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Abstract

The emergence of ICT based devices enables houses and buildings to be-

come an active part of their environment, by shifting their thermal or electrical

consumption/production at different time period according to the grid require-

ments. Considering the rise of interests for time-dependent electricity tariffs,

Home Energy Management System (HEMS), a computer-aided tool with com-

munication ability, is a promising tool for helping prosumers to optimize their

device operation accordingly to their comfort and the given electricity price.

This dissertation first delivers an overview on the different HEMS approaches,

their typical objective functions, their formulations and the considered flexible

devices in the literature. This literature review highlights the various HEMS

forms and the difficulty to compare them because of the specificity of their

evaluation conditions.

For this purpose, this dissertation presents an assessment methodology which

considers the HEMS evaluation conditions, typically time-series, as uncertain

parameters. An uncertainty analysis method for uncertain time-series is devel-

oped for fast uncertainty analysis according to stochastic optimization theory.

It is shown that for a HEMS approach, the results of 10 000 Monte Carlo simu-

lations can be achieved by 3 simulation runs per uncertain parameters with an

appropriated selected set of representative scenarios.

Finally, this assessment method is used for comparing and quantifying the

saving potential of two different HEMS: an optimization and a market-based

control, which both are compared to a conventional control, taken as reference

case. The specific saving potential associated to each flexible devices is also

studied as well as the sensitivity of these results to a forecast error. All the pre-

sented results take into account different user profiles for electrical and domestic

hot water demand and consider 5 years of historical data for the temperature

and the irradiation in Germany.





Acknowledgments

First, I would like to thank my supervisor Univ.-Prof. Ph.D. Antonello Monti

for his confidence and for giving me the opportunity to write my dissertation at

the institute for Automation of Complex Power System, RWTH Aachen Uni-

versity. I really appreciated the freedom he gave me and the fruitful discussion

we had. At the same time, I would like to thank Univ.-Prof. Ph.D Ferdinanda

Ponci for her many reviews and her valuable comments.

Secondly, I would like to thank all the students with whom I had the chance

to work: Jan Schlageter, Julian Vossen, Guillermo Moraleda, Andjey Hartl,

Artur Niederfhrenhorst, Silvia Giudice, Dimitar Stanev, Markus Erwert, Arsam

Aryandoust, Philipp Theile, Julius Rakow, Manoel Brunnen, Avichal Malhotra,

Lucia Martin, Margarita del Castillo and my different Hiwis: Marvin Garbade,

Nikolaos Savvopoulos, Nisar Khan, Georgii Tishenin, Subhodeep Chakraborty.

Thanks for your collaboration and the valuable contribution to this work.

In addition, I would like to thank all my colleagues from the Institute for Au-

tomation of Complex Power System for the exchanges all along my dissertation,

the friendly and multi-cultural atmosphere and the nice memories. Without

forgetting the EON ERC music band composed by Prof. Monti, Markus, Jan,

Nina and Edoardo and my amazing roommates in Aachen: Felix, Dany, Amelie,

Alex, Tabea, Alicja and Anshuman. I thank also the Belgian Rail for providing

me with a frequent moving office between Aachen and Brussels.

Finally I would like to express all my gratitude and my love to my family, my

supportive and loving parents Eric and Anne, my reliable brothers: Emilien and

Jean-Brieuc and their wives: Laurence and Doriane and my cute nieces: Albane,

Capucine and Isaline, my amazing and unwavering friends, Thomas, Matthias,

Olivier, Sylvain, Gilles, Thomas ”Buddy”, Pierre-Yves, Marie, Eleonore, Fanny,

Maxime, Boris, Tim, Kanali and Max. Last but not least, I would like to express

all my love and my gratitude to my kind, supportive and beautiful life partner

Savina. Thank you all of you for being always there for me.

Baptiste Feron, July 2018, Aachen





Contents

List of Abbreviations v

List of Figures vii

List of Tables ix

1 Home Energy Management System: a literature review 5

1.1 HEMS definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 HEMS objective function . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Minimization of operation costs . . . . . . . . . . . . . . . 7

1.2.2 Demand response tariff . . . . . . . . . . . . . . . . . . . 8

1.2.3 Feed-in tariff . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Objective formulation . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Deterministic optimization . . . . . . . . . . . . . . . . . 10

1.3.2 Optimization under uncertainty . . . . . . . . . . . . . . . 11

1.4 Scheduling process . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Mathematical optimization . . . . . . . . . . . . . . . . . 13

1.4.2 Heuristic approach . . . . . . . . . . . . . . . . . . . . . . 14

1.4.3 Meta-heuristic approach . . . . . . . . . . . . . . . . . . . 14

1.5 Optimality of HEMS approaches . . . . . . . . . . . . . . . . . . 15

1.5.1 Results in the literature . . . . . . . . . . . . . . . . . . . 15

1.5.2 Assessment conditions in the literature . . . . . . . . . . . 16

1.5.3 Limits of assessment approaches in the literature . . . . . 19

i



2 Modelling 23

2.1 Deterministic optimization approach: Mixed Integer Linear Pro-

gramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Objective function . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Interruptible load model . . . . . . . . . . . . . . . . . . . 24

2.1.3 Uninterruptible load model . . . . . . . . . . . . . . . . . 26

2.1.4 Energy storage model . . . . . . . . . . . . . . . . . . . . 27

2.1.5 Implementation details . . . . . . . . . . . . . . . . . . . . 30

2.2 Heuristic optimization approach: a market-based approach . . . . 30

2.2.1 Microeconomic theory . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Interruptible loads . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3 Energy storage . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.4 Market price determination . . . . . . . . . . . . . . . . . 37

2.2.5 Multi-agent system implementation . . . . . . . . . . . . 38

2.3 Rule-based approach: conventional control . . . . . . . . . . . . . 41

2.3.1 Objective function . . . . . . . . . . . . . . . . . . . . . . 41

2.3.2 Interruptible loads . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3 Uninterruptible loads . . . . . . . . . . . . . . . . . . . . 41

2.3.4 Energy storage . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . 41

3 HEMS assessment methodology based on uncertainty analysis 45

3.1 Uncertainty analysis fundamentals . . . . . . . . . . . . . . . . . 46

3.1.1 Probability fundamentals . . . . . . . . . . . . . . . . . . 46

3.1.2 Uncertainty analysis formalization . . . . . . . . . . . . . 47

3.1.3 Monte Carlo method . . . . . . . . . . . . . . . . . . . . . 48

3.1.4 Quasi Monte Carlo method . . . . . . . . . . . . . . . . . 49

3.1.5 Quadrature method . . . . . . . . . . . . . . . . . . . . . 49

3.1.6 Other uncertainty analysis methods . . . . . . . . . . . . 49

3.1.7 Requirements of HEMS assessment approach . . . . . . . 50

3.2 Assessment method for scheduling process with correlated and

discrete uncertain parameters . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Step 1: Reducing the set of scenarios with an appropriated

scenario reduction technique . . . . . . . . . . . . . . . . 51

ii



3.2.3 Step 2: Evaluate the scheduling process with the reduced

set of scenarios . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4 Step 3 (optional): Evaluate the assessment methodology

performance . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Application example . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Step 1: scenario reduction technique selection . . . . . . . 56

3.3.2 Step 2: evaluation of the scheduling process . . . . . . . . 58

3.3.3 Step 3: evaluation of the assessment methodology . . . . 59

3.4 Range of applicability . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . 62

4 Results analysis 65

4.1 Assessment conditions . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Uncertain parameters: scenarios and associated forecasts 66

4.1.2 Assessment metric . . . . . . . . . . . . . . . . . . . . . . 68

4.1.3 House set up . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.4 Demand response tariffs considered . . . . . . . . . . . . . 72

4.2 Illustrative control . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Optimization-based . . . . . . . . . . . . . . . . . . . . . . 74

4.2.2 Market-based . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.3 Conventional control . . . . . . . . . . . . . . . . . . . . . 77

4.3 Results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Performance comparison of HEMS approaches . . . . . . 80

4.3.2 Saving potential of flexible devices . . . . . . . . . . . . . 81

4.3.3 Sensitivity to forecast error . . . . . . . . . . . . . . . . . 83

4.3.4 Market-based control analysis . . . . . . . . . . . . . . . . 84

4.3.5 Factors influencing the saving potential of thermo-electrical

devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.6 Study limitation . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . 87

5 Conclusion and future work 89

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

iii



Bibliography 93

iv



List of Abbreviations

ANN Artificial Neural Networks

ARMA Auto Regressive Moving Average

CPP Critical Peak Pricing

DHW Domestic Hot Water

DR Demand Response

DSO Distribution System Operator

FiT Feed-in Tariff

HEMS Home Energy Management System

IBR Inclining Block Rate

ICT Information and Communication Technology

MAPE Mean Average Percentage Error

MAS Multi Agent System

MC Monte Carlo

PDF Probability Density Function

PV Photovoltaic

RTP Real Time Pricing

SOTAFE State-Of-The-Art Forecast Error

SRT Scenario Reduction Technique

SVR Support Vector Regression

TOU Time Of Use tariff

TSO Transmission System Operator

v



vi



List of Figures

0.1 Illustrative description of the thesis content. . . . . . . . . . . . . 4

1.1 Optimization approaches classification, according to literature. . 15

2.1 Electro-thermal market-based Multi-Agent System at a house-

hold level: agent interactions and information exchange. . . . . . 33

3.1 Illustration of the assessment method proposed. . . . . . . . . . . 57

3.2 Cumulative density function of the HEMS weekly costs compared

to Monte Carlo method with 10 000 scenarios and the proposed

method with 3, 5 and 7 selected scenarios with the optimal SRT

based on Kantorovich distance. . . . . . . . . . . . . . . . . . . . 58

3.3 Energy distance of the distribution estimation with different sce-

nario reduction cardinality compared to the true distribution

evaluated using the Monte Carlo method. . . . . . . . . . . . . . 59

3.4 Estimated expected value and its error for different number of

selected scenarios based on Kantorovich distance compared to

the true expected value. . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Forecast generation process based on the ARMA forecasting method

and the average MAPE forecast error. . . . . . . . . . . . . . . . 67

4.2 HEMS cost evaluation for a given scenario s and its associated

forecast f with a given forecast error. . . . . . . . . . . . . . . . 68

4.3 Yearly share of single family house built in Germany. . . . . . . . 72

vii



4.4 Thermal (red) and electrical (blue) representation of the consid-

ered house set up with a heat pump (HP) supplying the space

heating (SH), an electrical heater (EH) supplying a water tank

(WT) for domestic hot water demand (DHW), photovoltaic pan-

els (PV) and domestic battery. . . . . . . . . . . . . . . . . . . . 73

4.5 Illustration of the considered TOU pricing in simulation. . . . . . 73

4.6 Illustration of MILP control with TOU tariff and perfect forecasts. 75

4.7 Illustration of market-based control with TOU tariff. . . . . . . . 76

4.8 Illustration of conventional control with TOU tariff. . . . . . . . 77

4.9 FiT tariff: weekly average costs for the different approaches with

different forecast errors. . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 TOU tariff: weekly average costs for the different approaches with

different forecast errors. . . . . . . . . . . . . . . . . . . . . . . . 79

viii



List of Tables

1.1 HEMS optimization objectives . . . . . . . . . . . . . . . . . . . 6

1.2 Different pricing schemes and their global objectives. . . . . . . . 8

1.3 Objective formulation in literature . . . . . . . . . . . . . . . . . 10

1.4 HEMS scheduling approaches in the literature . . . . . . . . . . . 13

1.5 HEMS costs reduction in the literature . . . . . . . . . . . . . . . 16

1.6 Simulation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Forecast error in the literature. MAPE: Mean Average Percent-

age Error, NRMSE: normalized root mean square error. . . . . . 19

1.8 Flexible devices considered in the literature . . . . . . . . . . . . 20

1.9 Sources of specificity for HEMS assessment . . . . . . . . . . . . 20

1.10 Literature review summary: simulation time, considered pricing,

objective function and building location . . . . . . . . . . . . . . 21

2.1 Truth table of uninterruptible load constraints (Eq. 2.8) . . . . . 27

2.2 Bidding strategy in the literature . . . . . . . . . . . . . . . . . . 32

2.3 Comparison of implemented HEMS approaches with n the num-

ber of controlled loads and k the number of timestamps. . . . . . 43

3.1 Comparison of integral estimation for uncertainty analysis with

d uncertain parameters . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 parameters used in the simulation . . . . . . . . . . . . . . . . . 71

4.2 TOU tariff according to the literature. . . . . . . . . . . . . . . . 74

4.3 Specific device costs [ce/kWh] and weekly consumed energy [kWh/w]

associated to the conventional control and the optimization ap-

proach with feed-in and TOU tariffs. . . . . . . . . . . . . . . . . 82

ix



4.4 Specific device costs [ce/kWh] and weekly consumed energy [kWh/w]

associated to the optimization approach with and without fore-

cast errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Specific device costs [ce/kWh] associated to the optimization ap-

proach, the conventional control and the market-based. . . . . . . 84

x



Introduction

The known limit capacity of fossil fuel and the ongoing climate change has

mainly driven political choices the last decade. The European Union (EU) tar-

gets a decrease by 20% of greenhouse gas emission compared to 1990 and an

increase up at least to 20% of renewable energy production by 2020. Further-

more, it envisions a decrease by 40% of greenhouse gas and an increase by 27%

of energy from renewable sources by 2030. These changes bring major challenges

to the EU states and grid operators:

❼ EU states have to incentive the installation of renewable energy while

ensuring a competing electricity price

❼ Distribution System Operators (DSO) have to accommodate the increase

of decentralized sources of production while avoiding large invest in the

grid

❼ Transmission System Operators (TSO) have to ensure the security of sup-

ply in spite of the volatility and non-controllability of the decentralized

production units

One possible component of the solution is to benefit from the electrical con-

sumption flexibility of domestic and commercial consumers. Indeed, the emer-

gence of ICT based appliances changes the position of houses and buildings in

their environments, by enabling them to become an active part of it: by shifting

their consumption/production at different time period accordingly to the power

grid requirement. For this purpose, different time-varying electricity tariffs such

as Time-of-Use (TOU), Critical-Peak Pricing (CPP), Feed-in Tariff (FiT) and

Real-Time Pricing (RTP) are proposed in literature to solve specific challenges:
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decrease the peak load demand, reduce greenhouse gas emission or maximize

the self-consumption. The emergence of these time-dependent pricings rises the

interest of customer in managing load and generation units for environmental

and economical purposes. Considering this, Home Energy Management System

(HEMS), a computer-aided tool with communication ability, is a promising tool

for helping customers to optimize their domestic device operation accordingly

to their comfort and the given electricity price.

Research motivation

The mentioned facts illustrate a future reality where there is a need for HEMS

to support the energy transition. According to literature, there are various

HEMS approaches that can be differentiated according to their objective for-

mulation, their parameters and the solver used. Unfortunately, the specificity of

the considered assessment scenarios in literature does not allow identifying the

most optimal HEMS approaches.

For this reason, there is a need for an assessment method which:

❼ brings generality in its conclusion

❼ is achieved in a limited number of simulation runs

❼ shows a good accuracy

Contribution of this thesis

This dissertation addresses these challenges by:

❼ Identifying the main sources of specificity in the HEMS assessment process,

according to literature.

❼ Presenting an innovative HEMS approach based on the economic theory

applied at a household level, so-called market-based control.

❼ Presenting an assessment method, formalized as an uncertainty analysis

for uncertain time-series parameters inspired by stochastic optimization

theory that deals with identical challenges.

2



Introduction

❼ Assessing the accuracy of the proposed uncertainty analysis with the state

of the art uncertainty analysis: Monte Carlo.

❼ Applying this optimality assessment methodology to different HEMS ap-

proaches and highlight their sensitivity to forecast errors. In addition, the

specific saving associated to each considered devices is also studied.

Dissertation outline

The dissertation is structured as follows:

Chapter 1 classifies the various HEMS approaches presented in literature

according to their objective functions, their objective formulations and the dif-

ferent scheduling approaches. Based on this, the main sources of specificity in

HEMS assessment process are then identified.

