Rnh̄ , and ḡ : P→ Rnḡ are bounded factorable functions (also in-
cluding multivariate outer functions, cf. [57]) that can be defined by some computer code
not visible to the optimizer. In this sense, to the solver they act as a black box, very similar to
the use of external equations in modeling systems like GAMS [27]. The full-space formula-
tion (FS) can be achieved by letting the vector of optimization variables be p= (dᵀ,xᵀ)ᵀ and
implementing the external functions to return the desired values for f , h (i.e., the residuals
of all model equations), and g. The reduced-space formulation (RS*) can be achieved by
letting p = (dᵀ,xᵀt ,x

ᵀ
m)

ᵀ and implementing the functions to return f̃ , h̃t − xt , h̃m, and g̃. In
this case, the calculations in the functions can include a multitude of operations conducted
sequentially.

The external functions are implemented in C++ as template functions and can thus be
called with different data types In the present implementation, they are called either using
floating point types to obtain function values of the objective function and all constraints,
using the types defined in FADBAD++ [9] to obtain their gradients with respect to p via au-
tomatic differentiation (in case the functions involved are differentiable), or using the types
defined in the MC++ library [20] to evaluate their convex (cv) and concave (cc) relaxations
along with the corresponding subgradients (denoted by ∇s). The latter implements the auto-
matic propagation of McCormick relaxations and extensions [40,43,50,57,62].

Since the propagation of relaxations and subgradients (as well as gradients) is auto-
mated, the implementation of the model itself is not more involved than that of a regular
simulation model, with the exception that care has to be taken not to violate the assumptions
required for ensuring the applicability of the propagation (cf. Section 2). The main restric-
tion is that the models do not involve an iterative solution procedure with unknown number
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Model
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k
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f cv,gcv,hcv/cc
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∇ f ,∇g,∇h
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L,p

k
U pk

UBD,UBDk

Fig. 1: Structure of the implemented solver for solving (NLP). To the solver, the model is
effectively a black box from which function values and gradients or convex and concave
relaxations and the corresponding subgradients can be queried for the objective function
and constraints.

of iterations (i.e., general loops with a conditional statement for termination), which would
require the use of specialized methods [54,63] that are not included in the current implemen-
tation (cf. Section 3.2.1). Instead, such implicit modules need to be made explicit by leaving
appropriate module variables and equations to the optimizer (cf. Section 3.2.2). Addition-
ally, the calculations must also not involve conditional statements that give nonsmooth or
discontinuous functions, since computing valid relaxations always requires information on
the entire domain. Such statements can however be reformulated, either through the use of
implemented nonsmooth functions like the maximum of two functions, or using the meth-
ods for relaxation of discontinuous functions introduced by Wechsung et al. [62]. However,
in this case appropriate care has to be taken for upper bounding since the problem itself is
in general nonsmooth. Possible solutions include the use of bundle methods, gradient free
methods, or simple function evaluation for upper bounding. As an alternative, one could also
resort to mixed integer formulations.

The implemented solver is based on the basic B&B algorithm in C++ employed in [43]
using a best-first heuristic and bisection along the longest edge (relative to the initial width)
for branching (cf. [29,38]). Each node k, defined by its lower and upper bounds pk

L and
pk

U on the optimization variables p, is successively handed to wrappers for lower and upper
bounding that return the respective lower and upper bounds LBDk and UBDk, as well as
the optimal solution points pk

LBD and pk
UBD (see Fig. 1). The node is fathomed if the lower

bounding problem is infeasible, or if its lower bound LBDk is not lower than the incumbent
objective value by more than the specified optimality tolerance.

To obtain a lower bound, a relaxation of (NLP) on the current node can be constructed
by replacing equalities by two inequalities each, and using the relaxations of the objective
function and constraints returned by the external functions. However, in general the Mc-
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Cormick relaxations obtained are nonsmooth, and therefore a further affine relaxation based
on the subgradients is conducted to obtain a linear program (LP) and thus allow the use of
robust LP solvers. Examples illustrating the construction of affine relaxations derived from
McCormick relaxations and their subgradients can be found in [43]. For simplicity, we eval-
uate relaxations and subgradients at a single linearization point (pk

lin) equal to the centerpoint
of node k, and thus get the following LP relaxation:

min
p∈[pk

L,p
k
U],η∈R

η

s.t. f cv(pk
lin)+∇s f cv(pk

lin) · (p−pk
lin)≤ η

hcv
i (pk

lin)+∇shcv
i (pk

lin) · (p−pk
lin)≤ 0 i = 1, ...,nh̄

hcc
i (pk

lin)+∇shcc
i (pk

lin) · (p−pk
lin)≥ 0 i = 1, ...,nh̄

gcv
k (pk

lin)+∇sgcv
k (pk

lin) · (p−pk
lin)≤ 0 k = 1, ...,nḡ

(LPk)

Tighter relaxations could be obtained by linearizing at multiple points (cf., e.g., [55]), at
the expense of increasing the size of the LP and requiring more function evaluations, which
may be expensive for large models. Problem (LPk) is solved using CPLEX v12.5 via the
C++ API [30]. Optionally, simple range reduction (RR) can be conducted by successively
maximizing and minimizing each component of p subject to the relaxed constraints in (LPk)
and the constraint that the relaxed objective be better than the current upper bound (termed
standard range reduction by Locatelli and Schoen [38]), as well as employing bound tight-
ening based on the dual multipliers returned by CPLEX [48]. While other techniques might
also be applicable in this case, including probing [48,55] or the methods introduced in [63],
these are beyond the scope of this work.

For upper bounding, the original problem (NLP) subject to p ∈ [pk
L,pk

U] is handed to a
local NLP solver, using the optimal solution of the lower bounding problem as initial point.
The current implementation uses IPOPT [61] initially. Once a feasible point has been found,
few iterations (typically 2–5) of the SLSQP algorithm [36,37] implemented in the NLopt
library v2.4.2 [31] are conducted instead at each node. This is often sufficient to find feasible
or even locally optimal solutions as the bounds on p within the nodes get tighter through
branching, while avoiding excessive computational effort for upper bounding at every node.

5 Case Studies

In order to compare the formulations (FS) and (RS*), we consider the bottoming cycle of
a combined-cycle power plant (CCPP) as an example. Combined-cycle plants running on
natural gas already account for more than 10% of the world electricity production and enjoy
increasing popularity due to their high efficiency and low emissions [33]. In a CCPP, the
exhaust gas of a gas turbine is run through a heat recovery steam generator (HRSG) that
powers a steam (Rankine) cycle. The optimal design of the steam cycle for a given stream
of hot exhaust gas is subject of ongoing research. Previous studies have employed differ-
ent local and heuristic global optimization methods, some using mixed-integer formulations
to account for different cycle configurations [3,16,32,39,60]. With respect to formulation
(RS*), steam power cycles represent a special type of flowsheet because in many cases they
can be modeled in a completely sequential manner, i.e., they do not require the introduc-
tion of tear streams (but possibly handing other equations and variables to the optimizer as
described in Section 3.2.2).
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In the following, we consider three versions of bottoming cycles for CCPP of increasing
complexity for a given stream of hot gas turbine exhaust G (characterized by a heat capacity
flow rate (ṁ ·cp)G and an inlet temperature TG,in) and fixed cycle configurations. As objective
function, we consider either the maximization of the net power output (Ẇnet) of the steam
cycle, or the minimization of the levelized cost of electricity (LCOE) of the CCPP. Even
for a fixed configuration and with the simplest thermodynamic models, the NLPs resulting
from the optimization of, e.g., operating pressures, temperatures, and mass flow rates with
respect to such thermodynamic or economic objectives are usually nonconvex [39], and can
be multimodal, as will also be shown in the following.

