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For a perfect gas the isochoric heat capacity 𝑐𝑐𝑣𝑣 can be expressed via Equation (3) using the specific gas constant 
𝑅𝑅 and the heat capacity ratio 𝜅𝜅 of the given gas. Subsequently, the specific energy of the system can be described 
using pressure, density and velocity only, leading to Equation (4). 

𝑐𝑐𝑣𝑣 = 𝑅𝑅
𝜅𝜅 − 1 (3) 

𝑒𝑒 = 𝑝𝑝
𝜅𝜅 − 1 + 𝜌𝜌𝑢𝑢2 (4) 

This results in a decoupled system given by Equation (5) which consists of conservative variables 𝑈𝑈. Herein, the 
function 𝐹𝐹(𝑈𝑈) is the flux function of the mass, energy and momentum flux. The conservative variables 𝑈𝑈𝑖𝑖 can be 
expressed via primitive variables 𝜌𝜌, 𝑢𝑢 and 𝑝𝑝 applying Equation (6) /1/. 

𝑈𝑈𝑡𝑡 + 𝐹𝐹(𝑈𝑈)𝑥𝑥 = 0 (5) 

𝑈𝑈1 = 𝜌𝜌, 𝑈𝑈2 = 𝜌𝜌𝜌𝜌, 𝑈𝑈3 = 𝑝𝑝
𝜅𝜅 − 1 + 𝜌𝜌𝑢𝑢2 (6) 

To allow the occurrence of shocks and other discontinuities which, for instance, can be caused during the 
opening process of a valve it is necessary to use the conservative formulation of Eulerian Equations. If the time 
integration is done numerically and the computational domain is discretised (figure 1 a) the numerical scheme is 
given by Equation (7). Herein, i is the local index of a cell and n is the index of the current time step. 

𝑈𝑈𝑖𝑖
𝑛𝑛+1 = 𝑈̃𝑈𝑖𝑖

𝑛𝑛 − Δ𝑡𝑡
Δ𝑥𝑥 (𝐹𝐹(𝑈𝑈)𝑖𝑖+1

2

𝑛𝑛 − 𝐹𝐹(𝑈𝑈)𝑖𝑖−1
2

𝑛𝑛  ) (7) 

 

Figure 1: Finite volume and explicit solver. 

The flux values of the inter cell fluxes 𝐹𝐹(𝑈𝑈)𝑖𝑖+1
2

𝑛𝑛
 and 𝐹𝐹(𝑈𝑈)𝑖𝑖−1

2

𝑛𝑛
 are calculated using the current averaged cell value 

i and its neighbours i-1 and i+1, which is illustrated in figure 1b. The flux formulation is chosen the way it is 
proposed by Steger and Warming /1/. This scheme utilises the hyperbolic character of Equation (1), which 
means that it possesses defined propagation speeds of information, namely the eigenvalues 𝜆𝜆1 = 𝑢𝑢 − 𝑎𝑎, 𝜆𝜆2 = 𝑢𝑢 
and 𝜆𝜆3 = 𝑢𝑢 + 𝑎𝑎. Herein, 𝑎𝑎 is the speed of sound and can be calculated for a perfect gas applying Equation (8). 
For a more detailed description of hyperbolic systems and its properties the reader is referred to /2/. 

𝑎𝑎 = √𝜅𝜅 𝑝𝑝
𝜌𝜌 (8) 

Steger and Warming construct a numerical inter cell flux which depends on the eigenvalues 𝜆𝜆𝑖𝑖 of the system and 
can therefore be given a defined propagation achieving a separation of positive and negative flux components 
described by Equation (9) wherein 𝐻𝐻 is described by Equation (10). 

𝑥𝑥

𝑈𝑈

𝑥𝑥

𝑈𝑈
Δ𝑡𝑡

𝑈𝑈𝑖𝑖−1 𝑈𝑈𝑖𝑖+1𝑈𝑈𝑖𝑖

a b
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The increase of system dynamic within the area of pneumatics requires sophisticated numerical methods to 
determine the systems’ performance. Cycle durations in the range of just a few milliseconds and below require 
the implementation of transient gas dynamic solvers to predict the systems behavior accurately and to save 
computational time. Yet, such solvers lack of accuracy for sharp edged elbows. This paper presents a hybrid 
approach using a one dimensional and a two dimensional finite volume Riemann-Solver. The results are 
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1 Introduction 

