
�Stochastic Approaches for Speeding-Up the Analysis

of the Propagation of Hardware-Induced Errors and

Characterization of System-Level Mitigation Schemes

in Digital Communication Systems�

Der Fakultät für Elektrotechnik und Informationstechnik der
Rheinisch-Westfälischen Technischen Hochschule Aachen vorgelegte Dissertation

zur Erlangung des akademischen Grades einer Doktorin der
Ingenieurwissenschaften

vorgelegt von

Diplom-Ingenieurin

Georgia Psychou, M.Sc.,

aus Tripoli, Griechenland

Berichter: Universitätsprofessor Dr.-Ing. Tobias G. Noll

Universitätsprofessor Dr.-Ing. Holger Blume

Universitätsprofessor Dr.-Ing. Tobias Gemmeke

Tag der mündlichen Prüfung: 29. September 2017

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online
verfügbar.

2

Acknowledgements

The author would like to acknowledge the support of former IMEC Netherlands
researchers Jos Huisken and Dr.Tobias Gemmeke, that they provided, during their
employment in IMEC Netherlands. During that time, there have been regular
discussions on the progress and direction of the work and they o�ered valuable
suggestions, which have made a number of publications and this work possible.

i

The research results published in this thesis have been in part published
earlier in international peer-reviewed conferences and journals. Text, �gures and
tables are taken, in some cases, one-to-one from such own references.

ii

Abstract

Today's nano-scale technology nodes are bringing reliability concerns back to the
center stage of digital system design because of issues, like process variability, noise
e�ects, radiation particles, as well as increasing variability at run time. Alleviations
of these e�ects can become potentially very costly and the bene�ts of technology
scaling can be signi�cantly reduced or even lost. In order to build more robust
digital systems, initially, their behavior in the presence of hardware-induced bit
errors must be analyzed. In many systems, certain types of errors can be tolerated.
These cases can be revealed through such an analysis. Overhead can be avoided and
remedy measures can be applied only when needed. Communication systems are an
interesting domain for such explorations: First, they have high societal relevance due
to their ubiquity. Second, they can potentially tolerate hardware-induced errors due
to their built-in redundancy present to cope with channel noise. This work focuses
on analyzing the impact of such errors on the behavior of communication systems.
Typically, error propagation studies are performed through time-consuming fault
injection campaigns. These approaches do not scale well with growing system sizes.

Stochastic experiments allow a more time-e�cient approach. On top,
breaking down the system into subsystems and propagating error statistics through
each of these subsystems further improves the speed-up and �exibility in the
reliability evaluation of complex systems. As an initial step in this thesis, statistical
moments are propagated through the signal �ows of Linear-Time-Invariant (LTI)
blocks. Such a scheme, although fast, can only be applied in the case that the signal
lacks autocorrelation. However, autocorrelation can be introduced in the signal due
to various reasons, like by signal processing blocks. In that case, other approaches are
available to reduce the computational cost of the necessary (repetitive) experiments,
like the Principal Component Analysis (PCA). Bene�ts of such a technique depend
on several parameters and, therefore, a more broadly usable technique is required. To
address this need, a framework is proposed that exploits the repetitive nature of fault
injection experiments for speed-up in LTI blocks. Two cases are distinguished: One,
in which all operators of the LTI block act in a linear time-invariant way, and one, in
which non-linear operations due to �nite wordlengths are present. To complement
the subject matter, the broad range of hardware-based mitigation techniques at the
higher system level are explored and characterized. In this way, the main properties
of each mitigation category are identi�ed and, therefore, suitable choices can be
made according to the application needs.

iii

iv

Contents

Acknowledgements i

Abstract iii

1 Introduction 1

1.1 Thesis context and contributions . 5

1.2 Thesis outline . 8

2 Background and Context 9

2.1 Outline . 9

2.2 Target systems and random processes 9

2.2.1 Target systems characteristics 9

2.2.2 Relevant terms from statistics and probability theory 12

2.3 Error injection and propagation studies 13

2.3.1 Error injection . 14

2.3.2 Error propagation . 16

2.4 Framework overview . 19

2.5 Correlation between the error and error-free signal and comparison
with noise sources . 21

2.6 Summary and link to next chapter 26

3 Propagation of Corrupted, Uncorrelated Signal 27

3.1 Outline . 27

3.2 Motivation and preliminaries . 27

3.2.1 Statistical characteristics of the considered signal 28

3.2.2 E�ects of error injection on Gaussian PMFs 29

3.2.3 Linear transformation of normal random variables 31

3.3 Propagating the corrupted signal using statistical moments 32

v

3.3.1 Set-up and observation . 32

3.3.2 Modeling approach . 36

3.4 Experimental results and related work discussion 38

3.4.1 Experimental set-up . 38

3.4.2 Results . 39

3.4.3 Related work . 40

3.5 Limitations with using the statistical moments 42

3.5.1 Propagating the corrupted signal through LTI blocks 42

3.5.2 Additional related work . 52

3.6 Summary and link to next chapter 52

4 Propagation of Corrupted, Autocorrelated Signal 53

4.1 Outline . 53

4.2 Motivation and preliminaries . 53

4.2.1 PCA steps and dimensionality reduction 55

4.3 Propagating the corrupted signal using PCA 57

4.3.1 Data organization for injection experiments 57

4.3.2 Illustration of the approach 61

4.4 Results and limitations with using the PCA for speeding-up the
propagation of the corrupted, autocorrelated signal 66

4.5 Summary and link to next chapter 69

5 Propagation of Corrupted, Generic Signal 71

5.1 Outline . 71

5.2 Motivation and preliminaries . 71

5.2.1 E�ect of �nite wordlengths on error propagation 72

5.3 Error propagation approach . 74

5.3.1 Error separation: propagation without �nite wordlength e�ects 74

5.3.2 Error-free terms reuse: propagation combined with �nite
wordlength e�ects . 75

5.3.3 Reduction of computational complexity. 77

5.4 Results . 80

5.4.1 Set-up . 80

5.4.2 Without non-linear e�ects . 81

5.4.3 Including non-linear e�ects . 81

5.5 Summary and link to next chapter 84

vi

6 A Classi�cation of Hardware-Based Resilience Techniques at the
Higher Abstraction of Digital Systems 85

6.1 Outline . 85

6.2 Introduction . 85

6.3 Context and useful terminology . 86

6.3.1 Resilient digital system design 86

6.3.2 Computing terminology . 86

6.3.3 Rationale of the classi�cation and its presentation 87

6.4 Platform hardware mitigation techniques 88

6.4.1 Forward execution - Additional HW modules provision 89

6.4.2 Forward execution - HW modules amount �xed 93

6.4.3 Backward execution - Additional HW modules provision . . . 97

6.4.4 Backward execution - HW modules amount �xed 98

6.4.5 Overall platform hardware classi�cation 102

6.5 Summary . 102

7 Conclusions 105

List of Publications 107

List of Terms and Symbols 113

vii

viii

List of Figures

1.1 Thesis focus within the reliability assessment and mitigation �ow . . 6

2.1 Detection operation in binary baseband communication system 10

2.2 Example of BPSK-based communication line 15

2.3 Both signal values change by the same magnitude but in di�erent
directions leading to di�erent amplitudes. 16

2.4 Views of the same system at di�erent abstractions 17

2.5 Views of the error injection and propagation in a system at di�erent
abstractions . 17

2.6 Example of splitting a communication system into subsystems 18

2.7 Error signal generation and propagation through the system blocks
using a mixture of techniques . 20

2.8 Two periods of the error-free (a) and the corrupted-by-channel-noise
(b) sinusoidal signal . 22

2.9 Channel-induced error signal (a) modeled and (b) resulting after the
interaction with the error-free sinusoidal signal 22

2.10 Two periods of the non-quantized (a) and the quantized (b) sinusoidal
signal . 23

2.11 Quantization noise signal (a) modeled and (b) resulting after the
interaction with the error-free sinusoidal signal 24

2.12 Quantization noise signal (a) modeled and (b) resulting after the
interaction with the error-free sinusoidal signal 24

2.13 Two periods of the error-free (a) and the corrupted-by-bit-errors (b)
sinusoidal signal . 25

2.14 Bit-�ip signal (a) and error signal (b) 26

3.1 Bit-�ip samples PMF and e�ect of single bit-�ips on signal PMF. . . 29

3.2 Error injection in simple signal-�ow (2-tap FIR �lter) 33

3.3 PMF at the �lter input and output when νf � 7 is corrupted at the
input (2-tap �lter) . 34

ix

3.4 PMF at the �lter input and output when νf � 4 is corrupted at the
input (2-tap �lter) . 36

3.5 PMF at the �lter input and output when νf � 4 is corrupted at the
input (5-tap �lter) . 36

3.6 Illustration of reference set-up vs. the implemented set-up to
e�ciently propagate bit-errors on the noise distribution through the
�lter at the receiver . 39

3.7 Data path 1 . 42

3.8 PMFs of the signal at the di�erent nodes of the data path 1 43

3.9 Creation of Gaussian components at data path 1 45

3.10 Data path 2 . 46

3.11 PMFs of the signal at the di�erent nodes of the data path 2 47

3.12 Internal correlation due to the �lter in the �rst section of data path 2 48

3.13 ACF plots at node (C) for data path 1 and 2 49

3.14 DFT signal �ow . 50

3.15 Input (node (A)) and output (node (B)) PMF after injection
experiments in DFT block . 51

3.16 ACF plots at node (A) of the DFT block 51

4.1 Set-up for propagating the corrupted, autocorrelated signal through
the G operator in the reference domain (a) and in the reduced PCA
domain (b) . 54

4.2 Modi�ed injection rate in order to speed-up the error injection campaign 58

4.3 Filter output when a single error sample is placed at the input 59

4.4 A long sample sequence is re-organized into sections of length S . . . 60

4.5 PMF (a) and ACF (b) plot of the original autocorrelated signal . . . 63

4.6 PMF (a) and ACF (b) plot of the autocorrelated signal after
truncation (10 dimensions kept) . 64

4.7 PMF (a) and ACF (b) plot of the reference corrupted signal rY � . . . 65

4.8 PMF (a) and ACF (b) plot of the re-projected (from PCA) corrupted

signal Y
�
� rY 1

�
. 65

4.9 Histograms to illustrate gains in dimension reduction for multiple
�lters with various characteristics . 67

4.10 Impulse and frequency responses of 5 representative low-pass �lters
(two upper rows) and 5 representative high-pass �lters (two lower rows). 68

5.1 An example of non-linear operations due to the �nite wordlengths in
a direct-form �lter . 72

x

5.2 Quantization (truncation) and saturation characteristics and e�ect
on error values . 74

5.3 Two functionally equivalent approaches to calculate the error signal
at the output . 75

5.4 SFGs for transposed and lattice (only 2 stages) �lters 79

5.5 SFG for a DFT block of length N . 79

5.6 Coe�cients for the 32-tap �lter and PMF of the input signal 80

6.1 Top down splitting to create the classi�cation tree and mapping of
the related work . 87

6.2 Basic classi�cation1 for techniques at the platform HW 89

6.3 Classi�cation for forward techniques that require additional HW
modules . 90

6.4 Lockstep execution in a pair-and-spare structure 91

6.5 Read out (7,4) Hamming codeword and syndrome generation for zero
and one error with correction . 93

6.6 Classi�cation for forward techniques that keep the amount of HW
modules �xed . 94

6.7 Classi�cation for backward techniques that require the provision of
additional HW modules . 97

6.8 Classi�cation for backward techniques that reuse existing HW modules 98

6.9 Illustration of concepts in the platform-HW backward category 100

6.10 A local error can trigger all the CMP cores to roll-back in global
checkpointing schemes . 101

6.11 Overall proposed classi�cation for techniques at the platform HW . . 103

1The boxes in the classi�cation �gures include hyperlinks to the text. By clicking on each of
the boxes, the reader will be transferred to the corresponding section in the text.

xi

xii

List of Tables

3.1 Propagation of distribution N p16, 2q through 2-tap FIR �lter when
νf � 7 is �ipped . 34

3.2 Propagation of distribution N p16, 2q through 2-tap FIR �lter when
νf � 4 is �ipped . 35

3.3 Comparison for 16-, 32-, 64-tap �lter (input signal: µ=0, σ=0.562) . . 40

3.4 Skewness and kurtosis at the DFT output 49

4.1 Parameters used in the current illustration 61

4.2 Correlation among �rst 5 rows and eigenvalues for uncorrelated and
autocorrelated data . 62

4.3 Computational cost for �ltering (through �lter 2) the autocorrelated
data (autocorrelated through �lter 1) 66

5.1 A small illustration of the e�ect of quantization on error propagation 73

5.2 Results for 32-tap direct-form �lter under di�erent input wordlengths
without non-linear e�ects . 81

5.3 Results for 8-bit input wordlength under di�erent direct-form �lter
lengths without non-linear e�ects . 81

5.4 Erroneous (non-masked) sample counts for 32-tap direct-form �lter . 82

5.5 Results for 32-tap direct-form �lter under di�erent input wordlengths
with non-linear e�ects . 83

5.6 Results for 8-bit input wordlength under di�erent direct-form �lter
lengths with non-linear e�ects . 83

5.7 Results for 16-bit input wordlength under di�erent all-zero lattice
�lter lengths with non-linear e�ects 83

5.8 Results for 16-bit input wordlength under di�erent DFT block lengths
with non-linear e�ects . 83

7.1 LTI Processing of Stationary Random Process in the Principle
Component Analysis (PCA) Domain 109

7.2 Trade-o�s in HW-based resilience techniques-Part 1 110

xiii

7.3 Trade-o�s in HW-based resilience techniques-Part 2 111

7.4 Trade-o�s in HW-based resilience techniques-Part 3 112

xiv

Chapter 1

Introduction

The early concerns of John von Neumann [91] regarding building reliable computing
entities out of unreliable components were largely forgotten with the gradual
replacement of vacuum tubes by transistors and the following high-scale transistor
integration [58]. Now, after some decades, reliability has come back to the
forefront in the context of modern CMOS technology. The current reliability
concerns originate from mechanisms that occur both during the manufacturing
process and during the system's operational lifetime. The anomalous physical
conditions that are created from these e�ects are called faults. Such anomalous
cases include (permanent) physical defects or (temporal) deviations of physical
properties. Typically, in CMOS circuits, faults cause deviations of the electrical
potential of the circuit nodes and may manifest as (logic bit) errors captured at a
logic circuit storage element e.g. �ip-�op or a memory cell. In case the fault does not
manifest as error, it is considered to be masked. Depending on the circuit operation,
errors can persist in the memory element for long and/or propagate through the
whole circuit. They may cause failures at system level. In that case, the system is
not able anymore to ful�ll its speci�cation.

Some of the prevalent physical mechanisms, which contribute to the
manifestation of faults and errors, are brie�y discussed in the following:

(a) Mechanisms that concern devices include:

(i) Radiation particles [5], [62] e.g. due to ionizing alpha-particles
(generated in the package) or due to high-energy cosmic rays may lead
to bit-�ips. The particles generate (many) electron-hole pairs along their
trajectory through the semiconductor material. In the electrical �eld of
the depletion region of a reverse-biased pn-junction, electrons and holes
get separated by Coulomb forces leading to charge packets. Depending
on the amount of charge and impedance state of the associated electrical
circuit nodes, their electric potential is altered signi�cantly.

In case the electric potential at the input of a logic storage element at
strobe time, e.g. of a �ip-�op, deviates from the expected voltage intervals

1

�
V

111

max, V
111

min

�
or
�
V

101

max, V
101

min

�
for the two logic levels, a wrong bit is stored.

In addition, these faults can manifest as errors in the memory cells. In
the early days, only Dynamic Random Access Memories (DRAMs) were
a�ected, since, in DRAMs, the information is represented by electric
charge on a �oating (small) capacitance. A particle hit can lead to a
signi�cant alteration of the charge packet and, thereby, corrupt the stored
bit. Later, due to the decreased feature sizes, Static Random Access
Memories (SRAMs) were a�ected as well. In SRAM cells, the information
is stored electronically in a feedback loop. A particle hit can cause the cell
to �ip from one to the other stable operating point. Today, in nano-scale
technologies, as already mentioned, also logic circuit reliability is a�ected
by radiation-induced faults. Often, together with timing violation faults
(caused e.g. due to temporarily lower supply voltage), radiation-induced
faults are considered as a major source for transient errors and called soft
errors.

(ii) Bias Temperature Instability (BTI) [53], [5], [86], [51] called NBTI
for pfet and PBTI for nfet devices, is a time-dependent degradation
mechanism, which causes shifts in the device threshold voltage. It is
caused by applying a bias voltage at the device at high temperature.
The mechanism is based on so-called traps that are present at the oxide-
substrate interface as well as in the gate oxide (e.g. due to impurities).
The e�ect of traps is the creation of hole-electron pairs (capture e�ect)
and their release again (emission e�ect), which causes temporal variations
in the device properties. The variations in the device properties lead in
turn to variations in the delay and noise-margin properties of logic circuits
and stored electric charges in memory cells. During "no-stress" periods
(with gate voltage grounded) devices can recover (at least partially); the
time constants for capture and emission have a very wide span, ranging
from nanoseconds up to days or longer. In smaller devices, the BTI
impact is more signi�cant as the e�ect of a trap charge is more signi�cant
on a tiny device.

(iii) Hot Carrier Injection (HCI) [53] refers to a degradation e�ect,
according to which, highly ("hot") accelerated (from the electric �eld
of the gate) channel carriers cause impact ionization or can be injected
into the oxide. In nfet devices Channel Hot Electron (CHE) and in pfet
devices Channel Hot Hole (CHH) e�ects take place. Again, this e�ect
causes variations of the device properties.

(iv) Time-Dependent Dielectric Breakdown (TDDB) [53], [5], [55] is
a degradation e�ect that occurs due to long lasting tunnel currents
through the gate oxide caused by relatively small electric �elds and
forming �lamentary shorts between the gate and substrate. Initially,
the mechanism leads to variations of the device threshold voltage. In the
end, the gate oxide breaks leading to permanent defects.

2

(v) Random Telegraph Noise (RTN) [5] is based on similar mechanisms
as BTI but it has much smaller time constants (from subsec down to the
subns domain) and causes rapid threshold voltage and thereby current
�uctuations. This e�ect is considered to have more of a statistical nature.

(b) Mechanisms that concern wires include:

(i) Electromigration (EM) [53], [5] refers to the physical movement of
metal atoms in a wire due to high current density, resulting in an increased
wire resistance or even in a permanent break. Increased resistances
a�ect interconnect delay or IR drop (see below) in the supply network.
The e�ect can be (partly) reversed by applying current in the opposite
direction.

(ii) Electromagnetic coupling (crosstalk) [5] e�ects, are due to coupling
capacitances between circuit nodes and mutual inductances between
circuit loops. In the dominating case of capacitive coupling, a rapid
voltage transition on a circuit node (called the aggressor) enforces an
alteration of the electric potential of a neighboring node (called the
victim). The result is a noise pulse on a quite victim node or, in case that
the victim node simultaneously features a transition in opposite direction,
an increased delay (the latter being called "noise on delay").

(c) Mechanisms that are based on intra-die and inter-die correlations include:

(i) The IR drop [5] is the Ohmic voltage drop caused by the interconnect
wire resistance. It mainly a�ects the supply network where it causes
dynamic "supply voltage droops" and contributes to the supply voltage
noise. Supply voltage droops a�ect gate delay and supply voltage noise
leads to noisy voltage levels at the gate outputs.

(ii) The di/dt droop [5] is the voltage drop over inductance during rapid
transitions of the current �owing through it. It also mainly a�ects the
supply network and causes supply voltage droops and contributes to the
supply voltage noise as well.

(iii) Temperature variation [10] is caused due to heat �ux, created at
varying locations on the die depending on the activity (and indirectly
the system blocks' functionality). Temperature variations are spatially
and temporarily distributed and a�ect delay and noise margin.

The e�ects of dynamic IR and di/dt drop on the supply network are similar
and designers do take this e�ect into account and add a margin. Moreover,
the supply voltage can be stabilized by applying properly dimensioned bu�er
capacitances (so-called decoupling capacitances or decaps) across the whole
supply network.

(d) Finally, signi�cant enabling components for the aforementioned mechanisms
include:

3

(i) Process variations [10], [42], which take place at manufacturing time (e.g.
Random Dopant Fluctuation (RDF)).

(ii) Circuit topology and operating parameters (e.g. voltage, frequency).

(iii) Input workload (e.g. duty cycle, bit pattern etc).

(iv) Environmental conditions (e.g. heat coming from neighbouring systems).

Having discussed the basic mechanisms, it is important to underline the
aspect of di�erent vulnerability for the two logic states, which is relevant for the
selection of an error model at the bit level.

Temporal deviations of the electric potential of circuit nodes can be
caused due to noise pulses and/or incomplete previous logic level transitions (so-
called timing violations). At strobe time, the electric potential at the input of a
storage element may either be shifted to a higher (towards plus in�nity) or lower
(towards minus in�nity) value. It can be concluded, that faults, which induce a
positive potential shift, can only lead to a bit error in storage elements, whose
input should be in the low-('0') state. In the same reasoning, faults, which induce
a negative potential shift can only lead to a bit error on input nodes, which should
be in the high-('1') state.

As it is known, chains of CMOS gates feature the capability of level
regeneration due to a steep transition in their voltage transfer characteristics. This
capability is quantitatively described by the so-called noise margin NM of a gate.
Generally, the noise margin is not symmetric concerning the two logic levels, i.e.
NM111 � NM101 . This can happen due to intentional device dimensioning ("skew"),
device parameter variability ("mismatch"), temporal device parameter �uctuation
(RTN), temporal or permanent device aging (e.g. due to HCI, BTI, EM) etc. As a
consequence, the impact of a circuit node potential shift in general is di�erent for
the two logic states or the other way around: the two logic states feature di�erent
vulnerability to a potential shift.

Despite the di�erence in the vulnerability that the two logic states
exhibit, the bit-�ip error model is widely applied as an error injection model in
reliability analysis of digital systems. It describes the probability that a bit is �ipped
from 1 to 0 or from 0 to 1 at a certain instance of time. This means that the separate
probabilities for a �ip-to-1- and �ip-to-0-error somehow have to be combined (i.e.
averaged) to a bit-�ip probability. As this is the most well-established error model,
we will use the term (functional) bit-�ip errors to capture this class of errors, with
the worst case manifestation toward the end user being a complete system failure
on the expected system service.

The manifested bit-�ip errors can be temporary or permanent [9], [10].
Temporary errors include transient and intermittent errors. Transient errors are
non-deterministic (concerning time and location), e.g. as a result of a fault due
to a particle strike. While the causing faults typically last for one cycle only,
the resulting errors may persist longer due to propagation and storing. Transient

4

errors are considered "external fault"-induced errors and need to be characterized
by their average rate of occurrence. Intermittent errors occur repeatedly but non-
deterministically in time at the same location and last for one cycle or even for a long
(but �nite) period of time. Main causes for intermittent errors are design weaknesses,
aging and wear-out (e.g. due to BTI, HCI, EM, silicon-wafer direct bonding (SDB)
etc.), and parametric faults, not detected as errors during test (as errors due to them
are triggered under rare conditions only). They are considered "internal fault"-
induced errors and need to be statistically characterized by their (average) rate of
occurrence and (average) time of duration. In contrast, permanent errors persist
forever after their �rst occurrence. Causes for permanent errors are fabrication
defects not detected during test, accelerated aging and wear-out. Moreover, the bit-
�ip errors may be spatially or temporarily correlated, forming burst errors [70], [79].

In a similar way that whole systems can be viewed using di�erent
abstraction layers with transistors and wires being the building components for
gates, storage elements, memory and processing blocks, also reliability e�ects can
manifest and be viewed across the system abstraction layers. Especially, the bit-
�ip allows the connection of the physical fault mechanisms with the higher system
abstractions, where, often, more useful interpretations of the impact of faults on the
system can take place. These interpretations can then be provided as input to the
designer in order to derive appropriate countermeasures.

1.1 Thesis context and contributions

Undeniably, having a more robust system is the ultimate goal of studying the fault
mechanisms and their propagation. Having quantitative information on how the
faults manifest and propagate through the system allows the researcher and the
designer to come up with system-speci�c, e�cient mitigation solutions. So, reliability
assessment and resilience and mitigation techniques form two complementary
sub-domains within the domain of reliability of digital systems. Reliability
assessment [72] includes the derivation of appropriate models for faults and error
mechanisms, the various ways to intentionally introduce them in the system, the
study of their propagation and impact and the derivation of appropriate metrics
that quantify this impact. Resilience and mitigation techniques, as the name implies,
include all those approaches that make systems more robust to errors. They cover
a broad range of approaches, from static design-time up to demand-driven run-
time techniques, that, for example, mask the e�ect of errors or prevent future
occurrences [69].

Both reliability assessment and resilience/mitigation techniques can be
performed at various abstraction levels of the system leading to di�erent bene�ts
and costs. The left-hand side of Fig. 1.1 shows some examples of how reliability
assessment is performed across the abstraction layers. More information can be
found in [72]. The right-hand side is complemented with examples of mitigation

5

actions at the various layers. In practice, the exact mitigation decision should be
based on a careful trade-o� analysis based on the demands of the system under
consideration. In Fig. 1.1, the two contributions of this thesis are sketched.

Identify the system s susceptible
parts and evaluate impact

Reliability
Solution

Reliability
Assessment

Fa
u
lt

E
rr
o
r

Physical/
device layer

Circuit

Platform
HW/
Architecture +

*+

Q

Q
SET

CLR

D

L

L2

Encoded
video frames

void read_image(char*
file, int image[N][M])

{... ...}

job 1 job 2 time

Algorithm
(if exists)

Platform
SW
(if exists)

Register
File +

Thesis contribution:
Exploration and

novel organization
of the techniques

 E.g. irradiate prototype HW
in a vacuum and produce test
program output

 E.g. derive variability-affected
gate voltage characteristics and
simulate propagation

 E.g. flip signal bit values in
HW description and
simulate signal propagation

 E.g. corrupt instruction bits
after application porting and
run application

 E.g. use a more
robust frame encoding

 E.g. schedule failing
tasks to re-run

 E.g. reuse the
channel decoder to
correct HW errors

 E.g. triplicate
vulnerable flip-flops and
apply majority voting

 E.g. bias transistor
gate voltage in the
opposite direction

Thesis contribution:
Propagation of
error statistics

through the signal
flow graph for

application-specific
platforms

 E.g. issue injection process
through the process manager
and run all processes

Figure 1.1: Thesis focus within the reliability assessment and mitigation �ow

Reliability assessment sub-domain. Regarding the assessment part, the focus is
on deriving e�cient ways to propagate bit-�ips through the system. Traditionally, at
this abstraction layer, such a study has been performed through system simulation
and/or emulation. There is a variety of tools with di�erent characteristics that
can be used for such a study. Typically, the hardware (HW) is provided in a
descriptive form (i.e. using a hardware description language) and ported on the
corresponding tool. Then, errors can be injected in di�erent forms: through
replacing hardware components (e.g. a NAND with a NOR gate) in the HW
description [35], through altering data signals for a speci�c amount of time by using
appropriate commands [35] (instead of altering hardware components), by reusing
the scan-chains [23], through introducing extra components (e.g. multiplexers) that
allow the injected signal to be introduced instead of the correct one [50] to name
some examples. Sometimes, FPGAs [50] or HW emulator environments [16] are
used to speed-up such a process. Despite the good accuracy provided by such tools,
the execution time to perform repetitive experiments as well as the migration and
general engineering e�ort to set-up the injection frameworks are issues to be avoided
(whenever possible) for the designers. Therefore, there is an ongoing demand for
improving such frameworks or �nding alternatives. Exploiting the characteristics of
one's speci�c context is a starting point for �nding attractive alternatives.

6

The context of this work, in terms of target applications and platforms,
is de�ned by the focus on communication systems. There are some common
characteristics of such systems. The hardware is composed to a signi�cant extent
of non-�exible parts (ASIC-style). This is the case for example, for Personal
Area Network (PAN) and Body Area Network (BAN) systems. Quite often, in
communication systems, the application input signal is viewed as a stochastic signal
with certain statistical characteristics. This gives the �exibility to make use of the
signal statistics in order to �nd e�cient ways to propagate the error signal. For
this, the system signal �ow is a su�cient system model and a detailed hardware
description of the system is not required as the main objective is that the signal
statistics at the output are accurate.

Having as starting point the bit-�ip model, e�cient ways are explored
in this thesis to study the propagation of bit-�ips through communication systems.
Analytical and statistical approaches are employed to avoid the time-consuming
system simulation. This is enabled by choosing appropriate models to represent
errors as they propagate through the system, decomposing the system into blocks
and exploiting linearity in a stochastic framework. On top, contrary to earlier
works, the e�ect of non-linearities on the error propagation (due to operations like
saturation and quantization in the block internals) are considered. More speci�cally,
the core elements of this contribution are:

(i) We discuss possibilities and limitations in employing analytical methods, like
using statistical moments, to derive signal statistics in the context of hardware-
induced bit-�ips. The focus is on the so-called Linear-Time-Invariant (LTI)
blocks. We show that purely analytical approaches can have limited use in the
context of estimating the impact of hardware-induced bit errors, due to the
correlation that exists between the errors and the signal.

(ii) We discuss possibilities and limitations in using a mathematical transform, the
Principal Component Analysis (PCA), to speed-up error injection experiments.

(iii) We propose a framework that exploits the repetitive nature of fault injection
experiments to speed-up experiments for LTI blocks. We distinguish between
the cases that all the operators from the input to the output of the LTI block
act in a linear time-invariant way and the case that non-linear operations due
to �nite wordlengths take place.

Reliability solution sub-domain. Once the error propagation has been studied
and the impact is evaluated, an appropriate mitigation scheme has to be selected.
The second contribution in this thesis regards mitigation. Given the larger overhead
required to mitigate faults at the circuit level, it may be preferable to seek higher
level solutions. Here, we provide an exploration and novel classi�cation of hardware-
based schemes at the higher system abstraction in the mitigation domain. More
speci�cally, the core elements of this contribution are:

7

(i) An comprehensive overview of the domain of functional reliability techniques
at the (micro-)architectural level is presented, using a systematic, hierarchical
top-down splitting into sub-classes. Pros and cons of each sub-class are
identi�ed.

(ii) Multiple representative prior and state-of-the-art publications are mapped to
these categories to illustrate the concepts involved.

1.2 Thesis outline

Chapters 2, 3, 4, 5 contain the �rst part of our contribution in the reliability
assessment sub-domain. Chapter 2 gives the context of the error statistics
propagation study including relevant de�nitions. Chapter 3 discusses our �ndings
while considering the propagation of statistical moments of corrupted, uncorrelated
signals through LTI blocks. Chapter 4 explores the possibilities in using the Principal
Component Analysis to speed-up the error injection experiments. Chapter 5,
illustrates the generic framework for propagating a corrupted signal through LTI
blocks that include internally non-linear operations due to �nite wordlengths.
Chapter 6 is the contribution in the mitigation sub-domain and, more speci�cally, it
presents a novel, systematic classi�cation of hardware-based mitigation techniques
along with discussing multiple examples per class. Chapter 7 summarizes and
concludes the work.

8

Chapter 2

Background and Context

2.1 Outline

Chap. 2 provides the context of the current work, including the motivation to
handle the system complexity for injection experiments and relevant de�nitions.
Sec. 2.2 describes the target systems and characteristics of signals in such systems.
Sec. 2.3 provides background information on the characteristics of error injection
and propagation studies. In addition, the error model is introduced. Sec. 2.4 gives
an overview of the stochastic framework being used, under which, the proposed
approaches (presented in the following chapters) fall under. Sec. 2.5 illustrates
the characteristics of the bit error model as compared to two other noise sources:
quantization noise and channel noise. Sec. 2.6 summarizes the main elements that
constitute the general framework.

2.2 Target systems and random processes

2.2.1 Target systems characteristics

Digital communication systems. In communication systems information is
transmitted from a sender to a receiver over a channel. Namely, the information
signal is not known beforehand to the receiver. The channel is exposed to noise and
distortions. Both the information and noise signals can be represented using random
processes. Especially digital communication has now become a standard due to its
various advantages, among which, the fact that digital hardware is cheap, area-
e�cient and "reliable". Digital communication systems operate on signals that are
speci�ed at discrete time points (achieved through sampling) and discrete amplitude
levels (achieved through quantization).

Signal processing and representation. The system transforms the input
information signal in such a way so that the probability is in the best way

9

increased that the signal will be distinguished at the channel output. Among the
issues that have to be handled during this transformation are the channel noise,
symbol interference, synchronization between the transmitter and the receiver. One
prominent transformation example is the processing of the signal by the scrambler
before it gets transmitted. Through the scrambler, the data gets randomized so
that long sequences of zeros and ones are avoided; this makes the received data
pseudorandom, i.e. close to ideal binary random sequence with each signal taking
the value 0 and 1 with a 0.5 probability [88]. This makes the signal representation
by a random process very �tting. Interleaving and modulation are other processing
steps in communication systems. Channel noise is an additive noise (does not
depend on the transmitted signal). For wireline communication systems, this noise
is characterized by a Gaussian process. For other systems, typically multiple paths
exist and more complicated models are required [24].

Performance evaluation. As the signal communication cannot be error-free, the
e�ort of designers is focused on reducing the error probability so that the accuracy
of the received digital signal improves. To derive this probability, either the process
is analytically characterized or statistics are gathered by repeating the experiment
a su�cient amount of times. To illustrate this, the simple example of threshold
detection in a binary channel is used, as shown in Figure 2.1. Symbols 0 and 1

Baseband
Processing

Analog
Front-End

Analog
Front-End

Baseband Processing

Channel

IN OUT
Detector Decoder

sample at
t= tk

symbol=0 if yA

threshold A

y ...

