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Modelling unclosed terms in partial differential equations typically involves two steps:
First, a set of known quantities needs to be specified as input parameters for a model,
and second, a specific functional form needs to be defined to model the unclosed terms
by the input parameters. Both steps involve a certain modelling error, with the former
known as the irreducible error and the latter referred to as the functional error. Typically,
only the total modelling error, which is the sum of functional and irreducible error, is
assessed, but the concept of the optimal estimator enables the separate analysis of the
total and the irreducible errors, yielding a systematic modelling error decomposition.
In this work, attention is paid to the techniques themselves required for the practical
computation of irreducible errors. Typically, histograms are used for optimal estimator
analyses, but this technique is found to add a non-negligible spurious contribution to the
irreducible error if models with multiple input parameters are assessed. Thus, the error
decomposition of an optimal estimator analysis becomes inaccurate, and misleading
conclusions concerning modelling errors may be drawn. In this work, numerically ac-
curate techniques for optimal estimator analyses are identified and a suitable evaluation
of irreducible errors is presented. Four different computational techniques are consid-
ered: a histogram technique, artificial neural networks, multivariate adaptive regression
splines, and an additive model based on a kernel method. For multiple input parameter
models, only artificial neural networks and multivariate adaptive regression splines are
found to yield satisfactorily accurate results. Beyond a certain number of input parame-
ters, the assessment of models in an optimal estimator analysis even becomes practically
infeasible if histograms are used. The optimal estimator analysis in this paper is applied
to modelling the filtered soot intermittency in large eddy simulations using a dataset of
a direct numerical simulation of a non-premixed sooting turbulent flame.

Keywords: optimal estimator; multivariate adaptive regression splines; artificial neural
networks; DNS; soot

1. Introduction

The concept of the optimal estimator enables a systematic decomposition of the total
modelling error of any model into an irreducible and functional error [1]. When modelling, a
set of known quantities always needs to be specified as input parameters for the model, which
inevitably induces the irreducible error. In a second step, the functional error appears when a
specific functional form for the unclosed terms as function of the input parameters is defined.
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For the quantification of these two errors, detailed data, either measured experimentally or
generated via numerical simulation, are needed. For instance, turbulence models can be
assessed by data from direct numerical simulations (DNS), where all turbulent length scales
are properly resolved and no model is used. Based on such datasets, an empirical reference
model with vanishing functional error is generated and compared to the actual model. These
reference models are termed optimal estimators and simply use the mean of the unclosed
term conditioned on certain input parameters as a model. When the same input parameters
are used for the reference model and the model under investigation, the irreducible error of
the actual model can be determined by the modelling error of the reference model.

In an optimal estimator analysis, the error decomposition enables the identification
of the major source of modelling errors and a rigorous assessment of the potential for
improvement of a certain model if either of the functional form or the input parameters
are modified. If the total modelling error of a certain model is dominated by its irreducible
error, a change of its functional form will not yield a significant improvement of the total
modelling error. Furthermore, optimal input parameters for unclosed terms can be identified
from a larger set of possible input parameters by a systematic analysis of irreducible
errors.

The concept of optimal estimators was introduced by Moreau et al. [1], and has been
applied in several studies [2–5] in order to assess and develop models for turbulent reacting
flows. Typically, data from DNS are used for the analysis of such models since all turbu-
lence and combustion length scales are resolved, allowing for a thorough analysis of the
interactions of turbulence and combustion. However, DNS provide large amounts of data
with a high level of detail so that data inference is only possible by means of systematic
analysis tools, such as the concept of the optimal estimator [6]. It is worth noting here
that optimal estimator analyses are data-driven and the results represent empirical findings.
These empirical findings can then be used to guide the development of new physically
motivated models.

In one study, Balarac et al. [2] analysed a DNS of forced isotropic turbulence in order to
model the subfilter scalar dissipation rate, a quantity typically required in models for large
eddy simulations (LES) for turbulent non-premixed combustion. The authors discuss three
different models for the subfilter scalar dissipation rate: the local equilibrium assumption
model (LEA), the large-scale strain rate tensor model (SRT), and the subfilter kinetic
energy model (SKE). Each model uses a single, but different input parameter and the
input parameter of the SKE model was found to yield the lowest irreducible errors. Thus,
the SKE model reveals the largest potential for reducing the total modelling error if only
the functional forms of the three models are modified, so the authors proposed a model
formulation based on the input parameter of the SKE model whose total errors are lowest
and close to the irreducible error. This work is a prototypical example of using the concept
of optimal estimators to systematically reduce modelling errors.

In another study, Balarac et al. [3] compared a scale-similarity and dynamic
Smagorinsky-type model for the subfilter scalar variance [3], another quantity typically
required for LES of turbulent reacting flows. Smaller irreducible errors were obtained for
the dynamic Smagorinsky-type model, but the scale-similarity model yielded lower to-
tal modelling errors. While one would conclude that the scale-similarity model might be
superior, the optimal estimator analysis suggests that a potentially better model may be
formulated when using the input parameters of the dynamic Smagorinsky-type model but
changing its functional form. Conversely, the potential improvement of the scale-similarity
model is limited since it already has relatively small functional errors. Such limitations
in model improvement are difficult to analyse, but can be well disclosed in an optimal
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estimator analysis. Again, the optimal estimator analysis in this study has been limited to
one input parameter. In both studies, Balarac et al. [2,3] used a histogram technique (HT)
for the computation of the optimal estimators and irreducible errors. It will be shown that
HTs accurately compute optimal estimators for one or two parameter models, but fail for
larger numbers of input parameters.

In a third study, Vollant et al. [5] applied the optimal estimator approach to derive an
empirical model for the subgrid-scale scalar flux from a DNS by using the optimal estimator
of the subgrid-scale scalar flux based on seven input parameters directly as a model. Since
the functional error of such models is zero, the total modelling error is only determined
by its irreducible error. In an a posteriori analysis, they show that the surrogate model
behaves very close to the filtered DNS results due to its relatively small modelling errors.
However, the surrogate model fails if the flow conditions differ from those that are present
in the data that are used to generate the surrogate model. As will be revealed in this work,
the computation of optimal estimators with that many input parameters necessitates the
usage of highly accurate computational techniques, so in their work, Vollant et al. used an
artificial neural network (ANN) for the computation of the optimal estimator.