5.1 Case Study I: Basic Rankine Cycle

To demonstrate the multimodality, we first consider a simple single pressure cycle with a
fixed outlet temperature of the gas stream TG4 = TG,out (see Fig. 2), as might be the case,
e.g., when burning a sulfur-containing fuel [33]. A stream of water in the saturated liquid
state leaves the condenser and is pumped to the upper cycle pressure p2. In the HRSG, it is
first preheated in the economizer to a temperature slightly below its saturation temperature
before entering the steam drum of the evaporator. It is then fully evaporated and superheated
to the live steam temperature T5 before entering the turbine, where it is expanded back to the
condenser pressure. Since the condenser pressure p1 and the gas outlet temperature TG,out are
assumed to be fixed, the problem has only two degrees of freedom, namely the upper cycle
pressure p2 and the cycle mass flow rate ṁ (cf. Table 1; other choices are also possible).

In the sense of the reduced-space formulation (RS*), the cycle can be simulated sequen-
tially to evaluate the objective function and the constraints without requiring tear streams.
The model equations and the calculation sequence for the maximization of Ẇnet along with
the fixed parameter values can be found in Appendix B.1. The LCOE is calculated based on
fuel cost, operating cost and capital investment estimated using sizing data derived from the

Turbine

Condenser

6

5

2

1

TG,in

(ṁ·cp)G

TG,out

Ẇp

ẆT

p2

ṁ 

T5 ≤ Tmax

TG3 – Tsat,p4 ≥  ΔTmin

x6 ≥ xmin

h5 ≥ hsat,vap,p5

4

3

G3

G2

G1

G4

Economizer

Evaporator

Superheater

x6 ≤ 1

Feedwater

Pump

Fig. 2: Case Study I: Basic Rankine cycle for extracting work from a given gas stream G. In
formulation (RS*), only the variables shown in circles and the constraints shown in boxes
are handled by the optimizer in order to either maximize Ẇnet or minimize LCOE. The
problem thus has two degrees of freedom.
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Table 1: Optimal objective values and ranges and optimal solutions for the optimization
variables of formulation (RS*) for Case Study I.

Symbol Description Unit Range maxẆnet minLCOE

Optimization variables
p2 Upper cycle pressure bar [3, 100] 54.6 34.3
ṁ Cycle mass flow rate kg/s [5, 100] 29.5 30.7

Objective functions
Ẇnet Net power output MW 30.0
LCOE Levelized cost of electricity $/MWh 50.3

cycle simulation. Details on the economic evaluation are given in Appendix C. Note that if
the cycle is modeled in an equation-oriented way, the optimization problem contains more
than 44 variables (cf. Tables 2 and 3).

Four inequality constraints arise from physical limitations (cf. Fig. 2). First, the live
steam leaving the HRSG needs to be at least fully evaporated (i.e., its enthalpy h5 must be
equal to or greater than the corresponding saturated vapor enthalpy hsat,vap,p5), and its tem-
perature must not exceed the maximum allowable temperature Tmax for the materials used.
Second, there is a minimum temperature difference ∆Tmin between exhaust gas and water
that must be maintained throughout the HRSG. In this example, the only potential pinch
point where this could be violated is in the evaporator at point G3 (here the gas temperature
is TG3 and the water temperature equals the saturation temperature Tsat,p4). Finally, the vapor
quality x6 at the turbine outlet must be higher than a minimum value xmin to avoid erosion
due to droplet formation [33]. To ensure the validity of the chosen model, an additional con-
straint is introduced that requires the turbine outlet state 6 to be in the two-phase region, i.e.,
its vapor quality should be at most unity.

The feasible region of this problem is shown in Fig. 3 along with two level sets of the
objective function Ẇnet. The problem exhibits two local optima. The pinch constraint in
the HRSG is active for both of them, but one of them exhibits a live steam temperature at
its maximum allowable value, whereas for the other the vapor quality at the turbine outlet
reaches its minimum allowable value. While the existence of multiple local optima is an
open question for more complicated cycles, this example shows that this can be the case
even for simple processes.

The problem was solved using the implementation described in Section 4 both in the
reduced-space formulation (RS*) and in the full-space formulation (FS). For the latter, rea-
sonable bounds had to be provided for all variables while ensuring not to cut off poten-
tial solutions. These bounds were derived manually using physical insight and partially ex-
ploiting the model equations. The full-space formulation was also implemented in GAMS
24.8.4 [27] and solved with BARON v17.4.1 [56]. To improve comparability, we confined
the modeling to those features available in GAMS/BARON. This excludes some interest-
ing features of the proposed framework. For example, since the standard definition of the
logarithmic mean temperature difference (LMTD) can result in a division by zero, Chen’s
approximation [21] was used instead (cf. Appendix C), although a well-defined formulation
of the actual LMTD with tighter relaxations is available within the present framework [42,
45]. The relative optimality tolerance as well as all constraint feasibility tolerances were set
to 10−6. The calculations were conducted on a Intel R© CoreTM i3-3240 with 3.4 GHz and 16
GB RAM.
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Fig. 3: The basic Rankine cycle (Case Study I) exhibits two local optima shown as circles
when maximizing the net power output (Ẇnet, red level sets). The only degrees of freedom
are the upper cycle pressure (p2) and the cycle mass flow rate (ṁ). The gray areas denote
regions that are infeasible (at least one inequality constraint is violated), while the blue lines
represent the points where the respective constraints are active.

Table 2: Problem size and solution times for Case Study I maximizing Ẇnet. ‘Fomul.’ refers
to the problem formulations in Section 3. ‘Time’ is the CPU time needed for solving the
problem to the given tolerance. ‘Iterations’ denotes the total number of B&B nodes treated,
and ‘Max. nodes’ denotes the maximum number of B&B nodes held in memory at any given
time during solution.

Formul. Problem size Solver Time [s] Iterations Max. nodes

(FS) 44 variables
42 equalities
2 inequalities

Present solver (no RR) 4637 2.26×106 3.14×105

Present solver (with RR) 0.72 19 6
BARON 0.16 1 1

(RS*) 2 variables
0 equalities
5 inequalities

Present solver (no RR) 0.07 299 32
Present solver (with RR) 0.03 45 12

Figure 4 shows the incidence matrices for the problem of maximizing Ẇnet using formu-
lations (FS) and (RS*). It can be seen that while the incidence matrix of (FS) is sparse, this
structure is exploited in (RS*) to achieve a much smaller problem (cf. also Tab. 2) with a
dense incidence matrix. It should be emphasized again that herein this reduction in problem
size is achieved at the modeling level through physical insight in the system at hand and in
analogy to established strategies for flowsheet simulation and local optimization. A possible
alternative could be to derive it from the full-space structure automatically. However, this is
beyond the scope of the present work.

