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ABSTRACT

The design of decentralized energy conversion systems in smart residential microgrids is a challenging
optimization problem due to the variety of available generation and storage devices. Common measures
to reduce the problem's size and complexity are to reduce modeling accuracy, aggregate multiple loads
or change the temporal resolution. However, since these attempts alter the optimization problem and
consequently lead to different solutions as intended, this paper presents and analyses a decomposition
method for solving the original problem iteratively.

The decomposed method is verified by comparison with the original compact model formulation,
proving that both models deviate by less than 1.8%. Both approaches furthermore lead to similar energy
systems that are operated similarly, as well. The findings also show that the compact model formulation
is only applicable to small- and medium-scale microgrids due to current limitations of computing re-
sources and optimization algorithms, whereas the distributed approach is suitable for even large-scale
microgrids. We apply the decomposed method to a large-scale microgrid in order to evaluate eco-
nomic and ecological benefits of interconnected buildings inside the grid. The results show that with
local electricity exchange, costs can be reduced by 4.0% and emissions by even 23.7% for the investigated

scenario.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The transition towards a more energy efficient and environ-
mentally friendly economy is a recognized objective of the Euro-
pean Union [1]. In Germany, this concept is known as
“Energiewende” and aims at reducing greenhouse gas emissions,
increasing electricity generation from Renewable Energy Sources
(RES) and achieving higher energy efficiency in general [2]. In the
context of buildings, which account for approx. 40% of total energy
consumption in the European Union [1], emission reductions and
energy savings can for example be achieved by installing more
efficient heating devices and by improving their control strategy.

In recent years, many different heat and electricity generation as
well as storage technologies evolved for application in buildings.
Small-scale Combined Heat and Power (CHP) units offer a highly
efficient method for generating heat and electricity simultaneously
from fossil fuels. Potential benefits can further be leveraged by
introduction of Thermal Energy Storage (TES) devices. In addition,
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Heat Pump (HP) systems present a technology to efficiently use
electricity for heating purposes. RES, especially solar systems, can
also be used on building level, for example Solar Thermal Collectors
(STCs) or Photovoltaic (PV) modules. Storage devices such as TES
units and batteries (BATs) can further enhance the integration of
fluctuating solar generators.

When considering neighborhoods instead of individual build-
ings, economic and ecologic benefits can be obtained [3], for
example through better integration of efficient, small-scale tech-
nologies within local microgrids [4]. According to Marnay et al. [4],
microgrids are electricity distribution systems that comprise gen-
eration and storage units as well as loads. Additionally, microgrids
have to be controllable and can be operated either with connection
to a main power network or in an islanded mode. The following
section provides a literature review on the design of microgrids and
the arising problems.

1.1. Literature review

Due to the vast amount of possible energy supply options for
individual buildings and within microgrids, optimization
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techniques have become an indispensable tool for the design, sizing
and operation of such energy systems [5]. However, when consid-
ering local neighborhoods instead of individual buildings, the
resulting optimization problem tremendously gains in complexity
[6—8]. In the work of Harb et al. [G], for example, the optimization
of single buildings required less than 4 min. If 6 of these buildings
are interconnected and local energy exchange is considered, the
computing time increases to approx. 5.5h. Mehleri et al. [7],
describe that for 10 buildings, the computing time increases from 2
to 101 s when considering interconnections between these build-
ings. Similarly, Schiefelbein et al. [8], illustrate that extending the
number of connected buildings also drastically increases
computing times. In their work, the optimization of 5 buildings
required 0.5 h of run time, whereas 7 buildings led to 30h and 9
buildings even to 73 h of computing time.

Different approaches have been applied to allow a better scal-
ability of optimization models for the design, sizing and operation
of microgrids. These approaches mainly include model simplifica-
tions, coarsening the time resolution, solution space reductions and
mathematical reformulations as well as combinations of these four
methods.

Model simplifications can be used to reduce the computational
effort. For instance, different models for part load operation exist
that present tradeoffs between computing times and accuracy.
Lozano et al. [23], assume that energy conversion systems are
either shut-off or run at nominal power. In contrast, other works
assume that these devices can operate flexibly between being shut-
off and nominal power output [7,20,22]. Furthermore, some studies
require a minimum activation threshold [9,21], whereas even more
accurate models interpolate within device characteristics to esti-
mate operation condition for every time step [24—26].

Furthermore, the time discretization can be coarsened. For
example, Harb et al. [6], model full year load profiles with 12
representative typical demand days with hourly time resolution. In
contrast, other studies use 3 typical demand days with hourly
resolution [7,27,28], whereas other works use longer time step
lengths of 2 h [5] or even 4 h [10,20].

Additionally, the solution space can be reduced. Yang et al. [5]
aggregate the loads of multiple consumers into a single, larger
consumer. Similarly, Weber and Shah [10] and Schiefelbein et al. [8]
use pre-processing heuristics to allow and forbid certain district
heating connections.

Other studies apply mathematical methods like decomposition
to reduce the computational effort while maintaining a high level of
modeling accuracy. On building level, Wakui and Yokoyama [11],
proposed a decomposition algorithm that implements an exhaus-
tive search over all available boilers (BOIs), CHPs, and HPs. Each
optimization forces a specific heat generator, additionally a
constraint is added ensuring that the current optimization has to
improve upon the previously best optimization run. This approach
offers advantages for individual buildings; however, due to the vast
amount of available combinations, this approach is inefficient when
applied to neighborhoods and city districts.

Yokoyama et al. [12], introduce a decomposition approach for
the structural design of single energy supply systems. This
approach splits the original, compact model formulation into a
single master problem and multiple subproblems. These sub-
problems each describe the decision if a certain device is purchased
and how it is operated. The master problem combines the sub-
problems’ solutions to generate a feasible solution for the original
problem. This approach has been demonstrated for an individual
energy supply system but it has not been used for optimizing the
structure, sizing and operation of multiple systems within a
distributed energy system.

Sokoler et al. [29] and Harb et al. [13], implement a similar

decomposition methodology based on Dantzig-Wolfe decomposi-
tion [14] for the optimal control of distributed energy systems.
While Sokoler et al. [29] use a linear optimization approach, Harb
et al. [13] use a mixed-integer linear model. Since Dantzig-Wolfe
decomposition is initially designed for linear programs, Harb
et al. [13] implement a solution algorithm that has been proposed
by Belov and Scheithauer [30] to efficiently deal with integer var-
iables. The results of both studies indicate that Dantzig-Wolfe
reformulation significantly reduces computing times compared
with the original, compact model formulation [13,29]. In contrast to
other studies though, these works only consider the operation of
already installed energy conversion systems and do not treat the
design and sizing of energy systems.

