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Integration of genome-scale metabolic networks into whole-
body PBPK models shows phenotype-specific cases of drug-
induced metabolic perturbation
Henrik Cordes1, Christoph Thiel1, Vanessa Baier1, Lars M. Blank1 and Lars Kuepfer1

Drug-induced perturbations of the endogenous metabolic network are a potential root cause of cellular toxicity. A mechanistic
understanding of such unwanted side effects during drug therapy is therefore vital for patient safety. The comprehensive
assessment of such drug-induced injuries requires the simultaneous consideration of both drug exposure at the whole-body and
resulting biochemical responses at the cellular level. We here present a computational multi-scale workflow that combines whole-
body physiologically based pharmacokinetic (PBPK) models and organ-specific genome-scale metabolic network (GSMN) models
through shared reactions of the xenobiotic metabolism. The applicability of the proposed workflow is illustrated for isoniazid, a first-
line antibacterial agent against Mycobacterium tuberculosis, which is known to cause idiosyncratic drug-induced liver injuries (DILI).
We combined GSMN models of a human liver with N-acetyl transferase 2 (NAT2)-phenotype-specific PBPK models of isoniazid. The
combined PBPK-GSMN models quantitatively describe isoniazid pharmacokinetics, as well as intracellular responses, and changes in
the exometabolome in a human liver following isoniazid administration. Notably, intracellular and extracellular responses identified
with the PBPK-GSMN models are in line with experimental and clinical findings. Moreover, the drug-induced metabolic
perturbations are distributed and attenuated in the metabolic network in a phenotype-dependent manner. Our simulation results
show that a simultaneous consideration of both drug pharmacokinetics at the whole-body and metabolism at the cellular level is
mandatory to explain drug-induced injuries at the patient level. The proposed workflow extends our mechanistic understanding of
the biochemistry underlying adverse events and may be used to prevent drug-induced injuries in the future.
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INTRODUCTION
Drug-induced adverse events are a common clinical, and an
increasing public health problem.1 In many cases, the pathogen-
esis of such injuries involves the parent drug, as well as its
metabolites impairing the cellular homeostasis.2 These drug-
induced metabolic perturbations can cause oxidative stress,
energy shortage, accumulation of triglycerides, or local oxygen
depletion. Together, these factors result in cellular dysfunctions
and for critical cases in drug-induced toxicities.3 Here, drug-
induced liver injury (DILI) is one of the most frequent side effect
with clinical manifestations in cholestatic, hepatocellular, or mixed
forms in an acute or chronic pathological pattern.4

Each drug is associated with a characteristic pathway response
signature, where the specific pattern of drug-induced injury and
its latency is largely determined through drug exposure and
hence drug pharmacokinetics.5 Drug pharmacokinetics are
significantly governed by the underlying ADME processes (ADME:
absorption, distribution, metabolism, and excretion). When
administered to an organism, drugs are usually recognized as
xenobiotic and hence substances, which are potentially harmful to
the body. The solubility and clearance of xenobiotic molecules is
consequently enforced through sequential activation, modifica-
tion, and conjugation steps in phase I, II, and III metabolism.6 This
sequence of biochemical reactions ensures detoxification of
xenobiotic molecules, which simultaneously requires the

disposition of energy and cofactors. The thereby induced demand
of drug metabolism is, however, competitive to the simultaneous
requirements of the endogenous metabolism and may in
consequence significantly perturb the cellular homeostasis. This
mutual competition for cofactors and energy makes the
xenobiotic drug metabolism a potential root cause in drug-
induced toxicity.7 Moreover, a competitive utilization of cellular
metabolites not only influences the state of the intracellular
metabolic network, it also alters the utilization of metabolites from
the exometabolome, which is furthermore reflected by changes in
blood metabolite pools of the body.8 Therefore, drug-induced
metabolic perturbations that impair the intracellular homeostasis
and alter exometabolome pools may hold important information
about the metabolic state in face of drug exposure and might be
used for the identification of biomarker patterns in order to
characterize specific cases of drug-induced toxicity.9

Drug-induced metabolic perturbations are dependent on the
administered drug and its metabolites. Drug metabolism, in turn,
is determined by the patient’s physiology and its genetics, as well
as the given dose. Taken together, these factors determine the
specific manifestation of drug-induced toxicity.10 An in-depth
understanding of drug-induced biochemical side effects is vital for
individual patient safety in terms of dosing, diagnosis, or the
design of curative intervention strategies. However, a functional
assessment of such side effects inevitably requires the
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representation of at least two different scales of biological
organization: (1) the whole-body level, which determines the
pharmacokinetics and thus the exposure of xenobiotics and their
metabolites in different tissues and (2) the cellular scale, where the
drug-induced (off-target) effects in the metabolic network take
place. In clinical practice, organ-specific drug exposure is difficult
to assess and is therefore usually approximated by using plasma
pharmacokinetics as a surrogate marker. In turn, cellular toxicity
induced by a specific drug is typically characterized with in vitro
assays. A computational workflow that combines both scales of
biological organization would be a viable tool for the under-
standing of drug side effects and has the potential to substantially
improve patient safety.
In order to investigate drug-induced metabolic perturbations of

the cellular metabolism within an in vivo context, we here present
a computational workflow that integrates multiple orders of
biological organization, ranging from the whole-body, down to
the cellular level (Fig. 1). Within this workflow, carefully validated
and comprehensive whole-body physiologically based pharmaco-
kinetic (PBPK) models are used to simulate the systemic drug
exposure in blood plasma and in tissue compartments of various
organs. At the cellular level, genome-scale metabolic network
(GSMN) models are used to describe biochemical pathways in the
liver and furthermore the impact of drug ADME processes upon
the tissue-specific endogenous metabolism and, in consequence,
on the exometabolome. Both modeling approaches are con-
nected through the shared xenobiotic reactions of drug and drug
metabolites, resulting in a combined PBPK-GSMN model (Fig. 2).
Time series of genome-scale flux distributions characterizing the
intracellular and extracellular responses in the face of xenobiotic
exposure, relative to an unperturbed reference state, are
calculated with a dynamic extension of the minimization of
metabolic adjustment algorithm11 (henceforth referred to as
dMOMA).
To illustrate the applicability of the proposed workflow we

discuss the case of isoniazid, a first-line antibacterial agent against
Mycobacterium tuberculosis infections causing idiosyncratic DILI.12