Using the present simple B&B solver without any range reduction for maximizing Ẇnet,
formulation (RS*) is solved orders of magnitude faster than formulation (FS), obviously be-
cause of the much smaller problem size (see Table 2). Note that in formulation (FS), some
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Fig. 4: Incidence matrix for Case Study I maximizing Ẇnet using (a) formulation (FS) and (b)
formulation (RS*). The columns correspond to the optimization variables, while the rows
correspond to equality constraints, inequality constraints, and objective (in that order). ‘X’
indicates a variable is present in the respective equation, while ‘.’ indicates it is not. Variable
and equation names are omitted for better readability.

inequalities from formulation (RS*) can be omitted because they can be enforced as part of
the variable bounds. The simple range reduction techniques described in Section 4 enable
significant savings both in the number of iterations and computational time, particularly
for (FS). In this example, BARON with its sophisticated branch-and-reduce algorithm can
solve (FS) in a single iteration, i.e., without any branching, and it is almost as fast in solving
(FS) as the present solver can solve (RS*). To confirm the importance of the multimodality,
the problem was also solved with the local solvers CONOPT [23], IPOPT [61], and KNI-
TRO [17], all of which do converge to the suboptimal local solution (cf. Fig. 3) for certain
initial guesses.

When minimizing LCOE, the problem gets more computationally challenging, since
the equations used for estimating heat exchanger areas and equipment cost contain many
highly nonlinear terms (cf. Appendix C). In case of formulation (FS), the problem also
increases in size because of the added variables and equations. In formulation (RS*), only
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Table 3: Problem size and solution times for Case Study I minimizing LCOE and a time
limit of 105 s.

Formul. Problem size Solver Time [s] Iterations Max. nodes

(FS) 87 variables
85 equalities
2 inequalities

Present solver (no RR) >105 >9.2×106 1.26×106

Present solver (with RR) 37 345 98
BARON 1.08×104 1.44×105 1.67×104

BARON (sel. branching) 4178 4.20×104 9139

(RS*) 2 variables
0 equalities
9 inequalities

Present solver (no RR) 0.55 1677 206
Present solver (no RR, no MV) 0.54 1745 213
Present solver (with RR) 0.25 379 94
Present solver (with RR, no MV) 0.26 415 96

some inequalities have to be added to ensure the validity of the cost correlations employed
by ensuring a minimum area of the heat exchangers, which in (FS) is again part of the
variable bounds2. In this case, the present simple solver is not able to solve formulation (FS)
within the time limit of 105 s≈ 28h when relying on pure B&B (no feasible point is found,
and the lower bound is almost 40% below the optimal objective value), while it can solve
(RS*) in less than half a second (cf. Table 3).

BARON takes significantly longer for solving (FS) when minimizing LCOE than the
present solver. This suggests that when minimizing LCOE, the problems contain some ex-
pressions for which the relaxations in BARON are relatively weak. Both the number of
branch-and-reduce iterations and the CPU time needed by BARON can be reduced signifi-
cantly by means of selective branching (cf. [25,43,54]), i.e., setting the branching priorities
to force BARON to branch only on p2 and ṁ. However, although branching is only per-
formed on the two degrees of freedom, the subproblems involved still have the large number
of variables and constraints of formulation (FS), and the reductions in computational time
are by far not as pronounced as when changing from (FS) to (RS*) with the present solver.

The solution with the present solver was also repeated without using the multivariate
McCormick relaxations (MV) introduced by Tsoukalas and Mitsos [57] by disabling the
corresponding option in MC++ , which implements the multivariate composition rules for
binary products, divisions, and the minimum or maximum of two variables (cf. Table 3).
The multivariate relaxations do reduce the number of iterations for the present example,
since the resulting relaxations are tighter [44,57]. Because they are also more expensive to
compute, the CPU time does not decrease for all cases.

To provide some first insight into the influence of more complex thermodynamic mod-
els, Case Study I was also repeated using temperature-dependent sub-models, namely a
quadratic model for the ideal gas heat capacity and the Watson equation for the enthalpy
of vaporization. In this case, the expressions for enthalpy and entropy of gaseous or liquid
streams cannot be solved analytically for temperature any more, which makes both the pump

2 Note that it might be more reasonable not to restrict the area itself, but rather set the heat exchanger cost
to a constant below a certain threshold. However, this would lead to a nonsmooth problem requiring special
care for upper bounding. Also, BARON does not currently support the max function.
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Table 4: Optimal objective values and ranges and optimal solutions for the optimization
variables of formulation (RS*) for Case Study I with temperature dependent thermodynamic
sub-models.

Symbol Description Unit Range maxẆnet minLCOE

Optimization variables
p2 Upper cycle pressure bar [3, 100] 100 100
ṁ Cycle mass flow rate kg/s [5, 100] 27.6 29.2
T2 Temperature Stream 2 K [300, 873] 350 350
T5 Temperature Stream 5 K [300, 873] 873 784

Objective functions
Ẇnet Net power output MW 34.2
LCOE Levelized cost of electricity $/MWh 49.0

Table 5: Problem size and solution times for maximizing Ẇnet in Case Study I with temper-
ature dependent thermodynamic sub-models.

Formul. Problem size Solver Time [s] Iterations Max. nodes

(FS) 72 variables
69 equalities
2 inequalities

BARON 0.36 5 2

(RS*) 4 variables
2 equalities
4 inequalities

Present solver (no RR) 0.15 291 34
Present solver (with RR) 0.05 11 4

and boiler models implicit. To treat these in the context of formulation (RS*), their outlet
temperatures T2 and T5 are added as additional optimization variables and the corresponding
energy balances are added as equality constraints. The model formulation and results are
summarized in Appendix B.4.

The optimal solution points and objective values for maximum power output and min-
imum LCOE are given in Table 4. The maximum power output differs from that predicted
with the simpler model by 13%, and both for maximum power output and minimum LCOE
the upper bound is now reached for the upper cycle pressure. Note also that the upper bound
on the steam temperature T5 can now be enforced as part of the variable bounds, while it had
to be added as an actual inequality constraint for the simpler model.

The main observations in terms of computational performance are similar to the ones
made with the simple thermodynamic model used above. Formulation (RS*) is solved faster
with the present solver than (FS) is solved in BARON, especially for minimizing LCOE (cf.
Tables 5 and 6). Interestingly, when minimizing LCOE BARON can solve the model with
the more complex thermodynamics faster than the one with the simple thermodynamics.
However, it is still slower than the present solver solving (RS*) by a factor of 880 and 5480
for pure B&B and with simple range reduction in the latter, respectively.
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Table 6: Problem size and solution times for minimizing LCOE in Case Study I with tem-
perature dependent thermodynamic sub-models.

Formul. Problem size Solver Time [s] Iterations Max. nodes

(FS) 112 variables
110 equalities
2 inequalities

BARON 2026 1.02×105 7889

(RS*) 4 variables
2 equalities
8 inequalities

Present solver (no RR) 2.3 3465 470
Present solver (with RR) 0.37 211 56

5.2 Case Study II: Regenerative Rankine Cycle

A slightly more complex example is considered next (see Fig. 5), where the gas outlet tem-
perature TG4 is not fixed any more [33]. Instead, the outlet enthalpy of the superheater h7 is
added as a degree of freedom for formulation (RS*). An inequality constraint is added to
prevent temperature crossover at the economizer inlet. Furthermore, the cycle now contains
a deaerator for removing non-condensable gases, which allows operation of the condenser
at lower pressure for increased cycle efficiency. In the deaerator, the water is mixed with
a two-phase bleed stream extracted from the turbine. The pressure of the turbine bleed is
equal to that of the deaerator [65]. This pressure p2 along with the fraction kBl of the cycle
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Fig. 5: Case Study II: Regenerative Rankine cycle. In formulation (RS*), only the variables
shown in circles and the constraints shown in boxes are handled by the optimizer in order
to either maximize Ẇnet or minimize LCOE. Since there is one equality constraint in this
formulation, the problem has four degrees of freedom.
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Table 7: Optimal objective values and ranges and optimal solutions for the optimization
variables of formulation (RS*) for Case Study II.

