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Abstract
In this paper, we relate a beautiful theory by Lovász with a popular heuristic algorithm for
the graph isomorphism problem, namely the color refinement algorithm and its k-dimensional
generalization known as the Weisfeiler-Leman algorithm. We prove that two graphs G and H

are indistinguishable by the color refinement algorithm if and only if, for all trees T , the number
Hom(T,G) of homomorphisms from T to G equals the corresponding number Hom(T,H) for H.

There is a natural system of linear equations whose nonnegative integer solutions correspond
to the isomorphisms between two graphs. The nonnegative real solutions to this system are
called fractional isomorphisms, and two graphs are fractionally isomorphic if and only if the color
refinement algorithm cannot distinguish them (Tinhofer 1986, 1991). We show that, if we drop
the nonnegativity constraints, that is, if we look for arbitrary real solutions, then a solution to
the linear system exists if and only if, for all t, the two graphs have the same number of length-t
walks.

We lift the results for trees to an equivalence between numbers of homomorphisms from
graphs of tree width k, the k-dimensional Weisfeiler-Leman algorithm, and the level-k Sherali-
Adams relaxation of our linear program. We also obtain a partial result for graphs of bounded
path width and solutions to our system where we drop the nonnegativity constraints.

A consequence of our results is a quasi-linear time algorithm to decide whether, for two given
graphs G and H, there is a tree T with Hom(T,G) 6= Hom(T,H).
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1 Introduction

An old result due to Lovász [16] states a graph G can be characterized by counting homo-
morphisms from all graphs F to G. That is, two graphs G and H are isomorphic if and
only if, for all F , the number Hom(F,G) of homomorphisms from F to G equals the number
Hom(F,H) of homomorphism from F to H. This simple result has far reaching consequences,
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because mapping graphs G to their homomorphism vectors HOM(G) :=
(
Hom(F,G)

)
F graph

(or suitably scaled versions of these infinite vectors) allows us to apply tools from functional
analysis in graph theory. This is the foundation of the beautiful theory of graph limits,
developed by Lovász and others over the last 15 years (see [17]).

However, from a computational perspective, representing graphs by their homomorphism
vectors has the disadvantage that the problem of computing the entries of these vectors
is NP-complete. To avoid this difficulty, we may want to restrict the homomorphism vectors
to entries from a class of graphs for which counting homomorphisms is tractable. That
is, instead of considering the full homomorphism vector HOM(G) we consider the vector
HOMF (G) :=

(
Hom(F,G)

)
F∈F for a class F of graphs such that the problem of computing

Hom(F,G) for given graphs F ∈ F and G is in polynomial time. Arguably the most natural
example of such a class F is the class of all trees. More generally, computing Hom(F,G) for
given graphs F ∈ F and G is in polynomial time for all classes F of bounded tree width, and
under a natural assumption from parameterized complexity theory, it is not in polynomial
time for any class F of unbounded tree width [10]. This immediately raises the question
what the vector HOMF (G), for a class F of bounded tree width, tells us about the graph G.

A first nice example (Proposition 9) is that the vector HOMC(G) for the class C of all cycles
characterizes the spectrum of a graph, that is, for graphsG,H we have HOMC(G) = HOMC(H)
if and only if the adjacency matrices of G and H have the same eigenvalues with the same
multiplicities. This equivalence is a basic observation in spectral graph theory (see [23,
Lemma 1]). Before we state deeper results along these lines, let us describe a different
(though related) motivation for this research.

Determining the similarity between two graphs is an important problem with many
applications, mainly in machine learning, where it is known as “graph matching” (e.g. [9]).
But how can the similarity between graphs be measured? An obvious idea is to use the
edit distance, which simply counts how many edges and vertices have to be deleted from or
added to one graph to obtain the other. However, two graphs that have a small edit distance
can nevertheless be structurally quite dissimilar (e.g. [17, Section 1.5.1]). The edit distance
is also very hard to compute as it is closely related to the notoriously difficult quadratic
assignment problem (e.g. [3, 19]).

Homomorphism vectors offer an alternative, more structurally oriented approach to
measuring graph similarity. After suitably scaling the vectors, we can can compare them
using standard vector norms. This idea is reminiscent of the “graph kernels” used in machine
learning (e.g. [24]). Like the homomorphism vectors, many graph kernels are based on the
idea of counting certain patterns in graphs, such as paths, walks, cycles or subtrees, and in
fact any inner product on the homomorphism vectors yields a graph kernel.

A slightly different type of graph kernel is the so-called Weisfeiler-Leman (subtree) ker-
nel [20]. This kernel is derived from the color refinement algorithm (a.k.a. the 1-dimensional
Weisfeiler-Leman algorithm), which is a simple and efficient heuristic to test whether two
graphs are isomorphic (e.g. [11]). The algorithm computes a coloring of the vertices of a
graph based on the iterated degree sequences, we give the details in Section 3. To use it as
an isomorphism test, we compare the color patterns of two graphs. If they are different, we
say that color refinement distinguishes the graphs. If the color patterns of the two graphs
turn out to be the same, the graphs may still be non-isomorphic, but the algorithm fails to
detect this.

