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1 Einleitung
1.1 Problemstellung

Die Erklirung der Physik korrelierter Fermisysteme ist eine Herausforderung an den
Einfallsreichtumn der theoretischen Physiker. In korrelierten Fermisystemnen (d-Elek-
tronen in Ubergangsmetallen {1-4], f-Elektronen bei den ,Schweren Fermionen® {5,6])
haben die Elektronen eine geringe Beweglichkeit. Die starke, durch Abschirmung effek-
tiv kurzreichweilige Coulomb-Wechselwirkurg induziert die zu beschreibenden Korre-
lationseffekte zwischen den Elektronen (z. B. den Bandmagnretismus in Ubergangsme-
tallen [2,3], den durch Elektron-Elektron-Wechselwirkung induzierten Metall-Isolator-
Ubergang [1,4,7), ,Schwere Ferniionen* [4,6)). Beim normalfluiden 3He hat man es
mit sphirischen Atomen zu tun, die wegen des Kernspins Fermionen sind und die auf-
grund der hohen Dichte stark niteinander wechselwirken (starke Coulomb-Abstofung
der Elektronenschalen und eine schwache van-der-Waals- Anziehung). Wie bei den Elek-
tronen in Metallen fihrt auch hier der fermionische Charakter der Teilchen und die Kon-
kurrenz von kinetischer und potentieller Energie zu interessanten Vielteilcheneffekten
(ofast lokalisierte Fermiflassigkeit *He* [8-10]). Die interessierenden kollektiven Effekie
liegen jenseits eines Einteilchen-Bildes (z. B. Hartree-Fock) und entsprechend gibt es
in diesen Systemen keinen kleinen Parameter (Wechselwirkungsstarke, Dichte der Fer-
mionen), fir den man die #ibliche Stérungstheorie {11] betreiben kdnnte. Demzufolge
ist es selbst fiir vereinfachende Modell-Hamiltonoperatoren wie fiir das Hubbard- {1,2]
oder das periodische Anderson-Modell [5,6] schwierig, Grundzustandseigenschaften zu

berechnen, Es miissen daher andere Zuginge und neue Ideen entwickelt werden.

Variationswellenfunktionen haben sich in dieser Hinsicht als schr hilfreich erwiesen.

Einerseits liefern sie lediglich eine geniherte Beschreibung des wahren Grundzustandes



eines Hamiltonoperators oder eines physikalischen Systems. Andererseits aber ist die
Art der Niherung aus der expliziten Gestalt einer solchen Versuchswellenfunktion sofort
ersichtlich. Man hat daher ein physikalisch begrindetes Gefihl dafiir, welche Effekte
enthalten sein sollten und welche noch in die Variationswellenfunktion eingebaut wer-
den miiften. AuBerdem liefert das Variationsprinzip stets eine exakte obere Schranke
fir die Grundzustandsenergie und gibt damit auch ein Kriterium fiir die Qualitat der

verwendeten Variationswellenfunktionen.

Die Berechnung von Erwartungswerten mit solchen Zustinden ist aber im alige-
meinen immer noch ein kompliziertes quantenmechanisches Vielteilchenproblem. Im
Vergleich zu einer Greenfunktion-Technik [11] bei Temperatur T = 0 hat man zwar
keine Zeithdngigkeiten zu beriicksichtigen, man hat aber die volle Ortsabhingigkeit
zu behandeln. Variationswellenfunktionen dienen so als ,Ubungsfeld® zur Entwick-
lung geeigneter Methoden bei der Behandlung der riumlichen Abhéngigkeit in 7 = 0-
Greenfunktion-Techniken. Die Betrachtung von Variationsansitzen kann also als me-
thodische Vorstufe fiir ein komplizierteres, aber letztlich anzustrebendes Ziel betrachtet

werden.

Die volle Ortsabhangigkeit bei der Berechoung von Erwartungswerten fithrt ande-
rerseits dazu, daB man oft wesfere Naherungen benutzen muB. Man erhilt oft schr
»Physikalische“, aber im wesentlichen unkontrollierte Ergebnisse. Man kann im Endef-
fekt dann nicht mehr unterscheiden, welche physikalischen Effekte tatsichlich in der Va-
riationswellenfunktion enthalten und welche durch die Niherung hereingekommen sind.
Diese grundlegenden Probleme tauchen auch bei der Gutzwiller-Wellenfunktion auf (2],
die eine der einfachsten Vielteilchenwellenfunktionen ist. Die Gutzwiller-Wellenfunktion
besteht aus einem im Ortsraum diagonalen Korrelationsoperator, der auf den Fermi-

see nichtwechselwirkender Teilchen wirkt. Gutzwiller selbst fithrte eine Niherung ein



(»Gutzwiller- Approximation®), um seine Wellenfunktion auszuwerten. Seine Ergeb-
nisse sind dann auf verschiedene physikalische Systeme angewendet worden, z. B. auf

Ferromagnetismus [2], den Metall-Isolator-Ubergang [4,7) und normalftuides *He [8].

Selbst fiir diese einfache Wellenfunktion wurde eine ndherungsfreie Losung erst kiirz-
lich von Vollhardt und Mitarbeitern {12,13) in einer Dimension (d = 1) gefunden. In
héheren Dimensionen wurde bislang allerdings noch keine analytische Lsung gefunden.
Numerische Methoden zur Untersuchung von Variationswellenfunktionen (Variations-
Monte-Carlo Rechnungen) kénnen dagegen nicht nur in d = 1 angewandt werden [14-
17}, sie etlauben auch eine Untersuchung der Gutzwiller-Wellenfunktion in d = 2,3
Dimensionen [14,15]. AuBerdem kann man diese Technik auch auf kompliziertere Va-
riationswellenfunktionen anwenden, solange man die Effekte endlicher Systemgréfie im
Griff behalt [14,18,19]. Das bedeutet, daB man in der numerischen Behandlung nur
eine kleine Zahl von Variationsparametern zulassen darf und die analytische Abhangig-
keit eines Variationsansatzes von diesen Parametern zusatzlich vorgegeben werden mu8.

Das Studium von Variationswellenfunktionen in d = 2,3 ist also keine leichte Aufgabe.

Metzner und Vollhardt [20] haben kiirzlich den Limes hoher Dimensionen eingefihrt.
Dieser Grenzfall wird eine Schliisselrolle fiir analytische Untersuchungen an korrelierten
Fermisystemen spielen. Diese Autoren zeigten unter anderem, dal sich Erwartungs-
werte fir Variationswellenfunktionen in d = oo exakt berechnen lassen. Weiterhin
konnte in diesem Limes das Falicov-Kimball-Modell [21] exakt geldst werden [22], selbst-
konsistente Stérungsrechnungen sind explizit durchfihrbar [23,24] und auch St3rungs-
theoriea fir den stark korrelierten Grenzfall werden behandelbar [25]. Zudem erdffnet
sich dadurch die Méglichkeit, endlichdimensionale Systerne mittels einer durch den Pa-
rameter (1/d) kontrollierten Entwicklung um d = oo zu untersuchen. Im Falle von

Variationswellenfunktionen ist dieses Konzept nicht auf die Gutzwiller- Wellenfunktion



beschrinkt, sondern kann auf verallgemeinerte Gutzwiller-korrelierte Variationswellen-
funktionen angewandt werden. Diese Klasse von Wellenfunktionen, mit der wir uns
in dieser Arbeit ausschlieBlich beschiftigen, besteht aus der Menge aller Einteilchen-
Produktwellenfunktionen, auf die der Gutzwiller-Korrelator wirkt. Als erstes Ergebnis
haben Metzner und Vollhardt nachgewiesen, daf die Gutzwiller- Approximation fir die
Gutzwiller-Wellenfunktion das ezakte Ergebnis in d = oo liefert [12,25]. Auflerdem
haben sie einen allgemeinen Graphenformalismus angegeben, der es im Prinzip er-
laubt, Erwartungswerte fir die ganze Klasse von Gutzwiller-korrelierten Variations-
wellenfunktionen in d = oo exakt auszurechnen. Als Beispiel haben sie ihre Methode
auf die Gutzwiller-korrelierte antiferromagnetische Spindichtewelle in d = oo ange-
wandt [20,25]. Mit ihrer Methode kdnnen auch Korrelationsfunktionen in hohen Dimen-
sionen exakt berechnet werden [26,27). Auch die fiir das periodische Anderson-Modell
vorgeschlagene Rice-Ueda-Brandow Variationswellenfunktion [28-33] kann mit diesem
Verfahren in d = co exakt ausgewertet werden [27]. Es zeigt sich, daB die exakten
Ergebnisse mit den Resultaten der Gutzwiller-artigen Naherungsverfahren [28,30,33]

ubereinstimmen.

Es ist aber keine einfache Aufgabe, die Variationsenergie aus dem vollstindigen,
aber impliziten Gleichungssystem von Metzner und Vollhardt fir allgemeine Variati-
onsansitze zu gewinnen. Auch die explizite Berechnung von (1/d)-Korrekturen ist

sogar fir die einfache Gutzwiller-Wellenfunktion recht mithsam.

Aufgabe dieser Arbeit ist es nun, einen effizienten Formalismus vorzustellen, der den
Limes hoher Dimensionen fir die Gutzwiller-korrelierten Variationswellenfunktionen
besonders Skonomisch putzt. Wir erhoffen uns davon einen wertvollen Beitrag zur

systematischen Untersuchung der Eigenschaften korrelierter Fermisysteme.



1.2 Aufbau der Arbeit

In Kapitel 2 filhren wir das Hubbard-Modell [1,2] ein, das als einfachst denkbares,
quantenmechanisches Vielteilchenmodell seit langem Gegenstand intensiver Studien ist.
Weiterhin spezifizieren wir die Klasse der Wellenfunktionen, die wir untersuchen wol-
len. Zur Berechnung von Erwartungswerten mit diesen Wellenfunktionen leiten wir
einen Graphenformalismus fiir die Einteilchen-Dichtematrix und die mittlere Doppel-
besetzung her, der in allen Dimensionen verwendet werden kann. Wir erhalten dieselben
Graphen wie Metzner und Vollhardt [12], aber die ,Vertices* und , Linien* erhalten eine

neue Interpretation.

In Kapitel 3 zeigen wir, warum dieser Formalismus fiir hohe Dimensionen besonders
effizient ist: ohne einen Graphen berechnen zu missen, geben wir fir das Hubbard-
uad das periodische Anderson-Modell die in d = oo exakten, fiir allgemeine Gutzwiller-
korrelierte Variationswellenfunktionen giltigen Gleichungen fir die Variationsenergie
an. Zwei in der Literatur vieldiskutierte Anwendungen, die Gutzwiller-korrelierte anti-
ferromagnetische Spindichtewelle fiir das Hubbard-Modell und die Rice- Ueda-Brandow
Variationswellenfunktion fir das periodische Anderson-Model), ergeben sich als einfache

Spezialfille.

In Kapitel 4 widmen wir uns der exakten Berechnung von Korrelationsfunktionen
im Limes hoher Dimensionen. Wir verwenden den von Gebhard und Vollhardt [13] ein-
gefihrten Graphenformalismus, aber auch hier mit den neuen ,Vertices* und ,,Linjen“.
Im Limes hoher Dimensionen lassen sich die Korrelationsfunktionen im allgemeinen
aus Blasendiagrammen berechnen. Fiir allgemeine Variationswellenfunktionen geben
wir die Formeln fiir die Nichst-Nachbar-Korrelationsfunktionen an, wozu wir nur ein
Blasendiagramm berechnen miissen. Fiir die Gutzwiller-Wellenfunktion geben wir ge-

schlossene Ausdriicke fiir die Korrelatiousfunktionen im Impulsraum an.



Im Kapitel 5 vergleichen wir unsere in d = oo exakten Ergebnisse mit den Resultaten
von Gutzwiller-artigen Naherungen. In hohen Dimensionen werden die Resultate dieser
Art von Niherangen nur fiir translationsinvariante Variationswellenfunktionen exakt.
Fér allgemeine Gutzwiller-korrelierte Wellenfunktionen ist dies aber nicht mehr der
Fall. Weiterhin zeigen wir, daB die mit der Slave-Boson/Pfad-Integral-Methode von
Kotliar und Ruckenstein [34) gewonnenen Ergebaisse fir das Hubbard-Modell mit Hilte
von in d = oo exakt ausgewerteten Gutzwiller-korrelierten Variationswellenfunktionen
abgeleitet werden kénnen. Auf diese Weise gewinnt man neue Einblicke in die Methode

von Kotliar und Ruckenstein und ihre Resultate.

In Kapitel 6 gehen wir {iber die Gutzwiller- Approximation hinaus und berechnen
(1/d)-Korrekturen fiir die Gutzwiller-Wellenfunktion. Mit der Berechnung eines einzi-
gen Graphen kénnen wir die (1/d)-Korrekturen fiir beliebige Bandfillung und Wechsel-
wirkungsstirke berechnen. Fir halbvolles Band reichen drei weitere Graphen aus, um

bis zur Ordnung (1/d)? zu entwickeln,

In Kapitel 7 vergleichen wir die Ergebnisse der (1/d)-Entwicklung mit numerischen
(d = 2,3) [14] und exakten (d = 1) [12] Resultaten. Wir erhalten hervorragende quanti-
tative Ubereinstimmung mit allen numerischen Ergebnissen und sogar eine iiberraschend

gute Beschreibung fir d = 1,

Motiviert durch diesen Erfolg des Konzepts hoher Dimensionen fiir die Beschrei-
bung von d = 2,3, schlagen wir in Kapitel 8 neue Variationsansitze fiir numerische
Untersuchungen in niedrigen Dimensionen vor. Wir berechnen die optimale Gutzwiller-
korrelierte antiferromagnetische Spindichtewelle fiir das Hubbard- und das t-J-Modell
[35-37) in d = 00, und rechnen bis zur Ordnung (1/d) fiir das antiferromagnetische

Spin-1/2 Heisenberg Modell.

Zusammenfassung und Ausblick schlieBen die Arbeit mit Kapitel 9 ab.



2 Allgemeiner Formalismus

In diesem Kapitel betrachten wir das Hubbard-Modell [1,2], das als grundlegend far
die theoretische Beschreibung korrelierter Fermisysteme erachtet wird. Zur {(genaher-
ten) Beschreibung von Grundzustandseigenschalten dieses Modells fGhren wir eine gro8e
Klasse von Gutzwiller-korrelierten Variationswellenfunktionen ein. Zur Berechnung von
Erwartungswerten lciten wir einen allgemeinen Graphenformalismus ab. Es ergeben
sich dieselben Graphen, die von Metzner und Vollhardt [12,20] eingefihrt worden sind,
aber wir geben den ,Linien* und ,Vertices* in den Graphen eine neue Interpretation.
Wir wenden diesen lormalismus an, um die Einteilchen-Dichtematrix und die mitt-
lere Doppelbesetzung zu berechnen. Die Kenntnis dieser beiden Gréflen erlaubt die
Durchfihrung des Variationsverfahrens, d. h. die Berechnung einer oberen Schranke fir

die Grundzustandsenergie im Modell.

Die Auswertung des Graphenformalismus vereinfacht sich in hohen Gitterdimensio-
nen d erheblich: (i) wir leiten einfache, exakte Ergebnisse fiir alle GréBen in d = oo
her, wozu wir keinen cinzigen Graphen berechnen miissen; (ii) zur Bestimmung von

{1/d)-Korrekturen benétigt man nur wenige Graphen.
2.1 Hubbard-Modell und Variationswellenfunktionen

2.1.1 Hubbard-Modell

Das Hubbard-Modell [1,2] ist eines der einfachsten Modelle, um Korrelationscffekte
zwischen Elektronen zu beschreiben. Im Formalismus der zweiten Quantisierung lautet
der Hamiltonoperator (Operatoren sind durch ein ,Hitchen* ~ gekennzeichnet)

H= Ziijf:;ffj, + Uzﬁirﬁ;j . (1)
i

ijo



Hierbei bezeichnet &, den Erzeugeroperator fiir ein Elektron mit Spin o auf dem Git-
terplatz i, &, dea entsprechenden Vernichteroperator am Gitterplatz j und #;, = &,
23hlt die Anzahl der o-Elektrouen am Ort i. Die Wechselwirkung in Gleichung (1) ist
rein loka! und kann geschrieben werden als V = U D; = UD, wobei D; = iy,
eine Doppelbesetzung am Gitterplatz i zahlt. Wir betrachten das Modell auf d-
dimensionalen hyperkubischen Gittern mit insgesamt L Gitterplatzen. Dies schlieft
die Fille der eindimensionalen Kette, des zweidimensionalen Quadratgitters und des
dreidimensionalen einfach kubischen Gitters ein (eine Mglichkeit zur Erweiterung auf
beliebige Gittertypen wird in Kapitel 6 angedeutet werden). Die mittleren Dichten n,
der Elektronen ergeben sich aus n, = N, /L, wobei N, die Gesamtzahl der o-Teilchen
im System ist. Wegen der Teilchen-Loch-Symmetrie {38] kann man sich auf den Fall

n =n; +n; <1 beschrinken, d. h. auf den Fall maximal halber Bandfiillung (n < 1).

Das Modell hat die denkbar einfachste Struktur fir ein System von Gitterfermio-
nen, in dem die kinetische Energie der Elektronen in Xonkurrenz zu einer rein lokalen
potentiellen Energie tritt. Somit ist das Modell von grundsatzlichem theoretischen In-
teresse, um neue, iber die iibliche Stérungstheorie hinausgchende, Rechentechniken zu

entwickeln.

Weiterhin sollte man mit diesem Modell aber auch reale physikalische Systeme
zumindest qualitativ beschreiben kénnen. Zum Beispicl wird das Hubbard- Modell
zur Beschreibung von Magnetismus der d-Elektronen in Ubergangsmetallen herange-
zogen [2,3]. Die 4-Orbitale sind gut an den Gitteratomen lokalisiert und die s- und
p-Elektronen sorgen fir zusitzliche Abschirmung der Coulomb-Wechselwirkung. Da-
her ist die Niherung einer rein lokelen Elektironenwechsclwirkung sinnvoll. Zusaizlich
ist es im Falle lokalisierter Zustinde verniinftig, sich auf Nichst-Nachbar-Hiipfen zu

beschrinken (tight-binding-Naherung). D. h. man setzt meist ¢;5 = —¢ fir den Fall,



daB i, j nichste Nachbarn sind, und setzt ansonsten #;; = 0. Grund dafiir ist, daf die
Hapfamplituden #;; proportional zur Tunnelwahrscheinlichkeit fir ein Elektron vom
Orbital am Gitterplatz i zu eivem Orbital am Ort j sind. Diese Wahrscheinlichkeit
geht far d-Orbitale mit wachsendem Abstand exponentiell gegen Null. Auch fiir nor-
malfluides 3He [8-10] ist die Annahme einer Hubbard-Wechselwirkung eine begriindete

Naherung, die dann zu einem Gittergasmodell fir die Flussigkeit fihrt.

Insgesamt ist also das Hubbard-Modell nicht nur von rein methodischem Interesse,
sondern es scheint auch gecignet zu sein, physikalische Systeme und Effekte (z. B. Ma-
gnetismus in Ubergangsmetallen, normalfluides *He) zumindest qualitativ zu beschrei-

ben.

Trotz seiner einfachen Struktur stellt die Bestimmung der physikalischen Eigenschaf-
ten des Modells ein quantenmechanisches Vielteilchenproblem dar. Eine Losung war
bislang nur in einer Dimension mit Hilfe des Bethe-Ansatzes méglich [38], der geschlos-
sene Integralgleichungen fir die Grundzustandsenergie und das chemische Potential
liefert. Fir halbvolles Band (n = [) zeigten Lieb und Wu, daBl das System in d = 1
fir alle U > 0 ein Isolator ist. Es gibt inzwischen starke Anhaltspunkte dafiir, daB dies
fiir halbvolles Band in allen Dimensionen der Fall ist [39]. Desweiteren ist bekannt, dafi
der Grundzustand des Hubbard-Modells fir o = 1 den Gesamtspin S = 0 hat, d. h.
ein Singulett ist [40]. Insgesarnt sind also nur sehr wenige exakte Aussagen iber dieses

Modell in héheren Dimensionen (d > 1) bekannt.

Um ein besseres Verstiandnis fiir die grundlegenden Eigenschaften des Hubbard-
Modells zu erseichen, schlugen Metzner und Vollhardt [20,25] vor, den Limes d = co
zu betrachten. Sie zeigten, daB fir 4 — oo die kinetische und die potentielle Ener-
gie in  von derselben Gréfenordnung bleiben, wenn man das Hiipfinatrixelement ¢

folgendermaBen skaliert
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=

"
7 (2)

Wir setzen von jetzt an stets £* = 1. In diesem Fall ist die Dispersionsrelation durch

1 - 23
)= 1k = 73 cosks (3)
1,

i=1

gegeben. Wie von Miiller-Hartmann gezeigt wurde [24], kénnen in diesem Limes
alle in Gleichung (1) unberdcksichtigten Nachst- Nachbar-Wechselwirkungen in Hartree-
Approximation behandelt werden. In diesem Fall bleibt als Vielteilchenwechselwirkung
nur der Hubbard-Anteil tibrig. Dies zeigt erneut die grundsatzliche Bedeutung des
Hubbard-Modells, d. h. der Hubbard-Wechselwirkung, fiir die Beschreibung quanten-
mechanischer Vielteilcheneffekte. Der Limes hoher Dimensionen vereinfacht die Be-
rechnungen erheblich.~ So wird nicht nur die konkrete Berechnung von Graphen in
der Storungstheorie erleichtert [20,24,25], sondern auch die konkrete Durchfihrung von
selbstkonsistenten Rechnungen ermdglicht (23]. Diese Rechnungen waren bisher wegen
des immensen Rechenaufwands (Computerzeit) nur in der (unrealistischen) Dimension
d = 1 durchitihrbar. Vergleiche mit einigen numerischen Ergebnissen in endlichen
Dimensionen zeigten, daB die Approximation d = oo in vielen Fillen eine sehr gute
Naherung fiir d = 3 liefert [20,23,25]. Dariiber hinaus gelang es Brandt und Mijelsch [22],

das Falicov-Kimball-Modell [21] in d = oo exakt zu lsen.

Es zeigt sich also, daB der fiir korrelierte Gitterfermionen von Metzner und Volthardt
eingefiihrte Limes hoher Gitterdimension einen neuen, vielversprechenden Zugang zum
Verstandnis des Hubbard-Modells erdfinet. Die Losung des Hubbard-Modells ist bislang
allerdings auch im Limes d = 0o noch nicht gelungen. Die Analyse von Variationswel-
lenfunktionen soll dazu beitragen, neue Methoden und Verfahren fiir die Behandlung

des Hubbard-Modells in hohen Dimensionen zu entwicklen.
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2.1.2 Variationswellenfunktionen

Eine der Methoden, die Grundzustandseigenschaften des Hubbard-Modells gerdhert zu
beschreiben, st die Untersuchung mit Hilfe von Variationswellenfunktionen. Die ex-
plizite Wah] eines Ansatzes fiir den Grundzustand des Modells erlaubt einerseits eine
anschauliche Beschreibung der als wesentlich erachieten physikalischen Effekte. Ande-
rerseits liefert das Variationsverfahren stets eine obere Schranke fiir die Grundzustands-
energie des Modells und damit ein Kriterium fir die Qualitdt des gewahlten Variati-
onsansatzes. Insofern handelt es sich also um eine kontrollierte Naherung. Far manche
Fermisysteme reicht zudem die Kenntnis der Grundzustandseigenschaften aus, um Aus-
sagen iiber die energetisch tiefliegenden Anrcgungen zu machen (Landau-Fermiflissig-
keitstheorie [41]). Auf diese Weise kann man auch die Thermodynamik des Systems
fiir tiefe Temperaturen genihert beschreiben, Ein Beispiel fir die Anwendung dieses

Prinzips findet man in Referenz {9].

Um Grundzustandseigenschaften von Modellen mit starker lokaler AbstoBung wie
dem Hubbard-Modell (1) zu studieren, betrachten wir folgende Klasse Gutzwiller-
korrelierter Variationswellenfunktionen
9% | o)

[i-a~ab) %) , @)
i

wobei 0 < g < 1 ein Variationsparameter und | Wo) eine beliebige Einteilchen-

| )

Produktwellenfunktion mit fester Gesamtteilchenzahl ¥ ist {42]. Der Operator g2 ist
der Gutzwiller Korrelator. Wir wahlen | o) als beliebiges Quasiteilchenvakuum, damit
wir spiter im Lauf der Rﬂchimngen das Wick-Theorem anwenden konnen. Wahlen wir
| o) als den Fermisee (Grundzustand des Hubbard-Madells fur U = 0), so erhalten wir
die urspriingliche Gutzwiller-Wellenfunktion [2] als Spezialfall von Gleichung (4). Der

Gutzwiller-Korrelator reduziert global das Gewicht all der Konfigurationen in | Wy},
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die einen groBen Beitrag zur lokalen Coulomb-Wechselwirkung im Hubbard-Modell (1)
liefern. Wesentliche Korrelationseffekte, die durch eine starke lokale Wechselwirkung in-
duziert werden, werden somit in diesen Variationswellenfunktionen anschaunlich berick-
sichtigt.

Die Aufgabe besteht nun darin, Erwartungswerte (O) = (¥, | O | ¥,)/{¥, | ¥,)
mit den Variationswellenfunktionen aus Gleichung (4) zu berechnen. Um das Variati-

onsverfahren durchzufihren, missen wir die Einteilchen-Dichtematrix berechnen
P(i,§) = (&5) - (52)

Der Wert vou FP.(i,j) fir nichste Nachbarz i, j bestimmt die kinetische Energie in
Gleichung (1). Die Fouriertransformierte der Einteilchen-Dichtematrix ist die Impuls-
verteilung (fix,) = (1/L) 5;j e"‘(i‘j)P,(i,j). Zur Bestimmung der potentiellen Energie

in Gleichung (1) beudtigen wir die mittlere Doppelbesetzung

(D) - (5b)

2l
H

Die Berechnung von {H) involviert im dblichen T = 0-Formalismus der Greenfunk-
tionen die Integration iiber Zeiten bzw. Frequenzen. Demgegeniiber ist die Situation
bei den Variationsverfahren erheblich vereinfacht, da eine solche Abhangigkeit nicht
auftritt. Beziiglich der raumlichen Abhingigkeiten (Gittersummen bzw. Impulsinte-
grale uber die erste Brillouinzone) ist die Berechnung von Erwartungswerten im Falle
der Variationswellenfunktionen ein ebenso kompliziertes quantenmechanisches Vielteil-
chenproblem wie bei den Greenfunktionen. Um die auftretenden Gittersummen kon-
trollierbar zu nihern, werden wir den von Metzner und Vollhardt [20,25] eingefiihrten

Limes hoher Gitterdimensionen benutzen.
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2.2 Verallgemeinerte Gutzwiller-korrelierte Variationswellenfunktionen
2.2.1 Methode von Metzner und Vollhardt

Metzner und Vollhardt {12,20,25] entwickelten alle Erwartungswerte {O) in eine Po-

tenzreihe in (g% — 1}, indem sie die Identitat
g’b = H[l + (g’ - l)bi] (6)
i

benutzten. Die Ordnungen dieser Potenzreihe lassen sich im Rahmen eines Vielteil-
chenformalistnus durch Graphen darstellen (siehe z. B. Referenz [12]). Die Linien und

Vertices in diesen Graphen haben bei Metzner und Vollhardt folgende Interpretation:

o-Linie: P2(i,j) = (Yo | é;éjc | ¥o} (nicht-wechselwirkende (7a)
Einteilchen-Dichtematrix)
Vertex: (>~ 1) (Entwicklungskoeffizient). (7b)

Auf diese Weise konnte das Problem in d = 1 fiir die Gutzwiller-Wellenfunktion exakt
geldst werden, d. h. es konnten die mittlere Doppelbesetzung, die Impulsverteilung und
die Variationsenergie [12], sowie verschiedene Zweiteilchen-Korrelationsfunktionen [13]
berechnet werden. Fir die Dimensionen d = 2,3 war eine exakte L3sung bisher nicht

moglich.

