
The cooperative manipulation of rigid objects with industrial robots is a challenging configuration for the control. 

The object is connected to multiple robots and integrated into the kinematic structure, resulting in actuation redun-

dancy. Inaccuracies of the robots and tolerances of the object lead to deviations of the grasp points at the object, 

that are amplified due to coupling effects. This consequently results in inadequate object positioning and causes 

internal tensioning of the overall structure. A recent example of this object integration is the PARAGRIP handling 

system that was investigated in this thesis. 

Today’s control and calibration approaches, however, do not target the identification of the uncertain grasp points. 

Accordingly, in this thesis a kinematic calibration procedure for the PARAGRIP robotic arms and a self-calibration 

procedure for the object integrative handling system were developed to identify the actual grasp points at the 

object.

The kinematic calibration was investigated for a mathematically efficient serial and a hybrid kinematics model, both 

including the compensation of gravitational effects. The limited absolute accuracy of the PARAGRIP arms could be 

improved significantly.

In the context of the kinematic calibration, a new stiffness modeling approach was implemented by extending the 

concept of Matrix Structure Analysis. The implemented modeling approach allows for the automatic calculation of 

arbitrary kinematic structures and the compensation of the gravitational deformations.

Furthermore, a new self-calibration method for the object integrative handling system was developed based on 

the combination of direct and inverse kinematic calculations. The redundant sensor-information of the cooperating 

robots is evaluated to identify the actual grasp points at the integrated object.

The results show that the available redundant sensor information for object integrative robots or handling systems 

can be used to identify the grasp points at the object and compensate the internal inaccuracies automatically. This 

offers the opportunity to extend the capabilities of cooperating robots and allows for the reconfiguration and cali-

bration without additional external metrology. The research and results described in this thesis yielded new findings 

for the PARAGRIP handling system, which can be generalized for every object integrative handling system with 

redundant actuation, in particular cooperating industrial robots.
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Abstract 
The cooperative manipulation of rigid objects with industrial robots leads to redundant ac-
tuation, which is a challenging configuration for the control of cooperating robots. In such a 
configuration, the object is connected to multiple robots and integrated into the kinematic 
structure, resulting in actuation redundancy. Inaccuracies of the robots and tolerances of the 
object lead to deviations of the grasp points at the object that cannot be determined pre-
cisely. These deviations of the kinematics model from the real system are amplified due to 
coupling effects. This consequently results in inadequate object positioning and causes in-
ternal tensioning of the overall structure. A recent example of this object integration is the 
PARAGRIP handling system that was investigated in this thesis.  
Today’s control and calibration approaches, however, do not target the identification of the 
uncertain grasp points. Accordingly, in this thesis a kinematic calibration procedure for the 
PARAGRIP robotic arms and a self-calibration procedure for the object integrative handling 
system were developed to identify the actual grasp points at the object. The kinematic cali-
bration was investigated for a mathematically efficient serial and a hybrid kinematics model, 
both including the compensation of gravitational effects. The choice of identification points 
and the optimization residual were investigated and the limited absolute accuracy of the 
PARAGRIP arms could be improved significantly based on the findings. In the context of the 
kinematic calibration, a new stiffness modeling approach was implemented by extending the 
concept of Matrix Structure Analysis. The implemented modeling approach allows for the 
automatic calculation of arbitrary kinematic structures and the compensation of the gravita-
tional deformations. Furthermore, a new self-calibration method for the object integrative 
handling system was developed based on the combination of direct and inverse kinematic 
calculations. The redundant sensor-information of the cooperating robots is evaluated to 
identify the actual grasp points at the integrated object, to increase the system accuracy and 
to limit the impact of the coupling effects. The sensitivity and influencing factors of the 
method were investigated and verified in simulations. 
The results show that the available redundant sensor information for object integrative ro-
bots or handling systems can be used to identify the grasp points at the object and compen-
sate the internal inaccuracies automatically. The application of self-calibration to object in-
tegrative handling systems allows for an efficient and easy way of reconfiguration and 
calibration without additional external metrology. This offers the opportunity to extend the 
capabilities of cooperating robots and reduces the demand for complex robot control. The 
research and results described in this thesis yielded new findings for the PARAGRIP handling 
system, which can be generalized for every object integrative handling system with redun-
dant actuation, in particular cooperating industrial robots.  



 

 

Zusammenfassung 
Die kooperierende Handhabung starrer Objekte mit Industrierobotern stellt, wegen der ent-
stehenden Antriebsredundanz, eine herausfordernde Konfiguration für die Steuerung ko-
operierender Roboter dar. In einer solchen Konfiguration ist das Objekt mit mehreren Robo-
tern verbunden und in die kinematische Struktur integriert, was zur Antriebsredundanz 
führt. Ungenauigkeiten der Roboter und Objekttoleranzen führen zu Abweichungen der 
Greifpunkte auf dem Objekt, die nicht präzise ermittelt werden können. Diese Abweichun-
gen des kinematischen Modells vom realen System werden durch Kopplungseffekte ver-
stärkt. Dies führt zu einer unzureichenden Positionierung des Objekts und verursacht innere 
Spannungen der Gesamtstruktur. Das in dieser Dissertation untersuchte PARAGRIP Handha-
bungssystem ist ein aktuelles Beispiel für diese Objektintegration. 
Aktuell gibt es weder Steuerungs- noch Kalibrierungsansätze, die auf eine Identifikation der 
unbekannten Greifpunkte abzielen. In dieser Dissertation wurde ein Verfahren für die kine-
matische Kalibrierung der robotischen PARAGRIP Arme und ein Verfahren für die Selbstkalib-
rierung des objektintegrativen Handhabungssystems entwickelt, um die tatsächlichen Greif-
punkte auf dem Objekt zu identifizieren. Die kinematische Kalibrierung wurde für ein 
mathematisch effizientes serielles und ein hybrides kinematisches Model untersucht und für 
beide Fälle um die Kompensation der Schwerkrafteinflüsse ergänzt. Verschiedene Mess-
punkte und das Optimierungsresiduum wurden untersucht und die eingeschränkte Absolut-
genauigkeit der PARAGRIP Arme konnte basierend auf den Forschungsergebnissen signifi-
kant gesteigert werden. Durch die Erweiterung der Matrix-Struktur-Analyse wurde ein neuer 
Ansatz zur Steifigkeitsmodellierung umgesetzt, der die automatische Berechnung beliebiger 
kinematischer Strukturen und die Kompensation der Verformungen durch die Schwerkraft 
für die kinematische Kalibrierung ermöglicht. Basierend auf der Kombination der direkten 
und inversen Kinematik wurde eine neue Methode zur Selbstkalibrierung des objektintegra-
tiven Handhabungssystems entwickelt. Die redundanten Sensorinformationen der kooperie-
renden Roboter werden ausgewertet, um die tatsächlichen Greifpunkte am integrierten Ob-
jekt zu identifizieren, die Systemgenauigkeit zu erhöhen und so den Einfluss der 
Kopplungseffekte einzuschränken. Die implementierte Methode wurde simulativ verifiziert 
und die Sensitivitäten und die Einflussfaktoren wurden untersucht. 
Die Ergebnisse zeigen, dass die verfügbaren redundanten Sensorinformationen von objektin-
tegrativen Handhabungssystemen genutzt werden können, um die tatsächlichen Greifpunk-
te auf dem Objekt zu identifizieren und inhärente Ungenauigkeiten automatisch zu kompen-
sieren. Die Anwendung der Selbstkalibrierung für objektintegrative Handhabungssysteme 
erlaubt eine einfache und effiziente Rekonfiguration und Kalibrierung ohne zusätzliche 
Messtechnik. Dies eröffnet die Möglichkeit die Fähigkeiten kooperierender Roboter zu er-
weitern und reduziert die Notwendigkeit komplexer Robotersteuerungen. Die neuen Er-
kenntnisse, die im Rahmen dieser Dissertation für das PARAGRIP Handhabungssystem erar-
beitet wurden, können für jedes objektintegrative Handhabungssystem, insbesondere für 
kooperierende Industrieroboter, verallgemeinert werden. 
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Variables, Abbreviations and Indices 

Hereinafter the variables, abbreviations and indices (cursive sub- and superscripts) used in 
this thesis are listed. Scalar values and indices are represented by lower and upper cases, 
vectors by bold lower cases and matrices are represented by bold upper cases. Superscripts 
indicate the coordinate system of reference for all variables and vectors. 

Latin Lower Case 
sub-matrix pointer for rows number of elements, cycles, … 
grasp point vector parameter 
width, component of  parameter vector 
sub-matrix pointer for columns nominal parameter vector 
diameter, distance distributed gravitational load 
unit vector position vector 
position functions nominal position vector 

  vector of generalized loads average, measured position vector 
gravitational constant component of  
height thickness 
number of rigid nodes beam deflection 
element of the stiffness matrix  beam rotation 
length, offset , ,  translational coordinates 
nominal length , ,  average, measured coordinates 
invariant coefficient , ,  nominal coordinates 

Latin Upper Case 
zero matrix   uniaxial moment 
cross-sectional area  Gaussian normal distribution 
4x4 transformation matrix   Observability Index 
absolute accuracy   point 
absolute accuracy vector   rotational matrix (see below) 
compliance matrix   residual 
Young’s modulus   position repeatability 
uniaxial force   skew-symmetric matrix  
shear modulus   rotational transformation matrix 
identity matrix single value decomposition matrices 

  second moment of area   cross product transf. matrix 
  Jacobian matrix   error propagation matrix 
  stiffness matrix   

Greek Lower and Upper Case 
 wrist-joint angle   singular value, standard deviation  
 nominal wrist-joint angle   joint angle 



iv Variables, Abbreviations and Indices  

 

 measured wrist-joint angle   nominal joint angle 
 wrist-joint angle vector   joint angle vector 
 nominal wrist-joint angle vector   nominal joint angle vector 
, ,  rotational coordinates   relative influence 
, ,  nominal rotational coordinates   pose vector 
, ,  measured rotational coordinate   displacement, deviation 
  partial derivative   single value decomposition matrix 

Indices and Coordinate Systems 
 global coordinate system  relative 

 absolute  self-calibration 
 axial  serial 

  joint A0, B0 axis  torsional 
 load case  arbitrary body  

 gravitational , ,  translational coordinates 
 hybrid  Cartesian 

 arm , measurement , joint , …  intermediate coordinate system 
 Measurement pose   point of origin, orientation 

 rigid node, link k  arbitrary point, position 
 link length , ,  wrist-joint coordinate systems 

 lateral  sample 
 link  structure 

 link  of arm   torsion 
  normal  Tool Center Point 

  object  wrist-joint 
 p-norm dimension, parameter  wrist-joint angle 

  parallel  joint angle 
  perpendicular  joint space 
  radial  maximum norm 

Abbreviations 
DBB double-ball-bar LED Light Emitting Diode 
CMM coordinate measurement machine MSA Matrix Structure Analysis 
DH Denavit-Hartenberg POE product of exponentials formula 
DHM Denavit-Hartenberg-Modified TCP Tool Center Point 
DOF degrees of freedom VJM Virtual Joint Method 
FEA Finite Element Analysis   

Rotational Matrices 
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1 Introduction 

Robotics and automation have significantly improved the production and assembly technol-
ogy for mass production in the recent decades. Today, flexible production capabilities for 
small lot sizes and individualized products are needed. “Due to shorter product life cycles 
and rising demand for customization, flexibility and adaptability of assembly processes will 
become key elements for a sustainable success of industrial production in high-wage coun-
tries”. This citation from Schmitt, Corves, Hüsing and others [SCH16, p. 878] expresses one 
central motivation for the research described in this thesis and performed within the Cluster 
of Excellence ”Integrative Production Technology for High Wage Countries“. 
The increased flexibility and adaptability described can be gained by cooperation of station-
ary or mobile robotic systems, which find increasing application in industry for demanding 
handling tasks. Cooperating robots for example can be used to optimize complex tasks such 
as the multi-dimensional welding task shown in Figure 1-1a. Beyond that, cooperative ma-
nipulation enables many tasks that are difficult or impossible to execute by a single robot 
[CU16, p. 989]. These tasks for example include the manipulation of large payloads by load 
sharing as shown in Figure 1-1b or the manipulation of individualized or large-scale compo-
nents without individual gripper technology or jigs as shown in Figure 1-1c. 

 
Figure 1-1:  a) Cooperating industrial robots for welding [ABB17], b) load sharing cooperative manipulation with 

two force sensitive robots [KUK16], c) local shaping of an airplane structure [SCH16, p. 919] 

One of the main challenges for such cooperating robots is the accurate synchronization with-
in the system [SV12]. During the cooperation, and in particular the cooperative manipulation 
of rigid components, the handling object is connected to multiple robotic units and integrat-
ed into the kinematic structure. One recent example of this object integration is the PARARIP 
handling system shown in Figure 1-2, that will be investigated in this thesis. During object 
integration, the overall structure is actuated redundantly, which leads to coupling effects 
between the robots involved. Forces and torques are transmitted through the physically in-
tegrated object. Inaccuracies of the robots are amplified due to the coupling effects, which 
consequently results in inadequate object positioning. Furthermore, the redundant actua-
tion can also cause tensioning and internal stresses of the structure. 
Various approaches for the control of cooperating robots have been developed to cope with 
these challenges. The most common concept for robot manufacturers is the master-slave 
concept. It relies on the guidance of one robotic unit and the force control of the remaining 
robotic units. 

a) c)b)



2 1 Introduction  

 

 
Figure 1-2:  Object integrative handling system PARAGRIP (picture by Martin Riedel) 

Recent research concentrates on the planning, programming and control of assembly opera-
tions for cooperating industrial robots (see for example [MSF16,MKA14,MME12]) and the 
recently very successful dual arm robots (see for example [AK16,TMM14,KSS11]). These ap-
proaches, however, do not aim to improve the kinematic inaccuracies, causing the described 
challenges of object integrative manipulation. This deficit is targeted in this thesis, by devel-
oping a calibration and a self-calibration approach for an object integrative handling sys-
tems, using the example of the PARAGRIP handling system.  
The accuracy of a system of cooperating robots can for example be improved by the calibra-
tion of the robot base frames [WLY15,GDD14] or by external metrology for a common abso-
lute reference frame [NSG10,NSG12]. Furthermore, the actuation redundancy for object 
integrative cooperating robots provides additional sensor information that can be used to 
improve the accuracy of the overall system and limit the unfavorable coupling effects. This is 
known as self-calibration. This field of research has not been addressed yet for object inte-
grative cooperating robots. Bennett and Hollerbach [BH91] as well as Bonitz and Hsia [BH97] 
investigated the autonomous calibration of two linked serial arm manipulators connected 
mechanically at their end-effectors. Their research is an early example of self-calibration for 
systems, similar to the object integrative handling. The subsequent research, however, fo-
cused on the investigation of parallel robots with unaltered closed kinematic chains. The 
self-calibration for the integration of an object and the identification of the according grasp 
points have not been investigated yet. 
In this thesis, the kinematic accuracy of an object integrative handling system is investigated 
and a method of self-calibration, based on the redundant sensor information, is developed 
to reduce the deficit found in the current state of research. The concept of self-calibration 
allows for an efficient and easy way to reconfigure and calibrate cooperating object integra-
tive robots without additional external metrology. Such a concept offers the opportunity to 
extend the capabilities of cooperating robots and reduces the demand for robot control by 
autonomous calibration procedures using inherent sensor systems. 
The investigation of self-calibration for the specific PARAGRIP prototype shown in this thesis 
is a first step to investigate the capabilities of self-calibration for cooperating robots in gen-
eral.
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2 Approach, Aims and Scope of the Thesis 

As stated in the introduction, the object integrative cooperation of robotic units leads to a 
redundant actuator configuration. Limited robot accuracy and object tolerances reduce the 
overall system accuracy and introduce unintended internal tensioning to the coupled robots. 
The research approach described in the following targets this deficit to improve the kinemat-
ic inaccuracies of the system by combining classical methods of kinematic calibration and the 
evaluation of the available redundant sensor information by means of self-calibration. 

Research Approach 
The influencing factors that reduce the overall system accuracy for cooperating robot arms 
during object integration are shown in Figure 2-1. The inaccuracies and positioning errors of 
the robotic arms and object alter the overall kinematic structure with the integrated object. 
Specifically, the grasp points will be remote from the target position with the consequences 
described above.  

 
Figure 2-1:  Accuracy influencing factors for object integrative handling with cooperating robots, shown for the 

PARAGRIP handling system 

Manufacturing tolerances of the links and joints alter the kinematic structure and reduce the 
absolute accuracy of robotic arms. By identifying the real kinematic parameters and correct-
ing the kinematic model, to some extent they can be compensated for. However, limited 
sensor accuracy in the drives, backlash in the gears and bearings, and friction limit the re-
peatability of every single robotic arm and cannot easily be compensated for. As robots and 
handling systems nevertheless have much better repeatability than accuracy, it is possible 
and advisable to improve the accuracy by calibration methods. 
Structural deformations under load influence the accuracy of robots and handling systems. 
The gravitational loads due to the object payload and the self-weight of the robot deform 
the structure during the grasping and handling process. By modelling the stiffness properties 
and loads, these effects can be compensated for in the kinematic model by extending the 
kinematic parameter identification described above. 
The remaining influencing factors (object pose, object tolerances and grasping uncertainties) 
shown in Figure 2-1 cannot be compensated for by classical calibration, gravitational com-
pensation or external metrology. The pose of the handling object relative to the robots is 

object tolerances

manufacturing tolerances,

inaccuracy of object
pose before grasping

sensor accuracy,
backlash, friction

structural
deformation

grasp point
tolerances

uncertanties during
grasping porcess

structural
deformation
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usually not known precisely before grasping and cannot always be captured accurately with 
acceptable effort. Dimensional tolerances of the object geometry, the residual of the partly 
compensated influencing factors (calibration and gravitational compensation) and unpre-
dictable effects like friction and slip during grasping result in significant grasp point toleranc-
es. Naturally, these tolerances are individual for every grasping process. For this reason, the 
concept of self-calibration for object integrative handling of cooperating robots is investigat-
ed. It allows for the compensation of aforementioned factors, without external metrology, 
by identifying the real grasp points after the object integration. 
The general concept of self-calibration relies on the use of redundant sensor information, 
available within a kinematic structure. For cooperating articulated robots, this redundancy is 
easily achieved as soon as the object is integrated to the structure. As illustrated in 
Figure 2-2a, for example, 18 servo drives (red arrows) are available for a 6 degrees of free-
dom (DOF) motion, resulting in redundant information for up to 12 joint positions. 

a)  b)  

Figure 2-2:  a) Cooperating 6 DOF robotic arms, b) object integration for the PARAGRIP handling system 

For the PARAGRIP handling system, used for the self-calibration method and verification, the 
available sensor information is depicted in Figure 2-2b. The 6 main actuators driving the par-
allelograms (red arrow) are used to drive the kinematic structure with the integrated object. 
The additional actuators (white arrows) are set passive and can be used to gain the redun-
dant position information. In this thesis, the details of this concept and its implementation 
are investigated by pursuing the following three aims. 

Aims 
The PARAGRIP handling concept offers advantages over classical cooperating industrial ro-
bots, like for example the reduced number of actuators and hybrid kinematics structure, as 
explained in detail in section 3. An improved understanding of the system properties will 
help future developments based on these advantages, and opportunities should find wider 
applications if transferred to collaborating robots in general.  
Consequently, the first aim of the thesis is to gain a better understanding of the accuracy of 
the PARAGRIP and to develop, implement, and validate a kinematic calibration procedure. 
The second aim is the compensation of gravitational effects within this kinematic calibration 
procedure, based on a new stiffness model that allows for the automatic calculation of the 
structural deformations for any position and load. 
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The third aim is the development, implementation, verification and validation of a self-
calibration method for object integrative handling systems to identify the grasp points at the 
object and compensate the internal inaccuracies automatically. 
The according research described in this thesis will yield new findings for the PARAGRIP han-
dling system, which can be in the future generalized for every object integrative handling 
system with redundant actuation, in particular cooperating industrial robots. 

Scope and Structure of the thesis 
The PARAGRIP [Rie14] is a recent example of an object integrative handling system and the 
prototype will be used for the experimental verification of the developed methods. The han-
dling concept, the robot prototype and its properties are described in section 3. 
The kinematic accuracy and the identification of the kinematic parameters for a single arm 
of the handling system are investigated in section 4. Based on a state of research review, 
kinematic models and a suitable approach for the static calibration are investigated and vali-
dated for the prototype. Following on from the current state of research for different stiff-
ness modeling approaches, an extended stiffness modeling method is developed and im-
plemented based on the Matrix Structure Analysis in section 5. It is validated for the 
PARAGRIP prototype and extends the performance of the kinematic calibration. Based on 
current state of research approaches for self-calibration of parallel robots, a new method of 
self-calibration is developed and verified for the PARAGRIP handling system. It is described in 
section 6. 
The main findings of the research performed are summarized and concluded in section 7. 
Finally, the results are discussed and an outlook to possible and advisable future investiga-
tions is given in section 8. 
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3 PARAGRIP Handling System 

Riedel and others [Rie14,MRH13] developed a flexible and versatile handling concept, called 
PARAGRIP (Parallel Gripping) to address todays needs of customized production and to offer 
a flexible solution to component dependent individual handling tasks. The handling concept 
[MCR05] and its prototype are used as an exemplary application scenario for object integra-
tive handling systems in this thesis. They are described briefly in this section.  

 
Figure 3-1:  a) PARAGRIP handling concept, b) kinematic architecture (see [Rie14]) 

The handling concept is based on a reconfigurable architecture with a modular layout. Ob-
jects are handled with 6 DOF by forming a parallel kinematic structure including at least 
three robotic arms and integrating the object into the kinematic structure (see Figure 3-1a). 
The object integration is performed by grasping the object with the robotic arms. Here, 
grasping refers to all possible contact principles, for example form fit, force closure or even 
adhesive bonds realized by according end-effectors [Kur16]. The parallel kinematic robot 
structure is formed (and regenerated with every grasping process) by establishing the me-
chanical connection and closing the kinematic chains between the fixed frame and integrat-
ed object. Every robotic arm provides 3 actuated translational DOF to position the end-
effector and 3 passive rotational DOF to allow for passive alignment of the orientation be-
tween robotic arm and object.  
With this arm configuration, the 6 DOF object manipulation requires a minimum of 3 arms 
with 2 main actuators per arm and thus 6 main actuators in total. The robotic arms are real-
ized as hybrid structure: The 2 main actuators drive a planar 5-bar linkage that is rotated 
around the main axis by an additional actuator (see Figure 3-1b). The additional actuator is 
compulsory for the spatial positioning of each single arm with its end-effector and the grasp-
ing procedure, but not necessarily needed for the multi-arm handling task with integrated 
object. This actuation redundancy provides additional sensor information, needed for the 
self-calibration.  
The handling concept features high flexibility due to the reconfiguration of the kinematic 
structure. The system properties can be adapted to a given handling task, for example ob-
jects of different shapes, weight and size. The position of the end-effector on the object af-
ter grasping and the position of the arms on the base frame can be altered. Changes here 
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have great effect on the overall system performance: For example, the workspace, wrench 
and velocity capabilities, stiffness and accuracy can be influenced in a wide range. Addition-
ally, the system can be reconfigured by scaling the quantity or changing the type of robotic 
arms used for object integration. By adding or removing supplementary arm-units, a wide 
range of objects with different sizes and weights can be handled. Actuation redundancy can 
improve the stiffness and payload properties and allow for the support of large and sensitive 
objects at many grasping points. The adaption of the kinematic parameters especially ena-
bles fast and easy reconfiguration by changing the contact point on the object with every 
grasping procedure. The system configuration can even be adapted or changed during object 
motion by dynamically re-grasping the object with additional arms. For details on the dy-
namic reconfiguration see [CMR11].  

 
Figure 3-2:  PARAGRIP prototype with 4 robotic arms (picture by Martin Riedel) 

The PARAGRIP prototype shown in Figure 3-2 was implemented with four identical robotic 
arms. The main actuators are realized using standard servo drives in combination with form-
fit traction belts, while the additional actuators are servo drives directly attached to the 
main axis of rotation. Two different types of end-effectors are implemented for the proto-
type: Electromagnetic end-effectors (see Figure 3-3a) were implemented originally due to 
the easy energy supply and control. Kurtenbach [Kur16] developed and realized vacuum 
end-effectors (see Figure 3-3b) to widen the range of objects that can be grasped.  

 
Figure 3-3:  a) Electromagnetic, b) vacuum end-effector for the PARAGRIP handling system (see [Kur16]) 
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main actuator additional actuator
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Recent developments include the continuous extension of the modular handling concept, 
namely by the systematic analysis and development of different end-effectors by Kurten-
bach [KHC15,Kur16] and the extension of the concept towards the handling and shaping of 
flexible components [ADI15,BDÜ17]. The improvement in the accuracy by self-calibration, 
kinematic calibration [DMH14] and stiffness modeling [DC16] is the focus of this thesis.  
The kinematic calculations for the PARAGRIP were described by Riedel [Rie14] and will be 
applied and modified if applicable for the calibration purpose in this thesis. The definitions of 
variables, indices and coordinate systems are adopted as far as possible, to guarantee con-
sistency in literature, calculations and software.  

Nominal Serial Kinematics Model for the PARAGRIP Arm 
Each PARAGRIP arm (see Figure 3-4) is composed of a planar 5-bar linkage (links 1-4 and 
joints A0, A, B0, B and C) that is rotated around the main axis (joint D0). The superposition of 
the rotational motion along the fixed arm coordinate system  and the planar motion in 
the - -plane of the moving arm coordinate system  result in a spatial motion, suitable to 
position the end-effector. The differentiation between the different arms  is not considered 
in sections 4 and 5, as long as only a single arm is investigated. 

 
Figure 3-4:  Coordinate systems and kinematic parameters for the PARAGRIP arm structure 

For the ideal parallelogram composed of the links 1-4 with the nominal length  
and , the nominal passive joint angles  and  are equal to the nominal joint an-
gles  and : 
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The direct and inverse kinematics can be calculated analogously to a serial robotic arm. The 
according vector of nominal parameters  for the serial kinematics model is: 

(3.3) 

The end-effector position is described using the position vector  of the tool center point 
(TCP, see Figure 3-5): 

 (3.4) 

 (3.5) 

 

The inverse kinematic calculation for the PARAGRIP arm and handling system is described by 
Riedel [Rie14, p. 89–90]. 

