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1 Einleitung

1.1 Problemstellung

Die Erklärung der Physik korrelierter Fermlsysteme ist eine Herausforderung an den 

Einfallsreicbtum der theoretischen Physiker. In korrelierten Fermisystemen (d- Elek­

tronen in Übergangsmetallen [1-4], /-Elektronen bei den „Schweren Fermionen“ [5,6]) 

haben die Elektronen eine geringe Beweglichkeit. Die starke^ durch Abschirmung effek­

tiv kurzreichweitige Coulomb-Wechselwirkung induziert die zu beschreibenden Korre­

lationseffekte zwischen den Elektronen (z. B. den Bandmagnetismus in Übergangsme­

tallen [2,3], den durch Elektron-Elektron-Wechselwirkung induzierten Metall-Isolator- 

Übergang [1,4,7}, „Schwere Fermionen“ [5,6]). Beim normalfluiden 3He hat man es 

mit sphärischen Atomen zu tun, die wegen des Kernspins Fermionen sind und die auf­

grund der hohen Dichte stark miteinander wechselwirken (starke Coulomb-Abstoßung 

der Elektronenschalen und eine schwache van-der-Waals-Anziehung). Wie bei den Elek­

tronen in Metallen führt auch hier der fermionische Charakter der Teilchen und die Kon­

kurrenz von kinetischer und potentieller Energie zu interessanten Vielteilcheneffekten 

(„fast lokalisierte Fermiflüssigkeit 3He“ [8-10]). Die interessierenden kollektiven Effekte 

liegen jenseits eines Einteilchen-Bildes (z. B. Hartree-Fock) und entsprechend gibt es 

in diesen Systemen keinen kleinen Parameter (Wechselwirkungsstärke, Dichte der Fer­

mionen), für den man die übliche Störungstheorie [11] betreiben könnte. Demzufolge 

ist es selbst für vereinfachende Modell-Hamiltonoperatoren wie für das Hubbard- [1,2] 

oder das periodische Anderson-Modell [5,6] schwierig, Grundzustandseigenschaften zu 

berechnen. Es müssen daher andere Zugänge und neue Ideen entwickelt werden.

Variationswellenfunktionen haben sich in dieser Hinsicht als sehr hilfreich erwiesen. 

Einerseits liefern sie lediglich eine genäherte Beschreibung des wahren Grundzustandes 
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eines Hamiltonoperators oder eines physikalischen Systems. Andererseits aber ist die 

Art der Näherung aus der expliziten Gestalt einer solchen Versuchswellenfunktion sofort 

ersichtlich. Man hat daher ein physikalisch begründetes Gefühl dafür, welche Effekte 

enthalten sein sollten und welche noch in die Variationswellenfunktion eingebaut wer­

den müßten. Außerdem liefert das Variationsprinzip stets eine exakte obere Schranke 

für die Grundzustandsenergie und gibt damit auch ein Kriterium für die Qualität der 

verwendeten Variationswellenfunktionen.

Die Berechnung von Erwartungswerten mit solchen Zuständen ist aber im allge­

meinen immer noch ein kompliziertes quantenmechanisches Vielteilchenproblem. Im 

Vergleich zu einer Greenfunktion-Technik [11] bei Temperatur T == 0 hat man zwar 

keine Zeithängigkeiten zu berücksichtigen, man hat aber die volle Ortsabhängigkeit 

zu behandeln. Variationswellenfunktionen dienen so als „Übungsfeld“ zur Entwick­

lung geeigneter Methoden bei der Behandlung der räumlichen Abhängigkeit in T = 0- 

Greenfunktion-Techniken. Die Betrachtung von Variationsansätzen kann also als me­

thodische Vorstufe für ein komplizierteres, aber letztlich anzustrebendes Ziel betrachtet 

werden.

Die volle Ortsabhängigkeit bei der Berechnung von Erwartungswerten führt ande­

rerseits dazu, daß man oft weitere Näherungen benutzen muß. Man erhält oft sehr 

„physikalische“, aber im wesentlichen unkontrollierte Ergebnisse. Man kann im Endef­

fekt dann nicht mehr unterscheiden, welche physikalischen Effekte tatsächlich in der Va­

riationswellenfunktion enthalten und welche durch die Näherung hereingekommen sind. 

Diese grundlegenden Probleme tauchen auch bei der Gutzwiller-Wellenfunktion auf [2], 

die eine der einfachsten Vielteilchenwellenfunktionen ist. Die Gutzwiller-Wellenfunktion 

besteht aus einem im Ortsraum diagonalen Korrelationsoperator, der auf den Fermi- 

see nichtwechselwirkender Teilchen wirkt. Gutzwiller selbst führte eine Näherung ein 
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(„Gutzwiller-Approximation“), um seine Wellenfunktion auszuwerten. Seine Ergeb­

nisse sind dann auf verschiedene physikalische Systeme angewendet worden, z. B. auf 

Ferromagnetismus [2], den Metall-Isolator-Übergang [4,7] und normalfluides 3He [8].

Selbst für diese einfache Wellenfunktion wurde eine näherungsfreie Lösung erst kürz­

lich von Vollhardt und Mitarbeitern [12,13] in einer Dimension (d = 1) gefunden. In 

höheren Dimensionen wurde bislang allerdings noch keine analytische Lösung gefunden. 

Numerische Methoden zur Untersuchung von Variationswellenfunktionen (Variations- 

Monte-Carlo Rechnungen) können dagegen nicht nur in d = 1 angewandt werden [14- 

17], sie erlauben auch eine Untersuchung der Gutzwiller-Wellenfunktion in d = 2,3 

Dimensionen [14,15]. Außerdem kann man diese Technik auch auf kompliziertere Va­

riationswellenfunktionen anwenden, solange man die Effekte endlicher Systemgrößc im 

Griff behält [14,18,19]. Das bedeutet, daß man in der numerischen Behandlung nur 

eine kleine Zahl von Variationsparametern zulassen darf und die analytische Abhängig­

keit eines Variationsansatzes von diesen Parametern zusätzlich vorgegeben werden muß. 

Das Studium von Variationswellenfunktionen in d = 2,3 ist also keine leichte Aufgabe.

Metzner und Vollhardt [20] haben kürzlich den Limes hoher Dimensionen eingeführt. 

Dieser Grenzfall wird eine Schlüsselrolle für analytische Untersuchungen an korrelierten 

Fermisystemen spielen. Diese Autoren zeigten unter anderem, daß sich Erwartungs­

werte für Variationswellenfunktionen in d — oo exakt berechnen lassen. Weiterhin 

konnte in diesem Limes das Falicov-Kimball-Modell [21] exakt gelöst werden [22], selbst­

konsistente Störungsrechnungen sind explizit durchführbar [23,24] und auch Störungs­

theorien für den stark korrelierten Grenzfal! werden behandelbar [25]. Zudem eröffnet 

sich dadurch die Möglichkeit, endtichdimensionale Systeme mittels einer durch den Pa­

rameter (1/d) kontrollierten Entwicklung um d = oo zu untersuchen. Im Falle von 

Variationswellenfunktionen ist dieses Konzept nicht auf die Gutzwiller-Wellenfunktion 
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beschränkt, sondern kann auf verallgemeinerte Gutzwiller-korrelierte Variationswellen­

funktionen angewandt werden. Diese Klasse von Wellenfunktionen, mit der wir uns 

in dieser Arbeit ausschließlich beschäftigen, besteht aus der Menge aller Einteilchen- 

Produktwellenfunktionen, auf die der Gutzwiller-Korrelator wirkt. Als erstes Ergebnis 

haben Metzner und Vollhardt nachgewiesen, daß die Gutzwiller-Approximation für die 

Gutzwiller-Wellenfunktion das exakte Ergebnis in d = oo liefert [12,25]. Außerdem 

haben sie einen allgemeinen Graphenformalismus angegeben, der es im Prinzip er­

laubt, Erwartungswerte für die ganze Klasse von Gutzwiller-korrelierten Variations­

wellenfunktionen in d = oo exakt auszurechnen. Als Beispiel haben sie ihre Methode 

auf die Gutzwiller-korrelierte antiferromagnetische Spindichtewelle in d = oo ange­

wandt [20,25]. Mit ihrer Methode können auch Korrelationsfunktionen in hohen Dimen­

sionen exakt berechnet werden [26,27]. Auch die für das periodische Anderson-Modell 

vorgeschlagene Rice-Ueda-Brandow Variationswellenfunktion [28-33] kann mit diesem 

Verfahren in d — oo exakt ausgewertet werden [27]. Es zeigt sich, daß die exakten 

Ergebnisse mit den Resultaten der Gutzwiller-artigen Näherungsverfahren [28,30,33] 

übereinstimmen.

Es ist aber keine einfache Aufgabe, die Variationsenergie aus dem vollständigen, 

aber impliziten Gleichungssystem von Metzner und Vollhardt für allgemeine Variati­

onsansätze zu gewinnen. Auch die explizite Berechnung von (l/d)-Korrekturen ist 

sogar für die einfache Gutzwiller-Wellenfunktion recht mühsam.

Aufgabe dieser Arbeit ist es nun, einen effizienten Formalismus vorzustellen, der den 

Limes hoher Dimensionen für die Gutzwiller-korrelierten Variationswellenfunktionen 

besonders ökonomisch nutzt. Wir erhoffen uns davon einen wertvollen Beitrag zur 

systematischen Untersuchung der Eigenschaften korrelierter Fermisysteme.
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1.2 Aufbau der Arbeit

In Kapitel 2 führen wir das Hubbard-Model) [1,2] ein, das als einfachst denkbares, 

quantenmechanisches Vielteilchenmodell seit langem Gegenstand intensiver Studien ist. 

Weiterhin spezifizieren wir die Klasse der Wellenfunktionen, die wir untersuchen wol­

len. Zur Berechnung von Erwartungswerten mit diesen Wellenfunktionen leiten wir 

einen Graphenformalismus für die Einteilchen-Dichtematrix und die mittlere Doppel­

besetzung her, der in allen Dimensionen verwendet werden kann. Wir erhalten dieselben 

Graphen wie Metzner und Vollhardt [12], aber die „Vertices“ und „Linien“ erhalten eine 

neue Interpretation.

In Kapitel 3 zeigen wir, warum dieser Formalismus für hohe Dimensionen besonders 

effizient ist: ohne einen Graphen berechnen zu müssen, geben wir für das Hubbard- 

und das periodische Anderson-Modell die in d = do exakten, für allgemeine Gutzwiller- 

korrelierte Variationswellenfunktionen gültigen Gleichungen für die Variationsenergic 

an. Zwei in der Literatur vieldiskutierte Anwendungen, die GutzwjJJer-korrelierte anti­

ferromagnetische Spindichtewelle für das Hubbard-Model] und die Rice-Ueda-Brandow 

Variationswellenfunktion für das periodische Anderson-Modell, ergeben sich als einfache 

Spezialfälle.

In Kapitel 4 widmen wir uns der exakten Berechnung von Korrelationsfunktionen 

im Limes hoher Dimensionen. Wir verwenden den von Gebhard und Vollhardt [13] ein­

geführten Graphenformalismus, aber auch hier mit den neuen „Vertices“ und „Linien“. 

Im Limes hoher Dimensionen lassen sich die Korrelationsfunktionen im allgemeinen 

aus Blasendiagrammen berechnen. Für allgemeine Variationswellenfunktionen geben 

wir die Formeln für die Nächst-Nachbar-Korrelationsfunktionen an, wozu wir nur ein 

Blasendiagramm berechnen müssen. Für die Gutzwiller-Wellenfunktion geben wir ge­

schlossene Ausdrücke für die Korrelatkinsfunktionen im Impulsraum an.
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Im Kapitel 5 vergleichen wir unsere in d = oo exakten Ergebnisse mit den Resultaten 

von Gutzwiller-artigen Näherungen. In hohen Dimensionen werden die Resultate dieser 

Art von Näherungen nur für translationsinvariante Variationswellenfunktionen exakt. 

Für allgemeine Gutzwiller-korrelierte Wellenfunktionen ist dies aber nicht mehr der 

Fall. Weiterhin zeigen wir, daß die mit der Slave-Boson/Pfad-Integral-Methode von 

Kotliar und Ruckenstein [34] gewonnenen Ergebnisse für das Hubbard-Modell mit Hilfe 

von in d = oo exakt ausgewerteten Gutzwiller-korrelierten Variationswellenfunktionen 

abgeleitet werden können. Auf diese Weise gewinnt man neue Einblicke in die Methode 

von Kotliar und Ruckenstein und ihre Resultate.

In Kapitel 6 gehen wir über die Gutzwiller-Approximation hinaus und berechnen 

(l/d)-Korrekturen für die Gutzwiller-Wellenfunktion. Mit der Berechnung eines-einzi­

gen Graphen können wir die (l/d)-Korrekturen für beliebige Bandfüllung und Wechsel­

wirkungsstärke berechnen. Für halbvolles Band reichen drei weitere Graphen aus, um 

bis zur Ordnung (1/d)2 zu entwickeln.

In Kapitel 7 vergleichen wir die Ergebnisse der (l/d)-Entwicklung mit numerischen 

(d = 2,3) [14] und exakten (d = 1) [12] Resultaten. Wirerhalten hervorragende quanti­

tative Übereinstimmung mit allen numerischen Ergebnissen und sogar eine überraschend 

gute Beschreibung für d = 1,

Motiviert durch diesen Erfolg des Konzepts hoher Dimensionen für die Beschrei­

bung von d = 2,3, schlagen wir in Kapitel 8 neue Variationsansätze für numerische 

Untersuchungen in niedrigen Dimensionen vor. Wir berechnen die optimale Gutzwiller- 

korrelierte antiferromagnetische Spindichtewelle für das Hubbard- und das t-J-Modell 

[35-37] in d = oo, und rechnen bis zur Ordnung (1/d) für das antiferromagnetische 

Spin-1/2 Heisenberg Modell.

Zusammenfassung und Ausblick schließen die Arbeit mit Kapitel 9 ab.
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2 Allgemeiner Formalismus

In diesem Kapitel betrachten wir das Hubbard-Modell [1,2], das als grundlegend für 

die theoretische Beschreibung korrelierter Fermisysteme erachtet wird. Zur (genäher­

ten) Beschreibung von Grundzustandseigenschaften dieses Modells führen wir eine große 

Klasse von Gutzwiller-korrelierten Variationswellenfunktionen ein. Zur Berechnung von 

Erwartungswerten leiten wir einen allgemeinen Graphenformalismus ab. Es ergeben 

sich dieselben Graphen, die von Metzner und Vollhardt [12,20] eingeführt worden sind, 

aber wir geben den „Linien1" und „Vertices“ in den Graphen eine neue Interpretation. 

Wir wenden diesen Formalismus an, um die Einteilchen-Dichtematrix und die mitt­

lere Doppelbesetzung zu berechnen. Die Kenntnis dieser beiden Größen erlaubt die 

Durchführung des Variationsverfahrens, d. h. die Berechnung einer oberen Schranke für 

die Grundzustandsenergie im Modell.

Die Auswertung des Graphenformalismus vereinfacht sich in hohen Gitterdimensio­

nen d erheblich: (i) wir leiten einfache, exakte Ergebnisse für alle Größen in d = oo 

her, wozu wir keinen einzigen Graphen berechnen müssen; (ii) zur Bestimmung von 

(l/d)-Korrekturen benötigt man nur wenige Graphen.

2.1 Hubbard-Modell und Variationswellenfunktionen

2.1.1 Hubbard-Modell

Das Hubbard-Modell [1,2] ist eines der einfachsten Modelle, um KorrelationsefTekte 

zwischen Elektronen zu beschreiben. Im Formalismus der zweiten Quantisierung lautet 

der Hamiltonoperator (Operatoren sind durch ein „Hütchen“ ~ gekennzeichnet)

j,j o i
(1)
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Hierbei bezeichnet tj* den Erzeugeroperator für ein Elektron mit Spin a auf dem Git- 

terplatz i, c^a den entsprechenden Vernichteroperator am Gitterplatz j und = <&io 

zählt die Anzahl der «r-Elektrouen am Ort 1. Die Wechselwirkung in Gleichung (1) ist 

rein lokal und kann geschrieben werden als V = = VD, wobei D-, — niffijj

eine Doppelbesetzung am Gitterplatz i zählt. Wir betrachten das Modell auf d- 

dimensionalen hyperkubischen Gittern mit insgesamt L Gitterplätzen. Dies schließt 

die Fälle der eindimensionalen Kette, des zweidimensionalen Quadratgitters und des 

dreidimensionalen einfach kubischen Gitters ein (eine Möglichkeit zur Erweiterung auf 

beliebige Gittertypen wird in Kapitel 6 angedeutet werden). Die mittleren Dichten 

der Elektronen ergeben sich aus wobei Na die Gesamtzahl der a-Teilchen

im System ist. Wegen der Teilchen-Loch-Symmetrie |38) kann man sich auf den Fall 

n — n; + Ri < 1 beschränken, d. h. auf den Fall maximal halber Handfüllung (n < 1).

Das Modell hat die denkbar einfachste Struktur für ein System von Gitterfermio­

nen, in dem die kinetische Energie der Elektronen in Konkurrenz zu einer rein lokalen 

potentiellen Energie tritt. Somit ist das Modell von grundsätzlichem theoretischen In­

teresse, um neue, über die übliche Störungstheorie hinausgehende, Rechentechniken zu 

entwickeln.

Weiterhin sollte man mit diesem Modell aber auch reale physikalische Systeme 

zumindest qualitativ beschreiben können. Zum Beispiel wird das Hubbard-Modell 

zur Beschreibung von Magnetismus der d-Elektronen in Übergangsmetallen herange­

zogen (2,3]. Die d-Orbitale sind gut an den Gitteratomen lokalisiert und die s- und 

p-Elektronen sorgen für zusätzliche Abschirmung der Coulomb-Wechselwirkung. Da­

her ist die Näherung einer rein lokalen EJektronenwechsclwirkung sinnvoll. Zusätzlich 

ist es im Falle lokalisierter Zustände vernünftig, sich auf Nächst-Nachbar-Hüpfen zu 

beschränken. (tight-binding-Nälierung). D. h. man setzt meist tjj = — i für den Fall.
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daß i,j nächste Nachbarn sind, und setzt ansonsten tjj = 0. Grund dafür ist, daß die 

Hüpfamplituden ijj proportional zur Tunnelwahrscheinlichkeit für ein Elektron vom 

Orbital am Gitterplatz i zu einem Orbital am Ort j sind. Diese Wahrscheinlichkeit 

geht für d-Orbitale rrnt wachsendem Abstand exponentiell gegen Null. Auch für nor­

malfluides 3He [8-10] ist die Annahme einer Hubbard-Wechselwirkung eine begründete 

Näherung, die dann zu einem Gittergasmodell für die Flüssigkeit führt.

Insgesamt ist also das Hubbard-Modell nicht nur von rein methodischem Interesse, 

sondern es scheint auch geeignet zu sein, physikalische Systeme und Effekte (z. B. Ma­

gnetismus in Übergangsmetallen, normalfluidcs 3He) zumindest qualitativ zu beschrei­

ben.

Trotz seiner einfachen Struktur stellt die Bestimmung der physikalischen Eigenschaf­

ten des Modells ein quantenmechanisches Vielteilchenproblem dar. Eine Lösung war 

bislang nur in einer Dimension mit Hilfe des Bethe-Ansatzes möglich [38], der geschlos­

sene Integralgleichungen für die Grundzustandsenergie und das chemische Potential 

liefert. Für halbvolles Band (n = I) zeigten Lieb und Wu, daß das System in d = 1 

für alle U > 0 ein Isolator ist. Es gibt inzwischen starke Anhaltspunkte dafür, daß dies 

für halbvolles Band in allen Dimensionen der Fall ist [39]. Desweiteren ist bekannt, daß 

der Grundzustand des Hubbard-Modells für n = 1 den Gesamtspin 5 = 0 hat, d. h. 

ein Singulett ist [40]. Insgesamt sind also nur sehr wenige exakte Aussagen über dieses 

Modell in höheren Dimensionen (d > 1) bekannt.

Um ein besseres Verständnis für die grundlegenden Eigenschaften des Hubbard- 

Modells zu erreichen, schlugen Metzner und Vollhardt [20,25] vor, den Limes d = oo 

zu betrachten. Sie zeigten, daß für d —♦ oo die kinetische und die potentielle Ener­

gie in H von derselben Größenordnung bleiben, wenn man das Hüpfmatrixelement t 

folgendermaßen skaliert
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f
(2)

Wir setzen von jetzt an stets t' = 1. In diesem Fall ist die Dispersionsrelation durch

(3)

gegeben. Wie von Müller-Hartmann gezeigt wurde [24], können in diesem Limes 

alle in Gleichung (1) unberücksichtigten Nächst-Nachbar-Wechselwirkungen in Hartree- 

Approximation behandelt werden. In diesem Fall bleibt als Vielteilchenwechsehvirkung 

nur der Hubbard-Anteil übrig. Dies zeigt erneut die grundsätzliche Bedeutung des 

Hubbard-Modells, d. h. der Hubbard-Wechselwirkung, für die Beschreibung quanten­

mechanischer Vielteiicheneffekte. Der Limes hoher Dimensionen vereinfacht die Be­

rechnungen erheblich.-'So wird nicht nur die konkrete Berechnung von Graphen in 

der Störungstheorie erleichtert [20,24,25], sondern auch die konkrete Durchführung von 

selbstkonsistenten Rechnungen ermöglicht [23]. Diese Rechnungen waren bisher wegen 

des immensen Rechenaufwands (Compulerzeit) nur in der (unrealistischen) Dimension 

d = 1 durchführbar. Vergleiche mit einigen numerischen Ergebnissen in endlichen 

Dimensionen zeigten, daß die Approximation d = oo in vielen Fällen eine sehr gute 

Näherung für d = 3 liefert [20,23,25]. Darüber hinaus gelang es Brandt und Mielsch [22], 

das Falicov-Kimball-Modell [21] in d = oo exakt zu lösen.

Es zeigt sich also, daß der für korrelierte Gitterfermionen von Metzner und Vollhardt 

eingeführte Limes hoher Gitterdimension einen neuen, vielversprechenden Zugang zum 

Verständnis des Hubbard-Modells eröffnet. Die Lösung des Hubbard-Modells ist bislang 

allerdings auch im Limes d = oo noch nicht gelungen. Die Analyse von Variationswel­

lenfunktionen soll dazu beitragen, neue Methoden und Verfahren für die Behandlung 

des Hubbard-Modells in hohen Dimensionen zu entwicklen.
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2.1.2 Variationswellenfunktionen

Eine der Methoden, die Grundzustandseigenschaften des Hubbard-Modells genähert zu 

beschreiben, ist die Untersuchung mit Hilfe von Variationswellenfunktionen. Die ex­

plizite Wahl eines Ansatzes für den Grundzustand des Modells erlaubt einerseits eine 

anschauliche Beschreibung der als wesentlich erachteten physikalischen Effekte. Ande­

rerseits liefert das Variationsverfahren stets eine obere Schranke für die Grundzustands­

energie des Modells und damit ein Kriterium für die Qualität des gewählten Variati­

onsansatzes. Insofern handelt es sich also um eine kontrollierte Näherung. Für manche 

Fermisysteme reicht zudem die Kenntnis der Gnindzustandseigenschaften aus, um Aus­

sagen über die energetisch tiefliegenden Anregungen zu machen (Landau-Fermiflüssig- 

keitstheorie [41])- Auf diese Weise kann man auch die Thermodynamik des Systems 

für tiefe Temperaturen genähert beschreiben. Ein Beispiel für die Anwendung dieses 

Prinzips findet man in Referenz [9].

Um Grundzustandseigenschaften von Modellen mit starker lokaler Abstoßung wie 

dem Hubbard-Modell (1) zu studieren, betrachten wir folgende Klasse Gutzwiller- 

korrelierter Variationswellenfunktionen

l*s) =

= n[i-(i~s)A] i^) , (4)
i

wobei 0 < g < 1 ein Variationsparameter und | ’M eine beliebige Einteilchen- 

Produktwellenfunktion mit fester Gesamtteilchenzahl N ist [42]. Der Operator ist 

der Gutzwiller Korrelator. Wir wählen | 'M als beliebiges Quasiteilchenvakuum, damit 

wir später im Lauf der Rechnungen das Wick-Theorem anwenden können. Wählen wir 

| $0) als den Fermisee (Grundzustand des Hubbard-Modells für U = 0), so erhalten wir 

die ursprüngliche Gutzwiller-Wellenfunktion [2] als Spezialfall von Gleichung (4). Der 

Gutzwiller-Korrelator reduziert global das Gewicht all der Konfigurationen in j ’Po), 
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die einen großen Beitrag zur lokalen Coulomb-Wechselwirkung im Hubbard-Modell (1) 

liefern. Wesentliche Korrelationseffekte, die durch eine starke lokale Wechselwirkung in­

duziert werden, werden somit in diesen Variationswellenfunktionen anschaulich berück­

sichtigt.

Die Aufgabe besteht nun darin, Erwartungswerte {0} = | Ö | | 'J'j)

mit den Variationswellenfunktionen aus Gleichung (4) zu berechnen. Um das Variati­

onsverfahren durchzutühren, müssen wir die Einteilchen-Dichtematrix berechnen

(5a)

Der Wert von Pa(i,j) für nächste Nachbarn i, j bestimmt die kinetische Energie in 

Gleichung (1). Die Fouriertransformierte der Einteilchen-Dichtematrix ist die Impuls­

verteilung (niu,) = (1/i) Sij j). Zur Bestimmung der potentiellen Energie

in Gleichung (1) benötigen wir die mittlere Doppelbesetzung

(5b)

Die Berechnung von {H) involviert im üblichen T = O-Formalismus der Greenfunk- 

tionen die Integration über Zeiten bzw. Frequenzen. Demgegenüber ist die Situation 

bei den Variationsverfahren erheblich vereinfacht, da eine solche Abhängigkeit nicht 

auftritt. Bezüglich der räumlichen Abhängigkeiten (Gittersummen bzw. Impulsinte­

grale über die erste Brillouinzone) ist die Berechnung von Erwartungswerten im Falle 

der Variationswellenfunktionen ein ebenso kompliziertes quantenmechanisches Vielteil­

chenproblem wie bei den Greenfunktionen. Um die auftretenden Gittersummen kon­

trollierbar zu nähern, werden wir den von Metzner und Vollhardt [20,25] eingeführten 

Limes hoher Gitterdimensionen benutzen.



2.2 Verallgemeinerte Gutzwiller-korrelierte Variationswellenfunktionen

2.2.1 Methode von Metzner und Vollhardt

Metzner und Vollhardt (12,20,25] entwickelten alle Erwartungswerte (0} in eine Po­

tenzreihe in (ga — 1), indem sie die Identität

33ö = n[i+(s?i-i)öi] (6)

benutzten. Die Ordnungen dieser Potenzreihe lassen sich im Rahmen eines Vielteil­

chenformalismus durch Graphen darstellen (siehe z. B. Referenz [12]). Die Linien und 

Vertices in diesen Graphen haben bei Metzner und Vollhardt folgende Interpretation:

«r-Linie: /^(i,j) = ('l’o | | ’Po) (nicht-wechselwirkende (7a)
Einteilchen-Dichtematrix)

Vertex: (g2 — I) (Entwicklungskoeffizient). (Tb)

Auf diese Weise konnte das Problem in d = 1 für die Gutzwiller-Wellenfunktion exakt 

gelöst werden, d. h. es konnten die mittlere Doppelbesetzung, die Impuisverteilung und 

die Variationsenergie [12], sowie verschiedene Zweiteilchen-Korrelationsfunktionen [13] 

berechnet werden. Für die Dimensionen d — 2,3 war eine exakte Lösung bisher nicht 

möglich.