Metzaer und Vollhardt zeigten jedach [20,25], daB der Limes hoher Gitterdimen-
sion ebenfalls analytische, exakte Rechnungen mit Gutzwiller-artigen Variationswel-
lenfunktionen erlaubt. Ursache hierfiir ist das Verhalten der nicht-wechselwirkenden
Einteilchen-Dichtematrix in hohen Dimensionen. Auf einem d-dimensionalen hyperku-

bischen Gitter gilt fir d > 1 [20,26]

rog) =0 ((Vird)) (8a)
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wobei
d
v=li-jl=3Y 1a—-jl (8b)
=1

die sogenannte ,New York“-Metrik ist. Diese Metrik zahlt die Zah! der Nachst-Nachbar-
Schritte, die nétig sind, um auf einem d-dimensional hyperkubischen Gitter vom Punkt i
zum Punkt j zu gelangen. Hat man nun in einem der Graphen von Metzner und
Vollhardt zwei Gitterpunkte 3 und j , die durch drei oder mehr Linien verbunden sind.

so gilt [20,25]
[P2a5) = 65 [P0 ind=oo . ©)

Um die Konsequenzen dieser Vereinfachung zu studieren, fuhrten diese Autoren die
GroBe S,(g,h) ein, die sie als ,Selbstenergie* bezeichnet haben. Die Diagramme, die
zu S,(g,h) gehoren, haben nimlich dieselbe topologische Struktur wie die Selbstener-
giediagramme im Greenfunktion-Formalismus. Entsprechend kann man die ,eigentliche
Selbstenergie* S;(g,h) einfiihren. Wie beim Greenfunktion-Formalismus sind §}(g.h)

und S,(g,h) durch eine Dyson-Gleichung miteinander verkniipft
So(g.h) = S;(g.h) + 3 S;(g, )P (1, m)S, (m,h) . (10)
m

Aus $,(g, h) kann man die wechselwirkende Einteilchen-Dichtematrix P, (i,j) gewinnen,
aus der man auch die mittlere Doppelbesetzung d; berechnen kann. Da in den zur
eigentlichen Selbstenergie gehérigen Diagrammen stets drei Linien von g nach h laufen,
ist 5;(g,h) in d = oo Gitterplatz-diagonal [20,25], d. h. es ist S;(g,h} = é;1,.5;(g.8)-

Fithrt man noch renormierte (,angezogene*) Linien P,(g,h) durch

P,(g:h) = P)(g,h) + 3 P(g.1}S, (I, m)P;(m, h) (11a)
lm
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ein, so gilt in d = co die Verkniipfungsgleichung

52,(8,8) ) (11b)

?a(gv g) = 1-— g? - S:(g, g)S:.,(g, g)

Zusammen mit der Dysongleichung (10), angewandt auf S;(g, h) = 8z 15;(g, g}, geben
die Gleichungen (11) ein vollstindiges System.

Wegen der Faltungen im Ortsraum (Dysongleichung (10), Gleichung fiir die renor-
mierten Linien (11a)) sind die Gleichungen von Metzner und Vollhardt sehr kompli-
ziert, so dafl eine explizite Losung fiir allgemeines | ¥o) nicht méglich ist. Man muff
sich auf diejenigen Fille beschranken, bei denen man Translationsinvarianz im System
ausnutzen kann, um die Faltungen im Ortsraum mit Hilfe einer Fouriertransformation
in den Impulsraum zu vereinfachen., Dementsprechend 16sten Metzner und Vollbardt
ihr Gleichungssystem explizit im Falle der Gutzwiller-Wellenfunktion (] W} als transla-
tionsinvarianter Fermisee) und im Falle einer allgemeinen Gutzwiller-korrelierten Spin-

dichtewelle (Translationsinvarianz auf den A- und B-Untergittern).

Eine (1/d)-Entwicklung ist im Formalismus von Metzner und Vollhardt selbst fiir
die einfache Gutzwiller-Wellenfunktion sehr mithsam [43]; fiir kompliziertere Gutzwiller-
korrelierte Wellenfunktionen ist dies praktisch undurchfithrbar. Deswegen ist ein For-
malismus wiinschenswert, der es erJaubt, die Vereinfachungen des Limes d = oo effek-

tiver zu nutzen.

2.2.2 Effizienter Formalismus fiir hohe Dimensionen

Einerseits vereinfachen sich in der (¢ —1)-Entwicklung die Graphen in d = co erheblich.
Wie in Unterabschnitt 2.2.1 erklart, kann man zwei Gitterpunkte i und j, die durch drei
oder mehr Linien miteinander verbunden sind, miteinander identifizieren [20,25] (siche

Gleichung (9)). Andererseits behilt aber jeder einzelne Graph auch in diesem Limes
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einen nichttrivialen Wert, weil P2(i,i) # 0 gilt. Ein effektiver Formalismus zeichnet sich
demzufolge dadurch aus, daB sich Graphen in d = oo micht nur vereinfachen, sondern
vollig verschwinden. Es ist daher das Ziel, diese sogenanuten on-site-Beitedge in P2(i, j)
loszuwerden. Wir streben also an, dieselben Graphen wie Metzner und Vollhardt zu
erhalten, deren Linien micht mehr als £2(i,]} interpretiert werden, sondern folgende

neue Interpretation erhalten:
neue o-Linien: P(i,) = Po(1,i) ~ 6 ;P°(1,§)  statt  Po(ij) - (12)

Offensichtlich verchwindet dann jeder Graph zur Selbstenergie, da I-’E'(i,i) =0 und
[PPG.3) =& [P0 =0 ind=oo (13)

gilt {in den Graphen zur Selbstenergie S,(g,h) gibt es immer Vertices, die durch drei

verschiedene Fermionlinien miteinander verbunden sind).

Um diese neuen Einteilchen-Dichtematrizen Ff,’(i,j) einfithren zu kdnnen, missen
wir zumindest die trivialen Hartree-Blasen am Gitterpunkt i mit Spin ¢ beseitigen,
denn diese Blasen reprasentieren gerade Beitrige P2(1,i) = (¥o | #is | Wo). Diese
stammen von Kontraktionen {11] des Operators Dy = fiypy in Gleichung (6) am sefben
Gitterplatz i. Der Wert dieser Blasen ist natiirlich dimensionsunabhaugig, so da Gra-
phen mit diesen Blasen auf alle Fille vorhanden wiren, wenn wir die Hartree-Blasen
nicht von vorneherein abziehen. Die Entfernung von solchen Hartree-Blasen ist in der
Festkorperphysik bekannt als Stérungstheorie relativ zur Hartree-Naherung (siche z. B.
Referenz [23}). In diesem Fall erhilt man aber trotzdem Linien (d. h. Greenfunktionen),
die einen on-site-Beitrag haben. Normalerweise ist also das Abziehen der Hartree-Blasen
nicht ausreichend, um alle on-site-Beitrige in einem Graphenformalismus zu eliminie-
ren. Im vorliegenden Spezialfall der Gutzwiller-korrelierten Variationswellenfunktionen

ist dies aber tatsdchlich moglich, wie wir in Abschnitt 2.3 zeigen werden.
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Um die on-site Beitrige in Gleichung (6) abzuziehen, missen wir eine neue Ent-
wicklung einfihren, d. h. wir versuchen eine Entwicklung im neuen, orisabhdngigen

Parameter z;, der in den Graphen als
neuer Vertex: z;  statt (¢ —1) (14)

als Vertexfakior zu interpretieren ist. Wir versuchen also
2R _ (D, ~ DHF 15
g = H 142105 i . (15)
i

Hierbei ist DIFF = a3 {fg)do + Aig{firo — {Rirdo{fi)}o die Hartree-Fock Zerlegung von
D;. Wir haben einen neuen Operator K eingefihrt, der den Operator D in Glei-
chung (6) ersetzt und den wir so bestimmen werden, da Gleichung (15} erf@llt werden

kann. Folglich stellen wir die Klasse der Gutzwiller-korrelierten Wellenfunktionen nun

folgendermafen dar
[ %5) =% %) . (16)

| ¥4} aus Gleichung (4) und { ®o) aus Gleichung (16) sind beides Einteilchen-Produkt-

wellenfunktionen, die durch
| Wo) = g5~2 | @o) an

miteinander verknipft sind. DaB diese Entwicklung tatsichlich zu Graphen fiihrt, de-
ren Linien wir als l—’;"(i, J) gemi$ Gleichung (12) interpretieren k3nnen, zeigen wir in

Abschnitt 2.3.

Zunichst bestimmen wir den Entwicklungsparameter z; und den Operator K. Weil

A =y, und D} = D; gilt, konnen wir folgenden Ansatz machen
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K= Eiﬂ = Z (D, - Hiyity — sy + ﬂi) . (18)
i i

Die reellen GroSen ujp, g;; und 5; in Gleichung (18) kdanen beliebig gewahlt werden.
Wir wihlen sie so, daB Gleichung (15) erfillt ist. Deshalb verwenden wir auch 7;, das
eigentlich nur einen zusitzlichen Normierungsfaktor liefert. Wenn wir den Faktor g’k
in Gleichung (15) entwickeln, erhalten wir den folgenden Satz von vier Gleichungen fir

die vier Unbekannten gip, #iy, 7 und z;

ghi =14 Il(ﬁir)o(ﬁig)o (19&)
(g ~ 1) = —zi{_ )0 o =11 -~ (19b)
g'z"i(gz-awl‘l_gwu —_ g—"'”il _ g-gyil + l) =z - (19(:)

Ein Vergleich mit Gleichung (16) zeigt, daB Gutzwiller-korrelierte Wellenfunktionen im

allgemeinen als

| 0,) = [oZ P sitisasticin] | &) = [[] 5] | #0) (20)
i
geschrieben werden kénnen. Hierbei ist B; = g%i = g2 *ir*i~#it%i1*% ein hermitescher
Operator mit B2 = 1+ zy(D;— DFFY per Koustruktion. Die Wellenfunktionen | To) in
Gleichung (4) und | @) in Gleichung (20) sind also gema8 Gleichung (17) durch

| o) = gil it sintictnl | g @

miteinander verkniipft. Zu beachten ist, daB wir lediglich | ¥,) umgeschrieben haben,
d h.oes gt | 9,) = ¢® | ¥o) = g% | &;). Beide Formen sind vollig dquivalent,
aber die letztere ist fiir den Grenzfall hoher Gitterdimension besser geeignet. In der
urspriinglichen Gutzwiller-Wellenfunktion sind | ¥o) und | ®¢) (von einem frivialen

Faktor abgesehen) identisch und bejde reprasentieren den Fermisee. Wihrend fir g = 1
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immer | ¥o) =| ®o) gilt, trifft dies fir g < 1 nicht mehr zu. Dies ist jedoch unerheblich,

da der korrelierte Zustand { ¥,} durch beide Formen Aquivalent beschrieben wird.

Da wir ausschlieSlich mit | ;) arbeiten werden, berechnen wir Erwartungswerte im
unkorrelierten Zustand stets mit | o), Gleichung (20), anstatt mit | W), Gleichung (4).

Solche Erwartungswerte sind mit {...)p bezeichnet. Wir definieren daher

nig = {®o| i | ®o} + (Po | iy | Po) = (fiy)o + (Rit)e (22a)
mip = (Ao — (Ril)e (22b)
dio = (hirholRipdo - (22¢)

Man kann jetzt die Gleichungen (19a)-(19c) leicht I8sen. Das Ergebnis ist
o 1
P21 - g)dio(1 — nig + dio)
X [=14 (1 = ¢®)(mig — 20) + /15 (0 — Dol — m0) + 97mlg)] - (233)

Auflerdem gilt

g = 1+ ndip (23b)
oM = y - Tilfizodo (23¢)
1+ zidip

Die Gleichungen (23a)-{23c) bestimmen die Gréfen gj;, £, 7; und den gesuchten Para-
meter x; in Abhingigkeit vom Variationsparameter g und den lokalen Teilchendichten in
| ®o). Zu beachten ist, daB wir lediglich den Korrelator umgeordnet haben. Bei keinem

Schritt muBten wir | @o} ndher angeben. Der Formalismus ist daher véllig allgemein.

2.3 Graphenformalismus fiir die Einteilchen-Dichtematrix und die mitt-
lere Doppelbesetzung

Wir werden jetzt die Erwartungswerte fiir die Einteilchen-Dichtematrix und die mittlere

Doppelbesetzung berechnen (siehe Abschnitt 2.1). Wir stellen den Gang der Rechnung
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explizit fir P,(i,j), Gleichung (5a)}, dar. Die Ergebnisse fiir die mittleren Teilchendich-
ten und die mittlere Doppelbesetzung konnen auf ahnliche Weise abgeleitet werden.

Wir stellen die entsprechenden Ausdriicke am Ende dieses Abschnitts kurz zusanimen.

Wir missen P,(i,j) = (¥, | &4, | ¥,}/(¥, | ¥,) fir i  j bercchnen. Im Zahler
haben wir

(% 1635 1 ) = (Bt B)(B By T (1 ae(De = DFpo o (20
#1,

wabei wir Gleichung (20) verwendet haben. Mit den Definitionen

Vae = gig e [L4 (o olg' e — 1)] (252)
gl-—?u;_‘_l o
o = it 25b
zi[1+ (i o(g’ i~ —1)] e
gilt
Bieh B = & /3 (L + ziei (e ~ (Rice)a)] - (25¢)

Der Parameter z; ist durch Gleichung (23a) gegeben. Im Falle der Gutzwiller-Wellen-
funktion ist gi, unabhingig von i und ¢ und bezeichnet den Sprung der [mpulsvertei-
lung an der Fermikante (siehe unten); deshalb ist es praktisch, an dieser Stelle /gi;

einzafihren.

Durch die spezielle Anordnung der Terme in Gleichung (25¢) haben wir dafir ge-
sorgt, daf nach der Anwendung von Wick’s Theorem [11] kein Graph mit einer Hartree-
Blase am Gitterplatz i auftritt {vgl. die Diskussion in Abschnitt 2.2). Wit setzen die
Gleichungen (25a)-(25c) in Gleichung (24) ein und erhalten

(Yo 18,8, 1 99) = Vaio /T [(Oi.j oot
L1 ' A R . .
ﬂgﬁ Y 2g - 7ga{0ij o(Dg — DEF ..,(ng—Dgf))g] . (26a)
- B1.-8

#i.J)
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wobei wir

0130 = 8850 [1 + 2010 (Rice ~ (ia)o)] [1 + 23050 (R4 — (5 )o)] (26b)

definiert haben. Der Strich an der Gittersumme in Gleichung {26a) bedeutet, daf alle
Gitterplatze verschieden sind. Die weiteren Schritte erfolgen vdllig analog zu Metzner
und Vollhardt [12,20.25]. Wir wenden das Wick-Theorem an [11) und ein typischer

Beitrag in m-ter Ordnung lautet

¥ (Oijo(Dg, — DIF) .. (Dg, ~ DEF))a (27a)
b
= Y {0ijo(Dg - DEF)...(Dy, - DIDY), (27b)
)

wobei {...}, die Summe iber alle méglichen Paare von Kontraktionen bedeutet. Weil
nun aber alle Gittervektoren bei der Anwendung des Theorems verschieden sind, kann
man die Kontraktionen als
{hee}, = (o= P26 (282)
{goet}, = —(&h&0)o = ~P.3) (28b)

definieren [12). Die ublichen &;;-Terme treten nicht auf. Mit Hilfe dieser Definition der

Kontraktionen kann man die vier Terme in Gleichung (26b) als Summe von Produkten

zweijer Determinanten schreiben [12]. Beispielsweise kann man den ersten Term in O; 5,

schreiben als

Y {cc.(De = DF)... ~— DIEY}
B1.-Bm
(#.3)
Py Py o Pé)m % P ... Pi;m
R0 ... P 0 ... P
SEp >0l R 1 I (29)
j;-;ﬂ;' P P -.. O | | Phy P2 ... 0 |,
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Die Diagonalelemente in den Determinanten verschwinden an jedem inneren Vertex

g1ye-- +&m , Weil wir D’g’f etc. in der z;-Entwicklung abgezogen haben.

Die Eliminierung der Diagonalelemente ist der entscheidende Schritt in unserem
Formalismus und stellt den wesentlichen Unterschied zur Methode von Metzner und
Vollhardt dar [20,25): Wir kénnen P°(1,m) durch P9(1,m) ersetzen, die entsprechend
Gleichung (12) als

P3(1,m) = P(1,m) — &, PALY) = (&) émo Yo — G {E &m0 )0 (30)

definiert sind. lnsbesondere gilt: P(L,1) = 0. In diesem Schritt erzeugen wir keine
neuen Beitrige, weil die Diagonalelemente bereits Null sind und weil alle Gittervektoren
verschieden sind (einschlieBlich i # j). Jeizt kénnen wir die Summationseinschrinkung
fallen lassen (die Determinanten verschwinden, wenn zwei Zeilen oder Spalten gleich
sind). Das ,Linked-Cluster-Theorem® ist nunmehr anwendbar [44), so daB der Nenner
{¥, | ¥,} die unverbundenen Diagramme in Gleichung (27b) wegkiirzt. Infolgedessen
erhalten wir dieselben Graphen wie Metzner und Vollhardt, aber die Linien zwischen
den Gitterpunkten i und j werden jetzt als fﬁ?(i, j) und die inneren Vertices am Punkt i

werden als Faktoren z; interpretiert.

Das Ergebnis fiir die Einteilchen-Dichtematrix fiir i # j ist dann

Fo(3,3) = Vaio /%o {Oi,j,oﬁ}; , 31
wobei {...}; alle verbundenen Graphen bezeichnet und

~ o0
D=1+

m=1

1
;‘2 zg, -- - g (Dg, — DEF). .. (Dg, — Dyl (32)
*B1Bm

als Abkiirzung eingefiihrt wurde.
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Die Berechnung von FP,(i,i) = (fi,) ist vollkommen analog. Man erhalt
(i) = {fiio)o + {(mie — (hie)o) DY, + 2:(1 — 2iin)o) {(Ds - DIFYDY;
n - . =<
+2i(1 = (o)) (ftio)o { (e — (Ri-a)o) D}, (33)
Auf gleiche Weise erhilt man fir die mittlere Doppelbesetzung d;
4 = [1 +zi{l —njo + Ei.o)] {zi.o
R . ~y¢C 1 —_ ~3C
+ 2 [tedo {(mi-e = Ga_d)BY; + 501 i) {(Ds = DIF)DY] . 30)
Um den groBen Vorteil dieses Formalismus in hohen Dimensionen zu sehen, betrachten
wir jetzt die Selbstenergie in unserem Formalismus, die wir analog zu Abschnitt 2.2
als gz(g, h) bezeichnen. Sie wird graphisch durch dieselben Diagramme bestimmt, die
auch die Selbstenergie S,(g, h) von Metzner und Vollhardt definieren. Einziger Unter-

schied ist die neue Interpretation von ,Vertices* und ,Linien* (siehe Gleichungen (12)

und (14)). Formal ergibt sich die Selbstenergie aus

Sog.h) = —zgfen{(ng-e — (ig-2)o)D};

+7g7n {c eho(Mg-o — (godo)mus — (o)D) . (35)

Benutzen wir
{(m ~ Gu))BY; = - 255G (36a)
{0- Bl = L ERGORC) (0=11) (36b)

so kénnen wir die Einteilchen-Dichtematrix (i # j), die mittleren Teilchendichten und

die mittlere Doppelbesetzung schreiben als

PGd) = VT |PG.3)
+ X (Po8) — bigess) S (e, ) (P2(0.5) - 8 s, )| &0
gh
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(hie) = (fi)a— ;‘-s"( i) — (1 = (ioYo) ) 3o (o)
~(1 — 2{i,)o) g S.G, ) PA(L, i) (38)
Ei = [l + z;(1 — njo + Hi,o)] x

{0 - 5 T[S0 + 50 - @) C8GOPE]} 09

Weil es immer drei oder mehr verschiedene Wege von g nach h in einem Graphen zu
5,(g,h) gibt [20,25] und wir alle on-site Beitrige in den Graphen eliminiert haben (siche
Gleichung {30)), verschwindet die Selbstenergie in unendlichen Dimensionen vollstandig,

d.h.
So(g,h)=0 ind=oo. (40)

Das bedeutet, dal wir in d = co keinen einzigen Graphen berechnen miissen, um das

einfache, exakte Ergebnis
P.(b)) = VAo yG PoGL0) (L #1) (41)

zu erhalten. Gleichung (41) zeigt, dafl die Hipfamplitude zwischen i und j lediglich
durch zwei ortsabhingige Faktaren V%o \/q5a renormiert, wird.

Ahnlich reduziert sich der Ausdruck (38) in d = oo zu
{0} = (fic)a (42)

unabhdngig von g. Dies zeigt explizit, daB in d = co die Wirkung des Gutzwiller-
Korrelators ¢ auf die lokalen Dichten {n4,} vollstindig von den ortsabhingigen ,Fu-
gazititen® g~*, g7*i und g™ in Gleichung (20) absorbiert wird. Es ist moglich, die

lokalen ,, Fugazitaten“ so zu wahlen, da8 Gleichung (42) in beliebigen Dimensionen gilt.
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Dies bringt aber keinerlei rechentechnische Vorteile. Gleichung (42) gilt nicht fir die
lokalen Dichten in | ¥o}. Stellt man die Gutzwiller-kotrelierten Variationswellenfunk-
tionen | @) in der Form | ¥,) = ¢? | o) dar (Gleichung (4)), so erhilt man keine
einfache Beziehung zwischen den lokalen Dichten im wechselwirkenden und nichtwech-
selwirkenden Fall. Dies wurde erstmals von Vulovi¢ und Abrahams in ihrer Arbeit zum

periodischen Anderson Modell {33) explizit erwdhnt.

Zum Abschlu8 geben wir die Formel fir die mittlere Doppelbesetzung in d = co:
&= [1+a(1—nip+dio)|dio - (43)

Diese Gleichung kann offensichtlich dazu benutzt werden, den Parameter z; zugunsten

der Doppelbesetzung im wechselwirkenden System (d;) zu eliminieren.



26

3 Exakte Durchfithrung des Variationsverfahrens in d = oo:
Grundzustandsenergien

Wir geben in diesem Kapitel die allgemeinen Ausdriicke fiir den Erwartungswert von
H in | ¥,) an, den wit als ,Grundzustandsenergie* (H) = (¥, | H | ¥,)/(¥, | ¥,)
bezeichnen. Wir betrachten allgemeine Gutzwiller-korrelierte Variationswellenfunktio-
nen fiir das Hubbard-Modell in Abschnitt 3.1 und fiir das periodische Anderson Modell
ohne Entartung in Abschpitt 3.2, jeweils im Grenzfall d = oco. Als Beispiel fiir die
einfache Anwendbarkeit der allgemeinen Gleichungen geben wir die Ergebnisse fiir die
Gutzwiller-korrelierte antiferromagnetische Spindichtewelle an, die 2ur Beschreibuung
von Antiferromagnetismus im Hubbard-Modell herangezogen wird, Als weiteres Bei-
spiel liefern wir die in d = co exakten Resultate fiir eine von Rice und Ueda (28],
Brandow [29] und anderen Gruppen [30-33] fir das periodische Anderson-Modell vor-
geschlagene Variationswellenfunktion. Wir vergleichen die in d = oo exakten Resultate
fiir diese Wellenfunktion mit den Ergebnissen von ,Mean-Field“-Rechnungen [6,45] fiic

das periodische Anderson-Modell.

3.1 Hubbard-Modeil
3.1.1 Allgemeiner Ausdruck fiir die Grundzustandsenergie

Wir verwenden Gleichuag (43) fiir die Doppelbesetzung in d = 0o uand ethalten fir 7;

d; ~dig

X = =——— —— 44
di_o(l — ni'o + di'o) ( )

Zusammen mit Gleichung (23a) finden wir
2 it _ni,o+2i) {45)

= [(f’ir)o ‘Ei] [(ﬁiz)o "ai] ’
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Dieser Ausdruck hat die Form eines Massenwirkungsgesetzes [2). In der Theorie von
Mischungen [46] erhilt man dieses Ergebnis innerhalb der ,quasichemischen Naherung®.
Statt des Bolizmann-Faktors haben wir hier den Faktor g?, der das Gleichgewicht
zwischen den lokalen Konzentrationen der Doppelbesetzungen (d;) und leeren Plitzen
{1—n;0+4d;) im Vergleich zu den einfach besetzten Gitterplitzen ([(ﬁ;,)o—a—i][(ﬁi Do—di])
regelt. Im Falle der Gutzwiller-Wellenfunktion haben wir Translationsinvarianz (d. h.
d; = d etc.). Fiir diesen Spezialfall wurde bereits von Metzner und Vollhardt (12,20]
gezeigt, daB Gleichung (45) in d = co exakt ist. Wir konnen nun beweisen, daB diese
Relation lokal {iir allgemeines | ¥,} erfiillt ist, wenn wir die Wellenfunktion in der Form
von Gleichung (20) verwenden, | ¥,} = PL ®,). Sie gilt nicht in der ,iblichen®

Darstellung von | ¥,} nach Gleichung (4).

Gleichung (45) erlaubt nun, alle Erwartungswerte durch die physikalische GréBe d;

auszudriicken. d; ist die mittlere Doppelbesetzung im wechselwirkenden System. Es ist

_ 1
BT T = (wd)
[V =0+ @) (sdo— ) + VaiGaoho— )| (46)

und der Erwartungswert des Hamiltonoperators fir das Hubbard Modell lautet

(i) = g Vo /T PO, 5) + U;Ii . (47)

ij
Diese Form fiir {(H) wutde zum ersten Mal von Kotliar und Ruckenstein {34] mit Hilfe
eines ,Slave-Boson“-Zugangs zum Hubbard-Modell abgeleitet (siehe auch Kapitel 5.2).
Im translationsinvarianten Fall ist ¢;, = ¢, der Renormierungsfaktor fiir die kinetische
Energie in der Gutzwiller-Wellenfunktion {2]. Bereits Metzner und Vollhardt {12] haben
gezeigt, daB dieser Faktor fiir die Gutzwiller-Wellenfunktion in d = oo exakt ist. Far

die recht einfache Gutzwiller-Wellenfunktion kann man die richtigen ¢-Faktoren auch
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durch das Abzahlen von zulassigen Hipfprozessen erhalten (fir Einzelheiten, siche Voll-
hardt [8]). Wie im Falle der mittleren Doppelbesetzung d; kounen wir die Ergebnisse
dieses Konzepts auf beliebige | ¥,) in Gleichung (20) verallgemeinern, indem wir lokale

Renormierungsfaktoren ,/g;; einfijhren.

3.1.2 Exakte Ergebnisse fiir die Gutzwiller-korrelierte antiferromagnetische

Spindichtewelle

Als Beispiel untersuchen wir jetzt eine allgemeine Gutzwiller-korrelierte antiferroma-
gnetische Spindichtewelle. Fiir hichstens halbgefiilltes Band (n < 1) kann man diese

Wellenfunktion folgendermaBen schreiben:

I

[¥,) = ¢”] W)= g% )

190) = IT II [iéd, + otétyqn) | Vakuum) | (48a)
7 dk)<er
wobei Q = (7,#,...,7) ein halber reziproker Gittervektor ist. Die Variationsparameter

@k, 0% kann man wegen 93° + 5 = 1 als

i y(1+1-F)
—sgn(e(k)) % (1 —y1- bz)

schreiben, wobei fx;q = Bk gelten soll. Dann ist | $o) ein Quasiteilchenvakuum [47].

(48b)

vk

Die Untergittermagnetisierung ist durch m = m; = {f51) — (7;;) gegeben (im folgenden
sei die Untergittermagnetisierung stets fur dasjenige Untergitter angegeben, fiir das
m > 0ist). In d = co haben wir m = mp = (2/1) Ceiiser & und nip = ng =n. Aus
Gleichung (45) folgt d; = d und wir erhalten ¢ = \/Gica> /fies» als spinunabhangigen
Renormierungsfaktor fiir das Hipfen zwischen einem A- und einem B-Gitterplatz. Das

Variationsproblem far das Hubbard Modell (1) ist daan die Minimierung von
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(H)=2g(m,d) ¥ e(k)/1-0; +ULd (492)
e(k}<er
mit
o(m,3) = 21 — 7+ 28)\f(n — 20 —m? + 4(n ~ 20)Jd(1 —n + ) (19b)

V(w2 = m}) (2~ n)? —m7]
nach 8 und d (statt g). Variiert man nach y, so erhalt man

~ A

by = — (50)
Tk 1 A2

Gleichung (50) bedeutet, daB wir die unendliche Zahl von Variationsparametern in
Gleichung (48a) auf lediglich 2wei Parameter A und d reduzieren kdnnen. Setzen wir

dies in Gleichung (49a) ein, so erhalten wir das Ergebnis von Metzner und Vollhardt

- . < e(k))? <
E(m,d) = (-2 .d —_— 4 UILd 51
(m,d) (—2)g(m )((gslw ey 1 =t (51a)
2 A

A = . b
m(A) 7 ‘(g_;r T:=[f Y (51b)

Fiir eine detaillierte Diskussion dieses Ergebnisses sei auf Referenzen [20,25) verwiesen.
Folgende zwei Punkte der Diskussion seien aber an dieser Stelle wiederholt, wobei wir
die Mdglichkeit eincs ferromagnetischen Ubergangs nicht beriicksichtigen (siehe hierzu

Referenz [48]):

1. fir halbvolles Band (n = 1) liefert die Gutzwiller-korrelierte antiferromagneti-
sche Spindichtewelle eine Grundzustandsenergie, die tiefer liegt als die Grund-
zustandsenecgie der Gutzwiller-Wellenfunktion (A = 0) und der Hartree-Fock-
Spindichtewelle (g = 1); das heiBt, das optimale A ist von Null verschieden und

das optimale ¢ ist ungleich Eins. Dies bedeutet, da sowohl lokale Korrelationen
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als auch langreichweitige antiferromagnetische Ordnung fiir eine Absenkung der

Energie wesentlich sind;

2. es gibt eine kritische Dichte n{t) ~ 0.8, unterhalb der der paramagnetische Zu-
stand fir alle U stabil ist. Oberhalb von n(!) gibt es Bereiche der Wechselwir-
kungsstarke U (U < U < Uf), fir die der antiferromagnetische Zustand stabi-
ler ist. Fiir Dichten oberhalb von n{?} ~ 0.9 ist der antiferromagnetische Zustand

fiir alle Werte von I/ oberbalb von U{) stabil.

