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Abstract. The laser-light absorption of a thin foil is studied in the framework of the self-
consistent time-dependent Hartree theory. It is found that asympotically for large numbers of
electron states, a single-state Vlasov model is sufficient to describe the main features of the
energy absorption to a very good approximation. Since the single-state model is numerically
feasible, this allows one to calculate the energy absorption over a wide range of laser parameters.
Studying the size-dependence of the absorption mechanism, quantum-mechanical modifications
of the well-known classical Brunel theory can be observed for thin layers.

1. Introduction

This article summarizes parts of the results which were presented at the twenty fifth annual
International Laser Physics Workshop (LPHYS’16) in Yerevan, Armenia. In the context of our
presentation on the topic ’Quantum-Plasma Model of Atomic Cluster Excitations’ we gave an
overview on the results we achieved based on quantum-plasma calculations on spherical atomic
clusters and thin plasma foils. This paper refers to the results we obtained for thin plasma foils.

The statistical properties of ideal quantum plasmas are commonly described in the framework
of the self-consistent quantum Vlasov theory which determines the time evolution of the single-
particle density operator. This method corresponds to a quantum-mechanical multi-stream
model in which the many-particle system can be described by a finite set of single-particle wave
functions interacting via a self-consistent potential [1]. Another effective many-body theory
closely related to the Vlasov theory is the time-dependent Hartree theory.

In this work, both models are applied to a thin plasma foil interacting with an external laser
field which is considered to be obliquely incident on the foil surfaces. A reduced capacitor model
[2] effectively leads to a spatially one-dimensional (1d) description of the electron dynamics.
The classical Brunel theory [3] describes the collisionless energy absorption of a plane surface
by electrons which are pulled into the vacuum and accelerated in the presence of the laser
field. This mechanism dominates the absorption if the solid has a sharp surface and an electron
density well above the critical density where the light frequency equals the plasma frequency.
In the present work, we focus attention on this non-resonant collisionless absorption. Brunel’s
theory predicts a characteristic scaling Eabs ∼ E3

0 of the absorbed energy with the electric field
amplitude E0 of the laser. The absorption mechanism suggested by Brunel has been analyzed
classically for thin foils with two surfaces in the framework of a 1d capacitor model [4]. However,
if the foil thickness approaches the nanoscale, quantum-size effects of the absorption which have
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not been treated so far are expected to become relevant. In this regime, the so-called spill-out
effect, which describes the occurrence of a non-vanishing electron density outside the foil, is a
non-thermal quantum feature. In this work, we analyze how Brunel’s scaling law is affected by
quantum effects in thin plasma foils.

2. Multi-Stream Model

In the present model, the background ions are treated in the jellium approximation as a
homogeneously charged foil with thickness l and charge density en0, where e denotes the
elementary charge and nion = n0/Z is the density of ions with average charge state Z.
The following dimensionless quantities are used for a plasma with plasma frequency ωp =
√

4πn0e2/me (CGS units),

r =

√

meωp

~
r
⋆, t = ωpt

⋆, n =
n⋆

n0
, E =

E⋆

~ωp

,

q =
q⋆

e
, ϕ = ϕ⋆

(

~

meωp

)
1
2

,

(1)

where ~ is the reduced Planck constant. Dimensional quantities are denoted by a star. The
prefactors in (1) define the units used throughout this work if not otherwise stated. In some
figures, we use the length scale L =

√

~/(meωp).
For the description of the electron system, we consider two different approaches. On the one

hand, we consider the well-known time-dependent Hartree theory which describes the electron
system in terms of Ns single-particle states ϕk(x, t) interacting via individual self-consistent
potentials φk(x, t),

i∂t ϕk =

[

−1

2
∂2
x − φk − φL

]

ϕk, (2a)

∂2
xφk =

1

Ns

∑

k′ 6=k

|ϕk′ |2 − ρion, (2b)

where φL corresponds to the external laser potential in the dipole approximation and ρion(x) =
θ(l/2 − |x|) is the ionic charge density. The Hartree theory excludes self-interaction in the
calculation of the electronic charge density in (2b). It should be noted that in the dimensionless
representation (2) the single-particle states are normalized to the length of the foil, 〈ϕk|ϕk〉 = l.
On the other hand, we consider the simple single-state Vlasov model

i∂t ϕ =

[

−1

2
∂2
x − φ− φL

]

ϕ, (3a)

∂2
xφ = |ϕ|2 − ρion, (3b)

where the electron system is described by a single electron state ϕ(x, t) interacting with a self-
consistent potential φ(x, t). The single state model (3) corresponds to a reduced version of
the quantum Vlasov theory which describes the electron system by a statistical ensemble of
Ns single-particle wave functions ϕk(x, t) which we call representative electron states [5]. The
Vlasov theory reduces to the above single-state model (3) when taking into account only a single
representative state, Ns = 1. It is noted that the main difference between the Hartree and the
Vlasov model arises from the fact that self-energy interaction terms are not included in the
Poisson’s equations of the Hartree theory.