While the concept of optimal estimators has been used to systematically reduce mod-
elling errors and identify the best sets of input parameters, little attention has been paid
to the techniques themselves required for the practical computation of irreducible errors.
Optimal estimator analyses involve the computation of conditional means and, particularly
for large numbers of input parameters, the choice of technique for the computation of con-
ditional means strongly affects the quantitative and possibly even the qualitative outcomes
of the analysis. Therefore, different techniques for the numerical evaluation of optimal
estimators are assessed in this work with a particular emphasis on a high-dimensional
model-parameter space. A comparison among the following four techniques is presented:
an HT [7], ANNs [8], multivariate adaptive regression splines (MARS) [9], and additive
models based on a kernel method (AM) [10]. All these techniques belong to the class of
non-parametric fitting methods, which are distinctly different from parametric fitting meth-
ods such as linear regression, where a certain pre-specified model is fit to the data. In the
current study, we will show that the outcome of the optimal estimator analyses significantly
varies if using different techniques.

In this paper, first, the concept of the optimal estimator is reviewed; then, the four non-
parametric fitting methods for the practical computation of irreducible errors are discussed;
finally, these methods are applied in an optimal estimator analysis of a turbulent reacting
flow in order to demonstrate the impact of the non-parametric fitting technique on an
optimal estimator analysis. A DNS dataset of a sooting turbulent flame [11,12] is used to
study the filtered soot intermittency a priori in an optimal estimator analysis. The filtered
soot intermittency is an indicator of how much subfilter volume is occupied by a soot
volume fraction larger than a certain threshold, and hence characterises the subfilter spatial
structure of the soot volume fraction. It is used in current subfilter models to model the
evolution of soot quantities in LES [13]. Intermittency is chosen since it represents an
excellent quantity for the investigation of multi-parameter models. The description of soot
dynamics involves multiple soot moments such as the soot number density and the soot
volume fraction. In an a priori analysis, further parameters that describe the subfilter spatial
distribution of soot moments appear, so a large set of different parameters exists for a
relevant application of the optimal estimator analysis.

In the employed DNS, the formation, growth, and transport of soot in a turbulent flame
are analysed. Therefore, a detailed chemical mechanism, which includes the soot precursor
naphthalene, is used and soot dynamics are described by the hybrid method of moments [14].
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Figure 1. Dependency of temperature on mixture fraction for the employed DNS dataset (grey
points) compared to the Burke–Schumann and a simplified flamelet model. (Colour online)

For the DNS configuration, a temporally evolving planar jet at a jet Reynolds number of
15,000 and atmospheric pressure is chosen. The central fuel jet contains n-heptane diluted
with 85% (by volume) nitrogen at 400 K and is surrounded by a coflow of preheated air
at 800 K. The stoichiometric mixture fraction is Zst = 0.147. The domain is periodic in
the streamwise and the spanwise directions while open boundaries are applied in crosswise
direction. In this work, the DNS is studied at a time of about 9 jet times after its initialization,
so soot-turbulence interactions have been able to develop sufficiently. For further details on
the DNS database the reader is referred to the papers by Attili et al. [11,12].

2. The concept of the optimal estimator

The concept of the optimal estimator and its terminology are first demonstrated through
an example of modelling the temperature T using the mixture fraction Z, for which the
analysis will be performed with the DNS database described previously. Figure 1 shows
the temperature conditioned on the mixture fraction for this particular DNS dataset and the
respective conditional mean that has already been introduced as the optimal estimator. For
the conditional mean, the temperature is conditioned on the mixture fraction and averaged
over all of the DNS data. In addition, the comparison of the DNS data with two particular
models is presented: the Burke–Schumann model [15] with an adiabatic flame temperature
at stoichiometric mixture of 2481 K that has been computed from chemical equilibrium,
and a steady flamelet solution [16] with a stoichiometric scalar dissipation rate of χ st =
10 s−1. Since only one flamelet is used in the latter, this model also depends only on the
mixture fraction and although this is different from a steady flamelet model, where also
the scalar dissipation rate appears as a parameter, this will be called a simplified flamelet
model in the following. As expected, Figure 1 reveals a strong dependency of temperature
on mixture fraction in the DNS. Furthermore, it is expected that the simplified flamelet
model is more suitable for modelling the temperature in terms of the mixture fraction than
the Burke–Schumann model. These findings are quantified in Table 1, where the average
quadratic total modelling error over all N data points is shown for both models. This error
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Table 1. Error decomposition for the simplified flamelet and
Burke–Schumann models averaged over the DNS dataset.

Model ε2
irr ε2

f unct ε2
tot

Burke–Schumann (41K)2 (157K)2 (162K)2

Simplified flamelet (41K)2 (30K)2 (51K)2

Optimal estimator (41K)2 (0K)2 (41K)2
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Figure 2. Error decomposition for the simplified flamelet and Burke–Schumann models for
temperature plotted over mixture fraction for the employed DNS dataset. (Colour online)

is defined as:

ε2
tot = 1

N

N∑
i=1

(TDNS − TModel)
2. (1)

In an optimal estimator analysis, the conditional mean in Figure 1 is termed the optimal
estimator since by definition it represents the model with the lowest possible total modelling
errors. No other model, based solely on mixture fraction, can approximate the temperature
values of the DNS better. Therefore, the error associated with the optimal estimator is
termed the irreducible error, and conceptually quantifies the degree of scatter with respect
to the optimal estimator. Hence, this source of irreducible modelling error may only be
changed if different or additional input parameters are used to describe the evolution of
temperature in the temporally evolving jet, e.g. the local scalar dissipation rate.

Generally, any model that only uses mixture fraction as an input parameter to parametrise
temperature has the same irreducible error. However, the total modelling errors may be
different, as can be seen from Table 1 when comparing the Burke–Schumann and the
simplified flamelet model. This is caused by the second source of modelling errors, which
is induced by the particular functional form chosen to compute the temperature in terms
of mixture fraction. The functional error is determined by the difference of the total and
irreducible error. Thus, an optimal estimator analysis systematically decomposes the total
modelling error into functional and irreducible error. In Figure 2, the error decomposition
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Table 2. Irreducible errors for the tem-
perature if using the axial velocity V, the
mixture fraction Z, or the local scalar
dissipation rate χ as input parameters.

Input parameters ε2
irr

none (415K)2

V (331K)2

Z (41K)2

Z, χ (33K)2

is shown with respect to mixture fraction for the Burke–Schumann and simplified flamelet
model. It reveals that the total modelling error in the Burke–Schumann model is dominated
by the specific functional form, while the simplified flamelet model is mostly affected by
the irreducible error. Thus, the simplified flamelet model can only be significantly improved
if more or different input parameters are used for the parametrisation of the temperature.
According to Figure 2, the largest irreducible errors are observed around stoichiometry
indicating an insufficient parametrisation of temperature in this region.

