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1 Introduction

Source separation deals with the problem of extracting sources out of a mixture. In the
case of audio source separation, the sources are usually recordings of musical instruments,
playing alongside each other. The mixture is often produced by a professional sound engineer
during the mixing process in the studio. Applications such as re-mixing or spatialization
need isolated recordings of the single sources of a music mixture. The field of audio source
separation can be roughly categorized by the amount of prior information about the sources.
In the case of Blind Source Separation (BSS), no information about the particular mixture
at hand is available. These algorithms often use generic models of the sources to conduct
the separation. Supervised source separation needs either some sort of interaction with the
user or pre-trained models, e.g. obtained by deep learning. Some methods take even the
score of the musical piece played by the instruments or videos capturing the motion of the
instrument’s player as input. These algorithms lead to improved separation quality compared
to[BSS|by exploiting the prior information about the sources. However, the separation quality
yielded in these cases is often not sufficient for large audience applications.

The special case of Informed Source Separation uses source separation methods
for efficient coding of the sources, in this field also referred to as objects. The basic idea
is to use a source separation algorithm to extract the sources given the mixture; the same
general objective as for source separation. The main point is that the source separation step
is supported by a compact set of side information which is extracted at the encoding side.
Here, the original recordings of each source must be at hand. The resulting side information
is then transmitted to the decoder which applies source separation given the mixture. This
scheme is denoted as Informed Source Separation and unifies due to its nature the
research fields of source separation and audio coding. The audio coding community itself
has brought forward several audio coding standards dealing with encoding multi-channel
audio signals or, more recently, multiple audio objects.

This thesis deals with algorithms compressing the audio objects with nonnegative fac-
torization methods such as Nonnegative Tensor Factorization (NTF). These methods are
widely used in the source separation community as they allow for an efficient description
of single sound events present in audio recordings. This property can be exploited for com-
pression as well: Several methods exist using [NTF for encoding the objects in the Time-
frequency (TF) domain. The resulting parameters are quantized, encoded to a bit stream
and sent to the decoder. Here, the source separation step usually consists of [TF| masking of
the mixture, also referred to as Wiener filtering. The corresponding [TFlmasks are calculated
in the decoder given the parameters in the side information.

In this thesis, several limitations of existing [NTE+-based methods are addressed:

* In most[[SSmethods using[NTF as compression, the resulting parameters are quantized
and subsequently coded with entropy coding methods such as Huffman Coding or
Arithmetic Coding. These methods are usually not adapted to the task of encoding the
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quantized parameters which are typically strongly structured. This structure is
exploited only to some extent by these methods.

* In the decoder of most of the[NTE+based [SSimethods, the source separation step solely
consists of [TF masking. This requires to always send the full set of [NTE parameters
which prevents operating at very low bit rates.

* For higher bit rates, methods exist combining both and source coding, denoted
as Coding-based Informed Source Separation (CISS). Here, additional residuals ac-
counting for possible deviations of the source estimates from the original sources are
transmitted. However, requires computational complexity available at the de-
coder to apply the residual in the [TEl domain.

These limitations are addressed in this thesis. The main contributions and the outline of this
thesis are summarized in Sections|[1.1]and[1.2]respectively. Throughout this work, two ideal
assumptions on the mixture are made:

1. It can be shown that the quality of the estimated audio objects decreases with the
quality of the encoding of the mixture as shown in Section Hence, it is typically
assumed that the mixture is transmitted with high quality to the decoder when dealing
with audio object coding. In practice, two scenarios are probable. The mixture is either
compressed losslessly (pulse-code modulation (PCM) as used in the .wav format or
audio-CD) or encoded lossy with an existing audio coding scheme, e.g. Advanced Audio
Coding (AAC). In case of lossless compression, the side information is embedded with
high-rate data hiding techniques as proposed in e.g. [PGB14] and in the case of [AAC|
compressing the mixture, the side information is simply stored in the metadata.
In this thesis, the second scenario is considered in an extra chapter of this thesis. Here,
the impact of the lossy mixture encoding on the performance is evaluated. Note
that backward compatibility is ensured because a standard decoder is still able to
play back the mixture.

2. The mixture is assumed to be mono. A multi-channel (e.g. stereo) mixture requires
the estimation of a mixing matrix, describing the contributions of each source to each
channel of the mixture. Estimation algorithms, as proposed in e.g. [DVG10; LBR13],
are not in the focus of this thesis.

1.1 Main Contributions

The contributions of this thesis can be roughly divided into three parts as they tackle ad-
vanced parameter encoding, an extension of the decoder allowing for low bit rates and
an efficient method of quantizing a residual between original sources in the encoder and
estimated sources in the decoder. In the following, the aspects of these contributions are
summarized.

Most of the existing methods use standard coding schemes such as Huffman Coding
or Arithmetic Coding. The first contribution aims at encoding the quantized [NTF| parameters
with a more advanced coding method. The [NTF parameters are strongly structured when
applied on audio data. This structure can be exploited by an efficient coding algorithm:
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Figure 1.1 Contributions to Informed Source Separation. Third contribution not depicted.

Context-based Adaptive Binary Arithmetic Coding (CABAC), used in the video coding com-
munity, adapts to local statistics in the data and approaches conditional entropy depending
on the design of so-called context models. In this thesis, is adapted to the field of
factorization-based by proposing suitable context models based on the typical structure
of the [NTF parameters. These context models are thoroughly evaluated and is com-
pared to other existing coding schemes.

The second contribution is focused on enabling lower bit rates. In many [NTEF+-based
methods, the source separation step in the decoder solely consists of [TFlmasking. In this the-
sis, the decoder is extended to use a complete [NTF-based blind source separation algorithm
by adding a factorization block to the decoder. The encoder can decide to omit transmission
of certain [NTFl parameters which are then estimated by the proposed [NTF in the decoder
with the mixture as observation and the transmitted parameters as initialization. This ex-
tension also permits the decoder to run blindly without any transmitted side information.
Furthermore, constraints are proposed which steer the decoder factorization process during
its updates.

In contrast to the second contribution, the third contribution aims at higher bit rates.
The main limitation of the Wiener filter in the decoder is that all estimated sources are
combined with the mixture’s phase. In addition to this, the magnitude estimation in the
decoder may cause errors as well. To correct possible errors of the source separation step
in the decoder, the encoder can compute residuals in the [TF domain. In this thesis, it is
proposed to quantize these residuals under a rate-quality constraint with Rate-distortion
Optimized Quantization (RDOQ), increasing separation performance for higher bit rates
while efficiently constraining the rate necessary to transmit the residuals.

1.2 Outline

This thesis is structured as follows. In Chapter |2, fundamentals of source separation, quan-
tization and entropy coding are summarized. A summary of state-of-the-art audio object
coding schemes is given as well and the evaluation environment is outlined. In Chapter (3]
a reference [[SS] algorithm is introduced and evaluated which is then used throughout the
remainder of this thesis as a baseline on which to improve and to compare against. Addi-
tionally, a reference algorithm is briefly summarized as well.

The main contributions, as summarized in Section (1.1} are subject of the following chap-
ters: Chapter 4 comprises the first contribution of this thesis: as an efficient entropy
coding method is introduced to for coding the quantized [NTE| parameters. Different con-
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text models are proposed and evaluated which are then used for comparing against
other entropy coding schemes. In Chapter (5} the second contribution of this thesis is intro-
duced. The[[SSreference decoder is extended to contain a complete[BSS|algorithm by adding
a second factorization block to the decoder. This block is initialized with the quantized [NTF
parameters originally used for Wiener filtering. Additional constraints to the decoder factor-
ization are proposed to prevent the factorization process from deviating too much from its
initialization. In Chapter|6] the third contribution is presented. Aiming at higher bit rates, a
residual in[TF domain between original and estimated sources can be calculated, quantized,
and transmitted to the decoder to correct possible errors in the source estimation process of
the decoder.

In Chapter |7} the three contributions are summarized and jointly evaluated and compared
to other audio object coding methods. Finally, conclusions and an outlook on possible future
work are given in Chapter



2 Fundamentals

This thesis deals with coding of digital audio signals. In the following, all signals are assumed
to be represented digitally, meaning both sampled with sampling frequency F, and quantized.
The test signals used for evaluation throughout this thesis are available in Audio CD quality,
sampled with F, = 44100Hz and quantized with at least 16bit per sample yielding high
amplitude resolution. Therefore, the quantization process of the analog-to-digital conversion
is neglected from now on. Moreover, M samples of a discrete, sampled signal are stacked to
a real-valued vector x with

X = (xl,xz,,...,xm,...,xM)T. (2.1)

In the following sections of this chapter, basic methods and concepts are summarized. This
thesis deals with schemes utilizing factorization methods for compressing the sources in
the [TF| domain. Two exemplary transforms, mapping time-domain signals to their [TE| rep-
resentations, are discussed in Section The factorization process used throughout this
thesis is detailed in Section and yields compact side information which has to be sent
to the decoder. Quantization and entropy coding are summarized in Sections and
respectively. The source separation step in the decoder utilizes [TF masking as described in
Section whereas phase re-estimation algorithms and a generalized [TFl masking process
are discussed in Section State-of-the-art algorithms for audio object coding, including
[SS| are summarized in Section[2.7] To assess the performance of algorithms, the algo-
rithms are tested on different test mixtures. The quality of the estimated sources as well as
the bit rate, which is necessary to transmit the side information, have to be evaluated. The
evaluation procedure is summarized in Section

2.1 Time-Frequency Transform

Typical properties of audio signals such as pitch or timbre are exposed more clearly in the
frequency domain. The Fourier transform is commonly used to transform a time-domain
signal to the frequency domain. However, audio signals usually vary over time. To analyze
the signal’s frequency content for given time instances, the Short Time Fourier Transform
[AR77] is often used to transform time-domain signals to the Time-frequency (TE)
domain.

In the following, the and some of its properties are briefly explained in Sec-
tion Section discusses another transform, the Modified Discrete Cosine Trans-
form [PB86; PJB87]], which has usually better coding properties than the In
Section a logarithmic mapping of the frequency axis of the [TE-transformed signals is
briefly discussed.
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Figure 2.1 Illustration of a spectrogram of a harmonic note [Spil12]].

2.1.1 Short-Time Fourier Transform

To be able to understand the Short Time Fourier Transform (STFT), it is important to first
explain the Discrete Fourier Transform (DET]) which the[STFT]uses as its main building block.
The [DFT of time-domain vector x as well as the corresponding inverse transform, the Inverse
Discrete Fourier Transform (IDET), is given as

M M
:mZ:;gmexp(—]Zn(m_lj)V(f _1)) X, = %Z exp(]Zﬂ:(m_ll)V(f _1))

(2.2)
with frequency bin 1 < f < M. In this thesis, only audio signals are transformed. Therefore,
x is assumed to be real-valued from now on. In this case, the corresponding spectrum y is
Hermitian with B

Y. =Y (2.3)

Zf+1 ZM—f-1
for 1 < f < M. Due to this symmetry, it is sufficient to store and process only the first
N,y = % + 1 coefficients. Prior to the [DFT], the missing coefficients are simply calculated
with Equation (2.3).

The Short Time Fourier Transform is based on the windowed with window
w of length N,, [AR77]. The window is applied prior to the to prevent the spectral
leakage effect [Mal08]. Instead of transforming the whole time-domain signal, segments of
length N,, are extracted from x, multiplied with window w and transformed with the [DFT|
independently. The segments are shifted by N, samples where N; is often called hop size.

This procedure is summarized in the following equation as

N,
g (m—-1)(f —1)
Zf,t = [STFT {X}]f,t = mZ:; X4 (t—1)N, Wm EXP (—]27‘5 N, ), (2.4)
with segment index 1 <t < T and
M —N,,
r= l J +1 (2.5)
Ny
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denoting the number of segments. Note that for w,, = 1 for all m and T = 1, Equation (2.4)
falls back to the as shown in Equation (2.2). In this thesis, the size is fixed to the
window length N,,. The output of the [STFT]is the complex valued matrix Y which is of size
N, x T. Since x is still assumed to be real-valued and Equation (2.3) still holds for each
spectrumy ,only N, = W + 1 frequency bins are stored, thus decreasmg the size of Y to
Ny xT. F1gure shows an exemplary time-domain representation x of a harmonic note in
Figure and the corresponding magnitude spectrogram |S_{| = |STFT {x}| in Figure
Additionally, shifted versions of window function w are shown in Figure to illustrate
the procedure as given in Equation (2.4): w is shifted by multiples of N, namely by
(t — 1) Ny,. Input x is then consecutively multiplied by these shifted versions and transformed
to the frequency domain by the DFTL The resulting spectrum is stored in a column y,, of Y
as shown in Figure B

The inverse transform, Inverse Short Time Fourier Transform (ISTET), is conducted in two
steps: First, the spectrum y,, of frame t is transformed back to time-domain by the [DFTI

The resulting samples are then synthesized by overlap-add. These steps are summarized as

(m-1)(f—-1)
Xt (t=1)Ny < Xm+(e=1Ny T W sz exp (]Zﬁ N (2.6)

Wfl w

and abbreviated with x = ISTFT {S_{}

In the following, the overlap is fixed to 50% which means that N, = % On the one
hand, larger overlaps (e.g. 75%) are reported to increase separation quality in a blind source
separation scenario [Bec16]. On the other hand, in the informed case dealt with in this thesis,
the number of parameters to transmit is significantly increased. This can be explained by
the fact that decreasing N, results in an increasing number of segments T, cf. (2.5).

In this thesis, the same window is used for analysis (2.4) and synthesis (2.6). To obtain

perfect reconstruction, x = ISTFT {STFT {x}}, the wmdow w has to fulfill

Z Wi_tNh =1, for all m.
=—0Q

Many different window functions w are applicable, some choices are e.g. detailed in [Mal08]].
Throughout this thesis, the square root of the Hann-window is used for both the and

the MDCT]

1 1 2

Wm_ ___COS( ﬂ:m)’lngNw. (2.7)
2 2 N,

One particular contribution of this thesis, further discussed in Section deals with the
re-estimation of distorted phase spectrograms. With Euler’s formula, spectrogram Y can be
decomposed into magnitude |S_(| and phase ZY as

= |S_{| exp (]LS_().

Some of the considered algorithms for phase re-estimation as further presented in Sec-
tion [2.6] make use of the consistency property of the [STFT as depicted in Figure [2.2] Com-
putlng the [STFET] of any real-valued input signal x € RY always results in a consistent spec-
trogram. However, this does not hold true the other way round. Successive columns of a
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Time-domain signals

Figure 2.2[STFT] consistency: Y is a consistent spectrogram whereas Y is an inconsistent spectrogram
which can be mapped to the set of consistent [STFT| spectrograms with function cg( ) as marked in
orange. [[SD11;|GKR15]].

consistent [STET] spectrogram Y are calculated from overlapping frames (c.f. Equation )
and share signal information to some extent [[GKR15[]. Due to this fact, it becomes clear that
not any complex matrix Y € CV»*T is a proper[STFT|spectrogram. This is already the case if a
formerly consistent spectrogram is modified (e.g. by Wiener filtering, cf. Section[2.5). How-
ever, any complex N, x T matrix ¥ can be mapped to the set of consistent[STFTIspectrograms
as shown in Figure with the following operation

4 (Y) = STFT {ISTFT {¥}} (2.8)

which allows for a mathematical definition of consistent spectrograms: A spectrogram Y is
consistent if Y = ¢ (S_{) Equation tl is used by some phase re-estimation algorithms as
summarized further in Section 2.6l

2.1.2 Modified Discrete Cosine Transform

The Modified Discrete Cosine Transform [[PB86; [PJB87]] is widely used in the audio
coding community, e.g. for[AACI[[MPE99] or OPUS [[VVT12]]. The[MDCTlis critically sampled,
meaning that the number of elements of the input signal is equal to the number of transform
coefficients.

The Modified Discrete Cosine Transform is based on the Discrete Cosine Trans-
form (DCT)-IV [BGO3]]. Similar to the [STFT| overlapping segments of length N,, are win-
dowed and transformed by the DCTHV. As discussed in Section [2.1.1] the hop size is fixed
here to N, = =* as well. The resulting coefficients Z are real-valued

= [MDCT {x}];, = (mew DN, Wi cos[N—(m 1+ Off)(f—1+%)], (2.9)

with bins 1 < f < X 5> and the fixed offset N = 5 (N ) The result is real-valued W xT

matrix Z. As wmdow function, the square-root Hann window in Equation (2.7) is used
The inverse operation, the Inverse Modified Discrete Cosine Transform , is abbre-

viated with x = IMDCT {Z} and computed with overlap-add as well as the shown in

Equation
N, /2
1
Xt (1N, < X (=N, T Win \ sztcos —(m 1+ Off)(f—1+§)] . (2.10)
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Figure 2.3 Comparison of [MDCT] to [STET| ||

In the following, the is briefly compared to the as summarized in the previous
Section Due to the nature of the used basis functions, the and the are
closely related. The can even be computed by means of a modified [STFT|[BGO3]]. In
this thesis however, two other properties are of special interest:

* The discussed [TH transforms are used in the field of audio coding in this thesis. It
is hence of interest whether the [TF transform is critically sampled assuming perfect
reconstruction. This is only fulfilled if the transform yields the same number of [TF
coefficients as the number of input samples.

* The magnitude of the [TF coefficients are subject to a subsequent factorization process
as further discussed in Section The magnitude coefficients should be suitable
for factorization, meaning that the factorization should be able to yield a compact
description of the magnitude and not be restrained too much.

When using overlapping windows, the [STFI] matrices have more elements than the cor-
responding signals in time-domain: Given M real-valued input values, the complex [STEFT]
output Y has MN,,/N, real-valued elementsﬂ which are needed for perfect reconstruction

'Due to symmetry ID , each of the T spectra stored in the columns v, of Y have N, = % + 1 coefficients.

Two of them, at f =1 and f = Ny, are real-valued, the other % — 1 values for 1 < f < Ny, are complex-
valued. In total, each of T ~ M /N, columns comprises N,, real-valued elements which approximately adds
up to MN,,/N, real-valued coefficients of Y.
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to completely describe the input. Since it is assumed that the hop size is fixed to N}, = %,

the total amount of real-valued elements is 2M. In contrast to this, the real-valued
output Z has the same number of coefficients as the number of input samplesﬂ The
is critically sampled which is an advantage over the [BSHOS]].

Figure shows both and coefficients for a sine signal given in Figure
Comparing the magnitude coefficients |S_(| in Figure @Ito the magnitude coefficients
|Z| obtained by the it becomes clear that the coefficients are not invariant
with respect to phase-shifts of input x. This is a disadvantage compared to the [STFI] mag-
nitudes with respect to the subsequent factorization algorithm (cf. Section which takes
magnitude coefficients as input. In the case of the [STFT] output as shown in Figure
only one basis spectrum (e.g. at t = 1) would be sufficient to approximate the whole mag-
nitude spectrogram (itself and the other spectra at 2 < t < 4). For the coefficients,
several spectra are needed for describing all[TF points (at least the spectraatt =1 and t = 2
since the second highest peaks deviate from each other). Thus, compared to the [STFT] the
expected factorization would be inferior.

In summary, the needs more coefficients than the but its magnitude is in-
variant to phase shifts which could lead to better separation results. [STFI] and are
compared experimentally in Section 3.2.1

2.1.3 Logarithmic Frequency Mapping

As already proposed in the literature e.g. [[FCCO08; |Spil2], a logarithmic frequency mapping
of the spectral domain of the [TH coefficients can be applied. In [|Spil2]], a more detailed
discussion and comparison to other logarithmic transforms such as the constant Q trans-
form [Bro91]] is given. Here, the motivation and procedure of the used logarithmic frequency
mapping are only briefly summarized.

The mel scale [[SVN37]

fatel = 2595 log;, (1 + %) (2.11)

is a frequency scale which maps linear frequencies fj,, to logarithmic frequencies f,;,; to
approximate the human frequency perception which behaves rather logarithmically than
linearly. The coefficients in Equation are chosen such that 1kHz = 1kMel. In
e.g. [[FCCO8}; [Spil2] it is then proposed to map the spectrograms, which are in the
linear frequency domain, to the mel domain by applying a mel filter bank, consisting of
overlapping triangular filters. The center frequency and width of each filter is spaced ac-
cording to (2.11), resulting in narrower filters for lower linear frequencies and wider filters
for higher frequencies. The resulting F triangular filters with F < N, are stored in the
columns of mel filter bank Hy, of size N,, x F as shown in Figure Mel filtering of the

magnitude [STFT spectrogram Y = |S_(| of size N,,, x T is then obtained by

Ymel = HT Y (212)

mel ~?

resulting in the mel spectrogram Y, of size F x T.

2Each of the T ~ 2M/N,, spectra has N,,/2 real-valued coefficients resulting in approximately M real-
valued coefficients in total for Z.

10
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Figure 2.4 Mel filter bank H,,; with F = 50 filters.

Figure shows F = 50 triangular filters which are linearly spaced on the mel scale. As
discussed in [Spil2]], an inverse operation of (2.12) yielding perfect reconstruction is not
possible. However, it can be approximated by

Y/ = HmelYmel .

To minimize the reconstruction error, it is proposed in [Spil2]] to normalize H,, such that
WY [H,H! ] ;5 =const forall f.

Applying the mel filter bank has some other advantages than approximating the human
frequency perception as pointed out in [[Spil2]: It speeds up the subsequent factorization
process since the number of filters is chosen to be smaller than the number of spectral co-
efficients N, of the This fact is especially interesting for [[SS| since the factorization
of less spectral coefficients results in less transmitted parameters and thus in a smaller bit
rate (cf. Section [2.2). In addition to that, it was shown and evaluated in [[Spi12] that mel
filtering has another advantage, namely suppressing vibrato effects: These effects can have
negative impact on the factorization, since multiple components may be needed to represent
a note with vibrato. Vibrato notes usually span over multiple frequency bins which may be
grouped by mel filtering to one mel bin. Although the precision of the frequency analysis
is lower after mel filtering, the separation quality is increased. The suppression of vibrato
effects has stronger influence on the quality than the limited resolution at higher mel bins.

2.2 Nonnegative Factorization

Nonnegative Tensor Factorization (NTF) approximates a D-dimensional, nonnegative tensor
by a product of D nonnegative matrices [[Cic+09]]. The special case of D = 2 is also called
Nonnegative Matrix Factorization since the input is a matrix. The NMF| grew popular
after Lee and Seung introduced it to a broader audience by publishing a short overview
in Nature [LS99]] and shortly after a summary of easy-to-use algorithms for solving [NMF|
in [[LSO1]]. The generalization of the NMF|to tensors, [NTF, is also referred to as nonnegative
PARAFAC (Parallel factor decomposition) and discussed in detail e.g. in [|Cic+09].

In this thesis, only tensors V with D = 3 dimensions are considered as input for the [NTE
process. Matrices (D = 2) are a special case thereof as shown below. [NTFl approximates an

11
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Figure 2.5 [NTF of F x T x J tensor V with K components. The elements of the [NTF parameters
needed to represent input value v¢, ; are marked gray.

F x T x J nonnegative tensor V by a product of three nonnegative matrices W, H and Q
Vi N Ve = Z Wi e k4 o (2.13)
k

where W, H and Q are of size F xK, T x K and J x K as depicted in Figure[2.5] The matrices
W, H and Q are gathered under the general notation © = {W, H, Q}. The approximation V is
of same size as V. For J = 1, Equation (2.13)) becomes the well-known[NMF model V ~ WH'
(with g, , = 1 for all k). Equation can also be expressed in a vectorized notation as

VoojNVoo](e) Wdlag qJ qukW.kh.k, (214)

—C..k

which shows another aspect of the [NTE/model: Each jthslice V, , ; of V can be approximated
by a sum of K weighted rank-1 matrices C, ,  of size F x T with weights g, ,

Co,o,k o kh (215)

° k>

which correspond to the related [NTF components. The total number of components K is
a user-defined parameter. It has both influence on the factorization quality, as discussed
further in Section and the parameter bit rate: [NTF is able to significantly reduce
the number of elements from F x T x J of tensor V to (F + T +J)K elements of the
parameters in ©.

In the following, the [NTF cost function and the resulting multiplicative update rules used
throughout this thesis will be summarized in Section[2.2.1] With this at hand, the application
of INTH to source separation is summarized in Section[2.2.2]

2.2.1 Cost-function and Update Rules

In this section, the derivation of update rules for estimating the [NTF parameters iteratively
is summarized. Starting from a cost function between input and estimation, it is possible
to derive update rules which guarantee that the parameters stay nonnegative during the
estimation process. To obtain parameters W, H and Q which approximate the tensor V
as given in (2.13)), a cost function between V and V(©) has to be chosen to measure the
factorization quality appropriately. Lee and Seung proposed using the Kullback Leibler (KL)
divergence and the Euclidean distance in [LSO1] for this task. [NMF minimizing the Itakura

12
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o b

Figure 2.6 f3-divergence for x =1 fixed.

Saito distance was thoroughly investigated in [[FBD09]]. In this thesis, the 3-divergence
is chosen as the [NTF cost function

$—log3—1 ifp=0
dg(x|y)=qxlogd—x+y ifp=1 (2.16)
m(xﬂ‘ﬂﬂ—l)yﬁ—ﬂ?@’ﬁ_l) if B €R\{0,1}

which includes e.g. [S| distance (8 = 0), KLl divergence (f = 1) and Euclidean distance
(B = 2) as shown in Figure The derivative of dg (x | y) with respect to y is given as

ddg (x| y)

3 = yﬁ_l —Xyﬁ_z (217)
Y

and is used for the deriving update rules in the following. More detail on the 3-divergence
used in[NTFl can be found in e.g. [[Cic4+09; [FI11]]. To derive rules for updating the parameters
W, H and Q, it is necessary to formulate a cost function between all elements of input V and
its estimate V as

min dg (V | V(@)) = min Zdﬁ (vf,t,j | Vf.c (@)) (2.18)

fitsj

with dg (x | y) given in Equation and V(©) in .

In the following, update rules are derived for calculating © = {W, H, Q} iteratively. Start-
ing from an initial guess for ©, the basic idea is to fix two of the three parameters of ©® and
to update the unfixed one. This thesis uses multiplicative update rules to assure the non-
negativity of the updated parameters. These update rules can be derived using positive and
negative gradient parts [LSO1; FI11; Cic+09] which are defined for the gradient of
with respect to W as

Vuds (VIV)=Vid, (V] V)—Y;vdﬁ (VIV) (2.19)

J

%
<)
W%

0

where V. dg (V | \A/) is real—valuedAand both V. dg (V | \A/) and V,dg (V | \AI) are nonnegative.
© is omitted in the argument of V for conciseness. The gradient parts with respect to the

13
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Figure 2.7 Multiplicative update ¥ « V- V;/ V‘J{ approaches the minimum of dg (v | ¥) with abbrevi-
ations Vi = Vidg (v |9) and Vy =V, dg (v |?) [Liul2].

other two parameters H and Q are defined in the same manner. The multiplicative update
rules can then be written as [LSO1]]

Vids (VIV Vidy (VI diag(V, dg(VIV
Wew. ws ( |A), Hepg. VH g ( |A)’ Q. <, (V4.4 ( )) (2.20)
Vivds (VIV) Vids (V]V) diag (v dy (VIYV))

Since the gradient parts defined in (2.19) are nonnegative, the update rules in assure
that the [NTE parameters stay nonnegative after updating them. Using (2.17), and
the derivative of V(©) with respect to one parameter finally yields the multiplicative update
rules [Liul2]

3, [(Vewy - V2" 1] diag (ay.)
W « W. T ,
> [\A/'ﬂ_] H] diag(q;.)

> [(v.r, - ¥.7) W] ding(a.)
5, [(\“/fj)T w] diag(q;.)
diag ({(V] S W)
| diag ((\A/f:H)T W) '

These update rules are proven to lead to a local minimum of for B €[1,2]. For B =0,
empirical studies report convergence, too [[FI11; |Cic+09]. The update rules converge to a
local minimum as previously mentioned. The separation quality is dependent on the choice
of initial values of ©. Several methods for initialization are further discussed in e.g. [BMR15]].
The initialization procedure used in this thesis is described in Section [2.2.2]

Figure illustrates the convergence of multiplicative update rules. It shows the cost
function dg (v | ¥) given in for scalar values v and V. The gradient of d; with respect
to v can be expressed as V;dg (v | V) = Vidg (v | V)=V ds (v | V) = Vi — V with both
V; and V| nonnegative as already shown in . In this example, the gradient is given

and

qj- « q]o (2-21)

14
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Frequency
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Time [s]
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Figure 2.8 Detailed example of an[NTF factorization of a single F x T spectrogram V of a tambourine
and a trumpet with K = 2 components and J = 1. Each column of W and H is plotted and color-coded
to distinguish the two different components [[Hen11}; [Liu12]].

with (2.17) as Vydg (v | §) = 9#7'—v$#~> and the gradient terms are thus V}d, (v | ) = 9P~
and V;dg (v | V) = v9P=2. As shown in Figure the multiplicative update V « V-V /V7
approaches the minimum of dg (v | ¥) for a given value of ¥ [Liul2].

2.2.2 Application to Audio Source Separation

One of the first reports on applying in the field of audio signal processing was [[SBO3],
using [NTF for music transcription. A vast variety of algorithms using for audio source
separation exist, e.g. [Vir07; OF10; |Spil2; OVB12] for blind source separation. The algo-
rithms of e.g. [Liu+11} |Oze+13; Nik15]] use [NTF for ISSl Several variants of NTFlexist which
adapt it to audio processing, such as additional constraints as discussed in Section
versions of [NTFH using matrices instead of vectors for components [Sma04; FCCO5; BR14],
or taking complex-valued inputs [Kam+09]].