Whether color refinement is able to distinguish two graphs G and H has a very nice
linear-algebraic characterization due to Tinhofer [21, 22]. Let V andW be the vertex sets and
let A ∈ {0, 1}V×V and B ∈ {0, 1}W×W be the adjacency matrices of G and H, respectively.
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Now consider the system Fiso(G,H) of linear equations:

Fiso(G,H) :


AX = XB

X1W = 1V
1TVX = 1TW

(F1)
(F2)
(F3)

In these equations, X denotes a (V ×W )-matrix of variables and 1U denotes the all-1
vector over the index set U . Equations (F2) and (F3) simply state that all row and column
sums of X are supposed to be 1. Thus the nonnegative integer solutions to Fiso(G,H)
are permutation matrices, which due to (F1) describe isomorphisms between G and H.
The nonnegative real solutions to Fiso(G,H), which in fact are always rational, are called
fractional isomorphisms between G and H. Tinhofer proved that two graphs are fractionally
isomorphic if and only if color refinement does not distinguish them.

For every k ≥ 2, color refinement has a generalization, known as the k-dimensional
Weisfeiler-Leman algorithm (k-WL), which colors not the vertices of the given graph but
k-tuples of vertices. Atserias and Maneva [4] (also see [18]) generalized Tinhofer’s theorem by
establishing a close correspondence between k-WL and the level-k Sherali-Adams relaxation
of Fiso(G,H).

Our results
How expressive are homomorphism vectors HOMF (G) for restricted graph classes F ? We
consider the class T of trees first, where the answer is surprisingly clean.

I Theorem 1. For all graphs G and H, the following are equivalent:
i HOMT (G) = HOMT (H).
ii Color refinement does not distinguish G and H.
iii G and H are fractionally isomorphic, that is, the system Fiso(G,H) of linear equations

has a nonnegative real solution.

As mentioned before, the equivalence between ii and iii is due to Tinhofer [21, 22]. An
unexpected consequence of our theorem is that we can decide in time O((n+m) logn) whether
HOMT (G) = HOMT (H) holds for two given graphs G and H with n vertices and m edges.
(If two graphs have a different number of vertices or edges, then their homomorphism counts
already differ on the 1-vertex or 2-vertex trees.) This is remarkable, because every known
algorithm for computing the entry Hom(T,G) of the vector HOMT (G) requires quadratic
time when T and G are given as input.

It is a consequence of the proof of Theorem 1 that, in order to characterize an n-
vertex graph G up to fractional isomorphisms, it suffices to restrict the homomorphism
vector HOMT (G) to trees of height at most n− 1. What happens if we restrict the structure
of trees even further? In particular, let us restrict the homomorphism vector to its path
entries, that is, consider HOMP(G) for the class P of all paths. Figure 1 shows an example
of two graphs G and H with HOMP(G) = HOMP(H) and HOMT (G) 6= HOMT (H).

Despite their weaker distinguishing capabilities, the vectors HOMP(G) are quite inter-
esting. They are related to graph kernels based on counting walks, and they have a clean
algebraic description: it is easy to see that Hom(Pk, G), the number of homomorphisms
from the path Pk of length k to G, is equal to the number of length-k walks in G, which in
turn is equal to 1TAk1, where A is the adjacency matrix of G and 1 is the all-1 vector of
appropriate length.

ICALP 2018
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Figure 1 Two fractionally non-isomorphic graphs with the same path homomorphism counts.

I Theorem 2. For all graphs G and H, the following are equivalent:
i HOMP(G) = HOMP(H).
ii The system Fiso(G,H) of linear equations has a real solution.

While the proof of Theorem 1 is mainly graph-theoretic—we establish the equivalence
between the assertions i and ii by expressing the “colors” of color refinement in terms of
specific tree homomorphisms—the proof of Theorem 2 is purely algebraic. We use spectral
techniques, but with a twist, because neither does the spectrum of a graph G determine
the vector HOMP(G) nor does the vector determine the spectrum. This is in contrast
with HOMC(G) for the class C of all cycles, which, as we already mentioned, distinguishes
two graphs if and only if they have the same spectrum.

