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Abstract. Mie plasmons are of basic importance for the absorption of laser light by atomic
clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an
external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both
approaches allow for elementary discussions of Mie oscillations, however, they also indicate
deficiencies in describing the damping mechanisms by electrons crossing the cluster surface.
Nonlinear oscillator models have been widely studied to gain an understanding of damping
and absorption by outer ionization of the cluster. In the present work, we attempt to address
the issue of plasmon relaxation in atomic clusters in more detail based on classical particle
simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation,
thereby extending nonlinear models of collective single-electron motion. Our simulations are
particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster
sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to
the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at
the cluster surface. This work is intended to give, from a classical perspective, further insight
into recent work on plasmon relaxation in quantum plasmas [1].

1. Introduction
Mie oscillations in atomic clusters are of basic interest in the study of finite-size electronic
properties of nanoparticles. The size dependence of the damping constant of Mie oscillations
has received much attention and was treated by classical mean free path models [2, 3] and
quantum theoretical linear response [4] and random phase approximation calculations [5]. More
generally, damping is attributed to collisions, outer ionization [6, 7], surface scattering [16]
and radiation emission. In laser excitations damping is often accompanied by linear [8, 9, 10]
and nonlinear [11, 12, 13] resonance absorption. In this work we wish to investigate in more
detail Mie oscillations and their relaxation by classical particle simulations. For this purpose,
the model of a homogeneously charged ion sphere neutralized by N electrons with a soft-core
Coulomb interaction is considered. This model has only two dimensionless parameters, the
particle number N and the plasma coupling constant Γ. In this work, we consider a weakly
coupled plasma with Γ = 0.1 and clusters in the range of N = 8000 − 27000 particles. After a
brief introduction to Mie oscillations of clusters and surface scattering within a hollow sphere, the
particle simulations are described and results for the size-dependent damping rates are discussed
and compared with previous work.

http://creativecommons.org/licenses/by/3.0
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2. Mie-oscillations
2.1. Rayleigh theory
We first review some basic properties of Mie oscillations in atomic clusters. Mie oscillations arise
from the polarization of the cluster in an external radiation field. The famous Mie theory treats
light scattering by a dielectric sphere of an arbitrary size. If the radius of the sphere is much
smaller than the wavelength of the radiation, one can restrict attention to the simpler theory
of Rayleigh scattering. As originally demonstrated by Rayleigh, a small sphere with dielectric
constant ε placed in a uniform electric field E0 acquires a homogeneous polarization ([14], p.32,
eq.(20))

P =
3

4π

ε− 1

ε+ 2
E0. (1)

The electric field produced by a homogeneously polarized sphere is given by

EP = −4π

3
P = −ε− 1

ε+ 2
E0 (2)

and the total electric field inside the sphere, consisting of the polarization field and the external
field, becomes

E = E0 + EP =
3

ε+ 2
E0. (3)

The electrostatic treatment is still applicable to harmonic fields of frequency ω, if the static
dielectric constant is replaced by a frequency-dependent function ε = ε(ω) and the radius of the
sphere is much smaller than the wavelength. The Mie resonance is defined by the condition that
the denominator of the electric field (3) becomes zero,

ε(ω) + 2 = 0. (4)

At this stage, the Rayleigh theory is purely macroscopic and the Mie-resonance frequencies are
just zeros of ε(ω) + 2 for any dielectric function under consideration. As a simple microscopic
model, one often chooses a free electron gas with the dielectric function

ε(ω) = 1−
ω2
p

ω2
, ω2

p =
4πe2n0
m

, (5)

where ωp denotes the plasma frequency, n0 a homogeneous electron density, e the elementary
charge in Gaussian cgs units and m the electron mass. Then the resonance occurs at the well-
known Mie frequency

ωM =
1√
3
ωp. (6)

2.2. Thomson model
We now discuss a microscopic model of Mie oscillations in clusters, that is based on the motion
of N electrons inside a sphere of radius R with a homogeneous positive charge density en0. This
model is reminiscent of the famous plum-pudding model of Thomson [15], viewing atoms as an
extended homogeneous positively charged nucleus and the electrons as point charges immersed
into this background. While Thomson’s model failed to explain the structure of atoms, it is
commonly used as a model of an extended plasma with a neutralizing homogeneous background.
The electric field of the homogeneously charged ion sphere with charge density en0 at a position
r inside the sphere is given by

EI(r) =
4π

3
en0r =

m

e
ω2
Mr. (7)
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Inside the sphere, the motion of electron i is described by

mr̈i = −eEI(ri) +
∑
j 6=i

e2

|ri − rj |3
(ri − rj)− eE0(t), i, j = 1, · · · , N (8)

where the first term describes the electron-ion, the second one the electron-electron interaction
and the last one an external time-dependent field. Here and in the following parts of this section
it is assumed, that electrons move inside the sphere without reaching or crossing its boundary.
The equation of motion becomes particularly simple, if one considers the center of mass (c.m.)