Symbol Description Unit Range maxẆnet minLCOE

Optimization variables
p2 Deaerator pressure bar [ 0.2, 5] 0.2 0.2
p4 Upper cycle pressure bar [ 3, 100] 45.3 41.1
ṁ Cycle mass flow rate kg/s [ 5, 100] 25.4 26.3
h7 Live steam enthalpy kJ/kg [2480, 3750] 3640 3350
kBl Fraction of mass flow extracted - [ 0.01, 0.2] 0.0328 0.0348

Objective functions
Ẇnet Net power output MW 34.4
LCOE Levelized cost of electricity $/MWh 49.0

Table 8: Problem size and solution times for Case Study II maximizing Ẇnet and a time limit
of 105 s.

Formul. Problem size Solver Time [s] Iterations Max. nodes

(FS) 73 variables
69 equalities
4 inequalities

Present solver (no RR) >105 >1.93×107 2.36×106

Present solver (with RR) 39 547 115
BARON 1.7 191 22
BARON (sel. branching) 2.7 217 26

(RS*) 5 variables
1 equality
7 inequalities

Present Solver (no RR) 4.2 1.17×104 1442
Present Solver (with RR) 0.62 475 108

mass flow rate that is extracted from the turbine are also added as optimization variables (cf.
Table 7). The requirement that the liquid leaving the deaerator be in the saturated liquid state
to enable the removal of gases is enforced as an equality constraint. From a flowsheet point
of view, this corresponds to a design specification. A description of the calculation sequence
can be found in Appendix B.2.

When maximizing Ẇnet, the present solver is again not able to solve (FS) with pure B&B
within the time limit, while it can solve (RS*) in a similarly short time (or even faster when
using simple range reduction) as BARON needs for solving (FS) (cf. Table 8). Interestingly,
in this example selective branching on the variables of formulation (RS*) when solving
(FS) with BARON increases both the number of iterations and CPU time. We currently do
not know why this is the case.3 When minimizing LCOE, (RS*) is solved in 7.5 min, or
less than 3 min when using simple range reduction (cf. Table 9). BARON still has 6% gap
remaining after reaching the time limit when solving (FS) with default settings, while in this
case selective branching reduces the gap to 1% when reaching the time limit (cf. Figure 6).

3 Note also that while Epperly and Pistikopoulos [25] give a convergence proof for a selective branching
strategy, Stuber et al. [54] argue that this is limited to linear equations for equality constrained problems.
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Table 9: Problem size and solution times for Case Study II minimizing LCOE and a time
limit of 105 s.

Formul. Problem size Solver Time [s] Iterations Max. nodes

(FS) 120 variables
116 equalities
4 inequalities

BARON >105 >7.35×105 2.87×105

BARON (sel. branching) >105 >4.48×105 1.45×105

(RS*) 5 variables
1 equality
12 inequalities

Present Solver (no RR) 446 7.59×105 9.31×104

Present Solver (with RR) 158 1.23×105 2.03×104
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Fig. 6: Convergence (indicated by the ratio of lower (LBD) and upper (UBD) bounds on
the objective) of Case Study II minimizing LCOE. While the reduced-space formulation
(RS*) can be solved with a simple solver within a few minutes, the solution of the full-space
formulation (FS) takes several hours. In each case, the optimal solution (i.e., optimal UBD)
is found relatively quickly, but it takes long for LBD to converge.

5.3 Case Study III: Two-Pressure Cycle

Finally, a more sophisticated cycle configuration using two pressure levels in the HRSG is
considered, which is one of the preferred layouts for newly installed CCPP [33,39,60] (see
Fig. 7). After the deaerator, the water is pumped to an intermediate pressure level in the
low-pressure (LP) pump and is preheated close to saturation in the LP economizer. Part of
the water is then further pumped to a higher pressure level in the high-pressure (HP) pump
and again preheated, evaporated, and superheated before entering the HP turbine, which
expands the fluid back to the LP pressure level. The remaining water is evaporated and
superheated at the LP pressure level and mixed with the HP turbine outlet before entering
the LP turbine, which corresponds to the turbines in the previous case studies. In this case,
additional degrees of freedom are the outlet pressure p8 of the HP pump, the outlet enthalpy
h11 of the HP superheater, and the fraction kLP of the cycle mass flow rate that is sent
through the LP rather than the HP part of the HRSG (cf. Table 10). Additional inequalities
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Fig. 7: Case Study III: Two-pressure cycle. In formulation (RS*), only the variables shown
in circles and the constraints shown in boxes are handled by the optimizer in order to either
maximize Ẇnet or minimize LCOE. Since there is one equality constraint in this formulation,
the problem has seven degrees of freedom.

are required to ensure a minimum temperature difference in the HRSG, full evaporation in
both the LP and HP part of the HRSG, and for ensuring validity of the selected model at the
HP turbine outlet (in this case, the enthalpy of the hypothetical isentropic turbine outlet state
12s is required to be above the saturated vapor enthalpy). A description of the calculation
sequence can be found in Appendix B.3.

For this more complex case study, the relative optimality tolerance was set to 10−2,
which is still well below the model uncertainty given the simplicity of the thermodynamic
models and the inherent uncertainty of the investment cost correlations [58]. In this case,
BARON is considerably faster solving (FS) than the present solver solving (RS*) when
maximizing Ẇnet (see Table 11). A solution of (FS) with the present solver was not at-
tempted given the long solution times for (RS*). When minimizing LCOE, the solution of
both formulations with the respective solvers takes longer than 105 s (cf. Table 12). How-
ever, in the solution of (RS*) with the present solver, the optimality gap is closed faster after
the first 0.5 to 3 h, leading to a remaining gap of around 6% (or less than 5% with simple
range reduction) as compared to 15% (or 13% with selective branching) for solving (FS)
with BARON when reaching the time limit (see Fig. 8).

Interestingly, the best solution found by the present solver is 0.4% better than that found
by BARON (cf. Table 10). The fact that the values of the optimization variables differ sig-
nificantly between the two solutions suggest the existence of multiple local optima. In fact,
solving (FS) from different starting points with the local solvers CONOPT [23], IPOPT [61],
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Table 10: Optimal objective values and ranges and optimal solutions for the optimization
variables of (RS*) for Case Study III. Since for the minimization of LCOE the solutions re-
turned by BARON and the present solver differ (substantially in the variables, insignificantly
in the objective), the latter are given in parentheses.

Symbol Description Unit Range maxẆnet minLCOE

Optimization variables
p2 Deaerator pressure bar [ 0.2, 5] 0.2 0.2 (0.2)
p4 LP pressure level bar [ 3, 15] 9.20 4.78 (15.0)
p8 HP pressure level bar [ 10, 100] 100 47.7 (47.0)
ṁ Cycle mass flow rate kg/s [ 5, 100] 29.4 29.1 (28.0)
h7 LP steam enthalpy kJ/kg [2480, 3750] 3040 2715 (2919)
h11 HP steam enthalpy kJ/kg [2480, 3750] 3640 3480 (3489)
kBl Fraction of mass extracted - [ 0.01, 0.2] 0.0347 0.0347 (0.0348)
kLP Fraction of mass in LP part - [ 0.05, 0.5] 0.235 0.216 (0.248)

Objective functions
Ẇnet Net power output MW 39.3
LCOE Levelized cost of electricity $/MWh 49.8 (49.6)

Table 11: Problem size and solution times for Case Study III maximizing Ẇnet.

