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Abstract

In this work we study the evaluation of optical aerosol measurements. Our aim is
to reconstruct the size distributions of aerosol particles from optical light extinction
measurements in order to obtain a safe measurement technology for potentially
harmful aerosols inside a nuclear reactor containment.

The first half of this work is devoted to linear inverse problems. In particular
we study the linear integral equation relating aerosol particle size distributions to
optical extinction measurements via Mie theory. We derive reconstruction algo-
rithms which work independently from a human operator and thus do not require
any monitoring or further adjustments. Based on statistical observations, we derive
residual-based methods for finding the appropriate number of discretization points
and the regularization parameter for Tikhonov regularization. Since particle size
distributions are nonnegative, we apply nonnegativity constraints throughout the
whole reconstruction process and all results are derived for constrained regression
problems. A special emphasis lies on computational efficiency, since we demand
that a single inversion must be completed in less than thirty seconds on a regular
notebook.

We compare our method based on the discrepancy principle with a Monte Carlo
inversion method, where we also apply nonnegativity constraints. Here the regular-
ization parameter is considered as a model variable and retrieved together with the
sought-after size distributions.

Then the discrepany principle strategy is generalized to the case of two-component
aerosols, where the aerosol particle material is a mixture of two pure component ma-
terials. In addition to the particle size distribution, we retrieve the unknown mixing
ratio of the two components.

In the second half of this work we study the nonlinear inverse problem of re-
constructing the refractive indices of an aerosol material from measurements of
monodisperse aerosols. First we investigate this problem for a fixed light wave-
length. We take into account all local minima found here and regard them all as
candidate solutions. Then we apply a selection method based on smoothness es-
timates for refractive index curve sections covering consecutive light wavelengths.
The resulting coupled refractive index reconstructions are regularized further using
Phillips-Twomey regularization.
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Survey

In Chapter 1 we give a brief introduction into Mie theory on which this work is
based on.

Chapter 2 introduces the FASP measurement device. Then we proceed with
the mathematical modeling of FASP measurements. We give monotonicity results
for the residual of Tikhonov-regularized solutions depending on the regularization
parameter. These results are the basis for the discrepancy principle. We also give
convergence results for Tikhonov regularization under linear constraints, where the
regularized solutions are shown to converge to the true sought-after solution as the
noise level approaches zero. Finally we present the Bayesian model selection mech-
anism for the candidate solutions obtained from the discrepancy principle using a
whole set of Morozov safety factors.

In Chapter 3 we compare our retrieval method with established inversion meth-
ods in a numerical study with artificial measurement data. Here we solve the forward
problem, i.e. our integral equation from Mie theory, with high precision and add
zero-mean Gaussian noise to it. We used H2O as aerosol particle material and air
as surrounding medium. The original particle size distributions are from the log-
normal, Rosin-Rammler-Sperling-Bennett (RRSB) and Hedrih distribution families.

Chapter 4 is devoted to Monte Carlo inversion methods. We regard the regular-
ization parameter as additional model parameter here using so-called hyperpriors.
We develop a Bayesian model selection algorithm for this new problem. For the
selected model we perform a Monte Carlo inversion based on a Gibbs sampler. At
the end of this chapter we give the results of the Monte Carlo method for the same
numerical study from Chapter 3.

In Chapter 5 the results from Chapter 2 are generalized to the case of two-
component aerosols. Here we have to identify the correct model depending on the
mixing ratio of the two components. We show that we obtain a convergent method,
if we select the model with the smallest residual of the unregularized solution, i.e.
the best-fitting model.

Chapter 6 contains numerical results for the two-component retrieval algorithm,
where various mixing ratios of H2O and CsI are used. We applied the same original
particle size distributions from Chapter 3 to compute our artificial measurement
data.
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Survey

Chapter 7 contains the mathematical treatment of the refractive index recon-
struction from FASP measurements of monodisperse aerosols. We begin with con-
vergence and stability results for nonlinear inverse problems, where the model is
given as truncated series expansion approximating an infinite series. We first inves-
tigate the reconstruction problem for a fixed wavelength. Based on the local minima
of the fit function for a single wavelength, we filter out coupled solutions for neigh-
boring wavelengths by minimizing the sum of its squared second finite differences.
These coupled solutions are used as start vectors to solve the nonlinear coupled re-
gression problem, where we apply Phillips-Twomey regularization.

In Chapter 8 we present the result of numerical studies for the reconstruction
algorithm developed in Chapter 7, where we used the refractive indices of Ag, CsI
and H2O as sought-after original refractive indices of aerosol particle materials.

Statement regarding the good scientific practice

This work was written by Tobias Kyrion - in the following, the author of this work
- during his employment at the Chair for Mathematics (CCES) at RWTH Aachen
University, between October 2012 and October 2015 and the following one and a
half years under the supervision of Prof. Martin Frank. Whenever we make use of
existing works by different authors, this is explicitly indicated and we carefully cite
the corresponding sources. All computer codes that were used to produce numerical
results in this work were written by the author of this work, except the code to
compute truncated multivariate normal probabilities written by Alan Genz.

Chapters 2, 3 and 5 were published in [1]. The numerical results in Chapters
3 and 6 were rerun, and thus differ slightly from the numerical results in [1]. The
author was introduced into Bayesian statistics by Graham Alldredge, Ph.D., who
contributed Section 2.6.2.

Chapters 7 and 8 were published in [2]. The results in Sections 8.14.1 - 8.15.2
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Chapter 1

Mie Theory

1.1 Scattering of Light by a Spherical Particle

Gustav Mie (1868 - 1957) found in his famous article [3] from 1908 the exact solution
for Maxwell’s equation

div(εe) = 0,

div(b) = 0,

curl(e) = iωµ0h

curl(h) = (−iεε0ω + σ)e

for a spherical particle illuminated by light, where ε0 is the vacuum permittivity, µ0

the vacuum permeability and

e = e(r(t)) exp(−iωt)
h = h(r(t)) exp(−iωt)

are the field components of the harmonic electromagnetic waves under consideration,
cf. [4, p. 58]. Here r(t) parameterizes the current location. Furthermore we have
b = µ0h.

Now with above ansatz, we model the fields einc, hinc of the incident wave, the
fields eint, hint of the waves inside the particle interior and the fields esca, hsca of
the scattered waves. We then expand the three fields in vector spherical harmonics
which are obtained from scalar spherical harmonics. The coefficients of the vector
spherical harmonics expansions for the interior and scattered fields are referred to
as Mie coefficients. They are obtained from Maxwell’s boundary conditions on the
surface of the sphere

(einc + esca)× nr = eint × nr
(hinc + hsca)× nr = hint × nr,

where nr is the surface normal vector of a sphere with radius r.
We recapitulate Mie theory in an absorbing medium as presented in [5]. Our

first step is to introduce the complex-valued Riccati-Bessel-functions ξn : C → C
and ψn : C→ C given by

ξn(z) =
√

π
2

√
zJn+ 1

2
(z) (1.1.1)

1



Mie Theory

and
ψn(z) =

√
π
2

√
zJn+ 1

2
(z) + i

√
π
2

√
zYn+ 1

2
(z), (1.1.2)

with the Bessel functions Jn+ 1
2

: C → C and Yn+ 1
2

: C → C of order n + 1
2 of first

and second kind. We define the size parameter ρ = 2π rl . Then we set zmed :=
ρ ·mmed and zpart := ρ ·mpart. Here and in the following we omit the wavelength
dependence of mmed and mpart for better readability. We introduce the notation
mmed = nmed + ikmed and mpart = npart + ikpart.

We introduce the so-called Mie coefficients:

an :=
mpartξ̇n(zmed)ξn(zpart)−mmedξn(zmed)ξ̇n(zpart)

mpartψ̇n(zmed)ξn(zpart)−mmedψn(zmed)ξ̇n(zpart)

bn :=
mpartξn(zmed)ξ̇n(zpart)−mmedξ̇n(zmed)ξn(zpart)

mpartψn(zmed)ξ̇n(zpart)−mmedψ̇n(zmed)ξn(zpart)

cn :=
mpartψn(zmed)ξ̇n(zmed)−mpartψ̇n(zmed)ξn(zmed)

mpartψn(zmed)ξ̇n(zpart)−mmedψ̇n(zmed)ξn(zpart)

dn :=
mpartψ̇n(zmed)ξn(zmed)−mpartψn(zmed)ξ̇n(zmed)

mpartψ̇n(zmed)ξn(zpart)−mmedψn(zmed)ξ̇n(zpart)

(1.1.3)

With the Mie coefficients we can express the coefficient functions

An(ρ,mmed,mpart) :=
l

2πmpart

(
|cn|2 ξn(zpart)ξ̇n(zpart)− |dn|2 ξ̇n(zpart)ξn(zpart)

)
and

Bn(ρ,mmed,mpart) :=
l

2πmmed

(
|an|2 ψ̇n(zmed)ψn(zmed)− |bn|2 ψn(zmed)ψ̇n(zmed)

)
,

which finally occur in the series expansion of the Mie extinction efficiency

Qext(r, l,mmed,mpart) =
l

2cI(r, l)

∞∑
n=1

(2n+1)Im
(
An(ρ,mmed,mpart)+Bn(ρ,mmed,mpart)

)
.

(1.1.4)
Here the quantity I(r, l) is the average incident intensity of light with wavelength

l for a spherical particle with radius r and c denotes the speed of light in vacuum.
The function I(r, l) is given by

I(r, l) =
l2

8π(kmed)2

nmed
2c

(
1 +

(
4πkmed

r

l
− 1
)
e
4πkmed

r

l

)
, for kmed 6= 0

I(r, l) = πr2nmed
2c

, for kmed = 0.

(1.1.5)
Obviously we cannot evaluate (1.1.4) exactly, because we cannot compute an

infinite sum due to limited processing resources. Therefore we have to truncate this

2
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series expansion. In [6] a commonly used truncation index Ntrunc is presented, which
is given by

Ntrunc =
⌈
|M + 4.05 ·M

1
3 + 2|

⌉
,

with M = maxd|ρ| , |ρ ·mmed|, |ρ ·mpart|e.
(1.1.6)

3



Chapter 2

Retrieval of Aerosol Particle
Size Distributions

2.1 The FASP Measurement Device

The FASP is an optical measurement device for aerosol particle size distributions
in rigid environments where the temperature may surpass 200◦C and the pressure
8 bar over atmospheric pressure, cf. [7, 8]. The aerosol particles themselves may be
acidic as well. The FASP is split into a detector head and into a unit containing an
evaluation computer and a light source with different adjustable light wavelengths.
The sensitive evaluation and light source unit is connected with the robust detector
head via two optical fibers.

The detector head is the only part of the FASP which extends into the contain-
ment with the aerosol to be measured and it consists of a pneumatically propelled
tube. By moving the tube one can adjust a short or a long measurement path,
where the two path lengths are 400 and 800 mm respectively. The sought-after
aerosol particle size distributions are reconstructed from the light intensity loss on
the gap distance between long and short path, so the FASP works in a similar way
to a White cell. The detector head is equipped with two light detectors. The first
one can receive light with wavelengths in the infrared domain from 0.8 - 3.4 µm,
and the other one in the visible domain from 0.5 - 0.8 µm.

Figure 2.1: The detector head with the movable tube (source: [9])

The ends of the optical fibers have to be floated with protective gas to shield them
from harmful aerosol particles. These particle-free sections have to be subtracted

4



Retrieval of Aerosol Particle Size Distributions

from the actual geometric path lengths. This is not problematic since this does not
change the gap distance.

Let l denote a current light wavelength used in a measurement, Glong the ge-
ometric or unfloated long path and Gshort the geometric short path. The section
floated with protective gas is labeled with x. Then the true path lengths are given
by Llong := Glong − x and Lshort := Gshort − x.

Let Mlong(l) and Mshort(l) be the measured intensities for long and short path,
both perturbed by detector offsets Olong(l) and Oshort(l) caused by ambient radia-
tion.

Then the intensities cleaned from the detector offsets are given by Ilong(l) :=
Mlong(l)−Olong(l) and Ishort(l) := Mshort(l)−Oshort(l).

According to the law of Beer-Lambert we have the relation

Ilong(l) = Ishort(l) exp

(
− (Llong − Lshort)

∫ ∞
0

k(r, l)n(r)dr

)
, (2.1.1)

where n(r) is the sought-after unknown particle size distribution. The kernel func-
tion k(r, l) := πr2Qext(mmed(l),mpart(l), r, l) depends on both complex refractive
indices mmed(l) and mpart(l) of the surrounding medium and the scattering aerosol
particles which depend on the wavelength l of the incident light. The Mie extinction
efficiency Qext(mmed(l),mpart(l), r, l) of a spherical particle with radius r illuminated
by light with wavelength l is derived from the general solution to the corresponding
boundary value problem for Maxwell’s equations and was first introduced in the
pioneering article [3]. We adopt the numerical approximation of the Mie extinction
efficiency in an absorbing medium from [5]. From all of this follows∫ ∞

0
k(r, l)n(r)dr = e(l) with e(l) = −

log(Ilong(l))− log(Ishort(l))

Llong − Lshort
. (2.1.2)

2.2 Modeling of FASP Measurement Data Inversions

Let the measurement data e(l) be an error-contaminated right-hand side for (2.1.2)
and (Kn)(l) :=

∫∞
0 k(r, l)n(r)dr the compact linear operator with unbounded in-

verse which maps possible size distributions n(r) to the left-hand side of (2.1.2). We
wish to reconstruct n(r) from e(l) by inverting the equation

Kn = e. (2.2.1)

Here and in the following we omit the dependence on r and l for better readabil-
ity. We assume that e is given as a vector of finitely many independent Gaussian
random variables ei with standard deviations σi and means µi, i.e. ei ∼ N (µi, σ

2
i ).

In the framework of Bayesian inference these are our observed random variables.
Now let n ∈ RN be a discrete approximation to n and KN ∈ RNl×N the kernel
matrix which correspondingly approximates the integral operator K. The details of
these discretizations will be given in Section 3.1. We set up the covariance matrix
Σσ = diag(σ2

1, ..., σ
2
Nl

). Then the observed model uncertainty under the assumption
(KNn)i = µi obeys the probability distribution

pobserved(e|n) ∝ exp(−1
2‖Σσ

− 1
2 (KNn− e)‖22). (2.2.2)

5
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After selecting a subjective prior distribution pprior(n) which incorporates known a
priori information about n independent from the observed variable e we use Bayes’
rule to obtain the posterior distribution pposterior(n|e) with

pposterior(n|e) ∝ pobserved(e|n)× pprior(n). (2.2.3)

A more elaborate presentation of this Bayesian framework will be given in Section
2.6.2. By applying a Tikhonov prior distribution

pprior(n) ∝ exp(−1
2γ‖n‖

2
2)IS(n),

where γ ≥ 0 is a regularization parameter and IS(n) is the indicator function of the
convex set

S := {n ∈ RN | Cn ≤ b} with C ∈ Rk×N , b ∈ Rk,
we obtain the posterior distribution

pposterior(n) ∝ exp(−1
2‖Σσ

− 1
2 (KNn− e)‖22 − 1

2γ‖n‖
2
2))IS(n). (2.2.4)

The quantity of interest n is estimated by computing the maximizer of the
posterior distribution which is called the maximum a posteriori estimator (MAP).
It is obtained by solving the quadratic programming problem

nγMAP := argmin
n ∈ RN

1
2‖Σσ

− 1
2 (KNn− e)‖22 + 1

2γ‖n‖
2
2 s.t. Cn ≤ b. (2.2.5)

Note that ‖Σσ
− 1

2 (KNn−e)‖22 ∼ χ2(Nl), which gives E(‖Σσ
− 1

2 (KNn−e)‖22) = Nl.
For a good introduction to Bayesian modeling, see [10].
A classical residual-based inference method is the so-called discrepancy principle.

After selecting a Morozov safety factor τ the regularization parameter γ is deter-

mined by demanding ‖Σσ
− 1

2 (KNn− e)‖22 = τNl. A common choice for the safety
factor is τ = 1.1. We will give a more thorough introduction to the discrepancy
principle and some results on it in Section 2.3.

Monte Carlo methods offer another way to evaluate the posterior distribution, cf.
[11]. The advantage of Monte Carlo methods is that they take more of the statistical
behavior of the observed measurement noise into account because all possible solu-
tions with nonnegliglible posterior probabibility are sampled and contribute to the
inference result. However these methods require a lot of computational resources,
which we cannot afford because our application requires that one FASP measurement
data inversion must be completed in under thirty seconds using a regular notebook.

In our hybrid approach we combine the advantages of both methods. We re-
view Tikhonov regularization under linear constraints and derive conditions for
the existence of a bijection between the regularization parameter and the resid-
ual. If these conditions are fulfilled, we can propose a set of regularization param-
eters obtained with the discrepancy principle using a set of Morozov safety fac-
tors corresponding to high-probability values of the weighted norm of the residual,

‖Σσ
− 1

2 (KNn− e)‖22 ∼ χ2(Nl). After this a Bayesian model-comparison procedure
is applied to these reconstructions, and we rank them according to their posterior
probabilities.

We show with numerical simulations that our method satisfies the demands on
runtime and accuracy and that it is superior to existing inversion methods based on
classical model-selection approaches. In the last section we extend our method to
investigate two-component aerosols.

6
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2.3 Tikhonov Regularization under Linear Constraints

Computing the maximum a posteriori estimator leads to a quadratic programming
problem of the form

nγ := argmin
n ∈ RN

1
2‖Kn− r‖

2
2 + 1

2γ‖n‖
2
2 s.t. Cn ≤ b, (2.3.1)

with K := Σσ
− 1

2KN and r := Σσ
− 1

2e. The function to be minimized is known as
the Tikhonov functional.

It is proved in [12] that the residual of the Tikhonov-regularized solution under
linear constraints decreases monotonically with the regularization parameter γ. To
the best of our knowledge conditions for strict monotonicity have not been found yet,
so we derive some in the following. The advantage of having a strictly monotonic
relation between regularization parameter and residual is that it gives a bijection.
Thus we can then identify any regularization parameter γ from the range [0,∞) with
a unique residual value ‖Knγ − r‖22 from the range [‖Kn0 − r‖22, ‖Kn∞ − r‖22).
Here

n∞ := argmin
n ∈ RN

1
2‖n‖

2
2 s.t. Cn ≤ b (2.3.2)

is the minimum norm element. As shown in [13] there holds limγ→∞nγ = n∞.
When our monotonicity conditions are satisfied, we obtain a set of distinct regu-
larization parameters by proposing a set of distinct residual values from the range
[‖Kn0 − r‖22, ‖Kn∞ − r‖22). The disadvantageous case of multiple prior distribu-
tions corresponding to the same residual value can therefore not occur. Note that
in practice the cases γ = 0 and γ = ∞ are inadmissible, since then the Tikhonov
prior distribution is improper or degenerates to a point mass, so we always restrict
ourselves to a finite range (0, γmax] with γmax <∞.

2.3.1 Necessary Conditions for Strict Monotonicity

The following theorem shows that nα 6= nβ for all α > β is the only necessary
condition needed for strict monotonicity.

Lemma 2.3.1. Let α > β ≥ 0 be arbitrary and nα and nβ the solutions of (2.3.1)
for γ = α and γ = β respectively. If there holds nα 6= nβ for all α > β, then the
residual ‖Knγ − r‖2 is strictly increasing for growing γ.

Proof. From the first-order necessary Karush-Kuhn-Tucker conditions for the prob-
lem (2.3.1) we have that for each γ there exists a vector qγ ∈ Rk with

KTKnγ −KTr + γnγ +CTqγ = 0 (2.3.3)

Cnγ ≤ b (2.3.4)

diag
(
qγ
)

(Cnγ − b) = 0 (2.3.5)

qγ ≥ 0. (2.3.6)

We define the difference vector

x := nβ − nα

7
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and subtract (2.3.3) for γ = α with the same equation for γ = β to get

KTKx+ βnβ − αnα +CT
(
qβ − qα

)
= 0. (2.3.7)

Taking the scalar product of (2.3.7) with nα and then with nβ gives〈
nα,K

TKx+ βnβ − αnα +CT
(
qβ − qα

)〉
= 0

and
〈
nβ,K

TKx+ βnβ − αnα +CT
(
qβ − qα

)〉
= 0.

Our next step is to add (α − β) 〈nα,nα〉 on both sides of the first relation and
analogously
(α− β) 〈nβ,nβ〉 on both sides of the latter relation, which results in〈

nα,
(
KTK + βI

)
x+CT

(
qβ − qα

)〉
= (α− β) 〈nα,nα〉

and
〈
nβ,

(
KTK + αI

)
x+CT

(
qβ − qα

)〉
= (α− β) 〈nβ,nβ〉 .

Taking the difference of these two equations gives

(α− β)
(
〈nβ,nβ〉 − 〈nα,nα〉

)
=
〈
x,
(
KTK + αI

)
nβ
〉
−
〈
x,
(
KTK + βI

)
nα
〉

+
〈
x,CT

(
qβ − qα

)〉
.

On the one hand this implies

(α− β)
(
〈nβ,nβ〉 − 〈nα,nα〉

)
=
〈
x,
(
KTK + βI

)
nβ
〉

+ (α− β) 〈x,nβ〉 −
〈
x,
(
KTK + βI

)
nα
〉

+
〈
x,CT

(
qβ − qα

)〉
=
〈
x,
(
KTK + βI

)
x
〉

+ (α− β) 〈x,nβ〉+
〈
x,CT

(
qβ − qα

)〉
,

while on the other hand

(α− β)
(
〈nβ,nβ〉 − 〈nα,nα〉

)
=
〈
x,
(
KTK + αI

)
nβ
〉
−
〈
x,
(
KTK + αI

)
nα
〉
− (β − α) 〈x,nα〉+

〈
x,CT

(
qβ − qα

)〉
=
〈
x,
(
KTK + αI

)
x
〉

+ (α− β) 〈x,nα〉+
〈
x,CT

(
qβ − qα

)〉
holds. Adding these gives

2(α− β)
(
〈nβ,nβ〉 − 〈nα,nα〉

)
=
〈
x,
(
2KTK + (α+ β)I

)
x
〉

+ (α− β)
(
〈nβ,nβ〉 − 〈nα,nα〉

)
+ 2

〈
x,CT

(
qβ − qα

)〉
,

and finally we arrive at

(α− β)
(
〈nβ,nβ〉 − 〈nα,nα〉

)
=
〈
nβ − nα,

(
2KTK + (α+ β)I

)
(nβ − nα)

〉
+ 2

〈
C (nβ − nα) , qβ − qα

〉
.

(2.3.8)

8
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Now we consider the term
〈
C (nβ − nα) , qβ − qα

〉
. The following four cases can

occur:

i-th constraint

(Cnβ)i (Cnα)i
(Cnβ)i

(
qβ
)
i

(qα)i

(
qβ
)
i

for the Tikhonov
functional for − (Cnα)i − (qα)i
γ = β γ = α

active active = (b)i = (b)i = 0 ≥ 0 ≥ 0 void

inactive active < (b)i = (b)i < 0 = 0 ≥ 0 ≤ 0

active inactive = (b)i < (b)i > 0 ≥ 0 = 0 ≥ 0

inactive inactive < (b)i < (b)i void = 0 = 0 = 0

From this we see that all components of the vector

diag
(
C (nβ − nα)

) (
qβ − qα

)
are nonnegative, and so

〈
C (nβ − nα) , qβ − qα

〉
≥ 0. Under the assumption nα 6=

nβ we have x 6= 0, and since the matrix 2KTK + (α + β)I is positive definite we
finally conclude with (2.3.8) that

(α− β)
(
〈nβ,nβ〉 − 〈nα,nα〉

)
> 0,

which is equivalent to ‖nβ‖22 > ‖nα‖22.

We proceed then with

‖Knα−r‖22−‖Knβ−r‖22 =
〈
x,KTKx

〉
+2
〈
−x,KTKnβ −KTr + βnβ

〉
+2β 〈x,nβ〉

(2.3.9)
by using nα = nβ − x. The variational inequality for the Tikhonov functional for
γ = β yields

〈
−x,KTKnβ −KTr + βnβ

〉
≥ 0. Moreover we have

〈x,nβ〉 = 〈nβ − nα,nβ〉 ≥ ‖nβ‖22 − ‖nα‖2‖nβ‖2 > 0.

In summary we have shown ‖Knα − r‖22 > ‖Knβ − r‖22. �

Remark 2.3.2. From (2.3.9) follows that all nγ with ‖Knγ − r‖2 = τ for an
arbitrary but fixed τ must coincide. This means in other words that if the residual of
the regularized solutions “gets stuck” at some value τ , the solutions nγ are constant
for these values of γ. In the next section we derive conditions which prevent this
case.

2.3.2 Sufficient Conditions for Strict Monotonicity

In this section we derive sufficient conditions for nα 6= nβ for α > β, hence by
Lemma 2.3.1 for strict monotonicity. In particular we focus on constraints of the form
Cn ≥ 0 with C ∈ Rk×N and k ≤ N , i.e. on generalized nonnegativity constraints.
For this specific type of constraints we have that for the minimum norm solution
n∞ defined in (2.3.2) that n∞ ≡ 0 holds, which gives according to [13] the relation
‖Knα − r‖2 ≤ ‖r‖2 for all α ≥ 0.

9
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Theorem 2.3.3. Let nα be given by

nα := argmin
n ∈ RN

1
2‖Kn− r‖

2
2 + 1

2α‖n‖
2
2 s.t. −Cn ≤ 0, (2.3.10)

with C ∈ Rk×N having full row rank k ≤ N . If ‖Knα− r‖2 < ‖r‖2, or equivalently
nα 6= 0 for all α ∈ [0,∞) according to Lemma 2.3.1 and Remark 2.3.2, then we have
nα 6= nβ for all α > β.

Proof. Let α > β. Let Cα
act denote the submatrix of C with active constraints in

(2.3.10) for the regularization parameter α.

We first consider the caseCα
act 6= Cβ

act. We obtainC(nα−nβ) 6= 0, i.e. nα−nβ /∈
ker(C). This gives directly nα − nβ 6= 0.

Now we turn to the case Cα
act = Cβ

act. The first-order necessary conditions for a
minimizer in (2.3.10) are given by

KTKn−KTr + αn−CTqα = 0, (2.3.11)

where qα ≥ 0. Let us assume nα = nβ. Then taking the difference of (2.3.11) for
the parameters α and β yields

(α− β)nα −CT (qα − qβ) = 0. (2.3.12)

Let us first consider the subcase that none of the constraints is active. Then we
have qα = qβ = 0, which implies (α − β)nα = 0. This contradicts nα 6= 0, so we
must have nα 6= nβ. Now we turn to the subcase that at least one constraint is

active. Let qαact and qβact be the subvectors of qα and qβ corresponding to active
constraints. Then we can rewrite the last equation as

(α− β)nα −Cα
act

T (qαact − q
β
act) = 0,

where we remember that Cα
act is obtained from C by canceling its i-th row when

the constraint −(Cn)i ≤ 0 is inactive and thus (qα)i = (qβ)i = 0 holds. Our next
step is to multiply this equation from the left with Cα

act. By construction of Cα
act

we have Cα
actnα = 0 and therefore

− Cα
actC

α
act

T (qαact − q
β
act) = 0.

Since Cα
actC

α
act

T has full rank, this implies qαact = qβact and hence qα = qβ. Inserting
this finding back into (2.3.12) gives nα = 0, which contradicts our assumption
nα 6= 0 for all α ∈ [0,∞). Therefore we must also have nα 6= nβ in this subcase. �

2.4 The Discrepancy Principle

With the next Theorem we summarize our previous results.

Theorem 2.4.1. Let the conditions of Theorem 2.3.3 be fulfilled and let n∞ be
the minimum norm solution defined in (2.3.2). Define r0 := ‖Kn0 − r‖2 and
r∞ := ‖Kn∞ − r‖2. Then there exist for any τ from [r0, r∞) a unique γ from
[0,∞) such that ‖Knγ −r‖2 = τ . The residual grows strictly monotonically with γ.

10
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�

Remark 2.4.2. The discrepancy principle carries directly over to generalized Tikhonov
regularization, where the prior distribution is given by

pprior(n) ∝ exp(−1
2γn

TRn)IS(n),

where R is a positive definite regularization matrix and IS(n) is the indicator func-
tion of S = {n ∈ RN | −Cn ≤ 0}. Here we have to solve the quadratic programming
problem

min
n∈RN

1
2‖Kn− r‖

2
2 + 1

2γn
TRn s.t. −Cn ≤ 0.

Let R = UTU the Cholesky decomposition. Then the substitution n = U−1v
transforms the above quadratic programming problem into the standard form (2.3.1).

2.5 Convergence Analysis

At this point we review some classical convergence criteria for parameter-choice
strategies for Tikhonov regularization under linear constraints. With convergence
we mean that the regularized reconstructions approach the true solution of the noise-
free linear inverse problem as the noise level goes to 0. We decompose the noisy data
vector r into

r = Σσ
− 1

2 (etrue + δ)

with δ = (δ1, ..., δNl)
T , δi ∼ N (0, σ2

i ).

We carry out our convergence analysis under following assumption.

Assumption 2.5.1. The covariance matrix Σσ has the simple form

Σσ = δ2 · diag(σ2
1, ..., σ

2
Nl

) =: δ2 ·Σ,

where δ ≥ 0 is an arbitrary but fixed noise level and σ1, ..., σNl are fixed.