R =
1

N

∑
i

ri (9)

of all electrons. In this case, (8) has to be averaged over all electrons. For the average of the
force one can draw three important conclusions:

(i) Due to the action-reaction law, the electron-electron interactions cancel. The electrons
therefore exert no force on the c.m.

(ii) For an isotropic electron distribution, the electron-ion interaction will also vanish for any
central field EI = −∇φ(r) that can be derived from an arbitrary spherically symmetric
potential φ(r). Accordingly, in equilibrium, the c.m. will be assumed force-free and
coincident with the center of the ion sphere.

(iii) The average force becomes particularly simple for spatially constant and linear forces.
Assuming a force f(r) = −kr + f0 with constants k and f0 acting on the particles at
positions ri, the ensemble average will be given by

F =
1

N

∑
i

f(ri) = −kR + f0 = f(R).

As in the quantum-mechanical Ehrenfest-theorem, the average can be moved in this special
case from the force to the positions.

Using these properties for the average of (8), the c.m. obeys the equation of a harmonic oscillator,

R̈ + ω2
MR =

q

m
E0(t). (10)

Looking at the driven solution in an external field of frequency ω, one immediately arrives at
the induced dipole moment d = −NeR = α(ω)E0 and the corresponding polarizability

α(ω) =
Ne2/m

ω2
M − ω2

(11)

of the cluster. As in the Rayleigh theory, the Mie resonance occurs at the Mie frequency ωM .

2.3. Vlasov and fluid models
Another closely related approach treats the electrons of a cluster not as point-particles but in
the framework of the kinetic theory by a single-electron distribution function f(r,v, t) in phase
space. The basic kinetic equation for collisionless plasmas is the Vlasov equation

∂tf(r,v, t) + v · ∂rf(r,v, t)− e

m
E(r, t) · ∂vf(r,v, t) = 0, (12)
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where the electric field E(r, t) is the sum of the fields produced by the electrons, ions and by
the external laser field,

E = EI + EE + E0. (13)

The first two velocity moments of the distribution function define the particle density n and the
mean velocity u according to

n =

∫
d3v f(r,v, t), u =

1

n

∫
d3v vf(r,v, t). (14)

Taking the corresponding moments of the Vlasov equation (12) leads in a standard manner to
the macroscopic fluid equations

∂tn + ∇ · (nu) = 0, (15a)

∂t(mnu) + ∇ · (mnuu) = −enE −∇ · P (15b)

with the pressure tensor

P = m

∫
d3v′ v′v′f(r,v, t), v′ = v − u.

The equation of motion of the c.m. can be obtained by integrating the momentum equation (15b)
over the volume of a concentric sphere surrounding the ion sphere and enclosing all electrons.
The particle number and the c.m. are defined by

N =

∫
d3r n, R(t) =

1

N

∫
d3r n(r, t)r. (16)

The c.m. velocity can be expressed with the continuity equation (15a) by the fluid velocity

Ṙ =
1

N

∫
d3r ∂tn r = − 1

N

∫
d3r ∇ · (nu) r =

1

N

∫
d3r nu. (17)

The c.m. acceleration therefore is given by

R̈ =
1

N

∫
d3r ∂t(nu) = − 1

N

∫
d3r

e

m
nE −∇ · (nuu +

1

m
P ). (18)

The divergence term can be transformed by Gauß’s law into a surface integral, which vanishes
since the fluid variables vanish by assumption on the surface of the integration volume. Using
again the actio-reactio-law and assuming further that all electrons stay inside the ion sphere,
the average acceleration is given by

R̈ = − e

Nm

∫
d3r n(EI(r) + E0(t)) = −ω2

MR− e

m
E0(t). (19)