Let us now turn to homomorphism vectors HOMTk
(G) for the class Tk of all graphs

of tree width at most k. We will relate these to k-WL, the k-dimensional generalization
of color refinement. We also obtain a corresponding system of linear equations. Let G
and H be graphs with vertex sets V and W , respectively. Instead of variables Xvw for
vertex pairs (v, w) ∈ V ×W , as in the system Fiso(G,H), the new system has variables Xπ

for π ⊆ V ×W of size |π| ≤ k. We call π = {(v1, w1), . . . , (v`, w`)} ⊆ V ×W a partial
bijection if vi = vj ⇐⇒ wi = wj holds for all i, j, and we call it a partial isomorphism if
in addition vivj ∈ E(G) ⇐⇒ wiwj ∈ E(H) holds for all i, j. Now consider the following
system Lkiso(G,H) of linear equations:

Lkiso(G,H) :



∑
v∈V

Xπ∪{(v,w)} = Xπ for all π ⊆ V ×W of size
|π| ≤ k − 1 and all w ∈W∑

w∈W
Xπ∪{(v,w)} = Xπ for all π ⊆ V ×W of size

|π| ≤ k − 1 and all v ∈ V
Xπ = 0 for all π ⊆ V ×W of size |π| ≤ k

such that π is not a partial iso-
morphism from G to H

X∅ = 1

(L1)

(L2)

(L3)

(L4)

This system is closely related to the Sherali-Adams relaxations of Fiso(G,H): Every
solution for the level-k Sherali-Adams relaxation of Fiso(G,H) yields a solution to Lkiso(G,H),
and every solution to Lkiso(G,H) yields a solution to the level k− 1 Sherali-Adams relaxation
of Fiso(G,H) [4, 12]. Our result is this:

I Theorem 3. For all k ≥ 1 and for all graphs G and H, the following are equivalent:
i HOMTk

(G) = HOMTk
(H).

ii k-WL does not distinguish G and H.
iii Lk+1

iso (G,H) has a nonnegative real solution.
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The equivalence between ii and iii is implicit in previous work [14, 4, 12]. The sys-
tem Lkiso(G,H) has another nice interpretation related to the proof complexity of graph
isomorphism: it is shown in [7] that Lkiso(G,H) has a real solution if and only if a natural
system of polynomial equations encoding the isomorphisms between G and H has a degree-k
solution in the Hilbert Nullstellensatz proof system [6, 8]. In view of Theorem 2, it is
tempting to conjecture that the solvability of Lk+1

iso (G,H) characterizes the expressiveness
of the homomorphism vectors HOMPk

(G) for the class Pk of all graphs of path width k.
Unfortunately, we only prove one direction of this conjecture.

I Theorem 4. Let k be an integer with k ≥ 2 and let G,H be graphs. If Lk+1
iso (G,H) has a

real solution, then HOMPk
(G) = HOMPk

(H).

Combining this theorem with a recent result from [13] separating the nonnegative from
arbitrary real solutions of our systems of equations, we obtain the following corollary.

I Corollary 5. For every k, there are graphs G and H with HOMPk
(G) = HOMPk

(H) and
HOMT2(G) 6= HOMT2(H).

2 Preliminaries

Basics. Graphs in this paper are simple, undirected, and finite (even though our results
transfer to directed graphs and even to weighted graphs). For a graph G, we write V (G) for
its vertex set and E(G) for its edge set. For v ∈ V (G), the set of neighbors of v are denoted
with NG(v). For S ⊆ V (G), we denote with G[S] the subgraph of G induced by the vertices
of S. A rooted graph is a graph G together with a designated root vertex r(G) ∈ V (G). We
write multisets using the notation {{1, 1, 6, 2}}.

Matrices. An LU -decomposition of a matrix A consists of a lower triangular matrix L and
an upper triangular matrix U such that A = LU holds. Every finite matrix A over R has an
LU -decomposition. We also use infinite matrices over R, which are functions A : I × J → R
where I and J are locally finite posets and countable. The matrix product AB is defined
in the natural way via (AB)ij =

∑
k AikBkj if all of these inner products are finite sums,

and otherwise we leave it undefined. An n× n real symmetric matrix has real eigenvalues
and a corresponding set of orthogonal eigenspaces. The spectral decomposition of a real
symmetric matrixM is of the formM = λ1P1 + · · ·+λlPl where λ1, . . . , λl are the eigenvalues
of M with corresponding eigenspaces W1, . . . ,Wl. Moreover, each Pj is the projection matrix
corresponding to the projection onto the eigenspaceWj . Usually, Pj is expressed as Pj = UUT

for a matrix U whose columns form an orthonormal basis of Wj .

Homomorphism numbers. Recall that a mapping h : V (F )→ V (G) is a homomorphism if
h(e) ∈ E(G) holds for all e ∈ E(F ) and that Hom(F,G) is the number of homomorphisms
from F to G. Let Surj(F,G) be the number of homomorphisms from F to G that are
surjective on both the vertices and edges of G. Let Inj(F,G) be the number of injective
homomorphisms from F to G. Let Sub(F,G) = Inj(F,G)/Aut(F ), where Aut(F ) is the
number of automorphisms of F . Observe that Sub(F,G) is the number of subgraphs of G
that are isomorphic to F . Where convenient, we view the objects Hom, Surj, and Inj as
infinite matrices; the matrix indices are all unlabeled graphs, sorted by their size. However,
we only use one representative of each isomorphism class, called the isomorphism type of
the graphs in the class, as an index in the matrix. Then Surj is lower triangular and Inj is
upper triangular, so Hom = Surj · Sub is an LU-decomposition of Hom. Finally, Ind(F,G) is

ICALP 2018
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the number of times F occurs as an induced subgraph in G. Similarly to the homomorphism
vectors HOMF (G) we define vectors INJF (G) and INDF (G). Finally, let G,H be rooted
graphs. A homomorphism from G to H is a graph homomorphism that maps the root of G
to the root of H. Moreover, two rooted graphs are isomorphic if there is an isomorphism
mapping the root to the root.

