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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Universally applicable building automation and control systems could contribute largely to reducing both the environmental 
impact and the operation costs of buildings. We present a building HVAC control algorithm that excites small subsystems and 
uses the system responses to calibrate prefabricated Modelica models. It uses these models for distributed model-assisted online 
control. We demonstrate and evaluate the algorithm in simulations and real-life experiments on a central air handling unit. 
Results show that the algorithm is capable of controlling the systems. Its performance is comparable to the reference scenario 
based on PI controllers. 
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1. Introduction 

Every building energy system (BES) has unique characteristics. It requires a suitable building automation and 
control system (BACS) to provide a comfortable indoor climate for the users and deliver other energy services such 
as process heat in an efficient way. Due to the unique features of BES, the BACS are often custom-made in a long 
and costly design and commissioning phase [1]. Especially the practical implementation of advanced optimization-
based control approaches causes high labor cost during the implementation phase because they require manual 
calibration by experts [2].  

Currently, many researchers are concerned with the question of how to develop BACS that automatically adapt to 
the characteristics of the building they are implemented in. Baldi et al. [2] developed an adaptive optimization 
algorithm. Huber [3] demonstrated a multi-agent system on a test bench based on an air handling unit (AHU). Zhou 
[1] presents a framework that features auto-recognition of temperature sensors in an AHU. All authors call their 
approaches “plug and play” to underline the very limited requirement for manual configuration.  

Besides Baldi et al. [2], other authors are turning towards the use of BPS tools such as EnergyPlus, TRNSYS or 
Modelica. Compared to the widely used linear models, the main advantages of BPS tools are a better approximation 
of the building dynamics and complex phenomena [4]. There are open-source libraries of models created by experts 
in the field, such as Fuchs et al. [5]. The complication is that we often have to apply derivative-free optimization 
algorithms to use these models directly [2]. Algorithms such as the genetic algorithm are limited in performance 
when it comes to complex systems with many manipulated variables. Another issue reported is the high 
computational time [2].  

Many research efforts have already focused on the operation optimization of energy systems. However, 
according to Dounis and Caraiscos [6], difficulties with implementing the novel strategies lead to the current 
situation in which most BACS are still built on rule-based control strategies. We thus identified the need to develop 
an approach that is suitable for practical implementation without causing high development or commissioning costs. 
In order to do so, we propose an approach based on continuous system identification and distributed optimization. 
For information on these fields of research, refer to [7] and [8]. 

According to [4], model predictive and model assisted control (MAC) approaches have many advantages 
compared to other approaches and especially with regard to rule-based control. Afram and Janabi-Sharifi [9] give an 
overview of the various model types that we can select for setting up a MAC. 

In this paper, we present a possible approach for automatic generation of automation software for building energy 
systems. It is structured as follows. We introduce the algorithm, which consists of an identification and a control 
part. As a proof-of-concept, we apply the algorithm on a central AHU. We present simulation and real-life 
implementation results to quantify the performance of the algorithm and to draw conclusions on the suitability of the 
approach for implementation in generic BES.  

2. Methodology 

2.1. Model-assisted distributed control  

Our approach is based on grey box models of elementary modules that occur in every BES. The idea is that the 
components already available in open-source BPS libraries such as AixLib [5] can cover a large part of the 
components in the built environment. The complication arises from the facts that we have to adapt the model 
parameters and that there are many possible combinations of these components. The generation of a detailed model 
of the real system is time consuming and error-prone. Even worse, the model validity often deteriorates in time 
because characteristics of BES change due to wear and tear. Since, in building automation, labor costs play an 
important role, we consider this one of the reasons why grey-box-based control approaches have not yet found their 
way into practical implementation. If we find a method to adapt the model parameters automatically to the real 
component and find a way around assembling all the subsystem models to a complex system model, this could pave 
the way for model-based and even plug-and-play control in BES.  

We thus develop a control algorithm for building HVAC supply chains, which automatically calibrates 
elementary subsystem models. It simulates the models for various boundary conditions and finds the most suitable 
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control decision for each set of boundary conditions. We consider both the cost in each subsystem and in the 
downstream subsystems. We published an early version of the algorithm in [10]. This so-called neighbor 
communication is often used for distributed model-based control, e.g. by Jalal and Rasmussen [11]. 

In this paper, we focus on the subsystems of a central AHU. Since the subsystems are coupled by the air stream, 
the algorithm optimizes each subsystem for a couple of discrete combinations of the temperature and the absolute 
humidity of the entering airflow (coupling variables). Beginning at the last system in the supply air chain, the 
algorithm optimizes all subsystems sequentially and stores the results in look-up tables. These enable each 
subsystem to estimate the effect that its control decisions will have on the downstream systems. The last system in 
the chain ensures that the AHU supplies the desired temperature and humidity by penalizing deviations from the 
respective set points with additional cost.  

