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Abstract

Drug toxicity poses a crucial problem in drug development and particularly in clinical care and in public

health. Although in vitro experiments can obtain valuable information of the mechanisms underlying

drug-induced toxicity, there is still a clear lack of approaches translating such in vitro findings into a

patient situation. In this thesis, a novel translational approach is presented and is successfully applied in

three different studies to investigate the onset of adverse drug events at patient level. Here, multiscale

modeling enables the coupling of in vitro concentration-response relationships, at the cellular level, with

drug concentration-time profiles, at the organism level, to predict cellular responses following drug ad-

ministration of different doses in vivo. The application of the developed translational approach allowed

studying drug-induced toxicity in humans (i) for acute and chronic administration of azathioprine in a

proof-of-concept study, (ii) for fifteen hepatotoxic drugs in a comparative manner focusing on drug ad-

ministration of therapeutic and toxic doses, and (iii) for a drug combination therapy of acetaminophen

and caffeine. The presented translational approach may lead to useful knowledge for clinical application

gained from in vitro experiments thereby contributing to the ongoing discussion of the predictive value

of preclinical research. Overall, the results shown here provide novel insights into drug-induced toxicity

within a patient context and, thus, may improve patient safety in drug development.

Zusammenfassung

Medikamententoxizität stellt ein schwerwiegendes Problem in der Medikamentenentwicklung und ins-

besondere in der klinischen Versorgung und im Gesundheitswesen dar. Obwohl in vitro-Experimente

nützliche Informationen über die zugrundeliegenden Mechanismen der Medikamenten-induzierten Tox-

izität liefern können, so fehlt es immer noch an Ansätzen, die solche in vitro-Erkenntnisse in eine Pa-

tientensituation übertragen. In dieser Arbeit wird ein neuer translationaler Ansatz präsentiert und in

drei verschiedenen Studien erfolgreich angewendet, um den Beginn von unerwünschten Arzneimittel-

nebenwirkungen auf Patientenebene zu untersuchen. Die Multiskalenmodellierung ermöglicht dabei die

Kopplung von in vitro-Konzentrations-Wirkungs-Beziehungen auf zellulärer Ebene mit zeitaufgelösten

Medikamentenkonzentrationen auf Organismusebene, um zelluläre Antworten als Folge von der Medika-

mentengabe verschiedener in vivo-Dosen vorherzusagen. Durch die Anwendung des entwickelten transla-

tionalen Ansatzes konnte Medikamenten-induzierte Toxizität in Menschen in drei Studien untersucht wer-

den: (i) im Zuge einer Machbarkeitsstudie für akute und chronische Medikamentengabe von Azathioprin,

(ii) in einer vergleichenden Analyse für fünfzehn hepatotoxische Substanzen mit Fokus auf der Medika-

mentengabe von therapeutischen und toxischen Dosen und (iii) für eine Kombinationstherapie bestehend

aus Acetaminophen und Koffein. Der präsentierte translationale Ansatz kann zu nützlichem Wissen für

die klinische Anwendung führen, welches aus in vitro-Experimenten gewonnen wurde, und dadurch zu

der andauernden Diskussion des prädiktiven Wertes von präklinischer Forschung beitragen. Insgesamt

liefern die hier gezeigten Ergebnisse neue Einblicke in Medikamenten-induzierte Toxizität in einem Pa-

tientenkontext, wodurch die Patientensicherheit während der Arzneimittelentwicklung verbessert werden

kann.
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General introduction

Drug-induced toxicity is an important issue in drug development and patient safety with hepatotoxicity

being one of the most common problems [Schuster et al., 2005; Takikawa et al., 2009; Andrade et al.,

2005; Kaplowitz, 2004]. Extensive drug abuse, whether intentionally or inadvertently, may cause toxic

effects in humans that, at worst, can be fatal. The prediction of drug-induced adverse events at an early

stage in drug development is thus of key relevance. In this respect, clinical biomarkers may help to

facilitate an early diagnosis of such toxic events. Drug combination therapies, which are often applied

in clinical practice, may even aggravate adverse drug reactions through interactions between the applied

drugs as reported, for instance, for co-administration of acetaminophen and caffeine in rats, as well as

in several other studies [Askgaard et al., 1995; Deray et al., 1987; Chen and Raymond, 2006; Sato et al.,

1985]. Since the molecular mechanisms underlying drug-induced toxicity are rather unclear, a mechanistic

understanding of these mechanisms has great significance with particular emphasis on cellular processes

occurring during the transition from desired drug effects to unwanted adverse events following therapeutic

and toxic doses, respectively.

Besides the pharmaceutical phase comprising the disintegration of the dosage form and the dissolution

of the drug substance, the efficiency of a drug can be described by two phases: a pharmacokinetic phase

determining the amount of drug at the target site, and a pharmacodynamic phase including the pharma-

cological activity of the drug at the side of action. To simulate drug concentration-time profiles in different

tissues or organs, physiologically-based pharmacokinetic (PBPK) modeling is nowadays routinely applied

during drug development [Jones et al., 2006]. PBPK modeling aims for a mechanistic representation of

absorption, distribution, metabolism, and elimination (ADME) processes governing the fate of a drug

within the human body. Whole-body PBPK models are explicitly representing important tissues and

organs that are connected by blood flow. Since the parametrization of PBPK models is based on the

physiology and anatomy of the organism as well as on drug-specific parameters, these models contain a

large amount of mechanistic information [Kuepfer et al., 2016]. Notably, PBPK models are well suited for

specific extrapolation scenarios such as cross-species extrapolation [Thiel et al., 2015]. Moreover, these

models allow the consideration of pharmacokinetic drug interactions affecting their concentration-time

courses within the body.

Several drugs initiate their pharmacological effect through the interaction with specific targets (e.g., re-

ceptors). This may provoke a cascade of reactions and finally lead to temporal changes of genes, proteins,

and metabolites within the cell. Cellular alterations can nowadays be measured at different biological

levels by omics technologies such as transcriptomics, proteomics, or metabolomics. Analyzing omics mea-

surements of cells exposed to toxic drug concentrations can ultimately provide novel insights into central

mechanisms involved in drug-induced toxicity and, furthermore, could facilitate a better characterization

of adverse drug events. [Waters and Fostel, 2004; Heijne et al., 2005; Chen et al., 2012]. These findings,

however, are based on in vitro assays, which often presents a severe drawback in terms of translatability

to patients in actual clinical practice. The lack of in vivo context may be overcome with approaches that

somehow contextualize the observed in vitro findings into an in vivo situation. For instance, steady state







20 General introduction

Besides this general introduction and a general conclusions and outlook section presented at the end,

the thesis overall contains three different parts: an introductory part (Part I), a results part (Part II)

containing three research chapters (Chapter 7, 8, and 9), and an appendix part (Part III). Each research

chapter is structured as journal article and is composed of an abstract, an introduction, a materials and

methods as well as a result and a discussion section.

In Part I, the basic knowledge underlying Part II is presented. Chapter 1 gives a brief introduction into

drug toxicity emphasizing its important role in specific phases in pharmaceutical research and develop-

ment. Drug-induced hepatotoxicity is thereby highlighted since drugs causing adverse effects in the liver

are of great interest and are investigated in the research chapters (Chapters 7, 8, and 9). The funda-

mental concepts of pharmacokinetics and pharmacodynamics (Chapter 2), as well as PBPK modeling

(Chapter 3) are subsequently explained. Chapter 4 deals with pharmacokinetic drug interactions and,

to a minor degree, with pharmacodynamic drug interactions. General information about toxicogenomics

and in particular the application of transcriptomics in a standard toxicogenomics approach is outlined

in Chapter 5. At last fundamental knowledge about biomarkers, which are a key outcome of a toxicoge-

nomics study, is given in Chapter 6. The different steps in the identification process of transcriptional

biomarkers is exemplarily described in this chapter. Moreover, biomarkers for drug-induced hepatotoxicity

are presented in more detail.

In the first research chapter (Chapter 7) of Part II, the development of the integrative multiscale ap-

proach PICD is presented and eventually applied in a proof-of-concept study to explore azathioprine-

induced hepatotoxicity at patient level. Chapter 7 is published as original article in Archives of Toxicology

[Thiel et al., 2016].

The second research chapter (Chapter 8) is focusing on a systematic application of PICD on fifteen known

hepatotoxic drugs to perform a comparative toxicity analysis in clinically relevant situations. To this end,

cellular perturbations induced by therapeutic and toxic doses are evaluated at different levels to finally

predict molecular biomarkers and potential drug interactions. Chapter 8 is published as research article

in PLoS Computational Biology [Thiel et al., 2017a].

In the third research chapter (Chapter 9), multiscale modeling is used to investigate the effect of caffeine

on acetaminophen-induced toxicity during co-medication by considering pharmacokinetic and pharma-

codynamic interactions between both drugs in humans. Chapter 9 is published as original article in

CPT: Pharmacometrics & Systems Pharmacology [Thiel et al., 2017b].

Part III contains general supplementary information for Part II (Appendix A), as well as specific supple-

mentary information for each research chapter individually (Appendix B, C, and D).



Part I

Background







24 1. Drug toxicity

Chronic toxicity may be caused by a long-term drug exposure (normally more than several months) to

therapeutic dose levels. In contrast to acute poisoning, chronic toxicity is more challenging to handle

with respect to the early detection of adverse events and the introduction of potential countermeasures.

Termination of the therapy and re-application with other pharmacologically similar agents may often

help to control or even to stop such adverse drug events. However, in some cases, the manifestation of the

processes underlying drug-induced toxicity might lead to persistent symptoms lasting for several months

or years.

The causes of drug-induced toxicity can be separated into on-target and off-target toxicity, immune hyper-

sensitivity, bioactivation, and, rarely, idiosyncratic response [Guengerich, 2011]. On-target and off-target

toxicity is due to the interaction of the drug to its intended and alternative target, respectively. Immune-

mediated drug-toxicity may be caused by the covalent binding of the drug or its metabolites to specific

proteins initiating antibody production [Guengerich, 2011]. In the context of bioactivation, drugs are

converted to reactive metabolites that might be accumulated in cells or tissues because of inefficient

conversion and clearance processes within the body provoked by extensive drug metabolism after acute

overdoses. The accumulated reactive metabolites may then interact with cellular proteins that finally

may trigger toxic effects. Drug toxicity induced by idiosyncratic response is a quite rare event with a low

incidence rate (one out of 1,000 or 10,000) but though quite problematic. Idiosyncratic cases are hardly

predictable in first-in-human trials or clinical phase I studies. This might become a serious problem in

follow-up clinical studies and in postmarketing surveillance with significantly increased numbers of pa-

tients (Figure 1.1), which, in the worst case, may end up with several clinical cases of toxicity and a

market withdrawal of the considered drug.

Analyzing the attrition rates of approved drugs and drug candidates revealed that drug toxicity is one of

the major causes for market withdrawals and drug attrition in pharmaceutical research and development

(Figure 1.2). Based on results provided by ten big pharmaceutical companies in the US and Europe,

pharmacokinetics and bioavailability were the main reasons for drug attrition in 1991 (∼40 % of all

attrition) [Kola and Landis, 2004] (Figure 1.2A). In 2000, this dramatically changed with a lack of

clinical efficacy and safety being the primary reasons accounting for more than 50 % of all attrition [Kola

and Landis, 2004]. Great advances in the area of pharmacokinetic modeling were a key factor for this

shift. An overall success rate from first-in-human trials to registration of 11 % was observed on the same

dataset with high variations in therapeutic indication of the compounds especially for cardiovascular and

oncology drugs (difference in success rate ∼15 %) (Figure 1.2B).

Similar results were presented in a study of about 800 small molecule development compounds (Figure

1.2D) [Waring et al., 2015]. Causes of failure during drug development were analyzed separately and were

compared between preclinical, phase I and phase II development [Waring et al., 2015]. While non-clinical

toxicology is by far the main cause of failure in the candidate nomination accounting for more than 60 %

of all attrition, clinical safety (∼30 %) and drug efficacy (∼35 %) are the prime reasons in phase I and

phase II, respectively (Figure 1.2D).

Another study about seventeen approved drugs, which were removed from Western market between

1992 and 2006, also showed that drug toxicity is substantially responsible for their market withdrawals

accounting for more than 90 %, of which cardiovascular toxicity (38 %) and hepatotoxicity (31 %) were

the major causes (Figure 1.2C) [Schuster et al., 2005]. Famous cases are the market withdrawals of

fenfluramine, amineptine, cerivastatin, rofecoxib, and ximelagatran in 1997, 2000, 2001, 2004, and 2006,

respectively. For instance, rofecoxib (Vioxx R©) was launched as cyclooxygenase (COX)-2 inhibitor in 1999.

It was shown that rofecoxib had a lower susceptibility to gastrointestinal toxicity than other nonsteroidal

anti-inflammatory drugs (NSAIDs) such as ibuprofen or diclofenac. Five years later, the pharmaceutical

company Merck withdrew rofecoxib due to an elevated risk of cardiovascular diseases like heart attack or

stroke [Schuster et al., 2005].
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Figure 1.2: Drug attrition and success rates in drug development. (A) Reasons for attrition between
1991-2000. (adapted from [Kola and Landis, 2004]) (B) Success rates from first-in-man trials to registration
between 1991-2000 based on therapeutic indication. (adapted from [Kola and Landis, 2004]) (C) Reasons for
market withdrawal of seventeen drugs and corresponding toxicity profile of the withdrawn drugs. (adapted from
[Schuster et al., 2005]) (D) Differences in the cause of failure for terminated compounds in preclinical, phase I
and phase II development between 2000-2010. (taken from [Waring et al., 2015])

1.1 Drug-induced hepatotoxicity

Drug-induced hepatotoxicity is the leading cause of acute liver failure in the US and Western Europe

[Russmann et al., 2009; Wang et al., 2013]. The liver is the most important metabolic organ with multiple

key functions such as the metabolism of carbohydrates, lipids, or proteins, as well as drug detoxification.

Due to its primary role in metabolizing drugs, the liver is a particular target for drug-induced toxicity.
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Although the incidences of idiosyncratic drug-induced liver injury (DILI) are rare (less than one per 10,000

exposed patients) [Russmann et al., 2009], liver disorders may have severe consequences emphasized by a

strikingly high mortality rate [Bernal et al., 2010]. The detection of liver failure induced by drug treatment

is a very challenging task and hardly foreseeable [Kaplowitz, 2004]. Newly investigated DILI biomarkers

with both a high sensitivity and specificity are hence indispensable to predict such toxic events causing

hepatic insufficiency (see more in section 6.2).

DILI events can be classified as predictable (also direct or intrinsic), or unpredictable (also indirect or

extrinsic) often termed as idiosyncratic [Russmann et al., 2009; Kaplowitz, 2004; Wang et al., 2013].

Predictable DILI events are mostly dose-dependent with a high incidence, whereas unpredictable DILI

events primarily occur with a low incidence and without an obvious dose-dependency [Kaplowitz, 2004].

Intrinsic hepatotoxicity usually includes direct cell stress provoked by the drug or its metabolites, while

the pathogenesis of idiosyncratic DILI is usually immune-mediated involving innate or adaptive immune

responses. However, the question how the activated immune system cause DILI remains rather unclear

[Wang et al., 2013]. Prominent examples of drugs causing predictable and unpredictable hepatotoxicity

are acetaminophen with a short latency (few days), as well as phenytoin and isoniazid with intermediate

(one to eight weeks) and long (about one year) latency, respectively [Kaplowitz, 2004]. Predictable DILI

events are often associated with hepatitis, for instance, induced by amiodarone or acetaminophen. In the

case of acetaminophen overdose, a depletion of glutathione leaves the reactive intermediate N-Acetyl-p-

benzoquinone imine (NAPQI) free to interact with critical proteins within the cell eventually causing

drug-induced adverse events [Jaw and Jeffery, 1993].

A classification system based on FDA-approved drug labeling was proposed to assess the DILI potential

for several drugs [Chen et al., 2011]. The provided benchmark dataset contains 287 drugs that covers a

wide range of therapeutic categories. The systematic classification scheme includes severity scores between

one (mild symptoms e.g., steatosis) to eight (fatal symptoms) [Chen et al., 2011].

The majority of drug-induced liver diseases can be grouped into three patterns: (i) hepatocellu-

lar (acute hepatitis), (ii) cholestatic (acute cholestasis), (iii) and mixed (hepatocellular/cholestatic)

[Kaplowitz, 2004]. These patterns are defined by typical clinical signatures including affected labo-

ratory values such as alanine transaminase and alkaline phosphatase [Kaplowitz, 2004]. In addition,

there are several other liver pathologies such as liver fibrosis or steatohepatitis playing a minor role

[Wang et al., 2013]. In a study about 446 DILI cases observed between 1994-2004 in Spain, the dis-

tribution of hepatitis, cholestasis and the mixed presentation was 58 %, 20 % and 22 %, respectively

[Andrade et al., 2005]. The most responsible drug treatment causing liver failure in 13 % of all cases was

the concomitant administration of amoxicillin and clavulanate (37 % hepatocellular, 27 % cholestatic,

and 36 % mixed, n = 59). A similar incidence of the three major patterns was shown in another study

about 1674 DILI cases reported in Japan between 1997-2006 (59 % hepatocellular, 21 % cholestatic, and

20 % mixed) [Takikawa et al., 2009]. Frequent symptoms noticed at diagnosis were jaundice, anorexia,

nausea/vomiting, fever, pruritus, and skin rash [Takikawa et al., 2009].

The accepted definitions of the three most severe manifestations of DILI (heaptitits, cholestasis, and

the combination of both) are helpful in clinical practice since they are based on observed elevations

of clinically-measured enzyme levels. However, this classification system is rather descriptive. Because

understanding the mechanisms underlying drug-induced hepatotoxicity is very crucial in order to develop

strategies to predict and pretend DILI events, a three-step working model of DILI was proposed taking

into account mechanistic concepts of hepatotoxicity (Figure 1.3) [Russmann et al., 2009].

In a first step, reactive metabolites or to a lesser extent the parent drug lead to an initial injury either

by inducing direct cell stress (intrinsic pathway), specific immune reactions (extrinsic pathway), or direct

mitochondrial inhibition (Figure 1.3). Direct cell stress may be exerted through drug metabolites, which

can be reactive radicals promoting or undergoing reactions such as glutathione depletion or covalent
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In case that mitochondrial permeability transition (MPT) did not occur through direct impairment of

mitochondrial functions, the initial injury may evoke an opening of the MPT pore by regulation of pro-

and anti-apoptotic factors. This may subsequently enable a tremendous influx of protons and in turn a

release of cytochrome c into the cytosol. In the intrinsic pathway, pro- and anti-apoptotic proteins such

as Bax and bim might be activated and inhibited, respectively, by c-jun N-terminal kinase (JNK). In the

extrinsic pathway, the release of tumor necrosis factor α (TNFα) and Fas ligand (FasL) is increased by

specific immune reactions. The death-inducing signaling complex (DISC) involving TNFα-receptor and

FasL-associated death domain proteins (TRADD/FADD) stimulates initiator caspase 8, which activates

other pro-apoptotic proteins (e.g., BH3 interacting-domain death agonist [Bid]) and signaling lipids like

ceramide (Figure 1.3) [Russmann et al., 2009].

Finally, the mitochondrial dysfunction lead to apoptosis or necrosis dependent on the availability of ATP

(Figure 1.3). A massive ATP depletion initiates necrosis characterized by cell swelling and lysis. Cell lysis

may trigger the release of cytokines through inflammatory responses, which may amplify the initial injury

by sensitizing other hepatocytes [Russmann et al., 2009]. In case of a remaining ATP production by still

intact mitochondria, the programmed apoptotic cell death is provoked under energy consumption by the

apoptosome. The apoptosome consisting of cytochrome c, apoptotic protease-activating factor 1 (apapf-1)

and ATP thereby activates caspase 9, which further activates effector caspases ultimately ending up in

hepatocyte death (Figure 1.3).

Several environmental and genetic risk factors influence the susceptibility of severe DILI events in in-

dividual patients and, thus, complicate to make predictions with a high confidence. Drug interactions

or genetic variations in ADME-related enzymes and transporters may alter the drug concentration-time

course at the target site and may finally increase the risk for hepatotoxic events [Russmann et al., 2010].

Furthermore, pre-existing liver diseases (e.g., hepatitis B or C) in patients are supposed to play a major

role in the development of acute or chronic liver failure [Kaplowitz, 2004].

1.2 Modeling drug-induced toxicity with systems biology models

One key goal of using systems biology models in clinical toxicology is to quantitatively investigate dose-

response behavior of various small molecules or biologics in humans for studying drug-induced adverse

events at the cellular scale. Different concepts of modeling drug-induced toxicity, in particular hepa-

totoxicity, are exemplarily discussed in the following, which utilize (i) computational systems biology

pathway models, (ii) agent-based models, or (iii) ordinary differential equation (ODE)-based multiscale

mechanistic models.

Bhattacharya et al. proposed an approach of causal network mapping that can be applied, for instance, on

nuclear receptor (NR) pathways such as the peroxisome proliferator-activated receptor α (PPARα) path-

way, to analyze NR-mediated transcriptional regulation [Bhattacharya et al., 2012]. After heterodimer-

ization with retinoid X receptor (RXR), PPARα plays a central role in fatty acid metabolism in the liver.

The use of dynamic gene expression signatures in combination with in vitro binding data thereby allows

the discrimination of regulatory hubs according to concentration- or time-dependent effects. Moreover,

the latter approach coupled with simulated in vivo concentrations of various drugs would clearly enhance

the understanding of drug-induced transcriptional changes at patient level [Thiel et al., 2016].

In agent-based modeling approaches, ’agents’ such as molecules or cells are modeled as discrete enti-

ties. Well-stirred compartments as assumed by several ODE-based modeling approaches are hence not

required. Such spatial modeling concepts may be used to represent multicellular in vivo environments of

specific organs (so called ’virtual tissues’) by partitioning in individual cells, which extend conventional

compartmental models [Shah and Wambaugh, 2010]. Agent-based spatial modeling of the liver lobule can
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be realized, for instance, by utilizing the NetLogo software framework [Chiacchio et al., 2014]. The toxi-

cant 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) acts through binding to the aryl hydrocarbon receptor

(AhR). To study spatio-temporal cellular effects of TCDD and subsequently liver damage, an agent-based

model of the liver lobule can be linked to a mechanistic model representing the AhR toxicity pathway

in liver cells. The accumulation of TCDD in the liver can be realized by a correspondent PBPK model

of TCDD that allows the simulation of tissue concentrations over time for different doses [Bhattacharya

et al., 2012].

Hamon et al. incorporated in vitro pharmacokinetics of cyclosporine A as well as correspondent transcrip-

tomic, proteomic, and metabolomic data into a systems biology model of the nuclear factor erythroid-

derived 2-like 2 (Nrf2) pathway. Time- and dose-dependent cellular response of cyclosporine A to oxidative

stress could be successfully reflected by the coupled pharmacokinetic-systems biology model [Hamon et al.,

2015].

The DILIsymTM model is a multiscale mechanistic model that represents physiological processes involved

in drug-induced hepatotoxicity [Woodhead et al., 2012; Howell et al., 2012]. The development of this model

was made possible by the DILI-sim Initiative guided by the Hamner Institutes for Health Sciences. Since

DILIsymTM is divided into submodels including, inter alia, PBPK dynamics, glutathione (GSH) depletion,

and clinical biomarkers, the model is particularly well suited to analyze hepatotoxic events induced by

reactive metabolites, as is the case with NAPQI during acute acetaminophen overdose. The application

of DILIsymTM, moreover, allowed the evaluation of N-acetyl cysteine (NAC) treatment protocols with

respect to intervention strategies for acute liver failure caused by acetaminophen overdose.
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Pharmacokinetics and pharmacodynamics

The efficiency of a drug within the body is basically determined by two major aspects: (i) the amount

of drug that reaches the target site (e.g., a specific organ); (ii) the pharmacological action of the drug

at the target site (e.g., drug binding to a specific receptor). The underlying processes are studied by

pharmacokinetics and pharmacodynamics, respectively.

2.1 Pharmacokinetics

Pharmacokinetics (PK) studies the rate and extent of processes that determine the amount of drug over

time after administration to a living organism (Figure 2.1A). These processes include drug absorption,

distribution, metabolism, and elimination (ADME) (Figure 2.1B). In the course of this, the living or-

ganism is regarded as an open system and the applied substance as perturbation of the steady-state.

Pharmacokinetics comprise all processes trying to restore the dynamic equilibrium after drug exposure.

These processes are influenced by drug-specific properties such as the molecular weight or the lipophilicity,

as well as by individual-related factors, for instance, the age, the gender, or renal and hepatic failure.

Figure 2.1: Pharmacokinetics. (A) Typical pharmacokinetic profile showing drug concentrations over time
in blood plasma following an oral (PO) (blue) and an intravenous (IV) (red) administration. (B) Schematic
representation of pharmacokinetic processes including absorption, distribution, metabolism, and elimination. The
entry points of the IV and the PO administration routes are additionally illustrated.
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Figure 2.2: Passive and active drug transport mechanisms. Passive and active drug transport
mechanisms comprise simple diffusion, channel-mediated and carrier-mediated (passive, active) transport. In
the case of active transport, the drug is transported under the consumption of energy. (adapted from
www.fwcdscience.wikispaces.com/)

2.1.1 Absorption

Absorption describes the route on which a drug enters the blood circulation. The administration route

determines to what extent absorption occurs. In case of intravenous (IV) administration, the drug is

directly entering the blood circulation, while after oral (PO) drug administration the blood circulation

is reached via the gastro-intestinal tract by passing the intestinal wall. The barrier between the gastric

mucosa and the blood circulation is formed by the surface membrane of the cells. There are both passive

and active transport mechanisms to pass this semipermeable membrane (Figure 2.2).

In case of passive lipid diffusion, the partition coefficient between lipids and water is often considered

to quantify the extent of drug absorption. In that respect, the logarithm of the octanol/water partition

coefficient (logP) is mostly used. Drugs with high logP values such as diclofenac or amiodarone generally

show a higher absorption contrarily to drugs with low logP values (e.g., isoniazid). Moreover, the acid

dissociation constant (pKa) of a drug represents also a key parameter for drug absorption since the

ionization of a drug may influence its absorption characteristics. In this regard, simple diffusion is favored

for drugs that are present in its unionized state.

In contrast to passive diffusion, drugs may also be transferred across the membrane by channel- or

carrier-mediated transport processes whereby active carrier-mediated transport occurs under the con-

sumption of energy (Figure 2.2). P-glycoprotein (P-gp) is a protein of the cell membrane that is found

to be an important transporter for several drugs [Brown and Tomlin, 2010]. Since P-gp is not only ex-

pressed in the GI-tract but also in the liver or kidney, for instance, P-gp-mediated transport also plays

an essential role in drug distribution and elimination.

Apart from these mechanisms, physiological factors like gastric emptying or blood flow rates, as well as

dietary intake and other physicochemical properties of the drug may have a decisive influence on the

amount of drug that is entering the systemic circulation.

The bioavailability is a measure to denote the absorbed fraction of the drug entering the systemic circu-

lation after oral administration. By definition, the bioavailability after intravenous drug administration

is 100 %. Besides the influencing variables mentioned above, the bioavailability is heavily altered due to

the extent of the first-pass effect, which describes the ’first-pass’ of the drug through the liver after the

absorption phase. Since a certain amount of drug at the site of action is required to exert its therapeutic

effect, the bioavailability should be as high as possible for orally administered pharmaceuticals.
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Figure 2.5: Drug metabolism. The two phases of drug metabolism leading to phase I and phase II metabolites.
In phase I, oxidation, reduction, and hydrolysis reactions predominantly occur. In phase II, phase I metabolites
are mostly conjugated with groups such as acetyl, sulfate, or glucuronic acid. (adapted from [Mutschler et al.,
2001])

2.1.3 Metabolism

Drug metabolism comprises biotransformation processes from parent compounds into corresponding

metabolites. These chemical changes of xenobiotics lead to detoxification and improve the conditions

for excretion. For instance, the renal elimination of highly lipophilic compounds is clearly retarded in

contrast to more polar substances [Reynolds and Knott, 1989]. Thus, lipid-soluble drugs were chemically

modified to become more water-soluble. Moreover, in the metabolism phase some inactive prodrugs were

transformed into its active form. Azathioprine, for instance, is catalyzed into 6-mercaptopurine by glu-

tathione transferase thereby making the prodrug pharmacologically active. However, it may also happen

that reactive intermediates are formed, for instance, due to saturation of enzymatic pathways or impaired

capacity of transport processes, which eventually may induce adverse drug effects. One prominent exam-

ple is the increased conversion of acetaminophen to its reactive metabolite NAPQI due to a depletion of

glutathione, which allows NAPQI to more frequently interact with macromolecules within the cell [Jaw

and Jeffery, 1993].

Drug metabolism can be divided into two phases (Figure 2.5). In the first phase, parent drugs are

transformed to phase I metabolites predominantly by oxidation, hydrolysis or reduction. Cytochrome

P450 (CYP) monooxygenase enzymes are of utmost importance for oxidative reactions. They differ in

the amount in various organs due to tissue-specific protein abundance that often reaches the highest level

in the liver [Wrighton and Stevens, 1992]. Enzymes of the cytochrome P450 family catalyze a wide range

of drugs because of their low substrate specificity. For instance, CYP2C19 chemically modifies warfarin

as well as diazepam to their corresponding phase I metabolites [Scordo et al., 2004]. The CYP enzymes

CYP3A4, CYP2D6, CYP1A2, CYP2C9, and CYP2C19 account for about 90 % of phase I metabolism

with a minor contribution of CYP2A6, CYP2B6, CYP2C8, and CYP2E1 [Brown and Tomlin, 2010].

Phase II consists of conjugation reactions with endogenous substances that often result in an inactivation

of the parent drug and in a decrease in lipid solubility. Acidic groups are generally added here. In this way,

hydrophilicity is increased and facilitates elimination mechanisms to easier pass into urine. The transfer

of glucuronic acid is an important example of such modifications [Brodie et al., 1958]. To add groups such

as sulfate, acetyl, or glucuronic acid, a prerequisite is the attachment of an adequately labile group to the

drug, mostly a hydroxyl or thiol group, that is fulfilled during phase I metabolism [Brown and Tomlin,

2010].

Since genetic polymorphism as well as anatomical and physiological characteristics may alter the ex-

pression of metabolizing enzymes, inter-individual variability can have a significant influence on drug

concentrations in plasma and at the target site. This may, in turn, lead to different dose levels that

are required to attain the same therapeutic effect. For instance, acetylation is an important step in the

metabolism of isoniazid. In therapeutic indication, individuals classified as slow acetylators, thus, need

higher doses than individuals identified as fast acetylators [Cordes et al., 2016].

The most dominant organ for drug metabolism is the liver, even though other organs are considerably

involved such as the kidney or the gastro-intestinal tract. The latter plays a crucial role particularly
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after oral drug administration, since several ADME enzymes and transporters are also expressed in the

intestine and the stomach. Hence, these enzymes may metabolize drugs during the absorption phase and

thus may significantly reduce their bioavailability. Consequently, the orally administered dose of drugs

with a low bioavailability need to be increased compared to intravenous administration in order to reach

the same therapeutic efficiency.

Dietary intake may also have a substantial impact on drug metabolism. For instance, the intake of

grapefruit juice can considerably inhibit the expression of CYP3A4. In this way, the concentration-

time profile of drugs extensively metabolized by CYP3A4 (e.g., felodipine or cyclosporine A) can be

significantly changed [Bailey et al., 1998].

2.1.4 Elimination

The excretion of a parent drug and their metabolic products from the body is referred to as elimination.

The two most prominent ways to remove exogenous substances from the body are the renal excretion via

the kidney into urine, as well as the biliary excretion via the gallbladder into the intestine and finally into

feces. Which way is used is mainly driven by compound-specific properties such as the molecular weight

and the lipophilicity [Rollins and Klaassen, 1979].

In case of renal elimination, two prominent mechanisms occur (Figure 2.6): (i) the glomerular filtration,

(ii) and the tubular secrection. Glomerular filtration is a passive diffusion process where the unbound drug

or metabolite is filtered from renal glomerular capillaries into urine. Drug-protein and metabolite-protein

complexes with a high molecular weight are not filtered by this passive process since the complexes are

too large to pass through the capillary system.

The tubular secretion, on the other hand, is an active mechanism that describes a carrier-mediated

excretion. Acidic and basic compounds are thereby transported by two non-selective carrier systems

located in the proximal tubule [Brown and Tomlin, 2010]. The major benefit of this clearance mechanism

Figure 2.6: Major renal processes. There are three major renal processes occurring in the kidney: Glomeru-
lar filtration (passive), tubular secretion (active), and tubular reabsorption (mostly passive). (taken from
http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/figure_25_09_labeled.jpg)
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compared to glomerular filtration is the facilitated dissociation of the drug or the metabolite from plasma

proteins, which allows an enhanced renal excretion even for high plasma protein binding rates. Once

the compound reached the tubular fluid, either by glomerular filtration or tubular secretion, a tubular

reabsorption may subsequently occur (Figure 2.6). In this mainly passively driven process, the drug or

the metabolite is reabsorbed by diffusion from the tubular fluid into the blood. The extent of reabsorption

of the compound is dependent on its lipid solubility and its pKa value. Highly lipophilic and weak acidic

compounds are more prone for tubular reabsorption than hydrophilic and more alkaline compounds

assuming a slightly acidic pH of the urine [Brater, 2002]. Elimination can further be increased by specific

active transport processes mostly mediated by apical ATP-binding cassette (ABC)-transporters like the

multi-drug-resistant protein 2 (MDR2) [Nies and Keppler, 2007].

Patients with renal insufficiency may have a reduced drug clearance via the kidney and, thus, an increased

systemic exposure. A consequence might be drug toxicity in particular if the drug and its metabolites

are predominantly excreted in urine, such as acetaminophen [Wishart et al., 2006]. To decrease the high

systemic drug exposure and finally to avoid such adverse events, dose adjustments may be suggested as

in the case of cyclophosphamide treatment [Haubitz et al., 2002].

In the case of biliary excretion, the parent drug and its metabolites can be transported from the liver via

the bile into the intestine and subsequently into feces. In this regard, enterohepatic circulation may occur,

especially for drugs and metabolites with high lipophilicity because of a reabsorption from the intestine.

This enterohepatic circulation can significantly prolong the half-life of applied drugs and eventually the

desired drug effects [Brown and Tomlin, 2010].

2.2 Pharmacodynamics

In contrast to pharmacokinetics, which study ADME processes leading to the specific concentration-time

course of a drug within the body, pharmacodynamics (PD) investigate the effect of a drug at the target

site. This contains the study of the mechanism of action and the side of action of the drug, as well as drug

efficacy and drug potency [Mutschler et al., 2001]. The latter two describe the maximal response that is

achievable from the drug (efficacy) and the concentration that is needed to cause a specific intensity of

this response (potency). Drug potency and efficacy are key determinants to characterize concentration-

response profiles for specific drugs. An example of concentration-response relationships for two arbitrary

drugs differing in drug efficacy and potency is illustrated in Figure 2.7.

Most of the clinically approved drugs are initiating their desired activity by specific interactions with

targets associated with the disease to be treated, such as receptors, key enzymes, transporters, and, to

a lesser extent, DNA, RNA, and lipids. A recent study about more than 800 small molecule compounds

revealed a distribution of the five most popular target classes containing G-protein-coupled receptors

(34 %), enzymes (20 %), kinases (15 %), nuclear hormone receptors (11 %), and ion channels (8 %)

[Waring et al., 2015]. The mechanisms of action for a wide range of drugs involve (i) a specific binding

to membrane-bound or intracellularly located receptors to attain a stimulation or perturbation of sig-

nal cascades and a down- or up- regulation of transcription regulation, respectively, (ii) the activation

or inhibition of key metabolic reactions or active transport processes mediated by target enzymes or

transporters, and (iii) the specific opening or closing of ion channels [Mutschler et al., 2001].

The most common drug mechanisms of action are receptor-mediated by the formation of a

drug(D)-receptor(R)-complex (DR):

D + R ↔ DR (2.1)
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Figure 2.7: Drug concentration-response relationship. Drug concentration-response profiles are presented
for two arbitrary drugs differing in their efficacy and potency. Drug A (blue) shows a higher efficacy than drug B
(red) (Emax,A > Emax,B). In contrast, drug B is more potent than drug A, referring to a half maximal response
(EC50,B < EC50,A). Emax, maximal possible response; EC50, half maximal effective concentration.

Whether and to what extent this complex is formed is determined by the dissociation constant Kd, which

is defined as follows:

Kd =
[D][R]

[DR]
(2.2)

where [D], [R], and [DR] are the concentrations of the drug, the receptor, and the drug-receptor complex,

respectively. In this context, drugs can either stimulate or inhibit the receptor-mediated response (i.e.,

act as agonist or antagonist). A further distinction is often made between pure and partial agonists, as

well as competitive, non-competitive and uncompetitive antagonists. These terms describe the magnitude

of stimulation of the mediated response and the type of inhibition, respectively.
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3.1 Applications

The applications of PBPK modeling in pharmaceutical research and development are diverse ranging from

the use of PBPK models in preclinical drug development towards translational modeling approaches in

humans (Figure 3.2).

Since PBPK modeling aims for a mechanistic understanding of physiological processes describing

drug-related ADME processes within the body, PBPK models are well-suited for different extrapola-

tions scenarios (Figure 3.2): (i) cross-species extrapolations, e.g., to extrapolate the PK profile of a drug

from mice to humans; (ii) dose extrapolations, e.g., to simulate drug concentration-time profiles for toxic

doses observed in humans based on PBPK models validated for therapeutic indication; (iii) extrapolations

to different patient subgroups, to infants or elderly people, for whom specific administration protocols

are hard to apply due to safety concerns regarding potential adverse drug reactions. Moreover, multiscale

modeling approaches, which couple PBPK models and in vitro drug response data at the organism and

cellular level, respectively, may help to identify clinical biomarkers and drug interactions (Figure 3.2).

The mechanisms underlying drug-induced toxicity may also be investigated by such approaches.

Figure 3.2: Applications of PBPK modeling. Schematic representation of important applications of PBPK
modeling. (adapted from [Kuepfer et al., 2016])
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Figure 3.4: Workflow of PBPK model development and validation. After parametrizing drug-specific
properties and organism-specific parameters in the reference PBPK model, the model quality is evaluated by
comparing simulated drug concentrations with experimental data from literature. If a sufficient model accuracy has
been reached, a subsequent validation step enables reliable model extrapolations. Amongst others, this validation
step ensures accurate predictions of concentration-time profiles in various compartments. Otherwise, the PBPK
model is revised in a refinement step thereby adjusting key model parameters or adding more active transport
processes or metabolizing reactions to improve the description of physiological processes governing the fate of the
considered drug within the body.
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ADME processes leading to the specific concentration-time course of a drug and its metabolites after oral

or intravenous drug administration.

The plasma protein binding may be generally considered as compound-specific characteristic. Various

physicochemical properties such as the lipophilicity or the acid dissociation constant may lead to different

protein binding affinities [Obach et al., 2008]. However, organism-specific parameters may also have an

impact on the fraction of the drug that is not bound to plasma proteins. For instance, the Fu of a drug

is increased by a shift of the plasma/tissue protein ratio in species to the tissue.

Organism-specific parameters

Organism-specific parameters are describing the anatomy and physiology of a specific species. Most of

the PBPK modeling software environments provide these parameters once the biometric input (age, body

weight, ethnicity, and gender) was selected. In general, the anatomical and physiological parameters were

carefully collected from the literature or estimated from validated formulas.

The anatomy comprises parameters for gastrointestinal-dimensions, organ volumes, as well as surface

areas between different subcompartments like interstitial and intracellular space. To represent the phys-

iology, blood flow rates and organ compositions, as well as pH values of interstitial and intracellular

space are used. In addition, the set of physiological parameters is extended by parameters specifying the

vascular system, the tissue and body fluids, as well as the gastro-intestinal tract.

Overall, hundreds of parameters are defining the physiology and the anatomy of a specific organism.

Amongst others, the pharmacokinetic behavior of a given drug in different compartments and subcom-

partments is influenced by these parameters.

Drug-related biological processes

In the PBPK model structure, biological processes are presenting drug-specific metabolizing reactions

and active drug transport processes in a specific organism. The maximal velocity (vmax) and the

Michaelis-Menten constant (Km) may be used to reflect reaction equations for these crucial biologi-

cal processes occurring in drug metabolism and excretion. Vmax is defined as the maximal rate that can

be attained when the enzyme or the transporter is completely saturated. Km denotes the substrate con-

centration that yields the half-maximal reaction rate [Michaelis et al., 2011]. Assuming that enzymes or

transporters follow the Michaelis-Menten kinetic, the rate constant kcat is calculated by normalizing the

specific vmax to the respective enzyme or transporter concentration. The calculation of a reaction rate v

in a compartment i (vi) is described as follows:

vi =
Ei × kcat × Vi × Si × Kwc

(Km + Si × Kwc)
(3.1)

Ei and Si denote the concentration of the enzyme or the substrate and Vi represents the volume of the

correspondent compartment. Kwc [-] indicates the water/cell partition coefficient of a given substrate.

Note that vmax,i = kcat ×Ei (3.1). Reaction rates for active transport processes are computed in a similar

way.

The quantitative description of protein-mediated processes occurring in drug disposition is difficult since

there is a limited experimental accessibility of tissue-specific protein activity in vivo. To overcome this

issue, tissue-specific mRNA expression is used to estimate protein concentrations in different tissues and

organs [Meyer et al., 2012]. The idea of using tissue-specific expression data is based on the definition of

the maximum velocity vmax [ mol
l×min

], which is calculated according to Equation (3.2) and derived from

the Michaelis-Menten kinetic.
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vmax = kcat × Etotal (3.2)

In equation (3.2), kcat [ 1
min

] is the catalytic rate constant that indicates how much substrate molecules

are catalyzed per minute. Etotal [ mol
l

] refers to the total amount of enzyme or transporter concentra-

tion. Under the assumption that the catalytic rate constant is not affected by in vivo factors such as

posttranslational modifications, the maximum velocity for organ i (vmax,i) is defined by:

vmax,i = kcat × Etotal,i (3.3)

In equation (3.4), the total protein concentration Etotal is replaced by the product of the relative ex-

pression in organ i (erel,i) and a scaling factor SF [ mol
l

] that corrects for the absolute in vivo protein

concentration.

vmax,i = kcat × SF × erel,i (3.4)

In this way, relative expression values obtained from in vitro experiments serve as a surrogate for protein

abundance in different organs [Meyer et al., 2012]. In contrast, kcat is a global parameter, which quan-

tifies the rate of the corresponding active process. Coupling estimated protein abundances of relevant

enzymes and transporters in the organism with kinetic rate constants identified for relevant enzymatic

and transport reactions, thus, allows the representation of drug-related biological processes in a specific

individual.

3.4 Differentiation from conventional pharmacokinetic modeling

Conventional pharmacokinetic modeling establishes simple kinetic models by fitting PK parameters to

experimental data. The identified parameters are then used to characterize the behavior of a given sub-

stance. Since the model structure is defined by the data, conventional pharmacokinetic modeling is a

rather data-driven approach with a limited potential of extrapolations, for example, to different patient

subgroups or even to different regimens of administration. A one-compartment and a two-compartment

model are exemplarily illustrated in Figure 3.5.

In contrast to the phenomenological models obtained by classical pharmacokinetic modeling, PBPK mod-

eling aims for a mechanistic description of physiological processes by integrating drug-specific properties

and prior knowledge about the physiology and the anatomy of the specific organism. Physiological pro-

cesses of the organism can be thus represented at a higher level of detail, which allows more rationale

extrapolations to novel clinical situations.

3.5 Physiologically-based pharmacokinetic/pharmacodynamic modeling

Since a pharmacological activity of a drug within the body is dependent on both, the drug concentration at

the target site (PK) and the efficacy of this concentration (PD), the integration of PD response data and

PK profiles is of high relevance concerning clinical drug development and patient safety. The application

of PBPK modeling here allows the simulation of drug concentrations over time at the site of action for

different administration regimens.
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Figure 3.5: Conventional pharmacokinetic modeling. (A) Simple representation of a one-compartment
model including absorption and elimination, and their rate constants k0 and k1. (B) Simple representation of a
two-compartment model including absorption, distribution, and elimination, and their rate constants k0, k1, k2,
and k3.

Figure 3.6: Basic concept of PBPK/PD modeling. Schematic representation of the relationship between
PK and PD processes after drug administration in vivo. PBPK modeling can be used to estimate the drug
concentrations at the target site where therapeutic or, in the worst case, adverse drug effects occur. (adapted
from [Mutschler et al., 2001])

The overall goal of physiologically-based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling ap-

proaches is a quantitative relationship between drug concentrations over time following drug administra-

tion of various doses in humans with drug effects observed in vitro for different drug exposures (Figure

3.6). These modeling concepts allow a better understanding of the mechanisms underlying the pharma-

cological activity and, in case of acute overdoses, the drug-induced toxicity. This in turn may help to

improve the development processes of new drugs, on the one hand, and to reduce drug toxicity, on the

other hand.
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3.6 Modeling software

Several software solutions exist to model pharmacokinetic processes of various compounds based on

prior knowledge about species-specific physiology and anatomy. Some of these frameworks also allow the

modeling of drug-drug interactions, PBPK/PD modeling, or the simulation of pharmacokinetic profiles

for different populations. Prominent PBPK modeling frameworks are listed below.

• PK-SimTM [Willmann et al., 2003] is a comprehensive PBPK software package developed by Bayer

Technology Services GmbH that enables simulations of pharmacokinetics for different compounds in

different animals or humans in a mechanistic way.

• SimcypTM Simulator [Jamei et al., 2009] is a population-based pharmacokinetic modeling software

for simulating ADME processes of drugs and drug candidates.

• GastroPlusTM [Agoram et al., 2001; Yu et al., 1996], a module-based PBPK modeling software pack-

age, allows mechanistic simulations of pharmacokinetic processes in particular for several administra-

tion routes such as intravenous, oral, intramuscular, subcutanoeus, or inhalation.

• PKQuest [Levitt, 2002], a Java-based, free, and intuitive PBPK program, provides the simulation of

concentration time-profiles of several drugs in humans and rats.
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Drug-drug interactions

Nowadays, several patients are prescribed multiple drugs for the treatment of their diseases. This is in

particular true for elderly people. A European study of about 2700 elderly patients showed, for instance,

that 34-68 % of the patients with a mean age of about 80 years are taking at least six drugs [Fialová

et al., 2005]. The concomitant administration of multiple drugs may induce adverse events, on the one

hand, and may reduce the clinical efficacy, on the other hand, due to interactions between the applied

drugs. Drug-drug interactions (DDIs) are thus one of the most common causes of medication error and

have become a major problem in clinical practice with respect to patient safety and drug efficacy.

A drug interaction is defined as an event in which one drug affects the pharmacological activity of another

drug following administration of both drugs at the same time. This can directly or indirectly provoke

(i) additive, (ii) synergistic, or (iii) antagonistic drug effects (Figure 4.1). The situation where two co-

administered drugs are inducing a total pharmacological effect the same as the sum of their individual

effects is referred to as additive effect. An antagonistic and a synergistic effect, on the contrary, result

in a reduced and an increased pharmacological action within the organism, respectively, when both

substances are administered concomitantly. In this regard, a synergistic effect might be detrimental when

the increased pharmacological response exceeds the effect level observed for the MTD. In this case, a

co-medication could be the trigger for the onset of adverse drug events. In contrast, an antagonistic effect

would be particularly significant, if the reduced pharmacological action drops below the effect level caused

by the MED. This basically provokes an ineffective drug treatment.