Coordinate Systems and Wrist-Joint Angles for the End-Effector 
The end-effectors shown in Figure 3-3 consist of three revolute joints used to provide the 
passive rotational DOF. The kinematic of the end-effector is expressed using the coordinate 
systems shown in Figure 3-5. 

 
Figure 3-5:  Coordinate System, joints and rotational angles for the PARAGRIP end-effector 

The orientation of the consecutive axes R, S and T with respect to the fixed coordinate sys-
tem  are expressed using the wrist-joint angles  and . The rotation about axis T is not 
relevant for the kinematic calculation. The remaining distance from the TCP to the object 
surface is described by the wrist-joint offset  in direction of the unit vector  (see Fig-
ure 3-5).
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4 Calibration by Kinematic Parameter Identification 

The calibration of models and calculation procedures for robotic structures aims at the im-
provement of their quality and accuracy to describe the robotic structure and its behavior. In 
particular, the error of the end-effector poses with respect to a nominal pose or a reference 
trajectory is reduced. Deviations of the model parameters are reduced by identifying the 
actual parameters through the evaluation of external measurements and available infor-
mation. 
In principle, calibration can be applied to models of all complexities: To static, dynamic, rigid 
and flexible models including or excluding a variety of effects like friction, rigid body motion, 
backlash or the influence of the robot control system. Naturally, the effects taken into con-
sideration and hence the complexity of the model limit the quality and accuracy that can be 
reached by calibration. At the same time, a higher model complexity increases the effort 
needed for a successful calibration and does not necessarily result in a better model quality 
after calibration. The identification of kinematic parameters, such as for example the length 
of the links, the offset of the driven joints from the encoder signal or the base position with 
respect to the global coordinate system, are referred to as kinematic calibration and will be 
detailed in the following sections. Roth and others [RMR87] classified this kinematic calibra-
tion as level 2 calibration, including the simpler level 1 (also called joint level) calibration, 
which is limited to the identification of the correct relationship of drive position transducer 
and the actual joint position. The more extensive calibration methods considering non-
kinematic parameters like compliance, friction or dynamics are referred to as level 3 calibra-
tion. This classification into three levels is used widely, especially for articulated serial ro-
bots. Roth and others [RMR87] also state that kinematic calibration consists of the four se-
quential steps: Modeling, measurement, identification and compensation/correction. Elatta 
and others [EGZ04] give a comprehensive overview of the steps and different levels of cali-
bration. An overview for the levels of calibration and sequential steps that are followed in 
this work is given in Figure 4-1. 

 
Figure 4-1:  Levels and sequential steps of calibration 

The model quality and accuracy that can be obtained by kinematic parameter identification 
does not solely depend on the approach chosen, but on the chosen measurement poses as 
well. An increased number of measurement poses enhances the reachable accuracy asymp-
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totically to a certain limit value [DPM05]. An extensive expansion of the number of meas-
ured poses therefore is not productive. In fact, even more important than the number of 
poses is their sensitivity regarding the parameters of calibration. Appropriate methods to 
benchmark this sensitivity will be discussed in section 4.5, an overview is given by Sun and 
Hollerbach [SH08]. 
Kinematic calibration procedures are often classified by the type of robotic structure they 
are applied to, mainly distinguishing between parallel and serial manipulators but also hy-
brid structures. This is because the use of the direct or inverse kinematic calculations is not 
equally simple and meaningful for different structures. However, the methods, for example 
the use of external metrology, internal joint sensors or artificial motion restriction, in general 
can be used for different types of robotic structures. 
In this work open loop, also called external calibration, and closed loop kinematic calibration 
are distinguished and considered. Similar and overlapping classifications are used in litera-
ture (for example [HW96,Mer06, p. 290,HLJ10]). To avoid confusions in the nomenclature, it 
should be noted that open and closed kinematic chains of a mechanism in literature often 
are named open and closed loops. In this thesis it is referred to open and closed loop for the 
classification of the calibration procedure only. 
In open loop kinematic calibration external metrology is used to capture the position or pose 
of the end-effector or specific links. It is then compared to the prediction of the theoretical 
kinematic model to be calibrated. In closed loop kinematic calibration the residual between 
the theoretical kinematic model and the manipulators behavior is captured using redundan-
cies and constraints in the system as detailed in section 6.1. In this section, the enhancement 
of the kinematic accuracy for a single arm of the handling system is performed with a level 2 
open loop calibration. The extension to a level 3 calibration including the gravitational com-
pensation for the structure is discussed in section 4.7. Details of the according stiffness 
modeling are given in section 5. 

4.1 State of Research in Open Loop Calibration 

Open loop kinematic calibration is characterized by using external metrology to precisely 
capture the end-effector pose or position of the manipulator. Even though open loop cali-
bration is not restricted to open kinematic chains, it is well established and mainly applied 
for serial manipulators. In principle, the measurement of the end-effector pose can be per-
formed with any metrology system with sufficient measurement accuracy. A good overview 
specifically for the commercially applied technologies is given by Nubiola and others [NSJ14]. 
The accuracy of the metrology system will influence the quality of the calibration and ideally 
it should be an order of magnitude better than the repeatability of the robotic structure. 
Examples are the laser interferometer used by Alici and Shirinzadeh [AS05], a laser tracker 
system used by Ying and others [YZR03], optical or mechanical coordinate measurement 
machines (CMM) used by Nefzi and others [NCH08] and Vischer and Clavel [VC00], visual 
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cameras used by Renaud and others [RVA06] or stereo vision systems used by Švaco and 
others [ŠŠŠ14]. 
The position and, if applicable, the orientation of the end-effector is captured for a set of 
robot poses. At the same time, the encoder signals for the drives are recorded for every 
measurement pose. Nubiola and others [NSJ14] compared the effectiveness of laser trackers 
and optical CMM including the optional measurement of the orientation. They conclude that 
both systems are equally effective and provide similar calibration results. The optical CMM 
can, however, be used much more efficiently, it is therefore used in this thesis (see section 
4.3). The use of specific targets for the orientation measurement does not provide noticea-
bly better results and in their conclusion is not beneficial for the calibration procedure, espe-
cially considering the high effort needed to design and calibrate the target itself. 
For parameter identification, the theoretical end-effector position is calculated, using the 
direct kinematic model. The corrected kinematic parameters can be derived by numerical 
optimization to vary the kinematic parameters and minimize the deviation of the measured 
poses and the calculated theoretical poses. The numerical optimization can be implemented 
for example by means of the linear least square method used by Joubar and others [JZB15], 
the Levenberg–Marquardt method used by Ginani and Motta [GM11], the Kalman filter used 
by Park and others [PLC12], the singular value decomposition used by Agheli and Nategh 
[AN09] or artificial neural networks used by Wang and others [WBZ12]. 
The kinematic model is then corrected, using the best set of parameters from the optimiza-
tion. To finally prove the success of the calibration, the absolute accuracy for the corrected 
kinematic model is measured.  
There are two alternative approaches to the described open loop calibration procedure. The 
first approach is based on the independent analysis of each robot axis, called screw-axis 
measurements [HW96], rather than using the direct kinematics during identification. The 
parameters are based on an independent calculation for each joint and hence the relation 
between the identified parameters and the actual robot parameters are maintained more 
directly [GB93]. The joint axis direction and position are directly obtained from the meas-
ured movement of the following link by the so-called Circular Point Analysis [MRD91, p. 175–
182]. The method is, however, strictly limited to serial robots with open chain kinematics.  
The second approach is based on the direct error analysis to avoid limitations of the kine-
matic models. Tiang, Zeng and others [TZZ14,ZTL16] and Pastor and others [PKB13] pro-
posed such an approach for serial robots: It is based on the error similarity analysis in the 
Cartesian workspace and relies on measured spatial data for the positioning error of the TCP. 
The error compensation is performed by modifying the target position coordinates, rather 
than the kinematic model. Gottlieb [Got14] proposed a parameter-free calibration of parallel 
structures. It is based on an error sample set in the configuration space and uses an interpo-
lation of these correction factors. In contrast to the approach for serial robots, the error 
compensation is performed by modifying the drive positions and not the target positions in 
the Cartesian space. 
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In the following sections, a brief overview of the current state of research for open loop cali-
bration for serial, parallel and hybrid structures is given to identify suitable approaches for 
the calibration of different handling systems. 

4.1.1 Open Loop Calibration of Articulated Serial Robots 

Open loop calibration has been established for serial robots, especially for the most popular 
articulated industrial robot since the 1980s [RMR87]. The principles have not changed even 
though the accuracy demands and the measurement technology have improved. The calcu-
lation of the direct kinematics is usually based on the Denavit-Hartenberg (DH) [DH55] mod-
el and parameters for serial structures. Numerical deficiencies for parallel consecutive joint 
axes, which cause redundant parameters and compromise the robustness of the calibration, 
led to new modeling approaches. Stone and Sanderson [SS88] suggested the S-Model to de-
scribe kinematics for the purpose of calibration. It is similar to the DH-notation, but does rely 
on additional parameters and transformations between coordinate systems. Zhuang and 
others [ZRH92] introduced the complete and parametrically continuous kinematic model 
that is based on singularity-free line parameters. Again, the approach is similar to the DH-
notation and as compact, but specifically addressing the calibration. Hayati and Mirmirani 
[HM85] extended the DH-model by introducing an additional rotational parameter for nearly 
parallel axes (see Figure 4-2a). This approach is also known as Denavit-Hartenberg-Modified 
(DHM) and is commonly used for the calibration for serial [NB13,MdM01] as well as hybrid 
structures [AS05]. Schröder and others [SAG97] developed a systematic approach to set up 
DHM frames for arbitrary open kinematic chain structures. Okumura and Park [OP96] intro-
duced the product of exponentials (POE) formula that is based on screw theory and avoids 
numerical singularities as found in DH-notation. It is robust against redundant parameters 
and as well widely used, for example by He and others [HLS14] and Chen and others [CWL14] 
for serial structures. Wu and others [YWL14] modified the POE formula by introducing a uni-
versal joint space description with independent kinematic parameters to simplify mathemat-
ical transformations needed in classical POE. Chen-Gang and others [CLC14] give a wide 
overview of kinematic calibration technologies of serial robots. 

 
Figure 4-2:  Open loop calibration of articulated serial robots: a) DHM notation for near parallel revolute joints 

[HM85], b) experimental setup with a laser tracker [NB13], c) experimental setup with measure-
ment arm [YWL14] 

  

a) b) c)
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A selection of recent publications shows the range of accuracy improvement that can usually 
be achieved by open loop calibration for serial robots: Newman and others [NBH00], Wang 
and others [YWR06], Ginani and Motta [GM11], Švaco and others [ŠŠŠ14], Zeng and others 
[ZTL16], Lightcap and others [LHS08] and Nubiola and Bonev [NB13] provide recent meas-
urement data for the open loop calibration for articulated serial robots. Details are not given 
here for the sake of compactness. The approaches differ from each other significantly with 
respect to the metrology system, the modeling and optimization approach and the number 
and characteristics of the considered poses. Therefore, this selection can only give an orien-
tation to possible accuracies and not a comparative analysis of different approaches. Signifi-
cant improvements of the accuracy can be achieved by open loop calibration. A remaining 
maximum position error of 0.7 mm and mean position error of 0.4 mm can be expected for a 
successful calibration of the kinematic model, at least when gravitational effects are consid-
ered. However, results with position errors two times as large can be observed for some 
approaches and set-ups as well. These values give a good orientation to assess the success of 
the calibration by kinematic parameter identification shown in this section. 

4.1.2 Open Loop Calibration of Parallel Robots 

While open loop calibration for serial robots is based on the calculation of the direct kine-
matics, this approach is rather challenging for parallel robots and rarely used. Everett and Lin 
[EL88,Eve89] extended the approach with additional constraints for every closed kinematic 
chain of the parallel robot. Masory and others [MWZ93,MJZ96] proposed a direct adaptation 
of the open loop principles used for serial robots. In more recent approaches the direct kin-
ematics were applied to construct a compensation in Cartesian Space using neural networks 
[Yu08,GEF10]. However, the use of the direct kinematics is not common for the calibration 
of parallel robots, because it is not unique in most cases and often needs to be solved nu-
merically, which is computationally intensive and not necessarily accurate. 
The inverse kinematic calculations are less complex and are consequently commonly used 
for the open loop calibration of parallel structures. They can be solved separately for every 
kinematic chain of the parallel robot between end-effector and base. Each of these open 
chain calculations relates the end-effector pose to the position of the drives, similar to the 
inverse kinematics of a serial robot, and has an analytical solution in most cases. The fitness 
function in the optimization process is based on the residual of the position of the drives. 
The theoretical drive position for a measured end-effector pose is calculated and compared 
to the actual drive positions.  
Wampler and others [WA92,WHA95] introduced the implicit loop formulation for serial and 
parallel robots as a unified approach. All constraints of the mechanism are treated by the 
same formulation of implicit loops, which includes closed kinematic chains of the mechanism 
and open chains with a measured end-effector position. For each implicit loop the sum of all 
displacements around the kinematic chains is claimed to be zero, taking into account kine-
matic and sensor parameters as well as measured and possibly unknown displacements. The 
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formulation of these implicit loops is analyzed statistically, based on the maximum-likelihood 
principle, to identify the parameters and achieve an estimation of the parameter and pose 
errors. Zuang and Yan [ZYM98] followed a similar formulation and advanced the approach to 
solve the system of equations. They introduced a cost function for the deviation and an iden-
tification Jacobian to determine the kinematic parameters from the linearized constraint 
equations. Another extension was proposed by Oliviers and Mayer [OM95]: The system of 
equations is solved using the singular value decomposition as a best approximation for a 
minimal least-square error. The implicit loop formulation and its adaptions describe the fun-
damental approach for the calibration of parallel robots and are widely used. 
Based on the diversity in the possible formulations for the constraint equations, the accord-
ing solving strategies, the types of available measurements and the kinematic structures, the 
variety of open loop calibration procedures is considerably higher than for the more stand-
ardized articulated serial robots. Majarena and others [MSS10], Last and others [LRH10, p. 
93–106] and Hernández-Martínez and others [HLJ10] give an extensive overview regarding 
the different calibration methods and specific considerations for parallel manipulators. 
A selection of publications indicate the range of accuracy improvement that can be achieved 
by open loop calibration for parallel robots: Bai and others [BMH16] (see Figure 4-3a), Zhang 
and others [ZDT16] (see Figure 4-3b), Traslosheros and others [TST13] (see Figure 4-3c), 
Chiang and others [CLH11], Ecorchard [Eco10], Rauf and others [RPR06], Meng and others 
[MTW03], Iura cu and Park [IP03] and Vischer and Clavel [VC00] provide experimental verifi-
cations for the open loop calibration for parallel robots. 

 
Figure 4-3:  Open loop calibration of parallel robots: a) Delta robot with laser tracker [BMH16], b) Cutting ma-

chine with bridge type CMM [ZDT16], c) Delta robot with attached camera [TST13] 

As the mechanisms investigated and their accuracy properties vary significantly, this selec-
tion only gives a rough orientation regarding possible accuracies and not a comparative 
analysis of different approaches. Remaining maximum position errors of about 0.2-1.7 mm 
and mean position errors of 0.05-1.6 mm were achieved. The improvement factor from the 
nominal to the calibrated model usually ranged between 2 and 15. 

4.1.3 Open Loop Calibration of Hybrid Robotic Structures 

To reduce the masses in movement and increase the performance of serial manipulators, a 
direct drive gear in a serial structure can be substituted by a closed kinematic chain, forming 
an overall hybrid structure. Examples are the investigated 3 DOF PARAGRIP arm structure 
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(see Figure 3-1b), 4 DOF industrial robots for palletizing, like the KR 40 PA [KUK17], as well as 
6 DOF general purpose industrial robots, like the ABB IRB 2400 [ABB16]. Klimchik and others 
[KMA16,KMC16] showed that hybrid or quasi-serial industrial robots are preferable for large-
scale tasks. 
Neither the calibration approaches for serial nor for parallel robots can be directly applied to 
hybrid structures. The constraint equation for the closed kinematic chain needs to be con-
sidered to solve the kinematics of the driven link and the parameter redundancies induced 
by the closed kinematic chain need to be accounted for in the modeling approach. Common 
approaches for serial robots like the introduced DHM-notation can be adapted and applied 
for hybrid structures. 
Ananthanarayanan and others [ASG92] fully described the kinematics of a general four-bar 
mechanism used as a manipulator, however, they did not apply a general calibration proce-
dure, but individually identified the link length by measurements of the mechanically con-
strained mechanism. Schroer and others [SAL97] introduced a general formulation to solve 
the kinematic description of an actuated planar crank-slider mechanism and planar four-bar 
mechanisms for its passive joint values and integrate the solution to the kinematic descrip-
tion of the serial manipulator. Experiments showed a reduction of the mean positioning er-
ror from 0.65 mm to 0.34 mm, and to 0.18 mm considering elasticities as well. Alici and Shir-
inzade [AS05] (see Figure 4-4a) proposed a reduced modeling approach, neglecting most of 
the DH parameters of the passive joints. The accuracy was improved by a factor of 2.5, the 
remaining mean position error of 3.3 mm, however, seems to be comparatively insufficient, 
even though different experimental setups and measurement systems cannot be compared 
directly. Marie and Maurine [MM08] described a systematic analytical description of the 
geometrical and elastic error models for hybrid robot structures similar to Schroer and oth-
ers [SAL97]. 

 
Figure 4-4:  Open loop calibration of hybrid robots: a) experimental setup for calibration [AS05], b) degenerat-

ed parallelogram structure [TW12], c) structure of a palletizing robot [MM08] 

To and Webb [TW12] (see Figure 4-4b) proposed a linearized approach for the analysis of a 
general serial manipulator with hybrid parallelogram structure. They applied Hayatis DHM-
notation to describe the kinematics and analyzed the 4-bar linkage to describe the not ideal 
parallelogram. In contrast to Marie and Maurine [MM08] (see Figure 4-4c), they linearized 
the highly non-linear geometric terms and eliminated dependent parameters for their mod-
el. In comparison to the ideal model, the mean positioning error is reduced slightly. Taking 
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into account the compensation of gravitational effects as well, the consideration of the par-
allelogram did improve the calibration quality by a factor of 2, achieving a mean position 
error of 0.8 mm and 0.4 mm, respectively. Consequently, the hybrid kinematics model will 
be investigated and compared to the serial kinematics model for the PARAGRIP handling 
system. 

4.2 Extended Kinematic Models for the PARAGRIP Arm 

The kinematic model chosen for the kinematic calibration should be complete, minimal and 
consistent [Eco10, p. 39]. A complete model takes all error sources into account and hence, 
allows for their compensation after the calibration process. Naturally the number of identifi-
able error sources is limited by the calibration process itself, depending on the implemented 
method and measurement accuracy. Therefore, a careful consideration of the necessary 
parameters is needed. A complete model is minimal, if it does not contain redundant pa-
rameters that would hinder the unique parameter identification. This is particularly im-
portant for closed kinematic chains, were parameters are interrelated [EL88]. In a consistent 
model small variation of the mechanisms geometry results in accordingly small changes of 
the model parameters. An already introduced example to deal with the consistency of a 
model is the DHM notation by Hayati and Mirmirani [HM85] for consecutive parallel axis. 
Certainly, obtaining an according model to reach the optimal accuracy is not trivial, further-
more, the models are usually not generalizable and specific to the system under study 
[MSS10, p. 10273]. 
For the PARAGRIP arm different ways are possible to describe the kinematics. The most ex-
tensive one considering a complete DHM-notation leads to a set of 40 parameters: 
6 parameters for the offset of the arm coordinate system , 25 parameters for the joints 
(A0, B0, A, B, C), 4 parameters for the TCP and 5 additional MDH-parameters between 
joints A and C for the closed loop constraints. This parameter selection, however, is not min-
imal, as it contains redundancies. It is not complete, as a large set of parameters can be as-
sumed to be negligible and not identifiable with the accuracy of standard external metrolo-
gy. In a previous contribution different reduced models for the PARAGRIP arm were 
investigated [DMH14]. The considerations are continued in this section. 
A serial and a hybrid model shown in Figure 4-5a and b are investigated and compared. The 
rotational axes of the planar linkage are assumed to be ideally parallel and coinciding for 
joints A0 and B0 (see Figure 3-4). Any displacement of the planar linkage perpendicular to the 
plane is expressed using the displacement  of the TCP. 
The offset of the arm coordinate system is expressed using three translational and two rota-
tional offsets and . The rotational offset around the -axis is integrated 
into . For the more complex hybrid kinematics model, an additional parameter  is 
introduced to account for offsets of coordinate system  with respect to the main axis of 
rotation (joint D0) fixed to coordinate system . The model parameters are listed in 
Table 4-1. 



4 Calibration by Kinematic Parameter Identification  19 

 

 
Figure 4-5:  a) Serial, b) hybrid kinematics model of the PARAGRIP arm 

model model parameter 

serial kinematics 11 

hybrid kinematics 15 

Table 4-1:  Model parameters for the PARAGRIP arm serial and hybrid kinematics model 

The parameter deviations  and  describe the deviation of the actual parameter values 
 and  from their nominal values  and : 

(4.1) 

(4.2) 

The displacement of the arm TCP position vector  in comparison to the nominal model can 
be calculated from the vector of parameter deviations  using the Jacobian matrix of pa-
rameters : 

(4.3) 

Serial Kinematics Arm Model 
The parallelogram is assumed to be ideal for the serial kinematics model. The direct kinemat-
ic calculation introduced in equation (3.5) is extended to account for the introduced calibra-
tion parameters: 

(4.4) 

(4.5) 
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The according vector of parameter deviations  for the serial kinematics model is: 

(4.6) 

Hybrid Kinematics Arm Model 
In the hybrid kinematics model the parallelogram is not considered ideal and the closed kin-
ematic chain is accounted for explicitly. The redundancies occurring in the closed kinematic 
chains need to be analyzed to identify redundancies and guarantee completeness of the 
model. The identifiable parameters can be analyzed by calculation of the Jacobian matrices 
for the kinematic parameters of the linearized model [SK16, p. 118]. To and Webb [TW12] 
applied this general approach to a hybrid manipulator containing a parallelogram using the 
MDH-notation. Here the approach is applied in a similar way for the specific kinematic de-
scription of the PARAGRIP arm. 
The vector of parameter deviations  is composed of the relevant kinematic parameters of 
the additional kinematic chain in the parallelogram. The parameter deviations  and  
of the serial link are not considered. 

(4.7) 

The Jacobian matrix of parameters  is composed of the Jacobian matrices  and  relat-
ed to these parameters: 

(4.8) 

The parallelogram forms a 4-bar linkage and is calculated using the vector sum to account 
for the position constraints: 

(4.9) 

This can be rewritten using the joint angles  and link length : 

(4.10) 

(4.11) 

The passive joint angles  and  are unknown and need to be calculated from the kine-
matics of the deformed parallelogram. The implicit calculation of the position functions  
and  needed for the direct kinematic calculation is given in Annex 9.1: 

(4.12) 

(4.13) 

Considering small deviations  and  from the nominal values, the deviations  and 
 can be calculated from the linearization of equations (4.12) and (4.13): 

(4.14) 

(4.15) 
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Instead of deriving the linearization of the complex functions (4.12) and (4.13) directly, the 
linearization can be assembled from the derivatives of the ideal joint angles and the position 
constraints. The derivative of the ideal joint angles in equations (3.1) and (3.2) is: 

(4.16) 

(4.17) 

Considering the parameter errors , the derivative of the position constraints in 
equations (4.10) and (4.11) is obtained: 

(4.18) 

(4.19) 

By ignoring high-order terms and by linearization of the cosine and sine function (see Annex 
9.2)  and  are obtained: 

(4.20) 

(4.21) 

Combining equations (4.16) and (4.17) (joint angles) with (4.20) and (4.21) (position con-
straints), the assembled linearization of the position functions is obtained: 

(4.22) 

(4.23) 

The elements of the introduced Jacobian matrix of parameters  can be calculated analo-
gously to the Jacobian matrices introduced for the MDH-notation in [HKG16, p. 119]: 

(4.24) 

 (4.25) 

Here the formal DH-notation does not need to be fully applied. The position of the element 
coordinate systems introduced by [Rie14] largely corresponds to the according DH-notation 
as shown in Figure 4-6. Only the coordinate system  was added to comply with the DH-
notation for the investigated kinematic chain. The -axes according to DH-notation are not 
shown, they do not coincide with the general notation for the PARAGRIP arm as introduced 
by [Rie14] and as used in this thesis. The joint angles  are proportional to the according DH 
joint angles  and the parameter deviations and Jacobian matrices are equivalent. 
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Figure 4-6:  Coordinate systems for the PARAGRIP arm parallelogram 

Equation (4.3) is extended by explicitly writing  from equation (4.7) and replacing  and 
 using equations (4.20) and (4.21): 

(4.26) 

By rearranging the resulting matrix equation, the new Jacobian matrices  and  are 
calculated for the corresponding parameters in equations (4.22) and expressed as a function 
of the original  and : 

(4.27) 

 (4.28) 

 (4.29) 

 (4.30) 

 (4.31) 

  (4.32) 

 (4.33) 

Note that  and  are now included in the vector of parameter deviations , even 
though they are not part of the originally investigated additional kinematic chain composed 
of link 4, link 3 and link 2.  
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As links 2 and 4 are designed to be parallel, it can be stated that  for small devia-
tions: 

(4.34) 

With equations (4.31) and (4.33), it can be seen that . Therefore,  and  are 
linearly dependent and hence  and  are redundant. It can be seen from equations 
(4.30) and (4.32) , that  and  are not redundant because  and  are linearly inde-
pendent. This can be interpreted as follows: In the parallelogram of the PARAGRIP arm, the 
pair of link 2 and link 4 does only drive link 2, hence their ratio of length is decisive for the 
kinematic properties; theoretically their absolute length is irrelevant. Of course this only 
applies as long as the parameter deviations are small and the linearization can be assumed 
to be valid. This is different for the pair of link 1 and link 3: The absolute length of link 1 
changes the properties of the main kinematic chain, namely the position of link 2 and the 
attached TCP. 
Consequently, the parameter deviation  is excluded from the parameter identification. 
Considering the 14 relevant parameters of the hybrid structure in Table 4-1 the vector of 
parameter deviations  for the hybrid kinematics model is: 

(4.35) 

The according nominal vector of parameters  for the hybrid kinematics model is: 

(4.36) 

The direct kinematics introduced in equation (3.5) is modified to account for the introduced 
calibration parameters:  

(4.37) 

(4.38) 

Note that  is calculated according to equation (4.12) using the actual parameters , , , 
 and  and the nominal link length . 