Table 2 shows different irreducible errors that are induced when parametrising the tem-
perature by different input parameters, e.g. the mixture fraction, the local scalar dissipation
rate, or the axial velocity. As expected, the irreducible error for the axial velocity is much
larger compared to the irreducible error for the mixture fraction, which indicates that mix-
ture fraction is a much more adequate parameter for the parametrisation of the temperature.
Indeed, Table 2 shows that using the axial velocity for parametrisation is almost as bad as
using a constant mean (case: none). However, Table 2 also quantifies that using the local
scalar dissipation rate as additional input parameter to the mixture fraction only slightly
improves parametrisation of the temperature. The DNS considered is far from extinction, so
the effects of strain on temperature are relatively weak. Thus, an optimal estimator analysis
also enables the rigorous assessment of different input parameters and can determine the
optimal set of input parameters from a larger basis of input parameters.

Mathematically, the error decomposition of an optimal estimator analysis can be for-
mally defined. Let Q be the quantity for which a particular model is required, e.g. temperature
in the example above, and let � be the set of input parameters chosen for the parametrisation
of Q, e.g. mixture fraction in the example above, the corresponding conditional mean is:

g(�) = 〈Q|�〉, (2)

where g(�) is termed the optimal estimator and 〈〉 represents an average over all of the
DNS data. Note that � can also represent a set of multiple input parameters. Let M(�) be a
particular model formulation, e.g. the simplified flamelet model for the temperature in the
example above, then the error decomposition described above becomes:

ε2
tot (�) = 〈[Q − M(�)]2|�〉

= 〈[Q − g(�) + g(�) − M(�)]2|�〉
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= 〈[Q − g(�)]2|�〉︸ ︷︷ ︸
ε2
irr

+ [g(�) − M(�)]2︸ ︷︷ ︸
ε2
f unct

+ 2 [〈Q|�〉 − g(�)]︸ ︷︷ ︸
=0

·[g(�) − M(�)]

= ε2
irr (�) + ε2

f unct (�). (3)

In Equation (3), the error quantities ε2
tot , ε

2
irr , and ε2

f unct are determined as a function of the
set of input parameters �. For the previously discussed temperature models, the dependence
of these error quantities on the mixture fraction is shown in Figure 2. However, if averaging
these error values over the whole DNS dataset a single error value is obtained, which is the
one shown in Table 1.

3. Computational techniques for optimal estimator analyses

The challenge in optimal estimator analyses is to accurately compute the conditional mean,
such as 〈Q|�〉, where the quantity Q, for which a model is required, is conditioned on the
input parameter set �. By definition, the conditional mean represents the local average
of Q in parameter space �. To determine such a local average, one has to use non-
parametric fitting techniques, which are also referred to as smoothing techniques. In contrast
to parametric fitting techniques such as linear regression, smoothing techniques do not
require to fit a pre-specified model to the data so that a true local average can be obtained.
Indeed, fitting a pre-specified model to the data is not even possible since the functional
form of the optimal estimator is not known a priori.

First, the general idea of local averaging is presented, and second, the unavoidable
inaccuracies in determining a local average for a given dataset are discussed. It will be
shown that these unavoidable inaccuracies always lead to a certain error when determining
the conditional mean by non-parametric fitting methods. These inaccuracies even increase
if conditional means in a high-dimensional model-parameter space are computed and vary
for different non-parametric fitting techniques. A third section will discuss the challenges
of computing conditional means in a high-dimensional model-parameter space and a pre-
sentation of four different smoothing techniques, which will be subsequently referred to as
‘fitting techniques’, will be provided.

3.1. Local averaging

In practical implementations, local averaging of Q in parameter space � always means
averaging Q within a small non-zero volume in the vicinity of a given value of �. If this
volume is large, the average may not be regarded as local any more, and, if the volume is
very small, the given dataset always becomes sparse so that no reliable local average can be
determined. In both of these limits, the local average is not accurately determined so that
there exists an optimal size for such an averaging volume. Figure 3 shows the behaviour of
a fit with respect to the size of the averaging volume. Therefore, a dataset of two random
variables Q and � is generated that follows the relationship:

Qi = g(�i) + δi (4)

for each data point i where � is uniformly distributed, δ follows a normal distribution with
a zero mean, and the underlying functional relationship g(�) is shown in Figure 3 (black
line). Thereby, a typical DNS scatter among two different quantities is approximated, but
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in contrast to a DNS scatter, the optimal estimator is known a priori as g(�) in the limit of
infinitely many data points. Figure 3 shows three different fits that try to reconstruct g(�)
from the scattered data points whereby a fitting technique known as the kernel method
is applied. It uses a constant averaging volume throughout the whole parameter space �

and the local average within the averaging volume is determined by a weighted mean.
Details are provided in Section 3.3.2. Concerning the three different fits in Figure 3, one
fit (blue dotted line) uses a relatively large averaging volume, yielding a very smooth fit,
and in another case (green line), a relatively small averaging volume is chosen, resulting
in a very unstable fit. For both cases, the underlying relationship from the data is not well
reconstructed, as the smooth fit is very insensitive to the structures embedded in the data
scatter, whereas the other fit is too sensitive and identifies statistically random patterns. As
both fits significantly deviate from the conditional mean g(�), the errors associated with
these fits will be larger than the irreducible error. An optimal fit (yellow dotted line) with a
quadratic error close to the irreducible error would use a moderately large averaging volume
such that the fit is sufficiently sensitive to actual variability in the data but also robust to
random statistical variations. The fitting error resulting from the insensitivity of a technique
is known as bias, and the fitting error that is induced by a too-sensitive technique is termed
variance or overfitting. For any technique, both errors coexist, so all non-parametric fitting
always involves a certain trade-off between bias and variance in order to keep the errors
small that are related to the fitting technique itself [17].

3.2. Bias and variance

The existence of bias and variance for any technique affects the computation of optimal
estimators and irreducible errors. Mathematically, the impact of bias and variance on the
computation of irreducible errors is formally shown in the following. First, the concept of
training and testing needs to be introduced: in order to properly assess the quality of a fit, it
is necessary to split the dataset into two subsets. The fit is generated with one subset, which
is known as training the fitting technique. Then, the second subset is used to compute the
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average quadratic error of the particular fit with respect to the data of the second subset,
which is referred to as testing the fitting technique. This process ensures that errors due
to overfitting are detected [17]. If one assessed the fits only on the basis of the training
data, a fitting technique that is strongly overfitting would always yield the lowest errors
as it identifies statistically random patterns in the data and approximates this particular
dataset best. However, such an error measure would not be meaningful since, clearly, the
‘high variance fit’ does not capture the underlying relationship well according to Figure
3. In contrast, an error estimate based on the test dataset can detect overfitting since the
underlying physics in the test dataset are the same, but statistically random patterns in the
test dataset would be different [17].