Metzner und Vollhardt zeigten jedoch [20,25], daß der Limes hoher Gitterdimen- 

sion ebenfalls analytische, exakte Rechnungen mit Gutzwiller-artigen Variationswel- 

lenfunktionen erlaubt. Ursache hierfür ist das Verhalten der nicht-wechselwirkenden 

Einteilchen-Dichtematrix in hohen Dimensionen. Auf einem d-dimensionaleu hyperku­

bischen Gitter gilt für d 'S» 1 [20,26]

(Sa)
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wobei

v =1 i “J 1= y I ’i - ji I (Sb)
i=i

die sogenannte „New York“-Metrik ist. Diese Metrik zahlt die Zahl der Nächst-Nachbar- 

Schritte, die nötig sind, um auf einem d-dimensional hyperkubischen Gitter vom Punkt i 

zum Punkt j zu gelangen. Hat man nun in einem der Graphen von Metzner und 

Vollhardt zwei Gitterpunkte i und j , die durch drei oder mehr Linien verbunden sind, 

so gilt [20,25]

[eM3 = «i.j in d = oo . (9)

Um die Konsequenzen dieser Vereinfachung zu studieren, führten diese Autoren die 

Größe Sofg.h) ein, die sie als „Selbstenergie“ bezeichnet haben. Die Diagranune, die 

zu gehören, haben nämlich dieselbe topologische Struktur wie die Selbstener­

giediagramme im Greenfunktion-Formalismus. Entsprechend kann man die „eigentliche 

Selbstenergie“ S^(g,h) einführen. Wie beim Greenfunktion-Formalismus sind 5*(g,h) 

und Sa(g, h) durch eine Dyson-Gleichung miteinander verknüpft

sff(g,h) = s;(g,h) + x:s;(g,1)^(1,m)Sff(m,h) . (10)
Im

Aus Sa(g, h) kann man die wechselwirkende Einteilchen-Dichtematrix Pa(i, j) gewinnen, 

aus der man auch die mittlere Doppelbesetzung dj berechnen kann. Da in den zur 

eigentlichen Selbstenergie gehörigen Diagrammen stets drei Linien von g nach h laufen, 

ist S‘(g,h) in d = oo Gitterplatz-diagonal [20,25], d. h. es ist S*(g,h) = 

Führt inan noch renornüerte („angezogene“) Linien /’ir(g,h) durch

P.fg.hJ-P^hJ + yP^gJJSXlimJP^h) (11a)
im
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ein, so gilt in d = co die Verknüpfungsgleicbung

(Ub)

Zusammen mit der Dysongleichung (10), angewandt auf S£(g,h) = ß)> geben

die Gleichungen (11) ein vollständiges System.

Wegen der Faltungen im Ortsraum (Dysongleichung (10), Gleichung für die renor- 

mierten Linien (11a)) sind die Gleichungen von Metzner und Vollhardt sehr kompli­

ziert, so daß eine explizite Lösung für allgemeines | 'I'o) nicht möglich ist. Man muß 

sich auf diejenigen Fälle beschränken, bei denen man Translationsinvarianz im System 

ausnutzen kann, um die Faltungen im Ortsraum mit Hilfe einer Fouriertransformation 

in den Impulsraum zu vereinfachen. Dementsprechend lösten Metzner und Vollhardt 

ihr Gleichungssystem explizit im Falle der Gutzwiller-Wellenfunktion (| ’Po) als transla­

tionsinvarianter Fermisee) und im Falle einer allgemeinen Gutzwiller-korrelierten Spin­

dichtewelle (Translationsinvarianz auf den A- und B-Untergittern).

Eine (l/d)-Entwicklung ist im Formalismus von Metzner und Vollhardt selbst für 

die einfache Gutzwiller-Wellenfunktion sehr mühsam [43]; für kompliziertere Gutzwiller- 

korrelierte Wellenfunktionen ist dies praktisch undurchführbar. Deswegen ist ein For­

malismus wünschenswert, der es erlaubt, die Vereinfachungen des Limes d = co effek­

tiver zu nutzen.

2.2.2 Effizienter Formalismus für hohe Dimensionen

Einerseits vereinfachen sich in der (g2 — 1)-Entwicklung die Graphen in d = oo erheblich. 

Wie in Unterabschnitt 2.2.1 erklärt, kann man zwei Gitterpunkte i und j, die durch drei 

oder mehr Linien miteinander verbunden sind, miteinander identifizieren [20,25] (siehe 

Gleichung (9)). Andererseits behält aber jeder einzelne Graph auch in diesem Limes
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einen nichttrivialen Wert, weil P?(i, i) / 0 gilt. Ein effektiver Formalismus zeichnet sieh 

demzufolge dadurch aus, daß sich Graphen in d = oo nicht nur vereinfachen, sondern 

völlig verschwinden. Es Ist daher das Ziel, diese sogenannten on-site-Beiträge in F^(i, j) 

loszuwerden. Wir streben also an, dieselben Graphen wie Metzner und Vollhardt zu 

erhalten, deren Linien nicht mehr als interpretiert werden, sondern folgende

neue Interpretation erhalten:

neue o-Linien: F°(i,j) = ~ iijFj'Ci.j) statt ■ (12)

Offensichtlich verchwjndet dann jeder Graph zur Selbstenergie, da P“(i,i) = 0 und

[^(i.j)]3 = p°(i,i)]3 = 0 in d = oo (13)

gilt (in den Graphen zur Selbstenergie 5<,(g,h) gibt es immer Vertices, die durch drei 

verschiedene Fermionlinien miteinander verbunden sind).

Um diese neuen Einteilchen-Dichtematrizen Fj(i,j) einführen zu können, müssen 

wir zumindest die trivialen Hartree-Blasen am Gitterpunkt i mit Spin o beseitigen, 

denn diese Blasen repräsentieren gerade Beiträge P®(i,i) = (^o | nj, | t^). Diese 

stammen von Kontraktionen [11] des Operators Dj = in Gleichung (6) am selben

Gitterplatz i. Der Wert dieser Blasen ist natürlich dimensionsunabhängig, so daß Gra­

phen mit diesen Blasen auf alle Fälle vorhanden wären, wenn wir die Hartree-Blasen 

nicht von vorneherein abziehen. Die Entfernung von solchen Hartree-Blasen ist in der 

Festkörperphysik bekannt als Störungstheorie relativ zur Hartree-Näherung (siehe z. B. 

Referenz [23]). In diesem Fall erhält man aber trotzdem Linien (d. h. Greenfunktionen), 

die einen on-site-Beitrag haben. Normalerweise ist also das Abziehen der Hartree-Blasen 

nicht ausreichend, um alle on-site-Beiträge in einem Graphenformalismus zu eliminie­

ren. Im vorliegenden Spezialfall der Gutzwiller-korrelierten Variationswellenfunktionen 

ist dies aber tatsächlich möglich, wie wir in Abschnitt 2.3 zeigen werden.
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Um die on-site Beiträge in Gleichung (6) abzuziehen, müssen wir eine neue Ent­

wicklung einführen, d. h. wir versuchen eine Entwicklung im neuen, ortsabhängigen 

Parameter x-t, der in den Graphen als

neuer Vertex: xj statt (p2 — 1) (14)

als Vertexfaktor zu interpretieren ist. Wir versuchen also

9“=n-öh] . (is)

Hierbei ist D^F - nir(njj)o + n>i(nit)o - die Hartree-Fock Zerlegung von

Di- Wir haben einen neuen Operator K eingeführt, der den Operator D in Glei­

chung (6) ersetzt und den wir so bestimmen werden, daß Gleichung (15) erfüllt werden 

kann. Folglich stellen wir die Klasse der Gutzwiller-korrelierten Wellenfunktionen nun 

folgendermaßen dar

l^)=/l^o) ■ (16)

| »Po) aus Gleichung (4) und | &o) aus Gleichung (16) sind beides Einteilchen-Produkt­

wellenfunktionen, die durch

I ’Po) = A0 I %) (17)

miteinander verknüpft sind. Daß diese Entwicklung tatsächlich zu Graphen fuhrt, de­

ren Linien wir als /^(i,j) gemäß Gleichung (12) interpretieren können, zeigen wir in 

Abschnitt 2.3.

Zunächst bestimmen wir den Entwicklungsparameter X| und den Operator K. Weil 

fi-ff = h-t(, und D2 = D-t gilt, können wir folgenden Ansatz machen
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K = ~ Wt«ir + »7i) • (18)
i i

Die reellen Größen /qf, und t)i in Gleichung (18) können beliebig gewählt werden. 

Wir wählen sie so, daß Gleichung (15) erfüllt ist. Deshalb verwenden wir auch j/j, das 

eigentlich nur einen zusätzlichen Normierungsfaktor liefert. Wenn wir den Faktor g2K 

in Gleichung (15) entwickeln, erhalten wir den folgenden Satz von vier Gleichungen für 

die vier Unbekannten , mi, und xj

g^l = 1 + (19a)

^i«^-l) = -Ii(„i_t,)0 a=T,| (19b)

- g-^ii - g^i + 1) = z; . (19c)

Ein Vergleich mit Gleichung (16) zeigt, daß Gutzwiller-korrelierte Wellenfunktionen im 

allgemeinen als

| ¥,) = | $0) = [nA] I *o> (20)

geschrieben werden können. Hierbei ist = g^i = gDl~t+’’i ein hermitescher 

Operator mit B2 = 1 + x\(b\ — D^F} per Konstruktion. Die Wellenfunktionen | ’I'o) in 

Gleichung (4) und | #o) 'n Gleichung (20) sind also gemäß Gleichung (17) durch

| 4»0) = ] $0) (21) 

miteinander verknüpft. Zu beachten ist, daß wir lediglich | 'Sg) umgeschrieben haben, 

d. h. es gilt | fj) = gb [ $0) = gF j $0). Beide Formen sind völlig äquivalent, 

aber die letztere ist für den Grenzfall hoher Gitterdimension besser geeignet. In der 

ursprünglichen Gutzwiller-Wellenfunktion sind | 'Jo) und | $o) (von einem trivialen 

Faktor abgesehen) identisch und beide repräsentieren den Fermisee. Während für g = 1 
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immer | Vo) =| $o) gilt, trifft dies für g < 1 nicht mehr zu. Dies ist jedoch unerheblich, 

da der korrelierte Zustand | durch beide Formen äquivalent beschrieben wird.

Da wir ausschließlich mit [ arbeiten werden, berechnen wir Erwartungswerte im 

unkorrelierten Zustand stets mit | #o), Gleichung (20), anstatt mit | ’J’o), Gleichung (4). 

Solche Erwartungswerte sind mit (.. .)o bezeichnet. Wir definieren daher

ni,o = (4*o I fijj | 4>o) + (^o I ”>i I = (fij])o + (fiji)o (22a)

"’i.a = (fiii)o- («ii)o (22b)

= (’’i f )o(fij j )o ■ (22c)

Man kann jetzt die Gleichungen (19a)-(19c) leicht lösen. Das Ergebnis ist 

1___________
“ 2( i - 51 )di.o(1 - Hi.0 + 4,0) 

x [-1 + (1 - p2)(ni.D - 2diiD) + yjl + (g2-l )[ni,o(2 - «;.(,) 4 J2m?0)] . (23a) 

Außerdem gilt

S2'’! = 1 + Ti4h0 (23b)

= 1 - . (23c)
1 + Xi4.0

Die Gleichungen (23a)-(23c) bestimmen die Größen /qp /qj, rft und den gesuchten Para­

meter xj in Abhängigkeit vom Variationsparameter g und den lokalen Teilchendichten in 

| $0). Zu beachten ist, daß wir lediglich den Korrelator umgeordnet haben. Bei keinem 

Schritt mußten wir | &0) näher angeben. Der Formalismus ist daher völlig allgemein.

2.3 Graphenformalismus für die Einteilchen-Dichtematrix und die mitt­
lere Doppelbesetzung

Wir werden jetzt die Erwartungswerte für die Einteilchen-Dichtematrix und die mittlere 

Doppelbesetzung berechnen (siehe Abschnitt 2.1). Wir stellen den Gang der Rechnung 
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explizit für Po(i, j), Gleichung (5a), dar. Die Ergebnisse für die mittleren Teilchendich­

ten und die mittlere Doppelbesetzung können auf ähnliche Weise abgeleitet werden. 

Wir stellen die entsprechenden Ausdrücke am Ende dieses Abschnitts kurz zusammen.

Wir müssen = ('fg | | | für i j berechnen. Im Zähler

haben wir

(*, I I *.) = II [1 + ^Dt - fiT)]). , (24)

wobei wir Gleichung (20) verwendet haben. Mit den Definitionen 

[1 + - 1)] (25a)

gilt

+ ^iQri<r(ni-<r - (fii-o)o)] - (25c)

Der Parameter x| ist durch Gleichung (23a) gegeben. Im Falle der Gutzwiller-Wellen­

funktion ist qia unabhängig von i und a und bezeichnet den Sprung der Impulsvertei­

lung an der Fermikante (siehe unten); deshalb ist es praktisch, an dieser Stelle 

einzuführen.

Durch die spezielle Anordnung der Terme in Gleichung (25c) haben wir dafür ge­

sorgt, daß nach der Anwendung von Wick’s Theorem [11] kein Graph mit einer Hartree- 

Blase am Gitterplatz i auftritt (vgl. die Diskussion in Abschnitt 2.2). Wir setzen die

Gleichungen (25a)-(25c) in Gleichung (24) ein und erhalten

^i.j ,<r)o+

gl .-gm
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wobei wir

^ij,o [1 + “ (^i-a)o)] [1 + ~~ (^j-a)o)] (26b) 

definiert haben. Der Strich an der Gittersumme in Gleichung (26a) bedeutet, daß alle 

Gitterplätze verschieden sind. Die weiteren Schritte erfolgen völlig analog zu Metzner 

und Vollhardt [12,20,25]. Wir wenden das Wick-Theorem an [11] und ein typischer 

Beitrag in m-ter Ordnung lautet

E' (27a)
gl-gm

= E' {0i,J,.(08. -D"F)...(Os.-D^)}0 , (27b)
gl-gm

wobei {.. -}0 die Summe über alle möglichen Paare von Kontraktionen bedeutet. Weil 

nun aber alle Gittervektoren bei der Anwendung des Theorems verschieden sind, kann 

man die Kontraktionen als

= {1^= F”(i,j) (28a)

s (2Sb)

definieren [12]. Die üblichen fyj-Terme treten nicht auf. Mit Hilfe dieser Definition der 

Kontraktionen kann man die vier Terme in Gleichung (26b) als Summe von Produkten 

zweier Determinanten schreiben [12]. Beispielsweise kann man den ersten Term in Ojj,«, 

schreiben als

£' {et^(OS1 - . (Dt. -
gl -gm
(#i J)

= r

gl •gm

0

p.0
u

po
ril 0 P^2

pö 0 . -
X

PL 0

P”.1 mj
po 
‘ Dll . 0 p^ po

rm2
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Die Diagonalelemente in den Determinanten verschwinden an jedem inneren Vertex 

gi,... ,gm , weil wir etc. in der zj-Entwicklung abgezogen haben.

Die Eliminierung der Diagonalelemente ist der entscheidende Schritt in unserem 

Formalismus und stellt den wesentlichen Unterschied zur Methode von Metzner und 

Vollhardt dar [20,25]: Wir können fj(l, m) durch 7^(1, m) ersetzen, die entsprechend 

Gleichung (12) als

£°(l,m) = /?(!, m) -^mP^l,!) = (30)

definiert sind. Insbesondere gilt: P£(l, 1) = 0. In diesem Schritt erzeugen wir keine 

neuen Beiträge, weil die Diagonalelemente bereits Null sind und weil alle Gittervektoren 

verschieden sind (einschließlich i j). Jetzt können wir die Summationseinschränkung 

fallen lassen (die Determinanten verschwinden, wenn zwei Zeilen oder Spalten gleich 

sind). Das „Linked-Cluster-Theorem“ ist nunmehr anwendbar [44], so daß der Nenner

J ’5,) die unverbundenen Diagramme in Gleichung (27b) wegkürzt. Infolgedessen 

erhalten wir dieselben Graphen wie Metzner und Vollhardt, aber die Linien zwischen 

den Gitterpunkten i und j werden jetzt als P°(i,j) und die inneren Vertices am Punkt i 

werden als Faktoren xt interpretiert.

Das Ergebnis für die Einteilchen-Dichtematrix für i / j ist dann

, (3]) 

wobei {...}□ alle verbundenen Graphen bezeichnet und

E (32)
m = l

als Abkürzung eingeführt wurde.



Die Berechnung von P<r(i,i) = (nu) ist vollkommen analog. Man erhält

(nu) = (nio)o44(nu-(ni,)0)ü}>^^

+Xi(l - (nu)o)(nk)o {("i— - ■ (33)

Auf gleiche Weise erhält man für die mittlere Doppelbesetzung d;

dj — [1 + z;(I — nj.o + dii0)| {dj.o

+ Z[(Mo {(ni_. - (Hi-,)o)f>}ca + i(l - Xi3ifl) {(Dl - }• (34)

Um den großen Vorteil dieses Formalismus in hohen Dimensionen zu sehen, betrachten 

wir jetzt die Selbstenergie in unserem Formalismus, die wir analog zu Abschnitt 2.2 

als S0(g, h) bezeichnen. Sie wird graphisch durch dieselben Diagramme bestimmt, die 

auch die Selbstenergie Safg, h) von Metzner und Vollhardt definieren. Einziger Unter­

schied ist die neue Interpretation von „Vertices“ und „Linien“ (siehe Gleichungen (12) 

und (14)). Formal ergibt sich die Selbstenergie aus

■Sr(8)h) — —Tg^g,b {(ng-w

+igTh {cg<rcb<»(ng-« - ("g-JoX"!!-.» - (nte-»}o)p}‘ • (35)

Benutzen wir

= -^5_o(i,i) (36a)

{(Di-ßD®}; = -^E£(lW(f,i) (^=T4) , (36b)

so können wir die Einteilchen-Dichtematrix (i j), die mittleren Teilchendichten und 

die mittlere Doppelbesetzung schreiben als
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= (nu)o-— S-,(i,i)-(l-<Au)o)<A^)oStf(i,i)xj 
-(l-2(ni,)o)£Mi,f)/*(f,i) (38)

f

di ~ |1 + z;(l — nii0 + dii0)] X

(3i» - s[<"l’>«£(i- 0 + E S(i, i)]}. (39)

Weil es immer drei oder mehr verschiedene Wege von g nach h in einem Graphen zu 

5<,(g,h) gibt [20,25] und wir a//eon-site Beiträge in den Graphen eliminiert haben (siehe 

Gleichung (30)), verschwindet die Selbstenergie in unendlichen Dimensionen vollständig, 

d. h.

5ff(g,h) = 0 ind=oo. (40)

Das bedeutet, daß wir in d = oo keinen einzigen Graphen berechnen müssen, um das 

einfache, exakte Ergebnis

(i / i) (41)

zu erhalten. Gleichung (41) zeigt, daß die Hüpfamplitude zwischen i und j lediglich 

durch zwei ortsabhängige Faktoren renormiert wird.

Ähnlich reduziert sich der Ausdruck (38) in d = oo zu

(dia) = (nu)a , (42)

unabhängig von g. Dies zeigt explizit, daß in d = oo die Wirkung des Gutzwiller-

Korrelators auf die lokalen Dichten (nja) vollständig von den ortsabhängigen „Fu-

gazitäten“ g g "ii und g^ in Gleichung (20) absorbiert wird. Es ist möglich, die

lokalen „Fugazitälen“ so zu wählen, daß Gleichung (42) in beliebigen Dimensionen gilt.
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Dies bringt aber keinerlei rechentechnische Vorteile. Gleichung (42) gilt nicht für die 

lokalen Dichten in [ ^q). Stellt man die Gutzwiller-korrelierten Variationsweltenfunk­

tionen | 'Jfg) in der Form | ^g) = | dar (Gleichung (4)), so erhalt man keine

einfache Beziehung zwischen den lokalen Dichten im wechselwirkenden und nichtwech­

selwirkenden Fall. Dies wurde erstmals von Vulovic und Abrahams in ihrer Arbeit zum 

periodischen Anderson Modell {33] explizit erwähnt.

Zum Abschluß geben wir die Formel für die mittlere Doppelbesetzung in d = oo:

dj = [1+Zj(l-nii04-di,0)]dii0 . (43)

Diese Gleichung kann offensichtlich dazu benutzt werden, den Parameter Xi zugunsten 

der Doppelbesetzung im wechselwirkenden System (3j) zu eliminieren.
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3 Exakte Durchführung des Variationsverfahrens in d s= oo: 
Grundzustandsenergien

Wir geben in diesem Kapitel die allgemeinen Ausdrücke für den Erwartungswert von 

H in | ’l'f) an, den wir als „Grundzustandsenergie“ {H) = } II |

bezeichnen. Wir betrachten allgemeine Gutzwiller-korrelierte Variationswellenfunktio­

nen für das Hubbard-Model! in Abschnitt 3.1 und für das periodische Anderson Modell 

ohne Entartung in Abschnitt 3.2, jeweils im Grenzfall d = oo. Als Beispiel für die 

einfache Anwendbarkeit der allgemeinen Gleichungen geben wir die Ergebnisse für die 

Gutzwiller-korrelierte antiferromagnetische Spindichtewelle an, die zur Beschreibung 

von Antiferromagnetismus im Hubbard-Modell herangezogen wird. Als weiteres Bei­

spiel liefern wir die in d — co exakten Resultate für eine von Rice und Ueda [2SJ, 

Brandow [29] und anderen Gruppen ]30-33] für das periodische Anderson-Modell vor­

geschlagene Variationswellenfunktion. Wir vergleichen die in d = oo exakten Resultate 

für diese Welienfunktion mit den Ergebnissen von „Mean-Field“-Rechnungen [6,45] für 

das periodische Anderson-Modell.

3.1 Hubbard-Modell

3.1.1 Allgemeiner Ausdruck für die Grundzustandsenergie

Wir verwenden Gleichung (43) für die Doppelbesetzung in d — oo und erhalten für z,

X- =
^i,o( 1 - ”1,0 + dj o)

Zusammen mit Gleichung (23a) finden wir

_____ dj(l — ni,o + dj) 
[{nif)0 — dj] [(nu)0 - dj] (45)
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Dieser Ausdruck hat die Form eines Massenwirkungsgesetzes }2j. In der Theorie von 

Mischungen [46] erhält man dieses Ergebnis innerhalb der „quasichemischen Näherung“. 

Statt des Boltzmann-Faktors haben wir hier den Faktor ff2, der das Gleichgewicht 

zwischen den lokalen Konzentrationen der Doppelbesetzungen (dj) und leeren Plätzen 

(l-n^Q+di) im Vergleich zu den einfach besetzten Gitterplätzen ([(nij)o—2i]) 

regelt. Im Falle der Gutzwiller-Wellenfunktion haben wir Translationsinvarianz (d. h. 

di = d etc.). Für diesen Spezialfall wurde bereits von Metzner und Vollhardt [12,20] 

gezeigt, daß Gleichung (45) in d = oo exakt ist. Wir können nun beweisen, daß diese 

Relation lokal für allgemeines | 'l!3) erfüllt ist, wenn wir die Wellenfunktion in der Form 

von Gleichung (20) verwenden, | ^fg) = gK | ^q). Sie gilt nicht in der „üblichen“ 

Darstellung von | VPj) nach Gleichung (4).

Gleichung (45) erlaubt nun, alle Erwartungswerte durch die physikalische Größe d; 

auszudrücken. d\ ist die mittlere Doppelbesetzung im wechselwirkenden System. Es ist 

______ 1_______
9l'’ (ni(,)o(l - (niff)D) X

pU-Xo + SiMtÄfcJo-Jj) + i/^i((ni_„)o - di) j (46)

und der Erwartungswert des Hamiltonoperators für das Hubbard Modell lautet

■ (47)
<ij> i

Diese Form für {H) wurde zum ersten Mal von Kotliar und Ruckenstein [34] mit Hilfe 

eines „Slave-Boson“-Zugangs zum Hubbard-Modell abgeleitet (siehe auch Kapitel 5.2). 

Im translationsinvarianten Fall ist qi„ = der Renormierungsfaktor für die kinetische 

Energie in der Gutzwiller-Wellenfunktion [2]. Bereits Metzner und Vollhardt [12] haben 

gezeigt, daß dieser Faktor für die Gutzwiller-Wellenfunktion in d = oo exakt ist. Für 

die recht einfache Gutzwiller-Wellenfunktion kann man die richtigen «^-Faktoren auch 
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durch das Abzählen von zulässigen Hüpfprozessen erhalten (für Einzelheiten, siehe Voll- 

haxdt [8]). Wie im Falle der mittleren Doppelbesetzung dj können wir die Ergebnisse 

dieses Konzepts auf beliebige | 'i!3) in Gleichung (20) verallgemeinern, indem wir lokale 

Renormierungsfaktoren einführen.

3.1.2 Exakte Ergebnisse für die Gutzwiller-korrelierte antiferromagnetische 

Spindichtewelle

Als Beispiel untersuchen wir jetzt eine allgemeine Gutzwiller-korrelierte antiferroma­

gnetische Spindichtewelle. Für höchstens halbgefülltes Band (n < 1) kann man diese 

Wellenfunktion folgendermaßen schreiben:

|»9} = 9b I ’tu) = / I *o)

| ♦o) = II II ! Vakuum) , (48a)

wobei Q = (ir,?f,... ,7r) ein halber reziproker Gittervektor ist. Die Variationsparameter 

ui, vj kann man wegen = 1 als

(48b)
= -sgn(e(k))y^l

schreiben, wobei Ök+Q = gelten soll. Dann ist | $0) ein Quasiteilchenvakuum [47]. 

Die Untergittermagnetisierung ist durch m = mg = (njj) — (njj) gegeben (im folgenden 

sei die Untergittermagnetisierung stets für dasjenige Untergitter angegeben, für das 

m > 0 ist). In d = co haben wir m — mo = (2/Z) &k un^ ni,o = n0 = n. Aus

Gleichung (45) folgt dj = 3 und wir erhalten q = als spinunabhängigen

Renormierungsfaktor für das Hüpfen zwischen einem A- und einem B-Gitterplatz. Das 

Variationsproblem für das Hubbard Modell (1) ist dann die Minimierung von
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(H) = 29(nU) E e(k)/l-^ + t/Zd 

mit

_ 2(1 - n + 2d)i/(n - 2d)1 - m1 + 4fn - 2 J)\/a(l -n+d)
q(m,d) =----------------- y , - — ■ - v----------------

yftni - m3j [(2 - n)2 - m1]

nach 0k und d (statt g). Variiert man nach 0k, so erhält man

(49a)

(49b)

TfeOÖT2 + A1 (50)

Gleichung (50) bedeutet, daß wir die unendliche Zahl von Variationsparametern in 

Gleichung (48a) auf lediglich zwei Parameter A und d reduzieren können. Setzen wir 

dies in Gleichung (49a) ein, so erhalten wir das Ergebnis von Metzner und Vollhardt

E(m,d) = (-2)9(m,d) V -. + ULd (51a)
<(k)S<r VHMF +

m(A) =
2
7* E (51b)

Für eine detaillierte Diskussion dieses Ergebnisses sei auf Referenzen [20,25] verwiesen.