Chapter 2 introduces and formulates the different optimization approaches

studied in this dissertation, i.e. the optimization-based and the market-based

approaches, and the reference control: the rule-based approach. This includes

the optimization approach formulation and the modelling of the different flexi-

bilities considered.

Chapter 3 introduces the state-of-the-art uncertainty analysis approaches

and presents their advantages and limitations. Then, the proposed uncertainty

analysis is described in detail and compared to the Monte Carlo approach for a

practical case.

Chapter 4 presents a comparison of the different HEMS approaches based

on the uncertainty analysis proposed. This comparison highlights the impact

of different forecast errors on the objective function and the benefit brought by

different flexibility sources.

3
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Chapter 1

Home Energy Management System: a

literature review

The emergence of ICT based appliances changes the position of houses and

buildings in their environments, by enabling them to become an active part of

it: by shifting its consumption/production at different time period accordingly

to the power grid requirement. Different time-varying electricity tariffs such

as TOU, CPP, FiT and RTP are proposed in literature to solve the different

challenges faced by grid operators (Section 1.2). These time-dependent pricings

rises the interest of customer in managing load and generation units using HEMS

for environmental and economical purposes.

This chapter describes the state of the art of Home Energy Management Sys-

tem approaches at a household level: typical objective functions, considered

flexibilities, optimization problem formulation and challenges for HEMS.

This chapter answers to the following questions:

Section 1.1: What is the definition of a HEMS?

Section 1.2: What are the HEMS objective functions?

Section 1.3: What are the different ways to formulate the scheduling problem?

Section 1.4: What are the different scheduling approaches to solve the problem?

Section 1.5: What are the different sources of specificity in the assessment ap-

proaches proposed in literature?

5



1.1 HEMS definition

1.1 HEMS definition

A home energy management system -HEMS- is a computer-aided tool that

shifts and curtails electrical demand according to a specific objective function, a

given electricity price and the consumer comfort. The HEMS can communicate

with domestic devices and the utility to receive external information, e.g. solar

power production or demand response (DR) electricity prices. In that way,

it can improve the energy consumption and production schedule of domestic

devices [1].

In literature, ”home energy management system” (HEMS) [2–6] is also typi-

cally called ”energy management system” (EMS) [7–9] and ”residential energy

management system” (REMS) [10, 11]. The HEMS purpose is to control the

electricity consumption within a home on behalf of a consumer. This is made

possible by the emergence of ICT based devices, differentiated electricity tar-

iffs and energy optimization algorithms that allow an automatic and effective

control of different domestic appliances. To achieve an optimal decision, several

challenges have to be addressed: the diversity of the devices to control, the

problem complexity and finally the uncertainty of the future.

1.2 HEMS objective function

According to literature (Table 1.1), the most typical objective function is to

minimize the energy costs at a household level while ensuring the user comfort,

expressed as constraints (Costs) or explicitly in the objective function (Costs +

Comfort).

Objectives References

Costs [3, 12–25]
Comfort [26]
Peak Demand [25]
Costs + Comfort [9, 27–29]
Costs + Battery Life [30]

Table 1.1: HEMS optimization objectives

6



Chapter 1 Home Energy Management System: a literature review

1.2.1 Minimization of operation costs

The optimization aims at minimizing the operation costs of the different flex-

ibility sources (Table 1.8) according to the considered electricity price scheme

and/or the feed-in tariff. The cost formulation and the constraint ensuring

a power balance are expressed according to equations 2.1 and 2.2. It can be

noticed that they depend explicitly on different forecasts:

❼ Photovoltaic production: PPV (t)

❼ Uncontrollable electrical demand e.g. lights or television: Pdem(t)

Depending on the considered devices, additional forecasts can be required e.g.

outside temperature or domestic hot water (DHW) demand.

The total costs and the power balance constraints can be expressed in a

general way:

C(x) = ∆t
∑

t

import cost
︷ ︸︸ ︷
Pimp(x(t))Cimp(t)−

export revenue
︷ ︸︸ ︷
Pexp(x(t))Cexp(t)+

discomfort costs︷ ︸︸ ︷
Cdiscomfort(t) (1.1)

∀t, Pimp(x(t)) + PPV (t)
︸ ︷︷ ︸

electrical production

=

Pexp(x(t)) +

D∑

d=0

Pd(x(t)) + Pdem(t)

︸ ︷︷ ︸
electrical consumption

(1.2)

x(t) is the vector of decision variables for the flexible devices considered at time

t. Pd(x(t)) is a continuous variable associated to the power consumption of the

scheduled device d. Pimp(x(t)) and Pexp(x(t)) are respectively the imported

and exported power from/to the grid, constant over a time interval ∆t and

depending implicitly on the decision variable vector x(t). Cimp(t) and Cexpt(t)

are respectively the importing cost and exporting revenue in e/kWh which

depend on the electrical pricing considered. PPV (t) and Pdem(t) represents the

uncontrollable photovoltaic (PV) production and electrical demand.
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1.2 HEMS objective function

In literature, many different pricing schemes are proposed to achieve one or

several objectives at a global level.

a) Minimize the energy costs

b) Minimize the peak load demand

c) Maximize the global welfare

d) Maximize the self-consumption

e) Minimize the CO2 emission

Table 1.2: Different pricing schemes and their global objectives.

Pricing Objectives literature

Time-differentiated tariff
TOU b), c) [31–34]
CPP b), c) [35–37]
RTP a) , b) , c) [38–40]

Incentive payments a), b), c), d), e) [41,42]

Feed-in tariff d) [3, 43]

Time-differentiated tariff and incentive payments are part of the DR mech-

anism because they incentive consumption at a given period of time whereas

feed-in tariff is a policy mechanism which incentivizes the investment in renew-

able energy.

1.2.2 Demand response tariff

Customer acceptance and legislation are sine qua non conditions for the ef-

fective deployment of DR programs. Empirical results show that consumers are

open to dynamic pricing, but prefer simple programs to complex and highly dy-

namic ones [44]. In literature, different studies highlight the elasticity of house

consumption to electricity price in USA [45] or Italy [46]. According to [47],

DR allowed for cutting 7% of the seasonal peak in PJM interconnection (USA).

In 2011, the demand response market in the United States generated approxi-

mately $6 billion in direct revenues.
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DR programs can take two main forms: time-differentiated electricity rates

or incentive payments. Each of this form has a huge number of variants.

1.2.2.1 Time-differentiated electricity rates

Time-differentiated electricity rates are classified into time of use (TOU) and

dynamic pricing.

TOU pricing are known to user well in advance i.e. months ahead and

are fixed for a long period (i.e. 3 months) [6]. It is divided into different unit

prices for usage during different blocks of time in order to encourage customers

to shift consumption when demand is low, e.g. during night time or off peak

period [29,41].

Dynamic pricing can have different time granularity i.e. minutes or hours

block and are known to customers in advance.

- Critical peak pricing (CPP) considers additional cost during high demand peak

on a small fraction of the days in the year in order to encourage load shifting

and shedding. According to [35], residential CPP customers achieve 15% of

peak reduction while residential with TOU pricing achieve 5% reduction.

- Real time pricing (RTP) aims at reflecting the actual generation costs of elec-

tricity to the customers on an hourly or sub hourly basis. Customers are typ-

ically notified of the wholesale market prices on a day-ahead or hour-ahead

basis [6, 29] such as to adjust demand according to the notified price. RTP can

take different forms to protect the customer from the market volatility [48] or

to prevent rebound effect with inclining block rate (IBR) [49].

1.2.2.2 Incentive payments

The customer allows the central entity e.g. utility or aggregator, to control its

loads according to a pre-defined agreement in exchange of incentive payments.

There are different strategies developed to control residential loads, using direct

load control (DLC) or large industrial load using interruptible load manage-

ment (ILM) [41]. Other derived pricing exists for playing in wholesale market

using Demand Bidding Programs (DBP), Capacity Bidding Programs (CBP)

and ancillary services market programs (ASMP) [42].
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1.3 Objective formulation

1.2.3 Feed-in tariff

Feed-in tariff is a policy mechanism which incentives the investment in re-

newable energy by offering cost compensation and long-term price contract to

renewable energy producers. Feed-in tariff are characterized by a differentiated

price for importing and exporting electricity from a household point of view.

These prices are depending on the country regulation [43] and drives directly

the user behaviour. The feed-in tariff often decreases over the time to incentive

technological costs reduction.

1.3 Objective formulation

Depending on the available forecast information and the sensitivity to the

forecast error, the HEMS objective function can be formulated differently by

considering either explicitly forecasts uncertainty: optimization under uncer-

tainty or not: deterministic optimization.

Objective formulation References

Deterministic
With point forecast [3, 9, 13–16,19,20,24,25,27–30]

With uncertainty
Stochastic [18,21–23,26]
Chance constrained [8, 17]
Robust [21]

Table 1.3: Objective formulation in literature

1.3.1 Deterministic optimization

Deterministic optimization is the most typical formulation in literature (Table

1.3) because of its intuitive formulation and the absence of uncertainty mod-

elling.

MinxC(x)
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where C(x) is the costs expression (Eq. 2.1) and x is the vector of decision

variables for the flexible devices considered.

Nevertheless, irradiation, space heating, residential electricity or DHW de-

mand are highly dynamic and variable, which make them very challenging to

forecast. This implies that the forecast error can be large and lead to sub op-

timal control. To mitigate the impact of forecast errors, optimization under

uncertainty methods are introduced in literature [50,51].

1.3.2 Optimization under uncertainty

Unlike deterministic optimization, optimization under uncertainty aims at

benefiting from the probabilistic forecast information. Incorporating forecast

uncertainty in the scheduling process has the potential to improve the algo-

rithm optimality despite of an increase of complexity due to the high number of

scenarios considered. The most prominent works in literature implement mainly

a stochastic optimization and few other works consider robust optimization or

chance constrained optimization (Table 1.3).

Stochastic optimization

Stochastic optimization is explicitly accounting for the forecast uncertainty by

considering the forecast probability in the objective formulation. It aims at min-

imizing the expected value of the costs under the forecast scenarios considered.

This implies that for some scenarios, the schedule will not be optimal or feasible

but in average, this schedule will minimize the costs. The feasibility can be

increased only at the expense of increasing the number of scenarios considered.

The general formulation of a stochastic optimization problem [51] is:

minxE[C(x)] = minx

∫

Ω

C(x, ω)dP (ω) (1.3)

where E is the expected value with respect to P , which is a distribution defined

on the probability space Ω. C(x, ω) is the cost function (Eq. 2.1) and the

considered random variable defined on Ω. Let ω denote a discrete-time stochastic

process e.g. the electrical or DHW demand probabilistic forecast.

There are different ways of formulating a stochastic optimization: one stage,

two stages or multiple stages, depending on the availability of the required in-

formation as function of time. Some decisions need to be made at a given time,
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1.4 Scheduling process

while some can be made at a later time period as more information becomes

available. For this reason, the schedule is corrected all along the considered

horizon through recourse variables, accordingly to the realization of the uncer-

tainties. This introduces one of the major challenge of stochastic optimization

with multiple stages: problem complexity. The number of variables grows ex-

ponentially with respect to the number of recourse stages. For this reason,

a two-stage stochastic optimization approach is more common in the litera-

ture [18,21–23,26].

Chance-constrained optimization

Chance-constrained optimization aims at minimizing the worst-case scenario

with a desired confidence interval. Unlike robust optimization, chance-constrained

optimization can use unbounded distributions of uncertainty since it only covers

the majority of cases accordingly to the desired confidence interval. For exam-

ple, [8] minimizes costs while ensuring that the probability of outage is below

a given interval. Chance constrained optimization requires to invert the PDF,

which is only feasible for few class of PDFs.

Robust optimization

Robust or worst-case optimization uses bounded distribution of uncertainty and

focuses on minimizing the impact of the worst-case scenario. For example, if

the objective is to reduce the cost of electricity, a robust optimization problem

would minimize the upper-bound that a consumer would pay. For this reason,

robust optimization is necessarily conservative [1].

1.4 Scheduling process

Three different approaches are used in the literature to schedule energy con-

sumption: mathematical optimization, heuristic and meta-heuristic approaches.

The use of one of these approaches depends on

❼ the problem complexity impacting directly the solving time

❼ the required solution optimality: global or local optimum

❼ the device models used

The table 1.4 summarizes the different scheduling processes in the literature.
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Scheduling approaches References

Mathematical optimization

Linear Programming [29]
Mixed Integer Linear Programming [17,19,21,24,25,28]

Quadratic Programming [8, 26,52,53]
Convex Programming [9, 53,54]
Dynamic Programming [22,23,30]

Non Linear Programming [9, 16,18,25]

Heuristic

Fuzzy-Logic controller [24]
Two-Step LSOEM [15]

Market-based [3, 55,56]
Q-Learning [30]

Meta-Heuristic

Genetic algorithm [20,27]
Particle Swarm Optimization [14,17,30]

Table 1.4: HEMS scheduling approaches in the literature

1.4.1 Mathematical optimization

Mathematical optimization leads to a global optimum. The mathematical

formulation of the problem depends on 1) the objective function considered

(Section 1.2), 2) the way how forecasts uncertainty is taken into account (Section

1.3) and 3) the device models considered.

❼ Linear Programming (LP): is the simplest form of mathematical optimiza-

tion. It is characterized by mature algorithms requiring linear objective

function and constraints. LP can be solved in a polynomial-time, but

requires a linear form, restricting the HEMS problem formulation.

❼ Mixed Integer Linear Programming (MILP): is like a LP but it includes

integer variables that makes it a non-polynomial-complete problem. This

a very common approach in the literature because of the presence of flex-

ible devices requiring a binary variable e.g. uninterruptible loads such as

washing machine.

❼ Quadratic Programming : is a mature algorithm that requires a quadratic

formulation of the objective function, unlike LP.
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1.4 Scheduling process

❼ Convex Programming : is defined by convex objective function and con-

straints. There is no analytical solution but they can be solved effectively.

The solver cannot be defined yet as a mature algorithm method. The

main challenge is the problem formulation, requiring more mathematical

transformation than linear programming.

❼ Dynamic Programming : breaks the initial problem into simpler subprob-

lems and solves them recursively by storing their solutions.

❼ Non Linear Programming : is used for optimization problem whose con-

straints and objective function are not linear and not known to be convex.

There is no effective methods for solving such problems.

Aside these mathematical optimizations, heuristic and meta-heuristic ap-

proaches solve the HEMS problem with less computational effort than opti-

mization approach but lead to local optimum solution.

1.4.2 Heuristic approach

Heuristic methods limit the number of searches based on experience and

knowledge about specific problem and are tailored to the specific problem. For

example, a simple heuristic method is to charge the battery if the RTP pricing is

below a given threshold, defined by experience and knowledge about the specific

problem.

1.4.3 Meta-heuristic approach

Meta-Heuristic approaches treat the problem as a black box and may be

applied to a broad range of problems without change of the algorithm. Typically,

genetic or evolutionary algorithms use a large set of possible schedules until

to converge near an optimum. The most typical meta-heuristic approaches are

genetic algorithms and particle swarm optimization algorithms [14,17,20,27,30].
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Figure 1.1: Optimization approaches classification, according to literature.

1.5 Optimality of HEMS approaches

As presented before, HEMS optimization can be implemented in various ways

depending on the objective function, its formulation and the scheduling ap-

proach followed (Figure 1.1). In the literature, authors assess typically their

HEMS approaches with specific assessment conditions that lacks generality.

This section presents the achieved results in the literature and the identified

sources of specificity in the assessment.

1.5.1 Results in the literature

Table 1.5 presents different results in the literature. It shows that results vary

strongly and that no clear outcome can be extracted out of this literature study.