4.3 Measurement Procedure 

The implemented measurement procedure is used to capture the end-effector position  
and the actual drive positions . The drive positions are captured from the drive encoders 
and the end-effector position is captured using an optical CMM as shown in Figure 4-7. The 
optical CMM records the position of infrared Light Emitting Diodes (LED) attached to moving 
objects or the hand-held SpaceProbe with probe tip. The pulsed signal of the LEDs is cap-
tured by three linear optical cameras and the position is processed by triangulation.  
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Figure 4-7:  Coordinate systems and reference points for the Nikon K600 measurement system and the 

PARARGRIP handling system 

The specified accuracies (see Table 4-2) are inhomogeneous because of the positioning of 
the three linear cameras. The captured signal is less sensitive to changes close to the direc-
tion of sight .  

 

SpaceProbe static accuracy 
(±2  interval)  0.015 mm 0.015 mm 0.06 mm 

single LED dynamic accuracy 
(±2  interval) 0.025 mm 0.025 mm 0.09 mm 

repeatability for the hand-held 
space probe (±4  interval)   0.09 mm  

Table 4-2:  Accuracy characteristics specified by the supplier [Met06] for the measurement distance of 3-4.5 m 

All LED signals are captured for a time sequence of 1 second at 50 Hz measurement frequen-
cy and the position  is calculated as mean value  of the captured data to reduce the influ-
ence of measurement noise.  
The captured positions are expressed in the camera coordinate system and transformed to 
the global coordinate system 0 via the frame coordinate system. The reference marks are 
captured with a hand-held SpaceProbe and used to define the transformation from the cam-
era coordinate system to the frame coordinate system. This transformation is dependent on 
the camera position and repeated for each measurement. The second transformation from 
the frame to the global coordinate system is invariant and defined by the frame dimensions 
and arm positions. 
Figure 4-8 shows the frequency distribution for the continuously measured position of a 
fixed reference LED on the frame to assess the accuracy of the aforementioned measure-
ment and transformation procedure. 
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Four different measurements were performed at different times and from different camera 
positions. The first two measurements of the fixed reference LED were repeated for an un-
changed camera position to evaluate the measurement drift. For all measurements, the po-
sition of the reference LED expressed in the global coordinate system 0 should ideally be 
identical. Measurement errors for the reference marks and the LED position superimpose 
and the maximum deviation is below 0.1 mm in  and -direction and 0.25 mm in the less 
accurate  or  direction (see Table 4-3). The measured position for the ,  
and  position of the reference LED drifted by 0.04 mm, 0.01 mm and 0.03 mm during the 
3 h measurement 1 and the drift can be observed to be noticeably larger in the  direction 
during the 7 h measurement 2. This behavior is not critical for a typical 1-2 hour lasting cali-
bration measurement. 

 

  
Figure 4-8:  Frequency distribution for the measured position of the reference LED (4 different measurements) 

The measured frequency distribution for the static reference LED has a standard deviation  
of 0.014 mm, 0.002 mm and 0.004 mm for the ,  and  position for a 27 s measure-
ment with 1350 data points. This validates the specified static accuracy characteristics: Even 
though the static single LED accuracy is not specified and cannot be compared directly, the 
±2  interval accuracy for the static SpaceProbe (with multiple LEDs) is 4 times as large as the 
measured . 
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 -direction -direction -direction 

standard deviation  of the 
frequency distribution 0.014 mm 0.002 mm 0.004 mm 

maximum deviation of the reference 
LED position within 4 measurements 0.253 mm 0.099 mm 0.086 mm 

position drift for measurement 1 
(3 h duration) 0.04 mm 0.01 mm 0.04 mm 

position drift for measurement 2 
(7 h duration) 0.12 mm 0.01 mm 0.04 mm 

Table 4-3:  Accuracy characteristics for the measurement procedure (measurement distance of 4 m) 

Concluding, using the reference frame for an intermediate transformation results in a good 
alignment of the measurements. However, the coordinate transformations are rather sensi-
tive to measurement errors of the reference point: Considering the maximum deviation of 
0.25 mm, the comparison of absolute positions between measurements should be treated 
carefully. For the sake of completeness and with high relevance of the practical implications: 
The described measurement procedure is functional and accurate, it is, however, not neces-
sarily robust. A variety of disturbances (for example air turbulences from the heating, limited 
and distracted visibility for the optical system or mechanical vibrations) need to be consid-
ered and were eliminated during many preliminary measurements. 
The end-effector position  is defined by the mid-point of the spherical wrist-joint  
(compare Figure 3-5) and cannot be captured directly. It is measured indirectly by capturing 
the position of three LEDs on an attached adapter (see Figure 4-9). The adapter is rotated 
with respect to the three wrist-joint axes of the fixed arm while capturing the LED positions 
that perform a spherical movement around . 

 
Figure 4-9:  Reference LEDs on adapter plate to measure the end-effector position 

The end-effector position  with respect to the measured LED coordinate system is 
identified by fitting each LED path to a sphere. This identification can be considered reliable 
and accurate, the mean deviation of path and sphere ranges between 0.05 mm and 0.08 mm 
for the performed measurements.  
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4.4 Absolute Accuracy and Repeatability 

The accuracy of a robot or handling system is described by a variety of measures, for exam-
ple the trajectory accuracy, the overshoot accuracy or even the stiffness of a structure. In 
this thesis, the repeatability and absolute accuracy for a static pose are used. Following the 
EN ISO 9283 standard [Eur98], the repeatability and absolute accuracy are defined for the 
position and orientation separately. 
The absolute position accuracy  is defined as the 2-norm of the deviation (measured 
over  cycles) of the target position and the average measured position in the given point:  

 (4.39) 

With the nominal coordinates of the target position  and the average measured posi-
tion values  over  cycles: 

 (4.40) 

The position repeatability  is composed of the average deviation  and three times 
the corrected sample standard deviation : 

 (4.41) 

With the average deviation , the deviation  for cycle  out of  cycles and 
the corrected sample standard deviation : 

 (4.42) 

 (4.43) 

 (4.44) 

This definition of the absolute position accuracy is widely accepted and often used for large 
sets of arbitrary points [NSJ14], a specific set of measurement- and verification points 
[ZTL16] or a constantly measured trajectory [KHO11].  
Cheng and others [CZW11] use the more detailed ISO 302-2 standard for machine tools 
[Int14] that details different accuracy metrics for different directions of approach, reversal 
errors and so on. They apply it to the positioning accuracy of a 5 DOF parallel machine tool, 
where higher accuracies and more detailed specifications of the accuracy are demanded.  
Santolaria and Ginés [SG13] analyzed the accuracy of a robot calibration based on the screw-
axis measurements and Circular Point Analysis. The uncertainty in the identification of each 
single robot parameter can be calculated based on Monte-Carlo Analysis. Consequently, the 
method allows for an extensive assessment of the expected accuracy in the overall work-
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space. Screw-axis measurements are, however, limited to serial kinematic chains and conse-
quently a more general approach is followed in this thesis. 
According to the standard EN ISO 9283 [Eur98] a set of 5 points, in the largest cubic or rec-
tangular workspace possible, needs to be measured in 30 cycles. The points lie on a plane 
positioned diagonal in the rectangular workspace as shown in Figure 4-10, a definition wide-
ly used for industrial robots (see for example [KUK17]). 

 
Figure 4-10:  Reference points 1-5 on the diagonal plane for the rectangular workspace of the robotic arm and 

illustration of the deviation (red lines with 100x magnification) for nominal parameters for arm 1 

The chosen rectangular workspace in Figure 4-10 does not represent the largest possible 
workspace for a PARAGRIP single arm. However, considering the object integration with 
multiple arms, it approximates the largest usable workspace of a single arm under the work-
space restrictions imposed by the other arms in the chosen set up (see Figure 3-2). 
Describing the accuracy and repeatability properties by such a reduced set of points (see 
Table 4-4) is sufficient: Comparative measurements for the chosen set-up have shown that 
referring to a point cloud within the rectangular or larger workspace resulted in similar mean 
and maximum accuracies. Consequently, the definition following the EN ISO 9283 standard 
gives a good representation for the accuracy behavior. 

reference point 

1 500 mm 0 mm 506 mm 

2 700 mm -320 mm 366 mm 

3 700 mm 320 mm 366 mm 

4 300 mm 320 mm 600 mm 

5 300 mm -320 mm 600 mm 

Table 4-4:  Reference points position in the arm coordinate system  

The absolute accuracy for the nominal parameters is shown in Figure 4-11 for a set of meas-
urements. Slight variation of results can be explained by intermediate dismounting and 
mounting of the robotic system.  
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Figure 4-11:  Mean and maximum absolute accuracy for arm 1 and arm 3 

A typical set of deviations for the 5 reference points is given in Table 4-5 and illustrated in 
Figure 4-10. The poor maximum and mean absolute accuracy in combination with the good 
repeatability show a considerable potential for the calibration by kinematic parameter iden-
tification. 

reference point 

1 0.086 mm 1.9840 mm -0.3976 mm -1.7616 mm -0.8215 mm 

2 0.057 mm 2.4152 mm -0.8043 mm -1.0958 mm -1.9965 mm 

3 0.040 mm 1.8107 mm -1.6533 mm -0.5235 mm -0.5208 mm 

4 0.065 mm 1.3404 mm -1.1522 mm  0.5155 mm -0.4509 mm 

5 0.065 mm 5.0239 mm  0.3378 mm -4.6059 mm -1.9776 mm 

mean 0.063 mm 2.5148 mm    

Table 4-5:  Position repeatability and absolute position accuracy for the nominal parameters of arm 1 (meas-
urement 2 in Figure 4-11) 

4.5 Identification of the Kinematic Parameters 

The actual kinematic parameters of the robotic arms are identified by evaluation of the 
measured end-effector positions  and the captured drive positions  for the identifi-
cation points . For the level 2 calibration, the nominal end-effector positions  are cal-
culated, using the direct kinematics model:  

 (4.45) 

Their deviations from the measured end-effector positions  are calculated according to 
the absolute position accuracy  introduced in equation (4.39):  

 (4.46) 

The deviations for all identification positions are expressed in the vector . The parameter 
deviations  are derived by numerical optimization. The aim of the optimization is to min-
imize the overall deviation of all measurements, expressed by the residual :  

  (4.47) 
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The optimization is implemented using a combination of the genetic algorithm as described 
by Goldberg and Holland [GH88] and the Nelder-Mead simplex algorithm as described by 
Lagarias and others [LRW98]. After identifying a solution to the optimization problem using 
the genetic algorithm, this solution is refined by using the Nelder-Mead simplex algorithm 
with several recursive restarts. The according MATLAB® functions ga [Mat17a] and 
fminsearch [Mat17b] have proven to be stable and reliable for the parameter identification. 
A description of the initial implementation and first results for the kinematic parameter 
identification is given by Rodilla [Rod14 Dt].  
Any numerical optimization algorithm evaluates a scalar value as final optimization criterion. 
Consequently, the deviation information given in  needs to be consolidated in the single 
value residual . In linear algebra, this operation is defined as a norm, a function, which as-
signs a positive scalar value to any non-zero vector. Examples are the Manhattan norm (sum 
of the absolute values), the well-known Euclidian norm or the maximum norm. They all de-
rive from the general p-norm:  

 (4.48) 

The choice of the norm will influence the behavior and performance of the optimization and 
parameter identification. If choosing the Manhattan norm ( ), improvements of the 
deviation of any identification point would be treated equally without putting any weighting 
to the optimization. Already small deviations may be optimized on cost of a considerably 
large deviation at another identification point. The Euclidian or 2-norm ( ) is the usual 
choice in literature (see for example [JZB15,NB13,MSS10, 10283f]: All points are considered 
in every evaluation and particularly high deviations obtain a higher weight due to the quad-
ratic relation. Because of this balanced behavior the according residual  will be investigat-
ed for the calibration procedure: 

 (4.49) 

Norms of higher order increase this weighting factor up to the consideration of only the 
maximum deviation value for the maximum norm ( ). If the maximum is considered, 
the deviation for a single point will be optimized, not considering the other deviations until 
they become larger than the original one. As a consequence all deviations are regarded and 
the residual is enveloping all point deviations with a priority on larger deviations. Because of 
this property, the residual  will be investigated and compared to the Euclidian norm: 

 (4.50) 

The calculation time of the chosen MATLAB® implementation is far better for the  residual 
compared to the  residual. This may already give an indication of the overall performance 
of both alternative approaches. 
The quality of the identified parameters can be assessed by checking the absolute accuracy 
after the compensation, as described in section 4.7. It should be noted that the unicity of the 
identified solution is not necessarily given. Independent from measurement noise and the 
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optimization performance, the mathematical problem may have multiple solutions, even for 
highly overdetermined problems after multiple measurements [Mer06, p. 297]. Practice, 
however, shows that good and reliable results can be achieved by the proposed calibration 
method. 
The more detailed approach of evaluating the uncertainty of the parameter identification by 
Santolaria and Ginés [SG13] cannot be applied here as shown in section 4.4. A possible ex-
tension of the parameter identification is the application of the method of interval analysis 
as applied by Daney and others [DPN04,DAC06] for the kinematic calibration of a parallel 
platform. Using interval analysis, a confidence interval for each parameter can be calculated. 
An efficient implementation is, however, difficult to obtain and a specific problem formula-
tion for the purpose of interval analysis is needed [Mer09]. This approach is hence not fol-
lowed here, as it will not allow for an efficient use of the developed kinematic model. The 
classical verification of the calibration should be sufficient in this case.  

Consideration of Gravitational Effects 
The level 2 parameter identification as described above will be extended to a level 3 calibra-
tion by the compensation of gravitational deformations, as described later in section 5.5. 
The aim is to improve the accuracy under consideration of gravitational effects by identifying 
more precise kinematic parameters. For the level 3 calibration, the nominal end-effector 
positions  for the positions  are calculated similar to equation (4.45), using the direct 
kinematics model and the displacement  of the TCP due to gravitational effects:  

 (4.51) 

Figure 4-12 shows the displacement of the TCP for a set of parameter identification points 
shown later in Figure 4-15. The displacement is considerably large and not homogeneous 
over the different points. Consider for example the identification points 8, 13 and 14: Be-
cause of their position at the border of the workspace in positive -direction and the accord-
ingly elongated arm position, the gravitational deformation does not only result in a large 
displacement in -direction, but additionally in a considerable displacement in negative -
direction. Even the displacement in -direction, the direction of the gravitational force, var-
ies between 0.6 mm and 1.2 mm. Hence, the consideration of gravitational deformations can 
be expected to be significant for the parameter identification. 
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Figure 4-12:  TCP displacement of the PARAGRIP arm due to gravitational effects for the 15 parameter identifi-
cation points of the hybrid kinematics model at the workspace boundaries 

The displacement of the TCP for the absolute accuracy reference points is shown in Fig-
ure 4-13. Even though the inhomogeneity is smaller for this set of points in the center of the 
workspace, the consideration of gravitational deformations of course needs to be consid-
ered for the absolute accuracy as well, after introducing it for the parameter identification. 
The nominal end-effector positions are calculated according to equation (4.51). 

 
Figure 4-13:  TCP displacement of the PARAGRIP arm due to gravitational effects for the absolute accuracy ref-

erence points 

4.6 Choice of Identification Points 

The parameter identification as described in section 4.5 can benefit significantly from the 
choice of the identification points : Their quantity and in particular their positions are deci-
sive for the quality of the calibration results. 
The kinematic model used for the calibration (compare equation (4.45)) can be linearized at 
the nominal parameter values : 

 (4.52) 

The matrix  is the Jacobian matrix of the direct kinematics equation in terms of the kine-
matic parameters, the so called error propagation matrix [BM91,SH08]: 

 (4.53) 
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The dimension of the error propagation matrix  is  for  parameters. The parame-
ter identification is performed for  measurements and the overall error propagation matrix 

 is: 

 (4.54) 

The calculation of the overall error propagation matrix  is implemented using the MATLAB® 
Symbolic Math Toolbox®. The deviation of all measurement positions can be calculated, if all 
parameters are linearly independent, as discussed in section 4.2: 

 (4.55) 

This equation, however, should not be used to derive the parameter deviation , for ex-
ample by using the Pseudo-Inverse matrix calculation, because higher order effects are not 
considered due to the linearization. It can, however, be used to analyze the observability of 
the parameters: Using the singular value decomposition [KL80], the overall error propaga-
tion matrix  can be expressed by multiplication of two orthogonal matrices  and  and 
the matrix : 

 (4.56) 

The matrix  contains the singular values  to  for  independent parameters that are 

used for the calculation of the observability indices. Born and Menq [BM89,BM91] intro-
duced the observability index  based on the multiplication of the non-zero singular values 
to select a set of measurement configurations with a minimal sensitivity to measurement 
noise and a maximum observability of the parameter errors: 

 (4.57) 

High values of the observability index express a good observability of the parameter devia-
tions and a low influence of measurement noise. Born and Menq [BM89,BM91] analyzed the 
significance of the index for many sets of identification positions. A higher observability in-
dex leads to better absolute accuracies and a lower variance of the results. 
Based on this first proposition a set of observability indices have been proposed: Driels and 
Pathre [DP90] proposed the inverse of the condition number, Nahvi and Hollerbach [NH96] 
proposed an observability index based on the minimum singular value and developed the so 
called noise amplification index. Sun and Hollerbach [SH08] introduced an additional index 
based on the product of the reciprocal singular values. Joubair and Bonev [JB13,JTB16] com-
pared the five different indices in simulations and measurements and concluded that the 
significance of the indices depends on the type of robot calibrated, but overall the first ob-
servability index as introduced in equation (4.57) seems to show the best performance. Ac-
cordingly, the identification points shown in Figure 4-14 are based on a numerical optimiza-
tion with the reciprocal observability index as target value, using a fixed number of points 
and adjusting their position in the workspace. 
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This approach implicitly compares lengths and rotations with each other. As a consequence 
the formulation in equation (4.53) needs to be normalized to avoid the overestimation of 
either position or orientation deviations. In the following investigation for the PARAGRIP, 
1 m is defined as characteristic length of a kinematic chain. When applying equation (4.53), 
the parameter deviation  is expressed in m and rad to normalize the formulation: A rota-
tion of the kinematic chain by 0.001 rad due to a rotational parameter deviation results in a 
0.001 m TCP displacement, considering the characteristic length of 1 m. Hence, it is equiva-
lent to a translational parameter change of 0.001 m. 

  
Figure 4-14:  Identification points for the hybrid kinematics model based on the first observability index 

The optimization of the set of identification points based on the observability indices results 
in identification points, close to the workspace boundaries (see for example [DPM05,AN09] 
and Figure 4-14), where the vicinity to singularities amplifies the transmission behavior. 
Therefore, an according set of manually chosen identification points is considered as well. 
The set of identification points chosen manually at the workspace boundaries is shown in 
Figure 4-15. The points are distributed nearly symmetric to the x-axis and evenly over the 
workspace. Agglomerations, that occur for the points optimized based on the observability 
index (for example points 12, 2 and 9 or points 14 and 8 in Figure 4-14), are avoided. 

 
Figure 4-15:  Identification points (1-12 for the serial and 1-15 for the hybrid kinematics model) according to the 

workspace boundary condition chosen 

Horn and Notash [HN09] state, that no significantly better performance for a specific index 
can be observed, especially in comparison to a manually chosen set of identification points. 
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Both findings could be confirmed for the presented handling system and calibration proce-
dure: The first observability index showed the best performance in most cases, it did, how-
ever, not always outperform a set of manually chosen identification points at the workspace 
boundaries [Rod14 Dt]. For this reason, the two different sets of identification points were 
investigated further. It should be noted, that these sets outperform any calibration with 
identification points in the rectangular workspace (see Figure 4-10). Even if the identification 
points partly coincidence with the reference points, the achieved absolute position accuracy 
is 25 % inferior. 
The number of points chosen for the optimization should be sufficiently large to be able to 
obtain a complete identification of the parameters. Clearly the number of data values (the 
position of the end-effector for example contains 3 data values for the coordinates) needs to 
exceed the number of parameters to be identified. Increasing the number of measurement 
points reduces the influence of measurement noise, the effect, however, is limited. Exceed-
ing a certain number of identification points increases the calculation time without improv-
ing the calibration result [MSS10, p. 10282]. A selection of optimal identification points is 
more efficient than increasing the number of points after a certain threshold [RFS09]. A reli-
able optimal number of measurement points has, however, not yet been found. 
For the given handling system and calibration procedure, preliminary studies have confirmed 
the existence of this threshold [DMH14]. Accordingly, 12 measurement points (36 data val-
ues) are chosen to identify the 11 parameters of the serial kinematics model and 15 meas-
urement points (45 data values) are chosen to identify the 14 parameters of the hybrid kin-
ematics model. 

4.7 Kinematic Calibration Using the Extended Kinematic Models 

Based on the introduced kinematic models, measurement procedure and parameter identi-
fication algorithm, the compensation of the modeling errors can be conducted. As a final 
result, the end-effector positions can be calculated with a better accuracy based on equa-
tions (4.45) and (4.51). 
A set of selected combination of arms, identification points and models is described in the 
following sections, allowing for the most important conclusions and leading to the final 
modeling approach. The first investigations regarding the different models, choice of identi-
fication points and different robot hardware, namely the type of end-effector, were per-
formed based on the maximum residual . 
It can be observed, that the shown calibration approach is not fully robust for the maximum 
residual . In Figure 4-16 the residual values and according mean deviations for all meas-
urements and optimizations are shown and analyzed in a box-plot, to illustrate the occur-
rence of measurement errors and outliers.  
A confidence area (marked by the dashed lines in Figure 4-16) can be observed. It is charac-
terized by an acceptable mean absolute position accuracy , in comparison to the state of 
research, and by low residuals that show a convincing relation to . The box-plots give a 
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good orientation of the confidence area: Upper outliers excluding the top 7 % of the meas-
urements are marked red in the central plot in Figure 4-16. Results in the confidence area 
were used for the analysis below. 

    

  
Figure 4-16:  Distribution of residual values and mean absolute accuracy, box-plot with 0.6x interquartile range 

whiskers; outliers are marked red in the box-plot; upper outliers are marked red in the central plot 

Results with low residual values but high mean absolute accuracy (points above the confi-
dence area) in most cases resulted from the measurements based on observability index 
identification points. In most cases optimization results with a rather large residual above 
0.7 mm should be rejected. However, in some cases the achieved absolute accuracy might 
still be acceptable. These observations indicate a limited robustness of this criterion and mo-
tivate to investigate the approach using the 2-norm residual as well. The findings for the 
maximum residual are compared to the results obtained with the 2-norm residual in a sec-
ond step. 

4.7.1 Calibration Using the Serial Kinematics Model 

In a first approach, the calibration using the less complex serial kinematics model is evaluat-
ed. Figure 4-17 shows the relation of the  residual and absolute position accuracy  as 
defined above for the serial kinematics model and the identification points at the workspace 
boundaries. 
The relation of the optimization  residual and the mean absolute accuracy are shown in 
Figure 4-17 for the level 2 calibration (marker: ) of the serial kinematics model. The residual 
values range from 0.58 mm to 0.66 mm for different measurements and the according mean 
absolute accuracies range from 0.53 mm to 0.69 mm. The level 3 calibration with gravita-
tional compensation (marker: ) does improve the parameter identification results (mean 
absolute accuracies range from 0.39 mm to 0.52 mm) for the serial kinematics model. This is 
an improvement of 25-30 %. Note, that the level 2 and level 3 measurements linked by the 
dashed line rely on the same measurement data. 
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Figure 4-17:  Relation of the  residual to the mean and the maximum absolute accuracy of arm 1, using the 

serial kinematics model and the identification points at the workspace boundaries 

In the following sections the maximum absolute accuracy refers to the highest absolute ac-
curacy value and defines the worst achieved accuracy. The maximum absolute accuracy 
shown in Figure 4-17 is not as good as expected in comparison to the mean absolute accura-
cy and the  residual. It ranges from 0.67 mm up to 1.04 mm for level 2 and is not convinc-
ing for measurements 1-3. The level 3 calibration has a less strong influence on the maxi-
mum absolute accuracy. Still improvements of 6-19 % were obtained, resulting in a value 
range from 0.56 mm up to 0.85 mm. Even though comparisons to the calibration results 
found in literature are difficult, the resulting accuracies are in a satisfying order of magni-
tude.  
However, comparing measurements 1 and 2 with measurement 4 and 5, a significant varia-
tion of the achieved mean absolute accuracy can be observed, even though the  residual 
values are quite similar. Furthermore, the measurements 1-3 show a much inferior maxi-
mum accuracy for an identical calibration procedure and similar residuals if compared to 
measurement 4 and 5. This indicates a limited reliability for the parameter identification 
based on the serial kinematics model in combination with the  residual, which motivates 
further investigations of improved approaches. 

4.7.2 Evaluation of Different Sets of Identification Points and Configurations 

The approach using the serial kinematics model is followed to compare the choice of identi-
fications points according to the observability index and the workspace boundaries with 
each other for different robot arms. The alternative end-effector configuration with elec-
tromagnetic end-effector (see section 3) is compared to the current version with vacuum 
suction end-effector. Finally, a brief comparison to the calibration using the hybrid kinemat-
ics model is made. Figure 4-18 shows the relation of the  residual and absolute position 
accuracy  as defined above for the different combinations. 
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Figure 4-18:  Relation of the  residual to the mean and the maximum absolute accuracy. The measurements 

were performed on arm 1 if not labeled otherwise 

The calibration based on the serial kinematics model and the identification points at the 
workspace boundaries (markers: , ) was already discussed above. In comparison, the cali-
bration using the identification points based on the observability index (marker: ) reaches 
better residual values, the average absolute accuracy reached is, however, inferior to the 
results for the identification points at the workspace boundaries. This might be due to a bet-
ter distribution of the manually chosen points in the workspace, it is clearly an indication 
that the observability index is not necessarily an ideal criterion for the identification points. 
Note, that the measurements (marker: ) were performed on 3 different arms. The parame-
ter values for all arms are given in Table 9-3 in Annex 9.3. 
For the alternative end-effector configuration with electromagnetic end-effector, a noticea-
bly better mean and maximum accuracy can be obtained (markers: , ), with the otherwise 
identical hardware. This might be explained by a less complex mechanical design of the al-
ternative wrist-joints and shows the influence of the mechanical performance and repeata-
bility to the identification process. For this set-up, the difference between the two sets of 
identification points is not evident. 
Looking at the result for the hybrid kinematics model (markers: , ) it can be seen, that the 
achieved absolute accuracies are similar to the best results achieved using the serial kine-
matics model (measurements 4 and 5 in Figure 4-17). This is, however, at the expense of a 
considerably longer computing time. 

