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The design of decentralized energy conversion systems in smart residential microgrids is a challenging
optimization problem due to the variety of available generation and storage devices. Common measures
to reduce the problem's size and complexity are to reduce modeling accuracy, aggregate multiple loads
or change the temporal resolution. However, since these attempts alter the optimization problem and
consequently lead to different solutions as intended, this paper presents and analyses a decomposition
method for solving the original problem iteratively.

The decomposed method is verified by comparison with the original compact model formulation,
proving that both models deviate by less than 1.8%. Both approaches furthermore lead to similar energy
systems that are operated similarly, as well. The findings also show that the compact model formulation
is only applicable to small- and medium-scale microgrids due to current limitations of computing re-
sources and optimization algorithms, whereas the distributed approach is suitable for even large-scale
microgrids. We apply the decomposed method to a large-scale microgrid in order to evaluate eco-
nomic and ecological benefits of interconnected buildings inside the grid. The results show that with
local electricity exchange, costs can be reduced by 4.0% and emissions by even 23.7% for the investigated
scenario.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The transition towards a more energy efficient and environ-
mentally friendly economy is a recognized objective of the Euro-
pean Union [1]. In Germany, this concept is known as
“Energiewende” and aims at reducing greenhouse gas emissions,
increasing electricity generation from Renewable Energy Sources
(RES) and achieving higher energy efficiency in general [2]. In the
context of buildings, which account for approx. 40% of total energy
consumption in the European Union [1], emission reductions and
energy savings can for example be achieved by installing more
efficient heating devices and by improving their control strategy.

In recent years, many different heat and electricity generation as
well as storage technologies evolved for application in buildings.
Small-scale Combined Heat and Power (CHP) units offer a highly
efficient method for generating heat and electricity simultaneously
from fossil fuels. Potential benefits can further be leveraged by
introduction of Thermal Energy Storage (TES) devices. In addition,
(T. Schütz).

r Ltd. This is an open access article
Heat Pump (HP) systems present a technology to efficiently use
electricity for heating purposes. RES, especially solar systems, can
also be used on building level, for example Solar Thermal Collectors
(STCs) or Photovoltaic (PV) modules. Storage devices such as TES
units and batteries (BATs) can further enhance the integration of
fluctuating solar generators.

When considering neighborhoods instead of individual build-
ings, economic and ecologic benefits can be obtained [3], for
example through better integration of efficient, small-scale tech-
nologies within local microgrids [4]. According to Marnay et al. [4],
microgrids are electricity distribution systems that comprise gen-
eration and storage units as well as loads. Additionally, microgrids
have to be controllable and can be operated either with connection
to a main power network or in an islanded mode. The following
section provides a literature review on the design of microgrids and
the arising problems.
1.1. Literature review

Due to the vast amount of possible energy supply options for
individual buildings and within microgrids, optimization
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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techniques have become an indispensable tool for the design, sizing
and operation of such energy systems [5]. However, when consid-
ering local neighborhoods instead of individual buildings, the
resulting optimization problem tremendously gains in complexity
[6e8]. In the work of Harb et al. [6], for example, the optimization
of single buildings required less than 4min. If 6 of these buildings
are interconnected and local energy exchange is considered, the
computing time increases to approx. 5.5 h. Mehleri et al. [7],
describe that for 10 buildings, the computing time increases from 2
to 101 s when considering interconnections between these build-
ings. Similarly, Schiefelbein et al. [8], illustrate that extending the
number of connected buildings also drastically increases
computing times. In their work, the optimization of 5 buildings
required 0.5 h of run time, whereas 7 buildings led to 30 h and 9
buildings even to 73 h of computing time.

Different approaches have been applied to allow a better scal-
ability of optimization models for the design, sizing and operation
of microgrids. These approaches mainly include model simplifica-
tions, coarsening the time resolution, solution space reductions and
mathematical reformulations as well as combinations of these four
methods.

Model simplifications can be used to reduce the computational
effort. For instance, different models for part load operation exist
that present tradeoffs between computing times and accuracy.
Lozano et al. [23], assume that energy conversion systems are
either shut-off or run at nominal power. In contrast, other works
assume that these devices can operate flexibly between being shut-
off and nominal power output [7,20,22]. Furthermore, some studies
require a minimum activation threshold [9,21], whereas even more
accurate models interpolate within device characteristics to esti-
mate operation condition for every time step [24e26].

Furthermore, the time discretization can be coarsened. For
example, Harb et al. [6], model full year load profiles with 12
representative typical demand days with hourly time resolution. In
contrast, other studies use 3 typical demand days with hourly
resolution [7,27,28], whereas other works use longer time step
lengths of 2 h [5] or even 4 h [10,20].

Additionally, the solution space can be reduced. Yang et al. [5]
aggregate the loads of multiple consumers into a single, larger
consumer. Similarly, Weber and Shah [10] and Schiefelbein et al. [8]
use pre-processing heuristics to allow and forbid certain district
heating connections.

Other studies apply mathematical methods like decomposition
to reduce the computational effort whilemaintaining a high level of
modeling accuracy. On building level, Wakui and Yokoyama [11],
proposed a decomposition algorithm that implements an exhaus-
tive search over all available boilers (BOIs), CHPs, and HPs. Each
optimization forces a specific heat generator, additionally a
constraint is added ensuring that the current optimization has to
improve upon the previously best optimization run. This approach
offers advantages for individual buildings; however, due to the vast
amount of available combinations, this approach is inefficient when
applied to neighborhoods and city districts.

Yokoyama et al. [12], introduce a decomposition approach for
the structural design of single energy supply systems. This
approach splits the original, compact model formulation into a
single master problem and multiple subproblems. These sub-
problems each describe the decision if a certain device is purchased
and how it is operated. The master problem combines the sub-
problems' solutions to generate a feasible solution for the original
problem. This approach has been demonstrated for an individual
energy supply system but it has not been used for optimizing the
structure, sizing and operation of multiple systems within a
distributed energy system.

Sokoler et al. [29] and Harb et al. [13], implement a similar
decomposition methodology based on Dantzig-Wolfe decomposi-
tion [14] for the optimal control of distributed energy systems.
While Sokoler et al. [29] use a linear optimization approach, Harb
et al. [13] use a mixed-integer linear model. Since Dantzig-Wolfe
decomposition is initially designed for linear programs, Harb
et al. [13] implement a solution algorithm that has been proposed
by Belov and Scheithauer [30] to efficiently deal with integer var-
iables. The results of both studies indicate that Dantzig-Wolfe
reformulation significantly reduces computing times compared
with the original, compactmodel formulation [13,29]. In contrast to
other studies though, these works only consider the operation of
already installed energy conversion systems and do not treat the
design and sizing of energy systems.

1.2. Contribution

The aforementioned studies have required significant simplifi-
cations when applying optimization methods to local neighbor-
hoods and city districts. Therefore, this work presents a
decomposition approach for the optimal design, sizing and opera-
tion of distributed energy systems. The developed approach allows
for using the samemodel accuracy as for individual energy systems.
Additionally, this approach drastically improves the scalability of
the optimization model, significantly increasing the amount of
simultaneously considered energy systems. This approach is based
on Dantzig-Wolfe reformulation [14] and the solution algorithm
proposed by Belov and Scheithauer [30]. A similar approach has
previously been applied to the operation of existing distributed
energy systems [13]. This paper now extends previous works by
also considering the structural design and sizing of multiple
distributed energy systems.

In this paper, we describe the compact optimization model
formulation without decomposition as well as the distributed
formulation based on Dantzig-Wolfe decomposition, comprising
the master problem, subproblems, and the iterative column gen-
eration algorithm used for solving this optimization problem. Af-
terwards, verification calculations are presented illustrating that
the original, compact formulation as well as the developed,
distributed approach lead to comparable results. However, the
novel, distributed approach requires significantly less computing
time for problems containing a reasonable number of energy sys-
tems. Finally, the scalability of the distributed approach is
demonstrated by optimizing the energy supply systems of a large
residential neighborhood in order to assess potential benefits
regarding costs and CO2 emissions of the microgrid approach in
comparison with individual buildings.