In general, it is possible to calculate several flow parameters for transient pneumatic flows using computational 
fluid dynamics (CFD) software including turbulence modelling for instance for a highly dynamic automation 
application or a gaseous fuel injection system. Despite increasing processing power of modern computers 
solving particular problems is yet time-consuming. A simulation of a few milliseconds results in a computational 
time of several hours which makes the design of a highly dynamic pneumatic system resource consuming. 
Therefore, one dimensional numerical solvers based on Euler Equations are commonly used to achieve 
reasonably short simulation duration and yet retaining sufficient accuracy. However, such solvers are not capable 
of simulating the entire spectrum of flow regimes and geometries which occur in pneumatic components like 
sharp edged elbow fittings. The flow regime of a miter joint lies within a full reflection and transimission of the 
incoming mass flow and pressure waves. A one dimensional solver can only offer one of the two regimes, either 
full reflection or full transmission. Accordingly, a solution of a partially transmitted and partially reflected wave 
is not possible to compute. This paper presents an approach to simulate a sharp edged elbow using a two 
dimensional solver within the inner part of the joint which is coupled to one dimensional solver at the outer 
parts. Both solvers are based on the Flux Vector Splitting (FVS) approach presented by Steger and Warming /1/. 
This approach allows the calculation of a partial transmission and partial reflection of a miter joint time 
efficiently. The results are compared to acoustic theory and CFD solution in order to validate the solver. 

2 Governing equations and numerical approach 

To describe one dimensional gaseous flows Euler Equations are commonly used since for large Reynolds 
numbers viscosity influence can be neglected. These include the continuity equation, momentum and energy 
equation and are given by Equation (1). Herein, 𝑒𝑒 is the specific energy described by Equation (2). 

𝜕𝜕
𝜕𝜕𝜕𝜕 (

𝜌𝜌
𝜌𝜌𝜌𝜌
𝑒𝑒
) + 𝜕𝜕

𝜕𝜕𝜕𝜕 (
𝜌𝜌𝜌𝜌

𝜌𝜌𝑢𝑢2 + 𝑝𝑝
𝑢𝑢(𝑒𝑒 + 𝑝𝑝)

) = 0 (1) 

𝑒𝑒 = 𝜌𝜌𝑐𝑐𝑣𝑣𝑇𝑇 + 𝜌𝜌𝑢𝑢2 (2) 
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Furthermore a second order oscillation for a closed end is examined (figure 4), whose frequency is given by 
Equation (13) /5/.  

 

Figure 4: Closed end resonator test   

In this case, two nodes and two antinodes are expected. The second anti-node should be exactly in the end of the 
pipe, whereas the first one has to lie on one third of the entire tube’s length. The first node is to be expected at 
the entering and the second one at two thirds of the tube’s length. 

𝑓𝑓2 = 3𝑎𝑎
4𝐿𝐿 (13) 

As expected, the solver calculates the position of the nodes and anti-nodes as predicted by the acoustic theory. 
To demonstrate the impact of a sharp edged elbow on the harmonic oscillation a 2-D solver is introduced in the 
following section. 

3 Implementation of the 2-D solver 

This chapter deals with the implementation of the two dimensional scheme and its coupling to the one 
dimensional solver in for an elbow. The solver is tested in conjunction with the acoustic theory for a closed end 
and an open end resonator. 

3.1 Governing numerical scheme 

To produce a partial reflection numerically within an elbow it is necessary to implement a two dimensional 
solver within the inner part of it. As presented before, the finite volume solver by Steger and Warming is taken 
into account for the two dimensional case as well. The increase of one dimension implies an additional 
momentum equation and flux 𝐺𝐺, yet the principle of the solver remains the same and is depicted in figure 5. 

 

Figure 5: 2-D-scheme. 
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𝐹𝐹𝑖𝑖
± = 𝜌𝜌𝑖𝑖

2𝜅𝜅 (
𝜆𝜆1
± + 2(𝜅𝜅 − 1)𝜆𝜆2

± + 𝜆𝜆3
±

(𝑢𝑢 − 𝑎𝑎 )𝜆𝜆1
± + 2(𝜅𝜅 − 1)𝑢𝑢𝜆𝜆2

± + (𝑢𝑢 + 𝑎𝑎)𝜆𝜆3
±

(𝐻𝐻 − 𝑢𝑢𝑢𝑢)𝜆𝜆1
± + (𝜅𝜅 − 1)𝑢𝑢2𝜆𝜆2

± + (𝐻𝐻 + 𝑢𝑢𝑢𝑢)𝜆𝜆3
±
) (9) 

𝐻𝐻 = 1
2𝑢𝑢2 + 𝑎𝑎2

𝜅𝜅 − 1 
(10) 

The incoming flux 𝐹𝐹(𝑈𝑈)𝑖𝑖−1
2

𝑛𝑛
 at the left cell interface is composed of the positive part of the left cell’s flux and the 

negative component of the current cell, see figure 2 a,b. The outgoing flux 𝐹𝐹(𝑈𝑈)𝑖𝑖+1
2

𝑛𝑛
 is built with the positive flux 

component of the current cell and the negative component of the right cell. 