3 Homomorphisms from trees

3.1 Color refinement and tree unfolding
Color refinement iteratively colors the vertices of a graph in a sequence of refinement rounds.
Initially, all vertices get the same color. In each refinement round, any two vertices v and w
that still have the same color get different colors if there is some color c such that v and w
have a different number of neighbors of color c; otherwise they keep the same color. We
stop the refinement process if the vertex partition that is induced by the colors does not
change anymore, that is, all pairs of vertices that have the same color before the refinement
round still have the same color after the round. More formally, we define the sequence
CG0 , C

G
1 , C

G
2 , . . . of colorings as follows. We let CG0 (v) = 1 for all v ∈ V (G), and for i ≥ 0

we let CGi+1(v) = {{CGi (u) : u ∈ NG(v) }}. We say that color refinement distinguishes two
graphs G and H if there is an i ≥ 0 with

{{CGi (v) : v ∈ V (G) }} 6= {{CHi (v) : v ∈ V (H) }} . (1)

We argue now that the color refinement algorithm implicitly constructs a tree at v
obtained by simultaneously taking all possible walks starting at v (and not remembering
nodes visited in the past). For a rooted tree T with root r, a graph G, and a vertex v ∈ V (G),
we say that T is a tree at v if there is a homomorphism f from T to G such that f(r) = v and,
for all non-leaves t ∈ V (T ), the function f induces a bijection between the set of children
of t in in T and the set of neighbors of f(t) in G. In other words, f is a homomorphism
from T to G that is locally bijective. If T is an infinite tree at v and does not have any leaves,
then T is uniquely determined up to isomorphisms, and we call this the infinite tree at v (or
the tree unfolding of G at v), denoted with T (G, v). For an infinite rooted tree T , let T≤d be
the finite rooted subtree of T where all leaves are at depth exactly d. For all finite trees T
of depth d, define Cr(T,G) ∈ {0, . . . , |V (G)|} to be the number of vertices v ∈ V (G) for
which T is isomorphic to T (G, v)≤d. Note that this number is zero if not all leaves of T are
at the same depth d or if some node of T has more than n− 1 children. The CR-vector of G
is the vector CR(G) = (Cr(T,G))T∈Tr

, where Tr denotes the family of all rooted trees. The
following connection between the color refinement algorithm and the CR-vector is known.

I Lemma 6 (Angluin [2], also see Krebs and Verbitsky [15, Lemma 2.5]). For all graphs G
and H, color refinement distinguishes G and H if and only if CR(G) 6= CR(H) holds.

3.2 Proof of Theorem 1
Throughout this section, we work with rooted trees. For a rooted tree T and an (unrooted)
graph G, we simply let Hom(T,G) be the number of homomorphisms of the plain tree
underlying T to G, ignoring the root.

Let T and T ′ be rooted trees. A homomorphism h from T to T ′ is depth-preserving if, for
all vertices v ∈ V (T ), the depth of v in T is equal to the depth of h(v) in T ′. Moreover, a
homomorphism h from T to T ′ is depth-surjective if the image of T under h contains vertices
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at every depth present in T ′. We define
−−→
Hom(T, T ′) as the number of homomorphisms from T

to T ′ that are both depth-preserving and depth-surjective. Note that
−−→
Hom(T, T ′) = 0 holds

if and only if T and T ′ have different depths.

I Lemma 7. Let T be a rooted tree and let G be a graph. We have

Hom(T,G) =
∑
T ′

−−→
Hom(T, T ′) · Cr(T ′, G) , (2)

where the sum is over all unlabeled rooted trees T ′. In other words, the matrix identity
Hom =

−−→
Hom · Cr holds.

Proof. Let d be the depth of T and let r be the root of T . Every T ′ with
−−→
Hom(T, T ′) 6= 0

has depth d too and there are at most n non-isomorphic rooted trees T ′ of depth d with
Cr(T ′, G) 6= 0. Thus the sum in (2) has only finitely many non-zero terms and is well-defined.

For a rooted tree T ′ and a vertex v ∈ V (G), let H(T ′, v) be the set of all homomorphisms h
from T to G such that h(r) = v holds and the tree unfolding T (G, v)≤d is isomorphic to T ′.
Let H(T ′) =

⋃
v∈V (G) H(T ′, v) and observe |H(T ′, v)| =

−−→
Hom(T, T ′). Since Cr(T ′, G) is the

number of v ∈ V (G) with T (G, v)≤d ∼= T ′, we thus have |H(T ′)| =
−−→
Hom(T, T ′) · Cr(T ′, G).