Now instead of maximizing the posterior probability (2.2.4) directly, we use the
fact that

exp(−1
2‖Σ

− 1
2 (KNn− (etrue + δ))‖22 − 1

2γδ
2‖n‖22)IS(n)

has the same maximizer. To obtain the function above we scaled the argument of
the exponential in (2.2.4) with the noise level δ2. For simpler notation we redefine
for all the following

K := Σ−
1
2KN , r := Σ−

1
2 (etrue + δ) and α = γδ2.

This means that we work with versions of Σσ
− 1

2 (etrue + δ) and Σσ
− 1

2KN where
the noise magnitude δ2 is scaled out. So instead of solving (2.3.1), we now solve

min
n∈RN

1
2‖Kn− r‖

2
2 + 1

2α‖n‖
2
2 s.t. Cn ≤ b. (2.5.1)

We have to point out that the back-scaled parameter γ = α/δ2 must be used
for the statistical computations for the posterior probabilities in Section 2.6. So we

11
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always compute the parameter α first from (2.5.1) and then obtain γ from it. We
can already see here that Bayesian model-selection computations are not feasible for
very small noise levels δ, since the parameter γ diverges as δ tends to 0. Another
reason for skipping the model selection step for δ approaching 0 is that the entries of
the covariance matrix Σσ get closer to 0 as well here, which causes problems in the
statistical computations which will follow in Section 2.6. We recommend to switch
to the classical discrepany principle in this case.

Now we present the standard convergence rate for Tikhonov regularization.

Proposition 2.5.2. If the noise-free true solution n0 is an element of the feasible
set of (2.3.1), then the regularized solutions nα of the noise-free problem satisfies

‖K(n0 − nα)‖2 = O(α
1
2 ) (2.5.2)

as α goes to 0. Thus limα→0nα = n0.

Proof. Rearranging (2.3.8) for β = 0 gives the error representation

‖K(n0 − nα)‖22 = 〈n0 − nα, αnα −CT (q0 − qα)〉.

Now since 〈n0 − nα,CT (q0 − qα)〉 ≥ 0 and ‖nα‖2 ≤ ‖n0‖2 hold, we can therefore
estimate

‖K(n0 − nα)‖22 ≤ α‖n0‖22
which gives the first result. The second assertion was proved in [13]. �

Proposition 2.5.3. Let r and r̃ be two different data vectors for (2.5.1) and let
nα and ñα be the corresponding regularized solutions of (2.5.1) for the parameter
α. Then

‖K(nα − ñα)‖2 ≤ ‖r − r̃‖2 and ‖nα − ñα‖2 ≤
‖r − r̃‖2
α

1
2

. (2.5.3)

Proof. We give the proof from [13]. The solutions nα and ñα fulfill the variational
inequalities

〈KTKnα −KTr + αnα, ñα − nα〉 ≥ 0

and 〈KTKñα −KT r̃ + αñα,nα − ñα〉 ≥ 0.

Adding them gives

‖K(ñα − nα)‖22 + α‖ñα − nα‖22 ≤ 〈r̃ − r,K(ñα − nα)〉
≤ ‖r̃ − r‖2‖K(ñα − nα)‖2,

and the desired results follow from the last inequality. �

Finally we show under which conditions the regularized solutions nδα of the noisy
problem (2.5.1) converge to the true solution n0 of the noise-free problem for δ → 0.
In preparation we note that for the weighted residual with noise level δ

‖Σσ
− 1

2δ‖22 ∼ χ2(Nl) thus E
(
‖Σ−

1
2δ‖22

)
= δ2 · E

(
‖Σσ

− 1
2δ‖22

)
= Nlδ

2 = O(δ2),

i.e. E
(
‖Σ−

1
2δ‖2

)
≤
(
E
(
‖Σ−

1
2δ‖22

)) 1
2

= O(δ).

We set rtrue := Σ−
1
2etrue. Then for the expected value we have

E(‖r − rtrue‖2) = E(‖Σ−
1
2δ‖2) = O(δ).
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Theorem 2.5.4. If we have E(‖r − rtrue‖2) = O(δ) and α(δ) has the properties

limδ→0 α(δ) = 0 and limδ→0
δ2

α(δ) = 0, then limδ→0 E
(
‖nδα(δ) − n0

∥∥
2
) = 0 holds.

Proof. We have

E
(
‖nδα(δ) − n0‖2

)
≤ E

(
‖nδα(δ) − nα(δ)‖2

)
+ E(‖nα(δ) − n0‖2),

where nα(δ) is the regularized solution for the noise-free data rtrue. Having E(‖r −
rtrue‖2) = O(δ), we can further estimate using Proposition 2.5.3

E
(
‖nδα(δ) − n0‖2

)
≤ E(‖nα(δ) − n0‖2) +

O(δ)

α
1
2

.

Then the result follows with Proposition 2.5.2. �

In the unconstrained case, as pointed out in [13], the standard convergence rate
from Proposition 2.5.2 can be improved to the rate o(αµ) under the assumption of
a so-called source condition

n0 = (K∗K)µv,

for some vector v and µ < 1
2 . This result was generalized to the constrained case in

[14]. More general source conditions of the form

n0 = g(K∗K)v,

where g : R→ R is a monotonic function, are studied in [15].
The parameter µ can be regarded as a measure of smoothness of the vector

n0. In practical applications however, it is not known. In [16] a parameter choice
strategy is derived, which does not need the exact knowledge of a source condition,
but it is assumed here that the residual obeys certain decay rates as the noise level
δ approaches zero.

Another important issue is the discretization of the operator equation (2.2.1).
The quality of the inversion results relies strongly on a proper choice of the model
space dimension N , for instance a too coarse discretization is inappropriate for the
reconstruction of an oscillatory and thus rather non-smooth function. This problem
treated in [17], where an adaptive parameter choice strategy based on estimates of
the approximation error ‖K∗K −K∗NKN‖ is introduced. Based on an idea from
[18], the regularization parameter α is selected from a geometric sequence α0q

i,
i = 1, ...,M here with α0 = δ2, q > 1 and qM−1α0 ≤ 1 < qMα0. Similar adaptive
methods were derived in [19] and [20]. These methods have still the drawback, that
the noise level δ must be known quite well. Therefore we derive in the next section an
adaptive method both for the model space and regularization parameter selection,
which is based on statistical considerations.

2.6 The Retrieval Method

Suppose we have discretized our linear operator with a Galerkin collocation method
on a set of m different grids. Each grid has Nk collocation points with N1 < ... <
Nm and we have computed a discrete approximation Kk to K for each grid. The
approximation nk of the sought-after function n lies in RNk . For each grid we apply
a Tikhonov prior with nonnegativity constraints on the observed model uncertainty
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such that we have according to the previously derived results a bijection between
attainable residuals and regularization parameters.

Because δ1, ..., δNl are normally distributed, it follows with Σσ
− 1

2Kknk = etrue
that

‖Σσ
− 1

2 (Kknk − (etrue + δ)) ‖22 ∼ χ2(Nl),

and thus E
(
‖Σσ

− 1
2 (Kknk − (etrue + δ)) ‖22

)
= Nl, ∀k ∈ {1, ...,m}.

2.6.1 Model Generation

In the literature on the discrepancy principle, e.g. in [21], the error estimate Nl is
multiplied with a factor τ near 1 which is known as Morozov’s safety parameter.
Now we interpret it here statistically as high-probability values of the observed
distribution of the weighted residual. Of course we do not select just one single value
for τ , instead we select a grid of Morozov safety parameters τ1, ..., τs. The following
example of the χ2(48) probability density functions illustrates this strategy:

residual values
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Figure 2.2: χ2(48) probability density function

It is indeed a unimodal distribution with residual values having a nonnegliglible
probability ranging from 30 to 70. For Nl = 48 this corresponds to values of τ rang-
ing from ca. 0.6 to ca. 1.5. Therefore proposing just a single residual value for the
discrepancy principle (1.1Nl would be a common choice) excludes many probable
reconstructions corresponding to other residual values, such that the posterior prob-
ability exploration is limited. Moreover the danger of under- or overregularization
would be high.

As in the previous section we use the normalized version Σ of the covariance
matrix Σσ. This means that we try to fit the normalized residuals

‖Σ−
1
2 (Kknk − (etrue + δ)) ‖22

to the values τNlδ
2 where the values for τ run through the grid of preselected

Morozov safety factors. In practice the noise magnitude δ2 is taken as the biggest
measurement sample mean and Σ is estimated from Σσ by normalizing it with the
estimate for δ2.

For the following we set ereal := (ẽ1, ..., ẽNl)
T , hence this is the vector of the

realizations of the random variables e1, ..., eNl . With these preparations the model
generation step proceeds as follows:

14
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Algorithm 1 Model Generation

1: MaxDisc = 3
2: SolutionSets = {}
3: ApproxSets = {}
4: PriorSets = {}
5: TauSets = {}
6: DiscCntr = 0
7: estimate σ2

1, ..., σ2
Nl

from the sample means approximating the standard devia-
tions of e1, ..., eNl .

8: δ2 := max
{
σ2

1, ..., σ
2
Nl

}
9: Σ := δ−2 · diag

(
σ2

1, ..., σ
2
Nl

)
10: for i = 1 to m do
11: Si = {}
12: Ai = {}
13: Pi = {}
14: Ti = {}
15: nlsqnng = argmin

n ∈ RNi

1
2‖Σ

− 1
2 (Kin− ereal)‖22 s.t. n ≥ 0

16: Rlsqnng = ‖Σ−
1
2 (Kinlsqnng − ereal)‖22

17: for j = 1 to s do

18: if Rlsqnng < τjNlδ
2 ∧ τjNlδ

2 < ‖Σ−
1
2ereal‖22 then

19: compute γij such that

20: ntrial = argmin
n ∈ RNi

1
2‖Σ

− 1
2 (Kin− ereal)‖22 + 1

2γijn
TRin s.t. n ≥ 0

21: with ‖Σ−
1
2 (Kintrial − ereal)‖22 = τjNlδ

2

22: end if
23: if ntrial exists then
24: Si = Si ∪ {ntrial}
25: Ai = Ai ∪ {Ki}
26: Pi = Pi ∪ {γijRi}
27: Ti = Ti ∪ {τj}
28: end if
29: end for
30: if Si, Ai, Pi and Ti not empty then
31: SolutionSets = SolutionSets ∪ {Si}
32: ApproxSets = ApproxSets ∪ {Ai}
33: PriorSets = PriorSets ∪ {Pi}
34: TauSets = TauSets ∪ {Ti}
35: DiscCntr = DiscCntr + 1
36: end if
37: if DiscCntr == MaxDisc then
38: break
39: end if
40: end for

The outer loop runs through the discretization levels beginning with the coars-
est one. This approach is in accordance with the principle of Occam’s razor, where

15
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among all possible explanations of a problem simpler ones are preferred over more
complicated ones. For a detailed explanation why Bayesian model selection imple-
ments Occam’s razor, cf. [22]. Another motivation is regularization by discretiza-
tion, which means that the approximate problems for the operator inversion are for
coarser discretizations less ill-conditioned than for finer discretizations. But by using
the discrepancy principle we ensure that the models selected are not too coarse by
demanding that the model has to fit the data, which means that the residuals may
not be too big. Convergence of the finite dimensional regularized approximations
to the solutions of a linear operator equation to its solution under quite general
assumptions was shown in [23].

For each i-th discretization level in the outer loop, the inner loop runs through the
preselected grid of Morozov safety factors, where for each factor τj the computation
of a regularized solution ntrial with residual τjNl is attempted. In line 18 it is
checked if the discrepancy principle is applicable. If it is possible to compute ntrial,
this reconstruction is stored in the container Si and the approximation Ki to K
in Ai. The prior information given by the regularization parameter γij and the
regularization matrix 1

2Ri are stored in Pi and the residual parameter τj in Ti.
These matrices will be used to compute the Bayesian posterior probabilities for the
model selection in the next section.

If in the current discretization level the containers with reconstructions, operator
approximation matrices, prior informations and residual parameters are not empty,
they are be added to the containers SolutionSets, ApproxSets, PriorSets and
TauSets respectively. Note that we have limited the maximal number of admissible
discretization levels to three. On the one hand this is done to save computational
effort, but on the other hand it turns out that the posterior probabilities get too
similar and thus not clearly or reliably distinguishable when using too many finely
discretized models.

2.6.2 Model Selection

In this section we apply the Bayesian model selection framework as introduced in
[24]. Since we assume that the data is given by independent Gaussian random
variables, the observed model uncertainty is a multivariate Gaussian distribution.
For any of the approximations Kk to the operator K with k ∈ {1, ...,m} it is given
by

p(e|n, Nk,Kk) = (2π)−
Nl
2

∣∣det(Σσ)
∣∣− 1

2 exp(−1
2(Kkn−e)TΣ−1

σ (Kkn−e)). (2.6.1)

Here the vector n ∈ RNk represents all possible reconstructions for the current
discretization.

We know beforehand that our reconstruction must be nonnegative and that it is
smooth. We put this prior knowledge into our reconstruction method by setting up
the Bayesian conditional prior probability which is determined by

p(n|Nk,Kk,Rk, γkj) = C−1
kj exp(−1

2γkjn
TRkn)I≥0(n), (2.6.2)

where I≥0(n) is the indicator function of the first quadrant of RNk , Rk is the regu-
larization matrix and γkj is the regularization parameter. All these quantities were
computed and stored in the model generation procedure in the previous section.

16
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If Rk is regular and positive definite, the normalizing constant

Ckj =

∫
[0,∞)Nk

exp(−1
2γkjn

TRkn)dn (2.6.3)

is well-defined. For Tikhonov regularization, where Rk = INk holds, we have a
closed form expression for it, namely

Ckj =

(
π

2γkj

)Nk
2

.

In minimal first differences regularization with zero boundary conditions the
regularization matrix is given by

Rk = HT
kHk with Hk =


−1
1 −1

. . .
. . .

1 −1
1

 .

For Twomey regularization with eliminated zero boundary conditions we have

Rk = HT
kHk with Hk =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

Here Rk is a positive definite tridiagonal matrix. For the latter two regularization
methods Ckj must be computed numerically.

Remember that the container SolutionSets stores reconstructions from at most
3 discretization levels. We let the index i run through all discretization levels in
SolutionSets and the index j through all residual parameters captured in the i-th
level. Then with Bayes’ rule the posterior model probabilities are

p(Nk, γkt|e) =
p(e|Nk, γkt)p(Nk, γkt)∑
i

∑
j p(e|Ni, γij)p(Ni, γij)

where with (2.6.1)-(2.6.3) we have

p(e|Ni, γij)

=

∫
RNi

p(e,n|Ni, γij)dn

=

∫
RNi

p(e|n, Ni)p(n|Ni, γij)dn

=

∫
[0,∞)Ni

B−1C−1
ij exp(−1

2

∥∥Σ− 1
2

σ (Kin− e)
∥∥2

2
− 1

2γijn
TRin)dn,

(2.6.4)

where

B = (2π)
Nl
2

∣∣det(Σσ)
∣∣ 12
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and Cij =

∫
[0,∞)Ni

exp(−1
2γijn

TRin)dn.

We assumed that the model matrix Ki and the regularization matrix Ri were im-
plicitly given by each discretization level Ni, i.e. we actually have p(e|Ni, γij) =
p(e|Ni,Ki,Ri, γij). For simplicity of notation these were omitted. Note that the
prior model probabilities p(Ni, γij) are still free.

For the computation of the above integrals of multivariate Gaussian densities over
the first quadrant of each model space RNi we applied an effective pseudo-random
integration method described in [25] which implements the routines presented in [26]
and [27].

We now turn to the prior model probabilities p(Ni, γij). As mentioned in the
beginning of Section 2.3 we assume that a γmin > 0 and a γmax <∞ exist which give
a lower and an upper bound for the regularization parameters γ in order to exclude
improper or point-mass priors for the cases γ = 0 or γ = ∞. This assumption is
independent of the discretization level. We further assume the discretization level
to be independent and uniformly distributed. Thus we are taking a noninformative
prior, and so the prior model probabilities cancel out and do not affect the posterior
probabilities.

Now everything is prepared to perform the model selection. To compute integrals
of the form ∫

[0,∞)N
exp(−1

2(nTHn− 2nTv + q))dn,

where N is the dimension of the square matrix H, we apply the method from [25].
It actually can only evaluate intgrals of the form

1√
det(W )(2π)N

∫ b1

a1

...

∫ bN

aN

exp(−1
2n

TW−1n)dn,

where the cases ai = −∞ and bi =∞ are allowed. So we have to perform a simple
affine transformation using the Cholesky factorization H = UTU :

∫
[0,∞)N

exp(−1
2(nTHn− 2nTv + q))dn

=

(
exp(−1

2(q − vTH−1v))
√

det(H−1)(2π)N
)

· 1√
det(H−1)(2π)N

∫{
z∈RN | z ≥ −H−1v

} exp(−1
2z

THz)dz.

The model selection algorithm is as follows.
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Algorithm 2 Model Selection

1: get S1, ..., SMaxDisc from SolutionSets
2: get A1, ..., AMaxDisc from ApproxSets
3: get P1, ..., PMaxDisc from PriorSets
4: get T1, ..., TMaxDisc from TauSets

5: m1 = |S1|, ...,mMaxDisc = |SMaxDisc|
6: mtotal =

∑MaxDisc
k=1 mk

7: B = (2π)
Nl
2

∣∣det(Σσ)
∣∣ 12

8: Ppost = {}
9: for i = 1 to MaxDisc do

10: for j = 1 to mi do
11: Kij = Ai(j)

12: Rij = 1
δ2
Pi(j)

13: Cij =

∫
[0,∞)Ni

exp(−1
2n

TRijn)dn

14: Mij =

∫
[0,∞)Ni

exp(−1
2

∥∥Σ− 1
2

σ (Kijn− ereal)
∥∥2

2
− 1

2n
2Rijn)dn

15: Ppost = Ppost ∪
{
Mij/(B · Cij)

}
16: end for
17: end for

18: SumPpost =
∑mtotal

k=1 Ppost(k)

19: for i = 1 to MaxDisc do
20: Ppost(i) = Ppost(i)/SumPpost
21: end for
22: Stotal = S1 ∪ ... ∪ SMaxDisc

23: sort Stotal(1), ..., Stotal(mtotal) according to Ppost(1), ..., Ppost(mtotal)

In the first lines of the model-selection algorithm the containers for computed
reconstructions, operator approximation matrices, prior matrices and residual pa-
rameters are loaded for each examined discretization level. They store the results
of the model-generation algorithm from Section 2.6. In the case of too noisy or im-
proper data it might happen that in the model generation step none of the models
can fit the data. Then all containers are empty and the model selection algorithm
has to be aborted. For simplicity we assume that the model-generation step was
successful.

The double loop in lines 7-17 performs the multidimensional integrations needed
in (2.6.3) and (2.6.4). In line 15 these integrals are used for the unnormalized pos-
terior probabilities p(Ni, γij |e) from (2.6.4). Note that the prior model probabilities
p(Ni, γij) do not appear in the algorithm, since they are selected to be uniform
and thus cancel out in the normalizing step performed in lines 18 - 14. At last all
reconstructions are sorted according to their posterior probabilities.

We have to be careful not to forget to normalize the regularization matrices Pi(j)
with the estimated noise level δ2 as in line 12 because all statistical computations
have to be carried out using the unnormalized covariance matrix Σσ. For very
small noise levels we recommend to skip the model selection step completely due to
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instabilities in the statistical computations mentioned above. It is sufficient to use
only the coarsest model generated with the commonly used value τ = 1.1 in this
case.
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Chapter 3

Numerical Results

3.1 Simulation of Aerosol Spectroscopy Measurements

We applied our algorithm to a simplified version of problem (2.1.2), where we as-
sumed that we know the minimal and maximal particle radii rmin and rmax. This
led to the integral equation ∫ rmax

rmin

k(r, l)n(r)dr = e(l). (3.1.1)

For the kernel function k(r, l) from Mie theory we selected H2O as the material for
the scattering particles and air for the medium.

In our simulations we assumed rmin = 0.01 µm and rmax = 7.0 µm. In practice
the extinction function can only be measured for a finite number of light wavelengths
l1, ..., lNl . In our simulations we used the grid of 48 wavelengths composed of 8
linearly spaced wavelengths from 0.6 − 0.8 µm, 8 from 1.1 − 1.3 µm, 8 from 1.6 −
1.8 µm, 16 from 2.1−2.5 µm and 8 from 3.1−3.3 µm. These five intervals were chosen
to exclude wavelengths where light absorption by ambient water can occur which
distorts the measured extinctions e(l) heavily. That is, the selected wavelengths
cover the so-called optical window which is free from this unwanted physical effect.

We generated artificial extinction values e(li) for the selected l1, ..., lNl by solving
the forward problem, which means inserting an original ‘true’ size distributions n(r)
into the integral equation (3.1.1). To avoid the inverse crime we used a very fine
grid with 10001 points and the composite Simpson rule to compute the resulting
integrals.

We performed three simulation runs consiting of 1000 single inversions for each of
the three size distribution families for different noise levels. For each single inversion
we generated a set of 300 noisy extinctions from the artificial true extinction values
by adding zero-mean Gaussian noise where the standard deviations were taken to
be 5%, 15% and 30% respectively of the true extinction values e(li). This means
that a vector e of noisy extinctions for each single simulated measurement in the
first simulation run was modeled as

(e)i = e(li) + δi with δi ∼ N (0, (0.05 · e(li))2), i = 1, ..., Nl.

For the other two simulation runs we computed

(e)i = e(li) + δi with δi ∼ N (0, (0.15 · e(li))2), i = 1, ..., Nl
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and
(e)i = e(li) + δi with δi ∼ N (0, (0.3 · e(li))2), i = 1, ..., Nl.

respectively. We used the sample means and variances of these 300 artificial noisy
extinctions to do inferences about the simulated Gaussian noise.

For the discretization of (3.1.1) we used a Galerkin collocation method with linear
basis functions on an integration grid with Nr = 300 equidistant points. Alternative
discretization methods include Legendre basis polynomials (see [28]) and Bernstein
polynomials (see [29]), but are rather seldom used. We generated our model spaces
by selecting collocation grids as near equidistant subgrids of the integration grid
where the number of grid points Ncol ranged from 3 (coarsest discretization level)
to 50 (finest discretization level). For the collocation grids we set up linearly spaced
‘pre-collocation grids’ with Ncol points first and then performed a nearest-neighbor-
fitting of their points to the integration grid, such that they became subgrids. Since
we are considering size distributions which attain small values at the minimal and
maximal radii, we assumed zero boundary conditions. This effectively reduced the
number of unknowns N in each model space from N = 3, ..., 50 to N = 1, ..., 48 and—
more importantly—prevented the reconstructed size distributions from sheering out
at the smallest radius value, which would have been a not reasonable behavior,
physically speaking. It was important that the dimension N of each model space
never succeeded the number of measurements Nl = 48, such that the resulting
regression problems were fully or overdetermined.

Let r1, ..., rNr denote the integration grid points. Let {r1 = c1 < ... < cNcol =
rNr} ⊂ {r1, ..., rNr} be a collocation grid. The triangular basis funktions bk(r), k =
1, ..., Ncol are the piecewise linear functions on the intervals [c1, c2], ..., [cNcol−1, cNcol ]
which fulfill

bk(cj) = δkj , for j = 1, ..., Ncol.

We approximated the sought-after function n(r) with the linear combination

n(r) =

Ncol∑
k=1

nkbk(r), (3.1.2)

where the weights n2, ..., nNcol−1 ∈ R are free variables and n1 = nNcol = 0 holds
because of the zero boundary conditions.

Inserting (3.1.2) into (3.1.1) yields the linear system of equations for the unknown
weights

Ncol∑
k=1

nk

∫ rmax

rmin

k(r, li)bk(r)dr = e(li), i = 1, ..., Nl. (3.1.3)

We applied the composite trapezoidal rule with the integration grid r1, ..., rNr on the
integrals defining the coefficients in above linear system. The resulting coefficient
matrix is the matrix KN from Section 2.6 which approximates the integral operator
from the left-hand side of (3.1.1).

3.2 Numerical Study

We performed a numerical study for our reconstruction algorithm with model size
distributions from the log-normal, Rosin-Rammler-Sperling-Bennett (RRSB) and
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Hedrih families, where each of these size distribution families has certain free pa-
rameters. We varied the parameters in domains giving physically reasonable size
distributions and generated noise in the same order of magnitude as observed in real
experimental FASP measurements. Therefore the numerical results should give good
estimates of the quality of the reconstructions compared to real size distributions.
In the same simulation runs we compared our algorithm with existing reconstruction
methods.

3.2.1 Applied Methods

For all inversion methods applied in our numerical study we selected for the priors
Tikhonov, minimal first differences and Phillips-Twomey regularization from Section
2.6.2.

In our inversion method we set the Morozov safety factor grid to

τ1 = 0.6, τ2 = 0.7, ..., τ12 = 1.7.

We refer to this as the constrained method in the following.
To see that the constraints in the constrained method are worth the compu-

tational effort, we compared it with its counterpart without constraints, which we
call the unconstrained method. It performs the same model generation step based
on the discrepancy principle with the same Morozov safety factors grid, but the
constraints in (2.3.1) were dropped. The computations for the model selection are
much easier here, since the integrals of the multivariate Gaussian distributions over
the parameter spaces can be evaluated analytically.

By reducing the grid of Morozov safety factors in the constrained method simply
to the classical value τ = 1.1 we obtained another method participating in our
numerical study. We call it the Morozov method. The comparison with it shows
whether the grid of Morozov safety factors is justified or not.

We also implemented a classical model-selection method for the unconstrained
problem which is independent of the prior. Here we compared the three coarsest
models where the discrepancy principle was applicable with the Bayesian Informa-
tion Criterion (BIC), which was first introduced in [30]. The model with the lowest
BIC-value

−2
(
− 1

2Nl log(2π)− 1
2 log(det(Σσ))− 1

2‖Σ
− 1

2
σ (KNnml − e)‖22

)
+N log(Nl),

where nml is the unconstrained maximum-likelihood solution, is selected here. We
call this method the BIC method.

3.2.2 Model Size Distributions

We generated the simulated measurement data vectors etrue by inserting one of the
following three model size distributions adopted from [31] into our integral equation
(3.1.1):

1. log-normal distribution

n(r) =
A√

2πσr
exp

(
− 1

2σ2

(
log(r)− log(µ)

)2)
(3.2.1)

with amplitude A, standard deviation σ, and mean µ.
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2. Rosin-Rammler-Sperling-Bennet (RRSB) distribution

n(r) =
AN

ν

( r
ν

)N−1
exp

(
−
( r
ν

)N )
(3.2.2)

with amplitude A, exponent N , and mean ν.

3. Hedrih distribution

n(r) =
128Ar3

3η4
exp

(
− 4r

η

)
(3.2.3)

with amplitude A and mean µ.

For each simulated size distribution we set the amplitude to A = 104. We choose
the remaining parameters so that the relation

n(rmax) ≤ Tol (3.2.4)

with rmax = 7.0 µm and Tol = 10 was satisfied. This is to be consistent with the
assumption, that we can neglect the tails of the distributions and truncate them
at the maximal radius rmax. Furthermore we assumed the modal value of the log-
normal and RRSB distributions to be greater or equal to 1.0 µm in order to exclude
too peaked distributions. For each of the above three model size distributions we
looped in our simulations through a set of 100 possible parameters satisfying (3.2.4).

For the log-normal distributions we first selected for the mean σ a linearly spaced
grid with ten points ranging from 0.2 to 0.5, i.e. σk = 0.2 + 0.3k−1

9 , k = 1, ..., 10.
Then we saw after a lengthy calculation that (3.2.4) is equivalent to

rmax exp

(
−
(
− 2σ2 log

(√
2πrmaxσTol

A

)) 1
2
)
≥ µ.

The modal value of the log-normal distribution is rmod = exp
(

log(µ) − σ2
)
, so

rmod ≥ 1.0 is equivalent to µ ≥ 1.0 exp
(
σ2
)
. Using the last two inequalities we

selected

µkj = 1.0 exp
(
σ2
k

)
+
j − 1

9

(
vk − 1.0 exp

(
σ2
k

))
with vk = rmax exp

(
−
(
− 2σ2

k log

(√
2πrmaxσkTol

A

)) 1
2
)
,

k = 1, ..., 10, j = 1, ..., 10.

These are the 100 parameters used for the log-normal distributions.
For the RRSB distributions we took for the exponents N the integer values

Nk = k+ 2, k = 1, ..., 10. We computed the auxiliary variables pk as the real-valued
solutions of the equations

pk exp(−pk) =
rmaxTol

ANk

being greater than one. With some algebra one can see that

ν ≤ rmax · p
− 1
Nk

k
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is then equivalent to (3.2.4) for the RRSB distribution. The modal value of the

RRSB distribution is rmod = ν
(
N−1
N

) 1
N , therefore rmod ≥ 1.0 is equivalent to ν ≥

1.0 ·
(
N−1
N

)− 1
N . Using the last two inequalities we selected

νkj = 1.0 ·
(
Nk − 1

Nk

)− 1
Nk

+
j − 1

9

(
rmax · p

− 1
Nk

k − 1.0 ·
(
Nk − 1

Nk

)− 1
Nk

)
,

k = 1, ..., 10, j = 1, ..., 10.

Thus we have 100 parameters for the RRSB distributions.
For the Hedrih distribution we found that (3.2.4) is equivalent to η ≤ ηmax with

ηmax ≈ 2.0566. Thus we took for η the values

ηk = 0.8 +
k − 1

99
(ηmax − 0.8) , k = 1, ..., 100.