Figure 2.1: Detection operation in binary baseband communication system

are transmitted with equal probability over the channel using a negative and a
positive pulse respectively. Each pulse is sampled at peak amplitude y (at time
instance t � tk, with k indicating the time index). If the sampled value y is bigger
than the threshold A (� 0 here), the detector reads a 1; in the opposite case,
it reads a 0. However, y contains the original pulse peak amplitude plus a noise
amplitude, which ranges from �8 to �8. Therefore, a received 0 can be read as 1
and vice versa. To �nd this error probability, the experiments are repeated N times
(N Ñ 8) [44], so that the process can be characterized (unless the error probability
can already be derived analytically). Often, and depending on the objectives, the
baseband system model (i.e. the system without modulation) is only analyzed
in such an error probability study. The results can be extended to the passband

10

(or bandpass) model.1 To evaluate the performance of the communication system,
typically metrics, such as the Bit Error Rate (BER), are used. BER indicates the
number of erroneous bits out of the total number of received bits. The erroneous
bits are found by comparing the error-free implementation�that is, in the absence
of channel noise�with the implementation in the presence of noise. Sometimes,
variations of this metric are used, like the Packet Error Rate (PER).

LTI blocks. A signi�cant part of the system blocks are linear time-invariant
(LTI) blocks. As the name implies, the characteristic properties of LTI blocks are
homogeneity, additivity (necessary and su�cient properties for linearity) and shift-
invariance. LTI blocks may have memory or be memoryless. They include arithmetic
(rather than decision making) operators and more speci�cally, they are composed of
linear operators such as adders, constant multipliers, constant shifters. Examples of
LTI blocks include: memory blocks, interleavers, some types of multiplexers, Finite
Impulse Response (FIR) �lters, Discrete Fourier Transform (DFT) blocks.

A LTI block is fully characterized by its impulse response [57]. Here,
the focus is on non-recursive, discrete-time and discrete-value (digital) LTI blocks
that are causal. Assuming input samples xk, output samples yk and an impulse
response cn, the block output can be calculated by the superposition of the impulse
response weighted and shifted according to the corresponding input samples. An
alternative way to represent LTI blocks is by using their di�erence equation (here
for non-recursive LTI blocks):

yk � ΣM
n�1cn � xk�pn�1q. (2.1)

By appropriately describing the values of x, y, cn,M (real- or complex-valued, vectors
or matrices) in Eq. 2.1 all possible digital LTI blocks can be represented. For
example, in a Discrete Fourier Transform (DFT) block, the x, y are vectors, M � 1
and c1 is a matrix. In case of a direct-form FIR �lter, cn, with 1 ¤ n ¤ M , are the
�lter coe�cients and x, y are scalars.

Often, the random process at the output of LTI blocks can be derived
analytically or at reduced cost using other mathematical methods for a given random
process at the input of the system. LTI blocks are the focus of this study.

1In radio-based communication systems before transmission, typically the signal has to be up-
converted to a higher frequency band, the so-called passband. Consequently, at receive-side the
received signal has to be down-converted. For the sake of simplicity and e�ciency, in system
simulation often the whole chain of up-converter, radio channel (i.e., the passband-channel model
including ampli�ers as well as �lters etc. on transmit- and receive-side), and down-converter
(including carrier recovery) is replaced by a typically complex-valued equivalent baseband-channel
model. Moreover, in today's digital communication-system simulation frequently also the Digital-
to-Analog (D/A) and Analog-to-Digital (A/D) converters (including clock recovery) are hidden in
the equivalent discrete baseband-channel model [8, 15].

11

2.2.2 Relevant terms from statistics and probability theory

Signal statistical characteristics. As often done in digital signal processing,
the digital signal x is modeled as a realization of a random process, with the
signal samples xk being discrete-state Random Variables (RVs) at discrete time
instances k. The random process has certain statistical characteristics, like the
statistical moments mean µX , variance σ

2
X etc. and/or a Probability Mass Function

(PMF). PMFs provide information on the probability distribution of the amplitudes
of the discrete signal, like Probability Density Functions (PDFs) do for continuous
variables. Fig. 2.2a shows a PMF example for normally-distributed discrete signals.
In order to have a complete characterization of the random signal, information
on how these amplitudes are interrelated over time is needed on top. For many
applications, certain averages are used, like the autocorrelation [60]. For a time-
discrete signal x the Autocorrelation Function (ACF) of lag l is de�ned as rxx,l �
Erxk�l �x

�
ks with E[.] being the expected value and p.q� being the complex conjugate

of a complex-valued sample value. It is often visualized by plotting the sample
autocorrelation values versus the time lags (or sample lags), as shown in Fig. 2.2b.
In case of a so-called wide-sense stationary process, rxx,l does not depend on time
index k. For a white random process the autocorrelation is zero (except at lag
0). In this case (see Fig. 2.2b), no identi�able relationship among the samples
can be observed. In general, both types of information, probability mass functions
(PMFs) and autocorrelation are required in order to fully characterize a stationary
random signal. The relations among random variables can be described using
functions other than the PMF and autocorrelation, like the characteristic function,
the moment-generating function and others [60]. Covering an in-depth analysis of
all the alternative ways is out of the thesis scope. A random signal after hardware-
induced bit �ips have been injected will be called corrupted signal . The error of
a corrupted signal sample x̃k is denoted by ek � x̃k � xk and will be called error

signal sample.

(a) Probability Mass Function plot of normally
distributed discrete signals

(b) Autocorrelation plot of a white process

12

Accuracy Evaluation. The accuracy between a precise model and an
approximated one can be measured in di�erent ways, depending on the objectives.
Here, we present one well-established means, used for comparing probability
distributions.

The Kullback Leibler divergence or KL divergence [48] is a measure
of the di�erence between two probability distributions P and Q, when Q is
used to approximate P . It represents the amount of information lost with this
approximation; therefore, the smaller the KL value, the closer the distributions are.
For discrete probability distributions P and Q, the Kullback Leibler divergence from
Q to P is de�ned to be

DKLpP ‖ Qq �
¸
i

P piq � log
P piq

Qpiq
. (2.2)

Namely, it is the expectation of the logarithmic di�erence between the probabilities
P and Q, where the expectation is taken using the probabilities P . The quantity
log 1

p
is a measure of the surprise when an event, which has probability p, actually

occurs (e.g. a highly improbable outcome is very surprising). To acquire an estimate
of the average value of the surprise involved with a whole set of events, that follow
a probability distribution P , the previous is extended. For every possible outcome i
associated with a probability P piq, the log 1

P piq
is weighted by P piq and all products

are summed. This gives the entropy of the probability distribution P , which is
de�ned as

HpP q �
¸
i

P piq � log
1

P piq
. (2.3)

Cross-entropy can be interpreted as a measure of the surprise when a wrong
distribution Q is assumed while the data actually follows a distribution P . It is
de�ned as

HpP,Qq �
¸
i

P piq � log
1

Qpiq
. (2.4)

The KL divergence is then the di�erence of the cross-entropy HpP,Qq and the
entropy of P , HpP q. Namely, it gives a measure of the "additional" surprise when
Q is wrongly assumed (rather than the actual P) compared to when P (the correct
one) is assumed.

2.3 Error injection and propagation studies

Error injection campaigns (sometimes in literature called fault injection campaigns
independent of the system abstraction) consist of repetitive simulation experiments
(or executions on a prototype system), during which, values at selected points
are modi�ed to mimic a fault e�ect. An elementary error injection experiment
corresponds to one simulation run of the target system [97], with one or more
bits being corrupted. In general, a huge amount of elementary error injection

13

experiments are required in order to include all nodes of interest, all bit positions
within a node and all system states. A node in this context designates a location
in the system control- or data-path, at the input or output of its basic components,
such arithmetic units, memories, registers. In such campaigns, the goal is to perform
the following two actions e�ciently: (1) error injection-selection of nodes, bits,
system states to be corrupted and mimicking of the fault e�ect in a manner so that
useful information regarding the vulnerability of the system is derived, and (2) error
propagation-selection of the system representation and propagation of the corrupted
signal to the system output (or to another point of interest, from which the impact
on the system can be extrapolated). E�ciency, in this context, refers to minimizing
the required time and/or the computational complexity to perform such an analysis.

2.3.1 Error injection

Injection points. Ideally, information on the impact of every bit in every node for
every system state would be desired; this would lead to an exhaustive error injection
campaign. In a system with n �ip-�ops, and without pruning any of the system
states (i.e. without pruning non-reachable during normal execution system states),
the state-space cardinality is 2n. This makes an exhaustive campaign impossible
and has made it imperative to look for alternatives.

A selective error injection campaign examines the impact of only a subset
of the �ip-�ops. The selection of this subset is performed on several possible criteria,
depending on the system and the designer's objective. One direction is that the
selected bit positions to be explored are deterministically chosen using some direct
or indirect knowledge regarding their importance. This knowledge may concern
their vulnerability to certain fault e�ects (for example �ip-�ops closer to nodes with
speci�c interconnect distance, signal directions, switching times and driver strength
can be more vulnerable to crosstalk e�ects) and is derived by lower-level fault models
(such as transistor-level models) [66, 76]. Their importance may also be provided
by the role they play in the system functionality (e.g. control bits) or that they are
representative for a group of bit positions [52]. In the latter case, the designer's deep
understanding of the system functionality may be a decisive factor for the selection.
A second direction is that the subset to be explored is randomly chosen, so that
a desired con�dence is achieved [16, 22]. The points in the sampling space (which
consists of the total amount of �ops and system states) may be equally probable
or may be assigned a weight according to their relative probability of occurrence.
Sometimes combinations of the injection approaches are implemented.

In this work it is assumed that all bits of a word can be potentially
corrupted with equal probability, similar to [39]. The focus is on propagating
e�ciently the errors through system blocks (see below). So, the assumption is
that the errors have occurred earlier at the internals of a block (within a system)
and manifest at the input of the block of interest. For example, the errors occur
in the memory bu�er just before the �lter block in the baseband model of a BPSK

14

communication line, as depicted in Fig. 2.2. We focus on propagating the errors
through the �lter block in this case.

BPSK

symbols

up

sampling
filter

channel

noise
filter

down

sampling

BPSK

symbols

buffer

memory

Figure 2.2: Example of BPSK-based communication line

Bit error model assumption. To simplify this discussion and without loss of
generality, we assume integer signal samples represented by a non-redundant two's
complement notation composed of n bits. We use ν to denote the bit position as
used in the two's complement notation, i.e. the sample of the time discrete signal x
at time instance k (subscript) is:

xk � �xn�1
k � 2n�1 � Σn�2

ν�0x
ν
k � 2

ν , (2.5)

where xνk is the bit in position ν, with weight 2ν , and xn�1
k is the Most Signi�cant

Bit (MSB) sign bit 2.

An erroneous bit-�ip at time instance k in bit position ν is denoted by
the �ip-error bit ενk. The bit-�ip sample rεn�1

k , ..., ε1k, ε
0
ks can be described like a

signal sample
εk � �εn�1

k � 2n�1 � Σn�2
ν�0ε

ν
k � 2

ν . (2.7)

Clearly, after some bit-�ips the erroneous signal sample rxk becomes
rxk � �rxn�1

k � 2n�1 � Σn�2
ν�0rxνk � 2ν

� �pxn�1
k ` εn�1

k q � 2n�1 � Σn�2
ν�0px

ν
k ` ενkq � 2

ν (2.8)

with rxνk � xνk ` ενk being the erroneous sample bit in bit position ν. The e�ect
of the bit-�ipping(s) can also be described by adding an error sample ek �
�en�1

k � 2n�1 � Σn�2
ν�0e

ν
k � 2

ν to the error-free signal sample in every bit position:

rxk � xk � ek � �pxn�1
k � en�1

k q � 2n�1 � Σn�2
ν�0px

ν
k � eνkq � 2

ν . (2.9)

From Eq. 2.9, 2.8, 2.5, it follows that:

ek � rxk � xk � �pxn�1
k ` εn�1

k q � 2n�1�

Σn�2
ν�0px

ν
k ` ενkq � 2

ν � xn�1
k � 2n�1 � Σn�2

ν�0x
ν
k � 2

ν

� �pxn�1
k ` εn�1

k � xn�1
k q � 2n�1 � Σn�2

ν�0px
ν
k ` ενk � xνkq � 2

ν (2.10)

2In the more general case of a signal with n integer bits (including the sign bit), andm fractional
bits, the equation is equal to

xk � �xn�1
k � 2n�1 � Σn�2

ν��mx
ν � 2ν . (2.6)

Accordingly, the notation for a whole word is given by n.m, with the "." denoting the radix point.

15

with the error sample digit eνk:

eνk � xνk ` ενk � xνk � p�1qx
ν
k .ενk � p1� 2 � xνkq � ε

ν
k P t�1, 0, 1u. (2.11)

It is worth noticing that due to the addition mod2p`q (bit-wise exclusive OR) in
Eq. 2.8 a bit-�ip results in an error contribution being dependent on the signal
sample value.

When the error-free signal sample gets corrupted by the bit-�ip sample,
the amplitude of the signal will be modi�ed by a quantity as big as the error
magnitude3. Fig. 2.3 depicts this e�ect for two di�erent two's complement 8-bit
samples. In both cases the bit-�ip sample has the magnitude 16 (24). Corrupting
the two samples with this bit-�ip sample will change their amplitude by the quantity
16. In the �rst case, the value 16 will be subtracted. In the second case, the value
16 will be added.

16dec = 000100002s_compl

15dec = 000011112s_compl

 000000002s_compl = 0dec

 000111112s_compl = 31dec

 00010000Error-free sample
Bit-flip sample

Corrupted sample

Figure 2.3: Both signal values change by the same magnitude but in di�erent
directions leading to di�erent amplitudes.

2.3.2 Error propagation

System de�ned scope. Fig. 2.4 shows three views of the same system. First, in
Fig. 2.4a the system is viewed as a black box with only inputs and outputs. Then,
in Fig. 2.4b, the system is split into a number of subsystems, with each one having
its own inputs and outputs. Fig. 2.4c shows a more �ne-grained decomposition of
the same system. Each of these views can be useful according to the context.

Fig. 2.5 shows the same system abstractions after an error has been
injected. Several elements can help to identify a suitable scope for error injection
and propagation experiments: There are two subsystems (or blocks) that are not
a�ected by the injected error, i.e. the blocks S2,1, S2,4. Namely, in case the system
is considered as in Fig. 2.5a or even Fig. 2.5b, these two subsystems will execute
(and thus cost execution time) without contributing any new information compared

3magnitude of a variable is the measure of how far, regardless of direction, its quantity di�ers
from zero while amplitude is the measure of how far, and in what direction, that variable di�ers
from zero

16

S2,

1

S2,

2

S2,3

S2,4

S2,5

S1,2S1,1

In 1

In 2

Out

S0

(a) System-level

S2,

1

S2,

2

S2,3

S2,4

S2,5

S0

In 1

In 2

Out

S1,1 S1,2

(b) Subsystem level 1

S2,3

S2,4

S2,5

S1,2S1,1 S0

In 1

In 2

Out

S2,1 S2,2

(c) Subsystem level 2

Figure 2.4: Views of the same system at di�erent abstractions

to the information acquired by the error-free execution of these two blocks. In
Fig. 2.5a (and potentially also Fig. 2.5b), a masked error cannot be identi�ed until
it reaches the system output. Having the information sooner allows the researcher
to halt system execution and save computation time. In Fig. 2.5a, it does not
become visible whether a speci�c block contributes signi�cantly (asymmetrically)
to the error propagation (for example, by forwarding it in multiple paths), and,
thus, insight is missed. It becomes clear, that in the given context, there are several
disadvantages in considering the system as a whole compared to examining the
subsystems separately.

S2,

1

S2,

2

S2,3

S2,4

S2,5

S1,2S1,1

In 1

In 2

Out

S0

(a) Error(s) at system-level

S2,

1

S2,

2

S2,3

S2,4

S2,5

S0

In 1

In 2

Out

S1,1 S1,2

(b) Error(s) at subsystem level 1

S2,3

S2,4

S2,5

S1,2S1,1 S0

In 1

In 2

Output

S2,1 S2,2

(c) Error(s) at subsystem level 2

Figure 2.5: Views of the error injection and propagation in a system at di�erent
abstractions

To e�ciently handle complexity, instead of considering the complete
chain of subsystems during error propagation, each subsystem can be studied
separately. In the general case, this requires that no feedback loops are present
among the subsystems under study. Then, by applying appropriate inputs, namely
inputs with the same characteristics as in the case that the whole chain of system
blocks would execute together, correct output results can be derived at a lower
complexity cost. In cases that the information and/or error signal can be statistically
characterized (and potentially represented by a random process) at the input of
the block, new ways of e�ciently handling the complexity of propagation become
available. Fig. 2.6 shows a projection of the system decomposition concept onto
communication systems, which constitute the focus application domain for this work.

When decomposing the system into subsystems, a trade-o� is present
between reducing complexity by considering stand-alone blocks and increasing

17

complexity by handling information in a very �ne-grain manner and having to re-
integrate �ne-grain information in the system context [61]. Therefore, a compromise
is required. In our context, working at the level of groups of primitive operators�
operators like multiplications and additions�achieves a good compromise and is
compatible with using as error model the bit-�ip. An additional criterion for deciding
on the level of the decomposition is that the function of the blocks can be potentially
analytically or otherwise mathematically modeled; such is the case, for example, with
LTI blocks.

Baseband
Processing

Radio
Front-End

Radio Front-
End Channel

Communication system

Baseband Processing

Decoder
...

FIR filter

S1,2S1,1

S0

S2,1

In
Out

S1,3
S1,4

S2,2

Figure 2.6: Example of splitting a communication system into subsystems

System functional model. Simulation-based techniques use a system model
to propagate the errors. The model description can be closer to the hardware
implementation (bit- and cycle-accurate e.g. using hardware description language
models) or more abstract, depending on the type of information and accuracy
required. The trade-o�s involved among system models of di�erent abstraction
typically involve accuracy versus simulation time. As, in our case, the signal
statistics are of interest, a bit-true functional system model is su�cient. A bit-true
model uses the same number system and precision (like rounding or truncation) as
the prototype hardware would. Simulations are a safe way to derive the necessary
reliability data, as they can be applied to any type of system, but typically quite
time-consuming; especially, due to the repetitive nature of error injection campaigns.
In this work, simulation implementations constitute the reference implementations
(as the most established means for such an analysis) and are performed in Matlab.

Analytical and other mathematical techniques are alternative-to-
simulation approaches to calculate the signal statistics in a manner that the result
is equivalent with the statistics that would be derived by performing system
simulation(s); i.e. so that the signal statistical parameters are equal between the two
approaches. For example, through analytical approaches, closed-form expressions
can be used to derive certain statistical parameters when linear transformations
take place. Using such an approach is typically much more time-e�cient compared
to performing system simulation, but can be only applied to systems with speci�c
characteristics (i.e. in the aforementioned example, systems with linear operators);
therefore, sometimes a combination between simulation-based and mathematical-
transform-based methods can be the optimal solution. In this work we employ

18

analytical and other mathematical methods to speed-up the computations required
in fault injection campaigns. Some of these techniques have been used since a long
time in the domain of analyzing the e�ect of quantization noise [94, 54] but cannot
be reused in a similar way due to the inherently di�erent nature of hardware-induced
errors (see Sec. 2.5 for more details).

2.4 Framework overview

To handle the simulation complexity in communication systems, stochastic analysis
is a promising direction. According to the stochastic approach, the system's response
is modeled in a statistical way. This can be achieved in any system by gathering
su�cient data from the results of simulations based on random system states and
input sequences. However, when, on top, the signal is considered as a stochastic
process (i.e. a non-countable in�nity of random variables), a number of tools become
available which allow the representation and propagation of such data through
system models. The signal then can be completely characterized by the PMF
and ACF. Therefore, having these two functions available inbetween system blocks
provides us with all the necessary information to derive the �nal system output
metrics. If needed, random data can be generated according to the given PMF and
ACF, using techniques, like the copulas [21].

Fig. 2.7 shows a conceptual illustration of the framework, within which,
the proposed approaches, presented in the following chapters, operate. An example
system with two inputs In1, In2 and one output Out is composed by a mixture of
LTI and non-LTI blocks. The error signal is generated and propagated through the
various blocks until it reaches the system output. The error signal, characterized by
the PMF and ACF, can be propagated through the non-LTI blocks by performing
simulation (random data can be generated by using techniques like copulas) and
through the LTI blocks using analytical and other mathematical methods. The latter
is the focus of this study. When the error signal reaches the output, appropriate error
metrics can be derived exploiting the PMF or the ACF. In summary, the components
that synthesize the proposed error propagation framework are the following:

� The system is de-composed into subsystems and blocks. Each of these can then
be examined as a stand-alone subsystem/block, assuming no closed loops. The
propagation of the information can occur through a combination of simulation
for non-LTI blocks and analytical and other mathematical techniques for LTI
blocks (as a way to achieve computational speed-up).

� Statistics is an e�ective way to represent the information at the input
and output of the block under investigation for communication systems as
statistical metrics are of interest anyhow. On top, if the signal is represented
as a stochastic process, analytical and other methods become available for the
propagation through the LTI blocks. The error signal can be represented by

19

N
o

n
-LTI

In
 1

In
 2

O
u

t

LTI
N

o
n

-LTI

LTI

LTI

a
n

a
ly

tic
a

l

&
 o

th
e

r

s
im

u
la

tio
n

a
n

a
ly

tic
a

l &
 o

th
e

r

o
r s

im
u

la
tio

n

s
im

u
la

tio
n

a
p

p
lic

a
tio

n
-

s
p

e
c

ific
 m

e
tric

s

e
rro

r g
e

n
e

ra
tio

n

F
irs

t-o
rd

e
r

s
ta

tis
tic

s
 (B

E
R

,

S
N

R
 e

tc
)

S
e

c
o

n
d

-o
rd

e
r s

ta
tis

tic
s

(n
u

m
b

e
r o

f b
u

rs
ts

 o
f le

n
g

th
 1

0
, o

c
c

u
re

n
c

e
s

o
f 3

 fa
ile

d
 p

a
c

k
e

ts
 in

 a
 ro

w
 e

tc
)

a
n

d
/o

r

P
M

F
A

C
F

e
rro

r m
o

d
e

l

0
2

4
6

8
1
0

1
2

-1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

-3
0
0

-2
0
0

-1
0
0

0
1
0
0

2
0
0

3
0
0

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

P
M

F
A

C
F

e
rro

r m
o

d
e

l

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0
.2

0
.4

0
.6

0
.8

1
0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
2

4
6

8
1
0

1
2

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

0
1

2
3

4
5

6
7

8
9

1
0

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0
.2

0
.4

0
.6

0
.8

1
0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

P
M

F
A

C
F

e
rro

r m
o

d
e

l

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0
.2

0
.4

0
.6

0
.8

1
0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
2

4
6

8
1
0

1
2

1
4

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

P
M

F
A

C
F

e
rro

r m
o

d
e

l

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0
.2

0
.4

0
.6

0
.8

1
0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
5

1
0

1
5

2
0

2
5

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

P
M

F
A

C
F

e
rro

r m
o

d
e

l

O
V

E
R

V
IE

W
 O

F
 T

H
E

 E
R

R
O

R
 P

R
O

P
A

G
A

T
IO

N
 F

R
A

M
E

W
O

R
K

a
n

a
ly

tic
a

l

&
 o

th
e

r

F
igu

re
2.7:

E
rror

sign
al
gen

eration
an
d
p
rop

agation
th
rou

gh
th
e
sy
stem

b
lo
ck
s
u
sin

g
a
m
ix
tu
re

of
tech

n
iq
u
es

20

both the PMF and the ACF as these characterize fully a stochastic process.

� The error metrics of interest at the system output are application-speci�c, and
typically include �rst-order statistical metrics, like the BER, and/or second-
order statistical metrics, like a sequence of missed packets of a speci�c length.
PMF and ACF are required to cover both types of metrics.

� To construct an error model at the input of a block, an increased error injection
percentage may be assumed in order to accelerate the procedure of gathering
su�cient statistics.

2.5 Correlation between the error and error-free

signal and comparison with noise sources

As mostly done in literature, a bit-�ip error model is assumed here. These models
describe the probability of a bit-�ip from 0 to 1 or 1 to 0 at a speci�c bit position
in the digital signal samples. The bit-�ip probability for bit position ν with weight
�2ν is denoted by πν . In case of a 0-to-1 �ip in bit position 0 ¤ ν n � 2 the
sample value is corrupted by an error of �2ν and a 1-to-0 �ip yields an error of �2ν .
For bit position ν � n� 1 (i.e. the sign bit in two's complement representation) the
opposite signs have to be applied. The physically underlying mechanism leading to
the bit-�ips is also modeled as a random process, called bit-�ip mechanism in this
work.

Other sources of errors typically studied in signal processing and, more
speci�cally, communication systems include the quantization noise (which manifests
itself when the �oating-point implementation of the system is turned into a �xed-
point) and the noise that is introduced from the channel of the communication
system. Both of these noise sources have been studied for a long time in the
literature. All three sources of errors are additive and can be modeled as random
processes; however, they have di�erent characteristics. At this point the goal is
especially to illustrate the di�erences of bit errors and the other two noise sources
regarding their correlation with the information signal. For the illustration, a 20 kHz
sinusoidal signal of amplitude 1 is used as reference; it represents the information
signal before any errors are added.

Channel noise. Channel noise is the noise that is introduced on the information
signal through the channel. In case the sources of noise are the electronic components
and ampli�ers at the receiver, the channel noise can be characterized statistically as a
Gaussian process [93]. Actually, this model is the predominant one in communication
system analysis and design. Information signal and channel noise are typically
additive. Fig. 2.8 shows two periods of the reference error-free sinusoidal signal
and the same signal after it has been corrupted by Gaussian channel noise with
µ � 0 and σ2 � 0.2509. To improve the visibility, three red, vertical, dotted lines

21

split the graphs into four half-periods. The same splitting is performed in all �gures
of this section. Fig. 2.9 shows the channel noise for the corresponding two periods of

(a) (b)

Figure 2.8: Two periods of the error-free (a) and the corrupted-by-channel-noise (b)
sinusoidal signal

the sinusoidal signal, before and after the interaction with the sinusoidal signal. It
is obvious that there is no di�erence between the two noise signals, i.e. the channel
noise is independent of the information signal.

(a) (b)

Figure 2.9: Channel-induced error signal (a) modeled and (b) resulting after the
interaction with the error-free sinusoidal signal

Quantization noise. Quantization is the process of mapping values from a bigger
(and possibly continuous) set of values to a smaller (discrete) set. In practice,
for digital systems, this means either the mapping of analog values onto discrete

22

values (at the interface between analog and digital logic) or the mapping of words
of a certain length onto words of a smaller length after some operation has taken
place in the digital part of the system. Fig. 2.10 shows the discrete-time �oating-
point sinusoidal signal (in Fig. 2.10a) and the corresponding (quantized) �xed-point
signal (in Fig. 2.10b). To derive the signal in Fig. 2.10b, the sample amplitudes
of Fig. 2.10a have been rounded to the nearest level (more quantization modes are
possible, but presenting those is unnecessary for the point being illustrated here)
that can be represented by 8-bit words, with 1 bit representing the MSB and the
other 7 being fractional bits. In Fig. 2.10b, the quantized values are represented
with the red circles being printed on top of the non-quantized values (blue circles)
so that the �ne di�erences become more visible. The noise that is introduced during

(a) (b)

Figure 2.10: Two periods of the non-quantized (a) and the quantized (b) sinusoidal
signal

this mapping can be seen in Fig. 2.11. The quantization error can be modeled as a
random variable uniformly distributed in the interval V � r�1

2
2νmin ,�1

2
2νminq, with

2νmin being the weight of the Least Signi�cant Bit (LSB) position [93]. Fig. 2.11a
and Fig. 2.11b show the modeled and the actual noise values for the two periods of
the sinusoidal signal under discussion.

Fig. 2.12a and Fig. 2.12b depict the same noise signal values with the
y-axis magni�ed. In Fig. 2.12b it can be seen that in the actual noise values a
small correlation with the information signal can be observed, in contrast to the
modeled signal in Fig. 2.12a. This becomes visible by observing that the noise
signal in the �rst and third half-periods of the graph (as divided by the red dotted
lines) is identical. The same holds for the signal in the second and fourth half-
periods of the graph. Very often, in quantization noise analysis, the noise signal
is considered uncorrelated with the information signal and modeled by a uniform
distribution. This holds in practice when the signal amplitude is large compared to
the quantization step [49].

23

(a) (b)

Figure 2.11: Quantization noise signal (a) modeled and (b) resulting after the
interaction with the error-free sinusoidal signal

(a) (b)

Figure 2.12: Quantization noise signal (a) modeled and (b) resulting after the
interaction with the error-free sinusoidal signal

24

Bit errors. As a next step, the same reference signal is corrupted by bit errors.
Once again, 8-bit words are considered with 7 fractional bits. To make the point
more evident, an "exaggerated" corruption is performed. Every sample of the
reference signal is being corrupted at one bit position, and every bit position has
the same probability of being corrupted. Performing this process on the reference
signal leads to the corrupted signal shown in Fig. 2.13b. In order to corrupt the

(a) (b)

Figure 2.13: Two periods of the error-free (a) and the corrupted-by-bit-errors (b)
sinusoidal signal

reference signal, a bit-�ip signal is used (see Fig. 2.14a), as discussed in Sec. 2.3.1.
After the bit-�ip signal has interacted with the reference signal, the error signal is
derived by subtracting the error-free signal from the corrupted signal, as discussed
in Sec. 2.2.2. The result is shown in Fig. 2.14b. Due to the bit-�ipping operation
(see also example in Fig. 2.3), the error signal is, in general, correlated with the
reference signal. In the example under discussion, this becomes especially visible by
observing the values with the biggest magnitude (value equal to �1) in the bit-�ip
signal. These values correspond to bit-�ips of the MSB in the samples. When these
values are present in the �rst and third half-period, they keep their sign. However,
when they are present in the second and fourth half-period, they change their sign.

As the error value depends on the bit value before �ipping, in general, the
error and the error-free signal are correlated when the errors occur due to hardware-
induced bit-�ips. This correlation is important because it has as a consequence that
no well-known PMF can be expected for the error signal (as opposed, for example,
to the PMF of quantization noise signal).

25

(a) (b)

Figure 2.14: Bit-�ip signal (a) and error signal (b)

2.6 Summary and link to next chapter

In this chapter, we presented the important elements that constitute the basis of
our approach to address error injection and propagation experiments in an e�cient
way. System hierarchical decomposition allows to handle complexity and examine
individual blocks separately. Using statistics and modeling the signal as a stochastic
process provides analytical tools to propagate signals through systems in an e�cient
way. Especially LTI systems, which form an important class of modern systems,
favor the use of analytical and other mathematical approaches for the propagation of
statistical information and are the focus of the study. Information should ultimately
be provided in a way that is compatible with the application-speci�c performance
metrics, therefore, to cover all possible types of metrics, both PMF and ACF are
required.

As a starting point and in order to build some insight, we considered
the simplistic assumption that the error-free signal is modeled as a Gaussian
distribution and errors are systematically injected. We discovered both possibilities
and limitations. The results of the exploration are presented in the following
chapter.

26

Chapter 3

Propagation of Corrupted,

Uncorrelated Signal

3.1 Outline

Chap. 3 discusses the proposed approach for propagating a corrupted signal, when
the underlying error-free signal features an uncorrelated PMF, using as driver the
Gaussian PMF. In Sec. 3.2, preliminary information is provided on how Gaussian
PMFs are a�ected by bit errors and how they behave under linear transformations.
Based on this information, Sec. 3.3 illustrates the modeling concept and Sec. 3.4
presents experimental results and related work. Sec. 3.5 discusses limitations of the
proposed approach. Sect. 3.6 concludes the chapter.

3.2 Motivation and preliminaries

To help designers realize more robust designs, insight of the system behavior in
the presence of faults and errors is needed. As already discussed in previous
chapters, this is typically achieved through system simulation, during which, errors
are injected in the system and information regarding error statistics are derived.
Lack of scalability is a major concern for such an analysis. An attractive alternative,
especially for communication systems in which statistical metrics are being used, is
to use analytical techniques in order to estimate the statistical properties of the
signal after bit errors have been introduced and propagated through the rest of
the system. This is especially true for LTI systems. Previous works have tried to
address the challenge of scalability by propagating hardware-induced error statistics:
In [59], the authors use closed-form expressions to propagate the signal power,
causing a signi�cant calculation speed-up but at the cost of accuracy. In [40, 39], the
authors resort to more computationally demanding techniques, like the propagation
of the characteristic function. As a potentially attractive option, in this chapter,
the statistical moments are employed to propagate e�ciently the signal statistics

27

after hardware-induced bit-�ips have been injected. Possibilities and limitations are
discussed. It is shown that such purely analytical approaches can have limited use
in the context of estimating the impact of hardware-induced bit errors, due to the
correlation that exists between the errors and the signal. To illustrate the concepts,
the relatively simple case of the Gaussian PMF has been chosen but the approach
is applicable to every type of uncorrelated signal. Special emphasis is given to the
role of autocorrelation, since it limits the use of the analytical approaches.