Since each homomorphism from T to G is contained in exactly one set H(T ′), we obtain the
desired equality (2). J

For rooted trees T and T ′, let
−−→
Surj(T, T ′) be the number of depth-preserving and surjective

homomorphisms from T to T ′. In particular, not only do these homomorphisms have to
be depth-surjective, but they should hit every vertex of T ′. For rooted trees T and T ′ of
the same depth, let

−−→
Sub(T, T ′) be the number of subgraphs of T ′ that are isomorphic to T

(under an isomorphism that maps the root to the root); if T and T ′ have different depths,
we set

−−→
Sub(T, T ′) = 0.

I Lemma 8.
−−→
Hom =

−−→
Surj ·

−−→
Sub is an LU-decomposition of

−−→
Hom, and

−−→
Surj and

−−→
Sub are

invertible.

As is the case for finite matrices, the inverse of a lower (upper) triangular matrix is
lower (upper) triangular. As the matrix

−−→
Surj is lower triangular and the matrix

−−→
Sub is upper

triangular, their inverses are as well. We are ready to prove our first main theorem.

Proof of Theorem 1. We only need to prove the equivalence between assertions i and ii.
For every graph G, let HOMr(G) :=

(
Hom(T,G)

)
T∈Tr

. By our convention that for a rooted
tree T and an unrooted graph G we let Hom(T,G) be the number of homomorphisms of
the plain tree underlying T to G, for all G and H we have HOMr(G) = HOMr(H) ⇐⇒
HOM(G) = HOM(H). By Lemma 6, it suffices to prove for all graph G,H that

CR(G) = CR(H) ⇐⇒ HOMr(G) = HOMr(H) . (3)

We view the vectors HOMr(G) and CR(G) as infinite column vectors. By Lemma 7, we have

HOMr(G) =
−−→
Hom · CR(G) and HOMr(H) =

−−→
Hom · CR(H) . (4)

The forward direction of (3) now follows immediately.
It remains to prove the backward direction. Since

−−→
Hom =

−−→
Surj ·

−−→
Sub holds by Lemma 8

for two invertible matrices
−−→
Surj and

−−→
Sub, we can first left-multiply with

−−→
Surj−1 to obtain the

equivalent identities
−−→
Surj−1 · HOMr(G) =

−−→
Sub · CR(G) and

−−→
Surj−1 · HOMr(H) =

−−→
Sub · CR(H) . (5)

ICALP 2018
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Now suppose HOMr(G) = HOMr(H) holds, and set v = HOMr(G). Then
−−→
Surj−1 · v is

well-defined, because
−−→
Surj and its inverse are lower triangular. Thus we obtain

−−→
Sub ·CR(G) =

−−→
Sub ·CR(H) and set w = CR(G). Unfortunately,

−−→
Sub−1 ·w may be undefined, since

−−→
Sub−1 is

upper triangular. While we can still use a matrix inverse, the argument becomes a bit subtle.
The crucial observation is that Cr(T ′, G) is non-zero for at most n different trees T ′, and all
such trees have maximum degree at most n− 1. Thus we do not need to look at all trees
but only those with maximum degree n. Let T̃ be the set of all unlabeled rooted trees of
maximum degree at most n. Let CR′ = CR |T̃ , let w′ = w|T̃ , and let

−−→
Sub′ =

−−→
Sub|T̃ ×T̃ . Then

we still have the following for all T ∈ T̃ and G:

w′T =
∑
T ′∈T̃

−−→
Sub′(T, T ′) · Cr′(T ′, G) . (6)

The new matrix
−−→
Sub′ is a principal minor of

−−→
Sub and thus remains invertible. Moreover,−−→

Sub′−1 ·w′ is well-defined, since∑
T ′∈T̃

−−→
Sub′−1(T, T ′) ·w′T ′ (7)

is a finite sum for each T : The number of (unlabeled) trees T ′ ∈ T̃ that have the same
depth d as T is bounded by a function in n and d. Thus

−−→
Sub′−1 · w′ = CR′(G). By a

similar argument, we obtain
−−→
Sub′−1 ·w′ = CR′(H). This implies CR′(G) = CR′(H) and thus

CR(G) = CR(H). J

4 Homomorphisms from cycles and paths

While the arguments we saw in the proof of Theorem 1 are mainly graph-theoretic, the
proof of Theorem 2 uses spectral techniques. To introduce the techniques, we first prove a
simple, known result already mentioned in the introduction. We call two square matrices
co-spectral if they have the same eigenvalues with the same multiplicities, and we call two
graphs co-spectral if their adjacency matrices are co-spectral.

I Proposition 9 (e.g. [23, Lemma 1]). Let C be the class of all cycles (including the
degenerate cycle of length 0, which is just a single vertex). For all graphs G and H, we have
HOMC(G) = HOMC(H) if and only if G and H are co-spectral.