 

Figure 2: Numerical Flux by Steger Warming. 

Finally the entire numerical scheme can be summarised in Equation (11). To verify its accuracy for small 
disturbances the acoustic theory for a closed and opened resonator is applied. The modulation of boundary 
conditions for a closed and an open end for a finite volume solver is taken from /2/ and /3/. 

𝑈𝑈𝑖𝑖
𝑛𝑛+1 = 𝑈̃𝑈𝑖𝑖

𝑛𝑛 − 𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥 (𝐹𝐹𝑖𝑖

𝑛𝑛+ + 𝐹𝐹𝑖𝑖+1
𝑛𝑛− − 𝐹𝐹𝑖𝑖−1

𝑛𝑛+ − 𝐹𝐹𝑖𝑖
𝑛𝑛−) (11) 

2.1 1-D Solver validity for small disturbances 

To demonstrate the validity of the solver a pipe with the length 𝐿𝐿 and an open end is excited by a sinusoidal 
pressure signal at the very first cell. The frequency is chosen to be the second order harmonic oscillation 𝑓𝑓open,2 
Equation (12) /4/. If the solver does represent the physics correctly, three nodes and two anti-nodes should occur 
along the tube’s length. The first node has to be at the very beginning of the pipe, the second one has to be 
exactly in the middle of the pipe and the third one is to be expected at the end of the pipe. Whereas two 
anti-nodes have to be exactly in between the nodes. 

𝑓𝑓2 = 𝑎𝑎
𝐿𝐿 (12) 

Figure 3 shows the pressure distribution over time and space in a pipe of the length 𝐿𝐿 = 0.2 𝑚𝑚. To assure the 
validity of the acoustic theory the pressure disturbance is chosen to be very small (0.1 bar) compared to the mean 
pressure which is 10 bar. It can clearly be seen, that as predicted by the theory there are exactly three nodes at 
the beginning, in the middle and at the end of the pipe. In between the two anti-nodes are located. 

 

Figure 3: Open end resonator test   
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Figure 6: 2-D-scheme for elbow discretisation 

3.2 Coupling of 1- and 2-dimensional solver 

Firstly, the border cell of the horizontal one dimensional solver (border of 𝐿𝐿2𝐷𝐷 and 𝐿𝐿1𝐷𝐷 in the upper part of the 
elbow) is treated. Regarding figure 6 the elbow’s width is described by  . The total amount of cells in vertical 
direction within the two dimensional part of the solver is therefore 𝑉𝑉 and can be calculated by the trivial 
Equation (18). 

𝑉𝑉 =  
Δ  (18) 

The total averaged mass 𝑀𝑀2𝐷𝐷,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 of the two dimensional cells at the border is, therefore, the sum of all cell 
masses in y-direction given by Equation (19). 

𝑀𝑀2𝐷𝐷,vert = ∑𝜌𝜌𝑖𝑖, 

 =𝑉𝑉

 =1
Δ𝑥𝑥Δ  (19) 

To guarantee mass conservation this mass has to be exactly the same as the mass of a one dimensional cell with 
the width  , the length Δ𝑥𝑥 and the averaged density 𝜌̅𝜌 which is given by Equation (20). Equalising (19) with 
(20) leads to Equation (21) to calculate the averaged density for the two dimensional cells. 

𝑀̅𝑀 = 𝜌̅𝜌vertΔ𝑥𝑥𝑥 (20) 

𝜌̅𝜌vert = ∑𝜌𝜌𝑖𝑖, 

 =𝑉𝑉

 =1

Δ 
  

(21) 

For the momentum conversion two contributions have to be considered, the horizontal one (22) and the vertical 
one (23). 

𝐼𝐼2𝐷𝐷,vert,x = ∑𝜌𝜌𝑖𝑖, 𝑢𝑢𝑖𝑖, 

 =𝑉𝑉

 =1
Δ𝑥𝑥Δ  (22) 

𝐿𝐿2𝐷𝐷
𝐿𝐿2𝐷𝐷

𝐿𝐿1𝐷𝐷

𝐿𝐿1𝐷𝐷

𝑀̅𝑀, 𝐼𝐼,̅   
𝑀𝑀1𝐷𝐷, 𝐼𝐼1𝐷𝐷,  1𝐷𝐷

Border Cell

𝑈𝑈2𝐷𝐷 𝑈𝑈2𝐷𝐷 𝑈𝑈2𝐷𝐷 𝑈𝑈2𝐷𝐷 𝑈𝑈2𝐷𝐷 

𝑈𝑈1𝐷𝐷

 Δ𝑥𝑥

Δ 
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The numerical scheme for the solver is the same as for the one dimensional solver and if the local discretisation 
in x-direction is of the same size as for the y-direction the numerical scheme is presented in Equation (14). 

