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Abstract(
 

Motivated by the recent experimental realizations of novel magnetic phases and emergent 

quasiparticles, such as magnetic monopoles and Majorana fermions, in frustrated and 

topological quantum magnets, this thesis focuses on the studies of the magnetic ground state 

of a complete series of pyrochlore 5d transition metal oxides, including the Ln2Ir2O7 (Ln = 

rare-earth elements) family and Nd2Hf2O7, via in-house specific heat and magnetization 

measurements as well as advanced neutron scattering techniques. This has allowed us to 

establish a global phase diagram of the magnetic ground state of Ln2Ir2O7. Except for 

Pr2Ir2O7, other pyrochlore iridates exhibit a transition at finite temperature from a 

paramagnetic metal to an antiferromagnetic semimetal with the “all-in-all-out” magnetic 

order of the Ir4+ sublattice. The magnetic ground-state of Ln3+ is strongly dependent on the 

Ln3+ single-ion anisotropy and the molecular magnetic field generated by the surrounding 

Ir4+ sublattice. For the Ln3+ ions with an easy-axis anisotropy along the local 1"1"1  axis, 

which is parallel to the molecular field, an “all-in-all-out” long-range magnetic order is 

universally observed on the Ln3+ sublattice. On the contrary, for the Ln3+ ions with an easy-

plane anisotropy, a dynamic spin liquid phase persists down to the sub-Kelvin temperature 

range. 

    Furthermore, aided by the magnetic structure refinements, sum-rule analysis of the total 

magnetic moments, quantitative analyses of low-temperature magnetic entropy and 

simulations of inelastic neutron scattering spectra, a deeper understanding on the exotic 

magnetic order and emergent quantum excitations in the ground state of two representative 

5d pyrochlore compounds, the metallic spin-ice Pr2Ir2O7 and insulating quantum spin-ice 

candidate Nd2Hf2O7, have been obtained. Pr2Ir2O7 undergoes a magnetic transition from 

paramagnetic state to the “2-in-2-out” long-range order of Pr3+ below 0.76 K, signalized by 

a slightly dispersive gapped magnetic excitation. Nd2Hf2O7 shows an “all-in-all-out” long-

range order of Nd3+ below 0.53 K. Its magnetic excitation consists of a flat band mode 

centered at 0.1 meV and a dispersive mode up to 0.23 meV in the ordered state. The XYZ 

model based on the “dipole-octupole” ground-state doublet is introduced to explain these 

observations. The Occurrence of exotic quantum fragmentation of magnetic moments in 

Nd2Hf2O7 can thus be confirmed.  
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Zusammenfassung(
 

In frustrierten und topologischen Quantenmagneten wurden kürzlich neuartige magnetische 

Phasen und Quasiteilchen, wie magnetische Monopole und Majorana-Fermionen, 

experimentell nachgewiesen. Um die Forschung auf diesem Gebiet voranzutreiben, 

konzentriert sich diese Arbeit auf die Untersuchung des magnetischen Grundzustands einer 

kompletten Serie von 5d Übergangsmetalloxiden, der Pyrochlorphase. Die Ln2Ir2O7 (Ln = 

Elemente der seltenen Erden) Familie und Nd2Hf2O7 wurden mithilfe von Wärmekapizitäts- 

und Magnetisierungsmessungen, sowie Neutronenstreumethoden, systematisch untersucht. 

Ein globales Phasendiagram des magnetischen Grundzustandes von Ln2Ir2O7 konnte somit 

erstellt werden. Mit der Ausnahme von Pr2Ir2O7 zeigen Iridate in der Pyrochlorphase einen 

Übergang bei endlicher Temperatur von einem paramagnetischem Metall zu einem 

antiferromagnetischem Halbmetall mit einer „alle-hinein-alle-heraus“ magnetischen Struktur 

des Ir4+ Untergitters. Der magnetische Grundzustand der Ln3+ Ionen ist stark von der Ln3+ 

Einzelionenanisotropie und des molekularen magnetischen Feldes des umliegenden Ln4+ 

Untergitters abhängig. Ln3+ Ionen mit einer leichten Achse in die lokale [1 1 1] Richtung, 

parallel zum molekularen Feld, nehmen eine magnetisch langreichweitige „alle-hinein-alle-

heraus“ Ordnung im Ln3+ Untergitter an. Im Gegensatz dazu bilden Ln3+ Ionen mit 

Anisotropie in der Ebene eine dynamische Spinflüssigkeitsphase, bis zu Temperaturen 

unterhalb eines Kelvins. Die Verfeinerung der magnetischen Struktur, Summenregelanalyse 

des gesamten magnetischen Moments, quantitative Analyse der magnetischen Entropie für 

tiefe Temperaturen und Simulation der Spektren unelastischer Neutronenstreuexperimente, 

ermöglichen das Verständnis der exotischen magnetischen Ordnung und der 

Quantenanregung des Grundzustandes zweier repräsentativer 5d Pyrochlor Materialien, des 

metallischen Spin-Eis Pr2Ir2O7 und des nichtleitenden und möglichen Quanten-Spin-Eises 

Nd2Hf2O7. Pr2Ir2O7 zeigt einen magnetischen Phasenübergang von einer paramagnetischen 

zu einer langreichweitigen „2-hinein-2-hinaus“ Ordnung der Pr3+ Atome unterhalb von 0,76 

K, die durch eine leicht dispersive magnetische Anregung mit Energielücke messbar wird. 

Nd2Hf2O7 zeigt eine langreichweitige „alle-hinein-alle-heraus“ Ordnung der Nd3+ Ionen 

unterhalb von 0,53 K. Die magnetischen Anregungen bestehen aus einer flachen Bandmode 

um 0.1 meV und einer dispersiven Mode bis zu 0.23 meV im geordneten Zustand. Das auf 

dem Dipol-Oktopol Grundzustandsdoublet basierende XYZ Model wird zu Beschreibung 

dieser Beobachtungen eingeführt. Die exotische Fragmentierung der magnetischen Momente 

in Nd2Hf2O7 kann somit bestätigt werden. 
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Chapter(1.!Introduction(
 

The search for novel quantum phenomena such as exotic phases and emergent excitations is 

one of the main topics of research in condensed matter physics. “More is different”, the 

famous dictum of Philip W. Anderson [1], captures the idea that novel phases may emerge 

in interacting many-body systems where the collective behavior of many-particles cannot be 

understood simply based on the properties of a few particles. In the field of strongly 

correlated electron systems, the greatly pronounced electron-electron interaction in 3d 

transition metal oxides has led to a variety of important discoveries, such as Mott insulators, 

high-Tc superconductors, multiferroics, heavy fermions, and so on. Recent studies of 5d 

transition metal oxides have shown that the spin-orbit coupling (SOC) plays an important 

role in the emergence of non-trivial quantum ground states, for example, the novel #$%% =

1 2 state in Sr2IrO4 [2]. Benefitting from the introduction of the concept of topology in the 

description of the band structure, exotic phases (e.g. topological Mott insulator, Weyl 

semimetal, etc.) are predicted in 5d transition metal oxides [3]. On the other hand, the 

competing interactions between spins in a lattice, the so-called magnetic frustration, may 

prevent the conventional magnetic long-range order transition and lead to a disordered 

ground state. The exotic magnetic phases, such as quantum spin liquid and the emergent 

gauge-field excitations could be found in frustrated magnets. For instance, the pyrochlore 

magnet Ho2Ti2O7 exhibits a short-range ordered state with a “2-in-2-out” spin configuration 

in each spin tetrahedron, called spin-ice as analogy of water ice [4], and its thermally excited 

state is identified as magnetic monopoles [5].  

    One class of iridium oxides, rare-earth pyrochlore iridates Ln2Ir2O7 (Ln is a lanthanide 

element), sits at the intersection of geometrical frustrated magnetism, strongly correlated 

electrons system with strong spin-orbit coupling, and band topology. The coexistence and 

competition of these interactions may result in an incredibly rich number of interesting or 

novel ground states, which have attracted intensive attention. Although plenty of recent work 

have discussed the properties of Ir, very few of them have focused on the magnetism of Ln3+. 

The scope of this dissertation is to systematically determine the magnetic structures and 

observe the collective magnetic excitations of Ln3+ at finite temperature in pyrochlore iridates, 
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by employing in-house characterization and neutron scattering, as well as in the 5d 

pyrochlore insulator Nd2Hf2O7. 

 

The rest of this thesis consists of the following chapters: 

Chapter 2 presents a short introduction of the geometrical frustrated magnetism, an overview 

of the magnetic properties of pyrochlore compounds and a discussion of SOC and the Ln-Ir 

interaction in pyrochlore iridates. 

Chapter 3 gives detailed explanations of the experimental techniques that have been used in 

this thesis. It will include details of the sample synthesis, an explanation of x-ray powder 

diffraction, DC-magnetization, specific heat measurement and a brief overview of neutron 

scattering techniques. 

Chapter 4 focuses on the properties of the Ln2Ir2O7 with metal-to-insulator transition. The 

metal-to-insulator transition is determined according to the DC magnetization of the 

compounds. A magnetic phase diagram as function of rare-earth atomic radius and 

temperature will be given based on the polarized neutron scattering experiments. 

Chapter 5 is dedicated to the metallic compound Pr2Ir2O7. The crystal-field ground state of 

Pr3+ is determined according to the inelastic neutron scattering experiments. By employing 

the XYZ-polarization analysis of neutron scattering, we solve the magnetic structure of the 

long-range ordered state. Via cold neutron inelastic scattering, we observe its low-energy 

magnetic excitation for the first time. 

Chapter 6 addresses the 5d pyrochlore compounds Nd2Hf2O7. As indicated by the specific 

heat anomaly for the magnetic phase transition, the magnetic phase below () is determined 

according to the polarized neutron scattering result. Its magnetic excitations are observed by 

inelastic neutron scattering and explained by the linear spin wave theory based on XYZ 

model. 

Chapter 7 summarizes the major conclusion from the above chapters and discusses the 

prospect of future studies of these compounds. 
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Chapter(2.!Theoretical(Background(and(Pervious(Studies(
 

2.1.!Frustrated(magnetism(

The spin system in magnetic compounds often undergoes a phase transition at finite 

temperatures, which can be understood using the Landau theory. Below the transition 

temperature a long-range magnetic order phase is established. Employ the simple Heisenberg 

Hamiltonian for the exchange interaction of spins: 

 ℋ+$,-$./$01 = 2 3, ∙ 35
,,5

 (2.1.1) 

where 2 is the exchange coupling constant between two spins 3, and 35. The summation is 

over all possible bonds in spin pairs. For the simple cases, the spins usually arrange 

themselves either in parallel ( 2 < 0  implies ferromagnetic interaction), known as 

ferromagnetic order, or in antiparallel (2 > 0 implies antiferromagnetic interaction), known 

as antiferromagnetic order. However, there are two things that can prevent the occurrence of 

magnetic long-range order. One is fluctuation, including the thermal fluctuation that is 

controlled by temperature in the energy scale ~ :;(, and the quantum fluctuation that is 

determined by Heisenberg’s uncertainty principle [6]. Another one is magnetic frustration, 

which will be discussed below. 

2.1.1.!Introduction(to(magnetic(frustration((

The concept of frustration was first used in the publications on spin glasses by Toulouse and 

Villain in 1977 [7,8]. However, the studies of frustrated magnetism, e.g. geometrically 

frustrated antiferromagnets, can be traced back to the investigation of the 

antiferromagnetically coupled Ising spins on a triangular and spinel lattice in 1950s [9-12].  

    The term ‘frustration’ in magnetism means that the local magnetic interactions and the 

global free energy cannot be minimized simultaneously, subsequently leading to degeneracy 

in the classical ground state. In a perfect lattice without any site disorder, the nature of 

magnetic frustration can be classified into two classes: frustration due to the competing 

interactions of several exchange paths between two magnetic ions, and geometrical 
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frustration due to the topology of the lattice where the spatial arrangement of the magnetic 

ions prevents the satisfaction of the magnetic interactions between different spin pairs. 

 
Figure 2.1.1 Examples of the frustrated magnetic systems. (a) Frustration due to the 
competing antiferromagnetic exchange interactions of the nearest-neighbor coupling 2< 
and next-nearest-neighbor coupling 2= for Ising spins on a square lattice. (b) Geometrical 
frustration due to the Ising spins with antiferromagnetic interactions in a triangular lattice. 

    One of the simplest frustration systems due to competing interactions is the 2< − 2= Ising 

model on a square lattice (Figure 2.1.1 (a)) [13]. (the word ‘Ising’ indicates the case that the 

spins are only allowed to point up or down) Besides the nearest-neighbor (NN) 

antiferromagnetic coupling 2< , the next-nearest-neighbor (NNN) interaction with 

antiferromagnetic coupling 2= has to be taken into account: 

 ℋ"2?@2A = 2< 3, ∙ 35
))

+ 2= 3, ∙ 35
)))

",""""3, = ±1 (2.1.2) 

where 2, > 0. If 2< and 2= are comparable, the spins cannot satisfy simultaneously the two 

antiferromagnetic bonds with simply antiparallel arrangement of spins between nearest-

neighbor sites. Thus, the ground state of the model depends on the relative strength of the 

competing interactions D = 2=/2<. Usual Neel state, stripe structure of alternating up and 

down rows of spins, and novel ground states can be found in the phase diagram [14,15].  

    The simplest case of geometrical frustration is the equilateral triangle lattice with 

antiferromagnetic coupled Ising spins located at the corner of the lattice. As shown in Figure 

2.1.1(b), when considering only the nearest-neighbor interaction, if one pairwise 

antiferromagnetic interaction is satisfied with two spins antiparallel, the third spin in the 

triangular lattice is uncertain since it cannot simultaneously satisfy the two nearest-neighbor 

antiferromagnetic interactions by pointing either up or down. Obviously, there is no 

geometrical frustration phenomenon in the one-dimensional spin system, such as spin chain. 

Among the various lattices leading to geometrical frustration, the most popular two-
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dimensional structures are the triangular and the Kagome lattice, in which the common 

building block is a triangle. The three-dimensional geometrically frustrated lattice includes 

pyrochlore and spinel lattice, in which the spins reside on a corner-sharing tetrahedral 

network. In this thesis, I will only focus on the pyrochlore compounds. 

 

 
Figure 2.1.2 Geometrical frustrated magnet on 2D and 3D lattices: (a) triangular lattice, 
(b) kagome lattice and (c) pyrochlore lattice. (taken from [16]). 

 

    The frustration index F, introduced by Ramirez [17], is widely used to quantify the degree 

of frustration: 

 F = GHI (J0K. (2.1.3) 

where GHI is the Curie-Weiss temperature, obtained by a linear fitting of the inverse DC 

susceptibility at high temperatures, where the system is in the trivial paramagnetic state. 

(J0K. is the phase transition temperature, where the long-range magnetic order occurs. For 

instance, (J0K. = (L or () is the Curie or Neel temperature, respectively, for ferromagnetic 

or antiferromagnetic ordering. In the spin-glass system (J0K.  would be the freezing 

temperature. The stronger magnetic frustration of a system is, the lower (J0K. is compared to 

GHI so that a larger F would be. When F → ∞, the system fails to order down to the absolute 

zero temperature and a novel ground state, known as a “spin liquid”, can emerge. 

 

2.1.2.!Spin(liquids(state(

A spin liquid state is a state of matter in which the conventional magnetic order is suppressed, 

however, the spins are highly correlated, and still strongly fluctuating even near the absolute 

zero temperature [18]. The spin fluctuations in a spin liquid can be classical or quantum in 

nature [16]. Classical fluctuations, driven by the thermal energy, dominate in the systems 

with large-3 (3 is the spin quantum number, if 3 ≫ 1/2, the spin 3 can be treated as three-

dimensional vector P 3Q, 3R, 3S ). This is referred as classical spin liquid. When the energy 
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scale becomes too small (( → 0), classical fluctuations cease and the spins either freeze or 

order. For small- "3  systems, e.g. with 3  comparable to 1/2, the quantum mechanical 

uncertainty principle produces zero-point motions that persist down to (  = 0 K. Strong 

quantum fluctuation may lead to quantum spin liquid (QSL).  

    QSL shows non-trivial exotic physics such as fractionalization, emergent symmetries and 

topological order [19]. One example is the resonating valence-bond (RVB) state, proposed 

by Anderson for the triangular lattice system [20-22]. The wave function of a RVB state is a 

superposition of spin singlet pairs. While it needs not to break any symmetries of the hosting 

spin system, this state would be highly entangled and possess non-trivial spin correlations. 

Breaking one of such singlets will create two unpaired spins, which can then be separated 

with a small energy cost by rearranging nearby valence bonds. This is known as the 

fractionalized excitation, spinon [6,19] (see Figure 2.1.3). A spinon carries spin 3 = 1 2 

with neutral charge, which cannot be emerged from the magnon-like (spin 3 = 1 and charge 

neutral) excitation in a conventional magnetic ordered state.  

 

 
Figure 2.1.3 One possible spin singlet configuration in a resonating valence-bond state 
(a) and its spinon excitation (b and c) on a triangular lattice. Each blue bond indicates a 
spin singlet state, ?

A
↑↓ @ ↓↑ . Spinon excitation (red arrow) carries spin 3 = 1 2 with 

neutral charge and it can move by rearranging nearby bonds (b-c). (taken from [22]) 

 

2.2.!Pyrochlore(Compounds(

Pyrochlore compounds offer an excellent playground to investigate magnetic frustration and 

the resulting exotic states of matter, including classical spin liquids such as the dipolar spin 

ice compounds Dy2Ti2O7 and Ho2Ti2O7 [4], and possible quantum spin liquids such as 

quantum spin ice system Yb2Ti2O7[23]. The pyrochlore material gets its name from the 

mineral NaCaNb2O6F, which produces a green flame when burned [24]. In this thesis we 

only focus on the cubic pyrochlore oxides with general formula A2B2O7, where A is a 

trivalent rare earth which includes the lanthanides and Yttrium and B is either a quadravalent 

transition metal ion or a quadravalent p-block metal ion.  
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2.2.1.!Crystal(structure(and(phase(stability(

The pyrochlore oxides usually have the cubic space group VW3Y  (No. 227 in the 

International Tables for Crystallography). Their chemical formula can also be rewritten as 

A2B2O6O’ to illustrate the two distinct oxygen sites. The conventional description using the 

Wycoff notation is to place the A ion at 16d, B at 16c, O at 48f and O’ at 8b, as shown in 

Table 2.2.1. 

 

Table 2.2.1 The crystallographic positions of the atoms in the pyrochlore oxides using the 
origin of the second setting for space group VW3Y. There is only one adjustable positional 
parameter for the O atom at the 48f site. The point group is given by Schoenflies notation. 

Atom Wyckoff position Point symmetry Coordinate 

A 16d Z[\ 1/2, 1/2, 1/2 

B 16c Z[\ 0, 0, 0 

O 48f ]=^ x, 1/8, 1/8 

O’ 8b (\ 3/8, 3/8, 3/8 

 

 
Figure 2.2.1 (a) Crystallographic structure of pyrochlore oxides. A site is orange, B site 
is green, Oxygen at 48f is red, and oxygen at 8b is purple. (b) The respective oxygen 
anion environment of the A site and B site.  

 

    In the pyrochlore structure, both the 16d and 16c sites form a three-dimensional array of 

corner-sharing tetrahedra, thus giving rise to canonical geometrically frustrated lattices. The 

ions A and B are surround by oxygen anions. The coordination geometry of the oxygen 

environment of A and B is controlled by the ‘x’ parameter of the 48f site occupied by an 

oxygen anion. For x = 0.375 one has a perfect cubic environment around the A ions on 16d, 

and the case, x = 0.3125, implies a perfect octahedron around the B ions on 16c.  



Chapter 2 Background  

 8 

    Although about 150 compounds with formula A2B2O7 can form the cubic pyrochlore 

structure, over 15 tetravalent ions are able to reside on the B site [25], any combination of 

A3+ and B4+ of the above elements may not be the member of pyrochlore family. One can 

introduce the tolerance factor to study the phase stability of the pyrochlore structure [26,27]. 

The frequently used parameter is the ionic radius ratios, _̀ _a to discuss the stability limits 

for the pyrochlore phase [28,29]. For example, below _̀ _a = 1.46 , the defect-fluorite 

structure is favored. With the assistance of the high-pressure furnace technique, the ratio 

_̀ _a can be extend between 1.36 to 1.71 as shown in Figure 2.2.2. All rare earth iridates 

can form pyrochlore structure. However, the pyrochlore structure only exists from La to Tb 

in rare earth hafnates. The A, B sites mixing becomes serious when the rare earth ionic radius 

ratio is smaller than Tb3+ [30]. 

 

 
Figure 2.2.2 Stability of the pyrochlore structure for A2B2O7 materials. The platinum 
series are synthesized at high-pressure. (taken from [31] and adapted from [28]) 

 

2.2.2.!Role(of(CEF(

The crystal electric field (CEF) due to the surrounding anions plays a crucial role on the 

nature of physic of rare earth ions in the pyrochlore structure. The CEF may cause a 

considerable reduction of the magnetic moment of the ions, and determines the single-ion 

anisotropy. Moreover, the origin of non-Ising transvers spin fluctuations in some quantum 

spin ice materials, for example, in the Pr-based pyrochlore, can be due to the CEF effects. 

    The lanthanide series of rare earths starts to fill up the 4f shell with cerium and ends with 

lutetium. The 4f shells lie deep inside the 5s, 5p, 5d and 6s shells. Since the rare earths 
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discussed in this thesis are in the 3+ valence state, the 4f electronic shells are shielded by the 

outmost full-filled 5s and 5p shells, thus leading to the localization of 4f electrons. 

 
Figure 2.2.3 Left: Local oxygen anion environment of the rare earth ions in the pyrochlore 
lattice structure. The rare earth ions are surrounded by a distorted cubic of O2-, which has 
a D3d point group symmetry. Right: Illustration of the 2# + 1 degenerate ground-state 
multiplet originating from SOC, as well as their splitting due to the perturbation of CEF. 

 

    In the localized limit, the intra-ionic interaction is taken into account through Hund’s rules. 

As rare-earth ions are relatively heavy, the spin-orbit coupling (SOC) is strong. Its 

Hamiltonian takes the form:  

 ℋ"ef = gefh ∙ 3" (2.2.1) 

where h and 3" are the total orbital and spin angular momentum operators, respectively, and 

gef represents the spin-orbit coupling strength, which is ∝ jk (Z is the atomic number in the 

periodic table). The strong spin-orbit coupling of 4f electrons leads to the mixing of states 

with different quantum numbers l"m and l"e, therefore, h (orbital) and 3 (spin) are no longer 

good quantum numbers, instead, the total angular momentum # is a good quantum number. 

All three of Hund’s rules could be used to predict the ground-state # multiplet. For most rare-

earth ions, the spin-orbit splitting is larger than 200 meV, which is larger than the thermal 

energy :;( in the interesting temperature range. Thus it is a good approximation to consider 

only the ground-state # multiplet based on Hund’s rules. 

    At sufficiently high temperatures, the free-ion picture discussed above is acceptable. 

However, the CEF generated by the surrounding ions, such as O2- anion in our cases, has to 

be taken into account at lower temperature. In f-electron systems, the crystal field is smaller 

than the spin-orbit coupling due to the shielding effect of the outer electrons. The weakness 

of the crystal field allows us to apply all three Hund’s rules, the CEF therefore can be treated 

as a perturbation of SOC. Under the influence of CEF, the ground state # multiplet with the 
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degeneracy of 2# + 1  splits according to the symmetry of the local environment. The 

Kramers theorem should be mentioned here. If the ions have an odd number of electrons, i.e. 

for half-integer # values (Kramers ions), the multiplets arising from the spin-orbit coupling 

can only be split into doubly degenerated states, where the double degeneracy could only be 

further lifted by a time-reversal symmetry breaking perturbation such as an external magnetic 

field. Meanwhile, the wavefunctions of these states are time-conjugated. On the other side, 

for non-Kramers ions, i.e. with an even number of electrons, no such rule controls the 

splitting of the multiplets, accidental degenerated states exist and the degeneracy is 

susceptible to any perturbations, such as weak lattice distortions. 

    The CEF Hamiltonian ℋ"nop can be expressed in terms of either the tensor operators or the 

Stevens operator equivalents. While the tensor operators are more convenient for ab initio 

calculations, the latter we use here are better for the understanding of the origin of single-ion 

anisotropy. In Stevens notation, the ℋnop reads: 

 ℋ"nop = q.rs.r #
.,r

 (2.2.2) 

where q.r are the refinable coefficients for different operators, and s.r #  are the Stevens 

operators that are polynomial functions of #S and #±, with #± = #Q ± t#R. For example, s=u =

3#S= − #(# + 1). The exact expressions of the Stevens operators can be found in Ref [32].  

    In the pyrochlore lattice, the rare-earth ions reside at the center of an eight-fold coordinate 

oxygen anions environment. If x ≠ 0.375, the 8 O2- anions form a distorted cube compressed 

along the local [1 1 1] direction, as shown in the left of Figure 2.2.3, the symmetry at the rare 

earth site is given as the D3d point group, which includes two two-fold and one three-fold 

rotation axis and an inversion center. If we define that the quantization z-axis is along the 

local [1 1 1] direction, the CEF Hamiltonian in Eq. (2.2.2) will be reduced to: 

 ℋ"nop = q=us=u + qkusku + qk[sk[ + qxusxu + qx[sx[ + qxxsxx (2.2.3) 

where 

 s=u = 3#S
= − #(# + 1)  

 sku = 35#S
k − 30# # + 1 #S

= + 25#S
= − 6# # + 1 + 3#S

=(# + 1)=  

 sk[ =
<
k
7#S #{

[ + #@
[ + #{

[ + #@
[ #S   

 sxu = 231#S
x − 315# # + 1 #S

k + 735#S
k + 105#= # + 1 #S

=

− 525# # + 1 #S
= + 294#S

= − 5#[ # + 1 [

+ 40#= # + 1 = − 60#(# + 1) 
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 sx[ =
<
k

11#S
[ − 3#S# # + 1 − 59#S #{

[ + #@
[

+ #{
[ + #@

[ 11#S
[ − 3#S# # + 1 − 59#S  

 

 sxx =
<
=
#{
x + #@

x   

If the Hamiltonian ℋ"nop is dominated by the term q=us=u, which is the usual case for rare 

earth pyrochlore, it is clear that a negative value of q=u would lead to an easy-axis anisotropy 

and a positive value of q=u would give rise to easy-plane anisotropy [31].  

 

Table 2.2.2 Ground-state properties of some rare-earth ions: the number of electrons in 
the 4f shells, the Lande factor }~ and the ground states (GS) of Hund’s rules. The GS term 
is labelled as h~=�{< , where L=S, P, D, F, G, H, I correspond to the orbital angular 
momenta number with 0, 1, 2, 3, 4, 5, 6, respectively. The } tensors corresponding to the 
local [1 1 1] quantization axis are listed, as well as the type of single-ion anisotropy. 

 n(4f) GS }~ }∥ }Å anisotropy compounds Ref. 

Pr3+ 2 Çk[  4/5 5.17 0 Ising Pr2Sn2O7 [33] 

Nd3+ 3 ÉÑ/=k  8/11 5.3 0 Ising Nd2Zr2O7 [34] 

Tb3+ 8 VxÖ  3/2 10.7 0 Ising Tb2Ti2O7 [35] 

Dy3+ 9 Ç<Ü/=x  4/3 19.6 0 Ising Dy2Ti2O7 [36] 

Ho3+ 10 ÉáÜ  5/4 19.6 0 Ising Ho2Ti2O7 [36] 

Er3+ 11 É<Ü/=k  6/5 3.9 6.3 XY Er2Ti2O7 [37] 

Yb3+ 13 VÖ/==  8/7 1.92 3.69 XY Yb2Ti2O7 [38] 

 

    One can characterize the single-ion anisotropy using the } tensors, which can be obtained 

from the ground-state wavefunctions of the rare-earth ions. 

 }∥ = 2}~ àu
± #S àu

± , 

}Å = }~ àu{ #{ àu@ = }~ àu@ #@ àu{  
(2.2.4) 

where àu
±  are the ground-state wavefunctions, }~  is the Lande factor, }∥  and }Å  are the 

spectroscopic factors, i.e. }  tensor, along and perpendicular to the local trigonal z-axis, 

respectively. As shown in Table 2.2.2, the rare earth ions in pyrochlore lattice can be 

classified into two types of single-ion anisotropy. The negligible perpendicular component 

and large parallel component of the } tensors of Pr3+, Nd3+, Tb3+, Dy3+ and Ho3+ indicate that 

these ions have an Ising-type single-ion anisotropy, which would impose the magnetic 

moment to be oriented along its local [1 1 1] axis. The Ising-type anisotropy is one of the 
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pre-requisites to realize the spin-ice state, which will be introduced in the next section. Er3+ 

and Yb3+, having a large perpendicular component and relatively small parallel component 

of the } tensor, can be classified into the XY-type anisotropy. Their magnetic moments 

would prefer to lay in the plane perpendicular to [1 1 1]. Novel phases, such as the Splayed 

ferromagnetic long-range order [39], and Palmer-Chalker state [40,41], have been found in 

the Er3+ and Yb3+ based pyrochlore compounds. 

    Beside the single-ion anisotropy determined by CEF, the CEF ground states àu
±  (or 

wavefunctions) are also important to simplify the magnetic exchange interaction 

Hamiltonian, for example the Heisenberg model Eq. (2.1.1). It has been demonstrated that 

the CEF ground states of the rare earth ions in Table 2.2.2 in perfect pyrochlore lattice (no 

oxygen vacancy, A/B-site mixing and other defect) are doublets, which can be expressed by 

the bases of #,l~  [36]. Meanwhile the energy gap between the ground state and the first 

excited CEF state is sufficiently large (except for the case of Tb3+), so that an effective 3 =

1/2 (or pseudo spin-1/2) approximation can be introduced to describe the magnetic exchange 

interactions of the isolated ground state at low temperatures [42,43]. The ground-state 

doublet based on pseudo spin-1/2 has different properties according to the Karmers theorem 

introduced above. For the Karmers ions (half-integer # values, Nd3+, Dy3+, Er3+, and Yb3+), 

the ground-state doublet is protected by time reversal symmetry and can only be split by 

breaking the time reversal symmetry, for example in magnetic fields. It is worth to note that 

the high order multipolar components, such as octupole, may play a role and introduce 

quantum fluctuation into the system, for instance in the systems of Nd3+ and Dy3+ with # =

9/2 and 15/2, respectively [44]. For the non-Kramers ions (integer # values, Pr3+, Tb3+ and 

Ho3+), without the protection of time reversal symmetry, the ground-state doublet can be 

easily split by small lattice distortion such as oxygen vacancies. The tiny splitting of the 

ground-state doublet may introduce an effective transvers field in addition to the Ising 

component of the pseudo spin and give rise to an enhanced quantum fluctuation in the system 

[45]. 

 

2.3.!Diverse(magnetic(ground(states(in(pyrochlores(oxides(

The pyrochlore compounds exhibit a rich variety of magnetic ground states. In the case of 

gadolinium (Gd) based pyrochlore, the Gd3+ ion (half-filled 4f electronic shell, 4FÖ, with the 

3Ö/=á  ground state) has no orbital magnetic moment contribution and the degeneracy of the 

eight-level ground-state caonnot be lifted by the CEF, which play a large role for other rare-
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earth ions as discussed above, beyond a fraction of a Kelvin [46,47]. Thus the spin of Gd3+ 

is expected to be isotropic and to be good realizations of Heisenberg antiferromagnets that 

have been predicted to be in a collective paramagnetic state with short-range correlations 

between spins at any nonzero temperature by theoretical calculations [48-50]. However, the 

Gd-based pyrochlores often possess transitions from paramagnetic state to long-rang order 

due to dipolar interaction and further neighbor exchange interactions [47]. For instance, the 

Gd2Ti2O7 displays two magnetic transitions, at 0.7 and 1 K, to the magnetic structures with 

ordering vector k = 1 2"1 2"1 2  [51,52], Gd2Sn2O7 undergoes a first-order transition 

into an ordered state with Palmer-Chalker configuration (ordering vector k = 1"1"1 ) near 

1 K [53,54]. The investigations of the magnetic ground state and their excitations of Gd-

pyrochlore are still ongoing.  

    Beside the Gd3+ and Eu3+ (non-magnetic), other trivalent rare-earth ions can be classified 

into two groups according to the single-ion anisotropy driven by CEF. Here we will briefly 

discuss the spin ice state for easy-axis anisotropy case and order-by-disorder for easy-plane 

anisotropy. 

2.3.1.!Spin(ice((

A landmark example in frustrated magnetism is spin ice, which was first studied by Harris 

and colleagues in 1997 [55]. In spin-ices materials, such as Dy2Ti2O7, Ho2Ti2O7 and 

Ho2Sn2O7, only the rare-earth ions are magnetic, and they form a network of corner-sharing 

tetrahedral (see Figure 2.2.1). The CEF acting on the rare-earth site constrains spin to align 

along its local 1"1"1  axis. The name “spin ice” originates from a direct analogy between the 

configurations, in which two spins point inward and two spins point outward (2-in-2-out) 

from the center of tetrahedron, and the position of protons in the tetrahedrally coordinated 

O2- framework of water ice, as shown in Figure 2.3.1. The 2-in-2-out configuration is called 

“ice rule”, as defined in water ice Ih for the 2-strong-2-weak O-H bonds [56]. For a given 

tetrahedron within 4 Ising spins on the corners, there are 6 configurations obeying the ice 

rule from in total 2k = 16 configurations. In the pyrochlore lattice with N spins, since each 

spin is shared by two tetrahedral, the number of microstates satisfying the ice rule is 

calculated as Ω = 2) 6 16 ã/A = (3/2))/=  and the entropy per spin is 3H�å = :; lnΩ =
èê
=
ln [

=
, corresponding to Pauling’s residual entropy for water ice [31]. 
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Figure 2.3.1 The analogy between spin ice and water ice: the white spheres are the 
hydrogen atoms and the red one is the oxygen. A spin pointing inward (resp. outward) 
the tetrahedron corresponds to a short covalent bond (resp. long H-bond) for water ice 
(taken from [57]). 

 

    How can we realize the spin ice as the ground state in the pyrochlore lattice? Beginning 

with the Ising antiferromagnetic Hamiltonian in the pyrochlore lattice with global 

coordinates (denote as ë, í, ì), first considered by Anderson [12]: 

 ℋå-,.1,îïñ = 2∥ 3,S ∙ 35S

,,5

 (2.3.1) 

with 2∥ > 0, and where the sum is carried out over all the nearest-neighbor bonds of the 

pyrochlore lattice. The Hamiltonian ℋå-,.1,îïñ  allows an exponentially large number of 

ground states given by the simple rule that each “up” and “down” tetrahedron must have a 

vanishing net spin. For each tetrahedron, the configuration with two spins “up” and two spins 

“down” (2-up-2down) can satisfy this requirement. The 2-up-2-down configuration then can 

be mapped to the 2-strong-2-weak proton bonds of water ice. However, Anderson’s AFM 

model with Ising spins pointing along the global z direction is unrealistic since the magnetic 

moment of the rare-earth ion is constrained along the local 1"1"1  direction (denoted as ìó) 

by the CEF effect. Considering only nearest neighbor coupling we can write the following 

[58]: 

 ℋ$Q = −2 P, ∙ P5
,,5

=
2
3

ò,S
ô
ò5S

ô

,,5

 

P< = ± −1,−1,+1 3 , P= = ± +1,+1,+1 3," 

P[ = ± +1,−1,−1 3 , Pk = ± −1,+1,−1 3. 

(2.3.2) 

where (P, ∙ P5) = −1/3 for both spins that point out or in the tetrahedron. ò,S
ô
= +1 for an 

“out” spin and ò,S
ô
= −1 for an “in” spin. This Hamiltonian matches the above Anderson’s 

AFM model with a global Ising symmetry. The net magnetization for each tetrahedron can 
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also be derived by using 3J = ò<S
ô + ò=S

ô + ò[S
ô + òkS

ô as the total effective Ising spin for the 

tetrahedron [48]: 

 ℋ$Q =
2
6

3J=

J$J

+ öö (2.3.3) 

So, the ground state of this model is obtained when 3J = 0 on every tetrahedron. The lowest 

energy is related to states of each tetrahedron with two Ising spins directed inside, and two 

others directed outside the tetrahedron which means two having ò.S
ô = +1, and other two 

having -1 value. It is important to note that the ferromagnetic exchange between the real 

magnetic moments in such pyrochlore oxides may still give rise to an effective 

antiferromagnetic coupling between the effective Ising spins [59,60]. Indeed, the positive 

Curie-Weiss temperatures have been deduced from the magnetic susceptibility 

measurements, Gõ ≈ 0.5, 1.9, 1.8"and"1.7"K for of Dy2Ti2O7 [61], Ho2Ti2O7 [55], Ho2Sn2O7 

[62] and Dy2Sn2O7 [62], respectively, implying ferromagnetic exchange interactions. It is 

worth to notice that antiferromagnetic interactions in (2.3.2) would erase this frustration and 

favor the 4 in or 4 out (all-in-all-out, AIAO) states [55,63]. 

 

Dipolar spin ice  

    The origin of the ferromagnetic exchange interaction in the classical spin ice compounds 

is mostly due to the magnetic dipolar interaction between large magnetic moments for 

instance °~10"°; for Dy3+ and Ho3+ ions. An estimation of the dipolar interaction strength 

is given by Z = £§
k•

£A

0¶¶ß
≈ 1.4"K, where _.. = ®©KJJ 2/4 is the nearest-neighbor distance. The 

dipolar interaction strength is comparable to the Curie-Weiss temperature. Thus, the dipolar 

spin-ice model (DSI) was introduced in order to describe the low temperature properties of 

the classical spin-ice compounds [64]: 

 
ℋ™�å = −2 P, ∙ P5

,,5

− Z_..[
P, ∙ P5
´,5

[ −
3 P, ∙ ´,5 P5 ∙ ´,5

´,5
Ü

,¨5

  (2.3.4) 

The above DSI model can be simplified according to Eq. (2.3.2): 

 
ℋ™�å = 2$%% ò,S

ô
ò5S

ô

,,5

","where"2$%% = Z.. + 2.. =
5Z
3
+
2
3

 (2.3.5) 

The values of 2.. and Z.. has been studied by numerical simulations and a phase diagram 

of the DSI model was built [65]. The spin ice state can be stabilized in a wide range of 

2../Z.. and temperature, as shown in Figure 2.3.2 (a). One key experimental evidence for 

the existence of the spin-ice state in real materials is that the residual magnetic entropy of 
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Dy2Ti2O7 recovers the Pauling entropy in water ice [4]. Another powerful technique is 

neutron scattering that directly measures spin correlations. The observed pinch point in 

Ho2Ti2O7 is the direct proof of the spin-ice state predicted by the DSI model [66,67]. In 

addition, several Ho- and Dy-based pyrochlore compounds, such as Ho2Sn2O7 [67,68], 

Dy2Sn2O7 [62,69], Dy2Ge2O7 [70,71] and Ho2Ge2O7[72], have also been identified as spin 

ices. These compounds are called classical spin ice in order to be distinguished from quantum 

spin ice that will be introduced in the next section. 

 

 
Figure 2.3.2 (a) Calculated phase diagram of the DSI model (taken from [65]). (b) 
Magnetic entropy of Dy2Ti2O7 revealing the same residual entropy for water ice as 
explained by [4,64] (taken from [61]). (c) Evidence of the pinch points, associated to the 
spin-ice state, observed in diffuse magnetic scattering map recorded on the spin-ice 
compound Ho2Ti2O7 at 1.7 K in the (ℎ"ℎ"Æ) reciprocal space plane (taken from [66]). 

 

Magnetic Monopole and dumbbell model 

    The magnetic excitations in spin-ice can be obtained by flipping one spin at the center of 

a pair of corner-sharing tetrahedron, resulting in 3-spins-in-1-spin-out (3I1O) and 1-spin-in-

3-spins-out (1I3O) configurations. These excitations are called magnetic monopoles [73]. 

Catelnovo proposed a dumbbell model to illustrate the DSI Hamiltonian and describe the 

thermal fluctuations generating the magnetic monopoles [5,74]. The principle is that the Ising 

spin with a magnetic moment size of ° is treated as two magnetic monopoles with opposite 

charges ±Ør = °/®\  (dumbbell) separated by a length ®\ = 3®©KJJ/2 , which is the 

distance between the centers of two neighboring tetrahedra. The magnetic Coulomb 

interaction between two monopoles is written as: 

 

∞ _±≤

£§
k•
≥¥≥µ
0¥µ

""""if"∂ ≠ ∏

πu∫±=

2
"""""""if"∂ = ∏

 (2.3.6) 
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where _±≤ denotes the distance between two monoples, and πu is the self energy accounting 

for the dipolar and exchange energy between nearest neighbors. The DSI Hamiltonian Eq. 

(2.3.4) can be rewrite in terms of the net charges ∫± = Ør,, = 0,±2Ør,"and" ± 4Ør, , 

where the sum runs over the four magnetic charges inside the tetrahedral, at the centers of 

the tetrahedral that form a diamond lattice: 

 
ℋ™; =

°u
4ª

∫±∫≤
_±≤±º≤

+
πu
2

∫±=

±

 (2.3.7) 

 
Figure 2.3.3 (a) Spin-ice configuration in two neighboring tetrahedra. (b) 3I1O and 1I3O 
states obtained by flipping the spin shared by two neighboring tetrahedra. (c, d) The 
dumbbell picture of the corresponding states in (a, b) obtained by replacing each spin by 
a pair of opposite magnetic charges. (e) The monopoles can move as diffusion and a pair 
of monopoles is connected via the Dirac string. (taken from [5]) 

 

    Many properties of the classical spin ice can be described using the knowledge on the 

Coulomb gas. For example, considering the spin ice states as a correlated vacuum 

background, a thermally flipped spin would correspond to the nucleation of pairs of the 

charged defects, i.e. two magnetic monopoles of opposite charges. These magnetic 

monopoles reside on a diamond lattice that is formed by connecting the center of the 

tetrahedral of the pyrochlore lattice. They can be moved apart by flipping a sequence of 

spins/dumbbells like particle diffusion via a path i.e. the so-called Dirac string [75]. The 

diffusion of magnetic monopoles costs zero energy along the string since each tetrahedron 

tends to recover the ground state defined by the ice rule. Some experimental investigations 

and theoretical predictions have been done in order to obtain the direct evidence of the 

existence of monopoles in classical spin ice compounds by °SR , neutron scattering, 

magnetization measurements and so on. However, the interpretation of those results is still a 

matter of debate [57,75-77]. 
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    The dumbbell model of monopole only considers the matter field of monopoles and 

ignores one of the defining features of spin ice, i.e. its macroscopic zero-point entropy. 