4.7.3 Comparison of the Serial and Hybrid Kinematics Model  

Based on the identification points at the workspace boundaries, the serial and hybrid kine-
matics model are compared for the level 2 and level 3 calibration (see Figure 4-19) for robot 
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arm 1. The limited robustness for the  residual, leads to the comparative investigation of 
the often used  residual. The computing time and convergence of the parameter identifi-
cation is considerably better using  in comparison to . Using the same abort criterion 
for the residual, the optimization terminates 7 times faster for the serial and 3 times faster 
for the hybrid kinematics model. Furthermore, using  the optimization should be iterated 
10 times to achieve a reliable result, while a single execution is sufficient for the stable opti-
mization based on the residual . 

 
Figure 4-19:  Relation of the  residual to the mean and the maximum absolute accuracy of arm 1, using the 

serial and hybrid kinematics model and the identification points at the workspace boundaries 

The calibration based on the serial kinematics model (markers: , ) results in mean absolute 
accuracies between 0.25 mm and 0.63 mm. The maximum absolute accuracy ranges from 
0.36 mm to 0.93 mm. Again the results vary significantly and the very good measurement 1 
is counteracted by the insufficient results of measurements 4 and 5. Furthermore, the level 3 
calibration, including the compensation of gravitational effects, is inferior for measure-
ments 1 and 2, which indicates, that the partly very good level 2 calibration results are based 
on coincidence rather than on reliable parameter identification. 
The calibration results based on the hybrid kinematics model (markers: , ) lie in a smaller 
bandwidth, between 0.34 mm to 0.41 mm mean absolute accuracy and 0.42 mm to 0.57 mm 
maximum absolute accuracy. The level 3 calibrations in comparison to the level 2 calibra-
tions show an improvement of 10 % to 25 % for the absolute accuracy achieved. Even 
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though only a small set of measurements is shown here, the characteristics of the calibration 
procedure is reliable in other measurements as well (compare for example section 4.7.4). 
These results confirm the better performance using a kinematic model including the paral-
lelogram, even though the difference to the serial kinematics model is not as significant as 
stated by To and Webb [TW12]. The achieved residual seems to be a good indication of the 
calibration quality. Outliers are, however, still not fully prohibited, but less often than for 
other calibration methods. The calculation time for the hybrid kinematics model is consider-
ably longer than for the serial kinematics model, on a standard computer the parameter 
identification is performed within 7 minutes in comparison to a few seconds. 
The deviations of the identified parameters from the nominal values are shown in 
Figure 4-20 for measurements 6-8. Analyzing their variation from each other will give a good 
insight into the robustness of the identification. The parameters , , ,  and  
are identified without significant variation for both levels of calibration, an indication for a 
reliable identification. 

 
Figure 4-20:  Deviation of the identified parameters from the nominal parameters for the level 2 and level 3 

calibration of arm 1 using the hybrid kinematics model 

The deviations  and  seem to correspond to each other. Even though they are not re-
dundant as shown in section 4.2, they are closely related. Furthermore, they are negatively 
related to , as they point to opposite directions for most of the identification positions 
(link 1 is vertical or nearly vertical in these situations). As expected, the parameter  is 
higher for the level 2 calibration, where the end-effector displacement in -direction due to 
self-weight is not considered. The deviation  is identified reliably, the values represent 
the properties of the redundant parameter  as well. 
The variation in  seems to counteract with the variation of . This seems feasible as 
the -direction corresponds to the -direction for central positions of the arm and  
is rather small anyway. The parameters  and  vary slightly, without showing clear 
characteristics or dependencies. 
The strong variations in the identified  can hardly be interpreted; in particular measure-
ment 8 varies significantly from 6 and 7. The achieved absolute accuracy is, however, not 



4 Calibration by Kinematic Parameter Identification  41 

 

noticeably inferior. A counterpart or dependency cannot be easily observed for this parame-
ter, even though it should have a strong and direct influence to the kinematic calculation. 
This effect could be related to the interpolation of  (see Figure 4-9).  
Overall, the calibration based on the 2-norm residual  shows a better performance and 
reliability of the calibration procedure. Concluding, the hybrid kinematics model and the 2-
norm residual  should preferably be used for the kinematic parameter identification and 
calibration of the system under investigation. 

4.7.4 Calibration and Absolute Accuracy of the Handling System 

Based on the results described above, the arms used for the object integrative handling tasks 
and the investigated self-calibration are calibrated using the hybrid kinematics model and 2-
norm residual . The calibration is performed as level 2 and level 3 calibrations with con-
sideration of the gravitational effects. Due to a mechanical failure and unreproducible be-
havior, arm 3 could not be analyzed and the arms 1,2 and 4 were calibrated and used in the 
further investigations. 
The achieved accuracies and residuals are shown in Figure 4-21. The calibration of arm 2 was 
particularly successful. The results for arm 4 are, however, not fully convincing, especially for 
the maximum deviation, but could not be improved with repetitive measurements. This 
might indicate a lower mechanical quality of the arm that was manufactured separately from 
arms 1-3. 

 

 
Figure 4-21:  Optimization target value (norm deviation in mm) and absolute accuracy for the arms 1,2 and 4 for 

the 5 reference points on the workspace cube 

The parameter deviations are shown in Figure 4-22 and Figure 4-23, the parameter values 
are given in Table 9-1 and Table 9-2 in Annex 9.3. They are within a reasonable range, even 
though  is comparably high for arm 4. As the results are consistent over different calibra-
tions, it seems a feasible deviation of the parameter. The comparison of the level 2 and lev-
el 3 calibration shows the behavior discussed in section 4.7.3, for example the parameter  
is noticeably higher if gravitational effects are not considered. 
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Figure 4-22:  Deviation of the identified parameters from the nominal parameters for the level 2 calibration of 

arms 1, 2 and 4 using the hybrid kinematics model and 2-norm residual  

 
Figure 4-23:  Deviation of the identified parameters from the nominal parameters for the level 3 calibration of 

arms 1, 2 and 4 using the hybrid kinematics model and 2-norm residual  

Finally, as an example, the achieved accuracy for arm 1 that was used for most of the inves-
tigations described above is shown in detail in Figure 4-24 and Table 4-6. The absolute accu-
racy values are reduced to a mean value of 0.34 mm and can hardly be recognized in the 
illustration, despite the used magnification. 

reference 
point 

1 0.41 mm -0.32 mm -0.09 mm -0.25 mm 

2 0.44 mm -0.08 mm 0.40 mm 0.17 mm 

3 0.23 mm -0.21 mm -0.07 mm 0.06 mm 

4 0.31 mm -0.07 mm 0.25 mm -0.17 mm 

5 0.31 mm 0.28 mm 0.01 mm -0.12 mm 

mean 0.34 mm    

Table 4-6:  Absolute accuracy after level 3 calibration of arm 1 using the hybrid kinematics model 
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Figure 4-24:  Illustration (red lines with 100x magnification) of the deviation for the identified parameters after 

level 3 calibration with the hybrid kinematics model and 2-norm residual  for arm 1 

4.8 Summary and Conclusion for the Calibration by Kinematic Parameter Identification 

The investigation of the state of research in calibration by kinematic parameter identification 
shows the variety of approaches for different robotic structures. Based on this, the extended 
kinematic models for the PARAGRIP structure under investigations were developed, espe-
cially considering the necessary kinematic parameters for the identification and the avoid-
ance of redundant parameters for the hybrid structure. A serial kinematics model with 11 
parameters and a hybrid kinematics model with 14 parameters were investigated. 
The measurement procedure was tested to be accurate and reliable, the overall set-up and 
approach is, however, not necessarily robust. This needs to be considered when analyzing 
the results. The widely used absolute position accuracy and repeatability allow for a compar-
ison to published calibration results. The parameter identification itself is based on a numer-
ical optimization of the remaining residual. The chosen residual and the identification points 
were investigated. The 2-norm residual for manually chosen identification points at the 
workspace boundaries performed best, using both the serial and the hybrid kinematics 
model.  
The compensation of the kinematic models is convincing, especially for the hybrid kinemat-
ics model, even though the modeling and calculation are more complex and time consuming. 
It should, however, be noted, that the calibration performance differs for the different arms 
of the handling system. Using the simplified serial kinematics model results in a less accurate 
compensation and in particular in a less stable and reliable overall calibration procedure. In 
both cases, the introduced compensation of gravitational effects (see section 5 for details) 
can improve the results significantly. Based on this, the identified kinematic models will be 
used for the self-calibration in section 6. 
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5 Stiffness Modelling and Compensation of Gravitational Effects 

The stiffness of a structure describes its resistance against mechanical deformation due to 
external or internal forces and moments. Process forces and the gravitational and inertial 
loads due to the payload and self-weight deform a robotic structure during operation. Con-
sequently, high mechanical stiffness of a robotic structure in combination with high control 
stiffness allow for precise movements even for highly dynamic applications and heavy pay-
loads in robotic applications. This led to a steady enhancement of the stiffness properties for 
classical industrial robots. 
In contrast, new developments are compliant or soft robotic structures, with low mechanical 
stiffness (for example the BioRob [Tho12]), low control stiffness (for example the DLR Light 
Weight Robot [AEG08]) or bionic robots [RT15]. They are intended for use in human robot 
collaboration, the application of new control strategies and the utilization of new kinematics 
and principles of motion. 
The ability to calculate the stiffness of a robotic structure with sufficient accuracy allows for 
the compensation of deformations and gravitational effects. It is crucial for the analysis and 
optimization of robotic structures. In this work, it is required for the compensation of gravi-
tational effects during the kinematic calibration (level 3 calibration) and for future methods 
of self-calibration for cooperating robots and object integrative handling systems.  

5.1 State of Research in Stiffness Modelling 

The stiffness of a robotic structure relates the external load to the resulting deformation of 
the structure. It is usually defined by the Cartesian stiffness matrix  that links the dis-
placement in translation and orientation to the external loads (forces and torques). In re-
search and in industrial application, three main methods to derive the Cartesian stiffness 
matrix  of a mechanical structure can be distinguished: The Virtual Joint Method (VJM), 
the Finite Element Analysis (FEA) and the Matrix Structure Analysis (MSA). The principles of 
each method are explained in this section to derive a suitable approach for the PARAGRIP 
prototype and its use in the calibration procedures. 

5.1.1 Virtual Joint Method 

The VJM, also known as “lumped modeling”, is based on the work of Salisbury [Sal80] for 
serial robotic structures and Gosselin [Gos90] for parallel manipulators and relies on the 
principle of virtual work. The stiffness of a structure is derived by reducing the compliance of 
every element in a structure to the compliance of the actuated joints by means of virtual 
compliant joints with equivalent stiffness. The approach extends the kinematic calculations 
for robotic manipulators by considering rigid elements and introducing compliant actuated 
joints. They are represented in the joint stiffness matrix . Using the robotics Jacobian ma-
trix , the Cartesian stiffness matrix  can be derived: 

(5.1) 
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The VJM allows for a simple modeling of stiffness properties and accurate results can be ob-
tained with low computational effort, for example in comparison to FEA [EF99]. El-
Khasawneh and others verified the VJM for the often investigated Stewart Hexapod platform 
by FEA simulation [EF99]. The main drawback of this method is that stiffness properties can-
not be reduced to the actuated joints if the displacement due to external loads does not cor-
respond to the compliance of an actuated joint. Furthermore, coupling effects cannot be 
modeled and are neglected [MGW07].  
In recent works Pashkevich and others [PCW08] extended the VJM by using 6-dimensional 
virtual joints to account for cross coupling effects and the stiffness properties of all links. 
They extended the identification of the stiffness parameters used in the VJM by enhancing 
FEA identification algorithms [PKC09] as well as by considering non-linear properties 
[PKC11]. As the VJM maps the stiffness matrices between joint and Cartesian space using the 
Jacobian, the conventional formulation between joint and Cartesian space is only exactly 
valid for unloaded conditions, when the ideal Jacobian applies. The Conservative Congruence 
Transformation [Che00,HHK02,GL07] extends the conventional formulation by considering 
changes in the Jacobian due to deformation of the robotic system. Klimchick and others 
[KFC15] applied the extended VJM for the calibration of an articulated industrial robot. They 
give a detailed analysis of the identifiable parameters and feasible model reductions in the 
practical application. Examples of VJM representations from literature are shown in 
Figure 5-1. 

 
Figure 5-1:  VJM representations: a) Orthoglide architecture [MGW07], b) flexible beam model [MGW07], c) 

virtual rigid beam [MGW07], d) lump stiffness model of the Delta robot parallelogram [PCW09] 

Extended considerations are widely used in robotics to analyze and optimize stiffness prop-
erties, for example for a parameter identification method for a 6 DOF CBB industrial robot 
[KWD13]. Zhang and others [ZXM04] developed a 3PRS tripod based on global compliance 
indices and Pashkevich and other extended the VJM for over-constrained systems with par-
allelogram like a Delta Robot [PCW09]. Lian and others [LSS15,LSS16] introduced and vali-
dated a stiffness modeling approach based on the principle of virtual work for a parallel kin-
ematic structure using the wrench and twist formulations from screw theory.  
Considering the possible extensions of the VJM, it is suitable for the use in a kinematic cali-
bration procedure. However, the MSA (see section 5.1.3) offers even more advantages and is 
preferred for the investigations in this thesis.  

a) c)

b)

d)
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5.1.2 Finite Element Analysis 

In the well-known FEA [RHA14,DTL12] the overall structure is sub-divided into a large num-
ber of finite elements that are connected to each other elastically. The solution to the result-
ing system of partial differential equations is approximated numerically. The FEA is the most 
accurate and reliable method as it allows for modeling joints, links and all elements with 
their real shape, dimensions, temperature influence, local effects like Hertz contacts, mate-
rial properties and many more characteristics. Its accuracy is limited by the level of discreti-
zation, the quality of the used property data and of course by the effort needed to model 
different effects in detail. It requires, however, a high computational effort for the calcula-
tion of the system of equations and re-meshing the model in each configuration of the ma-
nipulator [NL07,PCM05]. 

 
Figure 5-2:  Applications of FEA: a) model of a flexure hinge mechanism [YL08], b) simulation of a pneumatically 

actuated silicone module [EVL14] 

Hence, the method is mainly used for final design considerations and stiffness analysis of 
complex systems, for example to analyze the behavior of flexure hinges in nano-positioning 
applications [YL08] (see Figure 5-2a), the analysis of soft materials like silicon actuators 
[EVL14] (see Figure 5-2b) or to investigate the dynamic system behavior [BPB12,Cam12]. 
Often the FEA is used to derive invariable stiffness properties of single components and for 
the use in other analysis methods like VJM and MSA [PCW08,KPC13]. Due to the complexity 
and computational effort the FEA will not be used for the stiffness modeling in the kinematic 
calibration procedure.  

5.1.3 Matrix Structure Analysis 

The MSA relies on the same ideas as the FEA [Kle15, p. 37–43], modeling the mechanical 
structure as a combination of compliant beam elements (see Figure 5-3a) connected by rigid 
nodes [Mar66,Arm91]. The stiffness properties of every beam element are represented as a 

 stiffness matrix. The Cartesian stiffness matrix  of the whole structure is as-
sembled considering the kinematic chains, specifically the connection of nodes. It links the 
displacement and external load for all elements of the structure. 
The MSA as introduced originally is limited to beam elements and was extended by different 
researchers: Deblaise and others [DHM06] introduced the representation of kinematic rela-
tions and the effects of joint stiffness: Kinematic constraints (rigid body and joint move-
ments) are introduced as additional boundary conditions to the system of linear equations. 
They are considered by solving the system of linear equations for the minimum potential 

0.24 bar 0.26 bar 0.32 bara) b)
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energy by the method of Lagrange multipliers. The stiffness of joints is accounted for by re-
placing the kinematic relations by a joint stiffness matrix. The approach was verified using 
FEA simulations and experimental results for a Delta structure. 
Nagai and others [NL08] developed a systematic description based on MSA, where passive 
joints and rigid links are directly accounted for by using zero stiffness or zero compliance 
elements in the compliance or stiffness matrix of the according elements. The approach was 
verified by good agreement to FEA simulations. Taghvaeipour and others [TAL12] (see Fig-
ure 5-3b) propose a general formulation to calculate complex structures of flexible bodies 
connected by lower kinematic pairs based on screw theory and the concept of generalized 
springs. A flexible body connected to a kinematic pair results in 12 elastic DOF that are con-
strained in 5 DOF by a lower kinematic pair. Again, the resulting system of linear equations 
for the overall structure is solved for the minimum potential energy. Similar to Nagai and 
others [NL08], Cammarata [Cam12] introduced a method to determine the overall stiffness 
matrix of the structure based on the representation of pairs of flexible beams or rigid bodies 
connected by joints in a  stiffness matrix. 

 
Figure 5-3:  Modeling approaches of MSA: a) nodal wrench and displacement of a beam element [DHM06], b) 

elastostatic model of the McGill Schönflies motion generator [TAL12] 

The MSA is used mainly for the stiffness analysis of parallel robotic structures, for example 
for Delta structures [CDM09,DHM06], the 6-RSS robot [GC08], a flexure-hinge 6-PSS struc-
ture [DDS05] or 6-UPS Hexapod [LWW02] and for electrodynamic analysis [BPC11]. The MSA 
is often verified by comparisons to FEA analysis, experimental validations are, however, diffi-
cult to obtain. Compared to the FEA, the MSA is less computational expensive and results in 
a good balance between computational costs and accuracy. In this thesis it is therefore ap-
plied for an extended stiffness modeling method that can be used in kinematic calibration 
procedures. It will be validated directly by measurements and indirectly by the use in the 
kinematic calibration, as already shown in section 4.7.  

a) b)
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5.2 Implementation of the Stiffness Calculation Method 

Based on the MSA, a method was implemented to model and analyze the stiffness proper-
ties of robotic structures and mechanisms, taking advantage of the good computational 
speed and at the same time allowing for the consideration of complex elements in the mod-
el. The robotic structure is modeled as a combination of flexible elements connected by in-
finitesimal rigid nodes (see Figure 5-7, page 53). In comparison to the classical MSA, complex 
links and flexible joints are taken into account. As joints are not considered rigid, the accord-
ing kinematic constraints are not taken into account by additional boundary conditions (rigid 
body motions) for the linear system of equations. Instead, rotational and translational 
movements, enabled by a joint, are considered by setting the according stiffness value to be 
zero and rigid elements are set to a high numerical value (  for the given implementation). 
Force dependent non-linear elements, like rolling contact bearings, are considered by solving 
the linear stiffness model with few iterations. A catalog of predefined elements is introduced 
to allow for a fast and convenient automatic assembly of the stiffness model. An overview of 
the new method is presented in [DC16]. 
The Cartesian stiffness matrix  of the structure relates the displacement (transla-
tion and orientation) of all nodes to the external loads:  

(5.2) 

  

The vector  represents the generalized pose (position and orientation) displacements 
of all rigid nodes and the vector  represents the generalized external loads acting on the 
rigid nodes. By solving the linear system of equations (5.2), the displacement of the structure 
under external load can be derived. 

5.2.1 Generalized Stiffness Matrices and Equivalent Displacements and Loads 

All elements of the structure, loads and displacements are described by the linear system of 
equations (5.2) and therefore need to be expressed in a common frame of reference. In this 
approach, the element stiffness matrices, displacements and loads are generalized by calcu-
lating equivalent displacements and loads at the origin  of the global coordinate system . 
The concept of generalized springs was introduced by Lon ari  [Lon87]. The application of 
this general approach to the MSA is described in the following sections. 
As a basis for the generalization, the movement of arbitrary rigid bodies, attached arbitrary 
points and coordinate systems is introduced. For a point  on the rigid body , the vector 

 points from the origin  of the local coordinate system  to the point  (see Fig-
ure 5-4a). 
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Figure 5-4:  a) Rigid body motion for a point , b) coordinate transformation 

The displacement  of point  on the rigid body  can be calculated from the equivalent 
displacement  of the origin  of the rigid body: 

(5.3) 

 (5.4) 

The matrix  is the  identity matrix,  is the  zero matrix and  is the  

skew-symmetric matrix representing the cross product with the vector  pointing from  
to the point : 

 (5.5) 

(5.6) 

The vectors and transformation matrix can be expressed in any coordinate system. The 
transposed transformation matrix  is used to calculate a cut load  at point  on the 
rigid body  from an equivalent cut load  at the origin of the rigid body : 

(5.7) 

As simplification, the cut load  at point  on the rigid body  is expressed as  instead of 
. 

Next, the well-known coordinate transformation is introduced. A vector  is expressed in 
the local coordinate system  and can be transformed to the global coordinate system  
(see Figure 5-4b) using the rotation matrix : 

(5.8) 

(5.9) 

The inverse operation can be calculated using  accordingly: 

 (5.10) 

(5.11) 
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The equivalent loads and displacements and consequently the generalized stiffness matrices 
can be derived with these transformations. 

Equivalent Displacement 
Instead of the rigid body , now a rigid node  with an attached element  as shown in 
Figure 5-5a is considered. 

 
Figure 5-5:  a) Equivalent displacement, b) equivalent load for the rigid node  and element  

An imaginary extension of the rigid node  includes the origin . Analogous to equation 
(5.3) the displacement  of point  on  can be calculated from the equivalent dis-
placement  at the origin : 

(5.12) 

The origin  is chosen as the generalized origin for all rigid nodes from now on. Note that 
now, the last index  expresses the coordinate system of equivalence for the equivalent dis-
placement . The transformation matrix  is formed from the vector  pointing 
from  to the point . The displacement can then be transformed to the coordinate sys-
tem , analogous to equation (5.11): 

(5.13) 

The transformation  derived from the concept of generalization is also known as 
the adjoint transformation, describing the relation of rigid body velocities [MLS94, p. 53–61] 
in mechanics. The equivalent displacement  can then directly be calculated from the 

displacement  of point  on :  

(5.14) 

Equivalent Load 
Analogous to equation (5.7), the transposed transformation matrix  is used to calcu-
late the cut load  at the point of origin  (see Figure 5-5b) from the equivalent cut load 

 at the origin : 

 (5.15) 
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The transformation matrix  is formed from the vector  pointing from the origin  
to the origin . The cut load can then be transformed to the coordinate system : 

(5.16) 

Vice versa the equivalent cut load  can be calculated from the cut load : 

(5.17) 

Generalization of Stiffness Matrix 

 
Figure 5-6:  Equivalent cut load and displacement for the generalized stiffness matrix 

The local element stiffness matrix  links the relative (translational and rotational) dis-
placement of a common point  on the two attached rigid nodes  and  
to the cut load  in the element:

(5.18) 

With (5.13) equation (5.18) can be expressed as follows: 

(5.19) 

By substituting equation (5.19) into (5.16), the generalized element stiffness matri-
ces  can be derived: 

(5.20) 

(5.21) 

The common point  of the two attached nodes and the origin  of the elastic element 
coincide for the calculation of the element stiffness matrix and equation (5.21) can be simpli-
fied to: 

(5.22) 

With equation (5.22), now all element stiffness matrices  can be generalized to as-
semble the Cartesian stiffness matrix  from the generalized element stiffness ma-
trices .  
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Example of a 1 Degree of Freedom Structure 
The generalization of the element stiffness matrices is explained using the example of a 
1 DOF structure with 3 elements, as shown in Figure 5-7. The orientations of link 1 and 
drive 2 are chosen to be aligned with the global coordinate system to simplify the resulting 
stiffness matrices and increase the traceability of the matrix operations. In this case, the ro-
tation matrix  is a  identity matrix. 

 
Figure 5-7:  Stiffness model of a 1 DOF structure with 3 elements 

The stiffness matrix for link 1 and the according transformation matrices  and  
are given by: 

(5.23) 

The local element stiffness matrices and according transformation matrices for all elements 
are listed in Annex 9.4. The generalized element stiffness matrices are calculated based on 
equation (5.22): 

(5.24) 

 

(5.25) 
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 (5.26) 

(5.27) 

 (5.28) 

(5.29) 

Using the example of , it is obvious that generalized element stiffness matrices be-
come unintuitive and unclear even for simple examples, in this case because of the values 
for  and . Therefore, the implementation of an automatic algorithm is nec-
essary to allow for convenient and clear stiffness modeling. 

5.2.2 Assembly of the Stiffness Matrix of the Structure 

The generalized Cartesian stiffness matrix of the structure  is assembled from the 
generalized element stiffness matrices  for element  (for example link  of robot 
arm ). They link the equivalent relative (translational and rotational) displacement of two 
attached rigid nodes  and  to the equivalent cut load , both generalized to the 
origin  of the global coordinate system :

(5.30) 

The generalized Cartesian stiffness matrix of the whole structure  can be derived 
by superposition of all  at specific positions within . Let  be the number of 
elements in the structure and  be the explicit index to identify each element of the struc-
ture.  
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Each element is attached to two rigid nodes  and . With  the according element stiff-
ness matrix is notated as . Let  be the number of rigid nodes in the structure, in-
cluding the fixed base .  is a , zero matrix, filled up with 
the superposition of : 

(5.31) 

With the exception of the elements attached to the fixed base, that is , the generalized 
 element stiffness matrices are super-positioned 4 times with the stiffness matrix of the 

structure. This corresponds to the well-known  stiffness matrices used for the MSA 
of connected beam elements [Cam12,DHM06]. The first 6 rows and columns, representing 
the base  are deleted from the matrix to represent the fixed position and hence the 
displacement  of element . When establishing the  matrix for elements 
attached to 2 nodes, the concept of generalization is used implicitly. The off-diagonal  
matrices do not only represent the stiffness properties of the structure but do also represent 
the equilibrium of forces and torques between both nodes. The same applies for the super-
position of the generalized element stiffness matrices. 