3.2.1 Statistical characteristics of the considered signal

PMF. The target of the study is to generate a random signal at the output node
of an LTI system, which accurately represents the propagation to the output of
the input signal after it has been subjected to injection of bit errors (i.e. the
produced corrupted output signal is statistically equivalent to the one that would
be computed after performing the system simulation). Since no well-known PMF
is to be expected for the error signal, the error and the error-free signal are
explored together in this study. In order not to complicate the analysis further,
simple PMF cases are chosen for the error-free signal (but not uniform PMF). It
is known that the simplest PMFs are the Gaussian (or normal) processes as they
are mathematically tractable and they are fully characterized by the mean µ and
the standard deviation σ; a random variable X that follows a Gaussian distribution
is denoted as X�N pµX , σXq. Sometimes, in the notation, the variance σ2

X is used
instead of the standard deviation; when that is the case, it will be clearly indicated.
Especially for digital communication systems, in several cases the digital signal can
be modeled by a Gaussian PMF or a PMF that can be decomposed into a number
of Gaussian components : (i) For instance, in the case of M-ary amplitude shift
keying (ASK) in the presence of Additive White Gaussian Noise (AWGN), the PMF
of the received signal features M Gaussian components. Other examples occur in
certain modulation schemes. (ii) In cases that processes are generated by the sum
of multiple, independent RVs featuring PMFs of arbitrary shape. In this case, the
Central Limit Theorem (CLT) applies [60]. The CLT states that if the RVs xi
are independent, under general conditions, the density of their sum x1 � x2 � ..xn,
converges to a normal distribution as n Ñ 8. The theorem does not hold if a
small number m of the given densities are dominant. For example, the CLT applies
at the output of speci�c digital signal processing blocks, like the Discrete Fourier
Transform (DFT) [39].
Autocorrelation. In this context, autocorrelation can be present in the corrupted
random signal in the following cases: (i) it is inherent due to nature of the physical
process that produced the error-free random signal, (ii) it is acquired as the random
signal propagates through the signal processing blocks (when these have memory),
and (iii) it is acquired due to the error injection procedure. In this study, case (i) will
not be considered (namely the inputs are considered uncorrelated), but the focus
will be on cases (ii) and (iii).

28

3.2.2 E�ects of error injection on Gaussian PMFs

As already discussed in Sec. 2.3.1, a bit-�ip will increase or decrease the value of
an error-free sample by a speci�c amount, which is decided by the position that the
bit-�ip occurs. When considering PMFs, it is however not appropriate to assume
that all the sample values (amplitudes) within the PMF will behave the same way
in the presence of bit-�ips. That means calculating the new random variable after
the bit-�ip by simply adding or subtracting the error value to the mean µ of the
distribution is not su�cient. This depends namely on whether the sample values
have the same bit value (0 or 1) in the position where the bit-�ip occurs.

Therefore, to create a reusable and accurate modeling basis, now the
signal value and error interaction is analyzed, covering all realistic cases. Fig.3.1
illustrates the di�erent e�ects of injecting a single bit-�ip at di�erent bit positions
for n � 8 bits. Here, the PMFs are displayed through the use of histograms,
which are created by experimental data; we operate under the assumption that
the amount of data samples used to create the histograms is su�cient so that the
presented histograms asymptotically approach the PMFs. For the error-free signal a

(a) νf � 7 is �ipped (b) νf � 4 is �ipped (c) νf � 1 is �ipped

(d) Error is uniformly added
to the signal (Class 1)

(e) Output components are
three instead of two (Class 2.i)

(f) Impact of error can be
ignored (Class 2.ii)

Figure 3.1: Bit-�ip samples PMF and e�ect of single bit-�ips on signal PMF.

distribution X�N p16, 2q is assumed. bit-�ips are injected in πν � 50% of the signal
samples, i.e. πν denotes the percentage of corrupted samples. Fig.3.1a shows the
PMF of the bit-�ip signal for the bit-�ip in bit position ν � νf � n � 1 � 7 (the
MSB/sign bit). Fig.3.1b and Fig.3.1c show the bit-�ip signal PMFs respectively for
bit positions νf � 4 and νf � 0. In all three cases, 50% of the bit-�ip samples

29

have the magnitude 0 since they correspond to the error-free signal samples. In
Fig.3.1d-f, the blue histograms are the original data distribution, while the red ones
show how the distribution is altered after the error injection. The following classes
are identi�ed, which span the complete range of cases:

� Class 1: All sample values in the non-corrupted distribution feature
the same bit in the bit-�ip position νf so xνf � const. This holds for the
case depicted in Fig.3.1a and Fig.3.1d. As in the non-corrupted distribution (blue
distribution in Fig.3.1d) all sample values are positive, and the MSB (sign bit)
is �ipped, x7 � 0 � const. holds. In case bit-�ips would be injected in 100% of
the samples, the whole distribution would be shifted by the weight of the sign
bit �27 � �128. As here only 50% of the signal samples get corrupted, the
distribution splits into two parts. One part (the 50% non-corrupted samples) is
scaled by a factor of 0.5 (red distribution on the right-hand side in Fig.3.1d).
The second part (the 50% corrupted signal samples) is scaled by a factor 0.5 and
shifted by �27 � �128 (red distribution on the left-hand side in Fig.3.1d). In the
case of an error-free sample distribution X�N p�16, 2q all sample values would
be negative, so x7 � 1 � const. In this case a shift by 27 � �128 would occur.
Because for these examples the absolute values are relatively small, also bit �ips
in bit position νf � 6 and νf � 5 would belong to this class (as the bits in this
positions are equal to the sign bit). Just the shift directions would be opposite,
as the weights of these bit positions are positive.

� Class 2: The sample values in the non-corrupted distribution do not all
feature the same bit in the bit-�ip position νf (i.e. x

νf � const). This
holds for the case depicted in Fig.3.1b and Fig.3.1e in which bit-�ips in bit position
νf � 4 are applied (Class 2.i). Now the distribution has to be cut into two parts,
one containing all sample values being smaller than 24 � 16, i.e. x4 � 0 � const.
and one with the larger sample values, i.e. x4 � 1 � const. Due to this, now the
corrupted distribution consists of three parts. Again, one part is a scaled replica
of the non-corrupted distribution (red one in the middle of Fig.3.1e), representing
the 50% non-corrupted signal samples. For the corrupted signal samples, the
scaled distribution is cut in one part representing all sample values smaller than
16, which gets shifted by 24 � �16 (red distribution on the right-hand side in
Fig.3.1e). The other part, representing all sample values equal or larger than 16
gets shifted by �24 � �16 (red distribution on the left-hand side in Fig.3.1e). The
term pseudo-Gaussians will be used for these neighbouring parts. In the next
lower bit-�ip position νf � 3, the corrupted part of the distribution is cut into four
such pseudo-Gaussians. These are organized in two groups: one group featuring
the bit pairs x4, x3 � 0, 0 � const. and x4, x3 � 1, 0 � const. which gets shifted
by 23 � �8 and one with bit pairs x4, x3 � 0, 1 � const. and x4, x3 � 1, 1 � const.
getting shifted by �23 � �8. Finally, in the lowest bit-�ip position νf � 0 in the
corrupted part of the distribution, the bit-wide bins get �ipped pairwise.

A special subcase of the Class 2, (Class 2.ii) occurs when the error is

30

negligible compared to the signal value (what is acceptable can be case-
speci�c decided by the designer). Such an example happens when the bit error
occurs on the LSB of the word and the signal amplitude range is clearly larger.
Then, signal and error can be considered uncorrelated and the errors are a small
additive noise (similar to what quantization noise is typically considered [94])
despite the fact that signal amplitudes may not have the same bit value (0 or
1) in the position where the bit error occurs. So, again adding/subtracting the
error magnitude to the mean µ of the input distribution is accurate enough (see
Fig.3.1c and Fig.3.1f).

3.2.3 Linear transformation of normal random variables

Weighted sum of normally distributed random signals. Assume two random
digital signals x1 and x2 with samples x1k and x2k being independent Normally
or Gaussian distributed RVs (NRVs) with means µX1 , µX2 and variances σ2

X1
, σ2

X2
.

Then, the weighted sum signal y with samples yk � c1 �x1k� c2 �x2k@ k and constant
coe�cients c1, c2 again is a random digital signal. Its samples also are being NRVs
with Y�N pµY , σ

2
Y q and µY � c1 � µX1 � c2 � µX2 , σ

2
Y � pc1 � σX1q

2 � pc2 � σX2q
2.

The PMF of y is a Gaussian "bell shape" resulting from the convolution of the
bell-shaped PMFs of x1 and x2.

In general, even when dependence or correlatedness is not absent, linear
combinations of m normal distributions produce a normal distribution again.
Consider m normally distributed RVs Xi with i � 1, 2, ...m, where µXi � µi and
pairwise covariance σij � covpXi, Xjq with i, j � 1, 2, ...m. Then, the random

variable Z �
m̧

i�1

ci �Xi will have a mean µZ �
m̧

i�1

ci � µi, and a variance given by

σ2
Z �

m̧

i�1

m̧

j�1

ci � cj � σij (3.1)

σ2
Z �

m̧

i�1

ci
2 � σii �

m̧

i�2

i�1̧

j�1

2 � ci � cj � σij (3.2)

where σii � V arpXiq is the variance of Xi and σij � CovpXi, Xjq. In case
the pairwise covariances are not provided upfront or calculated analytically, the
covariance of Xi, Xj can be estimated from n samples Xik, Xjk (where k � 1, 2, ...n
is the time index) of the random digital signals Xi, Xj as CovpXi, Xjq � 1

n
�

ņ

k�1

pXik � ErXisq � pXjk � ErXjsq. In case also the expectations ErXis, ErXjs are

not provided upfront or calculated analytically, they can be estimated by using the

averages ErXis �
1
n
�

ņ

k�1

pXikq, ErXjs �
1
n
�

ņ

k�1

pXjkq and to obtain an unbiased

31

estimation of the covariance, the formula can be adapted as CovpXi, Xjq �
1

n�1
�

ņ

k�1

pXik � ErXisq � pXjk � ErXjsq [37].

FIR �ltering of normally distributed random signals. In the
arithmetic part of a FIR �lter such a weighted sum operation is performed on its
Gaussian distributed input samples delayed by a tapped delay line. As long as there
is no autocorrelation in the random input signal again all the samples at the output
of the taps before the adder are independent NRVs (at lag 0 where the addition takes
place). The output signal (after the sum) is composed of samples that are NRVs
but its spectrum is not white anymore. The white input spectrum gets colored by
the FIR's frequency transfer function and the output signal features autocorrelation
(with N non-zero lags in case of a N -tap FIR). This autocorrelation is due to the fact
that N consecutive output samples yk, . . . , yk�N�1 share contributions from the same
input sample xk. FIR �ltering of such a random signal with Gaussian distribution
featuring autocorrelation again yields an output signal with Gaussian distribution
and autocorrelated samples. This can be easily seen from combining the two �lters
into a larger �lter realizing the total transfer function.

3.3 Propagating the corrupted signal using

statistical moments

3.3.1 Set-up and observation

Summary of choices. In summary, to explore possibilities and limitations of
using analytical techniques for the propagation of a corrupted signal through
LTI blocks, the following choices have been made: The signal is characterized
by a Gaussian distribution, since Gaussian distributions are mathematically
tractable and can be completely characterized by the mean and the variance .
Linear combinations of Gaussian distributions produce Gaussian distributions.
Propagating the mean and the variance through an LTI block can be easily
implemented when knowing the block path function (which can be directly obtained
by knowing the block signal �ow). Considering an uncorrelated signal allows
the calculation to be simpler (the second term of Eq. 3.2 in Sec. 3.2.3 needs not
be calculated). Finally, adding multiple independent random variables leads to a
Gaussian distribution independent of their original PMF, due to the CLT .
E�ect of �ltering on corrupted Gaussian signal. To illustrate the principles
of the modeling a simple 2-tap FIR �lter will be used as a driver, with wordlength
n � 8 (integers), and coe�cients c1 � 1 and c2 � 2. As soon as an error signal exits
the �lter, the next error is injected (i.e. πν � 50% in this case). Fig.3.2 illustrates
the synchronization scheme and the parameters. The input error-free signal is a
random variable X�N pµX � 16, σX � 2q:

32

xk
xk-1

yk

... bits

x1x2x3x4x5x6

error-free

sample

error-free

sample

c1= 1

T

c2= 2

Figure 3.2: Error injection in simple signal-�ow (2-tap FIR �lter)

l As a start, only the MSB of the corrupted samples will be �ipped
(νf � 7). For the distribution N p16, 2q all the �xed-point representations of
the signal samples have the bit value 0 at the MSB position. So this case
belongs to Class 1 (see Fig. 3.1). That means that the error amplitude can
be added to the mean of the distribution. As the �lter entails sequential logic,
the corrupted sample will keep on corrupting the output for as long as the �lter
length, as illustrated in Table 3.1. When the MSB is �ipped in the 8-bit word
an error of -128 is obtained, on top of the error-free signal �N p16, 2q, leading to
�N pµX̃ � �128 � 16 � �112, σX̃ � 2q. When a random variable belonging to this
distribution passes through the �rst tap, at the same time step, a random variable
that belongs to the error-free distribution passes through the second tap. Their sum
will appear at the �lter output leading to random variable belonging to a distribution
N pµX̃ � �112�2�16 � �80, σX̃ �

a
p22�p2�2q2q � 4.47q (see �rst row of Table 3.1).

In the table, the corrupted distribution is highlighted in grey and the error-free
distribution in yellow. When, at the second time step, the random variable belonging
to the corrupted distribution further propagates through the �lter to the second
tap, and after adding again the error-free signal centered around 16, the output
distribution becomes �N pµX̃ � 16�2�p�112q � �208, σX̃ �

a
p22�p2�2q2q � 4.47q

(see second row of Table 3.1). Fig. 3.3 shows the signal histogram (in blue) when
Gaussian-distributed data have been generated, the bit position νf � 7 has been
corrupted and the data have been propagated through a 2-tap �lter. Especially, in
Fig. 3.3b, the theoretically expected PMF has been drawn (with a green line), as
calculated in Table 3.1. By visual inspection, it can be observed that there is a very
good match between the experimental and theoretical distributions.

l Now, the other representative case of Fig. 3.1 will be discussed. Namely,
the input signal is corrupted at bit position νf � 4 and, therefore, this case belongs
to Class 2. As already seen in Fig. 3.1e, the corrupted input PMF has three

33

Table 3.1 Propagation of distribution N p16, 2q through 2-tap FIR �lter when νf � 7
is �ipped

time step xk xk�1 yk

k [�N p�112, 2q] 2 � r�N p16, 2q] [�N p�80, 4.47q]

k � 1 [�N p16, 2q] 2 � r�N p�112, 2q] [�N p�208, 4.47q]

(a) (b)

Figure 3.3: PMF at the �lter input and output when νf � 7 is corrupted at the
input (2-tap �lter)

34

Table 3.2 Propagation of distribution N p16, 2q through 2-tap FIR �lter when νf � 4
is �ipped

time step xk xk�1 yk

k [�N p0, 2q] 2 � r�N p16, 2q] [�N p32, 4.47q]

[�N p31, 2q] 2 � r�N p16, 2q] [�N p63, 4.47q]

k � 1 [�N p16, 2q] 2 � r�N p0, 2q] [�N p16, 4.47q]

[�N p16, 2q] 2 � r�N p31, 2q] [�N p78, 4.47q]

components. One component that consists of error-free samples and is Gaussian-
distributed, as earlier, and two more components appearing as pseudo-Gaussians,
that have emerged due to the corruption of the signal. In the �lter, at every time
instant, when one error sample goes through one tap, an error-free sample goes
through the other. In this case, the error sample can come from either of the two
pseudo-Gaussians. Assuming the two pseudo-Gaussians were real Gaussians, then
using the same reasoning as in the previous case, one would expect that the �lter
output components in this case would be four (two for each input combination of
pseudo-Gaussian and error-free Gaussian combination that goes through the �lter).
These two parts can be approximately represented by a normal distribution and
the mean of this pseudo-Gaussian can then be aligned with the position of their
most frequently occurring values (in this case value 0 for the �rst part and value
31 for the second part). In addition, we have a weight value which indicates what
portion of the original distribution they represent. Each of these two values will
then create 2 distinct pseudo-Gaussians and because of the 2 taps, they will create 4
Gaussian components at the output. The moments of the Gaussians at the output
are shown in Table 3.2. Implementing this approximation to model the output of
the �lter leads to the result shown in Fig. 3.4. The 4 components are approximated
by Gaussians and shown in green while the simulated data is shown in blue. It is
visible now that although the blue components have been smoothed out due to the
�ltering, there is some deviation from the modeled PMF. However, here is where the
CLT can help. As in practice a �lter has more taps, the �lter output will seldomly
be composed by components that are so far from each other.

As a matter of fact, Fig. 3.5 shows the same injection being performed
but the �lter is now composed of 5 taps instead of 2. The �lter coe�cients have
the values: 1, 2, 3, 4, 5. The input PMF is slightly di�erent than in the earlier
case, due to the fact that now 1 out of 5 samples is corrupted instead of 1 out of
2. Due to the 5 taps, we have now in total 10 Gaussian components being created
at the output (in green). The total output PMF will be computed by adding these
individual PMF components (in the �gure the y-axis has been scaled up to improve
the visibility). The result is shown with the red line. We can see now there is a
good match with the simulated data (in blue) despite the approximation with the
pseudo-Gaussians. Due to the CLT, the approximation of the output components

35

(a) (b)

Figure 3.4: PMF at the �lter input and output when νf � 4 is corrupted at the
input (2-tap �lter)

as Gaussians is a good match. This observation forms the basis of our approach.

(a) (b)

Figure 3.5: PMF at the �lter input and output when νf � 4 is corrupted at the
input (5-tap �lter)

3.3.2 Modeling approach

To summarize, in order to model the pseudo-Gaussians at the input of the LTI block,
the following choices are made:

� Proportions wi of a normal distribution (corrupted components) are

36

Procedure 1 Pseudocode of the proposed methodology for the propagation of
corrupted uncorrelated signal through an LTI block

Input: error-free signal, bit-�ip signal
Output: PMF at the output of the LTI block
1: initialize global vector to store �nal PMF
2: cut the input PMF into pseudo-Gaussians, i.e. input pseudo-Gaussians
3: for each input pseudo-Gaussian do

4: for each error combination do

5: bitwise xor the mean with the error sample
6: replace corrupted value in the LTI signal-�ow according to the injection scenario
7: propagate means and standard deviations to the output according to the signal-

�ow
8: create normal distribution (PMF) according to the derived mean, standard

deviation, weight
9: add (each) output PMF to the global vector
10: end for

11: end for

approximated with di�erent normal distributions (weighted with wi), di�erent
means and standard deviations.

� Every mean in the new normal distribution is approximated by the most
frequently occurring sample.

� The standard deviations are approximated by the standard deviation of the
original normal distribution weighted with wi.

Combining these approximations with the LTI signal �ow graph allows us to produce
Gaussian components at the output of the LTI block, which, when added, provide
the total output PMF. The proposed overall �ow is shown in Proc. 1. Step 1
initializes and step 9 accumulates the global vector which stores the values of the
output PMF across the entire signal sample range. Step 2 contains the splitting
of the initial PMF into separate components that will be propagated through the
signal �ow. The main loops span the core of the approach: Step 5 implements the
corruption of the mean of the corresponding pseudo-Gaussian. Step 6 replaces the
corrupted mean into the signal �ow of the LTI block. In this step, it is made sure,
for example, that the corrupted random variables pass through a single �lter tap at
one time step, while error-free random variables pass through the rest of the taps,
as in Tables 3.1, 3.2. Step 7 implements the actual propagation through the signal
�ow. E.g. the corresponding multiplications and additions take place. Finally, step
8 produces the normal PMF distributions from the main parameters derived in the
loops.

37

3.4 Experimental results and related work

discussion

3.4.1 Experimental set-up

To illustrate the e�ectiveness of the approach we use as LTI driver a �lter, as
typically found in the receiver of a BPSK communication line. The assumption is
that errors occur at the memory bu�er in front of the �lter (as has been illustrated
in Fig. 2.2) and the objective is to accurately estimate the PMF at the output of the
�lter. In the general case, the hardware-induced errors are correlated with the input
data signal (as discussed in Sec. 2.5) and that means that in such an analysis the
e�ect of the bit-�ips should be shown on the values of the received data signal after
channel noise has been added. However, under certain conditions, only the channel
noise can be considered. Such conditions include that the added bit-�ips are not
correlated in time with each other (no burst errors), the PMF of the data signal is
generally symmetric around its mean (that will result in the signal being �ipped in
the positive and negative direction with equal probabilities and such is the case with
the BPSK symbols), no non-linearities are considered in the �lter internals (such as
quantization e�ects). Such a framework has been used in [40, 39] (although these
conditions have not been mentioned) and we adopt the same idea. Fig.3.6 roughly
illustrates the idea: Instead of considering the whole input signal (as typically done
in simulation) only the channel noise is considered, bit-�ips are added and the result
can be added to the BPSK symbols separately. This has the advantage that the
input signal becomes an uncorrelated Gaussian distribution, which very often models
the channel noise in communication systems.

The two main objectives are: the accuracy of the modeled distribution
compared to the "ideal" distribution and the run-time of the modeling approach
compared to using simulation. We use as reference for the accuracy checks the
simulation results using the FIR �lter signal-�ow for 10 million samples. To compare
the accuracy, we use the Kullback Leibler divergence (KL) [43], which is a measure
of the di�erence between two probability distributions (also applied for the same
purpose by [40]), as presented in Sec. 2.2.2. The smaller the KL value, the closer
the distributions are. Regarding run-time, in absence of a single objective metric,
we use the Matlab timeit function which counts the elapsed computation time. All
experiments have been performed on a single machine (Intel Core i7, 2.40GHz, 8GB
RAM) under the same conditions (e.g. no other tasks running in parallel). We adopt
µ=0, σ=0.562, wordlength n � 8 (with 5 fraction bits) as used in [40] for the input
signal. The �lter coe�cients have been derived so that the �lter's impulse response
is a sinc function. The �lters have been implemented using for loops.

38

buffer

memorychannel

buffer

memory
BPSK

symbols

up

sampling
filter

channel

filter
down

sampling

BPSK

symbols

reference
AWGN

BPSK

symbols

up

sampling
filter filter

down

sampling

BPSK

symbols

implemented

AWGN
filter

Figure 3.6: Illustration of reference set-up vs. the implemented set-up to e�ciently
propagate bit-errors on the noise distribution through the �lter at the receiver

3.4.2 Results

Table 3.3 presents the accuracy and run-time results for three �lters of di�erent tap
lengths: 16, 32, 64. As already discussed, the 10-million samples simulation results
(can be seen at the fourth row) constitute our reference. The following three rows
present results after using 3-, 2-, 1-million samples respectively (1-million samples
is often considered as a representative simulation length). The last row presents the
results from our model. Columnwise, �rst the accuracy results are presented. As KL
compares the di�erence of PMFs, the results of the comparison of PMFs are shown,
for the case when the MSB is corrupted and the LSB is corrupted (2 extremes). The
case when the MSB is corrupted is expected to give the biggest di�erences since the
disruption in the signal values maximizes in that case (the error magnitude the
maximum possible). The last set of results regards the required execution time in
seconds. In this case, the total time for performing the whole exploration (after
corrupting all bit positions in the input data) is shown.

As it is to be expected, there is a trade-o� between accuracy and
execution time for the di�erent simulation lengths. The 1-million-samples case is
the fastest to execute but gives out the worse accuracy results, while the 3-million-
samples case has the closest match with the reference but takes more time. Coming
to the proposed work, the accuracy results are better than the simulation runs in the
cases when the CLT can be exploited the most: (1) The �rst case concerns all the
LSB corruptions as in this case the PMF stays closer together (becomes smoother)

39

instead of spreading out. That means that the initial PMFs after corruption look
very much Gaussian-like. (2) The second case is the case when more �lter coe�cients
are used. Then, there are more independent random variables being added at the
�lter output and CLT states that the density of the sum x1 � x2 � ..xn of random
variables x1, x2, ..xn converges to a normal distribution as n Ñ 8. This is the case
for the 64-tap �lter. The worst accuracy in the proposed work occurs for the MSB
corruption of the 16-tap �lter (as the CLT helps the least in that case).

Regarding timing, the proposed approach looks very e�cient for the 16-,
32-tap �lters but less so for the 64-tap. The latter is due to the bigger number
of multiplications required to propagate the corrupted means through the �lter
signal �ow. In contrast, the simulation approaches show almost no di�erence in
the execution time among �lter of di�erent lengths for the same amount of samples.
This can be explained by the vectorization in the for-loops, which counterbalances
the extra memory costs of the longer vectors (in the bigger �lter lengths) by the
smaller number of iterations required for the same amount of samples. Overall, the
proposed scheme looks the best compromise for the 32-tap �lter, the best option
for the 64-tap �lter when accuracy is the objective (but at the cost of timing) and
the best option for the 16-tap �lter when timing is the objective (but at the cost of
accuracy).

Table 3.3 Comparison for 16-, 32-, 64-tap �lter (input signal: µ=0, σ=0.562)

Accuracy (KL) Exec.time (sec)

Tap length 16 32 64 16 32 64

Corrupted bit MSB LSB MSB LSB MSB LSB

Ref.simul.
(10 � 106samples) - - - - - - 121 121 125
Simul.
(3 � 106samples) 44e-4 40e-4 54e-4 41e-4 226e-4 191e-4 35 35 37
Simul.
(2 � 106samples) 71e-4 51e-4 69e-4 68e-4 325e-4 272e-4 24 24 25
Simul.
(1 � 106samples) 130e-4 109e-4 158e-4 119e-4 728e-4 604e-4 12 12 13

This work 132e-4 3.5e-4 76e-4 3.8e-4 55e-4 16e-4 2 5 84

3.4.3 Related work

A limited number of contributions have developed analytical models to achieve a
scalable but relatively accurate estimation of the impact of random hardware bit-
�ips on LTI system blocks [40, 59, 39]. It is important to note that none of these
works is applicable for the case that non-linearities (such as quantization e�ects) are
present in the �lter internals.

40

More speci�cally, the authors in [40] propose a framework formalizing
the case when the bu�ering memory introduces random uniform bit-�ips (as a side-
e�ect of reduced supply voltage) through shifting PMF values to the left and to
the right (according to the bit error that is introduced). For the propagation of
random bit-�ips through the LTI block, the authors, instead of working directly
with PMFs, utilize the Characteristic Functions (CFs), which are Fourier duals
of PMFs. Then, scaled versions of the input CF (according to the �lter impulse
response) have to be multiplied with each other to get the output CF. Finally, the
CF has to be transformed back to the original domain, so that the output PMF
becomes available. This is an e�cient way to propagate random bit-�ips (that can
occur at any bit location of the memory). This technique becomes less e�cient for an
exploration, such as the one implemented in this chapter. When the impact of a bit-
�ip at every bit position has to be explored separately, the technique implemented
in [40] has to be adapted as follows:

For every bit position explored, a new corrupted CF has to be created.
Random variables from each corrupted CF (there are as many as the wordlength
of the input data) have to propagate through the signal �ow of the �lter. When a
random variable from a corrupted CF enters the �lter, there will be required as many
time steps for it to leave the �lter as the tap length. At each of these time steps,
it will be scaled by one of the �lter coe�cients while random variables belonging
to error-free CFs will go through the remaining of the �lter taps. A new output
CF will be created at each of these time steps by performing the corresponding
multiplications. The PMF outputs (i.e. after transforming the CFs back to PMFs)
have to be added to produce the �nal PMF. This process must be repeated for each
corrupted CF. Essentially, this algorithm utilizes the same reasoning performed in
the proposed technique of this chapter but instead of propagating only the statistical
moments (means and variances), the whole CFs have to be propagated.

The work in [59] presents a technique to model the e�ect of single bit-
�ip errors (each bit position is examined separately similarly to our framework)
in di�erent nodes of an adaptive FIR �lter. Objective of this investigation is to
estimate the total noise power at the output of the �lter. The noise power due
to bit-�ips is propagated through the rest of the LMS �lter by multiplying it by
the square of the magnitude of the frequency transfer function. In that sense, the
spectral noise power is treated like a time sample and the frequency domain analysis
is performed for the transient state of the system, rather than the steady state. Then,
the calculated noise power is compared to the SNR that is required to receive bits
at the receiver with a certain bit error rate plus the signal to noise ratio margin. If
it is bigger, then the initially-�ipped-node is identi�ed as a vulnerable bit position.
This analytical model provides a fast way to identify a set of vulnerable nodes in
the system; however, it cannot be used for the estimation of the actual number of
bit errors (since no PMF information can be obtained).

The work in [39] will be discussed later in the chapter.

41

3.5 Limitations with using the statistical moments

In the following, limitations of propagating analytically random signals through LTI
signal �ows for representative cases are discussed. An element that has not been
discussed until now is the signal autocorrelation. Autocorrelation is introduced
either by the signal processing block or by the error injection procedure. To illustrate
this, we will use the easiest cases regarding the statistics of the error-free signal, as
motivated earlier, by assuming: (i) a normal distribution for the error-free digital
signal at the input of the LTI block and (ii) that the CLT applies due to signal
processing at the output of the LTI block.

3.5.1 Propagating the corrupted signal through LTI blocks

3.5.1.1 Autocorrelation introduced by signal processing

l Example 1: Linear transformation without memory

In the following, a very simple, somewhat arti�cial data path (data path
1) example is used to illustrate the usage of analytical techniques. Fig. 3.7 shows
the signal �ow graph (SFG) consisting of two sections. In the �rst section, the input
signal x is demultiplexed into two phases, each being decimated in time by a factor
of two (which equals to a serial to parallel converter). One phase is composed of all
input signal samples with even time index xek; k � 2κ while the other one consists
of all input signal samples with odd time index xok; k � 2κ � 1 with κ P Z. Let
x be a random signal with samples being NRVs with X�N pµX � 8, σ2

X � 4q and
without any autocorrelation (i.e. "white").

(A)

S/P

(C) (D) (E)

T T

5 7

(B)

-10 0 10
0

0.05

0.1

0.15

0.2

 Node (A)

Sample value

P
ro

b
ab

il
it

y
 o

f
o

cc
u

re
n

ce

Figure 3.7: Data path 1

To facilitate the discussion, we generate this random signal in Matlab and
derive the histograms (which correspond to the PMFs) at the di�erent nodes as it
propagates through the data path (bit-true, cycle-accurate simulation). The samples

42

of the two phases are independent NRVs with Xe, Xo�N pµX � 8, σ2
X � 4q, too. The

rest of the �rst section performs a weighted sum operation yk � c1 � xek � c2 � xok
with c1 � 2, c2 � 1 as described above. So, yk is a white random signal with
samples being NRVs with Y�N pµY , σ

2
Y q and µY � c1 � µX � c2 � µX � 24, σ2

Y �
pc1 � σXq

2 � pc2 � σXq
2 � 20. The �rst section could implement the atomic part of

a 2-point DFT (with the di�erence that in the DFT the coe�cients are complex-
valued). In the second section, yk is 2-tap FIR �lter according to the di�erence
equation zk � c3 � yk � c4 � yk�1 with c3 � 1, c4 � 2. The samples zk are NRVs with
Z�N pµZ , σ

2
Zq and µZ � c3 � µY � c4 � µY � 72, σ2

Z � pc3 � σY q
2 � pc4 � σY q

2 � 100.
So far, only the error-free case has been investigated analytically. In the following
this will be considered as Case (I). Fig. 3.8 is composed of a number of graphs,
organized as an array. They depict the PMFs of the signal at the di�erent nodes of
the data path (each row corresponds to one node). The PMFs for Case (I) can be
seen in the �rst column.

CASE (I) CASE (II) CASE (III)

N
O

D
E

(B
)

N
O

D
E

(C
)

N
O

D
E

(D
)

N
O

D
E

(E
)

No injection,
i.e. same as
node (C)

No injection,
i.e. same as
node (A)

Figure 3.8: PMFs of the signal at the di�erent nodes of the data path 1

43

Now, considered as Case (II), the e�ects of error injection and
propagation will be investigated analytically. In this case, we use Matlab to generate
the random signal at the di�erent nodes after calculating analytically the statistical
moments and then we derive the corresponding histograms (which correspond to
the PMFs). Namely, in this case we do not simulate the propagation of the signal
through the data path. In the �rst section of the SFG, errors are assumed to
be injected into the MSBs of the input signal samples xk with bit-�ip probability
πnx�1 � 0.05. With the assumption of X�N pµX � 8, σ2

X � 4q, the samples of
the error-free input signal are positive, i.e. the sign-bit is equal to zero. For a
wordlength of nx � 5 bits this means that 5% of the samples are corrupted by an
error of �2nx�1 � �16. As described earlier, this results in a mixture distribution:
Its �rst component represents the 95% error-free sample values with unchanged mean
and variance X�N pµX � 8, σ2

X � 4q. In the PMF, the corresponding component is
a scaled copy of the original PMF with a mixture weight determined by p1� πn�1q.
The second component represents the 5% corrupted sample values with modi�ed
mean and unchanged variance X̃�N pµX̃ � 8� 16 � �8, σ2

X̃
� 4q. In the PMF, the

according component is a scaled copy of the original PMF shifted by the (constant)
error value -16 and a reduced mixture weight determined by the πnx�1. To facilitate
the explanation, the creation of the di�erent Gaussian components of the mixture
distribution as the signal propagates through the �ow is organized in a diagram,
illustrated in Fig. 3.9. Every new level of splits corresponds to a di�erent node. The
percentages that are located on the branches correspond to the new components
created by the injection procedure itself (and not due to the propagation). The
di�erent components are denoted by corresponding subscripts.

The two new components at node B can be seen at the �rst level
of the graph. These components propagate through section one. Now, a new
number of components will be created because of the di�erent combinations at
the input of section one. These combinations lead to di�erent weighted sums:
pX, X̃q, pX̃,Xq, pX̃, X̃q, pX,Xq. As a result we have 4.75% ỹ-samples with µỸ1,1 �

c1 �µX̃�c2 �µX � 8 , 4.75% ỹ-samples with µỸ1,2 � c1 �µX�c2 �µX̃ � �8, 0.25% with

µỸ1,1 � c1�µX̃�c2�µX̃ � �24 (due to the low percentage this case can be omitted) and

the remaining 90.25% y-samples with µY � c1 �µX�c2 �µX � 24. The corresponding
percentages after removing the smallest, redistributing it proportionally to the others
and rounding become 5%, 5%, 90%. The variances remain unchanged. These three
new components which correspond to node C can be seen at the third level of Fig. 3.9.

