Application of Hierarchical Matrices For Solving
Multiscale Problems

Von der Fakultat fiir Mathematik und Informatik
der Universitat Leipzig
angenomiene

DISSERTATION

zur Erlangung des akademischen Grades
DOCTOR RERUM NATURALIUM
(Dr. rer. nat.)

im Fachgebiet

Numerische Mathematik

vorgelegt

von Diplommathematiker Alexander Litvinenko

geboren am 31.08.1979 in Almaty, Kasachstan

Die Annahme der Dissertation haben empfohlen:
1. Prof. Dr. Dr. h.c. Wolfgang Hackbusch (MPIMN Leipzig)
2. Prof. Dr. Ivan G. Graham (University Bath, UK)
3. Prof. Dr. Sergey Rjasanov (Universitit des Saarlandes)

Die Verleihung des akademischen Grades erfolgt auf Beschluss
des Rates der Fakultéat fiir Mathematik und Informatik
vom 20.11.2006 mit dem Gesamtpradikat cum laude.

Acknowledgement

I would like to thank the following people:

e Prof. Dr. Dr. h.c. Wolfgang Hackbusch for inviting me to the Max Planck In-
stitute for Mathematics in the Sciences in Leipzig, for the very modern theme,
for his ideas and for obtaining financial support. I am thankful for his enjoy-
able lecture courses: “Elliptic Differential Equations”, “Hierarchical Matrices”
and “Iterative Solution of Large Sparse Systems of Equations”. These courses
were very useful during my work.

e PD DrSci. Boris N. Khoromskij (PhD) for his supervisory help at all stages
of my work, for useful corrections and fruitful collaboration in certain applica-
tions, and also for his inspiring lecture courses “Data-Sparse Approximation
of Integral Operators” and “Introduction to Structured Tensor-Product Rep-
resentation”.

e Dr. Lars Grasedyck and Dr. Steffen Borm for their patience in explaining the
‘H-matrix technique and details of HLIB,

e Dr. Ronald Kriemann for his advice in programming,

e Prof. Dr. Dr. h.c. Wolfgang Hackbusch, Prof. Dr. Ivan G. Graham (Uni-
versity of Bath, England) and Prof. Dr. Sergey Rjasanov (Universitit des
Saarlandes, Germany) for agreeing to referee this thesis.

This PhD work was done in the Max Planck Institute for Mathematics in the
Sciences. I am deeply appreciative of the help of Mrs. Herrmann, Mrs. Hiinniger
and Mrs. Rackwitz from the personnel department of the institute. I am equally
grateful to the DFG fond for the program “Analysis, Modelling and Simulation of
Multiscale problems”.

I would like to thank all my colleagues and friends Mike Espig, Isabelle Greff, Lehel
Banjai, Petya Staykova, Alexander Staykov, Michail Perepelitsa, Graham Smith and
all the others for making my time in Leipzig so enjoyable.

Particular thanks go to Henriette van Iperen for her moral support and the count-
less hours spent correcting the English version of this text.

And last, but certainly not least I would like to thank my wife for her unfailing,
loving support during all these years.

Contents

1 Introduction

2 Multiscale Problems and Methods for their Solution

Introduction
2.2 Multiscale Methods
2.3 Applications

2.1

3 Classical Theory of the FE Method
3.1 Sobolev Spaces

3.2
3.3
3.4
3.5

3.1.1
3.1.2

Spaces L(§2)
Spaces H*(Q), HY(Q) and H7YQ)

Variational Formulation
Inhomogeneous Dirichlet Boundary Conditions
Ritz-Galerkin Discretisation Method
FE Method

3.5.1
3.5.2

Linear Finite Elements for Q C R?
Error Estimates for Finite Element Methods

4 Hierarchical Domain Decomposition Method

Introduction
4.2 1Idea of the HDD Method

4.1

4.3

4.4

4.2.1
4.2.2
4.2.3

Mapping ®, = (®,®/) L.
Mapping ¥, = (09, WSy
®, and ¥, in terms of the Schur Complement Matrix

Construction Process,

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

Initialisation of the Recursion
The Recursion
Building of Matrices ¥, and ®,, from ¥,, and ¥,,
Algorithm “Leaves to Root”
Algorithm “Root to Leaves”
HDDon Two Grids

Modifications of HDD

4.4.1
4.4.2
4.4.3
4.44
4.4.5
4.4.6
4.4.7

Truncation of Small Scales
Two-Grid Modification of the Algorithm “Leaves to Root”

HDD on two grids and with Truncation of Small Scales
Repeated Patterns00
Fast Evaluation of Functionals
Functional for Computing the Mean Value
Solution in a Subdomain

-5-

Contents

4.4.8 Homogeneous Problems 58
5 Hierarchical Matrices 59
5.1 Introduction 59
5.2 Notation 60
5.3 'H-Matrix for an Elliptic Boundary Value Problem. 60
5.4 Building of H-Matrices 60
5.4.1 Cluster Tree 61
5.4.2 Block Cluster Tree 63
5.5 Admissibility 64
5.5.1 Standard Admissibility Condition (Adm,) 64
5.5.2 Weak Admissibility Condition (Admyw) 65
5.6 Low-rank Matrix Format, .. 68
5.7 Hierarchical Matrix Format 71
5.8 Filling of Hierarchical Matrices 73
5.8.1 H-Matrix Approximation of BEM Matrix 73
5.8.2 "H-Matrix Approximation of FEM Matrix 74
5.8.3 Building of an H-Matrix from other H-Matrices 74
5.9 Arithmetics of Hierarchical Matrices 74
5.9.1 Matrix - Vector Multiplication 7
5.9.2 Matrix - Matrix Multiplication 7
5.9.3 Hierarchical Approximation %" 7
5.9.4 “H-Matrix Inversion L. 79
5.9.5 Other Operations With an H-Matrix 80
5.9.6 Extracting a Part of an H-Matrix 80
5.9.7 Matrix - Matrix Conversion 82
5.9.8 Adding Two H-Matrices With Different Block Cluster Trees . 85
5.10 Complexity Estimates 85
6 Application of 7{-matrices to HDD 91
6.1 Notation and Algorithm 91
6.2 Algorithm of Applying H-Matrices 92
6.3 Hierarchical Construction on Incompatible Index Sets 98
6.3.1 Building (¥%)" from (P9)" and (09)" 98
6.3.2 Building (¥/)" from (W])" and (U7)" 105
7 Complexity and Storage Requirement of HDD 111
7.1 Notation and Auxiliary Lemmas 111
7.2 Complexity of the Recursive Algorithm ”Leaves to Root” 115
7.3 Complexity of the Recursive Algorithm ”Root to Leaves” 117
7.4 Modifications of the HDD Method 120
7.4.1 HDD with Truncation the Small Scales - Case (b) 120
7.4.2 HDD on Two Grids- Case (¢) 123
7.4.3 HDD on Two Grids and with Truncation of Small Scales -
Case (d) oo 124
8 Parallel Computing 125

Contents

8.1 Introduction 125
8.2 Parallel Algorithms for H-Matrix Arithmetics 126
8.3 Parallel Complexity of the HDD Method 129
8.3.1 Complexity of the Algorithm “Leaves to Root” 129
8.3.2 Complexity of Algorithm “Root to Leaves” 132
9 Implementation of the HDD package 135
9.1 Data Structureso 135
9.2 Implementation of the Hierarchy of Grids 137
9.3 Implementation of the HDD Method 140
94 Conclusion 144
10 Numerical Results 145
10.1 Notation o 145
10.2 Preconditioned Conjugate Gradient Method 147
10.3 Smooth Coefficients 150
10.4 Oscillatory Coefficients 152
10.5 Comparison of HDD With H-Matrix Inverse and Inverse by Cholesky
Decompositiono Lo 157
10.6 Memory Requirements for ®9 and & 160
10.7 Approximation of ®9 and ® 161
10.8 Jumping Coefficientso oL 162
10.9 Skin Problem 164
10.10 Problems With Many Right-Hand Sides 168
10.11 Computing the Functionals of the Solution 169
10.11.1 Computing the Mean Valueinw € Ty, 169
10.12 Conclusion to Numerics 171
11 Appendix 173
Bibliography 177

Notation

O w
091, Ow
r

Yoy Y
5o ()
f

h, H

H (), HY(Q)
1,7

L

A

h

Ly, A
LOO

L2

o()

R, R,
supp f
u

Up

C

Vi

091, Ow
A
()2
RAEIS)
[P

|+ [loo

TIaTJ

TI><J

H7 H(TIXJak)
A—H

R(k,n,m)
®,6,0
Dk, Ok, Ok
Pn_y
a(z)

Fn, Fu
Gu

d

v

polygonal domains

external boundaries of €2 and w

a part of the external boundary Ow

interface in w

infinitely differentiable functions with compact supports
right-hand side

mesh sizes

Sobolev spaces

index sets, e.g., I ={0,1,2,....n— 1}

differential operator

stiffness matrix

grid step size

matrix of a finite system of equations

space of essentially bounded functions

space of square-integrable functions

Landau symbol: f(z) = O(g(z)) if |f(z)| < const |g(z)]
real numbers, positive real numbers

support of the function f

analytic solution

discrete solution

discrete right-hand side

finite-element space

external boundaries of the domains €2 and w

the Laplace operator

scalar product on L?(€2)

norm on L*(Q)

Euclidean norm or spectral norm

maximum norm

cluster trees

block cluster tree

class of hierarchical matrices with a maximal

‘H-matrix approximant to the inverse of A

low-rank £ and with a block cluster tree Tt s

class of low-rank matrices with n rows, m columns and with a rank k
formatted arithmetic operations in the class of hierarchical matrices
formatted arithmetic with the fixed rank k
prolongation matrix

coefficients in a differential equation, e.g. jumping or oscillating ones
discrete solution operators, applied to the right-hand side.
discrete solution operator, applied to the Dirichlet data
spatial dimension, e.g. R? d =1,2,3

frequency, e.g. sin(vx)

X,y
u

log
dof
np(w;)

N2 Mhy

q

cond(A)
)\max<A>7)‘mm<A)
w9 w9
\ZE\7)
DI, (ID;)
o/, @Z
Tn, T
Tr,, T,
T, TR
N¢, Ny
S(®)
global _k

Uy

EH

Nomin

](wh)
I(@wh)
1(+), I(1.)
HMM
HDD

CG

PCG

nodal points in 2, e.g. x = (21, ..., 2q)

solution vector u = (u1, ..., uy)?

natural logarithm based 2

degree of freedom

number of nodal points in a domain w;

with the grid step size h

number of nodal points in ox and oy directions
number of processors

condition number of a matrix A

maximal and minimal eigenvalues of a matrix A
boundary-to-boundary mapping

domain-to-boundary mapping

boundary-to-interface mapping

domain-to-interface mapping

triangulations with the grid step sizes h and H
domain decomposition trees with the triangulations 75, 7Ty
two parts of the domain decomposition tree 17,
computational complexities of ® and ®7

storage requirement for a mapping ®

maximal rank of the non-diagonal admissible
subblocks in an H-matrix

solution obtained by the HDD method,;

the subindex k indicates that the fixed rank arithmetic
is used (see Def. 5.9.3)

solution obtained by the HDD method; the subindex ¢
indicates that the adaptive rank arithmetic is used (see Def. 5.9.3)
solution of Au=c, A= LL" u;, = (LT)"L "c

the value which is used for the stopping criterium in CG
solution obtained by the PCG method

(with H-Cholesky preconditioner)

parameter for the adaptive rank arithmetic
discretisation error

‘H-matrix approximation error

minimal size of an inadmissible block

(see Section 5.5.2), by default, 7n,,;, = 32

index set of nodal points in w

index set of nodal points on dw

index set of nodal points on v and -, respectively
Hierarchical Multiscale Method

Hierarchical Domain Decomposition method
conjugate gradient

preconditioned conjugate gradient.

- 10 -

1 Introduction

Zu neuen Ufern lockt ein neuer Tag,
J.W. von Goethe

In this work we combine hierarchical matrix techniques and domain decomposition
methods to obtain fast and efficient algorithms for the solution of multiscale prob-
lems. This combination results in the hierarchical domain decomposition method
(HDD).

e Multiscale problems are problems that require the use of different length scales.
Using only the finest scale is very expensive, if not impossible, in computer
time and memory.

e A hierarchical matriz M € R™*™ (which we refer to as an H-matrix) is a matrix
which consists mostly of low-rank subblocks with a maximal rank k, where
k < min{n, m}. Such matrices require only O(knlogn) (w.l.o.g. n > m) units
of memory. The complexity of all arithmetic operations with H-matrices is
O(k*nlog® n), where w = 1,2, 3. The accuracy of the H-matrix approximation
depends on the rank k.

e Domain decomposition methods decompose the complete problem into smaller
systems of equations corresponding to boundary value problems in subdo-
mains. Then fast solvers can be applied to each subdomain. Subproblems
in subdomains are independent, much smaller and require less computational
resources as the initial problem.

The model problem we shall consider in this thesis is the elliptic boundary value
problem with L*> coefficients and with Dirichlet boundary condition:

Lu=f in,
{ u=g on 05}, (1.1)

whose coefficients may contain a non-smooth parameter, e.g.,

2
g 0

i,j=1

- 11 -

1 Introduction

with a;; = a;i(x) € L*>(£2) such that the matrix function A(x) = (a;;); j=1,2 satisfies
0 <A < Amin(AX) < Anax(A(x)) < X for all x € Q C R2. This setting allows us
to treat oscillatory as well as jumping coefficients.

This equation can represent incompressible single-phase porous media flow or
steady state heat conduction through a composite material. In the single-phase
flow, u is the flow potential and « is the permeability of the porous medium. For
heat conduction in composite materials, u is the temperature, ¢ = —aVu is the heat
flow density and « is the thermal conductivity.

Examples of the typical problems
Suppose the solution on the boundary 02 (Fig. 1 (a)) is given. Denote the solu-

tion on the interface v by u/,.
In the domain decomposition society a fast and efficient procedure for computing

the solution w|,, which depends on both the right-hand side and the boundary data
uloq is of interest. In another problem setup (Fig. 1 (b)) the solution in a small
subdomain w C € is of interest. For example, the initial domain is an airplane and
for constructive purposes the solution (or flux) in the middle of both wings is of
interest. At the same time, to compute the solution in the whole airplane is very
expensive. To solve the problem in w the boundary values on dw are required. How
do we produce them efficiently from the global boundary data u|sq and the given
right-hand side f? To solve the initial problem in parallel (e.g., on a machine with
eight processors) the solution on the interface (see Fig. 1 (c)) is required. How do
we compute the solution on this interface effectively? The last problem setup is also
required for multiscale problems. E.g., the interface in Fig. 1 (c¢) may be considered
as a coarse grid. In multiscale problems often only the solution on a coarse grid is
of interest. The subdomains can be considered as “cells” with periodic structures.
In this work we explain how the offered method (HDD) can be applied for solving
such problems.

Review of classical methods
After an FEM discretisation of (1.1), we obtain the system of linear equations
Au = c, (1.3)

- 12 -

where the stiffness matrix A is large and sparse (e.g., A € R%°X1%° for the Laplace
operator). There exist different methods for solving this system, for example, direct
methods (Gauss elimination, method of H-matrices, direct domain decomposition),
iterative methods (multigrid, Conjugate Gradients), and combinations of the previ-
ous methods (CG with the hierarchical LU factorization as a preconditioner).

The direct methods (Gauss, LU) do not have convergence problems, but they
require a computational cost of O(n?®), where n is the number of unknowns. For
the same reason, they are insufficient if the coefficients of the operator L belong
to different scales. Iterative methods produce approximations u” converging to the
exact solution u*, but do not compute the matrix A=!. Multigrid methods compute
the solution on the coarsest grid and then extend the solution from the coarse to
a fine grid. The multigrid iterations use a smoothing procedure to decrease the
approximation error from one grid to another.

The H-matrix method takes into account the structure and properties of the
continuous operator and builds a special block matrix where almost all blocks are
approximated by low-rank matrices. The method of H-matrices was developed by
Hackbusch and others [33]. Papers [9], [46] have shown that H-matrices can be
used as preconditioners (e.g., the hierarchical LU factorisation, denoted by H-LU).
The preconditioners based on the H-matrices are fast to compute (the cost being
O(nlog®n)). As the accuracy of the H-matrix approximation increases fewer iter-
ation steps are required. The H-matrix approximation with high accuracy can be
used as a direct solver.

Domain decomposition methods together with H-matrix techniques were applied

in [35], [38].
A brief description of the HDD method

The idea of the HDD method belongs to Hackbusch ([34]). Let k& be the maximal
rank which is used for H-matrices (see Chapter 5), n, and ny the numbers of
degrees of freedom on a fine grid and on a coarse grid, respectively. In order to
better understand the HDD method, we now list its properties:

1. The complexities of the one-grid version and two-grid version of HDD are
O(K*nplog®ny) and O(k*\/npng log® \/npng)
respectively.

2. The storage requirements of the one-grid version and two-grid version of HDD
are

O(knylog®ny) and O(k/nung log? \/npng)

respectively.

3. HDD computes two discrete hierarchical solution operators F;, and G, such
that:

up, = Fnfn + Grgn, (1.4)

- 13-

1 Introduction

where up,(fr, gn) is the FE solution of (1.1), f, the FE right-hand side, and g,
the FE Dirichlet boundary data. Both operators Fj, and G; are approximated
by H-matrices.

4. HDD allows one to compute two operators Fy and G, such that:

up = Fufu + Gngn, (1.5)

where Fy := FnPy—p, Pr_p is the prolongation matrix (see Section 4.3.6),
fu the FE right-hand side defined on a coarse scale with step size H and Fg
requires much less computational resources as Fj,.

5. A very low cost computation of different functionals of the solution is possible,
for example:

a) Neumann data %th at the boundary,

b) mean values fw updx, w C €2, solution at a point or solution in a small
subdomain w,

c¢) flux [, Vun dx, where C is a curve in (.

6. It provides the possibility of finding uy, restricted to a coarser grid with reduced
computational resources.

7. Because of (1.4), HDD shows big advantages in complexity for problems with
multiple right-hand sides and multiple Dirichlet data.

8. HDD is easily parallelizable.

9. If the initial problem contains repeated patterns then the computational re-
sources can be drastically reduced.

In particular, the HDD method is well-suited for solving multiscale problems.

-14 -

The diagram in Fig. 1.1 represents the content of this work.

Domain Decomposition Hierarchical Matrices

Methods

Variational formulation
of the problem

clusters

Discrete problem | =1 Hierarchical Domain cluster tree
Decomposition Method *
Implementation
block cluster tree
DDtree *
. . admissibility
subdomain Solutlor} of multllscale problems, condition
computing functionals of the
solution, etc.
boundary

Figure 1.1: Diagram of the dissertation. A — B means that A is applied to B.

This dissertation is structured as follows:
Chapter 2. Multiscale Problems and Methods for their Solution

The L* coefficients in (1.2) may exhibit multiscale (e.g., jumping as well as oscil-
latory) behaviour. We give a short introduction to multiscale problems and briefly
describe well established methods for their solution. We consider the homogeniza-
tion method and the multiscale finite element method (MsFEM). To explain the
resonance effect which appears in MSFEM we provide the error estimates. At the
end of the chapter we offer two examples of multiscale problems.

Chapter 3. Classical Theory of the FE Method

We describe important notation, methods and theorems from numerical analysis.
We repeat the definitions of Sobolev spaces H*, HE and properties of these spaces.
We give a brief introduction to the variational formulation of the initial problem.
Then we explain how to apply the finite element method to get a system of linear
equations. We also recall error estimates for the chosen triangulation and chosen
basis functions.

Chapter 4. Hierarchical Domain Decomposition Method
The HDD method includes two recursive algorithms: “Leaves to Root” and “Root

to Leaves”. The first one creates a set of auxiliary boundary-to-boundary and
domain-to-boundary mappings and then the set of main boundary-to-interface and

- 15 -

1 Introduction

domain-to-interface mappings. The second algorithm applies the main mappings to
compute the solution. There are three modifications of the HDD method: HDD
with the right-hand side f, € Vg C V,,, HDD with truncation of the small scales
and a combination of the first and the second modifications. One may see the com-
parison of HDD with truncation of the small scales with the known MsFEM method
[40]. We show that HDD is appropriate for the problems with repeated patterns.
In conclusion we show how to apply HDD to compute different functionals of the
solution.

Chapter 5. Hierarchical Matrices

The hierarchical matrices (H-matrices) have been used in a wide range of appli-
cations since their introduction in 1999 by Hackbusch [33]. They provide a format
for the data-sparse representation of fully-populated matrices. The main idea in
‘H-matrices is the approximation of certain subblocks of a given matrix by low-rank
matrices. At the beginning we present two examples of H-matrices (see Fig. 5.1).
Then we list the main steps which are necessary for building hierarchical matrices:
construction of the cluster tree, choice of the admissibility condition and construc-
tion of the block cluster tree. We introduce the class of low-rank matrices R(k,n, m),
where k, n, m are integers, k < min{n, m}, and then the low-rank arithmetic. We
briefly describe how to perform the hierarchical matrix operations efficiently (with
almost linear complexity). It will be shown that the cost of the basic H-matrix
arithmetic (matrix-matrix addition, matrix-matrix multiplication, inversion of ma-
trices) is not greater than O(nlog®n), o = 1,2,3 (see Theorem 5.10.1). We then
present two procedures for extracting a part of a hierarchical matrix (see Algorithm
5.9.3) and converting one H-matrix format to another one. The last two procedures
are needed for adding two hierarchical matrices with different block structures (see
Lemma 5.10.8).

Chapter 6. Application of H-Matrices to HDD

The exact matrix arithmetic in the HDD method can be replaced by the approx-
imate H-matrix arithmetic to improve efficiency. Here we will explain the construc-
tion of H-matrix approximations for the domain-to-boundary (denoted by ¥/) and
boundary-to-boundary (denoted by W9) mappings, which are essential for the defini-
tion of the HDD method. It will be shown that the boundary-to-interface mapping
(denoted by ®9) can be approximated by a low-rank matrix and the domain-to-
interface mapping (denoted by ®/) by an H-matrix. Letting w = w; U wy, where
w,wy,ws C £, we also provide the algorithms for building W9 from W9 and W9, (see
Algorithms 6.3.1 and 6.3.2) and the algorithms for building ¥/ from ¥/ and U7
(see Algorithms 6.3.3 and 6.3.4).

Chapter 7. Complexity and Storage Requirement of HDD

The HDD method consists of two algorithms “Leaves to Root” and “Root to
Leaves”. Using the costs of the standard H-matrix operations, we estimate the

- 16 -

computational complexities of both algorithms. The first algorithm produces a set
of domain-to-interface mappings and boundary-to-interface mappings. The second
algorithm applies this set of mappings to compute the solution (only matrix-vector
multiplications are required).

Let ny, ny be the respective numbers of degrees of freedom of the fine grid 7;, and
of the coarse grid 7. We prove that the complexities of the algorithms “Leaves to
Root” and “Root to Leaves” are

O(k*nylog®ny) and O(knylog®ny),

respectively (cf. Lemmas 7.2.3 and 7.3.3) and the storage requirement is O(kny, log® ny,)
(see Lemma 7.3.4). As we show in Lemmas 7.4.4 and 7.4.3, the complexities of the
same algorithms for the two-grid modification are

O(K*/mnng log® \/npng) and O(ky/nung log \/ny, log \/nz)

The storage requirement for the two-grid modification of HDD is (cf. Lemma 7.4.1)

O(kv/npng log \/nylog\/nm).

Chapter 8. Parallel Computing

We present the parallel HDD algorithm and estimate parallel complexities of the
algorithms “Leaves to Root” and “Root to Leaves”. We consider the parallel model,
which consists of ¢ processors and a global memory which can be accessed by all
processors simultaneously. The communication time between processors is negligible
in comparison with the computational time. For a machine with ¢ processors the
parallel complexity of the algorithm “Leaves to Root” is estimated (Lemma 8.3.3)
by

Clew /T, 10g2 /Ny + é’anh 3" np np
o +C"(1 - E)«/_nhnfm-n + Ck2? log® —
where C,C",C",C € R,

The parallel complexity of the algorithm “Root to Leaves” on a machine with ¢
processors is estimated (Lemma 8.3.6) by

oM 9 Ny, 28/<;w/nh
Ck ?log ?—Fw, C€R+.

Chapter 9. Implementation of the HDD Package

The result of the implementation is a package of programs which uses the fol-
lowing libraries: HLIB, LAPACK, BLAS and external triangulators (for complex
geometry). We present the data structures for the triangulation, the grid hierarchy
and the HDD method. We describe the connection between the data structures
“vertex”, “triangle”, “edge”, “subdomain”, “boundary” and “hierarchical decompo-
sition tree”. Then, we present the algorithms of the hierarchical decomposition and
of the mesh refinement.

17 -

1 Introduction

Four modifications of HDD (numbered by subindex) which require less computa-
tional resources than the original HDD were implemented. HDD; works with the
right-hand side defined only on a coarse scale (see Section 4.3.6). HDDy computes
the solution in all w with diam(w) > H, and the mean value of the solution inside
all w with diam(w) < H. The mean value is a functional of the right-hand side and
the Dirichlet data (see Section 4.4.5). HDDj is a combination of HDD; and HDD,.
HDDy, is developed for problems with a homogeneous right-hand side (see Section
4.4.8).

Chapter 10. Numerical Results

We demonstrate numerical experiments to confirm the estimates of the H-matrix
approximation errors (Chapter 5), the computational times and the needed storage
requirements (Chapter 7).

We demonstrate almost linear complexities of the algorithms “Leaves to Root”
and “Root to Leaves”. We also show an almost linear dependence of the memory
requirement and the executing time on the number of degrees of freedoms. Next,
we apply HDD to the problem with highly jumping coefficients (e.g., skin problem)
and to problems with strong oscillatory coefficients, e.g.,

a(z,y) =2 +sin(v - x)sin(v - y),

where v is the frequency (see Table 10.17).