This thesis deals with which means that the original sources are completely known
at an encoding stage. In the following it is assumed that [NTF is used for compression of
the spectrograms of the original sources. Another use case of NTF is to factorize the (multi-
channel) mixture spectrogram for separating the mixture in the context of as done in
e.g. [Spil2]]. However, the input of the [NTFl process are audio spectrograms which leads to
considering both cases, and [[SS] simultaneously to explain the structure of the resulting
[NTF parameters. After the [TH transform, the resulting F x T nonnegative magnitude spec-
trograms of all J sources can be stacked together yielding an F x T x J nonnegative tensor V
(the same holds true for a multi-channel mixture of different sources with J channels in the
case of BSS)). Factorizing this nonnegative tensor yields the [NTF parameters © which can be
interpreted as follows:

* W holds K frequency basis functions which can be understood as spectral templates,
one for each component or sound event k.

15
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Figure 2.9 NTF model for J = 3 sources (guitar, drums and keys) and K = 15 components.

* H consists of the corresponding temporal activations, giving information about the
gain of each component k at each time bin ¢.

* The mapping of each component k to each source (or channel) j is stored in Q.

Each component C, , , as given in Equation describes a particular sound event, such
as e.g. a harmonic or percussive note, onset or noise, which are present in V. These events
are then weighted with q;, indicating the activity of each sound event in each source.

A single (J = 1) audio spectrogram V of an exemplary mixture of a trumpet and a tam-
bourine signal is shown in Figure [NTE was conducted here with K = 2 components.
The basis spectra of each component are stored in the columns w, , of W whereas h, ;, the
columns of H, hold the corresponding temporal envelopes or activations. In this example,
each note is separated in a component: Component k = 1 holds the percussive tambourine
note with a rather flat spectrum stored in frequency basis w, ; and the corresponding short
temporal envelopes in h,;. w,, holds the harmonic spectrum of the trumpet note. The
harmonics in w, , are not equally spaced for higher frequencies because spectrogram V was
subject to mel filtering as discussed in Section The temporal activation h, , is quite
continuous and shows that the trumpet note is played twice.

Figure[2.9]showsNTF parameters for factorizing J = 3 sources simultaneously with K = 15
components as another example. The three source magnitude spectrograms V,,; of exem-
plary guitar (j = 1), drums (j = 2) and keyboard (j = 3) signals are factorized such that the
first four components describe the keyboard, the next three the drums and the remaining
eight components the guitar. This grouping is given by Q. W holds frequency basis functions
and H temporal activations for all three sources jointly.

In the following sections, different adaptations of the [NTFE| to the field of audio processing
are briefly summarized. Suitable initialization methods of © are discussed in Section|2.2.2.1
and additional constraints to the [NTF cost function are discussed in Section[2.2.2.2]

2.2.2.1 Initialization

In the study of [BMR15]], several initialization methods for the [NTF parameters W, H and Q
in the field of source separation are discussed and compared. Initialization with random val-
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ues was compared to initial values calculated by different algorithms based on the Singular
Value Decomposition with V as input. In this thesis, the [SVDlbased method yield-
ing the highest separation quality in the experimental comparison conducted in [BMR15|]
is chosen and briefly discussed in the following. Refer to [BMR15] for a summary of other
state-of-the-art initializations. The selected method calculates the with the complex-
valued mixture as input. The initialization methods were evaluated in [BMR15]] for monau-
ral source separation. The complex [SVD] is therefore calculated on the complex N, x T
mixture spectrogram X as
=UzV,

with N,, X N, and T x T complex, unitary matrices U and V and diagonal matrix ¥ of size
N,, x T storing singular values o, on its diagonal. In a second step, the K largest values
O and the corresponding column vectors u,, and v, , with 1 < k <K are selected. The
initial values for W, H and Q are then calculated as

=lek V o.k;k’ ok — v

W, < H'

ek VOkks ik < 1.

2.2.2.2 Constraints

A detailed overview and evaluation of constraints for [NTH in the context of audio source
separation is given e.g. in [Bec16]. These constraints exploit typical structures of the
parameters W and H. In this thesis however, only two basic and widely used [NTH constraints
are considered which were originally proposed in [[Vir07]] and are only constraining the tem-
poral activation matrix H. The exemplary H depicted in Figure |2.8|also shows the properties
exploited by the constraints of [[Vir07]:

* Percussive notes (k = 1 in Figure [2.8]) usually have short temporal activations since
they usually only consist of attack and decay with only little or no sustain.

* Harmonic notes (k = 2 in Figure [2.8) have longer, continuous temporal activations.
Compared to percussive notes, harmonic notes are usually played for a longer period
of time.

These two facts lead to the two constraints proposed by [[Vir07]:
Temporal continuity favors continuously played notes, such as harmonic notes, and is
calculated as the squared difference of two neighboring elements of one component of H

T
dtc(H):Z Z 2 Z tk — tlk
T g

t

The second constraint, sparseness, is widely used and given as

d, (H)—

T Zt’ hz’k

Sparseness is useful for components holding percussive notes which are typically played for
a short time. This means that the corresponding temporal activations are sparse. These

17
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constraint functions are added to the cost function dg (V | \7(@)) between input V and re-
construction V in Equation (2.18)), resulting in a total cost function

min d; (V| V(©)) + 1,c [die (H)] + 7, [d, (ED)]

with weighting factors v,., v, = 0. Multiplicative update rules can be derived as already
shown for dg (V | \7(@)) in Sectionby splitting up the gradients Vyd,. (H) and Vd, (H)
into positive and negative parts. The update rules are given in [[VirO7]]. It should be noted
that the underlying assumptions of these constraints conflict each other [Bec16] since a com-
ponent is either of harmonic or percussive nature. The temporal continuity and sparseness
constraints are therefore activated exclusively.

In [BR15; BRR15]] it was proposed to adapt the constraint weights y to each [NTFH compo-
nent. A novel constraint cost function was therefore proposed in [BR15] as

min d; (V] V(©)) + 1, log[d,e (H)] + 7, log [d, ()],

yielding a weighted derivative of constraint d (H), here either d,. or d;: The derivative

Vylog[d(H)] = vg(dé;{) weights Vd (H), the derivative of the constraint, with the current

value d (H) of the constraint.

2.3 Quantization

Quantization maps continuous values to a finite set of values, also called reconstruction val-
ues. The amplitudes of the reconstruction values are either predefined or estimated during
the quantization process. The quantization output is then the mapping of each continuous
value to a certain reconstruction value which can be expressed by an integer number, also
referred to as quantization index. Prior to transmission, the quantization indices are subject
to coding which maps each integer value to a sequence of binary numbers to compose a bit
stream. Coding is explained in Section [2.4]

The signals to be quantized and encoded are represented digitally, e.g. as a vector x with
M elements x,,. These values are not necessarily assumed in the time domain. Instead,
they are only assumed to be in a vectorized form. Here, only scalar quantization, applied
on each element independently, is used. The more efficient but also more complex vector
quantization is out of the scope of this thesis. Note that the signals at hand were already
subject to quantization during the analog-to-digital conversion (ADC) briefly discussed in
the beginning of this chapter. To be precise, the methods discussed in this section should
be referred to as re-quantization. Since the ADC is conducted with very high precision,
the input signals are assumed to be continuous. A detailed overview over quantization in
general is given in e.g. [GN98]]. One contribution of this thesis, as discussed in Section
deals with re-estimation of quantized parameters. Several algorithms exist for this task,
e.g. [BGL16; ZBC10], which use compressive-sensing-related methods at the decoder to
refine the quantized signals at hand.

The task of scalar quantization is to map a real-valued scalar x,, € R to one of N, pre-
defined reconstruction values ¢, with 1 < g < N,. This is a lossy and thus non-invertible
operation. Here, scalar quantization will be used on each element x,, of a vector x indepen-
dently (cf. Equation (2.1))). Formally, the set of real values R (or nonnegative real values R, )
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Figure 2.10 Scalar quantization.

is partitioned into N intervals ¢, = [eg, eg +1) defined by N,+1 boundaries e, with outermost
left and right boundaries as e, = —00 and en+1 = O0. If input x,, lies inside one particular
interval .#,, it is mapped to the corresponding reconstruction value c,

q(x,) =X, =c,; x, €. (2.22)
The function g (x) is also called quantization characteristic. Practically, the integer-valued
quantization index 1 < g,, < N, is stored in vector g of same size as x such that the recon-
structed value at position m is set to X,,, = ¢, . Figure shows reconstruction values c,,
edges e, and one exemplary interval .#, for uniform quantization.

Uniform quantization is summarized in Section Non-uniform quantization using
companding and expanding functions prior and subsequent to uniform quantization is de-
tailed in Section[2.3.2] The Lloyd-Max Algorithm (LM), which iteratively finds non-uniform
reconstruction values by minimizing a distortion measure between quantization input and
output, is briefly discussed in Section In Section Rate-distortion Optimized
Quantization is explained which jointly minimizes distortion and rate spent on
transmitting the quantization indices.

2.3.1 Uniform Quantization

In the case of uniform scalar quantization, the reconstruction values c, have uniform distance
A. The signals to be quantized in this thesis are usually sparse. Due to this fact, this section
deals with so-called midtread quantizers which can represent the value 0. For nonnegative
signals, the distance A is determined as A = % and for real-valued signals as A = f\,’;—“_‘*‘l
with x,,,, the maximum input value in both cases. It is assumed that the sign of x,, is coded
independently. Therefore the quantization indices are calculated given the absolute value of

input x,, as
X 1J
= — 4+ — N
g =| 2+ 3

and the corresponding reconstruction values are linearly spaced with

c,=A(g—1).
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(a) Non-uniform quantization. Input of quantizer is (b) A-law companding and expanding functions
companded, the resulting symbols are expanded. C,(x) and CA_1 (x).

Figure 2.11 Non-uniform quantization with A-law companding.

2.3.2 Non-uniform Quantization

The procedure of non-uniform quantization is shown in Figure [2.10b| and can be achieved
by mapping input values x,, by a so-called companding function C (-) prior to quantization.
Assuming an inverse to C (-), C™*(+), exists, the quantization process can be summarized as

Xm=C"(q[C(x)D,

were q (-) denotes uniform scalar quantization. Here, the A-law companding function [VMO06]]

is used

Alxl /Xmaxa |X| /Xmax < ;

. A
G () = 2N L1 4 log (Al ), 2 S x|/ X < 1 (2.23)
8 1+1logA, [5] /X pax > 1
with its inverse, the expanding function, defined as
_ sign () Xmax | 1¥1(1 +10gA), Y1 < e
C (y) = o o | = Trlogd (2.24)
A exp(ly[(1+1logA)—1), iz <Ilyl<1l.

Note that for A = 1, the linear interval spans over the whole value range. In this case, the
quantizer is operated as a uniform quantizer. In the following chapters, the corresponding
derivatives of C, and C;l are needed. The derivative of C, can be calculated as

aC 1 A , o < &
A(x) — 1/xmax |1X| /X A (225)
dx 1+1logA | 1 2 S x| /Xy <1
and the derivative for the expanding function CA_1 as
0C(¥)  Xpu (1+10gA) [1, Y1 < Triega (2.26)
dy A exp(|y|(1+1logA)—1). ﬁs|y|<1. ’

An exemplary non-uniform quantization characteristic with A = 10 as well as companding
and expanding functions for A € {10,100} are shown in Figure|2.11
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2.3.3 Lloyd-Max Algorithm

The Lloyd-Max Algorithm [Llo82; Max60]] finds optimum reconstruction values c, by
minimizing the distortion between input x,, and output X,, of the quantizer. It is assumed
here that a training set of M values, x,,, stored in vector X, exists and that the reconstruction
values c, and the corresponding indices g, are optimized for this training set in the following.
This is done by minimizing the distortion between x and quantization output X

d(x,%) =) (X, — %)’
m=1

using an Euclidean distortion measure. The distortion can also be expressed depending on
the N, reconstruction values c, as

Nq
d(x,x)=d(x,¢)= Z Z (xm — cg)2 , (2.27)

g=1x €9

where the quantization interval is defined by the edges e, as %, = [eg, egH). Now, the task
is to find both ¢, and e, which minimize . This can be done in an iterative manner,
updating quantization boundaries and reconstruction values alternating as summarized in
the following steps:

1. Choose N, initial reconstruction values c, with ¢; <¢, -+ < Cn,> €8 by uniform quan-
tization (cf. Section|2.3.1)).

2. Fix ¢, and determine the quantization boundaries e, lying in the middle of the two
corresponding neighboring reconstruction values

C +c
g—1 g
e =

g forall g > 1,

and update the corresponding quantization interval to %, = [eg, eg +1).

3. Fix e, and determine reconstruction values c, as the expected value of all input val-
ues x,, lying in the quantization interval given by the quantization boundaries e,

C, = E|:xm | x,, € J’g] for all g.

Here, the expected value can be estimated by the mean of all input values x,, lying in
S, asc, = mee 2, Xm / |fg| with |ﬂg| denoting the number of elements of .%,.

4. Repeat steps [2l and [3| until a convergence criterion is met. In this thesis, it is sim-
ply checked whether the reconstruction values ¢, did not change anymore from one
iteration to the next one.

Finally, set the quantization output to x,, = ¢, with x,, € [egm,egm +1). The derivation of
these update rules is summarized in [[VMO06]]. In contrast to the quantizers mentioned in the
sections before, not only the group indices g but also the reconstruction values ¢ have to be
transmitted to the decoder to reconstruct X.
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2.3.4 Rate-distortion Optimized Quantization

The [LM] as described in previous Section estimates reconstruction values ¢ such that
the distortion between input values x and c¢ is minimized with the distortion given in Equa-
tion (2.27). However, this optimization procedure does not take the bit rate into account
which is necessary to transmit the quantization indices g. Assume quantization indices which
were found by the [LM] thus minimizing solely the distortion. However, for some input val-
ues, it could be interesting to choose another, neighboring quantization interval as it could
reduce the bit rate, accepting a small increase of distortion. In Rate-distortion Optimized
Quantization (RDOQ)), as summarized e.g. in [[SW98], a joint criterion is minimized, taking
both distortion and bit rate into account simultaneously. The following criterion sets the
distortion d (X, X) in and the rate r (X) spent to encode the quantization indices g and
reconstruction values c into relation by a factor A

min d (x,X) + Ar (X). (2.28)

The Lagrangian multiplier A in Equation weights the influence of rate over distortion.
For A =0, falls back to the LMl Equation (2.28)) can be minimized in an iterative
manner. The distortion can be easily calculated for a particular quantizer setting as already
exploited in the LMl For evaluating the bit rate r (x), the following assumption is made:
Since coding methods, as further discussed in Section all approach entropy, the rate is
simply measured by the entropy obtained by the current quantizer setting.

2.4 Entropy Coding

Entropy coding is used in this thesis as a subsequent step of quantization to encode the
quantization indices to a bit stream. In the following, the quantization indices are also
referred to as symbols. Entropy coding is a lossless mapping of these symbols or sequences
thereof to variable-length bin-strings or code words. All coding methods as described here
are prefix-free meaning that no code word contains prefixes of other code words so that
the symbol can be decoded uniquely. The methods considered in this thesis can be roughly
divided into two groups: The first group approaches the (first-order) entropy of the input
symbol sequence whereas the second group approaches the conditional entropy which is
smaller than or equal to the first-order entropy. For more detail on entropy coding refer to
e.g. [Say05; |CTO6].

In the following sections, two algorithms are described which are theoretically able to
approach conditional entropy, namely Context-based Adaptive Binary Arithmetic Coding
in Section and Run-length Coding in Section First, coding
schemes approaching the first-order entropy are briefly summarized below.

Systematic Codes

Systematic codes are constructed by a certain predetermined rule. Fixed-length coding con-
verts an alphabet of N, symbols simply to a binary representation with |_log2 (Nq — 1)] bits.
In this work, these symbols are assumed to be integers g with 1 < g < N,. Two systematic
codes yielding variable-length codes, Truncated unary and Exponential Golomb (EG)
codes, are detailed further in Section|2.4.1.1
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Huffman Coding

Huffman coding assigns a binary code word to each input symbol. Given the distribution
of symbols, probable symbols are mapped to shorter codes whereas less probable symbols
are mapped to longer codes. Huffman coding is able to find an optimum code book given
the symbol’s probabilities and assigning a code word to each symbol. This optimality holds
true only for independent symbols which are identically distributed and assuming symbol-
by-symbol encoding [[CT06]]. The symbol probabilities have to be transmitted for decoding.
Adaptive methods for estimating the probabilities at run-time exist but are less efficient than
the adaptive arithmetic coding schemes as discussed below.

Arithmetic Coding

In contrast to Huffman codes or systematic variable-length codes, Arithmetic Coding does not
assign codes to each symbol but encodes whole sequences of symbols instead. This enables
arithmetic coding to yield a fractional number of bits per symbol instead of integer number
of bits for Huffman coding [[CT06]]. However, in contrast to Huffman coding, instantaneous
decoding is not possible when using arithmetic coding. To yield fractional number of bits
per symbol, arithmetic coding calculates the probability interval of each sequence of symbols
which is given by the cumulative joint probability of all symbols in the sequence. If symbols
are added to the sequence, the interval is subdivided further. Each interval can thus be
identified with a number in the interval [0, 1) which requires high arithmetic precision. The
arithmetic precision influences how close entropy can be approached. For these calculations,
the probabilities of each symbol have to be known beforehand or estimated at run-time. The
latter procedure is called adaptive arithmetic codingﬂ

GZIP

GZIP (GNU zip) [Deu+96] is based on the DEFLATE algorithm which uses LZ77 in combina-
tion with Huffman coding [[CT06]. LZ77 approaches entropy [|Say05/] and builds a dictionary
consisting of highly probable symbol vectors of a predefined length. Each dictionary element
is addressed with a fixed-length code. DEFLATE encodes the pointers to the dictionary ele-
ments subsequently with Huffman coding.

2.4.1 Context-based Adaptive Binary Arithmetic Coding

Context-based Adaptive Binary Arithmetic Coding is used in state-of-the-art video
coding schemes such as H.264/AVC [MSWO03] and its successor High Efficiency Video Coding
(HEVC) [|Sul+12]] for entropy coding. At its core,[CABAC|uses arithmetic coding which is able
to assign fractional numbers of bits to a symbol as discussed above. However, the main dif-
ference to arithmetic coding is context modeling which enables adapting to local conditional
statistics within the data and thus approaching conditional entropy. is implemented
multiplication-free, enabling high coding throughput which is important in the field of video

3In this thesis, a MATLAB wrapper http://www.diegm.uniud.it/~bernardi/Software/Matlab/
index.html of an adaptive arithmetic coding engine written in C provided by http://www.
fredwheeler.org/ac/|is used.

23


http://www.diegm.uniud.it/~bernardi/Software/Matlab/index.html
http://www.diegm.uniud.it/~bernardi/Software/Matlab/index.html
http://www.fredwheeler.org/ac/
http://www.fredwheeler.org/ac/

2 Fundamentals

bin value for
context update
& selection

bin — coded
string bin | Context bits bit
symbol—| Binarizati o i [
Y Binarization LKJ Modeler | bin value & BAC Mux stream
oop probability
over bins

Figure 2.12 Block diagram of [CABAC excluding the bypass engine [MSWO03]].

coding. These constraints also lead to the fact that the core steps in the arithmetic coding
block, interval subdivision and probability update, are performed only for binary sources.
Therefore, non-binary input symbols have to be binarized in a first step, resulting in bin-
strings as further discussed in Section These bin-strings are then encoded by the
Binary Arithmetic Coding (BAC), given a context model which models a particular state of
information available at the decoder. This procedure enables to adapt to local condi-
tional statistics and is steered in the context modeler which chooses the appropriate context
model for each bin to be coded. To each context model belongs a conditional probability,
modeling the probability of the current bin to-be-coded given the state of information. When
a context model is chosen by the context modeler, the current bin value is also used to up-
date the context model, more precisely the corresponding conditional probability value, at
run-time. Context modeling is further discussed in Section |2.4.1.2|and the probability esti-
mation procedure in Section In this thesis, is adapted to the field of [SS| by
choosing appropriate binarization schemes and proposing novel context models. The core
steps of the are not modified and therefore not described in detail, refer to e.g. [Wiel4]
for a more in-depth summary. The engine was extracted from the HEVC test model
(HM)E] provided by the Joint Collaborative Team on Video Coding (JCT-VC) for yielding the
experimental results in this thesis.

Figure depicts the main building blocks of The core steps are performed
for a binary source, therefore the first step is binarization, yielding a bin-string. Each bin is
then fed into the context modeler, choosing the appropriate context model depending on e.g.
previously decoded bins. Given the chosen context model, the bin is then coded in the
The value of the coded bin is fed back to the context modeler to update the used context
model and to select the context model for the next to-be-coded bin. This procedure finally
yields a bit stream for the whole sequence of input symbols.

2.4.1.1 Binarization

As mentioned earlier, the core block of [CABAC, the [BAC, takes only binary signals as input.
Therefore, as a first step, the integer symbols g with 1 < g < N, have to be binarized using
prefix-free codes C (-). The resulting bin-strings b

b=C(g)=(bs,.rbu-.rby.) s (2.29)

“https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
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011 1110 11000 1001 011
100 11110 110 01 1010 10000

Prefix Suffix

g CFL(B) (g) Cru(g) CEG(O)(g) CEG(l)(g) CEG(Z)(g)
1 000 0 0 00 000

2 001 10 100 01 001

3 010 110 101 10 00 010

4

5

Table 2.1 Fixed length (with length 3), Truncated unary (TU) and Exponential Golomb (EG) bina-
rizations.

have variable length N and each bin b, at position n is binary, b, € {0,1}. In this thesis,
two different codes are considered for this purpose, namely Truncated unary and Ex-
ponential Golomb (EG) which are explained in the following. For more detailed information
on applicable variable-length codes refer to e.g. [Wiel4]].

Truncated unary encodes g > 1 with N, = g bins as

Cry(g)=11...10, (2.30)

consisting of a sequence of ’1’s with length g — 1 and a terminating ’0’ at position N = g.
For the maximum value of g = N, the terminal 0’ is omitted.

An Exponential Golomb code of kth order is constructed out of a concatenation of a
unary code of variable length for the prefix and a fixed-length code for the suffix

suf *

CEG(k)(g)lelo bl"'bN
~~ ~—_——

Prefix Suffix

The number of prefix bins Ny, is depending on the symbol g and order k,
2k (2Nt —1) +1 < g < 2F (2% —1) (2.31)

which leads to N, = |_log2 (gz—_kl + 1)J + 1. The prefix indicates the number of suffix bins
Nyyt = Npre + k — 1. The suffix encodes the value g — 1 — 2 (2%+~! — 1) with a fixed-length
binary code of length N, [Wiel4]. [EGlcodes are optimum prefix-free codes for geometrically

distributed sources [MSWO03|]. Exemplary bin-strings for binarization of g € [1,5] are shown
for MU and [EGl with k € {0, 1, 2} in Table

2.4.1.2 Context Modeling

As mentioned above, is able to adapt to local statistics within the signal. This is
achieved by modeling certain states of information with context models, each context model
mapping to one particular state. For each bin b, to be encoded or decoded, one particu-
lar context model is chosen. Given the selected context model ctx, the probability for the
value of b, is estimated by the conditional probability of the current bin b, given the chosen
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Figure 2.13 Probability state transitions [Wiel4].

context model p (b, | ctx). This probability is then used in the for performing the core
steps of arithmetic coding such as interval subdivision. After encoding or decoding b, the
corresponding probability model of ctx is updated given the current value of b, which en-
ables to adapt at run-time to the signal’s statistics, thus increasing the compression
performance [[Ohm15]].

Typically, a set of context models is available to be chosen from, modeling different prob-
abilistic beliefs about the input symbols. The context models may be designed based on the
value of previously coded, neighboring bins b,, with n’ < n or the bin position n of the cur-
rent bin b,. However, one single context model has to be chosen for each bin in the actual
coding step [MSWO3]]. Note that the context selection process is the same for both
encoding and decoding process as the encoder matches exactly the context model selection
of the decoder, given previously decoded data available at the decoder.

2.4.1.3 Probability Estimation

In the following, the internal process of adapting to source symbol probabilities for each con-
text model is briefly summarized. It will be used in Chapter[4]to evaluate the proposed novel
context models. To keep multiplication-free, it was proposed in [MSWO03] to repre-
sent the conditional probabilities p (b,, | ctx) given context model ctx by 63 predefined prob-
ability values. Internally, the backward-adaption to the bin probabilities p (b, = V;pg | ctx)
is achieved by a finite state machine with 63 probability states, each state modeling the
probability of the value vpp of the least probable bin (LPB) [Wiel4]. Therefore, to com-
pletely parametrize the state of a given bin, the binary value of the most probable bin (MPB),
vupg € {0, 1} must also be specified. The two values p;pg = p (Vipg | ctx) and vpp are suf-
ficient to describe the current state of the context model: The coding of an MPB naturally
results in the decrease of p;p; While the coding of an LPB causes an increase and potentially
even a flip of vypp if pipg > 0.5. In this adaption is handled by a state machine
associated to each context model which updates v;pp and p;pp depending on the coded bin
value. The 63 states directly correspond to quantized symbol probabilities p;pg, simplify-
ing the probability estimation process significantly. Internally, uses a 64th state for
signaling the termination of the coding process [Wiel4]].

The probability estimation process is shown in Figure All unique 63 states of the
state machine are depicted twice, for vy;pg = 0 on the left and for vy = 1 on the right to
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Figure 2.14 Example for run-length coding.

display all possible combinations of v\pp and the probability state indexed with i,  at the
same time. Coding an MPB yields a transition Try;pp to a state with lower value p;p; while
coding an LPB yields Tr;p, a transition to a state with higher value for p;ps. As depicted in
Figure a faster adaptation is achieved in case of coding an LPB than an MPB. For the
state with ID i, = 1, which corresponds to p;pg = 0.5, coding an LPB yields in flipping vyp.
The state with i, = 63 on the other hand corresponds to the lowest value of p (vipp | ctx)
where v;pp is most probable. In case of coding another MPB, the state machine remains in
this state. The state machine for each context model has to be initialized with starting values
for pipp and vypp.

Another coding engine, the faster bypass engine, may be used as well. This engine is used
in e.g. HEVC to encode bins with nearly equiprobable distribution such as sign flags. The
bypass engine is also not explained any further, refer again to [MSWO03]].

2.4.2 Run-length Coding

Run-length Coding is a lossless, reversible coding scheme which describes a sequence
of symbols, which all have the same value, with two numbers, namely the value and the
run-length of the sequence. If the input is binary (N, = 2), it is sufficient to store only the
value corresponding to the first sequence, since the values between two adjacent sequences
toggle. This procedure becomes more efficient with longer sequences and is summarized in
the following:

1. Determine the positions of transitions between two sequences,
2. subtract the transition positions to obtain the run-lengths of each sequence and

3. encode the symbol value and the run-length of each sequence with a variable-length

code (cf. Section [2.4.1.1)).

The obtained run-lengths and symbol values are integer-valued and have to be encoded
in a subsequent step. In this thesis, [EG codes as presented in Section [2.4.1.1] are used. It
is mentioned in [[Ohm15] that when using a combination of RL.(] and variable-length codes,
can be interpreted to approach conditional entropy if the input symbols have Markov
property. Figure shows of an exemplary sequence of symbols g. The run-lengths
as well as the values of the sequences are integer-valued and need to be encoded to a bit
stream in a subsequent step.
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2.5 Time-Frequency Masking for Source Separation

This section deals with time-frequency masking, a core step of source separation. In the
following, it is assumed that the mono mix consisting of J sources is constructed by linear
instantaneous mixing. Given J [T representations of the sources S, . storedinan N, x T xJ
tensor, the N,,, x T mix spectrogram X is constructed as

X=

S...; (2.32)

J
=1

J

Note that if the[MDCT]is used as[TF transform, the respective matrices are real-valued. Given
some belief about the magnitude spectrogram of the sources which is usually generated by
a precedent step to [TF masking, it is possible to compute masks M, , ; for each source with
the same size as X. Each element 0 < m;,; < 1 of M, ; assigns each [TF point at position
(t,f) to a source j. To estimate the sources, each [TH point of the mixture spectrogram X is
then weighted with M, , ;

~

S,.;=X-M,.; (2.33)

yielding the complex source estimates S, , j which all have the mixture’s phase. Furthermore,

it holds that >’ jMpe; =1 for all f and t which means that this masking process satisfies the
remixing constraint, namely

|

=X, (2.34)

®,9,]

J
Py

J
meaning that the estimated sources sum up to the mixture again.

2.5.1 Oracle Masks

It is possible to find optimum masks M,,, for usage in (2.33)) which minimize the squared
difference between S and S. To find these masks, the squared error between original source
and Wiener estimate of each [TH point was proposed in [VGP07]]

2
~ D ‘ﬁf,r
j

with r;, ; = Re {g e /x f t} denoting the real-part of the ratio between the original source

and the mix. The approximation holds up to a constant which is independent of M,,. Equa-
tion is a linear least squares problem with bound and linear equality constraints for
each [TH point. If r;,; > O for all j, the solution is m, ;. ; = 1y, ;. For minimizing
in the other cases, where some elements r;, ; <0, the authors of [VGP07] provide MATLAB

code which is used in this thesis. Using M, in (2.33)) yields oracle estimates S

2 2
(mora,f,r,j - rf,t,j) (2.35)

2 : lﬁf,rmora,f,t,j TS5
J

ora’

2.5.2 Masks obtained by Nonnegative Tensor Factorization

This thesis deals with source separation algorithms based on [NTF which only takes non-
negative magnitude spectrograms as input. To be able to obtain estimates of the sources
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in time-domain, complex spectrograms are needed prior to the inverse [TF transform when
using the Wiener filtering (2.33)) is conducted with masks calculated from the [NTH
estimates V(©) as

A,

~ Vo,o,j (@)

o Zj/vo,o,j/ (@)

—e,,j
~———
=M.,.,j @

(2.36)

with the approximation V(©) dependent on the [NTF parameters © as defined in Equa-
tion (2.14).