Authors consider different and specific assessment conditions that do not allow

comparing fairly different HEMS approaches.
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References DR tariff Costs reduction

[16] RTP 68%
[27] RTP + IBR 7.25%
[15] RTP 20%
[3] Feed-in tariff 10.7%
[18] TOU tariff 6.2 - 10.7%
[30] RTP 16 - 26.6%
[19] TOU tariff 4.1 - 18.8%
[29] RTP + IBR 25%
[20] RTP 8 - 21.7%
[21] RTP 24.4 - 26.4%
[22] RTP 11%
[23] RTP 30 - 40%
[24] RTP, max threshold 10.4 -12%
[2] TOU tariff 25 - 28 %
[57] RTP/Feed-in tariff 4.2 - 11%
[58] TOU + Feed-in tariffs up to 49,7%
[59] TOU tariff 7%

Table 1.5: HEMS costs reduction in the literature

1.5.2 Assessment conditions in the literature

The various cost reduction results in the literature are mainly due to the

specificity of the assessment conditions. In the literature, the presented results

are valid for specific case: one given house location, with specific DR pricing

and over a limited simulation time. Sometimes forecast errors are considered

but in most of the case, it is not the case. This leads to a lack of generality.

The sources of specificity in the literature are presented in this section.

1.5.2.1 User behaviour

User behaviour affects mainly the uncontrollable electricity and DHW demand

profiles.

The uncontrollable electrical demand is defined by the electrical demand that

cannot be controlled by the HEMS, e.g. television, lights. The uncontrollable

associated energy consumption impacts directly the final costs.

Whereas the DHW demand is defined by the hot water need i.e. shower or
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washing up. DHW demand impacts indirectly the costs, only if it is produced

by an electrical source.

First, this implies that electrical and DHW demand is correlated and linked

to the presence of users in the house. Second, specific electrical and/or DHW

demand conditions bring specificity in the conclusion.

1.5.2.2 Demand response pricing

The demand response pricing considered, defined in Section 1.2 and Table 1.2,

affects directly the control strategy followed. For example, if there is a feed-in

tariff, the appliances are driven to be started when sun is shining whereas if

there is a Real Time Pricing, they are driven to start at low price periods.

References Simulation time Location

[27] 24 hours Taiwan:1 house
[16] 24 hours UK: 30 houses
[15] 24 hours USA: 1 house
[3] 7 days Germany
[18] 24 hours China: office building
[30] 7 days USA: 1 house
[19] 24 hours UK: 1 house
[29] 4 months USA: 1 house
[20] 24 hours Spain: 1 house
[21] 24 hours USA: 1 house
[22] 1 year Australia: 1 house
[23] 1 year USA: 1 house
[24] 2 days USA: 1 house
[2] 290 days Turkey: 1 house

Table 1.6: Simulation scenarios

1.5.2.3 House location

The weather profiles i.e. temperature, irradiation or humidity is linked to

the house location. Based on that, it can be concluded that the space heating

demand flexibility and the PV production is directly impacted by the house

location and its associated meteorological conditions. If simulations consider
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1.5 Optimality of HEMS approaches

only a specific period of the year, as often in the literature (Table 1.6), the

results are not representative.

1.5.2.4 Forecast error

HEMS problem require typically forecasts for scheduling the appliances (Eq

.2.1). Nevertheless, most of papers consider perfect forecasts in the assessment

process, leading to an over-estimation of the cost savings.

In the literature (Table 1.7), the current forecasting methods under investiga-

tions are typically Auto Regressive Moving Average (ARMA), Support Vector

Regression (SVR) or Artificial Neural Networks (ANN). The presented results

in Table 1.7 have to be taken with caution, given that the forecast results are

very sensitive to the considered data set, as shown in [60]. Therefore, some

authors [60, 61] present the results for a large number of data sets. In addi-

tion, current researches concentrate on probabilistic forecasts which give more

insights about the forecasted value probability and can be used with stochastic

optimization [60,62–64].

1.5.2.5 Flexible devices

Authors consider different source of flexibility (Table 1.8) The sources of flexi-

bility mainly considered from a residential point of view are the thermo-electrical

devices such as air conditioners or water heaters, the energy storages and the

uninterruptible loads such as washing machines or clothes dryer [1].

These different domestic sources of flexibility can be classified into classes [1]:

❼ Uninterruptible loads which must run for a given time period once started

e.g. dishwasher or clothes dryer

❼ Interruptible loads which can be interrupted and resumed at a later time

with associated constraints or penalties linked to the users comfort e.g.

Plug-in Electric Vehicles (PEVs) or heat pumps

❼ Regulating loads that must maintain a device energy state in proximity of

a desired state e.g. electro-thermal devices

❼ Energy storage that can be used to store and dispense energy when needed

without restriction.
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Forecast methods Error References

Ambient T➦
ARMA MAPE: 14% [65]

MAPE: 10% [20]

Irradiation
ARMA NRMSE: 40% [65]
SVR NRMSE: 50% [65]

Electricity demand
ARMA MAPE: 50-70% [61]

MAPE: 100% [65]
MAPE: 25% [14]

SVR MAPE: 80% [65]
ANN MAPE: 28% [14]

Hot water demand
ARMA MAPE: 65% [65]
SVR MAPE: 70% [65]

Market price
ARMA MAPE: 10% [20]

MAPE: 10% [15]
Weighted average MAPE: 13% [29]

Wind power
ARMA MAPE: 20% [20]

Table 1.7: Forecast error in the literature. MAPE: Mean Average Percentage
Error, NRMSE: normalized root mean square error.

1.5.3 Limits of assessment approaches in the literature

As discussed before, authors consider different assessment conditions which

do not allow comparing fairly these different approaches according to results

presented in the literature. Table 1.9 refers the different sources of specificity in

the literature.
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Flexible devices References

Uninterruptible loads
Clothes dryer [9, 13–15,22,24–26,29]
Dishwasher [13–15,17,21,22,25,29]
Washing machine [9, 13–16,21,22,25–29]

Interruptible loads
PHEV/EV [12,16,20–22,24–26,29]
Swimming pool pump [9,22]

Regulating loads
Air conditioner [9, 14,15,17,20–22,24–28]
Electric heater [3, 9, 16,25,28]
Heat pump [3,55,57,66–69]
Refrigerator [9, 28]
Water heater [3, 9, 14,15,21,22,24,25,27,28]

Energy storage
Battery/energy storage [9, 12,17–19,24,28,30]

Table 1.8: Flexible devices considered in the literature

Influencing inputs Depending on

Electrical profile User presence, devices
DHW demand profile User presence
Weather profile Location, calendar
Forecast profile Forecast method, error
Building/house Year of construction
Flexible devices Choices, year of construction
Pricing scheme Legislation

Table 1.9: Sources of specificity for HEMS assessment
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Ref. Simu time Forecast errors Pricing Objectives achieved Location

[27] 24 hours Electricity demand: RTP + IBR Electricity costs reduction: 7.25% Taiwan:1 house
MAPE: 13.32% PAR reduction: 8.65%

[16] 24 hours - RTP Electricity costs reduction: 68% UK: 30 houses
Peak demand reduction: 57%
Load factor increase: +13%

[15] 24 hours Electricity price: RTP Electricity costs for water USA: 1 house
MAPE:10% heating reduction: 20%

[3] 1 week - Feed-in tariff Electricity costs reduction: 10.7% 1 house
[18] 24 hours - TOU tariff Electricity costs reduction: 6.2-10.7% China: office
[30] 1 week - RTP Electricity costs reduction: 16-26.6% USA: 1 house
[19] 24 hours - TOU tariff Electricity costs reduction: 4.1-18.8% UK: 1 house
[29] 4 months Electricity price: RTP + IBR Electricity costs reduction: 25% USA: 1 house

MAPE: 13%
[20] 24 hours 1) Ambient T➦: RTP Costs reduction: 8-21.7% Spain: 1 house

MAPE: 10%
2)Electricity demand:
MAPE: 2%
3)Electricity price:
MAPE: 10%
4)Wind power:
MAPE: 20%

[21] 24 hours - RTP Costs reduction: 24.4-26.4% USA: 1 house
[22] 1 year - RTP Costs reduction:11% Australia: 1 house
[23] 1 year Electricity price: RTP Costs reduction: 30-40% USA: 1 house

ME: 0
[24] 2 days - RTP + max Costs reduction: 10.4-12% USA: 1 house

threshold
[2] 290 days - TOU tariff Costs reduction: 25-28% Turkey: 1 house

Table 1.10: Literature review summary: simulation time, considered pricing, objective function and building loca-
tion2
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Chapter 2

Modelling

The different HEMS approaches implemented and studied in this work are

presented in this chapter. First the deterministic optimization and its associated

models are formulated. Second, the heuristic optimization approach based on

a market mechanism is presented. Finally the benchmarking control, to which

the other HEMS are compared, is briefly introduced. This chapter is mainly

based on the work presented by Feron et al. [3, 5].

2.1 Deterministic optimization approach: Mixed Integer Linear

Programming

This section aims at introducing the domestic devices model used in the op-

timization based HEMS. As stated in the literature review (table 1.4), the most

typical HEMS optimization formulation is a MILP problem, a mature solving

algorithm which ensures a global optimal solution. In the following, the objec-

tive function is presented, then the modelling of the different flexible devices is

formulated.

2.1.1 Objective function

The optimization aims at minimizing the operation costs of the different flexi-

bility sources according to the considered electricity price scheme and the feed-in

tariff. Based on the cost and the constraints expressed in Section 1.2.1, the op-
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2.1 Deterministic optimization approach: Mixed Integer Linear Programming

timization problem can be expressed as:

Minimize ∆t
∑

t

import cost
︷ ︸︸ ︷
Pimp(x(t))Cimp(t)−

export revenue
︷ ︸︸ ︷
Pexp(x(t))Cexp(t)+

Discomfort costs︷ ︸︸ ︷
Cdiscomfort(t) (2.1)

Subject to ∀t, Pimp(x(t)) + PPV (t)
︸ ︷︷ ︸

electrical production

= Pexp(x(t)) +
D∑

d=0

Pd(x(t)) + Pdem(t)

︸ ︷︷ ︸
electrical consumption

(2.2)

x(t) vector of decision variables for the flexible devices in t
Pimp(x(t)) imported power from the grid [kW]
Pexp(x(t)) exported power to the grid [kW]
Cimp(t) importing cost depending on the considered tariff [e/kWh]
Cexp(t) exporting revenue depending on the considered tariff [e/kWh]
Cdiscomfort(t) discomfort costs [e/h]
PPV (t) photovoltaic power (PV) production [kW]
Pdem(t) uncontrollable electrical demand [kW]

Pd(x(t)) is a continuous variable associated to the power consumption of the

scheduled device d, classified according to their constraints [1]. In the following

the different linear models used are presented. The objective of this work is not

to study the impact of modelling error on optimality. Therefore, state-of-the-art

low order models are considered.

2.1.2 Interruptible load model

An interruptible load is characterized by the possibility to be interrupted and

to be resumed later according to constraints or penalties defined by the user

comfort, e.g. a thermo-electrical device supplying space heating demand and

constrained by room temperature. The following linear constraints describe the

interruptibility condition under user comfort constraint.

if d ∈ {interruptible}, ∀t
Pd(xd(t)) = xd(t) · Pd,max
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Pmin
comfort(xd(t− 1),y(t)) ≤ Pd(xd(t)) ≤ Pmax

comfort(xd(t− 1),y(t)) (2.3)

xd(t) continuous variable element of the variable vector x(t)
Pd,max maximum load power [kW]
Pmin
comfort minimum consumption level to fulfil the user comfort [kW]

Pmax
comfort maximum consumption level to fulfil the user comfort [kW]

xd(t) states the consumption level of the considered interruptible load. The

minimum and maximum consumption level that the load can support to fulfil

the user comfort depend on the previous state of the device xd(t − 1) and the

external variables y(t) such as outside temperature or irradiation.

Heat pump -HP-

The heat pump is a very efficient thermo-electrical device which extracts heat

power from a low temperature source such as air or water, using an inverse

fridge cycle. The heat pump supplies typically a water tank storage which can

supply DHW and/or space heating (SH) needs. The heat power output of a heat

pump is governed by the coefficient of performance (COP) which is a function

of ambient temperature and the flow temperature for hot water supply.

QHP (t) = COP · PHP (t) (2.4)

PHP (t) = xHP (t) · Pmax
HP (t) (2.5)

PHP electrical power of HP [kW]
QHP thermal power of HP [kW]
COP coefficient of performance [-]
xHP binary element of the decision variable vector x(t) describing the HP operation

Electrical heater -EH-

The electrical heater is a fast heating device constituted by an electrical re-

sistance which can be installed in rooms to provide SH or in the water tank to

supply DHW demand. The heat power output of electrical heater is governed
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by the efficiency of the electrical heater.

QEH(t) = ηEH · PEH(t) (2.6)

PEH(t) = xEH(t) · Pmax
EH (t) (2.7)

PEH electrical power of EH [kW]
QEH thermal power of EH [kW]
ηEH EH efficiency [-]
xEH binary element of the decision variable vector x(t) describing the EH operation

In this work, the HP and EH operation is restricted to on-off operation.

2.1.3 Uninterruptible load model

An uninterruptible load is characterized by a must-run condition: if switched

on, it must finish its task, e.g. washing machine. The following linear constraints

describe this condition.

if d ∈ {uninterruptible}, ∀t
xd(t) · Pd,min ≤ Pd(xd(t)) ≤ xd(t) · Pd,max

xd(t) ≤ xd(t+ 1) +
∆t

T

t∑

τ=1

xd(τ) (2.8)

Tflex∑

t=1

xd(t) ≥ 1 (2.9)

xd(t) binary variable equals to one if device is on
T time for a load cycle [s]
Tflex ultimate time interval when the load must be run [-]∑t

τ=1 xd(τ) ·∆t the current cycle time [s]

According to Eq. 2.8, xd(t+1) = 1 only if xd(t) = 1 and
∑t

τ=1 xd(τ) ·∆t < T

(Table 2.1). Furthermore, it ensures that the load is on for its full cycle T .

Finally, Eq. 2.9 ensures that the device will run before the time limit given by

the user.
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Table 2.1: Truth table of uninterruptible load constraints (Eq. 2.8)

xd(t)
∑t

τ=1 xd,τ ·∆t xd(t+ 1)

0 0 or T 0
1 < T 1
1 T 0

2.1.4 Energy storage model

An energy storage is characterized by the possibility to store and restore en-

ergy when required. From a modelling point of view, its constraints are described

by equation 2.3 where Pd,min and Pd,max define respectively the minimum and

maximum consumption/production level that the storage can support to fulfill

its physical constraints such as its state of charge boundaries.

2.1.4.1 Battery

In this work, a lithium ion battery model is considered. The continuous

decision variables are the discharging Pdischarge and charging power Pcharge

constrained by the power limitation due to the maximum admissible current in

the cells and the inverter power.

The state of the art of the charging strategy is the Constant Current Constant

Voltage (CCCV) which implies a maximum power charge or discharge depending

on the current battery voltage, i.e. the state of charge [70].

0 ≤ Pcharge(t) ≤ Pcharge,max(SOC(t)) (2.10)

0 ≤ Pdischarge(t) ≤ Pdischarge,max(SOC(t)) (2.11)

The evolution of the stored energy in the battery is depending on its previous

energy state, the charge/discharge power and the combined battery-inverter

system efficiency (Eq. 2.12)

E(t+∆t) = E(t) + ∆t

(
ηbattPcharge(t)−

Pdischarge(t)

ηbatt

)
(2.12)
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E energy stored [kWh]
Emax battery capacity [kWh]
Pcharge charge power [kW]
Pdischarge discharge power [kW]
ηbatt system efficiency (battery and inverter) [-]
SOC battery state of charge [-]

The state of charge of the battery is defined as

SOC(t) =
E(t)

Emax

∈ [0,1] (2.13)

2.1.4.2 Water tank storage

Water tank storage is used for storing thermal energy typically used for DHW

or SH demand. Its energy balance is formalized in Equation 2.14.

E(t+∆t) = E(t) + ∆t (Qin(t)−Qout(t)−Qloss(t)) (2.14)

E thermal energy stored in the water tank [kWh]
Qin input thermal power from heating system [kW]
Qout output thermal power i.e. DHW or SH demand [kW]
Qloss heat losses function of the WT temperature [kW]

The energy stored in a water tank storage is function of the average of the

inside temperature (T ).