In combination therapy, interactions between two or multiple drugs can lead to alterations of the drug

concentration levels within the body (pharmacokinetic drug interaction), the desired drug effects at the

target site (pharmacodynamic drug interaction), or both. Since in most cases one drug is affecting the

PK or PD behavior of another drug but not vice versa, the terms ’perpetrator drug’ and ’victim drug’

are often used in that sense and also in regulatory agencies [Prueksaritanont et al., 2013].

Figure 4.1: Different effects caused by co-administration of multiple drugs. The co-administration of
multiple drugs may lead to additive, antagonistic, or synergistic drug effects.
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metabolism and ultimately the PK behavior of another drug by inducing or inhibiting metabolic enzymes

involved. This regulation might occur by changing the expression level and, subsequently, the amount

of enzyme that is available for the specific chemical process. (Figure 4.2). For instance, rifampicin is

hepatically metabolized and a well-known inducer for several CYP enzymes such as CYP3A4, CYP1A2,

or CYP2C9 [Wishart et al., 2006]. Since rifampicin decreased the blood levels of cyclosporine A by

inducing its hepatic metabolism, a dose adjustment of cyclosporine A was consequently suggested when

co-applied with rifampicin to preserve its therapeutic efficacy, i.e., to prevent allograft rejection [Capone

et al., 1996].

In the elimination phase, pharmacokinetic drug interactions play a minor role compared to interactions

observed during drug metabolism. Nevertheless, drugs that substantially induce or inhibit transporters

involved in active excretion processes of other drugs, such as the ABC-transporter MDR2, might change

their elimination behavior and further their residence time within the organism. Moreover, drugs that

compete with the same low-specificity carrier system during tubular secretion might affect their renal

clearance. This was observed for digoxin administered concomitantly with quinidine (Figure 4.2) [Bigger

and Leahey, 1982].

4.2 Pharmacodynamic drug interactions

In contrast to pharmacokinetic drug interactions, pharmacodynamic drug interactions describe interac-

tions between drugs that occur at the site of action within the target organ. Such interactions directly

modulate the drug efficacy. Since pharmacodynamic drug interactions are not measurable by altered drug

concentrations at the target site, these type of interactions are much harder to detect than pharmacoki-

netic drug interactions. Furthermore, the mode of action of several drugs is diverse and the understanding

of the underlying mechanisms is rather unknown, which both clearly complicate the identification process

of pharmacodynamic drug interactions.

In clinical application, pharmacodynamic drug interactions are sometimes desired, if the concomitant

administration evokes a synergistic therapeutic effect compared to the individual effects after single

drug treatment. For instance, a combination of acetaminophen and tramadol showed a synergism of

their analgesic effects in order to relief pain, and a prolongation of their pharmacological action [Medve

et al., 2001]. In contrast, combination therapies may also induce severe side effects. In the treatment of

cardiovascular diseases, the administration of the anti-thrombotic agent warfarin together with heparin,

aspirin, or spironolactone, for instance, might lead to excessive bleeding [Teklay et al., 2014].
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5.1 Transcriptomics

While in proteomics and metabolomics a set of proteins and metabolites can be measured in a cell or a

tissue at a certain time for specific treatments or control groups, transcriptomics allows a quantitative

identification of mRNA transcripts in principle by use of oligonucleotide or DNA microarrays [Waters and

Fostel, 2004]. Moreover, a relatively new technology used in the field of transcriptomics called ’RNA-Seq’

provides a more comprehensive view on the transcriptome compared to basic microarray experiments.

Although structural variations such as alternative splicing events, single nucleotide variants, or small

insertions and deletions are detectable by RNA-Seq, data analysis and storage is still more complex and

more challenging as in basic DNA microarray studies. Also due to the lower costs, several transcriptomics

experiments using DNA microarray analyses, in particular high-throughput studies applied for a wide

range of compounds.

5.1.1 Workflow of a microarray experiment

In a basic two-channel DNA microarray experiment, complementary DNA (cDNA) samples of the treat-

ment and control group are obtained from isolated RNA using reverse transcriptase (Figure 5.2). Treat-

ment and control samples are labeled with different fluorophores and are pipetted in an equal amount onto

the microarray. During the hybridization, the sample sequences are binding complementary to the known

sequences fixed on the array. Intensity values of RNA transcripts of the control and treatment group are

finally detectable by a dual-wavelength microarray scanner based on laser confocal principle (Figure 5.2).

Afterwards the resulting images are analyzed to eventually monitor the expression of thousands of genes

for each sample.

Figure 5.2: Simple workflow of a microarray experiment. Schematic representation of a simple workflow
of a two-channel DNA microarray experiment. (adapted from [Miller and Tang, 2009])
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5.1.2 Analysis of microarray data

The analysis of microarray data generally consists of three important steps: data preprocessing, a differ-

ential expression analysis, and a functional analysis.

Data preprocessing

A standard procedure for analyzing the measured raw data of a microarray experiment involves several

data pre-processing steps including quality control assessment as well as data normalization. A widely-

used background adjustment method, for instance, is the GC Robust Multi-array Average (GC-RMA) that

uses quantile normalization and median polishing summarization [Wu et al., 2004]. These pre-processing

steps are important due to several reasons such as systematic biases in the measured expression levels,

or differences in labeling and detection efficiencies of the fluorescent dyes [Quackenbush, 2002].

Fold change values are often used to quantitatively describe the change in gene expression between a

treatment and a control experiment. A fold change value for a specific gene i is calculated as follows:

FCi =
Ti

Ci

(5.1)

where FC represents fold change, T and C represents expression levels of the treatment and control for a

gene i, respectively. In order to describe up- and down-regulation of genes in a similar way, fold changes

are often expressed as log2 values [Quackenbush, 2002]. As a consequence, for instance, a two-fold up-

and down-regulated gene has a log2(FC) of 1 and -1 instead of a FC of 2 and 0.5, respectively.

Differential expression analysis

A main result of a microarray analysis is the identification of differentially expressed genes (DEGs) be-

tween one or more pairs of samples (e.g., between a high and a low dose, or between two timepoints).

A widely-used method to assess differential expression of genes is called Limma (Linear models for mi-

croarray data) using moderated t-statistic [Smyth, 2004]. DEGs can be identified, for instance, by using

fold change and p-value cutoffs reflecting the biological and statistical significance, respectively. Volcano

plots help to quickly identify and visualize DEGs in a large dataset (Figure 5.3).

Figure 5.3: Volcano plot. Iden-
tification of differentially expressed
genes (absolute log2 FC > 1 and
p-value ≤ 0.01) using a volcano
plot. Cutoff values are represented
by dashed lines. Blue, significantly
down-regulated genes; Red, signifi-
cantly up-regulated genes.
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Functional analysis

In a last step, a functional analysis can be performed on the identified sets of DEGs with respect to

the functional annotations of the genes such as their involvement in biological pathways or processes.

The application of hypergeometric testing, for instance, enables to check whether the distribution of the

genes belonging to a certain biological term in a set of DEGs is statistically significant. The association

of enriched biological terms with a set of DEGs, thus, allows an interpretation at the functional level.

Gene enrichment analysis is often applied for pathways from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) [Kanehisa and Goto, 2000], or on the gene ontology (GO) database, which is built up

on a controlled vocabulary covering molecular functions, cellular components, and biological processes of

genes and gene products [Ashburner et al., 2000].
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Biomarkers

As proposed by the National Institute of Health, a biomarker is defined as a ’characteristic that is

objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes,

or pharmacologic responses to a therapeutic intervention or other health care intervention’ [Biomarkers

Definitions Working Group., 2001]. If the biomarker represents high clinical relevance, one can also speak

of ’clinical biomarker’. A major goal of biomarker identification is the improvement of drug efficacy

and patient safety. At the same time, high attrition rates of newly developed drugs during the clinical

phases I-III can be reduced [Frank and Hargreaves, 2003]. Biomarkers can be helpful at multiple stages

of a disease process thereby representing the potential for (i) disease detection and risk assessment

(diagnostic), (ii) the estimation of the disease development in untreated individuals (prognostic); and

(iii) the monitoring of the therapy success by predicting responses to drug treatment (predictive) [Winter

et al., 2013; Pfaffl, 2013].

In clinical application, a biomarker ideally reflects therapeutic success by indicating changes of a specific

biomarker induced by drug treatment, which is associated to a positive alteration of the patient’s disease

state. A serious problem in the identification process of such biomarkers are false positives or false

negatives. These are represented, for instance, by changes in the specific biomarker (i) that reflect the

mechanism of action of the drug but are irrelevant for the pathophysiology of the disease (false positive),

or (ii) that reflect clinically relevant changes in the pathophysiology of the disease but do not capture

the mechanisms of the drug intervention (false negative) [Frank and Hargreaves, 2003].

In cardiology, prominent examples of clinical biomarkers are blood pressure and cholesterol. A reduction of

both are associated with cardiovascular diseases like heart attack or stroke. Furthermore, the acute-phase

reactant C-reactive-peptide was recommended to be a promising biochemical biomarker to assess the

risk of coronary heart diseases [Pearson et al., 2003], independent on measurements of serum cholesterol

[Frank and Hargreaves, 2003].

6.1 Transcriptional biomarkers

Powerful omics technologies such as transcriptomics, proteomics, and metabolomics allow the measure-

ment of thousands of genes, proteins, and metabolites within a cell or a tissue at a certain time. A major

aim of these experiments is to answer questions concerning drug efficacy and patient safety. Since tran-

scription of genes is a highly dynamic process, transcriptomics presents snapshots of the current status

of perturbed cells at different timepoints following various drug exposures [Pfaffl, 2013]. Gene expression

profiling, thus, provides an effective opportunity to identify clinically relevant transcriptional biomarkers

that describe drug action under toxic conditions in a mechanistic way. These biomarkers may have the

potential to early detect a disease and, furthermore, to monitor the patient status, as well as the effi-

cacy of applied drugs for the entire patient evolution [Pfaffl, 2013]. A workflow for the identification of

transcriptional biomarkers is illustrated in Figure 6.1.
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Figure 6.1: Simple workflow for the identification of transcriptional biomarkers. After selecting a
model organism and treating it with a drug of interest, the target molecules (e.g., mRNA or microRNA) are
isolated and analyzed using a transcriptomic technique. After applying statistics like hierarchical cluster analy-
sis or principal component analysis (PCA), transcriptional biomarkers can be identified. NGS, next-generation
sequencing; RT-qPCR, reverse transcriptase quantitative polymerase chain reaction; PCA, principal component
analysis. (taken from [Riedmaier and Pfaffl, 2013a])

Although omics approaches generate several biomarker candidates for future investigations, the suggested

biomarkers have a clear limited practical use due to lack of validation. The low amount of available in

vivo data for humans clearly makes biomarker validation approaches quite challenging in clinical practice.

Due to the limited access to tissue biopsies from patients and thus to human in vivo data, translational

approaches extrapolating findings about biomarker candidates attained in vitro or during animal studies

into a human context are of great relevance [Mendrick, 2011].

6.2 Biomarkers for drug-induced hepatotoxicity

In hepatology, enzyme levels of biochemical markers such as alanine transaminase (ALT), aspartate

transaminase (AST), and gamma-glutamyltransferase (GGT), are measured as standard to assess the

hepatic function. All three enzymes are mostly expressed in the liver and are highly involved in liver

metabolism. In case of liver damage, these enzymes get released and enter the blood circulation. Significant

elevations of enzyme levels measured in blood plasma, which obviously exceed reference levels of healthy

people, hence indicate a potential hepatotoxicity, for instance, induced by drug treatment.

Besides ALT, AST, and GGT, other enzymes such as LDH5 or glutamate dehydrogenase (GDH) have

been proposed as new biomarkers for drug-induced hepatotoxicity. Measuring LDH is a popular method

to investigate in vitro cytotoxicity in hepatocytes [Ramachandran and Kakar, 2009]. Moreover, due to

a prolonged serum half-life and a higher sensitivity, GDH might outperform ALT [O’Brien et al., 2002].

However, both enzymes are rarely used as biomarker to detect drug-induced liver toxicity since both lack

of specificity. Furthermore, LDH5 is difficult to measure, on the one hand, while GDH is an allosteric

enzyme that might be regulated by several activators or inhibitors, on the other hand.

A clear drawback of the aforementioned biomarkers are the inadequate sensitivity and specificity, and a

lack of mechanistic understanding of drug action as well as disease onset and development. These circum-

stances might impair the evaluation of the hepatotoxic potential during in vitro or in vivo experiments

[Shi et al., 2010].
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Cytokines or microRNAs such as interleukine-6 or miR-122 seem to be promising and highly-specific

biomarkers associated with inflammation and hepatocellular injury [Shi et al., 2010]. For instance, serum

cytokines such as TNFα or interferon γ have been successfully used as DILI biomarkers to assess liver

function in mice exposed to an overdose of acetaminophen [Saha and Nandi, 2009]. Micro RNAs such as

miR-122 even performed more reliable and with less variations than standard biomarkers (e.g., ALT) [Shi

et al., 2010]. Furthermore, numerous marker genes could be identified in vitro or in laboratory animals

for biological events that are involved in drug-induced liver toxicity such as oxidative stress, glutathione

depletion, or phospholipidosis [Shi et al., 2010].

Acetaminophen is a well-known hepatotoxic drug. In case of acetaminophen intoxication, analyzing gene

expression patterns from rat blood cells showed to be a powerful and even better predictor for acute expo-

sure levels than classical biochemical parameters such as ALT [Bushel et al., 2007]. In addition, translating

the findings to humans by using ortholog information helped to discriminate between an untreated group

and humans exposed to an acetaminophen overdose. Toxic exposure levels of acetaminophen could be

identified earlier in comparison to the use of standard biochemical parameters, which nicely demonstrates

the powerful usage of transcriptional biomarkers in potential clinical application [Bushel et al., 2007].
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Model-based contextualization of in vitro toxicity data

quantitatively predicts in vivo drug response in patients

Abstract

Understanding central mechanisms underlying drug-induced toxicity plays a crucial role in drug devel-

opment and drug safety. However, a translation of cellular in vitro findings to an actual in vivo context

remains challenging. Here, PBPK modeling was used for PBPK-based in vivo contextualization of in vitro

toxicity data (PICD) to quantitatively predict in vivo drug response over time by integrating multiple

levels of biological organization. Explicitly, in vitro toxicity data at the cellular level were integrated

into whole-body PBPK models at the organism level by coupling in vitro drug exposure with in vivo

drug concentration-time profiles simulated in the extracellular environment within the organ. PICD was

exemplarily applied on the hepatotoxicant azathioprine to quantitatively predict in vivo drug response

of perturbed biological pathways and cellular processes in rats and humans. The predictive accuracy of

PICD was assessed by comparing in vivo drug response predicted for rats with observed in vivo measure-

ments. To demonstrate clinical applicability of PICD, in vivo drug responses of a critical toxicity-related

pathway were predicted for eight patients following acute azathioprine overdoses. Moreover, acute liver

failure after multiple dosing of azathioprine was investigated in a patient case study by use of own clin-

ical data. Simulated pharmacokinetic profiles were thereby related to in vivo drug response predicted

for genes associated with observed clinical symptoms and to clinical biomarkers measured in vivo. PICD

provides a generic platform to investigate drug-induced toxicity at a patient level and thus may facilitate

individualized risk assessment during drug development.
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7.1 Introduction

Drug-induced toxicity is a major clinical problem [Schuster et al., 2005] with cardiotoxicity and hepa-

totoxicity being the most frequent clinical cases [Von Hoff et al., 1977; Andrade et al., 2005; Takikawa

et al., 2009]. The predictability of specific toxic events is a major challenge in pharmaceutical development

since the underlying origins are almost unforeseeable [Kaplowitz, 2004]. In drug development, whole-body

PBPK models are nowadays routinely used [Jones et al., 2006; Maharaj et al., 2013; Lippert et al., 2013].

Whole-body PBPK modeling describes biological processes underlying drug pharmacokinetics at a large

scale of physiological detail and may be used amongst others to simulate interstitial concentration-time

profiles in the extracellular environment of various organs [Jones et al., 2009; Kuepfer, 2010]. PBPK

modeling aims for a mechanistic understanding of physiological processes describing drug ADME within

the body based on prior physiological and anatomical knowledge. Different organs are explicitly repre-

sented in PBPK models and are connected by blood flow (Figure 3.1). Since PBPK models describe the

physiology of an organism at a high level of detail, they can be used to simulate pharmacokinetic PK

profiles of specific patient subgroups with individualized physiology [Maharaj et al., 2013; Lippert et al.,

2013].

In order to detect drug-induced injury at an early stage, reliable predictions of toxic events as well as

representative diagnostic biomarkers are of key relevance for patient safety [Shi et al., 2010]. This also

requires a mechanistic understanding of the underlying cellular processes [Bissell et al., 2001; Schimmel

et al., 2004; Holt and Ju, 2006; Russmann et al., 2009]. Current advances in systems toxicology provide

novel insights into central mechanisms involved in drug-induced toxicity [Waters and Fostel, 2004; Heijne

et al., 2005; Chen et al., 2012]. Changes at different biological levels can nowadays be measured by

omics technologies to describe cellular alterations in response to toxic drug concentrations. Transcriptome

profiling was successfully applied before to study adverse effects of toxic agents [Hockley et al., 2006;

Brynildsen and Liao, 2009; Michaelson et al., 2011; Zhang et al., 2012; Van Delft et al., 2012; Iskar et al.,

2013; Doktorova et al., 2013; Zhang et al., 2014; Herpers et al., 2016].

Combined application of different profiling techniques allows linking cellular changes at multiple levels

of biological organization that finally facilitates the characterization of molecular mechanisms of toxic

events [Carreras Puigvert et al., 2013; Wilmes et al., 2013; Pillai et al., 2014]. Furthermore, reverse

toxicokinetics were used before to identify steady state blood concentrations for correlations of in vivo

equivalent doses with in vitro bioactivity data [Dix et al., 2007; Judson et al., 2011; Wetmore et al., 2013;

Judson et al., 2014]. In another study, physiologically-based kinetic models developed for different glycol

ethers were used to estimate dose-response curves in rats and humans [Louisse et al., 2010]. However,

a systematic consideration of in vitro toxicity data into an in vivo context thereby reflecting temporal

cellular changes induced by drugs administered in vivo remains still challenging.

In this article, PBPK-based in vivo contextualization of in vitro toxicity data (PICD) is presented (Figure

7.1). PICD integrates in vitro toxicity data into drug-specific whole-body PBPK models to translate drug-

induced in vitro findings to an actual in vivo situation thereby predicting drug-specific response profiles

induced by different dose levels administered in vivo (Figure 7.1). At the cellular level, in vitro toxicity

data are coupled with equivalent PBPK-simulated concentration-time profiles at the organism level to

allow a quantitative description of time-resolved in vivo drug response of key cellular processes and

biological pathways. Applying PICD in clinical research allows the quantitative prediction of patient-

specific drug response by specifically incorporating patient physiology in individualized PBPK models. In

brief, PICD aims for a translation of preclinical in vitro toxicity data into an in vivo context and hence

allows risk assessment for individual patients during drug development.
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PICD is exemplarily applied on the hepatotoxicant azathioprine in humans and rats. As input, human

and rat PBPK models of azathioprine are developed and in vitro toxicity data are analyzed (Figure

7.1). Explicitly, time-series gene expression profiles of primary human and rat hepatocytes from Open

TG-GATEs [Igarashi et al., 2015], a large-scale toxicogenomics database, represents the in vitro toxicity

data. The predictive quality of PICD is assessed by in vivo response data measured in rat livers [Igarashi

et al., 2015], thus exploring whether predicted in vivo drug response shows in vivo relevance (Figure 7.1).

To assess the predictive accuracy of PICD, in vivo data is necessary for validation purposes. Since in vivo

response data from liver biopsies were available in rats [Igarashi et al., 2015], PICD was applied on rats

to assess whether predicted drug response shows in vivo relevance (Figure 7.1). PICD is then applied for

humans to predict in vivo drug response over time for doses estimated to be the in vivo equivalents for

concentrations exposed in vitro (Figure 7.1). Note that the application of PICD in rats and humans is

fully independent since apart from the validation step no information from the animal study was further

used for the human case.

To demonstrate the potential of PICD for clinical applications in humans, acute toxicity is investigated

after single and multiple dosing of azathioprine. Patient-specific in vivo drug response over time following

documented cases of acute azathioprine overdose are predicted specifically considering patient physiology

[Gregoriano et al., 2014] (Figure 7.1). The patient, who received the highest overdose [Gregoriano et al.,

2014], is further considered in a first patient case study (Figure 7.1). In a second patient case study, PICD

is applied on own clinical data to get insights into acute toxicity after multiple dosing of azathioprine at the

therapeutic dose. Simulated drug concentration-time profiles, predicted responses of symptoms-related

genes, as well as clinical biomarkers measured in vivo are thereby analyzed (Figure 7.1).

7.2 Materials and methods

7.2.1 Analysis of in vitro toxicity data

Raw data were downloaded from TG-GATEs [Igarashi et al., 2015] (Appendix A.1). Gene expression

profiles measured with Affymetrix Human Genome U133 Plus 2.0 and Affymetrix Rat Genome 230 2.0

GeneChip arrays were normalized by applying the GC-RMA method [Wu et al., 2004]. Probe sets on the

chip were mapped to Entrez Gene IDs using BrainArray custom CDF files (version 19.0.0, ENTREZG)

[Dai et al., 2005]. For each treatment, differential gene expression analysis was performed by linear

models using limma [Smyth, 2004]. Compound-treated hepatocytes exposed to different concentrations

were thereby compared to their respective time-matched controls. P-values were adjusted by Benjamini-

Hochberg correction for multiple testing [Benjamini and Hochberg, 1995]. Fold change values were calcu-

lated to indicate gene expression changes compared to the time-matched controls. Gene expression profiles

of primary human and rat hepatocytes were further analyzed by applying hypergeometric testing [Falcon

and Gentleman, 2007] on each subset of differentially expressed genes identified for each treatment to

determine significantly overrepresented terms (GO) and pathways (KEGG, TOX) (Table B.1). P-values

were adjusted by Benjamini-Hochberg correction. Terms and pathways with a size of assigned genes lower

than five were filtered out. To investigate only GO terms with a high level of specialization, an additional

filtering step was performed on significant results (see more in Appendix B.1.1, Table B.2).

7.2.2 Physiologically-based pharmacokinetic model development

In the PBPK model structure (Figure 3.4), compound-specific properties and physiological parameters of

the organism such as organ volumes can be considered independently. The latter parameters describing

the physiology and anatomy of the organism are provided by the PBPK modeling software [Willmann
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Table 7.1: Dose identification. In vitro concentration, exposure time, resulting in vitro exposure, and identified
in vivo dose for the specific treatments for rats and humans.

Species Treatment In vitro concentration Exposure time In vitro exposure In vivo dose
[µmol/l] [h] [µmol/l/h] [mg/kg]

Human Low - 2 h 2.9 2 5.8 9.0
Human Low - 8 h 2.9 8 23.2 18.8
Human Low - 24 h 2.9 24 69.6 34.4
Human Middle - 2 h 14.6 2 29.2 21.4
Human Middle - 8 h 14.6 8 116.8 46.6
Human Middle - 24 h 14.6 24 350.4 91.8
Human High - 2 h 72.8 2 145.6 53.4
Human High - 8 h 72.8 8 582.4 126.8
Human High - 24 h 72.8 24 1747.2 248.3
Rat Low - 2 h 0.14 2 0.28 2.2
Rat Low - 8 h 0.14 8 1.1 5.6
Rat Low - 24 h 0.14 24 3.4 10.1
Rat Middle - 2 h 0.72 2 1.5 6.5
Rat Middle - 8 h 0.72 8 5.8 13.3
Rat Middle - 24 h 0.72 24 17.3 23.5
Rat High - 2 h 3.6 2 7.2 14.9
Rat High - 8 h 3.6 8 28.8 31.2
Rat High - 24 h 3.6 24 86.4 58.0

et al., 2003] (Appendix A.2). Besides physicochemical properties like the lipophilicity or plasma protein

binding values influencing in particular drug disposition in absorption and distribution processes, active

drug transport or metabolizing reactions were integrated to describe the drug clearance in the body.

Km and vmax were used to characterize the kinetic behavior of such active processes. Abundances of

relevant enzymes and transporters in multiple compartments were quantified by using tissue-specific gene

expression data [Meyer et al., 2012].

In this study, the quality of the developed PBPK model of azathioprine was assessed by comparing

simulated PK data with different experimental concentration-time profiles from literature [Odlind et al.,

1986; Van Os et al., 1996; Zins et al., 1997]. To indicate the model quality, PBPK models were evaluated

by calculating a root-mean-square deviation (RMSD) whereby the differences of measured and simulated

concentrations were normalized by respective experimental values [Thiel et al., 2015]. Moreover, a linear

regression was performed for simulated and observed concentrations. Coefficient of determination (R2),

as well as the slope a and the intercept b of the linear equation were then additionally used to evaluate

the ’goodness of fit’.

7.2.3 Prediction of in vivo drug responses in humans and rats

PICD was applied on rats and humans to quantify in vivo responses for different time points and dose

levels. Gene expression values (log2 fold change) and cell viability values, both measured in vitro [Igarashi

et al., 2015], as well as gene response values (defined as absolute log2 fold change) were mapped to the

nine identified in vivo doses (Table 7.1), and were linearly interpolated to determine respective dose-

response profiles for the different time points (2 h, 8 h, and 24 h) [Igarashi et al., 2015]. Note that the

identification of the in vivo doses is dependent on the underlying PBPK model and the specific dosage

regimen.

Time-resolved in vivo response profiles were then predicted for arbitrary doses by assigning gene expres-

sion, cytotoxicity, or gene response values after 2 h, 8 h, and 24 h. In vivo drug responses of all terms

(GO) and pathways (KEGG, TOX) (Table B.4) that were significantly overrepresented in at least one

treatment (e.g., Middle - 2h) (Table B.3) were predicted by computing the mean gene response level of

all genes assigned to a specific term or pathway. Significant increase in drug response values after the
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early time point was evaluated by one-sample t-test, while changes between individual time points were

assessed by using one-way ANOVA followed by Tukey-Kramer multiple comparison test.

7.2.4 Validation of predicted in vivo drug responses in rats

To validate PICD, predicted in vivo drug responses were linearly interpolated to perform a correlation

with time-matched drug responses observed in the in vivo study [Igarashi et al., 2015]. All cellular

processes or biological pathways that were significantly affected in rats for at least one treatment (Table

B.1) were considered for this correlation. Predicted expression profiles for all genes considered in the two

case studies were analogously validated with in vivo gene expression profiles observed in rats [Igarashi

et al., 2015]. All Correlation analyses were performed by calculating Pearson’s correlation coefficient r

and the corresponding p-value p.

7.2.5 Clinical cases of acute toxicity after single dosing of azathioprine

PICD was used for different clinical cases of acute azathioprine overdose reported between 1995 and 2013

[Gregoriano et al., 2014]. Patients showing symptoms most likely caused by other drugs than azathioprine

[Gregoriano et al., 2014] were not taken into account. Moreover, only patients for whom no decontami-

nation measures were undertaken after exposure to a single oral overdose were considered leading to a

total of eight clinical cases (Table 7.2). Consequently, eight PBPK models were developed incorporating

individual anthropometric parameters (age, sex, and weight).

PICD was then applied on each patient thereby simulating drug concentration-time profiles in the inter-

stitial space of the liver following oral administration of the specific overdose. In a next step, drug response

in the most responsive toxicity-related pathway (DNA Damage & repair) and cytotoxicity values were

predicted at every time point. Finally, in vivo drug responses were correlated with global cytotoxic ob-

servations by calculating Pearson’s correlation coefficient r, while PSS values were correlated with drug

response values after one day by calculating Spearman’s rank correlation coefficient rho. In the latter

correlation analysis, patient 17 was not considered, since she remained asymptomatic after a heavy over-

dose of azathioprine (Table 7.2). Furthermore, patient 19 was considered in a patient case study thereby

investigating acute toxicity after single dosing of azathioprine.

Table 7.2: Clinical cases of acute azathioprine overdose. Anthropometric parameters (age, weight, and
sex), administered dose, and observed symptoms including assigned Poisoning Severity Scores (PSS) [Persson
et al., 1998]. The clinical data were taken from [Gregoriano et al., 2014].

Patient ID Age Weight Sex Dose Symptoms (PSS)

[years] [kg] [mg/kg]

33 28 65 Male 6.9 Asymptomatic (0)

13 23 63 Female 11.9 Vomiting (1)

4 39 50 Female 16.0 Asymptomatic (0)

16 44 75 Female 26.7 Sinus tachycardia (1)

21 39 73 Male 27.0 Headache (1), Vomiting (1)

28 49 76 Male 32.9 Increased GGT (< 2 x) (1)

17 53 60 Female 107.5 Asymptomatic (0)

19 28 71 Male 180.1 Nausea (1), Abdominal pain (1), Headache (1),

Fall in leucocyte count (7.2-3.9 G/l) (1), Increased

liver enzymes (10-fold increase in transaminases

from baseline) (2), Dyspnoea (2)
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7.3 Results

7.3.1 PBPK-based in vivo contextualization of in vitro toxicity data (PICD)

Here, the development of PBPK-based in vivo contextualization of in vitro toxicity data (PICD) - an

integrative multiscale approach - is shown. The application of PICD allows predicting in vivo drug

response by integrating multiple levels of biological organization thereby using whole-body PBPK models,

at the organism level, to couple interstitial PK profiles, at the organ level, with in vitro toxicity data, at

the cellular level (Figure 7.2).

The use of PICD thus allows the prediction of drug response over time in an in vivo context. Gene expres-

sion data of primary human and rat hepatocytes treated with specific drugs at different concentration

levels over different time ranges from Open TG-Gates are used exemplarily as in vitro toxicity data to

quantify drug-induced toxicity at the cellular level (Figure 7.2). In the in vitro assay of TG-Gates, the

highest concentration was selected such that cell viability was decreased by 10-20 % [Igarashi et al., 2015].

PICD is basically applicable on any drug of interest, provided that correspondent in vitro response data

for the same compound is available. Note that the application of PICD is here exemplarily shown for the

liver since the in vitro toxicity data was obtained in primary hepatocytes. To translate in vitro findings

to an in vivo situation, PBPK modeling is used here to contextualize these cellular gene expression data

at an organism level.

In an initial step, a drug-specific PBPK model is developed to identify in vivo doses that are directly

related to in vitro drug exposure (Figure 7.2). The in vitro assay setup is explicitly represented in

the PBPK models by specifically adjusting in vivo drug plasma protein binding in the PBPK model

correspondent to the in vitro concentrations. PK profiles simulated in the interstitial space of the liver

are then coupled with in vitro toxicity data to predict in vivo drug response, at the cellular level, following

in vivo drug administration, at the organism level (Figure 7.2).

To couple interstitial concentration-time profiles with in vitro toxicity data, in vivo doses are identified by

PBPK simulations for intravenous drug administration such that the in vitro drug exposure in the assay

equals the interstitial area under the curve (AUC) in the liver at each experimental time point (Figure

7.2). Note that by using validated PBPK models, potential non-linearities in ADME processes affecting

the interstitial drug concentration are implicitly considered such that dose estimations are accurate across

different dosage regimens. Dose-response curves are then generated for all time points by mapping in vitro

toxicity data to the identified in vivo doses (Figure 7.2).

The identified in vivo doses are averaged horizontally to three doses (dlow, dmiddle and dhigh), which thus

represent the in vivo equivalents to in vitro concentrations (low, middle, and high). Drug response values

are next calculated and assigned to doses dlow, dmiddle and dhigh by linearly interpolating dose-response

curves (Figure 7.2) to predict in vivo drug response in relevant Gene Ontology (GO) [Ashburner et al.,

2000] terms, as well as in human pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

[Kanehisa and Goto, 2000], and in toxicity-related pathways (TOX) (SABiosciences) (Table B.4).

The use of PICD enables a time-resolved description of drug-induced in vivo response at the organism

level by the integration of several levels of biological organization and, hence, allows considering various

aspects of translational research in drug development.

7.3.2 Use of PICD for individual patients

PBPK modeling allows, amongst others, the consideration of patient-specific differences in the anatomy

and physiology between various individuals by incorporating the anthropometry of patients (e.g., body

weight). Moreover, since validated PBPK models allow extrapolating PK simulations to different dosage
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Figure 7.2: Workflow of PICD. Input: At the organism level, PBPK models are developed and validated by
comparing simulated (sim.) and experimental (exp.) drug concentrations. At the cellular level, gene expression
data of drug-treated primary hepatocytes are analyzed for nine different treatments (white-gray colored symbols)
[Igarashi et al., 2015]. Functional enrichment analysis was then applied to find regulated cellular processes and
biological pathways. Coupling: In vivo doses d1-d9 are identified for all treatments such that the in vivo exposure
simulated in the interstitial space of the liver (colored AUC) matched the in vitro exposure (gray rectangular area).
Identified in vivo doses d1-d9 together with in vitro toxicity data (white-gray colored symbols) are used to generate
dose-response curves for all considered time points of the in vitro experiment. Contextualization: In vivo doses
d1-d9 are averaged horizontally along the same in vitro concentration to determine three in vivo equivalent doses
dlow, dmiddle, and dhigh (colored lines) for exposed in vitro concentrations (low, middle, high). At the cellular level,
in vivo drug response over time reflecting changes in cellular processes and biological pathways are then predicted
(colored symbols) for the in vivo equivalent doses (dlow, dmiddle and dhigh) (colored lines) by using time-dependent
in vivo dose-response curves. AUC, area under the curve

regimens, PICD is not only applicable to predict drug response for the in vivo equivalent doses adminis-

tered intravenously (Figure 7.2), but also for other dose levels and administration routes. Thus, PICD can

be applied in a patient-specific manner to allow the simulation and interpretation of clinical observations

following drug administration over time at the patient level (Figure 7.3). Anthropometric parameters of

patients (e.g., age or weight) are thereby used to build individualized PBPK models specifically consider-
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Figure 7.4: PBPK model development and validation. Simulated concentration-time curves (lines) for
azathioprine (blue) and 6-mercaptopurine (red) were assessed with experimental PK profiles (circles) [Van Os
et al., 1996]. The reference PBPK model was then validated by evaluating simulated PK profiles with experimen-
tal PK data from different clinical studies not used to establish the reference model [Odlind et al., 1986; Zins
et al., 1997] (Table 7.4). Azathioprine was either administered intravenously or orally. (A) Reference, 50 mg IV.
(B) Validation, 100 mg IV. (C) Validation, 100 mg PO.

Figure 7.5: PBPK model assessment. Simulated concentration-time profiles were compared to experimental
data. Observed vs. predicted plots including RMSD and R2 values, and the equation of the linear regression were
generated for the reference and validated PBPK model.
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Figure 7.6: Cross-species extrapolation.
Blood plasma concentration-time profiles of
azathioprine and 6-mercaptopurine were sim-
ulated for rats (dashed blue line, dashed green
line) and for humans (solid blue line, solid
green line) after oral administration of 100 mg
of azathioprine. The rat PBPK model of aza-
thioprine was developed by considering rat-
specific anatomy and physiology in the human
PBPK model according to [Thiel et al., 2015].

Table 7.3: PBPK model parameters. Molecular weight (MW), pKa, logP, Fu, and integrated metabolic
process consisting of metabolic enzyme and corresponding kinetic parameters (vmax, Km) used for the developed
PBPK model. The experimental logP value for 6-mercaptopurine was slightly adjusted, while the experimentally
measured lipophilicity for azathioprine was used unchanged.

Drug MW pKa logP Fu Metabolic Km vmax

[g/mol] enzyme [µmol/l] [µmol/l/min]

Azathioprine 277.26
[Wishart
et al., 2006]

7.87
[Wishart
et al., 2006]

0.10
[Wishart
et al., 2006]

0.70
[Wishart
et al., 2006]

Glutathione
S-transferase A1
[Eklund et al.,
2006]

7.0* 60.0*

6-Mercapto-
purine

152.18
[Wishart
et al., 2006]

9.50 (acid),
2.99 (base)
[Wishart
et al., 2006]

1.85
[Czyrski and
Kupczyk,
2013]

0.81
[Wishart
et al., 2006]

Xanthine oxidase
[Aberra and
Lichtenstein,
2005]

41.5* 410.0*

* Estimated

Table 7.4: Experimental conditions. Administration route, respective doses, health state and number of
subjects. The experimental PK data were either used for establishment of the reference PBPK model (Reference)
or for model validation (Validation).

Administration route Dose Subjects Usage Reference

Intravenous bolus 50 mg Healthy (n=24) Reference [Van Os et al., 1996]
Intravenous bolus 100 mg Uremic patient (n=1) Validation [Odlind et al., 1986]
Oral 100 mg Healthy (n = 10) Validation [Zins et al., 1997]

was not considered in the underlying PBPK model. To appropriately validate simulated concentration-

time profiles of different compounds, experimental PK data are necessary. The metabolite 6-thiouric acid

was not included in the PBPK model because no experimental measurements were performed in the used

clinical studies.

After model establishment, the simulated plasma concentrations showed an excellent agreement with

clinical PK data used for the initial model identification (Figure 7.4, Figure 7.5). For model validation,

additional experimental PK data were next used (Table 7.4), which were accurately described without

further model modifications (Figure 7.4, Figure 7.5) thereby ensuring an adequate quality of the PBPK

model for further predictions.

The validated human PBPK model was next used to develop a PBPK model for rats that is needed for

the initial validation of PICD. Recently, it was shown that species-specific physiology has the highest

influence on the predictive quality of PBPK-based cross-species extrapolation [Thiel et al., 2015]. The rat

PBPK model of azathioprine (Figure 7.6) was hence developed by considering species-specific differences

in the physiology and anatomy in the human PBPK model of azathioprine (Figure 7.4).
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7.3.4 Cellular Level: In vitro toxicity data

At the cellular level, in vitro toxicity data is required for PICD to predict in vivo drug response over time.

Human and rat gene expression and enrichment analysis was performed in the same way. Time-course

gene expression profiles of primary human and rat hepatocytes from Open TG-GATEs were analyzed to

obtain quantitative toxicity data of azathioprine [Igarashi et al., 2015]. Notably, toxicity data generated

by other profiling techniques [Waters and Fostel, 2004; Heijne et al., 2005] can analogously be used to

predict drug-specific response profiles. For each treatment, subsets of differentially expressed genes were

identified (absolute fold change > 1.5, Benjamini-Hochberg corrected p < 0.01) (Figure 7.7A, Figure

7.7B). Functional enrichment analysis was then applied to find significantly overrepresented terms (GO)

and pathways (KEGG, TOX) (Benjamini-Hochberg corrected p < 0.01) (Table B.1). Gene response values

defined as absolute log2 fold change were calculated to quantify changes in significantly affected terms

and pathways. Since the drug response values reflect the extent of activation or inhibition of functionally

related genes in an in vivo situation, they were used to predict drug-induced cellular changes over time

in both rats and humans.

Figure 7.7: Azathioprine-induced gene expression data. In vitro and in vivo expression data of genes
differentially expressed in at least one treatment of the specific experiment. Three exposure levels of azathioprine
were administered (low (green), middle (orange), high (red)). The number below each column indicates the number
of DEGs identified in the specific treatment. Gene expression values in each row were z-score normalized. (A) In
vitro, primary human hepatocytes. (B) In vitro, primary rat hepatocytes. (C) In vivo, rat livers.
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Figure 7.8: Correlation of predicted drug response profiles with in vivo measurements in rats.
Correlation between predicted (pred.) in vivo profiles of drug response and gene expression with observed (obs.)
profiles measured in vivo following oral administration of the three doses used in the rat study (low dose = yellow,
middle dose = blue, high dose = red) [Igarashi et al., 2015]. All cellular processes or biological pathways that
were significantly regulated in at least one treatment (Table B.1) and all genes analyzed in the case studies
(Table B.5, Table B.7) were considered for the correlation of drug response and gene expression, respectively.
Correlation analyses were performed by calculating Pearson’s correlation coefficient r and the corresponding
p-value p. (A) KEGG pathways. (B) Toxicity-related pathways. (C) Biological processes. (D) Cellular compo-
nents. (E) Molecular functions. (F) Genes considered in both case studies.

7.3.5 Validation of PICD in rats

To assess the predictive accuracy of PICD, in vivo toxicity data measured in rat livers (Figure 7.7C)

were used. The developed rat PBPK model (Figure 7.6) together with the in vitro toxicity data obtained

in rat hepatocytes (Figure 7.7B) served as input for the application of PICD to predict in vivo drug

response in rats. When applying PICD on rats, a corresponding in vivo dose was determined for each of

the nine in vitro treatments (e.g., High - 8h) (Table 7.1). In the in vivo rat study, the minimum toxic dose

identified in a 4-week toxicity study was used as highest dose while the low and middle dose were selected

by diluting the high dose with a factor of three and ten, respectively [Igarashi et al., 2015]. Consequently,

PICD was applied to predict drug responses induced by the three doses used in the in vivo rat study.

In vivo drug response of cellular processes and biological pathways significantly regulated in rats (Ta-

ble B.1) were then predicted for all three doses orally administered in the in vivo rat study and were

subsequently correlated with corresponding in vivo observations (Pearson’s r = [0.35, 0.85], p ≤ 0.01)

(Figure 7.8A-E).

To check whether the application of PICD actually improved in vivo predictions compared to the in

vitro situation, temporal in vitro patterns and predicted in vivo drug responses were both correlated to

respective in vivo observations. In vitro drug response profiles of perturbed biological pathways (KEGG,
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Figure 7.9: Correlation between observed in vivo, in vitro and predicted in vivo drug responses.
Predicted in vivo drug response (blue) induced by the identified toxic dose, as well as corresponding in vitro
profiles (red) induced by the toxic concentration were correlated with measurements observed in vivo [Igarashi
et al., 2015]. All cellular processes or biological pathways that were significantly regulated in at least one treatment
(Table B.1) and all genes analyzed in both case studies (Table B.5, Table B.7) were considered for the correlation
of drug response and gene expression, respectively. Correlation analyses were performed by calculating Pearson’s
correlation coefficient r and the corresponding p-value p. (A) Correlation of significantly affected KEGG path-
ways. (B) Correlation of significantly affected toxicity-related pathways. (C) Correlation of significantly affected
biological processes. (D) Correlation of significantly affected cellular components. (E) Correlation of significantly
affected molecular functions. (F) Correlation of genes considered in both case studies.

TOX) and biological processes showed almost no relevance for the in vivo situation (Pearson’s r =

[-0.2, 0.36], p > 0.05). In contrast, applying PICD obviously increased the concordance with in vivo

measurements for all biological pathways and cellular processes (r = [0.2, 0.77], p = [0.02, 0.34]) (Figure

7.9A-E). The correlation results for the individual pathways and cellular processes can be found in Table

B.3.

In both patient case studies, expression profiles of considered genes were predicted for clinically-relevant

doses to investigate acute liver toxicity after single and multiple dosing of azathioprine. To test whether

predictions have in vivo relevance in rats, predicted gene expression profiles were correlated with respective

profiles observed in vivo (Pearson’s r = 0.37, p = 3.7e-18) (Figure 7.8F). In vitro-in vivo extrapolation

of gene expression profiles was also improved by using PICD (Figure 7.9F). The in vivo relevance of

predictions in rats thus verified the application of PICD in humans. Independent of the use of PICD in

rats, reliable in vivo profiles of drug response and gene expression were predicted following administration

of azathioprine in humans.
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Figure 7.12: Predicted in vivo drug responses for DNA replication. (A) Drug response map exemplarily
shown for DNA replication reflects time- and dose-dependent effects following administration of azathioprine
at dose levels dlow, dmiddle and dhigh (black lines). The color scale depicts predicted in vivo drug response.
(B) Predicted in vivo drug response over time induced by doses dlow, dmiddle and dhigh.

response in mechanisms related to DNA damage and repair (Figure 7.11D) as suggested by another study

[Karran, 2006].

Here, PICD was applied to predict in vivo drug response in humans induced by in vivo doses derived

from in vitro concentrations [Igarashi et al., 2015]. In a next step, PICD was used for different patients

by specifically considering individual physiology and various dosage regimens.

7.3.7 Acute toxicity after single dosing of azathioprine: Patient cohort study

An overview of previous cases of acute azathioprine overdoses has recently been reported [Gregoriano

et al., 2014]. Since all cases are clinically documented, PICD could be applied to study azathioprine-

induced toxicity in a patient-specific manner. In particular, individualized azathioprine PBPK models

were developed by explicitly considering patient physiology (Figure 7.13A, Table 7.2). PICD was then

applied on each clinical case thereby calculating in vivo drug response of processes involved in DNA

damage and repair (Figure 7.13A) following oral administration of the respective overdose. In addition,

correspondent cytotoxicity values describing cell viability over time were predicted for all clinical cases

to allow a correlation with patient-specific drug responses(Figure 7.13A).

Analyzing patient-specific drug response profiles indicated an early increase in gene response for every

patient (p < 0.001, one-sample t-test) (Figure 7.13A). Further analysis revealed a significant change

between 8 h and 24 h for patient 16, 21, 28, 17, and 19 (p < 0.05, one-way ANOVA with post-hoc Tukey-

Kramer). To assess the increase in toxicity, drug response values calculated at different time points were

correlated with global cytotoxicity values (Figure 7.13B). Excellent correlation results were found at 24 h

(r = 0.99, p = 2.73e-6). Comparing clinically applied Poisoning Severity Scores (PSS) [Persson et al., 1998]

with individual drug response after 24 h confirms this observation (Spearman’s rho = 0.78, p = 0.057).

For this correlation analysis, patient 17, who remained asymptomatic after receiving a heavy overdose,

was not considered (Table 7.2).

In the following, patient 19, who was exposed to the highest overdose (180.1 mg/kg), was regarded in a

patient case study to investigate acute toxicity after single dosing of azathioprine.





7.3. Results 79

Figure 7.14: Acute liver toxicity after single dosing of azathioprine. (A) Concentration-time profiles
simulated for patient 19 (Table 7.2) following oral administration of the toxic dose (solid red line) and the
therapeutic dose (dashed blue line). (B) Cytotoxicity values over time predicted for the toxic dose (solid red
line) and the therapeutic dose (dashed blue line). The predictions were made for both replicates to represent the
variability (gray area). The mean cytotoxicity is shown as solid line. (C) Predicted in vivo drug response induced
by oral administration of the therapeutic dose (dashed colored lines) and the toxic dose (solid colored lines). In
vivo drug responses were separated into different functional categories (enzyme, other, kinase, and transcription
regulator) (Table B.5). The predictions were made for both replicates to represent the variability (gray area). The
mean drug responses are shown as solid lines. =⇒
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Figure 7.14: ⇒ (D) Interaction network and processed subnetwork of genes involved in DNA damage and
repair processes (Table B.6). Since no expression data were available for CHEK2 and ERCC5, interactions be-
tween these genes and other were excluded. The subnetwork (thick black lines) was identified by considering
only interactions between genes that were strongly regulated (absolute log2 fold change > 0.5) in at least one
timepoint. The interaction types (A = Activation, E = Expression, P = Phosphorylation, PD = Protein-DNA
interaction, PP = Protein-Protein interaction) were highlighted next to the specific edges. The interaction net-
work was generated through the use of QIAGENs Ingenuity Pathway Analysis (IPA R©, QIAGEN Redwood City,
www.qiagen.com/ingenuity). (E) Predicted temporal expression patterns induced by the therapeutic and toxic
dose were simulated for patient 19. Two critical processes (P1, P2) extracted from the subnetwork were considered
separately (dashed line indicates separation). The first process (involved genes: MLH1, ERCC5, MDM2, PRKDC,
ATR, ATM, CHEK1) resulted in the inhibition of CHEK1 that is required to initiate cell cycle arrest in response
to DNA damage. The second process (involved genes: MDM2, CDKN1A, PCNA) induced the inhibition of PCNA
leading to an impairment of DNA repair processes. The predictions were made for both replicates to represent
the variability (gray area). The mean gene expressions are shown as solid lines.

functional categories was identified when azathioprine was administered at the therapeutic dose (Figure

7.14C).