As one typically only has limited data available, a compromise between the need to fit
the data by a sufficiently large training set and the requirement to appropriately assess the
fit is addressed by the cross-validation technique [7]. In this work, this technique is applied
by splitting the data into two subsets and using one for training and one for testing. After
having assessed the fit by the average quadratic error, the test dataset is used as a training
dataset, and the second fit is assessed by the original training dataset. Thus, all data can
be used for fitting and testing and the overall testing error is given as the average of both
computed testing errors.

Let E{S}[...] be the operator that defines the averaging of the two testing errors (ε2
Test)

S1

and (ε2
Test)

S2 obtained for the first and second test dataset, S1 and S2, in the first and second
stage of cross-validation, such that:

E{S}
[(

ε2
Test

)S] = 1

2

[(
ε2

Test

)S1 + (
ε2

Test

)S2
]

with S = S1, S2. (5)

Let gS1 (�) and gS2 (�) be the fits based on the first and second training dataset during
cross-validation and let g(�) be the optimal estimator, then, analogously to Equation (3),
the error decomposition of the average testing error yields:

ε2
Test = E{S}

[(
ε2

Test

)S]
= E{S}

[〈(gS(�) − Q)2|�〉]
= E{S}

[〈(gS(�) − g(�) + g(�) − Q)2|�〉]
= E{S}

[
(gS(�) − g(�))2

]︸ ︷︷ ︸
ε2

Fit

+〈(g(�) − Q)2|�〉︸ ︷︷ ︸
=ε2

irr

(6)

The fitting error, which is induced if the fits gS1 (�), gS2 (�) do not coincide with the optimal
estimator, can be further decomposed when defining an average fit ĝ(�) = E{S}

[
gS(�)

]
among the two different training datasets S1 and S2.

ε2
Fit = E{S}

[
(gS(�) − g(�))2

]
= E{S}

[
(gS(�) − ĝ(�) + ĝ(�) − g(�))2

]
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= E{S}
[
(gS(�) − ĝ(�))2

]
+ E{S}

[
2(gS(�) − ĝ(�))(ĝ(�) − g(�))

]︸ ︷︷ ︸
=0

+ (ĝ(�) − g(�))2

= E{S}
[
(gS(�) − ĝ(�))2

]︸ ︷︷ ︸
ε2
V ariance

+ (ĝ(�) − g(�))2︸ ︷︷ ︸
ε2
Bias

(7)

Therefore, the fitting error can be decomposed into an error due to variance, which arises
from the variability of the fit among the different training datasets, and an error due to
bias. The bias results from a technique that does not allow for a sufficient flexibility, so
throughout all training data a systematic error is induced. Evidently, fitting techniques are
needed that only introduce small additional errors such that the testing error equals the
irreducible error. However, practically, only the testing error can be computed and is taken
as an estimate for the irreducible error. In Section 4, the impact of the fitting error on the
computed irreducible error will be further discussed.

3.3. Fitting techniques

As demonstrated in Figure 3, fitting may be a challenging task that becomes even more
challenging if a hypersurface in a high-dimensional space needs to be fitted to scattered data.
In an optimal estimator analysis, such situations appear if multiple input parameters are
used. One particular problem is that any dataset quickly becomes sparse in high dimensions,
so conditional averages have to be evaluated on sparse data sets while keeping errors due
to bias and variance small. For instance, a dataset of 10 billion data points conditioned on
five input parameters will provide only about 100 points to evaluate the conditional mean
in one parameter. This is referred to as the curse of dimensionality and is a fundamental
issue that cannot be easily sidestepped [7]. One strategy to cope with the curse may be to
locally reduce the dimensionality of the optimal estimator hypersurface by selecting only a
small number of active variables out of � in a particular region [7].

Additionally, it has been found [7,17,18] that the performance of the fitting techniques
depends on the form of the optimal estimator itself, which is not known a priori. Banks
et al. [18] compared the performance of different fitting techniques on the basis of different
functional relationships that were embedded in the scattered data and found that some
techniques are sometimes the best but sometimes also the worst. Therefore, as no method
dominates all others over all possible datasets [17], a rigorous optimal estimator analysis
requires at least two different fitting techniques in order to prove that the respective findings
are not biased by the technique itself.

In this work, the optimal estimators and irreducible errors are computed with four
techniques: a Histogram Technique (HT) [7], an Additive Model based on a kernel method
(AM) [7], Multivariate Adaptive Regression Splines (MARS) [9], and Artificial Neural
Networks (ANN) [8]. The HT is chosen as it is typically applied for the computation of
conditional means. The AM simplifies high dimensional fitting with certain assumptions
and is included in the analysis in order to demonstrate that high-dimensional fitting may not
be addressed in such a simplified way. It will be shown that this method performs the worst
for high-dimensional fits, but histograms also fail to accurately determine high-dimensional
conditional means. Therefore, high-dimensional fits require the more sophisticated MARS
and ANN techniques. Each of these four techniques is briefly described below.
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3.3.1. Histogram technique

In HTs, the input parameter space � is partitioned into pre-specified disjoint bins [7]. In
this work, if � contains more than one input parameter, the bins form a structured multi-
dimensional grid such that the total number of bins is (NBins)dim(�), where NBins refers to the
number of bins along one coordinate of the input parameter space � and dim(�) refers to
the number of input parameters. The optimal estimator is then determined by the average
of Q in each bin. The number of bins for each fit is found by an optimisation in which a
small portion of the training data is held out in order to assess the fitting error based on
the training data. This subset is referred to as a validation dataset. The fit with the lowest
validation error is then assessed by the unused test dataset.

HTs provide an intuitive way of data fitting, but their ability of high-dimensional
fitting is limited. First, local grid refinement for high-dimensional fits is challenging, so
an equidistant grid determined by the number of bins is chosen in this work. In addition,
histograms do not generalise well to high dimensions since any dataset becomes sparse in
high dimensions, so test data may fall into bins where no training data are available. For
these cases, either the mean of neighbouring bins needs to be used, or these data need to be
simply neglected, which is the strategy applied in this work.

3.3.2. Additive model and kernel methods

The AM reduces the complexity of a high-dimensional fit to multiple one-dimensional fits
by assuming additivity among the input parameters. In particular, AMs assume that the
optimal estimator g(�) may be written as a sum of univariate functions that each depend
only on one single input parameter π k. Here, � is written as the set of all input parameters
π k, such that � = {π1, π2, ..., πn} with n input parameters. Thus, with the AM the optimal
estimator is computed as:

gFit (�) =
n∑

k=1

fk(πk), (8)

and the univariate functions fk(π k) are determined by a one-dimensional fit, e.g. by a kernel
method, which is used in this work.