The solution, obtained by the HDD method, is compared with the solutions ob-
tained by the preconditioned conjugate gradient (PCG) method and the direct H-
Cholesky method. It is shown that the HDD method requires less memory than
the direct H-matrix inverse and a little bit more than the PCG method with H-
Cholesky preconditioner. But note that HDD computes the solution operators Fj,
and Gy, in (1.4) whereas PCG only the solution. Other experiments demonstrate the
possibility of obtaining a solution on a coarse scale and the possibility of truncation
of the small scales. Finally, it will be shown that HDD is very efficient for problems
with many right-hand sides.

- 18 -

2 Multiscale Problems and Methods
for their Solution

2.1 Introduction

In the last years, we have seen large growth of activities in multiscale modeling
and computating, with applications in material sciences, fluid mechanics, chemistry,
biology, astronomy and other branches of science.

The basic set-up of a multiscale problem is as follows. We have a system whose
microscopic behaviour, denoted by the state variable w, is described by a given
microscopic model. This microscopic model is too expensive to be used in dense
detail. Instead, we are interested in the macroscopic behaviour of the system. We
want to use the microscopic model to extract all microscale details to build a good
approximation for the macroscale behaviour of the system. Our purpose is not
to solve dense microscale problems in detail, but to use a more efficient combined
macro-micro modeling technique.

There has been a long history of studying multiscale problems in applied math-
ematics and computational science (see [7]). Multiscale problems are multiphysical
in nature; namely, the processes at different scales are governed by physical laws
of different characters: for example, quantum mechanics at one scale and classical
mechanics at another. Well-known examples of problems with multiple length scales
include turbulent flows, mass distribution in the universe, weather forecasting and
ocean modeling. Another example is an elliptic equation with a highly oscillatory
coefficient arising in material science or flow through porous media.

On the computational side, several numerical methods have been developed which
address explicitly the multiscale nature of the solutions. These include the upscal-
ing method ([21]), the averaging method, the homogenization method, the hetero-
geneous multiscale method [18], [4] the finite difference heterogeneous multiscale
method [3] (see also [19], [20]).

Another interesting approach is offered in [39]. The authors consider an elliptic
homogenization problems in a domain Q C R with n+1 separated scales and reduce
it to elliptic one-scale problems in dimension (n + 1)d.

Example 2.1.1 An example in Fig. 2.1 shows the solution of a multiscale problem.
On the fine scale we see a complex behaviour of the solution, but on the coarse scale
the solution looks like the function sin(x). For many practical applications, the fine
properties of the solution are of no interest and it suffices to find the macro properties
of the solution.

Despite significant progress, purely analytical techniques are still very limited when
it comes to problems of practical interest.

- 19 -

2 Multiscale Problems and Methods for their Solution

Figure 2.1: An example of a multiscale solution (wavy curve) and its macroscopic
approximation.

2.2 Multiscale Methods

Homogenization

There exist a lot of composite materials with a large number of heterogeneties
(inclusions or holes). Omne can try to characterise the properties of such a mate-
rial locally, i.e., on the microscale. But in practice, it is much more important to
know macroscale characteristics. In the frame of the heterogenization theory, the
heterogeneous material is replaced by a fictitious one - the homogenized material.
The behaviour of this homogenized material should be as close as possible to the
behaviour of the composite itself. One tries to describe the global properties of the
composite by taking into account the local properties of its constituents.
Homogenization is a way of extracting an equation for the coarse scale behaviour
that takes into account the effect of small scales (see [12], [42]). The fine scales
cannot be just ignored because the solution on the coarser scales depends on the
fine scales. After homogenization the initial equation does not contain fine scales
and is therefore much easier to solve.

For the periodic case, the homogenization process consists in replacing the initial
partial differential equation with rapidly oscillating coefficients that describe the
composite material by a partial differential equation with the fictitious homogenized
coefficients. The homogenized coefficients are obtained by solving a non oscillating
partial differential equation on a period of reference.
Let © = (0,1) x (0,1) and f € L*(Q). Let a € L>() be a positive function such
that
X

0<g§a(g)§a<+oo,
where o and @ are constants. We denote the nodal point in €2 by the bold shrift
(e.g., X, y). Assume a = (%) is periodic with period . ¢ characterizes the small
scale of the problem. We assume «(y) is periodic in Y and smooth. The model
problem is:

—Va(x)Vu=f inQ,

u=0 on 0f). (2.1)

Definition 2.2.1 We denote the volume average over Y as (-) = ﬁ [y dy.

- 920 -

2.2 Multiscale Methods

For an analysis of this and many other equations see [12], [17].

With classical finite element methods, one can obtain a good approximation only
if the mesh size h is smaller than the finest scale, i.e., h < . But the memory
requirements and CPU time grow polynomially with A~ and soon become too large.
One of the homogenization methods is the so-called multiple-scale method. Recently
there have been many contributions on multiscale numerical methods, including the
papers [6] and [17]. It seeks an asymptotic expansion of u° of the form

W (x) = ug(x) + cur (x, ?) — 0. + O(?), (2.2)

where X is the fast variable. The value of u® at the point x depends on two scales.
The first one corresponds to x, which describe the position in §2. The other scale
corresponds to %X, which describe the local position of the point. The first variable,
X, is called the macroscopic (or slow) variable. The second one, %, is called the
microscopic (or rapidly oscillating) variable. wug is the solution of the homogenized
equation

Va*Vuy = fin Q, wug=0 on 0, (2.3)

a* is the constant effective coefficient, given by (see Def. 2.2.1)

Q5 = (Qir(y) (0rj — 8—yk)
and x7 is the periodic solution of
V,a(y)Vyr! = —-ayy(y)
y y By, Y

with zero mean, i.e., (x/) = 0. It is known that o* is symmetric and positive definite.
Moreover, we have

0
ui(x,y) = —Xja%j-

Since in general u; # 0 on 02, the boundary condition u|gn = 0 is enforced through
the first-order correction term 6., which is given by

X X
Va(=)VO. =0in Q, 6. = ui(x,—) on 9.
€ €
Under certain smoothness conditions, one can also obtain point-wise convergence of
u to ug as € — 0.The condition can be weakened if the convergence is considered
in the L?(2) space. In [41] the authors use the asymptotic structure (2.2) to reveal
the subtle details of the multiscale method and obtain sharp error estimates.

Heterogeneous multiscale method and multiscale finite element method
The heterogeneous multiscale method (HMM) [18],[19], [4] and the multiscale fi-

nite element method (MsFEM) [15] have been developed during the last time for
solving, in particular, elliptic problems with multiscale coefficients. Comparison of

- 21 -

2 Multiscale Problems and Methods for their Solution

these two methods is done in [50]. Three examples when HMM can fail, are illus-
trated in [22] pp.105-107.

The main idea behind the Multiscale Finite Element Method is to build the local
behaviour of the differential operator into the basis functions in order to capture the
small scale effect while having a relative coarse grid over the whole domain. This is
done by solving the equation on each element to obtain the basis functions, rather
than using the linear basis functions. In [55], the authors apply MsFEM to the
singularly perturbed convection-diffusion equation with periodic as well as random
coefficients. They also consider elliptic equations with discontinuous coefficients and
non-smooth boundaries. Both methods (HMM and MsFEM) solve only a subclass
of the common multiscale problem. For example, HMM works like a fine scale solver
without scale separation or any other special assumptions of the problem. Both
methods for problems without scale separation do not give an answer with reason-
able accuracy. In [50] the authors show that MsFEM incurs an O(1) error if the
specific details of the fine scale properties are not explicitly used. They show also
that for problems without scale separation HMM and MsFEM may fail to converge.
HMM offers substantially savings of cost (compared to solve the full fine scale prob-
lems) for problems with scale separation. The advantage of both methods is their
parallelizability.

Resonance Effect in MsFEM

For more information see please the original [40]. The variational problem of (2.1)
is to seek u € H (), such that

a(u,v) = f(v), Yve H)(Q), (2.4)
where

Ov Ou
a(u,v):Laija—%a—%dx and f(v):/vadx. (2.5)

A finite element method is obtained by restricting the weak formulation (2.4) to
a finite-dimensional subspace of H}(2). Let an axi-parallel rectangular grid 7 be
given (Fig. 3.1). In each element K € 7y, we define a set of nodal basis {¢%, i =
1,...,d} with d being the number of nodes of the element. Let x; = (x;,y;) (i =
1,...,d) be the nodal points in K. We neglect the subscript K when bases in one
element are considered. The function ¢’ satisfies

Va(x)V¢'=0in K € T,. (2.6)

Let x; € K (j = 1,...,d) be the nodal points of K. As usual the author requires
¢'(x;) = d;;. One needs to specify the boundary conditions to make (2.6) a well-
posed problem. The authors assume in [40] that the basis functions are continuous
across the boundaries of the elements, so that V}, = span{¢' : i =1,.... N} C H}(Q).
Then they rewrite the problem (2.4): find u" € V}, such that

a(u,v) = f(v), Vv €V, (2.7)

In [40] the authors describe two methods how to set up the boundary conditions for
(2.6). We do not describe these methods here because there are many other variants
and this is technical. In [41] the authors proved the following result.

- 9292 _

2.2 Multiscale Methods

Theorem 2.2.1 Let u be the solution of the model problem (2.1) and u™ the solution
of the corresponding equation in weak form (2.7). Then, there exist positive constants
C1 and Cs independent of € and h, such that

lu = u* |10 < Cibl| flloq + Cale/R)?, (e < h). (2.8)

Proof: see [15], [40], [55].
To prove (2.8) the authors use the fact that the base functions defined by (2.6) have
the same asymptotic structure as that of u; i.e.,

¢ = +eph —cb + ... (i=1,..,d),
where ¢, ¢!, and ¢ are defined similarly as ug, u;, and 6. (see (2.2)), respectively.
Note that applying the standard finite element analysis to MsFEM gives an pes-
simistic estimate O(%) in the H' norm, which is only useful for h < . In [40] the
authors prove that in the case of periodic structure the MsFEM method converges
to the correct effective solution as ¢ — 0 independent of e.
The following L2-norm error estimate

lu = u"lo.o < C1h?|| fllog + Cag + Csllu” — ug iz, (2.9)

is obtained from (2.8) by using the standard finite element analysis (see [40]). Here
uf is the solution of (2.3), C; > 0, (i = 1,2,3) are constants and |[u"|2@) =

(> ul(x:)?h?)Y2. 1t is also shown that [|u" — ul||;2() = O(g/h). Thus, we have
[u — ut|jo.0 = O(h* +¢/h). (2.10)

It is clear that when h ~ &, the multiscale method attains large errors in both H*
and L? norms. This fact is called the resonance effect, the effect between the grid
scale h and the small scale e. To learn more about the resonance effect see [40].
In the same work, the authors propose an over-sampling technique to remove the
resonance effect. After application of this over-sampling technique, the convergence
in L? norm is O(h? + ¢|log(h)|) for & < h.

- 93 -

2 Multiscale Problems and Methods for their Solution

2.3 Applications

Below we briefly consider two examples of multiscale problems to show that usual
numerical approaches are unsufficient and other efficient multiscale methods are
required. We hope that the HDD method, offered in this work, after some modifi-
cations can be applied for solving such types of problems.

A multiple scale model for porous media

Very important in modeling porous media is the use of different length scales.
Figure 2.2 shows an example of porous media consisting of different types of stones
on two length scales. Figure (a) demonstrates macroscale (the order is 10 meters),
figure (b) microscale (1072 meters). On the large scale, we identify different types
of sand (stones). On the microscale, grains and pore channels are visible. In the
figure we see the transition zone from a fine sand to a coarse sand. The void space
is supposed to be filled with water. The behaviour of the liquid flow is influenced
by effects on these different length scales.

On each scale different physical processes are appearing and different mathematical
equations, which describe this processes are being used. More about the solving of
this problem see [8], [21].

(a) macroscopi c scale (b)m croscopic scale
Figure 2.2: Two scales in a porous medium (see [8]).

A multiple scale model for tumor growth

In spite of the huge amount of resources that have been devoted to cancer research,
many aspects remain obscure for experimentalists and clinicials, and many of the
currently used therapeutic strategies are not entirely effective. One can divide the
models for modeling cancer into two approaches: continuum models, mathematically
formulated in terms of partial differential equations, and cellular automation (CA)
models. Significant progress in developing mathematical models was done with the
introduction of multiscale models. The tumor growth has an intrinsic multiple scale
nature. It involves processes occurring over a variety of time and length scales: from
the tissue scale to intracellular processes. The scheme of time and length scales is
figured in Fig. 2.3. The multiscale tumor model include: blood flow, transport into
the tissue of bloodborne oxygen, cell division, apoptosis etc. In the paper [5] the
authors have proposed a multiple scale model for vascular tumor growth in which
they have integrated phenomena at the tissue scale (vascular structural, adaptation,

-24 -

2.3 Applications

At om Protein Cel | Ti ssue
0% 10°m 10'm 10°%m
e | b s
10's 103 10°s 10°s

mol ecul ar events diffusion cell mtosis
(ion channel gating) signal ling

Figure 2.3: Example of time and length scales for modeling tumor growth.

and blood flow), cellular scale (cell-to-cell interaction), and the intracellular scale
(cell-cycle, apoptosis). To get more details see [5].

- 95 -

2 Multiscale Problems and Methods for their Solution

- 926 -

3 Classical Theory of the FE Method

This Chapter contains classical results [31], [14]. We will hold on the original nota-
tion as in [31].
3.1 Sobolev Spaces

In this section we describe well known classical notation. Almost all material is
taken from the book [31].

Let Q be a open subset of R". L?(2) consists of all Lebesque-measurable functions
whose squares on §2 are Lebesque-integrable.

3.1.1 Spaces L*(?)

LY(Q) = {f : @ — R measurable | ||f|l11q) = [, |fldr < oo}
Let 1 < s < oo. Then

L@ = {1 Q= R € L ey = (| 1700 < o0}
Let s = 0o and f : €2 — R be measurable. Then define
| fllzeo(py = inf{sup{|f(z)| : . € D\A} : Ais a set of measure zero }.
The definition of the space L>(€) is:

L>=(Q) ={f: Q2 — R measurable | ||f|/z~ < oo}

Theorem 3.1.1 L*(Q) forms a Hilbert space with the scalar product

(u,) = (u,v)r2(0) = / u(z)v(x)dx

Q

and the norm

fulo = Ilullz@y = /Q|u(:1:)\2d:c.

Definition 3.1.1 u € L*(Q) has a weak derivative v := D*u € L*(Q) if for the
latter v € L*(2) holds:

(w,v)o = (=D)(D0,u)y for all w e CE(RQ).

_97 -

3 Classical Theory of the FE Method

3.1.2 Spaces H*(Q2), HY(Q) and H~1(Q)

Let k € NU{0}. Let H*(Q) C L?(Q) be the set of all functions having weak
derivatives Du € L*(Q) for |a| < k:

H*(Q) :={ue L*Q): D*u € L*(Q) for |a| <k}

Theorem 3.1.2 H*(Q) forms a Hilbert space with the scalar product

(u, 0)i == (u,v) ey = Z (D%, D) 12(q)

o<k

and the (Sobolev) norm

lullk = llull e = [[Dul|72 - (3.1)

o<k

Definition 3.1.2 The completion of C°(Q) in L*(Q2) with respect to the norm (3.1)
is denoted by HE ().

Theorem 3.1.3 H{(Q) = H°(Q) = L*(Q).
Proof: see p.117 in [31].

The Sobolev space denoted here by H*(2) is denoted by WX (Q2) in other sources.

Definition 3.1.3 H~Y(Q) is the dual of H}(Q), i.e., H Q) = {f|f is a bounded
linear functional on HJ()}.

and the norm is

[ul—1 = sup{|(u, v) 2@ /[v]1 : 0 # v € Hy()}-

3.2 Variational Formulation

Let us consider the following elliptic equation

Lu=f in €, (3.2)
L=Y Y (-)ID%g(x)D". (3.3)
jaf<m |8<m

We assume the homogeneous Dirichlet boundary conditions

ou 0
=0, —=0 .. ()" 'u=0 ' =00 3.4
YT o ’ ’<8n) " ot ’ (3:4)
which are only meaningful if T' is sufficiently smooth. Let w € C?*™(Q2) N HJ(2)
be a classical solution of (3.2) and (3.4). To derive the variational formulation of
(3.2)-(3.4) we multiply equation (3.2) by v € C§°(§2) and integrate the result over

- 98 -

3.3 Inhomogeneous Dirichlet Boundary Conditions

the domain €.
Since v € C§°(£?), the integrand vanishes in the proximity of I'. After integration
by parts we obtain the variational formulation (the so-called 'weak’ formulation):

Z/aaﬁpu)(DPo(dx—/f (3.5)

laf,|B]<m
for all v e C5°(Q).
Definition 3.2.1 The bilinear form and the functional are

= > /aaﬁ (D%u(x))(D%v(x))dx, (3.6)

laf,|B]<m

_ / Fx)u(x)dx

Theorem 3.2.1 Let a,g € L>®(Q). The bilinear form defined by (5.6) is bounded
on HJ"(Q2) x HJ* ().

Proof: see p.146 in [31].

Definition 3.2.2 The variational formulation (or weak formulation) of the bound-
ary value problem (3.2)-(3.4) is:

find we H'(Q) with a(u,v) =pv) forall veCCF(Q). (3.7)

The existence and uniqueness of the solution in the weak form can be proved by the
Lax-Milgram Lemma.

Theorem 3.2.2 (Laz-Milgram lemma)

Let V' be a Hilbert space, let a(-,-) : V x V — R be a continuous V-elliptic bilinear
form, and let o : V — R be a continuous linear form. Then the abstract variational
problem: Find an element u such that

weV and YveV, a(u,v)=¢),
has one and only one solution.

Proof: see [16].

3.3 Inhomogeneous Dirichlet Boundary Conditions

Let us consider the boundary value problem
Lu=f in Q, u=g on T, (3.8)

where L is a differential operator of second order. The variational formulation of
the boundary value problem reads:

find € H'(Q) with u=g¢g on T such that (3.9)
a(u,v) = p(v) forall ve Hy(Q). (3.10)

- 99

3 Classical Theory of the FE Method

Remark 3.3.1 For the solvability of Problem (3.9),(3.10) it is necessary that:
there exists a function ug € H'(Q)) with wuglr = g. (3.11)
If such function ug is known, then we obtain the following weak formulation:
Let wuo satisfy (3.11); find w € H(Q2), such that (3.12)
a(w,v) = ¢(v) = p(v) — alug,v) forall v e Hy(S). (3.13)

The advantage of this formulation is that the functions w and v are from the same
space Hj(Q).

Remark 3.3.2 In this work we assume that g and €2 are such that ug from the above
remark exists.

Theorem 3.3.1 (Ezistence and uniqueness)
Let the following problem

find we H'(Q) with a(u,v) =pw) foral ve H Q) (3.14)

(with homogeneous boundary values) be uniquely solvable for all o € H=(Q). Then
Condition (3.11) is sufficient, and necessary, for the unique solvability of Problem
(3.9),(5.10).

Proof: see Theorem 7.3.5 in [31].

The variational formulation is the foundation of the Ritz-Galerkin discretisation
method.

3.4 Ritz-Galerkin Discretisation Method

Suppose we have a boundary value problem in its variational formulation:
Find w eV, sothat a(u,v)=pw) foral veV, (3.15)

where we are thinking, in particular, of V = H"(Q) or V = H(Q).
We assume that a(-,-) is a bounded bilinear form defined on V' x V| and that ¢ is
from the dual space V':

la(u,v)| < Cillullvllvlly foru,v eV, C,eRy

()| < Clv|lv forveV, C,eR,. (3.16)

The Ritz-Galerkin discretisation consists in replacing the infinite-dimensional space
V with a finite-dimensional space Vy:

Vn C V, dimVy = N < oco. (317)

Since Vy C V, both a(u,v) and ¢(v) are defined for u,v € Vy. Thus, we pose the
following problem:

Find «" € Vy, sothat a(u™,v) =) forall ve Vy. (3.18)

- 30 -

3.4 Ritz-Galerkin Discretisation Method

Definition 3.4.1 The solution of (3.18), if it exists, is called the Ritz-Galerkin
solution (belonging to Vi) of the boundary value problem (3.15).

To calculate a solution we need a basis of Vyy. Let {b1, b, ...,bnx} be such a basis,
Vi = span{by,...,bn}. (3.19)

For each coefficient vector v = {vy,...,ux}T we define

N
P:R"—VyCV, Pv:=) ub. (3.20)

i=1
Thus, we can rewrite the problem (3.18):

Find u" € Vy, sothat a(u®,b;)=p(b;) forall i=1,.. N. (3.21)
Proof: see [31], p.162.

We now seek u € RY so that vV = Pu.

Theorem 3.4.1 Assume (3.19). The N x N-matriz A = (A;;) and the N-vector
c=(c1,...,en)T are defined by

A;j = a(bj,b;) (1,7 =1,....,N), (3.22)
Then the problem (3.18) and
Au=c (3.24)
are equivalent.
N
If u is a solution of (3.24), then u" = Zujbj solves the problem (3.18). In the
j=1
opposite direction, if u is a solution of (3.18), then u := P~'«" is a solution of

(3.24).
Proof: see [31], p.162.
The following theorem estimates the Ritz-Galerkin solution.

Theorem 3.4.2 (Cea) Assume that (3.16),(3.17) and

inf{sup{la(u,v)|:v e Vy,|v|ly =1} :u € Vy,|Jully =1} =ex >0 (3.25)
hold. Let uw € V be a solution of the problem (3.15), and let u™ € Vi be the Ritz-
Galerkin solution of (3.18). Then the following estimate holds:

Cs. .
lw = u¥lly < (L4 =)infueryllu = wllv (3.26)
N
with Cs from (3.16). Note that infyevy|u — w||v is the distance from the function
u to Vy.

Proof: see [31], p.168.

-31-

3 Classical Theory of the FE Method

3.5 FE Method

3.5.1 Linear Finite Elements for) C R?

The method of finite elements (FE) is very common for the numerical treatment of
elliptic partial differential equations. This method is based on the variational formu-
lation of the differential equation. Alternative methods to FE are finite difference
methods and finite volume methods, but FE can be applied to the problems with
more complicated geometry.

First, we partition the given domain 2 into (finitely many) subdomains (elements).
In 2D problems we use triangles.

Definition 3.5.1 A partition 7 = {11, Ty, ..., Tpr} of Q into triangular elements is
called admissible (see an example in Fig. 3.1) if the following conditions are fulfilled:

1. T; (1 <1 < N) are open triangles.
8. If T;N'T; consists of exactly one point, then it is a common vertex of T; and

T;.

4. If fori# j, T;NT; consists of more than one point, then T;NT}; is a common
edge of T; and Tj.

Examples of inadmissible triangulations:

1. Two triangles have a common edge, but in one triangle this edge is smaller
than in another.

2. The intersection of two triangles is not empty.

An inadmissible triangulation is not allowed, because it is not clear how to require
continuity from one triangle to other.

Figure 3.1: An example of an admissible triangulation.

Let 7 be an admissible triangulation. The point x is called a node (of 7) if x is
a vertex of one of the T; € 7.
We define Vi as the subspace of the piecewise linear functions:

Vy ={uecC%Q):u=0 on d;on each T; € 7 the function u
agrees with a linear function, i.e., u(z,y) = a;; + apr + a;3y on T;}.

(3.27)

-32-

3.5 FE Method

Remark 3.5.1 In the case of inhomogeneous boundary conditions, e.g. u = g on
0 we delete the requirement u =0 on 0S2.

Let x* (1 <4 < N) be the nodes of 7. For an arbitrary set of numbers {u;}i—1 x

N
there exists exactly one u € Vy with u(x") = u;. It may be written as u = Z u;b;,
i=1
where the basis functions b; are characterised by
bi(x') =1, bix))=0 j#i. (3.28)
If T € 7 is a triangle with the vertices x; = (x;,y;) and X' = (2/,¢/), x" = (2", "),
then
oI oY oI (o
b, y) = (@ =y ~y) =~y —y)a" —a) . (3.29)
(@ =2y —¢) = (4 — y) (" =)
We are interested in the bilinear form, associated to the initial equation:
a(u,v) = / a(x)(Vu, Vu)dx. (3.30)
Q

The coefficients of the stiffness matrix A are computed by the following formula:
Ay = a(by, b)) = Z/ a(x)(Vb;, Vb;)dx. (3.31)
E YTk

1. If i = j, we have to integrate by all triangles which meet the vertex x’.

2. If i # j, we have to integrate by all triangles which contain both vertices x*
and x/.

3. A;; = 0if x" and x7 are not directly connected by the side of a triangle.
Thus, we obtain a data-sparse matrix.

Example 3.5.1 If we choose the basis functions as in (3.29) and the bilinear form
by a(u,v) = [,(Vu, Vu)dx, then for inner nodes

Li=4, Aj;=-1 x—x;=(0,£h) or (£h,0), A;=0 otherwise; (3.32)
Remark 3.5.2 To calculate A;; = / a(x)(Vb;, Vb))dx numerically we use the
Ty,

basic three points quadrature formula on a triangle (see Table 3.1).
If b; € P, then Vb; = const, Vb; = const and the coefficients A;; are

3
A= / a(x)(Vb;, Vb;)dx = (Vb;, Vb;) - Za(vk)wk, where (3.33)
Ty, k=1 '
v = vi(x,y) from (3.835), wy from Tables (3.1),(3.2)

-33 -

3 Classical Theory of the FE Method

| i | weights w; | diy | dio | dis |

1] 0.33(3) |05]0.5]0.0
2 033(3) |00]05]05
3] 033(3) |05|00]05

Table 3.1: The coefficients of the basic 3-point quadrature rule for a triangle (used
in (3.35) and (3.33)). This rule calculates exactly the value of integrals
for polynomial degree 2 (see [16], [54]).