Folgende zwei Punkte der Diskussion seien aber an dieser Stelle wiederholt, wobei wir 

die Möglichkeit eines ferromagnetischen Übergangs nicht berücksichtigen (siehe hierzu 

Referenz [48]):

1. für halbvolles Band (n = 1) liefert die Gutzwiller-korrelierte antiferromagneti­

sche Spindichtewelle eine Grundzustandsenergie, die tiefer Hegt als die Grund- 

zustandsenecgie der Gutzwiller-Wellenfunktion (A = 0) und der Hartree-Fock- 

Spindichtewelle (g — 1); das heißt, das optimale A ist von Null verschieden und 

das optimale g ist ungleich Eins. Dies bedeutet, daß sowohl lokale Korrelationen 
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als auch langreichweitige antiferromagnetische Ordnung für eine Absenkung der 

Energie wesentlich sind;

2. es gibt eine kritische Dichte ~ 0.8, unterhalb der der paramagnetische Zu­

stand für alle V stabil ist. Oberhalb von npl gibt es Bereiche der Wechselwir­

kungsstärke U < U < für die der antiferromagnetische Zustand stabi­

ler ist. Für Dichten oberhalb von 0.9 ist der antiferromagnetische Zustand

für alle Werte von U oberhalb von stabil.

In numerischen Rechnung (Variations-Monte-Carlo [14]) wurde stets eine Hartree-Fock- 

Form für | 'I'o) angenommen, wobei | Vg) als | ^g} = gD | ’J'o) angesetzt wurde. 

Diese Form ist aber nicht optimal in d = oo, denn in unserem Formalismus nimmt 

offensichtlich J $q) in | tyg) = gK | <fc0) die Hartree-Fock-Form an. Dies macht es uns 

möglich, eine neue Variationswellenfunktion zur numerischen Untersuchung in d = 2,3 

vorzuschlagen. Wir gehen auf diesen Punkt in Kapitel 8 detaillierter ein. Dort werden 

wir diese Wellenfunktion explizit in einer From angeben, die direkt für numerische 

Untersuchungen geeignet ist (siehe Gleichungen (121)-(125)).

In der Formulierung von Metzner und Vollhardt ist | tyg) durch | Vg) = gD [ 'I'o) 

gegeben und das optimierte | »Po) hat eine viel kompliziertere Form. Das hat zur 

Konsequenz, daß man | nicht in einer für eine numerische Untersuchung geeigneten 

Form angeben kann. Ebenso sind die explizite Ableitung von Gleichung (51) und die 

Berechnung der Impulsverteilung recht mühsam ]25). Hier erhalten wir die Ergebnisse 

für die Gutzwiller-korrelierte antiferromagnetische Spindichtewelle aus einer einfachen 

Anwendung allgemeiner Gleichungen.
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3.2 Periodisches Anderson-Modell

3.2.1 Hamilton-Operator und Variationswellenfunktionen

Das periodische Anderson-Modell ist eines der einfachsten denkbaren Modelle, um so­

wohl die physikalischen Eigenschaften von zwischenvalenten Verbindungen als auch von 

Systemen mit schweren Fermionen qualitativ zu beschreiben [5]. Die elektronischen 

Eigenschaften dieser Stoffe werden durch delokalisierte s-und p-Bänder und durch stark 

lokalisierte, nicht vollständig gefüllte /-Elektronenzustände bestimmt. Bedingt durch 

die Kristallstruktur ist dec Drehimpuls keine gute Quantenzahl mehr und es kommt zu 

einer Hybridisierung der s- und p- mit den /-Orbitalen. Wegen der gut lokalisierten 

/-Zustande muß außerdem eine starke, lokale Coulomb-Abstoßung U der /-Elektronen 

berücksichtigt werden. Dieser Anteil wird durch die Hubbard-Wechselwirkung beschrie­

ben. Unter der vereinfachenden Annahme, daß orbitale Entartungen der /-Elektronen 

und auch der Leitungs(c)-Elektronen vernachläßigt werden können, lautet der Hamil- 

tonoperator für das periodische Anderson-Modell

ÄpAM = +

+ (/ Y. - fe + ÄC. 1 - (52)
i '

Hierbei ist der Erzeugungsoperator für ein Leitungselektron

mit Spin a im Blochzustand k, /j* ein Erzeugungsoperator für ein /-Elektron mit 

Spin er am Gitterplatz i und n(a = /^/u der Anzahloperator für ein /-Elektron mit 

Spin a am Gitterplatz i. Beide Etektronenbänder sollen eine Dispersion «c(k) bzw. €/(k) 

haben, wobei das /-Band im Mittel um die Energie —E* tiefer als das Leitungsband 

liegen soll (d. h. es gelte £k€/(k) = —E? und 12kcc(k) = 0)- Weiterhin sollen die 

Bänder überlappen, d. h. maxk(c/(k)) > mink(«c(k)). Das Matrixelement für die 

Hybridisierung der beiden Bänder ist so gewählt, daß im Falle U = 0 der Blochimpuls k
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eine gute Quantenzahl ist. Je nach Wahl der Parameter C7, €e(k) und «/(k) sollte das

Modell in der Lage sein, sowohl zwischenvalente Verbindungen also auch Materialien 

mit schweren Fermionen qualitativ zu beschreiben [5]. Oft nimmt man vereinfachend 

an, daß V± = V und ey(k) = ~E? unabhängig von k sein sollen.

Für U = 0 kann der Hamiltonian leicht diagonaüsiert werden. Man erhält [5]

Äpam(^ = 0) = E [E+(k)c£aiw + S'CMfeA,] mit 
k.»

^(k) = | [ec(k) + e/(k) ± TSST- e/(k))’ + 4VkJ] . (53)

Hierbei sind Erzeugeroperatoren für das obere bzw. untere Quasiteilchenband

mit den Energien £+(k) bzw. £_(k). Explizit ist

0+^ = costfofkjck + sin^k)/^ 

ß^a = -sintfofk^ + cosflotkj/jt (54)

tan20o(k) = ,, . •
«/(k) - ec(k)

Der Winkel #o(k) gibt an, wie stark die c- und /-Elektronen bei (f = 0 durch die Hybri­

disierung Vfc gemischt werden. Der Grundzustand ist für weniger als halbe Bandfüllung 

(7V| + Ni < 2L) gegeben durch

| ^(£7 = 0)) = J] ÄL I Vakuum)

= II [14-«LÄ^]lcPS) . (55)
4c(k)<e/.^

Die zweite Darstellung von | tyfU = 0)) wird im Zusammenhang mit Variationswel­

lenfunktionen häufiger verwendet, da sie an die Variationsansätze von Varma und Ya- 

fet [49] bzw. Gunnarson und Schönhammer [50] für das Anderson-Modell mit einer 

Verunreinigung erinnert. In Gleichung (55) ist
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| cFS) = JI cf, | Vakuum) (56b)
«c(k)<£F,a

ist der Fermisee der Leitungselektronen, wenn keine /-Niveaus besetzt sind.

In vollkommener Analogie zum 2. Kapitel setzen wir als Variationsgrundzustand 

folgende Wellenfunktion an

I *,) = 9t3! I 'M . (37)

Dabei sind | ^o) bzw. | 4>0) Vakua für geeignet definierte Quasiteilchenoperatoren, die 

aus einer Linearkombination von Vernichteroperatoren für /• und c-E!ektronen zusam­

mengesetzt sind (beispielsweise können sie Vakua für die Operatoren a^g, sein; nur 

die Gesamtteilchenzahl in den Wellenfunktionen sei fest). Bei diesem Ansatz werden 

-wie im Falle des Hubbard-Modells- energetisch ungünstige Konfigurationen mit vie­

len doppelbesetzten /-Gitterplätzen unterdrückt. Der neue Aspekt beim periodischen 

Anderson-Modell oder ähnlichen Zweibaadmodellen (z. B. beim Emery-Modell [51]) im 

Vergleich zum Hubbard-Modell ist die variable Zahl von Elektronen im stark korre­

lierten Band. Die Zahl der /-Elektronen ist nicht konstant, sondern hängt von der 

Stärke der Wechselwirkung U ab. Wie wir noch sehen werden, führt dies direkt auf 

eine Renormierung der Hybridisierung V^.

3.2.2 Allgemeiner Ausdruck für die Grundzustandsenergie

Zur Berechnung der Grundzustandsenergie müssen wir den Erwartungswert von Hp^M 

in | fl'j) berechnen. Der nach g und den in ] $*0) vorhandenen Parametern zu variierende



Ausdruck für die Grundzustandsenergie lautet

= E<t(k)Ä,> + £</(k)(ÄL> + V £3' - £2Vk(ÄL) . (58)
kff kr i lüF

Hierbei ist (n^,) die Fouriertransformierte der Einteilchen-Dichtematrix der /-Elektro­

nen, d. h. {h^g} = (l/L)Eij Die anderen Erwartungswerte sind analog

definiert. Wir müssen also folgende Größen bestimmen:

d' = (£)/) : mittlere Doppelbesetzung der/-Elektronen (59a)

p^(i5j) = (/j+Zj,) : Einteilchen-Dichtematrix der /-Elektronen (59b)

/^(ij) = (cfgC^) : Einteilchen-Dichtematrix der c-Elektronen (59c)

J^(i,j) = (c^/j^) : c-/-Hybridisierungs-Matrix (eXchange-hopping) (59d)

Der Korrelator in Gleichung (57) enthält lediglich /-Operatoren. Bei der Berechnung 

von Erwartungswerten muß man daher so umformen, daß nur mehr solche Erwartungs­

werte auftreten, die sämtlich aus /-Operatoren gebildet sind. Dann ist das Problem 

analog zur Berechnung von Erwartungswerten im Falle von Gutzwiller-korrelierten Va­

riationswellenfunktionen für das Hubbard-Modell (siehe Kapitel 2).

Die ersten beiden Ausdrücke in Gleichung (59) haben wir schon in Kapitel 2.3 be­

trachtet, da einzig /-Operatoren auftreten. Wir erhalten analog zu Gleichungen (37),
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sowie

d{ = [1 t xj(l - x

(K«-^E[<"i.).Ä(i,i) + i(l (62)

Um Verwechslungen zu vermeiden, ist an einigen GroBen, wie z. B. der Dichte der f- 

Elektronen ein zusätzlicher oberer Index angefügt. Wo eine Verwechslung

ausgeschlossen ist, haben wir diesen Index weggelassen (wie z. B. bei der /-Elektronen 

Selbstenergie Sp(g,h)). Die Ausdrücke für zj, gjr, und 5<,(g,h) sind aus den Glei­

chungen (23a), (25a), (25b) und (35) ersichtlich.

Die verbleibenden Erwartungswerte /£(>, j) und P/(i,j) sind ebenfalls einfach zu 

berechnen, wenn man bedenkt, daß die c-Operatoren stets mit den /-Operatoren anti- 

kommutieren. Nach kurzer Rechnung analog zu Kapitel 2.3 erhält man das Ergebnis 

^(iJ) = ^(iJ) + E^0(bg)Ä(g,h)P/-0(h,j) (63)
g,h

+ S2’r(i,g)£(g,h) ’̂(h,j)-aj,£^"(i,g)5(g,j)l . (64) 
g,h S J

Diese Beziehungen gelten noch in allen Dimensionen.

Im Limes hoher Dimensionen vereinfachen sich die Gleichungen (60)-(64) erheblich, 

da in d = oo wieder S<,(g,h) = 0 gilt. Die für allgemeines | ^j) gültigen, exakten

Ergebnisse lauten dann
, = d((l-n{0 + df)

[(nf^o - df] ((«£}<] - df]
(65a)

(65b)

(65c)

(65d)^(ij) = v^p’’0(bj) •
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Die Faktoren q\o sind aus Gleichung (46) ersichtlich. Man muß lediglich (nj0)o durch 

(n£)o ersetzen. Wir erhalten also

1

\/(i - -f.»+af )((*.<.>» - ) + A«"'-.)» - 3') (66a)

Insbesondere gilt für U = oo, wenn die /-Zustande nur einfach besetzt sein dürfen, daß 

= 0 und

=
1 ~

1 - (n,>)o 
(66b)

gilt. Die Tatsache, daß nicht nur von d{, sondern auch von (n{p)0 abhängt, wird 

sich bei der Variation nach den Parametern in | $0} (siehe Gleichung (57)) als wich­

tig erweisen. Sie führt zu einem zusätzlichen chemischen Potential, das die mittlere 

Lage der /-Energieniveaus verschiebt. Dies wird am Beispiel der Rice-Ueda-Brandow 

Wellenfunktion in Kapitel 3.2.3 näher erläutert werden.

Zentrales Ergebnis dieses Abschnitts ist Gleichung (66). Wir haben mit der Ab­

leitung dieser Gleichung den Beweis erbracht, daß die dort angegebene Form von <jja 

in d = oo exakt ist und damit auch in endlichen Dimensionen zumindest qualita­

tiv in Gutzwiller-korrelierten Variationswellenfunktionen für das periodische Anderson- 

Modell enthalten ist.

Die Gleichungen (65) sind leicht interpretierbar.

1. Aus Gleichung (65b) folgt, daß (nta) = (n£)o gilt, d. h. die lokalen /- und c- 

Elektronendichten sind unabhängig von g. Die Effekte des Korrelators gö' wer­

den wie im Falle des Hubbard-Modells von den lokalen „Fugazitäten“ «/““i«, gVt 

kompensiert. Zur Erinnerung sei erwähnt, daß wir die Gutzwiller-korrelierten
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Variationswellenfunktionen als | = g1' | $0} schreiben (vgl. Gleichungen (4)

und (16)). Diese Kompensation bedeutet aber nicht, daß die lokalen Elektro­

nendichten unabhängig von der Wechselwirkungsstärke U sind. Im allgemeinen 

wird nämlich auch in | $0) keine feste /-Teilchenzahl vorgegeben, sondern durch 

Variation zu bestimmen sein.

2. Das Hüpfen der f-Elektronen von Gitterplatz i zum Gitterplatz j ist wie beim 

Hubbard-Modell um zwei ortsabhängige Faktoren und renormiert.

3. Das Hüpfen der c-Elektronen ist in d = 00 nur von den Eigenschaften von [ C’q), 

nicht aber von g abhängig.

4. Das Matrixelement für die Hybridisierung eines c£- mit einem /^-Elektron wird 

ebenfalls um einen (ortsabhängigen) Faktor renormiert. Der Wert von q-la 

aus Gleichung (66) steht im Gegensatz zu den Resultaten von „Mean-Field“- 

Behandlungen des periodischen Anderson-Modells [6,45). Im Limes U = 00 (d- = 

0) geben diese „Mean-Field“-Rechnungen einen Faktor = (1 — n/0)’ der nur 

den Zähler, nicht aber den Nenner von in Gleichung (66b) enthält.

Die physikalischen Konsequenzen dieser vier Punkte lassen sich am leichtesten am ein­

fachen Beispiel der translationsinvarianten Rice-Ueda-Brandow-Wellenfunktion näher 

erläutern. Wir werden danach auch auf die Frage eingehen, welcher der beiden unter- 

schiedlichen g-Faktoren „realistischer“ ist, ob also q\o gemäß Gleichung (66) oder 

die Physik im periodischen Anderson-Modell besser beschreibt.

3.2.3 Ergebnisse für die Rice-Ueda-Brandow Variationswellenfunktion

Wir nehmen im folgenden Ny + < 2L an, um simple, aber aufwendig zu behan­

delnde Fallunterscheidungen zu vermeiden. Rice und Ueda (28), Brandow [29] und 
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andere Gruppen [30-33] haben den Gedanken Gutzwiller? für das Hubbard-Modell auf 

das periodische Anderson-Modell übertragen. Startpunkt für die Konstruktion einer ge­

eigneten Variationswellenfunktion ist das periodische Anderson-Modell für V = 0 (siehe 

Kapitel 3.2.1). Im Sinne von Gutzwiller würde man zunächst den Korrelator g^' auf 

den Grundzustand von Hpam(U = 0) anwenden und setzen: | ^>q) =j ^(U = 0)) (siehe 

Gleichung (55)). Man hätte dann eine einparametrige Wellenfunktion. Nun ist aber die 

/-Elektronenzahl nicht erhalten. Wir können daher erwarten, daß die /-Elektronen ins 

Leitungsband ausweichen werden, wenn man doppelbesetzte /-Zustande unterdrückt. 

Dadurch wird sich die effektive Hybridisierung ändern. Das bedeutet, daß es physika­

lisch sinnvoller ist, die Mischungsparameter in Gleichung (55) nicht auf ihre Werte 

aus Gleichung (56a) festzulegen, sondern diese im Rahmen des Variationsverfahrens 

zu bestimmen. Wir fassen also die als weitere Variationsparameter auf.

Wir schreiben also endlich

I ^pam) = 9® IJ [1 + ntw/kaCko'] I CFS) (6^a)
ka

= f^-^-^Mnfl+^/^JlcFS) . (67b)

Der Zusammenhang zwischen «nd lautet für den vorliegenden translationsin­

varianten Fall

oj; = «/''"öim ■ (6&)

Der Faktor g“’ entspricht gerade dem Faktor e_M<r/2jVA von Vulovic und Abrahams [33]. 

Wir werden sehen daß für d = oo die Variationsparameter eine sehr einfache 

Form annehmen (vgl. Kapitel 3.1.2 für die Gutzwiller-korrelierte antiferromagnetische 

Spindichtewelle).

Wir verwenden unsere allgemeinen Gleichungen (65) für den translationsinvarianten
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Fall und setzen in Gleichung (58) ein. Damit erhalten wir in d = oo als zu variierenden 

Ausdruck für die Grundzustandsenergie

(Apam) = +
ktr ko

■VULd1 - E2^k(nL>0- " (Ak")o)] ’ (69)

wobei (n^)o = ä5;2/(1+^7| = 1 “ («ko)o und ("Do = ^/[l+a^2] geI- 

ten. Außerdem gilt wegen Translationsinvarianz (n^)o = (^j)o und in d = oo 

brauchen wir nicht zwischen der wechselwirkenden und der nicht-wechselwirkenden f- 

Elektronendichte zu unterscheiden, d. h. es ist (n£)0 — n^. In Gleichung (69) haben 

wir die Lagrangeparameter Xa eingeführt. Vorteil ist nun, daß wir nach den oj^ und 

getrennt variieren können, wobei die Variation nach Xa den Zusammenhang zwischen 

diesen beiden Größen als Nebenbedingung manifestiert. Es sei daran erinnert, daß qa 

von abhängt. Man kann außerdem die mittlere Doppelbesetzung der /-Zustande im 

wechselwirkenden System (2^) statt g als Variationsparameter verwenden.

Betrachtet man Gleichung (69), so stellt man fest, daß man den Effekt des Gutz- 

willer-Korrelators in d — oo als eine Renormierung der Modellparameter im nichtwech­

selwirkenden System auffassen kann. Wir finden

Vk Vk = v^V-k (70a)

£/(k) eXk)= + Ag~£z(l-fr) . (70b)
reduziertes Hupfen Shift der /-Niveaus

Damit ist das Variationsproblem für die Parameter a^a formal dasselbe wie im Falle 

U = 0, d. h. wir können sofort schreiben

6/(k) - ec(k) + V(Q(k) - e/(lc))2 + 4Vk
• (71)
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Damit ist die funktionale Form der vollständig bestimmt und das Problem ist 

formal gelöst: und d sind aus den Variationsgleichungen nach 2 und der Gleichung

52k (n» ~ {^0°) = 0 zu bestimmen.

Die vollständige Herleitung dieser Gleichungen im Rahmen einer (unkontrollierten) 

Näherung gelang erstmals Vulovic und Abrahams [33]. Für eine detaillierte Analyse 

der Gleichungen sei auf diese Arbeit und auf die Referenzen [28,30,31] verwiesen. Als 

wesentlichste Punkte sind festzuhalten:

1. In d = oo erhält man im Rahmen der Rice-Ueda-Brandow Wellenfunktion ein 

„Mean-Field“-artiges Ergebnis: die Wechselwirkung renormiert die Einteilchen- 

Eigenschaften (effektive Bandbreite der /-Elektronen, Renormierung des mittle­

ren /-Niveaus, reduzierte Hybridisierung). Die renormierten Größen hängen von 

den mittleren Dichten der /-Elektronen und der doppelbesetzten /-Niveaus ab.

2. Der Unterschied zu den „Mean-Fieldu-Behandlungen des periodischen Anderson- 

Modells [6,45] liegt in der Form von qa (siehe Unterabschnitt 3.2.2). Im nächsten 

Unterabschnitt werden wir einen detaillierten Vergleich der beiden Ausdrücke für 

den g-Faktor vornehmen und die physikalischen Konsequenzen der unterschiedli­

chen Faktoren untersuchen.

3.2.4 Vergleich mit „Mean-Field“-Rechnungen

Die „Mean-Field“-Rechnungen betrachten meist den Grenzfall V = oo für das periodi­

sche Anderson-Modell [6,45], den Fall also, wo die /-Zustande auf einem Gitterplatz 

höchstens einfach besetzt sein dürfen.

Diese Theorien sind exakt im Limes unendlich großer orbitaler Entartung (JV^ = oo) 

der lokalen /-Zustande (es bietet sich also eine Entwicklung im Parameter (1/A7^)
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an). Es ergibt steh dann ein Ausdruck für die Grundzustandsenergie, der dem in Glei­

chung (69) entspricht, in dem aber <jo durch — (1 — n^) ersetzt werden muß. Wir 

wollen im folgenden diskutieren, welcher der beiden ^-Faktoren die Physik im periodi­

schen Anderson-Modell besser beschreiben sollte.

Der „Gutzwiller-Faktor“ bietet folgende Vorteile gegenüber dem „Mean-Fieldu- 

Faktor:

a) im Falle eines voll polarisierten /-Bandes (nur f- oder j-Elektronen), gibt der Gutz­

willer-Faktor den Wert q, = 1, was offensichtlich das richtige Resultat ist. Der 

Faktor ist in diesem Fall falsch.

b) in der Rice-Ueda-Brandow Wellenfunktion haben wir die Forderung d( = 0 für

jeden Gitterplatz erfüllt (zumindest im Limes hoher Dimensionen). Diese Bedin­

gung ist bei den „Mean-Field“-Rechnungen nicht streng gewährleistet. Die nur 

approximative Behandlung der Nebenbedingung df = 0 bei den „Mean-Field“- 

Rechnungen ist nur für große Entartung zulässig, so daß die Resultate dieser 

Rechnungen das periodische Anderson-Modell für kleine Entartungen nicht richtig 

beschreiben.

Es wurde argumentiert, daß die Struktur des Nenners von q'la in Gleichung (66) die 

Folge der unkontrollierbaren Gutzwiller-artigen Approximationen sein könnte. In die­

ser Arbeit haben wir aber gezeigt, daß das Ergebnis in d = oo exakt wird, also kein 

Artefakt der Gutzwiller-artigen Approximation darstellt. Weiterhin folgt aus unserer 

Ableitung, daß es sich bei dem Nenner von qif tatsächlich um einen Gittereffekt han­

delt; im Falle einer einzigen /-Elektron-Störstelle, reduziert sich die Rice-Ueda-Brandow 

Wellenfunktion für g = 0 ohnehin auf den Varma-Yafet-Zustand [49], so daß der Nenner 

nicht auftritt. Fazekas [31] hat durch die Betrachtung eines verdünnten Gitters für die
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/-Elektronen eine Formel für qa in Abhängigkeit von der /-Störstellenkonzentration q! 

abgeleitet,

= 1 — qfnl (72)

Diese Formel interpoliert zwischen den Grenzfällen einer /-Storstelie = (!/£■)) und 

dem Gitter von /-Zuständen = 1). Gleichung (72) sollte sich aus unseren allge­

meinen Gleichungen (66) und (69) ableiten lassen, indem man eine geeignete Mittelung 

über zufällig verteilte /-Gitterplätze mit Konzentration einführt.

Nachdem wir gesehen haben, daß der Nenner in zu keinen Widersprüchen im Falle 

einer Verunreinigung führt, wollen wir eine physikalische Begründung für die Form von 

9U geben (es sei o =|). Betrachten wir für = V und C/ = oo das Matrixelement für 

die Hybridisierung {'Jfg | | | 'Pa) in einer Gutzwiller-korrelierten Wellen­

funktion für das periodische Anderson-Modell. Haben wir nur eine /-Störstelle, so ist 

die Wahrscheinlichkeit dafür, daß nach Anwendung des Operators /j*Cjf der /-Zustand 

am Gitterplatz i mit Spin f besetzt ist, proportional zu = 1 — (n/r)o — (nfj)o-

gibt ganz einfach die Wahrscheinlichkeit dafür an, daß in | 4^) für g = 0 kein 

/-Elektron auf dem Gitterplatz ist; für g = 0 kann der Gitterplatz leer oder mit ei­

nem f- oder mit einem ^-Elektron besetzt sein. — Haben wir nun aber ein System 

von L /-Elektronen in | ^!g), so berechnet sich diese Wahrscheinlichkeit anders: wir 

haben nämlich die Möglichkeit zu berücksichtigen, daß in | ^j) auf dem Gitterplatz 

i bereits ein /-Elektron mit Spin f vorhanden sein kann, wenn wir danach fragen, ob 

wir nach Anwendung des Operators /ifCjf einen besetzten /-Zustand haben. Der Fak­

tor qia renormiert nämlich die Hybridisierung relativ zu ihrem Wert bei U = 0 (freie 

Fermionen). Für t/ = oo müssen wir also die Wahrscheinlichkeit dafür berechnen, daß 

der /-Gitterplatz leer ist (Zähler s </^F) relativ zum Fall U = 0, wo das Pauliprinzip 

verlangt, daß kein /-Elektron mit Spin f auf dem Gitterplatz i in | *kj) vorhanden ist, 
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wenn wir anwenden (Nenner = 1 — (nfj)o)- Die Berücksichtigung des Pauliprin- 

zips liefert also gerade den Nenner in qja. Insgesamt ist > q^F, weil die Zahl der im 

System vorhandenen /-Gitterplätze und /-Elektronen größer als im Falle nur einer Ver­

unreinigung ist und alle /-Elektronen an der Hybridisierung teilnehmen können. Dieser 

Gittereffekt und das Pauliprinzip werden offensichtlich bei nicht berücksichtigt.

Es ist in quantenmechanischen Vielteilchensystemen stets etwas problematisch, mit 

Wahrscheinlichkeitsargumenten zu arbeiten (siehe hierzu beispielsweise die Ableitung 

von qa in Referenz [28]). Tatsächlich sind die vorgebrachten Argumente nur in d = oo für 

] '$3) in der Darstellung | 'ifg) = gK | $0) richtig (siehe Gleichung (16)). Andererseits 

interpretieren wir exakt abgeleitete Gleichungen lediglich a posteriori und sind uns 

daher der Beschränkungen bewußt (exakt nur in d = co). Weiterhin erkennt man 

anhand dieser anschaulichen Argumentation, welche wichtige Rolle das Gitter und das 

Pauli-Prinzip spielen.

Rice und Ueda haben Gleichung (66b) kanonisch auf beliebige Entartung (N* > 2) 

verallgemeinert und erhielten

1 - n1
qta = ;-------- ,1 - nt.,

wobei 1 < f < gilt. Wir konnten noch nicht beweisen, daß diese Formel in d — oo 

exakt ist, wenn sie auch plausibel erscheint. Man erkennt jedoch an Gleichung (73), 

daß für hohe Entartung das Pauliprinzip irrelevant wird und qf„ nähert sich dem 

Wert von q^ = 1 — n^.

Zusammenfassend können wir feststellen, daß q9 und q^F zwei entgegengesetzte 

Extremfälle repräsentieren: (i) qff aus der Gutzwiller-korrelierten Rice-Ueda-Brandow 

Wellenfunktion wird im Rahmen des Variationsansatzes exakt für d = oo; (ü) q™p 

wird exakt für hohe Entartung N^. Offensichtlich wird durch die Einflüsse endlicher
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Dimensionen und endlicher Entartung (sowie endlicher Wechselwirkungsstärke U [33]) 

der Renormierungsfaktor zwischen diesen beiden Extremen liegen.