In numerischen Rechnung (Variations-Monte-Carlo {14]) wurde stets eine Hartree-Fock-
Form fiir | ¥o) angenommen, wobei | ¥,} als | ¥} = g2 | ¥o} angesetzt wurde.
Diese Form ist aber nicht optimal in d = co, denn in unserem Formalismus nimmt
offensichtlich | ®p} in | ¥,) = gk | ®,) die Hartree-Fock-Form an. Dies macht es uns
moglich, eine neue Variationswellenfunktion zur numerischen Untersuchung in d = 2,3
vorzuschlagen. Wir gehen auf diesen Punkt in Kapitel 8 detaillierter ein. Dort werden
wir diese Wellenfunktion explizit in einer From angeben, die direkt fir numerische

Untersuchungen geeignet ist (siche Gleichungen (121)-(125)).

In der Formulierung von Metzner und Vollhardt ist | ¥;) durch | ¥,) = gi) | o)
gegebeu und das optimierte | ¥y} hat eine viel kompliziertere Form. Das hat zur
Konsequenz, daB man | ¥,) nicht in einer fir eine numerische Untersuchung gecigneten
Form angeben kann. Ebenso sind die explizite Ableitung von Gleichung (51) und die
Berechnung der Impulsverteilung recht mihsam [25). Hier erhalten wir die Ergebnisse
fiir die Gutzwiller-korrelierte antiferromagnetische Spindichtewelle aus einer einfachen

Anwendung allgemeiner Gleichungen.
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3.2 Periodisches Anderson-Modell
3.2.1 Hamilton-Operator und Variationswellenfunktionen

Das periodische Anderson-Modell ist eines der einfachsten denkbaren Modelle, um so-
wohl die physikalischen Eigenschaften von zwischenvalenten Verbindungen als auch von
Systemen mit schweren Fermionen qualitativ zu beschreiben [5]. Die elektronischen
Eigenschaften dieser Stoffe werden durch delokalisierte s-und p-Bander und durch stark
lokalisierte, nicht vollstindig gefillte f-Elektronenzustdnde bestimmt. Bedingt durch
die Kristallstruktur ist der Drehimpuls keine gute Quantenzahl mehr und es kommt zu
einec Hybridisierung der s- und p- mit den f-Orbitalen. Wegen der gut lokalisierten
f-Zustinde mufl auBerdem eine starke, lokale Coulomb-AbstoSung U der f-Elektronen
beriicksichtigt werden. Dieser Anteil wird durch die Hubbard-Wechselwirkung beschrie-
ben. Unter der vereinfachenden Aunahme, daB orbitale Entartungen der f-Elektronen
und auch der Leitungs{c)-Elektronen vernachlaBigt werden konnen, lautet der Hamil-

tonoperator fir das periodische Anderson-Modell
Hean = T el b, + 2 e fro
ko ke
+UY Al ad, - (Z Nl +he ) . (52)
i ko

Hierbei ist &, = (1/VL)Tie™&} der Erzeugungsoperator fiir ein Leitungselektron
mit Spin ¢ im Blochzustand k, f‘: ein Erzeugungsoperator fir ein f-Elektron mit
Spin ¢ am Gitterplatz i und Af, = f": fi, der Anzahloperator fiir ein f-Elektron mit
Spin ¢ am Gitterplatz i. Beide Elektronenbander sollen eine Dispérsion (k) bzw. ¢;(k)
haben, wobei das f-Band im Mittel um die Energie —E7 tiefer als das Leitungsband
liegen soll (d. h. es gelte Ty ¢/(k) = —Ef und Ty e (k) = 0). Weiterhin sollen die
Binder iiberlappen, d. h. maxy(es(k)) > ming(ec(k)). Das Matrixelement Vi fir die

Hybridisierung der beiden Binder ist so gewahlt, daB im Falle U = 0 der Blochimpuls k
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eine gute Quantenzahl ist. Je nach Wahl der Parameter U, V4, €.(k) und ¢;(k) sollte das
Modell in der Lage sein, sowohl zwischenvalente Verbindungen also auch Materialien
mit schweren Fermionen qualitativ zu beschreiben [5]. Oft nimmt man vereinfachend

an, daB Vi =V und ¢;(k) = — E unabhangig von k sein sollen.

Fiir U = 0 kann der Hamiltonian leicht diagonalisiert werden. Man erhilt [5]

Hean(U =0) = Y [E*(0a, b0 + B~ (0B, Bes|  mit
kﬂ'
E*(k) = [ (1) + €00 £ el ~ T+ 4] (53)

Hierbei sind &} , 3¢ Erzeugeroperatoren fiir das obere bzw. untere Quasiteilchenband
ko Pko gerop

mit den Energien E*(k) bzw. E~(k). Explizit ist

&, = cosbo(k)et, +sinbo(k)f},
Bt = —sino(k)it, + cosbo(k)f, (54)
tan20o(k) = - —— 0k

&) — e (k)
Der Winkel 65(k) gibt an, wie stark die ¢- und f-Elekironen bei &/ = 0 durch die Hybri-
disierung V4, gemischt werden. Der Grundzustand ist fiir weniger als halbe Bandfiillung
(N7 + Ny < 2L) gegeben durch

IT A, | Vakoum)
E-(k)Sepo

= I [t+aAbé]l<Fs) . (55)

e(K)<ep o

19U = 0))

Die zweite Darstellung von | $(U = 0)) wird im Zusammenhang mit Varjationswel-
lenfunktionen haufiger verwendet, da sie an die Variationsansitze von Varma und Ya-
fet [49] bzw. Gunnarson und Schénhammer [50] fir das Anderson-Modell mit einer

Verunreinigung erinnert. In Gleichung (55) ist
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9 € = (—l) = 2Vk
e Vot S0 R ™ G000 — e + et — e F g

und
[cFSy= [ &, | Vakuum) (56b)
e(k)<ep,0

ist der Fermisee der Leitungselektronen, wenn keine f-Niveaus besetzt sind.

In vollkommener Analogie zum 2. Kapitel setzen wir als Variationsgrundzustand

folgende Wellenfunktion an
[ Df =i wf —pi 4]
I ‘I’g) =yD’ I‘I’o) =gzl[Di ;."6" Hiyg |;+”i] lq;u) . (57]

Dabei sind | Wo) bzw. | o) Vakua fiir gecignet definierte Quasiteilchenoperatoren, die
aus einer Linearkormbination von Vernichteroperatoren fir f- und c-Elektronen zusam-
mengesetzt sind (beispielsweise kdnnea sie Vakua fiir die Operatoren &y, Bio sein; nur
die Gesamtteilchenzahl in den Wellenfunktionen sei fest). Bei diesem Ansatz werden
-wie im Falle des Hubbard-Modells- energetisch ungiinstige Konfigurationen mit vie-
len doppelbesetzten f-Gitterplitzen unterdriickt. Der neue Aspekt beim periodischen
Anderson-Modell oder dhalichen Zweibandmodellen (z. B. beim Emery-Modell [51]} im
Vergleich zum Hubbard-Modell ist die variable Zahl von Elektronen im stark korre-
lierten Band. Die Zahl der f-Elektronen ist nicht konstant, sondern hangt von der
Stirke der Wechselwirkung U ab. Wie wir noch sehen werden, fihrt dies direkt auf

eine Renormierung der Hybridisierung Vi.

3.2.2 Aligemeiner Ausdruck fir die Grundzustandsenergie

Zur Berechnung der Grundzustandsepergie miissen wir den Erwartungswert von Hpam

in| ¥,) berechnen. Der nach g und den in | 9;) vorhandenen Parametern zu variierende
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Ausdruck fir die Grundzustandsenergie lautet
(Hpam) = T eli) i) + T sl (i) + U T - S PA() - (58)
ko ke 1

Hierbei ist (7], ) die Fouriertransformierte der Einteilchen-Dichtematrix der f-Elektro-
nen, d. h. {(#f )} = (1/L)5;;eX0-IP/(i,}). Die anderen Erwartungswerte sind analog

definiert. Wir miissen also folgende GroSen bestimmen:

3 = (D!y : mittlere Doppelbesetzung der f-Elektronen (59a)
PIGY) = fj ,) © Einteilchen-Dichtematrix der f-Elektronen (59b)
P:i,3) = (c‘:i*,éja) : Einteilchen-Dichtematrix der c-Elektronen (59c¢)
P;(i,)) = (& f_w) : ¢ f-Hybridisierungs-Matrix {(eXchange-bopping)  (59d)

Der Korrelator in Gleichung (57) enthalt lediglich f-Operatoren. Bei der Berechnung
von Erwartungswerten mu8 man daher so umformen, dal nur mehr solche Erwartungs-
werte auftreten, die simtlich aus f-Operatoren gebildet sind. Dann ist das Problem
analog zur Berechnung von Erwartungswerten im Falle von Gutzwiller-korrelierten Va-

riationswellenfunktionen fiir das Hubbard-Modell {siehe Kapitel 2).

Die ersten heiden Ausdriicke in Gleichung (59) haben wir schon in Kapitel 2.3 be-
trachtet, da einzig f-Operatoren auftreten. Wir erhalten analog zu Gleichungen (37),
(38) und (39)

PIGI) = VEavaR|PFGL)
+ 3 (FPG,8) -~ bigene) Bale ) (PFO(hI) - bugasa)]  (60)
gh
fir i # j und
N . 1 .. . -
(#) = (Ao — =5-0(iD) = (1 = (i )o) (A oS (i 1)

—(1 - 243L)0) 5 G, D)PE(E, §) (61)
f
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sowie
A = 142t —nly+d)] x

(@ - L2 [6T60+ 30 -=A) TGO} 6
Um Verwechslungen zu vermeiden, ist an einigen GroBen, wie z. B. der Dichte der f-
Elektronen {#] ), ein zusitzlicher oberer Index ,f“ angefligt. Wo eine Verwechslung
ausgeschlossen ist, haben wir diesen Index weggelassen {wie z. B. bei der f-Elektronen
Selbstenergie 5‘:(5,}1)). Die Ausdricke fur z;, gj,, i, und .E,":(g,h) sind aus den Glei-
chungen (23a), (252}, {25b) und (35) ersichtlich.

Die verbleibenden Erwartungswerte P:(1,j) und PZ(i,j) sind ebenfalls einfach zu
berechnen, wenn man bedenkt, dafi die c-Operatoren stets mit den f-Operatoren anti-

kommutieren. Nach kurzer Rechnung analog zu Kapitel 2.3 erhilt man das Ergebnis

FGS) = B0+ P05 (6 ) () (63)
g
PIGD) = G PEG)

+ 3PS WA (D) — e DG 08e3)] - (60
j:4

Diese Beziehungen gelten noch in allen Dimensionen.
Im Limes hoher Dimensionen vereinfachen sich die Gleichungen (60)-(64) erheblich,
da in d = oo wieder §,(g,h) = 0 gilt. Die fir allgemeines | ¥,) giltigen, exakten

Ergebnisse lauten dann
=f =f
&1 —nfy+dl)

"= Tl = (-7 (65
PIGS) = VEayEPIo5) + 6l — ao)lido (65b)
PEG) = PEG0) (650)
B3 = VPG - (654)
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Die Fakioren g;, sind aus Gleichung (46) ersichtlich. Man muf lediglich (f;,)o durch
(Al Yo ersetzen. Wir erhalten also

1

Gie = i X
R SN AN
—12
[V =nlo s aehno -2+ (GL0- 3 )] (662)
Insbesondere gilt fir U = oo, wenn die f-Zustinde nur einfach besetzt sein diirfen, daB
3] =0und
1- "i’o
Qo = 5 (66b)
“ 1- ("ifa)o

gilt. Die Tatsache, dafl ¢i, nicht nur von c_i{, sondern auch von (r‘t{,)o abhangt, wird
sich bei der Variation nach den Parametern in | ®,) (siehe Gleichung (57)) als wich-
tig erweisen. Sie fihrt zu einem zusatzlichen chemischen Potential, das die mittlere
Lage der f-Energieniveaus verschiebt. Dies wird am Beispiel der Rice-Ueda-Brandow

Wellenfunktion in Kapitel 3.2.3 ndher erliutert werden.

Zentrales Krgebnis dieses Abschnitts ist Gleichung (66). Wir haben mit der Ab-
leitung dieser Gleichung den Beweis erbracht, daB die dort angegebene Form von ¢,
in d = oo exakt ist und damit auch in endlichen Dimensionen zumindest qualita-
tiv in Gutzwiller-korrelierten Variationswellenfunktionen fiir das periodische Anderson-

Modell enthalten ist.

Die Gleichungen (65) sind leicht interpretierbar.

1. Aus Gleichung (65b) folgt, da8 (ﬁ{a) = {A{)o gilt, d. h. die lokalen f- und ¢

Elektronendichten sind unabhingig von g. Die Effekte des Korrelators g2’ wer-
den wie im Falle des Hubbard-Modells von den lokalen ,Fugazititen® g=*ic, ¢"i

kompensiert. Zur Erinnerung sei erwihnt, da8 wir die Gutzwiller-korrelierten
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Variationswellenfunktionen als | ¥,) = g¥ | &) schreiben (vgl. Gleichungen (4)
und (16)). Diese Kompensation bedeutet aber nicht, daB die lokalen Elektro-
nendichten unabbangig von der Wechselwirkungsstarke U/ sind. Im allgemeinen
wird namlich auch in | $o} keine feste f-Teilchenzahl vorgegeben, sondern durch

Variation zu bestimmen sein.

w

. Das Hipfen der {-Elektronen von Gitterplatz i zum Gitterplatz j ist wie beim

Hubbard-Modell um zwei ortsabhangige Faktoren \/Gi; und /g, renormiert.

3. Das Hiipfen der c-Elektronen ist in d = co nur von den Eigenschaften von | ®¢},
nicht aber von ¢ abhangig.

4. Das Matrixelement fiir die Hybridisierung eines Ej':- mit einem f;t-EIektron wird

ebenfalls um einen (ortsabhangigen) Faktor \/gi, renormiert. Der Wert von g,
aus Gleichung (66) steht im Gegensatz zu den Resultaten von ,Mean-Field“-
Behandlungen des periodischen Anderson- Modells [6,45]. Im Limes U/ = oo (3;’ =
0) geben diese ,Mean-Field“-Rechnungen einen Faktor g}fF = (1 ~ n{,), der nur

den Zahler, nicht aber den Nenner von g;, in Gleichung {66b) enthalt.

Die physikalischen Konsequenzen dieser vier Punkte lassen sich am leichtesten am ein-
fachen Beispie! der translationsinvarianten Rice-Ueda-Brandow-Wellenfunktion niher
erlautern. Wir werden danach auch auf die Frage eingehen, welcher der beiden unter-
schiedlichen g-Faktoren ,realistischer” ist, ob also gi, gemaB Gleichung (66) oder ¢

die Physik im periodischen Anderson-Modell besser beschreibt.

3.2.3 Ergebnisse fiir die Rice-Ueda-Brandow Variationswellenfunktion

Wic nehmen im folgenden N; + Ny < 2L an, um simple, aber aufwendig zu behan-

delnde Fallunterscheidungen zu vermeiden. Rice und Ueda (28}, Brandow [29] und
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andere Gruppen [30-33] haben den Gedanken Gutzwillers fiir das Hubbard-Modell auf
das periodische Anderson-Modell ibertragen. Startpunkt fir die Konstruktion einer ge-
eigneten Variationswellenfunktion ist das periodische Anderson-Model) fir U = 0 (siehe
Kapitel 3.2.1). Im Sinne von Gutzwiller wiirde man zunichst den Korrelator g2’ auf
den Grundzustand von Hpam(U = 0) anwenden und setzen: | ¥,) =| ¥(U = 0)) (siehe
Gleichung (55)). Man hatte dann eine einparametrige Wellenfunktion. Nun ist aber die
f-Elektronenzahl nicht erhalten. Wir kdnnen daher erwarten, daf die f-Elektronen ins
Leitungsband ausweichen werden, wenn man doppelbesetzte f-Zustinde unterdriickt.
Dadurch wird sich die effektive Hybridisierung dndern. Das bedeutet, daB es physika-
lisch sinnvoller ist, die Mischungsparameter ay, in Gleichung {55) nicht auf ihre Werte
af, aus Gleichung (56a) festzulegen, sondern diese im Rahmen des Variationsverfahrens

zu bestimmen. Wir fassen also die ay, als weitere Variationsparameter auf.

Wir schreiben also endlich

e} = o®' TI[1+ oxo i, xo] § <FS) (67a)
ke
= [gbl_mﬁi'*ugﬁ{ML]H [1+ & £ oa] | cFS) (67b)
ko

Der Zusammenhang zwischen ey, und &, lautet fiir den vorliegenden translationsin-

varianten Fall

(68)

g, = g* ax,

Der Faktor g* entspricht gerade dem Faktor e~#</? ,a Yon Vulovi¢ und Abrahams [33].
Wir werden sehen, da fir d = oo die Varialionsparameter i, eine sehr einfache

Form annehmen (vgl. Kapitel 3.1.2 fiir die Gutzwiller-korrelierte antiferromagnetische
Spindichtewelle).

Wir verwenden unsere allgemeinen Gleichungen (65) fiir den translationsinvarianten
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Fall und setzen in Gleichung (58) ein. Damit erhalten wir in d = 0o als zu variierenden

Ausdruck fir die Grundzustandsenergie

(Heam) = kzec(kxﬁa,)u+kz(q,e,<k)—f:f(1—qa)) (if)o

+UL2’—):2\/§;”V,‘(1‘:L)0*2«\,[¥("£-(ﬁﬂ,)o)] . (69)
ko 4

wobei (Al,)o = @’/ [L+@7| = 1= (Af,do und (Af,)o = do/ [l +dk," gel
ten. AuBerdem gilt wegen Translationsinvarianz (A )o = (A)o und in d = oo
brauchen wir nicht zwischen der wechselwirkenden und der nicht-wechselwirkenden f-
Elektronendichte zu unterscheiden, d. h. es ist {f}; = ni. In Gleichung (69) haben
wir die Lagrangeparameter A, eingefihrt. Vorteil ist nun, da wir nach den dy; und n/
getrennt variieren kdnnen, wobei die Variation nach A, den Zusammenhang zwischen
diesen beiden Gréfien als Nebenbedingung manifestiert. Es sei daran erinnert, daB g,
von nf abhingt. Man kann auflerdem die mittlere Doppelbesetzung der f-Zustinde im

wechselwirkenden System (3’) statt ¢ als Variationsparameter verwenden.

Betrachtet man Gleichung (69), so stellt man fest, daB man den Effekt des Gutz-
willer-Korrelators in d = oo als eine Renormierung der Modellparameter im nichtwech-
selwirkenden System auffassen kann. Wir finden

Vi - V= VoW (70a)

o) = G=  gok)  + AW=E(l-g) . (70b)
— ———
reduziertes Hipfen Shift der f-Niveaus
Damit ist das Variationsproblem fir die Parameter ag, formal dasselbe wie im Falle
U =0, d. h. wir kdnnen sofort schreiben
21k
&4K) — ec(k) + Y (eulk) ~ € (k) + 4%

iy = o, (Vi ec(K), €7(k)} = (M)
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Damit ist die funktionale Form der ag, vollstindig bestimmt und das Problem ist

formal geldst: ), und d sind aus den Variationsgleichungen nach d und der Gleichung

Tk ("Z - (ﬁ{(,)o) = 0 zu bestimmen.

Die vollstindige Herleitung dieser Gleichungen im Rabmen einer (unkontrollierten)
Niaherung gelang erstmals Vulovié und Abrahams [33]. Fir eine detaillierte Analyse
der Gleichungen sei auf diese Arbeit und auf die Referenzen [28,30,31] verwiesen. Als

wesentlichste Punkte sind festzuhalten:

1. In d = oo erhilt man im Rahmen der Rice-Ueda-Brandow Wellenfunktion ein
nMean-Field“-artiges Ergebnis: die Wechselwirkung renormiert die Einteilchen.
Eigenschaften (effektive Bandbreite der f-Elektronen, Renormierung des mittle-
ren f-Niveaus, reduzierte Hybridisierung}. Die renormierten Gré8en hangen von

den mittleren Dichten der f-Elektronen und der doppelbesetzten f-Niveaus ab.

2. Der Unterschied zu den ,Mean-Field“-Behandlungen des periodischen Anderson-
Modells (6,45] liegt in der Form von ¢, (siche Unterabschnitt 3.2.2). Im nachsten
Unterabschnitt werden wir einen detaillierten Vergleich der beiden Ausdriicke fiir
den ¢-Faktor vornehmen und die physikalischen Konsequenzen der unterschiedli-

chen Faktoren untersuchen.

3.2.4 Vergleich mit ,Mean-Field“-Rechnungen

Die ,Mean-Field“-Rechnungen betrachten meist den Grenzfall U = co fiir das periodi-
sche Anderson-Modell [6,45), den Fall also, wo die f-Zustinde au{ einem Gitterplatz

hachstens einfach besetzt sein dirfen.

Diese Theorien sind exakt im Limes unendlich groBer orbitaler Entartung (N/ = oo)

der lokalen f-Zustinde {es bietet sich also eine Entwicklung im Parameter (1/N/)
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an). Es ergibt sich dann ein Ausdruck fir die Grundzustandsenergie, der dem in Glei-
chung (69) entspricht, in dem aber g, durch ¢*F = (1 — n/) ersetzt werden muf. Wir
wollen im folgenden diskutieren, welcher der beiden g-Faktoren die Physik im periodi-

schen Anderson-Modell besser beschreiben sollte.

Der ,Gutzwiller-Faktor® bietet folgende Vorteile gegeniiber dem ,Mean-Field“-

Faktor:

a) im Falle eines voll polarisierten f-Bandes (nur 1- oder |-Elektronen), gibt der Gutz-
willer-Faktor g, den Wert g, = 1, was offensichtlich das richtige Resultat ist. Der

Faktor ¢MF ist in diesem Fall falsch.

b) in der Rice-Ueda-Brandow Wellenfunktion haben wir die Forderung 1-1{ = 0 fir
jeden Gitterplatz erfillt (zumindest im Limes hoher Dimensionen). Diese Bedin-
gung ist bei den ,Mean-Field“-Rechnungen nicht streng gewaihrleistet. Die nur
approximative Behandlung der Nebenbedingung 3{ = 0 bei den ,Mean-Field“-
Rechnungen ist nur fiir groBe Entartung N/ zulassig, so daB die Resultate dieser
Rechnungen das periodische Anderson-Modell fiir kleine Entartungen nicht richtig

beschreiben.

Es wurde argumentiert, dafl die Struktur des Nenners von ¢;, in Gleichung (66) die
Folge der unkontrollierbaren Gutzwiller-artigen Approximationen sein konnte. In die-
ser Arbeit haben wir aber gezeigt, dafl das Ergebnis in d = oo exakt wird, also kein
Artefakt der Gutizwiller-artigen Approxdmation darstellt. Weiterhin folgt aus unserer
Ableitung, daB es sich bei dem Nenner von g;, tatsichlich um einen Gittereffekt han-
delt; im Falle einer einzigen f-Elektron-Storstelle, reduziert sich die Rice-Ueda-Brandow
Wellenfunktion fiir ¢ = 0 ohnehin auf den Varma-Yafet-Zustand [49], so da8 der Nenner

nicht auftritt. Fazekas [31] hat durch die Betrachtung eines verdiinnten Gitters fir die
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f-Elektronen eine Formel fr ¢, in Abhangigkeit von der f-Starstellenkonzentration pf

abgeleitet,
J(1 —nf
&1 -nf)
qa((’!) = 1— gfn£ . (72)

Diese Formel interpoliert zwischen den Grenzfillen einer f-Stérstelle (¢/ = (1/L}) und
dem Gitter von f-Zustinden (¢ = 1). Gleichung (72) sollte sich aus unseren allge-
meinen Gleichungen (66) und (69) ableiten lassen, indem man eine geeignete Mittelung

iiber zufillig verteilte f-Gitterplatze mit Konzentration o/ einfiihrt,

Nachdem wir gesehen haben, daB der Nenner in g;, 2u keinen Widersprichen im Falle
einer Verunreinigung fihrt, wollen wir eine physikalische Begriindung fiir die Form von
gio geben (es sei ¢ =T). Betrachten wir fir Vi = V und U = oo das Matrixelement fir
die Hybridisierung (¥, | fi{t‘eir | ¥o)/{¥, | ¥,) in einer Gutzwiller-korrelierten Wellen-
funktion fiir das periodische Anderson-Modell. Haben wir nur eine f-Stdrstelle, so ist
die Wahrscheinlichkeit dafir, dal nach Anwendung des Operators ,;; &y der f-Zustand
am Gitterplatz i mit Spin 1 besetzt ist, proportional zu ¢Mf = 1 - (ﬁi!t)o - <ﬁ{1)°'
¢MF gibt ganz einfach die Wahrscheinlichkeit dafiic an, daB in | ¥,} fir ¢ = O kein
f-Elektron auf dem Gitterplatz ist; fir ¢ = 0 kann der Gitterplatz leer oder mit ei-
nem T- oder mit einem |-Elektron besetzt sein. — Haben wir nun aber ein System
von L f-Elektronen in | ¥,), so berechnet sich diese Wahrscheialichkeit anders: wir
haben ndmlich die Moglichkeit zu beriicksichtigen, da8 in [ ¥,) auf dem Gitterplatz
i bereits ein f-Elektron mit Spin T vorhanden sein kann, wenn wir danach fragen, ob
wir nach Anwendung des Qperators fi‘féit einen besetzten f-Zustand haben. Der Fak-
tor gi, renormiert nimlich die Hybridisierung relativ zu ihrem Wert bei U/ = 0 (freie
Fermionen). Fir U = co missen wir also die Wahrscheinlichkeit dafir bereckinen, daB
der f-Gitterplatz leer ist (Zahler = ¢MF) relativ zum Fall U = 0, wo das Pauliprinzip

verlangt, daB kein f-Elektron mit Spin 1 auf dem Gitterplatz i in | ¥,) vorhanden ist,
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wenn wir -i‘:éit anwenden (Nenner = 1 ~ (ﬁ;’,)u). Die Beriicksichtigung des Pauliprin-
zips liefert also gerade den Nenner in g;,. Insgesamt ist g, > ¢M*F, weil die Zahl der im
System vorhandenen f-Gitterplatze und f-Elektronen groBer als im Falle nur einer Ver-
unreinigung ist und alle f-Elektronen an der Hybridisierung teilnehmen kdnnen. Dieser

Gittereffekt und das Pauliprinzip werden offensichtlich bei gMF nicht beriicksichtigt.

Es ist in quantenmechanischen Vielteilchensystemen stets etwas problematisch, mit
Wahrscheinlichkeitsargumenten zu arbeiten (siche hierzu beispielsweise die Ableitung
von ¢, in Referenz [28]). Tatsachlich sind die vorgebrachten Argumente nur in d = oo fiir
] ¥,) in der Darstellung | ¥,) = gk | @0} richtig (siche Gleichung (16)). Andererseits
interpretieren wir exakt abgeleitete Gleichungen lediglich a posteriori und sind uns
daher der Beschrinkungen bewufit (exakt nur in d = o0). Weiterhin erkennt man
anhand dieser anschaulichen Argumentation, welche wichtige Rolle das Gitter und das

Pauli-Prinzip spielen.

