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"Design is a funny word. Some people think design means how it looks.

But of course, if you dig deeper, it’s really how it works.’

Steve Jobs,
"Wired” (1996)
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Kurzfassung

Der Erfolg chemischer Prozesse hingt entscheidend von zwei Faktoren ab: Zum einen
von der optimalen Betriebsweise des Prozesses und zum anderen von den darin einge-
setzten Molekiilen wie beispielsweise Losungsmitteln. Die Auswahl optimaler Molekiile
und Prozesse erfolgt jedoch héufig aufgrund voneinander getrennter Aspekte: Entwe-
der werden die Prozesse selbst optimiert, wobei auf eine festgelegte Vorauswahl an
Molekiilen zuriickgegriffen wird, oder Molekiile werden anhand vereinfachender Krite-
rien ausgewéhlt. Dariiber hinaus werden bei der Suche nach optimalen Molekiilen oft
stark vereinfachte thermodynamische Modelle zur Stoffdatenvorhersage genutzt, die
zahlreiche experimentell bestimmte Modellparameter benotigen und dadurch den mo-
lekularen Designraum einschréinken. Derzeitige Auswahlmethoden fiir Prozesse und
Molekiile erfassen somit haufig nicht die komplexen Zusammenhénge molekularer Fi-
genschaften im Prozess und betrachten nur eine begrenzte Menge an moéglichen Mo-
lekiilen. Diese Vorgehensweise birgt das Risiko, nicht immer optimale Molekiile und
Prozesse auszuwéhlen.

Um gleichzeitig optimale Molekiile und Prozesse zu identifizieren, wird in dieser
Arbeit ein Ansatz fiir integriertes Computer-Aided Molecular and Process Design
(CAMPD) priésentiert. Der Ansatz nutzt COSMO-RS zur Stoffdatenvorhersage, wel-
ches auf Quantenmechanik basiert und daher nur gering von experimentell bestimmten
Modellparametern abhéngt. Um eine verldssliche Bewertung komplexer Prozesse zu
ermoglichen, werden sogenannte pinch-basierte Prozessmodelle genutzt. Diese pinch-
basierten Prozessmodelle beriicksichtigen den inhérenten Zusammenhang molekularer
Eigenschaften im Prozess und sind im Vergleich zu rigorosen Prozessmodellen sehr
effizient. Der integrierte Designansatz wird in dieser Arbeit schrittweise von moleku-
laren Screenings auf Prozessebene bis hin zum molekularen Design fiir Trenn- und
Reaktionsprozesse erweitert. Die Anwendung des vorgestellten Designansatzes wird
dabei fiir verschiedene Beispiele der Losungsmittelauswahl und Prozessoptimierung
veranschaulicht. Dabei werden Prozesse und Losungsmittel fiir die Aufbereitung bio-
basierter Plattformchemikalien sowie die Herstellung von CO aus CO, betrachtet.
In dieser Arbeit wird somit COSMO-RS erfolgreich in CAMPD integriert und der
Losungsraum und die Anwendbarkeit aktueller CAMPD Ansétze deutlich erweitert.
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Abstract

Optimal performance of chemical processes requires both optimized operating con-
ditions and carefully selected molecules such as solvents. However, the search for
optimal molecules and process concepts often has a limited focus: Either processes
are optimized using a pre-defined set of molecules or molecules are selected for no-
vel applications based on simplified process indicators. At the same time, the search
for optimal molecules often relies on strongly simplified thermodynamic models that
require experimentally determined group interaction parameters and confine the mo-
lecular design space. Overall, current design approaches often do not capture complex
process trade-offs and are limited to prescriptive sets of molecules which likely results
in suboptimal choices.

To address the challenge of identifying optimal processes and molecules, this the-
sis presents an integrated computer-aided molecular and process design (CAMPD)
approach. The design approach uses quantum mechanics (QM)-based property pre-
diction by COSMO-RS and is thus independent of experimental determined group
interaction parameters while not relying on group additivity. For reliable and fast
evaluation of complex processes, advanced pinch-based process models are employ-
ed. These pinch-based process models account for the inherent trade-off in molecular
properties while being both computationally efficient and accurate in comparison to
rigorous process models. The integrated design approach in this thesis is stepwise ex-
tended from process-level molecular screenings towards molecular design for separation
and reaction-separation processes. The application of the presented integrated design
approach is illustrated for various examples of solvent selection and process optimiza-
tion. In particular, process concepts and solvents are investigated for the purification
of bio-based platform chemicals as well as the production of CO from CO,. Overall,
this thesis successfully integrates COSMO-RS property prediction in CAMPD and
thus significantly expands the range and applicability of current CAMPD approaches.
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CHAPTER 1

Introduction

The key to realize efficient implementations of challenging chemical processes such as
complex reaction or purification steps are suitable molecules. Molecules play this key
role as adsorbents in gas adsorption (Joos et al., 2015; Bai et al., 2015; Huck et al.,
2014; Braun et al., 2016), absorbents in washing processes (Pereira et al., 2011; Pa-
padopoulos et al., 2016) and solvents in reaction processes (Zhou et al., 2016; Austin
et al., 2016a; Jens et al., 2016) or liquid-liquid extraction (Redepenning and Mar-
quardt, 2017; Song et al., 2017). For economically and ecologically efficient processes,
molecules thus need to be carefully selected (Ng et al., 2015).

Commonly, molecules are selected based on expert knowledge and heuristics such as
selection guidelines (Ashcroft et al., 2015; Prat et al., 2014; Tobiszewski et al., 2015) or
prescriptive design rules (Barnicki and Fair, 1990, 1992; Jaksland et al., 1995). These
design rules often rely on simple performance indicators, e.g., separation factors (Bonet
et al., 2015) or phase distribution coefficients (Salleh et al., 2017; Fang et al., 2016)
which provide a quick estimate of performance for large numbers of molecules with low
computational costs. However, simple performance indicators do not capture complex
trade-offs in molecular properties on the process level, e.g., molecules with a large
phase distribution coefficient might stabilize a value chemical in an extraction process
but can be unfavorable in a subsequent distillation. Neglecting these trade-offs likely
results in suboptimal choices for molecules and processes (Papadopoulos and Linke,
2006a). Selecting suitable molecules is thus intrinsically linked to the process in which
the molecule is used. However, a direct integration of molecule selection into process
design is challenging since the molecular design space is merely endless (Fink et al.,
2005). In addition, model equations relating molecular structure to thermodynamic
properties and these thermodynamic properties to process performance are usually
highly non-linear (Adjiman et al., 2014). The large molecular design space and the
large set of highly non-linear equations lead to complex mixed integer non-linear
programming (MINLP) problems (Gani, 2004a).



Chapter 1 Introduction

In recent years, the resulting problems have been tackled in so-called computer-
aided molecular design (CAMD) or computer-aided molecular and process design
(CAMPD) approaches (Ng et al., 2015; Austin et al., 2016b). Typically, CAMD/CAMPD
approaches rely on reduced (process) performance models and data-driven thermody-
namic property prediction methods such as group-contribution methods to be com-
putationally tractable. These data-driven prediction methods have to be trained on
initial experiments, which usually define and limit the molecular design space. In
contrast, quantum mechanics (QM)-based methods can accurately predict proper-
ties independent from extensive experimental data, but a direct integration of QM
into CAMD/CAMPD approaches is computationally challenging. A good trade-off in
computational demand and accuracy has been achieved by COSMO-RS (Klamt et al.,
2010). COSMO-RS combines efficient QM calculations with fast statistical thermo-
dynamics allowing for comparably fast computations of thermodynamic properties.
Currently, COSMO-RS is however mostly used as property prediction method and its
predictive power is not fully exploited in CAMD/CAMPD approaches.

1.1 Structure of this Thesis

In this work, QM-based thermodynamic predictions are integrated into computer-
aided molecular and process design by combining efficient property prediction by
COSMO-RS with fast but accurate process-models. Chapter 2 reviews common
CAMD/CAMPD methods to provide a general overview of current approaches and
challenges in the field. Here, theoretical foundations are summarized that are rele-
vant to integrate COSMO-RS into CAMD/CAMPD: General CAMD/CAMPD prob-
lem formulations are presented and state-of-the-art solution approaches to CAMD/
CAMPD are reviewed. This review reveals limitations of current CAMD/CAMPD
approaches and the scientific contribution of this thesis is outlined (Chapter 2.5).

To establish sound but still efficient process-level evaluation of molecules, a method
is introduced in Chapter 3 that allows for large-scale, process-based solvent screen-
ing using COSMO-RS property prediction. Here, efficient pinch-based process models
(Marquardt et al., 2008) are employed for fast but accurate process-level assessment of
solvents. The resulting method is applied in a massive, automated database screening
of several thousand solvents for a hybrid extraction-distillation process. To further
extend the range of COSMO-RS from prediction to design, an optimization frame-
work (COSMO-CAMD) is introduced in Chapter 4 which allows for computer-aided
molecular design with COSMO-RS using thermodynamic property design targets.
COSMO-CAMD is applied in two case studies for solvent design.



1.1 Structure of this Thesis

In Chapter 5, COSMO-RS is fully integrated in CAMPD. For this purpose, the
COSMO-CAMD framework presented in Chapter 4 is combined with pinch-based pro-
cess models (Chapter 3) that allow for rapid process-level evaluation of designed sol-
vents. The resulting COSMO-CAMPD framework is a hybrid stochastic-deterministic
optimization method for integrated design of molecules in separation processes with
COSMO-RS property prediction. The illustrative example of a hybrid extraction-
distillation process from Chapter 4 is extended to include process variables as addi-
tional degrees of freedom. COSMO-CAMPD results are validated experimentally by
automated liquid-liquid equilibrium experiments.

Besides separation processes, complex reactions are often relevant in chemical en-
gineering. In Chapter 6, the optimization framework COSMO-CAMPD is thus ex-
tended to include multiphase reactions and automated process flowsheet selection.
The extended framework for solvent design in reaction-separation processes is applied
to a case study of CO production from H, and CO,. Finally, Chapter 7 summarizes
the work and gives a perspective on future work.






CHAPTER 2

State-of-the-Art in
Computer-Aided Molecular and
Process Design

This chapter introduces general CAMD /CAMPD methods, discusses state-of-the-art
solution approaches and highlights current challenges as well as limitations in CAMD/
CAMPD. First, CAMD and CAMPD are defined via generic problem formulations
(Section 2.1). In Section 2.2, current solution approaches to CAMD/CAMPD prob-
lems are presented. Thermodynamic process models employed in CAMD /CAMPD are
discussed in Section 2.3 and methods for evaluating (process) performance are sum-
marized in Section 2.4. Finally, open research tasks in the field of CAMD/CAMPD
are highlighted and the contribution of this thesis is outlined (Section 2.5).

Parts of this chapter have been published in:

J. Scheffczyk, C. Redepenning, C. M. Jens, B. Winter, K. Leonhard, W. Mar-
quardt and A. Bardow. Massive, Automated Solvent Screening for Minimum
Energy Demand in Hybrid Extraction-Distillation using COSMO-RS, Chemical
Engineering Research and Design, 2016, 115 Part B, 433-442.

J. Scheffczyk, L. Fleitmann, A. Schwarz, M. Lampe, A. Bardow and K. Leon-
hard. COSMO-CAMD: A Framework for Optimization-Based Computer-Aided
Molecular Design using COSMO-RS, Chemical Engineering Science, 2017, 159,
84-92.
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2.1 General Problem Formulation

Generally, CAMD/CAMPD approaches are systematic methods that aim at solving
an inverse design problem (Fig.2.1).

In this context, the solution of the analysis (direct) problem predicts the (process)
performance of a given molecular structure based on thermodynamic property predic-
tion models. In contrast, the solution of the inverse design problem finds the optimal
(or at least better) molecular structure that meets a given process or property tar-
get. CAMD/CAMPD approaches differ in their respective design target: CAMD is
the inversion of property prediction whereas CAMPD inverts the prediction of pro-
cess performance (Ng et al., 2015). In order to solve the inverse design problem,
CAMD/CAMPD approaches depend on three key elements (Fig.2.1): A model of
the (process) performance as design target, a thermodynamic model and an approach

(Process) performance
Thermodynamic model

Molecular structure

Figure 2.1: General CAMD/CAMPD problem as inverse design problem (solid line)
to the direct analysis problem (dashed line) with three key elements of
CAMD/CAMPD: (Process) performance, thermodynamic model and the

molecular structure.
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|
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Analysis (direct problem)
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2.1 General Problem Formulation

to explore molecular structures. Combining these three key elements in an efficient
solution approach is the main challenge in CAMD/CAMPD. This challenge can be
posed as a numerical optimization problem for CAMD/CAMPD which is presented
in the following section.

2.1.1 Molecular Design Problem

The molecular design problem in CAMD can be stated as following: Given a process
(e.g., absorption) that requires a molecule (e.g., solvent), find the optimal molecular
structure that maximizes a selected performance criterion (e.g., solvent boiling point).
This leads to a CAMD problem that can be formulated as:

miniymize F(y)
subject to  ¢g(y) =0 (thermodynamic model),
h(y) <0 (property constraints), (2.1)
c(y) <0 (molecular constraints),
yey.

Here, F(y) is the objective function (e.g., distance to desired solvent property) and
depends on the structure of the molecule y (e.g., solvent) as design variable. The
molecular structures y are found within the design space of all possible molecules Y
that can be generated from a defined set of building blocks (e.g., molecular fragments
or groups). Typically, molecules are discrete structures expressed by integer vari-
ables. Equality constraints g(y) encompass thermodynamic models which relate the
molecular structure y to the thermodynamic properties g. h(y) represents inequality
constraints, e.g., due to property limits such as desired maximum boiling temperature.
Molecular constrains are imposed by ¢(y) such as structural feasibility and size of the
designed solvents.

The choice of the objective function F'(y) depends on the respective design target
and the application of the CAMD problem. Notably, in classical CAMD problem
formulations, no process model is included in the objective function F(y), e.g., the
problem contains no mass- or energy balances for process unit operations. In contrast,
the objective function quantifies the performance of the molecular structure y by spe-
cific design targets such as desired thermodynamic properties g that aim at assessing
the process performance of the molecule (Sahinidis et al., 2003).
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2.1.2 Integrated Molecular and Process Design Problem

Typically, process-level information is crucial for the success of molecular and pro-
cess design (Adjiman et al., 2014). In order to integrate process-level information in
the design problem, the CAMD problem (Eq.(2.1)) has to be extended to include
explicit process models. The resulting CAMPD problem is a mixed-integer nonlinear
programming (MINLP) problem (Gani, 2004b):

minimize F(z,y)

Z,
subject to  gi(x,y) =0 (thermodynamic model),
g2(z,y) =0 (process model), (2.2)
h(z,y) <0 (operating limits),
c(y) <0 (molecular constraints),
reR" yeVY.

Here, F(z,y) is the objective function (e.g., process energy demand) and depends
on two types of design variables: process variables x (e.g., process temperature) and
the structure y of the molecule employed in the process (e.g., solvent). As for the
CAMD problem (Eq. (2.1)), the molecular structures y are expressed as discrete in-
teger variables and found within the design space of all possible molecules Y that
can be generated from a defined set of building blocks (e.g., molecular fragments or
groups). Equality constraints ¢;(z,y) in CAMPD encompass thermodynamic mod-
els as well as go(x,y) the process model, e.g., mass- and energy balances for all unit
operations. h(z,y) represents inequality constraints due to process operating limits
(e.g., maximum operating temperature) or limits on thermodynamic properties (e.g.,
existence of a liquid-liquid equilibrium). Molecular constrains are imposed by ¢(y)
such as structural feasibility and size of the designed solvents.

Typically, CAMD/CAMPD problems (Eq. (2.1) and Eq. (2.2)) can be classified ac-
cording to various aspects such as the intended application or the employed solution
strategy. In this work, a classification is proposed according to the scope of each
key element in the CAMD/CAMPD problem (Fig.2.2): Here, the term scope refers
to the information that is considered in the respective key element, e.g., a (process)
performance model with limited information about the actual process is considered
as limited-scope model. In contrast, a molecular structure exploration method that is
able to explore a vast molecular space by design is considered as large-scope method.
Accordingly, each key element in the CAMD/CAMPD problem, i.e., (process) per-
formance, thermodynamic model and molecular structure, can be further subdivided
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Figure 2.2: Key elements of CAMD/CAMPD approaches with limited/large scope
classification for (process) performance (limited scope: property targets;
large scope: integrated process models such as flowsheets with reaction
and separation steps), thermodynamic models (limited scope: data-driven
methods; large scope: quantum mechanics) and molecular structure ex-
ploration (limited scope: selection; large scope: design).
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in limited- or large-scope elements. Here, large-scope process performance models
(Fig.2.2) comprise full process models (CAMPD), e.g., process flowsheets with rigor-
ous process models for reaction and separation steps. These models take into account
all process steps, e.g., by consideration of mass- and energy balances for unit oper-
ations. In contrast, limited-scope performance models (Fig.2.2) are thermodynamic
property targets (CAMD), e.g., a design target based on pure component vapor pres-
sure. Similarly, data-driven thermodynamic property prediction methods are consid-
ered as limited-scope approaches (Fig.2.2), e.g., first-order group-contribution meth-
ods with experimentally determined functional group interaction parameters. These
experimentally determined parameters usually limit and confine the molecular design
space in CAMD/CAMPD problem solution approaches and thus limit the scope of
the CAMD/CAMPD problem. In contrast, quantum mechanics (QM)-based ther-
modynamic models employ first principle calculations (ab initio) and thus do not
rely on experimentally determined functional group interaction parameters. Thus,
QM-based property prediction methods are considered large-scope key elements in
CAMD/CAMPD (Fig.2.2). Lastly, molecular structure exploration approaches are
distinguished, i.e., heuristic strategies that select molecules from a fixed set such
as databases (limited scope in Fig.2.2). In contrast to heuristic molecule selec-
tion, large-scope molecular structure exploration methods (Fig. 2.2) design molecular
structures, e.g., by numerical optimization. For each of the three key elements of
CAMD/CAMPD, state-of-the-art methods are reviewed for limited- and large-scope
approaches in the following sections.

2.2 Molecular Structure Exploration Methods

The success of solution approaches to the CAMD/CAMPD problems (Eq. (2.1) and
Eq. (2.2)) strongly depends on the method to identify optimal molecular structures.
In this work, methods for exploring the design space of molecular structures are dis-
tinguished by their scope (Fig.2.2), i.e., selection methods (limited scope) or design
methods (large scope).

2.2.1 Selection Methods

Probably the most intuitive approach to solve the inverse design problem (solid line
Fig.2.2) is to repeatedly solve the analysis problem (dashed line in Fig.2.2). In this
work, such approaches are referred to as (systematic) selection methods (limited scope,

10



2.2 Molecular Structure Exploration Methods

Fig.2.2). Systematic selection can be performed, e.g., by enumerating a fixed set of
molecules. Molecules in this set can either be selected based on expert knowledge or
systematically enumerated from molecule databases. For each selected molecule, the
objective function of the CAMD/CAMPD problem (Eq. (2.1) or Eq.(2.2)) is evalu-
ated to rank molecules based on their predicted (process) performance. From this
ranked list, top performing molecules are usually selected for detailed investigation,
e.g., rigorous process model evaluation after expert molecule pre-selection based on
heuristic indicators (Le Nhien et al., 2016; Kossack et al., 2008).

Systematic molecule selection is often performed for property-based CAMD tasks.
Here, many applications use expert selection guidelines which contain molecules such
as solvents with benign properties, e.g., safety (Prat et al., 2014; Henderson et al.,
2011), toxicity (Voutchkova et al., 2011) or environmental indicators (Capello et al.,
2007). To assess these molecular properties, clustering techniques are often employed
that classify molecules based on statistical analysis of extensive datasets (Moity et al.,
2012). Thereby, heuristic molecular descriptors can be derived for physicochemical
properties such as solubility or density (Tobiszewski et al., 2015). These property-
based descriptors are then employed, e.g., to substitute molecules with undesired
properties by similar molecules with benign properties (Diorazio et al., 2016). Com-
monly, molecule selection methods largely rely on expert-knowledge to pre-select a
few molecules for detailed investigation (Lapkin et al., 2010; Burghoff et al., 2008).
In contrast, more systematic molecule selection approaches have been developed that
automatically screen comprehensive databases for molecules with desired properties
(Sendek et al., 2017; Blumenthal et al., 2016). Recently, systematic selection strate-
gies have further addressed process design in large-scale molecule screenings based on
integrated process optimization (Song et al., 2017; Preiffinger et al., 2017; Schwobel
et al., 2017; Jens et al., 2016).

2.2.2 Design Methods

To extend the design space beyond pre-determined sets of molecules, design methods
create novel molecular structures and are thus considered large-scope solution ap-
proaches for CAMD/CAMPD problems in this work (Fig.2.2). Several design meth-
ods exist for the solution of CAMD/CAMPD problems depending on the complexity
and size of the CAMD/CAMPD problem. Design methods in CAMD/CAMPD en-
compass generate-and-test methods, mathematical optimization, decomposition meth-
ods and heuristic optimization.

Generate-and-test methods generate large numbers of possible novel molecular

11
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structures by enumerative combination of structural building blocks such as func-
tional groups (Gani and Brignole, 1983). For each generated molecular structure,
the (process) performance model is evaluated or tested against design specifications
and promising molecules are selected for further consideration (Harper et al., 1999).
Generate-and-test approaches commonly rely on simple property prediction methods
and /or process models due to the combinatorial explosion of possible molecular struc-
tures (Harper and Gani, 2000). Here, the challenge lies in generating all possible
molecular structures with little redundancy which is often tackled by multi-stage ap-
proaches: In successive design stages, the modeling detail of the CAMD/CAMPD
problem is increased while the number of possible molecular structures is gradually
reduced by applying constraints such as structural feasibility or limits on thermody-
namic properties (Conte et al., 2011; Harper and Gani, 2000; Harper et al., 1999). In
a final stage, the full MINLP problem (Eq.(2.2)) can be solved for a reduced set of
molecules (Gani et al., 1991).

Mathematical optimization methods are used for CAMD problems that are
amenable to direct optimization, e.g., single-molecule design problems. Most com-
monly, outer approximation (OA) (Duran and Grossmann, 1986) is employed to solve
the MINLP problem (Eq. (2.2)) using relaxation of the MINLP problem and sequential
solution of mixed-integer linear programming (MILP) as well as non-linear program-
ming (NLP) subproblems. Direct mathematical optimization for CAMD problems
has been applied, e.g., for refrigerant design (Duvedi and Achenie, 1996; Churi and
Achenie, 1996), where global optimal solutions are found only if the NLP subprob-
lems are convex. Global optimal solutions for CAMD/CAMPD problems can further
be identified by interval analysis (Sinha et al., 2003) or branch-and-bound (BnB) al-
gorithms (Sahinidis et al., 2003; Sinha et al., 1999). Currently, direct mathematical
optimization methods are usually limited to CAMD formulations using thermody-
namic property targets (Zhang et al., 2015; Zhou et al., 2015a). However, recent
approaches have been proposed for integrated process- and molecular design tasks by
directly solving the MINLP problem (Eq.(2.2)). Direct solution approaches rely on
tractable problems such as pure-component design in Organic Rankine Cycles (ORC)
(Schilling et al., 2017a,b). To address more complex process models, direct mathemat-
ical optimization methods employ shortcut process models (Zhou et al., 2015b) or im-
pose problem-specific design constraints to facilitate the solution procedure (Gopinath
et al., 2016).

In order to tackle more complex CAMD/CAMPD problems, decomposition meth-
ods are commonly used. Decomposition methods aim at reducing the problem size
by breaking down originally complex problems in several sub-problems that can be
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optimized more easily. Typical examples are multi-stage generate-and-test approaches
which apply increasingly stringent constraints on generated molecular structures such
as structural feasibility in successive design stages (Conte et al., 2011). Similarly,
decomposition methods in CAMD are often employed in mathematical optimiza-
tion methods where, e.g., optimization problems for structural feasibility targets
and molecular properties are solved prior to the overall MINLP objective function
(Karunanithi et al., 2006, 2005). Decomposition methods are classic CAMD solution
strategies which have been employed for a large variety of applications such as gas ab-
sorption (Odele and Macchietto, 1993; Gani et al., 1991), polymer design (Zhang et al.,
2015; Pavurala and Achenie, 2013; Eslick et al., 2009), reaction solvents (Zhou et al.,
2016; Foli¢ et al., 2008, 2007) or liquid-liquid extraction (Gebreslassie and Diwekar,
2015; Xu and Diwekar, 2005; Harper and Gani, 2000; Harper et al., 1999; Marcoulaki
and Kokossis, 1998; Ourique and Silva Telles, 1998; Odele and Macchietto, 1993; Gani
et al., 1991; Gani and Brignole, 1983).

Decomposition methods are also very popular in CAMPD where separation of the
design of molecules and processes in the MINLP problem (Eq. (2.2)) leads to a natural
problem decomposition in integer solutions (molecular structure) and non-linear pro-
gramming problem (process performance). Several types of decomposition approaches
in CAMPD can be distinguished:

e Early examples of decomposition methods in CAMPD are approaches by Pa-
padopoulos and Linke (2005, 2006a,b). In these approaches, molecular and
process design is decomposed based on multi-objective optimization (MOO) of
property targets, which determine possible best molecular structures based on
pre-defined heuristic criteria. MOO approaches leads to a Pareto set of molecu-
lar structures in so-called property clusters which are tested in successive process
design. This bottom-up decomposition approaches start from the molecular level
to find optimal processes. Thereby, these approaches rely on the assumption that
optimal CAMPD solutions lie on a property-based Pareto front which may not
be the case for complex CAMPD problems. Thus, property-based MOO de-
composition approaches have been extended, e.g., by including shortcut process
models in the Pareto set generation which leads to improved initialization points
for process design (Burger et al., 2015).

e Other decomposition approaches decompose the process and molecule design
problem by inverting the process design problem to identify optimal molecules
(top-down decomposition approaches). This inversion of the process design prob-
lem can be performed by relaxation of molecular structure properties (contin-
uous molecular targeting, CoMT). This relaxation leads to a lower bound by
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process optimization which can be targeted in a subsequent molecule struc-
ture optimization. The overall approach is referred to as continuous-molecular
targeting - computer-aided molecular design (CoMT-CAMD) (Bardow et al.,
2010). CoMT-CAMD approaches have been applied using molecule selection
from databases (Lampe et al., 2014; Stavrou et al., 2014) as well as integrated
process and molecular design (Wang and Lakerveld, 2017; Lampe et al., 2015).

e Similar top-down decomposition approaches to CAMPD problems invert the
process model by so-called property operators (Eden et al., 2004). These opera-
tors are derived from constitutive process model equations and transfer process
information to the molecular design space by deriving property targets that op-
timize the process performance. These properties are then targeted in a separate
CAMD step. CAMPD based on property operators has been adopted in various
design approaches (Chemmangattuvalappil and Eden, 2013; Bommareddy et al.,
2010; Chemmangattuvalappil et al., 2010a).

If problems are too complex for mathematical optimization or decomposition meth-
ods, heuristic optimization methods are usually employed in CAMD/CAMPD.
Heuristic optimization methods are directed (random) search methods that itera-
tively generate sampling points in the design space (Rios and Sahinidis, 2013). For
each sampling point, the objective function is evaluated and new sampling points
can be determined, e.g., based on the objective function of previous sampling points.
Usually, heuristic algorithms terminate by specified determination criteria such as a
fixed number of iterations or a pre-defined optimality target (Fouskakis and Draper,
2002). In general, heuristic methods in CAMD/CAMPD approaches are performed
in the domain of molecular structures (Austin et al., 2016b). Heuristic optimization
methods are commonly employed to find near-optimal solutions and generate robust
sets of promising molecular structures, e.g., to account for uncertainties in property
prediction (Xu and Diwekar, 2005; Kim and Diwekar, 2002). Three popular methods
of heuristic optimization in CAMD/CAMPD are simulated annealing, tabu search
and genetic algorithms:

e Simulated annealing applies random alteration to molecular structure and trial
solutions are evaluated based on the altered molecular structures (Marcoulaki
and Kokossis, 1998). If the new solution is better within an error function, it is
accepted as a best current solution and otherwise discarded. During the progress
of the optimization, the error function becomes more stringent eventually forcing
the convergence (Kim and Diwekar, 2002).

e In tabu search algorithms, an initially proposed molecular structure is altered
until solutions based on the molecular structure appear in a tabu list (Eslick
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et al., 2009). The tabu list contains forbidden solutions, e.g., frequently occur-
ring molecules with inferior process performance. Thus, previous unsatisfying
solutions are excluded from further optimization which creates a memory of the
optimization. Tabu lists are often adjusted dynamically, i.e., novel solutions are
allowed later in the progress that were previously forbidden (Lin et al., 2005).
Tabu search algorithms can be advantageous over simulated annealing, e.g.,
when memory effects help to escape local optima (Chavali et al., 2004).

e The most prominent heuristic optimization methods in CAMD/CAMPD are ge-
netic algorithms (GA). The generation of novel molecular structures with GA is
based on the concept of natural selection (Holland, 1973). Here, a population of
molecular structures evolves under selective pressure that favors better solutions
in terms of a specified objective function. The optimization of molecular struc-
tures is based on two types of evolutionary operators: crossover (recombination
of two molecular fragments) and mutation (structural modification of one single
molecular fragment) that operate on the molecular structure with a specified
probability. GA typically are applied in the molecular structure domain and
features of high-performing molecules are passed on to the next generation until
a convergence criterion is reached (Venkatasubramanian et al., 1995; Xu and
Diwekar, 2005).