2. Modeling

This chapter describes the original, compact model formulation
as well as the developed, distributed model and its solution algo-
rithm. This description is limited to the aspects related to the
decomposition. The equations of the compact model and its
decomposition into the developed distributed model are given in
Appendix A.

For both models, optimal energy systems are determined by
minimizing total annualized costs based on the German engineer-
ing guideline VDI 2067 [32] taking into account investment costs,
operation and maintenance, demand related costs as well as rev-
enues from subsidies and electricity feed-in. Both models freely
compose energy systems for each individual building that are based
on the components and energy flows illustrated in Fig. 1. Heat can
be generated through STC, EH, HP, BOI or CHP and is used to charge
a TES unit, which satisfies the building's thermal demand ac-
counting for space heating and domestic hot water. Each building's



Fig. 1. Energy system for individual buildings.
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electricity balance considers plug loads for appliances and lighting
ðPdemh;d;t Þ, HP, EH, BAT, CHP, PV as well as interaction with the grid

ðPimp
h;d;t � Pexph;d;tÞ. The implemented models cluster full year input time

series into a set of representative typical demand days, which is a
common measure in design optimizations to reduce computing
times [5e13,19e28]. Related works dealing with the simultaneous
sizing and operation of multiple distributed energy systems often
use 3 typical demand days with hourly resolution [7,27,28] or even
longer time step lengths of 2 h [5] or 4 h [10,20]. In contrast, the
developed decomposition approach allows for using more accurate
time modeling. In this work, 12 typical demand days with hourly
time resolution are used. Each house h fulfills the electricity balance
shown in Equation (1) at all days d and all time steps t.

Pdemh;d;t þ Phph;d;t þ Pehh;d;t þ Pbat;chh;d;t � Pbat;dchh;d;t � Pchph;d;t � Ppvh;d;t

¼ Pimp
h;d;t � Pexph;d;t (1)

The remaining equations for the optimization of individual
building energy systems, including thermal balances, technical
equations for devices' sizing and operation as well as economical
equations, are given in Appendix A. The outcome for each building
is the installed energy system, which combines binary decision
variables for the technology selection as well as continuous vari-
ables for the sizing. Furthermore, binary and continuous variables
are used tomodel the activation of each selected component and its
energy inputs as well as outputs at each considered time step.
Based on the technology selection, sizing and operation, corre-
sponding costs are derived for investments, operation and main-
tenance, fuel and electricity demand, metering equipment as well
as revenues from feed-in and governmental subsidies.
Fig. 2. Microgrid structure and
For the optimization of microgrids, the structure shown in Fig. 2
is used. We assume that electricity can be transferred without
losses between all buildings participating in the microgrid, since
geographical distances between the buildings are small. Electrical
line limitations are also neglected. Furthermore, we only account
for an electricity exchange and do not consider district heating.

The following sections describe the core aspects related to the
developed decomposition of the compact and distributed formu-
lations for the simultaneous optimization of multiple energy sys-
tems within a microgrid.
2.1. Compact formulation

The compact model formulation describes an optimization
program that simultaneously optimizes the structure, dimen-
sioning and operation of all building energy systems inside the
microgrid. The objective is minimizing total annualized costs, based
on the German guideline VDI 2067 [32]:

min
X
h

�
cinvh þ comh þ cgash þ cmet

h � rsubh

�
þ cgrid;imp � rgrid;exp

(2)

In this equation, c describes costs and r revenues. We account
for investments (inv), operation and maintenance (om), gas and
metering (met) costs as well as subsidies (sub). Furthermore, costs
for electricity imports from the macrogrid (grid,imp) and revenues
from exports (grid, exp) are considered.

The electricity balance inside themicrogrid is written as follows,

where Pgrid;imp
d;t and Pgrid;expd;t describe the electricity imported from

and exported to the macrogrid:

Pgrid;imp
d;t � Pgrid;expd;t ¼

X
h

�
Pimp
h;d;t � Pexph;d;t

�
(3)

Consequently, costs and revenues for grid interaction are
computed as shown in Equation (4). Hereby, Dt is the length of each
time step, which is set to 1 h in this work. Additionally, wd is the
weighting factor for typical demand day d. This weighting factor
describes how many days of the original full year time series are
represented by this typical demand day d. Furthermore, bel$CRF
models inflation effects for electricity.

cgrid;imp � rgrid;exp ¼ bel$CRF$
X
d

wd$Dt$
X
t

�
Pgrid;imp
d;t $cimp

� Pgrid;expd;t $rexp
�

(4)
interaction with macrogrid.
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2.2. Distributed model

The distributed model is a reformulation of the compact model
based on Dantzig-Wolfe decomposition [14] and it is solved using
the iterative column generation algorithm implemented in
Ref. [30].
2.2.1. Dantzig-Wolfe reformulation
Dantzig-Wolfe reformulation is a method designed to efficiently

solve large optimization problems with block-angular structure as
shown in Equations (5) and (6). Hereby, the first set of constraints
are “coupling constraints”, whereas the remainder of the main di-
agonal consists of independent blocks that are called “independent
constraints”.

min cT0$x0 þ cT1$x1 þ cT2$x2 þ / þ cTH$xH (5)

subject to

0
BBBB@

B0 B1 B2 / BH
A1

A2
1

AH

1
CCCCA,

0
BBBB@

x0
x1
x2
«
xH

1
CCCCA

�

0
BBBB@

b0
b1
b2
«
bH

1
CCCCA

Coupling constraints
Independent constraints ð1Þ
Independent constraints ð2Þ
«
Independent constraints ðHÞ

(6)

In the case of the presented application, the coupling constraints
are the electricity balances shown in Equation (3) that are formu-
lated for each day and each time step. The independent constraints
describe the device selection and operation for each building.
Without the local electricity exchange within the microgrid (the
coupling constraints of Equation (6)), the compact model could
easily be solved by optimizing each building individually.

However, due to the coupling of individual constraints, more
elaborate decomposition methods are required. In this work, we
use Dantzig-Wolfe reformulation that is designed for solving such
optimization problems with block-diagonal structure. With this
reformulation, the problem is split into onemaster problem dealing
with the electricity balances and multiple subproblems optimizing
the energy system of each building. Both, master problem and
subproblems are significantly smaller than the original, compact
model formulation and are therefore easier to solve than the
compact model. However, the distributed model requires an iter-
ative solution algorithm that repeatedly solves the master problem
as well as the subproblems. The implemented optimization algo-
rithm is explained in more detail in Subsection 2.2.4.

The following two subsections describe the core aspects of the
master problem as well as the subproblems. The complete sets of
equations are given in Appendix A.
2.2.2. Master problem
The master problem's objective is formulated as:

min
X
h

 X
p
lh;p$ch;p

!
þ cgrid;imp � rgrid;exp (7)

In this equation, ch;p describes the costs associated with the
optimal, local solution for house h obtained in iteration p. These
costs are determined by the subproblems in every iteration of the
column generation algorithm. More details on these costs are given
in Section 2.2.3. Furthermore, lh;p stands for a weighting variable of
this proposal.
Costs and revenues from interaction with the macrogrid are
determined like in the compact model as stated in Equation (4).
Electricity imported from and exported to the macrogrid are
determined with:

Pgrid;imp
d;t � Pgrid;expd;t ¼

X
h

 X
p
lh;p$Ph;d;t;p

!
(8)

Equation (8) represents the original coupling constraint and is
often also called “resource constraint” in literature on decomposi-
tion methods. Here, Ph;d;t;p denotes the power interaction with the
local microgrid of house h at day d and time t in iteration p. A
negative value stands for electricity supply while a positive value
indicates electricity demand.

The weighting variables are defined for each proposal of each
house. They describe the selected share of each proposal in the
optimal solution. A weighting variable that equals 0 indicates that
the corresponding proposal is not part of the optimal solution of
the master problem. In contrast, if a weighting variable is equal to 1,
the corresponding proposal describes the optimal energy system
configuration and operation for the associated house in this itera-
tion of the column generation algorithm. The weighting variables
are constrained as shown in Equations (9) and (10). Equation (9) is
commonly referred to as the convexity constraint of the master
problem.X
p
lh;p ¼ 1 (9)

0 � lh;p � 1 (10)

Next to the optimal values for Pgrid;imp
d;t , Pgrid;expd;t and lh;p, the

master problem also determines the shadow prices pd;t and sh. The
shadow price of the resource constraint describes the marginal
utility gained by relaxing this constraint by 1 unit, i.e. the objective
value increases by the amount of the shadow price, if the right-
hand side of the corresponding resource constraint is increased
by 1 unit. In this application, the shadow price can be interpreted as
a local clearing price inside the microgrid.