For the numerical evaluation of the systems (2) respectively (3), a Crank-Nicolson scheme [6]
is chosen for the Schrödinger equations in combination with standard finite-difference techniques
for Poisson’s equation.
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3. Results

In this section, we summarize some results obtained for the equilibrium configurations, the
single-state Vlasov approximation and finally for the scaling law of the energy absorption.

3.1. Equilibrium States

In the absence of the laser field, φL = 0, solutions of the systems (2) and (3) with a time-
independent electron density can be written in the form

ϕk(x, t) = ϕ(0)

k (x)e−iǫkt. (4)

Then, the equilibrium density is given by

n(0) =
1

Ns

∑

k

|ϕ(0)

k |2. (5)

To determine the equilibrium states ϕ(0)

k , we choose a relaxation method [7]. Figure 1 shows the
equilibrium densities for a foil with thickness l = 50. Comparison is made between the single-
state model and the Hartree model for different Ns. Furthermore, results for the self-consistent
potentials φ(0)

k in the equilibrium state are shown.
As depicted, the electron density within the Hartree model becomes homogeneous inside the

foil as the number of representative states is chosen sufficiently large. The same behavior of the
electron density inside the foil can be observed for the single-state Vlasov model.

However, the individual equilibrium states ϕ(0)

k look significantly different from the
equilibrium wave function of the single-state Vlasov model. The single-state equilibrium wave
function has the same structure as the density. In the case of the Hartree model, each peak of the
density is associated with a single-electron equilibrium state k which is localized around the mean
position 〈x〉k. To get a qualitative interpretation of the equilibrium states and to compare the
results to corresponding classical calculations, analytical solutions for the Hartree equilibrium
states are calculated asymptotically for Ns/l → 0. In this limit, the overlap between the electron
states is negligible and the equilibrium becomes a set of coherent states of a harmonic oscillator
separated by a distance l/Ns,

ϕk(x) =
1
4
√
π
e−0.5(x−xk)

2
, xk = − l

2

(

1 +
1− 2k

Ns

)

, k = 1, 2, . . . , Ns. (6)

This result suggests that the Hartree model (2) can be interpreted as the quantum-mechanical
analogue of the classical particle model defined in [4]. Thereby, the equation of motion for the
point charge k is replaced by the Schrödinger equation for the wave function ϕk. Since the
electron density of a single wave function within the Hartree description is not point-like, the
calculation of the electrostatic potential is not as simple as for point-particles.

The self-consistent potential of the single-state model exhibits two pronounced minima close
to the foil surface which generate the binding of the electrons. The local minima of the potential
occur due to the overshoot of the electron density at the foil surface. Within the Hartree model,
each electron state sees an individual potential with a single local minimum. As one can see,
the potential φk increases linearly far away from the region electron k is localized to. This
fact is related to the 1d nature of the underlying model. According to Poisson’s equation in
1d, a localized charge distribution ρ(x) generates a constant electric field |E| = |q|/2 outside
the region of its localization. Thus, since a Hartree state sees a charge distribution with total
charge q = l/Ns, there is no ionization in the present Hartree model and an outgoing electron
will always be accelerated back to the foil. This feature of the 1d description is not present in
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Figure 1. Equilibrium quantities for a foil with thickness l = 50. The figure shows the
equilibrium densities for (a) the Hartree and (b) the single-state model. Furthermore, exemplary
results for the self-consistent potentials in the equilibrium state are shown for (c) the Hartree
model with Ns = 40 and (d) the single-state model. In the case of the Hartree model, the
corresponding equilibrium wave functions ϕ(0)

k are indicated.

the single-state model since the self-consistent potential is calculated from a neutrally charged
distribution.