Simultaneously to the error injections in section one, assume that errors
are injected into the MSBs of the input signal samples yk of section two with bit-�ip
probability πny�1= 0.09. This time a case di�erentiation is required according to
the three PMF components resulting from the �rst error injection:

For the biggest component, representing the yet error-free (i.e. positive)
90% of samples still all sign-bits are zero. Assuming a wordlength of ny � 7
bits this means that 9% of the 90% yet error-free samples, i.e. in total πny�1 �
p1 � πnx�1q � 100% � 8.1%, get corrupted now by an error of �2ny�1 � �64.

44

(A)

(B)

(C)

(D)

(E)

Figure 3.9: Creation of Gaussian components at data path 1

For the resulting new Gaussian component, we have Ỹ0,1 � N pµỸ0,1 , σ
2
Ỹ0,1

q with

µỸ0,1 � µY0,1 � 64 � 24 � 64 � �40 while the variance remains σ2
Ỹ0,1

� σ2
Y0,1

� 20.

The other 91% of the samples represented by this component, i.e. in total
p1 � πny�1q � p1 � πnx�1q � 100% � 81.9%, are also not a�ected by the second
error injection. So, component Y0,0 � N pµY0,0 , σ

2
Y0,0

q has the unchanged mean

µY0,0 � µY � 24 and variance σ2
Ỹ0,0

� σ2
Y0,0

� 20.

The same reasoning leads to the further four components pY1,1,0, Y1,1,1,
Y1,2,0, Y1,2,1q at node D, as illustrated in Fig. 3.9. The �nal step is the propagation
of these six components through the second section, namely the 2-tap FIR �lter.
For this step, it is necessary that all combinations of the 6 components are taken 2
at a time in order to �nd the means of the components at the output. On top, 6
more combinations have to be considered for the cases that random variables from
one component are combined with random variables from the same component, i.e.
a random variable from Y0,0 is combined with another random variable from Y0,0

etc. This leads to a total of 36 possible components present at the output of the
�lter. Note that this number can be narrowed down without noticeable loss of
accuracy because of the insigni�cant weight of certain components; however, this
is not necessary for the current illustration. The variance will be common for all
components and will equal σ2

Z � pc3 � σ
2
Y q � pc4 � σY q

2 � 100. The corresponding
PMF graphs can be seen in the second column of Fig. 3.8.

Finally, considered as Case (III), the results of a simulation-based

45

(A) (C) (D) (E)

T

5 7

(B)

-10 0 10
0

0.05

0.1

0.15

0.2

 Node (A)

Sample value

P
ro

b
ab

il
it

y
 o

f
o

cc
u

re
n

ce

T

Figure 3.10: Data path 2

investigation of the e�ects of error injection and propagation shall be presented
for comparison. The results of the simulation are used to derive the histograms at
the di�erent nodes (without de�ning the signal statistics). It becomes obvious that
the PMF results at node E �t closely between the analytical and simulation results.
Despite the simplicity of the data-path in the speci�c case and the fact that we
chose an input PMF with positive numbers, such an approach can be automated in
order to produce the statistical moments of the Gaussian components at the desired
nodes in the signal �ow graph, speeding up in that way the statistical analysis.
However, even this relatively straightforward approach, which is enabled by the
analytical tractability of normal distributions in linear transformations, has quite
some limitations, as it will be shown next.

l Example 2: Linear transformation with memory

To show the limits of analytical approaches, a second SFG is investigated
in the following. This signal �ow graph is very similar to the one discussed before.
The di�erence lies in the �rst section. We replace the demultiplexer with a 2-tap
�lter, as shown in Fig. 3.10. We repeat the steps that correspond to Cases (I), (II),
(III) in the previous example in the same way. Thus, we construct a similar set of
PMF graphs that correspond to the signal PMFs at the di�erent nodes of the SFG.
These can be viewed in Fig. 3.11. By carefully observing the corresponding graphs,
a certain element becomes clear: the PMF results at node E look di�erent.

To identify the reason, we must go back to the output of the �rst section
at node C. By carefully examining the time series of the signal, we can observe that
the samples are not any more uncorrelated but they follow a certain pattern (see
Fig. 3.12a): a sample that belongs to N p8, 20q (illustrated in the �gure by a sample
with red color) will be typically followed by a sample that belongs to N p�8, 20q
(illustrated in the example with yellow color) and not by a sample that belongs to
N p24, 20q (illustrated with green). The reason lies in the fact that the tapped delay
line correlates the signal and excludes speci�c combinations from being present at
the output.

46

CASE (I) CASE (II) CASE (III)
N

O
D

E
(B

)
N

O
D

E
(C

)
N

O
D

E
(D

)
N

O
D

E
(E

)

No injection,
i.e. same as
node (C)

No injection,
i.e. same as
node (A)

Figure 3.11: PMFs of the signal at the di�erent nodes of the data path 2

In other words, in data path 1 there is no autocorrelation present at node
C (all di�erent combinations of samples have equal probability to occur), while
in data path 2 an autocorrelation of lag 2 is present, as can be observed in the
corresponding ACF plots in Fig. 3.13. As a consequence, analytical models have
to be extended to accommodate speci�c sample patterns. This, in a realistic case,
becomes soon computationally intractable.

These examples have demonstrated that as long as there is a white
random Gaussian signal subjected to random bit-�ips that is processed through a
linear block without memory, analytical modeling of the error propagation is feasible,
no matter how many stages of processing there are. However, as soon as blocks with
memory are involved (combined with error injection at intermediate points), such
techniques soon explode computationally.

47

8 -9 24 31 27 15 4 -2 25

25 19 … 23 5 -8 … 20

24 23 20 5 -11 22 ...

Injection of
random errors

Injection of
correlated errors

 12 -20 -9 20 28 14 21 28

30 … 22 14 -24 -3 18 21 14

26 … 26 30 10 -30 -12 ...

-40 -30 -20 -10 0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 Node (C) - Case (III)

Sample value
P

ro
b

a
b

il
it

y
 o

f
o

c
c

u
re

n
c
e

-40 -30 -20 -10 0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 Node (C) - Case (III)

Sample value

P
ro

b
a
b

il
it

y
 o

f
o

c
c

u
re

n
c
e

(a) (b)

Figure 3.12: Internal correlation due to the �lter in the �rst section of data path 2

3.5.1.2 Autocorrelation introduced by hardware-induced errors

In this subsection, we discuss an example in which the autocorrelation introduced
by the injection procedure itself. We use a similar driver as the one used in [39], a
DFT block. Fig. 3.14 shows for simplicity only the real (or imaginary) part of a N -
point DFT for real-valued inputs (as customary for FFT SFGs open circles depict
summation points and bold triangles depict multiplications). For the real-valued
coe�cients wi,k � <twi,ku (or wi,k � =twi,ku) with wi,k � 1

N
� exppj � i � k � 2π{Nq

holds (j being the imaginary unit). The output signal (spectral components) can be
derived for both, the real and the imaginary parts, as a sum of N random variables.
In case N gets large, by applying the CLT, we can approximate the output by a
Gaussian distribution. In the context of bit-�ip error injection and propagation, it
has already been illustrated in [39] that the signal at the output of the DFT (FFT
in the speci�c case) can be approximated by a Gaussian, after injecting random
uniform bit-�ips at a memory module in front of the FFT. The authors show that
the larger the FFT size N (starting from 200), the closer the resulting distribution
is to the Gaussian (due to the CLT). In the following, we will illustrate that not
only the injection but also the way the injection takes place can play a signi�cant
role in the validity of such approximations. In the 64-point DFT block illustrated in
Fig. 3.14, we perform experiments with an uncorrelated input signal which follows
a multimodal PMF, as illustrated at the top left side of Fig. 3.15. We perform three
types of simulation experiments: In the �rst case, we simulate the propagation
through the DFT block of the aforementioned input. In the second case, we inject
1% random bit-�ips at the input (node (A)) and, then, we let the signal propagate.
In the third case, we inject again 1% bit-�ips but not in a random way; in this
case, the corruption always spans two consecutive samples px0, x1q to illustrate the

48

Data path 1

N
O

D
E

 (
C

)

Data path 2

0 5 10 15 20 25 30
-20

0

20

40

60

80

100

120

140

Lag (samples)
A

u
to

co
rr

el
at

io
n

0 5 10 15 20 25 30
-20

0

20

40

60

80

100

120

140

Lag (samples)

A
u

to
co

rr
el

at
io

n

Figure 3.13: ACF plots at node (C) for data path 1 and 2

e�ect of error bursts. In both injection cases, we �ip the corresponding bits in the
MSB position. We will not go into discussing the details of the statistical moments,
since it is not the point of interest in this example. The interested reader is referred
to [39].

To determine how well the output signal can be modeled by a single
normal distribution, the third and the fourth statistical moments are used: skewness
and kurtosis. In a normal distribution, skewness equals to 0 while kurtosis equals
to 3. What can be observed in Fig. 3.15 is that, despite the resemblance of the
PMFs at the input of the two injection experiments, the PMFs of the output di�er
signi�cantly. This can be shown also by the statistical moments of the output PMFs
in Table 3.4. All three PMFs have a skewness value close to 0, while the �rst 2 PMFs
(the error-free and the one produced after the injection of random errors) have a
kurtosis value which is close to 3, and, thus, they are almost normal distributions.
The last PMF signi�cantly deviates from the normal distribution, as it can be seen
in the �gure. As the corrupted input signal features autocorrelation, in this case the
CLT cannot be applied any more.

Table 3.4 Skewness and kurtosis at the DFT output

No
injection

Injection of
random errors

Injection of
correlated errors

Skewness -1.3471e-04 -0.0047 -0.0297

Kurtosis 3.0718 3.0110 4.6412

49

Figure 3.14: DFT signal �ow

This example illustrates that the injection procedure itself can add
autocorrelation to the corrupted signal (on top of the existing error-free signal
autocorrelation). To illustrate this, again we plot the autocorrelation values at
the di�erent lags (see Fig. 3.16) for the two injection procedures. For the case of the
injection of random errors (Fig. 3.16a), the autocorrelation in the corrupted input
signal is distributed more or less uniformly across the di�erent lags. However, in
the other case (Fig. 3.16b), autocorrelation peaks can be observed at distinct lags:
As the errors are injected at px0, x1q, the time span between error pairs is an integer
multiple of 64. The autocorrelation peaks occur often in pairs (but not with the same
height as there are the di�erent combinations of positive-positive, negative-negative,
positive-negative, negative-positive samples), since two consecutive samples were
corrupted. In this context, this means that the random variables are not any more
fully uncorrelated so their sum does not converge to a normal distribution, due to
the CLT. Autocorrelation introduced by the injection procedure itself should be
examined when applying such modeling techniques.

As a side note, coming back to data path 2 of the previous example,
the injection of 5% correlated errors (so that always two consecutive samples are
corrupted) in the �rst section of Fig. 3.10 would lead to a di�erent PMF compared
to the one already shown for random injection. This can be seen in Fig. 3.12b.
In this case, a di�erent combination is present in the �lter due to the injection
procedure: a sample that belongs to N p8, 20q (shown in red) is followed by a sample
that belongs to N p�24, 20q (shown in brown) and this by a sample that belongs
to N p�8, 20q(shown in yellow) and then by a sample that belongs to N p24, 20q
(shown in green). This leads to a di�erent (longer) pattern, making the internal
autocorrelation even stronger.

50

No injection
Injection of

random errors

Injection of correlated
errors

N
O

D
E

(A
)

N
O

D
E

(B
)

-150 -100 -50 0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

Sample value

P
ro

b
a
b

il
it

y
 o

f
o

c
c

u
re

n
c
e

-500 0 500
0

1

2

3

4

5

6

7

8
x 10

-3

Sample value

P
ro

b
a
b

il
it

y
 o

f
o

c
c

u
re

n
c
e

-500 0 500
0

1

2

3

4

5

6

7

8
x 10

-3

Sample value

P
ro

b
a
b

il
it

y
 o

f
o

c
c

u
re

n
c
e

-150 -100 -50 0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

Sample value

P
ro

b
a
b

il
it

y
 o

f
o

c
c

u
re

n
c
e

-150 -100 -50 0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

Sample value

P
ro

b
a
b

il
it

y
 o

f
o

c
c

u
re

n
c
e

-500 0 500
0

1

2

3

4

5

6

7

8
x 10

-3

Sample value

P
ro

b
a
b

il
it

y
 o

f
o

c
c

u
re

n
c
e

Figure 3.15: Input (node (A)) and output (node (B)) PMF after injection
experiments in DFT block

Injection of random errors Injection of correlated errors

N
O

D
E

(A
)

0 200 400 600 800 1000 1200 1400
-10

-8

-6

-4

-2

0

2

4

6

8

10

Lag (samples)

A
u

to
c
o

rr
e
la

ti
o

n

0 200 400 600 800 1000 1200 1400
-10

-8

-6

-4

-2

0

2

4

6

8

10

Lag (samples)

A
u

to
c
o

rr
e
la

ti
o

n

(a) (b)

Figure 3.16: ACF plots at node (A) of the DFT block

51

3.5.2 Additional related work

In [39] the same group extends the work in [40] and propagates analytically bit
errors (on the channel noise distribution) on several blocks of a typical OFDM-based
communication system. These blocks include: a �lter, a FFT block, an equalizer,
a de-interleaver and a decoder. For the FFT block they make use of the CLT and
calculate the variance of the output Gaussian distribution (this assumes the FFT
is bigger than a certain length and the input data are not correlated). For the
equalization they calculate the output distribution using integration tables. As the
de-interleaver only permutes and shu�es the data, no new distribution is produced
at its output. To prepare for the decoder, the authors �nd an equivalent Gaussian
noise distribution that has the same area under the tail of the distribution (i.e. the
same BER) as the corrupted data. After they derive this, they can use it to decide
the output BER based on the decoder's SNR vs. BER characteristic (as the soft-
input decoder assumes Gaussian noise). For the hard-input decoder (i.e. slicer), the
BER of the distribution at the input has the same BER as the original system and
this is su�cient to �nd the coded-BER.

This is an integrated framework that allows the fast computation of the
impact of random bit-�ips to the system BER. It operates under the assumption
that the data are uncorrelated as they propagate through the communication line.
Although this maybe true for some cases, very often it is not the case, as already
illustrated in the previous section. Not neglecting autocorrelation becomes the focus
of the next chapter.

3.6 Summary and link to next chapter

In this chapter, we presented possibilities and limitations of using analytical
techniques in order to speed-up the execution time of error injection and propagation
experiments in LTI operators of communication systems. It has been shown that
under certain conditions, such techniques can be bene�cial. However, due to the
inherent correlation (in the general case) between the error and the error-free signal,
the signal characteristics become very soon computationally intractable, even for
simple PMF cases, when blocks with memory are present. Moreover, hardware-
induced errors can appear in a correlated form which further complicates the
analysis. Thus, there is need for novel techniques that enable the study of error
propagation in a scalable way and take into account autocorrelation.

52

Chapter 4

Propagation of Corrupted,

Autocorrelated Signal

4.1 Outline

Chap. 4 discusses the next explored option for e�ciently propagating a corrupted (or
an error) signal, which is autocorrelated, namely using a mathematical transform,
called Principal Component Analysis (PCA). Sec. 4.2 introduces the motivation for
exploring the PCA approach and outlines its steps. Sec. 4.3 presents the adaptation
of the approach for performing error injection experiments. Results and limitations
are presented in Sec. 4.4 while Sec. 4.5 summarizes the chapter.

4.2 Motivation and preliminaries

In the search to �nding an e�cient way to propagate corrupted data that are
internally autocorrelated, an idea is to explore techniques that take advantage of
this internal autocorrelation to reduce the amount of data required to be simulated
without inducing signi�cant information loss. Such a technique is the PCA [78, 18].
PCA is a well-established technique with many applications in data analysis, one
important among which, is the dimensionality reduction. Namely, it performs
a transformation on multidimensional data so that most of the data variance
is preserved in the higher dimensions and, therefore, lower dimensions can be
potentially removed while preserving all signi�cant information; thus, it reduces
the total amount of data to be processed with a small impact only on accuracy.
The amount of dimensions that can be removed depends on the nature of the
data correlation and the desired accuracy. If the data are fully uncorrelated, no
dimensionality reduction is possible without signi�cantly impacting the accuracy.
PCA has been less explored for speeding-up data simulation in digital systems. One
exception is found in [95]: There, the authors utilize a closely related mathematical
transform, called Karhunen�Loéve Expansion [60], to propagate input data with

53

quantization noise through LTI blocks while performing dynamic range estimation
experiments in digital systems.

The way in which PCA could be exploited in our context is illustrated
in Fig. 4.1. Especially, Fig. 4.1a is a generalization of the Fig. 3.10. The light
blue boxes in Fig. 4.1a illustrate LTI blocks, which correspond to the �lters in the
�rst and second sections of Fig. 3.10. However, in this case, in order to cover the
more general case, the LTI blocks are represented by the matrices rHs, rGs with
elements hj, gj, that are the matrices that represent the linear transformations that
are performed by the blocks. The �rst block accepts the input samples zk, produces
the output samples xk (which may now be autocorrelated). The samples xk get bit-
�ipped and, after the corruption, the samples rxk propagate to the second LTI block
to produce the output samples ryk (the vector representations are motivated and
explained in Sec. 4.3.1). The objective here is to exploit PCA so that the amount
of computations required during the information propagation through the second
LTI block is reduced. In the end, the slightly altered (but with small impact on

accuracy) output samples ry1k are produced, as illustrated in Fig. 4.1b.

[H] [G]
Z] X] Y]

zk xk ykhj gj

X]

xk
~

~

~

~

reference

(a)

[H] [G]
Z] X] Y]

zk xk ykhj gj

X]

xk
~

~

~

~

PCA reduced domain

PCA

´

´

(b)

Figure 4.1: Set-up for propagating the corrupted, autocorrelated signal through the
G operator in the reference domain (a) and in the reduced PCA domain (b)

Before discussing the way that PCA could be used for error injection
experiments, �rst the PCA procedure is introduced along with the way it can be
used to reduce the amount of dimensions in data analysis.

54

4.2.1 PCA steps and dimensionality reduction

Consider an m-dimensional random input vector or multivariate random variable
(MRV) represented by the column vector X

�
with mean µX

�
and variance σ2

X

�
.

We acquire n measurements, called vector samples in this case, on the MRV. The
data can be organized in a matrix. Each of the n columns represents a di�erent
repetition of the experiment, i.e. a di�erent vector sample. Each of the m rows
gives a particular kind of feature (or a dimension).

PCA is a procedure that transforms this set of measurements of possibly
correlated variables of the MRV into a set of values of linearly uncorrelated variables,
called principal components (PCs). According to the procedure, the PCs are ordered
in such a way, so that the �rst PC has the largest possible variance of the original
data, the second PC the second largest variance and so on. The PCs are orthonormal
as they are the eigenvectors of the (symmetric) covariance matrix of the input data.

More speci�cally, assume the individual data samples of the matrix can
be described by rx1i, x2i, ..., xmis

T , with i � 1, 2, ..., n. Using the estimated mean

values pµ1 �
1
n
�
ņ

j�1

x1j (with µX1 � pµ1), pµ2 �
1
n
�
ņ

j�1

x2j, and so on, the centered data

matrix rRXs with m rows and n columns is built:

rRXs �

�
������

x11 � pµ1 x12 � pµ1 . . . x1n � pµ1

x21 � pµ2 x22 � pµ2 . . . x2n � pµ2

.

xm1 � xµm xm2 � xµm . . . xmn � xµm

�
������
. (4.1)

The PCA transform is composed of the following steps [19]:

� Estimate covariance matrix rΣs of random vector X
�

rΣXs � zrΣXs �
1

n� 1
� rRXs � rRXs

T . (4.2)

� Perform Eigenvalue Decomposition (EVD) of ΣX�
ΣX

�
�
�
VX
�
�
�
ΛX

�
�
�
VX
�T
, i.e.

�
ΣX

�
�
�
VX
�
�
�
VX
�
�
�
ΛX

�
. (4.3)

As the covariance matrix is symmetric and positive,
�
ΛX

�
is a diagonal

matrix with entries the non-negative, real, ordered (biggest �rst) eigenvalues
λ1, λ2, ..., λm of

�
ΣX

�
and

�
VX
�
is an orthogonal matrix, having as columns the

normalized eigenvectors of
�
ΣX

�
, i.e.

�
VX
�
�
�
VX
�T

�
�
Im
�
.

� Derive the principle components of X
�

ΠX

�
�
�
VX
�T
� qX�, (4.4)

55

where qX� is the centered random vector X
�
� xµX�. 1

Dimensionality reduction. In case dimensionality reduction is desirable, the
following step can be made:

� Crop eigenvector and eigenvalue matrices based on the dominant eigenvalues

�
ΛX

�
ùñ

�
Λ1
X

�
�
VX
�
ùñ

�
V 1
X

�
,

(4.5)

which yields
X
�
� X 1

�
� µX

�
�
�
V 1
X

�
� ΠX

�
.2 (4.6)

Thus, X
�
is approximated with a smaller number m1 of dimensions.

The contribution of the jth principal component ΠXj to the total variance is given
by

σ2
ΠXj

�
λj
m̧

i�1

λi

�
m̧

i�1

σ2
ΠXi

. (4.7)

The loss of information, which is determined by the number of components (or
variables) m1 to be kept, can be decided individually according to the desired SNR:

SNR �
σ2
signal

σ2
noise

�
σ2

ΠX1
� ...� σ2

ΠX
m1

σ2
ΠX

m1�1

� ...� σ2
ΠXm

(4.8)

or the relative mean squared error from the truncation

e � 1�

m1¸
i�1

λi

m̧

i�1

λi

. (4.9)

If the variances of the components of the random vector X
�
di�er

signi�cantly, the PCA should be carried on the standardized input vector (the

1It can be shown [19] that X
�
can be represented by X

�
� µX

�
�
�
VX

�
�
�
ΛX

� 1
2 �Ψ

�
, , where Ψ

�

is an m-dimensional uncorrelated random input vector with mean µΨ

�
� 0 and variance σ2

Ψs � 1.

Then, ΠX

�
�

�
ΛX

� 1
2 � Ψ

�
.

Proof:
�
ΣX

�
� E

p
�
VX

�
�
�
ΛX

� 1
2 �Ψ

�
q � p

�
VX

�
�
�
ΛX

� 1
2 �Ψ

�
qT
(
�

�
VX

�
�
�
ΛX

� 1
2 �

�
ΛX

� 1
2 �

�
VX

�T
�

�
VX

�
�
�
ΛX

�
�
�
VX

�T
�

�
ΣX

�
q.e.d.

2In addition, X
�
� X 1

�
� µX

�
�
�
V 1

X

�
�
�
Λ1

X

� 1
2 � Ψ

�
.

56

original vector divided by its standard deviation). The covariance of the
standardized input vector equals the correlation matrix rPXs of X

�
. So, the

correlation matrix is related to the covariance matrix as follows

rPXs � rDs�1 � rΣXs � rDs
�1, (4.10)

where rDs is a diagonal matrix having as diagonal elements the standard deviations
of the components of X

�
.

It is important to note that in case the X
�
data are processed through an LTI block

and generate as output the Y
�
(see Fig. 4.1), the above procedure can be adapted so

that the LTI processing takes place only on the reduced eigenvector set.
Namely,

Y
�
� Y 1

�
�
�
G
�
�X 1
�
�
�
G
�
� pµX

�
�
�
V 1
X

�
� ΠX

�
q, 3 (4.11)

where
�
G
�
is the matrix that represents the linear transformation that is performed

by the LTI block. For example, for a simple direct-form FIR �lter, this matrix is
the so-called Toeplitz matrix that performs the convolution. The Toeplitz matrix
will be presented in detail in Sec. 5.3.2.

4.3 Propagating the corrupted signal using PCA

4.3.1 Data organization for injection experiments

As it becomes clear from the introduction of the PCA steps, the transform operates
on multidimensional data. Therefore, as a �rst step in this section that discusses
the adaptation of PCA for injection experiments, a di�erent data organization is
proposed. Two important components in discussing the data organization are the:
injection rate in our experiments and the e�ect of the memory elements on the error
propagation.
Injection rate. Although realistic error rates can be quite low, to obtain
statistically relevant results about the potential impact of an error faster, higher
injection rates can be chosen. When an error rate is very low and system simulation
is performed, the system may need to process a lot of error-free data until the next
error manifests, as illustrated in the upper part of Fig. 4.2. In the �gure, the red
lines illustrate error samples and the broken axis denotes a large time lapse. The
error signals at the input and output are denoted by ex and ey. In the lower part
of Fig. 4.2, the injection rate is scaled up by the scale factor π so that su�cient
statistics are gathered faster at the output. The modi�ed error signal at the input
is denoted by éx and at the output by éy. To acquire the statistics for the actual
injection rates, a downscale is required. For example, for the case that the error PMF
at the output is of interest, the resulting PMF must be downscaled appropriately,

3Also: Y
�
� Y 1

�
� µY

�
�
�
V 1

Y

�
�
�
Λ1

Y

� 1
2 � Ψ

�
�

�
G
�
� pµX

�
�
�
V 1

X

�
�
�
Λ1

X

� 1
2 � Ψ

�
q �

�
G
�
� X

�

q.e.d. The steps for performing the LTI processing on the reduced eigenvector set for a random
vector are shown in a systematic way in Table 7.1 in the Appendix for two LTI blocks in a row.

57

Figure 4.2: Modi�ed injection rate in order to speed-up the error injection campaign

as shown in the �gure. Notice that in the upscaled PMF, the height of the bar at 0
is low compared to the downscaled (realistic) case. That is because in the upscaled
case, the error-free samples will be more seldom.
E�ect of memory on error propagation. For a block with memory, a single error
at the input will, in general, produce a number of consecutive errors at the output.
The length of the sequence will be as big as the maximum number of consecutive
memory elements in the block (assuming no feedback loops are present at the block).
Fig. 4.3 shows how a single error produces (each red line indicates an erroneous
sample) multiple errors at the output in a FIR �lter example. In the �gure, c1, c2..cM
denote the �lter coe�cients, and T are the �lter delay elements. Assume we want to
study the e�ect that single bit errors at the input of the block have on the output.
It is intuitively understood that every consecutive error should be injected after the
e�ect of the previous error is no longer present in the internals of the block. In that
way, the e�ect of the next error does not interfere with the e�ect of the previous
one. Therefore, the minimum distance in samples that should be preserved between
consecutive error injections is equal to the largest number of memory elements that
are sequentially interconnected in the block(s) under investigation.
Data organization. In order to acquire statistically representative results
regarding the e�ect of a bit-�ip at a speci�c bit position, many samples have to
be corrupted in this position. For a block with memory, the error samples at the
input need to have a minimum sample distance from each other as decided by the
amount of the block's consecutive memory elements (as discussed above). For a
block that accepts K samples in parallel as input, only one out of the K samples
should be corrupted and the distance between consecutive corrupted samples should
be K, so that the e�ect from one error does not interfere with the e�ect of the
previous one. Since the distance among consecutive error samples in all cases is
�xed, the input data can be organized in a di�erent way. Instead of having one
long input sequence for the injection experiments, an alternative approach is to use
sections of the long sample sequence and process them separately. Each section can

58

...

c1

TT

...

c2 cM ex∙c

...

...

exk

k

k

k
1 M

Figure 4.3: Filter output when a single error sample is placed at the input

be considered as a separate measurement (i.e. vector sample) of the random signal,
each composed of S data samples. The minimum section length is decided by the
minimum required distance between consecutive error samples. Fig. 4.4 depicts this
alternative data organization. The long sample sequence x1, x2, . . . , xL is split into
s � 1 sections of length S. Section 1 is composed of samples x1, x2, . . . , xS, section
2 is composed of xS�1, xS�2, . . . , x2�S etc. Every sample is composed of a number
of bits. In one injection scenario, a speci�c bit is corrupted. The thunderbolt
in the �gure indicates the (corrupted) bit position at which the error is injected
according to the speci�c injection scenario. The sections are arranged columnwise
and each section is processed (e.g. �ltered) separately. So, the data matrix [X] is:

rXs �

�
������

x1 xS�1 . . . xs�S�1

x2 xS�2 . . . xs�S�2

.

xS x2�S . . . xps�1q�S

�
������
.

With this data organization the position of the corrupted sample in all
sections is the same.

Discussion on the section length. The objective of splitting the long sample
sequence into sections is to change the initial univariate RV into a multivariate RV
so that the PCA tool can be applied. The statistical characteristics of the signal at
the desired system node (in terms of the PMF and ACF) should be the same for
the univariate and multivariate RV. To achieve this, the section length should be
carefully chosen so that the autocorrelation length (number of lags used in the ACF)
is su�cient to cover all lags for which correlation exists. For example, if an initially
uncorrelated signal is autocorrelated through a 32-tap �lter, we know that at the
output of the �lter the autocorrelation has a length of 32 lags. Splitting the long
sequence into sections of 32 samples at the �lter output will keep the correlation

59

...

(s+1) sections

long sample sequence

S S S

xL

x
2
∙S

x1 x2 xS+1 xS

x
(s

+
1

)∙S

x
S

+
2

x
s
∙S

+
1

 x
s
∙S

+
2

...

...

x
S

+
1

x
S

...

x
1

x
2

...

...

bits

xs∙S+1

...

Figure 4.4: A long sample sequence is re-organized into sections of length S

information intact. However, the autocorrelation can be further changed as the
signal propagates through the system; for example, by a second �lter. Assume the
second �lter is also 32 taps, in order to have the whole relevant autocorrelation
length at the output of this �lter, the initial sequence should be split in sections of
64 samples instead.

If, at the desired system node, no information is provided regarding the
inherent signal autocorrelation, a procedure to decide an appropriate section length
is the following: First an arbitrary (small) section length is selected. Then, the
ACF is calculated for all lags. In case the correlation value is non-negligible for
all lags, the section length is increased until the earliest lag is found for which the
correlation value for becomes zero. To accommodate for autocorrelation that will
be added by upcoming signal processing blocks an appropriate margin should be
added as discussed in the example earlier.

For a given number of samples, a trade-o� exists between the section
length and the number of sections used to perform the calculations. A bigger section
length gives a safety margin regarding the autocorrelation length (which changes as
the signal propagated through the di�erent blocks), but leads to a smaller number
of sections. A smaller number of sections will give less representative correlation
values for each lag (as an averaging takes place) compared to a bigger number of
sections.

60

Having done this discussion and as the objective of the current
exploration is to see if computational bene�ts can be acquired when using PCA for
error injection experiments, we will use for the following experiments a simpli�ed
assumption: The section length is the maximum between the inherent signal
autocorrelation length and the length of the autocorrelation that will be added
in the upcoming block. If the computational bene�ts are su�cient, the exact
implementation can be worked out according to the system speci�cs.

4.3.2 Illustration of the approach

Set-up. To illustrate the e�ectiveness of the approach, we utilize the data
representation that was presented above (see Fig. 4.4), to implement the PCA
in order to speed-up error injection experiments. First, we illustrate the results
of applying the PCA initial steps on both uncorrelated and autocorrelated data.
Initially, we will use the correlation matrices of the two data sets to illustrate
practically the possibilities and limitations of using PCA to reduce computational
complexity in our context. Then, the focus remains on the autocorrelated data
(since only with autocorrelated data bene�ts can be induced with this approach)
and, as a last step, the error injection is introduced. Speci�cally, the autocorrelated
data have been created through �ltering uncorrelated data using a 32-tap low-pass
�lter. That de�nes also the section length in the data organization. Considering in
total 106 samples, the data matrix is organized so that m � 32 and n � 31, 250,
i.e. we have 31, 250 sections (or vector samples) with 32 dimensions each. These
parameters are illustrated in the upper 4 rows of Table 4.1.

Table 4.1 Parameters used in the current illustration

Parameters

number of samples 106

number of sections 31, 250

number of samples per section 32

�lter 1 length 32

�lter 2 length 32

bit-�ip position MSB

truncation error 1%

Correlation and eigenvalues. The correlation matrix is chosen for the
current illustration (instead of the covariance matrix) as it gives a more intuitive
understanding of existing correlations due to the normalized values. Each element
on the main diagonal of the correlation matrix is the correlation of an element (or
vector) with itself, which always equals 1. Non-diagonal entries lie between -1 and

61

Table 4.2 Correlation among �rst 5 rows and eigenvalues for uncorrelated and
autocorrelated data

Correlation scatter plots

(�rst 5 rows)

Correlation matrix rPXs

(�rst 5 rows)

Eigenvalues

rλ1, λ2, ..., λ32s
T

u
n
co
rr
e
la
te
d
d
a
ta

�
PX

�
�

�
�����������������

1.000 0.004 �0.003 �0.007 �0.001

0.004 1.000 0.008 �0.002 �0.000

�0.003 0.008 1.000 0.000 �0.013

�0.007 �0.002 0.000 1.000 �0.002

�0.001 �0.000 �0.013 �0.002 1.000

�
�����������������

a
u
to
co
rr
e
la
te
d
d
a
ta

�
PX

�
�

�
�����������������

1.000 0.889 0.601 0.230 �0.107

0.889 1.000 0.890 0.602 0.234

0.601 0.890 1.000 0.890 0.605

0.230 0.602 0.890 1.000 0.891

�0.107 0.234 0.605 0.891 1.000

�
�����������������

1, with values around 0 denoting no correlation. So, the correlation matrix is given
by

�
PX
�
�

�
������

CorrpRX1, RX1q CorrpRX1, RX2q . . . CorrpRX1, RXmq

CorrpRX2, RX1q CorrpRX2, RX2q . . . CorrpRX2, RXmq

.