Remark 3.5.3 We compute the FE right-hand side c by the following formula:

Cj = / fbjdX,
supp b;

where j = 1,....N and f is the right-hand side in (3.8). For non-zero Dirichlet
boundary data see (3.13).

(3.34)

Remark 3.5.4 [t makes sense to apply 12-point quadrature rule if the discretisation
error 1s smaller than the quadrature error. If the discretisation error is larger than
the quadrature error, it is reasonable to apply the 3-point quadrature rule.

‘ weights w; ‘ din ‘ ;o ‘ dis

0.050844906370207

0.873821971016996

0.063089014491502

0.063089014491502

0.050844906370207

0.063089014491502

0.873821971016996

0.063089014491502

0.050844906370207

0.063089014491502

0.063089014491502

0.873821971016996

0.116786275726379

0.501426509658179

0.249826745170910

0.249826745170910

0.116786275726379

0.249826745170910

0.501426509658179

0.249826745170910

0.116786275726379

0.249826745170910

0.249826745170910

0.501426509658179

0.082851075618374

0.636502499121399

0.310352451033785

0.053145049844816

0.082851075618374

0.636502499121399

0.053145049844816

0.310352451033785

0.082851075618374

0.310352451033785

0.636502499121399

0.053145049844816

0.082851075618374

0.310352451033785

0.053145049844816

0.636502499121399

| =
Ho@ooﬂ@cn»bwwH@.

0.082851075618374

0.053145049844816

0.310352451033785

0.636502499121399

—_
(N}

0.082851075618374

0.053145049844816

0.636502499121399

0.310352451033785

Table 3.2: The coefficients of the basic 12-point quadrature rule for a triangle (used
in (3.35) and (3.33)). This rule calculates exactly the value of integrals
for polynomial degree 6 (see [16], [54]).

If (x1,91), (22, 92), (x3,y3) are coordinates of the vertices of triangle, then we define
the new quadrature points:

vi(z,y) == (dnxy + dipxa + disxs, dinys + diaya + dizys),

where the coefficients d;; are defined in Table 3.2.

~34 -

i=1,2,3,

(3.35)

3.5 FE Method

3.5.2 Error Estimates for Finite Element Methods

In this subsection we use the notation wuy, besides u’¥ in (3.18).
We suppose that

7 is an admissible triangulation of € C R2,
Vy is defined by (3.27), if V = H}(Q), (3.36)
Vy s as in Remark (3.5.1), if V = HY(Q),

There are two important theorems which allow to estimate |u — wy].

Theorem 3.5.1 Assume that conditions (3.36) hold for 7, Vi, and V. Let ag be
the smallest interior angle of all T; € T, while h is the maximum length of the sides
of all'T; € 7. Then

infoevy |l — vl ey < C'(ao)® *|lullmz@) fork=0,1 and allu € H*(Q)NV.
(3.37)

Proof: see [31], pp.187-188.
For the next theorem we need a new regularity condition on the adjoint problem to
(3.15).

Definition 3.5.2 The following problem is called the adjoint problem to (3.15).
Find weV, sothat a*(u,v) =) forall veV, (3.38)

where a*(u,v) := a(v,u).

The new regularity condition is:

For each ¢ € L*(2) the problem (3.38)

has a solution u € H2(Q) NV with |u|, < Cr|o|o. (3.39)

Theorem 3.5.2 (Aubin-Nitsche)
Assume (3.39), (3.16),

inf{sup{la(u,v)|:ve Vy,|v|ly =1} :u € Vy,|lully =1} =ey > >0, (3.40)

and
infoevy |t —v|1 < Cohluly for all u € HQ(Q) nV. (3.41)

Let the problem (3.15) have the solution w € V. Let up, € Vy C V be the finite-
element solution and Vi is the space of finite elements of an admissible triangulation.
With a constant C independent of u and h, we get:

‘U—Uh|0 S Clh|U|1 (342)

If the solution u also belongs to H*(Q) NV, then there is a constant Cy, independent
of u and h, such that
|U - uh|0 S Cgh2|u|2. (343)

Proof: see [31], pp.190-191.

-35-

3 Classical Theory of the FE Method

- 36 -

4 Hierarchical Domain
Decomposition Method

The idea of the HDD method belongs to Hackbusch ([34]). This Chapter contains
the main results of this work: the HDD method and its modifications.

4.1 Introduction

We repeat the initial boundary value problem to be solved:
2
- Y Lajfu=f inQCR?
ig=1" 7

(4.1)
u=g on 012,

with a;; = a;;(x) € L*°(€2) such that the matrix function A(x) = (ay;); j=1,2 satisfies
0 <A< Anin(AX)) < Anax(A(x)) < X for all x € Q C R

After a FE discretisation we obtain a system of linear equations Au = c.

In the past, several methods have been developed to combine the H-matrix technique
with the domain decomposition (DD) method (see [35], [38], [47]).

In [35] Hackbusch applies H-matrices to the direct domain decomposition (DDD)
method to compute A~!. In this method he decomposes the initial domain €2 into
p subdomains (proportional to the number of parallel processors). The respective
stiffness matrix A € R7!| [:= (), is represented in the block-matrix form:

Ay 0 ... 0 Ay
0 Ay ... 0 Ay

A=+ ¢ 0 (4.2)
0 0 .. A, Ay
Ay Asgy .. Ay, Ass

Here A; € R'™>*%i where I; is the index set of interior degrees of freedom in €.
Ay, € RIXI= where Iy, := I'\UY_, ; is the index set of the degrees of freedom on the
interface. E.g., in the case of finite elements. Assume that A and all submatrices
A;; are invertible, i.e., the subdomain problems are solvable. Let S = Agy —
P Asi AL 'A;s. Then the inverse of A~! can be defined by the following formula:

A0 0 0 Al Ars
A—l _ 0 . 0 0 + [5—11421141—117 L ,S_lAsz_l, —S_l].
0 0 Aipl 0 A;plApZ bp
0 0 0 O —1

(4.3)

- 37 -

4 Hierarchical Domain Decomposition Method

This DDD method is easily parallelizable. Let d be the spatial dimension. Then the
complexity will be

O(Zlognp) + O(p/* %), or
p

O(nY** ogn¥Y), for p=0(1/d+1).

In [38], the authors start with the representation (4.2), apply the so-called direct
Schur complement method, which is based on the H-matrix technique and the do-
main decomposition method to compute the inverse of the Schur complement matrix
associated with the interface. Building the approximate Schur complements corre-
sponding to the subdomains €; costs O(Nglog? Ng) for an FEM discretisation,
where Ngq is the number of degrees of freedom in the domain §2.

In [47] the authors introduce the so-called H-LU factorization which is based on
the nested dissection method [24]. The initial domain €2 is decomposed hierarchically
into three parts: cf¢, v and Qygns, such that

Qleft N Qright = & and Qleft) Qright Uy = Q.

Such a decomposition yields a block structure in which large off-diagonal subblocks
of the finite element stiffness matrix are zero and remain zero during the computation
of the H-LU factorization. In this approach the authors compute the solution u as
follows u = U~ L~ !¢, where the factors L and U are approximated in the H-matrix
format.

The HDD method, unlike the methods described above, has the capability to
compute the solution on different scales retaining the information from the finest
scales. HDD in the one-scale settings performs comparable to the methods from
[35], [38], [47] with regards to the computational complexity.

4.2 ldea of the HDD Method

After Galerkin FE discretisation of (4.1) we construct the solution in the following
form

un(fr, gn) = Frfn + Gugn, (4.4)

where uy, (fr, gn) is the FE solution of the initial problem (1.1), f; the FE right-hand
side, and g the FE Dirichlet boundary data. The hierarchical domain decomposi-
tion (HDD) method computes both operators F, and Gj,. .

Domain decomposition tree (77,)
Let 7, be a triangulation of . First, we decompose hierarchically the given

domain €2 (cf. [24]). The result of the decomposition is the hierarchical tree T, (see
Fig. 4.1). The properties of the Ty, are:

e () is the root of the tree,

e T is a binary tree,

- 38 -

4.2 Idea of the HDD Method

o If w € T7, has two sons wy,ws € T7;, then
w = w1 Uwy and wy,wy have no interior point in common,

e we Ty is aleaf, if and only if w € 7.

The construction of 17, is straight-forward by dividing €2 recursively in pieces. For
practical purposes, the subdomains wy, wy must both be of size ~ |w|/2 and the
internal boundary

Vo = 0w \Ow = 0wy \Ow (4.5)
must not be too large (see Fig. 4.2).

Figure 4.1: An example of the hierarchical domain decomposition tree 77, .

Set of nodal points

Let I := I(Q) and x;, i € I, be the set of all nodal points in Q (including nodal
points on the boundary). We define I(w) as a subset of I with z; € w = . Similarly,
we define 1(w), I(Ty), I(7.,), where T, := 0w, @ = w\Ow, for the interior, for the
external boundary and for the internal boundary.

Idea

We are interested in computing the discrete solution wuy, of (4.1) in Q. This is
equivalent to the computation of u, on all 4, w € T7,, since I(2) = Uwery, 1 (Ve)-
These computations are performed by using the linear mappings ®/, ®9 defined for
all w € T, . The mapping ®9 : RI (%) — RI0«) maps the boundary data defined on
Ow to the data defined on the interface v,. ®7 : R/®) — R/0») maps the right-hand
side data defined on w to the data defined on ~,,.

Notation 4.2.1 Let g, := u|raw) be the local Dirichlet data and f, := fl|1) be the
local right-hand side.

The final aim is to compute the solution wj, along ~, in the form u|,, = @{; fo +
9 g, w € Tr,. For this purpose HDD builds the mappings ®,, := (09, ®/), for all

-39 -

4 Hierarchical Domain Decomposition Method

w € T7,. For computing the mapping &, w € Ty, , we, first, need to compute the
auxiliary mapping W, := (V¢ ¥/) which will be defined later.

Thus, the HDD method consists of two steps: the first step is the construction
of the mappings ®J and ®/ for all w € Tr,. The second step is the recursive
computation of the solution u;. In the second step HDD applies the mappings ®7
and @/ to the local Dirichlet data g, and to the local right-hand side f,,.

Notation 4.2.2 Let w € Ty, and

do = ((Fiere @ierany) = (Fur) (1)

be a composed vector consisting of the right-hand side from (4.1) restricted to w and
the Dirichlet boundary values g, = uplo. (see also Notation 4.2.1).

Note that g, coincides with the global Dirichlet data in (4.1) only when w = 2. For
all other w € T, we compute g, in (4.6) by the algorithm “Root to Leaves” (see
Section 4.3.5).

Assuming that the boundary value problem (4.1) restricted to w is solvable, we
can define the local FE solution by solving the following discrete problem in the
variational form (see (3.7)):

aw(Uwabj) = (fwabj)LQ(w)’ \V/j = I((f))’ (47)
Ux) = 0, ¥J e 1(00)

Here, b; is the P'-Lagrange basis function (see (3.29)) at x; and a, (-, -) is the bilin-
ear form (see (3.30)) with integration restricted to w and (f.,b;) = [f. b; dx.

Let U,, € V}, be the solution of (4.7) in w. The solution U,, depends on the Dirichlet
data on Ow and the right-hand side in w. Dividing problem (4.7) into two subprob-
lems (4.8) and (4.9), we obtain U, = U/ + U, where U/ is the solution of

{ aw<Uc{7bj) = (fwvbj>L2(w)’ vj = [(5)>’ (48)
Ul (x;) = 0, vV j € 1(0w)

and UY is the solution of

{ au(U2,b;) =0, ¥ jeI(&), (4.9)
US(x;) = g5 Vjel(0w).

If w = Q then (4.7) is equivalent to the initial problem (4.1) in the weak formulation.

4.2.1 Mapping ¢, = (®J, &)

We consider w € T7, with two sons w;,ws. Recall that we used v, to denote the
interface in w (see (4.5)). Considering once more the data d,, from (4.6), UJ from

(4.8) and UY from (4.9), we define ®/(f,,) and ®9(g,,) by
(@1(1)), = UL(x) Vi€ I() (4.10)

_ 40 -

4.2 Idea of the HDD Method

and
(®5(90)); = US(xi) Vi€ I(), (4.11)
Since U, = U + U9, we obtain

(Pu(dw)); = P%(g0) + PL(f) = UL (x:) + Ud(x:) = U(xs) (4.12)

for all 7 € I(,).

Hence, ®,(d,,) is the trace of U, on ~,. Definition in (4.12) says that if the data d,
are given then @, computes the solution of (4.7). Indeed, ®,d, = ®9¢, + o7 f,,.
Note that the solution u; of the initial global problem coincide with U, in w, i.e.,
uh|w = Uw.

4.2.2 Mapping ¥, = (U9 0/)
Let us, first, define the mappings ¥/ from (4.8) as

(VL)) serony = @w(UL) = (fur bi) p2ey (4.13)
where U/ € Vj,, Ul|s, =0 and
a(US b)) — (f,b) =0, for Vi e I(w).
Second, we define the mapping V¢ from (4.9) by setting
(W& (do))ierow) = 00U, bi) = (fur bi) o) = aw(US, bi) = 0 = au(UZ, bi), (4.14)

where UJ € V}, and (¥9(d,));, = 0 for Vi € I(w).
The linear mapping ¥,,, which maps the data d,, given by (4.6) to the boundary
data on Jw, is given in the component form as

W, (d,) = (\I[w(dw))iel(aw) 1= ay,(Us, bi) — (fo, bi)m(w) . (4.15)

By definition and (3.11)-(3.13), V¥, is linear in (f,,g,) and can be written as
VU, (d,) = W/ f, + Vg, Here U, is the solution of the local problem (4.7) and
it coincides with the global solution on I(w).

4.2.3 &, and ¥, in terms of the Schur Complement Matrix

Let the linear system Au = F'c for w € T7, be given. In Sections 4.3.1 and 4.3.3
we explain how to obtain the matrices A and F'. A is the stiffness matrix for the
domain w after elimination of the unknowns corresponding to I (c?) \Vw)- The matrix
F comes from the numerical integration.

We will write for simplicity ~ instead of 7,. Thus, A : RIOwW) — RIOWW) y ¢
RO o RIW RIOU) and ¢ € RI@ . Decomposing the unknown vector u
into two components u; € R! 0«) and uy € RI™ obtain

4 Hierarchical Domain Decomposition Method

The component u; corresponds to the boundary dw and the component uy to the
interface . Then the equation Au = F'c becomes

Ay A u F
= (o 4.16
(A21 A22 Us Fy ()
Ay RI(@w) - Rl(aw)’ Ay Rl(v) N Rl(aw)’

Agy : RIOW) Rl(v)’ Ag : RIO) — RI(V)’
F : RIW) _ Rf(aw)’ Fy: RIW _ RIO.

where

The elimination of the internal points is done as it is shown in (4.17). To eliminate
the variables uy, we multiply both sides of (4.16) by Aj5A,;, subtract the second
row from the first, and obtain

Ay — A12A521A21 0 u; . Fy — A12A§21F2
< e o) (m)= F2 c. (4.17)

We rewrite the last system as two equations

Aul = (A11 — A12A§21A21)u1 = (F1 — A12A521F2)C,

4.18
A22u2 = FQC — Azlul. ()
The unknown vector us is computed as follows

Uy — A521FQC — A521A21u1. (419)

Equation (4.19) is analogous to (4.43). The explicit expressions for the mappings
U, and @, follow from (4.18):

\I]g) = A11 - A12A521A217 (420)
\11£ = F1 — A12A2_21F2, (421)
(I)g) = —A2_21A21, (422)

o = AL F,. (4.23)

4.3 Construction Process

4.3.1 Initialisation of the Recursion

Our purpose is to get, for each triangle w € 7}, the system of linear equations
A-u=c¢c:=F-c,

where A is the stiffness matrix, ¢ the discrete values of the right-hand side in the
nodes of w and F' will be defined later. The matrix coefficients A;; are computed by
the formula

A= /oz(x)(Vbi - Vb;)dx (4.24)

w

- 49 -

4.3 Construction Process

For w € T, F' € R3*3 comes from the discrete integration and the matrix coefficients
F;; are computed using (4.28). The components of € can be computed as follows:

g — /fbldx ~ f(Xl)bi(Xl) + f(XZ)??i(XZ) + f(X3)bi(X3) . ‘w|’ (425)

where x;, ¢ € {1,2, 3}, are three vertices of the triangle w € T, bi(x;) =1if i = j
and b;(x;) = 0 otherwise. Rewrite (4.25) in matrix form:

1 1 [0i(x1) ba(x2) bi(xs) f(x1)
= & | ma | i) b bix) | [70e) |l (4.26)
Cs bs(x1) b3(x2) bs(x3) f(x3)

where f(x;), i = 1,2,3, are the values of the right-hand side f in the vertices of w.

Let
1 b1 (Xl) bl (Xz) bl (Xg)
F == b2 (Xl b2 (X) b2 (Xg) . (427)
bg (Xl) bg (Xg) bg (Xg)

Using the definition of basic functions, we obtain

C1 1 100 f(x1)
cy | = 3 010 f(x2) < wl. (4.28)
Cs 001 f(X3>

Thus, W9 corresponds to the matrix A € R**? and ¥/ to F' € R3*3.

4.3.2 The Recursion

The coefficients of ¥, can be computed by (4.15). Let w € T7, and wy, we be two
sons of w. The external boundary I',, of w splits into (see Fig. 4.2)

Fp1=0wNuw, Ty2:=0wnNw,. (4.29)
For simplicity of further notation, we will write v instead of ~,,.

Notation 4.3.1 Recall that I(0w;) = I(I',,;) U I(y). We denote the restriction of
\Dwi : RO — RO 0](’7) by ", = (\I[w)|i61(’y)'

Suppose that by induction, the mappings ¥, ¥,, are known for the sons wy, ws.
Now, we explain how to construct ¥, and &,,.

Lemma 4.3.1 Let the data dy = d,,, dy = d,,, be given by (4.6).
dy and dy coincide w.r.t. 7, i.e.,
e (consistency conditions for the boundary)

1= g2q Vi€ I(w))NI(wo), (4.30)
e (consistency conditions for the right-hand side)

fii=foi Vi€ I(w) NI(ws). (4.31)

_ 43 -

4 Hierarchical Domain Decomposition Method

r., A N

Wy bWy

Figure 4.2: The decomposition of w into w; and wy. Here 7, is the internal boundary
and I, ;, i = 1,2, parts of the external boundaries, see (4.29).

If the local FE solutions up 1 and upo of the problem (4.7) for the data dy, ds satisfy
the additional equation

VIIIM (dl) + ylllua (d2) =0, (432)

then the composed solution uy defined by assembling
N Jouna(xi) for i€ I(w),
un(Xi) = { upo(x;) for i€ I(ws) (4.33)
satisfies (4.7) for the data d, = (f,g) where

| fii for del(w),
Ji= { f;, for i€ I(w;), (4.34)

) g for i€ I(T,1),
" { gri for i€ I(T.z). (4.35)

Proof: Note that the index sets in (4.33)-(4.35) overlap. Let wy € Ty, fi; = fi,
i€ I(wy), and ¢1; = ¢;, © € I(Owy). Then the existence of the unique solutions of

(4.7) gives up1(x;) = up(x;), Vi € I(wy).
In a similar manner we get up,2(x;) = un(x;) , Vi € [((52). Equation (4.15) gives

(\Iluu (dl))ze[= Quy (uhv) (wa)L2 (w1) (436)
and

(7\IIWQ (dQ))z‘eI() T = Quy (uh7) (fuaa)L2 (w2) - (437)
The sum of the two last equations (see Figure 4.3) and (4.32) give

0= ,Y\I]w<dw)ie[()y — aw<uh7) (fuM) (438)
We see that uy, satisfies (4.7). |
Note that

uh,l(xi> =01 = 92 = uh72(xi) holds for 7 € [(LUl) N [((,LJQ).
Next, we use the decomposition of the data d; into the components

dy = (fh g1, gl,’\/)a (4-39)

- 44 -

4.3 Construction Process

AV
Py

Figure 4.3: The supports of b;, x; € w; and z; € ws.

where
g = (G1)ierwoy), 91y = (G1)iery) (4.40)
and similarly for dy = (f2, g2.,r, g2.4)-
The decomposition g € R into gir € R!Iw.3) and gin € RO implies the
decomposition of W§ - RIOws) — RIO5) into \I/UFJJ_ c RITws) — RIOw) and v
RIO) — RIOw;) 5 =1 2. Thus,
\I]gjlgwl = \Ilglgl,r _'_ \I]llgl,’y and \IlgggWQ = @5)2927F _'_ \Illgg27“/'
The maps ¥,,,, ¥, become
Vo, dy = L fi + 95 g0 + ¥, 014, (4.41)
Waydy = W, o+ 08 o1+ Vg, (4.42)
Definition 4.3.1 We will denote the restriction of W7, : RIO) — RI©O) to [(~) by
T - RIO) o RIO)
wj)
where j =1,2 and Ow; =T, ; U~.
Restricting (4.41), (4.42) to I(y), we obtain from (4.32) and ¢; , = g2, =: ¢, that
(", + T0Y,) gy = (VL i = Vg — UL fo — W, g20) 1)
Next, we set M := —("¥7, + 707), and after computing M ', we obtain:
gy =M (UL fi + UL gir + VL o+ UL gor) |10 (4.43)

Remark 4.3.1 The inverse matriz M~ exists since it is the sum of positive definite
matrices corresponding to the mappings W7 , TW7 .

w1’
Remark 4.3.2 Since g, = up(x;), ¢ € I(7), we have determined the map ®,, (it
acts on the data d,, composed by fi, f2, g11,92r).

Remark 4.3.3 We have the formula U, (d,) = Y, (d1) + ¥, (dy), where

dw = (fwagw)a dl = (f1,g1,r,91,v)a d2 - (fQ’QQ’F’gQ’W/)’ (444>
Giy = Gory = M‘l(\I'Ulefl + ‘I’Elgm + ‘I’£2f2 + ‘1’5292,F)‘I(7)'

Here (f,,9.) is build as in (4.34)-(4.35) and (4.30),(4.31) are satisfied.

Conclusion:

Thus, using the given mappings ¥, , ¥,,, defined on the sons wy,ws € T7;,, we can
compute ¢, and VU, for the father w € T7,. This recursion process terminates as
soon as w = (1.

_ 45 -

4 Hierarchical Domain Decomposition Method

4.3.3 Building of Matrices ¥, and ¢, from ¥, and ¥,

Let w, wy and wy € T7, where wq, wy are sons of w. Recall that dw; = T'y,; U~.
Suppose we have two linear systems of equations for w; and wy which can be written
in the block-matrix form:

A (Y- (), e
Al A uy Fy Fy cy
where v := 7,

Agil) c RITws) _ RITwd), A%) RIO) & RITwd)

AW RICw) L RIG) A0 RIO) —, RIG),
Fl(? L RI@\Y _y RIOw) Fl(;) CRIO L pI(0w)

9

BRIV L RIO) FO RO RIG),

Both the equations in (4.45) are analogous to (4.41) and (4.42). Note that cgl) = cgz)
) _

and ul" = ul? because of the consistency conditions (see (4.30),(4.31)) on the
interface v. The system of linear equations for w be

1 1 1 1 1 1

O T B o T e P SN

O S e I U S R (AR S S I X

Asy Ayl Ay + Agy U, Fy' Fy Fyy' + Fy %)
(4.46)

Using the notation

- AD _ AW
A= - , A= 2,
= () e (08

Agl = (Agll), Ag)), AQQ = ASQ) + Ag?,

(1) p
= _ | © s _J @ L[C
The system (4.46) can be rewritten as
A AL\ (Y (R (4.47)
A A5)\ Fy
The system (4.47), indeed, coincides with (4.16).

_ 46 -

4.3 Construction Process

4.3.4 Algorithm “Leaves to Root”

The scheme of the recursive process of computing ¥, and @, from ¥, and ¥, for
all w € Tz, is shown in Fig. 4.4. We call this process “Leaves to Root”.

v, f \ Ve

Figure 4.4: Recursive process “Leaves to Root”. A mapping ¥, is a linear function
of the mappings U, ¥y, w1 = w11 Uwis.

“Leaves to Root”:

1. Compute ¥/ € R¥3 and U9 € R3*3 on all leaves of T, (triangles of 7;,) by
(4.24) and (4.28).

2. Recursion from the leaves to the root:

a) Compute @, and ¥, from ¥, , ¥, .
b) Store ®,. Delete ¥, , ¥,,.

3. Stop if w = Q.

Remark 4.3.4 The result of this algorithm will be a collection of mappings {P,, :
w € Tg }. The mappings U, w € Tr,, are only of auxiliary purpose and need not
stored.

4.3.5 Algorithm “Root to Leaves”

This algorithm applies the mappings @, = (®9, ®/) to compute the solution. Since
this algorithm starts from the root and ends on the leaves, we will use the name
“Root to Leaves”. Figure 4.5 presents the scheme of this algorithm.

Let the set {®,, : w € T7, } already be computed and the data d, = (f,, g.), w = £,
be given. We can then compute the solution wuy, of the initial problem as follows.
Recursion from the root to the leaves:

1. Given d, = (f,, g.), compute the solution uy; on the interior boundary =, by
D, (dy,).

_47 -

4 Hierarchical Domain Decomposition Method

2. Build the data d,, = (fu,,901)s dwy = (fun, 9uw,) from d, = (f,,9,) and
G, = Dy (d,,).

3. Repeat the same for the sons of wy; and ws.

4. End if w does not contain internal nodes.

Since up(x;) = ¢, the set of values (g,), for all w € Ty, , results the solution of the
initial problem (4.1) in the whole domain).

@,/ \2,
o \Po,
N TN N
% VRZIZ .

Figure 4.5: The algorithm 'Root to Leaves’. ®,, is applied for computing the solution
on the interior boundary ;.

4.3.6 HDD on Two Grids

In (4.4) the operator JFj, requires larger computational resources compared to Gj,.
To reduce these requirements we compute uy, in the following way

wn(fu, 9n) = Fufu + Gugn,

where Fy .= F, Py g, H and h are two different scales and P, g is a prolongation
matrix.