1.2. Contribution

The aforementioned studies have required significant simplifi-
cations when applying optimization methods to local neighbor-
hoods and city districts. Therefore, this work presents a
decomposition approach for the optimal design, sizing and opera-
tion of distributed energy systems. The developed approach allows
for using the same model accuracy as for individual energy systems.
Additionally, this approach drastically improves the scalability of
the optimization model, significantly increasing the amount of
simultaneously considered energy systems. This approach is based
on Dantzig-Wolfe reformulation [14] and the solution algorithm
proposed by Belov and Scheithauer [30]. A similar approach has
previously been applied to the operation of existing distributed
energy systems [13]. This paper now extends previous works by
also considering the structural design and sizing of multiple
distributed energy systems.

In this paper, we describe the compact optimization model
formulation without decomposition as well as the distributed
formulation based on Dantzig-Wolfe decomposition, comprising
the master problem, subproblems, and the iterative column gen-
eration algorithm used for solving this optimization problem. Af-
terwards, verification calculations are presented illustrating that
the original, compact formulation as well as the developed,
distributed approach lead to comparable results. However, the
novel, distributed approach requires significantly less computing
time for problems containing a reasonable number of energy sys-
tems. Finally, the scalability of the distributed approach is
demonstrated by optimizing the energy supply systems of a large
residential neighborhood in order to assess potential benefits
regarding costs and CO, emissions of the microgrid approach in
comparison with individual buildings.

2. Modeling

This chapter describes the original, compact model formulation
as well as the developed, distributed model and its solution algo-
rithm. This description is limited to the aspects related to the
decomposition. The equations of the compact model and its
decomposition into the developed distributed model are given in
Appendix A.

For both models, optimal energy systems are determined by
minimizing total annualized costs based on the German engineer-
ing guideline VDI 2067 [32] taking into account investment costs,
operation and maintenance, demand related costs as well as rev-
enues from subsidies and electricity feed-in. Both models freely
compose energy systems for each individual building that are based
on the components and energy flows illustrated in Fig. 1. Heat can
be generated through STC, EH, HP, BOI or CHP and is used to charge
a TES unit, which satisfies the building's thermal demand ac-
counting for space heating and domestic hot water. Each building's
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Fig. 1. Energy system for individual buildings.

electricity balance considers plug loads for appliances and lighting
(Pﬂ%frt‘), HP, EH, BAT, CHP, PV as well as interaction with the grid

(P;{%’t — PP ). The implemented models cluster full year input time

series into a set of representative typical demand days, which is a
common measure in design optimizations to reduce computing
times [5—13,19—28]. Related works dealing with the simultaneous
sizing and operation of multiple distributed energy systems often
use 3 typical demand days with hourly resolution [7,27,28] or even
longer time step lengths of 2 h [5] or 4h [10,20]. In contrast, the
developed decomposition approach allows for using more accurate
time modeling. In this work, 12 typical demand days with hourly
time resolution are used. Each house h fulfills the electricity balance
shown in Equation (1) at all days d and all time steps t.

dem hp e bat,ch bat dch chp DV
Pidt+Prge+ Phac+ Poar —Phar — Phar— Phar
__ pimp _ pexp
- Ph‘d,t Ph‘d.,t (1)

The remaining equations for the optimization of individual
building energy systems, including thermal balances, technical
equations for devices' sizing and operation as well as economical
equations, are given in Appendix A. The outcome for each building
is the installed energy system, which combines binary decision
variables for the technology selection as well as continuous vari-
ables for the sizing. Furthermore, binary and continuous variables
are used to model the activation of each selected component and its
energy inputs as well as outputs at each considered time step.
Based on the technology selection, sizing and operation, corre-
sponding costs are derived for investments, operation and main-
tenance, fuel and electricity demand, metering equipment as well
as revenues from feed-in and governmental subsidies.

For the optimization of microgrids, the structure shown in Fig. 2
is used. We assume that electricity can be transferred without
losses between all buildings participating in the microgrid, since
geographical distances between the buildings are small. Electrical
line limitations are also neglected. Furthermore, we only account
for an electricity exchange and do not consider district heating.

The following sections describe the core aspects related to the
developed decomposition of the compact and distributed formu-
lations for the simultaneous optimization of multiple energy sys-
tems within a microgrid.

2.1. Compact formulation

The compact model formulation describes an optimization
program that simultaneously optimizes the structure, dimen-
sioning and operation of all building energy systems inside the
microgrid. The objective is minimizing total annualized costs, based
on the German guideline VDI 2067 [32]:

min z(cﬁlnu n Cgm n Cz;las n Chmet - rﬁ”b) 4 gridimp _ grid.exp
h

(2)

In this equation, c¢ describes costs and r revenues. We account
for investments (inv), operation and maintenance (om), gas and
metering (met) costs as well as subsidies (sub). Furthermore, costs
for electricity imports from the macrogrid (grid,imp) and revenues
from exports (grid, exp) are considered.

The electricity balance inside the microgrid is written as follows,

where Pgrtid’imp and ngtid‘EXp describe the electricity imported from
and exported to the macrogrid:

PR R = 5 (P, ) G)

Consequently, costs and revenues for grid interaction are
computed as shown in Equation (4). Hereby, At is the length of each
time step, which is set to 1h in this work. Additionally, wy is the
weighting factor for typical demand day d. This weighting factor
describes how many days of the original full year time series are
represented by this typical demand day d. Furthermore, be-CRF
models inflation effects for electricity.

gridimp _ . gridexp _ pel . . AF. rid,imp _ _imp
c r = b*-CRF-y wy-At-> (P c
d t

Macrogrid 4’.-_@_- I Y
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Fig. 2. Microgrid structure and interaction with macrogrid.
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2.2. Distributed model

The distributed model is a reformulation of the compact model
based on Dantzig-Wolfe decomposition [14] and it is solved using
the iterative column generation algorithm implemented in
Ref. [30].