For each of the three size distribution classes we simulated ten artificial noisy
measurement-data vetors e as described in Section 3.1 for each of the corresponding
100 parameters. This resulted in total in 1000 single simulated FASP experiments
for one model size distribution class.

For every inversion we computed the L2-error of the obtained reconstruction
relative to the original size distribution and measured the total run time needed for
the inversion. The computations were performed on a notebook with a 2.27 GHz
CPU and 3.87 GB accessible primary memory.

3.2.3 Average L2-Errors

Results for 5% Noise

Log-Normal Distribution

method

average L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 11.8763 11.9621 12.3108

Morozov 12.6919 13.2348 13.9335

unconstrained 16.1952 20.0564 21.9649

BIC 32.3190 34.3861 35.6112

RRSB Distribution

method

average L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 9.9690 8.9646 8.5195

Morozov 11.9921 11.7512 11.4955

unconstrained 18.1053 20.1539 22.0244

BIC 38.1494 39.1321 40.5063
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Hedrih Distribution

method

average L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 12.0214 12.0852 12.1321

Morozov 13.2794 12.4251 12.6591

unconstrained 11.2122 11.0906 10.9498

BIC 16.0117 15.2573 15.2073

Results for 15% Noise

Log-Normal Distribution

method

average L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 17.3371 17.1004 17.6913

Morozov 25.7848 26.0661 27.3864

unconstrained 23.0265 26.7038 29.7148

BIC 33.0129 35.1238 37.1033

RRSB Distribution

method

average L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 14.3285 12.9690 12.7290

Morozov 18.1593 17.6314 17.9012

unconstrained 23.7878 26.7608 30.5864

BIC 41.7431 43.9701 47.3254

Hedrih Distribution

method

average L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 11.9472 11.7113 11.5986

Morozov 16.5099 15.0745 14.4839

unconstrained 20.8872 20.7861 20.8880

BIC 28.0989 27.4491 27.3066
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Results for 30% Noise

Log-Normal Distribution

method

average L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 21.1133 21.4006 22.1933

Morozov 29.1050 29.2021 30.7157

unconstrained 31.2302 34.0586 37.5831

BIC 56.3298 58.9926 62.5693

RRSB Distribution

method

average L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 17.2089 16.4395 16.5887

Morozov 23.8178 23.1906 23.5631

unconstrained 29.1748 33.2577 37.6546

BIC 79.9881 82.1931 85.5154

Hedrih Distribution

method

average L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 14.7340 14.6443 14.4238

Morozov 25.4313 23.7145 22.8068

unconstrained 36.9309 36.8277 36.9877

BIC 41.5024 40.7930 40.4949
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3.2.4 Average Run Times

Results for 5% Noise

Log-Normal Distribution

method

average run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 3.2192 3.2690 3.2746

Morozov 0.6947 0.7047 0.7076

unconstrained 0.2884 0.2812 0.2814

BIC 0.0614 0.0596 0.0596

RRSB Distribution

method

average run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 5.5637 5.6545 5.6046

Morozov 1.0963 1.1128 1.1019

unconstrained 0.3445 0.3405 0.3402

BIC 0.0747 0.0754 0.0741

Hedrih Distribution

method

average run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 2.4919 2.5088 2.5231

Morozov 0.7259 0.7287 0.7317

unconstrained 0.2740 0.2680 0.2688

BIC 0.0644 0.0634 0.0614
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Results for 15% Noise

Log-Normal Distribution

method

average run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 2.5520 2.5825 2.5803

Morozov 0.6174 0.6267 0.6283

unconstrained 0.2854 0.2793 0.2791

BIC 0.0579 0.0594 0.0570

RRSB Distribution

method

average run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 4.2281 4.2824 4.2545

Morozov 0.9406 0.9510 0.9428

unconstrained 0.3297 0.3229 0.3233

BIC 0.0716 0.0719 0.0696

Hedrih Distribution

method

average run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 2.7098 2.7091 2.7207

Morozov 0.6011 0.6043 0.6066

unconstrained 0.3353 0.3290 0.3291

BIC 0.0631 0.0634 0.0624
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Results for 30% Noise

Log-Normal Distribution

method

average run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 1.4135 1.4187 1.4061

Morozov 0.3552 0.3607 0.3594

unconstrained 0.1831 0.1771 0.1772

BIC 0.0399 0.0399 0.0389

RRSB Distribution

method

average run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 2.3742 2.4065 2.3756

Morozov 0.5312 0.5385 0.5337

unconstrained 0.2061 0.1990 0.2003

BIC 0.0453 0.0456 0.0442

Hedrih Distribution

method

average run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 1.8456 1.8404 1.8187

Morozov 0.3689 0.3734 0.3712

unconstrained 0.2215 0.2182 0.2183

BIC 0.0366 0.0366 0.0355
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3.2.5 Average Model Space Dimensions

Results for 5% Noise

Log-Normal Distribution

method

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

constrained 10.0640 10.1820 10.0870

Morozov 11.7670 11.8700 11.8290

unconstrained 8.4030 8.7550 8.9030

BIC 10.3480 10.3480 10.3480

RRSB Distribution

method

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

constrained 13.8260 13.8380 13.8850

Morozov 15.2820 15.3260 15.3040

unconstrained 12.6050 13.2180 13.2140

BIC 11.8800 11.8800 11.8800

Hedrih Distribution

method

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

constrained 8.4470 8.4640 8.5260

Morozov 10.2560 10.2500 10.2800

unconstrained 6.7190 6.8320 7.0430

BIC 9.2290 9.2290 9.2290
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Results for 15% Noise

Log-Normal Distribution

method

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

constrained 7.7360 7.7330 7.6800

Morozov 9.7380 9.6910 9.6450

unconstrained 6.3660 6.5220 6.5390

BIC 8.0330 8.0330 8.0330

RRSB Distribution

method

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

constrained 11.4150 11.3050 11.2430

Morozov 12.9790 12.9130 12.8390

unconstrained 10.2130 10.8250 10.7910

BIC 9.7990 9.7990 9.7990

Hedrih Distribution

method

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

constrained 6.4520 6.5130 6.5450

Morozov 8.0920 8.0720 8.0910

unconstrained 5.3050 5.3250 5.3400

BIC 7.7890 7.7890 7.7890
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Results for 30% Noise

Log-Normal Distribution

method

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

constrained 6.5100 6.4480 6.4090

Morozov 8.4620 8.3670 8.3520

unconstrained 5.2170 5.3040 5.3630

BIC 7.2400 7.2400 7.2400

RRSB Distribution

method

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

constrained 10.1140 9.9110 9.7500

Morozov 11.3290 11.2280 11.1740

unconstrained 8.7600 9.5200 9.3600

BIC 8.6240 8.6240 8.6240

Hedrih Distribution

method

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

constrained 5.9610 5.9730 5.9980

Morozov 7.4950 7.4850 7.4510

unconstrained 4.7750 4.7880 4.8140

BIC 7.2950 7.2950 7.2950

3.2.6 Extreme Cases

If the relative error of the reconstruction (compared with the original size distribu-
tion) is equal or even greater than 100 percent, we regard the inversion as failed.
Note that the inversion methods returned n ≡ 0 by default if none of the kernel
matrices in any of the model spaces would yield a reconstruction. Now we list how
many times the inversion methods failed in our test runs. To see how trustworthy
the results are we present the worst case L2 errors as well. Finally we display the
worst case run times.
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Results for 5% Noise

Log-Normal Distribution

method

number of L2-errors ≥ 100 % (out of 1000)

Tikhonov
min. first

Twomey
fin. diff.

constrained 0 0 0

Morozov 5 5 5

unconstrained 0 0 0

BIC 13 13 13

RRSB Distribution

method

number of L2-errors ≥ 100 % (out of 1000)

Tikhonov
min. first

Twomey
fin. diff.

constrained 0 0 0

Morozov 28 28 28

unconstrained 0 0 0

BIC 20 21 22

Hedrih Distribution

method

number of L2-errors ≥ 100 % (out of 1000)

Tikhonov
min. first

Twomey
fin. diff.

constrained 0 0 0

Morozov 3 3 3

unconstrained 0 0 0

BIC 5 5 5
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Results for 15% Noise

Log-Normal Distribution

method

number of L2-errors ≥ 100 % (out of 1000)

Tikhonov
min. first

Twomey
fin. diff.

constrained 0 0 0

Morozov 11 11 11

unconstrained 0 0 0

BIC 12 12 12

RRSB Distribution

method

number of L2-errors ≥ 100 % (out of 1000)

Tikhonov
min. first

Twomey
fin. diff.

constrained 0 0 0

Morozov 41 41 42

unconstrained 0 0 0

BIC 22 22 23

Hedrih Distribution

method

number of L2-errors ≥ 100 % (out of 1000)

Tikhonov
min. first

Twomey
fin. diff.

constrained 0 0 0

Morozov 14 14 14

unconstrained 0 0 0

BIC 9 9 9
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Results for 30% Noise

3.2.7 Reconstruction Failures

Log-Normal Distribution

method

number of L2-errors ≥ 100 % (out of 1000)

Tikhonov
min. first

Twomey
fin. diff.

constrained 0 0 0

Morozov 31 31 33

unconstrained 0 0 0

BIC 13 15 15

RRSB Distribution

method

number of L2-errors ≥ 100 % (out of 1000)

Tikhonov
min. first

Twomey
fin. diff.

constrained 3 2 1

Morozov 59 60 61

unconstrained 0 0 0

BIC 37 39 39

Hedrih Distribution

method

number of L2-errors ≥ 100 % (out of 1000)

Tikhonov
min. first

Twomey
fin. diff.

constrained 0 0 0

Morozov 25 25 27

unconstrained 0 0 0

BIC 14 14 16
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3.2.8 Worst Case Reconstruction Errors

Results for 5% Noise

Log-Normal Distribution

method

worst case L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 26.9719 26.4728 26.4760

Morozov 100 100 100

unconstrained 42.2197 47.5723 46.9064

BIC 7.9063 · 103 7.9198 · 103 7.9401 · 103

RRSB Distribution

method

worst case L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 62.2097 42.7859 43.4484

Morozov 106.5653 117.9899 131.8554

unconstrained 67.2122 76.6402 77.1507

BIC 7.1217 · 103 7.4831 · 103 7.9567 · 103

Hedrih Distribution

method

worst case L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 19.6190 19.6144 19.6157

Morozov 174.6250 174.6358 174.6417

unconstrained 29.3923 21.0755 17.9936

BIC 2.0139 · 103 2.0153 · 103 2.0172 · 103
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Results for 15% Noise

Log-Normal Distribution

method

worst case L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 49.4987 49.4428 49.4388

Morozov 6.0234 · 103 6.0240 · 103 6.0249 · 103

unconstrained 65.9515 61.5108 60.4107

BIC 4.6867 · 103 4.6868 · 103 4.6872 · 103

RRSB Distribution

method

worst case L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 70.1768 63.5123 64.0486

Morozov 184.4034 201.3391 255.3595

unconstrained 80.7321 80.6531 82.7335

BIC 6.3531 · 103 6.3536 · 103 6.3542 · 103

Hedrih Distribution

method

worst case L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 30.8181 29.8020 29.7911

Morozov 100.0000 100.0000 100.0000

unconstrained 34.3466 34.2846 34.2059

BIC 4.8311 · 103 4.9191 · 103 5.0158 · 103
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Results for 30% Noise

Log-Normal Distribution

method

worst case L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 80.2893 48.4626 48.4429

Morozov 2.3420 · 103 2.3491 · 103 2.3542 · 103

unconstrained 70.5992 64.1337 66.8937

BIC 7.1044 · 103 7.2810 · 103 7.5079 · 103

RRSB Distribution

method

worst case L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 131.5244 131.5263 104.9113

Morozov 182.0357 197.1594 252.0434

unconstrained 84.6883 81.1661 82.4180

BIC 2.9711 · 104 2.9806 · 104 2.9932 · 104

Hedrih Distribution

method

worst case L2-errors (%)

Tikhonov
min. first

Twomey
fin. diff.

constrained 39.7993 37.6784 37.6685

Morozov 100.0000 100.0000 115.0592

unconstrained 57.7572 57.7192 57.6711

BIC 5.0893 · 103 5.0995 · 103 5.1149 · 103
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3.2.9 Worst Case Run Times

Results for 5% Noise

Log-Normal Distribution

method

worst case run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 12.0411 12.4570 12.5885

Morozov 4.5225 4.5381 4.5857

unconstrained 0.5769 0.5995 0.5856

BIC 0.1389 0.1142 0.1320

RRSB Distribution

method

worst case run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 25.6129 26.2979 27.2205

Morozov 3.7168 3.7758 3.8567

unconstrained 0.6483 0.6258 0.5978

BIC 0.1252 0.1320 0.1388

Hedrih Distribution

method

worst case run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 8.1922 8.6590 9.3658

Morozov 4.3966 4.4999 4.6788

unconstrained 1.2404 0.9995 1.0106

BIC 0.1964 0.1286 0.1162
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Results for 15% Noise

Log-Normal Distribution

method

worst case run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 7.4443 7.6258 7.8005

Morozov 4.6163 4.1752 4.3086

unconstrained 0.5563 0.5765 0.5585

BIC 0.1068 0.1120 0.1706

RRSB Distribution

method

worst case run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 25.2151 23.6935 23.0974

Morozov 3.9076 4.0044 3.9774

unconstrained 0.9480 0.8766 0.7568

BIC 0.1198 0.1299 0.1376

Hedrih Distribution

method

worst case run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 13.3920 10.5595 8.7664

Morozov 3.9038 4.0082 4.0133

unconstrained 0.8075 0.6807 0.7742

BIC 0.1068 0.1137 0.1263
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Results for 30% Noise

Log-Normal Distribution

method

worst case run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 5.4749 5.6907 5.6535

Morozov 3.6386 3.7187 3.7566

unconstrained 0.6710 0.6553 0.6529

BIC 0.2008 0.3046 0.1433

RRSB Distribution

method

worst case run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 13.4702 14.9904 13.6324

Morozov 3.3278 3.4159 3.3878

unconstrained 0.8178 0.5565 0.7891

BIC 0.1130 0.1187 0.1710

Hedrih Distribution

method

worst case run times (s)

Tikhonov
min. first

Twomey
fin. diff.

constrained 6.3211 5.9184 6.6355

Morozov 6.4399 6.6852 6.1017

unconstrained 0.7770 0.7160 0.8296

BIC 0.1284 0.0960 0.1195

3.3 Conclusion

The constrained method had the smallest average L2-errors and close to zero failure
rates. Only for the RRSB distributions at 30% noise were three, two, and one
failures out of 1000 inversions recorded for the different priors, respectively. The
overall worst case reconstruction error of 131.5263% was only moderately above
100%. It needed the longest run times from all methods, but even the overall worst
case run time of 27.2205 seconds was below our thirty-second requirement. The
difference of the average L2-errors depending on the three priors we applied was not
very prominent. For the constrained method the differences were at most ca. 2%,
where none of the priors could be determined as the best performing one. For the
other inversion methods the L2-errors behave similarly depending on the priors, but
here the differences were more prominent, but always below 6%. A common trend

42



Numerical Results

was that these differences rose for higher noise levels. From our observations, none
of the three priors we used could be identified clearly as that one giving the best
regularization.

For the Morozov method the average L2-errors were for each noise level higher
than those of the constrained method. The differences were growing for higher noise
levels. For 5% noise they were in the 1 to 2% range, for 15% in the 4 to 10%
range and for 30% in the 6 to 11% range. For each noise level, the average run
times represented only about one fifth of those of the constrained method. However,
for each noise level the numbers of failures was significantly higher. Especially for
RRSB distributions this was up to 3, 4 and 6% respectively. The overall worst case
L2-error of 6.0249 · 103% was clearly higher than 100%.

The run times of the unconstrained method were always one third to one half of
the Morozov method run times. The unconstrained method did not show any recon-
struction failures at all. The overall worst case L2-error was a relatively moderate
84.6883%, but the average L2-errors were always bigger than the Morozov method
L2-errors reaching 2 to 14% for 30% noise and already 1.5 to 3 times as big as the
constrained method L2-errors.

The BIC method was by far the fastest one with run times of only a few hun-
dredths of a second, but the average L2 errors growing from ca. 15 to 40% for 5%
noise to ca. 40 to 80% for 30% noise were rather poor. The overall worst case
L2-error was even 2.9932 · 104%.

For every inversion method the average model space dimension was declining for
growing noise levels, which is reflected by the higher average run times for smaller
noise levels.

For practical FASP experiments we conclude that the constrained method per-
formed best, because its average L2-errors were smallest, had virtually no failures,
and clearly satisfied our thirty-seconds run-time limit even in the worst cases. It
showed the best convergence behavior for descending noise levels as well.
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Chapter 4

Markov Chain Monte Carlo
Methods

4.1 Hyperprior Distributions

An alternative to the discrepancy principle for determining the regularization pa-
rameter γ are hyperprior distributions. As outlined in [21] the problem of selecting
the regularization parameter is made here a part of the inference problem. We re-
call that using the discrepancy principle γ is obtained from fitting the residual of
the regularized solution to an estimate of the noise magnitude. This approach fully
determines γ such that it is regarded as given for the subsequent retrieval of the
sought-after entity n then. This means that γ is implicitly given as a function of
the noisy data e. In the hyperprior approach instead the regularization parameter
γ and n are retrieved simultaneously. This is done by considering the posterior
densitiy to be of the form pposterior(γ,n|e). Now the actual hyperprior is a density
phyperprior(γ) for the regularization parameter, which is believed to be a reasonable
model for it. It is important to note that in contrast to the discrepancy principle
the hyperprior distrubution is independent from the noisy data e. Now taking into
account the hyperprior, the joint prior density pprior(γ,n) is given by

pprior(γ,n) = pprior(n|γ)× phyperprior(γ). (4.1.1)

Recalling Bayes’ theorem, we have

pposterior(γ,n|e) ∝ pobserved(e|n)× pprior(γ,n)

∝ pobserved(e|n)× pprior(n|γ)× phyperprior(γ).

Our observed probability density was of the form

pobserved(e|n) ∝ exp
(
−1

2

(
‖Σσ

− 1
2 (Kkn− e)‖22

))
, (4.1.2)

with the noisy data vector e, the kernel matrix Kk for the model space dimension
Nk, i.e. n ∈ RNk , and the covariance matrix Σσ. As prior distribution we selected

pprior(n|γ) =

(
π

2γ

)−Nk
2

exp(−1
2γ‖n‖

2
2)I≥0(n).
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Following [21] we took for the hyperprior a Rayleigh distribution

phyperprior(γ) =
γ

γ2
0

exp
(
−1

2

( γ
γ0

)2)
.

Therefore we have

pprior(γ,n) ∝ γ
Nk+2

2 exp
(
−1

2

(
γ‖n‖22 +

( γ
γ0

)2))
I≥0(n),

which yields

pposterior(γ,n|e) ∝ exp
(
−1

2

(
‖Σσ

− 1
2 (Kkn−e)‖22+γ‖n‖22+

( γ
γ0

)2
−(Nk+2) log(γ)

))
I≥0(n).

(4.1.3)

4.2 Model Selection

In Section 2.6.2 we used the discrepancy principle for the model selection as well.
Starting a the most coarse discretization, our approach was to refine the discretiza-
tion successively and to apply the discrepancy principle for a whole set of Morozov
safety factors τ , until a set of candidate solutions was obtained. Thus these candi-
date solutions lived on the coarsest discretizations possible on which the discrepancy
principle was applicable.

For the hypperprior approach this adaptive strategy is not available. Here we
have to take into account all discretizations with the number of discretization points
ranging from 3 to 50. For the fully Bayesian model selection strategy presented here
we use model averaging, i.e. we compute integrals for the model posterior distribu-
tions. An alternative Bayesian model selection strategy based on MAP-estimators
was given in [32]. Another approach for the model selection is to incorporate it in
the Monte Carlo posterior evaluation using a so-called reversible jump method, cf.
[33]. Here the drawn samples may lie in different model spaces. Our strategy is
different, i.e. we first perform the model selection and then keep the model order
fixed.

We also use eliminated zero boundary conditions, so the model space dimensions
actually range from 1 to 48. We begin with deriving the model probabilities p(Nk|e)
using a hyperprior. In contrast to the discrepancy principle approach, we do not
consider γ as a function of e. Thus we do not consider it as given alongside e as we
did when computing the model probabilities p(Nk|γ, e) for the discrepancy principle.
In the hyperprior approach we consider γ as a free sought-after parameter as well,
therefore the model probabilities must be based on the full joint probability density
p(e, γ,n|Nk). Then we have to marginalize over γ, too, in order to obtain p(Nk|e),
which can be seen in detail in from

p(Nk|e) =
p(e|Nk)p(Nk)∑
i p(e|Ni)p(Ni)

with p(e|Ni) =

∫ ∞
0

∫
RNi

p(e, γ,n|Ni)dndγ

=

∫ ∞
0

∫
RNi

p(e|Ni,n)p(γ,n|Ni)dndγ
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=

∫ ∞
0

∫
RNi

p(e|Ni,n)p(n|γ,Ni)p(γ|Ni)dndγ

=

∫ ∞
0

∫
[0,∞)Ni

B−1C−1
i γ−2

0 exp
(
−1

2

(
‖Σσ

− 1
2 (Kin− e)‖22

+ γ‖n‖22 +
( γ
γ0

)2
− (Ni + 2) log(γ)

))
dndγ,

with B = (2π)
Nl
2

∣∣det(Σσ)
∣∣ 12 and Ci =

(π
2

)Ni
2
.

Here B is the normalizing constant of p(e|Ni,n) = pobserved(e|n), the constant Ci

the factor of γ−
Ni
2 in the normalizing constant of p(n|γ,Ni) = pprior(n|γ) and γ−2

0

the normalizing constant of p(γ|Ni) = phyperprior(γ).
The integrals p(e|Ni) cannot be evaluated exactly. We introduce the auxiliary

function

f(γ,n) := 1
2

(
‖Σσ

− 1
2 (Kin− e)‖22 + γ‖n‖22 +

( γ
γ0

)2
− (Ni + 2) log(γ)

)
and approximate the integrands with

p(e, γ,n|Ni) ≈ exp
(
− f(γ′,n′)− 1

2

(
(γ,nT )− (γ′,n′T )

)
Hessf (γ′,n′)

(
(γ,nT )− (γ′,n′T )

)T)
,

where

(γ′,n′
T

)T := argmin
(γ,nT )T∈[0,∞)×RNi

f(γ,n),

and the Hessian is given by

Hessf (γ,n) =

 1

γ2
0

+
Ni + 2

2

1

γ2
nT

n KT
i Σσ

−1Ki + γI

 .

This approximation is commonly known as “Laplace’s method”, cf. [34].
Now the resulting integrals of a multivariate Gaussian distribution over the first

quadrant of RNi+1 are feasible for Genz’ method from Chapter 2. For this the
approximations

p(e|Ni) ≈ B−1C−1
i γ−2

0 exp
(
− f(γ′,n′)

)
×
∫ ∞

0

∫
[0,∞)Ni

exp
(
−1

2

(
(γ,nT )− (γ′,n′T )

)
Hessf (γ′,n′)

(
(γ,nT )− (γ′,n′T )

)T)
dndγ

= B−1C−1
i γ−2

0 exp
(
− f(γ′,n′)

)
×
∫{
z∈RNi+1 | z ≥ −(γ′,n′T )

T
} exp

(
−1

2z
THessf (γ′,n′)z

)
dz

have to be transformed into the form of the very last integral.
The computation of γ′ and n′ is basically a one-dimensional problem. The first

order optimality system for a minimum of f(γ,n) is given by

1
2‖n‖

2
2 +

γ

γ2
0

− Ni + 2

2

1

γ
= 0 (4.2.1)
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(
KT

i Σσ
−1Ki + γI

)
n−KT

i Σσ
−1e = 0. (4.2.2)

Solving (4.2.2) for n and inserting the solution into (4.2.1) gives that γ′ is a root of
the scalar function

g(γ) := 1
2‖
(
KT

i Σσ
−1Ki + γI

)−1
KT

i Σσ
−1e‖22 +

γ

γ2
0

− Ni + 2

2

1

γ
. (4.2.3)

We have

d

dγ
g(γ) = −eTΣσ

−1Ki

(
KT

i Σσ
−1Ki+γI

)−3
KT

i Σσ
−1e+

1

γ2
0

+
Ni + 2

2

1

γ2
, (4.2.4)

so the sought-after root can be found efficiently with Newton’s method. It is left to
the reader to verify that the root of g(γ) is unique.

As done in Chapter 2 we use uniform model prior probabilities p(Ni). Then the
model selection algorithm for hyperpriors is as follows.

Algorithm 3 Model Selection for Hyperpriors

1: Nl = 48
2: Ppost = {}
3: for i = 1 to Nl do
4: Get γ′ as solution of

1
2‖
(
KT

i Σσ
−1Ki + γI

)−1
KT

i Σσ
−1e‖22 +

γ

γ2
0

− Ni + 2

2

1

γ
= 0.

5: n′ =
(
KT

i Σσ
−1Ki + γ′I

)−1
KT

i Σσ
−1e

6: fmax = 1
2

(
‖Σσ

− 1
2 (Kin

′ − e)‖22 + γ′‖n′‖22 +
( γ′
γ0

)2

− (Ni + 2) log(γ′)
)

7: H =

 1

γ2
0

+
Ni + 2

2

1

γ′2
n′T

n′ KT
i Σσ

−1Ki + γ′I


8: Mi = (2π)

Nl
2

∣∣det(Σσ)
∣∣ 12 (π

2

)Ni
2 γ−2

0 exp(−fmax)

×
∫{
z∈RNi+1 | z ≥ −(γ′,n′T )

T
} exp

(
−1

2z
THz

)
dz

9: Ppost = Ppost ∪ {Mi}
10: end for
11: SumPpost =

∑Nl
i=1 Ppost(i)

12: for i = 1 to Nl do
13: Ppost(i) = Ppost(i)/SumPpost
14: end for

For the discretization with the highest posterior probability Ppost(i) we proceed
with computing the conditional mean estimator

nCM :=

∫
RNi×R

npposterior(γ,n|e)dndγ. (4.2.5)

The high-dimensional integration needed to compute nCM requires draws from the
posterior distribution obtained with a Monte Carlo method, which we will derive in
the next section.
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4.3 Markov Chain Monte Carlo Methods

We give here a very short introduction into Markov Chain Monte Carlo methods
and follow [21]. More detailed background information can be found in e.g. [35].

Let µ be a probability measure and let f be a measurable function on RN . The
basic idea of Monte Carlo methods is to construct a sequence xi, i = 1, ..., Ndraws

which is distributed according to µ. Then we can use this sequence to approximate∫
RN

f(n)µ(dn) ≈ 1

Ndraws

Ndraws∑
i=1

f(xi).

The sequence is obtained with a so-called probability transition kernel P : RN ×
B, where B = B(RN ) denotes the Borel sets over RN . It has the properties that
for each B ∈ B, the mapping RN → [0, 1], x 7→ P (x, B) is a measurable function,
and that for each x ∈ RN , the mapping B → [0, 1], B 7→ P (x, B) is a probability
distribution. Now a time homogenous Markov chain is a stochastic process {Xj}∞j=1,
where its measures µXj fulfill

µXj+1(Bj+1|x1, ...,xj) = µXj+1(Bj+1|xj) = P (xj , Bj+1).

Thus given X1 = x1, ..., Xj = xj , the distribution for the new iterate xj+1 only
depends on its direct predecessor xj . This dependency does not vary with time.

The measure µ is an invariant measure of P if for all B ∈ B

µP (B) =

∫
RN

P (x, B)µ(dx) = µ(B)

holds. The transition kernel P is irreducible with respect to µ if for each x ∈ RN
and B ∈ B with µ(B) > 0, there exists a k ∈ N with P k(x, B) > 0, where P k(x, B)
is for k ≥ 2 and a sequence xj and Bj iteratively defined by

P k(xj , B) =

∫
RN

P (xj+k−1, Bj+k)P
k−1(xj , dxj+k−1).

So this means for any x, that there is for any start point a nonzero probability,
that x is reached by the iterated transition kernel in a finite number of steps. A
transition kernel P is periodic, if there exists a sequence of sets B1, ..., Bm ∈ B
with P (x, Bj+1(modm)) = 1 for all x ∈ Bj for j = 1, ...,m. Thus the Markov chain
remains in a loop forever, if its start point lies within one of the sets B1, ..., Bm.
The kernel P is aperiodic, if it is not periodic. Now the following proposition forms
the basis of Markov chain Monte Carlo algorithms.

Proposition 4.3.1. Let P be a transition kernel with invariant measure µ. We
assume P to be irreducible with respect to µ and aperiodic. Then there holds for any
time homogenous Markov chain {Xj}∞j=1 generated with P that the iterated measures

P k fulfill for any start point x ∈ RN

lim
k→∞

P k(x, B) = µ(B) for all B ∈ B.

Furthermore holds for any function which is measurable with respect to µ that

lim
Ndraws→∞

1

Ndraws

Ndraws∑
j=1

f(Xj) =

∫
RN

f(x)µ(dx)

almost certainly.
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�
We omit the proof of this proposition here.

There is an infinite number of possibilities for the construction of the transition
kernel. For probability distributions, for which all its conditional distributions are
known and which have a simply connected support - such distributions often occur
in problems of Bayesian inference -, the so called Gibbs sampler is a commonly used
method for constructing a transition kernel. We will outline it in the next section.