Now, Fy requires less resources (computational time and storage requirement) than
F. If the coefficients a(x) oscillate, the grid step size should be small enough to
catch these oscillations (denote this step size by ”h” and corresponding finite space
by Vi,). At the same time the right-hand side f(x) is often smooth and therefore
can be discretised on a coarse grid with step size H, where H > h (see Fig. 4.6).
Another possible problem setup is when the right-hand side is only given at the
nodes of the coarse grid.

The algorithm of computing the prolongation matrix P := P,_py
Note that we compute prolongation matrices only for triangles of 7. For sim-

plicity we write P instead of P, g. Let h = % To compute f, = Pfy we perform
the following steps.

_ 48 -

4.3 Construction Process

1. In each vertex vj, j = 0,1,2, of w € Ty we compute the piecewise linear basis
function b¥ (x) by (3.29).

2. We compute the prolongation matrix P € R3*3, where P;; = ij (x;), x; are
nodes of the fine grid 7;, in w (e.g., middle points of edges). The value of the
right-hand side f at a node of 7} is defined as a linear combination of the
values f at the nodes of 7y (see an example in Fig. 4.7).

Remark 4.3.5 Now, we compute the solution by (cf. 4.43):
g“/ = M_l(\f[}ufq fl + \chrulgl,l“ + i’{)gfz + \:[152927F)|I('Y)7 (448)

where ‘il{; = \I'LPi, 1 = 1,2, and P; is a prolongation matriz. The size of the
matrix \i’{: is smaller than the size of the matriz \Ifg;,, t = 1,2. The size of the
matrix <I>£Z,PZ~ is smaller than the size of (IDL];,, 1 = 1,2. The matrices P, and Py are
data-sparse, since basis functions have a local support. Thus, memory requirements
can be strongly diminished.

T 7,

D —» g q

(6, © O S < O

Figure 4.6: The right-hand side f is given at the grid points of 7y (marked by (o))
and has to be interpolated at the nodes of the fine grid 7, (right).

Figure 4.7: w € 7Ty and a basis function at xy. For example, the value of f at the
point z a linear combination on the values of f at the vertices x,y of w

(e.g., f(z) =0.75f(y) + 0.25f(x)).

_ 49 -

4 Hierarchical Domain Decomposition Method

4.4 Modifications of HDD

4.4.1 Truncation of Small Scales

The standard version of HDD deals with one grid with step size h. In this subsection
we consider HDD on two grids with step sizes h and H, h < H. Often, only the
solution on the coarse scale is of interest, but to build this solution accurately one
should take into account the fine scale details.

Notation 4.4.1 Let us denote the pruned domain decomposition tree by TTZ}LH and
the part removed by pruning by Ty (for this part diam(w) < H). Thus, we have
Tr, = TE" UTEY (see Fig. 4.8).

I,
>H
Tz,

Q
H

AAARAARD, =

Figure 4.8: Truncation of the small scales.

Remark 4.4.1 The algorithm “Root to Leaves” determines uy, in all w € TTZhH and
terminates on the level corresponding to a medium scale H (see Fig. 4.8). The
mappings P, w € TT<hH, are not computed and not stored. This truncation of the

small scales does not imply any additional error to the solution in w € TTZhH.

Remark 4.4.2 In Chapter 10, we compute the complezities of the algorithms “Leaves
to Root”, “Root to Leaves” and their modifications.

Now, we compare our method with the multiscale finite element method (MsFEM)
(see [50], [40]):

e MsFEM requires two different triangulations. The first triangulation is needed
for solving the appropriate homogenized problem inside a cell and the second
one for solving the macroscale problem. HDD requires one coarse triangulation
and its refinement.

e The solution which MsFEM computes on the coarse scale with step size H does
not coincide with the solution which the standard FEM with step size h would
produce. In MsFEM the accuracy of the solution on the coarse scale depends
on the accuracy of the solver in the cell (different from HDD). The solution,
produced by HDD with truncation of the small scales, does not contain any
additional error.

- 50 -

4.4 Modifications of HDD

In MsFEM it is not obvious how to build the boundary data for the homoge-
nized problem in 2D and 3D cases in a non-periodic case.

The offered version of HDD is applicable only in 2D. In the present time the
3D version of HDD is under construction.

MSsFEM requires periodicity (unlike HDD) and as a sequence the complexity of
MsFEM is O(ng+ns), where ny is the number of cells (equal to the number of
degrees of freedom on the coarse grid) and n, the number of degrees of freedom
in the cell. HDD with repeated patterns (see Section 4.4.4) has complexity
O(nglog® ng) + O(nglog® n,). Note that MsFEM applies multigrid method
and computes a particular solution, whereas HDD computes the mappings,
i.e., HDD is appropriate for the many right-hand sides.

HDD can compute different functionals of the solution.

HDD has linear complexity for homogeneous problems (Section 4.4.8).

Both HDD and MsFEM have the advantage that they are easy parallelizable.

4.4.2 Two-Grid Modification of the Algorithm “Leaves to Root”

The purposes of this modification are:

1.

2.

to decrease the memory requirements of the matrices U/ and &7

to speed up the construction of the matrix W/, from the matrices ¥/, and ¥/
where w = wy; U ws.

Let us introduce some new notation:

1.

2.

The subindex ;, indicates a fine grid.

The subindex g indicates a coarse grid.

. The numbers of grid points in w are denoted by n,(w) := |[I(ws)| and ng(w) :=

|I(wp)| respectively.

. The index sets of indices in w; are denoted by I(w; ;) and I(w; i) respectively.

. P RIWin) 5 RIWin) =1 2 are the prolongation matrices.

Compression of the Mapping ¥/

The algorithm “Leaves to Root” computes the mappings:

ol RIW) o RIO9) - for all w € Ty, .

Taking into account the results from Section 4.3.6, the modified version of the algo-
rithm computes the new mappings:

O/ RIC@H) RIGW - for all w e T, .

- 51 -

4 Hierarchical Domain Decomposition Method

vf vf

w1 w2

Figure 4.9: The matrix ¥/ is constructed from the matrices \Il{;l and ‘ilf& (one step
of the algorithm “Leaves to Root”).

The new scheme of the construction of W/ from ¥/ and ¥/ is shown in Fig. 4.9.
The number of columns in W/ is by a factor Z’Z—((j)) smaller than the number of
columns in ¥/,

Remark 4.4.3 In practice, we construct prolongation matrices only for leaves of
Tr,. Then we construct Vi, directly from U/ and /.

he

Compression of the mapping @/

The algorithm “Leaves to Root” computes also the mappings:
& RICW L RIOW - for all w € Ty, .

Taking into account the results from Section (4.3.6), we compute the new mappings:
of RICH) RIOW - for all w € Ty, .

The idea of the compression is shown in Fig. 4.10. There an additional prolongation

matrix P is applied. As a result the number of columns in the new matrix cf)g: is in
ny(w)

) smaller than in ®/.

a factor

Figure 4.10: Compression of the matrix ®/.

4.4.3 HDD on two grids and with Truncation of Small Scales

An application of HDD on two grids with truncation of the small scales results in
the optimal performance. The realization of the HDD method stays the same with
the difference that the domain of definition of both mappings ¥/ and ®f is RI@r)
instead of RI(n),

52 -

4.4 Modifications of HDD

4.4.4 Repeated Patterns

Elliptic partial differential equations with periodically oscillating coefficients were
considered in [23, 52, 53, 42]. For solving such equations the authors used the
theory of homogenization and different modifications of multigrid methods.

The domain with repeated patterns can be decomposed into subdomains (we call
them cells), where the computations are equivalent up to translation. In this case,
only one cell has to be considered in the computation (see Fig. 4.12 (a)). This
reduces the work required in the part TT<hH (see Fig. 4.8) significantly. For simplicity,
suppose that the decomposition into cells forms a coarse scale with the grid step size
H.

The modified HDD method is as follows:

1. Build a triangulation of the domain {2 so that the repeated cells have an
identical triangulation.

2. Build the hierarchical domain decomposition tree TTZhH (for each subdomain
its internal and external boundary nodes must be known). The leaves of this
tree are cells.

3. Build the hierarchical domain decomposition tree T, := T, (v) just for one cell
v.

4. Run algorithm “Leaves to Root” for the tree T, (see Fig. 4.12(a)). This
algorithm computes the mappings ®/ and ®¢ for all w € T,,.

5. If the symmetry allows, we compute ¥, and ®, on each level [of T TZhH only
for one node and then copy them to other nodes at the same level (see Fig.
4.12(b)).

7

6. Taking into account translation of indices, “Root to Leaves ” computes the

solution in all w € T7; .

AVIAVIAVIIAV:
AVIAVIAVIAY
AVIAVIAVIIAV

S

Figure 4.11: The given domain is decomposed into m cells and then each cell is
decomposed independently into n,. finite elements. The oscillatory co-
efficients inside cells are equal.

- 53 -

4 Hierarchical Domain Decomposition Method

repeated/cells

(b)

Figure 4.12: HDD with repeated patterns. (a) ®/ and @9, w € T,,, are computed

only for the tree T,; (b) ®/ and &9, w € TTZhH, are computed only once
on each level and then copied to other nodes.

4.4.5 Fast Evaluation of Functionals

In this subsection we describe how to use the mappings ®/ and ®¢ for building
different linear functionals of the solution (see examples below). Indeed, A is deter-
mined in the same way as ¥,,.

If the solution v in a subdomain w € T7, is known, the mean value p(w) can be
computed by the following formula

[u(x)dx doteTh () %(ul + ug + u3)
|w] |w]

plw) = : (4.49)
where u is affine on each triangle ¢ with values wuy, ug, us at the three corners and
7n(w) is the collection of all triangles in w. If the solution u is unknown, we would
like to have a linear functional A\, (f, g),w € Tr,, which computes the mean value f,
of the solution in w.

Below we list some examples of problems which can be solved by using linear func-
tionals.

Example 4.4.1 Dirichlet data on Ow, w C €2, are given and one needs to evaluate
the Neumann data %th on Jw.

Example 4.4.2 The given domain §) is decomposed into p subdomains Q = |J,_,
(see (4.2)). We denote the set of nodal points on the interface by Is. The computa-
tion of the solution in the whole domain Q2 can be expensive (or even impossible in
a reasonable time) and, therefore, as an alternative, HDD offers the solution on the
interface Is, and the mean values inside €;, i =1, ..., p.

Example 4.4.3 To compute the FE solution u,(x;) in a fixred nodal point x; € €0,
i.e., to define how the solution uy(x;) depends on the given FE Dirichlet data g, €
RIOY and the FE right-hand side f, € R,

Let w = wy Uws, w1 Nwy # &, with w, wy, wy € T7,. To simplify the notation we
will write d; := d,, and (f;, g;) instead of (f,., gw,), ¢ = 1,2. Recall the following

_54 -

4.4 Modifications of HDD

notation (see (4.39), (4.40)):

'=0w, T',i;=0wNw, TIy2:=0wNw,, then

dy = (flagl) = (flagl,Fagl,'y)a dy = (f2792) = (f2ug2,Fug2,’y)7 where (4-50)
qgir = (g1)|rw,17 91y = (g1>|"/7 (451)
gor = (92)|Fw,27 92y = (92)|v-

We consider a linear functional A\, with the properties:

Ao(do) = (A, 90) + (AL, fo), (4.52)

Ao(dy,) = 1A, (dyy) + oAy (duy), (4.53)

where A : RO — R A RI® — R and (-, -) is the scalar product of two vectors.

Definition 4.4.1 Let w; C w,)\f RI@1) — R. a) We define the following exten-
sion of A/ 2

o)i fori € I(wr),
(>‘£1|)i '_{ 0 forie I(w\ wy),

where (M, |*) : RI“) — R. b) The extension of the functional X{ . : RIT«1) — R is
defined as

g _J (Mp)i forie I(Tuy),
Afrls = { 0 forie I(T\Ty1),

where (A{ p|") : R'0D — R.

Definition 4.4.2 Using (4.51), we obtain the following decompositions
M= (M) and X, = (M1, AS,), where A : Rt — R RIO) — R,
)\9 L RITw2) R, . ‘RIO) LR,

Lemma 4.4.1 Let \,(d,,) satisfy (4.52) and (4.53) with w = w; Uwy. Let X9, , N9

w1’ w2’

M, and AL, be the vectors for the representation of the functionals A, (d.,) and
Ao, (dy,). Then the vectors N, N9 for the representation

Ao(dy) = (N,) + (M, g.), where f, € RIW g € RIOW), (4.54)
are given by)
M =M (@)X,
A =N+ (29)7 N,
M =M [+ el (4.55)
2 = X p|" + el (4.56)
N =M, + el (4.57)

- 55 -

4 Hierarchical Domain Decomposition Method

Proof: Let d,,, d,, be the given data and \,, and \,, be the given functionals.
Then the functional A\, satisfies

A(do) U2 e, (do)) + ooy (dy)

(4.52)
=7 (M)+ (8, 01) + (M, fo) + (AL, 92)).
Using the decomposition (4.50), we obtain
Ao(dy) = al(X,, fu) + (N, f2) + el((Mpy 1) + (M, 914)) (4.58)
+ea((Agrs gar) + (A3, 92.4))-

The consistency of the solution implies g1, = g2, =: g,. From the Definition 4.4.1

follows
AL f) =L o), (M,) = (M9),
<)‘1,F791,F) = O‘iﬂrvgw)v ()\g,F7g2,F) = (A 2,I“F7gw)'

Then, we substitute last expressions in (4.58) to obtain
Ao(do) = (], [+ e2ML, |7, fo) + (M " + X p [, 00) (4.59)

+(e1M], + e, gy).

Set A = Al v+ e, M = M bt A p[fand M = A+ @)
From the algorithm “Root to Leaves” we know that

gy = Py(dy) = @Y - g, + (I)f; * o (4.60)
Substituting g, from (4.60) in (4.59), we obtain

Ao(dy) = (5‘4{;7 fo) + (S\Z,gw) ()‘g 79, + (I)ffw)
= (AL +(@D)"N,) + L+ (92)7A,)

We define Af := M, + (2£)7A and AY, := A9, + (%) and obtain

Ao(do) = (AL, fo) + (AL, 00)- (4.61)
|

Example 4.4.4 Lemma 4.4.1 with ¢; = “—1|| Cy = % can be used to compute the
mean values in all w € T7, .

- 56 -

4.4 Modifications of HDD

4.4.6 Functional for Computing the Mean Value

Below we describe two algorithms which are required for computing mean values.
These algorithms compute \¢, and A/ respectively.

Algorithm

The initialisation is A% := (3,3,3), AL := (0,0,0) for all leaves of T7,. For all
w € Tz, which have internal nodes the algorithms for building \¢ and A/, w € Tr,
are the following:

Algorithm 4.4.1 (Building of \Y,)
build_functional_g(\], \j, ®9,...)
begin

allocate memory for)\ ;
for allic I(T',,) do
MNil+ = e \[i];
for allic I(T',) do
Mlil+ = 231
for allic I(vy) do
2li] = el Xl + el
(@) 2
for alli € [(0w) do
ML= Al + ol
return)\ ;
end;

Algorithm 4.4.2 (Building of \/)
build_functional_f(\ , N, ®/ ..
begin

for alli € I(w;\7) do
M+ = e\ [i];

for alli € I(ws\7) do
Mi]+ = e\ [i];

for allic I(vy) do
2H—QVH+@VH

— ()T

for alli € I(w) do

N[= ALJi) + ol
return)\ ;
end;

Remark 4.4.4 a) If only the functionals \,, w € Tr,, are of interest, the maps @,
need not be stored.

b) For functionals with local support in some wy € T, , it suffices that ®,, is given for
allw € Ty, withw D wy, while A, (dy,) is associated with wy € Ty, . The computation
of AMuy) = A(d) starts with the recursive evaluation of ®,, for all w D wy. Then the
data d, are available and N\, can be applied.

- 57 -

4 Hierarchical Domain Decomposition Method

4.4.7 Solution in a Subdomain

Suppose that the solution is only required in a small subdomain w € T7,. For
this purpose the HDD method requires much less computational resources as usual.
An example is shown in Fig. 4.13. The algorithm “Leaves to Root” is performed
completely, but the algorithm “Root to Leaves” computes the solution only on the
internal boundaries (dotted lines) which are necessary for computing the solution
in w. The storage requirements are also significantly reduced. We only store the
mappings ®/ and ®¢ for all w € T, that belong to the path from the root of Tr,
to w. The storage requirement is O(ny logny,), where ny, is the number of degrees of
freedom in 2. The computational cost of the “Root to Leaves” is O(ny logny) be-
cause the storage of an H-matrix and as well as the H-matrix - vector multiplication
requires O(ny logny,)) (see Table 5.3).

Figure 4.13: The solution in a subdomain w € T7, is required. HDD computes the
solution only on the dotted lines.

4.4.8 Homogeneous Problems

In the case of a zero right-hand side in (4.1), the mappings ¥/ and &/, w € Ty, do
not need to be computed at all. Thus, only the mappings U9 and &Y, are of interest.
The complexity of the HDD method in this case is O(k?n;) and storage requirements
O(kny,), where ny, is the number of degrees of freedom in Q2. The application of the
weak admissibility condition (see Subsection 5.5.2) results in multiplications of low-
rank matrices and vectors for the algorithm “Root to Leaves”. Numerical examples
confirm the linear cost of the HDD method with a homogeneous right-hand side,
instead of the “almost” linear cost O(nylog? ny) for an inhomogeneous right-hand
side. In particular, for the discrete problem the CPU times for computing the
solution on grids of sizes 257 x 257 and 513 x 513 with the relative error 1072 are
37.0 sec. and 176.0 sec., correspondingly. The rate is % = 4.76 (factor 4 means a
linear dependence).

- 58 -

5 Hierarchical Matrices

Almost all results of this Chapter were already published in [33], [30], [27], [11], [37],
[29]. The new material is presented in Sections 5.9.5, 5.9.6, 5.9.7 and 5.10.

5.1 Introduction

The difficulty with the exact matrix arithmetic is that except for the diagonal matri-
ces (or diagonal after a certain cheap transformation), there isn’t a class of matrices
which allows the standard matrix operations: Az, A+ B, A- B, A~' in O(N) op-
erations.

The hierarchical matrices (H-matrices) were introduced in 1999 by Hackbusch [33]
and since then H-matrices have been applied in a wide range of applications. They
provide a format for the data-sparse representation of fully-populated matrices. The
main idea in the H-matrices is to approximate certain subblocks of a given matrix
M by low-rank matrices. Let R € R™™ be a subblock of M and rank(R)=k,
k < min(n, m). Suppose that we find matrices A € R™* and B € R™** so that
R = ABT. The storage requirement for matrices A and B is k(n+m) instead of n-m
for matrix R. Later on will be shown that the cost of the basic matrix arithmetic
(matrix-matrix addition, matrix-matrix multiplication, inversion of matrices) is not
greater than O(nlog®n). One of the biggest advantages of H-matrices is the almost
linear complexity of the H-matrix addition, multiplication and inversion.

In this section we give two examples of H-matrices (see Fig. 5.1). The dark blocks
are dense matrices and the light blocks are low-rank matrices. The steps in the
grey blocks show the decay of the singular values in a logarithmic scale. The size of
both matrices is 4096 x 4096. The first example is an H-matrix approximation of
the stiffness matrix of the Poisson problem for the grid as shown in Fig. 3.1. The
second matrix is an H-matrix approximation of the inverse of the stiffness matrix of
the Poisson problem. The approximation error is || My'M — I|j; =2.1-1073.

In Section 5.4 we define auxiliary structures: clusters, cluster trees and the block
cluster trees. After that we introduce the admissibility criterion and explain how to
build a cluster tree and a block cluster tree. We give the definition of H-matrices
and define the low-rank arithmetic and the H-matrix arithmetic. We describe how
to convert one H-matrix into another with a different block cluster tree. Finally, we
estimate the computational complexities of the main arithmetic operations.

- 59 -

5 Hierarchical Matrices

5.2 Notation

In this section we describe the most important notation which are used in the text.
The finite index set I := {0,...,n — 1} contains the indices of the basis functions
b; which are used in the Galerkin discretisation. We denote the cardinality of I by
n=|I|.

5.3 'H-Matrix for an Elliptic Boundary Value Problem.

Let M be the stiffness matrix which comes from the problem (4.1). M is a data-
sparse matrix, but M~! is already a dense matrix. The next theorem proves the
existence of the H-matrix approximation of M.

Theorem 5.3.1 Let ¢, > 0 be the finite element error and L = O(logn) the depth
of the block cluster tree. Then there exists a hierarchical matrix Mﬁl with maximal
rank k = L?C, logd“(i—%) of the low-rank subblocks, such that

| = Myl < C(1+ O)en,

where Cy,C are two constants, d the spatial dimension and 6 € (0,1).

Proof: see [13], [36].

B
i M *H] |
o T T T Inia T
i T 1T I I
i il = P
2 =z il ! H T BT
T T Iy [nfn | T T
Lo - terd
HH i E:ﬁE TR T ;F&F M) =, T T
M n H T T Jnln _— I
W - T] = O
EE:; T e T | DT T T
M. I, W) I I
i | u [|
AL TR . |
— . o T] = = = e | i | Tl [T
R . e o Jainy 1 |
FE) T T IR/ [0/ | T
H 2 FeRH T T I I
T TR e I I I HHHH
1 T o i I [aint
) R TR T o L | T T
T T f 3 e T Ria ! T !
TR T SR M 1 . | B [min]
N =2 T T iy o T T
mun e e T T 1 1
: H HE e e R j:HE Ei] B e TRl
HH st R L H = CHEFo
el el | R
G I |
N g2 il T/ Eod|
T R T T
1 m =i mm L I I [alnt)
|] | I | | o
T T =21 t ezl i I I oy I
jqa? R EEZE T ek T F | BTl
WL I, W) I I
T T =2 8 | T T = el
1 T o 1 1 O
a EEL EEER [y T/ .
ﬂ:& jamammee +++ H i o |
N iee = Do
T T FReE R e T
1 mE = 1 I m
|) | . |
H TTT

Figure 5.1: The H-matrix approximation of the stiffness matrix of the Poisson prob-
lem (left) and its inverse (right). 642 dofs, |M;'M — I|y = 2.1-107%.
The dark blocks are dense matrices. The light blocks are low-rank ma-
trices with maximal rank k,,,. = 5.

5.4 Building of H-Matrices

In order to build an H-matrix, we first need to introduce some auxiliary structures:

- 060 -

5.4 Building of H-Matrices

1. the cluster tree (denoted by T7),
2. the block cluster tree (denoted by T7y;),

3. the admissibility condition (denoted by Adm,, or Admy).

5.4.1 Cluster Tree

We consider different partitions of I into disjoint subsets including coarse and fine
partitions. The set of these partitions is hierarchically structured and is uniquely
defined by the tree T' = T}, which is called cluster tree.

Notation 5.4.1 We denote all vertices of a tree T by V(T') and all sons of a vertex
t by S(t).

Definition 5.4.1 A vertez v € V(T) is a leaf if sons(v) = @ and we define
L(T):={veV(T)| wvisaleaf}.

Notation 5.4.2 The uniquely determined predecessor (father) of a non-root vertex
v e Ty is denoted by F(v).

Definition 5.4.2 We define the levels | € Ny of T recursively
TO = {1}, TO :={teT)|Fv)eT "}

and we write level(v)=l if v € Tl(l).

The leaves of T on level | are denoted by
L(T,1):=TYnL(T).

Let the mapping " : T; — {r| r C I} labels vertices of the tree T}, i.e., if t € T
and t C T then” : t — .
Thus, for each t € T}, we denote its label by ¢t C [.

Definition 5.4.3 A finite tree Tt is a cluster tree over the index set I if the following
conditions hold:

o [is the root of T and t C I holds for allt € Ty.

o Ift € Ty is not a leaf, then S(t) contains disjoint subsets of I and t is the

~

disjoint union of its sons, t = U S.
seS(t)

o Ift €Ty is aleaf, then |t| < Nppin for a fived number Ny,

Definition 5.4.4 If |S(t)| =2 for allt € T;\ L(T}), then Ty is called a binary tree.

- 61 -

5 Hierarchical Matrices

{0,1,2,3,4,5,6,7}

/ \

{0,1,2,3} {4,5,6,7}

/N /N

{0,1} {2,3} {4,5} {6, 7}

Figure 5.2: An example of a cluster tree over the index set I = {0,1,2,3,4,5,6,7}.
Each leaf contains n,,;, = 2 elements.

Definition 5.4.5 The vertices t € V(T') of a cluster tree are called clusters.

A cluster tree for I is usually denoted by T;. We write ¢ € Ty for t € V(T7).
In [27], [13], [36] the reader can find two different algorithms for building cluster trees
for a given set of basis functions. The first one is based on a geometrical splitting
and the second one on a cardinality splitting. Which one to choose depends, for
example, on the discretisation of a given problem.

Each index ¢ € [is associated with the basis function b; of the Galerkin ansatz
space Vj, := span{b; }icr, so that the support of the basis functions is denoted by

Q; :==supp(b;) for iel.
We generalize €); to cluster ¢t € Tt by setting
sy:Um¢en. (5.1)

i€t

Construction of a cluster tree

Since dealing directly with the supports will be too complicated, we choose a point

x; € §; for each index ¢ € I and work with these points instead of the supports. This
simplification will not significantly harm the performance of the algorithm, since the
supports of the typical finite element basis function is small.
Our construction of the cluster tree starts with the dense index set I, which is the
root of the cluster tree by definition. After that we apply a suitable technique to
find a disjoint partition of the index set and use this partition to create the son
clusters. We apply the procedure recursively to the sons until the index sets are
small enough. To make the partition easier we define for the given domain €2, from
(5.1) a minimal azes-parallel bounding box (Q; = Hle[ai,bi], where Q; D ;. The
coordinates a; and b; can be defined as following

for i=1 to d

{
a; = min;e; T;; (5.2)
bi = Il’lanefSL’j,i

}

Each index ¢ € ¢ corresponds to a point z; € R% There are some variants of
splitting the boundary box @;. For example, we can choose the coordinate direction
of the maximal extent and split the box perpendicular to this direction into two
subdomains. This gives us the partition {fo,7;} of ¢ (respectively Q; = Q;, U Q).