CorrpRXm, RX1q CorrpRXm, RX2q . . . CorrpRXm, RXmq

�
������
, (4.12)

with CorrpRXi, RXjq being the correlation
ErRXi�RXjT s
σRXi �σRXj

, where E is the expected

value operator. Random variables RXi, RXj belong to the initial MRV X
�
and the

aforementioned expected value is calculated from the ith and jth rows (or dimensions)
of the centered data matrix rRXs, derived by centering rXs, as presented in Eq. 4.1.
Table 4.2 shows the scatter plots, correlation matrix and eigenvalues for two data
sets: a set of uncorrelated data and a set of autocorrelated data. Due to space
limitations, scatter plots and correlation matrix are presented for only the �rst 5
data matrix rows, while the bar graph shows the eigenvalues for all 32 eigenvectors.

62

The derivation of the correlation (or covariance) matrix and the eigenvectors are the
�rst steps in PCA as already shown in Eq. 4.2 and Eq. 4.3.

As it can be observed in Table 4.2 and is to be expected, for uncorrelated
data, the non-diagonal elements of the correlation matrix are approximately 0,
leading to eigenvectors, which have eigenvalues of closely-valued weight. The
situation becomes di�erent for autocorrelated data, for which, the non-diagonal
elements of the correlation matrix di�er (sometimes signi�cantly) from 0. This
leads to some eigenvalues having more weight than others.
Dimensionality reduction and accuracy evaluation. At this step, after having
derived the eigenvectors and eigenvalues for the presented autocorrelated data set
(the uncorrelated data will be ignored from now on), dimensionality reduction can
take place. Setting the truncation error to 1% (see Eq. 4.9), allows 22 dimensions of
the data set to be removed and, thus, only 10 dimensions need to be kept in the PCA
domain (m1 � 10). As the PMF and the ACF fully characterize a random signal,
Fig. 4.5 and Fig. 4.6 show the PMF and the ACF plot of the same autocorrelated
signal before truncation and after 1% truncation error has been applied using the
PCA transform. As it can be seen, there is no observable di�erence.

(a) (b)

Figure 4.5: PMF (a) and ACF (b) plot of the original autocorrelated signal

4.3.2.1 Corrupted autocorrelated data propagation

To acquire bene�ts in terms of computational complexity in the context of
error injection experiments, the following set-up is used. The above considered
autocorrelated signal, indicated by X

�
is corrupted before it enters the LTI operator

G (see Fig. 4.1a). The errors are injected on the MSB of the �rst element of
each section (as in Fig. 4.4) for this illustration. This is considered our reference
experiment. According to Fig. 4.1b, the same experiment is conducted but with
the following di�erence: After corruption, the corrupted signal rX� is transformed

63

(a) (b)

Figure 4.6: PMF (a) and ACF (b) plot of the autocorrelated signal after truncation
(10 dimensions kept)

in the PCA domain. Then, to gain a computational bene�t, 1% truncation error is
applied. The parameters for the set-up can be found collectively in Table 4.1. This
results in 10 dimensions being kept in the PCA domain (as earlier). That means
that it is su�cient that the eigenvectors with the 10 biggest eigenvalues propagate
through the operator G.
Computational bene�t and accuracy evaluation. The computational
complexity in terms of costly operations is as follows. For the reference experiments,
32 � 32 � 31, 250 multiplications are required. The convolution as such becomes much
less costly in the (reduced) PCA domain, since the �ltering of the eigenvectors
requires 32 � 32 � 10 multiplications. However, the data need on top to be projected
from the original domain to the PCA domain (Eq. 4.4) and back (Eq. 4.6), which
leads to 20 � 32 � 31, 250 additional multiplications (in these costs the calculation of
the covariance matrix and the EVD have not been evaluated). The computational
complexity for the reference and the PCA approach can be seen in Table 4.3. Note
that although the G block operates on a reduced data set (i.e. on a subset of the
original eigenvectors), the total number of elements at the output of the LTI chain
does not change. Only the sample values are adapted due to the re-projection from
the reduced PCA domain into the original domain.

Fig. 4.7 and Fig. 4.8 show the PMF and the ACF plot of the corrupted
output signal before (rY �) and after (rY 1

�
) 1% truncation error has been applied,

using the PCA transform. As already mentioned, in Table 7.1 in the Appendix, a
systematic way to perform LTI Processing in the PCA domain is provided.

64

(a) (b)

Figure 4.7: PMF (a) and ACF (b) plot of the reference corrupted signal rY �

(a) (b)

Figure 4.8: PMF (a) and ACF (b) plot of the re-projected (from PCA) corrupted

signal Y
�
� rY 1

�

65

Table 4.3 Computational cost for �ltering (through �lter 2) the autocorrelated data
(autocorrelated through �lter 1)

Comp. complexity (�lter 2)

Original data Truncated data

32 � 32 � 31, 250 32 � 32 � 10 (convolution)

- 20 � 32 � 31, 250 (projection to PCA domain and back)

4.4 Results and limitations with using the PCA for

speeding-up the propagation of the corrupted,

autocorrelated signal

Despite the potential bene�ts from reducing the dimensions for a given
autocorrelated signal, whether such a reduction is possible and to what extent,
it has to be explored individually for every autocorrelated signal. To make the
previous statement more clear, we provide in Fig. 4.9, histograms that are produced
for signals that have been autocorrelated through various �lters. The types of �lters
span a wide range: low-pass, high-pass, band-pass and band-stop with 15, 16, 31,
32 �lter taps and even-, odd- and non-symmetric coe�cients. More speci�cally,
these histograms show how many signal dimensions can be kept for 1% truncation
error. The legend "Filter length" denotes the number of �lter coe�cients, while
the legend "Total �lter counts" illustrates the number of di�erent �lters that have
been produced in order to create the histogram. The x-axis illustrates the amount
of dimensions that need to be kept in order to remove only 1% of the signal energy.
In this axis, as it is intuitive understandable, the maximum amount of dimensions
coincides with the �lter length. The y-axis represents the relative frequency of each
amount of dimensions that should be kept. The gaps in the �gure are there due
to the fact that no �lters could be produced under the speci�cations, that would
correspond to the histograms in that position of the �gure. As it becomes visible,
for all histograms, the highest bar indicates that either all the dimensions of the
signal should be kept or only a few dimensions can be removed. The cases, where
signi�cant savings are possible are the minority. For example, in the histogram at
the top-left of the �gure, we have the case where 30 �lters have been explored with
15 taps each: in 47% of the cases all 15 dimensions must be kept, while only in 6%
of the cases only 9 dimensions are su�cient.

Fig. 4.10 shows a small subset of the �lters produced in order to create
Fig. 4.9. The �rst and the third rows of the �gure provide the impulse responses of
the 10 �lters illustrated (5 low-pass �lters and 5 high-pass �lters), while the second
and fourth rows provide the corresponding frequency responses. The �lters presented
have 15 coe�cients each (denoted by N in the �gure title), speci�ed by the index
k and the corresponding value hk in the graphs illustrating the impulse responses.

66

(a
)

(b
)

(c
)

(d
)

(e
)

(g
)

(i
)

(j
)

(k
)

(l
)

(m
)

(o
)

F
ig
u
re

4.
9:

H
is
to
gr
am

s
to

il
lu
st
ra
te

ga
in
s
in

d
im
en
si
on

re
d
u
ct
io
n
fo
r
m
u
lt
ip
le
�
lt
er
s
w
it
h
va
ri
ou
s
ch
ar
ac
te
ri
st
ic
s

67

The dotted lines constitute the lines of symmetry of the impulse responses.

In the graphs depicting the frequency responses (second and fourth rows
of Fig. 4.10), the blue lines illustrate the magnitude response (or attenuation in
this case) in logarithmic scale given by adB � �20 � log10 p|Hpfq|q and measured in

decibels, where Hpfq � Y pfq
Xpfq

, i.e. the ratio of the output signal spectrum to the
input signal spectrum. The red lines give the output phase response φ, which can
be calculated as φ � argp|Hpfq|q and is measured in degrees. The dotted lines in
these graphs illustrate the ideal low-pass and high-pass �lter frequency responses
respectively. The parameter ftrans designates the center of the transition band
between frequencies that are allowed to pass and those that are cut-o� in the ideal
low-pass �lters (located at the position where the attenuation turns from 0 to 3dB),
and between the frequencies that are cut-o� and those that pass in the high-pass
�lters respectively. The fslope parameter denotes the width of the transition band
(the between frequencies that are allowed to pass and those that are cut-o�) and is
equal to 0.01 f

fs
, where f is the running frequency and fs the sampling frequency.

Figure 4.10: Impulse and frequency responses of 5 representative low-pass �lters
(two upper rows) and 5 representative high-pass �lters (two lower rows).

68

4.5 Summary and link to next chapter

In this chapter possibilities to propagate a corrupted, autocorrelated signal with
the help of PCA have been explored. It has been illustrated that although in some
cases a reduction of the computational complexity is possible by exploiting the signal
inherent autocorrelation, this is not possible in every case; namely, it depends on the
type of autocorrelation that is present. This creates the need for a more generally
applicable framework, that ideally takes also into account non-linear e�ects that are
present at the �lter internals (which is the typical case for digital �lters). That is
the focus of the next chapter.

69

70

Chapter 5

Propagation of Corrupted, Generic

Signal

5.1 Outline

Chap. 5 discusses the proposed approaches for propagating a corrupted (or an
error) signal, which is potentially autocorrelated. First, in Sec. 5.2 the need for
the presented framework is motivated. Sec. 5.3 presents the proposed approach to
reduce the computation cost in error-injection experiments and is composed of two
parts: Sec. 5.3.1 proposes a framework for the propagation of the error signal when
the LTI block is composed exclusively by linear operators. The proposed framework
for LTI blocks that include non-linear operators, like the ones that are present due
to �nite wordlength e�ects, is presented in Sec. 5.3.2. Sec. 5.4 presents the results
for di�erent LTI blocks and Sec. 5.5 concludes the chapter.

5.2 Motivation and preliminaries

Error injection campaigns, as it has already been mentioned require repetitive
experiments so that representative results are acquired. The amount of required
experiments is based on the desired accuracy (con�dence). Ideally, all bit positions
should be explored separately. It has been shown earlier in Chap. 3 that when the
input signal is uncorrelated, the propagation of the corrupted signal through an LTI
block can be performed analytically through propagating the statistical moments of
the input signal. However, such an approach explodes computationally when the
signal is autocorrelated. Autocorrelation can be exploited by PCA in order to reduce
the amount of data that should be processed by the LTI block, thus reducing the
computational cost, as discussed in Chap. 4. This approach also has its limitations
as it only works for speci�c types of autocorrelation. Therefore, a more generic and
reusable approach is needed that can provide a computational speed-up and does
not depend on the signal autocorrelation. Moreover, ideally, it should take into

71

...

c1

xk xk-1 xk-2

yk

xk-M-1

nc.mc

T TT

Q

Sa

...

Q Q Q

...

c2 cMc3

ny.my

np.mp

nx.mx

Figure 5.1: An example of non-linear operations due to the �nite wordlengths in a
direct-form �lter

account non-linear e�ects, that are typically present in digital �lters; the latter
has not been addressed by related work in the domain (see Sec. 3.4.3).

5.2.1 E�ect of �nite wordlengths on error propagation

A digital system operates on data that have �nite wordlengths and limited accuracy.
As, in general, arithmetic operators extend the wordlengths, both on the MSB
and the LSB side, additional operations are incorporated in the design to limit
the wordlengths to desired accuracy. These are non-linear operations, such as the
saturation that takes care of the MSBs and the quantization that takes care of the
LSBs.

The properties of LTI blocks have been described in Sec. 2.2.1. In the
following, without loss of generality, we will illustrate our concepts on a direct-form
�lter. Fig. 5.1 shows a signal �ow graph (SFG) of a direct-form FIR �lter, including
non-linear operations. Every signal has a speci�c number of integer bits (including
the sign bit), denoted by n, and fractional bits, denoted by m. Accordingly, the
notation for a whole word is given by n.m, with the "." denoting the radix point.
The indices x, c, p, y denote the input signal, coe�cients, products and output signal,
respectively. In this example, quantization is applied at the multipliers' output
(denoted byQ), which removes LSBs by applying truncation, rounding or some other
scheme. Saturation is applied at the �nal output (denoted by Sa), which provides an
upper limit on the signal values. In practice, typically one additional quantization
is applied at the �nal output in order to limit the accumulation error due to the
quantized product values. In that case, a compromise is made regarding the removal
of LSBs at the multipliers' output and the �nal output, but for the following
discussion this is not signi�cant. The exact e�ect of these non-linear operations
depends on the individual data values. This has impact on the propagation of the
error signal during error injection experiments: Assume the �lter state variables are
equal to 0 and consider an input sample x1 � 0.53125 with coe�cient c1 equal to 2.

72

We use ν to denote the bit position as used in the two's complement notation for a
discrete signal x, with

x � �xnx�1 � 2nx�1 � Σnx�2
ν��mxx

ν � 2ν , (5.1)

where xν is the bit in position ν with weight 2ν , and xnx�1 is the MSB sign bit.
Table 5.1 shows the impact of quantization at the multiplier's output when the LSB
is �ipped (ν � �5) and when the next bit is �ipped (ν � �4). In the �rst case, the
error gets masked, in the second not.

Table 5.1 A small illustration of the e�ect of quantization on error propagation

added error x1 product quantized

product

error

e�ect

pnx.mxq
p1.5q

pnp.mpq
p3.2q

error-free 0.53125 1.06250 1 -

ν � �5 �ipped 0.50000 1 1 masked

ν � �4 �ipped 0.59375 1.18750 1.25 visible

More generally, the impact of quantization and saturation goes beyond
masking. Fig. 5.2a shows the e�ect of quantization (in this case truncation) on the
error value using the quantization characteristic. We will illustrate the e�ect for the
cases that a bit-�ip causes the error-free signal x to move to a larger value rx but the
concept can be extended for the case that the direction of the change is reversed.
In the �gure, the numbers 1-6 correspond to non-quantized x values and for the
discussion we assume that the erroneous rx value corresponds to the value with the
next larger number. If the change due to the error happens from position 1 to 2, or
5 to 6 in the �gure, which corresponds to points of discontinuity in the quantized
values, the amplitude of the error increases. The di�erence in the amplitude due to
the quantization is visualized by the di�erence in the length of the blue arrows for
the case that the move is from 1 to 2. When the change occurs within a range that
corresponds to a horizontal segment in the quantization curve, like changes from 2 to
3, 3 to 4, 4 to 5 then the error gets masked. For the saturation, the e�ect is di�erent
as it can be seen in Fig. 5.2b. When the error causes a move from position 1 to 2,
which corresponds to the slope turning from positive to horizontal, the amplitude
of the error decreases. In the linear part of the characteristic, obviously there is no
e�ect. Changes in the subsequent positions (2-4) will be masked.

73

Q(x)

x
1 2 3 4 5 6
xk

Q(xk)

xk~

~Q(xk)

(a)

Sa(x)

x

1 2 3 4
xk

Q(xk)

xk
~

~Q(xk)

(b)

Figure 5.2: Quantization (truncation) and saturation characteristics and e�ect on
error values

5.3 Error propagation approach

5.3.1 Error separation: propagation without �nite

wordlength e�ects

In case error propagation is performed without considering �nite wordlength e�ects,
the property of linearity can be exploited to reduce the computational complexity
during error propagation of errors injected in error-free signals with any type of
autocorrelation. The conventional approach to propagate errors (as shown in the
upper part of Fig. 5.3) requires the following steps: perform error injection at the
input signal x, perform convolution of the corrupted input signal rx and extract the
error at the output ey.

However, linearity allows the error-free signal and the erroneous signal to
be decoupled. Based on the superposition principle of linear blocks, considering C
as the impulse response of the block and "�" the convolution operator, the corrupted
output signal can be derived as:

ry � C � rx � C � x� C � ex. (5.2)

That means, for every injection experiment, it is su�cient that only the error signal
at the input is derived and propagated to the output. For every error sample at the
input, one weighted (by the error sample) impulse response is produced at the output
(as already discussed in Sec. 4.3.1 and shown in Fig. 4.3). In total, the calculation of
s� 1 (as many as the number of sections) weighted impulse responses is required to
get the full error signal at the output, as there is only one error sample per section.
The processing of the error signal separately allows for a signi�cant reduction of the
computational complexity. Computational complexity will be discussed in Sec. 5.3.3.

The lower part of Fig. 5.3 shows the principle. In case the corrupted

74

signal at the output is of interest, the error-free signal should be processed once and
the output error signal should be added to the processed error-free signal.

C

C
yk~

yk

ey

-

xk xk~

reference

xk xk~

ex

C
ey

- improved

k

k

k

Figure 5.3: Two functionally equivalent approaches to calculate the error signal at
the output

5.3.2 Error-free terms reuse: propagation combined with

�nite wordlength e�ects

This subsection discusses the case that non-linear e�ects due to �nite wordlengths
take place during the error propagation. In the speci�c case that the non-linear
e�ects take place only at the block output, the previous approach with the error
separation can be used. The non-linear operation is then applied on the derived
corrupted output signal. However, in the more general case that non-linear e�ects
take place after intermediate results in the SFG (as shown in Fig. 5.1 for the direct-
form FIR �lter), the previous approach is not applicable. In this case, intermediate
results have to be accessed. The �rst step in the proposed methodology is to use
the data organization, already introduced in Sec. 4.3.1. With this organization, as
in every section the same sample gets corrupted over di�erent injection scenarios,
computations related to the error-free samples can be reused. Moreover, depending
on the speci�c LTI block, parallel execution of the sections can be exploited to
speed-up the experiments. In Sec. 5.3.2, we illustrate the concept in detail for a
direct-form FIR �lter and discuss brie�y some other LTI structures in Sec. 5.3.3.

Illustration on direct-form FIR �lter. Instead of performing scalar operations
to implement the di�erence equation (see Eq. 2.1) of a direct-form FIR �lter, a
vector-vector operation can be used for calculating every output sample. To further
improve the computation time, a vector of output samples can be calculated in
parallel, using the banded Toeplitz matrix of the impulse response. The Toeplitz
matrix is often used to describe convolutive relationships [45]. To construct the
Toeplitz matrix for an LTI block, the di�erence equation is used. Assuming we
have an input sample sequence of length L and we are interested in L samples of
the output, by letting k � 1, 2, ..L in Eq. 2.1, the ordering of the coe�cients for

75

calculating each of the output samples y1, y2, ..yL can be derived. The convolution
operations become then a matrix-vector multiplication. For the simple case that
M= 3 and L= 3, the Toeplitz matrix is:

�
����

y1

y2

y3

�
���� �

�
����

c3 c2 c1 0 0

0 c3 c2 c1 0

0 0 c3 c2 c1

�
���� �

�
����������

x�1

x0

x1

x2

x3

�
����������

. (5.3)

The term banded is due to the fact that a �nite number of diagonals have non-
zero entries and the rest of the entries are zero. The values x�1, x0 perform the
initialization of the �lter state variables. In case these are zero, only the non-
colored part of the matrix forms the Toeplitz matrix. In the following the banded
Toeplitz matrix will be denoted by rTcs. To further improve parallelism, instead
of calculating one output vector at a time, multiple vectors can be calculated in
parallel. That means, that instead of having a single input vector, multiple input
vectors are applied. In our case, each section constitutes an input vector, and, then

rY s � rTcs � rXs, (5.4)

provides the complete convolution operation for all sections in the form of a matrix-
matrix multiplication, with rY s being the matrix of the �ltered data.

It can be seen that every time an error injection takes place, only the
�rst row of the data matrix changes (for a visual representation of the data matrix,
see the earlier presented Fig. 4.4). Given our goal of incorporating the non-linear
operations in the framework, the elements of the rY s matrix are now illustrated at
the level of atomic multiplications and product additions in Eq. 5.5 below. This
is the granularity that is required to implement the non-linear operations. For
the illustration, we map the S � ps � 1q elements of the [X] matrix as follows: xk
corresponds to xi,j with i � ppk�1q mod Sq�1 and j � tpk � 1q{Squ�1, so that x1

becomes x11, xS�1 becomes x12 etc. The quantization (as a representative example
of non-linear operation) has been incorporated, assuming that it takes place right
after the multiplication of the data samples with the �lter coe�cients as in Fig. 5.1.
The highlighted part in the matrix in Eq. 5.5, illustrates the part that remains
unaltered every time a new injection experiment takes place. Exactly this fact is
exploited to speed-up the experiments by having these terms being reused for every
new injection scenario.

In the explanation above, we have assumed that the initial state variables
are zero for each section (we have considered only the non-colored part in Eq. 5.3).
Actually, it is required that the �lter state variables are initialized, i.e. data
stored in the �lter before the error sample enters the �lter have to be taken into
account in order to accurately account for non-linear e�ects. For example, to do

76

rY s �

�
������

Qpc1 � x11q Qpc1 � x12q . . . Qpc1 � x1ps�1qq
Qpc2 � x11q � Σ1

n�1Qpcn � x3�n,1q Qpc2 � x12q � Σ1
n�1Qpcn � x3�n,2q . . . Qpc2 � x1ps�1qq � Σ1

n�1Qpcn � x3�n,s�1q
Qpc3 � x11q � Σ2

n�1Qpcn � x4�n,1q Qpc3 � x12q � Σ2
n�1Qpcn � x4�n,2q . . . Qpc3 � x1ps�1qq � Σ2

n�1Qpcn � x4�n,s�1q
.

QpcM � x11q+

ΣM�1
n�1 Qpcn � xS�1�n,1q

QpcM � x12q+

ΣM�1
n�1 Qpcn � xS�1�n,2q

. . . QpcM � x1ps�1qq+

ΣM�1
n�1 Qpcn � xS�1�n,s�1q

�
������

(5.5)

the initialization for the direct-form �lter, the S � 1 last elements of each section
should be copied to the beginning of the subsequent section. At the beginning of
the �rst section, S � 1 zeros should be added. When initialization of the sections is
incorporated, the row in the [X] matrix that changes at every new injection is not the
1st but the Sth one. As in a matrix-matrix multiplication every entry in the output
matrix is derived by combining the products of the elements of the rows and columns
of the input matrices (and summing the results), we have to calculate S products
for every entry of matrix rY s. By changing one row (at every new injection) in the
[X] matrix, only one product in every entry changes out of the S products that are
required without exploiting the reuse. In total, S � ps � 1q multiplications (as many
as the matrix entries) need to be calculated at every successive injection experiment
instead of M �S � ps�1q multiplications (with M being the �lter length), which would
be required for the calculation of the whole convolution matrix. More information is
provided in Sec. 5.3.3.

Overall, in the proposed framework, the following steps are required (as
shown in Proc. 2). As initialization steps, the banded Toeplitz matrix is created
(including appropriate initialization) and the Sth row of the [X] data matrix is
zeroed-out, creating matrix rXmods (steps 1 and 2). The non-linear operations are
applied on the individual operations, while performing rTcs � rXmods, as step 3. The
result is stored as the temporary matrix rYmods. The main loop with steps 5, 6, 7,
8 is the core part of the algorithm, which: performs the injection of each bit-�ip,
multiplies the corrupted [X] row with the Toeplitz matrix, applies the non-linear
operation (like quantization) on the result and adds the result on the temporary
matrix rYmods. As a �nal step (step 6) the output error free signal is subtracted
from the corrupted signal to derive the output error signal.

5.3.3 Reduction of computational complexity.

The input signal [X] is a S � ps� 1q matrix �ltered across the columns, using a �lter
with M coe�cients. Here, we discuss the cost in terms of numbers of operations
for the presented approaches. Especially the recurring cost of costly operations, i.e.
multiplications, is highlighted in bold-italic font.

(i)Reference convolution: It follows that the computational complexity for
deriving the output rY s for every injection scenario, using the conventional
convolution operation, is M � S � ps � 1q. The cost is linearly dependent on the
number of the �lter coe�cients. On top, pM � 1q �S � ps� 1qq additions are required

77

Procedure 2 Pseudocode of the banded Toeplitz matrix error propagation
methodology

Input: error-free signal, bit-�ip position, LTI impulse response
Output: modi�ed error signal after �nite wordlength operations
1: create banded Toeplitz matrix
2: zero-out Sth row in [X] matrix, creating rXmods
3: apply all required non-linear operations on each of the individual products (and/or

sums) in rYmods � rTcs � rXmods
4: for each bit-�ip position do

5: bitwise xor each sample in the Sth row of [X]
6: perform vector-matrix multiplication and apply all required non-linear operations
7: add this matrix to the matrix rYmods
8: subtract from the error matrix the error-free matrix to acquire the error signal

9: end for

to calculate the intermediate and �nal �lter sums. Finally, a cost of S � ps � 1q
subtractions is present in case the error signal is extracted at the output. This
approach can be applied with or without taking into account non-linear e�ects.
Actually this cost is the same, both in the case that we apply the �ltering across
the sections (including the initialization of the �lter state) and the case where we
perform the �ltering on a long input sequence (without sectioning).

(ii)Error separation: In this case the error signal is extracted from the corrupted
input and ps � 1q subtractions are required. To derive the error signal at the
output, every error sample is multiplied with the �lter impulse response, leading
to M � ps� 1q multiplications.

(iii)Banded Toeplitz matrix: In the proposed approach, the recurring cost during
the injections is given by S � ps � 1q for the multiplications, and an equal number
of sums is required. An additional cost of S � ps� 1q subtractions is present in case
the error signal is extracted at the output. The preparation step incurs an one-time
cost and requires the creation of the matrix rXmods, which includes M � S � ps � 1q
multiplications and additions. An additional cost of S �ps�1q subtractions is present
so that the error signal is extracted at the output. This approach can be applied
with or without taking into account non-linear e�ects in the �lter.

Other LTI blocks. As already discussed earlier, the bene�ts from organizing the
data in sections to implement the error injection experiments for the non-linear case,
depend on the speci�c LTI block. The potential bene�ts from reusing the error-free
terms are interlinked with the LTI SFG. Here we discuss four additional blocks:
the transposed FIR �lter, the �lter bit-plane implementation, the lattice �lter and
the DFT block. By observing the SFG of the transposed �lter (see Fig. 5.4a),
which is a frequent practical implementation, the following becomes apparent: for
the typical case that the quantization takes place after the multipliers, the results

78

are the same with the direct-form. Non-linearities in the bit-plane implementation
can be handled as in the fully linear case, by applying them at the �nal output.
The lattice �lter has a more complex structure, as it can be seen in Fig. 5.4b. An
erroneous input sample will impact the result of M

2
� pM � 1q multiplications from

the upper branch and M�1
2

�M from the lower branch for a �lter of M stages. So,
through reusing, only M2 multiplications have to be implemented for one section,
compared to 2 �M2 �M � 1 that would be needed for the reference case. For a

c1

xk

yk

nc.mc

T

Q

Sa

...

Q Q

...

cM-1cM

ny.my

np.mp

nx.mx

T

(a)

xk
yk

nc.mc

T

Sa
cM-1

cM

ny.my

np.mp

nx.mx

T

Q

cM-1

Q Q

(b)

Figure 5.4: SFGs for transposed and lattice (only 2 stages) �lters

DFT block of length N , the section length is N . At every new injection only a single
sample changes, reducing the complexity from N2 for a single section to N .

Figure 5.5: SFG for a DFT block of length N

79

(a) (b)

Figure 5.6: Coe�cients for the 32-tap �lter and PMF of the input signal

5.4 Results

5.4.1 Set-up

To illustrate our approach, we use the baseband model of a BPSK communication
line, as has already been depicted in Fig. 2.2. The block under investigation is the
�lter at the receiver. The �lter coe�cients have been derived using the square root
of the raised cosine �lter function. Fig. 5.6a shows the coe�cient values for a 32-tap
�lter. Fig. 5.6b shows the PMF of the signal for 106 samples, as it appears in the
bu�er memory before the �lter. We explore the outcome of bit-�ip injections in this
signal, after it propagates through the �lter, �rst without and then including non-
linear e�ects at the �lter internals. The results obtained after such an analysis with
the proposed approach are identical with the ones obtained by simulation. Therefore
the exact amount of channel noise that has been added is just a parameter and the
BER at the end of the line is just the outcome of such an analysis. As the accuracy
is exactly the same between using a simulator �lter function and our approach, the
two main objectives here are: the (quantitative) computational complexity and the
execution time. The numbers for the complexity have been derived according to
the formulas in Sec. 5.3.3 and Sec. 5.3.3. Regarding execution time, in absence of a
single objective metric, for simplicity, instead of the Matlab timeit we use the tic,
toc function which counts the elapsed computation time in seconds. Obviously, for
multiple runs of the same code, a stochastic variation is present in the results of the
computation time. Here, the focus is on the relative gain that the proposed approach
o�ers rather than the absolute execution time. All experiments have been performed
on an Intel Core i7 (2.40GHz, 8GB RAM) under the same conditions (e.g. no other
tasks running in parallel). For the direct-form �lter, we implement the �ltering both
on a long input sequence (under the name "ref. long") and on a sectioned input
sequence (under the name "ref. sect."), using for loops, as a reference. When we
consider also non-linear e�ects, we provide additionally results for a lattice �lter and
a DFT block. All experiments were performed for 106 samples.

80

5.4.2 Without non-linear e�ects

In the following, bit-�ips are injected at each position of the input wordlength by
separating the error signal (denoted by "error sep."). Table 5.2 shows the results
for the cases, when the input wordlength nx �mx (denoted as "input wl") has the
values 8, 16, 24, 32. It is observed that as the wordlength increases, the results
follow a linear trend both in computational complexity and in execution time.

Table 5.2 Results for 32-tap direct-form �lter under di�erent input wordlengths
without non-linear e�ects

Comp.complexity Exec.time (sec)

input wl ref. long & ref. sect. error sep. ref. long ref. sect. error sep.

8 8 � 32 � 106 8 � 106 13 16 0.09

16 16 � 32 � 106 16 � 106 26 32 0.17

24 24 � 32 � 106 24 � 106 38 48 0.26

32 32 � 32 � 106 32 � 106 51 64 0.35

Table 5.3 illustrates the results for an 8-bit input wordlength but di�erent
�lter lengths. Although computational complexity increases as the number of
coe�cients increase, the execution time remains stable for the presented �lter
lengths.

Table 5.3 Results for 8-bit input wordlength under di�erent direct-form �lter lengths
without non-linear e�ects

Comp.complexity Exec.time (sec)

M ref. long & ref. sect. error sep. ref. long ref. sect. error sep.

16 16 � 8 � 106 8 � 106 14 16 0.1

32 32 � 8 � 106 8 � 106 13 16 0.09

64 64 � 8 � 106 8 � 106 13 17 0.09

5.4.3 Including non-linear e�ects

Here, for the direct-form �lter, the banded Toeplitz matrix approach is used, as
proposed in Sec. 5.3.2, that allows the incorporation of non-linear e�ects due to the
�nite wordlengths. Regarding the wordlengths we select nx.mx equal to 1.7 and
nc.mc equal to 1.14. Table 5.4 shows how the number of errors that are visible
at the �lter output changes depending on the quantization scheme applied at the

81

�lter products (with wordlengths equal to np.mp) for four di�erent bit positions.
The results are provided for a 32-tap �lter, and the adopted quantization scheme
is truncation. The 1st quantization scheme represents the case where no truncation
takes place. As it is expected, in this case, for all presented bit positions, the
injected errors corrupt all signal samples at the output. The same holds for the 2nd

quantization scheme, according to which, 2 LSBs of the products are truncated. For
quantization scheme 3, the results begin to di�er as the number of errors that are
visible at the output reduces when injection takes place at bit positions 0, -1. More
errors are masked for quantization scheme 4, where injections at bit position -3 also
lead to masking e�ects. For the last quantization scheme where only 8 fractional
bits are kept at the word, error masking occurs for injection at every bit position
except the MSB.

Table 5.4 Erroneous (non-masked) sample counts for 32-tap direct-form �lter

bit-�ip
position

Quantization schemes (np.mp)

1 2 3 4 5

(2.21) (2.17) (2.12) (2.10) (2.8)

ν � �7 106 106 622,841 305,532 100,447

ν � �5 106 106 975,560 622,476 277,327

ν � �3 106 106 106 986,873 570,133

ν � �1 106 106 106 106 971,621

ν � 0 106 106 106 106 106

Table 5.5 and Table 5.6 provide the computational complexity and
execution time for injecting errors at all bit positions in the input signal, under
a given quantization scheme at the �lter products. Table 5.5 shows the trend when
the input wordlength increases under a �xed-tap-length �lter, while Table 5.6 shows
the trend when the �lter length increases under a �xed wordlength. The proposed
approach is 7 to 14 times faster than the reference.

Table 5.7 shows the trend when an all-zero lattice �lter length increases
under a �xed wordlength. As reference, a non-vectorized and a vectorized
implementation are used (denoted by "ref. non-vec."and "ref. vec."). As it can be
seen, although complexity reduces by reusing error-free terms (denoted by "reuse"),
the vectorized version is still better in terms of execution time. Table 5.8 shows the
trend when a DFT block length increases under a �xed wordlength. As reference, a
vector-matrix multiplication is implemented (denoted by "ref. sect."). By reusing
error-free terms (denoted by "reuse"), both complexity and execution time improve
signi�cantly. The execution time depends on several parameters, among which, the
number of loops and storage requirements (for the error-free terms). Therefore, it
is observed that for lengths 4 and 256, the required time is almost equal.

82

Table 5.5 Results for 32-tap direct-form �lter under di�erent input wordlengths with
non-linear e�ects

Comp.complexity Exec.time (sec)

input wl ref. long & ref. sect. Toepl. ref. long ref. sect. Toepl.