For the proof, we review a few simple facts from linear algebra. The trace tr(A) of a
square matrix A ∈ Rn×n is the sum of the diagonal entries. If the eigenvalues of A are
λ1, . . . , λn, then tr(A) =

∑n
i=1 λi. Moreover, for each ` ≥ 0 the eigenvalues of the matrix A`

are λ`1, . . . , λ`n, and thus tr(A`) =
∑n
i=1 λ

`
i . The following technical lemma encapsulates the

fact that the information tr(A`) for all ` ∈ N suffices to reconstruct the spectrum of A with
multiplicities. We use the same lemma to prove Theorem 2, but for Proposition 9 a less
general version would suffice.

I Lemma 10. Let X,Y ⊆ R be two finite sets and let c ∈ RX
6=0 and d ∈ RY

6=0 be two vectors.
If the equation∑

x∈X
cxx

` =
∑
y∈Y

dyy
` (8)

holds for all ` ∈ N, then X = Y and c = d.
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Proof. We prove the claim by induction on k := |X|+ |Y |. For k = 0, the claim is trivially
true since both sums in (8) are equal to zero by convention.

Let x̂ = arg max{ |x| : x ∈ X∪Y } and let x̂ ∈ X without loss of generality. If x̂ = 0, then
X = {0} and we claim that Y = {0} holds. Clearly (8) for ` = 0 yields 0 6= c0 =

∑
y∈Y dy.

In particular, Y 6= ∅ holds. Since x̂ = 0 is the maximum of X ∪ Y in absolute value, we
have Y = {0} and thus also c = d.

Now suppose that x̂ 6= 0 holds. We consider the sequences (a`)`∈N and (b`)`∈N with

a` = 1
x̂`
·
∑
x∈X

cxx
` and b` = 1

x̂`
·
∑
y∈Y

dyy
` . (9)

Note that a` = b` holds for all ` ∈ N by assumption. Observe the following simple facts:
1) If −x̂ 6∈ X, then lim`→∞ a` = cx̂.
2) If −x̂ ∈ X, then lim`→∞ a2` = cx̂ + c−x̂ and lim`→∞ a2`+1 = cx̂ − c−x̂.
As well as the following exhaustive case distinction for Y :
a) If x̂,−x̂ 6∈ Y , then lim`→∞ b` = 0.
b) If x̂ ∈ Y and −x̂ 6∈ Y , then lim`→∞ b` = dx̂.
c) If x̂ 6∈ Y and −x̂ ∈ Y , then lim`→∞ b2` = d−x̂ and lim`→∞ b2`+1 = −d−x̂.
d) If x̂,−x̂ ∈ Y , then lim`→∞ b2` = dx̂ + d−x̂ and lim`→∞ b2`+1 = dx̂ − d−x̂.
If −x̂ 6∈ X holds, we see from 1) that a` converges to the non-zero value cx̂. Since the two
sequences are equal, the sequence b` also converges to a non-zero value. The only case for Y
where this happens is b), and we get x̂ ∈ Y , −x̂ 6∈ Y , and cx̂ = dx̂. On the other hand,
if −x̂ ∈ X, we see from 2) that a` does not converge, but the even and odd subsequences do.
The only cases for Y where this happens for b` too are c) and d). We cannot be in case c),
since the two accumulation points of b` just differ in their sign, while the two accumulation
points of a` do not have the same absolute value. Thus we must be in case d) and obtain
x, x̂ ∈ Y as well as

cx̂ + c−x̂ = dx̂ + d−x̂ and cx̂ − c−x̂ = dx̂ − d−x̂ .

This linear system has full rank and implies cx̂ = dx̂ and c−x̂ = d−x̂.
Either way, we can remove {x̂} or {x̂,−x̂} from both X and Y and apply the induction

hypothesis on the resulting instance X ′, Y ′, c′, d′. Then (X, c) = (Y, d) follows as claimed. J

Proof of Proposition 9. For all ` ≥ 0, the number of homomorphisms from the cycle C` of
length ` to a graph G with adjacency matrix A is equal to the number of closed length-`
walks in G, which in turn is equal to the trace of A`. Thus for graphs G,H with adjacency
matrices A,B, we have HOMC(G) = HOMC(H) if and only if tr(A`) = tr(B`) holds for
all ` ≥ 0.

If A and B have the same spectrum λ1, . . . , λn, then tr(A`) = λ`1 + · · ·+λ`n = tr(B`) holds
for all ` ∈ N. For the reverse direction, suppose tr(A`) = tr(B`) for all ` ∈ N. Let X ⊆ R
be the set of eigenvalues of A and for each λ ∈ X, let cλ ∈ {1, . . . , n} be the multiplicity
of the eigenvalue λ. Let Y ⊆ R and dλ for λ ∈ Y be the corresponding eigenvalues and
multiplicities for B. Then for all ` ∈ N, we have∑

λ∈X

cλλ
` = tr(A`) = tr(B`) =

∑
λ∈Y

dλλ
` .

By Lemma 10, this implies (X, c) = (Y, d), that is, the spectra of A and B are identical. J

In the following example, we show that the vectors HOMC for the class C of cycles and
HOMT for the class T of trees are incomparable in their expressiveness.