2.2.1. Dantzig-Wolfe reformulation

Dantzig-Wolfe reformulation is a method designed to efficiently
solve large optimization problems with block-angular structure as
shown in Equations (5) and (6). Hereby, the first set of constraints
are “coupling constraints”, whereas the remainder of the main di-
agonal consists of independent blocks that are called “independent
constraints”.

min ¢} -Xo + ¢l -x; + ¢l -xp + - +clyxy (5)
Bo By By - By Xo
A X1
subject to Ay | x
Ap Xp
bg Coupling constraints
by Independent constraints (1)
<| by Independent constraints (2) (6)
BH independent constraints (H)

In the case of the presented application, the coupling constraints
are the electricity balances shown in Equation (3) that are formu-
lated for each day and each time step. The independent constraints
describe the device selection and operation for each building.
Without the local electricity exchange within the microgrid (the
coupling constraints of Equation (6)), the compact model could
easily be solved by optimizing each building individually.

However, due to the coupling of individual constraints, more
elaborate decomposition methods are required. In this work, we
use Dantzig-Wolfe reformulation that is designed for solving such
optimization problems with block-diagonal structure. With this
reformulation, the problem is split into one master problem dealing
with the electricity balances and multiple subproblems optimizing
the energy system of each building. Both, master problem and
subproblems are significantly smaller than the original, compact
model formulation and are therefore easier to solve than the
compact model. However, the distributed model requires an iter-
ative solution algorithm that repeatedly solves the master problem
as well as the subproblems. The implemented optimization algo-
rithm is explained in more detail in Subsection 2.2.4.

The following two subsections describe the core aspects of the
master problem as well as the subproblems. The complete sets of
equations are given in Appendix A.

2.2.2. Master problem
The master problem's objective is formulated as:

min " (Zlhyp-ch<p> 4 cgridimp _ ygrid.exp (7)
m \D

In this equation, ¢, , describes the costs associated with the
optimal, local solution for house h obtained in iteration p. These
costs are determined by the subproblems in every iteration of the
column generation algorithm. More details on these costs are given
in Section 2.2.3. Furthermore, A, , stands for a weighting variable of
this proposal.

Costs and revenues from interaction with the macrogrid are
determined like in the compact model as stated in Equation (4).
Electricity imported from and exported to the macrogrid are
determined with:

pEAmP _ perdexr _ N~ (Z"hp"’hﬂmp) (8)
p

h

Equation (8) represents the original coupling constraint and is
often also called “resource constraint” in literature on decomposi-
tion methods. Here, Py, 4., denotes the power interaction with the
local microgrid of house h at day d and time ¢t in iteration p. A
negative value stands for electricity supply while a positive value
indicates electricity demand.

The weighting variables are defined for each proposal of each
house. They describe the selected share of each proposal in the
optimal solution. A weighting variable that equals 0 indicates that
the corresponding proposal is not part of the optimal solution of
the master problem. In contrast, if a weighting variable is equal to 1,
the corresponding proposal describes the optimal energy system
configuration and operation for the associated house in this itera-
tion of the column generation algorithm. The weighting variables
are constrained as shown in Equations (9) and (10). Equation (9) is
commonly referred to as the convexity constraint of the master
problem.

th,p =1 (9)
p

0< <1 (10)

Next to the optimal values for Pﬁfd’imp, PLgiftid’EXp and App, the
master problem also determines the shadow prices 74, and 7. The
shadow price of the resource constraint describes the marginal
utility gained by relaxing this constraint by 1 unit, i.e. the objective
value increases by the amount of the shadow price, if the right-
hand side of the corresponding resource constraint is increased
by 1 unit. In this application, the shadow price can be interpreted as
a local clearing price inside the microgrid.

The shadow prices of the convexity constraints stated in Equa-
tion (9) are denoted with ¢;, and indicate whether the subsequent
proposals can improve the master problem's objective value. Both
vectors of shadow prices are sent to the subproblems.

2.2.3. Subproblems
Similar to the optimization of single building energy systems,

the objective of subproblem h is formulated for each proposal as

shown in Equation (11). For a better readability, the proposal index

p is omitted for all variables except variables that are sent to the

master problem (P, 4., and cp, ).

releaexp o

: inv om as met ub elec,imp
min ¢ + " + G* + et -t + ¢ —ry oh

(11)

The costs for electricity import from and revenues for export to
the macrogrid are calculated with

elec,imp elecexp imp exp \ .
Ch ~Th => > (Ph,d,t —Phac) mar (12)
d t

During each iteration, the subproblems determine the optimal
structure, sizing and operation for their corresponding building.
Each iteration generates one proposal that is sent back to the
master problem, containing the resulting costs cj,, as well as the
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interaction with the microgrid Py, g4, ,. This interaction states the
power consumed from or provided to the local microgrid at each
time step:

Phacp = Pllﬂ?t - Plifcli),t (13)

Since the subproblems cannot anticipate how their provided
electricity proposal Py 4 , will be used within the master problem,
e.g. whether or not requested electricity is purchased from the
macrogrid or provided by a building that generates surplus at this
time step, ¢y, , only contains the first five terms of Equation (11). The
final electricity costs and revenues from feed-in can only be
determined within the master problem as described in Subsection
2.2.2.

Chp = "+ -+ G + et — it (14)

2.2.4. Column generation algorithm

An iterative column generation algorithm implemented in
Refs. [13,30] is used to solve the distributed model. A flow chart of
this approach is shown in Fig. 3.

The algorithm starts by initializing the master problem with
empty proposals. Afterwards, the resulting shadow prices are sent
to the subproblems that consecutively optimize their subsystem
and return their proposals to the master problem. Subsequently,
the master problem is solved again, considering the newly created
proposals. Until a termination criterion has been reached, the
updated shadow prices are sent to the subproblems again. In this
work, we use a fixed iteration limit of 10 iterations. Sokoler et al.
[29] have shown in their study on the model predictive control of

Initialize
master problem

Send shadow prices to |
subproblems

Optimize
subproblems

Send proposals to
master problem

Solve master problem
(continuous weights)

Termination
criterion?

Solve master problem
(binary weights)

Fig. 3. Iterative column generation algorithm.

distributed energy systems that the number of required iterations
hardly depends on the problem's size and that 5 to 9 iterations are
already sufficient to reach accurate solutions.

If the termination criterion is met, the master problem is solved
again using Equation (15) instead of Equation (10). This set of
constraints ensures that only one proposal is fully chosen instead of
choosing fractions of multiple proposals. In this way, integer
feasible solutions are generated, since integrality constraints are
always respected within the subproblems and combining them
discretely instead of fractionally conserves the integer feasibility.!