There follows again the harmonic oscillator equation (10). From this derivation it follows that
the presence of the kinematic and static pressure in the fluid equations does not affect the c.m.
motion. Neither do electron-electron collisions in the point-particle model contribute to the
c.m. motion. These conclusions are of course dependent on the neglect of surface effects. The
Rayleigh and Thomson models are quite general, however, they severely neglect the electron-ion
interaction at and beyond the cluster surface. In the following section, we present a simple
model of surface scattering that can demonstrate the origin of an additional friction force due
to reflections from the surface of the sphere.
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Figure 1. Scattering of a particle at a perfectly reflecting hollow sphere of radius R. The
particle is incident with velocity v = vez along the z-direction with impact parameter s along
a perpendicular direction. The angles of incidence and of reflection are both α. The reflected
particle has the velocity v′ with v′ = v, being deflected by an angle θ.

2.4. Hollow-sphere model of surface scattering
The relaxation of Mie oscillations can often be attributed to electron-ion collisions or to
collisionless Landau-damping. For larger clusters radiation damping becomes also important.
Another cluster-specific relaxation mechanism is due to surface scattering. In this section, we
introduce surface scattering by a billiard model. If all electrons remain bounded to the volume
of the cluster, one can assume for simplicity an infinitely high potential barrier at the surface
of the sphere. We therefore consider a hollow sphere with a perfectly reflecting boundary and
derive the friction force due to collisions of free electrons with the cluster surface.

We first assume a beam of particles with a homogeneous density n0 and a velocity v = vez
taken along the z-direction. This beam is incident on the inner surface of a hollow sphere as
shown in Fig.1. Looking at the reflection of a particle with angle of incidence α, one obtains
geometrically the relationship between the impact parameter s and the angle of deflection θ,

θ = π − 2α, s = R sinα = R cos(θ/2). (20)

It then follows immediately that the differential cross-section is given by

dσ

dΩ
=

s

sin θ

∣∣∣∣dsdθ
∣∣∣∣ =

1

4
R2. (21)

It is equal to the more familiar differential cross section for scattering at the outside surface of
a hard sphere. The total cross-section becomes σT = πR2 and corresponds to the maximum
circular cross-section of the sphere.

The rate of momentum change due to surface collisions can be calculated in terms of the
momentum transfer ∆p for a single collision and the scattering rate jdσ as

∆p

∆t
=

∫
∆p(s, φ)jdσ =

∫
dΩ ∆p(θ, φ) j

dσ

dΩ
, j = n0v. (22)
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During the reflection at the surface, the normal component of the momentum becomes reversed.
Writing the momenta p of the incident and p′ of the reflected particles as a sum of outward
directed normal (r) and tangential (t) components, one obtains

p = pt + pr, p′ = pt − pr, ∆p = −2pr = −2p · erer. (23)

In spherical coordinates the angle dependence of the momentum change can be expressed as

∆p = −2mv cosα

 sinα cosφ
sinα sinφ

cosα

 = −mv

 sin θ cosφ
sin θ sinφ
1− cos θ

 . (24)

Integrating now (24) over the solid angle, all angle-dependent parts average to zero. The only
nonvanishing contribution comes from the constant term in the z-component. It yields

∆p

∆t
= j

dσ

dΩ

∫
dΩ ∆p = −n0vσT mv. (25)

The average rate of momentum change per particle is a velocity dependent friction force

F (v) =
1

N

∆p

∆t
= −ν(v)mv, ν(v) =

3

4

v

R
. (26)

Note that the friction coefficient ν(v) is velocity dependent and that it scales with 1/R with the
cluster radius. This scaling arises basically from the surface to volume ratio of σT /N ∝ 1/R.

Next, we consider an equilibrium with a spatially homogeneous electron density and an
arbitrary isotropic velocity distribution f(v) = n0g(v) inside the hollow sphere. The distribution
function f(v) is normalized to the number of particles N within the sphere and therefore∫

d3v g(v) = 1. (27)

For example, a Fermi distribution has equal weights of all occupied velocity points and is given
by

g(v) =
3

4πv3F
θ(vF − v), (28)

where the maximum velocity vF denotes the Fermi-velocity.
The total friction force due to surface reflections then is given by an integral over velocity

space,

〈F (v)〉 ≡
∫
d3v g(v)F (v). (29)

Since g(v)F (v) is a central field, the velocity integral vanishes and the friction force is zero.
Exciting now a Mie oscillation with velocity Ṙ(t) inside the cluster, all electrons will be shifted
to the new velocity v′ = v + Ṙ and they experience the friction force F (v′). Integrating now
over all particles yields a nonvanishing average