Rice und Ueda haben Gleichung (66b) kanonisch auf beliebige Entartung (N4 > 2)

verallgemeinert und erhielten

1 —ny

Qo (73)

wobei 1 < £ < N1 gilt. Wir konnten noch nicht beweisen, da8 diese Formel in d = oo
exakt ist, wenn sie auch plausibel erscheint. Man erkennt jedoch an Gleichung (73),
da8B fiir hohe Entartung N/ das Pauliprinzip irrelevant wird und ¢ nahert sich dem

Wert von g}ff =1 —nf,

Zusammenfassend kdnnen wir feststellen, daB ¢, und gMF zwei entgegengesetzte
Extremfalle reprasentieren: (i} ¢, aus der Gutzwiller-korrelierten Rice-Ueda-Brandow
Wellenfunktion wird im Rahmen des Variationsansatzes exakt fir d = oo; (ii) ¢MF

wird exakt fiir hohe Entartung N/, Offensichtlich wird durch die Einflisse endlicher
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Dimensionen und endlicher Entartung (sowie endlicher Wechselwirkungsstirke U [33])

der Renormierungsfaktor zwischen diesen beiden Extremen Yiegen.

Betrachten wir wieder das periodische Anderson-Modell ohne Entartung {N/ =1).
Der Nenuer in g;, liefert weitreichende physikalische Vorhersagen, die fiir das Modell ans

den Ergebnissen fiir die Rice-Ueda-Brandow Variationswellenfunktion gezogen werden:

a) es wird eine magnetische Instabilitat fir den ,Kondo-Grenzfall* (U = oo, n/ 2 1)
vorhergesagt. Bei den ,Mean-Field“-Rechnungen ist der paramagnetische Zu-
stand immer stabil. FEinerseits ist es durchaus maglich, da das periodische
Anderson-Modell diese [nstabilitit tatsichlich zeigt, daB es sich also um kein
Artefakt der Wellenfunktion handelt. Andererseits weist Fazekas [30] darauf
hin, daB das Problem der ferromagnetischen Instabilitit auch beim Varma-Yafet-
Zustand [49] fir das Anderson-Modell mit einer Verunreinigung besteht. Um den
paramagnetischen Zustand zu stabilisieren, mufi der Varma-Yafet-Ansatz erwei-
tert werden (siehe Referenz {50]). Eine entsprechende Erweiterung von | &) in
| ¥} = gF | @) ist daher wahescheialich auch im periodischen Anderson-Model}

ndtig, um eine Stabilisierung des paramagnetischen Zustands zu erhalten;

b) der sogenannte ,Kondo-Exponent ist um einen Faktor (1 -nf) zu klein, das heift,
man hat im Kondo-Grenzfall (U = oo, nf ~ 1) eine grofere Bindungsenergie pro
f-Gitterplatz im Gittermodell als im Falle einer einzelnen Verunreinigung. Dies
widerspricht der physikalischer Intuition, denn man erwartet eine Abnahme der
Bindungsenergie, wenn sich die Abschirmladungen der einzelnen Verunreinigun
gen uberlappen {30]. Es ist Klar, daB dieser Effekt in d = oo nicht zu tragen
kommt, weil alles nur von lokalen Eigenschaften der Wellenfunktion abhangt.
Stattdessen bleibt nur die Erhdhung der Bindungsenergie aus dem oben erklarten

Gittereffekt Gbrig: man hat ein System von L f-Elektronen, die sich wegen der
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Hybridisierung im Gitter bewegen kénnen, weshalb alle Blochzustinde zur Hy-

bridisierung an einem Gitterplatz zur Verfiigung stehen.

Wie bereits oben erwihnt, stellt der Faktor g;, aus Gleichung (66b)' einen Extremfall
dar (U = o0, d = oo, N/ = 1). Es ist bereits von Vulovi¢ und Abrahams gezeigt
warden, dafi Werte der Wechselwirkung U < oo die Bindungsenergie erniedrigen. Den
gleichen Effekt erhalt man gemafl Gleichung (73) fiir endliche Entartung [28,30}. Wir
erwarten, dafl auch die Berilicksichtigung von (1/d)-Korrekturen eine Verringerung der
Bindungsenergic der Rice-Ueda-Brandow Variationswellenfunktion fiir das periodische

Anderson-Modell fiefert (52].

Zusammenfassend kdnnen wir festhalten, daff Gutzwiller-korrelierte Variationswel-
lenfunktionen far das periodische Anderson-Modell durchaus geeignet sind, Grundzu-
standseigenschaften dieses Modells realistisch wiederzugeben. Die in 4 = oo exakten
Ergebnisse fiir die Rice-Ueda-Brandow Wellenfunktion stehen nicht im Widerspruch
zu den Resultaten von ,Mean-Field“-Niherungen [6,45), vielmehr erginzen sich beide
Verfahren: Gutzwiller-korrelierte Welleafunktionen betrachten den Limes hoher Git-
terdimension, ,Mean-Field“-Niherungen den Limes hoher Entartung. Die Verallge-
meinerung unseres Formalismus auf endliche Entartung N/ > 2 steht noch aus, d. h.
Gleichung (73) ist noch nicht bewiesen. Es wire wiinschenswert, wenn man alle bisher

bekannten Resultate aus ein und demselben Zugang systematisch ableiten kdnnte.
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4 Exakte Durchfithrung des Variationsverfahrens in d = oo
Korrelationsfunktionen

Im ersten Abschnitt dieses Kapitels fiihren wir die Korrelationsfunktion=n ein. Diese
Funktionen beschreiben, wie zwei leere, doppelt oder einfach besetzte Gitterplatze in
Entfernung j miteinander korreliert sind. Zu ihrer Berechnung verwenden wir den Gra-
phenformalismus von Gebhard und Volthardt {13] in der allgemeineren Formulierung aus
Referenz [26), wobei wir auch hier die neue Interpretation von ,Linien“ und ,Vertices“

gemaB der Gleichungen (12) und (14) verwenden.

Im zweiten Abschnitt untersuchen wir den Limes d — oo. Wir geben in Un-
terabschnitt 4.2.1 einen Satz von Gleichungen zur Berechnung von Korrelationsfunk-
tionen fiir beliebige Abstinde v =| } | an (siche Gleichung (8b) zur Definition des
Abstands). Das allgemcine Gleichungssystem vereinfacht sich far Nichst-Nachbar-
Korrelationsfunktionen, so daB wir diese in Unterabschnitt 4.2.2 fiir den allgemeinen
Fall explizit angeben konnen. In Unterabschnitt 4.2.3 16sen wir fir die translations-
invariante und spinsyminetrische Gutzwiller-Wellenfunktion das Gleichungssystem aus
Unterabschnitt 4.2.1 durch Fouriertransformation und gebeﬁ die explizite Form der

Korrelationsfunktionen im Impulsraum (k-Darstellung) an.

4.1 Definition und allgemeiner Graphenformalismus

Korrelationsfunktionen erlauben eine anschauliche Beschreibung von riumlichen Fluk-
tuationen des Spins (S;), der Dichte (V) etc. in einer gegebenen Wellenfunktion. So
definieren wir die Korrelationsfunktion zwischen zwei Operatoren X; und ¥; allgemein

als

XY () = 132 {(Xifhu) - (R (Fiap)} - (74)
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Da wir den Term {X;}{Yiy;) in Gleichung (74) abziehen, verschwindet CX¥(j) im allge-
meinen fiir | j {— oo, auch wenn in der Wellenfunktion eine langreichweitige Ordnung,
2. B. eine endliche Magnetisierung m, enthalten ist. Dies bedeutet insbesondere, dafl
CXY(j) fir nachste Nachbarn von der Ordnung (1/d), fir iibernichste Nachbarn von
0((1/d)’) etc. ist.

Da im Hubbard-Modell ein Gitterplatz leer, einfach besetzt mit einem 1 oder |-
Elektron oder doppelt besetzt sein kann, wahlen wir X; bzw. Y; als einen der folgenden

lokalen Operatoren

$F = (- mi)/2 (Spin in z-Richtung), (75a)
Ro= fa (Dichte), (75b)
Dy = fgny (Doppelbesetzung), (75¢)
B, = (1-#)(1 ~ay)  (leerer Gitterplatz oder ,Loch). (75d)

AuBerdem interessieren wir uns fir die Spinflip-Korrelationsfunktion
S R ) A :
CG) = ¢ UGG - (SIS (75e)
1

wobei §F = &4, 57 = (5})* gilt. Die Operatoten 87, 8} und 57 gehorchen den
Kommutatorbeziehungen fiir eine Spin-Algebra mit Spin § = 1/2 und kdnnen dazu be-
nutzt werden, den Vektoroperator $; in der dblichen Weise zu konstruieren [47). Falls
die Spinsymmetrie in der Variationswellenfunktion gebrochen ist, liefert diese Korrela-
tionsfunktion zusitzliche Information. Wie man leicht zeigen kann [13], sind nur sieben

dieser Korrelationsfunktionen voneinander unabhangig.

Die Korrelationsfunktionen sind fir die Gutzwiller-Wellenfunktion in d = 1 exakt
berechnet worden [13]. Fiir hohere Dimensionen ist dies nicht einmal fiir die relativ ein-

fache Gutzwiller-Wellenfunktion mdglich. Mit der im 2. Kapitel entwickelten Methode
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konnen wir fir allgemeine Gutzwiller-korrelierte Wellenfunktionen exakte Aussagen im

Limes hoher Dimensionen ableiten.

Im nun folgenden Formalismus kénnen wir analog zu Referenzen [13,26] vorgehen.
In Referenz [26] haben van Dongen, Gebhard und Volthardt die Korrelationsfunktionen
in der (g? — 1)-Entwicklung fiir allgemeine Gutzwiller-korrelierte Variationswellenfunk-
tionen betrachtet, wobei die zugehdrigen Graphen bereits in Referenz [13] eingefiihrt
und aufgezeichnet worden sind. Genauso wie bei der Berechnung der Einteilchen-
Dichtematrix (vgl. Abschnitt 2.3) milssen wir lediglich die Interpretation der Graphen
andern, d. h. innere Vertices werden jetzt als Faktoren z; aufgefait und Linien zwi-
schen den Gitterpunkten i und j als F,(i, j). Dann kénnen wir die Vereinfachungen des

Formalismus aus Kapitel 2 jm Limes hoher Dimensionen nutzen.

Fir die Korrelationsfunktionen XY (j) brauchen wir den Fall j = 0 nicht zu be-
trachten, da wir sie in diesem Fall durch Gittersummen dber (#t;,)g und d; ausdriicken

kénnen. Analug zu Referenz [26] fihren wir folgende Funktionen fir g # h ein:

YPgh) = {(nge = (ige)o)(nse — (nota)D}, (762)
V(g h) = o1 {(ngs — (ige)o)(Du ~ DYIB}. (76b)
Yo)(g,h) = 1gzh{(Dg*DfF)(Dh‘Dfp)ﬁ}:c (76c)
¥O(gh) = {(ngs — (go o)(rmos — (i-c)o)D}, (764)
YOEh = —{ceudicaD), - (76e)

Entsprechend der oben genannten Ersetzungsvorschrift haben wir (g2 ~ 1) durch zg
und ng, durch (ng, — (g, )o) ersetzt, um die neuen Linien und Vertices in der Entwick-
lung nach z; zu erhalten. Das Symbol {...}£¢ bedeutet, daB man iber alle Graphen

summieren mu8, die sich aus dem Wick’schen Theorem ergeben und bei denen die



49

&GuBeren Gitterpunkte g und h durch ununterbrochene Fermionlinien verbunden sind
(sogenannte vollverbundene Graphen {13]). Die Graphen bis zur dritten Ordnung in
z; fiir }Za-),.. . ,YZF) sind in Referenz [13] aufgezeichnet; die Graphen fir Y knnen
aus denen fiir !;,ﬁ) abgeleitet werden, indem man eine o-Linie von g nach h in eine
(—o)-line umwandelt und dabei beriicksichtigt, daB an jedem inneren Vertex zwei o-

und zwei (—o)-Linien zusammenlaufen.

Wenden wir den allgemeinen Formalismus aus Kapitel 2 an, so erhalten wir nach

einigen Umformungen folgende Ergebnisse

CSS'G) = lizu—ziu — (s-a)o)i-o)a] X

{ [Z [1 - 1’|+,|(1 — {Rtisjo’ )0)(nn+.) -o’ )o] (oo )}av o(h i +3)] (77a)
—40'mi+j'o)a (l,l +1) } I zmmm” oY (3)(1,1 +13)
CNNG) = 7 St i1 = i) ehl
{ [Z [l + Tiaj(1 — {Rigj,-o* )0)("|+J - ] Yoor(hs +-')] . (77b)
+4(1 — 7t O)Y, (1 1+J)} + 4= 2(1 —njp)(1 — 450 YO0+ )
CMPG) = 114 ziest = minso + Bun)] X

{Z f1+2:(1— (ioYo) (ii-alo] (Finjmar)oYoer (b1t i)
+] 205 -oll —mia)t 3
_,_,.L__J_‘ Zi} isjo (14 =01 ("i-—a)o)(ﬁi_q)o)] Ylm(i" +J)}
(77¢)

— 23400 Y Ty s L s
1 . 1__£1_+L_ﬂ~) YOIi,i +j)
+27 §i:(1 —ni0) ( oy (
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. 3 - -
c°PG) = % [1+ 211 = nig + & 0)] [1 4 2145(1 = niggo + Firio)] X
1

{ (1 - "‘7"“) (l "*Jd””) YO (i, i+ j)
I; Tiaj

+22 fiado (M) }'(2)(. i+3j)

lt]

Y (e Yol oYoFon s +j)} (77d)

o'

CS*S‘G) - Z 1'11‘1-0-1 y(&](l l+J) ) (77(-)

wobei wir zur Abkiirzung

P i fir o' =¢
Yoor = —_— (770
Y fir o'=-0¢

eingefiihrt haben.

Die Berechnung der Korrelationsfunktionen fiihrt in der Tat zu etwas linglichen
Ausdriicken. Die Umformungen, die auf die Gleichungen (77a)-(77e) fiihren, sind aber
eine rein algebraische Jbung und die drastischen Vereinfachungen, die sich im Limes

hoher Dimensionen ergeben, erlauben dann wieder eine etwas kompaktere Darstellung.

4.2 Berechnung im Limes d — oo

Wir betrachten aun den Limes hoher Dimensionen. Dabei missen wir zunichst einmal
eine Grofle finden, die im Limes d — oo nicht verschwindet. Wie oben erwihat, gehen
die Korrelationsfunktionen zwischen zwei Gitterplatzen (z. B. dem Ursprung und dem
Gitterplatz j) in diesem Limes gegen Null, da alle langreichweitigen Anteile durch den
Abziehterm in der Definition bereits beriicksichtigt worden sind. Brauchbare GroBen fiir

hohe Dimensionen sind dann die Korrelationsfunktionen, die Gber Schalen von Nachbarn



(b)

Abbildung 1: RPA-zhnliche Blasendiagramme fiir die Korrelationsfunktionen; a) Blase
in erster Qrdnung, b) Blase in zweiter Qrdnung

summiert sind, d. k. es ist interessant, die Korrelationen zwischen einem Gitterplatz
und allen Gitterplitzen im Abstand v =] j |= 1,2,... zu betrachten (der Abstand
wird in der ,,New-York“-Metrik gemessen, Gleichung (8b)). Wir betrachten also die fiir

d = oo nichtverschwindende (Schalen-)Korrelationsfunktion [26]
C¥(wy= Y c*Y(j) . (78)
ljl=v
Im folgenden werden wir diejenigen Anteile in den Korrelationsfunktionen aus Ab-

schnitt 4.1 bestimmen, die zu C*XY (¥) beitragen.

4.2.1 Allgemeine Behandlung

Aus dem obig Gesagten folgt unmittelbar, daB einfache, RPA-3hnliche ,Blasendia-
gramme® auch in d = oo beriicksichtigt werden miissen (RPA = Random Phase Ap-
proximation [11]). Die einfachsten solchen Diagramme sind in Abbildung la und 1b
dargestellt. Wenn beispielsweise j Nachst-Nachbar-Vektor zu i ist (j = i + 7), dann

ergibt das erste Diagramm einen Beitrag der Ordnung 1/d, da zwei Linien Pz’(i,j) auf-
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treten und PO, i+7) = O(y/1/d) ist. Da aber die Zahl der nachsten Nachbarn von der
Ordnung d ist, gibt dieses Diagramm einen Beitrag zu CXY(v). Analoges gilt fiir das
zweite Diagramm, wenn i und j ibernachste Nachbarn sind. Die Korrelationsfunktionen

werden also keinesfalls trivial fiur d = co.

Allerdings ergeben sich im Limes hoher Dimensionen zwei entscheidende Vereinfa-

chungen in unserem Formalismus:

1. Sowohl in ¥2¥(g, k) als auch in ﬁs)(g,h) gibt es stets Anteile in den Graphen,
in denen zwei Vertices durch drei oder mehr verschiedene Wege miteinander ver-

bunden sind [13]. Daher haben wir

(Pgh) = 0 (79a)
YO g,h) = 0 (79b)

2. In d = 0o sind Linien immer durch riché-wechselwirkende Einteilchen-Dichtema-
trizen }F’E’(i, j) gegeben. Normalerweise hat man ,angezogene Linien* P,(i,j) =
P2(i,5)+ Tgn P2(,8)5, (g, h) P2(h, ) zu betrachten (siche Gleichung (11a)). Im
Limes d = oo gibt es in unserem Formalismus keine solche Renormierungseffekte

{siehe Gleichung (40)).

Es bleiben also nur die RPA-Blasendiagramme abrig, die aus i’:‘,’ (i,j)-Linien aufgebaut

sind.

Weiterhin kdnnen wir die anderen Vereinfachungen benutzen, die sich aus dem
Limes ergeben (siehe z. B. Gleichung (45) fir den Zusammenhang zwischen ¢* und
d;). Verwenden wir die Definitionen aj, = (4 - Rip)/((ﬁia)o(l - (ﬁia)O)) und 4, =
((ﬁia)o - 21)/(("’4«)0 - Ei,o), so finden wir (j # 0)

QR 40 11 XS ge e .
cIG6) = i i%(l — a3, )(1 — @430 (00 Vour (i1 +) (80a)
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CVG) = T+ a )+ oo o (i) (80b)
. 1 disj R
chPG) = z_):(l+ai.o)mm (Li+j) (80c)
ioo!
ooy = Ay G oG+ j) (80d)

L 5= (figdolfisjerlo

c ()

% Z bio bi,_-abi«vj.abifj-“y(s)(i’i +3) - {80e)

—

4 ynd ¥©) erhalt man aus der Aufsummation

.

Die allgemeinen Gleichuugen fiir Y, ¥

von (nichtwechselwirkenden) Blasendiagrafmunien. Sie lauten

¥, h) = — [Pig,h)]’ B
+ 3 2jzm [P2(e D] Y5 () (PR, )] (812)
lm

¥{(g, h)

i

3 [Pote, 0] [P W]
1

+3n17m [f’:?(g.l)]1L y@(1,m) [P2, (m, b))’ (81b)
lm
Yei(g,h) = - [P(g,h)] [P (e.h)]
+3 [Ff(g,l)] [P2. (&) YO(h) . (81¢)
1

Die Auswertung dieser Gleichungen ist fiir allgemeines PO(i,}) und beliebige Abstinde

| j |= v nicht mdglich.

Es gibt aber Fille, in denen weitere Vereinfachungen m&giich sind. Zwei davon
werden in den folgenden Unterabschnitten behandelt, nimlich die allgemeinen Nichst-
Nachbar-Korrelationsfunktionen (| j |= 1) in Unterabschnitt 4.2.2 und die translations-

invariante, paramagnetische Gutzwiller-Wellenfunktion in Unterabschnitt 4.2.3.
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4.2.2 Allgemeine Nichst-Nachbar Korrelationsfunktionen

Im Fall j = r (v = 1) brauchen wir nur die Blase in erster Ordnung (Abb. 1a) zu
betrachten, um den fihrenden Beitrag fir C*Y(v) zu erhalten. Wihrend die erste
Blase von Ordnung 1/d ist (siehe oben), liefert die Blase in zweiter Ordnung (Abb. 1b)
bereits einen Beitrag in Ordnung (1/d)%. Man erhalt nimlich den fihrenden Beitrag
des Graphen, wenn der innere Vertex g nichster Nachbar zu i oder i+ 7 ist. Die liefert
2(2d — 1) Beitrage der Ordnung (1/d) x (1/d)? da g einmal nichster Nachbar und
einmal Gbernichster Nachbar zu i bzw. zu i + # ist. Der Gesamtbeitrag ist daher von

Ordnung O(d x (1/d) x (1/d)?) = O((1/d)?).

Daher sind in d = co die Nachst-Nachbar-Korrelationsfunktionen C*¥ (v = 1) leicht
allgemein zu berechnen. Das asymptotische Vechalten fir grofie Abstinde v ist selbst
im Limes hoher Dimensionen nicht leicht zu bestimmen. Wir werden diesen Punkt in
Unterabschnitt 4.2.3 im Zusammenhang mit der Gutzwiller Wellenfunktion noch naher

diskutieren (siehe auch Referenz [26]).

Beriicksichtigen wir nur die Blase in erster Ordnung, so finden wir Yoo(ii+7) =
by [B3G,i + 7)]” und VO, i+ 7) = = [P2(i,i 4 7)) [P, (5,1 4 7)]. Esist wichtig,
die Nachst-Nachbar-Korrelationsfunktionen fiir allgemeines | $,) berechnen zu konnen,
weil diese GroBen die Grundzustandsenergie von Hamilton-Operatoren mit Nichst-
Nachbar-Wechselwirkung bestimmen (z. B. beim Heisenberg- oder t-J-Modell, siehe
Kapitel 8). In Gleichungen (80a)-(80e) eingesetzt erhalten wir

O (r) = G B (1=a) (1-aers) [+ ) (522)
CM(r) = -% _Z (14 ai0) (1 4 oier o) [PoG1 + ) (82b)
) = 71+ 0.) oty [+ ) (529



55

1 didiyr s . 2
¢om) = L5 (ﬁic)u(fl:+r,a)o [P‘.’)("l+f)] (82d)
c' () = —%Z biobi~obisrobisr o [PO(1, 1+ 7)) [P (1 + 7)] .(82¢)

Als einfache Spezialfalle betrachten wir nun die paramagnetische Guizwiller-Wellen-
funktion und die in Unterabschnitt 3.1.2 eingefihrte Gutzwiller-korrelierte antiferro-

magnetische Spindichtewelle.

Im Falle der translationsinvarianten und spinsymmetrischen Gutzwiller-Wellenfunk-
tion erhalten wir alle Ergebnisse, die in Referenzen [26,27] im Rahmen der (92 —1)-Ent-

wicklung abgeleitet wurden. Dort wurde bereits gezeigt, daf
C*¥(r,g,n) = gxyC*¥" (1,9 =1,n) (83)

gilt, wobei die Korrelationsfaktoren

gorse = ("T‘jg)w (342)
wo = (1) (814)

lauten. Ein so einfacher Zusammenhang zwischen den Korrelationsfunktionen mit
und ohne Wechselwirkung wie in Gleichung (83) kann nur fiir nichste Nachbarn gel-
ten, wahrend fiir beliebige Abstinde » # 1 keine direkte Proportionalitit zwischen
CX¥(v,g,n) und C¥¥(v,g = 1,n) besteht. Grund dafiir ist [26], daB beispielsweise
die Korrelationsfunktionen fiir {ibernachste Nachbarn (v = 2) im wechselwirkenden

Fall auch Information iiber die Korrelationen zwischen den nichsten Nachbarn (v = 1)
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enthalten, da sowohl das Diagramm aus Abbildung la als auch das Diagramm aus Ab-
bildung 1b zu CXY (v = 2, g,n) beitragen. Das erste Diagramm tragt bei, wenn i und j
ibernichste Nachbarn sind, es enthalt also Informationen iiber die Korrelationsfunk-
tionen im nicht-wechselwirkenden System im Abstand v = 2. Das zweite Diagramm
trigt bei, wenn i und g bzw. g und j nichste Nachbarn sind. Es enthilt daher Informa-
tionen {iber die Korrelationsfunktionen im nicht-wechselwirkenden System im Abstand
v = 1. Somit tragen sowohl CXY (v = 2,9 = 1,n) als auch C*¥(v = 1,9 = 1,n) zu

CXY (v =2,g,n) bei.

Fiir die Gutzwiller-korrelierte antiferromagnetische Spindichtewelle ist die Spinsym-
metrie gebrochen und die Translationssymmetrie gilt nur mehr auf den A- und B-
Untergittern separat. Da fir nichste Nachbarn stets i auf dem A- und i + 7 auf dem
B-Untergitter (oder umgekehrt) liegen, gilt Gleichung (83) weiter. Da wir aber eine
endliche Untergittermagnetisierung haben, lauten die Korrelationsfaktoren in diesem
Fall (r # m)

4(:1—23—71&’)z — (1 —n)’m?

gszss = ) i(2 s m"‘] (85a)
N . Rl 85b

Jsts- = (n? — m?) [(2 — n)g — m7] (85b)

N (n —n’+23)2 —m?(1-n)
N = 4 s [(2 - m,] (85¢)
R 2[(2-—11) n—n®+2d
go = B0 (n? - m’)([(z —n)’ - r)n]’] (85d)
=\ 2
gpp = (%) . (85¢)

Folgende drei Punkte sind fiir die spatere Diskussion von Naherungsverfahren in Kapi-
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tel 5 und die Ableitung neuer Variationswellenfunktionen in Kapitel 8 wichtig:

(i) wegen der gebrochenen Spinsymmetrie gilt im allgemeinen gg:5+ 3 gg+5-. Es diirfte

auch schwierig sein, die Form der Faktoren durch ein Niherungsverfahren abzu-

leiten;

(ii) es gibt Verstarkungsfaktoren nur fir die in Gleichung (74) definierten Korrelations-
funktionen, fiir Gr68en also, bei denen der Anteil der langreichweitigen Ordnung

abgezogen wird. So gilt in unserem Beispiel

1 P m’ S5 S+s~

ZZ(SiS“,) =-7 +95:5:C” ° (7,9 =1,n)+ gs5+5-C {(r,g =1,n),(86)
i

d. h. wir haben den Anteil (fo‘l‘)( .i’-rr) = —m?/4 der Untergittermagnetisierung
mitzuberiicksichtigen, wenn wir Erwartungswerte von Hamiltonoperatoren fiir
Spinmodelle berechnen wollen. Eine Ausnahme bilden offensichtlich nur solche

Fille, in denen {S7) = 0 gilt;

(iii) der Term —m?/4 in Gleichung (86) ist von der GréofSenordnung O(1) und kat selbst
eine (1/d)- Korrektur (siehe Gleichung (38)).

Es ist aus den drei genannten Griinden keine einfache Aufgabe, den Erwartungswert
(1/L) Ti{SiSis 1) bis zur Ordnung (1/d) zu berechnen. Wir werden dieses Problem in

Kapitel 8 angehen.

4.2.3 Ergebnisse fiir die paramagnetische Gutzwi!ler—WellenfUnkﬁOﬂ

Fiir die Gutzwiller Wellenfunktion kénnen wir Translations- und Spinsymmetrie aus-
nutzen, um die Gleichungen (81a)-(81c) zu ldsen. Wir bezeichnen die Fouriertransfor-
mierten der Korrelationsfunktionen CXY (j) mit CX¥(q) = ) £UCXY (§). Wegen der

Spinsymmetrie gilt C5*5(q) = 205*5*(q).
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Um die Fouriertransformation ausfihren zu konnen, brauchen wir auch den Wert
der Korrelationsfunktionen am Ort j = 0, den wir in unseren bisherigen Betrach-
tungen ausgeklammert hatten. Da der Wert am‘Ursprung lediglich als Konstante
in die Fouriertransformierten eingeht, kénnen wir CXY(q) eindeutig dadurch bestim-
men, dal wir den Wert der Funktion fiir ein beliebiges q angeben. Hierzu bietet sich
der Vektor q = 0 an, da C¥¥(q = 0) = 5 CX¥(5) = (1/L) [(X¥) — (X}(V)] gilt,
d. h. CX¥(q = 0) gibt die Korrelation der {iber alle Gitterplatze summierten Ope-
ratoren X = ;X und ¥ = ;¥ an. Wegen Teilchenzahl- und Spinerhaltung gilt
C¥%'(q=0) = C"¥(q =0) = C"P(q = 0) = 0. Die Zahl der Doppelbesetzungen ist
nicht erhalten. Wie man sich aber leicht iberlegt, kann man die Varianz der Doppel-
besetzung {D?) ~ (D)? leicht aus der mittleren Doppelbesetzung selbst gewinnen. Man
erhilt CPP(q = 0) = (9/2) (0d/Bg) = p. Somit kennen wir alle Korrelationsfunktionen

an einem bestimmten q-Wert.