E(t) = ρ(T (t)) ·m · cp(T (t)) · T (t) (2.15)

The water parameters ρ and cp describe respectively the density and the heat

capacity of water, in function of its temperature. m denotes the mass of water

in the WT. The storage is empty (SOC = 0) when T equals to Tmin whereas it

is full (SOC = 1) when T equals to Tmax.

SOC(t) =
E(t)− E(Tmin)

E(Tmax)− E(Tmin)
∈ [0,1] (2.16)

The heat losses are function of the water tank temperature and is typically
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formalized as a linear function of the energy stored.

Qloss(t) = qloss · E(t) (2.17)

2.1.4.3 Building wall mass storage

In the frame of this work, a first-order thermal model of the house according

to international standard EN ISO13790 is implemented [71]. This model is char-

acterized by a one-zone model i.e. parameters and variables are averaged and

represent the overall house behaviour. According to [71], the house temperature

is expressed as:

T (t+∆t) = T (t) +
∆t

Chouse



Qin(t) +

external and internal gains
︷ ︸︸ ︷
ηh,gn(Qsol(t) +Qint(t))−

thermal losses︷ ︸︸ ︷
Qloss(t)





(2.18)

T internal temperature of the house [➦C]
Qin heat power input of the space heating system [kW]
Chouse thermal house capacitance [kWh/➦C]
ηh,gn gain utilization factor [-]
Qsol solar heat gains [kW]
Qint internal heat gains [kW]
Qloss heat losses by transmission and ventilation [kW]

The house temperature depends on the input power: respectively the space

heating system and the gains. Two different type of gains are considered, the

external and internal: respectively irradiation and the heat produced internally

by electrical devices, e.g. micro-wave, oven.

Standard values are used for the operating conditions (room temperature,

air exchange rate, internal heat sources) and for the solar radiation reduction

factors (shading). The calculation of this different parameters are based on a

harmonized approach in the framework of the Intelligent Energy Europe project

DATAMINE [72].

The use of a first-order model leads to approximations:

❼ all thermal masses are combined to one representative thermal capacitance
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❼ the different material characteristics are combined to one representative

thermal resistance

The use of a higher-order model will bring finer resolution about the tem-

perature in the different rooms and about the house dynamic, at the expense

of a more complex problem to solve. The calculation of the different terms in

Equation 2.18 are presented in details in [73].

2.1.5 Implementation details

In the frame of this work, the presented MILP optimization approach is imple-

mented in the Python environment. More specifically, the problem was modelled

using the Pulp package [74] which allows changing easily from one solver to an-

other one. The presented results are achieved using the MILP solver Gurobi [75],

because of its good performance and its availability for academic purpose.

2.2 Heuristic optimization approach: a market-based approach

The heuristic optimization approach is based on the energy market mecha-

nism, where each flexible device is a market player, bidding its flexibility. As

the optimization-based approach, the market-based approach takes place in the

house and controls the domestic electrical or thermo-electrical devices with flex-

ibility in order to minimize the energy costs according to the considered elec-

tricity price scheme i.e. feed-in or DR tariffs (Eq. 2.1).

It is based on a bottom up approach: every controllable device in the house is

a market participant which negotiates its demand or offer of electricity and/or

thermal energy (heat or cooling) on a virtual domestic market in the house to

fulfill economically its need. The agents interact among them (Fig. 2.1) via a

bidding process on this domestic market in order to balance energetically the

system i.e. the house, through an internal market equilibrium price. This in-

house market price steers the devices and differs from the residential electricity

price scheme such as DR tariffs.

This market approach extends the well-known Powermatcher approach [55] by

introducing in addition to the electricity market, one or more local heat and/or

cooling markets which accounts for the thermal flexibilities in the considered

subsystem, formed by a thermal sink and a thermal source e.g. a room and
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its associated space heating system (Fig. 2.1). In addition to the electricity

equilibrium price, additional local thermal equilibrium prices are determined in

order to ensure a thermal balance in the subsystem.

This section presents first the market-based optimization and its theoreti-

cal background. Based on this, the bidding strategies for interruptible loads

and energy storages are then derived. Finally, its possible implementation in a

distributed way as a multi-agent system is described.

2.2.1 Microeconomic theory

This section discusses the market-based optimization conditions which lead

to system cost minimization.

Economy is stated as a constrained optimization where the resources are

scarce. On one hand, the consumer’s objective is to maximize its utility sub-

jected to a budget constraint whereas on the other hand, the producer’s objective

is to optimize its production in order to maximize its profit. Finally, the global

objective of economy is to maximize the consumer and producer surplus, called

global welfare, in spite of the fact that the two objectives are competing. There-

fore, economy can be described as an optimization problem with a local goal

achieved at consumer/producer level and a global goal achieved at the market

level.

To this regard, a competitive market achieves a global welfare maximiziation

and is defined by four hypotheses, which drive the market-based optimization

[76]:

❼ Products homogeneity: electricity and heat do not take various forms and

are well defined worldwide according to standard energy unity

❼ Free entrance in the market: no barrier to enter in the market

❼ Transparency: everyone has the same information from the market, namely

the current and past market prices.

❼ Actors are price takers: actors do not consider in their bidding strategy

that they have influence over market price.

The first economy theorem states that a competitive market leads to a Pareto

optimal solution, corresponding to solution which does not allow to make a
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participant better off without making any another one worse off. Furthermore,

a competitive equilibrium leads to a solution maximizing the consumer and

producer surplus [76]. In addition to this, the consumer’s objective, maximize

utility, leads to a minimization of its utility costs (dual problem) whereas the

producer’s objective, maximize profit, leads to a minimization of the production

cost [77]. Based on these results and the first economy theorem, it can be stated

that a competitive market leads to a minimization of the global costs, defined

by the utility costs and the production costs.

In summary and according to competitive market theory, the minimization

of global costs is achieved if each producer bids at its marginal costs and each

consumer bids for minimizing its utility costs. Table 2.2 refers to literature

presenting optimal bidding strategies according to the microeconomic theory

for different types of domestic flexibility. More details about these bidding

strategies are given in the following.

Table 2.2: Bidding strategy in the literature

Interrupible loads Electrical heater [3]
Combined heat power [56]

Heat pump [3], [56]
Plug in hybrid vehicle [78]

Energy storage Water tank storage [3]
Battery energy storage system [67]

2.2.2 Interruptible loads

The interruptible load can be interrupted and resumed at a later time with

associated constraints or penalties linked to the user comfort. The interruptible

loads bidding strategies presented in this work are appropriated for thermo-

electrical devices such as heat pump (HP) or electrical heater (EH), character-

ized by an electrical consumption and a thermal production. For this reason,

its associated bid has to tender an electrical power demand on the electrical

market and a heat power supply on the heat market, both of them depending

on the electricity and heat price [3, 56].
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Figure 2.1: Electro-thermal market-based Multi-Agent System at a household
level: agent interactions and information exchange.

2.2.2.1 Heat pump

Based on the microeconomic theory, the heat pump has to maximize its profit

on the markets whereas considering it is a price taker.

max

Profit [e/h]
︷ ︸︸ ︷
ph ·Q− C(Q) (2.19)

s.t.

∀t, P =
Q

COP
(2.20)
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where the costs can be expressed as

C(Q) = pe · P + Cfixed = pe ·
Q

COP
+ Cfixed (2.21)

Q produced thermal power [kW]
P consumed electrical power [kW]
ph heat price [e/kWh]
pe electrical price [e/kWh]
Cfixed fixed costs, e.g. maintenance [e/h]
COP coefficient of performance of the HP [-]
ηEH EH efficiency [-]

In the case of a competitive market, the market participant is a price taker

(dph/dQ = 0), meaning that it does not consider in its bidding strategy that

it can potentially influence the market price, even it could. Indeed, if a large

consumer/producer considers in its bidding strategy that it influences the market

price to maximize its profit, the market is no more competitive but oligopolis-

tic and does not lead to an operating cost minimization [76]. Considering a

competitive market, the maximization (Eq. 2.19) leads to:

Q

=0︷︸︸︷
dph
dQ

+ph
dQ

dQ
− dC(Q)

dQ
= 0 (2.22)

ph =
dC(Q)

dQ
(2.23)

From there, the optimal HP bidding strategy is to bid its thermal power on

the thermal market and its associated electrical consumption on the electrical

market if:

ph =
pe

COP
(2.24)

2.2.2.2 Electrical Heater

Identically, the EH bids can be derived by considering a slightly different cost

function.

C(Q) = pe · P + Cfixed = pe ·
Q

ηEH

+ Cfixed (2.25)

Based on equation 2.25, the optimal EH bidding strategy is to bid its thermal
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power on the thermal market and its associated electrical consumption if:

ph =
pe
ηEH

(2.26)

As stated in equations 2.24 and 2.26, the bidding strategy of thermo-electrical

devices is depending on the electrical and the thermal prices. Given that they

produce heat and consume electricity, they have to bid in two markets: thermal

and electrical. Note that if a HP and EH compete in the same thermal market,

the HP will be more likely used because of its smaller heat price (COP is in the

range of 3 while EH efficiency is around 1). Furthermore, additional constraints

can influence the bidding strategy, e.g. a minimum must-run time, which avoids

too close switch on/switch off of the unit.

2.2.3 Energy storage

The energy storage units can be used to store and dispense energy when

needed, e.g. water tank or battery. In a market, they maximize their profit

by buying energy when prices are cheap and by selling energy when prices are

high, while being constrained by their state of charge. The optimal bidding

strategy for storage unit is formulated in equation 2.27, while considering that

the storage unit is a price taker to achieve a competitive market.

max ∆t
T∑

t=1





Sold energy
︷ ︸︸ ︷
Pdischarge(t) · p(t)−

Bought energy
︷ ︸︸ ︷
Pcharge(t) · p(t)



 (2.27)

s.t.

∀t, SOCmin ≤ SOC(t) ≤ SOCmax (2.28)

∀t, Tmin
house ≤ T (t) ≤ Tmax

house (2.29)

The state of charge of the battery and water tank energy storage is defined as:

SOC(t) =
E(t)

Emax

∈ [0,1] (2.30)

The same models are considered than with the optimization-based approach.
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Pdischarge optimal discharging power at the considered time step t [kWh]
Pcharge optimal charging power at the considered time step t [kWh]
SOC state of charge [-]
T (t) internal temperature of the house [➦C]
E stored energy [kWh]
p internal market price [e/kWh]
∆t time step duration between decisions [h]
T number of scheduling time interval [-]
Emax maximum stored energy [kWh]

2.2.3.1 Battery

The considered battery model is described in section 2.1.4.1. Pcharge and

Pdischarge are the continuous decision variables describing respectively the charg-

ing and discharging battery power.

2.2.3.2 Water tank

The considered water tank model is described in section 2.1.4.2. In contrast

with the battery, the water tank cannot intentionally be discharched. Pcharge

is the continuous decision variable that describes the charging power, i.e. heat

production from the EH.

2.2.3.3 Thermal wall mass

The thermal wall mass of a house can also be used as a thermal storage.

In contrast with the battery, the thermal wall mass cannot intentionally be

discharched. The considered thermal wall mass model is described in sec-

tion 2.1.4.3. Pcharge is the continuous decision variable describing the charging

power, i.e. the heat production from the HP.

2.2.3.4 Optimization problem

The maximization problem formulated in equation 2.27 requires knowing up-

front the price to determine the optimal charge and discharge power in function

of the current market price. Given the challenge of forecasting the market

price, [67] proposes to use a naive forecast with a heuristic approach for op-

timizing the storage units bidding strategy: buy at periods of low prices and
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resell it in periods of high prices in function of the SOC and the market price

knowledge. Where the maximum and the minimum market price is determined

according to the considered forecast. This work follows this approach.

2.2.4 Market price determination

Each flexible device optimizes locally its tender and bids on the associated

market so that an equilibrium price can be determined. This work considers

the electrical and thermal consumers/producers as source of flexibility. For this

reason, thermal and electrical equilibrium market prices, ensuring the electrical

and thermal power balance, have to be determined subsequently at each time

step.

2.2.4.1 Thermal market price

The thermal flow in the house are physically constrained, e.g. the electrical

heater installed in a given room cannot supply the space heating demand in

another room. Note that heat transfer between rooms is assumed to be negligible

and is not considered from a market exchange point of view. The elements that

can exchange physically thermal energy, have to trade in the same local thermal

market, annotated i. According to microeconomic theory, the local thermal

market i determines a thermal equilibrium price p∗h,i according to a merit order,

for each electrical price (Eq. 2.31). The resulting electrical bid is then considered

in the electrical market price determination.

∀pe, Minp∗
h,i

|Qsupply,i(pe, ph)−Qdemand,i(pe, ph)| (2.31)

Subject to pe, ph > 0 (2.32)

where Qsupply,i and Qdemand,i are the sum of all the bids respectively supplying

and consuming thermal energy in the local heat market i. The equation 2.31

minimizes the difference between the demand and the supply and leads for this

reason, to an equilibrium between thermal demand and supply.
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2.2.4.2 Electrical market price

An electrical equilibrium market price has to be then determined according

to a merit order approach, formalized as [77]:

Minp∗e
|Psupply(pe)− Pdemand(pe)| (2.33)

Subject to pe > 0 (2.34)

Ptot(pe) = 0, if pe > pgrid(t) (2.35)

where Psupply and Pdemand are the sum of all the electrical bids respectively

supplying and consuming electrical energy in the house. Therefore, the market

price, formulated as a minimization problem in equation 2.33, leads to an equi-

librium between electrical demand and supply. The grid constraints in equation

2.35 expresses that the grid can provide all the required power if the internal

electrical market price is larger or equal to the current grid pricing pgrid, e.g.

TOU.

The optimal thermal and electrical prices are determined thanks to a merit

order approach which leads to a global minimization of the thermal and elec-

trical demand and supply mismatch, for given bids. The merit order has a low

complexity and does not suffer from convergence issue (the bidding and pricing

process takes less than 1s).

The major advantages of the presented market-based approach is its low com-

plexity of the algorithm that allows a reactive control to an unexpected event

or a wrong forecast.

On the other hand, because of the considered naive price forecasts and the

heuristic nature of energy storage bidding strategies, the market-based approach

leads to suboptimal solutions. One of the objective of the work is to determine if

its reactive control feature can counterbalance the suboptimality of its solution.

2.2.5 Multi-agent system implementation

A multi-agent system (MAS) is characterized by several physical or virtual

entities, which communicate, interact, sense and act. Each agent has a local

objective whereas the group of entities forming the MAS have a global objective.
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In a market case, the local objective is to minimize the utility costs for consumers

or to bid at marginal costs for producers whereas the global market objective is

to maximize the global welfare or in other words minimize the total costs while

ensuring the power balance.

In the frame of this work, a MAS platform developed in Python [79] accord-

ing to the IEEE Foundation for Intelligent Physical Agents (FIPA) [80] was

implemented. FIPA releases number of standards specifying how agents can

communicate between each others. Python was chosen given that it enables

an easy integration into low power hardware with basic python interpreter, e.g.

Raspberry Pi Zero or Arietta G25. In constrast with the existing MAS software

e.g. JADE [81] or osBrain [82] , the developed python library is compatible with

different domestic communication technologies, e.g. Wifi, Zigbee, Bluetooth LE,

Z-Wave, Thread or DigiMesh.

The objective of the MAS implementation is to minimize the hardware energy

usage while keeping a robust, reliable and scalable system. For these reasons,

the MAS is designed with [55]:

❼ tree topology which stands out because of its low number of sent mes-

sages per market cycle, equals to the number of agents and by its tractable

and intuitive tree creation that follows the physical layout of the network.

❼ resilience against hardware failure thanks to the self-organized elec-

tion of the aggregator, Section 2.2.5.2.

❼ plug and play thanks to the dynamic tree topology creation, Section

2.2.5.2.

❼ low energy usage given i) the limited number of messages sent per

market cycle and ii) the idle mode of every agents between each market

cycle.