One of the main challenges in CAMD/CAMPD solution approaches is to identify
suitable methods for the problem at hand. Often, different solution methods are com-
bined to overcome limitations of individual solution approaches. E.g., challenges in
using heuristic optimization algorithms are the risk of slow convergence speed due
to random search and the lack of knowledge about global optimal solutions. Thus,
heuristic approaches are often combined in hybrid stochastic-deterministic optimiza-
tion procedures that combine advantages of heuristic and deterministic optimization
methods (Zhou et al., 2017).

2.3 Thermodynamic Models

CAMD/CAMPD approaches usually require a detailed, reliable knowledge of ther-
modynamic behavior of components in the system of interest. This thermodynamic
behavior can be predicted by thermodynamic models, which relate the structure of a
molecule quantitatively to a thermodynamic property.

Properties of interest in CAMD/CAMPD largely coincide with properties relevant
to chemical engineering problems, i.e., thermophysical properties (densities, heat ca-
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pacities, enthalpies, viscosities) of pure components and mixtures (Gmehling, 2009).
Problems involving multiphase equilibria or mixtures often require the calculation of
non-ideal phase behavior by activity coefficients (Austin et al., 2016a; Jonuzaj et al.,
2016) or fugacities (Linke et al., 2015; Papadopoulos et al., 2016). Depending on the
application, equilibrium or non-equilibrium can be of importance, e.g., for CAMD/
CAMPD problems involving multiphase equilibria (McBride et al., 2016; Burger et al.,
2015), reaction equilibria (Zhou et al., 2016; Spief et al., 2008), chemical kinetics
(Zhou et al., 2015a; Struebing et al., 2013; Foli¢ et al., 2008) or transport phenomena
(Schilling et al., 2017b).

Commonly, thermodynamic equilibrium predictions are performed using either ex-
cess free Gibbs energy (¢¥) models or equation of state (EOS) models. Classi-
cal examples for g® models are the Wilson model (Wilson and Deal, 1962), NRTL
("Non-Random-Two-Liquid’, Renon and Prausnitz (1968)) and UNIQUAC ("Univer-
sal Quasichemical’, Fredenslund et al. (1975)). Most common EOS methods are SRK
(’Soave-Redlich-Kwong’, Soave (1972)) and PR ("Peng-Robinson’, Peng and Robinson
(1976)). Currently, much effort in research focuses on the development and improve-
ment of these thermodynamic prediction models, e.g., the development of advanced
EOS methods such as CPA (’Cubic-Plus-Association’, Kontogeorgis et al. (2006)) and
SAFT (’Statistical Associating Fluid Theory’, Chapman et al. (1989)) type equations,
which increase range and reliability of predictions.

Both ¢g® and EOS-models require mixture and /or component-specific model param-
eters to predict thermodynamic properties. Depending on how the model parameters
are obtained, two types of methods can be distinguished for predicting thermodynamic
properties in CAMD/CAMPD : Firstly, data-driven methods that determine model
parameters from extensive experimental databases, e.g., by regression of interaction-
parameters to phase equilibrium measurement data (limited scope, Fig. 2.2). Secondly,
methods that obtain model parameters from first principle QM calculations requiring
only very few empirical parameters (large scope, Fig. 2.2). QM-based methods are thus
independent from extensive experimental data but instead require more elaborate QM
calculations. The following section reviews these two types of current thermodynamic
property prediction models and their application in CAMD/CAMPD.

2.3.1 Data-driven Models

The most common methods for predicting thermodynamic properties in CAMD/
CAMPD are data-driven models such as group contribution (GC) methods. All GC
methods assume the additivity of functional groups, i.e., thermodynamic properties
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of a molecular structure are predicted based on the occurrence and type of defined
molecular substructures. E.g., the molecular structure of an acetaldehyde (ethanal)
molecule is expressed by a combination of the functional groups -CH; and -CHO. In
GC methods, the molecule structure is usually defined in a vector whose elements con-
tain the number of occurrence for each functional group. Component properties are
then predicted as a function of these functional groups. The contribution of a func-
tional group to the property is expressed by coefficients which are usually regressed
using large experimental data sets, e.g., the Dortmund Data Bank (Gmehling, 2009).
Generally, the segmentation of molecular structures reduces the required property
data since thermodynamic properties are not required for all components but only for
present functional groups.

A classic example for GC methods is the UNIFAC ("Universal Quasichemical Func-
tional Group Activity Coefficients’) method (Fredenslund et al., 1975; Gmehling et al.,
2002) which has been used in the earliest CAMD /CAMPD approaches (Gani and Brig-
nole, 1983; Odele and Macchietto, 1993; Joback and Stephanopoulos, 1995) and is still
popular today. UNIFAC is able to predict phase equilibrium behavior for multicom-
ponent systems and is well established throughout research and industrial application
(Gmehling, 2009). However, UNIFAC is not applicable to supercritical fluids and
properties such as densities or heat capacities cannot be calculated (Gmehling, 2003).
More recently, advanced GC methods based on the Statistical Associating Fluid The-
ory (SAFT) have been integrated into CAMPD (Schilling et al., 2017a,b; Burger
et al., 2015; Lampe et al., 2015; Pereira et al., 2011). In comparison to UNIFAC,
SAFT-based models are able to predict non-ideal gas and liquid phase behavior ther-
modynamically consistent and are applicable for a large range of temperatures and
pressures (Mac Dowell et al., 2010). SAFT-based models are thus commonly applied
for CAMD/CAMPD problems involving high-pressure processes such as absorption
(Gopinath et al., 2016; Papadopoulos et al., 2016) or Organic Rankine Cycles (Linke
et al., 2015).

Typically, GC methods are fast and easy to apply to large sets of molecules. In ad-
dition, GC method predictions can be very accurate when parametrized to a specific
problem (Satola et al., 2017). However, the application of GC methods in CAMPD
is usually limited to simple first-order group contribution methods which strongly
simplify the underlying thermodynamics. In general, the accuracy of GC methods de-
creases for molecules with more than one strongly interacting functional group (Deli-
dovich et al., 2014). In addition, poor results are obtained for the solubility of very
hydrophobic compounds, such as alkanes, alkenes, or cycloalkanes in water (Gmehling
et al., 2015). For GC methods, lack of experimental data is particularly severe for
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novel classes of compounds, for which usually little or no parameters are available;
examples are missing UNIFAC group interaction parameters for solvent design in ex-
tractive distillation (Chen et al., 2005) or lack of data for the design of ionic liquids
(IL) (Song et al., 2015).

Notably, in first-order GC methods, proximity effects by strongly polar neighbor-
ing groups are neglected and structural isomers cannot be distinguished (Gmehling
et al., 2015). To resolve proximity effects, higher-order GC methods (Marrero and
Gani, 2002, 2001) can be employed. Typically, higher-order GC methods include ad-
ditional sets of (larger) functional groups to provide a more comprehensive picture of
structural features such as aromatic rings or cis/trans-isomers. Alternative concepts
to improve the structural resolution of molecules in CAMD/CAMPD approaches use
topological indices (TI) (McLeese et al., 2010; Eslick et al., 2009) or structural de-
scriptors (SD) (Chemmangattuvalappil et al., 2010b; Weis and Visco, 2010). Both
TT and SD employ molecular descriptors from graph theory (Balasubramanian, 1985)
which allow to distinguish very similar molecular structures. However, group-based
prediction methods with improved structural resolution are more difficult to include
in CAMD/CAMPD optimization procedures due to the combinatorial explosion of
structural descriptors as well as required experimental group interaction parameters
(Samudra and Sahinidis, 2013). These drawbacks strongly limit the application in
CAMD/CAMPD as well as the available molecular design space.

2.3.2 Quantum Mechanics-based Models

In contrast to group-contribution methods, QM-based property prediction methods
can predict thermodynamic properties with little need for component-specific exper-
imental data (Deglmann et al., 2015). QM-based property predictions methods rely
on (approximate) solutions to the Schrodinger equation, which describes the state of
matter on a quantum level. For a detailed review of QM, the reader is referred to
exhaustive literature on this field, e.g., Cances et al. (2003). In this section, only a
brief outline is given of QM-based property prediction methods relevant in CAMD/
CAMPD approaches. Common QM-based methods can be subdivided in a hierar-
chy of methods with different degrees of assumptions for numerical solutions to the
Schrédinger equation. Two prominent types of QM methods are ab-initio methods
and density functional theory (DFT) methods.

Ab-initio methods are the most fundamental solution approaches to the Schro-
dinger equation. In these methods, the electronic structure and the energy of a system
are calculated solely based on fundamental natural constants (Lin et al., 2005; Wu and
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Sandler, 1991). However, the numerical expense of accurate calculations is tremendous
and usually limits the application for practical engineering problems such as properties
of a few single molecules (Leonhard and Deiters, 2000).

A good compromise between accuracy and computational costs are DFT methods
(Kohn et al., 1996). DFT methods do not directly solve the Schrodinger equation
but one-particle electron densities (Hohenberg and Kohn, 1964). These one-particle
electron density solutions require the introduction of a functional that accounts for
multi-body effects in the system. These functionals are based on the Kohn-Sham
formalism (Kohn and Sham, 1965), e.g., functionals in local density approximation
(LDA), generalized gradient approximation (GGA) or hybrid functionals (Weiss et al.,
2016). Practically, DF'T methods such as BP86 (GGA functional) and BSLYP (hybrid-
GGA functional) are standard tools in quantum chemistry (Deglmann et al., 2015).
The gap from DFT quantum chemistry gas phase calculations to condensed-phase
systems is bridged, e.g., by continuum solvation models (CSM). In CSM, a solute
molecule is virtually placed in a void cavity within a continuous dielectric medium
that mimics the solvent (Tomasi et al., 2005). Hereby, the solute is described on a
QM level whereas the solute-solvent interactions are derived from electrostatic charges.
The charge distribution of the solute polarizes the dielectric continuum which in turn
polarizes the solute charge distribution. This implicit solute-solvent interaction leads
to a nested electrostatic problem which can be tackled by solving the implicit solute-
solvent interaction numerically (Tomasi and Persico, 1994).

Presently, CSM put QM-based property prediction for liquid-phase problems within
reach for CAMD/CAMPD applications: QM-based molecular design approaches have
been proposed for polymers (Weiss et al., 2016), (extraction) solvents (Sheldon et al.,
2006; Lehmann and Maranas, 2004) or reactions (Struebing et al., 2013; Stanescu
and Achenie, 2006). These QM-based design approaches overcome the limits of GC
method-based design approaches due to their general applicability to yet unknown
molecules. However, large computational expense for QM calculations currently still
limits the exploration of the full molecular design space.

A good trade-off between applicability and computational efficiency is provided by
COSMO-RS (’COnductor like Screening MOdel for Real Solvents’, Klamt (1995)).
COSMO-RS is based on COSMO, a CSM that considers solute molecules virtually
placed in a perfect conductor. Thereby, COSMO allows for efficient solution pro-
cedures for pure component molecule surface charges using QM-calculations (Eckert
and Klamt, 2002). Based on the molecular surface charges, thermodynamic pure
component and mixture properties (COSMO-RS) are then calculated using fast sta-
tistical thermodynamics (Klamt et al., 2010). Currently, COSMO-RS is mainly used
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as prediction tool for thermodynamic properties for flowsheet simulators, e.g., for
vapor-liquid equilibria (Spuhl and Arlt, 2004) or liquid-liquid equilibria (Jasperson
et al., 2017; Freire et al., 2007)

Recently, COSMO-RS has been successfully applied to solvent selection in a vast
number of applications. Here, COSMO-RS is employed for property prediction in
solvent selection, e.g., the prediction of concentration-dependent partitioning equi-
librium (Spiefl et al., 2008) or solubility calculation (Lapkin et al., 2010). Similarly,
COSMO-RS is used in the screening of tailor-made ionic liquids (Garcia-Chavez et al.,
2012; Song et al., 2015; Zhou et al., 2012). Further applications of COSMO-RS to
knowledge-based molecule selection are liquid-liquid extraction (Burghoff et al., 2008),
thermomorphic systems (McBride et al., 2016) or reactive systems (Kroger et al., 2017;
Deglmann et al., 2017). Furthermore, systematic large-scale COSMO-RS database
screenings have been proposed based on property targets (Blumenthal et al., 2016;
Zhou et al., 2014). Similar approaches are clustering techniques that create clusters
of solvents based on COSMO-RS prediction to identify desired properties, e.g., benign
environmental properties (Moity et al., 2012). Recent contributions combine rigor-
ous process model simulations with expert solvent selection using COSMO-RS, e.g.,
for pharmaceutical components (Ferro et al., 2012) as well as in process design for
compounds without existing database entries (Ferro et al., 2015) or solvent selection
for IL (Larriba et al., 2018; Song et al., 2017; Lyu et al., 2014). Similarly, large-scale
database screenings have been presented for Organic Rankine Cycles (Preifiinger et al.,
2017; Schwobel et al., 2017) or synthesis of formic acid derivates (Jens et al., 2016).
However, database screenings are limited to components existing in databases and
thus to known molecules. To overcome these limitations, molecular modifications
(e.g., functional group addition or chain length variation) have been explored using
heuristics with COSMO-RS-assisted experiments (Burghoff et al., 2008).

To go beyond the limitation of pre-stored database molecules and heuristic molecule
modifications, only recently a few CAMD/CAMPD applications of COSMO-RS have
been reported. The group of Sundmacher used COSMO-RS in an integrated solvent
and process design for a Diels-Alder reaction (Zhou et al., 2015b) and the design
of reaction solvents (Zhou et al., 2015a). Similarly, the group of Sahinidis proposed
COSMO-RS-based molecular design for solvent mixtures (Austin et al., 2016a) and
reactions (Austin et al., 2018). All current CAMD/CAMPD applications of COSMO-
RS rely on empirical descriptors which approximate the surface charge of designed
molecules by first-order group contribution methods. Designed molecules thus still
lie within the space of pre-defined groups and rely on the inherent assumption of
group additivity. Highly desirable is thus a method that overcomes limitations of
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empirical descriptors or pre-defined molecular databases and enables for COSMO-RS-
based molecular design while taking into account process models.

2.4 Process Performance Models

2.4.1 Property-based Models

Besides sound thermodynamic property prediction, the quality of the selected molecules
in CAMD/CAMPD depends strongly on the (process) performance assessment criteria
used (Adjiman et al., 2014). Commonly, the use of rigorous process models in CAMPD
is prohibitive due to large computational costs and tedious convergence procedures
(Cremaschi, 2015). Thus, many CAMPD approaches rely on simplified process mod-
els to pre-select molecules and to limit the vast molecular design space (limited scope,
Fig.2.2). Most prominent are design strategies based on heuristically defined property
targets, e.g., simplified structure-property relations (Phillips et al., 2017; Moity et al.,
2016, 2012) or expert knowledge (Le Nhien et al., 2016). Based on these property tar-
gets, a few molecules are preselected for rigorous process simulations. E.g., molecules
are selected based on single (Kossack et al., 2008) or multi-objective (Burger et al.,
2015; Papadopoulos and Linke, 2006b) pre-selection criteria. These molecule selec-
tion criteria are usually simplified process performance indicators based on physical
molecule properties such as selectivity, solvent loss or phase distribution coefficients
(Pretel et al., 1994).

The choice of a selection criterion for pre-selection is critical: Papadopoulos and
Linke (2006b) show in a CAMPD approach for solvent design that several targets
for solvent properties exist simultaneously in process flowsheets. In addition, desired
solvent properties inherently include trade-offs. E.g., high affinity of the solute to
the solvent is desired for efficient extraction, whereas a low affinity between solvent
and solute helps to reduce the energy demand in solvent recovery by distillation.
Papadopoulos and Linke (Papadopoulos and Linke, 2006b) show by multi-objective
optimization (MOO) that these trade-offs in desired solvent properties cannot be
captured by evaluating single solvent properties. Preferentially, solvent performance
is directly evaluated on the process-level to fully capture the relevant trade-offs in
solvent properties (Papadopoulos and Linke, 2005).
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2.4.2 Process Models

Various approaches for targeting solvent performance on process-level evaluation have
been proposed (large scope, Fig.2.2). First approaches for integrated CAMPD stem
from the pioneering work of (Eden et al., 2004) who invert process models to tar-
get properties based on derived property clusters (cf.Section 2.2). This property
clustering technique has been adopted in various approaches for integrated CAMPD
(Chemmangattuvalappil et al., 2010a; Eljack et al., 2007).

Bardow et al. (2010) identify a hypothetical optimal molecule during process opti-
mization by relaxation of molecular properties. The resulting so-called CoMT-CAMD
approach has been successfully applied to identify promising solvent candidates for
physical absorption (Lampe et al., 2015; Stavrou et al., 2014) or working fluids in Or-
ganic Rankine Cycles (Schilling et al., 2017a,b; Lampe et al., 2014). Similarly, Pereira
et al. (2011) integrate solvent and process design for methane recovery from carbon
dioxide. Solution approaches addressing the full CAMPD problem (Eq. (2.2)) have
been employed, e.g., hybrid-stochastic optimization to identify solvent candidates for
a coupled absorption-desorption process (Zhou et al., 2017). A comprehensive review
of current CAMPD approaches is given by, e.g., Ng et al. (2015). These studies show
that the quality of the solvent selection critically depends on the quality of the process
models.

Rigorous process models lead to highly accurate results but are laborious to solve
and difficult to automate (Briiggemann and Marquardt, 2004). In particular, the
initialization and thus the convergence limits the practical application to large sets
of solvents. Thus, current conceptual process design approaches that apply rigorous
process models first reduce the numbers of solvent candidates in pre-selection steps
(Kossack et al., 2008). E.g., Burger et al. (2015) extend the approach of Papadopoulos
and Linke (2006b) using simplified process models in the solvent pre-selection stage.
Simplified process models are typically classic shortcut methods such as the well-
known equations of Smith and Brinkley (1960) or Underwood (1949). A drawback
of these classic shortcut methods is that they strongly simplify the underlying pro-
cess model or thermodynamics which can cause inaccuracies, especially for non-ideal
separations (Skiborowski et al., 2013).

In contrast, advanced pinch-based process models provide a thermodynamically
sound objective (Skiborowski et al., 2013; Marquardt et al., 2008). These pinch-
based process models exploit the concept of vanishing thermodynamic driving force
in the so-called pinch points. The pinch points are calculated using the full non-
ideal thermodynamics and thus overcome limits of conventional shortcut methods
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leading to reliable process modeling even for non-ideal systems (Redepenning et al.,
2016; Skiborowski et al., 2013). The pinch-based process models assume an infinite
time for heat and mass transfer in separation unit operations and thus operate at a
point of minimum reflux or minimum solvent demand (Briiggemann and Marquardst,
2011). Accordingly, pinch-based process models models give a tight lower bound of the
mainimum energy demand of the process. This class of advanced pinch-based process
models was used successfully in various applications, e.g., conceptual process design
(Marquardt et al., 2008), reaction-separation process design (Recker et al., 2015),
extractive distillation (Briiggemann and Marquardt, 2004), reactive rectification (Lee
et al., 2003), hybrid extraction-distillation (Krdmer et al., 2011a), multi-component
extraction (Redepenning et al., 2016) and multicomponent absorption (Redepenning
and Marquardt, 2017). The efficiency and accuracy of pinch-based process models
was also successfully shown in screening approaches, e.g., for biorefinery processing
pathways (Ulonska et al., 2016).

Overall, large-scope process models in CAMPD are currently mostly combined with
limited-scope molecular selection approaches (cf. Fig. 2.2), e.g., simple database or ex-
periment selection (Le Nhien et al., 2016; Kossack et al., 2008). Often, a limited set of
solvents are pre-selected (Papadopoulos and Linke, 2005) for complex process models.
In turn, large-scope molecular design is commonly performed for simplified design tar-
gets (Struebing et al., 2013; Austin et al., 2016a). Thus, highly desirable would be to
transfer process information from large-scope process models to large-scope molecular
design while being computationally efficient. Here, pinch-based process models seem
to provide a promising trade-off in efficiency and accuracy.

2.5 Contribution of this Thesis

The review of current CAMD/CAMPD applications in the previous Sections 2.2,
2.3 and 2.4 reveals that there is a need for direct integration of QM-based property
prediction into CAMPD. This integration should take into account the full structural
molecular information to overcome limitations of group-additivity while still allowing
for computationally efficient calculations. Similarly, molecules in the design procedure
should be evaluated on the process level providing comprehensive information about
process-inherent trade-offs while still being numerically robust and efficient. In this
thesis, a large-scope CAMPD approach is thus developed that allows for integrated
molecular and process design using QM-based property prediction with COSMO-RS.
The large-scope CAMPD approach is stepwise established by integrating COSMO-
RS into CAMD/CAMPD approaches with increasing scopes (Fig.2.3). The CAMD/
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CAMPD approaches are exemplified for solvent and process design.

In Chapter 3 a first step is taken towards integration of COSMO-RS in CAMPD by
addressing the CAMPD problem (Eq. (2.2)) in a process-level evaluation of a compre-
hensive solvent database. For this purpose, pinch-based process models for separation
processes are employed, i.e., for distillation (Bausa et al., 1998) and extraction (Rede-
penning et al., 2016). Thereby, a reliable evaluation of the minimum energy demand
of the process is possible within seconds. The evaluation of the minimum energy
demand is combined with COSMO-RS property prediction in a fully automated sol-
vent screening. Hereby, large-scope QM-based property prediction is established for
large-scope process model evaluation using limited-scope molecular structure selection
(Fig. 2.3, dashed line). The proposed approach is applied to a case study for a hybrid
extraction-distillation.

To overcome limited-scope molecular selection, Chapter 4 introduces COSMO-
CAMD, a framework for optimization-based solvent design with COSMO-RS. COSMO-
CAMD integrates COSMO-RS calculations into molecular design based on property
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Figure 2.3: Content of this thesis in the broader CAMD/CAMPD context. Lines
with chapter numbers (square boxes) indicate the classification of the
CAMD/CAMPD approaches in the respective chapters: Chapter 3
(dashed line), Chapter 4 (line with triangles), Chapter 5 (line with squares)
and Chapter 6 (line with dots).
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targets and thus establishes large-scope molecular structure exploration for large-
scope QM-based property prediction (Fig. 2.3, line with triangles). In this chapter,
the COSMO-CAMD framework is presented and applied to two case studies for solvent
design in liquid-liquid extraction.

In Chapter 5, COSMO-RS property prediction is fully integrated in CAMPD by
presenting COSMO-CAMPD. COSMO-CAMPD further extends the scope of COSMO-
RS-based CAMPD by using large-scope approaches for all three key elements (Fig. 2.3,
line with squares): COSMO-CAMPD builds upon COSMO-CAMD (Chapter 4),
which allows for molecular design with COSMO-RS based on thermodynamic prop-
erty targets. In this chapter, COSMO-CAMD is combined with pinch-based process
models for separation unit operations (Redepenning et al., 2016; Bausa et al., 1998)
that have been applied for large-scale process evaluation of solvents in Chapter 3.
The resulting COSMO-CAMPD framework is applied to a case study for process
and solvent design in a hybrid extraction-distillation process. Finally, predictions of
COSMO-CAMPD are challenged by performing liquid-liquid equilibrium experiments
for top designed commercially available solvents.

In Chapter 5, COSMO-CAMPD is applied to the design of separation sequences.
However, reaction steps, e.g., in the production of CO from CO, and H,, require the
consideration of complex solvent effects in reactions. In Chapter 6, the COSMO-
CAMPD framework is thus extended to consider complex process concepts with mul-
tiphase equilibrium reactions in an integrated process model (Fig. 2.3, line with dots).
The extended COSMO-CAMPD framework is applied to identify optimal solvents and
process flowsheets in a reaction-separation process.
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CHAPTER 3

Massive, Automated Solvent
Screening for Minimum Energy
Demand in Hybrid
Extraction-Distillation using
COSMO-RS

3.1 Introduction

In this chapter, a first step is taken towards integrating QM-based property predic-
tion into computer-aided molecular and process design. For this purpose, a molecular
screening approach is developed which builds on two key aspects: First, thermo-
dynamic properties of molecules are predicted by COSMO-RS (Klamt et al., 2010)
which allows for an efficient evaluation of a large space of molecular structures with-
out experimentally determined GC parameters (large-scope thermodynamic model,
Fig.3.1). Second, pinch-based process models for distillation (Bausa et al., 1998) and
extraction (Redepenning et al., 2016) are integrated in a process flowsheet (large-
scope process performance model, Fig.3.1). In this chapter, pinch-based process
models and COSMO-RS are combined into an automated molecular screening ap-
proach which allows for large-scale solvent assessment on process-level. The proposed
molecular screening approach is presented and challenged in a case study for the hy-
brid extraction-distillation of the bio-based platform chemical v-valerolactone (GVL)
(Alonso et al., 2013a).
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Figure 3.1: Content of this chapter in the broader CAMD/CAMPD context. Dashed
line indicates the classification of the automated molecular screen-
ing approach presented in this chapter. The molecular screening ap-
proach (limited-scope molecular structure exploration method) combines
QM-based COSMO-RS property prediction (large-scope thermodynamic
model) with pinch-based separation process models (large-scope process
performance model).

Executable routines of pinch-based process models employed in this chapter have
been provided by Christian Redepenning. These executable routines are published
under GNU General Public License GPL v3.0. Major parts of this chapter have been
published in:

J. Scheffczyk, C. Redepenning, C. M. Jens, B. Winter, K. Leonhard, W. Mar-
quardt and A. Bardow. Massive, Automated Solvent Screening for Minimum
Energy Demand in Hybrid Extraction-Distillation using COSMO-RS, Chemical
Engineering Research and Design, 2016, 115 Part B, 433-442.
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3.2 Automated Screening Approach

The integrated molecular and process design problem (Eq. (2.2)) is approached in this
chapter by enumerating a fixed set of solvents from a databank. In the following
section, all three key elements of the CAMPD approach (cf. Chapter 2.1) are pre-
sented: thermodynamic model, process performance model and molecular structure
exploration method.

3.2.1 Thermodynamic Model

In this thesis, all thermodynamic properties are predicted with COSMO-RS (Klamt
et al., 2010). COSMO-RS is based on the quantum-mechanic (QM) COSMO method
and allows for thermodynamic property predictions for any component accessible to
QM. In particular, a large variety of thermodynamic properties for systems consisting
of pure components or mixtures in liquid or vapor phases can be predicted with-
out regression to system-specific experimental data. COSMO-RS calculations can be
generally divided in two steps (For further information see (Klamt et al., 2010)):

1. For each pure component in the system, one QM COSMO calculation (usually
DFT) is performed. COSMO is a continuum solvation model (CSM), which
extends the range of QM-calculations to molecules dissolved in a continuum.
COSMO is a special type of CSM in which the pure component is placed in
an ideal conductor. This assumption simplifies the boundary conditions for
the isolated molecule in comparison to dielectric continuum and allows for ef-
ficient calculations. Based on 3D structure information of the molecule, DFT
calculations are performed and the molecule geometry is optimized until a self-
consistent state (COSMO state) is reached. The result of the DFT/COSMO
optimization is the so-called screening charge density (SCD), i.e., charges of dis-
cretized surface segments of the embedded molecule. The SCD is transformed
in a histogram (o-profile) for the next step.

2. Based on the o-profiles of pure components from COSMO calculations, mix-
ture properties are calculated by an interaction model and statistical thermody-
namics (COSMO-RS). The underlying theory removes the ideal conductor be-
tween molecules in a mixture. The resulting local contact energies of COSMO
molecules are combined to the so-called o-potential. As a result, the chemical
potential of the mixture components is derived. Notably, COSMO-RS calcu-
lations are performed within seconds from pure component o-profiles. Thus,
computationally demanding COSMO calculations are re-usable and need to be
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performed only once for each component.

The computational effort of COSMO/COSMO-RS calculations depends strongly
on the underlying QM in COSMO and the so-called parametrization in COSMO-RS.
Different accuracy levels/parametrizations are available for COSMO-RS and provided
within the software COSMOtherm (COSMOlogic, 2015d). The standard accuracy
supported by COSMOtherm is BP-TZVP (in the following "TZVP’), which uses the
Becke-Perdew functional and the TZVP basis set (triple zeta valence plus polariza-
tion function) for geometry optimization and calculation of the SCD. Variations of
the TZVP-level exist and are further discussed in Chapter 4. Large databanks (COS-
MObase, (COSMOlogic, 2015a)) are provided with pre-calculated COSMO files for
common solvents and can be used for quick COSMO-RS calculations. For molecules
not in these databanks, entirely new COSMO calculations need to be performed us-
ing COSMOconf (COSMOlogic, 2015b). In this chapter, COSMO-RS calculations for
pre-calculated solvents from COSMObase are performed in COSMOthermX15 (COS-
MOlogic, 2015d).