- 62 -

5.4 Building of H-Matrices

Remark 5.4.1 See the algorithms of splitting based on the geometry of €y and the
cardinality in Sections 5.5.2 , 5.5.3 in [36] and [13].

The building of the special cluster tree 7T}

The input data for the building of the cluster tree 77 is the index set I. In this work

we use the geometrically balanced clustering (see other variants of the clustering in
[28], [27]). This means that for building cluster trees we use the geometry of the
given domain.
Let I, I11, 112 and Iy be given index sets such that I = I;; U 1o U 1. Let Ty, Ty,
Ty, be given cluster trees, based on Iy;, I15 and I;. We want to build the binary
cluster tree Ty such that Iy, I1o, Is € T (see Fig. 5.3). For this purpose we build
cluster I; which has two sons I, I12 and cluster I which has sons I; and I5.

Figure 5.3: The structure of the cluster tree 77.

5.4.2 Block Cluster Tree

While the vector components are indexed by ¢ € I, the entries of a matrix have
indices from the index set I x J. The block-cluster tree is nothing but a special
cluster tree over the product index set I x J. The vertices (“blocks”) b € Ty are
of the form b = (¢, s) with t € Ty, s € T}.

Definition 5.4.6 Let Tt and T; be cluster trees over the index sets I and J. A
finite tree T is a block cluster tree based on Ty and T if the following conditions

hold:

root(T) =1 x J.

Fach vertex b € V(T) has the form b= (t,s) for cluster t € Tr and s € T}.

For each vertez (t,s) € V(T') with sons(t,s) # @, we have

(t,s") : s € sons(s), if sons(t) = @ A sons(s) # &

sons(t,s) = (t',s) : t' € sons(t), if sons(t) # @ N sons(s) = &
(t',8") : t' € sons(t),s" € sons(s), otherwise

(5.3)

—_—

The label of a vertex (t,s) € V(T) is given by (t,s) =t x §C I x J.

- 063 -

5 Hierarchical Matrices

A block cluster tree based on T; and T is denoted by Trx;. We will use the

abbreviation (¢, s) € Ty for (t,s) € V(Trxs). We can see that root(Trx;) = 1 x J.
This implies that the set of leaves £(T]«) is a partition of I x J. An implementation
of the block cluster tree can be found in [28].

Definition 5.4.7 Let Tr.; be a block cluster tree. We call P a partition (or a block
partition) of I x J if:

P C TIXJ7
b eP= b=V orbnl = o), (5.4)
Uper =1 % J.

5.5 Admissibility

The admissibility condition helps us to find a balance between the storage require-
ments of an H-matrix and its approximation accuracy. It also helps us to identify
the blocks which can be approximated well by a low-rank matrices. Let ¢t € T,
SETJ andtxsETIXJ.

Definition 5.5.1 The admissibility condition is a Boolean function
Adm : Ty — {true, false} (5.5)
with the consistency requirement
Adm(b) = Adm(V') for all sons b’ of b € Trys

and the property Adm(b)=true for all leaves b € Ty ;.

5.5.1 Standard Admissibility Condition (Adm,)
Definition 5.5.2 The standard admissibility criterion for b = (t, s) is

min{diam(Q;), diam ()} < ndist(,), (5.6)

where 1 > 0 is a fixed parameter.
The admissibility condition (5.5) now takes the form of

Adm,(b) = true for b= (t,s) € Tixy <=
(b is a leaf) or (5.6) holds.

In practice it is difficult to define the Euclidean diameter diam(£2;) and the Euclidean
distance of two clusters dist({2;, 25). This is the reason why we rewrite the standard
admissibility criterion for the bounding boxes.

We define a minimal axis-parallel box @; C R? such that €, C @, holds.

This box will be called the bounding box of the cluster t.

Definition 5.5.3 The standard admissibility criterion for QQy and Q4 is:

_ 64 -

5.5 Admissibility

min{ diam(Qy),diam(Q;)} < n dist(Qy, Qs).

Let d be the spatial dimension. We can compute the distances and diameters as
follows:
If Q; = [a1,b1] X ... X [ag, bg] and Qs = [c1,d1] X ... X [cq, dg] then

diam(Qy) = \/Zl L (b —ap)?, diam(Qs) = \/Zl (dy —¢)? and
dist(Qu, Q1) = \/ i, dist([ar, bi, e, di))>

Where does the admissibility condition come from?
Suppose the following propositions are true:

e B, C R? and B, C R? are compact.
e x(x,y) is defined for (z,y) € By x By with « # v.

Let IC be an integral operator with an asymptotic smooth kernel I in the domain
Bl X BQI

(ko) (x) = / @)y (« < By).

Suppose that x*)(z,y) is an approximation of y in B; x By of the separate form:

k
= P (@)
v=1

where k is the rank of separation (index) is not a derivative!).
Then, under some conditions (see Paragraph 4.6.3 [36],[13]) we have

in{diam(B,), diam(B;)}1"
W < co min{diam(By), 9
X = X loo,BixB: < €1 { dist(By, B) (5.7)
Proof: See Paragraph 4.6.3 in [36].
Now, if
1
min{diam(B;), diam(Bs)} < —dist(By, By). (5.8)
Co

there is an exponential convergence in (5.7).

Definition 5.5.4 Let n > 0 and t, s be two clusters,)y and €25 are supports of t
and s. The block b = (t,s) is called n-admissible, if

min{ diam(t), diam(s)} < dist(t, s). (5.9)

5.5.2 Weak Admissibility Condition (Admyy)

Definition 5.5.5 In the 1D case Admyy (b) = true for b= (t,s) € Tixy < ((bis a
leaf) ort and s are different clusters.

In the following remark we list properties of the weak admissibility condition.

- 065 -

5 Hierarchical Matrices

Remark 5.5.1

1. The partitioning Py, obtained with the weak admissibility criterion Admyy
is simpler than the partitioning P, obtained with the standard admissibility
criterion Adm,,, i.e., subblocks are coarser and the number of subblocks is less
(see example in Fig. (5.4)).

2. The weak admissibility yields a cheaper H-matriz arithmetic (e.g. H-matriz
multiplication, H-matriz inverse) compare with the standard admissibility.

3. Adm,, = Admy, ti.e., if a block b = (t,s) € Tix; is admissible w.r.t. the
standard admissibility criterion, then block b is also admissible w.r.t. the weak
admissibility criterion.

4. If b = (t,s) € Tixy is a weakly admissible block then the domains 0y =
U‘Zﬂ:1 supp b; and Qg = U‘Zil supp b; can touch each other at most at a point.

Figure 5.4: An example of a hierarchical matrix with weak admissible blocks.
Example 5.5.1 Figure 6.1 shows an example of an H-matriz which is obtained with
the weak admissibility condition.

Example 5.5.2 Fig. 5.5 demonstrates three examples of clusterst and s. The block
(t,s) in the cases (a) and (b) is weak admissible and in the case (c) inadmissible.

See more about the weak admissibility condition in [37].

t
t S t s \
D |
(€] (b

) ©

0

Figure 5.5: In (a),(b) the block (¢, s) is weakly admissible and in (c) it is inadmissible.

- 066 -

5.5 Admissibility

Admissible Blocks
Let n,,i, be a given constant (in our numerical experiments n,,;, = 32).

Definition 5.5.6 A block cluster tree Try; which is based on I and J, is called

admissible with respect to an admissibility criterion if the following two conditions
hold

o (t,s) is admissible,
o min{[], |5))} < numin
for all (t,s) € L(T«y).
Notation 5.5.1 We denote all admissible blocks by LT (Tx.).

The construction of an admissible block cluster tree from the index sets I and J and
a given admissibility condition is done in a straightforward recursion.

Algorithm 5.5.1 (Building a block cluster tree)
build_block_cluster_tree(t, s)
begin
if (check_admissibility(t,s)=true) then
if (min{|t], |3} > nmin) then
b :=create admissible node (t,s);
else
b :=create admissible leaf (t,s);
else
for each block (t',s") € sons(t,s) do
build_block_cluster_tree(t', s');
end if;
end;

Example 5.5.3 Figure 5.6 shows two index sets t = 1(0w) and § = I(7,,). These
index sets do not have any common points. Let Q; := U,;;supp b; and Q, =
Uiessupp b;. The intersection of the supports €y and Qg is not empty (see dark
regions), but nevertheless the block (t, s) is weakly admissible (see [37]).

- 67 -

5 Hierarchical Matrices

Figure 5.6: The intersection of supports € and €2; of two clusters ¢t and s, where
t = I(Ow) and 5 = I(,) is not empty (see dark regions), but nevertheless
the weak admissible criterion can be applied and the block b = (¢, s) is
weakly admissible.

Inadmissible Blocks

Definition 5.5.7 A block (t,s) for which an admissibility criterion (standard, weak
or some other) is false, is called inadmissible. We denote the set of all inadmissible
blocks in L(Tr«y) by L™ (Trxs).

Recall that parameter n,,;, is responsible for the maximal size of inadmissible blocks.
If a block b = (t,s) does not satisfy to the first condition in Def. 5.5.6, but
min{|Z], |5])} < Nmin, then b is approximated by a dense matrix. If the parame-
ter Ny, is small (e.g. My, < 16), then the matrix has a deeper hierarchy and the
complexity of all arithmetic operations increases. On the other hand, if n,,;, is too
large, the fully-populated matrix arithmetic begins to dominate.

5.6 Low-rank Matrix Format

Sometimes the name rank-k matrix format is used.
The rank-k matrices are very important for the construction of H-matrices. We give
the definition of rank-k matrices and we describe the low-rank arithmetic. Then we
estimate the complexity of arithmetic operations and their implementation.

Let M € R’/ be a matrix, I, J two index sets. Consider the factorization

M = ABT where A € Rkt B e RIALFE | e N, (5.10)

Definition 5.6.1 We say that matriz M is a rank-k matrix if the representation
(5.10) is given. We denote the class of all rank-k matrices for which factors A
and BT in (5.10) exist by R(k,I,J) or R(k,n,m), where n = |I|, m = |J|. If
M € R(k,I,J) we say that M has a low-rank representation.

Remark 5.6.1 If A,B and C are matrices and A :== B - C then
Rank(A) < min{ Rank(B), Rank(C)}. As a sequence we have Rank(M) = Rank(ABT) <
k for matrices from (5.10).

Remark 5.6.2 Note that we do not state that the matriz M from the representation
(5.10) has a rank k, but if Rank(M) = ko then there exists a factorization (5.10)
with k = ky.

- 068 -

5.6 Low-rank Matrix Format

Proof: see Remark 2.2.2 in [36].

Definition 5.6.2 M € R(k,I,J) :<== M € R!*’ is represented in format (5.10).

Remark 5.6.3 To store a matriz M € R(k,n,m) we need k(n+m) units of mem-
ory. A dense matriz M € R™™ requires n-m units of memory. For k < min{n, m}
the profit nm — k(n + m) is especially remarkable.

To introduce an approximate arithmetic in R(k, I, J) we recall the singular value
decomposition.

Definition 5.6.3 A dense matrizc M € R™™ has a singular value decomposition
(SVD) M = UXVT if U € RV € R™™ qgre unitary and ¥ € R™™ is diagonal
with singular values ¥y (w.l.o.g. we can suggest that X1 > Yoo > ... > Yy,
n = min{n,m}).

To get the reduced singular value decomposition we omit all singular values, which
are smaller than some level £ or we leave a fixed number of singular values (see
Figure 5.7). After truncation we speak about reduced singular value decomposition
(denoted by rSVD) M =UXVT, where U € R™** contains the first k columns of U,
V e R™* contains the first k columns of V and ¥ € R¥*¥ contains the k-biggest
singular values of ¥ (see Fig. 5.7).

M |= u |°| = . VT
'

o o B 5]

M |=|U

Figure 5.7: Reduced SVD, only k biggest singular values are taken.

Lemma 5.6.1 Let M € R™™ and M = USVT (U,V orthogonal, > diagonal with
singular values o; = ¥y and o1 > 09 > ...). Then

o) ' e
R=USUT with 5,=14 % Jor i=Js min{k, n,m}, (5.11)
0 otherwise,
U:= Ulnscks V= V|mxk s the solution of the following two problems:
mm HM Ry and mm HM R||F. (5.12)
Rank(R) Rank(R
The errors are

- 09 -

5 Hierarchical Matrices

Proof: see [51] or [25].

Let M = ABT € R™™ be a matrix in the rank-k matrix format, i.e. A and B
are given. An rSVD M = UXVT can be computed efficiently in three steps:

1. Compute (reduced) a @ R-factorization of A = Q4R and B = QpRp, where
Q4 € R Qp € R™* and upper triangular matrices Ry, Rp € R¥*¥.

2. Compute an rSVD of RyRL = U'SV'T,

3. Compute U 1= QU", V := Q V',

For the realization of these steps the linear algebra packages LAPACK and BLAS
are used. The first and third steps need O((n 4+ m)k?) operations and the second
step needs O(k?). The total complexity of rSVD is O((n + m)k* + k3). Hence, we
can compute rSVD of M with a linear complexity.

In HLIB one can find an implementation of this algorithm.

Now we introduce the rank-k matrix arithmetic. Later on we will use these opera-
tions for the definition of the H-matrix arithmetic.

Lemma 5.6.2 The product of a rank-k matriz and a dense matriz is again a rank-k
matriz. Let R € R(k,n,m), N € R"*" and M € R™™ . Then

NR € R(k,n',m), RM € R(k,n,m'). (5.14)
Proof: If R = ABT then NR = (NA)BT and RM = A(MTB)T.
Lemma 5.6.3 Let Ry € R(ky,n,m) and Ry € R(ka,n,m). Then R1+ Ry € R(k1+
ka,m,m).

Proof: If By = ABT and R, = CD7 then Ry + Ry = [AC][BD]", where matrix
[AC] € R™*(ki+k2) and matrix [BD] € R™*(k1+k2) - Adding two rank-k matrices does
not require arithmetic operations, but the result matrix has a larger rank. This is
why we introduce the operation truncation.

Definition 5.6.4 (Truncation 7y,)
Let k' < k and M € R(k,n,m) be a rank-k matriz. We define the truncation
operator
TR o R(k,n,m) — R(K',n,m) by M = T,X (M),

where M is a best approzimation of M in the set R(k,n,m) (not necessarily unique).

Notation 5.6.1 If in Def. 5.6.4 the rank of the source matriz is not important we
will write Ty .

Lemma 5.6.4 (Multiplication of rank-k matrices).

Let My € R(ky,I,J) and My € R(ks, J, K) be given:

M, = ABf, M, = A,BI.

The product M := My M, can be represented as

1. M € R(ky,I,K) with A = A1BTAy and B = BY. The computation of A costs
2kiko (1] + [J]) = k(1] + Fa);

2. M € R(ky,I,K) with A= Ay and B = ByAYBy. The computation of A costs
2k1kao([J] + |K|) = kL (| K]+ ko).

- 70 -

5.7 Hierarchical Matrix Format

Proof: see ,e.g., [36].

Definition 5.6.5 The formatted addition & in the set R(k,n,m) is

A® B:=T,(A+ B),

A, B € R(k,n,m).

Remark 5.6.4 Note that @ is commutative, but in general not distributive (i.e.,
(A®B)® C and A® (B @ C) may differ).

Theorem 5.6.1 Let k € N be a maximal rank, and I, J, K be index sets. Table
5.1 shows storage requirements and computational complexities for rank-k matrices.

‘ Operation ‘ Description ‘ Complexity
storage(M) | M € R(k,I,J), M = ABT k(|| +1J])
Mz MeR(k,I,J),M=ABT x e R7 | 2k(|I| +|J]) = |I| — k
M + M" M eR(K,I,J),M" € R(K",1,J) (L] + |J])(K + k")
M'M" M eR(K,I,J),M" € R(K",1,J) 2K (|1 + |J]) — K"(|I| + k)
rSVD(M) | M = ABT e R(k,1I,J) 6E*(|1| + |J]) + 22k3
Tx (M) | TF Rk I,J)— R(K, I,J) 6k2(|1] + | J]) + 22k°
M @y M" | M',M" € R(k,I,J) 24K*(|I| + |J]) + 176k3

Table 5.1: Storage requirements and computational complexities for rank-k matrices.

Proof: see [33], [27], [13], [36].

5.7 Hierarchical Matrix Format

Definition 5.7.1 Let M € R™7 and I' x J' be a subset of I x J, then the submatriz
M|pwy = (M;;)G erxs- For a superset I" x J" DI xJ we define the matriz

M" = M| > € RT %" such that

17 MZ
Ml-j = { 0

if (ij) el xJ,
otherwise.

(5.15)

Definition 5.7.2 Let I and J be two finite index sets, T := Tr«; a block cluster
tree, P a block partition, k : P — N a given mapping, N a small integer. The set
of H-matrices H(T, k) C R (with the partition P and the mapping k) consists of

all M € R™ with

rank(M|y) < k(b) for allb e LT(T) and

(5.16)

for allb € LT(T) the factors A, B in M|, = ABT are given explicitly. The matriz
blocks b € L~(T) are given in the standard full matriz representation and are small

(the rank is smaller than N,).

_71 -

5 Hierarchical Matrices

If Vb € T k(b) = k then we speak about fixed rank, otherwise, about adaptive rank.

Let us write A € H(Trx, k,P) if we want to underline that matrix A has the
partitioning P (we denote the weak partitioning by the subindex y, and the standard
partitioning by the subindex ,).

Definition 5.7.3 Let T ; be a block cluster tree for the index sets I and J. A
matric M € H(Trxy, k) is said to be stored in the H-matriz representation if the
submatrices corresponding to inadmissible leaves are stored as dense matrices and
those corresponding to admissible leaves are stored in the rank-k matriz representa-
tion.

To measure the sparsity property of a block cluster tree we introduce the following

Definition 5.7.4 Let Ty, ; be a block cluster tree based on Ty and T;. We define
the sparsity constant Cg, of Try; by

Cop = maximax [{s[(t, s) € L(T)}|, max|{#[(t,s) € L(T)}}-

Remark 5.7.1 The complezities of all H-matrixz arithmetic operations depend on
Csp. For a model integral equation, which is discretised by BEM with the standard
admissibility criterion, the constant Cs, takes values 3, 27, 189 for 1D, 2D, 5D
problems accordingly.

Remark 5.7.2 Numerical experiments show that matrices from H(Trx s, k,P,;) and
H(Trxs, 3k, Pw) give approximate similar accuracy. The storage and computational

time for the matrices from H(Pw,3k) are smaller than the corresponding storage
and time for H(P,, k) .

Lemma 5.7.1 1. Let A € H(Tixs,ka, Pw) and B € H(T1x s, kg, Pw), then the
exact product A - B belongs to H(Trxj,ka + kg, Pw).

2. Let A € H(Trxy, k, Pw) be invertible, then A~* € H(Txy, k, Pw).
3. Let A€ H(Tix1,k,Pw) and I' C I, then the Schur complement is

S[/ = A‘[/X[/—A|[/><[//-(A‘[//X[//)71~A|p/><[/, 1" = [\[/, prom'ded that (A‘[//X[H)il
exists.

Proof: See [37].

Remark 5.7.3 In HLIB we use the structures supermatriz for H-matrices, rkmatriz
for rank-k matrices and fullmatriz for dense matrices.

_79 -

5.8 Filling of Hierarchical Matrices

5.8 Filling of Hierarchical Matrices

Suppose we have cluster trees Ty, T, |I| > |J|, a block cluster tree Ty, ; and an
admissibility criterion. Below we show how we compute elements of M € H(T}y s, k)
with complexity O(|I]log|I]) (see more in [33], [29], [28]). Depending on the defini-
tion of M, different algorithms for the determinations of the matrix representations
are needed.

Example 5.8.1 1. The matriz M comes from an integral equation.
2. The matrix M comes from a partial differential equation.

3. The matriz M is built from the H-matrices My and My (our case).

5.8.1 H-Matrix Approximation of BEM Matrix

Consider the following integral equation

Lékgw—mway:F@% v e (0,1),

After discretisation by Galerkin’s method we obtain

/1 /1 ¢i(z)log |z — y|U(y)dydx = /1 ¢i(z)F(x)dz, 0<i<n,
0o Jo 0

in the space V,, := span{¢y, ..., pp_1}, where ¢;, i = 1,...,m — 1, are some basis
n—1

functions in BEM. The discrete solution U, in the space V,, is U,, := Ej:o u;¢; with
u; being the solution of the linear system

Gu=f, Gy 32/0 /0 ¢i(x)log |x — y|p;(y)dydx, fi ::/0 ¢i(z) F(z)dz.

(5.17)
We replace the kernel function g(x,y) = log |z — y| by a degenerate kernel
k-1
9z y) = > gu(@)hu(y). (5.18)
v=0

Then we substitute g(z,y) = log |x — y| in (5.17) for g(z,y)

Gyi= [[o) S aalhut)oy)iy

After easy transformations

k—1

Gyi= 3 ([oa@aa) [hln)o i)

v=0

- 73 -

5 Hierarchical Matrices

Now, all admissible blocks G|) can be represented in the form
Glis = ABT, AeRIIXk B RIxF

where the entries of the factors A and B are

Ay = / bi(x)g,(2)da, By, = / 63y (y) dy.

We use the fact that the basis functions are local and obtain for all inadmissible

blocks:
. (+1)/n r@+1)/n
Gij = / / log |z — y|dydzx.
i/n j/n
5.8.2 H-Matrix Approximation of FEM Matrix

The finite element discretisation of a partial differential equation leads to a data-
sparse matrix with O(n) elements. For an elliptic equation

—Au=g, inQCR?
u =0, on 052

the linear system is (see Section 3.4)

Au =c, A= / (Vbi(x), Vb,(x))dx, ¢ = / b;gdx,
Q Q

where A is sparse. If the LU decomposition of A or A~! is required, then A is
converted to the H-matrix format and the efficient H-matrix arithmetic is applied
(see HLIB).

5.8.3 Building of an H-Matrix from other H-Matrices

Let I')I” C I and J', J” C J be index sets, T}y, Tru ju and Ty be three block
cluster trees. Let My € H(T}y 0, k1), My € H(Thy ju, ko) and M € H(Tixy, k),
then we can define

M = M1|I><J + MQ‘IXJ.

For more details see Subsection 5.9.8.

5.9 Arithmetics of Hierarchical Matrices

In this section we describe the algorithms that perform the addition, multiplication
and inversion in the hierarchical matrix format. The reader can get more infor-
mation in [33], [29], [13] (English) and [27], [36] (German). Here, we also explain
how to sum and multiply hierarchical matrices which have different block structures.

_74 -

5.9 Arithmetics of Hierarchical Matrices

Remark 5.9.1 In this Section and further, for simplicity of the notation, we pose
that t and t are equivalent and we do not separate between t and t. For instance,
[t] = i, Mlexs = Mlz,0)-

In Section 5.6 we have defined the operator 7, ,, which truncates a rank-k matrix
to the rank-k£" matrix, k' < k. An extension of this operator to H-matrices is as
follows:

Definition 5.9.1 (truncation of H-matrices)
Let T := Tyryy be a block cluster tree and n := |I|, m := |J|. Let M € R™™,
M' € H(T, k). We define the truncation operator

T R™™ — H(T, k), M w— M,

where M' = ’];H(M) and M'|.¢) = ’];CR(M|(T7S)) for all (r,s) € LT(T) and M'|(y.5) =
M| sy for all (r,s) € L~(T).

Definition 5.9.2 An alternative truncation operator 1. is defined in the following
way:

- M
T.(M) := argmin{rank:(Rﬂ% < e},

where the parameter € is a desired accuracy.

Definition 5.9.3 If the rank k of M € H(Tjx;, k) (see Definition 5.7.2) is fixed
a priory then we speak about fixed rank arithmetic. If the rank k depends on a
block b € Ty and is chosen as follows

k =min{i: o; < e,01},

where {o;} are the singular values of M|, then we speak about adaptive rank
arithmetic (see [13] or Section 6 in [27]).

The use of both truncation operators makes the matrix arithmetic more flexible.

Definition 5.9.4 (Formatted addition of two hierarchical matrices)
Let A, B,C € H(T«s,k), k € N. The formatted addition of the matrices A and B
is defined by

C:=A®B:=T,(A+ B).

If the rank k under consideration is not evident then we write @y, instead of @.
Definition 5.9.5 (Formatted multiplication of two hierarchical matrices)

Let A € H(Tixy,k), B € H(Txk,k), C € H(Tixx,k), k € N. The formatted
multiplication of the matrices A, B is defined by

C=A®B:==T(A- B).

- 75 -

5 Hierarchical Matrices

The block structure of the H-matrix product A-B does not retain either the structure
of matrices A or B and can become rather complicated. See more details about H-
matrix multiplication in [13], [36] and [27].

Let J, J; and J, be three index sets and J = J; U Jy, J1 N Jy = @. Let M € RI*/,
M, € Rt and M, € RI*/2 be three matrices and M = [MyM,] € R/ The
formatted agglomeration of matrices M; and Ms is defined by:

[MlMQ] = M1|IXJ+M2|IXJ. (519)

Definition 5.9.6 Let ki, ko € Ny, My € R(ky,I,J1), My € R(ko,1,J5) and J =
J1UJ2, Jlﬁjg =g. Then M = Zc?—kl-i—kg([MlM?]) = Ml‘IXJEBk M2|I><J € R(k, [, J)
is called formatted agglomeration.

In the general case there are more than two terms of the agglomeration.

Definition 5.9.7 Let M; € R(k;,I,J), i =1,...,q. The operation

TS s Z M;) (5.20)

is the truncated agglomeration of q terms.