However, it enlightens us to understand the nature of the ground-state correlations of spin-

ice, and also its fractionalized excitations in the aspect of the emergent gauge field. One can 

map the easy-axis spins P,  on the pyrochlore lattice to a set of the lattice vector field ø¿  

on the bonds of the diamond lattice [60]. Then, the 2I2O ice rule can be rewritten as a 

divergence free coarse-grain field, i.e. ∇×ø = 0. (Note: a nonzero flux of that field means 

that the ice rule is broken in one tetrahedron.) A gauge field √ , an analogy to 

electromagnetism, could be introduced as ø = ∇×√. Then the correlation functions for the 

field are  

 
q, _ q5 0 ∝

3_,_5 − _=ƒ,,5
_Ü

 (2.3.8) 

which means that the local constraint, i.e., the ice-rule, yields dipolar-like correlations at large 

distances. These Coulomb correlations are the signature of the so-called “Coulomb phase” in 

dipolar spin-ices [60,74,78,79], which could be observed in neutron diffuse scattering 

experiments as the pinch-point feature [66].  

 

Quantum spin ice 

    So far, we have discussed only the magnetic interaction of the Ising spins in the pyrochlore 

lattice. A natural question to ask is what are the effects of quantum fluctuation in a spin ice 

system, i.e. quantum spin ice (QSI). That was originally studied by Hermele et al. [80] for 

the case of the 3 = 1/2 XXZ model for the nearest-neighbor exchange on the pyrochlore 

lattice [81]: 

 ℋ≈≈∆ = ℋH�å +ℋÅ 

where, ℋH�å = 2SS 3,S
ô
35S

ô
,,5  

and, ℋÅ = −2± 3,
{ô35@

ô
+ 3,@

ô
35
{ô

,,5  

(2.3.9) 

with 0 < 2± ≪ 2SS. The transverse term, 2± can introduce quantum dynamics of the spin-

ice configuration. Based on the degenerate perturbation theory in 2± it has been found that 

the first non-trivial contribution arises at third order, and describes a tunneling process 

between degenerate spin-ice configurations: a ring exchange running on a hexagonal 

plaquette [80]. Then, the stability of a gapless spin liquid state, »(1) quantum spin liquid, 

has been demonstrated numerically in a region of the phase diagram, where the quantum spin 

ice state is a peculiar case of that phase [80,82-84]. The emergent excitations, such as the 
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gapless, linearly dispersing photon, and gapped, electric and magnetic charges spinon and 

vision are predicted according to the gauge theory of quantum electromagnetism [83,85]. 

 

 
Figure 2.3.4 (a) The tunneling between two spin configurations on a hexagonal plaquette. 
(taken from ref [83]) (b) Schematic of the spectrum of excitations in quantum spin ice. 
(taken from ref. [81]) 

 

    In the real materials, the physical meaning of the transvers term #± depends on the nature 

of the magnetic ion. A general Hamiltonian for an anisotropic effective spin-1/2 system based 

on symmetry-allowed nearest-neighbor couplings can be expressed as follow [23,42,43,86]: 

 ℋ$%%@? A
= 2SS3,S

ô
35S

ô
− 2± 3,

{ô35@
ô
+ 3,@

ô
35
{ô

,,5

+ 2±± …,53,
{ô35

{ô + …,5∗ 3,@
ô
35@

ô

+ 2S± 3,S
ô
À,535

{ô + À,5∗ 35@
ô
+ t ↔ Õ  

(2.3.10) 

where the effective spin is written in terms of local coordinates and the coefficients …,5 is a 

4×4 complex matrix, and À,5 = −…,5∗  (see Ref. [23]). The first term 2SS3,S
ô
35S

ô
 represents the 

easy-axis Ising interaction in the CSI model, other three terms represent the quantum 

fluctuations and are allowed by symmetry on the pyrochlore lattice [87]. If we set the terms 

2±±, 2S±"  to zero, this expression becomes the minimal model of the QSI Hamiltonian as 

discussed in Eq. (2.3.9). The four terms 2SS, 2±, 2±±, 2S±"   can be obtained by linear 

transformations from the original nearest-neighbour interactions: (1) an Ising interaction 

2SS3,S
ô
35S

ô
, (2) an isotropic interaction of the form 2,-ŒP, ∙ P5, (3) a pseudo-dipolar exchange 

interaction that has the same trigonometric form as magnetostatic dipole-dipole 

2õ\ P, ∙ P5 − 3P, ∙ ´,5"´,5 ∙ P5 , and (4) a Dzyaloshinskii-Moriya interaction of the form 

2™ñ œ,5 ∙ P,×P5  [88]. The phase diagram for this model has been solved by means of the 

gauge mean field theory (gMFT) for systems with Kramers ions [89,90] as well as non-

Kramers ions [86] (non-Kramers ions must have 2S± = 0 [86], since àu
± 3± àu

± = 0, 
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where àu
± are the wavefunctions of the CEF ground state of rare-earth ions). The existence 

of the QSI state is predicted for both cases.  

    Experimentally, to realize the physics of QSI, one needs to look for materials with much 

reduced dipolar interaction, and enhanced quantum fluctuations. The search for QSI effects 

has therefore moved away from Ho2Ti2O7 or Dy2Ti2O7, to materials containing rare-earth 

ions with smaller magnetic moments [81,91]. There are several QSI candidate materials, such 

as Yb2Ti2O7, Pr2X2O7 (X = Sn, Zr, Hf, Ir) and Tb2Ti2O7, which have been extensively studied 

recently [23,92-98]. However, the hallmark signatures of QSI, such as the linear dispersive 

emergent photon excitation and the continuum spinons excitations, have not been confirmed 

experimentally so far. 

2.3.2.!Quantum(XY(pyrochlores(

 

Table 2.3.1 Ground state magnetic properties of the Er- and Yb- based pyrochlore 
compounds. (∗  denotes the temperature where a broad hump is often observed in 
magnetic specific heat. The low temperature magnetism of Yb2Ti2O7 is strongly sample 
dependent, here, we take the relevant parameters from the latest report [94]. The magnetic 
structure of Yb2Pt2O7 is not completely determined. PC means Palmer-Chalker states in 
which the spins are pairwise antiparallel, and collinear with an edge of the tetrahedron 
[40]. 

 ® Gõ }Å/}∥ (∗ (Œ0\ Order State Ref. 

 (Å) (K)  (K) (K)   

Er2Ti2O7 10.1 -22 1.6 - 1.2 —=, AFM [99] 

Er2Sn2O7 10.4 -14 54 4.3 0.11 ΓÖ, PC AFM [100] 

Er2Ge2O7 9.9 -22 3.3 - 1.4 —= or —[, AFM [101] 

Er2Pt2O7 10.1 -22 28 1.5 0.30 ΓÖ, PC AFM [102] 

Yb2Ti2O7 10.0 0.8 1.9 2.5 0.25 ΓÑ, FM [94] 

Yb2Sn2O7 10.3 0.5 - 1.8 0.15 ΓÑ, FM [39] 

Yb2Ge2O7 9.8 0.9 1.7 3.7 0.6 —= or —[, AFM [101] 

Yb2Pr2O7 10.1 0.9 - 2.4 0.3 Undeterm. FM [103] 

 

As a consequence of the CEF effect, Er3+ and Yb3+ in a pyrochlore lattice possess a strong 

planar anisotropy within the local coordinate system (see Table 2.2.2). Back to Eq. (2.3.10), 

if the transverse terms 2±, 2±±, 2S±"  dominate over the Ising term 2SS, this Hamiltonian 

could also be used to describe the properties of the easy-plane case, i.e. the so-called quantum 

XY pyrochlores [104]. Furthermore, the Er- and Yb-based pyrochlore oxides are known to 
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exhibit strong phases competition between different but nearly degenerate ground states. 

They often reach an easy-plane long-range ordered state [105]. For example, Er2Ti2O7 shows 

a long-range magnetic order below 1.2 K, in which the spins lie in the XY plane via the order 

by disorder mechanism [40,106,107]. In contrast, the almost stoichiometric sample of 

Yb2Ti2O7 exhibits a ferromagnetic long-range order below 0.25 K [94]. The experimental 

results on a number of quantum XY pyrochlore compounds that have been investigated 

recently are summarized in Table 2.3.1. 

 

2.4.!Pyrochlore(iridates(
So far we have discussed frustrated magnetism and emergent magnetic phenomena of Ln3+ 

in the pyrochlore lattice within non-magnetic B site ion. Comparing to the aforementioned 

insulating pyrochlore oxides dominated by the exchange interaction only between Ln3+, rare-

earth pyrochlore iridates are such a system in which the interplay between Ln3+ and Ir4+ 

cannot be ignored any more. Furthermore, the sublattice of Ir4+ itself also exhibits novel states 

due to the strong spin-orbit coupling (SOC) of the 5d electrons. 

 

2.4.1.!SpinMorbit(interaction(in(5d(transition(metal(compounds(

Spin-orbit coupling (SOC) is a relativistic effect that provides an interaction between the 

orbital angular momentum and electron spin in atoms, ℋ"ef = gefh ∙ 3 , and is usually 

considered to be a small perturbation in the discussion of electronic states. Since the strength 

of SOC, gef , is proportionally to jk , where j  is the atomic number, SOC can play a 

significant role in heavy elements. For example, for the 4f electrons in rare-earth atoms, 

instead of the electron spin 3, the total angular momentum number # becomes an object to 

discuss in magnetism, as introduced in CEF subsection.  

 

Table 2.4.1 Comparison of the Coulomb interaction (») and spin-orbit coupling (gef) for 
various transition metal oxides [108]. 

 » gef 

3d (Cu, Co, Fe…) 4-7 eV 0-0.01 eV 

4d (Mo, Ru, Rh…) 1-4 eV 0.01-0.1 eV 

5d (Os, Re, Ir…) 0.1-2 eV 0.1-1 eV 
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    Transition-metal oxides with partially filled 4d and 5d shells exhibit an intricate interplay 

of charge, spin and orbital degrees of freedom arising from a delicate balance of electronic 

correlations, spin-orbit coupling, and crystal-field effects [109]. Changing from 3d to 5d in 

the periodic table, the electron correlation energy decreases as the radial expansion of the 

orbitals allows for the electrons to be further apart while in the same orbital, thereby reducing 

the electronic Coulomb repulsion » . However, simultaneously, the SOC increases 

dramatically, and is comparable to the Coulomb interaction for 5d series, as shown in Table 

2.4.1. The above discussion could be described by considering a generic model Hamiltonian: 

 ℋ = ”,5,±≤ö,±
‘ ö5≤

,,5,±≤

+ ℎ. ö. +gef h, ∙ 3,
,

+ » ’,± ’,± − 1
,,±

 (2.4.1) 

where ö,± is the annihilation operator for an electron in orbital ∂ at site t, ’,± = ö,±
‘ ö,± is the 

corresponding occupation number, ”  is the hopping amplitude, gef  is the atomic SOC 

entangling spin 3, and angular momentum h,, and » is the Hubbard repulsion potential. A 

schematic phase diagram, a rough guide of the novel type of quantum phases, is drawn in 

terms of the relative strength of the Coulomb interaction »/”  and the SOC gef/”  by 

Witczak-Krempa et al. [3]. 

 

 
Figure 2.4.1 Sketch of a generic phase diagram based on Eq. (2.4.1). (taken from ref [3]) 

 

    In the region, where the SOC is negligible, the simple metal could become so-called Mott 

insulator caused by the strong Coulomb repulsion » (electronic correlation), which can be 

understood according to the Hubbard model [110,111]. In the weakly correlated regime but 

relatively strong SOC, topology is found to play a crucial role in these system, and has led to 

the discovery of the topological band insulator [112,113] and subsequently its metallic 

analogue Weyl semimetal [114,115]. Upon increasing electronic correlations in the regime 

with relatively strong SOC, spin-orbit coupled Mott insulators with unusual local moments 
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can emerge, meanwhile their collective behavior gives rise to unconventional types of 

magnetism including the formation of quadrupolar correlations or the spin liquid states 

[116,117]. 

 
Figure 2.4.2 Formation of the novel effective #$%% = 1/2 states due to strong spin-orbit 
coupling in Sr2IrO4. (taken from ref [2]). 

 

    One of the examples due to the effects of these interactions is the 5d transition metal oxide, 

iridates. The Ir4+ has 5 electrons in the 5d orbital. As shown in Figure 2.4.2, with the 

octahedral CEF effect, the manifold of 5d orbital will split into two groups, the low-lying 

triplet ”=1 and higher energy doublet ÷1 states when considering only spin degeneracy. This 

puts the five electrons with a total spin moment 3 = 1/2 into the ”=1 state with an effective 

orbital moment h = 1. The strong spin-orbit coupling then further lifts the degenerate ”=1 

state, and results in a system with a fully filled band # = 3/2 (quartet) and a half-filled band 

# = 1/2 (doublet). The gap between two # bands is proportional to the strength of SOC, 

~gef/2 [109]. The reduced bandwidth of the latter then allows for the opening of a Mott gap 

even for the relatively moderate electronic correlations » in 5d (and 4d) compounds. This 

novel #$%% = 1/2 state was first observed experimentally in the perovskite iridate Sr2IrO4 by 

using resonant x-ray absorption [2,118]. Neutron diffraction on single-crystal Sr2IrO4 reveals 

an ordered moment of 0.208(3) °;/Ir, agreeing with the theoretical prediction [119].  

    For the compounds pyrochlore iridates series, which exhibit metal-insulator transition 

(MIT) at sufficiently low temperature [120,121] (Figure 2.4.3 (b)), the novel effective #$%% =

1/2 state of Ir4+ is also expected. Taken into account the electron correlation, i.e. Hubbard 

potential U, novel topological phases may also emerge in this system [109]. As shown in 

Figure 2.4.3 (a), besides the insulating and metallic states for large and small values of U 

respectively, a topological phase known as the Weyl semimetal state, in which the bands 

touch at the Fermi level with linear dispersion through a node termed as Weyl point appearing 

in pairs with opposite chirality [115,122], is possible for intermediate values of U, when the 

AIAO magnetic order of Ir4+ breaks the time-reversal symmetry (TRS) [114,123,124].  
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Figure 2.4.3 (a) Sketch of the predicted phase diagram for pyrochlore iridates. I: insulator, 
M: metal, TI: topological insulator, SM: semimetal, WSM: Weyl-semimetal. (taken from 
ref [3,114]) (b) Phase diagram of the pyrochlore iridates Ln2Ir2O7 based on transport and 
magnetization measurements. (taken from ref. [121])  

 

    The nature of the AIAO order of Ir4+ in the magnetic insulator phase has attracted 

considerable interests in the community. For the pyrochlore iridates compounds with MIT, 

magnetization measurements display a clear bifurcation between the zero-field cooled and 

field-cooled DC susceptibilities at (ñå, indicating a magnetic phase transition. As this feature 

appears to be relatively independent of whether or not the Ln3+ is magnetic or not, it has been 

suggested that this feature is caused by the magnetic ordering of the Ir4+ sublattice alone 

[120,121,125]. Muon-spin relaxation measurement has been performed on Eu-[126], Nd- 

[127], Yb- [128], and Y- [128] pyrochlore iridates. A well-defined muon-procession 

frequency continuously rises below TMI, indicating a long-range order with commensurate 

structure. Recent investigations of Eu- [129] and Sm- [130] pyrochlore iridates by resonant 

X-ray scattering have confirmed that the ordered state of Ir4+ is the AIAO configuration. 

Some have argued in the literatures that the AIAO order of Ir4+ could be observed in Nd2Ir2O7 

based on a subtle comparison of the intensity ratio of magnetic peaks in neutron powder 

diffraction patterns [131,132]. Unfortunately, a direct observation of the ordered state of Ir4+, 

for instance in Y2Ir2O7, via neutron scattering has not been achieved so far mainly due to a 

combination of the small magnetic moment of Ir4+ and the strong neutron absorption of 

iridium [133].  

 

2.4.2.!Interactions(between(Ln3+(and(Ir4+(in(pyrochlore(iridates(

Now we turn our attention to the interactions between the Ln3+ and Ir4+. As discussed in the 

previous subsections, the f-electrons can carry a net magnetic moment in a Kramers (Ln = 
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Nd, Dy, Sm, Gd, and Yb) doublet or a non-Kramers doublet (Pr, Tb, Ho). Given that the 

strength of the magnetic exchange interaction between Ln3+ in pyrochlore oxides is around 1 

K, any possible magnetic order of Ln3+ is expected to occur at low temperatures, e.g. below 

10 K. Thus, if the Ir4+ ions order magnetically at high temperature, the rare-earth magnetic 

moment may feel an effective molecular magnetic field generated by the ordered moment of 

the surrounding Ir4+. Such a molecular field is expected to be along the local 1"1"1  direction, 

as the in-plane components of the magnetic moments on a hexagon of 6 surrounding Ir4+ ions 

in the AIAO configuration are cancelled out, and only the out-of-plane components are 

retained at the Ln3+ position. Thus, such a molecular field may polarize the spin of Ln3+ and 

lead to the AIAO magnetic long-range order of Ln3+ for the ions with easy-axis anisotropy, 

or may suppress the XY order behaviors for the ions with easy-plane anisotropy. As shown 

in Figure 2.4.4 (a), magnetic Bragg peaks were observed in the neutron powder diffraction 

of Tb2Ir2O7, indicating the long-range order of Tb3+ [134]. As the temperature decreases, the 

ordered moment of Tb3+ increases without any sign for saturation. This behavior is 

interpreted as the induced ordering [131,134]. For the easy-plane single-ion anisotropic Er3+ 

and Yb3+, there is no indication of any long-range magnetic order down to 0.2 K, which will 

be discussed in Chapter 4. 

 

 
Figure 2.4.4 (a) Magnetic component of neutron powder diffraction of Tb2Ir2O7, the insert 
shows the temperature dependence of the ordered moment of Tb3+. (taken from ref [134]) 
(b) Temperature-field phase diagram for Nd2Ir2O7 under a magnetic field along the 
0"0"1  direction. (taken from ref. [135]) 

 

    In the non-metallic or insulating region in the phase diagram in Figure 2.4.3 (b), e.g. for 

Ln3+ ions with smaller ionic radii, the exchange coupling between the rare-earth and Ir spins 

is expected to be relatively weak due to the localized nature of 4f electrons, so the influence 

on the Ir magnetism from the localized rare-earth ions would be negligible. However, in the 
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semi-metal region, e.g. for Nd2Ir2O7 and Pr2Ir2O7, the magnetic coupling between rare-earth 

and Ir may be nontrivial and can induce various intriguing phases [136]. For instance, 

theoretical work has suggested that such a coupling in the form of f-d exchange interaction 

may in turn help to stabilize the Weyl semimetal and axion insulator phases in Pr2Ir2O7 [137]. 

Another example is Nd2Ir2O7, which exhibit induced magnetic order with AIAO 

configuration below (ñå  [128,131]. A large magnetoresistance was observed in the 

polycrystalline samples, implying that the electronic states are strongly coupled to the 

magnetic properties of the compounds [138]. Further investigations of magneto-transport on 

single crystal samples under applied magnetic fields also support this scenario [135,139]. As 

shown in Figure 2.4.4 (b), the quantum metal-insulator transition can be achieved by applying 

magnetic fields along the 0"0"1  direction. This can be understood as follows: when the 

magnetic field along 0"0"1  direction is applied, the AIAO magnetic configuration of Nd3+ 

can be changed to the 2I2O configuration; therefore, the effective molecular field coming 

from the 2I2O magnetic configuration of Nd3+ may suppress the AIAO magnetic state of Ir4+. 

Meanwhile, the associated insulating behavior is suppressed and a semi-metallic state arises. 

This fact indicates that the magnetic-field induced switching of the 4f moment configuration 

of Nd3+ may strongly modify the topological nature of the 5d band structure of Ir.  

    To conclude, the pyrochlore iridates can provide a fascinating platform for the study of the 

exotic quantum states and emergent phenomena in a combination of frustration, SOC, and 

band topology. The coexistence and competition of these interactions may result in an 

incredibly rich number of interesting or novel ground states that may be tuned by any one of 

these effects. Furthermore, it has been demonstrated that the application of moderate external 

magnetic fields can be used to efficiently tune the ground states, thus opening a new avenue 

for future information technology. 
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Chapter(3.!Experimental(Techniques(
 

3.1.!Sample(preparation(

In the experimental condensed matter physics investigation, sample preparation is always the 

first step to start the program. Samples of high quality are essential for the experimental 

investigations so that the intrinsic physical signatures can be obtained to compare with the 

theoretical models. Poor-quality samples are often so ‘dirty’ that complicated situations may 

arise from the influences of defect, distortion, off-stoichiometry and so on. On the other hand, 

a ‘dirty’ sample sometimes may give us surprises, for example, in the discovery of the iron-

based superconductors [140]. The pyrochlore compounds introduced in the previous chapter 

are oxides, which by nature are ceramic materials. Due to the high melting points of most 

oxide starting materials, they cannot be simply melted or deposited like intermetallic 

compounds. Rather, these compounds can be fabricated through high-temperature solid-state 

reactions that occur between the starting materials at high temperatures for days to form the 

desired phase.  

 

3.1.1.!SolidMstates(reaction([141](

Solid-state reaction is the most widely used method for the preparation of polycrystalline 

phases of inorganic solids from a mixture of solid-state starting materials. The advantage of 

this method is the wide availability of starting materials and the low cost for a bunch of 

sample preparations. Here we will give an example of A2O3(solid) + BO2(solid) ! 

A2B2O7(solid, pyrochlore type) to illustrate in detail the mechanism and characteristics of a 

solid-state synthetic reaction, as well as the procedures for sample preparation. 

    As shown in Figure 3.1.1, under certain high-temperature conditions, the reaction can 

proceed at the crystal boundaries of A2O3 and BO2 crystallites and form a product layer of 

pyrochlore type A2B2O7. The first stage of this reaction is to form nuclei of A2B2O7 

crystallites at the crystal lattice of reactants, or in adjacent to their boundary. The nucleation 

reaction is very difficult because the nuclei are from different reactants and are different in 

structure. Therefore, nucleation needs to go through structural rearrangement, including 
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breaking the cation-anion bonds of reactant molecules, releasing, diffusing and repositioning 

of A3+ and B4+ ions in the crystal lattice. The whole process can be achieved at high 

temperatures, thus leading to the formation of nucleus. Similarly, the growth of nucleus is 

also not easy. A3+ and B4+ ions in the reactants need to mobilize through two boundaries 

(Figure 3.1.1 (a)) and to grow on the nucleus to thicken the product layer. It is obvious that 

the controlling step of the reaction is the diffusion of A3+ and B4+ ions, which is favored by 

increasing the temperature, and so is the reaction. On the other hand, the reaction rate 

decreases with the thickening of the product layer. As we know the diffusion of ions is mainly 

driven by their concentration gradient. The diffusion rate at certain temperature will decrease 

when the concentration gradient becomes smooth due to the thickening of the product layer. 

Creating fresh reaction surface by regrinding the mixtures is necessary to obtain high 

efficiency of sample preparation.  

�

 
Figure 3.1.1 (a) Schematic diagram of the solid-state reaction mechanism. (b) Typical 
process routine of sample preparation by solid-state reaction.�

 

    In summary, three main factors influence the rate of solid-state reaction: (1) the surface 

and contacting areas of the reactants; (2) the nucleation rate of the product; and (3) the ionic 

diffusion rate at the phase boundaries and particularly through the product layer.  

    The complicated process of solid-state reaction can be simply illustrated as follows (Figure 

3.1.1 (b)). (1) The starting materials have to be selected carefully according to the target 

product and reaction routine. One of the principles is that the elements of the starting 

materials and the product should be of similar ionic valences. Otherwise additional 

equipment or process has to be applied. The preheating process is necessary for most of 

reactants to expulse the absorbed water before weighing the starting materials. Sometimes 
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the phases of starting materials are also checked beforehand by X-ray powder diffraction 

(XRPD) to track the reaction routine. Afterwards, a few grams of starting materials will be 

weighed according to the reaction equation. The loss of reactants during the reaction has to 

be take into account. (2) The prepared starting materials or reactants will be mixed together 

for further reaction. As discussed above, one way to improve the reaction rate is to modify 

the surface area and the contacting area of the reactants. Thus the long-time crushing, milling 

and pressing steps for the mixture are necessary. Sometimes in order to obtain the reactants 

with high specific surface area and high surface activity, various additional chemical routes, 

such as sol-gel method, have to be used. (3) The palletized mixture is then placed in furnace 

to react at high temperature. Sometimes the mixture is pre-heated at a lower temperature for 

pre-reaction and nucleation of the new phase, known as the calcining process. Then, a higher 

temperature is used for further reaction and growth of nucleus of target, known more 

generically as the sintering process. After calcining and sintering processes, the product may 

still contain inhomogeneous phases, oxygen vacancies and internal strains. To minimize the 

possible defects in the product, the sample can be heated up to a certain temperature and stay 

for a few hours, and then slowly cool down to room temperature, sometimes in a specific 

atmosphere, which is called the annealing process. (4) During the sintering process, the phase 

analysis of the products has to be performed repeatedly, for example by using XRPD. The 

controlling step of the reaction – ion diffusion through the phases – is influenced by many 

factors (such as temperature, thickness of the new phases). Therefore, the composition and 

the structure of the product from this type of reaction are usually nonstoichiometric and 

heterogeneous. Several cycles of grinding and sintering processes are necessary to obtain the 

targeted phase, for instance, in which the impurity phases should no longer be detectable by 

XRPD.  

3.1.2.!Preparation(of(pyrochlore(iridates(

In general, the pyrochlore structure is favored when the ratio of ionic radii of the A and B 

cations (written as _̀ _a) is greater than 1.46 [25]. With _̀ _a < 1.46, the defected-fluorite 

structure tends to form. It has been well established that the rare earth iridates “227” generally 

form a pyrochlore structure from Praseodymium to Lutetium, as well as Yttrium 

[120,121,125,142]. In the literature, IrO2 and rare earth oxides (Pr6O11, Tb4O7 and Ln2O3 for 

others) were used as the starting materials. The molar ratio of Ln/Ir was chosen to be 1:1.1 

after taking into account the evaporation of Ir during the sintering process. After grinding the 

starting materials together, the mixtures were pelletized and sealed into a Pt tube. Then, they 

were heated at 1150 to 1250 oC for a few days in a vacuum silica tube, with several 
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intermediate grindings and supplements of the reactant IrO2. However, IrO2 is more 

expensive than Ir metal, and tends to decompose into IrO3(gas) and Ir metal(solid) above 950 
oC. A high sintering temperature means relatively lower usage of IrO2. The amount of IrO2 

loss during sample preparation is non-negligible if we use the above method to prepare 

several grams of samples of each pyrochlore iridate for neutron scattering experiments. Using 

metallic Ir as the starting material and a lower sintering temperature may be the way to better 

control the cost of sample preparation.  

    In order to control the cost of sample preparation of pyrochlore iridates, we optimized the 

parameters of the fabrication processes by synthesizing Pr2Ir2O7 under different conditions. 

The Pr6O11 powder and Ir metal powder were used as the starting materials with the molar 

ratio of Pr/Ir is at 1:1.05. Then, the starting materials around 0.7 grams in total were mixed 

and grinded in a ball-milling machine. The mixture was pressed into pellets and sintered in a 

tube furnace in different atmosphere as given in Table 3.1.1. Several intermediate regrindings 

were employed about every 20 hours in the sintering process, and XRPD was employed to 

check the sample phases regularly. No additional Ir or IrO2 was added during regrinding. 

 

Table 3.1.1 Pr2Ir2O7 preparation under different conditions  

Batch Temperature (oC) Atmosphere Grinding Flux 

PIO1 950 Air Reactants only - 

PIO4 1050 Oxygen Reactants only - 

PIO6 1050 Air Reactants only - 

PIO8 1050 Air With alcohol - 

PIO10 1050 Air With alcohol KF 
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Figure 3.1.2 The evolution of various phases during the sintering process of the 

Pr2Ir2O7 preparation under different conditions. 
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    Figure 3.1.2 shows the evolution of various phases during sintering of the Pr2Ir2O7 

preparation of the selected batches. The experimental conditions of the different batches are 

listed in Table 3.1.1. For the batch PIO1 sintered at 950 oC for one month, there were still 

impurity phases in the sample. Other batches sintered at 1050 oC can give rise to the pure 

phase of Pr2Ir2O7 after sintering for the maximum of 14 days. It is clear that the sintering 

temperature plays an important role because it significantly influences the reaction rate by 

increasing the overall diffusion rate. Pure O2 atmosphere does not help the production of the 

pure Pr2Ir2O7 phases, see for instance, the batch PIO4 in comparison with PIO6. There are 

always small amounts of IrO2 in the sample, which was not included in the starting materials. 

Due to the enhancement of the reaction rate for Ir + O= → IrO[  in pure O2, the further 

decomposition of IrO3 to IrO2 and Ir will take place, thus resulting in the residual IrO2 and Ir 

metal in the sample. One could also promote the production of Pr2Ir2O7 by improving the 

surfaces of reactants particles. The batch PIO8 was grinded with alcohol. The usage of 

alcohol during grinding can avoid the powder adhesions with the surface of the balls and 

inner wall of the jar, which often happens during dry grinding. Grinding with alcohol can 

also improve the homogeneity of particle size of the reactants. The batch PIO10 was prepared 

by a new flux method using KF as flux which is used for single crystal growth of Pr2Ir2O7 

and Eu2Ir2O7 [143]. KF melts above 858 oC. It will form a liquid interface surrounding the 

reactants and dissolve the reactants. The reaction in the liquid interfaces is faster than that in 

solid interfaces by direct contact of particles. With seven days of sintering, we obtained the 

pure phase of Pr2Ir2O7, which is the fastest batch we ever obtained. The small amount of KF 

will be evaporated during sintering and the residual KF becomes negligible. According to the 

above experiments, we have optimized the recipe for the preparation of Pr2Ir2O7 as follows. 

The starting materials were Pr6O11 and Ir metal with the molar ratio of Pr/Ir at 1:1.05. Then, 

they were mixed and grinded with alcohol and KF (around 1% of the mixture’s mass) in a 

ball-milling machine for half hour. After pelletizing using an isostatic pressurizer, the pellets 

were sintered at 1050 oC in air. Regular regrinding process was employed with the period of 

20-36 hours sintering. This process was repeated until the sample became single-phase within 

the detection limit of XRPD (e.g. a few percent). Finally, the sample was annealed in air with 

a cooling rate of 100 oC/hour from 1050 oC to room temperature to minimize the defect in 

the sample. This recipe was also applied to the preparation of other pyrochlore iridates 

compounds. �
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3.1.3.!Preparation(of(pyrochlore(hafnates(

It has been established that the pyroclore structure can also be formed from La to Tb in rare 

earth hafnates compounds in “227” phases. The defect fluorite structure will be favored for 

Ln cations smaller than Gd [30]. We have thus synthesized the La2Hf2O7, Pr2Hf2O7 and 

Nd2Hf2O7 powders. Comparing to the preparation of pyrochlore iridates, the synthesis of 

pyrochlore hafnates is quite simple but requires higher sintering temperature above 1400 oC. 

All reagents were obtained from Chempur with purities generally better than 99.99%. 

Reagents were preheated at 1000 oC overnight before use. The mixtures were prepared by 

finely mixing stoichiometric amounts of HfO2 and rare earth oxides (La2O3, Pr6O11, Nd2O3), 

and then heating to 1250 oC for 24 h. The products were then ground into fine powders with 

alcohol, pressed into pellets, and heated to 1450 oC for 72 h. This process was repeated until 

a single phase was obtained by checking with XRPD. Finally, all samples were annealed in 

oxygen from 1200 oC to room temperature with a cooling rate 100 oC/h to minimize the 

sample defects.  

3.2.!Sample(characterization((

The sample characterizations include the measurements of laboratory X-ray powder 

diffraction (XRPD), DC magnetization and heat capacity (HC). 

3.2.1.!XMray(powder(diffraction((XRPD)(

X-ray powder diffraction (XRPD) is a fast and non-destructive powerful method for 

qualitatively and quantitatively analyzing the phases and crystal structure of polycrystalline 

samples. During the sample preparation discussed above, the laboratory XRPD was 

frequently used to verify the phases of the sample. The diffraction process is described by 

the well-known Bragg’s law (as shown in Figure 3.2.1), given by:  

 2W⁄è©€t’G = ’g (3.2.1) 

where g is the wavelength of the used radiation, W⁄è©  is the distance between the parallel 

lattice planes with Miller indices (ℎ:Æ), G is the angle between the incident (or diffracted) 

beam and the relevant lattice planes; ’ is an integer, referred to as the order of the diffraction, 

and is often unity. 

    When Bragg’s law is satisfied for a given wavelength g , x-ray beams scattered from 

successive planes in the crystal will superimpose coherently at the certain angle G . 

Meanwhile an intensity maximum can be recorded in the detector (see Figure 3.2.1 (a)). One 

can measure the intensity of the scattered beam as a function of the scattering angle 2G, which 

is called the diffraction pattern. Since the diffraction pattern corresponds to the phases of 
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matter, e.g. the crystal structure, it can be treated as the fingerprint of matters to simply verify 

the phases. A full-profile refinement of XRPD pattern such as the Rietveld method can 

provide more detailed crystallographic information of the sample. 

 

 
Figure 3.2.1 (a) Illustration of Bragg’s law and (b) photo of a STEO XRPD instrument. 

 

3.2.2.!Magnetization(and(MPMS(

Magnetization measurements have been performed with Quantum Design MPMS (Magnetic 

Property Measurement System, see Figure 3.2.2 (a)) at JCNS-2, Forschungzentrum Juelich 

and at IFP, Karlsruhe Institute of Technology. This magnetometer gives access to a magnetic 

field range from -7.0 to 7.0 Tesla, and a temperature from 2 to 300 K based on the 4He 

cryostat. The DC magnetization curve l(Ç) and the bulk magnetic susceptibility ‹(() can 

be obtained. 

    The core component of MPMS is a SQUID (Superconducting Quantum Interference 

Device) sensor, which consists of two superconductors separated by thin insulating layers to 

form two parallel Josephson Junctions. Figure 3.2.2 (c) shows a schematic view of SQUID. 

The Josephson effect can maintain a current with a zero voltage through the tunneling of 

Cooper pairs below the superconducting critical current ÉL. The Josephson junction’s current 

is enslaved to ÉL for a static magnetic flux. For a variation of the magnetic flux inside the 

loop, a sinusoidal screening current appears in the superconducting ring with a period equal 

to the number of quantum flux changes, and thus the period of the variation of the voltage at 

the Josephson junction can be related with one flux quantum, 

 
Φu =

2ªℏ
2÷

= 2.0678×10@<Ü"”÷€Æ® ∙ Y= (3.2.2) 
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where ℏ is the reduced Plank constant and e is the elementary charge. By careful design of 

the electronics, very small amounts of magnetic flux can lead to large changes in the detected 

current. The sample magnetic moment can be determined down to the order to 10-8 emu (10-

11 J/T). 

 

 
Figure 3.2.2 (a) Picture of Quantum Design MPMS system, (b) prepared sample mounted 
to MPMS sample, (c) schematic view of the SQUID sensor.  

 

    In this thesis, the sample was sealed in a gelatin capsule, and then attached to a non-

magnetic rod via a plastic straw and passed through sets of superconducting coils at a 

frequency of a few Hz. Figure 3.2.2 (b) shows an example of mounted sample ready for 

MPMS measurement. It should be noted that the DC susceptibility in this thesis is obtained 

by ‹ = l Ç, where l is the measured magnetization and Ç is the small applied magnetic 

field during measurement. For purpose of exploring the effect of external magnetic field on 

the magnetic ground state, samples were cooled to base temperature ~ 1.8 K in two 

conditions: with no applied field (zero-field cooled (ZFC)) and in a finite field (field cooled 

(FC)). In all measurements, samples were first zero-field-cooled, then a magnetic field 

around ~ 1 kOe was applied and the magnetization of sample was measured while slowly 

warmed up to above 300 K. The sample is then field-cooled under the applied field and 

measured during the warming process again in case of the existence of a significant thermal 

hysteresis around a transition. 
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3.2.3.!Heat(capacity(and(PPMS(

The heat capacity (or specific heat) measurements have been performed on a Quantum 

Design PPMS (Physical Property Measurement System) at JCNS-2, Forschungzentrum 

Juelich. With the combination of standard liquid 4He cryostat and 3He-4He dilution insert the 

heat capacity can be measured in the temperature range from 50 mK to 300 K. The system is 

kept adiabatic supported by a secondary vacuum to ensure no heat losses by exchange gas. 

The resolution is 10 nJ/K at 2 K. The available maximum magnetic field is 9 Tesla. 

 

 
Figure 3.2.3 Photography of Quantum Design PPMS equipped with a dilution insert for 
low temperature heat capacity measurement. The dilution insert components are marked. 

 

    The heat capacity is defined as the ratio of the amount of heat, ƒ∫, required to raise the 

temperature of a material by a unit of temperature: 

 
öQ = " lim·‚→u

ƒ∫
ƒ( Q

 (3.2.3) 

where x denotes the constraint which can be imposed, such as a constant pressure (p) or 

constant volume (V). The specific heat ]õ is the heat capacity divided by the number of moles 

of the sample since the heat capacity is an extensive quantity. Note that the difference of 

measured specific heat in the constant volume or pressure is negligible due to the low 

compressibility of the solid at low temperature [144].  

    For heat capacity measurement, PPMS takes the thermal-relaxation method, which 

measures the response of the sample after a heat perturbation. A flat-plate-shaped sample 

with a smooth surface was mounted on the micro-calorimeter platform (the puck shown in 

the left of Figure 3.2.4) linked by four threads with thermal conductance „õ to the cryostat 
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(Bath). Apiezon N grease was used to increase the thermal conductivity between the micro-

calorimeter platform and the sample. The puck with an appropriate amount of the grease has 

to be measured separately and subtracted from the raw data of the sample measurements to 

obtain the absolute heat capacity of the sample. 

 

 
Figure 3.2.4 (a): Picture of the heat capacity puck for standard cryostat. (b): Schematic 
illustration of the method of thermal relaxation to measure the heat capacity on PPMS. 

 

    Figure 3.2.4 (b) shows a simplified experimental setup scheme of the thermal-relaxation 

method. The (/KJ⁄, (õ and (- denote the temperature of the cryostat, the platform and sample 

with grease, respectively. The „õ and „- are the thermal conductance between the cryostat 

(Bath) and the platform, and between the platform and the sample, respectively. ‰ ”  is the 

heating power as a function of time. The effect of heat flowing between the platform and the 

sample, and the effect of heat flow between the sample platform and puck can be simulated 

by a two-tau model.  

 
]õ
W(õ
W”

= "‰ ” − „õ (õ ” − (/KJ⁄ + „- (- ” − (õ(”)  
(3.2.4) 

 
]-
W(-
W”

= −„- (- ” − (õ(”)  

When heat power ‰ ”  is applied to increase the sample temperature from (u to (u + ∆(< at 

a time ”% → ∞. The sample temperature can be expressed as:  

 (- ” = (u + ∆(< 1 − exp −
”
È<

 (3.2.5) 

where ∆(< = ‰/„õ and È< = (]õ + ]-)/„õ is the relaxation time. Then, cutting the heating 

power at a time ”′, the sample temperature relaxes down to the temperature set point from 

(- ”′ = (u + ∆(= to (u: 
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 (- ” = (u + ∆(=exp"(−(” − ”ó)/È<) (3.2.6) 

Thus fitting the rising and cooling temperature curves as a single exponential function gives 

access to the specific heat of the sample. As shown in Figure 3.2.5 (a), the Heat Capacity 

software of PPMS can automatically fit the temperature relaxation data with the two-tau 

model and give the heat capacity value of the sample.  

    However, a problem occurs frequently for non-metallic and pressed powder samples in the 

temperature range below 1 K. As shown in Figure 3.2.5 (b), the relaxation temperature 

exhibits an initial rapid drop that is non-exponential in shape, followed by a single, slow 

exponential one, because the parasitic resistance is internal to the sample itself. This is called 

the distributed È= effect [145]. The simple two-tau model (two separated single exponential 

function fitting) can no longer describe the temperature relaxation very well. Multiple 

exponential terms have to be considered in the function Eq. (3.2.5) and Eq. (3.2.6) to simulate 

the thermal relaxation between different intra parts of sample C1, C2 … Cn. And the 

measurement time of temperature is required to be long enough to reach the thermal 

equilibrium. Unfortunately, the Heat Capacity software of PPMS is not suitable to perform 

multiple-exponential fit. Thus, the data points with sample thermo-coupling below 80% 

cannot be trusted and have been deleted in our results. 

 

 
Figure 3.2.5 (a) Two-tau model fitting of the sample temperature. Raw data are displayed 
by black circles. The blue line is the heat pulse. Red line is a fit using Eq. (3.2.5) and Eq. 
(3.2.6). (b) Unsuccessful two-tau fitting of the temperature curve due to the distributed 
È= effect at extremely low temperatures.  

 

3.3.!Neutron(scattering((
Neutrons are charge-neutral particles that carry a nuclear spin 1/2 with a magnetic moment 

of ° = −1.91"°) (°) is the nuclear magneton). The weak interaction between neutrons and 
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charge particles of electrons and protons leads to a large penetration depth of neutrons in 

matter. The neutrons can interact with the magnetic fields due to the unpaired electrons in 

materials and the nuclear potential of atomic nucleus. Both interaction strengths are 

comparable in regards to their scattering probability. The kinetic energy of neutrons 

associated the de Broglie wavelength ! is given by: 

 
Î = :;( =

YÏ=

2
=

ℎ=

2Yg=
=
81.81
g=

 (3.3.1) 

where ℎ = 2ªℏ denotes the Planck constant and Ï is the velocity of neutron in km/s, energy 

Î  is in meV, temperature (  in K, ! in Å. Thus Î meV = 81.81/ g[Å]
=

 With typical 

wavelengths of thermal and cold neutrons from 1 Å to 6 Å, they approximately match the 

lattice d-spacing of materials and their associated kinetic energies Î from 82 to 2 meV also 

match the energy scales of the elementary excitations in condensed matters [146]. These 

properties of the neutron allow us to study the static and dynamic properties of materials on 

atomic scale via scattering methods. This subsection is dedicated to introduction of neutron 

scattering and three neutron scattering techniques used in this thesis. 

 

 
Figure 3.3.1 Geometry for a scattering experiment (taken from [147]). 