We use the AHU because of its modular structure, which makes it especially suitable for demonstrating the 
combined identification and control capabilities. In future work, we will apply the algorithm to an entire BES. 

2.2. Tools 

For reasons of simplicity, we implement both the identification and the control algorithm in Matlab. In order to 
be able to set up the framework in other environments such as Python, we do not use any specialized function or 
toolbox in Matlab. Instead, we use the open-source optimization tool GenOpt and select the available pattern search 
algorithm. This tool works with compiled simulation models and uses text files for exchanging data. However, for 
our purposes it is also possible to employ a functional mockup unit (FMU) instead. It is our goal to develop a 
generic control approach, which can be implemented as a plug-and-play system. In the future, manufacturers may 
provide models of their components. These could easily be loaded into the existing framework. 

2.3. Identification algorithm  

The identification algorithm serves mainly as demonstration of how identification approaches can be used for 
universally applicable control systems. We use a simple excitation, namely a stair signal with long steps covering 
the entire operating range. We choose this excitation because our control algorithm simulates the subsystems with 
constant inputs and long enough to reach a steady state. Moreover, the models do not account for many dynamic 
effects. In future work, we will use models that are more detailed and a dynamic excitation signal. However, one 
advantage of the stair signal is that we can apply it to some subsystems during normal operation because the 
downstream subsystems can react to this slowly changing disturbance sufficiently fast. Other subsystems such as the 
last heat exchanger in the supply chain have to be excited during times when no user is affected by the 
identification. This facilitates the continuous repetition of the identification to account for aging effects. 
The inputs that the user has to provide are the name of the component, the experiment time and the performance 
metric. Afram and Janabi-Sharifi [9] give an overview of performance metrics. For this work, we chose the 
goodness of fit (GOF). A value of 100 indicates the best fit.  

We use the name of the component to access a pre-defined mapping of the sensor and actuator data points. This 
mapping is a task that the system integrator has to carry out during the implementation in the real building. The user 
initiates the identification run manually. In future implementations, we will add a periodic trigger. For example, 
experiments could be repeated every three months. 

2.4. Cost functions  

The algorithm can switch between two different cost functions. On the one hand, we can select the monetary 
costs of the supply water and the electricity entering the respective subsystems. We use cost factors that depend on 
the thermodynamic states of supply and return flow to account for variable efficiencies of the supply system. On the 
other hand, we can use the sum of exergy destruction and loss. Equation (1) is the objective function comprising the 
penalty terms and the monetary cost related to the flow rate of the supplied (water or steam) mass mi. 
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The controlled variables and their set points are denoted by x and xset, respectively. We use a tolerance Δx and a 
weighting factor α. The specific cost c depends on the thermodynamic state of the supplied mass flow rate. 

3. Case Study 

We study a central AHU that supplies laboratories. A scheme of the unit is depicted in Fig. 1. It is equipped with 
a water-based heat recovery system and can be used for adiabatic cooling as there is a liquid water humidifier on the 
exhaust airside. Moreover, it contains a steam humidifier, a cooler and two heaters. We can thus heat up or cool 
down the air using two different modules, respectively. The supply temperature on the waterside of the heaters is 
approximately 80 °C and thus comparatively high. 

We consider each of the heat exchangers plus the connected valve and pump one subsystem. The steam 
humidifier is the last system in the supply chain. In each heat exchanger subsystem, we identify five grid points of 
the characteristic curve of the valve, the nominal thermal conductance of the heat exchanger and a static pressure 
difference. Thus, the characteristic curve of the valve does not only incorporate the characteristics of the valve itself 
but also represents the control behavior of the pump. 

In order to test the algorithm, we apply it on a simulation model so that we have ideal system knowledge. The 
fresh air temperature follows a sine wave with a period duration of 7200 s and an amplitude of 10 K, which is a 
strong disturbance compared to real AHU applications. The relative humidity of the fresh air is constant 70 %, so 
the steam mass fraction also resembles a sine wave. The valve openings of the four heat exchangers and the steam 
mass flow rate of the humidifier are the decision variables. To benchmark the performance, we apply two reference 
control strategies on the same system. One is the same algorithm with the same settings but using the total system 
model. The other one is based on PI controllers. The controlled variables are the supply air temperature and the 
relative humidity. The MAC algorithms work at a sample rate of 120 s and optimize every 600 s using a prediction 
horizon of 3600 s. We simulate all scenarios for 10 hours. 

In the real-life demonstration, we control only the heat exchangers and disregard the humidity. In the first part, 
we vary the temperature set point. In the second part, we overwrite the cooler valve opening to create disturbance. 