3.2.2 Process Performance Model

In this chapter, the purification of a diluted solute a from a carrier c¢ is considered in
a hybrid-extraction distillation process (Skiborowski et al., 2013). A fixed flowsheet
structure is used for the hybrid extraction-distillation. In this flowsheet, the process

is limited to a single distillation step and the solute a is recovered as a heavy boiler
(Fig. 3.2).

In the hybrid extraction-distillation process, a feed stream F with the molar com-
position zp enters an extraction column where a solvent stream S is used to extract
the solute a into the extract stream E. The raffinate stream R, deprived of solute a,
leaves the extraction column and can further be processed, e.g., by wastewater treat-
ment. The extract stream E is subsequently fed to a distillation column for further
purification. In the distillation column, the solute a is separated from the solvent y
and co-extracted carrier c¢. Solvent y and co-extracted carrier ¢ are phase separated in
a decanter stage and the solvent rich-phase is recycled to the extraction column. The
carrier-rich phase is sent to wastewater treatment. Solvent loss is replaced by solvent
make-up.

The process flowsheet is modeled by advanced pinch-based process models for ex-
traction (Redepenning et al., 2016) and distillation (Bausa et al., 1998). For extrac-
tion, isothermal separation is assumed and for the distillation isobaric separation. The
pinch-based process methods assume an infinite number of stages which allows for a

30



3.2 Automated Screening Approach

|
@ j D14
c+y f‘<R’ ZRA S, zSv< Srep Zs _
F,z E,z [
gt e F E

\l/ B, 2

Figure 3.2: Process flowsheet for hybrid extraction-distillation. Feed stream F con-
taining solute a and carrier ¢, solvent stream S containing solvent y, raf-
finate stream R, extract stream E, distillate stream D, bottom stream B,
solvent make-up stream S, with corresponding compositions zr, zg, zg,
ZE, ZD, ZB. Smin 1S the minimum amount of solvent required for the speci-
fied separation task, @, is the minimum energy demand required for the
specified separation task.
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sharp split of the components in the separation steps. Thus, solute a is completely
extracted into the extract stream E and the raffinate is free of solute a. Similarly,
the solute a is completely recovered as pure product in the distillation column. Con-
sequently, the carrier-rich phase from the phase separation in the decanter stage has
the identical composition as the raffinate stream R.

The energy demand in the process is mostly determined by the heat demand of the
reboiler in the distillation column. Other heating devices (e.g., preheating of the feed
stream to boiling temperature) are assumed to be negligible. Thus, in this work, the
process energy demand is represented by the energy requirement for distillation which
is expressed by the minimum energy demand ();,. This minimum energy demand
(min depends on the minimum amount of solvent Sy,;, required for solute extraction in
the extraction column. Thus, the performance of a solvent in the process is expressed
by a single target function: The minimum energy demand @ i,.

3.2.3 Molecular Structure Exploration Method

In the proposed solvent screening approach, the solvent y in the hybrid extraction-
distillation process in Fig. 3.2 is considered as degree of freedom. Thus, the aim of
the screening is to identify the solvent candidate y with the lowest minimum energy
demand @, from a specified set of solvents. The solvent screening consists of the
following steps (cf. Fig. 3.3):

1. Process specifications need to be set. Thus, the solute a and the carrier solution
c are specified. In addition, the feed composition zr needs to be specified. For
extraction, temperature T is specified; for distillation, pressure p is set.

2. Design specifications on the solvent candidates y are imposed. A possible set of
solvent candidates is defined by imposing a desired range for molecular size or
specifying molecular constituents. E.g., certain groups of atoms such as halo-
gens can be excluded from consideration. All solvent candidates meeting these
design specifications are selected from a comprehensive COSMO-RS databank
(COSMObase-1501-BP-TZVP) for screening. The COSMO databank contains
pre-calculated, so-called COSMO files that result from quantum-mechanic struc-
ture optimization. COSMO-RS uses these COSMO files to predict thermody-
namic properties. For a detailed description of the COSMO-RS method, see
Klamt et al. (2010).

For each selected solvent candidate y in the COSMO-RS databank, relevant ther-
modynamic properties are predicted by COSMO-RS:
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Figure 3.3: Schematic procedure of the proposed solvent screening approach.

33



Chapter 3 Massive, Automated Solvent Screening in Hybrid Extraction-Distillation

34

3. The solvent candidates are tested to meet property constraints that prohibit

their application as solvents in a hybrid extraction-distillation process. For this
purpose, a preliminary evaluation of specific solvent properties is performed.
The existence of a liquid-liquid equilibrium (LLE) in the binary mixture of the
solvent y and the carrier ¢ is mandatory for the use of the solvent candidate as an
extraction agent. Thus, all solvent candidates are tested for the existence of this
LLE using the binary LLE calculation in COSMOtherm (COSMOlogic, 2015d).
This calculation checks whether an LLE exists. At this point, no constraint is
added on the composition of the phases. Solvent candidates without a LLE are
discarded. Additionally, solvent candidates are tested to be liquid at ambient
temperature and pressure by calculating the boiling point temperature Ty, for
all solvent candidates using COSMOtherm. Two limits are imposed on Tg,:
First, solvent candidates that are not liquid at ambient temperature with a
safety margin of 15K (Tg, < 313.15K) are discarded. Second, to obtain pure
solute in the bottom product of the distillation column (cf. Section 3.2.2), all
solvents that are heavy keys are discarded.

. For the solvent candidates meeting all requirements from Step 3, pure compo-

nent data is calculated. In particular, Antoine parameters to predict the vapor
pressure psas,, and the molar enthalpy of vaporization Ahy,p, are calculated us-
ing COSMO-RS (cf. Appendix A). This pure component data is used to estimate
boiling temperature and the enthalpy of vaporization in the pinch-based process
models.

. In the next step, mixture data are calculated. Non-idealities in liquid-liquid

systems and vapor-liquid systems are described using activity coefficients ~.
Isothermal activity coefficients v can directly be calculated using COSMO-RS.
The mixture behavior of the ternary system a-c-y is described in the pinch-
based process models using parameters of the non-random-two-liquid (NRTL)
(Renon and Prausnitz, 1968) model. NRTL parameters of the binary systems
a-c, a-y and c-y are used to predict phase equilibria in the ternary system a-
c-y over a specified range of temperature. Thus, a regression is performed for
NRTL parameters based on isothermal activity coefficients v from COSMO-RS.
(cf. Appendix A).

. To limit the purification by distillation to a single distillation column, no ternary

azeotropes and azeotropes between solvent and solute can be present. Thus, all
azeotropes in the ternary system are calculated based on the algorithm proposed
by Fidkowski et al. (1993). Solvent candidates with ternary azeotropes and
azeotropes between solvent and solute are discarded.



3.3 Case Study: Purification of the Platform Chemical v-Valerolactone

All solvent candidates y that meet the requirements from Step 1 to Step 6 are
considered valid solvent candidates y. For all valid solvent candidates, the process
model is evaluated:

7. For each valid solvent candidate, the extraction unit operation is evaluated. The
extraction unit operation is modeled using the pinch-based process model and
solved using the procedure proposed by Redepenning et al. (2016). For a given
feed composition, the procedure calculates the minimum amount of solvent Sy,
as well as all outlet compositions and flow rates (cf. Fig. 3.2).

8. Next, for each valid solvent candidate y, the distillation unit operation is eval-
uated. The distillation unit operation is modeled using the rectification body
method (RBM) proposed by Bausa et al. (1998). Limitations by continuous
molecular overflow assumption are overcome by considering the enthalpy of va-
porization in the RBM pinch-based process model. Further contributions to
the energy demand due to temperature changes in vapor and liquid phases are
assumed to be negligible. Thus, no molar heat capacities are required in the
calculation. The RBM pinch-based process model returns the minimum energy
demand @,;,. All process streams for the hybrid extraction-distillation process
with all corresponding compositions (cf. Fig. 3.2) are now determined.

9. As a result, a list is returned containing all valid solvent candidates y ranked by
their respective minimum energy demand ) ,.

3.3 Case Study: Purification of the Platform
Chemical v-Valerolactone

In this section, the proposed screening approach (cf. Section 3.2.3) is exemplified for
the identification of novel solvents to purify y-valerolactone (GVL). GVL is an inter-
mediate in the production of bio-based value products and is a promising precursor for
fuel and commodity chemicals (Alonso et al., 2013a). GVL can be produced from lig-
nocellulosic biomass and needs to be recovered and purified from aqueous solutions for
further processing. A recent approach for the recovery of GVL is a hybrid extraction-
distillation process proposed by Murat Sen et al. (2012). In their work, Murat Sen et
al. use n-butyl acetate as extraction solvent which is considered as benchmark is this
case study.

A massive databank screening of more than 4600 solvent candidates is performed to
identify novel promising solvents for GVL purification. The minimum energy demand
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Qmin is used as the target function. For the solvent screening, the following process
specifications are set (Step 1): A feed composition of zp = (0.05,0.95,0.00) for the
ternary system GVL-water-y is assumed; pressure and temperature in the process
are set to p = 1 bar and T = 25°C. Bio-compatibility of the solvent candidates y is
desirable, thus, possible solvents candidates y are limited to molecules only containing
carbon, hydrogen and oxygen atoms (Step 2).

All considered solvent candidates are tested to meet the required property con-
straints (Step 2). A binary LLE in the system water-y exists for 4331 solvent can-
didates y in the databank. Additionally, the boiling temperature T, is evaluated.
Solvents with a boiling temperature higher than the predicted boiling temperature of
GVL (T gvi = 507 K) are discarded. Overall, 1715 solvent candidates also meet the
required property constraint on the boiling temperature 7g, and are further evalu-
ated. For those solvent candidates, pure- and mixture-data are computed (Step 4 and
5). The computational time to evaluate all 1715 solvent candidates y is ~ 14h on a
3.2 GHz desktop computer using 4 parallel cores. This computational time demand
is almost exclusively due to the computation demand of COSMO-RS property predic-
tion. In particular, the generation of (temperature-dependent) NRTL parameters is
computationally expensive. The calculations can easily be accelerated using parallel
computing. In contrast to COSMO-RS property prediction, the pinch-based process
models are evaluated within minutes (=~ 5min). The calculated NRTL parameters
are stored and can be re-used. E.g., for the ternary system a-c-y, three sets of binary
NRTL parameters are calculated: a-c, a-y and c-y. Binary NRTL parameters for the
system a-c are independent from the solvent candidates y and have to be calculated
only once. In addition, binary NRTL parameters for the systems c-y are independent
from the solute a. Since the binary NRTL parameters for the systems c-y have already
been calculated in this work for C' = water, screening for a different solute a in water
would require ~ 50 % less time: Only binary NRTL parameters for the system a-y
would have to be re-calculated for all solvent candidates y.

For all 1715 solvent candidates y, azeotropes are calculated and evaluated (Step 6).
Overall, 1439 solvent candidates y meet the requirements from (Step 1 to 6) and thus
are regarded valid solvent candidates y. For all valid solvent candidates ¥, the hybrid
extraction-distillation process is evaluated (Step 7 and 8). As a result, all 1439 valid
solvent candidates are ranked by the corresponding minimum energy demand Qiy.

Fig. 3.4 shows the result of the solvent screening. Promising solvent candidates are
identified in Tab. 3.1. In particular, 155 solvents are predicted to have a lower min-
imum energy demand (), than the literature benchmark n-butyl acetate. Tab. 3.1
shows that the top 5 identified solvents are aliphatic alkynes. The molecule with the
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lowest minimum energy demand is 1,5-hexadiyne with 63 % reduction of @i, (67 %
reduction of Sy;,) in comparison to the benchmark solvent n-butyl acetate. Thus,
1,5-hexadiyne is highly promising in terms of the energy saving potential.

All top solvents identified in Tab. 3.1 have both lower Q),;, and lower Sy,;, compared
to the benchmark. This indicates that the extraction contributes significantly to the
good performance of the top solvents in the distillation. A comparison of the ternary
diagram of n-butyl acetate (benchmark) and 1,5-hexadiyne (best solvent identified)
reveals the excellent extraction agent properties of 1,5-hexadiyne. Fig. 3.5 shows a
larger miscibility gap and steeper tie lines for 1,5-hexadiyne compared to the bench-
mark. Thus, a high selectivity and a high capacity for the solute GVL are achieved
which results in a low minimum amount of solvent S;,. In turn, a low Sp;, conse-
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Figure 3.4: Minimum energy demand @),;, and minimum amount of solvent Sy, for
1439 valid solvent candidates y (blue diamonds) and @, for benchmark
solvent n-butyl acetate (red line).
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Table 3.1: Selected results for solvent screening using pinch-based process model and reduction of minimum energy
demand compared to benchmark (BM). Available experimental boiling point temperature Tg, (exp.) and
melting point Ty, (exp.) are provided for further solvent assessment.

Solvent Smin Qumin Qmin Rank Thnelt,y Ref. Ts, Ref.
kmol /kmolpeeq  MJ/kmolgeeq reduct. % (exp.) °C (exp.) °C
1,5-hexadiyne 0.05 3.70 63 1 -4 (Rappoport, 1967) 88 (Rappoport, 1967)
1,6-heptadiyne 0.05 3.94 61 2 -85 (Rappoport, 1967) 112 (Rappoport, 1967)
1,3-hexadien-5-yne 0.06 3.99 61 3 82 (Sondheimer et al., 1961)
1,7-octadiyne 0.05 4.12 59 4 136 (Everett and Kon, 1950)
1-penten-4-yne 0.06 4.14 59 5 42 (Bubnov et al., 1980)
furan 0.07 4.64 54 9 -86 (Gontrani et al., 2006) 31 (Gontrani et al., 2006)
3-methylfuran 0.09 5.26 48 15 65 (Okabe et al., 2006)
2-methylfuran 0.11 6.36 37 27 64 (Rappoport, 1967)
2,3-hexanedione 0.10 6.98 31 34 128 (Heilbron et al., 1946)
3,4-hexanedione 0.11 7.15 29 36
n-butylacetate 0.14 10.11 - 156 -74 (Rappoport, 1967) 126 (Feng et al., 1998)
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quentially leads to a reduced extract stream E which reduces the minimum energy
demand in the distillation ;.

Rigorous process model calculations using Aspen Plus V8.4 are performed to vali-
date the results from pinch-based process models. The minimum energy demand in
Aspen Plus Quin,aspen is calculated for a flowsheet according to Fig.3.2. The flow-
sheet is initialized with results from the pinch-based process models and converged
to minimum solvent flow and minimum reboiler heat duty (for calculation details see

Appendix A).

—

Water ——

Figure 3.5: Ternary diagram of literature benchmark n-butyl acetate (blue thin line)
and best solvent identified by solvent screening 1,5-hexadiyne (red thick
line).
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Overall, the results of the pinch-based process models are in good agreement with
the rigorous process calculations. The mean average percentage error for the top 50
solvents is +9 %. In particular, the minimum energy demand in Aspen Plus for the
best solvent identified 1,5-hexadiyne is Quminaspen = 3.97 MJ/kmolpeea (+7 %) and
for the benchmark n-butyl acetate Quinaspen = 11.10 MJ/kmolgeea (+9%). Addi-
tionally, the high selectivity and capacity of 1,5-hexadiyne for GVL is confirmed by
the low minimum solvent demand in Aspen Plus (Suyin aspen = 0.05 kmol/kmolpeeq).
Thus, rigorous process model calculations in Aspen Plus validate the predicted poten-
tial to reduce the minimum energy demand and determine a reduction by 64 % with
1,5-hexadiyne. This validation supports the presented approach for identification of
promising solvents by the pinch-based process models. An extended list with vali-
dated results for the top 50 solvents is provided in Appendix A. The solvent ranking
by minimum energy demand generated by the screening approach and the Aspen Plus
simulations are in very good agreement with a Spearman’s rank correlation coefficient
of 0.93, where an ideal correlation corresponds to a rank correlation coefficient of 1
(Spearman, 1987). However, the Aspen Plus simulations also show that two compo-
nents, trans-3-penten-1-yne and furan, ranked #7 and #9 by the screening (Tab. 3.1)
require even less energy demand than 1,5-hexadiyne according to the Aspen Plus
simulations. This effect is due to the different settings in the flowsheets (lower con-
vergence tolerance and finite number of stages in Aspen Plus, see Appendix A). This
finding also highlights the importance to not focus only on the top candidate from
the screening but to consider the list of top candidates generated in the approach.

Only 59 of the 100 best solvents could have been evaluated using the modified
UNIFAC (Dortmund) group-contribution method (Jakob et al., 2006). This is mainly
caused by the lack of parametrized groups for promising furanes and missing interac-
tion parameters for alkynes with water. This highlights a key feature of the presented
approach that is independent of experimentally parametrized group interaction pa-
rameters.

To be a solvent of practical relevance, further criteria need to be evaluated next to
minimum energy demand, e.g., design limits on melting point temperature or boiling
point temperature as well as toxicity and chemical stability. These criteria are cur-
rently evaluated by human post-processing. For the present case study, all available
experimental melting point temperatures indicate that the selected solvents are lig-
uids at room temperature (Tab. 3.1). Similarly, experimental boiling points in Tab. 3.1
show that all components are within the desired design limits on boiling point tem-
perature. Furthermore, alkynes have a tendency to decompose and are usually stored
under low temperatures to prevent degradation. Thus, the alkynes ranked as top
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solvents candidates in Tab. 3.1 seem questionable for practical application. However,
an advantage of the proposed solvent screening approach is that a ranked list of sol-
vents is generated (extended list of all top 155 solvents can be found in Appendix A).
Further criteria for practical relevance can be evaluated by the design engineer.

For practical relevance, promising solvents are diketones and furanes which are al-
ready discussed in the literature as fuel candidates and solvents (Delidovich et al.,
2014). Tab.3.1 shows that promising furanes (#9, #15, #27) are identified in the
solvent screening, which are stable under relevant process conditions according to
manufacturer data (Sigma-Aldrich, 2017). The identified furanes reduce the minimum
energy demand Q,i, by ~ 40-50 %. The experimental boiling point temperature of fu-
ran is Tp fyran = 31 °C (Tab. 3.1) which is close to ambient temperature. Here, solvent
loss by evaporation should be considered for practical applications. Future screening
studies could add this constraint explicitly to the design problem. If further crite-
ria such as toxicity are applied, 2,3-hexanedione (#34) seems to be a very promising
candidate for GVL extraction. In contrast to the furanes, this diketone is non-toxic
according to manufacturer data. 2,3-hexanedione reduces the minimum energy de-
mand Qui, by 31% in comparison to the benchmark and is thus proposed as the
most promising solvent from a practical perspective. Additionally, 2,3-hexanedione is
commercially available and can further be evaluated experimentally.

3.4 Comparison to Conventional Process
Performance Indicators

In this section, the results from solvent screening based on minimum energy demand
are compared to results obtained using conventional process performance indicators.
All identified 1439 valid solvent candidates y are considered for the comparison. The
following conventional screening criteria are evaluated (for calculation details see Ap-
pendix A):

1. Phase distribution coefficient P (at infinite dilution of solute a) is commonly

used to assess the solvent extraction selectivity (e.g., Hostrup et al. (1999))

2. Relative volatility a is commonly used to assess the energy demand in the dis-
tillation (e.g., Pretel et al. (1994))

To quantify the correlation between conventional process indicators and the results
from the pinch-based process models, the Pearson correlation coefficient 7, ,, is evalu-
ated. The Pearson correlation coefficient determines the correlation of sample values
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m; and n;. The Pearson correlation coefficient 1, ,, can take on values from r,, , = —1
to T, = 1. Pearson correlation coefficients of r,, , = —1 and r,,,, = 1 correspond to
an ideal linear correlation of m; and n;. In contrast, 7,,, = 0 indicates no correlation.

Fig. 3.6 shows a comparison of conventional process performance indicators to the
results obtained from the screening approach based on minimum energy demand.

A very good correlation is found between phase distribution coefficient P and Sy,
(Fig. 3.6A). This is reflected in the high Pearson correlation coefficient 1,4 pog =

min

—0.97. Accordingly, all top solvents (green triangles in Fig.3.6A) achieve high P
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Figure 3.6: Comparison of phase distribution coefficient P to minimum amount of
solvent Syin (A) and minimum energy demand Qi (B). Solvent screening
based on phase distribution coefficient P and relative volatility a (C).
Red lines: benchmark (BM), green triangles: promising solvents (Qmin <
Qmin(BM)), blue diamonds: other solvents (Quin > Qmin (BM)), orange

square: most promising identified solvent 2,3-hexanedione.

42



3.4 Comparison to Conventional Process Performance Indicators

values. Similarly, Fig.3.6B shows that P is moderately good correlated to the min-
imum energy demand Quin (Tog PlogQun, = —0.76). A solvent screening based on
phase distribution coefficient P would identify 2-methylphenol as the best solvent.
2-methylphenol can be considered as a good solvent candidate since it has a lower
minimum energy demand ()., than the benchmark molecule. However, a solvent
assessment based on the phase distribution coefficient P has significant drawbacks.
Firstly, the best solvent identified based on the phase distribution coefficient P has
a Qmin of 9.63 MJ/kmolgeeq which is ~ 160 % higher than the best solvent found in
the screening based on pinch-based process models. The reason for the high min-
imum energy demand is the comparably high boiling point temperature predicted
for 2-methylphenol Tg 2 methylphenol = 201 °C, which is in agreement with experimen-
tal findings (experimental T 2 methylphenol = 192 °C (Brittain et al., 1981). Secondly,
Fig. 3.6B shows that a screening based on the phase distribution coefficient P does not
identify all solvents with a lower minimum energy demand ),,;, than the benchmark.
Thus, promising solvents with a low phase distribution coefficient P would be missed
in a solvent selection based on the phase distribution coefficient P.

Further refinement of solvent selection based on conventional process indicators
commonly employs the relative volatility « (Pretel et al., 1994). The best identi-
fied solvent based on « is 2-methyl-1-buten-3-yne with a Qui, = 4.28 M.J/kmolgeeq,
which is 16 % higher than the best solvent found in the screening based on pinch-
based process models. The good performance of 2-methyl-1-buten-3-yne can be ex-
plained by its low boiling point (7B 2-methyl-1-buten-3-yne = 01 °C) and low enthalpy of
vaporization (Alyap 2-methyl-1-buten-3-yne = 0f 31.8kJmol~1). The low correlation of the
relative volatility « and the minimum energy demand @i, (correlation coefficient
Tlog alog Qmin = 0-24) does not allow for an evaluation of the solvent process perfor-
mance solely based on «. Yet, relative volatility a seems to be a good heuristic
process performance indicator for further solvent selection in combination with dis-
tribution coefficient P (Fig.3.6C). In a solvent screening based on both conventional
process indicators P and «, most solvents with lower minimum energy demand Qn
than the benchmark are properly identified as promising. However, a solvent selection
based on process indicators P and « still comes with major drawbacks: First, not all
solvents with lower minimum energy demand (),,;, than the benchmark are identified:
Overall, 16 % of all promising solvent candidates are missed in a solvent selection based
on P and «. Moreover, 116 components with a higher minimum energy demand Qn
than the benchmark are falsely identified as promising. Further conventional process
performance indicators, i.e., constraints on the boiling point temperature, would thus
be necessary to rule out more candidates which comes at the risk of losing further
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promising solvent candidates. Second, there is no direct correlation between the con-
ventional process indicators and Qu,, i.e., it is not known whether favorable « is
more important than favorable P. Importantly, many promising solvents with low
Qmin are not located at extreme values of P or o but at intermediate values of P or «
(cf. Fig. 3.6C). In particular, the solvents of practical relevance discussed above, e.g.,
2,3-hexanedione with log P = 0.99 and loga = 3.37, are identified at intermediate
values of P and « (orange square in Fig. 3.6C). Thus, for a reliable identification of all
promising solvents, a quantitative ranking of the solvents is necessary. This quantita-
tive ranking by minimum energy demand @y, is provided by the pinch-based process
models.

3.5 Conclusions

A massive solvent screening approach based on COSMO-RS and pinch-based process
models is presented. Automated evaluation of pinch-based process models for extrac-
tion and distillation devices was established to screen solvents by the minimum energy
demand. The approach is not limited to a reduced number of components which is
highlighted for a fully automated solvent screening of a large-scale database.

Results show that more than 4600 solvents can be screened fast and efficiently with
the presented screening approach. Novel promising solvents for the hybrid extraction-
distillation of GVL are identified with predicted better performance than the literature
benchmark n-butyl acetate. A theoretical reduction of the minimum energy demand
Quin of 63% is predicted for 1,5-hexadiyne and 31 % for 2,3-hexanedione. The most
promising solvent candidate for practical application, 2,3-hexanedione, is commer-
cially available and can further be evaluated experimentally.

A comparison to conventional screening criteria provides insight in the inherent
trade-off of desired solvent properties in the process whereas heuristic criteria based
on phase distribution coefficient or relative volatility lead to suboptimal solutions.
The proposed screening approach captures this trade-off and yields quantitative in-
formation on process performance. Thus, the presented screening approach provides a
comprehensive process-level assessment of the screened solvents and successfully takes
into account inherent process trade-offs. Overall, the proposed solvent screening ap-
proach efficiently combines COSMO-RS property prediction with a comprehensive
process-level assessment and thus significantly enlarges the range of current solvent
selection approaches.

44



CHAPTER 4

COSMO-CAMD: A Framework for
Optimization-Based
Computer-Aided Molecular Design
using COSMO-RS

4.1 Introduction

In this chapter, the next step is taken towards integrating QM-based property pre-
diction into computer-aided molecular and process design. To overcome limited-
scope molecular screening (cf. Chapter 3), COSMO-CAMD is introduced, a frame-
work for optimization-based molecular design with COSMO-RS. COSMO-CAMD
integrates COSMO-RS calculations into molecular design based on thermodynamic
property targets. Thereby, COSMO-CAMD links large-scope molecular structure de-
sign with large-scope thermodynamic modeling in using limited-scope property targets
(Fig.4.1). The COSMO-CAMD framework is presented and applied to two case stud-
ies for solvent design in liquid-liquid extraction. The first case study is the extraction
of phenol from water, which illustrates the basic application of COSMO-CAMD. In
the second case study, the extraction of hydroxymethylfurfural (HMF) from water
is considered to show the application of the framework to a larger molecular design
space.
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Figure 4.1: Content of this chapter in the broader CAMD/CAMPD context. Line with
triangles indicates the classification of the COSMO-CAMD approach pre-
sented in this chapter. COSMO-CAMD combines molecular design (large-
scope molecular structure exploration method) with QM-based COSMO-
RS property prediction (large-scope thermodynamic model) and property
design targets (limited-scope process performance model).

Major parts of this chapter have been published in:

J. Scheffczyk, L. Fleitmann, A. Schwarz, M. Lampe, A. Bardow and K. Leon-
hard. COSMO-CAMD: A Framework for Optimization-Based Computer-Aided

Molecular Design using COSMO-RS, Chemical Engineering Science, 2017, 159,
84-92.

J. Scheffczyk, L. Fleitmann, A. Schwarz, A. Bardow, K. Leonhard, 2016. Computer-
aided molecular design by combining genetic algorithms and COSMO-RS. In:
Zdravko Kravanja, Milos Bogataj (Eds.), Proceedings of the 26th European Sym-
posium on Computer Aided Process Engineering, volume 34 of Computer Aided
Chemical Engineering, pages 115-120. Elsevier, Amsterdam.
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4.2 COSMO-CAMD Framework

In this section, the COSMO-CAMD framework is introduced. COSMO-CAMD tack-
les the generic CAMD optimization problem (Eq. (2.1)) using COSMO-RS property
prediction to evaluate the CAMD objective function F'(y) depending on the molecular
structure y. To optimize these molecular structures, the genetic algorithm LEA3D
(Douguet et al., 2005) is employed to overcome limits of molecule selection from pre-
fixed databases. In the following sections, accuracy levels in COSMO-RS are discussed
and selected for the optimization procedure (Section 4.2.1). Details on the genetic al-
gorithm LEA3D are given (Section 4.2.2) and the full COSMO-CAMD procedure is
introduced (Section 4.2.3).

4.2.1 Accuracy Levels in COSMO-RS

As outlined in Chapter 3, the COSMO-RS method consists of two main steps:

First, COSMO/DFT (Density Functional Theory) QM calculations are performed
for each pure component 7. Here, a molecule of species 7 is embedded in a virtual con-
ductor. Through DFT calculations, the screening charge density o for molecule ¢ is cal-
culated and the molecule is iteratively converged to its energetically optimal COSMO
state. The resulting pure component o-surface is stored in a so-called COSMO file
and thus re-useable for calculating mixture properties.