 

3.3.1.!Introduction(to(neutron(scattering(

For an incident beam of neutrons with energy Î,, one can obtain the scattered neutrons with 

various energies Î%  in a small solid angle WΩ with various directions G, à , as shown in 

Figure 3.3.1. If the incident flux is Φ, the partial differential cross section is defined as: 

 
W=ò
WΩdÎ%

=

number of neutrons scattered per second into
WΩ"with energy between"Î%"®’W"Î% + WÎ%"

ΦdΩdÎ%
 

(3.3.2) 
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The theoretical expressions for the partial differential cross section can be obtained from 

Fermi’s Golden Rule: 

 W=ò
WΩdω

=
Y

2ªℏ=
= :%
:,

Ò±ÚÒÛÚ Ù%, ı%, ∂% » Ù,, ı,, ∂,
=

±Ú,ÛÚ±ˆ,Ûˆ

×ƒ ℏ˜ + Î±, − Î±%  

(3.3.3) 

where Ù, and Ù% are the incident and the outgoing wavevectors of neutrons with spin states 

ı, and ı%, respectively, and ÒÛÚ is the polarization probability. ∂,  denotes the initial state 

of the sample, with energy Î±, and thermal population factor Ò±Ú, and its final state is ∂% . 

The ƒ -function describes the law of energy conservation. »  is the interaction operator 

between neutron and the sample, which depends on the specific scattering process. There are 

two main interaction processes of neutrons with matters, i.e. the nuclear and the magnetic 

interaction. The major task in the evaluation of the neutron cross-section is the calculation of 

the transition matrix element in Eq. (3.3.3). 

    For nuclear scattering, the nuclear potential is well approximated by Fermi 

pseudopotential: 

 
» =

2ªℏ=

Y 5̄ƒ ´ − 5́
5

 (3.3.4) 

where 5́ is the position of the ÕJ⁄ scattering nuclei in the sample and 5̄ is the corresponding 

scattering length with magnitude of the order 10@<= cm. Within the plane wave description 

of neutron, one can evaluate the transition matrix element by inserting Eq. (3.3.4) into Eq. 

(3.3.3). Thus, we obtain the final cross-section formula: 

 W=ò
WΩdω

=
:%
:,

1
2ªℏ 5̄ 5̄ô ÷@,˘∙´˙ô(u)÷@,˘∙´˙(J) ÷@,˚JW”

{¸

@¸5,5ô
 (3.3.5) 

within ˘ = Ù, − Ù% is the scattering vector. For coherent scattering in Bravais lattice, one 

can simply write above expression as  

 W=ò
WΩdω

=
:%
:,

òLŒ⁄
4ª

˝3(˘,˜) (3.3.6) 

where òLŒ⁄ = 4ª¯=  is the total coherent cross section. 3(˘,˜) is the dynamic structure 

factor and is given by  

 
3 ˘,˜ =

1
2ªℏ˝

÷@,˘∙´˙ô(u)÷@,˘∙´˙(J) ÷@,˚JW”
{¸

@¸5,5ô
 (3.3.7) 

N is the number of nuclei and t is time. The angle brackets ⋯  denotes the average over 

initial states. The dynamic structure factor (also called scattering law or scattering function) 
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"3 ˘, ˜  depends on the momentum and the energy transferred from neutron to the sample, 

but not on absolute values of Ù, and Ù%. It contains information on both the positions and 

motions of the atoms. The goal of most neutron scattering experiments is to measure 3 ˘,˜  

and thereby to determine the microscopic properties of the system under investigation.  

    For the case of magnetic scattering by the interaction of a neutron with the magnetic field 

ˇ due to unpaired electrons in the sample, the operator is given by: 

 » = ! ∙ ˇ = −…°)ı ∙ ˇ 

ˇ = ∇×
−2°;€
´ [ −

÷
ö
Ï$×´
´ [  

(3.3.8) 

where … = −1.913 is the gyromagnetic ratio, ! is the magnetic moment operator of the 

neutron, ı is a Pauli spin operator. The magnetic field ˇ is given by considering a single 

electron moving with velocity Ï$, ´ is the distance from the electron to the point at which the 

field is measured. € is the spin operator of electron and °; is the Bohr magneton. After the 

procedure evaluating the transition matrix element in Eq. (3.3.3) for the case of unpolarized 

neutrons, identical magnetic ions with localized electrons, and spin-only scattering, we obtain 

the following master formula: 

 W=ò
WΩdω

=
:%
:,

…_u = }~
2
F( ˘ )÷@I(˘)

=
ƒ±≤ −

∫±∫≤
∫=

3±≤(˘,˜)
±,≤

 (3.3.9) 

where, _u = 0.2818×10@<="cm is the classical radius of the electron, }~ is the Lande factor, 

F( ˘ ) is the dimensionless magnetic form factor defined as the Fourier transform of the 

normalized spin density associated with the magnetic ions, ÷@I(˘)  is the Debye-Waller 

factor due to thermal movements of the magnetic ions. The polarization factor ƒ±≤ −
≥¥≥µ
≥A

 

implies that neutrons can only couple to the magnetic moments or spin fluctuations 

perpendicular to the scattering vector ˘.  

    The magnetic neutron scattering can originate either from collective excitations like spin 

waves or from single particle excitations like crystal-filed excitations. For the case of 

collective excitations of spin system ( Õ ≠ Õó ), the dynamic magnetic structure factor 

3±≤(˘,˜) is the Fourier transform of the magnetic pair correlation function: 

 
3±≤(˘,˜) =

1
2ªℏ

÷,˘∙ ´˙@´˙ô 35
±(0)35ô

≤(”) ÷@,˚JW”
{¸

@¸5,5ô
 (3.3.10) 

where 35±(0)35ô
≤(”)  is the thermal average of the time-dependent spin operators. It 

corresponds to the van Hove pair correlation function describing the magnetic correlation 

between spins. 
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    For the case of single-ion excitations, e.g. transition between different crystal-field states 

Γ. → Γr, the magnetic scattering law 3±≤(˘,˜) reduces to  

 3±≤(˘,˜) = ˝Ò. Γ. #± Γr Γr #≤ Γ. ƒ ℏ˜ + Î. − Îr  (3.3.11) 

where ˝ is the total number of the magnetic ions and Ò. is the Boltzmann population factor 

of the initial state Γ. . For experiments on polycrystalline material, the cross section Eq. 

(3.3.9) has to be averaged in ˘ space: 

 W=ò
WΩdω

=
:%
:,

…_u = }
2
F( ˘ )÷@I(˘)

=
Ò. Γr #Å Γ.

=
ƒ ℏ˜ + Î. − Îr  (3.3.12) 

where #Å = #− #∙˘
$A˘ is the component of the total angular momentum perpendicular to the 

scattering vector ˘, and  

 Γr #Å Γ.
=
= =

[
Γr #± Γ.

A

¥
 (3.3.13) 

These matrix elements could be obtained according to the local symmetry analysis and 

Steven operators equivalence. Since crystal-field excitation is a single-ion property, its 

inelastic neutron scattering signal is usually dispersionless and the intensity decreases with 

∫ according to F=( ˘ ). 

    In inelastic neutron scattering experiments the energy transfer can be positive or negative, 

corresponding to neutron energy-loss and energy-gain processes, respectively. An important 

property of the scattering function is the principle of detailed balance: 

 3 −˘,−˜ = ÷@ℏ˚ èê‚S ˘,˜  (3.3.14) 

where :; is Boltzmann’s constant, ( is the temperature, with ˜ is assumed to be positive. 

This property indicates the fact that the probability of a transition in the sample depends on 

the statistical weight factor for the initial state, which will be lower for excitation annihilation 

than for excitation creation [148]. 

 

3.3.2.!Neutron(powder(diffraction(

The technique to determine atoms and spins arrangement in real space is known as neutron 

diffraction or elastic neutron scattering (:% = :, ) which measures the single-differential 

cross section Wò WΩ = W=ò WΩdω{¸
@¸ W(ℏ˜). For the case of nuclear scattering from 

periodically arranged atoms (in a crystal), it can be decomposed into two contributions: (1) 

the incoherent elastic scattering is isotropic and yields a constant background, (2) the 

coherent elastic scattering provides information about the mutual arrangement of the atoms 
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and magnetic moments. The coherent scattering from lattice with more than one atom per 

unit cell obeys Bragg’s law Eq. (3.2.1) and its cross-section can be written as: 

 Wò
WΩ LŒ⁄

= .̋%L
2ª [

Ïu
V.%L(&) =ƒ(˘ − &)

&
 (3.3.15) 

with the so-called unit-cell nuclear structure factor 

 V.%L(&) = '̄exp"(t& ∙ 5́)exp"(−(5(&))
5

 (3.3.16) 

where, .̋%L  denotes the number of unit cells, Ïu  is the volume of the unit cell, ´, is the 

position vector of the jth atom in the unit cell, '̄ = òLŒ⁄
5 /4ª  is the associated atom’s 

scattering length. &  represents the reciprocal lattice vector. The ƒ -function implies the 

diffraction condition that the strong reflections can be observed when the scattering vector ˘ 

equals to the reciprocal lattice vector &  of the sample. The Debye-Waller factor 

exp"(−(5(&)) describes the thermal movements of the atomic positions. Thus, (1) one can 

obtain the information about the size and the form of the unit cell by examining the scattering 

angles 2G  at which Bragg reflections occur; (2) the atoms positions in unit cell can be 

obtained by analyzing the intensities of the Bragg reflections through the structure factor; (3) 

the atomic displacements can be obtained by studying the ˘-dependence of the Debye-

Waller factor. 

    For the case of magnetic elastic scattering from a periodic magnetic structure, the nuclear 

structure factor V.%L(&) has to be replaced by the magnetic vector structure factor as shown 

in Appendix D. For example, considering only one type of magnetic ion ordered with a 

magnetic propagation wavevector krK1, its magnetic moment can be expanded in a Fourier 

series: 

 )5 = )k*+,exp"(−tkrK1 ∙ 5́)
k*+,

 (3.3.17) 

Therefore, the elastic magnetic scattering cross section is given by: 

 Wò
WΩ rK1

= ˝rK1
2ª [

ÏrK1
VrK1Å ˘

=
ƒ(˘ − &− krK1)

&,k*+,

 (3.3.18) 

The magnetic vector structure factor is  

 -rK1(˘) = Ò F5(∫))5exp"(t˘ ∙ 5́)exp"(−(5(˘))
5

 

VrK1Å (˘) = ˘×(VrK1(˘)×˘) 

(3.3.19) 
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where ˝rK1  is the number of magnetic cells and ÏrK1  their volume. Ò = .0§
=
= 0.2695×

10@<=cm is the magnetic scattering length, given in Bohr magnetons °;. Referring to the ƒ-

function, if the magnetic propagation wavevector krK1 = (0"0"0), the magnetic Bragg peaks 

locate at the positions on the nuclear ones, otherwise, satellite peaks appear at the positions 

˘ = &+ krK1.  

    As shown in Figure 3.3.2 (a), a powder or polycrystalline sample always contains some 

crystallites which are properly oriented to fulfill the Bragg reflection condition (Eq.(3.2.1)). 

Thus, all the Bragg reflections can be observed in one scattering plane in a powder diffraction 

experiment. The measurement procedure is equivalent to the Debye-Scherrer method. The 

scattered neutron intensity is recorded as function of the detector angle 2G. The observed 

intensities can be described as follow: 

 É, = ¯}(G,) + 3Y⁄è© V⁄è© =h(G,)G(G, − G⁄è©) (3.3.20) 

The first term is the background of the diffraction pattern, 3 is the scale factor. Y⁄è© denotes 

the multiplicity of the Bragg reflection (ℎ":"Æ), h G, = 1/(sin G sin 2G) is the so-called 

Lorentz factor which is tremendously enhanced at small scattering angles G. G(G,) is the peak 

shape function describing the instrumental resolution effects and the peak broadening due to 

the grain size and internal strain effects of the sample, and the linewidth varies as a function 

of 2G. 

    The powder diffraction patterns are often treated by performing the Rietveld method, 

which is based on the minimization of the weighted sum of the squared differences between 

the observed and the calculated intensities É,LK© and É,Œ/-, respectively: 

 ‹= = ˜, É,
Œ/- − É,

LK© =

,

 (3.3.21) 

with ˜, = 1 ò,=, where ò,= is the variance of the observation É,Œ/-. The summation runs over 

the õ̋  experimental points. With this method, one can get access to the crystallographic 

information of the sample, such as the lattice constants, the atomic positions, the atomic 

displacement parameters and the magnetic structure for magnetic materials. 

    In this thesis, the neutron powder diffraction experiments were performed on SPODI [149] 

at MLZ and on HRPT [150] at PSI. The diffractometer SPODI is equipped with the 

monochromator consisting of Ge single crystals. The orientation (5 5 1) was used to obtain 

incident neutrons of wavelength 1.549 Å. The detector system consists of 80 3He position 

sensitive detector tubes (vertical direction) with fixed collimators located in front of each 

detector. The multi-detector of SPODI covers a scattering angle of 160o. Since each detector 
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covers 2o, the data collection was performed via stepwise positioning of the detector system 

to obtain a diffraction pattern of desired stepwidth, for example 40 steps for stepwidth 0.05o. 

The standard samples, such as Vanadium and Na2Ca3Al2F14 (NAC, space group I213 ) 

powders, should be measured in advance to make detector efficiency correction and 

scattering angle correction for the collimator-detector pairs. Two-dimensional raw data was 

obtained as a function of detector height and scattering angle for each detector, which allowed 

a rapid check for sample crystallinity, alignment and possible preferred orientation effects. 

The conventional diffraction patterns É 2G  were derived from the two-dimensional raw data 

by integration along the Debye-Scherrer rings (see Figure 3.3.2 (a)). The instrument layout 

of HRPT is similar to that of SPODI. High ∫-resolution mode of HRPT was used in the 

measurements. The incident neutron wavelength was selected as 1.5 Å. The fine powder 

sample was loaded in a Vanadium or Copper can and measured at several temperatures. The 

analysis of powder diffraction patterns and the corresponding refinement of the structural 

parameters was carried out with the aid of program FULLPROF [151]. 

 

 
Figure 3.3.2 (a) Debye-Scherrer cones of neutron scattered from a polycrystalline sample 
are detected in the scattering plane. (b) Illustration of the SPODI diffractometers.  

 

3.3.3.!Neutron(timeMofMflight(spectroscopy(

To study the excitations of the sample, not only the scattering vector Q but also the energy 

transfer of neutrons has to be measured, called inelastic neutron scattering (INS), which 

measures the partial differential cross section W=ò WΩdE. According to Eq. (3.2.1), energies 

of the neutrons can be determined by measuring the flight time ” of a neutron in a given flight 

path h, Î = YÏ= 2 = Y(h/”)=/2, known as time-of-flight technique [152].  
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    Time-of-flight spectrometers are usually equipped with large detector banks, covering a 

wide scattering angle range. An incident neutron of energy Î, and wavevector :, is scattered 

in the detector direction 2G  with a final energy Î%  and wavevector :% . The intensities 

collected at the detectors represent the raw data of the form É(2G, ”) , which can be 

transformed to the scattering law 3 ˘,˜  as follows: 

 
∫ =

Y
ℏ
h

”= + ”,
= − 2”,” cos(2G)
”,
=”=

 

˜(”) =
Y
2ℏ
h=
”= − ”,=

”,
=”=

 

(3.3.22) 

where ”, and ” are the flight time of the incident neutrons and the neutrons scattered from the 

sample to the detector located at scattering angle 2G, respectively. 

 

 
Figure 3.3.3 (a) Phase-space diagrams of direct time-of-flight technique, (b) Schematic 
view of the TOFTOF spectrometer.  

 

    Several time-of-flight spectrometers were employed in this thesis including the IN4 at ILL 

and MERLIN at ISIS for the investigation of the crystal field transition, and IN6 at ILL, LET 

at ISIS and TOFTOF at MLZ for the magnetic excitations of the pyrochlore compounds. 

Here, we give a short description of the typical time-of-flight spectrometer TOFTOF. The 

TOFTOF spectrometer is a multi-disc chopper time-of flight spectrometer for cold neutrons 

[153]. The neutrons with wavelength longer than 1.38 Å are guided to the primary 

spectrometer. Seven high speed neutron chopper discs in the primary spectrometer are used 

to select short monochromatic neutron pulses from the continuous neutron beam. Then, the 

neutron pulses pass through the slit system and the primary beam monitor, and hit the sample 

in the sample chamber equipped with sample environment like a cryostat. The scattered 

neutrons enter the flight chamber and travel to the detectors. The flight chamber is filled with 
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argon to avoid undesired scattering by air molecules. The 1000 3He tube detectors are 

adjusted tangentially to the intersection lines of the Debye-Scherrer cones with the surface 

of a virtual sphere with a radius of 4 m around the center of the sample. The detector system 

covers a scattering angle 2G range from 7.5 to 140o. The time-of-flight of neutron from the 

sample to detector is measured by recording the detection time. The final scattering law 

3 ∫,˜  can be transformed from the raw data in the software Mantid following the standard 

routine. Benefit from the multi-disc chopper system, the accessible dynamic range and the 

energy resolution (from 5 °eV to 5 meV) of TOFTOF can be changed conveniently by 

changing the chopper frequencies from 1000 to 22 000 rpm. 

 

3.3.4.!The(XYZ(neutron(polarization(analysis(

The interaction of the magnetic moment of the neutron with the studied system involves not 

only the scattering of neutrons from one momentum state to another, but also the neutron 

spin-dependent terms in the neutron scattering cross-section. The spin-dependent terms give 

rise to interesting polarization effects and provide additional details about the studied system. 

Polarized neutrons are often used for determining magnetic correlations, for distinguishing 

between collective and single-particle excitations (for example, coherent and incoherent 

scattering processes), and for high-resolution spectroscopy (neutron spin-echo). The 

scattering theory of polarized neutrons has been completed more than forty years ago 

[154,155]. In this thesis, one often used polarized neutron scattering technique is the so-called 

xyz-difference method [156], allowing a simultaneous and unambiguous determination of the 

nuclear, magnetic and nuclear spin-incoherent scattering cross sections as a function of 

scattering vector and energy transfer. Here, we only discuss the diffraction case. 

    The spin-dependent scattering cross sections for an xyz-polarization analysis measurement 

are expressed as follows [157]: 

 Wò
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where the x, y and z subscripts denote the direction of the incident polarization of neutrons, 

and the nsf and sf superscripts refer to the non-spin-flip and the spin-flip cross sections, 

respectively, and the subscript nuc, mag, si imply nuclear (and the isotope incoherent), 

magnetic and spin-incoherent contributions. The so-called “Schärpf angle” ∂ is the angle 

between the scattering vector and the x axis. 

    From the above xyz equations for the measured cross sections, one can easily obtain the 

magnetic cross section independently calculated in two ways: 
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(3.3.29) 

The nuclear and the spin-incoherent cross sections can be obtained as follow: 
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where (’€F and (€F denote the total non-spin-flip and the total spin-flip cross sections, 

respectively. It should be noted that the xyz-difference method of polarized neutron scattering 

cannot separate the nuclear coherent and isotope-incoherent contributions. The xyz-

difference method of polarization analysis can be used to study the antiferromagnetic 

structure with the propagation vector k = (0 0 0), in which the magnetic peaks locate at the 

positions of nuclear Bragg peaks and are difficult to be identified with unpolarized neutron 

scattering. Furthermore, this method is extremely useful for the studies of frustrated magnets, 

in which the spins often exhibit short-range order leading to the absence of magnetic Bragg 

peaks. The associated diffuse magnetic scattering signal is usually very weak that is drowned 

out by background for unpolarized neutron scattering. With the help of polarization analysis, 

the pure magnetic contribution can be identified and distinguished from other contribution. 

Thus the magnetic signal-to-background ratio is improved. The diffuse magnetic scattering, 

even for small magnetic moment system, can be observed by xyz-difference method of 

neutron polarization analysis. 
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    The polarized neutron scattering measurement in this thesis was performed on the 

instrument DNS at MLZ. DNS is a cold polarized neutron time-of-flight spectrometer with 

multi-detector. The incident neutrons with the wavelength ranging from 2.4 to 6 Å can be 

selected by the double-focusing PG(002) monochrmator and the high-order reflected 

neutrons are rejected by the velocity selector. In order to perform time-of-flight spectroscopy, 

a double-chopper system is equipped between the monochromator and the sample position. 

A polarizer using m = 3 Schärpf bender-type focusing supermirrors, consisting of one type 

of magnetic layers with aligned magnetization and non-magnetic layers with varying 

thickness, is placed behind the velocity selector for the spin-up polarized neutrons passing 

through. Then, a "-flipper is used to reverse the neutron polarization from spin-up to spin-

down. The sample position is surrounded by a set of coils, so-called XYZ-coils, which can 

generate three orthogonal magnetic guide fields with x, y, and z direction for the desired 

neutron polarizations. The scattered neutron can be recorded by 24 detectors combined with 

a polarization analyzer in front of each detector. The xyz-polarization is defined with the axis 

x parallel to averaged Q, with the axes y and z perpendicular to the averaged Q pointing in- 

and out-of the scattering plane respectively (as shown in Figure 3.3.4 (a)). By controlling the 

"-flipper and the XYZ-coil, one can measure the six channels of the scattering cross section 

(Eq. (3.3.23) - (3.3.28)) of the sample. Before the measurements, standard samples are 

measured: vanadium for detector efficiency normalization, NiCr for flipping ratio calibration 

and empty cell for background subtraction have to be performed. Then, the nuclear coherent 

scattering, the magnetic scattering and the spin-incoherent scattering can be separated from 

the corrected data of the sample according to Eq. (3.3.29) and Eq. (3.3.30).  

 

 
Figure 3.3.4 (a) The geometry of an xyz-polarization analysis experiment, (b) The 
schematic layout of the DNS spectrometer.  
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Chapter(4.!Phase( Diagram( of( the( RareMearth( Magnetic( GroundM

States(in(Pyrochlore(Iridates(
 

4.1.!Introduction((
As discussed in Chapter 2, the combination of frustration, SOC and band topology puts the 

pyrochlore iridates at the intersection of many of the recent developments in condensed 

matter physics [3]. Early macroscopic measurements have indicated that the electric and 

magnetic properties depend strongly on the radius of the rare-earth. While the largest member 

Pr2Ir2O7 remains metallic down to the sub-Kelvin temperature [158], other compounds with 

smaller Ln3+ ions enter a magnetic insulator phase at a certain temperature, (34 , which 

becomes lower for larger ionic sizes of the rare-earth elements [120,121,142]. An AIAO 

order of the Ir sublattice below (34 has been evidenced in several members via µSR and RXS 

[126,130,159]. However, neutron scattering, a powerful microscopic technique for 

magnetism, has failed to determine the magnetic structure of the Ir4+ sublattice mainly due to 

a combination of the strong neutron absorption of iridium and the small magnetic moment of 

Ir4+ [133]. On the other hand, the magnetic scattering signal of some of the Ln3+ moments is 

still detectable if the neutron scattering experiments of iridates are well-designed. Therefore, 

benefiting from the strong interaction between Ln3+ and Ir4+, the study of Ln3+ via neutron 

scattering may shed light on the understanding of the magnetism of the Ir4+ sublattice. 

Additionally, the behavior of the localized 4f electrons in Ln3+ may lead to interesting 

phenomena when the A-B site interaction occurs. 

    Up to now, only a few investigations of pyrochlore iridates by means of neutron powder 

diffraction (NPD) have been reported. The AIAO long-range magnetic order of Ln3+ was 

observed in Nd2Ir2O7[131,132], Tb2Ir2O7 [134] and Ho2Ir2O7 [160]. The temperature 

dependence of the intensity of magnetic Bragg peaks (proportional to the squared ordered 

moment of Ln3+) exhibited an unusual behavior that the intensity increased slowly below (34 

and sharply on further lowering the temperature without any sign of saturation. Based on the 

assumption of the AIAO order of Ir4+, the induced ordering model, in which a molecular 

magnetic field, qr%Ir , was generated by the ordered moment of Ir4+, was proposed to account 

for the temperature dependence of Ln3+ ordering [134,160]. Meanwhile, such a molecular 
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magnetic field might split the doublet of the CEF ground-state of Ln3+, which could be 

observed in inelastic neutron scattering (INS). However, only one triple-axis spectrometer 

measurement on Nd2Ir2O7 powder sample reported that a gapped inelastic scattering signal 

with slight dispersion centered around 1.2 meV was observed. The INS studies on other 

compounds are still missing. Additionally, the ordered moment of Ln3+ is only 1/3 or 1/2 of 

the total magnetic moment of Ln3+ under CEF. The behavior of disordered magnetic moment 

is still poorly understood due to the lack of studies on spin dynamics, for example via INS. 

On the other hand, based on the same AIAO magnetic long-range structure of Nd3+, two NPD 

experiments gave different ordered moment, 2.3(4) °a at 0.7 K [131] and 1.27(1) °a at 1.8 

K [132]. The possible reason is that the extraction of magnetic diffraction patterns between 

two different temperatures results leads to a significant error since the magnetic Bragg peaks 

are on the top of nuclear Bragg peaks for AIAO magnetic structure. Therefore, it is also 

worthwhile to addressing the controversial observations of Nd2Ir2O7.  

    This chapter will focus on the series of compounds which exhibit a metal-insulator 

transition (MIT) at finite temperature (from 33 K for Nd2Ir2O7 (NIO) to above 100 K for 

Tb2Ir2O7 (TIO), Dy2Ir2O7 (DIO), Ho2Ir2O7 (HIO), Er2Ir2O7 (EIO), Yb2Ir2O7 (YbIO)). By using 

the neutron powder diffraction, magnetic susceptibility, specific heat, polarized neutron 

scattering and inelastic neutron scattering, we systematically investigated the properties, 

magnetic structure and magnetic excitations below (34. Finally, a phase diagram including 

the rare-earth magnetic ground state is established. 

4.2.!Experimental(details(

Polycrystalline samples of Ln2Ir2O7 (Ln = Nd, Tb, Dy, Ho, Er and Yb) were synthesized by 

solid state reaction. Starting from the mixture of rare-earth oxides (99.99% Ln2O3 for Ln = 

Nd, Dy, Ho, Er and Yb; 99.99% for Pr2O11; 99.99% for Tb4O7) and metal Iridium (99.99%), 

with molar ratio 1:1.05 of Ln to Ir, the samples were prepared by a new flux method using 

KF as flux. The mixture was pressed into pellets, placed in alumina crucible and sintered at 

1050 -1100 oC in air for 7 days with several intermediate grinding and pelletizing steps. The 

reference compound Y2Ir2O7 (YIO) was also prepared by the same way and used to estimate 

the phonon contribution in the heat capacity. The phases of the sample were regularly 

checked during synthesis by room temperature x-ray powder diffraction (XRD) using the 

laboratory-based diffractometer (STOE, Mo-Kα1) with a monochromator. The magnetic 

susceptibility measurement was performed by using a Quantum Design magnetic properties 

measurement system (MPMS) equipped with a superconducting quantum interference device 
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(SQUID) magnetometer. The heat capacity of the pelletized samples was measured down to 

50 mK using a Quantum Design physical properties measurement system (PPMS) equipped 

with a dilution refrigerator.  

    The neutron powder diffraction (NPD) measurements were carried out using the powder 

neutron diffractometer SPODI at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, 

Germany. The XRPD and NPD data were refined using the package FULLPROF suite. The 

diffuse neutron scattering with xyz-polarization analysis was performed on the diffuse 

neutron scattering spectrometer (DNS) at MLZ, operated by Juelich Centre for Neutron 

Science (JCNS). The powder sample around two grams was sealed in a hollow cylinder 

copper can with optimized thickness to reduce neutron absorption. A dilution refrigerator 

was used to achieve the lowest temperature of 0.1 K. An incident neutron beam of wavelength 

λ = 4.2 Å was used for the experiments. The inelastic neutron scattering (INS) measurement 

was performed on the time-of-flight spectrometer TOFTOF at MLZ. The incident neutron 

beam of wavelengths of λ = 5.0 and 5.5 Å were chosen to cover a large enough dynamic 

range and maintain a reasonable energy resolution. 

 

4.3.!Results(and(discussion(
 

4.3.1.!Neutron(powder(diffraction(

The room temperature NPD patterns of Ln2Ir2O7 (Ln = Nd, Tb, Dy, Ho, Er, Yb) are presented 

in Figure 4.3.1 and Figure 4.3.2. All patterns have been Rietveld refined with the cubic 

pyrochlore structure (space group VW3Y, Ln at the 16d (1/2, 1/2, 1/2), Ir at 16c (0, 0, 0), O 

at 48f (x, 1/8, 1/8) and O’ at 8b (3/8, 3/8, 3/8)). During refinement, the copper peaks from the 

sample holder have been excluded. As marked by orange arrows in the middle pattern of 

Figure 4.3.1, the contamination of impurity phases around 2-3 % was found in TIO. The 

broadened Bragg peaks imply the existence of internal strain, most likely due to 

inhomogeneity of samples. 
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Table 4.3.1 Selected crystallographic information obtained from Rietveld refinement of the NPD. 

Ln Pr Nd Tb Dy Ho Er Yb 

a (Å) 10.4086(1) 10.3891(3) 10.1267(4) 10.2198(5) 10.1931(3) 10.1674(3) 10.1248(3) 

48f x 0.3306(1) 0.3316(1) 0.3347(5) 0.3379(5) 0.3380(3) 0.3386(3) 0.3412(3) 

Ln-O (Å) 2.5487(6) 2.5362(6) 2.4810(40) 2.4510(40) 2.4440(30) 2.4340(30) 2.4060(30) 

Ln-O’ (Å) 2.2535(0) 2.2476(1) 2.2154(1) 2.2127(1) 2.2069(1) 2.2013(1) 2.1921(1) 

Ir-O (Å) 2.0221(4) 2.0202(4) 2.0166(18) 2.0180(30) 2.0128(14) 2.0105(14) 2.0140(14) 

Ir-O-Ir (o) 131.00(4) 130.57(5) 128.80(30) 127.10(30) 127.07(16) 126.76(16) 126.42(16) 
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Figure 4.3.1 Neutron powder diffraction (NPD) patterns for Nd2Ir2O7 (top), Tb2Ir2O7 
(middle) and Dy2Ir2O7 (bottom) at 300 K, as well as their Rietveld refinement with 
pyrochlore structure. The copper peaks from container have been excluded. 
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Figure 4.3.2 Neutron powder diffraction (NPD) patterns for Ho2Ir2O7 (top), Er2Ir2O7 
(middle) and Yb2Ir2O7 (bottom) at 300 K, as well as their Rietveld refinement with 
pyrochlore structure. The copper peaks from container have been excluded. 
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Figure 4.3.3 (a) The cubic lattice constant a and 48f oxygen x-parameter, (b) the Ir-O 
distance and the Ir-O-Ir angle as function of the rare-earth ion radius as determined from 
Rietveld refinement of NPD. The orange line is a guide to the eye. 

 

    A summary of the results obtained from the Rietveld refinements is given in Table 4.3.1, 

showing the same variation of the parameters in other series of pyrochlore compounds 

[30,161]. The dependence of the cubic lattice constant a and the 48f oxygen coordinate x-

parameter on the ionic radius of the Ln cation is shown in Figure 4.3.3 (a). A nearly linear 

decrease in the lattice constant of pyrochlore, a, is observed as the lanthanoid cation radius 

decreases. The 48f x-parameter of the iridate pyrochlores shows a nearly linear increase from 

Pr2Ir2O7 (0.331) to Yb2Ir2O7 (0.341). The smaller 48f x-parameter compared to the value for 

the ideal fluorite phase (0.375) [25] implies that the pyrochlore phase of Ln2Ir2O7 is stable. 

On the other hand, ! > 5 16 = 0.3125 indicates that the oxygen octahedron environment 

of Ir4+ is compressed along the [1,1,1] directions, the so-called trigonal distortion, as the 

threefold rotational symmetries are preserved. Early electronic band structure calculation 

associates the trigonal distortion to the variation of ./0 with different Ln3+: larger Ln3+ ions 

lead to a decreased trigonal compression of the octahedral, which increases the Ir-O orbital 

overlap and thus improves the hopping of Ir electrons [162]. As shown in Figure 4.3.3 (b), 

despite the Ir-O distance becoming slightly larger with increasing of Ln3+ ionic radius, the 

Ir-O-Ir angle increases from 125.5o to 131o, implying a trend of perfect oxygen octahedron 

formation and facilitating the Ir-O orbital overlap [109]. 

 

4.3.2.!DC'magnetization'

For all 6 compounds, the zero-field cooled (ZFC) and field-cooled (FC) magnetization was 

measured in an applied field of 50 – 1000 Oe (see left panels in Figure 4.3.4 and Figure 
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4.3.5). As summarized in Table 4.3.2, the ZFC and FC curves separate at a certain 

temperature from 33 K for NIO to 143 K for YbIO, which is an indicator of the ./0 being 

associated with Ir4+ ordering [121,126,127,129,130]. The variation of ./0 with different Ln3+ 

is consistent with previous structure analysis, a large Ln3+ refers to lower ./0. The bifurcation 

of the ZFC-FC magnetization originates probably from either glass-like behavior due to the 

defect, such as the stuffing defect [163] or substitution of Ir5+/Ir4+ [164], or the presence of 

magnetic domains at 180o in the AIAO long range order [134,165,166]. Both ZFC and FC 

magnetization increase down to 2 K for all compounds. Below ./0, the FC magnetization 

remains above the ZFC one for NIO, HIO, EIO and YbIO. Crossing of the ZFC and FC 

curves of TIO and DIO can be observed, meanwhile the FC curves of these two compounds 

exhibit saturation tendency below 6 K and 3 K, for TIO and DIO, respectively. This could be 

attributed to the saturation of magnetic long-range ordering of Tb3+ and Dy3+, which will be 

discussed below. The bifurcation temperature of ZFC-FC magnetizations is also a 

characteristic of sample quality. For example, the stoichiometric sample of NIO shows the 

transition temperature around 30-36 K [121,131,132], while non-stoichiometric sample has 

different transition temperature ~110 K [167,168]. The ZFC-FC behaviors and ./0 of our 

samples are consistent with previous results reported for this family, implying good sample 

quality [120,121,142]. 

 

Table 4.3.2 The bifurcation temperature TMI of ZFC and FC magnetization curves and 
Curie-Weiss fitting parameters for Ln2Ir2O7. The 12344 is the paramagnetic moment of 
free Ln3+ ions. 

Ln Nd Tb Dy Ho Er Yb 

TMI (K) 33 127 125 135 142 143 

50 (10-4 emu/Oe/mole) 7.5 3.0 1.0 4.7 109.1 11.5 

678 (K) -18.6 -13.2 -10.2 2.67 -7.5 -45.5 

1422 (19) 3.14 9.85 10.96 11.53 9.48 4.34 

12344 (19) 3.52 9.72 10.65 10.61 9.58 4.54 
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Figure 4.3.4 DC magnetic susceptibility :/<  (left panels) and inverse susceptibility 
(right panels) versus temperature for Nd2Ir2O7 (top panels), Tb2Ir2O7 (middle panels) and 
Dy2Ir2O7 (bottom panels). The inserts of left panel show the detail of the bifurcation of 
ZFC and FC curves. The solid line in right panels represent the fits of the Curie-Weiss 
law. 
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Figure 4.3.5 DC magnetic susceptibility :/<,(left panels) and inverse susceptibility 
(right panels) versus temperature for Ho2Ir2O7 (top panels), Er2Ir2O7 (middle panels) and 
Yb2Ir2O7 (bottom panels). The inserts of left panel show the detail of the bifurcation of 
ZFC and FC curves. The solid line in right panels represent the fits of the Curie-Weiss 
law. 

 

The Curie-Weiss (CW) law fitting was performed to the ZFC magnetization curve according 

to the formula:  
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5 . = 5= +

?
. − 6AB

,,,,? = DE1422F /3GH (4.3.1) 

where DE is the Avogadro number and GH is the Boltzmann constant, 6AB is the Curie-Weiss 

temperature, 1422 is the effective moment in unit 19, the temperature-independent term 5= 

is accounting for the Van-Vleck effect. The fitting was performed from 150 K to 300 K where 

the Ir moment is still in the paramagnetic state. The CW law fit and the inverse susceptibility 

as function of temperature are shown in the right panels of Figure 4.3.4 and Figure 4.3.5. It 

is clear that the inverse susceptibility obeys the CW law at high temperature. At low 

temperature, the divergence between the measured inverse susceptibility and CW law implies 

that the magnetic correlations between ions start playing a role. Especially for YbIO, the 

divergence takes place just at TMI, indicating the strong magnetic correlation in this system. 

The parameters obtained by fitting are summarized in Table 4.3.2. The magnetic moment of 

Ir4+ could be ignored due to its small size [133]. The obtained effective magnetic moments 

1422 agree with the expectation for Ln3+ ions, indicating the localized nature of the trivalent 

rare-earth ions. Except for HIO, the negative CW temperatures 678 imply antiferromagnetic 

coupling between Ln3+ moment with high coupling strength, because all amplitudes of 678 

in pyrochlore iridates are larger than that in their counterpart compounds, such as titanates, 

stagnates, or hafnates. More interestingly, some of them even changes the sign. For example, 

Dy3+ in Ln2B2O7 (B = Ti, Sn) is known to yield positive 678 = 1,K  due to the strong 

ferromagnetic coupling of dipole-dipole interaction between Dy3+ [169], but a negative 

678 = ,−10.2,K for the antiferromagnetic coupling is obtained in Dy2Ir2O7. This difference 

suggests the involvement of the magnetic sublattice of Ir strongly affects the interaction 

between the rare-earth moments. The constant term 5=  of Van Vleck susceptibility are 

comparable to that of their system compounds. Our results are consistent with previous report 

[142].  

 

4.3.3.!Specific'heat'

With the dilution refrigerator, we measured the specific heat of these series compounds 

Ln2Ir2O7 down to 50 mK. In order to obtain the pure magnetic specific heat and 

corresponding magnetic entropy, the obtained raw data ?4JK was treated in the same way as 

discussed in the next two chapters and Appendix A. The phonon contribution ?LMNN  was 

estimated by the nonmagnetic sample Y2Ir2O7 based on the Debye model [170]. The crystal 

electric field contribution ?7OP was calculated as follow: 
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where U = X(−Vc/Gd.)_
W`a  is the partition function of the system, VW is the CEF scheme of 

Ln3+ taken from other pyrochlore compounds. Below 10 K, the ?7OP in NIO, DIO, HIO, EIO 

and YbIO could be ignored due to higher energy of the first excitation level of CEF, while 

the specific heat of TIO still has a huge CEF contribution due to the lower lying excitation 

levels. Since the ?7OP represents the thermal population of CEF levels of Ln3+, the above 

analysis suggests that the Ln3+ (Ln = Nd, Dy, Ho, Er and Yb) in iridates could be treated as 

pseudospins below 10 K. The nuclear contribution due to hyperfine splitting of the nuclear 

spin is subtracted by ?_fR ∝ .YF with the constraint of zero magnetic specific heat at lowest 

temperature [171]. In fact, the ?_fR in NIO, DIO, EIO and YbIO could be ignored (see details 

in Appendix A). The conduction electron contribution was ignored due to the poor electrical 

conductivity of these compounds. The corresponding entropy hiMj(.)  is obtained by 

integrating ?iMj/. over the investigated temperature range, where ?iMj = ?4JK − ?LMNN −

?7OP − ?_fR is the obtained magnetic specific heat. The obtained ?iMj and hiMj(.) of the 

aforementioned compounds (except HIO due to huge ?_fR  below 3 K), together with the 

classical spin-ice (CSI) compound Dy2Ti2O7 as reference, are presented in Figure 4.3.6. The 

contributions of different terms and origin data for each sample could be found in the 

appendix A. In the right panels of Figure 4.3.6, the magnetic entropy of the paramagnetic 

state for spin-1/2 system, hPM = Tmn2  (black line), and residual entropy of CSI, hCSI =

T/2mn(3/2) (red line), [31] are also given. 

 

Table 4.3.3 The temperature of the magnetic specific heat hump maximum .S  for 
different rare-earth ions. The CSI compound Dy2Ti2O7 exhibits a similar hump with 
maximum at 1.2 K. ∆7= .S/0.42/11.6 is the excitation level associated to .S, based on 
the two-level assumption. 

Ln3+ Nd Tb Dy Er Yb 

.S (K) 5.0 3.0 3.0 1.5 2.3 

∆7  (meV) 1.03 0.62 0.62 0.31 0.47 

 

    Turn to the specific heat anomaly associated to the AIAO ordering of Ir4+. As shown in 

the insert of Figure 4.3.6 (b), NIO displays such an anomaly around 33 K, which is in 

excellent agreement with the previous magnetization result, .MI = 33,K. Unfortunately, the 
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anomaly in other compounds with .MI > 120,K was not observed, possibly due to the weak 

signal compared to the huge phonon and CEF contributions above 100 K.  

 

 
Figure 4.3.6 The obtained magnetic specific-heat ?iMj (left panel) and the corresponding 
magnetic entropy hiMj(.) (right panel) of the pyrochlore iridates. (a) and (g) show the 
?iMj and hiMj(.) of the CSI compound Dy2Ti2O7 as reference.  

 

    As shown in the left panel of Figure 4.3.6, no sharp anomaly associated with magnetic 

order of Ln3+ could be observed, however, the obtained ?iMj of Ln2Ir2O7 (Ln = Pr, Nd, Tb, 
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Dy, Er, Yb) universally reveals a broad hump with the maximum at the temperature .S, which 

is listed in Table 4.3.3. The broad peak in NIO was explained as the Schottky anomaly of a 

two levels system with energy splitting ! = 1.12 meV, possibly due to the CEF ground-state 

splitting of Nd3+ [121]. As discussed in Chapter 2, the CEF ground-state of Ln3+, either 

Kramers or non-Kramers ions, in pyrochlore is doublet. If the ordered Ir4+ generates a 

molecular-magnetic field at Ln3+, the doublet of CEF should be split. Then, based on the two-

level model of the Schottky anomaly (Eq. (4.3.2)) in the specific heat, one could observe a 

broad peak with maximum at .S = 0.42,∆7 ∗ 11.6 [172], where ∆7  is the splitting energy, 

11.6 is used to transform units from meV to K. Following this scenario, the estimated energy 

of the CEF ground-state splitting of Ln3+, ∆7 , are shown in Table 4.3.3. However, this ∆7  is 

absent in most of INS measurements of Ln2Ir2O7, as discussed below. On the other hand, the 

hump is also an indicator of the development of magnetic short-range ordering in frustrated 

magnets. As shown in Figure 4.3.6 (a), the CSI compound Dy2Ti2O7 displays a specific heat 

hump at 1.2 K associating the magnetic short-range order with 2I2O configuration [64]. As 

a result, the system exhibits a residual magnetic entropy, the so-called Paul entropy (shown 

in Figure 4.3.6 (g)). The magnetic entropy hiMj corresponding to the hump of Ln2Ir2O7 were 

calculated and shown in the right panel of Figure 4.3.6. The hiMj of Ln2Ir2O7 approximates 

to the ideal value hPM for a paramagnetic state with h = 1/2 at 25 K. If the doublet splitting 

of the CEF ground-state exists, the calculated entropy hiMj should be larger than that of the 

hPM. This fact strongly suggests that the hump of ?iMj at .S is mainly originating from the 

existence of an unknown short-range spin ordering. Furthermore, the .S of Ln2Ir2O7 is larger 

than that of DTO, implying the exchange interaction strength in Ln2Ir2O7 is enhanced due to 

the involvement of Ir4+. The different results of pyrochlore iridates compared to their 

counterpart compounds indicate that the nature of the rare-earth ion physics in pyrochlore 

structure is strongly tuned by the magnetic ion Ir4+ with 5d5. This may lead to novel ground 

states of spin system and exotic magnetic excitations. 