Betrachten wir wieder das periodische Anderson-Modell ohne Entartung = 1). 

Der Nenner in liefert weitreichende physikalische Vorhersagen, die für das Modell aus 

den Ergebnissen für die Rice-Ueda-Brandow Variationswellenfunktion gezogen werden:

a) es wird eine magnetische Instabilität für den „Kondo-Grenzfall“ (U = oo, n} 2s 1)

vorhergesagt. Bei den „Mean-Fieldu-Rechnungen ist der paramagnetische Zu­

stand immer stabil. Einerseits ist es durchaus möglich, daß das periodische 

Anderson-Modell diese Instabilität tatsächlich zeigt, daß es sich also um kein 

Artefakt der Wellenfunktion handelt. Andererseits weist Eazekas [30] darauf 

hin, daß das Problem der ferromagnetischen Instabilität auch beim Varma-Yafet- 

Zustand [49] für das Anderson-Modell mit einer Verunreinigung besteht. Um den 

paramagnetischen Zustand zu stabilisieren, muß der Varma-Yafet-Ansatz erwei­

tert werden (siehe Referenz [50]). Eine entsprechende Erweiterung von | 4>o) in 

I = I «o] *s^ daher wahrscheinlich auch im periodischen Anderson-Modell 

nötig, um eine Stabilisierung des paramagnetischen Zustands zu erhalten;

b) der sogenannte „Kondo-Exponent“ ist um einen Faktor (1 — n£) zu klein, das heißt,

man hat im Kondo-Grenzfall (U — oo, ü 1) eine größtrt Bindungsenergie pro 

/-Gitterplatz im GittermodeU als im Falle einer einzelnen Verunreinigung. Dies 

widerspricht der physikalischen Intuition, denn man erwartet eine Abnahme der 

Bindungsenergie, wenn sich die Abschirmladungen der einzelnen Verunreinigun 

gen überlappen [30]. Es ist klar, daß dieser Effekt in d = oo nicht zu tragen 

kommt, weil alles nur von lokalen Eigenschaften der Wellenfunktion abhängt. 

Stattdessen bleibt nur die Erhöhung der Bindungsenergie aus dem oben erklärten 

Gittereffekt übrig: man hat ein System von L /-Elektronen, die sich wegen der
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Hybridisierung im Gitter bewegen können, weshalb alle Blochzustände zur Hy­

bridisierung an einem Gitterplatz zur Verfügung stehen.

Wie bereits oben erwähnt, stellt der Faktor 9^ aus Gleichung (66b) einen Extremfall 

dar ((/ = 00, d = 00, = I). Es ist bereits von Vulovic und Abrahams gezeigt

worden, daß Werte der Wechselwirkung U < 00 die Bindungsenergie erniedrigen. Den 

gleichen Effekt erhält man gemäß Gleichung (73) für endliche Entartung [28,30]. Wir 

erwarten, daß auch die Berücksichtigung von (l/d)-Korrekturen eine Verringerung der 

Bindungsenergie der Rice-Ueda-Brandow Variationswellenfunktion für das periodische 

Anderson-Modell liefert (52[.

Zusammenfassend können wir festhalten, daß GutzwiUer-korrelierte Variationswel­

lenfunktionen für das periodische Anderson-Modell durchaus geeignet sind, Grundzu­

standseigenschaften dieses Modells realistisch wiederzugeben. Die in d = 00 exakten 

Ergebnisse für die Rice-Ueda-Brandow Wellenfunktion stehen nicht im Widerspruch 

zu den Resultaten von „Mean-Fieldu-Näherungen [6,45], vielmehr ergänzen sich beide 

Verfahren: Gutzwiller-korrelierte Wellenfunktionen betrachten den Limes hoher Git­

terdimension, rMean-Field“-Näherungen den Limes hoher Entartung. Die Verallge­

meinerung unseres Formalismus auf endliche Entartung Nf > 2 steht noch aus, d. h. 

Gleichung (73) ist noch nicht bewiesen. Es wäre wünschenswert, wenn man alle bisher 

bekannten Resultate aus ein und demselben Zugang systematisch ableiten könnte.
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4 Exakte Durchführung des Variationsverfahrens in d = oo: 
Korrelationsfunktionen

Im ersten Abschnitt dieses Kapitels führen wir die Korrelationsfunktion?n ein. Diese 

Funktionen beschreiben, wie zwei leere, doppelt oder einfach besetzte Gitterplätze in 

Entfernung j miteinander korreliert sind. Zu ihrer Berechnung verwenden wir den Gra­

phenformalismus von Gebhard und Vollhardt [13] in der allgemeineren Formulierung aus 

Referenz [26], wobei wir auch hier die neue Interpretation von „Linien“ und „Vertices“ 

gemäß der Gleichungen (12) und (14) verwenden.

Im zweiten Abschnitt untersuchen wir den Limes d —+ oo. Wir geben in Un­

terabschnitt 4.2.1 einen Satz von Gleichungen zur Berechnung von Korrelationsfunk­

tionen für beliebige Abstände v =| j | an (siehe Gleichung (8b) zur Definition des 

Abstands). Das allgemeine Gleichungssystem vereinfacht sich für Nächst-Nachbar- 

Korrelationsfunktionen, so daß wir diese in Unterabschnitt 4.2.2 für den allgemeinen 

Fall explizit angeben können. In Unterabschnitt 4.2.3 lösen wir für die translations­

invariante und spinsyniinetrische Gutzwiller-Wellenfunktion das Gleichungssystem aus 

Unterabschnitt 4.2.1 durch Fouriertransformation und geben die explizite Form der 

Korrelationsfunktionen im Impulsraum (k-Darstellung) an.

4.1 Definition und allgemeiner Graphenformalismus

Korrelationsfunktionen erlauben eine anschauliche Beschreibung von räumlichen Fluk­

tuationen des Spins (Sj), der Dichte (TVj) etc. in einer gegebenen Wellenfunktion. So 

definieren wir die Korrelationsfunktion zwischen zwei Operatoren Aj und allgemein 

als

iE W+j) - . (74)
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Da wir den Term (Xi)(Yi+j) >Q Gleichung (74) abziehen, verschwindet Cxr(j) im allge­

meinen für | j » oo, auch wenn in der Wellenfunktion eine langreichweitige Ordnung, 

z. B. eine endliche Magnetisierung m, enthalten ist. Dies bedeutet insbesondere, daß 

C^r(J) für nächste Nachbarn von der Ordnung (1/d), für übernächste Nachbarn von 

O^(l/d)2} etc. ist.

Da im Hubbard-Modell ein Gitterplatz leer, einfach besetzt mit einem f oder |- 

Elektron oder doppelt besetzt sein kann, wählen wir Xj bzw. Y{ als einen der folgenden 

lokalen Operatoren

= (nir-nii)/2 (Spin in z-Richtung), (75a)

Xi = nif+njj (Dichte), (75b)

Z>i = fijfnjj (Doppelbesetzung), (75c)

= (1 -ni;)(l -Hij) (leerer Gitterplatz oder „Loch“). (75d)

Außerdem interessieren wir uns für die Spinflip-Korrelationsfunktion

wobei S+ = e^Cjp 5." = (S+)+ gilt. Die Operatoren Sf, S+ und S[ gehorchen den 

Kommutatorbeziehungen für eine Spin-Algebra mit Spin S = 1/2 und können dazu be­

nutzt werden, den Vektoroperator Sj in der üblichen Weise zu konstruieren [47]. Falls 

die Spinsymmetrie in der Variationswellenfunktion gebrochen ist, liefert diese Korrela- 

tionsfunktion zusätzliche Information. Wie man leicht zeigen kann [13], sind nur sieben 

dieser Korrelationsfunktionen voneinander unabhängig.

Die Korrelationsfunktionen sind für die Gutzwiller-Wellenfunktion in d = 1 exakt 

berechnet worden [13]. Für höhere Dimensionen ist dies nicht einmal für die relativ ein­

fache Gutzwiller-Wellenfunktion möglich. Mit der im 2. Kapitel entwickelten Methode 
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können wir für allgemeine Gutzwiller-korrelierte Wellenfunktionen exakte Aussagen im 

Limes hoher Dimensionen ableiten.

Im nun folgenden Formalismus können wir analog zu Referenzen [13,26] vorgehen. 

In Referenz [26] haben van Dongen, Gebhard und Vollhardt die Korrelationsfunktionen 

in der (g2 — 1)-Entwickiung für allgemeine Gutzwiller-korrelierte Variationswellenfunk­

tionen betrachtet, wobei die zugehörigen Graphen bereits in Referenz [13] eingeführt 

und aufgezeichnet worden sind. Genauso wie bei der Berechnung der Einteilchen- 

Dichtematrix (vgl. Abschnitt 2 3) müssen wir lediglich die Interpretation der Graphen 

ändern, d. h. innere Vertices werden jetzt als Faktoren zj aufgefaßt und Linien zwi­

schen den Gitterpunkten i und j als /»(ij). Dann können wir die Vereinfachungen des 

Formalismus aus Kapitel 2 im Limes hoher Dimensionen nutzen.

Für die Korrelationsfunktionen Cxr(j) brauchen wir den Fall j = 0 nicht zu be­

trachten, da wir sie in diesem Fall durch Gittersummen über {n;^)o und </; ausdrücken 

können. Analog zu Referenz [26] führen wir folgende Funktionen für g 5^ h ein:

Kfl)(g, h) = {(n6ff - (ng,)0)(nhff - (76a)

^(g,h) = xh{(ng,H^)o)(^-^f)£}oFC W

^»(g.h) = zgzh{(Pg- D^)(Dh- DgFyD}™ (76c)

^4)(g. h) = {(ng, - (n€,)o)(nh_r - (*b-,)o)l>}o (76d)

- (76e>

Entsprechend der oben genannten Ersetzungsvorschrift haben wir (g2 — 1) durch ig

und ngo durch (ngt, — (ügr)o) ersetzt, um die neuen Linien und Vertices in der Entwick­

lung nach xj zu erhalten. Das Symbol bedeutet, daß man über alle Graphen

summieren muß, die sich aus dem Wick’schen Theorem ergeben und bei denen die 
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äußeren Gitterpunkte g und h durch ununterbrochene Fermionb’nien verbunden sind 

(sogenannte vollverbundene Graphen (13]). Die Graphen bis zur dritten Ordnung in 

Zi für K,1),... ,sind in Referenz [13] aufgezeichnet; die Graphen für YW können 

aus denen für K»1) abgeleitet werden, indem man eine <7-Li nie von g nach h in eine 

(—<r)-lme umwandelt und dabei berücksichtigt, daß an jedem inneren Vertex zwei o- 

und zwei (—oJ-Linien zusammenlaufen.

Wenden wir den allgemeinen Formalismus aus Kapitel 2 an, so erhalten wir nach 

einigen Umformungen folgende Ergebnisse

ia
| [£ [1 - xi+j(l - <"i+j.-')o)(ni+j.-,4o] (<T<7')^'(i’i+j).

-4<7rni+j,o>^,(i,i + j)} + | E "’i,omi+j.or1 +-i)

(77a)

| [E [1 + “ <"i4j

+4(1 ^i+,o)y7>(i,i+i)} + 4|Ed -

(77b)

^’(i-i+j)

(77c)
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if

(77d)

y(i)*4
(77f)

VH)J 4 für a' = -a

für a' = a

wobei wir zur Abkürzung

eingeführt haben.

Die Berechnung der Korrelationsfunktionen führt in der Tat zu etwas länglichen 

Ausdrücken. Die Umformungen, die auf die Gleichungen (77a)-(77e) führen, sind aber 

eine rein algebraische Übung und die drastischen Vereinfachungen, die sich im Limes 

hoher Dimensionen ergeben, erlauben dann wieder eine etwas kompaktere Darstellung.

4.2 Berechnung im Limes d —► ce

Wir betrachten nun den Limes hoher Dimensionen. Dabei müssen wir zunächst einmal 

eine Größe finden, die im Limes d —♦ oo nicht verschwindet. Wie oben erwähnt, gehen 

die Korrelationsfunktionen zwischen zwei Gitterplätzen (z. B. dem Ursprung und dem 

Gitterplatz j) in diesem Limes gegen Null, da alle langreichweitigen Anteile durch den 

Abziehterm in der Definition bereits berücksichtigt worden sind. Brauchbare Größen für 

hohe Dimensionen sind dann die Korrelationsfunktionen, die über Schalen von Nachbarn
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j

Abbildung 1: RPA-ähnliche Blasendiagramme für die Korrelationsfunktionen; a) Blase 
in erster Ordnung, b) Blase in zweiter Ordnung

summiert sind, d. h. es ist interessant, die Korrelationen zwischen einem Gitterplatz 

und allen Gitterplätzen im Abstand r =| j |= 1,2,... zu betrachten (der Abstand 

wird in der „New-York“-Metrik gemessen, Gleichung (8b)). Wir betrachten also die für 

d = oo nichtverschwindende (Schalen-)Korrelationsfunktion (26]

C*y(p)= EC^(j) . (78)
iii=p

Im folgenden werden wir diejenigen Anteile in den Korrelationsfunktionen aus Ab­

schnitt 4.1 bestimmen, die zu CXY{v} beitragen.

4.2.1 Allgemeine Behandlung

Aus dem obig Gesagten folgt unmittelbar, daß einfache, RPA-ähnliche „Blasendia­

gramme“ auch in d = oo berücksichtigt werden müssen (RPA = Random Phase Ap­

proximation [11]). Die einfachsten solchen Diagramme sind in Abbildung la und 1b 

dargestellt. Wenn beispielsweise j Nächst-Nachbar-Vektor zu i ist (j = i + r), dann 

ergibt das erste Diagramm einen Beitrag der Ordnung 1/d, da zwei Linien P°(i,j) auf­
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treten und P°(i, i + r) = (9(yl/d) ist. Da aber die Zahl der nächsten Nachbarn von der 

Ordnung d ist, gibt dieses Diagramm einen Beitrag zu Cxy(v). Analoges gilt für das 

zweite Diagramm, wenn i und j übernächste Nachbarn sind. Die Korrelationsfunktionen 

werden also keinesfalls trivial für d = oo.

Allerdings ergeben sich im Limes hoher Dimensionen zwei entscheidende Vereinfa­

chungen in unserem Formalismus:

1. Sowohl in h) als auch in K(3>(g, h) gibt es stets Anteile in den Graphen,

in denen zwei Vertices durch drei oder mehr verschiedene Wege miteinander ver­

bunden sind [13]. Daher haben wir

F^(g,h) E5 0 (79a)

y(3)(g,h) = 0 (79b)

2. In d = oö sind Linien immer durch nicht-wechselwirkende Einteilchen-Dichtema­

trizen P°(i,j) gegeben. Normalerweise hat man „angezogene Linien“ P»(i,j) = 

p°(>J) + Sg.h^(i,g)&(g,h)P°(h,j) zu betrachten (siehe Gleichung (11a)). Im 

Limes d = oo gibt es in unserem Formalismus keine solche Renormierungseffekte 

(siehe Gleichung (40)).

Es bleiben also nur die RPA-Blasendiagramme übrig, die aus f^(i, j)-Linieu aufgebaut 

sind.

Weiterhin können wir die anderen Vereinfachungen benutzen, die sich aus dem 

Limes ergeben (siehe z. B. Gleichung (45) für ^en Zusammenhang zwischen g2 und 

di). Verwenden wir die Definitionen ai,ff = (^i " ^i/j)/((^ia)o(l ~ (fii<r)o)) und 6;^ = 

((rtk)« - dw), so finden wir (j / 0)

*”•<» = H ?(1 - 1+j) (80a)
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(80b)

(80c)

(80d)

(80e)

(81b)

CND(i)

CDDÜ)

CNN(j)

cs+s-(J)

^’(g.h) = [/?(g,i)]3

+ E^ [^(g.nl’r^m) [^(m,h)]2 
Iru

y<M(g,h) = -[/?(g,h)j [/*,(£,h)] 

+ 1>[/»(|M)] [/^M ^>(i,h) .

Die Auswertung dieser Gleichungen ist für allgemeines P°(i, j) und beliebige Abstände 

1 j |= v nicht möglich.

Die allgemeinen Gleichungen für Y^\ und y($) erhält man aus der Aufsummation 

von (nichtwechselwirkenden) Blasendiagrammen. Sie lauten

}7>(g,h) = -p*(g,h)f _

+ [^’(K.»f vi'(I,m) p»(m,h)]2 (81a)
Im

la er*

\GO* '

= ly-_ j)
L & {n-Mni^o

Es gibt aber Fälle, in denen weitere Vereinfachungen möglich sind. Zwei davon 

werden in den folgenden Unterabschnitten behandelt, nämlich die allgemeinen Nächst- 

Nachbar-Korrelationsfunktionen (| j |= 1) in Unterabschnitt 4.2.2 und die translations­

invariante, paramagnetische Gutzwiller-Wellenfunktion in Unterabschnitt 4.2.3.
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4.2.2 Allgemeine Nächst-Nachbar Korrelationsfunktionen

Im Fall j = t (v = 1) brauchen wir nur die Blase in erster Ordnung (Abb. la) zu 

betrachten, um den führenden Beitrag für Cx^{v) zu erhalten. Während die erste 

Blase von Ordnung 1/d ist (siehe oben), liefert die Blase in zweiter Ordnung (Abb. 1b) 

bereits einen Beitrag in Ordnung (1/d)2. Man erhält nämlich den führenden Beitrag 

des Graphen, wenn der innere Vertex g nächster Nachbar zu i oder i + r ist. Die liefert 

2(2d — 1) Beiträge der Ordnung (1/d) x (1/d)2, da g einmal nächster Nachbar und 

einmal übernächster Nachbar zu i bzw. zu i + r ist. Der Gesamtbeitrag ist daher von 

Ordnung O(d x (1/d) X (l/d)J) = C>((l/d)2).

Daher sind in d = oo die Nächst-Nachbar-Korrelationsfunktionen CXY(y — l) leicht 

allgemein zu berechnen. Das asymptotische Verhalten für große Abstände v ist selbst 

im Limes hoher Dimensionen nicht leicht zu bestimmen. Wir werden diesen Punkt in 

Unterabschnitt 4.2.3 im Zusammenhang mit der Gutzwiller Wellenfunktion noch näher 

diskutieren (siehe auch Referenz [26]).

Berücksichtigen wir nur die Blase in erster Ordnung, so finden wir K,tf»(i, i + r) = 
i + r)]3 und y(s)(i,i + r) = - 1 + r)] [^(i.i + t)J. Es ist wichtig,

die Nächst-Nachbar-Korrelationsfunktionen für allgemeines | ^q) berechnen zu können, 

weil diese Größen die Grundzustandsenergie von Hamilton-Operatoren mit Nachst- 

Nachbar-Wechselwirkung bestimmen (z. B. beim Heisenberg- oder t-3-Modell, siehe 

Kapitel 8). In Gleichungen (80a)-(80e) eingesetzt erhalten wir

CS‘S‘W = -11 £ (1 (1 - + r)]1 (S2a)
iff

C™(r) = -l£(l + <.u)(l+o1+r,)[i»(i,i + r))’ (82b)

CMfr) = + +
W v 7 (ni+r#)o 1 J

(82c)
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djdj+r 
(nu)o(ni+r,c)o

[P,«(i,i + r)]2 (82d) 

i+T^fcl+T,-» iW,i + T)] [n,(M + ’-)J -(82e)

Als einfache Spezialfälle betrachten wir nun die paramagnetische Gutzwiller-Wellen­

funktion und die in Unterabschnitt 3-1.2 eingeführte Gutzwiller-korrelierte antiferro­

magnetische Spindichtewelle.

Im Falle der translationsinvarianten und spinsymmetrischen Gutzwiller-Wellenfunk- 

tion erhalten wir alle Ergebnisse, die in Referenzen [26,27] im Rahmen der (g2 — ^-Ent­

wicklung abgeleitet wurden. Dort wurde bereits gezeigt, daß

CXY(r,g,n) = gXYCxy(r,g = l,n) (83)

gilt, wobei die Korrelationsfaktoren 

(n-2d V 
9s‘s' = =9s^s-

/'n(l-n) + 2d\2 
9™ = U(l-n)+2dJ

( d\ fn{l -n)+23^ 
9ND VW +

9DD = (£) 

(84a)

(84b)

(84c)

(84d)

lauten. Ein so einfacher Zusammenhang zwischen den Korrelationsfunktionen mit 

und ohne Wechselwirkung wie in Gleichung (83) kann nur für nächste Nachbarn gel­

ten, während für beliebige Abstände v 1 keine direkte Proportionalität zwischen 

Cxjr(i',j,n) und CXY{v,g = l,n) besteht. Grund dafür ist [26], daß beispielsweise 

die Korrelationsfunktionen für übernächste Nachbarn (v = 2) im wechselwirkenden 

Fall auch Information über die Korrelationen zwischen den nächsten Nachbarn (v = 1) 
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enthalten, da sowohl das Diagramm aus Abbildung la als auch das Diagramm aus Ab­

bildung 1b zu CXY(v = 2,g,n) beitragen. Das erste Diagramm trägt bei, wenn i und j 

übernächste Nachbarn sind, es enthält also Informationen über die Korrelationsfunk­

tionen im nicbt-wechselwirkenden System im Abstand v = 2. Das zweite Diagramm 

trägt bei, wenn i und g bzw. g und j nächste Nachbarn sind. Es enthält daher Informa­

tionen über die Korrelationsfunktionen im nicht-wechselwirkenden System im Abstand 

v = 1. Somit tragen sowohl CAy(t' = 2,g = l,n) als auch CXY(y = l,g = l,n) zu 

CXY(^ = 2,g,n) bei.

Für die Gutzwiller-korrelierte antiferromagnetische Spindichtewelle ist die Spinsym­

metrie gebrochen und die Translationssymmetrie gilt nur mehr auf den A- und B- 

Untergittern separat. Da für nächste Nachbarn stets i auf dem A- und i 4- r auf dem

B-Untergitter (oder umgekehrt) liegen, gilt Gleichung (83) weiter. Da wir aber eine 

endliche Untergittermagnetisierung haben, lauten die Korrelationsfaktoren in diesem

Fall (n m)

[n — 2d — m2) — (1 — n)1 m2 
(n2 — m2) |(2 — n)2 — m2]

(n — 2dV - m2
O \ 1 f »»— » ......... .

(n2 - m2) [(2 — n)2 — m2]

(n — n2 + 2dV — m2 (1 — n)2 
SNN = 4 (na — m2) |(2 — n)2 — m2]

d [(2 - n) (n — n3 + 2d)] 
SND n (n2 — m3) [(2 - n)2 - m2]

(85a)

(85b)

(85c)

(85d)

(85e)

Folgende drei Punkte sind für die spätere Diskussion von Näherungsverfahren in Kapi- 
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tel 5 und die Ableitung neuer Variationawellenfunktionen in Kapitel 8 wichtig:

(i) wegen der gebrochenen Spinsymmetrie gilt im allgemeinen gsiS‘ / 9s+s-- Es dürfte

auch schwierig sein, die Form der Faktoren durch ein Näherungsverfahren abzu­

leiten;

(ii) es gibt Verstärkungsfaktoren nur für die in Gleichung (74) definierten Korrelations­

funktionen, für Größen also, bei denen der Anteil der langreichweitigen Ordnung 

abgezogen wird. So gilt in unserem Beispiel

|L<SiSi+r) = -^+SS-S-Cs‘s'(t,9 = l,n) + gs+s-Cs*s‘(T,ff = l,n) ,(86)

d. h. wir haben den Anteil (5j)(5/+r) = — mJ/4 der Untergittermagnetisierung 

mitzuberücksichtigen, wenn wir Erwartungswerte von Hamiltonoperatoren für 

Spinmodelle berechnen wollen. Eine Ausnahme bilden offensichtlich nur solche 

Fälle, in denen (Sf) = 0 gilt;

(iii) der Term -ni2/4 in Gleichung (86) ist von der Größenordnung 0(1) und hat selbst 

eine (1/d)-Korrektur (siehe Gleichung (38)).

Es ist aus den drei genannten Gründen keine einfache Aufgabe, den Erwartungswert 

(l/£)D(SiS i+r) bis zur Ordnung (1/d) zu berechnen. Wir werden dieses Problem in 

Kapitel 8 angehen.

4.2.3 Ergebnisse für die paramagnetische Gutzwiller-Wellenfunktion

Für die Gutzwiller Wellenfunktion können wir Translations- und Spinsymmetrie aus­

nutzen, um die Gleichungen (81a)-(81c) zu lösen. Wir bezeichnen die Fouriertransfor- 

mierten der Korrelationsfunktionen C*y(j) mit Cxr(q) = eiqjC'xy(j). Wegen der 

Spinsymmetrie gilt C's+s'(q) = 2CS’SI(<1)-
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Um die Fouriertransformation ausführen zu können, brauchen wir auch den Wert 

der Korrelationsfunktionen am Ort j - 0, den wir in unseren bisherigen Betrach­

tungen ausgeklammert hatten. Da der Wert am Ursprung lediglich als Konstante 

in die Fouriertransformierten eingeht, können wir eindeutig dadurch bestim­

men, daß wir den Wert der Funktion für ein beliebiges q angeben. Hierzu bietet sich 

der Vektor q = 0 an, da C^fq = 0) = C^G) = (1/i) [(Ä'V’) — gilt,

d. h. Cxr(q = 0) gibt die Korrelation der über alle Gitterplätze summierten Ope­

ratoren X = JjXi und Y = 221 l'l an. Wegen Teilchenzahl- und Spinerhaltung gilt 

Cs'5‘(q = 0) = C/VN(q = 0) - CND(<\ = 0) ~ 0. Die Zahl der Doppelbesetzungen ist 

nicht erhalten. Wie man sich aber leicht überlegt, kann man die Varianz der Doppel­

besetzung (Z>2) — {D}2 leicht aus der mittleren Doppelbesetzung selbst gewinnen. Man 

erhält CDD(q = 0) = (ff/2) (dd/dg) = p. Somit kennen wir alle Korrelationsfunktionen 

an einem bestimmten q-Wert.

Wir bezeichnen die Fouriertransformierte von |P°(i,j)J mit AII0(q). Die nicht­

wechselwirkende Korrelationsfunktion berechnet sich damit zu Co(q, n) = n(l — n/2) — 

2AII0(q) = CNN(<i,g = l,n) = 4C5*s‘(q»S = i,”)-

(87a)

(87b)

Setzen wir

(88a)

Die Gleichungen (81a)-(81c) sind damit leicht zu lösen. Man erhält 

yÖ)(a\ = -[An0(q)]
a l-x2[An0(q)]2

= ^[Allofq)]2 
° tqJ ’

wobei x = (2 — do)/(do(l — n + do)) und do = d(g = l,n) = (n/2)J gelten, 

dies in Gleichung (80a)-(80d) ein, so erhalten wir

s-tS’S*/ x 1 Co(q, tr 1 1
C ~ 41 - VsCofq,«) ’ Vs ~ " 7=ld

Co(q,n) y _ 1______________1
1 + V/vCo(q>n) ’ N n(l — n) + 2d n(l-n)+2d0CNN(q,g,n) = (88b)
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CND(<i,gin) - 9d = —(88c)
n(l - n) + 2d

CDD^,g,n) = P + ^CNN(q,g,n) . (88d)

Diese Gleichungen für die translations- und spininvariante Gutzwiller-Wellenfunktion 

lassen sich auch mit einer Verallgemeinerung der Methode von Metzner und Vollhaxdt 

ableiten. Wir erhalten völlige Übereinstimmung mit den Resultaten in [26,27].