Kernel methods determine the conditional mean 〈Q|�〉 by a weighted average over all
data points in the vicinity of a given value of �. The radius within which the data points are
considered for averaging is pre-specified and is termed the kernel bandwidth h. Let K(ν) be
the weighting function for averaging the data points, let the index i mark the N data points
of a given dataset, and for simplicity, the index k of fk(π k) is dropped in the following, then
the local average at the position π̂ in parameter space is determined as:

f (π̂ ) =
∑N

i=1 K(πi − π̂ )Qi∑N
i=1 K(πi − π̂ )

. (9)

In the literature, different weighting functions K(ν) exist, but typically, the Epanechnikov
kernel is chosen [7]:

K(ν) =
{

3
4h

[
1 − ( ν

h
)2

]
, if |ν| ≤ h

0, otherwise
(10)
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Figure 4. RPR tree with associated basis functions.

where h represents the kernel bandwidth. It may be chosen either by holding out a portion
of the training data and picking the value of h for which the fit has the lowest quadratic
error with respect to the held out data, or it can be specified a priori, which is known as a
plug-in method for the kernel bandwidth [10]. In this work, h is pre-specified in order to
minimise computational expense since fitting showed to be insensitive to h for a reasonably
wide range of values.

AMs have the advantage that the complexity of high-dimensional fitting is reduced to
multiple one-dimensional fits, which can be performed much more accurately. However,
as a consequence, a strong assumption of additivity among the input parameters is made
that does not necessarily apply to a given dataset. From all presented techniques, we will
see that this technique performs the worst for high-dimensional fits since the assumptions
made are not valid for the present optimal estimator analysis.

3.3.3. Multivariate adaptive regression splines

MARS have been introduced by Friedman [9] and are closely related to the recursive
partitioning regression (RPR) [7] technique. The latter can intuitively be understood by its
geometrical interpretation. In a first step, the whole parameter space domain is split into two
daughter regions, and, in each region, a constant function is fit to the data. In a next step, one
region is split again into two daughter regions, and constant functions are fit to the daughter
regions and so forth. For each step, an optimisation with respect to the placement of the split
is performed with the objective of minimising the mean error between the training data and
the region-wise constant functions of RPR [9]. The domain splitting may be understood
as growing a tree, shown in Figure 4. In this case, three variables are chosen as input
parameters: πa, b, c indicates the specific split variable and sa, b, c represents the variable’s
value at which the domain is split in each step. Typically, in RPR algorithms, first large
trees are generated, and afterwards they are pruned back in order to avoid overfitting [7].
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Therefore, RPR efficiently exploits low dimensionality because variables that have little
impact are less likely to be picked for splitting [9].

In MARS, the concept of regions and splitting is replaced in a mathematical sense by
addition and multiplication. Each subdomain m is associated with a function Bm that is
zero outside and non-zero inside the subdomain, yielding the following approximation of
g(�):

gFit (�) =
M∑

m=1

amBm(�), (11)

where M indicates the number of all domains and am is a fitting parameter.
In particular, when splitting a domain, the existing domain function, which is termed

the parent function, is multiplied by a left and a right sided basis function (termed f− and
f+ in Figure 4), yielding two new daughter domain functions. For instance, the right sided
basis function is given by:

f+(x − s) =

⎧⎪⎨
⎪⎩

0 x ≤ s−
c1(x − s−)2 + c2(x − s−)3 s− ≤ x ≤ s+
x − s x ≥ s+

(12)

where the variables s± are chosen close to the splitting point s so that the basis function is
zero for almost all the domain left of the splitting point and an almost linear function right
of the splitting point. Thus, a multiplication of a given domain function with the right sided
basis function generates a daughter domain that comprises the parent domain to the right of
the splitting point. The cubic transitioning term around the splitting point and its respective
constants c1, c2 are chosen such that the first derivative is continuous at s− and s+.

At the beginning of the fitting procedure, MARS assumes a function basis {Bm} that
only contains a constant domain function B0 = 1. This function is split into two daughter
functions by the multiplication of B0 with the left and right sided basis functions, yielding
the new function basis {B0, B1, B2}. This basis is extended by further splitting procedures
while in contrast to RPR, the parent function is always kept in the actual function basis
{Bm}. Thus, the actual function basis {Bm} may contain certain basis functions that overlap
regions of others. At each step, an optimisation with respect to the placement of the split is
performed with the objective of minimising the mean error between the training data and
the fit that would be generated by the respective split placement. Note that a basis function
Bm cannot be split twice along a coordinate π k. However, B0 is always available for splitting
along any coordinate.

As each domain function fits an almost linear function to the data, the successive domain
splitting leads to an almost continuous piecewise linear fit. Thereby, the splitting points and
the slope of the piecewise lines am represent the respective fitting constants. Analogously
to RPR, the extension of a current basis {Bm} in MARS can be understood as growing a
tree that is pruned back after sufficient splitting to avoid overfitting. More details may be
found in the original paper by Friedman [9].

For this study the MARS implementation of Friedman (Version 3.5 in Fortran 77 [9,19–
21]) is used.
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Figure 5. Single hidden layer Artificial Neural Network.

Throughout this study, MARS is found to accurately predict optimal estimators even
for high-dimensional fits, but coming along with a significantly increased computational
expense particularly for high-dimensional fits.

3.3.4. Artificial neural networks

ANNs were originally developed to better understand the activity of physiological neurons.
Mathematically, ANN are composed of nodes that are often organised in layers, and every
single node is interconnected to all nodes in the preceding and the following layer. Generally,
many different network architectures are possible, and a single hidden layer neural network
is shown in Figure 5. For such a network, the training data are inserted into the network,
then a weighted sum of these inputs according to the weights {w(1)

k } is transferred to the
nodes of the hidden layer, processed within the node by an activation function φ, and finally,
these outputs are transferred by the weights {w(2)

k } to the output node, which represents
the optimal estimator g(�) [8]. The hidden layer is termed hidden since only the linear
combination of its outputs weighted by {w(2)

k } is actually seen. The network architecture

and number of neurons is predefined, and the data are used for training the weights {w(1)
k }

and {w(2)
k }.