Polymorphisms in the human N-acetyl transferase 2 (NAT2), the
major metabolizing enzyme,13 result in acetylator phenotypes
with altered pharmacokinetics of isoniazid and various down-
stream metaolites.14 During WHO recommended chemotherapy
idiosyncratic DILI events occur frequently in the slow acetylator
phenotype.15 We combined a GSMN model of a human liver
within an extended version of a carefully validated isoniazid PBPK
model, which is capable of describing the NAT2-dependent
pharmacokinetics of isoniazid and its metabolites in men.16 The
combined PBPK-GSMN model predicts NAT2-phenotype-specific
intracellular responses of isoniazid-induced metabolic perturba-
tions upon the human liver and resulting changes in the
exometabolome. The estimated differential responses in cellular
pathways and the exometabolome are in line with experimental
and clinical findings. The comparison shows, in particular, that
phenotypic differences in cellular responses after drug adminis-
tration can only be explained with combined PBPK-GSMN models,
which considers both the cellular biochemistry as well as the
highly dynamic xenobiotic metabolism at the whole-body level.

RESULTS
The multi-scale PBPK-GSMN modeling workflow
Cellular toxicity is a key manifestation of drug-induced adverse
events, which is among others caused by perturbation of the
cellular metabolism.17 This is due to the fact that energy and
cofactors, which are continuously produced in the endogenous
metabolism, are both needed to maintain essential cellular
functions and to ensure drug detoxification. To mechanistically
investigate the competition between xenobiotic and endogenous

metabolism, we developed a computational multi-scale workflow
that quantifies the dynamic drug-induced perturbations in the
intracellular space, and the resulting alterations of metabolite
levels in the exometabolome (Fig. 1). The workflow combines
organ-specific GSMN models and drug-specific whole-body PBPK
models. Both model scales are combined by using the metabolic
rates obtained from PBPK simulations to, in turn, constrain the
xenobiotic metabolism of organ-specific GSMN models. Genome-
scale flux distributions are iteratively calculated with the resulting
PBPK-GSMN models that allow a quantitative assessment of
cellular responses during drug-induced metabolic perturbations.
At the whole-body level, PBPK models describe the time-

resolved ADME processes within the body in large detail. PBPK
models are based on physiological knowledge of the organism
and on physicochemical information of a drug and its metabo-
lites.18 Taken together, this information allows the quantitative
estimation of xenobiotic exposure in various organs and their sub-
compartments, such as plasma, interstitial, and intracellular space,
respectively. Importantly, enzyme-mediated reactions of the
xenobiotic metabolism are explicitly represented in PBPK models
such that xenobiotic reaction rates are available at each time
point.19 PBPK models can be assumed to provide accurate
quantitative estimates of drug concentrations as well as metabo-
lism and clearance rates in various tissues, if the models were
carefully qualified, i.e., the simulated plasma concentration are in
agreement with clinical pharmacokinetic data and the overall
mass balance is closed.18

At the cellular level, GSMN models comprise the set of
biochemical transformations in the endogenous cellular network.
The basic structure of a GSMN model is given by the cellular
reaction stoichiometry. Flux distributions are inherent variables in
metabolic networks quantifying the biochemical reaction rates. As
such, flux distributions provide a rigorous estimate of the required
metabolite and cofactor demands of the current cellular state.

Model preparation and PBPK-GSMN combination
Both PBPK and GSMN models share the interstitial and
intracellular space, which can therefore be used for model
coupling. PBPK models quantitatively describe the organ-specific
intracellular xenobiotic reaction rates, while GSMN models
quantify the consumption of metabolites and cofactors. To
combine both model types, the endogenous GSMN model needs
to be extended with the xenobiotic reactions present in the PBPK
model at their corresponding sub-cellular location (Fig. 2). Since
xenobiotic molecules are implicitly balanced by the PBPK model,
only the cofactor and metabolite demand of the xenobiotic
reactions must be considered (Table 1). Together with organ-
specific omics data, the extended metabolic network is tailored
into an organ-specific GSMN model for further analyses.
The quantitative assessment of drug-induced metabolic pertur-

bations in an organ requires the continuous identification of
cellular flux distributions, as such characterizing the xenobiotic
and endogenous metabolism. To this end, a flux distribution prior
to drug administration needs to be established, characterizing an
unperturbed reference state. Context-specific extraction algo-
rithms make use of the GSMN model structure to account for
metabolic flux activity that is not reflected in gene expression
data.20 In the used algorithm,21 transcriptome levels indicate the
likelihood that an enzyme carries a metabolic flux, while
metabolite utilization rates represent the cellular physiology and
define a reasonable solution space.22 The resulting context-
specific GSMN model reflects the metabolic capacity of an organ,
without further use of a metabolic objective function. The
intracellular flux sum of the resulting flux distribution was
subsequently minimized, based on the plausible assumption that
cells reduce the pathway usage to a most efficient minimum.23