In d = oo haben die Korrelationsfunktiouen eine Gestalt, die von der RPA-Näherung 

her bekannt ist [11]. Dies rührt von der Aufsummation von Blasendiagrammen her, die 

als einzige Diagrammklasse in d = oo übrigbleibt. Die Größen Vs und V# entspre­

chen renormierten Kopplungskonstanten, die durch die neuen, für d — oo kanonischen 

Vertices z; = x ins Spiel kommen. Eine ähnliche Struktur dürfte sich auch für die 

exakten Korrelationsfunktionen im Hubbard-Modell in d = oo ergeben [26], wobei aber 

die Kopplungskonstanten frequenzabhängig werden.

Im atomaren Limes (d = 0) und für halbvolles Band (n = 1) verschwinden CNN, 

CND und CDD, während für die Spin-Spin-Korrelationsfunktion gilt

C'S’S*(q,S = 0,n=l) = |
1 +4An0(q,l) (89)

Bei q = Q = (jt,...,x), also gerade beim halben reziproken Gittervektor, dessen 

Größe gerade 2kf entspricht, divergiert C5's,(q). Diese Divergenz deutet auf eine 

antiferromagnetische Instabilität hin.

Die Gleichungen (80a) und (81) (oder Gleichung (88a)) können auch dazu benutzt 

werden, das Verhalten der Korrelationsfunktionen für große Abstände zu berechnen [26], 

Wir wollen diese nicht ganz einfache Analyse der Gleichungen nicht wiedergeben, son­

dern auf die Ergebnisse eingehen. Für die Gutzwiller-Wellenfunktion zeigt sich, daß die
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Spin-Spin-Korrelationsfunktion für halbvolles Band in d = oo folgendes asymptotisches 

Verhalten hat:

(90a) 

für Abstände, die groß gegen 1/g2 sind, und

(r \ 1/2
(90b)

für Abstände, die klein gegen 1/p2 sind. Das VerhaJten für große v ist also unterschied­

lich für v bzw. v y-2, d. h. i/52 ist die relevante Längenskala. Für die

Gutzwiller-Wellenfunktion ist also eine Analyse der Korrelationsfunktionen für große 

Abstände möglich.

Darüber hinaus kann man aus dieser Untersuchung noch eine Schlußfolgerung über 

die Existenz des Brinkman-Rice Lokalisierungsübergangs [7] ziehen. Im Rahmen der 

paramagnetischen Gutzwiller-Variationswellenfunktion im halbvollen Band erhält man 

in d = 00 als Grundzustandsenergie für das Hubbard-Modell: E(U > Ue, n = 1) = °, 

d. h. alle Teilchen sind ab einer Wechselwirkungsstärke Uc lokalisiert (Brinkman-Rice 

Übergang). Dieser Übergang wurde als Beispiel für einen durch Elektron-Elektron- 

Wechselwirkung induzierten Metall-Isolator-Übergang angegeben [4]. Bedingung für 

die Existenz des Übergangs ist, daß die mittlere Doppelbesetzung für kleine Werte von 

g linear verschwindet, d. h. d(g, n = 1) ~ j für j < 1. Da die Spin-Spin-Korrelations- 

funktion mit der mittleren Doppelbesetzung über die Gleichung

Cs’s*(Q,ff) = l+2(l-92)l (91)

zusammenhängt [13,26], ist es möglich, Aussagen über d(g, n = 1) aus der Kenntnis der 

Korrelationsfunktionen zu gewinnen. Wie in Referenz [26] gezeigt wird, ist es mit Hilfe 



61

von Skalenargumenten und weiteren begründbaren Annahmen möglich, aus dem Ver­

halten der Korrelationsfunktionen in d = 1 (13] und d = oo (26) darauf zu schließen, daß 

2(5.« - 1) in allen endlichen Dimensionen schneller als linear gegen Null geht. Es gibt 

also starke Evidenz dafür, daß es keinen Brinkman-Rice-Übergang in allen endlichen 

Dimensionen gibt. Wir werden auf diese Problematik noch einmal im Zusammenhang 

mit der (l/d)-Entwicklung für die Gutzwiller-Wellenfunktion in Kapitel 8 eingehen.
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5 Vergleich mit Näherungsverfahren

In diesem Kapitel werden wir die in Kapitel 3 und 4 gewonnenen, in hohen Dimensio­

nen exakten Ergebnisse mit den Resultaten von Näherungsverfahren vergleichen. Un­

ter Näherungsverfahren seien dabei Methoden verstanden, für die man a priori keinen 

Grenzfall angeben kann, in dem die verwendete Näherung exakt wird.

Im ersten Abschnitt beschäftigen wir uns mit erweiterten Gutzwiller-artigen Nähe­

rungen, die eine Fortentwicklung der Gutzwiller-Approximation darstellen [28-33,36,53- 

59). Im zweiten Abschnitt behandeln wir die von Kotliar und Ruckenstein [34] ein­

geführte „Slave-Boson“-Pfadintegral Methode für das Hubbard-Modell, die von anderen 

Gruppen verwendet [60] und weiterentwickelt wurde [61-63].

5.1 Erweiterte Gutzwiller-Approximationen

Um die Grundzustandsenergie der Gutzwiller Wellenfunktion im Hubbard-Modell zu 

berechnen, hat Gutzwiller [2] ein Näherungsverfahren eingeführt, die sogenannte „Gutz­

willer-Approximation“ für die Gutzwiller-Wellenfunktion. Zwar wurde das Verständnis 

für diese Näherung später vertieft [8,53], eine systematische Ableitung und die Verall­

gemeinerung auf kompliziertere Gutzwiller-korrelierte Variationswellenfunktionen blieb 

aber ein offenes Problem. Wie als erstes von Metzner und Vollhardt [20,25] gezeigt 

wurde, ist die Gutzwiller-Approximation für die Gutzwiller-Wellenfunktion exakt in 

d = oo. Demzufolge eröffnete sich ein neuer Zugang, die Gutzwiller-korrelierten Varia- 

tionswellenfunktionen systematisch zu behandeln und die bisherigen (unkontrollierten) 

Näherungen in ihrer Bedeutung einzuordnen.

Es gibt im Prinzip zwei unterschiedliche Näherungsschemata, die sich im Laufe der 

Zeit herausgebildet haben: (i) das „Abzähl-Verfahren“, das als „renormalized mean 
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field approach“ insbesondere von Rice und Ueda [28] und Zhang et al. [36] propagiert 

wird; hierbei wird im wesentlichen mit dem Gutzwiller-Korrelator argumentiert, ohne 

daß wirklich mit korrelierten Wellenfunktionen gerechnet wird; (ii) eine genäherte Aus­

wertung von Erwartungswerten für eine gegebene Gutzwiller-korrelierte Variationswel­

lenfunktion. In älteren Veröffentlichungen (z. B. in Referenz [53]) ist es nicht möglich, 

diese beiden Vorgehensweisen strikt auseinanderzuhalten. Deswegen werden wir keine 

gesonderte Behandlung der beiden Näherungsmethoden vornehmen. Stattdessen wer­

den wir die Trennung analog zu Kapitel 3 in Methoden für das Hubbard- bzw. das 

periodische Anderson-Modell vornehmen.

5.1.1 Hubbard-Modell

Zur Beschreibung von Antiferromagnetismus mit Hilfe einer Variationswellenfunktion 

| 'Jlg) war es nötig, die Gutzwiller-Approximation für Wellenfunktionen mit gebroche­

ner Translationssymmetrie zu verallgemeinern. Wie bereits von Metzner und Vollhardt 

gezeigt worden ist [20,25], konnte keiner der früheren Versuche das exakte Ergebnis in 

d = oo für die optimale Gutzwiller-korrelierte Spindichtewelle liefern (siehe Unterab­

schnitt 3.1.2). In allen Näherungsverfahren gibt es eine ad hoc Annahme über die Struk­

tur der ffk, Vfc [53-57], die [ 4>o) in | ’Pg) = | 4>0) definieren (siehe Gleichung (48a).

Demzufolge arbeiteten sie nur innerhalb einer beschränkten Unterklasse von Variations­

wellenfunktionen, zu der die optimale Variationswellenfunktion in d = oo nicht gehört. 

Diese Methoden sind deshalb in ihrer physikalischen Aussagekraft beschränkt. Ab­

gesehen davon führen die verwendeten Approximationen auch teilweise auf unsinnige 

physikalische Aussagen. Zum Beispiel erhält man Impulsverteilungen (n^), die für 

bestimmte k-Werte negativ werden [53]. Das bedeutet, daß man nicht einmal für diese 

beschränkte Klasse von Variationswellenfunktionen eine Gutzwiller-artige Approxima­
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tion entwickeln konnte, die in d ~ oo exakt wird [25].

Ogawa, Kanda und Matsubara [53] gelang es immerhin, einen Ausdruck für die 

Grundzustandsenergie anzugeben, der die gleiche Struktur wie das exakte Ergebnis in 

d ~ oo, Gleichung (49a), hat. Sie erhielten allerdings einen Faktor <7okm> der z. B. im 

Limes U = oo {d = 0) den Wert = 0) = [2n(l — n)]/(2n — n3 + m2) hat. Der

Faktor </okm unterscheidet sich für alle m / 0 vom exakten ^-Faktor. Zudem wurde 

von Metzner und Vollhardt [20,25] gezeigt, daß eine Gleichung wie (49a) innerhalb einer 

beschränkten Klasse von Variationswellenfunktionen in d = oo gar nicht abgeleitet 

werden kann. Diese Art von Näherungen können also nicht systematisch eingeordnet 

werden.

Neben der genäherten Auswertung von vorgegebenen Variationsansätzen gibt es 

außerdem den Gutzwiller-artigen “renormalized mean field approach” [36], bei dem 

Zhang et al. die Struktur der Gleichung (49a) voraussetzen und dann 90KM durch 

„Abzähl“-Argumente ableiten (siehe Referenz [8] für Details bezüglich des Abzähl­

verfahrens für die Gutzwiller-WeUenfunktion). Weil ?okm nicht mit dem exakten q- 

Faktor in Gleichung (49b) übereinstimmt, erhält man im allgemeinen nicht die rich­

tigen ^-Faktoren aus dem Abzählverfahren. Außerdem muß die Gültigkeit der Glei­

chung (49a) angenommen werden. Das führt dazu, daß man gar nicht weiß, welche 

Gutzwiller-korrelierte Variationswellenfunktion nun eigentlich zu dem Ergebnis gehören 

soll. Tatsächlich ist es sogar so, daß die Abzählmethoden Ergebnisse erhalten, die für 

[ ’Pg) in der Form [ ^9) = gh [ $0), Gleichung (20), gültig sind. Andererseits wird sug­

geriert, daß man mit | $9) = gD | #0) rechnet. Das bedeutet, daß der Vergleich von nu­

merischen Daten mit den Ergebnissen aus dem „renormalized mean field approach“ [36] 

gar nicht sinnvoll ist, weil man in Wirklichkeit verschiedene Wellenfunktionen miteinan­

der vergleicht. Wir werden uns diesem Problem noch einmal in Kapitel 8 widmen. Dort
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leiten wir neue Variationswellenfunktionen ab, die in hohen Dimensionen optimiert sind

und jetzt in niedrigen Dimensionen numerisch getestet werden können.

Der Zugang in Referenz [36] wurde ebenfalls angewendet, um die Nächst-Nachbar- 

Spinkorrelationsfunktion für den antiferromagnetischen Fall zu berechnen. Mit Hilfe 

der Abzählmethode erhielten Zhang et al. folgendes Ergebnis im Grenzfali d — 0

(SjSj+r) — c(SjSj+-j-)o

2n 1»
,2n — n2 + m2J

(92a)

(92b)

Im Fall der Gutzwiller-Wellenfunktion gilt m = 0 und (Sj) = 0, so daß die Glei­

chungen (85a), (85b) und (92b) übereinstimmen. Daher ist das Ergebnis (92a) für 

die Gutzwiller-Wellenfunktion bis zur Ordnung (1/d) richtig. Wie in Referenz [36] ge­

zeigt wurde, vergleicht sich dieses Resultat sehr gut mit numerischen Daten für die 

Gutzwiller-Wellenfunktion.

Andererseits kann Gleichung (92a) für m 0 auch in hohen Dimensionen nicht exakt 

werden. Dies ist aus Gleichung (86) ersichtlich, in der die linke Seite von Gleichung (92a) 

lautet

(SjSi+r) = (~m2/‘l)+gs’S’Cs,s,(T,s = l,n) +gs+s-C:i*s (r,g = l,n). (93)

Gleichungen (92a) und (92b) können daher aus folgenden Gründen nicht richtig sein:

(i) es gibt verschiedene Verstärkungsfaktoren g$*s- wegen der gebrochenen

Spinsymmetrie (beide Faktoren aus den Gleichungen (85a), (85b) unterscheiden 

sich von c in Gleichung (92b)),

(ii) es gibt keinen Verstärkungsfaktor für den Anteil (—ni2/4), der von der langreich-

weitigen antiferromagnetischen Ordnung herrührt,
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(iii) der Term (—m2/4) ist von der Größenordnung 0(1) und hat eine nichttriviale 

(l/d)-Korrektur. Solch eine Korrektur kann nicht „abgezählt“ werden. Wir wer­

den sie in Kapitel 8 berechnen.

Zusammenfassend kann man feststellen, daß eine systematische Verallgemeinerung der 

Gutzwiller-Approximation auf kompliziertere Probleme als die translationsinvariante 

Gutzwiller-Wellenfunktion nicht befriedigend gelungen ist. Zudem geben diese Metho­

den keinen Hinweis, wie sie systematisch verbessert werden könnten. Diese Fragestel­

lungen können jetzt mit dem d = oo-Konzept [20,25] systematisch angegangen werden.

5.1.2 Periodisches Anderson-Modell

Die in Kapitel 3.2 eingeführte Rice-Ueda-Brandow Variationswellenfunktion wurde von 

verschiedenen Gruppen mit Hilfe Gutzwiller-artiger Näherungen untersucht [28-33]. Der 

Variationsansatz kann nicht nur für das periodische Anderson-Modell untersucht wer­

den, sondern auf beliebige Zweibandmodelle, z. B. auf das Emery-Modell [51], ange­

wendet werden [58,59].

Diese Variationswellenfunktion ist translationsinvariant, aber die Zahl der /-Elek­

tronen ist keine Erhaltungsgröße wie im Fall der Gutzwiller-Wellenfunktion (siehe Un­

terabschnitt 3.2.1). Ein Vergleich der Ergebnisse dieser Arbeiten mit den Formeln in 

Unterabschnitt 3.2.3 zeigt, daß diese Näherungsverfahren in der Lage sind, die exak­

ten Ergebnisse in d = oo richtig wiederzugeben. Dies trifft sowohl auf die „Abzähl“- 

Näherungen [28] wie auch auf die approximative Auswertungen der Variationswellen- 

funktion [30,33] zu. In manchen Fällen [29,32] wurde die variable /-Teilchenzahl aber 

nicht richtig berücksichtigt. Die weitestgehende (und in d = oo exakte) Darstellung und 

Diskussion der Ergebnisse für die Rice-Ueda-Brandow Variationswellenfunktion haben 

Vulovic und Abrahams in Referenz [33] gegeben. Der Beweis, daß deren Formeln in 
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d = oo exakt werden, gelingt auch mit einer kanonischen Erweiterung der Methode von 

Metzner und Vollhardt [27].

Erst kürzlich wurde das Emery-Modell [51] von Oles und Zaanen [58] mit Hilfe 

der „Ab2ähl“-Näherung untersucht, wobei sie die Rice-Ueda-Brandow Wellenfunktion 

verallgemeinert und speziell den Fall von Antiferromagnetismus im Emery-Modell un­

tersucht haben. Da wir in Unterabschnitt 3.2.2 die exakten Ergebnisse in d = co für 

allgemeines | tyg) angegeben haben, können wir deren Resultat für die Grundzustands­

energie auf seine Gültigkeit in hohen Dimensionen prüfen. Es zeigt sich, daß Oles und 

Zaanen den in d = oo exakten Ausdruck für ('I,^ | Hztotry I I ^em

in d = oo optimalen | 'J/f) gefunden haben. Wie im Falle des Hubbard-Modells kann 

jedoch auch hier nicht die richtige Wellenfunktion zugeordnet werden. Obwohl sie die 

exakten Resultate in d = oo finden, erlaubt ihre Näherung nicht, diejenige Wellen­

funktion zu identifizieren, die diese Ergebnisse liefert. Während sie ihre Ergebnisse 

der korrelierten Wellenfunktion | = gD [ $o) zuordnen, sind diese Resultate in

Wirklichkeit für | ’I’j) s | in d = oo exakt. Mit Hilfe unseres neuen Formalis­

mus in Kapitel 2 können wir die richtige Variationswellenfunktion jetzt angeben (siehe 

Unterabschnitt 3.2.1).

Zusammenfassend können wir für Abschnitt 5.1 folgendes festhalten:

1. Gutzwiller-artige Approximationen geben das exakte Resultat in d = oo für trans­

lationsinvariante Variationswellenfunktionen, wie z. B. für die Gutzwiller- und die 

Rice-Ueda-Brandow Variationswellenfunktion.

2. Für kompliziertere (z. B. antiferromagnetische) Variationswellenfunktionen sind

sie unzureichend. Sie können bestenfalls die in d = oo exakte analytische Struktur 

von {H) und Renormierungsfaktoren g-le, richtig angeben, wie dies z. B. Oles und 

Zaanen gelang. Die Zuordnung der richtigen Wellenfunktion | lI's) = | $0) zu
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diesen Ergebnissen ist aber nicht möglich, es wird sogar fälschlicherweise sugge­

riert, daß j = gb | $0) die zugehörige Variationswellenfunktion sei.

3. Da in numerischen Untersuchungen stets mit | Vg} = gD | $0) gearbeitet

wurde, die in d = 00 optimale Form aber | = g^ | $0) ist (siehe Glei­

chung (20)), sind Vergleiche zwischen analytischen und numerischen Resultaten 

nur im Falle von translationsinvarianten Gutzwiller-korrelierten Variationswellen­

funktionen sinnvoll, weil dann beide Einteilchen-Produktwellenfunktionen | ’J'o) 

und | $0) identisch sind (gK~D in Gleichungen (17), (21) ist hier nur ein irrelevan­

ter Normierungsfaktor); man sollte Vergleiche also nur im Falle der Gutzwiller- 

Wellenfunktion und der Rice-Ueda-Brandow Wellenfunktion anstellen, da man in 

diesen Fällen die Einflüsse endlicher Dimension studieren kann. In allen ande­

ren Fällen, insbesondere bei Antiferromagnetismus, müssen erst neue numerische 

Studien durchgeführt werden.

4. Es ist nicht möglich, Korrelationsfunktionen für Variationsansätze mit gebroche­

ner Symmetrie mit Hilfe der „Abzähl“-Näherung zu berechnen.

5.2 Slave-Boson-Methode von Kotliar und Ruckenstein

Kotliar und Ruckenstein haben eine „Slave-Boson“-Pfadintegral-Methode für das Hub- 

bard-Modell entwickelt. In diesem Abschnitt zeigen wir, daß ihre Ergebnisse mit Hilfe 

in d = 00 exakt ausgewerteter Gutzwiller-korrdierter Variationswellenfunktionen abge­

leitet werden können.

Im ersten Unterabschnitt stellen wir kurz die Methode vor, wobei wir auf den Umweg 

über Pfadintegrale verzichten können. Im zweiten Unterabschnitt zeigen wir Vor- und 

Nachteile dieser Methode auf. Insbesondere werden wir auf die Frage eingehen, in 

welchem Umfang die Resultate dieses für endliche Temperaturen gedachten Näherung 
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tatsächlich für T > 0 angewendet werden können.

5.2.1 Kurze Darstellung des Verfahrens

Die Behandlung von Pfadintegralen (insbesondere deren genäherte Auswertung) er­

leichtert sich erheblich, wenn man nur noch mit kommutierenden statt antikommu- 

tierenden Variablen rechnen muß [41]. Kotliar und Ruckenstein [34] führten deshalb 

vier „Slave-Boson“-Operatoren ein, die die vier möglichen Besetzungen eines Gitter­

platzes beschreiben: e* für einen leeren Gitterplatz , d* für ein Doppelbesetzung und 

pfa für eine Einfachbesetzung. Das Hubbard-Modell kann dann in einem erweiterten 

Hilbert-Raum folgendermaßen geschrieben werden

‘.P
(91a)

wobei wir die Abkürzung

(94b)

eingeführt haben. Jetzt wird die Wechselwirkung allein durch Bosonenoperatoren aus­

gedrückt, aber die kinetische Energie ist komplizierter geworden. Außerdem hat man 

den Hilbert-Raum erweitert und sich damit Vieldeutigkeiten eingehandelt. Solange 

man H exakt behandelt, kann man nämlich zum Beispiel folgende Ersetzung vorneh­

men, ohne die Physik zu ändern

(95)

Jede Näherung hängt jedoch von der „geeigneten“ Wahl der Operatoren oder iitJ) 

ab.
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Die in der Formulierung mit Pfadintegralen übliche Näherung besteht darin, „sta­

tische Sattelpunkte“ des Pfadintegrals zu suchen. Während dies für Pfadintegrale in 

der Quantenmechanik eines Teilchens eine wohlverstandene Näherung ist (klassischer 

Grenzfall), ist die Bedeutung und Qualität dieser Approximation für Vielteilchenpfadin­

tegrale noch unklar. Man kann die Gleichungen von Kotliar und Ruckenstein für die 

zeitunabhängigen Sattelpunkte auch ohne Pfadintegrale ableiten, die Verwendung des 

Pfadintegralformaiisinus mag jedoch als Motivation dienen. Wir ersetzen in H die 

Boseoperatoren durch ihre zeitunabhängigen Mittelwerte, was auch als „Bosekondensa­

tion“ aufgefaßt werden mag. Wir ersetzen also

<^}o M)o = A (96a)

(e^)o = («ilo = \/l - »i.o + di (96b)

föo = , (96c)

wobei wir die Notation dieser Arbeit in den hinteren Ausdrücken verwendet haben. 

Man sieht dann leicht, daß

(^)o=v^ (97)

gilt, wobei durch Gleichung (46) gegeben ist. Damit haben wir einen „effektiven“ 

Hamiitonoperator abgeleitet

HeS= + . (98)
i.j* i

muß jetzt nur noch bezüglich dj und (ni„)0 optimiert werden (statische Sat­

telpunktsgleichungen). Diese Gleichungen sind völlig identisch mit denen, die wir in 

d = co für die Gutzwiller-korrelierte Variationswellenfunktionen erhalten haben (siehe 

Kapitel 3). Dies wurde erstmals von Metzner und Vollhardt für die Spezialfälle der
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Gutzwiller-Wellenfunktion und der Gutzwiller-korrelierten antiferromagnetischen Spin­

dichtewelle gezeigt [20,25]. Wir haben diese Korrespondenz nun im allgemeinen nach­

gewiesen.

5.2.2 Diskussion der Methode und ihrer Ergebnisse

Nachdem wir die Methode dargestellt und völlige Übereinstimmung der Resultate bei­

der Verfahren erzielt haben, können wir folgenden Vergleich der Behandlung Gutzwiller- 

korrelierter VariationsweUenfunktionen mit der „Slave-Boson'-Pfadintegral-Methode 

von Kotliar und Ruckenstein ziehen:

(i) wir können die explizite Wellcnfunktion zu einem bestimmten Sattelpunkt ange­

ben (für Antiferromagnetismus, siche Gleichungen (48a), (48b) und (50)). Wel­

lenfunktionen erlauben einen direkten Einblick in die zugrundeliegende Physik; 

zudem können innerhalb desselben Zugangs auch alle Korrelationsfunktionen be­

rechnet werden. Zur Frage der Eindeutigkeit der Wellenfunktion sei das übli­

che Hartree-Fock-Verfalircn für das Hubbard-Modell in Erinnerung gerufen: ent­

koppelt man die Zweiteilchen-Wechselwirkung in Gleichung (1), so erhält man 

einen Einteilchen-Hamiltonian, dessen Grundzustand auch als Variationsansatz 

geschrieben werden kann. Umgekehrt gibt es zu jedem Variationsansatz einen 

Hamiltonian, der diese Wellenfunktion als Grundzustand hat. In unserem Fall 

gibt die Wahl der Symmetrie einer speziellen Lösung der Sattelpunktsgleichungen 

die Wellcnfunktion vor und umgekehrt.

(ii) es gibt keine Mehrdeutigkeiten im Variationsverfahren, da alle Erwartungswerte

in d = co exakt berechnet werden. Außerdem eröffnet es die Möglichkeit einer 

systematischen Verbesserung der Näherung durch eine (l/d)-Entwicklung;
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(iii) aus dem Variationsprinzip wissen wir, daß man eine obere Schranke für die Grund­

zustandsenergie in d = oo für das Hubbard-Modell erhält;

(iv) die von Kotliar und Ruckenstein angegebene „Zustandssumme“ bzw. „ freie 

Energie“ /«ft sind keine wohldefinierten Größen. Trotzdem können sie zu einer 

genäherten Beschreibung der Tieftemperatureigenscbaften korrelierter Fermisy- 

steme herangezogen werden.

Um den letzten Punkt zu erklären, betrachten wir den translations- und spinsymmetri­

schen Fall der Variationsgleichungen, damit wir nicht zwischen g° | $o) und gK [ #o) 

unterscheiden müssen. Die Eigenzustände der kinetischen Energie in Gleichung (1) 

spannen den ganzen Hilbert-Raum auf. Wir bezeichnen sie mit | <!>„). Wir können 

jedem dieser Zustände eine Energie En(g) zuordnen, die wir folgendermaßen definieren

En(9) =
(0n I gVÖg» I 

(#n | g™ | $n)
(99)

In d = oo gilt nun

k<7
(100)

weil Gleichung (47) für beliebige Zustände | $n) gültig ist. Wir definieren nun die 

Objekte

£kr = (101a)

/kr = —^InZtfR , (101b)

wobei ß = l/ksT ist. /kr ist dann gerade die „freie Energie“ und •^kr die „Zustands­

summe“ von Kotliar und Ruckenstein [34]. Da die Zustände | $n(5)) = gD | ^n) nicht 

orthogonal zueinander sind, ist ^kr offensichtlich keine wohldefinierte Zustandssumme.
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Die Minimierung von /kr nach d liefert für großes U kleine Werte von d (oder sogar 

d = 0). Während wir bei g = 1 mit einer Zahl von Zuständen | £n) anfangen,

betrachten wir zum Schluß nur mehr Zustände [fir(1 — ^f)] I ^n) ohne Doppelbeset­

zungen, d. h. wir arbeiten in einem Hilbert-Raum der Dimension ^rsac^e

für dieses Überzählen von Zuständen ohne Doppelbesetzung (Entropieproblem [9]) ist 

die mathematisch nicht wohldefinierte Zustandssumme die zu einem physikalisch 

unsinnigen Lokalisierungsübergang für U-T 1 führt. Kotliar und Ruckenstein waren 

sich der Problematik dieses Übergangs bewußt [34].

Trotzdem sind /kr oder •2kr nützlich, um Tieftemperatureigenschaften korrelierter 

Fermisysteme zu beschreiben, wie z. B. in Referenzen [60,62] für normalfluides 3He ge­

zeigt wurde. „Niedrig“ bedeutet hier, daß die Zahl der in Gleichung (101a) relevanten 

Zustände nicht die Zahl ^er Zustande ohne Doppelbesetzungen übersteigt.