 

4.3.4.!Polarized'neutron'diffraction'

The polarized neutron scattering measurements were performed on DNS down to 0.5 K for 

He3 insert and 0.2 K for dilution insert. Benefiting from the xyz-polarization analysis on 

DNS, one can separate the nuclear coherent scattering, magnetic scattering and spin-

incoherent scattering contributions of the sample at the same temperature. This may reduce 

the error of the extracted magnetic signal in unpolarized neutron diffraction. In this 
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subsection, the iridates will be discussed according to the single-ion anisotropy of rare-earth 

ions Ln3+. 

 

A.!Easy?axis'anisotropy'case'(NIO,'TIO,'DIO'and'HIO)'

As discussed in Chapter 2, the rare-earth ions Nd3+, Tb3+, Dy3+ and Ho3+ in pyrochlore often 

exhibit single-ion anisotropy with easy-axis along the local 1,1,1  direction due to CEF. 

Here we discuss NIO with lower ./0 = 33 K at first, then focus on the compounds TIO, DIO 

and HIO with ./0 above 120 K.  

 

 
Figure 4.3.7 (a) Nuclear coherent scattering, spin incoherent scattering and magnetic 
scattering of Nd2Ir2O7 at 0.1 K. (b) Refinement of magnetic scattering with the magnetic 
structure shown in (d). (c) Temperature dependence of the intensity of the neutron x-spin-
flip (X-SF) channel at peak (1 1 3) (red and left axe), as well as the ordered moment of 
Nd3+ (blue and right axe). The green numbers indicate the ordered moment of Nd3+ 
obtained from Rietveld refinement. The ordered moment of Ir4+ is shown in the insert of 
(c).  

 

    Figure 4.3.7 (a) shows the nuclear coherent, spin-incoherent and magnetic scattering 

contributions of Nd2Ir2O7 at 0.1 K. Besides the constant spin-incoherent scattering intensity 

and several nuclear Bragg peaks in the nuclear coherent component, two magnetic Bragg 
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peaks located at u = 1.68 and 1.98 Å-1, corresponding to (2 2 0) and (1 1 3) are observed in 

the magnetic component. The intensity of the magnetic Bragg peak (1 1 3) is slightly higher 

than that of (2 2 0). This observation is consistent with the previous report on the unpolarized 

NPD [131,132].  

    In order to solve the magnetic structure, we employ the symmetry analysis by BASIREPS 

and Rietveld refinement by Fullprof [151]. All the magnetic peaks can be indexed by a 

propagation vector k = (0 0 0). For the space group vw3x with k = (0 0 0), the magnetic 

representation of Nd (16d) and Ir (16c) can be reduced into four nonzero irreducible 

representations (IRs) of the little group: 

 ΓiMj = 1Γza + 1Γ{F + 1Γ|z + 2Γ}z (4.3.3) 

The detailed simulation of the neutron powder diffraction pattern of magnetic scattering is 

presented in Appendix B. The absence of the magnetic Bragg peaks (1 1 1) and (2 0 0) allow 

us to reduce the IRs to Γz , in which the spins are arranged with AIAO configuration in the 

unit of tetrahedra. During refinement, the overall scale factor and lattice parameter are 

obtained from the nuclear coherent scattering pattern. As shown in Figure 4.3.7 (b), we use 

two models to refine the magnetic scattering pattern: (1) only considering the Nd3+ is AIAO 

ordered (green solid line) and (2) both Nd3+ and Ir4+ are AIAO ordered (blue line). According 

to the simulations, the magnetic peak (2 2 0) is comparable to the (1 1 3) in the case of the 

first model (green curve in Figure 4.3.7 (b)), however, the magnetic peak (2 2 0) becomes 

weaker than the (1 1 3) if both Nd3+ and Ir4+ are considered (blue curve in Figure 4.3.7 (b)). 

A much worse agreement (5F = 2.827) is obtained for the AIAO model only considered 

Nd3+. A good refinement (5F = 1.754) is obtained for the second model with ordered 

moments of Nd3+ 1.4025(202) 19 and of Ir4+ 0.2808(268) 19 at 0.1 K. The obtained ordered 

moment of Nd3+ is in agreement with Guo’s result 1.27 19 at 1.8 K [132], but not Tomiyasu’s 

result 2.3 19 at 0.7 K [131] possibly due to its poor statistics. The ordered moment of Ir4+ is 

consistent with the Ä422 = 1 2 state prediction and the experimental results of Sr2IrO4 with 

0.208 19/IrÇÉ [119]. 

    The obtained magnetic structure is shown in Figure 4.3.7(d). Both Nd3+ and Ir4+ exhibit 

AIAO configuration, in which each Nd3+ is surrounded by six Ir4+ ions forming a hexagon. 

The six magnetic moments of Ir4+ on a hexagon cancel out the in-plane components and 

retain the out-of-plane component with a net moment MIr
eff = 6×M0á 3 on the Nd3+ site. The 

net moment MIr
eff  is parallel to the ordered moment of Nd3+, indicating a ferromagnetic 

coupling between Nd3+ and Ir4+. As shown in Figure 4.3.7(c), the magnetic peak (1 1 3), 

mainly contributed by the ordered moment of Nd3+, displays an unusual temperature 
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dependence. On cooling, the peak intensity starts to increase significantly below 20 K and 

does not saturate down to 0.1 K. This behavior could be understood by the induced ordering 

model discussed below. 

 

 
Figure 4.3.8 (a-c) The experimental and calculated magnetic scattering of TIO, DIO and 
HIO at 0.5 K. (d) The nuclear-coherent and spin-incoherent scattering of the three 
compounds. (e-g) Temperature dependence of the magnetic peak (2 2 0) intensity of TIO, 
DIO and HIO. Insert: the temperature dependence of the ordered moment of Ln3+ 
obtained by magnetic structure refinement. (h) The magnetic structure of these three 
compounds. Note: 1000 monitor counts (1K mont) corresponds to 0.035 sec during DNS 
measurement.  

 

    As shown in Figure 4.3.8 (a-c), the presence of magnetic peaks (2 2 0) and (1 1 3) indicates 

that TIO, DIO and HIO order in AIAO configuration, similar to NIO. In contrast to NIO, the 

magnetic peak (2 2 0) of these three compounds is slightly higher than peak (1 1 3). The NIO 
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magnetic structure refinement strategy was applied to these three compounds. The model 

considering two magnetic sublattices with Ln3+ and Ir4+ results a good agreement of 

refinement, as shown with the solid line in Figure 4.3.8 (a-c). The obtained ordered moment 

of Ln3+ and Ir4+ is present in Table 4.3.4, in which the ordered moments of Ln3+ in TIO and 

HIO agree to the recent unpolarized NPD results [134,160]. The obtained MIr from TIO and 

HIO is larger than that from NIO and DIO, which is possibly caused by the uncertainty of 

the xyz-polarization separation on strong nuclear Bragg peaks (1 1 3) in TIO and HIO. In 

Figure 4.3.8 (e-g), the temperature dependence of the magnetic peak (2 2 0) of these three 

compounds shows unusual behavior like NIO. The difference is that the ordered moment of 

Ln3+ (Tb, Dy, Ho) starts to saturate around 2 K, implying the interaction between Ln3+ plays 

a role. The dominating interaction at this temperature is possibly the dipole-dipole interaction 

due to the large magnetic moment of Tb3+, Dy3+ and Ho3+ [31]. 

 

Table 4.3.4 The ordered moment of Ln3+ and Ir4+ obtained by the refinement with AIAO 
configuration of both two sublattices. The negative sign of the Ir4+ moment refers the 
relative parallel arrangement to MLn . 1422  is the effective magnetic moment obtained 
from the CW fitting of the susceptibility in higher temperature range. 1CEF is the reduced 
magnetic moment due to CEF adopted from Chapter 2. 

Ln3+ Nd (0.1 K) Tb (0.5 K) Dy (0.5 K) Ho (0.5 K) 

MIr (19) -0.2808(268) 0.7134(388) 0.2041(295) 0.5123(279) 

MLn (19) 1.4025(202) 4.6381(374) 5.2913(235) 6.7935(206) 

1422 (19) 3.35 9.85 10.96 10.44 

1CEF (19) 2.65 5.35 9.8 9.8 

 

    Although both sublattice Ln3+ and Ir4+ display AIAO magnetic structure in the unit of 

tetrahedra, their relative arrangement is antiferromagnetic, meaning the net magnetic moment 

MIr
eff is antiparallel to the Ln3+ moment. This is determined by the relative intensity ratio of 

the magnetic peaks (2 2 0) and (1 1 3). A higher magnetic peak intensity of (2 2 0) associates 

to the relatively antiparallel arrangement between Ln3+ and Ir4+, while the higher magnetic 

peak intensity of (1 1 3) corresponds to the relatively parallel case, such as in NIO. This result 

is not only observed in our polarized NPD experiment, but also in the reported unpolarized 

NPD of Ln2Ir2O7. For instance, the extracted magnetic diffraction pattern of NIO displays a 

higher (1 1 3) peak [132], while the recently reported unpolarized NPD of TIO and HIO 

reveals a higher (2 2 0) peak [134,160]. However, the relative arrangement of Ln3+ and Ir4+ 

has not been noticed by the authors. On the other hand, all of the ordered moments of Ln3+ at 
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lowest temperature is smaller than that of the 1422  and 1CEF, implying the persistence of 

strong magnetic moment fluctuation at that temperature. 

 

B.!Easy?plane'anisotropy'case'(EIO'and'YbIO)'

Due to the CEF, the magnetic moments of Er3+ and Yb3+ in pyrochlore have a strong easy-

plane component, so-called easy-plane or XY anisotropy. The nuclear coherent and magnetic 

scattering of Er2Ir2O7 at 0.5 K is presented in the left panel of Figure 4.3.9. Besides several 

nuclear Bragg peaks observed in the nuclear coherent scattering pattern, a broad peak 

centered at Q = 1.16 Å-1 appears in the magnetic scattering contribution. This response is 

typical for a diffuse scattering, where spin correlations extend over a few interatomic 

distances. Such magnetic diffuse scattering has been observed in Er2Sn2O7 at 1.5 K [41]. 

Assume the Er2Ir2O7 is antiferromagnet with XY single-ion anisotropy (as Er3+ presented in 

other pyrochlore compounds), we could model the magnetic ground state in Er2Ir2O7 by 

considering finite size magnetic domains (to account for the peak broadening) chosen among 

the symmetry allowed patterns for a k = (0 0 0) propagation vector.  

 

 
Figure 4.3.9 Left: Nuclear coherent scattering and magnetic scattering of Er2Ir2O7 at 0.5 
K. The solid lines are the result of a Rietveld fit assuming either the åF,z − Γ{ (green line) 
or the åÇ,{,ç − Γ|  (blue line) structure. Right: Magnetic configurations åF  and åÇ 
predicted by the symmetry analysis for the k = (0 0 0) propagation vector. The Γ| 
irreducible representation is associated to the Palmer-Chalker state. Note: 1000 monitor 
counts (1K mont) corresponds to 0.035 sec during DNS measurement. 

 

    According to the symmetry analysis in Appendix B, the XY anisotropy is minimized only 

for (1) linear combinations of the two basis vectors åF and åz which transform according to 

Γ{; and (2) a discrete set of basis vectors åÇ,{,ç which transform according to Γ|. The ground 
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state of Er2Ti2O7 corresponds to åF [99], while the Palmer-Chalker states (PC) (spins are 

pairwise anti-parallel, and collinear with an edge of the tetrahedron) corresponds to åÇ,{,ç 

[40]. As shown in appendix B, the powder measurements cannot distinguish between the 

basis vectors of either Γ{ or Γ|. However, for a given representation, the relative intensities 

of the (1 1 1) and (2 2 0) peaks are fixed. The choice between Γ{  and Γ|  IRs is thus 

unambiguous.  

    We can simply simulate the magnetic diffuse magnetic scattering by following Ref [41]. 

As done in the ordered iridates, we fitted the crystalline structure in the nuclear coherent 

scattering patterns to determine the overall scaling factor and the lattice parameters. 

Employing these values and assuming a given å sets, the two remaining parameters of the 

proposed model are the amplitude of Er3+ moment and the coherence length of the magnetic 

domains, which determines the width of the diffuse magnetic scattering peaks. As shown in 

the left panel of Figure 4.3.9, a good refinement is obtained with the vectors åÇ,{,ç of Γ|, with 

an Er3+ moment of 5.032 19 at 0.5 K and a coherence length of about 7.9 Å. A much worse 

agreement is obtained with the vectors åF,z of Γ{. The results strongly suggest that the Er3+ 

in Er2Ir2O7 is short-range ordered as Palmer-Chalker configuration at 0.5 K. Additionally, 

the estimated moment 5.032 19  of Er3+ is smaller than that of 9.5 19  for the free ion, 

implying that the strong fluctuation exists at 0.5 K. 

 

 
Figure 4.3.10 Nuclear coherent scattering and magnetic scattering of Yb2Ir2O7 at 0.22 K. 
The purple solid line is proportional to the squared magnetic form factor of Yb3+, 
representing the u dependence of magnetic scattering in the paramagnetic state. 
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    Figure 4.3.10 shows the nuclear coherent and magnetic components from Yb2Ir2O7 at 0.22 

K. No magnetic Bragg peaks associated with magnetic long-range order are observed in the 

magnetic scattering pattern. The intensity of magnetic scattering decays with u, however, 

slightly faster than that of the paramagnetic state following the squared magnetic form factor 

of Yb3+ (purple solid line). This is possibly caused by the ferromagnetic correlation of Yb3+ 

that leads to the nearly collinear order of Yb2Ti2O7 and splayed ferromagnetic order of 

Yb2Sn2O7 below 0.28 K and 0.15 K, respectively [39,94]. According to the absence of the 

specific heat anomaly of YbIO below 0.22 K, the YbIO would not undergo a phase transition 

to some kind of magnetic long-range order like other Yb-based pyrochlore. Further 

investigations at low temperature is still necessary to refine this statement. 

    The above discussion has presented that the magnetic long-range order of Ln3+ emerges in 

the system in which rare-earth ions exhibit easy-axis anisotropy, but is absent in the system 

with strong planar spin anisotropy of Ln3+. The molecular-magnetic field model was 

proposed to explain this result and the unusual temperature dependence of the order 

parameter [134]. As shown in Figure 4.3.7 (d), each six first-neighbor Ir4+ of Ln3+ form a 

hexagon plaquette, where Ln3+ is at the center. The AIAO arrangement of Ir sublattice yields 

a net moment MIr
eff perpendicular to the hexagon plane (parallel to local 1,1,1  direction). 

The MIr
eff  then could generate a molecular-magnetic field, di2Ir ∝ MIr

eff  on the Ln3+ site. 

Therefore, for the Ln3+ with easy-axis anisotropy, i.e. Nd3+, Tb3+, Dy3+ and Ho3+, such a 

molecular field di2  can easily polarize the spin of Ln3+ to form AIAO long-range order 

according to the symmetry. On the contrary, the di2Ir  cannot induce any long-range order of 

Ln3+ along local 1,1,1  direction in EIO and YbIO due to the strong easy plane anisotropy 

of Er3+ and Yb3+, and even suppress their easy-plane ordering like in other Er- and Yb- based 

pyrpchlore compounds. For this reason, no magnetic Bragg peaks associated to magnetic 

long-range order are observed in the magnetic scattering of EIO and YbIO at very low 

temperature. 

    The temperature dependence of the order parameter in NIO, TIO, DIO and HIO is thus the 

so-called induced ordering. The induced ordering behavior often occurs in a two magnetic 

sublattice system with different coupling strength in each magnetic sublattice. For example, 

in the iron-based superconductor SmFeAsO, the magnetic moments of d and f electrons 

cannot naturally order at the same temperature due to the different magnetic coupling strength 

of the Fe and Sm sublattice, as revealed by resonance X-ray scattering [173]. When the d 

electrons of Fe order magnetically at 110 K, the Sm magnetic structure grows mainly below 

50 K and accelerates significantly with further cooling due to the exchange field between Sm 
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and Fe. In Ln2Ir2O7 (Ln = Nd, Tb, Dy and Ho), the magnetic ordering of Ir4+ is expected to 

occur at .MI ~ 33-145 K, the exchange interaction in Ln sublattice is around 1 K. Therefore, 

the magnetic moment of Ln3+ would show the induced ordering behavior in the range from 

~ 1 K to .MI . The induced ordering of Ln3+ can be described by the Hamiltonian: ℋ =

ℋCEF +ℋLnèIr, where ℋCEF is the CEF Hamiltonian (Eq 2.2.3) and ℋLnèIr = di2Ir êë1HÄ is the 

Ln-Ir magnetic coupling by the Ir4+ molecular field di2. The Ln3+ magnetic moment is then 

calculated as :Ln = êë1HTr Äexp −ïℋ  [134]. As discussed in Chapter 2, the CEF 

ground-state of Ln3+ in pyrochlore exhibits Kramers or non-Kramers doublet due to the local 

point symmetry D3d. For the ions with a well-isolated ground-state doublet, only the ground-

state doublet is appreciably populated at low temperature. Then one can simplify the 

aforementioned Hamiltonian to the splitting of the ground-state doublet. The ordered moment 

is [174]: 

 
:ñ_ T = := tanh

∆ö
2GHT

 (4.3.4) 

where :=  is the effective moment of Ln3+, GH  is the Boltzmann constant and ∆ö=

2êë1HÄdi2Ir  is the Zeeman splitting of the ground-state doublet by di2Ir . For a pseudospin-

1/2 system [175]:  

 
∆ö= 1H ê∥di2,∥

Ir F
+ êúdi2,ú

Ir F
 (4.3.5) 

where ê∥ and êú are the anisotropy ê tensor components along and perpendicular to the local 

1,1,1  axis, di2,∥Ir  and di2,úIr  are the corresponding projection of the molecular field di2Ir . 

Since the AIAO ordered Ir sublattice only yields a net moment MIr
eff along the local 1,1,1  

direction on the Ln site,  

 di2,∥Ir = di2Ir = ùMIr
eff , di2,úIr = 0 

∆ö= 1Hê∥di2Ir  
(4.3.6) 

    Figure 4.3.11 shows the temperature dependence of the ordered moment of Ho3+ and Dy3+ 

obtained from the magnetic structure refinement. The solid lines represent the fitting of the 

induced ordering model in the temperature range 5 – 80 K, where the ordered moment of Ir4+ 

is stable and the interaction of the Ln sublattice is negligible. The fitting yields the effective 

moment :=  as 4.6975(3443) and 6.0049(3101) 1H  for Dy3+ and Ho3+, respectively. The 

obtained :=  is quite close to the saturated ordered moment obtained from the magnetic 

structure refinement, implying only part of the Ln3+ magnetic moment could be polarized by 

the di2Ir . Indeed, the non-zero diffuse magnetic scattering of DIO and HIO at 0.5 K (in Figure 
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4.3.8) strongly suggests the existence of the disordered moment. The fitting gives rise to the 

Zeeman splitting of the ground-state doublet, ∆ö, 1.3662(2547) and 1.2057 (1295) meV for 

Dy3+ and Ho3+, respectively. According to Eq. (4.3.6), the corresponding effective molecular 

field of Ir4+, di2Ir , is around 1.1336(1259) T, which is close to the reported estimation 

[134,160]. Assuming the same di2Ir  for other pyrochlore iridates at low temperature, 

according to the ê tensor (Table 2.2.2) one can roughly estimate the Zeeman splitting ∆ö = 

0.3447 meV for NIO, 0.7021 meV for TIO, 0.2559 meV for EIO and 0.1260 meV for YbIO 

(as listed in Table 4.3.5). However, the estimated Zeeman splitting ∆ö does not match the 

energy level ∆7  obtained from the magnetic specific heat ?iMj in the previous subsection. It 

is worth to examine the possible Zeeman splitting of the Ln3+ ground-state doublet via 

inelastic neutron scattering. In addition, the molecular field model could not explain the 

relative arrangement of magnetic moments between Ln3+ and Ir4+, that are the effective 

ferromagnetic arrangement in NIO and the antiferromagnetic arrangement in TIO, DIO and 

HIO. 

 

 
Figure 4.3.11 The temperature dependence of the ordered moment of Ho3+ and Dy3+ in 
HIO and DIO. The solid lines represent the induced ordering behavior.  

 

Table 4.3.5 Predicted Zeeman splitting ∆ö  of the CEF ground-state doublet of Ln3+ 
according the induced ordering model. 

Ln3+ Nd Tb Dy Ho Er Yb 

∆ö (meV) 0.3447 0.7021 1.3662 1.2057 0.2559 0.1260 
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4.3.5.!Inelastic'neutron'scattering''

In order to observe the possible Zeeman splitting of the Ln3+ ground-state doublet in 

Ln2Ir2O7, we performed systematic INS measurements of this compound series on TOFTOF 

at 3.5 K. The incident neutron energies 3.27 meV for NIO, TIO, DIO and HIO and 2.70 meV 

for EIO and YbIO give rise to the measurable dynamic range up to 2.5 meV and the energy 

resolution around 0.15 meV and 0.06 meV, respectively, which are good enough to observe 

the possible Zeeman splitting of Ln3+ estimated in previous subsections. Data sets were 

collected at 3.5 K, where the ordered moment of Ir4+ is assumed to be stable. The raw data 

was reduced to û(u, ü) format in a standard routine taken into account the neutron absorption 

of iridium.  

    As shown in Figure 4.3.12, there is no clear gapped sharp excitation corresponding to the 

splitting of the Dy3+, Ho3+ and Yb3+ ground doublet, except a strong broaden quasielastic 

signal associated to collective spin behaviors. The gapped excitations could be observed 

around 1.20 meV, 0.5 meV and 0.35 meV in NIO, TIO and EIO, respectively. However, 

these modes appear slightly dispersive and none of them exhibit the characteristic u 

dependence of the CEF excitation which follows the squared magnetic form factor of the 

Ln3, as plotted in Figure 4.3.13. Although, some of the lower lying CEF excitations of Tb3+ 

and Er3+ in pyrochlore at low temperature may show weak dispersion due to the strong 

exchange interactions [37,176,177]. This fact strongly suggests that these modes possibly 

belong to the collective spin excitations of Ln3+. 
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Figure 4.3.12 Inelastic neutron scattering measurements with an incident energy of Ei = 
3.27 meV (IRF ~ 0.15 meV) for NIO, TIO, DIO and HIO and Ei = 2.70 meV (IRF ~ 0.06 
meV) for EIO and YbIO at 3.5 K. The color-bar represents the intensity in arbitrary unit. 

 

As see in Figure 4.3.12 (a), beside the flat mode around 1.2 meV, another dispersive mode 

appears from the (1 1 1) peak, agreeing with previous report [131]. The intensity of this 

excitation illustrated in Figure 4.3.13 (a) shows a dipolar-spin-ice characteristic with a 

maximum intensity around u = 0.5,ÅYa  and a minimal intensity at u = 1.5,ÅYa  [67]. In 

fact, the similar excitation has been observed in other Nd-based pyrochlore compounds in 

their AIAO state due to the ‘dipolar-octupolar’ nature of the Kramers Nd3+ doublet [44]. For 

example, INS measurement on Nd2Zr2O7 (NZO) show a spin-ice characteristic flat mode at 

0.07 meV (.° = 285 mK) [178], while Nd2Hf2O7 (NHO) exhibits the flat excitation at 0.1 
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meV (.° = 535 mK, Chapter 6). The difference of the mode in NIO is the excitation energy 

is 10 times larger than that in NZO and NHO. The possible reason to lift the mode to such 

higher energy could be attributed to the molecular field di2Ir  and the RKKY interaction in 

NIO, since NIO is a semimetal, while NZO and NHO are perfect insulator. The absence of 

the splitting of the ground doublet in our INS experiment implies that the exchange strength 

between Ln3+ and Ir4+ should be smaller than the best energy resolution ~ 0.06 meV. Thus, 

the RKKY interaction would dominate the system. Indeed, a recent band structure 

measurement has observed the quadratic band touching near the Fermi level in NIO [179]. 

This band structure may provide conduction electron to mediate the magnetic interaction 

between Nd3+. Therefore, the simple molecular field model of Ln-Ir is not suitable to 

understand the above phenomena. A complex model considering the detail of the f-d 

exchange is expected. The process of understanding the INS data of other pyrochlore iridates 

is still ongoing. 

 

 
Figure 4.3.13 Q dependence of the intensity of the gapped excitation of NIO, TIO and 
EIO integrated over the energy interval indicated in the figure in Figure 4.3.12 (a, b, e). 
The solid line is proportional to the squared magnetic form factor of Ln3+ (Nd, Tb and 
Er). A CEF excitation of Ln3+ should follows the solid lines.  

 

4.4.!Conclusion'
The rare-earth pyrochlore iridates Ln2Ir2O7 (Ln = Nd, Tb, Dy, Ho, Er, Yb) with metal-to-

insulator transition have been systematically investigated by means of neutron powder 

diffraction, dc-magnetization, specific heat, polarized neutron scattering and inelastic 
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neutron scattering. While the 48f oxygen x-parameter decreases with increasing Ln ionic 

radius, the cubic lattice constant a, the Ir-O bond length and the O-Ir-O angle systematically 

increase, supporting the theoretical band structure calculation of the metal-to-nonmetal 

transition of Ln2Ir2O7. The ZFC-FC magnetization curves of Ln2Ir2O7 bifurcate at TMI for Ln 

= Nd, Tb, Dy, Ho, Er and Yb with TMI = 33, 127, 125, 135, 142 and 143 K, suggesting a 

magnetic transition at TMI. Except for HIO with a positive CW temperature, other compounds 

reveal a negative CW temperature indicating the antiferromagnetic coupling between Ln3+. 

A specific heat anomaly associated with the magnetic transition TMI in NIO is observed at 33 

K, supporting AIAO ordering of the Ir sublattice. All compounds exhibit a broad hump in 

the obtained magnetic specific heat, ?iMj, at 5.0, 3.0, 3.0, 1.5 and 2.3 K for Ln = Nd, Tb, 

Dy, Er and Yb. The calculation of the corresponding entropy strongly suggests the hump of 

?iMj corresponds to the development of the magnetic short-range ordering of Ln3+. With 

polarized neutron diffraction, the magnetic ground-state phase diagram of Ln2Ir2O7 is created, 

as shown in Figure 4.4.1. For the planar anisotropic ions, Ln = Er and Yb, the observed 

diffuse magnetic scattering indicates the short-range ordered state of Er3+ and Yb3+. The ions 

with easy-axis single-ion anisotropy, Ln = Nd, Tb, Dy and Ho, the Ln3+ exhibit a magnetic 

long-range order state with AIAO configuration. A molecular magnetic field, di2Ir , generated 

by AIAO ordered Ir4+ was introduced to account for the magnetic state phase diagram and 

the unusual ordering behavior of NIO, TIO, DIO and HIO. The estimated strength of di2Ir  is 

around 1.1336(1259) T, yielding a possible Zeeman splitting of the CEF ground doublet of 

Ln3+. Unfortunately, the absence of the ground doublet splitting in the INS measurements 

does not support the molecular field scenario. A more complex model involving the RKKY 

interaction and considering the f-d exchange in detail is needed. 
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Figure 4.4.1 Phase diagram of the Ln3+ magnetic states in Ln2Ir2O7. 
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Chapter'5.!Long?range'Spin?Ice'Order'and'Magnetic'Excitations' in'
Metallic'Pyrochlore'Pr2Ir2O7'

 

5.1.!Introduction'
As discussed in the previous chapters, one can experimentally realize the physics of the 

quantum spin ice by reducing the dipolar interaction and enhancing quantum fluctuations. 

The Pr-based pyrochlore compounds, Pr2B2O7 (with B = Sn, Zr, Hf and Ir) are such 

candidates. The first three are insulators, while Pr2Ir2O7 is a metal. The dipolar interaction 

strength is estimated around 0.13 K [95], almost 10 times smaller than that of classical spin 

ice (CSI) compounds DTO and HTO. Their crystal field scheme suggests that the moments 

are Ising-like, along the local 1,1,1  axis, with a non-Kramers doublet ground-state that 

could be described by effective spin-1/2 [33,180]. The quantum fluctuation could be 

enhanced by incorporation of the quadrupolar degrees of freedom [42,86,181] or random 

transverse fields due to the slight site disorder [45,182]. Indeed, significant spin fluctuations, 

which are absent in CSI, were observed experimentally in the insulator compounds [95-

97,183,184]. However, the QSI phase has not been unambiguously confirmed in the Pr-227 

insulating compounds up to now.  

    Due to strong spin-orbit coupling (SOC) and strong electron-electron interactions, novel 

states may emerge in the metallic pyrochlore iridate Pr2Ir2O7. A recent ARPES (angle-

resolved photoemission) experiment on a single crystal sample provides strong evidence for 

a quadratic band-touching dispersion in the semi-metallic paramagnetic phase [185]. 

However, the magnetic properties of metallic Pr2Ir2O7 are strongly sample dependent. Early 

measurements focused on the single crystal sample, which is believed to be stoichiometric, 

grown by flux method [143]. Neither the specific heat, nor the DC magnetization show any 

sign of long-range ordering transition down to a field-cooled and zero field-cooled 

bifurcation temperature .2 = 1.2,K , where the moments partially freeze [186]. More 

interestingly, Hall-effect measurements in the single crystal reveal a ln .  temperature 

dependent Hall resistivity and a zero-field anomalous Hall effect in the temperature range 

0.3,K < . < 1.5,K [187-189]. This has been interpreted as evidence of chiral spin liquid, in 

which the chirality of the Pr3+ moment configurations in one tetrahedral is the order parameter. 
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Spin-ice type physics for the Pr moments has also been inferred. The origins for these 

phenomena have been suggested by several theoretical works, including ordinary and exotic 

RKKY interactions, quadrupolar ordering, etc [190-193]. Early Muon-spin relaxation (1hT) 

measurements in a powder sample suggest a non-magnetic Pr3+ ground state, against the CEF 

analysis [194-196]. A reason is that the muons reside in the sample, leading to the splitting 

of the non-Kramers ground state of Pr3+, and the effect is enhanced by the hyperfine 

interaction of nuclear magnetization at low temperature [197]. This means that the 1hT 

results for disordered Pr-pyrochlore are unreliable. On the other hand, the transport properties 

of the “stuffed” Pr2(Ir2-yPry)O7-y/2 suggests a phase transition around 0.8 K [158,198], which 

is further confirmed by powder neutron diffraction as a “two-in-two-out” (2I2O) long-range 

magnetic order transition with an ordered moment of 1.73 1H/Pr [199]. The author argued 

that the 2I2O order of Pr3+ is unstable based on the estimated correlation time of a few 

nanoseconds for the Pr3+ 4f moment, which is expected to be identified by neutron spin echo 

experiment. It should be noted that the phase transition does not change the metallic nature 

of the stuffed Pr2(Ir2-yPry)O7-y/2 [198].  

    Motivated by the fascinating physics and the controversial results of the metallic 

pyrochlore Pr2Ir2O7, we have synthesized high-quality powder samples at a relatively low 

temperature using an optimized synthesis recipe (see Chapter 3). According to our combined 

Rietveld refinements of XRPD and NPD, the stuffing level y is determined to be less than 

0.02. The sample exhibits a negative Curie-Weiss temperature and undergoes an 2I2O long-

range order transition at 0.76 K as determined by specific heat and polarized neutron 

scattering. A gapped exotic magnetic excitation was observed by inelastic neutron scattering. 

By employing the sum rule, we found that the total magnetic (i.e. fluctuating plus ordered) 

magnetic moment of Pr3+ is conserved through the transition, and is consistent to that 

obtained from the CEF analysis. 

 

5.2.!Experimental'details'

A polycrystalline Pr2Ir2O7 sample was synthesized by solid state reaction starting from a 

mixture of powder Pr7O11 (99.99%) and metal Iridium (99.99%), with molar ratio 1:1.05 of 

Pr-to-Ir, and by a new flux method using KF as flux. Then, the mixture was pressed into 

pellets, placed in an alumina crucible and sintered at 1050 oC in air for 7 days with several 

intermediate grindings and pelletizings. The nonmagnetic reference compound Y2Ir2O7 was 

also prepared by the same method and used to estimate the phonon contribution for the heat 
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capacity. The phases of the sample were regularly checked during synthesis by room 

temperature powder x-ray diffraction (XRD) using a laboratory-based diffractometer (STOE, 

Mo-Kα1) with monochromator. Magnetic susceptibility was measured using a Quantum 

Design magnetic properties measurement system (MPMS) superconducting quantum 

interference device (SQUID) magnetometer. The heat capacity of the pelletized sample was 

measured down to 70 mK using a Quantum Design physical properties measurement system 

(PPMS).  

    Neutron diffraction measurements were carried out using the SPODI powder neutron 

diffractometer at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. The xyz-

polarization analysis (XYZ-PA) was performed on the diffuse neutron scattering 

spectrometer (DNS) at MLZ, operated by the Juelich Centre for Neutron Science (JCNS). 

Around two grams powder sample were sealed in a hollow cylinder copper can with 

optimized thickness to reduce neutron absorption. A dilution refrigerator was used to achieve 

the lowest temperature of 0.1 K. An incident neutron beam of wavelength λ = 4.52 Å was 

used for the experiments, and the data were collected for 20 hours at each temperature. The 

XRPD and NPD data were refined using the package FULLPROF suite. 

    Inelastic neutron scattering measurements with thermal and cold neutrons were performed 

on the direct geometry time-of-flight spectrometers MERLIN at ISIS, LET at ISIS and 

TOFTOF at MLZ, respectively. On MERLIN, the sample was measured with three incident 

energies Ei = 65.7, 116 and 150 meV at 5 K by using a standard ‘Orange’ cryostat. With a 

dilution refrigerator, the collective magnetic excitation was measured on LET with the 

incident neutron beam of multi-Ei = 0.60, 0.90, 1.40 and 2.68 meV, and on TOFTOF with 

the incident neutron beam of Ei = 2.27 meV in the temperature range from 50 mK to 25 K. 

The raw data were reduced to û3M§ u, ü  following standard procedures with the self-

attenuation correction according to the sample absorption cross section and geometry. These 

measurements were carried out using the same sample as measured on DNS. 

 

5.3.!Results'and'discussion'

5.3.1.!Sample'quality'determination'

Rietveld refinement was performed using Fullprof on the combined XRPD and NPD patterns 

to determine the crystallographic structure of the sample, as well as the sample quality [151]. 

The refinement is performed based on the stuffed pyrochlore model, Pr2(Ir2-yPry)O7-y/2. 

Within the face-centered cubic (fcc) space group vw3x, the 16d site is fully occupied by Pr, 
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the 16c site is dominated by Ir with small mixing of Pr, and oxygen vacancies were equally 

assigned to the two sites 48f and 8b according to the electric balance of the compounds. Both 

XRPD and NPD patterns were taken at room temperature ~ 300 K. Figure 5.3.1 shows the 

Rietveld refinement result of NPD and XRPD with stoichiometric model (y = 0). Both 

patterns have good agreement to theoretical calculation with 5F = 5.86 and 2.31 for NPD and 

XRPD, respectively. As shown in Table 5.3.1, the lattice constant of our sample is estimated 

to be 10.40863(5) Å, slightly larger than 10.396(15) Å for single crystal [143], but smaller 

than 10.672(1) Å of the stuffed polycrystalline sample [199]. The lattice constant of our 

sample is also smaller than that of 10.6728 Å for Pr2Hf2O7 [180], 10.7 Å for Pr2Zr2O7 

[96,200] and 10.6004(1) Å for Pr2Sn2O7 [62], which is consistent with the fact that the ionic 

radius of Ir4+ is smaller than that of Hf4+, Zr4+ and Sn4+. The parameter of the oxygen position 

at 48f is x = 0.33061(3), which is close to 0.33299(2) for single crystal sample. The 

comparison of different PIO samples suggests that our sample has no significant defects. In 

order to obtain the stuffing level, we performed a joint XRPD and NPD refinement as a 

function of parameter y. The Rietveld refinement agreement factors are plotted in the insert 

of Figure 5.3.1. It is clear that the agreement factors increase as y increases, indicating poor 

agreement with the stuffed pyrochlore model. The stuffing level y in our sample is then less 

than 0.02, which is the limit of the joint refinement of XRPD and NPD. It has to be noticed 

that the Bragg peaks in both patterns are slightly broadened, implying the existence of 

internal strain in the sample.  

 

Table 5.3.1 Comparison of the lattice parameters a and x-parameter of the 48f oxygen 
position for various Pr2Ir2O7 (PIO) samples and other Pr pyrochlore oxides. 

 Lattice a (Å) O48f (x) Stuffing y T (K) Ref 

Ours PIO 10.40863(5) 0.33061(3) <0.02 300 - 

Single crystal PIO 10.396(15) 0.3299(2) - 298 [143] 

Powder PIO 10.406(5) - <0.2 300 [198] 

Stuffed PIO 10.672(1) - 0.4 2 [199] 

Pr2Hf2O7 10.6728(1) 0.3351(4) <0.01 300 [180] 

Pr2Zr2O7 ~10.7 ~0.334 <0.01 300 [96,200] 

Pr2Sn2O7 10.6004(1) 0.33148(5) - 300 [62,95,161] 
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Figure 5.3.1 Experimental (Yobs), calculated (Ycal) and difference (Yobs-Ycal) neutron 
powder diffraction (NPD, upper panel) and X-ray powder diffraction (XRPD lower 
panel) patterns obtained at room temperature (~300 K) with the Rietveld refinement of 
pyrochlore structure. The green short lines indicate the position of the Bragg peaks. Insert 
shows the agreement factors as function of the stuffing level y in the refined model Pr2(Ir2-

yPry)O7-y/2 with pyrochlore structure.  

 

5.3.2.!Bulk'magnetization'

Figure 5.3.2 (a) shows the field-cooled (FC) and zero-field-cooled (ZFC) DC magnetic 

susceptibility χ versus temperature measured in a field of < = 0.1,T . No anomalies or 
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thermal hysteresis, corresponding to the transitions to a long-range order or spin-glass in ZFC 

and FC 5(.) are observed down to 2 K. The insert of Figure 5.3.2 (a) shows the inverse 

susceptibility of Pr2Ir2O7, as well as the Curie-Weiss (CW) fitting. As we will discuss in the 

crystal electric field (CEF) section, the first-excited CEF level of Pr3+ in Pr2Ir2O7 is at 13 

meV, roughly corresponding to about 150 K, therefore the thermal population of CEF will 

influence the CW fitting above 50 K. On the other hand, below 10 K, PIO enters the Kondo 

regime in which the localized magnetic moment is partially screened by the conduction 

electron [186]. Thus, the temperature range of the CW analysis was chosen from 15 to 40 K. 

A temperature-independent term 5= was included in the CW analysis to account for the Van 

Vleck effect [196]: 

 
5 . = 5= +

?
. − 678

,,,,? = DE1422F /3GH (5.3.1) 

where DE  is the Avogadro number and GH  is the Boltzmann constant. The fitting gives a 

negative Weiss temperature 678  = -1.811(31) K and 1422 = 2.846(3),1H/Pr  with Van 

Vleck contribution 5= = 0.00064(4) emu/mol-Pr. The negative CW temperature implies a 

weak antiferromagnetic (AF) coupling among Pr ions. The AF CW temperature is common 

for different PIO sample, most likely due to the RKKY interactions of the 4f moments [186], 

however, our sample shows the smallest absolute value of the Weiss temperature, compared 

to -20 K for single crystal [186,196] and -6 K for the polycrystalline sample [198]. The 

disagreement may be due to a different fitting temperature range that was used in other 

samples, i.e. up to 200 K, where the CEF effect can no longer be ignored. The temperature-

independent constant, 5=  is comparable to other PIO samples, as well as the effective 

magnetic moment, which is reduced to ~ 2.846(3),1H/Pr due to the CEF effect (see the 

discussion in the CEF section). As shown in Table 5.3.2, the metallic Pr-pyrochlore PIO 

exhibits a similar effective magnetic moment compared with its insulator counterparts. 

However, the CW temperature value of PIO is larger than that of other Pr-pyrochlore, 

implying a stronger magnetic interaction between Pr3+ moments. This can be attributed to the 

smaller lattice constant and the RKKY interaction assisted by the conduction electrons 

[190,201]. 
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Table 5.3.2 Comparison of Curie-Weiss analysis of various Pr2Ir2O7 and Pr pyrochlore 
oxides. 

 678 (K) 1422(1H) 5= (emu/mole-Pr) T-range (K) ref 

Present sample -1.811(31) 2.846(3) 0.00064(4) 15-40 - 

Single crystal -20 3.06 0.00125 100-350 [196] 

Powder -6 2.8 0.003 >100 [198] 

Pr2Hf2O7 0.06 or 0.40 2.54 0.005 12-25 or 1-4 [97,180] 

Pr2Zr2O7 -0.55 or -0.8 2.47 - 4-10 [181,200] 

Pr2Sn2O7 0.23 2.67 - 3-20 [62,95] 

 

 
Figure 5.3.2 (a) Temperature dependence of susceptibility 5 of polycrystalline sample 
Pr2Ir2O7, measured from 2 to 300 K in an applied field < = 0.1,T. Insert: temperature 
dependence of inverse susceptibility 5−1 with the fit of Curie-Weiss law in the range 15 
to 40 K (blue line). (b) Isothermal magnetization curves from 0 to 6 T at 2, 10 and 50 K. 

 

    Figure 5.3.2 (b) shows the isothermal magnetization curves :(<) of Pr2Ir2O7 at T = 2, 10 

and 50 K. The :(<) curve at 2K exhibits a saturation tendency with a magnetization value 

of M ~ 1.20 1H/Nd at 6 T, which is much smaller than the theoretical saturation magnetization 
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M• = gßJ©9 = 3.58,©9/Pr  for free Pr3+ ion. The strongly reduced value of M•  can be 

attributed to the strong Ising anisotropy and the reduction of the Pr3+ moment due to the CEF 

effect (see the CEF section). For a pyrochlore lattice with local [1 1 1] Ising anisotropy, the 

saturation magnetizations :™at high fields for the three crystallographic directions [100], 

[110], and [111] are given by g´¨¨J´¨¨©9(1 3) for (two-in-two-out), g´¨¨J´¨¨©9( 2 3×2)/

4  for (two-in-two-out) and g´¨¨J´¨¨©9(1 + 1/3×3)/4  for (three-in-one-out), respectively 

[202]. Then the powder averaged Ms value should be :™ ,= 6: a== + 12: aa= +

8: aaa /26 = 0.4755×ê422Ä4221H, where the weight factors 6, 12 and 8 are the number of 

equivalent directions for [100], [110] and [111] [4]. As we show below ê422Ä4221H =

2.283,1H/Pr  in the CEF section, the powder averaged saturation magnetization thus 

becomes :™ = 1.085,1H. The measured :™ = 1.20 1H at 2 K and 6 T is slightly bigger than 

the expected value. With increasing T, the linear regime of M(H) extends over a large field 

range, although at a more gradual rate. 