ICALP 2018
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Figure 2 Two co-spectral graphs

I Example 11. The graphs G and H shown in Figure 2 are co-spectral and thus HOMC(G) =
HOMC(H), but it is easy to see that HOMP(G) 6= HOMP(H) for the class P of all paths.

Let G′ be a cycle of length 6 and H ′ the disjoint union of two triangles. Then obviously,
HOMC(G′) 6= HOMC(H ′). However, color refinement does not distinguish G′ and H ′ and
thus HOMT (G′) = HOMT (H ′).

Let us now turn to the proof of Theorem 2.

Proof of Theorem 2. Let A and B be the adjacency matrices of G and H, respectively.
Since A is a symmetric and real matrix, its eigenvalues are real and the corresponding
eigenspaces are orthogonal and span Rn. Let 1 be the n-dimensional all-1 vector, and
let X = {λ1, . . . , λk} be the set of all eigenvalues of A whose corresponding eigenspaces are
not orthogonal to 1. We call these eigenvalues the useful eigenvalues of A and without loss of
generality assume λ1 > · · · > λk. The n-dimensional all-1 vector 1 can be expressed as a direct
sum of eigenvectors of A corresponding to useful eigenvalues. In particular, there is a unique
decomposition 1 =

∑k
i=1 ui such that each ui is a non-zero eigenvector in the eigenspace

of λi. Moreover, the vectors u1, . . . , uk are orthogonal. For the matrix B, we analogously
define its set of useful eigenvalues Y = {µ1, . . . , µk′} and the direct sum 1 =

∑k′

i=1 vi.
We prove the equivalence of the following three assertions (of which the first and third

appear in the statement of Theorem 2).
1. HOMP(G) = HOMP(H).
2. A and B have the same set of useful eigenvalues λ1, . . . , λk and ‖ui‖ = ‖vi‖ holds for

all i ∈ {1, . . . , k}. Here, ‖.‖ denotes the Euclidean norm with ‖x‖2 =
∑
j x

2
j .

3. The system Fiso(G,H) of linear equations has a real solution.
Note that in 2, we do not require that the useful eigenvalues occur with the same multiplicities
in A and B. We show the implications (1 ⇒ 2), (2 ⇒ 3), and (3 ⇒ 1).

(1 ⇒ 2): Suppose that Hom(P`, G) = Hom(P`, H) holds for all paths P`. Equivalently,
this can be stated in terms of the adjacency matrices A and B: for all ` ∈ N, we have
1TA`1 = 1TB`1. We claim that A and B have the same useful eigenvalues, and that the
projections of 1 onto the corresponding eigenspaces have the same lengths.

Note that A`1 =
∑k
i=1 λ

`
iui holds. Thus we have

1TA`1 =
(

k∑
i=1

uTi

)(
k∑
i=1

λ`iui

)
=

k∑
i=1
‖ui‖2 · λ`i . (10)

The term 1TB`1 can be expanded analogously, which together yields

k∑
i=1
‖ui‖2 · λ`i =

k′∑
i=1
‖vi‖2 · µ`i for all ` ∈ N. (11)
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Since all coefficients cλi = ‖ui‖2 and dµi = ‖vi‖2 are non-zero, we are in the situation of
Lemma 10. We obtain k = k′ and, for all i ∈ {1, . . . , k}, we obtain λi = µi and ‖ui‖ = ‖vi‖.
This is exactly the claim that we want to show.

(2 ⇒ 3): We claim that the (n× n)-matrix X defined via

X =
k∑
i=1

1
‖ui‖2 · uiv

T
i (12)

satisfies the Fiso equations AX = XB and X1 = 1 = XT1. Indeed, we have

AX =
k∑
i=1

1
‖ui‖2 ·Auiv

T
i =

k∑
i=1

λi
‖ui‖2 · uiv

T
i =

k∑
i=1

1
‖ui‖2 · uiv

T
i B

T = XBT = XB , (13)

This follows, since Aui = λiui, Bvi = λivi, and B is symmetric. Moreover, we have

X1 =
k∑
i=1

1
‖ui‖2 ·Auiv

T
i 1 =

k∑
i=1

1
‖ui‖2 · uiv

T
i

k∑
j=1

vj =
k∑
i=1

1
‖ui‖2 · ui · v

T
i vi = 1 . (14)

This holds by definition of ui and vi and from vTi vi = ‖vi‖2 = ‖ui‖2. The claim XT1 = 1
follows analogously.

(3 ⇒ 1): Suppose there is a matrix X with XT1 = X1 = 1 and AX = XB. We
obtain A`X = XB` by induction for all ` ∈ N>0. For ` = 0, this also holds since
A0 = In by convention. As a result, we have 1TA`1 = 1TA`X1 = 1TXB`1 = 1TB`1
for all ` ∈ N. Since these scalars count the length-` walks in G and H, respectively, we
obtain Hom(P`, G) = Hom(P`, H) for all paths P` as claimed. J

5 Homomorphisms from bounded tree width and path width

We briefly outline the main ideas of the proofs of Theorems 3 and 4; the technical details are
deferred to the full version of this paper. In Theorem 3, the equivalence between ii and iii is
essentially known, so we focus on the equivalence between i and ii. The proof is similar to
the proof of Theorem 1 in Section 3.