Furthermore, an interaction network was generated and a subnetwork was extracted by considering all

interactions between genes that were substantially perturbed (absolute log2 fold change > 0.5) by azathio-

prine in at least one timepoint (Figure 7.14D, Table B.6). Temporal expression patterns of genes involved

in two critical processes inducing DNA repair were then analyzed and compared for both dose levels

(Figure 7.14E). In both processes, very low changes in gene expression were identified when azathioprine

was administered at the therapeutic dose contrarily to substantial changes induced by the toxic dose

(Figure 7.14E). Considering the first process following acute azathioprine overdose, CHEK1 responsible

for cell cycle arrest and repairing damaged DNA [Goto et al., 2012; McNeely et al., 2014; Kim et al.,

2015] was activated after 2 h (Figure 7.14E). Then, CHEK1 was continuously inhibited as consequence

of the inhibition of kinases (ATM, ATR, PRKDC) activating CHEK1 and enzymes (MLH1, ERCC3)

interacting with ATM and ATR (Figure 7.14E). The inactivation of CHEK1 potentially indicates mitotic

catastrophe [Zhivotovsky and Kroemer, 2004]. The regulation of DNA repair after 24 h was reflected by

an increased cell death measured in vitro (Figure 7.14B) [Igarashi et al., 2015].

In the second process (Figure 7.14E), MDM2, a transcription regulator, interacts with the kinase inhibitor

CDKN1A [Sánchez-Aguilera et al., 2006] leading to a constant activation, whereas the proliferating cell

nuclear antigen (PCNA) was strongly inhibited over 24 h (Figure 7.14E). Since PCNA is required for

DNA replication and repair [Shivji et al., 1992; Essers et al., 2005], cell viability was detrimentally

affected (Figure 7.14B). Analyzing both processes induced by the therapeutic dose showed very low

response, which reveals no deficiency in DNA repair or cell cycle arrest (Figure 7.14E). This observation

was confirmed by the cell viability profile predicted for the therapeutic dose only showing slight variations

compared to the control (Figure 7.14B).

For this patient case study, PICD provided important insights into changes in gene expression for acute

toxicity after acute azathioprine overdose at the patient level.

7.3.9 Acute toxicity after multiple dosing of azathioprine: Patient case study 2

In contrast to acute toxicity after acute overdosing of azathioprine, in this second case study, acute liver

injury was observed in the context of a chronic treatment with azathioprine at therapeutic dose by using

own clinical data. A 37 year-old man with a history of thrombocytopenic purpura (TTP) was treated

orally with 50 mg of azathioprine once-daily over a period of seven years (Figure 7.15A). During this

period liver parameters were always within normal range. Blood plasma concentrations of azathioprine

and 6-mercaptopurine were simulated for the entire evolution of the patient (Figure 7.15B).

The patient was seen for urgent consultation in the outpatient hepatology clinic for evaluation of new

onset of jaundice and elevated liver enzymes, associated with general malaise, weakness and nausea
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Figure 7.16: Predicted in
vivo cytotoxicity over time.
In vivo cytotoxicity values over
time induced by the therapeu-
tic dose were predicted for both
replicates (gray area). The mean
cytotoxicity values are shown as
solid line.

Causality Assessment Model (RUCAM) [Danan and Benichou, 1993], with a score of 7 (probable), by

ruling out other possible etiologies (viral hepatitis, excessive alcohol use, metabolic diseases, autoimmune

disorders and biliary diseases).

To compare changes at the cellular level with observed clinical symptoms, temporal expression patterns

following oral administration of azathioprine were predicted for fifteen genes that are associated with

jaundice (Figure 7.15C, Table B.7). Notably, no drug accumulation occurred during multiple dosing for

both azathioprine and 6-mercaptopurine since both compounds were extensively metabolized and almost

completely cleared from the body within 24 h (Figure 7.15B). This was also observed for the simulated

drug concentrations in the intracellular space of the liver. Since additionally no in vitro response data

were available for repeated dosing, drug-induced adaption due to multiple dosing was hence assumed to

be negligible and the predicted gene expression profiles (Figure 7.15C) were thus to be assumed to reflect

the drug response at the cellular level. In addition, cell viability values predicted for the therapeutic

dose disclosed no relevant elevations (Figure 7.16). Investigating the response of genes affecting jaundice

(Table B.7) revealed no remarkable changes (Figure 7.15C).

Biochemical markers measured shortly before, during and after the occurrence of jaundice, indicated

significant elevations (Figure 7.15D). Levels of ALT (1373 U/L), AST (718 U/L), and GGT (437 U/L)

clearly exceeded clinically-relevant reference levels [Ceriotti et al., 2010] (Figure 7.15D). Moreover, lab-

oratory studies yielded a total bilirubin of 4.78 mg/dL reflecting a substantial increase compared to

measurements before and after jaundice occurred. While concentrations of glucose and triglycerides were

increased, total cholesterol (142 mg/dL) was notably diminished (Figure 7.15D). The patient reported

substantial improvement in his health status, and liver biochemical tests a few days after the discontinu-

ation of azathioprine, and follow-up visits after two months revealed subsequent normal laboratory tests

and lack of symptoms (Figure 7.15D).

In this second patient case study, PICD provided the contextualization of simulated pharmacokinetics,

predicted gene expression changes induced by the therapeutic dose and in vivo measurements of biochem-

ical markers.

7.4 Discussion

In this study, the integrative multiscale approach PICD is presented, which allows a time-resolved de-

scription of drug-specific response profiles at the cellular level induced by in vivo drug administration

at the organism level. Conceptually, PBPK models validated with blood plasma concentration-time data

were used to simulate unbound drug concentrations in the interstitial space of the liver that in turn corre-

sponds directly to the extracellular medium of in vitro experiments. Applied consistently, the systematic
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approach of using PBPK modeling for contextualization of in vitro toxicity data, which was exemplarily

applied here for azathioprine, thus enables a generic workflow for the analysis of toxic effects of arbitrary

drugs at patient level.

Predicted in vivo drug response induced by the identified doses (Figure 7.10, Figure 7.11) reflect the

in vivo results of temporal cellular alterations observed for drug concentrations administered in vitro

(Table 7.1). Considering oral administration [Zins et al., 1997], identified doses are in the range of toxic

dose levels reported in clinical studies [Gregoriano et al., 2014] as such highlighting clinical relevance

of the presented approach. Similar findings were observed when comparing the high dose (61.5 mg/kg)

estimated for the rat with the minimum toxic dose determined in the in vivo study [Igarashi et al., 2015].

The presented concept of coupling in vitro toxicity data with simulated interstitial concentration-time

curves is based on the identification of in vivo doses that best represents the in vitro drug exposure. For

this identification process, various pharmacokinetic parameters like the maximal observed concentration

(Cmax) could alternatively be considered. Here, the area under curve was selected since it represents a

quantitative measure for drug exposure [Igarashi et al., 2015].

To initially validate PICD, a rat PBPK model was built (Figure 7.6) by performing a cross-species

extrapolation from humans to rats using the validated human PBPK model (Figure 7.4). This mechanistic

translation was based on recent findings [Thiel et al., 2015] and helped to compensate the unavailability

of adequate PK data for the rat in the literature. Gene expression data of azathioprine-treated rats

(Figure 7.7C) and rat hepatocytes (Figure 7.7B) together with the developed rat PBPK model were

then used to assess the predictive quality of PICD by correlating predicted in vivo drug response of

regulated cellular processes and biological pathways (Table B.1) with findings observed in vivo [Igarashi

et al., 2015]. The correlation results showed high in vivo relevance of predicted in vivo drug responses in

rats (Figure 7.8) considering that in vitro-in vivo extrapolation is still a challenging issue [Boess et al.,

2003; Heise et al., 2012; Stegeman et al., 2012; Cebola et al., 2015]. Overlooking potential inter-species

differences, this validation was indispensable to verify the reliability of predicted in vivo drug response

for human patients since no in vivo toxicity data was available for humans. The comparison of both

in vitro patterns and predicted response profiles with in vivo observations was evaluated. Correlation

results obviously revealed that the extrapolation of in vitro toxicity data into an in vivo context was

clearly improved by use of PICD (Figure 7.9). PICD can generally be used for any laboratory animal

(e.g., rat, dog, or monkey) used in the preclinical phase during drug development, since PBPK modeling

allows the simulation of concentration-time profiles for several species by incorporating prior knowledge

about their specific anatomy and physiology. Notably, the application of PICD on any species occurs

independently meaning that no species-specific findings were extrapolated from one species to another

species.

Prediction of drug-induced cellular changes in response to interstitial PK profiles is not limited to hepa-

totoxicants. The compartmentalization of PBPK models enables the prediction of interstitial drug con-

centrations in multiple tissues or organs such as, for example, the heart. In this case, cellular changes

obtained from compound-treated cardiomyocytes could likewise be used to get insights into adverse effects

of cardiotoxic compounds in an in vivo context. Time-series gene expression profiles from a toxicogenomics

database [Igarashi et al., 2015] were considered here to quantify drug response over time at the cellular

level. Transcriptome analysis is a powerful technique to determine changes in gene expression by measur-

ing mRNA abundances in order to predict protein levels and activity. However, correlations between the

transcriptome and proteome can be low and gene expression analysis may have limitations in elucidating

stress response [Feder and Walser, 2005; Haider and Pal, 2013]. Since in vitro data obtained by other

functional omics techniques such as proteomics or metabolomics can be analogously incorporated in the

presented approach, this integrative analysis would provide a more comprehensive description of complex
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biological processes induced by drug administration in vivo. Likewise, in vitro toxicity data from different

high-throughput technologies could also be taken into account [Dix et al., 2007].

To demonstrate future potential of PICD in clinical application, individualized PBPK models considering

specific patient physiology were developed to predict in vivo drug response for clinical cases of acute aza-

thioprine overdose [Gregoriano et al., 2014] (Table 7.2). Notably, drug response of processes involved in

DNA damage and repair after one day was highly correlated with measured cytotoxicity (Figure 7.13B)

indicating that changes at the transcriptional level might be directly related to cytotoxic measurements

observed in vitro. High correlation determined between PSS values and corresponding drug response

pointed out the relation between the drug-induced response in a critical toxicity pathway and the sever-

ity of observed clinical symptoms. Availability of additional individualized information such as patients’

genotype [Lippert et al., 2013] might be useful to further specify the translation for potential clinical ap-

plications and analysis of idiosyncratic hepatotoxicity. Genetic heterogeneity, like variants in cytochrome

P450 enzymes [Dandara et al., 2011], may alter the catalytic activity of drug-related enzymes, which in

turn affect drug distribution and elimination processes. For instance, genetic polymorphisms in crucial

metabolic enzymes involved in the metabolism of isoniazid substantially influenced relevant pharmacoki-

netic processes, which may change drug efficacy at the target site or may increase the risk of toxicity

[Kinzig-Schippers et al., 2005; Vuilleumier et al., 2006; Perwitasari et al., 2015]. Coupling individualized

PBPK models developed for different genotypes with in vitro toxicity data obtained by omics technologies

that may consider genetic diversity could therefore have a beneficial effect for individually tailored drug

therapy and patient safety.

Two patient case studies have been performed to demonstrate the application of PICD on clinical cases

of acute toxicity induced by different dosage regimens (Figure 7.14, Figure 7.15). In vivo relevance of all

genes considered in both case studies was verified by assessing predicted gene expression profiles in rats.

In the first patient case study, in vitro toxicity data could be directly used to simulate drug response of

DNA damage and repair processes following acute azathioprine overdose (Figure 7.14) [Gregoriano et al.,

2014]. Analyzing the drug response for different functional categories identified kinases as high responsive

when azathioprine was administered at the toxic dose (Figure 7.14C). Further analysis of two critical

processes allowed comparing drug response between toxic and therapeutic dose levels (Figure 7.14D).

In the second patient case study own data was used to study drug-induced liver failure elicited by

multiple dosing of azathioprine at therapeutic dose over more than seven years (Figure 7.15A). Here,

genes affecting the development of jaundice (Table B.7) were specifically considered and could thus be

correlated to observed clinical symptoms (Figure 7.15C, Figure 7.15D). Since PK analysis showed no

drug accumulation in the therapy process, the predicted response profiles (Figure 7.15C) were assumed

to reflect the drug activity at the cellular level for each day. Over 24 hours only low transcriptional

changes induced by the therapeutic dose were predicted for jaundice-related genes. This clearly indicates

that more data is needed to actually predict the sudden emergence of jaundice following long-term

azathioprine administration. Such data could be, for instance, additional patient information or response

data obtained by other functional omics techniques like proteomics or metabolomics. Moreover, further

analyses are necessary to elucidate the molecular mechanism of the adverse reaction leading to jaundice,

in particular when the toxicity was induced by chronic drug administration over a long period of time.

For a mechanistic analysis, gene expression data from liver biopsies after repeated dosing would be

required here to adequately investigate such toxic events. Further patient data involving, amongst others,

medical history or patient lifestyle would also be necessary. Still, the application of PICD here allowed

a description of how cellular drug response profiles are induced by a clinically relevant dose. Thus, this

patient case study provided an integrated analysis of patient-specific pharmacokinetics, drug response

following oral administration of the therapeutic dose, as well as the relation to several clinical biomarkers

measured before, during and after the occurrence of jaundice. Finding crucial changes between predicted
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gene expression profiles for therapeutic and toxic dose levels could thus enhance the identification of

useful biomarkers in patients and subsequently lead to an early detection of potential toxicity.

Clearly, the in vivo predictions in the rat are not fully accurate and the application of PICD in-

hibits some inherent level of uncertainty. However, it should be noted that the approach presented

provides a generic workflow for quantitative analyses of in vitro measurements within an in vivo

context. The PBPK models at the organism level were carefully qualified by validating the model

with clinical data for different doses and different administration routes. Furthermore, the expression

data at the cellular scale were taken from TG-GATEs [Igarashi et al., 2015], which is one of the most

systematic and best curated toxicological databases in the world. Hence, despite some inherent yet

inevitable uncertainty in the input, the predictions made by PICD represents nevertheless a sound

extrapolation of in vitro data to an in vivo environment. Please note also that PICD allows an

animal-free assessment of drug-induced toxicity which is fully in line with 3R principles. Assuming

that appropriate in vitro toxicity tests were concluded, the use of PICD for laboratory animals may

improve the predictability of toxic events in an in vivo context and may facilitate the identification of

a safe dose. The demand for animal sacrifice is thereby reduced since PICD is an in silico-based approach.

To conclude, PICD allows describing temporal changes at the cellular level induced by drug administration

in vivo and hence provides a generic platform to contextualize in vitro measurements of different omics

studies at the organism level. Therefore, changes in cellular events induced by clinically-relevant or toxic

dose levels can be predicted for humans and thus might facilitate the investigation of in vitro findings

within a patient context for clinical applications in the future.
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A comparative analysis of drug-induced hepatotoxicity in

clinically relevant situations

Abstract

Drug-induced toxicity is a significant problem in clinical care. A key problem here is a general under-

standing of the molecular mechanisms accompanying the transition from desired drug effects to adverse

events following administration of either therapeutic or toxic doses, in particular within a patient con-

text. Here, a comparative toxicity analysis was performed for fifteen hepatotoxic drugs by evaluating

toxic changes reflecting the transition from therapeutic drug responses to toxic reactions at the cellular

level. By use of physiologically-based pharmacokinetic modeling, in vitro toxicity data were first contex-

tualized to quantitatively describe time-resolved drug responses within a patient context. Comparatively

studying toxic changes across the considered hepatotoxicants allowed the identification of subsets of drugs

sharing similar perturbations on key cellular processes, functional classes of genes, and individual genes.

The identified subsets of drugs were next analyzed with regard to drug-related characteristics and their

physicochemical properties. Toxic changes were finally evaluated to predict both molecular biomarkers

and potential drug-drug interactions. The results may facilitate the early diagnosis of adverse drug events

in clinical application.
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8.1 Introduction

Drug-induced hepatotoxicity poses a significant problem in drug development and public health [Schuster

et al., 2005; Kaplowitz, 2004]. Extensive drug exposure due to overdosing or patient idiosyncrasy may lead

to hepatotoxic effects such as drug-induced steatosis or cholestasis [Bernal et al., 2010; Lee, 1993, 1995].

Such adverse events may even be aggravated through drug interactions during patient co-medication

leading to additive, synergistic, or antagonist drug effects [Askgaard et al., 1995; Deray et al., 1987; Chen

and Raymond, 2006; Sato et al., 1985].

Understanding the molecular mechanisms underlying the transition from desired drug effects to adverse

events induced by therapeutic and toxic doses, respectively, is of general importance for both clinical di-

agnostics and curative intervention strategies [Park et al., 2004]. In this regard, robust clinical biomarkers

may significantly improve patient safety and health [Shi et al., 2010; Wang et al., 2013; Riedmaier and

Pfaffl, 2013b; Mendrick, 2011; Salminen et al., 2011] by the initial identification of cellular mechanisms

indicating drug toxicity in order to implement appropriate interventions at an early stage [Wilmes et al.,

2013; Iskar et al., 2013; Herpers et al., 2016; Zhang et al., 2014]. Comparatively analyzing cellular re-

sponses following the transition from therapeutic to toxic doses supports the identification of molecular

biomarkers and would clearly help to investigate to what extent specific drugs similarly contribute to

characteristic toxicological processes and, furthermore, to find out potential interactions between those

drugs, which might act on a mutual target gene.

A comparative study of molecular responses in human cell lines in the face of therapeutic and toxic doses

for a set of known hepatotoxic drugs could be used to better characterize drug-induced toxicity. A severe

drawback of such in vitro analyses, however, is often the limited translatability to the in vivo situation

in patients in actual clinical practice. Recently, we have developed an integrative multiscale approach

called PICD for the in vivo contextualization of in vitro toxicity data based on PBPK modeling, which

significantly supports translations to an in vivo situation in patients (Figure 8.1) [Thiel et al., 2016].

Importantly, PBPK modeling aims for a mechanistic representation of ADME processes governing drug

pharmacokinetics within the human body. Since PBPK models include a large amount of mechanistic

information, these models are well-suited for extrapolations to different treatment scenarios.

The main goal of this study was the analysis of drug-induced toxicity following administration of thera-

peutic and toxic doses of different hepatotoxicants in humans. Thus, toxic changes reflecting drug-induced

toxicity during the transition from therapeutic to toxic doses were comparatively evaluated for fifteen

hepatotoxicants to quantitatively identify subsets of drugs, which share similar perturbations on (i) key

cellular processes, (ii) functional classes of genes, and (iii) individual genes (Figure 8.2). To predict drug

responses in clinically relevant situations following administration of therapeutic and toxic doses, PICD

(Figure 8.1) was applied on a set of fifteen known hepatotoxic drugs: acetaminophen (APAP), amio-

darone (AD), azathioprine (AZA), cyclophosphamide (CPA), cyclosporine A (CSA), diclofenac (DFN),

erythromycin (ERY), flutamide (FT), haloperidol (HPL), isoniazid (INH), phenobarbital (PB), phenytoin

(PHE), rifampicin (RIF), simvastatin (SST), valproic acid (VPA).

The drugs were selected based on pharmaceutical and chemical diversity, physicochemical properties,

availability of in vitro toxicity data and experimental drug concentration-time profiles, as well as concern

for DILI. Transcriptome data obtained in primary human hepatocytes from Open TG-GATEs [Igarashi

et al., 2015] was used as in vitro toxicity data at the cellular level, while human PBPK models were

developed at the organism level. In the comparative toxicity analysis, toxic changes were evaluated in

three different analyses (Figure 8.2).

In the first analysis, toxic changes between the fifteen hepatotoxic drugs were investigated for a large

number of key cellular processes (Table C.1). In the second analysis, toxic changes calculated for different
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Figure 8.1: PBPK-based in vivo contextualization of in vitro toxicity data (PICD). Input: At the
organism level, PBPK models are developed for specific drugs. At the cellular level, in vitro response data of
compound-treated primary hepatocytes are analyzed [Igarashi et al., 2015]. Coupling: In vivo doses are identified,
which are directly related to in vitro drug exposure (AUCin vivo=AUCin vitro). Time-dependent dose-response
curves are built by mapping in vivo doses to in vitro responses. Contextualization: By use of the time-dependent
dose-response curves, drug responses over time are predicted for PK profiles simulated for different doses.

functional classes of genes were evaluated for a subset of key cellular processes strongly perturbed by

an identified set of high-responsive drugs. In the third analysis, toxic changes were evaluated for a set

of individual genes thereby quantitatively discovering molecular biomarkers and potential DDIs for the

high-responsive drugs.

8.2 Materials and methods

8.2.1 Set of drugs

In this study, fifteen hepatotoxic drugs (APAP, AD, AZA, CPA, CSA, DFN, ERY, FT, HPL, INH,

PB, PHE, RIF, and SST) were analyzed. The drugs have been selected based on pharmaceutical and

chemical diversity, physicochemical properties, availability of in vitro toxicity data and experimental drug

concentration-time profiles, as well as concern for DILI (Table 8.1). The drugs were categorized into drugs

with most-DILI or less-DILI-concern [Chen et al., 2011; Herpers et al., 2016]. Assigned severity scores

were between two and eight [Chen et al., 2011; Herpers et al., 2016]. The World Health Organization’s

Anatomical Therapeutic Chemical (ATC) classification system [Skrbo et al., 2004] was used to separate
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Table 8.1: Drug-specific annotations. DILI-potential, severity score, anatomical main group, therapeutic and
chemical subgroup, as well as BCS class of the fifteen considered drugs.

Drug DILI-potential Severity
score

Anatomical main
group

Therapeutic
subgroup

Chemical subgroup BCS
class

APAP Most-DILI-concern 5 Nervous system Analgesics Anilides class 4
AD Most-DILI-concern 8 Cardiovascular system Cardiac therapy Antiarrhythmics, class

III
class 2

AZA Less-DILI-concern 3 Antineoplastic and
immunomodulating agents

Immunosuppressants Other
immunosuppressants

class 4

CPA Less-DILI-concern 5 Antineoplastic and
immunomodulating agents

Antineoplastic agents Nitrogen mustard
analogues

class 3

CSA Less-DILI-concern 2 Antineoplastic and
immunomodulating agents

Immunosuppressants Calcineurin inhibitors class 2

DFN Most-DILI-concern 7 Musculo-skeletal system Antiinflammatory and
antirheumatic products

Acetic acid derivatives
and related substances

class 2

ERY Most-DILI-concern 5 Antiinfectives for systemic
use

Antibacterials for
systemic use

Macrolides class 2

FT Most-DILI-concern 8 Antineoplastic and
immunomodulating agents

Endocrine therapy Anti-androgens class 2

HPL Less-DILI-concern 5 Nervous system Psycholeptics Butyrophenone
derivatives

class 2

INH Most-DILI-concern 8 Antiinfectives for systemic
use

Antimycobacterials Hydrazides class 3

PB Less-DILI-concern 3 Nervous system Antiepileptics Barbiturates and
derivatives

class 4

PHE Less-DILI-concern 3 Nervous system Antiepileptics Hydantoin derivatives class 1
RIF Most-DILI-concern 8 Antiinfectives for systemic

use
Antimycobacterials Antibiotics class 2

SST Less-DILI-concern 3 Cardiovascular system Lipid modifying agents HMG coa reductase
inhibitors

class 2

VPA Most-DILI-concern 8 Nervous system Antiepileptics Fatty acid derivatives class 3

the drugs into different groups according to the organ or system on which they act, and their phar-

macological and chemical properties (ATC index available at http://www.whocc.no/atc_ddd_index/,

[Accessed 2015 November 27]) (Table 8.1). The Biopharmaceutics Classification System (BCS) [Benet,

2013] was used to classify the drugs based on their solubility and permeability properties ( Table 8.1).

The BCS classification of drugs was obtained from the Therapeutic System Research Laboratories website

(http://www.tsrlinc.net/search.cfm, [Accessed 2015 October 30]) and from literature [Kasim et al.,

2004; Value and Samy, 2012]

8.2.2 Key cellular processes

Seventy-four hand-curated toxicity lists were extracted from QIAGENs Ingenuity Pathway Analysis

(IPA R© QIAGEN Redwood City, www.qiagen.com/ingenuity) (Table C.1) to represent key cellular pro-

cesses. These toxicity lists consist of gene sets contributing to a specific type of toxicity and were generated

based on crucial biological processes and key toxicological responses. Furthermore, all genes associated to

a certain toxicity list were functionally classified into one of the following groups: Cytokine, growth factor,

metabolic enzyme, G-protein-coupled receptor, ion channel, kinase, ligand-dependent nuclear receptor,

other, peptidase, phosphatase, transcription regulator, translation regulator, transmembrane protein, or

transporter.

8.2.3 Therapeutic and toxic dose levels

The therapeutic doses were taken from the clinical studies used to develop the PBPK models for oral ad-

ministration (Table 8.2). The databases from LiverTox R© [Hoofnagle et al., 2013] and ACuteTox [Clemed-

son et al., 2007], as well as literature [Gregoriano et al., 2014; Tenenbein and Tenenbein, 2005; Aguiar

Bujanda et al., 2006; Spalding and Buss, 1986; von Mach et al., 2005] were screened to set a toxic dose
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Table 8.2: Experimental conditions. Administration route (IV, or PO), respective doses, number of subjects,
and health state. The experimental PK data were either used for establishment of the reference PBPK model
(Reference) or for model validation (Validation).

Drug Route Dose Subjects Health state Model type Reference

APAP po 1000 mg 5 Healthy Reference [Shinoda et al., 2007]
APAP po 20 mg/kg 8 Healthy Validation [Prescott, 1980]
AD iv 400 mg 7 Sick Reference [Andreasen et al., 1981]
AD po 400 mg 7 Sick Reference [Andreasen et al., 1981]
AZA iv 100 mg 15 Sick Validation [Odlind et al., 1986]
AZA iv 50 mg 24 Healthy Reference [Van Os et al., 1996]
AZA po 100 mg 10 Healthy Reference [Zins et al., 1997]
CPA iv 800 mg 12 Healthy Reference [Haubitz et al., 2002]
CPA iv 800 mg 1 Healthy Validation [Juma et al., 1981]
CPA iv 200 mg 1 Sick Validation [Juma et al., 1981]
CPA po 300 mg 1 Healthy Reference [Juma et al., 1979]
CSA iv 4 mg/kg 1 Sick Reference [Aweeka et al., 1994]
CSA iv 4 mg/kg 1 Healthy Validation [Gupta et al., 1990]
CSA po 10 mg/kg 1 Sick Reference [Aweeka et al., 1994]
CSA po 10 mg/kg 1 Healthy Validation [Gupta et al., 1990]
DFN iv 50 mg 7 Healthy Reference [Willis et al., 1979]
DFN po 50 mg 7 Healthy Validation [Willis et al., 1979]
DFN po 100 mg 3 Healthy Reference [Degen et al., 1988]
ERY iv 500 mg 6 Healthy Reference [Barre et al., 1987]
ERY-PED po 400 mg 24 Healthy Reference [Zakeri-Milani et al., 2010]
FT po 250 mg 6 Healthy Reference [Anjum et al., 2001]
HPL iv 3.5 mg 1 Sick Reference [Cheng et al., 1987]
HPL po 2 mg 1 Sick Reference [Cheng et al., 1987]
INH iv 670 mg 1 Healthy Reference [Boxenbaum and Riegelman, 1974]
INH iv 681 mg 1 Healthy Validation [Boxenbaum and Riegelman, 1974]
INH po 300 mg 8 Healthy Reference [Bing et al., 2011]
INH po 300 mg 8 Healthy Validation [Bing et al., 2011]
PB iv 2.6 mg/kg 6 Healthy Reference [Nelson et al., 1982]
PB po 2.9 mg/kg 6 Healthy Reference [Nelson et al., 1982]
PB po 5.2 mg/kg 1 Healthy Validation [Boréus et al., 1978]
PB po 4.3 mg/kg 1 Healthy Validation [Boréus et al., 1978]
PHE iv 5 mg/kg 2 Healthy Reference [Lund et al., 1974]
PHE po 5 mg/kg 2 Healthy Reference [Lund et al., 1974]
PHE po 300 mg 6 Healthy Validation [Velpandian et al., 2001]
RIF iv 300 mg 12 Healthy Reference [FDA, 2015b]
RIF iv 600 mg 12 Healthy Validation [FDA, 2015b]
RIF po 150 mg 8 Healthy Validation [Riess and W, 1968]
RIF po 300 mg 8 Healthy Validation [Riess and W, 1968]
RIF po 450 mg 8 Healthy Reference [Riess and W, 1968]
RIF po 600 mg 8 Healthy Validation [Riess and W, 1968]
SST po 40 mg 10 Healthy Reference [Lilja et al., 2004]
VPA iv 800 mg 6 Healthy Reference [Perucca et al., 1978]
VPA po 800 mg 6 Healthy Reference [Perucca et al., 1978]
VPA po 600 mg 6 Healthy Validation [Gugler et al., 1977]
VPA po 1000 mg 6 Healthy Validation [Bialer et al., 1985]

level for the fifteen hepatotoxic drugs (Table 8.3). During the screening process, only sub-lethal doses

were used while lethal doses were neglected. In case of multiple identified doses, the mean value was set

as therapeutic and toxic dose, respectively.

Toxic doses for SST and FT were scaled from minimum toxic doses observed in rats [Igarashi et al., 2015]

since no appropriate doses could be found in literature. Thereby, a mean scaling factor was computed

between minimum toxic doses from rats [Igarashi et al., 2015] and mean toxic doses found in humans for

all remaining drugs.
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Table 8.3: Toxic dose levels. Toxic dose levels for the fifteen drugs were identified by database and literature
screening. To determine a toxic dose for SST and FT, toxic rat doses [Igarashi et al., 2015] were scaled since no
appropriate doses were found in literature.

Drug Mean toxic dose References

APAP 465 mg/kg [Clemedson et al., 2007; Hoofnagle et al., 2013]
AD 58.7 mg/kg [Clemedson et al., 2007; Hoofnagle et al., 2013]
AZA 46.4 mg/kg [Gregoriano et al., 2014]
CPA 221.9 mg/kg [Aguiar Bujanda et al., 2006]
CSA 134.7 mg/kg [Clemedson et al., 2007]
DFN 13.7 mg/kg [von Mach et al., 2005]
ERY 39 mg/kg [Tenenbein and Tenenbein, 2005; Hoofnagle et al., 2013]
FT 21.2 mg/kg *
HPL 378.2 mg/kg [Henderson et al., 1991; Clemedson et al., 2007]
INH 203.3 mg/kg [Clemedson et al., 2007]
PB 68.5 mg/kg [Clemedson et al., 2007]
PHE 153 mg/kg [Clemedson et al., 2007]
RIF 99 mg/kg [Spalding and Buss, 1986; Clemedson et al., 2007]
SST 56.6 mg/kg *
VPA 606 mg/kg [Clemedson et al., 2007]

* Scaled

8.2.4 In vitro toxicity data

Time-series gene expression profiles from Open TG-GATEs [Igarashi et al., 2015] (ArrayExpress acces-

sion numbers: E-MTAB-797, E-MTAB-798, E-MTAB-799) (Appendix A.1), a large-scale toxicogenomics

database, were used to obtain quantitative drug response data measured in human and rat hepatocytes as

well as in rat livers. Gene expression was measured for three exposed concentrations (low, middle, high)

after three exposure durations (2 h, 8 h and 24 h) in the in vitro study and after four exposure durations

(3 h, 6 h, 9 h, 24 h) in the in vivo study, respectively, by use of Affymetrix Human Genome U133 Plus 2.0

and Affymetrix Rat Genome 230 2.0 GeneChip arrays. Data normalization was performed by applying

the GC-RMA method [Wu et al., 2004]. Probe sets on the chip were mapped to Entrez Gene IDs using

BrainArray custom CDF files (version 19.0.0, ENTREZG) [Dai et al., 2005]. Fold change values were

calculated to indicate gene expression changes compared to the time-matched controls [Igarashi et al.,

2015].

For each in vitro measurement in primary human and rat hepatocytes, differential gene expression anal-

ysis was performed (absolute fold change > 1.5, Benjamini-Hochberg corrected p-value < 0.01) by linear

models using limma [Smyth, 2004] and hypergeometric testing was further applied on each subset of dif-

ferentially expressed genes to determine significantly overrepresented key cellular processes (Benjamini-

Hochberg corrected p-value < 0.01) (Table C.2, Table C.3). P-values were adjusted by Benjamini-

Hochberg correction for multiple testing [Benjamini and Hochberg, 1995].

8.2.5 Identification of significantly perturbed key cellular processes

In the first analysis of the comparative toxicity study, a set of strongly perturbed key cellular processes

was extracted by considering all processes that were found to be significantly overrepresented (Benjamini-

Hochberg corrected p < 0.01) in the in vitro experiment [Igarashi et al., 2015] by at least one third of

the hepatotoxic drugs, irrespectively of the timepoints (Table C.2).

In the second analysis, a toxic change of at least 10 %, on average, was required to identify a set of key

cellular processes significantly affected at certain timepoints by the high-responsive drugs but not by the

low-responsive drugs. At this threshold, no key cellular process was perturbed at any timepoint by the

low-responsive drugs.
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8.2.6 Development of whole-body physiologically-based pharmacokinetic models

The whole-body PBPK models of the fifteen considered drugs were built by use of the software PK-

Sim R© [Willmann et al., 2003; Kuepfer et al., 2016] (Appendix A.2). PBPK models describe ADME

processes based on prior information about the physicochemical properties of a drug and the physiology

and anatomy of the organism (Table 8.4). In the PBPK model structure, relevant tissues and organs

are represented by compartments and are connected by blood flow. These compartments are usually

subdivided into plasma, red blood cells, interstitial and intracellular space. Distribution models describing

mass transfer are parameterized based on physicochemical drug properties and are used to determine

partition coefficients as well as cellular permeabilities between these compartments [Rodgers and Rowland,

2006; Rodgers et al., 2005; Schmitt, 2008; Willmann et al., 2005]. The best-performing calculation methods

provided in the modeling software were used in the developed PBPK models (Table C.5).

Table 8.4: Physicochemical drug properties used in the developed PBPK models. MW, logP, Fu, pKa,
and water solubility used in the developed PBPK models. Molecular weights are taken from DrugBank [Wishart
et al., 2006], references for other properties were explicitly presented. In some cases, logP and Fu values were
slightly adjusted to best describe the experimental data.

ID Drug/
Metabolite

MW
[g/mol]

logP Fu Compound
type

pKa Water
Solubility
[mg/l]

References

1 APAP 151.16 0.33 0.81 Acid 9.38 14000 [Wishart et al., 2006]
1 APAPC 254.31 0.4 0.6* [Acid, base] [1.93, 9.09] 337 [Wishart et al., 2006]
1 APAPG 327.29 -0.98 0.98* Acid 3.17 27700 [Wishart et al., 2006]
1 APAPS 231.23 -0.52 0.8* Acid 10.46 1540 [Bento et al., 2014; Swain, 2012]
1 NAPQI 149.15 0.1 0.02 Neutral - 987 [Wishart et al., 2006; Bond, 2009;

Swain, 2012]
2 AD 645.31 4.67 0.0032 Base 6.56 4.76 [Waldhauser et al., 2006; Veronese

et al., 1988; Latini et al., 1984;
Wishart et al., 2006]

3 6-MP 152.18 1.85 0.81 [Acid, base] [9.50, 2.99] 68500 [Czyrski and Kupczyk, 2013;
Wishart et al., 2006]

3 AZA 277.26 0.1 0.7 Base 7.87 1007 [Wishart et al., 2006]
4 CPA 261.09 0.8 0.8 Acid 6 30000 [Mahoney et al., 2003; Wishart

et al., 2006]
5 CSA 1202.61 3.88 0.09 Acid 11.83 5.81 [Wishart et al., 2006; Lucangioli

et al., 2003; Legg et al., 1988]
6 DFN 296.15 4.1 0.0035 Acid 4.15 2.37 [Wishart et al., 2006; Davies and

Anderson, 1997]
7 ERY 733.93 3.06 0.18 Base 8.88 2000 [Wishart et al., 2006]
7 ERY-PED 862.06 3.84* 0.18 Acid 7.1 2000* [Osol, A. and J.E. Hoover, 1976;

Wishart et al., 2006]
8 2-hydroxy FT 292.21 2.08 0.028 Acid 3.8 5.56 [Anjum et al., 2001; Wishart et al.,

2006]
8 FT 276.21 3.05 0.052 Acid 13.17 9.45 [Anjum et al., 2001; Wishart et al.,

2006]
9 HPL 375.86 3.6 0.06 Base 8.66 14 [Wishart et al., 2006]
10 Acetyl-INH 179.18 -0.9 0.9* [Acid, base] [6.77, 3.02] 1770 [Wishart et al., 2007]
10 INH 137.14 -0.67 0.9 [Acid, base] [13.61, 3.35] 140000 [Wishart et al., 2006]
11 PB 232.24 0.13 0.57 Acid 7.3 1110 [Wishart et al., 2006]
12 PHE 252.27 2.26 0.098 Acid 8.33 32 [Peterson et al., 1982; Wishart

et al., 2006]
13 RIF 822.94 2.93 0.195 Acid 1.7 1400 [Acocella, 1978; Wishart et al., 2006]
14 SST 418.57 4.68 0.03 Neutral - 0.76 [García et al., 2003; Lippert et al.,

2013; Wishart et al., 2006]
14 SST-acid 436.58 4.3 0.056 Acid 4.31 11 [Wishart et al., 2006, 2007; Lippert

et al., 2013]
15 Hydroxyl-VPA 160.21 1.42 0.04* Acid 4.81 45100 [Wishart et al., 2007]
15 VPA 114.21 1.85 0.04 Acid 5.14 1300 [Gugler et al., 1977; Wishart et al.,

2006]
15 VPA-β-

glucuronide
320.33 0.85 0.04* Acid 3.41 22200 [Wishart et al., 2007, 2006]

* Adjusted/adopted from parent drug
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Table 8.5: Active drug transport and metabolic processes. Metabolic and active drug transport pro-
cesses either consist of the metabolic enzyme and the corresponding metabolite, or of the transporter and the
corresponding transporter type (efflux, influx). Kinetic parameters Km and vmax were used to characterize the
kinetic behavior of active processes. A liver plasma clearance of 11.5 ml/min/kg was estimated for the clearance
of 2-hydroxy-FT. For INH, NAT2 polymorphism was considered by estimating two different vmax values to best
describe clinical data available for fast and slow metabolizers [Boxenbaum and Riegelman, 1974; Bing et al., 2011].

ID Drug/
Metabolite

Metabolite/
Transporter
Type

Metabolic
enzyme/
Transporter

Km

[µmol/l]
vmax

[µmol/l/min]
Reference

1 APAP APAP-glucuronide UGT1A9 19742* 5343.10* [Mutlib et al., 2006]
1 APAP APAP-sulfate SULT1A1 9963.80* 192.97* [Riches et al., 2007]
1 APAP NAPQI CYP2E1 41.26* 2.40* [Shinoda et al., 2007]
1 APAPG Efflux ABCG2 96.30* 21.80* [Mazaleuskaya et al., 2015]
1 APAPS Efflux ABCG2 94.49* 21500.41* [Mazaleuskaya et al., 2015]
1 NAPQI APAPC GSTT1 25.00* 569.00* [Shinoda et al., 2007]
2 AD Desethyl-AD CYP1A1 15.9 30.00* [Elsherbiny et al., 2008]
3 6-MP 6-thiouric acid XO 41.50* 410.00* [Aberra and Lichtenstein, 2005]
3 AZA 6-MP GSTA1 7.00* 60.00* [Kaplowitz and Kuhlenkamp, 1978]
4 CPA 4-hydroxy-CPA CYP2B6 91.00* 3.70* [Huang et al., 2000; Gervot et al., 1999;

McDonald et al., 2003]
5 CSA M1, M9, M4n CYP3A4 2.3 108.00* [Vickers et al., 1995; Wishart et al., 2006]
6 DFN 4-hydroxy-DFN CYP2C9 9 530.00* [Leemann et al., 1993; Bort et al., 1999a]
7 ERY N-desmethyl ERY CYP3A4 46 23.00* [Wang et al., 1997; Zhang et al., 2009]
7 ERY-PED N-desmethyl ERY CYP3A4 46 23.00* [Wang et al., 1997; Zhang et al., 2009]
8 FT 2-hydroxy-FT CYP1A2 10.00* 17.30* [Shet et al., 1997]
9 HPL Reduced HPL,

HPL pyridinium
derivative,
4-Fluorobenzoyl-
propionic-acid

CYP3A4 34 47.00* [Avent et al., 2006; Froemming et al., 1989]

10 Acetyl-INH Isonicotinicacid, NAAA 500.00* 30.00* [Ellard and Gammon, 1976]
Acetylhydrazine

10 INH Acetyl-INH NAT2 1950.00* 400.00*,++ [Ellard and Gammon, 1976]
10 INH Acetyl-INH NAT2 1950.00* 70.00*,+ [Ellard and Gammon, 1976]
10 INH Isonicotinic acid, NAAA 2000.00* 4.00* [Ellard and Gammon, 1976]

Hydrazine
11 PB P-hydroxy-PB CYP2C19 147.00* 0.27* [Wishart et al., 2006]
12 PHE 5-(p-hydroxy-

phenyl-),
CYP2C19 16.9 2.40* [Cuttle et al., 2000; Yukawa and Mamiya, 2006]

5-phenylhydantoin
13 RIF 25-desacetyl-RIF CES2 39.20* 1.95* [Sousa et al., 2008; Song et al., 2013; Jamis-Dow

et al., 1997]
14 SST SST-acid CES2 10 223.92* [Lilja et al., 2004; Lippert et al., 2013; García

et al., 2003]
14 SST 6-hydroxy-SST,

3-hydroxy-SST,
6-exomethylene

CYP3A4 10 10.25* [Lilja et al., 2004; García et al., 2003; Lippert
et al., 2013]

14 SST-acid SST-acid-
metabolites

CYP3A4 10 223.90* [Lilja et al., 2004; García et al., 2003; Lippert
et al., 2013]

14 SST-acid Influx OATP1B1 10 276.00* [Kameyama et al., 2005; Lippert et al., 2013]
15 VPA Hydroxy-VPA CYP2C9 40.00* 0.90* [Kiang et al., 2006; Wishart et al., 2006]
15 VPA VPA-β-glucuronide UGT1A8 60.00* 0.90* [Ethell et al., 2003; Wishart et al., 2006]

* Estimated
++ Fast metabolizer
+ Slow metabolizer

A reference PBPK model for intravenous administration was first developed and assessed by comparing

simulated drug concentrations with experimental data from literature (Table 8.2). For FT, only a refer-

ence PBPK model for oral administration of 250 mg was developed, since this is the major therapeutic

dose level and administration route. Km and vmax representing the kinetic behavior of active processes

were mainly fitted to best describe the experimental data used for model establishment. However, exper-

imentally measured Km values for several metabolic reactions could be identified in literature and were

used unchanged in the model structure (Table 8.5). In the PBPK model of INH, two different vmax values

were estimated for the enzymatic reaction catalyzed by N-acetyltransferase 2 (NAT2) to characterize fast

and slow metabolizers, for which clinical data were available [Boxenbaum and Riegelman, 1974; Bing

et al., 2011]. Note that NAT2 polymorphism may extensively influence the pharmacokinetic and phar-

macodynamic behavior of INH for specific patient subgroups. To describe the elimination of the drugs

and their metabolites, renal and biliary clearance processes were incorporated into the PBPK models
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Table 8.6: Renal and biliary clearance processes. Renal and biliary clearance processes of the developed
PBPK models.

ID Drug/Metabolite Route Process type Clearance Reference

1 APAP Renal Kidney plasma clearance 13.62 ml/h/kg [Critchley et al., 1986]
1 APAPC Renal Kidney plasma clearance 300.00 ml/h/kg [Critchley et al., 1986]
1 APAPG Renal Kidney plasma clearance 126.00 ml/h/kg [Critchley et al., 1986]
1 APAPS Renal Kidney plasma clearance 10.12 ml/h/kg [Critchley et al., 1986]
1 NAPQI Renal Kidney plasma clearance 120.00 ml/h/kg [Krauss et al., 2012]
4 CPA Renal Kidney plasma clearance 15.30 ml/h/kg [Wishart et al., 2006]
4 CPA Biliary Biliary plasma clearance 3.90 ml/h/kg [Wishart et al., 2006]
6 DFN Renal Kidney plasma clearance 16.80 ml/h/kg [Wishart et al., 2006]
7 ERY Renal Kidney plasma clearance 61.00 ml/h/kg [FDA, 2015a]
7 ERY-PED Renal Kidney plasma clearance 61.00 ml/h/kg [Periti et al., 1989]
8 2-hydroxy-FT Renal Kidney plasma clearance 0.26 ml/h/kg [Anjum et al., 2001]
8 FT Renal Kidney plasma clearance 5.22 ml/h/kg [Anjum et al., 2001]
9 HPL Renal Kidney plasma clearance 4.80 ml/h/kg [Froemming et al., 1989]
10 INH Renal Tubular secretion* Km = 300.00 µmol/l [Mitchell et al., 1975]

vmax = 45.69 µmol/l/min
10 Acetyl-INH Renal Tubular secretion* Km = 20.00 µmol/l [Mitchell et al., 1975]

vmax = 0.69 µmol/l/min
11 PB Renal Kidney plasma clearance 0.99 ml/h/kg [Boréus et al., 1978]
12 PHE Renal Tubular secretion** 0.22 l/h [Borgå et al., 1979]
13 RIF Renal Kidney plasma clearance 16.80 ml/h/kg [FDA, 2015b]
14 SST Renal Kidney plasma clearance 420.00 ml/h/kg [García et al., 2003]
15 VPA Renal Kidney plasma clearance 0.30 ml/h/kg [Gugler et al., 1977]

* Michaelis-Menten
** First-order

(Table 8.6) In the case of AZA, 6-MP, AD and CSA, renal elimination was not considered since negligible

amounts were found in urine [Vickers et al., 1995; Wishart et al., 2006].