AnpE{0;1} (15)

This algorithm can be interpreted as a Price-and-Branch heu-
ristic, which typically leads to high quality solutions in practical
applications [13,15]. However, Jans [31] argues that such a simpli-
fied procedure does not guarantee global optimal solutions if the
subproblems contain binary as well as continuous variables and the
master problem's resource constraints only contain continuous
variables. Therefore, the next chapter describes a verification of this
heuristic, proving its suitability for optimizing energy systems'
structure, dimensioning and operation.

3. Verification

In order to verify the presented methodology, we compare the
results of the original, compact formulation with the developed,
distributed model. Since the compact formulation requires long
computing times with growing number of participating buildings,
this verification is limited to small-scale and medium-scale
microgrid setups.

3.1. Input data

All calculations described in this paper are based on buildings
located in Bottrop, Germany. The buildings comprise single-family
and multi-family houses as well as apartment buildings. Electricity
load profiles have been calculated with the model described in
Ref. [16] for each apartment individually and accumulated for
multi-family and apartment buildings. Domestic hot water de-
mands have been computed based on the occupancy profiles ob-
tained according to [16] and the tap water profiles of [ 17]. Buildings'
design heat loads are computed according to EN 12831 and hourly
space heating loads are calculated with a simplified building model
based on two thermal capacitances and multiple resistances [18].
The nominal powers, investment costs, and efficiencies of all
building energy components that are available during the optimi-
zation as well as the economic boundary conditions used in this
study are explained in more detail in Ref. [9] and are listed in
Appendix A.5. In order to reduce computing times, we reduce full
year inputs to 12 typical demand days with hourly resolution by
means of a k-medoids clustering approach [19].

3.2. Small-scale microgrids

We analyze two small-scale microgrids each consisting of 3

! When using continuous weights, the weighting variables usually take fractional
values. This implies that fractions of integer feasible subproblem proposals would
be combined, which in turn implies that fractions of energy system components
would be purchased, which is not feasible. Due to this final step with binary
weighting variables, integer feasible subproblems are combined discretely, which
means that energy system components are either purchased completely or not at
all. Furthermore, all devices that are purchased are also operated according to their
specific characteristics.
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buildings. The first scenario deals with 3 small single-family
buildings that have design heat loads of 5 kW each with 8 resi-
dents in total. The design heat loads in the second scenario with
large buildings range from 36 to 42 kW. These 3 larger apartment
buildings consist of 14 apartments with 49 residents.

The main results for both scenarios with both model formula-
tions are summarized in Table 1. The objective values of distributed
and compact model deviate by 0.4% for small buildings. As shown
in Table 1, the device selection is very similar in both cases, too. For
small buildings, boilers are installed as primary heat generation
units that are supported by 2—4 m? of STC. In addition, 116—118 m?
of PV are used. Since both models lead to similar amounts of PV that
is primarily used inside the generating building, only providing
excess electricity to the grid, both have similar total electricity
imports and exports. The calculation times are 2879s for the
distributed optimization and 260 s for the compact model.

For 3 large buildings, the difference in the objective value is 1.8%.
Both models again lead to similar devices' capacities, installing
approx. 45 kW boilers, 33 kW CHP units, 30 kW electrical resistance
heaters as well as 10 kW heat pumps. Neither batteries, nor solar
thermal collectors are used; instead both install 120 m? of PV
modules and a total thermal energy storage volume of 6.0 m>. The
power balance shows that the distributed model requires more
electricity imports but simultaneously leads to increased electricity
exports. This finding suggests that the compact model is able to
slightly better coordinate generation and demand, since higher
self-consumption more profitable than increased electricity im-
ports and exports. Both models converge within 2178 and 1340s.

Fig. 4 displays the heat coverage ratios for both models and both
simulations. With 3 small buildings, approx. 95% of the heat de-
mand is generated through boilers in the distributed model and
91% in the compact model. The remaining heat is provided by STC.
In the microgrid with large buildings, STC is not used, instead heat
is generated by boilers, heat pumps and CHP units. CHP units
provide 64% of total heat in both simulations. Heat pumps account
for 22% of the total heat generation in the distributed optimization
and 20% in the compact formulation, the remaining 14% resp. 16%
are generated with boilers.

Fig. 5 shows the microgrid's operation for the distributed (d) and
compact (¢) model formulation with 3 large buildings. The opera-
tion is displayed for one day during spring. In the top plot, red lines
display electricity demands as the sum of all buildings', heat
pumps' and electrical heaters' consumption. Blue curves stand for
the grid's balance, which is computed by subtracting local gener-
ation through PV and CHP units from the total demands. Therefore,
positive values indicate electricity imports and negative values
exports. The bottom part of this plot shows PV (red) and CHP (blue)
electricity generation as well as electricity consumption of heat

Table 1
Summary small-scale microgrids.

3 small buildings 3 large buildings

Distributed Compact Distributed Compact
Obj. value [EUR/a] 7713.25 7742.79 31,103.68 30,542.93
Cap. BAT [kWh] 0 0 0 0
Cap. TES [m?®] 04 0.8 6.0 6.0
Cap. BOI [kW] 33 33 43 45
Cap. CHP [kW] 0 0 33 32
Cap. EH [kW] 0 0 30 30
Cap. HP [kW] 0 0 14 10
Cap. PV [m?] 118 116 120 120
Cap. STC [m?] 2 4 0 0
Power imp [kWh/a] 9744.7 9755.7 13,832.3 11,204.9
Power exp [kWh/a] 15,278.3 14,956.5 23,374.1 21,583.2
Calculation time [s] 2879 260 2178 1340

I BOI [ CHP I HP STC EEE EH

Large, cor | [N I

2 torge, ois|. [N —
& Small, com¢ VR
Small, dis 1

6 Zb 40 6I0 Bb 160

Heat coverage rate in %

Fig. 4. Heat coverage ratios in small-scale microgrids.

pumps (black). This figure demonstrates that both models lead to
coordinated operation schedules. In both results, CHP units are
largely shut down during noon, when PV is able to cover local
demands and they are operated during evening, since PV is not
available and household appliances are activated. Furthermore,
controllable loads, such as heat pumps are activated either simul-
taneously with CHP units to benefit from their electricity genera-
tion or run during periods with high PV generation. As shown in the
top plot, the centralized model leads to a slightly better integration
of local electricity generation, since less electricity is imported and
less electricity is exported. We omit a similar illustration for the
microgrid with small buildings since there is no significant elec-
tricity exchange between buildings, as there are no controllable
devices available such as heat pumps and CHP units.