Formul. Problem size Solver Time [s] Iterations Max. nodes

(FS) 114 variables
107 equalities
10 inequalities

BARON 202 1.50×104 1429
BARON (sel. branching) 196 1.22×104 1655

(RS*) 8 variables
1 equality
14 inequalities

Present solver (no RR) 8502 1.11×107 1.66×106

Present solver (with RR) 624 2.65×105 6.32×104

Table 12: Problem size and solution progress for Case Study III minimizing LCOE and a
time limit of 105 s.

LBD after
Formul. Problem size Solver 100 s 1 h 10 h 24 h

(FS) 190 variables
183 equalities
10 inequalities

BARON 38.6 41.1 41.9 42.2
BARON (sel. branching) 40.2 42.1 43.1 43.4

(RS*) 8 variables
1 equality
22 inequalities

Present solver (no RR) 26.8 40.1 45.0 46.4
Present solver (with RR) 31.7 42.1 46.5 47.2

and KNITRO [17] returned several different solutions declared as locally optimal with ob-
jective values ranging from 49.6 $/MWh to 56.3 $/MWh.
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Fig. 8: Convergence of Case Study III minimizing LCOE. After the first 0.5 to 3 h, the
optimality gap is closed faster when solving the reduced-space formulation (RS*) with a
simple solver than when solving the full-space formulation (FS) with the state-of-the-art
solver BARON.

Finally it should be noted that in many cases the present solver requires more itera-
tions and also holds more nodes in memory than BARON. When minimizing LCOE for
the present case study, it fully utilizes the available RAM towards the end of the runtime.
This is a known possible drawback of pure best-first heuristics in B&B [38], and it is prob-
ably exacerbated for the present solver by the extremely simple relaxation technique using
linearization at a single point (cf. Section 4).

6 Conclusions

A problem formulation for deterministic global optimization of process flowsheets analo-
gous to the sequential modular mode of flowsheet simulation was presented that ensures
the applicability of the automatic propagation of McCormick relaxations and their subgra-
dients. This formulation operates in a reduced space containing only the design variables
and those variables that are required for decoupling the model equations that would require
iterative solution. Only the equations coupling the systems are left to the optimizer as equal-
ity constraints, while all others are hidden in externally defined functions. Depending on the
process considered, this approach leads to significantly smaller problems compared to the
conventional full-space formulation. Furthermore, the number of variables for which bounds
need to be provided is reduced significantly, while some additional inequalities may be re-
quired instead to enforce physically important restrictions on intermediate variables that are
not controlled directly by the optimizer. While not necessarily linked to a reduced-space
formulation, the approach of providing model equations externally is also attractive from a
modeling perspective since it facilitates the construction of model libraries for process units
or thermodynamics calculations.

The two formulations were tested on three steam power cycles of increasing complexity.
It was shown that the reduced-space formulation can enable deterministic global flowsheet
optimization even with a simple B&B algorithm without any range reduction. Both the num-
ber of iterations and the CPU time are significantly lower than for solving the full-space
formulation with the same solver. In several examples, the solution of the reduced-space
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formulation with a simple solver can be as fast as or even faster than the solution of the
full-space formulation in the state-of-the-art solver BARON, which uses a much more so-
phisticated branch-and-reduce scheme. The observed differences in performance are greater
when minimizing LCOE than when maximizing power output for the given cycles. This can
be attributed to the increased complexity and nonlinearity when adding component sizing
and investment cost calculation, and apparently some of the added equations are particularly
difficult for the current version of BARON, probably resulting in loose relaxations. Since the
cycles considered as case studies herein occur in similar form in many more complex sys-
tems such as, e.g., advanced zero emission power cycles [28], the present calculations show
that this reduced-space approach can be used in these cases as a fast and robust way to
globally solve these subproblems.

It should be emphasized that the relaxations used in the present simple solver are rela-
tively weak because of the linearization at a single point. Further improvements could thus
likely be achieved in this framework by making better use of the propagated relaxations,
e.g., by linearizing at multiple points chosen in a suitable way, or using the nonsmooth re-
laxations returned from the external functions directly in a nonsmooth NLP solver. However,
while tighter relaxations will reduce the number of iterations, it remains to be shown how
it affects the solution time, since in the former case the lower bounding problems become
larger (in case of multiple linearization points) and in the latter case more challenging due
to their nonlinearity. One could also rely on the recently developed smooth modifications of
McCormick relaxations [34] in order to utilize regular NLP solvers for lower bounding. A
nonsmooth NLP solver could also be used for upper bounding to extend the applicability of
the present solver to nonsmooth unit operations. The present approach could also be inte-
grated with more sophisticated branch-and-reduce solvers as soon as they allow the use of
external functions for supplying relaxations. However, in this case it would have to be eval-
uated which of the features for range reduction are still applicable when there is no direct
access to all equations and which are not.

Future work should investigate to what extent the advantages of the reduced-space for-
mulation still hold for larger flowsheets, in particular if the difference in problem size to
the full space formulation decreases, i.e., for flowsheets requiring many tear streams and
containing many implicit unit operations. A first study based on the present work indicates
that in such cases careful selection of tear locations as well as variables and equations to be
left to the optimizer is required to fully exploit the benefits of the reduced-space formula-
tion [15]. The implications of such decisions should be clarified in order to identify suitable
approaches for model formulation. This is expected to be particularly relevant when apply-
ing the present approach to chemical processes that exhibit complex recycle structures as
well as challenging unit operations because the mixtures involved often require iterative so-
lution to calculate phase equilibria. It might also be possible to automate the construction of
such reduced-space formulations from the structure of the full-space problem, thus avoiding
the effort of having to find a calculation sequence manually at the modeling level. Finally,
it would be interesting to compare the present approach to a fully implicit treatment of the
model equations, as well as explore ways of incorporating the methods for handling implicit
functions [50,54,63] into similar approaches. Since one could choose which equations to
eliminate by treating them as an implicit function within the external functions and which
to leave to the optimizer, this opens up even more interesting alternatives.
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A Formulation (RS*) does not introduce multimodality

In the following, we show that (RS*) does not introduce additional local minima compared to (FS). For ease
of analysis, we recast the formulations in slightly different (and more general) form.

Let x∈X ⊂Rnx , y∈Y ⊂Rny , with X ,Y nonempty compact convex sets, and the functions f : X×Y →R,
hexp : X → Y , himp : X×Y → Rnh,imp , g : X×Y → Rng continuous. Consider the NLP

min
(x,y)∈X×Y

f (x,y)

s.t. y = hexp(x)
himp(x,y) = 0

g(x,y)≤ 0

(A-FS)

Let y and hexp be selected such that the equality constraints y = hexp(x) are of the form

y1 = ĥexp,1(x),

yi = ĥexp,i(x, ĥexp,1(x), ..., ĥexp,i−1(x)), i = 2, ...,ny,

where ĥexp,i, i = 1, ...,ny consist only of compositions of binary sums, binary products, or univariate or mul-
tivariate functions from a given library as discussed in Section 2. In total, the constraints y = hexp(x) can
thus be evaluated sequentially to compute a unique vector y ∈ Y for a given x ∈ X . Note, however, that this
mapping need not be injective nor surjective.