Mathematically, fitting by a neural network may be seen as a parametric fit since the
optimal estimator is approximated by:

g(�) =
NNeurons∑

k=1

w
(2)
k φ

⎛
⎝dim(�)∑

j=1

w
(1)
jk πj + w

(1)
k

⎞
⎠ + w

(2)
1 , (13)

where NNeurons represents the number of neurons in the hidden layer and dim(�) refers to
the number of input parameters in �. However, neural networks are much less restrictive
than typical parametric fits as they contain a rich enough class of functions and allow for a
sufficient flexibility in data fitting [7].
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For this investigation, the neural network toolbox of MATLAB with a single hidden
layer neural network, a hyperbolic tangent sigmoid activation function,

φ(ξ ) = 2

1 + exp(−2ξ )
− 1, (14)

and a Bayesian regularisation training is used. The initial weights of the neural network
{w(1,2)

k } are randomly set, which, if repeating the same optimal estimator analysis, did only
cause deviations of the irreducible errors smaller than 0.1%. For an optimal choice of
the number of neurons, a small portion of the training data is held out and is used for the
assessment of the fit. After finding the optimal number of neurons with the smallest training
error, the final fit is assessed by the unused test dataset.

Throughout this study, ANN are found to accurately predict optimal estimators even for
high-dimensional fits, and additionally showed to be computationally efficient since neural
networks can partially evade the curse of dimensionality [7].

4. Results and discussion

In this section, the impact of a particular fitting technique on determining conditional means
and irreducible errors in an optimal estimator analysis is investigated.

For the analysis here, the quantity of interest is the filtered soot intermittency, which
is studied in the DNS database described above for a sooting turbulent non-premixed jet
flame. The soot intermittency is defined as the probability of finding a soot volume fraction
that is less than a certain threshold. Following Qamar et al. [22], this threshold is given by
the detection limit of experimental devices and is found to be 0.1 ppb. The filtered soot
intermittency then represents the fraction of the subfilter volume that has a soot volume
fraction below the respective threshold or, physically, the subfilter structure of the soot
volume fraction.

Mathematically, the unfiltered intermittency of the unfiltered soot volume fraction fV is
represented by a Heaviside function:

I (fV ) = H (f ∗
V − fV ) f ∗

V = 0.1ppb. (15)

Concerning LES, the filtered intermittency can be expressed by convoluting the intermit-
tency with the soot subfilter probability density function (PDF) P(fV ) [13] that describes
the subfilter distribution of the soot volume fraction:

I =
∫

P(fV ) H (f ∗
V − fV )dfV . (16)

This subfilter PDF can also be used to define both the filtered soot volume fraction and its
higher-order subfilter moments:

fV =
∫

fVP(fV )dfV (17)

φk =
∫

(fV − fV )kP(fV )dfV . (18)



Combustion Theory and Modelling 495

Vice versa, the subfilter PDF is parametrised by its subfilter moments:

P(fV ) = P(fV |fV , φ2, φ3, ...). (19)

Here, the objective of the optimal estimator analysis is to determine which set of these
subfilter moments best describes the filtered intermittency or, equivalently, the subfilter
PDF:

I (fV , φ2, φ3, ...) =
∫

P(fV |fV , φ2, φ3, ...) H (f ∗
V − fV )dfV . (20)

4.1. Technical details

Before discussing the impact of a particular fitting technique on determining conditional
means and irreducible errors, all additional technical details for the subsequent analyses
are presented.

If not mentioned differently, the following is applied to all of the subsequent optimal
estimator analyses. All optimal estimators are computed by ANNs and the irreducible errors
are averaged with respect to the whole DNS dataset according to Equation (1). In order to
guarantee a proper non-parametric fit, the dataset needs to be preprocessed before fitting,
so optimal estimators are always determined with respect to the logarithm of the input
parameters instead of using the input parameters directly without preconditioning them.
This will be discussed in Section 4.3. For the subsequent optimal estimator analysis not
all data are considered, since non-parametric fitting using the aforementioned techniques
proved computationally infeasible if all data points are used. In total, the DNS dataset
comprises about 500 million data points, but, for the following analyses, only about 400,000
data points are used. Therefore, first the DNS data are filtered by a box filter with a filter size

 of 
 = 43η, where η = 110 μm is the Kolmogorov length of the turbulent flame [11,12].
Filtering is done for each single data point, so the filtering volumes overlap and each filtering
volume comprises 513 data points. From the filtered data, only every 11th data point in
each spatial direction is considered for the optimal estimator analyses, so the dataset is
reduced by a factor of 113. In Figure 6, the irreducible errors for the filtered intermittency
conditioned on eight different input parameter sets are shown for three differently large
datasets. The three datasets comprise 0.4 million, 1.3 million, and 17 million data points,
and are generated by only considering every 11th, seventh or third data point of the filtered
field in each spatial direction. The different input parameter sets are described in Table 3
and consist of the first eight subfilter moments of the soot volume fraction φk. The first input
parameter set �1 only contains the filtered soot volume fraction fV , and each subsequent
parameter set includes the next higher subfilter moment of the soot volume fraction, e.g.
�2 contains the filtered soot volume fraction fV and its subfilter variance φ2. However,
the dataset reduction does not affect the computation of the irreducible errors according
to Figure 6 even for cases that require the computation of high-dimensional conditional
means. Note that the computation of the missing values in Figure 6 was computationally
infeasible, i.e. irreducible errors for two and more parameters could not be computed if 17
million data points are used. Additional filter sizes of 
 = 26η, 
 = 9η, and 
 = 2.5η

have been investigated, but results are found to not significantly vary with respect to the
filter size.
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Figure 6. Irreducible errors for the filtered soot intermittency computed with ANN for three different
subsets of the full DNS dataset, each containing N data points. The input parameters �1, .., 8 are given
in Table 3. Determination of missing values was computational infeasible. (Colour online)

4.2. Optimal estimator analysis

In this optimal estimator analysis, the filtered intermittency is conditioned on eight different
input parameter sets �j = 1..8. The input parameter sets are listed in Table 3, which has been
described in the previous section, and the irreducible errors for these input parameter sets
are shown in Figure 6. As expected, additional input parameters lead to reduced irreducible
errors as more information about the subfilter distribution is used for the parametrisation
of the subfilter PDF. However, the addition of increasingly high order subfilter moments
does not significantly improve the parametrisation of the subfilter PDF as the irreducible
errors level off for �6, �7, and �8. This behaviour of the irreducible errors will be further
discussed in Section 4.5.

In the following subsections, we will show that this analysis is affected by two aspects
related to the practical computation of conditional means. First, the findings of this optimal
estimator analysis change if different fitting techniques are employed, and second, the
manner in which the data are preprocessed before being used for fitting is important.

Table 3. Input parameter sets
for optimal estimator analysis in
Figures 6, 7, and 10.