Once a sufficient model quality was reached, a reference PBPK model for oral administration was de-

veloped thereby using all parameters identified for the intravenous reference PBPK model. Only the

intestinal permeability was adjusted in some cases to best describe the absorption phase after oral drug

intake (Table C.4). In general, an endothelial barrier between the plasma and the interstitial space is

assumed for large molecules like proteins but not for small molecules [Rippe and Haraldsson, 1994]. In

the PBPK model of DFN, however, the rate of permeation through this endothelial barrier was limited

in all organs except in the liver (brain: 0.004 cm/s, other organs/tissues: 0.04 cm/s), since DFN is highly

bound to plasma proteins (Table 8.4).

The established reference PBPK models for both administration routes were further validated dependent

on the availability of experimental data from other clinical studies. Since APAP and SST are mostly

administered orally, only one administration route was considered in the specific PBPK models (Figure

8.2). In the case of ERY, erythromycin ethylsuccinate (ERY-PED) [FDA, 2016], an ester of the base form,

was orally administered. In the validation step, all parameters of the specific reference PBPK model were

left unchanged, except parameters characterizing the specific individuals and the dosage regimen. In the

validated PBPK model established for intravenous administration of 200 mg of CPA (Figure 8.2, Table

8.2), kidney plasma clearance was reduced to 5.1 ml/h/kg for renally-impaired patients [Juma et al.,

1981]. Finally, a normalized RMSD as well as R2 identified after linear regression were calculated for all

human PBPK models to assess the model quality [Thiel et al., 2016].

To develop rat PBPK models used for the validation cross-species extrapolation was applied. Thereby,

pharmacokinetics were extrapolated from humans to rats by taking into account physiological and

anatomical differences between both species [Thiel et al., 2015].
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8.2.7 Prediction and validation of in vivo drug responses

The integrative multiscale approach called PICD allows a time-resolved description of drug-induced in

vivo response at the patient level by integrating in vitro toxicity data into whole-body PBPK models

[Thiel et al., 2016]. Here, PICD was applied on fifteen hepatotoxic drugs to predict in vivo drug responses

of key cellular processes, functional classes of genes, and individual genes, induced by oral administration

of therapeutic and toxic doses in humans.

When applying PICD, bioavailability values calculated from the developed human PBPK model were used

to consider oral administration (Table C.6). In the case of AZA, the bioavailability found in literature

was used since the difference between the literature value and the calculated value was significantly high

[Van Os et al., 1996].

In vivo drug responses after 2 h, 8 h and 24 h for therapeutic and toxic dose administration were then

calculated by computing the mean gene response level (gene response is defined as absolute log2 fold

change) of all genes assigned to a specific key cellular process (Table C.1). In the case where in vitro

data only exist for 8 h and 24 h [Igarashi et al., 2015], the predicted response patterns were interpolated

to determine response values at 2 h. When analyzing functional classes of genes, in vivo drug responses

were predicted for the different functional classes of genes involved in a specific key cellular process by

calculating the mean gene response level of all genes assigned to a certain functional category.

To validate PICD in rats, significantly enriched key cellular processes (Benjamini-Hochberg corrected

p < 0.01) were first identified for each drug (Table C.3), and correspondent in vivo drug responses were

then predicted following oral administration of the three doses applied in the in vivo rat study [Igarashi

et al., 2015]. Here, the highest dose was identified in a 4-week toxicity study.

According to [Thiel et al., 2016], predictions were subsequently compared to in vivo observations by

calculating the Pearson correlation coefficient r, the coefficient of determination R2 and corresponding

confidence intervals (CI) between predicted drug response profiles and measurements obtained in rat

livers [Igarashi et al., 2015]. Predicted drug response profiles were linearly interpolated to be comparable

to time-matched in vivo measurements (3 h, 6 h, 9 h, and 24 h).

8.2.8 Calculation of toxic changes

In the comparative toxicity analysis (Figure 8.2), toxic changes were calculated at different timepoints

(2 h, 8 h and 24 h) for key cellular processes, functional classes of genes within a key cellular process,

and single genes. Here, a toxic change at a timepoint t for a drug d is defined as follows:

toxic changet,x,d = in vivo drug response(toxic)t,x,d − in vivo drug response(therapeutic)t,x,d (8.1)

where x denotes a key cellular process, a functional class within a key cellular process, or a single gene. In

vivo drug responses induced by therapeutic and toxic dose administration were predicted by calculating

gene response levels (defined as absolute log2 fold change) for single genes, and by calculating the mean

gene response level of all genes assigned to a key cellular process or to a functional class within a key

cellular process, respectively [Thiel et al., 2016].

In order to compare the toxic behavior of AZA and VPA in cell cycle checkpoint regulation, differences of

toxic changes for all involved genes were calculated between both drugs and were mapped onto the pre-

defined pathway ’cell cycle G2/M DNA damage checkpoint regulation’ taken from QIAGENs Ingenuity

Pathway Analysis (IPA R© QIAGEN Redwood City, www.qiagen.com/ingenuity). Note that differen-

tially responding genes (absolute difference of toxic change > 0.15) of AZA and VPA are reflected by a

positive and a negative value, respectively. All differentially responding genes as well as genes with toxic

changes higher than 15 % for both drugs were finally used to build differential response pathways.
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8.2.9 Prediction of molecular biomarkers and potential drug interactions

All genes involved in the strongly affected key cellular processes analyzed in the functional analysis

were considered to identify potential molecular biomarkers and DDIs. A gene g was marked as common

molecular biomarker for all high-responsive drugs if the following condition was fulfilled:

µ(toxic change)g > 1.5 ∗ µ(toxic change) AND σ(toxic change)g < 0.5 ∗ σ(toxic change) (8.2)

µ, mean response of all genes considered; σ, respective standard deviation. In contrast, a gene g was

marked as individual molecular biomarker for only a single drug d if the more stringent requirement was

fulfilled:

(toxic change)d,g > 7 ∗ µ(toxic change) (8.3)

Several thresholds deviating from ±5 % of the used thresholds above did not significantly alter the

number of identified common molecular biomarkers (±14 %) or individual molecular biomarkers (±4 %).

All common molecular biomarkers were additionally compared between the low and high-responsive drugs

by evaluating the correspondent toxic changes between both groups.

All individual molecular biomarkers were used to identify potential DDIs. Thereby, a potential DDI

was assumed, if at least one individual molecular biomarker was identified for both drugs. These DDIs

were then compared with known DDIs from DrugBank [Wishart et al., 2006] and from www.drugs.com

[Accessed 2016 March 3rd] by calculating the accuracy, sensitivity, specificity and the precision that were

formulated as follows:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(8.4)

Sensitivity =
TP

(TP + FN)
(8.5)

Specificity =
TN

(TN + FP )
(8.6)

Precision =
TP

(TP + FP )
(8.7)

where TP represents true positive, TN represents true negative, FP represents false positive, FN represents

false negative. Types of DDIs (’pharmacokinetic interaction’ and ’pharmacodynamic interaction’) were

assigned according to [Huang et al., 2013], if the interaction type was not unknown. The BioInteractor

tool from DrugBank was used to confirm predicted drug-enzyme associations for two corresponding drugs

involved in a potential DDI [Wishart et al., 2006].

8.3 Results

8.3.1 Whole-body physiologically-based pharmacokinetic models

Whole-body PBPK models were initially established for a set of fifteen hepatotoxic drugs and were

carefully validated with human experimental data from literature (Figure 8.3, Figure 8.4, Table 8.2). The

validated PBPK models served as input for PICD [Thiel et al., 2016] to quantify in vivo drug responses

induced by therapeutic and toxic doses administered in humans.
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Figure 8.3: Human PBPK models. Simulated (lines) and experimental (circles) PK data of parent drugs
(blue) were evaluated to develop reference (ref) or validated (val) human PBPK models. Green, renal excre-
tion; dark yellow, biliary excretion; * Primary metabolites (red) 6-MP, 2-hydroxy-FT, acetyl-INH, and SST-acid;
‡ APAP-glucuronide (APAPG) (red), APAP-sulfate (APAPS) (orange), APAP-cysteine (APAPC) (purple), and
NAPQI (black); † Rapid metabolizer; $ Slow metabolizer; § Unbound plasma concentrations (red).
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Figure 8.4: PBPK model assessment. Simulated concentration-time profiles of parent drugs and their metabo-
lites were compared to experimental PK data. Observed vs. predicted plots including the RMSD and R2 value
were generated for all reference and validated PBPK models
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Physicochemical properties, plasma protein binding, and lipophilicity of the different drugs and their

metabolites were obtained from literature and were used to develop the reference PBPK model for

intravenous administration in humans (Table 8.4). Key metabolic reactions and active drug transport were

integrated into the human PBPK models to represent the main ADME processes (Table 8.5). Relative

tissue-specific abundances of relevant enzymes and transporters were estimated using tissue-specific gene

expression data [Meyer et al., 2012]. To describe the elimination of the drugs and their metabolites,

renal and biliary clearance processes were incorporated into the human PBPK models (Table 8.6) and

parametrized such that simulations are in agreement with experimental observations (Table 8.6). After

model establishment, the simulated drug concentrations in plasma showed an excellent agreement with

in vivo PK data measured in humans (Figure 8.3, Figure 8.4).

To validate the established reference PBPK models, experimental PK data from different studies, which

had not been used during initial model establishment, were next used to simulate concentration-time

profiles for additional dosage regimens and patient subgroups (Figure 8.3, Figure 8.4). Notably, model

parameters were left unchanged for model validation except the intestinal permeability where the initial

reference value was slightly adjusted in some cases, when the drug was given orally (Table C.4).

The PBPK model parameters (Table 8.4, Table 8.5, Table 8.6, Table C.4, Table C.5) together with the

specific information about the clinical studies (Table 8.2) are sufficient to fully reproduce all developed

human PBPK models due to the large degree of prior information, which is already included in PBPK

models. Importantly, the validated PBPK models allow accurate simulations for different dose levels,

including therapeutic or toxic doses, since potential non-linearities in ADME processes are implicitly

represented through the underlying model structure.

8.3.2 Integrating in vitro toxicity data into physiologically-based pharmacokinetic models

To analyze and compare drug-induced hepatotoxicity of the fifteen drugs within a patient context, toxic

changes reflecting the transition from desired drug effects to adverse events were considered by predicting

time-dependent in vivo responses for humans following drug administration of therapeutic and toxic

doses. In vitro toxicity data from Open TG-GATEs measured in primary human hepatocytes for the

fifteen hepatotoxic drugs were therefore analyzed [Igarashi et al., 2015]. Toxicity lists from QIAGENs

Ingenuity Pathway Analysis (IPA R©, QIAGEN Redwood City, www.qiagen.com/ingenuity) were used

to represent biological processes associated to critical toxicological responses and are further referred

to as ’key cellular processes’ (Table C.1). Drug concentration-time profiles were simulated for therapeutic

and toxic doses identified in literature (Figure 8.5, Table 8.2, Table 8.3) by using the developed human

PBPK models (Figure 8.3).

PICD was next applied to translate in vitro findings to an in vivo situation within patients. In brief,

the basic concept of PICD is the identification of in vivo doses such that the simulated drug exposure

in the interstitial space of the liver is equal to the in vitro drug exposure of the assay. The identified in

vivo doses were mapped to the in vitro toxicity data in order to describe time-dependent in vivo drug

responses at different dose levels (Figure 8.1) [Thiel et al., 2016]. After applying PICD, in vivo drug

responses for humans induced by therapeutic and toxic doses could be predicted for the considered key

cellular processes.

8.3.3 Validation of predicted in vivo drug responses in rats

To validate the predictive accuracy of the PICD-based in vitro-in vivo translations, PICD was next

applied for rats, because in vivo data were only available for rats but not for humans [Igarashi et al., 2015].

Since PICD requires PBPK models as input at the organism level, rat PBPK models were developed by
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Figure 8.5: Therapeutic and toxic pharmacokinetic profiles. Plasma concentration-time profiles simulated
for drug administration of the therapeutic (blue) and the toxic (red) doses in humans (Table 8.2, Table 8.3).

applying cross-species extrapolation thereby taking into account species-specific differences to extrapolate

PK profiles between humans and rats [Thiel et al., 2015].

In vitro toxicity data measured in rat hepatocytes [Igarashi et al., 2015] were then translated to an in

vivo situation by applying PICD on rat PBPK models. For each drug, significantly perturbed key cellular

processes for rats were identified (Table C.3) and correspondent in vivo drug responses were subsequently

predicted for the relevant doses that have been administered in the in vivo rat study [Igarashi et al.,

2015]. Finally, predicted drug responses were correlated with in vivo observations.

Correlation analyses between predicted and observed in vivo rat data revealed moderate correlations

(r = 0.27-0.76, p < 0.05, R2 = 0.07-0.58) (Figure 8.6) for all drugs apart from PB (r = 0.03, p =

0.6, 95 % CI = [-0.07, 0.13], R2 = 9.4E-4) and APAP (r = -0.05, p = 0.35, 95 % CI = [-0.16, 0.06],

R2 = 0.0025) (Figure 8.6). These correlations obtained in a preparatory proof-of-concept analysis in rats

are mostly statistically significant albeit not that strong in some cases. A general validity of further

PICD-based analyses in humans can nevertheless be assumed.

8.3.4 Comparative toxicity analysis

In the comparative toxicity analysis, drug-induced hepatotoxicity was investigated within a patient con-

text to identify subsets of drugs, which share similar perturbation on key cellular processes, functional

classes of genes, as well as individual genes. Toxic changes reflecting the transition from desired drug ef-

fects to adverse events were therefore calculated for humans and were compared among the set of fifteen

hepatotoxic drugs (Table 8.1).

The application of PICD allowed predicting time-dependent drug responses of therapeutic and toxic doses

in an in vivo context [Thiel et al., 2016]. Note that all in vivo drug response values predicted for the

toxic dose were higher than the respective values predicted for the therapeutic dose, such that all toxic

changes are positive.
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Figure 8.6: Validation of predicted drug response with in vivo measurements in rats. In vivo drug
responses of significantly perturbed key cellular processes (Table C.3) predicted for the three doses used in the in
vivo rat study were compared to observations measured in vivo [Igarashi et al., 2015].

Analysis of key cellular processes

In the first analysis, toxic changes calculated for humans were evaluated at three different time points

(2 h, 8 h, and 24 h) for key cellular processes that were significantly overrepresented in at least one third

of the drugs (Figure 8.7, Table C.2).

Hierarchical clustering identified three major groups, which showed a clear separation between the con-

sidered timepoints (Figure 8.7). This observation was also confirmed by applying a principal component

analysis (Figure 8.8). Interestingly, low toxic changes were observed for SST, DFN, and AD at all time-

points. In contrast, high toxic changes (e.g., for genes involved in liver damage, liver hepatitis, liver

steatosis, and liver proliferation) were found already at 2 h for HPL, APAP, VPA, AZA, and INH. AZA

and VPA further depicted a high impact on genes involved in hepatocellular hypertrophy resulting in

glutathione depletion (Figure 8.7). At 8 h, VPA and APAP revealed substantially high activity on several

key cellular processes in particular on liver proliferation, liver damage, and liver hyperplasia (Figure 8.7).

Furthermore, the regulation of the cell cycle G2/M DNA damage checkpoint, on the one hand, as well as

the activation of the FXR/RXR and CAR/RXR heterodimers, on the other hand, were clearly perturbed

after 8 h by APAP and AZA, respectively (Figure 8.7). At 24 h, VPA primarily affected all considered

key cellular processes (Figure 8.7).

Hierarchical clustering was next performed to classify the fifteen hepatotoxic drugs according to similar

hepatotoxic potential. Two main clusters could be identified where the first cluster (SST, DFN, AD, ERY,

FT, CSA, and PHE) basically showed a lower response on key cellular processes than the second one (RIF,
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Figure 8.7: Comparative toxicity analysis of key cellular processes. Toxic changes in perturbed key
cellular processes (Table C.1) were calculated for fifteen hepatotoxic drugs at 2 h, 8 h and 24 h. The drugs were
annotated with their respective DILI-potential, the BCS class and the target organ or system. The dendrograms
were constructed using Ward’s minimum variance algorithm. The color scale depicts normalized toxic changes.
The heatmap was visualized by use of the web tool ClustVis [Metsalu and Vilo, 2015]. Row-normalization is
performed by subtracting the mean and by dividing the respective standard deviation.
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Figure 8.8: Principal component
analysis. Principal component anal-
ysis was applied on all toxic changes
predicted at 2 h (blue), 8 h (green),
and 24 h (red). Percentage of explained
variance of principal components one
(PC1) and two (PC2) are shown in
brackets. Ellipses around the different
groups are generated with a confidence
level of 0.95. Results of principal com-
ponent analysis were visualized by use
of the web tool ClustVis [Metsalu and
Vilo, 2015].

CPA, PB, INH, HPL, AZA, APAP, and VPA) (p = 9E-66, 95 % CI = [0.079, 0.098], two-sample t-test).

The low-responsive group was further subclustered into SST, DFN, AD and ERY, on the one hand, and

into FT, CSA and PHE, on the other hand. The high-responsive group could be further subdivided into

three smaller subclusters: the first consists of RIF, CPA, and PB; the second of AZA, HPL, and INH;

the third only of APAP and VPA.

The hierarchical clustering results were further analyzed to test whether the low- and high-responsive

drugs could be attributed to (i) pharmacokinetic parameters, (ii) drug permeability and solubility prop-

erties (BCS class) [Benet, 2013], (iii) their target organ or system (anatomical main group), or (iv) their

concern for causing DILI (DILI-potential) (Table 8.1). Results from this analysis show that the low-

responsive drugs were significantly higher bound to plasma proteins (p = 0.0098, 95 % CI = [0.15, 0.74],

two-sample t-test), were more lipophilic (p = 0.0013, 95 % CI = [1.24, 4.05], two-sample t-test), and

tended to be less soluble than drugs from the high-responsive group (p = 0.21, 95 % CI = [-16964.77,

63585.33], two-sample t-test) (Table 8.4). Interestingly, toxic changes calculated for both groups were

independent from both the ratio of toxic and therapeutic doses (p = 0.33, 95 % CI = [-1509.31, 3929.78],

two-sample t-test) (Table 8.2, Table 8.3) and from the ratio of correspondent area under the curve values

(AUC0-24h: p = 0.35, 95 % CI = [-2341.65, 5798.28], two-sample t-test) (Figure 8.5).

Comparison of both main clusters also showed no clear distinction of annotated DILI-potentials (Figure

8.7) with regard to drug-specific characteristics, which was also observed for the assigned severity scores

(p = 0.7, 95 % CI = [-2.12, 3.09], two-sample t-test) (Figure 8.7, Table 8.1). Contrarily, the drugs classified

as BCS class 3 (low permeability, high solubility) and class 4 (low permeability, low solubility) tended to

belong to the high-responsive drugs while the low-responsive group was enriched with drugs annotated

with BCS class 2 (low solubility, high permeability). Furthermore, drugs were not clearly separable based

on their target organ or system (Figure 8.7). Nevertheless, drugs acting on the cardiovascular system

(SST and AD) or on the musculo-skeletal system (DFN) were clustered together, while antiinfectives and

drugs acting on the nervous system were rather assigned to the high-responsive group (Figure 8.7, Table

8.1).

Analysis of functional classes of genes

Next, toxic changes were analyzed at the functional level to quantitatively describe to what extent single

drugs or subset of drugs perturbed different functional classes of genes (e.g. kinases or metabolic enzymes)

associated to key cellular processes (Figure 8.9). Note that only the previously identified set of the high-
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Figure 8.9: Toxic changes predicted for functional classes of genes involved in key cellular pro-
cesses. The toxic changes were predicted for different functional classes of genes involved in the respective key
cellular processes. All drugs belonging to the high-responsive group were considered. The color scale depicts toxic
changes that were normalized over each heatmap. Normalization for each key cellular process is performed by
subtracting the mean and by dividing the respective standard deviation. (A) ’Nrf2 mediated oxidative stress
response’. (B) ’Cell cycle G2/M DNA damage checkpoint regulation’. (C) ’PXR/RXR activation’. (D) ’LPS/IL-1
mediated inhibition of RXR function’. (E) ’Primary glomerulonephritis biomarker panel’. (F) ’Aryl hydrocarbon
receptor signalling’. (G) ’Cytochrome P450 - substrate is a xenobiotic’. (H) ’CAR/RXR activation’. (I) ’Xenobiotic
metabolism signalling’. (J) ’Glutathione depletion - hepatocellular hypertrophy’. (K) ’Fatty acid metabolism’.

responsive drugs and a subset of key cellular processes, which were strongly induced by these drugs, were

here considered in the following.

RIF, PB and VPA demonstrated a high impact on metabolic enzymes involved in the Nrf2-mediated

oxidative stress response (Benjamini-Hochberg corrected p = 0.001, 95 % CI = [0.11, 0.36], two-sample

t-test), in particular on cytochrome P450 enzymes and transferases (Figure 8.9A). VPA further affected
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transcription regulators (Benjamini-Hochberg corrected p = 0.05, two-sample t-test, 95 % CI = [0.06,

0.58]) particularly FOSL1 and KEAP1 (Figure 8.9A). A significant toxic change on kinases by AZA

and VPA was observed at 24 h when focusing on processes of cell cycle G2/M DNA damage checkpoint

regulation (Benjamini-Hochberg corrected p = 0.0002, 95 % CI = [0.19, 0.45], two-sample t-test) (Figure

8.9B). A high toxic change of RIF, PB and VPA at 24 h was detected for metabolic enzymes involved

in xenobiotic cytochrome P450 metabolism (Benjamini-Hochberg corrected p = 0.003, 95 % CI = [0.38;

1.36], two-sample t-test) (Figure 8.9G), glutathione depletion induced by hepatocellular hypertrophy

(Benjamini-Hochberg corrected p = 0.069, 95 % CI = [0.05; 0.78] , two-sample t-test) (Figure 8.9J), as

well as in fatty acid metabolism (Benjamini-Hochberg corrected p = 0.0001, 95 % CI = [0.12, 0.30], two-

sample t-test) (Figure 8.9K), and in the activation of the PXR/RXR heterodimer (Benjamini-Hochberg

corrected p = 0.001, 95 % CI = [0.34, 1.02], two-sample t-test) (Figure 8.9C). Moreover, PB, VPA and

RIF strongly perturbed BAX (Benjamini-Hochberg corrected p = 0.0016, 95 % CI = [0.24, 0.47], two-

sample t-test), an apoptosis regulator that modulates the mitochondrial permeability of the transporter

VDAC [Shi et al., 2003] (Figure 8.9F). Investigating toxic changes of biomarkers referred to primary

glomerulonephritis revealed a substantial impact of APAP on the heparin-binding growth factor HBEGF

at 8 h (Benjamini-Hochberg corrected p = 0.0026, 95 % CI = [0.42, 0.96], two-sample t-test) (Figure

8.9E).

Amongst others, a high impact of AZA and VPA on the regulation of the cell cycle G2/M DNA damage

checkpoint was found in this second analysis (Figure 8.9B). Building on this observation, the cellular

response on cell cycle regulation induced by both drugs was analyzed in more detail at the level of single

genes and pathways in the following.

Comparative toxicity analysis of azathioprine and valproic acid in cell cycle checkpoint

regulation

The previous analysis of functional classes of genes revealed similar toxic behavior of AZA and VPA

in the regulation of the cell cycle G2/M DNA damage checkpoint (Figure 8.9B) despite a significant

pharmaceutical and chemical diversity (Table 8.4, Table 8.1). We therefore considered the toxic behavior

between AZA and VPA at the gene level in an exemplary use case by individually analyzing toxic changes

of involved genes.

The G2/M DNA damage checkpoint represents the second checkpoint in the cell cycle and ensures that

genomic stability is maintained by repairing damaged DNA before entering the mitosis phase (Figure

8.10A) [Löbrich and Jeggo, 2007]. Hence, this pathway is crucially involved in DNA replication, recombi-

nation, and repair, respectively, and is consequently essential for cell viability [Kastan and Bartek, 2004].

A key role for the transition from the G2 phase to the M phase forms the cyclin-dependent kinases and

several transcription regulators (Figure 8.10A) [Nigg, 1995].

To directly compare the toxic behavior between both drugs, the differences of toxic change were calculated

for all involved genes (Figure 8.10B). In this way, differentially responding genes of AZA and VPA reflected

by a positive or negative value, respectively, could be identified. Analyzing differences in toxic changes

revealed similar effects at 2 h for several genes (Figure 8.10B). Interestingly, only the p53 regulator

MDM4, and the phosphatase PPM1D, the kinases CKS2 and CDC2 as well as the stress sensor GADD45,

demonstrated high differences of toxic change for VPA and AZA, respectively (Figure 8.10B).

Furthermore, a set of similarly responding genes was observed at 2 h, 8 h and 24 h (ATM, PLK1,

p19Arf, RPRM, p300, 14-3-3(β,ε), CDC25B, WEE1 and CHEK1) (Figure 8.10B). Although these simi-

larly responding genes showed only slight differences of toxic change, both drugs considerably affect ATM,

CDC25B, WEE1 and CHEK1, and in particular PLK1 and cyclin B1 and B2 (Figure 8.10B). In contrast
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Figure 8.10: Comparison of toxic changes between azathioprine and valproic acid in cell cycle
checkpoint regulation. The colorbar depicts differences of toxic changes between both drugs. Genes with
high toxic changes for both drugs were explicitly marked in red. (A) Pathway of ’cell cycle G2/M DNA damage
checkpoint regulation’. (B) Comparison of toxic changes for involved genes between AZA and VPA. (C) AZA, 2 h.
(D) AZA, 24 h. (E) VPA, 8 h. (F) VPA, 24 h.

to the findings at 2 h, differences in several genes were found at 8 h and 24 h such as CKS2, CDC2, and

p53 for VPA and p21Cip1, DNA-PK and BORA for AZA (Figure 8.10B).

The differentially responding genes were next used to build differential response pathways at given time-

points (Figure 8.10C-F). Note that none of these pathways could be found for AZA and VPA alone at
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2 h and 8 h, respectively, but can only be identified through a comparative analysis. Exploring these

pathways helps to compare dynamic changes between AZA and VPA in the regulation of the cell cycle

G2/M DNA damage checkpoint when switching from therapeutic to toxic dose administration.

Analyzing differential response pathways of AZA at 2 h (Figure 8.10C) and VPA at 8 h (Figure 8.10E)

revealed that AZA highly perturbed GADD45 and CKS2, which regulates CDC2-cyclin B complex, while

VPA affected the same key complex by strongly perturbing p53 via HIPK2, on the one hand, and p90RSK,

Myt1, and CDK7, on the other hand. Interestingly, GADD45 and CKS2 were involved in both pathways

but in a time-shifted manner. In order to regulate key processes of the cell cycle G2/M checkpoint at

24 h, BORA and DNA-PK were highly affected by AZA (Figure 8.10D). In contrast, a significantly

higher activity due to VPA administration was observed at the same timepoint thereby regulating all

major processes mostly via p53, MDM2 and CDC2 (Figure 8.10F).

The comparative analysis of similarly- and differentially responding genes might help to identify either

individually or commonly affected molecular biomarkers that reflect toxic drug action, which is either

exclusively induced by a single drug (e.g., BORA at 24 h for AZA) or simultaneously by both drugs (e.g.,

cyclin B1 and B2 at 24 h). Genes that are simultaneously affected by two drugs might also be a common

target during drug co-administration as such leading to an additive drug effect.

Analysis of individual genes

To conclude our analysis, toxic changes were calculated for individual genes that were involved in the key

cellular processes strongly affected by the high-responsive drugs (Figure 8.9). These gene-related toxic

changes were then used to quantitatively explore which genes were similarly perturbed by which drugs.

This knowledge was finally used to identify individual and common molecular biomarkers for single drugs

and subset of drugs, respectively. Molecular biomarkers play a key role in clinical risk assessment and

the early prediction of drug toxicity. To identify robust common molecular biomarkers within the cluster

of high-responsive drugs, a significant and similar toxic change (at least one and a half-fold increase and

less than half of the standard deviation) at a certain timepoint was required (Table 8.7). To test whether

the common molecular biomarkers were sensitive, the respective toxic changes of an identified biomarker

were compared between the low- and high-responsive drugs.

In total, twelve common molecular biomarkers were detected for the set of high-responsive drugs (Table

8.7). Nine genes demonstrated statistical significant changes (Benjamini-Hochberg corrected p < 0.05):

the metabolizing enzymes EPHX1, CYP2C9, SULT1A2, and GSTP1, the transporter ABCA1, as

well as the kinases PRKACA and MAP3K14, and the ligand-dependent nuclear receptors AHR and

NR0B2 (Table 8.7). These biomarkers are involved in key cellular processes such as in the activa-

tion of the PXR/RXR heterodimer, in the LPS and IL-1 mediated inhibition of the RXR func-

tion, or in the aryl hydrocarbon receptor signaling (Table 8.7). In contrast, the transcription regu-

lator ELF3, the growth factor TGFB2 and the kinase PKMYT1 were not found to be significant

(Benjamini-Hochberg corrected p ≥ 0.05, two-sample t-test) indicating that these genes show similar

toxic change for both the high- and the low-responsive drugs (Table 8.7).

To identify individual molecular biomarkers for each of the high-responsive drugs, a very strong toxic

change (at least seven-fold increase compared to mean toxic change) was required. The majority of the

individual molecular biomarkers belong to the cytochrome P450 family, transcription regulators, or they

are transporters (Table C.7). These drug-specific molecular biomarkers were finally analyzed to identify

potential DDIs between the high-responsive drugs in the case of co-administration. To this end, a potential

DDI between two drugs was assumed, if both drugs share at least one biomarker (Table C.8).

The consequently identified pairs of drugs were then compared with known DDIs from DrugBank [Wishart

et al., 2006] and from Drugs.com (Figure 8.11). Strikingly, the prediction of DDIs reaches an accuracy of
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Table 8.7: Common molecular biomarkers. Common molecular biomarkers were identified in different key
cellular processes at different timepoints for the drugs of the high-responsive group. Benjamini-Hochberg corrected
p-values p were calculated by comparing the correspondent toxic changes between the low and high-responsive
group. Functional types were taken from QIAGENs Ingenuity Pathway Analysis (IPA R©, QIAGEN Redwood City,
www.qiagen.com/ingenuity).

Gene Functional type P-value Key cellular processes (timepoint)

EPHX1 peptidase 0.001* xenobiotic metabolism signaling (24 h),
NRF-2 mediated oxidative stress response (24 h)

CYP2C9 enzyme 0.003* cytochrome p450 - substrate is a xenobiotic (8 h),
PXR/RXR activation (8 h),
CAR/RXR activation (8 h)

ABCA1 transporter 0.003* LPS/IL-1mediated inhibition of RXR function (24 h)
GSTP1 enzyme 0.004* xenobiotic metabolism signaling (24 h),

aryl hydrocarbon receptor signaling (24 h),
LPS/IL-1 mediated inhibition of RXR function (24 h),
NRF-2 mediated oxidative stress response (24 h)

SULT1A2 enzyme 0.004* xenobiotic metabolism signaling (24 h),
LPS/IL-1mediated inhibition of RXR function (24 h)

AHR ligand-dependent nuclear
receptor

0.005* xenobiotic metabolism signaling (24 h),
aryl hydrocarbon receptor signaling (24 h)

PRKACA kinase 0.008* PXR/RXR activation (24 h)
MAP3K14 kinase 0.016* xenobiotic metabolism signaling (24 h)
NR0B2 ligand-dependent nuclear

receptor
0.022* PXR/RXR activation (24 h),

aryl hydrocarbon receptor signaling (24 h),
LPS/IL-1 mediated inhibition of RXR function (24 h)

TGFB2 growth factor 0.086 aryl hydrocarbon receptor signaling (24 h)
PKMYT1 kinase 0.186 cell cycle G2/M DNA damage checkpoint regulation (24 h)
ELF3 transcription regulator 0.212 primary glomerulonephritis biomarker panel (8 h)

* Benjamini-Hochberg corrected p < 0.05

68 % and a precision of 71 % with respect to DDIs known from the literature (Figure 8.11). The number

of correctly predicted DDIs and non-DDIs was found to be 75 % and 58 %, respectively. Analyzing all

potential DDIs, 35 out of the 42 DDIs were identified based on high toxic changes on cytochrome P450

enzymes for both drugs (Table C.8). Interestingly, in 72 % of these cases predicted cytochrome P450

enzymes are in accordance with literature data [Wishart et al., 2006] underlining the general validity of

the approach.

8.4 Discussion

In this article, a comparative study of drug-induced hepatotoxicity was presented, which enables the

investigation and evaluation of the hepatotoxic potential of several drugs within a patient context. Toxic

changes reflecting time-resolved cellular responses induced by oral drug administration of therapeutic

and toxic doses in humans were thereby predicted to study changes in key cellular processes, functional

classes of genes, and individual genes, as well as to identify molecular biomarkers and potential DDIs.

Notably, toxic changes describe the transition from therapeutic drug response to adverse events and thus

allow a quantitative representation of clinically relevant situations within a patient context.

By applying PICD (Figure 8.1) [Thiel et al., 2016], in vitro toxicity data obtained in primary human

hepatocytes from Open TG-GATEs [Igarashi et al., 2015] could be contextualized to predict in vivo drug

response patterns of key cellular processes for the simulated therapeutic and toxic PK profiles (Figure

8.5, Figure 8.7). As input for PICD, drug-specific human PBPK models were developed and validated

with different dosage regimens used in previous clinical studies (Figure 8.3, Table 8.2). This validation

step ensures reliable predictions of PK profiles for a wide range of in vivo doses since potential non-

linearities are explicitly taken into account. Therapeutic and toxic drug concentrations over time were
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Figure 8.11: Potential drug interactions between the high-responsive drugs. The total number of
identified biomarkers for each drug is shown on the diagonal. The biomarkers were ranked according to the
absolute differences of toxic change between both considered drugs. Measures of the performance were additionally
calculated by comparing predicted DDIs with known DDIs from literature: accuracy = 68 %, sensitivity = 75 %,
specificity = 58 %, and precision = 71 %.

then simulated (Figure 8.5). The toxic doses were identified from clinical cases for which toxic events

occurred (Table 8.3). Two large databases as well as literature were screened to reasonably cover a wide

range of toxic doses (Table 8.3). Moreover, it should be noted that the in vivo doses considered here

reflect the range of drug exposure occurring in clinical practice (Table 8.2, Table 8.3).

When evaluating the toxic behavior between the fifteen hepatotoxic drugs, no significant toxic change

was observed in the case of SST, AD or DFN (Figure 8.7). However, it is known that these drugs may still

have a high hepatotoxic potential [Bort et al., 1999b; Horsmans et al., 1990; Lewis et al., 1989]. Notably,

these three drugs are highly bound to plasma proteins in vivo and are rapidly metabolized such that high

in vivo doses are necessary to reach the in vitro exposure when applying PICD [Thiel et al., 2016]. The

identified toxic in vivo doses are therefore probably higher than those provided in the literature (Table

8.3). As a consequence, the drug responses predicted by PICD for the toxic doses may be very low. Hence,

a future application of drug-specific pharmacokinetics in in vitro assay design might improve the in vivo

relevance of certain in vitro outcomes. To validate predicted drug response profiles of all considered drugs,

in vivo rat data from Open TG-GATEs were used [Igarashi et al., 2015].

In a preparatory proof-of-concept analysis, correlation results in rats demonstrated that PICD-based

predictions were generally in concordance with in vivo observations (Figure 8.6). Although uncertainties

were observed in some cases, it can still be assumed that the predicted drug responses in humans have in

vivo relevance since such uncertainties are almost unavoidable due to (i) the high variability of physic-

ochemical properties and pharmacological diversity of the considered drugs, (ii) the several differences

potentially influencing the response data observed in vitro and in vivo (e.g., different plasma protein

binding and enzyme and transporter activity, crosstalk between relevant tissues and organs in the in vivo

situation), (iii) the time-dependent interpolation that was necessary to make the predictions comparable

to the in vivo observations [Igarashi et al., 2015].
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In the first analysis of the comparative toxicity study, toxic changes in significantly perturbed key cel-

lular processes were compared between the fifteen hepatotoxic drugs (Figure 8.7). One objective of this

study was to investigate whether subsets of drugs exist, which share similar perturbations of key cellular

processes, and whether these subsets have common pharmacokinetic parameters or drug-specific charac-

teristics such as DILI-potential, solubility and permeability properties, and the target organ or system.

Surprisingly the analyses showed that the low-responsive drugs primarily belong to the BCS class 2 (high

permeability, low solubility), except PHE (class 1: high permeability, high solubility). In contrast, high-

responsive drugs were rather less permeable with statistically significant differences for lipophilicity but

not for water solubility. This finding might imply that a low permeability plays an important role in the

hepatotoxic potential of the considered drugs in contrast to the results of other studies that showed a

correlation between high lipophilicity and toxicological outcomes [Waring, 2010; Stolerman, 2010]. This

could be due to the fact that in our multiscale approach additional drug properties such as plasma protein

binding or doses applied in vivo are implicitly taken into account in the whole-body PBPK models and

set in relation to actual in vitro omics data for known hepatotoxicants. Also, it could be hypothesized

that hydrophilic drugs tend to have more polar functional groups and thus are more prone to enzyme-

mediated adverse chemical modifications since these drugs present several potential interaction targets

within the cell. Statistically significant differences between both groups were identified for the plasma

protein binding but not for the ratio of toxic and therapeutic AUCs and dose levels, respectively. The

latter result is important, since it demonstrates that the hepatotoxic potential is not affected by the selec-

tion of the therapeutic and toxic dose levels and the resulting concentration-time courses. Interestingly,

the low-responsive drugs tend to have a narrow therapeutic index (defined as the ratio between toxic and

therapeutic dose) (Figure 8.5, Table 8.3) [Muller and Milton, 2012], which increases the risk of adverse

reactions following high drug exposure due to overdosing or idiosyncrasy.

Next, the toxic changes between the high-responsive drugs were predicted in terms of functionally-related

genes involved in key cellular processes. In this way, toxic changes of functional classes (e.g., phosphatases

or transcription regulators) that are mainly contributing to a certain key cellular process could be iden-

tified. For instance, a high toxic change of growth factors at 8 h was found for APAP, which highly

increases the risk of renal impairment as described in previous studies [Mitić-Zlatković and Stefanović,

1999; Fruchter et al., 2011] (Figure 8.9E). In the case of AZA and VPA, a high toxic change in kinases

was found at 24 h, which were involved in the regulation of the cell cycle G2/M DNA damage checkpoint

(Figure 8.9B). This is in striking accordance with previous studies [Han et al., 2013; Yagi et al., 2010;

Karran, 2006; van Furth et al., 1975] where both drugs were also reported to have a substantial impact

on the cell cycle regulation. The hepatotoxic potential of AZA and VPA in this crucial pathway was

hence exemplarily investigated in more detail to compare toxic changes of involved genes. Focusing on

the cyclins B1 and B2 or the kinase PLK1, for instance, revealed similar toxic changes and especially

high drug responses at 24 h for both drugs. This suggests a potential key role of these genes in the

drug-induced hepatotoxicity of AZA and VPA. In contrast, differentially responding genes for both drugs

could be found at different timepoints (Figure 8.10B). Interestingly, AZA and VPA similarly perturbed

central biological processes of the G2/M DNA damage checkpoint (Figure 8.10). However, the initiation

of these processes is complementary and preferably occurred by DNA-PK, GADD45 and BORA for AZA,

and CDC2, p53 and MDM2 for VPA (Figure 8.10).

Finally, the calculated toxic changes were used to discover common and individual molecular biomarkers

for the high-responsive drugs. A set of nine common molecular biomarkers could be identified, which

showed significant differences to the low-responsive drugs indicating a high sensitivity of the identified

biomarkers (Table 8.7). Moreover, individual molecular biomarkers mostly enzymes of the cytochrome

P450 family, were found and further used to detect potential DDIs. Here, the identification of potential

DDIs was based on high toxic changes reflecting differences between therapeutic and toxic drug response.
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Known DDIs from literature could be predicted with a precision of 71 % (Figure 8.11). In some cases,

known DDIs from literature (e.g., between RIF and INH) were not identified as such (Figure 8.11),

which might indicate that these interactions are only significant after therapeutic drug administration.

In contrast, predicted DDIs not found in literature might present newly discovered drug interactions,

which only occur under toxic conditions. The consideration of more toxic and non-toxic drugs in a future

extension of our analysis could further improve the identification and validation of molecular biomarkers

and DDIs discovered in an in vivo situation. Moreover, it is also conceivable to apply the workflow

on a set of candidate drugs during early drug development. In this regard, measured time-series gene

expression profiles could be contextualized in human PBPK models parametrized based on molecular

modeling to identify potential toxic and non-toxic compounds before entering the clinical phases.

To conclude, the hepatotoxic potential of a set of known hepatotoxic drugs was studied and compared by

predicting toxic changes for humans, which reflect the transition from therapeutic drug response to toxic

reactions. We therefore analyzed primary human hepatocytes, at the cellular level, and developed human

PBPK models, at the organism level, and coupled both levels by the application of the recently developed

approach called PICD (Figure 8.1). Hence, the analysis of toxic changes allows a quantitative evaluation

of clinically relevant situations within a patient context. Altogether, toxic changes after 2 h, 8 h and

24 h in significantly affected key cellular processes could be analyzed thereby identifying a low-responsive

(SST, DFN, AD, ERY, FT, CSA and PHE) and a high-responsive group (RIF, CPA, PB, INH, HPL,

AZA, APAP and VPA) (Figure 8.7). For the latter, molecular biomarkers and potential DDIs could be

identified. An accuracy, specificity, sensitivity, and precision of 67 %, 58 %, 75 %, and 71 %, respectively,

has been reached when comparing the potential DDIs with known DDIs from literature. Notably, 72 % of

the predicted cytochrome P450 enzymes could be identified in known drug-enzyme association for both

drugs involved in the specific DDI [Wishart et al., 2006].

This article provides a systematic analysis of drug-induced hepatotoxicity by coupling in vitro toxicity

data measured in primary human hepatocytes [Igarashi et al., 2015] with in vivo pharmacokinetics, and

thus allows an investigation of differences in drug response following oral administration of therapeutic

and toxic doses in humans. Drug-induced hepatotoxicity could be hence analyzed within a patient context

to investigate drug effects between therapeutic and toxic conditions, and to discover molecular biomarkers

as well as potential DDIs for several hepatotoxic drugs. The results of our study might help to improve

clinical risk assessment and patient safety during a drug development process in the future.
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Multiscale modeling reveals inhibitory and stimulatory effects

of caffeine on acetaminophen-induced toxicity in humans

Abstract

Acetaminophen is a widely used analgesic drug that is frequently co-administered with caffeine in the

treatment of pain. It is well-known that acetaminophen may cause severe liver injury after an acute

overdose. However, the understanding of whether and to what extent caffeine inhibits or stimulates

acetaminophen-induced hepatotoxicity in humans is still lacking. Here, a multiscale analysis is presented

that quantitatively models the pharmacodynamic response of acetaminophen during co-medication with

caffeine. Drug-drug interaction processes were therefore integrated into physiologically-based pharma-

cokinetic models at the organism level, while drug-specific pharmacodynamic response data were con-

textualized at the cellular level. The results provide new insights into the inhibitory and stimulatory

effects of caffeine on acetaminophen-induced hepatotoxicity for crucially affected key cellular processes

and individual genes at patient level. This study might facilitate the risk assessment of drug combination

therapies in humans and thus may improve patient safety in clinical practice.
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9.1 Introduction

Acetaminophen (APAP) is a widely used over-the-counter drug with analgesic and antipyretic activities

[Nelson, 1990]. In therapeutic applications, APAP is an effective and safe drug mostly used in the treat-

ment of pain. However, in humans acute overdosing of APAP increases the risk of hepatotoxic events

leading to severe liver damage or even to death [Nelson, 1990]. The specific molecular mechanisms un-

derlying APAP-induced hepatotoxicity are still not well understood. However, it was suggested that an

accumulation of NAPQI, which is supposed to be the reactive intermediate of APAP [Walubo et al.,

2004], causes the toxic reactions [Sato and Izumi, 1989; Nelson, 1990]. NAPQI is a phase I metabolite of

APAP that is mostly formed by CYP enzymes, in particular CYP1A2, CYP2E1, and CYP3A4 [Walubo

et al., 2004]. When APAP is administered at toxic doses, the conjugation of NAPQI with glutathione and

the subsequent conversion to APAP cysteine (APAPC) is decreased, which leaves NAPQI as potential

binding partner for proteins within the cell [Jaw and Jeffery, 1993]. Furthermore, APAP and its metabo-

lites are involved in active drug transport across extra- and intracellular membranes mediated by ABC

transporters, in particular ABCB1 and ABCG2 [Wishart et al., 2006; Mazaleuskaya et al., 2015].

Caffeine (CAF) is a stimulant of the central nervous system and is daily consumed in hot or cold beverages.

CYP enzymes, particularly CYP1A2 and CYP2E1, are predominantly involved in the metabolism of

CAF [Gu et al., 1992]. Moreover, CAF showed inhibitory effects on active drug transport mediated by

ABCB1 [Wishart et al., 2006]. CAF is often administered as combination therapy in the treatment of

pain since CAF is supposed to enhance the analgesic effects evoked by APAP or other analgesic agents

[Sawynok and Yaksh, 1993; Renner et al., 2007; Palmer et al., 2010]. In this regard, CAF may alter APAP

pharmacokinetics at the organism level [Iqbal et al., 1995; Renner et al., 2007] and may influence APAP-

induced pharmacodynamic responses at the cellular scale [Sawynok and Yaksh, 1993]. In this context,

CAF and APAP may thus be considered as perpetrator and victim drug, respectively [Prueksaritanont

et al., 2013]. Notably, the unintentional co-administration of CAF together with other drugs is mostly

unavoidable, since coffee is one of the most popular drinks in the world. In clinical practice, simultaneous

administration of multiple drugs is often a standard treatment. In such combination therapies, drug

interactions may inevitably occur and may potentially have a substantial impact on the PK behavior

and the resulting PD effect of the administered drugs eventually leading to additive, synergistic, or

antagonistic drug effects [Sato and Izumi, 1989; Sawynok and Yaksh, 1993; Iqbal et al., 1995; Renner

et al., 2007; Coors and De Meester, 2008].

In vitro drug response data measured at toxic concentrations may help to investigate the cellular effects

induced by different drugs in cellular assays. However, a major challenge of such in vitro experiments

is the translatability to patients. Recently, we have developed an integrative multiscale approach called

PICD [Thiel et al., 2016] that allows the translation of such in vitro findings to an in vivo context by

coupling in vitro toxicity data with whole-body PBPK models (Figure 9.1).

PBPK modeling allows a mechanistic description of ADME processes governing the fate of a drug within

the body. PBPK models are particularly well suited for extrapolation to different dosage regimens and,

moreover, to consider DDIs of co-administered drugs influencing their ADME processes and, hence,

altering their concentration-time courses within the blood or the organs [Zhou et al., 2016].