Second, statistical thermodynamics methods are used to compute mixture proper-
ties (COSMO-RS). Based on the o-surface, a histogram (o-profile) is used to calcu-
late the chemical potential (o-potential) of a surface segment. From this o-potential,
thermodynamic properties, e.g., phase equilibrium data are computed. For a detailed

description of COSMO and COSMO-RS see Klamt et al. (2001).

COSMO-RS has two approaches to generate o-surfaces: The first approach is the
generation of o-surfaces using QM calculations. Here, different QM levels can be
chosen to trade off computational effort and accuracy (Klamt et al., 2010):

e The standard QM level in COSMO is BP-TZVP (cf. Section 3.2.1), which is
suitable for problems where number and size of compounds allows for full DF'T
geometry optimization;

e The QM calculation detail and accuracy can be increased by using BP-TZVPD-
FINE: This QM level includes DFT geometry optimization on BP-TZVP level,

with a consecutive single point COSMO calculation performed with a larger QM
basis set BP-def2-TZVPD. Additionally, FINE-cavities are used for the single
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point COSMO calculations, which improves concave surfaced molecules. BP-
TZVPD-FINE represents the most accurate QM level available in COSMO-RS;

e In contrast, a reduction of computational demand from BP-TZVP is possible
using BP-TZVP-MF. Here, o-surfaces are generated on BP-TZVP level with ini-
tial conformer generation using semi-empirical methods, i.e., MOPAC (Stewart,
James J. P., 2012).

The second approach to generate o-surfaces is to bypass the computationally ex-
pensive QM calculations with the shortcut method COSMOfrag (Klamt et al., 2005).
Here, no QM calculation is performed but o-surfaces are generated from fragments of
pre-calculated molecules in a database.

Depending on the selected approach to generate o-surfaces and, accordingly, the
chosen QM level, a trade-off exists between accuracy and computational time. To
find a suitable trade-off, two QM levels are combined in this work: In the Design
Phase (cf. Section 4.2.3), COSMO calculations are performed on BP-TZVP-MF level,
which provides intermediate accuracy and computationally efficient generation of novel
molecular structures. In the Refinement Phase (cf.Section 4.2.3) a selected set of
molecular structures is calculated on BP-TZVPD-FINE, the most accurate QM level
available in COSMO-RS.

This two-level procedure was chosen based on the evaluation of the accuracy and the
computational performance of different o-surface generation approaches for a represen-
tative set of solvent candidates. The ACS Green Chemical Institute (ACS GCI) Sol-
vent Selection Guide (ACS Green Chemistry Institute, 2016) covers the most common
and important solvents in pharmaceutical solvent selection and contains 64 molecules
from which 31 form a liquid-liquid-equilibrium (LLE) with water. The distribution
coefficients for the extraction of phenol and HMF from water were chosen as test cases.
Phenol and HMF are the solutes in the case studies in the liquid-liquid extraction and
the distribution coefficient is a key performance indicator in the objective functions
for the optimization (cf.Section 4.3 and 4.4). The distribution coefficient P; for a
solute ¢ between two LLE phases, extract E and raffinate R, is defined as

ZiE ViR
Z;Rr Yi,E

P, = (4.1)

The activity coefficients 7; are calculated with COSMO-RS at the LLE concentra-
tion z; i and z; g of a binary water-solvent mixture with the solute at infinite dilution
and T = 25°C. In this work, COSMO calculations are performed using COSMOconf
4.0 (COSMOlogic, 2015b) with TURBOMOLE 6.5 for DFT geometry optimization;
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COSMOtherm version C30-1501 is used for COSMO-RS calculations (COSMOlogic,
2015d). COSMOquick15 is used for COSMOfrag calculations (COSMOlogic, 2015¢).
Fig. 4.2 shows the trade-off between the average time needed per COSMO calculation
for a molecule and the root mean square error (RMSE) (Eq. (4.2)) calculated for the
distribution coefficient log P; using different o-surface generation approaches and the
most accurate QM level BP-TZVPD-FINE.

n

1
RMSE = - Z (log P, pp—rzvPD—FINE — lOg B,X)Q (4.2)
i=1
Here, n is the number of solvents that form an LLE with water in BP-TZVPD-FINE

level and P, x is the distribution coefficient calculated by the different considered o-
surfaces generation approach X, where X = {COSMOfrag, BP-TZVP-MF, BP-TZVP}

The average calculation time for a COSMO calculation is ~ 10 min per molecule
in BP-TZVPD-FINE. Fig.4.2 shows that the average calculation time per log P; is
reduced only slightly in BP-TZVP, intermediately in BP-TZVP-MF (factor ~ 2) and
significantly in COSMOfrag in comparison to BP-TZVPD-FINE. The error bars in-
dicate that the maximum calculation time per COSMO calculation can significantly
be larger than the average calculation time, in particular for BP-TZVPD-FINE and
BP-TZVP calculations. Eckert and Klamt (2002) report the computation time for
BP-TZVP COSMO -calculations on a single CPU (800 MHz, PentiumlII) for water
(30s) and octylbenzene (2h). Thus, these findings are in good agreement with re-
ported literature data. The RMSE for BP-TZVP-MF and BP-TZVP is in the range
of the known COSMO-RS accuracy (RMSE of COSMO-RS BP-TZVP level for exper-
imental distribution coefficients log P; has been stated as 0.3 (Klamt et al., 1998)). In
contrast, the RMSE for COSMOfrag is significantly higher. Accordingly, BP-TZVP-
MF is chosen for the Design Phase in COSMO-CAMD. To validate this choice, it is
challenged and validated within the case studies with a larger set of data (cf. Section
4.3 and 4.4).

4.2.2 Genetic Algorithm LEA3D

In this work, molecular structures are generated by LEA3D, a genetic algorithm
for molecular structure optimization (Douguet et al., 2005). LEA3D is based on
LEA ("Ligand by Evolutionary Algorithm’) that was developed for novel drug design
(Douguet et al., 2000). The concept of LEA3D is based on a fragment-based molecu-
lar description, where molecular structures are decomposed into basic fragments and
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Figure 4.2: Root mean square error (RMSE) for calculating the distribution coeffi-
cient log P; for a representative set of 31 molecules (ACS Green Chem-
istry Institute, 2016) from COSMO-RS vs. average time t for a COSMO
calculation using different QM methods and COSMOfrag in comparison to
BP-TZVPD-FINE . Calculations are performed on a 3.2 GHz desktop PC
using 4 cores. Phenol: solid line, HMF: dashed line. Error bars indicate
minimum/maximum time for a COSMO calculation.
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4.2 COSMO-CAMD Framework

each fragment is described by a unique representation (Bemis and Murcko, 1996). In
LEA3D, genetic operators (cf. Section 2.2) search, extract and recombine molecular
fragments in a parent population and generate a novel breeding population. The first
generation is randomly initialized from a specified library of molecular fragments. De-
pending on the fragments in the initial library, large numbers of possible molecular
structures can be designed and evaluated (e.g., a possible virtual library of 10'* molec-
ular structures in Douguet et al. (2005)). The library fragments and parameters in
this work for the optimization are included in Appendix B. For a detailed description
of LEA3D, see Douguet et al. (2005).

4.2.3 COSMO-CAMD Procedure

The general procedure of COSMO-CAMD consists of the following steps (Fig. 4.3):

1. In the specification step, the LEA3D fragment library is initialized with the set of

Specification
Fragment library, constraints, ...

Generation of
molecular structures
. . Molecule in
Evaluation with COSMO-RS database?

TZVP-MF

COSMO calculation of o-surfaces

—— Continuez__— Database of BP-TZVP-MF _
o-surfaces
v
Ranked list of

molecular candidates COSMO-RS property prediction

| comnos ey |
I
| oot

Evaluation with COSMO-RS

Objective function evaluation

Refinement Phase

\ 4

Ranked list of molecules

Figure 4.3: Schematic procedure of the COSMO-CAMD framework.
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02

molecular fragments that can be combined by the genetic algorithm. Constraints
are specified for molecular properties (e.g., molecule size) and parameters for
the optimization are specified (# of generations, # of molecular structures per
generation, probabilities for genetic operators).

. In the Design Phase, the GA generates new molecular structures based on the

current set of molecular structures using genetic operators (crossover and mu-
tation). The first population is automatically randomly initialized from library
fragments.

. For each molecular structure, the objective function F'(y) (Eq.(2.1)) is evalu-

ated based on thermodynamic property prediction from COSMO-RS using a
medium accuracy BP-TZVP-MF QM level (cf. Section 4.2.1). While COSMO-
RS provides mixture-specific properties depending on a specific solvent-solute
system, o-surfaces from COSMO calculations are properties of pure compo-
nents (cf.Section 4.2.1). To increase computational efficiency, a database for
o-surfaces of novel molecular structures is generated during the optimization
run. If the o-surface of a molecular structure exists in the database, o-surfaces
are used from the database. If not, o-surfaces are calculated on BP-TZVP-MF
level. From o-surfaces, COSMO-RS calculates the thermodynamic properties
of the molecular structures in the specific mixture. Therefore, time-consuming
COSMO calculations are performed only once for each molecular structure. Ad-
ditionally, the o-surface database can be re-used for following case studies, thus,
further increasing computational efficiency. A generic optimization using speci-
fications from the HMF extraction case study (cf. Section 4.4.1) was performed
on an Intel Xeon CPU E5-1660 v3 @ 3.00 GHz using parallel computation of
COSMO files on 8 cores. This allows for the design of ~ 1000 novel molecules
in 4 days leading to an average calculation time of 5.9 min per molecule.

. The current generation is updated until the genetic algorithm reaches a termi-

nation criterion (e.g., after a specified number of generations). The result of
the Design Phase is a preliminary ranked list of solvent candidates based on the
evaluation of F'(y) for all molecules designed by the GA during the optimization.

. In the Refinement Phase, the top solvent candidates from the Design Phase are

selected. The objective function of the top solvent candidates is re-evaluated on
BP-TZVPD-FINE level to obtain results with the highest possible accuracy in
COSMO-RS. The final result is a ranked list of solvent candidates for further
investigation (e.g., experiments for LLE (Dechambre et al., 2014b)).



4.3 Case Study 1: Solvent Design for Phenol Extraction

4.3 Case Study 1: Solvent Design for Phenol
Extraction

An industrially important extraction problem is the removal of phenol from wastew-
ater (Kiezyk and Mackay, 1973). A screening for extracting agents by Gmehling and
Schedemann (2014) has been carried out using an experimental database (Dortmund
Data Bank, DDB). In this present work, novel solvents are designed for phenol ex-
traction using the COSMO-CAMD framework introduced.

4.3.1 Problem Specification

Objective function Fi(y) from Gmehling and Schedemann (2014) is used to evaluate
the extraction-agent performance based on selectivity, capacity and solvent loss:

J2 1.0
Fl (y) — log |: Phen01:| . ipphenol]l.s) . Sl o ZS,R)B.O . (43)
t
gl cap;,city solve?l? loss
selectivity

Here, P; is the distribution coefficient for solute i between two LLE phases E and R
according to Eq. (4.1). zsg is the concentration of solvent s in the raffinate phase R.

LEA3D only allows for unconstrained optimization, thus, constraints from Eq. (2.1)
need to be incorporated in the objective function F(y):

e For molecular structures, structural feasibility needs to be ensured — this is
ensured by LEA3D,

e A LLE must exist between water and the solvent. This binary LLE is evaluated
using the LLE calculation option in COSMOtherm — else F(y)=0.

Large molecules naturally are more likely to phase separate from water, which
positively affects Fi(y) (Eq.(4.3)). However, larger components have high melting
points. To avoid high melting points, for each molecule, the number of heavy atoms
n, i.e., all atoms except hydrogen, is restricted. For this purpose, LEA3D has built-
in penalty functions to impose boundaries on structural properties (Douguet et al.,
2005). In the LEA3D version used in this work (Version 2011v2), the available penalty
function used to restrict molecular size is Fy(y):
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(0.9n.x)2 —(n—nmin) .
GXTFSE it n < Npin Vo Nmax < N

17 1f TMmin S n S Nmax
Fy(y) = 2 (4.4)

with nx = nuin, if 1 < N and Ny = Npax, if Nmax < N

Penalties for the molecular size are imposed by setting the number of heavy atoms
t0 [Mmin = 5, Nmax = 12].

If further case-specific solvent requirements are known, corresponding constraints
could be added to the problem formulation to limit the molecular design space. E.g.,
restrictions on boiling point or viscosity can be evaluated using COSMO-RS and
applied as constraints in LEA3D (Douguet et al., 2005). However, this chapter focuses
on presenting the molecular design framework and employ target properties from the
literature to validate the framework. Thus, in this generic case study, no further
constraints are employed.

The final objective function is:

Fi(y) + Fy(y
F(y) = _%‘ (4.5)
Please note that the objective function w in Eq. (4.5) is desired to be max-
imized while the general CAMD problem (Eq.(2.1)) is introduced as minimization
problem. Thus, objective function in Eq. (4.5) is posed as minimization problem with
inverted sign.

The initial fragment library consists of methyl-, ethyl-, propyl-, butyl-, phenyl-,
carbonyl-, carboxyl-, ether-, hydroxy- and cyclohexylgroup fragments (cf. Appendix
B). The number of generations is set to 20 with 40 molecules per generation based
on pre-tests showing good performance. The top 25 molecules from the Design Phase
are evaluated in the Refinement Phase.

4.3.2 Results

Tab. 4.1 shows the most promising solvents ranked by their BP-TZVPD-FINE objec-
tive function value F'(y). For all solvents in the top 50, the penalty function Fy(y) = 1.
While a product form of the objective function is in general more flexible to combine
several objectives, the findings of the case study show the successful application of
the penalty function and support the problem formulation Eq. (4.5). In the database
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4.3 Case Study 1: Solvent Design for Phenol Extraction

solvent screening by Gmehling and Schedemann (2014), the most promising molecule
identified is methylisobutylketone (MIBK). MIBK results in an objective function
F(y) of 4.24 (Fy(y) = 7.48) on BP-TZVPD-FINE level. A comparison to the sol-
vents designed by COSMO-CAMD in Tab. 4.1 shows that the newly designed solvents
are predicted to achieve higher objective function values F(y) than MIBK. COSMO-
CAMD designs a molecule with a maximum objective function value F(y) of 4.76
(F1(y) = 8.52), thus leading to an increase in extraction-agent performance Fi(y) of
14 %. This increase is larger than the observed deviation of Fj(y) on BP-TZVPD-
FINE level from experimental data (Mean Absolute Percentage Error = 10 %) for the
10 solvents published in Gmehling and Schedemann (2014). Thus, the improvement
is regarded as significant.

Generally, molecules designed by COSMO-CAMD achieving high performance are
aprotic aromatic compounds (Tab. 4.1). Remarkably, benzaldehydes show even higher
performance than acyclic ketones and aldehydes which have been identified by the
database search in Gmehling and Schedemann (2014). Due to the physical basis
of COSMO-RS, o-profiles can be used to study polarity characteristics of the most
promising molecular compounds (Fig.4.4): The o-profiles are divided into 3 regions:
a non-polar region with —0.01e/A? < ¢ < 0.01¢/A2, the hydrogen bond (HB) donor
region with ¢ < —0.01¢/A2 and the HB acceptor region with o > 0.01e/A2. The
HB donor/acceptor strength corresponds to the peaks beyond o = —0.01 e/A2 and
0.01e/ A2, respectively. The larger the peak, the more o-surface segments are present
at a given charge and accordingly, the number of possible HB interactions is increased;
the further the peak is located away from center, the stronger the HB interactions. In
contrast, non-polar segments have peaks centered at ¢ = 0e/ A2,

It can be seen from Fig.4.4 that the molecule designed by COSMO-CAMD (2-
methyl-4-(propan-2-yl)benzaldehyde) with the highest objective function F(y) shows
similar polarity to MIBK, the best solvent in Gmehling and Schedemann (2014).
Both solvents are aprotic solvents and HB acceptors, which is reflected in the high
probability density around o = 0.015¢/ A2, However, longer molecules tend to increase

Table 4.1: Ranked list of solvents designed by COSMO-CAMD in BP-TZVP-MF
(MF) and BP-TZVPD-FINE (FINE).

Rank component F(y) MF F(y) FINE
1 2-methyl-4-(propan-2-yl)benzaldehyde 4.31 4.76
2 2-methyl-5-propylbenzaldehyde 4.27 4.75
3 4-methyl-2-propylbenzaldehyde 4.29 4.74
4 2-methyl-5-(propan-2-yl)benzaldehyde 4.26 4.72
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Figure 4.4: o-profiles of best COSMO-CAMD molecule 2-methyl-4-(propan-2-
yl)benzaldehyde (solid blue line), best molecule from database search
MIBK (Gmehling and Schedemann, 2014) (dashed-dotted green line) and
solute phenol (dotted red line).
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the miscibility gap due non-polar surface interaction formed by the alkyl side chains.
This hydrophobic region (centered at o = 0e/A2) is beneficial, since it reduces the
amount of co-extracted water (Garcia-Chavez et al., 2012) and has a direct influence
on the objective function F(y) (Eq.(4.3)). This region is increased for 2-methyl-4-
(propan-2-yl)benzaldehyde in comparison to MIBK, thus, leading to a higher objective
function F(y).

To validate the convergence of the GA optimization, the optimization run is re-
peated. Fig.4.5 shows the mean and maximum objective function values of three
optimization runs. The maximum objective function values show an increase in the
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Figure 4.5: Evolution of the mean (lower curves) and maximum (upper curves) ob-
jective function values F'(y) based on BP-TZVP-MF in three runs of the
genetic optimization algorithm.
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first generations and converge to a steady final value. The molecules with the highest
objective function values designed in all three optimization runs are similar structural
isomers with a difference in objective function values of less than 1%. Due to the
stochastic nature of the GA optimization, no guarantee on (global) optimality of the
solutions can be given. However, the results in Fig.4.5 indicate that no major fur-
ther improvement of the objective function is expected if the number of generations
is increased.

As discussed in Section 4.2.1, BP-TZVP-MF is chosen as an intermediate accuracy
QM level in the Design Phase of the COSMO-CAMD framework. To challenge and
validate the use of BP-TZVP-MF for this case study, a comparison for two optimiza-
tion runs is shown in Fig. 4.6 using either COSMOfrag or BP-TZVP-MF. Here, the
objective function F'(y) values is compared using both QM levels for all designed
molecules, which exist in the BP-TZVPD-FINE database or were calculated in the
Refinement Phase.

The results show considerable deviation (RMSE = 0.61) between COSMOfrag and
BP-TZVPD-FINE (Fig. 4.6A) which is in agreement with the initial findings in Section
4.2.1. In general, COSMOfrag is able to give a qualitative picture about promising
solvent groups (phenols, ketones and aldehydes). However, the use of COSMOfrag
leads to the identification of suboptimal molecules in comparison to the database.
The top molecule designed in COSMOfrag is di-n-butylether (DNBE) with an objec-
tive function in COSMOfrag of F(y) = 5.14. However, the Refinement Phase reveals
that DNBE has an objective function of F(y) = 4.19 in BP-TZVPD-FINE whereas
the molecule with the largest objective function value in BP-TZVPD-FINE is cyclo-
hexanecarboxaldehyde (F(y)= 4.61). Thus, despite significant time-saving potential
(cf. Section 4.2.1), COSMOfrag is not sufficiently accurate for the present case study.

In contrast, BP-TZVPD-FINE values are in good agreement with BP-TZVP-MF
(Fig.4.6B). The calculated RMSE value between BP-TZVP-MF and BP-TZVPD-
FINE values is 0.27. Accordingly, the deviation between BP-TZVP-MF and BP-
TZVPD-FINE is in the range of the initially estimated accuracy (cf.Section 4.2.1).
Due to the known accuracy of COSMO-RS (cf. Section 4.2.1), the candidate list should
in any case serve as an input for experiments to verify the predicted performance.

Overall, novel solvents are designed by COSMO-CAMD: 18 of the most promising 25
molecules designed by COSMO-CAMD are not contained in the COSMO-RS database
(Version COSMObase-1501-BP-TZVPD-FINE). Therefore, COSMO-CAMD success-
fully goes beyond the established screening methods based on COSMO-RS database
search.
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(Gmehling and Schedemann, 2014). The RMSE (Eq. (4.2)) is calculated
between COSMOfrag/BP-TZVP-MF and BP-TZVPD-FINE for all avail-
able BP-TZVPD-FINE values. 59
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4.4 Case Study 2: Solvent Design for HMF
Extraction

HMF is a highly promising chemical as intermediate in bio-based fuels and chemical
production (Alonso et al., 2013a). However, a bottleneck in the large-scale production
of HMF is the liquid-liquid extraction due to low product concentrations after the
reaction (van Putten et al., 2013). Continuous HMF extraction during the reaction
can be used for in-situ removal to significantly increase selectivity suppressing the
formation of undesired humins and side-products (Romén-Leshkov et al., 2007).

A systematic solvent screening for HMF extraction based on COSMO-RS database
components has been carried out by Blumenthal et al. (2016). In their work, experi-
mental data are in very good agreement with COSMO-RS predictions, which shows the
applicability of COSMO-RS to HMF extraction. In the present work, novel solvents
are designed for HMF extraction using the COSMO-CAMD framework introduced.

4.4.1 Problem Specification

For the evaluation of extraction efficiency, Blumenthal et al. (2016) use a mass-based
distribution coefficient Kyyp, which can be derived from the mole-based distribution
coefficient P; (Eq. (4.1)).

WHMEF,E _ YHMF,R * Zle (Zi,R : Mi,R)

WHMF,R  YHMFE * Zle (zig - Mig)

Kymr = (4.6)

Here, wpnmrr and wiauvrr are weight fractions of the solute HMF in the extract
E and raffinate R phases respectively. M; are molecular weights of the components.
The binary water-solvent mixture is assumed to be present with the solute at infinite
dilution and T" = 25°C. Due to the assumption of infinite dilution, mole fractions of
the solute HMF are zyyvp g = zZumrr ~ 0. For this case study, the objective function
F(y) is defined based on Kpyr (Eq. (4.6)):

F(y) = —log K- (4.7)

As discussed in Section 4.3.1, constraints for the optimization h(y, g) and ¢(y) from
Eq. (2.1) are included as penalty functions in the objective function F'(y) (Eq. (4.7)).
In the first case study, a soft constraint penalty function is employed (Eq.(4.4)).
This approach may still require the evaluation of large and complex molecules. For
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such molecules, the time for COSMO calculations can be considerably longer than
average calculation times (cf. Section 4.2.1). To further increase computational speed,
molecular size is restricted with a hard constraint in this case study.

e For molecular structures, structural feasibility needs to be ensured — this is
ensured by LEA3D,

e A LLE must exist between water and the solvent. This binary LLE is evaluated
using the LLE calculation option in COSMOtherm — else F(y)=0,

e Molecular structures with undesired properties (e.g., unstable) are excluded with
a restriction on the molecular structures in SMILES notation (Weininger, 1990):
Peroxides, di-ketones, anhydrides und oxalates as well as oxygenfluorides. For
all molecular structures containing corresponding SMILES strings — F(y)=0,

e The number of heavy atoms n in the molecular structures n is constrained to
[Mmin=1,"maz=12] to avoid larger components with high melting points. Thus,
for molecules outside the target range — F'(y)=0.

For this case study, the initial library from the phenol case study (cf. Section 4.3.1)
is complemented with additional fragments to include ester-, fluorine- and amingroups
(cf. Appendix B). Hereby, the effect of more functional groups, especially highly polar
fluorine groups is investigated.

An additional challenge for property prediction in HMF extraction is that besides
Kuwr, the distribution coefficient of fructose Kgyetose Plays an important role (Blu-
menthal et al., 2016): In HMF synthesis, the co-extraction of fructose leads to loss of
the reactant and is therefore undesirable. Fructose is a challenging molecule for prop-
erty prediction, since it has many so-called conformers (energetically stable molecular
geometries). In COSMO-RS, these conformers occur with/without intramolecular hy-
drogen bonds depending on the surrounding medium (nonpolar/polar respectively).
A COSMO-RS fructose model was generated based on the work of Blumenthal et al.
(2016) using COSMOconfX13. The distribution coefficient of fructose in the extrac-
tion of HMF is accounted for in the Refinement Phase. To account for a larger search
space in comparison to Section 4.3.1, the number of generations is set to 100 genera-
tions with 40 molecules in each generation, 50 molecules are refined in the Refinement
Phase.

4.4.2 Results

In the work of Blumenthal et al. (2016), solvents are selected based on their ability to
enhance the extraction of the desired product HMF (high Kyyr), while still providing
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Table 4.2: Ranked list of solvents designed by COSMO-CAMD with primary objective
function log(Kyyr) and secondary objective function log( K gyetose)

Rank component log(Kuwmr) log( Kructose)
1 2-ethenyl-4,5-difluorophenol 1.41 -0.29
2 2-ethenyl-5-fluorophenol 1.38 -0.38
3 2,4-diethenyl-5-fluorophenol 1.37 -0.64
11 2,5-diethenyl-4-fluorophenol 1.30 -0.80
18 3-fluoro-6-(propan-2-yl)benzene-1,2-diol 1.24 -0.72

a low co-extraction of fructose (low Kfgyetose). Blumenthal et al. (2016) find that
phenolic compounds show the most promising behavior. The proposed candidate
for HMF extraction is o-propylphenol with Kyyr = 10.02 which corresponds to an
objective function F(y) = 1.00 in BP-TZVPD-FINE.

Tab. 4.2 shows that the most promising components designed by COSMO-CAMD
with the highest objective function F'(y) are fluorinated phenolic compounds. This
is in very good agreement with findings from the database screening of Blumenthal
et al. (2016), where phenolic compounds are identified as top molecules. Adding highly
polar fluorine atoms as functional groups favorably influences the extraction behavior
of HMF (Tab. 4.2, #1 and #2 ). This effect can be explained by the withdrawal of
negative charge from the phenol hydroxyl-group, which increases its ability to act as
a protic HB donor, thus, stabilizing HMF in the extraction phase.

Inherently similar characteristics of HMF and fructose consequently lead to a co-
extraction of fructose, which is reflected in high distribution coefficients Kpyctose fOT
the top molecules. Here, functional group substitution of a fluorine group by an
alkenyl-sidechain (Tab. 4.2, #11) or alkyl-sidechains (Tab.4.2, #18) leads to signifi-
cantly lower co-extraction of fructose, yet still offering a promising high distribution
coefficient log Kyyr. Thus, for practical purposes the most promising solvent identi-
fied by COSMO-CAMD is 2,5-diethenyl-4-fluorophenol (Tab. 4.2, #11), which allows
for a high distribution coefficient of HMF (log Kyyr = 1.30) and comparable low un-
desired co-extraction of fructose (log Kfyctose = -0.80). Future work should consider
the distribution coefficient for fructose directly in the Design Phase. Further questions
of practical relevance could then also be added to the design problem.

Additional effects, e.g., finite solute concentrations, could be investigated for the
most promising molecules. Such effects have been shown to influence quantities pre-
dicted by COSMO-RS such as the distribution coefficient (Blumenthal et al., 2016).
However, Kossack et al. (2008) showed that the assessment of solvent performance
based on the distribution coefficient at infinite dilution can provide a reasonable esti-
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mate for early-stage process design. In addition, COSMO-CAMD not only provides
one single best molecule that could be influenced by finite solute concentration effects
but a large set of promising molecules. Overall, it is expected that the promising
molecule candidate identified by COSMO-CAMD will also show good performance at
finite concentrations.

A comparison of BP-TZVP-MF to BP-TZVPD-FINE level for this case study
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Figure 4.7: Objective function values F(y) for molecules generated in COSMO-CAMD
using BP-TZVP-MF in comparison to refined molecules on BP-TZVPD-
FINE level. Dashed line indicates best solvent from database screening
o-propylphenol (Blumenthal et al., 2016). The RMSE (Eq. (4.2)) is cal-
culated between BP-TZVP-MF and BP-TZVPD-FINE for all available
BP-TZVPD-FINE values.
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(Fig. 4.7) shows good agreement of the chosen intermediate QM level to BP-TZVPD-
FINE. The RMSE = 0.33 between BP-TZVP-MF and BP-TZVPD-FINE is similar to
the RMSE for the solvents evaluated in the ACS GCI set of common solvent candi-
dates (cf. Section 4.2.1). Similar to the findings in the extraction of phenol (cf. Section
4.3.2), the good agreement between BP-TZVP-MF and BP-TZVPD-FINE supports
the initial choice of BP-TZVP-MF as a medium accuracy QM method. Comparing
the top 50 molecules to the COSMO-RS database (Version COSMObase-1501-BP-
TZVPD-FINE) shows that all top 50 molecules generated by COSMO-CAMD are not
included in the database. Thus, COSMO-CAMD successfully designs novel molecules
with predicted high objective function values F'(y). In addition, the Refinement Phase
allows for the evaluation of secondary objectives, e.g., the co-extraction of fructose.