2.6 Phase Re-estimation

This section deals with re-estimation of phase in a source separation context. Recall that
each of the J estimated source spectrograms S. . .» which are obtained by the Wiener filter as
described in Section contain all the mixture’s phase denoted with ZX. This assumption
may hold true for some [TF points, since audio spectrograms are usually sparse and it can be
assumed that different sources may play at the same time but not necessarily at the same fre-
quency. However, if e.g. harmonic instruments play alongside with percussive instruments,
which usually have flat spectra, the sources overlap at several [TF| points. In these cases, the
mixture’s phase is clearly the wrong estimate which leads to artifacts or even destructive in-
terferences. The task of the algorithms to be discussed in this section is to refine the phase or
amplitude and phase jointly in an iterative manner. For initialization of these algorithms, the
Wiener estimates S_,_, j are used as given in Equation . The consistency mapping
¢, defined in Equation (2.8), plays an important role.

Two algorithms will be summarized, first the Griffin-Lim Algorithm in Section [2.6.1
which is solely refining the phase and second Consistent Wiener Filtering in Sec-
tion [2.6.2| which in addition to the phase also updates the amplitude values. Note that these
two algorithms already yield estimates for a monaural mix. When dealing with multi-channel
mixtures, sophisticated methods exist, e.g. [DT17]]. More detail about phase re-estimation
in general can be found in e.g. [[SD11; Gnal4; GKR15].

2.6.1 Griffin-Lim Algorithm

The Griffin-Lim Algorithm [GL84] makes use of the consistency discussed in Sec-
tion [2.1.1) Given the magnitude source spectrograms |S |. . 28 obtained with the Wiener
filter as given in (2.36), and the mixture’s phase ZX, the evaluates iteratively the consis-
tency mapping ¢ given in Equation (2.8)), summarized in the following equation

(it+1) & (it)
.. ‘—l‘g(|§|.,.,j exp (J‘P.,.,j)) (2.37)
with initialization <I>513] = AS”]. = /X for all sources j and iteration 1 < it < N, with

number of total iterations N;,. The magnitude spectrograms | S |. . obtained originally by the
Wiener filter are not modified during this process. This means that the resulting complex

spectrograms SGL o) = | S| exp ( ] @E]\ftjl)) do not satisfy the remixing constraint (2.34) as
they do not sum up to the mixture spectrogram X anymore.

e,
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Note that the [GI] was not designed originally for the usage in source separation. Usually,
it is initialized with zero or random phases. Extensions exist which adapt the [GLl to source
separation, e.g. [GS10; SD11; SD12].

2.6.2 Consistent Wiener Filtering

Consistent Wiener Filtering [RV13] jointly re-estimates both amplitude and phase
information. As already done for the [GL] the consistency is enforced, here with a
soft penalty term added to another cost term enforcing the remixing constraint (2.34). The
derivation of the total cost function is based on a maximum a posteriori problem under
Gaussian assumptions. The authors provide MATLAB code for the case where the number
of sources is fixed to J = 2, namely for the task of speech-noise separation. This results in a
simplified cost function which is given in the following.

The first source, also denoted as the target source, is set to the jth source with power

&2 . .
spectrogram V, = | S |“j. The second source, also referred to as noise source, is calculated

as the sum of the remaining sources excluding the jth source, V, = ), #] |S ./ . Here, S. .
denotes the Wiener estimates calculated in (2.36). This means that the algorithm is run for
each source j independently. The task is now to re-estimate S, the complex spectrogram
of the target source, given the power spectrograms of target and noise, V; and V,. These
power spectrograms are not modified during the process. As initialization for S, the Wiener

estimate for the target source is taken as

AN V
X-
- V,+V,'

§Wiener

The corresponding cost term for obtaining an estimate of the complex target spectrogram §
is given as

2

(2.38)

21
(v )-H/ZH” (&) f’f

s,f,t nft

I’Ilgln : : “Ef,t _§Wiener,f,t
= fit

The first term enforces that § stays close to the Wiener estimate, such that the sum of target
and noise approximates the mixture. The second summand, weighted with vy, is enforcing
the [STFT] consistency with ‘5( ) given in Equation (2.8). For y = 0, the solution of (2.38)
is the Wiener estimate S = S . The authors of [RV13]] formulated a conjugate gradient
method [|[She94]] for solving (2 . The initialization for § may be either the Wiener estimate
S or a refined version. This process is used to estimate each of the J sources and setting

=Wiener

S =8.

2CWF,s,0,i

2.7 Audio Object Coding - State of the Art

This chapter summarizes state-of-the-art algorithms for audio object coding. The different
approaches for coding multi channel signals can be roughly divided into two categories,
determined by the origins of the algorithm: The algorithms of the first category are designed
from a source separation perspective, therefore denoted as Informed Source Separation
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Figure 2.15 Informed Source Separation.

and summarized in Section unifies the two research fields of source separation
and audio coding: The main principle in is to use methods of source separation for
the extraction of the audio objects/sources out of their mixture at the decoder, assisted by
parameters extracted at the encoder with full knowledge of the sources. The second category
consists of algorithms designed by the audio coding community. These algorithms are briefly
summarized in Section[2.7.2] The algorithms of the two categories are quite similar; the task
is to encode multi-channel signals or audio objects which are estimated given their downmix
and parameters at the decoder.

2.7.1 Informed Source Separation

As mentioned in the introduction to this section, the name Informed Source Separation
was coined by the source separation community. In general, the problem of source separa-
tion is the estimation of sources given their mixture. In the case of BSS] the sources have
to be estimated without any information about the sources but the mixture. The basic ap-
proach of [SSlis shown in Figure [2.15|where [SSis embedded into a recording and rendering
environment. First, the sources are assumed to be recorded and mixed by a professional
sound engineer which yields a mixture. This process is typically not part of In an encod-
ing stage, a compact set of side information is extracted with full knowledge of the original
sources and the corresponding mix. At a decoding stage, this compact side information is
used to estimate the sources given the mix by a source separation step. After that, the user
has the freedom to render the sources spatially, yielding channels for playback, depending
on the local loudspeaker setup. The recording and rendering procedures are not part of
Note that during rendering, the sources can be modified in loudness, position or sound
which enables active listening. For now, the mix is assumed to be transmitted to the decoder
losslessly. The impact of coding the mix is further evaluated in Section In the follow-
ing, several [SSImethods are summarized. The focus of this summary lies on methods using
Wiener filtering. Other approaches are shortly summarized in the end of this section.

The algorithm proposed in [[SD13] utilizes an iterative phase re-estimation technique
based on a variation of the Griffin-Lim algorithm. The magnitude spectrograms of the sources
have to be quantized and are used for Wiener filtering the sources. As a next step, phase
re-estimation is conducted which even may alter the magnitude of the source estimates. The
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2 Fundamentals

additional information is the remixing constraint, meaning that all sources should add up
to the mixture. In addition to that, a dual resolution [TH transform is applied to cope with
transients.

A variety of approaches are based on factorization methods: The methods discussed
in [LBR10; Liu+11]] use [NTEF for compressing the sources in the [TEFl domain. The result-
ing [NTE| model is then quantized and transmitted to the decoder by embedding the data in
the mixture with watermarking. The parameters are extracted from the mix and used for
Wiener filtering the mixture in the [TF domain. Closely related to this is the work of [Nik15|]
where [NTF is used for audio upmixing. Here, the task is defined more generally. Objects
are not necessarily assumed to be present in a single channel of the input signal whereas
multiple objects can be present in a single channel of the input as well. In general, the task
is to extract a signal with more channels out of a downmix with less channels, e.g. upmixing
from stereo to 5.1. The [NTF process is extended by a perceptually motivated weighting of
each [TF point. In the decoder, multi-channel Wiener filtering is used. Other extensions of
these [NTF-based algorithms exist, e.g. exploiting compressive sampling [BOP15]] or com-
pressive sampling of signal graphs [[Puy+17]]. The latter method was proposed very recently.
Here, the [NTFl in the blind setting, with only the mixture as observation, is emulated in the
encoder to calculate feature vectors which are then used for applying a compressive graph
signal sampling strategy to encode ideal binary masks for the decoder Wiener filtering step.
Only information needed for graph reconstruction is transmitted. At the decoder, the [NTEl
in the blind setting is used to reconstruct the graph which then estimates binary masks.

Designed to bridge the fields of and Spatial Audio Object Coding (SAOC), to be dis-
cussed in Section Coding-based Informed Source Separation [Oze+11; Liul2;
Oze+13] calculates a factorization of the source spectrograms with as well as the other
[NTE-based algorithms mentioned before. In addition to that, a residual of the source
spectrograms is calculated which is also modeled with the [NTF| parameters. This means that
both source models and residuals are modeled jointly which is an advantage over [SAOC, as
pointed out in [|[Oze+13]]. In the calculation of the parametric model and the resid-
uals are calculated in two different, independent blocks. Another important contribution
of [[Oze+13|] is the derivation of a rate-distortion function which motivates the quantization
of the [NTF parameters in the logarithmic domain, assuming parameter transmission at high
bit rates. Perceptual modeling was introduced to in [Kir+14]). The perceptual model is
very similar to the one proposed in [Nik15]].

Besides algorithms based on Wiener filtering, the algorithm of [PGB10; PG11|], which was
one of the first algorithms denoted as Informed Source Separation, uses a local inversion
technique in the [TF domain. As another example, the algorithms [GM11; |GHM13]] use
beamforming given a multi-channel mixture. A broader overview of these algorithms is
given e.g. in the survey [Liu+12].

2.7.2 Spatial Audio (Object) Coding

In this section, several audio coding standards developed by the Moving Picture Experts
Group (MPEG) are briefly summarized.

In Spatial Audio Coding [MPEQ7; [Her+04; |[Her+05]], the basic objective is the same
compared to[[SS: A multi channel signal has to be transmitted by means of a downmix with
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less channels and a set of parameters, extracted from the multi channel signal. In the en-
coder, the multi channel signal is fully known and fed into a filter bank yielding a [TF| rep-
resentation. This representation is used to calculate spatial parameters, including channel
level differences, time/phase differences, prediction coefficients and inter-channel correla-
tion/coherence cues. At the decoder, the multi channel signal is estimated given the [TH
representation of the mix and the transmitted parameters. Additionally, residuals between
the estimated and original multi channel input are transmitted. Backward compatibility to
mono/stereo playback is guaranteed, too.

An extension of [SAC|is Spatial Audio Object Coding [MPE10; Eng+08; FTH10]].
The main difference to is a shift in paradigm: The signals to-be-coded are now called
objects, and the transmitted parameters include object level differences, inter-object cross
correlations, downmix gains and downmix channel level differences. At the decoder, a full
rendering block is included which enables separate synthesis of each object. The recently
defined MPEG-H 3D Audio [MPE15; Her+15|] combines[SAOC]with Higher Order Ambisonics
(HOA). The main principles of SAOC remain and are extended for the usage with HOA.

2.8 Evaluation Environment

This thesis deals with which estimates the sources playing in a song given their mixture
and transmitted parameters at the decoder. To assess the performance of one particular [SS
algorithm, the quality of the estimated sources as well as the parameter bit rate have to be
taken into account as shown in Figure

The original sources S are mixed with linear instantaneous mixing to a mono mixture
X=>, ;S.. ;- In this thesis, a source separation algorithm in the decoder extracts the spec-
trograms of the estimated sources § out of the mixture X. An inverse [TF transform yields the
estimated sources §:’j in the time domai The corresponding parameters, which are assist-
ing the source separation step, are entropy-encoded with one of the techniques discussed in
Section [2.4]yielding the parameter bit rate R. This means that for evaluation of different
algorithms, both quality and rate have to be taken into account.

Section deals with measures evaluating the separation quality. In Section it is
further shown how the resulting rate-quality curves are obtained, displayed and compared.
Section [2.8.3] summarizes the two considered test sets in this thesis.

> The prime symbol is added to distinguish the time-domain from the [TF| domain signals.
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2.8.1 Quality Assessment
2.8.1.1 Quality Measures

In [[VGF06], quality measures for source separation are proposed and summarized in the
following. The authors proposed to decompose the estimated source §:,j INtO Sy, @ VETSiON
of the original source s/ J which may have been modified by an allowed distortion, and three
error terms as

~/

S.’j = Starget + Cinterf + €hoise + €artif- (239)

The error terms €., €,0ise aNd €, can be summarized as

* The interference error term e, takes interferences coming from other sources (j’ #
j) into account.

* e, 1S Originating from sensor noises.

* The artifacts error term e, accounts for distortions of the sources caused by the sep-
aration process such as musical noise or “burbling” artifacts.

This decomposition is then used to formulate the following quality measures, all given in
decibel [dB]:

The Signal-to-Distortion Ratio measures the ratio of (modified) signal energy to
distortion energy where the distortion is defined by the sum of all error terms summarized
in Equation (2.39)

2
Zm starget,m

SDR; = 10log;,
m (einterf,m + enoise,m + eartif,m)

_[dB].

The Signal-to-Interferences Ratio measures the impact of interferences

2

Zm Starget,m
2

Zm einterf,m

and the Signal-to-Artifacts Ratio (SAR]) the impact of artifacts

SIR; = 10log,, [dB]

2
Zm (starget,m + einterf,m + enoise,m)

2
Zm eartif,m

which is independent of the due to the addition of ey, in the numerator of (2.40). The
fourth measure, Signal-to-Noise Ratio (SNR]), takes sensor noise into account. In the case of
audio source separation, all signals are recorded with a microphone which means that
can usually not be estimated and will therefore not be considered in this thesis.

The measures summarized above are averaged over all sources of each mixture yielding a
single value for each quality measure and each mix

SAR; = 10log, [dB], (2.40)

1 1 1
SDR= Z]: SDR;, SIR= Z]: SIR;, SAR= - Z]: SAR,. (2.41)
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2.8.1.2 Normalization

In this thesis, algorithms are evaluated on different mixtures of a certain test set where
the mixtures may consist of different number of sources. As further explained in Sec-
tion[2.8.2] the quality measures and rates are examined jointly for all mixtures of the test set.
To assess the quality obtained for mixtures consisting of different sources, it is important that
the quality measures are as independent as possible of the number of sources present in each
mixture. Mixtures consisting of more sources are generally harder to separate compared to
mixtures with fewer sources: The possibility of overlapping [TF| points increases with the
number of sources which makes the separation process generally more difficult. On the con-
trary, different types of sources exist, e.g. harmonic sources where the corresponding spectra
are usually not as flat as spectra of percussive instruments which excite a lot of frequencies
simultaneously. This means that depending on the type of sources present in the mixture,
more [TH points may overlap for some mixtures compared to other mixtures with the same
number of sources. It can be concluded that solely averaging the scores with respect to the
number of sources as done in Equation does not lead to the scores being completely
independent of the number of sources [Liul2].

As a next step, the respective averaged quality measure is therefore put into relation to
the quality measure obtained by Wiener filtering with oracle masks as discussed in Sec-
tion Recall that the oracle masks are optimum masks calculated with full knowledge
of the original sources and that they are an upper bound for algorithms using Wiener filter-
ing. However, the oracle performance is still limited due to the fact that the mixture’s phase
is used for all estimated sources in Wiener filtering. This reflects the difficulty of separation
based on the amount of overlapping [TH points since using the mixture’s phase introduces
more distortion at exactly these [TH points. For the example above, dealing with mixtures
with the same number but not the same types of sources, different oracle scores will result,
namely higher scores for mixtures with less overlapping [TF points. In summary, the scores
obtained for oracle filtering will account for the difficulty of separation based on different
types of sources.

The averaged scores are set into relation to the oracle scores as

5SDR=SDR—SDR,,,, 6SIR=SIR—SIR,,, S5SAR=SAR—SAR,,, (2.42)

with all scores obtained for oracle Wiener filtering denoted with the subscript “ora”. These
differential scores are always negative for source separation algorithms using solely Wiener
filtering for synthesis because the oracle masks are an upper bound for Wiener filtering.

In this thesis, the performance of a algorithm is used as a lower bound to evaluate
algorithms operating at very low bit rates. The considered algorithm, as further
discussed in Section[3.3] is also based on[NTFland uses the same[TH transform as the proposed
schemes. Another bound simply sets all estimated source spectrograms equal to the

mixture spectrogram

~ 1

_LB’o,o,j = j)_(

(2.43)

This means that the corresponding oracle mask is equal to myp ;. ; = 1/J for all f,t,j in
this caseﬂ Given the task of extracting source estimates out of the mixture, Equation (2.43)

®The normalization with the number of sources simply ensures the remixing-constraint (2.32)).

35



2 Fundamentals

-2 -2
_@ —
-3 R -3
68690 0 °
g @E) O B 4|
E 51 §}% & E -5
a 0 a
2y ﬁo@ 2 6f
- -7
-8 - - - - - - sLxX - - - - -
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
R [kbpso] R [kbpso]
(a) Optimum rate-quality point selection shown for (b) Smoothing of all optimum points of all mix-
one exemplary mixture. tures. Optimum points for exemplary mixture in

Figure marked with rectangles.

Figure 2.17 Parameter selection and smoothing.

estimates each source by the mixture which is the case where no separation is performed at
all. Assuming neither any bit rate budget nor computational power, returning the mixture
is the best source estimate possible in this worst case scenario. Lower bounds are further
discussed in Appendix D] In summary, both the performance of a algorithm as well as
the estimates given by are used as lower bounds in this thesis.

2.8.2 Rate-quality Optimization

In the previous Section quality measures for evaluating the performance of source
separation algorithms were discussed. In the field of however, the rate to be spent for
transmission of the parameters has to be taken into account, too. This leads to rate-distortion
theory [[Sha48; CT06[] which models distortion D of the estimated sources at the decoder and
rate R by rate-distortion functions R (D). However, this requires statistical modeling of R, D
and the sources. In practice, these assumptions can hardly be made.

In this thesis, the encoder-decoder chain is executed for each mixture of a test set (de-
tailed in Section for different combinations of parameters, e.g. number of recon-
struction values, number of [NTE components and so on. Given the estimated sources,
a quality measure as discussed in Section is obtained which is in fact the inverse
measure to distortion. The resulting parameter bit rate is normalized to both the length
of the mixture in seconds and the number of sources/objects, yielding values R with unit
“kilo bit per second and object = kbpso”. This results in a pair of rate-quality values for
each mixture and each parameter combination.

For each mixture, different parameter combinations yield different rate-quality points as
shown exemplary in Figure for R, 6SDR values of one particular mixture. These rate-
quality points are not all optimum, as some parameter configurations do yield the same
quality for too much bit rate or obtain less quality for the same rate. Therefore, optimum
rate-quality points are selected which are members of the highest interconnection graph as
shown in Figure [Ohm15]]. This yields optimum rate-quality points for each mixture
which are then all displayed jointly in one plot, as done in Figure
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When comparing different [[SS| algorithms or different configurations of one particular
algorithm, the different obtained rate-quality curves have to be compared. This can get con-
fusing if more than two different algorithms/configurations have to be compared. Therefore,
two different methods for simplifying the comparison are summarized in the following.

Smoothing

Determining optimum rate-quality points per mixture yields a point cloud which can be
smoothed. In [[CD88]], a locally weighted scatter plot smoothing method was proposed,
exploiting local regression using weighted linear least squares which is used for smoothing
the rate-quality point cloud in this thesis. An example point cloud and the corresponding
smoothed curve are shown in Figure

Bjontegaard-Delta

As proposed in [Bjg01]], the differences between two rate-distortion curves (equivalently for
two rate-quality curves) can be expressed by means of the Bjgntegaard Delta (BD). In this
thesis, the BD with respect to the bit rate is used: Bjgntegaard Delta Bit Rate (BD-BR]) mea-
sures the average percentage of rate difference between two rate-quality curves. Input to the
calculation are two rate-quality point clouds, one for each algorithm/configuration to
compare. The obtained rates are converted to the logarithmic domain first. Both rate-quality
clouds are then fitted each with a third order polynomial. The is then determined by
subtracting the areas under both polynomials which are obtained by integration. This pro-
cess is shown exemplary in Figure In this thesis, input to this process are two different
rate-quality point clouds which were optimized for each mixture independently. The
values are then obtained for each mixture which means that point clouds for each mixture
are input to the process discussed above. The resulting BD-BRl values are finally averaged.

Summary

In the following, the procedure of finding optimum rate-quality points and different ways of
evaluating them is summarized for [SDRL The procedures for the other scores, and
are equivalent.
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1. Average the score obtained for each source, SDR;, SDR = 1/J Z j SDR; and normalize
the resulting number with respect to oracle score SDR_,, as 6SDR = SDR—SDR,,,.

2. For each mixture, calculate optimum R, 6 SDR points.

3. Given the optimized R, 6 SDR points, different ways of displaying the results may be
chosen from:

a) Display a scatter plot of all optimized R,  SDR points.
b) Plot smoothed R, §SDR curves.

¢) For obtaining BD-BR:: For each mixture, fit third-order polynomial and calculate
the for each mix. Averaging yields global BD-BR value, comparing the
performances of two different algorithms/configurations.

2.8.3 Test Sets

In this thesis, two independent test sets are considered for evaluating the proposed al-
gorithms. To obtain quality measures as discussed in Section the original sources are
needed. The two test sets are used for evaluating source separation algorithms during the
Signal Separation Evaluation Campaign (SiSEC)ﬂ

2.8.3.1 Test set .«

Test set .« is composed of ten mixtures consisting of four to seven sources of the QUASI
databaseﬂ Each recording is sampled at 44100 Hz, quantized with 32bit per sample and
is 30s long. The musical genres are pop, electropop, rock, reggae and bossa nova. More
details about each mixture, namely interpret and title, number and types of sources is given

in appendix Section

2.8.3.2 Test set &

Test set 9B is composed of 100 mixtures, consisting of four sources (bass, drums, vocals,
other) of the DSD100 databaseﬂ 30s long segments were cropped out of each recording,
each sampled at 44100 Hz and quantized with 16 bit per sample. More detail about all songs
is given in appendix Section

"http://sisec.inria.fr.
Shttp://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi.
http://sisec.inria.fr/sisec-2016/2016-professionally-produced-music-recordings.
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3 Reference Algorithms

This chapter deals with two reference algorithms, one and one algorithm, both
utilizing The reference algorithm is used as a baseline throughout this thesis: All
contributions of this thesis are extensions of this algorithm and will be compared to it as
well. The algorithm will be used in Chapter |5 to extend the decoder of the reference
algorithm.

A detailed summary of the reference algorithm is given in Section[3.1] In Section
the reference algorithm is evaluated to find reasonable parameter settings for the com-
parison of the reference algorithm to the extensions proposed in this thesis. A short summary
of an [NTF-based algorithm for is given in Section as it will be used in Chapter
The algorithm was thoroughly investigated in [Bec16]].

3.1 Reference Algorithm for Informed Source Separation

This thesis deals with extensions of [NTF-based informed source separation. As a reference,
a modified version of the algorithm of [Liu+11[] is used which was already briefly discussed
in Section This method is often chosen in [SStrelated publications as a baseline,
e.g. [Oze+13; RBW16; Puy+17]. In principle, [NTE is used for compressing the sources
and the resulting [NTE-parameters for Wiener filtering of the mixture to extract the esti-
mated sources. The authors of [Liu+11]] also proposed another encoding scheme, namely
JPEG compression of the source amplitude spectrograms. Since this thesis deals only with
[NTFbased methods, this approach is not considered here.

Figure depicts the flow graph of the reference method in the [TFl domain. The cor-
responding transform blocks are omitted for conciseness. In the following, both reference
encoder in Section and decoder in Section [3.1.2] are summarized. Since Chapter [f]
deals with residual coding in the [TF| domain, another reference method, also based on the
algorithm of [[Liu+11]], is briefly discussed in Section[3.1.3]

% ¢
\Y C] e O Wi N
S— 1 °+ NTF —> 0 > Coding »| Decoding > W1'ener — S
bit Filter =
stream

Figure 3.1 Block diagrams of reference encoder and decoder [Liu+11]].
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Veej A V s.e0j = Wy diag (qs’j,) HsT Vs o0j = W, diag (qs’j,) HST

Figure 3.2 Estimation and quantization of source [NTH model ©, depicted for J = 3 sources, K = 15
components and N, = 4 quantization reconstruction values.

3.1.1 Encoder

Preprocessing All signals depicted in Figure are assumed to be in the time-frequency
domain: The [TH coefficients of the J sources are stored in the N,, x T x J tensor S. In
this thesis, linear instantaneous mixing is assumed which means that the mix is calculated
with (2.32) which a N,,, x T complex matrix X. Taking the a-modulus of the sources S in the
[TEl domain yields the source amplitude spectrogram

a

) (3.1)

a tensor of same size as S. Here, a € {1, 2} is depending on the choice of the [NTF| cost func-
tion. In [Becl6; |Spil2]], the influence of a on the separation quality of an [NTE+based blind
source separation algorithm has been evaluated. A dependency on f3 has been proposed as

1 for#0
a=
2 for3=0.

This dependency was also theoretically investigated in [LB15|]] and experimentally verified
in [Bec16; Spil2]]. Note that originally, = 0 and a = 2 were fixed in [[Liu+11]].

Nonnegative tensor factorization (NTF) The amplitude spectrogram V; of size N,,, X T xJ
is now input to the subsequent [NTE. In this thesis, the -divergence is used as the [NTF| cost
function as described in Section

min d; (V; |V, (©,)) (3.2)

with the approximation of the source spectrograms \A/'s,..j (©,) = W diag (qs’j,)H;r which
is also given in (2.13). The resulting [NTF parameters, W, H,, and Q,, are gathered under
O, = {W,, H,, Q,} and quantized in the following step. The subscript s is used to discriminate
this [NTF-model from other models introduced in Chapter

Quantization The grouping matrix Qg only has few elements compared to W and H,. In
this thesis, the focus lies only on the costly coding of W and H,. The smaller matrix Q,
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is always quantized uniformly with a high number of reconstruction values. The authors
of [Oze+13]] propose to quantize W, and Hj in the logarithmic domain,

W, =exp(q(logW,)), H,=exp(q(ogH,)). (3.3)

In [[Oze+13]], this choice is proven to be optimum for high rates when minimizing the Itakura-
Saito distance (8 = 0). All quantized matrices are gathered under 6, = {W,, H,, Q,}.

Encoding The reconstruction values and indices are encoded with GZIP Other encoding
schemes are further investigated in Chapter [4

Note that since T spectra for each source have to be gathered to form V prior to [NTE] the
delay of the encoder is at least as large as T.

3.1.2 Decoder

It is assumed that the mixture is encoded with high quality prior to transmission to the
decoder. This constraint is further discussed in Chapter[7] As a first step, the mixture in the
time-domain has to be transformed to the [TF domain with the yielding the complex
mixture spectrogram X. The transmitted parameters @, are extracted from the bit stream
and used for Wiener filtering X with Equation : First, the quantized [NTF model is
calculated as

V.o (6,) = W, diag (g, ;,) A, (3.4)

which is then used secondly for filtering X yielding the estimated source spectrograms S..;
with Equation

The subsequent yields the estimated sources in the time-
domain. Figure compares the quantized [NTF model Vg,,; for J = 3 exemplary sources.
In Figures(3.3|and [3.4] the exemplary [NTE results of Figure [3.2]are shown with more detail.

3.1.3 Residual Transmission: Coding-based Informed Source
Separation

This section briefly summarizes an extension to the reference [NTE-based algorithm,
Coding-based Informed Source Separation [Oze+13]] which was already mentioned
in Section The process of estimating the source magnitude spectra is the same for
and the encoder discussed in Section However, the calculated [NTE model is not
only used for calculating Wiener filters but also for determining a residual between original
and estimated sources in the Karhunen-Loéve Transform (KLI) domain:

For each [TF point, a posterior covariance matrix can be estimated given \73 as computed
with . This J x J matrix, denoted with X% , , ,, models the covariance of the J sources
with the mix as observation at [T point (f, t). The underlying probabilistic framework is
out of scope of this thesis, refer to [|[Oze+13; [Liul2] for more detail. In [|[Oze+13]], it is then
proposed to decompose %, ,, = UAU' with the eigenvalue decomposition. The residual is
then calculated in the encoder in the [KLT] domain as

20 =U" (§f,r,- -5...);
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Figure 3.4 Quantization indices corresponding to Wy and H;.

quantized with uniform scalar quantization and encoded with arithmetic coding. At the
decoder, %, is calculated given the transmitted [NTF| parameters and the eigenvalue de-
composition of X, , , , has to be calculated again for each [TF point. The Wiener estimates S
are then refined given U and the transmitted residual z;, , as

~

S

5 =f

Sciss fte — 2f e T Uz, ..

In both encoder and decoder, the eigenvalue decomposition of the covariance matrix has to
be calculated for each[TF point. On the one hand, this procedure enables separation qualities
which are not bounded by the oracle estimators anymore, but it introduces more complexity

on the other hand.

3.2 Preliminary Experiments

The reference algorithm was not optimized for low bit rates but for a more general
rate range. The only parameter influencing the bit rate is the number of [NTE components
per source K/J; the number of reconstruction values is fixed to N, = 28. In this chapter,
three variations of the reference algorithm are proposed: First, it is shown in Section 3.2.1
that compressing the frequency dimension of the[STFT|matrices yields significantly lower bit
rates while preserving quality. Second, the Kullback-Leibler divergence (f = 1) instead of
Itakura-Saito (8 = 0) as used in [Liu+11] is chosen. In [Bec16; RBW16] it is reported that
p = 1 outperforms 3 = 0 significantly in both the blind and in the informed source separation
scenario. In Section results are given for the scenario. Third, different quantizer
settings are compared in Section by allowing for different numbers of reconstruction
values N, showing that the bit rate is reduced even further.