 

5.3.3.!Specific'heat'

The specific heat ?(.) of Pr2Ir2O7 in the temperature range from 80 mK to 40 K under zero 

magnetic field is shown in Figure 5.3.3. On cooling, the specific heat shows a characteristic 

broad hump as in spin ice with maximum around 2 K. A sharp peak appears at .≠3Æ43 ~ 0.8 

K, with a characteristic λ-shape indicating a bulk phase transition associated with the 

ordering of the Pr3+ moments. At lower temperatures, another peak in the specific heat is 

observed around 0.15 K. This was explained as a 141Pr nuclear Schottky anomaly associated 

with the hyperfine field dS2  due to the ordered Pr3+ ionic moments [203]. However, the 

explanation is not suitable for our case because the nuclear Schottky anomaly is much 

broader than the peak at 0.15 K.  
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Figure 5.3.3 Temperature dependence of the specific heat and corresponding magnetic 
entropy hiMj (insert) of Pr2Ir2O7 in zero field. (a) and (b) display the situations due to 
different estimation of the nuclear Schottky anomaly. See detail in main text. 

 

    One can obtain the pure magnetic specific heat of electron spins ?ØMj(.) and estimate the 

magnetic entropy hiMj  by subtracting the lattice contribution (phonon), ?LMNN , the crystal 

electric field (CEF) states contribution, ?7OP, and the nuclear contribution ?∞fR. The phonon 

contribution to the specific heat is estimated by appropriately scaling the measured specific 

heat of the nonmagnetic isostructural compound Y2Ir2O7 as described in Appendix (red solid 

line). The Schottky anomaly of CEF states was calculated by 

 
?QRS =

T
UF

U
VW
GH.

F
X Y Z[

\]^ − VWX
Y Z[
\]^

_

W`a

F_

W`a

 (5.3.2) 

where U = X(−Vc/Gd.)_
W`a  is the partition function of the system, in which the CEF scheme 

of Pr3+ in Pr2Ir2O7 is based on the inelastic neutron scattering analysis in the next subsection. 

It is clear that the CEF contribution (blue solid line in Figure 5.3.3) becomes significant above 

20 K. For the nuclear contribution ?∞fR , both quadrupole and hyperfine splitting of the 

nuclear levels of 141Pr may play a role. Here, we only consider the hyperfine splitting of 

nuclear levels since the quadrupole moment of 141Pr is too small (0.0589 barn) to be relevant 

in the temperature range of our measurements [204]. The nuclear specific heat of the split 

level of 141Pr nuclear is expressed as follow [96,203]: 

 
?∞ = DEGH

±F

4ûF
1

≤cnℎF(± 2û)
−

(2û + 1)F

≤cnℎF((2û + 1)± 2û)
 

± = ¥S2 1SµK∂3 êë û GH. 

(5.3.3) 

where DE and GH are Avogadro’s number and Boltzmann’s constant, respectively. û = 5/2 

and ¥S2= 0.078 T [205,206] are the nuclear spin and hyperfine coupling constant for 141Pr. 
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êë=4/5 and 1SµK∂3  are Lande’s êë  factor and the magnetic moment of Pr3+. However, the 

standard calculation of ?∞ based on Eq. (5.3.3) with ordered moment 1SµK∂3 = 1.508 1H gives 

a large value of the nuclear Schottky peak, which is inconsistent with the data. One has to 

introduce a dimensionless factor ∑, representing the reduction of the amplitude of the nuclear 

hyperfine Schottky anomaly, which is caused by the 4f moment fluctuations of the rare-earth 

ions [207]. This could be understood if the correlation time of the fluctuations of the magnetic 

moment is of the order of or less than the spin-lattice relaxation time [207]. The practice 

expression for the nuclear hyperfine specific heat is ?_fR = ∑×?∞.  

    The practical separation of various contributions to specific heat is shown in Figure 5.3.3. 

Two methods were considered for estimating ?_fR. In the left panel of Figure 5.3.3, the only 

constraint is that the specific heat value must be positive after ?_fR subtraction, where ?_fR 

is calculated with ordered moment 1SµK∂3 = 1.508 1H and ∑ = 0.3. However, the corresponding 

entropy at 20 K is larger than Tmn(2)  per spin, which is the magnetic entropy of the 

paramagnetic state for a spin-1/2 system. In the right panel of Figure 5.3.3, two constraints 

were applied: after the subtraction of non-magnetic contributions, the entropy at 20 K should 

be the value of Tmn(2) and the magnetic specific heat ?ØMj(.) should be positive. The best 

fit is obtained with 1SµK∂3 = 2.62 1H and f =0.36. No matter which method we used to subtract 

the nuclear specific heat ?_fR, it seems that a peak around 0.15 K always appears in ?ØMj, 

implying additional unknown contribution. This anomaly at 0.15 K was also observed in the 

disordered single crystal sample [203]. The obtained magnetic entropy reveals a plateau 

above 10 K, representing the paramagnetic state. Then, it drops to be close to the Pauling 

entropy T 2 mn(3 2) above the transition temperature 0.8 K, indicating the formation of 

two-in-two-out (2I2O) spin-ice configuration. During the phase transition, the magnetic 

entropy is partially released and exhibits a plateau until 0.15 K. Finally, it reaches to zero at 

about 80 mK. 

 

5.3.4.!Crystal'electric'field'excitations'

In order to determine the Crystal Electric Field (CEF) induced level scheme and single-ion 

anisotropy, an inelastic neutron scattering experiment of polycrystalline sample was 

performed on the time-of-flight spectrometer MERLIN at the ISIS spallation source. Around 

0.88 g of powder samples were spread uniformly on a thin wrapper of aluminum foil in a 

cylindrical geometry with height 42 mm and diameter 40 mm, then, mounted into a closed-

cycle refrigerator. Spectra were recorded with incident neutron energies üW = 38, 69, 100 and 
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170 meV at temperatures T = 5 K. The raw data were reduced to û(u, ü) format following 

the standard procedures. 

 

 
Figure 5.3.4 Inelastic neutron spectra of polycrystalline Pr2Ir2O7 as a function of 
scattering vector u. The spectra were recorded with an incident energy üW = 38 meV (left 
panel) and 170 meV (right panel). The CEF transitions, marked by orange arrows, are the 
bands of scattering observed at low u whose intensities decrease with u. The strong 
scattering at large u is from phonons. 

 

    Figure 5.3.4 shows the normalized scattering cross section û(u, ü) of Pr2Ir2O7 measured 

with incident energies of 38 and 170 meV at 5 K. The strong signal around E = 0 is from 

elastic scattering, and the gradual increase in intensity with increasing u is caused by the 

scattering from phonons. The CEF transitions cause the weak dispersionless bands of 

scattering at low u and their intensity follows the squared magnetic form factor ∑F(u) of 

Pr3+. One CEF level around 14 meV can be identified with Ei = 38 meV, as well as four CEF 

levels from 65 to 115 meV with Ei = 170 meV, in agreement with the previous work [196], 

and similar to the observation in Pr2Sn2O7 [33], Pr2Zr2O7 [96] and Pr2Hf2O7 [97,180]. To 

minimize contributions from phonon scattering, only data in the low-u regime were used. 

The main panel of Figure 5.3.5 shows energy spectra integrated over a small range of 

scattering angles ∏  from 8o to 15o. In order to obtain the CEF transition energies and 

integrated intensities, Gaussian profiles with polynomial backgrounds were used to fit the 

observed data. The results of the fitting are listed in Table 5.3.3, in which the integrated 

intensities are recorded relatively with respect to the strongest peak. The integrated intensities 

have been corrected according to the neutron transmission ratio at the corresponding energy. 
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The obtained CEF peak positions and intensities thus were subsequently used to refine the 

CEF parameters. 

 

 
Figure 5.3.5 Crystal electric field analysis of inelastic neutron scattering and 
susceptibility. Main panel: neutron-scattering intensity h ∏ , ü  as function of energy 
transfer, obtained by combining T = 5 K data for two incident beam energies: Ei = 38 and 
170 meV. The blue dashed line denoted fitted polynomial backgrounds. The red solid line 
is the calculated best fit of peaks. Insert: Temperature dependence of the inverse magnetic 
susceptibility. The red solid line in the insert was calculated using the CEF parameters 
obtained from the analysis of inelastic neutron scattering data. 

 

    In the absence of the CEF interaction, the ground state of Pr3+ with 4f2 configuration, 

governed by Hund’s rules, is <z Ç (L=5, S=1, J=4) with ninefold degeneracy. The crystal 

field acting on the Pr ions in Pr2Ir2O7 has point symmetry D3d, with the local 3-fold rotation 

axis parallel to the local 1,1,1  directions of the crystal lattice. The ground state <z Ç then 

splits into three doublets and three singlets, designated by the symmetry decompositions 

3ΓzÉ + 2ΓaÉ + ΓFÉ in the irreducible representations of D3d. With the quantization axes along 

the local 1,1,1  axis, the CEF Hamiltonian takes the form: 

 ℋ7OP = d=F?=F + d=Ç?=Ç + dzÇ ?YzÇ − ?zÇ + d=ç?=ç + dzç ?Yzç − ?zç

+ dçç ?Yçç − ?çç  
(5.3.4) 

where dπ\  denotes the crystal-field parameters and ?π\  are the components of the tensor 

operator. We diagonalized ℋ7OP within the set of 91 intermediate coupling basis states of the 

∑F  configuration of Pr3+, using the program SPECTRE [208]. The measured neutron-

scattering cross section for the single-ion magnetic transitions was discussed in Chapter 3. 
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The CEF parameters in Pr2Sn2O7 [33] were used as the starting parameter for the least-square 

fitting algorithm in which the experimental uncertainties in the energies and relative 

intensities of the peaks were used as reciprocal weights. The refinement reaches 5F =

3.2093, where is 5F the standard normalized goodness-of-fit parameter.  

 

Table 5.3.3. Observed and calculated crystal-field transition energies (E) and integrated 
intensity (I) of Pr2Ir2O7 at 5 K. The intensity is relative with respect to the highest peak 
observed. D indicates the degeneracy. The best-fit CEF parameters used for the 
calculations are d=F = 32.43 meV, d=Ç= 410.3 meV, dzÇ = 253.8 meV, d=ç = 184.0 meV, 
dzç = -140.8 meV and dçç = 237.7 meV. The refinement reaches the standard normalized 
goodness-of-fit parameter χ2 = 3.2093. Note: the intensity of the first observed excitation 
at 13.8 meV was not used for the CEF fitting. 

Level D Eobs (meV) Ecal (meV) Iobs Ical 

ΓzÉ 2 0 0 - - 

ΓaÉ 1 13.8(5) 14.1 - - 

ΓzÉ 2 68.9(7) 68.15 0.51(10) 0.47 

ΓaÉ 1 81.4(7) 83.0 0.49(8) 0.25 

ΓzÉ 2 99.3(1.0) 101.3 1.00 1.00 

ΓFÉ 1 114.7(1.5) 113.87 0.36(7) 0.28 

 

    Table 5.3.3 gives the best-fit CEF parameters together with the calculated energies and 

relative intensities of the calculated levels. The calculated values of energies are seen to agree 

well with the observations. However, the observed intensities are not in good agreement with 

the predictions of the model due to the strong neutron absorption and the contamination of 

the phonon scattering. The accuracy of the CEF parameters could be improved by taking the 

INS data with a specially designed sample holder and performing precise neutron absorption 

corrections [209]. 

    The CEF level scheme of Pr2Ir2O7 is found to be very similar to that of other Pr-based 

pyrochlore compounds [33,97,180]. The CEF analysis of INS data reveals that the ground 

state of Pr3+ is a non-Kramers doublet, well separated from first excited singlet at 14 meV. 

The ground state doublet wave function (symmetry ΓzÉ ) can be written in terms of the 

ªFQÉa
ë,:ë  basis as follow: 

 ± = 0.807 <z Ç, ±4 ± 0.534 <z Ç, ±1 − 0.164 <z Ç, ∓2

+ 0.135 æa Ç, ±4 ± 0.090 æa Ç, ±1

∓ 0.044 <z {, ±4 ± 0.060 <z {, ∓2  

(5.3.5) 
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We note the significant admixture of terms <z Ç,:ë = ±4  with <z Ç,:ë ≠ ±4 , as well 

as with æa Ç and <z {, in the ground state. The ground-state wave function gives the magnetic 

moment of 2.283 1H/Pr with ê¿¿ ≈ 4.566 and êJµ ≈ 0. The reduced magnetic moment is 

smaller than the effective moment of 2.846 1H obtained from the CW analysis of magnetic 

susceptibility. This difference could be attributed to the Kondo effect, since the INS 

measurement for the reconstruction of CEF was performed at 5 K, which is in the Kondo 

regime of the metallic Kondo lattice. The localized magnetic moment of Pr3+ is partially 

screened by the conduction electrons, thus becomes smaller than that obtained from the CW 

fitting at higher temperature. The CEF parameters obtained from the analysis of INS data are 

able to reproduce the powder DC susceptibility as shown in the insert of Figure 5.3.5. A very 

good agreement between the experimental data and the calculation supports the obtained CEF 

states and parameters. The calculated anisotropy in the susceptibility is 5∥ 5ú ≈ 25.3 at T = 

10 K, where 5∥  and 5ú  are the susceptibilities parallel and perpendicular to the 111  

quantization axis of the crystal field. Additionally, the transverse part of the susceptibility is 

purely Van-Vleck type, and so the ratio 5∥ 5ú tends to infinity as the temperature approaches 

zero. Furthermore, if we ignore the higher order terms, the non-Kramers doublet ground state 

of Pr3+ in Pr2Ir2O7 consists of a dominant <z Ç, ±4  and a significant admixture of 

<z Ç, ±1  and <z Ç, ∓2 . Projection to this doublet allows us to reconstruct the set of Pauli 

matrices of a pseudospin-1/2, ¬ = √Jƒ, √µƒ, √¿ƒ . The z components √¿ƒ describe the Ising 

dipolar magnetic moments pointing along the local [1 1 1] axis and the x and y components 

√J, √µ  carry a quadrupole moment [181,191]. Thus, the magnetic moment of Pr3+ in 

Pr2Ir2O7 can be treated as the effective spin-1/2 system with strong Ising anisotropy.  

 

5.3.5.!Magnetic'ordering'and'diffuse'magnetic'scattering'

As shown in its specific heat data, Pr2Ir2O7 undergoes a phase transition around 0.8 K. We 

use polarized neutron scattering to investigate the new phase below the transition 

temperature. Figure 5.3.6 shows the nuclear coherent (blue spheres) and magnetic (red 

spheres) components of the total scattering from Pr2Ir2O7 at 87 mK by means of xyz-

polarization analysis (XYZ-PA) on DNS. The nuclear Bragg peaks (1 1 1), (1 1 3) and (2 2 

2) can be observed in the nuclear coherent scattering in the Q range. Satellite Bragg peaks at 

Q = 0.55, 0.82, 1.32 and 1.45 Å-1 were observed in the magnetic scattering component, 

indicating the long-range order of the Pr3+ moments. They can be indexed using a magnetic 

propagation wavevector k = (0 0 1) in reciprocal lattice units of the vw3x space group. The 
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corresponding Miller indices of the magnetic peaks are marked above the peaks in Figure 

5.3.6. The same result was also observed in stuffed Pr2.4Ir1.6O7-" [199]. 

 

 
Figure 5.3.6 Nuclear coherent scattering (blue spheres to right y-axis) and magnetic 
scattering (red spheres to left y-axis) of Pr2Ir2O7 at 87 mK, obtained by XYZ-PA on DNS. 

 

    In order to solve the magnetic structure, irreducible representations (IRs) and their basis 

vectors are calculated by using the BASIREPS program [151]. In the space group vw3x 

with a propagation wave vector k = (0 0 1), the decomposition of the magnetic representation 

for Pr site (1/2, 1/2, 1/2) is  

 ΓiMj = 1ΓaF + 2ΓFÇ + 1ΓzF + 2ΓÇÇ (5.3.6) 

the multiply factors represent the number of the times of the IRs occurs, the dimensionality 

and the order of IR are denoted as superscript and subscript in Eq. (5.3.6). All possible models 

of the magnetic structure can be obtained by the combination of the basis vector of the IRs. 

We found that only the combination of bases vectors of åz and åÇ in IR ΓF are suitable for 

this case, with the magnetic peaks present at (0 0 1), (1 1 0), (0 2 1) and (1 1 2). Considering 

a constraint of the Ising single-ion anisotropy in the [1 1 1] direction for Pr3+ moments, the 

magnetic structure is a long-range ordered spin-ice configuration, in which each tetrahedron 

has two spins pointing in (2-in) and two spins pointing away (2-out) from its center (right 

panel of Figure 5.3.7). Since the XYZ-PA separates the nuclear coherent scattering and 

magnetic scattering of the sample at the same temperature, we can obtain the scale factor and 
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the crystallographic parameters from the nuclear coherent scattering, then refine the ordered 

magnetic moment of Pr3+ in the magnetic scattering. The refinement of magnetic scattering 

of PIO at 87 mK for above model is shown in the left panel of Figure 5.3.7, with an ordered 

magnetic moment of x≠3Æ= 1.508(25) 1H /Pr. The ordered moment of Pr is smaller than 

1.71(1) 1H/Pr of the stuffed sample Pr2.4Ir1.6O7-" [199].  

 

 
Figure 5.3.7 Refinement of the magnetic scattering of Pr2Ir2O7 at 87 mK (left) and the 
corresponding “2-In-2-Out” (2I2O) long-range magnetic order model (right). 

 

    This ordered state with 2I2O configurations was predicted in the dipolar spin-ice model 

(DSI) [65] and the Heisenberg spins model on the pyrochlore lattice [54]. Both models take 

the strong dipole-dipole interaction into account due to the large magnetic moment of Ho3+, 

Dy3+ and Gd3+. However, considering the CEF reduced magnetic moment of Pr3+ in Pr2Ir2O7, 

the nearest-neighbor dipole-dipole interaction strength ≈__ =
{
z
∆«
Ç»

∆…

3  À
,≈ 0.11,K,  (where 

Ã__ = ÕLMNN 2/4) is ten times smaller than that of Dy3+ and Ho3+. Thus, one can ignore the 

dipole-dipole interaction in Pr-based pyrochlore system in the studied temperature range. In 

metallic Pr2Ir2O7, magnetic coupling between the localized Pr3+ moments can be mediated 

by conduction electrons. This is the so-called RKKY interaction. Early studies of Monte 

Carlo simulation on a simple RKKY exchange interaction Hamiltonian within classical 

isotropic spin have predicted the co-existence of the k = (0 0 1) 2I2O long-range ordered 

phase and the negative CW temperature depending on the parameter GP  representing the 

Fermi wavevector [190]. However, due to the quadratic band touching near the Fermi energy 

of the Ir conduction electrons, a small amount of sample defects, such as oxygen and Ir off-
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stoichiometry, may shift the Fermi energy and thus modify the RKKY interaction between 

the Pr3+ local moments [210]. As a result, different samples may exhibit 2I2O long-rang order 

or disorder states [186,199]. In our sample, a possible source of sample defects is the internal 

strain, since the stuffing level of our sample is less than 0.02, much smaller than that 

previously reported [199]. For the metallic Pr2Ir2O7, the non-Kramers doublet could be 

described as the pseudospin √Jƒ, √µƒ, √¿ƒ . The pseudospin component √¿ƒ along the local 

1,1,1  axis carries a magnetic dipole moment and can be coupled to the conduction electron 

spin density, while the components √Jƒ,µƒ  perpendicular to the local 1,1,1  axis carry a 

quadrupole moment and can be coupled to the electron charge density [137]. A phase diagram 

of the pseudospin ground-state has been established according to the above consideration 

[201]. 

 

 
Figure 5.3.8 Temperature dependence of the peak (0 0 1) intensity of the neutron x-spin-
flip (x-SF) channel. The pink curve is the fit of a power-law function for the ordering 
parameter x≠3Æ ,∝ , ûiMj . The blue curve corresponds the squared ordered moment 
x≠3Æ43
F  obtained from Rietveld refinement at different temperature (right axis). 

 

    The temperature dependence of the intensity of the spin-flip (SF) scattering with x 

polarization was measured at the magnetic peak (0 0 1) position from 0.1 to 0.95 K, as shown 

in Figure 5.3.8. Since ŒJQP = 1 2ŒiMj + 2 3Œ™KW_YW_R in powder samples, the variation of 

the intensity of x-SF channel is proportional to the squared ordered moment, because the spin 

incoherent scattering of the sample is usually temperature independent. A modified power 

law, which assume the background corrected intensity of x-SF is proportional to the ordered 

moment, û = û=(1 − ./.∞)Fœ + –ê, was applied to fit the magnetic ordering behavior from 
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0.45 to 0.85 K. The fit is shown by the pink solid curve in Figure 5.3.8, and gives .Ø = 

0.762(35) K and β = 0.326(21), which, within the error bar, is close to the expected critical 

exponent 0.33 for a three-dimensional Ising system [6]. The .Ø = 0.762(35) is consistent 

with the specific heat anomaly around 0.8 K discussed above. Comparing with the stuffed 

sample with the ordering temperature .Ø  = 0.93(1) K [199], the magnetic transition 

temperature in our sample is lower.  

    The ordered-state magnetic moment of Pr3+, x≠3Æ= 1.508(25) 1H/Pr, at 87 mK is strongly 

reduced compared to the magnetic moment 3.56 1H /Pr for free Pr3+ ions ( 1422 =

êë Ä(Ä + 1), Ä = 4, êë = 4/5 for Pr3+), as well as the effective moment 17OP = 2.275 1H/Pr 

due to CEF effect. The reduction of the ordered moment implies the presence of strong 

quantum fluctuations. As shown in Figure 5.3.7, it is remarkable that a non-negligible 

background exists in the magnetic scattering component, beside the magnetic Bragg peaks 

for the long-range magnetic order at 87 mK. The non-negligible magnetic scattering 

background indicates possible presence of diffuse magnetic scattering, which could be elastic 

or inelastic scattering. The elastic magnetic scattering data taken from DNS is actually 

energy-integrated within the energy transfer window of DNS, up to 70-80% of the incident 

neutron energy at 81.81 ùF = 4,meV for ù = 4.52,Å, i.e. about 3 meV. If the overall energy 

scale of the magnetic excitations in the system is smaller than 3 meV, which is the case for 

Pr2Ir2O7 (as will be demonstrated in next subsection), the magnetic scattering result of DNS 

would also include contributions from the fluctuating magnetic moments. One can estimate 

the total fluctuating magnetic moment from the diffuse magnetic scattering, after calibrating 

the intensity of magnetic scattering to absolute unit barn/sr/Pr. 
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Figure 5.3.9 (a)The magnetic diffuse scattering of Pr2Ir2O7 at different temperature. The 
magnetic Bragg peaks due to 2I2O long-range order have been excluded. The intensity at 
420, 620 and 850 mK are displaced vertically by 0.2, 0.4 and 0.6 barn/sr/Pr, respectively. 
(b) Temperature dependence of the magnetic scattering intensity at 0.736 Å-1, and the 
disordered moment square calculated according to the magnetic diffuse scattering. 

 

    Figure 5.3.9 (a) shows the diffuse magnetic scattering of Pr2Ir2O7 at different temperature. 

The intensity of magnetic scattering has been normalized to the absolute cross section, 

barn/sr/Pr, by the nuclear Bragg peaks according to the formula (see the detail in Appendix 

C): 

 dσiMj
dΩ

=
ûiMj
4JK

ûK4M\™
4JK ×

wŒK4M\
wΩ

 (5.3.7) 

where Æ÷◊ÿŸ⁄
Æ¤

 is the nuclear Bragg peak scattering cross section for powder sample [211], 

ûK4M\™
4JK  is the u integrated intensity of nuclear Bragg peaks from nuclear coherent scattering, 

and ûiMj
4JK  is the magnetic scattering patterns. This normalization method gives rise to a 

systemic error of 13% [212]. The magnetic Bragg peaks associated with 2I2O magnetic order 

at 87, 420, 620 mK have been excluded. The differential cross section of magnetic scattering 

at 420, 620 and 850 mK are shifted vertically by 0.2, 0.4, and 0.6, respectively. Above the 
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2I2O transition, the magnetic scattering at 850 mK only displays a spin-ice like modulation, 

where two broad humps are observed at 0.6 and 1.5 Å-1 in the measured u range [67]. On 

cooling, the magnetic Bragg peaks appears and their intensity increases due to the 

development of the 2I2O ordering. However, the diffuse magnetic scattering can always be 

observed. The diffuse magnetic scattering at 620, 420 and 85 mK has similar modulation as 

observed at 850 mK. This indicates that the disordered magnetic moment may exhibit a spin-

ice correlation beside the 2I2O long-range order. Furthermore, with decreasing temperature 

the intensity of magnetic diffuse scattering decreases from 0.49 to 0.25 barn/sr/Pr at u = 

0.736 Å-1, as shown in Figure 5.3.9 (b), while the ordered moment increases, as shown in 

Figure 5.3.8.  

 

Table 5.3.4 Ordered and disordered magnetic moment of Pr3+ in Pr2Ir2O7 at different 
temperature. The ordered moment was obtained from the refinement of the 2I2O 
magnetic structure, while the disordered moment was calculated from the magnetic 
diffuse scattering. See the detail in main text. The total magnetic moment xN≠N

F  is nearly 
temperature independent, within the systemic error.  

Moment (1HF ) 87 mK 420 mK 620 mK 850 mK 3.5 K 

x F 2.274(74) 1.943(103) 1.041(76) - - 

‹xF 3.135(168) 3.718(253) 5.094(207) 5.660(115) 5.115(146) 

xN≠N
F  5.409(184) 5.661(273) 6.135(221) 5.660(115) 5.115(146) 

 

    The opposite temperature dependence of the magnetic Bragg peaks and the diffuse 

magnetic scattering intensity implies the possibility of the conservation of the total moment 

in this system during measurement. One can directly obtain the disordered magnetic moment 

according to [213]: 

 
‹xF = 1HF

uF6û(u, ü)/ Ã=∑(u) Fwuwü
uFwu

 (5.3.8) 

where Ã= = 0.539×10YaF,cm and û u, ü = dσiMjF wΩwü is the double differential cross 

section. Given the energy-integral mode employed at DNS, it can be inferred that the 

magnetic scattering data are already approximately energy-integrated. The u  integration 

range was chosen from 0.3 to 1.7 ÅYa  that covers the whole Brillion Zone (BZ). The 

temperature dependence of the disordered magnetic moment obtained from the diffuse 

magnetic scattering is shown in Figure 5.3.9 (b). The disordered moment decreases from 

5.660(115) 1HF  at 850 mK to 3.135(168) 1HF  at 87 mK. The disordered moment ‹xF and the 

ordered moment x F are listed in Table 5.3.4, as well as the total moment xN≠N
F . The total 
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moment xN≠N
F  is nearly temperature independent within the error bar (considering the 

systemic error and standard derivation). The average value of the total moment xN≠N
F  is 

around 5.6 1HF , which is smaller than 12.8 1HF  for free Pr3+ (with êë = 4/5, Ä = 4), but 

approximately same as 5.2 1HF  obtained from the CEF result. This result strongly suggests 

that the total magnetic moment of Pr3+ in Pr2Ir2O7 is conserved, and its reduced value is due 

to CEF.  

 

5.3.6.!Magnetic'excitations'

 

 
Figure 5.3.10. The diffraction pattern of Pr2Ir2O7 at 60 mK, obtained by energy 
integration of û3M§ u, ü  from -0.3 to 0.3 meV at each Q with ΔQ = 0.005 Å-1. Insert: 
profile of magnetic peak (0 0 1). Red solid line is the Gaussian fit of the peak, green 
dashed line is the Gaussian profile with (1 1 1) peak width. 

 

    We now turn to the low-energy magnetic excitations of Pr2Ir2O7, studied by cold neutron 

inelastic scattering. Figure 5.3.10 shows the diffraction pattern at 60 mK obtained by 

integrating the spectrums in the energy range from -0.3 to 0.3 meV, which is large enough to 

include all the elastic component (see in Figure 5.3.11). The peak at u = 1.05 Å-1 is a pure 

nuclear Bragg peak, which can be used to perform the absolute unit calibration. Additionally, 

there are two magnetic peaks (0 0 1) and (1 1 0) at u = 0.61 Å-1 and 0.85 Å-1, respectively. It 

has been noticed that the magnetic Bragg peaks are broader than the nuclear Bragg peaks in 

the stuffing sample [199]. Similarly, as shown in the insert of Figure 5.3.10, the magnetic 

Bragg peak (0 0 1) is also slightly broader than the nuclear peak (1 1 1) in our sample. 



5.3 Result and discussion 

 99 

However, the real resolution function (FWHM vs u or 26) of the diffraction pattern obtained 

from û3M§ u, ü  is unknown, and high-resolution neutron powder diffraction measurements 

are necessary to clarify this. The refinement of the diffraction patterns shown in Figure 5.3.10 

yields an ordered moment 1.703(41) 1B/Pr in Pr2Ir2O7 at 60 mK. 

 

 
Figure 5.3.11 Neutron scattering spectrum of polycrystalline Pr2Ir2O7 at 60 mK (a) and 
25 K (b), measured on LET with Ei = 2.88 meV. The intensity has been normalized to 
barn/sr/meV/Pr by the nuclear peak (1 1 1). Inelastic spectra of Pr2Ir2O7 for constant u = 
1.2 Å-1 with !Q = 0.02 Å-1 at 60 mK and 25 K are presented in (c) and (d), respectively. 
Open circles are experimental data. Red, blue and pink solid lines are the total profile, 
elastic, inelastic, and quasielastic component, respectively, of the fitting. 

 

    Figure 5.3.11 (a) and (b) provide an overview of the neutron spectrum recorded at T = 60 

mK and 25 K with Ei = 2.88 meV. The intensity û u, ü = GW G2 ,(wFŒ wΩwü) has been 

normalized to absolute units (barn/sr/meV/Pr) using the integrated intensity of the nuclear 

Bragg peak (1 1 1) [211]. This produces an overall scale accuracy of 10%. At T = 25 K, it 

displays a typical paramagnetic response, as shown in Figure 5.3.11 (b), in which strong 
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quasielastic scattering could be observed at low u . At T = 60 mK, a broad low-energy 

response centered around 0.35 meV could be observed. Since it appears below the phase 

transition, it should be a purely magnetic contribution. Turning now to the energy dependence 

of the response, we carry out fits of the spectra to following function: 

 
û u, ü = ¥ ∙ ûTv u, ü +

d
1 − exp −ü GH.

EΓ‡O∞Q
üF + Γ‡O∞QF

+
1

1 − exp −ü GH.
?WüΓW

üF − üW
F F + üΓW FW

 
(5.3.9) 

where the first term represents the elastic component of Gaussian profile with FWHM ~ 0.13 

meV, the second term represents the quasielastic magnetic component with FWHM =

2Γ‡O∞Q and the third terms represent several inelastic magnetic components (A, B and Ci are 

constants, ΓW  is the FWHM of different inelastic scattering components at inelastic peaks 

üW
W4 = ± üW

F − (ΓW/2)F ). The expression for inelastic component is equivalent to the 

Lorentzian profile which is often used to fit the magnetic inelastic scattering.  

    The fitting results at constant u = 1.2 ÅYa are illustrated in Figure 5.3.11 (c) and (d) for 

temperature at 60 mK and 25 K, respectively. At T = 25 K, the paramagnetic state of the 

system can be expressed as the combination of elastic component and quasielastic component 

with FWHM = 901.7 1eV, corresponding to the relaxation time √ n≤ = 1.31/FWHM 1eV  

= 0.00145 ns which is significantly faster than 1-10-1 ms for the classical spin ice compounds 

[214,215]. At T = 60 mK, the fitting yields the accurate excitation 0.39 meV with a linewidth 

0.313 meV, which is broader than the instrumental resolution, suggesting possible dispersive 

excitations. Indeed, the slightly dispersive nature of the excitation could be observed in 

Figure 5.3.11 (a). To clarify the dispersion of the excitation at 60 mK, we applied the fit 

discussed above to the whole spectrum. The excitation energy üie and the linewidth Γie are 

subtracted and plotted as a function of u, as shown in Figure 5.3.12 (a). The linewidth Γie 

slightly increases at large u. The excitation energy of the inelastic component exhibits a u 

dependence. As u increases, the excitation shifts to lower energy and reaches a minimum 

round u = 0.6 Å-1 if u increases further, the excitation shifts to higher energy.  

    A discrete excitation was also observed at low temperature in other Pr-based pyrochlore 

[95-97]. For example, the INS measurement on single crystal Pr2Zr2O7 shows a broad low 

energy response whose structure factor is similar to the specific pattern observed in classical 

spin ice [181]. However, the observed excitation in our sample does not follow the structure 

factor of either the classical spin ice or the paramagnetic magnetic state. Figure 5.3.12 (b) 
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shows the energy integrated inelastic components û(u)  which is related to the powder-

averaged dynamical spin correlation function h(u). The energy integration is performed 

from 0.15 to 1.2meV. The purple line is proportional to the magnetic form factor square of 

Pr3+ representing the paramagnetic state, while the red line is proportional to the magnetic 

structure factor of the classical spin ice [78]. It is clear that the Q dependence of the excitation 

is completely different to the classical spin ice. Interestingly, our experimental result is very 

similar to the observation in Tb2.005Ti1.995O7+y [216,217]. That excitation can be described in 

terms of pseudospin waves in the planar antiferropseudospin (PAF) and planar 

ferropseudospin (PF) phases in which the quadrupolar degree of freedom (√Jƒ, √µƒ) play a 

role and impact the dynamic of the magnetic dipolar component √¿ [218]. Indeed, the CEF 

ground-state of both Pr3+ and Tb3+ in pyrochlore are non-Kramers doublet. The CEF ground 

doublet could be described as the pseudospin √Jƒ, √µƒ, √¿ƒ , which √¿ƒ  along the local 

1,1,1  direction carries a magnetic dipole moment and √Jƒ,and,√µƒ  in the plane 

perpendicular to the local 1,1,1  direction carry a quadrupole moment. Instead of the 

quadrupole order in Tb2.005Ti1.995O7+y, Pr2Ir2O7 exhibits the dipole moment ordering of the 

pseudospin component √¿ƒ . The effect of the quadrupolar degree of freedom has been 

proposed to explain the INS result of Pr2Zr2O7 [181]. Possibly this needs to be taken into 

account in this case. 

 

 
Figure 5.3.12 (a) Q dependence of the linewidth ΓW4  and excitation energy üW4  of the 
inelastic component obtained by the fit to the INS spectrum at T = 60 mK. The green line 
is guide to eye. (b) E integrated INS intensity as function of wave vector transfer û(u) at 
60 mK. The purple solid line is proportional to the squared magnetic form factor of Pr3+ 
representing paramagnetic state. 
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    One can also calculate the fluctuating moment to check the possibility of the existence of 

disordered static magnetic moments according the sum rule. The excitation-associated 

magnetic moment is around ‹xF = 3.639(80),1HF , calculated according to Eq. (5.3.8). 

Considering the ordered moment x F = 2.786 150 ,1HF , the total magnetic moment is 

6.4025(170) ,1HF , which is close to the CEF moment 5.212 ,1HF . Taking into account the 

systemic error and contamination of the elastic component, the total magnetic moment sum 

rule is satisfied. This is in excellent agreement with the neutron polarization analysis on DNS. 

That signifies that there is no disordered static moment in Pr2Ir2O7 at 60 mK. 

 

 
Figure 5.3.13 Temperature dependence of the û3M§(u,‰) of the powder Pr2Ir2O7. 

 

    The thermal evolution of the spectrum was measured on TOFTOF at MLZ. The color 

contour plots of the inelastic neutron scattering are presented in Figure 5.3.13. The strong 

quasielastic signal at low u and low energy is due to the contaminations of the direct beam 

and the excitations from a small amount of Helium exchange gas used in the top-loading 

closed cycle cryostat (CCR) (see Appendix Figure E.1). With the instrument resolution as 
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good as ~ 0.04 meV, the gapped excitation could be clearly observed at 50 mK. When 

increasing the temperature, the mode persists up to 1.2 K, far above the 2I2O 

antiferromagnetic transition (Torder = 0.762 K). At 3.5 K, the strong magnetic quasielastic 

scattering is observed. The temperature dependence of the spectrum at constant u = 1.2 Å-1 

as well as the fits of Eq. (5.3.9) are shown in Figure 5.3.14 (a). With decreasing temperature, 

there is only a loss of spectral weight at lower energies, while the spectral weight at high 

energies is nearly unaffected. The excitation energy üie and the linewidth Γie are subtracted 

and plotted as a function of temperature, as shown in Figure 5.3.14 (b). The linewidth Γie of 

the mode increases with increasing temperature due to the enhanced thermal fluctuation. 

However, the excitation energy üie exhibits an unusual temperature dependence, as guided 

by the blue line. The excitation energy üie roughly stays constant above 2I2O phase transition 

temperature, but gradually moves to higher energies when further cooling to low temperature. 

This behavior of üie may suggest that the exchange interaction between Pr3+ is enhanced 

when the 2I2O magnetic ordering occurs. The dominating exchange interaction between Pr3+ 

in the metallic Pr2Ir2O7 is the RKKY interaction that strongly depends on the band structure 

of this material. One of possibilities is that the 2I2O magnetic order of Pr3+ may affect 

conduction electrons and modify the Fermi level, since the Fermi energy is very close to the 

quadratic band touching [185, 210, 219]. As a result, the RKKY interaction is enhanced as 

the 2I2O order evolves during cooling. Clearly, further experimental and theoretical works 

are need to clarify this. 

 

 
Figure 5.3.14 (a) Representative spectra carried out at u = 1.2,ÅYa. The lines are fits 
according to Eq. (5.3.9), showing a strong mode at energy üW4 . (b) Temperature 
dependence of the gap position üie and the line width ΓÂÊÁ of the excitation. 
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5.4.!Conclusion'
In this chapter, the metallic pyrochlore compound Pr2Ir2O7 has been studied comprehensively 

via both macroscopic and neutron scattering techniques. Pr2Ir2O7 crystallizes in the vw3x 

crystallographic structure with a cubic lattice constant a = 10.40863(5) Å at room 

temperature. The combined Reitveld refinement of XRPD and NPD patterns suggests that 

the stuffing level of Pr-to-Ir site in the powder sample should be less than 0.02, however, the 

broadening of the diffraction peaks implies the existence of the internal strain. No bifurcation 

of the ZFC and FC magnetization was found above 2 K. The Curie-Weiss fitting of the DC 

susceptibility gives a negative CW temperature, implying an antiferromagnetic effective 

interaction. Due to the CEF effect, Pr3+ is a well isolated non-Kramers doublet with a reduced 

magnetic moment of 2.283 1H/Pr below 20 K. The magnetic moment displays strong easy-

axis anisotropy along the local 1,1,1  direction. The CEF ground state doublet can be 

projected as the pseudospin √Jƒ, √µƒ, √¿ƒ , which is a dipole moment and quadrupole 

moment combination. Pr2Ir2O7 exhibit a second phase transition indicated by a heat capacity 

anomaly at 0.76 K and determined by polarized neutron diffraction as a transition from the 

paramagnetic state to the 2I2O magnetic long-range order of Pr3+. However, the ordered 

moment of Pr3+ is around 1.7 1H below 0.1 K, which is smaller than the expected moment in 

CEF. The missing moment is found fluctuating and forms a gapped excitation around 0.35 

meV as observed by INS. The reason for the mode is possibly due to the quadrupole 

interactions between the pseudospins. The excitation energy exhibits unusual thermal 

evolution in the 2I2O ordered state. With decreasing temperature, the gapped excitation 

moves to high energies and becomes sharper, implying the strengthening of the exchange 

interaction. One possible scenario is that this may be caused by the strong interplay between 

the 2I2O order of Pr3+ and the conduction electron of Ir4+ due to the sensitivity of the 

quadratic band touching close to the Fermi energy. Further theoretical investigation is 

necessary to understand the above experimental results for Pr2Ir2O7. 
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Chapter'6.!All?In?All?Out'Magnetic'Order'and'Magnetic'Excitations'
in'Pyrochlore'Nd2Hf2O7'

 

6.1.!Introduction''
In previous chapters, I have discussed the pyrochlore iridates Ln2Ir2O7, in which both rare 

earth ions Ln3+ and transition metal ions Ir4+ are magnetic. The non-negligible interplay 

between Ln and Ir in pyrochlore iridates leads to the relevant complexity of the system. In 

order to study the properties of rare earth ions in pyrochlore lattice, one can replace the Ir4+ 

by Hf4+, which is also a 5d transition metal but non-magnetic (5d0). As introduced in the 

background of this thesis, the rare earth compounds of hafnate-227 form the pyroclore 

structure from La to Tb. This chapter will focus on Nd2Hf2O7 (NHO), which is a counterpart 

of Nd2Ir2O7.  