This step establishes an organ-specific genome-scale flux
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Fig. 1 PBPK-GSMN Multiscale modeling workflow. Preparations and input: On the organism level, a comprehensive drug-specific whole-body
physiologically based pharmacokinetic (PBPK) model is developed and validated with human pharmacokinetic (PK) data. On the cellular scale,
a human genome-scale metabolic network (GSMN) reconstruction is used together with omics data to establish an organ-specific GSMN
model and a reference flux distribution. PBPK-GSMN combination: The developed whole-body PBPK model is used to estimate the in vivo
organ-specific drug metabolism as time-resolved reaction rates including the absorption, distribution, metabolism, excretion (ADME)
processes. The organ-specific GSMN model is extended with the drug-specific xenobiotic metabolism (Table 1). PBPK-derived xenobiotic
reaction rates are iteratively used to constrain the xenobiotic reaction rates in the organ-specific GSMN model. A dynamic version of the
minimization of metabolic adjustment algorithm (dMOMA) is used to calculate altered flux distributions in the drug perturbated organ-specific
GSMN. Prediction of cellular responses: The combined multi-scale PBPK-GSMN model can be used to predict organ-specific drug-induced
metabolic perturbations, resulting in altered intracellular and extracellular reactions rates. The combined model allows the explicit
consideration of specific dosing schemes, patient physiology, and genetic characteristics
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distribution that considers in vivo gene expression and physiolo-
gically feasible metabolite utilization and was henceforth con-
sidered as an estimate of the unperturbed reference state.

Integration of the xenobiotic metabolism as well as establishment
of the reference flux distribution are mandatory prerequisites to
enable the dynamic combination of PBPK and GSMN models,
respectively, through their shared reactions of the drug-specific
xenobiotic metabolism.
After the preparatory initialization step, enzymatic reaction and

transport rates are iteratively calculated in step 1 for each
simulation time point with the PBPK model (Fig. 3). In step 2, these
rates are used to update the upper and lower bounds of the
corresponding xenobiotic reactions in the organ-specific GSMN
model. The updated GSMN model is then used in step 3 to
calculate a genome-scale flux distribution that quantifies the
impact of drug-induced metabolic perturbations on the cellular
metabolism during each time step (Fig. 4a). To this end, dMOMA
(“Combining PBPK and GSMN models” in Materials and methods)
is applied, which estimates the transient metabolic states after a
perturbation in a metabolic network, by enforcing principle of
biological homeostasis. Thus, transient flux distributions in a
perturbed environment remain as close as possible to the
unperturbed metabolic reference state. Subsequent analyses of
the time resolved flux differences between the reference and the
transient metabolic perturbations allow the quantification of drug-
induced cellular responses in the endogenous metabolism, as well
as in the exometabolome.

Isoniazid case study
To illustrate the applicability of the proposed workflow we
investigated the case of isoniazid, a first-line antibacterial agent
against Mycobacterium tuberculosis infections.24 Polymorphisms of
NAT2, the major metabolizing enzyme of isoniazid and its
metabolites,13 result in acetylator phenotypes with altered
pharmacokinetics.14 Even during standard chemotherapy, recom-
mended by the WHO, idiosyncratic DILI events occur frequently.15

The presented workflow (Fig. 1) was used to combine a previously
established NAT2 phenotype-specific PBPK models of isoniazid
and its metabolites,16 with a GSMN model of the human liver. In a
preparatory step, the existing PBPK model of isoniazid was revised
and extended with an endogenous hydrazine detoxification
reaction to account for experimentally identified pathways.25,26

The simulated plasma concentrations of isoniazid and its

Table 1. Cofactor-based integration of xenobiotic reactions into metabolic networks

Xenobiotic reaction Generic reaction equation Cellular location

Phase I

Oxidation Drug+O2→ oxidized drug Cytosol, mitochondria, peroxisome

Hydrolysis Drug+H2O→ hydrolyzed drug Cytosol, mitochondria, peroxisome

Reduction Drug+NAD(P)H→ reduced drug+NAD(P)+ Cytosol, mitochondria, peroxisome

Phase II

GSH conjugation Drug+GSH→Drug-GSH Cytosol

Sulfation Drug+ PAPS→Drug-SO3H+ PAP Cytosol

Acetylation Drug+ Ac-CoA→Drug-Ac+ CoA Cytosol

Sugar conjugation Drug+UDP-SUG→Drug-SUG+ ADP Microsome, endoplasmic reticulum

Methylation Drug+ SAM→Drug-Met+ SAH Mitochondria, nucleus

AA conjugation Drug+ AA→Drug-AA Mitochondria

Phase III

Metabolic integration Drug (+metabolite)→metabolite Cytosol, mitochondria, peroxisome, nucleus, lysosome, ER

Transporter Drug[a]+ ATP[a]→Drug[b]+ADP[a]+ Pi[a] Organelle membranesa

Sym-/antiporter Drug[a]+ ion[b]→Drug[b]+ ion[a] Organelle membranesa

PAPS 3′-Phosphoadenosine-5′-phosphosulfate, PAP 3′-Phosphoadenosin-5′-phosphat, GSH glutathione, Ac acetyl group, SAM S-Adenosyl-L-methionine, SAH S-
Adenosyl-L-homocysteine, AA an amino acid, SUG sugar, [a], [b] cellular compartments
aCell surface, mitochondrial, endoplasmic reticulum, golgi apparatus, or vesicles