2.2.5.1 Agents

For achieving this, three different types of agents are defined (Fig. 2.1):

- The device agent acts on behalf of a physical device on the market and

computes the optimal bid with respect to its constraints and the microeconomic

theory.

39



2.2 Heuristic optimization approach: a market-based approach

- The local aggregator agent extends specifically the Powermatcher approach.

It calculates the thermal market equilibrium price according to the merit order

formulated in equation 2.31 in function of the electrical price. In doing so, a

local equilibrium heat/cooling price ensures a thermal balance of the subsystem

considered, as demonstrated in [3, 56].

- The global aggregator agent aggregates the different electrical bids and deter-

mines the electricity market price accroding to the merit order formulated in

equation 2.33. The electrical market price ensures an electrical power balance

in the system [55]. This entity is also the link with outside such as a larger

coordination algorithm which could optimize the residential energy usage or

provide grid services e.g. balancing or congestion management. This agent can

indeed offer the current domestic flexibility using bids to an upper layer of the

residential coordination algorithm, as in [83,84].

2.2.5.2 Tree topology and self-organized aggregator election process

The global aggregator agent is elected with a bully algorithm. After its elec-

tion, it broadcasts a proposal for a patent-child relationship to its neighbors to

build the tree topology. This proposal will be accepted by its neighbors if it

has no parent yet. Once accepted, this node proposes as well to its neighbors

and the process continues until that each node is the child of another one. This

process enables a dynamic integration or removal of any agents in a plug and

play way. At the beginning of a market cycle, all the agents wait for a proposal

of the aggregator of the last market cycle. If it proposes then, no election is

carried out and the network is considered as operative. Once elected, the aggre-

gator broadcasts a market initiation request to its neighbors, that they forward

to their neighbors as well. Based on this request, each node aggregates the bids

from its children and sends it to its parent. A market cycle takes place every

minute.

This work does not investigate in detail the MAS features and the presented

results consider a perfect MAS operation.
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2.3 Rule-based approach: conventional control

The rule-based approach is the considered benchmarking control, based on

the current system states. It is a robust approach because it does not require

communication infrastructure between the different devices given that each of

them maximize independently the user comfort. This is the less optimal but

the most commonly implemented control in house.

2.3.1 Objective function

The objective function is local at the device level and maximize the user

comfort and the house self-consumption if there are PV and domestic BESS.

2.3.2 Interruptible loads

The interruptible loads are controlled to maximize the user comfort. For

example, a space heating device will be controlled to keep the temperature at a

given reference value, independently of the other system states.

2.3.3 Uninterruptible loads

The uninterruptible load are started as soon as possible such as to maximize

the user comfort.

2.3.4 Energy storage

The domestic BESS is controlled independently such as to maximize the self-

consumption of the house. If the house is exporting electricity because of a

high PV production, then the battery is charged whereas when the house is

importing electricity, the battery is discharged until to reach its minimum state

of charge.

2.4 Discussion and summary

In this chapter, three different HEMS approaches were described: the optimization-

based approach formulated as a Mixed Integer Linear Programming; the heuris-
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tic approach based on market approach and the benchmarking control: the

rule-based approach.

This chapter presents the mathematical formulation of a HEMS as a MILP

with different types of flexibility: interruptible loads, uninterruptible loads and

energy storage units. Secondly the market-based optimization is presented: the

associated microeconomic theory, the optimal bidding strategy for interruptible

loads and energy storage units and the equilibrium market price determina-

tion. Finally, the reference control maximizing the user comfort and the self-

consumption is presented.

These presented approaches can be distinguished according to their

❼ Communication infrastructure: centralized, decentralized or distributed.

In centralized approaches, the algorithm is computed in one master entity

which controls the slave entities, e.g. schedulable devices. Centralized

architectures, typically an optimization-based method e.g. MILP, pro-

vide theoretically the best results because it is omniscient but it could

suffer highly from privacy and scalability issues [85]. Decentralized ar-

chitectures, like the rule-based control, are characterized by independent

optimization computed by every entities leading to a scalable, robust and

flexible system which suffers from convergence problems due to the lack of

inter-communication [86]. The distributed architecture, like the market-

based approach, is a trade-off solution in terms of convergence, privacy

and robustness. It is characterized by an architecture that comprise or-

ganizational entities called concentrators or aggregators, which have also

computing capabilities, allowing decomposition algorithms for problem

complexity reduction (e.g. Dantzig-Wolf decomposition) [87].

❼ Theoretical optimality and associated complexity: optimality and

complexity are often competing. In theory, the MILP formulation leads

to a global optimum at the expense of a longer solving time because of

the problem complexity. Specifically, its complexity increases with the

number of decision variables, depending on the number of devices and

timestamps considered. Whereas the market-based optimization leads to

a local optimum but is a fast algorithm which allows reacting to forecast

error. Finally, the rule-based approach leads to a local optimum and is
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a fast and robust approach because it does not require communication

infrastructure between the different devices given that each of them max-

imize independently the user comfort and the self-consumption.

Communication Optimality Complexity

MILP Centralized Global optimum ∝ n, k [1]
Market-based Distributed Local optimum Constant

Conventional control Decentralized Local optimum Constant

Table 2.3: Comparison of implemented HEMS approaches with n the number
of controlled loads and k the number of timestamps.

In theory, the MILP performs a better control because of its optimal solution.

Nevertheless, in practice this can be different because of the forecast error and

its limited solving time. While the market-based approach leads to sub optimal

solution because of its heuristic nature, that can be counterbalanced by a fast

reaction to an unexpected event or a wrong forecast. So, only practical cases can

highlight the most optimal HEMS algorithm. Given the impact of the considered

conditions (Chapter 1) and the forecast errors on the HEMS optimality, an

effective comparison of HEMS approaches has to be performed. For this reason,

the next chapter presents a methodology for comparing HEMS under uncertain

time-series such as weather conditions, user behaviours or wrong forecasts.
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HEMS assessment methodology based

on uncertainty analysis

As seen in Chapter 1, HEMS approaches can take a large number of forms

according to the objective function, the mathematical formulation and the solver

used. In literature, most authors consider short-term and specific evaluation

conditions that lacks generality. This does not help to identify easily the most

optimal or appropriated HEMS approach.

The focus of this chapter is to present an assessment methodology that allows

comparing different HEMS approaches in spite of their various forms and in the

most general way from a testing conditions point of view, e.g. temperature,

irradiation, DHW or electrical demand.

This problem can be formalized as an uncertainty problem whose main sources

of uncertainties considered are:

❼ the scenarios, e.g. electrical and domestic hot water demand, irradiation,

temperature

❼ their associated forecasts with errors

The state-of-the-art uncertainty analysis are not applicable to this problem

because of the assessment time and the nature of the uncertain parameters,

discrete time-series.

For these reasons, this chapter introduces an uncertainty analysis methodol-

ogy inspired by stochastic optimization which allows considering discrete time-
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series as uncertain parameters while requiring a small number of system evalu-

ation.

This chapter is organized as the following:

❼ Section 3.1: presentation of the uncertainty analysis problem formulation

and of the state-of-the-art methods in the literature;

❼ Section 3.2: description of the proposed assessment approach, formalized

as an uncertainty analysis and inspired by stochastic optimization ap-

proaches;

❼ Section 3.3: application of the proposed method to a HEMS approach and

validation of its performance;

3.1 Uncertainty analysis fundamentals

This section introduces some basic terms of probability theory and describes

the state-of-the-art of uncertainty analysis approaches.

3.1.1 Probability fundamentals

3.1.1.1 Random variables and distribution functions

The probability space Ω of a random experiment is defined as the set of all

possible outcomes of the considered experiment. Any subset A ⊆ Ω will be

called an event, whose the probability is noted P (A).

∀A ∈ Ω, P (A) ≥ 0 (3.1)

P (Ω) = 1 (3.2)

For a continuous random variable X defined on Ω ⊆ R, the probability distri-

bution function (PDF) is defined as:

gX : x → P [X ≤ x] (3.3)
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The cumulative distribution function (CDF) can be defined in function of gX .

GX : x →
∫ x

−∞

gX(t)dt (3.4)

3.1.1.2 Characterization of random variables

The expected value of a random variable X given on a probability space Ω is

defined as:

E[X] :=

∫

Ω

X(ω) · dP (ω) (3.5)

Two random variables X1 and X2 are not correlated if for all positive mea-

surable function f1 and f2, we have:

E[f1(X1)f2(X2)] = E(f1(X1))E(f2(X2)) (3.6)

The variance of a random variable X is defined as:

V ar[X] := E(X − E[X])2 (3.7)

More details about these and other concepts can be found in [88,89].

3.1.2 Uncertainty analysis formalization

Uncertainty analysis methods give information on the statistical distribution

of the system response in function of the uncertainty in parameters or inputs. In

the literature, the uncertainty analysis problem is formulated as an estimation

of the expected value of a system response in function of the uncertainty in

parameters or inputs [89, 90]. The common way to model uncertainty is to

interpret it as a random variable with a probability density function (PDF) that

matches its statistical distribution. Based on the expected value formulation,

uncertainty analysis is formalized as an integral estimation problem, stated in

equation 3.5.

Because the random variable X and its probability is not known, the integral

(Eq. 3.5) is not easy to evaluate. For this reason, the following presents different

methods in the literature which deal with this integral estimation problem, so

called uncertainty analysis:

❼ Monte Carlo method

47



3.1 Uncertainty analysis fundamentals

❼ Quasi Monte Carlo method

❼ Quadrature method

❼ Advanced uncertainty analysis methods

These methods can be differentiated in terms of the error associated to the

integral estimation, the required form of uncertainty model (continuous or dis-

crete) and their scalability with the number of uncertain parameters d.

In the following, we consider

❼ X a continuous random variable defined on Ω ⊆ R
d.

❼ ω an element of Ω and which represents the different realizations of Ω.

3.1.3 Monte Carlo method

The most widely applied approach is the Monte Carlo (MC) method, firstly

introduced by N. Metropolis and S. Ulam [91]. MC methods are character-

ized by the repetition of a deterministic simulation with random input samples

generated from the uncertain parameters. Its principle is based on two major

theorems:

1. The law of large numbers which justifies the convergence of the method.

Average of all the results obtained from a repeated and independent

stochastic experiment converges to the theoretical expected value. The

MC estimation can be formalized as:

E[X] ≈ 1

N

N∑

i=1

X(ωi) (3.8)

2. The central limit theorem which gives the rate of convergence. The error

of the estimated integral of X with Monte Carlo approach converges to a

Gaussian distribution centered in 0 and with a standard deviation equals

to σ/
√
N , where σ is the standard deviation of the X distribution. This

means that the error is a random number, independent of the number

of uncertain parameters which can take large values even if N is large.

Nevertheless, the probability of such event tends to 0 when N tends to

infinity.
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Because the MC rate convergence is of the order σ/
√
N , there are various MC

techniques, so-called reduction variance techniques, to reduce the value of σ to

improve the MC convergence rate.

More details about these theorems and MC methods can be found in [89–91].

3.1.4 Quasi Monte Carlo method

Quasi Monte Carlo (QMC) [92–94] method can be formalized like a MC ap-

proach (Eq. 3.8) with the difference that the inputs are deterministic instead

of random ones. QMC selects a limited number of deterministic samples with

low-discrepancy sequences such as the Halton sequence [95] or the Sobol se-

quence [96]. It estimates the integral with a convergence rate of O( log(N)d

N
),

depending on the number of uncertain parameter d, unlike MC. For this rea-

son, QMC is efficient for a moderate number of uncertain parameters but its

convergence rate decreases drastically when this number d becomes large [97].

3.1.5 Quadrature method

Quadrature methods estimate the integral according to weighted (mi) func-

tion evaluation (Eq. 3.9).

E[X] ≈
N∑

i=1

mi ·X(ωi) (3.9)

Many quadratures are presented in the literature but the Gaussian quadrature

is the most typical [92,94]. Quadrature methods scale badly with an increase of

uncertain parameters: its number of evaluation points increases exponentially

with the number of uncertain parameters.

3.1.6 Other uncertainty analysis methods

More sophisticated methods which imply less samples include Stochastic Col-

location and Polynomial Chaos. Both approaches describe the randomness of

the considered parameters through an approximate polynomial expansion. The

former represents a random parameter with known coefficient (polynomial fitting

the uncertainty). While the latter captures the randomness of the considered
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parameter in an orthogonal expansion with well-known polynomials. Neverthe-

less, both of them suffer from a curse of dimensionality and require an analytical

representation of the uncertain parameters. [98] proposes a combination of both

methods, so-called non-intrusive polynomial chaos.

3.1.7 Requirements of HEMS assessment approach

HEMS approaches are characterized by discrete time-series inputs and a high

complexity, implying a time-consuming evaluation.

For this reason, there is a need for an uncertainty analysis which:

❼ takes into account discrete time-series as uncertain parameters

❼ requires a small number of evaluation

❼ shows a good accuracy

Monte Carlo method is not suitable because of the high number of required

runs to achieve an accurate estimation. While the QMC, the quadrature and

the advanced methods are not applicable because they require a continuous

representation of the uncertainty.

These facts lead to the need for an uncertainty analysis approach which is

specifically designed for:

❼ discrete parameters: typically time-series

❼ time-consuming process evaluation like optimization approaches

Method Error convergence uncertainty form

Monte Carlo O( 1√
N
) continuous or discrete

Quasi Monte Carlo O( log(N)d

N
) continuous

Quadrature methods Method dependent continuous
Proposed method Problem dependent continuous or discrete

Table 3.1: Comparison of integral estimation for uncertainty analysis with d
uncertain parameters
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3.2 Assessment method for scheduling process with correlated

and discrete uncertain parameters

As seen in the previous section, this integration problem can be solved in

many different ways: Monte Carlo methods, Quasi Monte Carlo methods or

Quadrature methods. Because of the number of required runs and/or the dis-

crete nature of uncertain parameters, the previously presented methods are not

applicable.

The presented method is inspired by stochastic optimization theory and is

designed for studying the impact of uncertain discrete time-series on a system,

in this case a HEMS.

3.2.1 Prerequisites

The proposed uncertainty analysis method requires:

❼ the description of the considered uncertainty ω, which has to be a discrete

time-serie derived from historical data or stochastic model. ω is a time-

dependent vector containing the different considered scenarios which can

be also correlated.

❼ a description of the system response X, a continuous random variable

defined on Ω ⊆ R
d, where d is the number of uncertain parameters con-

sidered.

3.2.2 Step 1: Reducing the set of scenarios with an appropriated

scenario reduction technique

The proposed uncertainty analysis is inspired by stochastic optimization prob-

lems which minimize the expected value of the objective function over a set of

uncertain time-series, so-called scenarios. Stochastic optimization faces the same

challenge: calculate an integral over a set of uncertain time-series parameters in

a limited number of system evaluations.

3.2.2.1 Stochastic optimization fundamentals

Stochastic programming problems are formalized as a minimization or max-

imization of the expected value of the objective function under uncertainty

51



3.2 Assessment method for scheduling process with correlated and discrete

uncertain parameters

according to equation 3.10 [51, 89]. Except under special circumstances, this

problem cannot be solved analytically, so its solution can only be approximated

using a reduced number of uncertain scenarios ωi.

E[X] =

∫

Ω

X(ω) · dP (ω) ≈
S∑

i=1

X(ωi) · P (ωi) (3.10)

The fundamental idea of optimal scenario reduction consists in determining a

probability distribution X(ωi) which is the best approximation of X(ω), with

respect to a given probability measures and whose support consists of a subset

of X(ω). The subset X(ωi) has to ensure that the solution of Eq. 3.10 does not

change much if X(ω) is replaced by X(ωi).

3.2.2.2 Scenario reduction techniques

The following classification is inspired by [99–102]. Scenario reduction tech-

niques are classified into four main categories:

❼ Important sampling-based techniques

❼ Moment matching-based techniques

❼ Clustering techniques

❼ Optimal scenario reduction based on probability metrics.