Lemma 5.9.1 If in (5.20) ky = ke = ... = k; = k, then the complexity of the
truncated agglomeration of q terms is O(k*¢*n), n = maz{|I|,|J|}.

Proof: The cost of the truncation Ty o is O((2k)*n). For ¢ terms the cost is
O((kg)*)n) = O(k*¢*n).

Remark 5.9.2 A second possibility of a truncated agglomeration for q > 2 is the
pairwise truncation.:

M = T<_k1+kM1 +o %Ekq,ﬁk(Mq—Q + Zzz—kq,ﬁkq(Mq—l + My))...). (5.21)
Lemma 5.9.2 The complezity of the truncated addition as in (5.21) is
O(k2,.(q¢ —1)n), (5.22)

max

max

where k., = max{k; +kli=1,...,q — 2} and kpar := max{k), ., k-1 + k}.
Proof: The cost of the truncation Ty, y,, 145 18 O((kiz1 + kiy2)*n).

Let kpae := ki + kiy1, 1 = 1,...,¢ — 1. For ¢ terms the cost is O(k2,,,.(q — 1)n).

max

Remark 5.9.3 The pairwise truncated addition of q terms is cheaper than the direct
truncated addition (5.20) of q terms. For ky = ... = k, the profit is

(¢ K = (2k)* - (q =))n = (¢° — 4q + 4)k*n.

But practical experiments show that the accuracy of the pairwise truncated addition
is worse than the truncated addition of q terms.

Remark 5.9.4 [t is also may be possible that the following truncated addition

M =T gy n(My+ Mo+ A T (Mg + Mg

FTE by ity (M2 + My + M),

1s cheaper than the pairwise truncated addition.

- 76 -

5.9 Arithmetics of Hierarchical Matrices

5.9.1 Matrix - Vector Multiplication

Let M € H(T1xs, k), n = |I|, m = |J|, v € R™ and w € R". The matrix-vector
(denote by MV) multiplication w = Muv is realized in a recursive way. The procedure
MV (M]i],v[i], w[i]), where M]i], v[i] and w[i] are corresponding parts of M, v and
w calls itself recursively.

Remark 5.9.5 Implementation of MV multiplication in HLIB s
eval_supermatriz(M, v, w).

5.9.2 Matrix - Matrix Multiplication

The H-matrix multiplication (denote by MM) A - B = C, where A € H(T7x,, k),
B € H(Tjxk,k) and C € H(Tixk, k) is realized block-wise recursively. Suppose
that A and B are 2 x 2 blocks matrices, then

Ay A Bi1 By —-T A1 © B11 @ A12 © Byy A1y © Bia @ A9 © By
Ay Ago By B Aoy © Bi1 @ Aga © Byy Ay © Boy @ Agy © By)

Remark 5.9.6 In the case when the matrices A and B have different block struc-
tures the H-matrix multiplication of A and B is possible after conversion of A or B
to the respective format.

Thus, the product of two H-matrices or their sum can require the truncation of
the rank.

Lemma 5.9.3 (complexity of the H-matrix truncation)
Let T := Ty.; be a block cluster tree, based on the cluster trees Tt and T;. A
truncation Tt (M) of M € H(Tix, k) can be computed with the complexity

Ny < 6kNsy(T, k) + 23K*|L(T)],
where Ng,; is the storage requirement for M.

Proof: see Lemma 2.9 in [29].

5.9.3 Hierarchical Approximation 7,7

The hierarchical approximation is applied for the MM multiplication and for the
MM conversion.

Notation 5.9.1 We denote an operator which truncates a dense matriz M € R/
to a rank-k matriz by T,F—F.

Note that 77" (M) is done by the singular value decomposition (see Section 5.6).

Notation 5.9.2 We denote the operator, which hierarchically convert M € H(T«r, k)

to a rank-k matriz in p + 1 steps (see Fig. 5.8) by TR

- 77 -

5 Hierarchical Matrices

Definition 5.9.8 (Hierarchical Approximation) Let T be a block cluster tree, p :=
depth(Ti«1), M € H(Tix1,k). Let P be a partitioning. We define the hierarchical
approzimation My of M in p + 1 steps as follows:
TR=F (M) if b€ L(Trxy) A\b is inadmissible,
TR .= TR(M|,) if b€ L(T1x) Nb is admissible,
%Ek~|$(b)\<M‘b) ifbe PANb ¢ L(Trxy),

where |S(b)| is the number of sons of b.

The hierarchical approximation (see Fig. 5.8) contains two subprocedures:

1. The conversion a given dense matrix to a rank-k matrix

(addfull2_rkmatriz(..) in HLIB).

2. Adding two or more rank-k matrices with truncation to a rank-k matrix
(addparts2_rkmatriz(..) in HLIB).

Lemma 5.9.4 Let M € H(T;x, k), R € R(k,1,J). The complexity of the trunca-
tion R = T*""(M) is O(k*nlogn), where n = max{|I|,|J|}.

Proof: see Lemma 6.4.4 in [36].

Figure 5.8: Three steps of the hierarchical approximation. The first step is the con-
version of a dense matrix F' to a rank-k matrix R. In the second step
four rank-k matrices are converted to a larger rank-k matrix. In step
three two low-rank matrices are converted to a global rank-k matrix.

Lemma 5.9.5 (Hierarchical Approzimation Error)
Let p := depth(Trxy), M € H(Trxy,k) and My be a hierarchical approximation of
M, then
1M = Mylr < (27" + DM = TH(M)| . (5.23)
3p P
1M = Mylo < (2271 +22)[|M — (M)

Proof: see [27], [13], [36].

- 78 -

5.9 Arithmetics of Hierarchical Matrices

5.9.4 H-Matrix Inversion

Theorem 5.9.1 Let M € H(T«s, k) be an H-matriz with parameter ny;, = k. The
block cluster tree Ty« is based on a binary cluster tree T and for all (r,s) € Trx;
we define

" xS e S(r),s € S(s)} ifr=s,
S(rxs) = { 1% otherwise. (5-24)

Let M be invertible and p := depth(Tyxr). Then the exact inverse M~ to M fulfils
]\471 c H(T[X[, kp)

Proof: see Section 3.1 in [29].

Recursive formula

Let A € H(T«1,k) be given as a 2 x 2 block matrix. Let A and A;; be regular
matrices. Then the inversion of

An An
A= 5.25
(s A (5:25)
can be computed by the following recursive formula:

A+ ATt ARST AR AT A ARST!
-1 _ 11 11 A12 21411 11 4412
AT = < _571A21A1—11 g1) (526>
where S := Agy — A21A1_11A12. This formula is obtained by block Gauss-elimination.
Here all arithmetic operations are done in the H-matrix format. See more [36], [13].

Remark 5.9.7 The matriz inversion is cheaper if the partitioning is obtained with
the weak admissibility criterion. The reason is that the Schur complement S™1 in
(5.26) can be computed with the use of the Sherman-Morrison-Woodbury formula
(see more in [37]).

‘H-matrix Inversion by the DD Method
One can use the domain decomposition idea for the inversion (see Section 4.1).
‘H-matrix Inversion by LU decomposition

Numerical results show that inversion by a hierarchical LU decomposition (denote
by H-LU) is faster than the recursive formula (5.26). Here we briefly describe the
H-LU decomposition of a matrix A (see [48],[9],[47]). Assume that all minors of A
are non-zero, then A can be decomposed in a product of a lower triangular matrix L
and an upper triangular matrix U. L and U can be approximated by the H-matrices
Ly and Uy if any Schur complement in matrix A has this property (see proof in
[10]).

- 79 -

5 Hierarchical Matrices

A~ Ly Uy implies A™' =~ Uy, Ly
Suppose that
A:{AH A12}:{L11 0] {Un Uiz
Ay Ag Loy Lo 0 Uxn |
If A is a small dense matrix we use the standard pivoted LU decomposition. Other-
wise we proceed as follows:

1. Compute Lq; and Uy as H-LU decomposition of Ay;.

2. Compute Uys from Li3Uyp = Ajp (use a recursive block forward substitution).
3. Compute Lo from Ly Uy = Asp (use a recursive block backward substitution).
4. Compute Loy and Usy as H-LU decomposition of LoyUsy = Aoy — Loy Uss.

All steps are executed in the class of H-matrices.

The complexity of the H-LU decomposition is O(nlog®n). See for more theory
and numerical experiments in [9]. One can find realizations of the H-LU and the
‘H-Cholesky decompositions in HLIB.

Remark 5.9.8 [f the initial matriz A is symmetric (i.e., L = U®) then we compute
the H-Cholesky decomposition.

5.9.5 Other Operations With an H-Matrix

Let M € H(Tixs, k), n := |I| and m := |J|. The following operations can be
performed recursively.

1) Extracting a column (row) from M,

2) The removal of a column (row) from M,

3) Adding a rank-1 matrix to M.

Remark 5.9.9 In order to delete a column i from a rank-k matric R = ABT, one
should delete the column i from the matriz BT.

5.9.6 Extracting a Part of an H-Matrix

Let I, J, I’ and J’ be four index sets, 17 and T; be two cluster trees, T := T,
M € H(T1«j, k). Let t € Ty, s € T two clusters such that I’ C t and J' C s. The
problem is to extract M|y .

M|« can be a) a fully populated matrix, b) a rank-k£ matrix, and c) an H-
matrix (see an example in Fig. 5.10).
In Case (a) a part of a fully populated submatrix should be copied (is evident).
Case (b). Let M|ixs = ABT € R(k,t,s) be a rank-k matrix. The restriction R’ =
R\« of the matrix R is also a rank-k matrix with the rank &' = min(k, ||, |J’])
(see Figure 5.9) and R’ := A|pB|%,.
Case (c). If M|;xs is an H-matrix, then the index sets I’ and J’ define the restriction
of the block cluster tree T := T'|1 s (see Section 5.9.7).

- 80 -

5.9 Arithmetics of Hierarchical Matrices

Remark 5.9.10 The following procedures are used in HLIB for extracting a part of
an ‘H-matriz:

1. addpart_fullmatriz(..) copies a part of a dense matriz (see HLIB).

2. addpart2_rkmatriz(..) copies a part of a rank-k matriz (see HLIB).

3. cut_Hmatrix(..) copies a part of an H-matriz (see HDD package).

R
k T m

! L -
n

Figure 5.9: A part R’ of a rank-k matrix R = ABT is the product of A|;; and BT| .

639

3
3
3
3 [“E
= /|
S| 3
3
:
m B
3
3

9 9 3 je

Figure 5.10: Starting from the position (130,120), we take 205 rows and 360 columns
from H € R39x639 [’ ¢ R205%360 ig a part of the matrix H.

Another way of extracting a submatrix M’ € R/ from an H-matrix M € R/,
I'C1,J" CJ,is demonstrated in Fig. 5.11. The idea is to multiply the original H-
matrix M from left and from right on the special matrices T} € R/ and T, € R'*7".
The lack of this method is that the result matrix will be in the dense matrix format.

- 81-

5 Hierarchical Matrices

7

- 0
. . =

N

b-.O
S
=z
BN

Figure 5.11: The submatrix M’ := M|pwy =Ty - M - Ty, where I' C [and J' C J

5.9.7 Matrix - Matrix Conversion

Let T :=Tyyy, I' € I and J' C J. First, we introduce the restricted block cluster
tree T':= T|;/x. We build the tree T' in two steps:

1. Create copy T of T'.

2. Each block b :=1t x s € T becomes b= (tNI' sN.J"). Note that the root of
T is I' x J'. T may contain nodes with the empty index set.

Algorithm 5.9.1 becomes the matrix M € H (T, k) and two index sets I and J'
and computes the matrix M := M|y .

Algorithm 5.9.1 (Computing M|y, where M € H(Trx,k))
extract_part_Hmatriz(M, I', J')
begin
if (M is a dense matriz) then
allocate memory for a new dense matriz F € RT
F = M|I/><J’f
return F';
end if;
if (M is a rank-k matriz) then
allocate memory for a new rank-k matriz R € R(k,I', J");
R .= M|[/><J/ = A|[/B|?;,,'
return R;
end if;
if (M is an H-matriz) then
for each subblockb =1 x s of M do
if (I'Nt# @) and (J'Ns # @) then
= extract_part_Hmatriz(M|,, I' Nt, J' Ns);
return P;
end if;
end if;
end;

xJ'.
)

- 82 -

5.9 Arithmetics of Hierarchical Matrices

Consider a more difficult case. Suppose M € H(T«s,k),

p

I2r=n, LnlL=2,j#k (5.27)
i=1
q

J2J =7, Jnk=2i#k (5.28)
j=1

and n = max{|I|,|J|}, n’ = max{|I'|,|.]'|}. Let M € H(T} ., k). The problem is
to convert M to M. We set up M by Algorithm 5.9.2.

Algorithm 5.9.2 (Conversion M € H(Tix,k) to M' := M|pwp € H(T}y 0, k))
h,?h(M, M, f:l 1;, U?:1 ‘]j)
begin
if (M’ is a dense matriz) then
haf(M, M, ', I, U, Ty);
if (M’ is a rank-k matriz) then
her(M, M', \U;_, Ii, Uj_, Jj);/*see Algorithm 5.9.3x/
if (M’ is an H-matriz) then
for each subblock b=1t x s of M' do
heh(M, M'ly, Ui_, (Iint), Ui, (J;Ns));
end if;
end;

The conversion of an H-matrix to a dense matrix (procedure h2f(..) in Algorithm
5.9.2) is done elementwise. The conversion of an H-matrix to a rank-k matrix
(procedure h2r(..) in Algorithm 5.9.2) is done by Algorithm 5.9.3.

- 83 -

5 Hierarchical Matrices

Algorithm 5.9.3 (Converting M € H(Trxs, k) to R € R(k,I',J"))

her(M, R, UL, I U, Jj)
begin
if (M is a dense matriz)
allocate memory for F € RI'*/" .
for allie Il and j € J' do

Fij == Mj;
convert F' to R; [« SVD is used */
end if;

if (M is a rank-k matriz, i.e. M = ABT) then
allocate memory for R = CDT € R(k,I',J');

C:=A,D:=B;

end if;

if (M is an H-matriz) then
[=0;

for each subblock b =1t x s of M do
R[l):=h2r(M|,, U, (I; N1), §:1Uj Ns));

i=1
I+ +;
end for

R:=(R[0] & (R[] &5 ... & (B[l — 2] & R[l —1])..);

/*see pairwise truncation in (5.21)x/

end if;
end;

_84 -

5.10 Complexity Estimates

5.9.8 Adding Two H-Matrices With Different Block Cluster
Trees

The addition of two hierarchical matrices with compatible block cluster trees has

been described in [33]. Let I, J, I', J', I" and J” be given index sets such that

r1rci Jg,J CJ,and M € H(Trxy, k). Let Tpryyr and Tyry g be block cluster

trees. The sum of My € H(Tp«y, k1) and My € H(Tiy g, ko) with the result matrix
M is defined as follows (see Fig. 5.12):

M =M @®M", where M’ := M;|"*7 and M" := M,|"*’ (see Def. 5.7.1).

The adding procedure applies the list of procedures from Table 5.2.

Remark 5.9.11 Note that M,|"™*7 and M|’ have the block cluster tree Tyy ;. To
compute M' := M;|"*7 and M" := My|"™7 we apply Algorithm 5.9.2.

' @ ® ®

Figure 5.12: Transformation of H-matrices My, M, to H-matrices M;|"*7, My|"*/
and their addition.

‘ procedure ‘ description
add_fullmatrix(F, [y, F3) Adding two dense matrices
add_rkmatrix(R, Ry, Ry) Adding two rank-k matrices
addfullpart2_rkmatrix(F,R) | Addition of a dense matrix to a rank-k matrix
addrk2_fullmatrix(R,F’) Addition of a rank-k matrix to a dense matrix

addfull2_supermatrix(F, M) | Addition of a dense matrix to an H-matrix

addrk2_supermatrix(R, M) Addition of a rank-k matrix to an H-matrix

add_supermatrix(M, My, Ms) | Adding of H-matrices M := M; @ M,

h2h(My, Ms,...) Conversion of an H-matrix M; to the H-matrix M,
h2r(M, R,...) Conversion an H-matrix to an rank-k matrix
h2f(M, F,...) Conversion an H-matrix to an dense matrix

Table 5.2: The procedures which are applied for adding two H-matrices with differ-
ent block structures. M, M, are H-matrices, R, R; are rank-k matrices,
I, F; are dense matrices, ¢ = 1, 2.

5.10 Complexity Estimates

Lemma 5.10.1 Let I be an index set, n := |I| and T; a balanced, binary cluster
tree and T := Ty a block cluster tree. Let the depth of the tree is p(T') = O(logn).

Then the number of clusters on the level i is |T1(i)\ =2 for 0 < i < p(T) and
[V (Ty)| =2|T| — 1= O(n).

-85 -

5 Hierarchical Matrices

Proof: see [27].

Theorem 5.10.1 Let n := max{|/|,|J],|K|}, m = |J|, n > m. Let T := T}y,
Trxx, Ty be block cluster trees, depth(T) =logn, M € H(T, k), k := max{k, nyin}-
The storage requirement and the computational costs of H-matrix operations are
giwen in Table 5.3.

‘ Operation ‘ Description ‘ Complexity ‘
storage(M) | M € H(Tix, k) O(Cspknlogn
Mz M € H(Tyxy, k), z € R O(Cspknlogn)
M & M" M M" € H(Tixy, k) O(Cy,k*nlogn)
M © M" M' € H(Trxk, k), O(C3 k*nlog’ n)

M" e H<TK><J7 k)
M1 M € H(Trxy, k) O(C? k*nlog’n)
H-LU M € H(Trx1, k) O(C? k*nlog”n)
M®R M € H(Trxs, k), Re R(k,I,J) | O(k*(n+m))

Table 5.3: The costs of H-matrix arithmetical operations, n := max{|1|, |J]|, |K|}.

Proof: See Lemma 5.13 for the MV multiplication and the MM addition. See
Lemmas 2.10, 2.17, 2.19 in [29] for the MM multiplication. See also [33], [27].

Lemma 5.10.2 Let T := Ty be a block cluster tree. The cost of the multiplication
of a matriz M € H(T,k) and a vector v € Rl is

Nyo (T k) < 2Ngy (T k), (5.29)
where Ng(T, k) is the storage requirement for M.

Proof: The scalar product of two vectors u,v € R™ costs m+ (m —1) < 2m (there
are m multiplications and m—1 additions). The storage of a rank-k matrix R = AB”
is Ngt r(k,n,m) = k(n+m) and the cost of R-v is 2k(n—1)+2k(m—1) < 2k(n+m).
The storage requirement of a dense matrix F' € R™*™ is n-m and the computational
cost of F'-vis (2m — 1) -n < 2n-m. Summing the costs for all admissible blocks
we prove the lemma.

Lemma 5.10.3 Let T := Ty, n = |I| > |J|. The removal of i-th row from a
matriz M € H(T, k) costs 2Cs,kn.

Proof: This removal procedure updates the old data structure. Let p := depth(T;«).
algorithm goes through the whole tree T7.; and removes i-th row from blocks
{(t,s) € L(T),i € t}. Therefore, the complexity is

t|=2¢""

Z > (t-1k Cspl < Cs,,kz or=t 1) (5.30)

1=0 (t,s)eL(T\l),ict =

- 86 -

5.10 Complexity Estimates

p
< Cypk Y 28 <2C,kn. (5.31)
=0

Similarly, the cost of the removal of a column is bounded by 2C,kn.

Lemma 5.10.4 Let T; be a cluster tree. Adding a rank-1 matriz R € R(1,1,1) to
the hierarchical matriz M € H(Trx1, k) costs O(k*n), where n = |I|.

Proof: Let p := depth(Trx;). We know that the truncated addition of two rank-k
matrices M|;xs and R|;xs costs O(K*(|t] + |s|)). Thus, the complexity is

N =Y O [t]) = O(k*|1)). (5.32)

teTy
Lemma 5.10.5 Extracting a column j from a matriz M € H(Trw, k) costs O(k|I]).

Proof: Let n := |I| > |J|. Extracting a column j from M is equivalent to the
multiplication M - e;, e; = (0,0,...0,1,0...,0) and costs O(knlogn). But it can be
done with the complexity O(kn). Let T be a cluster tree, £(7';) the set of all
leaves of T'; and sy the biggest cluster, such that j € sy € T;. Denote the set of all
successors of so by S’(sg). Let

EI(T]XJ) = {(t, S) € C(T]XJ)|t € T[, S € TJ and s € S/(SQ)}. (533)

Then the complexity is

N= Y k(tl+]sh < > 2kft| = OK|I)). (5.34)

tXSEL:'(T]XJ), tE,C(TI)
Similarly, the extraction of a row costs O(k|.J]).

Lemma 5.10.6 Let M € H(T;xs,k), I' C I, J C J, n' = max{|I'|,|J'|}. The
hierarchical conversion (see (5.21)) of M|y wy to R € R(k,I',J") is of complexity

N < O(k*qn’logn), where q := max Z 1. (5.35)
(I'x J)N(txs)#2
(txs) €T,
Proof: Here ¢ is the maximal number of subblocks on the same level which have

to be summed. The conversion (see Section 5.9.3) at one level is of complexity
O(k*qn’). There are logn levels and the total complexity is N < O(k%*qn’logn).

- 87 -

5 Hierarchical Matrices

Definition 5.10.1 Let I' C I, J C J be index sets, T = Tixy, T = T} p
block cluster trees. Let q be the maximal number of subblocks which form a block
(t' x s') € L(T} ;). The value q is defined as following

= 1. 5.36
T B, 2 (5.6
(txs)N{t' xs) #o

(t' x §') € L(T")

Lemma 5.10.7 Let I' C I, J' C J be index sets, T := Trxy, T' := Ty the block
cluster trees, p := depth(T), M € H(T,k) and M' € H(T', k). The complexity of
computing M = M'|*7 s

N = O(k*qnlognlogn’),

where n = max{|I|,|J|}, n' := max{|l'|,|J'|}, depth(T") = logn' and q is defined
in (5.96).

Proof: Suppose that for each leaf b = (t x s) € L(T') there are g(b) subblocks in 7"
which contain elements from M|,. The search of ¢(b) subblocks costs in the worst
case q(b) - depth(T") = q(b) logny < qlogn;.

By Lemma 5.10.6 the cost of the hierarchical conversion Rl|;x, = T~"(M) is
Crgh2([t] + |s]) log .

Using Lemma 5.10.6 and decomposing all leaves of T" on admissible and inadmissible
leaves, we obtain

N< Y CaR(ltl+IsDlogn’+ Y Ci(lt]- [s])

(txs)eLt(T) (txs)eL—(T)
< Y Cok(t+Ishlogn' + Y Crngan(lt] + [s)
(txs)eL+(T) (txs)eL—(T)
P
< Z Z maz{Cqk*logn’, Cinmin } (|t + |5])
i=0 (txs)eT®
2logn Nmin
Cak™logn’>C Cqk?*logn/(Z Z |t|+z Z |s])
i=0 (¢txs)eT(® 1=0 (txs)eT®

< 20qk? logn'z Z ||

i=0 teT ()

P
< 2Cqk* logn/ Z |
i=0
= 2Cqk*(p+ 1) logn'|I| = O(k*qnlognlogn’).
|

Lemma 5.10.8 Let I' C I, 1" C I, J C J, J" C J be index sets, T := Ty,
T :=Tpwy, T" := Ty gn the block cluster trees, p := depth(T), n := max{|I|, |J|}.

- 88 -

5.10 Complexity Estimates

Let M € H(T, k), My € H(T', k) and My € H(T", k) two H-matrices with different
block cluster trees. The complexity of computing

M = Ml‘IXJEBM2|I><J
is O(qk?*nlog®n), where q is defined in (5.36).

Proof: Let depth(T") =logn, and depth(T") = log ne. From Lemma 5.10.7 follows
that the cost of computing M’ := M;|"™*7 and M" := M,|"*/ is

O(q(logny + logny)k*nlogn).

The cost of adding M’ &, M" is O(k*nlogn). Taken into account that n; ~ 2 and
ng >~ 7 the total cost is

O(q(logny + logny)k*nlogn) + O(k*nlogn) < O(qk*nlog?n).

-89 -

5 Hierarchical Matrices

- 90 -

6 Application of H-matrices to HDD

The HDD method from Chapter 4 requires the exact matrix arithmetic, which is
expensive. To avoid it we approximate all matrices by the corresponding H-matrices
and then apply the efficient H-matrix technique. Thus, we reduce the computational
cost and storage requirements extremely.

In this section we explain how to apply H-matrices for the approximation of
v, and ®,. We explain the algorithm “Leaves to Root” in terms of the Schur
complements defined on wy, wy and w.

6.1 Notation and Algorithm

In Table 6.1 we recall four types of mappings which are present in the HDD method.
All of them will be approximated in the H-matrix format.

‘ Name ‘Mapping ‘
domain-to-boundary |[¥/ : RI@) — RI(Ow)
boundary-to-boundary | W9 : RI(9«) — RI(9w)
domain-to-interface o RIW — RIO)
boundary-to-interface |®9 : RI) — RI()

Table 6.1: Four mappings, which are used in HDD. w € T7, .

The properties of these mappings are:

1. The mappings ¥/ and ®/ are approximated by H-matrices with the standard
admissibility condition (see Section 5.5.1).

2. The mapping V9 is approximated by an H-matrix with the weak admissibility
condition (see Section 5.5.2).

3. The mapping ®Y is approximated by a low-rank matrix (as a consequence of
using the weak admissibility condition).

4. The algorithm “Leaves to Root” builds the mappings ¥9 and ¥/. The map-
pings W9 and ¥/ are computed automatically.

5. If the global stiffness matrix after discretisation of the initial problem (4.1) is
self-adjoint, then all matrices W9, w € T7, , are positive definite and symmetric.

- 91 -

6 Application of H-matrices to HDD

Notation 6.1.1 Let us denote an H-matriz approzimation of a mapping x by (x)™*.

