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Advances in experimental techniques and computational power allowing researchers
to gather anatomical and electrophysiological data at unprecedented levels of detail
have fostered the development of increasingly complex models in computational
neuroscience. Large-scale, biophysically detailed cell models pose a particular set
of computational challenges, and this has led to the development of a number of
domain-specific simulators. At the other level of detail, the ever growing variety of
point neuron models increases the implementation barrier even for those based on the
relatively simple integrate-and-fire neuron model. Independently of the model complexity,
all modeling methods crucially depend on an efficient and accurate transformation of
mathematical model descriptions into efficiently executable code. Neuroscientists usually
publish model descriptions in terms of the mathematical equations underlying them.
However, actually simulating them requires they be translated into code. This can cause
problems because errors may be introduced if this process is carried out by hand, and
code written by neuroscientists may not be very computationally efficient. Furthermore,
the translated code might be generated for different hardware platforms, operating
system variants or even written in different languages and thus cannot easily be combined
or even compared. Two main approaches to addressing this issues have been followed.
The first is to limit users to a fixed set of optimized models, which limits flexibility. The
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second is to allow model definitions in a high level interpreted language, although this
may limit performance. Recently, a third approach has become increasingly popular:
using code generation to automatically translate high level descriptions into efficient
low level code to combine the best of previous approaches. This approach also greatly
enriches efforts to standardize simulator-independent model description languages. In
the past few years, a number of code generation pipelines have been developed in
the computational neuroscience community, which differ considerably in aim, scope and
functionality. This article provides an overview of existing pipelines currently used within
the community and contrasts their capabilities and the technologies and concepts behind

them.

Keywords: code generation, simulation, neuronal networks, domain specific language, modeling language

1. INTRODUCTION

All brains are composed of a huge variety of neuron and
synapse types. In computational neuroscience we use models
for mimicking the behavior of these elements and to gain an
understanding of the brain’s behavior by conducting simulation
experiments in neural simulators. These models are usually
defined by a set of variables which have either concrete values
or use functions and differential equations that describe the
temporal evolution of the variables.

A simple but instructive example is the integrate-and-fire
neuron model, which describes the dynamics of the membrane
potential V in the following way: when V is below the spiking
threshold 6, which is typically at around —50mV, the time
evolution is governed by a differential equation of the type:

d
SV =)

where f is a function that is possibly non-linear.

Once V reaches its threshold 0, a spike is fired and V is set
back to Ey, for a certain time called the refractory period. Ey, is
called the resting potential and is typically around —70 mV. After
this time the evolution of the equation starts again. An important
simplification compared to biology is that the exact course of
the membrane potential during the spike is either completely
neglected or only partially considered in most models. Threshold
detection is rather added algorithmically on top of the modeled
subthreshold dynamics.

Two of the most common variants of this type of model are
the current-based and the conductance-based integrate-and-fire
models. For the case of the current-based model we have the
following general form:

d

v e - vy

T

+ é[(t) + F(V(1)).

()

Here C is the membrane capacitance, T the membrane time
constant, and I the input current to the neuron. Assuming that
spikes will be fixed to temporal grid points, I(f) is the sum of

currents generated by all incoming spikes at all grid points in time
ti < t scaled by their synaptic weight plus a piecewise constant
function I that models an external input:

=Y > It — 1)+ Lex(®)

ieNti<t keStx.

St is the set of synapses that deliver a spike to the neuron at time
t and I is the current that enters the neuron through synapse k.
F is some non-linear function of V that may be zero.

One concrete example is the simple integrate-and-fire neuron
with alpha-shaped synaptic input, where F(V) = 0, It(t) =
ﬁte_t/ T and Ty is the rise time, which is typically around
0.2-2.0 ms.

When implementing such models in neural simulators their
differential equations must be solved as part of the neuron
model implementation. One typical approach is to use a numeric
integrator, e.g., a simple Euler method.

For a simulation stepsize h and some given approximation
V: of V(t), using an Euler method would lead to the following
approximation Vi, of V(t + h):

1 1
Vieh=Vie + h(;(EL -V + El(t))-

Publications in computational neuroscience mostly contain
descriptions of models in terms of their mathematical equations
and the algorithms to add additional behavior such as the
mechanism for threshold detection and spike generation.
However, if looking at a model implementation and comparing
it to the corresponding published model description, one often
finds that they are not in agreement due to the complexity and
variety of available forms of abstractions of such a transformation
(e.g., Manninen et al, 2017, 2018). Using a general purpose
programming language to express the model implementation
even aggravates this problem as such languages provide full
freedom for model developers while lacking the means to guide
them in their challenging task due to the absence of neuroscience
domain concepts.

Furthermore, the complexity of the brain enforces the use of a
heterogeneous set of models on different abstraction levels that,
however, need to efficiently cooperate upon execution. Model
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compositionality is needed on the abstract mathematical side as
well as on the implementation level.

The use of problem-tailored model description languages and
standardized simulators is often seen as a way out of the dilemma
as they can provide the domain-specificity missing in a general
programming language, however often at the cost of restricting
the users in their freedom to express arbitrary algorithms.

In other words, engineering complex software systems
introduces a conceptual gap between problem domains and
solution domains. Model driven development (MDD; France and
Rumpe, 2007) aims at closing this gap by using abstract models
for the description of domain problems and code generation
for creating executable software systems (Kleppe et al., 2003).
Early MDD techniques have been already successfully applied
in computer science for decades (Davis et al., 2006). These
techniques ensure reduced development costs and increased
software quality of resulting software systems (Van Deursen
and Klint, 1998; Fieber et al., 2008; Stahl et al., 2012). MDD
also provides methodological concepts to increase design and
development speed of simulation code.

It turns out that MDD is not restricted to the software
engineering domain, but can be applied in many science and
also engineering domains (Harel, 2005; Topcu et al., 2016).
For example, the Systems Biology Markup Language (SBML;
Hucka et al., 2003) from the domain of biochemistry enables
modeling of biochemical reaction networks, like cell signaling
pathways, metabolic pathways, and gene regulation, and has
several software tools that support users with the creation,
import, export, simulation, and further processing of models
expressed in SBML.

MDD works best if the underlying modeling language fits
to the problem domain and thus is specifically engineered for
that domain (Combemale et al., 2016). The modeling language
must provide modularity in several domains: individual neurons
of different behavior must be modeled, time, and geometric
abstractions should be available, composition of neurons to large
networks must be possible and reuse of neuron models or neuron
model fragments must be facilitated.

In the context of computational neuroscience (Churchland
etal., 1993) the goal of MDD is to transform complex and abstract
mathematical neuron, synapse, and network specifications into
efficient platform-specific executable representations. There is no
lack of neural simulation environments that are able to simulate
models efficiently and accurately, each specializing on networks
of different size and complexity. Some of these simulators (e.g.,
NEST, Gewaltig and Diesmann 2007) have included optimized
neural and synaptic models written in low-level code without
support for more abstract, mathematical descriptions. Others
(e.g., NEURON with NMODL, Hines and Carnevale, 1997, see
section 2.7) have provided a separate model description language
together with tools to convert these descriptions into reusable
model components. Recently, such support has also been added
to the NEST simulator via NESTML (Plotnikov et al., 2016,
see section 2.4). Finally, other simulators (e.g., Brian, Goodman
2010, see section 2.1; The Virtual Brain, see section 2.10) include
model descriptions as integral parts of the simulation script,
transparently converting these descriptions into executable code.

These approaches to model descriptions have been
complemented in recent years by various initiatives creating
simulator-independent model description languages. These
languages completely separate the model description from
the simulation environment and are therefore not directly
executable. Instead, they provide code generation tools to
convert the descriptions into code for target environments such
as the ones mentioned above, but also for more specialized
target platforms such as GPUs (e.g., GeNN, Yavuz et al., 2016,
see section 2.2), or neuromorphic chips like SpiNNaker or
the BrainScaleS System (see section 3). Prominent description
languages include NineML (Raikov et al, 2011, see section
2.6), NeuroML (Goddard et al., 2001; Gleeson et al., 2010),
and LEMS (Cannon et al,, 2014). These languages are often
organized hierarchically, for example LEMS is the low-level
description language for neural and synaptic models that can
be assembled into a network with a NeuroML description (see
section 2.5). Another recently developed description language,
SpineML (Richmond et al. 2014, see section 2.8) builds upon
LEMS descriptions as well.

A new generation of centralized collaboration platforms like
Open Source Brain and the Human Brain Project Collaboratory
(see section 3) are being developed to allow greater access to
neuronal models for both computationally proficient and non-
computational members of the neuroscience community. Here,
code generation systems can serve as a means to free the user
from installing their own software while still giving them the
possibility to create and use their own neuron and synapse
models.

This article summarizes the state of the art of code generation
in the field of computational neuroscience. In section 2, we
introduce some of the most important modeling languages and
their code generation frameworks. To ease a comparison of the
different technologies employed, each of the sections follows
the same basic structure. Section 3 describes the main target
platforms for the generation pipelines and introduces the ideas
behind the web-based collaboration platforms that are now
becoming available to researchers in the field. We conclude by
summarizing the main features of the available code generation
systems in section 4.

2. TOOLS AND CODE GENERATION
PIPELINES

2.1. Brian

All versions of the Brian simulator have used code generation,
from the simple pure Python code generation for some model
components in its earliest versions (Goodman and Brette, 2008,
2009), through the mixed Python/C++ code generation in later
versions (Goodman, 2010), to the exhaustive framework in its
latest version (2.x) that will be described here. It now uses a
consistent code generation framework for all model components,
and allows for multiple target languages and devices (Stimberg
etal., 2012-2018a, 2014). Brian 2 had code generation as a major
design goal, and so the user model, data model, and execution
model were created with this in mind (Figure 1).
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FIGURE 1 | Brian model structure. Brian users define models by specifying equations governing a single neuron or synapse. Simulations consist of an ordered
sequence of operations (code blocks) acting on neuronal or synaptic data. A neuronal code block can only modify its own data, whereas a synaptic code block can
also modify data from its pre- or post-synaptic neurons. Neurons have three code blocks: one for its continuous evolution (numerical integration), one for checking
threshold conditions and emitting spike events, and one for post-spike reset in response to those events. Synapses have three code blocks: two event-based blocks
for responding to pre- or postsynaptic spikes (corresponding to forward or backward propagation), and one continuous evolution block. Code blocks can be provided
directly, or can be generated from pseudo-code or differential equations.

2.1.1. Main Modeling Focus

Brian focuses on modeling networks of point neurons, where
groups of neurons are described by the same set of equations (but
possibly differ in their parameters). Depending on the equations,
such models can range from variants of the integrate-and-fire
model to biologically detailed models incorporating a description
of multiple ion channels. The same equation framework can also
be used to model synaptic dynamics (e.g., short- and long-term
plasticity) or spatially extended, multi-compartmental neurons.

2.1.2. Model Notation
From the user point of view, the simulation consists of
components such as neurons and synapses, each of which
are defined by equations given in standard mathematical
notation. For example, a leaky integrate-and-fire neuron evolves
over time according to the differential equation dv/dt
—v/t. In Brian this would be written as the Python string
'"dv/dt=-v/tau : volt' in which the part after the colon
defines the physical dimensions of the variable v. All variables
and constants have physical dimensions, and as part of the
code generation framework, all operations are checked for
dimensional consistency.

Since all aspects of the behavior of a model are determined
by user-specified equations, this system offers the flexibility
for implementing both standard and non-standard models. For

example, the effect of a spike arriving at a synapse is often
modeled by an equation such as vpost <— Vpost + W where vpos is
the postsynaptic membrane potential and w is a synaptic weight.
In Brian this would be rendered as part of the definition of
synapses as Synapses (..., on_pre='v_post += w'). However,
the user could as well also change the value of synaptic or
presynaptic neuronal variables. For the example of STDP, this
might be something like Synapses(..., on_pre='v_post+=w
; Am+=dAm; w=clip(w+Ap, 0, wmax)'), where am and Ap are
synaptic variables used to keep a trace of the pre- and post-
synaptic activity, and clip(x, y, z) is a pre-defined function
(equivalent to the NumPy function of the same name) that
returns x if it is between y and z, or vy or z if it is outside this
range.

2.1.3. Code Generation Pipeline
The code generation pipeline in Brian is illustrated in Figure 2.
Code generation will typically start with a set of (potentially
stochastic) first order ordinary differential equations. Using an
appropriate solver, these equations are converted into a sequence
of update rules. As an example, consider the simple equation
dv/dt —v/t mentioned above. Brian will detect that the
equation is linear and can be solved exactly, and will therefore
generate the following update rule: v_new

tau).

v_old % exp(-dt/
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Brian code:

G = NeuronGroup(l, 'dv/dt = -v/tau 1)

“Abstract code” (internal pseudo-code representation)

v = vxexp(-dt/tau)

v = v

C++ code snippet (scalar part)

const double dt =

const double _lio_1 = exp((-dt)/tau);

_ptr_array_defaultclock_dt[0];

C++ code snippet (vector part)

double v =
const double _v =

v o=

_lio_1xv;
Vi

_ptr_array_neurongroup_v[_idx] = v;

_ptr_array_neurongroup_v[_idx];

Compilable C++ code excerpt:

// scalar code

const double dt =
const double _lio_1 =
for(int _idx=0; _idx<_N;

{

idx++)

// vector code
double v =
const double

v = _lio_1xv;

v o= _v;

_ptr_array_defaultclock_dt[0];
exp ((-dt)/tau);

_ptr_array_neurongroup_v[_idx];

_ptr_array_neurongroup_v[_idx] =

Vi

FIGURE 2 | Brian code generation pipeline. Code is transformed in multiple stages: the original Brian code (in Python), with a differential equation given in standard
mathematical form; the internal pseudocode or “abstract code” representation (Python syntax), in this case an exact numerical solver for the equations; the C++ code
snippets generated from the abstract code; the compilable C++ code. Note that the C++ code snippets include a scalar and vector part, which is automatically
computed from the abstract code. In this case, a constant has been pulled out of the loop and named _1io_1.

Such strings or sequences of strings form a sort of
mathematical pseudocode called an abstract code block. The user
can also specify abstract code blocks directly. For example, to
define the operation that is executed upon a spike, the user might
write 'v_post += w' as shown above.

From an abstract code block, Brian transforms the statements
into one of a number of different target languages. The simplest is
to generate Python code, using NumPy for vectorized operations.
This involves relatively few transformations of the abstract
code, mostly concerned with indexing. For example, for a reset
operation v <« v, that should be carried out only on those
neurons that have spiked, code equivalent to v[has_spiked] =

v_r is generated, where has_spiked is an array of integers with
the indices of the neurons that have spiked. The direct C++ code
generation target involves a few more transformations on the
original code, but is still relatively straightforward. For example,
the power operation a’ is written as a=+b in Python, whereas
in C++ it should be written as pow(a, b). This is implemented
using Python’s built-in AST module, which transforms a string
in Python syntax into an abstract syntax tree that can be iterated.
Finally, there is the Cython code generation target. Cython is a

Python package that allows users to write code in a Python-like
syntax and have it automatically converted into C++, compiled
and run. This allows Python users to maintain easy-to-read code
that does not have the performance limitations of pure Python.

The result of these transformations is a block of code in a
different target language called a snippet, because it is not yet
a complete compilable source file. This final transformation is
carried out by the widely used Python templating engine Jinja2,
which inserts the snippet into a template file.

The final step is the compilation and execution of the source
files. Brian operates in one of two main modes: runtime or
standalone mode. The default runtime mode is managed directly
by Python. Source files are compiled into separate Python
modules which are then imported and executed in sequence by
Brian. This allows users to mix arbitrary pure Python code with
compiled code, but comes with a performance cost, namely that
each function call has an associated Python overhead. For large
numbers of neurons this difference is relatively little because
the majority of time is spent inside compiled code rather than
in Python overheads (which are a fixed cost not depending
on the number of neurons). However, for smaller networks
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that might need to be run repeatedly or for a long duration,
these overheads can be significant. Brian therefore also has the
standalone mode, in which it generates a complete C++ project
that can be compiled and run entirely independently of Python
and Brian. This is transparent for the users and only requires
them to write set_device ('cpp_standalone') at the beginning
of their scripts. While this mode comes with the advantage
of increased performance and portability, it also implies some
limitations as user-specified Python code and generated code
cannot be interspersed.