The full-space formulation (A-FS) can be converted to the following reduced-space formulation, which
is a generalization of (RS*):

min
x∈X

f (x,hexp(x))

s.t. himp(x,hexp(x)) = 0
g(x,hexp(x))≤ 0

(A-RS*)

Note that in (A-RS*) the substitution of y by hexp(x) need not be done symbolically, but can rather be deferred
to the time of function evaluation.

Proposition 1 A point x∗ ∈ X is a local solution of (A-RS*) if and only if there is a y∗ ∈Y such that (x∗,y∗)
is a local solution of (A-FS).

Proof The feasible regions of (A-FS) and (A-RS*) are

FFS := {(x,y) ∈ X×Y : y = hexp(x), himp(x,y) = 0, g(x,y)≤ 0},
FRS := {x ∈ X : himp(x,hexp(x)) = 0, g(x,hexp(x))≤ 0},

respectively, and it holds that

x ∈FRS ∧y = hexp(x) ⇐⇒ (x,y) ∈FFS. (1)

Assume a point (x∗,y∗) is a local solution of (A-FS). Then by definition (cf., e.g., [38]) there exists ε > 0
such that

(x∗,y∗) ∈FFS,

f (x∗,y∗)≤ f (x,y) ∀ (x,y) ∈FFS ∩NFS,ε,(x∗ ,y∗),

NFS,ε,(x∗,y∗) := {(x,y) ∈ X×Y : ‖(x,y)− (x∗,y∗)‖ ≤ ε}.
(2)

From (1) it follows that x∗ ∈FRS and y∗ = hexp(x∗). Thus, from (2) it follows

f (x∗,hexp(x∗))≤ f (x,hexp(x)) ∀ (x,y) ∈FFS ∩NFS,ε,(x∗ ,y∗).

Take NRS,ε̂,x∗ := {x ∈ X : ‖x−x∗‖ ≤ ε̂} with ε̂ := max(x,y)∈FFS∩NFS,ε,(x∗ ,y∗)
‖x−x∗‖. Note that ε̂ exists by

continuity of hexp, himp, and g and compactness of X and Y . It follows

f (x∗,hexp(x∗))≤ f (x,hexp(x)) ∀ x ∈FRS ∩NRS,ε̂,x∗ , (3)
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which together with x∗ ∈FRS shows that x∗ is a local solution of (A-RS*).
Assume, on the other hand, that x∗ is a local solution of (A-RS*), thus satisfying x∗ ∈FRS and (3) for

some ε̂ > 0. We define the vector y∗ ∈ Y as y∗ = hexp(x∗) and by (1) we obtain that (x∗,y∗) ∈ FFS and
furthermore

f (x∗,y∗)≤ f (x,hexp(x)) ∀ x ∈FRS ∩NRS,ε̂,x∗ .

Since for any (x,y) ∈ X ×Y we have ‖(x,y)− (x∗,y∗)‖ ≥ ‖x−x∗‖, using (1) it follows for NFS,ε̂,(x∗ ,y∗) :=
{(x,y) ∈ X×Y : ‖(x,y)− (x∗,y∗)‖ ≤ ε̂} that

f (x∗,y∗)≤ f (x,y) ∀ (x,y) ∈FFS ∩NFS,ε̂,(x∗,y∗),

which together with (x∗,y∗) ∈FFS shows that (x∗,y∗) is a local solution of (A-FS). ut

B Process models

The following sections provide details on the model equations and the calculation sequences for simulating
the cycles by sequential evaluation of these equations to obtain the desired thermodynamic quantities, in
particular the power output Ẇnet. Enthalpies and entropies in the process models are computed using the
ideal gas and ideal liquid equations of state with constant heat capacities, and saturation temperatures are
computed using the Antoine equation (cf., e.g., [11]). Pressure losses in components other than the pumps and
turbines are neglected. Tables 13 and 14 summarize the fixed model parameter values for the thermodynamic
calculations used in the case studies. A list of all symbols and subscripts used is given in Table 15.

Table 13: Fixed model parameters for the cycles in the case studies. The gas outlet temper-
ature is only fixed for Case Study I. The condenser pressure is 0.2 bar for Case Study I, and
0.05 bar for Case Studies II and III.

Symbol Description Unit Value

TG,in Gas inlet temperature K 900
TG,out Gas outlet temperature K 448
(ṁcp)G Heat capacity flow rate of the gas kJ/K 200
∆Tmin Minimum temperature difference in HRSG K 15
∆Tap Approach to saturation in economizers K 10
ηP Isentropic efficiency of pumps - 0.8
ηT Isentropic efficiency of turbines - 0.9
Tmax Maximum live steam temperature K 873
xmin Minimum vapor quality in turbine - 0.85
p1 Condenser pressure bar 0.2 or 0.05
x1 Vapor quality condenser outlet - 0

Table 14: Fixed model parameters for the thermodynamic properties of water.

Symbol Description Unit Value

cif Specific heat capacity (liquid) kJ/(kgK) 4.18
cp,ig Specific heat capacity (gas) kJ/(kgK) 2.08
R Specific gas constant kJ/(kgK) 0.462
vif Specific volume (liquid) m3/kg 0.001
p0 Reference pressure bar 0.01
∆hevap,p0 Enthalpy of vaporization at p0 kJK/kg 2480
A Antoine parameter - 3.5595
B Antoine parameter K 643.748
C Antoine parameter K -198.043
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Table 15: List of symbols and subscripts used in the process models of the case studies.

Symbols LMTD Logarithmic mean temperature
ṁ Mass flow rate [kg/s] difference [K]
Q̇ Heat flow rate [kW] Subscripts
Ẇ Power [kW] ap Approach to saturation
η Isentropic efficiency [-] B Boiler
φ Fixed operating cost factor [-] Bl Bleed stream
Ψ Annuity factor [-] CCPP Combined cycle power plant
A Heat transfer area [m2] CD Condensate
A,B,C Parameters for Antoine equation [K,-] Chen Chen approximation
C Parameter for pressure factor [-] Cond Condenser
CFuel Specific fuel cost [$/MWh] crit Critical point
cif Ideal liquid heat capacity [kJK/kg] cw Cooling water
cp,ig Ideal gas isobaric heat capacity [kJK/kg] Dae Deaerator
Cp Base purchase cost [US-$] evap Evaporation
Fp Pressure factor [-] FW Feedwater
h Specific enthalpy [kJ/kg] G Exhaust gas of gas turbine
K Cost parameter [-] GT Gas turbine
k Heat transfer coefficient [kWK/m2] HP High pressure
p Pressure [bar] i Index for streams
R Specific gas constant [kJK/kg] in Inlet
s Specific entropy [kJK/kg] j Index for heat exchangers
T Temperature [K] liq Liquid
Teq Equivalent utilization time at rated LP Low pressure

power [h/a] max Maximum allowable value
TCI Total capital investment [$/MWh] min Minimum allowable value
uvar Variable cost factor [$/MWh] net Net
V Volume [m3] out Outlet
vif Specific volume (liquid) [m3/kg] P Pump
w Specific work [kJ/kg] pi Evaluated at pressure pi
x Vapor quality [-] ref Reference state for Watson equation
a Parameter Watson equation [-] s Hypothetical isentropic state
c Parameter ideal gas heat capacity sat Saturated state

[K,kJ,kg] T Turbine
Inv Investment cost [$] Ti Evaluated at temperature Ti
LCOE Levelized cost of electricity [$/MWh] vap Vapor

B.1 Case Study I: Basic Rankine Cycle

For every stream i, the saturation temperature is computed from the pressure pi of the stream via the Antoine
equation:

Tsat,pi =
B

A− log10(
pi

bar )
−C.