Fig. 2 Linking PBPK and GSMN models. Physiologically based
pharmacokinetic (PBPK) models cover relevant physiological organs
and tissues including the drug-specific ADME processes. Within
PBPK models, each tissue is further subdivided into red blood cells,
plasma, interstitial, and intracellular compartments. Genome-scale
metabolic network (GSMN) models describe the cellular biochem-
istry in the interstitial (extracellular) and intracellular (cytosol,
mitochondria, peroxisome, etc.) space. A combined PBPK-GSMN
model connects multiple orders of biological organization ranging
from the whole-body down to the cellular level, by integrating the
overlapping interstitial and intracellular compartments increasing
their level of biochemical detail
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metabolites are in excellent agreement for fast and slow
acetylators (Fig. 3a, b). In accordance with experimental findings,27

we found that slow acetylators metabolize less than a quarter of
the administered isoniazid dose via the liver, while fast acetylators
metabolize nearly two-third of the administered dose (Table 2).
Further, about half of the administered dose is excreted
uncahnged in slow acetylators, while they metabolize a larger
amount of the isoniazid-derived hydrazine moieties (Table 3). The
hepatic reactions of the xenobiotic metabolism of isoniazid
(Supplementary Table 1) were integrated into a generic model
of the human metabolism28 at their corresponding subcellular
locations (Fig. 4b). Gene expression data of healthy liver biopsies29

and metabolite utilization rates30 (Supplementary Table 2) were
integrated with a model extraction algorithm21 to establish a liver-
specific GSMN model and a reference flux distribution before drug
administration. After these prerequisite steps, dMOMA was used to

combine the PBPK and GSMN models (Fig. 4a). At peak, about
one-third of the reactions in the liver-specific GSMN model were
significantly altered about 1 h after isoniazid administration in fast
acetylators. In contrast, less than 25% of the hepatic model
reactions were affected at peak in slow acetylators (Fig. 4c). The
combined PBPK-GSMN models quantitatively show how the
isoniazid-induced metabolic perturbations are distributed and
attenuated in the liver (Fig. 5a, b). Here, the different xenobiotic
reaction kinetics in the liver of fast (Fig. 3c) and slow (Fig. 3d)
acetylators are the driving forces of the cellular flux changes in the
liver-specific GSMN model.

Isoniazid-induced cellular responses
A pathway score that reflects the drug-induced metabolic
perturbations in clustered biochemical pathways (Supplementary
Table 3) was introduced to quantify the cellular effects

Fig. 3 Isoniazid fast and slow acetylator PBPK models and their validation. Physiologically based pharmacokinetic (PBPK) model simulations
(lines) and experimental blood plasma profiles (circles)14 of isoniazid (blue) and acetylisoniazid (red) in human fast (a) and slow (b) acetylators
after a single oral dose of 300mg isoniazid. Inserts show the observed14 vs. predicted plots. Intracellular reaction rates of the xenobiotic
metabolism in the liver after a single oral isoniazid administration in fast (c) and slow (d) acetylators. Inserts show the cumulative hepatic
cofactor consumption, induced by the xenobiotic metabolism of isoniazid. Asterisk indicates intracellular xenobiotic reactions (Supplementary
Table 1)
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accompanying an isoniazid treatment (“Cellular Response” in
Materials and methods). A pathway score above 1 indicates an
aggravation of the drug-induced perturbation in the correspond-
ing pathway compared to the inducing flux in xenobiotic
metabolism. A pathway score below 1 suggests a partial
perturbation and a pathway score of 0 indicates that the drug-
induced perturbation does not affect the pathway. We found that
for both, fast and slow acetylators, the administration of isoniazid
causes perturbations in a many of metabolic pathways. Simula-
tions with the combined PBPK-GSMN models showed intensified
perturbations for extracellular and intracellular transport reactions,
the amino acid metabolism, as well as for the synthesis and
metabolism of cholesterol in both fast and slow acetylators. In
contrast, partial pathway perturbations were found for the
remaining pathways, except for the chondroitin and heparan
metabolism pathways, which remained unperturbed after iso-
niazid administration (Supplementary Table 4).
Our simulations show that fast and slow acetylators process the

isoniazid-induced metabolic perturbations differentially, although
they share the identical xenobiotic reaction stoichiometry. Despite
that a greater proportion of hepatic reactions was affected by an

isoniazid treatment in fast acetylators, the isoniazid-induced
metabolic perturbations were also faster attenuated compared
to slow acetylators. In contrast, isoniazid-induced perturbations
continued for more than 24 h after drug intact in slow acetylators
(Figs. 4c, 5b). However, fast acetylators show higher pathway
scores for the amino acid metabolism (0.06), cholesterol synthesis
(0.04), and carbohydrate metabolism (0.014). In contrast, slow
acetylators had a higher pathway score for intracellular transport
reactions (0.13), cholesterol metabolism (0.06), aminoacyl-tRNA-
biosynthesis (0.045), exchange reactions (0.04), purine metabolism
(0.04), and cofactor metabolism (0.03) (Fig. 5c).