Brian’s code generation framework has been designed in a
modular fashion and can be extended on multiple levels. For
specific models, the user might want to integrate a simulation
with hand-written code in the target programming language, e.g.,
to feed real-time input from a sensor into the simulation. Brian
supports this use case by allowing references to arbitrary user-
defined functions in the model equations and statements, if its
definition in the target language and the physical dimensions
of its arguments and result are provided by the user. On a
global level, Brian supports the definition of new target languages
and devices. This mechanism has for example been used to
provide GPU functionality through the Brian2GeNN interface
(Nowotny et al., 2014; Stimberg et al., 2014-2018b), generating
and executing model code for the GeNN simulator (Yavuz et al.,
2016).

2.1.4. Numerical Integration
As stated above, Brian converts differential equations into a
sequence of statements that integrate the equations numerically
over a single time step. If the user does not choose a specific
integration method, Brian selects one automatically. For linear
equations, it will solve the equations exactly according to their
analytic solution. In all other cases, it will chose a numerical
method, using an appropriate scheme for stochastic differential
equations if necessary. The exact methods that will be used by this
default mechanism depend on the type of the model. For single-
compartment neuron and synapse models, the methods exact,
euler, and heun (see explanation below) will be tried in order, and
the first suitable method will be applied. Multicompartmental
neuron models will chose from the methods exact, exponential
euler, rk2, and heun.

The following integration algorithms are provided by Brian
and can be chosen by the user:

o exact (named linear in previous versions): exact integration for
linear equations

o exponential euler: exponential
conditionally linear equations

o euler: forward Euler integration (for additive stochastic
differential equations using the Euler-Maruyama method)

o rk2: second order Runge-Kutta method (midpoint method)

o rk4: classical Runge-Kutta method (RK4)

o heun: stochastic Heun method for solving Stratonovich
stochastic  differential equations with  non-diagonal
multiplicative noise.

o milstein: derivative-free Milstein method for solving stochastic
differential equations with diagonal multiplicative noise

Euler integration for

In addition to these predefined solvers, Brian also offers a simple
syntax for defining new solvers (for details see Stimberg et al.,
2014).

2.1.5. Data and Execution Model

In terms of data and execution, a Brian simulation is essentially
just an ordered sequence of code blocks, each of which can
modify the values of variables, either scalars or vectors (of fixed or
dynamic size). For example, N neurons with the same equations
are collected in a NeuronGroup object. Each variable of the
model has an associated array of length N. A code block will
typically consist of a loop over indices i = 0,1,2,...,N — 1
and be defined by a block of code executing in a namespace
(a dictionary mapping names to values). Multiple code objects
can have overlapping namespaces. So for example, for neurons
there will be one code object to perform numerical integration,
another to check threshold crossing, another to perform post-
spike reset, etc. This adds a further layer of flexibility, because
the user can choose to re-order these operations, for example
to choose whether synaptic propagation should be carried out
before or after post-spike reset.

Each user defined variable has an associated index variable
that can depend on the iteration variable in different ways.
For example, the numerical integration iterates over i =
0,1,2,...,N — 1. However, post-spike reset only iterates over the
indices of neurons that spiked. Synapses are handled in the same
way. Each synapse has an associated presynaptic neuron index,
postsynaptic neuron index, and synaptic index and the resulting
code will be equivalent to v_post [postsynaptic_index[i]] +=
w([synaptic_index[i]].

Brian assumes an unrestricted memory model in which all
variables are accessible, which gives a particularly flexible scheme
that makes it simple to implement many non-standard models.
This flexibility can be achieved for medium scale simulations
running on a single CPU (the most common use case of Brian).
However, especially for synapses, this assumption may not be
compatible with all code generation targets where memory
access is more restrictive (e.g., in MPI or GPU setups). As a
consequence, not all models that can be defined and run in
standard CPU targets will be able to run efficiently in other target
platforms.

2.2. GeNN

GeNN (GPU enhanced Neuronal Networks) (Nowotny, 2011;
Knight et al., 2012-2018; Yavuz et al., 2016) is a C++ and NVIDIA
CUDA (Wikipedia, 2006; NVIDIA Corporation, 2006-2017)
based framework for facilitating neuronal network simulations
with GPU accelerators. It was developed because optimizing
simulation code for efficient execution on GPUs is a difficult
problem that distracts computational neuroscience researchers
from focusing on their core research. GeNN uses code generation
to achieve efficient GPU code while maintaining maximal
flexibility of what is being simulated and which hardware
platform to target.
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2.2.1. Main Modeling Focus

The focus of GeNN is on spiking neuronal networks. There are no
restrictions or preferences for neuron model and synapse types,
albeit analog synapses such as graded synapses and gap junctions
do affect the speed performance strongly negatively.

1 class MyIzhikevich : public NeuronModels::

Izhikevich
2 A
3 public:
4 DECLARE_MODEL (MyIzhikevich, 5, 2)
5 SET_SIM_CODE (
6 "if ($(V) >= 30.0) {\n"
7 " S(V)=S$(c);\n"
8 " $(U)+=$(d) ; \n"
9 "I\n"
10 "S(V) 4= 0.5%x(0.04%S(V)*S(V)+5.0%S(V)+140.0-$(
U)+$(I0)+$(Isyn))«DT;\n"
11 "S(V) 4= 0.5%(0.04x$(V)*x$(V)+5.0+$(V)+140.0-3(
U)+$(I0)+$(Isyn))*DT;\n"
12 "$(U) += $(a)*($(b)*$(V)-$(U))*DT;\n");
13 SET_PARAM_NAMES ({"a", "b", "c", "d", "IO"});
14 };
15 IMPLEMENT_MODEL (MyIzhikevich) ;
16
17 woid modelDefinition (NNmodel &model)
18 {
19 initGeNN () ;
20 model.setName ("SynDelay") ;
21 model.setDT(1.0);
22 model.setPrecision (GENN_FLOAT) ;
23
24 // INPUT NEURONS
25 [ /==============
26 MyIzhikevich::ParamValues input_p( // Izhikevich
parameters - tonic spiking
27 0.02, // 0 — a
28 0.2, // 1 - b
29 -65, // 2 - c
30 6, // 3 - d
31 4.0 // 4 - I0 (input current));
32 MyIzhikevich::VarValues input_ini( // Izhikevich
variables - tonic spiking
33 -65, // 0 -V
34 -20 // 1 - U0);
35 model.addNeuronPopulation<MyIzhikevich> ("Input",
500, input_p, input_ini);
36
37 // OUTPUT NEURONS
38 //===============
39 NeuronModels::Izhikevich: :ParamValues output_p (
// Izhikevich parameters - tonic spiking
40 0.02, // 0 — a
41 0.2, // 1 - b
42 -65, // 2 - ¢
43 6 // 3 = d);
44 NeuronModels::Izhikevich::VarValues output_ini (
// Izhikevich variables - tonic spiking
45 -65, // 0 -V
46 -20 /71 - U);
47 PostsynapticModels: :ExpCond: :ParamValues
postExpOut (
48 1.0, // 0 - tau_S: decay time constant
for S [ms]
49 0.0 // 1 — Erev: Reversal potential);
50 model.addNeuronPopulation<NeuronModels: :

Izhikevich> ("Output", 500, output_p,
output_ini);

51

52 // INPUT-OUTPUT SYNAPSES

53 //

54 WeightUpdateModels: :StaticPulse: :VarValues
inputOutput_ini (

55 0.03 // 0 - default synaptic conductance);

56

57 model .addSynapsePopulation<WeightUpdateModels: :
StaticPulse, PostsynapticModels: :ExpCond>

58 ("InputOutput", SynapseMatrixType::

DENSE_GLOBALG, 6, "Input", "Output", {},

59 inputOutput_ini, postExpOut, {});

60 model.finalize();

61 1}

The code example above illustrates the nature of the GeNN
API. GeNN expects users to define their own code for neuron
and synapse model time step updates as C++ strings. In the
example above, the neurons are standard Izhikevich neurons
and synaptic connections are pulse coupling with delay. GeNN
works with the concept of neuron and synapse types and
subsequent definition of neuron and synapse populations of these

types.
2.2.2. Code Generation Pipeline

The model description provided by the user is used to generate
C++ and CUDA C code for efficient simulation on GPU
accelerators. For maximal flexibility, GeNN only generates the
code that is specific to GPU acceleration and accepts C/C++
user code for all other aspects of a simulation, even though
a number of examples of such code is available to copy and
modify. The basic strategy of this workflow is illustrated in
Figure 3. Structuring the simulator framwork in this way allows
achieving key goals of code generation in the GPU context. First,
the arrangement of neuron and synapse populations into kernel
blocks and grids can be optimized by the simulator depending
on the model and the hardware detected at compile time. This
can lead to essential improvements in the simulation speed. The
approach also allows users and developers to define a practically
unlimited number of neuron and synapse models, while the
final, generated code only contains what is being used and the
resulting executable code is lean. Lastly, accepting the users’ own
code for the input-output and simulation control allows easy
integration with many different usage scenarios, ranging from
large scale simulations to using interfaces to other simulation
tools and standards and to embedded use, e.g., in robotics
applications.

2.2.3. Numerical Integration
Unlike for other simulators, the numerical integration methods,
and any other time-step based update methods are for GeNN
in the user domain. Users define the code that performs the
time step update when defining the neuron and synapse models.
If they wish to use a numerical integration method for an
ODE based neuron model, users need to provide the code
for their method within the update code. This allows for
maximal flexibility and transparency of the numerical model
updates.

However, not all users may wish to use the C++ interface of
GeNN or undertake the work of implementing the time step
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FIGURE 3 | Schematic of the code generation flow for the GPU simulator framework GeNN. Neural models are described in a C/C++ model definition function
(“ExampleModel.cc”), either hand-crafted by a user or generated from a higher-level model description language such as SpineML or Brian 2 (see main text). The
neuron model description is included into the GeNN compiler that produces optimized CUDA/C++ code for simulating the specified model. The generated code can

CUDA/C++ code for the core model and not the simulation workflow in order to allow maximal flexibility in the deployment of the final executable. This can include
exploratory or large scale simulations but also real-time execution on embedded systems for robotics applications. User code in blue, GeNN components in gray,

Stand—-alone executable
with both GPU and

CPU simulation code
"lean & mean"

executable. The framework is minimalistic in generating only optimized

updates for their neuron models from scratch. For these users
there are additional tools that allow connecting other model APIs
to GeNN. Brian2GeNN (Nowotny et al., 2014; Stimberg et al.,
2014-2018b) allows to execute Brian 2 (see section 2.1 Stimberg
et al,, 2014) scripts with GeNN as the backend and there is a
separate toolchain connecting SpineCreator and SpineML (see
section 2.8; Richmond et al., 2014) to GeNN to achieve the same.
Although there can be a loss in computing speed and the range of
model features that can be supported when using such interfaces,
using GPU acceleration through Brian2GeNN can be as simple
as issuing the command set_device ('genn') in a Python script
for Brian 2.

2.3. Myriad

The goal of the Myriad simulator project (Rittner and
Cleland, 2014) is to enable the automatic parallelization and
multiprocessing of any compartmental model, particularly those
exhibiting dense analog interactions such as graded synapses and
mass diffusion that cannot easily be parallelized using standard
approaches. This is accomplished computationally via a shared-
memory architecture that eschews message-passing, coupled with
a radically granular design approach that flattens hierarchically
defined cellular models and can subdivide individual isometric

compartments by state variable. Programmatically, end-user
models are defined in a Python-based environment and
converted into fully-specified C99 code (for CPU or GPU) via
code generation techniques that are enhanced by a custom
abstract syntax tree (AST) translator and, for NVIDIA GPUs,
a custom object specification for CUDA enabling fully on-card
execution.

2.3.1. Main Modeling Focus

Myriad was conceived as a strategy to enable the parallelization
of densely integrated mechanisms in compartmental models.
Under traditional message-passing approaches to parallelization,
compartment states that update one another densely-e.g., at
every timestep—cannot be effectively parallelized. However,
such dense analog interactions are common in compartmental
models; examples include graded synapses, gap junctions, and
charge or mass diffusion among adjacent compartments. In
lieu of message passing, Myriad uses a shared memory strategy
with barrier synchronization that parallelizes dense models as
effectively as sparsely coupled models. This strategy imposes scale
limitations on simulations based on available memory, though
these limitations are being somewhat eased by new hardware
developments.
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2.3.2. Model Notation

The core of Myriad is a parallel solver layer designed so
that all models that can be represented as a list of isometric,
stateful nodes (compartments), can be connected pairwise by
any number of arbitrary mechanisms and executed with a
high degree of parallelism on CPU threads. No hierarchical
relationships among nodes are recognized during execution;
hierarchies that exist in user-defined models are flattened during
code generation. This flat organization facilitates thread-scaling
to any number of available threads and load-balancing with very
fine granularity to maximize the utilization of available CPU
or GPU cores. Importantly, analog coupling mechanisms such
as cable equations, Hodgkin-Huxley membrane channels, mass
diffusion, graded synapses, and gap junctions can be parallelized
in Myriad just as efficiently as sparse events. Because of this,
common hierarchical relationships in neuronal models, such as
the positions of compartments along an extended dendritic tree,
can be flattened and the elements distributed arbitrarily across
different compute units. For example, two nodes representing
adjacent compartments are coupled by “adjacency” mechanisms
that pass appropriate quantities of charge and mass between
them without any explicit or implicit hierarchical relationship.
This solver comprises the lowest layer of a three-layer simulator
architecture.

A top-level application layer, written in idiomatic Python 3
enriched with additional C code, defines the object properties
and primitives available for end-user model development. It
is used to specify high-level abstractions for neurons, sections,
synapses, and network properties. The mechanisms (particles,
ions, channels, pumps, etc.) are user-definable with object-based
inheritance, e.g., channels inherit properties based on their
permeant ions. Simulations are represented as objects to facilitate
iterative parameter searches and reproducibility of results. The
inheritance functionality via Python’s native object system allows
access to properties of parent component and functionality can
be extended and overridden at will.

The intermediate interface layer flattens and translates the
model into non-hierarchical nodes and coupling mechanisms
for the solver using AST-to-AST translation of Python code
to C. Accordingly, the top-level model definition syntax
depends only on application-layer Python modules; in principle,
additional such modules can be written for applications outside
neuroscience, or to mimic the model definition syntax of
other Python-based simulators. For the intended primary
application of solving dense compartmental models of neurons
and networks, the models are defined in terms of their cellular
morphologies and passive properties (e.g., lengths, diameters,
cytoplasmic resistivity) and their internal, transmembrane,
and synaptic mechanisms. State variables include potentials,
conductances, and (optionally) mass species concentrations.
Equations for mechanisms are arbitrary and user-definable.

2.3.3. Code Generation Pipeline

To achieve an efficient parallelization of dense analog
mechanisms, it was necessary to eschew message-passing.
Under message-based parallelization, each data transfer between
compute units generates a message with an uncertain arrival

time, such that increased message densities dramatically increase
the rollback rate of speculative execution and quickly become
rate-limiting for simulations. Graded connections such as analog
synapses or cable equations yield new messages at every timestep
and hence parallelize poorly. This problem is generally addressed
by maintaining coupled analog mechanisms on single compute
units, with parallelization being limited to model elements
that can be coupled via sparse boolean events, such as action
potentials (Hines and Carnevale, 2004). Efficient simulations
therefore require a careful, platform-specific balance between
neuronal complexity and synaptic density (Migliore et al., 2006).
The unfortunate consequence is that platform limitations drive
model design.

