

Migration of a web service back-end from a relational
to a document-oriented database

Sebastian Drenckberg1, Marius Politze2

1 IT Center RWTH Aachen University, Seffenter Weg 23, 52074 Aachen, drenckberg@itc.rwth-aachen.de
2 IT Center RWTH Aachen University, Seffenter Weg 23, 52074 Aachen, politze@itc.rwth-aachen.de

Keywords
relational database, migration, document-oriented-database, MongoDB, LINQ, SQL

1. INTRODUCTION

employees and to students and their daily life. This leads to increased competition among the
universities to present the best and most appealing services to their students. There are many
examples of small-scale developments that support individual learning use cases.

Often these services are instantiated by a student or research project but have to be maintained by
universities technical personnel on the long term. Without considering enhancements, maintenance
costs alone can be high to keep the services operational and migrate them towards new technologies.

One of these services of RWTH Aachen University is an Audience Response System (ARS) used to support
large-scale lectures with more than one thousand participants. The ARS is currently supporting more
than 40 lectures and other events. As part of the application lifecycle, the technological basis needs
to be migrated so the service can be continuously operated.

2. PROBLEM STATEMENT
In the current infrastructure, the database server
protects from data loss but allows neither automatic fail-over nor scaling. Like many modern real time
web applications, this scenario requires scalable application and database software architectures. Our
goal therefore is to migrate the application to a more scalable topology that uses replication in order
to distribute data store and access to all available nodes.
The database should thus be migrated from Microsoft SQL Server to MongoDB. Changing the database
back-end, however, also affects parts of the application logic. Based on the example of the ARS, a
general approach shows standard cases when migrating from a relational to a document-oriented
database model. As there are many services using the infrastructure, the goal is to generalize these
cases to develop guidelines for migration of these other services.

As a relational database, the current SQL Server supports the use of constraints. This means that there
can be references between datasets in the database. Using an ORM further allows accessing the
referenced datasets directly via the object model.

The ORM LINQ to SQL ates seamlessly into the LINQ language
exte ming language and allows addressing relations and attributes
directly from code.

3. DATABASE MIGRATION
Obviously, migration of the database engine also requires migration of the object mapper and database
connection classes. It is however required that the general functionality of the migrated class structure
retains the described properties like accessing with LINQ and compile time syntax checking. The
database migration is therefore performed in three steps:

1. Analysis and simplification of the current database model:

Reducing the complexity of the database model and existing relations allows effectively
utilizing the trades of the new database system.

2. Conversion of database connection and object models:
Actually migrating existing source codes to the new database models and drivers and trying to
preserve most of application logic.

3. Validation and migration of existing data:
Migrating existing data and using automated unit and integration tests to compare the
application behaviour before and after the migration.

4. GENERALIZATION
Based on the possible archetypes of relations (1:1, 1:n and n:m) general guidelines were formulated:
these identified cases serve as a reference when other applications need to be converted. Document-
oriented features such as embedding, referencing or using multiplicity of lists allow more efficient
data structures than often modelled using relational databases.

For example, typical intermediate relations can be removed as it is possible that multiple references
can be directly stored in documents. Furthermore, it is also possible to combine or remove tables by
hierarchically integrating information from multiple relations into a single document.
Migration to a document-oriented database system additionally allows an optimization of the
applications, since each document can be individually modified or extended in its structure. This
allows applications to change the stored data more evolutionary and thus increases the overall
maintainability of the software.

5. CONCLUSION
The migration of a web service back- be well considered.
Without a basic concept, it is not possible to successfully perform such a migration without service
interruptions. Already existing structure of the database relations must be analyzed and adapted to
the new system. Subsequently, optimization points of this structure can be characterized.
Looking at this first use case, the migration was very successful. Compared to the old technology stack,
it did not only increase long-term maintainability of the software but also reduced overall resource
consumption. The set of generalized guidelines further ease future migrations planned in the near
future.

6.

Sebastian Drenckberg, B.Sc. is software developer at the IT Center of RWTH
Aachen University since 2017. In 2017, he finished his B.Sc. studies in Scientific
Programming at FH Aachen University of Applied Sciences and his apprenticeship
as a mathematical-technical software developer.

Marius Politze, M.Sc. is research associate at the IT Center RWTH Aachen
University since 2012. His research is focused on service-oriented architectures
supporting university processes. He received his M.Sc. cum laude in Artificial
Intelligence from Maastricht University in 2012. In 2011, he finished his B.Sc.
studies in Scientific Programming at FH Aachen University of Applied Sciences.
From 2008 until 2011, he worked at IT Center as a software developer and later
as a teacher for scripting and programming languages.