Fig. 4 Application of dMOMA and GSMN perturbations. Pseudocode of the combination of PBPK and GSMN models with dMOMA (a), step 0,
the initialization, where (i) first the whole-body pharmacokinetics of isoniazid and its metabolites are identified and (ii) second an organ-
specific GSMN model (Sorgan) with a corresponding reference flux distribution (vref) are established. Subsequent steps 1–3 are repeated over
the whole simulation time. In step 1, the xenobiotic reaction rate for time point i are calculated from the PBPK model (vPBPK,i). Step 2 constrains
the xenobiotic reactions in the organ-specific GSMN model (vGSMN,i) with the PBPK-derived reaction rates. In step 3, the MOMA algorithm11 is
used to identify a new flux distribution (vi) with minimal flux adjustment of the perturbed GSMN model toward the reference flux distribution
of the unperturbed state. The xenobiotic metabolism of isoniazid and its metabolites within the liver (b), reactions that consume endogenous
metabolites (red arrows) are explicitly considered in the hepatic GSMN model (Supplementary Table 1) and are constrained with time-resolved
PBPK reaction rates. c Fraction of significantly altered reactions in the liver-specific GSMN models in fast (blue) and slow (orange) acetylators
predicted by the combined PBPK-GSMN models after a single oral administration of 300mg isoniazid (see Materials and methods “Cellular
responses”)

Table 2. Accumulated uptake (+) and secretion (−) of isoniazid and
its metabolites in the liver as fraction of administered dose following a
single oral administration of 300mg isoniazid

Compound Fast (% of dose) Slow (% of dose)

Isoniazid 70.5 24.1

Acetylisoniazid −67.7 −22.2

Isonicotinic acid −1 −1

Isonicotenoyl glycine −3.2 −2.9

Hydrazine 1.6 −9.5

Acetylhydrazine 32.7 16.2

Diacetylhydrazine −37.1 −8

Table 3. Urinary excretion of isoniazid and its metabolites after a
single oral administration of 300mg isoniazid as fraction of the
administered dose

Excreted compound Fast (% of dose) Slow (% of dose)

Isoniazid 16.8 53.8

Acetylisoniazid 38.9 12.6

Isonicotinic acid 38.2 28.3

Isonicotenoyl glycine 6.1 5.1

Total isonicotinyl compoundsa 100 99.8

Total hydrazine liberatedb 44.3 33.4

Hydrazine <1 1.3

Acetylhydrazine <1 2.4

Diacetylhydrazine 40.1 8.4

Total hydrazinesc <42.1 12.1

Total hydrazine metabolizedd 2.2 21.3

aSum of isoniazid, acetylisoniazid, isonicotinic acid, and isonicotinylglycine
bSum of liberated hydrazine moieties from isonicotinic acid and
isonicotinylglycine
cSum of excreted hydrazine, diacetylhydrazine, and acetylhydrazine
dDifference between total hydrazine liberated and total hydrazine moieties
excretion
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Exometabolome changes allow prediction of genotype-specific
biomarker signature
In addition to direct changes in the intracellular metabolic
network, drug administration influences the cellular physiology
described by the exchange of metabolites between the intracel-
lular and extracellular environment. The administration of
isoniazid caused NAT2 phenotype-specific response patterns of
hepatic metabolite utilization rates (Fig. 6a, b). The integration of
altered metabolite utilization rates (“Cellular response” in Materials
and methods) lead to accumulated changes of more than 50 µmol
for many metabolites in the exometabolome (Supplementary
Table 5, Supplementary Fig. 4). Notably, metabolite utilization
from exometabolome pools varied between fast and slow
acetylators, with glycine, proline, lysine, ammonia, and glycerol
being most affected ones in increased (Fig. 6c), and acetoacetate,
oxygen, and (R)-3-hydroxybutatnoate in decreased exometabo-
lome pools (Fig. 6d), respectively.

DISCUSSION
In this work, a generic computational multi-scale workflow that
combines whole-body PBPK and organ-specific GSMN models for
the mechanistic assessment of drug-induced metabolic perturba-
tions is presented (Fig. 1). The resulting multi-scale PBPK-GSMN
models allow the quantification of organ-specific endogenous
cellular responses and changes in exometabolome pools. Notably,
the workflow is fundamentally based on the MOMA algorithm,11

but extends it to the dynamic situation of drug-induced flux
alterations of the endogenous metabolism relative to an
unperturbed reference state. Deviations from the reference state
in the combined PBPK-GSMN models are driven by drug
pharmacokinetics and their underlaying ADME processes. The
combined PBPK-GSMN models therefore enable the tracking of
the biochemical responses in specific organs in face of the highly
dynamic changes in cofactor demands induced by drug
pharmacokinetics.

Previous work with PBPK-GSMN models
We have previously introduced a generic approach for the
coupling of dynamic PBPK and GSMN models.31 While acetami-
nophen intoxication was already analyzed in this initial study, the
drug-induced perturbation of the cellular metabolism was,

however, rather qualitatively addressed through the impaired
capability of a metabolic network to fulfill a set of predefined
metabolic tasks. The previously established concept of combining
PBPK and GSMN models has been further applied for modeling
the interstitial uptake of levodopa,32 cortisol signaling,33 dia-
betes,34 and the impact of phenytoin on estradiol metabolism.35 In
complementary approaches, stoichiometric models have been
considered within a whole-body context by using static multi-
tissue GSMN models to investigate the endogenous metabolic
interplay in diabetes36 and for the analysis of the impact of
different diets on the human metabolism and xenobiotic reaction
stoichiometry.37 We here extend the original concept significantly,
by combining dynamic PBPK models with organ-specific GSMN
models through shared reactions of the xenobiotic metabolism.
The presented approach allows in particular an accurate descrip-
tion of the highly dynamic interplay of xenobiotic and endogen-
ous metabolism as exemplified here for idiosyncratic DILI events
caused by isoniazid pharmacogenomics. Dynamic genome-scale
flux distributions allow a dense tracking of transient cellular
responses at the molecular level in face of drug exposure.