In lieu of message passing, Myriad is based on a uniform
memory access (UMA) architecture. Specifically, every
mechanism reads all parameters of interest from shared
memory, and writes its output to shared memory, at every
fixed timestep. Shared memory access, and a global clock that
regulates barrier synchronization among all compute units
(thereby coordinating all timesteps), are GPU hardware features.
For parallel CPU simulations, the OpenMP 3.1+ API for shared-
memory multiprocessing has implicit barrier and reduction
intrinsics that provide equivalent, platform-independent
functionality. Importantly, while this shared-memory design
enables analog interactions to be parallelized efficiently, to take
proper advantage of this capacity on GPUs, the simulation
must execute on the GPU independently rather than being
continuously controlled by the host system. To accomplish
this, Myriad uses a code generation strategy embedded in its
three-layer architecture (see section 2.3.2). The lowest (solver)
layer is written in C99 for both CPUs and NVIDIA GPUs
(CUDA). The solver requires as input a list of isometric nodes
and a list of coupling mechanisms that connect pairs of nodes, all
with fully explicit parameters defined prior to compilation (i.e.,
execution of a Myriad model requires just-in-time compilation
of the solver). To facilitate code reuse and inheritance from
the higher (Python) layers, a custom-designed minimal object
framework implemented in C (Schreiner, 1999) supports on-
device virtual functions; to our knowledge this is the first of
its kind to execute on CUDA GPUs. The second, or interface,
layer is written in Python; this layer defines top-level objects,
instantiates the node and mechanism dichotomy, converts the
Python objects defined at the top level into the two fully-specified
lists that are passed to the solver, and manages communication
with the simulation binaries. The top, or application layer, will
comprise an expandable library of application-specific modules,
also written in Python. These modules specify the relevant
implementations of Myriad objects in terms familiar to the end
user. For neuronal modeling, this could include neurite lengths,
diameters, and branching, permeant ions (mass and charge),
distributed mechanisms (e.g., membrane channels), point
processes (e.g., synapses), and cable equations, among other
concepts common to compartmental simulators. Additional
top-layer modules can be written by end users for different
purposes, or to support different code syntaxes.

Execution of a Myriad simulation begins with a
transformation of the user-specified model definition into
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two Python lists of node and mechanism objects. Parameters are
resolved, and the Python object lists are transferred to the solver
layer via a custom-built Python-to-C pseudo-compiler (pycast;
an AST-to-AST translator from Python’s native abstract syntax
tree (AST) to the AST of pycparser (a Myriad dependency),
facilitated by Myriad’s custom C object framework). These
objects are thereby rendered into fully explicit C structs which
are compiled as part of the simulation executable. The choice
of CPU or GPU computation is specified at execution time via
a compiler option. On CPUs and compliant GPUs, simulations
execute using dynamic parallelism to maximize core utilization
(via OpenMP 3.1+ for CPUs or CUDA 5.0+ on compute
capability 3.5+ GPUs).

The limitation of Myriad’s UMA strategy is scalability. Indeed,
at its conception, Myriad was planned as a simulator on the
intermediate scale between single neuron and large network
simulations because its shared-memory, barrier synchronization-
dependent architecture limited the scale of simulations to those
that could fit within the memory of a single high-speed chassis
(e.g., up to the memory capacity of a single motherboard or
CUDA GPU card). However, current and projected hardware
developments leveraging NVIDIAs NVLink interconnection bus
(NVIDIA Corporation, 2014) are likely to ease this limitation.

2.3.4. Numerical Integration

For development purposes, Myriad supports the fourth-order
Runge-Kutta method (RK4) and the backward Euler method.
These and other methods will be benchmarked for speed,
memory requirements, and stability prior to release.

2.4. NESTML

NESTML (Plotnikov et al., 2016; Blundell et al., 2018; Perun et al.,
2018a) is a relatively new modeling language, which currently
only targets the NEST simulator (Gewaltig and Diesmann, 2007).
It was developed to address the maintainability issues that
followed from a rising number of models and model variants
and ease the model development for neuroscientists without a
strong background in computer science. NESTML is available
unter the terms of the GNU General Public License v2.0 on
GitHub (https://github.com/nest/nestml; Perun et al., 2018b) and
can serve as a well-defined and stable target platform for the
generation of code from other model description languages such
as NineML (Raikov et al., 2011) and NeuroML (Gleeson et al.,
2010).

2.4.1. Main Modeling Focus

The current focus of NESTML is on integrate-and-fire neuron
models described by a number of differential equations with the
possibility to support compartmental neurons, synapse models,
and also other targets in the future.

1 neuron iaf_curr_alpha:
2

3 initial values:

4 V_m mV = E_L

5 end

6

7 equations:

8 shape I_alpha = (e / tau_syn) = t * exp(-t /
tau_syn)

9 I pA = convolve(I_alpha, spikes)

10 V_m' = -1/tau » (V_m - E_L) + I/C_m

11 end

12

13 parameters:

14 C_m pF = 250pF # Capacity of
the membrane

15 Tau ms = 10ms # Membrane time
constant.

16 tau_syn ms = 2ms # Time constant
of synaptic current.

17 ref_timeout ms = 2ms # Duration of
refractory period in ms.

18 E_L mV = -70mV # Resting
potential.

19 V_reset mV = -70mV - E_L # Reset
potential of the membrane in mV.

20 Theta mvV = -55mV - E_L # Spike
threshold in mV.

21 ref_counts integer = 0 # counter for
refractory steps

22

23 end

24

25 internals:

26 timeout_ticks integer = steps(ref_timeout) #
refractory time in steps

27 end

28

29 input:

30 spikes <- spike

31 end

32

33 output: spike

34

35 update:

36 if ref_counts == 0: # neuron not refractory

37 integrate_odes ()

38 if V_m >= Theta: # threshold crossing

39 ref_counts = timeout_ticks

40 V_m = V_reset

41 emit_spike ()

42 else

43 ref_counts = -1

44 end

45

46 end

47

48 end

The code shown in the listing above demonstrates the key
features of NESTML with the help of a simple current-based
integrate-and-fire neuron with alpha-shaped synaptic input as
described in section 1. A neuron in NESTML is composed of
multiple blocks. The whole model is contained in a neuron
block, which can have three different blocks for defining model
variables: initial_values, parameters, and internals. Variable
declarations are composed of a non-empty list of variable names
followed by their type. Optionally, initialization expressions can
be used to set default values. The type can either be a plain data
type such as integer and real, a physical unit (e.g., mV) or a
composite physical unit (e.g., nS/ms).

Differential equations in the equations block can be used to
describe the time evolution of variables in the initial_values
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block. Postsynaptic shapes and synonyms inside the equations
block can be used to increase the expressiveness of the
specification.

The type of incoming and outgoing events are defined in
the input and output blocks. The neuron dynamics are specified
inside the update block. This block contains an implementation
of the propagation step and uses a simple embedded procedural
language based on Python.

2.4.2. Code Generation Pipeline

In order to have full freedom for the design, the language is
implemented as an external domain specific language (DSL; van
Deursen et al., 2000) with a syntax similar to that of Python.
In contrast to an internal DSL an external DSL doesn’t depend
syntactically on a given host language, which allows a completely
customized implementation of the syntax and results in a design
that is tailored to the application domain.

Usually external DSLs require the manual implementation
of the language and its processing tools. In order to avoid this
task, the development of NESTML is backed by the language
workbench MontiCore (Krahn et al., 2010). MontiCore uses
context-free grammars (Aho et al., 2006) in order to define the
abstract and concrete syntax of a DSL. Based on this grammar,
MontiCore creates classes for the abstract syntax (metamodel)
of the DSL and parsers to read the model description files and
instantiate the metamodel.

NESTML is composed of several specialized sublanguages.
These are composed through language embedding and a
language inheritance mechanism: UnitsDSL provides all data
types and physical units, ExpressionsDSL defines the style of
Python compatible expressions and takes care of semantic checks
for type correctness of expressions, EquationsDSL provides
all means to define differential equations and postsynaptic
shapes and ProceduralDSL enables users to specify parts of the
model in the form of ordinary program code. In situations
where a modeling intent cannot be expressed through language
constructs this allows a more fine-grained control than a purely
declarative description could.

The decomposition of NESTML into sublanguages enables an
agile and modular development of the DSL and its processing
infrastructure and independent testing of the sublanguages,
which speeds up the development of the language itself.
Through the language composition capabilities of the MontiCore
workbench the sublanguages are composed into the unified DSL
NESTML.

NESTML neurons are stored in simple text files. These are
read by a parser, which instantiates a corresponding abstract
syntax tree (AST). The AST is an instance of the metamodel and
stores the essence of the model in a form which is easily processed
by a computer. It completely abstracts the details of the user-
visible model representation in the form of its concrete syntax.
The symbol table and the AST together provide a semantic
model.

Figure 4 shows an excerpt of the NESTML grammar and
explains the derivation of the metamodel. A grammar is
composed of a non-empty set of productions. For every
production a corresponding class in the metamodel is created.

Based on the right hand side of the productions attributes
are added to this class. Classes can be specified by means of
specifications of explicit names in the production names of
attributes in the metamodel.

NEST expects a model in the form of C++ code, using an
internal programming interface providing hooks for parameter
handling, recording of state variables, receiving and sending
events, and updating instances of the model to the next
simulation time step. The NESTML model thus needs to be
transformed to this format (Figure 5).

For generating the C++ code for NEST, NESTML uses the
code generation facilities provided by the MontiCore workbench,
which are based on the template engine Freemarker (https://
freemarker.apache.org/). This approach enables a tight coupling
of the model AST and the symbol table, from which the code
is generated, with the text based templates for the generation of
code.

Before the actual code generation phase, the AST undergoes
several model to model transformations. First, equations and
shapes are extracted from the NESTML AST and passed to an
analysis framework based on the symbolic math package SymPy
(Meurer et al., 2017). This framework (Blundell et al., 2018)
analyses all equations and shapes and either generates explicit
code for the update step or code that can be handled by a solver
from the GNU Scientific Library (https://gnu.org/software/gsl/).
The output of the analysis framework is a set of model fragments
which can again be instantiated as NESTML ASTs and integrated
into the AST of the original neuron and replace the original
equations and shapes they were generated from.

Before writing the C++ code, a constant folding optimization is
performed, which uses the fact that internal variables in NESTML
models do not change during the simulation. Thus, expressions
involving only internal variables and constants can be factored
out into dedicated expressions, which are computed only once in
order to speed up the execution of the model.

2.4.3. Numerical Integration

NESTML differentiates between different types of ODEs. ODEs
are categorized according to certain criteria and then assigned
appropriate solvers. ODEs are solved either analytically if they are
linear constant coefficient ODEs and are otherwise classified as
stiff or non stiff and then assigned either an implicit or an explicit
numeric integration scheme.

2.5. NeuroML/LEMS

NeuroML version 1 (NeuroML1 henceforth; Goddard et al,
2001; Gleeson et al, 2010) was originally conceived as a
simulator-agnostic domain specific language (DSL) for building
biophysically inspired models of neuronal networks, focusing on
separating model description from numerical implementation.
As such, it provided a fixed set of components at three broad
layers of abstraction: morphological, ion channel, and network,
which allowed a number of pre-existing models to be described
in a standardized, structured format (Gleeson et al., 2010). The
role of code generation in NeuroMLI pipelines was clear—
the agnostic, abstract model definition needed to be eventually
mapped into concrete implementations (e.g., code for NEURON;
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MCG Classes of The/—ﬂ

metamodel

1 Function = "function" funName:Name ASTFunction
w (pars:Parameter

2

3 ("," pars:Parameter) *)? String funName

4 myw String returnType

5 (returnType:Name) ?

6 BLOCK_OPEN * pars 1 block
; Bl oels ASTParameter ASTBlock

BLOCK CLOSE;

FIGURE 4 | Example definition of a NESTML concept and generation of the AST. (Left) A production for a function in NESTML. The lefthandside defines the name of
the production, the righthandside defines the production using terminals, other productions and special operators (*, ?). A function starts with the keyword
function followed by the function’s name and an optional list of parameters enclosed in parentheses followed by the optional return value. Optional parts are
marked with 2. The function body is specified by the production (B1ock) between two keywords. (Right) The corresponding automatically derived meta-model as a
class diagram. Every production is mapped to an AST class, which is used in the further language processing steps.

NESTML :ASTNeuron :ASTState CPPConverter

neuron iaf neuron:

; state: name = "iaf_neuron" vars + String type(ASTVariable var)
3 V_m mV
4 end :AST Variable
5 end
name ="V_m"
type ="mV" <<source>>
S O 4 i 6 S S i S S R S 5 e i Pl £ s 1 e S e e e
<<neuron.ftl>> <<varftl>>
1 class ${neuron.name} { 1 ${tc.signature(“var")}
2 struct State { 2 <#assign conv
3 <#list neron.getState().getVars() as state> 3 = tc.instantiate ("CPPConverter")>
4 ${tc.includeArgs (“var"“, [state])} 4
5 </#list> 5 ${conv.type(var)} ${var.name} ;
6 }
7} <<generator>>
1 class iaf neuron { Cii:
2 struct State {
3 double V m ;
4 }
5} <<target>>

FIGURE 5 | Components for the code generation in NESTML. (Top) Source model, corresponding AST, and helper classes. (Middle) Templates for the generation of
C++ code. The left template creates a C++ class body with an embedded C++ struct, the right template maps variable name and variable type using a helper class.
The template on the left includes the template on the right once for each state variable defined in the source model. (Bottom) A C++ implementation as created from
the source model using the generation templates.

Carnevale and Hines, 2006; GENESIS; Bower and Beeman, 1998)  major language redesign (referred to as NeuroML2), underpinned
in order for the models to be simulated. by a second, lower level language called Low Entropy Model
Nevertheless, the need for greater flexibility and extensibility ~ Specification (LEMS; Cannon et al., 2014).

beyond a predefined set of components and, more importantly,

a demand for lower level model descriptions also described  2.5.1. Main Modeling Focus

in a standardized format (contrarily to NeuroMLI, where for =~ LEMS can be thought of as a meta-language for defining domain
example component dynamics were defined textually in the  specific languages for networks (in the sense of graphs), where
language reference, thus inaccessible from code) culminated ina  each node can have local dynamics described by ordinary
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differential equations, plus discrete state jumps or changes in
dynamical regimes mediated by state-dependent events—also
known as Hybrid Systems (van der Schaft and Schumacher, 2000).
NeuroML2 is thus a DSL (in the computational neuroscience
domain) defined using LEMS, and as such provides standardized,
structured descriptions of model dynamics up to the ODE level.

2.5.2. Model Notation

An overview of NeuroML2 and LEMS is depicted in Figure 6,
illustrating how Components for an abstract cell model
(izhikevichCell) and a synapse model (expOneSynapse) can
be specified in XML (i.e., in the computational neuroscience
domain, only setting required parameters for the Components),
with the definitions for their underlying models specified in

LEMS ComponentTypes which incorporate a description of the
dimensions of the parameters, the dynamical state variables and
behavior when certain conditions or events occur.

Besides providing more structured information describing a
given model and further validation tools for building new ones
(Cannon et al., 2014), NeuroML2-LEMS models can be directly
parsed, validated, and simulated via the jLEMS interpreter
(Cannon et al.,, 2018), developed in Java.

2.5.3. Code Generation Pipeline

Being derived from LEMS, a metalanguage designed to generate
simulator-agnostic domain-specific languages, NeuroML2 is
prone to be semantically different at varying degrees from
potential code generation targets. As discussed elsewhere in the

NeuroML 2

LEMS

<izhikevichCell id=fastSpiking
thresh=30mV a=0.02 b=0.2 ¢=-50 ... />

Standard NeuroML 2 ComponentType definitions

Networks

population inputList

Inputs

voltageClamp

Synapses

segmentGroup

Morphologies

<neuroml|>
<iafCell id=L5pyr ...>
<iafCell id=L5int ...>
<network id=net1>
<population id=exc component=L5pyr ...>
<population id=inh component=L5int ...>
<projection presynapticPopulation=exc
postsynapticPopulation=inh ...>
</network>
</neuroml>

<expOneSynapse id=ampa gbase=1nS
tauDecay=5ms erev=0mV />

FIGURE 6 | NeuroML2 and LEMS. NeuroML2 is a language which defines a hierarchical set of elements used in computational models in neuroscience in the following
broad categories: Networks, Cells, Synapses, Morphologies, lon Channels, and Inputs. These provide the building blocks for specifying 3D populations of cells, both
morphologically detailed and abstract, connected via a variety of (plastic) chemical and electrical synapses receiving external spike or current based stimuli. Examples
are shown of the (truncated) XML representations of: (blue) a network containing two populations of integrate-and-fire cells connected by a single projection between
them; (green) a spiking neuron model as described by |zhikevich (2003); (yellow) a conductance based synapse with a single exponential decay waveform. On the
right the definition of the structure and dynamics of these elements in the LEMS language is shown. Each element has a corresponding ComponentType definition,
describing the parameters (as well as their dimensions, not shown) and the dynamics in terms of the state variables, the time derivative of these, any derived variables,
and the behavior when certain conditions are met or (spiking) events are received. The standard set of ComponentType definitions for the core NeuroML2 elements
are contained in a curated set of files (Cells.xml, Synapses.xml, etc.) though users are free to define their own ComponentTypes to extend the scope of the language.

i Cells.xml

ComponentType: izhikevichCell M
Parameters: thresh, a, b, c, d, ...