Dies ist eine Minimalforderung, um das Entropieproblem zu umgehen. Sie ist aber nicht 

hinreichend, da sich diese Forderung nur an der Zahl der für V ~ oo erlaubten Zustände 

orientiert. Zur Veranschaulichung dieser Tatsache betrachten wir den Grundzustand des 

Hubbard-Modells. Er ist für U = 0 der tiefste Zustand für die kinetische Energie und 

hat bei U ~ oo keine doppelbesetzten Gitterplätze. Wenn die Zustandssumme von 

Kotliar und Ruckenstein sinnvoll sein soll, dann entspricht dies der Erwartung, daß die 

niederenergetischen Anregungen im Hubbard-Modell ebenfalls dieses Verhalten zeigen: 

sie sind exakte Lösungen des Modells, die für U = 0 niederenergetische Anregungen 

des Fermigases sind und für V = oo keine Doppelbesetzungen enthalten. Für solche 

Zustände können wir hoffen, daß wir einen angeregten Zustand im Hubbard-Modell 

sinnvoll für alle ü dadurch approximieren können, daß wir den Gutzwiller-Korrelator 

auf diesen angeregten Zustand des Fermigases (U = 0) wirken lassen. Nicht alle Ei­

genzustände des Hubbard-Modells, die für U = 0 zu den Zuständen des

Fermigases mit den niedrigsten Energien gehören, haben für U = oo keine Doppel-
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Besetzungen (man betrachte hierzu beispielsweise das Hubbard-Modell mit vier Git­

terplätzen, zwei f- und zwei |-Elektronen und periodischen Randbedingungen [64]). 

Man muß also eine schärfere Bedingung fassen, als nur die maximale Zahl der Zustände 

auf (Ln^1) festzulegen. Eine quantitative Formulierung einer solchen Bedingung 

ist aber schwierig, da man über die exakten Zustände des Modells selbst mehr wis­

sen müßte. Phänomenologische Erweiterungen der Gutzwiller Ergebnisse auf endliche 

Temperaturen, wie sie von Seiler et al, [9] vorgeschlagen wurden, können jedenfalls mit 

der Methode von Kotliar und Ruckenstein nicht entkräftet werden.

Der Zugang von Kotliar und Ruckenstein kann auf natürliche Weise erweitert wer­

den, indem man „Fluktuationen um den Sattelpunkt“ berechnet. Für die Bosonfelder 

(Mittelwerte der „Slave-Boson“-Operatoren) heißt dies, daß sie nicht mehr als stati­

sche, sondern als dynamische, d. h. zeitabhängige Größen behandelt werden [60-62]. 

Es ist ein offenes Problem, wie man diese Dynamik im Rahmen von (zeitabhängigen) 

Grundzustandswellenfunktionen behandeln muß.



75

6 Berechnung von 1/d-Korrekturen im Falle der paramagne­
tischen Gutzwiller-Wellenfunktion

Wie wir in den Kapiteln 3 und 4 gezeigt haben, erhalten wir in d — oo exakte und 

sehr allgemeine Resultate für Gutzwiller-korrelierte Wellenfunktionen. Dies erlaubte 

einen detaillierten Vergleich mit anderen Näherungsverfahren in Kapitel 5. Die Art der 

bislang in der Literatur bekannten Approximationen eröffnete im allgemeinen keinen 

Weg zu einer systematischen Verbesserung der Ergebnisse, d. h. einer Verbesserung 

in Richtung auf eine exakte Auswertung einer Variationswellenfunktion in endlichen 

Dimensionen. Der systematische Zugang mit dem Kontroilparameter (1/d) erlaubt 

nun, die Qualität der Näherung d = oo durch die Berechnung von (l/d)-Korrckturen 

abzuschätzen und systematische Korrekturen anzugeben.

In diesem Kapitel berechnen wir die mittlere Doppelbesetzung d, die Impulsvertei­

lung (nie») und die mittlere kinetische Energie (T) für die paramagnetische Gutzwiller- 

Wellenfunktion in einer (l/d)-Entwicklung. Im ersten Abschnitt rechnen wir für be­

liebige Bandfüllung n und Variationsparameter g (d. h. Wechselwirkungsstärken U im 

Hubbard-Modell). Wegen der Teilchen-Loch-Symmetrie können wir uns dabei auf n < 1 

beschränken. Im zweiten Abschnitt rechnen wir für halbvolles Band (n = 1) bis zur 

Ordnung (1/d)2.

6.1 Korrektur in erster Ordnung für beliebige Baudfüllung

In der paramagnetischen Gutzwiller-Wellenfunktion | ’I',} = gD | 'I’o) = g^ | sind 

| und | ’J'o) der Fermi-See. Wegen der Translationsinvarianz gilt =

n/2 und

= x = [4(G _ + i)n(2 - n)] (102a)
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Hierbei ist G durch

0=^1 +n(2-n)G72-i) (102b)

definiert. Die Faktoren q und a in Gleichungen (25&) und (25b) lassen sich dann 

folgendermaßen durch G und n ausdrücken

= ß + Y [\/(2 ~ ,i)(G + 1 ~ n) + \/n(G - 1 + n)j (103a)

Ok ö =
n G + 1 1 /n(G — 1 + n)
2G^T G~1V 9 (103b)

In d = oo ist die Gutzwiller-Approximation für die Gutzwiller-Wellenfunktion exakt,

d. h.

(104a)

und

{^g(g,n,d= oo)) = (nMi'i ”))ga = - q) - (104b)

Die Fouriertransformierte der Selbstenergie Sa (i, j) sei mit S^k) bezeichnet. Es ist also

5„(k) = (1/L) j J)- Mit Hilfe dieser Definition können wir schreiben

(105b)(nk,^,»)) =

Für Gleichung (105) haben wir die Teilchenzahlerhaltung für die Gutzwiller-Wellen­

funktion, Gleichung (38), verwendet, aus der
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S°W = = ^E/?(i,f)5.(f,i) (los)n(i-n)(j { f

folgt. Gleichung (106) zeigt, daß wir lediglich den Nebendiagonalanteil der Selbstenergie 

betrachten müssen. Für allgemeine Gutzwiller-korrelierte Variationswellenfunktionen 

muß aber der Diagonalanteil getrennt berechnet werden. Der Faktor ß vor der Summe in 

Gleichung (106) läßt sich schreiben als ß = [4(n — l)x] / [4 + rn(2 — n)J. Das bedeutet, 

daß man diesen Faktor nicht aus einer endlichen Ordnung in der Entwicklung in x 

erhalten kann. Damit lassen sich die Ergebnisse der (l/d)-Entwicklung im allgemeinen 

nicht aus einer endlichen Ordnung der Entwicklung nach x erhalten. Man muß also 

ganze Diagrammklassen aufsummieren, um (l/d)-Korrekturen für den Diagonalanteil 

der Selbstenergie S<,(i,i) zu berechnen. Ein Beispiel hierfür werden wir in Kapitel 8 

geben (siehe auch Appendix A2).

Andererseits kann der Parameter x dazu dienen, denjenigen Parameterbereich für 

$ und n zu bestimmen, für den die Gutzwiller-Approximation für die Gutzwiller- 

Wellenfunktion bereits eine gute Näherung darstellt. Der Grund dafür ist, daß S0(k) 

durch eine Reihe in (n/2)2i definiert ist, wobei x = x-, durch Gleichung (102a) gege­

ben ist (in jeder Ordnung in x erhält man zwei neue Linien in den Graphen, die einen 

zusätzlichen Faktor (n/2)2 ergeben). Demzufolge ist die Gutzwiller-Approximation für 

die Gutzwiller-Wellenfunktion eine gute Näherung für kleine x. Dies ist der Fall für 

g —* 1 (G —» 1), d. h. für kleine Wechselwirkungsstärken U in Gleichung (1) und/oder 

für kleine Dichten n (n —» 0). Außerdem ist die Reihe in x konvergent für alle (<?, n), 

wobei der Konvergenzradius bei (g = 0,n = 1) erreicht wird [12]. Daraus folgt, daß 

die (l/d)-Reihe für alle (g.n) mit Ausnahme von g = 0,n — 1 konvergiert. Wie wir 

in Kapitel 7 zeigen werden, ist die (l/d)-Reihe für diese beiden Werte von g und n 

tatsächlich nur eine asymptotische Reihe.
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(a)

Abbildung 2: Graphen in niedrigster Ordnung zur Selbstenergie; a) Graph in zweiter 
Ordnung in z, b) Graph in dritter Ordnung in x

Nach diesen allgemeineren Betrachtungen wollen wir jetzt die (l/d)-Korrekturen 

konkret berechnen. Der einzige Graph, der in Ordnung O(l/d) zum Nebendiagonalan­

teil der Selbstenergie beiträgt, ist in Abbildung 2a dargestellt. Dieser Graph gibt den 

Beitrag der nächsten Nachbarn (NN-Cluster) eines Gittcrplatzes i (d. h. j = i + r) 

zur Selbstenergie Ein Graph höherer Ordnung wie in Abbildung 2b, der von

Ordnung x3 ist, enthält auch Informationen über die Korrelationen zwischen j = i 4- t 

und 1 = i + r' (r t') und ist deshalb von höherer Ordnung in (1/d). Der analytische 

Ausdruck ist dann gegeben durch

£(i’j) = -[d+i„(24-^] P(r)l3 rür T = i“j (107,“)

= = ~2VM‘a • lW1b)

wobei e0 die mittlere kinetische Energie des nichtwechselwirkenden Grundzustandes ist 

( <F ist die Fermi-Energie). Wir erhalten schließlich



Hier haben wir die Abkürzung O(g,n,d) = OG^(g,n) + für die

(!/</)-Entwicklung einer Große O(g,n) eingeführt. Es sei daran erinnert, daß die Selbst­

energie in d = co verschwindet, d. h. es gilt S^qaGJ) = 0. S’^k) ist stetig in k, weil 

5„(k) in dieser Ordnung durch einen Skelettgraphen gegeben ist. Letztendlich erhalten 

wir aus den Gleichungen (105a), (105b)

(109a)

(*M<>,n))(1) = (|^)2[n(G+l-n) + 2(l-n)(G-l)(ükJo]

x NiJ-l3
[n(2-n)J

[(n-D(g-l)
1 n(2-n)G «o+ f(k)

und die (l/d)-Korrektur zum Sprung an der Fermikante ist durch

x2(l-n)(G-l)
(n-l)(G-l)_ ,

(2-n)G £o +

gegeben. Gleichung (109c) zeigt, daß im allgemeinen > 0 gilt.

(109b)

(109c)

In d = co berechnet sich die mittlere kinetische Energie pro Gitterplatz zu

(l/L){T(g,n,d=: co)) = (l/£)(7’(ff,n))GA = (109d)

Die Korrektur in Ordnung (1/d) lautet 
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wobei wir verwendet haben, daß in allen Dimensionen die Relation (1/i) 22k [e(^)l — I 

gilt.

In den Gleichungen (109a)-(109e) treten £q und höhere Momente wie e2o au^ Diese 

Größen sind definiert als = 2 de p(e) em, wobei p(e) die Zustandsdichte bezeich­

net. Sie hängen selbst von der Dimension ab (z. B. gilt | ?o |= 2^/^ 0.900 in 

d = 1, | e0 ]= 8/jr2 ~ 0.811 in d = 2 und | e0 |= 0.798 in d — oo). Um nun

in Ordnung O(l/d) konsistent zu sein, müßten wir in jedem Schritt (i) die Zustands­

dichte in Potenzen von (l/d) entwickeln (für Details, siehe Referenz [24]), (ii) «r aus 

n = 2 fi^pfejde bestimmen und (iii) diese Ausdrücke bis zur gegebenen Ordnung in 

Gleichungen (109a)-(109e) einsetzen. Dieser Weg ist nicht nur lang und beschwerlich, 

sondern es stimmen auch die analytischen Eigenschaften einer solchen Zustandsdichte 

nie mit denen einer realistischen Zustandsdichte überein (z. B. endliche Bandbreite, 

Van-Hove Singularitäten). Aus diesen Gründen werden wir immer die exakte Zustands­

dichte für eine vorgegebene Dimension verwenden, wenn wir mit Resultaten für endliche 

Dimensionen d vergleichen. Man mag zwar einwenden, daß es sich nicht mehr um eine 

systematische Entwicklung in (I/d) handelt; die Fehler aber, die man auf diese Weise 

macht, sind für einen Ausdruck in Ordnung (l/d)m nur von Ordnung (l/d)m+l. Wie 

wir in Kapitel 7 sehen werden, liefert diese Näherung sehr gute Übereinstimmung mit 

exakten (d = 1) und numerischen Ergebnissen (d = 2,3).

6.2 Korrektur in zweiter Ordnung für halbgefülltes Band

Für das halbgefüllte Band (n = 1) können wir die Teilchen-Loch-Symmetrie des Pro­

blems ausnützen. Wegen der resultierenden Vereinfachungen können wir ohne allzuviel 

Mühe bis zur Ordnung (1/d)2 rechnen.

Für halbvolles Band ist x = 4(g - l)/(g + 1), ? = (4<?)Z(i + ff)2, a = 0 und
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Tabelle 1: Vorzeichen, Gewichte und Werte der Graphen in Abbildung 3 in Ordnung 
O((l/d)’)

Graph Vorzeichen Gewicht Wert

a + 1

b + 3 (eo)se(k)
512<f

c - 3

= 0. Im Falle der Gutzwiller-Wellenfunktion für halbvolles Band kann man 

also die Koeffizienten der (l/d)-Entwicklung durch eine endliche Zahl von Termen der 

Entwicklung im Parameter z darstellen. Wir erhalten

= = Kiiff+(d^<Ak'>»+(rhr'(k) ■ (uo,>> 

Wegen der Teiichen-Loch-Symmetrie gilt auch j) = 0, wenn i,j auf demselben 

Untergitter sind. Das bedeutet, daß zwei Gitterpunkte, die in einem Graphen durch 

eine Linie verbunden sind, zu verschiedenen Untergittern gehören müssen. Deshalb 

verschwindet der Graph in Abbildung 2b (Seite 78), denn i und 1, I und j, i und j 

können nicht zugleich auf verschiedenen Untergittem sein. Weiterhin hat der Graph 

in Abbildung 2a keine (I/d)2-Korrektur, weil dafür i und j übernächste Nachbarn sein 

müßten, d. h. es wäre i auf demselben Untergitter wie j. Alle Graphen, die überhaupt 

in Ordnung C?((l/d)2) beitragen, sind in Abbildung 3 gezeigt.

Die Werte der Graphen im k-Raum sind in Tabelle 1 aufgelistet. Diese Tabelle
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i<=>g—/Oj

(C)

Abbildung 3: Alic Graphen, die im Falle der Gutzwiüer-Wellenfunktion bei halber 
Bandfüllung zur Ordnung (1/d)2 beitragen.

enthält ebenso das Vorzeichen und die Multiplizität (das „Gewicht“) eines Graphen. 

Diese beiden Faktoren erhält man aus dem Wick-Theorem. Um den Beitrag zur zweiten 

Ordnung zu erhalten, muß man die Werte der Graphen mit ihrem Vorzeichen und 

Gewicht multiplizieren und die drei Terme anschließend aufaddieren. Der Graph in 

Abbildung 3c ist besonders dimensionsabhängig. Man findet nämlich den Hauptbeitrag, 

wenn alle Gittervektoren nächste Nachbarn zueinander sind. Für hohe Dimensionen 

(d > 2) ergeben diese Anteile den Wert des Graphen (c) in Tabelle 1, sind aber erheblich 

kleiner in d = 1. Deswegen führen die untenstehenden Ausdrücke in O((l/d)3) zu einer 

guten Näherung für d > 2, geben aber in d = 1 keine gute Näherung. Man erhält 

also aus der konkreten Betrachtung von einzelnen Graphen Hinweise darauf, bis zu 
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welcher endlichen Ordnung in (1/d) man entwickeln sollte, um eine gute Näherung für 

eine vorgegebene Dimension d zu erhalten. Im Fall der Gutzwiller-Wellenfunktion sieht 

man, daß man in d = 1 nur bis zur Ordnung (1/d) entwickeln sollte, um eine gute 

Übereinstimmung mit dem exakten Resultat [12] zu erhalten.

Ein anderes Verfahren, das auch vernünftige Ergebnisse in d = 1 liefert, besteht aus 

folgendem Vorgehen: man identifiziert die einzelnen Graphen bezüglich ihres (l/d)- 

Verhaltens, berechnet sie aber dann erakt in der gegebenen Dimension d [65]. Diese 

Überlegung läßt auch eine Erweiterung der (l/d)-Entwicklung auf beliebige Gitterty­

pen zu, indem man die relevanten Graphen wie bisher identifiziert und sie dann exakt 

für einen bestimmten Gittertyp auswertet. Für diese Vorgehensweise gilt das bei der 

Diskussion der Zustandsdichte Gesagte entsprechend: man entwickelt nicht mehr nach 

(Ud) im m&thema.tischen Sinn, sondern verwendet einen im Paramter (1/d) begründe­

ten Zugang zur Identifizierung von relevanten Graphen(-klassen).

Addieren wir die drei Beiträge der Graphen in Abbildung 3, so erhalten wir die 

Selbstenergiekorrekturen als

r°(,>(k} = “(rü) (Zo)3£(k) <11Ia)
s/’fk) = £(1)(k) (e0)2 [| - |(co)2 + e0((k) .(lllb)

Die Korrekturen zur mittleren Doppelbesetzung lauten letztlich

?%) = (112a)

3<2,&) = s‘%) '

wobei d0A =5/[2(l +5)] gilt.

(112b)
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Die Korrekturen zur mittleren kinetischen Energie sind durch 

= -<r(3))GA^ <113a)

(T(s)}(3) = (W1^ (Hrf/(-3 + 9(<o)2-^PO)) (U3b)

gegeben, wobei (1M)(T(0))ga = +£)2] ist.

Beachtenswert ist die Tatsache, daß es für n = 1 keine Korrekturen zum Sprung der 

Impulsverteilung an der Fermikante gibt, d. h.

’« = (TT^ + °((1O • UM)

Wegen der Teilchen-Loch-Symmetrie ist q(g,n = 1) in d — 1,2, oo durch denselben 

Ausdruck gegeben [12], nämlich durch

= D = (r^ • (ns)

Außerdem gibt es gemäß Gleichung (114) keine (l/d)-Korrekturen zu dieser Größe bis 

Ordnung (1/d)2. Wir können daher die Vermutung in Referenz [12] unterstützen, daß 

die Diskontinuität in allen Dimensionen d durch Gleichung (115) gegeben ist.
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7 Vergleich mit exakten und numerischen Ergebnissen für die 
paramagnetische Gutzwilier-Wellenfunktion in d=l,2,3

In diesem Kapitel zeigen wir, daß die analytischen Ausdrücke in den ersten Ordnungen 

der (1/d) Entwicklung hervorragende Übereinstimmung mit allen numerischen Resul­

taten für die Gutzwitler- WeUenfunktion in d = 2,3 liefern. Wir erhalten sogar überra­

schend gute Ergebnisse in einer Dimension (d = 1), wo wir mit der exakten Losung [12] 

vergleichen können. Die einzige Unzulänglichkeit der (l/d)-Entwicklung in endlicher 

Ordnung ist die Vorhersage eines Brinkman-Rice Lokalisierungsübergangs [7] für Wech­

selwirkungsstärken U > im Hubbard-Modell. Dieser Übergang tritt auch im Rahmen 

der Gutzwiller- Weilenfunktion in keiner endlichen Dimension auf [26], sondern existiert 

nur in d = oo (im Hubbard-Modell erwartet man einen magnetischen Übergang, der 

noch vor dem Lokalisierungsübergang auftreten sollte). Andererseits sind die abso­

luten Werte der (l/d)-Korrekturen zur GutzwiUer-Approximation für die Gutzwiller- 

Wellenfunktion in d — 3 sehr klein. Deswegen ist die Physik, die aus der GutzwiUer- 

Approximation für die Gutzwiller-Wellenfunktion abgeleitet wurde, sowohl qualitativ 

als auch quantitativ in der Gutzwiller-Wellenfunktion in d = 3 enthalten, ist also kein 

Artefakt der GutzwiUer-Approximation, solange man Wechselwirkungsstärken U be­

trachtet, die nicht zu nahe an Uc sind.

7.1 Doppelbesetzung und potentielle Energie

Die potentielle Energie im Hubbard-Modell ergibt sich als (V) == U(D} — ULd. Für 

diesen Anteil an der gesamten Variationsenergie müssen wir also die mittlere Doppel­

besetzung kennen.

Wir können von einer (l/d)-Entwicklung prinzipiell nicht erwarten, daß sie gute 

Ergebnisse für d = 1 liefern sollte. Andererseits gibt es eine analytische Lösung für
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Abbildung 4: Mittlere Doppelbesetzung in der Gutzwiller-Wellenfunktion für ver­
schiedene Bandfüllungen in d — 1. Das exakte Ergebnis [12} und das Ergebnis der 
(l/d)-Entwicklung zur Ordnung (1/d) werden verglichen.

d{g, n) in d = 1 [12). nämlich

3(J.".J = 1) = 5(r^7)7[-1"(1-"(1-«2))-"(1-!'2)l ■ (116)

Wir können daher unsere Ergebnisse in Ordnung (1/d) in Gleichung (109a) mit einem 

exakten Ausdruck vergleichen. Diesen Vergleich zeigt Abbildung 4 für die Dichten n = 

0.5, n = 0.8 und n = 1. Wir sehen, daß wir für kleine Dichten n hervorragende Überein­

stimmung für alle Werte von g erhalten. Dies gilt für alle Dichten, wenn g > 0.2 ist (der 

relative Fehler ist dann kleiner als 10%). Die Ursache für die erstaunlich guten Resultate
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Abbildung 5: Mittlere Doppelbesetzung in der Gutzwjller-WeJlenfunktion für halbvolles 
Band. Numerische Ergebnisse [14] und das Resultat der (1/d)-Entwicklung zur Ordnung 
(I/d)2 werden in d = 2 verglichen.

ist im Parameter x zu suchen, der für kleine Dichten (n < 0.5) und/oder mittlere 

Korrelationsstärken (p > 0.2) klein ist. Die Selbstenergie wird in unserem Formalismus 

nach Potenzen von x entwickelt (vgl. die Diskussion in Abschnitt 6.1, Seite 77). In der 

Gutzwiller-Approximation ist die Selbstenergie gleich Null. Der Nebendiagonalanteil 

der Selbstenergie S^(i,j) (i j) ist proportional zu x1, der Diagonaleinteil S<,(i,i) ist 

proportional zu x3 (siehe Gleichung (106))- Für kleine Werte von x konvergiert auch 

die ^-Entwicklung sehr gut. und die Terme der ersten Ordnungen reichen für eine gute 

Übereinstimmung mit dem exakten Ergebnis aus. Da sich für kleine x die (1/d)- und 

die x-Entwicklung erst In Ordnung x3 unterscheiden, wird so die gute Übereinstimmung
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Abbildung 6: Mittlere Doppelbesetzung in der Gutzwiller-Wellenfunktion für halbvolles 
Band. Numerische Ergebnisse [14] und das Resultat der (1/d)-Entwicklung zur Ordnung 
(1/d)2 werden in d = 3 verglichen.

der (l/d)-Resu!tate mit dem exakten Ergebnis in d — 1 für kleine Dichten (n < 0.5) 

und/oder mäßige Korrelationsstärken (g > 0.2) verständlich.

Die Qualität der (1/d)-Resultate ist in d = 2,3 natürlich noch besser, da d = 1 den 

Extremfall für eine (1/d)-Entwicklung darstellt. Wir vergleichen jetzt unsere Ergebnisse 

für d(g,n = 1) zur Ordnung (1/d)2 mit numerischen Ergebnissen [14]. Abbildung 5 

zeigt, daß ind = 2 alte numerischen Punkte auf der analytischen Kurve liegen. In d = 3 

können wir uns noch mehr auf unsere analytischen Resultate verlassen. Abbildung 6 

zeigt, daß die numerischen Punkte systematisch unter der analytischen Kurven liegen.
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Daraus schließen wir, daß die numerischen Ergebnisse (gerechnet auf 6x6x6 = 216 

Gitterpunkten) aufgrund der endlichen Systemgröße zu tief liegen. Aus dem Vergleich 

schließen wir ferner, daß der analytische Ausdruck für d{g,n = 1) zur Ordnung (1/d)2 

bis herunter zu recht kleinen Werten von g (g > 0.02 in d = 3) sehr genau ist.

Der einzige problematische Bereich im Parameterraum (<j,n) ist g —» 0, n —♦ 1. Glei­

chung (110a) zeigt explizit, daß jede endliche (l/d)-Entwicklung folgendes Verhalten für 

die mittlere Doppelbesetzung bei halbvollem Band und starker Korrelation liefert [26]

d(g,n = l) = C2g für g —» 0. (11.7a)

In der (l/d)-Entwicklung folgt aus den Gleichungen (112a), (H2b)

(117b)

Wir sehen also, daß Cj in endlichen Dimensionen reduziert wird, es wird aber in keiner 

endlichen Ordnung der (l/d)-Entwick!ung auf Null gedrückt.

Wie bereits in Unterabschnitt 4.2.3 erwähnt, gibt es starke analytische [26] und auch 

numerische [14] Argumente dafür, daß cj = 0 gilt, d. h. es verschwindet d{g,n = 1) 

schneller als linear in g für g —» 0. Wir folgern daraus, daß die (l/d)-Reihe für cj 

in Gleichung (117b) lediglich eine asymptotische Reihe ist, so daß Gleichung (117a) 

das falsche Verhalten für d(g —» 0, n = 1) liefert. Das lineare Verhalten von d(g, n) 

für kleine g hat drastische Auswirkungen für die Variationsenergie [26], nämlich den 

Brinkman-Rice Lokalisierungsübergang (siehe unten).

7.2 Mittlere kinetische Energie und Grundzustandsenergie

Das Verhalten der mittleren kinetischen Energie {T(g,n)} wird durch die (1/d)-Entwick­

lung für alle (<7,n) richtig wiedergegeben. Dies kann man aus den Abbildungen 7 und 8
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Abbildung 7: Mittlere kinetische Energie in der Gutzwiller-Wellcnfunktion in Abhän­
gigkeit von der Bandfüllung in d — 1 für den hochkorrelierten Grenzfall (<? = 0). Das 
exakte Ergebnis [12} und das Ergebnis der (l/d)-Entwicklung zur Ordnung (I/d) werden 
verglichen.

ersehen. Dort vergleichen wir unsere Resultate mit dem exakten Ergebnis in d = I (12| 

bzw. mit dem numerischen Ergebnis in d = 2 [14] für g = 0 in Abhängigkeit von der 

Bandfüllung n. Selbst in diesem extremen Fall (niedrige Dimension d, hochkorreliertes 

Regime g = 0) werden die exakten und numerischen Daten durch die erste Ordnung 

der (l/d)-Entwicklung ausgezeichnet reproduziert.

Für n = 1, £ —» 0 erhalten wir

^{T} = CiCoff für g -» 0. (118a)
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Abbildung 8: Mittlere kinetische Energie in der Gutzwiller-Wellenfunktion in Abhän­
gigkeit von der Bandfüllung in d = 2 für den hochkorrelierten Grenzfall (g = 0). 
Numerische Ergebnisse (14] und das Ergebnis der (l/d)-Entwicklung zur Ordnung (1/d) 
werden verglichen.

