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Introduction
An ever increasing aging of the European population ne-
cessitates the development of different medical treatments
for regenerative therapies. Self-powered electrically active
implants help the electrical stimulation of body tissue to ac-
celerate its regeneration. Deep brain stimulation has proven
to be effective in treating movement disorders like Parkin-
son’s disease and dystonia. One of the major drawbacks of
current implants is their limited lifetime. This results into
risky and expensive surgeries to replace the depleted unit.
Harvesting of mechanical or thermal body energy and con-
verting it into electrical power creates a pathway to improve
the implants lifetime up to energy autonomy.
The human body has a core temperature of 37 ◦C. To
maintain this temperature, body tissue generates warmth by
metabolic heat generation [1]. Additionally, heat is trans-
ferred to body tissue through its perfusion by blood. In our
previous work [2] we considered the effect of perfusion as
a homogeneous heat generation rate.
In this work, we present a multiphysical model of a minia-
turized thermoelectric generator (TEG) for electrically ac-
tive implants. The device generates a voltage from temper-
ature gradients across human tissue by the Seebeck effect.
Furthermore, we combine the mathematical technique of
model order reduction (MOR) with the nonlinear perfusion
heat generation in order to come up with a compact but
highly accurate thermal model.

Model Description
A simplified tissue model consisting of muscle, fat and skin
layers, as suggested in [3] has been built. The miniaturized
TEG is embedded into the fat layer (see Fig. 1), which ex-
hibits the highest temperature gradient. The heat conduc-
tion in the tissue can be described by the bioheat equation
of Pennes [4]:
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where, Qb = ρbCbωb(Ta−T (~r)) and Qm are blood perfu-
sion and metabolic heat generation rates respectively. ρ ,
C, K are the density, specific heat and thermal conductivity
of the muscle tissue. ρb, Cb denote the thermal properties
of blood and ωb is a measure of blood perfusion. T (~r) is
the resulting temperature distribution and Ta = 37◦C, is the
core body temperature. Furthermore, the heat is dissipated
by convection from the skin surface with a heat transfer

Figure 1: Schematic of a thermo-electric active implant
positioned in the fat layer

coefficient of 20 W/m2K whereas the environmental tem-
perature is set to 14.85 ◦C.

Model Order Reduction
By applying the Finite Element Method (FEM), the ther-
mal model can be spatially discretized and represented as
follows:

∑
n

{
E · Ṫ (t) = A ·T (t)+B ·u(T (t))
y(t) =C ·T (t), (2)

where, A,E ∈ Rn×n are the global heat conductivity and
heat capacity matrices, B ∈ Rn×m is the input matrix and
C ∈ Rn×p is the output matrix. Here, n is the dimension
of the system, m and n are the number of inputs and user
defined outputs.
After applying the block-Arnoldi algorithm to the above
MIMO system having n inputs and n outputs, we obtain
the reduced order model as follows [5]:

∑
r

{
Er · ż(t) = Ar · z(t)+Br ·u(z)
y(t) =Cr · z(t),

(3)

where, Er =V T EV, Ar =V T AV, Br =V T B, Cr =CV . V is
a projection matrix. State space vector T (t) is represented
as follows:

T (t) =V.z(t)+ ε (4)

The goal is to find V, such that the projection error ε can
be neglected. The projection matrix V is constructed as an



orthonormal basis of the right Krylov-subspace which is
defined as follows:

Kr{P,b}= span{b,P2b, ...,Pr−1b} (5)

where we set P = A−1E and b = A−1B. The reduced
system (3) is the same structure as the full model (2) with
dimension r � N. Most important is that, the input and
output vectors u and y are preserved during the model
order reduction which means the accuracy of the reduced
model is guaranteed.

Nonlinear Input at System-level
In order to obtain an accurate model, we integrate the non-
linear source term within the system-level model. As illus-
trated above the tissue structure consists of muscle, fat and
skin layers. The muscle tissue, in which the heat genera-
tion due to blood perfusion is prominent, is divided into q
segments. Fig. 2 shows the muscle tissue segmented into
5 divisions. During model order reduction, we apply sep-
arate heat generation rates across the q segments. The av-
erage temperatures of each segments are defined as outputs
(Tavg), which leads to a linear multiple input multiple out-
put (MIMO) system. Additional temperature outputs are
defined by the temperature difference across the TEG (top
and bottom surface of TEG). Furthermore, we import the
generated reduced order model into the system level simu-
lator.

Figure 2: Muscle tissue segmented into five parts with
temperature distribution across the human body tissue.

From (1), the perfusion heat generation rate is given as:

Qb = ρbCbωb(Ta−Tavg)+Qm (6)

where, Ta = 37◦C, Qm = 988 W/m3, ρb = 1049.75 kg/m3,
Cb = 3617 J/kgK.
As the muscle tissue is divided into q segments, we can
represent the above nonlinear equation in each part of the
muscle tissue as:

Qi = ρbcbωb(Tai −Tavgi)+Qm/q, i = 1,2, ...,q (7)

where, Tai denotes the surface temperatures of each tissue
segment and Tavgi denotes the average temperature respec-
tively.
We can consider (7) by feeding the average temperature
outputs (Tavgi) to the inputs (Qi). (see Fig. 3 for a system-
level model with muscle tissue segmented into 2 parts.)
Here, Tamb is the ambient temperature, Ta is the body core

Figure 3: System-level model for implementing the non-
linear heat generation input with muscle tissue segmented
into two parts.

temperature specified at the back surface of muscle tissue.
Ta1,2 denotes the surface temperatures of each part of mus-
cle tissue.

Results and Discussion
A temperature distribution obtained from a steady state
simulation with a film coefficient of 20 W/m2K was con-
sidered as an initial state. Transient thermal simulations
were carried out with a film coefficient of 15 W/m2K to
represent changing environmental conditions. The temper-
ature values at the top and bottom surface of the TEG have
been chosen as outputs. Fig. 4 shows the temperature dis-

Figure 4: Temperature result comparison between the full
and reduced model at the bottom and top surfaces of a TEG
with muscle tissue segmented into five parts. The relative
error between the full and reduced model is shown on the
right axis.

tribution of the full model of order 127,648 and reduced
model of order 30. A considerable difference exists be-
tween the full and the reduced model; maximum relative



error of 0.843%. To obtain more accurate results we car-
ried out the simulation with muscle tissue divided into ten
and fifteen segments.
Fig. 5 illustrates the temperature results for muscle tis-
sue divided into ten segments. We observe that the results
match with minimal error. Furthermore, we divide the mus-

Figure 5: Temperature result of the full and the reduced
model at the bottom and top surfaces of a TEG with muscle
tissue divided into ten segments.

cle tissue into 15 segments. An excellent match is obtained
(See Fig. 6). MOR has proven its applicability and effi-
ciency as the computational time for the reduced model is
only 17.421 s, which is several orders of magnitude smaller
compared to the full model which takes 1550 s for the sim-
ulation.

Figure 6: Temperature result for the full and reduced
model at the bottom and top surfaces of a TEG with muscle
tissue divided into fifteen segments.

Conclusion
In this work, we presented the results of transient thermal
simulation of a TEG within human tissue and the method-
ology of considering the non-linear heat generation due to
blood perfusion. The non-linearity was considered at the
system-level. Furthermore, it was shown that with increas-

ing number of muscle tissue segments, the accuracy of the
model increases as well.
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