StateVariables: v, U
TimeDerivatives:

dv/dt = 0.04*v*2 + 5*v + 140.0 - U
H dU/dt=a* (b*v - U)
: OnConditions:

v > thresh =>

'
!
: Dynamics
!
!

Synapses.xml

: ComponentType: expOneSynapse
| Parameters: gbase, tauDecay, erev

Dynamics
StateVariables: g H
TimeDerivatives: ;
dg/dt = -g / tauDecay !
DerivedVariables: ;
H i=g*(erev-v) :

!
Il

OnEvents:
g =g + gbase

1
4
—_— e e e e e e e e -
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present article (sections 2.1 and 2.4), code generation boils down
to trivial template merging or string interpolation once the source
and target models sit at comparable levels of abstraction (reduced
“impedance mismatch”), implying that a number of semantic
processing steps might be required in order to transform
LEMS/NeuroML2 into each new target. Given LEMS/NeuroMLZ2’s
low-level agnosticism—there is always the possibility that it will
be used to generate code for a yet-to-be-invented simulator—
NeuroML2 infrastructure needs to be flexible enough to adapt to
different strategies and pipelines.

This flexibility is illustrated in Figure 7, where NeuroML2
pipelines involving code generation are outlined. Three main
strategies are discussed in detail: a procedural pipeline starting
from jLEMS’s internal structures (Figure 7P), which as the first
one to be developed, is the most widely tested and supports
more targets; a pipeline based on building an intermediate
representation semantically similar to that of typical neuronal
modeling / hybrid-system-centric numerical software, which
can then be merged with templates (as decoupled as possible
from LEMS internals) for each target format (Figure 7T);
and a customizable language binding generator, based on an
experimental compiler infrastructure for LEMS which provides
a rich semantic model with validation and automatic generation
of traversers (Figure7S)—akin to semantic models built by
language workbenches such as MontiCore, which has been
employed to build NESTML (section 2.4).

2.5.3.1. jJLEMS runtime and procedural generation

The jLEMS simulator was built alongside the development of
the LEMS language, providing a testbed for language constructs
and, as such, enables parsing, validating, and interpreting of
LEMS documents (models). LEMS is canonically serialized as
XML, and the majority of existing models have been directly
developed using this syntax. In order to simulate the model,
JFLEMS builds an internal representation conforming to LEMS
semantics (Cannon et al., 2014). This loading of the LEMS XML
into this internal state is depicted as a green box in the P (middle)
branch of Figure 7. Given that any neuronal or general-purpose
simulator will eventually require similar information about the
model in order to simulate it, the natural first approach to code
generation from LEMS involved procedural interaction with this
internal representation, manually navigating through component
hierarchies to ultimately fetch dynamics definitions in terms of
Parameters, DerivedVariables, and routing events. Exporters from
NeuroML2 to NEURON (both hoc and mod), Brianl and SBML
were developed using these techniques (end point of Figure 7 P),
and can be found in the org.neuroml.export repository (Gleeson
et al., 2018).

Even if all the information required to generate code
for different targets is encoded in the jLEMS intermediate
representation, the fact that the latter was designed to support a
numerical simulation engine creates overheads for the procedural
pipeline, typically involving careful mixed use of LEMS / domain

JLEMS API

el template mergin:
| flat ODEs / R ging

remove units, flatten,
zero crossing events

events I
adimensional

templates
xpp, matlab, C

LEMS API native

. jLEMS
NeuroML2 JLEMS parser ijnternal i
document representation

P NeuroML
ComponentType
definitions
LEMS
S ¢ NeuroML2

LEMS2 Pipeline

procedural traversal,
string interpolation

simulator/
runtime code

templates for

language
bindings

language
semantically binding with

Semantic
Model

generation of domain
classes / API

augmented custom API

domain classes

*Domain Model API f

template merging

bindings via construction of LEMS Semantic model and merging with templates.

FIGURE 7 | Multiple pipelines involving code generation for NeuroML2 and LEMS. Purely Procedural (P) and intermediate representation/Template-based (T)
pipelines, both stemming from the internal representation constructed by JLEMS from parsed LEMS XML documents. S: Generation of customizable language

Parse model onto
domain classes
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abstractions and requiring repetitive application of similar
traversal/conversion patterns for every new code generator.
This regularity suggested pursuing a second intermediate
representation, which would capture these patterns into a further
abstraction.

2.5.3.2. Lower-level intermediate representation/templating
Neuronal simulation engines such as Brian, GENESIS, NEST and
NEURON tend to operate at levels of abstraction suited to models
described in terms of differential equations (e.g., explicit syntax
for time derivatives in Brian, NESTML and NEURON nmod1l), in
conjunction with discontinuous state changes (usually abstracted
within “event handlers” in neuronal simulators). Code generation
for any of those platforms from LEMS model would thus
be facilitated if LEMS models could be cast at this level of
abstraction, as most of the transformations would consist of one-
to-one mappings which are particularly suited for template-based
generation. Not surprisingly, Component dynamics in LEMS
are described precisely at the hybrid dynamical system level,
motivating the construction of a pipeline (Figure 7 T) centered
around an intermediate representation, termed dLEMS (Marin
et al., 2018b), which would facilitate simplified code generation
not only for neuronal simulators (dLEMS being semantically
close to e.g., Brian and NESTML) but also for ODE-aware general
purpose numerical platforms like Matlab or even C/Sundials
(Hindmarsh et al., 2005).

Besides reducing development time by removing complex
logic from template bodies—all processing is done on the
semantic model, using a general purpose language (Java in the
case of jJLEMS backed pipelines) instead of the templating DSL,
which also promotes code reuse—this approach also enables
target language experts to work with templates with reduced
syntactic noise, shifting focus from processing information on
LEMS internals to optimized generation (e.g., more idiomatic,
efficient code).

2.5.3.3. Syntax oriented generation/semantic model
construction

Both the procedural and template-based pipelines (Figure 7 P, T)
described in the preceding paragraphs stem from the jLEMS
internal representation data structure, which is built from both
the LEMS document and an implementation of LEMS semantics,
internal to jLEMS. To illustrate the interplay between syntax and
semantics, consider for example the concept of ComponentType
extension in LEMS, whereby a ComponentType can inherit
structure from another. In a LEMS document serialized as
XML, the “child” ComponentType is represented by an XML
element, with an attribute (string) containing the name of the
“parent.” Syntactically, there is no way of determining that this
string should actually represent an existing ComponentType, and
that structure should be inherited—that is the role of semantic
analysis.

The P and T pipelines rely heavily on APIs for traversing,
searching, and transforming a semantic model. They have been
implemented on top of the one implemented by jLEMS—
even though it contains further transformations introduced to
ease interpretation of models for numerical simulation—the

original purpose of jJLEMS. Given that both code generation and
interpretation pipelines depend on the initial steps of parsing
the concrete syntax (XML) and building a semantic model with
novel APIs, a third “semantic” pipeline (Figure?7 S) is under
development to factor out commonalities. Starting with LEMS
definitions for a domain-specific language—in the particular case
of NeuroML2, a collection of ComponentTypes spanning the
domain of biophysical neuronal models—a semantic model is
produced in the form of domain types for the target language,
via template-based code generation. Any (domain specific, e.g.,
NeuroML2) LEMS document can then be unmarshalled into
domain objects, constituting language bindings with custom
APIs that can be further processed for code generation or used
in an interpreter.

Any LEMS-backed language definition (library of
ComponentTypes) can use the experimental Java binding
generator directly through a Maven plugin we have created
(Marin and Gleeson, 2018). A sample project where domain
classes for NeuroML2 are built is available (Marin et al., 2018a),
illustrating how to use the plugin.

2.5.3.4. Numerical integration

As a declarative model specification language, LEMS was
designed to separate model description from numerical
implementation. When building a model using LEMS—or any
DSL built on top of it such as NeuroML2—the user basically
instantiates preexisting (or creates new and then instantiates)
LEMS ComponentTypes, parameterizing and connecting them
together hierarchically. In order to simulate this model, it
can either be interpreted by the native LEMS interpreters
(e.g., JLEMS, which employs either Forward-Euler or a 4th
order Runge-Kutta scheme to approximate solutions for ODE-
based node dynamics and then performs event detection and
propagation) or transform the models to either general-purpose
languages or domain-specific simulators, as described above for
each code generation pipeline.

2.5.4. General Considerations and Future Plans

Different code generation strategies for LEMS based domain
languages —such as NeuroML2—have been illustrated. With
LEMS being domain and numerical implementation agnostic,
it is convenient to continue with complementary approaches to
code generation, each one fitting different users’ requirements.
The first strategy to be developed, fully procedural generation
based on jLEMS internal representation (P), has lead to the
most complex and widely tested generators to date—such as
the one from NeuroML2 to NEURON (mod/hoc). Given that
JLEMS was not built to be a high-performance simulator,
but a reference interpreter compliant with LEMS semantics,
it is paramount to have robust generation for state-of-the art
domain-specific simulators if LEMS-based languages are to be
more widely adopted. Conversely, it is important to lower the
barriers for simulator developers to adopt LEMS-based models
as input. These considerations have motivated building the
dLEMS/templating based code generation pipeline (T), bringing
LEMS abstractions into a representation closer to that of most
hybrid-system backed solvers, so that simulator developers can
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relate to templates resembling the native format, with minimal
interaction with LEMS internals.

The semantic-model/custom API strategy (S) is currently at
an experimental stage, and was originally designed to factor out
parsing/semantic analysis from jLEMS into a generic compiler
front end-like (Grune et al., 2012) standalone package. This
approach was advantageous in comparison with the previous
XML-centric strategy, where bindings were generated from
XML Schema Descriptions manually built and kept up-to-
date with LEMS ComponentType definitions—which incurred
in redundancy as ComponentTypes fully specify the structure
of a domain document (Component definitions). While it is
experimental, the modular character of this new infrastructure
should contribute to faster, more reusable development of code
generators for new targets.

2.6. NineML, Pype9, 9ML-Toolkit

The Network Interchange for NEuroscience Modeling
Language (NineML) (Raikov et al, 2011) was developed by
the International Neuroinformatics Coordinating Facility
(INCF) NineML taskforce (2008-2012) to promote model
sharing and reusability by providing a mathematically-explicit,
simulator-independent language to describe networks of point
neurons. Although the INCF taskforce ended before NineML
was fully specified, the component-based descriptions of
neuronal dynamics designed by the taskforce informed the
development of both LEMS (section 2.5; Cannon et al., 2014) and
SpineML (section 2.8; Richmond et al., 2014), before the NineML
Committee (http://nineml.net/committee) completed version 1
of the specification in 2015 (https://nineml-spec.readthedocs.io/
en/1.1).

NineML only describes the model itself, not solver-specific
details, and is therefore suitable for exchanging models between
a wide range of simulators and tools. One of the main aims
of the NineML Committee is to encourage the development
of an eco-system of interoperable simulators, analysis packages,
and user interfaces. To this end, the NineML Python Library
(https://nineml-python.readthedocs.io) has been developed to
provide convenient methods to validate, analyse, and manipulate
NineML models in Python, as well as handling serialization to
and from multiple formats, including XML, JSON, YAML, and
HDF5. At the time of publication, there are two simulation
packages that implement the NineML specification using code
generation, PYthon PipelinEs for 9ml (Pype9; https://github.
com/NeuralEnsemble/pype9) and the Chicken Scheme 9ML-
toolkit (https://github.com/iraikov/9ML-toolkit), in addition to
a toolkit for dynamic systems analysis that supports NineML
through the NineML Python Library, PyDSTool (Clewley, 2012).

2.6.1. Main Modeling Focus

The scope of NineML version 1 is limited to networks of
point neurons connected by projections containing post-synaptic
response and plasticity dynamics. However, version 2 will
introduce syntax to combine dynamic components (support
for “multi-component” dynamics components, including their
flattening to canonical dynamics components, is already
implemented in the NineML Python Library), allowing neuron

models to be constructed from combinations of distinct ion
channel and concentration models, that in principle could be
used to describe models with a small number of compartments.
Explicit support for biophysically detailed models, including
large multi-compartmental models, is planned to be included
in future NineML versions through a formal “extensions”
framework.

2.6.2. Model Notation

NineML is described by an object model. Models can be written
and exported in multiple formats, including XML, JSON, YAML,
HDF5, Python, and Chicken Scheme. The language has two
layers, the Abstraction layer (AL), for describing the behavior
of network components (neurons, ion channels, synapses, etc.),
and the User layer, for describing network structure. The AL
represents models of hybrid dynamical systems using a state
machine-like object model whose principle elements are Regimes,
in which the behavior of the model state variables is governed
by ordinary differential equations, and Transitions, triggered
by conditions on state variable values or by external event
signals, and which cause a change to a new regime, optionally
accompanied by a discontinuous change in the values of state
variables. For the example of a leaky integrate-and-fire model
there are two regimes, one for the subthreshold behavior of
the membrane potential, and one for the refractory period. The
transition from subthreshold to refractory is triggered by the
membrane potential crossing a threshold from below, and causes
emission of a spike event and reset of the membrane potential; the
reverse transition is triggered by the time since the spike passing
a threshold (the refractory time period). This is expressed using
YAML notation as follows:

1 NineML:

2 '@namespace': http://nineml.net/9ML/1.0

3 ComponentClass:

4 — name: LeakyIntegrateAndFire

5 Parameter:

6 - {name: R, dimension: resistance}

7 — {name: refractory_period, dimension: time}

8 - {name: tau, dimension: time}

9 — {name: v_reset, dimension: voltage}

10 - {name: v_threshold, dimension: voltage}

11 AnalogReducePort:

12 - {name: i_synaptic, dimension: current,
operator: +}

13 EventSendPort:

14 — {name: spike_output}

15 AnalogSendPort:

16 - {name: refractory_end, dimension: time}

17 - {name: v, dimension: voltage}

18 Dynamics:

19 StateVariable:

20 - {name: refractory_end, dimension: time}

21 — {name: v, dimension: voltage}

22 Regime:

23 - name: refractory

24 OnCondition:

25 - Trigger: {MathInline: t > refractory_end

}

26 target_regime: subthreshold

27 — name: subthreshold

28 TimeDerivative:
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29 - {variable: v, MathInline: (Rxi_synaptic
- v)/tau}

30 OnCondition:

31 - Trigger: {MathInline: v > v_threshold}

32 target_regime: refractory

33 StateAssignment:

34 - {variable: refractory_end, MathInline:

refractory_period + t}

35 - {variable: v, MathInline: v_reset}

36 OutputEvent:

37 - {port: spike_output}

38 Dimension:

39 - {name: capacitance, m: -1, 1: -2, t: 4, i: 2}

40 — {name: current, i: 1}

41 - {name: resistance, m: 1, 1: 2, t: -3, i: -2}

42 - {name: time, t: 1}

43 - {name: voltage, m: 1, 1: 2, t: -3, i: -1}

By design, the model description is intended to be a purely
mathematical description of the model, with no information
relating to the numerical solution of the equations. The
appropriate methods for solving the equations are intended to
be inferred by downstream simulation and code generation tools
based on the model structure and their own heuristics. However,
it is possible to add optional annotations to NineML models
giving hints and suggestions for appropriate solver methods.