4. Results 

4.1. Results of identification test 

Fig. 1 shows the air temperature behind the heater in the real AHU, which is excited with a double stair signal, 
and the temperature trajectory produced by the BPS model. The GOF is 70 % and thus satisfactory. However, as we 
are still in the process of developing the algorithm, three months passed between the identification and the control 
experiment. In the meantime, the characteristic curve changed drastically, probably due to clogging. By manual 
recalibration, we found out that the control range had narrowed to 58-67 % of the nominal opening. This reveals the 
importance of continuous repetition of the identification runs. It could also be beneficial to increase the number of 
grid points of the characteristic curve to enable the identification algorithm to cover such small ranges. For the real-
life demonstration, we thus use the manually recalibrated heater model and the automatically calibrated models of 
pre-heater, cooler and heat recovery system. 

4.2. Results of the simulation studies 

Fig. 2 shows the trajectories of the temperature and the relative humidity of the supply air as well as the fresh air 
temperature. The algorithm manages to keep the supply air temperature close to the set point of 23 °C. The supply 
air humidity, however, deviates from the set point of 50 %. Table 1 includes key performance indicators (KPIs). The 
difference between the arithmetic mean of the temperature and the set point is 0.18 K and thus lower than in the two 
reference scenarios. The tracking error, which corresponds to the root mean squared error with regard to the set 
point, is 0.53 K and thus slightly higher than in the scenario in which we use the PI controllers. 
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Fig. 1. (a) Scheme of the air handling unit test bench; (b) measured and computed air temperature during heater identification run. 

Regarding cost, the distributed control algorithm outperforms the scenario based on PI controllers. The cost is, 
however, higher than in the scenario based on the total model. 

In addition to these indicators, we calculate the weighted sum of the normalized KPIs for each scenario. To 
normalize, we divide each indicator by the mean value of each line in Table 1. We also include the weight factors 
and the mean values in Table 1. A lower value indicates a better performance. According to the index, the algorithm 
and the PI-controllers have a comparable performance and outperform the algorithm based on the total model, 
whereas the computational time required for one optimization using the subsystem models is approximately 10 
minutes. We would like to remark, however, that we use well-tuned PI controllers. In practical implementations, PI 
controllers are often not well tuned. In addition to that, they have to be embedded in control logics. Our distributed 
MAC algorithm functions without any logic – at the cost of higher computational effort. 

Table 1. Key performance indicators of control strategies used in simulation case study. 

Indicator Weighting Subsystem alg. PI controllers Total system alg. Mean of the index 

Cost of energy in € 1/3 4.654 5.405 3.148 4.402 

Average temperature deviation in K 2/9 0.177 0.259 1.486 0.641 

Average relative humidity deviation in % 1/9 0.111 0.188 2.386 0.895 

Tracking error of temperature in K 2/9 0.533 0.503 1.499 0.845 

Tracking error of relative humidity in % 1/9 7.840 2.809 10.228 6.959 

Comparative index in %  68.778 69.684 160.538  

Fig. 2. (a) Fresh and supply air temperature; (b) Relative supply air humidity in simulation case study. 

4.3. Results of the real-life demonstration 

Fig. 3 shows the supply air temperature set point and the actual temperature that the MAC algorithm achieved 
when we applied it on the real AHU. The fresh air temperature changed very little so we created additional 
disturbance after four hours. Before, we varied the temperature point. As Fig. 3 reveals, the algorithm finds mainly 
plausible solutions, opening the cooler valve only when the set point is 18 °C. Simultaneously, it closes the pre-
heater valve to 40 %, which corresponds to zero flow. Moreover, it mostly uses the heat recovery system at full 
capacity and decreases the recuperation when the set point is low. However, a better solution would be shutting off  
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Fig. 3. (a) Relative actuator positions; (b) Fresh and supply air temperature measurement and temperature set point in real-life demonstration. 

recuperation completely, which corresponds to a valve opening below 25 %. 
It is obvious that the air temperature deviates strongly from the respective set points. These deviations result from 

imprecise models, which lack hysteresis and dead times, and the approximations we make when the algorithm 
estimates the mutual interactions of the subsystems. However, the algorithm does succeed in balancing the 
disturbance using the main heater. 

5. Conclusion 

We presented a model-assisted control algorithm, which excites modules of central AHUs to calibrate pre-
fabricated building performance simulation models. It uses these models to optimize the control decisions. Starting 
at the end of the supply chain, it optimizes the subsystems sequentially and considers the mutual interactions using 
look-up tables. In simulation, the algorithm achieves lower cost and similar control performance compared to a 
control strategy based on PI-controllers. The real-life demonstration shows the practical feasibility but also the need 
to improve the model identification. The workload for setting up the control system is much lower than in 
conventional building automation and control systems. We thus consider the algorithm a suitable solution for 
generic control that can be further developed to become a plug-and-play control system for building energy systems. 
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