In Ordnung (1/d)2 gilt (siehe Gleichungen (113a), (113b))

Ci = 4 ‘-f (118b)

Da wir nun sowohl d(g,n) als auch (T(^,n)) kennen, können wir jetzt den Erwar­

tungswert des Hamiltonoperators (H(g,n))/L = {T(g,n))/L) + Ud(g,n) bezüglich g 

für vorgegebene Wechselwirkung U minimieren und 5’p!(Lr, n) bestimmen. Dies liefert 

dann als Grundzustandsenergie E(U,rt) = {II(g'”,t,n))/L. Zur Erinnerung sei bemerkt, 

daß in unserer Notation U = V/t‘ = U/(y/2dt) ist. In Abbildung 9 zeigen wir das
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u/t
Abbildung 9: Grundzustandsenergie für die Gutzwiller-Wellenfunktion für halbvolles 
Band in d = 2. Das numerische Ergebnis [14] und das Ergebnis der (l/d)-Entwicklung 
zur Ordnung (1/d)3 werden verglichen.

analytische Ergebnis fur E(Ult,n = l) zusammen mit dem numerischen Resultat in 

d = 2 aus Referenz [14]. In Abbildung 10 zeigen wir das Ergebnis für E{U!t,n — 1) 

in d = 3 zusammen mit dem der Gutzwiller-Approximation. Weil sowohl d{g,n = 1) 

als auch (T(^,n = 1)) von g linear abhängen, finden wir einen unphysikalischen Loka­

lisierungsübergang bei U — Uc d. h. E(U!ttn = 1) = 0 für alle U > U^. Hierbei ist (Jc 

gegeben durch [26]

^/‘• = -|öil • (119)

Dieser Übergang ist der bekannte Brinkman-Rice Übergang [7], der in Wirklichkeit nur 

in d = oo auftritt, der aber nie in irgendeiner endlichen Dimension [14,26] existieren 

sollte. Jede endliche Ordnung der (1/d)-Entwicklung verschiebt Ue lediglich zu einem
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Abbildung 10: Grundzustandsenergie für die Gutzwiller-Wellenfunktion für halbvolles 
Band in d = 3. Das Ergebnis der Gutzwiller-Approximation (d = oo) und das Ergebnis 
der (l/d)-Entwicklung zur Ordnung (1/d)2 werden verglichen.

größeren Wert. Zur Ordnung (1/d)2 erhalten wir

U* = (]20a)

+(i? w I3+-19 w+22 w]]

U^° = SJeol - (120b)

Die Korrekturen zu sind tatsächlich sehr klein, d. h. von der Größenordnung 8% 

in d = 2 und 4% in d = 3. Das bedeutet, daß man sich auf die Ergebnisse der 

(l/d)-Entwicklung bis zu Werten von U verlassen kann, die sehr nahe bei liegen. 

Weiterhin kann man aus Abbildung 10 erkennen, daß die Gutzwiller-Approximation für 

die Gutzwiller-Wellenfunktion eine gute Näherung in d = 3 für alle Werte von U dar­

stellt. Demzufolge ist die Gutzwiller-Approximation für die Gutzwiller-Wellenfunktion
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n=0.8
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Abbildung 11: Impulsverteilung in der Gutzwiller-Wellenfunktion für n = 0.8 in d = 1 
für verschiedene Wechselwirkungsparameter g. Das exakte Ergebnis [12] und das Er­
gebnis der (l/d)-Entwicklung zur Ordnung (1/d) werden verglichen, 

eine quantitativ sehr gute Näherung für alle U, die nicht zu nahe bei liegen.

7.3 Impulsverteilung und Sprung an der Fermikante

Als letztes Beispiel für die Anwendbarkeit der (l/d)-Entwicklung betrachten wir die 

Impulsverteilung. Wir vergleichen (fi^) in Gleichung (109b) mit dem exakten Ergeb­

nis in d = 1. Abbildung 11 zeigt den Fall n = 0.8, Abbildung 12 den Fall n = 1.0 für 

verschieden Werte von g. Die Kurven stimmen sehr gut überein - nicht nur qualitativ, 

sondern sogar quantitativ. Es ist klar, daß die Übereinstimmung für d — 2,3 sogar 

noch besser sein wird [15], Es ist beachtenswert, daß unsere Entwicklung die unerwar-
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Abbildung 12: Impulsverteilung in der Gutzwiller-Wellcnfunktion für n = 1.0 in d = 1 
für verschiedene Wechselwirkungsparameter g. Das exakte Ergebnis [12] und das Er­
gebnis der (l/d)-Entwicklung zur Ordnung (1/d) werden verglichen.

tete Krümmung von in der Gutzwiller-Wellenfunktiou richtig wiedergibt, was mit 

anderen Methoden nicht gelang [54].

Eine der physikalisch interessantesten Größen ist der Sprung an der Fermikante, 

wo e(k) = £p gilt. Grund hierfür ist, daß der Vergrößerungsfaktor für die effektive 

Masse m*/m im Rahmen der Fermiflüssigkeitstheorie [8] proportional zu q-1 ist, d. h. 

es divergiert die effektive Masse für q -+ 0 (Lokalisierungsübergang). Weil nun aber 

$-1 oc (1/g) gilt, erhalten wir eine divergente effektive Masse für g —+ 0. Die obige 

Diskussion zeigt uns, daß g innerhalb eines kleinen Bereichs urn U —» Uc auf sehr kleine 

Werte abfällt. Das bedeutet, daß m* sehr schnell ansteigt und die Fermionen scheinbar 
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lokalisiert werden („fast lokalisierte Fermiflüssigkeit“ [8]). Wir bestätigen daher die 

Argumentation in Referenz (10p. das Bild fast lokalisierter Fermionen bleibt richtig, 

auch wenn der Lokalisierungsübergang in Wirklichkeit gar nicht auftritt.

Wenn man dasselbe Konzept auf einen Metall*Isolator-Übergang anwendet [7], be­

deutet dies, daß in allen endlichen Dimensionen die Leitfähigkeit auch in der Gutzwiller- 

Wellenfunktion nicht auf Null abfällt. Sie bleibt klein aber endlich für alle U < co und 

ein Metall-Isolator-Übergang im Sinne von Mott und Hubbard [1,4] tritt nicht auf.
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8 Neue Variationswellenfunktionen

Im letzten Kapitel haben wir gezeigt, daß die (l/d)-Entwicklung im Fedie der Gutz- 

wilier-Wellenfunktion eine quantitative Berechnung von Erwartungswerten in endli­

chen Dimensionen erlaubt. Wir folgern daraus, daß das Konzept hoher Dimensio­

nen auch für kompliziertere Gutzwiller-korrelierte Variationswellenfunktionen in nied­

rigen Dimensionen fruchtbar gemacht werden kann. Dies ist deshalb nötig, weil die 

Gutzwiller-Wellenfunktion sicher eine zu einfache Variationswellenfunktion ist und bei­

spielsweise den im Hubbard-Modell erwarteten Antiferromagnetismus nicht beschreiben 

kann. Durch die Berücksichtigung der Möglichkeit einer magnetischen Struktur kann 

man eine bessere obere Schranke für die Grundzustandsenergie im Hubbard-Modell 

ableiten als sie von der Gutzwiller-Wellenfunktion geliefert wird.

In diesem Kapitel betrachten wir eine allgemeine Klasse Gutzwiller-korrelierter anti­

ferromagnetischer Spindichtewellen als mögliche Grundzustände für das Hubbard-, t-J- 

und antiferromagnetische Spin-1/2 Heisenberg-Modell (vgl. auch Unterabschnitt 3.1.2). 

In Abschnitt 8.1 schlagen wir eine neue Variationswellenfunktion für das Hubbard- und 

das t-J-Modell vor, die die Form der optimalen Gutzwiller-korrelierten antiferroma­

gnetischen Spindichtewelle in d = oo hat. In Abschnitt 8.2 schlagen wir eine weitere 

Variationswellenfunktion für das Heisenberg-Modell vor, wofür wir bis zur Ordnung 

(l/d) rechnen.

8.1 Hubbard- und t-J-Modell

Für numerische Untersuchungen haben Yokoyama und Shiba [14] folgende Gutzwiller- 

korrelierte Spindichtewelle [ Wg} verwendet



98

i 1’M=/ n , (121)
e(k)<cr •>

wobei sie eine Hartree-Fock Form für ujc, angenommen haben. Wir haben in Unter­

abschnitt 3.1.2 die optimale Gutzwiller-korrelierte antiferromagnetische Spindicbtewelle 

in d = oo bestimmt. Aus diesen Ergebnissen kann man ersehen, daß die von Yokoyama 

und Shiba verwendete Parametrisierung in hohen Dimensionen nicht optimal ist. Es 

ist möglich, die in Unterabschnitt 3.1.2 gewonnene Wellenfunktion in die Form von 

Gleichung (121) umzuschreiben. Die Parameter «k, «k in den Gleichungen (48b), (50) 

und Uk> vk ’n Gleichung (121) sind durch die folgende einfache Lineartransformation 

miteinander verknüpft

«k = |(1 + ~)ük + z(l - ~)£k
z 7 l 7

vk = ^(1 - ^)Äi + ^(i + ^)Sk ,

wobei wir
_ /4 - r(n + m0)(2 - n + m0)\ 1/2 

\4 - i(n - m0)(2 - n — mo)}

(122a)

(122b)

(123a)

4(4d-n‘i +rn^)
(123b)

gesetzt haben. Die letztere der beiden Gleichungen folgt aus Gleichung (45). Hierbei

ist n die Teilchendichte im System. Die Untergittermagnetisierung in | $o) ist mit mo 

bezeichnet, wobei | Vg) = | £q) gilt. In d = oo ist die Untergittermagnetisierung m

des wechselwirkenden Systems durch m = mo gegeben. Wir haben

2 A_____
(124)

Gleichung (121) und die Parametrisierung in den Gleichungen (122a) und (122b) defi­

nieren jetzt eine neue Variationswellenfunktion, die nur mehr von zwei Variationspara­

metern (A,^) abhängt, da ük und Vk gemäß Gleichungen (48b) und (50) lauten
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1
2

t l^)[ 
vtoP + A’«k

vi = -sgn(e(k))

(125)

Diese einfache Wellenfunktion kann nunmehr in Dimensionen d < oo numerisch unter­

sucht werden. Wir sind davon überzeugt, daß es möglich ist, die Resultate früherer 

numerischer Rechnungen von Yokoyama und Shiba [14] zu verbessern, wenn man eine 

Variationswellenfunktion verwendet, die die Form der optimalen Gutzwiller-korrelierten 

antiferromagnetischen Spindichtewelle in d = oo hat. Entsprechende Rechnungen dazu 

werden bereits in Angriff genommen [66].

Der Formalismus in Kapitel 3 kann auch auf das t-J-Modell [35-37] angewendet wer­

den. Dieses Modell kann man aus dem Hubbard-Modell erhalten, indem man für große 

Wechselwirkungsstärke U in entarteter Störungstheorie in t/U —» 0 einen effektiven Ha- 

miltonoperator ableitet und sich auf den Unterraum ohne doppelbesetzte Gitterplätze 

beschränkt. Wir können diese Einschränkung dadurch erfüllen, daß wir in unseren 

Ausdrücken g = 0 setzen. Dadurch wird der Gutzwiller-Korrelator zum Projektor 

auf diesen Unterraum, — Hit 1 “ A)- D*® t-J-Modell lautet dann 

wobei Sj der Vektoroperator für Spin-1/2 aus Gleichungen (75a) und (75e) ist. Im Mo­

dell sind Anteile in Ordnung (r)2/U, die von drei verschiedenen Gitterplätzen herrühren 

(„3-site-Beiträge“), nicht mitberücksichtigt. Zur Begründung führen Zhang et al. [36] 

an, daß das t-J-Modell nur in der Nähe halber Bandfüllung studiert werden soll. Da 

die 3-site-Beiträge proportional zur (geringen) Löcherkonzentration sind, werden sie ge­

gen die kinetische Energie und den Spinterm vernachlässigt. Diese Argumentation ist 
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natürlich nur für J <C t zulässig.

Alle Größen sind so definiert, daß wir endliche Ergebnisse in d = oo erhalten (siehe 

hierzu auch Abschnitt 4.2). Wenden wir unsere allgemeine Gutzwiller-korrelierte an­

tiferromagnetische Spindichtewelle auf diesen Hamiltonoperator an, so erhalten wir in 

d = oo (n < 1)

{HtJ)/L = 2q(m0)y X, . (127)

In d = oo ist die Untergittermagnetisierung durch m = m0 = (2/L) S<(k)<«F gegeben 

und es gilt q(mo) = 2(1 — n)/^(2 — n)* — mJ. Führen wir das Variationsverfahren 

durch, so erhalten wir ebenfalls die Hartree-Fock Form der Gleichung (125) für u^, 

t>k. Die Parameter und folgen aus den Gleichungen (122a) und (122b). Wegen 

g — 0 vereinfacht sich Gleichung (123a) zu 7 = ^(2 — ri + m^)/(2 — n — m0). Zu 

beachten ist, daß der einzige Beitrag der Spinwechselwirkung in Gleichung (127) von der 

gebrochenen Spinsymmetrie herrührt. Alle Fluktuationen sind in d — 00 unterdrückt 

(dasselbe würde für die 3-site-Beiträge gelten). Diese Effekte sind aber für d < 00 

sehr wichtig und die (l/d)-Korrekturen sollten für eine gründliche Behandlung des t-J- 

Modells miteinbezogen werden. Für den Spezialfall halber Bandfülluog im t-J-Modell 

werden wir diese Untersuchung in Abschnitt 8.2 durchführen.

Der Vorschlag einer neuen Variationswellenfunktion in Gleichung (121), spezifiziert 

durch die Gleichungen (122)-(125), gilt also sowohl für das Hubbard- wie für das t-J- 

Modell. Die Qualität dieser Variationswellenfunktion wird jetzt in niedrigen Dimensio­

nen numerisch untersucht werden [66], Es sei an dieser Stelle am Rande vermerkt, daß 

der Unterschied zwischen der vorgeschlagenen und bisher verwendeten Wellenfunktion 

nur für 7 1, Gleichung (123a), signifikant ist. Hierzu müssen mo und x erheblich von

Null abweichen, d. h. es muß A > 1 und g 1 gelten. Da dies nur für größeres U der
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Fall ist, wird man erst ab U ~ 4t' einen Unterschied zwischen den beiden Wellenfunk­

tionen feststellen können.

8.2 Spm-l/2-Heisenberg-Modell

Wir leiten jetzt die optimale Gutzwiller-korrelierte antiferromagnetische Spindichtewelle 

für das Spin-1/2 Heisenberg-Modell zur Ordnung (1/d) ab. Das t-J-Modell reduziert 

sich zu diesem Hamiltonian im Falle halber Bandfüllung. Der Hamilton Operator ist 

durch folgende Gleichung gegeben

; = , (128) 
Z<1 j} u

wobei wir eine triviale additive Konstante weggelassen haben. Auf den hier betrachteten 

Aß-Gittern ist der exakte Grundzustand dieses Modells in d = oo bekannt. Es ist der 

Neel-Zustand (67,68], den man aus der Gutzwiller-korrelierten antiferromagnetischen 

Spindichtewelle für = \/>/2 erhält. In diesem Fall gibt es in der Startwellen­

funktion | »Po) (Gleichung (121)) keine Doppelbesetzungen und der Gutzwiller Projektor 

F^_o = HiCl ~ Di) ist irrelevant.

In den folgenden drei Unterabschnitten werden wir zunächst die Berechnung der 

optimalen Gutzwiller-korrelierten antiferromagnetischen Spindichtewelle vorführen, wo­

bei wir technische Details in den Appendices behandeln. Danach vergleichen wir un­

sere Ergebnisse mit den Resultaten anderer Verfahren zur Bestimmung von Grundzu­

standseigenschaften des Heisenberg-Modells. Im dritten Unterabschnitt werden wir die 

optimale Gutzwiller-korrelierte antiferromagnetische Spindichtewelle zu interpretieren 

versuchen.



102

8.2.1 Optimale Gutzwiller-korrelierte antiferromagnetische Spindichtewelie

zur Ordnung 1/d

Die Berechnung der optimalen Form der u^, Vk zur Ordnung (1/d) für | ’n Glei­

chung (121) ist in den Appendices AI und A2 durchgefuhrt. Aus Gleichung (Al.11a)- 

(Al.llc) erhalten wir

™ = 1-lfeT (129a)

(129b)

(e’) = 2/’ , (129c)

wobei Qut der einzige noch verbleibende Variationsparameter ist (ähnlich wie in Ab­

schnitt 3.1.2 kann man also die funktionale Form der unendlich vielen Variationspara­

meter «k, vfc in Abhängigkeit eines Parameters schreiben). Der analytische Ausdruck 

von Uk = u(«(k)) = u(e), vi = v(<(k)) = v(e) in Gleichung (121) ist durch

für ~eB < e < ~(cut

für -ent < £ < 0
(130)

gegeben, wobei — cb = —die untere Bandkante bezeichnet.

Die Grundzustandsenergie zur Ordnung (1/d) erhält man aus Gleichung (129b), die 

man durch die Wahl (e2) = YJI ganz einfach optimieren kann. Zur Ordnung (1/d) 

findet man daher

(SjSl+r)apt

(131a)

(131b)
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Wenden wir diese Beziehungen in d = 2 an, so finden wir = 0.875 und (SjSj+7-)opt = 

—0.3125. Diese Ergebnisse werden wir in Unterabschnitt 8.2.2 mit denen anderer Ver­

fahren vergleichen.

Man kann sich fragen, ob man aus den Resultaten zur Ordnung (l/d) wieder den 

Neel-Zustand erhält, wenn man d — oo setzt. Da in allen Dimensionen von Null 

verschieden ist (0^ J2 1.5 für d > 2), gibt es in allen Dimensionen Elektronenpaare in 

der Energieschale < e < 0, für die u(c), v(e) yfijl gilt- Der Beitrag dieser 

Energieschale zu (SiS|+r) ist stets von Ordnung (1/d) und verschwindet für d = co, so 

daß wir wieder einen Zustand mit der Energie des Neel-Zustandes erhalten. Im Limes 

d = oo sind jedoch sehr viele Zustände mit dem Neel-Zustand entartet (antiferroma­

gnetische Magnonen haben eine Energie der Ordnung (1/d) [47]). Wesentlich ist also, 

daß diese Energieschale für alle Dimensionen d < oo existiert. Die formale Ableitung 

dieses Resultats als (l/d)-Entwicklung um den Neel-Zustand war deshalb möglich, weil 

wir zuerst den Limes g 0 und danach den Limes d —» oo ausgeführt haben.

8.2.2 Vergleich mit anderen Verfahren

Es gibt verschiedene Ansätze, (SjSi+r) exakt zu berechnen oder zumindest Schranken 

für diese Größe anzugeben. Tabelle 2 zeigt einige der Monte-Carlo Ergebnisse für den 

Hamiltonoperator in d = 2 (exakte Diagonalisierung endlicher Systeme, Monte-Carlo 

bei endlichen Temperaturen und bei T = 0) im Vergleich mit Resultaten von Variations- 

Monte-Carlo. Aus diesen Untersuchungen kann man schließen, daß der exakte Wert im 

Bereich —0.335 < (SjSi+r) < —0.334 liegt. Eine rigoros abgeleitete untere Grenze 

wurde von Anderson [67] angegeben, nämlich — (1/4)(1 + (1/d)), d. h. —0.375 in d = 2. 

Analytische obere Grenzen aus dem Variationsprinzip sind in Tabelle 3 angegeben. 

Diese Tabelle enthält auch die Ergebnisse analytischer (im wesentlichen perturbativer)



104

Tabelle 2: Vergleich von Diagonalisierung endlicher Systeme/ Monte-Carlo versus Va-
riations-Monte-Carlo Ergebnissen für (SiSj+j-} in d = 2

Diagonalisierung endlicher Systeme, Variations-Monte-Carlo 
Monte-Carlo
-0.336 [69] -0.328 [69]
-0.3364 [70] -0.3319 [74]
-0.3336 [71] -0.321 [14]

-0.3350 [72]
-0.33459 [73]

Methoden. Die beste obere Schranke aus dem Variationsprinzip ist —0.3344, die von 

Liang et al. [79] angegeben wurde. Diese Gruppe untersuchte eine Variationswellen­

funktion mit drei Parametern auf einem 180 x 180 Gitter mit Variations-Monte Carlo. 

Sachdev [78] erhielt durch eine analytische Rechnung mit einer einparametrigen Varia­

tionswellenfunktion die obere Schranke —0.3317.

Wir sind der Überzeugung, daß die Gutzwiller-korrelierte antiferromagnetische Spin­

dichtewelle | 'I’s=o)> die in Gleichung (121) mit «k = u(c(k)) = u(c)i Vk = v(e(k)) = v(t) 

aus Gleichung (130) definiert ist, ein Ergebnis für (SiSi+1-) liefert, das sehr nahe an 

diese Werte herankommt. Hierzu ist eine numerische Auswertung in d = 2 erforder­

lich. Entsprechende Anstrengungen werden von Shiba [66] in Angriff genommen. Die 

Überzeugung, daß wir eine sehr gute Wellenfunktion gefunden haben, wird unterstützt 

durch einen Vergleich der optimalen Gutzwiller-korrelierten antiferromagnetischen Spin­

dichtewelle mit der von Yokoyama und Shiba in Referenz [14] numerisch untersuchten 

Variationswellenfunktion. Diese Gruppe verwendete
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Tabelle 3: Vergleich von Ergebnissen aus Variations- und störungstheoretischen Metho­
den für (SjSi+r) in d = 2

Variationsverfahren Slörungstheoretische Methoden
-0.324 [75] -0.358 [80]

-0.322 [76] -0.332 [81]

-0.3221 [77] -0.3336(82]

-0.3317(78] -0.3337(83]

—0.3344 [79] -0.3348 [84]

UYsWiVYsC«)
2 111 (132)

wobei Ays ihr Variationsparameter ist. Identifizieren wir Ays = y(<2) < 1> so kann 

man erkennen, daß beide Variationswellcnfunktionen für | e Ays, d. h. in der 

Umgebung von e = 0, tatsächlich übereinstimmen. Sie unterscheiden sich aber er­

heblich für | e Ays- In diesem Bereich (in der Nähe der Bandkante also) haben 

Yokoyama und Shiba die Parameterwerte uys(c) — 1, vys(€) — d- h- die Yokoyama- 

Shiba-Variationswellenfunktion beschreibt einen projezierten Fermi-See freier Elektro­

nenzustände. Für die optimale Gutzwiller-korrelierte antiferromagnetische Spindich- 

teweUe finden wir stattdessen u(e),v(£) — l/x/2 nahe der Bandkante, d. h. wir be­

schreiben projezierte antiferromagnetisch geordnete Zustände. Dieser Unterschied gibt 

unserer Überzeugung nach die Möglichkeit, die guten Ergebnisse von Yokoyama und 

Shiba [14] weiter zu verbessern. Diese Gruppe erhielt für ihre Wellenfunktion den Wert 

(SiSi+r) =-0.321.

Jetzt vergleichen wir unsere Resultate für die Gutzwiller-korrelierte antiferromagne-
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Tabelle 4: Ergebnisse der Spinwellentheorie für (SiSj+T} in d = 2 für S = 1/2

Parameter und 
Ordnung der Entwicklung

(SiSi+r)

(iM) -0.3125(85,86]
(1/Sz) -0.329 [85,86]

(W -0.3340(85,87]
(1/Sz)2 -0.3352(85,87]

tische Spindichtewelle mit denen der linearen Spinwellentheorie. Diese Theorie verwen­

det (1/Sz) als kleinen Parameter für eine Reihenentwicklung für das Heisenberg-Modell. 

Hierbei ist z = 2d die Zahl nächster Nachbarn und S der Gesamtspin (üblicherweise 

wird S als „groß“ angenommen). Die Spinwellentheorie basiert auf einer bosonischen 

Darstellung des Heisenberg-Modells (Holstein-Primakoff-Transformation [47]), während 

wir eine fermionische Darstellung verwenden. Der analytische Ausdruck für (SiSj+r) 

zur Ordnung (1/Sz)2 kann für S = 1/2 folgendermaßen geschrieben werden [85,87]

(SiSj+r) = [1 + 2cq + cq2] (133a)

(133b)

Es ist klar, daß die Ergebnisse einer (1/Sz)-Entwicklung sich von denen einer (1/d)-

Entwicklung unterscheiden. Zur Ordnung (1/d)2 erhalten wir

(134)

Das bedeutet insbesondere, daß die Ergebnisse für (SiSj+r) und m für die Gutzwiller- 

korrelierte antiferromagnetische Spindichtewelle mit denen der linearen Spinwellentheo­

rie zur Ordnung (1/d) völlig übereinstimmen. In Tabelle 4 stellen wir die Resultate 
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dieser Theorie gemäß Gleichung (133) in d = 2 dar. Das (l/d)2-Ergebnis in linea­

rer Spinwellentheorie kommt dem erwarteten exakten Ergebnis in d = 2 sehr nahe. 

Dies unterstützt unsere Überzeugung, daß wir auch für die oben abgeleitete Gutzwiller- 

korrelierte antiferromagnetische Spindichtewelle eine sehr gute Übereinstimmung mit 

den exakten Werten erhalten.

8.2.3 Interpretation der neuen Wellenfunktion

Wir wollen jetzt die Physik interpretieren, die durch die optimale Gutzwiller-korrelierte 

antiferromagnetische Spindichtewelle beschrieben wird. In d = oo sind alle Zustände in 

der Neel-Ordnung „eingefroren“ (J-Spins auf dem A-, J-Spins auf dem ß-Untergitter). 

In endlichen Dimensionen wird es aber Spinflips geben oder -in einem Bild beweglicher 

Fermionen- die f- und J-Elektronen werden sich aufgrund (virtueller) Hüpfprozesse aus 

der Neelordnung herausbewegen. Die Problemstellung ist nun die folgende: wie muß die 

starre Kopplung zwischen den Elektronenanteilen c£ und c£+q aufgebrochen werden, 

um die Wellenfunktion mit niedrigster Energie zu finden ?

Da der Grundzustand des Hubbard-Modells für balbvolles Band für U —» oo in den 

Grundzustand des Heisenberg-Modells übergeht, liegt es nahe, das Bild beweglicher 

Elektronen mit Dispersionsrelation t(k) zugrunde zu legen. Die antiferromagnetische 

Hartree-Fock-Lösung des Hubbard-Modells liefert für 17 > 0 zwei Bänder in der magne­

tischen Brillouinzone, deren Rand durch e(k) = 0 gegeben ist. Im Hartree-Fock Grund­

zustand ist das untere der beiden Bänder bis zum Rand der magnetischen Brillouinzone 

vollständig gefüllt und beschreibt für U = oo den Neel-Zustand, der in d = oo der ex­

akte Grundzustand des Heisenberg-Modells ist. Für d < oo ist der Neel-Zustand nicht 

mehr der exakte Gnindzustand des Heisenberg-Modells, d. h. wir erwarten Anregungen 

von Zuständen des unteren Bandes und zwar in der Nähe der Fermienergie ep = 0
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dieses Bandes. Daraus folgern wir, daß in der Gutzwiller-korrelierten antiferromagne­

tischen Spindichtewelle Elektronenpaare c£, in der Nähe der unteren Bandkante 

(c(k) ~ | <s |) in starrer Neel-Korrelation bleiben, während die Elektronenpaare

Cp+q in der Nähe der magnetischen Brillouinzone ihre Neel-Korrelation schwächen 

(hier ist e(p) nr 0).

Dieses Abschwächen der Korrelation bedeutet andererseits, daß Doppelbesetzungen 

erzeugt werden. Diese müssen durch den Gutzwiller-Projektor wieder entfernt werden. 