Unless mentioned otherwise, the number of [NTF components per source is set to K/J €
{1,2,...,10} in this section. GZIP is used for encoding the quantized parameters ©;.
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Figure 3.5 Evaluation of the [TF transform.

3.2.1 Time-frequency Transform

As time-frequency transform, the algorithm of [Liu+11]] uses the as [TH transform.
In [[Oze+13|], the MDCT] was compared to the [STFT| which outperforms the As dis-
cussed in Section [2.1.3] mel filtering the spectral dimension of the TF matrices is applied as
a subsequent step to the The mel filter bank H, an N,, x F matrix storing F
triangular filters, is applied to the modulus of the complex sources S..;

Smetee; =H] [S

mel,eej me

(3.5)

ooj

yielding the F x T x J tensor S, . S, then replaces | S | in Equation (3.1) to yield V. A
similar approach was used in e.g. [SD13[] for [SS| with iterative phase-estimation. Here, the
complete source spectrograms are quantized, but first, the spectrograms are transformed to
the Equivalent Rectangular Bandwidth (ERB) scale, another logarithmic scaling similar to
the mel scale.

Figure shows results for a preliminary evaluation of the [TH transform. The [NTF pa-
rameters are quantized as proposed in [Liu+11] with N, = 28 reconstruction values in the
logarithmic domain. Figure 3.5alcompares the performances of the and the by
means of savings, calculated with respect to the with N,, = 2%, As a score,
the is chosen. Both the[STFT and the are evaluated with different values for the
window length N,, = {21°,...,2'3} with the corresponding hop size set to N, = %, yielding
windows with 50 % overlap.

* For all values of N,,, the outperforms the As already discussed in Sec-
tion the needs the same number of [TH coefficients as coefficients in the
time-domain as it is critically sampled. This is an advantage over the[STETIwhich yields
twice the amount of [TF coefficients with a 50 % overlap. However, it was also pointed
out that the is not invariant to time-shifts which apparently has negative im-
pact on the factorization process. Although being critically sampled, the yields
slightly worse results than the This behavior was also observed in [[Oze+13]]. In
the following, the is used as[TF| transform.
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Figure 3.6 Rate-quality curves for f3.

e For the N, = 2" and N,, = 22 yield similar values for namely —36 %
savings for N,, = 2'! and —31 % for N,, = 2'2. Although N,, = 2!! yields slightly better
results, N,, = 2'2 is selected in the following: One of the main contributions of
this thesis is the introduction of an [NTEF}based algorithm to the decoder. This
algorithm was thoroughly evaluated in [Bec16]] where it is reported that N,, = 212
yields better separation results than N,, = 2!, Therefore, not only the performance of
the reference method but also the performance of the algorithm to be intro-
duced to the decoder in Chapter [5|is accounted for by choosing N,, = 2'2. The other
two options, N,, = 2!° and N,, = 2'3 are increasing the rate as they result in either too
many frames or frames which are too large.

In summary, the is used with window size N,, = 22 and hop size N, = 2! from now
on, corresponding to 93 ms and 46.5 ms.

Figure shows the effect of applying mel filtering subsequently to the Rate-
quality curves are shown for different numbers of mel filters F. As a score, 6SDR is used
here as discussed in Section and the oracle performance is calculated with the [STFT]
and N,, = 2'? with 50% overlap. In the following, F = 500 is chosen as it gives the highest
bit rate savings without loosing any quality. This value also coincides with the findings
of [[Bec16|] for[BSS|

3.2.2 Factorization

For sake of completeness, the factorization process is briefly evaluated in this section. Several
parameters have an impact on the factorization results, for example the choice of initializa-
tion or the number of iterations of the multiplicative update process. Here, the impact of
the cost function on the factorization process is evaluated. As discussed in Section [2.2.2.1}
the results of a complex on S is used as initialization. The number of [NTF| iterations is
fixed to N;, = 200. For a more thorough evaluation of the other [NTF parameters, refer to
e.g. [Becl6].

Figure shows the corresponding results. 3 =0 distance) is outperformed by both
p =1 (KO divergence) and 3 = 2 (Euclidean distance). Also found by [Bec16], f = 1 is
chosen from now on as it yields better results for lower bit rates than 3 = 2.
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Figure 3.7 Rate-quality curves of quantization with F = 500.

3.2.3 Quantization

In [Liu+11]], the [NTF parameters W, Hy and Qg were quantized with N, = 28 reconstruction
values in the logarithmic domain as given in Equation (3.3). Since the low bit rate scenario
is of interest in this thesis, the quantizer has to be adapted to this particular setting. First,
less reconstruction values N, € {2,3,4,8,16} are used. This parameter is included in the
rate-quality optimization process as discussed in Section [2.8.2] For each mix, optimum rate-
quality points are found for K/J and N,. Second, A-law companding instead of the logarithm
is used with the A-law companding curve given in Equation (2.23). The main difference to
using the logarithm directly is the linear interval for lower amplitudes and the compression
parameter A which models both uniform (A = 1) and non-uniform quantization (A > 1).
Equation is thus replaced by

W,=C, " (q[C,(W)]), Hy=C;"(q[C,(H)]) (3.6)

using companding and expanding functions C, (-) and C," (-) as given in Equations
and . Q, is still quantized with high precision with A= 1 and 28 reconstruction values.

As a first evaluation, the different settings of N, are compared, namely N, = 28 with
logarithmic quantization given in (3.3 to the proposed quantization scheme with N, €
{2,3,4,8,16} and A € {1, 10, 100}. The corresponding 6 SDR results are shown in Figure|3.7
The curve for Ny = 28 obtained for F = 500 (—— ) is identical in Figuresand Using
A =100 with Ny= 28 gives comparable results to the reference (—«—) using Equation (3.3)
and is not shown in Figure The results can be summarized as follows:

* When comparing the results of reference with N, = 28 (—«) to the performance of
A-law companding with N, < 8, it becomes clear that when lowering N, and including
it into the rate-quality optimization (Section [2.8.2)) decreases the bit rate significantly.

* Using A = 100 (——) increases the bit rate compared to A= 1 (—8- ) and A = 10
(—+-). It seems that too much precision for higher amplitudes is lost when compand-
ing with A= 100.
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* The results achieved with A=1 (—& ) and A= 10 (—+-) are comparable with two
differences: Although A = 1 enables slightly smaller bit rates than A = 10, it is not able
to yield as high 6SDR results as A = 10 for rates around 0.7 kbpso.

A =10 is chosen as a compromise between A =1 and A = 100 as it enables lower rates than
A =100 and yields better quality for high rates compared to A= 1.

As a second evaluation, the performance of companding with A = 10 and using [LM] (cf.
Section with A =1 are compared to estimate non-uniform reconstruction values de-
pending on the input data. Note that in this case, the estimated reconstruction values have
to be transmitted in addition to the group indices. A-law companding with A= 10 and LMl
(A =1) are evaluated with two configurations: The unmodified version of [LMl is compared
to a version of LM/ where the first reconstruction value is fixed to a small nonnegative value.
The reconstruction value is replaced in each iteration. Figure shows R,6SIR curves
measuring the interference per rate. Regarding the obtained distortion measured with 6SDR,
all three quantizers yield very similar results which are therefore not shown here.

* Examining the obtained interferences between the sources, the reason of the mod-
ification of becomes clear. The unmodified version (*) yields noticeably worse
0 SIR results than the modified version () for all mixtures. This can be explained by
the fact that [LM] often chooses a value greater than zero for the lowest quantization
value, for both W, and H,. This then leads to Wiener masks M in Equation (2.36)
which are never zero and thus introduce interference from the other sources. Fixing
the first reconstruction value to a small nonnegative numbe set here to 107, solves
this problem.

e A =10 (+) yields slightly better §SIR results compared to the modified LM (~) for
most mixtures. A= 10 is therefore chosen for most of the evaluations in this thesis.

3.3 Reference Algorithm for Blind Source Separation

In Chapter |5, the source separation step of the reference decoder, the Wiener filter, will
be replaced by a more complex algorithm for which is briefly summarized here. As
mentioned in Section many [BSS] algorithms exist using factorization methods such as
The algorithm considered here uses[NTF on the mixture and is evaluated in detail
in e.g. [Bec16]. Most of the building blocks are already used in the encoder and do not
need further explanation. The flow graph is shown in Figure [3.9;

Factorization The mixture spectrogram X in the [TFl domain is transformed to the mel do-
main with mel filter bank H_ as V, = (HLel |)_(|)a which was already proposed for the
sources in Section The resulting mixture spectrogram V, of size F x T is then factor-
ized by NTF| with the grouping information set to q, ; , = 1 for all k as already discussed in
Section The [NTE minimizes the f-divergence between mix V, and its approximation
V, (©,) =W, H/

min d, (Vy |V, (©,)) (3.7)

!Setting the lowest reconstruction value to zero could lead to division by zero in (2.36).
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Figure 3.8 R,6SIR curves comparing the performance of A-law companding to Lloyd-Max algorithm.
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Figure 3.9 Block diagrams of reference algorithm [|Spi12; [Bec16]].
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with the mix model
0, = {W,,H,,1} (3.8)

where W,, H, are of sizes as F xK and T xK respectively and 1 denotes a vector consisting of
K ones. Regarding the initialization of ©,, different choices are available as already discussed

in Section [2.2.2.1]

Blind grouping To estimate the J sources by Wiener filtering the mix X, the information
about the mapping of the K components obtained by the [NTF to the J sources is needed.
This information, stored in J x K matrix Q,, is estimated blindly in the blind grouping block
which is thoroughly investigated in [[Spil2]]: The mapping of components to sources can be
conducted in a blind manner by calculating meaningful features on W, and H, which belong
to the family of Mel Frequency Cepstral Coefficients (MFCC) features. These features are
then fed into a clustering algorithm, e.g. fuzzy c-means. During clustering, the K features
calculated on each column of W, and/or H, are mapped to J centroids, each corresponding
to one of the sources. This means that the only information the blind algorithm of [[Spil12]]
needs is the number of sources J.

As an upper bound for the blind grouping algorithm, the author of [VirO7|] proposes a
reference grouping algorithm which calculates the mapping from components to sources
with knowledge of the original sources. A hill-climbing approach is used here as proposed
in [[Spi12]] to fasten up the calculation. For Wiener filtering with Equation (2.36), Q, replaces
then the 1-vector in Equation (3.8), yielding the parameters ©, «— {W,, H,, Q,} which
can be used for Wiener filtering with to estimate the sources.

3.4 Summary

In this chapter, the reference algorithm for[[SSlwas summarized and some aspects were eval-
uated: Regarding the time frequency transform, logarithmic frequency scaling was added as
already used in [|Spil2] for This scaling is achieved by conducting mel filtering on
the spectral dimension of the spectrograms which leads to significant bit rate
savings. The quantizer is adapted to yield lower bit rates. It is operated with different num-
bers of reconstruction values, the selection of the optimum parameter is done during the
rate-quality optimization as discussed in Section It was proposed to use A-law com-
panding as summarized in Section The corresponding parameters are summarized in
Table

In addition to that, a algorithm, also based on [NTF, was briefly summarized. It will
be used in Chapter [5|as reference algorithm.
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Method Parameter Symbol and Value
Window size N, =2"

Hop size N, = 2! (50 % overlap)
Number of mel filters F =500
Cost function p =1 (KLldivergence)

NTE Initialization Complex [BMR15]
Number of components per source K/Je{1,2,...,10}

.. A-law companding factor A=10

Quantization )

Number of reconstruction values N, €{2,3,4,8,16}

Table 3.1 Parameters chosen for evaluation.
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4 Efficient Parameter Encoding

This chapter deals with an extension of the reference encoder as summarized in
Chapter 3] Context-based Adaptive Binary Arithmetic Coding as described in Sec-
tion is adapted to the task of encoding the quantized [NTF parameters. Figure [4.1|de-
picts the proposed encoder which is a modified version of the reference encoder shown
in Figure As indicated by the highlighted blocks, is proposed for encoding the
quantization indices Gy, and Gy_corresponding to the NTF| parameters W and H,. As men-
tioned in Section the grouping matrix Q, has only few elements compared to W and
H,. Therefore, Q, is still encoded with GZIP since it can be assumed that using in-
stead will not significantly improve bit rate savings. In addition to that, GZIP is also used for
coding the reconstruction values ¢y_and ¢y . The bit streams for all parameters are finally
concatenated.

As a motivation for using the typical structure of the [NTF matrices or rather their
quantized versions is summarized in the following. Figure depicts the quantization in-
dices for exemplary [NTF parameters W, and H,. Both matrices are strongly structured:

1. As already discussed, the [NTF parameters modeling audio spectrograms are usually
sparse. Index 1 corresponding to reconstruction value O is by far the most frequent
value.

2. Long runs of 0 and other values are also common for each component k. This struc-
ture inspired the design of [NTFl constraints in the literature, e.g. sparseness or conti-
nuity [Vir07]] as discussed in Section Here, these properties are exploited to
adapt for the usage in

Recall that[CABAC|is able to approach conditional entropy by exploiting local statistics of the
data. The margin, up to which the conditional entropy is reached, is dependent on the used
context models. In Section statistics of the structured quantization indices discussed
above are investigated in more detail. Based on these findings, suitable binarization schemes
and novel context models are proposed in Section Evaluations of different binarization

Gw,

A

|

CABAC X
Vs ®s || GHS L |—>
a
S—|-] NTF > Q CABAC |— o Decoder [—
i

Q, f stream
> GZIP

Cw,, CH,

Figure 4.1 Proposed encoder using [CABAC]
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(a) Quantization indices G for Wq. (b) Quantization indices for Hg.
Figure 4.2 Quantization indices for exemplary mix with N, = 8 and K/J = 5.
p(gax=11%) p(gax>11%)
€ - &x=1 &=L giox=1 - &>l 8iax>1,810x>1
GWS 0.81 0.96 0.97 0.19 0.83 0.84
GHs 0.60 0.87 0.89 0.40 0.81 0.83

Table 4.1 Probabilities for two different sequences in the data: Either runs of zeros or runs of values
greater than 0. Element g, ; being either gq . = gw_ r Withd = f or g4 = gu,cx Withd =t.

and context model sets for [CABAC as well as a comparison of [CABAC to other encoding
schemes are conducted in Section [4.3] Finally, all findings are summarized in Section 4.4
The usage of [CABAC| for[NTE-based [SS|was originally evaluated in [Gao17|] and summarized

in [Bla+18]].

4.1 Preliminary Evaluation

In this section, local statistics of each component of the quantized [NTF parameters to be
coded with are investigated. Table shows probabilities for two different se-
quences in the quantization indices Gy, of W, and Gy of H,, namely sequences of ones
or sequences of values greater than one. Note that quantization index g = 1 maps to the
lowest reconstruction value ¢; = 0. To measure probabilities of these sequences, all sources
of test set .¢f are factorized by the encoder[NTEwith K /J = 5. The resulting[NTF parameters
are quantized with A= 10 and N, = 8 fixed.

Probabilities of the aforementioned sequences of lengths 1 to 3 are taken into considera-
tion and averaged over all components in Gy, or Gy . The corresponding probabilities are
given with respect to the quantization index g, , at position (d, k) with d being either d = f
for Gy, or d =t for Gy . The probabilities of the one-valued sequences can be expressed
as conditional probabilities with a certain condition 6, p (gd’k =1|% ) These conditional
probabilities are obtained with either no condition, thus counting the occurrence of g, be-
ing one, the previous index being one with condition % : g;_;, = 1, or the last two levels
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Figure 4.3 Histograms of Gy_ and Gy, for Ny =8 and K/J =5.

equal to one 6 : g4_;x = 1,84-5x = 1. Runs of indices greater than one can be modeled
in the same manner: p (gd’k >1|% ) with again either no condition, € : g4, > 1 or
@ : g4-1x > 1,84-2x > 1. These values are given in Table and lead to the following
conclusions:

* For both Gy, and Gy, the probabilities p (gd’k = 1) are quite high which confirms that
both matrices are sparse. The reconstruction values of the frequency basis W, are more
probable to be zero than the values for the time activations H.

* For both parameters, the sequences defined above are also quite likely: Sequences of
ones (mapping to zero-valued sequences of reconstruction values) are more probable
than the sequences of values greater than one. Sequences of ones are more probable to
appear in Gy_than in Gy_and sequences with values larger than one are equiprobable
in both parameters.

* Comparing the probabilities of the same sequence but different lengths, it becomes
clear that conditioning on g,_,, in addition to g,_; ; gives similar probabilities as only
taking g,_; into account. This shows that the Markov property for the group indices
is fulfilled, meaning that current value g, is only dependent on the previous value
g4—1x- Therefore, only the previously decoded value g, ;, or its binarized version
respectively, will be considered for the context design in the next section.

For sake of completeness, histograms of Gy_and Gy, are shown in Figure

4.2 Context Design

In the following, the encoding process for Wy is shown. Hg is encoded in the same way and
the bit streams for both parameters are concatenated. The same context design is used for
H, as well. Recall that quantization of Wy yields integer-valued grouping indices, stored in
an F x K matrix Gy, which is abbreviated as G in the following with 1 < g;, < N,. Each
element of G has to be binarized as only takes binary sources.
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Figure 4.4 Binarization of quantization indices Gy, with [TU coding.

For binarization of the integer-valued grouping indices G, the information about the po-
sition of each element g;, in G is kept by adding the exponent (f,k) to each bin-string,

composed of bins b£ k. Thus, (2.29) in Section [2.4.1.1| becomes

bt =C(gp) = (75, bEK,. ..,bj;f)T (4.1)

with either truncated unary or exponential Golomb codes C () of variable length N (refer
to Section [2.4.1.1). Figure [4.4 illustrates the arrangement of bin-strings for a subset of
quantization indices of Hy as given originally in Figure |4.2

In the following, the proposed context models are presented, each modeling a particular
structure in G. The decoder can choose a specific context model for the current to-be-decoded
bin b/* given the following conditions:

* The value of previously decoded data. Two options are investigated in this thesis,
namely:

— The value of bin bﬁ ~Lk at the same position n within the previously decoded bin-
string b’ > in the same component (column) k.

— The value of the previously decoded integer-valued symbol g;_, , in the same
component k.

* The position n of bﬁ k within the current bin-string.
* A combination of the previously decoded values and bin position n.

As previously mentioned, two different context model sets will be proposed. For both sets,
the context model for the current to-be-coded bin is selected based on previously coded data:
In the first approach, the context model for the current bin is selected depending on the pre-
viously coded bin b£ ~Lk at same position n in the previous bin-string b’ . This procedure
is proposed in Section In the second approach, the context model is chosen based on
the previously coded integer value g;_; ; instead and is further discussed in Section
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. n <N n> N
Conditions LBP LBP
- bﬁ_l’k =v,ve{0,1} -
Selection CtX,, na X ypy CtX
. K K —1k K
Init. p(bhF=0) p(bhF=01pi=v) p(bi*=0)

Table 4.2 Bin-value based context model selection and initialization for bin bﬁ’ at position n of
bin-string b"* with n < Nygp. For n > Nygp, a common context model ctx,, is used.

To distinguish the two proposed context model sets, the sets are denoted as bin-value or
integer-value based context models, respectively.

Note that internally, addresses each context model with an integer-valued context
id. For sake of completeness, the context ids for the two different context model sets are
summarized in Appendix

4.2.1 Context Modeling Based on Bin Values

In this section, bin-value based context models are proposed. Note that the context model
selection process is dependent on bin position n of the to-be-coded bin bJ; k. To limit the total
number of context models, different context models are only used for bin positions up to a
number N, indicating the last bin position for context modeling. All bins at position n >
Nipp are modeled with a common “rest” context model ctx,. For bins at position n < Nygp,
the following context models may be selected:

e If bin bJ; ~Lk in the previously coded bin-string b’ V¥ is available and has value v €
{0, 1}, the conditional context model ctx,, ,,,, is chosen. This context model corresponds

to the conditional probability p (b/* | b/~Lk =),

e If the length N of the previously decoded bin-string is smaller than n, which means
that bJ; ~Lk is not available, the default context model CtX, o, is selected. In this case,
the probability p (b£* | b/~"% n.a.) is modeled. It is possible to deactivate the condi-
tional context model ctx,, ,,,. In this case, ctx, ,, operates as a default context model,
modeling all bins at position n which are not subject to conditional context modeling.

Table gives an overview of these context models which are applied for codes and
the prefix of [EG| codes. For the suffix of [EG| codes however, a second default context model
CtXgyf nna 18 Used modeling the global probability p (b’; ’k) of suffix bins bJ; k with n > Nipre
and the number of prefix bins N, given in Equation . This is motivated by the fact
that suffix bins are representing the least significant bits and hence do not show strong
conditional probabilities within the same bin-string. Such bins could also be coded in bypass
mode for higher throughput, assuming an equiprobable distribution. The number of context
models for the suffix bins are limited as well. Bins at position n — Ny, > Nipp are modeled
With CtXgys e na- Table4.2|also shows the corresponding probability values for initializing the
corresponding context models. These values must be transmitted to the decoder.

In total, the bin-value based context model set comprises 3N;gp + 1 context models for [TU|
binarization, namely N;pp context models for each ctx,, 0, CtX,, 1 @and ctx,, ,, and one context

55



4 Efficient Parameter Encoding

Selected context models for bin b;’lf’
t 816 C (gt,16)

n=1 n=2 n=3 n>3

1 1 0 CXypg  — - -

2 5 11110 CtXqypo CtXppa  CX3p,  ClXpg
3 7 1111110 Xy yp1  CtXpyp1  CX3up1  ClXpg
4 3 110 CtXy yp1  CXpyp1  ClX3yp1

5 1 0 CtXqyp1  — - -

Table 4.3 Bin-value based context model selection for each bin bfl’k of bin-strings b"* = C (gt’k)
given the 16th component (k = 16) of exemplary quantization indices of Hg shown in Fig. [4.2] with
1 <t SS, andNLBPZB.

Context Model

Binarization
CtXn,upO CtXn,upl
Ul g =n gra=n+1
[EGO 2" < g <2t -1 g1 = 2"
[EGI 21 (21 —1)+1< g, <2'(2"—1) g =2'(2"—1)+1

Table 4.4 Integer-level interpretation of context models defined on bin-level.

model for the rest, ctx,,. For[EGlbinarization, this number increases to 4N zp+2, adding N 5p
context models for ctXg, ,, and one for ctxXg g - Table shows an exemplary context
model selection for bin-strings belonging to component k = 16 as shown in Figure [4.4b| with
binarization.

Note that other conditional context designs, for example context models describing the
behavior across components (between b{; *k and b£ *=1) or across more than one preceding
bin-string (bT{ ok bfl —Lk and b£ —2K), were evaluated in [Gao17] and did not improve the per-
formance significantly compared to the context models shown in Table

An interpretation with respect to the integer-valued symbols is given in Section [4.2.1.1
and a preliminary evaluation comparing the proposed context models is conducted in Sec-
tions |4.2.1.2[and |4.2.1.3] Note that these are qualitative evaluations. Quantitative results
are shown in Section

4.2.1.1 Interpretation of Bin-value Based Context Models

The conditional bin-value based context models are evaluated in the following. An interpre-
tation of the bin-value based context design on the integer-valued input symbols is provided.

Since the proposed context models are selected for coding the data after binarization, an
interpretation of the context models on the integer-valued symbols is given in the following.
A more detailed explanation is given in Appendix[C.2] In Table these findings are sum-
marized. Although yields longer code words for larger values g;,, the context models
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Selected context

Bin Previous bin Previous integer .
. o1k & model for bin b/*
position value b/ ™ value g¢_;
“upO” “upl”
1 0 1 CtXq ypo CtXy 1a
n— , ,
1 =>2 CtX) pa CtXy yp1
not available 1 CtXy g CtXy na
n=2 0 2 CtXy ypo CtX9 na
1 >3 CtX5 1o CtXy up1

Table 4.5 All possible conditions for bin-value based context selection for to-be-coded bin b{l’k with
n € {1, 2} with N;gp = 2. For bins with n > Nypp = 2, ctx,, is chosen.

Ctx, v are modeling sequences of integer values with finer granularity compared to[EG/bina-
rizations: Context model ctx, ,,, models runs of identical values for [TU binarization. When
using [EG] ctx,, ,,o models runs of values lying in an interval as given Table CtX,, yp1 MOd-
els sequences of values greater or equal than a threshold for both [TU and [EG| binarizations,
although the different thresholds depending on n are more precise for [TUl than for EGL

4.2.1.2 Comparison of Bin-value Based Context Models

In the following, the conditional context models ctx,, ,,, and ctx, ,,; for[TU binarization are
compared in more detail assuming Nyzp = 2. For context modeling, either ctx;, ,,,o (“up0”) or
CtX, yp1 (“up1”) are active in addition to default context model ctx,, ,, and rest context model
ctx,; which are active in both cases. Table [4.5 shows the corresponding general context
selection process. Bin position n, all cases for possible states of previous bin b£ ~Lk and
the corresponding range of integer values g;_, ;, are shown in the first three columns. The
context selection depending on these previous values is shown in the last two columns for

either ctx,, ,,0 (“up0”) or ctx, ,,; (“upl”) active.

* It becomes clear that ctx,, ,,, is used for representing the non-active conditional context
model: When ctx,, . is active, ctx, ,, will be used if b/~ = 1. In contrast to this, it is
used for activated ctx, ,,; for bins where bj; ~Lk = 0. In both cases, ctx, ., is also used

if the previous bin b/~* is not available (in this example for n = 2).

n,na

* In the case when ctx,, ,,, is active, the conditions for selecting ctx, ,, are contradicting:
This context model is chosen if the previous bin is either not available or has value
1 which corresponds to previous integer-value being either g;,_; = 1 or g¢;_; = 3.
Recall that the current to-be-coded bin is at position n = 2 which means that the
current integer value is g, = 2. Therefore, ctx; ,, models transitions from g;;,_; =1
(corresponding to reconstruction value zero) to g, = 2 and transitions from g;,_; = 3
to g7, = 2. In other words, ctx, ,, models rising and falling quantization indices at the
same time.
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ctx; (total: 2020) cth (total: 948) ctx; (total: 8000) ctxs (total: 1358)
500 5000 500
250 ‘ 2500 ‘ 250
ctxy upo (total: 7980)  ctxaupo (total: 1052) ctxy up1 (total: 2000) ctxo up1 (total: 642)
5000 500 500 100
| 2500 ‘ 250 250 50
ctxyse (total: 1019) ctxyse (total: 1019)
vype=0100 vmpB=1 vpmpe=0100 vmpB=1
5 50
60 40 20 0 20 40 60 60 40 20 0 20 40 60
State index State index
(a) Histograms for context model ctx, o acti- (b) Histograms for context model ctx, ,; acti-
vated (“up0Q”). vated (“upl”).

Figure 4.5 State index histograms for exemplary quantization indices in Figure for N;gp = 2 and
either conditional context model ctx,, po OF CtX, 1 activated in addition to ctx, ,, and ctx,s which
are always active here.

* For the other conditional context model ctx,, ,,;, the conditions for selecting ctx, ,,, are
more useful. It models transitions from g;_; , € {1,2} to g, = 2 which translates to
either a sequence of values equal two or increasing values.

This exemplary context selection process makes clear that the default context model ctx,, ,,
is selected in contradicting cases when used in combination with the conditional context
model ctx, 0. Recall that ctx, ., is selected for b£ ~Lk = 0 which corresponds to the pre-
vious integer symbol being g;_; , = n (refer to Table 4.4). ctx, ,, is selected in all other,
contradicting cases which correspond to either g;_; , <nor g,_; > n.

4.2.1.3 Preliminary Evaluation of Bin-value Based Context Models

In Section the two bin-value based context models are compared. In the following,
it is evaluated if the contradicting conditions for selecting ctx, ,, for “cond0” have impact
on the coding performance. is used to encode exemplary G as shown in Figure |4.2a
with the same setup as before, namely N,z = 2 and binarization. To provide a more
detailed evaluation, the state machines of each context model are considered here: As al-
ready explained in Section uses state machines to model the probability
P = P (Vipgp | ctx), the probability of the least probable bin v;py for each context model ctx.
The state with index i, , = 63 (either for vy = 0 or for vy;py = 1) denotes the state with the
lowest value p;pg. If the state machine frequently remains in this state, it can be concluded
that the occurrence of vy;py is very likely. In this case,[CABAClis able to model the underlying
data quite well, limited by the precision of the discrete probability values. In contrast to that,
the value vypp may flip for a context model if p;py = 0.5, even multiple times. This means
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4.2 Context Design

Conditions n < Nugp n > Nigp
g1k =V, v E{L,...,N;} -

Selection CLXy jupy CtX

Init. p(b1" =0lg1x=v) p (b5 =0)

Table 4.6 Integer-value based context model selection and initialization for bin b’;’k at position n of
bin-string b"* with n < Nygp. For n > Njgp, a common context model ctx,, is used.

that the context model is not able to adapt efficiently which automatically results in more
bits written out.

Figure (4.5|shows histograms of state indices for either ctx,, ,,o (“up0”) and ctx,, ,,; (“up1”)
active. The initial state is marked with a dashed gray line as well.

* Figure shows the histograms for “up0”. As expected, vypp toggles between ’0’
and 1’ for ctx, ,, quite frequently which means that the state machine is not able to
adapt well. ctx, , is chosen in contradicting cases as mentioned before. For context
models CtxXy y,,, CtX; ypo and CtX, 0, the state machines are remaining frequently in state
i, = 63. This means that the state machine adapts well and [CABAC|works efficiently

PrLprB
if these context models are chosen.