In important sampling-based techniques [103,104], scenarios are selected

from an initial set of scenarios according to a sampling criterion that typically

reflects the importance/impact of a scenario on the objective function of the

stochastic optimization, e.g expected value of perfect information (EVPI). In its

simplest form, i.e. when scenarios are of the same importance, it is equivalent

to a Monte Carlo sampling.

With moment matching-based techniques [105, 106], scenarios are se-

lected to minimize a distance measure, e.g. a norm between the reduced set

and the original set of scenarios. This problem is often non-convex and requires

heuristic that does not guarantee convergence, i.e. increasing the number of

selected scenarios does not improve solution stability.

With clustering techniques [107, 108], scenarios are grouped into a pre-

defined number of clusters, based on an index or a metric that characterizes
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the scenario impact on the solution of the stochastic problem. This typically

results into a NP-hard optimization problem that can be solved using local-

search algorithms. The quality of the selected scenarios is highly depending on

the chosen metric. A typical clustering approach is the k-means methods which

seeks to minimize the squared distance in the same cluster [109].

In optimal scenario reduction techniques (SRT) based on probabil-

ity metric [100, 110–113], scenarios are selected according to a specific prob-

ability metric such as the Kantorovich distance, which expresses the difference

between two distinct scenarios. The solution of this minimization problem is

a reduced set of scenarios that minimizes the probabilistic difference with the

original set of scenarios. Nevertheless, this problem is a non-differentiable non-

convex combinatorial optimization that is often too large in scale to be practical

in many applications [100,102]. For this reason, heuristics have been developed

for approximating this problem:

❼ the forward algorithm: selects the scenario minimizing the probabilistic

distance and includes this scenario into the set of representative scenar-

ios. It stops when a given number of scenarios is selected or if a given

probabilistic distance is reached

❼ the backward algorithm: eliminates the scenario maximizing the proba-

bilistic distances from the initial set of considered scenarios.

Note that these heuristic approaches do not guarantee the SRT performance.

Nevertheless, empirical results reported in the literature [100,111–113] indicate

that forward algorithms perform well in practice.

More information about scenario reduction techniques can be found in [102,

114].

3.2.3 Step 2: Evaluate the scheduling process with the reduced set

of scenarios

Considering ωSRT the reduced set of scenarios from step 1, the optimal so-

lution distribution obtained with the considered scheduling process X, can be

evaluated. The performance of the proposed uncertainty method can be as-

sessed, by comparing the results with the state-of-the-art uncertainty analysis

approach: the Monte Carlo method.
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uncertain parameters

3.2.4 Step 3 (optional): Evaluate the assessment methodology

performance

In the literature, the accuracy of the stochastic optimization solution obtained

with the reduced scenarios is compared to the true solution obtained from the

continuous description of the random variable using the stability and bias eval-

uation criteria. Nevertheless, this is not always possible to obtain it because

of the discrete nature of the random variable or the lack of information about

the uncertainty input. Therefore, a Monte Carlo method is typically used to

approximate the true solution [98,114].

Bias and stability criteria for stochastic optimization problem

According to stochastic optimization theory [99,114–116], the expected value

of the optimal solution obtained with the reduced scenarios should be unbiased

with respect to the true solution obtained with the continuous description of the

stochastic variable or a Monte Carlo approach [98, 99, 114]. This is formalized

as:

eF (ωSRT , ω) = F (ωSRT )− F (ω) (3.11)

where F (ω) and F (ωSRT ) are the expected value of the solution distribution

obtained with the stochastic optimization respectively with the true distribution

of ω and the reduced set of scenarios ωSRT .

In addition, the solution should exhibit stability with the reduced set of sce-

narios, indicating that additional scenarios does not change the value of the

optimal objective function [99]. This criterion is used for comparing the qual-

ity of different scenario reduction techniques. [115] argues that stability can be

tested by solving the considered problem with several different scenarios, gen-

erated by the same method. If the assessment indicator does not change too

much, the stability can be claimed.

The stability criterion is formalized as:

∀i, ∀j : |F (ωSRTi)− F (ωSRTj)| < ǫ (3.12)

where ωSRTi and ωSRTj are different reduced scenarios of increasing cardinality,

generated with the same deterministic SRT method. And where ǫ defines the

stability threshold.
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Given the bias definition (Eq. 3.11), the stability criterion can be also for-

malized as:

∀i, ∀j : |eF (ωSRTi, ω)− eF (ωSRTj , ω)| < ǫ (3.13)

Bias and stability criteria for uncertainty analysis

The bias and stability criteria cannot be used as such for uncertainty analysis

because of the different nature of the process outputs:

❼ with the stochastic optimization, it is a deterministic value: the expected

value of the solution distribution, i.e. the objective function.

❼ with the uncertainty analysis, it is a distribution estimation.

For this reason, we propose to use the energy distance metric to evaluate the

bias criteria. It is a statistical metric which measures the ”distance” between

two distributions and which states how similar they are. The expected value

and the variance could be also used but it requires to evaluate them conjointly,

which is less convenient than evaluating and analysing one single metric.

The energy distance metric is formalized as [117]:

e(F,G) =

∫ ∞

−∞

(F (x)−G(x))2dx (3.14)

F and G are the cumulative distribution functions of X obtained respectively

with the true distribution of scenarios and the reduced set of scenarios. The

energy distance has the same unit than the optimality metric X. According

to [118], this is a suitable metric because it:

❼ is a proper metric: non-negativity, symmetry, sub-additivity.

❼ equals zero if and only if the distributions are identical, thus it charac-

terizes equality of distributions and provides a theoretical foundation for

statistical inference and analysis.

Finally, the stability criterion is formalized according to Equation 3.15:

∀i, ∀j : |e(F,Gi)− e(F,Gj)| < ǫ (3.15)
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where Gi and Gj are the cumulative distribution functions of X obtained with

a reduced set of scenarios of increasing cardinality.

3.3 Application example

Having introduced the theoretical aspects of uncertainty analysis and the

proposed method, this section aims at presenting a practical application with a

HEMS assessment approach.

A basic HEMS approach is considered for a house with a battery, a heat pump

providing the space heating and an electrical heater providing the DHW (more

details in section 4.1.3 and on Figure 4.4). In the frame of the performed assess-

ment approach, the considered uncertain parameters are the domestic electricity

and the DHW demand.

In this case, the continuous description of the stochastic variable is not avail-

able and a Monte Carlo sampling with 10 000 scenarios is used to assess the

results of the proposed method.

3.3.1 Step 1: scenario reduction technique selection

Recently, [119] compared four different scenario reduction techniques: 1) an

importance sampling technique 2) a clustering method based on k-means al-

gorithm 3) the fast forward and 4) backward heuristic based on probability

metrics. It concludes that the fast forward scenario approach yields in the most

optimal solution and is the most computationally efficient. In addition, these

results are confirmed by other empirical results [100, 112] which point out also

its robustness. Although importance sampling, moment-matching or cluster-

ing techniques have their merits, optimal scenario reduction techniques (SRT)

is implemented in this work. Indeed, importance sampling techniques is not

supported by theoretical background and its results depend mainly on sam-

pling rule. Moment-matching techniques will not be considered as they do not

guarantee convergence towards the stable solution of the stochastic program,

by design [115]. Finally, clustering techniques typically require an additional

scenario reduction method to select one or multiple scenarios within a cluster.

Optimal SRT is easy to implement and a widely used approach. Furthermore,

SRT based on Kantorovich probability distance is supported by the theory of
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Figure 3.1: Illustration of the assessment method proposed.

stability of stochastic optimization problems with regard to changes in the prob-

ability measure. Theory demonstrates that the change in the solution can be

approximated using a probabilistic metric, independent on the optimization

problem. By minimizing this distance, the stability can be ensured [99–101].

The implemented optimal scenario reduction techniques based on probability

metric -forward algorithm- is described in [50].

As mentioned before, the considered scenarios are correlated, e.g. the electri-

cal demand and the DHW demand. For this reason, the scenario reduction of

the correlated scenarios has to be achieved together, not to lose their correlated

57



3.3 Application example

information. To do so, for each normalized correlated scenarios, e.g. electrical

and DHW demand, the Kantorovich probability distance is calculated indepen-

dently. The two distances of each corresponding electrical and DHW scenarios

are then summed up and the representative scenarios are selected based on this

summed Kantorovich distance. On that way, the scenario reduction select the

joint electrical and DHW scenario that is the most representative from the initial

set of scenarios point of view.
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Figure 3.2: Cumulative density function of the HEMS weekly costs compared to
Monte Carlo method with 10 000 scenarios and the proposed method
with 3, 5 and 7 selected scenarios with the optimal SRT based on
Kantorovich distance.

3.3.2 Step 2: evaluation of the scheduling process

Based on the reduced set of scenarios, the HEMS approach can be evaluated

and compared to the Monte Carlo method. Figure 3.2 presents the cumulative

density function of the costs with the Monte Carlo method and the results

obtained with the optimal SRT based on the Kantorovich distance for different

number of selected scenarios. The proposed method allows reducing by a factor

2000, the number of process evaluation compared to a MC method.
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3.3.3 Step 3: evaluation of the assessment methodology

As presented in Section 3.2.4, the performance of the SRT has to be studied

using the bias and stability criteria.

Bias and stability

Figure 3.3 presents the stability and bias analysis with the energy distance

metric (Eq. 3.14).
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Figure 3.3: Energy distance of the distribution estimation with different scenario
reduction cardinality compared to the true distribution evaluated
using the Monte Carlo method.

Bias (Eq. 3.11): the distribution error decreases with an increasing scenario

reduction cardinality until to converge to about 2 ce/w, for more than 5 selected

scenarios. This represents an error of only 0.05% of the true expected value.

Stability (Eq. 3.15): the stability can be claimed if the stability threshold ǫ

is above 3 ce/w. Beyond this, the energy distance seems to converge with an

increasing number of selected scenarios.

So based on these, it can be concluded that the optimal scenario reduction

based on Kantorovich distance seems to be stable (Equation 3.12) and slightly

biased.
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Expected value bias

Figure 3.4 presents the expected value bias of the proposed method compared

to the true expected value, estimated with the Monte Carlo approach and 10 000

samples. The maximum expected value error is 21 ce/kWh which represents

only 0.4% of the true expected value. Based on these results, it seems that the

proposed method with a SRT based on Kantorovich distance is accurate.
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Figure 3.4: Estimated expected value and its error for different number of se-
lected scenarios based on Kantorovich distance compared to the true
expected value.

Number of required simulation runs

The main objective of the presented methodology is to reduce the number of

simulation runs, while keeping a good accuracy of the expected value estimation.

Given that the domestic electricity and the DHW demand are correlated, the

number of considered uncertainty d is equal to 1. The presented methodology

leads to cd simulation runs. Where c is the number of selected scenarios with

the SRT. With c = 5, this reduces by a factor 2000, the number of simulation

runs, given that Monte Carlo uncertainty analysis requires 10 000 simulation

runs to achieve an expected value estimation error under 0.1%.
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3.4 Range of applicability

To apply the proposed method, some considerations need to be made about its

advantages and disadvantages. The advantages are all attributed to usability

aspects, while disadvantages need special attention since they are associated

with the applicability of the method.

3.4.1 Advantages

Number of simulation runs

The main advantage of the proposed method compared to a MC method

is the small number of required simulations, for a system with few uncertain

parameters.

Independent input scenarios

A benefit shared with MC method is the fact that the process evaluation can

be parallelised, since the input scenarios are independent of each other. This

can be an important advantage for complex process simulations.

Type of uncertainty

This method can be used to analyse systems with uncertain parameters char-

acterized by discrete time-series, unlike Quasi Monte Carlo or quadrature meth-

ods. Continuous time-series models can be also studied if they are first dis-

cretized with a sufficient number of samples.

3.4.2 Disadvantages

Curse of dimensionality

The number of required simulation runs grows exponentially with the number

of considered uncertain time-series. Therefore, there is a necessity to consider

a tradeoff between the accuracy of the distribution estimation and the number

of simulation s compared to a MC method.

s = cd (3.16)
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where c is the number of selected scenarios with the SRT and d is the number

of uncertain parameters considered. This implies that it pays off to apply this

method while the simulation runs s is smaller than the number of desired MC

simulations.

Method accuracy

The proposed method is implemented with the optimal SRT based on Kan-

torovich distance solved using a heuristic approach. The heuristic approaches do

not guarantee the SRT performance. Nevertheless, empirical results reported

in the literature [100, 111–113] indicate that forward algorithms perform well

in practice. So the optimality of the selected scenarios is not proved formally.

For this reason, the accuracy of the proposed method cannot formally bounded

and has to be investigated for each studied case, unlike MC method. The accu-

racy investigation is time-consuming for complex process. To reduce this, the

accuracy boundaries can be determined with an identical but less complex pro-

cess, e.g. identical optimization problem with relaxed constraints or continuous

variables rather than integers.

3.5 Discussion and summary

This chapter presented an assessment methodology, which allows comparing

different HEMS approaches in spite of their various forms and on the basis of

their objective function distribution. The main source of uncertainties consid-

ered in the frame of this work are the discrete time-series parameters, e.g. sce-

narios and their associated forecast, typically required in the HEMS evaluation

process (Chapter 4).

Uncertainty analysis based on Monte Carlo approach requires a large number

of evaluation of the studied process. While the Quasi Monte Carlo and quadra-

ture methods require a continuous representation of the uncertain parameters,

which is not the case in this case, with the discrete scenarios.

These facts lead to the need for an uncertainty analysis approach which is

specifically designed for

❼ discrete parameters: typically time-series

❼ time consuming process evaluation like HEMS optimization approaches.
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For this reason, the proposed uncertainty analysis is inspired by stochastic

optimization theory which faces the same challenge. The proposed method is

based on an optimal scenario reduction based on probabilistic metric. This

scenario reduction technique is supported by theory, widely used and shows the

best results in practice.

The proposed assessment methodology can be summarized as:

1. select the uncertain time-series parameters considered in the assessment

approach/uncertainty analysis

2. generate representative discrete distribution of these uncertain time-series

ω e.g. electrical and domestic hot water demand

3. suppose X(ω) a continuous random variable representing the metric under

consideration in function of the considered uncertain time-series, e.g. the

HEMS costs

4. Step 1: reduce the set of scenarios to ωSRT with an appropriated scenario

reduction techniques, e.g. optimal SRT based on the Kantorovich distance

5. Step 2: evaluate the metric under consideration X with the reduced set

of scenarios and obtain an estimated distribution X(ωSRT )

6. Step 3 (optional): evaluate the accuracy of the estimated distribution by

comparing it with the true distribution or with the Monte Carlo method

using the energy distance metric.

Finally, the presented method is applied to a HEMS approach with an uncer-

tain electrical and DHW demand input. The proposed method allows reducing

by a factor 2000, the number of process evaluation compared to a Monte Carlo

method while the results show a small bias (excpected value error under 0.5%

of the true expected costs) and a good stability for 5 or more selected scenarios.

The main advantage of this approach compared to a MC method is the small

number of simulation runs with few uncertain parameters. While its main draw-

backs is that its associated error cannot be bounded in a formal way and has to

be investigated for each case.

In the next chapter, the presented assessment approach is used to compare

the different HEMS approaches under different DR tariffs and forecast errors.
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Chapter 4

Results analysis

This chapter applies the assessment method proposed in Chapter 3 to the dif-

ferent HEMS approaches: optimization-based, market-based and conventional

control (Chapter 2). In accordance with the assessment method, the considered

uncertainties are discrete time-series:

❼ the scenarios: uncontrollable electrical demand, irradiation, temperature

and domestic hot water (DHW) demand

❼ their associated forecasts with errors

It considers a specific house, selected according to German statistics and under

two different DR pricing schemes, feed-in and time of use tariffs.

This chapter is organized as the following:

❼ Section 4.1: presentation of the assessment conditions: scenarios and fore-

casts generation, considered house configuration, assessment metric pre-

sentation and considered DR pricing;

❼ Section 4.2: illustration of the control with the different approaches under

the same conditions for one specific week.

