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Abstract 

In general, many numerical techniques are in place for the study of buckling and post-buckling responses of the 
composite structures, but these are computationally expensive. Relatively few equivalent analytical techniques are 
available, especially for evaluation of post-buckling responses. In this paper an analytical approach is presented for 
the determination of post-buckling responses of rectangular panels made of symmetric orthotropic laminates and 
supported by stiffeners (especially used in the monocoque and semi-monocoque aircraft structures), and subjected to 
combined compressive and shear loads, majorly based on the effective width concept. They are used to calculate the 
loss in the stiffness of the panels and the compressive stresses induced in the stiffening members, under a combined 
effect of shear and compressive stresses. For illustration, a series of parametric curves that are characteristic of the 
post-buckling behavior of the orthotropic panels (of aspect ratio 2.5) with transverse stiffeners have been reported.  
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1. Introduction 

The present study is about establishing an analytical approach for the study of the post buckling behavior of the panels 
whose skin is made of composite laminates and supported by struts and frames as shown in figure [1]. Several studies 
have been done in this direction (refer [2] – [11]). The current work is based on Levy’s work [10,11], for the case of 
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stiffened panels made of symmetric special orthotropic laminates, that are subjected to combined compression and 
shear loads exceeding the buckling limit.  
 

 
Figure 1: Panel Configuration 

 
Nomenclature 

ER Effective Width Ratio  
sij            Components of inverse of in-plane stiffness matrix 
AR         Aspect Ratio 

 
The panels are considered to be simply supported on all four edges which can be shown as 
 

w(x, 0) = 0 w(x, b) = 0 w(0, y) = 0 w(a, y) = 0 

My (x, 0) = 0         My (x, b) = 0      Mx(0, y) = 0 Mx(a, y) = 0 
 
where Mx and My are the bending moments about x-axis and y-axis respectively. Referring to figure (1), the frames 
prevent the displacement parallel to the edges, but allow the rotation about the edges. Hence the neutral strain in y-
direction at these edges must be zero and so, 
 

                                            (εX)x=0,a =  0                                           (1) 
 
The longer edges at edges y=0 and y=b are simply supported by struts that allow both, the rotations about the edges 
and the displacement parallel to the edges. The latter corresponds to the shortening of the strut under load. Hence we 
have, 
 

(εX)y=0,b =                                                (2) 

 
where P’ is the compressive force in the strut and As is the cross sectional area of the strut. 

1.1. Effective Width Concept 

      According to the effective width concept, the effective width ratio is characteristic of the loss in extensional stiffness 
encountered beyond the buckling limit. When a panel structure is subjected to external loads, initially the stress 
distribution is uniform over both the sheet and the stringers. But when buckling limit is exceeded, there is a non-linear 
stress distribution over the sheet. The true non-uniform stress distribution in the actual width (b) of the sheet under study 
is compared against a sheet of width be (also referred as effective width) that will be experiencing a uniform stress. 
Accordingly,  

ER = Nm/Ne         (3) 
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where  Nm is the mean stress and Ne is the edge stress, that are given by 

 
Similarly for panels subjected to shear stresses exceeding the buckling limit, there is a loss in the shear stiffness of the 
sheet. Accordingly the effective width ratio in this case is defined as, [10]  

 

 
  

where Q is the actual shear load carried and Nxy is the external shear stress applied. For combined compression and shear 
case, there is a drop in both the extensional stiffness as well as the shear stiffness. Let these losses be denoted as Le and 
Ls respectively and these are determined from Eq. (3) and Eq. (5) as, 
 
 

Le′ =  1 − Le = Nm/Ne 

Ls′ =  1 − Ls = -Q/Nxya 

2. Analytical Formulation 

Based on the choice of the coordinate system as shown in figure (1), a double Fourier sine series given by Eq. (7) is used to 
represent the laminate midplane displacement field. 

 

 

The buckling mode shapes of a panel, subjected to a combination of compression and shear can be determined by the Galerkin 
method. Complete details about this methodology are available in Ref. [17] and [18]. Accordingly this problem can be 
formulated into an eigenvalue problem given by, 

[C]{X} = λ[E]{X}                                                       
which can be rewritten as 

 
      [CE] = ([C] − λ[E]) {X} = 0   (9) 
 
where [C], [E] and [CE] are all square matrices of order m × n where m and n refers to the user-specified number of 
terms in Eq. (7). The standard Maple 14.0 library routine ([19]) has been used to solve the generalized Eigen value 
problem. The large deflection equations developed by Von-Karman for a thin orthotropic panel [1] are given as 

 

(4) 

(5) 

(6) 

(7) 

  (8) 

(10) 
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where 

• Φ: Airy Stress Function 
• w: displacement of points of the middle surface normal and relative to a plane through the corners of the panel 
• p:  Normal Pressure 
• sij: Components of the inverse of the in-plane stiffness matrix 

 Then the Airy stress function is chosen so as to satisfy Eq (8), which is given by, 

 
 
 

where Nx and Ny are the average stress resultants in the plate in x-direction and y-direction respectively and Nxy is 
the shear stress resultants at the corner of the plate. The term Nx includes both, the applied compressive stress in the 
strut direction (Nxe) and the average stress developed in the plate in the x-direction due to the applied shear stress 
(Nxy). The values of the constant bm,n are derived based on the work reported in [11], but there are also some additional 
terms other than Nx, Ny and Nxy used in the stress function, that are considered negligible [12].  