𝑈𝑈𝑖𝑖
𝑛𝑛+1 = 𝑈̃𝑈𝑖𝑖

𝑛𝑛 − 𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥 (𝐹𝐹𝑖𝑖, 𝑛𝑛

+ + 𝐹𝐹𝑖𝑖+1, 
𝑛𝑛− − 𝐹𝐹𝑖𝑖−1, 

𝑛𝑛+ − 𝐹𝐹𝑖𝑖, 𝑛𝑛
−) − Δ𝑡𝑡

Δ ( 𝐺𝐺𝑖𝑖, 
𝑛𝑛+ + 𝐺𝐺𝑖𝑖, +1

𝑛𝑛− − 𝐺𝐺𝑖𝑖, −1
𝑛𝑛+ − 𝐺𝐺𝑖𝑖, 

𝑛𝑛−) (14) 

The numerical flux calculation requires the knowledge of the eigenvalues, i.e. the characteristic speeds. In the 
case of a two dimensional problem there are eight of them in total (four for each direction) instead of three for 
the one dimensional case. For the x-direction the first one is 𝜆𝜆1 = 𝑢𝑢 − 𝑎𝑎, the fourth one is 𝜆𝜆4 = 𝑢𝑢 + 𝑎𝑎 and the 
second and third are identical 𝜆𝜆2 = 𝜆𝜆3 = 𝑢𝑢. Hence, to calculate the fluxes in x-direction for each cell Equation 
(15) is applied. 

𝐹𝐹𝑖𝑖, =
𝜌𝜌𝑖𝑖, 
2𝜅𝜅

(

 
 

𝜆𝜆1± + 2(𝜅𝜅 − 1)𝜆𝜆2± + 𝜆𝜆4±
(𝑢𝑢 − 𝑎𝑎 )𝜆𝜆1± + 2(𝜅𝜅 − 1)𝑢𝑢𝜆𝜆2± + (𝑢𝑢 + 𝑎𝑎)𝜆𝜆4±

𝜆𝜆1±𝑣𝑣 + 2(𝜅𝜅 − 1)𝜆𝜆2±𝑣𝑣 + 𝜆𝜆4±𝑣𝑣 
(𝐾𝐾 − 𝑢𝑢𝑢𝑢)𝜆𝜆1± + (𝜅𝜅 − 1)(𝑢𝑢2 + 𝑣𝑣2)𝜆𝜆2± + (𝐾𝐾 + 𝑢𝑢𝑢𝑢)𝜆𝜆4±)

 
 

 (15) 

The eigenvalues 𝜉𝜉 for the y-direction are calculated the same way as for the x-direction but instead of using the 
horizontal velocity 𝑢𝑢 the vertical velocity 𝑣𝑣 is applied leading to 𝜉𝜉1 = 𝑣𝑣 − 𝑎𝑎, 𝜉𝜉4 = 𝑣𝑣 + 𝑎𝑎 and 𝜉𝜉2 = 𝜉𝜉3 = 𝑣𝑣. 
Finally the numerical flux in y-direction is constructed in Equation (16). 

𝐺𝐺 =
𝜌𝜌𝑖𝑖, 
2𝜅𝜅

(

 
 

𝜉𝜉1± + 2(𝜅𝜅 − 1)𝜉𝜉2± + 𝜉𝜉4±
𝜉𝜉1±𝑢𝑢 + 2(𝜅𝜅 − 1)𝜉𝜉2±𝑢𝑢 + 𝜉𝜉4±𝑢𝑢

(𝑣𝑣 − 𝑎𝑎 )𝜉𝜉1± + 2(𝜅𝜅 − 1)𝑣𝑣𝜉𝜉2± + (𝑣𝑣 + 𝑎𝑎)𝜉𝜉4± 
(𝐾𝐾 − 𝑣𝑣𝑣𝑣)𝜉𝜉1± + (𝜅𝜅 − 1)(𝑢𝑢2 + 𝑣𝑣2)𝜉𝜉2± + (𝐾𝐾 + 𝑣𝑣𝑣𝑣)𝜉𝜉4±)

 
 

 (16) 

Since the additional velocity component 𝑣𝑣 does not only contribute to an additional momentum but also to an 
additional kinetic energy, the energy flux has to consider that component which results in Equation (17) which is 
different to that of Equation (10) for the one dimensional case.  