FM = 〈F (v′)〉 = −3m

4R
〈|v + Ṙ|(v + Ṙ)〉. (30)

Since the Mie oscillation is considered a small perturbation, the average is only calculated to
first order in Ṙ. Setting v = vn and Ṙ = Ṙez one has to first order v′ = v + n · ezṘ and

v′v′ = vv + vn · Ṙ + vṘ = v2n + nn · ezvṘ+ vṘ . (31)
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Integrating over the solid angle in velocity space yields∫
dΩ n = 0,

∫
dΩ nn =

4π

3
I, (32)

where I denotes the unit tensor. Using these properties, the remaining integral over the radial
coordinate v becomes

〈v′v′〉 =
16π

3
Ṙ

∫ ∞
0

dv v3g(v). (33)

Finally, choosing the Fermi distribution (28), the velocity average becomes 〈v′v′〉 = vF Ṙ and
the friction force (30) is given by

FM = −νmṘ, ν =
3

4

vF
R
. (34)

Comparing with the single-beam result (26), one can see that the force is now linear in the
velocity perturbation Ṙ and that the friction coefficient is evaluated at the Fermi-velocity.
Adding this surface-friction force to the center of mass motion yields the damped harmonic
oscillator equation

R̈ + νṘ + ω2
MR = − e

m
E0(t). (35)

The decay of an initial perturbation can be defined by the solution to the homogeneous equation
(E0 = 0). Assuming an exponential time-dependence ∝ e−iωt yields complex eigenfrequencies

ω1,2 = ±
√
ω2
M −

(ν
2

)2
− iν

2
. (36)

and for ωM > ν/2 a decay rate of

γ =
ν

2
= A

vF
2R

, A =
3

4
. (37)

The exponential decay rate corresponds to a Lorentzian line shape with a full width at half
maximum (FWHM) of ∆ω = 2γ.

The surface plasmon decay rate was considered by a number of authors under various
assumptions and with slightly different results. A classical approach has been based on the
estimate of the mean free path L within finite-size particles. For a sphere, the authors obtain
L = R for isotropic [2] and L = 4

3R for diffuse scattering [17, 3]. The effective collision frequency
was then estimated as

ν = vF /L = A
vF
R

(38)

with A = 1 or A = 3/4, respectively. The present result (37) shows the same scaling and even
agrees with the L = 4

3R model. However, one should notice that the average mean free path
is determined geometrically, while the present scattering model is a kinetic approach based on
particle dynamics, specular reflection and the velocity distribution function. Plasmon damping
in metal particles was also considered quantum theoretically [4, 18, 19, 5]. In a thorough review
of the early work, it was concluded that [5]

A = p

√
1 +

ω

EF
, (39)

where p = 3/4 in quasi-classical and p = 3/π2 in random-phase approximation (RPA). The
dependence on the excitation frequency ω derives from resonances with quantum-mechanical
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excitation energies of various dipole transitions. Because of this quantum correction, the
quasi-classical result is somewhat larger than the classical estimate (37). The more complete
RPA treatment leads to a smaller coefficient. For silver particles (EF ≈ 5.5 eV, ω ≈ 3 eV)
the frequency-dependent factor is about 1.25. In this case the FWHM line widths become
∆ω = 0.94 vF /R for the semi-classical and ∆ω = 0.38 vF /R for the RPA case. Both
approximations proved to be well consistent with different experimental results [17, 20, 5]. In
later experiments, higher absorption values have been attributed to embedding or substrate
materials while a smaller value of A = 0.25 was measured for free isolated Ag [16] and Au
[21, 22] clusters. The classical approach (37) yields a somewhat larger value A = 0.75, which
may be viewed as a reasonable order of magnitude estimate. A discussion of surface damping
under various conditions can be found in [16, 23, 24].