In recent studies, the concomitant administration of APAP and CAF in rats and mice resulted in either

a potentiation or a reduction of APAP-induced hepatotoxicity, respectively [Sato et al., 1985; Sato and

Izumi, 1989; Lee et al., 1991; Raińska et al., 1992; Jaw and Jeffery, 1993]. A possible explanation of these

observations is the impact of CAF on the formation of NAPQI either due to inhibitory or stimulatory

effects. Results obtained in rat and mice liver microsomes suggested an involvement of CAF on APAP

metabolism mediated by CYP enzymes [Nouchi et al., 1986; Lee et al., 1991; Jaw and Jeffery, 1993]. In

rat liver microsomes, for instance, co-administration of CAF led to a reduced or an accelerated NAPQI
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Figure 9.1: Overview of the use
of PICD. Input: Drug-specific
PBPK models are developed at the
organism level, while in vitro re-
sponse data of compound-treated
primary hepatocytes are analyzed
at the cellular level [Igarashi et al.,
2015]. Coupling: In vivo doses
are identified that are directly re-
lated to in vitro drug exposure
(AUCin vivo = AUCin vitro). Time-
dependent dose-response curves are
generated by mapping in vivo
doses to in vitro response data.
Contextualization: PD responses
over time are predicted for sim-
ulated PK profiles following drug
administration of specific dose lev-
els by use of time-dependent dose-
response curves.

formation dependent on the applied concentration by affecting CYP enzymes such as CYP1A1, CYP3A2,

or CYP2E1 [Lee et al., 1991]. However, the interaction of CAF with APAP in humans, particularly at

toxic dose levels, is still not well understood.

The aim of this study was a model-based investigation of the PK and PD interactions of CAF on APAP-

induced toxicity during co-medication in humans, through the consideration of drug interactions at the

organism level, and the contextualization of drug-specific PD response data at the cellular level, re-

spectively. PD responses of CAF and APAP were therefore predicted for an in vivo situation by the

application of PICD [Thiel et al., 2016] thereby coupling in vitro toxicity data with drug-specific PBPK

models. To validate the PBPK models, simulated drug concentrations of APAP, CAF, and their main

metabolites APAPC, acetaminophen glucuronide (APAPG), acetaminophen sulfate (APAPS), paraxan-

thine (PX), theophylline (TP), and theobromine (TB) were first assessed with clinical PK profiles from

several studies obtained for different dosage regimens [Rawlins et al., 1977; Prescott, 1980; Newton et al.,

1981; Tang-Liu et al., 1983; Blanchard and Sawers, 1983; Lelo et al., 1986; Iqbal et al., 1995; Kaplan et al.,

1997; Renner et al., 2007; Shinoda et al., 2007]. Using an additive PD response model, the influence of

CAF on APAP-induced hepatotoxicity was analyzed for key cellular processes and individual genes. Dose

escalation studies were finally performed to evaluate the transition from desired therapeutic effects to

undesired toxic events thereby quantitatively describing clinically relevant situations.
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9.2 Materials and methods

9.2.1 Physiologically-based pharmacokinetic model development

To develop the PBPK models of APAP and CAF, physicochemical drug properties of APAP, CAF

and their metabolites were obtained from the literature (Table 9.1). Reference PBPK models were first

developed and assessed by comparing simulated drug concentrations with clinical PK data from literature

[Lelo et al., 1986; Blanchard and Sawers, 1983; Kaplan et al., 1997; Renner et al., 2007; Shinoda et al.,

2007] (Figure 9.2, Appendix A.2).

Intestinal permeability values originally provided by PK-Sim R© were slightly adjusted for APAP (1.9E-05

cm/min) and CAF (3E-05 cm/min) (Figure 9.2). The standard distribution model of PK-Sim R© was

used to calculate partition coefficients and cellular permeabilities [Willmann et al., 2003]. Km and vmax

representing the kinetic behavior of active transport processes and metabolizing reactions were either

taken from literature [Chen et al., 1998; Ha et al., 1995; Gates and Miners, 1999; Gu et al., 1992; Labedzki

et al., 2002; Mutlib et al., 2006; Adjei et al., 2008] or were fitted to best describe the experimental data

(Table 9.2). Relative abundance of relevant ADME enzymes and transporters (Table 9.2) was estimated

by using tissue-specific gene expression data (Table D.1) [Meyer et al., 2012]. Kidney plasma clearances

were parametrized such that urinary excretion rates were in accordance with results observed in human

clinical studies [Critchley et al., 1986; Wishart et al., 2006; Tang-Liu et al., 1983] (Table 9.3).

A competitive inhibition of CAF on CYP2E1 [Nouchi et al., 1986; Gu et al., 1992] and ABCB1 [Wishart

et al., 2006] with dissociation constants (Kd) of 48.5 µmol/l and 0.06 µmol/l, respectively, were modeled

to consider the PK interaction of CAF on APAP [Renner et al., 2007; Iqbal et al., 1995]. Respective

reaction rates in the competitive inhibition processes were calculated as follows:

v =
vmax ∗ S

Km ∗ (1 + I
Kd

) + S
(9.1)

where v represents reaction rate, vmax represents maximal reaction rate, S represents free substrate

(APAP) concentration, I represents free inhibitor (CAF) concentration, and Km represents Michaelis-

Menten constant in absence of the inhibitor.

The established reference PBPK models were further validated by using clinical PK data not used for

model establishment [Newton et al., 1981; Rawlins et al., 1977; Prescott, 1980; Tang-Liu et al., 1983; Iqbal

et al., 1995] (Figure 9.2) thereby leaving all model parameters unchanged, except parameters characteriz-

ing the specific design of the clinical studies (Table 9.4). The model quality was evaluated by calculating

normalized RMSD values, R2 values [Thiel et al., 2016], and by comparing observed vs. predicted AUCs

and cMax values of the different simulations.

9.2.2 Analysis of in vitro toxicity data

The analysis of time-series gene expression profiles from Open TG-GATEs [Igarashi et al., 2015] (ArrayEx-

press accession numbers: E-MTAB-798) (Appendix A.1) including data pre-processing and normalization,

differential expression analysis of single genes and overrepresentation analysis of key cellular processes,

were performed as explained before [Thiel et al., 2016]. Fold change values were calculated to indicate

gene expression changes compared to time-matched controls. To represent key cellular processes, seventy-

four hand-curated toxicity lists were extracted from QIAGENs Ingenuity Pathway Analysis (IPA R©,

QIAGEN Redwood City, www.qiagen.com/ingenuity) (Table C.1). Since primary human hepatocytes

were analyzed [Igarashi et al., 2015], key cellular processes representing cardiac or renal toxicity were not

considered. Genes with unknown functions were also not taken into account.
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Figure 9.2: Workflow of PBPK model development and validation. Workflow of PBPK model devel-
opment and validation including experimental data and modeling steps for (A) single administration of APAP,
(B) single administration of CAF, and (C) co-administration of APAP and CAF.

9.2.3 Predicting the pharmacodynamic responses of acetaminophen and caffeine

PICD allows a quantitative description of drug responses at patient level by integrating in vitro toxicity

data from Open TG-GATEs [Igarashi et al., 2015] into whole-body PBPK models [Thiel et al., 2016].

In short, the basic concept of PICD is the identification of in vivo doses such that the simulated drug

exposure in the interstitial space of the liver is equal to the in vitro drug exposure of the in vitro assay
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Table 9.1: Physicochemical properties of acetaminophen, caffeine, and their metabolites used in
the developed PBPK models. MW, logP, Fu, pKa, and water solubility used in the developed PBPK models
of APAP and CAF. MWs, logP values and water solubilities are taken from DrugBank [Wishart et al., 2006] and
Human Metabolome Database [Wishart et al., 2007]. In some cases, logP and Fu values were slightly adjusted to
best describe the experimental PK data.

Drug/ MW logP Water solubility Fu Reference Compound pKa Reference
Metabolite [g/mol] [mg/l] type

APAP 151.16 0.46 14000.0 0.81 [Wishart et al.,
2006]

Acid 9.38 [Wishart et al., 2006]

APAPC 254.31 0.33 337.0 0.6 * [Acid, base] [1.93, 9.09] [Wishart et al., 2006]
APAPG 327.29 -1.04 27700.0 0.98 * Acid 3.18 [Wishart et al., 2006]
APAPS 231.23 -0.372 1540.0 0.8 * Acid 10.46 [Bento et al., 2014]
NAPQI 149.15 0.01 987.0 0.02 [Bond, 2009] Neutral - [Swain, 2012]
CAF 194.2 -0.07 21600.0 0.65 [Lelo et al., 1986] Base 10.4 [Wishart et al., 2006]
PX 180.16 -0.63 9130.0 0.52 [Lelo et al., 1986] Acid 10.76 [Wishart et al., 2007]
TB 180.16 -0.78 9740.0 0.86 [Lelo et al., 1986] Acid 9.28 [Wishart et al., 2007]
TP 180.16 -0.02 22900.0 0.58 [Lelo et al., 1986] Acid 7.82 [Wishart et al., 2007]

* Estimated

Table 9.2: Active drug transport and metabolic reactions. Metabolic and active drug transport processes,
which were considered in the PBPK models of APAP and CAF, either consist of the metabolic enzyme and
the corresponding metabolite, or of the transporter and the corresponding transporter type (efflux is defined as
transport of a substance from the intracellular space to the interstitial space or the lumen). Kinetic parameters
Km and vmax were used to characterize the kinetic behavior of active processes.

Drug/ Metabolite/ Enzyme/ Km vmax* Reference
Metabolite Transporter type Transporter [µmol/l] [µmol/l/min]

APAP APAPG UGT1A9 9200.0 1078.88 [Mutlib et al., 2006]
APAP APAPS SULT1A1 2400.0 51.0 [Riches et al., 2007; Adjei et al., 2008]
APAP NAPQI CYP2E1 1300.0 51.02 [Chen et al., 1998; Shinoda et al., 2007]
APAP Efflux ABCB1 20308.5* 1220.0 [Mazaleuskaya et al., 2015; Wishart et al., 2006]
APAPG Efflux ABCG2 96.33* 24.51.0 [Mazaleuskaya et al., 2015]
APAPS Efflux ABCG2 94.49* 1200.0 [Mazaleuskaya et al., 2015]
NAPQI APAPC GSTT1 25.0* 20.16.0 [Shinoda et al., 2007]
CAF PX CYP1A2 400.0 19.0 [Gu et al., 1992]
CAF TB CYP1A2 280.0 4.8 [Gu et al., 1992]
CAF TP CYP2E1 2800.0 9.0 [Gu et al., 1992]
PX 1X CYP1A2 2500.0 260.0 [Labedzki et al., 2002]
TB 7X CYP1A2 4200.0 280.0 [Gates and Miners, 1999]
TP 13U CYP2E1 15300.0 350.0 [Ha et al., 1995]

* Estimated

Table 9.3: Elimination processes. Renal clearance processes considered in the developed PBPK models of
APAP and CAF. Kidney plasma clearances were parameterized in order to match experimental observations.

Drug/Metabolite Plasma clearance Reference
[l/min/kg]

APAP 1.27E-04 [Critchley et al., 1986; Wishart et al., 2006]
APAPC 4.38E-04 [Critchley et al., 1986]
APAPG 1.19E-03 [Critchley et al., 1986]
APAPS 4.56E-03 [Critchley et al., 1986]
NAPQI 4.62E-03 adjusted from [Krauss et al., 2012]
CAF 3.00E-03 [Tang-Liu et al., 1983]

(Figure 9.1). The identified in vivo doses were mapped to the in vitro drug response data to quantitatively

describe PD responses for different dose levels applied in vivo (Figure 9.1) [Thiel et al., 2016].

Here, PICD was applied separately on single doses of APAP and CAF to predict PD responses for genes

(defined as log2 fold change) and key cellular processes (defined as mean absolute log2 fold change of all

involved genes) at 8 h and 24 h. Note that in TG-GATEs in vitro response data of APAP and CAF was

measured at these timepoints [Igarashi et al., 2015]. Bioavailability values calculated from the developed

PBPK models (APAP = 92 %, CAF = 100 %) were used to consider oral administration.
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Table 9.4: Experimental conditions. Administration route (IV, or PO), respective doses, and number of
subjects (n) and their gender, age, and weight. The experimental PK data were either used for establishment of
the reference PBPK model (Reference) or for model validation (Validation).

Study Drug(s) Route Dose n Gender Age Weight Model type Reference
ID (M,F) [years] [kg]

1 CAF iv 5 mg/kg 8 M 20.52 75± 6 Reference [Blanchard and Sawers, 1983]
2 CAF po 5 mg/kg 8 M 20.5±2 75±6 Reference [Blanchard and Sawers, 1983]
3 CAF po 250 mg 12 5 M/7 F 28.8±6 66.8±10 Reference [Kaplan et al., 1997]
4 CAF po 500 mg 12 5 M/7 F 28.8±6 66.8±10 Reference [Kaplan et al., 1997]
5 CAF po 270 mg 6 M 19-21 62-104 Validation [Lelo et al., 1986]
6 CAF po 7.5 mg/kg 6 5 M/1 F 24-32 73±7 Validation [Tang-Liu et al., 1983]
7 CAF po 50 mg 6 5 M/1 F 21-36 54-84 Validation [Newton et al., 1981]
8 CAF po 300 mg 6 5 M/1 F 21-36 54-84 Validation [Newton et al., 1981]
9 CAF po 500 mg 6 5 M/1 F 21-36 54-84 Validation [Newton et al., 1981]
10 CAF po 750 mg 6 5 M/1 F 21-36 54-84 Validation [Newton et al., 1981]
11 APAP po 1000 mg 5 1 M/4 F 55±13 60±11 Reference [Shinoda et al., 2007]
12 APAP po 20 mg/kg 8 n/a n/a n/a Validation [Prescott, 1980]
13 APAP po 500 mg 6 M n/a 65-72 Validation [Rawlins et al., 1977]
14 APAP po 1000 mg 6 M n/a 65-72 Validation [Rawlins et al., 1977]
15 APAP po 2000 mg 6 M n/a 65-72 Validation [Rawlins et al., 1977]
16 APAP po 1000 mg 24 12 M/12 F 18-45 67-86/51-66 Reference [Renner et al., 2007]
17 APAP/CAF po/po 1000/130 mg 24 12 M/12 F 18-45 67-86/51-66 Reference [Renner et al., 2007]
18 APAP po 500 mg 10 M 22-32 50-70 Validation [Iqbal et al., 1995]
19 APAP/CAF po/po 500/60 mg 10 M 22-32 50-70 Validation [Iqbal et al., 1995]

9.2.4 Modeling the pharmacodynamic response of acetaminophen co-administered with

caffeine

PICD was applied for a co-administration of APAP and CAF with a relative dose ratio of 1000:130

according to therapeutic indications [Renner et al., 2007; Palmer et al., 2010]. When both drugs were

given concomitantly, the PICD-based PD response of APAP (PD responseDDI(APAP )) were adjusted

according to its changed concentration-time profile caused by the competitive inhibition of CAF on

ABCB1- and CYP2E1-mediated transport and metabolization of APAP, respectively [Nouchi et al.,

1986; Lee et al., 1991; Wishart et al., 2006; Gu et al., 1992]. Furthermore, the predicted PD response

of CAF (PD response(CAF )) was considered separately. The total PD response of APAP during co-

administration with CAF (PD response(APAP + CAF )) was thus calculated as follows:

PD response(APAP + CAF )x,t,d = PD responseDDI(APAP )x,t,d + PD response(CAF )x,t,d (9.2)

where x represents a gene or a key cellular process, t represents the timepoint, and d represents the oral

dose level. An additive PD response model was used here to calculate the PD response of APAP for

co-administration with CAF since the in vitro data was only available for single drug administration such

that potential synergistic or antagonistic effects induced by co-medication of both drugs beyond pure

additional effects could not be described. The relative PD effect of CAF co-administered with APAP

compared to the PD response predicted for single administration of APAP alone (PD response(APAP ))

was computed as follows:

relative PD effect(APAP + CAF, APAP )x,t,d =

PD response(APAP + CAF )x,t,d − PD response(APAP )x,t,d

PD response(APAP )x,t,d

∗ 100
(9.3)

Note that a positive or negative relative PD effect value means that CAF increases and decreases the PD

response of APAP, respectively, while a value of zero indicates no effect of CAF.
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9.2.5 Other systems biology models for acetaminophen

Several systems biology models of APAP were published in literature and applied for different purposes

such as toxicology [Woodhead et al., 2012; Krauss et al., 2012; Howell et al., 2012; Ben-Shachar et al.,

2012] or pediatric scaling [Jiang et al., 2013] (Table D.3).

Here, a subset of five different models [Krauss et al., 2012; Howell et al., 2012; Ben-Shachar et al.,

2012; Woodhead et al., 2012; Jiang et al., 2013] is briefly explored (Table D.3) thereby focusing on

(i) the underlying model structure including the modeling framework and the implemented biochemical

processes, (ii) the clinical data used for model development and validation, and (iii) the modeling purpose

and the results. All models consider clearance processes of APAP and its metabolites, while Jiang et al.

[Jiang et al., 2013] and Ben-Shachar et al. [Ben-Shachar et al., 2012] additionally considers several UGT

and CYP enzymes for the metabolism of APAP (Table D.3). In our model active drug transport processes

by ABCB1 and ABCG2 were additionally considered.

9.3 Results

9.3.1 Physiologically-based pharmacokinetic models of acetaminophen and caffeine

At first, reference PBPK models for APAP and CAF were established by using clinical PK data (Table 9.4)

[Kaplan et al., 1997; Renner et al., 2007; Blanchard and Sawers, 1983; Shinoda et al., 2007]. Twenty-one

biochemical processes were implemented in the PBPK models of CAF and APAP (Figure 9.3, Figure 9.4)

to represent key metabolic reactions, active drug transport (Table 9.2), as well as elimination processes

(Table 9.3).

To consider the influence of CAF on APAP pharmacokinetics [Renner et al., 2007; Iqbal et al., 1995],

an inhibitory effect of CAF on CYP2E1-mediated NAPQI formation and on ABCB1-mediated active

transport of APAP was mechanistically represented by incorporating competitive inhibition processes in

Figure 9.3: Reaction diagram of biochemical processes implemented in the PBPK models of ac-
etaminophen and caffeine Reaction diagram of twenty-one biochemical processes implemented in the PBPK
models of APAP and CAF illustrating active drug transport (green), metabolizing reactions for phase I (purple)
and phase II (yellow) metabolites, kidney plasma clearance (gray), and inhibition processes (red). Metabolic en-
zymes and transporters are shown next to the respective reaction. APAPC, acetaminophen cysteine; APAPG,
acetaminophen glucuronide; APAPS, acetaminophen sulfate; NAPQI, N-acetyl-p-benzoquinoneimine; CAF, caf-
feine; PX, paraxanthine; TB, theobromine; TP, theophylline; 13U, 1,3,dimethyluric acid; 7X, 7-methylxanthine;
1X, 1-methylxanthine.
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Figure 9.4: PBPK models of acetaminophen and caffeine. Simulated drug concentration-time curves
(lines) were assessed with experimental PK profiles (circles). Renal excretion rates were additionally simulated
for APAP and CAF (dashed lines). Study IDs and dose levels of the experimental data are shown within each
plot (Table 9.4). (A) PBPK model of CAF (CAF, blue; PX, red; TB, green; TP, yellow). (B) PBPK model of
APAP (APAP, blue; APAPG, red; APAPC, green; APAPS, yellow; NAPQI, purple). (C) PBPK model for single
administration of APAP and for co-administration of APAP and CAF (APAP, blue; CAF, pink).

the developed PBPK models [Nouchi et al., 1986; Lee et al., 1991; Wishart et al., 2006; Gu et al., 1992].

Notably, PK simulations following co-administration of APAP and CAF at toxic dose levels resulted in

a decrease of NAPQI concentrations in plasma (Figure 9.6), which is in accordance with experimental

observations obtained in rat liver microsomes [Lee et al., 1991].

After model establishment, the simulated drug concentrations in plasma showed an excellent agreement

with in vivo PK data for both single doses of CAF and APAP alone as well as for concomitant administra-

tion of both drugs (Figure 9.4, Figure 9.5, Table D.2). The relative contribution of phase I CYP isoforms

versus phase II enzymes in the PBPK models of APAP and CAF was 70:30, and 100:0, respectively

(Figure 9.4). The established reference PBPK models were validated for additional doses and individual

subgroups by using clinical PK data from different studies not used for developing the reference PBPK

models [Lelo et al., 1986; Tang-Liu et al., 1983; Newton et al., 1981; Prescott, 1980; Rawlins et al., 1977;

Iqbal et al., 1995]. Note that all model parameters were left unchanged in this validation step except study

parameters specifying the design of the clinical trials. Importantly, the validated PBPK models allow ac-

curate predictions for different doses, since potential non-linearities in ADME processes [Kaplan et al.,

1997; Sahajwalla and Ayres, 1991] are implicitly considered through the underlying model structure.
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Figure 9.5: PBPK model assessment. Observed vs. predicted plots, RMSD and R2 values determined by
comparing experimental PK data with simulated drug concentration-time profiles. Study IDs and dose levels of
the experimental data are shown within each plot (Table 9.4). (A) PBPK model of CAF. (B) PBPK model of
APAP. (C) PBPK model for single administration of APAP and for co-administration of APAP with CAF.

The validated PBPK models were next used in the application of PICD to predict PD responses induced

by single administration of APAP alone as well as by co-administration of APAP and CAF. Note that

the PD response is here based on transcriptome data from Open TG-GATEs [Igarashi et al., 2015].
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Figure 9.6: Simulated
plasma concentrations
for single administra-
tion of acetaminophen
and co-administration
of caffeine. Plasma
concentrations were sim-
ulated for APAP (blue)
and NAPQI (green) fol-
lowing a single toxic dose
of APAP (solid lines) and
a co-administered dose
(dashed lines) of APAP
and CAF (red).

9.3.2 Analyzing pharmacodynamic responses induced by single administration of

acetaminophen and by co-administration of caffeine

Drug-specific PD responses following oral administration of APAP and CAF were predicted at the cellular

level to investigate acute hepatotoxicity induced by a single toxic dose of APAP and by a co-administered

dose with CAF.

Relative PD effect values of CAF on APAP were therefore computed, which notably reflect both

(i) the influence of CAF on the concentration-time course of APAP at the organism level represented

by competitive inhibition processes of CAF on ABCB1- and CYP2E1-mediated transport and metabo-

lization of APAP, respectively (PK interaction); (ii) the changed PD response of APAP at the cellular

level implemented by additively contributing the PD response predicted for CAF (PD interaction).

A mean toxic dose of APAP (34 g) was identified in literature at a sub-lethal level [Clemedson et al.,

2007; Hoofnagle et al., 2013], while the dose level of CAF (4.4 g) was derived from a relative dose ratio

of 1000:130 according to therapeutic indications used in drug combination therapy [Renner et al., 2007;

Palmer et al., 2010; Sawynok and Yaksh, 1993]. Note that APAP and CAF are frequently co-administered

since CAF is supposed to enhance the analgesic effect of APAP [Renner et al., 2007; Palmer et al., 2010;

Sawynok and Yaksh, 1993].

In the following, PD responses and relative PD effects induced by a single toxic dose of APAP and by a co-

administered dose of CAF were analyzed for genes expressed differentially (absolute fold change > 1.5,

Benjamini-Hochberg corrected p < 0.01) at 8 h and 24 h, and for key cellular processes significantly

overrepresented (Benjamini-Hochberg corrected p < 0.01) at any timepoint. Note that these subsets were

identified for both APAP and CAF.

Analysis of key cellular processes

Overall, the co-administration of CAF led to a statistically significant perturbation (p < 0.01, two-sample

t-test) of all considered key cellular processes (Figure 9.7). Analyzing PD responses at 8 h following single

administration of APAP revealed a substantial impact on cell cycle G1/S and G2/M checkpoint regulation

as well as on liver necrosis, while a co-administration of CAF resulted in a significantly increased PD

response of these cellular processes by about 22 %, 16 %, and 43 %, respectively (Figure 9.7). Note that

an increased PD response of a key cellular process may result from both inhibition and activation of genes

involved, since absolute log2 fold changes were considered for calculation purposes.
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Figure 9.7: Pharmacodynamic response of key cellular processes. PD responses for significantly perturbed
key cellular processes following drug administration of APAP as single toxic dose (gray) or co-administered with
CAF (mint green). Percentages indicate relative PD effects of CAF.

At 24 h, high PD responses of APAP administered alone were found in particular for fatty acid

metabolism, liver necrosis, as well as for the promotion of hepatic steatosis, and for negative acute

phase response proteins (Figure 9.7). These key cellular processes were additionally affected by 33 %,

21 %, 34 %, and 74 %, respectively, due to the co-administration of CAF (Figure 9.7). Furthermore, the

activation of CAR/RXR, FXR/RXR, and PXR/RXR heterodimers as well as the inhibition of the RXR

function mediated by LPS and IL-1 were strongly perturbed by APAP and were further significantly

induced by 60 %, 55 %, 45 % and 34 %, respectively, when CAF was given concomitantly (Figure 9.7).

Moreover, a relative PD effect of about 45 % was observed for CAF on PD responses of APAP inducing

hepatic fibrosis, liver proliferation, and liver hyperplasia at 24 h (Figure 9.7).

Analysis of individual genes

When analyzing the impact of single administration of APAP and co-administration together with CAF

on individual genes, the analyzed genes were additionally subdivided into their corresponding functional

classes to allow a functional interpretation. In this context, a positive and negative PD effect value means

that CAF increases or reduces the PD responses of APAP at the cellular level.

Comparing the PD responses of APAP at both timepoints following single administration revealed both

an increased inhibition and activation of individual genes after 8 h independently from the considered

functional classes (Figure 9.8, Figure 9.9). Likewise, calculated PD effects of CAF showed only minor

changes on significantly perturbed genes at 24 h in contrast to observations at 8 h (Figure 9.8, Figure

9.9).

At 8 h, APAP induced the inhibition of several genes belonging to different functional classes, among

which the following were found to be noteworthy due to a substantial impact of one or both drugs: the

kinases PBK, PCK1, and IP6K3 (Figure 9.8A); the cytokines TNFSF10 and CXCL6 (Figure 9.8B); the

ligand-dependent nuclear receptor NR1H4 (Figure 9.8C); the ion channel KCNJ8 and the transporter

SLC38A4 (Figure 9.8D); the metabolic enzymes GPAM, and TAT (Figure 9.8E); the transcription factor

ATOH8 (Figure 9.8F); CDC20, and RTP3 (Figure 9.9). On the other hand, a few genes were highly
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Figure 9.8: Pharmacodynamic response of individual genes. PD responses of significantly perturbed
genes following drug administration of APAP as single toxic dose and correspondent PD effects induced by co-
administration of CAF. Genes were classified according to their functional classes. Relative PD effect values
indicated by percentages were only shown for highly regulated genes (absolute fold change > 1.5 and absolute
relative PD effect > 10 %). (A) Kinase/phosphatase. (B) Cytokine/growth factor. (C) Receptor. (D) Ion chan-
nel/transporter. (E) Metabolic enzyme. (F) Transcription/translation regulator.

activated, for instance the kinase BRD2 (Figure 9.8A), the metabolic enzymes MMP1, MTHFD2 and

RRAD (Figure 9.8E), the transcription regulator FOS, and SERTAD1 (Figure 9.8F), as well as the histone

cluster HIST2H2BE and HIST1H2BD (Figure 9.9). At 24 h, only a few genes were substantially activated

or inhibited by APAP, such as the kinase PDK4 (Figure 9.8A), the receptor HMMR (Figure 9.8C), the

ion channel KCNS3 (Figure 9.8D), the metabolic enzymes HOGA1, CPS1, and MTHFD2 (Figure 9.8E),

the transcription regulators TCF19 (Figure 9.8F), as well as Cyclin E2 (Figure 9.9). Analyzing PD effects

of CAF on APAP elucidated both a reduced inhibitory effect (21-83 %) of APAP on specific genes such

as TNFSF10, PCK1, CPS1, GYS2, HSD17B2, FST, and CLRN3 as well as an enhanced inhibitory effect

(19-74 %) on other genes such as NUKA2, HMMR, HOGA1, DDC, CHST9, ZNF512B, RTP3, and CDC20

(Figure 9.8, and Figure 9.9). The activation of APAP on individual genes was mostly potentiated by CAF

particularly on FOS and ATF3 by 47 % and 26 %, respectively (Figure 9.8F).
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Figure 9.9: Pharmacodynamic
response of additional individual
genes. Pharmacodynamic response
of significantly perturbed genes fol-
lowing drug administration of APAP
as single toxic dose and correspon-
dent PD effects induced by co-
administration of CAF. Genes were
classified into the functional class
’other’. Relative PD effect values indi-
cated by percentages were only shown
for highly regulated genes (absolute
fold change > 1.5 and absolute rela-
tive PD effect > 10 %).
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In this gene-level analysis, PD responses of significantly perturbed genes induced by a single toxic dose of

APAP and the corresponding PD effects provoked by a co-administration of CAF were analyzed. Besides

the identification of genes crucially affected by APAP, inhibitory and stimulatory effects of CAF on APAP

were thereby investigated.

9.3.3 Dose escalation study – Transition from therapeutic to toxic conditions

In the dose escalation study, an exemplary set of genes (at 8 h: ATF3, PCK1, TNFSF10, SLC38A4,

HSD17B2, FOS, and ZNF512B; at 24 h: HMMR, KCNS3, CPS1, CCNE2, and CDC20; at both time-

points: DTL) and key cellular processes (at 8 h: regulation of cell cycle G1/S and G2/M DNA damage

checkpoint; at 24 h: activation of CAR/RXR heterodimer, and liver hyperplasia) were next analyzed,

which were substantially affected by a single toxic dose of APAP and by a co-administered dose of CAF

(Figure 9.8, and Figure 9.9). The dose escalation study was performed on these genes and key cellu-

lar processes to quantitatively explore the transition from desired therapeutic effects to undesired toxic

events (Figure 9.10). In this regard, the initial therapeutic dose was stepwise increased by 1000 mg until

the considered toxic dose level was reached thereby simultaneously monitoring PD responses following

single administration of APAP and its co-administration with CAF.

Analyzing dose-response curves for single genes revealed that the co-administration of CAF at high

doses near the toxic range resulted in the strongest impact on PD responses of APAP, as expected, in

comparison to doses around the therapeutic range (Figure 9.10A). However, opposing PD effects of CAF

were observed with regard to diminishing or enhancing the regulatory effects of APAP. The up- or down-

regulations of the kinase PCK1, the dehydrogenase HSD17B2, the synthase CPS1, or cyclin E2, which

were strongly induced by high doses of APAP, were attenuated by co-administration of CAF. In contrast,

perturbations of APAP on the transcription regulator FOS, ATF3 and ZNF512B, the transmembrane

receptor HMMR, or CDC20 were obviously increased by CAF (Figure 9.10A). Interestingly, studying

PD effects of CAF on DTL, which is involved in the detection of DNA damage and repair mechanisms,

Figure 9.10: Dose escalation study. PD responses were predicted following single administration of APAP
(solid lines) and co-administration of APAP and CAF (dashed lines). The doses were stepwise increased from
therapeutic to toxic dose levels. (A) Individual genes. (B) Key cellular processes.
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elucidated an enhanced inhibitory effect of APAP at 8 h, while the up-regulation at 24 h was rigorously

reduced (Figure 9.10A).

Next, dose-response curves for an exemplary set of four key cellular processes were analyzed (Figure

9.10B). During the escalation from therapeutic to toxic doses a high perturbation of APAP on the cell

cycle checkpoints G1/S and G2/M was observed at 8h, which was additionally increased due to a co-

administration of CAF (Figure 9.10B). At 24 h, gradually increasing the therapeutic to the toxic dose

led to a significant perturbation of APAP on genes associated with an increased hyperplasia of the liver

and with the activation of the CAR/RXR heterodimer that transcriptionally activates the promoters

of CYP2B and CYP3A gene expression (Figure 9.10B) [Chen et al., 2010]. Moreover, these key cellular

processes were additionally affected when both drugs were administered concomitantly (Figure 9.10B).

This dose escalation study allows the simultaneous investigation of cellular perturbations induced by

single administration of APAP or co-administration with CAF to quantitatively describe drug-induced

changes in clinically relevant situations, which hence may have important implications for dose decisions

in the future.

9.3.4 Investigating the effect of caffeine on the analgesic action of acetaminophen under

therapeutic conditions

From a therapeutic perspective, CAF is expected to increase the analgesic effect of APAP in humans

[Renner et al., 2007; Palmer et al., 2010; Sawynok and Yaksh, 1993]. To explore this effect in our model, PD

responses on pain-related genes [Foulkes and Wood, 2008] were predicted for single- and co-administration

of APAP and CAF, respectively, by applying dose levels up to a maximum daily dose (APAP: 4000 mg,

Drugs.com; APAP/CAF: 4000 mg/520 mg, [Renner et al., 2007]) (Figure 9.11). Here, CAF showed a

slight but significant effect on the PD response of APAP on pain-related genes, particularly at 8 h

(Figure 9.11A). Note that the therapeutic PD response was here analogously calculated as before for the

key cellular processes (mean absolute log2 fold change of all involved genes).

Figure 9.11: Pharmacodynamic response of genes associated to pain. PD response of genes associated
to pain were predicted following single administration of APAP (solid lines) and co-administration of APAP and
CAF (dashed lines). The doses were stepwise increased from a therapeutic single dose to the maximum daily dose.
(A) Pharmacodynamic response of a set of pain-related genes. (B) PD response of individual genes involved in
pain modulation as well as in pain conduction & synaptic transmission.
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PD responses were further investigated for an exemplary set of six genes (LIF, CCL2, IL18, NR1I2,

SCN9A, CACNA2D2), which are involved in pain modulation as well as in pain conduction and synaptic

transmission. It was found that CAF slightly enhances the inhibitory effect of APAP on these pain-related

genes (Figure 9.11B). Interestingly, the effect of CAF at 24 h was most prominent on the chemokine CCL2

that is supposed to mediate the activation of pain pathways [Foulkes and Wood, 2008].

9.4 Discussion

In this article, the impact of CAF on APAP-induced hepatotoxicity was investigated at patient level by

evaluating the effects of CAF on the PK and PD behavior of APAP induced by co-medication of both

drugs.

A mean toxic dose level of APAP was identified by collecting non-fatal toxic doses from public databases

[Hoofnagle et al., 2013; Clemedson et al., 2007]. The co-administered dose of CAF was selected according

to relative dose ratios applied in combination therapy [Renner et al., 2007; Palmer et al., 2010], and was

found to be in the lower range of clinical observations about sub-lethal acute poisoning [Clemedson et al.,

2007] indicating a low toxic potential caused by the single dose of CAF. Hence, the in vivo doses used

here reflect clinically relevant situations for which toxic events were observed.

Drug interaction processes between CAF and APAP were considered in the PBPK models by incorporat-

ing competitive inhibition in ADME-related processes to reflect the inhibitory effect of CAF on ABCB1-

mediated active transport of APAP, and on CYP2E1-mediated metabolization of APAP to NAPQI,

respectively (Figure 9.3) [Wishart et al., 2006]. APAP-induced hepatotoxicity may occur due to an accu-

mulation of NAPQI [Jaw and Jeffery, 1993]. Here, simulations of NAPQI concentrations were significantly

decreased when both drugs were administered concomitantly (Figure 9.6), which is in accordance to exper-

imental observations from rat liver microsomes [Lee et al., 1991]. This might indicate a favourable effect

of the co-administration of CAF for the reduction of acute liver failure induced by extensive exposure of

APAP.

Several ADME processes were further included in the PBPK models of APAP and CAF to describe the

processes governing a drug PK with a high level of detail (Figure 9.3, Figure 9.4). The PBPK models were

carefully validated and showed excellent agreement with experimental data from literature obtained for

different dosage regimens in human clinical studies [Blanchard and Sawers, 1983; Kaplan et al., 1997; Lelo

et al., 1986; Tang-Liu et al., 1983; Newton et al., 1981; Shinoda et al., 2007; Renner et al., 2007; Prescott,

1980; Rawlins et al., 1977; Iqbal et al., 1995]. (Figure 9.4, Figure 9.5, Table D.2). This validation step

ensures reliable predictions of PK profiles following drug administration of doses ranging from therapeutic

to toxic levels.

The previously established multiscale approach PICD allows a quantitative description of drug-induced

toxicity at patient level [Thiel et al., 2016] (Figure 9.1) by coupling whole-body PBPK models (Figure

9.4) with in vitro toxicity data from Open TG-GATEs [Igarashi et al., 2015], an exceptional large-scale

toxicogenomics database. In this study, PD responses were analyzed at 8 h and 24 h since in vitro response

data for CAF had only been measured at these timepoints [Igarashi et al., 2015]. Although estimating

PD responses induced by multiple dosing would also be very interesting, only single drug administration

was here considered since no adequate in vitro response data for repeated dosing was available [Igarashi

et al., 2015]. Instead of using time-resolved gene expression profiles to represent PD responses at the

cellular level, PICD also allows contextualizing in vitro drug response data obtained at different omics

levels like proteomics or metabolomics, as well as incorporating other functional or clinical endpoints.

Here, PICD was applied for single administration of APAP and CAF, respectively, as well as for co-

administration of both drugs. To predict PD responses of APAP in combination therapy with CAF,
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both the PK and PD interaction of CAF were considered: (i) the implemented competitive inhibition

processes of CAF led to an altered PK profile of APAP and consequently to a changed PD response when

applying PICD (PK interaction); (ii) the predicted PD response of CAF was added separately to the

PD responses of APAP (PD interaction). Although the co-administration of different drugs may lead not

only to additive drug effects but also to synergistic or antagonistic effects, an additive PD response model

was used since no adequate in vitro data was available to identify or differentiate potential synergism or

antagonism.

PD responses of APAP and correspondent PD effects of CAF were evaluated for single genes and key

cellular processes, which were significantly affected by both drugs. Amongst other things, it was found

that a single toxic dose of APAP highly affected the G1/S and G2/M DNA damage checkpoint of the

cell cycle at 8 h, which was further increased by the co-administration of CAF (Figure 9.7). At 24 h,

CAF strongly enhanced the effect of APAP on heterodimerization of the receptors CAR and RXR,

which transcriptionally induce the expression of P450 enzymes, as well as bilirubin and thyroid hormone

metabolism (Figure 9.7). The transcription regulator FOS was substantially upregulated at 8h by a single

dose administration of APAP (Figure 9.8F). This observation is in agreement with earlier experimental

results where FOS expression was induced by APAP in MCF-7 breast cancer cells [Gadd et al., 2002].

Moreover, the PD effect of CAF revealed an enhancement on the activation of FOS, which may potentiate

the APAP-induced hepatotoxicity, since FOS seems to favour the development of toxic events [Fernandez

et al., 2005; Gillardon et al., 1996].

The validated PBPK models and the generic application of PICD here allowed considering drug interac-

tions between APAP and CAF and monitoring PD responses induced by single or co-administration of

several doses. In the dose escalation study, the therapeutic dose was stepwise increased until the considered

toxic dose was reached thereby investigating the transition from desired drug effects to adverse events.

The predicted dose-response curves provided insights into the inhibitory or stimulatory effects of APAP

and enabled to check whether these regulatory effects were enhanced or diminished by co-administration

of CAF. For DTL, which supports the detection of DNA damage and repair, an increased and decreased

impact of CAF on the inhibitory and stimulatory effect of APAP was found at 8 h and 24 h, respectively

(Figure 9.10A). This might indicate a potentiation of the APAP-induced hepatotoxicity, since DTL plays

an essential role in the detection of DNA damage. However, a potential reduction of the toxicity caused by

APAP would also be possible, because a decreased expression of DTL might also be related to a reduced

DNA damage after drug exposure within the cell.

In a further dose escalation study, the effect of CAF on the analgesic action on APAP was investigated

under therapeutic conditions. It was found that CAF slightly enhances the inhibitory effects of APAP

on genes involved in pain perception and modulation (Figure 9.11). These results may explain the

observed increase in the clinical efficacy of APAP at the cellular scale induced by co-administration of

CAF [Renner et al., 2007; Palmer et al., 2010; Sawynok and Yaksh, 1993].

In conclusion, the impact of CAF on APAP-induced hepatotoxicity was here investigated in humans by

simultaneously considering drug effects of CAF on APAP at both the PK and the PD level. It was shown

that CAF has a significant effect on APAP-induced hepatotoxicity due to a co-administration of both

drugs. Key results demonstrate, on the one hand, that CAF might favour a reduction of APAP-induced

hepatotoxicity in humans at the PK and the PD level by reducing the concentrations of NAPQI, which is

supposed to be the reactive metabolite of APAP [Walubo et al., 2004], as well as by positively regulating

genes playing an essential role in the development of toxicity, respectively. On the other hand, CAF

might also potentiate APAP-induced toxicity by affecting crucial genes such as FOS that may support

the activation of cell death pathways.
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Although key outcomes of the study demonstrated inhibitory and stimulatory effects of CAF on APAP,

the question if CAF potentiates or diminishes the hepatotoxicity caused by extensive exposure of APAP

partly remains open. To adequately address this question, more in vitro data would be required such

as measurements of other omics levels like proteomics or metabolomics, as well as in vitro response

data obtained in an appropriate cell system after simultaneous exposure to multiple drugs. This would

obviously help to improve the understanding of the molecular mechanisms following co-administration of

APAP and CAF, and would clearly facilitate to discover potential synergistic or antagonistic drug effects.

As presented here, dose escalation studies might further enhance the development of safe and efficient

dosage regimens in drug combination therapy. Moreover, the concept used to consider DDIs at the PK

and PD level is generically applicable for different drug combinations in clinically relevant situations.

Hence, this might help to explore the PK and PD interactions caused by drug combination therapies at

patient level and, thus, may improve patient safety in clinical practice.
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The benefit of multiscale modeling of drug-induced toxicity in humans was considered in the presented

thesis. The integrative multiscale approach PICD was developed that integrates in vitro toxicity data, at

the cellular level, into drug-specific whole-body PBPK models, at the organism level (Chapter 7) [Thiel

et al., 2016]. In vitro toxicity data from Open-TG GATEs, a large-scale transcriptomics database [Igarashi

et al., 2015], were therefore analyzed, and drug-specific whole-body PBPK models were developed and

validated with human clinical data. The developed multiscale approach was then used in three different

studies:

(i) PICD was applied in a proof-of-principle study on the hepatotoxicant azathioprine to analyze drug-

induced toxicity caused by different dosage regimens in humans. Changes in cellular events induced

by therapeutic or toxic dose levels could be thereby evaluated (Chapter 7) [Thiel et al., 2016].

(ii) PICD was applied in a comparative analysis of drug-induced hepatotoxicity for fifteen drugs in the

face of therapeutic and toxic drug administration in humans (Chapter 8) [Thiel et al., 2017a].

(iii) PICD was used to explore drug interactions between acetaminophen and caffeine at patient level.

The simultaneous consideration of drug effects at the PK and the PD level allowed studying the

impact of caffeine on acetaminophen-induced hepatotoxicity during co-medication with caffeine in

humans (Chapter 9) [Thiel et al., 2017b].

The multiscale approach PICD aims for a detailed representation of cellular changes over time following

drug administration in vivo and provides a generic platform to investigate in vitro measurements of

different omics studies within a patient context. The use of PICD, thus, facilitates in vitro-to-in vivo

extrapolations (IVIVE) and supports clinical translations. Since PICD is an in silico-based approach,

its application also allows an animal-free assessment of drug-induced toxicity, which is fully in line with

3R principles (replacement, reduction, and refinement) [Kroeger, 2006]. A potential application of PICD

on laboratory animals might further enhance the early detection of adverse drug reactions in an in vivo

situation. The identification of non-toxic dose levels might be, hence, improved under the assumption

that appropriate in vitro toxicity assays were conducted during drug development.

The use of PICD for humans might facilitate the investigation of in vitro findings at patient level for

clinical applications in future as shown in the three presented studies (Chapter 7, 8, and 9) [Thiel

et al., 2016, 2017a,b]. In the comparative toxicity analysis, the hepatotoxic potential of a set of fifteen

known hepatotoxicants was evaluated and compared by predicting toxic changes reflecting the transition

from therapeutic drug response to unwanted adverse reactions. Therefore, clinically relevant situations

describing oral drug administration in humans could be mimicked and further assessed to explore drug

effects between therapeutic and toxic conditions and finally to discover molecular biomarkers and potential

DDIs. This might improve clinical risk assessment and patient safety during the drug development process

(Figure 1.1). Furthermore, the performed dose escalation studies for single and co-administration of

acetaminophen and caffeine might amend the identification of safe and efficient doses in drug combination

therapy. Moreover, the presented concept of using PICD to consider drug interactions at both, the PK
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Three-dimensional (3D) cell culture systems are very interesting in drug discovery since these systems

provide a lot of physiological and predictive data for in vivo testing [Edmondson et al., 2014]. 3D mi-

crotissues consist of multiple cells that reflect a small part of an organ or tissue and are developed in

such a way that their functionality and morphology is as close as possible to the native environment. In

vitro experiments, in which therapeutic and toxic drug concentrations are exposed to 3D microtissues,

may thus outperform in vitro tests conducted in standard two-dimensional (2D) monolayer cell cultures

in terms of representing an organotypic in vivo-like environment (Perspective Figure).

Combined applications of different omics technologies applied for 3D cell culture systems that include

drug concentrations over time might be very useful to perform valuable cross-omics analyses taking

into account in vivo pharmacokinetics. This would clearly help to elucidate and predict the molecular

mechanisms underlying adverse drug reactions with a high level of detail following drug administration in

humans (Perspective Figure). In vitro-to-in vivo correlations might ultimately ensure a high accordance

to the in vivo situation, whereby potential modes of action or toxicity might be validated with in vivo data

from biopsies. Overall, such comprehensive experiments and analyses may significantly improve animal

and patient safety in future approaches applied in drug development.

To conclude, in this thesis multiscale modeling was successfully applied to study drug-induced toxicity

in humans [Thiel et al., 2016, 2017a,b]. The presented results demonstrate advances in translational

medicine by contextualizing in vitro toxicity data into a patient situation. This might improve patient

safety in future drug development.
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Appendix





A

General supplementary information to Part II

A.1 Toxicogenomics database

Time-series gene expression profiles from Open TG-GATEs [Igarashi et al., 2015] (ArrayExpress accession

numbers: E-MTAB-797, E-MTAB-798, E-MTAB-799), a large-scale toxicogenomics database, were used

to obtain quantitative drug response data measured in human and rat hepatocytes, as well as in rat livers.

Human and rat hepatocytes were exposed to three different concentrations (low, middle, and high). In

the original in vitro assay, the highest concentration was selected such that cell viability was decreased

by 10-20 % [Igarashi et al., 2015]. The low and middle concentrations were then determined by diluting

the highest concentration by five and twenty-five, respectively [Igarashi et al., 2015]. In the in vivo study,

a minimum toxic dose identified in a 4-week toxicity study was set as highest dose, while the low and

middle dose were one third and one tenth of the high dose, respectively [Igarashi et al., 2015]. Gene

expression levels were measured after three exposure durations (2 h, 8 h, and 24 h) in the in vitro study

and after four exposure durations (3 h, 6 h, 9 h, 24 h) in the in vivo study leading to nine and twelve

different treatments, respectively.

In addition, time-dependent gene expression data of control samples were collected. Fold change values

were calculated to indicate gene expression changes compared to the time-matched controls. Cell viability

of human and rat hepatocytes was assessed by measuring the total DNA content. Cytotoxicity in each

treatment was calculated by the difference of total DNA content between treated hepatocytes and their

particular time-matched controls.

A.2 Software

All PBPK models were built by using the software PK-Sim R© [Eissing et al., 2011; Willmann et al., 2003,

2004, 2005] (version 6.0, Bayer Technology Services, GmbH, Leverkusen, Germany) and MoBi R© (version

3.4, Bayer Technology Services), which are freely available for academic use. Transcriptome analysis was

performed in the statistical language R (version 3.1.0, 2014, R Core Team, http://www.R-project.org).