Example of a 1 Degree of Freedom Structure 
The assembly of the generalized Cartesian stiffness matrix is explained for the example given 
above (see Figure 5-7). There are  elements and 4 nodes in the example structure (see Fig-
ure 5-7). Each element  is attached to two rigid nodes  and  and the according element 
stiffness matrix is indexed .  is an  zero matrix, filled up with the 
superposition of ,  and . Link 1 is attached to the nodes  and 

, the according sub-matrix is given by: 

(5.32) 

Drive 2 is attached to the nodes  and , the according sub-matrices are given by: 

(5.33) 



56 5 Stiffness Modelling and Compensation of Gravitational Effects  

 

For link 1 and drive 2, the generalized Cartesian stiffness matrix  is given by: 

(5.34) 

The generalized Cartesian stiffness matrix for all three links is not shown for the sake of clarity. The characteristics of the assembly can be fully ob-
served for the example shown. 

 
Figure 5-8:  Representation of the nodes within the Cartesian stiffness matrix 

node 1node 0 node 2

node 1

node 0

node 2
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As discussed for the generalized element stiffness matrices, the generalized Cartesian stiff-
ness matrix for the overall structure shown in equation (5.34) is even less intuitive for simple 
examples, especially considering numerical values for the matrix entries. The implementa-
tion of the stiffness calculation method was therefore verified using MATLAB SimMechanics® 
and analytic calculations implemented for simple load cases. Using the same local element 
stiffness matrices, positions and orientations, all results could be validated up to the numeri-
cal accuracy for different structures, positions and load cases. 

5.2.3 Calculation Sequence 

Deriving the global stiffness matrix of the structure  including non-linear elements 
and solving the linear system of equations (5.2) needs to be based on a deterministic algo-
rithm, to be performed automatically with the necessary iterations. The developed sequence 
is shown in Figure 5-9 and described in this section. For each element, the following parame-
ters need to be predefined: 

 connecting rigid nodes, 
 pose of the flexible element represented in the global coordinate system 0, 
 element type (for example hollow rectangular Euler beam), 
 element properties dependent on the element type (for example length, 

width, Young’s modulus, etc. or identification number for bearings). 

 
Figure 5-9:  Sequence of the calculation procedure 

By defining these parameters, the overall structure is fully described and the stiffness prop-
erties for the given pose can be calculated. For every type of element, for example a rectan-
gular beam or a ball bearing, a specific calculation procedure is stored in a catalog. It allows 
for the determination of the local element stiffness matrix  for every element , 
based on the element properties and pose as described in Annex 9.5 for the PARAGRIP pro-
totype. The stiffness matrix for elements with force dependent stiffness properties (for ex-
ample for ball-bearings) is calculated using a predefined unit force in the first iteration. The 
local element stiffness matrices are generalized depending on the pose of the element using 
equation (5.20). Following, the generalized stiffness matrix of the structure  is as-
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sembled from the element stiffness matrices  based on the connecting rigid nodes, 
using the superposition algorithm (5.31).  
The resulting linear system of equations (5.2) needs to be solved to derive the displacement 
of the structure, represented by . In general, factorization methods are not efficient in 
solving linear system of equations with a large and sparse matrix like . Therefore, a 
set of numerical iterative solving methods to handle large, sparse input matrices has been 
tested with and without additional preconditioning. The tests have been run for different 
structures, poses and load cases. The best results regarding stability and convergence, num-
ber of iterations and computational time have been achieved using the generalized minimal 
residual method [SS86] without preconditioning and without inner restart of the iterations. 
A documentation of the implemented MATLAB® function gmres is given in [Mat16]. Especial-
ly for robot positions close to singularity, the condition of the sparse matrix becomes critical. 
Therefore, a verification of the numerical solution, for example by checking the residual of 
the linear system of equations, is crucial and implemented in the method. As shown in Fig-
ure 5-24 on page 75, the chosen critical residual of  is not fulfilled for some calcula-
tion positions close to the workspace boundary. However, the residual is good for all posi-
tions with at least 2 mm distance from the workspace boundaries. 
The previous steps are repeated iteratively, if the structure contains elements with a force 
dependent local stiffness matrix. The cut load , effective on the element  with the 
attached rigid nodes  and , is calculated from the local element stiffness matrix  as 
shown in equation (5.19) by:  

(5.35) 

The vectors  and  can be extracted from : 

(5.36) 

With the known load for every element, the force dependent stiffness matrices can be recal-
culated for the following iteration loop. Comparison with kinetostatic calculations and the 
analysis of multiple iteration steps show that two additional iterations are sufficiently accu-
rate for low displacements in comparison to the dimensions of the given structure. As shown 
in Figure 5-10, the maximum divergence (for any direction of translation or rotation) to the 
previous iteration is about 0.1 % for the second iteration. The mean divergence is in 
this case. Both values decay down to magnitude and , respectively within 10 iter-
ations. 
The final result  represents the equivalent displacement of all rigid nodes at the point 
of origin . To interpret this result, the displacement of a single node , for example the 
TCP of the end-effector, is extracted from  and expressed in the local coordinate sys-
tem  (with  formed from the vector pointing from  to the point of origin ): 

(5.37) 
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Figure 5-10:  Relative divergence in the stiffness calculations from previous iterations (for 100 combinations of 
arbitrary load and pose of the PARAGRIP arm) 

5.3 Stiffness Elements in the Model 

As described above, a set of predefined elements is cataloged with the according calculation 
procedures for the local element stiffness matrix, to be able to automatize the calculation 
sequence for the stiffness model. Elements used for the PARAGRIP structure are shown in 
Figure 5-11 and described in this section. 

 
Figure 5-11:  Coordinate systems and dimensions for a) ball-bearing, b) thin-walled rectangular profile and c) 

thin-walled round bar 

5.3.1 Stiffness of Beam Elements 

The compliance matrix of beam elements can be derived from Timoshenko’s beam theory 
[Die05]. In comparison to the often used Euler-Bernoulli beam theory [DHM06], shear de-
formations are considered in Timoshenko’s beam theory. They are relevant for slender beam 
elements with a small ratio between length  and wall thickness . Slender beam elements 
do not apply for the PARAGRIP structure, but as they are typical for flexure hinges, Timo-
shenko’s beam theory is used for the sake of universality. 
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Figure 5-12:  General beam element under load 

Let the rigid node  be attached to beam  of arm  with a fixed coordinate system of refer-

ence frame . The compliance matrix  links the displacement  of the at-

tached rigid node  to the external load  on : 

(5.38) 

For the coordinate system  attached to the fixed base, the element compliance matrix is 
given by: 

(5.39) 

Expressing the compliance matrix  and hence the displacement , as well as the 
load  in the coordinate system  in the center of the beam (see generalization of stiff-
ness matrix in section 5.2.1) results in a diagonal matrix: 

(5.40) 

It should be stressed that cross coupling effects are still accounted for in this representation. 
Only by generalizing the compliance matrix to the so called center of stiffness 
[Lon87,Rob02], the matrix elements representing the cross-coupling effects are not repre-
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sented explicitly by off-diagonal elements. The stiffness matrix  for beam elements 
can be derived by inversion of the compliance matrix : 

 (5.41) 

The second moments of area  and  can be calculated using classical beam theory 
[GWS14, p. 102–103] for the elastic elements of the structure. The torsion constant  is 
identical to the second moment of area  for circular shapes but cannot be calculated ana-
lytically for rectangular shapes as warping deformations on the front surface need to be con-
sidered. For many beam shapes approximate solutions are available [YB02, p. 401–425] and 
applied here for thin-walled rectangular profiles. 
The second moments of area and cross section of a thin-walled round bar (see Figure 5-11c) 
are: 

(5.42) 

(5.43) 

(5.44) 

The torsion constant, second moments of area and cross section of a thin-walled rectangular 
profile (see Figure 5-11b) are: 

(5.45) 

(5.46) 

 (5.47) 

 (5.48) 

5.3.2 Stiffness of Ball-Bearings 

The stiffness properties of ball-bearings are non-linear and load dependent with cross cou-
pling effects between radial displacement, axial displacement and torsion. Early studies in-
vestigated analytical and empirical approaches for the radial and axial stiffness properties 
[Pal46]. Current analytical approaches either aim at high computational speed by using a 
relatively simple model, for example Hertz’s theory [BCB09], account for the cross-coupling 
effects of different loads [HSG00] or take into account dynamic effects [NRF13,LL05]. Even 
more complex approaches use finite element methods [GP12,DCG08] or neural networks 
[KHL06] to account for further characteristics like clearance, contact conditions and time 
dependent properties. The limiting assumptions in many of these stiffness models and com-
parisons of models and experimental data show that accurate stiffness properties of ball-
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bearings are difficult to obtain: Many of the aforementioned methods are computationally 
expensive and require a large dataset. 
Most manufacturers offer specific data for their roller-bearings (for example using the ex-
tensive calculation tool Bearinx® [Sch12]) to calculate the nonlinear displacement character-
istics, taking into account the internal load distribution, the bearing deformations, the clear-
ance and tolerances, pre-tensioning and a large set of further characteristics. To reduce the 
complexity of the overall stiffness model, characteristic curves for the axial and radial dis-
placements  and  and the torsional displacement  under different load condi-
tions were generated in a previous work [Sei14 Dt] for a range of ball-bearings, as shown 
exemplarily in Figure 5-13 for the ball-bearing FAG 3807. The characteristic curves were cal-
culated for a uniaxial load ( ,  and ) and for all possible load combinations and 
take into account the backlash of the bearing. The combined loads are scaled with respect to 
the maximum load considered. For example an axial load  = 500 N (20 % of the 2500 N 
maximum force) was combined with a moment  = 40 Nm (also 20 % of the 200 Nm 
maximum moment). 

 
Figure 5-13:  Characteristic curves for displacement and torsion for FAG 3807 ball-bearing under different load 
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It is evident that combined loads influence the stiffness properties of the ball-bearings. The 
combined loads can be interpreted as pre-tensioning, increasing the stiffness of the bearing. 
The most obvious effect with an increased translational stiffness of up to 89 % (for the axial 
stiffness) results from an additional moment. This effect can be accounted for with a linear 
interpolation between the uniaxial characteristic curve and the curve for the combined load. 
For the combination of axial and radial load, the translational stiffness is reduced by up to 
10 %, which is neglected to avoid the need of multi-dimensional characteristic data. For the 
torsional stiffness, the influence on combined loads is limited to a maximum of 3.5 % and is 
neglected as well. The stiffness matrix for the ball-bearings is derived by linear interpolation 
from the characteristic curves, neglecting cross-coupling effects:  

(5.49) 

The torsional stiffness is equal to zero for pivoting bearings that do not transmit any mo-
ments. The according coordinate system is shown in Figure 5-11a. The characteristic curves 
are defined for minimum loads of 1 N or 1 Nm up to a maximum load, specific for each bear-
ing. For loads below the threshold, the stiffness properties are interpolated using the 
threshold value to account for backlash. 
Considering the relatively low moments in the joints (see section 5.4.1) and the moderate 
contribution of the bearings to the overall compliance of the handling system (see section 
5.4), these simplifications have minor influence on the calculated overall stiffness properties 
of the structure and allow for high computational speed. 

5.3.3 Predefined Stiffness Elements 

For complex structural components, like for example the vacuum gripper at the end-effector 
or the central connection to the frame, analytical approaches cannot be applied to calculate 
the stiffness properties accurately and with acceptable effort. In such cases the stiffness ma-
trix can be derived from measurements or from FEA analysis by numerical processing of a set 
of deflection simulations [KPC13]. For the implementation the simplified predefined stiffness 
matrix is given by: 

(5.50) 

It is defined by the single values for the diagonal entries (see annex 9.5 for examples); values 
that are not defined are interpreted to represent rigid properties.  
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5.3.4 Stiffness of the Vacuum End-Effector 

The stiffness properties of the vacuum end-effector are mainly influenced by the soft rubber 
contact element and the bearings. They are dependent on the direction of load relative to 
the alignment of the wrist-joint axes R, S and T (Figure 5-14b).  

 
Figure 5-14:  a) Experimental set-up for the determination of characteristic load-displacement curves of the 

vacuum end-effector (shown for the lateral displacement parallel to the S-axis), b) wrist-joint axes 

The translational stiffness is determined by uniaxial measurements with the experimental 
set-up shown in Figure 5-14a. The vacuum end-effector is fixed in a base and normal and 
lateral forces are measured by a uniaxial load cell. The displacement is applied using a sliding 
carriage and measured using a dial indicator. The sliding carriage prohibits tilt within the 
measurement accuracy and ensures uniaxial loading conditions. 
Characteristic curves for the normal displacement  in direction of the T-axis, the lateral 
displacement parallel to the S-axis  and the lateral displacement perpendicular to the 
S-axis  were determined and are shown in Figure 5-15. For loads below a threshold of 
2 N (absolute value), the stiffness properties are interpolated using the threshold value to 
avoid numerical instability. 

  
Figure 5-15:  Characteristic curves for the displacement of the vacuum end-effector under normal and lateral 

load 

The stiffness properties for the compression (negative normal load) and tension (positive 
normal load) differ from each other. For compression, the plastic contact surface of the rub-
ber contact element is in direct contact to the surface of the grasped object. For tension, the 
contact is mainly established by the suction of the outer rubber ring, resulting in a lower 
stiffness. The stiffness properties for lateral load are determined for two different load cas-
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es. For loads parallel to the S-axis (as shown in Figure 5-14) the stiffness is mainly deter-
mined by the lateral stiffness of the rubber contact element and the wrist-joint bearings. 
Loads perpendicular to the S-axis induce moments around the S-axis that are not supported 
by the kinematic structure. Therefore, the translational stiffness perpendicular to the S-axis 
is reduced due to the rotational compliance of the rubber contact element as shown in Fig-
ure 5-16. 

 
Figure 5-16:  Deformation of the vacuum end-effector for a) no load, b) 150 N lateral load perpendicular to the 

S-axis of the wrist-joint 

The stiffness matrix (5.51) for the vacuum end-effector is derived by linear interpolation of 
the characteristic curves:  

(5.51) 

The according coordinate system  is aligned with the gripped object and is shown in 
Figure 5-14b and Figure 3-5.  

5.4 PARAGRIP Stiffness Model 

The PARAGRIP arm structure (see Figure 5-17a) is modeled using the introduced stiffness 
calculation method based on the MSA. The links are represented by beam elements 
( , ,  and ) and pre-defined stiffness elements from FEA ( . 
The joints are represented by ball-bearings ( , , ,  and 

). The stiffness of the specific end-effector was measured and analyzed and is repre-
sented by a separate pre-defined stiffness element as introduced at the end of section 5.3. 
The drive stiffness (  and ) including the belt gear and the connection to link 5 
cannot be derived analytically or by FEA. Therefore, these stiffness parameters are identified 
by measurements and optimization, based on a set of simple load cases for the structure, as 
described in section 5.4.1. The same applies for the stiffness  and the drive stiff-
ness  of the main axis of rotation, which includes the internal bearings and the con-
nection to the base. The analysis of the according complex assembly groups would be highly 
complicated.  

a)a) b)
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a)a)
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Figure 5-17:  a) Structure of the PARAGRIP stiffness model, b) coordinate system for the stiffness element of 

link 1  

Figure 5-17b shows the local coordinate system for the local element stiffness matrix , 
which is referred to for the generalization of the stiffness matrices (see 5.2.1). The connect-
ing nodes, element types, properties and coordinate systems for all elements are given in 
Annex 9.5. 

5.4.1 Identification of Parameters for the PARAGRIP Arm Stiffness Model 

In case, the stiffness properties of structural elements cannot be calculated analytically or by 
FEA, they can be determined by measurements of the element or the complete structure. 
The parameter identification can either be based on a dynamic model (see for example 
[WWY10]) or on direct measurements of the stiffness properties of a single structural ele-
ment or the complete structure (see for example [KFC15,DCC10,ZWZ05]), which is more effi-
cient in most cases and used here. A set of 8 simple load cases, as shown in Figure 5-18 and 
detailed in Annex 9.6, is used to identify the parameters  for the stiffness matrices 

, ,  and . The load cases are chosen in a way as to allow for 
the most direct possible measurement of the properties. The measurements are performed 
with a dial indicator with a measurement resolution of 0.01 mm and repeated 3 times. 

 
Figure 5-18:  Positions of the PARAGRIP arm and direction of forces for the identification measurements of the 

stiffness model 
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The drive D0 was fixed for load cases 1, 3, 5 and 6 using a rigid connection to directly attach 
link 5 to the base. The displacements of the rigid connection are below the measurement 
accuracy of 0.01 mm. This allows for the determination of  from the measured dis-
placements without fixation. The stiffness  can be derived when comparing the 
measured displacements for the fixed drive D0 (load cases 1, 3, 5 and 6) to the unrestricted 
measurements (load cases 2, 4, 7 and 8). Furthermore,  and  can be derived 
from load cases 1-4, where the displacement of the drives in connection with the known 
displacement of link 1 and link 4, respectively, is measured. Link 3 was removed for the pur-
pose of separately measuring the properties of drive 1 and drive 4, independent from the 
influences of the remaining structure. For all load cases, the drives were stopped with an 
activated safety brake when applicable or activated for a fixed position. The contouring error 
of the drive was validated to be zero and the results for stopped and activated motors did 
not differ from each other. The introduced PARAGRIP stiffness model is modified according 
to the missing link 3 and the fixation of drive D0 for the given load cases to perform the pa-
rameter identification. 
The stiffness parameters  can be identified by numerical optimization, minimizing the re-
sidual  between the measured displacement  and modeled nominal displacement 

 of the TCP for the given load cases : 

  (5.52) 

It should be noted, that this residual  does not have the same central meaning as for the 
calibration and self-calibration and is only discussed briefly. It is calculated using the specific 
target function (5.55), to account for the absolute deviation  and the relative devia-
tion : 

 (5.53) 

 (5.54) 

The measured displacements for the chosen load cases range from 0.11 mm to 2.82 mm. To 
account for this large range, the relative and the absolute deviations between model and 
measurement need to be considered for the calculation of  to achieve a well-adjusted 
significance to all load cases: 

(5.55) 

The relative deviation  is only considered up to the threshold of 0.03 mm. It is not 
meaningful for small deviations close to the measurement accuracy. The optimization rou-
tine is quite sensitive to this threshold and the chosen threshold has shown the best results 
for the given measurement data (see Annex 9.7). The deviations  and  are in a 
similar order of magnitude for the given data and are not scaled or weighted. The weighting 
of the absolute deviation  for values below the threshold is chosen to be 0.05, to pri-
oritize the optimization of higher deviations that are not close to the measurement accuracy. 
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The residual  is calculated as the Euclidian norm of all deviations  for all load cases: 

 (5.56) 

The optimization is implemented using the Nelder-Mead simplex algorithm as described by 
Lagarias and others [LRW98]. The according MATLAB® function fminsearch [Mat17b] has 
proven to be stable and reliable for the parameter identification. The optimization termi-
nates with a final residual . The results are summarized in Table 5-1 and given in 
detail in Annex 9.7. The remaining deviations are higher than the theoretical measurement 
accuracy for some load cases. However, the verification of the model and identified parame-
ters show good results (see section 5.4.2). Variations in the considered load cases and opti-
mization routine do not change the verification results or model behavior significantly. The 
stiffness parameters applied for the model are listed in Annex 9.5. Preceding investigations 
of the measurements results are given in a previous work [Cab14 Dt]. 

 

minimum deviation 0.0011 mm 0.0011 

mean deviation 0.0299 mm 0.0545 

maximum deviation 0.0660 mm 0.1667 

Table 5-1:  Deviation between modeled displacement and the parameter identification measurements 

Joint Loads of the Handling System 
To assess the value range for the characteristic curves for the ball-bearing stiffness and the 
vacuum end-effector stiffness, the joint loads of the handling system during normal opera-
tion were calculated and analyzed for a typical handling task of the prototype. During an 
example motion a 1 kg plate is moved with oscillating translational and rotational motions 
and a random spline in the whole PARAGRIP workspace. The dynamic loads are calculated 
considering the inertia of the object and the inertia of all arm components, as shown in 
[Rie14, p. 95–100]. This motion only exhibits 13-35 % of the maximum motor torque, de-
pendent on the motor. Consequently, the resulting loads should be scaled to assess the max-
imum value range needed for the characteristic curves. 
Based on the analysis, the bearing loads can be expected to be up to 400 N and 2 Nm, which 
is within the value range of the characteristics curves shown in Figure 5-13. The loads for the 
end-effector can be expected to be up to 50 N, again within the characteristics curves shown 
in Figure 5-15. 

5.4.2 Validation of the Model 

The PARAGRIP stiffness model is validated by measuring the translational displacement of 
the end-effector under static forces as introduced briefly in [DC16]. The forces are applied in 
the three coordinate directions of the arm using static weights and low-friction redirection 
of the load cable. The displacement is measured for arm 1 using an optical CMM with a min-
imum absolute accuracy of 0.15 mm (see section 4.3). 21 different measurements were per-
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formed for representative positions of a single robotic arm as shown in Figure 5-19. They 
differ significantly from load cases used for the parameter identification and are listed in 
detail in Annex 9.8. 

 
Figure 5-19:  Positions of the PARAGRIP arm and direction of forces (indicated for exemplary positions) for the 

verification measurements of the stiffness model 

Figure 5-20 to Figure 5-22 show the measured and calculated displacements for all load cas-
es. The absolute accuracy of the CMM is indicated by error bars. Remaining friction in the 
load redirection and alignment deviations of the applied load are considered insignificant. 

   
Figure 5-20:  Measured and calculated end-effector displacement under uniaxial load in global x-direction 

 
Figure 5-21:  Measured and calculated end-effector displacement under uniaxial load in global y-direction 

   
Figure 5-22:  Measured and calculated end-effector displacement under uniaxial load in global z-direction 
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The calculated displacements are in good agreement with the measurements for all load 
cases. Measurements number 1 and 5 show increased deviations for uniaxial load in global 

-direction, which may be a result of measurement errors. For the remaining load cases the 
deviations are summarized in Table 5-2. The maximum deviation between measurement and 
model is 0.22 mm for the norm of all directions. The average deviation is 0.13 mm for the 
norm of all directions, which is a 10 % deviation from the average measurement value. These 
results are in the same order of magnitude as the measurement accuracy and validate the 
stiffness model. Furthermore, they are in the same order of magnitude as the repeatability 
of the robotic arm and are hence considered sufficiently accurate. 

     

minimum deviation 0.01 mm 0.00 mm 0.01 mm 0.04 mm 

mean deviation 0.07 mm 0.04 mm 0.09 mm 0.13 mm 

maximum deviation 0.14 mm 0.15 mm 0.21 mm 0.22 mm 

Table 5-2:  Deviation between modeled displacement and the verification measurements for all load cases 
except 1 and 5 

Concluding, the displacement in the direction of load as well as cross coupling effects can be 
calculated using the introduced model. Furthermore, the model and measurements show a 
similar agreement for both high and low loads within the range of expected loads on the 
PARAGRIP arms during handling. However, the remaining errors need to be considered, 
when applying the model to the methods of calibration and self-calibration, which might 
reach the limit of their possibility because of this constrained model quality.  

5.4.3 Stiffness Influence Analysis 

The PARAGRIP stiffness model allows for the assessment of the influence of different com-
ponents on the overall compliance of the robotic arm and the handling system with inte-
grated object, respectively. The analysis is based on the variation of the stiffness properties 
for each component or group of components  by the One-Factor-At-a-Time method. All 
components, except the components under investigation, are set to be ideally rigid in the 
model and the norm of the displacement  at the end-effector or integrated object is 
calculated for the given load. The relative influence  of each parameter  is calculated as 
follows: 

(5.57) 

The relative contribution to the elasticity of the structure is shown in Figure 5-23 as an aver-
age for 100 arbitrary load cases in the workspace. 
The rotational compliance of the actuators ( -component of ,  and : 
41 %) and the compliance of the base frame attachment ( - and -component of  
and : 25 %) are the main elasticity contributors for the single arm structure accounting 
for two thirds of the elasticity. However, the strong influence of the base frame attachment 
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is reduced to 12 % for the PARAGRIP structure with integrated object, as the loads introduce 
lower moments to the base frame attachment for this parallel kinematic configuration. The 
influence of the joints (9 % for the single arm and 21 % for the handling system) and links 
(12 % for the single arm and 29 % for the handling system) is significantly increased for the 
parallel kinematic configuration of the handling system, where relatively high link and joint 
forces occur [Rie14, p. 140].  

 

 

 

 
Figure 5-23:  Elasticity contributors to absolute displacement at the TCP of the PARAGRIP arm and to the abso-

lute displacement at the integrated handling object for the PARAGRIP handling system (average 
from 100 combinations of arbitrary load and static pose) 

The detailed analysis of the links and joints shows the dominant influence of the main kine-
matic chain, composed of links 1 and 2 and the connected joints A0 and A. The influence of 
the second kinematic chain with links 3 and 4 and joints B0, B and C is low for the single arm 
and vanishes for the handling system with integrated object. As link 3 in the second kinemat-
ic chain only transmits unidirectional forces, all torques and transverse forces are supported 
by the main kinematic chain, which explains its main contribution to the elasticity of the sys-
tem. These findings are in good agreement with the design considerations Riedel made for 
the synthesis and dimensioning of the structure based on joint loads and simplified beam 
models [Rie14, p. 140]. At the same time, the stiffness model allows for a more detailed 

PARAGRIP Arm
end-effector

PARAGRIP handling system
with integrated object
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analysis of the overall joint influence that cannot be neglected for the given structure and is 
well balanced to the remaining elasticity contributors. 
The end-effector has been observed to be rather soft in comparison to the joints and other 
elements: The translational stiffness values are approximately 2500 times lower for the end-
effector, compared to the bearings in joint A0 (see section 5.3). However, end-effectors in-
fluence is not as high as one would expect based on this data. The end-effector is positioned 
close to the point of the application of force and does not support any moments, which re-
duces its deformations significantly. In summary, the stiffness properties of the base frame 
attachment, actuators, joints, links and end-effector are well balanced, for the parallel kine-
matic configuration of the PARAGRIP handling system. 