4.5 Conclusions

In this chapter, COSMO-CAMD is presented, an optimization-based framework for
designing novel solvents based on property prediction with COSMO-RS. The frame-
work combines a computationally efficient Design Phase using medium accuracy QM
methods with most accurate property prediction for promising molecules in a Refine-
ment Phase. The generation of a re-usable o-surface database during the optimization
further increases computational efficiency.

Novel molecules are generated by direct manipulation of the chemical structure
within the genetic algorithm LEA3D. The resulting framework allows to explore a large
search space (+1000 molecules within days) by optimization. The use of COSMO-RS
facilitates property prediction without the need for experimental data.

The case studies for phenol and HMF liquid-liquid extraction from water show that
COSMO-CAMD successfully designs promising novel solvents, predicted to have bet-
ter performance than molecules contained in comprehensive databases (experimental
and COSMO-RS): 18 of the most promising 25 designed molecules in phenol extraction
and all top 50 molecules in HMF extraction are novel molecules, which had not been
in the COSMO-RS BP-TZVPD-FINE database. Thus, COSMO-CAMD successfully
overcomes limitations of both, experimental and COSMO-RS-based database screen-
ings.
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CHAPTER 5

COSMO-CAMPD: A Framework
for Integrated Design of Molecules
and Separation Processes based on

COSMO-RS

5.1 Introduction

In this chapter, the last step towards integrating COSMO-RS in CAMPD is taken.
For this purpose, COSMO-CAMPD is presented, a framework for computer-aided
molecular and process design based on COSMO-RS. For COSMO-CAMPD, COSMO-
CAMD (cf. Chapter 4) is combined with pinch-based process models that allow for
large-scale, automated process evaluation of molecules (cf. Chapter 3). Thereby, large-
scope process performance models are linked to large-scope thermodynamic prediction
models in a large-scope design approach (Fig.6.1). The resulting COSMO-CAMPD
framework is a hybrid stochastic-deterministic optimization method for the integrated
design of molecules and processes. In this chapter, the COSMO-CAMPD framework is
presented and subsequently applied to a case study for integrated solvent and process
design in a hybrid extraction-distillation process. The results of COSMO-CAMPD
are discussed and finally, the predicted process performance of promising designed
solvents is experimentally validated by liquid-liquid measurements.
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with squares indicates the classification of the COSMO-CAMPD approach
presented in this chapter. COSMO-CAMPD combines molecular de-
sign (large-scope molecular structure exploration method) with QM-based
COSMO-RS property prediction (large-scope thermodynamic model) and
pinch-based separation process models (large-scope process performance

model).

Experimental measurements in this chapter have been performed by Julia Thien.

Major parts of this chapter have been published in:

J. Scheffczyk, P. Schéfer, L. Fleitmann, J. Thien, K. Leonhard and A. Bardow.
COSMO-CAMPD: A framework for integrated design of molecules and processes
based on COSMO-RS, Molecular Systems Design and Engineering, 2018 - Reproduced

by permission of The Royal Society of Chemistry.
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5.2 COSMO-CAMPD Framework

5.2.1 Integrated Molecular and Process Design Approach

In this section, COSMO-CAMPD is presented which addresses the full CAMPD
MINLP optimization problem (Eq. (2.2)). For this purpose, pinch-based process mod-
els introduced in Chapter 3 are combined with molecular optimization by COSMO-
CAMD (Chapter 4). The resulting hybrid stochastic-deterministic algorithm solves
the CAMPD problem by exploiting a natural problem decomposition: integer vari-
ables (molecular variables) are optimized by a stochastic algorithm and continuous
variables (process variables) are optimized using a deterministic non-linear program-
ming (NLP) algorithm. The resulting COSMO-CAMPD optimization algorithm can
be divided in 4 general steps (Fig. 5.2):

1. The optimization procedure is initialized by specifying, e.g., degrees of free-
dom for the optimization: process variables, process operating limits h(z,y) in
Eq. (2.2) and an initial set of molecular fragments from which molecules are built
(cf. Appendix C).

2. In COSMO-CAMPD, all discrete degrees of freedom correspond to the molec-
ular structure y. Molecular structures y are optimized as in the previously
proposed COSMO-CAMD framework (Chapter 4): The genetic optimization
tool LEA3D (Douguet et al., 2005) creates explicit 3D molecular structures of
a set of of molecules y* called a generation i. In contrast to COSMO-CAMD,
molecules in COSMO-CAMPD are evaluated based on the process function
F(z,y) (Eq.(2.2)). The molecular design space is then explored by genetic op-
erations on the molecular structure and a next generation ¢ = i 4 1 of molecules
is created until a specified termination criterion is reached, e.g., the number of
generation ¢ = i,,.c. The evaluation of each molecule is performed in steps 2.1
and 2.2 described next:

2.1 The molecular structures y generated by LEA3D serve as input to property
prediction with COSMO-RS (g1(z,y) = 0, Eq. (2.2)). For each molecular
structure y, a COSMO file is required (Section 3.2.1).

A design with COSMO-RS calculations on highest accuracy TZVPD-FINE
requires large computational costs compared to the expected increase in ac-
curacy (cf. Section 4.2.1). Thus, COSMO-CAMPD uses a computationally
efficient approach based on two elements (Section 4.2.3): Two accuracy
levels are employed for COSMO-RS calculations in the two phases of the
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68

2.2

COSMO-CAMPD approach: In the Design Phase, molecules are designed
on TZVP-MF level (further referenced as TZVP for simplicity). From the
design on TZVP level a set of promising molecules is re-calculated after
the optimization with highest possible accuracy using TZVPD-FINE in
the Refinement Phase (cf.Step 4). Additionally, an automated storage
system creates a COSMO database of novel designed molecules during any
optimization run (Section 4.2.3). Thereby, COSMO calculations in Step
2.1 need only be performed once for a specific designed molecule which re-
sults in large time-saving and allows for efficient calculation. Based on the
COSMO calculations, all thermodynamic properties for pure components
and mixtures are calculated with COSMO-RS. The candidate molecules
can then already be tested in a first feasibility check if criteria based on
thermodynamic properties (¢(y) and h(z,y) in Eq. (2.2)) can be formulated
(e.g., the existence of a liquid-liquid phase split). These requirements are
specific to the process considered and exemplified in the case study. The
remaining candidate solvents are indicated by yr(lf])) in Fig.5.2.

For the candidate solvents y%)), the process flowsheet is optimized with
respect to the continuous process variables z. Large-scale, automated eval-
uation of rigorous process simulations, e.g., delivered by Aspen Plus, for
all designed molecules is challenging due to convergence problems and thus
avoided in the Design Phase. For this purpose, the process is modeled
using pinch-based process models (Redepenning et al., 2016; Bausa et al.,
1998) (g2(x,y) = 0 in Eq. (2.2)). The pinch-based process models calculate
the process minimum energy demand F\(z, y%))) (cf. Section 3.2.2) for a
specified operating point, i.e., a fixed value of continuous process variables
x. The values of the continuous process variables x are then optimized
by an NLP solver (such as MATLAB fmincon used in this work) with re-
spect to minimum energy demand. For each candidate molecular structure

in generation ¢, y%)), the performance in terms of the minimum energy

demand F(x*,y(Ti])D) and the optimal operating point x* are returned to

COSMO-CAMPD to build a new generation i = i + 1 of molecules.

3. When the termination criterion for molecular optimization is reached (e.g., num-
ber of iterations), an optimized solution F'(z*,y*) is obtained. This optimized
solution consists of the final generation of molecular structures y* each in its op-
timized process operation point denoted by optimized process variables z*. Ad-
ditionally, all molecules created during optimization are forwarded as a ranked
list to the Refinement Phase.
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Figure 5.2: Integrated process and molecular design approach COSMO-CAMPD.

4. The Refinement Phase in COSMO-CAMPD has two aspects: In Step 4a, for the
most promising molecules from the Design Phase, COSMO-RS thermodynamic
predictions are re-calculated on the highest possible accuracy TZVPD-FINE
level. With TZVPD-FINE level thermodynamic properties, the pinch-based
process models are re-optimized and the optimized process parameters z* are
re-determined. In Step 4b, pinch-based process models are replaced by rigorous
process models in Aspen Plus (V8.4) to determine the objective function for
optimized process variables *. This rigorous calculation is fully automated and
benefits from the excellent initialization by the pinch-based process models. The
rigorous calculations return a good estimate of the minimum energy demand,
if a sufficiently large finite number of stages (e.g., 50, used in this work) is
used. They also provide the internal stage to stage flows which can be input
to future cost optimization. The output of COSMO-CAMPD is thus a final
ranked list of molecules §* on TZVPD-FINE level and process energy demand
in Aspen Plus F(z*,5*). The results can be easily integrated into existing process
flowsheets and can be used by the design engineer for experimental validation
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or for applying further criteria of practical relevance.

5.3 Case study: Integrated Solvent and Process
Design for Hybrid Extraction-Distillation of
v-Valerolactone

5.3.1 Process Formulation

In Chapter 3, solvents for a hybrid extraction-distillation process (cf. Fig.3.2) have
been identified in a large database screening. Here, the solvent has two tasks: first
extract GVL from the water-rich product stream and afterwards facilitate the purifica-
tion of GVL by distillation. A high affinity of the solvent for GVL enhances extraction
performance, whereas it might increase the energy demand for distillation. Optimal
solvents will balance these two effects. The performance of the hybrid extraction-
distillation process thus crucially depends on the choice of the right extraction solvent
(cf. Chapter 3). In addition, extraction temperature plays a crucial role: At low
temperatures, the miscibility gaps between water and organic solvents are known to
be largest, i.e., the mutual solubilities are smallest. One would therefore expect to
find the best performances at low temperatures. However, higher temperatures might
cause steeper tie lines and thus can decrease the solvent demand. The optimal extrac-
tion temperature should balance this trade-off. In this chapter, the process proposed
in Chapter 3 is extended to include extraction temperature as a degree of freedom.
Here, COSMO-CAMPD is applied for integrated process and solvent design. In the
following, n-butyl acetate is referred to as the literature benchmark solvent (Murat
Sen et al., 2012).

The process considered in this chapter consists of a fixed flowsheet introduced in
Chapter 3 with an extraction and a distillation unit (Fig.5.3). A feed stream F with
composition zr containing water and GVL enters the extraction column in which a
solvent stream S (consisting of solvents with molecular structure y) is used to extract
GVL in the extract stream E. The extract stream E is separated in the distillation
column into GVL (recovered as bottom product) and a stream of solvent and water
(recovered as distillate). The distillate is separated in a decanter and the solvent-rich
phase is recycled to the extraction column. The employed pinch-based process models
assume an infinite number of stages which results in sharp splits in the extraction and
distillation columns which are therefore imposed as purity constraints: GVL is fully
recovered in the extract E and obtained as pure component product in the bottom
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Solvent y

w + GVL

B, zy

GVL

Figure 5.3: Hybrid extraction-distillation process for the purification of GVL. Streams:
Feed stream F containing solute GVL and carrier water (w), solvent stream
S containing solvent y, raffinate stream R, extract stream E, distillate
stream D, bottom stream B, solvent make-up stream S,., with correspond-
ing compositions zp, zs, Zr, Zg, Zp, ZB. Smin 1S the minimum amount of
solvent required for the specified separation task, Q. is the minimum
energy demand required for the specified separation task. Red boxes: Op-
timization variables (Eq. (2.2)) solvent y and temperature of the extraction
process T..r. Process specifications can be found in Appendix C.

B by distillation. The overall energy demand of the process is represented by the
minimum energy demand for the distillation ().,;, which serves as the the objective
function F(z,y) (Eq.(2.2)) in this chapter. The process is modeled on two different
accuracy levels (cf. Section 5.2.1):

e In the Design Phase (Step 1 - 3), advanced pinch-based process models (Rede-
penning et al., 2016; Bausa et al., 1998) are used which allow for efficient cal-
culations while still being thermodynamically accurate. Process specifications
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and assumptions for the pinch-based process models are taken from Chapter 3.
The pinch-based process models inherently assume an infinite number of sepa-
ration stages and sharp component splits. Pinch-based process models thus give
a lower bound on process streams, in particular the minimum solvent demand
Smin and minimum energy demand Q.. In the Design Phase, the process op-
erating point, i.e., the extraction temperature Ty, is considered as a degree of
freedom and optimized.

e In the Refinement Phase (Step 4b), the flowsheet simulator Aspen Plus (V8.4) is
used to model the process with rigorous stage-to-stage calculations. The Aspen
Plus models are initialized fully automated with results from the pinch-based
process models. The optimized extraction temperature 7., determined in the
Design Phase by pinch-based process model optimization is fixed for the Aspen
Plus calculations. For Aspen Plus simulations, a fixed number of stages (50
in extraction and distillation) is assumed to approximate the minimum solvent
demand and minimum energy demand. The assumption of sharp component
splits is modeled with high purity specifications for component recovery (for
further process specifications, cf. Appendix C). The Aspen Plus simulations yield
the process minimum solvent demand Sy, and minimum energy demand Q.

5.3.2 Application of COSMO-CAMPD

The COSMO-CAMPD approach is applied to the case study to find optimal sol-
vents and optimize the operating point of the process. The algorithm is started by
setting the following process specifications (Step 1): A feed composition of zp =
(0.05,0.95,0.00) is assumed for the ternary system GVL-water-solvent. Complete re-
covery is required for the value component GVL in the distillation bottom B (Fig. 5.3).
Pressure in the distillation is set to p = 1bar whereas the temperature in the ex-
traction column Ty, is considered as free process variable z (Eq.(2.2)) to be opti-
mized in the Design Phase. Bounds for the extraction column temperature are set
to 25°C < Ty < 80°C. In addition, T, is constrained by the boiling temper-
ature of the solvent Tiiisolvent With a safety margin of 15 K. Designed solvents are
limited to molecules only containing carbon, hydrogen and oxygen atoms (Step 2).
Furthermore, alkynes are excluded due to stability concerns (cf. Chapter 3). The
fragment library for the optimization includes alkyl-, carbonyl-, carboxyl-, ether-,
hydroxy- and cyclic groups which can be found in Appendix C. In total, three con-
secutive COSMO-CAMPD optimization runs are performed, each with a termination
criterion of iy, = 50 generations and 40 solvents per generation (= 2040 generated
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molecular structures in total). Calculations are performed using an Intel Xeon CPU
E5-1660v3@3.00GHz workstation for COSMO calculations on 8 parallel cores. For
all designed solvents y, pure compound and mixture properties are predicted with
COSMO-RS and tested to meet required property constraints h(x,y) (Eq. (2.2)) (Step
2a):

e The number of heavy atoms in the solvents is (heuristically) constrained to a
maximum of np.x = 12 (¢(y), Eq. (2.2)) to avoid larger compounds with high
melting points.

e The existence of a miscibility gap between water and the solvent is mandatory for
a solvent to be used in extraction. Therefore, all solvent molecular structures y®
are tested for the existence of a binary liquid-liquid equilibrium (LLE) with water
in a preliminary feasibility test. This test is performed with the binary LLE
calculation option in COSMOtherm (COSMOlogic, 2015d) at low computational
expense. Solvents that do not exhibit an LLE are discarded.

e For solvents exhibiting an LLE, the pure component vapor pressure and heat
of vaporization are predicted by COSMO-RS with the procedure proposed in
Chapter 3. Limits on the boiling point are imposed by T" = 25 °C < Thgil solvent <
Thoil,gvi, to ensure that the extraction solvent is liquid at room temperature and
to obtain pure GVL in the bottom of the distillation column. Otherwise, solvents
are discarded.

e For solvents with suitable boiling points, mixture properties are calculated: For
liquid-phase non-ideal behavior, activity coefficients v are used in this work,
which are calculated by COSMO-RS. Parameters of the Non-Random Two Liq-
uid (NRTL) model (Renon and Prausnitz, 1968) are regressed for each solvent
) to express the liquid-phase non-ideal behavior (cf. Appendix A). In this work,
the search is confined to solvents with distillation topologies that allow for sim-
ple distillation. Thus, for the ternary system GVL-water-solvent, azeotropes
are determined using the algorithm proposed by Fidkowski et al. (1993). If
no ternary azeotropes and no binary azeotropes between the solvent and GVL
occur, the solvent is considered to be suitable for the process.

For all suitable solvents y(Ti])), the process model is optimized with predicted thermody-
namic data (Step 2b). Using the COSMO-CAMPD algorithm, solvent structures are
optimized iteratively until the termination criterion (imy.x = 50 generations) is reached
and a ranked list of solvents is returned (Step 3). For the top 50 most promising de-
signed solvents, thermodynamic properties are re-calculated on TZVPD-FINE level

in the Refinement Phase (Step 4) and automated rigorous process model calculations
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in Aspen Plus are performed. As a result, a final set of designed solvents is obtained
ranked by minimum process energy demand Qi on TZVPD-FINE level.

5.3.3 Results of the Design Phase

On average, 1804 solvents out of 2040 total generated solvents in each COSMO-
CAMPD optimization run meet the required specification on molecular size (nyax =
12, c¢(y), Eq. (2.2)) and are further evaluated in COSMOtherm. In an average run, 153
novel solvent are created and 1651 solvents are evaluated from the COSMO-CAMPD
databank (including chemical structures suggested repeatedly by the stochastic algo-
rithm). Further details on the optimization runs are given in Appendix C. The solution
time for one COSMO-CAMPD optimization run is in the range of one day leading to
an average evaluation time of 1 min per solvent and 12 min per COSMO calculation.
Out of 6120 overall designed solvents in three COSMO-CAMPD optimization runs,
693 solvents are unique (i.e., not counting chemical structures suggested repeatedly
by the stochastic algorithm) and fulfill the constraints ¢(y) and h(z,y) (Eq.(2.2)).
Thus, the average calculation time is 7.5 min for any unique solvent. These solvents
are evaluated on the process level (blue triangles in Fig.5.4). The solvents designed
by COSMO-CAMPD are compared to existing COSMObase solvents (COSMO-RS
database version COSMObase-1501-BP-TZVP, COSMOlogic (2015a)) to evaluate the
performance of the COSMO-CAMPD optimization. In COSMObase, 1390 solvents
meet the required criteria ¢(y) and h(z,y) (Eq. (2.2)). The COSMObase solvents are
shown as grey diamonds in Fig. 5.4 .

The best solvent designed by COSMO-CAMPD in the Design Phase is 1-(ethenyl-
oxy)buta-1,3-diene. It reduces the minimum energy demand Qi by 48 % compared
to the literature benchmark n-butyl acetate. 1-(Ethenyloxy)buta-1,3-diene reduces
the minimum energy demand Qi by 17 % compared to the best database molecule
furan. Fig. 5.4 shows the influence of minimum solvent demand Sy,;, on the minimum
energy demand @Q,i,. Generally, low S, leads to low Qin. Notably, a lower bound
for the minimum energy demand Q,;, exists which scales almost linearly with mini-
mum solvent demand Sy,;, (note: log-scale for @, in Fig.5.4). This lower bound is
formed by solvents, which are very easy to separate by distillation, e.g., solvents with
low boiling point and low enthalpy of vaporization. For these solvents, very small
internal reflux ratios are calculated and accordingly small minimum energy demand
Qmin. However, even for these solvents, the minimum solvent demand S, has to
be evaporated which leads to the almost linear relation between Sy, and Q.. For
all other solvents, no distinct correlation between minimum solvent demand S,,;, and
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the minimum energy demand (),;, is observed which supports the need for an in-
tegrated molecule and process design to identify optimal solvents on a process-level.
Most importantly, the optimum in minimum energy demand @), is not located at
the lowest minimum solvent demand Sy,;, (Fig. 5.4). Thus, a molecular solvent design
based solely on extraction would not identify the optimal solvent for the overall pro-
cess and an integrated process optimization is required to find the desired optimum
in minimum energy demand Qy-

5.3.4 Results of the Refinement Phase

The Refinement Phase (Step 4) has two steps (5.3): first (Step 4a), thermodynamic
predictions are refined on TZVPD-FINE level in COSMO-RS for the most promising
solvents. Second (Step 4b), pinch-based process models are refined by rigorous process
models in Aspen Plus (V8.4). As a result, a final list of ranked solvents on TZVPD-
FINE level and evaluated in rigorous process models is presented.

Refinement of parametrization (Step 4a). The top 50 designed solvents are
refined on the highest accuracy level (TZVPD-FINE) in COSMO-RS. In addition, all
designed solvents that are already available in the COSMO-RS database COSMObase
on TZVPD-FINE level are also included in the refined list of solvents to provide a
larger set of promising molecules for the design engineer. In total, 213 molecules are
considered in the final list of refined solvents on TZVPD-FINE level. The correlation
between the different COSMO-RS accuracy levels can be measured in terms of abso-
lute values (mean average percentage error MAPE or Pearson correlation coefficient
Ppearson) OF Tank (Spearman correlation coefficient pspearman). These correlation coef-
ficients p determine if a correlation between two variables is linear with p = +1 for
strictly positive linear relation and p = 0 for no linear correlation (cf. Chapter 3).

A comparison between TZVP vs. TZVPD-FINE shows good correlations for both
rank and value of ppearson = 0.87 and pspearman = 0.84. Yet, the mean average per-
centage error (MAPE) between TZVP and TZVPD-FINE is 50 % which is significant.
This rather high MAPE in this specific ternary system is caused by overestimating
the GVL solubility in water on TZVP level (cf. Section 5.4). However, the high lin-
ear correlation between TZVP and TZVPD-FINE shows that this overestimation is
systematic. Thus, the overestimation can be systematically corrected by higher ac-
curacy prediction on TZVPD-FINE level. Notably, the overestimated binary system
GVL-water is always present in the ternary system GVL-water-solvent and its binary
NRTL parameters are unchanged by the design. The prediction of GVL solubility in
water can thus be already improved in the Design Phase, e.g., by replacing COSMO-
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RS NRTL parameters by either TZVPD-FINE calculations or experimental NRTL
parameters for the binary GVL-water system (Zaitseva et al., 2016). Zaitseva et al.
(2016) observed noticeable deviations of predictive methods (GC and COSMO-RS)
from vapor-liquid-equilibrium measurements due to the complexity of modeling GVL.
However, Zaitseva et al. (2016) found that COSMO-RS showed better performance
than UNIFAC Dortmund in predicting VLE data which supports the use of COSMO-
RS in the present work. In the comparison of TZVP vs. TZVPD-FINE, the correla-
tion coefficients improve significantly using experimental binary NRTL parameters for
the binary GVL-water system (further referenced to as TZVP*). Most importantly,
the mean average percent error MAPE in predicting the minimum process energy de-
mand Qi, is decreased by over 20 %. Thus, if experimental NRTL parameters for the
solute/water system are already available, prediction quality in the Design Phase can
be improved. For this work, TZVP* is thus considered the best possible prediction in
the Design Phase. Yet, the comparably high correlation coefficients between TZVP
and TZVPD-FINE show that experimental data are not mandatory for the proposed
design method which can run fully predictive. If sufficient computing power and/or
time is available, COSMO-CAMPD could also be applied only on the TZVPD-FINE
level.

Refinement with rigorous process models (Step 4b). While an evaluation of
all designed solvents during the COSMO-CAMPD design with rigorous process models
is usually prohibitive in practice due to convergence problems, Aspen Plus calculations
can be performed automatically for the final set of TZVPD-FINE refined solvents.
For this purpose, rigorous process models are initialized by results from pinch-based
process models. Fig.5.5 shows the comparison between pinch-based and rigorous
process models. (To allow for most general comparison, process model predictions are
compared in Fig. 5.5 on TZVP level where a larger data-set is available).

The agreement between rigorous and pinch-based process models is particularly
good for the most promising solvents, i.e., for solvents with a low minimum en-
ergy demand. If only promising solvents with a minimum energy demand smaller
than 10 MJ kmol~! feed are considered, a rank correlation or Spearman’s coefficient
Pspearman = 0.87 can be found. Thus, the relative order of the solvents evaluated with
pinch-based process models in the Design Phase corresponds well to the relative order
of solvents evaluated with rigorous models in the Refinement Phase. The root-mean-
square error RMSE = 1.24 MJkmol™! is also small compared to the magnitude of
calculated minimum energy demands. The reason for the increasing deviations for
solvents with higher minimum energy demand is the use of a finite number of stages
in the rigorous model. For solvents with high minimum energy demand, the approx-
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Figure 5.5: Comparison of the minimum energy demand @, calculated with the
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ous simulations assuming 50 stages in extraction and distillation. Dotted
diamonds: solvents from database screening (1144 solvents converged in
Aspen Plus), solid triangles: solvents from COSMO-CAMPD optimization
(560 solvents converged in Aspen Plus). Red line: Literature benchmark
n-butyl acetate.

imation of infinitely many stages by 50 stages is not sufficient. However, since this
is only relevant for solvents with poor separability and therefore poor process perfor-
mance, these deviations seem to be not crucial for the solvent selection in this case
study. Nevertheless, the agreement could be easily improved using more stages in the
rigorous model. Due to the same reason, the pinch-based process models present a
lower bound for the rigorous process simulations. Overall, pinch-based process models
are considered sufficiently accurate and thus suitable for the solvent design.
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A list of refined solvents designed on TZVPD-FINE level and rigorous process sim-
ulations is the final output of the COSMO-CAMPD framework. Tab.5.1 shows the
top 10 designed solvents and further selected solvents with practical relevance (com-
mercially available, non-toxic according to manufacturer data (Sigma-Aldrich, 2017))
after the Refinement Phase. Solvents that are designed by the COSMO-CAMPD
framework and also contained in the COSMO-RS databank are indicated by 'DB’.

Table 5.1: Ranked list of solvents designed by COSMO-CAMPD with minimum en-
ergy demand Qg on TZVPD-FINE level, optimized temperature TP rank

in the design and reduction to benchmark (BM). Solvents that are also
available in COSMObase are indicated by (DB).

Rank Solvent Toot T Qrig Reduction to BM
°C °C MJ/kmolgeeq %
1 divinylether (DB) 39 25 2.66 —63
2 furan (DB) 48 25 2.99 —59
3 2-vinylfuran (DB) 104 36 3.44 —52
4 3-ethenylfuran 110 29 3.46 —52
5 3-methylfuran (DB) 72 43 3.62 —50
6 furan-3-yl formate 142 25 3.73 —48
7 furan-2-yl formate 149 25 3.75 —48
8 1-(ethenyloxy)prop-1-ene 72 47 3.75 —48
9 3-methoxyfuran 122 31 3.75 —48
10 2-methylfuran (DB) 76 47 3.85 —47
50 toluene (DB) 116 63 5.47 —24
BM n-butyl acetate (DB) 141 53 7.21

The best solvent designed by COSMO-CAMPD, divinylether reduces the minimum
energy demand Q,i; by 63 % compared to n-butyl acetate from Murat Sen et al. (2012).
50 % of the solvents in the top 10 and 58 % of the top 50 are designed molecules not
contained in COSMObase. Thus, COSMO-CAMPD significantly enlarges the space of
promising solvents by design. In order to analyze the importance of process settings,
the process calculations are repeated for a fixed extraction temperature. By using
optimized temperatures in the extraction, minimum energy demand Qi is reduced
by 5% on average for the refined set of 213 solvents. The effect of temperature opti-
mization on minimum energy demand ()i, is largest for solvents with high minimum
energy demand Q. In particular, higher temperatures are beneficial for solvents
of practical relevance 2-methylfuran (2MF, rank # 10 in Tab. 5.1, 3% reduction to
Textr = 25°C), toluene (rank #50, 12 % reduction to Ty, = 25°C) and the benchmark
n-butyl acetate (5% reduction to Ty, = 25°C). Notably, increased temperature has
a significant impact on toluene, i.e., the ranking improves by 9 ranks with optimized
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extraction temperature.

5.4 Experimental Validation of COSMO-RS
Prediction

The results of COSMO-CAMPD are compared to experimental LLE measurements to
validate the prediction of COSMO-RS thermodynamics. The experimental LLE mea-
surements are performed for the most promising non-toxic and commercially avail-
able solvents 2-methylfuran (#10 Tab.5.1) and toluene (#50 Tab.5.1) as well as
the benchmark solvent n-butyl acetate. The experimental LLE measurements are
performed using a highly automated setup combining an autosampler and gas chro-
matography (Dechambre et al., 2014a). The list of chemicals and details on the used
gas chromatography method are given in Appendix C. For the three experimentally
validated solvents, elevated temperatures are predicted to be beneficial in the design
and the Refinement Phase (cf.Tab.5.1). Thus, solvents are compared at ambient
level (Toxir = 25°C) and at elevated temperature (Toy,, = 40°C) to investigate the
predicted beneficial effect of temperature increase on minimum solvent and energy
demand. Fig.5.6 shows the comparison between experimental data (red dashed) and
COSMO-RS predictions (blue solid) for LLE of GVL-water-2MF at Tey, = 25°C for
the two COSMO-RS levels TZVP and TZVPD-FINE.