Later on, for simplicity of the notation, we will omit ()*
Further, we will assume that w = wy Uws, w,w; € Ty, I'y; = 0w Nw; and
V=" = 0w\Ow, i =1,2.

6.2 Algorithm of Applying H-Matrices

1. We start with computing the systems of linear equations for all leaves of T, as
it is done in Section 4.3.1 (leaves of T, are triangles). Note that only in this step
we apply formulae from Section 4.3.1. As a result we have a system Au = Fc for
each leaf w € Ty, where A € R¥® and F € R3*3,

2. Suppose the systems AWu = FUc and A®u = F@c for subdomains wy
and wsq, respectively, are given. Now, we would like to construct the matrices A
and F' which appear in the system Au = F c for the domain w. We construct A
from the matrices AV, A® and F from F(M and F® as it was shown in Section
4.3.3. “Construct” means that we simply sum the elements which correspond to the
common points in wy; and wy and copy the elements which correspond to the unique
points. As soon as the matrices A and F' become large, we compute their H-matrix
approximations.

3. Let the system of linear equations Au = Fc for w € T7 be given. A
is the stiffness matrix for the domain @ after elimination of the unknowns corre-
sponding to [(c?) \7w)- The matrix F' comes from the numerical integration. Here
A RIGD) RIGWUY g g RIGWUY | RIW — RIGWD) and ¢ € RIW, Decom-
pose the unknown vector u into two components u; € R/ and u, € R/, Then
the system of linear equations Au = F'c takes on form

Ay A u Fy
(Ay Az us Fy (6.1)
where
All RI (Ow) _, Rl(aw A12 Rl(fy Rl(aw)’ A21 . Rl(aw) N Rl(ﬁ/)’

Agy - RIM) — RIO), F1 (RIW S RIOW By RIW S RIO gy € RIOW yy, € RIO,
c e RIW),

4. Now we eliminate the unknown vector uy as shown in (6.2). We multiply both
sides of (6.1) on A;5A5; and subtract the second row from the first row

Ay — ApAy Ay 0 w \ [- A1 Ay Fy
(A Ago) (up) B (Fy “ (62)

Note that we do not multiply the matrices Ay, and Fy in (6.2). We rewrite the last
system as two equations

Aul = (A11 — A12A§21A21)u1 = (F1 — A12A521F2)C,

6.3
AQQHQ = FQC - A21u1. ()

92 -

6.2 Algorithm of Applying H-Matrices

The unknown vector uy is computed as follows (compare with (4.43))
Uy = A2_21F2C — A2_21A21U1.

The explicit expressions for the mappings ¥, and ®,, follow from (6.3):

U9 = Ay — A Agy Ao, (6.4)
U=) — A A By, (6.5)
I = — Ay} Ay, (6.6)

®f = AL F, (6.7)

As soon as the rank of Ag, is larger than parameter n,,;, (see Section 5.5.2), we
apply SVD to convert A and F' from the dense matrix format to the H-matrix
format. Denote the standard operations — and - in the class of H-matrices by ©
and ©. After approximation of all matrices in (6.4)-(6.7) by H-matrices we obtain

(W)= (An)"* & (A1) © (43))F © (An)™, (6.8)
(W)= (F)" 6 (A)" 0 (4) © (F)", (6.9)
(@) = —(A5) © (An)", (6.10)

(@) = (4)" © (F)™. (6.11)

Note that we multiply H-matrices only in (6.8) and (6.9). In (6.10) and (6.11) we
store the multipliers and later on perform only two times matrix-vector multiplica-
tions.

5. We repeat steps 2-5 for all other w € T, and stop when w = 2.

Remark 6.2.1 The matrices A2_21, Fi, F5, Ay are approximated in the H-matriz
format, A1 and Asy are approximated in the low-rank matriz format. For simplicity
of the further notation we omit the superscript .

Example 6.2.1 Ezamples of the matrices A and F (V9 and V)) from (6.1) are
shown in Figures 6.1 and 6.2. In Fig. 6.1 one can see that off-diagonal blocks are
low-rank matrices (grey blocks). In Fig. 6.2 the off-diagonal blocks are H-matrices.
The white blocks indicate zero matrices and the dark blocks indicate dense matrices.

Remark 6.2.2 The fact that the matriz A is approximated by an H-matrix with
weakly admissible blocks plays an important role. From this fact follows that the
matrices A1 and Ay are low-rank matrices and multiplications in Aja ® A;; and
in Ayy © Ag are therefore quite cheap.

The following Theorem 6.2.1 (see [47]) is important for the application of the H-

matrix technique to HDD. This theorem proves the existence of an H-matrix ap-
proximation of the Schur complement.

-03 -

6 Application of H-matrices to HDD

Notation 6.2.1 Lett, s € T} be two clusters, Tr«; a block cluster tree and s X t €
Trx1. We denote the restriction of the block cluster tree Trxy to s X t by T'|sxy

Assumption 6.2.1 (Existence of an H-matriz approx. to the inverse)
Let A € H(Tixr, k), n:=|I|. Foranye >0 andr :={1,....n1}, n1 < n, the minor
B := Al is invertible and there exists an H-matriz Bﬁl € H(T|rxr, kiny) with

Kiny = (log”n)|loge|® and | B~ — B;Mlla < Cinve, Cinw € Ry (6.12)
Proof: See Assumption 2 in [47].

Theorem 6.2.1 (Approximation of Schur complements)
Let Ty be a cluster tree, T := Ty and p be depth of T. Let A € H(T, ki) with
Einy from (6.12), b:=sxt €T andr € T;. Then the Schur complement

S(Su t) = A‘sxt - A‘SXT<A‘T><T>71A‘T><1€
can be approzimated by Sy (s,t) € H(T|sxt, k') where k' < (p + 1)k, such that
1S(s,t) = Sn(s, t)ll2 < Cinol|All3, Cino € Ry

Proof: See Theorem 1 in [47].

Figure 6.1: An H-matrix approximation to W9 € R’*! [:= [(Qw). The dark blocks
are dense matrices and grey blocks are low-rank matrices. The numbers
inside the blocks indicate ranks of these blocks.

~04 -

6.2 Algorithm of Applying H-Matrices

Figure 6.2: An H-matrix approximation to (¥/)* € RI*/ [:= [(0w), J = J(w),
|I| = 256, |I| = 4225. The dark blocks are dense matrices and grey
blocks are low-rank matrices. The numbers inside the blocks are ranks
of these blocks. The white blocks are zero blocks.

Remark 6.2.3 In order to build a rank-k approximation of the matriz 9 we use
the fact that the singular values oy > 09 > ... > 0 2> Op41 = ... = 0y of PI)
decay exponentially (see Fig. 6.3). We only consider the k largest singular values
o1 > 09 > ... > 0y (see Section 5.0).

Recall that for simplicity of the notation we write 7 instead of ~,,.

Lemma 6.2.1 We denote the Schur complement A1 — A12A2_21A21 by S,,, where
A € H(T1ow)x1(ow), k), Az € R(I(0w), I(7), k), Ax € R(L(7), 1(0w), k),

Ao € H(Tr1(y)x1(7): k). Let np = [I(7y)|. Let the model domain be as in Remark
7.1.2. The computation of S, w € Ty, , costs

N(S.) < CK*ny log” ny,, CER,. (6.13)

Proof: Due to Table 5.3 the complexity of the inversion A, is Chk*np log? Th vy,
C) € Ry. The complexity of the multiplication Ay - Ay, is k-times the MV multi-
plication, i.e., Cok*ny - logny, ., Ca € R,

We assume that for the domain in Remark 7.1.2 |I(0w)| < 6 - |I(y)| hold. The
complexity of the multiplication (43545) - Ay (product of two low-rank matrices)
is

2k (|I1(0w)] + [I(7)]) + O(K?) < 14k>*ny,., + O(K®).
The complexity of the subtraction A;; — A12A2_21 - Aoy 18

C3k?|I(0w)|log | I(0w)| < Cyk*ny . logny,, Cs,Cy € R,.

Thus,
N(S,) < (C1+Co+Cy)K*np - log ny ,+14k%ny, . +O(K*) < Ck*ny, ., log” ny,, C € Ry
(6.14)
|

- 905 -

6 Application of H-matrices to HDD

Algorithm 6.2.1 (Elimination of u;, i € 1(7))
elimination(H-matriz M, index set 1())

begin
M11 = [0],
M21 = M[l],
M12 = [2] N
Myy := M[3]; /% Corresponds to I1(~y) * /

My, = My © M2 © My, @ Moy,
return My,
end;

Lemma 6.2.2 Let Z,, := Fy — A;p A5, By, where Ay € R(I(0w), 1(7), k),
F, € H(T](aw)xj(w),/{?), F, € H(T](V)X[(w),k‘), Ay € H(T](V)X[(w,k‘), Nhy = |I(7)|
and ny, == |I(w)|. Let the model domain be as in Remark 7.1.2. The computation of
Zy, w € Ty, costs

N(Z,) < Ck*nylog’ny,, CcR,. (6.15)

Proof: The complexity of the multiplication Ay - Ay is k-times the MV mul-
tiplication, i.e., Cik*nylogn,.,, C1 € Ry. The complexity of the multiplica-
tion (A;pA5)) - Fy (the product of a low-rank matrix and an H-matrix) is equal
to Cyk?ny logny,, Cy € Ry. The complexity of the subtraction Fy — A3 A5, Fy is
Csk*ny, logny, Cs € R, Thus,

N(Z,) = C’lk‘znmv log np, - + Cok?ny, log ny, + Csk®np logny, < Ck*ny,logny, C € Ry,
|

sigma

140

Figure 6.3: Exponential decay of the singular values o; of the matrix (®¢)™ in a log
scale. The index ¢ is shown on the horizontal axis and the singular values
o; on the vertical logarithmic axis, e.g., o99 ~ 107".

- 96 -

6.2 Algorithm of Applying H-Matrices

In Table 6.2 we compute the singular values of the matrix ®/, w = Q, with 1292

degrees of freedom. One can see that, in contrast to ®9. the singular values do not

decay exponentially.

o1 | 3.48 %107
o | 1.27 %1074
020 9.24 x 1075
050 6.84 10_5

Table 6.2: A very slow decay of singular values o; of (®/)™.

Remark 6.2.4 This very slow decay of singular values of ®/ results in a very large
rank k in the rank-k approximation. By this reason ®/ is approzimate in the class

of H-matrices.

_ 97 -

6 Application of H-matrices to HDD

6.3 Hierarchical Construction on Incompatible Index
Sets

This Section contains technical details about H-matrix constructions of (¥9)™ from
(\I]g}l)%’ (\11.3)2)% and <\IIUJ:>H from (\I]il)H7 <@£2>H

Let T7, be a domain decomposition tree (the root has level 0). Let us suppose
that we have a domain w on level [— 1 with two sons w; and wy on level . In the next
two subsections we show the efficient constructions of (¥%)" from (09)™ (9)"
and (/)™ from (¥/)™, (0])™
Let us change the notation:

[(Fl) = [<Fw,1) = [(8&) N wl),
[(FQ) = [(ng) = [(8&) N C()Q).
Now, we have the following decompositions:

I(Owy) = I(I'y) U I(7y) and I(0ws) = I(T'2) U I(7).

HP'H H H H
6.3.1 Building (¥9)" from (¥J)™ and (V9,)
Let H € H(Tr(0wuy) x1(8wiy) » k). Define the following matrices:
Hy = (U9)" € H(THouw)x10w): k)s Ho = (V9)" € H(T1(0ws)x1(0ws): k), (6.16)

H = (V)" € H(T1ow)x1(00), k), (6.17)

where I(OwU~) = I(0w; Udws) (see Remark 4.3.3 and Figures 6.4, 6.5). We want to
construct the matrix H from H; and H,. First, we build a new cluster tree T7(g.u+)
from the clusters T,y and T7(,). There are many variants of how to build it, but
we want such a cluster tree, which makes it easier to eliminate the unknowns z;,
i € I(7), i.e, one of the sons of the cluster (0w U~) should coincide with the index
set I(7y). As soon as the cluster tree T7(awuy) is built, we build the block cluster tree
Tr(0wuy)x1(awuy)- The block cluster tree T7(guuqy)xrawuy) defines the block structure
of H. We consider two variants of the block structures:

(1) < I(T3), I(v) x 1(7) € Trow)x1(ow), i = 1,2 (6.18)
](Fl) X [<Fz) ¢ Tl(awi)xl(awi) or [(’y) X [(’y) ¢ TI(Bwi)XI(awi)ai = 1, 2. (619)

- 08 -

6.3 Hierarchical Construction on Incompatible Index Sets

Building algorithm in case (6.18):
Let H; and Hy be defined as in (6.16) and H as in (6.17).

Algorithm 6.3.1 Building H := (V9)™ from Hy := (V9)" and Hy := (W9,)™
build V9 (H,, Hs,...)
begin
allocate memory for ﬁ]
H|1(<1ty = Hi|rryxrr)s
ff|1(o) I(T2) = Ha|r(ry)x1(rs)s
]:I|I(F1)><I(F2) 0;
H|rg)yx1(ry) = 0;
/* in Fig. 6.4 denoted by d + h */
Hl1(3)x1(v) 7= Hil 1) x19) ® Hal1)x1(7)
H|1yxrwnurrs) = (Hiligyxaa) © Hali)xary)): /* Sum of two low-rank ma-
trices */
/* in Fig. 6.4 denoted by b+ f */
H|1(p1 I xI1(y) = Hilrryxrq) ® Haliwg)xi(y); /* Sum of two low-rank ma-
trices x/
H :=extract. rows(H 1, T2, 11, ia); /% The output is ri, ro */
H :=extract. columns(H c1, C2, j1, J2); /* The output is c1, ¢y */
ﬁ::add_rows(ﬁ[, 1, To, i3, 14);
H:=add_columns(H, c1, ca, j3, ja);
H :=elimination(H, 1(v)); /* see Algorithm 6.2.1x/
return H,
end;

Remark 6.3.1 Since I(I'\)NI(T'y) = [({z,y}) # &, we should remove two repeated
columns and two repeated rows from H. The indices iy, is, J1, J2 indicate the posi-
tions of two rows and two columns which have to be extracted. i3, i4 and j3, j4 are
positions of two rows and two columns to which the removed rows and columns 11,
ro, €1 and ¢y have to be added.

- 99 -

6 Application of H-matrices to HDD

IT) ()
I(Ty)
= H
I(T2)
Schur Complement
Iry) I I(y) I(Ty) 1(7)
: o [T o [e
.' [[b+f [1| b'+f
' - poIIzIs o Felbels
Oow i 5 () 0 e e
v I(v) : : c*g d+hl () : c’+g’i d+h
I(I') I(v) I(Ty) I(v)
I(r) a |b 1(T) e | f
I w1 v Wy T
I(v) c d I(v) g h
Hl H2

Figure 6.4: Building H := (09)" € RIOXIOw) from Hy := (W9)" € RIOw)x1(@w)
and Hy = (09)" € RIOw2)x1(0w2) where [(Ow;) = I(T;)UI(v),i=1,2,
I(0w) = I(T}) UI(T'y), @, y are two common points and I(T';) := I(T';)
I({z,y}). The small letters show the appearance of blocks in different
matrices. The dotted lines in H present 2 rows and 2 columns.

Remark 6.3.2 Figure 0.4 illustrates Algorithm 6.3.1. The first step is the con-
struction of H and then, according to (6.4),

(W9)" = Hy1 © Hi» © Hy,' © Hoy,

with H11~Z: g|[(8w)><[((9w); H1~2 = f{|1(5w)><[(7)’
Hyy = H|1()x1(0w), Ha2 := H|1(7)x1(+)-

- 100 -

6.3 Hierarchical Construction on Incompatible Index Sets

Lemma 6.3.1 The cost of building the H-matriz H (see (6.17)) from the H-matrices
H, and Hy (see (6.16)) in case (6.18) by Algorithm 6.5.1 is

N < Ck*n,logn,, wheren,=1I(y)|, C €R,.

Proof: We follow Algorithm 6.3.1 (see the scheme in Fig. 6.4). Let ny := |I(0w)],
ng = [1(0ws)l|, n := |I(0w)].

1. From Table 5.3 follows that the complexity of adding H|(y)x1¢y) and Ha|1¢4)x1(+)
(in Fig. 6.4 denoted by d + h) is O(k*n, logn.,).

2. From Table 5.1 follows that the complexity of adding the low-rank matri-

ces Hl‘[('y)XI(Fl) and H2|](,y)><[(r2) as well as Hl‘I(Fl)XI('y) and H2|I(F2)><I('y) is
O(k?|I(0w)|) = O(k*n) (see Table 5.1).

3. The removal of two columns and two rows from H; by Lemma 5.10.3 costs
O(klogny).

4. Adding four rank-1 matrices to H by Lemma 5.10.4 costs O(k?*ny).

5. Adding four elements to the matrix _E[|[(1‘2)><[(1‘2) in general by Lemma 5.10.4
costs O(K*|I(T3)|). In our case these elements belong to diagonal blocks and
should be added to dense matrices. The cost is O(1).

6. The cost of computing the Schur complement by Lemma 6.2.1 is O(k*n., log? Noy).

Since the complexity of adding two H-matrices dominates, the total complexity is

N < Ck*n,logn,, C€eR,.

Building algorithm in case (6.19):
Let Hy, and H, be defined as in (6.16), H as in (6.17) and [:= I(0w).

Algorithm 6.3.2 Building H := (V9)™ from Hy := (V9)" and Hy := (W9,)™

build V9 (H,, Hs,...)

begin
allocate memory for H, H;
H':=copy_block_structure(H);
H" :=copy_block_structure(H);
h2h(Hy, H',...);/* Convert Hy to H' x /
h2h(Hy, H",...);/x Convert Hy to H" x /
H:=H"®H'; /% See (6.17) */
H :=elimination(H, 1(712)); /% see Algorithm 6.2.1 x/
return H;

end;

- 101 -

6 Application of H-matrices to HDD

iry 1(y)
()
= H
1(7)
f
Schur Complement
f H:=H ®H"
(') I(7) I(m2) I(T) I(v) 1(n2)
5
. () ()
r :‘/12 J
: I(%) I(v)
I(12) I(n2)
conversion conversion
1(3wy) 1(Ow»)
w M2 w2 J I(0wy) 1(0w,)
H, H

Figure 6.5: Building H := (09)" € RI0O)xI0w) from [:= (\Pgl)H € RIOw1)xI(duwr)
and Hy, = (U9)" € RI@w2)xl@w2) - [(Quy) = I(T;) U I(m2), @ =
1,2, I(Ow) = I(I') U I(y). We obtain H after computing H' & H”

and the Schur complement, where H' := H,|/(O«wWnz)xI(0wbn2) [. —
H, |I(8wU712)XI(8wU712)]

Remark 6.3.3 Figure 6.5 illustrates Algorithm 6.3.2. First, it shows how H is
constructed. Here

H/ — H1|I(8wU’712)XI(8wU’712) H/l — H2|I(8wU’712)><I(8wU’ylg) and ﬁ — Hl @ Hl/
with 12 := 0wy \ Ow. Then, according to (6.4),
(VI = H), © Hiy ® Hyy' ® Hoy,

with Hyy = H|1(0w)x1(00) Hyy = H|1(0w)x1(112)>
Hy1 = H| (o) x1(0w), Haz := H|1(312)x1(112)-

- 102 -

6.3 Hierarchical Construction on Incompatible Index Sets

Lemma 6.3.2 The cost of building the H-matriz H (see (6.17)) from H-matrices
H, and Hy (see (6.16)) in case (6.19) by Algorithm 6.5.2 is

N < Ck’nlog®n, wheren = |I(0w)|, C €R,.

Proof: We follow the scheme in Fig. 6.5. Let [:= I(0w), H' := H|™! and
H" := Hy|"™! where H' and H"” have the same block cluster structure as H. We
convert H; to the matrix H' and H, to the matrix H”. The block structure of H
is important and is shown in Fig. 6.5. As soon as the matrices H' and H” are
ready, we consider the construction of the matrix H as the addition H' & H” with
further elimination of the unknowns with indices i € I(712). Using the inequality
n < 2-|[(0w)| and Lemma 5.10.8 we obtain that the complexity of this addition
is O(k*nlog’n). By Lemma 6.2.2 the elimination costs O(k*nlogn). The term
O(k*nlog®n) dominates.

Example 6.3.1 Figure 6.6 shows an example of building (V9)" € R312X512 from
(W9)" € R gnd (09) € R¥34 Let [:= [(dw U~). The construction is
performed in three steps: 1) build H' = (W9)1 and H" := (09,)",

2) compute H = H' ® H",

3) compute the Schur complement as in Statement 6.3.3.

Note that H', H", H have the same block structures. The symmetries of (W)™,
(U9)™ and (U9)™ are used.

- 103 -

6 Application of H-matrices to HDD

(wg,) (W)™ € H(Tpur, k)

Figure 6.6:

Building (09)" € R***512 from (09,)™ and (¥9,)" from R334 [T ¢
R639%639 i5 an auxiliary matrix. The maximal size of the diagonal blocks
is 32 x 32. The grey blocks indicate low-rank matrices. The steps inside
the grey blocks show an exponential decay of the corresponding singular
values. The white blocks indicate zero blocks. For the acceleration of
building the symmetry of U9 is used.

- 104 -

6.3 Hierarchical Construction on Incompatible Index Sets

6.3.2 Building (U/)" from (¥/)" and (U7)"

w1

Denote
Hl = (\I]ic;l)H S H(Tl(awl)XI(w1)7 k>7 H2 = (‘IIZCJQ)H € H<Tl(aw2)><[(w2)’ k) <620>

and

H € H(Tiouwomxiw), k), H = (W) € H(Trowxr(w), k). (6.21)
Let T' := Tr(owuy)xi(w)- We want to construct the matrix H from H; and H, (see
Remark 4.3.3). Note that 0w U~ = 0wy U ws, I(0w;) = I(T;) UI(y), 't UTy = Ow.
To build the matrix H we need two cluster trees T7(s,u+) and T7(.,. The first cluster
tree was already built for (09)™. There are many possibilities of how to build Ty,
but we want a tree which makes a further elimination of unknowns x;, ¢ € I(7)
easier, i.e., one of the sons of the block cluster tree T" has to coincide with the block
I(vy) x I(7y). Therefore we choose the following decomposition:

I(w) = I(wi \) Ul(w2 \7) UI(7).
There are two cases:
I(Fl) X I(wi \ ’7) - T[(@wi)xj(wi) and](’}/) X I(’)/) - T[(awi)xj(wi),l' = 1, 2. (6.22)

I(P,) X I(wi \ ’}/) §7_f T](awi)xj(wi) or I(’)/) X](’}/) §7_f T](@wi)X[(wi),i = 1, 2. (623)

Building algorithm in case (6.22):
Let H; and H, be defined as in (6.20), H as in (6.21) and A;5A5,) as in (6.1).

Algorithm 6.3.3 Build H := (V)" from H := (U])" and Hy := (U])"
build V' (H,, Hy, A A5)
begin
allocate memory for H, H;
H|1tx16) = Hiliyxrt) © Halroyxae
H|reyysanvy) = Hiliwoxrten\);
H |1y 1e2\y) = Hal1ra)x s\
H‘I(Fl YxI(wz\y) -= 05
H|1my)waervy) = 0
/[in Fig. 6.7 denoted by [cg] */
Hlreyxr\n) = Hilropxri\y) ® Halro)xawav)s
/* in Fig. 6.7 denoted by b+ f */
H\I rOuIe)xI(y) = Hilreyx1()@Ha| o)< 1(y); /*sum of two low-rank matricess/
H :=extract. rows(H 1, T2, 11, i2);/* The output is Ty, To */
H :=extract. columns(H ¢1, Ca, J1, J2);/* The output is ¢, co */
Ij.—add_rows(H, T1, T, 13, 14);
H:=add_columns(H, c1, j3, Ca, ja);
Hy = Hl1ow)x1(w));
Hy = Hl1(x1));
return H := H) © A, © A3} © Hy;
end;

- 105 -

6 Application of H-matrices to HDD

Again, I(I'y) N I(I'y) = I({x,y}) # @. This is the reason why we, first, remove
two columns and two rows from H and then add them to other blocks of H. The
indices i1, 12, j1, Jo are the positions of two rows and two columns which have to be
extracted. The indices i3, 74 and j3, js indicate the positions of two rows and two
columns to which the extracted rows and columns 71, 9, ¢; and ¢, have to be added.

Lemma 6.3.3 The cost of building the H-matriz H (see (6.21)) from the H-matrices
H, and Hy (see (6.20)) in case (6.22) by Algorithm 6.5.3 is

N < Ck’nlogn, wheren = |I(w)|,C € Ry.

Proof: We follow the scheme in Fig. 6.7. Let ny = |I[(Ow)| and n; = |I(w;)],
i=1,2

1. From Table 5.3 follows that the complexity of adding H|7(y)x () and Ha|1¢y)x1(7)
(denoted by d + h in Fig. 6.7) is O(k*n. logn.,).

2. From Table 5.1 follows that the complexity of adding two low-rank matrices
b:= H1|I(F1)><I('y) and f = H1|I(F2)><I('y) (see Flg 67) is O(k?2n0)

3. Building the new H-matrix [cg] € H(T7(y)x 1(wi\y)ul(w2\y)> k) from two H-matrices
¢:= M1 x1@i\n)s 9 7= Hal 1)1\ costs O(L).

4. The removal of two columns and two rows from H; (see dotted lines in Fig.
6.7) by Lemma 5.10.3 costs O(klogn;).

5. Adding two columns and two rows to matrix H by Lemma 5.10.4 costs O(k*n»)
units. After that the 0-blocks become rank-2 matrices (denoted by Ry).

6. Adding four elements to the matrix H| I(To)xI(ws\y) 10 the general case by
Lemma 5.10.4 costs O(k%*ny). In our case these elements are added to the
dense matrices and the cost is O(1).