5.5 Calculation of Gravitational Deformations 

The pose dependent deformation of the structure due to the self-weight is investigated for 
the PARAGRIP arm to assess and compensate for its influence on the kinematic modeling 
and calibration. The self-weight can be approximated by introducing the masses of the joints 
as point forces and by substituting the distributed gravitational force of the links with an 
equivalent couple of force  and moment  at the connecting nodes of each beam 
element. The resulting load vector  after generalization is used as the according in-

put to equation (5.2) to derive the generalized gravitational deformation . The 

resulting displacement  of the TCP can be extracted as shown in equation 
(5.37). This approach is well known from FEA, where distributed loads are expressed by 
equivalent loads at the nodes of the finite elements based on the principle of virtual work 
[Kle15, p. 68–71]. 
The equivalent loads can be calculated for the different support configurations of the beam 
elements. Link 1 and link 4 have a fixed position and orientation defined by the actuator, 
hence, their rotation and deflection can be approximated by cantilever beams with a 
clamped and a free end. The same applies for link k that is fixed to joint C in position and 
orientation (see Figure 5-17). Link 2 and link 3 are supported by rotational joints at both 
ends, hence, their rotation and deflection can be approximated by simply supported beams 
(compare [Rie14, p. 139]). 

Vertical Beam under Gravitational Load 
The elongation  for cantilever and simply supported beams under uniform distributed load 
can be expressed by an equivalent point force  at the free end of the beam [GWS14, p. 22–
23]. For this trivial case, the force  is calculated from the equilibrium of forces. The result-
ing equivalent loads are shown in Table 5-3. 
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point force at the nodes uniformly distributed load 

vertical beam 

  

elongation 

equivalent 
load 

Table 5-3:  Substitution of the gravitational force for vertical beams 

Horizontal Simply Supported Beam under Gravitational Load 
The deflection  and rotation  at both ends of a beam define the state of the beam for 
the case of a uniformly distributed load and the case of equivalent loads. The equality of 
deflection  and rotation  can therefore be used to calculate the equivalent loads, analo-
gous to the principal of virtual work. 

point force at the nodes point moment at the nodes uniformly distributed load 

simply 
supported 

beam 

rotation 

deflection 

equivalent 
loads 

  
Young’s modulus  

second moment of area  

Table 5-4:  Substitution of the gravitational force for a simply supported beam with an equivalent couple of 
force  and moment  

For a horizontal simply supported beam, the deflection  is equal to zero for both connect-
ing nodes in all load cases. The rotation  needs to be equivalent for the superposition 
of  and  and the effect of the gravitational force  [GWS14, p. 138–141]. With this sub-
stitution, the equivalent moments  and  can be calculated.  and  are calculated 
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from the equilibrium of forces. The resulting equivalent loads are shown in Table 5-4 and are 
identical to the results obtained from the principle of virtual work [Kle15, p. 69]. 

Horizontal Cantilever Beam under Gravitational Load 
For a horizontal cantilever beam, the maximum deflection  at the free end of the beam 
(node 2) and the rotation  need to be equivalent for the superposition of  and  and 
the effect of the gravitational force  [GWS14, p. 138–141]. With this substitution, the 
equivalent force  and the equivalent moment  can be calculated.  and  are calcu-
lated from the equilibrium of forces and moments. The resulting equivalent loads are shown 
in Table 5-5 and are identical to the results obtained from the principle of virtual work 
[Kle15, p. 70]. 

point force at the nodes point moment at the nodes uniformly distributed load 

cantile-
ver beam 

   

rotation 

deflec-
tion 

equiva-
lent 

loads Young’s modulus  
second moment of area  

Table 5-5:  Substitution of the gravitational force for a cantilever beam with an equivalent couple of force  
and moment   

Superposition of Horizontal and Vertical Load Case 
The equilibrium forces are identical for horizontal and vertical load cases. However, the 
equivalent moments for the vertical load case are equal to zero. To calculate the effect of 
gravitational forces on the structure, both load cases are super-positioned, dependent on 
the position of the link. The resulting equivalent loads for link 1 (shown in Figure 5-17b) are 
shown in equations (5.58) to (5.61) and can be calculated analogous for the remaining links. 

(5.58) 

 (5.59) 

 (5.60) 

 (5.61) 
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Gravitational Effects on the PARAGRIP Structure  
The gravitational effects on the PARAGRIP arm structure due to self-weight were investigat-
ed for the arm workspace to assess its influence to kinematic modeling. The TCP-
displacement in vertical direction ranges between 0.15 mm and 1.28 mm and is highest for 
TCP-positions at elongated joint poses at the workspace boundaries, as shown in Fig-
ure 5-24. The sparse stiffness matrix tends to be ill-conditioned at the workspace boundaries 
(as explained in section 5.2.3) and calculation points violating the critical residual are not 
considered and marked accordingly in the figure. The horizontal TCP-displacement (2-norm 
of the - and -displacement) ranges from 0.01 mm up to 1.20 mm. However, the average 
horizontal displacement is 0.25 mm and is considerably lower than the 0.63 mm average 
vertical displacement. The displacements are inhomogeneous with respect to the full TCP-
workspace, which clearly influences the accuracy of the kinematic calculations, as position-
ing errors due to the deformation under self-weight are not represented within the kinemat-
ic models. As shown in Figure 5-24, the displacements are relatively constant in the center of 
the workspace, especially for the displacement in the vertical -direction. This limits the 
gravitation effect for most handling tasks. 

  
Figure 5-24:  TCP-displacement of the PARAGRIP arm under its own weight for the horizontal (norm of - and - 

displacement) and vertical ( -displacement) direction in the arm workspace 

However, the influence of the self-weight and its inhomogeneity is significant for the identi-
fication of the kinematic parameters (see section 4) and is implicitly represented in the quali-
ty of the kinematic calibration of the structure, which in large parts relies on measurements 
close to the workspace boundaries. Extending the procedure of kinematic parameter identi-
fication from level 2 to level 3 by gravitational compensation improves the gained absolute 
accuracy of a single arm by up to 25 % as described in section 4.7.  
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5.6 Summary and Conclusion for the Stiffness Modelling 

The investigation of the state of research in stiffness modeling has shown that three main 
approaches, the Virtual Joint Method, the Finite Element Analysis and the Matrix Structure 
Analysis can be followed. The MSA was chosen as a basis for the extended stiffness modeling 
approach. It allows for the consideration of the stiffness for various elements, for example 
the integration of the nonlinear behavior of rolling contact elements based on characteristic 
curves. The local stiffness matrices were derived for generic beam elements, a set of ball-
bearings, the end-effector and structural elements specific to the handling system. The indi-
vidual stiffness properties were identified successfully by the analysis of simple load cases.  
The calculation method is based on generalized stiffness matrices, which are expressed by 
means of equivalent displacements and loads. This unified approach allows for the imple-
mentation of a calculation sequence for the systematic assembly of the stiffness matrix of 
any structure. The stiffness modeling approach including the derived stiffness elements was 
validated for the investigated PARAGRIP handling system by measurements on an arbitrary 
trajectory in the workspace. It shows a good performance for both high and low loads, in 
particular considering cross coupling effects that are significant for the investigated struc-
ture. 
The stiffness influence analysis showed a well-balanced distribution of the compliance be-
tween the joints, links, actuators, end-effector and base of the PARAGRIP arms. Further-
more, the mechanically dominant links 1 and 2 and the according joints are the main con-
tributors for the structural stiffness and that the influence of the hybrid extension is low and 
even negligible after object integration. 
Using the validated approach, the gravitational deformations of the structure were calculat-
ed for the kinematic calibration in section 4. A comprehensive stiffness analysis confirms the 
original design consideration for the handling system and shows well balanced properties. 
Based on this, the gravitational compensation is used for the level 3 calibration in section 4. 
 



6 Self-Calibration for Object Integrative Handling Systems  77 

 

6 Self-Calibration for Object Integrative Handling Systems 

Self-calibration can be applied for cooperating robots, or more specifically for object integra-
tive handling systems, in order to compensate for influencing factors that cannot be com-
pensated for by classical kinematic calibration (see section 2 and Figure 2-1). Beside others, 
the object pose and dimensional tolerances of the object geometry are usually not known 
precisely before grasping, as they vary with the grasping process. These factors induce a de-
viation of the actual grasp points from the nominal grasp points and consequently reduce 
the accuracy of the handling system.  
Self-calibration allows for the identification of the real grasp points on the object without 
additional external metrology and will be applied to compensate for the mentioned influenc-
ing factors. It relies on the use of redundant sensor information, available within the kine-
matic structure and is a sub-category of the closed loop calibration explained in section 6.1. 
The general considerations for calibration procedures, for example regarding the complexity, 
model quality, parameter identification and measurement poses, introduced in section 4, 
and the numerical optimization, introduced in section 4.1, apply for closed loop calibration 
just as they do for open loop calibration. As already mentioned many authors give an over-
view regarding (open and closed loop) calibration methods [MSS10,LRH10, p. 90–
106,HLJ10,CLC14]. 
Closed loop calibration methods have been developed, applied and verified for articulated 
serial robots and various parallel and hybrid robots. Due to the existence of closed kinematic 
chains and the easy adaption of redundant sensors, most methods are applied for parallel 
structures. Up to now, closed loop calibration has, however, not been applied to object inte-
grative handling systems and will therefore be investigated for this field of application. 
Based on the state of research described in the following section, a new approach of self-
calibration is introduced in section 6.2 to identify the frequently changing parameters, 
namely grasp points, for cooperating robots. For the sake of compactness and to prove gen-
eral feasibility of the approach, the investigations are limited to the PARAGRIP prototype and 
its specific kinematic configuration. 

6.1 State of Research in Closed Loop Calibration 

In closed loop kinematic calibration the residual between the theoretical kinematic model 
and the manipulator’s behavior is calculated based on closed kinematic chains. It was first 
introduced by Bennett and Hollerbach [BH91] to eliminate the need of external metrology. 
They showed that consistency conditions in kinematic chain closure equations are adequate 
to calibrate a manipulator using the joint readings. Based on this, Wampler and others 
[WA92,WHA95] introduced the unified approach of implicit loop formulation that was al-
ready introduced in section 4.1.2. 
Additional sensor information in each closed kinematic chain allow for the numerical optimi-
zation of the kinematic model and the according compensation of parameter deviations. For 
this, the number of internal sensors needs to exceed the number of DOF of the mechanism, 
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which is achieved by introducing the aforementioned closed kinematic chains. They can be 
introduced either by means of additional mechanical constraints, which reduces the number 
of DOF of the mechanism, as virtual closed kinematic chains with additional sensors or by 
analyzing existing closed kinematic chains with redundant sensors. These three approaches 
are explained in the following sections to give an overview of possible approaches and iden-
tify suitable approaches for the self-calibration of object integrative handling systems. 

6.1.1 Constrained Closed Kinematic Chain Calibration 

The closed kinematic chain calibration is based on the creation of mechanically constrained 
kinematic chains, resulting in sensor redundancy without the use of additional sensors. For a 
classical robot, the number of sensors is equal to the DOF of the structure. By mechanically 
limiting the mobility of the structure, the DOF of the system are reduced, while the number 
of available sensors in the drives remains constant. It is implemented either by restricting 
the movement of the end-effector in one or more directions of orientation or by fixing the 
mobility of one or more joints in the kinematic chains. 
A part of the drives are used for the kinematically determined movement and the remaining 
drives are set passive to evaluate the sensor information. The redundant information allows 
for the establishment of a system of equations to determine the parameter deviations. The 
implementation of the mechanical constraints can be difficult because, depending on the 
mechanical constraint, a good force control is needed to avoid tensioning and deformations. 
Accordingly, there have been numerous simulative investigations of constrained close kine-
matic chain calibration and little experimental verifications as described in the following. 
Depending on the design of the mechanical constraint, different conditions result from the 
remaining DOF and available sensor information, for example for the Stewart-Gough plat-
form: Daney [Dan99] fixed two legs in their lengths and in their rotation relative to the base, 
resulting in 1 remaining rotational DOF and 3 redundant sensor information (see Fig-
ure 6-1a). Khalil and Besnard [KB99] investigated the fixation of one ball joint to the plat-
form, resulting in 3 remaining rotational DOF and as well 3 redundant sensor information. 
Rauf and Ryu [RR01] introduced a calibration technique for a 6 DOF Hexa-Slide manipulator 
by locking the platform with a ball joint, resulting in 3 rotational DOF. Chiu and Perng [CP04] 
limited the mobility of a hexapod manipulator to 4 DOF by adding a redundant spherical- 
prismatic leg with an additional sensor and setting 2 legs passive (see Figure 6-1b). 
The aforementioned investigations have been performed in simulation only, showing the 
feasibility and some characteristics of different approaches. In general, the simulations show 
that the presented calibration is the most effective for large ranges of motion and can result 
in remaining parameter errors in the order of magnitude of the simulated measurement 
errors. They do, however, not state the reachable accuracy in experiments that is limited for 
example by the modeling quality. 
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Figure 6-1:  a) Rotational constraint for a hexapod by leg fixation [Dan99], b) mobility constraint for a hexapod 

manipulator [CP04], c) implementation of a distance and sphere constraint with precision touch 
probe [JB15] 

Few recent publications show the actual range of accuracy improvement that can be 
achieved by closed loop calibration using constrained closed kinematic chains, albeit they 
additionally rely on added supporting sensors. Joubar and Bonev [JB15] implemented a 
spherical restriction for a serial manipulator by establishing contact between a high-
precision probe-tip at the end-effector and a fixed sphere (see Figure 6-1c). A simulation 
study demonstrates the ability of the calibration approach, and the experimental verification 
shows that the robot’s accuracy inside the target workspace is significantly improved by re-
ducing the mean and maximum position errors from 0.698 mm to 0.086 mm and from 1.321 
mm to 0.127 mm, respectively. A common approach known from machine-tool calibration is 
the use of a double ball-bar (DBB) measurement device to close the kinematic chain. The 
mechanical connection is established by two high-precision magnetic spheres, connected to 
each other with a high precision distance sensor. Ni and others [NZG16] used the DBB with a 
fixed sphere for a Delta robot, reducing the maximum and average position errors from 
2.44 mm to 0.16 mm and from 2.20 mm to 0.15 mm. 
Constrained calibration methods are less cost intensive compared to other methods, but are 
more difficult to implement because of the required mechanics and its control system. It 
should be noted that it is necessary to determine the algorithms and appropriate measuring 
points for each implementation of a mechanical constraint, making the approach hard to 
generalize. Furthermore, the limited available workspace usually results in less accurate re-
sults compared to open loop calibration [GCH16]. Using mechanical constraints is not suita-
ble for the self-calibration of cooperating robots, because of the implementation effort and 
the limited flexibility of the method.  

6.1.2 Virtual Closed Kinematic Chain Calibration 

The virtual closed kinematic chain calibration is based on closing the kinematic chains with a 
virtual linkage, usually a measurement device, adding virtual constraints to the system. The 
constraints are implemented by feeding back a measurement signal (for example a laser pro-
jection on a plane) to the control and compensating any deviations during the movements of 
the kinematic chain. As described for closed kinematic chain calibration in section 6.1.1, the 
resulting redundancy is used to establish a system of equations and determine the parame-
ter deviations. 

c)b)a)
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Kim and others [KPL06] introduced a constraint plane to the end-effector of a Stewart-
Gough platform. It is implemented using three digital distance indicators to control the 
movement of the manipulator in multiple parallel constrained planes. Abtahi and others 
[APA09] followed a similar approach by limiting the platform movements of a Hexaglide ma-
nipulator to rotations about a fixed point in space (see Figure 6-2a). Three dial indicators 
measuring a sphere at the manipulator platform were used to compensate for any position 
deviation. For both implementations, the drive sensor signals were only evaluated when the 
virtual constraints were satisfied. It should be noted, that the use of a probe-tip and DBB 
(see [JB15,NZG16] in section 6.1.1) could be classified as virtual closed kinematic chains 
without signal feedback to the control. The classifications are not necessarily unambiguous. 
A common approach for the virtual closed kinematic chain calibration is the projection of a 
laser beam over, compared to the link length, large distances. The effect is an amplification 
of the orientation errors at the end-effector. Gatla and others [GLW07] used a laser attached 
to the end-effector of an industrial articulated robot. They evaluated the length of the laser 
beam that is projected on one or more fixed positions on a distant plane. The control feed-
back was realized using the signal of a vision camera to compensate for any deviations of the 
point of projection. Liu and others [LLN10] investigated the same approach for a Stewart-
Gough platform in simulation (see Figure 6-2b), proving a significant improvement of the 
accuracy. Park and others [PLC12] measured the projection point of a laser module attached 
to the end-effector (see Figure 6-2c) and evaluated the deviations by means of Jacobian ma-
trices obtained from differential kinematics to estimate the kinematic parameters. As no 
feedback to the control is implemented, the approach does not strictly follow the definition 
introduced above. 

 
Figure 6-2:  Virtual closed kinematic chains: a) virtual rotation constrained with three dial gauges [APA09], 

b) laser projection for a hexapod manipulator [LLN10], c) structured laser module and stationary 
camera [PLC12] 

Ren and others [RFY13,RFS09] implemented an orientation constraint for a Stewart-Gough 
platform by leveling a biaxial inclinometer at the end-effector, to keep the two attitude an-
gles constant. The method is verified and validated in simulation and by measurements. 
Recent publications show the range of accuracy improvement that can be achieved by closed 
loop calibration using virtual closed kinematic chains: Gatla and others [GLW07] improved 
the mean and standard deviation of the radius of spread of the projected laser beam from 
5.64 and 1.89 mm to 1.05 and 0.587 mm, respectively. Park and others [ PLC12] reduced the 
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mean and maximum deviation of the projected laser points by a factor of 4 up to 10. Abthai 
and others [APA09] reduced the maximum positioning error from 3mm to 1mm and the av-
erage positioning error by more than 60 %. Using commercial inclinometers Rauf and others 
[RFS09] reduced the maximum position and orientation errors by 0.3 mm and 0.151 rad to 
less than 0.5 mm and 0.11 rad at the workspace boundaries. In comparison to other calibra-
tion, these improvements are small. 
The virtual closed kinematic chain calibration usually relies on specific measurement equip-
ment and algorithms for a specific robot. It can therefore hardly be generalized for an object 
integrative handling system, especially considering the changing object platform of the 
structure.  

6.1.3 Redundant Sensor Calibration 

The redundant sensor calibration is based on the evaluation of the position of passive joints 
in the kinematic structure using internal sensors. These additional sensors are either added 
to passive joints, added by means of additional passive kinematic chains or implemented by 
using encoders of existing redundant joint actuators, which are set passive for the calibra-
tion. Thus the number of the internal sensors exceeds the number of DOF of the structure. 
The redundant sensor calibration is also referred to as self-calibration. Both terms are used 
in this thesis. 
The first approaches using redundant sensors for self-calibration were introduced in the 
1990s based on the general considerations of Bennett and Hollerbach [BH91] (see section 
6.1). Hollerbach and Lokhorst [HL95] calibrated a 6 DOF hand controller with two closed kin-
ematic chains and resulting redundancy, by evaluating the distance equations of the attach-
ment points between platform and kinematic chains. Nahvi and others [NHH94] presented a 
similar procedure for the self-calibration of a redundant parallel platform with 3 rotational 
DOF and 4 actuated linear joints. Wampler and others [WHA95] validated their implicit loop 
formulation (see section 4.1.2.) for the 6 DOF hand controller investigated by Hollerbach and 
Lokhorst [HL95]. Zhuang [Zhu97] introduced a self-calibration scheme for a Stewart-Gough 
platform with additional sensors located at the universal joints. The non-redundant and re-
dundant direct and inverse kinematic calculations are compared or substituted into each 
other to calculate possible residuals for the parameter optimization. 
Following these diverse approaches, an inhomogeneous variety of self-calibration methods 
have been proposed and investigated in the available literature. For example, the investigat-
ed structures, the type and degree of redundancy, the types of sensors or the implemented 
kinematic models differ from each other in all approaches. Only some are mentioned in this 
section to give an impression of different developments. 
While most investigations were performed in simulation only, some publications show the 
range of accuracy improvement that can be achieved by self-calibration: Oiwa and Ikuma 
[OI14] equipped a 3 DOF parallel manipulator with a redundant passive chain including a 
displacement sensor to sequentially measure three directions of the platform. By optimizing 
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the kinematic model to minimize the length errors of the passive chain, the root mean 
square position error is reduced from 172 to 67 m and the peak-to-peak error from 824 to 
406 m. Ecorchard [Eco10] compared different calibration and self-calibration approaches 
for a redundant 2 DOF scissor-kinematic used in a high precision machine tool, driven by 4 
linear actuators. The deviation of the measured and calculated drive position for the redun-
dant linear actuators is reduced from 0.414 mm and 0.641 mm to 0.14 mm and 0.07 mm, 
resulting in mean position deviation of 9 m and maximum position deviation of 69 m 
[Eco10, p. 73, 82-84]. Kurbanhusen and others [KYH08] investigated the self-calibration for a 
biologically inspired 7 DOF robotic arm with redundant cable actuation (see Figure 6-3a). The 
parameter identification is based on the differential change in the cable end-point distances 
and results in a reduction of the average deviation of the redundant cable length from 4.06 
to 0.12 mm and from 1.4 mm to 0.33 mm for different joints. 

 
Figure 6-3:  a) Biologically inspired 7 DOF cable-driven robotic arm [KYH08], b) experimental implementation of 

3 redundant sensors on a Delta structure [EM05] 

Ecorchard and Maurine [EM05] evaluated the passive joint angle between the platform and 
forearms of a Delta parallel robot using additional redundant sensors (see Figure 6-3b). The 
geometrical self-calibration with compensation of the non-geometrical gravity effects result-
ed in a reduction of the mean deviation of the passive joint angles from 1.63° to 0.24°.  
Another field of application for self-calibration is cable driven robots, which are usually actu-
ated redundantly. Borgstrom and others [BJB09] introduced the self-calibration for a 2 DOF 
system, showing a significant improvement of the accuracy. Sandretto and others [SDG13] 
compared two different approaches for a 6 DOF cable driven robot with 8 actuated cables. 
The mean relative position error is reduced significantly from 37 % to 0.3 % and the mean 
relative rotational error is reduced from 40.2 % to 1.9 %. 
Alternative approaches for redundant sensor calibration rely on specific motion characteris-
tics and alternative sensor systems, as shown for some examples: Joubar and other [JZB16] 
introduced a new approach for medical robots equipped with a force sensor at the end-
effector. The gravitational force exerted from the tool to the sensor is evaluated as calibra-
tion information. The robot parameters are identified by minimizing the force and torque 
residuals, instead of minimizing the residuals of the end-effector pose, as done in conven-
tional approaches. Müller and Ruggio [MR12] introduced a self-calibration method for a re-
dundantly actuated 3 DOF planar parallel mechanism based on the motion reversal points of 
the actuators as kinematic calibration landmarks. Zhang and others [ZLD15] implemented an 

b)a)
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online self-calibration for a serial robot using an inertial measurement unit. Du and Zhang 
[DZ13] and Jordt and others [JSS09] developed a self-calibration based on vision measure-
ment with a camera attached to the end-effector. 
The redundant sensor calibration is well suited for the self-calibration of object integrative 
handling systems, the accuracy improvements described in literature are convincing. The 
cooperation and physical link of multiple robotic arms result in a redundantly actuated struc-
ture and, by setting some actuators passive, the encoders can be evaluated to gain passive 
joint angles of the structure. This approach is therefore followed for the self-calibration of 
the PARAGRIP handling system. The self-calibration based on the combination of direct and 
inverse kinematic calculations by Zhuang [Zhu97] is adapted for the self-calibration of the 
object integrative handling system PARAGRIP as described in section 6.2. 

6.2 Extended Kinematic Model for the PARAGRIP Handling System 

The kinematic model for the self-calibration needs to represent the redundant sensor infor-
mation and the real grasp points that will be identified. The available sensor information for 
the PARAGRIP handling system is illustrated in Figure 6-4. Note that the index  is used in the 
following sections to distinguish the different robotic arms. The 6 main actuators (joint an-
gles  and ) are driving the kinematic structure with the integrated object. The addi-
tional actuators (joint angles ) are set passive and can be used to gain redundant position 
information. Additionally, the encoder signal for the wrist-joint angle  is available. The 
according actuator is used to align the end effector for the grasping process. 

 
Figure 6-4:  Available sensor information for the PARAGRIP handling system 

The end-effector position of each arm in space is known by the measurement after the ob-
ject integration. However, additional information is still needed to be able to calculate the 
unambiguous grasp point positions at the object: Three contact points with a fixed position 
relative to each other represent the measured end-effector positions of the PARAGRIP arms 
in space, illustrated by the triangles in Figure 6-5a. The motion of the object relative to these 
positions is, however, not fully restricted. The object can always rotate with respect to a fic-
tive point in space, without violating the contact condition of any of the grasp points on the 
object surface as illustrated with the red triangle in Figure 6-5. 
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Figure 6-5:  Ambiguity of the object position relative to 3 contact points with fixed distance (illustrated by the 

triangles) 

This ambiguity can be resolved by using the additional sensor information for the wrist-joint 
angles : The rotational motion of the cube can be observed by gaining additional infor-
mation about the transformation between the coordinate systems  and  (see Fig-
ure 6-5b) and hence the orientation of the end effectors relative to the PARAGRIP arms. The 
wrist-joint angle  (see Figure 6-7b) contains partial information about this transformation 
and therefore will be evaluated in addition to the joint angles. 
The contact surfaces top, rear and left for the configuration illustrated red in Figure 6-5 are 
perpendicular to each other, which allows for resolving the ambiguity as described above. If 
all 3 plane contact surfaces at the object have a common tangent as in the configuration 
illustrated blue, a sliding motion of the contact points along this tangent direction cannot be 
observed. According configurations are consequently not used for the self-calibration. These 
relationships have been proven analytically using a constrained screw theory method 
[HLZ09], as shown in a previous work [Rod16 Dt, p. 15–16]. 