2.6.3. Code Generation Pipelines
A number of tools have been developed to perform simulations
from NineML descriptions.

The NineML Python Library (https://github.com/INCF/
nineml-python) is a Python software library which maps the
NineML object model onto Python classes, enabling NineML
models to be expressed in Python syntax. The library also
supports introspection, manipulation and validation of NineML
model structure, making it a powerful tool for use in code
generation pipelines. Finally, the library supports serialization of
NineML models to and from multiple formats, including XML,
JSON, YAML, and HDF5.

Pype9 (https://github.com/NeuralEnsemble/pype9.git) is a
collection of Python tools for performing simulations of NineML
models using either NEURON or NEST. It uses the NineML
Python library to analyze the model structure and manipulate
it appropriately (for example merging linked components into
a single component) for code generation using templating.
Compilation of the generated code and linking with the simulator
is performed behind the scenes.

PyDSTool (http://www2.gsu.edu/~matrhc/PyDSTool.htm) is
an integrated environment for simulation and analysis of
dynamical systems. It uses the NineML Python library to read
NineML model descriptions, then maps the object model to
corresponding PyDSTool model constructs. This is not code
generation in any classical sense, although it could be regarded
as generation of Python code. This is noted here to highlight the
alternative ways in which declarative model descriptions can be
used in simulation pipelines.

OML toolkit (https://github.com/iraikov/9ML-toolkit) is a
code generation toolkit for NineML models, written in Chicken
Scheme. It supports the XML serialization of NineML as well as a
NineML DSL based on Scheme. The toolkit generates executable

code from NineML models, using native Runge-Kutta explicit
solvers or the SUNDIALS solvers (Hindmarsh et al., 2005).

2.7. NEURON/NMODL

NEURON’s (Hines and Carnevale, 1997) usefulness for research
depends in large part on the ability of model authors to extend
its domain by incorporating new biophysical mechanisms with
a wide diversity of properties that include voltage and ligand
gated channels, ionic accumulation and diffusion, and synapse
models. At the user level these properties are typically most
easily expressed in terms of algebraic and ordinary differential
equations, kinetic schemes, and finite state machines. Working
at this level helps the users to remain focused on the biology
instead of low level programming details. At the same time,
for reasonable performance, these model expressions need to be
compiled into a variety of integrator and processor specific forms
that can be efficiently integrated numerically. This functionality
was made available in the NEURON Simulation Environment
version 2 in 1989 with the introduction of the NEURON Model
Description Language translator NMODL (Hines and Carnevale,
2000).

2.7.1. Main Modeling Focus

NEURON is designed to model individual neurons and networks
of neurons. It is especially suited for models where cable
properties are important and membrane properties are complex.
The modeling focus of NMODL is to desribe channels, ion
accumulation, and synapses in a way that is independent of
solution methods, threads, memory layout, and NEURON C
interface details.

2.7.2. Model Notation
The example in Listing 1 shows how a voltage-gated current can
be implemented and demonstrates the use of different language
constructs. About 90 different constructs or keywords are defined
in the NMODL language. Named blocks in NMODL have the
general form of KEYWORD { statements }, and keywords are
all upper case. The principle addition to the original MODL
language was a NEURON block that specifies the name of the
mechanism, which ions were used in the model, and which
variables were functions of position on neuron trees. The SUFFIX
keyword identifies this to be a density mechanism and directs all
variable names declared by this mechanism to include the suffix
_kd when referred to externally. This helps to avoid conflicts
with similar names in other mechanisms. The mechanism has a
USEION statement for each of the ions that it affects or is affected
by. The RANGE keyword asserts that the specified variables are
functions of position. In other words, each of these variables can
have a different value in each neural compartment or segment.
The UNITS block defines new names for units in terms of
existing names in the UNIX units database. The PARAMETER
block declares variables whose values are normally specified by
the user as parameters. The parameters generally remain constant
during a simulation but can be changed. The ASSIGNED block
is used for declaring two kinds of variables that are either given
values outside the mod file or appear on the left hand side of
assignment statements within the mod file. If a model involves
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differential equations, algebraic equations, or kinetic reaction
schemes, their dependent variables or unknowns are listed in
the STATE block. The INITIAL block contains instructions to
initialize STATE variables. BREAKPOINT is a MODL legacy
name (that perhaps should have been renamed to “CURRENT”)
and serves to update current and conductance at each time
step based on gating state and voltage values. The SOLVE
statement tells how the values of the STATE variables will be
integrated within each time step interval. NEURON has built-
in routines to solve families of simultaneous algebraic equations
or perform numeric integration which are discussed in section
2.7.4. At the end of a BREAKPOINT block all variables should
be consistent with respect to time. The DERIVATIVE block
is used to assign values to the derivatives of STATE variables
described by differential equations. These statements are of the
form y' = expr, where a series of apostrophes can be used to
signify higher-order derivatives. Functions are introduced with
the FUNCTION keyword and can be called from other blocks
like BREAKPOINT, DERIVATIVE, INITIAL, etc. They can be also
called from the NEURON interpreter or other mechanisms by
adding the suffix of the mechanism in which they are defined,
e.g., alpha_kd(). One can enable or disable unit checking for
specific code blocks using UNITSON or UNITSOFF keywords.
The statements between VERBATIM and ENDVERBATIM will
be copied to the translated C file without further processing.
This can be useful for individual users as it allows addition of
new features using the C language. But this should be done
with great care because the translator program does not perform
any checks for the specified statements in the VERBATIM
block.

2.7.3. Code Generation Pipeline
NEURON has supported code generation with NMODL since
version 2 released in 1989. Figure 8 shows the high level
workflow of the source-to-source compiler that converts an
NMODL description to a C file. The first step in this translation
is lexical analysis which uses the lex/flex based lexical analyzer
or scanner. The scanner reads the input NMODL file, recognizes
lexical patterns in the source and returns tokens. These tokens
are used by the next step called syntax analysis or parsing. The
yacc/bison tool is used to generate the parser. Syntactic analysis
is needed to determine if the series of tokens returned by the
lexer are appropriate in a language—that is, whether or not the
source statement has the right shape/form. For full syntactic
analysis, the parser works with the lexer to generate a parse tree.
However, not all syntactically valid sentences are meaningful and
hence semantic analysis is performed. This analysis can catch
errors like the use of undefined variables and incorrect uses
of integration methods. During these steps, symbol tables are
constructed and meta information about the model is stored in
global data structures. This information is then used during the
code printing step which writes C code to a file. These translation
steps automatically handle details such as mass balance for each
ionic species, different integration methods, units consistency,
etc.

The output of the translator (a C file) is compiled and
linked with the NEURON library to produce an executable.

1 NEURON { 34 ik = gk % (v - ek)
2 SUFFIX kd 35 }
3 USEION k READ ek 36
WRITE ik 37 DERIVATIVE states {
4 RANGE gkbar, gk, ik 38 n' = (l-n)xalpha(v)
5 } - nxbeta(v)
6 39 1}
7 UNITS ({ 40
8 (S) = (siemens) 41 FUNCTION alpha(Vm (mV
9 (mV) = (millivolt) )) (/ms) {
10 (mA) = (milliamp) 42 LOCAL x
11 } 43 UNITSOFF
12 44 x = (Vm+55) /10
13 PARAMETER ({ 45 if (fabs(x) > le
14 gkbar = 0.036 (S/ -6) {
cm2) 46 alpha = 0.1%x
15} /(1 - exp(-
16 %))
17 ASSIGNED { 47 telse(
18 v (mV) 48 alpha = 0.1/(1
19 ek (mV) - 0.5%x)
20 gk (S/cm2) 49 }
21} 50 UNITSON
22 51 1}
23 STATE { 52
24 n 53 FUNCTION beta(Vm (mV)
25} ) (/ms) {
26 54 UNITSOFF
27 INITIAL { 55 beta = 0.125+%exp
28 n = alpha(v)/ (alpha (- (Vm+65) /80)
(v) + beta(v)) 56 UNITSON
29 } 57
30 58 VERBATIM
31 BREAKPOINT { 59 /% C language
32 SOLVE states METHOD code */
cnexp 60 ENDVERBATIM
33 gk = gkbar * n"4 61 }

Listing 1 | NMODL example of voltage-gated potassium current.

This achieves conceptual leverage and savings of effort not only
because the high-level mechanism specification is much easier to
understand and far more compact than the equivalent C code, but
also because it spares the user from having to bother with low-
level programming issues like how to “interface” the code with
other mechanisms and with NEURON itself.

Over the years, the lexical analyzer and parser portions
of the translator have been reasonably stable. The syntax
extension needed to distinguish between density mechanisms
and mechanisms localized to single points on a neuron, and
the syntax extension needed to handle discrete spike event
coupling to synapses, consisted of straightforward additions
to the parser without any changes to the syntax. On the
other hand, there have been a number of dramatic and far
reaching changes in the processing of the parse tree and C
code output as NEURON has evolved to make use of object
oriented programming, variable step integrators (CVODE and
IDA), threads, different memory layouts, and neural network
simulations. In order to improve efficiency and portability on
modern architectures like Intel Xeon Phi and NVIDIA GPUs,
the core engine of the NEURON simulator is being factored
out into the CoreNEURON simulator (Kumbhar et al., 2016).
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This simulator supports all NEURON models written in NMODL
and uses a modified variant of the NMODL translator program
called mod2c. This code generator supports memory layouts
like Array-of-Structure (AoS) and Structure-of-Array (SoA) for
efficient vectorization and memory access patterns. In order to
support heterogeneous CPU/GPU platforms, mod2c generates
code using the OpenACC programming model (Wikipedia,
2012).

2.7.4. Numerical Integration

The equations specified in the DERIVATIVE block are integrated
using the numerical method specified by the SOLVE statement in
the BREAKPOINT block. NEURON provides different methods
for fixed step integration that include cnexp, derivimplicit which
are appropriate for systems with widely varying time constants
(stiff systems). The cnexp integration method is appropriate
for mechanisms described by linear ODEs (including Hodgkin-
Huxley-style channel models). This is an implicit integration
method and can produce solutions that have second order
precision in time. The derivimplicit integration method solves
nonlinear ODEs and ODE:s that include coupled state equations.
This method provides first-order accuracy and is usable with
general ODEs regardless of stiffness or non-linearity. If kinetic
schemes are used, they get translated into equations and use the
sparse solver, which produces results with first-order precision
in time. It is important to note that independent of integration
method selection, the high-level membrane description remains
unchanged.

2.8. SpineML

The Spiking Neural Mark-up Language (SpineML) is a declarative
XML based model description language for large scale neural
network models (Richmond et al., 2014), based on the NineML
syntax (see section 2.6; Raikov et al., 2011) and using the common
model specification syntax of LEMS for components (section 2.5;
Cannon et al., 2014). The declarative and simulator independent
syntax of SpineML is designed to facilitate code generation to a
number of simulation engines.

SpineML expands the NineML syntax, integrating new layers
to support the ability to create and execute neural network
experiments using a portable XML format. Primarily, two new
layers have been added, a Network layer and an Experiment layer.
These additions maximize the flexibility of described models,
and provide an easy mapping for code-generation for complete
networks.

Figure 9 details the structural overlap between the NineML
and the SpineML formats. A three layer modeling approach
is used to specify: components (e.g., neurons, synapses, etc.),
a network connectivity pattern, and an experimental layer
containing simulation specifications such as runtime conditions,
population inputs and variable recording.

2.8.1. Main Modeling Focus

The syntax is designed primarily for the specification of large
scale networks of point neurons but also has the flexibility to
describe biologically constrained models consisting of non-
standard components (such as gap junctions).The modeling
focus is specifically designed around point neurons with

arbitrary dynamics, expressed as any number of differential
equations. Different behavioral regimes can be specified to
allow expressive modeling of phenomena such as explicit
refectory periods. As such, SpineML can represent much
more complex neurons than Leaky Integrate and Fire, but
is less well suited to multi-compartmental models such
as Hodgkin-Huxley neurons. A SpineML project consists
of three types of XML files: component files, the network
file, and the experiment file (see Figure 10). Together these
files describe a whole experiment, including component
dynamics, network connectivity and experimental inputs and
outputs.

2.8.2. Model Notation

The Component Layer encodes the individual computational
modules (usually neuronal cells) of a simulation through the
ComponentClass definition. The component level syntax of
SpineML is directly derived from the NineML “abstraction” using
LEMS, differing in two cases: the syntax for describing ports,
and that SpineML units and dimensionality are combined into
a single SI attribute.

1 <?xml version="1.0"7?>
2 <SpineML xsi: ... >
<ComponentClass type="neuron_body" name="LeakyIAF
"
>

w

<Dynamics initial_regime="integrating">
. regime ...
<StateVariable dimension="mV" name="V"/>
</Dynamics>
<AnalogReducePort dimension="mA" name="I_Syn"
reduce_op="+"/>
9 <AnalogSendPort name="V"/>

0 3 O U1 >

10 <Parameter dimension="nS" name="C"/>
11 <Parameter dimension="mvV" name="Vt"/>
12 <Parameter dimension="mV" name="Er"/>
13 <Parameter dimension="mV" name="Vr"/>
14 <Parameter dimension="MOhm" name="R"/>
15 </ComponentClass>

16 </SpineML>

Listing 2 | A SpineML Component representation of a leaky integrate-and-fire
neuron. The definition of regimes has been moved to a separate listing.

SpineML components specify parameters, state variables,
regimes, and ports. Parameters are static variables of the model
which are referenced by time derivatives, state assignments and
triggers. Along with state variables, parameters have both a name
and a dimension consisting of an SI unit. Ports are defined
to enable communication channels between components, and
can be Send or Receive Ports. Ports are further divided onto
Analog ports, for continuous variables, Event ports for events
such as a spike, and Impulse ports for events with a magnitude.
Listing 2 shows an example definition of a leaky integrate-
and-fire component in SpineML. The component defines the
State Variable V, Parameters C, Vt, Er, Vr, R, an output
AnalogueSendPort V and an input AnalogueReducePort I_Syn.

The component defines the State-like “regimes” that change
the underlying dynamics in response to events and changing
conditions, as shown in Listing 3. A regime contains a time
derivative, a differential equation that governs the evolution of
a state variable. A regime can have transitions which change the
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FIGURE 8 | NMODL code generation workflow in NEURON/CoreNEURON targeting CPU/GPU.
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FIGURE 9 | A comparison of the SpineML and NineML specification. The SpineML syntax is a proposed extension to the NineML modeling format which provides a
complete syntax for describing models of spiking point neuron models with varying biological complexity. The SpineML syntax extends NineML and allows full
simulator support for all three layers of components, networks and experiments (Adapted from Richmond et al., 2014).

current regime when a condition is met, that can further trigger 6
events such as spiking outputs. State variables are referenced in 7 <MathInline>Vr</MathInline>
the time derivatives, transitions, and conditions. 8 </StateAssignment>

<StateAssignment variable="V">

9 <Trigger>
1 <Regime name="integrating"> 10 <MathInline>V > Vt</MathInline>
2 <TimeDerivative variable="V"> 11 </Trigger>
3 <MathInline>((I_Syn) / C) + (Vr — V) / (R«C)< 12 </OnCondition>
/MathInline> 13 </Regime>
4 </TimeDerivative>
5 <OnCondition target_regime="integrating"> Listing 3 | Integration regime for a leaky integrate-and-fire neuron.
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FIGURE 10 | The modular dynamics within the three layers of SpineML. The figure shows the connectivity of a Neuron and Synapse, including WeightUpdates and a
PostSynapse model. A ComponentClass described within the component layer defines the dynamical behavior of neurons, synapses, and neuromodulators. A
ComponentClass updates state variables and emits outputs, by evolving differential equations, inputs, and aliases (parameters and state variables). Input and Output
ports create an interface which enable each component instance to be connected to other instances within the network layer. The experiment layer defines network
inputs such as spike sources or current injections (Taken from Richmond et al., 2014).

to
Neuron

it

B :ou

Synapse

The Network Layer description allows instances of
components to be connected via ports using high level
abstractions such as populations and projections. The complete
object model of the network layer can be found in Richmond
etal. (2014).

The high-level network syntax defines networks in terms of
Populations and Projections defining Synapse components for
WeightUpdates and PostSynapse primitives. A population can
contain one or more Projections to a named target Population,
and each Projection can contain one or more Synapses which are
associated with a connectivity pattern and sets of WeightUpdate
and PostSynapse components.