 
Up to the buckling point, the skin carries all the shearing forces and the frame is unaffected. But beyond this limit, 
the skin carries only a portion of the shearing forces and develops some diagonal tension field that tends to draw the 
two frames together. Due to this fact, some additional compressive stresses (P) are induced in the struts beyond the 
buckling point which is given by particular integral derived as in [11], where   

 
The total compressive force (P’) on the strut can be given as 

 
 
 

 
The total shearing force Q acting on the panel is given by the sum of the shearing forces acting on the skin and on 
the upper and lower frames, which is given by  

Q = Qw + Qu + Ql 
 
The bending moment in the frames is same at each strut point, and so the shearing forces in the upper (Qu) and lower 
(Ql) frames can be given by, 

 
 

The shear load carried by the skin is given by 
 
 
 
 

(11) 

(12) 

(13) 

(15) 

(16) 

(17) 
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Then the loss in the extensional stiffness and the shear stiffness of the panel can be determined from the effective 
width ratios as discussed in section (1.1). 

3. Numerical Results 

The present approach has been coded using Maple 14.0 and the numerical results are presented mostly for stresses up 
to 3 × the buckling limit. The results obtained are verified against that available in literature or with non-linear analysis 
done with ABAQUS. Two cases (refer to table (2)) are considered for illustration, where load cases of k=0, 1 are 
given ( k is the ratio of the applied compressive stress to the shear stress) 

 
Table 1: Material properties data 

 
 (1) (2) 

Material AS4 fiber and Epoxy resin Aluminium 

Nature Orthotropic Isotropic 

E1(N/mm2) 128000 70000 

E2(N/mm2) 11300 70000 

G12(N/mm2) 6000 26595.744 

 

Table 2: Different Cases of Panel configuration for AR=2.5 and b=100 mm, h=1 mm 
 

Cases I II 

Material (Table (1)) (2) Laminae (1) [90/0]s 

b/a 2.5 2.5 

As (mm2) 25 0.025 

Load case k=0 k=1 

 
While modeling the problem in ABAQUS [20], the 3-D panel is modeled with 2-D plate elements. Then to realize the 
boundary conditions properly, instead of one panel a set of 9 panels were created. Prior to the non-linear analysis, 
some imperfections are introduced by adding the lowest buckling mode. 
 
For deriving these characteristic curves by present approach, the related forces are non-dimensionalized as 
 
 
 

 is the shear deformation of the beam, which is non-dimensionalised as لآ
 
 

 
In figure (2a), the results obtained are plotted against those obtained by Levy and Kuhn [11]. As observed, a 
satisfactory agreement is reported and hence neglection of some boundary conditions related terms in Eq (11) is 
justified.  

(18) 

(19) 
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Figure 2: Characteristics of Curves of Panels under Case I 

Similar curves have been reported for the other case below. 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Figure 3: Characteristics of Curves of Panels under Case II 

4. Parametric Study 

In order to account for orthotropic laminates of various configuration, non-dimensional parameters namely µc and θc 
are introduced that allow the postbuckling results to be presented as a series of curves on a single plot as illustrated in 
Figure 4.  
 

 
 

The present study is restricted to 0.4 ≤ μc ≤ 2 and 0.1 ≤ θc ≤ 10 AR= 2.5 and As of 25% of the panel area. This can 
include panels of almost all the practical orthotropic configurations. Then L′s and L′e computed by effective width 
concept are also plotted against normalized shear stresses.   
 
 
 

(b) Strut Force Vs Shear Load Curve (a) Effective Width Ratio Vs Shear Deformation Load 
Curve 

(a) Out of Plane Deflection Curve                      (b)  Buckle Mode Shape 

(20) 
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Figure 4: Characteristic curves for stiffened panels of μc = 0.4 under load case k=0.5 

 

Some observations based on these characteristic curves were, 
 Larger secondary compressive forces are developed in the struts for panels with low value of µc (µc=0.4) and 
large value of θc (θc=10) and vice versa. 

 In the presence of shear, diagonal tension stresses provide stiffening of the entire panel, whereas for k=10  the 
supporting action is provided by the skin due to the prevention of buckling deformation in the neighborhood of 
the struts. Also frames provide some support by virtue of its periodically varying lateral stresses. 

 Drop in extensional stiffness is relatively higher, mainly because, due to shear stress a deformation is exerted 
in the strut direction and hence the influence of Nxy on L′e cannot be neglected. 

 For k=0.5, L′e can even reach negative values, mainly due to the tension component developed in the strut 
direction due to the external shear stresses. To establish equilibrium some additional compressive stresses are 
developed and hence Nx becomes negative and so the extensional stiffness can also become negative. Similar 
conclusions are also reported in [12]. 

The parametric curves presented, enable the selection of suitable configuration for the individual panels, to 
maximize its load bearing capacity in the postbuckling region. 

5. Conclusion 

Compared to conventional FEM, the present analytical approach is not only computationally efficient but also devoid 
of convergence issues. However, it should be noted that the deflection coefficients are determined by solving some 
non-linear equations, wherein the computation time is quite large. Some key characteristic curves have been reported 
to illustrate the behaviour of the panels beyond buckling, which enable a designer to choose the right configuration 
for the given application.  
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