4.4 Gibbs sampler

Using the Gibbs sampler method, the iterates of the Markov chain are drawn from
conditional probabilities of the porbability density pposterior(γ,n|e) under investiga-
tion. Here the model vector (γ,nT )T is partitioned into subvectors (vT1 , ...,v

T
s )T =

(γ,nT )T . Then for each j ∈ {1, ..., s} the subvector vj is drawn from the condi-
tional probability pposterior(γ,vj |e, (vT1 , ...,vTj−1,v

T
j+1, ...,v

T
s )T ), where the comple-

ment vector (vT1 , ...,v
T
j−1,v

T
j+1, ...,v

T
s )T ) of vj is given. In the following we outline

the full Gibbs sampler method for (4.1.3), which means that the subvectors vj are
given scalars given by the single components of (γ,nT )T . A more detailed intro-
duction into the Gibbs sampler method can be found in [21, pp. 98-105]. It is also
proved there, that the strategy of iteratively drawing from conditional distributions
gives a transition kernel.

Updating γ

Conditioned on n ∈ [0,∞)Nk , the posterior probability density is of the form

pposterior(γ|n, e) ∝ exp
(
−1

2

(
γ‖n‖22 +

( γ
γ0

)2
− (Nk + 2) log(γ)

))
.

Its cumulative distribution Fposterior(γ|n, e) =
∫ γ

0 pposterior(γ|n, e)dγ can not be
evaluated analytically. Therefore we use a simple approximate sampling method,
where we first truncate the unnormalized density function

fposeterior(γ|n, e) := exp
(
−1

2

(
γ‖n‖22 +

( γ
γ0

)2
− (Nk + 2) log(γ)

))
at some γmax = 2tmax , with tmax ≥ 1 being the smallest integer with fposterior

(
2tmax |n, e

)
<

10−100. Then we approximate the truncated unnormalized density with a piecewise
linear function using 10000 intervals of the same length covering [0, γmax]. We ap-
ply the inverse cdf method using this piecewise linear function in order to obtain
approximate draws from pposterior(γ|n, e).

Updating n

For i ∈ {1, ..., Nk} we introduce the subvector (n)−i := (n1, ..., ni−1, ni+1, ..., nNk)T

of n. Then the conditional probability densities are of the form

pposterior(ni|γ, (n)−i, e) ∝ exp
(
−1

2(ain
2
i + bini + ci)

)
I≥0(ni), (4.4.1)
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where ai, bi and ci depend on γ and (n)−i. For computational efficiency we derive
in the following explicit equations for ai, bi and ci in terms of Kk, e, Σσ, (n)−i and
γ. We begin with defining

H := KT
kΣσ

−1Kk, b := 2KT
kΣσ

− 1
2e and c := ‖Σσ

− 1
2e‖22.

Then we have

nT (H + γI)n− bTn+ c = ‖Σσ
− 1

2 (Kkn− e)‖22 + γ‖n‖22.

Now we denote with (H)i,−i the i-th row of H with the i-th column canceled and
with (H)−i,−i the matrix obtained from H by canceling both its i-th row and i-th
column. Our next step is to factor out the monomials n2

i and ni in the left hand
side of above equation. Then by equating their coefficients the explicit relations

ai = (H)ii + γ

bi = 2(H)i,−i(n)−i − (b)i

ci = (n)T−i(H)−i,−i(n)−i + γ‖(n)−i‖22 − (b)T−i(n)−i + ‖Σσ
− 1

2e‖22

are readily obtained.

Let us now turn to the cumulative distribution function F (ni|γ, e, (n)−i). To
simplify notation, we define for a function f : R→ R the operator

I[f(s)](x) :=
(∫ ∞

0
f(s)ds

)−1
∫ x

0
f(s)ds,

where we assume that both integrals involving f(s) exist. Thus we obtain

Fposterior(ni|γ, e, (n)i) = I
[

exp
(
−1

2(ais
2 + bis+ ci)

) ]
(ni)

= I
[

exp
(
− 1

2

(√
ais+

bi
2
√
ai

)2)]
(ni)

=
(∫ ∞

Li

exp(−t2)dt
)−1

∫ Ui

Li

exp(−t2)dt

with

Li :=
bi

2
√

2ai
and Ui :=

√
ai√
2
ni +

bi
2
√

2ai
.

The second equation was obtained by completing the square in the quadratic ais
2 +

bis+ci. Then the constant rest term not depending on s canceled out in the integrals
in the numerator and denominator, such that only the squared term is left in their
integrands. The third equation was obtained from a linear change of the variable s.

We now introduce the error function erf(ni) :=
2√
π

∫ ni

0
exp

(
−t2
)
dt.

Using limni→∞ erf(ni) = 1, the last representation of F (ni|γ, e,ni) can be expressed
as

Fposterior(ni|γ, e,ni) =
(

1− erf
( bi

2
√

2ai

))−1(
erf
(√ai√

2
ni +

bi
2
√

2ai

)
− erf

( bi
2
√

2ai

))
.
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Let u be a sample from a uniform distribution on [0, 1]. Then a sample from
p(ni|γ, (n)−i, e) can be obtained by solving F (ni|γ, e, (n)−i) = u for ni. With
previous computations this solution is given by

ni =

√
2

√
ai

erf−1
(

(1− u)erf
( bi

2
√

2ai

)
+ u
)
− bi

2ai
.

The results of this section are summarized in

Algorithm 4 Gibbs Sampler

1: H = KT
kΣσ

−1Kk

2: b := 2KT
kΣσ

− 1
2e

3: Compute the MAP estimator

(γMAP ,n
T
MAP )

T
= argmin

γ∈R, n ∈ Rk
1
2

(
‖Σσ

− 1
2 (Kkn− e)‖22 + γ‖n‖22 +

( γ
γ0

)2

− (Nk + 2) log(γ)
)

s.t. γ ≥ 0, n ≥ 0
4: γ0 = γMAP

5: n0 = nMAP

6: Ndraws = 5000
7: for i = 1 to Ndraws do

8: Truncate f(γ) := exp
(
−1

2

(
γ‖ni−1‖22 +

( γ
γ0

)2
− (Nk + 2) log(γ)

))
at

γmax = 2tmax with tmax = min{t ∈ N, t ≥ 1 | f(2t) < 10−100}.
9: Approximate the truncated version of f(γ) with a piecewise linear

function fapprox(γ) using 10000 linearly spaced subintervals of [0, γmax].

10: Draw u ∼ U([0, 1]).

11: γi = G−1(u) with G(γ) =
( ∫ γmax

0 fapprox(s)ds
)−1 ∫ γ

0 fapprox(s)ds

12: for j = 1 to Nk do

13: nij =
(
ni1, ..., n

i
j−1, n

i−1
j+1, ..., n

i−1
Nk

)T
14: aij = (H)jj + γi

15: bij = 2(H)j,−jn
i
j − (b)j

16: Draw u ∼ U([0, 1]).

17: nij =
√

2√
aij

erf−1
(

(1− u)erf
(

bij

2
√

2aij

)
+ u
)
− bij

2aij

18: end for
19: end for

In lines 4 and 5 we initialize γ and n with their corresponding MAP estimators
which have been found in the preceding model selection step. The MAP estimators
lie within the domain of convergence of the Gibbs sampler method, so initial burn-
in iterations to reach convergence are not needed. We computed Ndraws = 5000
samples for any model space dimension Nk determined in the model selection step.
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4.5 Numerical Study

We conducted a numerical study with the same test cases as in Section 3.2.2, i.e.
with the same simulated original particle size distributions from the log-normal,
RRSB and Hedrih families specified by the same sets of parameters, and with the
same amount of noise contaminating the simulated original spectral extinctions. For
each of the three noise levels, we simulated for each of the three families 1000 single
inversions. For each single inversion, we calculated 300 noisy spectral extinctions
with additive Gaussian noise with a standard deviation of 5%, 15% and 30% respec-
tively of the true extinctions, and we used the sample means and variances of the
them as estimates for the true extinctions and noise magnitudes.

In the following we present the results for a Rayleigh hyperprior with γ0 = 0.1.
We first show average and maximal run times for the model selection step. Then we
list the average and maximal run times for the Gibbs sampler. We proceed with the
average and maximal L2-errors of the MAP estimators followed by the average and
maximal L2-errors of the conditional mean estimators. At last we show the average
and maximal model space dimensions of the results.

4.5.1 L2-errors of MAP Estimators

Results for 5% Noise

L2-errors (%)

Log-Normal RRSB Hedrih

average 28.7463 120.2392 11.6742

worst case 175.8651 1.6128 · 103 40.1555

Results for 15% Noise

L2-errors (%)

Log-Normal RRSB Hedrih

average 61.3485 297.4809 14.7444

worst case 329.1157 1.4520 · 103 45.1685

Results for 30% Noise

L2-errors (%)

Log-Normal RRSB Hedrih

average 90.0913 323.6232 20.7106

worst case 617.1629 1.1379 · 103 51.9149
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4.5.2 L2-errors of the Conditional Mean Estimators

Results for 5% Noise

L2-errors (%)

Log-Normal RRSB Hedrih

average 12.6675 16.7886 10.8433

worst case 30.5679 113.1329 20.7521

Results for 15% Noise

L2-errors (%)

Log-Normal RRSB Hedrih

average 18.0044 24.2764 13.1940

worst case 39.9891 216.8520 32.3436

Results for 30% Noise

L2-errors (%)

Log-Normal RRSB Hedrih

average 22.4450 29.2653 19.2887

worst case 46.3712 149.3014 42.3618

4.5.3 Run Times for the Model Selection Step

Results for 5% Noise

run times (s)

Log-Normal RRSB Hedrih

average 11.6462 12.0560 11.9135

worst case 28.1454 29.2136 29.7096

Results for 15% Noise

run times (s)

Log-Normal RRSB Hedrih

average 11.5484 11.3946 12.0545

worst case 21.0221 22.9508 30.2464
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Results for 30% Noise

run times (s)

Log-Normal RRSB Hedrih

average 10.5608 11.0053 11.1530

worst case 14.1052 15.8992 14.5782

4.5.4 Run Times for the Gibbs Sampler

Results for 5% Noise

run times (s)

Log-Normal RRSB Hedrih

average 14.0753 16.0902 13.8658

worst case 19.2091 22.7198 27.4881

Results for 15% Noise

run times (s)

Log-Normal RRSB Hedrih

average 12.9457 14.1758 13.4292

worst case 30.7609 28.1368 25.7760

Results for 30% Noise

run times (s)

Log-Normal RRSB Hedrih

average 11.3974 12.8834 12.0432

worst case 16.3708 20.3767 17.2901
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4.5.5 Model Space Dimensions

Results for 5% Noise

average model space dimensions

Log-Normal RRSB Hedrih

average 9.7920 12.2500 8.2740

Results for 15% Noise

average model space dimensions

Log-Normal RRSB Hedrih

average 7.9990 10.6220 7.4360

Results for 30% Noise

average model space dimensions

Log-Normal RRSB Hedrih

average 7.1170 9.6930 7.0190

4.5.6 Reconstruction Failures of the Conditional Mean Estimators

Results for 5% Noise

number of L2-errors ≥ 100 % (out of 1000)

Log-Normal RRSB Hedrih

number (out of 1000) 0 1 0

Results for 15% Noise

number of L2-errors ≥ 100 % (out of 1000)

Log-Normal RRSB Hedrih

number (out of 1000) 0 13 0

Results for 30% Noise

number of L2-errors ≥ 100 % (out of 1000)

Log-Normal RRSB Hedrih

number (out of 1000) 0 18 0
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4.6 Conclusion

Clearly the MAP-estimators are only of practical use in order to save burn-in it-
erations for the Gibbs sampler, since their L2-errors are too big. Regarding the
average and worst case L2-errors, the results of the Gibbs sampler are matched best
by the results of the Morozov method from Chapter 3, i.e. by the results of the
discrepancy principle under nonnegativity constraints using only the expected value
of the residual multiplied with the Morozov factor τ = 1.1 as noise estimate. Only
for RRSB distributions the results are better matched by those of the unconstrained
method

The total average run time, i.e. the sum of the run times of the model step
and the gibbs sampler, was highest for RRSB distributions. It declined from ca. 28
seconds for 5% noise to ca. 24 seconds for 30% noise. The total run times were
much higher than those of any of the methods from Chapter 2, but still fulfill our
30 seconds time limit.

In the next chapter we will investigate a more complex model selection problem
for the retrieval of particle size distributions of two-component aerosols. Here we will
only consider retrieval methods based on the discrepancy principle for their superior
efficiency.
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Chapter 5

Two-Component Aerosols

In the preceding sections it was assumed that the aerosol particles consist of a
known material, and therefore the refractive indices mpart(l) needed to compute the
extinction efficiency Qext(mmed(l),mpart(l), r, l) were given exactly as well. But this
is not generally the case in real experimental measurements where typically both
size distributions and optical properties of scattering particles are unknown. In the
ideal case we could set up an additional device for measuring the aerosol refractive
indices and perform a two-stage measurement process, where the first step is to
retrieve the refractive indices as preparation for the second step of reconstructing
the size distribution, but this is not practical. Indeed all measurement techniques
for optical properties of aerosol particles demand a pretreatment of the aerosol itself
such as vaporizing it into its gas phase or transforming it into a monodisperse aerosol.
This would make the FASP too inefficient to be of practical use.

In real applications we simply want to examine some aerosol components of
particular interest. Thus we assume that the aerosol to be investigated is a mixture
of a small number of known materials, such that only the problem remains to retrieve
the volume fractions of these materials in the whole composite aerosol. As an initial
explorative step into this general problem we further assume that the aerosol is made
up of only two materials.

To compute the refractive indices of composite aerosols from those of their pure
components so-called mixing rules are used. Some of these are compared in [36]. Let
m1 = k1 + in1 and m2 = k2 + in2 be the refractive indices of two aerosol components
for a wavelength l of the incident light. We adopt the most commonly used rule, the
Lorentz-Lorenz rule. Here the total refractive mtot = ktot + intot is obtained from
the relation

m2
tot − 1

m2
tot + 2

= f1
m2

1 − 1

m2
1 + 2

+ f2
m2

2 − 1

m2
2 + 2

, (5.0.1)

where f1 and f2 are the volume fractions of the components.
Now our new problem is to invert the parameter-dependent integral equation∫ rmax

rmin

kp(r, l)n(r)dr = e(l), (5.0.2)

where the sought-after parameter p ∈ [0, 1] characterizes the unknown volume frac-
tions. Let mp(l) denote the solution mtot of (5.0.1) with f1 = p and f2 = 1 − p.
Then the p-dependent kernel function is given by

kp(r, l) = πr2Qext(mmed(l),mp(l), r, l).
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Mathematically this means that in addition to inverting it we have to identify the
“right” integral operator Kp from the set{

(Kpn)(l) :=

∫ rmax

rmin

kp(r, l)n(r)dr

∣∣∣∣ p ∈ [0, 1]

}
.

We can easily check that kp(r, l) depends continuously on p and therefore so
do the discrete approximations Kk,p to Kp as well. Furthermore the continuous
dependence of regularized solutions on the data for problems of this type was shown
in [37]. We again make Assumption 7.2.1. So by setting

Kp := Σ−
1
2Kk,p and r = Σ−

1
2 (etrue + δ)

as in Section 2.5 we obtain the p-parametrized quadratic programming problem

min
n∈RN

1
2‖Kpn− r‖22 + 1

2γ‖n‖
2
2 s.t. Cn ≤ b. (5.0.3)

as in Section 2.2 for the computation of the maximum a posteriori solution.

5.1 Fraction Retrieval for two Aerosol Components

For the determination of the parameter p we modify the adaptive model-generation
algorithm from Section 2.6. As a preparation we prove a continuity result.

Proposition 5.1.1. The minimizer np of (5.0.3) for γ = 0 depends continuously
on the kernel matrix Kp.

Proof. Let p1, p2 ∈ [0, 1] be arbitrary. We write

Kp1 =: K and Kp2 =: K + S,

hence S = Kp2 −Kp1 . From the continuous dependence of Kp on p we have

lim
p2→p1

S = 0. (5.1.1)

The first-order necessary conditions for the minimizers np1 and np2 of (5.0.3)
for p = p1 and p = p2 are given by the relations

KTKnp1 −KTr +CTqp1 = 0 (5.1.2)

and (KTK +KTS + STK + STS)np2 − (K + S)Tr +CTqp2 = 0, (5.1.3)

with vectors qp1 ≥ 0, qp2 ≥ 0. Subtracting (5.1.2) from (5.1.3) yields

KTK(np2 − np1) + (KTS + STK + STS)np2 − STr +CT (qp2 − qp1) = 0.

Forming the scalar product with np2 − np1 yields

〈np2 − np1 ,KTK(np2 − np1)〉+ 〈np2 − np1 , (KTS + STK + STS)np2〉
− 〈np2 − np1 ,STr〉+ 〈C(np2 − np1), qp2 − qp1〉 = 0.
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With (5.1.1) we obtain in the limit p2 → p1

lim
p2→p1

(
〈np2 − np1 ,KTK(np2 − np1)〉+ 〈C(np2 − np1), qp2 − qp1〉

)
= 0.

A calculation as in the proof of Lemma 2.3.1 shows

〈C(np2 − np1), qp2 − qp1〉 ≥ 0,

which finally implies
lim
p2→p1

np2 = np1 .

�

From the last proposition we directly obtain an existence result for an optimal
p.

Corollary 5.1.2. For γ = 0 the residual ‖Kpnp − r‖2 of the minimizer of (5.0.3)
depends continuously on p, so there exists a p ∈ [0, 1] for which it attains its minimal
value. �

Our next step is to find a condition for uniqueness of this minimizer for γ = 0.

Proposition 5.1.3. Let γ = 0 and p ∈ [0, 1] be such that ‖Kpnp − r‖22 minimizes
all Tikhonov functionals in (5.0.3) over the parameter range [0, 1]. Lets s ∈ [0, 1],
s 6= p, be arbitrary. Then if

〈Kpnp −Ksns, r〉 6= 0 (5.1.4)

holds, the minimizing parameter p is unique.

Proof. The necessary conditions for np and ns to be a minimizer of (5.0.3) are given
by

KT
pKpnp −KT

p r +CTqp = 0 (5.1.5)

and KT
sKsns −KT

s r +CTqs = 0 (5.1.6)

with vectors qp ≥ 0, qs ≥ 0. Assume

‖Kpnp − r‖22 = ‖Ksns − r‖22,

which is equivalent to

〈np,KT
pKpnp〉 − 〈ns,KT

sKsns〉 = 2〈Kpnp −Ksns, r〉. (5.1.7)

We form the scalar products of (5.1.5) with np and of (5.1.6) with ns. Then
forming the difference of the resulting equations gives

〈np,KT
pKpnp〉− 〈ns,KT

sKsns〉− 〈Kpnp−Ksns, r〉+ 〈Cnp, qp〉− 〈Cns, qs〉 = 0.

Inserting (5.1.7) yields

〈Kpnp −Ksns, r〉+ 〈Cnp, qp〉 − 〈Cns, qs〉 = 0.

From (2.3.5) with b = 0 we conclude 〈Cnp, qp〉 = 0 and analogously 〈Cns, qs〉 = 0.
But then

〈Kpnp −Ksns, r〉 = 0,

which contradicts (5.1.4). Thus if (5.1.4) holds, the minimizing parameter p must
be unique.

�
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Condition (5.1.4) demands that the kernel matrices Ks are sufficiently different
to Kp so that we get distinguishable residuals of the unregularized solutions. If
an s ∈ [0, 1] happens to exist with Ks = Kp, condition (5.1.4) cannot be fulfilled.
Unfortunately we are not currently able to check this condition a priori.

We conclude this section with investigating how the unregularized residuals be-
have for moderate noise levels. In the following the superscript δ marks solutions of
(5.0.3) for a data vector r contaminated with noise.

Proposition 5.1.4. We assume that condition (5.1.4) holds for any noise vector
satisfying 0 ≤ ‖δ‖2 ≤ δ. Let nt be the minimizer for the true noise-free model, i.e.

the parameter t ∈ [0, 1] yields the minimal residual ‖Ktnt − Σ−
1
2etrue‖22 over the

whole parameter interval [0, 1]. Let p = p(δ) ∈ [0, 1] be the parameter yielding the

minimal unregularized residual ‖Kpn
δ
p−Σ−

1
2 (etrue + δ)‖22 for the noisy data vector

Σ−
1
2 (etrue + δ). Then holds lim‖δ‖2→0 p(δ) = t.

Proof. To shorten notation we write rtrue := Σ−
1
2etrue and ρ := Σ−

1
2δ. Let nδt be

the minimizer for the parameter t and the noisy data vector Σ−
1
2 (etrue + δ), i.e.

nδt = argmin
n∈RN

1
2‖Ktn− (rtrue + ρ)‖22 s.t. Cn ≤ b.

Then we have the first order necessary conditions

KT
t Ktnt −KT

t rtrue +Cqt = 0 (5.1.8)

KT
t Ktn

δ
t −KT

t (rtrue + ρ) +Cqδt = 0, (5.1.9)

with vectors qδt ≥ 0, qt ≥ 0. Subtracting (5.1.9) from (5.1.8) and scalar multiplying
the result with nt − nδt gives

〈nt − nδt ,KT
t Kt(nt − nδt )〉+ 〈nt − nδt ,KT

t ρ〉+ 〈C(nt − nδt ), qt − qδt 〉 = 0.

As in the proof of Lemma 2.3.1 this establishes

‖Kt(nt − nδt )‖22 ≤ 〈nδt − nt,KT
t ρ〉

≤ ‖Kt(nt − nδt )‖2‖Σ−
1
2δ‖2,

which gives
‖Kt(nt − nδt )‖2 = O(‖δ‖2).

Now since the parameter p minimizes the residuals for the noisy vector rtrue +ρ
we can estimate

‖Kpn
δ
p − (rtrue + ρ)‖2 ≤ ‖Ktn

δ
t − (rtrue + ρ)‖2

≤ ‖Ktnt − rtrue‖2 + ‖Kt(n
δ
t − nt)‖2 + ‖Σ−

1
2δ‖2.

With the previous finding we see that the upper bound in the last inequality con-
verges to the residual ‖Ktnt − rtrue‖2 for ‖δ‖2 → 0. Thus we obtain in the limit

lim
‖δ‖2→0

‖Kpn
δ
p − (rtrue + ρ)‖2 ≤ ‖Ktnt − rtrue‖2.

By definition of t we have

‖Ktnt − rtrue‖2 ≤ lim
‖δ‖2→0

‖Kpn
δ
p − (rtrue + ρ)‖2,

so condition (5.1.4) finally implies lim‖δ‖2→0 p(δ) = t. �
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5.2 Convergence Analysis

In this section we show that the regularized solutions from the retrieved aerosol frac-
tion converge to the true solution from the true fraction as the noise level approaches
zero. This means that we generalize Theorem 2.5.4 to the case where the underlying
true linear operator must be identified from a known set of possible operators.

Theorem 5.2.1. Under Assumption 7.2.1, if condition 5.1.4 is satisfied for all
noise vectors δ of random variables, then we have for any α(δ) with the properties

limδ→0 α(δ) = 0 and limδ→0
δ2

α(δ) = 0 that limδ→0 E
(
‖nδ,α(δ)

p − nt‖2
)

= 0. Here

n
δ,α(δ)
p is the regularized solution for the retrieved fraction parameter p = p(δ).

Proof. We again use the notations rtrue := Σ−
1
2etrue and ρ := Σ−

1
2δ. Let p = p(δ)

be the fraction parameter retrieved by minimizing the unregularized residuals. We
write

nδ,αp := argmin
n ∈ RN

1
2‖Kpn− (rtrue + ρ)‖22 + 1

2α‖n‖
2
2 s.t. Cn ≤ b,

nαp := argmin
n ∈ RN

1
2‖Kpn− rtrue‖22 + 1

2α‖n‖
2
2 s.t. Cn ≤ b,

np := argmin
n ∈ RN

1
2‖Kpn− rtrue‖22 s.t. Cn ≤ b,

nt := argmin
n ∈ RN

1
2‖Ktn− rtrue‖22 s.t. Cn ≤ b.

Then we have the estimate

E
(
‖nδ,αp − nt‖2

)
≤ E

(
‖nδ,αp − nαp ‖2

)
+ E

(
‖nαp − np‖2

)
+ E(‖np − nt‖2).

For the first term in the upper bound, the estimate

E
(
‖nδ,αp − nαp ‖2

)
=
O(δ)

α
1
2

follows from Proposition 2.5.3. For the second term, Proposition 2.5.2 gives

lim
α→0

E
(
‖nαp − np‖2

)
= 0.

Finally, for the third term from Proposition 5.1.4 follows

lim
δ→0

E(‖np − nt‖2) = 0.

This altogether proves our claim. �

5.3 The Retrieval method

5.3.1 Model Generation

Proposition 5.1.3 motivates us to use the unregularized residuals as model generation
criterion, which means that we determine those parameters s, where they are small.
In presence of moderate measurement noise in e these parameters lie in the vicinity
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of the unique true parameter p as was shown in the proof of Proposition 5.1.4. In the
following we discuss the model generation algorithm extended for two-component
aerosols. As in Section 2.6 we compute collocation grids with N1 < ... < Nm points
and select a grid of Morozov safety factors τ1 < ... < τs. Furthermore the refractive
indices k1(l1)+ in1(l1), ..., k1(lNl)+ in1(lNl) and k2(l1)+ in2(l1), ..., k2(lNl)+ in2(lNl)
of two pure aerosol components depending on wavelengths l1, ..., lNl are given.

Algorithm 5 Model Generation for Two-Component Aerosols

1: MaxDisc = 1
2: SolutionSets = {}
3: ApproxSets = {}
4: PriorSets = {}
5: MixRatioSets = {}
6: TauSets = {}
7: DiscCntr = 0
8: estimate σ2

1, ..., σ2
Nl

from the sample means approximating the standard devia-
tions of e1, ..., eNl .

9: δ2 := max
{
σ2

1, ..., σ
2
Nl

}
10: Σ := δ−2 · diag

(
σ2

1, ..., σ
2
Nl

)
11: pi = i−1

Nfrac−1 , i = 1, ..., Nfrac

12: Nfrac = 201
13: Nmean = 5
14: Imin = {}
15: for i = 1 to Nfrac do
16: for j = 1 to Nl do
17: compute ktot(lj) + intot(lj) from k1(lj) + in1(lj) and k2(lj) + in2(lj) using

(5.0.1) with f1 = pi and f2 = 1− pi
18: end for
19: for k = 1 to m do
20: compute kernel matrix Kik for pi and the collocation grid with Nk points

using ktot(l1) + intot(l1), ..., ktot(lNl) + intot(lNl)
21: end for
22: end for
23: for k = 1 to m do
24: Sk = {}
25: Ak = {}
26: Pk = {}
27: Mk = {}
28: Tk = {}
29: R = {}
30: RMmin =∞
31: for i = 1 to Nfrac do

32: nlsqnng = argmin
n ∈ RNk

1
2‖Σ

− 1
2 (Kikn− ereal)‖22 s.t. n ≥ 0

33: R = R ∪
{
‖Σ−

1
2 (Kiknlsqnng − ereal)‖22

}
34: end for
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35: for i = 1 to Nfrac −Nmean + 1 do
36: RM = mean(R(i), R(i+ 1), ..., R(i+Nmean − 1))
37: if RM < RMmin then
38: RMmin = RM
39: tmin = {i, i+ 1, ..., i+Nmean − 1}
40: end if
41: end for
42: tcur = {tmin(1), tmin(3), tmin(5)}
43: Ncur = |tcur|
44: for i = 1 to Ncur do
45: for j = 0 to s do

46: if R(tcur(i)) < τjNlδ
2 ∧ τjNlδ

2 < ‖Σ−
1
2ereal‖22 then

47: compute γkij such that

48: ntrial = argmin
n ∈ RNi

1
2‖Σ

− 1
2 (Ktcur(i),kn− ereal)‖22

+ 1
2γkijn

TRkn s.t. n ≥ 0

49: with ‖Σ−
1
2 (Ktcur(i),kntrial − ereal)‖22 = τjNlδ

2

50: end if
51: if ntrial exists then
52: Sk = Sk ∪ {ntrial}
53: Ak = Ak ∪ {Ktcur(i),k}
54: Pk = Pk ∪ {γkijRk}
55: Mk = Mk ∪ {ptcur(i)}
56: Tk = Tk ∪ {τj}
57: end if
58: end for
59: end for
60: if Sk, Ak, Pk, Mk and Tk not empty then
61: SolutionSets = SolutionSets ∪ {Sk}
62: ApproxSets = ApproxSets ∪ {Ak}
63: PriorSets = PriorSets ∪ {Pk}
64: MixRatioSets = MixRatioSets ∪ {Mk}
65: TauSets = TauSets ∪ {Tk}
66: DiscCntr = DiscCntr + 1
67: end if
68: if DiscCntr == MaxDisc then
69: break
70: end if
71: end for

In line 11 the aerosol fraction parameter interval [0, 1] is approximated with a
linearly spaced grid. For each discrete aerosol fraction pi the approximation Kik to
the linear operator Kpi is computed in lines 15 to 22 for all model space orders Nk.