�i Parameter set �i

1 {fV }
2 {fV , φ2}
3 {fV , φ2, φ3}
4 {fV , φ2, ..., φ4}
5 {fV , φ2, ..., φ5}
6 {fV , φ2, ..., φ6}
7 {fV , φ2, ..., φ7}
8 {fV , φ2, ..., φ8}



Combustion Theory and Modelling 497

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  1  2  3  4  5  6  7  8

ε i
rr

2

Input parameter set Π

Log. Case

Lin. Case

Figure 7. Irreducible error for the filtered soot intermittency with two different data preprocessing
techniques computed with ANN. The input parameters �1, .., 8 are given in Table 3. (Colour online)

4.3. Effect of data preprocessing

If and how the input parameters are preconditioned before fitting should not matter. How-
ever, Figure 7 shows the irreducible errors of the filtered intermittency conditioned on
the different subfilter moments for two cases: the raw data are directly inserted into the
fitting procedure (linear case), and the logarithm of the raw data is inserted into the fitting
procedure (logarithmic case). It is worth noting that all subfilter moments φk of the soot
volume fraction appeared to be positive, so the logarithm of any subfilter moment φk is well
defined. For one- and two-dimensional fits, the irreducible errors are the same irrespective
of the preprocessing procedure, but, for all higher-dimensional fits, the irreducible errors
of the linear case remain constant, while in the logarithmic case irreducible errors keep
decreasing. As the value of the conditional mean of the filtered intermittency is supposed to
remain unaffected for a given position in �-space, the irreducible error should also remain
unaffected by the preconditioning. Recalling Equation (6), the computed irreducible errors
in the linear case must then be strongly affected by errors arising from the fitting technique
itself.

For a deeper understanding of this observation, Figure 8 shows the filtered intermittency
conditioned on the filtered soot volume fraction and Figure 9 shows the filtered intermittency
conditioned on the logarithm of the filtered soot volume fraction. Additionally, the PDF of
the DNS data, distinct from the subfilter PDF of the soot volume fraction, with respect to
the filtered soot volume fraction and the logarithm of the filtered soot volume fraction is
shown. The filtered soot volume fraction covers many orders of magnitude, and a significant
portion of the data possesses relatively low filtered soot volume fractions. Therefore, in the
linear case a strong peak of the PDF is observed close to the origin which makes it very
challenging for the fitting technique to resolve the embedded structures in these regions and
results in a very large bias error. In contrast, in the logarithmic case, the data distribution is
more uniform, and the resulting bias error is significantly reduced.

Summarising, an adequate preprocessing of the data significantly reduces fitting errors
since it may lead to a more uniform distribution of the data points in parameter space, but
the manner in which the data need to be preprocessed remains specific to each dataset.
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Figure 9. Effects of data preprocessing on the distribution of the DNS data: logarithmic case.
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4.4. Effect of fitting technique

Figure 10 shows the same optimal estimator analysis as presented in Figure 6, but carried
out with each of the four different introduced techniques: HT, AM, MARS, and ANN. The
fitting techniques result in very different irreducible errors, with the differences increasing
with the dimensionality of �. Recalling Equation (6), these deviations must be due to the
particular fitting technique since the irreducible error is the same for a given parameter set
�. ANN has the lowest errors related to the fitting technique while AM generates the largest
errors for high-dimensional fits. These results simply reflect the curse of dimensionality,
with which some techniques can cope better than others. However, all techniques yield
identical results for one-dimensional fits, which verifies the implementation of the different
fitting techniques, and indicates that the fitting error is negligibly small compared to the
irreducible error for a single input parameter.
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Figure 10. Irreducible errors for the filtered soot intermittency computed by different fitting
techniques. The input parameters �1, .., 8 are given in Table 3. (Colour online)

4.4.1. Histogram technique

Figure 10 shows reasonable agreement of the results computed with HT compared with
those of MARS and ANN up to two parameters even though very small deviations of HT are
seen for two parameters with respect to MARS and ANN. For three and four parameters, the
HT introduces significant fitting errors and deviates significantly from MARS and ANN. As
previously mentioned, these fitting errors result from the poor capability of HT to generalise
to high-dimensional problems, since any dataset becomes sparse in high dimensions, so
that test data may fall into bins where no training data are available. Furthermore, grid
refinement in high dimensions is challenging for HT, so the adaptivity of HT to the high-
dimensional data structure is limited. Moreover, no irreducible errors have been computed
for dimensions higher than four, since HTs require the computation of a local average in
(NBins)dim(�) bins, which quickly reaches memory limits.

4.4.2. Additive model

For the AM, the irreducible error in one dimension is well captured, but significant errors
are introduced for higher dimensional fits. This results from the additivity assumption in
Equation (8) that the optimal estimator hypersurface g(�) may be decomposed into sums of
univariate functions of the single input parameters. By definition, the additivity assumption
neglects any interactions between the parameters, so the fitting errors increase rapidly as
the dimensionality of the input parameter set is increased. Unless the input parameters are
known to have independent effects a priori, AM should not be used for high-dimensional
input parameter sets.

4.4.3. Multivariate adaptive regression splines

In this work, the splitting tree of MARS is allowed to contain at most Mmax = 500 splits. This
maximum number of splits Mmax was chosen as it was sufficiently larger than the number of
functions in the final basis {Bm} after the splitting tree is pruned back. Compared to ANN,
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slightly higher quadratic errors are computed by MARS for the input parameter sets �i > 3.
This and particularly the increase of irreducible errors from �5 to �6 relates to deficiencies
of MARS as a constant or decreasing irreducible errors is expected. It is difficult to say
where these discrepancies arise from, but considering that high-dimensional fitting is a
challenging task in itself and that the deviations between MARS and ANN compared to the
other techniques are relatively small, MARS may still be regarded as an appropriate tool for
optimal estimator analyses of low and moderately high-dimensional input parameter sets.

4.4.4. Artificial neural network

For the fits by ANN, a single hidden layer network is chosen. Compared to MARS, ANN was
significantly more computationally efficient. Throughout the whole analysis, the irreducible
errors computed by ANN always yield the lowest values, so according to Equation (6) errors
induced by the technique itself are also the smallest, even though such errors may potentially
still dominate the computed quadratic errors. However, since the deviations between MARS
and ANN compared to the other techniques are relatively small, one may assume that the
errors shown in Figure 10 represent the irreducible error as both techniques have very
different fitting concepts, but still yield almost identical results.