    The Nd-based pyrochlore compounds stand out as a fascinating system, and intense 

investigations are undergoing. The CEF ground doublet of Nd3+ in pyrochlore is a Kramers 

doublet called a “dipolar-octupolar” (DO) doublet (if Ä = 9 2 or 15 2 , and the CEF is 

dominated by the parameter dF= < 0  in Eq 2.2.3). The ground doublet thus could be 

represented as a pseudospin-1/2, in which two components of the effective pseudospin 

operator (z and x) behave like a dipole under space-group symmetry transformation, whereas 

the third component (y) behaves like an octupolar tersor [44, 220]. In the case of the large-U 

limit of localized electrons, where the degrees of freedom are the pseudospin-1/2 moments 

√W
fƒ,(ËÈ = !È, ÍÈ, ÎÈ) , the most general symmetry allowed nearest-neighbor exchange is 

<4JÏÌ = ÓJ√W
Jƒ√Ô

Jƒ + Óµ√W
µƒ√Ô

µƒ + Ó¿√W
¿ƒ√Ô

¿ƒ + ÓJ,¿ √W
Jƒ√Ô

¿ƒ + √W
¿ƒ√Ô

Jƒ
W,Ô , where the sum is 

over nearest-neighbor bonds. Employing a rotation by an angle 6 in the !È, ÎÈ  plane, the 

term ÓJ,¿ can be eliminated and it leaves us with the “diagonal” “XYZ” Hamiltonian for the 

new pseudospin components √Wf, Ë = !, Í, Î  [44, 221]: 

 <ÒöÏÌ = ÓJ√W
J√Ô

J + Óµ√W
µ√Ô

µ + Ó¿√W
¿√Ô
¿

W,Ô
 (6.1.1) 

Based on the three parameters ÓJ,µ,¿, a rich theoretical phase diagram was established (see 

Figure 6.1.1) [44]: besides the ordered phases like the AIAO configuration where dipoles 
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point along the local axis toward or outward the centers of tetrahedron, an antiferro-octupolar 

(AFO) phase appears along with two distinct quantum spin-ice (QSI) phases dubbed as 

dipolar-QSI and octupolar-QSI [44]. Indeed, the AIAO antiferromagnetic order has been 

found in a few of the Nd-based pyrochlores, as listed in Table 6.1.1. However, below 0.1 K, 

all the Nd3+ ordered magnetic moments are smaller than the one for free ion (3.35 1H) and 

also for the CEF reduced value (2.45 1H). This fact implies the persistence of the fluctuating 

magnetic moment due to quantum effects of the pseudospin √Wf. 

 

 
Figure 6.1.1 Coordinate systems and the phase diagram based on the “XYZ” model (taken 
from ref [44]). “XXZ” refers to the XXZ model in Chapter 2. AIAO, QSI and AFO 
represent the phases of “all-in-all-out” dipoles order, quantum spin ice, and antiferro-
octupolar order, respectively. 

 

Table 6.1.1 Summary of the AIAO ordered Nd-based pyrochlore, as well as the lattice 
constant Õ  and Curie-Weiss temperature 6K . (Nd2Ir2O7 has no clear ordering 
temperature.) 

 Õ, Å  6K,(K) TN (K) :≠3Æ43,(1H) Ref. 

Nd2Ir2O7 10.3809(3) -18.62 <20K 1.4025(202) Chapter 4, [131,132] 

Nd2Sn2O7 10.568(3) -0.32 0.91 1.708(3) [222] 

Nd2Zr2O7 10.6735 0.124(2) 0.3 1.26(2) [34,223,224] 

Nd2Hf2O7 10.6389 0.135(43) 0.535(5) 1.415(13) present, [225] 

 

    Recently, the investigation of the spin dynamics of Nd2Zr2O7 by inelastic neutron 

scattering shows that a flat magnetic excitation mode centered at 0.07 meV, coexists with the 

AIAO long-range order below TN ~ 0.3 K, and persists up to 0.6 K [178]. This flat mode 

exhibits a pinch point pattern characteristic of the magnetic Coulomb phase. The observation 

was interpreted as the magnetic moment fragmentation proposed by Brooks-Bartlett et al. 

[178,226]. The fragmentation scenario is based on the classical spin ice model. As shown in 
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Figure 6.1.2, the magnetic density mapped from crystallized single charged monopole, which 

presents “three-in-one-out” (or “one-in-three-out”, 3I1O) configuration, can fragment into 

two parts under Helmholtz decomposition:  

 Ú = Úi +ÚÆ = Ûå + Û×Ù (6.1.2) 

where Úi = Ûå is “divergence full”, corresponding to the AIAO order and ÚÆ = Û×Ù is 

“divergence free”, and gives rise to the pinch-point correlations associated with the 

fluctuating Coulomb phase [60, 66, 78, 227]. However, the observed cusp in the 

susceptibility at the AFM phase transition does not agree with the above classical 

fragmentation scenario in which the susceptibility would appear to be featureless [224]. 

Benton further point out the quantum origins of the observed moment fragmentation based 

on the XYZ model [221]. I would like to remind that the flat like band excitation has also 

been observed in Nd2Ir2O7 below 30 K, but it was interpreted as a CEF ground doublet 

splitting due to the Zeeman effect of the molecular magnetic field, di2ı3 , generated by ordered 

Ir4+ [131]. Thus, it is desired to study another Nd-based pyrochlore, e.g. Nd2Hf2O7. 

 

 
Figure 6.1.2 Illustration of the classical moment fragmentation: the 3I1O spin 
configuration (left) with its dumbel model (middle) could be decomposed into a static 
magnetic charge modelling the AIAO long-range order and a fluctuating dipolar field 
showing monopole dynamics via Helmholtz mechanism (taken from ref [226]).  

 

    The properties of Nd2Hf2O7 have been studied by neutron scattering and 1hT, [225, 228, 

229]. However, Anand observed unusual saturation behavior of the ordered moment, which 

cannot to be explained. On the other hand, more information below 2 K, such as the specific 

heat anomaly associated to the phase transition and the observation of the collective magnetic 

excitation are still missing. In this chapter, we systematically investigate the magnetic 

properties of Nd2Hf2O7 by means of DC magnetization, specific heat, polarized neutron 

scattering and inelastic neutron scattering. The total moment sum rule of the magnetic 

neutron scattering was employed to examine the moment fragmentation scenario. The linear 

spin wave theory (LSWT) based on XYZ model can account for the low temperature 

magnetic excitations, as well as the excitation above TN.  
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6.2.!Experimental'details'

A polycrystalline Nd2Hf2O7 sample was synthesized by solid state route via firing the 

stoichiometric mixture of Nd2O3 (99.99%) and HfO2 (99.99%) in an alumina crucible at 1550 
oC in air for 7 days with several intermediate grindings and pelletizing. Then, the pellets were 

ground into fine powder and annealed for two days in pure O2 flow at 1000 oC. The 

nonmagnetic reference compound La2Hf2O7 was also prepared by the same method and used 

to estimate the phonon contribution to the heat capacity.  The quality of the sample was 

checked at room temperature by x-ray powder diffraction (XRPD) using the laboratory-based 

diffractometer (STOE, Mo-Kα1) with monochromator. The magnetic susceptibility 

measurement was performed using a Quantum Design magnetic properties measurement 

system (MPMS) superconducting quantum interference device (SQUID) magnetometer. The 

heat capacity of the pelletized sample was measured down to 70 mK using a Quantum Design 

physical properties measurement system (PPMS) with a dilution refrigerator.  

    The neutron powder diffraction (NPD) measurements were carried out using the powder 

neutron diffractometer SPODI at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, 

Germany. The xyz neutron polarization analysis was performed on the diffuse neutron 

scattering spectrometer DNS at MLZ, operated by the Juelich Centre for Neutron Science 

(JCNS). Around two grams of the powder sample were sealed in a hollow cylinder copper 

can with optimized thickness ~ 1.25 mm to reduce neutron absorption. A dilution refrigerator 

was used to achieve the lowest temperature of 0.1 K.  An incident neutron beam of 

wavelength λ = 4.2 Å was used for the experiments. At each one of the temperatures, data 

were collected for 15 hours. The XRPD and NPD data were refined using the package 

FULLPROF suite.  

    The inelastic neutron scattering (INS) measurements with thermal and cold neutrons were 

performed, respectively, at the direct geometry time-of-flight spectrometers IN4 and IN6 at 

the Institute Laue Langevin (ILL), Grenoble, France. Both measurements were carried out 

using the same sample measured at DNS. On IN4, the sample was measured with three 

incident energies Ei = 65.7, 116 and 150 meV at 2, 50, 100 K by using a standard ‘Orange’ 

cryostat. On IN6, an incident neutron beam of wavelength λ = 5.12 Å was used for the 

experiments at the temperatures 0.056, 0.6 and 15 K achieved using a dilution refrigerator. 

All obtained INS raw data is converted to û(u, ü) format in the standard routine with self-

attenuation correction according to the sample absorption. 
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6.3.!Results'and'discussion'

6.3.1.!Sample'quality'determination''

During the sample synthesis processes, the XRPD was employed regularly to exam the 

sample quality, such as phases purity and evolution phases. The process stops when the 

contents of impurity phases reach levels below the detectable limit of XRPD. Besides, since 

the frustrated magnets such as pyrochlores stand on the subtle balance among the competing 

interactions, a slight defect of the sample may drive the system to different phases. For 

example, in the pyrochlore Yb2Ti2O7 the “stuffing” defect, when a small amount Yb occupies 

the 16c site of Ti, leads to the variation of the delicate magnetic ground state of Yb2Ti2O7. 

One can determine the stuffing level employing the Rietveld refinement of powder 

diffraction [230].  

    The Fullprof software was employed to perform the Rietveld refinement of the 

crystallographic structure [151]. The neutron coherent scattering length –R of Nd and Hf are 

so similar (7.69 fm for Nd and 7.77 fm for Hf) that the contrast of Nd and Hf is lost in the 

structure refinement of NPD. The joint refinement of XRPD and NPD has to been performed. 

The refined structure model was the stuffed pyrochlore model, Nd2(Hf2-yNdy)O7-y/2. Within 

the face-centered cubic (fcc) space group vw3x, the 16d site is fully occupied by Nd, the 

16c site is dominated by Hf with a slight mixing of Nd, and oxygen vacancies were assigned 

to the two sites 48f and 8b according to the electric balance of the compounds. Both XRPD 

and NPD patterns were taken at room temperature ~ 300 K. Figure 6.3.1 shows the Rietveld 

refinement result of XRPD and NPD with y = 0, i.e. of the stoichiometric pyrochlore model. 

Both patterns have good agreement with theoretical calculation with 5F = 4.28 and 1.52 for 

XRPD and NPD, respectively. As shown in Table 6.3.1, the cubic lattice constant a of the 

sample is 10.6459(2) Å, which is close to the previous reported value of 10.6389(1) Å [225], 

smaller than the value a = 10.6735(7) Å of Nd2Zr2O7 [34], and bigger than the value a = 

10.568(3) Å of Nd2Sn2O7 [222]. The x-parameter of the 48f oxygen position is 0.33395(9) 

which is in agreement with the reported values of 0.3340(5) for Nd2Hf2O7 [225], 0.3356(2) 

for Nd2Zr2O7 [34], and 0.33250(8) for Nd2Sn2O7 [34]. The x-parameter is smaller than the 

value 0.375, expected for a perfect cubic oxygen environment about the 16d site. That implies 

a distorted feature of the oxygen octahedra, which is important for the Nd3+ CEF excitations 

and single-ion anisotropy discussed below. In order to obtain the possible stuffing level, we 

performed the joint XRPD and NPD refinement as function of y. The Rietveld refinement 

agreement factors as function of the stuffing level are plotted in Figure 6.3.2. It is clear that 
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the agreement factors increase when y increases, which implies a poor agreement with the 

model. We conclude that the stuffing level y in this sample should be less than 0.02, which 

is the limit of accuracy of the joint refinement of XRPD and NPD. The anisotropic 

displacement parameters are listed in the Table 6.3.2. The value of the parameters is 

comparable with other published results for pyrochlore compounds [230]. 

 

Table 6.3.1 Comparison of the lattice parameters a and 48f oxygen position x at 300 K 
for different Nd pyrochlore.  

 
Nd2Hf2O7 (this 

work) 
Nd2Hf2O7 Nd2Zr2O7 Nd2Sn2O7 

Nd2Ir2O7 (this 

work) 

Lattice a 

Å 
10.6459(2) 10.6389(1) 10.6735(7) 10.568(3) 10.3809(3) 

O48f (x) 0.33395(9) 0.3340(5) 0.3356(2) 0.33250(8) 0.33136(7) 

Stuffing y < 0.02 - <0.005 0.013 - 

Ref - [225] [34] [222] Chapter 4 

 

Table 6.3.2 Anisotropic displacement parameters (ADPs) ˆ×10YÇ  Å2 obtained for 
stoichiometric model Nd2Hf2O7. The results are obtained from the refinement of NPD at 
300 K. 

 âa F̂F ẑz âF âz F̂z 

Nd (16d) 6.7(4) -0.8(4) 

Hf (16c) 7.0(4) 1.0(4) 

O (48f) 15.1(5) 9.9(4) - 4.2(5) 

O (8b) 11.6(10) - 
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Figure 6.3.1 Experimental (Yobs), calculated (Ycal) and difference (Yobs-Ycal) X-ray 
powder diffraction (XRPD) (a) and neutron powder diffraction (NPD) (b) patterns 
obtained at room temperature (~300 K) with the Rietveld refinement of pyrochlore 
structure. The green short lines indicate the position of the Bragg peaks.  
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Figure 6.3.2 The joint refinement agreement factors as function of the stuffing level y in 
the refined model Nd2(Hf2-yNdy)O7-y/2 within the pyrochlore structure. The refinement 
agreement factors TH and 5F are read from the left axis, while T∂ and T§K are read from 
the right axis.  

 

6.3.2.!Bulk'Magnetization''

Field-cooled (FC) and zero-field-cooled (ZFC) DC magnetic susceptibility χ versus 

temperature measured in a field of < = 0.1,T are shown in Figure 6.3.3 (a), No anomalies 

and thermal hysteresis between ZFC and FC in χ(T) are observed down to 2 K, in agreement 

with the reported results of Nd2Hf2O7 [225], Nd2Zr2O7 [34,223] and Nd2Sn2O7 [222]. 

Attempts to fit the temperature-dependence of the reciprocal magnetic susceptibility reveal 

that the χ-1(T) data do not obey a Curie-Weiss (CW) law in the temperature range 2 – 350 K. 

As we will discuss in the crystal electric field (CEF) section, the first-excited CEF level of 

Nd3+ in Nd2Hf2O7 is at 23meV, situated at about 270 K. Therefore the thermal population of 

the CEF will influence the CW fitting above 100 K. To minimize the effects of short-range 

magnetic correlations (at T<10K, discussion in the heat capacity result) and CEF on the 

estimation of the CW temperature 6K and the effective moment µeff of the atomic ground state, 

the 5(T) data were fitted in the temperature range 10 K < T < 30 K. Firstly, the linear fitting 

was performed to the curve of 5Ya, T  according to the CW law: 

 
5 . =

?
. − 678

,,,,? = DE1422F /3GH (6.3.1) 

Where DE is the Avogadro number and GH is the Boltzmann constant. The fitting gives a 

negative CW temperature of 678  = -1.62(10) K and the effective moment of 1422 =

2.83(4),1H/Nd (1H is the Bohr magneton). More precise fitting of the CW law for rare earth 

compounds should involve a temperature-independent term 5= accounting for the Van Vleck 

paramagnetism contribution. The CW law can be modified as follows: 
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5 . = 5= +

?
. − 6K

,,,,? = DE1422F /3GH (6.3.2) 

The fitting of Eq. (4.3.1) yields a negative CW temperature 6K  = -0.135(43) K and 1422 =

2.626(7),1H/Nd with Van Vleck contribution 5= = 0.0034(2) emu/mol-Nd. The negative 

CW temperature would imply a weak antiferromagnetic coupling among Nd spins. Although 

the obtained results are slightly different compared to the reported result with positive value 

6K  = +0.24 K in ref [225], the negative 6K  is consistent with the AIAO magnetic long-range 

order of Nd3+ in the picture of CSI model [65]. The obtained µeff = 2.626(7) 1H/Nd is much 

lower than the theoretical moment of 3.62 1H/Nd for free Nd3+ ions (1422 = êë Ä(Ä + 1), 

Ä = 9/2, êë = 8/11 for Nd3+), however, it is comparable with the result obtained from CEF 

analysis via INS. 

 

 
Figure 6.3.3 (a) Temperature dependence of susceptibility 5 of polycrystalline sample 
Nd2Hf2O7, measured from 2 to 300 K in an applied field < = 0.1,T. Insert: temperature 
dependence of inverse susceptibility 5−1 with the fit of Curie-Weiss law in the range 10 
to 30 K (blue line). (b) Isothermal magnetization curves from 0 to 6 T at 2, 5, 10 and 50 
K.  

 

    Figure 6.3.3 (b) shows the isothermal magnetization curves :(<) of Nd2Hf2O7 at T = 2, 

5, 10 and 50 K. The :(<) curve at 2 K shows a saturation tendency with a magnetization 

value of :  ~ 1.30 1H /Nd at 6 T, which is much lower than the theoretical saturation 

magnetization :• = êßÄ©9 = 3.27,©9/Nd for free Nd3+ ion. The strongly reduced value of 

:• can be attributed to the strong Ising anisotropy and the reduction of the Nd3+ moment due 

to the CEF effect. For a pyrochlore lattice with local 1,1,1  Ising anisotropy, the saturated 

magnetizations :™ at high fields along the three crystallographic directions [100], [110], and 

[111] are given by ê´¨¨Ä́ ¨¨©9(1 3) [2I2O spin structure], g´¨¨J´¨¨©9( 2 3×2)/4 [one-in-
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one-out, two free] and g´¨¨J´¨¨©9(1 + 1/3×3)/4  [3I1O], respectively [202]. Then the 

powder averaged :™  value should be < :™ >,= 6: a== + 12: aa= + 8: aaa /26 =

0.4755×ê422Ä4221H, where the weighting factors 6, 12 and 8 are the number of equivalent 

[100], [110] and [111] directions [34]. According to the CEF reduced moment  17OP =

2.45,1H, the powder averaged saturation magnetization :™ = 1.16,1H/Nd. The measured 

:™  = 1.30 1Hat 2 K and 6 T is slightly bigger than the expected value. With increasing 

temperature, the linear regime of :(<) extends over a large field range, although at a more 

gradual rate. 

 

6.3.3.!Heat'capacity'

Figure 6.3.4 (a) illustrates the specific heat ?(.) of Nd2Hf2O7 in the temperature range from 

80 mK to 30 K under zero magnetic field. It is clear that the ? .  data plotted in a semi-

logarithmic scale exhibits a sharp λ-shaped peak at .∞ ~ 0.5 K, what provides the evidence 

for the occurrence of a second-order phase transition, corresponding to the transition of 

AIAO antiferromagnetic long-range order of Nd3+ (see the subsection 6.3.5 and the reference 

[225].  

    In order to obtain pure magnetic specific heat of electronic spins ?iMj(.) and estimate 

the magnetic entropy hiMj, the lattice contribution (phonon), ?LMNN, the CEF contribution, 

?7OP, and the nuclear contribution ?_fR have to been subtracted from the raw data ?4JK. The 

detail of the data treatment can be found in previous chapters and Appendix A. Here, the 

?LMNN is estimated by appropriately scaling the measured specific heat of the nonmagnetic 

isostructural compound La2Hf2O7 (red line in Figure 6.3.4 (a)). The Schottky anomaly of 

CEF, ?7OP, (blue line in Figure 6.3.4 (a)) is nearly zero below 30 K because the first CEF 

excited state is around 23 meV corresponding energy range 270 K. The measured specific 

heat ?JK  shows an upward trend below 0.15 K, which can be attributed to the nuclear 

hyperfine split of the isotope 143Nd and 145Nd due to the magnetic order. This can be 

approached by ?_fR ∝ .YF  with a constraint of zero magnetic specific heat at lowest 

temperature point.  
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Figure 6.3.4 (a) Temperature dependence of the specific heat ?(.) of Nd2Hf2O7, within 
different contributions: measured data (black spheres), lattice (phonon) contribution (red 
solid line), crystal electric field Schottky anomaly (blue solid line), nuclear h.f.s. 
contribution (magenta solid line), and magnetic contribution (green solid line). (b) The 
obtained magnetic specific heat ?iMj(.) (black spheres) and the corresponding magnetic 
entropy hiMj(.)  (red spheres). The green and blue line represent the hiMj  for the 
paramagnetic state of a spin-1/2 system and the residual entropy of CSI. The hiMj of the 
CSI Dy2Ti2O7 is scaled in temperature to match the magnetic entropy hiMj(.)  of 
Nd2Hf2O7 (purple solid line). 

 

    The magnetic specific heat ?iMj  obtained according to ?iMj = ?4JK − ?LMNN − ?7OP −

?_fR is plotted in Figure 6.3.4 (a) as green line and black spheres in Figure 6.3.4 (b). The 

corresponding magnetic entropy hiMj(.)  obtained by integrating ?iMj/.  over the 

investigated temperature range is plotted in Figure 6.3.4 (b). In the temperature range above 

7 K, the entropy reaches a constant value of 5.67 J/(K mol-Nd), which is close to the value 

of Tmn(2) (green line) for the spin-1/2 paramagnetic state. When the temperature decreases, 

the hiMj .  drops slowly from 8 K to 0.56 K, like in the CSI compound Dy2Ti2O7 (the 

temperature was multiplied a factor of 0.3, and plotted as purple line in Figure 6.3.4 (b)) [61]. 

It was found that a portion (~28%) of the entropy is released above TN = 0.53 K, which 
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suggests the development short-range spin correlations above the AIAO transition. Unlike 

the existence of residual entropy T/2mn(3/2) in the CSI compounds Dy- and Ho-based 

pyrochlore, the magnetic entropy of NHO drops sharply around .∞  ~ 0.5 K, and it is 

completely released to zero at 80 mK. 

 

6.3.4.!Crystal'electric'field'excitations'

Figure 6.3.5 shows the normalized scattering cross section û(u, ü) of powder Nd2Hf2O7 

measured with an incident energy of 65.7 and 150 meV at 2 K. The strong signal around ü 

= 0 is from elastic neutron scattering, and the gradual increase in intensity with increasing u 

is caused by scattering from phonons. The CEF transitions cause the weak dispersionless 

bands of scattering at low u. Three CEF levels can be identified at energy transfers near 23.1, 

35 and 101 meV, which are similar to the observation in Nd2Zr2O7 [34, 223]. 

 

 
Figure 6.3.5 Inelastic neutron scattering spectra of Nd2Hf2O7 at 2K with (a) üc= 66.5 
meV and (b) üc= 149.4 meV. 

 

    Figure 6.3.6 (a) shows energy spectra integrated over a small range of the wave-vector 

transfer u in Figure 6.3.5 (a). The energy spectra integrated in the same u width at high-u is 

used to estimate the nonmagnetic background. ûiMj ü = ûL≠§‡ ü − ∑Õ¯ ∗ ûSWjS‡ ü  The 

scale factor ∑Õ¯ is determined ûSWjS‡ ü˘j /ûL≠§‡ ü˘j  where ü˘j  is the energy far away 

from the excitations. (More precise treatment is that the scale factor should be calculated 

from the isostructural nonmagnetic reference sample at the same u positions, for example 

La2Hf2O7 [97,231]). The high temperature data sets were treated in the same way (see Figure 
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6.3.6 (b)). When temperature increases, the intensities of the CEF excitations at üa = 23.8(2) 

and üF  = 35.0(2) meV, corresponding to transitions from the ground to excited states, 

decrease. Additional excitation around üz = 12.6(2) meV becomes visible. The üz can be 

attributed to the intermediated transition between üa to üF, üz ≈ üF - üa, when the üF = 23.1 

meV gets thermally populated at high temperature. The thermal population of CEF levels is 

also the reason of the weaker intensity of üa and üF at high temperature. 

 

 
Figure 6.3.6 (a) Energy spectra h(ü) of Nd2Hf2O7 at u = 2.75 ÅYa (black) and 7 ÅYa 
(red) integrated with ∆u = 0.5 ÅYa. The blue curve represents the estimated background. 
(b) Background subtracted energy spectra h(ü) at different temperatures at u  = 2.75 
ÅYa.  

 

    For the Nd3+ ion, the Hund’s-rule ground state (GS) multiplet is 4I9/2 and the first excited 

multiplet is 4I11/2. In pyrochlore structure, the eight neighboring oxygen ions create a distorted 

octahedral with ≈3d point group in which the local 3-fold rotation axis is along the local 

1,1,1  direction of the crystal lattice. The GS (4∑z with Ä = 9/2) will split into five doublets 

according to Kramers theorem. The integrated intensities respected to the largest peak üF at 

35 meV, obtained from Gaussian profile fitting, are given in Table 6.3.3. The intensity of 

peaks üÇ = 101 meV was scaled to u = 2.75 Å#1%according to the vF(u) of Nd3+ (see Figure 

6.3.7). The energies and intensities of these excitations at 2 K were used to adjust the six 

parameters of the crystal field Hamiltonian: 

 ℋ7OP = d=F?=F + d=Ç?=Ç + dzÇ ?YzÇ − ?zÇ + d=ç?=ç + dzç ?Yzç − ?zç

+ dçç ?Yçç − ?çç  
(6.3.3) 

where dπ\ denotes the CEF parameters and ?π\ are the components of the tensor operator. 

Considering the significant Ä  mixing in the crystal-field wave functions due to the 
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comparable strength of the CEF interaction and the spin-orbit interaction of Pr and Nd ions 

in other pyrochlore compounds, we therefore diagonalized ℋ7OP  within the set of 98 

intermediate coupling basis states of the ∑z  configuration of Nd3+ using the program 

SPECTRE [208]. The CEF parameters in Ref. [34] were used as the starting parameter for 

the least-square fitting. Taken into account the double-differential cross section of CEF (Eq 

3.3.12), the refinement of the INS spectra reaches the standard normalized goodness-of-fit 

parameter χ2 = 0.406. 

 

 
Figure 6.3.7 Fitted inelastic neutron spectra of Nd2Hf2O7 at 2 K. The data for the two 
lower peaks are from the data set with üW = 65.7 meV integrated over the interval u = 
[2.5 – 3] Å-1. The data for the peak at 101 meV are from the data set with üW = 150 meV 
integrated over the range u = [4.75 – 5.25] Å-1. 

 

Table 6.3.3 Observed and calculated crystal-field transition energies (E) and integrated 
intensity (I) within the ground state multiplet ûÇ }/F of Nd2Hf2O7 at 2 K. The intensity is 
relative to the highest peak. The refinement reaches the standard normalized goodness-
of-fit parameter χ2 = 0.406. 

Levels Eobs (meV) Ecal (meV) Iobs Ical 

Γ{çÉ  0 0 - 2.53 

ΓÇÉ 23.1(2) 23.9 0.63(5) 0.68 

Γ{çÉ  34.3(3) 34.3 # 
1 

0.65 

ΓÇÉ 35.3(3) 36.0 $ 0.35 

ΓÇÉ 101(1) 101.3 0.60(5) 0.63 
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    The CEF parameters obtained from the analysis are d=F = 31.76 meV, d=Ç= 402.2 meV, dzÇ 

= 86.24 meV, d=ç = 146.2 meV, dzç = -97.82 meV and dçç = 128.5 meV. As listed in Table 

6.3.3, these CEF parameters correspond to five doublets at 0, 23.9, 34.3, 36.0 and 101.3 meV. 

These parameters are also converted into the Stevens’ formalism according the relation ≈\
π =

ù\π6\dπ\ (ù\π and 6\ = ±ë, ïë and ë̇ listed in Ref. [232]) ≈F= = -0.102 meV, ≈Ç= = -0.0146 

meV, ≈Çz = -0.0743 meV, ≈=ç = -0.00035 meV, ≈çz = 0.00476 meV and ≈çç = -0.00464 meV. 

These CEF parameters are comparable with those obtained from Nd2Zr2O7 in Ref. [34] and 

recent NHO result [229]. These parameters indicate that the CEF ground-state of Nd3+ in 

NHO is typical of a dipolar-octupolar doublet, expected when ≈F= < 0 and dominates over 

the other terms [44]. In NHO the CEF ground doublet wave function (symmetry Γ{çÉ ) could 

be written in terms of the ªFQÉa
ë,:ë  basis as follow: 

 
± = 0.879 ûÇ } F, ±9/2 ∓ 0.305 ûÇ } F, ± 3 2

+ 0.335 ûÇ } F, ∓ 3 2 ∓ 0.114 ûÇ aa/F, ±9/2  
(6.3.4) 

We note the significant admixture of terms ûÇ }/F,:ë = ±9/2,  with ûÇ }/F,:ë ≠ 9/2,  in 

the CEF ground doublet as well as a small mixing with 4I11/2 leading to the reduction of the 

Nd3+ moment. This CEF ground-doublet gives a magnetic moment 17OP = 2.475(5) 1H with 

anisotropy ê tensor, ê∥ ≈ 4.95 and êú ≈ 0. The reduced magnetic moment is close to the 

effective moment 1422 obtained from the CW analysis of the susceptibility and consistent 

also with the one recently reported in Ref [229], and Nd2Zr2O7 in Ref [34]. The CEF 

parameters obtained from the analysis of INS data are able to reproduce the powder DC 

susceptibility and the Schottky anomaly in specific heat, as shown in Figure 6.3.8. A very 

good agreement between the experimental data and the calculation supports the obtained CEF 

states and parameters.  The calculated anisotropy in the susceptibility is 5∥ 5ú ≈ 60 at T = 

10 K, where 5∥  and 5ú  are the susceptibilities parallel and perpendicular to the 111  

quantization axis of CEF. The CEF analysis indicates that the Nd3+ in NHO can be treated as 

an effective spin-1/2 system with strong Ising anisotropy 
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Figure 6.3.8 Comparison of the experimental CEF results of (a) susceptibility and (b) 
CEF Schottky contribution to specific heat with the calculated result (solid line) according 
to the CEF parameters obtained from the analysis of INS data.  

 

6.3.5.!Magnetic'Ordering'and'diffuse'magnetic'scattering'

The specific heat anomaly of NHO indicates a second phase transition around 0.5 K. 

Polarized neutron diffraction on DNS was employed to explore the phase of NHO below the 

transition temperature. Figure 6.3.9 shows the nuclear coherent (black spheres), spin-

incoherent (blue spheres) and magnetic (red spheres) components of the total scattering from 

NHO at 89 mK obtained by means of xyz-polarization analysis (XYZ-PA) at DNS. The spin-

incoherent scattering intensity is nearly constant, suggesting a successful separation of the 

different scattering contributions. The Bragg peaks observed in the nuclear coherent 

scattering component could be indexed as (1 1 1), (2 2 0), (1 1 3) and (2 2 2). Though the 

magnetic scattering is very weak as compared to the nuclear coherent scattering, two 

magnetic peaks located at (2 2 0) and (1 1 3) positions of the nuclear Bragg peaks are clearly 

observed. The same results have been found in Ref [225] and other Nd-based pyrochlore 

compounds Nd2Zr2O7 [34,223] and Nd2Sn2O7 [222], implying a similar magnetic structure.  
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Figure 6.3.9 Nuclear coherent (black spheres), spin-incoherent (blue spheres) and 
magnetic (red sphere) scattering of Nd2Hf2O7 at 89 mK separated by XYZ-PA on DNS. 
The sample was cooled under zero magnetic field condition. 

 

    The magnetic peaks could be indexed in the simple cubic (s.c.) unit cell using a single 

propagation vector of k = (0 0 0). Considering the propagation vector, the representation 

analysis conducted using the software BASIREPS [151] gives a result that the magnetic 

representation of Nd (16d) can be reduced into four nonzero irreducible representations (IRs) 

of the little group:  

 ΓiMj = 1Γza + 1Γ{F + 1Γ|z + 2Γ}z (6.3.5) 

The multiplicative factors represent the number of the times that the IRs occurs, the 

dimensionality and the order of IRs are denoted as superscript and subscript in Eq. (6.3.5), 

respectively. All possible models of the magnetic structure can be obtained by the linear 

combination of the basis vectors of the IRs.  

    The simulation of the magnetic Bragg peaks based on different combinations of the basis 

vectors of the IRs can be found in Appendix B. We found that only Γz is suitable for our 

observation, because magnetic peaks only appear at (2 0 0) and (1 1 3) but are absent at (1 1 

1) and (2 0 0). The magnetic structure is comprised of alternating ‘all-in’ and ‘all-out’ 

(AIAO) units of corner-sharing tetrahedra, where each tetrahedron unit consists of four Nd3+ 

magnetic moments at the vertices of the tetrahedron all pointing either toward the center (all-

in) or away from the center (all-out) of tetrahedral (see Figure 6.3.10 right panel). Since the 

XYZ-PA separates the nuclear coherent scattering and magnetic scattering of the sample at 

the same temperature, we can obtain the scale factor and the crystallographic parameters from 
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the nuclear coherent scattering component, then refine the ordered magnetic moment of Nd3+ 

in the magnetic scattering. The refinement of the magnetic scattering of NHO at 89 mK for 

the Γ3 model is shown in the left panel of Figure 6.3.10, and gives an ordered moment of 

x≠3Æ= 1.415(13) 1H/Nd.  

 

 
Figure 6.3.10 Refinement of the magnetic scattering of Nd2Hf2O7 at 89 mK (left) and 
corresponding AIAO magnetic structure (right). 

 

    The temperature dependence of the intensity of the peak (1 1 3) from 0.1 to 0.85 K was 

traced in spin-flip (SF) and non-spin-flip (NSF) channel with x polarization. For the XYZ-

PA method of a powder sample, the cross section of x-SF and x-NSF can be expressed as 

 
ŒJQP =

1
2
ŒiMj +

2
3
Œ™W,, 

,,ŒJ∞QP =
1
2
ŒiMj +

1
3
Œ™W + Œ_f + ŒWW 

(6.3.6) 

The subscripts nc, mag, si, and ii stand for ‘nuclear coherent’, ‘magnetic’, ‘spin-incoherent’ 

and ‘isotope-incoherent’ contributions, respectively. As shown in the inset of Figure 6.3.11, 

the intensity of x-NSF channel is approximately temperature independent because the nuclear 

coherent scattering of the Bragg peak dominates the intensity, what also implies no 

crystallographic structure changes. Since only magnetic scattering and spin incoherent 

scattering contribute to the x-SF channel, and the spin incoherent scattering is usually 

temperature independent in this temperature range, the temperature dependence of the x-SF 

intensity at the magnetic peak position will mirror the magnetic ordering behavior of Nd3+. 

As illustrated in Figure 6.3.11, the intensity of the x-SF channel increases with the decreasing 
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of temperature below 0.55 K. A modified power law, which assumes that the background 

corrected intensity of the x-NSF channel is proportional to the squared moment, û =

û=(1 − ./.∞)Fœ + –ê, was applied to fit the magnetic ordering behavior from 0.3 to 0.60 K. 

The fit is plotted as blue solid curve in Figure 6.3.11, and gives .∞ = 0.535(5) K and β = 

0.308(35) which within the error bars is close to the expected critical exponent 0.33 for a 

three-dimensional Ising system [6]. 

 

 
Figure 6.3.11 Temperature dependence of the intensity of the x-SF and x-NSF channels 
of the peak (1 1 3). The blue curve is the fit of a power-law function as discussed in the 
text.  

 

    Our results for the ordered moment of Nd3+ and its temperature behavior are completely 

different to the reported results [225], where the ordered moment is only 0.62(1) 1H/Nd and 

saturates unusually below 0.4 K. The disagreement may be due to the different applied 

techniques of neutron scattering. For the unpolarized neutron powder diffraction, the non-

magnetic contributions, such as nuclear Bragg peaks and incoherent scattering, have to be 

subtracted based on the data taken at higher temperature above the phase transition. This may 

introduce a large error for the case with the propagation vector k = (0 0 0), since the magnetic 

peaks are located on top of the nuclear peaks. The situation becomes serious when strong 

magnetoelastic effect exists. In contrast, the advantage of the polarized neutron scattering 

with XYZ-PA is that the nuclear coherent, magnetic and spin-incoherent scattering can be 

separated at the same temperature. The temperature effect of the lattice constant a is 

minimized. Thus, we think our result is more precise. The obtained ordered moment in this 
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work is also comparable to the reported 1.708(3) 1H/Nd at 0.1 K for Nd2Sn2O7 [222] and 

1.26(2) 1H/Nd at 0.1 K for Nd2Zr2O7 [34].  

 

 
Figure 6.3.12 Temperature dependence of the magnetic diffuse scattering. The value of 
x- and y- axis corresponds to the data of 10 K. The data at 600 mK and 89 mK are shifed 
vertically by 0.25 and 0.6 barn/sr/Nd, respectively. The black solid lines are proportional 
to the squared magnetic form factor of Nd3+.  

 

    The ordered-state magnetic moment of Nd3+, x≠3Æ= 1.415(13) 1H/Nd, at 0.089 K is highly 

reduced compared to the free ion magnetic moment 3.62 1H for free Nd3+ ions, as well as the 

17OP = 2.475 1H for the CEF ground doublet. The reduction of the ordered moment suggests 

the presence of strong quantum fluctuations. More remarkable, non-negligible diffuse 

magnetic scattering exists in the magnetic scattering result together with the magnetic Bragg 

peaks at 89 mK, as shown in Figure 6.3.10. The diffuse magnetic scattering can be elastic or 

inelastic scattering. If the overall energy scale of the magnetic excitations in the system is 

smaller than 3 meV, which is true for Nd2Hf2O7 (will be demonstrated by inelastic neutron 

scattering), the magnetic scattering data of DNS will include the contributions from the 

fluctuating magnetic moment (see the discussion in Chapter 5). Thus one can estimate the 

total fluctuating magnetic moment from the diffuse magnetic scattering, after calibrating the 

intensity of magnetic scattering to absolute units barn/sr/Nd.  
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Figure 6.3.13 Difference of the spin-incoherent scattering (left) and nuclear coherent 
scattering (right) among 89 mK, 600mK and 10 K. The zero values of the differences 
indicate no nuclear spin ordering and significantly lattice changing in NHO from 89 mK 
to 10 K. 

 

    Due to the strongly neutron absorption of hafnium, the obtained magnetic scattering 

intensity has to be normalized to the cross section by the spin-incoherent scattering of NHO, 

as follow (see detail in Appendix C): 

 dσiMj
dΩ

=
ûiMj

û™KW_YW_R
×
σ™KW_YW_R
∞˚Ì

4¸
 (6.3.7) 

where ûiMj and û™KW_YW_R are the measured intensities of the magnetic scattering and the spin-

incoherent scattering after XYZ-PA, σ™KW_YW_R∞˚Ì  is the spin-incoherent cross section of 

Nd2Hf2O7, ~ 9.2 + 2.6 = 11.8 barn/Nd. The magnetic scattering in the absolute unit barn/sr/Nd 

is plotted in Figure 6.3.12, where the data at 600 mK and 89 mK are shifted vertically by 

0.25 and 0.6 barn/sr/Nd, respectively. The intensities of the diffuse magnetic scattering at 

600 mK and 10 K, above long-range order phase transition, are similar around 0.4 barn/sr/Nd 

at u = 0.9 ÅYa, while that at 89 mK is a bit smaller around 0.3 barn/sr/Nd. It makes sense 

since the ordered magnetic moment at 89 mK does not contribute to the diffuse magnetic 

scattering. Smaller fluctuating moment compared to that of 600 mK and 10 K implies lower 

intensity of diffuse magnetic scattering, if the total magnetic moment is constant. Before 

making a conclusion about the total moment of Nd3+, one has to take into account the 

introduced error by the changing of the spin-incoherent scattering and nuclear-coherent 

scattering, due to the nuclear spin ordering and significant lattice changing. Figure 6.3.13 

illustrates that these influences could be ignored in the measured temperature range. These 

facts strongly imply that the total moment is possibly conserved. 
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    According to the magnetic neutron scattering from powder sample, the fluctuating 

magnetic moment can be obtained by [213, 233, 234]: 

 
‹xF = 1HF

uF6û(u, ü)/ Ã=∑(u) Fwuwü
uFwu

 (6.3.8) 

where Ã= = 0.539×10YaF,¯x and û u, ü = dσiMjF wΩwü is the double differential cross 

section. Since the magnetic scattering data taken from DNS are already approximately 

energy-integrated, the integration is only performed in the u range from 0.3 to 1.6 ÅYa which 

covers the whole Brillouin Zone (BZ). As shown in Table 6.3.4, the fluctuating moments 

obtained are 8.214(31) and 8.217(37) 1HF/Nd for 10 K and 600 mK, respectively, while the 

magnetic diffuse scattering at 89 mK yields the fluctuating moment 6.391(32) 1HF/Nd . 

Consider the ordered moment at 89 mK around 2.003(37) 1HF/Nd, one could have total 

magnetic moment ~ 7.967(69) 1HF/Nd at 89 mK, which is close to the fluctuating moment 

8.2 1HF/Nd at 600 mK and 10 K. This fact suggests that the total magnetic moment xN≠N
F  is 

conserved within the error bar. The average value of xN≠N
F  is 8.133(87) ,1HF , which is slightly 

larger than the result 6.125(25) ,1HF  obtained from CEF ground doublet. This could be 

attributed to the higher Hund’s state ûÇ aa/F contamination of the CEF ground-doublet, since 

the ,17OPF  is obtained only considering the CEF splitting of ûÇ }/F. On the other hand, the total 

moment conservation also implies that the magnetic excitations, if exist, should below the 

effective energy-integration upper limit of DNS ~ 3 meV. 

 

Table 6.3.4 Ordered and disordered magnetic moment of Nd3+ in Nd2Hf2O7 at different 
temperatures. The ordered moment was obtained from the refinement of the AIAO 
magnetic structure, while the disordered moment was calculated from the magnetic 
diffuse scattering. See the detail in the main text. The total magnetic moment xN≠N

F  is 
nearly temperature independent, within the systemic error. 

Moment (,1HF ) x F ‹xF xN≠N
F  êFÄ Ä + 1  ,17OPF  

89 mK 2.003(37) 6.391(32) 8.394(49) 

12.39 6.125(25) 600 mK - 8.214(37) 8.214(37) 

10 K - 8.217(37) 8.217(37) 

 

6.3.6.!Magnetic'excitations''

Due to the strong neutron absorption of the sample, the intensities of û u, ü  have to be 

normalized to the absolute unit (barn/sr/meV/Nd) by the nuclear Bragg peaks as follows. We 

firstly focus on this method which is also applied in the other chapters. Figure 6.3.14 shows 
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the three temperature diffraction patterns obtained by energy integration of the pre-reduced 

û3M§ u, ü  spectrum in sufficient range from -0.3 to 0.3 meV (the areas are marked as pink 

rectangles in Figure 6.3.15). The higher background could be attributed to the large spin-

incoherent scattering of the sample, as illustrated on the elastic line of Figure 6.3.15. The 

diffraction patterns at 600 mK and 10 K are identical, while the Bragg peaks (2 2 0) and (1 1 

3) grow at 57 mK due to the AIAO ordering below 530 mK.  

 

 
Figure 6.3.14 Diffraction patterns of Nd2Hf2O7 at different temperature. The diffraction 
patterns were obtained by energy integration of û3M§ u, ü  from -0.3 to 0.3 meV at each 
u with ˝u = 0.005 Å-1 (pink rectangles in Figure 6.3.15). 