In line 23 the main loop for the model generation begins. Note that we first run
through all model orders from 1 to m beginning with the coarsest models before we
iterate through all aerosol fractions pi. This means that we perform the residual-
based search strategy motivated in Proposition 5.1.3 for each model space separately,
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where we start with the coarsest model and refine it if necessary.
In lines 31-41 the residuals of the unregularized reconstructions are calculated,

and a scan to find the minimal mean of Nmean solutions corresponding to suc-
cessive parameters pi, pi+1, ..., pi+Nmean−1 is performed. A subset of the indices
i, i + 1, ..., i + Nmean − 1 corresponding to the residuals with minimal mean is se-
lected in line 42. By filtering out some of the models corresponding to the param-
eters pi, pi+1, ..., pi+Nmean−1 with small residuals we ensure that the models to be
compared are not too similar. The selected indices are used for the actual model
generation in lines 44-59. Here we loop through all preselected Morozov safety pa-
rameters τ1, ..., τs and we propose with them the possible residual values τjNl for
the discrepancy principle. In line 46 it is checked if the discrepancy principle is
applicable.

If the model generation step is successful, the obtained reconstructions accom-
panied by their kernel and regularization matrices and their aerosol fraction and
residual parameters are stored in the containers Sk, Ak, Pk, Mk and Tk in lines
51-57.

Finally if the model generation is successful for MaxDisc model spaces, the
model generation loop is terminated in line 69.

5.3.2 Model Selection

Not only the model generation procedure has to be generalized to the case of a
two-component aerosol, but also the model-selection framework presented in Sec-
tion 2.6.2 needs to be generalized as well. Here we are not just comparing models
with different model spaces but also with different underlying operators Kp. Thus
prior probabilities are also needed for the parameters p which determine the linear
operators—or more precisely their approximations—to be compared. Let k label the
model dimensions Nk, Let i run through the indices for the aerosol-fraction param-
eters pi, where i depends on k, and let j run through all Morozov safety parameters
τj used for the model generation, where j depends on k and i. Then we can compute
the model posterior probabilities by

p(Nk,Kik, γkij |e) =
p(e|Nk,Kik, γkij)p(Nk,Kik, γkij)∑

u

∑
v(u)

∑
w(u,v) p(e|Nu,Kvu, γuvw)p(Nu,Kvu, γuvw))

(5.3.1)
We assume that p(Kvu) and p(Nu, γuvw) are independent and thus

p(Nu,Kvu, γuvw) = p(Nu, γuvw)p(Kvu).

We select p(Kvu) to be uniform and adopt p(Nu, γuvw) from Section 2.6.2. This
leads to

p(Nu,Kvu, γuvw) =
1

Ntotal
, (5.3.2)

where Ntotal is the total number of triplets
(
u, v(u), w(u, v)

)
.

Then the model-selection algorithm proceeds in the same way as Algorithm 2,
so we do not restate here. The differences to Section 2.6.2 are that we have already
set MaxDisc = 1 in the model generation step and that the single container A1

stores kernel matrices approximating different operators Kpi . While in principle the
algorithm could continue to compare different discretizations, this only lead to worse
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results in our simulations. Therefore, once the algorithm finds a discretization level
for which reconstructions are at all possible for any of the safety factors, we stop
the refinement and simply focus on the problem of identifying the volume fraction.
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Chapter 6

Numerical Results

6.1 Numerical Study

We conducted a numerical study of our inversion algorithm with almost the same
settings as the last section but extended for the retrieval of volume fractions of a
two-component aerosol. We used the same wavelength grid as in Sections 3.1 and
simulated the same model size distributions as in Section 3.2.2. We selected air as
ambient medium as well. We extended the grid of Morozov safety parameters to

τ1 = 0.5, τ2 = 0.6, ..., τ16 = 2.0.

If when running through all model spaces none of these safety factors yielded a
solution, we performed in this extreme case an another run of the model generation
step using a second grid of safety factors given by

τ1 = 2.5, τ2 = 3.0, ..., τ6 = 5.0.

This time we did not just simulate an original aerosol consisting purely of H2O
but instead generated with (5.0.1) refractive indices of H2O and CsI mixtures for
the scattering particles. Here the volume fractions of H2O ranged through a set of
preselected percentages, namely

0, 11, 22, 33, 44, 56, 67, 78, 89 and 100.

For each of the 100 parameters for the log-normal, RRSB or Hedrih distributions
we also now have the above 10 fractions. This results in a total of 1000 cases to
simulate.

As preparation to run Algorithm 5 we computed the kernel matrices depending
on the water volume fraction parameter p ∈ [0, 1] for pi = i−1

100 , i = 1, ..., 101 and
interpolated each kernel matrix entry with a cubic spline on a linearly spaced grid
with 201 points covering [0, 1] to increase further the resolution in p. Thus we have
Nfrac = 201 in Algorithm 5.

Again we simulated the same noise levels as in Section 3.1. Thus the noisy
measurement data vector e was modeled with

(e)i = e(li) + δi with δi ∼ N (0, (0.05 · e(li))2), i = 1, ..., Nl,

(e)i = e(li) + δi with δi ∼ N (0, (0.15 · e(li))2), i = 1, ..., Nl
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and
(e)i = e(li) + δi with δi ∼ N (0, (0.3 · e(li))2), i = 1, ..., Nl.

respectively.
To investigate the quality of the reconstructions in each simulation run, we com-

puted their L2-errors relative to the original size distribution. We list them sepa-
rately for each of the ten original water fractions. We proceed this way for all of our
simulation results.

Furthermore we determined the deviations of the reconstructed water volume
fractions from the original ones, e.g. when the original fraction was 22% and precon ∈
[0, 1] the retrieved fraction parameter, we calculated the deviation by |22 − 100 ·
precon|%. This showed us how well one can investigate the unknown two-component
aerosol only from FASP measurements using our extended inversion algorithm.

We also report how often the inversions failed. There were two main reasons for
inversion failures: the first when the relative L2 was greater than or equal to 100%,
the second when the fraction deviation was greater than or equal to 50%. In both
cases the reconstruction cannot give any reasonable information about the true size
distribution and the true scattering material anymore. Note that in our simulations
we returned by default n ≡ 0 and precon = 0.5 when no reconstruction could be
found in any of the model spaces. For brevity we only list those original fractions
where inversion failures occurred

Finally we list the average and worst case inversion run times over all 1000
simulations for all three simulation runs.

6.1.1 Average L2-Errors

Results for 5% Noise

Log-Normal Distribution

original water
average L2-errors (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 33.4495 33.5512 33.8810

11% 29.9288 30.0234 31.8153

22% 28.8686 29.0432 31.0142

33% 24.8269 26.1235 27.7701

44% 22.5902 24.2364 26.1419

56% 21.0371 21.8765 24.5631

67% 19.1780 19.9413 22.7730

78% 19.0107 19.1835 21.0428

89% 18.6772 19.2620 20.0989

100% 18.0467 18.9292 18.9216
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RRSB Distribution

original water
average L2-errors (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 37.6093 36.2611 35.7504

11% 31.7431 30.5070 30.0359

22% 30.3894 29.1295 29.0800

33% 28.7004 27.2851 26.9338

44% 24.2003 23.6463 24.9326

56% 21.4835 21.1434 21.2237

67% 19.7283 19.5032 18.7670

78% 17.0828 16.6510 16.5460

89% 14.2999 14.1295 14.1319

100% 11.6901 11.4887 11.5191

Hedrih Distribution

original water
average L2-errors (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 16.3524 16.7309 17.1452

11% 16.9073 16.8683 17.1026

22% 15.9820 15.5398 16.1297

33% 13.7607 13.6466 13.8722

44% 15.7127 14.6788 14.6119

56% 14.9451 14.7220 14.6970

67% 14.7707 14.5446 14.2365

78% 16.8178 15.9551 15.6820

89% 13.6688 13.4196 13.4240

100% 11.4425 11.3837 11.0599
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Results for 15% Noise

Log-Normal Distribution

original water
average L2-errors (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 41.0230 42.0280 42.8570

11% 38.7119 40.3354 40.7482

22% 35.4868 37.0136 37.6257

33% 38.2937 39.1035 39.6033

44% 35.1116 35.7339 36.3366

56% 35.3125 36.2310 36.8520

67% 31.4433 32.8912 34.6204

78% 34.1495 35.4525 36.7260

89% 28.2679 29.9144 31.6657

100% 24.9730 26.8085 27.5983

RRSB Distribution

original water
average L2-errors (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 46.9113 47.2809 47.6162

11% 44.5891 45.7270 46.0245

22% 42.8317 43.0837 41.9885

33% 40.0047 40.7705 40.6499

44% 36.8078 37.8087 39.0816

56% 35.1608 34.9177 34.9506

67% 34.2437 34.6667 34.6924

78% 30.5743 29.9018 30.2997

89% 26.6096 25.5681 25.6317

100% 25.1971 25.4078 26.8239
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Hedrih Distribution

original water
average L2-errors (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 38.2540 41.0444 41.7418

11% 37.2035 39.2980 39.8581

22% 37.5875 39.2181 39.3586

33% 37.9361 39.3276 40.1512

44% 37.1656 38.9567 40.1287

56% 35.6547 37.0807 38.1747

67% 36.7073 38.0401 39.0624

78% 37.3575 38.5249 39.4832

89% 32.9935 34.3648 35.3986

100% 21.0929 22.2989 23.4942

Results for 30% Noise

Log-Normal Distribution

original water
average L2-errors (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 54.4440 56.1149 56.5318

11% 53.4176 55.1921 55.4526

22% 50.2123 51.9879 52.9042

33% 48.5834 50.5190 51.9092

44% 48.2961 49.2341 51.0833

56% 49.6869 50.4403 52.3943

67% 48.7960 49.8042 51.4531

78% 45.3692 46.7035 48.4497

89% 40.7916 42.5978 44.2974

100% 37.8053 40.2252 40.6318
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RRSB Distribution

original water
average L2-errors (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 60.9539 60.1571 59.4861

11% 55.8505 55.8186 55.8801

22% 56.6660 56.7041 57.2950

33% 51.7956 51.7272 52.4263

44% 55.0476 55.4631 54.7889

56% 53.3087 53.4469 52.7929

67% 56.3399 56.0415 55.7153

78% 43.7841 44.3589 44.7646

89% 35.7766 35.2697 35.2719

100% 33.4715 34.4714 35.2654

Hedrih Distribution

original water
average L2-errors (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 61.2199 63.0944 64.9315

11% 62.1051 63.5453 65.3789

22% 60.2048 62.0754 63.7821

33% 60.6939 62.3668 64.2677

44% 58.9614 60.5740 62.9731

56% 59.2670 60.5463 63.1971

67% 60.0236 60.9762 62.9238

78% 55.6534 56.7551 58.9474

89% 48.4864 49.9086 52.0646

100% 35.5582 37.4365 39.5205
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6.1.2 Average Water Fraction Deviation

Results for 5% Noise

Log-Normal Distribution

original water
average water fraction deviation (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 11.0750 10.9550 11.0950

11% 7.6500 7.3200 7.5200

22% 6.3450 6.2750 6.4250

33% 4.4000 4.4000 4.4500

44% 3.5750 3.8350 3.8150

56% 3.2700 3.1100 3.1500

67% 2.5050 2.4550 2.4750

78% 2.3850 2.3050 2.1850

89% 2.0100 2.0400 1.7700

100% 1.2550 1.0150 0.7150

RRSB Distribution

original water
average water fraction deviation (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 6.7000 6.7000 6.6600

11% 5.2200 5.1700 5.0900

22% 4.6400 4.5400 4.5400

33% 3.7100 3.7000 3.5300

44% 3.6200 3.5400 3.5400

56% 3.2050 3.1750 3.1550

67% 2.4650 2.4150 2.3350

78% 1.7750 1.8350 1.8750

89% 1.3250 1.3250 1.3050

100% 0.4650 0.3850 0.3450
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Hedrih Distribution

original water
average water fraction deviation (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 4.8800 4.9200 5.0600

11% 6.3850 6.3550 6.2450

22% 4.1300 4.1900 4.3300

33% 4.3650 4.4750 4.3750

44% 3.3100 3.4500 3.4400

56% 3.0450 3.0150 2.9950

67% 1.8100 1.9300 1.8000

78% 2.7250 2.4950 2.4350

89% 1.9350 1.8850 1.7350

100% 0.7250 0.5450 0.4050

Results for 15% Noise

Log-Normal Distribution

original water
average water fraction deviation (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 22.7300 22.8500 22.8500

11% 14.9650 15.4850 15.6050

22% 11.4200 11.7200 11.7800

33% 11.0250 10.9550 11.0150

44% 9.4150 9.1050 9.3650

56% 8.4350 8.5450 8.3250

67% 6.6650 6.6950 6.7750

78% 7.8100 7.7600 7.7300

89% 4.6300 4.9900 4.9900

100% 1.8050 1.6450 1.2650
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RRSB Distribution

original water
average water fraction deviation (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 13.0650 12.6850 12.7250

11% 14.9600 15.0300 14.9300

22% 10.7500 10.8400 10.7700

33% 10.8900 10.9000 10.9900

44% 10.3200 10.2500 10.2600

56% 6.9550 6.8350 6.7950

67% 5.8300 5.6800 5.8000

78% 4.4500 4.3800 4.4000

89% 3.1850 3.1450 3.1450

100% 1.9350 1.9150 2.0750

Hedrih Distribution

original water
average water fraction deviation (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 19.4000 20.0200 20.2000

11% 15.1000 15.5200 15.5300

22% 15.9050 16.2850 16.3650

33% 13.4650 13.9250 14.0850

44% 11.4050 11.7850 12.0450

56% 8.8800 9.2600 9.4500

67% 9.3000 9.4000 9.6000

78% 8.3150 8.5550 8.6850

89% 4.6500 5.1300 5.3700

100% 1.1300 0.9300 0.3900
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Results for 30% Noise

Log-Normal Distribution

original water
average water fraction deviation (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 33.3450 33.5650 33.4850

11% 26.8900 27.2100 27.1000

22% 22.2350 22.7650 23.0250

33% 18.3700 18.9100 19.1100

44% 17.7700 17.6600 17.9100

56% 17.0850 16.8650 17.2450

67% 14.6700 14.6800 14.7200

78% 11.5950 11.6450 11.8250

89% 6.9650 7.0850 7.3650

100% 2.2650 2.2250 1.7250

RRSB Distribution

original water
average water fraction deviation (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 22.6650 22.5850 22.4050

11% 22.3800 22.3900 22.5000

22% 19.5000 19.4100 19.4600

33% 17.3000 17.1100 17.1300

44% 18.0600 18.0100 17.9900

56% 13.3100 13.3100 13.3400

67% 11.6500 11.4500 11.3700

78% 8.1000 7.9800 7.8400

89% 5.3800 5.2600 5.2500

100% 3.0300 2.8900 2.7700
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Hedrih Distribution

original water
average water fraction deviation (%)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 41.2100 41.8100 41.6500

11% 39.4300 39.8100 39.7100

22% 32.4950 32.9750 32.8750

33% 29.2950 29.6150 29.7750

44% 24.3600 24.1600 24.8800

56% 21.8000 22.1300 22.5100

67% 18.3750 18.5250 19.0650

78% 13.7000 13.7400 14.0800

89% 6.8900 6.9700 7.3700

100% 1.0700 0.9900 0.4100

6.1.3 Average Model Space Dimensions

Results for 5% Noise

Log-Normal Distribution

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

7.5550 7.5550 7.5550

RRSB Distribution

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

11.3940 11.3940 11.3940

Hedrih Distribution

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

6.3330 6.3330 6.3330
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Results for 15% Noise

Log-Normal Distribution

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

4.9840 4.9840 4.9840

RRSB Distribution

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

7.9840 7.9840 7.9840

Hedrih Distribution

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

4.5890 4.5890 4.5890

Results for 30% Noise

Log-Normal Distribution

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

3.8240 3.8240 3.8240

RRSB Distribution

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

6.5260 6.5260 6.5260
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Hedrih Distribution

average model space dimensions

Tikhonov
min. first

Twomey
fin. diff.

3.7000 3.7000 3.7000

6.1.4 Extreme Cases

When the deviation of the retrieved aerosol fraction from the true one exceeded 50%
or the L2-error between reconstruction and true solution was bigger than 100% we
had to regard the reconstruction as failed. We now list when these failures occurred.
There were no failed simulations with the Hedrih distribution.

6.1.5 Reconstruction Failures

Results for 5% Noise

Log-Normal Distribution

original water
number of L2-errors ≥ 100 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 1 1 1

11% 1 0 0

44% 1 0 0

RRSB Distribution

original water
number of L2-errors ≥ 100 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 5 6 6

11% 1 1 0

33% 1 1 1

44% 1 0 0

67% 1 1 1
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Results for 15% Noise

Log-Normal Distribution

original water
number of L2-errors ≥ 100 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 1 1 1

RRSB Distribution

original water
number of L2-errors ≥ 100 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 9 8 7

11% 4 4 3

22% 3 3 1

33% 3 3 2

44% 2 2 2

56% 3 2 2

67% 1 1 1

78% 1 1 0

89% 1 0 0

Results for 30% Noise

Log-Normal Distribution

original water
number of L2-errors ≥ 100 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

89% 1 1 1

100% 2 2 2
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RRSB Distribution

original water
number of L2-errors ≥ 100 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 12 12 12

11% 6 5 5

22% 7 7 6

33% 4 4 5

44% 10 11 9

56% 10 9 8

67% 12 13 12

78% 2 1 1

100% 2 2 2

6.1.6 Water-Fraction Retrieval Failures

Results for 5% Noise

Log-Normal Distribution

original water
number of deviations ≥ 50 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 3 3 3

11% 3 3 3

22% 1 1 1

RRSB Distribution

original water
number of deviations ≥ 50 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 1 1 1
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Results for 15% Noise

Log-Normal Distribution

original water
number of deviations ≥ 50 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 7 7 7

11% 1 1 1

22% 3 3 2

33% 2 2 2

44% 1 0 0

RRSB Distribution

original water
number of deviations ≥ 50 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 7 7 7

11% 9 9 7

22% 5 5 5

33% 6 6 6

44% 1 1 1

Hedrih Distribution

original water
number of deviations ≥ 50 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 7 7 7

11% 2 2 0
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Results for 30% Noise

Log-Normal Distribution

original water
number of deviations ≥ 50 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 18 18 18

11% 12 11 9

22% 5 5 5

33% 1 1 1

44% 2 2 2

56% 1 1 1

RRSB Distribution

original water
number of deviations ≥ 50 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 17 17 17

11% 17 17 17

22% 14 14 14

33% 7 7 7

44% 5 4 4

56% 3 3 3

67% 2 2 2

78% 1 1 1

Hedrih Distribution

original water
number of deviations ≥ 50 % (out of 100)

Tikhonov
min. first

Twomeyvolume percent
fin. diff.

0% 34 34 34

11% 31 31 28

22% 3 4 4

33% 6 6 6

44% 6 4 4
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6.1.7 Average and Worst-Case Run Times

Results for 5% Noise

Log-Normal Distribution

run times (s)

Tikhonov
min. first

Twomey
fin. diff.

average 1.9760 1.9942 2.0068

worst case 7.7510 7.2250 7.1985

RRSB Distribution

run times (s)

Tikhonov
min. first

Twomey
fin. diff.

average 2.9324 2.9625 2.9790

worst case 33.3764 33.3267 34.9001

Hedrih Distribution

run times (s)

Tikhonov
min. first

Twomey
fin. diff.

average 1.4476 1.4508 1.4606

worst case 4.7932 4.8286 4.8890

Results for 15% Noise

Log-Normal Distribution

run times (s)

Tikhonov
min. first

Twomey
fin. diff.

average 1.5145 1.5206 1.5166

worst case 6.2287 6.4040 6.4904
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RRSB Distribution

run times (s)

Tikhonov
min. first

Twomey
fin. diff.

average 3.3324 3.3626 3.3634

worst case 27.5733 28.3437 27.9566

Hedrih Distribution

run times (s)

Tikhonov
min. first

Twomey
fin. diff.

average 2.9680 2.9574 2.9615

worst case 8.1061 8.0749 8.2823

Results for 30% Noise

Log-Normal Distribution

run times (s)

Tikhonov
min. first

Twomey
fin. diff.

average 1.4768 1.4764 1.4714

worst case 5.2418 5.1896 5.1899

RRSB Distribution

run times (s)

Tikhonov
min. first

Twomey
fin. diff.

average 1.9579 1.9837 1.9885

worst case 19.8418 20.5086 20.6216

Hedrih Distribution

run times (s)

Tikhonov
min. first

Twomey
fin. diff.

average 1.1961 1.1893 1.1864

worst case 3.7253 3.6821 3.8738
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6.2 Conclusion

A common trend in the results is that the average L2-error decreases with increasing
original water volume fraction. This was observed for all noise levels. For all noise
levels the average L2-errors were for 0% water 2 to 3 times as big as for 100%
water.. This behavior can also be seen in the numbers of reconstruction failures,
which predominantly occurred for small water percentages.

The water volume fractions deviations behaved in a similar way. They decreased
for increasing original fractions, which means that the quality of the water fraction
retrieval was improving towards higher original fractions. Water fraction retrieval
failures predominantly occurred for samll water percentages and their number rose
for higher noise levels. For Hedrih distributions more than 30% of the inversions
were affected by a water fraction retrieval failure for 30% noise and for original water
percentages of 0 and 11%.

Again the differences in the deviations depending on the priors were only marginal.
The worst case run times succeeded our thirty-seconds limit only for RRSB

distributions. Even in the extreme cases they stayed below 35 seconds, which is still
acceptable.

We can conclude that with the settings made in previous section the analysis of
two-component aerosols is possible satisfying our demands on run time and accuracy.
The results for 5% noise are of comparable quality than the results for 30% noise
for single-component aerosols in Chapter 3.
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Chapter 7

Spectroscopic Measurements of
Refractive Indices

7.1 Modeling of Refrative Index Reconstructions

The following chapters provide an algorithm for the reconstruction of refractive
indices from spectral measurements of monodisperse aerosols. The experiments we
are conducting are similar to the experiments presented in [38] with the difference
that we are using air as surrounding medium for the aerosol particles and that
temperature and pressure may approach 200◦C and 8 bar respectively. For these
rigid conditions reliable databases for refractive indices do not exist up to now.
These refractive index databases are needed for the measurement of particle size
distributions of polydisperse aerosols using the FASP.

As outlined in Chapter 2 the FASP measures light intensities Ilong(l) and Ishort(l)
having passed a long and a short measurement path length Llong and Lshort respec-
tively. The evaluations of the FASP measurements are based on the relation∫ ∞

0
k(r, l)n(r)dr = e(l) with e(l) = −

log(Ilong(l))− log(Ishort(l))

Llong − Lshort
, (7.1.1)

where k(r, l) := πr2Qext(mmed(l),mpart(l), r, l) is the so-called kernel function, l
is the wavelength of the incident light, r is the radius of the spherical scatter-
ing particle and mmed(l) and mpart(l) are the refractive indices of the surrounding
medium and the particle material depending on the wavelength l. The function
Qext(mmed(l),mpart(l), r, l) is the Mie extinction efficiency from [5]. The function
n(r) is the size distribution of the scattering particels. The right-hand side e(l) in
(7.1.1) is denoted as the spectral extinction.

Now if n(r) is the size distribution of a monodisperse aerosol, where all particles
possess the same radius rm, it is given by n(r) = nδ(r − rm), where n is the total
number of particles and δ(r − rm) is a Dirac delta distribution truncated on the
positive half-axis. Inserting this into (7.1.1) gives

nπr2
mQext(mmed(l),mpart(l), rm, l) = e(l), (7.1.2)

hence the Mie extinction efficiency is measured directly at the radius rm.
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The Mie extinction efficiency is given as an infinite series, i.e.

Qext(mmed(l),mpart(l), r, l) =
∞∑
n=1

qn(mmed(l),mpart(l), r, l).

The computation of the coefficient functions qn(mmed(l),mpart(l), r, l) will be dis-
cussed in Section 1.

It is clear that in practical computations Qext(mmed(l),mpart(l), r, l) can only
be approximated by a truncated series, because only the computation of a finite
number of the qn(mmed(l),mpart(l), r, l)’s is practically feasible.

We now fix a wavelength l. The complex refractive index mpart(l) for the wave-
length l is reconstructed from FASP measurements of several monodisperse aerosols
with particle radii r1, ..., rN . Let q(r1, l), ..., q(rN , l) denote the measured spectral
extinctions e(l) corresponding to the particle radii r1, ..., rN . We assume that they
are contaminated by additive Gaussian noise, i.e. q(ri, l) = qtrue(ri, l) + δi with
δi ∼ N (0, s2

i ) for i = 1, ..., N . Furthermore we assume that the standard deviations
si can be estimated from measurements sufficiently accurately, such that we can
regard them as known. We have

qtrue(ri, l) = niπr
2
i

∞∑
n=1

qn(mmed(l),mpart(l), ri, l),

where ni is the number of particles having the same radius ri. Then a reconstrution
of mpart(l) is obtained from the set of solutions M(l) of the nonlinear regression
problem

M(l) := argmin
m∈C

N∑
i=1

1

2
(
si
ni

)2

(
πr2

i

Ntr∑
n=1

qn(mmed(l),m, ri, l)−
q(ri, l)

ni

)2

. (7.1.3)

Note that M(l) contains in general more than one solution, especially when q(ri, l)
is perturbed by measurement noise. We discuss nonlinear regression problems with
truncated series expansions such as (7.1.3) in Section 7.2.

For solving (7.1.3) we use a global optimization strategy presented in Section 7.3
to generate reasonable candidates for start values for a local solver for a regularized
version of (7.1.3). Section 7.6 provides a selection method to find a unique start
value out of the candidates. In order to apply a gradient-based local solver we must
know the derivatives of the Mie extinction efficiency series, which are discussed in
Section A.

7.2 Nonlinear Regression using Truncated Series Ex-
pansions

We wish to reconstruct the refractive indices of a particle material from spectral
measurements by solving a nonlinear regression problem of the form

Xt,δ := argmin
x∈RD

N∑
i=1

1

2σ2
i

(
t∑

n=1

ain(x)−
∞∑
n=1

ain(xtrue)− δi

)2

, (7.2.1)
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where t ∈ N is a finite truncation index and δi ∼ N (0, s2
i ). We have to confine

ourselves to a finite truncation index t, because it is practically not feasible to
compute all coefficient functions ain(x) for i = 1, ..., N . We also wish to keep the
truncation index as small as possible in order to save computational effort. Therefore
this section is devoted to study the influence of the truncation index on the accuracy
of the reconstructions.

Remember that N represents the number of particle radii ri of the different
monodisperse aerosols we are investigating. We still assume that for each radius ri
the standard deviations si are determined well enough from a set of experiments,
such that they can be regarded as known. Throughout this paper we assume that
the feasible set Ω is compact.

We define the functions f t : RD → RN and f : RD → RN by

f t(x) :=

(
t∑

n=1

a1
n(x), ...,

t∑
n=1

aNn (x)

)T

and f(x) :=

( ∞∑
n=1

a1
n(x), ...,

∞∑
n=1

aNn (x)

)T
.

We set e := f(xtrue) + δ with δ := (δ1, ..., δN )T . Then the observed probability
density is given by

pobserved(e|x) := (2π)−
Nl
2

∣∣det(Σσ)
∣∣− 1

2 exp(−1
2‖Σσ

− 1
2 (f t(x)− e)‖22)

with the covariance matrix Σσ := diag
(
σ2

1, ..., σ
2
N

)
. We know a priori that the

vector x specifying our model f t(x) lies within the set Ω. This knowledge can be
expressed with the prior probability density

pprior(x) := (vol(Ω))−1 IΩ(x),

where IΩ is the indicator function of Ω. Now Xt,δ is the set of MAP-estimators of
the posterior probability density, i.e.

Xt,δ := argmax
x

pposterior(x|e)

with pposterior(x|e) ∝ pobserved(e|x)pprior(x) ∝ exp(−1
2‖Σσ

− 1
2 (f t(x)− e)‖22)IΩ(x).

(7.2.2)

We carry out all the following investigations under the next assumption on the
covariance matrix:

Assumption 7.2.1. The covariance matrix Σσ has the simple form

Σσ = δ2 · diag(σ2
1, ..., σ

2
N ) =: δ2 ·Σ,

where δ ≥ 0 is an arbitrary but fixed noise level and σ1, ..., σN are fixed.

To simplify notations we introduce the two functions f t : RD → RN and gt :
RD → RN depending on the truncation index t and defined by

(f t(x))i :=

btc∑
n=1

ain(x) +
(
t− btc

)
aibtc+1(x)
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and (gt(x))i := (f(x))i − (f t(x))i , for i = 1, ..., N.

In the following we will investigate how an element xt,δ of the set Xt,δ depends
on the truncation index t. We change to a continuous truncation index here, i.e. we
change from now on from (7.2.1) to the new regression problem

Xt,δ := argmin
x∈RD

Ft,δ(x) s.t. x ∈ Ω,

with Ft,δ(x) := ‖Σ−
1
2 (f t(x)− f(xtrue)− δ)‖22

(7.2.3)

where the truncation index t ≥ 0 is allowed to be non-integer.

As a preparation we prove the following technical lemma, which will form the
basis of our continuity and convergence results.

Lemma 7.2.2. Let the twice continuously differentiable function F : RN → R
have a strict local minimum x0 inside a compact set S ⊂ RN . Let the function
h : RN ×R→ R have the property limε→0 h(x, ε) = 0 for all x ∈ S and let h(x, ε) be
twice continuously differentiable with respect to x and continuous in ε. Furthermore
we assume that the local minima xε of Fε(x) := F (x) + h(x, ε) are strict for any
ε > 0. Then there exists a sequence of local minima xε of Fε(x) with limε→0 xε = x0.