Furthermore, figures 1a and 1b clearly show the spill-out effect of the electron density at the
foil surface. To investigate the regime of l-values for which quantum effects are suggested to
become significant, we analyze how the spill-out effect depends on the size of the foil. Figure 2
shows the fraction of spill-out electrons fout as a function of the foil thickness in the single-state
model. One calculates for l = 5 that 13% of the electrons are located outside the foil in the
equilibrium state. For l & 5, it is found that fout scales with the inverse foil thickness. A fit
to the data with l & 5 using the model function fout(l) = α/lβ yields the values α = 0.659 and
β = 0.997. In the following, the plasma foil is exposed to a laser field. Before the interaction
with the laser at t = 0, the electron system is considered to be in the equilibrium state.
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Figure 2. Fraction of spill-out electrons as a function of the foil thickness. The data points are
fitted to the inverse power law fout = 0.659/l0.997.

3.2. Comparison of Hartree Model and Single-State Model

The numerical calculation of the electron dynamics in the presence of strong laser fields based on
the Hartree model (2) requires on the one hand large spatial grids to account for fast electrons
moving far away from the foil and on the other hand small numerical grid constants with respect
to the time variable to resolve their dynamics. These requirements are already present in classical
PIC calculations. Since the present quantum-mechanical description furthermore requires small
spatial grid constants to resolve small de Broglie wavelengths, calculations with large Ns become
time-consuming. Since we are interested in macroscopic quantities like the absorbed energy per
electron, it is an instructive task to analyze two major questions. Does the dynamics of the
electron system converge if the number of electron states Ns is chosen sufficiently large? If yes,
is the single-state Vlasov model capable of describing the main features of the energy absorption?
In particular, the last point is of great interest since calculations within the single-state Vlasov
model are numerically feasible which allows one to perform calculations over a wide range of
laser parameters. In order to investigate the above questions, we performed test calculations
within the Hartree model for different Ns and the single-state model in the presence of a strong
laser field compared to the electric field generated by the ions.

In the following, the laser field is considered in the electric dipole approximation. A sin2-pulse
with n laser cylces, frequency ω and pulse duration τ = 2πn/ω is chosen for the electric field of
the laser,

φL(x, t) = −xE(t), E(t) = E0 sin(πt/τ)2 sin(ωt). (7)

The mean total energy of the foil per electron is calculated based on the expectation values of
the single-particle energies,

Etot

Ne

=
1

Ns

Ns
∑

k=1

〈ϕk|Ek|ϕk〉
〈ϕk|ϕk〉

+
Eion

Ne

, (8)

Ek = T + Vk, T = −1

2

∂2

∂x2
, Vk = −φ(ion) − 1

2
φ(e)

k . (9)

where Eion is the potential energy of the ion system in its own field which is a constant value
within the jellium approximation. The operator T corresponds to the kinetic energy operator.
The potentials φ(ion) and φ(e)

k specify the ion and the electron contribution to the self-consistent
potential in (2b) respectively (3b), φk = φ(ion) + φ(e). It is noted that the single-particle energy
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operator Ek does not coincide with the single-particle Hamiltonian in the present self-consistent
description. The prefactor 1/2 in the definition of the potential energy Vk has to be taken into
account in order to avoid double-counting of the electron-electron interaction energy.

For the test calculation, a foil with l = 10 is considered. Since we want to perform the
calculations over a wide range of Ns-values, we choose a sufficiently short single-cycle pulse
(n = 1) with ω = 0.125 and E0/Eion = 40% in order to make the calculation numerically
affordable. Here, Eion = l/2 corresponds to the maximal value of the ionic field which is achieved
at the foil boundary. Figure 3 shows the dynamics of the center of mass (COM)

X(t) =
1

Ns

Ns
∑

k=1

〈ϕk|x̂|ϕk〉
〈ϕk|ϕk〉

(10)

as a function of time as well as the absorbed energy Eabs = Etot(τ) − Etot(0) per electron for
different Ns. For the considered value of E0, the grid constants have to be chosen quite small,
∆x . 0.01 and ∆t . 0.001, in order to observe convergence of the numerical solution. To avoid
boundary effects driven by outgoing electrons, one has to choose a spatial grid with about 105

grid points.
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Figure 3. Motion of (a) the center of mass and (b) the absorbed energy per electron for a laser
pulse with n = 1, ω = 0.125 and E0/Eion = 40%. The results are shown for different numbers
of electron states Ns within the Hartree model and the single-state Vlasov model. In (b), the
absorbed energy is measured in units of the energy Ẽabs absorbed within the single-state Vlasov
model.

Figure 3a shows that the electrons are pulled in the negative direction within the first half
of the laser cycle. Thereby, a large number of electrons leave the foil. Within the second half
of the cycle, electrons are accelerated back and gain enough energy to move through the foil. A
large displacement of the electron system with respect to the equilibrium state can be observed
at the end of the pulse.