𝐾𝐾 = 1
2 (𝑢𝑢

2 + 𝑣𝑣2) + 𝑎𝑎2

𝜅𝜅 − 1 (17) 

Having defined the numerical fluxes for the two dimensional system, it is now possible to compute an elbow 
using the two dimensional solver only but obviously the computational time would increase by the power of two. 
To overcome that problem only the inner part of the elbow is calculated using the two dimensional scheme, 
which is depicted in figure 6. Here, the upper part is divided into a region with length 𝐿𝐿1𝐷𝐷 where the one 
dimensional solver is applied and a two dimensional region 𝐿𝐿2𝐷𝐷 connecting the adjacent ones. The computational 
effort is reduced thereby but the border between the regions needs special mathematical treatment. 

Regarding Equation (11) the one dimensional cell at the border requires a neighbour cell of equivalent size to 
calculate the inter cell fluxes. Since the next neighbour cell belongs to the two dimensional solver the necessity 
of an averaging method arises. One could simply use an averaging of the primitive variables 𝑝𝑝, 𝜌𝜌, 𝑢𝑢 and 𝑣𝑣 for the 
two dimensional cells but that would result in momentum and energy annihilation. This is caused by the fact that 
for the vertical one dimensional solver the horizontal velocity components of the two dimensional solver would 
be neglected. For the horizontal one dimensional border cell the same problem occurs for the vertical velocity 
components of the two dimensional solver, meaning that all vertical velocity components would disappear since 
they cannot be included into the one dimensional scheme. 

Therefore, another approach is presented which prevents the annihilation. Instead of averaging the primitive 
variables an averaging of the conservative variables is presented and retransformed to the primitive variables 
using Equation (5) which is discussed more detailed in the following. 
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In comparison to the acoustic behaviour of the sharp elbow to the straight pipe, the first cell is excited by the 
same sinusoidal pressure input as in section 2.1. With the second order harmonic oscillation 𝑓𝑓open,2 the solution 
for an open elbow is calculated. Figure 7 shows the pressure distribution over time and space. 

The same pattern as in figure 3 is given. There are three nodes, one at the beginning, one in the middle and one 
at the end of the elbow. Additionally, there is an anti-node in between two nodes respectively. A difference to 
the 1-D solver is the pressure distribution in the horizontal pipe, from 𝑥𝑥 = 0𝑚𝑚 to 𝑥𝑥 = 0.1𝑚𝑚, which is slightly 
warped in comparison to figure 3.  

The second case is a semi closed sharp elbow. The excitation frequency is the second harmonic frequency 
𝑓𝑓2,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for a semi closed pipe. The expected pressure distribution is calculated by the 2-D solver (figure 8). The 
characteristic number of nodes and antinodes for a semi closed pipes can be seen. Two nodes, one at the 
beginning and one at two thirds of the elbow’s total length and two antinodes, one at one third and one at the end 
can be observed. Obviously the difference between the 2-D solver of a sharp edged elbow and 1-D solver is 
negligible which would not justify the computational effort for the acoustic case. In the following chapter 
another numerical test is presented  

 

Figure 7: Open end elbow resonator test 

 

Figure 8: Closed end elbow resonator test   

 

4 Closed shock tube test case 

The shock tube is a classical test case for numerical Riemann solvers to examine its performance for 
discontinuities /6/, /7/. A pipe with an isothermal gas has an initial pressure and density discontinuity distribution 
in the middle. This initial set up allows to produce shock waves of arbitrary strength by increasing of the initial 
pressure difference resulting a higher amplitude of the shock wave and in a faster traveling speed which is 
always supersonic. It can be expected that in contrast to the acoustic waves which are of negligible altitude and 
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𝐼𝐼2𝐷𝐷,vert,y = ∑𝜌𝜌𝑖𝑖, 𝑣𝑣𝑖𝑖, 

 =𝑉𝑉

 =1
Δ𝑥𝑥Δ  (23) 

The sum of the momentum contributions 𝐼𝐼2𝐷𝐷,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑥𝑥 and 𝐼𝐼2𝐷𝐷,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑦𝑦 have to be exactly the momentum of an 
averaged cell with the length Δ𝑥𝑥, the width   and averaged momentum 𝜌̅𝜌𝑢𝑢  given by Equation (24). Equalizing 
the sum of (22) and (23) with (24) leads to Equation (25), which is the averaged velocity in x-direction of the 
two dimensional solver. 