Overall, the shape of the LLE and the organic-phase compositions are well predicted
with COSMO-RS on both TZVP and TZVPD-FINE level. For TZVP (Fig.5.6), the
GVL concentrations in the water phase are predicted higher than experimentally
determined. On the process level, this overestimation of GVL concentration in the
water phase leads to an overestimation of the required minimum solvent demand
Srig- The reason for the overestimation of S, is the high sensitivity of the pinch-
based process model to GVL concentration in the water phase due to high purity
requirements by sharp splits. Thus, predicting larger solubility of GVL in the water
phase leads to an increased demand of solvent to completely recover GVL from the
aqueous phase. In addition, tie lines are less steep in comparison to experimental
values which also contributes to the overestimating of the required minimum solvent
demand Syig. In contrast, for TZVPD-FINE parametrization, the prediction of GVL
concentration in the aqueous phase improves with lower GVL concentrations in the
water phase and steeper tie-lines are predicted (Fig.5.6). This prediction leads to
a lower solvent demands S,,. The prediction quality of the GVL-water solubility
can be improved by using experimental parameters (TZVP*) as discussed in Section
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Figure 5.6: Experimental validation for designed solvent 2-methylfuran (2MF) with
COSMO-RS predictions on TZVP level (solid blue) vs. experimental data
(dashed red). Top: TZVP, bottom: TZVPD-FINE, both at 7" = 25°C.
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5.3.4. Since the binary system GVL-water is fixed during COSMO-CAMPD design,
it is possible to improve prediction of GVL concentrations in the water phase already
in the Design Phase without loss of general applicability. The comparison between
COSMO-RS predictions and experiments are very similar for the solvents toluene and
n-butyl acetate (ternary diagrams in the Appendix C). To validate the approach, the
solvents designed by COSMO-CAMPD, 2-methylfuran and toluene and are compared
to n-butyl acetate on the process level . Hereby, experimentally determined isothermal
NRTL parameters are input to the extraction process while temperature-dependent
NRTL parameters are used on the highest accuracy COSMO-RS TZVPD-FINE level
in the distillation. All solvents are evaluated in terms of minimum energy demand
and compared to results from the Refinement Phase. Fig. 5.7 shows the result of this
comparison.

A comparison of the COSMO-CAMPD predictions (dark blue back row bars in
Fig.5.7) to experimental data (red front row bars in Fig.5.7) show very good agree-
ment. The COSMO-CAMPD predictions generally overestimate the actual process
energy requirement and thus all solvents perform slightly better than predicted. How-
ever, this overestimation is systematic. The largest deviation is found for toluene at
Toxtr = 40°C. For this particular temperature, the minimum solvent demand for
toluene is not predicted quantitatively in the Refinement Phase. However, COSMO-
CAMPD successfully predicts the qualitative trend of benign elevated temperatures
for toluene extraction. Importantly, COSMO-CAMPD accurately predicts the relative
ranking of all solvents on all temperature levels. Thus, experimental data validates
the predicted performance of solvents designed by COSMO-CAMPD: toluene and 2-
methylfuran reduce the minimum energy demand @,z by up to 50 % in comparison
to the benchmark solvent n-butyl acetate (Tab.5.2).

Table 5.2: Minimum energy demand of experimentally validated solvents

Solvent Srig Qrig Textr Reduction to BM
kmol /kmolpeeq MJ /kmolgeeq °C %
2-methylfuran 0.04 3.21 25 50
toluene 0.05 3.57 40 44
n-butyl acetate (BM) 0.08 6.41 40 -

Toluene has recently been proposed for GVL-based co-solvent hydrolysis process
(Won et al., 2017) which indicates its practical relevance for the system GVL-water.
However, toluene is shown here to be outperformed by 2-methylfuran with both lower
minimum solvent demand S, and lower minimum energy @i, leading to decreased
process recycles and higher process efficiency. Additionally, 2-methylfuran can be di-
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Figure 5.7: Minimum energy demand for COSMO-CAMPD prediction in the Re-
finement Phase and experimental validation for n-butyl acetate (nBAC),
toluene (TOL) and 2-methylfuran (2MF). Dark blue rear row bars: Rigor-
ous process models with thermodynamic data on TZVPD-FINE level. Red
front row bars: Experimental LLE data for extraction, NRTL parameters
on TZVPD-FINE level for distillation. Extraction temperature indicated
by Textr = 25°C and Ty, = 40 °C.

rectly produced from lignocellulosic biomass (Alonso et al., 2013b) and thus seems
highly promising for an integrated process strategy. Therefore, 2-methylfuran is
proposed as the most promising, practically relevant designed solvent by COSMO-
CAMPD for the hybrid extraction-distillation of GVL. 2-Methylfuran, toluene and
the other top 10 solvents from COSMO-CAMPD (Tab.5.1) show high potential to
reduce the minimum energy demand and should therefore be further investigated for
future applications.
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5.5 Conclusions

In this chapter, a framework for the integrated molecule and process design is pre-
sented based on COSMO-RS with no need for experimental data and no limit to
molecular databanks. Computationally efficient design is achieved using two COSMO-
RS accuracy levels in two phases of the COSMO-CAMPD framework: In the Design
Phase, molecules are designed on medium accuracy level TZVP and evaluated on the
process level using fast and thermodynamically accurate pinch-based process models.
In the Refinement Phase, promising molecules are further evaluated using the highest
possible QM accuracy TZVPD-FINE and rigorous process models in Aspen Plus.

The case study for hybrid extraction-distillation of y-valerolactone shows that COS-
MO-CAMPD successfully designs promising solvents that are not contained in ex-
tensive databases: 58 % of the top 50 designed molecules are not contained in the
COSMO-RS database. A comparison of pinch-based process models calculations to
rigorous process simulation in Aspen Plus shows the high accuracy of the pinch-based
process models. An inherent overestimation in COSMO-RS of the GVL solubility in
aqueous phases is identified as possible improvement for the Design Phase. While the
fully predictive approach already yields accurate prediction results and a sound rank-
ing of the solvents, the use of experimental binary NRTL parameters for the system
GVL-water leads to significant improvement of the quantitative design results.

Results of the design approach are validated by experimental liquid-liquid measure-
ments; the promising and commercially available solvents 2-methylfuran and toluene
achieve 50 % reduction in process energy demand based on experimental LLE data.
Overall, COSMO-CAMPD allows for the efficient and successful design of solvents

leading to better process performance.
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CHAPTER 6

Integrated Process and Molecule
Design using COSMO-RS for
Reaction-Separation Processes

6.1 Introduction

In the previous chapter (Chapter 5), COSMO-CAMPD has shown convincing results
for the integrated design of solvents and separation processes. However, solvents do
not only impact separation steps but instead influence other process steps such as
chemical reactions. Chemical reactions are a key, e.g., for integrating fluctuating H,
from renewable energy into the chemical value chain. For this integration, a promising
concept is the conversion of CO, to CO via chemical storage (Behr et al., 2004). The
efficiency of this storage process, however, depends strongly on the solvents employed
and the process concept. To consider complex reaction steps in the design of optimal
solvents and processes, in this chapter, COSMO-CAMPD is extended towards a fully
integrated molecular and process design approach for reaction-separation processes
(Fig.6.1). For this purpose, process models for multiphase equilibrium reactions are
integrated in the COSMO-CAMPD framework and combined with pinch-based pro-
cess models to provide a sound and reasonably accurate design target. The extended
COSMO-CAMPD framework for reaction-separation processes is applied to identify
optimal solvents and process flowsheets for the production of CO from CO, using H,.
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Figure 6.1: Content of this chapter in the broader CAMD/CAMPD context. Line
with circles indicates the classification of the COSMO-CAMPD approach
for integrated process models presented in this chapter. COSMO-CAMPD
combines molecular design (large-scope molecular structure exploration
method) with QM-based COSMO-RS property prediction (large-scope
thermodynamic model) and pinch-based process models for reaction-

separation processes (large-scope process performance model.)

Major parts of this chapter have been published in:

J. Scheffczyk, P. Schéifer, C.M. Jens, K. Leonhard and A. Bardow, 2017. In-
tegrated process and solvent design using COSMO-RS for the production of
production of CO from CO, using H,. In Antonio Espuna, Moises Graells
and Luis Puigjaner (Eds.), Proceedings of the 27th European Symposium on
Computer Aided Process Engineering, volume 40 of Computer Aided Chemical

Engineering, pages 1765-1770. Elsevier, Amsterdam.
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6.2 Integrated Design of Molecules, Processes and
Flowsheets

6.2.1 Problem Specification

For the integrated molecule and process design problem for reaction-separation prob-

lems in this chapter, the general mixed-integer nonlinear problem MINLP (Eq. (2.2))
has to be extended to include the process flowsheet variants as degree of freedom:

minimize  F(z,vy, 2)

T
subject to  gi(w,y) =0 (thermodynamic model),
go(z,y,2) =0 (process model), (6.1)
hz,y,2) <0 (operating limits),
c(y) <0 (molecular constraints),

reR"yeY ze Z.

Here, F'(z,y, z) is the objective function (e.g., process exergy demand) depending on
three types of design variables: process variables x, the molecular structure y and the
process structure z. In this chapter, the variable x is a vector containing n continuous
process variables (e.g., reactor pressure). Molecules y can be either selected from a
databank or generated from a defined set of molecular fragments within the design
space of all possible molecules Y. To generate molecules y, the proposed COSMO-
CAMPD design algorithm is employed (cf. Chapter 5). The process structure z denotes
a flowsheet from a set Z of possible flowsheet variants. Equality constraints g;(x,y)
and go(z,y, z) encompass thermodynamic models and process models respectively. As
a thermodynamic model, COSMO-RS (Klamt, 1995) is used. Constraints on operating
limits are represented by h(z,y,z) < 0 (e.g., maximum reactor pressure or existence
of a miscibility gap). Molecular constraints on the designed molecules such as size or
structural feasibility are imposed by c(y).

6.2.2 Integrated Process and Molecular Design for
Reaction-Separation Processes

The MINLP optimization problem (Eq.(6.1)) is solved by the hybrid stochastic-
deterministic algorithm COSMO-CAMPD proposed in Chapter 5. The optimization
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algorithm is extended from Chapter 5 to account for process flowsheet structure op-

timization in reaction-separation processes (Fig. 6.2).
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Figure 6.2: Integrated process and molecule design approach COSMO-CAMPD with

extensions (dottet red boxes) from Chapter 5 to account for process flow-
sheet structure optimization in reaction-separation processes.

The full optimization approach for reaction-separation processes can be divided in

3 general steps:

88

1. The simulation is initialized (e.g., by specifying process variables and molecular

fragments as degrees of freedom for the optimization).

. Molecules y are optimized with COSMO-CAMPD according to the procedure

proposed in Chapter 5. COSMO-CAMPD creates explicit molecular structures
of a first generation i of molecules ). Molecules are evaluated based on the
objective function F(z,y,z) (Eq.(6.1)). The molecular design space is then
explored by genetic operations on the molecular structure by LEA3D (Douguet
et al., 2005) and a next set of molecules y® called generation i = i + 1 of



6.3 Case Study: Production of CO from CO, and H,

molecules is created until a specified termination criterion is reached, e.g., the
number of generation i = i,,x.

a) The molecular structures y are input to property prediction with COSMO-
RS (Klamt, 1995). In this chapter, all thermodynamic properties for pure
components and mixtures are calculated by COSMOtherm15 (COSMO-
logic, 2015d) using TZVP COSMO-RS parametrization (y(T’])) in Fig.6.2).

b) For all solvents y(Tll)j satisfying specified constraints ¢(y) and h(z,y, z)
(Eq. (6.1)), each process variant z is optimized with respect to continuous
process variables « by an NLP solver (here: MATLAB fmincon). The pro-
cess flowsheet is modeled using pinch-based process models (Redepenning
et al., 2016; Bausa et al., 1998) presented in Chapter 5. In addition, reactor
models are implemented in this chapter for chemical reactions in vapor-
liquid-liquid (VLLE) equilibrium and vapor-liquid-equilibrium (VLE) (for
details see Appendix D). Overall, unit operations for single-/multiphase
equilibrium reactions, distillation, heteroazeotropic distillation and extrac-
tion are evaluated.

3. When the termination criterion for the optimization is reached, the optimal so-
lution F'(x*,y*, z*) is obtained for the optimal molecule * in its optimal process
variant z* with optimized process parameters z*. Additionally, all molecules y
created during optimization are returned in all process variants z as a ranked
list for possible post-processing, e.g., for refinement or experimental evaluation.

In the following, the integrated molecular and process design approach is applied
to a case study of solvent and process design for the production of CO from CO, and
H2-

6.3 Case Study: Production of CO from CO, and
H,

A promising route for CO production from CO, and fluctuating H, supply is the use of
formic acid derivatives (Formates and formamides) as chemical storage molecules (Jens
et al., 2016). Jens et al. (2016) investigated several formic acid-based storage including
dimethylformamide (DMF), diethylformamide (DEF), diisopropyl-formamide (DIPF),
methylformate (MeF), ethylformate (EtF) and formic acid (FA). Among these storage
molecules, DMF has been identified to be most efficient (Jens et al., 2016). The
storage molecule MeF is predicted to be less efficient compared to DMF (Jens et al.,
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2016). However, the additional reactant for MeF synthesis, methanol, is considered a
promising solvent for CO,, capture (Gatti et al., 2014). Thus, MeF as storage molecule
could be used in an integrated CCU process which still indicates practical relevance
for MeF (Jens et al., 2018). The overall CO synthesis process strongly depends on the
employed solvents. Currently, solvents for the process are selected based on database
screenings and selection heuristics (Jens et al., 2016). This heuristic procedure limits
the design space and might results in suboptimal choices. In this chapter, systematic
process and solvent design is thus performed for the two promising storage molecules
MeF and DMF.

6.3.1 Process Specification

The process model is based on the process model developed by Jens et al. (2016) and
contains three fundamental steps (cf. Fig. 6.3):

Synthesis _ Storage Reforming

Solvent
CoO

Solvent
SMO
AR
H,O

Figure 6.3: Process variants for the conversion of CO, to CO. The structural decisions
(dashed lines) are ’solvent before (SB)/after (SA) synthesis’ and "purifica-
tion before (PB)/after (PA) reforming’. Abbreviations: storage molecule
(SMO), additional reactant (AR).

I Homogeneously catalyzed liquid phase synthesis of the storage molecule SMO
from CO, and H,. The SMO is determined by the selection of an additional re-
actant (AR): Methanol (MeOH) leads to the formation of the MEF (Eq. (6.2)),
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whereas Dimethylamine (DMA) leads to DMF (Eq. (6.3)). In both reactions,
water is formed as by-product.

H, + CO, + MeOH «+— MEF + H,0 (6.2)
H, + CO, + DMA <— DMF + H,O (6.3)

IT Storage of the storage molecule MEF or DMF

[T Continuous reforming of storage molecule SMO releasing CO and additional
reactant AR for recycling to the synthesis reactor (Eqgs. 6.4 and 6.5).

MEF +— CO + MeOH, (6.4)
DMF +— CO + DMA. (6.5)

The integrated design of solvents and process in this chapter considers all reaction
steps as well as the separation sequences for both sub-processes: the SMO synthesis
(Step I) and the reforming to CO (Step III). Four structural design decisions are
explicitly considered for the flowsheet (cf. Fig. 6.3):

In the synthesis step, a solvent is used to separate the storage molecule SMO from
the aqueous phase which contains the homogeneous catalyst and can be recycled
after the separation. Solvent can be added to the process either before (SB) or after
(SA) the synthesis reactor (cf. Fig.6.3). The solvent has several tasks, e.g., shifting
the reaction equilibrium, extracting the storage molecule SMO after synthesis and
enhance the purification. Obviously, there are trade-offs between these tasks: A high
affinity between the solvent and the storage molecules SMO is generally preferred
for reaction and extraction, but complicates the separation. The balance between
these trade-offs differs in the individual processes flowsheets. Major advantage of
SB process flowsheets is that the solvent can shift the reaction equilibrium to higher
yields whereas for SA process flowsheets, the extraction performance is enhanced by
multi-stage extraction.

In the reforming step, the purification strategy has a strong impact on the overall
process. Here, the storage molecule SMO and additional reactant AR can either be
purified before (PB) or after (PA) being fed to the reforming reactor (cf.Fig.6.3).
PA and PB process flowsheets differ in the main separation step: In PB flowsheets,
storage molecule SMO and additional reactant AR are recovered from water and
solvent. In PA flowsheets, only additional reactant AR needs to be recovered from
water and solvent. Depending on the intermolecular interactions and resulting (non-

91



Chapter 6 CAMPD for reaction and separation processes using COSMO-RS

ideal) thermodynamics, one flowsheet variant might be favored over the other. E.g.,
for PB flowsheets, on the one hand, four components are present in the separation
(cf. Fig. 6.3) which increases the possibilities for complex mixture topologies such as
azeotropes that complicate the separation. On the other hand, for PB flowsheets, a
smaller stream has to be vaporized for reforming leading to lower exergy demand in
this process step. These complex trade-offs highlight the need for an integrated design
approach requiring sound non-ideal thermodynamics and process-level assessment.

In total, there are four combinations of structural decisions, leading to four explicit
flowsheets process structures z (Eq. (6.1), Z = {SB|PB,SA|PB,SB|PA,SA|PA}).
In addition to structural decisions, two continuous process variables z (Eq. (6.1)) are
considered in the synthesis reactor: The reactor pressure x; and the solvent to water
ratio xo. The objective function F(z,y, z) for the optimization problem (Eq. (6.1)) is
the energy demand per mol CO measured in exergy (Jens et al., 2016). The exergy
demand contains here the work for compression of CO, and H, to synthesis reaction
pressure (Eeomp), the minimum exergy demand for distillation columns (Epei + Eeond)
in the separation steps and the exergy for vaporizing the feed of the reforming reactor

(Byap):

F(.CE, Y, Z) = Ecomp + Evap + Ehoit + Econd- (66)

Notably, the contribution F..,q appears with a negative sign in the minimum exergy
demand Eq. (6.6), if cooling occurs above the reference temperature for exergy calcu-
lation (cf. Appendix D). L.e., Epoy and Eeong have opposite signs, if both heating and
cooling occur above reference temperature. If heating above reference temperature
and cooling below reference temperature is required, both Ey.; and F,,q contribute
to minimum exergy demand with same signs.

6.4 Reaction-Separation Process Models

The process models employed in this chapter depend on the flowsheets process struc-
tures Z = {SB|PB,SA|PB,SB|PA,SA|PA}. A general overview of the employed
models is given in this section. Detailed process specifications and explicit flowsheets
can be found in Appendix D.
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6.4.1 Reactor Models

In the synthesis step, homogeneously catalyzed liquid-phase synthesis of the storage
molecule SMO is performed (Jens et al., 2016). The synthesis reactor is modeled as
equilibrium reactor and operates at 25°C. The reactor pressure x; is optimized with
respect to process exergy demand (Eq. (6.6)). Gibbs free enthalpies of reaction AGig g
are taken from Jens et al. (2016). Reactants H, and CO, are assumed to be completely
removed from the reactor outlet by flashing to ambient pressure.

Retention of the catalyst and extraction of the storage molecule SMO is achieved
by addition of a solvent depending on the flowsheet process structure (cf. Fig.6.3).
Two possible reactor types are considered: In SA process flowsheets, CO,, H,, ad-
ditional reactant AR and water are fed to the synthesis reactor (Fig.6.3), thus a
vapor-liquid equilibrium (VLE) synthesis reactor is employed. After the synthesis,
storage molecule SMO is extracted using an extraction column to recover the SMO
and retain the catalyst in the aqueous phase. For SB process flowsheets, the solvent
is added before the reaction leading to a vapor-liquid-liquid equilibrium (VLLE) with
in situ extraction of the storage molecule SMO in the extraction phase and catalyst
retention in the aqueous phase.

In this chapter, a multiphase reactor model is implemented that simultaneously
solves the reaction and phase equilibria. All details for the reactor model are given
in Appendix D. The quality of the reactor model was validated for the VLLE reactor
in a comparison against Aspen Plus simulation using the built-in RCSTR equilib-
rium reactor model. For a validation set of 4731 reaction solvents from COSMO-RS
database (converged solvents in database (COSMOlogic, 2015a) screening for MeF:
1962 and DMF: 2769), excellent agreement is achieved: A comparison of the reactor
output concentrations of storage molecule SMO between Aspen Plus RCSTR and the
multiphase reactor leads to a coefficient of determination of R? = 0.975. This quality
of the multiphase reactor model is thus considered sufficiently accurate.

For the reforming step, full conversion of the storage molecule SMO is assumed
at a sufficiently high temperature (Supronowicz et al., 2015). Selectivity is assumed
to be 100 %. All CO is released after the reaction by cooling the reactor outlet.

6.4.2 Separation Models

As in previous chapters, purification by distillation or extraction unit operations are
considered in this chapter. I.e., for the design of the sequence of separation units,
pinch-based process models are employed for extraction (Redepenning et al., 2016)
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and distillation (Bausa et al., 1998). The pinch-based process models assume an
infinite amount of separation stages and sharp splits for the components (cf. Chapter
3). In the pinch-based process models for extraction and distillation, the minimum
solvent demand and minimum energy demand are determined respectively. Based on
minimum energy demand, the exergy demand for separation in this process (Eq. (6.6))
is determined by considering heating (cooling) demand of the reboiler (condenser) in
the distillation columns and the respective temperatures. Other heating or cooling
devices (e.g., preheating of the feed streams to boiling temperature) are assumed to
be negligible. Calculation details can be found in Appendix D.

For extraction columns (SA process flowsheets), pure solvent is used for the
extraction and the storage molecule is fully recovered from the reactor outlet. A liquid-
liquid-equilibrium (LLE) with water is required for all solvents. Thus, all solvents in
the integrated process and solvent design are tested for the existence of a LLE with
water; furthermore, only extraction solvents are considered which are liquid at 25°C
(cf. Chapter 5).

The structure of the distillation sequence depends on the chosen process variant
(PB or PA) and the topology of the mixture. The mixture topology (boiling points,
regions of immiscibility, azeotropes) is determined fully automated using an algorithm
by Fidkowski et al. (1993). Based on the mixture topology, structural decision rules
are applied to specify the separation sequence and automatically applied by the design
algorithm:

e For distillation, simple distillation columns are considered. The columns are
modeled using the rectification body method (RBM, Bausa et al. (1998)). Sharp
splits are carried out in all columns, drawing off pure components either at the
top or at the bottom of distillation columns.

e Solvents forming homogeneous azeotropes cannot be recovered by simple dis-
tillation and are thus discarded. For solvents forming a heteroazeotrope with
water, the solvent/water separation can be achieved in heteroazeotropic distilla-
tion. Pinch-based process models for heteroazeotropic distillation exist (Kramer
et al. (2011a)) but are currently not available for large-scale automated solvent
evaluation. Heteroazeotropic distillation in this chapter is thus approximated
by combining a phase separator and two distillation columns. This assumption
can lead to possible deviations of phase compositions (Krdmer et al., 2011b)
and should thus be validated, e.g., using rigorous simulations in consecutive
validation steps (Skiborowski et al., 2015b).

e For PB variants, separation of additional reactant AR from storage molecule
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SMO is performed (if possible) by simple distillation. If no heteroazeotrope
between water and the solvent exists, separation of water and solvent is per-
formed in two consecutive columns. If a heteroazeotrope between water and the
solvent exists, the variant is considered feasible if water and solvent both boil
lighter or heavier than the storage molecule SMO and the additional reactant
AR. In this case, SMO and AR are removed in two consecutive columns before
heteroazeotropic separation of water and solvent.

e For PA variants, if no heteroazeotrope between water and the solvent exists,
water and solvent are removed subsequently before the reforming step. If a
heteroazeotrope between water and the solvent exists, the additional reactant
AR is removed before the heteroazeotropic separation of water and the solvent
is performed.

The overall excellent agreement between pinch-based process models for extraction
and the distillation and their respective rigorous model has been presented in previous
chapters (Chapter 3, Chapter 5). Thus, the process models are considered sufficiently
accurate in comparison to rigorous process models and are employed for COSMO-
CAMPD.

6.4.3 Application of COSMO-CAMPD

For the integrated process and solvent design, COSMO-CAMPD is applied to identify
the optimal solvent y* with optimal process conditions z* in the best possible process
topology z* (Eq. (6.1)). The procedure is started by initializing the process and solvent
design setting the following specifications (Step 1): The storage molecule SMO for
an optimization run is defined as well as the corresponding the additional reactant
AR. Components present in the optimization are thus CO,, H,, AR, SMO, water
and solvent. Temperature in the reactor is set to 7' = 25°C while pressure in the
reactor is considered a continuous optimization variable z; (Eq.(6.1)). The pressure
is initialized depending on the SMO (for DMF: p = 1bar, for MeF p = 100 bar)
and bounds are set accordingly (cf. Appendix D). The composition of the reactor feed
consists of stoichiometric H,, CO,, and AR. For SB variants, solvent is added to the
reactor while solvent to water ratio is considered a process variable x5. Pressure in
the distillation columns is set to p = 1bar. Temperature in the extraction is set to
25°C (For SA variants). Possible molecular fragments y (Eq. (6.1)) for solvents are
set to contain methyl-, ethyl-, propyl-, butyl-, phenyl-, carbonyl-, carboxyl-, ether-,
hydroxyl- and cyclohexyl-group fragments as well as alkynes and nitrogen or halogen
containing molecules. A comprehensive list of employed molecular fragments y is given
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in Appendix D.

Three COSMO-CAMPD optimization runs are performed for each storage molecule
SMO, each with a termination criterion of 7,,, = 50 generations and 40 solvents per
generation (2040 molecules in total per generation). The optimization runs are per-
formed on an Intel xeonCPUE5-1660v3@3.00GHz workstation using 8 parallel cores.

For the designed solvents, thermodynamic properties are calculated by COSMO-
RS (Step 2.1). Pure component properties calculated are vapor pressure and enthalpy
of vaporization. Mixture component properties are non-ideal vapor-liquid phase and
liquid-liquid phase data. For all mixture data, temperature-dependent Non-Random
Two Liquid (NRTL, Renon and Prausnitz (1968)) parameters are predicted for com-
ponents present in the process with the procedure proposed in Chapter 3. All designed
solvents are required to meet certain constraints (h(z,y, z) and c(y), Eq.(6.1)) and
are discarded from the optimization else. The constraints are:

e Number of heavy atoms is constrained (n,.x = 12) and a miscibility gap with
water and solvents is mandatory for either VLLE (SB variants) or extraction (SA
variants). Thus, solvents are tested in an automated procedure for the existence
of a binary liquid-liquid equilibrium (LLE) with water by the fast binary LLE
calculation option in COSMOtherm (COSMOlogic, 2015d).

e Pure component properties are predicted and checked for limits on boiling points
(T = 25°C < Thoisolvents) t0 guarantee a liquid-phase in the VLLE reactor
(variant SB) as well as in the extraction column (variant SA).

e For solvents that meet the previous constraints, mixture properties are predicted
with COSMO-RS with the procedure proposed in Chapter 3. Mixture topology
for the multicomponent system CO,, H,, AR, SMO, water and the solvent
is identified by determining azeotropes and boiling points with the procedure
proposed by Fidkowski et al. (1993). Solvents with mixture topologies according
to specifications in Section 6.4.2 are considered suitable solvents y%)) for the
process.

For suitable solvents y(Ti])), process models are optimized for each possible process
variant z (Step 2.2). Based on the topology of the flowsheet variant Z, flowsheets
are automatically assembled according to specifications (Section 6.4.2). For each pro-
cess model, the process parameters x are optimized with respect to exergy demand
(Eq. (6.1), Step 3). The solvent structure is optimized iteratively with COSMO-
CAMPD, until a maximum iteration (imax = 50 generations) is reached. As a re-
sult, the optimal solvent structure y* with optimized process settings z* and z* is
returned. Also, a comprehensive list is returned containing all solvents created dur-
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ing the COSMO-CAMPD optimization that can be further processed by the design
engineer.

6.5 Results for Integrated Process and Solvent
Design

To benchmark the integrated process and solvent design approach, first, a database
screening is performed for all solvents in the COSMO-RS database (COSMOlogic,
2015a). Thus, solvents y (Eq. (6.1)) are explicitly enumerated for all solvents (10, 000)
in the COSMO-RS database and assessed by process exergy demand (Eq. (6.6)). Two
storage molecules are considered which leads to over 80,000 overall process and sol-
vent combinations. Fig. 6.4 shows the results of the COSMO-RS database screening
where each data point corresponds to a solvent with its optimal process flow sheet
z* and optimized parameters x*. For MEF, 2,958 solvents lead to feasible processes
and 2,403 for DMF. The solvent with the lowest exergy demand identified in the
screening is 3-methyl-1,2-butadiene (F'(z*,y,2*) = 24.8kJmol '¢o ) for DMF as a
storage molecule and employs the SA|PA process variant. The solvent screening re-
veals process-inherent trade-offs: For the storage molecule MEF (Fig.6.4A), a general
trend exists towards low exergy demand for high MEF concentrations after synthesis
indicating a strong influence of the reaction on process exergy demand. This strong de-
pendency is due to high optimal reactor pressures for MEF synthesis (z; ~ 100 bar)
which compensate low equilibrium concentrations of MEF under ambient pressure.
Solvents shifting the reaction equilibrium towards high MEF concentrations after
synthesis thus allow for lower reactor pressures and decreased exergy demand for
compression. In contrast, high DMF concentrations after synthesis are already ob-
tained under low reactor pressures (x; ~ 1bar). Thus, for DMF no distinct trend
exists between exergy demand and concentration after synthesis (Fig.6.4B), which
further emphasizes the need for an integrated process-based solvent evaluation.