Proof. The strategy of the proof is to construct for given ε a neighborhood of x0

which must contain a local minimizer xε of the perturbed function Fε(x). By sending
ε to 0, this neighborhood shrinks down to the local minimum x0 itself, thus yielding
the convergence of xε to x0. To have this neighborhood shrink down to x0, it is
crucially important that x0 must be a strict local minimum.

We define d(ε) := supx∈S |h(x, ε)|. From limε→0 h(x, ε) = 0 for all x ∈ S
follows limε→0 d(ε) = 0. Let us now introduce the function F−(x) := F (x) − d(ε).
Obviously x0 is also a local minimum of F−(x), so for ε sufficiently small there
exists a neighborhood U2d(ε)(x0) ⊂ S of x0 with

F−(x) ≥ F−(x0) and F−(x)− F−(x0) ≤ 2d(ε) for all x ∈ U2d(ε)(x0).

In particular we have

∀x ∈ ∂U2d(ε)(x0) : F−(x) = F−(x0) + 2d(ε) = F (x0) + d(ε).

Let us assume that there exists an x ∈ ∂U2d(ε)(x0) with

Fε(x) < F (x0) + d(ε) = F−(x) = F (x)− d(ε).

Then Fε(x) = F (x) + h(x, ε) implies −d(ε) > h(x, ε), hence −h(x, ε) > d(ε) ≥
−h(x, ε) by definition of d(ε), contradiction. Therefore we conclude

∀x ∈ ∂U2d(ε)(x0) : Fε(x) ≥ F (x0) + d(ε). (7.2.4)

Since Fε(x) is continuous and U2d(ε)(x0) is compact for ε small enough, there

exists an xε ∈ U2d(ε)(x0) with

Fε(xε) = min
x∈U2d(ε)(x0)

Fε(x).

89



Spectroscopic Measurements of Refractive Indices

Let us assume Fε(xε) > F (x0) + d(ε). Then by definition of xε we get in particular

F (x0) + h(x0, ε) = Fε(x0) ≥ Fε(xε) > F (x0) + d(ε),

i.e. h(x0, ε) > d(ε) ≥ h(x0, ε), contradiction. It follows

Fε(xε) ≤ F (x0) + d(ε) and Fε(x0) ≤ F (x0) + d(ε), (7.2.5)

where the latter follows with a proof by contradiction as well.
If it happens to hold that Fε(xε) = F (x0) + d(ε), then we also have Fε(x0) =

F (x0) + d(ε). Otherwise we have Fε(xε) < F (x0) + d(ε) and then (7.2.4) implies
that xε cannot lie on ∂U2d(ε)(x0), thus it must lie within the interior of U2d(ε)(x0).
So in any case (7.2.5) gives that U2d(ε)(x0) must contain a local minimizer xε of
Fε(x).

Now limε→0 d(ε) = 0 gives limε→0 xε = x0. The existence of the last limit is
guaranteed by the fact that x0 is strict and the claim is proved.

�

Proposition 7.2.3. Let all coefficient functions ain(x) be twice continuously differ-
entiable and bounded on Ω. We assume that each local minimum xt,δ of the right
hand side function Ft,δ(x) in (7.2.3) is strict and lies in the interior of Ω. Then
each local minimum depends continuously on the truncation index t.

Proof. To prove the claim, one could be tempted to apply the implicit function
theorem on the equation d(t,xt,δ) = 0 with d(s,x) := ∇f s(x). This would give that
the local minima are parameterized by a function m(s) with the property m(t) =
xt,δ, where s is from an environment U(t) of t. The problem with this approach is
that it requires continuous differentiability of d(s,x) in the truncation parameter s.
Thus the continuous truncation we are using would need more complicated methods
such as spline interpolation of the partial sums, which would increase the overall
computational effort.

Therefore we use in the following a more direct approach to prove the claim. Let
ε > 0 be arbitrary. First we consider an integer truncation index t ∈ N, i.e. we have
t = btc. Now for ε small enough, we get bt+ εc = t and bt− εc = t− 1. This gives(

f t+ε(x)
)
i

= (f t(x))i + εait+1(x)

and
(
f t−ε(x)

)
i

=
(
f t−1(x)

)
i
+ (1− ε)ait(x)

= (f t(x))i − εa
i
t(x).

As next step we turn to an noninteger truncation index t. In this case, we can always
select ε small enough such that bt + εc = btc and bt − εc = btc respectively hold.
This yields (

f t+ε(x)
)
i

= (f t(x))i + εaibtc+1(x)

and
(
f t−ε(x)

)
i

= (f t(x))i − εa
i
btc+1(x).

Now we introduce the function

a(x) :=

{(
a1
t (x), ..., aNt (x)

)T
, for t− ε, t ∈ N(

a1
btc+1(x), ..., aNbtc+1(x)

)T
, else.
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For Ft,δ(x) = ‖Σ−
1
2 (f t(x)− f(xtrue)− δ)‖22 this yields

Ft+ε,δ(x) = Ft,δ(x) + 2ε
〈
Σ−

1
2a(x), Σ−

1
2 (f t(x)− f(xtrue)− δ)

〉
+ ε2‖Σ−

1
2a(x)‖22

and Ft−ε,δ(x) = Ft,δ(x)− 2ε
〈
Σ−

1
2a(x), Σ−

1
2 (f t(x)− f(xtrue)− δ)

〉
+ ε2‖Σ−

1
2a(x)‖22.

Therefore we obtain both for Ft+ε,δ(x) and Ft−ε,δ(x) a decomposition of the form
Ft+ε,δ(x) = Ft,δ(x) + hεt,δ(x) and Ft−ε,δ(x) = Ft,δ(x) + hεt,δ(x) respectively, where
the function hεt,δ(x) is appropriately selected according to above findings. We can

readily check limε→0 |hεt,δ(x)| = 0 for all x ∈ Ω from the boundedness of the ain(x)’s.
Then the result follows from Lemma 7.2.2.

�

Corollary 7.2.4. Let t1 and t2 be truncation indices with t1 < t2. Let xt1,δ be a local
minimizer of (7.2.1). Let γ ∈ [0, 1] and define tγ := t1 + γ (t2 − t1). Then beginning
at γ = 0 one can successively find local minimizers xtγ ,δ for the truncation index
tγ using numerical continuation, see [39]. Here for γ1 < γ2 the minimizer xtγ1 ,δ is
used as a start vector to compute the next minimizer xtγ2 ,δ. The next parameter γ2

has to be sufficiently close to γ1, such that the start vector xtγ1 ,δ still lies within the
domain of convergence for Newton’s method. �

We use Corollary 7.2.4 to compute xt,δ for increasing truncation index t in a
stable way. If we would keep t as integer and increase it in integer steps, we might
leave the domain of convergence in the continuation method. Therefore we increase
them using a smaller step width.

In the following we investigate how well the minimizers xt,δ of the noise-contaminated
regression problem (7.2.3) with truncated series expansions approximate the mini-
mizers x∞,0 of the noise-free and untruncated problem

x∞,0 := argmin
x∈RD

N∑
i=1

1

2σ2
i

( ∞∑
n=1

ain(x)−
∞∑
n=1

ain(xtrue)

)2

s.t. x ∈ Ω. (7.2.6)

Proposition 7.2.5. Let the noise vector δ fulfill limδ→0 ‖Σ−
1
2δ‖22 = 0 and let the

functions f(x) and f tδ(x) be bounded on Ω. Assume limδ→0 ‖Σ−
1
2gtδ(x)‖22 = 0 for

all x ∈ Ω. Then for any strict minimizer x∞,0 of the right hand side function of
(7.2.6) in the interior of Ω exist minimizers xtδ,δ of (7.2.3) with limδ→0 xtδ,δ = x∞,0.
Here we also assume the xtδ,δ’s to be strict for all δ > 0.

Proof. With the notation introduced before we can write

x∞,0 ∈ X∞,0 := argmin
x∈RD

F∞,0(x) s.t. x ∈ Ω

with F∞,0(x) := ‖Σ−
1
2 (f(x)− f(xtrue))‖22.

From the decomposition f tδ(x) = f(x) − gtδ(x) we obtain

Ftδ,δ(x) = ‖Σ−
1
2 (f(x)− f(xtrue)− δ) ‖22−2

〈
Σ−

1
2gtδ(x), Σ−

1
2 (f(x)− f(xtrue)− δ)

〉
+ ‖Σ−

1
2gtδ(x)‖22.
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Then a further decomposition of the first term on the right hand side yields

Ftδ,δ(x) = F∞,0(x)− 2
〈
Σ−

1
2δ, Σ−

1
2 (f(x)− f(xtrue))

〉
+ ‖Σ−

1
2δ‖22

−2
〈
Σ−

1
2gtδ(x), Σ−

1
2 (f(x)− f(xtrue)− δ)

〉
+ ‖Σ−

1
2gtδ(x)‖22

=: F∞,0(x) +Htδ,δ(x).

From the limit limδ→0 ‖Σ−
1
2gtδ(x)‖22 = 0, the limit limδ→0 ‖Σ−

1
2δ‖22 = 0 and the

boundedness of f(x) follows limδ→0 |Htδ,δ(x)| = 0 for arbitrary but fixed x ∈ Ω.
Then the existence of the xtδ,δ’s follows from Lemma 7.2.2.

�

At last we study how the minimizers xtδ,δ of (7.2.3) behave for δ → 0. We begin
with a preparing corollary.

Corollary 7.2.6. Let the assumptions of Proposition 7.2.5 hold. Then we have for
any local minimizer xtδ,δ of (7.2.3) approximating a local minimizer x∞,0 of (7.2.6)

for δ → 0 with ‖Σ−
1
2 (f(x∞,0)− f(xtrue))‖2 = 0 that

lim
δ→0
‖Σ−

1
2 (f tδ(xtδ,δ)− f(xtrue)− δ)‖2 = 0.

Proof. The assumptions of Proposition 7.2.5 give

lim
δ→0
‖Σ−

1
2δ‖22 = 0 and lim

δ→0
‖Σ−

1
2gtδ(xtδ,δ)‖

2
2 = 0.

We have by continuity of f(x) that limδ→0 ‖Σ−
1
2 (f(xtδ,δ)− f(xtrue))‖2 = 0. Then

‖Σ−
1
2 (f(xtδ,δ)− f(xtrue))‖2 + ‖Σ−

1
2gtδ(xtδ,δ)‖2 + ‖Σ−

1
2δ‖2

≥ ‖Σ−
1
2 (f tδ(xtδ,δ)− f(xtrue)− δ)‖2

gives the desired result. �

Proposition 7.2.7. Let the assumptions of Proposition 7.2.5 hold. Assume that

the local minimizers x∞,0 of (7.2.6) with ‖Σ−
1
2 (f(x∞,0) − f(xtrue))‖2 = 0 form a

discrete set S∞,0. Then the set L∞,0 consisting of the limits limδ→0 xtδ,δ of local

minimizers xtδ,δ of (7.2.3) with limδ→0 ‖Σ−
1
2 (f tδ(xtδ,δ) − f(xtrue) − δ)‖2 = 0 co-

incides with S∞,0 and there exists a noise level δmax such that all minimizers xtδ,δ
approximating S∞,0 are isolated for all δ ≤ δmax.

Proof. On the one hand from Proposition 7.2.5 we know that there exists a sequence

xtδ,δ of minimizers of (7.2.3) with limδ→0 xtδ,δ = x∞,0. Then ‖Σ−
1
2 (f(x∞,0) −

f(xtrue))‖2 = 0 and Corollary 7.2.6 give limδ→0 ‖Σ−
1
2 (f tδ(xtδ,δ)−f(xtrue)−δ)‖2 =

0, which implies S∞,0 ⊆ L∞,0.

On the other hand holds for xtδ,δ with limδ→0 ‖Σ−
1
2 (f tδ(xtδ,δ)−f(xtrue)−δ)‖2 =

0 that

‖Σ−
1
2 (f tδ(xtδ,δ)− f(xtrue)− δ)‖2 + ‖Σ−

1
2gtδ(xtδ,δ)‖2 + ‖Σ−

1
2δ‖2

≥ ‖Σ−
1
2 (f(xtδ,δ)− f(xtrue))‖2
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which implies limδ→0 ‖Σ−
1
2 (f(xtδ,δ) − f(xtrue))‖2 = 0. In particular this means

by continuity of f(x) that the vector limδ→0 xtδ,δ must be a local minimizer of

‖Σ−
1
2 (f(x)− f(xtrue))‖2. Thus we have also shown L∞,0 ⊆ S∞,0.

In the following we number all elements of S∞,0 with the index k, i.e. we
write xk∞,0 for k = 1, ..., |S∞,0|. Similarly we number all minimizers xtδ,δ with

limδ→0 ‖Σ−
1
2 (f tδ(xtδ,δ)− f(xtrue)− δ)‖2 = 0 approximating the xk∞,0’s with xktδ,δ,

i.e. limδ→0 x
k
tδ,δ

= xk∞,0 for k = 1, ..., |S∞,0|. Define

Dmin := min
i 6=j
‖xi∞,0 − x

j
∞,0‖2.

Since limδ→0 x
k
tδ,δ

= xk∞,0, we can find an error levels δkmax such that

‖xktδ,δ − x
k
∞,0‖2 < 1

2Dmin for k = 1, ..., |S∞,0|,

which holds for all 0 ≤ δ ≤ δkmax for each k. Then for all 0 ≤ δ ≤ δmax := mink{δkmax}
the xktδ,δ’s must have pairwise mutual distances greater than zero.

�

Now Proposition 7.2.7 gives that the number of local minima xktδ,δ remains con-
stant if the noise level δ is small enough. It also yields that these local minima then
form a set of separated continuous curves parametrized in δ.

At last we wish to have an estimate of the convergence of the local minima xktδ,δ
of the truncated and noise contaminated problem to the local minima xk∞,0 of the
noise-free and untruncated problem, which is useful for practical computations.

Proposition 7.2.8. Let the derivatives of f(x) and gt(x) be bounded for any
t ≥ 0. Then for the noise level δ small enough, we can bound for any local mini-
mum xktδ,δ the approximation error ‖xk∞,0 − xktδ,δ‖2 with a positively weighted linear

combination of the residual ‖Σ−
1
2 (f tδ(x

k
tδ,δ

)− f(xtrue)− δ)‖2, the truncation error

‖Σ−
1
2gtδ(x

k
tδ,δ

)‖2 and the noise estimate ‖Σ−
1
2δ‖2.

Proof. The first order necessary conditions for a local minimum of Ftδ,δ(x) = F∞,0(x)+
Htδ,δ(x) at xktδ,δ and a local minimum of F∞,0(x) at xk∞,0 yield in particular〈

∇F∞,0(xktδ,δ) +∇Htδ,δ(x
k
tδ,δ

), xk∞,0 − xktδ,δ
〉
≥ 0

and
〈
∇F∞,0(xk∞,0), xktδ,δ − x

k
∞,0
〉
≥ 0,

Adding the last two inequalities yields〈
∇Htδ,δ(x

k
tδ,δ

), xk∞,0−xktδ,δ
〉
≥
〈
∇F∞,0(xk∞,0)−∇F∞,0(xktδ,δ), x

k
∞,0−xktδ,δ

〉
. (7.2.7)

Since ∇F∞,0(x) is totally differentiable at xk∞,0 we obtain

∇F∞,0(xktδ,δ) = ∇F∞,0(xk∞,0) + HessF∞,0(xk∞,0)
(
xktδ,δ − x

k
∞,0

)
+w∞,0(xktδ,δ,x

k
∞,0),

where w∞,0(x,xk∞,0) fulfills

‖w∞,0(x,xk∞,0)‖2 ≤ ‖x− xk∞,0‖2ε∞,0(x,xk∞,0) with lim
x→xk∞,0

ε∞,0(x,xk∞,0) = 0.
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Since HessF∞,0(xk∞,0) is positive definite, the expression
(〈
x,HessF∞,0(xk∞,0) x

〉) 1
2

gives a norm on RD. Because of the equivalence of all norms in RD, there exists a
constant Ck∞,0 > 0 with

(〈
x,HessF∞,0(xk∞,0) x

〉) 1
2 ≥ Ck∞,0‖x‖2 for all x ∈ RD.

Since limδ→0 x
k
tδ,δ

= xk∞,0 we can find a noise level ρkmax such that |ε∞,0(xktδ,δ,x
k
∞,0)| ≤

dk∞,0 for all δ ≤ ρkmax, where dk∞,0 is a constant with 0 ≤ dk∞,0 <
(
Ck∞,0

)2
. Then

using 〈
w∞,0(xktδ,δ,x

k
∞,0),xk∞,0 − xktδ,δ

〉
≤ ε∞,0(xktδ,δ,x

k
∞,0)‖xk∞,0 − xktδ,δ‖

2
2

and (7.2.7) we can estimate

‖∇Htδ,δ(x
k
tδ,δ

)‖2‖xk∞,0 − xktδ,δ‖2
≥
〈
∇F∞,0(xk∞,0)−∇F∞,0(xktδ,δ),x

k
∞,0 − xktδ,δ

〉
=
〈
HessF∞,0(xk∞,0)

(
xk∞,0 − xktδ,δ

)
−w∞,0(xktδ,δ,x

k
∞,0), xk∞,0 − xktδ,δ

〉
≥
((
Ck∞,0

)2 − ε∞,0(xktδ,δ,x
k
∞,0)

)
‖xk∞,0 − xktδ,δ‖

2
2,

i.e. this gives

‖xk∞,0 − xktδ,δ‖2 ≤
((
Ck∞,0

)2 − dk∞,0)−1
‖∇Htδ,δ(x

k
tδ,δ

)‖2 (7.2.8)

for all δ ≤ ρkmax.
We have

∇Htδ,δ(x) = 2
(

JacTgtδ
(x)Σ−1gtδ(x)− JacTgtδ

(x)Σ−1(f(x)− f(xtrue)− δ)

−JacTf (x)Σ−1gtδ(x)− JacTf (x)Σ−1δ
)
,

i.e. we find that

‖∇Htδ,δ(x
k
tδ,δ

)‖2 ≤ 2
(
‖JacTgtδ

(xktδ,δ)Σ
− 1

2 ‖2‖Σ−
1
2gtδ(x

k
tδ,δ

)‖2

+ ‖JacTgtδ
(xktδ,δ)Σ

− 1
2 ‖2
(
‖Σ−

1
2 (f tδ(x

k
tδ,δ

)− f(xtrue)− δ)‖2

+ ‖Σ−
1
2gtδ(x

k
tδ,δ

)‖2
)

+ ‖JacTf (xktδ,δ)Σ
− 1

2 ‖2‖Σ−
1
2gtδ(x

k
tδ,δ

)‖2

+ ‖JacTf (xktδ,δ)Σ
− 1

2 ‖2‖Σ−
1
2δ‖2

)
,

which gives the result.
�

Corollary 7.2.9. Let the derivatives of f(x) and gt(x) be bounded for any t ≥ 0.
Let the truncation indices tδ depend on the vector of independent Gaussian random

variables δ with limδ→0 E
(
‖Σ−

1
2δ‖22

)
= 0 such that limδ→0 E

(
‖Σ−

1
2gtδ(x)‖22

)
= 0

holds for all arbitrary but fixed x ∈ Ω. Then we have for all minimizers xk∞,0 of
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(7.2.6) with ‖Σ−
1
2 (f(xk∞,0)−f(xtrue))‖2 = 0 that for δ sufficiently small there exist

minimizers xktδ,δ of (7.2.3) with

lim
δ→0

E
(
‖xk∞,0 − xktδ,δ‖2

)
= 0.

Proof. Proposition 7.2.5 establishes the existence of the xktδ,δ’s. Corollary 7.2.6 gives

lim
δ→0

E
(
‖Σ−

1
2 (f tδ(x

k
tδ,δ

)− f(xtrue)− δ)‖2
)

= 0.

Proposition 7.2.7 gives that for δ sufficiently small there exists a constant Kk
∞,0 with

E
(
‖xk∞,0 − xktδ,δ‖2

)
≤ Kk

∞,0E
(
‖∇Htδ,δ(x

k
tδ,δ

)‖2
)
.

Set Sk1 := supx∈Ω ‖JacTgtδ
(x)Σ−

1
2 ‖2 < ∞ and Sk2 := supx∈Ω ‖JacTf (x)Σ−

1
2 ‖2 < ∞.

Then the estimate for ‖∇Htδ,δ(x
k
tδ,δ

)‖2 in the proof of Proposition 7.2.7 gives

E
(
‖∇Htδ,δ(x

k
tδ,δ

)‖2
)
≤ 2
(
Sk1E

(
‖Σ−

1
2gtδ(x

k
tδ,δ

)‖2
)

+ Sk1

(
E
(
‖Σ−

1
2 (f tδ(x

k
tδ,δ

)− f(xtrue)− δ)‖2
)

+ E
(
‖Σ−

1
2gtδ(x

k
tδ,δ

)‖2
))

+ Sk2E
(
‖Σ−

1
2gtδ(x

k
tδ,δ

)‖2
)

+ Sk2E
(
‖Σ−

1
2δ‖2

))
,

which proves the claim since Assumption 7.2.1 gives E
(
‖Σ−

1
2δ‖2

)
≤
√
Nδ.

�

The strategy for our retrieval algorithm is to start with an initial guess for the
truncation index tstart and try to find all local minima xktstart,δ. Then the truncation

index is gradually increased and starting from xktstart,δ the continuation method is

applied to find finally the local minima xktδ,δ. Motivated by Propositions 7.2.8 and
7.2.9 only those local minima are considered to be possible approximations to our

sought-after refractive index, where the residual ‖Σ−
1
2 (f tδ(x

k
tδ,δ

)− f(xtrue)− δ)‖2
and an estimate of the truncation error ‖Σ−

1
2gtδ(x

k
tδ,δ

)‖2 are both reasonably small.
The latter serves also as a stopping criterion for the continuation method

The initial guess tstart has to be selected with care. On the one hand if it is to
small, the model is to inaccurate and the retrieval of the sought-after local minima
can not be guaranteed. On the other hand if it is too big, computational effort is
wasted, since too many Mie coefficient functions with almost vanishing magnitudes
and thus essentially not changing the local minima are computed.
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7.3 Generation of Candidate Solutions

We now return to our regression problem (7.1.3). For i = 1, ..., N we see that the
measured extinctions normalized by the number of particles ni with radius ri, i.e. the
quantity ei

ni
, is Gaussian-distributed with mean 1

ni
qtrue(ri, l) and standard deviation

σi := si
ni

. In the following we fix a wavelength l, i.e. we reconstruct the sought-after
particle refractive index mpart(l) wavelength by wavelength. In the following the
unit both for particle radii and light wavelengths is µm.

We make use of the function qNtr : R2 → RN defined by

qNtr(x) :=

(
πr2

1

Ntr∑
n=1

qn(x, r1, l), ..., πr
2
N

Ntr∑
n=1

qn(x, rN , l)

)T
, (7.3.1)

where R = {r1, ..., rN} is the particle radius grid and Ntr the truncation index to
be used. We allow non-integer truncation indices Ntr as well, where the non-integer
truncation is done like in Proposition 7.2.3. Here the expression qn(x, rk, l) is a
short notation of qn(mmed(l), (x)1 + (x)2i, rk, l) from Section 7.1, where the sought-
after refrative index mpart(l) is identified with the vector x here, i.e. mpart(l) =
(x)1 + (x)2i. So its computation follows Chapter 1.

In the following the refractive index search area is given by the rectangle Ω :=
[0, 20] × [0, 40], which means that we only consider refractive indices of particle
materials whose real parts lie in the interval [0, 20] and its imaginary parts in the
interval [0, 40]. This rather large search area makes the algorithm suitable for a wide
range of aerosol materials.

Algorithm 6 Reconstruction of Refractive Indices

1: breal = 20
2: bimag = 40
3: Nreal = 81
4: Nimag = 161
5: ci = (i− 1) breal

Nreal−1 for i = 1, ..., Nreal

6: di = (i− 1)
bimag

Nimag−1 for i = 1, ..., Nimag

7: R = {0.1, 0.2, 0.3}
8: N = 3
9: Ntr = 3

10: Sstart = {}
11: estimate σ2

1, ..., σ2
N from the sample means approximating the standard devia-

tions of e1
n1

, ..., eN
nN

.

12: δ2 := max
{
σ2

1, ..., σ
2
N

}
13: Σ := δ−2 · diag

(
σ2

1, ..., σ
2
N

)
14: for i = 1 to Nreal do
15: for j = 1 to Nimag do

16: compute the Hessian H(ci, dj) of F (x) := 1
2‖Σ

− 1
2

(
qNtr(x)− ereal

)
‖22

at x = (ci, dj)
T
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17: if H(ci, dj) is positive definite then

18: use (ci, dj)
T as start vector to compute

19: xnew = argmin
x∈R2

1
2‖Σ

− 1
2

(
qNtr(x)− e

)
‖22 s.t. x ∈ [0, breal]× [0, bimag]

20: if Sstart is empty ∨ ‖x−xnew‖2‖x‖2 ≥ 10−2 ∀x ∈ Sstart then

21: Sstart = Sstart ∪ {xnew}
22: end if
23: end if
24: end for
25: end for
26: Nstart = |Sstart|
27: Sout = {}
28: τ = 3
29: for i = 1 to Nstart do
30: c = Ntr

31: Tolrel = 10−3

32: Drel =∞
33: while Drel > Tolrel do
34: for p = 1 to 10 do
35: use the vector Sstart(i) as start vector to compute

36: xnew = argmin
x∈R2

1
2‖Σ

− 1
2

(
qc+ p

10
(x)− e

)
‖22

s.t. x ∈ [0, breal]× [0, bimag]

37: Rescur = ‖Σ−
1
2

(
qc+ p−1

10
(Sstart(i))− e

)
‖22

38: Resnew = ‖Σ−
1
2

(
qc+ p

10
(xnew)− e

)
‖22

39: Drel = |Rescur−Resnew|
Rescur

40: Sstart(i) = xnew
41: end for
42: c = c+ 1
43: end while
44: if Resnew < τNδ2 then
45: if Sout is empty ∨ ‖x−xnew‖2‖x‖2 ≥ 10−2 ∀x ∈ Sout then

46: Sout = Sout ∪ {xnew}
47: end if
48: end if
49: end for

In the first loop from lines 14 - 25 a search for local minima of the fit function
F (x) defined in line 16 for the truncation index Ntr = 3 is performed. The loop
runs through all grid points (ci, dj)

T of the search grid defined in lines 5 - 6. If the
Hessian of F (x) at some grid point (ci, dj)

T is positive definite, this point might
lie in the vicinity of a local minimum. The Hessian is computed exactly, where the
second partial derivatives of the Mie extinction efficiency with respect to the real
and imaginary part of the scattering material needed here are computed using the
product rule approach from Section A. So we use (ci, dj)

T as start point for a local
solver in this case. In line 20 we only accept a new local minimum if it is sufficiently
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different from the local minima already found. Then it is stored in the container
Sstart. This simple global search strategy can find all local minima if the search grid
is fine enough.

The second loop from lines 29 - 49 uses the local minima found in the first loop as
start points for the continuation method following Proposition 7.2.3 and Corollary
7.2.4. We found that a step width of 0.1 is for our problem a well-balanced choice
between too big step widths rendering the continuation method unstable and too
small step widths making it computationally inefiicient. With the stopping criterion
Drel ≤ Tolrel of the while-loop it is approximately checked if the magnitude of the
remainder term is small enough. Finally in line 44 it is checked if the residual is
small enough. In our implementation we did another run of lines 44 - 48 with τ = 5
and τ = 7 respectively, if none of the reconstructions had a squared residual smaller
than τNrδ

2 for the previous τ . This had to be done, because the parameter τ has to
be selected carefully in order to estimate the bound on E

(
‖xk∞,0 − xktδ,δ‖2

)
derived

in the proof of Corollary 7.2.9 correctly.

7.4 Comparison with Established Truncation Index Heuris-
tics

As solution of the forward problem we generated for a discrete set of wavelengths
l1, ..., lNl unperturbed spectral extinctions normalized with the number of particles
of the monodisperse aerosol by computing

(etrue)i,j := πr2
i

Ntr∑
n=1

qn(mmed(lj),mpart(lj), ri, lj), for i = 1, ..., N, j = 1, ..., Nl

with mpart(li) taken as the refractive indices of Ag, H2O and CsI. Here we used the
truncation index

ρ = 2π
r

l
,

M = max{|ρ|, |ρ ·mpart(l)|, |ρ ·mmed(l)|},

Ntr := d|M + 4.05 ·M
1
3 + 2|e

(7.4.1)

introduced in [6].

For particle size distribution reconstructions as outlined in Chapters 2 and 5 we
need particle refractive indices for five optical windows, see [40], so the wavelength
grid of interest consists of five ranges. These ranges are given by 8 linearly spaced
wavelengths from 0.6 − 0.8 µm, 8 from 1.1 − 1.3 µm, 8 from 1.6 − 1.8 µm, 16 from
2.1− 2.5 µm and 8 from 3.1− 3.3 µm, so we have in total Nl = 48 wavelengths.

For each of the 48 wavelengths we generated noisy spectral extinctions e by
adding zero-mean Gaussian noise to etrue, i.e.

(e)i,j = (etrue)i,j+δi,j with δi,j ∼ N (0, (0.05·(etrue)i,j)
2), i = 1, ..., N j = 1, ..., Nl.