A population property defines the instantiated state variable
or parameter values of a named component. Property values
can be described by a fixed value for all instances, statistical
distributions, or as explicit value lists.

Population ports link the pre-synaptic and postsynaptic
population, and can be analog, event based, or impulse. SpineML
provides a special case, the AnalogueReducePort, which allows
multiple postsynaptic values to be reduced using summation.

High-level abstractions of populations and projections
simplify the descriptions of point-based network models allowing
for a convenient mapping matching the abstraction of many
simulators during code generation. However, projection based
connectivity is not suitable for describing concepts such as gap
junctions and neuromodulation. To address this the high-level
object model has been extended to form an additional low-level

schema. A low-level network allows the direct connection of
components via Inputs and Groups of component instances. This
provides a great deal of flexibility but requires simulators to
support the connections of general computational components
outside of the more common population projection abstraction
level.

The Experiment Layer is the final phase of specifying a model
and describes a simulation to be conducted. The syntax of the
experimental layer is similar to the SED-ML experiment design
language (Waltemath et al., 2011) but adds essential support
for experiment inputs. It specifies the network model to be
simulated, the period of simulation and the numerical integration
scheme, the definition of model inputs, simulation inputs, and
outputs.

2.8.3. Code Generation Pipeline

A SpineML model can be mapped to a specific simulation engine
using translation through code generation. Code generation
for SpineML has been primarily provided through the use of
XSLT templates. XSLT is an established method for document
translation to HTML or other XML document formats. As there
is no limit for the output file type generated from an XSLT
template, it is suitable for any form of plain text file generation
including native simulator source code generation. An XSLT
processor works by recursively querying XML nodes using XPath
expressions, and applying a template to process the content of
each node. For simulator specific code, a model is processed
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by querying experiment, network layer, and component layer
documents recursively using the branching and control elements
of XSLT to generate plain text. As XSLT can be used as a fully
functional programming language, it offers many advantages
over a custom templating language, enabling complex control
and data structures to inform the template output.

Code generation templates have been developed for a
reference simulator, BRAHMS (Mitchinson et al., 2010): a multi-
threaded simulation engine, DAMSON: a multi-processor multi-
threaded event-driven form of C designed for emulating and
compiling code for the SpiNNaker hardware architecture (Plana
et al,, 2007), GeNN: a GPU simulator for spiking neural systems
(Yavuz et al., 2016), and a number of other simulators via PyNN
(Figure 11).

Whilst SpineML models can be generated by hand, the use
of a declarative common format allows independent tools to be
generated for model design and creation using SpineML as a
common storage format. Currently SpineCreator (Cope et al.,

have demonstrated component level GPU code generation for the
Neurokernel simulation platform (Givon and Lazar, 2016) using
libSpineML and libSpineML2NK (Tomkins et al., 2016).

The libSpineML library enables SpineML objects to be
imported, programmatically modified, and exported using a set
of Python classes derived from the three SpineML layer schemata.

The libSpineML2NK library utilizes a general purpose
SpineML-aware neuron model in the Neurokernel framework.
By processing the libSpineML representation, the generic
component model interfaces with the Neurokernel compute layer
to dynamically allocate and manage GPU memory and manage
network communication. Each SpineML component can then
be converted to a NVIDIA CUDA kernel by translating the
libSpineML object into a series of generic CUDA statements.
Listing 3 shows an excerpt of a generated NVIDIA CUDA kernel,
representing the integrating regime of a leaky integrate-and-fire
SpineML component.

2017) provides a powerful GUI for SpineML generation with 1 // Assign State Variables to temporary variables
hooks into dynamic code generation and simulation output 2 C=gClil;
lysi 3 Vt= g_Vt[i];
analysis. o 4 FEr= g_Er[i];
Recently libSpineML has been released to add support for 5 vr= g vrlil;
direct SpineML representation in Python, by deriving Python 6 R= g_R[i];
data structures from SpineML schema documents. This provides 7 V= internal g VIi];
a convenient, programmatic wrapping to enable a new route 8 , ,
f d . f honic obi devel 9 // Assign inputs to temporary values
or code generation from pythonic objects. Recent developments I_Syn= g_I_Syn[il;
XSLT
Templates
_— GeNN
XML}
Component XSLT
Comﬁnents » S(ﬁema Tem-plates PyNN
XML XML}
GUI i
Network
Ne&ork Schema = XSlI_Tt
- emplates
XML}
XML Editor v
Experiment
Expe-rimem le Sch-ema XSLT
Templates
— Brahms
XML}
SpineML Format
libSpineML
& outhon Neurokernel
Plotting/Graphing Simulation
Output =
Logs
FIGURE 11 | A tool-chain for simulation through code generation using the SpineML modeling syntax. The SpineML modeling syntax is composed of three layers,
structured according to an XML Schema. Models can be generated manually using XML editors or using graphical user interface (GUI) tools. Translation of a model to
any simulator is achieved by using a simulator specific set of XSLT templates, or Python libraries, to generate simulator code or native simulator model descriptions.
Simulator code then logs results in a standardized format which can be used for plotting and analysis (Adapted from Richmond et al., 2014).
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11

12 // Encode Time Differential

13 V. =V+ (dt * (((I_Syn) / C) + (Er — V) / (RxC)));
14

15 // Encode OnConditions

16 if( vV >Vt ){ V = Vr;}

17

18 g_V[il= V; // final outputs

Listing 4 | Neurokernel CUDA kernel.

2.8.4. Numerical Integration

SpineML does not explicitly solve any equations itself, but allows
differential equations to be defined within behavioral regimes.
The Experimental layer allows the definition of a preferred
integration method to be used to solve these, but does not impose
any specific implementation. If simulators do not support the
defined integration scheme, it is anticipated that runtime warning
should be raised, and a default integration scheme should be
used as a fall back. All current simulators support forward Euler
integration.

2.9. SpiNNaker

The SpiNNaker toolchain differs from the other tools described
in this article in that it does not run on general purpose
hardware, but only supports the SpiNNaker neuromorphic
hardware system as a simulation backend (Furber et al., 2013).
The SpiNNaker software is open source and freely available. Its
most recent release is version 4.0.0 (Stokes et al., 2007a) which
has documentation on how to add new neuron models and new
plasticity rules (Stokes et al., 2007b). The SpiNNaker software
will run on any Python 2.7 installation, but requires access to
a SpiNNaker hardware platform. Free access to a large-scale
SpiNNaker machine is possible via the collaboration portal of the
Human Brain Project (see section 3).

2.9.1. Main Modeling Focus

All versions of the neural software supported on SpiNNaker
expect users to describe their spiking neural networks using
PyNN (Davison et al, 2009), which is then translated
automatically into distributed event-driven C code running on
the SpiNNaker hardware platform. The degree of code generation
within SpiNNaker software is limited to the compilation of the
PyNN network description to generate the neural and synaptic
data structures for each core to execute. The models themselves
are written in hand-crafted C code for the SpiNNaker platform,
and attempt to balance a reasonable trade-off between: numerical
accuracy, space-utilization and execution efficiency. To support
this, Python classes translate the appropriate parameters between
the user script and the platform data structures, including the
reading back of results.

The decision to support hand crafted code results partly from
the structure of the PyNN language which enforces a basic set of
neuron and synapse models that end users can use to describe
their spiking neural networks, and therefore hand crafting the
code that represents these neuron models and synapses makes
a sensible starting point. The other reason for supporting hand
crafted code is the time required to build a software system for

translating general differential equations into code that is small,
fast and accurate enough to run on the platform, particularly
noting the lack of a floating point unit on the processor. The
current toolchain has been in existence for nearly five years and
handles the entire process of mapping, running and extracting
data from a spiking neural network that could potentially consist
of up to one billion neurons and one trillion synapses on a unique
architecture and therefore hand crafted code was the simplest
approach to execute.

Currently if an end-user requires a neuron model outside
those supported by PyNN or one that is not currently
implemented in the SpiNNaker software support for PyNN, it will
need to be hand crafted. This consists of writing both a Python
class, a C code block that can update the state of the new neuron
model or synapse on a time-step basis, and finally a Makefile
that joins the components together to represent the new neuron
model. The SpiNNaker software stack currently supports the
following PyNN models: IfCurExp, IfCondExp, IfCurDuelExp,
IzhikevichCurExp, IzhikevichCondExp, SpikeSourceArray, and
SpikeSourcePoisson.

The Python class is used to explain to the SpiNNaker software
what SpiNNaker hardware resources the model will require
and any parameters needed by the C code representing the
model to run on the SpiNNaker platform. The way the Python
class describes its requirements is through a set of components,
each of which have parameters that need to be transferred to
the executable C code and therefore require some memory to
store. Each component represents a different part of the overall
logic required for a neuron model. The components currently
available from within the SpiNNaker software stack are shown in
Figure 12. According to that figure, a IfCurExp model contains

Static \

|Thresho|d Types

Stochastic \

Exponential |

Dual Exponential |
Delta |

| Synapse Types

Izhikevich |

| Neuron Type

=
=
=

-

| Additional Input Type | Ca2 adaptive ]

Leaky Integrate and Fire |

Current |

[Input Type

Conductance |

FIGURE 12 | SpiNNaker Python model components. The threshold types
govern logic for determining if the neuron should spike given a membrane
potential; the synapse type describes how the weight from a synapse changes
over time; the input type governs the logic to change from a weight to current;
an additional input type allows the addition of more current to a neuron given a
membrane potential; the neuron type encapsulates the equations for
processing the current and determining the membrane potential at each time
step.
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a static threshold type, an exponential synapse type, a leaky
integrate-and-fire neuron type, a current based input type and no
additional input type.

Each Python component requires some functions to be
implemented for the tool chain to be able to use it. For a
threshold type, for example, it needs to fill in a function called
get_threshold_parameters () which returns a list of parameters
needed by the C code for it to execute the neuron model.

The C code used to represent the PyNN neuron model is
also split into the same component types as the Python class,
but whereas the Python class is used to define what resources
were to be used and what parameters are needed by the C
code, the C code interfaces require C code functions to be
implemented which are used by the boiler plate code that ties all
the components together, whilst also handling the event driven
nature of SpiNNaker C code.

From the end user’s perspective, adding a new neuron model
requires the creation of new components of the same types
required in the Python class and filling in the functions required
by that component. For example, a new threshold type in the C
code would require a C code which fills in the following functions
and structures:

o The threshold_type_t struct, which contains the parameters
in the order the Python component listed them.

e Thethre shold_type_is_above_threshold() function, which
has a neuron membrane potential and the threshold_type_t
structure for the given neuron as inputs and should return a
Boolean dictating if the neuron has spiked given the inputs.

Finally, the end user needs to fill in a template Makefile
which compiles the C components into executable C code that
can run on the SpiNNaker platform. An example is shown
in Listing 5 where the components NEURON_MODEL_H,
INPUT_TYPE_H, THRESHOLD_TYPE_H, SYNAPSE_TYPE H
represent the same components discussed previously and the
SYNAPSE_DYNAMICS represents the type of logic used for
learning (or if the synapses supported are to be static).

1 APP = $(notdir $(CURDIR))
2 BUILD_DIR = build/
3
4

NEURON_MODEL = $ (SOURCE_DIR) /neuron/models/

neuron_model_lif impl.c

5 NEURON_MODEL_H = $(SOURCE_DIR)/neuron/models/
neuron_model_1lif_impl.h

6 INPUT_TYPE_H = $(SOURCE_DIR)/neuron/input_types/
input_type_current.h

7 THRESHOLD_TYPE_H = $(SOURCE_DIR)/neuron/
threshold_types/threshold_type_static.h

8 SYNAPSE_TYPE_H = $(SOURCE_DIR) /neuron/
synapse_types/synapse_types_exponential_impl.h

9 SYNAPSE_DYNAMICS = $(SOURCE_DIR) /neuron/plasticity
/synapse_dynamics_static_impl.c

10

11 include ../Makefile.common

Listing 5 | The IfCurExp Makefile for SpiNNaker.

2.9.2. Code Generation Pipeline
The simulation description consists of a collection of PyNN
Populations and Projections, where Populations represent a

collection of neurons of a given model_class, that embodies a
specific neuron model and synapse type that itself embodies a
specific set of equations. For example, the PyNN IfCurExp model
embodies the mathematical equations for a leaky integrate-and-
fire neuron (Gerstner and Kistler, 2002) with instantaneous-
rise-exponential-decay synapses. The Projections represent the
physical synapses between neurons of two populations.

New models therefore are represented by a new type of
Population and the SpiNNaker software supports a template for
creating a new neuron model and how to add this into a standard
PyNN script (Rowley et al., 2017).

In terms of data and execution, a SpiNNaker simulation
consists of a set of distinct stages as shown in Figure 13, and
described here (a more detailed description of these stages can
be found in Stokes et al., 2007a):

1. The PyNN script description of the neural network is
converted into a graph where each vertex contains a number
of neurons/atoms, referred to as an application graph.

2. The software then maps the application graph onto the
SpiNNaker machine, which in itself consists of a set of
operations:

(a) The application graph is converted into processor sized
chunks, referred to as a machine graph, where each vertex
can be executed on a SpiNNaker processor.

(b) The mapping phase decides which SpiNNaker processor
will execute each machine vertex.

(c) The mapping phase continues with allocating routing keys
to each neuron that can spike during the simulation. This
is used by the router on the SpiNNaker chip to determine
where each packet is to be sent.

(d) For the packets from neurons a path to take through the
SpiNNaker machine is computed, ensuring that each spike
packet reaches all of the destination neurons to which it is
connected.

(e) The routing paths and the routing keys generated are
converted into the routing table rules needed by each router
on the SpiNNaker machine to ensure the packets are sent to
the correct locations.

(f) Chips that have a direct connection back to the host
machine are configured to control the communication of
spikes back to the host, if required.

3. The parameters needed by the neuron models are collected
and written down to the memory on the SpiNNaker chips.

4. The compiled executable files that represent the neuron
models are loaded along with the router data and the tag
information. This stage also handles the control logic that
ensures the simulation only runs for the requested duration,
and ensures that all the data can be recorded without running
out of SDRAM on the SpiNNaker chips by periodically
pausing the simulation and extracting the recorded data.

5. The remaining result data and provenance data are extracted
from the SpiNNaker machine, and handed back to the PyNN
script where the end user can process the results, or change
parameters before continuing the execution for a further
period. The provenance data is used by the SpiNNaker
software to verify that the simulation completed without any
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FIGURE 13 | The SpiNNaker software flow. The system starts by utilizing a PyNN script, which is then mapped onto SpiNNaker core sized chunks which are placed
and routed on the SpiNNaker machine. The neuron parameters, synapse data, and binaries are loaded onto the machine and executed, with host based runtime

issues (such as dropped packets within the communication
fabric, or if the simulation lost synchronization), and if any
issues were detected, these are reported to the end user.

2.9.3. Numerical Integration

The SpiNNaker software framework does not currently provide
any support for solving differential equations. Instead, the user
must provide C code that updates the state of each neuron at each
time step based on the state at the previous time step. The neuron
is broken down in to component parts, allowing the combination
of various existing components, making the development effort
easier. The components are:

1. The synapse type. This component controls the flow through
the synapses of the neuron. The user can define state variables
for each “synapse type” that they wish to define; for example
this might include an “excitatory” and an “inhibitory” synapse.
This component is called once per time step to: add in the
combined weight of several spikes that have been received at
each synapse type; to update any state; and finally to read the
combined excitatory and inhibitory synaptic contributions to
the neuron at the current time step.

2. The input type. The main purpose of this component is to

convert the synaptic input received from the synapse type
component into a current, optionally using the membrane
voltage of the neuron. This is usually chosen to be either
“current” (in which case the value is just passed on directly)
or “conductance” (which makes use of the membrane voltage),
but it can be changed to other things depending on the need
of the user.

. The neuron model. This component controls the internal

state of the neuron body. At each time step, this receives the
excitatory and inhibitory currents, as converted by the input
type component, and updates its state. The neuron model
supports being asked for its membrane voltage (which is used
for recording the state, as well as for passing on to the other
components). Note also that the neuron model is told when
it has spiked, and does not determine this internally (see
below). At this point it can perform any non-linear updates
as determined by the user.