𝐼𝐼 ̅ = 𝜌̅𝜌𝑢𝑢 Δ𝑥𝑥𝑥 (24) 

𝑢𝑢 vert =
1

𝜌̅𝜌vert
(|∑𝜌𝜌𝑖𝑖, 𝑣𝑣𝑖𝑖, 

 =𝑉𝑉

 =1
| +∑𝜌𝜌𝑖𝑖, 𝑢𝑢𝑖𝑖, 

 =𝑉𝑉

 =1
)Δ 

  (25) 

In order to obtain an averaged pressure for the two dimensional border region firstly the total energy given by 
Equation (26) is calculated and the averaged pressure 𝑝̅𝑝vert is extracted from it subsequently since the averaged 
velocity and density are known by now.  

  vert = ( 𝑝̅𝑝
𝜅𝜅 − 1 + 1

2 𝜌̅𝜌𝑢𝑢 2) Δ𝑥𝑥𝑥 
(26) 

The total amount of energy of the two dimensional cells along in the y-direction has to be calculated invoking 
Equation (27) which contains the vertical and the horizontal velocity components. The conservation of energy 
requires the equality of Equation (26) and (27) which results in Equation (28), giving an expression for an 
averaged pressure 𝑝̅𝑝vert. 

 2𝐷𝐷,vert = ∑(
𝑝𝑝𝑖𝑖, 

𝜅𝜅 − 1 +
𝜌𝜌𝑖𝑖, 
2 (𝑢𝑢𝑖𝑖, 

2 + 𝑣𝑣𝑖𝑖, 
2 ))

 =𝑉𝑉

 =1
Δ𝑥𝑥Δ  (27) 

𝑝̅𝑝vert = (∑(
𝑝𝑝𝑖𝑖, 

𝜅𝜅 − 1 +
𝜌𝜌𝑖𝑖, 
2 (𝑢𝑢𝑖𝑖, 

2 + 𝑣𝑣𝑖𝑖, 
2 ))Δ 

 

 =𝑉𝑉

 =1
− 1

2 𝜌̅𝜌𝑣̅𝑣2) (𝜅𝜅 − 1) (28) 

All primitive variables for the border region of the horizontal part of the elbow have been obtained avoiding 
momentum or energy annihilation. For the lower part i.e. for the averaging in x-direction the procedure is 
straight forward and will not be explained in detail here.  

 

3.3 Numerical results using 2-D solver 

A sharp elbow is examined in terms of the acoustic theory in this section. The horizontal pipe has the same 
length 𝐿𝐿 = 0.1 𝑚𝑚 as the vertical pipe. To validate the behaviour of the 2-D solver two cases, an open elbow and 
a semi closed elbow are presented. 

The coupled 1-D solver is used for the front and back end of the elbow with the length of 𝐿𝐿1𝐷𝐷 = 0.075𝑚𝑚. To 
reveal streamline curvature behind the elbow the 2-D solver is not only used for the actual corner but also for a 
region before and behind the corner with a length 0.05𝑚𝑚. 

Figures 7 and 8 show that no discontinuity at 𝑥𝑥 = 0.075𝑚𝑚 and 𝑥𝑥 = 0.125𝑚𝑚 is caused by the averaging method. 
Therefore, the mathematical coupling as described in section 3.2 results in an accurate numerical solution 
without causing numerical oscillation which would lead to artificial numerical pressure waves disturbing the 
pattern predicted by the acoustic theory.  
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Figure 10: Shock tube experiment in an elbow. 

The solution of the two dimensional solver simulation of the elbow is represented by the black curve and a 1-D 
simulation of a pipe is represented by the red curve (figure 11). Both curves are drawn in comparison to the 
green curve which shows the distribution of the CFD simulation. 

Firstly, the pressure at the virtual sensor at 𝑥𝑥 = 0.0399𝑚𝑚 is analysed because the effect of a partial shock 
reflection is strongly apparent here. The incoming shock wave causes a discontinuous pressure jump at 0,001 ms. 
The pressure remains constant until 0,01ms for the 2-D solver and the CFD simulation starts to rise, whereas the 
1-D pressure remains constant. In comparison to the 1-D shock tube (cf. figure 9) it can be seen that the reflected 
shockwave causes another pressure rise. That corresponds to the pressure rise at 0.01ms in the CFD and the 2-D 
calculation, which results from the partially reflected shockwave at the right wall of the elbow.  

The steady decrease of pressure from 0.013 ms until 0.027 ms also corresponds qualitatively to the 1-D solution, 
but the pressure amplitude is higher due to the partial reflection at the right wall of the elbow. At 0.027 ms the 
pressure starts to rise again which is caused by the arriving shockwave which was reflected by the wall at the 
bottom of the elbow. Since the initial shock wave travelled through the sharp elbow geometry it was sheared, 
that is why the pressure rise is not discontinuous but steady. Remarkably, at 0.03 ms the pressure for the 1-D 
pipe reaches the same level as both the 2-D and the 3-D CFD elbow. From 0.031ms all three pressure 
distributions equals each other until 0.052 ms. Here, the two pressure peaks occurring at 0,053 ms and 0,059 ms 
result from the returning two shock waves which were produced by the subdivision of the initial shock hitting 
the sharp elbow geometry.  