3.3. Medium-scale microgrids

The medium-scale microgrids comprise 10 buildings each. We
chose 10 buildings since the compact model exceeded our
computing resources of 32 GB RAM and 6 threads, when using 11 or
more buildings. The microgrid with small buildings is designed for
25 residents, the design heat loads of the buildings vary between 11
and 15 kW. The other setup with large buildings consists of 56
apartments with 161 occupants in total.

Table 2 presents the main results of both setups. With small
buildings, the objective functions deviate by 0.6%. Both models lead
to very similar results, installing BOIs, backup EHs as well as large
areas of PV and only few STCs. Due to the increased usage of PV in
the distributed model, less electricity has to be imported; however,
larger exports are generated. The calculation times are 9396 s with
the distributed model and 25,846 s with the compact formulation.

With 10 large buildings, the objective functions differ by 0.8%.
The device selection of both models marginally differs, since the
compact model leads to more installed capacity of boilers and heat
pumps instead of CHP units. Consequently, more electricity has to
be imported and less can be exported in the compact model's result
than in the energy system resulting from the distributed formula-
tion. This is due to higher electricity demands in the compact model
that can be explained with the increased heat pump usage and
lower electricity generation, since less CHP units are purchased.

The heat coverage ratios in medium-scale microgrids are shown
in Fig. 6. In the microgrid with small buildings, approx. 96% of the
heat demand is generated with boilers and the remaining 4%
through solar thermal collectors. In the microgrid with 10 large
buildings, the distributed formulation leads to heat coverage ratios
of 14% for boilers, 62% for CHP units, and 24% for heat pumps. The
optimal energy system for the compact model requires higher
boiler and heat pump capacities and lower CHP capacity. Therefore,
more heat is generated by boilers (18%) and heat pumps (29%),
whereas heat generation from CHP is reduced (52%).

Fig. 7 shows the operation of the medium-scale microgrids with
10 large buildings. Similar to the case with 3 large buildings, CHP
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Table 2
Summary medium-scale microgrids.
10 small buildings 10 large buildings
Distributed Compact Distributed Compact
Obj. value [EUR/a] 29,742.32 29,917.43 96,338.81 96,118.83
Cap. BAT [kWh] 0 0 0 0
Cap. TES [m?] 1.6 2.5 19.8 193
Cap. BOI [kW] 112 124 103 122
Cap. CHP [kW] 0 0 105 83
Cap. EH [kW] 13 6 99 96
Cap. HP [kW] 0 0 34 43
Cap. PV [m?] 388 346 400 400
Cap. STC [m?] 12 14 0 0
Power imp [kWh/a] 24,060.3 24,305.7 43,547.3 55,130.2
Power exp [kWh/a] 53,564.7 46,832.2 50,251.5 33,708.6
Calculation time [s] 9396 25,846 8086 86,513
I BOI [ CHP I HP
Large, com | [N
Ag Large, dis| -
2
o]
& Small, com| /] -
Small, dis - ] -
6 2‘0 4l0 6‘0 8‘0 1(I)0

Heat coverage rate in %

Fig. 6. Heat coverage ratios in medium-scale microgrids.

units, HPs, and PV are operated in a coordinated manner. During
early morning hours, CHP units and HPs run simultaneously in
order to generate the required electricity. During noon, generation
from CHP units is reduced, since PV is available, leading to small
electricity purchase. When PV is no longer available, generation
from CHP is increased again, in order to balance the electricity
demand of domestic appliances and lighting.

3.4. Summary

This verification consists of four cases describing neighborhoods

of 3 and 10 buildings with either large or small buildings. These
verifications have shown that the compact model formulation and
the developed, distributed approach lead to comparable optimal
energy systems that are both operated in a coordinated manner.
Since the calculating times of the compact model increased by a
factor of 70.2 on average, when considering 10 instead of 3 build-
ings, this approach is currently only limited to small and medium
sized microgrids. In contrast, the computing times of the distrib-
uted approach increased by a factor of 3.5, implying a linear gain
with increasing buildings, making it suitable for large microgrids.

4. Scenario

This scenario demonstrates the economic and ecologic benefits
of interconnected residential buildings. This scenario is not a real-
life application of the model, which would need extensive uncer-
tainty analyses; however, this application highlights that the
developed decomposition is able to solve large-scale problems, to
which the traditional, compact formulation is no longer applicable.

We apply the developed, distributed model to a large-scale
neighborhood and compare the results with individual optimiza-
tions for each building. This neighborhood comprises 136 buildings
with 261 apartments and 749 residents in total. The design heat
loads range from 5 kW to 42 kW and are summarized in Appendix
A5.

In order to evaluate ecologic benefits, we compute the annual
CO, emissions as shown in Equation (16). In this equation,
ferid — 0.535kg/kWh stands for the average CO, emissions of the
German power system, f&¥ = 0.200kg/kWh describes the CO;

. . -d .
emissions of gas combustion and Ehiv denotes the gas consumption
of device dev in house h at time t.

eco, = ) _Wa-At-) {fg“‘f’ - (pgrtime — pgrite)
d t
as -boi ~ -chp
+ f&5S- ZEh,t + Ept
h

Table 3 summarizes the results for this scenario. For both set-
tings, we conduct cost optimizations, leading to 561,437.40 EUR/a

(16)
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Fig. 7. Operation of microgrids with 10 large buildings.

Table 3
Summary large-scale neighborhood.

136 buildings

Connected Unconnected
Obj. value [EUR/a] 561,437.40 584,947.37
Cap. BAT [kWh] 0 0
Cap. TES [m3] 65.8 416
Cap. BOI [kW] 1417.5 1861.5
Cap. CHP [kW] 204.9 0
Cap. EH [kW] 372.7 195.3
Cap. HP [kW] 98.2 0
Cap. PV [m?] 5289.4 5165.1
Cap. STC [m?] 150.6 2749
Power imp [kWh/a] 399,327.7 617,312.6
Power exp [kWh/a] 580,399.2 612,050.3
CO, emissions [kg/a] 489,655.9 641,520.7

with connected buildings and 584,947.37 EUR/a without intercon-
nection, which is a cost reduction of 4.0%. Without interconnection,
neither heat pumps, nor CHP units are used; instead, boilers and
backup electrical resistance heaters are installed. When allowing
electricity exchange with connected buildings, approx. 10% of the
buildings are equipped with a CHP unit and 10% possess a heat
pump. Additionally, larger storage tanks are installed, in order to
allow for operating these devices more flexibly. Therefore, the
connected setting is able to reduce electricity imports by 35.3%
lower exports by 5.2%, due to a coordinated usage of locally
generated electricity. As a result, CO, emissions are reduced by
23.7% compared to the unconnected optimizations.