The rational of dMOMA in combined PBPK-GSMN models
Environmental stresses such as drug exposure are known to alter
intracellular flux distributions, as well as exometabolome pools.38

In these situations, maintaining the cellular homeostasis against
extracellular perturbations is essential to ensure cell viability.39 A
sustained cellular homeostasis enables to compensate for sudden
changes in metabolite availability and demands. Importantly,
homeostasis thus enables to distribute and attenuate metabolic
perturbations to minimize the impact on single reactions on the
whole metabolic network.
Here, the application of dMOMA is of particular relevance, since

a universal metabolic objective function that could be otherwise
considered for constraint-based simulations of healthy tissue or
organs is unknown to date. Likewise, metabolic tasks cannot be
considered as a true representation of genome-scale flux
distributions for a healthy metabolism, since they mostly focus
on single reactions or pathways.40 Further, these metabolic
objectives have not been systematically examined for human
cells or tissues.41 Originally, MOMA was developed to evaluate
metabolic flux distributions in a suboptimal state, following a
genetic perturbation.11 In the past MOMA was used to show that

Fig. 5 Drug-induced metabolic perturbation (DIMP) upon the biochemical pathways in the liver. DIMP of fast (a) and slow (b) acetylators
shown as the fractional attenuation of clustered biochemical pathway perturbations (ATMP) (Supplementary Table 3) during a single oral
administration of 300mg isoniazid (see Materials and methods “Cellular responses”). Colors indicate the fractional attenuation of a
biochemical pathway perturbation from low (red) to high (blue). c Differences in pathway scores over 72 h after a single oral administration of
300mg isoniazid (see Materials and methods “Cellular responses”). A positive value indicates a higher perturbation in slow and a negative in
fast acetylators, respectively
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cells are evolved to achieve their various metabolic tasks with
efficient use of energy,42 to predict genome-scale flux distribu-
tions reflecting near-zero growth of healthy human cells43, and to
appropriately predict transient metabolic states after genetic
perturbations.44 Metabolic reaction rates change far more quickly
than gene expression and translation. Thus, sudden changes in
metabolite demands are compensated by minimal changes of
intracellular fluxes, maintaining the previous metabolic steady-
state without rigorously changing gene expression.45 MOMA
enforces this rational of metabolic homeostasis that enables a cell
to remain as close as possible to its evolved optimal metabolic
state as cellular objective.
For the integration of PBPK and GSMN models, dMOMA was

used as cellular objective, given a set of metabolic reaction rates
calculated by a PBPK model for each time point (“Combining PBPK
and GSMN models” in Materials and methods). By following the
pharmacokinetic profile, the presented approach results in a time
series of transient flux distributions reflecting the drug-induced
metabolic perturbations as flux changes in the GSMN evoked by

the administration of a xenobiotic compound (Supplementary
Fig. 1).

Isoniazid use case
We illustrated the applicability of the presented workflow by
exemplarily investigating the drug-induced metabolic perturba-
tion of isoniazid in the human liver. A comprehensive PBPK model
of isoniazid and its metabolites was established and carefully
validated before.16 This model could in particular describe the
impact of a genetic polymorphism in NAT2 on isoniazid
pharmacokinetics.13 The combination of isoniazid whole-body
PBPK models with liver-specific GSMN models showed that
isoniazid exposure and the subsequent detoxification processes
perturb the endogenous hepatic metabolism of fast and slow
acetylators differentially (Figs. 4c, 5, 6). Here, the intracellular and
extracellular transport, amino acid, cholesterol, carbohydrate, and
lipid metabolism were most affected by isoniazid in both NAT2
acetylator types which is in agreement with previous (pre-)clinical
results.46,47 Although fast and slow acetylators have the identical

Fig. 6 Isoniazid-induced alterations perturbations in the hepatic exometabolome. Predicted changes in hepatic metabolite utilization rates
after an oral administration of 300mg isoniazid for exemplary exometabolome compounds in fast (a) and slow (b) acetylators. Isoniazid-
induced perturbations in the increased (c) and decreased (d) hepatic exometabolome pools (Pex, see “Cellular responses” in Materials and
methods) between slow and fast acetylators over 72 h after an oral administration of 300mg isoniazid. A positive value indicates higher
metabolite amounts in the exometabolome in slow, negative values in fast acetylators, respectively. Asterisk: Known from literature to be
altered after isoniazid administration (Supplementary Table 5)
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xenobiotic reaction stoichiometry, the NAT2-dependent isoniazid
pharmacokinetics lead to altered drug-induced metabolic pertur-
bations of cellular pathways, and in consequence, of the
exometabolome pools. This clearly indicates the importance to
account for both the intracellular network responses as well as the
dynamic drug pharmacokinetics when assessing manifestations of
drug-induced injuries. Combined PBPK-GSMN modeling further
revealed that biochemical pathway perturbations are sustained in
slow, compared to fast acetylators (Fig. 5a, b). This was in
agreement with a simulation of seven consecutive administrations
of 300 mg isoniazid in fast and slow acetylators, which showed a
continuous perturbation of more than 5% of the GSMN model
reactions in slow acetylators (Supplementary Fig. 3). Since
isoniazid is usually administered in a once daily regimen,24 a
continuous perturbation of endogenous biochemical reactions
and pathways occur in slow acetylators. This could explain the
increased incidences of idiosyncratic DILI events in this population
subgroup after several weeks or months of therapy.48