* The histograms of state indices for “upl” are depicted in Figure Vypp 1S DOt
toggling in all state machines but the one for ctx,, which is discussed below. Comparing
the performance of “up1” and “up0”, using the “up1” configuration yields a
reduction of 7% for this example compared to “up0”. This shows the disadvantage of
the sub-optimal usage of ctx, ,, for “up0” as discussed above.

* For ctx,, Vypp is toggling as well. Recall that ctx,, is selected for coding all bins at
positions n > 2. These bins are more often equal to ’0’ than ’1’, as the state machine
is remaining quite often in the corresponding state. This can be explained by the
fact that smaller quantization indices are more probable than larger indices, refer to
Figure Recall that only Nz, = 2 bins are modeled with (conditional) contexts
here. By increasing N gp, this effect can be diminished.

4.2.2 Context Modeling Based on Integer Values

In Section the context model for the to-be-coded bin bJ; *k was chosen based on the
binary value of the previously coded bin b/~"*. In this section, it is proposed to choose
the context model based on the value of the previously coded integer value 1 < g;_;; <
N, instead. For each bin bJ; * the previously coded symbol gs_1x is used for choosing the
appropriate context model. As already done for the bin-level context model design, the
number of bins for which context models are used is limited to N;gzp. All bins at position
n > Nppp are modeled with common context model ctx,. For all other bins at bin position
n < Npgp, the value of the previously coded integer symbol g;_, ,, abbreviated with v €
|:1,Nq:|, is chosen to select the conditional context model ctx

the conditional probability p (b | g1, =v).

This procedure models

n,iupv -
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4 Efficient Parameter Encoding

Selected context models for bin b;’lf’
t 816 C (gt,16)

n=1 n=2 n=3 n>3

1 1 0 CtXyjup1  — - -

2 5 11110 CtXqjup1  CXpjup1  ClXzjup1  ClXpge
3 7 1111110 etXgjups  ClXpjups  ClX3jups  Clpg
4 3 110 CtXyjyp7  CXpjupy  ClX3jup7

5 1 0 CtXqjups  — - -

Table 4.7 Integer-value based context model selection for each bin bfl’k of bin-strings b = C (gt’k)
given for the same exemplary data already chosen for Table

Note that with this general approach, no default context model (ctx, ,,, as defined in Sec-
tion for the bin-level context models) is needed. For f = 1 at the beginning of a
component, gy, is not available. It is simply assumed that v =1 as it corresponds to the
zero-valued reconstruction value. The conditional context model ctx,, ;,,, is only applicable
for[TUl codes and the prefix of[EGl codes. As already proposed for the bin-level context mod-
eling in Section the context models ctxg,¢ , ,,, for the first Njpp suffix bins and ctXgy¢ ¢ na
for the rest are used for modeling the suffix of [EG codes.

Compared to the bin-level context design proposed in Section [4.2.1] the integer-value
based design is more complex as it comprises in total N Nizp + 1 different context models

for binarization. For each combination of bin n < N;zp and integer value v € |:1,Nq:| a
context model exists. Recall that for the bin-level design only 3N;zp + 1 context models are
needed. Table shows an exemplary context model selection process for the same input
data as already used in Table this time for the integer-value based context models.

4.3 Experimental Results

First, the different binarization methods and context designs are evaluated on test set .o/
(refer to Section . For the next experiments, the choices of the binarization method
and the context models is fixed. is then compared to reference coding methods
on test set B (refer to Section [A.2). The number of NTH components per source is set to
K/J €{1,...20} and the[NTF minimizes the Kullback-Leibler divergence (3 = 1) throughout
all experiments. The resulting parameters are companded with A = 10 and quantized with
N, € {2,3,4,8,16} reconstruction values.

As a quality measure, as summarized in Section is calculated with GZIP as
baseline. Note that in this chapter, GZIP is used for encoding Gy, and Gy, separately as
and all other reference methods encode the parameters separately as well. In all
other chapters, GZIP is used for jointly encoding the parameters. Results with this variant of
GZIP as baseline are given in Appendix|[C.3] The joint GZIP variant yields a[BD-BRlreduction
of —12.38 % compared to encoding the parameters separately with GZIP
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TU EGO EG1

Ngp=0 —10.71 —9.03 —16.84
Ny =1 —19.97 —19.71 —18.38
Npgp =5 —21.44 —20.46 —18.57
Ngp =10 —2159 - -

Table 4.8 BD-BR] in % with respect to GZIP. All conditional context models were deactivated. For
Nigp =0, only ctx, is active.

Method GBAC CABAC
Cond. Ctx. - - CtXpupo  CXpupt  CXpy ypos CXp yp1
% —10.71 —21.44 —-31.81 -—33.23 -32.81
Mean saving, % —11.76 —18.34 —28.01 —29.45 —29.31
Std. saving, %  10.18 8.57 7.32 6.57 6.49

Table 4.9 Results for bin-level context models. with respect to GZIP for GBAC (N;gp = 0) and
(Nygp = 5) for test set .«f.

Binarization

The first step of[CABAC]is binarization. To evaluate the chosen binarization methods[TU],
and [EG coding, all conditional context models are deactivated. Said binarization methods
are evaluated for different values of Njgp, indicating the last bin position which is modeled
with ctx, ,,,. For the highest number of quantization centroids, N, = 16, the highest code
length is equal to 15. The prefixes of [EGD and [EGIl codes are smaller for this case, namely
five for and four for [EGl. The number of bins modeled individually is set to Nygp €
{0,1,5,10}. Note that Ny, = 10 is only useful for[TUL

Table shows rate reductions with GZIP as reference for different values of N;z,. With
only the rest context model activated (with Nz, = 0), [EGI1 outperforms and [EGO. [EGD
yields better results when activating ctx, ,, additionally with Njz, = 1. But with the first
Nipp = 5 bins modeled with ctx, ., gives better results than and outperforms [EG].
Setting N;gp = 10 does not increase the performance noticeably. In the following, is
chosen as binarization method and the number of modeled bins is set to Nz, = 5.

Conditional bin-value based context models

In the following, the performance of [CABAC is evaluated with the bin-level conditional con-
text models ctx,, o and ctx, ,,; are activated in addition to ctx,. As a comparison, the per-
formance of the BAC with only one global activated context model ctx,, is evaluated as well
and abbreviated with GBAC. Table 4.9 shows the corresponding rate savings:

* Activating only ctx, ., yields a noticeable decrease of rate compared to GBAC where
only ctx,, is active from —10.71% to —21.44%. Modeling already the probability
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4 Efficient Parameter Encoding

Method CABAC
Cond. Ctx. Bin-level ctx, ,,; Integer-level ctx,, ;y,,
% —33.23 —33.68
Mean saving, % —29.45 —30.27
Std. saving, % 6.57 6.24

Table 4.10 Results for integer-level context models. with respect to GZIP evaluated on test
set /.

p(bS* | bf71% n.a.) of the bins at position n with ctx,,, increases the performance
compared to one globally activated context.

* Regarding ctx,, ,,,, CtX, ,, gives the highest rate decrease of —33.23 % compared to
GZIE closely followed by ctx,, ,,0 at —31.81%. Compared to the performance of only
activating ctx, .,, the rate is further decreased when modeling conditional statistics
with ctx,, ,,- The worse performance of ctx,,  is explained in Section[#.2.1.2] ctX, 0
is selected in contradicting cases whereas ctx, ,,; is modeling the underlying structure
more efficiently.

* Activating both ctx, 0 and ctx, ,,; does not decrease the rate any further compared
to ctX, 1. This can also be explained by the findings shown in Section 4.2.1.2

Conditional integer-value based context models

Table shows results comparing the bin-level context models proposed in Section [4.2.1
to the integer-value based context models summarized in Section The latter context
design uses context models for each combination of bin position n and previously coded inte-
ger value v. The integer-value based context design yields slightly better results, decreasing
by only 0.5%. Compared to the increased number of total context models, the gain
is not very large. Therefore, in the next section, the bin-value based context model ctx,,
is preferred over ctx,, ;-

Comparison against reference methods

In the previous sections, the binarization method and context model settings for[CABACwere
chosen. In this section, [CABAC]is compared to reference methods which are briefly discussed
in Section [2.4}

¢ GZIP which was used in the reference method as discussed in Section

e Arithmetic Coding (AC) as described in Section AC was used in e.g.
[CISS| [[Oze+13]].

* Huffman Coding (HC) which was e.g. used in [NV10].
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Figure 4.6 Comparison of proposed scheme with reference coding methods on test set 3.

* Run-length Coding as discussed in Section which encodes sequences of
the same values. is also approaching conditional entropy [[Ohm15] if the Markov
property of the input data is fulfilled. Here, the run-lengths and their correspond-
ing values are each encoded with [EGD. was used in the [NMF+based method
of [RBW16] for encoding the NTF parameters which were quantized with only N, = 2
reconstruction values.

These coding methods are used in the following for coding the quantization indices Gy, and
Gy,. The grouping matrix Q, is encoded independently with GZIP

The optimum settings were already determined while evaluating on test
set ./ in the previous experiments. To give results for an independent test set, all methods
and with the same optimum settings are evaluated on test set 4. Figure 4.6| shows
the corresponding results:

. (—+#-) outperforms all reference methods noticeably. The highest rate reduc-
tions are yielded in the medium rate range. At lower rates, the grouping matrix Q,
which is always quantized with high precision, has the biggest portion of the bit rate.
The total rate reduction in this case with respect to GZIP (—«) is —34.44 %.

. (—+-) is the method with the second highest gain by around —20.37 %. Since the
data considered here has the Markov property, as shown experimentally in Section 4.1|
is able to approach conditional entropy as well.

* AC (—e—) outperforms GZIP at lower rates and reaches the same performance at
higher bit rates.

* HC (—oB-) yields worse results than GZIP and needs about 18.37 % more rate. This
can be explained by the fact that HC is the only method not exploiting any conditional
statistics in the data or using fractional number of bits per symbol as discussed in

Section
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and are the two methods with the highest bit rate savings. only approaches
conditional entropy for data having the Markov property. The proposed context model design
for[CABACis also based on the Markov property of the NTEl parameters. In general, is
able to model more complex statistics. The implementation of however is less complex
than

4.4 Summary

In this chapter, it was proposed to use for efficiently coding the quantized [NTEF| matri-
ces. After a short evaluation in Section[4.1]where it was shown that the quantization indices
have Markov property, two different sets of context models were proposed in Section [4.2;
The more simplistic set of context models describes the data on a bin-level. The context
model selection is based on the bin’s value in the previously coded bin-string at the same bin
position as the to-be-coded bin. The other design uses the previously coded integer value
for selecting a particular context model. This approach is more complex as it needs context
models for each combination of bin index and integer value. Contrarily, the simplistic model
offers only two choices per bin index since the value of the previously coded bin is binary.

In Section 4.3 several experiments were conducted. In the first part, the proposed
context models were evaluated. The integer-value based context design yielded only slightly
better rate reductions than the bin-value based design. Therefore, the latter context model
set was chosen for comparing [CABAC| to other entropy coding schemes in the second part.
Evaluated on a large test set, it became clear that outperformed all other reference
methods. RLC, modeling sequences of the same value in the data, was the method with the
second highest bit rate savings. Both and are approaching conditional entropy
which is reflected in the results. It can be concluded that adapting the coding method to the
structure of the [NTE| enables a more efficient compression.
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5 Parameter Re-estimation at Decoder

This chapter deals with an extension of the reference decoder for lower and very low bit
rates. A second [NTF| prior to the Wiener filter with the mixture instead of the sources as
observation may be used to

1. refine coarsely quantized parameters,
2. estimate parameters which were not transmitted,
3. operate blindly without any parameter transmission.

The encoder is able to simulate the decoding process and chooses one of the scenarios listed
above. However, the parameter estimation in the encoder is not modified in this scenario,
the sources are still factorized with the encoder [NTF as summarized in Section The
main modification of the decoder is to use an algorithm originally designed for blind source
separation in [|Spil2|] instead of solely Wiener filtering in the decoder. In [[Spi12]], the mixture
spectrogram is separated by [NMF into K components, each of them modeling a particular
acoustical event. In the blind setting, the components have to be mapped to the sources
using a blind grouping algorithm. This procedure is summarized in Section In the
case, this information is stored in the grouping matrix Q. The estimated sources are then
obtained by Wiener filtering.

In Section the necessary changes to the algorithm of [Spil2]] for usage in an
context are summarized and the resulting decoder is evaluated. Furthermore, the decoder
is constrained with the objective to prevent deviations from the source model in
Section[5.2] Section summarizes the findings of this chapter.

The usage of the decoder [NTE| was originally proposed in [RBW16] and constraining the
decoder [NTF in [RLB17].

5.1 Nonnegative Factorization of the Mixture

In this chapter, the proposed decoder is investigated in detail. The contribution can be
interpreted in two different ways: On the one hand, it is an extension of the decoder of
the scheme proposed in [Liu+11] which uses [NTF for parameter encoding but solely
Wiener filtering for decoding. On the other hand, the blind source separation algorithm
of [|Spi12] is used in the decoder to enhance the transmitted parameters. This allows a
second interpretation: This contribution also evaluates how this algorithm, originally used
for[BSS| performs with knowledge of the sources under a quantization constraint.

Figure shows block diagrams of the encoder and the proposed decoder which are
summarized in the following:
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(b) Decoder with semi-blind source separation (SBSS) extension.

Figure 5.1 Block diagrams of encoder and proposed decoder in the [TF domain.

Parameter estimation at the encoder The encoder is mainly structured as described in
Chapter [4] and shown in Figure It calculates an [NTF model of the source amplitude
spectrograms V denoted with ©;. In a (subsequent) quantization step, the [NTF model is
quantized yielding ©,, the quantized source model. This model is sent to the decoder which
the encoder is able to simulate to choose optimum working points for each mixture. These
points are chosen by rate-quality optimization as discussed in Section [2.8.2]

Parameter re-estimation at the decoder The decoder proposed in [Liu+11[] uses Wiener
filtering of the mix X with the quantized source model ©; to reconstruct the estimated sources
S. In [RBW16], a more advanced decoder was proposed using an [NTF+based algorithm
originally designed in [|Spil2] for the task of blind source separation as summarized in Sec-
tion[3.3] The main building blocks are already used in the encoder and shown in Figure[5.1b}
The mixture amplitude spectrogram V, is constructed in the same way as the source spec-
trogram in Equation (3.5) as
T a
v.=(H_,[X])" (5.1)

V, is now fed into the decoder [NTE| which computes the so-called mix model denoted with
©, given V, as observation by minimizing

min d, (V, |V, (8,)). (5.2)

This model is used for Wiener filtering the complex mixture X instead of @, in a subsequent
step. The main difference to the algorithm proposed by [|Spi12] is the non-blind initialization
with the quantized source model: The mixture model ®, may be initialized with ©, such
that the decoder [NTE] is able to refine the quantized parameters given the mix. Therefore,
the procedure in the decoder is denoted as Semi-blind Source Separation (SBSS). Note
that other initializations are also possible: In the extreme case, the decoder is able to run
without any transmitted parameters. In this case, the algorithm falls back to the blind source
separation algorithm of [[Spil2].

The factorization process of the mixture in the decoder is compared to the factorization
of the sources in the encoder in Section The decoder can be operated with different
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Figure 5.2 Comparison of encoder and decoder [NTF models © and ©.

configurations, depending on the transmitted parameters. The encoder consists of the de-
coder as shown in Figure[5.1alwhich enables the encoder to simulate the decoder and choose
the best configuration under a rate-quality-constraint. These configurations are presented
in Section In Section the decoder is evaluated experimentally and compared to
both the reference and reference methods.

5.1.1 Decoder Factorization Model

The basic procedure of factorization of the mixture was already subject in Section[3.3] Here,
the two [NTEF models, one describing the sources and the other one describing the mixture,
are compared. The encoder [NTF model and the decoder [NTF model are considered for an
exemplary mixture with J = 3 sources in Figure[5.2] The encoder estimates ©; given the orig-
inal source spectrograms V,,;. To obtain @, the encoder NTF minimizes the f3-divergence

between the original sources and their estimation V, (©,), dg (Vs | V, (@s)). The decoder NTH
minimizes Equation (5.2), the 3-divergence between mixture amplitude spectrogram and its
approximation V, (©,). The decoder model ©, is initialized in this example with the quan-
tized source model ©,. Other initializations are also possible, refer to Section The
decoder [NTH calculates only W, and H,. As mentioned above, the grouping information Q,
has to be either provided by the encoder or estimated blindly in the decoder as stated in Sec-
tion|5.1.2\ This information is needed for Wiener filtering which is not shown in Figure
It is assumed that the mix X is constructed as the sum of all sources for each [TF point as
shown in (2.32). This operation introduces overlap in the [T points of X and in the [TF| points
of the corresponding amplitude spectrogram V,. These interferences limit the separation
quality obtained by the decoder NTF model compared to the encoder[NTFlmodel. Figure[5.3
shows the exemplary [NTF results of Figure with more detail.

The [NTE implementation of the decoder [NTF is the same as the one used in the encoder.
Multiplicative update rules as explained in Section[2.2]are used in both cases. The proposed
introduces an increase of computational complexity in the decoder: The [NTFl estimates
V, of size F x T with K components with N, iterations of the multiplicative update rules.
It is shown in [[Lin07] that the complexity of NMF using multiplicative update rules is N;, x
O (FTK). In this thesis, F is rather small as it denotes the number of mel filters used in
Equation for computing V,. Furthermore, only small numbers of iterations N;, are
considered. The complexity is linearly increasing with both increasing number of time bins
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T and number of components K. As already briefly discussed in Section [3.1.1} the delay is
also increasing with T.

5.1.2 Decoder Configurations

Originally, it was proposed in [RBW16] to refine coarsely quantized parameters as already
mentioned before. In addition to that, it is possible to omit the transmission of W and/or H
and estimate them at the decoder given the mix (and the transmitted parameter). This pro-
cedure was already proposed in [REL17]] to estimate missing Higher-Order SVD parameters
describing the sources. This approach is adapted here for estimating the [NTF parameters. It
is also possible to use the algorithm in a blind setting if no parameters are transmitted
at all. In the following, these different scenarios are summarized:

1.

All quantized source parameters O, = {W,, H,, Q,} are transmitted. The decoder [NTF|
is initialized with W, and H, and re-estimates them given the mix spectrogram V,,
as evaluated in Section Q, is then used as grouping information for Wiener
filtering with Equation (2.36)).

. Either W, or H; is not transmitted. The decoder initializes the missing parameter with

random valueﬂ The transmitted parameter is fixed while the missing parameter is
estimated by the decoder NTE. Excluding H, from transmission means that the trans-
mitted parameters and therefore the bit rate are independent of time. This “transmit
two” configuration is further evaluated in Section

. If neither W, nor H; are transmitted, both parameters have to be estimated. They are

initialized with estimates given by the CSVD initialization [BMR15] already used in
the encoder, now with input X instead of S. In this case, the encoder runs the decoder
[NTFland uses the resulting W, and H, to estimate Q, as shown in Eq. (5.3). Q, is then
quantized with high quality yielding Q, and transmitted back to the decoder where it
is used in addition to W, and H,, for Wiener filtering. This configuration is evaluated
in Section[5.1.3.2]and denoted as “transmit one”.

If even the grouping information is not transmitted, the decoder falls back to the blind
setting. In addition to initialization of W, and H, with the CSVD, Q, is estimated by
a blind grouping algorithm after the estimation of W, and H, by the decoder [NTF] as
proposed in [Spil12]]. This case is investigated in Section

. The decoder [NTF! is skipped. This is indicated by setting the decision switch ( )

in Figure to the upper position. The transmitted parameters are directly used for
Wiener filtering which means that the proposed decoder falls back to the reference
decoder.

All configurations are summarized again in Table For case [3], the “transmit one” con-
figuration, only Q, is transmitted. The decoder is initialized with the CSVD evaluated

IThe “multi-start” initialization proposed by [[Cic+09]] is used. [INTFlwith few iterations is applied on randomly
initialized parameters. This is repeated several times and the parameters corresponding to the lowest cost
function value are used as initialization of the subsequent decoder NTEL The random value generators of
both encoder and decoder are assumed to be identical.
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5 Parameter Re-estimation at Decoder

Configuration Transmitted parameters Initialization of decoder NTF / Com-
ment

Transmit all ~ Q,, W, and H; Transmitted parameters.

Transmit two Qg and either W, or H;  Transmitted parameter and random val-
ues for the missing parameter.

Transmit one  Q, W,, H, with CSVD on X. Q, estimated
in encoder given the decoder [NTEfs out-
put and transmitted as Q, to decoder for
Wiener filtering.

Blind - W,, H, with CSVD on X, blind estima-
tion of Q.
Skip Q,, W, and H; None, the decoder INTH is skipped.

Transmitted parameters directly used
for Wiener filtering.

Table 5.1 Summary of decoder configurations.

on X and estimates W, and H, given V,. Note that sending Q, for Wiener filtering would
lead to a mismatch: Q; maps the components found by the encoder NTF to the J sources but
the [NTE| in the decoder calculates W, and H, blindly without any information provided by
the encoder. Therefore, Q, is estimated in the encoder. First, the encoder runs the decoder
which estimates ©,. Afterwards, the encoder is able to estimate Q, by minimizing

I%in dg (Vs | Wy, Hy, Qy) (5.3)

while keeping W, and H, fixed. The resulting parameter Q, is quantized with high quality
yielding Q, and sent to the decoder for Wiener filtering subsequently to the decoder [NTFL.
For only one missing parameter (W, or H,, configuration “transmit two”), this procedure
was also tested but did not improve the separation quality.

5.1.3 Experimental Results

In this section, the proposed decoder including the algorithm is evaluated. The basic
algorithm was already thoroughly evaluated in [Bec16] for the blind scenario. In
this thesis, optimum parameters for the [TH transform and the f3-divergence are chosen in
Section[3.2|which coincide with the findings in [Bec16]]: The[STFTlwindow size is set to N, =
212 and the hop size to N, = 2! as well as F = 500 for mel filtering the spectral dimension of
the resulting [STFT] matrices. The Kullback-Leibler divergence (8 = 1) as [NTF| cost function
is also selected which is minimized in 200 iterations. The encoder [NTF runs with K/J €
{1,...,10} components per source. O, is obtained by quantizing ©, with N, €1{2,3,4,8,16}
reconstruction values obtained by the dead-zone quantizer shown in Section [3.2.3]

The experiments are outlined as follows. In the first experiments, each decoder configu-
ration listed in Table [5.1]is evaluated separately. In Section the “transmit all” con-
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5.1 Nonnegative Factorization of the Mixture

figuration is evaluated for different numbers of decoder [NTF iterations. The configurations
“transmit two” and “transmit one”, where either one or two parameters are omitted from
transmission, are compared in Section In Section the proposed decoder is
evaluated in the “blind” setting, meaning that no parameters are transmitted and the
algorithm falls back to the algorithm. Finally, in Section the encoder is enabled
to select the optimum decoder configuration. This scheme is compared to the reference
algorithm detailed in Section (3.1

5.1.3.1 Parameter Re-estimation

In [RBW16], it was proposed to use the algorithm for refining coarsely quantized
parameters. The decoder [NTF for this scenario, denoted as the “transmit all” configuration,
is investigated in this section. In the following, the impact of the number of decoder [NTEl
iterations N;, on the separation quality is investigated.

Figure|5.4|depicts rate-quality curves for different numbers of decoder[NTF iterations N;, €
{10,50,100} in comparison to the reference decoder using only Wiener filtering, denoted
with N;, = 0. As quality measures, 6SDR between original sources and estimated sources
in Figure |5.4a| as well as different [NTF cost functions are given: The f3-divergence between
sources V, and quantized [NTF|source model ©; is taken into account, namely dg (Vs |V, ((:)S))
which is abbreviated with dj (Vs | (:)s). Figure@ also shows dg (V | ©y), the -divergence
between the sources and the mix model ©, which is obtained by the decoder Note
that the decoder does not minimize the aforementioned cost function but dg (Vy | ©y),
the -divergence between mix V, and ©,. d (V; | ©y) is evaluated after N, iterations of the
decoder [NTEL

The results shown in Figure [5.4{ can be summarized as follows:

* The 6SDR values obtained for the decoder [NTF| decrease with increasing number of
iterations N,. This can be explained by interferences introduced by the [TF| overlap
in the mixture which is constructed by summation over the sources for each [TH point
(cf. (2.32)): Given the mixture as observation and the quantized source parameters
©, as initialization, the parameters obtained by the decoder [NTF deviate from the
initial values such that the distortion between original and estimated sources increases.
Recall that the initial values stored in ©, are quantized versions of the interference-free
source parameters ©,. The decoder [NTF introduces more interferences by learning
its parameters on the mixture. These interferences prevent a useful re-estimation of
the quantized parameters. The better the approximation of the mixture with a larger
number of iterations N, the higher the deviation from the sources becomes.

* When comparing the reference (N, = O, ) to the proposed decoder, using the
decoder[NTFl achieves slightly worse 6 SDR results with N,, = 10 (—e—). The proposed
method is not able to outperform the reference because of the previously mentioned
deviations of the decoder [NTEl For larger numbers of N;,, the distortion increases.

s dg (Vs | C:)s) evaluates the quality of the quantized parameters obtained by the refer-
ence decoder (x) with N;, = 0 as shown in Figure Here, this cost is compared
to dg (Vs | ©4), measuring the cost between original sources and the parameters calcu-
lated by the proposed decoder[NTEwith N, = 10 (O). It becomes clear that the decoder
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Figure 5.4 Rate-quality curves for disabled decoder [NTF| (N;; = 0) and enabled decoder [NTF with
different number of decoder [NTH iterations N;, € {10,50,100} in the “transmit all” configuration.
Quality measures either 6SDR or [NTF cost functions dg (VS |V (@)) = dg (V5| ©) with © = © or
0=e0,.
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Figure 5.5 Configuration “transmit two”: Qg and either W, or H transmitted.

[NTF is able to increase the parameter quality (lower f3-divergence value). Again, the
actual cost function of the decoder NTF is dg (V, | ©,) which is not shown here. Thus
it is an interesting fact that activating the decoder [NTFl with N, = 10 yields values
for dg (V, | ©4) smaller than the cost function dg (VS | (:)S) obtained with the quantized
model ©, without activating the decoder [NTF| (N;, = 0). Increasing the number of
iterations to N, = 50 () does not enhance the quality any further.

The cost function dg (V, | ©,) is decreased for N;, = 10 compared to dg (VS | (:)S) which means
that ©, models V, better than ©,. However, this behavior is not reflected in the 6 SDR values.
The small decrease of the cost function does not translate into a noticeable increase of the
separation quality. Raising the number of iterations to N;, = 50 yields an even higher devia-
tion from the optimum interference-free sources which is both reflected in the cost function
as well as the 6SDR scores. As already pointed out in Section[5.1.1], the mixing process
introduces overlap in the [TEl domain. With only the mixture V, as observation, the decoder
[NTEis not able to refine ©,, which are quantized versions of the NTF| parameters ©; learned
on the interference-free sources V;.

5.1.3.2 Parameter Estimation

In this section, the decoder is evaluated in the “transmit two” and “transmit one” configu-
rations as defined in Table and compared to the reference (N;, = 0) which uses solely
Wiener filtering.

Figure gives rate-quality curves for the “transmit two”-configuration. In this scenario,
only one parameter, either W, or H; is transmitted. A higher number of decoder iterations,
N;, = 50 (—+-), gives slightly better results for higher rates than N;, = 10 (—e—). Note that
the transmitted parameter is fixed during the update rules of the decoder[NTE. Already few
iterations are sufficient to estimate the missing parameter. Fixing the transmitted parameter
also prevents the deviation from the source model for lower bit rates as it is the case in the
“transmit all” configuration (refer to Section [5.1.3.1)). For higher rates, transmitting both

parameters as done by the reference ( ) yields better results. Here, both W, and Hj
are transmitted and contain information about both frequency and temporal behavior which
is beneficial for estimating the sources. However, the reference ( ) is outperformed at

lower rates by the proposed configuration.
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Figure 5.6 Configuration “transmit one”: Only the grouping matrix, either Q, or Q is transmitted.
Q is estimated with Equation (/5.3).
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5.1 Nonnegative Factorization of the Mixture

Figure |5.6| shows results for the “transmit one”-configuration. Here, only the grouping
information Q, is transmitted and W, as well as H, are estimated given the mixture in the
decoder without any guidance provided by the encoder. Q, is solely used for Wiener filtering.
Only the number of components per source K/J has impact on the bit rate R. The range of
the x-axis corresponding to the rate R is limited to the interval [10_2, 10_1].

* When comparing the number of iterations, it becomes clear that N;, = 50 (+) clearly
outperforms N;, = 10 (0O). In this configuration, the decoder [NTF operates blindly.
Using more iterations yields a better reconstruction as already found in [Bec16]].

e Compared to the reference (x), N;, = 50 (+) is able to operate at very low rates and
gives better results than the reference at rates in the range of [10,40] bpso (0.5dB
O0SDR gain). Already at rates higher than 40bpso, the reference outperforms the de-
coder in the “transmit one” configuration.

In Section the “transmit one” configuration is compared to the algorithm sum-
marized in Section

Comparing the lowest bit rates achieved in both configurations, it becomes clear that
“transmit one” and “transmit two” yield both comparable low bit rates. This is due to the fact
that the majority of the bit rate for “transmit two” is consumed by Q,, which is transmitted
always with high precision. At lower rates, the transmitted parameter is quantized coarsely
and needs only a small additional number of bits for transmission. Refer to Section [5.1.3.4
for a more detailed comparison of these configurations.