The shadow prices of the convexity constraints stated in Equa-
tion (9) are denoted with sh and indicate whether the subsequent
proposals can improve the master problem's objective value. Both
vectors of shadow prices are sent to the subproblems.
2.2.3. Subproblems
Similar to the optimization of single building energy systems,

the objective of subproblem h is formulated for each proposal as
shown in Equation (11). For a better readability, the proposal index
p is omitted for all variables except variables that are sent to the
master problem ðPh;d;t;p and ch;pÞ.

min cinvh þ comh þ cgash þ cmet
h � rsubh þ celec;imp

h � relec;exph � sh

(11)

The costs for electricity import from and revenues for export to
the macrogrid are calculated with

celec;imp
h � relec;exph ¼

X
d

X
t

�
Pimp
h;d;t � Pexph;d;t

�
$pd;t (12)

During each iteration, the subproblems determine the optimal
structure, sizing and operation for their corresponding building.
Each iteration generates one proposal that is sent back to the
master problem, containing the resulting costs ch;p as well as the
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interaction with the microgrid Ph;d;t;p. This interaction states the
power consumed from or provided to the local microgrid at each
time step:

Ph;d;t;p ¼ Pimp
h;d;t � Pexph;d;t (13)

Since the subproblems cannot anticipate how their provided
electricity proposal Ph;d;t;p will be used within the master problem,
e.g. whether or not requested electricity is purchased from the
macrogrid or provided by a building that generates surplus at this
time step, ch;p only contains the first five terms of Equation (11). The
final electricity costs and revenues from feed-in can only be
determined within the master problem as described in Subsection
2.2.2.

ch;p ¼ cinvh þ comh þ cgash þ cmet
h � rsubh (14)
2.2.4. Column generation algorithm
An iterative column generation algorithm implemented in

Refs. [13,30] is used to solve the distributed model. A flow chart of
this approach is shown in Fig. 3.

The algorithm starts by initializing the master problem with
empty proposals. Afterwards, the resulting shadow prices are sent
to the subproblems that consecutively optimize their subsystem
and return their proposals to the master problem. Subsequently,
the master problem is solved again, considering the newly created
proposals. Until a termination criterion has been reached, the
updated shadow prices are sent to the subproblems again. In this
work, we use a fixed iteration limit of 10 iterations. Sokoler et al.
[29] have shown in their study on the model predictive control of
Fig. 3. Iterative column generation algorithm.
distributed energy systems that the number of required iterations
hardly depends on the problem's size and that 5 to 9 iterations are
already sufficient to reach accurate solutions.

If the termination criterion is met, the master problem is solved
again using Equation (15) instead of Equation (10). This set of
constraints ensures that only one proposal is fully chosen instead of
choosing fractions of multiple proposals. In this way, integer
feasible solutions are generated, since integrality constraints are
always respected within the subproblems and combining them
discretely instead of fractionally conserves the integer feasibility.1

lh;p2f0;1g (15)

This algorithm can be interpreted as a Price-and-Branch heu-
ristic, which typically leads to high quality solutions in practical
applications [13,15]. However, Jans [31] argues that such a simpli-
fied procedure does not guarantee global optimal solutions if the
subproblems contain binary as well as continuous variables and the
master problem's resource constraints only contain continuous
variables. Therefore, the next chapter describes a verification of this
heuristic, proving its suitability for optimizing energy systems'
structure, dimensioning and operation.

3. Verification

In order to verify the presented methodology, we compare the
results of the original, compact formulation with the developed,
distributed model. Since the compact formulation requires long
computing times with growing number of participating buildings,
this verification is limited to small-scale and medium-scale
microgrid setups.

3.1. Input data

All calculations described in this paper are based on buildings
located in Bottrop, Germany. The buildings comprise single-family
and multi-family houses as well as apartment buildings. Electricity
load profiles have been calculated with the model described in
Ref. [16] for each apartment individually and accumulated for
multi-family and apartment buildings. Domestic hot water de-
mands have been computed based on the occupancy profiles ob-
tained according to [16] and the tapwater profiles of [17]. Buildings'
design heat loads are computed according to EN 12831 and hourly
space heating loads are calculated with a simplified building model
based on two thermal capacitances and multiple resistances [18].
The nominal powers, investment costs, and efficiencies of all
building energy components that are available during the optimi-
zation as well as the economic boundary conditions used in this
study are explained in more detail in Ref. [9] and are listed in
Appendix A.5. In order to reduce computing times, we reduce full
year inputs to 12 typical demand days with hourly resolution by
means of a k-medoids clustering approach [19].

3.2. Small-scale microgrids

We analyze two small-scale microgrids each consisting of 3
1 When using continuous weights, the weighting variables usually take fractional
values. This implies that fractions of integer feasible subproblem proposals would
be combined, which in turn implies that fractions of energy system components
would be purchased, which is not feasible. Due to this final step with binary
weighting variables, integer feasible subproblems are combined discretely, which
means that energy system components are either purchased completely or not at
all. Furthermore, all devices that are purchased are also operated according to their
specific characteristics.



Fig. 4. Heat coverage ratios in small-scale microgrids.
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buildings. The first scenario deals with 3 small single-family
buildings that have design heat loads of 5 kW each with 8 resi-
dents in total. The design heat loads in the second scenario with
large buildings range from 36 to 42 kW. These 3 larger apartment
buildings consist of 14 apartments with 49 residents.

The main results for both scenarios with both model formula-
tions are summarized in Table 1. The objective values of distributed
and compact model deviate by 0.4% for small buildings. As shown
in Table 1, the device selection is very similar in both cases, too. For
small buildings, boilers are installed as primary heat generation
units that are supported by 2e4m2 of STC. In addition, 116e118m2

of PV are used. Since bothmodels lead to similar amounts of PV that
is primarily used inside the generating building, only providing
excess electricity to the grid, both have similar total electricity
imports and exports. The calculation times are 2879 s for the
distributed optimization and 260 s for the compact model.

For 3 large buildings, the difference in the objective value is 1.8%.
Both models again lead to similar devices' capacities, installing
approx. 45 kW boilers, 33 kWCHP units, 30 kWelectrical resistance
heaters as well as 10 kW heat pumps. Neither batteries, nor solar
thermal collectors are used; instead both install 120m2 of PV
modules and a total thermal energy storage volume of 6.0m3. The
power balance shows that the distributed model requires more
electricity imports but simultaneously leads to increased electricity
exports. This finding suggests that the compact model is able to
slightly better coordinate generation and demand, since higher
self-consumption more profitable than increased electricity im-
ports and exports. Both models converge within 2178 and 1340 s.

Fig. 4 displays the heat coverage ratios for both models and both
simulations. With 3 small buildings, approx. 95% of the heat de-
mand is generated through boilers in the distributed model and
91% in the compact model. The remaining heat is provided by STC.
In the microgrid with large buildings, STC is not used, instead heat
is generated by boilers, heat pumps and CHP units. CHP units
provide 64% of total heat in both simulations. Heat pumps account
for 22% of the total heat generation in the distributed optimization
and 20% in the compact formulation, the remaining 14% resp. 16%
are generated with boilers.

Fig. 5 shows themicrogrid's operation for the distributed (d) and
compact (c) model formulation with 3 large buildings. The opera-
tion is displayed for one day during spring. In the top plot, red lines
display electricity demands as the sum of all buildings', heat
pumps' and electrical heaters' consumption. Blue curves stand for
the grid's balance, which is computed by subtracting local gener-
ation through PV and CHP units from the total demands. Therefore,
positive values indicate electricity imports and negative values
exports. The bottom part of this plot shows PV (red) and CHP (blue)
electricity generation as well as electricity consumption of heat
Table 1
Summary small-scale microgrids.