. The threshold model. This component uses the membrane

voltage as generated by the neuron model to decide whether
the neuron has spiked. This could for example be simply a
static value, or it could be stochastic.
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For a discussion on the solving of differential equations within
the fixed-point numerical framework available on SpiNNaker
(Hopkins and Furber, 2015). Once the user has written their
components, they then write a Makefile which combines these
with the rest of the provided neuron executable, as shown in
Listing 5; this handles the rest of the processing required to
execute the neuron model, such as the sending and receiving of
spikes, the recording of variables and spikes, as well as handling
any plasticity. Spike Time Dependent Plasticity rules can also be
generated by the user by providing timing update rules (such
as a Spike Pair rule which uses the time between pairs of pre-
and post-synaptic spikes to determine how much the synaptic
weight is to change) and weight update rules (such as additive,
where a fixed value is added to or subtracted from the weight, or
multiplicative where the existing weight is taken into account).
This splitting again allows an easy way to combine the various
components through the use of a common interface.

Though the components of the SpiNNaker neuron software
make it easy to combine components, they do also somewhat
restrict the rules that can be written to the component interfaces.
Thus we are planning on providing a more general framework
for the neuron models and plasticity models that allows the
combination of the components internally; we will then also
provide an packaging which still supports the existing component
model to ensure that existing components still work. The more
general framework will make it easier to support code generation,
as the rules will not generally be split into the components in this
fashion.

The general interface for describing neuron models will utilize
differential equations, such as that provided by Brian (see section
2.1; Goodman and Brette, 2008, 2009). Initially this would
provide support for general linear systems, and the Adaptive
Exponential model only. The reason for adopting this position
is that SpiNNaker-1 has the limitation of expensive division and
integer (or fixed-point) arithmetic only; both of these problems
are eliminated in the new SpiNNaker-2 hardware, which is based
on the ARM Cortex-M4F core, and thus has hardware support
for single precision float and both floating-point and integer
division.

The obvious approach to linear ODE systems is to reduce the
equations to Matrix Form. For example, having the system of
equations:

dv
7 = AoV taenut bo
du
E = a(l,o)v + a(u)v + b]

allows to express this in matrix form as:
x(t) = Ax(t) + b
where

() o-(2)

v(t)
u(t)

ao
ai

30,0V 4(0,1)
41,00 411

0= (1)

With this formulation the forward evolution of the system at time
t can be expressed as:

x(t) = exg + t1 (tA)(b)

where ¢1(A) = (¢ — DA™! and xg = x(0). These matrix
exponential calculations can be performed on the host computer
using the SciPy routine scipy.linalg.expm, provided that
the coefficients in the ODE system remain fixed and that they are
not subject to user modification part way through a simulation.

Actual SpiNNaker execution of the solver is a simple matrix
multiplication as shown above. It can be performed as a series
of fused-multiply-adds. On SpiNNaker (both SpiNNaker-1 and
SpiNNaker-2) this can be done with with 32 x 32 operations
using internal 64 bit accumulators. The key challenge on the
current SpiNNaker hardware is to solve non-linear systems using
a minimal use of division and only a limited dynamic range for
the variables of the ODE system so that the algorithms do not step
outside of the range of the fixed-point number system.

2.10. TVB-HPC

The Virtual Brain (TVB, Sanz Leon et al, 2013) is a large-
scale brain simulator programmed in Python. With a community
of thousands of users around the world, TVB is becoming a
validated, popular and standard choice for the simulation of
whole brain activity. TVB users can create simulations using
neural mass models which can produce outputs for different
analysis modalities. TVB allows scientists to explore and analyze
simulated and experimental data and contains analytic tools for
evaluating relevant scientific parameters in light of that data.

2.10.1. Main Modeling Focus

Neural mass models (NMMs) are mathematical tools for
describing the ensemble behavior of groups of neurons through
time. These models contain a set of internal states which describe
the system and a set of coupled differential equations which
define how the states of the system evolve. An instance of these
models in TVB and their implementation is called a “node.”
The model output consists of a set of observables identifying
states of interest for other nodes. Nodes are linked to each other
using a coupling function. This coupling defines the effect of
input coming from other nodes. Usually the coupling involves
weighting the incoming signals by a factor and then applying
a simple function. The weights for coupling may be derived
from probabilistic tractography and the diffusion-weighted MRI
images of an individual.

Certain system observables can be post-processed to produce
simulated BOLD, EEG or EMG signals, among others. These
signals can be fed into an analysis step where a measure of system
“fitness” with respect to an empirical signal is computed. The
number of open degrees of freedom of the NMMs generates a
vast parameter space to explore if one wants to fit the model
parameters to a specific output. The nature of this workflow
enables the iterative modification and exploration of parameters
in this admissible space. The problem is embarrassingly parallel
(computationally) with respect to the parameter sets to be
explored and can be highly parallelized with respect to the node
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computation for most NMM kernels. Adaptive approaches can
be used to optimize the behavior of the models with respect to
fitness functions which can relate to the essential characteristics
of the higher level signals. Fitness functions can incorporate
extended aspects of empirical data, enabling inference of neural
mass model parameters through exploration of parameter space.

A general description of the simulation can be seen in
Figure 14.

The current implementation of TVB is written in Python
using NumPy with limited large-scale parallelization over
different paramaters. The objective of the TVB-HPC project
is enable such large-scale parallelizating by producing a high-
level description of models in all stages in the simulation
workflow which can then be used to automatically generate
high-performance parallel code which could be deployed on
multiple platforms. In particular, this allows reifying data flow
information. With this approach, neuroscientists can define
their pre-processing kernels, coupling, neural mass models,
integration schemes, and post processing kernels using a unique
interface and combine them to create their own workflows. The
result is a framework that hides the complexity of writing robust
parallel code which can run either on GPUs or on CPUs with
different architectures and optimizations from the end user.

2.10.2. Model Notation

The TVB-HPC library is written in Python and makes use of
a generic set of classes to define models in an agnostic way,
independent of the final target implementation.

In additional to predefined models, TVB-HPC has a built
in BaseModel class for defining neural mass models and
a BaseCoupling class for defining coupling kernels through
inheritance. The BaseModel class defines the following set of
attributes:

« State: Internal states of the model.

o Auxex: Auxiliary mathematical expressions which are used for
internal calculations in the model.

o Input: Input coming from other neural masses into this neural
mass.

o Drift: A set of equations which evolve the model from a state
at time ¢ — 1 to time ¢.

« Diffs: Differentiable variables in the system.

o Observ: Transformations of state variables which are defined
as observable or coupled.

« Const: Constant values specifically defined for a each model.

o Param: Parameters provided to an specific model.

« Limit: Minimum and maximum within which the state values
must be wrapped to ensure mathematical consistency.

A general NMM inherits from the BaseModel class.

As an example, the following listing shows the implementation
of the widely used Kuramoto (Kuramoto, 1975) and the
Hindmarsh-Rose-Jirsa Epileptor (Naze et al., 2015) models from
TVB using the TVB-HPC interface. These two models have been
chosen due to their differing levels of complexity.

1 class Kuramoto (BaseModel) :
2 "Kuramoto model of phase synchronization."
3 state 'theta'

4 limit = (0, 2 * numpy.pi),
5 input = 'I'
6 param = 'omega'
7 drift = 'omega + I',
8 diffs = 0,
9 obsrv = 'theta', 'sin(theta)'
10 const = {'omega': 1.0}
11
12 def _insn_store(self):
13 yield from self._wrap_limit (0)
14 yield from super()._insn_store()
15
16 class HMJE (BaseModel) :
17 "Hindmarsh-Rose-Jirsa Epileptor model of
seizure dynamics."
18 state = 'x1 yl z x2 y2 g'
19 limit = (-2, 1), (20, 2), (2, 5), (-2, 0), (O,
2), (-1, 1)
20 input = 'cl c2'
21 param = 'x0 Iext r'
22 drift = (
23 'tt x (yl - z + Iext + Kvf x cl + ('
24 ! (x1 < 0)*x(-a » x1 * x1 + b * x1)"'
25 '+ (x1 >= 0)*(slope - x2 + 0.6 * (z -
4)*%2) "
26 Yy o« x1)°',
27 'tt x (¢ - d * x1 *» x1 - yl)',

28 'tt x (r x (4 » (x1 - x0) -z + Ks x cl))',
29 'ttt o+ (-y2 4+ x2 - x2xx2%x2 + Iext2 + 2 x g -
0.3 » (z - 3.5) + Kf = c2)"',

30 "tt ox ((-y2 + (x2 >= (-0.25)) x (aa * (x2 +
0.25))) / tau)',

31 'tt o« (-0.01 * (g - 0.1 * x1))"'

32 )

33 diffs = 0, 0, 0, 0.0003, 0.0003, O

34 obsrv = 'x1', 'x2', 'z', '-x1 + x2'

35 const = {'Iext2': 0.45, 'a': 1.0, 'b': 3.0, '
slope': 0.0, 'tt': 1.0, 'c':

36 1.0, 'd': 5.0, 'Kvf': 0.0, 'Ks': 0.0,

'RKf': 0.0, 'aa': 6.0, 'tau':
37 10.0, 'x0': -1.6, 'Iext': 3.1, 'r':
0.00035}

The classes for the coupling kernels are generated in an analogous
manner.

2.10.3. Code Generation Pipeline
Loopy (Klockner, 2014) is a Python library which aids in the
automatic generation of parallel kernels for different target
hardware platforms. It includes targets for CUDA, OpenCL,
Numba, Numba + CUDA, C, and ISPC. Parallel code in Loopy
is generated by enclosing a set of instructions in independent
execution domains. The dimensions of a domain is specified
using variables named inames in Loopy terminology which
represent the number of parallel instances that one can process
at the same time for the given set of instructions. Notably,
Loopy performs and retains explicit data flow metadata about
instructions, which enables, for example, nearly automatic kernel
fusion. Small, simple kernels can be written and combined using
a data flow which defines how variable values are fed from one
kernel to the next as input. This allows the creation of complex
kernels with assured data dependencies while allowing for unit
testing of small component kernels.

Loopy automatically analyzes the data structures and their
access patterns within a domain. The user can specify types
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FIGURE 14 | Interaction between the different computational stages in a neural mass model simulation. The raw connectivity from sources such as diffusion tensor
imaging is pre-processed to produce a connectivity map between brain regions defined by a parcellation scheme. The connectivity map is fed into a network kernel
composed of a coupling, neural mass and integration kernel. The coupling kernel combines the simulated system’s current state with the connectivity data to
compute the input to each node for the current time step. For each node, the NMM kernel computes the state changes which are fed into the integration kernel to
compute the final state at the end of the current time step. The resulting observables are fed back to the coupling kernel and forward to a post-processing kernel to
compute derived signals such as BOLD or EEG data for comparison to experimental results. Since there are no dependencies between distinct instances of the
network kernel, this data flow can be parallelized over each set of model parameters.

and ranges for values and access limits to the data structures to
control data handling. Loopy assembles the computation within a
loop-like environment where each iteration is independent. Code
can then be produced for a target platform in the target’s specific
language.

The BaseModel class has functions which translate the

information provided in the attributes of a model instance in
several steps which ensures the repeatable, coherent and robust
generation of code. The steps to follow in order to generate the
code are as follows:

1.

The kernel’s data structures are generated.

2. The kernel domain is defined by setting the limits of the

9.

desired iname variable. The domain is the main loop within
which the parallelization will take place, and the iname is
the variable which identifies different instances of parallel
executions of this loop.

Types for the attributes of the model are specified. Loopy can,
in most cases, guess the nature of variables and attiributes, but
the user can explicitly state these types as to avoid confusion
in the code generation.

Expression for constants and distribution of the values for the
input, states and parameters are generated.

A set of auxiliary expressions which aid the data manipulation
inside the kernel may be generated.

Expressions to expose and store values for observables
(variables which can be accessed after the simulation is done)
are generated.

Pymbolic (a lightweight SymPy alternative, designed for code
generation tasks) is used to translate the set of symbolic
expressions representing the drift, diffs, and observables in the
next step.

The output is wrapped within certain limits to avoid numerical
inaccuracies.

The final code for a given kernel is generated.

Loopy provides several levels of information about the generated
kernel including dependency analysis and scheduling achieved

based on the access patterns of the inames to the data structures.
An example of the output produced for a test kernel can be seen
in the listings below.

10
11

12

13
14

15
16
17
18
19
20
21
22
23
24
25

26

KERNEL: loopy_kernel

#In this section, Loopy describes the arguments
that the kernel needs in order to be called.
#The type,
output.
#Also the shape of the variables and their scope.
ARGUMENTS :

either defined or infered by Loopy, is

lengths: GlobalArg, type: np:dtype('float32'),
shape: (node), dim_tags: (NO:stride:1)

node: ValueArg, type: np:dtype('int32')

rec_speed_dt: ValueArg, type: np:dtype('float32')

state: GlobalArg, type: np:dtype('float32'), shape

(node), dim_tags: (NO:stride:1)

sum: GlobalArg, type: np:dtype('float32'), shape:
()

theta_i: ValueArg, type: np:dtype('float32"')

weights: GlobalArg, type: np:dtype('float32'),
shape: (node), dim_tags: (NO:stride:1)

#The domain, defines the main loop inside which
the parallelization will take place

# and over which variable (INAME)

DOMAINS:

[node] -> {

[j_node] 0 <= j_node < node }

INAME IMPLEMENTATION TAGS:
j_node: forceseq

#Defines temporary variables required for
computation
TEMPORARIES:

Frontiers in Neuroinformatics | www.frontiersin.org

28

November 2018 | Volume 12 | Article 68



Blundell et al.

Code Generation in Computational Neuroscience

27

28

29

30

31

32

33

34
35

36

37

38

39

40

41

dij: type: np:dtype('float32'), shape: () scope:
auto

wij: type: np:dtype('float32'), shape: () scope:
auto

#This is the most important section of the summary

that Loopy generates.

#It defines how each instruction is mapped to the
domain and the dependencies of the
instructions.

#Based on this,
there are not dependencies between
instructions

# with different values of the INAME in

a parallel kernel can be build it

the domain

INSTRUCTIONS:

|->|-> [j_node] wij <- weights]
j_node] # insn
|_I1=> [j_node] dij <- lengths]|

j_node] xrec_speed_dt
# wl,no_sync_with

=insn@any:
wl@any:w2@any
if (wij !'= 0.0)
|_l_ [j_nodel] sum <- sum + wijx*

(-1)*theta_1i)
# w2,no_sync_with

sin(state[j_node] +

=insn@any:
wl@any:w2@any

Loopy’s debug output elucidate the quantitative kernel analysis.
Notably, this includes complete information on the kernel’s input
(“ARGUMENTS”: datatype, shape, strides), sequence & dataflow
of instructions (“INSTRUCTIONS”), as well as temporary
variables (“TEMPORARIES”: type, shape, scope of allocation),
and finally the loop domains, including their mapping to
hardware domains (“INAME IMPLEMENTATION TAGS”) such
as local or global work group.