PICD was implemented in MATLAB (version 8.3.0; The MathWorks, Inc., Natick, MA) by use of the

MoBi R© Toolbox for MATLAB (version 2.3; Bayer Technology Services GmbH).



B

Supplementary information to Chapter 7

B.1 Supplementary materials

B.1.1 Filtering of gene ontology terms

In gene ontology, genes and gene products are annotated with biological terms from three different

sub-ontologies: (i) biological process (BP), (ii) cellular component (CC), and (iii) molecular function

(MF) [Ashburner et al., 2000]. These GO terms and their relations are represented as a directed acyclic

graph (DAG). In this graph, lower levels characterizing higher specialization. To analyze only significantly

affected GO terms with a high degree of specialization, all enriched GO terms having a significant enriched

descendant in the DAG were filtered out. An example of this filtering procedure is illustrated in Figure B.1.

Figure B.1: Filtering gene ontology terms. The presented graph illustrates an exemplary subgraph of the
complete GO graph. In total, four biological processes were identified as significantly enriched (blue and green
nodes). After applying the filtering procedure, three terms were filtered out (blue nodes) while one remained for
further analysis (green). Note that the green node represents the highest specialization.
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B.2 Supplementary tables

B.2.1 Analysis of in vitro toxicity data

Table B.1: Enriched terms and pathways. Significantly overrepresented terms (GO) and pathways (KEGG,
TOX) identified for human and rat hepatocytes, as well as correspondent p-values. The list of GO terms presents
all terms except those removed by the filtering method.

Species Category Term ID Term name Treatment P-value

Human KEGG hsa00240 Pyrimidine metabolism Low - 24 h 0.0001855

Human KEGG hsa00982 Drug metabolism - cytochrome P450 Low - 24 h 0.00018996

Human KEGG hsa03030 DNA replication Low - 24 h 1.10E-07

Human KEGG hsa04110 Cell cycle Low - 24 h 1.25E-16

Human KEGG hsa04114 Oocyte meiosis Low - 24 h 1.44E-05

Human KEGG hsa04115 p53 signaling pathway Low - 24 h 4.98E-07

Human KEGG hsa00830 Retinol metabolism Middle - 24 h 3.84E-05

Human KEGG hsa03030 DNA replication Middle - 24 h 1.59E-12

Human KEGG hsa03420 Nucleotide excision repair Middle - 24 h 5.47E-05

Human KEGG hsa03430 Mismatch repair Middle - 24 h 4.99E-07

Human KEGG hsa03460 Fanconi anemia pathway Middle - 24 h 2.99E-05

Human KEGG hsa04110 Cell cycle Middle - 24 h 2.62E-17

Human KEGG hsa04115 p53 signaling pathway Middle - 24 h 4.83E-07

Human KEGG hsa04141 Protein processing in endoplasmic reticulum Middle - 24 h 1.41E-05

Human KEGG hsa05202 Transcriptional misregulation in cancer Middle - 24 h 0.00011211

Human KEGG hsa04068 FoxO signaling pathway High - 8 h 8.96E-07

Human KEGG hsa04110 Cell cycle High - 8 h 1.87E-06

Human KEGG hsa04115 p53 signaling pathway High - 8 h 3.66E-05

Human KEGG hsa00240 Pyrimidine metabolism High - 24 h 0.00012092

Human KEGG hsa03030 DNA replication High - 24 h 2.92E-12

Human KEGG hsa03430 Mismatch repair High - 24 h 2.98E-05

Human KEGG hsa03460 Fanconi anemia pathway High - 24 h 4.33E-05

Human KEGG hsa04110 Cell cycle High - 24 h 2.43E-15

Human KEGG hsa04115 p53 signaling pathway High - 24 h 3.20E-05

Human KEGG hsa04141 Protein processing in endoplasmic reticulum High - 24 h 1.06E-08

Human TOX TOX:04 DNA Damage & Repair Low - 24 h 4.86E-06

Human TOX TOX:08 Immunotoxicity Low - 24 h 0.00026011

Human TOX TOX:02 Cholestasis Middle - 8 h 0.0032688

Human TOX TOX:04 DNA Damage & Repair Middle - 24 h 4.45E-09

Human TOX TOX:08 Immunotoxicity Middle - 24 h 0.00087295

Human TOX TOX:11 Oxidative Stress & Antioxidant Response Middle - 24 h 0.0016711

Human TOX TOX:07 Heat Shock Response High - 8 h 8.55E-05

Human TOX TOX:04 DNA Damage & Repair High - 24 h 5.10E-07

Human TOX TOX:05 ER Stress & Unfolded Protein Response High - 24 h 0.00062041

Human TOX TOX:07 Heat Shock Response High - 24 h 0.00031518

Human TOX TOX:08 Immunotoxicity High - 24 h 0.0038211

Human TOX TOX:11 Oxidative Stress & Antioxidant Response High - 24 h 0.0049039

Human TOX TOX:12 Phospholipidosis High - 24 h 0.0014279

Human GO (BP) GO:0007091 metaphase/anaphase transition of mitotic cell cycle Low - 24 h 1.16E-10

Human GO (BP) GO:0006271 DNA strand elongation involved in DNA replication Low - 24 h 1.42E-09

Human GO (BP) GO:0034080 CENP-A containing nucleosome assembly Low - 24 h 6.04E-08

Human GO (BP) GO:0051988 regulation of attachment of spindle microtubules to

kinetochore

Low - 24 h 9.93E-08

Human GO (BP) GO:0006206 pyrimidine nucleobase metabolic process Low - 24 h 1.80E-07

Human GO (BP) GO:0007076 mitotic chromosome condensation Low - 24 h 7.54E-07

Human GO (BP) GO:0007094 mitotic spindle assembly checkpoint Low - 24 h 8.99E-07

Human GO (BP) GO:0008608 attachment of spindle microtubules to kinetochore Low - 24 h 1.20E-06

Continued on next page
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Species Category Term ID Term name Treatment P-value

Human GO (BP) GO:0000086 G2/M transition of mitotic cell cycle Low - 24 h 1.48E-06

Human GO (BP) GO:0042493 response to drug Low - 24 h 2.09E-06

Human GO (BP) GO:0045132 meiotic chromosome segregation Low - 24 h 2.42E-06

Human GO (BP) GO:0006084 acetyl-CoA metabolic process Low - 24 h 1.33E-05

Human GO (BP) GO:0007100 mitotic centrosome separation Low - 24 h 2.14E-05

Human GO (BP) GO:0008283 cell proliferation Low - 24 h 3.28E-05

Human GO (BP) GO:0055114 oxidation-reduction process Low - 24 h 3.46E-05

Human GO (BP) GO:0006200 ATP catabolic process Low - 24 h 3.64E-05

Human GO (BP) GO:1901606 alpha-amino acid catabolic process Low - 24 h 4.91E-05

Human GO (BP) GO:0007131 reciprocal meiotic recombination Low - 24 h 5.97E-05

Human GO (BP) GO:0009411 response to UV Low - 24 h 7.00E-05

Human GO (BP) GO:0007018 microtubule-based movement Low - 24 h 7.17E-05

Human GO (BP) GO:0015949 nucleobase-containing small molecule interconversion Low - 24 h 8.60E-05

Human GO (BP) GO:0009636 response to toxic substance Low - 24 h 9.46E-05

Human GO (BP) GO:0031570 DNA integrity checkpoint Low - 24 h 0.00011555

Human GO (BP) GO:0090399 replicative senescence Low - 24 h 0.00011972

Human GO (BP) GO:0000910 cytokinesis Low - 24 h 0.00016247

Human GO (BP) GO:0006270 DNA replication initiation Low - 24 h 0.00017279

Human GO (BP) GO:0009437 carnitine metabolic process Low - 24 h 0.0001839

Human GO (BP) GO:0051382 kinetochore assembly Low - 24 h 0.00026965

Human GO (BP) GO:0090068 positive regulation of cell cycle process Low - 24 h 0.00031613

Human GO (BP) GO:0006366 transcription from RNA polymerase II promoter Middle - 8 h 7.37E-07

Human GO (BP) GO:0031016 pancreas development Middle - 8 h 4.88E-06

Human GO (BP) GO:0060412 ventricular septum morphogenesis Middle - 8 h 1.59E-05

Human GO (BP) GO:0006271 DNA strand elongation involved in DNA replication Middle - 24 h 4.43E-13

Human GO (BP) GO:0034080 CENP-A containing nucleosome assembly Middle - 24 h 6.75E-12

Human GO (BP) GO:0007091 metaphase/anaphase transition of mitotic cell cycle Middle - 24 h 5.31E-09

Human GO (BP) GO:0008283 cell proliferation Middle - 24 h 2.30E-08

Human GO (BP) GO:0007076 mitotic chromosome condensation Middle - 24 h 9.58E-08

Human GO (BP) GO:0006987 activation of signaling protein activity involved in

unfolded protein response

Middle - 24 h 2.03E-07

Human GO (BP) GO:0000083 regulation of transcription involved in G1/S

transition of mitotic cell cycle

Middle - 24 h 2.82E-07

Human GO (BP) GO:0006270 DNA replication initiation Middle - 24 h 3.35E-07

Human GO (BP) GO:0008608 attachment of spindle microtubules to kinetochore Middle - 24 h 8.49E-07

Human GO (BP) GO:0031100 organ regeneration Middle - 24 h 9.09E-07

Human GO (BP) GO:0032201 telomere maintenance via semi-conservative

replication

Middle - 24 h 3.24E-06

Human GO (BP) GO:0007094 mitotic spindle assembly checkpoint Middle - 24 h 4.88E-06

Human GO (BP) GO:0051988 regulation of attachment of spindle microtubules to

kinetochore

Middle - 24 h 5.33E-06

Human GO (BP) GO:0000722 telomere maintenance via recombination Middle - 24 h 7.00E-06

Human GO (BP) GO:0007080 mitotic metaphase plate congression Middle - 24 h 7.44E-06

Human GO (BP) GO:0000910 cytokinesis Middle - 24 h 1.10E-05

Human GO (BP) GO:0070365 hepatocyte differentiation Middle - 24 h 1.12E-05

Human GO (BP) GO:0051382 kinetochore assembly Middle - 24 h 2.13E-05

Human GO (BP) GO:0045132 meiotic chromosome segregation Middle - 24 h 2.20E-05

Human GO (BP) GO:0007019 microtubule depolymerization Middle - 24 h 2.61E-05

Human GO (BP) GO:0014070 response to organic cyclic compound Middle - 24 h 2.63E-05

Human GO (BP) GO:0006302 double-strand break repair Middle - 24 h 4.12E-05

Human GO (BP) GO:0006206 pyrimidine nucleobase metabolic process Middle - 24 h 4.63E-05

Human GO (BP) GO:0006297 nucleotide-excision repair, DNA gap filling Middle - 24 h 4.77E-05

Human GO (BP) GO:0046394 carboxylic acid biosynthetic process Middle - 24 h 4.80E-05

Human GO (BP) GO:0007584 response to nutrient Middle - 24 h 6.01E-05

Human GO (BP) GO:0000086 G2/M transition of mitotic cell cycle Middle - 24 h 6.59E-05

Human GO (BP) GO:0090307 spindle assembly involved in mitosis Middle - 24 h 9.96E-05

Human GO (BP) GO:0006283 transcription-coupled nucleotide-excision repair Middle - 24 h 0.0001042

Continued on next page
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Species Category Term ID Term name Treatment P-value

Human GO (BP) GO:0016572 histone phosphorylation Middle - 24 h 0.00010875

Human GO (BP) GO:0006268 DNA unwinding involved in DNA replication Middle - 24 h 0.00010983

Human GO (BP) GO:0009411 response to UV Middle - 24 h 0.00013072

Human GO (BP) GO:0071281 cellular response to iron ion Middle - 24 h 0.00013533

Human GO (BP) GO:1901606 alpha-amino acid catabolic process Middle - 24 h 0.00013547

Human GO (BP) GO:0006084 acetyl-CoA metabolic process Middle - 24 h 0.00014285

Human GO (BP) GO:0006200 ATP catabolic process Middle - 24 h 0.00014961

Human GO (BP) GO:0071479 cellular response to ionizing radiation Middle - 24 h 0.00015656

Human GO (BP) GO:0009200 deoxyribonucleoside triphosphate metabolic process Middle - 24 h 0.00022348

Human GO (BP) GO:0015949 nucleobase-containing small molecule interconversion Middle - 24 h 0.00022348

Human GO (BP) GO:0008630 intrinsic apoptotic signaling pathway in response to

DNA damage

Middle - 24 h 0.00024137

Human GO (BP) GO:0043065 positive regulation of apoptotic process Middle - 24 h 0.00029346

Human GO (BP) GO:0010332 response to gamma radiation Middle - 24 h 0.00030114

Human GO (BP) GO:0007100 mitotic centrosome separation Middle - 24 h 0.00030171

Human GO (BP) GO:0051255 spindle midzone assembly Middle - 24 h 0.00030171

Human GO (BP) GO:0060236 regulation of mitotic spindle organization Middle - 24 h 0.00030171

Human GO (BP) GO:0045765 regulation of angiogenesis Middle - 24 h 0.00030212

Human GO (BP) GO:0040001 establishment of mitotic spindle localization Middle - 24 h 0.00031938

Human GO (BP) GO:0070301 cellular response to hydrogen peroxide Middle - 24 h 0.00036094

Human GO (BP) GO:0000725 recombinational repair Middle - 24 h 0.000415

Human GO (BP) GO:0008283 cell proliferation High - 8 h 1.78E-06

Human GO (BP) GO:0006366 transcription from RNA polymerase II promoter High - 8 h 3.23E-06

Human GO (BP) GO:0033993 response to lipid High - 8 h 7.54E-06

Human GO (BP) GO:0045736 negative regulation of cyclin-dependent protein

serine/threonine kinase activity

High - 8 h 7.98E-06

Human GO (BP) GO:0014070 response to organic cyclic compound High - 8 h 1.96E-05

Human GO (BP) GO:0009725 response to hormone High - 8 h 7.34E-05

Human GO (BP) GO:0031016 pancreas development High - 8 h 7.59E-05

Human GO (BP) GO:0045944 positive regulation of transcription from RNA

polymerase II promoter

High - 8 h 7.98E-05

Human GO (BP) GO:0060412 ventricular septum morphogenesis High - 8 h 9.00E-05

Human GO (BP) GO:0090009 primitive streak formation High - 8 h 0.00010067

Human GO (BP) GO:0008285 negative regulation of cell proliferation High - 8 h 0.00010913

Human GO (BP) GO:0048872 homeostasis of number of cells High - 8 h 0.00012165

Human GO (BP) GO:0060537 muscle tissue development High - 8 h 0.00019426

Human GO (BP) GO:0048661 positive regulation of smooth muscle cell proliferation High - 8 h 0.00019805

Human GO (BP) GO:0070647 protein modification by small protein conjugation or

removal

High - 8 h 0.0002139

Human GO (BP) GO:0055088 lipid homeostasis High - 8 h 0.0002197

Human GO (BP) GO:0030518 intracellular steroid hormone receptor signaling

pathway

High - 8 h 0.00026118

Human GO (BP) GO:0070848 response to growth factor High - 8 h 0.00026479

Human GO (BP) GO:0006271 DNA strand elongation involved in DNA replication High - 24 h 1.12E-12

Human GO (BP) GO:0034080 CENP-A containing nucleosome assembly High - 24 h 1.12E-10

Human GO (BP) GO:0006987 activation of signaling protein activity involved in

unfolded protein response

High - 24 h 2.42E-08

Human GO (BP) GO:0006270 DNA replication initiation High - 24 h 3.57E-07

Human GO (BP) GO:0007076 mitotic chromosome condensation High - 24 h 5.39E-07

Human GO (BP) GO:0007091 metaphase/anaphase transition of mitotic cell cycle High - 24 h 7.41E-07

Human GO (BP) GO:0000086 G2/M transition of mitotic cell cycle High - 24 h 1.86E-06

Human GO (BP) GO:0000083 regulation of transcription involved in G1/S

transition of mitotic cell cycle

High - 24 h 2.21E-06

Human GO (BP) GO:0032201 telomere maintenance via semi-conservative

replication

High - 24 h 2.21E-06

Human GO (BP) GO:1901606 alpha-amino acid catabolic process High - 24 h 3.21E-06

Human GO (BP) GO:0000722 telomere maintenance via recombination High - 24 h 5.25E-06
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Human GO (BP) GO:0008608 attachment of spindle microtubules to kinetochore High - 24 h 5.45E-06

Human GO (BP) GO:0015949 nucleobase-containing small molecule interconversion High - 24 h 7.90E-06

Human GO (BP) GO:0007584 response to nutrient High - 24 h 1.09E-05

Human GO (BP) GO:0040001 establishment of mitotic spindle localization High - 24 h 1.33E-05

Human GO (BP) GO:0042493 response to drug High - 24 h 1.84E-05

Human GO (BP) GO:0051988 regulation of attachment of spindle microtubules to

kinetochore

High - 24 h 1.94E-05

Human GO (BP) GO:0060236 regulation of mitotic spindle organization High - 24 h 3.15E-05

Human GO (BP) GO:0007080 mitotic metaphase plate congression High - 24 h 3.22E-05

Human GO (BP) GO:0007094 mitotic spindle assembly checkpoint High - 24 h 4.01E-05

Human GO (BP) GO:0006206 pyrimidine nucleobase metabolic process High - 24 h 4.33E-05

Human GO (BP) GO:0006200 ATP catabolic process High - 24 h 4.50E-05

Human GO (BP) GO:0031100 organ regeneration High - 24 h 5.62E-05

Human GO (BP) GO:0051382 kinetochore assembly High - 24 h 7.56E-05

Human GO (BP) GO:0055114 oxidation-reduction process High - 24 h 8.31E-05

Human GO (BP) GO:0000910 cytokinesis High - 24 h 8.57E-05

Human GO (BP) GO:0008283 cell proliferation High - 24 h 9.44E-05

Human GO (BP) GO:0045132 meiotic chromosome segregation High - 24 h 0.00010895

Human GO (BP) GO:0007019 microtubule depolymerization High - 24 h 0.00014913

Human GO (BP) GO:0046394 carboxylic acid biosynthetic process High - 24 h 0.00015846

Human GO (BP) GO:0006297 nucleotide-excision repair, DNA gap filling High - 24 h 0.00019643

Human GO (BP) GO:0006081 cellular aldehyde metabolic process High - 24 h 0.00021462

Human GO (BP) GO:0071479 cellular response to ionizing radiation High - 24 h 0.00021462

Human GO (BP) GO:0030433 ER-associated ubiquitin-dependent protein catabolic

process

High - 24 h 0.00021546

Human GO (BP) GO:0090068 positive regulation of cell cycle process High - 24 h 0.00030154

Human GO (BP) GO:0006268 DNA unwinding involved in DNA replication High - 24 h 0.00031637

Human GO (BP) GO:0009157 deoxyribonucleoside monophosphate biosynthetic

process

High - 24 h 0.00032348

Human GO (BP) GO:0009221 pyrimidine deoxyribonucleotide biosynthetic process High - 24 h 0.00032348

Human GO (BP) GO:0071281 cellular response to iron ion High - 24 h 0.00032348

Human GO (BP) GO:0090307 spindle assembly involved in mitosis High - 24 h 0.00034088

Human GO (BP) GO:0042060 wound healing High - 24 h 0.00034532

Human GO (CC) GO:0032993 protein-DNA complex Low - 24 h 6.19E-17

Human GO (CC) GO:0000922 spindle pole Low - 24 h 1.28E-12

Human GO (CC) GO:0005829 cytosol Low - 24 h 7.53E-11

Human GO (CC) GO:0030496 midbody Low - 24 h 1.31E-08

Human GO (CC) GO:0005654 nucleoplasm Low - 24 h 8.27E-08

Human GO (CC) GO:0005876 spindle microtubule Low - 24 h 2.18E-07

Human GO (CC) GO:0072686 mitotic spindle Low - 24 h 2.68E-07

Human GO (CC) GO:0000778 condensed nuclear chromosome kinetochore Low - 24 h 3.33E-07

Human GO (CC) GO:0005871 kinesin complex Low - 24 h 6.06E-06

Human GO (CC) GO:0000796 condensin complex Low - 24 h 8.61E-06

Human GO (CC) GO:0000940 condensed chromosome outer kinetochore Low - 24 h 1.12E-05

Human GO (CC) GO:0051233 spindle midzone Low - 24 h 1.74E-05

Human GO (CC) GO:0005813 centrosome Low - 24 h 4.51E-05

Human GO (CC) GO:0042555 MCM complex Low - 24 h 0.00011022

Human GO (CC) GO:0008278 cohesin complex Low - 24 h 0.00016939

Human GO (CC) GO:0005730 nucleolus Low - 24 h 0.00020934

Human GO (CC) GO:0035371 microtubule plus-end Low - 24 h 0.00064107

Human GO (CC) GO:0045120 pronucleus Low - 24 h 0.00083603

Human GO (CC) GO:0032993 protein-DNA complex Middle - 24 h 1.76E-21

Human GO (CC) GO:0005654 nucleoplasm Middle - 24 h 2.22E-12

Human GO (CC) GO:0000922 spindle pole Middle - 24 h 1.17E-11

Human GO (CC) GO:0005829 cytosol Middle - 24 h 5.35E-10

Human GO (CC) GO:0000796 condensin complex Middle - 24 h 2.70E-08

Human GO (CC) GO:0030496 midbody Middle - 24 h 1.53E-07
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Human GO (CC) GO:0000778 condensed nuclear chromosome kinetochore Middle - 24 h 1.80E-07

Human GO (CC) GO:0005876 spindle microtubule Middle - 24 h 2.98E-07

Human GO (CC) GO:0000940 condensed chromosome outer kinetochore Middle - 24 h 9.16E-07

Human GO (CC) GO:0005663 DNA replication factor C complex Middle - 24 h 2.84E-06

Human GO (CC) GO:0042555 MCM complex Middle - 24 h 4.69E-06

Human GO (CC) GO:0072686 mitotic spindle Middle - 24 h 9.32E-06

Human GO (CC) GO:0005871 kinesin complex Middle - 24 h 4.48E-05

Human GO (CC) GO:0000785 chromatin Middle - 24 h 0.00021058

Human GO (CC) GO:0005788 endoplasmic reticulum lumen Middle - 24 h 0.0002234

Human GO (CC) GO:0005813 centrosome Middle - 24 h 0.00051081

Human GO (CC) GO:0032300 mismatch repair complex Middle - 24 h 0.00053004

Human GO (CC) GO:0000407 pre-autophagosomal structure Middle - 24 h 0.00053852

Human GO (CC) GO:0051233 spindle midzone Middle - 24 h 0.00071916

Human GO (CC) GO:0035371 microtubule plus-end Middle - 24 h 0.00093564

Human GO (CC) GO:0005654 nucleoplasm High - 8 h 1.40E-06

Human GO (CC) GO:0032993 protein-DNA complex High - 24 h 5.80E-21

Human GO (CC) GO:0000922 spindle pole High - 24 h 6.20E-11

Human GO (CC) GO:0005829 cytosol High - 24 h 8.18E-10

Human GO (CC) GO:0000940 condensed chromosome outer kinetochore High - 24 h 5.82E-09

Human GO (CC) GO:0005654 nucleoplasm High - 24 h 2.02E-08

Human GO (CC) GO:0005876 spindle microtubule High - 24 h 7.54E-08

Human GO (CC) GO:0000796 condensin complex High - 24 h 1.02E-07

Human GO (CC) GO:0030496 midbody High - 24 h 1.10E-07

Human GO (CC) GO:0000778 condensed nuclear chromosome kinetochore High - 24 h 6.69E-07

Human GO (CC) GO:0070062 extracellular vesicular exosome High - 24 h 6.20E-06

Human GO (CC) GO:0005813 centrosome High - 24 h 7.40E-06

Human GO (CC) GO:0005663 DNA replication factor C complex High - 24 h 8.43E-06

Human GO (CC) GO:0042555 MCM complex High - 24 h 1.68E-05

Human GO (CC) GO:0005788 endoplasmic reticulum lumen High - 24 h 0.00013482

Human GO (CC) GO:0005871 kinesin complex High - 24 h 0.0003161

Human GO (CC) GO:0072686 mitotic spindle High - 24 h 0.00035081

Human GO (CC) GO:0032155 cell division site part High - 24 h 0.00051871

Human GO (MF) GO:0005524 ATP binding Low - 24 h 2.76E-09

Human GO (MF) GO:0008017 microtubule binding Low - 24 h 1.50E-06

Human GO (MF) GO:0003777 microtubule motor activity Low - 24 h 8.25E-06

Human GO (MF) GO:0048037 cofactor binding Low - 24 h 4.04E-05

Human GO (MF) GO:0016725 oxidoreductase activity, acting on CH or CH2 groups Low - 24 h 0.00013223

Human GO (MF) GO:0008094 DNA-dependent ATPase activity Low - 24 h 0.00015474

Human GO (MF) GO:0032405 MutLalpha complex binding Low - 24 h 0.00023851

Human GO (MF) GO:0004861 cyclin-dependent protein serine/threonine kinase

inhibitor activity

Middle - 8 h 6.21E-06

Human GO (MF) GO:0008017 microtubule binding Middle - 24 h 4.36E-06

Human GO (MF) GO:0005524 ATP binding Middle - 24 h 4.87E-06

Human GO (MF) GO:0008094 DNA-dependent ATPase activity Middle - 24 h 1.88E-05

Human GO (MF) GO:0032405 MutLalpha complex binding Middle - 24 h 4.62E-05

Human GO (MF) GO:0030983 mismatched DNA binding Middle - 24 h 5.60E-05

Human GO (MF) GO:0016725 oxidoreductase activity, acting on CH or CH2 groups Middle - 24 h 0.00010692

Human GO (MF) GO:0035174 histone serine kinase activity Middle - 24 h 0.00013239

Human GO (MF) GO:0004861 cyclin-dependent protein serine/threonine kinase

inhibitor activity

High - 8 h 6.18E-06

Human GO (MF) GO:0035257 nuclear hormone receptor binding High - 8 h 8.27E-05

Human GO (MF) GO:0008017 microtubule binding High - 24 h 8.41E-06

Human GO (MF) GO:0005524 ATP binding High - 24 h 1.71E-05

Rat KEGG rno00051 Fructose and mannose metabolism - Rattus

norvegicus (rat)

Middle - 24 h 7.38E-05

Rat KEGG rno00830 Retinol metabolism - Rattus norvegicus (rat) Middle - 24 h 5.98E-05
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Rat KEGG rno04610 Complement and coagulation cascades - Rattus

norvegicus (rat)

Middle - 24 h 2.46E-06

Rat KEGG rno00260 Glycine, serine and threonine metabolism - Rattus

norvegicus (rat)

High - 24 h 1.34E-08

Rat KEGG rno04610 Complement and coagulation cascades - Rattus

norvegicus (rat)

High - 24 h 2.30E-12

Rat TOX TOX:04 DNA Damage & Repair High - 8 h 0.00083009

Rat GO (BP) GO:0055114 oxidation-reduction process Middle - 24 h 5.40E-08

Rat GO (BP) GO:0006805 xenobiotic metabolic process Middle - 24 h 6.05E-06

Rat GO (BP) GO:0017144 drug metabolic process Middle - 24 h 1.01E-05

Rat GO (BP) GO:0010043 response to zinc ion Middle - 24 h 1.39E-05

Rat GO (BP) GO:0006790 sulfur compound metabolic process Middle - 24 h 7.12E-05

Rat GO (BP) GO:0001889 liver development Middle - 24 h 8.44E-05

Rat GO (BP) GO:0010468 regulation of gene expression High - 8 h 8.90E-06

Rat GO (BP) GO:0072395 signal transduction involved in cell cycle checkpoint High - 8 h 2.23E-05

Rat GO (BP) GO:0030330 DNA damage response, signal transduction by p53

class mediator

High - 8 h 2.67E-05

Rat GO (BP) GO:2000112 regulation of cellular macromolecule biosynthetic

process

High - 8 h 2.82E-05

Rat GO (BP) GO:0019219 regulation of nucleobase-containing compound

metabolic process

High - 8 h 3.00E-05

Rat GO (BP) GO:0016070 RNA metabolic process High - 8 h 4.43E-05

Rat GO (BP) GO:0010467 gene expression High - 8 h 5.87E-05

Rat GO (BP) GO:0055114 oxidation-reduction process High - 24 h 5.09E-13

Rat GO (BP) GO:0009071 serine family amino acid catabolic process High - 24 h 5.31E-07

Rat GO (BP) GO:0032787 monocarboxylic acid metabolic process High - 24 h 1.82E-06

Rat GO (BP) GO:0006958 complement activation, classical pathway High - 24 h 3.06E-06

Rat GO (BP) GO:0006544 glycine metabolic process High - 24 h 3.35E-06

Rat GO (BP) GO:1901653 cellular response to peptide High - 24 h 1.43E-05

Rat GO (BP) GO:0001889 liver development High - 24 h 2.10E-05

Rat GO (BP) GO:0006805 xenobiotic metabolic process High - 24 h 2.43E-05

Rat GO (BP) GO:0006006 glucose metabolic process High - 24 h 2.62E-05

Rat GO (BP) GO:0006695 cholesterol biosynthetic process High - 24 h 3.76E-05

Rat GO (BP) GO:0006733 oxidoreduction coenzyme metabolic process High - 24 h 4.55E-05

Rat GO (BP) GO:0042632 cholesterol homeostasis High - 24 h 4.74E-05

Rat GO (BP) GO:0044724 single-organism carbohydrate catabolic process High - 24 h 5.51E-05

Rat GO (BP) GO:0051289 protein homotetramerization High - 24 h 6.92E-05

Rat GO (BP) GO:0006790 sulfur compound metabolic process High - 24 h 8.35E-05

Rat GO (BP) GO:0009070 serine family amino acid biosynthetic process High - 24 h 8.37E-05

Rat GO (BP) GO:0009074 aromatic amino acid family catabolic process High - 24 h 8.37E-05

Rat GO (BP) GO:0072524 pyridine-containing compound metabolic process High - 24 h 9.02E-05

Rat GO (BP) GO:0043434 response to peptide hormone High - 24 h 9.23E-05

Rat GO (BP) GO:0010878 cholesterol storage High - 24 h 9.44E-05

Rat GO (CC) GO:0005615 extracellular space Middle - 24 h 8.86E-05

Rat GO (CC) GO:0005634 nucleus High - 8 h 3.42E-06

Rat GO (CC) GO:0070062 extracellular vesicular exosome High - 24 h 7.36E-07

Rat GO (CC) GO:0005615 extracellular space High - 24 h 0.00010594

Rat GO (MF) GO:0005506 iron ion binding Middle - 24 h 4.35E-07

Rat GO (MF) GO:0005543 phospholipid binding Middle - 24 h 5.16E-05

Rat GO (MF) GO:0016712 oxidoreductase activity, acting on paired donors, ... Middle - 24 h 5.45E-05

Rat GO (MF) GO:0030170 pyridoxal phosphate binding High - 24 h 2.92E-05

Rat GO (MF) GO:0043546 molybdopterin cofactor binding High - 24 h 2.95E-05
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Table B.2: Deleted gene ontology terms. Gene ontology terms that have been deleted after applying the
presented filtering method of GO terms (see more in B.1.1). SO, sub-ontologies; BP, biological processes; CC,
cellular component; MF, molecular function

Species SO Term ID Term name

Human BP GO:0000070 mitotic sister chromatid segregation

Human BP GO:0000075 cell cycle checkpoint

Human BP GO:0000079 regulation of cyclin-dependent protein ser/thr kinase activity

Human BP GO:0000082 G1/S transition of mitotic cell cycle

Human BP GO:0000226 microtubule cytoskeleton organization

Human BP GO:0000278 mitotic cell cycle

Human BP GO:0000280 nuclear division

Human BP GO:0000723 telomere maintenance

Human BP GO:0000819 sister chromatid segregation

Human BP GO:0001702 gastrulation with mouth forming second

Human BP GO:0001889 liver development

Human BP GO:0001932 regulation of protein phosphorylation

Human BP GO:0001933 negative regulation of protein phosphorylation

Human BP GO:0003281 ventricular septum development

Human BP GO:0006082 organic acid metabolic process

Human BP GO:0006259 DNA metabolic process

Human BP GO:0006260 DNA replication

Human BP GO:0006261 DNA-dependent DNA replication

Human BP GO:0006281 DNA repair

Human BP GO:0006310 DNA recombination

Human BP GO:0006312 mitotic recombination

Human BP GO:0006323 DNA packaging

Human BP GO:0006333 chromatin assembly or disassembly

Human BP GO:0006334 nucleosome assembly

Human BP GO:0006336 DNA replication-independent nucleosome assembly

Human BP GO:0006338 chromatin remodeling

Human BP GO:0006351 transcription, DNA-templated

Human BP GO:0006355 regulation of transcription, DNA-templated

Human BP GO:0006357 regulation of transcription from RNA polymerase II promoter

Human BP GO:0006461 protein complex assembly

Human BP GO:0006464 cellular protein modification process

Human BP GO:0006468 protein phosphorylation

Human BP GO:0006577 amino-acid betaine metabolic process

Human BP GO:0006793 phosphorus metabolic process

Human BP GO:0006796 phosphate-containing compound metabolic process

Human BP GO:0006807 nitrogen compound metabolic process

Human BP GO:0006915 apoptotic process

Human BP GO:0006950 response to stress

Human BP GO:0006974 cellular response to DNA damage stimulus

Human BP GO:0006984 ER-nucleus signaling pathway

Human BP GO:0006986 response to unfolded protein

Human BP GO:0006996 organelle organization

Human BP GO:0007010 cytoskeleton organization

Human BP GO:0007017 microtubule-based process

Human BP GO:0007049 cell cycle

Human BP GO:0007051 spindle organization

Human BP GO:0007052 mitotic spindle organization

Human BP GO:0007059 chromosome segregation

Human BP GO:0007067 mitotic nuclear division

Human BP GO:0007088 regulation of mitosis

Human BP GO:0007093 mitotic cell cycle checkpoint

Human BP GO:0007126 meiotic nuclear division
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Human BP GO:0007127 meiosis I

Human BP GO:0007346 regulation of mitotic cell cycle

Human BP GO:0008152 metabolic process

Human BP GO:0008219 cell death

Human BP GO:0009056 catabolic process

Human BP GO:0009058 biosynthetic process

Human BP GO:0009059 macromolecule biosynthetic process

Human BP GO:0009063 cellular amino acid catabolic process

Human BP GO:0009112 nucleobase metabolic process

Human BP GO:0009123 nucleoside monophosphate metabolic process

Human BP GO:0009125 nucleoside monophosphate catabolic process

Human BP GO:0009128 purine nucleoside monophosphate catabolic process

Human BP GO:0009158 ribonucleoside monophosphate catabolic process

Human BP GO:0009169 purine ribonucleoside monophosphate catabolic process

Human BP GO:0009262 deoxyribonucleotide metabolic process

Human BP GO:0009263 deoxyribonucleotide biosynthetic process

Human BP GO:0009605 response to external stimulus

Human BP GO:0009719 response to endogenous stimulus

Human BP GO:0009889 regulation of biosynthetic process

Human BP GO:0009891 positive regulation of biosynthetic process

Human BP GO:0009892 negative regulation of metabolic process

Human BP GO:0009893 positive regulation of metabolic process

Human BP GO:0009987 cellular process

Human BP GO:0009991 response to extracellular stimulus

Human BP GO:0010033 response to organic substance

Human BP GO:0010035 response to inorganic substance

Human BP GO:0010212 response to ionizing radiation

Human BP GO:0010468 regulation of gene expression

Human BP GO:0010556 regulation of macromolecule biosynthetic process

Human BP GO:0010557 positive regulation of macromolecule biosynthetic process

Human BP GO:0010564 regulation of cell cycle process

Human BP GO:0010604 positive regulation of macromolecule metabolic process

Human BP GO:0010605 negative regulation of macromolecule metabolic process

Human BP GO:0010628 positive regulation of gene expression

Human BP GO:0010639 negative regulation of organelle organization

Human BP GO:0010833 telomere maintenance via telomere lengthening

Human BP GO:0010941 regulation of cell death

Human BP GO:0010942 positive regulation of cell death

Human BP GO:0010948 negative regulation of cell cycle process

Human BP GO:0012501 programmed cell death

Human BP GO:0016043 cellular component organization

Human BP GO:0016053 organic acid biosynthetic process

Human BP GO:0016054 organic acid catabolic process

Human BP GO:0016265 death

Human BP GO:0016310 phosphorylation

Human BP GO:0018130 heterocycle biosynthetic process

Human BP GO:0019222 regulation of metabolic process

Human BP GO:0019438 aromatic compound biosynthetic process

Human BP GO:0019538 protein metabolic process

Human BP GO:0019752 carboxylic acid metabolic process

Human BP GO:0022402 cell cycle process

Human BP GO:0022616 DNA strand elongation

Human BP GO:0030071 regulation of mitotic metaphase/anaphase transition

Human BP GO:0030261 chromosome condensation

Human BP GO:0030968 endoplasmic reticulum unfolded protein response

Human BP GO:0031055 chromatin remodeling at centromere

Human BP GO:0031109 microtubule polymerization or depolymerization
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Human BP GO:0031145 anaphase-promoting complex-dependent...

Human BP GO:0031323 regulation of cellular metabolic process

Human BP GO:0031324 negative regulation of cellular metabolic process

Human BP GO:0031325 positive regulation of cellular metabolic process

Human BP GO:0031326 regulation of cellular biosynthetic process

Human BP GO:0031328 positive regulation of cellular biosynthetic process

Human BP GO:0031399 regulation of protein modification process

Human BP GO:0031497 chromatin assembly

Human BP GO:0031577 spindle checkpoint

Human BP GO:0031667 response to nutrient levels

Human BP GO:0032069 regulation of nuclease activity

Human BP GO:0032075 positive regulation of nuclease activity

Human BP GO:0032200 telomere organization

Human BP GO:0032268 regulation of cellular protein metabolic process

Human BP GO:0032269 negative regulation of cellular protein metabolic process

Human BP GO:0032774 RNA biosynthetic process

Human BP GO:0032787 monocarboxylic acid metabolic process

Human BP GO:0032886 regulation of microtubule-based process

Human BP GO:0033043 regulation of organelle organization

Human BP GO:0033260 nuclear cell cycle DNA replication

Human BP GO:0033554 cellular response to stress

Human BP GO:0034453 microtubule anchoring

Human BP GO:0034508 centromere complex assembly

Human BP GO:0034620 cellular response to unfolded protein

Human BP GO:0034641 cellular nitrogen compound metabolic process

Human BP GO:0034645 cellular macromolecule biosynthetic process

Human BP GO:0034654 nucleobase-containing compound biosynthetic process

Human BP GO:0034724 DNA replication-independent nucleosome organization

Human BP GO:0034728 nucleosome organization

Human BP GO:0034976 response to endoplasmic reticulum stress

Human BP GO:0035556 intracellular signal transduction

Human BP GO:0035825 reciprocal DNA recombination

Human BP GO:0035966 response to topologically incorrect protein

Human BP GO:0035967 cellular response to topologically incorrect protein

Human BP GO:0036211 protein modification process

Human BP GO:0042127 regulation of cell proliferation

Human BP GO:0042221 response to chemical

Human BP GO:0042325 regulation of phosphorylation

Human BP GO:0042326 negative regulation of phosphorylation

Human BP GO:0042542 response to hydrogen peroxide

Human BP GO:0042592 homeostatic process

Human BP GO:0042981 regulation of apoptotic process

Human BP GO:0043044 ATP-dependent chromatin remodeling

Human BP GO:0043067 regulation of programmed cell death

Human BP GO:0043068 positive regulation of programmed cell death

Human BP GO:0043086 negative regulation of catalytic activity

Human BP GO:0043170 macromolecule metabolic process

Human BP GO:0043412 macromolecule modification

Human BP GO:0043436 oxoacid metabolic process

Human BP GO:0043486 histone exchange

Human BP GO:0043549 regulation of kinase activity

Human BP GO:0043933 macromolecular complex subunit organization

Human BP GO:0044237 cellular metabolic process

Human BP GO:0044238 primary metabolic process

Human BP GO:0044248 cellular catabolic process

Human BP GO:0044249 cellular biosynthetic process

Human BP GO:0044260 cellular macromolecule metabolic process
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Human BP GO:0044267 cellular protein metabolic process

Human BP GO:0044271 cellular nitrogen compound biosynthetic process

Human BP GO:0044281 small molecule metabolic process

Human BP GO:0044282 small molecule catabolic process

Human BP GO:0044283 small molecule biosynthetic process

Human BP GO:0044699 single-organism process

Human BP GO:0044710 single-organism metabolic process

Human BP GO:0044711 single-organism biosynthetic process

Human BP GO:0044712 single-organism catabolic process

Human BP GO:0044763 single-organism cellular process

Human BP GO:0044770 cell cycle phase transition

Human BP GO:0044772 mitotic cell cycle phase transition

Human BP GO:0044784 metaphase/anaphase transition of cell cycle

Human BP GO:0044786 cell cycle DNA replication

Human BP GO:0044839 cell cycle G2/M phase transition

Human BP GO:0044843 cell cycle G1/S phase transition

Human BP GO:0045185 maintenance of protein location

Human BP GO:0045786 negative regulation of cell cycle

Human BP GO:0045787 positive regulation of cell cycle

Human BP GO:0045839 negative regulation of mitosis

Human BP GO:0045841 negative regulation of mitotic metaphase/anaphase transition

Human BP GO:0045859 regulation of protein kinase activity

Human BP GO:0045893 positive regulation of transcription, DNA-templated

Human BP GO:0045935 positive regulation of nucleobase-containing compound met. process

Human BP GO:0046395 carboxylic acid catabolic process

Human BP GO:0046483 heterocycle metabolic process

Human BP GO:0048285 organelle fission

Human BP GO:0048518 positive regulation of biological process

Human BP GO:0048519 negative regulation of biological process

Human BP GO:0048522 positive regulation of cellular process

Human BP GO:0048523 negative regulation of cellular process

Human BP GO:0048660 regulation of smooth muscle cell proliferation

Human BP GO:0050000 chromosome localization

Human BP GO:0050789 regulation of biological process

Human BP GO:0050790 regulation of catalytic activity

Human BP GO:0050794 regulation of cellular process

Human BP GO:0050896 response to stimulus

Human BP GO:0051129 negative regulation of cellular component organization

Human BP GO:0051171 regulation of nitrogen compound metabolic process

Human BP GO:0051173 positive regulation of nitrogen compound metabolic process

Human BP GO:0051225 spindle assembly

Human BP GO:0051235 maintenance of location

Human BP GO:0051246 regulation of protein metabolic process

Human BP GO:0051248 negative regulation of protein metabolic process

Human BP GO:0051252 regulation of RNA metabolic process

Human BP GO:0051254 positive regulation of RNA metabolic process

Human BP GO:0051276 chromosome organization

Human BP GO:0051293 establishment of spindle localization

Human BP GO:0051299 centrosome separation

Human BP GO:0051301 cell division

Human BP GO:0051302 regulation of cell division

Human BP GO:0051303 establishment of chromosome localization

Human BP GO:0051310 metaphase plate congression

Human BP GO:0051321 meiotic cell cycle

Human BP GO:0051338 regulation of transferase activity

Human BP GO:0051383 kinetochore organization

Human BP GO:0051493 regulation of cytoskeleton organization
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Human BP GO:0051640 organelle localization

Human BP GO:0051716 cellular response to stimulus

Human BP GO:0051726 regulation of cell cycle

Human BP GO:0051783 regulation of nuclear division

Human BP GO:0051784 negative regulation of nuclear division

Human BP GO:0051983 regulation of chromosome segregation

Human BP GO:0060255 regulation of macromolecule metabolic process

Human BP GO:0061008 hepaticobiliary system development

Human BP GO:0061641 CENP-A containing chromatin organization

Human BP GO:0065003 macromolecular complex assembly

Human BP GO:0065004 protein-DNA complex assembly

Human BP GO:0065007 biological regulation

Human BP GO:0065008 regulation of biological quality

Human BP GO:0065009 regulation of molecular function

Human BP GO:0070271 protein complex biogenesis

Human BP GO:0070507 regulation of microtubule cytoskeleton organization

Human BP GO:0070887 cellular response to chemical stimulus

Human BP GO:0071103 DNA conformation change

Human BP GO:0071173 spindle assembly checkpoint

Human BP GO:0071174 mitotic spindle checkpoint

Human BP GO:0071310 cellular response to organic substance

Human BP GO:0071704 organic substance metabolic process

Human BP GO:0071822 protein complex subunit organization

Human BP GO:0071824 protein-DNA complex subunit organization

Human BP GO:0071840 cellular component organization or biogenesis

Human BP GO:0071900 regulation of protein serine/threonine kinase activity

Human BP GO:0071901 negative regulation of protein serine/threonine kinase activity

Human BP GO:0072527 pyrimidine-containing compound metabolic process

Human BP GO:0080090 regulation of primary metabolic process

Human BP GO:0090224 regulation of spindle organization

Human BP GO:1901342 regulation of vasculature development

Human BP GO:1901360 organic cyclic compound metabolic process

Human BP GO:1901362 organic cyclic compound biosynthetic process

Human BP GO:1901564 organonitrogen compound metabolic process

Human BP GO:1901565 organonitrogen compound catabolic process

Human BP GO:1901575 organic substance catabolic process

Human BP GO:1901576 organic substance biosynthetic process

Human BP GO:1901605 alpha-amino acid metabolic process

Human BP GO:1901987 regulation of cell cycle phase transition

Human BP GO:1901988 negative regulation of cell cycle phase transition

Human BP GO:1901990 regulation of mitotic cell cycle phase transition

Human BP GO:1901991 negative regulation of mitotic cell cycle phase transition

Human BP GO:1902099 regulation of metaphase/anaphase transition of cell cycle

Human BP GO:1902100 negative regulation of metaphase/anaphase transition of cell cycle

Human BP GO:1902589 single-organism organelle organization

Human BP GO:1902680 positive regulation of RNA biosynthetic process

Human BP GO:1902850 microtubule cytoskeleton organization involved in mitosis

Human BP GO:1903046 meiotic cell cycle process

Human BP GO:1903047 mitotic cell cycle process

Human BP GO:2000112 regulation of cellular macromolecule biosynthetic process

Human BP GO:2001141 regulation of RNA biosynthetic process

Human MF GO:0000166 nucleotide binding

Human MF GO:0001882 nucleoside binding

Human MF GO:0001883 purine nucleoside binding

Human MF GO:0003690 double-stranded DNA binding

Human MF GO:0003824 catalytic activity

Human MF GO:0004860 protein kinase inhibitor activity

Continued on next page
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Species SO Term ID Term name

Human MF GO:0005515 protein binding

Human MF GO:0015631 tubulin binding

Human MF GO:0016491 oxidoreductase activity

Human MF GO:0016538 cyclin-dependent protein serine/threonine kinase regulator activity