To design the optimal solvent for the process, the integrated process and solvent
design approach based on COSMO-CAMPD (cf. Fig. 6.2) is applied for both storage
molecules MEF and DMF'. Since the approach employs a stochastic algorithm, 3 opti-
mization runs are performed for each storage molecule. In each run, 2040 solvents are
generated in 51 generations with a computational demand of 2 days on 8 parallel cores.
For both storage molecules, MEF and DMF, COSMO-CAMPD designs molecules that
reduce the exergy demand compared to the best solvents from screening. In case of
MEF, the improvement is comparably small (4.6 %, cross in Fig. 6.3A).
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synthesis reactor. Fig.6.4A: MEF as SMO, Fig.6.4B: DMF as SMO for
all feasible solvents. The shape of symbols indicates for each solvent the
optimal process flowsheet variant (SB|PB, SA|PB, SB|PA, SA|PA). The
cross marks the best solvent designed by COSMO-CAMPD.
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However, for DMF, the already lower exergy demand per mol CO is further re-
duced by 12.1% (cross in Fig.6.4). The overall best solvent for the process designed
by COSMO-CAMPD is penta-1,2,4-triene for DMF as storage molecule in SB|PA pro-
cess variant (F(z*,y*, 2*) = 21.8kJmol~'¢p). Comparing the best solvent designed
by COSMO-CAMPD to the best solvent identified by the database screening high-
lights the need for an integrated design of processes and solvents: Although both sol-
vents have similar molecular structures (acyclic hydrocarbons with 5 C atoms and only
single and double bonds), the optimal process flowsheet differs (SB|PA vs. SA|PA).
The molecule designed by COSMO-CAMPD shows a high affinity for DMF (SMO
concentration after synthesis: 0.28 molmol™!) which favors the addition of solvent
before the synthesis reactor (SB|PA variant). However, the SMO concentration after
synthesis is not a sufficient indicator for the overall process performance due to com-
plex trade-offs in molecular properties. The effect of these trade-offs can be visualized
by a breakdown of contributions to the total process exergy demand (Eq. (6.6)) for a
set of top solvents (Fig.6.5).

The solvents in Fig.6.5 are the solvent leading to the highest reaction conversion
(1h,8h-hexadecafluorooctane, hfOCT), the best solvent identified in the screening
(COSMObase) and the best solvent designed by COSMO-CAMPD. For each solvent,
contributions to total process exergy are normalized to the overall process exergy de-
mand F(x,y,z) (Eq.(6.6)) for the respective solvent. The high equilibrium reaction
conversion of hfOCT (&{ui0cT = 0.93, light blue in Fig. 6.5) indicates a high affinity
of the solvent for the SMO. This high affinity is reflected in the favored process flow-
sheet variant (SB|PA) and high concentrations of the storage molecule SMO after
synthesis (rsmo = 0.28 molmol™1). This high affinity comes at the price of a difficult
separation with large exergy demand contributions of E.,, and Ey (Fig.6.5). In
contrast to hfOCT, the best solvent identified in COSMObase (red in Fig.6.5) shows
low exergy for separation (Ey.p, and Ei.;). However, the poor extraction quality of
the solvent (rsmo = 0.07molmol™!) leads to large solvent streams and increased
cooling demand F.y,q. The solvent designed by COSMO-CAMPD balances these ef-
fects: The solvent has a medium reaction conversion ({cosmo.campp = 0.81) which
is reflected in the comparably high exergy demand for compression Eom,. However,
the solvent allows for effective extraction (zgmo = 0.28 molmol™!) in a single stage
(SB|PA process flowsheet) and low-exergy distillation. Thus, the solvent designed
by COSMO-CAMPD efficiently performs reaction, extraction and separation leading
to balanced exergy contributions and the lowest total process exergy demand. The
complex process trade-offs further highlight the importance of molecular design based
on process-level information in COSMO-CAMPD.
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three solvents using DMF as storage molecule. Solvents are 1h,8h-
hexadecafluorooctane (highest reaction conversion, light blue, SB|PA pro-
cess flowsheet), best solvent identified in COSMObase (red, SA|PA pro-
cess flowsheet) and best solvent designed by COSMO-CAMPD (dark blue,
SB|PA process flowsheet). Contributions to process exergy demand are
work for compression (Ecomp), exergy demand for distillation columns
(Evoit + Feona) and exergy for vaporizing the feed to reforming reaction
(Eyap)- For each solvent, contributions to process exergy demand are nor-
malized to the overall process exergy demand F(z,y, z) (Eq. (6.6)) for the
respective solvent.



6.6 Conclusions

6.6 Conclusions

In this chapter, an integrated molecular and process design approach is presented
based on COSMO-RS for reaction-separation process. Molecules are evaluated by
deterministic process flowsheet optimization using pinch-based process models. The
process models consider single-/multiphase equilibrium reactions, distillation, het-
eroazeotropic distillation and extraction and thus allow to capture process-inherent
trade-offs. The optimization approach is applied for solvent design in the production
of CO from CO, and H, based on a sound process-level design target. The optimiza-
tion considers different chemical storage molecules, process flowsheet variants and
continuous process variables. The designed solvents improve the process performance
by more than 12 % compared to a massive database screening of over 80,000 combi-
nations of solvents and structural process variants. Thus, COSMO-RS is efficiently
integrated in molecular and process design considering separation, flowsheet selection
and complex reaction process steps.
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CHAPTER 7

Summary, Conclusions and Future
Perspective

7.1 Summary and Conclusions

In this thesis, quantum mechanics (QM)-based property prediction by COSMO-RS is
systematically integrated into computer-aided molecular and process design. The in-
tegration is established stepwise by extending current CAMD/CAMPD approaches
with limited-scope key elements towards large-scope CAMD/CAMPD approaches
(Fig. 7.1):

The first step towards integration of COSMO-RS into CAMPD is presented in
Chapter 3. In this chapter, a method is presented for efficient process-level eval-
uation of solvents using COSMO-RS property prediction and pinch-based process
models for separation unit operations. The approach is not limited to a reduced
number of components which is highlighted for a fully automated solvent screening
of a large-scale database for the hybrid extraction-distillation of the platform chem-
ical y-valerolactone. Results show that more than 4600 solvents can be screened
fast and efficiently with the presented screening approach. Novel promising solvents
are identified with predicted better performance than the literature benchmark n-
butyl acetate. Overall, the proposed solvent screening approach efficiently combines
COSMO-RS property prediction with a comprehensive process-level assessment.

The second step towards COSMO-RS-based CAMPD is the integration of quantum
mechanical information into CAMD in Chapter 4. For this purpose, COSMO-CAMD
is presented as a framework for molecular design based on COSMO-RS. In COSMO-
CAMD, optimization-based molecule design is achieved with the genetic algorithm
LEA3D, which creates 3D molecular structure information as input for COSMO-
RS. A hierarchical approach is developed employing two accuracy levels for quantum
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Figure 7.1: Contribution of this thesis in the broader CAMD/CAMPD context. Ar-
rows indicate the target of this thesis, check-marks indicate the established
large-scope CAMPD approach in this thesis.

mechanics. The resulting framework allows to explore a large search space (+1000
molecules within days) by optimization. In two case studies, the COSMO-CAMD
framework is shown to successfully design novel promising solvents in liquid-liquid
extraction of phenol and hydroxymethylfurfural from water. The case studies for
phenol and HMF liquid-liquid extraction from water show that COSMO-CAMD suc-
cessfully designs promising novel solvents, predicted to have better performance than
molecules contained in extensive databases. Thus, COSMO-CAMD successfully inte-
grates QM-based property predictions into CAMD and overcomes limitations of both,
experimental and database screenings.

The application of COSMO-RS is fully extended towards CAMPD in Chapter 5
by presenting COSMO-CAMPD. COSMO-CAMPD builds upon COSMO-CAMD de-
veloped in Chapter 4. To overcome limitations of thermodynamic property-based
targets, COSMO-CAMD is combined with pinch-based process models established in
Chapter 3. The resulting COSMO-CAMPD framework is applied to a case study
for solvent design in an extended process model for the hybrid extraction-distillation
process from Chapter 3. The case study shows that COSMO-CAMPD successfully
designs promising solvents that are not contained in extensive databases. A com-
parison of pinch-based process models calculations to rigorous process simulation in
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Aspen Plus shows the high accuracy of the pinch-based process models. Predictions
of COSMO-CAMPD are validated by experimental liquid-liquid measurements: the
promising and commercially available designed solvents 2-methylfuran and toluene
achieve 50 % reduction in process energy demand based on experimental LLE data.
Thus, COSMO-CAMPD allows for the efficient and successful design of solvents lead-
ing to better process performance.

Complex process flowsheets such as the design of CO from H, and CO, require the
consideration of solvent effects in reaction and separation steps. Thus, in Chapter 6,
the COSMO-CAMPD framework developed in Chapter 5 is extended to design sol-
vents in complex multiphase reactions and separation flowsheets. Solvents are evalu-
ated by deterministic process flowsheet optimization using pinch-based process models
for reaction and separation. The process models consider single-/multiphase equilib-
rium reactions, distillation, heteroazeotropic distillation and extraction and thus allow
to capture process-inherent trade-offs. The optimization approach efficiently designs
novel solvents for the production of CO from CO, and H, based on a sound process-
level design target. The optimization considers different chemical storage molecules,
process flowsheet variants and continuous process variables. The designed solvents
improve the process performance by more than 12 % compared to a massive database
screening of over 80,000 combinations of solvents and structural process variants.

Overall, the integration of COSMO-RS into CAMPD in this thesis allows for the de-
sign of tailor-made molecules in optimized processes free from limitations to experiment-
based, data-driven property prediction and simplified performance targets. The pro-
posed approaches in this thesis thus significantly enlarge the molecular design space
while allowing for sound and efficient molecular evaluation on process-level. This thesis
thus successfully extends the range of QM-based property prediction with COSMO-RS
towards integrated molecular and process design.

7.2 Future Perspective

The integrated molecule and process design approach in this thesis focuses on a
process-evaluation of molecules. However, the need for sustainable solvent design
has been highlighted (Anastas and Zimmerman, 2016) based on green-chemistry prin-
ciples (Gilbertson et al., 2015), toxicity limitations (Kostal et al., 2015) as well as
a large spectrum of environmental, safety, and health aspects (Whelton et al., 2015;
Zimmerman and Anastas, 2015; Voutchkova et al., 2011). Accordingly, environmental
assessment of processes in an early development stage has gained increasing interest
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in recent years (Broeren et al., 2017). Conversely, integrated molecule and process
design is currently limited to focus on techno-economics, i.e., novel solvent for a pro-
cess are not selected based on environmental criteria. Highly desirable would thus be
a method for early stage process and molecule design considering both economic and
environmental performance criteria.

Here, further development of COSMO-CAMPD could bridge the gap between en-
vironmental and economic targets. Future research should thus focus on integrating
COSMO-CAMPD in a predictive framework that allows for molecular and process
design beyond common categories of economic process performance. Instead, large-
scale ecosystem implications of process and molecule design should be considered,
e.g., based on life-cycle assessment (LCA). Such a predictive framework could be en-
visioned in a multi-level, integrated design approach spanning levels from molecule to
the ecosystem (Fig.7.2). The multi-level design approach should encompass molecule
design, experimental data validation, process optimization and ecosystem considera-
tion (Fig.7.2). For each level, future research targets can be identified. Eventually,
the individual contributions to each level should be integrated in a multi-level design
framework. In the following, a perspective on single- and multi-level research targets
is given.

Molecule-Level Perspective: COSMO-CAMPD currently relies on heuristic
optimization which comes at the risk of limited convergence speed and the lack
of knowledge about global optimal solutions (cf. Chapter 2). Here, future research
should improve the performance of molecular optimization in COSMO-CAMPD, i.e.,
speed up the optimization procedure and establish a measure for quality of the
optimization results. Current approaches to improve computational speed of QM-
based CAMD/CAMPD combine QM-based and data-driven prediction methods. E.g.,
group-contribution (GC) methods are used to pre-evaluate molecules to identify tar-
gets for full QM optimization (Lehmann and Maranas, 2004; Struebing et al., 2013).
However, these methods depends on the available data for GC parametrization (cf.
Section 2.3.1). Here, data for GC parametrization could be provided by large-scale
database screenings presented in this thesis (cf. Chapter 3), e.g., by data regression
of GC parameters to screening results. Thus, future research should aim at integrat-
ing database screening information into molecular design to improve the optimization
efficiency of COSMO-CAMPD. To address the challenge of finding global optimal
solutions to CAMD/CAMPD problems, deterministic optimization methods can be
employed such as branch-and-bound (BnB) algorithms (cf. Section 2.2.2). Commonly,
deterministic optimization methods depend on the relaxation of integer variables that
describe the molecular structure. Thereby, current deterministic optimization ap-
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proaches rely on simple property prediction methods such as first order GC methods
where full structural information of the molecules is neglected (Sahinidis et al., 2003).
In contrast, molecules in COSMO-CAMPD are input to iterative DET/COSMO cal-
culations which require 3D molecular geometry information. Thus, the relaxation of
molecular structures is not trivial in COSMO-CAMPD. First, the number of inte-
ger variables describing the molecular structure in COSMO-CAMPD is tremendous
compared to, e.g., first-order GC description leading to a significant increase of op-
timization variables. Second, for each value of these relaxed optimization variables,
deterministic optimization algorithms would require full iterative QM calculations
which comes at high computational costs. An alternative to optimization based on
relaxation are derivative-free optimization algorithms which still allow for near-global
solutions (Rios and Sahinidis, 2013). Derivative-free optimization algorithms could
thus be a possible way to increase optimization performance in COSMO-CAMPD
and should be further investigated.

Experiment-Level Perspective: For multi-scale molecular and process design
problems, reliability becomes an issue that requires optimization under uncertainty
(Sahinidis, 2004; Zhou et al., 2015a). The key for a reliable process-level assessment
of novel molecules and processes are experimentally validated input data for process
simulations. To increase reliability and applicability of process model predictions,
so-called self-optimized process design concepts have been proposed with integrated
feedback from experiments (Lapkin et al., 2017; Houben and Lapkin, 2015). However,
mostly empirical models such as response-surface models are currently employed in
such approaches (Jacob et al., 2017). Conversely, a direct feedback to processes from
experimental measurements by optimal experimental design (OED) can significantly
improve process modeling quality (Franceschini and Macchietto, 2008). Currently,
OED is mostly limited to improvement of a single experiment that yield one kind of
physical property (Franceschini and Macchietto, 2007). A system-wide feedback from
OED in a closed-loop COSMO-CAMPD optimization procedure would thus be highly
desirable. Here, future research should focus on improving accuracy and reliability
of COSMO-CAMPD predictions by learning from optimally designed experiments.
E.g., an integrated framework for selection and refinement of thermodynamic models
could be envisioned. The framework should use optimal experimental design (OED)
to gather sensitivities of process models for predictive thermodynamic data. Based
on these sensitivities, optimal experiments for maximum improvement in predictive
data need to be identified. Furthermore, an automated experimental measurement
procedure could be established for improving quality of thermodynamic prediction
by an adaptive selection of appropriate thermodynamic prediction. E.g., coupling
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COSMO-RS with equation of state models leads to improved quality of property pre-
diction (Kaminski et al., 2017). Re-parametrized models can then integrate novel data
from higher-level theory and/or experiments to improve COSMO-CAMPD prediction
quality. Overall, a combination of COSMO-CAMPD with OED reduces experimental
effort and offers guaranteed accuracy and validated predictions.

Process-Level Perspective: Currently, process-level models in COSMO-CAMPD
provide input for the predictive assessment of energy demand in molecule and process
design. The COSMO-CAMPD approach is based on pinch-based process models that
are inherently limited to the assumption of infinite separation stages and equilibrium
reactions. These models cannot account for overall process costs and the ranking of
designed molecules might be biased. In order to enable a process evaluation directly
based on process cost, two major tasks need to be tackled: First, costs for reaction
steps need to be determined. Reaction steps scale with the size of employed reactors
that in turn depend on reaction kinetics. Similarly, complex reaction networks can
lead to undesired selectivity and yield, which often requires elaborate reactor designs.
Recently, predictive reaction models using quantum chemistry have been successfully
applied to solvent selection problems in chemical reaction engineering (Austin et al.,
2018; Zhou et al., 2015a; Struebing et al., 2013). Thus, future research should ex-
tend COSMO-CAMPD to account for reaction costs based on reaction kinetics from
QM property prediction. Second, costs for reaction steps need to be integrated in
a cost-based assessment of the overall process. Here, COSMO-CAMPD needs to be
combined with optimization-based evaluation of the minimum total annual costs by
rigorous equilibrium tray models. E.g., a hierarchical approach can be envisioned
that designs molecules employing pinch-based process models and assessing top de-
signed molecules based on rigorously determined process cost. First investigations
show that integration of rigorous Aspen Plus process calculations in an automated
procedure is possible with good initialization by pinch-based process models (Mayer,
2017). However, computational costs are comparably large to pinch-based models and
the reliability of the approach is questionable due to tedious convergence procedures.
A possible solution is the employment of rigorous optimization by solving a process
superstructure in an automatic solution strategy as proposed by Skiborowski et al.
(2015a).

Ecosphere-Level Perspective: Currently, COSMO-CAMPD design is based on
process-level design targets while neglecting environmental aspects of designed molecules
or processes. Environmental assessment of molecules however requires comprehensive
LCA data which is usually not available or limited in early design phases. Thus, re-
liable prediction methods need to be established that translate molecular properties
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to environmental key performance indicators (KPI), e.g., global warming potential,
safety and health. Recent work has shown that environmental KPI such as toxicity
can be predicted with in silico methods. An example is the prediction of acute aque-
ous toxicity LC50 by simple descriptors of molecules in COSMO-RS (Ghanem et al.,
2017). Additionally, predictive Ecological Structure Activity Relationship (ECOSAR)
models exist that estimate aquatic short-term (acute) and long-term (chronic) toxic-
ity (Heger et al., 2012). Similarly, toxicokinetic and toxicodynamic modeling predicts
human toxicity of chemicals (Cedergreen et al., 2017). In LCA, early approaches exist
that systematically aim at evaluating environmental impacts using automated process
evaluations (Kim and Overcash, 2003). Methods to predict environmental KPI should
thus be extensively investigated and integrated in COSMO-CAMPD.

Integrated Multi-Level Design Approach Perspective: Finally, all of the
above single-level research perspectives should be combined in a predictive multi-level
molecular and process design surpassing common categories of process performance
assessment. Novel designed processes and molecules should be assessed in a system-
wide approach using all scales involved: from molecular design using integrated ex-
perimental validation to process optimization based on economic and environmental
design targets. Such an approach thus allows for designing economically viable and
environmentally benign molecules and processes, e.g., reaction-separation processes
using solvents according to green chemistry principles (Gilbertson et al., 2015). The
presented COSMO-CAMPD framework in this thesis forms the foundation of such an
endeavor.
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APPENDIX A

Process-Level Solvent Evaluation

Property prediction using COSMO-RS

All thermodynamic properties in this thesis are predicted by COSMO-RS (Klamt et al.
(2010)). COSMO files are used from the 1501-BP-TZVP databank and COSMO-RS
calculations are performed using COSMOthermX Version 15 (COSMOlogic, 2015d).

Pure component properties used in this thesis are vapor pressure, s, x, and molar
enthalpy of vaporization, Ahy,, x, for each solvent candidate X. The vapor pressure
is calculated using the Antoine equation

Bx
sat. X = Ax — . Al
prny = exp (A = 25 ) (A1)
The solvent specific coefficients, Ax, Bx and C'y, are calculated by COSMO-RS using
built-in calculation routines in COSMOthermX (COSMOlogic, 2015d).

The molar enthalpy of vaporization, Ahy,, x, is estimated by combining the Antoine
equation, Eq. (A.1), with the Clausius-Clapeyron equation

dlIn (psat,X/Pgat,X) _ Ah"ap:X (A 2)
dT - RT?2 |

which leads to

Ahyap x = RT”. (A.3)

(T + Cx)2
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Non-ideal liquid mixture properties are expressed using activity coefficients v;(z, T')
that are calculated by COSMO-RS. With ~;(z, T'), vapor-liquid equilibria (VLE) and
liquid-liquid equilibria (LLE) are calculated.

In this thesis, activity coefficients ~;(z,T) are expressed by the non-random-two-
liquid NRTL model (Renon and Prausnitz, 1968).

The extraction shortcut process model uses isothermal binary NRTL parameters

to calculate ~;(z) in a mixture of components ¢ and j. Isothermal binary NRTL

parameters 7;;, 7j;, o; and «j; are defined by

G 2 TGl
1 ; — 2 " I RN _uTy A4
7 (Z> Zj TJ (ZZ' + Zjsz') + (Zj -+ Zz’CTYij)2 ( )
[ G 2 G
nvyi(z) =22 |7 [ ——L— ) + — 2790 A5
an] (Z) & _TJ (Zj + ZiGij> (ZZ' + ZjGji)Q_ ( )
InGij = —ay;7ij, (A.6)

ln Gji =

_ajiTji-
Generally, o;; = aj; = « is assumed.

In this thesis, an equally-spaced concentration grid is used for z € [0, 1] with n, = 11
evaluations of v(z) to determine 7;;, 7j;, a;; and a;;.

The distillation shortcut process model uses temperature-dependent binary NRTL
parameters to calculate 7;(z,T). In this thesis, temperature-dependent binary NRTL
parameters are calculated using regression parameters a;;, bi;, ¢ij, dij, €i;, fi; which
are defined by

b
Tij = aij + T] + Cij 1IlT + dijT, (A8)
Q5 = €45 + f”T (Ag)

To determine the parameters a;;, bi;, ¢;j, dij, €ij, fi; in this thesis, an equally-spaced
temperature grid is used for T' € [298.15 K, 473.15 K| with ny = 10 temperature grid
points. Overall, n, = 11 evaluations v;(z,T) on each of the ny = 10 temperature
levels are performed, i.e., 110 evaluations for each component.
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Conventional screening criteria

The phase distribution coefficient P is defined as

p— ZGVL,E _ 'VGVL,R' (A.lO)

ZGVL,R YGVL,E

Here, E denotes the extract phase and R the raffinate phase of a binary LLE between
a solvent candidate X and water. P is evaluated at T = 298.15 K and infinite dilution
of the solute GVL is assumed.

The relative volatility a (Pretel et al. (1994)) is calculated according to

. P)/water,X * Psat,water (All)

le'e) b
YGvL,x * Psat,GVL

where « is evaluated at T = 298.15 K with infinite dilution of water in solvent candi-
date X for 75546, x and infinite dilution of GVL in solvent candidate X for 7¢yy, x-

Extended Screening results Massive Screening

The results of the solvent screening based on minimum energy demand @3, /MJ kmol !
is presented in Tab. A.1 for all solvents with a lower minimum energy demand Qn
than the benchmark molecule n-butyl acetate. Abbreviations: PPS = propenylester,
PES = propylester.

Table A.1: Extended list of the screening results

Rank  Solvent Qmin Rank Solvent Qmin
1 1,5-hexadiyne 3.70 79 3-butenoicacidethylester 8.64
2 1,6-heptadiyne 3.94 80 benzene 8.67
3 1,3-hexadien-5-yne 3.99 81 cis-1,3,5-hexatriene 8.69
4 1,7-octadiyne 4.12 82 2,3-dihydropyran 8.71
) 1-penten-4-yne 4.14 83 3-methyl-2-butenoicacidmethylester 8.73
6 2-methyl-1-buten-3-yne 4.28 84 methylmethacrylate 8.73
7 trans-3-penten-1-yne 4.33 85 4-pentenal 8.74
8 ethoxyacetylene 4.46 86 2-propenoicacidethylester 8.75
9 furan 4.64 87 hexenylformiat trans3 8.79
10 3-methyl-3-penten-1-yne  4.75 88 ethylpyruvate 8.80

Table continues on next page
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Appendix A Process-Level Solvent Evaluation

Rank Solvent Qmin Rank Solvent Qmin
11 pentyne 4.83 89 n-crotylacetate 8.81
12 3-methyl-1-butyne 4.88 90 diethylcarbonate 8.83
13 divinylether 4.99 91 trans-1,3,5-hexatriene 8.85
14 2-vinylfuran 5.06 92 styrene 8.85
15 3-methylfuran 5.26 93 tert-butylformate 8.87
16 1,8-nonadiyne 5.33 94 n-propylformate 8.93
17 ethynylbenzene 5.40 95 tetramethylorthocarbonate 8.94
18 3,3-dimethyl-1-butyne 5.58 96 2-methyl-1-penten-3-ol 8.94
19 4-methylene-2-oxetanone  5.58 97 3,4-dihydro-2-methoxy-2h-pyran 8.96
20 4-methyl-1-pentyne 5.70 98 1,3,5,7-cyclooctatetraene 8.98
21 hexyne 5.71 99 2.4-dimethylfuran 8.98
22 2-methoxyfuran 5.75 100 1,1-diallylethanol 8.98
23 vinylformate 5.86 101 2-propenoicacidPES 9.02
24 1-methoxy-1,3-butadiene  6.17 102  propanoicacid,anhydride 9.02
25 5-methyl-1-hexyne 6.20 103  salicylicaldehyde 9.06
26 ethyl2-propynoate 6.31 104 2-methoxyphenol 9.06
27 2-methylfuran 6.36 105  vinyloxirane 9.09
28 1-heptyne 6.52 106  ethylmethylcarbonate 9.09
29 allylvinylether 6.57 107  methylacrylate 9.11
30 2,3-pentanedione 6.65 108  3,3-dimethyl-2-oxobutanoicacid 9.17
31 vinylacetate 6.75 109  methylisovalerate 9.20
32 acetylperoxide 6.90 110 2-propenoicacid-1-methylethylester 9.20
33 allylformate 6.95 111 methylbutyrate 9.27
34 2,3-hexanedione 6.98 112 2-(ethenyloxy)-2-methylpropane 9.29
35 3-ethyl-1-pentyn-3-ol 7.08 113 2-methylpropanoicacidmethylester 9.30
36 3,4-hexanedione 7.15 114 2-(ethenyloxy)-propane 9.31
37 3,4-dimethyl-1-pentyn-3-ol 7.18 115  propiolaldehydediethylacetal 9.33
38 2,3-dihydro-1,4-dioxin 7.28 116  diethylperoxide 9.34
39 4-methyl-2,3-pentanedione 7.31 117  hexanal 9.37
40 1,2-cyclobutanedione 7.34 118  methyl-trans-2-butenoate 9.37
41 2,4-hexadiyne 7.36 119 3-cyclohexene-1-carboxaldehyde 9.41
42 propanoicacidethenylester 7.36 120  methylvalerate 9.42
43 benzofuran 7.47 121  methylglyoxal 9.45
44 1,3-benzodioxole 7.50 122 1-hexen-3-ol 9.45
45 allylacrylate 7.65 123 peroxyaceticacid 9.46
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Rank Solvent Qmin Rank Solvent Qmin
46 cyclopropylvinylether 7.67 124 cyclopentadiene 9.47
47 isopropenylacetate 7.76 125 3,5-dimethyl-1-hexen-3-ol 9.50
48 3-methoxy-propyne 7.86 126 3-methylpentanal 9.51
49 5-methyl-2,3-hexanedione  7.93 127 4,5-octanedione 9.54
50 octyne 7.95 128  cycloheptatriene 9.54
51 1,5-hexadien-3-yne 7.95 129  2-methyl-2-propenoicacid-2-PPS 9.56
52 1-hexyn-3-ol 7.96 130 2-methylphenol 9.63
53 3-methyl-1-pentyn-3-ol 8.00 131  trans-ethylcrotonate 9.67
54 1-penten-3-yne 8.02 132 (4r)-4-methylhexanal 9.67
55 butylformate 8.05 133 2-hexen-4-yne 9.67
56 propanoicacid-2-PPS 8.07 134 heptanal 9.68
57 2,3-heptanedione 8.08 135  (4s)-4-methylhexanal 9.68
58 formicacidpentylester 8.09 136  2-PPSbutanoicacid 9.71
59 2-ethylfuran 8.11 137 methyl2methylbutyrate 9.72
60 1,5-hexadien-3-ol 8.15 138  methyl-(s)-(+)-2-methylbutanoate 9.73
61 isoamylformate 8.17 139  ethylmethacrylate 9.75
62 (z)-3-hexenal 8.21 140  methylcyclopropylcarboxylate 9.75
63 butadione 8.22 141  isopropylformate 9.76
64 diallylether 8.24 142 1,6-heptadien-4-ol 9.81
65 anisole 8.24 143 1-penten-3-ol 9.82
66 isobutylformate 8.32 144 2,5-dimethylfuran 9.83
67 hexenylformiate cis3 8.34 145  formicacidhexylester 9.87
68 2,3-dihydrofuran 8.34 146 methyltiglate 9.87
69 2-(methoxymethyl)-furan  8.34 147  3-butyn-2-one 9.91
70 1-hexyn-5-one 8.41 148  ethylbutyrate 9.95
71 aceticanhydride 8.42 149  5-methyl-5-hexen-2-one 9.98
72 4-methyl-1-penten-3-ol 8.47 150  ethylpropionate 9.99
73 ethoxy-ethene 8.47 151  2,4-hexadienoicacidmethylester 10.03
74 aceticacid-2-PPS 8.51 152 2-methyl-pentanal 10.04
75 formicacid-1-methylPES 8.52 153 cis-H-octenal 10.04
76 vinylbutyrate 8.54 154 3-methyl-2-oxobutanoicacid 10.09
7 sec-butenylacetate 8.55 155 3-methylhexanal 10.09
78 4-heptenal 8.64

End of table
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Appendix A Process-Level Solvent Evaluation

Rigorous validation of the screening results

Rigorous process model calculations using Aspen Plus V8.4 are performed in an au-
tomated procedure to validate the results from shortcut process models for the top 50
solvents. The minimum energy demand @), is calculated by Aspen Plus using the
models "'Extract’ and 'Radfrac’. In Aspen Plus, the flowsheet presented in Chapter 3
is initialized with results from the shortcut models and converged to minimum solvent
flow and minimum reboiler heat duty.