3 small buildings 3 large buildings

Distributed Compact Distributed Compact

Obj. value [EUR/a] 7713.25 7742.79 31,103.68 30,542.93
Cap. BAT [kWh] 0 0 0 0
Cap. TES [m3] 0.4 0.8 6.0 6.0
Cap. BOI [kW] 33 33 43 45
Cap. CHP [kW] 0 0 33 32
Cap. EH [kW] 0 0 30 30
Cap. HP [kW] 0 0 14 10
Cap. PV [m2] 118 116 120 120
Cap. STC [m2] 2 4 0 0
Power imp [kWh/a] 9744.7 9755.7 13,832.3 11,204.9
Power exp [kWh/a] 15,278.3 14,956.5 23,374.1 21,583.2
Calculation time [s] 2879 260 2178 1340
pumps (black). This figure demonstrates that both models lead to
coordinated operation schedules. In both results, CHP units are
largely shut down during noon, when PV is able to cover local
demands and they are operated during evening, since PV is not
available and household appliances are activated. Furthermore,
controllable loads, such as heat pumps are activated either simul-
taneously with CHP units to benefit from their electricity genera-
tion or run during periods with high PV generation. As shown in the
top plot, the centralized model leads to a slightly better integration
of local electricity generation, since less electricity is imported and
less electricity is exported. We omit a similar illustration for the
microgrid with small buildings since there is no significant elec-
tricity exchange between buildings, as there are no controllable
devices available such as heat pumps and CHP units.
3.3. Medium-scale microgrids

The medium-scale microgrids comprise 10 buildings each. We
chose 10 buildings since the compact model exceeded our
computing resources of 32 GB RAM and 6 threads, when using 11 or
more buildings. The microgrid with small buildings is designed for
25 residents, the design heat loads of the buildings vary between 11
and 15 kW. The other setup with large buildings consists of 56
apartments with 161 occupants in total.

Table 2 presents the main results of both setups. With small
buildings, the objective functions deviate by 0.6%. Both models lead
to very similar results, installing BOIs, backup EHs as well as large
areas of PV and only few STCs. Due to the increased usage of PV in
the distributed model, less electricity has to be imported; however,
larger exports are generated. The calculation times are 9396 s with
the distributed model and 25,846 s with the compact formulation.

With 10 large buildings, the objective functions differ by 0.8%.
The device selection of both models marginally differs, since the
compact model leads to more installed capacity of boilers and heat
pumps instead of CHP units. Consequently, more electricity has to
be imported and less can be exported in the compact model's result
than in the energy system resulting from the distributed formula-
tion. This is due to higher electricity demands in the compactmodel
that can be explained with the increased heat pump usage and
lower electricity generation, since less CHP units are purchased.

The heat coverage ratios in medium-scale microgrids are shown
in Fig. 6. In the microgrid with small buildings, approx. 96% of the
heat demand is generated with boilers and the remaining 4%
through solar thermal collectors. In the microgrid with 10 large
buildings, the distributed formulation leads to heat coverage ratios
of 14% for boilers, 62% for CHP units, and 24% for heat pumps. The
optimal energy system for the compact model requires higher
boiler and heat pump capacities and lower CHP capacity. Therefore,
more heat is generated by boilers (18%) and heat pumps (29%),
whereas heat generation from CHP is reduced (52%).

Fig. 7 shows the operation of the medium-scale microgrids with
10 large buildings. Similar to the case with 3 large buildings, CHP



Fig. 5. Operation of microgrids with 3 large buildings.

Table 2
Summary medium-scale microgrids.

10 small buildings 10 large buildings

Distributed Compact Distributed Compact

Obj. value [EUR/a] 29,742.32 29,917.43 96,838.81 96,118.83
Cap. BAT [kWh] 0 0 0 0
Cap. TES [m3] 1.6 2.5 19.8 19.3
Cap. BOI [kW] 112 124 103 122
Cap. CHP [kW] 0 0 105 83
Cap. EH [kW] 13 6 99 96
Cap. HP [kW] 0 0 34 43
Cap. PV [m2] 388 346 400 400
Cap. STC [m2] 12 14 0 0
Power imp [kWh/a] 24,060.3 24,305.7 43,547.3 55,130.2
Power exp [kWh/a] 53,564.7 46,832.2 50,251.5 33,708.6
Calculation time [s] 9396 25,846 8086 86,513

Fig. 6. Heat coverage ratios in medium-scale microgrids.
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units, HPs, and PV are operated in a coordinated manner. During
early morning hours, CHP units and HPs run simultaneously in
order to generate the required electricity. During noon, generation
from CHP units is reduced, since PV is available, leading to small
electricity purchase. When PV is no longer available, generation
from CHP is increased again, in order to balance the electricity
demand of domestic appliances and lighting.
3.4. Summary

This verification consists of four cases describing neighborhoods
of 3 and 10 buildings with either large or small buildings. These
verifications have shown that the compact model formulation and
the developed, distributed approach lead to comparable optimal
energy systems that are both operated in a coordinated manner.
Since the calculating times of the compact model increased by a
factor of 70.2 on average, when considering 10 instead of 3 build-
ings, this approach is currently only limited to small and medium
sized microgrids. In contrast, the computing times of the distrib-
uted approach increased by a factor of 3.5, implying a linear gain
with increasing buildings, making it suitable for large microgrids.
4. Scenario

This scenario demonstrates the economic and ecologic benefits
of interconnected residential buildings. This scenario is not a real-
life application of the model, which would need extensive uncer-
tainty analyses; however, this application highlights that the
developed decomposition is able to solve large-scale problems, to
which the traditional, compact formulation is no longer applicable.

We apply the developed, distributed model to a large-scale
neighborhood and compare the results with individual optimiza-
tions for each building. This neighborhood comprises 136 buildings
with 261 apartments and 749 residents in total. The design heat
loads range from 5 kW to 42 kW and are summarized in Appendix
A.5.

In order to evaluate ecologic benefits, we compute the annual
CO2 emissions as shown in Equation (16). In this equation,
f grid ¼ 0:535kg=kWh stands for the average CO2 emissions of the
German power system, f gas ¼ 0:200kg=kWh describes the CO2

emissions of gas combustion and _E
dev
h;t denotes the gas consumption

of device dev in house h at time t.

eCO2
¼
X
d

wd$Dt$
X
t

"
f grid$

�
Pgrid;imp
t � Pgrid;expt

�

þ f gas$

 X
h

_E
boi
h;t þ _E

chp
h;t

!# (16)

Table 3 summarizes the results for this scenario. For both set-
tings, we conduct cost optimizations, leading to 561,437.40 EUR/a



Fig. 7. Operation of microgrids with 10 large buildings.

Table 3
Summary large-scale neighborhood.

136 buildings

Connected Unconnected

Obj. value [EUR/a] 561,437.40 584,947.37
Cap. BAT [kWh] 0 0
Cap. TES [m3] 65.8 41.6
Cap. BOI [kW] 1417.5 1861.5
Cap. CHP [kW] 204.9 0
Cap. EH [kW] 372.7 195.3
Cap. HP [kW] 98.2 0
Cap. PV [m2] 5289.4 5165.1
Cap. STC [m2] 150.6 274.9
Power imp [kWh/a] 399,327.7 617,312.6
Power exp [kWh/a] 580,399.2 612,050.3
CO2 emissions [kg/a] 489,655.9 641,520.7
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with connected buildings and 584,947.37 EUR/a without intercon-
nection, which is a cost reduction of 4.0%. Without interconnection,
neither heat pumps, nor CHP units are used; instead, boilers and
backup electrical resistance heaters are installed. When allowing
electricity exchange with connected buildings, approx. 10% of the
buildings are equipped with a CHP unit and 10% possess a heat
pump. Additionally, larger storage tanks are installed, in order to
allow for operating these devices more flexibly. Therefore, the
connected setting is able to reduce electricity imports by 35.3%
lower exports by 5.2%, due to a coordinated usage of locally
generated electricity. As a result, CO2 emissions are reduced by
23.7% compared to the unconnected optimizations.