8 8 � 32 � 106 8 � 106 971 1019 130

16 16 � 32 � 106 16 � 106 1933 1065 140

24 24 � 32 � 106 24 � 106 2904 1587 146

32 32 � 32 � 106 32 � 106 3860 2123 148

Table 5.6 Results for 8-bit input wordlength under di�erent direct-form �lter lengths
with non-linear e�ects

Comp.complexity Exec.time (sec)

M ref. long & ref. sect. Toepl. ref. long ref. sect. Toepl.

16 16 � 8 � 106 8 � 106 962 1001 127

32 32 � 8 � 106 8 � 106 971 1019 130

64 64 � 8 � 106 8 � 106 997 1004 132

Table 5.7 Results for 16-bit input wordlength under di�erent all-zero lattice �lter
lengths with non-linear e�ects

Comp.complexity Exec.time (sec)

M ref. non-vec. & ref. vec. reuse ref. non-vec. ref. vec. reuse

15 16 � 464 � 106{15 16 � 225 � 106{15 3405 288 461

31 16 � 1952 � 106{31 16 � 961 � 106{31 6934 293 464

63 16 � 8000 � 106{63 16 � 3969 � 106{63 14145 309 482

Table 5.8 Results for 16-bit input wordlength under di�erent DFT block lengths
with non-linear e�ects

Comp.complexity Exec.time (sec)

N ref. sect. reuse ref. sect. reuse

4 16 � 4 � 106{4 16 � 106{p4 � 4q 299 58

32 16 � 32 � 106{32 16 � 106{p32 � 32q 148 15

256 16 � 256 � 106{256 16 � 106{p256 � 256q 917 59

83

5.5 Summary and link to next chapter

In this chapter a framework has been proposed in order to speed-up error injection
experiments in LTI blocks that have no non-linear e�ects and for those that do.
The approach was illustrated on various LTI blocks with varying bene�ts. The next
chapter complements the contribution by presenting a survey of hardware-based
mitigation approaches.

84

Chapter 6

A Classi�cation of Hardware-Based

Resilience Techniques at the Higher

Abstraction of Digital Systems

6.1 Outline

Chap. 6 discusses the categorization and characterization of hardware-based
mitigation techniques (at the higher hardware abstraction). Sec. 6.2 lays down the
motivation and contribution of the chapter. Relevant de�nitions and the rationale
of the proposed classi�cation are discussed in Sec. 6.3. The core classi�cation follows
in Sec. 6.4. Sec. 6.5 summarizes the chapter.

6.2 Introduction

The current chapter presents a classi�cation scheme for organizing the research
domain on mitigation of functional errors at the higher hardware abstraction layers
that manifest during the operational lifetime, and maps representative work for each
category. Given the multitude of reliability issues in modern digital systems, it is
vital to set the boundaries of the current survey: The survey discusses resilience
schemes at the architectural/microarchitectural layer, which have increased in
diversity during the last decades, following the evolution of computer architecture,
parallel processing and general system design. Reliability-related errors that occur
due to hardware-design errors, insu�ciently speci�ed systems ormalicious attacks [7]
or erroneous software interaction (i.e. manifestation of software bugs due to software
of reduced quality [47]) are beyond the current scope. Techniques to mitigate
permanent errors that have been detected during testing in order to improve yield
or lifetime are not included. Techniques to tackle permanent errors due to device
and wire wear-out are incorporated though.

85

The interested reader can �nd a corresponding classi�cation and mapping
for techniques at the software stack, in our publication found in [69]. Moreover, from
this point on, the symbol s will be used to refer the reader to the supplementary
material (see [69] and ACMCSUR website) for additional information. A discussion
of the bulk of the mapped literature work takes place in the supplementary material.

6.3 Context and useful terminology

6.3.1 Resilient digital system design

Reliability is de�ned as the probability that over a speci�c period the system
will satisfy its speci�cation, i.e. the total set of requirements to be satis�ed
by the system. Functional reliability is de�ned as the probability that over
a speci�c period of time the system will ful�ll its functionality, i.e. the set of
functions that the system should perform [34]. Functional reliability is related with
correcting binary digits as opposed to parametric reliability that deals with aspects
of variations in operation margins [72]. Functionality is one of the major elements of
the speci�cation set. Others may be minimum performance (e.g. throughput [ops/s],
computational power [MIPS]), maximum costs (e.g. silicon area [mm2], power [W],
energy [J/op], latency [s/op]). In the following, the term reliability will be used
to denote the functional reliability. The term resilience describes the ability of a
system to defer or avoid (functional) system failures in the presence of errors. When
a system becomes more resilient, its reliability is increased. The terms reliable and
resilient (system design) will be used interchangeably s.

6.3.2 Computing terminology

6.3.2.1 Terminology on abstraction layers

This survey includes techniques implemented at the microarchitecture and
architecture layers, as has been shown in Fig. 1.1. The term platform denotes
a system composed of architectural and microarchitectural components together
with the software required to run applications. When the system is not SW-
programmable, like some small embedded systems are, the term platform denotes
only the hardware part.

Platform HW. Microarchitecture describes how the HW constituent parts are
connected and inter-operate to implement the operations that the HW supports.
It includes the memory system, the memory interconnect and the internals of
processors [31]. This applies both to very �exible SW-programmable processors,
where an instruction-set is present to control the operation sequence, and to
dedicated-HW processing components. Dedicated-HW processors feature minimum

86

A

A1.b

BOTTOM-UP
MAPPING

A1

A1.a

A2

A2.b

WORK
#1

WORK
#2

WORK
#3

WORK
#4

WORK
#5

TOP-DOWN
CLASSIFICATION Subsection x.2.Subsection x.1.

A2.a

Figure 6.1: Top down splitting to create the classi�cation tree and mapping of the
related work

to limited �exibility. Both SW-programmable and dedicated components can
be mapped on highly recon�gurable fabrics, like �eld-programmable gate arrays
(FPGAs). The primary di�erence compared with the SW-programmable processors
is that not only the control �ow but also the data �ow can be substantially
changed/recon�gured. The microarchitecture together with the Instruction Set
Architecture (ISA) constitute the computer architecture (although the term
has been recently used to include also other aspects of the design [31]). In
general, the term HW module denotes a subset of the digital system's HW,
the internals of which cannot be observed (or it is chosen that they are not
observed), correspondingly to the term black box [72]. To de�ne a HW module,
its functionality and its interface with the external world must be described. At
the microarchitectural and architectural layer, examples of HW modules are a
multiprocessor system, a single core, a functional unit, the row of a memory array,
a pipeline stage, a register (without exposing the internal circuit implementation
though). In the context of this survey, the term platform HW is an umbrella
term, that encompasses the microarchitecture and architecture layers of a system.

6.3.3 Rationale of the classi�cation and its presentation

The proposed classi�cation tree is organized using a top-down splitting of the types
of techniques that increase the system resilience. It is accompanied by a mapping of
related work (see Fig. 6.1). The top-down splitting allows to reach a comprehensive
list of types of techniques, which can always be expanded further on demand. Splits
are created based on properties of the techniques, which allow them to be grouped
together. More speci�cally, the properties in the proposed framework regard: (1)
the e�ect that the techniques have on the execution and (2) the changes that are
required on the system design for a technique to be implemented. The properties will
be elaborated as the tree is being presented. Other organizations are also possible,

87

like organizing the splits around the system functionality, hardware components,
types of errors (transient, intermittent, permanent), types of resilience metrics or
the application domains. The aforementioned organization is chosen in order to
stress the reusability of techniques but also to enable the better understanding of
hybrid combinations. This is especially supported through the complementarity of
the categories. It is important to note that many actual approaches that increase
resilience typically represent hybrids and do not fall strictly into only one of the
categories.

For the presentation of the classi�cation tree, the following structure is
followed. First, the main classes are presented for the di�erent techniques. Within
each class, subcategories are presented which are illustrated with the help of a �gure.
Groups of nodes are chosen to be discussed together. For the visualization of the
groups, bubbles with di�erent colors are used, along with the subsection number and
a small geometrical shape (see Fig. 6.1). The colors and the geometrical shapes are
used to enable a more explicit link with the corresponding subsections in the text.
Especially the geometrical shapes are used for the facilitation of the reader in the
black-white printed version. The order of the leaves, the colors and the geometrical
shapes do not indicate the signi�cance or the maturity of the techniques. For each of
the classes, pros and cons are discussed, based on general properties bound to each
class. Among the aspects considered are: area and power overhead, performance
degradation (in terms of additional execution cycles), mitigation latency (delay
until the scheme ful�ls the intended mitigation function), error protection, general
applicability, storage overhead. An overview of those for the di�erent classes can
be found in Tables 7.2, 7.3, 7.4 in the Appendix. In parallel, representative related
work is discussed to further illustrate the subcategory concept and demonstrate the
usefulness of the proposed classi�cation scheme for classifying existing (and future)
literature s. Moreover, in Tables 7.2, 7.3, 7.4 in the Appendix, a crude indication
of the amount of literature for each of the classes is performed.

Finally, the notion of non-determinism is introduced and will be
discussed whenever appropriate. A common technique to mask the e�ect of errors
is by employing replication. During replication, an algorithmic function is executed
again, often by using extra hardware or software. However, deterministic execution
is required for replicas to work. Determinism ensures that di�erent runs of the
same function under the same input will produce identical outcomes. In practice,
deterministic execution is challenged by a multitude of non-deterministic events [64],
[82], [65]. Examples include non-predictable user or sensor inputs, timers, random
numbers, system calls and interrupts s.

6.4 Platform hardware mitigation techniques

To make digital systems more robust, functional capabilities need to be provided
that would be unnecessary in a fault-free environment. This section focuses on

88

techniques that modify the hardware capabilities for reliability purposes. The
goal is to provide non-overlapping categories that cover the broad range of error
mitigation and resilience techniques. The complete classi�cation scheme is shown
in Fig. 6.11 in Sec. 6.4.5. A high level split for the proposed classi�cation tree
is shown in Fig. 6.2. Techniques are �rst classi�ed into techniques that continue
the execution forward (forward) and those that move the execution to an earlier
point (backward). Both categories are further split into techniques that require
the addition of HW modules in the platform at design time (additional HW
modules provision) and techniques that keep the amount of modules the same
(HWmodules amount �xed). In the latter case, only a HW or SW controller may
be needed. These four classes are discussed in the following subsections, as shown
in Fig. 6.2. Main criteria for further categorization include whether modi�cations
are required in: existing functionalities, existing design implementations, resource
allocation, operating conditions, the interaction with neighbouring modules, storage
overhead. Leaves of the tree have an accompanying simple ordinal number for
identi�cation. The numbers (together with the leaves) are collectively shown in
Fig. 6.11.

Platform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HW

ForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForward

Addt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HW
ModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModules
ProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvision

HW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW Modules
AmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmount
FixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixed

BackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackward

Addt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HW
ModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModules
ProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvision

HW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW Modules
AmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmount
FixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixed

Subsection 6.4.1 Subsection 6.4.2 Subsection 6.4.3 Subsection 6.4.4

Figure 6.2: Basic classi�cation1 for techniques at the platform HW

6.4.1 Forward execution - Additional HW modules provision

This subsection discusses techniques that increase the resilience through adding
HW modules on the platform. The added modules may have either the same (same
functionality) or di�erent (di�erent functionality) functionality. The structure
of this subtree along with the corresponding subsections is illustrated in Fig. 6.3.

6.4.1.1 Same functionality n

This group includes techniques that add hardware modules of the same functionality
as the one(s) that should be protected. Some of the most known and well-established
fault tolerant techniques are found in this category. The provision of additional

1The boxes in the classi�cation �gures include hyperlinks to the text. By clicking on each of
the boxes, the reader will be transferred to the corresponding section in the text.

89

Addt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HW
ModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModules
ProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvision

SameSameSameSameSameSameSameSameSameSameSameSameSameSameSameSameSame
FunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionality

ParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallel
ExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecution

SparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSpares

DifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferent
FunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionality

ParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallelParallel
ExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecutionExecution

SparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSparesSpares

Subsection 6.4.1.1 n Subsection 6.4.1.2 s

Platform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HW

ForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForward

HW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW Modules
AmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmount
FixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixed

BackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackward

..
.

Figure 6.3: Classi�cation for forward techniques that require additional HWmodules

HW modules can be further categorized into modules that are used in parallel
execution mode and modules used as spares. Parallel execution denotes that
the modules are all active and processing operations (or hold/transfer data and
instructions for processing). The term spares denotes that the added modules are
not all executing in parallel with the default ones. They will only start executing
upon certain conditions.

Parallel execution 1 2. In general, parallel execution implies that the
modules are all actively used for the intended functionality, or at least potentially
when the workload is very high s. The term lockstep denotes a mode of operation,
according to which, HW modules execute the same operations regarding the same
program at the same time. Generally, lockstep processing can be �tight� or �loose�
depending on whether the outputs of the modules are synchronized at the operation
level or only selectively, for example at the I/O level [2]. Lockstep processing is
used to make a system more robust either by masking an error, i.e. by allowing the
correct output to be produced independent of which module caused the error, or by
using explicit knowledge of the faulty module.

In the �rst case, multiple modules (N modules in general) with the same
speci�cation as the primary module are provided and majority voting is applied
at their output. No error detection is required as the error is masked through
the voting. This results in a well-known technique called N-modular redundancy or
NMR. Typically N is an odd number to avoid uncertain output votes. Most often,
the scheme has been employed in the form of triple modular redundancy (TMR) so
that a correct output is produced with a two out of three vote.

Lockstep processing can be combined also with system awareness of
the faulty module. In this case, a separate detection scheme is employed for the
identi�cation of the faulty module. Majority voting is not required, as after the
detection, the faulty module is considered not valid any more. Only the output of

2The circled numbers refer to the corresponding leaves in the overall classi�cation tree (in this
case Fig. 6.11). By clicking on these numbers the reader will be transferred to this �gure.

90

Core A Core A Core B Core B

= =

=
Valid Output

x

Invalid Output

Figure 6.4: Lockstep execution in a pair-and-spare structure

the other module(s) is considered valid. So in this case, only two modules operating
in lockstep su�ce for producing a correct output.3 One technique commonly found
in literature, belonging to this category, is the so-called pair-and-spare4 technique.
In pair-and-spare, two pairs of replicas operate in lockstep, as illustrated in Fig. 6.4.
Within each pair, error detection is performed through a comparison circuit. In
presence of an error, the faulty pair declares itself as faulty. Then, the output of
the other pair is selected as the valid one s. Replica determinism is not an issue
here as the processors perform their operations simultaneously and they operate on
identical inputs [64]. Pros in this class include the high error protection, the lack
of latency and performance overhead and the general applicability. Cons include
the very high area (e.g. 200% for TMR) and power overhead. Literature examples
on the aforementioned concepts include: [17], [36], [52] on TMR, Stratus computers
and the VAXft 3000 minicomputer [81] on pair and spare s.

Spares 2 . In this category, the added modules, which deliver the same
functionality as the original ones, act as spares. The role of spare modules can be
potentially dual: The �rst use of spares is to remain in standby mode and take over
execution when the primary module fails s. The second use of spares is to take
over execution (or be included in the system operation) for part of the time, without
the primary module experiencing some failure. That means that the execution can
potentially alternate between the spare and the primary module. Several
reasons can motivate the undertaking of such a scheme. One possibility is related to
the bene�ts coming from sharing the workload (in time). For example, it is known
[29] that the device stress, which contributes to the system aging, is increased when
there is a full workload operation compared to when there is alteration of active
and inactive periods. Through alternating the execution between a primary and

3However, detection of the faulty module can also be employed in NMR schemes [80]. Even
though the output would be correct also without it, this knowledge can be used in order to have
faulty module replaced.

4The part �spare� of the term is misleading as in fact all the modules involved operate in
lockstep.

91

a spare the lifetime of the system could be expanded. Another possibility is that
the modules (original and spare) have partially di�erent internal implementation,
which gives them characteristics that �t better for certain conditions. In this case,
the execution may alternate depending on the changing application requirements,
for example, due to changes in the input workload or in environmental parameters
(e.g. noise or temperature) s. Pros include the high error protection and lack of
performance overhead. Cons include the area overhead. The power overhead can be
avoided depending on whether the spares are powered or not and this is a trade-o�
with latency (see supplementary material). The approach is generally applicable,
except if spares are tailored to �t changing application requirements. Literature
examples on the aforementioned concepts include: [13], [84] on spares with failing
modules, [77], [56] on spares with working modules s.

6.4.1.2 Di�erent functionality s

This group includes techniques that add hardware modules of di�erent functionality
than the one(s) that should be protected or become more robust. Again, a distinction
can be made between modules that are in parallel execution mode and modules
that act as spares.

Parallel execution 3 . Here, the added module performs di�erent
functions than the original module. Several possibilities exist: A category includes
hybrid schemes, according to which, the added modules that are designed to
be more robust (by employing for example circuit-level techniques). The added
module can perform only a subset of the operations of the original module for
veri�cation purposes, i.e. it is a module with reduced functionality . For example,
the most crucial operations or the ones that cannot be performed (repeated) by any
other of the already existing modules on the platform, maybe be performed by the
added module. Since it is designed to be more robust, its output is assumed as
the correct one. Another possibility is that the added module performs a super-
set of the operations of the original module, namely it is a module of increased
functionality . That means that it performs the operations of the original module
plus additional operations, which are normally performed by other modules on the
platform. That would be the case when the added module would act like a supervisor
for several modules. An additional possibility is that the added module performs
di�erent types of functions. For example, it may perform some error correction.
Given that the HWmodule granularity can go down to a register, the error correction
codes (ECC) are placed in this category. They are typically implemented in memory
structures, but also in buses, state machines and arithmetic units. Fig. 6.5 shows an
example of a single bit correction with the Hamming code [28]. Syndrome bits are
created during the read operation. If a single error occurs, the syndrome identi�es
the erroneous bit. Pros include the �exibility to trade-o� area, power, performance
overhead and latency with the error protection by selecting a �tting functionality to
be added. Cons include that this class generally requires system-speci�c solutions

92

Syndrome

0 1 0

Codeword

0 0 01 1 1 0 1 0 0
x indicates no error

indicates error
at bit position 2

1 1 1 0 1 1 0

√
1 1 1 0 1 0 0

corresponding
bit is negated

correction
is triggered

Figure 6.5: Read out (7,4) Hamming codeword and syndrome generation for zero
and one error with correction

(although for ECC reusable concepts are typically applied). Literature examples
on the aforementioned concepts include: the Algorithmic Noise Tolerance (ANT)
[30] on modules with reduced functionality, [28], [20] on ECC s.

Spares 4 . As already discussed, spare modules can be present in order
to take over execution in case the primary module fails or to take over execution
for part of the time, even if no failure is present. A reduced functionality spare
module is able to continue execution at a reduced power and area overhead but
also at a degraded performance (since only part of the functionality is available).
An increased functionality spare module is able to continue execution in an
environment that the primary module has been shown to be not good enough. By
using its additional functionality, it keeps or improves the reliability target (at extra
area and power cost) s. Similarly to the earlier category, pros include the �exibility
to trade-o� area, power, latency and performance with error protection by selecting
the appropriate solution. Cons, generally in this class, include that system-speci�c
solutions are required. In the literature, techniques that employ spares with reduced
functionality have been identi�ed. Examples can be found in [87] s.

6.4.2 Forward execution - HW modules amount �xed

This subsection discusses techniques that use only the same amount of modules
on the platform as the original system (before reliability related countermeasures
are added). Hardware modi�cations (like adding interconnects) may be required
but no additional HW module is added. A HW or SW controller is often needed
to coordinate the actions. These techniques are split into techniques that reuse
the existing HW modules (existing HW modules) and those that replace one (or
more) module with an alternate in order to make the system more robust (alternate
HWmodules). The �rst category is further split into techniques that either change
the way of operation of the HWmodules (HWmodules operation mode) or leave
the operation unaltered and change the way the workload is mapped on these HW
modules (resource allocation). Changing the operation of the HW modules means

93

HW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW Modules
AmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmount
FixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixed

ExistingExistingExistingExistingExistingExistingExistingExistingExistingExistingExistingExistingExistingExistingExistingExistingExisting
HW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW Modules

HW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW Modules
OperationOperationOperationOperationOperationOperationOperationOperationOperationOperationOperationOperationOperationOperationOperationOperationOperation
ModeModeModeModeModeModeModeModeModeModeModeModeModeModeModeModeMode

FunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionality
ControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControl

InternalInternalInternalInternalInternalInternalInternalInternalInternalInternalInternalInternalInternalInternalInternalInternalInternal
FunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionality

ReuseReuseReuseReuseReuseReuseReuseReuseReuseReuseReuseReuseReuseReuseReuseReuseReuse

I/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/OI/O
ConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfigurationConfiguration
ModificationModificationModificationModificationModificationModificationModificationModificationModificationModificationModificationModificationModificationModificationModificationModificationModification

Connectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity WithConnectivity With
Neighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HWNeighbouring HW

ModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModules

IsolationIsolationIsolationIsolationIsolationIsolationIsolationIsolationIsolationIsolationIsolationIsolationIsolationIsolationIsolationIsolationIsolation
CapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapabilityCapability

OperatingOperatingOperatingOperatingOperatingOperatingOperatingOperatingOperatingOperatingOperatingOperatingOperatingOperatingOperatingOperatingOperating
ConditionsConditionsConditionsConditionsConditionsConditionsConditionsConditionsConditionsConditionsConditionsConditionsConditionsConditionsConditionsConditionsConditions
ControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControl

ResourceResourceResourceResourceResourceResourceResourceResourceResourceResourceResourceResourceResourceResourceResourceResourceResource
AllocationAllocationAllocationAllocationAllocationAllocationAllocationAllocationAllocationAllocationAllocationAllocationAllocationAllocationAllocationAllocationAllocation

AlternateAlternateAlternateAlternateAlternateAlternateAlternateAlternateAlternateAlternateAlternateAlternateAlternateAlternateAlternateAlternateAlternate
HW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW Modules

Subsection 6.4.2.1 n

Subsection 6.4.2.2 s

Subsection 6.4.2.3 l

Subsection 6.4.2.4 u

Subsection 6.4.2.5 6

Platform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HW

ForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForward

Addt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HW
ModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModules
ProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvision

BackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackward

..
.

Figure 6.6: Classi�cation for forward techniques that keep the amount of HW
modules �xed

that the changes have as focus either the functionality (functionality control) or
the operating conditions (operating conditions control). Functionality-oriented
modi�cations either focus on the internals of a HW module so that the intended
module usage is exploited for reliability purposes (internal functionality reuse)
or on the input-output behavior of the module and how it interacts with the other
modules (I/O con�guration modi�cation). Fig. 6.6 shows the proposed subtree
and its division into subsections.

6.4.2.1 Internal functionality reuse 5 n

Techniques belonging to this category are very system/application dependent.
For example, communication or signal processing systems typically have blocks that
perform channel or source coding. Channel decoders mitigate errors introduced by
the channel and can be potentially reused in order to mitigate hardware-induced
errors. Pros include the lowest possible area and power overhead due to the reuse.
Cons include the lack of general applicability, latency, possible performance costs
and the limited error protection. Literature examples that reuse the channel
decoder include: [41], [12] s.

94

6.4.2.2 I/O con�guration modi�cation s

This group of techniques re-organizes the interaction of a module with the other
modules. This can potentially mean a di�erent way of connecting or communicating
(connectivity with neighbouring HW modules) or even an isolation action
(isolation capability), during which, an erroneous module is bypassed from the
system.

Connectivity with neighbouring HW modules 6 . Inter-module
techniques can exploit inherent redundancy typically present in regularly
structured systems, like arrays of processing elements (PEs), to increase the masking
and correction capability of the system. Nowadays, high-performance is achieved
primarily by chip multiprocessors (CMPs). CMPs are composed of multiple cores
located in a single die or on multiple dies in a single package. The types of cores
may vary: from simple, in-order processors up to more complex, superscalar ones.
They enable high performance through parallel computation. The CMPs are used
here as driver, but the ideas can be applied to other regularly structured systems,
where reuse is possible. The availability of the cores can be exploited to create
masking capability by, for example, running a process in three cores in parallel in
a TMR structure. Or the hardware itself can be built as recon�gurable, so that,
the modules can be connected in a di�erent way depending on run-time conditions.
Typically, this last possibility is found in the form of a hybrid; for example, it is
often found together with spare modules. Pros include the low area and power
overhead (due to the reuse of existing modules but with additional cross-links), the
general applicability (for systems with inherent redundancy), the potentially high
error protection. Cons include the latency and blockage of resources for reliability
that could be used to improve performance. A literature example that employs a
modi�ed connection network in CMPs is found in [3] s.

Isolation capability 7 . To prevent erroneous results from corrupting
the system output, faulty components can be bypassed (through a switch) or
powered o�, in case such an isolation capability has been added in the system.
The system continues operating but at a degraded performance. These schemes
exploit inherent redundancy in regularly structured systems such as arrays of PEs,
memories and interconnection networks or even processors.5 Pros include low area
and power overhead, general applicability (for systems with inherent redundancy).
Cons include latency, degraded performance, limited error protection. Literature
examples of the concept include: [84], [11] on structures within processors, [27],
[73] on pipeline stages in CMPs s.

5Quite often, this isolation functionality is combined with techniques presented in Additional
HW modules provision/same functionality or the previous category so that a di�erent error-free
module is used instead. In these cases, these are hybrid combinations. Note that techniques that
employ additional modules that run in parallel or act as spares do not necessarily isolate the faulty
component.

95

6.4.2.3 Operating conditions control 8 l

Operating conditions represent the interference caused to a digital system by its
environment [72]. This covers a broad range of e�ects like radiation, temperature,
humidity but also electrical stimuli. This category includes all actions that in�uence
the operating conditions of the digital system, beyond changing the system's
functionality.

Typically, operating parameters, such as the supply voltage and
the clock frequency, are controlled to manage the performance, power and
reliability trade-o�s. Scaling the voltage beyond a critical limit can lead to excessive
error rates. On the other hand, using conservative guard bands for the voltage
setting can lead to signi�cant power overhead. Pros include lack of area overhead,
general applicability (assuming that knobs are present in the system for power
management). Cons include the latency and limited error protection. Power and/or
performance will typically be a�ected depending on the knob being used. Here,
works that implement control algorithms that change operational parameters are
classi�ed, like the examples of [38], [74] s.

6.4.2.4 Resource allocation 9 u

Here, the way the hardware resources are assigned is modi�ed without changing the
way of operation of the HW modules. Simply the task is migrated or swapped
with another task. Pros include the limited area, power, performance overhead
due to the modules reuse (with the exception of adding specialized interconnects)
and the rather general applicability (for systems with inherent redundancy). Cons
include latency during migration and limited error protection. Literature examples
on hardware-based task migration include: [67], [90] s.

6.4.2.5 Alternate HW modules 10 6

This category includes schemes that replace an existing HW module with another
more robust implementation for the system context (without employing circuit
or lower layer techniques). Pros include the limited area and power, performance
overhead as the new implementation will typically satisfy the system requirements,
while minimizing additional cost. Cons include that system-speci�c solutions are
required (if existing at all) and typically only limited error protection will be
possible. Literature examples in this category include: [33], [32] on alternate
channel decoders s.

96

Addt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HW
ModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModules
ProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvision

SameSameSameSameSameSameSameSameSameSameSameSameSameSameSameSameSame
FunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionality

DifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferentDifferent
FunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionalityFunctionality

Subsection 6.4.3.1 n Subsection 6.4.3.2 s

Platform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HW

ForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackward

HW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW Modules
AmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmount
FixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixed

..
.

Figure 6.7: Classi�cation for backward techniques that require the provision of
additional HW modules

6.4.3 Backward execution - Additional HW modules

provision

This subsection discusses techniques that increase the resilience of systems through
rollback to an earlier point of execution and repetition of the execution. Just like
in the forward execution category, the added modules can have either the same
(same functionality) or di�erent (di�erent functionality) functionality. The
corresponding categories and subsections are shown in Fig. 6.7.6

6.4.3.1 Same functionality 11 n

This category discusses techniques that provide additional HW modules with the
same functionality as the original ones. The recovery is achieved by repeating part
(or the whole) of the execution, when an error is detected. In this category,
the second module plays an active role in the recovery. For example, it can activate
the execution repetition or provide necessary information to the �rst module so
that the execution is repeated successfully. When the second module executes the
same instruction sequence, non-deterministic execution is not a concern, as long as
identical inputs can be provided to both modules. Pros include the potentially high
error protection (at the expense then of performance and latency). Moreover, the
technique is generally applicable. Cons include the high area and power overhead.
A literature example in this category is [63] s.

6Note that lower level splits like a split between modules that are in parallel execution mode
and modules that act as spares are also possible (like in the forward category). Spare modules
would, for example, not only take over the execution after the primary module has failed but also
repeat the failed execution. However, hardware-based techniques that retry the execution using
spare modules have been less explored in the literature. So, this split is left as implied for this tree.

97

HW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW ModulesHW Modules
AmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmountAmount
FixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixedFixed

Retry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/oRetry W/o
StateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateState

StorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorage

Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-
ModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModule

Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-
ModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModule

Retry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry WithRetry With
StateStateStateStateStateStateStateStateStateStateStateStateStateStateStateStateState

StorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorageStorage

Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-Intra-
ModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModule

Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-Inter-
ModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModuleModule

Subsection 6.4.4.1 n Subsection 6.4.4.2 s

Platform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HWPlatform HW

ForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardForwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackwardBackward

Addt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HWAddt'l HW
ModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModulesModules
ProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvisionProvision

..
.

Figure 6.8: Classi�cation for backward techniques that reuse existing HW modules

6.4.3.2 Di�erent functionality 12 s

Instead of adding modules with the same functionality, modules with di�erent
functionality can be added; the added modules play an active role in the recovery as
in the previous category. The added modules can be with reduced or increased
functionality as in the corresponding forward category for similar reasons. Pros
include the �exibility to trade-o� area, power, performance, latency with error
protection depending on the selected functionality. Cons include that the solutions
are rather system-speci�c. A literature example in this category is [6] s.

6.4.4 Backward execution - HW modules amount �xed

The majority of the techniques proposed in the literature that employ backward
execution, reuse the already existing HW modules as the additional area overhead
of the previous category is avoided. This can be achieved by techniques that retry the
execution without explicit storage (retry without state storage) and techniques
that retry by storing some (redundant) system information at intermediate execution
points to be used for system recovery (retry with state storage).7 Checkpointing
is a term that refers to the intermediate storing of the application's state (or of part
of it), like register and memory contents. Additional events may be registered as
part of the state, which are called logs. The corresponding categories and subsections
are shown in Fig. 6.8.

7Note that the Backward/additional HW modules provision subtree could also be split further
in similar categories, depending on whether intermediate state storage is involved. However, in
that case, because the biggest overhead comes from additional HW modules, this split is left as an
implied lower level split.

98

6.4.4.1 Retry without state storage n

This category includes the schemes that move back the execution to an earlier point
and repeat it, upon error detection. The execution can be successfully repeated
without explicitly storing the system state either because the state information
is not really needed or because it is provided indirectly by executing another
task, which produces the required information. In the degenerate case, a hardware-
driven restart/reboot procedure can be triggered to remedy transient errors. The
techniques can be further distinguished into techniques that take place within the
boundaries of a single module, i.e. intra-module and techniques that operate
across modules, i.e. inter-module, as shown in Fig. 6.8.

Intra-module 13 . In this category belong schemes that either exploit
inherent features of processors to retry a task execution, like instruction retry or
cache refetch, or employ additional hardware-based tasks.

For example, Ray et al. [71] propose to use the pre-existing instruction
rewind mechanism present in superscalar machines for branch mispredictions in
order to handle error recovery. After detecting an error (by duplicating the
instruction during the decode stage and comparing the results before committing),
the contents of the ReOrder Bu�er (ROB) are �ushed and the instruction is
re-executed, similarly to what happens upon a branch misprediction event (see
Fig. 6.9a). In case the results agree after cross-checking, a single instruction retires
and execution proceeds.

Hardware-based tasks in the literature are
implemented by simultaneous multithreading to increase on-chip parallelism.
Simultaneous multithreading (SMT) is a technique that allows multiple threads to
issue multiple instructions each cycle on a superscalar processor [89]. The threads
can be separate from each other or coupled to each other. Separate threads could be
potentially created to execute the same program in a TMR structure, assuming that
care is taken so that the threads use identical shared resources. The literature focuses
on employing hardware-based threads in coupled execution mode. According to this
mode of operation, the threads communicate with each other, i.e. one thread uses
some knowledge from the other thread(s) in order to execute the program. Coupled
execution has been used with processors in order to speed-up execution and the
idea has been reused for fault tolerance [85]. The concept is as follows: Two streams
of the same program run in parallel but with a time lag (see Fig. 6.9b). The �rst
stream is a less accurate one as it processes less instructions than a complete stream
would. It bypasses certain computations and branch instructions as indicated by a
hardware monitor which has observed past instances. Thus, it can run faster than
a complete stream. Its results are stored in a delay bu�er. The second stream is
an accurate one, as it executes all the instructions. However, it receives information
from the �rst stream through a delay bu�er, which allows it to run also faster.
For example, it uses memory load values and thus it can avoid memory latencies.
When the second thread commits (writes its results to the registers), the results

99

from both threads are compared. If they are not identical, the results of the second
one are used to restore the system state. Non-deterministic events like traps and

FUn

FU1

IF COMMITDE FU2

..
.instruction

replication

=

rollback

x

(a)
Reusing the existing rewind mechanism
to rollback the execution in [71]

Core

Delay
buffer

A streamR stream

time

copy register and memory
from R stream

Core

A stream R stream

Instruction
detector/predictor

x

data/control flow
outcomes for R stream

(b) Recovery using threads with a time lag
in [85]

Figure 6.9: Illustration of concepts in the platform-HW backward category

exceptions are handled with some minimal support from the operating system. The
�rst stream stalls until the delay bu�er completely empties and the second stream
is terminated. The �rst stream is serviced (by the operating system) and execution
resumes. Pros include the low area and power overhead, potentially high error
protection (but only for transient errors) and rather general applicability. Cons
include the latency, performance overhead and the limitation to transient errors.
Literature examples include: [71] on re-executing instructions, [75] on tasks with
a time lag, [14] on restarting a core s.