As depicted in Figure 3b, the absorbed energy deviates from the single-state result by more
than 10% for the smallest considered value of Ns = 10. As shown in Figure 1, also the
corresponding equilibrium density looks pretty different from the single-state result. However,
for Ns > 10 one can see that the deviation of the absorbed energy is less than 5% and varies only
slightly over the range of considered Ns-values. For the largest considered value of Ns = 80, the
Hartree result differs from the single-state result by an amount of approximately 2%. This result
suggests that the single-state model is able to reproduce the absorption of the many-particle
system to a good approximation if the number Ns is chosen sufficiently large.
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3.3. Energy Absorption as a Function of the Laser Field Strength

In this section, we analyze the energy absorption of the foil as a function of the field strength
of the laser. Brunel described the electron dynamics at a single sharp surface by an ensemble
of single-particle trajectories interacting via an electrostatic potential [3]. As a major result, it
was found that the absorbed energy of the surface per electron can be written in the form

Eabs

Ne

=
1

2
η
E3
0

ω2

1

l
, (11)

where η is a numerical constant which depends on the pulse duration. It should be noted
that the result of Brunel is given in (11) in terms of the plasma units (1), where the length
dependence is due to these units. The absorption mechanism of vacuum heating for a foil with
two sharp surfaces has been analyzed classically [4]. It was found that the absorbed energy
can be represented by a scaling law similar to (11) but with a different numerical value for η.
From a classical point of view, the characteristic scaling of the absorbed energy with the third
power of E0 in the non-resonant case can be motivated based on the assumption that the energy
absorption is mainly driven by electrons which leave the foil. Since our quantum results will
be compared to the classical results of Brunel, we shortly summarize the main points. For the
estimation of the absorbed energy, we approximate the COM-motion by the equation of motion
without surface effects,

Ẍ +X = −E(t). (12)

In the non-resonant limit ω ≪ 1, the solution reads X(t) = −E(t) with a maximal displacement
of X0 = E0. Since the equilibrium density is spatially homogeneous in the classical description,
the maximum number Nout of electrons which leave the foil over one laser cycle is given by

Nout = n0X
⋆
0 =

Ne

l
E0. (13)

Electrons which are pulled into the vacuum are accelerated by the laser field and gain an amount
of energy proportional to the mean quiver energy Up ∼ E2

0 of a free electron in a laser field, known
as the ponderomotive potential. With this consideration, the absorbed energy exhibits a scaling
of the form Eabs ∼ E3

0 .
In the following, we analyze the energy absorption of the foil as a function of the laser field

strength. Due to the fact that the cycle-averaged absorbed energy is not expected to vary
significantly during the main part of a few-cycle pulse [4], we choose for simplicity a single-cycle
pulse and an overdense foil with ω = 0.1. Figure 4 shows the absorbed energy per electron
as a function of E0 for two foils with l = 5 and l = 50. On the double-logarithmic scale, one
can clearly identify two regimes of E0-values for l = 5 which can be represented by scaling laws

Eabs/N = α Eβ
0 . A fit yields the values α = 5.65, β = 3.33 for E0/Eion . 0.2 and α = 5.13,

β = 2.98 for E0/Eion & 0.4. The two fits are also indicated in Figure 4. Two scaling regimes
can also be found for the thicker foil with l = 50. A fit yields the values α = 0.43, β = 3.15 for
E0/Eion . 0.02 and α = 0.4, β = 3.07 for E0/Eion & 0.04.

In summary, for sufficiently large values of E0, one can observe a scaling which is pretty close
to the one predicted within Brunel’s theory with a scaling exponent close to 3. However, for
the smaller foil one can clearly see a deviation from the classical behavior over a wide range of
E0-values. Since this effect is less pronounced for the large foil, we conclude that the deviation
can be referred to quantum-size effects which become relevant for small foils. To investigate
how the increased scaling exponent of Eabs/Ne emerges for small foils, we compare the scaling of
the maximum number of free electrons (13) in Brunel’s theory to a corresponding value within
the present quantum-mechanical treatment. As a measure for the fraction of free electrons, we
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Figure 4. Absorbed energy per electron as a function of the laser field strength E0 for two foils
with thickness l = 5 and l = 50. A laser pulse with n = 1 and ω = 0.125 is chosen. The results
are shown for different field strengths E0 measured with respect to the maximal value of the

ionic field Eion. The data points are fitted to model functions of the form Eabs/N = α Eβ
0 .