6.2.1 Formulation of the Self-Calibration Problem 

The aim of the self-calibration for object integrative cooperating robots and handling sys-
tems is the identification of the real grasp points at the object and finally the reduction of 
inaccuracies. The grasp points are represented by the grasp point vectors : 

(6.1) 

The parameter vector for the self-calibration  contains the two components of  that 
represent the grasp point position on the surface of the object for each arm  used. For the 
configuration shown in Figure 6-7, the parameter vector for the self-calibration  is: 

(6.2) 

The third component is known from the object dimensions and the wrist-joint offset  
perpendicular to the object surface. The nominal vectors of parameters  and  and 
the according vectors of parameter deviations  and  are extended accordingly by 

 and . The deviation  was identified for each arm by external metrology, inde-
pendently from the parameter identification. The formulation of the self-calibration problem 

a) b) c)
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needs to allow for the evaluation of the residual between the actual joint angles , , 
 and  and the nominal joint angles , ,  and . The actual joint angles are 

the measured and corrected joint angles, based on the extended kinematic models intro-
duced in section 4.2. 
Zhuang [Zhu97] proposed the evaluation of the manipulators direct and inverse kinematic 
calculation with and without redundant sensing to gain the residual as a basis for self-
calibration. By combination of different kinematic calculations, the residual is calculated by 
evaluating deviations of the manipulator poses or joint position values obtained in different 
ways. For example, the manipulator pose can be calculated using the passive joint positions 
and some of the actuated joint positions. This pose can be inserted into the inverse kinemat-
ics to calculate the theoretical position of all active joints. The so called first inverse meas-
urement residual is now obtained by calculating the deviation between the measured and 
theoretical active joint positions. This approach is adapted in the following sections to de-
velop a suitable formulation for the self-calibration of the PARAGRIP handling system. The 
deformation of the structure due to gravitational loads of the weight of the object, as illus-
trated in Figure 6-4, are not considered for this first approach. They could hardly be verified 
by simulation, but may be a valuable extension for future investigations. 
Because the joint angles of the handling system can be observed and the object pose cannot, 
it is an obvious first step to start with the direct kinematic calculation. 

6.2.2 Direct Kinematic Calculation 

The direct kinematic calculation of the object pose is represented by the transformation ma-
trix  

(6.3) 

 
Figure 6-6:  Global and local coordinate systems for the PARAGRIP handling system 
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The following calculations are based on the kinematic calculation originally formulated by 
Riedel [Rie14, p. 91–92]. The positions and coordinate systems used are shown in Figure 6-6. 
The object position  can be calculated from one TCP position  and the known 

grasp points  on the object:  

(6.4) 

 

Using equation (6.4) the object position is obtained using three different TCP positions, one 
for each arm. This is problematic for the self-calibration, since the calculated object positions 
will deviate from each other due to tolerances and measurement errors. Therefore, the de-
veloped formulation is based on the object rotation only, expressed by the rotational trans-
formation matrix . It can be calculated using the intermediate coordinate system  in 
the plane of the grasp points (see Figure 6-7b): 

(6.5) 

The following calculations are formulated for the configuration shown in Figure 6-7b. 

 
Figure 6-7:  Coordinate system and position vectors for the integrated object, shown exemplarily for the 

arms 1, 2 and 3 

The rotational transformation  from the intermediate coordinate system to the global 
coordinate system can be obtained from the three TCP positions : 

(6.6) 

With the unit vectors: 

(6.7) 

(6.8) 

(6.9) 
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The TCP position  of each arm  is known from the serial and hybrid kinematics model 
(see equations (4.5) and (4.38)): 

(6.10) 

 

The rotational transformation  from the object coordinate system to the intermediate 

coordinate system can be obtained from the grasp point vectors  at the object: 

(6.11) 

With the unit vectors: 

(6.12) 

(6.13) 

(6.14) 

The grasp point vectors  are given by equations (6.1) and (6.2). With this formulation, the 
direct kinematics problem for the handling system is solved using information for the 3 re-
dundant joint angles  additional to the kinematically sufficient joint angles  and . 
However, only relying on kinematically sufficient joint angles that fully describe the kinemat-
ic system with the integrated object would lead to a complex and computational intense 
calculation of the direct kinematics. Because of this, such an approach is not investigated. 

6.2.3 Inverse Kinematic Calculation 

After deriving the object orientation using the actual joint angles ,  and , the in-
verse kinematic calculation of the nominal wrist-joint angles  is used to complete the 
formulation of the self-calibration problem. The nominal wrist-joint angles  are calculated 
based on the tilt between link 2 of arm  and the surface of the object (see Figure 6-7a):  

(6.15) 

 

The unit vector  of the wrist-joint coordinate system  in -direction can be de-
rived from the kinematic calculation of the arm (see equation (3.5)): 

(6.16) 

 

 (6.17) 
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The unit vector  of the wrist-joint coordinate system  in -direction can be derived 

from the vector  normal to the surface of the object and the unit vector : 

(6.18) 

 (6.19) 

 

The unit vector  of the wrist-joint coordinate system  in -direction can be de-
rived similar to equation (6.16): 

(6.20) 

 

(6.21) 

 

6.3 Identification of the Grasp points 

With the calculations in sections 6.2.2 and 6.2.3, the object orientation and the nominal 
wrist-joint angles  are expressed as a function of the measured joint angles , the pa-
rameter vector for the self-calibration  and the identified kinematic parameters  
and  of the  arms:  

(6.22) 

(6.23) 

(6.24) 

The nominal wrist-joint angles  are summarized in the vector . Based on this formula-
tion, the optimization problem and residual can be formulated. Practical implementations of 
the self-calibration have shown that the measurements of the wrist-joint angles  are not 
precise. Using a stepper motor and magnetic reference switch leads to a deviation  of 
the measured wrist-joint angles  from the actual wrist-joint angles : 

(6.25) 

(6.26) 

The actual wrist-joint angles are summarized in the vector . The deviation is constant dur-
ing the measurement, but varies with each reference run. It needs to be identified by nu-
merical optimization and the parameter vector  therefore is not sufficient for the optimi-
zation. 
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The extended parameter vector  for the self-calibration is introduced accordingly: 

(6.27) 

The parameter vector  is derived by numerical optimization. The aim of the optimization 
is to minimize the overall deviation of all measurements, expressed by the residual :  

 (6.28) 

The well-balanced Euclidian norm is used to calculate the residual of the nominal wrist-
joint angles  from the actual wrist-joint angles : 

 (6.29) 

Because of a position ambiguity, the above formulation of the optimization problem for the 
self-calibration is not yet sufficient to find a unique solution to the optimization problem. 
The orientation of the object  is calculated using the intermediate coordinate sys-
tem  in the plane of the grasp points (see Figure 6-7b). The orientation of the plane is de-
scribed in the global coordinate system with  and in the object coordinate system 
with . There are an infinite number of planes for  that are parallel to the plane 

for . With the above formulation, the optimization algorithm will find linearly depend-
ent combinations of suitable grasp points by variation of the parameter vector , and not 
converge to a solution. 
This ambiguity can be eliminated by introducing a distance constraint to the optimization 
residual. The distance between two grasp points must be identical, no matter, if it is calcu-

lated using TCP positions  or the grasp point vectors . Only one combination of 
suitable grasp points will fulfill this condition and the residual  is introduced:  

 (6.30) 

 (6.31) 

 (6.32) 

 (6.33) 

 

The residuals  and  are combined to the extended residual for the self-calibration  
and scaled to the same order of magnitude to achieve a balanced optimization behavior: 

 (6.34) 

The scaling factor of 1/9 in equation (6.34) was determined empirically by the analysis of the 
order of magnitude of the residuals  and  in several preliminary simulations without 
scaling. The optimization formulated in equation (6.28) using the  residual is implement-
ed using the Nelder-Mead simplex algorithm as described by Lagarias and others [LRW98]. 
The according MATLAB® function fminsearch [Mat17b] has proven to be stable and reliable 
for this parameter identification with the nominal grasp points as starting values. The termi-
nation criterion for the optimization was evaluated experimentally. A relative change of the 
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residual  of  is sufficient to identify the grasp points and a higher tolerance did not 
improve the results but led to a slightly increased calculation time. A description of a prelim-
inary implementation for the PARAGRIP self-calibration is given by Rodilla [Rod16 Dt]. 

6.4 Choice of Object Poses for Identification 

The results that can be achieved by the identification of the grasp points described in section 
6.3 depend on the object poses  that are chosen for the identification measurement. The 
considerations and method regarding the choice of measurement points, their quantity and 
position are valid equivalent to the findings described in section 4.6. The according formula-
tions and results for the self-calibration are summarized in this section. The kinematic equa-
tions for  (summarized in  used for the self-calibration can be linearized around the 
nominal parameter values : 

 (6.35) 

The error propagation matrix  for an object pose  is the Jacobian matrix of the kinematic 
equations for  (summarized in : 

 (6.36) 

 

The overall error propagation matrix  for  object poses  is: 

 (6.37) 

The need to scale parameters with different dimension or units against each other does not 
apply for this error propagation matrix of self-calibration. The parameter vector  and the 
variable vectors  are homogeneous. The observability index  introduced in section 4.6 
is calculated based on the singular values  to  for  parameters resulting from the 
singular value decomposition of : 

 (6.38) 

High values of this observability index express a good observability of the parameter devia-
tions and a low influence of measurement noise. The set of identification poses shown in 
Figure 6-8a is based on a numerical optimization with the negative observability index as 
target value, using a fixed number of 12 poses, hence 36 data values for the 9 parameters, 
and adjusting their position and orientation in the workspace. The shown envelope of the 
workspace represents the possible positions with no object rotation. The optimized poses 
are close to the workspace boundaries and concentrated in two areas of the workspace. 
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a)  b)  

Figure 6-8:  a) Optimized identification poses for the self-calibration based on the observability index, b) wrist-
joint angles  for the identification poses 

The identification of the grasp points and the introduced choice of object poses are based on 
the observation of the wrist-joint angles . The observability of  might, however, be 
limited for specific configurations of the wrist-joint. The passive rotations of the axis R and 
the rotation of the axis T are kinematically identical in case of a singularity with collinear ax-
es R and T, the wrist-joint angle  is zero in this case (see Figure 6-7a and [Rie14, p. 191]). A 
rotation of R, that can be observed, can be replaced or partly replaced by a rotation of T that 
cannot be observed. 
Even though this relation is considered implicitly in the derivation of the error propagation 
matrix as can be seen in Figure 6-8b, this singularity should be avoided explicitly during the 
optimization of the identification poses. When considering geometric tolerances and the 
compliance of the structure, the described singularity effects may occur already in the vicini-
ty of a singularity. Because of this, the optimization target value is improved by a scaling fac-
tor based on the minimum wrist-joint angle  for all arms and poses. It rises linearly from 
1.0 for 20° to 2.0 for 30° and higher values. This additional condition does not deteriorate 
the observability index achieved in the optimization, the identification poses are, however, 
distributed more evenly over the workspace, as shown in Figure 6-9a. The resulting wrist-
joint angles  are shown in Figure 6-9b. The minimum values are significantly higher in this 
case for most identification poses in comparison to the optimization without additional  
condition.  



92 6 Self-Calibration for Object Integrative Handling Systems 

 

a)  b)  

Figure 6-9:  a) Optimized identification poses for the self-calibration based on the observability index with addi-
tional condition for the wrist-joint angle , b) wrist-joint angles  for the identification poses 

A manually chosen set of identification poses is investigated for comparison. It is shown in 
Figure 6-10. The identification poses are chosen with an even distribution in the workspace 
and minimum wrist-joint angle  of 20° for all poses. Manually choosing these poses for the 
handling system with integrated object is more challenging than choosing the positions for a 
single PARAGRIP arm, because the orientation and position have to be considered and the 
workspace boundaries are less obvious. The selected set may therefore be not as good as 
the optimized ones. It will be used for the performance comparison. 

a)  b)  

Figure 6-10:  a) Manually chosen identification poses for the self-calibration with even distribution in the work-
space and minimum wrist-joint angle  of 20°, b) wrist-joint angles  for the identification poses  
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6.5 Absolute Accuracy for Position and Orientation 

In addition to the absolute position accuracy  (see equation (4.39) and section 4.4), the 
absolute orientation accuracy is defined following the EN ISO 9283 standard [Eur98]. The 
absolute orientation accuracy is defined as the deviation (measured over  cycles) of the 3 
orientation coordinates for each pose: 

 (6.39) 

 (6.40) 

 (6.41) 

The nominal orientation coordinates  are dependent on the rotational convention 
chosen, which is the Euler  convention in this case. The measured orientation coordi-
nates  are averaged over  cycles: 

 (6.42) 

  

The mean absolute orientation accuracy  and the maximum absolute orientation accura-
cy  are introduced for a more compact representation of the simulation results: 

 (6.43) 

 (6.44) 

The chosen rectangular workspace for the set of 5 reference poses is shown in Figure 6-11. It 
is dependent on the grasping position and on the integrated object and can therefore only 
be an example for the chosen configuration. 

   
Figure 6-11:  Reference points for the chosen rectangular workspace of the handling system 
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6.6 Verification of the Identification Procedure 

The extended kinematic model for the self-calibration and the identification procedure in-
troduced above are verified by simulation to judge the feasibility of the approach and the 
influencing factors. The influence of the inherent system inaccuracies is represented by re-
peating a set of simulated self-calibration with randomly distributed values of the different 
relevant variables.  

6.6.1 Simulation of the Inherent System Inaccuracies 

The Gaussian normal distribution can be used to represent coincidental tolerances for suffi-
ciently large lots [Kle11, p. 153] and is commonly used to evaluate calibration processes (see 
for example [JZB15,RFY13,LLN10]).  
Physical quantities used in the identification procedure, for example the translational coor-
dinate , are represented by a random value based on the normal distributed white Gaussi-
an noise with the mean value equal to the nominal value  and the standard deviation : 

 (6.45) 

This approach can be used to verify the identification procedure and estimate the calibration 
performance. However, dependent on the basic assumptions and considered effects in the 
simulation model and the measurement accuracy, experimental results for real structures 
often differ noticeably from achieved simulation results (see for example [RFS09,EM05]). 
This should be considered in the analysis of the results. The effects that have been consid-
ered for the simulation and the representative normal distributions are detailed in the fol-
lowing sections. 

Grasp Point Tolerances 
The deviations of the grasp points from their nominal position are based on the inaccuracy 
of the object before grasping, the object tolerances and uncertainties during the grasping 
process. These uncertainties include the sliding and pushing of the object due to the recipro-
cal impacts of the cooperating arms or, for example, changing friction during the passive 
alignment of the end-effector. The resulting grasp point deviations of this complex grasping 
procedure could not be described mathematically with acceptable effort due to the large 
number of effects and parameters to be considered. It can, however, be shown, that the 
inaccuracy of the object before grasping and the object tolerances can be represented by a 
Gaussian normal distribution. Preliminary investigations of the grasp point tolerances were 
performed in a previous work [Guo15 Dt]. 
Consequently, the grasp point deviation is simulated based on the measured deviation of a 
set of grasp points after real grasping processes. The actual grasp point positions have been 
measured in different experiments with a high resolution 3D-scan. The grasp point devia-
tions in a single direction have been evaluated in specific experiments with video camera 
observations. The measurement of the 3D-scan (  = 6.3 mm) differs significantly from the 

experimental estimation for the 1-dimensional grasping processes (  = 0.5). Based on this 
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data, the grasp point deviation is estimated with a standard deviation = 3 mm. This esti-
mation is not critical for the verification, since only the pose to be identified is given as simu-
lation input. The quality of the identification ultimately depends on the remaining deviation 
of the identified and actual grasp points. The vector for the self-calibration  (see equation 
(6.2)) is represented by a normally distributed random value with the standard deviation 

: 

(6.46) 

This will result in an average absolute grasp point deviation of 2.4 mm (0.7981 . 

Wrist-Joint Angle Deviations 
The deviation  of the measured wrist-joint angles from the actual wrist-joint angles (see 
equation (6.25)) is simulated similar to the grasp point tolerances. The standard deviation 

= 0.48° was evaluated based on a set of high resolution 3D-scans after the reference 
procedure of the wrist-joint. The actual wrist-joint angles  are represented by a normally 

distributed random value with the standard deviation : 

(6.47) 

This will result in an average absolute wrist-joint angle deviation of 0.38° (0.7981 . 

Tolerances of the Encoder Readings 
The tolerances of the encoder readings for the joint angles  and the wrist-joint angle  
are represented by Gaussian white noise: 

(6.48) 

(6.49) 

The according standard deviations have been chosen to be equal to the nominal sensor reso-
lution and are listed in Table 6-1. Practical comparisons of the desired and measured encod-
er position have shown control deviations in this order of magnitude or less. 

joint angle     

standard deviation = 0.003° = 0.002° = 0.002° = 0.02° 

Table 6-1:  Standard deviation for the absolute accuracy after calibration and for the nominal model 

Arm Position Accuracy 
The accuracy of the TCP position of the robotic arms is relevant for the resulting joint angle 
readings during the self-calibration procedure and for the resulting pose of the integrated 
object. It is limited by the manufacturing tolerances and effects like backlash and friction and 
can be improved only up to some extent by calibration as shown in section 4. The position 
accuracy of different arms after the calibration was analyzed for 25 measurements for the 
different calibration models and for 50 measurements for the nominal model. An example of 
the resulting frequency distribution is given in Figure 6-12. The assumption of a normal dis-
tribution cannot be justified based on the limited set of available measurements but it is 
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considered sufficient for the verification. The mean value of the deviations is not significant 
for the simulation and will not be considered. The standard deviation does, however, vary 
noticeably for different directions. 

 
Figure 6-12:  Frequency distribution for the absolute accuracy after hybrid kinematics model level 3 calibration 

A comparison of the standard deviations for the different calibration models and the nomi-
nal model is given in Table 6-2. The accuracy of the different models is in a rather narrow 
range, compared to the nominal model. Therefore, the simulations are performed using the 
level 2 calibration with the serial kinematics model, representing the most conservative ac-
curacy for the robotic arm and allowing for the best calculation speed.  

standard deviation  -direction -direction -direction 

serial kinematics model, level 2 0.3029 mm 0.2364 mm 0.1853 mm 

serial kinematics model, level 3 0.2928 mm 0.2234 mm 0.1962 mm 

hybrid kinematics model, level 2 0.2882 mm 0.2486 mm 0.1664 mm 

hybrid kinematics model, level 3 0.2587 mm 0.2222 mm 0.1282 mm 

nominal model 1.9927 mm 2.1669 mm 1.7519 mm 

Table 6-2:  Standard deviation for the absolute accuracy after calibration and for the nominal model 

The TCP position  of each arm  (see equation (6.10)) is represented by a normally 

distributed random value with an individual standard deviation  for each translational 
direction in the arm coordinate system : 

(6.50) 

6.6.2 Influence of the Simulated Tolerances and Deviations 

The simulations have been implemented based on the tolerances and deviations introduced 
above. The manually selected set of identification poses is used for the investigation of the 
general areas of sensitivity described in this section. The deviation of the grasp points  
and wrist-joint angles  are used as simulation input and the remaining deviations after the 
self-calibration serve as a measure for the self-calibration performance. 
The sensitivity of the procedure has been tested using the One-Factor-At-a-Time method. 
The tolerance of the encoder readings (joint angle noise) and the arm position accuracy has 
been simulated with increasing values starting from zero, while the remaining simulation 
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parameters were unchanged. The joint angle noise did not influence the simulated self-cali-
bration performance, even for simulated measurement noise with 2.5 times higher standard 
deviations. It does not seem to be a critical influencing factor for the investigated handling 
system and the remaining analysis is focused on the effect of the arm position accuracy. 
Figure 6-13a and b show the remaining grasp point deviation and the deviation of the wrist-
joint angle  after the simulated self-calibration for a range of the arm absolute accuracy 
from 0 to 2.4 mm (average for all directions). The remaining deviations increase with higher 
values for the arm absolute accuracies and are more scattered, especially for mean arm ac-
curacies above 0.8 mm. Outliers that perform inferior in comparison to most of the similar 
simulations can be observed, therefore any self-calibration should be executed multiple 
times, if possible, to achieve robust results. 

 
Figure 6-13:  a) Mean grasp point deviation, b) mean deviation of wrist-joint angle  after the simulated self-

calibration for a range of absolute accuracies of the robotic arm 

The arm absolute accuracy is illustrated as vertical lines in Figure 6-13 for the nominal arm 
model and after calibration. The average absolute deviations that remain after self-
calibration for the grasp points and the wrist-joint angle  are about 0.15 mm and 0.15° for 
the accuracies that can be achieved by kinematic calibration of the arms. This is a good im-
provement of the grasp point deviations in comparison to the average deviations of 2.4 mm 
used as input for the simulations. The improvement is smaller for the deviation of the wrist-
joint angle  with an average initial deviation of 0.38°. This is no drawback, because the 
grasp point deviation is the critical quantity for the calibration performance. Furthermore, 
the balance between both deviations could be adjusted by the scaling factor for the residual 
introduced in equation (6.34). 
Based on this simulation, it can be concluded that a successful identification of the grasp 
points would not be possible with the nominal kinematics models of the robotic arms. The 
remaining grasp point deviation between 0.5 mm and 2 mm would lead to an unacceptable 
accuracy of the handling system with integrated object. As a result, the modeling quality of 
the kinematic model used is crucial for the successful self-calibration. Its influence will be 
investigated in more detail in the next set of simulations by analyzing the resulting object 
accuracy. 
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The object pose can be calculated based on the direct kinematic calculation with the actual 
grasp points, the calibrated kinematic model and the theoretical joint angles. The actual 
grasp points are known, they were generated in equation (6.46) as simulation input. The 
theoretical joint angles are calculated based on the inverse kinematics model using the iden-
tified grasp points and nominal object position. The limited arm accuracy is effective in this 
simulation in two ways. First the performance of the grasp point identification is influenced 
because the joint angles are measured via the robotic arms. Secondly the resulting object 
pose is directly affected by the limited arm position accuracy. Accordingly, the TCP position 

 of each arm  is simulated for both calculations individually.  
The resulting object pose accuracy is shown in Figure 6-14 for the simulated self-calibration 
for a range of the arm absolute accuracy from 0 to 0.6 mm (average for all directions). The 
behavior observed is similar to the behavior observed for the grasp-point identification. For 
the accuracies of the calibrated arms, the object pose accuracy ranges from 0.2 mm to 
0.4 mm and from 0.06° to 0.15°. The achieved object position and orientation accuracy scat-
ter noticeably for values above about 0.3 mm arm absolute accuracy. This again indicates a 
better possible performance of the self-calibration for a good arm absolute accuracy. A more 
detailed analysis of the accuracy distribution is given below. 

  
Figure 6-14:  Object absolute accuracy after the simulated self-calibration for a range of absolute accuracies of 

the robotic arm 

The resulting position accuracy of the object is approximately between factor 1 and 2 higher 
than the arm position accuracy. With this, the needed arm position accuracy for a desired 
accuracy of the object integrative handling system can be estimated. However, the relation 
of the remaining grasp point deviation and the resulting object pose accuracy (see 
Figure 6-15) is not strictly linear but varies significantly in-between repeated simulations. 
Drawing a conclusion about the resulting object pose accuracy is, hence, not possible based 
on the remaining grasp point deviation for a single simulation or measurement result. It can 
only serve as estimation for the overall performance. 
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Figure 6-15:  Relation of the remaining grasp point deviation and object pose accuracy after the simulated self-

calibration for a range of absolute accuracies of the robotic arm 

6.6.3 Accuracy Enhancement by Different Sets of Identification Poses 

Following the above observations, the performance of the different sets of identification 
poses is analyzed based on a new set of simulations. The simulated self-calibration is imple-
mented as described above using the mean arm absolute accuracy for the level 2 serial kin-
ematics model (see Table 6-2). The results are compared to the nominal kinematics model 
and a level 2 model before self-calibration. The simulation of the nominal kinematics model 
is implemented by deriving the theoretical joint angles from the nominal inverse kinematics 
model using the nominal grasp points and object position. The resulting object pose is calcu-
lated based on the direct kinematic calculation with the actual grasp points, the calibrated 
kinematic model and the theoretical joint angles. The simulation for the level 2 serial kine-
matics model without self-calibration is implemented with the same direct kinematics. The 
theoretical joint angles are calculated using the level 2 serial kinematics model. 
The object pose accuracy is evaluated for the 5 reference poses introduced in section 6.5. 
The distribution of the resulting mean absolute position accuracies are shown in the box-
plots in Figure 6-16, the mean absolute orientation accuracies are shown in the box-plots 
Figure 6-17. Possible outliers outside the 1.5 time interquartile range are marked red. The 
average mean and maximum accuracy values are listed in Table 6-3. 
The results for the nominal model and the level 2 model without self-calibration mainly de-
pend on the simulated grasp point deviations. Because of the insufficient approximation of 
this simulation input, the resulting accuracies cannot be used for a quantitative evaluation 
but the qualitative improvement by self-calibration can be investigated. The object pose ac-
curacy was measured for a set of example trajectories based on the level 2 model without 
self-calibration. The average absolute accuracy of 2.790 mm and 0.564° is in the same order 
of magnitude as the simulation results, the simulation, however, seems to overestimate the 
orientation error. A deeper discussion of these discrepancies is not purposeful, as the 
boundary conditions and object poses differ for the measurements and the simulation. The 
results give a first indication that the experimental validation of the developed self-
calibration process needs to be performed extensively in the future. 
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Figure 6-16:  Distribution of the simulated mean object absolute position accuracy, box-plot with 

1.5x interquartile range whiskers and possible outliers marked red 

  
Figure 6-17:  Distribution of the simulated mean object absolute orientation accuracy, box-plot with 

1.5x interquartile range whiskers and possible outliers marked red 

The self-calibration can be verified successfully based on the simulations, by comparing the 
simulated position accuracies before (see Figure 6-16a) and after self-calibration (see 
Figure 6-16b). The shown mean object absolute accuracy refers to the mean accuracy value 
for the 5 reference poses. The shown median and the average (see Table 6-3) of the mean 
absolute position accuracy are improved by a factor of 7 in comparison to the level 2 serial 
kinematics model without self-calibration. 
The maximum object absolute accuracy listed in Table 6-3 refers to the maximum accuracy 
value for any of the 5 reference poses. The maximum of the absolute position accuracy is 
improved by a factor of 5. The accuracy does not only improve on average, the difference 
between the 5 reference points is reduced as well, which shows a more evenly distributed 
accuracy after self-calibration. The improvements for both, the average and maximum accu-
racy, are even better for the orientation accuracy shown in Figure 6-17. 
The performance of the different sets of identification points is similar to each other: The 
distribution characteristics (median, average, quartiles, and whiskers) of the simulated accu-
racies for the manually chosen distribution and the optimized set with  condition vary by 
only a few percent, which is no significant difference. The performance is slightly superior for 
the set optimized only based on the observability index. The average mean accuracy is about 
7 % better and the results are scattered in a smaller value range. The maximum accuracy 
values are about 3 % better, again with slightly better results for the orientation. 
Overall, the performance of the self-calibration does not seem to be very sensitive to the 
exact choice of the identification sets, when comparing different optimized sets. This result 



6 Self-Calibration for Object Integrative Handling Systems  101 

 

is similar to the findings from the kinematic arm calibration. The observability index gives a 
good orientation for a good set of identification poses, it is, however, not primarily critical to 
achieve an optimal parameter identification. 

average value and measured 
examples 

nominal 
model 

level 2 
model 

manual 
distribution 

observabil-
ity index 

observabil-
ity index  

mean absolute 
accuracy  2.790 mm 3.800 mm 2.108 mm 0.326 mm 0.301 mm 0.318 mm 

maximum absolute 
accuracy  3.984 mm 5.418 mm 2.289 mm 0.484 mm 0.462 mm 0.472 mm 

mean absolute 
accuracy  0.564° 1.764° 0.952 ° 0.121° 0.108° 0.117° 

maximum absolute 
accuracy  1.815° 4.219° 1.646 ° 0.308° 0.288° 0.293° 

residual  - - - 0.1388 0.1505 0.1036 

Table 6-3:  Simulated average object accuracies for the 5 reference points for the nominal model and after self-
calibration with different sets of identification poses 

The verification results prove a successful implementation of the developed approach and 
give a good estimation of possible improvements of the absolute accuracy for object integra-
tive handling concepts. Detailed experimental investigations can lead to an even better un-
derstanding of the performance of the self-calibration in future. It can, however, be ex-
pected to be individual and dependent on the kinematic structure of the cooperating robots 
and the integrated object. 