3. Particle simulations
3.1. Computational model
To study the surface damping effects in more detail, we have performed particle simulations
of N electrons interacting with a fixed homogeneous ion sphere. The ion sphere has radius R
and charge Ne, where e denotes the positive elementary charge. The average electron density
is n0 = 3N/(4πR3) and the mean particle distance rs can be defined by 4πn0r

3
s/3 = 1. It is

convenient to introduce dimensionless positions r′ = r/rs, times t′ = ωM t and electric fields
E′ = eE/(mω2

Mrs), where ωM is the Mie frequency (6). Omitting the prime for simplicity of
notation, the dimensionless equations of motion for an electron with charge q = −e becomes,

r̈i = −E0(t)−EI(ri)−
∑
j 6=i

EE(ri − rj), i = 1, · · · , N. (40)

Here E0(t) denotes an external laser field and EI the electric field of the ion sphere that is given
by

EI(r) = r

(
θ(R− r) + θ(r −R)

R3

r3

)
. (41)

The electron-electron interaction EE will be modelled by a softcore Coulomb potential and a
corresponding electric field,

φ(r) = − 1√
r2 + ε2

, EE(r) = −∇φ(r) = − r

(r2 + ε2)3/2
. (42)

A constant ε = 2 is used in the simulations to eliminate hard collisions with impact parameters
near and below the interparticle distance rs. Apart from this constant, the equations of motion
(40) contain only a single parameter, which is the dimensionless radius R = N1/3 of the sphere.

The equations of motion have to be supplemented by initial conditions. Initially, the electrons
are placed at random positions inside the sphere. The velocities are chosen with random
directions and the kinetic energies are distributed according to the Fermi distribution (28). The
Fermi energy EF defines another dimesionless parameter of the model, which is the coupling
parameter Γ = e2/(rsEF )) of the plasma. In the present calculations, we have always chosen a
weakly coupled plasma with Γ = 0.1. The radius R is varied in the range 20−30, corresponding
to particle numbers between 8000 and 27000.

3.2. Results
We now discuss some of the results of the present particle simulations for a cluster with
dimensionless radius R = 28 and coupling parameter Γ = 0.1. To study the evolution of the Mie
plasmon and its damping, the electron ensemble is initially rigidly shifted by a displacement
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Figure 2. Evolution of the spill-out degree and the outer-ionization degree over 10 Mie periods.
In an initial phase of approximately 4 − 5 Mie periods, the outer-ionization degree rises and
subsequently reaches a quasi-stationary regime. The initial spill-out degree corresponds to the
initial shift of the particles with respect to the ion sphere. The spill-out degree initially oscillates
with twice the Mie frequency, since electrons are ejected in both maxima of one Mie oscillation.
Finally, it also approaches some quasi-stationary regime. (R = 28, Γ = 0.1, ∆x = 0.15R)

∆x = 0.15R from the equilibrium configuration. The evolution of the mean velocity of the
electrons then indicates exponentially damped Mie oscillations. In contrast to the simplified
models of Sec. 2, the electrons can reach and cross the cluster surface. To demonstrate electron
spill out and outer ionization of the cluster, we have defined a spill-out degree as the fraction of
particles in a shell R < r < 1.5R and an outer-ionization degree as the fraction of particles in
the exterior region r > 1.5R. Fig. 2 shows the evolution of both parameters over the simulation
time of 10 Mie periods TM = 2π/ωM . It can be seen that electrons are ejected in each half wave
of the Mie oscillation, leading finally to an outer-ionization degree of about 10 %. The present
simulation model does not allow to lower the ionization degree well below the 1 % level. The
present initial ensemble is no perfect equilibrium and one therefore has to accept some outer
ionization even without perturbation.

The approach to a quasi-stationary regime can also be recognized in the evolution of the
particle energies. In Fig. 3, one can recognize the mean kinetic energy per particle W = 1

2v
2

and the temperature T defined by 3
2T = 1

2(v − v)2. The initial Fermi energy EF = 1/Γ = 10

corresponds to the mean energy W = (3/5)EF = 6 and the temperature T = 2
3W = 4. While

the kinetic energy of the mean velocity decreases, the temperature increases and becomes nearly
constant in the quasi-stationary regime.

The evolution of the potential energies of the electrons can be seen in Fig. 4. The electron-
ion potential is the energy of all electrons in the potential of the ion sphere per particle, the
electron-electron potential is the interaction energy of all electron pairs per particle. We have
also convinced that the total energy consisting of the kinetic energy and the potential energies
is very well conserved in the calculations up to the accuracy of the finite-difference scheme. The
potential energies decrease in magnitude due to the expansion of the electron cloud. Noting
the different scales of the axes, this decrease is naturally much larger in the ionization regime
shown in (a),(c) than in the final quasi-stationary regime (b),(d). Looking at the oscillation
frequencies of the potential energies, one can observe a decrease from 2ωM to frequencies in the
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Figure 3. Evolution of the mean kinetic energy and the temperature. In the initial phase, the
kinetic energy of the Mie oscillation is gradually converted into temperature. In the final stage
of the evolution, no further heating is observed and the temperature remains nearly constant.
(R = 28, Γ = 0.1, ∆x = 0.15R)