Minimum energy demand Q. is determined to achieve 99.9999 % recovery of
GVL in the extract stream E and 99.9999 % purity and recovery of the solute A in
the bottom stream B. Infinite numbers of stages, that are assumed in the process
shortcut, are approximated by using n = 100 stages in the extraction column and
n = 200 stages (Feed stage at n = 100) in the distillation column. Convergence of
the distillation column is achieved using ’standard’, 'nonideal’ or 'azeotropic’ solver.
Standard flash convergence algorithm is used. The results of the validation of the
minimum energy demand ()., is presented in Table A.2. Non-converged Aspen Plus
calculations in the automated validation procedure are indicated by 'n.c.’.

Table A.2: Extended list of the screening results

Rank  Solvent Qmin Qmin, Aspen Rmin, Aspen
MJkmol~™!  MJkmol™!  kmolkmol ™}

1 1,5-hexadiyne 3.70 3.97 0.05

2 1,6-heptadiyne 3.94 4.40 0.11

3 1,3-hexadien-5-yne 3.99 3.99 0.03

4 1,7-octadiyne 4.12 4.71 0.14

) 1-penten-4-yne 4.14 n.c. -

6 2-methyl-1-buten-3-yne 4.28 n.c -

7 trans-3-penten-1-yne 4.33 3.76 2.5-1071

8 ethoxyacetylene 4.46 4.15 0.03

9 furan 4.64 3.82 1.6-1071

10 3-methyl-3-penten-1-yne 4.75 5.14 0.03

11 pentyne 4.83 4.26 0.01

12 3-methyl-1-butyne 4.88 4.49 0.01

13 divinylether 4.99 4.00 0.01

14 2-vinylfuran 5.06 5.31 0.09

15 3-methylfuran 5.26 5.00 0.03

16 1,8-nonadiyne 5.33 6.11 0.40

Table continues on next page
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Rank Solvent Qmin Qmin, Aspen Rmin, Aspen
MJkmol™!  MJkmol™!  kmolkmol™*

17 ethynylbenzene 5.40 5.97 0.40
18 3,3-dimethyl-1-butyne 5.58 5.10 0.02
19 4-methylene-2-oxetanone 5.58 6.08 0.13
20 4-methyl-1-pentyne 5.70 5.12 0.02
21 hexyne 5.71 5.30 0.02
22 2-methoxyfuran 5.75 6.46 0.27
23 vinylformate 5.86 5.90 0.11
24 1-methoxy-1,3-butadiene 6.17 5.64 0.03
25 5-methyl-1-hexyne 6.20 6.28 0.05
26 ethyl2-propynoate 6.31 7.03 0.28
27 2-methylfuran 6.36 5.47 0.03
28 1-heptyne 6.52 6.62 0.06
29 allylvinylether 6.57 5.74 0.02
30 2,3-pentanedione 6.65 6.75 0.04
31 vinylacetate 6.75 6.24 0.02
32 acetylperoxide 6.90 7.88 0.33
33 allylformate 6.95 6.98 0.02
34 2,3-hexanedione 6.98 7.30 0.05
35 3-ethyl-1-pentyn-3-ol 7.08 8.21 0.10
36 3,4-hexanedione 7.15 7.21 0.02
37 3,4-dimethyl-1-pentyn-3-ol ~ 7.18 8.31 0.10
38 2,3-dihydro-1,4-dioxin 7.28 7.66 0.04
39 4-methyl-2,3-pentanedione  7.31 7.48 0.07
40 1,2-cyclobutanedione 7.34 8.13 0.20
41 2,4-hexadiyne 7.36 7.30 0.07
42 propanoicacidethenylester ~ 7.36 7.09 0.04
43 benzofuran 7.47 8.49 0.67
44 1,3-benzodioxole 7.50 8.41 0.81
45 allylacrylate 7.65 8.39 0.14
46 cyclopropylvinylether 7.67 6.60 0.03
47 isopropenylacetate 7.76 7.92 0.05
48 3-methoxy-propyne 7.86 9.13 0.16
49 5-methyl-2,3-hexanedione 7.93 8.71 0.177
50 octyne 7.95 8.72 0.134

End of table
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Appendix A Process-Level Solvent Evaluation

Overall, the calculated minimum energy demand by the screening approach and the
ASPEN simulations are in very good agreement (Mean average percentage error =
+9%, Spearman’s rank correlation coefficient 0.93 for validated top 50 solvents). The
Aspen Plus simulations show that two components, trans-3-penten-1-yne and furan,
ranked # 7 and # 9 by the screening require even less energy demand than 1,5-
hexadiyne according to the Aspen Plus simulations. This effect is due to different
convergence settings in the flowsheets: Aspen Plus calculates R,.;, < 1073 (cf. Table
A2, # 7 and # 9) whereas the shortcut process models determines only R, > 1073,
Additionally, a finite number of stages in Aspen Plus is assumed whereas infinite
number of stages is assumed in the process shortcut models.

Statistical measures

The statistical measures used in this thesis are briefly described in the following.

The accuracy of a linear regression model y(z) is expressed by the coefficient of
determination R? (Eq.(A.12)). R? = 1 corresponds to a perfect linear correlation.
R =~ 0 indicates that there is no linear correlation.

R? = M (A.12)
S (i — 9)?
where ; = g(z;) is the predicted value and y; the observed one.

The root-mean-square error can be also used to measure the size of the discrepancy
between predicted values and the observed ones. In this case, the RM SFE is calculated
by

N
1 Z "

Strength of a correlation: The Pearson correlation coefficient 7, is defined by

Sy (a; —a) (b — D) .
VEL (@~ /3, (b - 9)’

In Eq.A.14, r is the Pearson correlation coefficient, a = {ay,...,a;,...,ay} and

Tap = (A14)
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b={by,....,b;,...,bx} are data sets of possibly correlated sample values a; and b; and
@ and b are mean values of a and b respectively. The Pearson correlation coefficient
T4 can take on values from 7., = —1 to rq, = 1. Pearson correlation coefficients of
rep = —1 and 7, = 1 correspond to an ideal correlation of the sample values a; and
b;. In contrast, r,;, = 0 indicates no correlation of a; and b;.

Similarly, the Spearman’s or rank correlation coefficient 7, ,, determines if a correla-
tion between two rankings x and y is monotonous. For r,, = 1 the relation between
ranks is strictly monotonously increasing, i.e. o < 1 < y» < yi, and for r,,, = —1
strictly monotonously decreasing. For 7., ~ 0 no monotony is found. The Spearman’s
coefficient can be approximated for rankings with size N by

6
N(N? 1)

Tpy=1—

Z(rank(xi) — rank(y;))?. (A.15)

7
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APPENDIX B

Computer-Aided Molecular Design

In this thesis, the following parameters and specifications for the genetic algorithm
LEA3D are set:

Table B.1: Parameters for optimization with LEA3D

Parameter Value
Mutation probability 70 %
suppress fragment 25 %
add fragment 25 %
replace fragment 25 %
permutate/move/scramble fragment 25 %
Crossover probability 30 %
Elitism-Strategy true

The figures B.1 and B.2 show the molecular fragments for the genetic algorithm
LEA3D that are included in the initial molecular fragment libraries. The X marks a
connector in the molecular fragment. Each X can be connected to an X from another
molecular fragment in the genetic algorithm to build a new molecular structure. Un-
connected connectors X are automatically replaced by hydrogen atoms. The structural
feasibility of the molecular structures is ensured by LEA3D.
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Figure B.1: Molecular fragment library for case study 1: Extraction of phenol from
water.
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Figure B.2: Molecular fragment library for case study 2: Extraction of HMF from

water.
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APPENDIX C

Computer-Aided Molecular and
Process Design

Process assumptions and specifications for the
purification of GVL

All parameters are predicted using COSMO-RS, i.e., Antoine coefficients and temperature-
dependent NRTL coefficients (cf. Appendix A). The specifications for the hybrid
extraction-distillation process are taken from Chapter 3. The temperatures of the ex-
traction column is considered as a degree of freedom. Tables C.1 and C.2 summarize
the specifications.

Block specifications:

Table C.1: Block specifications for the hybrid extraction-distillation process.

Block Specification

Extraction column Raffinate is free of GVL
Temperature Ty, optimized with respect to the
minimal energy demand

Distillation column All GVL in the feed is recovered as a pure stream
at the bottom
All entering and leaving streams are liquid
Pressure: 1 bar

Phase split Temperature T' = 25°C
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Appendix C Computer-Aided Molecular and Process Design

Stream specifications:

Table C.2: Stream compositions for the hybrid extraction-distillation process.

Stream Specification
Feed (F) 95% water, 0.05% GVL
Fresh solvent (Syep) Same composition as organic phase from phase split

Details on the COSMO-CAMPD optimization

Calculations have been performed using 8 parallelized cores. Table C.3 lists statistics
for all optimization runs. It should be emphasized that the time demand strongly
correlates with the number of COSMOconf calculations.

The comprehensive fragment library employed in the optimization runs for GVL
purification is given in Fig. C.1.

Table C.3: Statistics for the COSMO-CAMD optimization for GVL. The first four
rows add up to the total amount of 2,040 molecules. If a COSMO file is
available, it is taken from the database, otherwise it is created by COS-
MOconf. If a fragmentation failure occurs or the molecule contains more
than 12 bold atoms (others than H) or undesired functional groups, no

COSMO file is created.

GVLrunl GVLrun2 GVL run 3

COSMOconf 237 70 152
Database 1,502 1,817 1,636
Fragmentation failure o1 ) 6
Not built 250 148 246
Time (d:h:m:s) 1:17:19:17 0:14:40:10 1:07:02:05
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Figure C.1: Molecular fragment library for GVL purification.

Rigorous process simulations

Rigorous process simulations are performed using Aspen Plus version 8.4. COSMO-
RS predicted parameters for Antoine’s equation and the NRTL model are used. The
heat of vaporization is expressed by an polynomial of third order which is fitted to
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Appendix C Computer-Aided Molecular and Process Design

the results of the Clausius Clapeyron equation (cf. Appendix A). All other pure com-
pound data, which is not available by COSMO-RS prediction such as heat capacities,
are assumed to be constant generic values (e.g., heat capacity of water for all solvents)
to obtain systematic errors between different solvents. The impact of different values
for heat capacities on the distillation result was tested and shown to be negligible.

In Aspen simulations, the Fxtract model is used for extraction and the RadFrac
model for distillation. The same specifications for the blocks are used as in the pinch-
based process models. Assumptions for approximating infinite trays and sharp splits
can be found in Table C.4.

Table C.4: Assumptions for the rigorous simulation of the hybrid extraction-
distillation process.

Block Specification

Extraction column 99.99% of GVL is recovered in the distillate.
100 stages are used.

Distillation column 99.99% of GVL is recovered at the bottom.

The bottom stream is 99.99% pure.
50 trays are used, the feed stage is number 25.
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Experimental Methods

The measurement setup uses a liquid-handling autosampler, which prepares LLE with
a total volume of 1 mL in a temperature-controlled tray and takes samples from the

upper and the lower phase after equilibration. The samples are directly injected into a
gas chromatograph without dilution nor addition of a standard. A detailed description

of the experimental procedure can be found in Dechambre et al. (2014a).

Table C.5: List of chemicals

provider specification purity (GC, A %)
~-valerolactone Sigma-Aldrich ReagentPlus ® 99
water Merck SupraSolv®
toluene VWR spectronorm 99.8
2-methylfuran Sigma-Aldrich 99
n-butyl acetate Merck for analysis 99.5

Table C.6: Gas chromatography parameters

parameter value
column FS-CW20M-CB
carrier gas He
inlet temperature in K 523.15
split 25:1

p in bar 0.3

T1 in K 373.15
hold in min 4
Tramp in K min™! 50

T2 in K 453.15
hold in min 9
detector TCD/FID

detector temperature in K 523.15523.15

Results of the LLE measurements

A comparison of COSMO-RS predictions on TZVP level and TZVPD-FINE level
for the investigated solvents n-butyl acetate and toluene are shown in Fig. C.2 and

Fig. C.3.

129



Appendix C Computer-Aided Molecular and Process Design

== Experiment

— COSMO-RS

TZVPD-FINE

0

== Experiment

— COSMO-RS

water

Figure C.2: Experimental validation for solvent n-butyl acetate with COSMO-RS pre-
dictions (solid blue) vs. experimental data (dashed red) for 7' = 25°C.
Top: TZVP, Bottom: TZVPD-FINE.
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Figure C.3: Experimental validation for solvent toluene with COSMO-RS predictions
(solid blue) vs. experimental data (dashed red) for 7' = 25°C. Top:
TZVP, Bottom: TZVPD-FINE.
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The results from experimental liquid-liquid measurements used in this work are
given in in Tables C.7 - C.9.

Table C.7: LLE measurements for the system 2-methylfuran(2MF)-GVL-water(H,O)
with molefractions and measurement uncertainties at 25°C and 40 °C.

T/OC Phase ZOMF ZGVL ZH20 U(ZzMF) U(ZGVL) U(ZH20)
25 ORG 0.77260  0.21355 0.01385 0.02867 0.00486 0.00259
0.50915 0.44014  0.05071 0.03421 0.01410 0.00707

0.27455  0.48941  0.23604 0.00982 0.00787 0.01018

0.13597  0.45028 0.41376 0.00998 0.01284 0.02810

0.09880  0.42575 0.47545 0.00465 0.00751 0.01713

WAT 0.00120  0.01210  0.98670 0.00009 0.00054 0.00055

0.00141  0.02108 0.97751 0.00010 0.00220 0.00215

0.00174 0.03621  0.96205 0.00007 0.00164 0.00158

0.00253  0.04641  0.95106 0.00004 0.00269 0.00256

0.00319  0.05222  0.94459 0.00029 0.00286 0.00271

40 ORG 0.74571  0.24152  0.01277 0.01459 0.00360 0.00303
0.45824  0.47047 0.07128 0.00961 0.00754 0.00894

0.22304  0.45244  0.32452 0.00670 0.00723 0.01149

0.105639  0.37558  0.51903 0.00826 0.01336 0.03381

WAT 0.00146  0.01008  0.98846 0.00011 0.00061 0.00061

0.00173  0.02005  0.97822 0.00009 0.00125 0.00122

0.00238 0.02944  0.96818 0.00011 0.00139 0.00135

0.00332  0.03482  0.96186 0.00005 0.00197 0.00189
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Table C.8: LLE measurements for the system toluene(TOL)-GVL-water(H,0) with

molefractions and measurement uncertainties at 25°C and 40 °C.

T/°C  Phase ZTOoL ZGVL zmo  u(zron) u(zavi) u(zm20)
25 ORG 0.80569 0.18196 0.01235 0.01009 0.01273 0.00023
0.64384  0.30627  0.04989 0.00774 0.01256 0.00083

0.36174  0.46608  0.17218 0.00389 0.01170 0.00269

0.23200 0.50632 0.26168 0.00254 0.01220 0.00311

0.17887  0.49810 0.32303 0.00145 0.00879 0.00333

0.91565  0.08085  0.00350 0.01287 0.01410 0.00011

0.88371 0.11169  0.00460 0.01229 0.01381 0.00226

0.83528 0.15471  0.01001 0.01072 0.01299 0.00024

WAT 0.00199  0.02230 0.97570 0.00143 0.00089 0.00164
0.00118 0.03876  0.96005 0.00058 0.00081 0.00096

0.00220  0.04998  0.94781 0.00062 0.00101 0.00112

0.00181 0.06064 0.93754 0.00005 0.00177 0.00166

0.00244  0.07091  0.92665 0.00021 0.00131 0.00122

0.00169  0.00281  0.99551 0.00242 0.00028 0.00242

0.00125 0.01574  0.98302 0.00082 0.00438 0.00438

0.00056  0.01743  0.98202 0.00018 0.00058 0.00060

40 ORG 0.82014 0.16417 0.01569 0.01180 0.01454 0.00114
0.64324  0.29089  0.06587 0.00745 0.01196 0.00175

0.36013  0.43588  0.20398 0.00698 0.01978 0.00848

0.22163 0.47274  0.30563 0.00344 0.01617 0.00751

0.17329 0.46342 0.36329 0.00251 0.01536 0.00689

0.90145 0.08360  0.01495 0.01215 0.01361 0.00230

0.84803 0.13114  0.02083 0.01137 0.01322 0.00210

0.77588  0.20757  0.01655 0.01217 0.01439 0.00441

WAT 0.00084 0.02076  0.97840 0.00050 0.00062 0.00078
0.00090 0.03314  0.96596 0.00023 0.00093 0.00093

0.00181  0.04610  0.95209 0.00008 0.00185 0.00176

0.00269  0.05982  0.93749 0.00014 0.00128 0.00120

0.00309  0.06965  0.92726 0.00016 0.00321 0.00298

0.00127  0.00359  0.99514 0.00033 0.00002 0.00033

0.00119  0.01725 0.98156 0.00021 0.00033 0.00039

0.00053 0.02194 0.97753 0.00009 0.00048 0.00048
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Table C.9: LLE measurements for

the system

n-butyl acetate(nBAC)-GVL-

water(Hy,O) with molefractions and measurement uncertainties at
25°C and 40°C.
T/°C  Phase  zupac ZGVL zmo  u(zmac) w(zavi)  w(2zm0)
25 ORG 0.61559  0.17204  0.21238 0.01141 0.01814  0.00631
0.49997  0.28895  0.21108 0.01301 0.02673  0.00701
0.36119  0.41873  0.22008 0.00665 0.01961  0.00551
0.22874  0.50671  0.26456 0.00512 0.02478  0.00714
0.09713  0.49307  0.40980 0.00223 0.02480  0.01141
WAT 0.00129  0.01909  0.97961 0.00009 0.00045  0.00045
0.00140  0.02896  0.96964 0.00002 0.00103  0.00100
0.00202  0.03485  0.96313 0.00007  0.00212  0.00204
0.00288  0.04399  0.95313 0.00008 0.00168  0.00160
0.00523  0.06494  0.92983 0.00009 0.00155  0.00144
40 ORG 0.61339  0.18763  0.19898 0.01350 0.02204  0.00589
0.48482  0.29811  0.21707 0.01531 0.03257  0.00847
0.36444  0.38247  0.25310 0.00978 0.02829  0.00842
0.226563  0.47608  0.29738 0.00451 0.02160  0.00747
0.08731  0.46160  0.45109 0.00308 0.03728  0.01935
WAT 0.00120  0.01815  0.98065 0.00005 0.00072  0.00071
0.00145 0.02795  0.97061 0.00004 0.00099  0.00096
0.00177  0.03774  0.96050 0.00003 0.00158  0.00151
0.00307  0.04359  0.95334 0.00008 0.00252  0.00240
0.00580  0.06588  0.92832 0.00015 0.00361  0.00335
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APPENDIX D

Integrated Design of
Reaction-Separation Processes

Process model equations

Multiphase reactor model

The multiphase reactor developed in this thesis is modeled in MATLAB using cal-
culation routines implemented in the RBM (Bausa and Marquardt, 2000) for phase
equilibrium calculations. This section summarizes the equations that have been im-
plemented in the multiphase reactor model.

A schematic representation of a three-phase reactor with vapor phase V and two
liquid phases LI and LI is depicted in Fig. D.1. Note: The notation in this appendix
has been adjusted to the common notation of liquid phase compositions (z) and vapor
phase compositions (y).

The mole balance of species ¢ for a known reaction equation with stoichiometric
coefficients v; reads

ni nt it =nl 4 g, (D.1)

where & represents the extent of reaction.

The reactor is assumed to operate at a constant temperature 7' and pressure p.
Introducing mole fractions in the respective phases (Eq. (D.2)), equilibrium conditions
can be added for each component. For a vapor-liquid equilibrium (VLE), the relation
between the liquid mole fraction 2 and the gaseous one y; can be expressed with the
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Figure D.1: Schematic representation of the VLLE reactor.

absolute pressure p, the activity coefficient of species i in phase LI /! and its vapor
pressure p; (Eq.(D.3))*

LS ¥ S L SN ) S L (D.2)

yip =z} (D.3)
iyt = 2ty (D.4)

where ; for a specific temperature and composition of the respective phase can be cal-
culated using the NRTL-model (Renon and Prausnitz (1968)) and p! with Antoine’s
equation (cf. Appendix A).

Finally, the condition for chemical equilibrium is added for the phase, where the
reaction takes place. The specific equation for a liquid-phase (in phase LI) reaction
reads

!Pointing factors and fugacity coefficients will not be considered here. In case of liquid-liquid
equilibrium (LLE), Eq. (D.4) has to hold.
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7

where AG% denotes the Gibbs free enthalpy of reaction in the ideal gas reference state
at temperature 7" and pressure p°, which can be obtained from tabulated experimental
data or calculated with QM methods.

A suitable approach to solve the model is to guess an initial extent of reaction
and solve the consecutive three-phase flash problem with given feed, temperature and
pressure?. If the chemical equilibrium is not reached, the extent of reaction is iterated
until this condition is fulfilled. For a given conversion of a target compound, the mul-
tiphase reactor model reduces to a phase-split problem. The multiphase reactor model
can be extended to more than three phases by adding additional phase equilibrium
constraints.

The agreement between the results obtained with the multiphase reactor model and
those from an Aspen Plus simulations (V8.4) using the built-in RCSTR model (with
specified reaction equations and reaction equilibrium data from Jens et al. (2016)) is
given in Fig.D.2. Two three-phase reactions are evaluated. The respective reaction
equations read

COy + Hy + CHyy — CoH,05(MeF) 4 HyO, AGES = 24,900- (R1)

mol

CO, + Hy + CoH;N — C3H,NO(DMF) + H,0, AGE = 9,920-% (R2)
with (R1) evaluated at 100 bar and (R2) evaluated at 1 bar.

For the molar concentration of the storage molecule (SM) in the extract phase
(x8M ) of the multiphase reactor, a coefficient of determination of R? = 0.975 and a
root-mean-square error of RMSE = 0.0068 are obtained in comparison to Aspen Plus
simulations, indicating a very good agreement between the models. Fig. D.2 shows
that results for z3M  between the models increasingly deviate for larger molar concen-
tration of the storage molecule 23~ . The reason for this deviation are differences in
calculated multiphase equilibrium compositions between solutions from Aspen Plus
and the RBM, which uses a calculation procedure established by Bausa and Mar-
quardt (2000). Thus, deviations for x5n  between Aspen Plus and the multiphase
reactor model in this thesis are currently inherent to the available implementation of

the RBM and should be addressed in future work.

2 A solver for three-phase flash problems is available within the implementation of the RBM.
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Figure D.2: Comparison of the multiphase reactor model to commercial process sim-
ulations. 4,731 reaction systems are evaluated (MeF (R1): 1,962 and
DMF (R2): 2,769). R1: blue asterisks, R2: red marks.
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Compressor model

The compressor in this work is modeled in the limiting case of ideal gas compression
with infinite multistage compressor stages and intermediate cooling. These assump-
tions lead to the equation for the work W required for isothermal compression from
pressure p; to ps of a gaseous stream n at temperature 7T

W = nRT m%). (D.6)
1

CO Process: flow sheets and specifications

An overview of all possible process structures is given in Fig.D.3. In the following,
assumptions for process simulations are listed.

Exergy demand: The exergy demand FE is estimated by the sum of the exergy
demand for compression Ecomyp, the exergy demand for vaporizing the reforming feed
E.., and the netto exergy demand of the distillation columns (sum of boiling
and condensing E.onq) (Eq. (D.7)). All other exergy streams are assumed to be small
(heating and cooling) or are constant for all processes (exergy of material streams).

E = Ecomp + Evap + Eboil + Econd (D7)

where the exergy of a work stream W is

Ew =W (D.8)

and the exergy of a heat streams () at temperature 7" and environment temperature
298.15 K is

298.15K)

Eo=Q (1 - (D.9)

Input flow: H,, CO,, the AR and the solvent are fed to the process in equal molar
amounts. The amount of water added is optimized. A phase split into an aqueous
phase (catalyst phase) and an organic phase (product or extract phase) must be
ensured.

139



Appendix D Integrated Design of Reaction-Separation Processes

Synthesis reactor: The reactor operates at 25°C. The pressure is optimized with
respect to the exergy demand. Gibbs free enthalpies of reaction AGg’ are taken from
Jens et al. (2016) (24.900 Jmol~! for the synthesis of MeF and 9.920 Jmol™! for the
synthesis of DMF). It is assumed that H, and CO, are completely removed from the
reactor outlet by flashing to ambient pressure.

Extraction column: The temperature of the extraction column is set to 25°C.
Pure solvent is used. The storage molecule is completely extracted from the reactor
outlet.

Reforming reactor: It is assumed that a full conversion of the storage molecule
can be achieved at a sufficiently high temperature. The selectivity is assumed to be
100% (Supronowicz et al., 2015). All CO is released in 100% purity by cooling the
reactor outlet.

Distillation columns: All entering and leaving streams are assumed to be liquid.
Sharp splits are applied, such that a component is either recovered completely in
the distillate or at the bottom. Two components forming an heteroazeotrope can be
separated by using two columns and a decanter. If a homogeneous azeotrope appears
between two or more components present in one column, the distillation is considered
infeasible.

Process structure: The overall process structure depends on the chosen process
variant (PB or PA) and the order of the boiling points. Simple heuristics are used for
the design of the reaction-separation sequence described in Chapter 6. Fig. D.3 shows
the resulting process flowsheet structure.

Details on the COSMO-CAMPD optimization

Calculations have been performed using 8 parallelized cores. Tables D.1 and D.2 list
statistics for all optimization runs. It should be emphasized that the time demand
strongly correlates with the number of COSMOconf calculations.

The comprehensive fragment library employed in the optimization runs for the
reaction-separation process case study are given in Fig. D.4.
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Table D.1: Statistics for the COSMO-CAMD optimization for DMF. The first four
rows add up to the total amount of 2,040 molecules. If a COSMO file is
available, it is taken from the database, otherwise it is created by COS-
MOconf. If a fragmentation failure occurs or the molecule contains more
than 12 bold atoms (others than H) or undesired functional groups, no

COSMO file is created.

DMF runl DMF run 2 DMF run 3
COSMOconf 624 602 308
Database 960 1,174 1,482
Fragmentation failure 59 12 7
Not built 397 252 243
Time (d:h:m:s) 2:22:58:36 2:19:04:24 2:00:26:43

Table D.2: Statistics for the COSMO-CAMD optimization for MeF. The first four
rows add up to the total amount of 2,040 molecules. If a COSMO file is
available, it is taken from the database, otherwise it is created by COS-
MOconf. If a fragmentation failure occurs or the molecule contains more
than 12 bold atoms (others than H) or undesired functional groups, no
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COSMO file is created.

MeF run1 MeF run 2 MeF run 3
COSMOconf 519 471 452
Database 1,144 1,094 1,199
Fragmentation failure 3 2 2
Not built 374 473 387
Time (d:h:m:s) 2:07:12:10 2:10:27:15 3:04:09:29
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Figure D.4: Molecular fragment library for reaction-separation process.
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