Fig. 8 shows the heat coverage ratios in both settings. Without
Fig. 8. Heat coverage ratios in large-scale microgrids.
interconnection, approx. 95% of the heat demand is provided by
boilers and the remaining heat is generated through solar thermal
collectors. When allowing for electricity exchange, CHP units and
heat pumps are additionally installed. CHP units generate 22% of
the microgrids heat demand, heat pumps 11%, boilers 64% and solar
thermal collectors 3%. In both settings, backup electrical resistance
heaters produce less than 0.5% of the neighborhood's heat demand.

Fig. 9 displays the operation in this grid for one exemplary day
during spring. The dashed lines represent the operation without
microgrid and solid lines stand for the microgrid scenario (suffix
MG). Without microgrid, large feed-ins during noon and high im-
ports at evening hours are required. When allowing for electricity
exchange between buildings, the exporting peak during noon is
slightly reduced by activating heat pumps. Similarly, CHP units are
activated during evening in order to reduce the high demands of
household appliances and lighting, reducing stress in the distri-
bution grid.
5. Limitations

This chapter critically explains the limitations of this paper and
the limitations of the developed decomposition method for the
design, sizing and operation of distributed energy systems.

As briefly discussed in Chapter 2 and explicitly stated in
Appendix A, this work uses common approaches for modeling the
design and operation of energy components. In particular, we ac-
count for an activation threshold that determines the minimal part
load. Between this lower threshold and rated power, we assume a
constant efficiency as done by related studies [9,21]. Since this work
focuses on the development of a distributed optimization model,
such established models are reasonable. However, due to the
developed distributed structure, approaches that are more elabo-
rate can easily be incorporated within the subproblems in order to
improve the accuracy of the total model. Hereby, the decomposed
modeling allows for even higher runtime reductions in comparison
with a traditional, compact model formulation. More advanced
modeling paradigms that could be incorporated within each sub-
problem for instance consider piecewise linear approximations for
modeling part load of each available device [24e26] or accounting
for start-up and shut-down effects [35]. Furthermore, local



Fig. 9. Operation of microgrids with 136 buildings.
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decisions that affect the heat demand, such as building envelope
insulation [36] could also be considered on the level of each
subproblem.

This work strongly focuses on modeling issues and provides
verification results that confirm the applicability of the developed
decomposition approach. Furthermore, a large-scale application is
presented that proves the suitability to such large districts. This
application also illustrates potential economic and ecologic benefits
of microgrids in comparisonwith unconnected buildings. However,
since the presented model has only been applied to one exemplary
city district, the resulting improvements of 4.0% regarding total
costs are not universally transferable or generalizable to other
scenarios. In this work, the microgrid presents significant
improvement in contrast to an unconnected setting that are
mathematically certain, since they are above the used tolerated
optimality gap of 1.0%. For real-life applications, these improve-
ments should be verified by conducting sensitivity and uncertainty
analyses in order to ensure functionality and efficiency during off-
design conditions. Such extensive analyses are however beyond the
scope of this paper. Yet, in contrast to traditional, compact model
formulations, the presented decomposition allows for conducting
such analyses in a faster way that can be used to extend the scope of
such uncertainty evaluations.

The developed decomposition approach presents a Price-and-
Branch heuristic, which typically leads to high quality solutions
[13,15]. However, Jans [31] describes that such a simplified pro-
cedure does not guarantee global optimal solutions. The conducted
verification calculations support both arguments. We have shown
that global optimality is not guaranteed; however, the results of the
decomposition deviate by at most 1.8% from the result of the
compact model formulation. Future works could investigate exact
Branch-and-Price algorithms that converge to the solution of the
compact model. However, Branch-and-Price essentially requires
solving the presented master problem and subproblems signifi-
cantlymore often [37], whichwould lead to correspondingly higher
runtimes. With respect to the already good accuracy in comparison
with the compactmodel, this approach does not appear reasonable.
Similarly, in recent years, the Alternating Direction Method of
Multipliers (ADMM) has gained significant popularity [38]. How-
ever, as shown by a related study of Sokoler et al. [29], ADMM has
been inferior to Dantzig-Wolfe reformulation in this application.
6. Conclusions and outlook

In this paper, we have developed a distributed optimization
methodology based on decomposition principles and column
generation for optimizing building energy systems within local
neighborhoods. We have verified our model for two small-scale
and two medium-scale microgrids by comparison with a compact
model formulation. The verification confirms the applicability of
our reformulation since similar energy systems are installed and
operated alike. For the small-scale microgrids, the compact
formulation requires shorter calculation times, however with
increasing number of buildings, the distributed optimization out-
performs the compact model's calculation time. With our model
formulation and computing hardware, only 11 buildings are
manageable with the compact model, whereas the distributed
formulation can even be applied to more than 100 buildings.

We applied the distributed algorithm for optimizing a residen-
tial neighborhood with 136 buildings in order to evaluate the
economic and ecological benefits of local microgrids. The findings
conclude that for the investigated scenario, interconnection re-
duces annual costs by approx. 4.0% and CO2 emissions by even
23.7% by installing more CHP units and heat pumps and coordi-
nating these devices in order to increase self-consumption and
reduce electricity feed-in.

In future works, we will extend our model by including local
heating networks. Furthermore, we consider extending the model
to also account for non-residential buildings and non-residential
areas. Also, in contrast to this paper that primarily deals with the
modeling itself, future applications of the developed decomposi-
tion approach should investigate the underlying uncertainties
associated with the model inputs.
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Nomenclature
Subscripts and superscripts
bat battery
boi gas boiler
ch charge
chp combined heat and power
CO2 carbon dioxide
d demand day
dch discharge
dem demand
dev device
dhl design heat load
eh electrical resistance heater
elec electricity
exp exported
fix fixed costs
gas gas
grid grid
h house
hp heat pump
imp imported
infl inflation
inv investments
met metering
nom nominal
om operation and maintenance
p proposal
pv photovoltaic
roof rooftop area for PV/STC
sub subsidies
t time step
var variable costs

Letter symbols
A area, m2

c annual costs, EUR/a
cap capacity, kW j kWh j m3

CRF capital recovery factor, -
_E gas consumption, kW
e annual CO2 emissions, kg/a
F charging and discharging rates, kW
f CO2 emissions factor, kg/kWh
I solar irradiation onto PV and STC areas, kW/m2

ml minimum load, -
P electricity consumption, kW
_Q heat ouput, kW
r annual revenues, EUR/a
rv residual value, -
T temperature, K
t time, h
w weight of typical demand days, -
x binary purchase decision, -
y binary activation decision, -

Greek symbols
D difference
h conversion efficiency, -
k fixed and variable cost factors, EUR j EUR/cap
l weight of a proposal (binary j continuous), -
p shadow price electricity balance, EUR/(kW a)
s shadow price convexity constraint, EUR/a
r density, kg/m3
4 storage self-discharge rate, -
u overall efficiency, -

Appendix A. Complete optimization models

This appendix presents the full set of equations used within the
compact model formulation, the master problem and the sub-
problems. Additional information on the implemented compact
model can be found in Ref. [9].

Appendix A.1. Compact model formulation

min
X
h

�
cinvh þ comh þ cgash þ cmet

h � rsubh

�
þ cgrid;imp � rgrid;exp

(A.1)

cgrid;imp � rgrid;exp ¼ bel$CRF$
X
d

wd$Dt$
X
t

�
Pgrid;imp
d;t $cimp

� Pgrid;expd;t $rexp
�

(A.2)

Pgrid;imp
d;t � Pgrid;expd;t ¼

X
h

�
Pimp
h;d;t � Pexph;d;t

�
(A.3)

The investment costs of each house consist of fixed installation

costs kinv;fixdev multiplied by a binary decision xdevh that states if tech-
nology dev is installed in house h. Furthermore, variable investment

costs kinv;vardev are added that depend on the installed capacity.
Hereby, capacity describes the nominal heat output of BOI, CHP, EH
and HP, the installed area of PV and STC as well as the water volume
of TES and the storage capacity of BAT. These initial investment
costs are distributed into an annual payment considering the cap-
ital recovery factor (CRF) and the residual value rvdev at the end of
the considered observation period of 10 years.

cinvh ¼
X
dev

CRF$
�
1� rvdev

�
$
�
xdevh $kinv;fixdev þ capdevh $kinv;vardev

�
(A.4)

Costs for operation and maintenance are a fraction fom
dev of the

investment costs, the corresponding values are taken from the
German guideline VDI 2067. Furthermore, inflation effects are
considered through binfl.

comh ¼
X
dev

binfl$CRF$fom
dev$

�
xdevh $kinv;fixdev þ capdevh $kinv;vardev

�
(A.5)

Costs for gas purchase are computed similarly to electricity
costs:

cgash ¼ bgas$CRF$

 X
d

wd$Dt$
X
t

h
cgasboi$

_E
boi
h;d;t þ cgaschp$

_E
chp
h;d;t

i!