Here the standard deviations were taken to be 5% of the original extinction values.
We computed each mean (ereal)i,j of the noisy spectral extinctions with a sample
size of Ns = 300 .
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In the following Algortihm 6 is referred to as method 1. On the same simulated
spectral extinctions we let Algorithm 6 run up to line 25, but with the difference
that at each evaluation of qNtr(x) we directly took the trunction index from (7.4.1).
We denote this approach with method 2. We now display the average run times of
method 1 and method 2 for 10 sweeps through all 48 wavelenghs.

7.4.1 Run Times
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7.4.2 Maximal Relative Deviations

For the 10 simulation runs we list the maximal relative deviations

100 ·
∥∥ (n1

part(lj), k
1
part(lj)

)T − (n2
part(lj), k

2
part(lj)

)T ∥∥
2∥∥ (n1

part(li), k
1
part(lj)

)T ∥∥
2

of the refractive index reconstructions
(
n2
part(lj), k

2
part(lj)

)T
from method 2 from(

n1
part(lj), k

1
part(lj)

)T
of method 1 for j = 1, ..., 48. At each wavelength, multiple

local minima can be detected by both methods. For the relative deviations we
always selected the local minima forming the smoothest reconstructions on each
optical window in the sense of Section 7.6.
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7.4.3 Conclusion

For Ag, the average total run time over all 48 wavelengths for method 1 was 44.0167%
less than for method 2, for H2O 43.9808% and for CsI 44.7322%, i.e. method 1 is
almost two times faster than method 2. The results are of the same quality, since
their relative deviations are just small fractions of percentages.

The continuation method approach saves run time significantly with the same
quality of the results compared to using the truncation index (7.4.1) all the time.

7.5 Candidate Selection and Regularization

So far we have solved the regression problem (7.2.3) without any regularization, thus
the obtained refractive index reconstructions might still be too error-contaminated
to be of practical use. A widely used regularization strategy for nonlinear regression
problems is Tikhonov regularization, which yields the regularized regression problem

xγ := argmin
x∈RD

‖Σ−
1
2 (f t(x)− f(xtrue)− δ)‖22 + γ‖x− x∗‖22 s.t. x ∈ Ω (7.5.1)

when we apply it on (7.2.3), cf. [41]. Here γ is a regularization parameter and x∗

is an estimate of the sought-after true solution. In many cases the unregularized
problem has a whole set of minimizers, thus the vector x∗ works also as a selection
criterion. Now if a reasonable x∗ is found, the regularization parameter γ can be
determined with the discrepancy principle, i.e. γ is computed such that

‖Σ−
1
2 (f t(xγ)− f(xtrue)− δ)‖2 = R(δ),

where R(δ) is an estimate of the residual of the “true” solution which depends on
the noise level δ. For this task monotonicity in the residual of xγ is established in
[41].

The problem of finding a good estimate x∗ still remains. In [42] an alterna-
tive implementable parameter choice strategy without the need of an x∗ is derived.
Applied on our problem it gives

γ
〈
Σ−

1
2 (f t(xγ)− f(xtrue)− δ), J−1

γ (Σ−
1
2 (f t(xγ)− f(xtrue)− δ)

〉
= R(δ),

with Jγ := γI + Σ−
1
2 Jacf t(xγ)Jacf t(xγ)TΣ−

1
2 .

This method has the drawback that the matrix Jγ needs to be inverted, which may
lead to instabilities.

Nevertheless the quality of the regularized solutions still depends strongly on the
start values for solving (7.5.1). We know about our sought-after refractive indices
that they form smooth curves on each of the five optical windows. The complex re-
fractive index curves of most materials can be described using the so-called Lorentz-
oscillator-model, cf. [4]. Here points with bigger curvatures only occur at so-called
resonance frequencies corresponding to some isolated resonance wavelengths. Mo-
tivated by these facts we derive in the following a method to find reasonable start
values for Phillips-Twomey-regularization out of the results of Algorithm 6, which
will be outlined in Section 7.7.
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7.6 Finding the Smoothest Coupled Solutions

We have the problem of identifying the best approximation to the sought-after true
particle material refractive index xtrue out of a set of multiple solutions obtained
with Algorithm 6. This problem is referred to as input selection problem. In principle
a Bayesian selection mechanism as described in [43] can be applied here, but for our
regression problem it is infeasible due to the severe nonlinearity of the Mie extinction
series. Instead we use in the context of the framework from [44] a filter mechanism.
This means we define a measure of the quality for the candidate solutions and
select the best ones. We achieve this by coupling the solutions, which means that
we combine solutions from neighboring wavelengths l in each of the five optical
windows in order to obtain a unique solution for every optical window. We know
about the complex refractive index curves to be retrieved that they are smooth,
hence we expect their sum of the squared second finite differences both in the real
and imaginary parts to be small.

Let l1, ..., ls denote the wavelengths of any of our five wavelength ranges. Let
N1, ..., Ns be the number of solutions found for all the wavelengths. We denote with
xij the j-th solution found for wavelength li for i = 1, ..., s and j = 1, ..., Ni. Now we

wish to find the smoothest combined solution from all possible combinations x1
j1

, ...,
xsjs for ji = 1, ..., Ni, hence we have a total number of

∏s
i=1Ni combinations. Here

we measure smoothness of a combination x1
j1

, ..., xsjs with the sum

S :=

s−1∑
i=2

(((
xi−1
ji−1

)
1
− 2
(
xiji
)

1
+
(
xi+1
ji+1

)
1

)2
+
((
xi−1
ji−1

)
2
− 2
(
xiji
)

2
+
(
xi+1
ji+1

)
2

)2
)

of its second finite differences both in the real parts (xiji
)

1
and its imaginary parts

(xiji
)

2
, which means that we regard a combination the smoother the smaller its sum

S is.
We encounter the problem that the total number of possible combinations

∏s
i=1Ni

might get too big to iterate through all combinations in the search for the smoothest
one in acceptable time. Therefore we propose a greedy algorithm, which uses each
second finite difference as start point to find a smooth combination.

Algorithm 7 Detection of the Smoothest Combination

1: Smin =∞
2: Scur = 0
3: Comb = {}
4: SmoothestCombination = {}
5: for z = 2 to s− 1 do
6: for c1 = 1 to Nz−1 do
7: for c2 = 1 to Nz do
8: for c3 = 1 to Nz+1 do

9: Scur =
((
xz−1
c1

)
1
− 2
(
xzc2
)

1
+
(
xz+1
c3

)
1

)2

+
((
xz−1
c1

)
2
− 2
(
xzc2
)

2
+
(
xz+1
c3

)
2

)2
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10: Comb(z − 1) = xz−1
c1

11: Comb(z) = xzc2
12: Comb(z + 1) = xz+1

c3

13: for k = z − 2 to 1 do
14: Dmin =∞
15: Dcur =∞
16: xmin = (0, 0)T

17: xmid = Comb(k + 1)
18: xright = Comb(k + 2)
19: for j = 1 to Nk do

20: Dcur =
((
xkj
)

1
− 2
(
xmid)1 +

(
xright

)
1

)2

+
((
xkj
)

2
− 2
(
xmid

)
2

+
(
xright

)
2

)2

21: if Dcur < Dmin then
22: Dmin = Dcur

23: xmin = xkj
24: end if
25: end for
26: Scur = Scur +Dmin

27: Comb(k) = xmin
28: end for
29: for k = z + 2 to s do
30: Dmin =∞
31: Dcur =∞
32: xmin = (0, 0)T

33: xmid = Comb(k − 1)
34: xleft = Comb(k − 2)
35: for j = 1 to Nk do

36: Dcur =
((
xleft

)
1
− 2
(
xmid)1 +

(
xkj
)

1

)2

+
((
xleft

)
2
− 2
(
xmid

)
2

+
(
xkj
)

2

)2

37: if Dcur < Dmin then
38: Dmin = Dcur

39: xmin = xkj
40: end if
41: end for
42: Scur = Scur +Dmin

43: Comb(k) = xmin
44: end for
45: if Scur < Smin then
46: Smin = Scur
47: SmoothestCombination = Comb
48: end if
49: end for
50: end for
51: end for
52: end for
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The main loop spanning over the lines 5 - 52 iterates through all positions z =
2, ..., s − 1 of a middle point for a second finite difference both in the real and
imaginary part. At each position z the inner loops beginning in lines 6 - 8 iterate
through all possible second finite differences which can be formed out of the vectors
xz−1
c1 , xzc2 and xz+1

c3 for c1 = 1, ..., Nz−1, c2 = 1, ..., Nz and c3 = 1, ..., Nz+1, i.e. they
loop through all of their middle points and left and right neighbors at position z.
In lines 9 - 12 the variable Scur is initialized with the sum of the squared second
finite differences in the real and imaginary parts of the current vectors xz−1

c1 , xzc2
and xz+1

c3 and the positions z − 1, z and z + 1 of the array Comb are filled with the
current vectors. For z ≥ 3 the loop in lines 13 - 28 successively fills the positions
k = z − 2, z − 3, ..., 1 of the array Comb. At each new position k the minimal sum
of the two squared second finite differences in the real and imaginary part Dmin is
determined in lines 19 - 25, where the middle and right point are fixed and taken
as the leftmost two vectors from the array Comb and the right point runs through
all xkj for j = 1, ..., Nk. After the vector xmin giving out of all of the xkj ’s giving
the minimal sum Dmin is found, the Dmin is added to Scur and xmin is stored in
k-th entry Comb(k). In a similar way the loop in lines 29 - 44 succesively fills the
positions k = z + 2, z + 3, ..., s for z ≤ s − 2. This time the left and middle point
are fixed and taken as the rightmost two points of the array Comb, whereas the left
point iterates through all xkj for j = 1, ..., Nk. Again the vector xmin is that one of

the xkj ’s giving the minimal sum Dmin and it is stored in Comb(k). As well the sum
Dmin is added to Scur.

In the above procedure every triple of neighboring vectors from the results of
Algorithm 6 is considered to possibly lie on the sought-after smoothest combination
with the smallest sum of all squared second differences. The three vectors are used
as start points to find a smooth combination with a greedy strategy, where only a
vector is added to the current combination, if it gives the smallest sum Dmin at the
left or right end of the growing set with vectors already added, until the first and
last position are reached.

Finally from all of the combinations constructed this way the smoothest one with
the smallest sum Smin out of all Scur’s is selected in lines 45 - 48 to be the final
output SmoothestCombination.

Define Ntotal :=
∑s

j=1Nj . Then the total number of operations needed for Algo-

rithm 7 can be estimated by O
(
Ntotal

∑s−1
j=2Nj−1NjNj+1

)
which is considerably less

than the O
(∏s

j=1Nj

)
operations needed by the naive method of iterating through

all possible combinations.

7.7 Further Regularization of Coupled Solutions

Not only for determining the smoothest refractive index curve reconstructions formed
from the results of Algorithm 6 the coupled view on the solutions is beneficial - it
also leads to further improvement of the results by Twomey-regularization. Let us
investigate the coupled approach in a probability theoretical setting. Here we reuse
the notations introduced in Section 7.2, i.e. we let x1, ..., xs denote a set of solution
for any of the five optical windows. Then the joint posterior probability density of
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x1, ..., xs is given by

p(x1, ...,xs|e1, ..., es) =
s∏
j=1

p(xj |ej) ∝ exp

(
−1

2

∑s
j=1 ‖Σ

− 1
2

j (f jt (x
j)− ej)‖22

) s∏
j=1

IΩ(xj),

(7.7.1)
where ej is the data vector for the j-th wavelength lj having N entries with N
being the size of the radius grid. Moreover Σj is the scaled covariance matrix for

lj and f jt (x) is the applied model depending on lj . Note that we initially have
differing truncation indices t1, ..., ts. Since the coefficient functions of the truncated
model function f tj (x) are decaying fast for each tj , it is convenient to change to the
same truncation index t := max{t1, ..., ts} for all wavelengths l1, ..., ls. The errors
introduced by doing so are negliglible. It is easy to show that maximizing the joint
density (7.7.1) is equivalent to maximize all single densities p(xj |ej) independently,
i.e. a joint MAP-estimator

x1
opt, ...,x

s
opt = argmax

x1,...,xs
p(x1, ...,xs|e1, ..., es)

consists of the single MAP-estimators

xjopt = argmax
x

p(x|ej)

for j = 1, ..., s. This means the the results of Algorithm 6 can be used to construct
MAP-estimators for the joint posterior probabilty density.

This behavior changes when we replace the joint prior probabilty density

pprior(x
1, ...,xs) = (vol(Ω))−s

s∏
j=1

IΩ(xj)

with

pprior(x
1, ...,xs) ∝ exp

(
−1

2γS(x1, ...,xs)
) s∏
j=1

IΩ(xj),

where

S(x1, ...,xs) :=
s−1∑
i=2

(((
xi−1

)
1
− 2
(
xi
)

1
+
(
xi+1

)
1

)2
+
((
xi−1

)
2
− 2
(
xi
)

2
+
(
xi+1

)
2

)2
)

+ρ

s∑
i=1

((
xi
)2

1
+
(
xi
)2

2

)
,

where γ is a regularization parameter and ρ is a parameter specifying the amount
Tikhonov regularization.

In the new prior distribution we use a combination of Tikhonov and Phillips-
Twomey-regularization both in the real and imaginary parts. Here we apply a small
amount of Tikhonov-regularization by setting ρ = 10−8, such that the resulting regu-
larization operator gets regular. This means that the regularized regression problem
(7.7.2) can be transformed into standard Tikhonov form and that the monotonicity
results from [41] are still valid. These results were generalized to a statistical setting

105



Spectroscopic Measurements of Refractive Indices

in [45]. Each second finite difference is clearly a function of three neighboring points,
therefore a decoupled computation of the joint MAP-estimator

x1
opt, ...,x

s
opt := argmax

x1,...,xs
p(x1, ...,xs|e1, ..., es) (7.7.2)

with

p(x1, ...,xs|e1, ..., es) ∝ exp

(
−1

2

∑s
j=1 ‖Σ

− 1
2

j (f jt (x
j)− ej)‖22 − 1

2γS(x1, ...,xs)

) s∏
j=1

IΩ(xj)

for each wavelength seperately is not possible anymore after changing to the new
prior density. However the result vectors x1, ..., xs from Algorithm 7 form a good
start vector to solve the nonlinear regression problem (7.7.2).

We selected the regularization parameter γ using the discrepancy principle, i.e.
we compute γ such that the regularized solution

x1
γ , ...,x

s
γ := argmin

x1,...,xs

s∑
j=1

‖Σ−
1
2

j (f jt (x
j)− ej)‖22 + γS(x1, ...,xs) s.t. xj ∈ Ω, j = 1, ..., s

fulfills a relation of the form

s∑
j=1

‖Σ−
1
2

j (f jt (x
j
γ)− ej)‖22 = R(δ),

where R(δ) is a proposed residual value depending on the noise level δ. In Chap-
ter 2 several different residual values are proposed for a fixed model discretization
and a set of regularization parameters is obtained from those using the discrepancy
principle. The pairings of model discretizations and regularization parameters ob-
tained this way are compared by their Bayesian posterior probabilities. In the case
that the posterior probabilities can be approximated by Gaussians quite well, these
probabilities can be computed approximately with Monte Carlo integration meth-
ods, see Section 4.2 and [46]. Due to the highly nonlinear behavior of our model
f t(x) such integration methods are not feasible here. Therefore we simplified the
posterior exploration in such a way that only one residual value is proposed.

Since each observed probability density p(ej |xj) for j = 1, ..., s is Gaussian, the
joint observed density p(e1, ..., e1|x1, ...,xs) =

∏s
j=1 p(e

j |xj) is Gaussian as well.

We have xj ∈ R2, thus the sum of residuals
∑s

j=1 ‖Σ
− 1

2
j (f jt (x

j) − ej)‖22 running

through all wavelengths in the optical window is χ2(2s)-distributed. This yields

E
( s∑
j=1

‖Σ−
1
2

j (f jt (x
j)− ej)‖22

)
= 2s.

Now a widely proposed residual value for the discrepancy principle is τ · 2s, where
τ = 1.1 is the so-called Morozov safety factor. This choice is prone to under-
or overregularization since the residual value corresponding to the “true” solution
might be much smaller or bigger than 2τs. Therefore we proposed a residual value
which depends more dynamically on the observed behovior of the residual. For
more general Morozov discrepancy principles, where τ fulfills 1 < τ1 ≤ τ ≤ τ2 with
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τ1 < τ2, convergence of the regularized solutions to a minimizer of the nonlinear
noise-free fit function was established in [47] under quite general conditions.

Let x1
0, ..., xs0 denote the unregularized solutions, i.e. the results of Algorithm

7. Then their squared residual is given by R0 :=
∑s

j=1 ‖Σ
− 1

2
j (f jt (x

j
0) − ej)‖22. We

first proposed
R(δ) = max {2τ1s, τ1R0} ,

where we selected τ1 = 1.1. This means that the residual of the regularized solution is
beginning at R0 at least increased by the factor τ1, which avoids underregularization.
If it then happens that R(δ)

R0
> θ with θ = 1.5 the proposed residual is most likely

too big and overregularization occurs. In this case we corrected R(δ) by setting

R(δ) = max {2τ2s, θR0}

with τ2 = 0.9.
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Chapter 8

Numerical Results

8.1 Simulations of Refractive Index Reconstructions

To see how reliable our proposed reconstruction algortihm is, we performed for each
of the scatterer materials Ag, H2O a numerical study with 100 sweeps through all
48 wavelenghts of the five optical windows with the same settings as in Section 7.4.
We found out that the radii r1 := 0.1 µm, r2 := 0.2 µm and r3 := 0.3 µm contain
the most information about the refractive indices. This was found by keeping our
48 wavelengths fixed and comparing the quality of inversion results under varying
aerosol particle radii. Bigger radii did not improve the results in our simulations and
refractive index reconstructions only using bigger radii even turned out to be too
unstable. A more thorough treatment of this problem can be found in [48], where a
covariance eigenvalue analysis is used. Although not directly comparable with our
study of uncoated particles, the coated radii 0.0975 µm, 0.2305 µm and 0.11 µm
carrying the most information content found in this study are roughly comparable
to our radii.

We computed original spectral extinctions

(etrue)i,j := πr2
i

Ntr∑
n=1

qn(mmed(li),mpart(li), rj , li), i = 1, ..., 48, j = 1, ..., 3

for Ag, H2O and CsI and added zero-mean Gaussian noise to it in order to obtain
the simulated noisy spectral extinctions

(e)i,j = (etrue)i,j+δi,j with δi,j ∼ N (0, (0.05·(etrue)i,j)
2), i = 1, ..., 48, j = 1, ..., 3.

The standard deviations were taken to be 5% of the true spectral extinctions. Real
experiments using 500 wavelengths were contaminated by Gaussian noise with 30%
of the true spectral extinctions as standard deviations. We expect that switching
to 48 wavelengths and thus increasing the time resolution of the measurements will
lower the standard deviations to a small percentage. We used a sample size of
Ns = 300 to compute each mean (ereal)i,j of noisy spectral extinctions.

In the following the results are presented separately for each of the three mate-
rials. The uppermost plot presents the relative errors of the unregularized solutions
obtained with Algorithm 7 from the original scatterer refractive indices. The next
plot displays the run times of Algorithm 6, which returned all local minima of (7.2.3).
These candidate solutions served as input for Algorithm 7. Then the relative errors
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of the regularized solutions are presented. Finally the relative errors of the average
of the regularized solutions are shown.

8.2 Results for Ag

8.2.1 Results of Algorithms 6 and 7
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8.2.2 Relative Errors of the Regularized Solutions
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8.3 Results for CsI

8.3.1 Results of Algorithms 6 and 7
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8.3.2 Relative Errors of the Regularized Solutions
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8.4 Results for H2O

8.4.1 Results of Algorithms 6 and 7
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8.4.2 Relative Errors of the Regularized Solutions
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8.5 Conclusion

The severest relative errors can be observed for Ag. For the initial unregularized
solutions they lie between 1 and 5% on average and can go up to ca. 53% in the
extreme cases as one can see in the leftmost subplot for the first optical window.
The run times of Algorithm 6 lie between 30 and 50 seconds in the average case
and can rise up to 200 seconds in the extreme cases. A typical sweep through all 48
wavelengths needed ca. 30 minutes in total and this value was very much the same
for all three materials. For Ag the regularization procedure effectively reduced the
relative errors such that they are in the range between 0.5 and 2.2% on average and
are below 10% in the extreme cases. Finally one can see in the last plot that the
relative errors of the average of all 100 regularized solutions are all below 0.4%.

For CsI the relative errors of the unregularized solutions are already quite small
and lie between 0.03 and 0.065% on average and rise only up to 0.3% in the extreme
cases. The run times of Algorithm 6 are typically in the range from 25 to 55 seconds
and are always below 95 seconds. The regularization of the solutions brought only
a small improvement of the results here such that the relative errors did not change
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much. They are still in the same range from 0.03 and 0.065% on average but only
reach up to ca. 0.2% now. The relative errors of the average of the 100 regularized
solutions are between 0.01 and 0.055%.

Also for H2O the relative errors of the unregularized solutions are comparably
small and are below 0.35% on average and still below 1.3% in the extreme cases.
Especially the rightmost subplot for the last optical window shows the biggest rel-
ative errors, whereas for all the other optical windows the relative errors are below
0.03% on average and below 0.15% in the extreme cases. A similar behavior can be
observed for the run times of Algorithm 6. For the first four optical windows they
are between 20 and 45 seconds on average and below 100 seconds in the extreme
cases, whereas for the last optical window they are between 30 and 170 seconds on
average and can even rise up to 350 seconds. For H2O the regularization procedure
improves the relative errors only slightly for the first four optical windows and even
increases them for the last optical window such that they can rise up to ca. 0.06%
on average and 1.4% in the extreme cases. The relative errors of the average of the
100 regularized solutions are virtually zero for the first four optical windows and
below 0.55% for the last optical window.

8.6 Higher Noise Levels

To see how our proposed reconstruction algortihm behaves for higher noise levels,
we performed for each of the scatterer materials Ag, H2O and CsI two numerical
studies with 10 sweeps through all 48 wavelenghts of the five optical windows with
the same settings as in Section 7.4. We computed original spectral extinctions

(etrue)i,j := πr2
i

Ntr∑
n=1

qn(mmed(li),mpart(li), rj , li), i = 1, ..., 48, j = 1, ..., 3

for all wavelengths and added zero-mean Gaussian noise to it in order to obtain the
simulated noisy spectral extinctions

(e)i,j = (etrue)i,j+δi,j with δi,j ∼ N (0, (0.15·(etrue)i,j)
2), i = 1, ..., 48, j = 1, ..., 3.

for the first study and

(e)i,j = (etrue)i,j+δi,j with δi,j ∼ N (0, (0.3·(etrue)i,j)
2), i = 1, ..., 48, j = 1, ..., 3.

for the second. The standard deviations were taken to be 15% and 30% respectively
of the true spectral extinctions. We used a sample size of Ns = 300 to compute each
means (ereal)i,j of noisy spectral extinctions.

For brevity we only present the relative errors of the average of the 10 regularized
solutions.
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8.6.1 Results for Ag
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Results for 30% Noise
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8.6.2 Results for CsI

Results for 15% Noise
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Results for 30% Noise
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8.6.3 Results for H2O

Results for 15% Noise
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8.7 Conclusion

Whereas the relative errors for CsI and H2O are still below 1%, they can rise up to ca.
53% for Ag. Therefore the reconstructed refractive indices for Ag under this noise
level are most likely not of practical use. This shows that the FASP measurements of
monodisperse aerosols must be sufficiently accurate in order to retrieve the scatterer
refractive indices from them.
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8.8 Comparison with Genetic Algorithms

Of course the sequential search strategy is not the only way to find the candiate so-
lutions. In this section we present the results obtained with a genetic algorithm. We
used the same settings as in previous sections, i.e. we generated for each refractive
index retrieval artificial measurement data consisting of 300 single measurements
perturbed by zero-mean Gaussian noise with a standard deviation of 5% of the true
extinction values.

We applied the MATLAB function “ga” with its standard settings. For each
refractive index retrieval we performed five sweeps of the “ga” function in order to
capture all local minima of the fit function of interest.

8.9 Results for Ag

8.9.1 Results of the Genetic Algorithm and Algorithm 7
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8.10 Results for CsI

8.10.1 Results of the Genetic Algorithm and Algorithm 7
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8.11 Results for H2O

8.11.1 Results of the Genetic Algorithm and Algorithm 7
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8.12 Conclusion

The results show that genetic algorithms are not superior to the sequential search
strategy, both in run time and quality of the results.

Remark 8.12.1. For the application, i.e. the reconstruction of refractive indices
from spectral measurements of homogeneously internally mixed particles, a sequen-
tial search strategy is feasible and sufficient. However if more complicated models
for the particles under consideration are applied, e.g. a core-plus-shell models, the
dimensionality of the regression problems for the refractive index retrieval grows.
For the core-plus-shell model the complex refractive indices both of the particle
cores and shells must be determined, therefore we deal here with a four-dimensional
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problem. In this case a sequential search strategy is infeasible. A remedy to this
problem is given in [48], where the technique of simulated annealing is applied on
the core-plus-shell model.

8.13 Numerical Study for Reconstructed Refractive In-
dices

We performed four numerical studies for two-component aerosols with log-normal,
RRSB and Hedrih model size distributions as outlined in Chapter 5. The aerosol
particles were assumed to be homogeneously internally mixed, such that only one
effective refractive index was retrieved. One component of the simulated aerosols
was H2O with volume fractions of 0, 11, 22, 33, 44, 56, 67, 78, 89 and 100%. In the
first two studies we simulated mixtures of H2O and CsI, where we used the original
aerosol component refractive indices for the first study. For the second study we
used the average of the 100 regularized solutions from Section 8.1. We did the same
for the third and fourth study, but here we simulated mixtures of H2O and Ag. In
the third study we utilized the original aerosol component refractive indices and for
the fourth the average of the 100 regularized solutions from Section 8.1.

We applied the same reconstruction methods described in Chapter 5 under the
same settings, i.e. for each reconstruction we generated 300 artificial noisy mea-
surements for all 48 wavelengths, where the measurement error was simulated as
additive zero-mean Gaussian noise. For each wavelength, the standard deviations
were taken as 5% of the solutions of the forward problem. In Chapter 5 three differ-
ent regularization methods, namely Tikhonov, minimal first differences and Twomey
regularization, were compared and their results turned out to be very similar. There-
fore we only used Tikhonov regularization in the following. The results for the first
study were directly adopted from Chapter 5.