Wir bezeichnen die Fouriertransformierte von [P‘?"',’(i,j)]2 mit Allg{(q). Die nicht-
wechselwirkende Korrelationsfunktion berechnet sich damit zu Co(q,n) = n(1 —n/2) —

2ATlo(q) = CN¥(q,9 = 1,n) = 4C%*5'(q,9 = 1,n).
Die Gleichungen (81a)-(81c) sind damit leicht zu I&sen. Man erhalt

" — [AIL
B = T o

_ _z[All(q)f
= T-oalar (878)

wobei z = (d — dg)/(do(1 — n + ) und dy = d{g = 1,n) = (n/2)? gelten. Setzen wir
dies in Gleichung (802)-(80d) ein, so erhalten wir

1 Co(q, n) _ 1 - 1
41— V5Colg,n)’ 2= n—2dy n-2d

Yq)

I

(88a)

%% (q,9,n)

00(07 n) = 1 _ l
1+ VwCola,n) * n(l—n)+2d =n(l—n)+2d

GNN(q)g’") (88b)
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(2 —n)d

CND ,g,n) = CNN T i od
(@.9:7) = 2@C"(q,9,n), ¢ n(l—n)+2d

(88¢c)

CP?%q,9,n) = P+¢AC N(q,9,n) . (88d)

Diese Gleichungen fir die translations- und spiniavariante Gutzwiller-Wellenfunktion
lassen sich auch mit einer Verallgemeinerung der Methode von Metzner und Vollhardt

ableiten. Wir erhalten véllige Ubereinstimmung mit den Resultaten in [26,27].

In d = oo haben die Korrelationsfunktiouen eine Gestalt, die von der RPA-Naherung
her bekannt ist [L1]. Dies rihrt von der Aufsummation von Blasendiagrammen her, die
als einzige Diagrammklasse in d = oo iibrigbleibt. Die Gré8en Vs und Vy entspre-
chen renormierten Kopplungskoustanten, die durch die neuen, fir d = co kanonischen
Vertices z; = r ins Spiel kommen. Eine dhnliche Struktur dirfte sich auch fir die
ezakten Korrelationsfunktionen im Hubbard-Modell in d = oo ergeben [26], wobei aber

die Kopplungskonstanten frequenzabhingig werden.
Im atomaren Limes (4 = 0) und fiir halbvolles Band (n = 1) verschwinden CNV,
CNP ynd €PP, wihrend fir die Spin-Spin-Korrelationsfunktion gilt

it 2
grst _ = | _
C7(q,9=0,n=1) 1 1 +4Alle(q,1) l] ’ o

Beiq = Q = (x,...,%), also gerade beim halben reziproken Gittervektor, dessen
GroBe gerade 2kp entspricht, divergiert C5'°(q). Diese Divergenz deutet auf eine

aatiferromagnetische Instabilitat hin.

Die Gleichungen (80a) und (81) (oder Gleichung (88a)) kdnnen auch dazu benutzt
werden, das Verhalten der Korrelationsfunktionen fir grofe Abstinde zu berechnen [26].
Wir wollen diese nicht ganz einfache Analyse der Gleichungen nicht wiedergeben, son-

dern auf die Ergebnisse eingehen. Fir die Gutzwiller-Wellenfunktion zeigt sich, daff die
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Spin-Spin-Korrelationsfunktion fiir halbvolles Band in d = oo folgendes asymptotisches
Verhalten hat:

1

1 -2

s — (-1
fiir Abstinde, die grof gegen 1/¢” sind, und
e A2
CS'S" = (-1)* (5) 1<y <g? (90b)

fiir Abstande, die klein gegen 1/¢? sind. Das Verhalten fiir groBe » ist also unterschied-
lich fiir » > ¢~2 bzw. v < g%, d. h. 1/¢? ist die relevante Lingenskala. Fir die
Gutzwiller-Wellenfunktion ist also eine Analyse der Korrelationsfunktionen fir grofie

Abstande mdglich.

Dariiber hinaus kann man aus dieser Untersuchung noch eine SchluBfolgerung tiber
die Existenz des Brinkman-Rice Lokalisierungsibergangs 7] ziehen. Im Rahmen der
paramagnetischen Gutzwiller-Variationswellenfunktion im halbvollen Band erhilt man
in d = oo als Grundzustandsenergie fiir das Hubbard-Modell: E(U > U.,n = 1) =0,
d. h. alle Teilchen sind ab einer Wechselwirkungsstirke U, lokalisiert (Brinkman-Rice
Ubergang). Dieser Ubergang wurde als Beispiel fir einen durch Elektron-Elektron-
Wechselwirkung induzierten Metall-Isolator-Ubergang angegeben [4]. Bedingung fiir
die Existenz des Ubergangs ist, daB die mittlere Doppelbesetzung fiir kleine Werte von
g linear verschwindet, d. h. d(g,n = 1) ~ ¢ fiir ¢ « 1. Da die Spin-Spin-Korrelations-
funktion mit der mittleren Doppelbesetzung Gber die Gleichung

C¥T(Que)=1+2(1— g’):% (91)

zusammenhingt [13,26], ist es moglich, Aussa.geh dber d(g,n = 1) aus der Kenntnis der

Korrelationsfunktionen zu gewinnen. Wie in Referenz [26] gezeigt wird, ist es mit Hilfe
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von Skalenargumenten und weiteren begrindbaren Arnahmen méglich, aus dem Ver-
halten der Korrelationsfunktionen in d = 1 {13] und d = oo |26] daranf zu schlieBen, da8
d(g,n = 1) in allen endlichen Dimensionen schneller als linear gegen Null geht. Es gibt
also starke Evidenz dafiir, daB es keinen Brinkman-Rice-Ubergang in allen endlichen
Dimensionen gibt. Wir werden auf diese Problematik noch einmal im Zusammenhang

mit der (1/d)-Entwicklung fir die Gutzwiller-Wellenfunktion in Kapitel 8 eingehen,
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5 Vergleich mit Niherungsverfahren

In diesem Kapitel werden wir die in Kapitel 3 und 4 gewonnenen, in hohen Dimensio-
nen exakten Ergebnisse mit den Resultaten von Niherungsverfahren vergleichen. Un-
ter Naherungsverfahren seien dabei Methoden verstanden, fir die man a priori keinen

Grenzfall angeben kann, in dem die verwendete Niherung exakt wird.

Im ersten Abschnitt beschiftigen wir uns mit erweiterten Gutzwiller-artigen Nihe-
rungen, die eine Fortentwicklung der Gutzwiller-Approximation darstellen {28-33,36,53-
59). Im zweiten Abschnitt behandeln wir die von Kotliar und Ruckenstein {34] ein-
gefiihrte ,,Slave-Boson“- Pfadintegral Methode fir das Hubbard-Modell, die von anderen

Gruppen verwendet (60] und weitereniwickelt wurde [61-63].

5.1 Erweiterte Gutzwiller-Approximationen

Um die Grundzustandsenergie der Gutzwiller Wellenfunktion im Hubbard-Modell zu
berechnen, hat Gutzwiller [2] ein Niherungsverfahren eingefihrt, die sogenannte ,Gutz-
willer-Approximation® fiir die Gutzwiller-Wellenfunktion. Zwar wurde das Verstandnis
fir diese Naherung spater vertieft [8,53], eine systematische Ableitung und die Verall-
gemeinerung auf kompliziertere Gutzwiller-korrelierte Variationswellenfunktionen blieb
aber ein offenes Problem. Wie als erstes von Metzner und Vollhardt [20,25] gezeigt
wurde, ist die Gutzwiller-Approximation fir die Gutzwiller-Wellenfunktion ezakt in
d = 0. Demzufolge erdffnete sich ein neuer Zugang, die Gutzwiller-korrelierten Varia-
tionswellenfunktionen systematisch zu behandeln und die bisherigen {(unkontrollierten)

Naherungen in ihrer Bedeutung einzuordnen,

Es gibt im Prinzip zwei unterschiedliche Niherungsschemata, die sich im Laufe der

Zeit herausgebildet haben: (i) das ,Abzihl-Verfahren“, das als ,renormalized mean
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field approach* insbesondere von Rice und Ueda [28) und Zhang et al. [36] propagiert
wird; hierbei wird im wesentlichen mit dem Gutzwiller-Korrelator argumentiert, ohne
da8 wirklich mit korrelierten Wellenfunktionen gerechnet wird; (ii) eine geniherte Aus-
wertung von Erwartungswerten fiir eine gegebene Gutzwiller-korrelierte Variationswel-
lenfunktion. In ilteren Verdffentlichungen (z. B. in Referenz [53]) ist es nicht méglich,
diese beiden Vorgehensweisen strikt auseinanderzuhalten. Deswegen werden wir keine
gesonderte Behandlung der beiden Niherungsmethoden vornehmen. Stattdessen wer-
den wir die Trennung analog zu Kapitel 3 in Methoden fiir das Hubbard- bzw. das

periodische Anderson-Modell vornehmen.

5.1.1 Hubbard-Modell

Zur Beschreibung von Antiferromagnetismus mit Hilfe einer Variationswellenfunktion
| ¥,) war es ndtig, die Gutzwiller-Approximation fiir Wellenfunktionen mit gebroche-
ner Translationssymmetrie zu verallgemeinern. Wie bereits von Metzner und Vollhardt
gezeigt worden ist {20,25), konnte keiner der friheren Versuche das exakte Ergebnis in
d = oo fiir die optimale Gutzwiller-korrelierte Spindichtewelle liefern (siehe Unterab-
schnitt 3.1.2). In allen N&herungsverfahren gibt es eine ad hoc Annahme liber die Struk-
tur der @, O [53-57), die | ®q) in | ¥y) = < | ®q} definieren (siehe Gleichung (48a).
Demzufolge arbeiteten sie nur innerhalb einer beschrankten Unterklasse von Variations-
wellenfunktionen, zu der die optimale Variationswellenfunktion in d = oo nicht gehért.
Diese Methoden sind deshalb in ihrer physikalischen Aussagekraft beschrinkt. Ab-
gesehen davon fithren die verwendeten Approximationen auch teilweise auf unsinnige
physikalische Aussagen. Zum Beispiel erhilt man Impulsverteilungen {#y,}, die fir
bestimmte k-Werte negativ werden [53]. Das bedeutet, daB man nicht einmal fiir diese

beschrankte Klasse von Variationswellenfunktionen eine Gutzwiller-artige Approxima-
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tion entwickeln konnte, die in d = oo exakt wird [25].

Ogawa, Kanda und Matsubara [53] gelang es immerhin, einen Ausdruck fir die
Grundzustandsenergie anzugeben, der die gleiche Struktur wie das exakte Ergebais in
d = 00, Gleichung (49a), hat. Sie erhielten allerdings einen Faktor gokm, der z. B. im
Limes U = oo (d = 0) den Wert goxm{m,d = 0) = {26(1 — n}}/(2n —n? 4+ m?) hat. Der
Faktor goxm unterscheidet sich fiir alle m # 0 vom exakten ¢-Faktor. Zudem wurde
von Metzner und Vollhardt {20,23] gezeigt, daB eine Gleichung wie (49a) innerhalb einer
beschrinkten Klasse von Variationswellenfunktionen in d = oo gar nicht abgeleitet
werden kann. Diese Art von Niherungen kdnnen also nicht systematisch eingeordnet

werden.

Neben der geniherten Auswertung von vorgegebenen Variationsansitzen gibt es
auBerdem den Gutzwiller-artigen “renormalized mean field approach” {36}, bei dem
Zhang et al. die Struktur der Gleichung (49a) vorgussetzen und dann goxm durch
,Abz3hl“-Argumente ableiten (siehe Referenz [8] fiir Details beziiglich des Abzahl-
verfahrens fiir die Gutzwiller-Wellenfunktion). Weil goxm nicht mit dem exakten ¢-
Faktor in Gleichung (49b) {bereinstimmt, erhilt man im allgemeinen nicht die rich-
tigen g-Faktoren aus dem Abzihlverfahren. AuBerdem muf die Giiltigkeit der Glei-
chung (49a) angenommen werden. Das fihrt dazu, daB man gar nicht weil, welche
Gutzwiller-korrelierte Variationswellenfunktion nun eigentlich zu dem Ergebnis gehdren
soll. Tatsachlich ist es sogar so, daB die Abzahlmethoden Ergebnisse erhalten, die fir
| ¥,} in der Form | ¥,) == gk { @q), Gleichung (20), giiltig sind. Andererseits wird sug-
geriert, dafl man mit | ¥,) = g° | Do) rechnet. Das bedeutet, daB8 der Vergleich von nu-
merischen Daten mit den Ergebnissen aus dem ,renormalized mean field approach [36]
gar nicht sinnvoll ist, weil man in Wirklichkeit verschiedene Wellenfunktiénen miteinan-

der vergleicht. Wir werden uns diesem Problem noch einmal in Kapitel 8 widmen. Dort
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leiten wir neue Variationswellenfunktionen ab, die in hohen Dimensionen optimiert sind

und jetzt in niedrigen Dimensionen numerisch getestet werden kdnnen.

Der Zugang in Referenz [36] wurde ebenfalls angewendet, um die Nachst-Nachbar-
Spinkorrelationsfunktion fiir den antiferromagnetischen Fall zu berechnen. Mit Hilfe

der Abzihlmethode erhielten Zhang et al. folgendes Ergebnis im Grenzfall d = 0

(8iSisr) = c(58isr)o (92a)
2n ?
€= [zn-n2+m2] : (92b)

Im Fall der Gutzwiller-Wellenfunktion gilt m = 0 und (§;) = 0, so da$ die Glei-
chungen (85a), (85b) und (92b) ibereinstimmen. Daher ist das Ergebnis (92a) fir
die Gutzwiller-Wellenfunktion bis zur Ordnung (1/d) richtig. Wie in Referenz (36) ge-
zeigt wurde, vergleicht sich dieses Resultat sehr gut mit numerischen Daten fiir die

Gutzwiller-Wellenfunktion.

Andererseits kann Gleichung (92a) fiir m # 0 auch in hohen Dimensionen nicht exakt
werden. Dies ist aus Gleichung (86) ersichtlich, in der die linke Seite von Gleichung (92a)

lautet
(8iSisr) = (-m[4) + g5:5:C%" (7,9 = 1,n) + g545-C>* 7 (7,9 = 1,n) . (93)
Gleichungen (92a) und (92b) kénnen daher aus folgenden Griinden nichf richtig sein;

(i) es gibt verschiedene Verstirkungsfaktoren gsss¢+ # gs+g- wegen der gebrochenen
Spinsymmetrie (beide Faktoren aus den Gleichungen (85a), (35b) unterscheiden

sich von ¢ in Gleichung (92b}),

(ii) es gibt keinen Verstirkungsfaktor fir den Anteil (—m?/4), der von der langreich-

weitigen antiferromagnetischen Ordnung herriihrt,



66

(iii) der Term (~m?/4) ist von der GréBenordnung (1) und hat eine nichttriviale
(1/d)-Korrektur. Solch eine Korrektur kann nicht ,abgezahlt* werden. Wir wer-

den sie in Kapitel 8 berechnen.

Zusammenfassend kann man feststellen, dafl eine systematische Verallgemeinerung der
Gutzwiller-Approximation auf kompliziertere Probleme als die translationsinvariante
Gutzwiller-Wellenfunktion nicht befriedigend gelungen ist. Zudem geben diese Metho-
den keinen Hinweis, wie sie systematisch verbessert werden kdnnten. Diese Fragestel-

lungen konnen jetzt mit dem d = co-Konzept [20,25] systematisch angegangen werden.

5.1.2 Periodisches Anderson-Modell

Die in Kapitel 3.2 eingefihrte Rice-Ueda-Brandow Variationswellenfunktion wurde von
verschiedenen Gruppen mit Hilfe Gutzwiller-artiger Niherungen untersucht [28-33). Der
Variationsansatz kann nicht nur fir das periodische Anderson-Modell untersucht wer-
den, sondern auf beliebige Zweibandmodelle, z. B. auf das Emery-Modell [51], ange-
wendet werden [58,59].

Diese Variationswellenfunktion ist translationsinvariant, aber die Zah] der f-Elek-
tronen ist keine Erhaltungsgrofie wie im Fall der Gutzwiller- Wellenfunktion (siehe Un-
terabschnitt 3.2.1). Ein Vergleich der Ergebnisse dieser Arbeiten mit den Formeln in
Unterabschnitt 3.2.3 zcigt, daB diese Naherungsverfahren in der Lage sind, die ezak-
ten Ergebnisse in d = oo richtig wiederzugeben. Dies trifft sowohl auf die ,Abzahl"-
Naherungen [28] wie auch auf die approximative Auswertungen der Variationswellen-
funktion [30,33] zu. In manchen Fallen [29,32] wurde die variable f-Teilchenzahl aber
nicht richtig beriicksichtigt. Die weitestgehende (und in d = oo exakte) Darstellung und
Diskussion der Ergebnisse fir die Rice-Ueda-Brandow Variationswellenfunktion haben

Vulovi¢ und Abrahams in Referenz [33] gegeben. Der Beweis, daB deren Formeln in
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d = oo exakt werden, gelingt auch mit einer kanonischen Erweiterung der Methode von

Metzner und Vollhardt (27].

Erst kiirzlich wurde das Emery-Modell [51] von Oles und Zaanen (58] mit Hilfe
der ,Abzihl“-N3herung untersucht, wobei sie die Rice-Ueda-Brandow Wellenfunktion
verallgemeinert und speziell den Fall von Antiferromagnetismus im Emery-Modell un-
tersucht haben. Da wir in Unterabschnitt 3.2.2 die exakten Ergebnisse in d = oo fiir
allgemeines | ¥,) angegeben haben, kdnnen wir deren Resultat fiir die Grundzustands-
energie auf seine Giiltigkeit in hohen Dimensionen priifen. Es zeigt sich, dal Oles und
Zaanen den in d = oo exakten Ausdruck far (¥, | Hemery | ¥,)/(¥, | ¥,) mit dem
in d = oo optimalen | ¥} gefunden haben. Wie im Falle des Hubbard-Modells kann
jedoch auch hier nicht die richtige Wellenfunktion zugeordnet werden. Obwohl sie die
exakten Resultate in d = oo finden, erlaubt ihre Niherung nicht, diejenige Wellen-
funktion zu identifizieren, die diese Ergebnisse liefert. Waihrend sie ihre Ergebnisse
der korrelierten Wellenfunktion | ¥,) = ¢2 | ;) zuordnen, sind diese Resultate in
Wirklichkeit fir | ¥,} = gfz‘ | @} in d = oo exakt. Mit Hilfe unseres neuen Formalis-
mus in Kapitel 2 kdnnen wir die richtige Variationswellenfunktion jetzt angeben (siehe

Unterabschnitt 3.2.1).

Zusammenfassend konnen wir fiir Abschnitt 5.1 folgendes festhélteu:

1. Gutzwiller-artige Approximationen geben das exakte Resultat in d = oo fiir trans-
lationsinvariante Variationswellenfunktionen, wie z. B. fir die Gutzwiller- und die

Rice-Ueda-Brandow Variationswellenfunktion.

2. Fir kompliziertere (z. B. antiferromagnetische) Variationswellenfunktionen sind
sie unzureichend. Sie kdnnen destenfalls die in d = 0o exakte analytische Struktur
von { ) und Renormierungsfaktoren g, richtig angeben, wie dies z. B. Oles und

Zaanen gelang. Die Zuordnung der richtigen Wellenfunktion | ¥,) = Pl Do) zu
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diesen Ergebnissen ist aber nicht moglich, es wird sogar filschlicherweise sugge-

riert, daf | ¥} = g2 ®,) die zugehdrige Variationswellenfunktion sei.

3. Da in numerischen Untersuchungen stets mit | ¥,) = g° | @) gearbeitet
wurde, die in d = oo optimale Form aber | ¥,) = g% | @) ist (siehe Glei-
chung (20)), sind Vergleiche zwischen analytischen und numerischen Resultaten
nur im Falle von translationsinvarianten Gutzwiller-korrelierten Variationswellen-
funktionen sinavoll, weil dann beide Einteilchen-Produktwellenfunktionen | ¥g)
und | $g} identisch sind (gk‘[’ in Gleichungen (17), (21) ist hier nur ein irrelevan-
ter Normierungsfaktor); man sollte Vergleiche also nur im Falle der Gutzwiller-
Wellenfunktion und der Rice-Ueda-Brandow Wellenfunktion anstellen, da man in
diesen Fillen die Einflisse endlicher Dimension studieren kann. In allen ande-
ren Fillen, insbesondere bei Antiferromagnetismus, missen erst neue numerische

Studien durchgefiihrt werden.

4. Es ist nicht méglich, Korrelationsfunktionen fiir Variationsansatze mit gebroche-

ner Symmetrie mit Hilfe der ,Abzihl“-Naherung zu berechnen.

5.2 Slave-Boson-Methode von Kotliar und Ruckenstein

Kotliar und Ruckenstein haben eine ,Slave Boson“-Pfadintegral-Methode fiir das Hub-
bard-Modell entwickelt. In diesem Abschnitt 2eigen wir, daB ihre Ergebnisse mit Hilfe
in d = oo exakt ausgewerteter Gutzwiller-korrelierter Variationswellenfunktionen abge-

leitet werden kdnnen.

Im ersten Unterabschnitt stellen wir kurz die Methade vor, wobei wir auf den Umweg
iber Pfadintegrale verzichten kdonnen. Im zweiten Unterabschnitt zeigen wir Vor- und
Nachteile dieser Methode auf. Insbesondere werden wir auf die Frage eingehen, in

welchem Umfang die Resultate dieses fir endliche Temperaturen gedachten Niherung
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tatsachlich fir T > 0 angewendet werden kdnnen.

5.2.1 Kurze Darstellung des Verfahrens

Die Bebandlung von Pfadintegralen (insbesondere deren geniherte Auswertung) er-
leichtert sich erheblich, wenn man nur noch mit kommutierenden statt antikommu-
tierenden Variablen rechnen mu8 [41}. Kotliar und Ruckenstein {34] fihrten deshalb
vier ,Slave-Boson“-Operatoren ein, die die vier moglichen Besetzungen eines Gitter-
platzes beschreiben: & fiir einen leeren Gitterplatz , Jf fir ein Doppelbesetzung und
pt fir eine Einfachbesetzung. Das Hubbard-Modell kann dann in einem erweiterten
Hilbert-Raum folgendermaBen geschrieben werden

A=Y tyehd, i, +U D drd (91a)

ije i

wobei wir die Abkiirzung
5, =& P, + B4 (94b)

eingefihrt haben. Jetzt wird die Wechselwirkung allein durch Bosonenoperatoren aus-
gedrickt, aber die kinetische Energie ist komplizierter geworden. Auflerdem hat man
den Hilbert-Raum erweitert und sich damit Vieldeutigkeiten eingehandelt. Solange
man H exakt behandelt, kano man namlich zum Beispiel folgende Ersetzung vorneh-

men, ohne die Physik zu dndern

~ i 1

3, 22 = — - Zin —- - (95)
© 1- d:.di - f’i‘;?iv Jl_.. ei+ ei - p;’—dpi—a

Jede Niherung hiangt jedoch von der ,geeigneten Wahl der Operatoren (Z;, oder é:;]
ab.
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Die in der Formulierung mit Pfadintegralen abliche Niherung besteht darin, ,sta-
tische Sattelpunkte des Pfadintegrals zu suchen. Wabrend dies fir Pfadintegrale in
der Quantenmechanik eines Teilchens eine wohlverstandene Naherung ist (klassischer
Grenzfall), ist die Bedeutung und Qualitdt dieser Approximation fiir Vielteilchenpfadin-
tegrale noch unklar. Man kann die Gleichungen von Kotliar und Ruckenstein fiir die
zeitunabhingigen Sattelpunkte auch ohne Pfadintegrale ableiten, die Verwendung des
Pfadintegralformalismus mag jedoch als Motivation dienen. Wir ersetzen in A die
Boseoperatoren durch ihre zeitunabhingigen Mittelwerte, was auch als ,,Bosekondensa-

tion“ aunfgefafit werden mag. Wir ersetzen also
{d)o (o = Va; (96a)
(&) = Elo=yl-mo+d (96b)
() = (Bicdo=V(fisho ~d , (96¢)

wobei wir die Notation dieser Arbeit in den hinteren Ausdriicken verwendet haben.

I

Man sieht dann leicht, da8

{Eodo = Vi (97)

gilt, wobei ,/gi, durch Gleichung (46) gegeben ist. Damit haben wir einen ,effektiven®

Hamiltonoperator abgeleitet

Ha= 2 53/ G /T S +U Y di (98)
iJjo i

(f!eﬁ)o muf jetzt nur noch beziiglich d; und {f;,)o optimiert werden (statische Sat-

telpunktsgleichungen). Diese Gleichungen sind v5llig identisch mit denen, die wir in

d = oo fiir die Gutzwiller-korrelierte Variationswellenfunktionen erhalten haben (siehe

Kapite] 3). Dies wurde erstmals von Metzner und Vollhardt fiir die Spezialfille der
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Gutzwiller-Wellenfunktion und der Gutzwiller-korrelierten antiferromagnetischen Spin-
dichtewelle gezeigt [20,25). Wir haben diese Korrespondenz nun im allgemeinen nach-

gewiesen.

5.2.2 Diskussion der Methode und ihrer Ergebnisse

Nachdem wir die Methode dargestellt und véllige Ubereinstimmung der Resultate bei-
der Verfahren erzielt haben, kénnen wir folgenden Vergleich der Behandlung Gutzwiller-
korrelierter Variationswellenfunktionen mit der ,Slave-Boson“-P{adintegral-Methode

von Kotliar und Ruckenstein ziehen:

(i) wir kénnen die explizite Wellenfunktion zu einem bestimmten Sattelpunkt ange-
ben (fiir Antiferromagnetisinus, siche Gleichungen (48a), (48b) und (50)). Wel-
lenfunktionen erlauben einen direkten Einblick in die zugrundeliegende Physik;
zudem konpen innerhalb dessclben Zugangs auch alle Korrelationsfunktionen be-
rechnet werden. Zur Frage der Eindeutigkeit der Wellenfunktion sei das iibli-
che Hartree-Fock-Verfahren fiir das Hubbard-Modell in Erinnerung gerufen: ent-
koppelt man die Zweiteilchen-Wechselwirkung in Gleichung (1), so erhilt man
einen Einteilchen-Hamiltonian, dessen Grundzustand auch als Variationsansatz
geschricben werden kann. Umgekehrt gibt es zu jedem Variationsansatz einen
Hamiltonian, der diesc Wellenfunktion als Grundzustand hat. In unserem Fall
gibt die Wahl der Symimetrie einer speziellen Lésung der Sattelpunktsgleichungen

die Wellenfunktion vor und umgekehrt.

(ii) es gibt keine Mchrdeutigkeiten im Variationsverfahren, da alle Erwartungswerte
in d = oo exakt berechnet werden. AuBerdem erdffnet es die Moglichkeit einer

systematischen Verbesserung der Niherung durch eine (1/d)-Entwicklung;
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(iii} aus dem Variationsprinzip wissen wir, dal man eine obere Schranke fiir die Grund-

zustandsenergie in d = oo fiir das Hubbard-Modell erhalt;

(iv) die von Kotliar und Ruckenstein angegebene ,Zustandssumme® Zyxp bzw. ,[reie
Energie“ fkr sind keine wohldefinierten Gréen. Trotzdem konnen sie zu einer

geniherten Beschreibung der Tieftemperatureigenschaften korrelierter Fermisy-

steme herangezogen werden,

Um den letzten Punkt zu erkliren, betrachten wir den translations- und spinsymmetri-
schen Fall der Variationsgleichungen, damit wir nicht zwischen g2 | &) und g¥ | ®o)
unterscheiden missen. Die Eigenzustande der kinetischen Energie in Gleichung (1)
spannen den ganzen Hilbert-Raum auf. Wir bezeichnen sie mit | &,}). Wir kénnen

jedem dieser Zustinde eine Energie £.(g) zuordnen, die wir folgendermaBen definieren

_ (2. 19%H4° | ®.)

E.(g) = : 99
©= e TP 120 .
In d = oo gilt nun

Eag) = qgc(k)(ﬁk,)(o,} +ULd (160)

weil Gleichung (47) fir beliebige Zustinde | ¢,} giltig ist. Wir definieren nun die

Objekie
Zkn = ) e (101a)
{®n}
1
frr = “Elnzxn ) (101b)

wobei 8 = 1/kgT ist. fgn ist dann gerade die ,freie Energie* und Zxg die ,Zustands-
summe* von Kotliar und Ruckenstein [34]. Da die Zustinde | $a(g)) = ¢° | @n) nicht

orthogonal zueinander sind, ist Zxp offensichtlich keine wohldefinierte Zustandssumme.
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Die Minimierung von fxg nach d liefert fiir grofies U/ kleine Werte von d (oder sogar
d = 0). Wahrend wir bei g = 1 mit einer Zahl von (,f,") (,z‘.) Zustanden | ®,) anfangen,
betrachten wir zum Schluf nur mehr Zustinde {]'[f(l - Df)] | ¢.) ohne Doppelbeset-
zungen, d. k. wir arbeiten in einem Hilbert-Raum der Dimension (ﬁ") (L;,fl') Ursache
fiir dieses Uberzahlen von Zustinden ohne Doppelbesetzung (Entropieproblem [9]) ist
die mathematisch nicht wohldefinierte Zustandssumme Zyg, die zu einem physikalisch
unsinnigen Lokalisierungsiibergang fiir U - T >> 1 fihrt. Kothiar und Ruckenstein waren

sich der Problematik dieses Ubergangs bewuBt [34].