Fig. 8 shows the heat coverage ratios in both settings. Without

I BOI [ CHP N HP STC Bl EH
'g Unconnected |
©
@

40 60
Heat coverage rate in %

20

Fig. 8. Heat coverage ratios in large-scale microgrids.

interconnection, approx. 95% of the heat demand is provided by
boilers and the remaining heat is generated through solar thermal
collectors. When allowing for electricity exchange, CHP units and
heat pumps are additionally installed. CHP units generate 22% of
the microgrids heat demand, heat pumps 11%, boilers 64% and solar
thermal collectors 3%. In both settings, backup electrical resistance
heaters produce less than 0.5% of the neighborhood's heat demand.

Fig. 9 displays the operation in this grid for one exemplary day
during spring. The dashed lines represent the operation without
microgrid and solid lines stand for the microgrid scenario (suffix
MG). Without microgrid, large feed-ins during noon and high im-
ports at evening hours are required. When allowing for electricity
exchange between buildings, the exporting peak during noon is
slightly reduced by activating heat pumps. Similarly, CHP units are
activated during evening in order to reduce the high demands of
household appliances and lighting, reducing stress in the distri-
bution grid.

5. Limitations

This chapter critically explains the limitations of this paper and
the limitations of the developed decomposition method for the
design, sizing and operation of distributed energy systems.

As briefly discussed in Chapter 2 and explicitly stated in
Appendix A, this work uses common approaches for modeling the
design and operation of energy components. In particular, we ac-
count for an activation threshold that determines the minimal part
load. Between this lower threshold and rated power, we assume a
constant efficiency as done by related studies [9,21]. Since this work
focuses on the development of a distributed optimization model,
such established models are reasonable. However, due to the
developed distributed structure, approaches that are more elabo-
rate can easily be incorporated within the subproblems in order to
improve the accuracy of the total model. Hereby, the decomposed
modeling allows for even higher runtime reductions in comparison
with a traditional, compact model formulation. More advanced
modeling paradigms that could be incorporated within each sub-
problem for instance consider piecewise linear approximations for
modeling part load of each available device [24—26] or accounting
for start-up and shut-down effects [35]. Furthermore, local
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Fig. 9. Operation of microgrids with 136 buildings.

decisions that affect the heat demand, such as building envelope
insulation [36] could also be considered on the level of each
subproblem.

This work strongly focuses on modeling issues and provides
verification results that confirm the applicability of the developed
decomposition approach. Furthermore, a large-scale application is
presented that proves the suitability to such large districts. This
application also illustrates potential economic and ecologic benefits
of microgrids in comparison with unconnected buildings. However,
since the presented model has only been applied to one exemplary
city district, the resulting improvements of 4.0% regarding total
costs are not universally transferable or generalizable to other
scenarios. In this work, the microgrid presents significant
improvement in contrast to an unconnected setting that are
mathematically certain, since they are above the used tolerated
optimality gap of 1.0%. For real-life applications, these improve-
ments should be verified by conducting sensitivity and uncertainty
analyses in order to ensure functionality and efficiency during off-
design conditions. Such extensive analyses are however beyond the
scope of this paper. Yet, in contrast to traditional, compact model
formulations, the presented decomposition allows for conducting
such analyses in a faster way that can be used to extend the scope of
such uncertainty evaluations.

The developed decomposition approach presents a Price-and-
Branch heuristic, which typically leads to high quality solutions
[13,15]. However, Jans [31] describes that such a simplified pro-
cedure does not guarantee global optimal solutions. The conducted
verification calculations support both arguments. We have shown
that global optimality is not guaranteed; however, the results of the
decomposition deviate by at most 1.8% from the result of the
compact model formulation. Future works could investigate exact
Branch-and-Price algorithms that converge to the solution of the
compact model. However, Branch-and-Price essentially requires
solving the presented master problem and subproblems signifi-
cantly more often [37], which would lead to correspondingly higher
runtimes. With respect to the already good accuracy in comparison
with the compact model, this approach does not appear reasonable.
Similarly, in recent years, the Alternating Direction Method of
Multipliers (ADMM) has gained significant popularity [38]. How-
ever, as shown by a related study of Sokoler et al. [29], ADMM has

been inferior to Dantzig-Wolfe reformulation in this application.

6. Conclusions and outlook

In this paper, we have developed a distributed optimization
methodology based on decomposition principles and column
generation for optimizing building energy systems within local
neighborhoods. We have verified our model for two small-scale
and two medium-scale microgrids by comparison with a compact
model formulation. The verification confirms the applicability of
our reformulation since similar energy systems are installed and
operated alike. For the small-scale microgrids, the compact
formulation requires shorter calculation times, however with
increasing number of buildings, the distributed optimization out-
performs the compact model's calculation time. With our model
formulation and computing hardware, only 11 buildings are
manageable with the compact model, whereas the distributed
formulation can even be applied to more than 100 buildings.

We applied the distributed algorithm for optimizing a residen-
tial neighborhood with 136 buildings in order to evaluate the
economic and ecological benefits of local microgrids. The findings
conclude that for the investigated scenario, interconnection re-
duces annual costs by approx. 4.0% and CO, emissions by even
23.7% by installing more CHP units and heat pumps and coordi-
nating these devices in order to increase self-consumption and
reduce electricity feed-in.