Inter-module 14 . This category has similar properties with the
earlier but requires the cooperation of modules. Pros and cons are similar
with the previous category, but here also permanent errors can be handled and
synchronization issues have to be addressed. In the literature, mainly examples
that include tasks with time lag have been identi�ed: [85], [25] s.

6.4.4.2 Retry with state storage s

This group of techniques employs the storage of a complete or partial error-free state
and the rollback to that state upon detection of an error. Afterwards, the execution
is repeated to acquire error-free results, assuming that the error was transient.
The techniques are also distinguished into intra-module and inter-module. In
the latter category issues that have to do with the state synchronization among
several modules have to be addressed. Checkpointing/rollback refers to a widespread
concept, according to which, the state of a process is proactively stored at certain
intervals during execution so that the correct state is restored in case of an error.
The majority of prior work realizes software-based checkpointing/rollback schemes.

100

rollback

checkpoint
storage

CPU Logic
& Memory√

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

checkpoint
storage

CPU Logic
& Memory

x

Figure 6.10: A local error can trigger all the CMP cores to roll-back in global
checkpointing schemes

However, groups both in industry and academia have provided fully hardware-based
implementations. Typically, when these schemes address non-determinism, this
is done by synchronizing the checkpoints with the external events (e.g. interrupts).
Namely, when an external event takes place, a checkpoint is forced.

Intra-module 15 . This category includes schemes that store the
whole state or a subpart of the state of a module in order to restart the execution
from that stored point if an error occurs. The storage can take place in the main
memory, hard disk, register �le or memory bu�ers, and is often complemented by
another error resilience technique, like ECC, in order to be more robust. A broad
range of checkpointing techniques exist, from techniques that store checkpoints very
rarely (every thousands up to billions of cycles) assuming low error rates up to
techniques that perform checkpointing very often (every few cycles) assuming high
error rates. Pros include the high error protection (for transient errors only),
the general applicability. Cons include latency (depending on the checkpointing
granularity), performance (depending also on whether checkpointing is overlapped
with normal execution) and the limitation to transient errors. Area and power
overhead is medium. Literature examples include: [4] on cache-based checkpoints,
[92], [26], [46] on register-based checkpoints s.

Inter-module 16 . Such schemes are typically found in multicore
architectures. Here, on top of the external non-deterministic events, like
interrupts, also internal events have to be taken care of, like the accesses to the
shared memory. These checkpointing schemes can be characterized as global and
local. In the global schemes, common checkpoints are created among all modules
and upon detection all modules have to roll back to an earlier state (even when
many of them are error-free). Fig. 6.10 illustrates the concept. A challenge with this
approach is the scalability as the number of cores increases. On the other hand, local
checkpointing schemes allow such actions to be made by a subset of the modules,
performing only local synchronization and information storage. A taxonomy of
hardware-based checkpointing schemes for CMPs can be found in [68]. Pros and

101

cons are similar with the previous category, but with extra synchronization costs.
Global schemes induce more overhead during checkpointing, but have a simpler
recovery, compared to local schemes. Literature examples include: [96], [1] on
local and [83] on global schemes s.

6.4.5 Overall platform hardware classi�cation

The sub-trees presented in the previous subsections are combined to form the overall
classi�cation tree for platform HW techniques, as shown in Fig. 6.11. Starting from
the top-level split of Fig. 6.2, the intermediate nodes (colored by pale green) are
followed when necessary, to reach the �nal classes (colored by darker green and
numbered).

6.5 Summary

This chapter presented a novel top-down classi�cation scheme for hardware-based
mitigation schemes. The scheme is based on branches with complementary
characteristics and, thus, di�erent associated costs. Representative works have been
mapped on each of the branches. Therefore, the framework not only allows the
designer to get a more comprehensive view of the domain, but also, to identify
�tting solutions depending on the application needs.

102

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

P
l
a
t
f
o
r
m
H
W

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

F
o
rw
a
r
d

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

P
a
r
a
l
l
e
l

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

E
x
e
c
u
t
io
n

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

S
pa
r
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

E
x
ist

in
g

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

O
p
e
r
a
t
io
n

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

M
o
d
e

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

In
t
e
r
n
a
l

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

R
e
u
se

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

I/
O

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

C
o
n
f
ig
u
r
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

M
o
d
if
ic
a
t
io
n

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

C
o
n
n
e
c
t
iv
it
y
W
it
h

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

N
e
ig
h
b
o
u
r
in
g
H
W

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

Iso
l
a
t
io
n

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

C
a
pa
b
il
it
y

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

O
p
e
r
a
t
in
g

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
d
it
io
n
s

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

R
e
so
u
r
c
e

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
l
l
o
c
a
t
io
n

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

A
lt
e
r
n
a
t
e

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

B
a
c
k
w
a
r
d

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

A
d
d
t
'l
H
W

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

M
o
d
u
l
e
s

P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n
P
r
o
v
isio

n

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

S
a
m
e

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

D
if
f
e
r
e
n
t

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

F
u
n
c
t
io
n
a
l
it
y

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

H
W

M
o
d
u
l
e
s

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

A
m
o
u
n
t

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

F
ix
e
d

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

R
e
t
r
y
W
/
o

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

R
e
t
r
y
W
it
h

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
a
t
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

S
t
o
r
a
g
e

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

In
t
r
a
-

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

In
t
e
r
-

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

M
o
d
u
l
e

111111111 1 1 1 1 1 1 11
222222222 2 2 2 2 2 2 22

333333333 3 3 3 3 3 3 33
444444444 4 4 4 4 4 4 44

555555555 5 5 5 5 5 5 55

666666666 6 6 6 6 6 6 66
777777777 7 7 7 7 7 7 77

888888888 8 8 8 8 8 8 88

999999999 9 9 9 9 9 9 99

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2

1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3

1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4

1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5

1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6

F
igu

re
6.11:

O
verall

p
rop

osed
classi�

cation
for

tech
n
iq
u
es

at
th
e
p
latform

H
W

103

104

Chapter 7

Conclusions

Reliability related to hardware-induced errors has become one of the important
design issues in the design of modern digital systems, and is inherently in con�ict
with other goals, especially energy-e�ciency. To derive reliability approaches that
are cost-e�ective, accurate fault/error information should be provided for the system
across the design layers, i.e. insight of the system behavior in the presence of faults
and errors is needed. This information enables mitigation approaches, which aim
either to prevent or to correct errors. The more �ne-grained the information, the
more targeted and, thus, cost-e�ective the mitigation approach can potentially be.

This information typically comes from system simulation, which is time-
consuming due to the huge complexity of modern systems. The exploration space
is very large given the numerous possible instances of error locations (in time and
in space) while, in order to have satisfactory accuracy, a large amount of data
needs to be processed. Given the huge injection space as well as the complexity of
modern systems, evaluating the impact of bit errors on the system behavior using
simulation can be very time consuming. Lack of scalability is a major concern for
such an analysis.

An attractive alternative, especially for communication systems where
statistical metrics are of interest anyhow, is to use analytical techniques, and more
speci�cally the statistical moments, in order to estimate the statistical properties
of the signal after bit errors have been introduced and propagated through the
rest of the system. In this work, we present possibilities and limitations of using
analytical techniques in order to speed-up the execution time of error injection
and propagation experiments in LTI operators of communication systems. It
has been shown that under certain conditions, such techniques can be bene�cial.
However, due to the inherent correlation (in the general case) between the error and
the error-free signal, the signal characteristics become very soon computationally
intractable. Inherent signal autocorrelation can be exploited in techniques, like
PCA, to reduce the amount of data to be simulated, without compromising accuracy.
Here, again, the bene�ts are present under certain conditions, leading to the need
for more generally applicable solutions. To this end, we propose a framework that

105

o�ers a more computationally tractable way to perform repetitive fault injection
experiments in signals that propagate through non-recursive LTI blocks. The
proposed framework incorporates also the e�ects of non-linear operations, like
saturation and quantization, on the error propagation. We provide results regarding
computational complexity reduction and execution time reduction. We illustrate
that for a given FIR �lter block, the computational complexity is improved by a
factor equal to the number of �lter coe�cients, while execution time improves 7 to
14 times for the given simulator.

As a complementary contribution in the reliability domain, hardware-
based techniques that increase resilience and mitigate functional reliability errors
have been classi�ed in a novel way. This has been achieved through a framework
with complementary splits, in which primitive mitigation concepts are de�ned.
That allows every type of technique to be classi�ed, by combining the appropriate
components. The framework has been accompanied by a wide variety of sources
from the published literature. In this way, insight can be provided to the designers
and researchers about the nature of existing schemes, since every node has some
unique properties. But also the development of e�cient solutions in the future is
facilitated, since the desired properties of a new technique, required to satisfy a
certain need, can be more easily identi�ed when they are presented in a structured
way.

106

List of Publications

Some of the results presented in this thesis were published at various peer reviewed
international conferences and journals. A list of the publications is given in the
following (in reverse chronological order):

� G. Psychou, D. Rodopoulos, M. M. Sabry, T. Gemmeke, D. Atienza, T.
G. Noll, and F. Catthoor, "Classi�cation of resilience techniques against
functional errors at higher abstraction layers of digital systems", ACM
Comput. Surv., 50, 4, Article 50 (October 2017), 38 pages.

� G. Psychou, T. Gemmeke and T. G. Noll, "A framework for analyzing the
propagation of hardware-induced errors in non-recursive LTI blocks with
�nite wordlength e�ects", 26th International Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS), Bremen, Germany, 2016,
pp. 147-154.

� G. Psychou, T. Gemmeke and T. G. Noll, "On the use of analytical techniques
for reliability analysis in presence of hardware-induced errors", IEEE 13th
International Conference on Industrial Informatics (INDIN), Cambridge, UK,
2015, pp. 1416-1423.

� D. Rodopoulos, G. Psychou, M. M. Sabry, F. Catthoor, A. Papanikolaou, D.
Soudris, T. G. Noll, and D. Atienza, "Classi�cation Framework for Analysis
and Modeling of Physically Induced Reliability Violations", ACM Comput.
Surv. 47, 3, Article 38 (February 2015), 33 pages.

� G. Psychou, J. Schleifer, J. Huisken, F. Catthoor, and T. G. Noll, "Cross-layer
reliability exploration proposal for body area networks", 9th Workshop on
Silicon Errors in Logic-System E�ects-SELSE, Urbana-Champaign, IL USA,
2012.

107

APPENDIX

108

T
ab
le
7.
1
L
T
I
P
ro
ce
ss
in
g
of

S
ta
ti
on
ar
y
R
an
d
om

P
ro
ce
ss

in
th
e
P
ri
n
ci
p
le
C
om

p
on
en
t
A
n
al
y
si
s
(P
C
A
)
D
om

ai
n

[H
]

[G
]

Z]
X
]

Y]

z k
x k

y k
h
j

g j

U
n
co
rr
el
a
te
d
R
a
n
d
o
m

In
p
u
t
Z
� w

it
h
m
ea
n
µ
Z

� a
n
d
va
ri
a
n
ce
σ
2 Z

�
A
u
to
co
rr
el
a
te
d
R
a
n
d
o
m

S
ig
n
a
l
X
� �

� H
� �Z

�
A
u
to
co
rr
el
a
te
d
R
a
n
d
o
m

S
ig
n
a
l
Y
� �

� G�
�
X
�

C
en
te
re
d
U
n
co
rr
el
a
te
d
R
a
n
d
o
m

In
p
u
t
q Z�

�
Z
� �

µ
Z

�
C
en
te
re
d
A
u
to
co
rr
el
a
te
d
R
a
n
d
o
m

S
ig
n
a
l
q X�

�
X
� �

µ
X

� �
� H

� �
q Z�

C
en
te
re
d
A
u
to
co
rr
el
a
te
d
R
a
n
d
o
m

S
ig
n
a
l
q Y�

�
Y
� �

µ
Y

� �
� G�

�
q X�

R
a
n
d
o
m

In
p
u
t
D
a
ta

M
a
tr
ix

(n
co
lu
m
n
s
o
f
sa
m
p
le
s)
� R Z

�
R
a
n
d
o
m

D
a
ta

M
a
tr
ix

(n
co
lu
m
n
s
o
f
sa
m
p
le
s)
� R X

� =
� H�

.� R
Z

�
R
a
n
d
o
m

D
a
ta

M
a
tr
ix

(n
co
lu
m
n
s
o
f
sa
m
p
le
s)
� R Y

� �
� G�

�
� R Y

�

C
ov
a
ri
a
n
ce

M
a
tr
ix

o
f
Z
�

C
ov
a
ri
a
n
ce

M
a
tr
ix

o
f
X
�

C
ov
a
ri
a
n
ce

M
a
tr
ix

o
f
Y
�

� Σ
Z

� �
1

pn
�
1
q
�
� R Z

� ��
R
Z

� T ,
h
er
e
� Σ
Z

� �
σ
2 Z
s
�
� I�

� Σ
X

� �
1

pn
�
1
q
�
� R X

� ��
R
X

� T
� Σ
Y

� �
1

pn
�
1
q
�
� R Y

� ��
R
Y

� T
E
V
D

o
f
C
ov
a
ri
a
n
ce

M
a
tr
ix

o
f
Z
�

E
V
D

o
f
C
ov
a
ri
a
n
ce

M
a
tr
ix

o
f
X
�

E
V
D

o
f
C
ov
a
ri
a
n
ce

M
a
tr
ix

o
f
Y
�

� Σ
Z

� �
� V Z

� ��
Λ
Z

� ��
V
Z

� T ,
i.
e.
� Σ
Z

� ��
V
Z

� �
� Λ
Z

� ��
V
Z

�
� Σ
X

� �
� V X

� ��
Λ
X

� ��
V
X

� T ,
i.
e.
� Σ
X

� ��
V
X

� �
� Λ
X

� ��
V
X

�
� Σ
Y

� �
� V Y

� ��
Λ
Y

� ��
V
Y

� T ,
i.
e.
� Σ
Y

� ��
V
Y

� �
� Λ
Y

� ��
V
Y

�

A
s
th
e
C
ov
a
ri
a
n
ce

M
a
tr
ix

is
sy
m
m
et
ri
c
a
n
d
p
o
si
ti
v
e
d
e�
n
it
e

A
s
th
e
C
ov
a
ri
a
n
ce

M
a
tr
ix

is
sy
m
m
et
ri
c
a
n
d
p
o
si
ti
v
e
d
e�
n
it
e

A
s
th
e
C
ov
a
ri
a
n
ce

M
a
tr
ix

is
sy
m
m
et
ri
c
a
n
d
p
o
si
ti
v
e
d
e�
n
it
e

� Λ
Z

� d
ia
g
o
n
a
l
m
a
tr
ix

w
it
h
n
o
n
-n
eg
a
ti
v
e
re
a
l
en
tr
ie
s
(h
er
e
� Λ
Z

� �
� I�

)
� Λ
X

� d
ia
g
o
n
a
l
m
a
tr
ix

w
it
h
n
o
n
-n
eg
a
ti
v
e
re
a
l
en
tr
ie
s

� Λ
Y

� d
ia
g
o
n
a
l
m
a
tr
ix

w
it
h
n
o
n
-n
eg
a
ti
v
e
re
a
l
en
tr
ie
s

� V Z
� o

rt
h
o
g
o
n
a
l
m
a
tr
ix

w
it
h
n
o
rm

a
li
ze
d
ei
g
en
v
ec
to
rs

(h
er
e
� V Z

� �
� I�

)
� V X

� o
rt
h
o
g
o
n
a
l
m
a
tr
ix

w
it
h
n
o
rm

a
li
ze
d
ei
g
en
v
ec
to
rs

� V Y
� o

rt
h
o
g
o
n
a
l
m
a
tr
ix

w
it
h
n
o
rm

a
li
ze
d
ei
g
en
v
ec
to
rs

P
ri
n
ci
p
le
C
o
m
p
o
n
en
ts

o
f
Z
�

P
ri
n
ci
p
le
C
o
m
p
o
n
en
ts

o
f
X
�

P
ri
n
ci
p
le
C
o
m
p
o
n
en
ts

o
f
Y
�

Π
Z

� �
� V Z

� T
�
q Z�

�
� Λ
Z

�1 2
�
Ψ
� ,i

.e
.

Π
X

� �
� V X

� T
�
q X�

�
� Λ
X

�1 2
�
Ψ
� ,

i.
e.

Π
Y

� �
� V Y

� T
�
q Y�

�
� Λ
Y

�1 2
�
Ψ
� ,

i.
e.

Z
� �

µ
Z

� �
� V Z

� ��
Λ
Z

�1 2
�
Ψ
�

X
� �

µ
X

� �
� V X

� ��
Λ
X

�1 2
�
Ψ
�

Y
� �

µ
Y

� �
� V Y

� ��
Λ
Y

�1 2
�
Ψ
�

A
p
p
r
o
x
im

a
t
io
n
:
C
ro
p
p
in
g
o
f
ei
g
en
v
ec
to
r
a
n
d

ei
g
en
va
lu
e
m
a
tr
ic
es

fo
r
d
o
m
in
a
n
t
ei
g
en
va
lu
es

A
p
p
r
o
x
im

a
t
io
n
:
C
ro
p
p
in
g
o
f
ei
g
en
v
ec
to
r
a
n
d

ei
g
en
va
lu
e
m
a
tr
ic
es

fo
r
d
o
m
in
a
n
t
ei
g
en
va
lu
es

� Λ
X

� ù
ñ

� Λ
1 X

�
� Λ
Y

� ù
ñ

� Λ
1 Y

�
� V X

� ù
ñ

� V1 X
�

� V Y
� ù

ñ
� V1 Y

�

y
ie
ld
s

y
ie
ld
s

X
� �

X
1� �

µ
X

� �
� V1 X

� ��
Λ
1 X

�1 2
�
Ψ
�

Y
� �

Y
1� �

µ
Y

� �
� V1 Y

� ��
Λ
1 Y

�1 2
�
Ψ
�

�
� H

� �p
µ
Z

� �
� V1 Z

� ��
Λ
1 Z

�1 2
�
Ψ
� q�

� H
� �Z

�
q
.e
.d

�
� G�

�
pµ
X

� �
� V1 X

� ��
Λ
1 X

�1 2
�
Ψ
� q�

� G�
�
X
�

q
.e
.d

109

 E
x

p
la

n
a

tio
n

 o
f m

e
trics u

se
d

 in
 th

e
 ta

b
le

s:

P
o

w
e

r o
v

e
rh

e
a

d
 is d

e
p

e
n

d
e

n
t ve

ry m
u

ch
 o

n
 th

e
 e

xa
ct im

p
le

m
e

n
ta

tio
n

, in
clu

d
in

g
 circu

it-le
ve

l a
sp

e
cts. So

 h
e

re
, w

e
 p

e
rfo

rm
 a

 v
e

ry
 re

la
tiv

e
 a

sse
ssm

e
n

t

E
n

e
rg

y
 o

ve
rh

e
a

d
 w

ill b
e

 co
m

m
e

n
te

d
 w

h
e

n
 a

p
p

ro
p

ria
te

.

P
e

rfo
rm

a
n

ce
 o

v
e

rh
e

a
d

 is co
n

sid
e

re
d

 in
 te

rm
s o

f n
u

m
b

e
r o

f a
d

d
itio

n
a

l e
xe

cu
tio

n
 cy

cle
s. M

o
re

 sp
e

cific a
sp

e
cts lik

e
 th

ro
u

g
h

p
u

t, m
a

xim
u

m
 fre

q
u

e
n

cy
 e

tc.

a
re

 n
o

t co
n

sid
e

re
d

 h
e

re
.

M
itig

a
tio

n
 la

te
n

cy
 re

fe
rs to

 th
e

 in
d

u
ce

d
 d

e
la

y
 u

n
til th

e
 sch

e
m

e
 fu

lfils th
e

 in
te

n
d

e
d

 m
itig

a
tio

n
 fu

n
ctio

n
 a

n
d

 sh
o

u
ld

 n
o

t b
e

 co
n

fu
se

d
 w

ith
 th

e
 in

h
e

re
n

t

sy
ste

m
 la

te
n

cy
. F

o
r S

W
-m

itig
a

tio
n

 te
ch

n
iq

u
e

s o
fflin

e
 co

m
p

ila
tio

n
 tim

e
 o

ve
rh

e
a

d
 is n

o
t co

n
sid

e
re

d
.

C
la

ss

O
v

e
rh

e
a

d

M
itig

a
tio

n

E
rro

r

P
ro

te
ctio

n

A
p

p
lica

b
ility

A
m

o
u

n
t o

f

Lite
ra

tu
re

A

re
a

P

o
w

e
r

P
e

rfo
rm

a
n

ce

La
te

n
cy

HW Mitigation Techniques
 Forward

Additional
Same functionality

Parallel execution

1 (3.1.1)

v

e
ry

 h
ig

h
 to

 m
e

d
iu

m

(e
.g

. 2
0

0
+

%
 fo

r T
M

R
,

m
e

d
iu

m
 w

h
e

n
 o

n
e

a
d

d
e

d
 m

o
d

u
le

 fo
r

m
u

ltip
le

 e
xistin

g
)

v

e
ry

 h
ig

h
 to

 m
e

d
iu

m

(e
.g

. 2
0

0
+

%
 fo

r T
M

R
,

m
e

d
iu

m
 w

h
e

n
 o

n
e

a
d

d
e

d
 m

o
d

u
le

 fo
r

m
u

ltip
le

 e
xistin

g
)

m

e
d

iu
m

 to
 n

o
n

e

(m
e

d
iu

m
 w

h
e

n
 n

o
t

e
n

o
u

g
h

 e
m

p
ty

 slo
ts

a
va

ila
b

le
 fo

r p
a

ra
lle

l

e
xe

cu
tio

n
)

m

e
d

iu
m

 to
 n

o
n

e

(m
e

d
iu

m
 w

h
e

n
 n

o
t

e
n

o
u

g
h

 e
m

p
ty

 slo
ts

a
va

ila
b

le
 fo

r p
a

ra
lle

l

e
xe

cu
tio

n
)

h

ig
h

 to
 m

e
d

iu
m

(m
e

d
iu

m
 w

h
e

n
 n

o
t

e
n

o
u

g
h

 e
m

p
ty

 slo
ts

a
va

ila
b

le
 fo

r p
a

ra
lle

l

e
xe

cu
tio

n
)

g

e
n

e
ra

l

(lo
ck

ste
p

 re
q

u
ire

s

sy
ste

m
-sp

e
cific

so
lu

tio
n

s)

la

rg
e

(ve
ry

 la
rg

e

fo
r T

M
R

)

Spares

2 (3.1.1)

h

ig
h

 to
 m

e
d

iu
m

(m
e

d
iu

m
 w

h
e

n
 o

n
e

sp
a

re
 fo

r m
u

ltip
le

m
o

d
u

le
s)

h

ig
h

 to
 lo

w

(h
o

t vs. co
ld

 sp
a

re
s)

m

e
d

iu
m

 to
 n

o
n

e

(m
e

d
iu

m
 w

h
e

n
 n

o
t

e
n

o
u

g
h

 sp
a

re
s a

va
ila

b
le

fo
r a

ll d
e

fe
ctiv

e

m
o

d
u

le
s)

h

ig
h

 to
 lo

w

(co
ld

 vs. h
o

t sp
a

re
s)

h

ig
h

 to
 m

e
d

iu
m

(m
e

d
iu

m
 w

h
e

n
 o

n
e

sp
a

re
 fo

r m
u

ltip
le

m
o

d
u

le
s)

g

e
n

e
ra

l

(sy
ste

m
-sp

e
cific

so
lu

tio
n

s if sp
a

re
s

ta
ilo

re
d

 to
 fit ch

a
n

g
in

g

re
q

u
ire

m
e

n
ts)

v

e
ry

la
rg

e

Different functionality
Parallel execution

3 (3.1.2)

h

ig
h

 to
 lo

w

(d
e

p
e

n
d

s o
n

 w
h

e
th

e
r

in
cre

a
se

d
/re

d
u

ce
d

fu
n

ctio
n

a
lity

)

h

ig
h

 to
 lo

w

(d
e

p
e

n
d

s o
n

 w
h

e
th

e
r

in
cre

a
se

d
/re

d
u

ce
d

fu
n

ctio
n

a
lity

)

p

o
ssib

ly

(d
e

p
e

n
d

s o
n

 fu
n

ctio
n

o
f th

e
 a

d
d

e
d

 m
o

d
u

le
;

a
ccu

ra
cy

 m
a

y
 b

e

a
ffe

cte
d

)

h

ig
h

 to
 lo

w

(d
e

p
e

n
d

s o
n

 fu
n

ctio
n

o
f th

e
 a

d
d

e
d

 m
o

d
u

le
,

e
.g

. h
ig

h
 fo

r E
C

C
)

h

ig
h

 to
 lo

w

(d
e

p
e

n
d

s o
n

 fu
n

ctio
n

o
f th

e
 a

d
d

e
d

 m
o

d
u

le
)

sy

ste
m

-sp
e

cific

(d
u

e
 to

 d
iffe

re
n

t

fu
n

ctio
n

a
lity

, e
xce

p
tio

n
s

lik
e

 E
C

C
)

m

e
d

iu
m

(ve
ry

 la
rg

e

fo
r E

C
C

)

Spares

4 (3.1.2)

h

ig
h

 to
 lo

w

(d
e

p
e

n
d

s o
n

 w
h

e
th

e
r

in
cre

a
se

d
/re

d
u

ce
d

fu
n

ctio
n

a
lity

 &

sim
ila

r a
sp

e
cts a

s in
 2

)

h

ig
h

 to
 lo

w

(d
e

p
e

n
d

s o
n

 w
h

e
th

e
r

in
cre

a
se

d
/re

d
u

ce
d

fu
n

ctio
n

a
lity

 &

sim
ila

r a
sp

e
cts a

s in
 2

)

p

o
ssib

ly

(d
e

p
e

n
d

s o
n

 fu
n

ctio
n

o
f th

e
 a

d
d

e
d

 m
o

d
u

le
;

a
ccu

ra
cy

 m
a

y
 b

e

a
ffe

cte
d

)

h

ig
h

 to
 lo

w

(sim
ila

r a
sp

e
cts a

s in
 2

)

h

ig
h

 to
 lo

w

(d
e

p
e

n
d

s o
n

 fu
n

ctio
n

o
f th

e
 a

d
d

e
d

 m
o

d
u

le
)

sy

ste
m

-sp
e

cific

(d
u

e
 to

 d
iffe

re
n

t

fu
n

ctio
n

a
lity

)

sm

a
ll

T
ab
le
7.2

T
rad

e-o�
s
in

H
W
-b
ased

resilien
ce

tech
n
iq
u
es-P

art
1

110

C
la

ss

O
v

e
rh

e
a

d

M
it

ig
a

ti
o

n

E
rr

o
r

P
ro

te
ct

io
n

A
p

p
li

ca
b

il
it

y

A
m

o
u

n
t

o
f

Li
te

ra
tu

re

A
re

a

P
o

w
e

r
P

e
rf

o
rm

a
n

ce

La
te

n
cy

HW Mitigation Techniques

 Forward
Fixed
Existing HW modules

HW Modules operation mode
Functionality control

Internal reuse

5 (3.2.1)

m
in

(d
u

e
 t

o
 p

u
re

 r
e

u
se

)

m
in

(d
u

e
 t

o
 p

u
re

 r
e

u
se

;

p
o

te
n

ti
a

ll
y

 h
ig

h
e

r
e

n
e

rg
y

o
v
e

rh
e

a
d

)

p
o

ss
ib

ly

(d
e

p
e

n
d

s
o

n
 t

h
e

 r
e

u
se

;

a
cc

u
ra

cy
 m

a
y

 b
e

a
ff

e
ct

e
d

)

m
e

d
iu

m
 t

o
 l

o
w

(d
e

p
e

n
d

s
o

n
 t

h
e

 r
e

u
se

,

e
.g

.
lo

w
 w

h
e

n
 i

n
cr

e
a

se
d

d
e

co
d

e
r

it
e

ra
ti

o
n

s)

m
e

d
iu

m
 t

o
 l

o
w

(d
e

p
e

n
d

s
o

n
 t

h
e

 r
e

u
se

)

v
e

ry
 s

y
st

e
m

-s
p

e
ci

fi
c

(d
u

e
 t

o
 p

u
re

 r
e

u
se

)

v
e

ry

sm
a

ll

I/O configuration modif
Connectivity

6 (3.2.2)

lo
w

(a
d

d
e

d
 c

ro
ss

-l
in

k
s)

lo
w

(a
d

d
e

d
 c

ro
ss

-l
in

k
s;

p
o

te
n

ti
a

ll
y

 h
ig

h
e

r
e

n
e

rg
y

o
v
e

rh
e

a
d

)

p
o

ss
ib

ly

(e
.g

.
d

u
e

 t
o

 r
e

so
u

rc
e

b
lo

ck
a

g
e

1
)

m
e

d
iu

m
 t

o
 l

o
w

(e
.g

.
d

u
e

 t
o

re
co

n
n

e
ct

in
g

)

h
ig

h
 t

o
 m

e
d

iu
m

(t
y

p
ic

a
ll

y
 l

im
it

a
ti

o
n

s
in

re
-c

o
n

n
e

ct
io

n
 o

p
ti

o
n

s,

b
u

t
T

M
R

 s
tr

u
ct

u
re

 i
s

a
ls

o
 p

o
ss

ib
le

)

ra
th

e
r

g
e

n
e

ra
l

(f
o

r
sy

st
e

m
s

w
it

h

in
h

e
re

n
t

re
d

u
n

d
a

n
cy

 &

re
g

u
la

ri
ty

)

sm
a

ll

Isolation
7 (3.2.2)

lo
w

(a
d

d
e

d
 s

w
it

ch
e

s)

m
in

(a
d

d
e

d
 s

w
it

ch
e

s;

p
o

te
n

ti
a

ll
y

 h
ig

h
e

r
e

n
e

rg
y

o
v
e

rh
e

a
d

)

h
ig

h
 t

o
 l

o
w

(d
e

p
e

n
d

s
o

n
 t

h
e

p
e

rf
o

rm
a

n
ce

co
n

tr
ib

u
ti

o
n

 o
f

th
e

is
o

la
te

d
 m

o
d

u
le

)

m
e

d
iu

m
 t

o
 l

o
w

(m
e

d
iu

m
 e

.g
.

if
 d

a
ta

h
a

v
e

 t
o

 b
e

 m
o

v
e

d

b
e

fo
re

 i
so

la
ti

o
n

 t
a

k
e

s

p
la

ce
)

m
e

d
iu

m
 t

o
 l

o
w

(t
y

p
ic

a
ll

y
 l

im
it

a
ti

o
n

s
in

is
o

la
ti

o
n

 p
o

ss
ib

il
it

ie
s)

ra
th

e
r

g
e

n
e

ra
l

(f
o

r
sy

st
e

m
s

w
it

h

in
h

e
re

n
t

re
d

u
n

d
a

n
cy

 &

re
g

u
la

ri
ty

)

m
e

d
iu

m

Operating
conditions contr

8 (3.2.3)

n
o

n
e

(a
ss

u
m

in
g

 e
xi

st
in

g

k
n

o
b

s)

p
o

ss
ib

ly

(d
e

p
e

n
d

s
o

n
 k

n
o

b
s

u
se

d
,

m
e

d
iu

m
 e

.g
.

d
u

e
 t

o

in
cr

e
a

se
d

 s
u

p
p

ly

v
o

lt
a

g
e

;
p

o
te

n
ti

a
ll

y

h
ig

h
e

r
e

n
e

rg
y

 o
v

e
rh

e
a

d
)

p
o

ss
ib

ly

(d
e

p
e

n
d

s
o

n
 k

n
o

b
s

u
se

d
,

m
e

d
iu

m
 e

.g
.

d
u

e
 t

o

re
d

u
ce

d
 c

lo
ck

fr
e

q
u

e
n

cy
)

m
e

d
iu

m
 t

o
 l

o
w

(d
e

p
e

n
d

s
o

n

im
p

le
m

e
n

ta
ti

o
n

)

m
e

d
iu

m
 t

o
 l

o
w

(o
n

ly
 t

ra
n

si
e

n
t;

d
e

p
e

n
d

s
o

n

im
p

le
m

e
n

ta
ti

o
n

)

ra
th

e
r

g
e

n
e

ra
l

(s
im

il
a

r
to

 D
V

F
S

)

la
rg

e

Resource
Allocation

9 (3.2.4)

p
o

ss
ib

ly

(e
.g

.
a

d
d

e
d

 c
ro

ss
-l

in
k

s

fo
r

m
ig

ra
ti

o
n

)

lo
w

(e
.g

.
d

u
ri

n
g

 m
ig

ra
ti

o
n

;

p
o

te
n

ti
a

ll
y

 h
ig

h
e

r
e

n
e

rg
y

o
v
e

rh
e

a
d

)

p
o

ss
ib

ly

(d
e

p
e

n
d

s
o

n
 r

e
-

a
ll

o
ca

ti
o

n
 o

p
ti

o
n

s)

h
ig

h
 t

o
 m

e
d

iu
m

(d
e

p
e

n
d

s
o

n
 r

e
-

a
ll

o
ca

ti
o

n
 o

p
ti

o
n

s,
 h

ig
h

e
.g

.
w

h
e

n
 s

ch
e

d
u

li
n

g

co
n

fl
ic

ts
)

m
e

d
iu

m
 t

o
 l

o
w

(t
y

p
ic

a
ll

y
 l

im
it

a
ti

o
n

s
in

re
-a

ll
o

ca
ti

o
n

p
o

ss
ib

il
it

ie
s)

ra
th

e
r

g
e

n
e

ra
l

(f
o

r
sy

st
e

m
s

w
it

h
 i

n
h

e
-

re
n

t
re

d
u

n
d

a
n

cy
 b

u
t

a
ls

o
 s

y
st

e
m

-s
p

e
ci

fi
c

a
s-

p
e

ct
s

e
.g

.
re

-a
ll

o
ca

te
 o

n

IS
A

-c
o

m
p

a
ti

b
le

 c
o

re
s)

sm
a

ll

Alternate

10 (3.2.5)

m
e

d
iu

m
 t

o
 l

o
w

(d
e

p
e

n
d

s
o

n
 a

lt
e

rn
a

te

im
p

le
m

e
n

ta
ti

o
n

)

m
e

d
iu

m
 t

o
 l

o
w

(d
e

p
e

n
d

s
o

n
 a

lt
e

rn
a

te

im
p

le
m

e
n

ta
ti

o
n

)

p
o

ss
ib

ly

(d
e

p
e

n
d

s
o

n
 a

lt
e

rn
a

te

im
p

le
m

e
n

ta
ti

o
n

)

p
o

ss
ib

ly

(d
e

p
e

n
d

s
o

n
 a

lt
e

rn
a

te

im
p

le
m

e
n

ta
ti

o
n

)

m
e

d
iu

m
 t

o
 l

o
w

(t
y

p
ic

a
ll

y
 l

im
it

a
ti

o
n

s
d

u
e

to
 r

e
p

la
ce

m
e

n
t

o
f

e
xi

st
in

g
 m

o
d

u
le

)

sy
st

e
m

-s
p

e
ci

fi
c

(l
im

it
e

d
 a

v
a

il
a

b
il

it
y

 o
f

a
lt

e
rn

a
te

 r
o

b
u

st

im
p

le
m

e
n

ta
ti

o
n

s)

v
e

ry

sm
a

ll

1
 R

e
so

u
rc

e
 b

lo
ck

a
g

e
 r

e
fe

rs
 t

o
 t

h
e

 f
a

ct
 t

h
a

t
th

e
 H

W
 r

e
so

u
rc

e
s

a
re

 c
o

n
su

m
e

d
 e

.g
.

fo
r

re
p

li
ca

ti
n

g
 f

u
n

ct
io

n
s.