Human MF GO:0016887 ATPase activity

Human MF GO:0017076 purine nucleotide binding

Human MF GO:0019207 kinase regulator activity

Human MF GO:0019210 kinase inhibitor activity

Human MF GO:0019887 protein kinase regulator activity

Human MF GO:0030291 protein serine/threonine kinase inhibitor activity

Human MF GO:0030554 adenyl nucleotide binding

Human MF GO:0032404 mismatch repair complex binding

Human MF GO:0032549 ribonucleoside binding

Human MF GO:0032550 purine ribonucleoside binding

Human MF GO:0032553 ribonucleotide binding

Human MF GO:0032555 purine ribonucleotide binding

Human MF GO:0032559 adenyl ribonucleotide binding

Human MF GO:0035173 histone kinase activity

Human MF GO:0035639 purine ribonucleoside triphosphate binding

Human MF GO:0036094 small molecule binding

Human MF GO:0043168 anion binding

Human MF GO:0043566 structure-specific DNA binding

Human MF GO:0097367 carbohydrate derivative binding

Human MF GO:1901265 nucleoside phosphate binding

Human CC GO:0000228 nuclear chromosome

Human CC GO:0000775 chromosome, centromeric region

Human CC GO:0000776 kinetochore

Human CC GO:0000777 condensed chromosome kinetochore

Human CC GO:0000779 condensed chromosome, centromeric region

Human CC GO:0000780 condensed nuclear chromosome, centromeric region

Human CC GO:0000793 condensed chromosome

Human CC GO:0000794 condensed nuclear chromosome

Human CC GO:0005622 intracellular

Human CC GO:0005623 cell

Human CC GO:0005634 nucleus

Human CC GO:0005657 replication fork

Human CC GO:0005694 chromosome

Human CC GO:0005737 cytoplasm

Human CC GO:0005783 endoplasmic reticulum

Human CC GO:0005815 microtubule organizing center

Human CC GO:0005819 spindle

Human CC GO:0005856 cytoskeleton

Human CC GO:0005874 microtubule

Human CC GO:0005875 microtubule associated complex

Human CC GO:0015630 microtubule cytoskeleton

Human CC GO:0031974 membrane-enclosed lumen

Human CC GO:0031981 nuclear lumen

Human CC GO:0031988 membrane-bounded vesicle

Human CC GO:0032153 cell division site

Human CC GO:0043226 organelle

Human CC GO:0043227 membrane-bounded organelle

Human CC GO:0043228 non-membrane-bounded organelle

Human CC GO:0043229 intracellular organelle

Human CC GO:0043230 extracellular organelle

Human CC GO:0043231 intracellular membrane-bounded organelle

Human CC GO:0043232 intracellular non-membrane-bounded organelle

Human CC GO:0043233 organelle lumen

Continued on next page
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Species SO Term ID Term name

Human CC GO:0044421 extracellular region part

Human CC GO:0044422 organelle part

Human CC GO:0044424 intracellular part

Human CC GO:0044427 chromosomal part

Human CC GO:0044428 nuclear part

Human CC GO:0044430 cytoskeletal part

Human CC GO:0044432 endoplasmic reticulum part

Human CC GO:0044444 cytoplasmic part

Human CC GO:0044446 intracellular organelle part

Human CC GO:0044454 nuclear chromosome part

Human CC GO:0044464 cell part

Human CC GO:0044815 DNA packaging complex

Human CC GO:0065010 extracellular membrane-bounded organelle

Human CC GO:0070013 intracellular organelle lumen

Human CC GO:1990391 DNA repair complex

Rat BP GO:0005996 monosaccharide metabolic process

Rat BP GO:0006066 alcohol metabolic process

Rat BP GO:0006082 organic acid metabolic process

Rat BP GO:0006520 cellular amino acid metabolic process

Rat BP GO:0006629 lipid metabolic process

Rat BP GO:0006694 steroid biosynthetic process

Rat BP GO:0006725 cellular aromatic compound metabolic process

Rat BP GO:0006732 coenzyme metabolic process

Rat BP GO:0006950 response to stress

Rat BP GO:0006956 complement activation

Rat BP GO:0008152 metabolic process

Rat BP GO:0008202 steroid metabolic process

Rat BP GO:0008203 cholesterol metabolic process

Rat BP GO:0008652 cellular amino acid biosynthetic process

Rat BP GO:0009056 catabolic process

Rat BP GO:0009063 cellular amino acid catabolic process

Rat BP GO:0009069 serine family amino acid metabolic process

Rat BP GO:0009410 response to xenobiotic stimulus

Rat BP GO:0009725 response to hormone

Rat BP GO:0009889 regulation of biosynthetic process

Rat BP GO:0010556 regulation of macromolecule biosynthetic process

Rat BP GO:0016052 carbohydrate catabolic process

Rat BP GO:0016053 organic acid biosynthetic process

Rat BP GO:0016054 organic acid catabolic process

Rat BP GO:0016125 sterol metabolic process

Rat BP GO:0016126 sterol biosynthetic process

Rat BP GO:0019222 regulation of metabolic process

Rat BP GO:0019318 hexose metabolic process

Rat BP GO:0019752 carboxylic acid metabolic process

Rat BP GO:0031323 regulation of cellular metabolic process

Rat BP GO:0033554 cellular response to stress

Rat BP GO:0043436 oxoacid metabolic process

Rat BP GO:0044237 cellular metabolic process

Rat BP GO:0044238 primary metabolic process

Rat BP GO:0044248 cellular catabolic process

Rat BP GO:0044281 small molecule metabolic process

Rat BP GO:0044282 small molecule catabolic process

Rat BP GO:0044283 small molecule biosynthetic process

Rat BP GO:0044710 single-organism metabolic process

Rat BP GO:0044711 single-organism biosynthetic process

Rat BP GO:0044712 single-organism catabolic process

Rat BP GO:0046394 carboxylic acid biosynthetic process
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Species SO Term ID Term name

Rat BP GO:0046395 carboxylic acid catabolic process

Rat BP GO:0046483 heterocycle metabolic process

Rat BP GO:0050789 regulation of biological process

Rat BP GO:0050794 regulation of cellular process

Rat BP GO:0051171 regulation of nitrogen compound metabolic process

Rat BP GO:0051186 cofactor metabolic process

Rat BP GO:0055088 lipid homeostasis

Rat BP GO:0055092 sterol homeostasis

Rat BP GO:0061008 hepaticobiliary system development

Rat BP GO:0071466 cellular response to xenobiotic stimulus

Rat BP GO:0071704 organic substance metabolic process

Rat BP GO:0072331 signal transduction by p53 class mediator

Rat BP GO:0072376 protein activation cascade

Rat BP GO:0080090 regulation of primary metabolic process

Rat BP GO:1901360 organic cyclic compound metabolic process

Rat BP GO:1901564 organonitrogen compound metabolic process

Rat BP GO:1901575 organic substance catabolic process

Rat BP GO:1901605 alpha-amino acid metabolic process

Rat BP GO:1901606 alpha-amino acid catabolic process

Rat BP GO:1901615 organic hydroxy compound metabolic process

Rat BP GO:1901652 response to peptide

Rat BP GO:1901700 response to oxygen-containing compound

Rat CC GO:0005576 extracellular region

Rat CC GO:0005622 intracellular

Rat CC GO:0031982 vesicle

Rat CC GO:0031988 membrane-bounded vesicle

Rat CC GO:0043226 organelle

Rat CC GO:0043227 membrane-bounded organelle

Rat CC GO:0043230 extracellular organelle

Rat CC GO:0044421 extracellular region part

Rat CC GO:0044424 intracellular part

Rat CC GO:0065010 extracellular membrane-bounded organelle

Rat MF GO:0003824 catalytic activity

Rat MF GO:0004497 monooxygenase activity

Rat MF GO:0016491 oxidoreductase activity

Rat MF GO:0016705 oxidoreductase activity, acting on paired donors, ...

Rat MF GO:0043168 anion binding

Rat MF GO:0048037 cofactor binding

Rat MF GO:0050662 coenzyme binding



B. Supplementary information to Chapter 7 177

B.2.2 Assessment of predicted in vivo drug responses in rats

Table B.3: Correlation results for significantly regulated pathways and cellular processes in rats.
Comparison between predicted drug response and in vivo measurements in rats for significantly regulated pathways
and cellular processes. r, Pearson’s correlation coefficient; p, p-value.

Term ID Term name r p

rno00830 retinol metabolism - Rattus norvegicus (rat) 0.81 0.001

GO:0005506 iron ion binding 0.76 0.004

GO:0006805 xenobiotic metabolic process 0.76 0.004

GO:0030170 pyridoxal phosphate binding 0.71 0.01

GO:0070062 extracellular vesicular exosome 0.68 0.015

GO:0006790 sulfur compound metabolic process 0.67 0.018

GO:0043546 molybdopterin cofactor binding 0.65 0.023

GO:0001889 liver development 0.64 0.025

GO:0005634 nucleus 0.63 0.029

GO:0010467 gene expression 0.62 0.031

GO:0006695 cholesterol biosynthetic process 0.62 0.031

GO:0032787 monocarboxylic acid metabolic process 0.62 0.032

TOX:04 DNA Damage & Repair 0.62 0.032

GO:0055114 oxidation-reduction process 0.61 0.034

GO:0006006 glucose metabolic process 0.61 0.037

GO:0044724 single-organism carbohydrate catabolic process 0.60 0.041

GO:0016070 RNA metabolic process 0.59 0.041

GO:0051289 protein homotetramerization 0.58 0.049

rno04610 complement and coagulation cascades - Rattus norvegicus (rat) 0.56 0.058

GO:0043434 response to peptide hormone 0.55 0.063

GO:2000112 regulation of cellular macromolecule biosynthetic process 0.54 0.071

GO:0019219 regulation of nucleobase-containing compound metabolic process 0.54 0.073

GO:1901653 cellular response to peptide 0.53 0.076

GO:0010468 regulation of gene expression 0.52 0.082

GO:0016712 oxidoreductase activity, acting on paired donors, ... 0.51 0.088

GO:0042632 cholesterol homeostasis 0.43 0.164

rno00260 glycine, serine and threonine metabolism - Rattus norvegicus (rat) 0.42 0.171

GO:0005543 phospholipid binding 0.42 0.172

GO:0017144 drug metabolic process 0.39 0.211

GO:0009074 aromatic amino acid family catabolic process 0.39 0.214

GO:0010878 cholesterol storage 0.37 0.235

GO:0006733 oxidoreduction coenzyme metabolic process 0.36 0.254

GO:0072524 pyridine-containing compound metabolic process 0.34 0.286

GO:0006958 complement activation, classical pathway 0.33 0.295

GO:0030330 DNA damage response, signal transduction by p53 class mediator 0.33 0.296

GO:0005615 extracellular space 0.32 0.304

GO:0009070 serine family amino acid biosynthetic process 0.32 0.31

GO:0010043 response to zinc ion 0.29 0.356

GO:0072395 signal transduction involved in cell cycle checkpoint -0.27 0.40

GO:0009071 serine family amino acid catabolic process 0.17 0.602

rno00051 fructose and mannose metabolism - Rattus norvegicus (rat) -0.11 0.741

GO:0006544 glycine metabolic process 0.10 0.76
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B.2.3 Genes and pathways

Table B.4: Toxicity-related biological pathways. Symbols as well as human and rat Entrez IDs for 370
genes showing high response to toxic compounds were grouped in thirteen different biological pathways. The
genes and the functional gene grouping terms were taken from the Human Molecular Toxicology PathwayFinder
RT2 ProfilerTM PCR Array (SABiosciences, www.sabiosciences.com). Rat Entrez IDs were identified through
the use of QIAGENs Ingenuity Pathway Analysis (IPA R©, QIAGEN Redwood City, www.qiagen.com/ingenuity).

ID Term name Symbols Entrez IDs (human) Entrez IDs (rat)

TOX:01 Apoptosis ABL1, AKT1, APAF1, BAD,

BAK1, BAX, BCL2, BCL2L1,

BCL2L11, BID, BIRC3,

CASP1, CASP3, CASP7,

CASP8, CASP9, CD40,

CD40LG, CFLAR, FADD,

FAS, FASLG, GADD45A,

MCL1, TNF, TNFRSF10A,

TNFRSF10B, TNFRSF1A,

TNFSF10, TP53, XIAP

25, 207, 317, 572, 578, 581,

596, 598, 10018, 637, 330,

834, 836, 840, 841, 842, 958,

959, 8837, 8772, 355, 356,

1647, 4170, 7124, 8797,

8795, 7132, 8743, 7157, 331

311860, 24185, 78963, 64639,

116502, 24887, 24224, 24888,

64547, 64625, 78971, 25166,

25402, 64026, 64044, 58918,

171369, 84349, 117279,

266610, 246097, 25385,

25112, 60430, 24835, 364420,

not found , 25625, 246775,

24842, 63879

TOX:02 Cholestasis ABCB1, ABCB4, ABCC1,

ABCC2, ABCC3, APOE,

ATP8B1, CYP3A4, CYP7A1,

DLAT, ESR1, HLA-DRB1,

ICAM1, IL10, IL1B, IL2, IL6,

JAG1, MPO, NR1H4, NUP210,

OSTALPHA, OSTBETA,

PDYN, RDX, SLC10A1,

TGFB1, TNF

5243, 5244, 4363, 1244,

8714, 348, 5205, 1576, 1581,

1737, 2099, 3123, 3383,

3586, 3553, 3558, 3569, 182,

4353, 9971, 23225, 200931,

123264, 5173, 5962, 6554,

7040, 7124

170913, 24891, 24565, 25303,

140668, 25728, 291555,

266682, 25428, 81654, 24890,

not found , 25464, 25325,

24494, 116562, 24498, 29146,

not found , 60351, 58958,

29190, 315655, 24777,

303879, 300790, 59086, 24835

TOX:03 Cytochrome P450s

& Phase I Drug

Metabolism

CYP1A1, CYP1A2, CYP2B6,

CYP2C19, CYP2C9, CYP2D6,

CYP2E1, CYP3A4, ESD,

FMO2, FMO3, FMO4, FMO5,

MAOA, MAOB

1543, 1544, 1555, 1557,

1559, 1565, 1571, 1576,

2098, 2327, 2328, 2329,

2330, 4128, 4129

24296, 24297, 24300, 293989,

29277, 24303, 25086, 266682,

290401, 246245, 84493,

246247, 246248, 29253, 25750

TOX:04 DNA Damage &

Repair

APEX1, ATM, ATR, BRCA1,

BRCA2, CDKN1A, CHEK1,

CHEK2, DDIT3, ERCC1,

ERCC2, ERCC3, ERCC5,

ERCC6, GADD45A, LIG4,

MDM2, MGMT, MLH1,

MSH2, OGG1, PARP1, PCNA,

PRKDC, RAD51, TP53, XPA,

XPC, XRCC1, XRCC5

328, 472, 545, 672, 675,

1026, 1111, 11200, 1649,

2067, 2068, 2071, 2073,

2074, 1647, 3981, 4193,

4255, 4292, 4436, 4968, 142,

5111, 5591, 5888, 7157,

7507, 7508, 7515, 7520

79116, 300711, 685055,

497672, 360254, 114851,

140583, 114212, 29467,

292673, 308415, 291703,

301382, 306274, 25112,

290907, 314856, 25332,

81685, 81709, 81528, 25591,

25737, 360748, 499870,

24842, 298074, 312560,

84495, 363247

TOX:05 ER Stress &

Unfolded Protein

Response

AMFR, ATF4, ATF6, BAX,

DDIT3, DERL1, EDEM1,

EDEM3, EIF2AK3, ERN2,

ERO1L, ERO1LB, FBXO6,

GADD45A, HERPUD1,

HTRA2, HTRA4, MBTPS1,

MBTPS2, NPLOC4, NUCB1,

OS9, PFDN5, PPIA, SEC62,

SEL1L, SELS, SERP1, SYVN1,

UBE2G2, UBE2J2, UBXN4,

VCP, XBP1

267, 468, 22926, 581, 1649,

79139, 9695, 80267, 9451,

10595, 30001, 56605, 26270,

1647, 9709, 27429, 203100,

8720, 51360, 55666, 4924,

10956, 5204, 5478, 7095,

6400, 55829, 27230, 84447,

7327, 118424, 23190, 7415,

7495

361367, 79255, 304962,

24887, 29467, 362912,

297504, 289085, 29702,

365363, 171562, 364755,

192351, 25112, 85430,

297376, 306564, 89842,

302705, 140639, 84595,

362891, 300257, 25518,

294912, 314352, 80881,

361712, 294331, 298689,

304766, 116643, 286900, not

found

Continued on next page
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ID Term name Symbols Entrez IDs (human) Entrez IDs (rat)

TOX:06 Fatty Acid

Metabolism

ACAA1, ACAA2, ACAD11,

ACAD9, ACADL, ACADM,

ACADS, ACADSB, ACADVL,

ACAT1, ACAT2, ACOT1,

ACOT12, ACOT2, ACOT6,

ACOT7, ACOT8, ACOT9,

ACOX1, ACOX2, ACOX3,

CPT1A, CPT1B, CPT2,

CRAT, CROT, ECHS1,

EHHADH, GCDH, HADHA

30, 10449, 84129, 28976, 33,

34, 35, 36, 37, 38, 39,

641371, 134526, 10965,

641372, 11332, 10005,

23597, 51, 8309, 8310, 1374,

1375, 1376, 1384, 54677,

1892, 1962, 2639, 3030

24157, 170465, 315973,

294973, 25287, 24158, 64304,

25618, 25363, 25014, 308100,

314304, 170570, 192272, not

found , 26759, 170588,

302640, 50681, 252898,

83522, 25757, 25756, 25413,

311849, 83842, 140547,

171142, 364975, 170670

TOX:07 Heat Shock

Response

CRYAA, CRYAB, DNAJA1,

DNAJA2, DNAJA3, DNAJB1,

DNAJB6, DNAJC3, DNAJC5,

DNAJC6, HSF1, HSF2,

HSP90AA1, HSP90AB1,

HSP90B1, HSPA1A, HSPA1B,

HSPA1L, HSPA2, HSPA4,

HSPA5, HSPA8, HSPA9,

HSPB1, HSPB2, HSPB6,

HSPB8, HSPD1, HSPE1,

HSPH1, TCP1

1409, 1410, 3301, 10294,

9093, 3337, 10049, 5611,

80331, 9829, 3297, 3298,

3320, 3326, 7184, 3303,

3304, 3305, 3306, 3308,

3309, 3312, 3313, 3315,

3316, 126393, 26353, 3329,

3336, 10808, 6950

24273, 25420, 65028, 84026,

360481, 361384, 362293,

63880, 79130, 313409, 79245,

64441, 299331, 301252,

362862, 294254, 24472,

24963, 60460, 266759, 25617,

24468, 291671, 24471,

161476, 192245, 113906,

63868, 25462, 288444, 24818

TOX:08 Immunotoxicity ADH1C, AHR, AHSG, ALB,

APOA5, APOF, C3, C9,

CASP3, CD19, CD4, CD44,

CD80, CD86, CD8A, CTSE,

CYP1A1, CYP3A4, CYP3A4,

EP300, F2, FABP1, FAS, GPT,

GSTA3, HPX, HRG, HSPA5,

IFNA1, IFNG, IL10, IL13,

IL1A, IL1B, IL2, IL4, IL5, IL6,

ITGAX, KLF1, LYZ, LYZ,

METAP2, MKI67, NFKB1,

NR5A2, PON1, POU3F3,

PTGS2, PTPRC, SOD1, TNF,

TRIM10, UBQLN2

126, 196, 197, 213, 116519,

319, 718, 735, 836, 930, 920,

960, 941, 942, 925, 1510,

1543, 1576, 1576, 2033,

2147, 2168, 355, 2875, 2940,

3263, 3273, 3309, 3439,

3458, 3586, 3596, 3552,

3553, 3558, 3565, 3567,

3569, 3687, 10661, 4069,

4069, 10988, 4288, 4790,

2494, 5444, 5455, 5743,

5788, 6647, 7124, 10107,

29978

24172, 25690, 25373, 24186,

140638, 500761, 24232,

117512, 25402, 365367,

24932, 25406, 25408, 56822,

24930, 25424, 24296, 266682,

170915, 29251, 24360,

246097, 81670, 494500,

58917, not found , 25617, not

found , 25712, 25325, 116553,

24493, 24494, 116562,

287287, 24497, 24498,

499271, 304666, 25211,

64370, 291234, 81736, 60349,

84024, 192109, 29527, 24699,

24786, 24835, 294210, 317396

TOX:09 Mitochondrial

Energy Metabolism

ACLY, ACO1, ACO2,

COX6B1, COX8A, CS, CYC1,

DLD, DLST, FH, IDH1, IDH2,

IDH3A, IDH3B, IDH3G,

MDH1, MDH1B, MDH2,

OGDH, SDHA, SDHB, SDHC,

SDHD, SUCLA2, SUCLG1,

SUCLG2, UCP1, UCP2, UCP3

47, 48, 50, 1340, 1351, 1431,

1537, 1738, 1743, 2271,

3417, 3418, 3419, 3420,

3421, 4190, 130752, 4191,

4967, 6389, 6390, 6391,

6392, 8803, 8802, 8801,

7350, 7351, 7352

24159, 50655, 79250, 688869,

171335, 170587, 300047,

298942, 299201, 24368,

24479, 361596, 114096,

94173, 25179, 24551, 316444,

81829, 360975, 157074,

298596, 289217, 363061,

361071, 114597, 362404,

24860, 54315, 25708

Continued on next page
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ID Term name Symbols Entrez IDs (human) Entrez IDs (rat)

TOX:10 Necrosis ATP6V1G2, BMF, CCDC103,

CD300LD, CLEC18A,

COMMD4, CYLD, DEFB1,

DPYSL4, EIF5B, FOXI1,

GALNT5, GRB2, HOXA3,

HSPBAP1, JPH3, KCNIP1,

MAG, NUDT13, OR10J3,

PARP2, PVR, RAB25,

S100A7A, SPATA2, SYCP2,

TMEM57, TNFAIP8L1,

TNFRSF1A, TXNL4B

534, 90427, 388389,

100131439, 348174, 54939,

1540, 1672, 10570, 9669,

2299, 11227, 2885, 3200,

79663, 57338, 30820, 4099,

25961, 441911, 10038, 5817,

57111, 338324, 9825, 10388,

55219, 126282, 7132, 54957

368044, 246142, 498006,

360655, not found , 363068,

312937, not found , 25417,

308306, 287185, 83627,

81504, 500125, 171460,

307916, 65023, 29409,

682978, 289240, 290027, not

found , 310632, not found ,

114210, 83820, 313618,

301131, 25625, 292008

TOX:11 Oxidative Stress &

Antioxidant

Response

AASS, CAT, CTSB, DHCR24,

DUOX1, DUOX2, EPX, GPX1,

GPX2, GPX3, GPX4, GPX5,

GPX6, GPX7, IDH1, MPO,

NQO1, NUDT1, NUDT15,

PPP1R15B, PRDX1, PRDX2,

PRDX6, SOD1, TPO, TXNIP,

TXNRD2, UCP3

10157, 847, 1508, 1718,

53905, 50506, 8288, 2876,

2877, 2878, 2879, 2880,

257202, 2882, 3417, 4353,

1728, 4521, 55270, 84919,

5052, 7001, 9588, 6647,

7173, 10628, 10587, 7352

296925, 24248, 64529,

298298, 266807, 79107,

303414, 24404, 29326, 64317,

29328, 113919, 259233,

298376, 24479, not found ,

24314, 117260, 290365,

304799, 117254, 29338,

94167, 24786, 54314, 117514,

50551, 25708

TOX:12 Phospholipidosis ABCB1, ALDH1A1, ASAH1,

ASNS, CES2, CTSB, EPHX1,

FABP1, FXC1, GSTM4, HPN,

INHBE, LSS, MANBA, MLX,

MRPS18B, NR0B2, POR,

S100A8, SC4MOL, SERPINA3,

SLC2A3, SLCO1A2, SMPD1,

STBD1, TAGLN, UGT1A1,

UGT2A1, UGT2B4, WIPI1

5243, 216, 427, 440, 8824,

1508, 2052, 2168, 26515,

2948, 3249, 83729, 4047,

4126, 6945, 28973, 8431,

5447, 6279, 6307, 12, 6515,

6579, 6609, 8987, 6876,

54658, 10941, 7363, 55062

170913, 24188, 84431, 25612,

498940, 64529, 25315, 24360,

499689, 29135, 83711, 81681,

310864, 360631, 294230,

140910, 117274, 29441,

116547, 24795, 25551, 80900,

308909, 305234, 25123,

84384, 24861, 63867, 286989,

303630

TOX:13 Steatosis ACACA, ADK, ALDH2,

AQP4, CD36, COMT,

CYP2E1, CYP7B1, DNM1,

ENO1, FAS, FASN, GPD1,

HAAO, HADHB, KHK,

LMNA, LPL, LY6D, MAPK8,

MTTP, PCCA, PNPLA3,

PPARA, RETN, SCD,

SREBF1, SYT1, TFF3, VCP

31, 132, 217, 361, 948, 1312,

1571, 9420, 1759, 2023, 355,

2194, 2819, 23498, 3032,

3795, 4000, 4023, 8581,

5599, 4547, 5095, 80339,

5465, 56729, 6319, 6720,

6857, 7033, 7415

60581, 25368, 29539, 25293,

29184, 24267, 25086, 25429,

140694, 24333, 246097,

50671, 60666, 56823, 171155,

25659, 60374, 24539, 315075,

116554, 310900, 687008,

362972, 25747, 246250,

246074, 78968, 25716, 25563,

116643
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Table B.5: Genes involved in the DNA damage & repair pathway. Symbols, Entrez gene name, type,
as well as human and rat Entrez identifier for all genes involved in the DNA damage & repair pathway. Func-
tional classifications were taken from QIAGENs Ingenuity Pathway Analysis (IPA R©, QIAGEN Redwood City,
www.qiagen.com/ingenuity).

Gene Entrez gene name Type Entrez ID
(human)

Entrez ID
(rat)

APEX1 APEX nuclease (multifunctional DNA repair enzyme) 1 enzyme 328 79116
ATM ATM serine/threonine kinase kinase 472 300711
ATR ATR serine/threonine kinase kinase 545 685055
BRCA1 breast cancer 1, early onset transcription regulator 672 497672
BRCA2 breast cancer 2, early onset transcription regulator 675 360254
CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) kinase 1026 114851
CHEK1 checkpoint kinase 1 kinase 1111 140583
CHEK2 checkpoint kinase 2 kinase 11200 114212
DDIT3 DNA-damage-inducible transcript 3 transcription regulator 1649 29467
ERCC1 excision repair cross-complementation group 1 enzyme 2067 292673
ERCC2 excision repair cross-complementation group 2 enzyme 2068 308415
ERCC3 excision repair cross-complementation group 3 enzyme 2071 291703
ERCC5 excision repair cross-complementation group 5 enzyme 2073 301382
ERCC6 excision repair cross-complementation group 6 transcription regulator 2074 306274
GADD45A growth arrest and DNA-damage-inducible, alpha other 1647 25112
LIG4 ligase IV, DNA, ATP-dependent enzyme 3981 290907
MDM2 MDM2 proto-oncogene, E3 ubiquitin protein ligase transcription regulator 4193 314856
MGMT O-6-methylguanine-DNA methyltransferase enzyme 4255 25332
MLH1 mutL homolog 1 enzyme 4292 81685
MSH2 mutS homolog 2 enzyme 4436 81709
OGG1 8-oxoguanine DNA glycosylase enzyme 4968 81528
PARP1 poly (ADP-ribose) polymerase 1 enzyme 142 25591
PCNA proliferating cell nuclear antigen enzyme 5111 25737
PRKDC protein kinase, DNA-activated, catalytic polypeptide kinase 5591 360748
RAD51 RAD51 recombinase enzyme 5888 499870
TP53 tumor protein p53 transcription regulator 7157 24842
XPA xeroderma pigmentosum, complementation group A other 7507 298074
XPC xeroderma pigmentosum, complementation group C other 7508 312560
XRCC1 X-ray repair complementing defective repair in Chinese

hamster cells 1
other 7515 84495

XRCC5 X-ray repair complementing defective repair in Chinese
hamster cells 5

enzyme 7520 363247
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Table B.6: Interaction network. Interactions between genes involved in DNA damage and repair processes.
The interactions were identified through the use of QIAGENs Ingenuity Pathway Analysis (IPA R©, QIAGEN
Redwood City, www.qiagen.com/ingenuity).

From Molecule Interaction(s) To Molecule

ATM activation TP53
ATM phosphorylation CHEK1
ATM phosphorylation CHEK2
ATM phosphorylation, protein-DNA interaction TP53
ATR phosphorylation CHEK1
ATR phosphorylation TP53
BRCA1 protein-protein interactions ATR
BRCA2 protein-protein interaction BRCA1
CDKN1A protein-protein interaction PCNA
CHEK1 phosphorylation, protein-protein interaction TP53
ERCC3 protein-protein interaction ATM
MDM2 activation, expression, protein-DNA interaction, protein-protein interaction CDKN1A
MDM2 activation, protein-protein interaction, ubiquitination TP53
MDM2 expression MDM2
MDM2 protein-protein interaction ATM
MLH1 protein-protein interaction BRCA1
PARP1 protein-DNA interaction PARP1
PARP1 protein-protein interaction ATM
PCNA protein-protein interaction APEX1
PCNA protein-protein interaction CDKN1A
PCNA protein-protein interaction GADD45A
PRKDC phosphorylation CHEK1
PRKDC protein-protein interaction LIG4
PRKDC protein-protein interaction MLH1
PRKDC protein-protein interaction PARP1
PRKDC protein-protein interaction XRCC5
RAD51 protein-protein interaction ATM
RAD51 protein-protein interaction BRCA1
RAD51 protein-protein interaction BRCA2
TP53 activation, expression, protein-protein interaction TP53
TP53 expression, protein-protein interaction, transcription BRCA1
TP53 expression, protein-DNA interaction, transcription CDKN1A
TP53 expression, protein-protein interaction CHEK2
TP53 expression GADD45A
TP53 expression, protein-DNA interaction, protein-protein interaction, transcription MDM2
TP53 expression XPC
TP53 protein-protein interaction CHEK1
TP53 protein-protein interaction RAD51
XPA protein-protein interaction PARP1
XPC protein-protein interaction ATM
XPC protein-protein interaction ERCC3
XRCC5 protein-protein interaction BRCA1
XRCC5 protein-protein interaction LIG4
XRCC5 protein-protein interaction PARP1
XRCC5 protein-protein interaction PRKDC
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Table B.7: Genes related to jaundice. Symbol, Entrez gene name, type, human and rat Entrez identi-
fier and assigned relation for all genes associated with jaundice. Functional classifications and assigned rela-
tions on jaundice were taken from QIAGENs Ingenuity Pathway Analysis (IPA R©, QIAGEN Redwood City,
www.qiagen.com/ingenuity).

Gene Entrez gene name Type Relation Entrez ID
(human)

Entrez ID
(rat)

ABCC2 ATP-binding cassette, sub-family C (CFTR/MRP),
member 2

transporter affect 1244 25303

ABCC3 ATP-binding cassette, sub-family C (CFTR/MRP),
member 3

transporter affect 8714 140668

ALPP alkaline phosphatase, placental phosphatase affect 250 24197
BLVRA biliverdin reductase A enzyme affect 644 116599
CAT catalase enzyme affect 847 24248
CHUK conserved helix-loop-helix ubiquitous kinase kinase decrease 1147 309361
FAH fumarylacetoacetate hydrolase (fumarylacetoacetase) enzyme decrease 2184 29383
IKBKB inhibitor of kappa light polypeptide gene enhancer in

B-cells, kinase beta
kinase decrease 3551 84351

IL18 interleukin 18 cytokine affect 3606 29197
JAG1 jagged 1 growth factor decrease 182 29146
LAMA4 laminin, alpha 4 enzyme decrease 3910 309816
NOTCH2 notch 2 transcription

regulator
affect 4853 29492

NR1H4 nuclear receptor subfamily 1, group H, member 4 ligand-dependent
nuclear receptor

decrease 9971 60351

ONECUT1 one cut homeobox 1 transcription
regulator

decrease 3175 25231

UGT1A6 UDP glucuronosyltransferase 1 family, polypeptide
A6

enzyme affect 54578 113992
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Supplementary information to Chapter 8

C.1 Supplementary tables

C.1.1 Key cellular processes

Table C.1: Toxicity lists. Seventy-four toxicity lists representing key cellular processes were taken from
QIAGENs Ingenuity Pathway Analysis (IPA R©, QIAGEN Redwood City, www.qiagen.com/ingenuity).

Toxicity list id Toxicity list name

TOX_LIST:01 Anti-apoptosis

TOX_LIST:02 Aryl hydrocarbon receptor signaling

TOX_LIST:03 Biogenesis of mitochondria

TOX_LIST:04 CAR/RXR activation

TOX_LIST:05 Cardiac fibrosis

TOX_LIST:06 Cardiac hypertrophy

TOX_LIST:07 Cardiac necrosis/cell death

TOX_LIST:08 Cell cycle G1/S checkpoint regulation

TOX_LIST:09 Cell cycle G2/M DNA damage checkpoint regulation

TOX_LIST:10 Cholesterol biosynthesis

TOX_LIST:11 Cytochrome p450 - substrate is a eicosanoid

TOX_LIST:12 Cytochrome p450 - substrate is a fatty acid

TOX_LIST:13 Cytochrome p450 - substrate is a sterol

TOX_LIST:14 Cytochrome p450 - substrate is a vitamin

TOX_LIST:15 Cytochrome p450 - substrate is a xenobiotic

TOX_LIST:16 Decreases depolarization of mitochondria and mitochondria membrane

TOX_LIST:17 Decreases permeability transition of mitochondria and mitochondrial membrane

TOX_LIST:18 Decreases respiration of mitochondria

TOX_LIST:19 Decreases transmembrane potential of mitochondria and mitochondrial membrane

TOX_LIST:20 Fatty acid metabolism

TOX_LIST:21 FXR/RXR activation

TOX_LIST:22 Genes associated with chronic allograft nephropathy

TOX_LIST:23 Genes upregulated in response to proteinuria-induced oxidative stress in renal proximal tubule cells

TOX_LIST:24 Glutathione depletion - CYP induction and reactive metabolites

TOX_LIST:25 Glutathione depletion - hepatocellular hypertrophy

TOX_LIST:26 Glutathione depletion - phase II reactions

TOX_LIST:27 Hepatic cholestasis

TOX_LIST:28 Hepatic fibrosis

TOX_LIST:29 Hepatic stellate cell activation

TOX_LIST:30 Hormone receptor regulated cholesterol metabolism

TOX_LIST:31 Hypoxia-inducible factor signaling

TOX_LIST:32 Increases bradycardia

TOX_LIST:33 Increases cardiac dilation

TOX_LIST:34 Increases cardiac dysfunction

Continued on next page
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Toxicity list id Toxicity list name

TOX_LIST:35 Increases cardiac proliferation

TOX_LIST:36 Increases damage of mitochondria

TOX_LIST:37 Increases depolarization of mitochondria and mitochondrial membrane

TOX_LIST:38 Increases glomerular injury

TOX_LIST:39 Increases heart failure

TOX_LIST:40 Increases liver damage

TOX_LIST:41 Increases liver hepatitis

TOX_LIST:42 Increases liver hyperplasia/hyperproliferation

TOX_LIST:43 Increases liver steatosis

TOX_LIST:44 Increases permeability transition of mitochondria and mitochondrial membrane

TOX_LIST:45 Increases renal damage

TOX_LIST:46 Increases renal nephritis

TOX_LIST:47 Increases renal proliferation

TOX_LIST:48 Increases transmembrane potential of mitochondria and mitochondrial membrane

TOX_LIST:49 Liver necrosis/cell death

TOX_LIST:50 Liver proliferation

TOX_LIST:51 LPS/IL-1 mediated inhibition of RXR function

TOX_LIST:52 LXR/RXR activation

TOX_LIST:53 Mechanism of gene regulation by peroxisome proliferations via PPARα

TOX_LIST:54 Mitochondrial dysfunction

TOX_LIST:55 Negative acute phase response proteins

TOX_LIST:56 NF-κ-B signaling

TOX_LIST:57 Nongenotoxic hepatocarcinogenicity biomarker panel

TOX_LIST:58 NRF-2 mediated oxidative stress response

TOX_LIST:59 Oxidative stress

TOX_LIST:60 p53 signaling

TOX_LIST:61 Positive acute phase response proteins

TOX_LIST:62 PPARα/RXRα activation

TOX_LIST:63 Primary glomerulonephritis biomarker panel

TOX_LIST:64 Pro-apoptosis

TOX_LIST:65 PXR/RXR activation

TOX_LIST:66 RAR activation

TOX_LIST:67 Renal glomerulus panel

TOX_LIST:68 Renal necrosis/cell death

TOX_LIST:69 Renal safety biomarker panel

TOX_LIST:70 Swelling of mitochondria

TOX_LIST:71 TGF-βsignaling

TOX_LIST:72 TR/RXR activation

TOX_LIST:73 VDR/RXR activation

TOX_LIST:74 Xenobiotic metabolism signaling
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C.1.2 Analysis of in vitro toxicity data

Table C.2: Over-representation analysis for humans. Significantly overrepresented key cellular processes
identified in human hepatocytes.

Drug Toxicity list id Toxicity list name P-value

PB TOX LIST:02 aryl hydrocarbon receptor signaling 0.000286168

PB TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 4.21183E-06

PB TOX LIST:20 fatty acid metabolism 0.000134661

PB TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 4.29637E-06

PB TOX LIST:58 NRF-2 mediated oxidative stress response 0.000566976

PB TOX LIST:65 PXR\RXR activation 1.13176E-07

PB TOX LIST:74 xenobiotic metabolism signaling 0.001179793

PB TOX LIST:04 CAR\RXR activation 2.03831E-10

PB TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 0.000154936

PB TOX LIST:60 p53 signaling 0.000292447

PB TOX LIST:06 cardiac hypertrophy 0.00112723

PB TOX LIST:27 hepatic cholestasis 0.001045264

PB TOX LIST:29 hepatic stellate cell activation 0.00089887

PB TOX LIST:40 increases liver damage 0.007387102

PB TOX LIST:07 cardiac necrosis\cell death 0.003574689

PB TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 3.61986E-06

PB TOX LIST:10 cholesterol biosynthesis 3.92886E-07

PB TOX LIST:17 decreases permeability transition of mitochondria and mitochondrial membrane 0.002345284

PB TOX LIST:28 hepatic fibrosis 1.44239E-06

PB TOX LIST:41 increases liver hepatitis 0.000212934

PB TOX LIST:49 liver necrosis\cell death 6.58612E-06

PB TOX LIST:50 liver proliferation 0.001166366

PB TOX LIST:52 LXR\RXR activation 0.002309053

PB TOX LIST:68 renal necrosis\cell death 0.00173289

PB TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPAR-α 5.78641E-05

PB TOX LIST:63 primary glomerulonephritis biomarker panel 5.82104E-05

PB TOX LIST:01 anti-apoptosis 9.63174E-05

PB TOX LIST:08 cell cycle G1\S checkpoint regulation 2.65453E-05

PB TOX LIST:21 FXR\RXR activation 0.000736987

PB TOX LIST:42 increases liver hyperplasia\hyperproliferation 4.69256E-05

PB TOX LIST:43 increases liver steatosis 0.001289049

PB TOX LIST:48 increases transmembrane potential of mitochondria and mitochondrial membrane 0.003463157

PB TOX LIST:56 NF-κB signaling 0.001579079

PB TOX LIST:62 PPAR-α \RXR-α activation 0.00028559

PB TOX LIST:66 RAR activation 0.000342818

PB TOX LIST:71 TGF-β signaling 0.00125109

DFN TOX LIST:02 aryl hydrocarbon receptor signaling 0.003570267

DFN TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 5.45039E-05

DFN TOX LIST:20 fatty acid metabolism 0.001702188

DFN TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.007666879

DFN TOX LIST:58 NRF-2 mediated oxidative stress response 0.000247212

DFN TOX LIST:65 PXR\RXR activation 0.000721469

DFN TOX LIST:49 liver necrosis\cell death 8.95752E-05

DFN TOX LIST:50 liver proliferation 3.6434E-05

DFN TOX LIST:56 NF-κB signaling 0.000650062

DFN TOX LIST:60 p53 signaling 0.000871197

DFN TOX LIST:68 renal necrosis\cell death 8.33236E-05

DFN TOX LIST:04 CAR\RXR activation 0.000153619

DFN TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 2.21769E-06

DFN TOX LIST:21 FXR\RXR activation 2.50151E-06

DFN TOX LIST:28 hepatic fibrosis 0.000650805

Continued on next page
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Drug Toxicity list id Toxicity list name P-value

DFN TOX LIST:42 increases liver hyperplasia\hyperproliferation 0.000425274

DFN TOX LIST:43 increases liver steatosis 0.000894571

DFN TOX LIST:63 primary glomerulonephritis biomarker panel 0.001033791

DFN TOX LIST:74 xenobiotic metabolism signaling 0.000777912

SST TOX LIST:02 aryl hydrocarbon receptor signaling 0.002158192

SST TOX LIST:04 CAR\RXR activation 0.001086992

SST TOX LIST:10 cholesterol biosynthesis 0.00000000023

SST TOX LIST:22 genes associated with chronic allograft nephropathy 0.000706534

SST TOX LIST:28 hepatic fibrosis 3.10667E-05

SST TOX LIST:29 hepatic stellate cell activation 3.84406E-05

SST TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.006496297

SST TOX LIST:52 LXR\RXR activation 6.51901E-05

SST TOX LIST:58 NRF-2 mediated oxidative stress response 0.00565058

SST TOX LIST:65 PXR\RXR activation 0.005872694

SST TOX LIST:68 renal necrosis\cell death 0.001717696

SST TOX LIST:72 TR\RXR activation 0.000562696

SST TOX LIST:20 fatty acid metabolism 0.000181992

SST TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 1.4645E-07

SST TOX LIST:74 xenobiotic metabolism signaling 0.000152437

SST TOX LIST:01 anti-apoptosis 0.003487097

SST TOX LIST:06 cardiac hypertrophy 4.18165E-05

SST TOX LIST:07 cardiac necrosis\cell death 5.00383E-05

SST TOX LIST:08 cell cycle G1\S checkpoint regulation 0.000277696

SST TOX LIST:19 decreases transmembrane potential of mitochondria and mitochondrial membrane 0.001463913

SST TOX LIST:21 FXR\RXR activation 2.89378E-08

SST TOX LIST:38 increases glomerular injury 0.000121035

SST TOX LIST:40 increases liver damage 0.000845616

SST TOX LIST:41 increases liver hepatitis 0.00183715

SST TOX LIST:42 increases liver hyperplasia\hyperproliferation 5.25337E-05

SST TOX LIST:43 increases liver steatosis 3.14252E-07

SST TOX LIST:45 increases renal damage 2.80394E-05

SST TOX LIST:49 liver necrosis\cell death 3.6093E-10

SST TOX LIST:50 liver proliferation 1.281E-09

SST TOX LIST:55 negative acute phase response proteins 0.00206382

SST TOX LIST:57 nongenotoxic hepatocarcinogenicity biomarker panel 6.0414E-05

SST TOX LIST:60 p53 signaling 0.000151463

SST TOX LIST:61 positive acute phase response proteins 0.000275759

SST TOX LIST:63 primary glomerulonephritis biomarker panel 0.000395235

SST TOX LIST:71 TGF-β signaling 0.003796414

SST TOX LIST:73 VDR\RXR activation 0.00486591

CPA TOX LIST:02 aryl hydrocarbon receptor signaling 1.79755E-05

CPA TOX LIST:04 CAR\RXR activation 0.000417648

CPA TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 0.000175892

CPA TOX LIST:20 fatty acid metabolism 0.000174505

CPA TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 8.35344E-05

CPA TOX LIST:65 PXR\RXR activation 0.002293931

CPA TOX LIST:74 xenobiotic metabolism signaling 0.000283309

CPA TOX LIST:06 cardiac hypertrophy 0.000347866

CPA TOX LIST:07 cardiac necrosis\cell death 0.000722765

CPA TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 4.07495E-05

CPA TOX LIST:58 NRF-2 mediated oxidative stress response 2.69825E-08

CPA TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 0.000121068

CPA TOX LIST:41 increases liver hepatitis 0.001750199

CPA TOX LIST:68 renal necrosis\cell death 0.000975332

PHE TOX LIST:02 aryl hydrocarbon receptor signaling 4.57886E-08

PHE TOX LIST:04 CAR\RXR activation 4.8743E-07

PHE TOX LIST:07 cardiac necrosis\cell death 0.003203868

Continued on next page
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Drug Toxicity list id Toxicity list name P-value

PHE TOX LIST:08 cell cycle G1\S checkpoint regulation 0.000495112

PHE TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 0.006371064

PHE TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 4.69872E-10

PHE TOX LIST:20 fatty acid metabolism 3.61051E-06

PHE TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 1.08274E-05

PHE TOX LIST:57 nongenotoxic hepatocarcinogenicity biomarker panel 0.001237985

PHE TOX LIST:58 NRF-2 mediated oxidative stress response 8.11613E-06

PHE TOX LIST:60 p53 signaling 1.53856E-07

PHE TOX LIST:65 PXR\RXR activation 8.69931E-09

PHE TOX LIST:74 xenobiotic metabolism signaling 6.45806E-05

ERY n/a no significantly regulated toxicity lists found n/a

AZA TOX LIST:02 aryl hydrocarbon receptor signaling 9.76033E-05

AZA TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 5.23367E-11

AZA TOX LIST:42 increases liver hyperplasia\hyperproliferation 0.000225791

AZA TOX LIST:55 negative acute phase response proteins 1.96588E-05

AZA TOX LIST:30 hormone receptor regulated cholesterol metabolism 6.54465E-05

AZA TOX LIST:73 VDR\RXR activation 0.000165847

AZA TOX LIST:07 cardiac necrosis\cell death 0.000249004

AZA TOX LIST:17 decreases permeability transition of mitochondria and mitochondrial membrane 0.001879006

AZA TOX LIST:20 fatty acid metabolism 0.00045852

AZA TOX LIST:47 increases renal proliferation 0.00169862

AZA TOX LIST:48 increases transmembrane potential of mitochondria and mitochondrial membrane 0.002191292

AZA TOX LIST:50 liver proliferation 0.000165778

AZA TOX LIST:58 NRF-2 mediated oxidative stress response 4.16903E-07

AZA TOX LIST:60 p53 signaling 5.31218E-05

AZA TOX LIST:63 primary glomerulonephritis biomarker panel 8.40816E-05

AZA TOX LIST:68 renal necrosis\cell death 2.31996E-05

AZA TOX LIST:06 cardiac hypertrophy 3.67241E-05

AZA TOX LIST:08 cell cycle G1\S checkpoint regulation 0.000723685

AZA TOX LIST:16 decreases depolarization of mitochondria and mitochondria membrane 0.002078835