For every inversion we computed the L2-error of the obtained reconstruction
relative to the original size distribution and measured the total run time needed for
the inversion. The computations were performed on a notebook with a 2.27 GHz
CPU and 3.87 GB accessible primary memory.
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8.14 Results for Mixtures of H2O and CsI

8.14.1 Noise-free Refractive Indices

original H2O
average L2-errors (%)

Log-Normal RRSB Hedrihvolume percent
Distribution Distribution Distribution

0% 33.4495 37.6093 16.3524

11% 29.9288 31.7431 16.9073

22% 28.8686 30.3894 15.9820

33% 24.8269 28.7004 13.7607

44% 22.5902 24.2003 15.7127

56% 21.0371 21.4835 14.9451

67% 19.1780 19.7283 14.7707

78% 19.0107 17.0828 16.8178

89% 18.6772 14.2999 13.6688

100% 18.0467 11.6901 11.4425

original H2O
average fraction deviation (%)

Log-Normal RRSB Hedrihvolume percent
Distribution Distribution Distribution

0% 11.0750 6.7000 4.8800

11% 7.6500 5.2200 6.3850

22% 6.3450 4.6400 4.1300

33% 4.4000 3.7100 4.3650

44% 3.5750 3.6200 3.3100

56% 3.2700 3.2050 3.0450

67% 2.5050 2.4650 1.8100

78% 2.3850 1.7750 2.7250

89% 2.0100 1.3250 1.9350

100% 1.2550 0.4650 0.7250
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8.14.2 Noisy Refractive Indices

original H2O
average L2-errors (%)

Log-Normal RRSB Hedrihvolume percent
Distribution Distribution Distribution

0% 33.9736 37.2845 17.1607

11% 29.6079 30.1367 16.6469

22% 27.9444 30.3778 16.2839

33% 24.0048 31.1303 13.8363

44% 22.1817 24.0214 15.7084

56% 20.0710 20.9873 15.4322

67% 18.1141 20.9204 14.5403

78% 19.0356 15.5429 17.9794

89% 18.6182 13.4797 12.7544

100% 18.4766 11.0450 12.1062

original H2O
average fraction deviation (%)

Log-Normal RRSB Hedrihvolume percent
Distribution Distribution Distribution

0% 12.5550 7.3150 3.7050

11% 6.9950 5.3950 6.7600

22% 6.2250 4.5100 4.7450

33% 4.0750 3.9700 4.1700

44% 4.0450 3.5550 3.4850

56% 2.9700 2.9500 3.3050

67% 2.2700 2.6250 2.2200

78% 2.4900 1.7400 2.9450

89% 2.0850 1.0850 1.8150

100% 1.3650 0.4200 0.6150
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8.15 Results for Mixtures of H2O and Ag

8.15.1 Noise-free Refractive Indices

original H2O
average L2-errors (%)

Log-Normal RRSB Hedrihvolume percent
Distribution Distribution Distribution

0% 63.1229 72.4297 57.4379

11% 49.8838 60.2852 53.6202

22% 40.7656 63.2290 39.5531

33% 56.6018 67.4771 48.7732

44% 54.8652 70.7186 53.1320

56% 45.8326 66.9322 37.4831

67% 37.6511 55.0038 24.7958

78% 30.5058 44.5771 15.5999

89% 24.7593 27.6324 17.1080

100% 18.6930 9.2744 11.2146

original H2O
average fraction deviation (%)

Log-Normal RRSB Hedrihvolume percent
Distribution Distribution Distribution

0% 0 0.8100 0

11% 0.2650 0.3550 0.3150

22% 0.5200 2.6050 0.6250

33% 16.1300 15.8000 11.2300

44% 12.7550 13.5150 14.1100

56% 8.5500 9.6650 9.1500

67% 6.3700 7.0100 5.5600

78% 3.1150 3.2150 1.8550

89% 1.3750 1.3800 1.1300

100% 0.3600 0 0.0400
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8.15.2 Noisy Refractive Indices

original H2O
average L2-errors (%)

Log-Normal RRSB Hedrihvolume percent
Distribution Distribution Distribution

0% 64.9875 69.1656 59.7450

11% 50.2221 60.3690 54.9776

22% 40.4326 74.3954 40.8412

33% 55.8575 65.4610 49.8945

44% 54.6888 70.3043 51.8924

56% 47.8998 63.6031 38.3468

67% 39.5417 58.6511 24.9801

78% 33.7818 43.1114 16.6046

89% 22.5077 26.3631 15.2523

100% 17.8098 10.3706 11.5581

original H2O
average fraction deviation (%)

Log-Normal RRSB Hedrihvolume percent
Distribution Distribution Distribution

0% 0 0 0

11% 0.2700 0.4000 0.3400

22% 0.4950 3.1800 1.6650

33% 15.0350 15.0700 11.1850

44% 12.1250 13.9850 14.0800

56% 9.0900 8.7800 8.7850

67% 6.4150 7.3600 5.7950

78% 3.0850 3.3050 2.0650

89% 1.2050 1.4350 1.0300

100% 0.2550 0.0250 0.0800

8.16 Conclusion

The resuts of the first and second study only differ by ca. 3% at most and behave
very similarly. The same is for the third and fourth study. These numerical results
indicate that 100 FASP measurement sweeps consisting of 300 single measurements
with an accuracy as in Section 8.1 are sufficient to determine aerosol refractive indices
in such a quality, that they are suitable for particle size distribution reconstructions
for two-component homogeneously internally mixed aerosols using the FASP. The
particle radii of the three monodisperse aerosols generated for the refractive indices
retrieval need to be 0.1 µm, 0.2 µm and 0.3 µm respectively.
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Chapter 9

Summary and Outlook

In this work we derived inversion methods for single- and two-component aerosols,
which satisfy our demands on run time and accuracy, i.e. a single inversion can
be completed in under 30 seconds on a regular notebook and the reconstruction
errors are below 100% for realistc noise levels. They are adaptive methods based on
the statistical investigation of the residual. We established the convergence of our
inversion results to the true sought-after particle size distribution for declining noise
level theoretically and showed the convergence in numerical studies dealing with
appropriate original particle size distributions. In the same numerical studies we
compared our methods with existing inversion methods - among those a Monte Carlo
method based on a Gibbs sampler - and found that it peformed better regarding the
quality of the inversion results.

We also worked on the problem of retrieving aerosol refractive indices from mea-
surements of mondisperse arosols. We obtained an effective reconstruction method
by investigating the behavior of the reconstructions depending on the truncation
index of the Mie extinction efficiency.

In this work we confined ourselves to internally mixed particles. For experimental
applications this simplification might not always be suitable, because aerosol parti-
cles may have a more complicated structure, e.g. they may have a core-plus-shell
structure, where core and shell consist of different non-mixing materials. It is still
open if the methods derived in this work can be extended to those more complicated
cases.
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Appendix A

Derivatives of the Truncated
Mie Efficiency Series

The problem of computing the partial derivatives of the truncated Mie efficiency
series with respect to the real and imaginary parts npart and kpart of the refractive
index of the particle material can be reduced to the problem of computing the
derivatives of its coefficient functions An and Bn. These coefficient functions in
turn depend on the Mie coefficients an, bn, cn and dn. Thus we first compute the
derivatives of the Mie coefficients with respect to npart and kpart, and then apply
the product rule to obtain the derivatives of An and Bn. Similar to [49] we use
recurrence relations of Bessel functions to compute the derivatives. Here we also
give the second derivatives.

The Bessel functions Jα(z) and Yα(z) for an arbitrary weight α fulfill the recur-
rence relations

d

dz

(
zαJα(z)

)
= zαJα−1(z) and

d

dz

(
zαYα(z)

)
= zαYα−1(z), (A.0.1)

cf. [50]. For the Bessel functions occurring in the Riccati-Bessel-functions ξn(z) and
ψn(z) follows from this with the weight α = n+ 1

2 that

ξ̇n(z) =
√

π
2

√
z
(
Jn− 1

2
(z)− n

z
Jn+ 1

2
(z)
)

(A.0.2)

and ψ̇n(z) =
√

π
2

√
z
(
Jn− 1

2
(z)− n

z
Jn+ 1

2
(z)
)

+
√

π
2

√
z
(
Yn− 1

2
(z)− n

z
Yn+ 1

2
(z)
)
i

(A.0.3)

for z 6= 0.
We apply (A.0.1) a second time to get ξ̈n(z), which yields

ξ̈n(z) =
√

π
2

√
z

z2

(
n(n+ 1)Jn+ 1

2
(z) + (1− 2n)Jn− 1

2
(z) + z2Jn− 3

2
(z)
)
.

For an arbitrary weight α we have the recurrence relation

Jα−1(z) =
2α

z
Jα(z)− Jα+1(z),

see [50], and we use it to eliminate the term Jn− 3
2
(z) in the expression for ξ̈n(z).

Then also Jn− 1
2
(z) cancels out, such that we obtain the representation

ξ̈n(z) =
√

π
2

√
z

z2

(
n(n+ 1)− z2

)
Jn+ 1

2
(z) (A.0.4)
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Derivatives of the Truncated Mie Efficiency Series

only involving Jn+ 1
2
(z). Applying (A.0.1) on (A.0.4) gives

...
ξn(z) =

√
π
2

√
z

z3

((
n(n+ 1)− z2

)
zJn− 1

2
(z) +

(
z2 − n2 − 3n− 2

)
nJn+ 1

2
(z)
)
.

(A.0.5)
The Bessel function values

J0+ 1
2
(zmed), ..., JNtrunc+ 1

2
(zmed), Y0+ 1

2
(zmed), ..., YNtrunc+ 1

2
(zmed)

and J0+ 1
2
(zpart), ..., JNtrunc+ 1

2
(zpart).

already computed for a function evaluation of the truncated Mie extinction efficiency
can be reused for their derivatives.

At last we recapitulate the Cauchy-Riemann equations in its complex form. For
a holomorphic function f : C→ C with f(z) = f(x+ iy) = u(x, y) + iv(x, y) holds

ḟ(z) =
d

dz
f(z) =

∂

∂x
f(x+ iy) = −i ∂

∂y
f(x+ iy). (A.0.6)

From this follows

ux = Re
(
ḟ(z)

)
, uy = −Im

(
ḟ(z)

)
, vx = Im

(
ḟ(z)

)
and vy = Re

(
ḟ(z)

)
.

(A.0.7)
Now everything is prepared to differentiate the squared magnitudes of the Mie

coefficients an, bn, cn and dn with respect to npart and kpart. These derivatives will
be used to compute the derivatives of the truncated Mie extinction efficiency with
the chain rule.

A.1 Derivatives of |an|2

First Derivatives

First we write the squared norm of the Mie coefficient an as |an|2 = anan, which
gives

∂

∂npart
|an|2 =

(
∂

∂npart
an

)
an + an

(
∂

∂npart
an

)
and

∂

∂kpart
|an|2 =

(
∂

∂kpart
an

)
an + an

(
∂

∂kpart
an

)
.

We write

an =
E1

D1
with E1 := mpartξ̇n(zmed)ξn(zpart)−mmedξn(zmed)ξ̇n(zpart)

and D1 := mpartψ̇n(zmed)ξn(zpart)−mmedψn(zmed)ξ̇n(zpart),

which yields

d

dmpart
an =

1

D2
1

((
d

dmpart
E1

)
D1 − E1

(
d

dmpart
D1

))
with

d

dmpart
E1 = ξ̇n(zmed)ξn(zpart) +mpartξ̇n(zmed)ρξ̇n(zpart)−mmedξn(zmed)ρξ̈n(zpart)
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Derivatives of the Truncated Mie Efficiency Series

and
d

dmpart
D1 = ψ̇n(zmed)ξn(zpart) +mpartψ̇n(zmed)ρξ̇n(zpart)−mmedψn(zmed)ρξ̈n(zpart).

Furthermore follow from (A.0.6) the relations

∂

∂npart
an =

d

dmpart
an

and
∂

∂kpart
an =

(
d

dmpart
an

)
i.

Although an is not holomorphic with respect to mpart, we can still compute the

partial derivatives
∂

∂npart
an and

∂

∂kpart
an. We obtain using (A.0.7) the relations

∂

∂npart
an =

∂

∂npart
an

and
∂

∂kpart
an =

∂

∂kpart
an.

This completes the computations of
∂

∂npart
|an|2 and

∂

∂kpart
|an|2.

Second Derivatives

We have that

∂2

∂n2
part

|an|2 =

(
∂2

∂n2
part

an

)
an + 2

(
∂

∂npart
an

)(
∂

∂npart
an

)
+ an

(
∂2

∂n2
part

an

)
,

∂2

∂npart∂kpart
|an|2 =

(
∂2

∂npart∂kpart
an

)
an +

(
∂

∂npart
an

)(
∂

∂kpart
an

)
+

(
∂

∂kpart
an

)(
∂

∂npart
an

)
+ an

(
∂2

∂npart∂kpart
an

)
and

∂

∂kpart
|an|2 =

(
∂2

∂k2
part

an

)
an + 2

(
∂

∂kpart
an

)(
∂

∂kpart
an

)
+ an

(
∂2

∂k2
part

an

)
.

In order to obtain the partial derivatives of an and an we first compute

d2

dm2
part

an =
1

D3
1

(((
d2

dm2
part

E1

)
D1 − E1

(
d2

dm2
part

D1

))
D1

− 2

((
d

dmpart
E1

)
D1 − E1

(
d

dmpart
D1

))(
d

dmpart
D1

))

with
d2

dm2
part

E1 = 2ξ̇n(zmed)ρξ̇n(zpart) +mpartξ̇n(zmed)ρ
2ξ̈n(zpart)

−mmedξn(zmed)ρ
2
...
ξn(zpart)

and
d2

dm2
part

D1 = 2ψ̇n(zmed)ρξ̇n(zpart) +mpartψ̇n(zmed)ρ
2ξ̈n(zpart)

−mmedψn(zmed)ρ
2
...
ξn(zpart).

129



Derivatives of the Truncated Mie Efficiency Series

Then (A.0.6) and (A.0.7) give

∂2

∂n2
part

an =
d2

dm2
part

an,

∂2

∂npart∂kpart
an =

(
d2

dm2
part

an

)
i,

∂2

∂k2
part

an = − d2

dm2
part

an,

∂2

∂n2
part

an =
∂2

∂n2
part

an,

∂2

∂npart∂kpart
an =

∂2

∂npart∂kpart
an,

and
∂2

∂k2
part

an =
∂2

∂k2
part

an.

This completes the computations of the second partial derivatives of |an|2 with
respect to npart and kpart.

A.2 Derivatives of |bn|2

First Derivatives

The compuations are completely analogous to those for |an|2, but here we use

bn =
E2

D2
with E2 := mpartξn(zmed)ξ̇n(zpart)−mmedξ̇n(zmed)ξn(zpart)

and D2 := mpartψn(zmed)ξ̇n(zpart)−mmedψ̇n(zmed)ξn(zpart),

and

d

dmpart
E2 = ξn(zmed)ξ̇n(zpart) +mpartξn(zmed)ρξ̈n(zpart)−mmedξ̇n(zmed)ρξ̇n(zpart)

and
d

dmpart
D2 = ψn(zmed)ξ̇n(zpart) +mpartψn(zmed)ρξ̈n(zpart)−mmedψ̇n(zmed)ρξ̇n(zpart).

Second Derivatives

Again the computations are analogous to those for |an|2. Here we need

d2

dm2
part

E2 = 2ξn(zmed)ρξ̈n(zpart) +mpartξn(zmed)ρ
2
...
ξn(zpart)

−mmedξ̇n(zmed)ρ
2ξ̈n(zpart)

and
d2

dm2
part

D2 = 2ψn(zmed)ρξ̈n(zpart) +mpartψn(zmed)ρ
2
...
ξn(zpart)

−mmedψ̇n(zmed)ρ
2ξ̈n(zpart).
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Derivatives of the Truncated Mie Efficiency Series

A.3 Derivatives of |cn|2

First Derivatives

Here we use

cn =
E3

D3
with E3 := mpartψn(zmed)ξ̇n(zmed)−mpartψ̇n(zmed)ξn(zmed)

and D3 := mpartψn(zmed)ξ̇n(zpart)−mmedψ̇n(zmed)ξn(zpart),

and the derivatives

d

dmpart
E3 = ψn(zmed)ξ̇n(zmed)− ψ̇n(zmed)ξn(zmed)

and
d

dmpart
D3 = ψn(zmed)ξ̇n(zpart) +mpartψn(zmed)ρξ̈n(zpart)

−mmedψ̇n(zmed)ρξ̇n(zpart).

Second Derivatives

Here we need

d2

dm2
part

E3 = 0

and
d2

dm2
part

D3 = 2ψn(zmed)ρξ̈n(zpart) +mpartψn(zmed)ρ
2
...
ξn(zpart)

−mmedψ̇n(zmed)ρ
2ξ̈n(zpart).

A.4 Derivatives of |dn|2

First Derivatives

We make use of

dn =
E4

D4
with E4 := mpartψ̇n(zmed)ξn(zmed)−mpartψn(zmed)ξ̇n(zmed)

and D4 := mpartψ̇n(zmed)ξn(zpart)−mmedψn(zmed)ξ̇n(zpart),

and the derivatives

d

dmpart
E4 = ψ̇n(zmed)ξn(zmed)− ψn(zmed)ξ̇n(zmed)

and
d

dmpart
D4 = ψ̇n(zmed)ξn(zpart) +mpartψ̇n(zmed)ρξ̇n(zpart)

−mmedψn(zmed)ρξ̈n(zpart).
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Second Derivatives

At last we need

d2

dm2
part

E4 = 0

and
d2

dm2
part

D4 = 2ψ̇n(zmed)ρξ̇n(zpart) +mpartψ̇n(zmed)ρ
2ξ̈n(zpart)

−mmedψn(zmed)ρ
2
...
ξn(zpart).

A.5 Derivatives of Im (An)

First Derivatives

For a holomorphic function f(x+ iy) we can easily deduce from (A.0.7) that

∂

∂x
Im (f(x+ iy)) = Im

(
∂

∂x
f(x+ iy)

)
and

∂

∂y
Im (f(x+ iy)) = Im

(
∂

∂y
f(x+ iy)

)
.

This gives with respect to (A.0.6)

∂

∂npart
Im (An) = Im

(
∂

∂npart
An

)
and

∂

∂kpart
Im (An) = Im

(
∂

∂kpart
An

)

Therefore we only need to compute the partial derivatives of An. The first derivative
with respect to npart is given by

∂

∂npart
An =

l

2π

(
∂

∂npart

(
|cn|2

)
U1 + |cn|2

∂

∂npart
U1

− ∂

∂npart

(
|dn|2

)
U2 − |dn|2

∂

∂npart
U2

)
,

where U1 =
ξn(zpart)ξ̇n(zpart)

mpart
,

∂

∂npart
U1 =

(
1

mpart
ρξ̇n(zpart)−

1

m2
part

ξn(zpart)

)
ξ̇n(zpart) +

1

mpart
ξn(zpart)ρξ̈n(zpart)

and U2 =
ξ̇n(zpart)ξn(zpart)

mpart
,

132



Derivatives of the Truncated Mie Efficiency Series

∂

∂npart
U2 =

(
1

mpart
ρξ̈n(zpart)−

1

m2
part

ξ̇n(zpart)

)
ξn(zpart) +

1

mpart
ξ̇n(zpart)ρξ̇n(zpart)

Analogously we obtain

∂

∂kpart
An =

l

2π

(
∂

∂kpart

(
|cn|2

)
U1 + |cn|2

∂

∂kpart
U1

− ∂

∂npart

(
|dn|2

)
U2 − |dn|2

∂

∂kpart
U2

)
,

where
∂

∂kpart
U1 =

(
1

mpart
ρξ̇n(zpart)−

1

m2
part

ξn(zpart)

)
ξ̇n(zpart) i

+
1

mpart
ξn(zpart)ρ

(
ξ̈n(zpart)

)
i

and
∂

∂kpart
U2 =

(
1

mpart
ρξ̈n(zpart)−

1

m2
part

ξ̇n(zpart)

)
ξn(zpart) i

+
1

mpart
ξ̇n(zpart)ρ

(
ξ̇n(zpart)

)
i.

Second Derivatives

We start with

∂2

∂n2
part

Im (An) = Im

(
∂2

∂n2
part

An

)
,

∂2

∂npart∂kpart
Im (An) = Im

(
∂2

∂npart∂kpart
An

)
,

and
∂2

∂k2
part

Im (An) = Im

(
∂2

∂k2
part

An

)
.

Again we only have to compute the second partial derivatives of An. We have

∂2

∂n2
part

An =
l

2π

( ∂2

∂n2
part

(
|cn|2

)
U1 + 2

∂

∂npart

(
|cn|2

) ∂

∂npart
U1 + |cn|2

∂2

∂n2
part

U1

∂2

∂n2
part

(
|dn|2

)
U2 + 2

∂

∂npart

(
|dn|2

) ∂

∂npart
U2 + |dn|2

∂2

∂n2
part

U2

)
.

The two new terms needed here are

∂2

∂n2
part

U1 =

(
1

mpart
ρ2ξ̈n(zpart)−

2

m2
part

ρξ̇n(zpart) +
2

m3
part

ξn(zpart)

)
ξ̇n(zpart)

+ 2

(
1

mpart
ρξ̇n(zpart)−

1

m2
part

ξn(zpart)

)
ρξ̈n(zpart)
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+
1

mpart
ρ2ξn(zpart)

...
ξn(zpart)

and
∂2

∂n2
part

U2 =

(
1

mpart
ρ2

...
ξn(zpart)−

2

m2
part

ρξ̈n(zpart) +
2

m3
part

ξ̇n(zpart)

)
ξn(zpart)

+ 2

(
1

mpart
ρξ̈n(zpart)−

1

m2
part

ξ̇n(zpart)

)
ρξ̇n(zpart)

+
1

mpart
ρ2ξ̇n(zpart)ξ̈n(zpart).

The mixed derivative is given by

∂2

∂npart∂kpart
An =

l

2π

( ∂2

∂npart∂kpart

(
|cn|2

)
U1 +

∂

∂npart

(
|cn|2

) ∂

∂kpart
U1

+
∂

∂kpart

(
|cn|2

) ∂

∂npart
U1 + |cn|2

∂2

∂npart∂kpart
U1

∂2

∂npart∂kpart

(
|dn|2

)
U2 +

∂

∂npart

(
|dn|2

) ∂

∂kpart
U2

+
∂

∂kpart

(
|dn|2

) ∂

∂npart
U2 + |dn|2

∂2

∂npart∂kpart
U2

)
.

Here we have to complete the computations with

∂2

∂npart∂kpart
U1 =

(
1

mpart
ρ2ξ̈n(zpart)−

2

m2
part

ρξ̇n(zpart) i+
2

m3
part

ξn(zpart i

)
ξ̇n(zpart)

+

(
1

mpart
ρξ̇n(zpart)−

1

m2
part

ξn(zpart)

)
ρξ̈n(zpart) i

+

(
1

mpart
ρξ̇n(zpart)−

1

m2
part

ξn(zpart)

)
ρξ̈n(zpart) i

+
1

mpart
ρ2ξn(zpart)

...
ξn(zpart) i

and
∂2

∂npart∂kpart
U2 =

(
1

mpart
ρ2

...
ξn(zpart)−

2

m2
part

ρξ̈n(zpart) i+
2

m3
part

ξ̇n(zpart i

)
ξn(zpart)

+

(
1

mpart
ρξ̈n(zpart)−

1

m2
part

ξ̇n(zpart)

)
ρξ̇n(zpart) i

+

(
1

mpart
ρξ̈n(zpart)−

1

m2
part

ξ̇n(zpart)

)
ρξ̇n(zpart) i

+
1

mpart
ρ2ξ̇n(zpart)ξ̈n(zpart) i.

Finally the second derivative with respect to the imaginary part is given by

∂2

∂k2
part

An =
l

2π

( ∂2

∂k2
part

(
|cn|2

)
U1 + 2

∂

∂kpart

(
|cn|2

) ∂

∂kpart
U1 + |cn|2

∂2

∂k2
part

U1
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∂2

∂k2
part

(
|dn|2

)
U2 + 2

∂

∂kpart

(
|dn|2

) ∂

∂kpart
U2 + |dn|2

∂2

∂k2
part

U2

)
.

Here we need

∂2

∂k2
part

U1 =

(
− 1

mpart
ρ2ξ̈n(zpart) +

2

m2
part

ρξ̇n(zpart)−
2

m3
part

ξn(zpart)

)
ξ̇n(zpart)

+ 2

(
1

mpart
ρξ̇n(zpart)−

1

m2
part

ξn(zpart)

)
ρξ̈n(zpart) i i

− 1

mpart
ρ2ξn(zpart)

...
ξn(zpart)

and
∂2

∂k2
part

U2 =

(
− 1

mpart
ρ2

...
ξn(zpart) +

2

m2
part

ρξ̈n(zpart)−
2

m3
part

ξ̇n(zpart)

)
ξn(zpart)

+ 2

(
1

mpart
ρξ̈n(zpart)−

1

m2
part

ξ̇n(zpart)

)
ρξ̇n(zpart) i i

− 1

mpart
ρ2ξ̇n(zpart)ξ̈n(zpart).

A.6 Derivatives of Im (Bn)

First Derivatives

The derivatives of Im (Bn) are much easier to compute, since the dependence on
npart and kpart lies only in |an|2 and |bn|2 here. Here we also begin with

∂

∂npart
Im (Bn) = Im

(
∂

∂npart
Bn

)
and

∂

∂kpart
Im (Bn) = Im

(
∂

∂kpart
Bn

)
.

Therefore we need

∂

∂npart
Bn =

l

2π

(
∂

∂npart

(
|an|2

) ψ̇n(zmed)ψn(zmed)

mmed

− ∂

∂npart

(
|bn|2

) ψn(zmed)ψ̇n(zmed)

mmed

)

and
∂

∂kpart
Bn =

l

2π

(
∂

∂kpart

(
|an|2

) ψ̇n(zmed)ψn(zmed)

mmed

− ∂

∂kpart

(
|bn|2

) ψn(zmed)ψ̇n(zmed)

mmed

)
.

135



Derivatives of the Truncated Mie Efficiency Series

Second Derivatives

The last derivatives needed are

∂2

∂n2
part

Im (Bn) = Im

(
∂2

∂n2
part

Bn

)
,

∂2

∂npart∂kpart
Im (Bn) = Im

(
∂2

∂npart∂kpart
Bn

)
,

and
∂2

∂k2
part

Im (Bn) = Im

(
∂2

∂k2
part

Bn

)
.

with

∂2

∂n2
part

Bn =
l

2π

(
∂2

∂n2
part

(
|an|2

) ψ̇n(zmed)ψn(zmed)

mmed

− ∂2

∂n2
part

(
|bn|2

) ψn(zmed)ψ̇n(zmed)

mmed

)
,

∂2

∂npart∂kpart
Bn =

l

2π

(
∂2

∂npart∂kpart

(
|an|2

) ψ̇n(zmed)ψn(zmed)

mmed

− ∂2

∂npart∂kpart

(
|bn|2

) ψn(zmed)ψ̇n(zmed)

mmed

)

and
∂2

∂k2
part

Bn =
l

2π

(
∂2

∂k2
part

(
|an|2

) ψ̇n(zmed)ψn(zmed)

mmed

− ∂2

∂k2
part

(
|bn|2

) ψn(zmed)ψ̇n(zmed)

mmed

)
.
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Appendix B

Basic Mathematical Tools

B.1 Optimization

Theorem B.1.1. (Karush-Kuhn-Tucker Theorem) For a minimization problem of
the form

x∗ = argmin
x∈Rn

f(x) s.t. h(x) = 0, g(x) ≤ 0

with f : Rn → R, h : Rn → Rm and g : Rn → Rp exist vectors λ ∈ Rm and µ ∈ Rp
with

µ ≥ 0

∇f(x∗) + λTJacg(x
∗)T + µTJach(x∗)T = 0

µTgf(x∗) = 0,

if the matrix
(
Jach(x∗)T , ∇gj∈J(x∗)(x

∗)
)

has full rank, where

J(x∗) = {j | 1 ≤ j ≤ p, gj(x∗) = 0}

is the so-called set of active inequality constraints.

B.2 Probability Theory

Definition B.2.1. Let Ω be a set. A σ-algebra over Ω is a system F(Ω) of subsets
of Ω with Ω ∈ F(Ω), Ω \ A ∈ F(Ω) for all A ∈ F(Ω) and ∪∞i=1Ai ∈ F(Ω) for all
countable sequences A1, A2, ... in F(Ω).

Definition B.2.2. A measure µ on Ω is a function µ : F(Ω) → [0,∞) with the
properties µ(∅) = 0, µ(A) ≥ 0 for all A ∈ F(Ω) and µ (∪∞i=1Ai) =

∑∞
i=1 µ(Ai) for

all pairwise disjoint sequences A1, A2, ... in F(Ω).

Definition B.2.3. A measure p on Ω that additionally fulfills p(Ω) = 1 is called a
probability measure.

Definition B.2.4. A triple Ω, F(Ω), p is called a probability space, if Ω is a set,
F(Ω) a σ-algebra over Ω and p a probability measure on F(Ω).
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Definition B.2.5. A random variable on a probability space Ω, F(Ω), p is a
function X : Ω→ R that satisfies {ω ⊆ Ω | X(ω) ≤ x} ∈ F(Ω) for all x ∈ R.

Definition B.2.6. The cumulative distribution function F : R → [0, 1] of a
random variable X is given by F (x) = P (X ≤ x).

Definition B.2.7. A random variable X is called continuous, if its distribution
function can be written as

F (x) =

∫ x

−∞
f(s)ds,

where the function f : R→ [0,∞) is called its probability density function.

Definition B.2.8. Two random variables X and Y are called independent, if their
joint distribution F : R2 → [0, 1] given by

F (x, y) = P (x ≤ X ∧ y ≤ Y )

can be factorized into

F (x, y) = FX(x)FY (y),

where FX : R → [0, 1] is the cumulative distribution function of X and FY : R →
[0, 1] the cumulative distribution function of Y . This is equivalent to

f(x, y) = fX(x)fY (y),

where f(x, y) : R2 → [0,∞) is the joint probability density function, fX : R→ [0,∞)
the probability density function of X and fY : R → [0,∞) the probability density
function of Y .

Definition B.2.9. A random vector X is a random variable over Rn. Its joint
distribution function F : Rn → [0, 1] is given by F (x) = P(X ≤ x), where the
inequality is understood componentwise here.

Definition B.2.10. The expected value E(X) of a continuous random variable X
with probability density function f(x) is defined as

E(X) =

∫ ∞
−∞

xf(x)dx.

Definition B.2.11. A random variable X is integrable, if E(X) < ∞. For an
integrable random variable X its variance is given by

var(X) = E
(

(X − E(X))2 ).
Furthermore, its standard deviation σ(X) is given by

σ(X) =
√

var(X).

Theorem B.2.12. Let for n ∈ N the random variables X1, ..., Xn be independently
distributed. We assume that they all have the same standard deviation σ. Then the
standard deviation of the mean 1

n

∑n
i=1Xi is given by σ√

n
.
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Theorem B.2.13. (Central Limit Theorem) Let the random variables X1, ..., Xn

be independent and equally distributed. We assume that the common expected values
and standard deviations exist and are finite, i.e.

µ := E(Xi) <∞ and σ := σ(Xi) <∞

for i = 1, ..., n. Then we have for every real number x

lim
n→∞

P

(
1
n

∑n
i=1Xi − µ
σ/
√
n

< x

)
=

1√
2π

∫ x

−∞
exp(−1

2 t
2)dt.

Theorem B.2.14. (Inverse transform sampling) Let u ∼ U([0, 1]) be a uniform
random variable and X be a random variable with cumulative distribution function
F : R→ [0, 1]. Then the random variable F−1(u) is distributed like X.

Definition B.2.15. The conditional probability of a random variable A given a
random variable B is specified by

p(A|B) =
p(A ∩B)

p(B)
,

where p(A∩B) is the joint probability of A and B. Here A∩B is the intersection
of sets, where A and B live on.

Theorem B.2.16. (Bayes’ Theorem) The conditional probability of a random vari-
able A given a random variable B can be expressed as

p(A|B) =
p(B|A)p(A)

p(B)
.
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