𝑥𝑥 = 0.0099𝑚𝑚

𝑥𝑥 = 0.03𝑚𝑚

𝑥𝑥 = 0.04𝑚𝑚

 = 0.02𝑚𝑚

𝑥𝑥

𝑝𝑝1 𝑝𝑝2

 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑥𝑥 +  = 0.09𝑚𝑚
𝑝𝑝1  𝑝𝑝2

 = 0.01𝑚𝑚
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which travel with the speed of sound the reflexion of shock waves will be stronger within the sharp edge region 
of an elbow. Hence, the results for the two dimensional solver are expected to be different compared to the 1-D 
solution and reproduce the physics more exactly. To validate the results of the 2-D solver, a 3-D CFD simulation 
of the elbow is used. 

4.1 Closed shock tube  

To understand the effects of shockwave reflection in a sharp elbow, a numerical shock tube experiment in a 
closed straight pipe using the 1-D solver is presented. A pipe with a length of 𝐿𝐿 = 0.2𝑚𝑚, an initial temperature 
𝑇𝑇0 = 300 𝐾𝐾, the left region with high pressure 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ = 16𝑏𝑏𝑏𝑏𝑏𝑏 and the right region with low pressure 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 =
1𝑏𝑏𝑏𝑏𝑏𝑏 is considered. Figure 9 shows the pressure distribution at four different time steps. The initial distribution 
(blue line) causes a rarefaction wave travelling to the left and a shockwave travelling to the right (red line). As 
soon as the shockwave hits the wall it is reflected and moving to the left (black line). The same phenomenon 
occurs when the shockwave hits the left wall. At 𝑡𝑡 = 0.088061𝑚𝑚𝑚𝑚 (green line) the rarefaction wave has been 
reflected, travelling to the right and interacts with the shockwave.  

 

Figure 9: Pressure distribution of a closed Shock Tube. 

4.2 Closed shock elbow 

Now, a numerical shock tube experiment for an elbow with a total length of 0.1 m is presented, figure 10 depicts 
its initial conditions. The virtual membrane separating high and low pressure regions is located at 𝑥𝑥 = 0.03𝑚𝑚. 
The high pressure region is on the left side and the low pressure region on the right side of a membrane. As 
depicted in figure 10 the pressure at the three following locations is recorded: 𝑥𝑥 = 0.0099 𝑚𝑚, 𝑥𝑥 = 0.04 𝑚𝑚, 
 = 0.02 𝑚𝑚. The 3-D CFD simulation has been calculated with the solver FLUENT 17 using an explicit solver 
and applying the k-epsilon model. 
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especially near the sharp edge at 𝑥𝑥 = 0.0399 𝑚𝑚. Table 1 summarises the mean deviation over time for each 
virtual pressure sensor. The two dimensional solver assures a deviation lower than 7 %, whereas the deviation of 
the 1-D model is between 12% and 29% and is therefore inacceptable compared to the 2-D solver solution. 

Pressure Sensor Position 1D 2D 

𝑥𝑥 = 0.009𝑚𝑚 12,4% 6,93% 

𝑥𝑥 = 0.0399𝑚𝑚 28,8% 3,11% 

 = 0.02𝑚𝑚 12,88% 7,16% 

Table 1: Mean pressure deviation in reference to CFD 

5 Summary and Conclusion 

This paper presents an approach to modulate a sharp edged elbow using a coupling of a two dimensional and a 
one dimensional finite volume solver. The approach is validated in two ways: For small pressure disturbances 
analytical solution from the acoustic theory is compared to the solver’s solution and for large pressure 
disturbances Sod’s Shock Tube experiment for a closed pipe is examined. It has been revealed that for the 
acoustic case, i.e. for a small disturbance there is barely a difference the approaches and therefore the 
computational effort is not justified. But for large disturbances the one dimensional solver reveals an 
inacceptable deviation and it is necessary to apply the two dimensional approach if shock phenomena are 
expected. Since the computational time of the two dimensional solver is in the order of several minutes, whereas 
the CFD calculation presented above took 35 hours the two dimensional approach is to be preferred. Although 
for the shown case the deviation of the two dimensional solver is rather acceptable compared to the one 
dimensional approach, there is still improvement potential for future works which can be summarised in two 
main tasks. The given solver does not include friction and the flow is assumed to be planar which implies that 
the solver does not take dissipation into account and the curvature of the streamline caused by the sharp edge at 
the area where the upper and lower pipe hit each other is neglected. Both phenomena can be treated introducing 
a source term and will be subject to future works. 