In future works, we will extend our model by including local
heating networks. Furthermore, we consider extending the model
to also account for non-residential buildings and non-residential
areas. Also, in contrast to this paper that primarily deals with the
modeling itself, future applications of the developed decomposi-
tion approach should investigate the underlying uncertainties
associated with the model inputs.
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Nomenclature ® storage self-discharge rate, -
w overall efficiency, -
Subscripts and superscripts Appendix A. Complete optimization models
bat battery
boi gas boiler This appendix presents the full set of equations used within the
ch charge compact model formulation, the master problem and the sub-
chp combined heat and power problems. Additional information on the implemented compact
CO, carbon dioxide model can be found in Ref. [9].
d demand day
dch discharge Appendix A.1. Compact model formulation
dem demand
dev device
dhl design heat load
eh electrical resistance heater min Z (cﬁ’“’ + M P et — rff”’) 4+ cgridimp __ grid.exp
elec electricity h
exp exported (A1)
fix fixed costs
g':lsd glé“lsd cgridimp _ pgridexp _ bel'CRF'ZWd'A["Z (Pgr;d,lmp .cimp
h house ) d !
hp heat pump - 1’53"1’6"” -rexp ) (A.2)
imp imported
infl inflation id,imp rid exp imp exp
inv investments Pirt = Pﬁ,t = Z(Ph,dﬁr - Phd,t) (A3)
met metering h
nom nominal ) The investment costs of each house consist of fixed installation
om oEeratloln and maintenance costs k7™ multiplied by a binary decision x{¢ that states if tech-
gv gh%lzg\slgltai c nology Qev is installed in house h. Furthermore, variable investment
roof rooftop area for PV/STC costs k**" are added that depend on the installed capacity.
sub subsidies Hereby, capacity describes the nominal heat output of BOI, CHP, EH
t time step and HP, the installed area of PV and STC as well as the water volume
var variable costs of TES and the storage capacity of BAT. These initial investment
costs are distributed into an annual payment considering the cap-
Letter symbols ital recovery factor (CRF) and the residual value rv4¢” at the end of
A area, m? the considered observation period of 10 years.
c annual costs, EUR/a ) ) )
cap capacity, kW | kWh | m? ci’ = > CRF: (1 — rvde"> . (xge”-KZ"evyﬁx + Capﬁe"~/<i?e"v’”ar) (A4)
CRF capital recovery factor, - dev
E gas consumption, kW Costs for operation and maintenance are a fraction ¢3™ of the
€ annugl 0, emfssmns,‘kg/a investment costs, the corresponding values are taken from the
F Charg‘“fé a.nd discharging rates, kW German guideline VDI 2067. Furthermore, inflation effects are
f CO, emissions factor, kg/kWh idered th b pinf
I solar irradiation onto PV and STC areas, kW/m? considered throug :
ml minimum load, - ; i i
P electricity consumption, kW "= de'”ﬂ'CRF ey’ (Xﬁe”'KZL'LﬁX + Capﬁev'KZZI:var> (A.5)
Q heat ouput, kKW e
r annual revenues, EUR/a Costs for gas purchase are computed similarly to electricity
rv residual value, - costs:
T temperature, K
t time, h as _ pgas ) Af. as _pboi as _p:chp
w weight of typical demand days, - Ch = b¥*-CRF <2d:wd At zt:[c%"i Eha. +Céghl’ Eh‘rd"D
X binary purchase decision, -
. . - (A.6)
y binary activation decision, -
Metering costs for a gas meter c5w, have to paid if either a CHP or
Greek symbols a BOI are purchased:
difference )
conversion efficiency, - et > bl CRF- 8%, -xge” (A7)

fixed and variable cost factors, EUR | EUR/cap

. . - Governmental subsidies in this work only include a subsidy for
weight of a proposal (binary | continuous), -

2 a3 >~7A3 B

shadow price electricity balance, EUR/(KW a) electricity generated with CHP units Pffc‘z[. Other works [26] have
shadow price convexity constraint, EUR/a developed more detailed models on such governmental subsidies
density, kg/m> and regulations that could potentially also be included in this
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model and thus also within the subproblems described in Appendix
A3.

h.t (A8)

ritb = b CRF-ri0- N "wy-At-y P
d t

Technical constraints of this optimization problem include the
following equations:
If PV or STC modules are installed, their total area has to be

greater than a small representative module AZLT. Furthermore, the

sum of both is limited by the available roof area Azoof :

xilev. gmin < pdev (A.9)
AP 1 Azt < ATF (A.10)

The heat and power output of the corresponding collectors is
the product of installed area, solar irradiation onto the collector I;
and the efficiency ngi“. For PV units, this efficiency combines the
inverter's average efficiency as well as the temperature depending
cell efficiency [33]. For solar thermal collectors, optical as well as
linear and quadratic thermal losses are considered [34].

Prae = A0 Tae i (A11)
< Stc
Qnae = Ar Lo My (A.12)

Devices may only be activated (binary variable yﬂfgl equals 1) if

the corresponding device has been purchased. Furthermore, for
heat generators (deve {boi,chp,eh,hp}), the installed capacity has to

be within a lower Qj,, and an upper limit QJ,, .

yg,ez]i},t < Xgev (A13)
- min - max
X3¢ Q e, < capi®’ < xdev.Qg, (A.14)

The next set of equations describes that if a device is activated, it
can only operate within a minimum activation threshold mide’ and
nominal operation. Therefore, QZ?;ZMI represents the nonlinear
product of yﬁf&’,fcapﬂe” in a linear manner, without loss of accuracy.

dey Amin

s nom de s max
yh,d‘['QdEU < Qhdevdr < yhréjvt'Qde,, (A.15)
de de 3 min de ynom de de: jmax
(Xh ' —yh,cﬂ> “Qaev < €apy™ = Qpdevdt < (Xh Y —yhﬁ‘t) “Qey
(A.16)
dey ANom - dev - nom
Ml Qp devdr < Qe < Qndevd (A17)

For heat generators that couple electrical and thermal sub-
systems (deve{chp, eh, hp}), the following equation links the cor-
responding heat generation with the electrical power consumption,
respectively power generation at each time step. The power con-
sumption of gas boilers, for instance for internal measurements and

the boiler's local control unit are neglected, and Prl?%t is set to 0.

- dev

Qnas = Pgiiv,t'ng,ecilit (A.18)

The gas consumption of boilers and CHP are computed as shown
in Equation (A.19). Hereby, wg%’.t stands for the overall efficiency of

these devices. The gas consumption of heat pumps and electrical
resistance heaters are set to 0.