❼ Section 4.3: analysis and comparison of the different HEMS performance

according to their total costs, the specific savings associated to each con-

sidered flexibilities and their sensitivity to forecast errors;
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4.1 Assessment conditions

The assessment follows the proposed assessment method presented in Chapter

3. This section presents the considered assessment conditions: scenarios and

their forecasts, the comparison metric and the DR pricings.

4.1.1 Uncertain parameters: scenarios and associated forecasts

In the literature, most authors [3,15,19,56,120] consider perfect forecasts and

specific evaluation scenarios over a short-time period, neglecting the dependency

on seasonal and user behaviours.

The uncertain parameters considered in the frame of this study are time-series:

❼ scenarios: uncontrollable electrical demand, irradiation, temperature and

domestic hot water demand

❼ their associated forecasts with errors

As stated in section 3.3, the considered uncertain scenarios have to be firstly

generated according to historical data or a stochastic model.

4.1.1.1 Scenarios generation

In this work, the electrical and DHW demand is based on a stochastic model

using the user occupancy and stochastic behaviour models. In that way, a de-

pendent electrical demand [121] and DHW profiles [122] are generated, based

on an identical occupancy profiles. In the frame of this work, 10 000 different

weekly profiles of electrical and DHW demand are generated with a granularity

of 1 minute. Finally, each scenario is rescaled according to the average con-

sumption in Germany [73]. While the temperature and irradiation are based

on 5 years of historical data from the German National Meteorological Service

(Deutscher Wetterdienst) [123].

The assessment method takes into account all these scenarios as an uncertain

parameters. A forecast error associated to each scenario is generated accord-

ing to the state-of-the-art forecasting method Auto Regressive Moving Average

(ARMA).
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Figure 4.1: Forecast generation process based on the ARMA forecasting method
and the average MAPE forecast error.

4.1.1.2 Forecast generation

The Autoregressive Moving-Average (ARMA) method was introduced by Box

and Jenkins in 1970 and has become a very popular approach for short-term

forecasting [124] in many different fields such as economics or scheduling prob-

lems. ARMA models represents random variable as a linear function of its past

values. ARMA can be classified as a special type of linear regression for time se-

ries data. A comprehensive discussion of general linear regression can be found

in [125].

ARMA models are characterized by a Gaussian distribution of error and a

linear dependence to previous real value [124]. The forecast distribution, a

Gaussian f() defined by the real value x and the standard deviation σ, is derived

from the equation 4.1. In accordance with literature (Section 1.5.2), this work

considers the Mean Average Percentage Error (MAPE) as forecast error metric.

For each bins of the forecast, the MAPE is calculated and weighted accordingly

to its probability as defined by:

M̂APE(x,σ) =

∫ ∞

−∞

probability of forecast y
︷ ︸︸ ︷
f(y|µ = x,σ2)

MAPE of forecast y
︷ ︸︸ ︷
|y − x|

x
dy (4.1)

In that way, the considered generic forecast:
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calculates an optimal schedule. The produced schedule is then evaluated with

the real profiles with a time discretization of 1 minute (green in Fig. 4.2) such

as to highlight the impact of decision time interval (typically, 15 minutes for op-

timization) and the forecasting errors. To each considered scenario is associated

1000 forecasts generated according to the Gaussian distribution defined in Eq.

4.1. In this way, the uncertainty associated to the forecast model is embedded

in the uncertainty analysis.

4.1.2.1 Average total costs

For a given HEMS approach, the weekly average total costs ĈHEMS are de-

rived for given evaluation scenarios s and its associated forecasts f . S and F are

respectively the number of considered evaluation scenarios and their associated

forecasts. ps and pf are respectively the probability associated to the scenario

and the considered forecast and are equal to 1
S

and 1
P

with a MC method.

Costs,f is the derived costs for one specific evaluation scenario (Fig. 4.2).

ĈHEMS = ps

S∑

s=1



pf

F∑

f=1

Costs,f



 (4.2)

The weekly average cost [ce/w] allows an easy performance comparison be-

tween different HEMS approaches.

4.1.2.2 Specific device cost

Nevertheless, the weekly average total cost metric is sensitive to the final

states of the storing elements which can differ from simulation to simulation

and lead to wrong conclusion. A different final state increases or decreases the

total energy consumption, e.g. final battery SOC or temperature of the house

or water tank.

Therefore, this work introduces an additional comparison metric: the specific

average cost associated to each considered flexible devices in ce/kWh.

First, a cost associated to the device consumption is calculated at each time

step in function of the electricity price and the proportion of PV consumed. The

sum of all the device costs is equal to the weekly total average costs, introduced

in the previous section.
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Second, this cost is normalized by its associated energy consumption.

Thanks to the energy normalization, these costs are no more directly depend-

ing on the final states of the storing elements. It allows a better comparison of

the the saving potential from specific devices.

The specific average cost is

❼ close to the minimum electricity price if it consumes electricity when price

is cheap, i.e. the device is flexible and its consumption can be shifted.

❼ close to the maximum electricity price if it consumes regardless of the

electricity price, i.e. the device has a small flexibility and its consumption

cannot be shifted.

Based on this cost, the saving potential of different devices can be investigated.

And the optimality of the different control approaches can be fairly compared

as well.

For the electrical storage device such as domestic battery, the specific battery

gain is used as a metric and is defined as

Cbatt,discharge − Cbatt,charge

Ebatt,disch

(4.3)

In contrast with the specific average cost of a consuming device, larger is the

specific battery gain value, better is the control.

4.1.3 House set up

This study considers the most representative house in Germany according

to the German statistical data. According to [128], the most typical German

family houses are occupied by an average number of 3.57 persons, rounded to 4.

The thermal model of the considered household (Table 4.1) is based on average

value according to an European study about the building stock in Germany [73]:

❼ House type: Single Family House -SFH- (57% of building stocks) with 2

floors (56% of the SFH) and a tilted roof (91.3%).

❼ Construction period: 1958-1968 with usual refurbishment (15.31% of SFH

were built during this period)
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Table 4.1: parameters used in the simulation

Number of inhabitants 4 persons
Location North Germany

Grid electricity price 30 ce/kWh
Feed-in tariff 12 ce/kWh

Yearly uncontrollable electrical demand [126] 4200 kWhe/y
Yearly space heating demand (norm VDI4656) [73] 16120 kWhth/y

Yearly DHW demand [126] 1815 kWhth/y

Heat power production of EH 5 kW
EH efficiency 0.98

Water tank for DHW 200 l
Heat power production of HP {0, 7.5, 15} kW
HP Coefficient of Performance 3
House temperature constraints [17.5, 19.5] ➦C
Photovoltaic installation [127] 6.2 kWp

BESS installed [127] 4 kWh

Maximum forecast error for electrical demand [61,65] MAPE 60 %
Maximum forecast error for DHW demand [65] MAPE 60 %
Maximum forecast error for irradiation [65] MAPE 30 %

MILP time interval & scheduling horizon 15 min over 24h
MILP rescheduling time 12h

Conventional control frequency 15 min
Market-based control frequency 1 min

The typical house-type identified in [73] is assumed refurbished with a standard

refurbishment according to German statistics. The house geometry and its

insulation characteristic have been based on this study as well.

The first order house model and the house parameters are derived from sea-

sonal average value based on [73] and according to the EN ISO 13790 stan-

dard [129].

The considered heating units in the house (Fig. 4.4) are based on the most

typical installation in Germany [73] which provides electrical flexibility, i.e. gas

or oil based units are not considered as a possible configuration. Based on this,

the space heating demand is provided by a heat pump with 2 levels of output

power to fulfil the peak demand. Whereas the DHW is produced by an electrical
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Figure 4.3: Yearly share of single family house built in Germany.

boiler supplying a water tank [73]. The storage capacity of the water tank is

dimensioned according to the number of inhabitants and follows typically a rule

of thumb: 40-50 l/pers. Based on an economical study, the photovoltaic system

and the domestic battery are dimensioned according to the yearly electrical

consumption. The most typical PV installation in Germany is considered: 6.2

kWp [73]. Based on this PV installation and the domestic yearly consumption,

the most cost-efficient solution according to [127] was derived: 4kWh.

4.1.4 Demand response tariffs considered

Feed-in tariff (FiT) is based on the current tariff in Germany in 2017: the

importing electricity costs is 30 ce/kWh and exporting price is 12 ce/kWh. As

presented in Chapter 1, this FiT should continue to decrease in the future to

incentivize the reduction of the technology cost.

Time of use (TOU) is divided into different unit prices for usage during

different blocks of time in order to encourage customers to shift consumption

when demand is low. The multiple TOU tariffs in the literature (Section 1.2.2)

does not enable to extract a typical TOU. Therefore, the considered TOU tariff

in this work (Table 4.2) is based on actual TOU tariffs which implement a three

period tariff [34]. Based on the price ratio in the literature [31–34], the peak

demand and the off peak prices are adapted according to the current tariff in
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Period Time Ratio Cost [ce/kWh]

Off peak 01:00-07:00 0.6 18
Shoulder 07:00-13:00 & 23:00-01:00 1.0 30
Peak 13:00-23:00 1.4 42

Table 4.2: TOU tariff according to the literature.

4.2 Illustrative control

This section illustrates the different control achieved with the different HEMS

approaches.

4.2.1 Optimization-based

Figure 4.6 presents the results of the MILP control with perfect forecasts.

This figure highlights that

❼ EH and HP never consume in peak price period and concentrate their

consumption in off-peak price period.

❼ when EH and HP consume in shoulder price period, it is because of the

PV production or because of the constrains, e.g. the WT state of charge

is too low or the house temperature reaches the temperature limit.

❼ the battery maximizes first the self-consumption given that the feed-in

tariff (12ce/kWh) is cheaper than the off-peak price (17ce/kWh). When

there is PV production (day 0 to day 5), the battery is only charged by

the PV production in spite of the shoulder price period. When there is no

PV production, it charges in period of off-peak price while it discharges

only in period of peak price period.

MILP with perfect forecasts anticipates perfectly the PV production, the elec-

trical and DHW demand. For this reason, the MILP can perfectly adapt its

control in function of the conditions. With forecast error, the control is based

on wrong information. It will capture then less PV production or will be forced

to turn on the EH or the HP during the peak price period because of constraints

violation, leading to higher total costs.
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❼ the battery is controlled to maximize the self-consumption. It is discharged

during the consumption period which follows the PV production and cor-

responds to peak price period.

Despite that the conventional control follows a local objective, one can observe

that it seems to lead to a kind of meaningful control with TOU. The battery

charges during off peak price or PV production period and discharge during the

peak period. Nevertheless, this is not sufficient to outperform the two others

presented HEMS approaches.

3896

3831

3644 3647 3658
3710

3827

3500

3600

3700

3800

3900

4000

4100

W
ee

kl
y 

ex
pe

ct
ed

 co
st

s: 

18
0

65

19
0

* St
at

e-
Of

-T
he

-A
rt

 Fo
re

ca
st

Er
ro

r

Figure 4.9: FiT tariff: weekly average costs for the different approaches with
different forecast errors.

4.3 Results analysis

In this section, the different HEMS approach are compared according to their

average cost results under two different tariffs:

❼ Feed-in tariff : the HEMS saving potential is mainly driven by the PV

production and the ability of the HEMS control to shift the consumption

during PV production period. The results highlight a saving potential of
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255ce/w and 65ce/w respectively with the perfect optimization approach

and with the market-based control compared to the conventional control

(Fig. 4.9).

❼ Time of Use tariff : the HEMS saving potential is mainly driven by

the electricity pricing, the PV production and the ability of the HEMS

control to shift the consumption during the off peak price period or PV

production period. The results highlight a much larger saving potential of

1000 and 430 ce/w respectively with the perfect optimization approach

and with the market-based control compared to the conventional control

(Fig. 4.10).
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Figure 4.10: TOU tariff: weekly average costs for the different approaches with
different forecast errors.

In both cases, the additional savings with the optimization-based control can

be mainly explained by the optimal consumption shift due to the better

anticipation of the PV production/electricity pricing and a better coordination

of the thermal production with its consumption, decreasing the total energy

consumption because of the reduced energy losses.

Note that the market-based and the conventionnal control approaches do not

79



4.3 Results analysis

consider implicitly forecasts. The market-based approach considers implicitly

naive forecasts [3, 5, 67] whereas rule-based does not base its decision on fore-

casted value.

All the results comparison is based on the assessment methodology presented

in Chapter 3. For this reason, the presented cost or energy results are averaged

value, defined in section 4.1.2. For the two considered tariffs, the following

sections

❼ compare the optimality of the three considered approaches with errors and

perfect forecasts.

❼ quantify the specific saving potential from the different devices and their

sensitivity to forecast errors.

4.3.1 Performance comparison of HEMS approaches

This section presents a comparison of optimality performance between the

three different HEMS approaches based on their weekly average total costs.

4.3.1.1 Feed-in tariff

Based on the Figure 4.9, the optimization-based with perfect forecasts saves

about 255ce/w compared to the reference case for the considered house with

FiT. In addition, the same optimization-based control with the state-of-the-art

forecast (SOTAFE) still saves 75ce/w, compared to the conventional control

case. Whereas the market-based control saves 65 ce/w.

Based on these results, the optimization-based control is competitive regard-

less of the forecast error, compared to the conventional or the market-based

control.

4.3.1.2 Time of Use tariff

The presented TOU results are derived with the same assessment conditions

than the previous results with FiT. Only the electricity pricing policy is different.

In addition, according to literature (Section 1.2.2), the TOU tariff is perfectly

known in advance and does not suffer from forecast error.

The results on Figure 4.10 highlight a saving potential of 1000ce/w with an

optimal HEMS. This is about 4 times the saving potential achieved with an
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optimization-based approach under FiT. This can be explained by the presence

of period of time with very cheap electricity price (off peak), offering more

potential to shift the consumption. In spite of forecast error (SOTAFE), the

optimization-based approach still outperforms largely the conventional control.

Nevertheless, the forecast error increases the costs by 240ce/w compared to the

perfect forecast case. The market-based control performs well and leads to costs

savings of 430ce/w compared to the conventional control.

The two studied cases, respectively FiT and TOU, highlight the saving poten-

tial brought by the optimization-based control regardless of the forecast error

and the good performance of the market-based approach. The TOU allows

larger savings because of the presence of well-known period of time with very

cheap electricity price. Finally, this study highlights also the impact of the tariff

on a 4 persons house without advanced HEMS, i.e. with a conventional control,

they will pay weekly 300cemore with the TOU tariff than with the FiT.

The following section gives insights about the presented results. Specifically,

it investigates the specific saving potential of the considered flexible devices and

their sensitivity to the forecast errors. For doing so, this work compares the

specific average costs of each devices, as explained in Section 4.1.2.

4.3.2 Saving potential of flexible devices

This section studies the saving potential of each specific device, defined in

Section 4.1.2, on the basis of a specific cost comparison with the optimal HEMS

approach. Note that the considered reference for the percent calculation is the

optimization-based approach with perfect forecasts.

This study is based on the FiT and TOU tariffs results presented before.

The specific average costs allows identifying i) the contribution of each device

to the total cost savings ii) the impact of a control approach on the device saving

potential.

Based on the specific average costs comparison on Table 4.3, the device with

the largest saving potential is not surprisingly the battery, given that it earns

about 8ceper kWh stored. The device with the the second largest saving po-

tential is the electrical heater: each consumed kWh costs 26 (FiT) or 18 (TOU)

ce. Finally, each kWh consumed by the heat pump costs around 29 (FiT) or

20 (TOU) ce.
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Feed-in tariff
Optimization Conv. control

[ce/kWh] [kWh/w] [ce/kWh] [kWh/w]

Heat pump 29.63 71.56 29.8 (+0.5%) 75.5
Electrical heater 26.2 22.7 29 (+10%) 24.2
Battery gain 8.1 15.2 5.20 (-35%) 13.5

TOU tariff

Heat pump 19.8 80.2 30.0 (+51%) 75.5
Electrical heater 17.8 23.3 24.9 (+40%) 24.2
Battery gain 7.8 22.8 7.3 (-7%) 13.5

Table 4.3: Specific device costs [ce/kWh] and weekly consumed energy [kWh/w]
associated to the conventional control and the optimization approach
with feed-in and TOU tariffs.