5.1.3.3 Comparison to Blind Source Separation

In the previous sections, the performance of the proposed decoder for the first three
configurations shown in Table[5.1]were evaluated. In this section, the configuration “transmit
one”, where only Q, is transmitted, is compared to the “blind” configuration which estimates
not only W, and H,, given the mix but also Q, mapping the [NTF components to the sources.
As already mentioned before in Section[3.3] the blind source separation algorithm [[Spi12]] is
used in this case which utilizes a feature-based algorithm to group the K components in W,
and H, to the J sources. Recall that an upper bound for the blind grouping can be calculated
as well given the original sources. This bound is also called reference grouping.

Usually, the performance is enhanced with increasing number of components K.
However, it was reported [Bec16] that the number of permutations of component-to-source-
mappings increase depending on K which makes it harder to find a useful grouping blindly.
The highest number of components/source is therefore not used. For each mix, the value
of K/J is chosen which yields the highest quality measure for the blind grouping algorithm.
This choice has no impact on the bit rate since in the “blind” setting, no [NTF| parameters are
transmitted. For the other two methods, the reference grouping and the proposed decoder
in the “transmit one” setting, optimum K /J values are determined per mix as well. For the
latter case, the choice has impact on the bit rate. Since only Q, has to be transmitted which
is small compared to W, and H, the bit rate is negligible?]

2The bit rates necessary for transmission of Q, are given as average and standard deviation in the captions of
Figures and Note that these values are different when measuring the performance with either
5SDR (Figure or 5SIR (Figure since the optimum K /J values were found yielding the highest
corresponding quality measure per mixture.
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Figure 5.7 6SDR and 6 SIR for lower bound, blind grouping, reference grouping and transmission of
Q, for each mix of test set .«
In summary, the following methods will be compared:
* Estimation of each source by the mix with Equation (2.43]).
* [NTF on mix and blind grouping [[Spi12]].
* [NTF on mix and reference grouping [Vir07]].

Proposed decoder in “transmit one” setting: [NTF on mix, Q, estimated in encoder
given the output of the decoder [NTFI

Figure |5.7|shows the results comparing these methods measured in 6SDR and 6SIR. The
following observatlons can be made:

* The blind grouping algorithm gives better 6SDR results than the estimates given
by for all but two mixtures (1 and 9). In terms of §SIR, the blind algorithm is
able to perform better than the lower bound for all mixtures. It should be mentioned
that taking the mix as estimate, as done for yielding the lower bound, is worse in terms
of 6SIR, measuring source interference, than in terms of §SDR. Therefore, it can be
expected that it is easier to outperform the lower bound by means of than for[SDRI
Note that in only mixtures with J = 2 sources were used to optimize the blind
grouping algorithm and its parameters used here. The parameters of the blind group-
ing algorithm were not optimized for the usage in[[SS|but used as provided in [|Spi12]]
for the case with J = 2. This means that even with this sub-optimum parameter
choice, the grouping algorithm as used in the proposed decoder in the “blind” setting
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Figure 5.8 6SDR for lower bound, blind grouping, reference grouping and transmission of Q for

mixes consisting of J = 2 sources.

is able to obtain separation results higher than the lower bound (2.43) in many cases,
with no transmission of parameters. To make the comparison more fair to the blind
algorithm, results for separating mixtures of only J = 2 sources will be given further
below.

* Comparing the reference grouping to the “transmit one”-performance, it becomes clear
that estimating ©, with Equation gives similar results. This is very interesting for
the evaluation of blind grouping algorithms in general as the hill climbing approach
which is used for obtaining the reference grouping is more time consuming than the
10 [NTF iterations performed to obtain Q,.

* The bit rate needed for the transmission of Q, amounts for both scores to R &~ 65 bpso
(K /J is optimized for both scores independently). As found in Section[5.1.3.2} the pro-
posed decoder in the “transmit one” configuration is only competitive to the reference
algorithm for rates smaller than 40 bpso. In this section, the optimum number of
components per source K /J is chosen for the “transmit one” configuration based only
the quality score (and thus neglecting the rate) to make a fair comparison to the refer-
ence grouping and the blind grouping. However, limiting K /J to yield bit rates around
40bpso yields in a decrease for 6SDR of only —0.31 + 0.16dB.

Since the parameters of the blind grouping algorithm were optimized for J = 2 sources per
mix in [[Spil2], another evaluation is conducted to make the comparison more fair: For each
of the ten songs of test set .o/, mixtures are created consisting of only two sources. Only
sources of the same song are mixed. The number of mixtures per song originally consisting
of J sources is N, (J) = @ This results in a total number of 125 mixtures.

Figure [5.8| shows 6 SDR values averaged over all mixtures of J = 2 sources of each song.
It becomes clear that the blind algorithm is able to perform better in this scenario than
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Figure 5.9 Configuration selection for test sets .o/ and 4. If neither W, nor Hy transmitted, estimate
W,, H, with N;, = 50 iterations and refine Q afterwards. In all other cases, use N;, = 10.

in the scenario with more than two sources. Again, the reference grouping method and
transmitting Q,, obtain similar values and outperform the blind algorithm.

5.1.3.4 Configuration Selection

Since the encoder includes the decoder, as shown in Figure the encoder may also
decide which configuration the decoder should use. The configuration selection is taken
into account for rate-quality optimization as summarized in Section[2.8.2] The encoder can
decide between the configurations “transmit one”, “transmit two”, “transmit all” and “skip”.
For the first two configurations, W, and/or H, are estimated with N;, = 50 iterations. For
“transmit all”, the number is lowered to N;, = 10 and for “skip”, no decoder [NTF iterations
are performed, hence N;, = 0.

Figure shows the corresponding results, evaluated on both test sets .of and 9. As
quality measures, 6SDR and 6SIR are shown on the first and the second row, respectively.
As already shown in Figure for the “transmit one”-configuration, the decoder NTH (—¢-)
is operating at lower bit rates than the reference decoder ( ). It also outperforms the
reference at rates up to 10~2kbpso. This results in gains for 6SDR of more than 0.5dB for
test sets . and %8. Regarding 6 SIR, gains of up to 3dB can be achieved. At higher ranges,
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5.1 Nonnegative Factorization of the Mixture

the reference encoder yields slightly better results, as already explained in Section
This means that the encoder decides to skip the[SBSS|algorithm in the decoder in these cases.

Figures and show the same results for test set .«/ as Figure[5.9} the encoder can
still decide which configuration to use. Here, each optimum rate-quality-point is shown and
marked with respect to the chosen configuration. In Figure 0SDR and in Figure
OSIR is chosen as quality measure. The plots are combining rate-quality points for three
configurations, namely “transmit one” (+), “transmit two” (0O), “transmit all” (¢), and “skip”
(7) in comparison to the reference encoder without the decoder[NTE| (< ). In addition to that,
quality measures for both lower bound, calculated with Equation (2.43|), and for the “blind”
estimation are given. As done for yielding the results shown in Section the
algorithm is evaluated for each mix and for K/J € {1,...,10}. For each mix, the maximum
quality measure is selected. This means that the encoder has to send only the optimum
number for K/J.

The “transmit one” (+) and “transmit two” (O) configurations are chosen at lower bit
rates, enabling lower bit rates than the reference () and increasing the separation quality
significantly. When optimizing 6 SDR, the “transmit one” (+) configuration is often chosen at
very low bit rates and outperforms the blind grouping (—#--) for most mixtures. This is not
the case when choosing the configuration by means of § SIR. Here, “transmit one” is chosen
less and is outperformed by the blind grouping in most cases. Although only the grouping
information Q, has to be transmitted in this case, the “transmit two” (O) configuration per-
forms better at low rates for 6 SIR than for 6SDR and is hence preferred in the configuration
selection: In this configuration, Q, and either W or H; is transmitted. To increase 5SIR,
measuring interference of the other sources, extra information of either frequency or tempo-
ral behavior is highly beneficial. Assume e.g. the transmission of Q, and a binary temporal
activation H indicating if a source is active at some time bin or not. This information directly
prevents the activity of other sources in time bins where the current source is active. This is
the reason why “transmit two” (O) outperforms the blind grouping (—#*--) already at very
low rates and makes the “transmit one” (+) configuration unnecessary.

In only some cases, the “transmit all” configuration (¢) is chosen, yielding higher quality
around rates of 10~ kbpso. The reason, why this configuration is not chosen more often, is
the deviation of the decoder [NTF as already pointed out in Section This is the same
reason why the decoder [NTF| is often skipped () at rates towards 1kbpso which means
that falling back to solely Wiener filtering gives better source estimates than refining the
quantized parameters with the decoder [NTEL
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5 Parameter Re-estimation at Decoder
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Figure 5.12 Quantized-matching. The decoder [NTF model ©y is constrained in the quantization
domain.

5.2 Decoder NTF Constraints

In Section an [NTF was introduced to the decoder, enabling estimation of missing
parameters or operating blindly. In the case where all [NTF| parameters are transmitted to the
decoder, the decoder[NTH is not able to refine the quantized parameters any further. Instead,
the decoder [NTE model deviates from the quantized source model and is therefore
not able to yield higher separation results compared to the quantized model as observed in
Section[5.1.3.1] The higher the number of decoder NTFl iterations, the higher the deviation.
This can be explained by the fact that the decoder [NTF| estimates its parameter given only
the mix, whereas the encoder [NTFl is given the interference-free sources as input instead.

In this section, a constraint on the decoder [NTF| preventing this deviation as proposed
in [RLB17] is discussed. The quantized encoder [NTFl parameters ©, are not only used for
initialization but also for constraining the decoder during its parameter updates. The
main idea here is that @ is the result of quantizing the interference-free source model ©,
which the decoder [NTF tries to recover, given the mix and ©,. When quantized, the decoder
parameters ©, should match ©, as much as possible. Directly constraining ©, being
close to the quantized encoder parameters ©, would yield in an unnecessary quantization of
©,. Instead, a quantized version of @, is constrained to match © as much as possible. This
can be interpreted as a constraint in the quantization domain, providing as much freedom
of learning ©, as possible while constraining it only when it is quantized to match ©,. This
procedure is called quantized-matching in the following and is depicted in Figure [5.12

In the encoder, ©; is learned with the source spectrogram V, as observation and quantized
in a subsequent step yielding ©, which is transmitted to the decoder. Here, ©, is re-estimated
with ©; as initialization. To yield multiplicative update rules for the proposed constraint,
the quantization characteristic has to be approximated by a differentiable function f (2).
This function is further explained in Section Applying f (z) on the parameters to-be-
updated yields soft-quantized parameters W, and H, which are differentiable with respect
to W, and H, to yield constraint update rules. This derivation is outlined in Section [5.2.2]
In Section a preliminary evaluation of the proposed quantized matching constraint is
conducted. The constraint is finally evaluated experimentally in Section |5.2.4

Note that other constraints on the decoder [NTF steering the at run-time were pro-
posed in [RB16]. In addition to the quantized source [NTF model, some prior information
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5.2 Decoder NTF Constraints

Figure 5.13 Soft quantization. The quantization characteristic q (z) is approximated by differentiable
soft quantization curve f (z).

about the [NTE| components is transmitted to the decoder. It is shown that this variation is
increasing the performance of the decoder NTEL The separation quality of the reference de-
coder, using solely Wiener filtering, is not met however. Therefore, these constraints are not
further discussed here.

5.2.1 Approximation of Quantization Characteristic

This section deals with an approximation of the quantization characteristic which itself is not
differentiableﬂ In [RLB17], it was proposed to approximate the quantization characteristic
by a differentiable function, namely the logistic function. The quantization characteristic
is approximated piecewise in the interval between two reconstruction values c,_; and c,
with midpoint centered at the quantization boundary between the two reconstruction values

Cg—1

+c . . . .
2o = e, = “5—. The so-called soft quantization curve is given as

f(z)=zo+%[ [1+exp(—§§ (z—zo))]_l—% :| (5.4)

—fo(2)

with midpoint of the logistic function centered between two reconstruction values z, =
q(z)+ %sgn (z —q(2)), quantization characteristic g (z) given in Equation (2.22)) and steep-
ness parameter {. The difference between the two reconstruction values is denoted with
A =c,—C,4. The factor d = [1 +exp (=T ' =[1+exp(Y] " scales f,(2) to ensure con-
tinuity at the corner points (lower and upper reconstruction value). The soft quantization
curve can approximate all scalar quantizers discussed in Section [2.3] The derivative of f (z)

can be expressed as
o
L8 X N -4, 5.5

with the unscaled version f,(z) of f (2) given in Equation (5.4). The derivative is further
used in Section to yield multiplicative update rules for the constraint.

3Constraining the [NTF parameters to be close to their quantized version given directly by the quantization
characteristic q (z) would yield in degenerated update rules since the derivative yields either 0 or co.
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5 Parameter Re-estimation at Decoder

Figure shows an exemplary quantization characteristic q (z) ( ) as well as the
proposed approximation f (z) with { =5 and { = 10. The soft quantization curve is approx-
imating the quantization characteristic better with larger steepness factor { = 10 (— —) than
with { =5 (—).

5.2.2 Constraint Formulation

In the following, multiplicative update rules for the quantized-matching constraints are de-
rived. As a first step, the parameter quantization process in the encoder (3.6) with A-law
companding is given again as

W, =C, ' (q[C,(W))D), Hy=C,  (q[Ca(H)D.

Note that q(z) is either a uniform scalar quantizer with A > 1 or an quantizer with
A = 1. In [RLB17]], the companding was carried out by taking the logarithm whereas the
expanding was obtained by using the exponential function. The corresponding equations are
given for the sake of completeness in Appendix [Bl The quantization procedure is emulated
in the decoder where q(z) is replaced by the soft quantization curve f (z) as defined in
Equation (/5.4)

W, =C (f [CA(W)D), Hy=C' (F[Ca(HID (5.6)

yielding soft-quantized parameters W, and H,, gathered under 6.
The cost function of the decoder [NTF as given in Equation (/5.2) is extended by the pro-
posed quantized matching constraint

min d, (Ve [V () + vam [dp (W, | W, ) + dp, (A | H, ) ] (5.7)

penalizing the differences between the quantized source parameters W and H and the soft-
quantized parameters W, and H, with the f3-divergence. The corresponding parameter is
denoted as 8’ not to be confused with the value /3 of the reconstruction term dj (VX |V, (@x)).
The scalar y,, = 0 weighs the influence of the constraint on the total cost term with y, =0
deactivating the constraint completely. Due to complexity reasons in the encoder, the cost
functions for both parameters W, and H, are weighted jointly with y,. To formulate update
rules minimizing (5.7)), it is necessary to derive the soft-quantized parameters (5.6) with
respect to the [NTFparameters W, and H, in a first step. The derivative of is dependent
on the derivative of f (z) as given in Equation (5.5 and the derivatives of the companding
and expandjng functions C, (z) and CA_1 (2) as given in Equations and . In the
following, W, is differentiated with respect to W,. The derivatives for H, can be obtained in
the same manner. Using the chain rule yields

VWXWX = vf[CA(Wx)] CA_1 (f [C (Wx)]) : vCA(WX)f [CA (Wx)] : vWXCA (Wx)

which is then split up into positive and negative gradient terms as

v;'/—\])(‘7VX = 26.1_Cf0 (CA (Wx)) . vf[CA(WX)]CA_l (f [CA (Wx)]) : vWXC'A (Wx) > (58)
Ve W = 222G WD) V1 G O LG (WD ¥,y G,
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5.2 Decoder NTF Constraints

fo(W,) is the unscaled version of f (W,) as defined in Equation (5.4) and the derivative
of f (z) is given in Equation (5.5). Using the gradient terms of the soft quantized param-
eters (5.8) and the gradient of the f-divergence as given in Equation (2.17) yields finally
positive and negative gradient terms for the proposed quantized-matching constraint

Vi dy (W, | W,) =V, W, - W 4+ vy, W, - W, - WP 2
Vo dps (W, | W,) =V, W, - W 4+ 05, W, - W, - WP 2
which are used for updating W, in a multiplicative manner as already shown for the [NTF re-
construction cost function in Section As previously mentioned, the gradient terms for
updating H, are derived in the same way. The multiplicative update rules minimizing (5.7
are extending Equation (2.20) where only the reconstruction cost (2.18) between input V,
and the [NTF approximation V, (6,) is minimized

Ve dp (Vi | Vi) + 7qm Vi d W,
W, o« W, /5( |A) Yq /3(_ |N) 5.9)
V+ dﬂ( | X) +quv¢vxd/5’( s | X)
H VvV, dﬁ( |\A/ )+quvﬁxd/§/ (I:Is | Iilx)
X A X A — ~ .
Vi dp (Ve [ V) + 7qm Vi dp (H | Hy)

5.2.3 Preliminary Evaluation

In this section, the influence of the steepness parameter { of the soft quantization curve
as given in Equation (5.4) on the constraint cost function is evaluated. Here, the
constraint is not yet implemented in the decoder [NTF but evaluated for scalar values of w,
and wy as d, (w, | w,) with soft approximation w, = f (w,) given in (5.6).

Figure shows the constraint cost function d, (w, | W) (upper row) and its gradient
aiwxdz (wg | wy) (lower row) for fixed scalar wg = 1 (left column) and w, = 3 (right column)
and for two different steepness values ¢ € {5, 10} as already used in Figure[5.13]

It becomes clear that the cost function d, (wy | W, ) has more obvious plateaus around all
reconstruction values for { = 10 (— —) than for { =5 (——) as shown in Figures
and These plateaus translate into the cost function gradient being close to zero in
these regions as depicted in Figures|5.14d|and |5.14¢, This behavior is desired for the region
around the target reconstruction value wg: Once the parameter w, is lying in the quantiza-
tion interval, the constraint is deactivated by design. This ensures freedom of the parameter
re-estimation process of the decoder[NTEL For all other reconstruction values, these plateaus
yield in the constraint being ineffective, especially for { = 10: Values w, lying in a quantiza-
tion interval corresponding to another reconstruction value are not forced towards the target
wg because the constraint is deactivated here as well. In contrast to this, the gradient still
points towards the true reconstruction value wy for { = 5: It can be seen in Figures
and that the gradient is negative for w, < w, and positive for w, > wg for { = 5
(—). For { =10 (— —), this behavior is only visible close to the quantization edges since
the previously mentioned plateaus are wider.

The cost function and its gradient are depicted for two different target values wg € {1, 3}
to show that the plateau is only present around the target reconstruction value w, for { = 5.
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Figure 5.14 Quantized matching cost functions for soft quantization curve in Figure m
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5.2 Decoder NTF Constraints

5 5SDR 5SIR
N,=50 N,=50,QM N,=50 N,=250,QM
—1.81 —22.49
1 51.86 —11.35 32.52 —11.34
—13.60 —6.24

Table 5.2 reduction in % with respect to the reference decoder with N;, = 0.

E.g. for target wg, = 3, there is no clear plateau of the gradient around w, = 1 as shown in
Figure For wg = 1 as depicted in Figure [5.14d there is no plateau near w, = 3.

In summary, even though the soft quantization curve yields a more accurate approximation
of the quantization characteristic for larger values of , the corresponding constraint cost
function may not prevent some entries of W, being in the wrong quantization interval in
this case. In the following, { =5 is chosen.

5.2.4 Experimental Results

In this section, the proposed quantized-matching constraint is evaluated. The parameter
values for K/J and N, are chosen as given in Section The decoder [NTE| is tested in
the “transmit all” configuration. As already discussed in the beginning of Section and
shown experimentally in Section this configuration, with no additional constraints,
is not able to refine the transmitted parameters. Here, the impact of the proposed constraint
is evaluated with constraint weights chosen as y, € {0, 107%,..., 105} and steepness factor
{ =5 as discussed in Section[5.2.3]

In a first experiment, the value of ' is evaluated selecting the corresponding cost func-
tion (5.7), namely for ' € {0,1,2}. A-law quantization with A = 10 is chosen. Table
displays values calculated with respect to the reference with N, = 0. When using
6SDR as score, it becomes clear that the Euclidean distance (3’ = 2) as cost function per-
forms best. The Euclidean distance is the only symmetric distance considered here. As shown
in Section this cost function punishes values which diverge to the left or to the right
of the target reconstruction value to the same amount. This property yields less distortion
between original and estimated sources as measured by 6 SDR. As shown in Figure the
other two considered cost functions, especially the [S] distance (f’ = 0), do not have this
property and lead to a higher distortion.

Contrarily, when measuring the interferences coming from the other sources with 6 SIR, the
distance (3’ = 0) yields the highest bit rate reduction while the Euclidean distance yields
the lowest one. This can be interpreted as follows. It is important that zero entries in W, and
H, stay zero during the update rules of the decoder [NTF to prevent the subsequent Wiener
filter from introducing extra interferences. These entries indicate inactivity of the component
k at the corresponding frequency bin f or time bin t. Whenever the target reconstruction
value is equal to zero (in either Ws or I:Is), the [S|distance ensures that the parameter values
estimated by the decoder [NTF| stay close to zero: The term —log§ in the 3-divergence for
B = 0 (refer to Equation (2.16)) already punishes small deviations of y (corresponding to
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Figure 5.15 Results for quantized-matching.

the parameters W, or H,) from x ~ 0 (corresponding here to the target reconstruction values
in either Wy or Hy). Note that for 8’ = 1 (KL divergence), the previously considered term
is also present but scaled by x, —x log ;, which yields lower cost function values for small
values of x.

In summary, 3’ = 2 yields the best results measured with §SDR because of the Euclidean
distance’s symmetry. In contrast to this, when using 6 SIR as score assessing interferences,
B’ = 0 performs best because the [[S| distance punishes deviations from zero entries in the
transmitted parameters W, and H,. In the following, 3’ = 1 is chosen as a trade-off as it
leads to comparable rate reductions to 3’ = 2 for §SDR and slightly less reductions than
B’ =0 for 6SIR.

In the next experiment, two different quantization scenarios are considered to show that
the constraint does not only work with A-law companding. In the following, either A-law
quantization with A = 10 or [LMlis used. For both quantizers, rate-quality curves are given
for the reference decoder, using solely Wiener filtering, and the unconstrained decoder NTH
(Yqm = 0) with N;, = 50 iterations. These methods are compared to the decoder NTH with

N;, = 50 iterations and the quantized-matching constraint activated (y, = 0).

Figure shows results with both 6SDR (left column) and 6 SIR (right column) as scores
for A-law companding with A= 10 (upper row) and [LM| quantization (lower row).
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5.3 Summary

* As already discussed in Section [5.1.3.1}, the decoder with N, = 50 iterations
(—e—) yields worse separation results than the reference decoder ( ).

* Regarding 6 SDR, activating the proposed constraint (—+-) yields gains of about 1dB
compared to the decoder [NTF with deactivated constraint (—e—) for both quantiza-
tion methods. This means that the proposed constraint is able to force the factorization
in the right direction and prevent the aforementioned deviations. The reference de-
coder ( ) is outperformed as well: The gains are smaller in this case compared
to the gains with respect to the decoder [NTE. This translates to a reduction
with respect to the reference of about —11.35% for A-law companding (as shown in
Table and —12.17 % for LM]

* When measuring the performance with 6SIR, the constraint (—+-) also yields better
results compared to the unconstrained decoder (—e—). The reference is outper-
formed for very low bit rates ( ) more clearly than for higher rates. In the latter
case, the inactivity information provided by the quantized [NTF matrices, which are di-
rectly used for Wiener filtering by the reference, is sufficient to prevent interferences.

In terms of bit rate, the proposed constraint comes for free since no extra information needs
to be transmitted. The computational complexity of the decoder is however slightly increased
since the constraint needs additional computations for the multiplicative update rules given
in (5.9). For both considered quality scores and both quantization methods, the proposed
constraint is able to enhance the separation quality of the reference. Regarding 6 SDR, the
gains are rather small. However, the constraint is able to prevent interferences better than
the reference method at rates smaller than 10~! kbpso.

5.3 Summary

In this chapter, the reference decoder was extended to comprise a full BSSalgorithm which
also usesNTF, this time with the mixture as observation. This scheme was called Semi-blind
Source Separation (SBSS). This decoder [NTE was compared to the encoder [NTE, taking the
original sources as input. Adding the [NTF| to the decoder enables different configurations
which are selected based on the amount of transmitted data.

In the “transmit all” configuration, all parameters are transmitted to be refined by the de-
coder. During evaluation, it became clear that this configuration does not yield better results
than directly using Wiener filtering because the decoder with mixture as observation
deviates from the (optimum) encoder [NTE results. This shortcoming is addressed by the
quantized-matching constraint summarized further below. One or two [NTE| parameters are
omitted from transmission in the “transmit two/both” configuration. The decoder is
able to estimate the missing parameter(s) and yields better separation results at very low bit
rates. It became clear that the considered algorithm, which is used in the case where
no parameters are transmitted at all, is not performing well enough for mixtures with more
than J = 2 sources. This problem influences the performance of the proposed algo-
rithm as well as it is a modified version of the algorithm. Although very low bit rates
are achieved and the reference method is outperformed at low bit rates, the corresponding
quality at these rates should be evaluated more thoroughly.
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5 Parameter Re-estimation at Decoder

Additionally, a constraint was proposed in Section constraining the mixture [NTE|
model in the quantization domain. Since the transmitted parameters are quantized ver-
sions of the optimum encoder parameters, the quantized versions of the decoder parameters
are constraint to be as similar to the transmitted parameters as possible. It was shown that
this quantized-matching constraint works for different quantizers and is able to prevent in-
terferences from other sources better than the reference at lower rates.
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6 Residual Parameter Coding

Wiener filtering, as used in the reference decoder and the decoder proposed in Section
introduces artifacts because all resulting source estimates contain the mixture’s phase. Re-
estimation techniques, as discussed in Section can refine the source estimates, even
without transmitting any extra bit rate. However, the basic idea in this chapter is to transmit
residuals, indicating the[TF|positions where the error between original and estimated sources
is especially large. It is important to note that the re-estimation techniques work well only if
the source magnitude spectrograms are estimated with a sufficiently high quality. Therefore,
the [NTEFI model should be estimated and quantized with high precision.

In Section [6.1], the calculation of phase errors between the original sources and the Wiener
filter estimated sources is discussed. This error can be interpreted as a phase residual be-
tween the original phases in the encoder and the mixture’s phase used in the decoder. It
is furthermore proposed in Section to quantize this error information, transmit it to the
decoder and use it for refining the phases obtained by Wiener filtering in the decoder. As
mentioned before, the magnitude was assumed to be estimated with sufficient quality. This
assumption can not be met completely in practice. The transmission of a complex residual,
containing both magnitude and phase information, is therefore considered in Section |6.3
These procedures are finally evaluated in Section |6.4{ and summarized in Section |6.5

6.1 Phase Residual

Given the original sources S and the Wiener filter estimates S, obtained in general with (2.33)
and in case of the NTF with (2.36)), the phase error between S and S can be calculated as

exp(14s7,)
Prei =4 - 6.1)
with phase of the original source /s, . and phase of the Wiener estimate £§, . = Zx_  for

all j. This error ® is an N, X T x J real-valued tensor with elements —m < ¢ fej <o In
general, residuals in the [TF|domain, as holds true for &, are of size N,y x T xJ which is com-
parable to the size of the original sources in time domain as discussed in Section This
means that transmitting this data has to be handled with care to avoid large bit rates. Here,
two steps are considered: First, recall that[TFlrepresentations are usually sparse. This allows
for masking the magnitude spectrograms S and S prior to calculating ® with . Values
below a certain magnitude threshold are ignored. Phase at [TH points with a magnitude
close to zero behaves completely random and the influence of these [TF points on the sep-
aration quality is very small. Second, a very efficient quantization method, Rate-distortion
Optimized Quantization as summarized in Section is used for quantization
which minimizes not only the quantization distortion but also the bit rate. The application
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Figure 6.1 Phase residual and corresponding quantization characteristic.

of on @ is detailed in Section[6.2] For now, it is assumed that it is possible to quantize
® efficiently which yields a quantized version of ® denoted as ®. At the decoder, the phase
of the Wiener estimate S, which is by design of the Wiener filter the phase of the mixture X,
can be refined as

éf,t,j = ‘if,t,j exp (] (ﬁf,t,j) (6.2)

with magnitude and phase of Wiener estimate as §;,; = |§ | i and 45, ; = £Lx e This
refined estimation may be then subject to a subsequent re-estimation step as evaluated in
Section replacing § with § as input of the re-estimation algorithms. Figure shows
these complex values for one (f, t, j) point.

It is possible that the phase error is large for more than one source at a given [TF bin.
Exploiting this redundancy is left for future work.

6.2 Quantization of Phase Residual

As mentioned in Section[6.1] the quantization of ® has to be handled with care, since ® holds
N,, x T xJ elements. In the following, only cases with small numbers of reconstruction val-
ues, denoted as N, are considered. Additionally, it is proposed to use Rate-distortion Op-
timized Quantization (RDOQ), as summarized in Section thus minimizing the quan-
tization distortion and the rate to transmit the corresponding quantized data jointly. The
criterion (2.28) is given again as

crit=D + AR. (6.3)

Equation is dependent on the Lagrangian multiplier A which adjusts the impact of the
rate on the total criterion. The proposed approach to minimize this criterion is quite simplis-
tic. The criterion (6.3) is minimized locally for each [T point and each source: For each ele-
ment ¢ . ; of ®, each of the N, reconstruction values c, is considered with 1 < g < N ;.
The criterion is evaluated for each combination of ¢, ; and c, and the reconstruction

value which yields the lowest value for the criterion is chosen for representing the current
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Figure 6.2 Histograms of both phase and phase error for an exemplary mixture.

element ¢, ;. The corresponding quantization index is stored in the N, x T x J tensor G
with each element 1 < g, ; < N ;. The reconstruction values c, are predetermined as uni-
formly spaced in the interval (—m, 1] where the values 0 and 7 are always represented as
shown in Figure[6.1b] During the process, the reconstruction values are not modified.
In the following, the considered measures for D and R are discussed to calculate (6.3)).