Besides the perturbations of cellular pathways in response to
isoniazid administration, the hepatic physiology characterized by
its metabolite utilization was found to be significantly altered in
fast and slow acetylators. Here, the highest alterations were found
for oxygen, ammonia, amino acids, fatty acids and their
metabolites, cholesterol, choline, and inositol. The signature of
the isoniazid-induced metabolic perturbations in the exometabo-
lome is in broad agreement with (pre-)clinical studies, where the
same metabolites were found altered in the plasma of human
patients49,50 and animal models51 (Fig. 6).
In this regard, targeted in vitro strategies that mimic organ-

specific in vivo drug exposure profiles could provide more
accurate data of cellular response in the future.52 Vice versa, the
integration of different omics data types of such studies would
allow the validation and re-calibration of the endogenous
metabolic network, for example, after multiple drug
administration.
In conclusion, we showed that the proposed computational

multi-scale workflow based on PBPK-GSMN models allows the
prediction of drug-induced metabolic perturbations at cellular
pathway level, which may ultimately lead to fatal DILI events.
Furthermore, the quantification of changes in the exometabolome
pools following drug administration could be used for the
identification of potential drug and organs-specific biomarker
signatures. We here exemplarily investigated isoniazid-induced
metabolic perturbations in the human liver and found that an
accurate representation of the drug metabolism as well as the
resulting pharmacokinetics are crucial, given the highly dynamic
conversion of parent drug and drug metabolites. Notably, the
presented workflow is generic and therefore not limited to
isoniazid or idiosyncratic DILI cases, but can rather be applied to
any combination of drug and off-target tissue to address for
example cases of nephrotoxicity or cardiotoxicity. This is of
particular relevance, since modern drug therapies increasingly aim
for personalized treatment regimens to optimize risk-benefit ratios
for individual patients.53 A mechanistic understanding of the
complex interplay of a patient’s physiology and genetics is for
example mandatory to account for inter-individual variability in
patient cohorts.54 In this regard, PBPK-GSMN modeling can be
used to simulate drug-induced metabolic perturbations in patients
and to predict individual functional endpoints for efficacy, safety,
and toxicity. PBPK-GSMN modeling may therefore be a valuable
tool for drug research and development in the future to establish
personalized dosing regimens, identify biomarker signatures, or
design metabolic intervention strategies leading to optimal risk-
benefit ratios in patient care.

MATERIALS AND METHODS
Whole-body PBPK modeling
The human PBPK models of isoniazid were built with the PBPK modeling
software PK-Sim® (Version 7.1.0; Bayer AG, 2017). Model parameter
identification was performed in MATLAB (Version 8.5.0.197613; The
MathWorks Inc., Natick, MA) and MoBi®. The latest versions of PK-Sim®

and MoBi® are freely available under the GPLv2 License (https://github.
com/Open-Systems-Pharmacology). Physicochemical compound proper-
ties (lipophilicity, water solubility, molecular weight, and pKa values) of all
modeled compounds were estimated with MarvinSketch (Version
15.11.30.0; ChemAxon Kft., Budapest, Hungary) and used to parameterize
the basic distribution model in PK-Sim®. The PBPK model of isoniazid and
its metabolites was used to simulate the pharmacokinetics of a single oral
administration of 300mg isoniazid for both human fast and slow
acetylators. Here, a total simulation time of 72 h was used to ensure
complete metabolism and wash-out from the body. The workflow of PBPK
model development, including parent drugs, metabolites, and model
validation, is described in detail elsewhere.18 The detailed development of
the used PBPK models of isoniazid and its metabolites as well as their
validation was described earlier.16 Literature data published as article
figures used to parametrize and validate the PBPK model were digitalized
and extracted with the WebPlotDigitizer (https://automeris.io/
WebPlotDigitizer). The previously described isoniazid PBPK model was
updated for a hepatic hydrazine clearance reaction (NOS2; UniProtKB:
P35228) and re-parameterized. The used PBPK models of isoniazid and its
metabolites are available at: https://github.com/HenrikCordes/isoniazid-
PBPK-model.

Stoichiometric network modeling
Reactions of the xenobiotic metabolism were retrieved from literature55

and databases,13,56 and incorporated into a genome-scale reconstruction
of a generic human cell.28 All reactions of the xenobiotic metabolism were
integrated into the metabolic network at their corresponding subcellular
locations.57 Since the dynamic drug and drug metabolite profiles were
implicitly balanced in the PBPK models, only the cofactor stoichiometry
was considered within the GSMN models (Supplementary Table 1).
Stoichiometric modeling was performed within using the COBRA

toolbox58 and the gurobi solver (Gurobi Inc.). Gene expression data of
healthy liver biopsies29 and hepatic metabolite utilization data30 was used
together with the integrated metabolic analysis tool (iMAT)21 to prune a
generic human cell28 into a context-specific GSMN model of a healthy
human liver. The unperturbed liver biochemistry was simulated in a fasted
state, where the uptake of gluconeogenic substrates, non-esterified fatty
acids, and amino acids, as well as gases and minerals (oxygen, phosphate,
etc.), was allowed. In turn, the model could secrete glucose, urea, VLDL,
ketone bodies, and albumin, respectively. Further, utilization rates of key
metabolites were set as lower and upper bounds (Supplementary Table
2).30

Reference state identification
Differential gene expression data of healthy liver biopsies (GSE74000)29

were averaged and filtered for genes in the generic human cell. The data
was then normalized to the maximal expression value, and translated to
reaction-based expression scores.59 The 75th percentile of the cumulative
non-zero intensity distribution was used as threshold for the active and the
25th percentile for the inactive set in the iMAT algorithm. Further, the
minimal flux threshold ε= 10−5 in µmol liver−1 min−1 was used for the
iMAT algorithm and a minimal flux (10−4 in µmol liver−1 min−1) was
constrained through the biomass reaction. Appling iMAT resulted in a liver-
specific GSMN model together with a consistent flux distribution.
Subsequently, intracellular fluxes were minimized, while the previously
identified flux directionalities and metabolite exchange rates were
maintained. The resulting flux distribution was used as reference flux
distribution (vref) of the healthy unperturbed state of the liver, before drug
administration.