Dadurch wird der Vorteil des Aufbrechens der Neel-Korrelation verringert und alle k- 

Zustände werden durchmischt. Die Aussagekraft der Argumentation mit zwei gepaarten 

Elektronen kann daher in Zweifel gezogen werden. Man kann aber argumentieren, daß 

der Gutzwiller-Projektor alle Elektronenpaare cj, c£+q in der gleichen Weise beein­

flußt. Das bedeutet, daß die Dispersionsrelation e(k) des nicht-wechselwirkenden Fer- 

misystems entscheidet, welche der c^, cJ+Q-Paare aufgebrochen werden müssen. Ent­

lang dieser Argumentationskette kann man ein intuitives Verständnis dafür entwicklen, 

warum es eine scharfe Abschneideenergie Qut in den Parametern u(c), t>(e) gibt, die die 

Gutzwiller-korrelierte antiferromagnetische Spindichtewelle bestimmen, fcu« ist einfach 

diejenige Energie, oberhalb derer die Neel-Korrelationen aufgebrochen werden.

Weil die Gutzwiller-korrelierte antiferromagnetische Spindichtewelle auf einer fer­

mionischen Beschreibung des Spin-1/2 Heisenberg-Models beruht, ist man versucht, 

e^t als eine Fermienergie von Spin-1/2 Quasiteilchen („Spinonen“ [37,88]) zu interpre­

tieren. Einerseits erhält man die Abschneideenergie e^t aus einer analytischen Rech­

nung mit unendlich vielen Variationsparametern, setzt diese Energie also keineswegs 

per Hand hinein. Zudem sind die Ergebnisse zur Ordnung (l/<f) für diese Wellen­

funktion recht zufriedenstellend, da wir die Resultate der linearen Spinwellentheorie 

für die Nächst-Nachbar-Spinkorrelation (SjSjvr) und die Untergittermagnetisierung m 
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in dieser Ordnung erhalten. Andererseits ist die Gutzwiller-korrelierte antiferroma­

gnetische Spindichtewelle lediglich ein Variationszustand, so daß man lediglich eine 

genäherte Beschreibung des wahren Grundzustandes des Heisenberg-Modells erhalten 

kann. Außerdem ist der Begriff einer Fermienergie eng mit den Anregungen eines 

Systems verknüpft, deren Beschreibung außerhalb des Rahmens von Grundzustands- 

Variationswellenfunktionen liegt. Schließlich gilt es noch zu bedenken, daß wir mit 

hochkorrelierten VariatioDSwellenfunktionen | ^=0) = UlG — ^i) I ^0) arbeiten, die 

nicht nur die Einteilchen-Produktwellenfunktion | sondern auch den Gutzwiller- 

Projektor enthalten. Demzufolge ist die Physik in | ^,=0) nicht nur durch diejenige 

in | ♦o) gegeben, sondern auch durch den Gutzwiller-Korrelator bestimmt. Man sollte 

deshalb die Eigenschaften der Einteilchen-Produktwellenfunktion | fl'o) nicht überinter­

pretieren.
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9 Zusammenfassung und Ausblick

In dieser Arbeit haben wir einen Formalismus vorgestellt, mit dem man allgemeine 

Gutzwiller-korrelierte Variationswellenfunktionen in endlichen Dimensionen d mittels 

einer (l/d)-Entwick!ung untersuchen kann. Das Konzept hoher Dimensionen wurde 

durch Metzner und Vollhardt [20,25] eingeführt. Für den Spezialfall der Gutzwiller- 

Wellenfunktion zeigten sie [12,20,25], daß die Gutzwiller-Approximation für die Gutz- 

willer-Wellenfunktion in d = oo exakt wird. Diese Erkenntnis eröffnete damit erst­

mals den Weg, die Gutzwiller-Approximation systematisch und kontrolliert auf verall­

gemeinerte Gutzwiller-korrelierte Variationswellenfunktion zu erweitern. Unter Ver­

wendung eines Vielteilchen-Graphenformalismus erhielten diese Autoren in d = oo ein 

geschlossenes, aber unendlichdimensionales Gleichungssystem, dessen Lösung die Ener­

gie für solche Variationswellenfunktionen bestimmt. Die Lösung des Systems war für 

die Gutzwiller-Wellenfunktion (Gutzwi'ler korrelierter Fermisee) und die Gutzwiller- 

korrelierte antiferromagnetische Spindichtewelle möglich, nicht allerdings für beliebige 

Variationswellenfunktionen. Die Berechnung von (l/d)-Korrekturen war im Forma­

lismus von Metzner und Vollhardt selbst für die einfache Gutzwiller-Wellenfunktion 

sehr mühsam [43]. Für kompliziertere Gutzwiller-korrelierte Wellenfunktionen ist eine 

(1/d)-Entwicklung in ihrem Formalismus praktisch undurchführbar.

Um den Limes hoher Dimensionen etwas ökonomischer auszunutzen, verwendeten 

wir dieselben Graphen wie Metzner und Vollhardt, wir haben aber den „Vertices“ und 

„Linien“ eine neue Interpretation gegeben. Dies wurde dadurch erreicht, daß wir den 

Gutzwiller-Korrelator geeignet umgeschrieben haben, ohne daß wir weitere Spezifikatio­

nen über die Variationswellenfunktionen treffen mußten. Dadurch konnte das Verfahren 

auf allgemeine Gutzwiller-korrelierte Variationswellenfunktionen angewendet werden. 

Als Konsequenz der neuen Interpretation von Linien ergab sich, daß wir in d = oo



Ill

keinen Beitrag der Selbstenergie erhalten haben. Daher konnten wir in diesem Limes 

die Grundzustandsenergie für das Hubbard- und das periodische Anderson-Modell für 

allgemeine Gutzwiller-korrelierte Variationswellenfunktionen exakt berechnen, ohne ei­

nen Graphen auswerten zu müssen. Neben den allgemeinen Ausdrücken lieferten wir 

die Resultate für die Gutzwiller-korrelierte antiferromagnetische Spindichtewelle für 

das Hubbard-Modell und die Rice-Ueda-Brandow-Wellenfunktion für das periodische 

Anderson-Modell; diese Ergebnisse erhielten wir in unserem Formalismus als einfache 

Spezialfälle. Die Resultate, die mit Hilfe der Methode von Metzner und Vollhardt er­

zielt wurden [20,25,27], leiteten wir damit auf eine recht einfache und direkte Weise 

ab.

Weiterhin betrachteten wir allgemeine Zweiteilchen-Korrelationsfunktionen, für die 

wir den Graphenformalismus von Gebhard und Vollhardt [13,26] mit den neuen Vertices 

und Linien verwenden konnten. Für allgemeine Gutzwiller-korrelierte Variationswellen­

funktionen gaben wir die zur Ordnung (1/d) exakten Ausdrücke für beliebige Nächst- 

Nachbar-Korrelationsfunktionen an. Für die Gutzwiller-Wcllenfunktion lieferten wir 

geschlossene Ausdrücke für die Korrelationsfunktionen im Impulsraum und bestätig­

ten so die Resultate, die mit Hilfe der Methode von Metzner und Vollhardt abgeleitet 

wurden [26].

Wir konnten unsere allgemeinen, systematisch abgeleiteten Ergebnisse mit den Re­

sultaten anderer Gruppen vergleichen, die ebenfalls versucht hatten, die Gutzwiller- 

Approximation zu erweitern. Zur Erinnerung sei noch einmal festgehalten, daß die 

Gutzwiller-Approximation für die Gutzwiller-Wellenfunktion in d = oo exakt ist. Wir 

haben gezeigt, daß Gutzwiller-artige Näherungen im Falle der Ricc-Ueda-Brandow Wel­

lenfunktion [28-33] für das periodische Anderson-Modell ebenfalls exakt werden [28,30, 

33]. Wie bereits von Metzner und Vollhardt gezeigt wurde, ist dies nicht mehr der
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Fall für kompliziertere, z. B. antiferromagnetische Variationswellenfunktionen {36,53- 

58]. Beispielsweise wurden in manchen Verfahren (36,58] gar keine Erwartungswerte 

für eine gegebene Variationswellenfunktion ausgerechnet, sondern man machte einen 

Ansatz für die analytische Form von (W)(?i4r,di), wobei q-,e und <fj genähert bestimmt 

wurden. Diese Art von Näherungen wird nicht exakt in d = co: die Faktoren konn­

ten nicht eindeutig bestimmt werden [36,53,58] und stimmten im allgemeinen nicht mit 

den exakten Werten in d = co überein [36,53]. Außerdem argumentierte man nur nut 

Variationswellenfunktionen, ohne mit ihnen wirklich zu rechnen. Demzufolge sind die 

Variationswellenfunktionen, die für diese Argumentation benutzt wurden, nicht iden­

tisch zu denen, die wir aus der analytischen Behandlung in d — oo erhalten haben, 

selbst wenn in einer Arbeit [58] sogar die „richtigen“ Faktoren q-la bestimmt wurden.

Unsere allgemeinen Ergebnisse erlaubten auch einen detaillierten Vergleich mit den 

Resultaten von Kotliar und Ruckenstein, die das Hubbard-Modell mit einer „Slave- 

Boson“-Pfadintegral-Methode angegangen sind. Es zeigte sich, daß unsere d = oo- 

Ergebnisse für allgemeine Gutzwiller-korrelierte Variationswellenfunktionen den vollen 

Satz der Sattelpunktsgleichungen von Kotliar und Ruckenstein reproduzierten. Dies 

erlaubte neue Einblicke in die Bedeutung einer Sattelpunktsapproximation für ein Viel­

teilchen-Pfadintegral. Insbesondere wurde dadurch klar, daß der „freien Energie“ von 

Kotliar und Ruckenstein keine mathematisch wohldefinierte Zustandssumme zugrunde 

liegt. Sie kann daher nur zur Beschreibung von Tieftemperatur-Eigenschaften von kor­

relierten Fermisystemen benutzt werden.

Wir gingen über die Gutzwiller-Approximation für die Gutzwiller-Wellenfunktion 

hinaus und berechneten analytische Ausdrücke für die Einteilchen-Dichtematrix, die 

mittlere Doppelbesetzung und die Grundzustandsenergie in der Gutzwiller-Wellenfunk- 

tion zur Ordnung (1/d) für beliebige Korrelationsstärken und Elektronendichten (nur 
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ein Graph war dazu nötig); für halbvolles Band haben wir bis zur Ordnung (1/d)2 

gerechnet (weitere drei Graphen waren dazu nötig). Keine der sogenannten Cluster- 

Entwicklungen [54-56], die zur Verbesserung der Gutzwiller-Approximation für die 

Gutzwiller-Wellenfunktion erdacht wurden, stimmte mit dieser systematischen (l/d)- 

Entwicklung überein. Wir zeigten, daß bereits die Terme in niedrigster Ordnung in 

der Entwicklung nach (1/d) ausreichen, um die numerischen Ergebnisse in d = 2,3 von 

Yokoyama und Shiba [14] quantitativ zu beschreiben. Selbst in d = 1 war die Über­

einstimmung mit der exakten Lösung [12] überraschend gut. Außerdem zeigte sich, 

daß die Schlußfolgerungen, die aus der Anwendung der Gutzwiller-Approximation für 

die Gutzwiller-Wellenfunktion auf normalfluides 3He gezogen worden sind („fast lokali­

sierte Fermiflüssigkeit“ [8-10]) von den Ergebnissen der (L/d)-Entwicklung unterstützt 

werden.

Auf der Grundlage dieser erfolgreichen Anwendung des Konzepts hoher Dimensionen 

auf die Physik niederdimensionaler Systeme schlugen wir neue Variationswellenfunk­

tionen für das Hubbard-, t-J- und antiferromagnetische Spin-l/2-Heisenberg-Modell 

vor. Diese Wellenfunktionen haben die analytische Struktur der optimalen Gutzwiller- 

korrelierten antiferromagnetischen Spindichtewelle zur Ordnung (l/d)° (für das Hub­

bard und t-J-Modell) bzw. zur Ordnung (1/d) (für das Heisenberg-Modell). Wir fanden 

sehr gute Übereinstimmung unserer Resultate in Ordnung (1/d) mit Ergebnissen an­

derer Zugänge zum antiferromagnetischen Spin-1/2 Heisenberg-Modell (z. B. lineare 

Spinwellentheorie). Außerdem hängt diese Wellenfunktion nur von einer Abschneide­

energie ab, die man als Fermi-Energie von Spin-l/2-Quasiteilchen („Spinonen“ [37,88]) 

interpretieren kann. In d = 2 sollte diese einparametrige Wellenfunktion eine Variati­

onsenergie liefern, die der exakten Grundzustandsenergie aus Monte-Carlo-Rechnungen 

sehr nahe kommt. Entsprechende numerische Untersuchungen dazu sind im Gange [66].
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Der Formalismus, der in dieser Arbeit vorgestellt wurde, ist auf Wellenfunktio­

nen beschränkt, die eine feste Gesamtteilchenzahl haben. Eine Verallgemeinerung auf 

projizierte BCS-artige Wellenfunktionen liegt jedoch nahe. Es müssen lediglich wei­

tere lokale „chemische Potentiale“ eingeführt werden, die die lokalen Fluktuationen der 

Cooperpaardichten „nachregeln“, wenn der Gutzwiller-Korrelator auf die Einteilchen- 

Produktwellenfunktion wirkt (vergleiche hierzu Gleichung (20)). Diese Wellenfunktio- 

nen sind deswegen interessant, weil sie eng mit den ursprünglichen RVB-Zuständen 

verknüpft sind, die von Anderson [89] als mögliche Grundzustände für die Hochtempe­

ratursupraleiter vorgeschlagen wurden. Die Untersuchungen an diesen Zuständen sind 

allerdings noch nicht ganz abgeschlossen. Erste Ergebnisse lassen aber darauf schließen, 

daß die von Zhang et al. [36] vorgeschlagene -renormalized mean-field“-Näherung in 

d = OG nicht exakt wird.

Der in dieser Arbeit vorgestellte Zugang zu Gutzwüler-korrelierten Variationswel­

lenfunktionen eröffnet auch neue Wege zur Behandlung anderer bisher ungelöster Pro­

bleme. Beispielsweise sollte es möglich sein, das Verfahren auf den Fall entarte­

ter Bänder zu verallgemeinern. Ziel hierbei wäre der Nachweis, daß sich die Slave- 

Boson-Ergebnisse von Coleman, Read und Newns [45] aus der Behandlung Gutzwiller- 

korrelierter Wellenfunktionen im Limes hoher Entartung gewinnen lassen, womit auch 

eine einheitliche Behandlung des periodischen Anderson-Modells mit Entartung im 

Rahmen Gutzwiller-korrelierter Variationswellenfunktionen verbunden wäre. Damit 

wären die unterschiedlichen Slave-Boson-Verfahren auf eine gemeinsame, systematische 

Grundlage gestellt. Weiterhin besteht die Möglichkeit, eine explizite Zeitabhängigkeit in 

die Wellenfunktionen einzubauen, um die Resultate von „dynamischen“ Slave-Bosonen 

zu beschreiben. Ziel hierbei wäre es, ein tieferes Verständnis für die Bedeutung von 

„Fluktuationen um den Sattelpunkt“ zu erhalten und zu lernen, wie man Zeitabhängig­

keiten sinnvoll in Variationswellenfunktionen einbauen kann. Anzustreben wäre auch 
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die Verallgemeinerung der Methode auf T — O-Greenfunktionen. Ziel hierbei wäre die 

Lösung des Hubbard-Modells in d = oo und die Berechnung von (l/d)-Korrekturen. Es 

dürfte aber nicht leicht sein, diese ehrgeizigen Ziele zu verwirklichen.

Diese Arbeit hat gezeigt, daß die Betrachtung von VariationsweDenfunktionen zur 

Entwicklung neuer Vielteilchenkonzepte (hier: d = oo) und Rechentechniken (hier: 

spezielle Kontraktionen und „Linien“) beitragen kann. Es wäre natürlich wünschens­

wert, wenn diese Betrachtungen auch zur Lösung quantenmechanischer Modelle bzw. 

zur Entwicklung geeigneter kontrollierter Näherungsverfahren für diese Modelle (z. B. 

die Durchführung einer l/d-Entwjcklung) führen würden.



116

Anhang

Al Berechnung der (l/d)-Korrekturen für die Gutzwilier-korrelierte 
antiferromagnetische Spindichtewelle

Wir entwickeln um den Neel-Zustand, wobei wir kleine Abweichungen von diesem Zu­

stand erwarten. Deshalb sollte in Gleichung (50) nahe Eins sein, d. h. es sollte 

0k = I — 5^/d mit 0 < £k d gelten. Auf diese Weise erzeugen wir Doppelbesetzungen 

in der Startwellenfunktion | $0), aus der | ’J'j) — gK | C'o) = ff6 | ^0) gebildet wird. 

Daher müssen wir von Beginn an g = 0 setzen. Die Behandlung dieses Grenzfalles ist 

nicht ganz einfach.

Zunächst haben wir

(AI.la)

(Am)o , 1 2 v-K c
“ 1 j ~ 1 j rd dL <(k^0

(Al.lb)

= J|(a£)»=JI? £ ■

’ “ ' “ L <(k)<0
(Al.lc)

Die Parameter ük, Vk sind zwar für unsere Rechnungen wichtig, da sie J £0) bestimmen 

und wir immer in der Darstellung | ’iS3) = | $0) rechnen. Im Falle g = 0 ist aber

diese Form für die physikalische Interpretation weniger günstig, da wir das für g = 0 

singuläre Verhalten von g^”, <9’’* im Korrelator K in unsere Überlegungen einbeziehen 

müssen. Aussagekräftiger ist daher die Form von | ^s=o) aus Gleichung (121),

1^=0)=fni-A] n |Vakuurn) ■ (A1-2)
1 i J e(k)<0 «

Für «k, ufc erhalten wir gemäß den Gleichungen (122a), (122b)
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(A1.3)

Man erkennt, daß man in Gleichung (A.1.3) = Äfk setzen und Ä gegen Null gehen

lassen darf, ohne daß u^, und damit | aus Gleichung (A1.2) trivial werden.

Dies wird später wichtig werden.

Wir berechnen jetzt (SjSj+r). Aus Gleichungen (85a) und (85b) erhalten wir 

gs‘s‘ = 4 und gs+j- = 4/(1 — Unter Verwendung von = — (l/(2%/2d))to 

folgt aus Gleichung (86), daß

(S!Si+T) = (-1) p + 1 (ei,)’ (1 + (A1.4)

gilt. Hierbei ist m die Untergittermagnetisierung in | 'ts=o) • Diese Größe hat selbst eine 

(l/d)-Korrektur via Gleichung (38). Wir definieren S als den Gitterplatz-diagonalen 

Anteil der Selbstenergie. Wegen der Teilchen-Loch-Symmetrie gilt S = Sj(i 6 A — 

Untergitter) = — Sj(i 6 B — Untergitter), wobei f und i zu vertauschen sind für

Der nicht Gitterplatz-diagonale Beitrag in Gleichung (38) kann einfach berechnet 

werden. Unter Verwendung der Gleichungen (Al.lb), (Al.lc) finden wir zur Ordnung 

(Vd)

1 ( [(A€)of 
d U(Am)0J2 + (S + l)(Am)o (A1.5)

In erster Ordnung liefert Gleichung (A1.4) dann

(sisi+r} = (4)[, , 2[(Ac)or 
d (Am)o (A1.6)

Der Gitterplatz-diagonale Anteil, S, wird im Anhang A2 berechnet. Wir finden, daß S 

von der Ordnung Eins ist und daß insbesondere S > -I gilt. Außerdem ist S eine
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Funktion der Größen (A€)o, (Am)o und von

(Aq)o = | £ e(k)(^)3/2 (A1.7a)
«(M<0

(Amjo = | £ (^)’ - CAl.Tb)
<(k)<o

Die Minimierung der Grundzustandsenergie, Gleichung (A1.6), bezüglich liefert die 

folgende Gleichung für = 6(e(k)) = 6(e)

l^e)]3/2 + Me) - (5(c)]1/2 - 0oe = 0 , (A1.8)

wobei nur noch 0o,0i,02 > 0 als drei Variationsparameter übrigbleiben. Sie sind al­

lesamt positiv gewählt, damit man für 6(e) sinnvolle Resultate an den Zonengrenzen 

erhält (die obere Bandkante ist e = 0, die untere Bandkante ist e = —eg = —y/Zd). Um 

Gleichung (Al.6) zu optimieren, müssen wir setzen

6(-(b) =
02

6(0) = 0

(A1.9a)

(A1.9b)

Der zweite (l/d)-Term in Gleichung (A1.6) ist immer kleiner oder gleich Null, da 

(Am)o > 0 und S > — 1 gilt. Demzufolge müssen wir (Am)o —» 0 zulassen. Dies 

bedeutet 6(e) —> 0, was aber keine triviale Variationswellenfunktion aufiiefert, wie be­

reits oben diskutiert wurde. Nunmehr folgt aus Gleichung (A1.9a), daß 02 —t oo gelten 

muß (0q —» 0 liefert ein triviales Resultat). In diesem Fall ist Gleichung (A1.8) qua­

dratisch für \j6(e). Definieren wir A = (0o/0i)', so können wir 02 —* oo zulassen und 

erhalten das Ergebnis

für -cb < c < -emt 
für —Cat < e < 0

(Al.10)
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Es sind also A und die beiden noch verbleibenden Variationsparameter. Die Größe 

[(Ä€)0]2 /(^m)0 ist A-unabhängig. Wir können nun A —* 0 zulassen, um sicherzustel­

len, daß (Am)o —» 0 gilt. Wie wir in Anhang A2 zeigen, geht der lokale Anteil der 

Selbstenergie S in diesem Limes gegen eine Konstante. Wir haben also letztendlich in 

den Gleichungen (AI.5) und (AL.6)

m = l-^<€2)2 (Al.lla)

<SiSi+^> = [1 + ^e’) (1 _ (Al.11b)

(t2) = 2 /° d£p(t)£2 . (Al.11c)

Insgesamt ist also nur noch ein Variationsparameter übrig.

Es sei noch am Rande bemerkt, daß wir die Elimination von zwei der drei Variati­

onsparameter auch numerisch nachgeprüft haben.
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A2 Berechnung des Gitterplatz-diagonalen Anteils der Selbstenergie in 
der Gutzwiller-korrelierten antiferromagnetischen Spindichtewelle

Der Gitterplatz-diagonale Anteil der Selbstenergie ist in Gleichung (35) definiert als

So(i,i) = -z; {(r'i.-o - . (A2.1)

Es gibt eine ganze Klasse von Diagrammen, die zu S in Ordnung (1/d) beitragen. Die 

Graphen, die zu dieser Klasse gehören, können leicht identifiziert werden. Die ersten 

beiden Graphen dieser unendlichen Reihe sind in Abbildungen 13a und 13b dargestellt. 

Beide sind von der Ordnung (1/d), weil eine dreifache Linie von g nach h verläuft, sodaß 

diese beiden Punkte nächste Nachbarn sein müssen. Man kann aber eine unendliche 

Reihe von „RPA-Blasen“ an den Graph in Abbildung 13a hängen, ohne seine Ordnung 

in (1/d) zu ändern. Solch eine Reihe muß im Limes g = 0, mo —» 1 sehr sorgfältig 

behandelt werden, da wir an den Konvergenzradius berangehen. Wie wir weiter unten 

noch sehen werden, ist die aufsummierte Reihe von Ordnung Eins statt von Ordnung 

(1/d). Um dies zu zeigen führen wir „angezogene“ Linien ein. Diese sind definiert als

^(ij) = ^(i,j) + E^0(i,g)^(g!g)^(g,j) (A2.2)
g

und müssen für jede Linie in den Graphen verwendet werden, da auch der zweite Term 

in Gleichung (A2.2) im Limes g = 0, nio —» 1 von der Ordnung Eins wird. Wir führen 

nun die Fourier Darstellung [25) durch die Gleichung

^(i,j) = T E e-k<i-j)Vr(k) (A2.3)

ein, wobei i auf dem X-Untergitter und j auf dem K-Untergitter liegen soll. Die Um­

kehrtransformation lautet
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(b)

Abbildung 13: Die ersten beiden Graphen einer Reihe für den Gitterplatz-diagonalen 
Anteil der Selbstenergie zur Ordnung (1/d); a) Graph in Ordnung x3, b) Graph in 
Ordnung x4

^X’'(k) = |£Ee'k(i-i)ft(i,j) • (A2.4)
h iexjer

Aus den Größen P„XY()i) kann man nun eine Matrix bilden, wobei PffX4(k) das 

(1,1) Element, ^xe(k) das (1,2) Element, usw. sein soll. Der Vorteil dieser Dar­

stellungsweise ist, daß das Faltungstheorem für die Matrizen gilt [25], d. h. falls 

C(f,h) = I2jA(f,j)ß0>h) gilt, dann folgt C'(k) = A(k) oß(k) und umgekehrt, wo­

bei o das Matrixprodukt von A und B bezeichnen soll. Aus den Gleichungen (A2.2) 
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und (A2.4) erhalten wir

^(k) = ~ {K-nv +l [(«i-™=)!-(l-£2)]} (A2 5a)

7^ßS(k) = -^(k) (A2.5B)

^A8(k) = ^(k) = [1 + -9 (^k ’ ™e)2] ■ (A2.5c)

Gleichung (A2.5c) zeigt, daß das Hüpfen von einem A- zu einem 5-Gitterplatz spin­

unabhängig ist. Weil nun (dy - mQ) von der Ordnung (1/d) ist (siehe Gleichun­

gen (Al.la), (Al.lb)), gibt es keine Korrektur der Ordnung Eins für nächste Nach­

barn. Dies rechtfertigt die Verwendung von P° statt Pe, als wir die Gleichungen (Al.5) 

und (Al.6) abgeleitet haben. Die Gleichung (A2.1) für S lautet jetzt explizit

-1) = ^£^.f)[7vJ3fr-8.r7C(g.i)

+(-x)(-<7)5£[^(i,g)]2( J _°J , (A2.6)

wobei (fVj = -(l/72d) WL)£((k)<0 t(k)P'4e(k) gilt. Verwenden wir die Gleichun­

gen (A2.4) und (A2-5), so können wir Gleichung (A2.6) lösen. Wir erhalten

2v/2dr3 Pr]3 |(2/L) E((fc)<0 e(k>p/4(k)P/Ä(k)|

1 — X (2/L) E([k)<0 pT^k)]1 - pT^k)}2]

Bislang haben wir für endliches g gerechnet. Wir können jetzt den Limes g -* 0 

durchführen, wobei wir in Gleichung (A2.7) 0^ = 1 — 6^/d + «k/d2 setzen. An. 

dieser Stelle müssen wir eine formale (l/d)2-Korreklur, k^, einführen, die aber am 

Ende der Rechnungen für S wieder herausfällt. Wir verwenden x = (—4)/(l — m2), 

rn0 = 2/L 22e(k)<o 0k und die Definitionen in Gleichungen (Al.lb), (Al ic), (Al.7a) 

und (AI.7b). Nadi einigen algebraischen Zwischenschritten erhalten wir endlich

_ 2 ((Ae)0]3 [(A€)0(Am)0 - (1 + SjfAeQp)
[(A.m)0]2 [(Amöotl + S)2 - (1 + 25) [(Am)op| (A2.8)



123

Gleichung (A2.8) ist von dritter Ordnung für S' und hängt nur noch von bekannten 

Größen ab. Da für S’ < — 1 sowohl der Zähler als auch der Nenner positiv sind 

^(Ac)o < 0, (Aejo < O), ist die rechte Seite von Gleichung (A2.8) positiv und 

es gibt keine Lösung für S < —1.

Gleichung (A2.8) hat eine einfache Lösung, wenn wir setzen und A —» 0

zulassen, nämlich S = — 1 + (Am)o [(Ae)o/(A€i)o] > —1. S hat also auch im Limes 

A —» 0 einen endlichen Wert, d. h. wir müssen nicht damit rechnen, daß S in diesem 

Limes divergiert.
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