-dev - dev de de
Ehae = (Qh,d,t +Ph,¢;,t) /wh,z]i},t

Storage balances and sizing are formulated as shown in Equa-
tions A.20 and A.21, in which S is the stored energy, ¢4’ is the

(A.19)

dev,ch dev,dch
FI‘Ld,t Fh.dﬁt

charging rates and ngﬁ" and ngﬁ}; stand for the corresponding
efficiencies.

rate of self-discharge, and are the charging and dis-

dev __ cdev . de . (pdevch  dev dev,dch /, dev
Shd.e = Shde-1 (1 4 V) +At (F Nen' — F ’7dch>

h,d.t h,d,t
(A20)

capfie’ > sy, (A21)

The thermal storage's capacity is translated into a water volume
that is bounded by V™" and ymax

h.tes h.tes*
Cap,tfs _ ﬁeslp,cp.AthggX (A.22)
Vtrgsin < Vﬁes < ymax (A.23)

For batteries, the following equation requires that the installed
capacity has to be between a lower and an upper limit, if a battery is
purchased:

i

bat m bat max

< caph® < xbat.cape (A24)

Charging rates for thermal storages are not limited, whereas for
batteries, the following equations determine the maximum
charging and discharging rates as a linear function of the installed
capacity.

bat,ch bat , pch.fix bat . pch.var

Frar =Xp"Ppgy ™ +capp” Py (A.25)
bat dch bat . pdch fix bat . pdch,var

Flae <xp®-Pp”" + capy™ Py (A.26)

The local electricity balance for each house is given in Equation
(A.27).

em hp eh bat,ch bat,dch chp DV
hdt T Prae T Phac+Phar —Prar — Phae — Phae

__ pimp _ pexp

=Prar = Pra; (A.27)

Equation (A.28) states that the capacities of all non-solar heat

o . -dhl .
generators have to exceed the building's design heat load Qj, , in
order to satisfy heating demands even under severe weather
conditions.

boi chp

. dhl
capp®’ + cap$"” + capgh + cap? > Q, (A.28)
Appendix A.2. Master problem
min " (ZAM, 'Ch,p> + cgridimp _ pgrid.exp (A.29)
TN
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gridimp _ gridexp _ rid,imp  _imp _ pgrid.exp _.exp) .
c e — S wy S (PP (P — PP pew ) Ar
d t

(A.30)
P‘g?d,imp _ Pgrtid,exp _ ; (;’\hp 'Ph,d,t‘,p) (A31)
(A.32)

thyp =1
p

In regular iterations, Equation (A.33) is used that allows for
combining proposals fractionally. Since fractional weights would
lead to integer infeasible solutions (e.g. purchasing energy con-
version units only partially), Equation (A.34) is employed in the
final iteration, which guarantees integer feasible solutions.

0< A, <1 (A.33)
ApE{0;1} (A.34)
Table A1

Number of constraints and variables in the compact and distributed models.

Appendix A.3. Subproblems

Similar to the explanations in the main paper, the proposal in-
dex is neglected in this summary of the subproblems. However,
these subproblems are solved for each house h during each itera-
tion of the column generation algorithm.

. inv om as met ub elec,imp elec.exp

min ¢ + " + ;% + et — ' + ¢ - — oy
(A35)

elec,imp elecexp imp _ pexp .

Ch ~Th = ZZ(Ph,d,t Ph,d,t) Tat (A.36)

d t
__ pimp exp
Phacp =Phar —Phay (A37)

The remaining equations of the subproblems are exactly taken
over from Equations A.4 to A.28.

Appendix A.4. Model statistics

Table A.1. Summarizes the number of constraints and binary as
well as continuous variables in the compact model, the master
problem and the subproblems. Hereby, the master problem only
contains any binary variables during the last step of the algorithm.
Otherwise, the master problem is a pure linear program.

Compact model Master problem Subproblem
Binary Continuous
Number of constraints 867+ 15075-H 288+ H 288+ H 15078
Number of binary variables 1161-H H-P 0 1161
Number of continuous variables 867 + 8700-H 576 576+ H-P 8703
Appendix A.5. Used inputs
A!r]"”in 1.32 m? sz’n 31 kw "g;.vﬁx 161.50 EUR
Amin 0.89 m? QZL‘;" 66.3 kw K;'lr;vﬁx 2935.60 EUR
bel 9.8146 - Q;‘;’X 36.1 kW KZL”ﬁ* 0 EUR
bsas 9.1647 — Q'm“" 12.0 kW ginvfix 0 EUR
eh stc
pinfl 8.2838 - ol 17.4 kw v fix 602.11 EUR
hp tes
ngf 0.0693 EUR/kWh rexp 0.1231 EUR/kWh K;’nvt-var 893.58 EUR/kWh
al
Lﬁ‘; 0.0608 EUR/kWh rih‘ﬁ 0.0541 EUR/KWh K;)"”:"“’ 47.60 EUR/KW
01
foi 157.00 EUR/a rybat 0.2046 — ir;;'-var 646.37 EUR/KW
chp
cimp 0.2660 EUR/kWh ryboi 0.3070 — ir;l'/-var 4.56 EUR/KkW
el
[ 4.18 KkJ/(kgK) rochp 0.2046 — ;’ﬂwar 599.44 EUR/KW
p
CGIJ{,”J? 230 kWh reh 0.3070 — Kg;vevar 158.19 EUR/m?
capjiex 11.60 kWh rohp 0.2729 — ;’f;g-var 221.47 EUR/m?
CRF 0.1295 - rvP? 0.3070 - K?ensfwr 630.70 EUR/m>
feas 0.2000 kg/kWh st 0.3070 - ) 1000 kg/m?
ferid 0.5350 kg/kWh rutes 0.3070 — phat 0.00 %/h
miboi 24.49 % v/min 0.12 m3 ptes 0.52 %/h
michp 74.92 % vinax 2.00 m? om 1.0 %
mieh 100.00 % At 1 h o 25 %
mihp 100.00 % AT]Iox 40 K ohp 8.0 %

(continued on next page)
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continue
(continued )
Ag}}'" 1.32 m? th;ﬂ 3.1 kW Kg};/-ﬁx 161.50 EUR
pgg-[ﬁx 2.190 4% nlgﬁf 97.76 % o 3.0 %
P;Z‘[“" 0.443 kW/kWh 113% 97.76 % s 25 %
Pg;?ﬁ" 2433 kW ntes 100.00 % oo 1.0 %
pggf;,var 0.148 kW/kWh nes, 100.00 % om 1.5 %
QZE:” 11.0 kw xi,’;";ﬁ* 4804.54 EUR om 2.0 %
Qmin 0.7 kw imvdfix 1010.30 EUR
chp boi
Qmin 2.0 kw invdfix 11208.21 EUR
eh chp
45 T T T T T T T T T T T . . S
—  Complete city disctrict Environ 2015;86:132—40. https://doi.org/10.1016/j.buildenv.2014.12.015.
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© 3 buildi 10.1002/9780470400531.eorms0118.
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