calculate the time-averaged fraction of electrons f̄out which are located outside the foil during
the laser-foil interaction,

f̄out =
1

τ

τ
∫

0

fout(t) dt , fout(t) = 1− 1

Ne

L
2

∫

−L
2

n(x, t)dx. (14)

Figure (5) shows the results for the two foils with thickness l = 5 and l = 50. One clearly
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Figure 5. Time-averaged fraction of electrons which are located outside the foil during the
interaction with the laser (ω = 0.125, n = 1). The results are shown for different laser field
strengths E0 measured with respect to the maximal value of the ionic field Eion. The data points
for strong laser fields are fitted to a linear function.

identifies a linear dependence of f̄out on E0 for sufficiently high values of E0. Thereby, one
recognizes that the linear dependence is already fulfilled for E0/Eion & 0.06 in the case of the large
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foil with l = 50, while it requires much stronger fields E0/Eion & 1 compared to the ionic field to
observe a linear dependence in the case of the small foil with l = 5. To investigate the increase of
f̄out in the regime of E0-values for which a faster increase of the absorbed energy can be observed,

a fit is performed to the data with E0/Eion . 0.2 using the model function f̄out(E0) = α Eβ
0 + γ.

The fit yields the values α = 0.088, β = 1.65, γ = 0.13 and is also indicated in Figure 5a. Here,
γ corresponds to the fraction of spill-out electrons in the equilibrium state. The result indicates
that f̄out grows faster as a function of E0 for small fields, where a faster increase of the absorbed
energy can be observed compared to the Brunel-like behavior for E0/Eion & 1.

The different behavior of f̄out for thin foils can be understood in terms of the surface profiles
of the equilibrium density. Decreasing the foil thickness, the transition region of the equilibrium
density shown in Figure 1b is broadened. We consider a shift of the equilibrium distribution
by an amount ξ along the x-axis, where Nout(ξ) is the number of electrons which leave the foil
due to the displacement. In the classical case, one has Nout ∼ ξ due to the homogeneity of the
equilibrium density inside the foil. If the electron density is broadened, the expansion of Nout(ξ)
with respect to ξ also contains higher orders of ξ. However, if the deflection is chosen sufficiently
large such that the inhomogeneous part of the equilibrium density is already located outside the
foil, the density distribution becomes homogeneous at the foil boundary and a further increase
dξ generates a number of outgoing electrons dNout ∼ dξ.

The scaling law
Eabs

Ne

= a(l) Eb
0 (15)

we found for large values of E0, with values of b close to 3 and a constant a which depends on
the foil thickness, allows for a comparison with the corresponding classical result calculated in
[4]. The authors find a scaling law similar to the result (11) of Brunel with a numerical constant
of η = 8.75 for a laser pulse with n = 10 laser cycles. The corresponding value for a single-cycle
pulse is given by η = 0.875, where we divided the result η = 8.75 suggested in [4] by the number
of laser cycles. For the comparison with our results, we evaluate the a-parameter of the classical
result (11) with the laser frequency ω = 0.125 we used in our calculations,

a =
0.875

2

1

0.1252
1

l
=

28

l
. (16)

We calculate the a-parameter based on our calculations for different values of l. The results are
shown in Figure 6. A model function a(l) = α/lβ is fitted to the data which is also presented
in Figure 6. We obtain the fit parameters α = 30.1 and b = 1.09. One can see that the found
value of α is close to the value 28 suggested by the classical result (16).

4. Conclusion

In the presented work, we have analyzed the energy absorption of a thin foil based on the
Hartree model and a single-state Vlasov model. We found that the energy absorption within
the Hartree model can be described to a very good approximation by the simple Vlasov model
if the number of electron states is chosen sufficiently large. For a foil with thickness l = 10
and Ns = 80 electron states, we have found that the Hartree and the single-state result for the
absorbed energy differ only by 2%.

At sufficiently high laser fields, we found that the energy absorption can be represented by a
simple scaling law Eabs ∼ Eb

0, where the numerical value of b is close to the value 3 predicted by
the classical Brunel theory independent of the foil thickness. For thin foils where quantum-size
effects are relevant, we found that the scaling exponent is larger than the value b = 3 over a
wide range of laser field strengths.

25th Annual International Laser Physics Workshop (LPHYS'16)                                                       IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 826 (2017) 012011          doi:10.1088/1742-6596/826/1/012011

9



0

1

2

3

4

5

6

7

0 10 20 30 40 50

a

l/L

Data

Fit

Figure 6. Scaling parameter a as a function of the layer thickness l. The data points are fitted
to the inverse power law a = 30.1/l1.09.
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