Where required, the saturated vapor and liquid enthalpy and entropy can be computed via:

hsat,vap,pi = ∆hevap,p0 + cp,ig · (Tsat,pi−T0)

hsat,liq,pi = cif · (Tsat,p1−T0)+ vif · (p1− p0)

ssat,vap,pi =
∆hevap,p0

T0
+ cp,ig · ln

(
Tsat,pi

T0

)
−R · ln

(
pi

p0

)
ssat,liq,pi = cif · ln

(
Tsat,pi

T0

)
,

where the reference temperature T0 is also obtained from the Antoine equation.
To simulate the cycle, we start at the condenser outlet. Since the condenser pressure p1 is treated as a

fixed parameter and by assumption the fluid leaves the condenser in the saturated liquid state, we have

h1 = hsat,liq,p1.
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For the pump, we can compute the specific pump work and power consumption using the isentropic
efficiency ηP:

wP =
vif · (p2− p1)

ηP

ẆP = ṁ ·wP.

The outlet state then follows from the energy balance:

h2 = h1 +wP. (4)

Since the gas outlet temperature is fixed, we first calculate the overall heat transfer rate in the boiler,
which is assumed to be isobaric (p5 = p4 = p3 = p2):

Q̇B = (ṁcp)G · (TG,in−TG,out)

In the economizer, the outlet enthalpy of the water can be computed using the known outlet temperature
T3 = Tsat,p3−∆Tap:

h3 = cif · (T3−T0)+ vif · (p3− p0).

Using an energy balance around the economizer, the gas temperature between economizer and evaporator can
be calculated as

TG3 = TG,out +
ṁ · (h3−h2)

(ṁcp)G
.

In the evaporator, the water leaving the steam drum towards the superheater is in the saturated vapor state, so
that we obtain similarly:

T4 = Tsat,p4

h4 = hsat,vap,p4

TG2 = TG,in−
ṁ · (h5−h4)

(ṁcp)G
.

In the superheater, the live steam enthalpy can be computed from the energy balance since the gas inlet
temperature is known:

h5 = h2 +
Q̇B

ṁ
. (5)

In the turbine, the inlet temperature and entropy can be computed as

T5 = T0 +
h5−∆hevap,p0

cp,ig

s5 =
∆hevap,p0

T0
+ cp,ig · ln

(
T5

T0

)
−R · ln

(
p5

p0

)
.

From this, the specific turbine work and power output are computed using the isentropic efficiency ηT, similar
to the pump, with the hypothetical isentropic turbine outlet state 6s being in the two-phase region.

p6 = p1

p6s = p1

x6s =
s5− ssat,liq,p6

ssat,vap,p6− ssat,liq,p6

h6s = hsat,liq,p6 + x6s · (hsat,vap,p6−hsat,liq,p6)

wT = ηT · (h5−h6s)

ẆT = ṁ ·wT.
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An energy balance then yields the true outlet state 6:

h6 = h5−wT

x6 =
h6−hsat,liq,p6

hsat,vap,p6−hsat,liq,p6
.

Note that when computed this way, the vapor quality x6 is greater than unity if the enthalpy h6 is greater than
the saturated vapor enthalpy at p6. Therefore, the condition x6 ≤ 1 can be used to ensure the validity of the
assumption of 6 (and hence also 6s) being in the two-phase region.

Finally, the net power output of the cycle is

Ẇnet = ẆT−ẆP.

B.2 Case Study II: Regenerative Rankine Cycle

In this case, the simulation of the cycle starts at the turbine inlet since the pressure (p7 = p4) and enthalpy
(h7 is an optimization variable) are known. The turbine with bleed extraction can be modeled as two separate
turbines in parallel, each of which is treated as described in Section B.1. The one associated with the bleed
stream expands to the bleed pressure that is equal to the deaerator pressure p2, while the other one expands
to the condenser pressure p1. The power output of the turbine can be obtained as the sum of these two parts
(ẆT = ẆT,Bl +ẆT,Cond). The condenser outlet state and the condensate (CD) pump can be modeled as above,
with the exception that only the mass flow that is not extracted as a bleed contributes to the pump power
consumption:

ẆP,CD = ṁ · (1− kBl) ·wP.

The deaerator is assumed to be isobaric and its outlet enthalpy follows from the energy balance:

p3 = p2

h3 = kBl ·h8 +(1− kBl) ·h2.

The calculation of the feedwater (FW) pump is analogous to the condensate pump, but with the entire cycle
mass flow. Since in this case study the gas outlet temperature is not fixed any more, the overall heat transfer
rate is determined using the known inlet and outlet enthalpies of the water:

Q̇B = ṁ · (h7−h4)

TG4 = TG,in−
Q̇B

(ṁcp)G
.

From this, the missing quantities for the economizer and evaporator can be calculated as described above.
Finally, the net power output of the cycle is

Ẇnet = ẆT−ẆP,CD−ẆP,FW.

B.3 Case Study III: Two-Pressure Cycle

For convenience, variables for the mass flow rates through the LP and HP parts of the HRSG and the ones of
the turbine bleed and that being expanded to the condenser are defined as

ṁLP = ṁ · kLP

ṁHP = ṁ · (1− kLP)

ṁBl = ṁ · kBl

ṁCond = ṁ · (1− kBl).

We start at the HP turbine inlet, since its state is known (cf. above). For the HP turbine, the outlet state
is assumed to be in the vapor region (which is ensured by the constraint h12s ≥ hsat,vap,p12). Therefore, the
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temperature and enthalpy of the isentropic outlet state is calculated based on the corresponding ideal gas
equations, while the rest of the equations remains the same as above:

p12 = p4

p12s = p4

s12s = s11

T12s = T0 · exp
(

s12s +R · ln(p12s/p0)−∆hevap,p0/T0

cp,ig

)
h12s = ∆hevap,p0 + cp,ig · (T12s−T0)

wT,HP = ηT · (h11−h12s)

h12 = h11−wT,HP

ẆT,HP = ṁHP ·wT,HP.

The mixing of the HP turbine outlet stream 12 with the outlet stream 7 of the LP superheater is analogous
to the model of the deaerator described above. The models for the LP turbine, condenser, condensate pump,
deaerator, and LP pump (corresponding to the feedwater pump) are the same as described above and can be
evaluated in this order. The HP pump is analogous to the LP pump but uses only the mass flow of the HP part
of the cycle. The HRSG can then be evaluated in a similar manner as described above, starting from the HP
superheater and working back to the LP economizer. The net power output finally follows as

Ẇnet = ẆT,HP +ẆT,LP−ẆP,CD−ẆP,LP−ẆP,HP.

B.4 Case Study I with Temperature-Dependent Sub-Models

Case Study I was also repeated using temperature-dependent sub-models for the ideal gas heat capacity and
enthalpy of vaporization:

cp,ig(T ) = c1 + c2 ·T + c3 ·T 2,

∆hevap(T ) = ∆hevap,Tref ·
(

1−T/Tcrit

1−Tref/Tcrit

)a

.