Trotzdem sind fxgr oder Zkg niitzlich, um Tieftemperatureigenschaften korrelierter
Fermisysteme zu beschreiben, wie z. B. in Referenzen [60,62] fir normalfluides *He ge-
zeigt wurde. ,Niedrig“ bedeutet hier, daff die Zahl der in Gleichung (101a) relevanten
Zustande nicht die Zahl ( ‘:,‘l) (";,‘: ‘) der Zustande ohne Doppelbesetzungen iibersteigt.
Dies ist eine Minimalforderung, um das Entropieproblem zu usngehen. Sie ist aber nicht
hinreichend, da sich diese Forderung nur an der Zahl der fiir U = oo erlaubten Zustinde
orientiert. Zur Veranschaulichung dieser Tatsache betrachten wir den Grundzustand des
Hubbard-Modells. Er ist fir U = 0 der tiefste Zustand fir dic kinetische Energie und
hat bei U = oo keine doppelbesetzten Gitterplitze. Wenn die Zustandssumme von
Kotliar und Ruckenstein sinnvoll sein soll, dann entspricht dies der Erwartung, da8 die
niederenergetischen Anregungen im Hubbard-Modell ebenfalls dieses Verhalten zeigen:
sie sind exakte Losungen des Modells, die fiir U = 0 niederenergetische Anregungen
des Fermigases sind und fir I/’ = oo keine Doppelbesetzungen enthalten. Fir solche
Zustande konnen wir hoffen, da wir einen angeregten Zustand im Hubbard-Modell
sinnvoll fir alle U dadurch approximieren kdnnen, daB wir den Gutzwiller-Korrelator
auf diesen angeregten Zustand des Fermigases (U = 0) wirken lassen. Nicht alle Ei-
genzustande des Hubbard-Modells, die firr U = 0 zu den (% )(*31) Zustinden des

Fermigases mit den niedrigsten Energien gehdren, haben fir U = oo keine Doppel-
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besetzungen (man betrachte hierzu beispielsweise das Hubbard-Modell mit vier Git-
terpldtzen, zwei T- und zwei |-Elektronen und periodischen Randbedingungen [64]).
Man musB also eine scharfere Bedingung fassen, als nur die maximale Zahl der Zustande
auf (nl,") (L,‘v’: ') festzulegen. Eine quantitative Formulierung einer solchen Bedingung
ist aber schwierig, da man aber die exakten Zustande des Modclls selbst mehr wis-
sen miifte. Phinomenologische Erweiterungen der Gutzwiller Ergebnisse auf endliche

Temperaturen, wie sie von Seiler et al. [9] vorgeschlagen wurden, kénnen jedenfalls mit

der Methode von Kotliar und Ruckenstein nicht entkraftet werden.

Der Zugang von Kotliar und Ruckenstein kann auf natiirliche Weise erweitert wer-
den, indem man ,Fluktuationen um den Sattelpunkt* berechnet. Fiir die Bosonfelder
(Mittelwerte der ,Slave-Boson*-Operatoren) heifit dies, daB sie nicht mehr als stati-
sche, sondern als dynamische, d. h. zeitabhangige GroBSen behandelt werden [60-62].
Es ist ein offenes Problem, wie man diese Dynamik im Rahmen von (zeitabhingigen)

Grundzustandswellenfunktjonen behandeln muf.
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6 Berechnung von 1/d-Korrekturen im Falle der paramagne-
tischen Gutzwiller-Wellenfunktion

Wie wir in den Kapiteln 3 und 4 gezeigt haben, erhalten wir in d = oo exakte und
sehr allgemeine Resultate fir Gutzwiller-korrelierte Wellenfunktionen. Dies erlaubte
einen detaillierten Vergleich mit anderen Niherungsverfahren in Kapitel 5. Die Art der
bislang in der Literatur bekannten Approximationen erdfinete im allgemeinen keinen
Weg zu eimer systematischen Verbesserung der Ergebnisse, d. h. einer Verbesserung
in Richtung auf eine exakte Auswertung einer Variationswellenfunktion in endlichen
Dimensionen. Der systematische Zugang mit dem Kontrollparameter (1/d) erlaubt
nun, die Qualitit der Niherung d = oo durch die Berechnung von (1/d)-Korrckturen

abzuschitzen und systematische Korrekturen anzugeben,

In diesem Kapitel berechnen wir die mittlere Doppelbesetzung d, die Impulsvertei-
lung {fik, ) und die mittlere kinetische Energie (T} fir die paramagnetische Gutzwiller-
Wellenfunktion in einer (1/d)-Entwicklung. Im ersten Abschnitt rechnen wir fiir be-
liebige Bandfillung n und Variationsparameter g (d. h. Wechselwirkungsstirken U im
Hubbard-Modell). Wegen der Teilchen-Loch-Symmetrie kénnen wir uns dabei aufn < 1
beschranken. Im zweiten Abschnitt rechnen wir fiir halbvolles Band (n = 1) bis zur

Ordnung (1/d)?.
6.1 Korrektur in erster Ordnung fiir beliebige Bandfillung

In der paramagnetischen Gutzwiller-Wellenfunktion | ¥g) = gP | o) = g¥ | ) sind
| ®o} und | W) der Fermi-See. Wegen der Translationsinvarianz gilt (#;,) = (R, )0 =

n/2 und

zi =2 =G — IJ[GC + )n(2 —n)] . (1022)
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Hierbet ist G durch
G=1+n(2—n)(g*-1) (102b)

definiert. Die Faktoren ¢ und « in Gleichungen (252) und (25b) fassen sich dann

folgendermaBen durch G und n ausdriicken

Qis

_ nG+1 1 /n(G—-l-l-n)
oy = a=-gE—7 + ool . . (103b)

In d = o0 ist die Gutzwiller-Approximation fiir die Gutzwiller-Wellenfunktion exakt,

Va= Z‘%LT [\/[2 ~n2)}(G+1~n)+ \/n(G -1+ n)J (103a)

d. h.
G4n-1
g, n,d = 00) = daal9:m) = ’2’—-&-:7 (1042)
und
{fiko(g,n,d = 00)} = (Pks(g:7))aa = g{fiks Jo + g(l -9 . (104b)

Die Fouriertransformierte der Selbstenergie 5' ( ,J) set mit A > (k) bezeachnet Es ist also

. m— ,

_ - n—1)(G &
d(g,n) = dealg.n)~ G+ G((l;-l( tlonl 2 [(nk,,)o - F] Sall)
(105a)

it

(Ao (g: ))ca + q[ ((r‘nw)o ~ % - a)2 S,(k) (105b)
-1 % ((do - 5~ o) 50w

Par Gleichung {105) haben wir die Teilchenzahlerhaltung fir die Gutzwiller-Wellen-

(ﬁkd (g’ n))

funktion, Gleichung {38), verwendet, aus der
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2n—1)(G = 1) = 5o e o5 rr o1 Ax= Bore v <
“aeomE Zf:P."(!, £)S,(£,i) = B;Rj’(:,f)s,(f, i) (106)

S.G,0) =
folgt. Gleichung (106) zeigt, da wir lediglich den Nebendiagonalanteil der Selbstenergie
betrachten missen. Fiir allgemeine Gutzwiller-korrelierte Variationswellenfunktionen
mu8 aber der Diagonalanteil getrennt berechnet werden. Der Faktor 8 vor der Summe in
Gleichung (106) 1aBt sich schreiben als 8 = [4(n — 1)x] / [4 + zn{2 — n)]. Das bedeutet,
daB man diesen Faktor nicht aus einer endlichen Ordnung in der Entwicklung in z
erhalten kann. Damit lassen sich die Ergebnisse der (1/d)-Entwicklung im allgemeinen
nicht aus einer endlichen Ordnung der Entwicklung nach z erhalten. Man muf also
ganze Diagrammklassen aufsammieren, um (1/d)-Korrekturen fir den Diagonalanteil
der Selbstenergie §:(i,i) zu berechnen. Ein Beispiel hierfir werden wir in Kapitel 8

geben (siehe auch Appendix A2).

Andererseits kann der Parameter z dazu dienen, denjenigen Parameterbereich fiir
¢ und n zu bestimmen, fir den die Gutawiller-Approximation fir die Gutzwiller-
Wellenfunktion bereits eine gute Naherung darstellt. Der Grund dafiir ist, daB S, (k)
durch eine Reihe in (n/2)’x definiert ist, wobei z = z; durch Gleichung (102a) gege-
ben ist (in jeder Ordnung in r erhalt man zwei neue Linicn in den Graphen, die einen
2usitzlichen Faktor (n/2)? ergeben). Demzufolge ist die Gutzwiller-Approximation fir
die Gutzwiller-Wellenfunktion eine gute Niherung fiir kleine . Dies ist der Fall fir
g — 1 (G — 1), d. h. fir kleine Wechselwirkungsstarken U in Gleichung (1) und/oder
fir kieine Dichten n (n — 0). AuBerdem ist die Reile in r konvergent fir alle (g, »),
wobei der Konvergenzradius bei (g = 0,n = 1) erreicht wird [12]. Daraus folgt, daB
die (1/d)-Reibe fir alle (g,n) mit Ausnahme von g = 0,n = 1 konvergiert. Wie wir
in Kapitel 7 zeigen werden, ist die (1/d)-Reihe fiir diese beiden Werte von g und n

tatsiichlich nur eine asymptotische Reihe,
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(b)

Abbildung 2: Graphen in niedrigster Ordnung zur Selbstenergie; a) Graph in zweiter
Ordnung in z, b) Graph in dritter Ordnung in z

Nach diesen allgemeineren Betrachtungen wollen wir jetz¢ dje (1/d)-Korrekturen
konkret berechnen. Der einzige Graph, der in Ordnung O(1/d) zum Nebendiagonalan-
teil der Selbstenergie beitrigt, ist in Abbildung 2a dargestellt. Dieser Graph gibt den
Beitrag der nichsten Nachbarn (NN-Cluster) eines Gitterplatzes i (d. h. j = i+ #)
zur Selbstenergie S, (i,j). Ein Graph hoherer Ordnung wie in Abbildung 2b, der von
Ordnung z? ist, enthilt auch Informationen iiber die Korrelationen zwischen j =i+ 7
und 1 =i+ 7' (7 # 7') und ist deshalb von héherer Ordnung in (1/d). Der analytische

Ausdruck ist dann gegeben durch

2
56,5 = ~[g;—i;(—2-§;~r5] [B)] @ r=i-j (107a)
B = T % e (107)

T dl)ger
wobei € die mittlere kinetische Energie des nichiwechselwirkenden Grundzustandes ist

( ¢r ist die Fermi-Energie). Wir erhalien schlielich
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S DG

T2~ n)]°(G+1)1G‘ %! (108)

Hier haben wir die Abkiirzung O(g,n,d) = Ogalg,n) + £2,(1/d)" 0 (g,n) fir die
(1/d)-Entwicklung einer Grélle O(g,n} eingefihrt. Es sei daran erinnert, da die Selbst-
energie in d = 0o verschwindet, d. h. es gilt §, ga(i,j) = 0. 5, (k) ist stetig in k, weil
S, (k) in dieser Ordnung durch einen Skelettgraphen gegeben ist. Letztendlich erhalten
wir aus den Gleichungen (105a), (105b)

(G+1—-n)(G+n-1)(G - 1),_

3(1)(9, ﬂ) = 2G(G + 1)3n2(2 ) )( (1093)
(fxo{g, n))(‘) = (%;) (g n 1) G +1—n)Y+2(1 — n)(G — ){fikwdo]
[ n{;;i 1n)] [ . _21 (?.)G ©t ‘(k)] (109b)

und die {1/d)-Korrektur zum Sprung an der Fermikante ist durch

¢(g,m) = (1 ig)z [,,(!;iln)]s (g; i)z

x2(1 —n)(G — 1) [—()(—n)éi)- +cp] (109¢)

gegeben. Gleichung (109¢) zeigt, daB im allgemeinen ¢{¥(g,n) > 0 gilt.

[n d = oo berechnet sich die mittlere kinetische Energie pro Gitterplatz zu
(1/L)T(g,n,d = 00)) = (1/L){T(g,m))oa = %o - (109d)

Die Korrektur in Ordnung (1/d) lautet

£l = 2(1 -ll-g)2 [n(lﬁziln)r (g; ;)2

[ (- n)’(G)Gl)z(zo)z +0(C+1—n)+ (1 —-n)(G - 1)

(109¢)
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wobei wir verwendet haben, daB in allen Dimensionen die Relation (1/L) Tk [e(k)}z =1

gilt.

In den Gleichungen (109a)-(109) treten & und hdhere Momente wie €%y auf. Diese
GroBen sind definiert als €7 = 2 f*7_ de p(¢) ¢™, wobei p(¢) die Zustandsdichte bezeich-
net. Sie hiingen selbst von der Dimension ab (z. B. gilt | % = 2v2/x ~ 0.900 in
d=1,|%|=8/22~ 03811 ind=2und | & |= v2//7 ~ 0.798 in d = o). Um nun
in Ordnung O(1/d) konsistent zu sein, miBten wir in jedem Schritt (i) die Zustands-
dichte in Potenzen von (1/d) entwickeln (fiir Details, siche Referenz {24]), (ii) € aus
n = 2 [** p(e)de bestimmen und (iii) diese Ausdriicke bis zur gegebenen Ordnung in
Gleichungen (109a)-(109¢) einsetzen. Dieser Weg ist nicht nur lang und beschwerlich,
sondern es stimmen auch die analytischen Eigenschaften einer solchen Zustandsdichte
nie mit denen einer realistischen Zustandsdichte iiberein (z. B. endliche Bandbreite,
Van-Hove Singularititen). Aus diesen Griinden werden wir immer die erakie Zustands-
dichte fiir eine vorgegebene Dimension verwenden, wenn wir mit Resultaten fiir endliche
Dimensionen d vergleichen. Man mag zwar einwenden, daB es sich nicht mehr um eine
systematische Entwicklung in (1/d) handelt; die Fehler aber, die man auf diese Weise
macht, sind fir einen Ausdruck in Ordnung (1/d)™ nur von Ordnung (1/d)™*'. Wie
wir in Kapitel 7 sehen werden, liefert diese Niherung sehr gute Ubereinstimmung mit

exakten (d = 1) und numerischen Ergebnissen (d = 2,3).

6.2 Korrektur in zweiter Ordnung fiir halbgefiilltes Band

Fir das halbgefiillte Band (n = 1) kdénnen wir die Teilchen-Loch-Symmetrie des Pro-
blems ausniitzen. Wegen der resultierenden Vereinfachungen kénnen wir ohne allzuviel

Miihe bis zur Ordnung (1/d)? rechnen.

Far halbvolles Band ist = = 4(¢ — 1)/(g + 1), ¢ = (49)/(1 + 9)*, a« = 0 und
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Tabelle 1: Vorzeichen, Gewichte und Werte der Graphen in Abbildung 3 in Qrdnung
o((1/47)

Graph Vorzeichen Gewicht Wert
3 2
a + 1 ((ﬁko)ﬂ - %) [L‘)_}Hm‘ k }
— 15
o) e(k
b + 3 (—)%—-1512

c - 3 5—1213,(@) e(k)

g’:(i,i) = 0. Im Falle der Gutzwiller-Wellenfunktion fiir halbvolles Band kann man
also die Koeffizienten der (1/d)-Entwicklung durch eine endliche Zah! von Termen der

Entwicklung im Parameter z darstellen. Wir erhalten

- _ _ g 2 1 .
digin=1) = Sitg) (1+ 9L((kz)<05(k)) (110a)

2
Guntan =1 = 3{(15) + olmtiudet T80 . i

Wegen der Teilchen-Loch-Symmetrie gilt auch P,‘,’(i,j) = 0, wenn 1i,j auf demselben
Untergitter sind. Das bedeutet, daB zwei Gitterpunkte, die in einem Graphen durch
eine Linie verbunden sind, zu verschiedenen Untergittern gehdren miissen. Deshalb
verschwindet der Graph in Abbildeng 2b (Seite 78), denn i und 1, I und j, i und j
konnen nicht zugleich auf verschiedenen Untergittern sein. Weiterhin hat der Graph
in Abbildung 2a keine (1/d)?-Korrektur, weil daffir i und j @ibernichste Nachbarn sein
miifiten, d. h. es wire i auf demselben Untergitter wie j. Alle Graphen, die @iberhaupt

in Ordnung O((1/d)?) beitragen, sind in Abbildung 3 gezeigt.

Die Werte der Graphen im k-Raum sind in Tabelle 1 aufgelistet. Diese Tabelle
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(2)

(<)
Abbildung 3: Alle Graphen, die im Falle der Gutzwiller-Wellenfunktion bei halber
Bandfillung zur Ordnung (1/d)? beitragen.
enthilt ebenso das Vorzeichen und die Multiplizitat (das ,Gewicht®) eines Graphen.
Diese beiden Faktoren erhilt man aus dem Wick-Theorem. Um den Beitrag zur zweiten
Ordnung zu erhalten, muB man die Werte der Graphen mit ihrem Vorzeichen und
Gewicht multiplizieren und die drei Terme amschlieBend aufaddieren. Der Graph in
Abbildung 3c ist besonders dimensionsabhingig. Man findet ndmlich den Hauptbeitrag,
wenn alle Gittervektoren nichste Nachbarn zueinander sind. Fiir hohe Dimensionen
(d > 2) ergeben diese Anteile den Wert des Graphen (c) in Tabelle 1, sind aber erheblich
kleiner in d = 1. Deswegen fihren die untenstehenden Ausdriicke in O({1/d)?) zu einer
guten Niherung fir d > 2, geben aber in d = 1 keine gute Niherung. Man erhalt

also aus der konkreten Betrachtung von einzelnen Graphen Hinweise darauf, bis zu
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welcher endlichen Ordnung in (1/d) man entwickeln sollte, um eine gute Naherung fiir
eine vorgegebene Dimension d zu erhalten. Im Fall der Gutzwiller- Wellenfunktion sieht
man, da8 man in d = 1 nur bis zur Ordnung (1/d) entwickeln sollte, um eine gute

Ubereinstimmung mit dem exakten Resultat [12] zu erhalten.

Ein anderes Verfahren, das auch verniinftige Ergebnisse in d = 1 liefert, besteht aus
folgendem Vorgehen: man identifiziert die einzelnen Graphen beziiglich ihres (1/d)-
Verhaltens, berechnet sie aber dann ezakt in der gegebenen Dimension d [65]. Diese
Uberlegung 138t auch eine Erweiterung der (1/d)-Entwicklung auf beliebige Gitterty-
pen zu, indem man die relevanten Graphen wie bisher identifiziert und sie dann ezak?
fir einen bestimmten Gittertyp answertet. Fiir diese Vorgehensweise gilt das bei der
Diskussion der Zustandsdichte Gesagte entsprechend: man entwickelt nicht mehr nach
(1/d} im mathematischen Sinn, sondern verwendet einen im Paramter {1/d) begriinde-

ten Zugang zur Identifizierung von relevanten Graphen(-klassen).

Addieren wir die drei Beitrige der Graphen in Abbildung 3, so erhalten wir die

Selbstenergiekorrekturen als

&0 = —(i_‘_;j) (70)’e(k) (111a)

50 = &% (iﬁ)z &) [3 30" + f0e() (o - 3)] -(1110)

Die Korrekturen zur mittleren Doppelbesetzung lauten letztlich

M) = —EGA(Q)(:.*_;;):(EO)‘ (112a)
2
g = ) (i—}j) @) (57 -2) (112b)

wobei daa = g/(2(1 + g)] gilt.
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Die Korrekturen zur mittleren kinetischen Energie sind durch

@ = ~ene S (152) (132)
(T(gh® = (T(eH™" (6;) ( ) (=3 + 9(20)* — &(<%)) (113b)

gegeben, wobei (1/L)(T(9))ca = 4g8/[(1 + ¢)?] ist.

Beachtenswert ist die Tatsache, da es fiir n = 1 keine Korrekturen zum Sprung der

Impulsverteilung an der Fermikante gibt, d. h.

o) = ez + 0 (1/4)) - (14)

Wegen der Teilchen-Loch-Symmetrie ist ¢(g,n = 1} in d = 1,2, 00 durch denselben
Ausdruck gegeben [12], namlich durch

alg,n = l)=(lj_—gg)2 . (115)

Auflerdem gibt es gemaf Gleichung (114) keine (1/d)-Korrekturen zu dieser Grofle bis
Ordnung (1/d)?. Wir kénnen daher die Vermutung in Referenz {12] unterstitzen, daBl

die Diskontinuitat in allen Dimensionen d durch Gleichung (115) gegeben ist.
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7T Vergleich mit exakten und numerischen Ergebnissen fiir die
paramagnetische Gutzwiller-Wellenfunktion in d=1,2,3

In diesem Kapitel zeigen wir, dafl die analytischen Ausdriicke in den ersten Ordnungen
der (1/d) Entwicklung hervorragende Ubereinstimmung mit allen numerischen Resui-
taten fir die Gutzwiller-Wellenfunktion in d = 2,3 liefern. Wir erhalten sogar tiberra-
schend gute Ergebnisse in einer Dimension (d = 1), wo wir mit der exakten L3sung (12]
vergleichen konnen. Die einzige Unzulinglichkeit der (1/d)-Entwicklung in endlicher
Ordnung ist die Vorhersage eines Brinkman-Rice Lokalisierungsiibergangs {7] fir Wech-
selwirkungsstirken U > U, im Hubbard-Modell. Dieser Ubergang tritt auch im Rahmen
der Gutzwiiler-Weficnfunktion in keiner endlichen Dimension auf {26, sondern existiert
nur in d = oo (im Hubbard-Modell erwartet man einen magnetischen Ubergang, der
noch vor dem Lokalisierungsibergang auftreten solite). Andererseits sind die abso-
luten Werte der (1/d)-Korrekturen zur Gutzwiller-Approximation fir die Gutzwiller-
Wellenfunktion in d = 3 sehr klein. Deswegen ist die Physik, die aus der Gutzwiller-
Approximation fir die Gutzwiller-Wellenfunktion abgeleitet wurde, sowohl qualitativ
als auch quantitativ in der Gutzwiller-Wellenfunktion in d = 3 enthalten, ist also kein
Artefakt der Gutzwiller-Approximation, solange man Wechselwirkungsstirken U be-

trachtet, die nicht zu nahe an U, sind.

7.1 Doppelbesetzung und potentielle Energie

Die potentielle Energie im Hubbard-Modell ergibt sich als {V) = U(D} = ULd. Fir
diesen Anteil an der gesamten Variationsenergie miissen wir also die mittlere Doppel-

besetzung kennen.

Wir kénnen von einer (1/d)-EntwicKlung prinzipiell nicht erwarten, daff sie gute

Ergebnisse fir d = 1 liefern sollte. Andererseits gibt es eine analytische Losung fiir
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Abbildung 4: Mittlere Doppelbesetzung in der Gutzwiller-Wellenfunktion fir ver-
schiedene Bandfiillungen in d = 1. Das exakte Ergebnis (12} und das Ergebnis der
{(1/d)-Entwicklung zur Ordnung (1/d) werden verglichen.

d(g,n) ind =1 [12], nimlich
d(g.n,dzl)=2(1i—gz)z[—ln(1—n(l—g2))—n(l—g ) - (116)

Wir kénnen daher unsere Ergebnisse in Ordnung (1/d) in Gleichung (109a) mit einem
ezakten Ausdruck vergleichen. Diesen Vergleich zeigt Abbildung 4 fiir die Dichten n =
0.5, n = 0.8 und n = 1. Wir sehen, daB wir fiir kleine Dichten n hervorragende Uberein-
stimmung fir alle Werte von g erhalten. Dies gilt fir alie Dichten, wenn ¢ > 0.2 ist (der

relative Fehler ist dann kleiner als 10%). Die Ursache fiir die erstaunlich guten Resultate
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Abbildung 5: Mittlere Doppelbesetzung in der Gutzwiller-Wellenfunktion fiir halbvolles
Band. Numerische Ergebnisse [14] und das Resultat der (1/d)- Entwicklung zur Ordnung
(1/d)? werden in d = 2 verglichen.

ist im Parameter r zu suchen, der fiir kleine Dichten {r < 0.5) und/oder mitilere
Korrelationsstarken (g > 0.2) klein ist. Die Selbstenergie wird in unserem Formalismus
nach Potenzen von z entwickelt {vgl. die Diskussion in Abschnitt 6.1, Seite 77). In der
Gutzwiller-Approximation ist die Selbstenergie gleich Null. Der Nebendiagonalanteil
der Selbstenergie S,(i,j) (i # j) ist proportional zu z?, der Diagonalanteil S, (i, i) ist
proportional zu z? (siehe Gleichung (106)}. Fiir kleine Werte von z konvergiert auch
die z-Entwicklung sehr gut und die Terme der ersten Ordnungen reichen fiir eine gute
Ubereinstimmung mit dem exakten Ergebnis aus. Da sich fir kleine z die (1/d)- und

die z-Entwicklung erst in Ordnung 2® unterscheiden, wird so die gute Ubereinstimmung
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Abbildung 6: Mittlere Doppelbesetzung in der Gutzwiller-Wellenfunktion fiir halbvolles
Band. Numerische Ergebnisse [14] und das Resultat der (1/d}- Entwicklung zur Ordnung
(1/d)? werden in d = 3 verglichen.

der (1/d)-Resultate mit dem exakten Ergebnis in d = 1 fiir kleine Dichten {n < 0.5)

und/oder miBige Korrelationsstarken (g > 0.2) verstindlich.

Die Qualitit der (1/d)-Resultate ist in d = 2,3 natirlich noch besser, da d = 1 den

Extremfall fiir eine {1/d)-Entwicklung darstellt. Wir vergleichen jetzt unsere Ergebnisse

fir d(g,n = 1) zur Ordnung (1/d)? mit numerischen Ergebnissen {14]. Abbildung 5

zeigt, daB in d = 2 alle numerischen Punkte auf der analytischen Kurve liegen. Ind =3

konnen wir uns noch mehr auf unsere analytischen Resultate verlassen. Abbildung 6

zeigt, daB die numerischen Punkte systematisch unter der analytischen Kurven liegen.
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Daraus schlielen wir, da die numerischen Ergebnisse (gerechnet auf 6 x 6 x 6 = 216
Gitterpunkten) aufgrund der endlichen SystemgrdBe zu tief liegen. Aus dem Vergleich
schlieBen wir ferner, da der aralytische Ausdruck fir d(g,n = 1) zur Ordnung (1/d)?

bis herunter zu recht kleinen Werten von g (g > 0.02 in d = 3) sehr genau ist.

Der einzige problematische Bereich im Parameterraum (g,n) ist g — 0, n — 1. Glei-
chung (110a) zeigt explizit, daB jede endliche {1/d)-Entwicklung folgendes Verhalten fiir
die mittlere Doppelbesetzung bei halbvollem Band und starker Korrelation liefert {26]

d(g,n=1)=cyg fir ¢ — 0. (117a)

In der (1/d)-Entwicklung folgt aus den Gleichungen (112a), (112b)
= 4 = \6
=1 1—ﬂ—@(g(€o)’—z)] . (117b)

Wir sehen also, da8 c; in endlichen Dimensionen reduziert wird, es wird aber in keiner

endlichen Ordnung der (1/d)-Entwicklung auf Null gedrickt.

Wie bereits in Unterabschnitt 4.2.3 erwahnt, gibt es stacke analytische [26] und auch
numerische [14] Argumente dafiir, daB ¢; = 0 gilt, d. h. es verschwindet d(g,n = 1)
schreller als linear in g fiir g — 0. Wir folgern daraus, da die (1/d)-Reihe fir c,
in Gleichung (117b) lediglich eine asymptotische Reihe ist, so dafl Gleichung (117a)
das falsche Verhalten fiir d(g — 0,n = 1) liefert. Das lineare Verhalten von d(g,n)
fiir kleine ¢ hat drastische Auswirkungen fiir die Variationsenergie [26], nimlich den

Brinkman-Rice Lokalisierungsiibergang (siehe unten).
7.2 Mittlere kinetische Energie und Grundzustandsenergie

Das Verhalten der mittleren kinetischen Energie (T(g,n)) wird durch die (1/d)-Entwick-
lung fir alle (g, ) richtig wiedergegeben. Dies kann man aus den Abbildungen 7 und 8
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Abbildung 7: Mittlere kinetische Energie in der Gutzwiller-Wellenfunktion in Abhiun-
gigkeit von der Bandfillung in d = 1 fir den hochkorrelierten Grenzfall (g = 0). Das
exakte Ergebnis [12] und das Ecgebnis der (1/d)-Entwicklung zur Ordnung (1/d) werden
verglichen.

ersehen. Dort vergleichen wir unsere Resultate mit dem exakten Ergebnisin d = 1 {12]
bzw. mit dem numerischen Ergebnis in d = 2 [14] fiir ¢ = 0 in Abhingigkeit von der
Bandfiitlung n. Selbst in diesem extremen Fall (niedrige Dimension d, hochkorreliertes

Regime g = 0) werden die exakten und numerischen Daten durch die erste Ordnung

der (1/d)-Entwicklung ausgezeichnet reproduziert.