 

    The normalization factor (or instrument resolution volume [212]) is defined as 

 NCR= = û≠˘™ u − √, ü wuwü ûRML(√) (6.3.9) 

where √ denotes the specified Bragg peak, ûRML(τ) and û̆ 3Mjj≠˘™  are the Bragg scattering cross 

sections for a powder sample and the observed intensity of Bragg peak. As shown in Table 

6.3.5, the û̆ 3Mjj≠˘™  is the integrated intensity obtained by a Gaussian-profile fitting of the Bragg 

peaks. The ûRML(τ) is calculated according to Appendix C and Ref [211]. The normalization 

factor NCR= = 0.5846(323) could be obtained by comparing the observed and calculated 

intensity of the Bragg peak (1 1 1) with pure nuclear contribution. Thus, one can calibrate 

the inelastic neutron scattering intensity û u, ü  to the absolute units (barn/sr/meV/Nd) using 

the follow equation: 

 
û u, ü =

GW
G2

wFŒ
wΩwü

u, ü =
û3M§ u, ü
NCR=

 (6.3.10) 
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The ordered moment is thus x!á" = (I{|#$
!%• τ − Iç==#$

!%• τ ) (ûiMjRML (τ) ∙ NCR=) =

1.474 12 ,1B, which is consistent with the Rietveld refinement by Fullprof, as well as the 

result of DNS. The normalization method gives a systemic error 5.1 %. 

 

Table 6.3.5 The measured and calculated u-integrated intensities of Bragg peaks for 
Nd2Hf2O7. m indicates the multiplicity of the peak due to powder average. The theoretical 
intensities of nuclear Bragg peaks û_fRRML  are normalized to per Nd atom, while the 
calculated magnetic intensities ûiMjRML  are normalized to per Nd per µB

2. 

% m u û_fRRML  ûiMjRML  û{|i&
4JK  ûç==i&

4JK  ûa=&
4JK 

h.k.l  Å-1 barn/Nd barn/Nd/µB
2 a.u. 

1 1 1 8 1.035 0.0269 - 0.0167(5) 0.0150(5) 0.0155(6) 

2 2 0 12 1.690 0.0214 0.0252 0.0451(5) 0.0108(5) 0.0114(5) 

1 1 3 24 1.981 0.1365 0.0258 0.0910(5) 0.0605(5) 0.0619(5) 

 

    An overview of the normalized inelastic neutron scattering û u, ü  is presented in Figure 

6.3.15 (a-c) for the temperatures 57 mK, 600 mK and 10 K. The magnetic scattering can be 

identified according to its temperature dependence behavior. At T = 57 mK, the asymmetry 

of the elastic line implies a strong excitation around 0.1 meV, which may become weak at 

high u. Another weak dispersive excitation could be found at high u, which is centered 

around ü = 0.23 meV at u = 1.82 Å-1. At 600mK and 10 K, the intensities of both excitations 

diminish, which confirms that they are magnetic. Although the lower-lying magnetic 

excitation at 57 mK could not be directly observed in û u, ü  due to the poor energy 

resolution of the experiment and strong spin-incoherent scattering of the sample, the spectra 

at constant u = 0.4 Å-1 exhibits a clear shoulder on the positive energy side of the elastic 

scattering line, as shown in Figure 6.3.16 (a). One way to obtain pure inelastic scattering 

signal is to subtract the elastic scattering line by fitting the spectrum.  

    The measured inelastic scattering spectra are the convolution between the resolution 

function of the instrument (IRF) and the sample response. Here we use a Gaussian function 

to describe IRF profile. The energy resolution at elastic line, represented by the full-width at 

half maximum (FWHM), is around 76 µeV obtained from the trial fitting of the vanadium 

results, which is consistent with results based on the instrument setup at 5.12 Å-1. In the 

fitting, we neglect the convolution process because the FWHM of the quasielastic 

components and inelastic components of sample response are larger than the that of IRF.  
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Figure 6.3.15 (left) Powder-averaged inelastic neutron scattering cross section û(u, ü) for 
Nd2Hf2O7 measured at 57 mK (a), 600mK (b) and 10 K (c). The cross section is placed 
in absolute units by calibrating against the integrated intensity from nuclear Bragg 
reflections. Pink rectangles indicate the energy integration from -0.3 to 0.3 meV for 
powder diffraction patterns. (right) The spectra ü×û(u, ü)  within only inelastic 
scattering components at 57 mK (d) and 600 mK (e). The elastic lines have been taken 
out according to the fitting described in the main text. The green and orange spheres 
indicate the obtained inelastic peak energies. (f) Powder-averaged inelastic scattering 
ü×û(u, ü) as a function of u and ü, as predicted by LSWT using XYZ model. The unit 
of the calculated intensities is arbitrary unit. (Note: recently the sample has been re-
measured on TOFTOF with a better energy resolution ~ 44 µeV. The updated INS results 
can be found in Appendix E.) 
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We carry out fits of the data set to follow function: 

 
û u, ü = ¥ ∙ ûTv u, ü +

d
1 − exp −ü GH.

EΓ‡O∞Q
üF + Γ‡O∞QF

+
1

1 − exp −ü GH.
?WüΓW

üF − üW
F F + üΓW FW

 
(6.3.11) 

where the first term represents the elastic scattering of Gaussian profile with fixed FWHM ~ 

76 µeV, the second term represents the quasielastic neutron scattering (QENS) component 

with FWHM = 2Γ‡O∞Q and the third term represents several inelastic magnetic components 

(¥, d and Ci are constants, ΓW is the FWHM of different inelastic scattering components at 

inelastic peak üWW4 = ± üW
F − (ΓW/2)F ) [235]. Typical results of the fitting based on Eq. 

(6.3.11) to the experiment data are shown in Figure 6.3.16. For data at 57 mK, one inelastic 

component could describe the spectrum at low u very well, while two inelastic components 

have been taken into account at high u. The u dependence of the excitation energies obtained 

from the fitting of whole spectra at 57 mK is plotted as spheres in Figure 6.3.15 (c). The 

excitation consists of two modes, a dispersionless flat band (green spheres) centered at 

around 0.1 meV with FWHM 0.07-0.09 meV and a dispersive excitation (orange spheres) 

above the flat mode, which stems from (1 1 1) peak and reaches a maximum energy of about 

0.24 meV at u = 1.82 Å-1 with FWHM = 0.116 meV. The similar excitations picture was also 

observed in the AIAO ordered state of Nd2Zr2O7, in which the flat band exhibits the pinch 

point patterns of the spin-ice characteristic [178]. For the data at 600 mK above the AIAO 

ordering, the fitting of a considering only quasielastic scattering model could not converge. 

Then, the single inelastic scattering component model was applied to fit, as show in Figure 

6.3.16 (b) and (e) for the data at u = 0.4 and 1.82 Å-1, respectively. The whole spectra fitting 

displays an approximately dispersionless band centered around 0.1 meV, as illustrated in 

Figure 6.3.15(e). The FWHM of the flat band at 600 mK is broader than that at 57 mK. For 

the data at 10 K, the quasielastic scattering only model is used, as shown in Figure 6.3.16 (c) 

and (f) for u = 0.4 Å-1 and 1.82 Å-1, respectively. The FWHM of QENS is around 0.135 meV, 

yields a characteristic relaxation time √ n≤ = 1.31/FWHM 1X'  = 0.0097 ns, if we ignore 

the convolution effect of the IRF. The relaxation time τ of Nd2Hf2O7 is extremely faster than 

1-10-1 ms in the classical spin ice Ho2Ti2O7 [214] and Dy2Ti2O7 [236,237], which implies the 

existence of stronger spin fluctuation in Nd2Hf2O7 at 10 K.  
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Figure 6.3.16 Inelastic spectra of Nd2Hf2O7 for constant wave vector transfer u = 0.40 
and 1.80 Å-1 with !u = 0.02 Å-1 at various temperatures (marked as orange line in Figure 
6.3.15). Closed circles are experimental data, solid lines stand for the profiles of different 
components (IRF labels Gaussian function as elastic scattering at ü = 0, DHO labels the 
inelastic scattering signal descript by DHO function and QENS labels the quasielastic 
scattering descript in the main text.). 

 

    Applying the above discussed fitting on the whole spectra at 57 mK and 600 mK, one can 

separate the elastic and inelastic scattering components. The reconstructed spectra within the 

inelastic scattering components only is presented in the format ü×û(u, ü) in Figure 6.3.15 

(e) and (f) for 57 mK and 600 mK, respectively. Multiplication by energy makes the weaker 

signals at higher energies more visible. Comparing to the reported results of Nd2Zr2O7 [178], 

this treatment is reliable. (Our recent INS result with a better energy resolution shows the 

clear flat mode and the dispersive mode excitations, which is in agreement with these 

analysis. See the results in Appendix E) Figure 6.3.17 (a) shows the energy-dependence of 

the obtained inelastic components within the wavevector integration range 0.3 < u <

1.6,ÅYa. The horizontal bar indicates the FWHM of instrument energy resolution. Both data 

at 57 mK and 600 mK shows a strong peak around 0.1 meV corresponding to the low-lying 

flat mode, while additional small hump associated to the dispersive mode could be observed 

around 0.25 meV in the data of 57 mK. Figure 6.3.17 (b) shows the energy integrated inelastic 

components û(u) , which is related to the powder-averaged dynamical spin correlation 

function h(u). The energy integration is performed from 0.03 to 0.5 meV. The û(u) at 57 

mK is in excellent agreement with the predicted spin correlations (purple solid line) based 

on the LSWT of the XYZ model, Eq. (6.1.1). The intensity of û(u) at 600 mK, shown as red 
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circles, is lower than that at 57 mK. Due to the principle of detailed balance in INS, around 

22% spectra weight may be lost during energy integration. The re-scaled data of 600 mK 

(blue circle) shows similar modulation of that at 57 mK, while the intensity is still lower that 

at 57 mK implying relatively smaller fluctuating magnetic moment.  

 

 
Figure 6.3.17 (a) u integrated dynamic scattering factor as function of energy transfer 
h(ü). (b) ü integrated INS intensity as function of wavevector transfer û(u). (c) Elastic 
scattering ûTv as function of wavevector transfer u, and (d) Elastic magnetic scattering 
at 600 mK, obtained by calculating the difference of ûTv(u) between 600 mK and 57 
mK. 

 

    According to the discussion in previous subsection, the total magnetic moment of Nd3+ 

below 10 K is conserved to around 8.133(87) ,1HF . Due to the energy-integration of 

diffraction, the disordered moments either static or dynamic cannot be clarified from the 

polarized neutron scattering results. For the INS results, one can examine this by calculating 

the spectral weight of the excitations, according to Eq. (6.3.8). As shown in Table 6.3.6, the 

spectral weight of the excitations yields the dynamic magnetic moment ‹xF =

5.794(46),1HF  and 4.191(53) ,1HF  for 57 mK and 600 mK, respectively. Considering the 

AIAO ordered moment x F = 2.173 52 ,1HF  at 57 mK, the total magnetic moment is about 

xN≠NY{|i&
F = 7.967(69),1HF , in good agreement with total moment obtain from DNS result. 
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However, except for the dynamic moment associated to the excitation, no static moment 

contributes to magnetic Bragg peaks at 600 mK. It seems some of the magnetic moment is 

missing at 600 mK. Back to the elastic scattering component in the fitting, Figure 6.3.17 (c) 

shows the u dependence of the energy integrated IRF, which is the pure elastic scattering 

component of the spectra. The intensity of the elastic scattering component at 600 mK is 

higher than that of 57 mK and 10 K, indicating the existence of the static magnetic moment 

or unresolved dynamical magnetic moment. The amount of these disordered static moment 

is around 3.126(274) ,1HF , and they may exhibit CSI spin correlation, as shown in Figure 

6.3.17 (d). Thus, the total magnetic moment at 600 mK is around 7.317(279) ,1HF , roughly 

equal to the expected value. 

 

Table 6.3.6. The static (elastic) and dynamic (inelastic) contributions of magnetic 
moment per Nd at 57 mK and 600 mK. The dynamic moment is obtained by the 
calculation of the inelastic spectral weight. The static moment at 57 mK is obtained from 
the magnetic Bragg peaks, while the static moment at 600 mK is obtained from the elastic 
scattering components û(u) in Figure 6.3.17 (d) according to Eq. (6.3.8). For free Nd3+ 
ion, ê = 8/11, Ä = 6. 

Moment (,1HF ) Static Dynamic Total êFÄ Ä + 1  ,17OPF  

57 mK 2.173(52) 5.794(46) 7.967(69) 
12.39 6.125(25) 

600 mK 3.126(274) 4.191(53) 7.317(279) 

 

    The spin excitations of Nd2Hf2O7 could be interpreted using linear spin-wave theory 

(LSWT) [221] and the the XYZ model Hamiltonian Eq. (6.1.1) [44]. In the AIAO state of 

the system, the LSWT treatment yields the spin excitation consisting of two degenerate flat 

bands at energy 

 
Δ2LMN = 3 Ó¿ − ÓJ 3 Ó¿ − Óµ  (6.3.12) 

and two dispersive bands with upper limit  

 
ΔfKK = 9 Ó¿ + ÓJ Ó¿ + Óµ  (6.3.13) 

The neutron scattering actually probes the effective magnetization on each site. Within the 

global pseudospin rotation, the magnetization on each site could be decomposed as: 

 *W = 1Hê∥ √W
J
sin 6 + √W

¿ cos6 ÎW (6.3.14) 

where ÎW is the unit vector along the local 1,1,1  direction and ê∥ = 4.95 is the anisotropy 

ê-factor along ÎW. 6 is the rotation angle in !È, ÎÈ  plane. The pseudospin √W¿, which is in fact 

an octupolar degree of freedom, does contribute to the mangetic moment. Thus, the observed 
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magnetic moment is always along the local 1,1,1  direction, regardless of the values of √WJ 

and √W¿. The magnetic structure factor h(-,.) is accessible to neutron scattering. Eq. (3.3.10) 

can be expressed in terms of the pseudospin √Wf(Ë = !, Î): 

 h(-,.) = ê∥F1HF cosF 6 h¿¿ -,. + cos6 sin 6 hJ¿ -,.

+ cos6 sin 6 h¿J -,. + sinF 6 hJJ -,.  
(6.3.15) 

where 

 
h/œ -,. = w0XYW1N ÎW ∙ ÎÔ

z

W,Ô`=

−
ÎW ∙ - ÎÔ ∙ -

uF
√W
/ −-, 0 √Ô

œ
-, 0  

(6.3.16) 

due to the symmetry of Eq. (6.1.1), the mixed terms hJ¿ -,.  and h¿J -,.  vanish. Only 

terms h¿¿ -,.  and hJJ -,.  contribute to the neustron scattering structure factor with 

weight proportional to cosF 6 and sinF 6, respectively: 

 h(-,.) = ê∥F1HF cosF 6 h¿¿ -,. + sinF 6 hJJ -,.  (6.3.17) 

These two contributions to the structure factor exhibit different behavior as a function of - 

and .. In the ordered state of Nd2Hf2O7, the first term h¿¿ -,.  associate to the ordered and 

static correlations of *W
¿ and gives rise to magnetic Bragg peaks at . = 0 within the AIAO 

configuration. The second term hJJ -,.  comes from *W
J and exhibits spin-ice forms with 

the pinch-point singularities at . = Δ2LMN, as well as the dispersive bands.  

    Comparing with the experiment results, we obtained the exchange parameters: 

 ÓJ = 0.096,meV; ,Óµ = 0.011,meV; ,Ó¿ = −0.055,meV (6.3.18) 

The calculated powder-averaged INS is illustrated in Figure 6.3.15 (f), in excellent agreement 

with the experimental result of Figure 6.3.15 (d) at 57 mK. The energy integrated scattering 

as a function of u is shown in the Figure 6.3.17 (b). The theory calculation (pink solid line) 

has been multiplied by an over scale factor for comparison with the experimental data (black 

circles). The degree of agreement between theory and experiment is very strong. This fact 

suggests that ÓJ > 0 favors spin-ice correlations, while Ó¿ < 0 prefers to the AIAO order. 

The above model can also explain the INS observation at 600 mK, above the AIAO ordering 

transition. At finite temperature . > .∞ , the system is dominated by the ÓJ, term in Eq. 

(6.1.1). Thus, Nd2Hf2O7 behaves like a spin-ice with a finite population of thermally excited 

“monopole”. The term h¿¿ -,.  is mostly dynamic and associated to the gapped 

monopoles, while hJJ is mostly static, exhibits spin-ice correlations. Figure 6.3.17 (d) shows 
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the elastic scattering at 600 mK, which is similar to the predictions of a spin-ice model with 

a finite density of thermally excited monopoles [78]. This fact strongly suggests that the 

magnetic moment fragmentation occurs above the AIAO transition at .∞. 

 

6.4.!Conclusion''
In this chapter, the 5d pyrochlore insulator Nd2Hf2O7 powder has been comprehensively 

investigated by means of macroscopic and microscopic techniques. Nd2Hf2O7 crystallizes in 

the vw3x crystallographic structure with a cubic lattice constant a = 10.6459(2) Å and the 

48f oxygen x-parameter x = 0.33395(9) at room temperature. The combined Reitveld 

refinement of XRPD and NPD patterns suggests that the stuffing level of Nd-to-Hf site in the 

powder sample should be less than 0.02. The ZFC and FC DC susceptibilities suggests no 

magnetic phase transition or spin-glass crossover above 2K. The Curie-Weiss fitting of the 

gives a negative CW temperature 6K  = -0.135(43), implying an antiferromagnetic effective 

interaction between Nd3+ moments. Due to the CEF, the magnetic moment of Nd3+ exhibits 

strong easy-axis anisotropy (Ising type) along local 1,1,1  with a reduce moment 17OP = 

2.475(5) 1H. The CEF ground state of Nd3+ in NHO is a dipolar-octupolar doublet, which 

could be described as the pseudospin-1/2, √Wf
ƒ
,(ËÈ = !È, ÍÈ, ÎÈ)  with the two dipole 

components of ÎÈ  and !È  and an octupolar component of ÍÈ . The anomaly of magnetic 

specific heat suggests a phase transition at .∞ = 0.53 K, while no residual entropy could be 

observed down to 80 mK. The further studies of the polarized neutron scattering indicate that 

the phase transition is the magnetic long-range order transition of Nd3+ with AIAO 

configuration. The temperature dependence of the ordered moment displays the 3D Ising 

ordering behavior. On the other hand, the ordered moment at 89 mK is around 1.415(13) 

1H/Nd, smaller than the expected moment due to CEF. The existence of the diffuse magnetic 

scattering implies strong moment fluctuation. The quantitative analysis of the total moment 

sum rule suggests that the total moment is conserved below 10 K, roughly equals to the CEF 

reduced value. In the ordered state at 57 mK, the excitation consisting of a flat mode around 

0.1 meV and a dispersive mode up to 0.23 meV is observed via INS. The flat band still 

persists at 600 mK above .∞. The summation of the static moment with AIAO order and the 

dynamic moment associate the magnetic excitations satisfies the total moment sum rule. At 

600 mK, a static moment with the spin-ice correlation could be found besides the dynamic 

moment corresponding to the flat band. The excitation could be understood by the XYZ 

model of the “dipolar-octupolar” pseudospin-1/2. 
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Chapter'7.!Conclusion'and'Outlook'
 

In this thesis, a comprehensive study of the pyrochlore compounds Ln2B2O7 (B = Ir and Hf) 

by means of in-house characterizations and neutron scattering have been reported. The focus 

is on the magnetic order and excitations of Ln3+ in the above pyrochlore compounds. This 

chapter is dedicated to a summary of some important results and discussions of some 

perspectives of further studies. 

 

7.1.!Conclusion'
The systematic experimental results described in Chapter 4 provide a unified picture of the 

magnetic behavior of the pyrochlore iridates that exhibits metal-to-insulator transition. First 

of all, the predicted AIAO magnetic ordered state of Ir4+, which is one of the prerequisite of 

the magnetic Weyl semimetal phase, has been confirmed by our polarized neutron scattering 

experiments in several compounds. Benefitting from the subtle intensity ratio of two 

magnetic peaks (1 1 3) and (2 2 0) we were able to obtain the AIAO ordered moment around 

0.2 19/Ir4+ below .Øı. Unlike other pyrochlore series, such as titanates, both Ln3+ and Ir4+ 

are magnetic in Ln2Ir2O7, therefore, the interaction between Ln and Ir can play an important 

role in dictating the magnetic properties of Ln3+ sublattice in pyrochlore lattice. One can 

simply assume that the AIAO ordered Ir4+ ions generate an effective molecular-magnetic 

field, di2Ir , along the local 1,1,1  direction, which acts on the Ln3+ sublattice. We found that 

the magnetic ground state of the Ln3+ sublattice strongly depends on the di2Ir  and the Ln3+ 

single-ion anisotropy determined by the CEF in the following manner. 

    (1) The Ln3+ with easy-plane single-ion anisotropy (Ln = Er and Yb) does not order down 

to the lowest temperature (EIO at 0.5 K and YbIO at 0.22 K) since the di2Ir  may suppress the 

XY ordering of Er3+ and Yb3+. Comparing to other Er- and Yb- based pyrochlores (see Table 

2.3.1), these two compounds are the only system which displays XY disorder state at 

extremely low temperature. They are excellent candidates to study the exotic magnetic 

excitations in a completely disordered magnetic system. 
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    (2) The Ln3+ ions with easy-axis anisotropy (Ln = Nd, Tb, Dy and Ho), which is compatible 

with di2Ir , exhibits the long-range magnetic ordered ground state with AIAO configuration. 

Their unusual temperature dependence of the ordered moment thus can be explained as the 

induced ordering behavior with an estimated field di2Ir  = 1.1336(1259) T.  

    Furthermore, we found that the ordered moment of Nd3+, Tb3+, Dy3+, and Ho3+ at 0.5 K is 

significantly smaller than the expected CEF reduced moment of Ln3+, suggesting the 

persistence of strong magnetic fluctuationst. On the other hand, the gapped excitations in 

several compounds (NIO, EIO, TIO) were observed in inelastic neutron scattering 

experiments at 3.5 K, which has not been reported in other pyrochlores at such high 

temperature. Meanwhile, the hump of magnetic specific heat of all pyrochlore iridates moves 

to higher temperature comparing to that in titanates. These results strongly imply that the 

involvement of the magnetic Ir4+ enhances the quantum fluctuation of Ln3+ at high 

temperature. Our results reveal a way to realize the quantum spin dynamic at higher 

temperature. 

    In chapter 5, a comprehensive investigation on the defect-minimized metallic pyrochlore 

Pr2Ir2O7 is presented. A detailed CEF analysis of Pr3+ in Pr2Ir2O7 was shown based on the 

inelastic neutron scattering experiment. The result reveals that the Pr3+ in PIO exhibits strong 

easy-axis anisotropy along the local 1,1,1  direction with a reduced moment of 2.283 1H/Pr 

below 20 K. With a negative CW temperature, the system undergoes a magnetic transition 

from paramagnetic state to the 2I2O magnetic long-range order at 0.76 K. Via cold neutron 

inelastic scattering, we were able to observe the collective magnetic excitation of the 2I2O 

magnetic structure for the first time. At 60 mK, a broad gapped magnetic excitation with 

clear dispersion from the magnetic Brillouin Zone center appears around 0.35 meV. 

Furthermore, the excitation moves to high energies and becomes sharper with cooling below 

the 2I2O transition. These behaviors may be caused by the strong interplay between the 2I2O 

order of Pr3+ and the conduction electron of Ir4+ due to the sensitivity of the quadratic band 

touching close to the Fermi energy. Additionally, the summation of the ordered moment and 

the fluctuating moment of Pr3+ at 60 mK is in excellent agreement with the expect value of 

the CEF ground-doublet, suggesting that no static disordered static moment exists. 

    In Chapter 6, a detailed study of the magnetic ground state of the insulating Nd2Hf2O7 is 

presented. Based on the inelastic neutron scattering experiments, the CEF ground doublet of 

Nd3+ in this compound has been determined as the expected “dipolar-octupolar” doublet with 

easy-axis single-ion anisotropy and a reduced moment 2.475(5) 1H /Nd. Indicated by the 

specific heat anomaly at .∞ = 0.53 K, the system undergoes a magnetic phase transition from 
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paramagnetic state to a magnetic long-range order with the AIAO configuration of Nd3+ 

determined by the polarized neutron scattering experiments. Our magnetic structure 

refinement at 0.09 K provides the more accurate ordered moment 1.415(13) 1H/Nd that is 

smaller than the expected moment of the CEF ground doublet. Using inelastic neutron 

scattering, we observe the magnetic excitations that consists of a flat band mode centered at 

0.1 meV, and a dispersive mode up to 0.23 meV. The magnetic excitation feature can be 

recovered according to the linear spin wave theory based on the XYZ model with ÓJ =

0.096,meV ; Óµ = 0.011,meV  and ,Ó¿ = −0.055,meV . Additionally, our quantitative 

analysis of the inelastic neutron scattering results reveals that total moment sum rule is 

satisfied, which means that the summation of the static and dynamic magnetic moment keeps 

in constant and equals roughly to the expected total magnetic moment of Nd3+. This 

conclusion provides a strong proof for the quantum magnetic moment fragmentation scenario 

in the Nd-based pyrochlore [178, 221]. 

 

7.2.!Outlook'
In order to understand the results of Ln2Ir2O7, the molecular magnetic field approximation of 

the Ln-Ir interaction was introduced, however, the expected Zeeman splitting of the CEF 

ground doublet of Ln3+ has not been observed in either specific heat or inelastic neutron 

scattering. This simple model clearly has its limitations, since it largely ignores the detail of 

the interaction between Ln3+ and Ir4+ and the influence of the band structure formed by Ir4+ 

electrons. It has been recently evidenced by several experiments on single crystal samples 

EIO [238] and NIO [179] that the well documented “metal-to-insulator” transition in 

Ln2Ir2O7 may actually be a metal-to-semimetal transition. Then the RKKY interaction 

mediated by the conduction electrons of Ir4+ may dominate the coupling between Ln3+. Due 

to the band touching near Fermi surface, the RKKY interaction may exhibit specific 

temperature dependent behavior and leads to the ordering behavior of Ln3+ that looks like the 

induced ordering. On the other hand, the development of the spin correlations between 

localized Ln3+ electrons may also give a feedback on the band structure of Ir4+ electrons via 

Kondo coupling [137]. This scenario is very complicated, however, may be efficient for a 

unified explanation of the above experimental results. Moreover, most of the models applied 

on the Pr-based pyrochlore focus on the insulator case, in which the superexchange 

interaction between the pseudospin of Pr3+ is only taken into account. Theoretical 
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investigations involving the f-d electrons coupling based on metal or semimetal cases are also 

expected to understand the results of PIO. 

    The phase diagram of Ln2Ir2O7 has shown a metal-semimetal transition between Pr2Ir2O7 

and Nd2Ir2O7 at zero temperature. Meanwhile, the ordered state of Ln3+ changes from 2I2O 

to AIAO magnetic structure for Pr3+ and Nd3+, respectively. A quantum criticality, in which 

the quantum phases transition from the nodal non-Fermi liquid to the AFM Weyl semimetal 

occurs, has been predicted in this range [136]. Indeed, the resistivity measurements on the 

series of (NdxPr1-x)2Ir2O7 have revealed a zero-temperature metal-to-semimetal crossover 

with the critical point x = 0.8 [239]. It will be very interesting to investigate the quantum 

criticality and search for novel phases in this region via neutron scattering. 

    As discussed in previous chapters, one can realize the quantum spin ice phase by reducing 

the magnetic moment of Ln3+ and enhancing the quantum fluctuation. The Nd-based 

pyrochlore fulfills these requirements, however, most of the Nd2B2O7 shows AIAO magnetic 

long-range order below 0.4 K. On the other hand, the QSI is also predicted in the phase 

diagram of the XYZ model for the dipolar-octupolar pseudospin-1/2. Thus, the application 

of external parameters, such as magnetic field, hydrostatic pressure and chemical pressure, 

may help to suppress the AIAO ordering and drive the system to the QSI phase. It has been 

reported recently that the application of the external field along the 1,1,1  axis on Nd2Zr2O7 

is able to create a dynamic kagome ice state [240]. It is worth to study the influence of the 

external parameters, such as pressure, magnetic field and chemical doping, on the Nd2B2O7 

and to search for the possible QSI phase in this system. Besides, the pressure or magnetic 

field can also be applied on our Pr2Ir2O7 powder sample to suppress the 2I2O ordered state 

and achieve the metallic QSI phase. 

    Obtaining high-quality single crystal sample of Ln2Ir2O7 is still a challenge. Up to now, 

only for very few compounds like Pr2Ir2O7, Nd2Ir2O7, Eu2Ir2O7 and Sm2Ir2O7 single crystals 

could be grown successfully by the flux method with KF flux. However, the size of these 

single crystals is around 0.5 mm, and they are too small to perform neutron scattering 

measurement. Due to the incongruent melting and decomposition of Ln2Ir2O7, the floating 

zone method, which is often used for other pyrochlore compounds, is not suitable to grow 

crystals for these compounds. One way is to still improve the flux method. For example, 

replacing KF by other flux, such as KOH, CsCl or the mixture of KF and KOH, may provide 

a wide temperature range for crystal growth [241]. On the other hand, the vapor transport 

method maybe another way to achieve the single crystal growth of Ln2Ir2O7. For example, 
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the single crystal of iridates Li2IrO3 has been obtained by an unconventional vapor transport 

method [242]. However, this method has not been used for the iridate-227 phases. 
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Appendices'
 

A.!Specific'heat'data'analysis'

Before performing neutron scattering measurements, the specific heat can provide a first 

insight into the investigated materials. For instance, the structural or the magnetic transition 

of solids usually induces a ù-shape peak in temperature dependent specific heat ? . . The 

discrete energy levels, such as the crystal-field levels of magnetic ions in solids, contributes 

a broad hump in ? . , which is so-called the Schottky anomaly. Additionally, the magnetic 

excitations in the conventional magnetic ordered compounds cause a power-law temperature 

dependence in ? . . Moreover, the magnetic entropy hiMj  obtained from the magnetic 

specific heat ?iMj is often used to probe the degeneracy of the magnetic manifolds. This 

subsection is dedicated for the specific heat analysis to obtain the pure magnetic specific heat 

?iMj and the corresponding magnetic entropy hiMj. Then, several practices are presented 

as the supplement information of the main text. 

 

A.1.! Method'

As many other physical properties, the specific heat can be defined in terms of other 

thermodynamic state variables. It can be written as the derivative of either the entropy, h or 

internal energy, ü, as: 

 
?3 =

4ü
4. 3

= .
4h
4. 3

 (A.1) 

' denotes the constant volume condition. It should be noted that the specific heat difference 

between constant pressure and constant volume for a solid sample could be ignored at low 

temperature. In the practical measurement on PPMS, the specific heat is carried out under 

the constant pressure condition.  

    In order to obtain the pure magnetic specific heat ?iMj, the non-magnetic contributions 

from the lattice (and the conduction electrons in metal) ?LMNN, the crystal electric field ?7OP 

and the nucleus ?_fR have been subtracted from the measured data ?4JK. 

Lattice contribution [172]: At high temperature below melting point, the specific heat of 

the atomic vibration is expected to obey the classical Dulong-Petit law ?LMNN = 3nT, where 
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n is the number of the atoms per formula unit (f.u.) and T is the molar gas constant. The 

Dulong-Petit is a simple model, in which the motion of atoms in solid is assumed as a three-

dimensional oscillator with the average internal energy ü = 3nT., giving rise to a constant 

specific heat ?LMNN = 4ü 4. = 3nT . At low temperature, the lattice vibration can be 

described by the quasi-particle, phonon, in the quantum mechanical treatment. The lattice 

specific heat is then approached as follows: 

 

?LMNN . = 35ÏT
.
6Ï

z !ÇXJ

XJ − 1 F w!
67 ^

=

+ T 5OW(
.
6OW
)FT

X!5 6OW/.
(X!5 6OW/. − 1)F

W

 
(A.2) 

The first term is based on Debye model accounting for the acoustic modes of phonons, while 

the second term is the expression of Einstein model associated to the optical modes of 

phonons. 6Ï and 6OW are the so-called Debye and Einstein temperature, respectively. 5Ï and 

5OW are the weight factor for different phonon modes contributions. The constrain is 5Ï = 3 

and 5Ï + 5OWW = 3n. Depending on the number of the Einstein term, the Monte-Carlo 

method or the simulated annealing method is often used for the practical fitting of the 

experiment data. Instead, a simple estimation of ?LMNN below 100 K is the odd power-law: 

 ?LMNN = ˙. + ï.z + ‹.{⋯ (A.3) 

where the first term represents the conduction electrons contribution, other high order terms 

are the approximation of the phonon contribution. Then, the Debye temperature 6Ï =

(12¸ÇnT/5ï)a/z.  

    If the thermal dynamic of the lattice is out of the focus, the ?LMNN could be simply estimated 

by the measured data of a suitable nonmagnetic isostructural sample. For example, the 

measured specific heat ?ñ˚Ì of La2Hf2O7, which is a non-magnetic insulator pyrochlore, was 

used to estimate the ?LMNN  of Nd2Hf2O7.  Before performing subtraction of ?LMNN , the 

temperature of ?ñ˚Ì has to be re-scaled to [170, 243]: 

 
.∗ =

.
(:∞˚Ì/:ñ˚Ì)a/F

 (A.4) 

considering only the Debye model, 6Ï~1/:a/F, where the :∞˚Ì and :ñ˚Ì are the formula 

mass of Nd2Hf2O7 and La2Hf2O7, respectively. Similarly, the specific heat of Y2Ir2O7 is 

selected to estimate the lattice contribution of Ln2Ir2O7 (Ln = rare-earth elements). 

CEF contribution [172]: The degenerate electronic ground-state of a free ion in crystal is 

often split into several discrete energy states due to the crystal field interaction or Zeeman 

effect. These discrete energy states lead to a Schottky anomaly in the specific heat. 
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Considering a multi-level system in which n  discrete states with degeneracies 

êa, êF, êz,⋯ ,ê_ have energies Va, VF, Vz,⋯ ,V_. The probability of the ith level being occupied 

is governed by the Boltzmann factor. Therefore, the average thermal energy at temperature 

. is: 

 
ü =

VWêWX
Y Z[
\]^_

W`a

êWX
Y Z[
\]^_

W`a

 (A.5) 

The specific heat is then obtained by calculating wü w., as follow: 

 
?QRS =

T
UF

U
VW
GH.

F
X Y Z[

\]^ −
VW
GH.

X Y Z[
\]^

_

W`a

F_

W`a

 (A.6) 

where U = X(−Vc/Gd.)_
W`a  is the partition function of the system. For a two-level system, 

the above expression becomes: 

 
?QRS = T

∆
GH.

F (ê=/êa)X
:

\]^

1 + (ê=/êa)X
:

\]^
F (A.7) 

where Δ is the energy gap (in the unit meV) between ground state and first excited state. If 

ê= = êa , the ?QRS  is characterized by a broad peak at an intermediate temperature .i ≅

0.4 ∆ GH.  

Nuclear contribution: The interaction between the effective field arising from the localized 

electrons and the nuclear magnetic moment of the nucleus, and that between the quadrupole 

moment of the nucleus and the electric field gradient (EFG), are called the hyperfine 

interactions. The degenerate nuclear state can be lifted by hyperfine interaction, leading to a 

nuclear Schottky anomaly at low temperature (usually below 2 K for rare-earth ions Ln3+). 

In this thesis, the concerned temperature range (above 50 mK) only covers the right side of 

the nuclear specific heat from Ln3+, except Ho3+. Thus, Eq. (A.6) for the nuclear contribution 

could be simply approximated by the power-law [171]:  

 ?_fR ∝ .YF (A.8) 

Finally, one can obtain the magnetic specific heat and the corresponding magnetic entropy 

as follows: 

 ?iMj = ?4JK − ?LMNN − ?7OP − ?_fR 

hiMj =
?iMj
.

w.
^

=
 

(A.9) 
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A.2.! Analysis'of'the'low?temperature'specific'heat'of'Ln2Ir2O7'

The left panels of Appendix Figure A.1-5 show the analysis of the low-temperature specific 

heat of Ln2Ir2O7 (Ln = Nd, Tb, Dy, Er and Yb). The lattice contribution ?LMNN was estimated 

according to Eq. (A.4) with Y2Ir2O7 as the reference sample. The nuclear contribution ?_fR 

was fitted based on Eq. (A.8) with the constrain of zero magnetic specific heat at the lowest 

temperature. It should be noted that the estimation of ?_fR for Tb2Ir2O7 is not very reliable. 

The Schottky anomaly of CEF, ?7OP, was calculated according to Eq. (A.6) within the CEF 

scheme of Ln3+. The CEF scheme of Nd3+ was taken from the reported result in Ref [244]. 

The calculations of ?7OP for Tb2Ir2O7, Dy2Ir2O7, Er2Ir2O7 and Yb2Ir2O7 were considered the 

reported CEF results of their counterpart Tb2Ti2O7 [35], Dy2Ti2O7 [245], Er2Sn2O7 [246] and 

Yb2Ti2O7 [38]. As shown in purple lines, the ?7OP of Nd2Ir2O7, Dy2Ir2O7 and Yb2Ir2O7 could 

be ignored below 25 K, as well as Er2Ir2O7 below 10 K. This suggests a well-isolated CEF 

ground-state of the rare-earth ions. The obtained pure magnetic specific heat ?iMj and the 

corresponding magnetic entropy are illustrated in the right panels of Appendix Figure A.1-5. 

The green line indicates the magnetic entropy of the paramagnetic state for a spin-1/2 system, 

hiMj = Tmn(2), while the blue line corresponds to the residual entropy of the classical spin-

ice, hiMj = <

…=>,(
À
…) . The ?iMj  of Nd2Ir2O7 exhibits a ù -shape peak at 33 K, which is 

associated with the magnetic transition of the Ir4+ sublattice from paramagnetic state to the 

AIAO long-range order state. A unified feature of ?iMj of these compounds is the broad 

hump at .S  = 5.0, 3.0 3.0 1.5 and 2.3 K for Nd2Ir2O7 Tb2Ir2O7, Dy2Ir2O7, Er2Ir2O7 and 

Yb2Ir2O7, respectively. This relates to the development of short-rang order on the Ln3+ 

sublattice. Meanwhile, the obtained magnetic entropy completely releases in this process. 

The obtained hiMj approaches to the value of the parameter state for a spin-1/2 system at 20 

K. Thus, no residual entropy associated to spin freezing process could be observed at lowest 

temperature in any of the compounds.  
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Appendix Figure A.1. (a) Analysis of the low-temperature specific heat of Nd2Ir2O7. The 
insert shows the data from 0.1 to 270 K. (b) Obtained magnetic specific heat ?iMj(.) 
(black spheres) and the corresponding magnetic entropy hiMj(.) (red spheres). 

 

 

 
Appendix Figure A.2 (a) Analysis of the low-temperature specific heat of Tb2Ir2O7. The 
insert shows the data from 0.1 to 270 K. (b) Obtained magnetic specific heat ?iMj(.) 
(black spheres) and the corresponding magnetic entropy hiMj(.) (red spheres). 
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Appendix Figure A.3 (a) Analysis of the low-temperature specific heat of Dy2Ir2O7. The 
insert shows the data from 0.1 to 200 K. (b) Obtained magnetic specific heat ?iMj(.) 
(black spheres) and the corresponding magnetic entropy hiMj(.) (red spheres). 

 

 

 
Appendix Figure A.4 (a) Analysis of the low-temperature specific heat of Er2Ir2O7. The 
insert shows the data from 0.1 to 200 K. (b) Obtained magnetic specific heat ?iMj(.) 
(black spheres) and the corresponding magnetic entropy hiMj(.) (red spheres). 
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Appendix Figure A.5 (a) Analysis of the low-temperature specific heat of Yb2Ir2O7. The 
insert shows the data from 0.1 to 200 K. (b) Obtained magnetic specific heat ?iMj(.) 
(black spheres) and the corresponding magnetic entropy hiMj(.) (red spheres). 

 

 

Appendix Table A.1 The CEF schemes of Ln3+ for the estimation of the Schottky anomaly 
in specific heat. The times of the energy denote the degeneracy of the corresponding CEF 
level. 

Ln3+ CEF scheme (meV) 

Pr [0, 0, 13, 60, 60] 

Nd (NIO) [0, 0, 26, 26] 

Tb [0, 0, 1.5, 1.5, 10.3, 16.1, 39.0, 39.0, 48.2, 48.8, 60.8, 60.8, 71.0] 

Dy [0, 0, 33, 33] 

Er [0, 0, 6, 6, 11, 11] 

Yb [0, 0, 76, 76] 

Nd (NHO) [0, 0, 24, 24] 
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B.!Magnetic'structure'and'diffraction'pattern'in'pyrochlore'

 

In this thesis, the irreducible representation (IR) analysis of space group is applied for 

magnetic structure determination. The principle of this method can be found in any textbook 

of crystallography. This section only presents the analysis results obtained from the software 

BASIREPS [151] and the corresponding magnetic NPD patterns. The pyrochlore compounds 

crystallize in the face-centered cubic lattice (vw3x space group). The rare earth ions site at 

the 16d (1/2, 1/2, 1/2) position. Considering the propagation wavevector k = (0 0 0), the 

decomposition of the magnetic representation for the magnetic ions site is ΓiMj = 1Γza +

1Γ{F + 1Γ|z + 2Γ}z, where the multiplicative factors represent the number of the times that the 

IRs occurs, and the dimensionality and the order of IRs are denoted as superscript and 

subscript. The IRs and the associated basis vectors (BVs) are listed in Appendix Table B.1. 

The simulated magnetic NPD patterns associated to each BVs are shown in Appendix Figure 

B.1 

 

Appendix Table B.1The BVs corresponding to each IR using the software BasIREPS. 
Note: the BVs are not normalized and Γ} is repeated twice. 

IR BV 
(x, y, z) 

(-x+0.75, -y+0.25, 

z+0.5) 

(-x+0.25, y+0.5, -

z+0.75) 

(x+0.5, -y+0.75, -

z+0.25) 

xJ xµ x¿ xJ xµ x¿ xJ xµ x¿ xJ xµ x¿ 

Γz åa 1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 

Γ{ åF 1 X
?[@
À  X

…[@
À  -1 X

[@
À  X

…[@
À  -1 X

?[@
À  X

A[@
À  1 X

[@
À  X

A[@
À  

 åz X
…[@
À  1 X

?[@
À  X

A[@
À  -1 X

?[@
À  X

A[@
À  1 X

[@
À  X

…[@
À  -1 X

[@
À  

Γ| åÇ 1 -1 0 -1 1 0 1 1 0 -1 -1 0 

 å{ 0 1 -1 0 1 1 0 -1 -1 0 -1 1 

 åç -1 0 1 -1 0 -1 1 0 -1 1 0 1 

Γ} å| 1 1 0 -1 -1 0 1 -1 0 -1 1 0 

 åB 0 0 1 0 0 1 0 0 1 0 0 1 

 å} 0 1 1 0 1 -1 0 -1 1 0 -1 -1 

 åa= 1 0 0 1 0 0 1 0 0 1 0 0 

 åaa 1 0 1 1 0 -1 -1 0 -1 -1 0 1 

 åaF 0 1 0 0 1 0 0 1 0 0 1 0 
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Appendix Figure B.1 Simulated neutron diffraction patterns of magnetic peaks associated 
to different BVs. The corresponding magnetic structure in the unit of tetrahedral is shown 
in the insert. The cubic lattice constant is set to 10.19 Å during calculation 
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C.!Absolute'cross?section'normalization'of'magnetic'neutron'scattering''

 

Sometimes, obtaining the relative intensity in a neutron scattering experiment is sufficient, 

such as the Rietveld refinement of the neutron powder diffraction data. In this thesis, the 

quantitative analysis of the magnetic neutron scattering is used to examine the total moment 

sum rule. It is necessary to convert the magnetic scattering intensities to absolute units, i.e. 

in terms of magnet moments 1H  or spin (S) per site. The principle of this normalization 

process can be found in Ref [212,247,248]. This section presents a brief discussion of the 

absolute unit calibration and gives an example. The mentioned methods are specific for 

powder data. 