6.7 Validation of the Self-Calibration Process 

The developed and implemented self-calibration process needs to be validated by meas-
urements. As discussed above, simulation and measurement results often vary significantly 
from each other. For this reason, first investigations for a validation of the process are de-
scribed in this section. 
The measurement object is integrated to the kinematic structure and moved to the identifi-
cation poses. The joint angles  and  in the parallelogram are actuated, while the joint 
angles  and wrist-joint angles  align passively during the measurement motion. All 
joint angles are recorded and evaluated according to the self-calibration procedure.  
During the measurement motion, significant restrictions of the prototype can be observed 
that limit the measurement quality: The wrist-joint axis R is actuated by a stepper motor 
with encoder and gearbox during the initial grasping process before setting it passive for the 
alignment. The gearbox and stepper motor induce inhomogeneous back-driving torques that 
hinder an optimal passive alignment and slip-stick effects occur, resulting in a discontinuous 
passive alignment. Furthermore, the friction in the passive joints D0i (joint angles ) is not 
identical for all arms, due to wear. The low stiffness of the vacuum end-effector leads to 
structural deformations close to the grasp point that change the kinematics. These effects 
cause different states of internal tensioning and deformation, limit the kinematic definite-
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ness and consequently limit the passive alignment. As the loads due to friction are unknown, 
they cannot be compensated for easily using the developed stiffness model, without for ex-
ample additional force sensors. 
The passive alignment for the first measurement pose is shown in Figure 6-18. Starting from 
the initial pose in Figure 6-18a, the object is moved to the alignment poses. The 5-bar link-
ages (actuation of  and ) are moved to a new position and the passive angles  and 

 align because of the force transmission trough the integrated object. The resulting object 
pose is unique in the kinematic calculation, the passive alignment, however, does not neces-
sarily result in this theoretical object pose (see Figure 6-18d), due to the limiting factors 
mentioned before. 

 
Figure 6-18:  Starting pose, alternative passive alignments and theoretical alignment during self-calibration 

The passive alignment for an exemplary pose (see Figure 6-18b and c) stops with an object 
rotation, smaller than the theoretical pose in Figure 6-18d. Furthermore, the alignment var-
ies significantly between measurements. In these different alignment poses the relation of 

 and  is still valid although it is subject to tolerances. This means an alignment to the 
necessary pose might not necessarily be needed for a successful self-calibration. However, 
the induced measurement errors remain.  
In a first validation approach the grasp points were measured manually and compared to the 
self-calibration results for three measurements to judge the feasibility of the validation using 
the existing PARAGRIP prototype. The average optimization residual  was 2.9 for the 
measured data sets. These results are inferior to the simulation results by a factor of 20-30. 
Furthermore, the identified deviations  of the measured wrist-joint angles range from 
2.3° to 8.3°. These values are outside the measured range with the standard deviation 

= 0.48°. Finally, the identified grasp points do not represent the real grasp points or 
even show a clear improvement in comparison to the nominal grasp points. These results 
show, that the parameter identification was not successful and that the introduced self-
calibration procedure cannot be validated with the current set up of the prototype. 
The necessary modifications of the prototype and future investigations are discussed in sec-
tions 6.8 and 8.  

a) b) c) d)

starting pose

passive
alignment

theoretical
alignment

passive
alignment
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6.8 Summary and Conclusion for the Self-Calibration 

The investigation of the state of research for closed loop calibration methods has shown a 
broad range of approaches that are usually specific for the structure under investigation. 
Based on this, a self-calibration method for the object integrative handling system PARAGRIP 
was developed based on the combination of direct and inverse kinematic calculations and 
the evaluation of redundant sensor information.  
The specific kinematic considerations, in particular the available sensor information for the 
kinematic modeling and the ambiguity of the object position relative to the robotic arms of 
the handling system were discussed. A formulation of the self-calibration problem and an 
extended kinematic model were formulated based on these considerations. It is based on 
the redundant direct kinematic calculation using the measured information for the actuated 
joint angles and the redundant inverse kinematic calculation, additionally using a measured 
wrist-joint angle for each arm. The identification of the grasp points at the object is based on 
a numerical optimization of the remaining residual that represents the deviation of meas-
ured and theoretical wrist-joint angles. 
The self-calibration procedure was verified in a simulation approach. The simulation input 
was mainly obtained from various accuracy measurements and the kinematic calibration. 
The self-calibration could be verified successfully and the arm position accuracy was identi-
fied as the main influencing factor for the self-calibration performance. Similar to the results 
for the arm calibration, the choice of measurement poses is not very critical for the success 
of the self-calibration. The simulation results must be interpreted carefully. Often inferior 
results are obtained from measurements and practical implementations of the calibration or 
self-calibration processes. 
The experimental validation of the self-calibration procedure showed significant drawbacks 
of the available prototype and was not concluded successfully. Inhomogeneous back-driving 
torques and friction in combination with the low stiffness of the vacuum end-effectors lead 
to a discontinuous and incomplete passive alignment of the integrated object.  
For future investigations and a final validation of the self-calibration major modifications of 
the prototype are needed: The stepper motors need to be replaced by low friction encoders 
and the joint bearings need to be maintained or replaced. These modifications are not within 
the scope of this thesis and remain for further research. Furthermore, the transfer function 
between the actuated joints and the passive joints for the alignment is not considered ex-
plicitly in the selection of identification poses. Considering this relation could be a possible 
improvement for the practical implementation of the self-calibration procedure. 
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7 Summary and Conclusion 

The first aim of this thesis was the implementation of a calibration procedure together with 
the accuracy assessment for the PARAGRIP handling system. The kinematic calibration was 
implemented and investigated for two new kinematic models: The mathematically efficient 
serial and the more computational intensive hybrid kinematics model. The limited absolute 
accuracy of the PARAGRIP arms could be improved significantly by parameter identification 
for both models and the hybrid kinematics model showed a more robust and reliable behav-
ior in the calibration process. However, the difference was not as significant as expected 
based on current opinion in the research.  
The experimental comparison of sets of different identification points showed similar results 
for both approaches, for the manual selection at the workspace boundaries and the observ-
ability index based optimization. This was not obvious beforehand based on research to 
date. In this context, the comparison of the 2-norm residual and the maximum residual 
showed significantly better behavior of the former, which justifies its widespread use. 
The second aim of this thesis was the compensation of gravitational effects within the cali-
bration procedure based on the automatic calculation of the structural deformations. A new 
stiffness modeling approach was implemented, based on the extension of the Matrix Struc-
ture Analysis. The stiffness model can be assembled and calculated automatically for arbi-
trary kinematic structures with various, linear or non-linear, elements from a catalog. The 
experimental validation for the PARAGRIP prototype was successful. The model and valida-
tion showed a well-balanced distribution of the compliance of all components, significant 
cross-coupling effects, and inhomogeneous stiffness properties within the workspace that 
can now be quantified based on the model. 
The compensation of the gravitational deformations of the structure led to a significant im-
provement of the parameter identification for the arms. This shows the importance of stiff-
ness modeling for the calibration processes. 
The third aim of this thesis was to investigate self-calibration for object integrative handling 
systems to identify the grasp points at the object and compensate the internal inaccuracies 
automatically. A new self-calibration method was developed based on the combination of 
direct and inverse kinematic calculation. It incorporates specific considerations for the object 
position ambiguity when passive rotational alignment without redundant sensor information 
is used for the object integration. The verification of the implemented method showed a 
strong influence of the arm position accuracy on the performance of the grasp point identifi-
cation in simulation. A correlation between the grasp point deviation and the object accura-
cy was for example shown. Similar to the results for the arm calibration, the choice of meas-
urement poses is not very critical for the self-calibration procedure.  
In summary, all research aims were achieved, only the validation of the self-calibration pro-
cedure was not concluded successfully: Significant drawbacks in the available prototype 
have hindered a sufficient passive alignment of the integrated object. This emphasizes the 
importance of an extensive experimental validation in the future. 
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8 Discussion and Outlook 

Based on the presented research results, further investigations are needed to extend the 
results and transfer them to future applications. 
The kinematic parameter identification for the PARAGRIP arm showed new results for the 
modeling of this specific structure. For future applications and transferal to industrial appli-
cations for example, the reliability of the measurement and identification procedure need to 
be improved. The changing conditions during the experiments and the long (and in some 
aspects unnecessary) complex data processing of the chosen implementation are examples 
of possible sources of error. Many of these problems are solved for industrial applications, 
where standardized procedures are available. Therefore, using the developed models and 
insights gained for similar kinematics may be suitable in such procedures and will aid any 
future investigations for the object integrative handling system PARAGRIP. 
The introduced stiffness model could be extended with additional elements to broaden the 
possible applications. Few stiffness elements that go beyond the scope of this thesis are im-
plemented currently, though others are both possible and useful, in particular standard ele-
ments like bearings or motors. Integrating existing stiffness data for such elements, for ex-
ample provided by manufacturers, would be a worthwhile extension of the method. 
The implementation of a non-linear modeling behavior may be worth future investigations 
as well. Even though the non-linear stiffness behavior of the elements is considered, this is 
not the case for the changing kinematics of the deformed structure. This is a valid simplifica-
tion for the small deformations considered in this thesis. For highly deformable structures 
and in soft robotics, the combination of the kinematic calculations and the stiffness model 
could be a suitable approach, despite the increased complexity of these calculations. 
Furthermore, the implemented stiffness models needs to be tested in a broader range of 
applications and structures to give a better understanding of the performance of the model, 
to identify possible weaknesses and necessary extensions.  
Of course, most considerations regarding possible further research concern the self-
calibration for object integrative handling systems and cooperating robots. The research is at 
an early stage and many improvements are still necessary. Some of these considerations are 
summarized in the following paragraphs. 
The validation of the self-calibration procedure introduced in this thesis is a first point for 
future investigation. The according modifications of the prototype are necessary to conclude 
the validation as shown here, but also tests on other robots, possibly reliable and precise 
industrial robots with appropriate sensors would be possible. Experimental validations and 
extensive measurements are needed to quantify the performance of the self-calibration and 
gain reliable data for the reachable accuracies. As discussed before, significant deviations in 
the experimental results and the simulations can be expected. Such investigations should 
include different objects and contact surface configurations as well. The sensitivity of the 
self-calibration to the object’s shape and to changing grasp point configurations is highly 
relevant for any practical implementation. 
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The self-calibration as introduced in this thesis relies on the evaluation of redundant sensor 
data. Consequently, extending the available sensor information for the PARAGRIP prototype 
will be beneficial for the self-calibration process. All wrist-joints of the robotic arms could be 
equipped with sensors, even though the practical implementation of the prototype may be 
difficult. A more realistic extension is the use of an additional robotic arm. This would intro-
duce an additional grasp point that needs to be identified, but it solves the ambiguity of the 
object position discussed for the current implementation. 4 contact points with fixed posi-
tion relative to each other cannot be placed arbitrarily on the objects surface. 
The self-calibration offers the opportunity to be applied to all kinds of cooperating robotic 
systems. As shown in Figure 8-1a, a lot of redundant sensor information is available for 3 
cooperating 6DOF articulated robots and such configurations could of course be scaled by 
using more or different robotic structures. A framework to identify the ideal set of active and 
passive joints for a given configuration would permit a flexible and versatile use of cooperat-
ing robots. The application for cooperating mobile robotic units and the extension of the 
identified parameters, for example to the relative base frame positions, are imaginable and 
could lead to highly flexible assembly systems. 

 
Figure 8-1:  Alternative and extended approaches for the self-calibration of cooperating robots 

Another possible extension of the self-calibration and a new field of research is the evalua-
tion of redundant force and torque information, rather than the evaluation of redundant 
position information alone. As illustrated in Figure 8-1b and c, the cooperating robots could 
be actuated deliberately in a redundant mode. The evaluation of the measured motor tor-
ques would allow for a self-calibration method based on kinematic calculations and on the 
implemented stiffness model. Tensioning of the structure would become a source of infor-
mation, rather than an undesired source of error. Gravitational effects, the mass distribution 
of the object and changing loads when lifting the object could be considered as soon as ac-
tuation forces and torques are evaluated. 
Another extension that should be mentioned is the use of continuous measurement data 
and the consideration of the systems dynamics: A much larger amount of data, and there-
fore a potentially better self-calibration performance, would be opposed to increasingly 
complex modeling, data acquisition and data analysis. 
The self-calibration of object integrative handling systems is clearly a promising approach 
towards further developments in robotics, offering both a variety of interesting applications 
and possibilities for future research… 

ga) b) c) g
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9 Annex 

9.1 Calculation of the General 4-bar Linkage  

The passive joint angle  can be calculated from the kinematics of the deformed parallelo-
gram. Resolving equations (4.10) and (4.11) into : 

(9.1) 

(9.2) 

Square both equations and add them up to eliminate  using the Pythagorean trigonomet-
ric identity : 

(9.3) 

Bring equation (9.3) into the form: 

(9.4) 

With: 

(9.5) 

(9.6) 

(9.7) 

Equation (9.14) is resolved into , square both sides and use the Pythagorean trigo-
nometric identity: 

 (9.8) 

Using the quadratic formula results in: 

(9.9) 

(9.10) 

By evaluating (9.9) and (9.10) the passive joint angle  can be calculated nonambiguous in 
the correct quadrant. 

9.2 Linearization of the Position Constraints 

The variables , ,  and  are eliminated in equations (4.18) and (4.19) and the abbrevi-
ations  and  are introduced: 

(9.11) 

 (9.12) 

The cosine and sine function can be linearized using the Taylor expansion [Dah08, p. 20–21] 
as follows: 

(9.13) 

 (9.14) 
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With these equations (9.11) and (9.12) are linearized: 

(9.15) 

Ignoring higher order terms leads to: 

(9.16) 

 
(9.17) 

Isolating  in both equations and simplifying them: 

(9.18) 

 (9.19) 

Elimination of  and isolation of  from the remaining equation: 

(9.20) 

(9.21) 

(9.22) 

(9.23) 

(9.24) 

Analogous,  is eliminated in equations (9.16) and (9.17) and the equations are simplified: 

(9.25) 

 (9.26) 

Analogous,  is eliminated and  is isolated from the remaining equations: 

(9.27) 

(9.28) 

(9.29) 



9 Annex  111 

 

9.3 Kinematic Parameters after Level 2 and Level 3 Calibration  

parameter 

nominal 0.000° 0.000°  0.000°  0.000 mm 0.000 mm 350.000 mm 150.000 mm 

arm 1 0.087° -0.459° -0.399° -0.270 mm -0.378 mm 349.612 mm 149.884 mm 

arm 2 0.175°  0.031° -0.036° -0.102 mm -0.076 mm 349.161 mm 150.060 mm 

arm 4 0.215° -0.121°  0.062° -0.493 mm  1.013 mm 349.505 mm 149.904 mm 

parameter 

nominal  0.000°  0.000°  0.000 mm 0.000 mm 0.000 mm 350.000 mm 629.300 mm 

arm 1  0.141° -0.231° -0.710 mm -0.916 mm 1.433 mm 349.633 mm 628.975 mm 

arm 2 -0.048° -0.060°  0.579 mm  0.894 mm 0.385 mm 349.307 mm 629.206 mm 

arm 4  0.039° -0.072° -0.090 mm -0.694 mm 1.750 mm 349.570 mm 626.988 mm 

Table 9-1:  Kinematic Parameters after level 2 calibration for the hybrid kinematics model 

parameter 

nominal 0.000° 0.000°  0.000°  0.000 mm 0.000 mm 350.000 mm 150.000 mm 

arm 1 0.106° -0.475° -0.424° -0.369 mm -0.496 mm 349.950 mm 149.873 mm 

arm 2 0.194°  0.012° -0.063° -0.203 mm -0.185 mm 349.505 mm 150.048 mm 

arm 4 0.233° -0.138° -0.088° -1.434 mm  0.896 mm 349.844 mm 149.892 mm 

parameter 

nominal  0.000°  0.000°  0.000 mm 0.000 mm 0.000 mm 350.000 mm 629.300 mm 

arm 1  0.139° -0.224° -0.766 mm -0.945 mm 1.120 mm 349.885 mm 629.087 mm 

arm 2 -0.050° -0.053°  0.523 mm  0.863 mm 0.085 mm 349.565 mm 629.293 mm 

arm 4  0.037° -0.065° -0.145 mm -0.722 mm 1.107 mm 349.821 mm 627.093 mm 

Table 9-2:  Kinematic Parameters after level 3 calibration for the hybrid kinematics model 

parameter 

nominal 0.000° 0.000°  0.000°  0.000 mm  350.000 mm 629.300 mm 

arm 1 0.059° -0.165° -0.223° -0.248 mm  348.894 mm 630.200 mm 

arm 2 0.158° 0.150° 0.126° -0.164 mm  348.936 mm 629.492 mm 

arm 3 0.183° 0.123° 0.173° -0.06 mm  349.139 mm 629.422 mm 

arm 4 0.173° 0.044° -0.030° -0.549 mm  348.892 mm 628.390 mm 

parameter 

nominal  0.000°  0.000°  0.000 mm 0.000 mm 0.000 mm   

arm 1 0.154° -0.126° -1.615 mm -0.752 mm 1.083 mm   

arm 2 -0.041° 0.004° 0.178 mm 0.914 mm 0.295 mm   

arm 3 0.013° -0.025° 0.122 mm -0.497 mm -0.412 mm   

arm 4 0.042° -0.078° 0.500 mm -0.264 mm 1.623 mm   

Table 9-3:  Kinematic Parameters after level 2 calibration for the serial kinematics model 
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9.4 Stiffness and Transformation Matrices for the Example Structure 

(9.30) 

(9.31) 

(9.32) 

9.5 Stiffness Elements of the PARAGRIP Structure 

 
Figure 9-1:  Structure of the PARAGRIP stiffness model with the connecting nodes 
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Table 9-4 lists the coordinate systems, properties and positions for all stiffness elements of 
the PARAGRIP structure. The coordinate systems and positions are indexed according to the 
connecting nodes shown in Figure 9-1. 

element coordinate system properties position and orientation 

link 1 

 

thin-walled rectangular 
beam 

 
connect nodes: 3 and 4 

 
length : 0.350 m 
width :  0.050 m 
height : 0.070 m 
thickness : 0.030 m 

link 2 

 

thin-walled rectangular 
profile 

 
connect nodes: 5 and 6 

 
length : 0.150 m 
width : 0.040 m 
height : 0.060 m 
thickness : 0.002 m 

link k 

 

thin-walled rectangular 
profile 

 
connect nodes: 6 and 7 

 
length - : 0.3575 m 
width :  0.040 m 
height : 0.060 m 
thickness :  0.002 m 

link 3 

 

thin-walled round 
profile 

 
connect nodes: 

10 and 11 
 

length : 0.350 m 
diameter :  0.013 m 
thickness : 0.002 m 

 

l1

1
s34

l1

l2

1

4

s56

l -lk 2

l1

l2

1

4

s67

l4

l3

1

4s1011
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element coordinate system properties position and orientation 

link 4 

 

predefined 
stiffness element  
:  1.5353 108 N/m 
:  9.2065 106 N/m  
:  2.5642 107 N/m  

 
connect nodes: 8 and 9 

 
length : 0,150 m 

  

link 5 

 

predefined 
stiffness element  
:  1.2137 105 N/m  
:  1.2137 105 N/m  

 
connect nodes: 1 and 2 

 

drive D0 

 

predefined 
stiffness element  

:  5.4462 104 Nm/rad 
:  5.4462 104 Nm/rad 
:  7.6735 103 Nm/rad 

 
connect nodes: 0 and 1 

 
  

drive 1 

 

predefined 
stiffness element  

: 7.0330 103 Nm/rad 
 

connect nodes: 2 and 3 

 

l4

4

s89
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element coordinate system properties position and orientation 

drive 4 

 

predefined 
stiffness element  

:  8.4562 103 Nm/rad 
 

connect nodes: 2 and 8 

joint A0 

 

2x ball-bearings 
ID: 13807 

 
connect nodes: 2 and 3 

 

joint B0 

 

2x ball-bearing 
ID: 13807 

 
connect nodes: 2 and 8 

joint A 

 

2x ball-bearing 
ID: 13807 

 
connecting nodes: 4 and 5 

 

1

4

l1

1

4
s45
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element coordinate system properties position and orientation 

Joint B 

 

pivoting bearing 
ID: 11200 

 
connect nodes: 9 and 10 

 

Joint C 

 

pivoting bearing 
ID: 11200 

 
connect nodes: 9 and 10 

 

end-
effector 

vacuum end-effector 
 

connect nodes: 7 and 12 
 

Table 9-4:  Element types, connecting nodes, properties and coordinate systems for the PARAGRIP stiffness 
elements 

l4

1 4s910

l1

l2

1 4

s611

l1

lk

1

4

s712
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9.6 Load Cases for the Identification of the PARAGRIP Stiffness Parameters 

load case structure load displace-
ment 

1 0° 90° - link 3 removed, link 5 fixed - 98.10 N  

2 0° 90° - link 3 removed, drive 1 stopped - 98.10 N  

3 0° - 0° link 3 removed, link 5 fixed 98.10 N  

4 0° - 0° link 3 removed, drive 1 stopped 98.10 N  

5 0° 90° 0° drive D0 fixed, drives 1,4 stopped 46.66 N  

6 0° 90° 0° drive D0 fixed, drives 1,4 stopped 46.66 N  

7 0° 90° 0° unmodified, drives active - 11.53 N  

8 0° 90° 0° unmodified, drives active 11.53 N  

Table 9-5:  Measurement positions, displacements and loads for the identification of the stiffness parameters 
for the PARAGRIP stiffness model 

9.7 Measurement and Model Data for the Identification of the PARAGRIP Stiffness Pa-
rameters 

The measurements were performed with a dial indicator having a measurement resolution 
of 0.01 mm and repeated three times. The mean value and the band width of the measure-
ment results are given. 

load case displacement measured 
displacement 

modeled 
displacement 

1 - 1.90±0.03 mm -1.870 mm 0.030 mm 0.016 

2 - 2.36±0.01 mm -2.333 mm 0.023 mm 0.013 

3 0.16±0.01 mm 0.183 mm 0.022 mm 0.133 

4 0.18±0.01 mm 0.210 mm 0.030 mm 0.166 

5 2.82±0.02 mm 2.775 mm 0.045 mm 0.016 

6 0.89±0.02 mm 0.956 mm 0.066 mm 0.074 

7 -0.98±0.01 mm -0.981 mm 0.001 mm 0.001 

8 1.00±0.01 mm 0.981 mm 0.016 mm 0.016 

mean    0.030 mm 0.055 

Table 9-6:  Measured and modeled displacement and the according deviations after the identification of the 
stiffness parameters for the PARAGRIP stiffness model 
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9.8 Load Cases for the Verification of the PARAGRIP Stiffness Model 

The measurements were performed with an optical CMM with a minimum absolute accuracy 
of 0.15 mm. 

1 35.00° 45.00° 3.10° 0.7119 m 0.4985 m 0.2812 m 23.05 N 11.53 N 11.53 N 

2 25.00° 47.85° 17.80° 0.7500 m 0.3497 m 0.4498 m 23.05 N 11.53 N 11.53 N 

3 15.00° 57.70° 32.50° 0.6878 m 0.1843 m 0.6303 m 23.05 N 11.53 N 11.53 N 

4 5.00° 91.29° 24.99° 0.5542 m 0.0485 m 0.6129 m 23.05 N 11.53 N 11.53 N 

5 -5.00° 149.00° 45.99° 0.1320 m -0.0115 m 0.6280 m 23.05 N 11.53 N 11.53 N 

6 -15.00° 146.00° 26.51° 0.2578 m -0.0691 m 0.4736 m 23.05 N 11.53 N 11.53 N 

7 -25.00° 143.00° 6.99° 0.3066 m -0.1430 m 0.2864 m 23.05 N 11.53 N 11.53 N 

8 -35.00° 90.50° 5.05° 0.5054 m -0.3539 m 0.4048 m 23.05 N 11.53 N 11.53 N 

Table 9-7:  Measurement positions and loads for the experimental verification of the PARAGRIP stiffness model 
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