Combining PBPK and GSMN models
The liver-specific GSMN model was combined with the dynamic whole-
body PBPK models by stepwise discretization into integration time steps.60

For each integration step, the xenobiotic reaction and transport rates in
the intracellular PBPK model compartment of the liver were extracted and
used as constraints for the lower and upper reaction bounds in the liver-
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specific GSMN model. Notably, all other hepatic metabolite utilization and
intracellular reaction rates were left unconstrained during the coupling. A
dynamic version of the minimization of metabolic adjustment (dMOMA)
(Fig. 4a) was then used for model optimization and applied for each
integration step, by using the previously identified flux distribution before
drug administration as a reference (wild-type flux solution). The MOMA
algorithm was originally developed to evaluate metabolic flux distributions
in a suboptimal state, following a genetic perturbation.11 It was shown that
MOMA appropriately predicts transient metabolic states after genetic
perturbations.44 In the context of drug-induced metabolic perturbations,
MOMA is used to identify the transient flux distributions after drug
administration that are as close as possible to the reference flux
distribution. MOMA enforces the reference flux distribution in the
unperturbed state as objective function, while satisfying the xenobiotic
reaction rate constraints that lead to the experimentally observed
pharmacokinetic of isoniazid and its metabolites in human in blood
plasma. Iteratively applied on the pharmacokinetic reaction profile, MOMA
allows to evaluate the impact of xenobiotic reaction activity on cellular flux
distributions. dMOMA was applied over the whole PBPK model simulation
to calculate a time series of flux distributions with respect to the original
reference state. A step size of 1 min was used for the integration (step sizes
of 1 and 10min were tested both resulting in the same dynamic flux
profiles; Supplementary Fig. 2). For each time step, the following
optimization problem was solved:

min vi � vrefð ÞT vi � vrefð Þ
s:t: S�vi ¼ 0;

(1)

lb � vi � ub; (2)

vPBPK ¼ vPBPK;i; (3)

where S is the m × r stoichiometric matrix of the organ-specific GSMN
model with m metabolites and r reactions, vPBPK,i is the set of xenobiotic
reaction rates in the intracellular compartment of the PBPK model for a
time point, vPBPK is the corresponding set of xenobiotic reactions in the
GSMN, and vref is the previously identified reference flux distribution. The
coupling of PBPK and GSMN models resulted in a series of flux
distributions, forming the flux matrix (vit). Here, each row i contains a
reaction trajectory with the time resolved biochemical reaction rates over
the whole simulation time t.

Cellular responses
Differential fluxes (Δvit) were calculated for each flux and every time point
in the flux matrix with respect to the corresponding reference flux
distribution (vref).

Δvit ¼ vit � vref : (4)

Here, a positive difference indicates an increased flux in response to the
drug-induced metabolic perturbations of the xenobiotic metabolism, while
a negative difference indicates a reduced flux, with respect to the
corresponding reference flux.
Integrating the differential fluxes (Δvit in µmol liver−1 min−1) over the

whole simulation time t results in the accumulated perturbation of a
metabolic flux after drug administration (Prxn in µmol liver−1). In case of the
xenobiotic metabolism (PBPK), the integrated perturbation (PPBPK) is an
estimate for the total impact of a drug perturbation on the endogenous
metabolism, evoked by all organ-specific drug ADME processes. Integrated
differential metabolite utilization reactions (exchange reactions, ex) (Pex)
estimate the altered amount of an exchanged metabolite (in µmol) in the
exometabolome pool of an organ.

Prxn ¼
Zt

0

Δvij jdt; Pex ¼
Zt

0

Δvexj jdt; PPBKP ¼
Zt

0

ΔvPBPKj jdt: (5)

Similarly, the drug-induced metabolic perturbations (PMP) of a metabolic
pathway (MP) consists of the accumulated perturbations of its perturbed
reactions k:

PMP ¼
Xk
rxn¼1

Prxn 2 MP: (6)

The attenuation of a drug-induced perturbation in a biochemical
pathway (ATMP) was estimated by normalizing the time series of pathway
perturbations at each time point j (PMP,j) with respect to the cumulative

pathway perturbation of the whole simulation (PMP):

ATMP ¼
Xt

j¼0

PMP;j=PMP: (7)

Cellular responses caused by a drug-induced metabolic perturbation
were estimated with a pathway score. Biochemical pathways of the organ-
specific GSMN models were clustered for metabolic similarity (Supple-
mentary Table 3) and the reaction-based perturbations (Prxn), associated
with a clustered biochemical pathway were filtered for significantly altered
fluxes, integrated, and normalized to the drug-induced metabolic
perturbation of the xenobiotic metabolism (PPBPK). Notably, a flux was
considered significantly altered, if Prxn was greater than the integrated
minimal flux threshold ε (Prxn > ε*t).

PS ¼ PMP=PPBPK: (8)

As such, a pathway score is an estimate for the response of a cellular
pathway relative to the metabolic perturbations induced by the xenobiotic
metabolism after drug administration. A pathway score above 1 indicates
an aggravation of a drug-induced metabolic perturbation, a pathway score
between 0 and 1 indicates a partial pathway perturbation, and a pathway
score of 0 independence.

Data availability
Supplementary Information includes a detailed description of the
xenobiotic metabolism of isoniazid, definitions, tables, and figures. All
data supporting the findings of this study are available within the paper
and Supplementary Information. Supplementary Information is freely
available at NPJ Systems Biology and Applications website. The used PBPK
models of isoniazid and its metabolites are available at: https://github.com/
HenrikCordes/isoniazid-PBPK-model.
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