 I
n

 t
h

e
 s

y
st

e
m

 w
it

h
o

u
t

re
li

a
b

il
it

y
 c

a
p

a
b

il
it

ie
s,

 t
h

e
 s

a
m

e
 r

e
so

u
rc

e
s

co
u

ld
 b

e
 u

se
d

 f
o

r

d
if

fe
re

n
t

fu
n

ct
io

n
s

a
n

d
,

th
u

s,
 p

e
rf

o
rm

a
n

ce
 w

o
u

ld
 b

e
 h

ig
h

e
r.

T
ab
le
7.
3
T
ra
d
e-
o�
s
in

H
W
-b
as
ed

re
si
li
en
ce

te
ch
n
iq
u
es
-P
ar
t
2

111

C
la

ss

O
v

e
rh

e
a

d

M
itig

a
tio

n

E
rro

r

P
ro

te
ctio

n

A
p

p
lica

b
ility

A
m

o
u

n
t o

f

Lite
ra

tu
re

A

re
a

P

o
w

e
r

P
e

rfo
rm

a
n

ce

La
te

n
cy

HW Mitigation Techniques
Backward

Additional
Same func

11 (3.3.1)

h
ig

h
 to

 m
e

d
iu

m

(m
e

d
iu

m
 e

.g
. w

h
e

n
 o

n
e

a
d

d
e

d
 m

o
d

u
le

 fo
r

m
u

ltip
le

 e
xistin

g
)

h
ig

h
 to

 m
e

d
iu

m

(m
e

d
iu

m
 e

.g
. w

h
e

n
 o

n
e

a
d

d
e

d
 m

o
d

u
le

 fo
r

m
u

ltip
le

 e
xistin

g
)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

 th
e

im
p

le
m

e
n

ta
tio

n
)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

 th
e

im
p

le
m

e
n

ta
tio

n
)

h
ig

h
 to

 m
e

d
iu

m

(d
e

p
e

n
d

s o
n

 th
e

im
p

le
m

e
n

ta
tio

n
)

ra
th

e
r g

e
n

e
ra

l

(sy
ste

m
-sp

e
cific a

sp
e

cts

to
 g

o
 b

a
ck

w
a

rd
)

v
e

ry

sm
a

ll

Diff func

12 (3.3.2)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

fu
n

ctio
n

 o
f th

e

a
d

d
e

d
 m

o
d

u
le

)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

fu
n

ctio
n

 o
f th

e

a
d

d
e

d
 m

o
d

u
le

)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

 th
e

im
p

le
m

e
n

ta
tio

n
)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

 th
e

im
p

le
m

e
n

ta
tio

n
)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

 fu
n

ctio
n

 o
f

th
e

 a
d

d
e

d
 m

o
d

u
le

)

ra
th

e
r

sy
ste

m
-sp

e
cific

(ra
th

e
r d

u
e

 to

p
ro

ce
sso

r-re
la

te
d

so
lu

tio
n

s e
.g

. D
IV

A
)

m
e

d
iu

m

Fixed
Retry w/o state storage

Intra module

13 (3.4.1)

lo
w

(o
n

ly
 to

 e
n

a
b

le
 re

-

e
xe

cu
tio

n
)

m
e

d
iu

m
 to

 lo
w

(m
e

d
iu

m
 e

.g
. fo

r ta
sk

s

w
ith

 tim
e

 la
g

; e
n

e
rg

y

o
v
e

rh
e

a
d

 p
o

te
n

-

tia
lly

 d
u

e
 to

 re
-ru

n
)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

g
ra

n
u

la
rity

)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

 g
ra

n
u

-

la
rity

, h
ig

h
 e

.g
. w

h
e

n

re
b

o
o

t)

h
ig

h
 to

 m
e

d
iu

m

(o
n

ly
 tra

n
sie

n
t; d

e
p

e
n

d
s

o
n

 g
ra

n
u

la
rity

, m
e

d
iu

m

e
.g

. w
h

e
n

 in
stru

ctio
n

-

le
v

e
l)

ra
th

e
r g

e
n

e
ra

l

(sy
ste

m
-sp

e
cific

so
lu

tio
n

s m
a

y
 b

e

re
q

u
ire

d
, e

.g
. fo

r ta
sk

s

w
ith

 tim
e

 la
g

)

la
rg

e

Inter module

14 (3.4.1)

m
e

d
iu

m
 to

 lo
w

(o
n

ly
 to

 e
n

a
b

le
 re

-

e
xe

cu
tio

n
 a

n
d

sy
n

ch
ro

n
iza

tio
n

)

m
e

d
iu

m
 to

 lo
w

(m
e

d
iu

m
 e

.g
. fo

r ta
sk

s

w
ith

 tim
e

 la
g

; e
n

e
rg

y

o
v
e

rh
e

a
d

 p
o

te
n

-

tia
lly

 d
u

e
 to

 re
-ru

n
)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

g
ra

n
u

la
rity

)

h
ig

h
 to

 lo
w

(d
e

p
e

n
d

s o
n

 g
ra

n
u

-

la
rity

, h
ig

h
 e

.g
. w

h
e

n

re
b

o
o

t)

h
ig

h
 to

 m
e

d
iu

m

(p
e

rm
a

n
e

n
t e

rro
rs a

lso

co
m

p
a

re
d

 to
 1

3
;

d
e

p
e

n
d

s o
n

 g
ra

n
u

la
rity

,

m
e

d
iu

m
 e

.g
. w

h
e

n

in
stru

ctio
n

-le
v
e

l)

ra
th

e
r g

e
n

e
ra

l

(sy
ste

m
-sp

e
cific

so
lu

tio
n

s m
a

y
 b

e

re
q

u
ire

d
, e

.g
. fo

r ta
sk

s

w
ith

 tim
e

 la
g

 a
n

d
 in

te
r-

m
o

d
u

le
 d

e
p

e
n

d
e

n
cie

s)

m
e

d
iu

m

Retry w state storage
Intra module

15 (3.4.2)

m
e

d
iu

m

(to
 e

n
a

b
le

 sta
te

 sto
ra

g
e

a
n

d
 ro

llb
a

ck
)

m
e

d
iu

m

(d
u

e
 to

 re
g

u
la

r

ch
e

ck
p

o
in

tin
g

; e
n

e
rg

y

o
v
e

rh
e

a
d

 d
u

e
 to

 re
-ru

n
)

m
e

d
iu

m
 to

 lo
w

(d
e

p
e

n
d

s o
n

 g
ra

n
u

la
rity

a
n

d
 o

n
 w

h
e

th
e

r o
v
e

rla
p

w
ith

 e
xe

cu
tio

n
 d

u
rin

g

ch
e

ck
p

o
in

tin
g

)

m
e

d
iu

m
 to

 lo
w

(d
e

p
e

n
d

s o
n

g
ra

n
u

la
rity

)

h
ig

h

(o
n

ly
 tra

n
sie

n
t)

g
e

n
e

ra
l

(sy
ste

m
-sp

e
cific

so
lu

tio
n

s to
 h

a
n

d
le

g
ra

n
u

la
rity

)

v
e

ry

la
rg

e

Inter module

16 (3.4.2)

m
e

d
iu

m

(to
 e

n
a

b
le

 sta
te

 sto
ra

g
e

,

ro
llb

a
ck

 a
n

d

sy
n

ch
ro

n
iza

tio
n

)

m
e

d
iu

m

(d
u

e
 to

 re
g

u
la

r

ch
e

ck
p

o
in

tin
g

; e
n

e
rg

y

o
v
e

rh
e

a
d

 d
u

e
 to

 re
-ru

n
)

m
e

d
iu

m
 to

 lo
w

(d
e

p
e

n
d

s o
n

 g
ra

n
u

-

la
rity

 a
n

d
 o

n
 w

h
e

th
e

r

o
v
e

rla
p

 w
ith

 e
xe

cu
tio

n

d
u

rin
g

 ch
e

ck
p

o
in

tin
g

)

m
e

d
iu

m
 to

 lo
w

(d
e

p
e

n
d

s o
n

g
ra

n
u

la
rity

)

h
ig

h

(o
n

ly
 tra

n
sie

n
t)

g
e

n
e

ra
l

(sy
ste

m
-sp

e
cific

so
lu

tio
n

s to
 h

a
n

d
le

g
ra

n
u

la
rity

 a
n

d
 in

te
r-

m
o

d
u

le
 d

e
p

e
n

d
e

n
cie

s)

la
rg

e

T
ab
le
7.4

T
rad

e-o�
s
in

H
W
-b
ased

resilien
ce

tech
n
iq
u
es-P

art
3

112

List of Terms and Symbols

rΣXs Covariance matrix of X
�
, page 55

rPXs Correlation matrix of X
�
, page 57

µ mean, page 29

πν percentage of corrupted samples, page 29

X Row vector X, page 55

|X Centered X, page 56

pµ Estimated mean, page 55

EV D Eigenvalue Decomposition, page 55

MRV Multivariate Random Variable, page 55

PCA Principal Component Analysis, page 53

X
�

Column vector X, page 55

ACF Autocorrelation Function, page 12

Bit-�ip sample
rεn�1
k , ..., ε1k, ε

0
ks

A (signal) sample εk used to introduce bit-�ips to the error-free
sample xk, so that rxk � �pxn�1

k `εn�1
k q �2n�1�Σn�2

ν�0px
ν
k`ε

ν
kq �2

ν

, page 15

113

Corrupted
(signal) sample
x̃k

A (signal) sample after hardware-induced bit �ips have been
injected
, page 12

Error (signal)
sample ek

The error of a corrupted (signal) sample x̃k, with ek � x̃k � xk
, page 12

PDF Probability Density Function, page 12

PMF Probability Mass Function, page 12

RV Random Variable, page 12

114

Bibliography

[1] Rishi Agarwal, Pranav Garg, and Josep Torrellas. Rebound: scalable
checkpointing for coherent shared memory, volume 39. ACM, 2011.

[2] Nidhi Aggarwal. Achieving high availability with commodity hardware and
software. ProQuest, 2008.

[3] Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P Jouppi, and James E
Smith. Con�gurable isolation: building high availability systems with
commodity multi-core processors. In ACM SIGARCH Computer Architecture
News, volume 35, pages 470�481. ACM, 2007.

[4] Rana Ejaz Ahmed, Robert C Frazier, and Peter N Marinos. Cache-aided
rollback error recovery (carer) algorithm for shared-memory multiprocessor
systems. In Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th
International Symposium, pages 82�88. IEEE, 1990.

[5] Robert Aitken, Görschwin Fey, Zbigniew T Kalbarczyk, Frank Reichenbach,
and Matteo Sonza Reorda. Reliability analysis reloaded: how will we survive?
In Proceedings of the Conference on Design, Automation and Test in Europe,
pages 358�367. EDA Consortium, 2013.

[6] T.M. Austin. Diva: a reliable substrate for deep submicron microarchitecture
design. In Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual
International Symposium on, pages 196 �207, 1999.

[7] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic concepts and taxonomy of dependable and secure computing. IEEE
Trans. Dependable Secur. Comput., 1(1):11�33, January 2004.

[8] Amitabha Bhattacharya. Introduction to Digital Communication. In: Digital
Communication. Tata McGraw-Hill, 2006.

[9] Andrea Bondavalli, Silvano Chiaradonna, Felicita Di Giandomenico, and
Fabrizio Grandoni. Threshold-based mechanisms to discriminate transient from
intermittent faults. Computers, IEEE Transactions on, 49(3):230�245, 2000.

115

[10] S. Borkar. Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation. IEEE Micro, 25(6):10�16,
Nov 2005.

[11] Fred A Bower, Daniel J Sorin, and Sule Ozev. A mechanism for online diagnosis
of hard faults in microprocessors. In Proceedings of the 38th annual IEEE/ACM
International Symposium on Microarchitecture, pages 197�208. IEEE Computer
Society, 2005.

[12] Christian Brehm, Matthias May, Christina Gimmler, and Norbert Wehn. A case
study on error resilient architectures for wireless communication. In Proceedings
of the 25th international conference on Architecture of Computing Systems,
ARCS'12, pages 13�24, 2012.

[13] Mengly Chean and Jose AB Fortes. A taxonomy of recon�guration techniques
for fault-tolerant processor arrays. Computer, 23(1):55�69, 1990.

[14] Hyungmin Cho, Larkhoon Leem, and Subhasish Mitra. Ersa: Error resilient
system architecture for probabilistic applications. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 31(4):546�558, 2012.

[15] John M. Cio�. Lecture notes on digital communication - signal processing,
"Ch02: Passband systems and analysis", 2007.

[16] Jean-Marc Daveau, Alexandre Blampey, Gilles Gasiot, Joseph Bulone,
and Philippe Roche. An industrial fault injection platform for soft-error
dependability analysis and hardening of complex system-on-a-chip. In 2009
IEEE International Reliability Physics Symposium, pages 212�220. IEEE, 2009.

[17] M. M. Dickinson, J. B. Jackson, and G. C. Randa. Saturn v launch vehicle
digital computer and data adapter. In Proceedings of the October 27-29, 1964,
fall joint computer conference, part I, AFIPS '64 (Fall, part I), pages 501�516,
New York, NY, USA, 1964. ACM.

[18] Manfred Dietrich and Joachim Haase. Process Variations and Probabilistic
Integrated Circuit Design. Springer Science & Business Media, 2011.

[19] Manfred Dietrich and Joachim Haase. Process Variations and Probabilistic
Integrated Circuit Design. Springer Publishing Company, Incorporated, 2011.

[20] Nikil Dutt, Puneet Gupta, Alex Nicolau, Abbas BanaiyanMofrad, Mark
Gottscho, and Majid Shoushtari. Multi-layer memory resiliency. In Design
Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE, pages 1�6.
IEEE, 2014.

[21] Paul Embrechts, Filip Lindskog, and Alexander McNeil. Modelling dependence
with copulas. 2001.

116

[22] Adrian Evans, Shi-Jie Wen, and Michael Nicolaidis. Case study of seu e�ects
in a network processor. In Proc. of IEEE Workshop on Silicon Errors in Logic-
System E�ects, 2012.

[23] Peter Folkesson, Sven Svensson, and Johan Karlsson. A comparison of
simulation based and scan chain implemented fault injection. In Fault-Tolerant
Computing, 1998. Digest of Papers. Twenty-Eighth Annual International
Symposium on, pages 284�293. IEEE, 1998.

[24] Robert Gallager. Course material for 6.450 principles of digital communications
i, mit opencourseware. downloaded on [01 02 2017], 2006, Fall.

[25] Mohamed Gomaa, Chad Scarbrough, TN Vijaykumar, and Irith Pomeranz.
Transient-fault recovery for chip multiprocessors. In Computer Architecture,
2003. Proceedings. 30th Annual International Symposium on, pages 98�109.
IEEE, 2003.

[26] Meeta S Gupta, Jude A Rivers, Pradip Bose, Gu-Yeon Wei, and David
Brooks. Tribeca: design for pvt variations with local recovery and �ne-grained
adaptation. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 435�446. ACM, 2009.

[27] S. Gupta, Shuguang Feng, A. Ansari, J. Blome, and S. Mahlke. The stagenet
fabric for constructing resilient multicore systems. In Microarchitecture, 2008.
MICRO-41. 2008 41st IEEE/ACM International Symposium on, pages 141�
151, 2008.

[28] Richard W Hamming. Error detecting and error correcting codes. Bell System
technical journal, 29(2):147�160, 1950.

[29] Haibo He, Sheng Chen, Kang Li, and Xin Xu. Incremental learning from stream
data. Neural Networks, IEEE Transactions on, 22(12):1901�1914, 2011.

[30] Rajamohana Hegde and Naresh R Shanbhag. Soft digital signal processing. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 9(6):813�823,
2001.

[31] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

[32] Amr Hussien, Muhammad S Khairy, Amin Khajeh, Ahmed M Eltawil, and
Fadi J Kurdahi. A class of low power error compensation iterative decoders.
In Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE,
pages 1�6. IEEE, 2011.

[33] Amr Hussien, Muhammed S Khairy, Amin Khajeh, Kiarash Amiri, Ahmed M
Eltawil, and Fadi J Kurdahi. A combined channel and hardware noise resilient

117

viterbi decoder. In Signals, Systems and Computers (ASILOMAR), pages 395�
399. IEEE, 2010.

[34] IEEE_Std. Ieee standard glossary of software engineering terminology. IEEE
Std 610.12-1990, pages 1�84, Dec 1990.

[35] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection
into vhdl models: the me�sto tool. In Proceedings of IEEE 24th International
Symposium on Fault- Tolerant Computing, pages 66�75, June 1994.

[36] Doug Jewett. Integrity s2: A fault-tolerant unix platform. In Fault-Tolerant
Computing, 1991. FTCS-21. Digest of Papers., Twenty-First International
Symposium, pages 512�519. IEEE, 1991.

[37] R. A. Johnson and D. W. Wichern, editors. Applied Multivariate Statistical
Analysis. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[38] Eric Karl, David Blaauw, Dennis Sylvester, and Trevor Mudge. Reliability
modeling and management in dynamic microprocessor-based systems. In
Proceedings of the 43rd Annual Design Automation Conference, DAC '06, pages
1057�1060, New York, NY, USA, 2006. ACM.

[39] Muhammad S. Khairy, Amin Khajeh, Ahmed M. Eltawil, and Fadi J. Kurdahi.
Equi-noise: A statistical model that combines embedded memory failures and
channel noise. IEEE Transactions on Circuits and Systems I: Regular Papers,
61(2):407 � 419, 2014.

[40] A. Khajeh, K. Amiri, M.S. Khairy, A.M. Eltawil, and F.J. Kurdahi. A uni�ed
hardware and channel noise model for communication systems. In Global
Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pages 1�5,
Dec 2010.

[41] Amin Khajeh, Minyoung Kim, Nikil Dutt, Ahmed M Eltawil, and Fadi J
Kurdahi. Error-aware algorithm/architecture coexploration for video over
wireless applications. ACM Transactions on Embedded Computing Systems
(TECS), 11(1):15, 2012.

[42] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T.
Ma, A. Maheshwari, and S. Mudanai. Process technology variation. IEEE
Trans. on Electron Devices, pages 2197�2208, 2011.

[43] Solomon Kullback and Richard A Leibler. On information and su�ciency. The
annals of mathematical statistics, 22(1):79�86, 1951.

[44] Bhagwandas P Lathi. Modern digital and analog communication systems.
Oxford University Press, Inc., 1990.

118

[45] Bhagwandas P. Lathi and Zhi Ding. Modern Digital and Analog Communication
Systems. Oxford University Press, Inc., New York, NY, USA, 4th edition, 2010.

[46] Tuo Li, Muhammad Sha�que, Semeen Rehman, Swarnalatha Radhakrishnan,
Roshan Ragel, Jude Angelo Ambrose, Jörg Henkel, and Sri Parameswaran.
Cser: Hw/sw con�gurable soft-error resiliency for application speci�c
instruction-set processors. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 707�712. EDA Consortium, 2013.

[47] Klaus Lochmann and Andreas Goeb. A unifying model for software quality. In
Proceedings of the 8th international workshop on Software quality, WoSQ '11,
pages 3�10, New York, NY, USA, 2011. ACM.

[48] David J. C. MacKay. Information Theory, Inference & Learning Algorithms.
Cambridge University Press, New York, NY, USA, 2002.

[49] Dimitris G. Manolakis and Vinay K. Ingle. Finite Wordlength E�ects. In:
Applied Digital Signal Processing: Theory and Practice. Cambridge University
Press, 2011.

[50] W. Mansour and R. Velazco. An automated seu fault-injection method and tool
for hdl-based designs. IEEE Transactions on Nuclear Science, 60(4):2728�2733,
Aug 2013.

[51] Elie Maricau and Georges Gielen. CMOS Reliability Overview. In: Analog IC
Reliability in Nanometer CMOS. Springer, New York, NY, USA, 2013.

[52] Matthias May, Matthias Alles, and Norbert Wehn. A case study in reliability-
aware design: A resilient ldpc code decoder. In Design, Automation and Test
in Europe, 2008. DATE'08, pages 456�461. IEEE, 2008.

[53] J. W. McPherson. Reliability challenges for 45nm and beyond. In Proceedings
of the 43rd Annual Design Automation Conference, DAC '06, pages 176�181,
New York, NY, USA, 2006. ACM.

[54] Daniel Menard, Romuald Rocher, and Olivier Sentieys. Analytical �xed-point
accuracy evaluation in linear time-invariant systems. IEEE Transactions on
Circuits and Systems I: Regular Papers, 55(10):3197�3208, 2008.

[55] R. Muralidhar, T. Shaw, F. Chen, P. Oldiges, D. Edelstein, S. Cohen,
R. Achanta, G. Bonilla, and M. Bazant. Tddb at low voltages: An
electrochemical perspective. In 2014 IEEE International Reliability Physics
Symposium, pages BD.3.1�BD.3.7, June 2014.

[56] Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones.
Scalable stochastic processors. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE '10, pages 335�338, 3001 Leuven,
Belgium, Belgium, 2010. European Design and Automation Association.

119

[57] Alan V. Oppenheim and Ronald W. Schafer. Discrete-time Signal Processing.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[58] Krishna Palem and Avinash Lingamneni. What to do about the end of
moore's law, probably! In Proceedings of the 49th Annual Design Automation
Conference, pages 924�929. ACM, 2012.

[59] S. Pandey and B. Vermeulen. Transient errors resiliency analysis technique
for automotive safety critical applications. In Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2014, pages 1�4, March 2014.

[60] Athanasios Papoulis and S Unnikrishna Pillai. Probability, random variables,
and stochastic processes. Tata McGraw-Hill Education, 2002.

[61] Karthick Parashar. System-level approaches for �xed-point re�nement of signal
processing algorithms. PhD thesis, Université Rennes 1, 2012.

[62] Andrei Pavlov and Manoj Sachdev. CMOS SRAM Circuit Design and
Parametric Test in Nano-Scaled Technologies: Process-Aware SRAM Design
and Test. Springer Publishing Company, Incorporated, 1st edition, 2008.

[63] Matthias P�anz and Heinrich Theodor Vierhaus. Online check and recovery
techniques for dependable embedded processors. IEEE Micro, (5):24�40, 2001.

[64] Stefan Poledna. Fault-Tolerant Real-Time Systems: The Problem of Replica
Determinism. Kluwer Academic Publishers, Norwell, MA, USA, 1996.

[65] Stefan Poledna. Lecture notes on dependable computer systems, "System
aspects of dependable systems", 2007.

[66] Ilia Polian, John P Hayes, Sudhakar M Reddy, and Bernd Becker. Modeling and
mitigating transient errors in logic circuits. IEEE Transactions on Dependable
and Secure Computing, 8(4):537�547, 2011.

[67] Michael D. Powell, Arijit Biswas, Shantanu Gupta, and Shubhendu S.
Mukherjee. Architectural core salvaging in a multi-core processor for hard-
error tolerance. In Proceedings of the 36th annual international symposium on
Computer architecture, ISCA '09, pages 93 �104, 2009.

[68] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. Revive: cost-e�ective
architectural support for rollback recovery in shared-memory multiprocessors.
In Computer Architecture, 2002. Proceedings. 29th Annual International
Symposium on, pages 111�122. IEEE, 2002.

[69] Georgia Psychou, Dimitrios Rodopoulos, Mohamed M. Sabry, Tobias
Gemmeke, David Atienza, Tobias G. Noll, and Francky Catthoor. Classi�cation
of resilience techniques against functional errors at higher abstraction layers of
digital systems. ACM Comput. Surv., 50(4):50:1�50:38, October 2017.

120

[70] Martin Radetzki, Chaochao Feng, Xueqian Zhao, and Axel Jantsch. Methods
for fault tolerance in networks-on-chip. ACM Comput. Surv., 46(1):8:1�8:38,
July 2013.

[71] Joydeep Ray, James C Hoe, and Babak Falsa�. Dual use of superscalar
datapath for transient-fault detection and recovery. In Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture, pages 214�
224. IEEE Computer Society, 2001.

[72] Dimitrios Rodopoulos, Georgia Psychou, Mohamed M. Sabry, Francky
Catthoor, Antonis Papanikolaou, Dimitrios Soudris, Tobias G. Noll, and David
Atienza. Classi�cation framework for analysis and modeling of physically
induced reliability violations. ACM Comput. Surv., 47(3):38:1�38:33, February
2015.

[73] Bogdan F Romanescu and Daniel J Sorin. Core cannibalization architecture:
improving lifetime chip performance for multicore processors in the presence
of hard faults. In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, pages 43�51. ACM, 2008.

[74] Tajana Simunic Rosing, Kresimir Mihic, and Giovanni De Micheli. Power and
reliability management of socs. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 15(4):391�403, 2007.

[75] E. Rotenberg. Ar-smt: a microarchitectural approach to fault tolerance in
microprocessors. In Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-
Ninth Annual International Symposium on, pages 84 �91, june 1999.

[76] Jochen Schleifer, Thomas Coenen, and Tobias G Noll. Statistical modeling of
reliability in logic devices. Microelectronics Reliability, 51(9):1469�1473, 2011.

[77] Jeonghee Shin, Victor Zyuban, Pradip Bose, and Timothy M Pinkston.
A proactive wearout recovery approach for exploiting microarchitectural
redundancy to extend cache sram lifetime. In ACM SIGARCH Computer
Architecture News, volume 36, pages 353�362. IEEE Computer Society, 2008.

[78] Jonathon Shlens. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100, 2014.

[79] M. Short and J. Proenza. Towards e�cient probabilistic scheduling guarantees
for real-time systems subject to random errors and random bursts of errors.
In Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on, pages
259�268, July 2013.

[80] D. Siewiorek and R. Swarz. The Theory and Practice of Reliable System Design.
Digital Press, 1982.

121

[81] D.P. Siewiorek. Fault tolerance in commercial computers. Computer, 23(7):26�
37, July 1990.

[82] Joseph Slember and Priya Narasimhan. Living with nondeterminism in
replicated middleware applications. In Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware, pages 81�100. Springer-Verlag
New York, Inc., 2006.

[83] D.J. Sorin, M.M.K. Martin, M.D. Hill, and D.A. Wood. Safetynet:
improving the availability of shared memory multiprocessors with global
checkpoint/recovery. In Computer Architecture, 2002. Proceedings. 29th Annual
International Symposium on, pages 123�134, 2002.

[84] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers.
Exploiting structural duplication for lifetime reliability enhancement. In
Proceedings of the 32nd annual international symposium on Computer
Architecture, ISCA '05, pages 520�531, Washington, DC, USA, 2005. IEEE
Computer Society.

[85] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. Slipstream
processors: improving both performance and fault tolerance. In ACM
SIGARCH Computer Architecture News, volume 28, pages 257�268, 2000.

[86] Yuan Taur and Tak H. Ning. Fundamentals of Modern VLSI Devices.
Cambridge University Press, New York, NY, USA, 2nd edition, 2009.

[87] James E Tomayko. Lessons learned in creating spacecraft computer systems:
Implications for using ada (r) for the space station. 1986.

[88] Steven A Tretter. Communication System Design Using DSP Algorithms: With
Laboratory Experiments for the TMS320C6713TM DSK. Springer Science &
Business Media, 2008.

[89] Dean M Tullsen, Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo,
and Rebecca L Stamm. Exploiting choice: Instruction fetch and issue on
an implementable simultaneous multithreading processor. In ACM SIGARCH
Computer Architecture News, volume 24, pages 191�202. ACM, 1996.

[90] Shyamsundar Venkataraman, Rui Santos, Akash Kumar, and Jasper
Kuijsten. Hardware task migration module for improved fault tolerance and
predictability. In Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), 2015 International Conference on, pages 197�202. IEEE,
2015.

[91] John Von Neumann. Probabilistic logics and the synthesis of reliable organisms
from unreliable components. Automata studies, 34:43�98, 1956.

122

[92] Nicholas J Wang and Sanjay J Patel. Restore: Symptom-based soft error
detection in microprocessors. Dependable and Secure Computing, IEEE
Transactions on, 3(3):188�201, 2006.

[93] Dr. Darren Ward. Lecture notes on EE2/ISE2 communications II, "Part I,
Communications principles", 2004.

[94] Bernard Widrow, Istvan Kollar, and Ming-Chang Liu. Statistical theory
of quantization. IEEE Transactions on Instrumentation and Measurement,
45(2):353�361, 1996.

[95] Bin Wu, Jianwen Zhu, and Farid N Najm. An analytical approach for
dynamic range estimation. In Proceedings of the 41st annual Design Automation
Conference, pages 472�477. ACM, 2004.

[96] Kun-Lung Wu, W Kent Fuchs, and Janak H Patel. Error recovery in shared
memory multiprocessors using private caches. Parallel and Distributed Systems,
IEEE Transactions on, 1(2):231�240, 1990.

[97] H Ziade, R Ayoubi, and R Velazco. A survey on fault injection techniques.
International Arab Journal of Information Technology, 1:171�186, 2004.

123

	Acknowledgements
	Abstract
	Introduction
	Thesis context and contributions
	Thesis outline

	Background and Context
	Outline
	Target systems and random processes
	Target systems characteristics
	Relevant terms from statistics and probability theory

	Error injection and propagation studies
	Error injection
	Error propagation

	Framework overview
	Correlation between the error and error-free signal and comparison with noise sources
	Summary and link to next chapter

	Propagation of Corrupted, Uncorrelated Signal
	Outline
	Motivation and preliminaries
	Statistical characteristics of the considered signal
	Effects of error injection on Gaussian PMFs
	Linear transformation of normal random variables

	Propagating the corrupted signal using statistical moments
	Set-up and observation
	Modeling approach

	Experimental results and related work discussion
	Experimental set-up
	Results
	Related work

	Limitations with using the statistical moments
	Propagating the corrupted signal through LTI blocks
	Additional related work

	Summary and link to next chapter

	Propagation of Corrupted, Autocorrelated Signal
	Outline
	Motivation and preliminaries
	PCA steps and dimensionality reduction

	Propagating the corrupted signal using PCA
	Data organization for injection experiments
	Illustration of the approach

	Results and limitations with using the PCA for speeding-up the propagation of the corrupted, autocorrelated signal
	Summary and link to next chapter

	Propagation of Corrupted, Generic Signal
	Outline
	Motivation and preliminaries
	Effect of finite wordlengths on error propagation

	Error propagation approach
	Error separation: propagation without finite wordlength effects
	Error-free terms reuse: propagation combined with finite wordlength effects
	Reduction of computational complexity.

	Results
	Set-up
	Without non-linear effects
	Including non-linear effects

	Summary and link to next chapter

	A Classification of Hardware-Based Resilience Techniques at the Higher Abstraction of Digital Systems
	Outline
	Introduction
	Context and useful terminology
	Resilient digital system design
	Computing terminology
	Rationale of the classification and its presentation

	Platform hardware mitigation techniques
	Forward execution - Additional HW modules provision
	Forward execution - HW modules amount fixed
	Backward execution - Additional HW modules provision
	Backward execution - HW modules amount fixed
	Overall platform hardware classification

	Summary

	Conclusions
	List of Publications
	List of Terms and Symbols