Fiir n = 1, g — 0 erhalten wir

1.
E(T) = €169 fir ¢ — 0. (118a)
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Abbildung 8: Mittlere kinetische Energie in der Gutzwiller-Wellenfunktion in Abhin-
gigkeit von der Bandfillung in d = 2 fiir den hochkorrelierten Grenzfall (¢ = 0).
Numerische Ergebnisse {14] und das Ergebnis der (1/d)-Entwicklung zur Ordnung (1/d)

werden verglichen.

In Ordnung (1/d)? gilt (siehe Gleichungen (113a), (113b))
(118b)

=1 [1 - (2’; - (;—d)z @)* (-3 +9(%)" - zo(go))] .
Da wir nun sowoh! d(g,n) als auch {T'(g,n)} kennen, kénnen wir jetzt den Erwar-
tungswert des Hamiltonoperators (H(g,n))/L = (T(Q‘,R))/L) + Ud{g,n) beaziiglich ¢
fiir vorgegebene Wechselwirkung U minimieren und g"”‘(U,n) bestimmen. Dies liefert
dann als Grundzustandsenergie E(U,n) = {(/1(g°",n)}/L. Zur Erinnerung sei bemerkt,
daB in unserer Notation U = U/t* = U/(v/2dt) ist. Tn Abbildung 9 zeigen wir das
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Abbildung 9: Grundzustandsenergie fir die Gutzwiller-Wellenfunktion fir halbvolles
Band in d = 2. Das numerische Ergebnis [14] und das Ergebnis der (1/d)-Entwicklung
zur Ordnung (1/d)? werden verglichen.

analytische Ergebnis fir £(U/t,n = 1) zusammen mit dem numerischen Resultat in
d = 2 aus Referenz {14]. In Abbildung 10 zeigen wir das Ergebnis fir E(U/t,n = 1)
in d = 3 zusammen mit dem der Gutzwiller-Approximation. Weil spwohl d(g,n = 1)
als auch (f‘(g,n = 1)) von ¢ linear abhingen, finden wir einen unphysikalischen Loka-
lisierungsiibergang bei U = U,, d. h. E(Uft,n = 1) =0 fir alle U > U.. Hierbei ist U,

gegeben durch [26]
Ut =2 @l . (119)
<2

Dieser Ubergang ist der bekanate Brinkman-Rice {bergang [7], der in Wirklichkeit nur
in d = 00 auftritt, der aber nie in irgendeiner endlichen Dimension [14,26] existieren

sollte. Jede endliche Ordnung der (1/d)-Entwicklung verschiebt U, lediglich zu einem
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Abbildung 10: Grundzustandsenergie fiir die Gutzwiller-Wellenfunktion fiir halbvolles
Band in d = 3. Das Ergebnis der Gutzwiller- Approximation (d = co) und das Ergebnis
der (1/d)-Entwicklung zur Ordnung (1/d)? werden verglichen.

groBeren Wert. Zur Ordaung (1/d)? erhalten wir

li5e

vz [ 1+ g(eo)” (@) ~ 3) (120a)
+ () @) [3+ (@) — 19 + 22(30)4]]

Uz 8lda| . (120b)

Die Korrekturen zu U sind tatsichlich sehr klein, d. h. von der GroBenordnung §%
ind =2 und 4% in d = 3. Das bedeutet, daB man sich auf die Ergebnisse der
(1/d)-Entwicklung bis zu Werten von U verlassen kann, die sehr nahe bei U¢ liegen.
Weiterhin kann man aus Abbildung 10 erkennen, daB die Gutzwiller-Approximation fir
die Gutzwiller-Wellenfunktion eine gute Niherung in d = 3 fur alle Werte von U dar-

stellt. Demzufolge ist die Gutzwiller-Approximation fiir die Gutzwiller-Wellenfunktion
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Abbildung 11: Impulsverteilung in der Gutzwiller-Wellenfunktion firn =0.8 ind =1
fir verschiedene Wechselwirkungsparameter g. Das exakte Ergebnis {12] und das Er-
gebnis der (1/d)-Entwicklung zur Ordnung (1/d) werden verglichen.

eine quantitativ sehr gute Naherung fur alle U, die nicht zu nahe bei U liegen.

7.3 Impulsverteilung und Sprung an der Fermikante

Als letztes Beispiel fur die Anwendbarkeit der (1/d)-Entwicklung betrachten wir die
Impulsverteilung. Wir vergleichen {fy,} in Gleichung (109b) mit dem exaktien Ergeb-
nis in d = 1. Abbildung 11 zcigt den Fall n = 0.8, Abbildung 12 den Fall n = 1.0 fir
verschieden Werte von g. Die Kurven stimmen sehr gut fiberein - nichi nur qualitativ,
sondern sogar quantitativ. Es ist klar, daf die {Ibereinstimmung fir d = 2,3 sogar

noch besser sein wird [15]. Es ist beachtenswert, daB unsere Entwicklung die unerwar-
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Abbildung 12: Impulsverteilung in der Gutzwiller-Wellenfunktion firn=10ind =1
fir verschiedene Wechselwirkungsparameter g. Das exakte Ergebnis [12] und das Er-
gebnis der (1/d)-Entwicklung zur Ordnung (1/d) werden verglichen.

tete Kriimmung von {fy,} in der Gutzwiller-Wellenfunktion richtig wiedergibt, was mit

anderen Methoden nicht gelang [54].

Eine der physikalisch interessantesten Grofen ist der Sprung an der Fermikante,
wo ¢(k) = ep gilt. Grund hierfiir ist, daBl der VergroBerungsfaktor fiir die effektive
Masse m*/m im Rahmen der Fermifliissigkeitstheorie [8] proportional zu ¢~ ist, d. h.
es divergiert die effektive Masse fir ¢ —+ 0 (Lokalisierungsibergang). Weil nun aber
¢~ o (1/g) gilt, erhalten wir eine divergente effektive Masse fiir ¢ — 0. Die obige
Diskussion zeigt uns, daB ¢ innerhalb eines kleinen Bereichs um I/ — U, auf sehr kleine

Werte abfallt. Das bedeutet, daB m* sehr schnell ansteigt und die Fermionen scheinbar
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lokalisiert werden (,fast lokalisierte Fermiftissigkeit [8]). Wir bestitigen daher die
Argumentation in Referenz {10}: das Bild fast lokalisierter Fermionen bleibt richtig,

auch wenn der Lokalisierungsiibergang in Wirklichkeit gar nicht auftritt.

Wenn man dasselbe Konzept auf einen Metall-Isolator-Ubergang anwendet (7], be-
deutet dies, da8 in allen endlichen Dimensionen die Leitfahigkeit auch in der Gutzwiller-
Wellenfunktion nicht auf Null abfillt. Sie bleibt klein aber endlich fiir alle I/ < 0o und

ein Metall-TIsolator- Ubergang im Siune von Mott und Hubbard [1,4] tritt nicht auf.
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8 Neue Variationswellenfunktionen

Im letzten Kapitel haben wir gezeigt, daB die (1/d)-Entwicklung im Falle der Gutz-
willer-Wellenfunktion eine quantitative Berechnung von Erwartungswerten in endli-
chen Dimensionen erlaubt. Wir folgern daraus, daB das Konzept hoher Dimensio-
nen auch fir kompliziertere Gutzwiller-korrelierte Variationswellenfunktionen in nied-
rigen Dimensionen fruchtbar gemacht werden kann. Dies ist deshalb nétig, weil die
Gutzwiller-Wellenfunktion sicher eine zu einfache Variationswellenfunktion ist und bei-
spielsweise den im Hubbard-Modell erwarteten Antiferromagnetismus nicht beschreiben
kann. Durch die Beriicksichtigung der Méglichkeit einer magnetischen Struktur kann
man eine bessere obere Schranke fir die Grundzustandsenergie im Hubbard-Modell

ableiten als sie von der Gutzwiller-Wellenfunktion geliefert wird.

In diesem Kapitel betrachten wir eine aligemeine Klasse Gutzwiller-korrelierter anti-
ferromagnetischer Spindichtewellen als mégliche Grundzustinde fiir das Hubbard-, t-J-
und antiferromagnetische Spin-1/2 Heisenberg-Modell (vgl. auch Unterabschnitt 3.1.2).
In Abschnitt 8.1 schlagen wir eine neue Variationswellenfunktion fir das Hubbard- und
das t-J-Modell vor, die die Form der optimalen Gutzwiller-korrelierten antiferroma-
gnetischen Spindichtewelle in d = oo hat. In Abschnitt 8.2 schlagen wir eine weitere
Variationswellenfunktion fir das Heisenberg-Modell vor, wofiir wir bis zur Ordnung

(1/d) rechnen.

8.1 Hubbard- und t-J-Modell

Far numerische Untersuchungen haben Yokoyama und Shiba [14] folgende Gutzwiller-

korrelierte Spindichtewelle | ¥,} verwendet
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o(k)<er @

wobei sie eine Hartree-Fock Form fiir uk, vy angenommen haben. Wir haben in Unter-
abschnitt 3.1.2 die aptimale Gutzwiller-korrelierte antiferromagnetische Spindichtewelle
in d = oo bestimmt. Aus djesen Ergebnissen kann man ersehen, da die von Yokoyama
und Shiba verwendete Parametrisierung in hokhen Dimensionen nicht optimal ist. Es
ist méglich, die in Unterabschritt 3.1.2 gewonnene Wellenfunktion in die Form von
Gleichung (121) umzuschreiben. Die Parameter ik, 7 in der Gleichungen (48b), (50)
und uy, vy in Gleichung (121) sind durch die folgende einfache Lineartransformation

miteinander verknipft

we = 34 2NE+ 500 - ) (1223)

wo= G- DE+ 30+ (122b)
wobei wir

v - (e =

s = g tAdontm) (123b)

(7= (2 = ) —
gesetzt haben. Die letztere der beiden Gleichungen folgt aus Gleichung (45). Hierbei
ist n die Teilchendichte im System. Die Untergittermagnetisierung in | 95} ist mit mo
bezeichnet, wobei | ¥,) = g& | &) gilt. In d = co ist die Untesgittermagnetisierung m
des wechselwirkenden Systems durch m = mq gegeben. Wir haben
2 A

L ((é(, AT+ [P (124)

m = my =

Gleichung {121) und die Parametrisierung in den Gleichungen {122a) und (122b) defi-
nieren jetzt eine neue Variationswellenfunktion, die nur mehr von zwej Variationspara-

metern (A, g) abhangt, da Ux und % gemaB Gleichungen (48b) und (50} lauten
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. 1 e(k
Ve =2 (” [e(k)]2+A’)

(125)
% = —sgn(‘(k))\I 2 (1 N ;755(;)]% A’)

Diese einfache Wellenfunktion kann nunmehr in Dimensionen d < 0o numerisch unter-
sucht werden. Wir sind davon iiberzeugt, dal es moglich ist, die Resultate friiherer
numerischer Rechnungen von Yokoyama und Shiba [14] zu verbessern, wenn man eine
Variationswellenfunktion verwendet, die die Form der optimalen Gutzwiller-korrelierten
antiferromagnetischen Spindichtewelle in d = co bat. Entsprechende Rechnungen dazu

werden bereits in Angriff genommen [66].

Der Formalismus in Kapitel 3 kann auch auf das t-J-Modell [35-37] angewendet wer-
den. Dieses Modell kann man aus dem Hubbard-Modell erhalten, indem man fiir groie
Wechselwirkungsstirke U in entarteter Stdrungstheorie in t/U — 0 einen effektiven Ha-
miltonoperator ableitet und sich auf den Unterraum ohne doppelbesetzte Gitterplitze
beschrankt. Wir kinnen diese Einschrankung dadurch erfiillen, daB wir in unseren
Ausdriicken g = 0 setzen. Dadurch wird der Gutzwiller-Korrelator g2 zum Projektor
auf diesen Unterraum, By_, = [J;{1 = D). Das t-J-Modell lautet dann

A= Py, g e(k)ixs + % (}: (5:85 - ﬁ;ﬁj)} Pry 5 = 4(1,']-)j . (126)

)
wobei 8; der Vektoroperator fiir Spin-1/2 aus Gleichungen (75a) und (75e) ist. Im Mb-
dell sind Anteile in Ordnung (t*)?/U, die von drei verschiedenen Gitterplitzen herriithren
(»3-site-Beitrige*), nicht mitberiicksichtigt. Zur Begriindung fiihren Zhang et al. [36]
an, daB das t-J-Modell nur in der Nahe halber Bandfiillung studiert werden soll. Da
die 3-site-Beitrage proportional zur (geringen) Lécherkonzentration sind, werden sie ge-

gen die kinetische Energie und den Spinterm vernachlassigt. Diese Argumentation ist
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natiirlich nur fir J « ¢ zulassig,

Alle Grofen sind so definiert, daB wir endliche Ergebnisse in d = oo erhalten (siehe
hieszu auch Abschnitt 4.2)., Wenden wir unsere allgemeine Gutzwiller-korrelierte an-

tiferromagnetische Spindichtewelle auf diesen Hamiltonoperator an, so erhalten wir in

d=oc0 (n<1)
(o) L= 29ma) 7 T k1~ B — (el ) (127)

e(k)<er

In d = o ist die Untergittermagnetisierung durch m = mg = (2/ L) Cwi<er B gegeben
und es gilt g(mg) = 2(1 ~ n)/{/(2 — n)? — m?. Fihren wir das Variationsverfahren
durch, so erhalten wir ebenfalls die Hartree-Fock Form der Gleichung (125) fir ay,
7% Die Parameter uy und vy folgen aus den Gleichungen (122a) und (122b). Wegen
g = 0 vereinfacht sich Gleichung (123a) zu y = \/(Zf—n+mo)/(2""—mo)‘ Zu

beachten ist, daB der einzige Beitrag der Spinwechselwirkung in Gleichung (127) von der
gebrochenen Spinsymmetrie herriihrt. Alle Fluktuationen sind in d = oo unterdriickt
(dasselbe wiirde fiir die 3-site-Beitrige gelten). Diese Effekte sind aber fiir d < oo
sehr wichtig und die (1/d)-Korrekturen sollten fiir eine griindliche Behandlung des t-J-
Modells miteinbezogen werden. Fiir den Spezialfall halber Bandfillung im t-J-Modell

werden wir diese Untersuchung in Abschnitt 8.2 durchfiihren.

Der Vorschlag einer neuen Variationswellenfunktion in Gleichung (121), spezifiziert
durch die Gleichungen (122)-(125), gilt also sowohl fiir das Hubbard- wie fir das t-J-
Modell. Die Qualitat dieser Variationswellenfunktion wird jetzt in niedrigen Dimensio-
nen numerisch untersucht werden [66]. Es sei an dieser Stelle am Rande vermerkt, daf
der Unterschied zwischen der vorgeschlagenen und bisher verwendeten Wellenfunktion
nur fir 7 < 1, Gleichung (123a), signifikant ist. Hierzu miissen mo und z erheblich von

Null abweichen, d. h. es mu8 A >> 1 und g < 1 gelten. Da dies nur fir grofieres U der
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Fall ist, wird man erst ab U = 4¢* einen Unterschied zwischen den beiden Wellenfunk-

tionen feststellen kdnnen.

8.2 Spin-1/2-Heisenberg-Modell

Wir leiten jetzt die optimale Gutzwiller-korrelierte antiferromagnetische Spindichtewelle
fir das Spin-1/2 Heisenberg-Modell zur Ordnung (1/d) ab. Das t-J-Modell reduziert
sich zu diesem Hamiltonian im Falle halber Bandfillung. Der Hamilton Operator ist

durch folgende Gleichung gegeben

- J* . 4(¢" 2 .
fyi= D88 ¢ =0 (123)

wobei wir eine triviale additive Konstante weggelassen haben. Auf den hier betrachteten
AB-Gittern ist der exakte Grundzustand dieses Modells in d = 0o bekanat. Es ist der
Neél-Zustand [67,68], den man aus der Gutzwiller-korrelierten antiferromagnetischen
Spindichtewelle fir 4y = vy = 1/v/2 erhilt. In diesem Fall gibt es in der Startwellen-
funktion | o) (Gleichung (121)) keine Doppelbesetzungen und der Gutzwiller Projektor

P, =TL(1 - Dy) ist irrelevant.

In den folgenden drei Unterabschnitten werden wir zunichst die Berechnung der
optimalen Gutzwiller-korrelierten antiferromagnetischen Spindichtewelle vorfiihren, wo-
bei wir technische Details in den Appendices behandeln. Danach vergleichen wir un-
sere Ergebnisse mit den Resultaten anderer Verfahren zur Bestimmung von Grundzu-
standseigenschaften des Heisenberg-Modells. Im dritten Unterabschnitt werden wir die
optimale Gutzwiller-korrelierte antiferromagnetische Spindichtewelle zu interpretieren

versuchen.
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8.2.1 Optimale Gutzwiller-korrelierte antiferromagnetische Spindichtewelle

zur Ordnung 1/d

Die Berechnung der optimalen Form der uy, v zur Ordaung (1/d) fiir | ¥o=0) in Glei-
chung (121) ist in den Appendices Al und A2 durchgefidhet. Aus Gleichung (Al.11a)-
(Al.11c) erhalten wir

m =1-§wy (129)
B8ir) = (-3 [r+ 5@ (- @)] (1200)
(&) = 2/0 dep(e) € (129¢)

oot
wobei €. der einzige noch verbleibende Variationsparameter ist (iholich wie in Ab-
schnitt 3.1.2 kann man also die funktionale Form der unendlich vielen Variationspara-
meter uy, vk in Abhingigkeit eines Parameters schreiben). Der analytische Ausdruck

von uy = u(e(k)) = u(e), vx = v{e(k)) = v(e¢) in Gleichung (121} ist durch

% fir —eg < €< ~€aue

u(e), v(e) = ‘/%— (1 . (62)) S el <e<0 (130)

gegeben, wobei —ep = —+/2d die untere Bandkante bezeichnet.

Die Grundzustandsenergie zur Ordnung (1/d) erhalt man aus Gleichung (129b), die
man durch die Wah! {€?) = 1/2 ganz einfach optimieren kann. Zur Ordoung (1/d)

findet man daher

Mgyt = 1~ — (131a)

030+%). (131b)

(éiéiﬁ')m

il
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Wenden wir diese Beziehungen in d = 2 an, so finden wir m,,, = 0.875 und {$;S;, 7 }opt =
—0.3125. Diese Ergebnisse werden wir in Unterabschnitt 8.2.2 mit denen anderer Ver-

fahren vergleichen.

Man kann sich fragen, ob man aus den Resultaten zur Ordnung (1/d) wieder den
Neél-Zustand erhilt, wenn man d = oo setzt. Da €, in allen Dimensionen von Null
verschieden ist (€.t 22 1.5 fiir d > 2), gibt es in allen Dimensionen Elektronenpaare in
der Energieschale —¢,,, < ¢ < 0, fir die u(e), v(e) # \/1/_‘2 gilt. Der Beitrag dieser
Energieschale zu (§i§i+1-) ist stets von Ordnung (1/d) und verschwindet fir d = oo, so
daB wir wieder einen Zustand mit der Energie des Neél-Zustandes erhalten. Im Limes
d = oo sind jedoch sehr viele Zustinde mit dem Neél-Zustand entartet {antiferroma-
gnetische Magnonen haben eine Epergie der Ordnung (1/d) [47]). Wesentlich ist also,
daB diese Energieschale fiir alle Dimensionen d < oo existiert. Die formale Ableitung
dieses Resultats als (1/d)-Entwicklung um den Neél-Zustand war deshalb méglich, weil

wir zuerst den Limes g -+ 0 und danack den Limes d — oo ausgefiithrt haben.

8.2.2 Vergleich mit anderen Verfahren

Es gibt verschiedene Ansatze, {5;$isr) exakt zu berechnen oder zumindest Schraaken
fir diese Grofe anzugeben. Tabelle 2 zeigt einige der Monte-Carlo Ergebnisse fiir den
Hamiltonoperator in d = 2 (exakte Diagonalisierung endlicher Systeme, Monte-Carlo
bei endlichen Temperaturen und bei T' = 0) im Vergleich mit Resultaten von Variations-
Monte-Carlo. Aus diesen Untersuchungen kann man schlieBen, da8 der exakte Wert im
Bereich —0.335 < (8;Si47) < ~0.334 liegt. Eine rigoros abgeleitete untere Grenze
wurde von Anderson [67) angegeben, namlich —{1/4)(1+(1/d)), d. h. ~0.375in d = 2.
Analytische abere Grenzen aus dem Variationsprinzip sind in Tabelle 3 angegeben.

Diese Tabelle enthalt auch die Ergebuisse analytischer (im wesentlichen perturbativer)
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Tabelle 2: Vergleich von Diagonalisierung endlicher Systeme/ Monte-Carlo versus Va-
riations-Monte-Carlo Ergebnissen fiir (S;S;;r) ind =2

Diagonalisierung endlicher Systeme, Variations-Monte-Carlo

Monte-Carlo
—0.336 [69] ~0.328 [69)
-0.3364 [70] —0.3319 [74]
~0.3336 [71] —0.321 [14]
~0.3350 [12]
—0.33459 [73)

Methoden. Die beste obere Schranke aus dem Variationsprinzip ist —0.3344, die von
Liang et al. [79] angegeben wurde. Dicse Gruppe untersuchte cine Variationswellen-
funktion mit drei Parametern auf einem 180 x 180 Gitter mit Variations-Monte Carlo.
Sachdev [78] erhielt durch eine analytische Rechnung mit einer einparametrigen Varia-

tionswellenfunktion die obere Schranke —0.3317.

Wir sind der Uberzengung, daB die Gutzwiller-korrelierte antiferromagnetischec Spii-
dichtewelle | ¥ -0}, die in Gleichung (121) mit uy = u(e(k)) = u(e), v = v{e(k)) = v(e)
aus Gleichung (130) definiert ist, ein Ergebnis fir (§;§;+1-) liefert, das sehr nahe an
diese Werte herankommt. Hierzu ist eine numerische Auswertung in d = 2 erforder-
lich. Entsprechende Anstrengungen werden von Shiba [66] in Angriff genommen. Die
Uberzeugung, daB wir eine sehr gute Wellenfunktion gefunden haben, wird unterstiitzt
durch einen Vergleich der optimalen Gutzwiller-korrelierten antiferromagnetischen Spin-
dichtewelle mit der von Yokoyama und Shiba in Referenz [14] numerisch untersuchten

Variationswellenfunktion. Diese Gruppe verwendete
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Tabelle 3: Vergleich von Ergebnissen aus Variations- und stérungstheoretischen Metho-
den fir (8;S;, ) ind =2

Variationsverfahiren Sidrungstheoretische Methoden

—0.324 [75] —0.358 [80]
~0.322 [76] —0.332 [81]
-0.3221[77) —0.3336(82)
~0.3317[78] —0.3337[83]
~0.3344[79) —0.3348[84]

2]

1
uys(¢), vys(e) = \/: 1+ —=—=x
2 ‘/43 + Al

(132)

wobei Ays ihr Variationsparameter ist. Identifizieren wir Ays = \/E < 1, so kann
man erkennen, daf beide Variationswellenfunktionen fir | ¢ |[€ Ays, d. h. in der
Umgebung von € = 0, tatsichlich ibereinstimmen. Sie unterscheiden sich aber er-
heblich fiir | € {3 Ays. In diesem Bereich (in der Nahe der Bandkante also) haben
Yokoyama und Shiba die Parameterwerte uyg(e) > 1, vys(e) = 0, d. h. die Yokoyama-
Shiba-Variationswellenfunktion beschreibt einen projezierten Fermi-See freier Elektiro-
nenzustinde. Fir die optimale Gutzwiller-korrelierte antiferromagnetische Spindich-
tewelle finden wir stattdessen u(e),v(e) = 1/v/2 nahe der Bandkante, d. h. wir be-
schreiben projezierte antiferromagnetisch geordnete Zustande. Dieser Unterschied gibt
unserer Uberzeugung nach die Méglichkeit, die guten Ergebnisse von Yokoyama und
Shiba [14] weiter zu verbessern. Diese Grappe erhielt fir ihre Wellenfunktion den Wert

(§i§i+f) = —0.321.

Jetzt vergleichen wir unsere Resultate fir die Gutzwiller-korrelierte antiferromagne-
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Tabelle 4: Ergebnisse der Spinwellentheorie fiir (5;Si;r) in d =2 fiir S = 1/2

Parameter und (éiéi+1—)
Ordnung der Entwicklung
(1/d) —0.3125(85,86)
(1/8z2) —0.329 [85,86]
(1/d)? —0.3340(85,87]
(1/8z)? —0.3352(85,87]

tische Spindichtewelle mit denen der linearen Spinwellentheorie. Diese Theorie verwen-
det (1/Sz) als kleinen Parameter fiir eine Rethenentwicklung fiir das Heisenberg-Modell.
Hierbei ist z = 2d die Zahl nachster Nachbarn und S der Gesamtspin (ublicherweise
wird S als ,grofi“ angenommen). Die Spinwellentheorie basiert auf einer bosonischen
Darstellung des Heisenberg-Modells (Holstein-Primakoff-Transformation [47]), wahrend
wir eine fermionische Darstellung verwenden. Der analytische Ausdruck fir ($;8;,+)

zur Ordnung (1/82)? kane fir S = 1/2 folgendermaBen geschrieben werden [85,87)

($iSisr) (—%) [t +2c0 + o] (133a)

/_ ’: de ple) [1 - 51] : (133b)

Es ist klar, daB die Ergebnisse einer (1/Sz)-Entwicklung sich von denen einer (1/d)-

€

Entwicklung unterscheiden. Zur Ordnung (1/d)? erhalten wir

1 1 <8
%=Z—d+@/ dep(e) et . (134)

—en

Das bedeutet insbesondere, daB die Ergebnisse fir (gifiw,-) und m fiir die Gutzwiller-
korrelierte antiferromagnetische Spindichtewelle mit denen der linearen Spinwellentheo-

rie zur Ordnung (1/d) véllig bereinstimmen. In Tabelle 4 stellen wir die Resultate
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dieser Theorie gemaB Gleichung (133) in d = 2 dar. Das (1/d)*-Ergebnis in linea-
rer Spinwellentheorie kommt dem erwarteten exakten Ergebnis in d = 2 sehr nahe.
Dies unterstiitzt unsere Uberzeugung, daB wir auch fiir die oben abgeleitete Gutzwiller-
korrelierte antiferromagnetische Spindichtewelle eine sehr gute Ubereinstimmung mit

den exakten Werten erhalten.

8.2.3 Interpretation der nenen Wellenfunktion

Wir wollen jetzt die Physik interpretieren, die durch die optimale Gutzwiller-korrelierte
antiferromagnetische Spindichtewelle beschrieben wird. In d = 0o sind alle Zustande in
der Neél-Ordnung ,eingefroren” (1-Spins auf dem A-, ]-Spins auf dem B-Untergitter).
In endlichen Dimensionen wird es aber Spinflips geben oder —in einem Bild beweglicher
Fermionen~ die 1- und }-Elektronen werden sich aufgrund (virtueller) Hiipiprozesse aus
der Neélordnung herausbewegen. Die Problemstellung ist nun die folgende: wie muf die
starre Kopplung zwischen den Elektronenanteilen & und &f,q aufgebrochen werden,

um die Wellenfunktion mit niedrigster Energie zu finden ?

Da der Grundzustand des Hubbard-Modells fiir halbvolles Band far U/ — oo in den
Grundzustand des Heisenberg-Modells fibergeht, liegt es nahe, das Bild beweglicher
Elektronen mit Dispessionsrelation e(k) zugrunde zu legen. Die antiferromagnetische
Hartree-Fock-Lasung des Hubbard-Modells liefert fiir U > 0 zwei Bander in der magne-
tischen Brillouinzone, deren Rand durch e{k) = 0 gegeben ist. Im Hartree-Fock Grund-
zustand ist das untere der beiden Bander bis zum Rand der magnetischen Brillouinzone
vollstandig gefillt und beschreibt fir 7 = oo den Neél-Zustand, der in d = oo der ex-
akte Grundzustand des Heisenberg-Modells ist. Fir d < oo ist der Neél-Zustand nicht
wehr der exakte Grundzustand des Heisenberg-Modells, d. b. wir erwarten Anregungen

von Zustinden des unteren Bandes und zwar in der Nihe der Fermienergie ¢ = 0
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dieses Bandes. Daraus folgern wir, daB in der Gutzwiller-korrelierten antiferromagne-
tischen Spindichtewelle Elektronenpaare &f, 5;.;(; in der Nihe der unteren Bandkante
(e(k}) =~ — | eg [) in starrer Neél-Korrelation bleiben, wihrend die Elektronenpaare
&, &, q in der Nahe der magnetischen Brillovinzone jhre Neél-Korrelation schwichen

(hier ist ¢(p) 2 0).