 

C.1.! Introduction''

The neutron scattering intensity measured at the detector can be expressed as a convolution 

of the differential scattering cross-section wFŒ wΩwü, which depends on the sample itself, 

and the instrument resolution function T‡O u − uÈ, ü − üÈ , which is mainly determined by 

the instrument set-up: 

 
û u, ü = ?(ü) wuÈwüÈT‡O u − uÈ, ü − üÈ ×,

wFŒ
wΩwüÈ

(uÈ, üÈ) (C.1) 

where ?(ü)  is the detector efficiency. The instrument resolution function is usually 

normalized to unity: 

 wuÈwüÈT‡O uÈ, üÈ = 1 (C.2) 

Making a necessary approximation to “decouple” the instrument resolution and the scattering 

response function, (C.1 can be approximated as 

 
û3M§ u, ü = T=,×,

GW
G2

wFŒ
wΩwü

(u, ü) (C.3) 

where û3M§ u, ü  stands for the data obtained after standard data reduction, ?T=  is the 

resolution volume of the instrument. The task of the normalization is determining the 

resolution volume ?T=, as well as the sample molecular number N. 

    Generally, to obtain the resolution volume one could use the following reference cross 

sections: (i) standard sample incoherent elastic scattering (e.g., vanadium); (ii) sample 

incoherent elastic scattering; (iii) sample nuclear magnetic Bragg peaks; (iv) sample phonon 

scattering. Here we only discuss the first three methods, which are easily applied to powder 
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sample, because (iv) may introduce significant error due to the powder average effect of 

different phonon branches in powder sample. 

 

C.2.! Methods'

(1) The incoherent elastic scattering of the experimental sample itself This is one of the 

most straight-forward methods to do absolute calibration. The cross section for the incoherent 

elastic scattering is quite simple: 

 wŒ
wΩW_R

4L

=
D
4¸

ŒÔ
W_Rexp,(−2‰Ô)

Ô

 (C.4) 

where ŒÔW_R  is the incoherent neutron scattering cross section of the jth atom, and the 

summation is performed over all atoms in one molecule. According to (C.3, the energy 

integrated incoherent elastic scattering intensity 

 
û3M§ u, ü wü =

D
4¸

ŒÔ
W_Rexp,(−2‰Ô)

Ô

 (C.5) 

can be obtained by a numerical integration at a wave-vector transfer u far away from any 

nuclear or magnetic Bragg peaks of the û3M§ u, ü  data. Since GW ,= , G2 in elastic scattering, 

we therefore can obtain the resolution volume: 

 
?T= =

4¸ û3M§ u, ü wü
D ŒÔ

W_Rexp,(−2‰Ô)Ô
 (C.6) 

the Debye-Waller factor exp,(−2‰Ô) can be assumed to unity at low u, low temperature. 

Then, the intensity as function of u  and ü  can be normalized into the absolute unit 

barn/sr/f.u. 

 
û u, ü =

GW
G2

wFŒ
wΩwü

u, ü =
û3M§ u, ü
?T=

 (C.7) 

here, the f.u. (formula unit) depends on the molecular number N. For example, the pyrochlore 

Nd2Hf2O7, there are two Nd atoms per one molecule and 16 Nd atoms per simple cubic (s.c.) 

unit cell. If one wants to calibrate the intensity per Nd atom, then N = 1/2, the right side of 

Eq. (C.5) is 2×Œ∞ÆW_R + 2×Œ˚2W_R + 7×ŒÌW_R 4¸ 2. 

(2) The incoherent elastic scattering of the standard sample Due to the relatively large 

spin-incoherent scattering cross section and nearly zero nuclear coherent scattering cross 

section, vanadium is a good solution as standard sample for normalization. The procedure is 

similar to the aforementioned normalization with the sample incoherent scattering. The 

masses and sizes of measured sample and vanadium sample in neutron beam have to be 
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considered. We assume the neutron beam flux B is uniformly distributed. The experimental 

sample was measured with the mass Msam and the sectional area Asam (illuminated in neutron 

beam), as well as the mass Mvana and the sectional area Avana (illuminated in neutron beam) 

for the vanadium measurement. Then, Eq. (C.5) can be written as: 

 
û3M§CM_M u, ü wü = ?T=×d¥CM_M×

DCM_M
4¸

ŒCM_MW_R exp,(−2‰CM_M) (C.8) 

for vanadium, where Nvana is the molecule number of vanadium, which can be obtained from 

Mvana. 

 
û3M§™Mi u, ü = ?T=,×d¥™Mi×,D™Mi×

GW
G2

wFŒ
wΩwü

(u, ü) (C.9) 

for experimental sample, where Nsam is the number of molecular of the sample, which can be 

obtained from Msam. Here the double differential cross section wFŒ wΩwü should be set to 

per molecular. If both sample and vanadium data sets have been normalized to time or 

monitor counts, Eq. (C.7) has the follow expression 

 
û u, ü =

GW
G2

wFŒ
wΩwü

u, ü =
û3M§™Mi u, ü ∙ ŒCM_MW_R

4¸ û3M§CM_M u, ü wü
×
¥CM_MDCM_M
¥™MiD™Mi

 (C.10) 

This method requires that the experimental sample and vanadium should be measured at the 

same condition, such as the shape and beam size.  

(3) The nuclear or magnetic Bragg peaks of the sample This method is not suitable for 

single crystal due to the extinction in Bragg scattering and multiple scattering. Unlike the 

temperature dependent behavior of the magnetic Bragg peaks, the nuclear Bragg peak 

intensity usually keeps constant and is easy to handle for different temperature. 

    The Bragg scattering cross section for a powder sample takes the form [211] 

 wŒ
wΩ

= D∗ ℐ(√)‹(u − √)
E

 (C.11) 

where the summation is over reciprocal lattice vectors, τ. The u-integrated nuclear scattering 

intensity is 

 
ℐ_fR √ =

F∗

4¸√F
v_fR(√È) F

EÈ `E

 (C.12) 

where v* is the volume of the reciprocal lattice unit cell and the structure factor is 

 v_fR u = XY8G
(‡)–Æexp,(cu ∙ w)

Æ

 (C.13) 

For magnetic Bragg scattering the u-integrated intensity is: 
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ℐiMj √ = Ã=F

F∗

4¸√F
ê
2
∑(√′)

F
viMj(√È)

F

EÈ `E

− √ ∙ viMj(√È)
F

 

(C.14) 

within the magnetic vector structure factor for a given spin configuration [249] 

 viMj u = XY8G
(‡)
IÆ hÆ exp,(cu ∙ w)

Æ

 (C.15) 

where Ã=F = (
4…J
iÿR
)F = 0.2905 barn, IÆ = 1Æ − G ∙ 1Æ G is the magnetic interaction vector, 

G is the unit vector parallel to the scattering vector, 1Æ is the unit vector parallel to the ordered 

magnetic moment of the atom at position w with amplitude hÆ  in unit 1H. 

The Q-integrated intensity of nuclear Bragg peaks can be obtained by numerical integration 

or fitting of û3M§ u, ü  in ü and u. 

 
?T= =

û3M§ u − √, ü wuwü
ℐ_fR

 (C.16) 

the absolute intensity û u, ü  can obtain according to Eq. (C.7). 

 

C.3.! Application'for'a'real'system'

In practical measurement, one can use the reference sample such as vanadium to perform 

absolute unit calibration. However, the compounds including hafnium and iridium in this 

thesis are strong neutron absorbers. The self-attenuation correction has to be performed in 

the data reduction. On the other hand, the normalization with the spin-incoherent scattering 

cross section of vanadium is sometimes invalid. The normalization with the specific cross 

section of the sample itself has to be used, the so-called self-normalization.  

    For the data collected on the time-of-flight spectrometer IN6, LET and TOFTOF, one can 

use the nuclear Bragg peaks to perform the absolute unit calibration. Here is an example of 

powder Nd2Hf2O7 data taken from IN6. As shown in Chapter 6, the diffraction patterns at 

different temperatures were obtained by integrating the spectra in the energy range from -0.3 

to 0.3 meV, which is large enough to include all the elastic component. The u-integrated 

intensity (named area) and the FWHM of each peak were carried out by a Gaussian profile 

fitting, as listed in Appendix Table C.1. Clearly, the area of the peak (2 2 0) and (1 1 3) 

increase at 57 mK due to the AIAO magnetic order of Nd3+ below .∞ = 535 mK. In Appendix 

Table C.2, the theoretical intensities of nuclear and magnetic Bragg peaks were calculated 

according to Eq. (C.12) and Eq. (C.13). The x indicates the multiplicity of the peak. For the 

case of k = (0 0 0), the crystallographic unit cell and the magnetic unit cell are identical, as 
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well as the peak multiplicity. The nuclear structure factor and the squared magnetic structure 

factor were calculated in one simple cubic unit cell (s.c.) with lattice constant 10.52 Å. The 

Bragg peak intensities were normalized to per simple cubic cell and per Nd atom. The 

magnetic Bragg peak intensities were given with ordered moment 1 1H. Comparing with 

experimental and theoretical results of the nuclear Bragg peak (1 1 1), we obtain the 

normalization factor ?T= = I%áKLL
!%•

Q− τ, E dQdE I°Y°"
NK= (τ) = 0.5846(323) , giving 

rise to the systemic error 5.5%. applying ?T= to Eq. (C.7), one can achieve the normalized 

inelastic neutron scattering intensity û u, ü  with the unit barn/sr/meV/Nd. Furthermore, the 

ordered magnetic moment of Nd3+ at T = 57 mK can be obtained according to ©!á"´á =

(I{|#$
!%• τ − Iç==#$

!%• (τ) (I/Y°"
NK= (τ) ∙ N?T=) = 1.474(12) 1H, in agreement with the result 

1.523(22) 1H according to Fullprof refinements within the error. This also is a cross check 

for the method and equations given above, as well as our MATLAB code. Another 

application of the û u, ü  is to estimate the fluctuating magnetic moment by calculating the 

spectra weight in a sufficient u and ü range [234,243]: 

 
‹xF = 1HF

uF6û(u, ü)/ Ã=∑(u) Fwuwü
uFwu

 (C.17) 

where ∑(u) is the magnetic form factor of the corresponding magnetic ion. 

 

Appendix Table C.1 The experimental results of Bragg peaks fitting. The units of the area 
and FWHM are arbitrary unit and Å-1, respectively. 

√ Qobs û{|i&≠˘™  ûç==i&≠˘™  ûa=&≠˘™  

h k l Å-1 Area FWHM Area FWHM Area FWHM 

1 1 1 1.036 0.0167(5) 0.0255(9) 0.0150(5) 0.0262(11) 0.0155(6) 0.0265(10) 

2 2 0 1.682 0.0451(5) 0.0209(3) 0.0108(5) 0.0205(10) 0.0114(5) 0.0218(11) 

1 1 3 1.979 0.0910(5) 0.0196(2) 0.0605(5) 0.0199(2) 0.0619(5) 0.0201(2) 
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Appendix Table C.2 The calculated results of the nuclear and the magnetic Bragg peaks. 
The x indicates the multiplicity of peaks. 

   Nuclear Contribution Magnetic Contribution 

√ m Qcal v∞RML û∞RML/¯Xmm û∞RML/Dw vØúRML
F
 ûØRML/¯Xmm ûØRML/Dw 

h k l  Å-1 fm barn/s.c. barn/Nd barn barn/s.c./ µB
2 barn/Nd/ µB

2 

1 1 1 8 1.035 -18.442 0.43105 0.02694 - - - 

2 2 0 12 1.690 21.898 0.34187 0.02137 5.6607 0.40356 0.02522 

1 1 3 24 1.981 45.898 2.18452 0.13653 3.9770 0.41241 0.02578 
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D.!Equivalence'of'the'fitting'functions'for'INS'data'[148,235,250]'

 

The signals of the inelastic neutron scattering and the quasielastic neutron scattering usually 

have a Lorentzian shape modified by the detailed balance factor. The fitting of the signals 

provides useful information, such as the peak position and FWHM, for further discussion. 

However, researchers somehow use different named functions to perform fitting process, 

which may confuse the readers. This section will explain the equivalence of the used fitting 

functions and reveal the relation of the fitting parameter among different functions. 

    The standard Lorentzian function is: 

 
ª ! =

2¥
¸

O

4 ! − !R F + OF =
¥
¸

ΓL
! − !R F + ΓL

F (D.1) 

where the O is the full-width at half maximum (FWHM) of the peak, ΓL = O/2, !R is the 

peak position, and ¥ is the area (or integrated intensity) of the peak. The amplitude (or height) 

of the peak is < = 2 ∗ ¥ (¸ ∗ O).  

    For the quasielastic neutron scattering of magnetic systems, the dynamic structure factor 

h(u,., .), which is proportional to the imaginary part of the generalized susceptibility 5′′, 

can be generally expressed as: 

 h u,., . = ℏ. 1 − exp −ℏ. GH. Ya ∙ 5′′(u,., .) (D.2) 

where 1 − exp −ℏ. GH. Ya is the detailed balance factor standing for the difference in 

the scattering function of the neutron energy gain and loss side due to the thermal population. 

5′′(u,., .) is the generalized susceptibility taken as a Lorentzian-shaped quasielastic line 

with width Γ at sufficiently high temperature: 

 
5ÈÈ u,., . = 5=(u, .)

Γ‡O∞Q(u, .)
.F + Γ‡O∞QF (u, .)

 (D.3) 

The dynamic structure factor for quasielastic neutron scattering h(ü) at constant Q can be 

well described by a single Lorentzian as follow: 

 
h ü = 5=(.)

Γ‡O∞Q(.)
üF + Γ‡O∞QF (u, .)

∙
ü

1 − exp,(−ü GH.)
 (D.4) 

comparing with the Lorentzian function Eq. (D.1), one can obtain Γ‡O∞Q = w/2 and 5= =

¥/¸.  

    For the case of inelastic neutron scattering, for example due to the intrinsic excitations of 

phonons or magnons in the sample, one can observe Lorentzian shape peaks appear in pair 

in both positive and negative energy side. One of the often-used fitting function for the 

dynamic structure factor is the damped harmonic oscillator function (DHO): 
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h u, ü, . =

¥Ï˚ÌüΓÏ˚Ì
üF − üÏ˚ÌF F + üΓÏ˚Ì F ∙

1
1 − exp −ü GH.

 (D.5) 

where üÏ˚Ì is the renormalized excitation energy, ¥Ï˚Ì is the oscillator strength and ΓÏ˚Ì 

is the linewidth of the excitation. By using the relations ΓÏ˚Ì = 2Γπ and üÏ˚ÌF = üπF + ΓπF, 

the DHO function can convert to double Lorentzian function form: 

 
hL u, ü, . =

¥L
¸

Γπ
ü − üπ

F
+ Γπ

F
−

Γπ
ü + üπ

F
+ Γπ

F

∙
1

1 − exp −ü GH.
 

(D.6) 

where ¥L = ¸¥Ï˚Ì/(2üπ) is the peak area of Lorentzian function, one can observe the peaks 

at ±üπ with FWHM of 2Γπ or ΓÏ˚Ì.  

    The double Lorentzian function can be decomposed into two parts according the energy 

sign. In the bracket of the double Lorentzian function Eq. (D.6), the first term represents the 

neutron energy loss part, and is always positive (blue line in Appendix Figure D.1 (a)). The 

second term stands for the neutron energy gain part, which is always negative (red line in 

Appendix Figure D.1 (b)). This makes sense because the imaginary susceptibility 5ÈÈ is an 

odd function of energy. The detailed balance factor also changes sign from negative to 

positive energy (olive curve in Appendix Figure D.1 (a)). This leads to the dynamic structure 

factor being always positive. The summation of two parts gives an identical profile of the 

DHO function (Appendix Figure D.1 (b)). It should be noted that the detailed balance factor 

goes to infinite at the energy close to zero. The fitting process near zero energy should be 

done very careful.  

 



Appendices 

 158 

 
Appendix Figure D.1 (a) separated double Lorentzian function profiles in neutron energy 
gain (red curve) and energy lose (blue curve), and the detailed balance factor (olive) 
behavior in two energy part. (b) functions profiles: DHO function (black circles), double 
Lorentzian function multiplied by detailed balance factor (Magenta line with star 
symbols) and its neutron energy gain part (red line) and neutron energy loss part (blue). 
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E.!TOFTOF'results'of'Nd2Hf2O7'

 

 
Appendix Figure E.1 INS results of the empty Cu container taken from TOFTOF with 
different He gas pressure in cryostat, (a) 25 mbar and (b) 2~3 mbar at 3.5 K. 

 
Appendix Figure E.2 Temperature dependence of the inelastic neutron scattering spectra 
of the powder Nd2Hr2O7. The wavelength of the incident beam is 6 Å. 
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Appendix Figure E.3 (a) The DHO function fitted results of the spectra at 55 mK for the 
constant Q = 0.6 and 1.55 ÅYa. (b) Temperature dependence of the spectra at constant Q 
= 0.6 ÅYa. 

 

 
Appendix Figure E.4 Temperature dependence of the flat band position and the FWHM 
obtained by the fitting at constant u = 0.6 ÅYa. The fitting functions could be found in 
Appendix D. 
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F.!Examples'of'the'PCR'file'for'the'Rietveld'refinement'by'Fullprof'

 

F.1.! Unpolarized'neutron'diffraction'
COMM Refinement of Nd2Hf2O7 powder neutron 
! Current global Chi2 (Bragg contrib.) =      1.167     
! Files => DAT-file: Nd2Hf2O7.dat,  PCR-file: NHO_neutron_Npr7_ADP 
!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut 
   1   7   1  26   2   0   0   0   0   0   0   0   0   0   0   0   0   0   1 
! 
!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana 
   0   0   1   0   1   0   4   0   0   3  10   1   0   0   0   0   0 
! 
! Lambda1  Lambda2    Ratio    Bkpos    Wdt    Cthm     muR   AsyLim   Rpolarz  2nd-muR -> Patt# 1 
 1.548320 1.548320  1.00000   10.000 40.0000  0.0000  0.3441  160.00    0.0000  0.0000 
! 
!NCY  Eps  R_at  R_an  R_pr  R_gl     Thmin       Step       Thmax    PSD    Sent0 
 10  0.10  1.00  1.00  1.00  1.00      0.9500   0.050019   151.9000   0.000   0.000 
! 
!2Theta/TOF/E(Kev)   Background  for Pattern#  1 
         4.4524      5556.2837          0.00 
         8.0833      3762.6165          0.00 
        11.5357      2881.3640          0.00 
        14.7500      2353.0837          0.00 
        20.4345      1893.8644          0.00 
        23.6786      1677.5648          0.00 
        31.0680      1400.0378          0.00 
        39.2313      1224.2581          0.00 
        46.9796      1113.3431          0.00 
        52.5918      1065.2941          0.00 
        58.4626      1040.9934          0.00 
        66.3878      1016.9235          0.00 
        69.3129      1024.9980          0.00 
        74.4940      1022.6277          0.00 
        82.0536      1009.7409          0.00 
        84.4345      1011.0252          0.00 
        88.5714       996.8884          0.00 
        94.1497       994.8542          0.00 
       101.8027      1038.1161          0.00 
       109.0119      1080.9722          0.00 
       114.3988      1010.4091          0.00 
       125.2313      1130.7930          0.00 
       130.6735      1116.0804          0.00 
       139.1072      1175.5215          0.00 
       147.4762      1184.4120          0.00 
       150.9456      1199.7860          0.00 
!  
! Excluded regions (LowT  HighT) for Pattern#  1 
        0.00        5.00 
      150.00      180.00 
!  
! 
      18    !Number of refined parameters 
! 
!  Zero    Code    SyCos    Code   SySin    Code  Lambda     Code MORE ->Patt# 1 
 -0.04506   21.0  0.00000    0.0  0.00000    0.0 0.000000    0.00   0 
!------------------------------------------------------------------------------- 
!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern#  1:     2.75 
!------------------------------------------------------------------------------- 
pyrochlore 



Appendices 

 162 

! 
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 
   4   0   0 0.0 0.0 1.0   0   0   0   0   0    3490356.500   0   7   0 
! 
! 
F d -3 m                 <--Space group symbol 
!Atom   Typ       X        Y        Z     Biso       Occ     In Fin N_t Spc /Codes 
!    beta11   beta22   beta33   beta12   beta13   beta23  /Codes 
Nd1    Nd      0.50000  0.50000  0.50000  0.00000   2.00000   0   0   2    0   
                  0.00     0.00     0.00     0.00      0.00 
      0.00067  0.00067  0.00067 -0.00008 -0.00008  -0.00008 
       141.00   141.00   141.00   171.00   171.00    171.00 
Hf1    Hf      0.00000  0.00000  0.00000  0.00000   2.00000   0   0   2    0   
                  0.00     0.00     0.00     0.00      0.00 
      0.00070  0.00070  0.00070  0.00010  0.00010   0.00010 
       121.00   121.00   121.00   181.00   181.00    181.00 
O1     O       0.33363  0.12500  0.12500  0.00000   6.00000   0   0   2    0   
                  0.00     0.00     0.00     0.00      0.00 
      0.00151  0.00099  0.00099  0.00000  0.00000   0.00042 
       131.00   161.00   161.00     0.00     0.00    151.00 
O2     O       0.37500  0.37500  0.37500  0.00000   1.00000   0   0   2    0   
                  0.00     0.00     0.00     0.00      0.00 
      0.00116  0.00116  0.00116  0.00000  0.00000   0.00000 
        41.00    41.00    41.00     0.00     0.00      0.00 
!-------> Profile Parameters for Pattern #  1 
!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 
 0.20468E-03   0.00000   0.00000   0.00000   0.00000   0.00000       0 
    11.00000     0.000     0.000     0.000     0.000     0.000 
!       U         V          W           X          Y        GauSiz   LorSiz Size-Model 
   0.030704  -0.049776   0.108069   0.044869   0.000000   0.000000   0.000000    0 
     51.000     61.000     71.000     81.000      0.000      0.000      0.000 
!     a          b         c        alpha      beta       gamma      #Cell Info 
  10.646323  10.646323  10.646323  90.000000  90.000000  90.000000    
   31.00000   31.00000   31.00000    0.00000    0.00000    0.00000 
!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 
  0.00000  0.00000  0.20271  0.02105 -0.30659  0.00000  0.00000  0.00000 
     0.00     0.00    91.00   101.00   111.00     0.00     0.00     0.00 
!  2Th1/TOF1    2Th2/TOF2  Pattern to plot 
       5.000     150.000       1 
 

F.2.! Polarized'neutron'diffraction'(nuclear'coherent'scattering)'
COMM Structure Refinement of Nd2Hf2O7 powder NPD at DNS 
! Current global Chi2 (Bragg contrib.) =      69.91     
! Files => DAT-file: NHO_89mK_nuc.dat,  PCR-file: NHO_89mK_ZFC_nuc 
!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut 
   1   0   1  14   2   0   0   0   0   0   0   0   0   0   0   0   0   0   1 
! 
!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana 
   0   0   1   0   1   1   4   0   0   3  10  -1   0   1   0   0   0 
! 
! Lambda1  Lambda2    Ratio    Bkpos    Wdt    Cthm     muR   AsyLim   Rpolarz  2nd-muR -> Patt# 1 
 4.200000 4.200000  0.00000   40.000  4.0000  0.0000  0.0000  127.00    0.0000  0.0000 
! 
!NCY  Eps  R_at  R_an  R_pr  R_gl     Thmin       Step       Thmax    PSD    Sent0 
 20  0.10  1.00  1.00  1.00  1.00     13.0000   0.502252   124.5000   0.000   0.000 
! 
!2Theta/TOF/E(Kev)   Background  for Pattern#  1 
        18.0000         0.2663          0.00 
        25.5000         0.2184          0.00 
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        29.0000         0.2102          0.00 
        34.5000         0.2284          0.00 
        46.0000         0.2241          0.00 
        48.5000         0.2268          0.00 
        56.0000         0.2452          0.00 
        63.5000         0.2772          0.00 
        77.0000         0.3706          0.00 
        92.5000         0.3188          0.00 
       100.5000         0.3193          0.00 
       107.5000         0.3025          0.00 
       111.0000         0.2746          0.00 
       123.0000         0.3970          0.00 
!  
! Excluded regions (LowT  HighT) for Pattern#  1 
        0.00        8.50 
      122.60      180.00 
!  
! 
       5    !Number of refined parameters 
! 
!  Zero    Code    SyCos    Code   SySin    Code  Lambda     Code MORE ->Patt# 1 
 -0.80784   11.0  0.00000    0.0  0.00000    0.0 0.000000    0.00   0 
!------------------------------------------------------------------------------- 
!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern#  1:     3.62 
!------------------------------------------------------------------------------- 
pyrochlore 
! 
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 
   4   0   0 0.0 0.0 1.0   0   0   0   0   0       6059.208   0   0   0 
! 
! 
F d -3 m                 <--Space group symbol 
!Atom   Typ       X        Y        Z     Biso       Occ     In Fin N_t Spc /Codes 
Nd1    Nd      0.50000  0.50000  0.50000  0.00000   0.08333   0   0   0    0   
                  0.00     0.00     0.00     0.00      0.00 
Hf1    Hf      0.00000  0.00000  0.00000  0.00000   0.08333   0   0   0    0   
                  0.00     0.00     0.00     0.00      0.00 
O1     O       0.33646  0.12500  0.12500  0.00000   0.25000   0   0   0    0   
                 41.00     0.00     0.00     0.00      0.00 
O2     O       0.37500  0.37500  0.37500  0.00000   0.04167   0   0   0    0   
                  0.00     0.00     0.00     0.00      0.00 
!-------> Profile Parameters for Pattern #  1 
!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 
 0.32749E-02   0.00000   0.00000   0.00000   0.00000   0.00000       0 
    51.00000     0.000     0.000     0.000     0.000     0.000 
!       U         V          W           X          Y        GauSiz   LorSiz Size-Model 
   7.799441  -9.781798   9.338505   0.000000   0.000000   0.000000   0.000000    0 
      0.000      0.000     31.000      0.000      0.000      0.000      0.000 
!     a          b         c        alpha      beta       gamma      #Cell Info 
  10.603503  10.603503  10.603503  90.000000  90.000000  90.000000    
   21.00000   21.00000   21.00000    0.00000    0.00000    0.00000 
!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4   
  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
     0.00     0.00     0.00     0.00     0.00     0.00 
!  2Th1/TOF1    2Th2/TOF2  Pattern to plot 
      18.540     121.520       1 
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F.3.! Polarized'neutron'diffraction'(magnetic'scattering)'
COMM Magnetic structure Refinement of Nd2Hf2O7 powder NPD at DNS 

! Current global Chi2 (Bragg contrib.) =      4.572     

! Files => DAT-file: NHO_89mK_mag.dat,  PCR-file: NHO_89mK_ZFC_mag 

!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut 

   1   0   1   9   2   0   0   0   0   0   0   0   0   0   0   0   0   0   1 

! 

!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana 

   0   0   1   0   1   1   4   0   0   3  10   1   0   1   0   0   0 

! 

! Lambda1  Lambda2    Ratio    Bkpos    Wdt    Cthm     muR   AsyLim   Rpolarz  2nd-muR -> Patt# 1 

 4.200000 4.200000  0.00000   40.000  4.0000  0.0000  0.0000  127.00    0.0000  0.0000 

! 

!NCY  Eps  R_at  R_an  R_pr  R_gl     Thmin       Step       Thmax    PSD    Sent0 

 20  0.10  1.00  1.00  1.00  1.00     13.0000   0.502252   124.5000   0.000   0.000 

! 

!2Theta/TOF/E(Kev)   Background  for Pattern#  1 

        11.0000         0.0643          0.00 

        22.5000         0.0804          0.00 

        31.5000         0.0776          0.00 

        40.5000         0.0772          0.00 

        48.5000         0.0733          0.00 

        62.0100         0.0707          0.00 

        97.0100         0.0708          0.00 

       106.5000         0.0691          0.00 

       112.0100         0.0629          0.00 

!  

! Excluded regions (LowT  HighT) for Pattern#  1 

        0.00        7.00 

      127.00      180.00 

!  

! 

       1    !Number of refined parameters 

! 

!  Zero    Code    SyCos    Code   SySin    Code  Lambda     Code MORE ->Patt# 1 

 -0.80784    0.0  0.00000    0.0  0.00000    0.0 0.000000    0.00   0 

!------------------------------------------------------------------------------- 

!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern#  1:    21.35 

!------------------------------------------------------------------------------- 

PIO Magnetic phase 

! 
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!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   1   0   0 0.0 0.0 1.0   1  -1  -2   0   0          0.000   1   0   0 

! 

! 

F -1                     <--Space group symbol for hkl generation 

! Nsym   Cen  Laue Ireps N_Bas 

     4     1     1    -1     1 

! Real(0)-Imaginary(1) indicator for Ci 

  0 

! 

SYMM x,y,z 

BASR   1  1  1 

BASI   0  0  0 

SYMM -x+3/4,-y+5/4,z-1/2 

BASR  -1 -1  1 

BASI   0  0  0 

SYMM -x+5/4,y-1/2,-z+3/4 

BASR  -1  1 -1 

BASI   0  0  0 

SYMM x-1/2,-y+3/4,-z+5/4 

BASR   1 -1 -1 

BASI   0  0  0 

! 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      C1      C2      C3 

!     C4     C5     C6      C7      C8      C9      MagPh 

Nd1    JND3  1  1  0.50000 0.50000 0.50000 0.00000  1.00000   0.817   0.000   0.000   

                      0.00    0.00    0.00    0.00     0.00   11.00    0.00    0.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

 0.32749E-02   0.00000   0.00000   0.00000   0.00000   0.00000       0 

     0.00000     0.000     0.000     0.000     0.000     0.000 

!       U         V          W           X          Y        GauSiz   LorSiz Size-Model 

   7.799441  -9.781798   9.338505   0.000000   0.000000   0.000000   0.000000    0 

      0.000      0.000      0.000      0.000      0.000      0.000      0.000 

!     a          b         c        alpha      beta       gamma      #Cell Info 

  10.603503  10.603503  10.603503  90.000000  90.000000  90.000000    

    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000 

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4   

  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 
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     0.00     0.00     0.00     0.00     0.00     0.00 

! Propagation vectors:  

   0.0000000   0.0000000   0.0000000          Propagation Vector  1 

    0.000000    0.000000    0.000000 

!  2Th1/TOF1    2Th2/TOF2  Pattern to plot 

      18.540     121.520       1 
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G.!Glossary'

 

Symbol Definition 
AFM Antiferromagnetic  
AIAO All-in-all-out spin configuration in alternating tetrahedra 
ÕÆ ! Distance between two nearby tetrahedral center 
ÕLMNN! Lattice constant of the conventional cubic cell  
RS! Lattice vector field mapped  
di2Ir , di2,∥Ir , di2,úIr ! Molecular magnetic field and its two components along and 

perpendicular to the local 1,1,1  axis 
d_i! CEF parameters 
BVs Basis vectors 
BZ Brillouin Zone 
–Ô ! Scattering length of atom T 
–ê! Background 
?7OP ! Specific heat of crystal-electric field contribution 
?4JK! Measured specific heat 
?LMNN! Specific heat of lattice contribution 
?iMj! Specific heat of magnetic contribution (magnetic moment from 

unpaired electrons) 
?_fR ! Specific heat of nuclear contribution 
?K! Specific heat under constant pressure 
?QRS! Specific heat of Schottky anomaly 
?(ü)! Detector efficiency 
CEF Crystal electric field 
CSI Classical spin-ice 
CW Curie-Weiss 
CR=! Instrument resolution volume (normalization factor) 
¯W/ , ¯W/

U ! Annihilation and its conjugate operator for an electron in orbital ± 
at site c  

DSI Dipolar spin ice 
≈! Dipolar interaction constant 
≈__! Effective dipolar interaction constant between nearest neighbor 

spins 
DHO Damped harmonic oscillator function 
VWÔ ! Unit vector of the Dzyaloshinskii-Moriya coupling 

wS\L ! Distance between the parallel lattice plans with Miller indices 
ℎGm  

üW
W4! The c-th inelastic peak position 
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Xj, 0Fj, ! Doublet and triplet states of the d orbital band due to the octahedral 
CEF effect 

ü/W , ü/2, ! Initial and finial energy of the sample in a neutron scattering 
experiment  

FC Field-cooling process (an external magnetic field is applied during 
system cooling) 

FM Ferromagnetic  
FWHM Full-width at half maximum of the peak 
WiMj! Magnetic vector structure factor 
viMjú ! Magnetic vector structure factor component perpendicular to - 
v_fR ! Nuclear structure factor 
∑ Frustration index 
∑(u)! Dimensionless magnetic form factor (depends on the magnetic 

ion) 
G(6W) Peak shape function 
GS Ground state 
êë Lande factor: = …

À +
Y YZ[ \](]Z[)

…^(^Z[)  

ê∥, êú,  Longitudinal and transverse spectroscopic factor 
ℋ,A_`! The crystal-electric field Hamiltonian 
ℋ7Qı! Classical spin ice Hamiltonian (involving only longitudinal 

exchange interaction) 
ℋÏH! Hamiltonian of the dumbbell model in the dipolar spin-ice 
ℋ422Y[ …! Anisotropic effective spin-1/2 Hamiltonian 

ℋ4J! Hamiltonian for the effective exchange couplings between the 
nearest neighbors in one tetrahedron 

ℋ˚4W™4_˘43j Heisenberg Hamiltonian 
ℋı™W_j,EPØ! Ising antiferromagnetic Hamiltonian in pyrochlore lattice 

considered by Anderson 
ℋ,Ó[YÓ… Hamiltonian for the Óa − ÓF Ising model on a square lattice 
ℋ,aÁ Hamiltonian for the spin-orbit coupling 
ℋö! Quantum spin-ice Hamiltonian (XXZ model) 
ℋú! Transverse exchange Hamiltonian (in XXZ model) 
<! Applied magnetic field 
ℏ! Reduced Plank constant 
ℏ.! Energy transfer of neutrons in neutron scattering experiment 
I Insulator 
û(26, 0)! Data form (intensity vs scattering angle and time) taken from TOF 

spectrometer. 
û u, ü ! INS data format (intensity vs scattering vector and energy transfer) 

with absolute units (barn/sr/meV/f.u.) 
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û(u)! Intensity as function of u 
û3M§ u, ü ! INS data format (intensity vs scattering vector and energy transfer) 

with arbitrary unit 
ûR ! Superconducting critical current 
ûW
RML, ûW

≠˘™ ! Calculated and observed intensities in x-ray or neutron powder 
diffraction 

INS Inelastic neutron scattering 
IR Irreducible representation 
IRF Instrument resolution function/elastic line of û u, ü  
Ó Exchange coupling constant  
ÓÏØ! Dzyaloshinskii-Moriya interaction constant 
Ó422 Effective exchange coupling constant in DSI model 
ÓW™≠! Isotropic exchange coupling constant 
Ó__ Exchange coupling constant between nearest neighbor spins 
ÓKÆ ! Pseudo-dipolar exchange coupling constant 
Ó¿¿! Longitudinal exchange coupling constant in QSI model 
Ó±! Transverse exchange coupling constant in QSI model 
Ó¿¿, Ó±, Ó±±, Ó¿±, ! Anisotropic exchange constants involved in ℋ422Y[ … 

Ä Total angular momentum operator 
{ÄJ,!Äµ,!Ä¿}! x, y and z components of the total angular momentum operator 

Ä±! Raising and lowering total angular momentum operators 
Ä Total angular momentum quantum number 
Ä422 Effective total angular momentum quantum number 

ª Total orbital angular momentum operator 
ª Total orbital angular momentum quantum number 
bK,b™,  Thermal conductance between the cryostat and the micro-

calorimeter platform, and between the sample and the micro-
calorimeter platform, respectively. 

cW ,c2, ! Incident and outgoing wavevectors of neutrons in a neutron 
scattering experiment 

kiMj! Magnetic propagation wavevector 
LSWT Linear spin wave theory 
ª 6W ! Lorentz factor 
: Measured magnetization 
M Metal  
MIr
eff Net moment of Ir4+ parallel to the local 1,1,1  direction 

MIT Metal to inrulator transition 
x! Neutron mass 
xS\L Multiplicity of the Bragg reflection (ℎ,G,m) 
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*Ô ! Magnetic moment at site T 
D! Number of nuclei or magnetic ions in the system 
DiMj! Number of magnetic cells 
D_fR ! Number of unit cells in the system 
NPD Neutron powder diffraction 
nW/ Occupation number in orbital ± at site c 
n≤∑! Non-spin-flip 
e_
i Stevens operators 

f 0  Heating power 
PC Palmer-Chalker states 
5! Magnetic scattering length per 1H 
5/[ ! Thermal population factor of the sample initial state ±W  
5÷[ Polarization probability of the incident neutrons 
- Scattering vector 
-' Scattering vector with unit length 
QENS Quasielastic neutron scattering 
QSI Quantum spin ice 
QSL Quantum spin liquid 
gi Magnetic charge arising from the fragmentation of the magnetic 

moment 
u/ ! Total magnetic monopole charge in a tetrahedron ± 
RVB Resonating valence bond 
RXS Resonant x-ray scattering 
hWÔ ! Vector linking sites c and T 
hWÔ ! Unit vector linking sites c and T 
Ã__ Nearest neighbor distance between Ln3+ in pyrochlore lattice 
h Total spin angular momentum operator 

hW
Jƒ, hW

µƒ, hW
¿ƒ ! x, y and z components of the spin operators in the local coordinate 

system. 
hW
Éƒ, hÔ

Yƒ ! Raising and lowering spin operators in the local coordinate system 

h Total spin angular momentum quantum number 
i hJ, hµ, h¿ ! Classical spin treated as three dimensional vector 
h(-,.)' Dynamic (nuclear) structure factor (or scattering function), 
h/œ(-,.)! Dynamic magnetic structure factor (or magnetic scattering 

function) 
h7Qı Pauling’s residual entropy for water ice and spin ice 
hiMj! Magnetic entropy 
hPM! Magnetic entropy of the paramagnetic state for spin-1/2 system 
hN Total effective Ising spin per tetrahedron 
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SM Semimetal 
SOC Spin-orbit coupling 
≤∑! Spin-flip 
.̆ MNS, .K, .™, ! temperature of the cryostat, the platform and sample 

.R Curie temperature for ferromagnetic ordering 

.S! Temperature at the magnetic specific heat hump maximum 

.Øı Metal-to-insulator transition temperature 

.∞! Neel temperature for antiferromagnetic ordering 

.N3M_ Magnetic phase transition temperature 
TI Topolotical insulator 
TRS Time-reversal symmetry 
ˆ! Coulomb interaction/Hubbard repulsion potential 
ˆ! Interaction operator between neutron and the sample 
F=! Unit cell volume 
FiMj Magnetic cell volume 
WSM Weyl semimetal 
XRPD X-ray powder diffraction 
!, Í, Î  Global coordinate system based on the simple cubic coordinate 

system 
!È, ÍÈ, ÎÈ  Local coordinate system based on the tetrahedron 
!, Í, Î  Rotated local coordinate system in the !È, ÎÈ  plane 

ZFC Zero-field cooling process (no external magnetic field is applied 
during system cooling) 

  
± “Schärpf angle”, between the scattering vector and the x axis 
±W , ±2  Initial and final states of the sample in a neutron scattering 

experiment 
5 DC magnetic susceptibility 
5F! Factor to minimized in the Rietveld refinement 
‹ ! ! Dirac delta function 
∆ö! Zeeman splitting energy 
∆7 ! Estimated excitation level associated to .S  based the two levels 

assumption 
1! Magnetic moment per spin 
1H! Electronic Bohr magneton,  
17OP ! Effective magnetic moment of the ion under CEF condition. 
1422! Effective magnetic moment obtained from CW fitting of the DC 

susceptibility. 
12344 ! Magnetic moment of the fre ion 
j! Magnetic moment operator of the neutron 
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k! Pauli spin operator 
1SR! Muon spin rotation/relaxation 
26! Scattering angle 
678 Curie-Weiss temperature 
kW ,k2 ! Spin states of the incident and outgoing neutrons  

ù! Wavelength of the used radiation (x-ray or neutron) 
ùaÁ! Spin-orbit coupling constant 
∏=
±! Wavefunction of the single ion ground state under CEF 

˙! Gyromagnetic ratio 
¬! Reciprocal lattice vector 

√Jƒ, √µƒ, √¿ƒ ' Pseudo-spin components in the local coordinate system 

√J, √µ, √¿ ' Pseudo-spin components in the rotated local coordinate system 

Γ_! The n-th CEF state/Irreducible representation label/FWHM of the 
inelastic peak 

Æ…÷
Æ¤"l

! Partial (or double) differential cross section 

Æ÷
Æ¤
! Single differential cross section 

Æ÷
Æ¤ R≠S

! Single differential cross section of the coherent scattering 

Æ÷
Æ¤W_R

4L
! cross section for the incoherent elastic scattering 

Æ÷
Æ¤ iMj

, Æ÷
Æ¤ ™W

, Æ÷
Æ¤ _fR

! Magnetic, spin-incoherent and nuclear cross section 

Æ÷
Æ¤ J

_™2
, Æ÷
Æ¤ J

_™2
, Æ÷
Æ¤ J

_™2
! Non-spin-flip cross section for the incident neutrons with !, Í and 
Î polarization 

Æ÷
Æ¤ J

™2
, Æ÷
Æ¤ J

™2
, Æ÷
Æ¤ J

™2
! Spin-flip cross section for the incident neutrons with !, Í and Î 

polarization 
 

Samples 

NHO Nd2Hf2O7 DIO Dy2Ir2O7 
LHO La2Hf2O7 HIO Ho2Ir2O7 
PHO Pr2Hf2O7 EIO Er2Ir2O7 
PIO Pr2Ir2O7 YbIO Yb2Ir2O7 
NIO Nd2Ir2O7 YIO Y2Ir2O7 
TIO Tb2Ir2O7   
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