As a concrete use case of TVB-HPC, a kernel which

includes the whole workflow described in Figure 14 is presented.
The following example shows the generation of a merged
kernel including the coupling, the neural mass model and the
integration step:

1
2
3
4
5
6
7

model.Kuramoto ()
1.0
osc.const['omega'] =

osc =
osc.dt =
10.0 * 2.0 » np.pi / 1le3
coupling.Kuramoto (osc)
cfun.param['a'] = pm.parse('a')
scheme.EulerStep(osc.dt)
transforms.network_time_step (osc,

cfun =

scm =

knl = cfun, scm)

The target code generated for Numba 4+ CUDA:

1
2
3
4

o 3 o U

@ncu.jit
def loopy_kernel_inner (
n, nnz, row, col, dat, wvec, out):
if -1 + -512%bIdx.y + -1lxtIdx.y + n >= 0 and
-1 + -512xbIdx.x + —-1*tIdx.x + n >= 0:
acc_j =0

jhi = row[l + tIdx.x + bIdx.x%x512]
jlo = row[tIdx.x + bIdx.x*x512]
for j in range(jlo, -1 + jhi + 1):

9 acc_j = acc_j + dat[jl*vec[col[]]]
10 out [tIdx.x + bIdx.x*512] =
11 (tIdx.y + bIdx.y*512)~*acc_j
12
13 def loopy_kernel/(
14 n, nnz, row, col, dat, wvec, out):
15 loopy_kernel_inner[((511 + n) // 512,
16 (511 + n) //
512),
17 (512, 512)]
18 (n, nnz, row, col, dat, vec,
out)
and for Numba:
1 from _ future__ import division, print_function
2
3  import numpy as _lpy_np
4  import numba as _lpy_numba
5
6 @_lpy_numba.jit
7 def loopy_kernel(n, nnz, row, col, dat, vec, out):
8 for i in range(0, -1 + n + 1):
9 jhi = row[i + 1]
10 jlo = row[i]
11 for k in range(0, -1 + n + 1):
12 acc_j =0
13 for j in range(jlo, -1 + jhi + 1):
14 acc_j = acc_j + dat[jl*vec[col[]]]
15 out[i] = kxacc_j
and for CUDA:
1 // edited for readability
2 extern "C" _ _global__ wvoid ___launch_bounds__ (16)
loopy_kernel (
3 uint const n, uint const nnz,
4 uint const x__ restrict_  row, uint
const *__restrict__ col,
5 float const x__ restrict__ dat, float
const *__ _restrict_ vec, float =
__restrict__ out) {
6 float acc_j;
7 int jhi;
8 int jlo;
9
10 if (-1 + -4 x ((int32_t) blockIdx.y) + -1 * ((
int32_t) threadIdx.y) + n >= 0
11 && -1 + -4 x ((int32_t) blockIdx.x) + -1 =
((int32_t) threadIdx.x) + n >= 0)
12 {
13 acc_j = 0.0f;
14 jhi = row[l + 4 % ((int32_t) blockIdx.x) + ((
int32_t) threadIdx.x)];
15 jlo = row[4 » ((int32_t) blockIdx.x) + ((
int32_t) threadIdx.x)];
16 for (int j = jlo; j <= -1 + jhi; ++3)
17 acc_j = acc_j + dat[j] % veclcol[]jl];
18 out[4 * ((int32_t) blockIdx.x) + ((int32_t)
threadIdx.x) ]
19 = (((int32_t) threadIdx.y) + ((int32_t)
blockIdx.y) * 4.0f) = acc_j;
20 }
21}
and for OpenCL:
1 // edited for readability
2  #define 1id(N) ((int) get_local_id(N))
3 #define gid(N) ((int) get_group_id(N))
4
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5 _ _kernel void __attribute__ ((regd_work_group_size
(1, 1, 1))) loopy_kernel(

6 uint const n, uint const nnz,

7 __global uint const *__restrict__ row,
__global uint const *__ restrict__
col,

8 __global float const *__restrict__ dat
, __global float const =

__restrict__ vec,

9 __global float __restrict__ out)
10 {

11 float acc_j;

12 int jhi;

13 int jlo;

14
15 for (int i = 0; 1 <= -1 + n; ++1)
16 {
17 jhi row[l + 1];
18 jlo = rowl[i];
19 for (int k = 0; k <= -1 + n; ++k)
20 {
21 acc_j = 0.0f;
22 for (int j = jlo; j <= -1 + jhi; ++3)
23 acc_j = acc_j + dat[j] % veclcol[]jl1];
24 out[i] = k % acc_j;
25 }
26 }
27 '}

2.10.4. Numerical Integration

The ordinary differential equations defined using the BaseModel
class (coupling kernels containing only functions) are generally
solved using a standard Euler method in TVB-HPC as a proof
of concept. It is also possible for a user to define stochastic
ODEs. The integration method for those ODEs can be set to
the Euler Maruyama method, stochastic Heun or other schemes
available in TVB in addition to custom methods provided by the
user.

3. HARDWARE AND SOFTWARE
PLATFORMS

All code generation pipelines introduced in section 2 target one
or more hardware platforms, on which the generated code can
be executed. In this section, we summarize the most prominent
hardware platforms and give an overview of collaboration
portals, from which the code generation pipelines and the
hardware platforms are available with minimal setup overhead
for the scientists aiming to use them.

3.1. Classical Processors and Accelerators
Classical von Neumann-architecture computers, dominate the
hardware platforms used in the neurosciences. Small spiking
neuronal networks or multi-compartmental cells up to a few
thousand neurons or compartments are easily simulated on a
single central processing unit (CPU) of a modern computer.
CPUs allow for maximum flexibility in neural modeling and
simulation, but the von Neumann architecture, where instruction
fetch and data operation are separated from each other, limits
the performance of such a system—this is referred to as the
von Neumann bottleneck. Even with advanced highly parallel

petascale supercomputers available today, the simulation of
neural networks are orders of magnitude slower than realtime,
hindering the study of slow biological processes such as learning
and development.

Graphical processing units (GPUs) are an alternative that can
provide better simulation efficiency. A GPU is a co-processor
to a CPU, designed to efficiently perform operations that are
typical for graphics processing, such as local transformations
on large matrices or textures. Because of the structure of
graphics operations, it lends itself to a single instruction- multiple
data (SIMD) parallel processing approach. Massively parallel
GPUs can be repurposed to also accelerate the execution of
non-graphics parallel computing tasks, which is referred to as
general purpose GPU (GPGPU) computing. The simulation of
spiking neuronal networks is well suited for the computing
paradigm of GPGPUs, because independent neurons and
synapses need to be updated with the same instructions following
the SIMD paradigm. However, efficiently propagating spikes
in such a network is non-trivial and becomes the main
bottleneck for computation performance in large networks
(Brette and Goodman, 2012). Implementing the parallelism
requires expert knowledge in GPU programming, constituting
a large entry barrier for neuroscientists and modelers. After an
initial enthusiasm amongst the developers of leading simulators,
such as Brian (Goodman and Brette, 2009), GENESIS (Bhalla
and Bower, 1993), NEST (Gewaltig and Diesmann, 2007), or
NEURON (Hines and Carnevale, 1997), the development of
GPU accelerator support has often stalled due to the underlying
complexities. Instead, novel GPU based simulators, such as
ANNarchy (Vitay et al., 2015), CARLsim (Nageswaran et al.,
2009), Cortical Network Simulator (CNS; Mutch et al., 2010),
GeNN (see section 2.2 Yavuz et al., 2016), Myriad (see section 2.3
Rittner and Cleland, 2014), NeMo (Fidjeland et al., 2009), were
created, each with their own particular focus.

To further accelerate computation and increase efficiency,
dedicated hardware architectures beyond the von Neumann
model are of interest. Efficiency and flexibility are contrary
and cannot both be achieved same time. FPGAs offer a good
balance between the generality of CPUs/GPGPUs and physically
optimized hardware. An FPGA is a freely programmable and
re-configurable integrated circuit device. This paves the way
to new computing architecture concepts like dataflow engines
(DFE). Following this approach, in principle, application logic is
transformed into a hardware representation. In particular, for a
neural network simulation, this could be a computation primitive
or special function, a neuron model or even an entire neural
network or simulation tool (Cheung et al., 2016; Wang et al.,
2018). Currently no tools or workflows exist to directly derive an
FPGA design from a neural model description. Closing this gap
is a topic of research.

Given the multitude of programming paradigms and
architectural designs used on modern CPU-, GPGPU-, and
FPGA-based systems and their complexity, it is impossible
for a novice programmer in the field of neuroscience to write
efficient code manually. Code generation is thus often the only
way to achive satisfactory performance and system resources
utilization.
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3.2. Neuromorphic Hardware

Another approach to surpassing the von Neumann architectures
in terms of energy consumption or simulation speed is using
physically optimized hardware. For hardware architectures
focusing on brain-inspired analog computation primitives the
term “neuromorphic” has been coined by Mead (1990). However,
nowadays the term neuromorphic computing is used in a much
broader sense and also refers to digital systems and even von
Neumann architectures optimized for spiking neural networks.

Inspired by the original principle, a large part of the
neuromorphic hardware community focuses on physical models,
i.e., the analog or mixed-signal implementations of neurons
and synapses on a CMOS substrate (cf. Indiveri et al., 2011).
Biological observables like the membrane voltage of the neurons
are represented as voltages in the silicon neuron implementation
and evolve in a time-continuous and inherently parallel manner.
One particular example is the BrainScaleS system, which
represents a combination of von Neumann and mixed-signal
neuromorphic computing principles. Compared to the biological
model archetype, the BrainScaleS implementation operates in
accelerated time: characteristic model time constants are reduced
by a factor of 103 — 10* (Aamir et al., 2017; Schmitt et al., 2017).
In addition, an embedded processor provides more flexibility,
especially with respect to programmable plasticity (Friedmann
etal., 2017).

Digital implementations range from full-custom circuits, e.g.,
Intel Loihi (Davies et al., 2018), IBM TrueNorth (Merolla et al.,
2014), to optimized von Neumann architectures. One particular
example is the SpiNNaker system which is based on standard
ARM processors and a highly-optimized spike communication
network (Furber et al., 2013). The biggest system constructed to
date consists of 600 SpiNNaker boards wired together in a torus
shaped network. Each SpiNNaker board contains 48 SpiNNaker
chips, where each SpiNNaker chip contains 128 MiB of on-board
memory, a router for communicating between chips and up to 18
ARM968E-S (ARM Limited, 2006) processors, each consuming
around 1W when all processors are active.

3.3. Collaboration Platforms

The great variety of code generation pipelines introduced in the
previous sections allows neuroscientists to chose the right tool
for the task in many modeling situations. However, setting up
the pipelines and getting them to play nicely with the different
hardware platforms can be a challenging task. In order to ease
this task, several collaboration platforms were created in the past
years.

The Open Source Brain platform (OSB, http://www.
opensourcebrain.org) is intended to facilitate the sharing
and collaborative development of models in computational
neuroscience. It uses standardized representations of models
saved in NeuroML (section 2.5) and shared on public GitHub
(https://github.com) repositories to allow them to be visualized
in 3D inside a browser, where the properties of the cells and
networks can be analyzed.

In addition to viewing the NeuroML models, users who
have registered and logged in to the OSB website can run
simulations of the models (potentially having edited some of
the parameters of the model through the web interface). The

NeuroML representation is sent to the OSB server, which uses
the code generation options included with the jNeuroML package
(section 2.5) to create simulator specific code which can be
executed. Currently there are options to execute the model using
jNeuroML (limited to point neuron models), the NEURON
simulator directly, or in NEURON via the NetPyNE package
(http://www.netpyne.org), which allows network simulations to
be distributed over multiple processing cores. More simulation
platforms are in the process of being added.

The default execution location is to run the simulation on
the OSB servers directly, but there is an option to package the
simulations and send to the Neuroscience Gateway (NSG, https://
www.nsgportal.org) platform. NSG links to the supercomputing
facilities of the Extreme Science and Engineering Discovery
Environment (XSEDE), and using this option, NetPyNE based
simulations can be run on up to 256 cores. The simulation results
are retrieved by OSB and can be displayed in the browser without
the user needing to access or log in to NSG or XSEDE directly.

The Human Brain Project (HBP) Collaboratory collects
the tools developed in the project in one place and allows
neuroscientists to organize their work into collaborative scientific
workspaces called collabs. It provides common web services and
a central web-based portal to access the simulation, analysis and
visualization software. A central web-accessible storage location
and provenance tracking for imported and generated data allow
to build on the work of others while making sure that prior work
is properly referenced and cited. Moreover, the Collaboratory
provides access to the BrainScaleS and SpiNNaker neuromorphic
hardware systems and to several European supercomputers, for
which users, however, have to provide their own compute time
grants.

The main interface to the underlying tools are Jupyter
notebooks, which can be used as collaborative workbenches
for Python-based scientific collaboration between different users
and teams of the system. In addition to interactive instruction,
automation and exploration, the notebooks are also used for
documentation and to allow neuroscientists to easily share ideas,
code and workflows. For live interaction, the system integrates a
web chat system.

In the context of the HBP Collaboratory, neuronal description
languages and code generation also serve as a means to isolate
users from the system in the sense that they can still provide
their own model specifications but do not require direct access
to compilers on the system. The generation of suitable source
code for the target system (i.e., supercomputers or neuromorphic
hardware systems) can be handled transparently behind the
scenes and the final model implementation can again be made
available to all users of the system. Getting access to the HBP
Collaboratory requires an HBP Identity Account, which can be
requested at https://collab.humanbrainproject.eu.

4. DISCUSSION
4.1. Summary

The focus of each of the different code generation approaches
presented in this article is defined by at least one scientific use
case and the supported target platforms. Due to the diversity of
requirements in computational neuroscience, it is obvious that
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there can’t be just a single solution which the community would
settle on. This review shows that many use cases have already
been covered to variable extents by existing tools, each working
well in the niche it was created for. As all of the reviewed software
packages and tools are available under open source licenses and
have active developer communities, it is often easier to extend the
existing solutions by support for new use cases instead of creating
new solutions from scratch. The following table summarizes the
main properties of the different tools:

multicompartment cells on CPU and GPGPU systems but only
provides two built-in solvers. The emphasis for Brian (section
2.1) is on the simplest possible user syntax and flexibility of the
code generation process (e.g., easily incorporating user-defined
functions).

One important use case of code generation in computational
neuroscience is the separation of users from the underlying
hardware system and corresponding libraries. The fact
that platform specific code is generated from a higher-level

Models

Platforms

Techniques

Brian (2.1)

GeNN (2.2)

Myriad (2.3)

NESTML (2.4)

NeuroML/LEMS (2.5)

NineML (2.6)

Point and multicompartmental neurons;
plastic and static synapse models

Models that can be defined by timestep
update code snippet; mostly point neurons
and synapses with local update rules
Compartmental neurons; arbitrary synapse
models

Point neurons

Point and multicompartmental neurons;
plastic and static synapse models
Models defined by a hybrid dynamical
system; mostly point neurons and

CPUs; GPUs via GeNN

GPUs and CPUs

CPUs; GPUs

CPUs via NEST

CPUs via NEURON and Brian;
SBML
CPUs via NEURON, NEST and
PyNN

AST transformations; Symbolic model
analysis; Code optimization

Direct code generation by a C++ program

Custom object models; AST
transformations

Custom grammar definitions; AST
transformations; model equation analysis
Procedural generation; template-based
generation; semantic model construction
symbolic analysis; template-based
generation

synapses with local update rules

NEURON/NMODL (2.7) Point and multicompartmental neurons;
plastic and static synapse models; linear
circuits; reaction-diffusion; extracellular
fields; spike and gap junction coupled

networks

SpineML (2.8) Models defined by a timestep update
code snippet; mostly point neurons and
synapses with local update rules; generic
inputs support compartments and

non-spiking components

SpiNNaker (2.9) Common point neuron models with either
static of plastic synapses
TVB-HPC (2.10) Neural mass models

CPUs; GPUs via CoreNEURON Custom grammar; parse tree

transformations; GUI Forms

CPU via BRAHMS and XSLT code templates and libSpineML

PyNN; GPU via GeNN and

Neuorkernel

SpiNNaker Hand crafted modular source code,
loaded through a complex mapping
process from a graph representation

CPUs; GPUs AST transformations

5. CONCLUSION

In order to integrate and test the growing body of data in
neuroscience, computational models have become increasingly
complex during recent years. To cope with this complexity
and unburden users from the task of manually creating
and maintaining model implementations, code generation has
become a popular approach. However, even though all code
generation pipelines presented in this article try to reduce the
users’ load, they differ considerably when it comes to which
aspects they simplify for the user. While, for example, NeuroML
(section 2.5) and NineML (section 2.6) aim for simulator
independence, and their associated code generation tools do
not at present perform heavy transformations on the equations
contained in a model specification, NESTML (section 2.4) targets
only NEST and analyzes the equations and tries to find the most
accurate and efficient solver for them. Myriad (section 2.3) on
the other hand has a focus on the automatic parallelization of

description instead of directly written by the user allows model
implementations to be generated for multiple simulators and
certain parts of the execution system to be exchanged without
any need for changes in the original model description. On
web-based science portals like the Open Source Brain or the
Human Brain Project Collaboratory (section 3) this aspect can
prevent the execution of arbitrary code by users, which increases
the overall security of the systems.
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