Figure 4. Evolution of potential energies. The magnitude of the potentials decreases due to
the increase of the extension of the electron cloud. Furthermore, a decrease of the oscillation
frequency indicates a conversion from surface modes with frequency 2ωM to volume modes
with frequencies in the range of ωp. a) Initial and b) final stage of the electron-ion potential
energy. c) Initial and d) final stage of the elelctron-electron potential energy. (R = 28, Γ = 0.1,
∆x = 0.15R)
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range of ωp and opposite phases in the electron-electron and electron-ion potentials. This shift
indicates a conversion from surface to volume modes that has been observed in recent quantum
calculations of plasmon decay [1]. The phase difference also indicates radial oscillations of the
electron density inside the ion sphere where a compression increases the electron repulsion but
decreases the ion attraction. Although the mode conversion process has been demonstrated
much more convincingly in the quantum regime, the present classical particle simulations can
confirm a similar behaviour in the quasi-stationary regime following the ionization stage.

For sufficiently large clusters, we have observed an exponential decay of the Mie oscillations.
Using again the preceeding parameters, the oscillation and the decay of the mean velocity V is
shown in Fig. 5. The damped oscillation can be very well fitted to the function

V (x) = a sin(ωt+ p)e−γt + c (43)

with fit parameters a, ω, p, γ and c. The constant c accounts for a small drift velocity. The fit
is applied both to the initial and final phases as indicated in Fig. 5. In this manner, one can
define a maximum and a minimum decay rate γ corresponding to the initial ionization phase
and the final quasi-stationary phase, respectively. These decay rates have been evaluated as
a function of the cluster radius in the range R = 20 up to R = 30 as shown in Fig. 6. The
decay rates follow roughly the expected 1/R scaling of (37), however, the deviations from this
simple law are appreciable. We attribute the scattering of the data to a mixture of various decay
mechanisms including collisional damping, ionization damping, surface damping and damping
by mode conversion. The calculated decay rates are well consistent with previous models.
Evaluating for instance the damping constant A in (37) for γ̃ = 2πγ ≈ 0.2 − 0.4, R = 25 and
with an approximate Fermi energy of EF = 5

3W ≈ 15 in the final stationary phase, one obtains

A =
2R

vF
γ =

2R√
2EF

γ̃

2π
≈ 0.3− 0.6. (44)

This range of values is close to commonly accepted decay constants as discussed below (39).

4. Conclusions
We have investigated the decay of Mie oscillations in spherical clusters by classical particle
simulations. In appropriate units, the physical model contains only two physical parameters
namely the cluster radius R = N1/3 and the plasma coupling parameter Γ = e2/(rsEF ). We
have restricted attention to the weakly coupled regime, setting Γ = 0.1. For sufficiently large
clusters with radii larger than 20, we observed an exponential decay of the Mie oscillations. The
decay rate has been calculated in the range R = 20 up to R = 30, where a calculation of the
electron-electron interaction was computationally feasible. For larger clusters, the computational
effort of calculating pairwise particle interactions increases strongly and one has to resort to other
methods. The decay constants proved in the expected range of values, although considerable
deviations from the simple scaling law (39) have been observed. We conclude that a mixture
of different damping processes including outer ionization, collisional damping, surface damping
and mode conversion may contribute. Outer ionization could not be completely suppressed most
likely due to an imperfect equilibrium state. Collisional damping depends on the parameter ε
of the soft-core potential. Decreasing its value the damping constant has increased. This shows
that one is not in a perfect collisionless regime. Surface damping is likely to play a dominant
role since we obtained close quantitative agreement with the corresponding scaling law and have
observed the related mode conversion process described in [1]. Plasma-wave dynamics in the
interior of the cluster has also been observed in previous particle simulations of laser-excited
clusters [25, 26].
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Figure 5. Mie oscillation of the mean velocity V and exponential decay laws in the initial and
final stages of the calculation. (R = 28, Γ = 0.1, ∆x = 0.15R)

Figure 6. Decay rate γ of Mie oscillations as a function of the cluster radius R. The maximum
rate corresponds to the first four periods, the minimum rate to the last four periods considered.
Both rates are compared to 1/R fitting functions. (R = 20− 30, Γ = 0.1, ∆x = 0.15R)
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