Nomenclature 

Variable Description Unit 

𝑎𝑎 Speed of sound [ms ] 

𝑐𝑐𝑣𝑣 Isochoric heat capacity [ J
kg ∗ K] 

𝑒𝑒 Specific Energy [ J
m3] 

𝑓𝑓 Frequency [1s] 

𝐹𝐹 Horizontal Flux [−] 

𝐺𝐺 Vertical Flux [−] 

𝐼𝐼 Momentum [𝑘𝑘𝑘𝑘 ∗ 𝑚𝑚
𝑠𝑠 ] 

𝐿𝐿 Length [𝑚𝑚] 
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Figure 11: Comparison of 1-D, 2-D and 3-D CFD. 

The other two pressure sensors show the same pattern. All three solutions follow each other right until the 
partially reflected shockwave reaches the pressure sensors in contrast to the 1-D solution. That can be seen in the 
pressure distribution of the sensor at 𝑥𝑥 = 0.009𝑚𝑚. The pressure is constant until the rarefaction wave provokes a 
steady decrease of pressure. At 0.03 ms the 1-D solution deviates from the 2-D and 3-D solution. The reason for 
this, is that the 1-D solver cannot calculate a partial reflection caused by an elbow. A pressure jump in the 1-D 
pressure is only provoked by the main shockwave reflecting at each closed pipe end. 

That is not the case for the 2-D and 3-D pressure distribution. While the first partially reflected shockwave is 
swallowed by the rarefaction wave, the second partially reflected shockwave at the left wall causes a pressure 
rise at 0.03 ms. Both following pressure jumps are provoked by the main shockwave travelling first to the left 
wall (0.038 ms) and subsequently reflecting to the right again (0.044 ms). These two correspond to the 1-D 
solution. With progressive time the pressure jumps caused by the shockwaves repeat themselves. 

The repetition of the shockwaves can also be seen on the basis of the pressure distribution of the third sensor at 
 = 0.02 𝑚𝑚. At 0.006 ms the main shockwaves reaches the sensor and returns at 0.018 ms. Until that point all 
three solutions are equal, but at 0.02 ms a partially reflected shockwave on the upper wall of the elbow occur. 
After two more pressure jumps caused by various partially shockwaves the main shockwave causes two pressure 
rises at 0.06 ms and 0.07 ms. 

The 2-D simulation of the elbow follows CFD simulation sufficiently. Every increase and decrease in pressure is 
represented by the 2-D solver. The one dimensional solution has a larger deviation than the 2-D solution, 
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𝑀𝑀 Mass [𝑘𝑘𝑘𝑘] 

𝑝𝑝 Pressure [  𝑚𝑚2] 

𝑅𝑅 Gas constant [ 𝐽𝐽
𝑘𝑘𝑘𝑘 ∗ 𝐾𝐾] 

𝑇𝑇 Temperature [𝐾𝐾] 

𝑡𝑡 Time [𝑠𝑠] 

𝑈𝑈 Conservative variables [−] 

𝑢𝑢 Horizontal velocity [𝑚𝑚𝑠𝑠 ] 

𝑣𝑣 Vertical velocity [𝑚𝑚𝑠𝑠 ] 

  Width [𝑚𝑚] 

𝑥𝑥 Horizontal coordinate [−] 

  Vertical coordinate [−] 

𝜅𝜅 Heat capacity ratio [−] 

𝜆𝜆 Eigenvalue in x-direction [𝑚𝑚𝑠𝑠 ] 

𝜌𝜌 Density [𝑘𝑘𝑘𝑘𝑚𝑚3] 

𝜉𝜉 Eigenvalue in y-direction [𝑚𝑚𝑠𝑠 ] 

References 

/1/ Steger, J. L., Warming F. R., “Flux Vector Splitting of the Inviscid Gasdynamic Equations with 
Application to Finite-Difference Methods”, Journal of Computational Physics 40, pp. 263-293, 1981. 

/2/ Toro, E. F., ”Riemann Solvers and Numerical Methods for Fluid Dynamics”, Springer Verlag, 2009. 

/3/ Hirsch, C.  “Numerical Computation of Internal and External Flows”, Elsevier, 2007. 

/4/ Möser, M., “Technische Akustik”, p.42, Springer Verlag, 2015. 

/5/ Kinsler, L. E., “Fundamentals of Acoustics”, p. 202, Wiley, 1962. 

/6/ Sod, G. A., A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic 
Conservation Laws, Journal of Computational Physiks 27, p. 1-31, 1978. 

/7/ Lora-Claijo, F.D. et al., Exact solution of the 1D Riemann problem in Newtonian and relativistic 
hydrodynamics, Revista Mexicana de Fisica E 59, p. 28-50, 2013. 

 

485

G
R

O
U

P
 H

- 
5