Let us fix k ≥ 2. The idea of the k-WL algorithm is to iteratively color k-tuples of vertices.
Initially, each k-tuple (v1, . . . , vk) is colored by its atomic type, that is, the isomorphism type
of the labeled graph G[{v1, . . . , vk}]. Then in the refinement step, to define the new color of
a k-tuple v̄ we look at the current color of all k-tuples that can be reached from k by adding
one vertex and then removing one vertex.

Similar to the tree unfolding of a graph G at a vertex v, we define the Weisfeiler-Leman
tree unfolding at a k-tuple v̄ of vertices. These objects have some resemblance to the pebbling
comonad, which was defined by Abramsky, Dawar, and Wang [1] in the language of category
theory. The WL-tree unfolding describes the color of v̄ computed by k-WL; formally it may be
a viewed as a pair (T, F ) consisting of a graph F together with a “rooted” tree decomposition
(potentially infinite, but again we cut it off at some finite depth). Similar to the numbers
Cr(T,G) and the vector CR(G), we now have numbers WL((T, F ), G) and a vector WL(G)
such that WL(G) = WL(H) holds if and only if k-WL does not distinguish G and H. Then
we define a linear transformation Φ with HOMTk

(G) = ΦWL(G). The existence of this linear
transformation directly yields the implication ii =⇒ i of Theorem 3. To prove the converse,
we show that the transformation Φ is invertible by giving a suitable LU -decomposition of
full rank. This completes our sketch of the proof of Theorem 3.
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The proof of Theorem 4 requires a different argument, because now we have to use a
solution (Xπ) of the system Lk+1

iso (G,H) to prove that the path width k homomorphism
vectors HOMPk

(G) and HOMPk
(H) are equal. The key idea is to express entries of a suitable

variant of HOMPk
(G) as a linear combinations of entries of the corresponding vector for H

using the values Xπ as coefficients.

6 Conclusions

We have studied the homomorphism vectors HOMF (G) for various graph classes F , focusing
on classes F where it is tractable to compute the entries Hom(F,G) of the vector. Our main
interest was in the “expressiveness” of these vectors, that is, in the question what HOMF (G)
tells us about the graph G. For the classes C of cycles, T of trees, Tk of graphs of tree width
at most k, and P of paths, we have obtained surprisingly clean answers to this question,
relating the homomorphism vectors to various other well studied formalisms that on the
surface have nothing to do with homomorphism counts.

Some interesting questions remain open. The most obvious is whether the converse of
Theorem 4 holds, that is, whether for two graphs G, H with HOMPk

(G) = HOMPk
(H), the

system Lk+1
iso (G,H) has a real solution (and hence the Nullstellensatz propositional proof

system has no degree-(k + 1) refutation of G and H being isomorphic).
Another related open problem in spectral graph theory is to characterize graphs which

are identified by their spectrum, up to isomorphism. In our framework, Proposition 9 ensures
that we can equivalently ask for the following characterization: for which graphs G does the
vector HOMC(G) determine the entire homomorphism vector HOM(G)?

Despite the computational intractability, it is also interesting to study the vectors
HOMF (G) for classes F of unbounded tree width. Are there natural classes F (except
of course the class of all graphs) for which the vectors HOMF (G) characterize G up to
isomorphism? For example, what about classes of bounded degree or the class of planar
graphs? And what is the complexity of deciding whether HOMF (G) = HOMF (H) holds
when G and H are given as input? Our results imply that this problem is in polynomial time
for the classes T , Tk, and P. For the class of all graphs, it is in quasi-polynomial time by
Babai’s quasi-polynomial isomorphism test [5]. Yet it seems plausible that there are classes F
(even natural classes decidable in polynomial time) for which the problem is co-NP-hard.

Maybe the most interesting direction for further research is to study the graph similarity
measures induced by homomorphism vectors. A simple way of defining an inner product on
the homomorphism vectors is by letting

〈
HOMF (G),HOMF (H)

〉
:=

∑
k≥1
Fk 6=∅

1
kk|Fk|

∑
F∈Fk

Hom(F,G)Hom(F,H),

where Fk denotes the class of all graph F ∈ F with k vertices. The mapping (G,H) 7→
〈HOMF (G),HOMF (H)〉 is what is known as a graph kernel in machine learning. It induces
a (pseudo)metric dT on the class of graphs. It is an interesting question how it relates to
other graph similarity measures, for example, the metric induced by the Weisfeiler-Leman
graph kernel. Our Theorem 1 implies that the metric dT for the class T of trees and the
metric induced by the Weisfeiler-Leman graph kernel have the same graphs of distance zero.
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