(A.6)

Metering costs for a gasmeter cgasmet have to paid if either a CHP or
a BOI are purchased:

cmet
h � binfl$CRF$cgasmet$x

dev
h (A.7)

Governmental subsidies in this work only include a subsidy for

electricity generated with CHP units Pchph;d;t . Other works [26] have

developed more detailed models on such governmental subsidies
and regulations that could potentially also be included in this
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model and thus alsowithin the subproblems described in Appendix
A.3.

rsubh ¼ binfl$CRF$rsubchp$
X
d

wd$Dt$
X
t
Pchph;d;t (A.8)

Technical constraints of this optimization problem include the
following equations:

If PV or STC modules are installed, their total area has to be
greater than a small representative module Amin

dev . Furthermore, the

sum of both is limited by the available roof area Aroof
h :

xdevh $Amin
dev � Adev

h (A.9)

Apv
h þ Astc

h � Aroof
h (A.10)

The heat and power output of the corresponding collectors is
the product of installed area, solar irradiation onto the collector Id;t
and the efficiency hdevd;t . For PV units, this efficiency combines the

inverter's average efficiency as well as the temperature depending
cell efficiency [33]. For solar thermal collectors, optical as well as
linear and quadratic thermal losses are considered [34].

Ppvh;d;t ¼ Apv
h $Id;t$h

pv
d;t (A.11)

_Q
stc
h;d;t ¼ Astc

h $Id;t$h
stc
d;t (A.12)

Devices may only be activated (binary variable ydevh;d;t equals 1) if

the corresponding device has been purchased. Furthermore, for
heat generators ðdev2fboi;chp;eh;hpgÞ, the installed capacity has to

be within a lower _Q
min
dev and an upper limit _Q

max
dev .

ydevh;d;t � xdevh (A.13)

xdevh $ _Q
min
dev � capdevh � xdevh $ _Q

max
dev (A.14)

The next set of equations describes that if a device is activated, it
can only operate within a minimum activation threshold mldev and

nominal operation. Therefore, _Q
nom
h;dev;d;t represents the nonlinear

product of ydevh;d;t$cap
dev
h in a linear manner, without loss of accuracy.

ydevh;d;t$
_Q
min
dev � _Q

nom
h;dev;d;t � ydevh;d;t$

_Q
max
dev (A.15)

�
xdevh � ydevh;d;t

�
$ _Q

min
dev � capdevh � _Q

nom
h;dev;d;t �

�
xdevh � ydevh;d;t

�
$ _Q

max
dev

(A.16)

mldev$ _Q
nom
h;dev;d;t � _Q

dev
h;d;t � _Q

nom
h;dev;d;t (A.17)

For heat generators that couple electrical and thermal sub-
systems ðdev2fchp; eh;hpgÞ, the following equation links the cor-
responding heat generationwith the electrical power consumption,
respectively power generation at each time step. The power con-
sumption of gas boilers, for instance for internal measurements and
the boiler's local control unit are neglected, and Pboih;d;t is set to 0.

_Q
dev
h;d;t ¼ Pdevh;d;t$h

dev
h;d;t (A.18)

The gas consumption of boilers and CHP are computed as shown
in Equation (A.19). Hereby, udev

h;d;t stands for the overall efficiency of
these devices. The gas consumption of heat pumps and electrical
resistance heaters are set to 0.

_E
dev
h;d;t ¼

�
_Q
dev
h;d;t þ Pdevh;d;t

��
udev
h;d;t (A.19)

Storage balances and sizing are formulated as shown in Equa-
tions A.20 and A.21, in which Sdevh;d;t is the stored energy, 4dev is the

rate of self-discharge, Fdev;chh;d;t and Fdev;dchh;d;t are the charging and dis-

charging rates and hdevch and hdevdch stand for the corresponding
efficiencies.

Sdevh;d;t ¼ Sdevh;d;t�1$
�
1� 4dev

�
þ Dt$

�
Fdev;chh;d;t $hdevch � Fdev;dchh;d;t

.
hdevdch

�
(A.20)

capdevh � Sdevh;d;t (A.21)

The thermal storage's capacity is translated into a water volume
that is bounded by Vmin

h;tes and Vmax
h;tes.

captesh ¼ Vtes
h $r$cp$DTmax

tes (A.22)

Vmin
tes � Vtes

h � Vmax
tes (A.23)

For batteries, the following equation requires that the installed
capacity has to be between a lower and an upper limit, if a battery is
purchased:

xbath $capmin
bat � capbath � xbath $capmax

bat (A.24)

Charging rates for thermal storages are not limited, whereas for
batteries, the following equations determine the maximum
charging and discharging rates as a linear function of the installed
capacity.

Fbat;chh;d;t � xbath $Pch;fixbat þ capbath $Pch;varbat (A.25)

Fbat;dchh;d;t � xbath $Pdch;fixbat þ capbath $Pdch;varbat (A.26)

The local electricity balance for each house is given in Equation
(A.27).

Pdemh;d;t þ Phph;d;t þ Pehh;d;t þ Pbat;chh;d;t � Pbat;dchh;d;t � Pchph;d;t � Ppvh;d;t

¼ Pimp
h;d;t � Pexph;d;t (A.27)

Equation (A.28) states that the capacities of all non-solar heat

generators have to exceed the building's design heat load _Q
dhl
h , in

order to satisfy heating demands even under severe weather
conditions.

capboih þ capchph þ capehh þ caphph � _Q
dhl
h (A.28)
Appendix A.2. Master problem

min
X
h

 X
p
lh;p$ch;p

!
þ cgrid;imp � rgrid;exp (A.29)
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cgrid;imp � rgrid;exp ¼
X
d

wd

X
t

�
Pgrid;imp
d;t $cimp � Pgrid;expd;t $rexp

�
$Dt

(A.30)

Pgrid;imp
d;t � Pgrid;expd;t ¼

X
h

 X
p
lh;p$Ph;d;t;p

!
(A.31)

X
p
lh;p ¼ 1 (A.32)

In regular iterations, Equation (A.33) is used that allows for
combining proposals fractionally. Since fractional weights would
lead to integer infeasible solutions (e.g. purchasing energy con-
version units only partially), Equation (A.34) is employed in the
final iteration, which guarantees integer feasible solutions.

0 � lh;p � 1 (A.33)

lh;p2f0;1g (A.34)
Table A.1
Number of constraints and variables in the compact and distributed models.

Compact model

Number of constraints 867þ 15075$H
Number of binary variables 1161$H
Number of continuous variables 867þ 8700$H

Amin
pv

1.32 m2
_Q
min
hp

3.1

Amin
stc

0.89 m2 _Q
max
boi

66.3

bel 9.8146 e _Q
max
chp

36.1

bgas 9.1647 e _Q
max
eh

12.0

binfl 8.2838 e _Q
max
hp

17.4

cgasboi
0.0693 EUR/kWh rexp 0.1231

cgaschp
0.0608 EUR/kWh rsubchp

0.0541

cgasmet
157.00 EUR/a rvbat 0.2046

cimp 0.2660 EUR/kWh rvboi 0.3070

cp 4.18 kJ/(kgK) rvchp 0.2046

capmin
bat

2.30 kWh rveh 0.3070

capmax
bat 11.60 kWh rvhp 0.2729

CRF 0.1295 e rvpv 0.3070

f gas 0.2000 kg/kWh rvstc 0.3070

f grid 0.5350 kg/kWh rvtes 0.3070

mlboi 24.49 % Vmin
tes

0.12

mlchp 74.92 % Vmax
tes 2.00

mleh 100.00 % Dt 1

mlhp 100.00 % DTmax
tes 40
Appendix A.3. Subproblems

Similar to the explanations in the main paper, the proposal in-
dex is neglected in this summary of the subproblems. However,
these subproblems are solved for each house h during each itera-
tion of the column generation algorithm.

min cinvh þ comh þ cgash þ cmet
h � rsubh þ celec;imp

h � relec;exph � sh

(A.35)

celec;imp
h � relec;exph ¼

X
d

X
t

�
Pimp
h;d;t � Pexph;d;t

�
$pd;t (A.36)

Ph;d;t;p ¼ Pimp
h;d;t � Pexph;d;t (A.37)

The remaining equations of the subproblems are exactly taken
over from Equations A.4 to A.28.