For deriving a measure for the distortion, the error between original source s fi and

the refined estimate §, . as calculated with |l in the decoder is consideredﬂ, namely

€s.; =8;,;—3;,asdepicted in Flgure The distortion is then evaluated as the squared

magnitude of this error term,

2

— * 2 ~2 ~
=€, i€t = St + St 285 i8¢ COS (qbf,t,j — cg) (6.4)

D=|

e, .
=f,t,]

with s, = |§ | i and 5, ; = |§ | i denoting the magnitude of the original source and the

Wiener estimate at[TF point (t, f) and c, the currently evaluated reconstruction value. The

phase error ¢, ; is calculated according to Equation . Note that the magnitudes of the

original and estimated sources are taken into account in the distortion term (6.4) as well,

yielding a masking of [TF| points depending on the value of the Lagrangian multiplier A.
The rate R is estimated with the entropy of the quantization indices

Nq,res
R=—>p,log,p, (6.5)
g=1

where the probability p, is estimated at run-time with a histogram of previously chosen
reconstruction values 1 < g, ; < N . To yield a better estimate, ® is quantized with a

! Another derivation is obtained by integrating the squared error between two cos-signals in time-domain with
amplitudes a, b > 0 which have a phase shift ¢

1
f [acos(2mt) — beos(2nt + ¢)]* dt = a® + b% —2abcos(¢).
0
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6 Residual Parameter Coding

Algorithm 6.1 Rate-distortion optimized phase error quantization.

Input: phase error ®, magnitudes of original sources S = | S | and Wiener estimated sources
S= | S|, number of reconstruction values Ng res> Lagrangian multiplier A
Output: quantization indices G, reconstruction values c
1: choose N, ., reconstruction values c, equally spaced in (—7, 7], quantize ¢ with uniform

quantization yielding initial quantization indices G

1nit
2: calculate initial histogram h of values stored in G

3: for each element ¢, ; of phase error  do

4:  Crity, = 00

5. for each quantization index g in {1, Ginit f,t.j — 1> Ginit f.r.j> Ginit.fe,j T 1} do
6

calculate rate R with Equation Il where probabilities p, = 5 £ and modified
8" g’

local copy of histogram h’ =h with h/, =h, +1

7: calculate distortion D with Equation (6.4)
8: crit=D+ AR
9: if crit < crit,, then

10: save crit,,, = crit and g, = g

11: end if

12:  end for

13:  update histogram as hgopt = hgopt + 1 and store quantization index g, ; = gop
14: end for

15: return reconstruction values ¢ and quantization indices G

uniform quantizer prior to with reconstruction values equally spaced in (—m, 7] as
depicted in Figure The corresponding quantization indices are used for initializing the
histograms estimating p gﬂ Exemplary histograms of both ZS and @ are shown in Figure
The nonzero elements of ZS are uniformly distributed whereas the elements of ® are more
likely to be closer to zero.

Evaluating for each [TH point and each source yields a decision which reconstruc-
tion value to use. The histogram is then updated accordingly and the chosen quantization
index is stored in g; . ;. The proposed process for quantizing ® is summarized in Al-
gorithm The resulting quantization indices, stored in tensor G of same size as ®, are
finally coded with an adaptive arithmetic coder (cf. Section .

Note that not all N, ., quantization indices are tested for minimizing . To limit the
computational complexity, only the quantization indices are tested which correspond to re-
construction value zero (g = 1), the quantization index obtained by the uniform quantizer
(which functions here as an initial guess), and quantization indices corresponding to the two
neighboring quantization cells to the left and to the right of the quantization cell found by

2Note that[CABAC was tested for encoding G and for estimating the rate R instead of . For very sparse G,
at lower bit rates, entries g¢ . ; = 1 corresponding to reconstruction value zero are very probable.
adapts to this structure and the corresponding state machine frequently remains in the state with best
adaption. However, [CABAClis limited by the precision of the discrete probability values and needs to write
out fractional bits each time the state machine remains in this state. Therefore, Equation is preferred
for estimating R. An adaptive arithmetic coder is used for coding the resulting quantization indices G. Using
for encoding G is still feasible if very long runs of g, ; = 1 would be signaled beforehand.
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6.3 Generalized Complex Residual

§ § s

(a) Phase residual. (b) Magnitude residual. (c) Complex residual.

Figure 6.3 Error terms between original source s, . ; and Wiener estimate §. , ; at a given [TH point
and source j. Error e €t between s S . and refined estlmate 8¢ j marked in red, transmitted residuals
in blue. Subscripts (f, t, j) omitted.

the uniform quantizer. This scheme limits the computational complexity and yields the same
quantization results as obtained with a full search over all N, indices.

6.3 Generalized Complex Residual

Sections and dealt with phase errors, implicitly assuming that the magnitude of a
source at a given [TF point was estimated well enough. Contrarily, this section deals with a
more general case, taking also magnitude errors into account. This leads to the transmission
of a complex residual. For quantizing the residual, is considered again as previously
used for the phase residual in Section[6.2] In the following, three different cases are consid-
ered, namely the transmission of only a phase residual as already discussed in Section
of only a magnitude residual, or of a complex residual, consisting of both magnitude and

phase. In all cases, the distortion for one [TF point and one source j to be used for RDOQ)]
2 2

with refinement § $; dependlng on the residual

e...| =1s;,.—8, .
)—f,f,l ‘—f,t,l =fotij
and given below. The rate R is estimated with the entropy of the quantization indices as al-
ready discussed in Section [6.2] Figure [6.3shows all three cases which are also summarized
in the following:

is calculated as D =

1. Only the phase residuum is transmitted as already discussed in Section[6.I]and shown
in Flgure ﬂ At the decoder, the phase of the Wiener estimate 5, . . is refined as

1.6,
éf,t,j = SNf’t’j eXp (] [L‘if,t,j + d)f’t’j])
which yields the distortion term given again as

2

D=]|s

Seej TS0

f ej T sf rj 2571851, COS (¢f,t,j - ¢f,t,j) .

The reconstruction values are equally spaced in (—, w] and not modified during the
RDOQ] process. The histogram for estimating R with the entropy of the grouping in-
dices is initialized given the grouping indices of scalar quantization of ¢, , ; as given
in Equation (6.1)).
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6 Residual Parameter Coding

2. Only the magnitude residuum is transmitted. In this case, the phase of the estimated
sources is not changed. The magnitude residual can be calculated as

Fre = 57,0708 (@r.0;) =50

where the first term, s;, ; cos(d) I J) is the projection of s See;on S, . as shown in

5]
Figure and ¢, ; the angle between s, . and §, ., cf. This residual is

quantlze Wlthand transmitted to the decoder where the refinement is obtained
given the quantized residual 7, ; with

8105 = res+Fres)exp (145, )
For quantization of r;, ; with[RDOQ], the distortion is measured as

2

D =52 i+ (res+ Fros) =250 (S + Froy) cos (7).

)‘Ef,t,j TSfe

The reconstruction values are obtained by quantizing r;, ; with LM which also yields
quantization indices for initialization of R.

3. Both magnitude and phase residuals are transmitted. The complex residual is calcu-
lated asz. . =S$;, ;—S. .asshowninFigure6.3¢ Atthe decoder, the Wiener estimate

is reﬁned w1th the quantized version 2

f,t, =f, t,J —f,t,j

;T2 (6.6)

—f t,j —f =fit,
For quantization, the complex residual is expressed as g Zp.; = Bf,0j€XP ( JY e J) with
magmtude z;.; and phase v, ; (not to be confused with the angle between s Sii and
_f,t,j, ¢.;). Quantization then yields quantized versions of magnitude and phase,
denoted as z;, ; and 7, ;. For a joint quantization of magnitude and phase with[RDOQ}

the distortion between original source s, . . and refinement $ . . is taken as

=f.t,j 2f,t,j

2

6.7)

D= ‘ ST [ ‘if,t,j +\§f,t,j €xp (]?f,t,j) ]

=z, .
=f.t,j

In this thesis, the same number of reconstruction values for ;. ; and ¥, ; are used
and denoted as N, The reconstruction values corresponding to %, ; are obtained

q,res*
with LMl with )Sfu Siej

initializing the histogram for the rate term. The reconstruction values for ¥, ; are
uniformly spaced in (—=, ]. The rate portion spent on the transmission of v, ; is
initialized with quantization indices which are calculated with uniform quantization

of £(s

‘ as input. This also yields quantization indices used for

—f t,j §f,t,j)‘

During the proposed procedure, especially case |3 a complex residual for each source and
[TF point is transmitted. As previously mentioned in Section coherence of complex er-
rors is not considered in this thesis. However, other more sophisticated methods exist: In
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[Oze+13|], a residual based on transform coding is transmitted as summarized in Sec-
tion[3.1.3] For each[TH point, all sources are considered jointly and transformed by means of
the Karhunen-Loeve Transform (KLT) where the transformation matrix is calculated given
the same [NTF| model already used for Wiener filtering. This approach exploits the depen-
dencies of the sources given the mixture as observation. Note that an computation for
each[TH point in both encoder and decoder are required here. In contrast to no further
computations are needed in the decoder of the proposed method. The residual is simply
added to the Wiener estimate as shown in Equation (6.6)). This means that compared to the
costly computation for each [TF| point, the computational complexity of the proposed
refinement in the decoder is negligible. The authors of [[Oze+13]] provide MATLAB code
which is used in the Section The bit rate for the residual however is not measured with
an actual coding step but rather estimated given by the underlying theoretical framework
assuming scalar quantization and an arithmetic coding step. It is important to note that the
proposed [RDOQ}based method can be extended to exploit correlation between the errors
and is also applicable in the domain.

6.4 Experimental Results

In this section, the proposed residual calculation and quantization methods are evaluated.
Regarding the chosen parameter configuration, it has to be mentioned again that the [NTE
parameters modeling the source magnitude spectrograms have to be transmitted with high
precision, therefore N, = 28 reconstruction values are used throughout this section. The
parameters are quantized in the logarithmic domain again, cf. (3.3)). For the same reason,
the number of components per source is evaluated in a wider range K/J € [1,2,...,30].
For the Lagrangian multiplier is set to A € [10%,10%,...,10°%]. Test set .o/ is used
throughout this section.

The experiments are structured as follows. In Section the transmission of the
phase residual is evaluated. In addition to that, the impact of initializing an exemplary
re-estimation algorithm with the refined source estimates is evaluated, too. In Section|(6.4.2]
a complex residual is transmitted and compared both to the transmission of a phase residual
and to

6.4.1 Phase Residual

This section evaluates the transmission of a phase residual as discussed in Sections [6.1
and The phase residual is quantized with A defined above and Nyres € [2,4,...,10].
Several configurations are investigated:

,res

* The phase residual @ is quantized with RDOQ)in the encoder, transmitted and added
to the phase of the Wiener filter estimates in the decoder.

* Refining magnitude and phase with as summarized in Section is activated

in the decoder as a posterior step after Wiener filtering. Note that this step comes for
free in terms of bit rate.
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Figure 6.4 Phase residual and theoretical upper bound with Wiener-estimated magnitude | S | and
phase of original sources ZS, shown at rate points R obtained for reference.

¢ The Wiener filter estimates are refined with ¢ and the resulting spectrograms are fed
into as initialization which is a combination of the two other cases above.

First, the phase residual is evaluated. In Figure the performance of Wiener estimates
§ is compared to the refined estimates § with the phase residual ® and a theoretical upper
bound: The magnitude of the Wiener estimates § = | S | is combined with the phase of the
original sources ZS. These are the optimum estimates for solely transmitting phase residuals.
To construct hypothetical rate-quality curves, it is assumed that the corresponding quality
measure is yielded at rates spent on the transmission of solely Two different quality
measures are considered in Figure namely 6SDR and 6SIR, measuring distortion and
interference.

* When comparing the results for Wiener estimates S ( ) and refined estimates S
(—e—), it becomes clear that transmitting the phase residual yields gains up to 2dB
in 6SDR and more than 7dB in 6SIR at higher rates. For high bit rates, saturation is
reached which could be overcome by increasing the number of reconstruction values

Ny res- At lower rates, the same quality is reached for both estimates.

* The refined estimates § (—e— ) reach the quality of the upper bound (—#--) for higher
rates up to a margin of 1dB for 6SDR. For 6SIR, the margin is larger, about 5 dB.

Figure [6.5] shows results for phase residual transmission in combination with the re-
estimation algorithm [CWF as detailed in Section[2.6.2]

* Enabling[CWF| (—+-) with the mixture’s phase as initialization yields gains up to 1dB
in comparison to the Wiener estimates S ( ), with no extra parameters transmitted.
The computational complexity of the decoder, however, is increased in this case.

. initialized with the refined estimates (—&-) yields again gains up to 1dB com-
pared to the refined estimates (—&—) with the phase residual and outperforms the
oracle estimator at high rates.

3Recall that the rate is spent on transmitting the model ©; which is used for Wiener filtering yielding S.
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Figure 6.5 Phase residual transmission and re-estimation with [CWFl

In summary, the transmission of phase residuals is able to enhance the separation quality
noticeably. For 6SIR, the residual transmission yields values which are even higher than the
oracle performance (6SIR > 0). It is also shown that initializing with the refined estimates
increases the quality of an exemplary reference re-estimation algorithm, [CWEF| further.

6.4.2 Complex Residual

In this section, transmitting the phase residual as already evaluated in Section [6.4.1]is com-
pared to the transmission of complex or magnitude residuals as discussed in Section (6.3
Additionally, the complex residual is also compared to another baseline method, [CISS| which
is designed to operate at higher rates. For quantizing the residual, the quantizer step
size is evaluated as A € {0.5, et 104}. In fact, when evaluating the proposed com-
plex residual calculation is replaced by the residual calculation. Both residuals, the
proposed and the residual, refine the Wiener estimates S. To calculate the [KLT] ma-
trices, the quantized source [NTF| parameters ©, are fed into ©, is also used for cal-
culating the Wiener filter masks yielding S. Note that the [S] distance (8 = 0) is selected
for [CISS| which is required by the probabilistic framework. All residuals are quantized with
Nyres €[2,4,...,10].

Figure shows rate-quality curves comparing the three different residual cases, trans-
mission of a complex, a phase or a magnitude residual.

* Using the Wiener filter output as estimate ( ) is clearly outperformed by refining
the Wiener estimate with all considered residual types.

* The magnitude residual (—B-) outperforms the phase residual (—=+-) up to 1dB for
mid-range rates. For high rates, it is also outperforming the oracle estimator, again up
to 1dB.
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Figure 6.6 Comparison of different residuals.

* The complex residual (—e—) outperforms all other residuals significantly. Quanti-

zation of both residual magnitude and phase, using Equation (6.7) as joint distance
measure, yields higher quality at same rates, although both magnitude and phase in-
formation needs to be transmitted in this case. The quantizer reaches saturation for
rates higher than 20 kbpso which are not realistic for using (cf. Section [7.2)).

In the following experiment, the complex residual is compared to[CISS. Here, the number

of reconstruction values for the complex residual is extended to N,

€[2,4,...,16]. In

,res

Figure the performances of transmitting the complex residual (O) or transmitting a
transform-coded residual with [CISS] () are compared.

* The proposed method for quantizing the complex residual (O) is clearly out-
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performing the reference using solely Wiener filtering (<) as observed in the previous
experiment.

Setting A = 0 (+), which corresponds to the case where only the distortion has impact
on the overall criterion, yields worse results than using different values of A. A
reduction of about —10% is yielded when jointly minimizing rate and distortion with

Equation (6.3).

Compared to (*), the proposed method is competitive at rates around 1 kpbso.
However, [CISS|outperforms the proposed complex residual transmission at higher rates
for all mixtures. This is expected as exploits correlation of the source contribu-
tions to each [TF| point using the [KLTl The proposed RDOQ}based method quantizes
each[TF| point for each source independently and does not exploit statistical dependen-
cies. The decoder complexity however is significantly higher for compared to the
proposed method since for each [TF point a complex has to be computed.
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6.5 Summary

In this chapter, residuals between the original sources available at the encoder and their
estimates yielded by the decoder were examined. Since the Wiener filter always yields esti-
mates containing the mixture’s phase, the original idea was to indicate [TF| points with large
deviations from the original source’s phase to improve the quality of the Wiener estimates
directly or enhance the performance of a re-estimation technique.

This phase residual was discussed in Section Prior to transmission of the residual to
the decoder, quantization is needed. Since this residual is in the [TFldomain, the correspond-
ing bit rate has to be handled with care. Therefore, was adapted for quantizing the
residuals in Section However, this procedure assumes a very good magnitude estima-
tion which in practice is not the case. It was therefore proposed in Section to calculate a
complex residual instead, jointly accounting for phase and magnitude errors. The proposed
residuals were finally evaluated in Section (6.4

During evaluation, it became clear that transmitting phase residuals already enhances
the quality. A generalization of the classical Wiener filter, [CWE] was initialized with these
refined source estimates. It was shown that the initialization has a strong influence on the
performance of as the refined initialization yielded better results. It became clear in the
following experiment that transmitting not only phase residuals but also information about
magnitude errors significantly increases the quality again.

This complex residual transmission was finally compared to the performance of [CISS|
also calculating residuals in the [TFl domain. It was shown that the proposed method yields
similar performance at rates around 1 kbpso. For higher rates, [CISS]yielded higher quality by
exploiting correlation between the sources. However, [KLTIcomputations for each[TF point are
needed in the decoder for this scheme. In contrast to [CISS] the proposed method introduces
no significant extra computational complexity to the decoder. It should be also mentioned
here that the bit rates obtained by are estimated by the underlying framework. To
encode the proposed residuals, an implementation of an adaptive arithmetic coder was used
yielding the actual bit rate needed for transmission.

102



7 Complete Algorithm

In this chapter, all contributions of this thesis are summarized and jointly evaluated. The
contributions of Chapters 4/ and |5} using for entropy coding and the algorithm
for estimating parameters in the decoder, both operate at rather low bit rates and are there-
fore considered jointly as a low bit rate configuration. The proposed residual quantization
and transmission process of Chapter [f]is considered as a high bit rate configuration instead.
The algorithm in this configuration is furthermore compared to an MPEG stan-
dard for audio object coding. Finally, the influence of encoding the mixture with on
the subsequent algorithm is evaluated and compared to the case where all sources are
independently encoded with

In Section an overview over all contributions is given. The proposed algorithm is
compared to in Section In Section the influence of encoding the mixture
with is evaluated. All findings are summarized in Section [7.4

7.1 Overview

In Figure the block diagrams of the proposed encoder and decoder are displayed.
The following modifications of the reference algorithm, as discussed in Section|3.1}, are
proposed:

1. [CABAC is used to code the quantized [NTF| source model @ losslessly as discussed in
Chapter[4] [CABAC)is adapted to exploit local dependencies in the quantization symbols
depending on the proposed context design.

2. To enable lower bit rates, an [NTEF with the mixture as observation is added to the
decoder. Depending on the configuration chosen by the encoder, the decoder [NTF re-
estimates missing parameters in the quantized model ©,. This procedure is denoted
as Semi-blind Source Separation and summarized in Chapter|[5]

3. A residual in the [TF domain is calculated to correct possible errors in the source esti-
mates given by the decoder as summarized in Chapter [6] It is proposed to use
for quantizing these residuals to constrain the rate necessary for transmitting the resid-
uals. This modification does not introduce noticeable computational complexity to the
decoder.

To summarize all contributions in experiments, cases(1|and [2|are considered jointly as a low
bit rate configuration and evaluated in Section Case [3|is evaluated as a higher rate
configuration in Section|7.1.2
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Figure 7.1 Block diagrams of proposed encoder and decoder in the [TF domain.

7.1.1 Low Bit Rate Scenario

First, the low bit rate configuration is evaluated in this section. Four different cases are
evaluated:

The reference algorithm which uses GZIP for entropy coding and solely Wiener filtering
for source separation.

The proposed variant of [CABAC for entropy coding in combination with Wiener filter-
ing as discussed in Chapter is used with the bin-value based context ctx;, ;15
refer to Section for more detail.

The proposed algorithm in the decoder utilizing an [NTF| of the mixture. This
extension is detailed in Chapter [5| The algorithm is tested in all configurations
listed in Table[5.1excluding the “blind” case. This means that the decoder[NTHis either
used for refining or re-estimating parameters or is skipped in the first place. GZIP is
used for entropy coding in this case.

A combination of both contributions: [CABAC]is used for coding the parameters which
are refined/estimated by the [SBSS|algorithm in the decoder.

Figure [7.2|shows results for this lower bit rate configuration evaluated on all mixtures of
test set ./ with both 6SDR and SSIR as scores.

* As already found in Chapter 4 using (—e—) as entropy coder, which exploits
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the structure of the [NTF parameters, consistently outperforms the reference (——)
which uses GZIP as coder. GZIP was not specifically adapted to code the quantization
indices of the [NTF| parameters.
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Figure 7.2 Rate-quality curves for reference and proposed decoder with either GZIP or [CABAC as
entropy coder.

* The algorithm in the decoder (—+-) as proposed in Chapter [5 enables lower
bit rates than the reference. Excluding certain parameters from transmission and es-
timating them at the decoder also yields better performance at low bit rates smaller
than 107! kbpso. For higher rates, the algorithm is skipped which means that
only Wiener filtering is used in the decoder. Therefore, the proposed method yields
the same performance as the reference towards rates of 1kbpso.

* Combining the two contributions (—5- ), namely [CABAC for entropy coding and the
algorithm in the decoder, yields the best performance. For lower rates, a similar
performance as the algorithm detailed in Chapter |5| (—+-) is reached. Only
the grouping matrix has to be transmitted in both cases which is encoded with GZIP
At rates around 107! kbpso, the combination performs better than both contributions
evaluated separately. At rates towards 1kbpso, it reaches the same separation quality
as using without the algorithm (—e—) because in this rate range, the
algorithm is skipped (cf. Section|5.1.3.4).

7.1.2 High Bit Rate Extension

Chapter [f] dealt with the efficient quantization of complex residuals in the [TF domain. In
Section the proposed extension was compared to another baseline, [CISS, which also
calculates residuals. Here, this comparison is not repeated but the best configuration of the
low bit scenario in Section is compared to enabling residual transmission. To limit
the complexity of the experiments, the residual is calculated between original and estimated
sources obtained by Wiener filtering using GZIP-encoded parameters.

In contrast to the experiments in Section [6.4.2] evaluating the residual, the quantizer set-
ting for quantizing the parameters is modified to match the low bit rate scenario: A-law
companding is used with A = 10 and N, = 16 reconstruction values instead of quantiz-
ing with N, = 28 levels in the logarithmic domain. The number of components is set to
K/J €{1,2,...,30} in this case. Figure[7.3|displays the corresponding results for test set .<.
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Figure 7.3 R,6SDR curves comparing the reference, the proposed SBSS without and with residual
transmission.

* Transmitting the complex residual (—¢— ) extends the rate range towards higher rates
compared to the low bit scenario. For rates higher than 10 kbpso, the quantizer reaches
saturation. This could potentially be resolved by using more reconstruction values. It
should be noted however that the range for rates larger than 10kbpso is not useful
anymore for audio object coding. Separate coding of the sources with yields
better results as shown in Section [7.3]

* Note that both reference (—«) and (—e—) are evaluated with different num-
bers of reconstruction values N, € {2,3,4,8, 16} than the residual transmission (—¢- ),
cf. Table This is the reason why the residual transmission does not outperform the
other two methods for rates smaller than 1kbpso as the number of reconstruction val-
ues is fixed to N, = 16 here.

In the following sections, the encoder is enabled to decide between the and the high bit
rate configurations choosing the configuration following rate-quality optimization (cf. Sec-

tion[2.8.2)).

7.2 Comparison to SAOC

In this section, the proposed method with enabled residual transmission is compared to
[MPE10] which is briefly introduced in Section and [AACL itself is able to
transmit residuals, in this context called enhanced audio objects (EAO). In the implemen-
tation at hand, a maximum of N,,, = 4 objects can be assigned as EAO. The corresponding
residuals are encoded using [AACtbased techniques for waveform coding [Her+12].

is used in two parameter configurations aiming either at low bit rates with 32 time
slots and 14 parameter bands or high bit rates with 16 time slots and 28 parameter bands.
Additionally, EAO transmission is activated for a high bit rate scenario with N,,, € {1, 2, 3,4}.
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All possible source-to-EAO assignments are tested for each mix yielding (NJ ) combinations
without repetition. For each mixture of test set .«/, each combination of p?rameter config-
uration and EAO assignment is evaluated in the following. As another method to compare
with, the sources of each mixture are encoded separately with Here, the sources are
encoded with variable bit rate (VBR) using the quality parameter g € {0.05,0.15,...,0.95}.
The two configurations of the proposed method as detailed in Section aim at either
low bit rates or high bit rates. Here, they are jointly evaluated. The encoder can choose
the configuration yielding the best rate-quality scenario. As already done in Section [7.1.2]
is disabled.

Following the principles of Section[2.8.2] optimum rate-quality points are selected for both
methods and displayed on Figures and with either [SDRI or [SIR] as score. Comparing
to [[SS] the following observations can be made:

. operates in a rate range of approximately R € [1kbpso, 10 kbpso]. The proposed
method yields smaller rates and outperforms[SAOC] at rates around 1 kbpso.

* For rates around 10kbpso, and the proposed method yield similar results.
However, outperforms for all rates for the mixtures with the highest number
of J = 7 sources. The disadvantage of the[SAOC|implementation is the limited number
of N,,, = 4 residuals whereas the proposed method is able to transmit residuals for
all J sources. The question remains if the user has need for more than four enhanced
objects in the first place.

* At rates higher than 10kbpso, [SAOC] yields better SDRl and than the proposed
method for mixtures with J < 7 sources. For mixtures with four or five sources, the
resulting gains are especially large.

In the following, coding the sources independently with is compared to [SAOC] and the
proposed [[SSImethod:

. () needs at least 10 kbpso for coding the sources. Both and the proposed
method enable lower rates. Note that the considered rate R only accounts for
the necessary parameters to extract the source estimates out of the mixture which
is assumed to be already present at the decoder in the cases of and In
Section this assumption is dropped and the reference method is evaluated
with an [AAClencoded mixture while measuring the rate which is necessary for both
parameter and mixture transmission.

* [AAC|introduces less interference, measured by [SIR, compared to both and the
proposed method at rates around 10kbpso (and shown in Figure[7.5). The source
separation step of the proposed decoder or the upmixing process in the
decoder could be responsible for this behavior. The influence of coding artifacts on the
interference is not as high as the impact of the previously mentioned source extraction
methods.

Note that the experiment conducted in this section is of preliminary nature. It can e.g. be
expected that the performance of[SAOC]increases when handling stereo mixtures. The delays
of both [SAOC and the proposed method should also be compared.
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7 Complete Algorithm

7.3 Influence of Lossy-Encoded Mixture

Throughout this thesis, all evaluations were computed under the assumption that the mix is
available at high precision at the decoder. Embedding the parameters in a PCM-encoded
mix with data hiding techniques as assumed in [Liu+11]] is a more realistic scenario. As the
bit rates for the proposed extensions for both encoder and decoder are even lower than
the bit rates achieved for the reference method, the influence of the data hiding technique
on the quality of the mix should decrease. In this section however, the influence of a lossy
coded mix on the separation quality with respect to the estimated sources is evaluated. The
mix is encoded with and the parameters are stored in the metadata in this
scenario. This means that backward compatibility is guaranteed as a standard decoder
is still able to decode the mix. In comparison to the data hiding scenario, the storage of the
parameters does not perturb the mix additionally.

In this section, the influence of coding the mixture on the process is evaluated. In the
following, two scenarios are considered.

1. It is assumed that the mixture was already transmitted to the decoder. Therefore, it
is evaluated how much extra rate is necessary for extracting the sources out of the
mixture to enable applications such as remixing. This is the most common scenario in
audio object coding which was also assumed throughout this thesis.

2. For sake of completeness, it is evaluated how much rate in total is needed for transmit-
ting the sources from the encoder to the decoder. This means that the rate considered
here accounts for both coding the mixture and the parameters.

The performance is compared to the case where the sources are independently coded
with The quality is independent of the mix rate as the information available in the
mixture is not used for transmitting the sources in this case.

In the following, the reference method discussed in Section is considered. The
chosen parameters are summarized in Table In the decoder, solely Wiener filtering
is used. Here, the only difference to the reference method is that the mixture is en-
coded with prior to the [TF transform. The mix is transmitted with rates R, €
{11kbps, 35kbps, 192kbps}. Note that R;, = 192kbps yields very similar performance
compared to the lossless case which is used as a reference throughout this thesis.

The corresponding results for case (1| are shown in Figure for test set .f. Here, the
parameter rate R is considered which is necessary to transmit the [NTF parameters O for the
method or for direct transmission of the sources for This case is assumed in the
other chapters of this thesis and most of the[[SSliterature. The rate is normalized per object,
resulting in kbps/object. In the following, is chosen as score. Since the performance of
the reference method is compared to which does not use Wiener filtering, the [SDR]
values are not set into relation to the oracle scores here.

* Encoding the sources independently with () needs more bit rate than the
method, assuming that the mixture is already at hand at the decoder. The lowest rate
achievable for[AAC]is around 10 kbpso.

* Increasing the mixture bit rate R, improves the quality. R, ;, = 35kbps (©) yields
similar results as R;, = 192kbps (x). As mentioned above, the latter bit rate yields
the same results as the case assuming lossless coding of the mixture.