This cost comparison highlights the average saving potential of each device

in an optimal case with perfect forecasts. Note that the presence of a device

in the house impacts the costs of the others. For example, the presence of the

battery makes that the electrical heater can be switched on when the battery is

discharged, decreasing in that way, the specific cost of the electrical heater.

Based on Table 4.3, the effective saving potential of each device can be high-

lighted:

❼ Heat pump control with the optimization brings from 1% (FiT) to 50%

(TOU) of average cost reduction compared to the conventional control.

As a reminder, the heat pump provides the space heating demand and

is constrained by the user comfort, i.e. indoor temperature. Under FiT,

the saving potential is mainly driven by the consumption shift during PV

production. Based on this, the smaller saving potential of the heat pump

with FiT can be explained by the small space heating demand during PV

production due to the solar gains.

❼ Electrical heater (EH) control with the optimization reduces by 10%

(FiT) to 40% (TOU) its average costs compared to the conventional con-

trol. As a reminder, the electrical heater heats up the water used for

domestic hot water needs. The effective flexibility of EH and the WT is

larger than the heat pump. As explained in Section 4.3.5, this is due to
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the constant hot water demand, its large operating temperature range and

paradoxically its bad efficiency.

❼ Battery control with the optimization brings 7 to 35% of additional

gains. This can be explained by the better anticipation of the PV produc-

tion or the electricity price with the optimization approach. In addition,

the optimal control stores 10 to 40% more energy in the battery than the

conventional control.

4.3.3 Sensitivity to forecast error

Feed-in tariff
Optimization Optimization with SOTAFE

[ce/kWh] [kWh/w] [ce/kWh] [kWh/w]

Heat pump 29.63 71.5 29.7 (+0.5%) 71.6
Electrical heater 26.2 22.7 27.3 (+4%) 25.7
Battery gain 8.1 15.2 2 (-75%) 15.6

TOU tariff

Heat pump 19.8 80.2 19.8 (+0%) 80.4
Electrical heater 17.8 23.3 19.7 (+11%) 26.0
Battery gain 7.8 22.8 0.6(-92%) 24.42

Table 4.4: Specific device costs [ce/kWh] and weekly consumed energy [kWh/w]
associated to the optimization approach with and without forecast
errors.

Based on Table 4.4, it can be seen that larger is the saving potential of the

device, more sensitive it is to forecast errors. This is logical given that the

saving potential of a device is coming from its ability to shift its consumption

when the electricity price is the cheapest. The devices with more flexibility

shift their consumption in function of the electricity price and are much more

affected by a forecast error, given that they will consume at a wrong period of

time than devices consuming electricity regardless of the electricity price, i.e.

without consumption flexibility.

So based on the conclusion from the previous section, the battery is logically

the most affected by the forecast error: decrease of 75 to 90% of gains. Then

the electrical heater is affected by a cost increase of 5 to 10% and the heat pump
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by a cost increase under 1% (Table 4.4). In addition, the forecast error leads

to a slight increase of the energy consumed by each device, due to the wrong

anticipation of the thermal or electrical consumption.

As a reminder, forecast errors are considered in the irradiation, the electrical

and DHW demand.

4.3.4 Market-based control analysis

Based on Figures 4.9 and 4.10, the market-based control beats the conven-

tional control with FiT: costs decrease by 65ce/w or TOU: costs decrease

by 430ce/w. While it is outperformed by the optimization-based with FiT:

190ce/w of additional costs or TOU: 590ce/w of additional costs.

Feed-in tariff
Optimization Conv. Control Market-based
[ce/kWh] [ce/kWh] [ce/kWh]

Heat pump 29.63 29.8 (+0.5%) 29.65 (+0.1%)
Electrical heater 26.2 29 (+10%) 26.5 (+1%)
Battery gain 8.1 5.20 (-35%) 10.9 (+35%)

TOU tariff

Heat pump 19.8 30.0 (+51%) 27.7 (+40%)
Electrical heater 17.7 24.9 (+40%) 20.0 (+12%)
Battery gain 7.8 7.3 (-7%) 12.7 (+60%)

Table 4.5: Specific device costs [ce/kWh] associated to the optimization ap-
proach, the conventional control and the market-based.

Table 4.5 gives insights about the performance of the market-based control:

❼ Heat pump control with market-based control and under TOU, re-

duces by 10% its average specific costs compared to the conventional con-

trol.(Section 4.3.2). Without surprise the market-based under FiT does

not bring additional saving potential compared to the conventional or the

optimization-based control (See Section 4.3.2).

❼ Electrical heater (EH) control with the market-based reduces by 10

to 25% its average specific costs compared to the conventional control.
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❼ Battery control with the market-based brings 35 to 60% of additional

gains compared to the optimization-based control. This can be explained

by the frequency control. Optimization-based control takes a control de-

cision every 15 minutes and does not change it during this time interval.

While the market-based control takes a decision every minute and can

better capture the feed-in or the consumption of the house by discharging

or charging with a good accuracy.

The market-based control seems to perform well because of its smaller time in-

terval between its control. The reduction of the time interval of the optimization-

based control could be an option but it will lead to a more complex problem

because of the increase of the number of decision variables. In the literature,

the typical control interval for a scheduling problem is about 15 to 60 minutes

(Section 1.4).

4.3.5 Factors influencing the saving potential of thermo-electrical

devices

This section presents the main factors influencing the effective saving poten-

tial of the thermo-electrical devices and their associated storages i.e. electrical

heater and its water tank and the heat pump and the thermal wall mass of the

house. It gives insights to better understand the results from previous section

which highlight a larger saving potential with an electrical heater compared to

a heat pump, while the battery outperforms them.

Intuitively, the saving potential of thermo-electrical devices is mainly associ-

ated to the thermal storage capacity but this not completely true because there

are other impacting factors:

❼ The associated thermal demand : the DHW demand is quite constant all

over the year while the space heating demand is only required one third

of the year because of the temperature seasonality. In addition, there is

typically no thermal demand when the sun is shinning (Fig. 4.6) because

of the solar gain. If there is no thermal demand, there is logically no

potential for savings at that time.

❼ The efficiency of the thermo-electrical device: the thermo-electrical devices

allow using the thermal storage as an electrical flexibility. But paradox-

85



4.3 Results analysis

ically, an efficient device leads to a smaller electrical consumption, and

thus less consumption flexibility. For example, the heat pump uses in av-

erage one kWe to produce three kWh, therefore the capacity of the house

equipped with a HP is three times smaller than its storage capacity from

an electrical point of view.

❼ The capacity of the associated thermal storage: defined by the thermal

wall mass or the water tank capacity C, and their operating temperature

range (E = C · (Tmax − Tmin)). Larger is the storage capacity and the

temperature range, larger is the saving potential. In the case of the house

with optimization-based control, the temperature exceeds the minimum

allowed temperature by one degree at the maximum while it could be

increased by two. So only the half of the capacity is used in reality.

❼ The thermal losses of the thermal storage: a storage with large losses

decreases the saving potential of using the storage capacity, given that

storing energy, i.e. increasing the temperature, leads to additional losses

costs.

The combination of these different factors explains the previous results: the

device with the largest cost saving potential is the battery, followed by the

electrical heater and then the heat pump.

4.3.6 Study limitation

The results presented in this work compare the optimality of different HEMS

approaches while it includes generality in the operating conditions and the fore-

cast scenarios. Nevertheless, the results are only valid for

❼ a typical German house according to statistics [73]

❼ a house equipped with battery, electrical water heater and heat pump

❼ the current German FiT and the most typical TOU tariff according to

literature

All the presented results consider the identical low order energy models in

simulation, neglecting the impact of thermal dynamic on the results.
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In addition, the presented simulation consider a perfect signal transmission

between the different devices and the HEMS unit as well as hardware failure is

not considered. So, the loss of control of a device is not taken into account in

this work.

More specifically, the presented results with the optimization-based approach

are the upper bound of the cost savings given that perfect models of the house,

heat pump, battery and electrical heater are considered in the problem formu-

lation. More information about the impact of model error can be found in [65].

4.4 Discussion and summary

This section presents an optimality comparison of two different HEMS ap-

proaches: the market-based and the optimization-based approaches compared

to the conventional control. The simulation results comparison is achieved ac-

cording to the assessment method presented in the previous chapter. It takes

into account different user profiles for electrical and DHW demand and considers

5 years of historical data for the temperature and the irradiation in Germany.

All the results presented are averaged values. The considered forecaster is the

ARMA model and its associated forecast error is considered for the irradiation,

electrical and DHW demand according to the current literature.

Two different prices are considered in the frame of this work. With FiT, the

HEMS saving potential is mainly depending on the PV production. Without

PV production, there is then no saving potential. While with TOU tariff, the

HEMS saving is mainly depending on its capacity to shift consumption during

period of time with cheap electricity price and PV production.

From the results analysis, the main conclusions (yearly costs considered here)

are:

❼ the added value of a HEMS is highly depending on the adopted tariff.

Results shows that the optimal saving potential brought by a HEMS com-

pared to a conventional control is in average 130e/y with FiT, and 500e/y

with TOU tariff. The larger saving potential with TOU tariff can be ex-

plained by the presence of well-known period of time with very cheap

electricity price.

❼ the forecast error decreases this potential by 100 and 130e/y in aver-
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age for both tariffs with the state-of-the-art forecaster (SOTAFE). Never-

theless, the optimization-based with forecast errors still outperforms the

conventional-control and the market-based control.

❼ the market-based control outperforms the conventional control and leads

to average costs saving of 35e/y with FiT and 220e/y under TOU.

❼ the market-based control of the battery outperforms the optimization-

based control because of its control frequency: every minute vs. every

15 minute which allows the battery to better capture the feed-in or the

consumption of the house.

❼ the battery has the largest saving potential, followed by the electrical

heater and finally the heat pump. This can be mainly explained by the

unconstrained battery consumption. The larger potential of the electrical

heater is explained by the associated thermal energy demand, the thermo-

electrical device efficiency and the effective thermal storage capacity.

❼ the forecast errors impact mainly the devices with the largest saving po-

tential.

This study quantifies the averaged saving potential brought by the consid-

ered HEMS approaches under different user behaviours, meteorological condi-

tions and forecast errors. Besides the total saving potential study, this work

introduces and studies the specific costs associated to each flexible devices to

understand its specific impact on the total costs. This enables to identify which

devices bring the largest cost saving potential and to quantify their sensitivity

to forecast errors.
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Chapter 5

Conclusion and future work

5.1 Conclusion

This thesis presents an uncertainty analysis method appropriated for uncer-

tain time-series parameters with a limited number of process evaluation accord-

ing to stochastic optimization theory. In addition, the proposed uncertainty

analysis is applied to compare different HEMS approaches by taking into ac-

count different user profiles, forecast errors and several years of meteorological

data.

Chapter 1 delivers an overview on the different HEMS approaches in the lit-

erature: their typical objective functions, their formulations and the considered

flexible devices. The main challenges for comparing HEMS approaches are iden-

tified as i) the various form of the HEMS formulation as well as ii) the specificity

of the evaluation conditions in literature, e.g. evaluation profiles and forecast

errors.

In Chapter 2, the three different HEMS approaches considered in this work are

described: the optimization-based, the market-based and the conventional con-

trol approaches. The considered HEMS approaches exploit the thermal and the

electrical flexibilities at a household level according to the user comfort and the

considered DR pricing. The objective function and the models are formalized

for each approach. In addition, the specific theory supporting the market-based
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formulation is presented in details.

In Chapter 3, the assessment methodology is introduced and formalized as

an uncertainty analysis for uncertain time-series according to the stochastic op-

timization theory. This methodology consists in the following steps. Once the

uncertain time-series parameters are selected, a representative discrete distri-

bution of these scenarios is generated. Then, the system response is evaluated

with a reduced set of scenarios, selected according to the scenario reduction

techniques (SRT), e.g. the forward algorithm based on the Kantorovich prob-

ability distance. Finally, the error associated to this distribution estimation

can be evaluated using the true distribution, evaluated with the Monte Carlo

method. According to required method accuracy, the SRT method or the num-

ber of selected scenarios can be adapted. The presented method is applied to

a HEMS and stands out from the state-of-the-art uncertainty analysis methods

because of the small number of simulation runs required and its good accuracy

compared to the Monte Carlo method. It reduces by a factor 2000, the number

of simulation runs compared to a Monte Carlo method, while the results show

a small estimation error, under 0.5% of the true expected costs and a good sta-

bility for 5 or more selected scenarios. Neverthless, this method suffers from the

curse of dimensionality given that the number of runs grows exponentially with

number of uncertain time-series parameters. Furthermore, its associated error

cannot be bounded in a formal way and has to be investigated for each studied

case.

In Chapter 4, the different HEMS approaches are compared according to the

uncertainty analysis introduced in Chapter 3. It takes into account different user

profiles for electrical and DHW demand and considers 5 years of historical data

for the temperature and the irradiation in Germany. All the presented results

are the mean values from the achieved uncertainty analysis. The considered

forecaster is the ARMA model and its associated forecast error is considered for

the irradiation, electrical and DHW demand according to the current literature.

Two different prices are considered in the frame of this work. With feed-in

tariff (FiT), the HEMS saving potential is mainly depending on the photovoltaic

production. Without photovoltaic production, there is then no saving potential.

While with time of use (TOU) tariff, the HEMS saving is mainly depending on its
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capacity to shift consumption during period of time with cheap electricity price

and photovoltaic production. According to German statistics, a 4-persons house

with a heat pump, a domestic battery and an electrical heater is considered. The

results show that:

1. The optimization-based approach with perfect information leads to a cost

saving potential of 130e/y with FiT, and 500e/y with TOU tariff com-

pared to the conventional control. The larger saving potential with TOU

tariff can be explained by the presence of well-known period of time with

very cheap electricity price which can be exploited to shift consumption.

2. The optimization-based approach with the state-of-the-art forecast error

(SOTAFE) decreases respectively this potential by 100 and 130e/y. In

this case, the optimization with forecast error still outperforms the con-

ventional control and the market-based control.

3. The market-based approach outperforms the conventional control and

leads to costs close to the optimization-based with forecast error. Its

good performance can be mainly explained by its control frequency: every

minute vs. every 15 minute for the optimization, which allows the battery

to better capture the feed-in or the consumption of the house.

Besides the total saving potential study, this work introduces and studies

the specific costs associated to each flexible devices to understand their specific

impacts on the total costs. The results show that:

1. The battery has the largest saving potential, followed by the electrical

heater and finally the heat pump. This can be mainly explained by the

unconstrained battery consumption. The larger saving potential of the

electrical heater is mainly explained by its constant thermal energy de-

mand all along the year, its thermo-electrical device efficiency and its

effective thermal storage capacity.

2. The forecast errors impact mainly the devices with the largest saving po-

tential, respectively the battery followed by the electrical heater and finally

the heat pump.

Although the assessment approach considers various user profiles and several

years of historical data, the presented results are valid specifically for i) a typical
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German house according to statistics ii) equipped with battery, electrical water

heater and heat pump and iii) under the two studied tariff: the feed-in and TOU

tariffs.

Finally, the implementation of the presented approaches in real life application

is foreseen to affect these results because of the model uncertainties embedded

in the optimization formulation or because of technical failure in operation: loss

of device control, critical latency in communication or measurement errors.

Therefore, hardware-in-the-loop (HiL) based results are required to assess

the real potential of HEMS approach and give additional insights about its

implementation challenges in real life. In addition, the running time of a HiL

setup is equivalent to real time which makes them very time consuming, e.g. a

HiL simulation of one week takes one week in real time as well. Given this, the

application of the proposed assessment methodology to the HiL test will give

additional value to these results, given its representativity through the inclusion

of different user behaviours or meteorological conditions and its small number

of required runs.

To conclude this dissertation, the proposed assessment method was designed

for the enhancement of HEMS approaches comparison through simulations.

Nevertheless, this method could be as well applied in many other domains, pro-

vided that the uncertain parameters are time-series and that a limited number

of runs is required.
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