Appendix A.4. Model statistics

Table A.1. Summarizes the number of constraints and binary as
well as continuous variables in the compact model, the master
problem and the subproblems. Hereby, the master problem only
contains any binary variables during the last step of the algorithm.
Otherwise, the master problem is a pure linear program.
Master problem Subproblem

Binary Continuous

288þ H 288þ H 15078
H,P 0 1161
576 576þ H,P 8703
Appendix A.5. Used inputs
kW kinv;fixeh
161.50 EUR

kW kinv;fixhp
2935.60 EUR

kW kinv;fixpv
0 EUR

kW kinv;fixstc
0 EUR

kW kinv;fixtes
602.11 EUR

EUR/kWh kinv;varbat
893.58 EUR/kWh

EUR/kWh kinv;varboi
47.60 EUR/kW

e kinv;varchp
646.37 EUR/kW

e kinv;vareh
4.56 EUR/kW

e kinv;varhp
599.44 EUR/kW

e kinv;varpv
158.19 EUR/m2

e kinv;varstc
221.47 EUR/m2

e kinv;vartes
630.70 EUR/m3

e r 1000 kg/m3

e 4bat 0.00 %/h

m3
4tes 0.52 %/h

m3
fom
bat 1.0 %

h fom
boi 2.5 %

K fom
chp 8.0 %

(continued on next page)



(continued )

Amin
pv

1.32 m2
_Q
min
hp

3.1 kW kinv;fixeh
161.50 EUR

Pch;fixbat
2.190 kW hbatch

97.76 % fom
eh 3.0 %

Pch;varbat
0.443 kW/kWh hbatdch

97.76 % fom
hp 2.5 %

Pdch;fixbat
2.433 kW htesch

100.00 % fom
pv 1.0 %

Pdch;varbat
0.148 kW/kWh htesdch

100.00 % fom
stc 1.5 %

_Q
min
boi

11.0 kW kinv;fixbat
4804.54 EUR fom

tes 2.0 %

_Q
min
chp

0.7 kW kinv;fixboi
1010.30 EUR

_Q
min
eh

2.0 kW kinv;fixchp
11208.21 EUR

T. Schütz et al. / Energy 156 (2018) 250e263262
Fig. A.1. Design heat loads in verification and application cases.
References

[1] Directive 2010/31/EU of the European parliament and of the council. 153/13
Off J Eur Union L 19 May 2010. Available at:, http://eur-lex.europa.eu/legal-
content/en/ALL/?uri¼celex%3A32010L0031. [Accessed 28 February 2018].

[2] Federal Ministry for Economic Affairs and Energy. Germany's new energy
policy. Heading towards 2050 with secure, affordable and environmentally
sound energy. April 2012.

[3] United Nations Environment Programme. District energy in cities: unlocking
the potential of energy efficiency and renewable energy. 2015. Available at:
http://wedocs.unep.org/handle/20.500.11822/9317. [Accessed 28 February
2018].

[4] Marnay C., Chatzivasileiadis S., Abbey C., Microgrid evolution roadmap e
engineering, economics, and experience. EDST 2015: Proceedings of Interna-
tional Symposium on Smart Electric Distribution Systems and Technologies;
2015 Sep 8e11; Vienna, Austria. 139-144. DOI: https://doi.org/10.1109/SEDST.
2015.7315197.

[5] Yang Y, Zhang S, Xiao Y. Optimal design of distributed energy resource sys-
tems coupled with energy distribution networks. Energy 2015;85:433e48.
https://doi.org/10.1016/j.energy.2015.03.101.

[6] Harb H, Reinhardt J, Streblow R, Müller D. MIP approach for designing heating
systems in residential buildings and neighbourhoods. J Build Perform Simul
2016;9(3):316e30. https://doi.org/10.1080/19401493.2015.1051113.

[7] Mehleri ED, Sarimveis H, Markatos NC, Papageorgiou LG. A mathematical
programming approach for optimal design of distributed energy systems at
the neighbourhood level. Energy 2012;44(1):96e104. https://doi.org/10.1016/
j.energy.2012.02.009.

[8] Schiefelbein J, Tesfaegzi J, Streblow R, Müller D. Design of an optimization
algorithm for the distribution of thermal energy systems and local heating
networks within a city district. ECOS 2015. https://doi.org/10.13140/
RG.2.1.1546.3521. Jun 29-Jul 3; Pau, France.

[9] Schütz T., Harb H., Fuchs M., Müller, D., Optimal Design of Building Energy
Systems for Residential Buildings. 12th REHVA World Congress CLIMA 2016;
May 22e25; Aalborg, Denmark. Available at: http://vbn.aau.dk/files/
233774153/paper_157.pdf [accessed 28.02.2018].

[10] Weber C, Shah N. Optimisation based design of a district energy system for an
eco-town in the United Kingdom. Energy 2011;36(2):1292e308. https://
doi.org/10.1016/j.energy.2010.11.014.

[11] Wakui T, Yokoyama R. Optimal structural design of residential cogeneration
systems with battery based on improved solution method for mixed-integer
linear programming. Energy 2015;84:106e20. https://doi.org/10.1016/
j.energy.2015.02.056.

[12] Yokoyama R, Hasegawa Y, Ito K. A MILP decomposition approach to large scale
optimization in structural design of energy supply systems. Energy Convers
Manag 2002;43(6):771e90. https://doi.org/10.1016/S0196-8904(01)00075-9.

[13] Harb H, Paprott J-N, Matthes P, Schütz T, Streblow R, Müller D. Decentralized
scheduling strategy of heating systems for balancing the residual load. Build
Environ 2015;86:132e40. https://doi.org/10.1016/j.buildenv.2014.12.015.
[14] Dantzig G, Wolfe P. Decomposition principle for linear programs. Oper Res

1960;8:101e11. https://doi.org/10.1287/opre.8.1.101.
[15] Desrosiers J, Lübbecke ME. Branch-Price-and-Cut algorithms. Wiley Encyclo-

pedia of Operations Research and Management Science; 2011. https://doi.org/
10.1002/9780470400531.eorms0118.

[16] Richardson I, Thomson M, Infield D, Clifford C. Domestic electricity use: a
high-resolution energy demand model. Energy Build 2010;42:1878e87.
https://doi.org/10.1016/j.enbuild.2010.05.023.

[17] IEA Energy Conservation in Buildings & Community Systems. Annex 42 The
Simulation of Building-Integrated Fuel Cell and Other Co-generation Systems.
Available at: http://www.ecbcs.org/annexes/annex42.htm [accessed
12.01.2017].

[18] Lauster M, Teichmann J, Fuchs M, Streblow R, Müller D. Low order thermal
network models for dynamic simulations of buildings on city district scale.
Build Environ 2014;73:223e31. https://doi.org/10.1016/
j.buildenv.2013.12.016.

[19] Schütz T, Schraven MH, Harb H, Fuchs M, Müller D. Clustering algorithms for
the selection of typical demand days for the optimal design of building energy
systems. ECOS 2016. Jun 19e23; Portoro�z, Slovenia.

[20] Mehleri ED, Sarimveis H, Markatos NC, Papageorgiou LG. Optimal design and
operation of distributed energy systems: application to Greek residential
sector. Renew Energy 2013;51:331e42. https://doi.org/10.1016/
j.renene.2012.09.009.

[21] Ameri M, Besharati Z. Optimal design and operation of district heating and
cooling networks with CCHP systems in a residential complex. Energy Build
2016;110:135e48. https://doi.org/10.1016/j.enbuild.2015.10.050.