AZA TOX LIST:49 liver necrosis\cell death 5.28818E-05

AZA TOX LIST:21 FXR\RXR activation 0.000188516

AZA TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 0.000158909

AZA TOX LIST:28 hepatic fibrosis 0.0013554

AZA TOX LIST:40 increases liver damage 0.000275681

AZA TOX LIST:41 increases liver hepatitis 0.000143131

AZA TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 2.65025E-06

AZA TOX LIST:52 LXR\RXR activation 0.003133804

AZA TOX LIST:74 xenobiotic metabolism signaling 0.000464689

RIF TOX LIST:02 aryl hydrocarbon receptor signaling 6.5054E-06

RIF TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 1.06983E-08

RIF TOX LIST:20 fatty acid metabolism 2.09037E-06

RIF TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 1.62398E-07

RIF TOX LIST:58 NRF-2 mediated oxidative stress response 1.81876E-05

RIF TOX LIST:65 PXR\RXR activation 1.24827E-09

RIF TOX LIST:74 xenobiotic metabolism signaling 5.46648E-05

RIF TOX LIST:04 CAR\RXR activation 1.27787E-13

RIF TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 7.6281E-05

RIF TOX LIST:27 hepatic cholestasis 0.005731506

RIF TOX LIST:62 PPARα\RXR- α activation 0.006563244

RIF TOX LIST:72 TR\RXR activation 0.001002065

RIF TOX LIST:07 cardiac necrosis\cell death 0.003414468

RIF TOX LIST:21 FXR\RXR activation 9.66854E-06

RIF TOX LIST:73 VDR\RXR activation 0.003807258

RIF TOX LIST:42 increases liver hyperplasia\hyperproliferation 0.001002886

RIF TOX LIST:52 LXR\RXR activation 0.002217754

RIF TOX LIST:10 cholesterol biosynthesis 0.002057857

Continued on next page
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Drug Toxicity list id Toxicity list name P-value

RIF TOX LIST:29 hepatic stellate cell activation 0.002443519

RIF TOX LIST:41 increases liver hepatitis 0.001423704

RIF TOX LIST:43 increases liver steatosis 0.001509416

RIF TOX LIST:49 liver necrosis\cell death 0.000303362

RIF TOX LIST:50 liver proliferation 0.002526186

CSA TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 0.000327036

CSA TOX LIST:42 increases liver hyperplasia\hyperproliferation 0.000107058

CSA TOX LIST:08 cell cycle G1\S checkpoint regulation 0.000651512

CSA TOX LIST:02 aryl hydrocarbon receptor signaling 2.60308E-05

CSA TOX LIST:10 cholesterol biosynthesis 0.000998012

CSA TOX LIST:20 fatty acid metabolism 0.000331327

CSA TOX LIST:60 p53 signaling 1.04965E-05

AD TOX LIST:74 xenobiotic metabolism signaling 0.002894527

FT TOX LIST:20 fatty acid metabolism 0.000334559

FT TOX LIST:02 aryl hydrocarbon receptor signaling 0.001766036

FT TOX LIST:05 cardiac fibrosis 0.004474226

FT TOX LIST:06 cardiac hypertrophy 2.2194E-05

FT TOX LIST:07 cardiac necrosis\cell death 0.004618513

FT TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 0.003436649

FT TOX LIST:28 hepatic fibrosis 0.003194366

FT TOX LIST:40 increases liver damage 0.000468898

FT TOX LIST:41 increases liver hepatitis 0.004081569

FT TOX LIST:49 liver necrosis\cell death 0.001176328

FT TOX LIST:50 liver proliferation 0.000385249

FT TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPARα 0.002848445

FT TOX LIST:60 p53 signaling 0.003440257

FT TOX LIST:63 primary glomerulonephritis biomarker panel 0.002087952

FT TOX LIST:68 renal necrosis\cell death 0.000182067

FT TOX LIST:73 VDR\RXR activation 0.001358634

FT TOX LIST:08 cell cycle G1\S checkpoint regulation 0.001032048

FT TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 0.00122226

FT TOX LIST:21 FXR\RXR activation 0.00032928

FT TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.001529601

FT TOX LIST:65 PXR\RXR activation 4.63479E-05

FT TOX LIST:04 CAR\RXR activation 0.000722632

FT TOX LIST:10 cholesterol biosynthesis 2.51466E-12

FT TOX LIST:30 hormone receptor regulated cholesterol metabolism 0.002244183

FT TOX LIST:42 increases liver hyperplasia\hyperproliferation 1.73366E-05

FT TOX LIST:43 increases liver steatosis 0.000939497

FT TOX LIST:52 LXR\RXR activation 4.39136E-05

FT TOX LIST:55 negative acute phase response proteins 0.002244183

FT TOX LIST:58 NRF-2 mediated oxidative stress response 0.00036787

FT TOX LIST:74 xenobiotic metabolism signaling 0.0032974

HPL TOX LIST:02 aryl hydrocarbon receptor signaling 0.000763659

HPL TOX LIST:04 CAR\RXR activation 0.000535199

HPL TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 1.37601E-06

HPL TOX LIST:20 fatty acid metabolism 0.000253544

HPL TOX LIST:43 increases liver steatosis 0.004506756

HPL TOX LIST:45 increases renal damage 0.003837486

HPL TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.002362033

HPL TOX LIST:58 NRF-2 mediated oxidative stress response 0.002046113

HPL TOX LIST:65 PXR\RXR activation 1.18772E-06

HPL TOX LIST:74 xenobiotic metabolism signaling 0.000462583

HPL TOX LIST:73 VDR\RXR activation 0.002621724

INH TOX LIST:02 aryl hydrocarbon receptor signaling 0.00254057

INH TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 3.84713E-05

INH TOX LIST:20 fatty acid metabolism 0.001207754

Continued on next page



C. Supplementary information to Chapter 8 191

Drug Toxicity list id Toxicity list name P-value

INH TOX LIST:58 NRF-2 mediated oxidative stress response 0.004967207

INH TOX LIST:74 xenobiotic metabolism signaling 0.001040834

INH TOX LIST:06 cardiac hypertrophy 7.83973E-05

INH TOX LIST:10 cholesterol biosynthesis 0.000702744

INH TOX LIST:42 increases liver hyperplasia\hyperproliferation 0.003145396

INH TOX LIST:50 liver proliferation 0.000656753

INH TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.000497412

INH TOX LIST:65 PXR\RXR activation 0.000609704

INH TOX LIST:72 TR\RXR activation 0.002847026

INH TOX LIST:73 VDR\RXR activation 0.001652946

INH TOX LIST:30 hormone receptor regulated cholesterol metabolism 0.001673703

INH TOX LIST:47 increases renal proliferation 0.000395823

INH TOX LIST:49 liver necrosis\cell death 3.54931E-05

INH TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPARα 0.000846634

INH TOX LIST:68 renal necrosis\cell death 0.000360454

INH TOX LIST:04 CAR\RXR activation 2.51429E-06

INH TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 0.000363938

INH TOX LIST:21 FXR\RXR activation 0.000597562

INH TOX LIST:43 increases liver steatosis 0.003078586

INH TOX LIST:52 LXR\RXR activation 0.001077018

INH TOX LIST:60 p53 signaling 0.000107343

APAP TOX LIST:74 xenobiotic metabolism signaling 0.002894527

APAP TOX LIST:02 aryl hydrocarbon receptor signaling 0.005388967

APAP TOX LIST:21 FXR\RXR activation 0.003636574

APAP TOX LIST:40 increases liver damage 0.000141098

APAP TOX LIST:49 liver necrosis\cell death 0.004272223

APAP TOX LIST:50 liver proliferation 0.000212794

APAP TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPARα 4.1877E-06

APAP TOX LIST:59 oxidative stress 0.007167245

APAP TOX LIST:63 primary glomerulonephritis biomarker panel 0.000356947

APAP TOX LIST:66 RAR activation 0.00010946

APAP TOX LIST:68 renal necrosis\cell death 2.46648E-05

APAP TOX LIST:71 TGF-β signaling 0.001592685

APAP TOX LIST:06 cardiac hypertrophy 0.000161493

APAP TOX LIST:07 cardiac necrosis\cell death 0.000414748

APAP TOX LIST:28 hepatic fibrosis 2.11396E-05

APAP TOX LIST:30 hormone receptor regulated cholesterol metabolism 0.000404951

APAP TOX LIST:35 increases cardiac proliferation 0.001920824

APAP TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.000784304

APAP TOX LIST:73 VDR\RXR activation 0.000780962

APAP TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 0.000511807

APAP TOX LIST:42 increases liver hyperplasia\hyperproliferation 1.73444E-05

APAP TOX LIST:39 increases heart failure 0.002328136

APAP TOX LIST:08 cell cycle G1\S checkpoint regulation 5.21546E-07

APAP TOX LIST:65 PXR\RXR activation 0.001339052

APAP TOX LIST:04 CAR\RXR activation 8.11397E-08

APAP TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 4.21655E-05

APAP TOX LIST:20 fatty acid metabolism 3.80436E-07

APAP TOX LIST:24 glutathione depletion - CYP induction and reactive metabolites 0.002733687

APAP TOX LIST:43 increases liver steatosis 0.00022404

APAP TOX LIST:55 negative acute phase response proteins 0.002926586

APAP TOX LIST:57 nongenotoxic hepatocarcinogenicity biomarker panel 7.33508E-05

APAP TOX LIST:58 NRF-2 mediated oxidative stress response 3.00566E-05

APAP TOX LIST:60 p53 signaling 0.000458014

APAP TOX LIST:62 PPARα \RXRα activation 0.001671642

VPA TOX LIST:28 hepatic fibrosis 0.006570028

VPA TOX LIST:73 VDR\RXR activation 0.004170474
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Drug Toxicity list id Toxicity list name P-value

VPA TOX LIST:06 cardiac hypertrophy 0.000524214

VPA TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 0.000152072

VPA TOX LIST:20 fatty acid metabolism 0.000309822

VPA TOX LIST:49 liver necrosis\cell death 0.000203697

VPA TOX LIST:50 liver proliferation 0.002127803

VPA TOX LIST:65 PXR\RXR activation 0.00057639

VPA TOX LIST:72 TR\RXR activation 0.000204537

VPA TOX LIST:74 xenobiotic metabolism signaling 0.000373053

VPA TOX LIST:08 cell cycle G1\S checkpoint regulation 0.002797395

VPA TOX LIST:42 increases liver hyperplasia\hyperproliferation 0.005549688

VPA TOX LIST:43 increases liver steatosis 0.004170474

VPA TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPARα 0.006178077

VPA TOX LIST:63 primary glomerulonephritis biomarker panel 8.46564E-05

VPA TOX LIST:68 renal necrosis\cell death 0.000264508

VPA TOX LIST:02 aryl hydrocarbon receptor signaling 0.002099075

VPA TOX LIST:07 cardiac necrosis\cell death 3.31273E-05

VPA TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 0.000734029

VPA TOX LIST:21 FXR\RXR activation 4.39565E-05

VPA TOX LIST:29 hepatic stellate cell activation 0.001912755

VPA TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 2.48093E-06

VPA TOX LIST:57 nongenotoxic hepatocarcinogenicity biomarker panel 0.000546665

VPA TOX LIST:05 cardiac fibrosis 0.004323402

VPA TOX LIST:35 increases cardiac proliferation 0.002793691

VPA TOX LIST:38 increases glomerular injury 0.002619294

VPA TOX LIST:04 CAR\RXR activation 2.43965E-05

VPA TOX LIST:19 decreases transmembrane potential of mitochondria and mitochondrial membrane 0.000410859

VPA TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 1.03793E-05

VPA TOX LIST:58 NRF-2 mediated oxidative stress response 7.46266E-05
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Table C.3: Over-representation analysis for rats. Significantly overrepresented key cellular processes iden-
tified in rat hepatocytes.

Drug Toxicity list id Toxicity list name P-value

PB TOX LIST:02 aryl hydrocarbon receptor signaling 4.2615E-09

PB TOX LIST:04 CAR\RXR activation 1.8291E-07

PB TOX LIST:15 cytochrome p450 - substrate is a xenobiotic 4.4302E-05

PB TOX LIST:20 fatty acid metabolism 4.2611E-10

PB TOX LIST:21 FXR\RXR activation 1.2968E-07

PB TOX LIST:24 glutathione depletion - CYP induction and reactive metabolites 0.00053764

PB TOX LIST:26 glutathione depletion - phase II reactions 9.033E-05

PB TOX LIST:29 hepatic stellate cell activation 0.00260527

PB TOX LIST:40 increases liver damage 0.00036196

PB TOX LIST:49 liver necrosis\cell death 1.1807E-10

PB TOX LIST:50 liver proliferation 2.3521E-07

PB TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 7.625E-13

PB TOX LIST:52 LXR\RXR activation 0.00038186

PB TOX LIST:54 mitochondrial dysfunction 0.00055979

PB TOX LIST:58 NRF-2 mediated oxidative stress response 3.2146E-11

PB TOX LIST:59 oxidative stress 0.00257413

PB TOX LIST:65 PXR\RXR activation 7.4423E-06

PB TOX LIST:68 renal necrosis\cell death 5.2251E-08

PB TOX LIST:74 xenobiotic metabolism signaling 2.5224E-10

PB TOX LIST:10 cholesterol biosynthesis 0.00241297

PB TOX LIST:28 hepatic fibrosis 2.7189E-07

PB TOX LIST:06 cardiac hypertrophy 0.00021492

PB TOX LIST:27 hepatic cholestasis 0.00076461

PB TOX LIST:60 p53 signaling 0.00021721

PB TOX LIST:05 cardiac fibrosis 0.00019824

PB TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 0.00235479

PB TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPARα 0.00090444

PB TOX LIST:62 PPARα\RXRα activation 0.00193518

PB TOX LIST:07 cardiac necrosis\cell death 0.00230541

PB TOX LIST:56 NF-κB signaling 0.00290596

PB TOX LIST:43 increases liver steatosis 2.8958E-05

PB TOX LIST:19 decreases transmembrane potential of mitochondria and mitochondrial membrane 0.00021965

DFN TOX LIST:05 cardiac fibrosis 1.6091E-05

DFN TOX LIST:06 cardiac hypertrophy 1.1666E-05

DFN TOX LIST:20 fatty acid metabolism 0.00011856

DFN TOX LIST:34 increases cardiac dysfunction 2.3364E-05

DFN TOX LIST:43 increases liver steatosis 0.00049036

DFN TOX LIST:50 liver proliferation 0.00061792

DFN TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 5.615E-06

DFN TOX LIST:52 LXR\RXR activation 0.00136809

DFN TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPARα 7.9885E-05

DFN TOX LIST:65 PXR\RXR activation 0.00303806

DFN TOX LIST:74 xenobiotic metabolism signaling 0.00023965

DFN TOX LIST:04 CAR\RXR activation 0.00076046

DFN TOX LIST:49 liver necrosis\cell death 3.3108E-06

DFN TOX LIST:60 p53 signaling 0.00068869

DFN TOX LIST:68 renal necrosis\cell death 2.3336E-05

DFN TOX LIST:21 FXR\RXR activation 0.00033025

DFN TOX LIST:28 hepatic fibrosis 0.00043534

DFN TOX LIST:58 NRF-2 mediated oxidative stress response 3.589E-06

DFN TOX LIST:61 positive acute phase response proteins 1.0545E-06

SST TOX LIST:10 cholesterol biosynthesis 0.0000000034

SST TOX LIST:52 LXR\RXR activation 0.00051233
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Drug Toxicity list id Toxicity list name P-value

SST TOX LIST:20 fatty acid metabolism 0.0001126

SST TOX LIST:34 increases cardiac dysfunction 0.00056436

SST TOX LIST:50 liver proliferation 0.00065468

SST TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.00175732

SST TOX LIST:65 PXR\RXR activation 0.00050272

SST TOX LIST:12 cytochrome P450 - substrate is a fatty acid 0.00083796

SST TOX LIST:06 cardiac hypertrophy 0.00061671

SST TOX LIST:27 hepatic cholestasis 0.00189216

SST TOX LIST:43 increases liver steatosis 0.0010397

SST TOX LIST:49 liver necrosis\cell death 0.00014332

SST TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPARα 1.0525E-05

SST TOX LIST:02 aryl hydrocarbon receptor signaling 4.0525E-06

SST TOX LIST:04 CAR\RXR activation 7.5614E-05

SST TOX LIST:05 cardiac fibrosis 0.00194693

SST TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 0.00046529

SST TOX LIST:21 FXR\RXR activation 3.8966E-06

SST TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 0.00015136

SST TOX LIST:28 hepatic fibrosis 5.7916E-08

SST TOX LIST:29 hepatic stellate cell activation 0.00124841

SST TOX LIST:42 increases liver hyperplasia\hyperproliferation 4.1432E-05

SST TOX LIST:58 NRF-2 mediated oxidative stress response 0.00331944

SST TOX LIST:74 xenobiotic metabolism signaling 0.00021136

CPA TOX LIST:04 CAR\RXR activation 0.00011727

CPA TOX LIST:05 cardiac fibrosis 0.00059279

CPA TOX LIST:74 xenobiotic metabolism signaling 0.00060935

CPA TOX LIST:02 aryl hydrocarbon receptor signaling 2.5807E-05

CPA TOX LIST:06 cardiac hypertrophy 1.4431E-07

CPA TOX LIST:22 genes associated with chronic allograft nephropathy 1.7806E-06

CPA TOX LIST:28 hepatic fibrosis 7.5438E-10

CPA TOX LIST:29 hepatic stellate cell activation 0.00083334

CPA TOX LIST:34 increases cardiac dysfunction 0.00159167

CPA TOX LIST:35 increases cardiac proliferation 0.00101216

CPA TOX LIST:40 increases liver damage 4.3945E-05

CPA TOX LIST:52 LXR\RXR activation 0.00151092

CPA TOX LIST:68 renal necrosis\cell death 5.5469E-06

PHE n/a no significantly regulated toxicity lists found n/a

ERY TOX LIST:02 aryl hydrocarbon receptor signaling 0.00273674

ERY TOX LIST:21 FXR\RXR activation 0.00189852

ERY TOX LIST:27 hepatic cholestasis 0.00300305

ERY TOX LIST:28 hepatic fibrosis 1.6283E-05

ERY TOX LIST:40 increases liver damage 0.00115096

ERY TOX LIST:47 increases renal proliferation 0.00186229

ERY TOX LIST:50 liver proliferation 0.00636631

ERY TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.00555133

ERY TOX LIST:52 LXR\RXR activation 0.00139051

ERY TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPARα 0.0011797

ERY TOX LIST:56 NF-κB signaling 0.00342457

ERY TOX LIST:05 cardiac fibrosis 0.00583389

AZA TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 0.00018965

AZA TOX LIST:20 fatty acid metabolism 8.6937E-05

AZA TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.00135229

AZA TOX LIST:58 NRF-2 mediated oxidative stress response 0.00022444

AZA TOX LIST:74 xenobiotic metabolism signaling 9.0003E-05

AZA TOX LIST:06 cardiac hypertrophy 0.00025556

AZA TOX LIST:07 cardiac necrosis\cell death 0.00131371

AZA TOX LIST:10 cholesterol biosynthesis 0.00023487

AZA TOX LIST:49 liver necrosis\cell death 5.2564E-05
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Drug Toxicity list id Toxicity list name P-value

AZA TOX LIST:60 p53 signaling 8.5364E-05

AZA TOX LIST:02 aryl hydrocarbon receptor signaling 0.00011467

AZA TOX LIST:21 FXR\RXR activation 1.7358E-08

AZA TOX LIST:50 liver proliferation 5.4922E-07

AZA TOX LIST:52 LXR\RXR activation 1.0366E-05

RIF TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.0043543

RIF TOX LIST:10 cholesterol biosynthesis 1.3985E-07

RIF TOX LIST:60 p53 signaling 0.0009869

RIF TOX LIST:04 CAR\RXR activation 0.00026508

RIF TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 0.00072246

RIF TOX LIST:20 fatty acid metabolism 0.00016777

RIF TOX LIST:21 FXR\RXR activation 1.6155E-05

RIF TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 5.9775E-05

RIF TOX LIST:52 LXR\RXR activation 0.00062664

RIF TOX LIST:58 NRF-2 mediated oxidative stress response 9.9115E-07

RIF TOX LIST:74 xenobiotic metabolism signaling 0.0016744

CSA TOX LIST:68 renal necrosis\cell death 6.2159E-06

CSA TOX LIST:04 CAR\RXR activation 0.00112241

CSA TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 7.1257E-05

CSA TOX LIST:52 LXR\RXR activation 2.6804E-05

CSA TOX LIST:19 decreases transmembrane potential of mitochondria and mitochondrial membrane 0.00051233

CSA TOX LIST:49 liver necrosis\cell death 0.00033517

CSA TOX LIST:58 NRF-2 mediated oxidative stress response 2.7852E-05

CSA TOX LIST:10 cholesterol biosynthesis 1.8383E-08

CSA TOX LIST:20 fatty acid metabolism 1.5842E-06

CSA TOX LIST:21 FXR\RXR activation 8.8545E-08

CSA TOX LIST:65 PXR\RXR activation 0.000805

CSA TOX LIST:72 TR\RXR activation 0.00112369

CSA TOX LIST:74 xenobiotic metabolism signaling 0.00042041

AD TOX LIST:50 liver proliferation 0.00272582

FT n/a no significantly regulated toxicity lists found n/a

HPL TOX LIST:04 CAR\RXR activation 2.9299E-05

HPL TOX LIST:10 cholesterol biosynthesis 4.9711E-08

HPL TOX LIST:16 decreases depolarization of mitochondria and mitochondria membrane 4.6219E-05

HPL TOX LIST:21 FXR\RXR activation 0.00070613

HPL TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 0.00024376

HPL TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 8.0142E-05

HPL TOX LIST:74 xenobiotic metabolism signaling 0.00096773

INH TOX LIST:02 aryl hydrocarbon receptor signaling 0.00037389

INH TOX LIST:09 cell cycle G2\M DNA damage checkpoint regulation 0.00101895

INH TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 0.00106862

INH TOX LIST:58 NRF-2 mediated oxidative stress response 0.00020876

INH TOX LIST:49 liver necrosis\cell death 0.00105308

INH TOX LIST:65 PXR\RXR activation 0.0010867

INH TOX LIST:38 increases glomerular injury 0.00193362

INH TOX LIST:50 liver proliferation 0.00092468

INH TOX LIST:52 LXR\RXR activation 0.00181214

INH TOX LIST:74 xenobiotic metabolism signaling 5.7056E-05

INH TOX LIST:04 CAR\RXR activation 1.2689E-05

INH TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 0.00015272

INH TOX LIST:26 glutathione depletion - phase II reactions 0.00056137

INH TOX LIST:28 hepatic fibrosis 0.00081699

INH TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 1.199E-05

INH TOX LIST:68 renal necrosis\cell death 2.8774E-06

INH TOX LIST:73 VDR\RXR activation 0.00216595

INH TOX LIST:08 cell cycle G1\S checkpoint regulation 0.00125641

INH TOX LIST:20 fatty acid metabolism 9.068E-06
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Drug Toxicity list id Toxicity list name P-value

INH TOX LIST:59 oxidative stress 8.7184E-05

APAP TOX LIST:02 aryl hydrocarbon receptor signaling 3.2809E-07

APAP TOX LIST:04 CAR\RXR activation 6.3888E-06

APAP TOX LIST:07 cardiac necrosis\cell death 6.8194E-05

APAP TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 0.00034625

APAP TOX LIST:20 fatty acid metabolism 0.00000004

APAP TOX LIST:21 FXR\RXR activation 1.8381E-07

APAP TOX LIST:26 glutathione depletion - phase II reactions 0.00304329

APAP TOX LIST:28 hepatic fibrosis 0.00045026

APAP TOX LIST:29 hepatic stellate cell activation 0.00141773

APAP TOX LIST:40 increases liver damage 0.00011008

APAP TOX LIST:43 increases liver steatosis 7.746E-05

APAP TOX LIST:49 liver necrosis\cell death 7.4515E-09

APAP TOX LIST:50 liver proliferation 1.3624E-05

APAP TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 2.5283E-11

APAP TOX LIST:52 LXR\RXR activation 0.00066371

APAP TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPARα 0.00087848

APAP TOX LIST:57 nongenotoxic hepatocarcinogenicity biomarker panel 1.0974E-05

APAP TOX LIST:58 NRF-2 mediated oxidative stress response 3.0864E-14

APAP TOX LIST:62 PPARα\RXRα activation 0.00209672

APAP TOX LIST:65 PXR\RXR activation 0.00010498

APAP TOX LIST:68 renal necrosis\cell death 7.0319E-07

APAP TOX LIST:74 xenobiotic metabolism signaling 5.3931E-11

APAP TOX LIST:06 cardiac hypertrophy 0.0029842

APAP TOX LIST:24 glutathione depletion - CYP induction and reactive metabolites 0.00271573

APAP TOX LIST:48 increases transmembrane potential of mitochondria and mitochondrial membrane 0.00031675

APAP TOX LIST:66 RAR activation 0.0019025

APAP TOX LIST:27 hepatic cholestasis 0.00029173

VPA TOX LIST:06 cardiac hypertrophy 0.00042555

VPA TOX LIST:40 increases liver damage 0.00095899

VPA TOX LIST:49 liver necrosis\cell death 0.00022092

VPA TOX LIST:68 renal necrosis\cell death 0.00151297

VPA TOX LIST:20 fatty acid metabolism 0.00031809

VPA TOX LIST:50 liver proliferation 0.00028604

VPA TOX LIST:02 aryl hydrocarbon receptor signaling 0.00169091

VPA TOX LIST:04 CAR\RXR activation 8.1655E-10

VPA TOX LIST:12 cytochrome P450 - substrate is a fatty acid 0.00226088

VPA TOX LIST:21 FXR\RXR activation 5.7828E-10

VPA TOX LIST:25 glutathione depletion - hepatocellular hypertrophy 0.00085227

VPA TOX LIST:27 hepatic cholestasis 0.00081141

VPA TOX LIST:43 increases liver steatosis 0.00062511

VPA TOX LIST:51 LPS\IL-1 mediated inhibition of RXR function 0.00000027

VPA TOX LIST:58 NRF-2 mediated oxidative stress response 2.3561E-07

VPA TOX LIST:65 PXR\RXR activation 2.2572E-06

VPA TOX LIST:74 xenobiotic metabolism signaling 2.8949E-09

VPA TOX LIST:53 mechanism of gene regulation by peroxisome proliferations via PPARα 0.0002067

VPA TOX LIST:10 cholesterol biosynthesis 4.7194E-09

VPA TOX LIST:15 cytochrome P450 - substrate is a xenobiotic 0.00237911

VPA TOX LIST:26 glutathione depletion - phase II reactions 0.00233137

VPA TOX LIST:60 p53 signaling 4.6739E-05
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C.1.3 Physiologically-based pharmacokinetic model development

Table C.4: Intestinal permeabilities. Intestinal permeability values for all drugs and their metabolites. Some
intestinal permeability values originally provided by the modeling software (Initial intestinal permeability) were
slightly adjusted (Intestinal permeability used in model) to best describe the experimental data for oral adminis-
tration.

ID Drug/Metabolite Initial intestinal permeability Intestinal permeability used in model
[cm/min] [cm/min]

1 APAP 5.33E-06 2.95E-05
1 APAPC 6.01E-07 6.01E-07
1 APAPG 8.06E-09 8.06E-09
1 APAPS 1.11E-07 1.11E-07
1 NAPQI 3.32E-06 3.32E-06
2 AD 8.64E-04 2.30E-04
3 6-MP 1.71E-04 1.71E-04
3 AZA 2.04E-07 9.04E-04
4 CPA 3.08E-06 5.08E-05
5 CSA 1.67E-06 4.80E-04
6 DFN 3.13E-03 6.00E-03
7 ERY 2.33E-06 2.33E-06
7 ERY-PED 6.81E-06 6.50E-04
8 2-hydroxy FT 3.65E-05 3.65E-05
8 FT 4.64E-04 1.85E-04
9 HPL 2.69E-04 4.69E-04
10 Acetyl-INH 1.46E-07 1.46E-07
10 INH 8.24E-07 2.00E-05
11 PB 4.81E-05 7.00E-05
12 PHE 4.51E-05 9.00E-05
13 RIF 1.03E-06 1.12E-04
14 SST 1.22E-03 5.90E-04
14 SST-acid 4.20E-04 6.90E-05
15 Hydroxyl-VPA 5.03E-05 5.03E-05
15 VPA 6.21E-04 6.21E-04
15 VPA-β-glucuronide 6.00E-07 6.00E-07
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Table C.5: Calculation methods for partition coefficients and cellular permeabilities. Different cal-
culation methods used in the established PBPK models to calculate intracellular to plasma partition coefficients
as well as permeabilities between interstitial and cellular space. The calculation methods are provided in the
modeling software.

ID Drug/Metabolite Partition coefficients Cellular permeabilities

1 APAP Schmitt Charge dependent Schmitt
1 APAPC Schmitt Charge dependent Schmitt
1 APAPG Schmitt Charge dependent Schmitt
1 APAPS Schmitt Charge dependent Schmitt
1 NAPQI Schmitt Charge dependent Schmitt
2 AD Schmitt PK-Sim Standard
3 6-MP Schmitt PK-Sim Standard
3 AZA PK-Sim Standard PK-Sim Standard
4 CPA Schmitt PK-Sim Standard
5 CSA PK-Sim Standard PK-Sim Standard
6 DFN Schmitt PK-Sim Standard
7 ERY PK-Sim Standard PK-Sim Standard
7 ERY-PED PK-Sim Standard PK-Sim Standard
8 2-hydroxy-FT Rodgers and Rowland PK-Sim Standard
8 FT Rodgers and Rowland PK-Sim Standard
9 HPL Schmitt PK-Sim Standard
10 Acetyl-INH Schmitt Charge dependent Schmitt
10 INH Schmitt Charge dependent Schmitt
11 PB PK-Sim Standard PK-Sim Standard
12 PHE Rodgers and Rowland PK-Sim Standard
13 RIF Schmitt PK-Sim Standard
14 SST PK-Sim Standard PK-Sim Standard
14 SST-acid PK-Sim Standard PK-Sim Standard
15 Hydroxyl-VPA Schmitt PK-Sim Standard
15 VPA Schmitt PK-Sim Standard
15 VPA-β-glucuronide Schmitt PK-Sim Standard

Table C.6: Bioavailability values. Bioavailability values after 24 h calculated by use of the modeling software
PK-Sim R© [Willmann et al., 2003]

Drug Bioavailability
[%]

APAP 92
AD 59
AZA 18
CPA 98
CSA 18
DFN 79
ERY 80
FT 84
HPL 93
INH 94
PB 98
PHE 76
RIF 94
SST 44
VPA 99
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C.1.4 Prediction of molecular biomarkers and potential drug interactions

Table C.7: Molecular biomarkers. Individual molecular biomarkers identified for the high-responsive- and
low-responsive drugs.

Group Drug Gene Location Type Entrez ID TP

high-responsive PB CYP3A5 Cytoplasm enzyme 1577 8h

high-responsive PB CYP3A7 Cytoplasm enzyme 1551 8h

high-responsive PB ALAS1 Cytoplasm enzyme 211 24h

high-responsive PB CYP2B6 Cytoplasm enzyme 1555 24h

high-responsive PB CYP2C8 Cytoplasm enzyme 1558 24h

high-responsive PB CYP3A4 Cytoplasm enzyme 1576 24h

high-responsive PB CYP3A5 Cytoplasm enzyme 1577 24h

high-responsive PB CYP3A7 Cytoplasm enzyme 1551 24h

high-responsive PB CYP1A1 Cytoplasm enzyme 1543 8h

high-responsive PB CYP4X1 Cytoplasm enzyme 260293 24h

high-responsive PB SULT1E1 Cytoplasm enzyme 6783 24h

high-responsive CPA CYP3A4 Cytoplasm enzyme 1576 24h

high-responsive CPA CYP3A7 Cytoplasm enzyme 1551 24h

high-responsive AZA CYP4X1 Cytoplasm enzyme 260293 24h

high-responsive AZA BORA Cytoplasm other 79866 24h

high-responsive AZA CCNB1 Cytoplasm kinase 891 24h

high-responsive AZA PLK1 Nucleus kinase 5347 24h

high-responsive RIF CYP3A4 Cytoplasm enzyme 1576 8h

high-responsive RIF CYP3A5 Cytoplasm enzyme 1577 8h

high-responsive RIF CYP3A7 Cytoplasm enzyme 1551 8h

high-responsive RIF ALAS1 Cytoplasm enzyme 211 24h

high-responsive RIF CYP2B6 Cytoplasm enzyme 1555 24h

high-responsive RIF CYP2C19 Cytoplasm enzyme 1557 24h

high-responsive RIF CYP2C8 Cytoplasm enzyme 1558 24h

high-responsive RIF CYP2C9 Cytoplasm enzyme 1559 24h

high-responsive RIF CYP3A4 Cytoplasm enzyme 1576 24h

high-responsive RIF CYP3A5 Cytoplasm enzyme 1577 24h

high-responsive RIF CYP3A7 Cytoplasm enzyme 1551 24h

high-responsive RIF CYP3A43 Cytoplasm enzyme 64816 24h

high-responsive RIF AKR1D1 Cytoplasm enzyme 6718 24h

high-responsive RIF GAL3ST1 Cytoplasm enzyme 9514 24h

high-responsive RIF POR Cytoplasm enzyme 5447 24h

high-responsive HPL CYP3A4 Cytoplasm enzyme 1576 24h

high-responsive HPL CYP3A7 Cytoplasm enzyme 1551 24h

high-responsive INH CYP1A2 Cytoplasm enzyme 1544 8h

high-responsive INH CYP1A2 Cytoplasm enzyme 1544 24h

high-responsive INH CYP1A1 Cytoplasm enzyme 1543 8h

high-responsive INH CYP1A1 Cytoplasm enzyme 1543 24h

high-responsive APAP NR1I2 Nucleus ligand-dependent nuclear receptor 8856 8h

high-responsive APAP PPARGC1A Nucleus transcription regulator 10891 8h

high-responsive APAP CYP1A1 Cytoplasm enzyme 1543 8h

high-responsive APAP SULT1B1 Cytoplasm enzyme 27284 24h

high-responsive APAP SULT1E1 Cytoplasm enzyme 6783 24h

high-responsive APAP UGT2B17 Cytoplasm enzyme 7367 24h

high-responsive APAP EGR1 Nucleus transcription regulator 1958 2h

high-responsive APAP IER3 Cytoplasm other 8870 2h

high-responsive APAP CCNE2 Nucleus other 9134 24h

high-responsive APAP PCK1 Cytoplasm kinase 5105 8h

high-responsive APAP SULT1B1 Cytoplasm enzyme 27284 8h

high-responsive VPA PPARGC1A Nucleus transcription regulator 10891 8h

high-responsive VPA ABCB11 Plasma Membrane transporter 8647 24h

Continued on next page
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Group Drug Gene Location Type Entrez ID TP

high-responsive VPA CYP1A2 Cytoplasm enzyme 1544 24h

high-responsive VPA CYP2B6 Cytoplasm enzyme 1555 24h

high-responsive VPA CYP3A4 Cytoplasm enzyme 1576 24h

high-responsive VPA CYP3A7 Cytoplasm enzyme 1551 24h

high-responsive VPA HMGCS2 Cytoplasm enzyme 3158 24h

high-responsive VPA NR1I3 Nucleus ligand-dependent nuclear receptor 9970 24h

high-responsive VPA PPARGC1A Nucleus transcription regulator 10891 24h

high-responsive VPA SULT2A1 Cytoplasm enzyme 6822 24h

high-responsive VPA CYP1A1 Cytoplasm enzyme 1543 24h

high-responsive VPA ACSL1 Cytoplasm enzyme 2180 24h

high-responsive VPA ADH1A Cytoplasm enzyme 124 24h

high-responsive VPA ADH1C Cytoplasm enzyme 126 24h

high-responsive VPA ADH4 Cytoplasm enzyme 127 24h

high-responsive VPA ADHFE1 Cytoplasm enzyme 137872 24h

high-responsive VPA AKR1D1 Cytoplasm enzyme 6718 24h

high-responsive VPA CYP4A11 Cytoplasm enzyme 1579 24h

high-responsive VPA CYP4F12 Cytoplasm enzyme 66002 24h

high-responsive VPA CYP4X1 Cytoplasm enzyme 260293 24h

high-responsive VPA SLC27A1 Plasma Membrane transporter 376497 24h

high-responsive VPA SRD5A2 Cytoplasm enzyme 6716 24h

high-responsive VPA EPHX2 Cytoplasm enzyme 2053 24h

high-responsive VPA FMO1 Cytoplasm enzyme 2326 24h

high-responsive VPA KEAP1 Cytoplasm transcription regulator 9817 24h

high-responsive VPA MAP2K6 Cytoplasm kinase 5608 24h

high-responsive VPA PPM1J Other phosphatase 333926 24h

high-responsive VPA SULT1E1 Cytoplasm enzyme 6783 24h

high-responsive VPA UGT2B15 Cytoplasm enzyme 7366 24h

high-responsive VPA IER3 Cytoplasm other 8870 24h

high-responsive VPA CYP2U1 Cytoplasm enzyme 113612 24h

high-responsive VPA SLC10A1 Plasma Membrane transporter 6554 24h

high-responsive VPA CCNA2 Nucleus other 890 24h

high-responsive VPA TGFB3 Extracellular Space growth factor 7043 24h

high-responsive VPA PLK1 Nucleus kinase 5347 24h

high-responsive VPA FOSL1 Nucleus transcription regulator 8061 24h

high-responsive VPA PMF1/PMF1-BGLAP Nucleus transcription regulator 11243 24h

low-responsive PHE CYP1A1 Cytoplasm enzyme 1543 8h

low-responsive PHE CYP3A4 Cytoplasm enzyme 1576 24h

low-responsive PHE CYP3A5 Cytoplasm enzyme 1577 24h

low-responsive PHE CYP3A7 Cytoplasm enzyme 1551 24h

low-responsive PHE CYP4A11 Cytoplasm enzyme 1579 24h

low-responsive PHE CYP4X1 Cytoplasm enzyme 260293 24h

low-responsive PHE IGFBP1 Extracellular Space other 3484 8h

low-responsive PHE HMGCS2 Cytoplasm enzyme 3158 24h

low-responsive PHE BAX Cytoplasm transporter 581 24h

low-responsive PHE PCK1 Cytoplasm kinase 5105 8h

low-responsive PHE PCK1 Cytoplasm kinase 5105 24h

low-responsive CSA MAP3K8 Cytoplasm kinase 1326 24h

low-responsive CSA IL1RN Extracellular Space cytokine 3557 24h
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Table C.8: Drug-drug interactions. Drug-drug interactions predicted for the high-responsive drugs (RIF,
CPA, PB, INH, HPL, AZA, APAP, and VPA).

Drug A Drug B Gene drugs are

inducer/

inhbitor/

substrate of

CYP enzyme

Reference Type Entrez

ID

TP Toxic

change

drug A

Toxic

change

drug B

Absolute

difference

APAP VPA PPARGC1A - - transcription

regulator

10891 8h 1.35 1.01 0.34

APAP VPA SULT1E1 - - enzyme 6783 24h 1.40 2.11 0.71

AZA VPA PLK1 - - kinase 5347 24h 1.42 1.45 0.03

AZA VPA CYP4X1 no DrugBank enzyme 260293 24h 1.05 1.79 0.74

CPA VPA CYP3A7 no DrugBank enzyme 1551 24h 2.12 3.74 1.62

CPA RIF CYP3A4 yes DrugBank enzyme 1576 24h 1.67 6.25 4.58

CPA HPL CYP3A4 yes DrugBank enzyme 1576 24h 1.67 2.11 0.44

CPA VPA CYP3A4 yes DrugBank enzyme 1576 24h 1.67 4.42 2.75

CPA RIF CYP3A7 yes DrugBank enzyme 1551 24h 2.12 4.76 2.64

CPA HPL CYP3A7 yes DrugBank enzyme 1551 24h 2.12 2.11 0.01

HPL VPA CYP3A7 no DrugBank enzyme 1551 24h 2.11 3.74 1.63

HPL VPA CYP3A4 yes DrugBank enzyme 1576 24h 2.11 4.42 2.31

INH APAP CYP1A1 no DrugBank enzyme 1543 8h 2.37 2.12 0.25

INH VPA CYP1A1 no DrugBank enzyme 1543 24h 3.65 4.19 0.54

INH VPA CYP1A2 yes DrugBank enzyme 1544 24h 2.05 2.50 0.45

PB RIF ALAS1 - - enzyme 211 24h 1.24 1.54 0.30

PB APAP SULT1E1 - - enzyme 6783 24h 1.11 1.40 0.29

PB VPA SULT1E1 - - enzyme 6783 24h 1.11 2.11 1.00

PB INH CYP1A1 no DrugBank enzyme 1543 8h 1.04 2.37 1.33

PB VPA CYP3A7 no DrugBank enzyme 1551 24h 5.40 3.74 1.66

PB AZA CYP4X1 no DrugBank enzyme 260293 24h 1.36 1.05 0.31

PB VPA CYP4X1 no DrugBank enzyme 260293 24h 1.36 1.79 0.43

PB APAP CYP1A1 yes DrugBank enzyme 1543 8h 1.04 2.12 1.08

PB RIF CYP2B6 yes DrugBank enzyme 1555 24h 1.18 2.00 0.82

PB VPA CYP2B6 yes DrugBank enzyme 1555 24h 1.18 1.48 0.3

PB RIF CYP2C8 yes DrugBank enzyme 1558 24h 1.74 1.62 0.12

PB CPA CYP3A4 yes DrugBank enzyme 1576 24h 6.11 1.67 4.44

PB RIF CYP3A4 yes DrugBank enzyme 1576 24h 6.11 6.25 0.14

PB HPL CYP3A4 yes DrugBank enzyme 1576 24h 6.11 2.11 4.00

PB VPA CYP3A4 yes DrugBank enzyme 1576 24h 6.11 4.42 1.69

PB RIF CYP3A5 yes DrugBank enzyme 1577 24h 1.73 1.78 0.05

PB RIF CYP3A5 yes DrugBank enzyme 1577 8h 1.40 1.52 0.12

PB CPA CYP3A7 yes DrugBank enzyme 1551 24h 5.40 2.12 3.28

PB RIF CYP3A7 yes DrugBank enzyme 1551 8h 1.58 2.11 0.53

PB RIF CYP3A7 yes DrugBank enzyme 1551 24h 5.40 4.76 0.64

PB HPL CYP3A7 yes DrugBank enzyme 1551 24h 5.40 2.11 3.29

RIF VPA AKR1D1 - - enzyme 1576 24h 6.25 4.42 1.83

RIF VPA CYP3A7 no DrugBank enzyme 1551 24h 4.76 3.74 1.02

RIF VPA CYP2B6 yes DrugBank enzyme 1555 24h 2.00 1.48 0.52

RIF HPL CYP3A4 yes DrugBank enzyme 1576 24h 6.25 2.11 4.14

RIF VPA CYP3A4 yes DrugBank enzyme 6718 24h 1.35 3.20 1.85

RIF HPL CYP3A7 yes DrugBank enzyme 1551 24h 4.76 2.11 2.65
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D.1 Supplementary tables

D.1.1 Physiologically-based pharmacokinetic model development and validation

Table D.1: Relative expression values of relevant enzymes and transporters. Relative expression values
for the vascular system, as well as all organs and tissues used to estimate relative abundance of relevant ADME
enzymes and transporters, which are involved in metabolism and elimination processes of APAP and CAF.

ABCB1 ABCG2 CYP1A2 CYP2E1 GSTT1 SULT1A1 UGT1A9

Plasma 0 0 0 0 0.02 0.14 0
Vascular Endothelium 0 0 0 0 0 0 0
Blood Cells 0 0 0 0 0.02 0.14 0
Bone 0.09 0.21 0 0 8.18E-03 0.05 0
Brain 0.31 0.46 0 6.97E-04 0.09 0.06 0
Fat 0 0 0 0 0 0 0
Gonads 0.19 0.27 2.96E-04 1.11E-03 0.04 0.1 1.62E-04
Heart 0.17 0.11 0 0 0.33 0.09 0
Kidney 0.66 0.09 4.40E-06 4.24E-04 0.06 0.06 1
Liver 0.28 0.28 1 1 0.21 1 0.1
Lung 0.14 0.22 2.49E-05 6.38E-04 0.06 0.13 0
Muscle 0.06 0.03 0 0 1 0.07 0
Pancreas 0.1 5.43E-03 0 0 9.49E-03 0.04 0
Skin 0.11 0 0 0 0 0 0
Spleen 0.21 0.06 0 0 0.06 0.12 0
Duodenum 1 1 0 8.12E-03 0.15 0.3 4.13E-03
Jejunum 1 1 0 8.12E-03 0.15 0.3 4.13E-03
Ileum 1 1 0 8.12E-03 0.15 0.3 4.13E-03
Cecum 0 0 0 0 0 0 0
Colon 0.45 0.16 0 0 0.14 0.22 7.95E-03
Rectum 0 0 0 0 0 0 0
Stomach 0.14 0.04 0 0 0.07 0.05 1.73E-03
Small Intestine 1 1 0 8.12E-03 0.15 0.3 4.13E-03
Large Intestine 0.45 0.16 0 0 0.14 0.22 7.95E-03
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Table D.2: Comparison between observed and predicted pharmacokinetic parameters. Comparison
between observed vs. predicted pharmacokinetic parameters for the area under the curve (AUC) and the maximal
concentration (Cmax) calculated during PBPK model development and validation. Information about the different
studies can be found in Table 9.4

Study Drug/Metabolite Observed AUC(0-t) Predicted AUC(0-t) Observed Cmax Predicted Cmax
ID [µmol/min/l] [µmol/min/l] [µmol/l] [µmol/l]

1 CAF 15352.03 18138.13 45.45 63.65
2 CAF 16454.46 16948.87 42.55 44.99
3 CAF 8801.67 8561.24 34.36 32.94
3 PX 3281.31 3064.54 8.3 7.44
3 TB 932.19 854.68 2.43 2.1
3 TP 333.45 327.64 0.97 0.95
4 CAF 20022.62 17521.79 84.74 66.65
4 PX 5910.42 6006.03 15.41 14.67
4 TB 1468.9 1646.02 3.75 4.09
4 TP 582.09 664.45 1.61 1.94
5 CAF 12575.88 15209.84 23.53 27.4
5 PX 8055.72 8032.27 8.62 7.8
5 TB 727.93 2348.92 1.64 2.22
5 TP 255.32 389.53 0.8 0.98
6 CAF 38045.37 26026.6 59.42 50.46
6 PX 22721.04 13927.44 18.36 15.31
6 TB 2008.78 4540.18 1.59 4.31
6 TP 2434.37 3137.84 1.58 2.07
7 CAF 3136.22 2822.1 6.41 5.79
8 CAF 18331.09 17405.76 34.67 35.15
9 CAF 38934.18 29637.11 66.48 59.05
10 CAF 48814.04 45627.33 83.73 89.42
11 APAP 20525.83 15740.6 114.33 94.66
11 APAPG 8039.71 5894.59 30.6 19.51
11 APAPS 4206.66 3004.43 15.55 13.44
11 APAPC 2106.23 1744.3 7.73 6.18
12 APAP 26802.18 23210.7 122.72 142.35
12 APAPG 12478.09 10453.6 38.58 28
12 APAPS 8145.02 6386.79 26.84 26.42
13 APAP 4856.58 6896.4 27.42 40.66
14 APAP 13396.63 14059.81 88.1 84.48
15 APAP 26806.68 28897.79 131.9 176.04
16 APAP 17493.32 16807.26 97.74 101.09
17 APAP 8674.87 20003.71 106.85 114.8
18 APAP 4459.37 8709.99 22.95 46.3
19 APAP 6290.79 10400.37 27.25 53.63
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D.1.2 System biology models of acetaminophen
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