110



10

15

10

15

10

7.3 Influence of Lossy-Encoded Mixture

Mix 1, J =4 Mix 2, J =4
20
15
HRX
y X 10
+ F 2 X
><X++-H— 5 s
K i
t t
107! 10° 10! 1071 10° 10!
Mix 4, J =5 Mix 5, J = 6
15
10 .
X
KK X oo
% XS 5 ><X+_H_ T
X f o
) ¥
" ¢
e — i — i —% 0 loimy i s —a
107! 10° 10! 1071 10° 10!
Mix 7, J =6 Mix 8, J =7
20
15 :
10
SRt gl
*T_'ij— E .Xhﬁ-x %‘-ﬁ‘i"‘l‘-f
) o
.*_ _______________ _* 0 .*_ ............... _.*.
107! 10° 10! 1071 10° 10!
Mix 10, J = 7
><><><>)é<x<
X
X _F|-+++HH' «  AAC (sources)
X—%‘ + ISS, Ruix = 11kbps
;_ . ISS, Ruix = 35kbps
'''' IS8, Ruix = 192kbps
—%—- Blind
1071 10° 10!
R [kbpso]

Figure 7.6 and parameter rate R.

15

10

15

10

12
10

S N ke O

Mix 3, J =6

Mix 6, J = 4

111



7 Complete Algorithm

50 50
40 . 40 -
m 30+ m 30+
20t 20
) . [
wn wn
10 + "y . 10
0 #h—t ------------- -1 ——— ¥ J 0 ‘fﬁHt ............. _g _______ *
10! 102 103 10! 102 103
R’ [kbps| R’ [kbps]
(a) Three mixtures with J = 4 sources. (b) Two mixtures with J = 5 sources.
50 50 :
s AAC (sources)
40 | et 40 H +  11kbps
. . 35 kbps
m 30 ¢ m 30 X 192 kbps
e 20} o o0 [[= ¥ Blind
2 - 2
10 + 10 + g
g & K__._. i e K Lo
10! 102 10° 10! 102 10°
R’ [kbps] R’ [kbps]
(¢) Three mixtures with J = 6 sources. (d) Two mixtures with J = 7 sources.

Figure 7.7[SDRland R’ for encoding the sources. The sources were either independently encoded with
[AAC| or with[ISSl In the latter case, the mix has to be transmitted which is added to the parameter
bit rate R as R’ = R,,;x + JR. [BAC does not require the transmission of the mixture.

In the following, case |2| is considered. Again, sources encoded separately with are
compared to In contrast to case |1}, it is evaluated here how much rate in total is needed
to fully transmit the sources, accounting for the transmission of both the mixture and the
parameters. This means in this case that the total rate for [[SSis calculated as R" =R, +JR
since the parameter bit rate R is normalized with respect to the number of sources J. For
R’ amounts to the rate for encoding the sources excluding the mix rate R ;..

Figure shows the corresponding results which are given for mixtures with the same
number of J sources of test set .of. For [[SS| the mixture is again transmitted with rate
R..ix € {11kbps, 35kbps, 192 kbps}.

* The highest mixture rate R,;, = 192kbps (x) is consistently outperformed by

encoding the sources (-). The transmission of the mix yields in a constant shift of
rate by R;,: The highest value of the parameter bit rate which is reached for the
reference method is R ~ 1kbpso as depicted in Figure For J sources, the
maximum rate consumed by the parameters for extracting the sources therefore yields
J kbpso. Compared to R,;, = 192kbps, this amount is almost negligible for mixtures

with up to J = 7 sources. The resulting separation quality is worse than coding the
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7.4 Summary

sources independently with [AAC] where for the same rate an increase of SDR by 10dB
is yielded. However, it can be expected that transmitting additional residuals in the
[KLT] domain, as done by [CISS| could improve the quality of the reference ISS method
(cf. the results in Section [6.4.2)).

* For R,;, = 35kbps (0), the rate range of[AAC|is extended towards lower values while
obtaining the same or slightly worse quality. The obtained rate-quality points extend
the rate-quality curve of for lower rates.

e Using R,;, = 11kbps (+) for compressing the mixture yields the lowest bit rates for
As a lower bound, the performance of the algorithm (—*-) is given as well.
As already discussed in the summary of Chapter [5] it should be evaluated whether the
qualities obtained at these low rates are useful in practice.

7.4 Summary

In this section, all contributions of this thesis detailed in Chapters and [6| were jointly
evaluated. The contributions of Chapters {4 and |5/ both aim at lower bit rates and were
combined to a low bit rate configuration. It was shown that using as entropy coder
in combination with the decoder[SBSS|algorithm in the decoder yielded the best separation
results at rates lower than 1 kbpso. However it is still an open question, if operating at rates
around 107! kbpso is useful in practice.

Next, the complex residual transmission as proposed in Chapter [6l was considered as a
high bit rate configuration. It became clear in experiments that this configuration operates
at rates between 1kbpso and 10kpbso. In another experiment, this configuration was com-
pared to[SAOC]and[AACl The proposed method outperformed[SAOC at rates around 1 kbpso.
At rates towards 10kbpso, both methods yielded similar qualities. Only for mixtures with
a high number of sources, the limitation of the [SAOC implementation of transmitting resid-
uals accounting for a maximum of four objects resulted in reduced qualities compared to
for all bit rates. At rates higher than 10kbpso, yielded better separation quality
than the proposed method. However, encoding the sources independently with was
performing better than the other two schemes in this rate range. It should be noted that this
experiment was of preliminary nature as only mono mixtures and objective quality scores
were considered.

Finally, the influence of encoding the mixture with[AAC on the subsequent[[SS| process was
evaluated. It was shown that transmitting the mono mix at rates around 35kbps yielded
a performance comparable to the cases where the mixture was either encoded losslessly
with PCM or with at 192kbpso. When accounting for the total rate needed for the
transmission of both mixture and parameters, transmitting the mixture with 35kbpso
enabled lower rates while preserving the quality compared to the separate encoding of the
sources with
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8 Conclusions and Outlook

8.1 Conclusions

Audio object coding has recently raised interest in both audio coding and audio source sep-
aration communities. In the field of source separation, Informed Source Separation
extracts side information from the original sources in the encoder. At the decoder, the side
information assists a source separation step separating the sources out of the mixture. Many
state-of-the-art algorithms use Nonnegative Tensor Factorization (NTE]) as an extraction step
allowing efficient compression of the sources and Wiener filtering as the source separation
step in the decoder. In addition to this basic setup, methods of e.g. source coding or compres-
sive sensing are used in the literature. This thesis deals with three extensions of a reference
algorithm using [NTF at the encoder.

The first contribution introduces an efficient entropy coding method to Context-based
Adaptive Binary Arithmetic Coding (CABAC), usually used in the field of video coding, is
adapted to code the [NTE| parameters. Two context models are proposed describing local
statistics within these parameters. These sets are evaluated both theoretically and experi-
mentally. Using the set which both gives good coding performance while being reasonably
compact, it is shown that is able to outperform all previously considered entropy
coders in experiments over a large test set. The highest gains were obtained at rates be-
tween 10~! kbps/object and 1kbps/object. It can be concluded that exploiting the structure
of the [NTF| parameters is beneficial for coding their quantized versions.

The second contribution deals with the fact that state-of-the-art methods solely use
Wiener filtering as the source separation step in the decoder. It is proposed to use an algo-
rithm originally designed for the problem of Blind Source Separation and adapt it for
usage in the decoder. It is shown that the proposed approach, denoted as Semi-blind
Source Separation (SBSS)), enables lower bit rates while introducing only small additional
computational complexity to the decoder. Several configurations are proposed coping with
different scenarios with respect to the amount of transmitted parameters. While testing the
decoder, the encoder can omit certain parameters which are then estimated by the
algorithm in the decoder. These different configurations were thoroughly evaluated and
compared to the reference algorithm. The corresponding results confirm that the separation
quality for low bit rates (smaller than 10~! kbps/object) is increased. The algorithm is
also able to operate completely blind as the original structure of the algorithm is pre-
served. However, it could not be finally concluded if the separation quality obtained by both
the proposed algorithm and the reference at very low rates is sufficiently high for a
practical scenario. In summary, it was shown that replacing the Wiener filter by a full source
separation algorithm enhances the separation quality at lower rates if the decoder has some
available computing resources without causing noticeably higher delay.

The third contribution tackles possible errors between original sources available at the
encoder and estimated sources obtained by the decoder by calculating residuals in the [TFl
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8 Conclusions and Outlook

domain. Starting with the idea to only deal with phase errors of the Wiener filter, it was
proposed to signal [TH points where the phase estimate significantly diverges from the orig-
inal source’s phase. Rate-distortion Optimized Quantization is used for quantizing
these residuals to constrain the bit rate. It was shown that this procedure already yields
gains in quality compared to the reference method. As a generalization, the transmission of
complex residuals was considered which were quantized with as well. It was shown
in experiments that these residuals perform better than the phase residuals at medium and
high rate ranges. When compared to Coding-based Informed Source Separation (CISS),
which uses source coding methods for calculating complex residuals, it is shown that the
proposed method is competitive at rates around 1kbps/object. For higher rates towards
10kbps/object, performs better as it exploits correlation of the sources. However,
introduces high computational complexity to the decoder whereas the additional complexity
of the proposed [RDOQ}based method is negligibly small.

Finally, these contributions were considered jointly. While the combination of as
entropy coder and the algorithm in the decoder enable lower bit rates, the proposed
residual transmission scheme was compared to an implementation of Spatial Audio Object
Coding (SAOC), an MPEG standard for audio object coding. It became clear that in the
experimental setup at hand, the proposed method yields better results at lower rates
towards 1kbps/object. Both schemes yield similar results at rates around 10Kkbps/object
and [SAO( is able to outperform the proposed method at rates higher than 10 kbps/object.

In summary, by exploiting the typical structure of the[NTF|parameters for efficiently coding
them to a bit stream in the encoder and for estimating missing parameters at the decoder, the
methods proposed in this thesis enable very low bit rates for audio object coding. By intro-
ducing rate-distortion optimization, transmission of residuals between the original sources
and their estimation at the decoder can further improve the compression towards higher
rates while introducing no extra computational complexity to the decoder.

8.2 Outlook

Novel extensions for [NTE-based were proposed in this thesis. Possible future work on
each extension is motivated in the following.

With respect to enhanced entropy coding with not only the [NTF| parameters but
also other information at hand at the decoder, for example gathered from the mixture, could
be considered for the context model selection. The information whether certain frequency
bands or time frames are completely inactive could already be used for designing more ad-
vanced context models. Another interesting extension would be the usage of linear predic-
tion methods prior to to increase its performance at higher bit rates. could
also be used for encoding the residuals in the [TEl domain.

Regarding the algorithm in the decoder, an open problem is the performance at very
low rates which does not yield sufficient quality for all types of sources and for all foreseen
applications of audio object coding. Part of the problem is the performance of the algo-
rithm which was originally evaluated on mixtures consisting of only two sources. Preliminary
experiments in this thesis show that the algorithm is not able to estimate more sources very
well. For example, enabling additional constraints such as sparseness or temporal continuity
could already improve the separation. Other algorithms could be adapted in the same
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8.2 Outlook

manner, e.g. variants of the [NTF describing each acoustical event with matrices instead of
vectors. The proposed quantized-matching constraint only considers quantized [NTEFl parame-
ters. The constraint could be adapted for the case where[RDOQ)is used for quantizing the[NTH
parameters. RDOQ]is minimizing a criterion jointly accounting for distortion and rate which
leads to cases where it is beneficial to assign another, neighboring reconstruction value to re-
duce the rate necessary for transmission. In these cases, the quantized-matching constraint
would force the parameters towards these reconstruction values which are sub-optimal by
means of distortion. To overcome this problem, the process could be matched in the
decoder by constraining the entropy of the estimated parameters. Furthermore, it is still
an open question if additional transmitted information, such as features calculated on the
parameters describing the sources in the encoder, could steer the decoder [NTH towards
better factorization results.

Regarding the residual transmission, could be used for quantizing residuals in the
[KLTl domain. In this case, the dependencies of the sources given the mixture as observation
would be exploited in the same way as done by[CISS| However, the resulting quantized resid-
uals could be coded with an actual arithmetic coding step as done in this thesis instead of
estimating the bit rate. However, redundancies of residuals per [TE-point could be exploited
with simpler methods as well. Another possible extension could be the usage of more so-
phisticated quantizers designed especially for quantizing complex values, e.g. the methods
proposed in [RDO7]].

The basic algorithm considered here uses Wiener filtering at the decoder which yields
source estimates containing the mixture’s phase. Apart from residual transmission, other
methods could be used which extend Wiener filtering: Recent work [LRD18]] shows promis-
ing results when using a novel probabilistic model describing the sources in the [TF| domain
which could be adapted as well. In this thesis, the mixtures were assumed to be monaural.
Algorithms for adapting the used methods for stereo, e.g. [LBR13]], could be implemented
and adapted to exploit spatial information. Here, a professional mixing process, allowing
for time delays and effects, is modeled by a probabilistic framework for NTF-based The
sources are assumed to have spatial spread which may vary over frequency. It could be
interesting to investigate if methods like binaural cue coding [BFO03|] could be used for this
task as well. Extensions of the including perceptual modeling were used in e.g. [Kir+14;
Nik15]]. A parameter weighting each[TE|point of the sources by perceptually motivated scores
was additionally used for [NTE which could also be included in the proposed framework.

In this thesis, [SAOC was compared to the proposed method in a limited setting. For
a more thorough evaluation, should be tested on mono and stereo mixtures as
is able to exploit spatial information present in the two stereo channels. The complexity
of these methods should also be compared. With applications such as active listening and
spatialization in mind, subjective listening tests could be carried out as well to evaluate the
quality of both schemes.
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A Test Sets

A.1 Test Set .o

Test set .¢/ consists of ten mixtures each composed of four to seven sources of the QUASI
databaseﬂ Each recording is sampled at 44100 Hz, quantized with 32bit per sample and
is 30s long. More detail, namely interpret, song title, segment information (start and end
time), number and names of sources, as well as the oracle performance measured in[SDR]is

given in Table

A.2 Test Set &3

Test set B consists of 100 mixtures, each composed of four sources (bass, drums, vocals,
other) of the DSD100 databaseﬂ We cropped 30 s long segments out of each recording, each
sampled at 44100 Hz and quantized with 16 bit per sample. The segment start and end times
for each song is given in Table

"http://www.tsi.telecom-paristech.fr/aao/en/2012/03/12/quasi/.
2“MUS 2016” task, http://sisec.inria.fr.
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A Test Sets

ID Interpret — Song title Start — End [s] J Sources SDR,,, [dB]
1 Alexq — Carol of the bells 0-30 4 bass, drums, lead gtr, 9.27
rhythm gtr
2 Another Dreamer — One we love 69 — 99 4 bass, drums, gtr, voc 9.38
3 Carl Leth — The world is under attack 44 - 74 6  drums, e-gtr, piano, 8.99
piano loop, speech,
synth
4 Fort Minor — Remember the name 54 -84 5 bass, drums, samples, 8.18
strings, voc
5 Glen Philips — The spirit of shackleton 163 - 193 6  ac. gtr, bass, drums, 9.77
voc, organ, pads
6 Jims Big Ego — Mix tape 22-55 4 bass, drums, gtr, voc 9.42
7 Nine Inch Nails — Good soldier 104 - 134 6 bass, drums, gtr, keys, 9.16
lead voc, vibes
8 Shannon Hurley - Sunrise 62 —92 7 ac. gtr, bass, cell, 7.86
drums, e-gtr, piano,
voc
9 Ultimate NZ Tour 43 -73 5 bass, drums, gtr, 8.40
synth, voc
10 Vieux Farka - Ana 120 - 150 7  bass, claves, drums, 11.65

gtr, organ, voc, wind
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A.2 Test Set &

D Interpret — Song title Start — End [s] D Interpret — Song title Start — End [s]
1 ANIMAL - Clinic A 51-81 51 AM Contra — Heart Peripheral 165 - 195
2 ANIiMAL - Rockshow 34 -64 52 ANIMAL - Easy Tiger 140 -170
3 Actions — One Minute Smile 82-112 53 Actions — Devil’s Words 162 - 192
4 Al James — Schoolboy Facination 144 - 174 54 Actions — South Of The Water 89 -119
5 Angela Thomas Wade — Milk Cow Blues 40 -70 55 Angels In Amplifiers — 'm Alright 144 - 174
6 Atlantis Bound — It Was My Fault For Waiting 216 - 246 56 Arise — Run Run Run 86-116
7 BKS - Too Much 152 -182 57 BKS - Bulldozer 82-112
8 Bill Chudziak — Children Of No—one 88 -118 58 Ben Carrigan — We'll Talk About It All Tonight 59 -89
9 Bobby Nobody - Stitch Up 165 - 195 59 Black Bloc — If You Want Success 295 -325
10 Carlos Gonzalez — A Place For Us 183-213 60 Buitraker — Revo X 181-211
11 Cnoc An Tursa — Bannockburn 40 - 70 61 Chris Durban — Celebrate 247 - 277
12 Dark Ride — Burning Bridges 193 - 223 62 Cristina Vane — So Easy 155-185
13 Drumtracks — Ghost Bitch 94 - 124 63 Detsky Sad — Walkie Talkie 107 - 137
14 Fergessen — Back From The Start 33-63 64 Enda Reilly - Cur An Long Ag Seol 132 -162
15 Fergessen — The Wind 139 - 169 65 Fergessen — Nos Palpitants 90 -120
16 Forkupines — Semantics 104 - 134 66 Flags - 54 107 - 137
17 Girls Under Glass — We Feel Alright 164 - 194 67 Georgia Wonder — Siren 170 - 200
18 Hollow Ground - IlI Fate 66 - 96 68 Giselle — Moss 149 -179
19 James Elder & Mark M Thompson — The English Actor 148 - 178 69 Hollow Ground - Left Blind 113 - 143
20 James May — Dont Let Go 52-82 70 James May — All Souls Moon 106 - 136
21 James May — On The Line 61-91 71 James May - If You Say 67 -97
22 Johnny Lokke — Promises & Lies 183 - 213 72 Jay Menon — Through My Eyes 93 -123
23 Jokers, Jacks & Kings — Sea Of Leaves 150 - 180 73 Johnny Lokke — Whisper To A Scream 94 - 124
24 Leaf — Come Around 191 - 221 74 Juliet’s Rescue — Heartbeats 106 - 136
25 Leaf — Wicked 109 - 139 75 Leaf — Summerghost 190 - 220
26 Louis Cressy Band — Good Time 188 - 218 76 Little Chicago’s Finest —- My Own 241 -271
27 M.E.R.C. Music — Knockout 212 - 242 77 Lyndsey Ollard - Catching Up 134 -164
28 Motor Tapes — Shore 176 - 206 78 Moosmusic — Big Dummy Shake 29-59
29 Nerve 9 — Pray For The Rain 120 - 150 79 Mu - Too Bright 19-49
30 Patrick Talbot — A Reason To Leave 167 - 197 80 North To Alaska — All The Same 98 - 128
31 Phre The Eon — Everybody’s Falling Apart 102 - 132 81 Patrick Talbot — Set Me Free 159 - 189
32 Raft Monk — Tiring 147 - 177 82 Punkdisco — Oral Hygiene 121 -151
33 Sambasevam Shanmugam — Kaathaadi 114 - 144 83 Remember December — C U Next Time 187 - 217
34 Secretariat — Over The Top 91 -121 84 Secretariat — Borderline 114 - 144
35 Signe Jakobsen — What Have You Done To Me 46 - 76 85 Side Effects Project — Sing With Me 116 - 146
36 Skelpolu - Resurrection 298 - 328 86 Skelpolu — Human Mistakes 264 - 294
37 Speak Softly — Broken Man 39-69 87 Skelpolu — Together Alone 67 -97
38 Spike Mullings — Mike’s Sulking 94 - 124 88 Speak Softly — Like Horses 260 - 290
39 Swinging Steaks — Lost My Way 116 - 146 89 St Vitus — Word Gets Around 140 - 170
40 The Long Wait — Back Home To Blue 161 -191 90 The Doppler Shift — Atrophy 79 - 109
41 The Mountaineering Club — Mallory 187 - 217 91 The Long Wait — Dark Horses 45-75
42 The Wrong’Uns — Rothko 71-101 92  The Sunshine Garcia Band — For I Am The Moon 45-75
43 Timboz - Pony 54 -84 93 Tim Taler - Stalker 42 -72
44 Tom McKenzie — Directions 83-113 94 Titanium — Haunted Age 124 - 154
45 Traffic Experiment — Sirens 206 - 236 95  Traffic Experiment — Once More (With Feeling) 189 - 219
46 Triviul — Dorothy 73 -103 96 Triviul — Angelsaint 192 - 222
47 Voelund — Comfort Lives In Belief 95-125 97 Triviul feat. The Fiend — Widow 185 - 215
48 We Fell From The Sky — Not You 30-60 98 Wall Of Death — Femme 13-43
49 Young Griffo — Facade 106 - 136 99 Young Griffo — Blood To Bone 184 - 214
50 Zeno — Signs 62 -92 100 Young Griffo — Pennies 146 - 176

Table A.2 Test set 8 with J = 4 (bass, drums, vocals, other).
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B Quantized Matching Derivations

The quantized matching constraint as discussed in Section uses the A-law companding
algorithm or [LMl for quantization. In [RLB17]], Equation (3.3) was originally used for quan-
tization. In this section, the constraint gradient terms of the corresponding soft quantization
parameters are given for this case. The constraint cost function is denoted as

dg (W, | W,) = dy (W, | exp (f [log (W,)]).

Here, the gradient of the soft quantization parameter is written as

VoW = exp(f [ogW)- 2o fy (og W [1—fy log W] o

—W

= —a:fo(logW)[l — fo (logW,)]- hac

W.

X

with f, () defined in Equation (/5.4). This yields the positive and negative gradient terms

28

Vv
V+ W = _f0(108w ) iy

W -
— Va Wy = —Cf0 (log W, )

(B.1)
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C CABAC

C.1 CABAC Context Identifiers

The engine discriminates the different context models by identifiers. These identifiers
are given in Tables|C.1aland |C.1b|for sake of completeness for the context models discussed
in Chapter 4] Table shows the context IDs for the bin-level context models proposed in
Section and Table for the integer-level context models proposed in Section

Prefix Suffix

Cl&xppa CXpupo CXpypr Oy CtX,, 1 CtX

n N+n 2N+n 3N+1 3N+1+n 4N +2

(a) Context model IDs for bin-level design with n < N;pp and abbreviation
N = NLBP'

Prefix Suffix

CtXp jupy ClX g ctx ClX g

n,na

(b) Context model IDs for integer-level design with 1 < n < Njpp and value of previ-
ously coded quantization index v € [1,Nq].

Table C.1 Context model IDs for the proposed context designs.

C.2 Bin-value based Context Model Interpretation

The context models in Section were derived on a bin-level. In this section, an interpre-
tation of the conditional context model ctx,, ,,, on the integer-level is given, depending on
the chosen binarization method.

Truncated Unary Binarization

When using[TUlcoding as binarization, the resulting bin-strings consist of ones and are termi-
nated with a single ’0’. This means that conditional context model ctx,, ,,,9, which is chosen if
previous bin was equal to '0’, models runs of identical values in column g, ;, of G which were
all terminated with ’0’ at position n. Since uses N = g bins for encoding integer g and
the last bin is always ’0’, the value of these sequences is given as

gf—l,k =n. (Cl)
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Figure C.1 Intervals of g;_;  indicated by ctx, ,,o depending on bin position n for [Tl and [EGl bina-
rizations.

Especially if n = 1, ctx, ,,,o models a sequence of quantization indices being one (which maps
to reconstruction value zero).

ctx, .1 can be interpreted as follows: At position n = 1, the context model indicates that
the quantization index g;_,; corresponding to the previously decoded bin-string bk s
greater than 1 because 1 is mapped to a single ’0’ and all values larger than 1 have a '1’ at
position n = 1. For n = 2, context model ctx, ,,; indicates that g;_, , is greater than two and
so on. In summary, ctx, ,; models a sequence of values in g, , with

gf_l,k >n+1.

Exponential Golomb Binarization

For [EG binarization, a similar interpretation to the one given for[TUl binarization is possible,
since the prefix of an [EGl code is a unary code. This code now gives information about the
number of suffix bins. Using the interpretation for [Tl binarization above, ctx, ,,, gives now
information about the number of suffix bins which then leads to information about g;_, ;.
First, if b£ ~Lk = 0, the number of prefix bins for coding g¢—1x has to be N, = n (cf. Equa-
tion (C.1)). Inserting this into Equation yields

2l (2" —1)+1< g4, <2/(2"—1) (C.2)

which means that ctx, ,,, models runs of values lying in the interval defined above. Fig-
ure shows these intervals for [EGO and [EG]1 for bin positions n € [1,5] compared to the
values indicated by ctx, ,,o when using [TUl binarization.

CtX,, 4p1 Still models runs of values being greater or equal than a certain value, namely the
upper boundary of the interval defined in Equation (C.2),

g x=2'(2"—1)+1.
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C.3 Results with GZIP Jointly Encoding Parameters as Baseline

Method GBAC CABAC
Cond. Ctx. - - CtXpypo  CXpup1  CXp ypos Cp yp1
% 3.39 —8.99 —20.99 —22.62 —22.17
Mean saving, % —4.42 —10.95 —-21.47 -—-23.21 —22.96
Std. saving, % 10.76 4.33 3.55 3.73 3.84

Table C.2 Results for bin-level context models. with respect to GZIP encoding parameters
jointly for GBAC (N;gp = 0) and (N1 gp = 5) for test set .«f.

Method CABAC
Cond. Ctx. Bin-level ctx, ,; Integer-level ctx,, ;p,
% —22.62 —23.14
Mean saving, % —23.21 —24.01
Std. saving, % 3.73 3.79

Table C.3 Results for integer-level context models. with respect to GZIP evaluated on test set
o

Note that for [ = 0 and n = 1, ctx, ,,; models sequences of values g;_, , = 2 as already found
for [TUl binarization.

C.3 Results with GZIP Jointly Encoding Parameters as
Baseline

In Section[4.3] the improvements of and the other baseline coding methods
are calculated with respect to the case, where GZIP is used for encoding the NTE| parameters
independently. This procedure is chosen because and the other baseline methods
encode the parameters jointly as well. Throughout this thesis, the parameters are usually
coded jointly with GZIP In this section, some tables listed in Section are given again.
Here, the savings are calculated with GZIP coding the parameters jointly as baseline.

Table is the equivalent of Table evaluating the bin-value based context models.
Table shows results equivalent to the ones shown in Table [4.10
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D Lower Bound

To derive the lowest bound for Wiener filters assuming monaural mixtures, the squared error
term of the [SDRI denominator is chosen as cost function as already done for deriving the

2
oracle Wiener filters in [VGP07], refer to Section : Zf’t’j (§ fog T My X f,t) . This cost

can be maximized for each TF point independently to find mask my , ; yielding the lowest
[SDRIvalue. Omitting (f, t), the problem can be written as

max E ‘gj —m;x
J

which also takes the remixing constraint and the non-negativity of Wiener masks into ac-
count. This problem is inverse to the one formulated for the oracle filters where the cost
function is minimized under the same constraints. The same simplifications to the cost func-
tion can be done, namely

2
subject to ij =landm; >0

J

2 2

:m2|x|2—m~s*x—m~s x* +
i 1x i35~ M;8;X

a2 4]
(o)

2 S.
2 =j

— |x| Re? {—}
J - X

s;—mx s

2

+|s.

~

~~
=const

which leads to a real-valued maximization problem

2

s,
maxz mj—Re{;—]} :maxZ:(mj—rj)2 (D.1)
j x j
T/

subject to Z m; =1 and m; = 0.
J

The question remains which m; is fulfilling (D.1)). For the oracle estimators, the problem
is solved for each [TF| point with quadratic programming. The inverse problem (D.1)) under
the same constraints considered here has a more intuitive solution. First, it should be ac-

knowledged that ;. r; = Re {Z] é—"} = 1 with >};s; = x. This constrains the values of r;

x

to a hyperplane going through all unit vectors of R’. Second, since Zj m; =1and m; = 0,
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Figure D.1 Example for finding lower bound masks for J = 2 sources.

the values for m; are lying in the same hyper-plane but are constrained further by m; > 0 to
the positive orthant of R’ at the same time. This region has the unit vectors of R’ as corner
points. Since the cost is symmetric and monotonic increasing in R’ and its minimum given
by r; lies on the hyper-plane through all unit vectors, the cost should be still monotonic in-
creasing and symmetric for points lying on this hyperplane. As the solution of problem (D.1J),
select the nonnegative vector on this hyper-plane which is farthest away from the minimum
of the cost: Therefore, set all m; = 0 with j* # j and set m; = 1, with j being the index
for which r; is the smallest value, such that r; < r;, j* # j. This means that the solution is
always one of the unit vectors, namely the unit vector of R’ which is farthest away from the
vector with elements r;.

This solution is shown in Figure for J = 2. The cost function to be minimized can

be written as (m, —r,)* + (m, —r,)°. First, the dashed black line shows the set of all valid

values of (r’ r’)T for which r] +r, = 1. Then, in red, all values for (m’l, m’z)T are marked

which are cénsztrained by m,m}, > 0 and m/ +m}, = 1. In the background of Figure the
function values of (x; —r;)* + (x, — r,)?* for (r, 1’2)T =(1.5,—0.5)" are indicated by circles
whose colors correspond to the function values, white mapping to zero. Finally, the point
(ml,mz)T =(0,1)" is shown which solves (D.1). This is the point which is farthest away
from (r,,r,)", in the set of possible values defined by m’,m, >0 and m} +m;, = 1.

For sake of completeness, Figure shows 6SDR and &SIR values for Equation ([2.43))
and the solution of Equation (D.I), denoted with “Lowest bound” for each mix of test set
/. When comparing the amplitude range of 6SDR and 6SIR values, it becomes clear that
both measures yield lower 6SIR values. Similar to the lower bound obtained by returning
the mixture, the solution of Equation estimates each source with a signal which mainly
consists of the mixture without the source to-be-estimated present.
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