[22] Ashouri A, Fux SS, Benz MJ, Guzzella L. Optimal design and operation of
building services using mixed-integer linear programming techniques. Energy
2013;59:365e76. https://doi.org/10.1016/j.energy.2013.06.053.

[23] Lozano MA, Ramos JC, Serra LM. Cost optimization of the design of CHCP
(combined heat, cooling and power) systems under legal constraints. Energy
2010;35:794e805. https://doi.org/10.1016/j.energy.2009.08.022.

[24] Wakui T, Yokoyama R. Optimal structural design of residential cogeneration
systems in consideration of their operating restrictions. Energy 2014;64:
719e33. https://doi.org/10.1016/j.energy.2013.10.002.

[25] Wakui T, Kawayoshi H, Yokoyama R. Optimal structural design of residential
power and heat supply devices in consideration of operational and capital
recovery constraints. Appl Energy 2016;163:118e33. https://doi.org/10.1016/
j.apenergy.2015.10.154.

[26] Schütz T, Schraven MH, Remy S, Granacher J, Kemetmüller D, Fuchs M,
Müller D. Optimal design of energy conversion units for residential buildings
considering German market conditions. Energy 2017;139:895e915. https://
doi.org/10.1016/j.energy.2017.08.024.

[27] Casisi M, Pinamonti P, Reini M. Optimal lay-out and operation of combined
heat & power (CHP) distributed generation systems. Energy 2009;34:
2175e83. https://doi.org/10.1016/j.energy.2008.10.019.

[28] Wouters C, Fraga ES, James AM. An energy integrated, multi-microgrid, MILP
(mixed-integer linear programming) approach for residential distributed
energy system planning - a South Australian case-study. Energy 2015;85:
30e44. https://doi.org/10.1016/j.energy.2015.03.051.

[29] Sokoler LE, Standardi L, Edlund K, Poulsen NK, Madsen H, Jørgensen JB.
A Dantzig-Wolfe decomposition algorithm for linear economic model pre-
dictive control of dynamically decoupled subsystems. J Process Contr
2014;24:1225e36. https://doi.org/10.1016/j.jprocont.2014.05.013.

[30] Belov G, Scheithauer G. A branch-and-cut-and-price algorithm for one-
dimensional stock cutting and two-dimensional two-stage cutting. Discrete
Optim 2006;171:85e106. https://doi.org/10.1016/j.ejor.2004.08.036.

[31] Jans R. Classification of Dantzig-Wolfe reformulations for binary mixed
integer programming problems. Eur J Oper Res 2010;204:251e4. https://
doi.org/10.1016/j.ejor.2009.11.014.

[32] VDI 2067-1. Economic efficiency of building installations - fundamentals and
economic calculation. Beuth Verlag GmbH, Düsseldorf Germany; September
2012.

[33] Dubey S, Sarvaiya JN, Seshadri B. Temperature dependent photovoltaic (pv)
efficiency and its effect on pv production in the world - a review. Energy
Proced 2013;33:311e21. https://doi.org/10.1016/j.egypro.2013.05.072.

http://eur-lex.europa.eu/legal-content/en/ALL/?uri=celex%253A32010L0031
http://eur-lex.europa.eu/legal-content/en/ALL/?uri=celex%253A32010L0031
http://eur-lex.europa.eu/legal-content/en/ALL/?uri=celex%253A32010L0031
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref2
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref2
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref2
http://wedocs.unep.org/handle/20.500.11822/9317
https://doi.org/10.1109/SEDST.2015.7315197
https://doi.org/10.1109/SEDST.2015.7315197
https://doi.org/10.1016/j.energy.2015.03.101
https://doi.org/10.1080/19401493.2015.1051113
https://doi.org/10.1016/j.energy.2012.02.009
https://doi.org/10.1016/j.energy.2012.02.009
https://doi.org/10.13140/RG.2.1.1546.3521
https://doi.org/10.13140/RG.2.1.1546.3521
http://vbn.aau.dk/files/233774153/paper_157.pdf
http://vbn.aau.dk/files/233774153/paper_157.pdf
https://doi.org/10.1016/j.energy.2010.11.014
https://doi.org/10.1016/j.energy.2010.11.014
https://doi.org/10.1016/j.energy.2015.02.056
https://doi.org/10.1016/j.energy.2015.02.056
https://doi.org/10.1016/S0196-8904(01)00075-9
https://doi.org/10.1016/j.buildenv.2014.12.015
https://doi.org/10.1287/opre.8.1.101
https://doi.org/10.1002/9780470400531.eorms0118
https://doi.org/10.1002/9780470400531.eorms0118
https://doi.org/10.1016/j.enbuild.2010.05.023
http://www.ecbcs.org/annexes/annex42.htm
https://doi.org/10.1016/j.buildenv.2013.12.016
https://doi.org/10.1016/j.buildenv.2013.12.016
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref19
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref19
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref19
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref19
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref19
https://doi.org/10.1016/j.renene.2012.09.009
https://doi.org/10.1016/j.renene.2012.09.009
https://doi.org/10.1016/j.enbuild.2015.10.050
https://doi.org/10.1016/j.energy.2013.06.053
https://doi.org/10.1016/j.energy.2009.08.022
https://doi.org/10.1016/j.energy.2013.10.002
https://doi.org/10.1016/j.apenergy.2015.10.154
https://doi.org/10.1016/j.apenergy.2015.10.154
https://doi.org/10.1016/j.energy.2017.08.024
https://doi.org/10.1016/j.energy.2017.08.024
https://doi.org/10.1016/j.energy.2008.10.019
https://doi.org/10.1016/j.energy.2015.03.051
https://doi.org/10.1016/j.jprocont.2014.05.013
https://doi.org/10.1016/j.ejor.2004.08.036
https://doi.org/10.1016/j.ejor.2009.11.014
https://doi.org/10.1016/j.ejor.2009.11.014
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref32
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref32
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref32
https://doi.org/10.1016/j.egypro.2013.05.072


T. Schütz et al. / Energy 156 (2018) 250e263 263
[34] Duffie JA, Beckman WA. Solar engineering of thermal processes. fourth ed.
John Wiley & Sons, Inc; 2013.

[35] Kopanos GM, Georgiadis MC, Pistikopoulos EN. Energy production planning of
a network of micro combined heat and power generators. Appl Energy
2013;102:1522e34. https://doi.org/10.1016/j.apenergy.2012.09.015.

[36] Schütz T, Schiffer L, Harb H, Fuchs M, Müller D. Optimal design of energy
conversion units and envelopes for residential building retrofits using a
comprehensive MILP model. Appl Energy 2017;185:1e15. https://doi.org/
10.1016/j.apenergy.2016.10.049.
[37] Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH. Branch-

and-Price: column generation for solving huge integer programs. Oper Res
1998;46(3):316e29. URL, http://www.jstor.org/stable/222825.

[38] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Found
Trends Mach Learn 2010;3(1):1e122. https://doi.org/10.1561/2200000016.

http://refhub.elsevier.com/S0360-5442(18)30870-3/sref34
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref34
http://refhub.elsevier.com/S0360-5442(18)30870-3/sref34
https://doi.org/10.1016/j.apenergy.2012.09.015
https://doi.org/10.1016/j.apenergy.2016.10.049
https://doi.org/10.1016/j.apenergy.2016.10.049
http://www.jstor.org/stable/222825
https://doi.org/10.1561/2200000016

	Optimal design of decentralized energy conversion systems for smart microgrids using decomposition methods
	1. Introduction
	1.1. Literature review
	1.2. Contribution

	2. Modeling
	2.1. Compact formulation
	2.2. Distributed model
	2.2.1. Dantzig-Wolfe reformulation
	2.2.2. Master problem
	2.2.3. Subproblems
	2.2.4. Column generation algorithm


	3. Verification
	3.1. Input data
	3.2. Small-scale microgrids
	3.3. Medium-scale microgrids
	3.4. Summary

	4. Scenario
	5. Limitations
	6. Conclusions and outlook
	Acknowledgments
	Nomenclature
	Appendix A. Complete optimization models
	Appendix A.1. Compact model formulation
	Appendix A.2. Master problem
	Appendix A.3. Subproblems
	Appendix A.4. Model statistics
	Appendix A.5. Used inputs

	References