The corresponding parameters are given in Table 16. Note that since we decided to use the ideal gas heat
capacity (rather than liquid), for convenience the reference state is shifted to the dew curve at p0. Using these
sub-models, the enthalpy and entropy for streams in the gas phase can be computed for given pi and Ti as

hi =
∫ Ti

T0

cp,ig(T )dT,

si =
∫ Ti

T0

cp,ig(T )
T

dT −R · ln
(

pi

p0

)
,

while for liquid streams they are given by

hi =
∫ Ti

T0

cp,ig(T )dT −∆hevap(Ti)+ vif · (pi− psat,Ti),

si =
∫ Ti

T0

cp,ig(T )
T

dT −R · ln
(

psat,Ti

p0

)
−

∆hevap(Ti)

Ti
.

The vapor pressure at the stream temperature is again obtained from the Antoine equation:

psat,Ti = 10A− B
C+Ti bar.
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Table 16: Fixed model parameters for the thermodynamic properties of water using temper-
ature dependent sub-models.

Symbol Description Unit Value

c1 Parameter ideal gas heat capacity kJ/(kgK) 1.995
c2 Parameter ideal gas heat capacity kJ/(kgK2) −7.027×10−4

c3 Parameter ideal gas heat capacity kJ/(kgK3) 8.476×10−7

Tcrit Critical temperature of water K 647
Tref Reference temperature for Watson equation K 273
∆hevap,Tref Enthalpy of vaporization at Tref kJ/kg 2501.3
a Parameter Watson equation - 0.38

Unlike for the simple thermodynamic model used in the other case studies, these expressions for enthalpy
and entropy cannot be solved for the temperature analytically4. Therefore, some additional variables and
equality constraints have to be introduced when optimizing the cycle using formulation (RS*). This is the
case for Streams 2 and 5, the state of which is determined from energy balances (cf. Section B.1). Thus, their
temperatures T2 and T5 are handed to the optimizer as additional module variables (xm), and Equations (4)
and (5) are added as additional module equations (h̃m = 0). Note that for the two-phase streams 6 and 6s, the
vapor fraction can still be computed from the given enthalpies or entropies as described in Section B.1 so that
no additional variables are needed.

C Economic analysis

The LCOE of the CCPP is calculated according to the equation [51,33]

LCOE =
TCI ·Ψ ·ϕ
ẆCCPP ·Teq

+
CFuel

ηCCPP
+uvar,

where TCI, ẆCCPP and ηCCPP denote the total capital investment, the net power output, and the efficiency
of the CCPP, respectively. The remaining quantities are constant parameters that can be found in Table 17.
The annuity factor was determined as described in ref. [51] assuming a depreciation period of 20 years and a
construction time of 2 years, as well as their values for interest and inflation rates.

While the gas turbine is not considered in the optimization itself since its design is assumed to be
fixed, some data is required for evaluating the aforementioned quantities. To this end, it was simulated in
AspenPlus R© assuming a pressure ratio of 20 with a turbine inlet temperature of 1620 K and isentropic com-
pressor and turbine efficiencies of 0.8 and 0.9, respectively5. These conditions and the mass flow rate through
the gas turbine were selected to be in a typical range while matching the assumptions on the exhaust gas flow
rate and heat capacity made for the simulation of the bottoming cycle. The resulting net power output of the
gas turbine is ẆGT = 69.7MW while consuming Q̇Fuel = 182MW (based on lower heating value) of natural
gas. From this, the power output of the CCPP follows as the sum of net power output of the gas turbine and
that of the steam cycle obtained as described in Appendix B, and the CCPP efficiency can be calculated as
ηCCPP = ẆCCPP/Q̇Fuel.

The capital investment for the gas turbine as well as the steam cycle is calculated using the cost cor-
relations given in ref. [51] for pumps, steam turbines, and generators, as well as the gas turbine including
compressor and combustor which are based on their power and mass flow rates as well as pressures and
temperatures. For heat exchangers and deaerators, the more detailed correlations from ref. [58] are used. To
this end, the heat transfer areas A j of the heat exchangers involved (i.e., condenser, economizer, evaporator,
and superheater) are computed based on their heat flows Q̇ j , inlet and outlet temperature differences ∆Tin,j

4 While the gas enthalpy can in principle still be solved for temperature, e.g., using Cardano’s method, this
is challenging without the use of conditional statements and is thus not attempted here.

5 We decided to use Aspen rather than a basic thermodynamic model to avoid mistakes in setting up the
equations and to utilize the temperature dependent property data (in particular heat capacities) that get more
important at the high temperatures involved.
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and ∆Tout,j, and heat transfer coefficients k j using Chen’s approximation of the logarithmic mean temperature
difference (LMTD) [21]:

LMTDChen, j =

(
∆Tin, j ·∆Tout, j ·

∆Tin, j +∆Tout, j

2

)1/3

A j =
Q̇ j

k j ·LMTDChen, j

For the heat transfer coefficients, average values are used that depend on the state of the fluids involved
(cf. Table 17). For the condenser, water cooling is assumed with specified cooling water inlet and outlet
temperatures. The investment cost Inv j of the heat exchangers is calculated via the base purchase cost Cp, j
and the pressure factor Fp, j [58]:

Cp, j = 10K1+K2 ·log10(A j/m2)+K3 ·log10(A j/m2)2

Fp, j = 10C1+C2 ·log10(p j/bar)+C3 ·log10(p jbar)2

Inv j = 1.18 · (1.63+1.66 ·2.75 ·Fp, j) ·Cp, j

The deaerator is treated as a process vessel, the volume of which is determined for a 10 min liquid holdup
with another 50% added for vapor in the vessel [33]:

VDae = 1.5 · ṁDae,out · vif ·600s

Cp,Dae = 10K4+K5 ·log10(VDae/m3)+K6·log10(VDae/m3)2

Fp,Dae = 1.25

InvDAE = 1.18 · (1.49+1.52 ·Fp,Dae) ·Cp,Dae

Table 17: Parameters for the economic evaluation taken from refs. [33,51,58,59].

Symbol Description Unit Value

Ψ Annuity factor - 0.1875
ϕ Fixed operating cost factor - 1.06
Teq Equivalent utilization time at rated power h/a 4000
CFuel Specific fuel cost $/MWhfuel 14
uvar Variable operating cost $/MWh 4

kgas,gas Heat transfer coefficient kW/(m2 K) 0.03
kgas,liquid Heat transfer coefficient kW/(m2 K) 0.06
kgas,evaporating Heat transfer coefficient kW/(m2 K) 0.06
kliquid,condensing Heat transfer coefficient kW/(m2 K) 0.35
Tcw,in Cooling water inlet temperature K 298
Tcw,out Cooling water out temperature K 303

K1 Cost parameter for heat exchangers - 4.3247
K2 Cost parameter for heat exchangers - -0.3030
K3 Cost parameter for heat exchangers - 0.1634
K4 Cost parameter for deaerator - 3.5565
K5 Cost parameter for deaerator - 0.3776
K6 Cost parameter for deaerator - 0.0905
C1 Parameter for pressure factor - 0.03881
C2 Parameter for pressure factor - -0.11272
C3 Parameter for pressure factor - 0.08183

Amin Minimum heat exchanger area m2 10
Vmin Minimum deaerator volume m3 1
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