Dieses Abschwichen der Korrelation bedeutet andererseits, daf Doppelbesetzungen
erzeugt werden. Diese miissen durch den Gutzwiller-Projektor wieder entferat werden.
Dadurch wird der Vorteil des Aufbrechens der Neél-Karrelation verringert und alle k-
Zustande werden durchmischt. Die Aussagekraft der Argumentation mit zwei gepaarten
Elektronen kann daher in Zweifel gezogen werden. Man kann aber argumentieren, dafl
der Gutzwiller-Projektor alle Elekironenpaare &, & +q In der gleichen Weise beein-
fluBt. Das bedeutet, da die Dispersionsrelation e(k} des nicht-wechselwirkenden Fer-
misystems entscheidet, welche der &, & +q-Paare aufgebrochen werden miissen. Ent-
lang dieser Argumentationskette kann man ein intuitives Verstindnis dafiir entwicklen,
wartm es eine scharfe Abschneideenergie €., in den Parametern u(e), v(e) gibt, die die
Gutzwiller-korrelierte antiferromagnetische Spindichtewelle bestirmen. €, ist einfach

diejenige Energie, oberhalb derer die Neél-Korrelationen aufgebrochen werden.

Weil die Gutzwiller-korrelierte antiferromagnetische Spindichtewelle auf einer fer-
mionischen Beschreibung des Spin-1/2 Heisenberg-Models beruht, ist man versucht,
€t als eine Fermienergie von Spin-1/2 Quasiteilchen (,Spinonen“ [37,88]) zu interpre-
tieren. Einerseits erhdlt man die Abschneideenergie € aus einer analytischen Rech-
nung mit unendlich vielen Variationsparametern, setzt diese Energie also keineswegs
per Hand hinein. Zudem sind die Ergebnisse zur Ordnung (1/d) fir diese Wellen-
funktion recht zufriedenstellend, da wir die Resultate der linearen Spinwellentheorie

fiir die Nichst-Nachbar-Spinkorrelation {5;S;,r) und die Untergittermagnetisierung m
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in dieser Ordnung erhalten. Andererseits ist die Gutzwiller-korrelierte antiferroma-
gnetische Spindichtewelle lediglich ein Variationszustand, so daB man lediglich eine
gendherte Beschreibung des wahren Grundzustandes des Heisenberg-Modells erbalten
kann. AuBerdem ist der Begriff einer Fermienergie eng mit den Anregungen eines
Systems verkniipft, deren Beschreibung auBerhalb des Rahmens von Grundzustands-
Variationswellenfunktionen liegt. SchlieBlich gilt es noch zu bedenken, daB wir mit
hochkorrelierten Variationswellenfunktionen | ¥,-o} = [T;(1 — D;} | Wo) arbeiten, die
nicht nur die Einteilchen-Produktwellenfunktion | ¥y}, sondern auch den Gutzwiller-
Projektor enthalien. Demzufolge ist die Physik in | W,—=o} nicht nur durch diejenige
in | ¥o) gegeben, sondern auch durch den Gutzwiller-Korrelator bestimmt. Man solite
deshalb die Eigenschaften der Einteilchen-Produktwellenfunktion | ¥,) nicht fiberinter-

pretieren.
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9 Zusammenfassung und Ausblick

In dieser Arbeit haben wir einen Formalismus vorgestellt, mit dem man allgemeine
Gutzwiller-korrelierte Variationswellenfunktionen in endlichen Dimensionen d mittels
einer (1/d)-Entwicklung untersuchen kann. Das Konzept hoher Dimensionen wurde
durch Metzner und Vollhardt [20,25] eingefiihrt. Fir den Spezialfall der Gutzwiller-
Wellenfunktion zeigten sie [12,20,25}, daB die Gutzwiller-Approximation fiir die Gutz-
willer-Wellenfunktion in d = oo exakt wird. Diese Erkenntnis eréffnete damit erst-
mals den Weg, die Gutzwiller-Approximation systematisch und konirolliert auf verall-
gemeinerte Gutzwiller-korrelierte Variationswellenfunktion zu erweitern. Unter Ver-
wendung eines Viclteilchen-Graphenformalismus erhielten diese Autoren in d = oo ein
geschlossenes, aber unendlichdimensionales Gleichungssystem, dessen Losung die Ener-
gie fiir solche Variationswellenfunktionen bestimmt. Die Losung des Systems war fiir
die Gutzwiller-Wellenfunktion (Gutzwi'ler korrelierter Fermisee) und die Gutzwiller-
korrelierte antiferromagnetische Spindichtewelle méglich, nicht allerdings fiic beliebige
Variationswellenfunktionen. Die Berechnung von (1/d)-Korrekturen war im Forma-
lismus von Metzner und Vollhardt selbst fiir die einfache Gutzwiller-Wellenfunktion
sehr mihsam {43]. Fiir kompliziertere Gutzwiller-korrelierte Wellenfunktionen ist eine

(1/d)-Entwicklung in ihrem Formalismus praktisch undurchfihrbar.

Um den Limes hoher Dimensionen etwas dkonomischer auszunutzen, verwendeten
wir dieselben Graphen wie Metzner und Vollhardt, wir haben aber den ,Vertices* und
»Linien“ eine neue Interpretation gegeben. Dies wurde dadurch erreicht, da8 wir den
Gutzwiller-Korrelator geeignet umgeschrieben haben, ohne da wir weitere Spezifikatio-
nen iiber die Variationswellenfunktionen treffen muBten. Dadurch konnte das Verfahren
auf allgemeine Guizwiller-korrelierte Variationswellenfunktionen angewendet werden.

Als Konsequenz der neuen Interpretation von Linien ergab sich, daB wir in d = oo
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keinen Beitrag der Selbstenergie erhalten haben. Daher konnten wir in diesem Limes
die Grundzustandsenergie fir das Hubbard- und das periodische Anderson-Modell fir
allgemeine Gutzwiller-korrelierte Variationswellenfunktionen exakt berechnen, ohne ei-
nen Graphen auswerten zu miissen. Neben den allgemeinen Ausdriicken lieferten wir
die Resultate fiir die Gutzwiller-korrelierte antiferromagnetische Spindichtewelle fiir
das Hubbard-Modell und die Rice-Ueda-Brandow-Wellenfunktion fir das periodische
Anderson-Modell; diese Ergebnisse erhielten wir in unserem Formalismus als einfache
Spezialfille. Die Resultate, die mit Hilfe der Methode von Metzner und Vollhardt er-
zielt wurden [20,25,27], leiteten wir damit auf eine recht einfache und direkte Weise

ab.

Weiterhin betrachteten wir allgemeine Zweiteilchen-Korrelationsfunktionen, fiir die
wir den Graphenformalismus von Gebhard und Vollhardt {13,26] mit den neuen Vertices
und Linien verwenden konnten. Fir allgemeine Gutzwiller-korrelierte Variationswellen-
funktionen gaben wir die zur Ordnung (1/d) exakten Ausdricke fiir beliebige Nachst-
Nachbar-Korrelationsfunktionen an. Fiir die Gutzwiller-Wellenfunktion lieferten wir
geschlossene Ausdriicke fiir die Korrelationsfunktionen im Impulsraum und bestitig-
ten so die Resultate, die mit Hilfe der Methode von Metzner und Vollhardt abgeleitet

wurden {26).

Wir konnten unsere allgemeinen, systematisch abgeleiteten Ergebnisse mit den Re-
sultaten anderer Gruppen vergleichen, die ebenfalls versucht hatten, die Gutzwiller-
Approximation zu erweitern. Zur Erinnerung sei noch einmal festgehalten, daf die
Gutzwiller-Approximation fiir die Gutzwiller-Wellenfunktion in d = oo exakt ist. Wir
haben gezeigt, da8 Gutzwiller-artige Niherungen im Falle der Rice-Ueda-Brandow Wel-
lenfunktion [28-33] fiir das periodische Anderson-Modell ebenfalls exakt werden 28,30,
33). Wie bereits von Metzner und Vollhardt gezeigt wurde, ist dies nicht mehr der
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Fall fir kompliziertere, z. B. antiferromagnetische Variationswellenfunktionen {36,53-
58]. Beispielsweise wurden in manchen Verfahren {36,58] gar keine Erwartungswerte
fiir eine gegebene Variationswellenfunktion ausgerechnet, sondern man machte einen
Ansatz fiir die analytische Form von (H)(gi,,di), Wobei g;, und d; gcﬁahen bestimmt
wurden. Diese Art von Néherungen wird nicht exakt in d = co: die Faktoren ¢;, konn-
ten nicht eindeutig bestimmt werden [36,53,58] und stimmten im allgemeinen nicht mit
den exakten Werten in d = oo uiberein [36,53]. AuBerdem argumentierte man nur mit
Variationswellenfunktionen, ohne mit ihnen wirklich zu rechnen. Demzufolge sind die
Variationswellenfunktionen, die fir diese Argumentation benutzt wurden, nicht iden-
tisch zu denen, die wir aus der analytischen Behandlung in d = oo erhalien haben,

selbst wenn in eincr Arbeit [58] sogar die ,richtigen® Faktoren g;, bestimmt wurden.

Unsere allgemeinen Ergebnisse erlanbten auch einen detaillierten Vergleich mit den
Resultaten von Kotliar und Ruckenstein, die das Hubbard-Modell mit einer ,Slave-
Boson*-Pfadintegral-Methode angegangen sind. Es zeigte sich, daB unsere d = oo-
Ergebnisse {iir allgemeine Gutzwiller-korrelierte Variationswellenfunktionen den vollen
Satz der Sattelpunktsgleichungen von Kotliar und Ruckenstein reproduzierten. Dies
erlaubte neue Einblicke in die Bedeutung einer Satielpunkisapproximation fiir ein Viel-
teilchen-Pfadintegral. Insbesondere wurde dadurch klar, daB der ,freien Energie* von
Kotliar und Ruckenstein keine mathematisch wohldefinierte Zustandssumme zugrunde
liegt. Sie kann daher nur zur Beschreibung von Tieftemperatur-Eigenschaften von kor-

relierten Fermisystemen benutzt werden.

Wir gingen iiber die Gutzwiller-Approximation fir die Gutzwilter-Wellenfunktion
hinaus und berechneten analytische Ausdriicke fiir die Einteilchen-Dichtematrix, die
mittlere Doppelbesetzung und die Grundzustandsenergie in der Gutzwiller- Wellenfunk-

tion zur Ordnung (1/d) fiir beliebige Korrelationsstirken und Elektronendichten (nur
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ein Graph war dazu nétig); fiir halbvolles Band haben wir bis zur Ordnung (1/d)?
gerechnet (weitere drei Graphen waren dazu nétig). Keine der sogenannten Cluster-
Entwicklungen [54-56), die zur Verbesserung der Gutzwiller-Approximation fiir die
Gutzwiller-Wellenfunktion erdacht wurden, stimmte mit dieser systematischen (1/d)-
Entwicklung @iberein. Wir zeigten, dafl bereits die Terme in niedrigster Ordnung in
der Entwicklung nach (1/d) ausreichen, um die numerischen Ergebnisse in d = 2,3 von
Yokayama und Shiba [14] quantitativ zu beschreiben. Selbst in d = 1 war die Uber-
einstimmung mit der exakten Ldsung [12] iiberraschend gut. Auflerdem zeigte sich,
daf die SchluBfolgerungen, die aus der Anwendung der Gutzwiller-Approximation fir
die Gutzwiller-Wellenfunktion auf normalfluides *He gezogen worden sind (,fast lokali-
sierte Fermifliissigkeit“ [8-10]) von den Ergebnissen der (1/d)-Entwicklung unterstitzt

werden.

Auf der Grundlage dieser erfolgreichen Anwendung des Konzepts hoher Dimensionen
auf die Physik niederdimensionaler Systeme schlugen wir neue Variationswellenfunk-
tionen fiir das Hubbard-, t-J- und antiferromagnetische Spin-1/2-Heisenberg-Modell
vor. Diese Wellenfunktionen haben die analytische Struktur der optimalen Gutzwiller-
korrelierten antiferromagnetischen Spindichtewelle zur Ordanung (1/d)® (fic das Hub-
bard und t-J-Modell) bzw. zur Ordnung (1/d) (fir das Heisenberg-Madell). Wir fanden
sehr gute f_lbereinstihunung unserer Resultate in Ordnung (1/d) mit Frgebnissen an-
derer Zuginge zum antiferromagnetischen Spin-1/2 Heisenberg-Modell (z. B. lineare
Spinwellentheorie). AuBerdem hangt diese Wellenfunktion nur von einer Abschneide-
energie ab, die man als Fermi-Energie von Spin-1/2-Quasiteilchen (,Spinonen® [37,88])
interpretieren kann. In d = 2 sollte diese einparametrige Wellenfunktion eine Variati-
onsenergie liefern, die der exakten Grundzustandsenergie aus Monte-Carlo-Rechnungen

sehr nahe kommt. Entsprechende numerische Untersuchungen dazu sind im Gange [66].
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Der Formalismus, der in diescr Arbeit vorgestellt wurde, ist auf Wellenfunktio-
nen beschrinkt, die eine feste Gesamtteilchenzah! haben. Eine Verallgemeinerung anf
projizierte BCS-artige Wellenfunktijonen liegt jedoch nahe. Es missen lediglich wei-
tere lokale ,chemische Potentiale* eingefiihrt werden, die die lokalen Fiuktuationen der
Cooperpaardichten ,nachregeln“, wenn der Gutzwiller-Korrelator auf die Einteilchen-
Produktwellenfunktion wirkt (vergleiche hierzu Gleichung (20)). Diese Wellenfunktio-
nen sind deswegen interessant, weil sie eng mit den urspringlichen RVB-Zustinden
verkniipft sind, die von Anderson [89] als magliche Grundzustande fiir die Hochtempe-
ratursupraleiter vorgeschlagen wurden. Die Untersuchungen an diesen Zustanden sind
allerdings noch nicht ganz abgeschlossen. Erste Ergebnisse lassen aber darauf schlieBien,
daB die von Zhang et al. [36] vorgeschlagene ,renormalized mean-field“-Niherung in

d = oo nicht exakt wird.

Der in dieser Arbeit vorgestellte Zugang zu Gutzwiller-korrelierten Variationswel-
lenfunktionen erdffnet auch neue Wege zur Behandlung anderer bisher ungeldster Pro-
bleme. Beispiclsweise sollte es mdglich sein, das Verfahren auf den Fall entarte-
ter Binder zu verallgemeinern. Ziel hierbei wire der Nachweis, daB sich die Slave-
Boson-Ergebnisse von Caleman, Read und Newns [45] aus der Behandlung Gutzwiller-
korrelierter Wellenfunktionen im Limes hoher Entartung gewinnen lassen, womit auch
eine einheitliche Behandlung des periodischen Anderson-Modells mit Entartung im
Rahmen Gutzwiller-korrelierter Variationswellenfunktionen verbunden wire. Damit
wiren die unterschiedlichen Slave-Boson-Verfahren auf eine gemeinsame, systematische
Grundlage gestellt. Weiterhin besteht die Mdglichkeit, eine explizite Zeitabhingigkeit in
die Wellenfunktionen einzubauen, um die Resultate von ,dynamischen* Slave-Bosonen
zu beschreiben. Ziel hierhei wire es, ein tieferes Verstindnis fir die Bedeutung von
»Fluktuationen um den Sattelpunkt® zu erhalten und zu lernen, wie man Zeitabhingig-

keiten sinnvoll in Variationswellenfunktionen einbauen kann. Anzustreben ware auch
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die Verallgemeinerung der Methode auf T = 0-Greenfunktionen. Ziel hierbei ware die
Lasung des Hubbard-Modells in d = 0o und die Berechnung von (1/d)-Korrekturen. Es

diirfte aber nicht leicht sein, diese ehrgeizigen Ziele zu verwirklichen.

Diese Arbeit hat gezeigt, daB die Betrachtung von Variationswellenfunktionen zur
Entwickfung neuer Vielteilchenkonzepte (hier: d = o0} und Rechentechniken (hier:
spezielle Kontraktionen und ,Linien®} beitragen kanp. Es wire patirlich wiinschens-
wert, wenn diese Betrachtungen auch zur Lésung quantenmechanischer Modelle bzw,
zur Entwicklung geeigneter kontrollierter Naherungsverfahren fiir diese Modelle {z. B.

die Durchfthrung einer 1/d-Entwicklung) fiihren wiirden.
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Anhang

Al Berechrung der (1/d)-Korrekturen fiir die Gutzwiller-korrelierte
antiferromagnetische Spindichtewelle

Wir entwickeln um den Neél-Zustand, wobei wir kleine Abweichungen von diesem Zu-
stand erwarten. Deshalb sollte 5 in Gleichung (50) nahe Eins sein, d. h. es sollte
b =1 —bx/d mit 0 < § < d gelten. Auf diese Weise erzeugen wir Doppelbesetzungen
in der Startwellenfunktion | ®o), aus der | ¥,) = g% | ®o) = g2 | Yo) gebildet wird.
Daher miissen wir von Beginn an g = 0 setzen. Die Behandlung dieses Grenzfalles ist

nicht ganz einfach.

Zunachst haben wir

\/g(lzt% 2—%+O(%“)) (Al.la)

U, v =
Am)o 12
mg = 1~———=1—-— E&k (Al'lb)
d a1 %
22 -
€& = %(A()D = \/;Z ((k)‘/é_';-f- O(d 3,2) . (Al.lc)
«(k)<0

Die Parameter @y, o sind zwar fiir unsere Rechnungen wichtig, da sie | o) bestimmen
und wir immer in der Darstellung | ¥,) = g% | ®o) rechnen. Im Falle g = 0 ist aber
diese Form fiir die physikalische Interpretation weniger glinstig, da wir das fiir ¢ = 0
singulire Verhalten von g*-, ¢"i im Korrelator K in unsere Uberlegungen einbeziehen

miissen. Aussagekraftiger ist daher die Form von | ¥g=o} aus Gleichung (121),

19,0 = [[11~ Bi] T T [uéi, + ovnirqy] | Vakoum) (A12)

i efk)<o @

Fiir uy, vy erhalten wir gemaB den Gleichungen (122a), (122b)
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l‘k»l’k:\/%_(]i%-FO(%)) (A1.3)

Man erkennt, daB man in Gleichung (A1.3) & = Afi setzen und X gegen Null gehen
lassen darf, ohne da uy, vx und damit | ¥ o} aus Gleichung (A1.2) trivial werden.

Dies wird spiter wichtig werden.
Wir berechnen jetzt {$;Sj,r). Aus Gleichungen (85a) und (85b) erhalten wir

gsss» = 4 und gs+g- = 4/(1 — m3). Unter Verwendung von {ﬁ;] = —{1/(2v2d))%
folgt aus Gleichung (86), daB

(8iSiyr) = (—-%) [m' + 71‘(30)2 (1 +3 _2 mg)] (ALl4)

gilt. Hierbei ist m die Untergittermagnetisierung in | ¥ o). Diese Grdfie hat selbst eine
(1/d)-Korrektur via Gleichung (38). Wir definieren S als den Gitterplatz-diagonalen
Anteil der Selbstenergie. Wegen der Teilchen-Loch-Symmetrie gilt S = §;(i € A —
Untergitter) = —5;(i € B — Untergitter), wobei T und } zu vertauschen sind fiir
Ae B

Der nicht Gitterplatz-diagonale Beitrag in Gleichung (38) kann einfach berechnet
werden. Unter Verwendung der Gleichungen (A1.1b), (Al.1c) finden wir zur Ordnung

(1/d)

I YA R, .
1- ([(A NGRS ).,) . (A15)

In erster Ordnung liefert Gleichung (A1.4) dann

2
(5:8i07) = _,) [1 3!((22*;0 (1— [((2'3;1) _§(Am)o(l+5)] . (ALG)

Der Gitterplatz-diagonale Anteil, §, wird im Anhang A2 berechnet. Wir finden, da8 S
von der Ordnung Eins ist und daB insbesondere § > —1 gilt. AuBlerdem ist S eine
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Fuaktion der Gra8en (Ac)o, (Am)p und von

(e = 2 3 ()6 (AL7a)
efiy<o

(Bmo = 3 3 (87 (ALTb)
«(ky<o

Die Minimierung der Grundzustandsenergie, Gleichung (A1.6), bezdglich & liefert die
folgende Gleichung fir & = 8(e(k)) = 8(¢)

[B()]P* + Bae(€) = By (8(N'* = foe =0, (AL8)

wobei nur noch fo, B, f2 > 0 als drei Variationsparameter iibrigbleiben. Sie sind al-
lesamt positiv gewahlt, damit man fiir §(¢) sinnvolle Resultate an den Zonengrenzen
erhalt (die obere Bandkante ist ¢ = 0, die untere Bandkante ist e = —ep = —v/2d). Um

Gleichung (A1.6) zu optimieren, miissen wir setzen

§(—es) = «gf (A1.9a)
50) = 0 . (A1.9b)

Der zweite (1/d)-Term in Gleichung (A1.6) ist immer kleiner oder gleich Null, da
{Am)y > 0 und § > —1 gilt. Demzufolge missen wir (Am)s — 0 zulassen. Dies
bedeutet §(¢) ~ 0, was aber keine triviale Variationswellenfunktion aufliefert, wie be-
reits oben diskutiert wurde. Nunmehr folgt aus Gleichung (A1.9a), dal f2 — oo gelten
muf (Bo — 0 liefert ein triviales Resultat). In diesem Fall ist Gleichung (A1.8} qua-
dratisch fiir \/6(_5) Definieren wir A = (B5/61)?, so kénnen wir §; — oo zulassen und
erhalten das Ergebnis

(A1.10)

0 fir —ep L €< —€ut
§(e) =
A2 fir —cae £e<0
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Es sind also A und €q. die beiden noch verbleibenden Variationsparameter. Die GraGe
{(Aek]® {(Am), ist A-unabhingig. Wir kénnen nun A — 0 zulassen, um sicherzustel-
len, daB (Am), — 0 gilt. Wie wir in Anhang A2 zeigen, gehi der lokale Anteil der
Selbstenergie S in diesem Limes gegen eine Konstante. Wir haben also letztendlich in

den Gleichungen (A1.5) und (AL.6)

m = 1-— %(e’)2 (Al.11a)
(Si8isr) = (—i) [1 + %(J) (1- (J))] (A1.11b)
() = 2 de p(e) € (Al.llc)

Insgesamt ist also nur noch ein Variationsparameter iibrig.

Es sei noch am Rande bemerkt, dafl wir die Elimination von zwei der drei Variati-

onsparameter auch numerisch nachgepriift haben.
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A2 Berechnung des Gitterplatz-diagonalen Anteils der Selbstenergie in
der Gutzwiller-korrelierten antiferromagnetischen Spindichtewelle

Der Gitterplatz-diagonale Anteil der Selbstenergie ist in Gleichung (35) definiert als
5o,1) = —zi {(mi—o - (Ria)0)D}, - (A2.1)

Es gibt eine ganze Klasse von Diagrammen, die zu S in Ordnung (1/d) beitragen. Die
Graphen, die zu dieser Klasse gehdren, konnen leicht identifiziert werden. Die ersten
beiden Graphen dieser unendlichen Reihe sind in Abbildungen 13a und 13b dargestellt.
Beide sind von der Ordnung (1/d), weil eine dreifache Linie von g nach h verlauft, sodaB
diese beiden Punkte nichste Nachbarn sein miissen. Man kann aber eine unendliche
Reibe von ,RPA-Blasen“ an den Graph in Abbildung 13a héngen, ohne seine Ordnung
in (1/d) zu &ndern. Solch eine Reihe mufl im Limes g = 0, my — 1 sehr sorgfiltig
behandelt werden, da wir an den Konvergenzradius berangehen. Wie wir weiter unten
noch sehen werden, ist die aufsummierte Reihe von Ordnung Eins statt von Ordnung

{1/d). Um dies zu zeigen fithren wir ,angezogene® Linien ein. Diese sind definiert als
Foi,j) = P2(i.) + 32 PG, )5 (2, 8) P28 ) (A22)
3

und miissen fiir jede Linie in den Graphen verwendet werden, da auch der zweite Term
in Gleichung (A2.2) im Limes g = 0, mg — 1 von der Ordnung Eins wird. Wir fithren
nun die Fourier Darstellung (25} durch die Gleichung

— 2 PP
Bij) =7 ¥ ™R (k) (A2.3)
{k)<0

ein, wobei i auf dem X-Untergitter und j auf dem Y-Untergitter liegen soll. Die Um-

kehrtransformation lautef
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(2}

(b)

Abbildung 13: Die ersten beiden Graphen einer Reihe fir den Gitterplatz diagonalen
Anteil der Selbstenergie zur Ordnung (1/d); a) Graph in Ordnung z*, b) Graph in
Ordnung z*

B (k) % 35 k-0 . (A2.4)

iex jev
Aus den Gréflen P,*”(k) kann man nun eine Matrix bilden, wobei P,*"(k) das
{1,1) Element, P,*®(k) das (1,2) Element, usw. sein soll. Der Vorteil dieser Dar-
stellungsweise ist, daB das Faltungstheorem fir die Matrizen gilt [25], d. h. falls
C(f,h) = 5 A(f,j) B(3, h) gilt, dann folgt C(k) = A(k) o B(k) und umgekehrt, wo-
bei o das Matrixprodukt von A und B bezeichnen soll. Aus den Gleichungen (A2.2)
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und (A2.4) erhalten wir
%{g;_mo_J,g[ B~ ma)” (1—9k )]} (A2.5a)

It

—EAA(I()

-HAA

%) = P

P00 = BP0 = Vi-5" 145 (B-m)] (A2.5¢)

Gleichung {A2.5¢) zeigt, dafl das Hipfen von einem A- zu einem B-Gitterplatz spin-

(%) (A2.5b)

unabhingig ist. Weil nun (ai—mn) von der Ordnung (1/d) ist (siehe Gleichun-
gen (Al.1a), (Al.1b)), gibt es keine Korrektur der Ordnung Eins fir nichste Nach-
barn. Dies rechtfertigt die Verwendung von P9 statt P, als wir die Gleichungen (A1.5)

und (A1.6) abgeleitet haben. Die Gleichung (A2.1) fir 5 lautet jetzt explizit

(s 5) = & L0 [P g Pl

0 -1
oS T [Pt (5 %) (A26)

~=AB

wobei (Pr] = —(1/v3d) (2/L) oo «(k)P
gen {A2.4) und (A2.5), so konnen wir Gleichung (A2.6) 16sen. Wir erhalten

(k) gilt. Verwenden wir die Gleichun-

o V2P [(2/0) S0 <o B (1P )]

s — (A2.7)
12 {(2/2) oo [B 0] — [P 0] ]

Bislang haben wir fir endliches g gerechnet. Wir kdnnen jetzt den Limes g — 0
durchfiihren, wobei wir in Gleichung (A2.7) 8 = 1 — é/d + Ky /d® setzen. An
dieser Stelle miissen wir eine formale (1/d)>-Korrektur, sy, einfihren, die aber am
Ende der Rechnungen fiir S wieder herausfallt. Wir verwenden z = {—4)/(1 — m2),
mo = 2/L ):e(k)go@; und die Definitionen in Gleichungen (Al.1b), {Al.lc), {Al.7a)
und (A1.7b}. Nach einigen algebraischen Zwischenschritten erhalten wir endlich

_ __ 2[B9d [(Ac)(am)o — (1 + S)(Aer)o] (A28)
[(Am)of? [(Amio(t + 5)2 ~ (1 +25) [(Am)a]] '
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Gleichung (A2.8) ist von dritter Ordnung fir S und hangt nur noch von bekannten
GraBen ab. Da far S < —1 sowohl der Zahler als auch der Nenner positiv sind
((AC)O < 0, (Aqg)e < 0), ist die rechte Seite von Gleichung (A2.8) positiv und
es gibt keine Losung fir § < 1.

Gleichung (A2.8) hat eine einfache Losung, wenn wir 8 = Afy setzen und XA — 0

zulassen, nimlich § = —1 4+ (Am)o[(A€)o/(A€1)o] > —1. § hat also auch im Limes

A — 0 einen endlichen Wert, d. h. wir missen nicht damit rechnen, da § in diesem

Limes divergiert.
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