4.4.5. Remarks

Low-dimensional fits are accurately predicted by HT, MARS, and ANN but high-
dimensional fits are only reasonably accurately predicted by MARS and ANN, as HT suffers
severely from the curse of dimensionality. Moreover, the computation of high-dimensional
fits by HT was not feasible due to the enormous memory requirements of HT. The com-
putations of MARS and ANN remains feasible even for high dimensional fits, but ANN
is more computationally efficient. AM only yields reasonable results for one-dimensional
fits. These findings suggest that an optimal estimator analysis should always be performed
with at least two fitting methods, specifically ANN and MARS, to prove that the results are
technique-independent.

4.5. Non-vanishing irreducible errors

As a final point, in Figure 6, the irreducible errors do not appear to decay to zero as
the dimensionality of the input parameter set increases. Intuitively, one could expect the
subfilter PDF to be perfectly parametrised if sufficiently many integer subfilter moments
are used for parametrisation. However, Figure 6 reveals that adding high-order subfilter
moments to the set of input parameters does not significantly improve the parametrisation
of the subfilter PDF, and the irreducible errors even saturate. In Figure 11, the subfilter PDFs
for five different subfilter volumes are shown. All five volumes have the same values of the
first eight subfilter moments (=�8); however, the subfilter PDFs have different shapes. The
PDFs have been computed by means of a kernel method such that

P(f̂V ) = 1

NSV

NSV∑
i=1

K
(

log10(fV

∣∣
i
) − log10(f̂V )

)
. (21)

determines the subfilter PDF for a given value of the soot volume fraction f̂V . fV|i represents
the unfiltered soot volume fraction of the NSV data points within a subfilter volume and
K(ν) is the kernel function from Equation (10).
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Figure 11. Five subfilter PDFs evaluated from the employed DNS with the same first eight, low-order
subfilter moments. (Colour online)

As shown in Figure 11, the soot volume fraction is distributed over many orders of
magnitude. Consequently, the subfilter moments are biased towards values of large soot
volume fractions within the subfilter volume, and increasing the order simply increases
this bias. Therefore, integer-order subfilter moments are insufficient for parametrising the
subfilter PDF for small values of the soot volume fraction, as can be seen from Figure
11. A different choice of input parameters may result in an improved parametrisation of
the subfilter PDF in these regions. For instance, one can define fractional moments of the
subfilter PDF as:

ξk =
∫

(fV − fV )1/kP(fV )dfV k ∈ N. (22)

These moments place a stronger weight on small values of the soot volume fraction. In
Figure 12, irreducible errors are compared when conditioning the filtered intermittency
on different input parameter sets, where each subsequent parameter set includes either
the next higher integer or fractional subfilter moment of the soot volume fraction starting
from �1 = fV . The input parameter sets are described in Table 4. Figure 12 shows that
irreducible errors can be significantly reduced using fractional moments compared to the
previously defined integer-order subfilter moments φk.

Note that, mathematically, a necessary condition for a complete parametrization of a
distribution by all of its integer moments is a positive radius of convergence of the moment
generating function [23]. As the subfilter PDFs appear to be approximately log-normally
distributed in Figure 11, this requirement is not fulfilled, which causes the non-vanishing
irreducible error in Figure 6.

However, even though fractional moments are found to be more adequate for the
parametrisation of the subfilter PDF, it might be difficult to use them for modelling since
the derivation of a transport equation for a fractional subfilter moment is problematic.
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Figure 12. Irreducible errors for the filtered soot intermittency using integer-order and fractional-
order subfilter moments as input parameters computed by ANN. The input parameters �1, .., 8 are
given in Table 4. (Colour online)

Starting from the transport equation of the unfiltered soot volume fraction [13]:

∂fV

∂t
+ ∂(u∗

j fV )

∂xj

= Ṁ, (23)

where u∗
j represents the flow velocity corrected by the effect of thermodiffusion, and Ṁ

represents a source term, the transport equation for a fractional soot volume fraction with
exponent k ∈ (0, 1) yields:

∂f k
V

∂t
+ ∂(u∗

j f
k
V )

∂xj

+ (k − 1)f k
V

∂u∗
j

∂xj

= kf k−1
V Ṁ. (24)

Filtering Equation (24) results in the transport equation of a fractional subfilter moment
ξ k. However, Equation (24) is only well defined if fV 	= 0, so the transport equation of the

Table 4. Input parameter sets for
Figure 12. If fractional moments
are used as input parameters Ak =
ξ k. If integer moments are used as
input parameters Ak = φk.

�i Parameter set �i

1 {fV }
2 {fV , A2}
3 {fV , A2, A3}
4 {fV , A2, ..., A4}
5 {fV , A2, ..., A5}
6 {fV , A2, ..., A6}
7 {fV , A2, ..., A7}
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fractional subfilter moment ξ k is only well defined for regions where fV 	= 0 throughout the
whole subfilter volume.

5. Conclusion

In this work, the non-negligible impact of the computational techniques on an optimal
estimator analysis has been demonstrated. In an optimal estimator analysis, accurate non-
parametric fits of scattered data are crucial since they are needed for the computation of
optimal estimators and irreducible errors. Therefore, computational techniques are required
that are capable of accurately computing conditional means over high-dimensional input
parameter sets. Mathematically, it has been rigorously shown that the computed irreducible
error may deviate from the data intrinsic irreducible error by an error induced by the
computational technique itself.

Four different computational techniques have been assessed in an optimal estimator
analysis of the filtered soot intermittency: HT, an AM which uses a kernel method, MARS,
and ANN. Large deviations of the computed irreducible errors are found among the different
techniques that increase when computing irreducible errors for an increased number of input
parameters.

The HT showed a reasonable performance for one- and two-dimensional fits but did not
generalise well to high dimensions. Moreover, the computation of high-dimensional fits by
histograms was not feasible due to the enormous memory requirements of the HT. AMs
only showed satisfactory results for one-dimensional fits. MARS and ANN performed well
for any case, although MARS proved to be slightly less accurate than ANN if more than
five input parameters were used. In addition, ANN was found to be computationally more
efficient than MARS. Finally, it is also shown that appropriately preprocessing the data
before fitting, e.g. by using the logarithm of the original data, significantly improves the
results.

Optimal estimator analyses may be applied to the analysis of any quantity of interest
as long as a sufficient and adequate dataset exists. However, it is of particular interest for
LES model development from DNS data, as such datasets specifically require systematic
analysis tools. The computational effort and the magnitude of the discrepancies among the
different techniques may vary for optimal estimator analyses of other quantities compared
to the present findings, but the conclusions of the present study remain unaffected. Optimal
estimator analyses should always be carried out by at least two different computational
techniques, specifically ANN and MARS, to prove that the results are not biased by the
technique itself.
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