7. The cost of computing F; — A12A;21F2 by Lemma 6.2.2 is O(k*nlogn).
Since the complexity O(k*nlogn) dominates, the total complexity is O(k*nlogn).
|

- 106 -

6.3 Hierarchical Construction on Incompatible Index Sets

n [d+h

Figure 6.7: Building (/)" € RI()*/«) from (V])" € RIO)xIw) and (W))" €
RIGw2)xI@2) (DY U I(y) = 1(0w;), i = 1,2, I(Ty) N I(Ty) = I({z,y}).
The small letters show the appearance of blocks in different matrices.
The dotted lines in H correspond to 2 rows and 2 columns, which were
removed from H and then added to other positions.

Remark 6.3.4 Figure 6.7 illustrates Algorithm 6.3.3. First, it shows the construc-
tion of H, and then, according to (6.5),

(‘I’f:)H =FN6AL0o A2_21 ® F

with Alg, AQQ from (61) and F1 =]:I|I(8w)><l(w) and F2 = FI|I(712)XI(w)-

- 107 -

6 Application of H-matrices to HDD

Building algorithm in case (6.23):
Let I := I(Ow), J := J(w) be two index sets and H; and H, be defined as in (6.20),
H asin (6.21) and Ay A5, asin (6.1).

Algorithm 6.3.4 Build H := (V)" from Hy := (U])" and Hy := (U])"
build V' (H,, Hy, App A5)
begin
allocate memory for H, H;
H':=copy_block_structure(H);
H" :=copy_block_structure(H);
h2h(Hy, H',...); /*convert Hy to H' by Algorithm 5.9.2x/
h2h(Hy, H",...);
EI — I{:' D H/,'
Hy = Hljpu)x1(w));
Hy = H|1(po)x1())i)
return H := H, © A;» © Ay © Ha;

end;
Iw\7) I(v)
(1)
I(v)
t
f{ - H D H"
t
i I(w\ ") I(v) I(w\) I(v)

Ow, 8w2

wi ws ’ (0w) I(Ows)

Hl H2

Figure 6.8: Building H := (V/))* € R/ [:= () U I(v), J := I(w\) UI(y),
from Hy := (U])" € RIO«X1@) and H, := (U])" € RIOw2)xI(w2),

Remark 6.3.5 Figure 6.8 illustrates Algorithm 6.3.4. First, it shows the construc-
tion of H. H = H' & H" with

Hl — H1|I(8wU’ylg)XI(8wU’y12)’ H// = H2|I(8WU712)XI(8WU712) and Y19 = 8&)1 \aw
Then, according to (6.5),
(P =FoAro A 08,

- 108 -

6.3 Hierarchical Construction on Incompatible Index Sets

where Ayg, Ays are defined in (6.1) and Fy := ﬁ\l(aw)xl(w) and Fy := FI|I(712)><I(W)-

Lemma 6.3.4 The cost of building the H-matriz H (see (6.21)) from the H-matrices
Hy and Hy (see (6.20)) in case (6.23) using Algorithm 6.3.4 is

N < Ck’nlog®n, wheren =|I(w)], C €R,.

Proof: We follow the scheme in Fig. 6.8. Let I := [(0w), J := J(w), n = |I(w)].
Building of H is equivalent to the addition H' & H”, where H' := H;|"™*’ and
H" := H,|™7 and the further elimination of the unknowns ;, i € I(712). It follows
from Lemma 5.10.8 that adding H' and H” costs O(k*nlog”n). It follows from
Lemma 6.2.2 that the cost of the elimination is O(k*nlogn).

|
Building (¥/)" from (¥/)™ and (¥})" for the two-grid modification

w1

The index 5 indicates the quantities of the fine grid and the index g of the coarse
grid. Denote
Hy == (V))" € H(Tr(0w,)% 11m): k), (6.24)

Hy = (U])" € H(TT(0ws) x I (wa.zr) k) (6.25)
We want to construct the matrix
H = (‘I’f))ﬂ € H(TI(Bwh)XI(wH)u k). (6.26)

Note that I(Owp) U () = [(Owip) U I(Owap), [(Ow;pn) = I(Tin) U I(y,). We
construct the tree Ty, so that the further elimination of the unknowns u;, 7 €
I(yx) becomes easier, i.e., we want that I(yy) X I(ve) € Ti(ow,)x1(wy)- We choose
the following decomposition

Iw) = Hwi,m \ 7)) Ul (we,m \ 7a) U I(vm),
I(@wh) =](Fl,h) U](FZ,h)~

There are two cases:

I(Tin) x Hwim\wn), L(vn) X 1(ve) € Trow, <1, @ = 1,2, (6.27)

I(Tin) x Hwim\wn) & T xicem) o8 L) X L(vm) & Tr@w: <1 0 = 1, 2.
(6.28)
Algorithms 6.3.3, 6.3.4 with small modifications are used for cases (6.27) and (6.28)

accordingly.

Lemma 6.3.5 Let matriz H be as in (6.26) and Hy and Hy as in (6.24), (6.25),
then the cost of building H from H, and Hy s

N = O(k*nlogn) in case (6.27)
N = O(k*nlog*n) in case (6.28),

where n = max{|l(Owp)|, | I (wr)|}

Proof: Analogous to the proofs of Lemmas 6.3.3, 6.3.4.

- 109 -

6 Application of H-matrices to HDD

Hwip\yw) I(wan\yw) I(ym

I(fl,}z)
= ()"
I(Typ)
Hwip\ve) I(wan\ve) I(vw
w X I(Typ) a 0 b
I E i b I(Ta2n) 0 e f
y I(vn) c g d+h
/ H N
Hwr g \ve) I (vu) Iwa,u\ve) 1(vu)
Fl(” ’ Iy I(Tyy) a b I(Ts) e f
I(n) c d I(yn) g h
()" (W)™

Figure 6.9: Building (V1)" € RI@«n*I@n) from (Uf)" e RIGwn)xllnm) and
(UL)" € RIGwanxIan) for two grids with step sizes H and h.

I(Tyn) = 1)\ I({z,y}), 10ws) = I(T1p) U I(Tap), I(wn) =
Iwig \ va) UI(womg \ vu) U I(yg). The small letters show the ap-
pearance of blocks in different matrices.

Remark 6.3.6 Figure 6.9 illustrates Algorithm 6.5.3, but for the two-grid modifi-
cation of HDD. First, it shows the construction of H, and then, according to (6.5),

(T =F 6 A,0 A3 0 F,

with A12, A22 from (61) and F1 = f{|1(8wh)><l(wH) and FQ = I:[|I(’Yh)><I(WH)'

- 110 -

7 Complexity and Storage
Requirement of HDD

Let us recall four types of mappings which are present in the HDD method: domain-
to-boundary ¥/ boundary-to-boundary W9, domain-to-interface ®/ and boundary-
to-interface ®9,, for all domains w € T7,. In this Chapter we estimate the compu-
tational complexities of HDD and its modifications. We estimate also the storage
requirements of ®/ and ®Y. Finally, in the conclusion, we consider a special case,
namely, when the right-hand side is equal to 0.

7.1 Notation and Auxiliary Lemmas

Let z € D C R", y € R™. Let ¥ : x — y be a given mapping. An algorithm
for computing ¥ (z) is a sequence of elementary operations. The computational
complexity of the algorithm is characterised by the number of elementary operations
N,. We take into account only the addition and the multiplication of real numbers,
but in some special cases (e.g., the removal of a column from an H-matrix) we also
take the cost of the coping into account.

Definition 7.1.1 If the computational complezity depends linearly on the data size
n, the algorithm has a linear computational complexity.

Definition 7.1.2 [f the storage requirement depends linearly on the data size n, the
algorithm has a linear storage complexity.

Definition 7.1.3 We call the complexity O(nlog?n), where ¢ = 1,2,3, an almost
linear complezity.

Remark 7.1.1 For large input vectors (e.g., n = 1000000 is very common nowa-
days) the time for an algorithm with linear complezity can be one hour and for an
algorithm with quadratic complexity one month. This is the reason why it is impor-
tant to develop and to use the algorithms with a linear complexity.

There is an empirical observation that says that there is a linear dependence be-
tween the computer memory and the processor frequency. To get the optimal ratio
(productivity) / (computational resources) the complexity of the algorithm must
be a linear function of the computer memory and the processor frequency. This is
another reason to develop and to use algorithms with linear complexity.

In this section we show that the HDD method (Case (a)) and its three modifica-
tions (Cases (b),(c),(d)) have almost linear complexity. We characterise each case

- 111 -

7 Complexity and Storage Requirement of HDD

by the domain of definition and range of ¥, and ®,,.

Case (a) - The standard HDD method
Wl RIwn) — RIG@R) € Tr |
W9 RIGW) s RIOw)) € T |
q)g: c RIwn) — RIOKW o € Tr,,
9 RIOwn) - RIOW oy € Ty .

Case (b) - HDD with truncation of the small scales
Wl RIwn) — RIG@R) € Tr |
W9 RIGW) — RIOw)) € T |
®f : RI@n) — RIOW e TZH,
@9, : RIGwn) — RIOW) € TZH,

Let P : RI(wn) — RI@r) be a prolongation matrix as it is defined in Section 4.3.6.

Case (c) - HDD on two grids
Ul =Wl P,y where U/ : RI@n) — RIOwn) g/l RIwn) — RIGw) () € Ty
9 - Rl(awh) — Rl(awh)’ w E TTh7

& := ®f P, _y, where ®f : RI«r) — RIOW &f : RI@H) — RIGW o e Ty
9 RIOwn) — RIOW) € T, .

Case (d) - HDD on two grids and with truncation of the small scales
U/ .= Ul Py, where U/ : RIwn) — RIOwn) gf - RI@H) RIOw) € T
W9 RIOw) s RIOW)) € T
o/ = <i>£Ph<_H, where (f{; cRI@n) — RIOW @f . RI@H) — RIOR) € TTzhH,
@9, : RIOn) — RIOW o € T2,

one scal e two scal es
o/ Nl H
HI 1
1 1
1 1
ol [ol [e ;e ;e
h h h h

Figure 7.1: Four cases of the HDD method: (a) the standard HDD method with a
fine scale h, (b) HDD with a fine scale h and with truncation of the small
scales, (¢) HDD on two grids, (d) HDD on two grids and with truncation
of the small scales.

We consider four modifications of the HDD method (see Figure 7.1). Case (a) is
HDD without any modifications, i.e., there is only one scale h and no truncation.

- 112 -

7.1 Notation and Auxiliary Lemmas

In Case (b) there is one scale, but the algorithm “Root to Leaves” stops at a coarse
scale H. Case (c) is HDD on two grids and a right-hand side f given at a coarse
scale H. The fourth Case (d) is the same as the third case, but the algorithm “Root
to Leaves” truncates the scales smaller than H. Case (d) is the cheapest one.

The long arrows show the algorithms “Leaves to Root” and “Root to Leaves”, the
short arrow in (c) indicates that the algorithm starts not with the smallest scale h,
but with a scale H. The short arrow in (d) indicates that there is truncation of the
small scales. The dotted lines mean that in the corresponding parts of the domain
decomposition tree T, the right-hand side is given on the coarse space Vi C V}, and
the prolongation matrix is used.

H
+—>

24

Z

- <<
<

0 .
YL Nhz 1 < .
0 X ' < .

@

Figure 7.2: Model domain € = (0,1)? with rectangular grid and its hierarchical
decomposition. ny, and ny, are the numbers of grid points in Ox and
Oy directions.

Remark 7.1.2 (Model Domain)
To keep further theoretical calculations simple, we consider the model domain €2 =
(0,1)% with the rectangular grid and its hierarchical decomposition as in Fig. 7.2.

Consider the model problem as in Remark 7.1.2.

Let np, »(w) and ny,(w) be the numbers of grid points in w € T, in the Ox and Oy
directions.

The number of grid points in the domain w € 77, is ny(w) = npz(w) - npy(w).

A domain w on the level ¢ of T, we denote by w;. The root of 17, has level 0.
Suppose that nj, ,(2) = np, () =27+ 1 and ny () = np,(2) =27+ 1. Then the
number of nodal points in Q is ny, := n,(Q) = (2P + 1)? and if the grid step size is
H, then ny :=ng(Q) = (27 + 1)2.

The number of nodal points on the interface (see Fig. 7.4) is denoted by n;, y and
Nha < 2Np Nz = 24/

Suppose that |I(0w;)| < 6nyp, »(w;) and

Ny, = 11 (Veoi)| = oz (wi) — 2.

The number of subdomains on each level i of Tz, is 2, i =0, ..., 2p.

- 113 -

7 Complexity and Storage Requirement of HDD

The depth of T7, is not larger than log, n,(2) + 2.
Note that 2p < log,np(Q2) <2p+1, p > 2.
The depth of the domain decomposition tree with scale H (denoted by TTZhH) is

2¢ < depth(TTzhH) = logy ny () < 2¢+ 1.
level 0

level 1

\ level 2

H ... e level 2q

MA__AA

leaves are triangles

Figure 7.3: Two levels 2¢ and 2p of the domain decomposition tree 77, .

Definition 7.1.4 The storage for all mappings ®,,, w € Ty, , is denoted by

S(@):= Y S(d,).

w GTTh

Definition 7.1.5 The number of arithmetic operations for computing all mappings
V,, w e Ty, is denoted by

w GTTh

For further estimates we will need the following equalities (proofs of these facts see
in Appendix):

p
St =+ 00, (1)
=0
p
2= (p-1)2r + 2, (7.2)
=0
p
d p—i2 =2 —p-2, (7.3)
=0
p
(p—i)?2"' < 3.2 (7.4)
=0

- 114 -

7.2 Complexity of the Recursive Algorithm ”Leaves to Root”

p

> 2 = (p* —2p+3)2" —6. (7.5)

=0
Remark 7.1.3 In the following we will assume that

|1(0w;)| =~ 2|I(Owit2)| and

[(wi)| = 2|1 (wit1)]-

7.2 Complexity of the Recursive Algorithm " Leaves
to Root”

Now we would like to compute the computational cost of the algorithm ”Leaves to
Root”. The Algorithm 7.2.1 computes recursively the mappings ®J and &/ for all
w € T7,. The domain decomposition tree T, (€2) is an input parameter.

Algorithm 7.2.1 (Leaves to Root)
leaves_to_root(structure Ty, (w))
begin
Ty :=get_left_son(Tr, (w));
Ty :=get_right_son(Tr, (w));
if (T1!=9) and (Ty! = @) then
if (11 is not computed) then
leaves_to_root(T});
if (T is not computed) then
leaves_to_root(Ts);
U9 = build_W9 (W9, W9); [See Algorithms 6.3.1, 6.58.2 x/
Ul o= build W (WS W1); /% See Algorithms 6.3.3, 6.3.4 */
OI = compute_PI(..);
®J = compute_ ®7(..);
delete(V,),
delete(V,,);
end if;
end;

Lemma 7.2.1 Let k be the rank which is used in the H-matriz arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of all mappings
U9 RIOW) RIOW ¢ T, has the following upper bound:

N(¥9) < Ck’ny,, C e€R,.

Proof: Let N(¥Y) be the cost of building W9 from W9 and V9 , where w,wy,w; €

T7, and wy,wy are sons of w. Note that all w at a fixed level of T, have the same

- 115 -

7 Complexity and Storage Requirement of HDD

number of degrees of freedom. The total complexity is
N(W9) = Y N(W)
wETTh
2p+1
= N(P9,) + 2N (09) +4N(V7)+ 8N(F¥Y,) + ... + 2°F N,)
<BN(WS) + 12N (Y,) + ... + (2% + 2T N (Y,)
p
< (22i+1 + 221‘)N<\I,g)

w2q
=0

p

Lem.:6.2.1 Z (22i+1 + 22i)(02ik2nh,m(w2i) 10g2 nh,x(w%))
=0

P
< 3max Cyik? Z 20 . 21% log2 %
=0

p
C i=max; Ca; 3CI]€2nh,m Z 2. (log Ny — i)Q

i=0
P p—1

<3C'kK*np . Z 2'(p+1—1i)* = 6C"k*n,, Z 2 (p —1i)?
i=0 i=—1

(7.4)
< Cl{i2nh7$ C2P < C’k:2nh, Ce R+.

Lemma 7.2.2 Let k be the rank which is used in the H-matriz arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of all mappings
Ul RIW — RIGW) € Tr | has the following upper bound:

N < Ck*nplog®ny, C € R,
Proof: Let N(¥/) be the complexity of building W/ from ¥/ and ¥/ , where
w,wy,ws € T, and wy, wy are sons of w. Lemma 6.3.4 yields N(¥7) < C;k?*ny,(w;) log® np(w;).
Since all w at a fixed level of T7, are equal, the following estimate holds

N(UT) = N(V)

weTTh
= N(W/) + 2N (V]) +4N(U]) + 8N (VL) + ... + 2 N(V/,)
< 2Zp 21(Cikn (w;) log? np(w;))
izzpo i Ny Np
< ZO 2@0;185 log? o
’ / 2
CTEE e, zp: (2p+ 1 —i)?
(7.1 =

) 1
< C'anh(g(Qp +1)%) < Ck*nylog® ny, C € Ry

- 116 -

7.3 Complexity of the Recursive Algorithm ”"Root to Leaves”

Lemma 7.2.3 Let k be the rank which is used in the H-matriz arithmetic. For the
model domain from Remark 7.1.2 the computational complexity of all mappings V,,,
w € Tr, , has the following upper bound:

N(¥) = N(U/) + N(U9) < Ck*np,log*ny,, C € Ry,

Proof: See Lemmas 7.2.1 and 7.2.2.

7.3 Complexity of the Recursive Algorithm ” Root to
Leaves”

The Algorithm 7.3.1 computes recursively the solution u|s(,, for all w € T;,. The
input data are the domain decomposition tree Tr, (), the mappings ®¢ and &7 for
all w € T7,, and the solution u|;(g. for a current subdomain w.

u(z) = { g(z) for all z € Ow, (7.6)

0 otherwise.

Note that in the Algorithm 7.3.1 g,, and f,, are the Dirichlet data and the right-hand
side for the local problem, defined on w € 77, .

Algorithm 7.3.1 (Root to Leaves)
root_to_leaves(Tr, (w), u)
begin

Ty :=left_son(Tr, (w));

Ty :=right_son(Tr, (w));

Uy, = PF - g + (I)Z; Sos

for allie I(y,) do
ullocal_to_global[t]] :=u.,, [1];

if (T! = @) then
root_to_leaves(Ty,u);

if (1x! = @) then
root_to_leaves(Ts, u);

end;

Here local_to_global[...] is an auxiliary index mapping, which for each global index
in 7(€2) returns its local index in /(w). Note that we computed the mappings P9
and ®/, w € Tr,, during the computation of the auxiliary mappings ¥/ and W9.

Below we estimate the complexity of computing the solution wu.

Notation 7.3.1 We denote by Ny the complexity of all matriz-vector multiplications
9 - g, where I € RICL)x10w) g RIOW),

We denote by Ny the complexity of all matriz-vector multiplications ®7 - f,,, where
®f € RIOW)XI@) " f ¢ RIW),

Lemma 7.3.1 Let k be the rank which is used in the H-matriz arithmetic. For the
model domain from Remark 7.1.2 the computational complexity of all matriz-vector

- 117 -

7 Complexity and Storage Requirement of HDD

multiplications ®9, - g, where ®9 : RIO) — RIO) ", € T g € RIO) has the
following upper bound:
Ng S 21]{37’Lh

Proof: We have ny,, < nj,(w) for the model problem as in Remark 7.1.2. The
matrix ®9 is approximated in the low-rank format and belongs to R(k, I(7), I(0w)).
The complexity of the matrix-vector multiplication can be estimated as follows:

Ny(w) <2k - (I(y)| + |[I(0w)]) < 2k(npq(w) + 6np5(w)) = 14kny, 4 (w).

The total complexity is

p—2
= 42kny, Y 2" < 21kny 2" < 21kny,.
=0

Lemma 7.3.2 Let k be the rank which is used in the H-matriz arithmetic. For the
model domain from Remark 7.1.2 the computational complexity of all matriz-vector
products ®7 - f.,, where ®f : RIW) — RIM ¢ Tr,, fu € R has the following
upper bound:

Ny < Cknplog’ng, C €Ry.

Proof: Each level i € [0,2p—3] of the tree T, contains 2' matrices and each matrix
is multiplied by a vector f,. The complexity is

2p—3
1=0
2p—3
— Z 24(Ciknyp (wi) log iy, (w;))
1=0
2p—3

i np np
<k- ZQ (C{;logg)
i=0

C’:=max; C/ 2p—3
< C'npk Z (2p+1—1i) < C'npkp(2p +4).
i=0

We recall that 4p? < log®ny,, and obtain Ny < Ckny, log? ny,.

- 118 -

7.3 Complexity of the Recursive Algorithm ”"Root to Leaves”

Lemma 7.3.3 Let k be the rank which is used in the H-matrixz arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of the algorithm
“Root to Leaves” has the following upper bound:

N = Ny + N, < Cknylog’n,, C€R,.
Proof: See Lemmas 7.3.1, 7.3.2.

Lemma 7.3.4 Let k be the rank which is used in the H-matriz arithmetic. For the
model domain from Remark 7.1.2 the storage of all mappings @, w € Ty, , has the
following upper bound:

S(®) := (DY) + S(®F) < Chny, log? ny,.

Proof: From ®¢ : R/ — RIO) @S : RIW — RIO |[(0w)| < |I(w)| follows that
S(®9) < S(®7). Therefore it is enough to estimate only the second term

S@) =Y S(@))
= ZPQZ'S@L)

2p

— Z 2'(Cikny (w;) log ny (w;))

=0

2p
< Z QiC{k% log %
=0

C’:=max; C| 2p
< Clhnp)y (2p+1—1)
=0

< C'knpp(2p + 2) < Cknylog®n,, C € R,
|

Table 7.1 compares the memory requirement of HDD with the memory requirements
of H-Cholesky factorisation and the direct H-matrix inverse. The memory needed
for HDD is close to the memory needed for H-Cholesky and much smaller than the
memory for the direct H-matrix inverse.

Let us in Lemma 7.3.5 estimate the storage requirements of HDD if only the
functionals which compute the mean values in all w € T, are of interest (see Section
4.4.6).

Lemma 7.3.5 Let k be the rank which is used in the H-matrix arithmetic. Let the
model domain be as in Remark 7.1.2. HDD requires S < Cknplogn,, C' € Ry,
units of memory for storing all functionals X/, : R'®) — R and N9, : R — R,

- 119 -

7 Complexity and Storage Requirement of HDD

| c. | H-Cholesky(MB) | HDD(MB) | (A)"(MB) |

1073 13.3 19.7 51.0
1071 14.7 20.1 64.0
107° 16.0 20.4 75.2
10°° 17.2 20.6 87.4

Table 7.1: Dependence of memory requirements on the adaptive rank arithmetic
parameter ,, where rank k£ = argmin{oy < £,07}. The number of degrees
of freedom is 1292.

Proof: Since the functional A/ requires more resources than \¢, we, therefore,
perform estimates only for \/:

2p
S= 3 SO <Y 2SO
weTr, i=0

2p 2p
=Y 2mw) < Y25
i=0 1=0

= (2p+ 1)n, < Cnylogny, C eRy.

7.4 Modifications of the HDD Method

7.4.1 HDD with Truncation the Small Scales - Case (b)

The algorithm “Leaves to Root” starts with the leaves of 77, and goes until the
root, while the algorithm “Root to Leaves” starts with the root of T, and stops
when diam(w) < H, H > h. The mappings ®J and &/ are stored only for w € TTZ}LH
(see Fig. 4.8).

Lemma 7.4.1 Let k be the rank which is used in the H-matriz arithmetic. For the
model domain from Remark 7.1.2 the storage requirements for all mappings 9 and
o we TTZhH, have the following upper bounds:

S(®Y) < 42k+/nynm,

S(®1) < Cky/npng log /iy log /ng, C €R,.

Proof: The matrix 9, w € TTZhH, is approximated in the low-rank format and
belongs to R(k, I(7,), I(0w)). The storage requirement of ® is less than k(ny, .(w)+

6np(w)) = Tk - np,(w). The total storage of all ®9, w € TTzhH, can be estimated as

- 120 -

7.4 Modifications of the HDD Method

follows

S(@9):= Y S(Y)
wET%LH
= S(®Y,)) +25(D7,) +45(P7,) +8S(PY,) + ... + 221 S(dY,)
< 35(®9,) + 125(DY,) + ... + (27 + 22T)N (DY,)

waq
q

< Z (22i+1 + 22i)S<q)g)

w2;

=0
q
< Z (2% 4 22 (Thk - np o (wos)

=0
q
i Th,x
=21k Yy 2%(—=
; (=)

q
= 21kny, Y 2" < 21kny, ;2
=0

< 42knp onp e = 42k/npng.

The total storage of all &/ w € TTZhH , can be estimated as follows

S(@l)=) S(@)

wGT%LH
2q
= 2(C; - 2knp (i) - npa(wi) log 2n 4 (wi) - pza(wi)
i=0
2 Nhg = N 2npp M
il h,x " "VH,x h,x " WH x
< 3 Ok g T E))
C/,_ C/ 2q
TN 20 knp g Z (log(npnpa) —i+ 1)
i=0
2q
< QClknh,mnH,xZ (p+1+g+1—i+1)
i=0

< 2C"knp np.(p+3)(2¢ + 1) < Cky/npng log /ny, - log \/ny, C € R,

- 121 -

7 Complexity and Storage Requirement of HDD

—>h<—

-IIII-IIII-IIII IIII
”I;...; Lk

w I w I ul u i

h hsih h

;III;III;III;III

Figure 7.4: An example with two grids. Level 2¢ corresponds to the scale H and
level 2p to the scale h. The solution in w € T, with diam(w) > H is of
interest.

Lemma 7.4.2 Let k be the rank which is used in the H-matriz arithmetic. For the
domain from Remark 7.1.2 the following two statements hold. a) The computational
complezity of all matriv-vector multiplications ®9 - g, where ®9 : RIOwn) — RIOA),
w € TTzhH, G € RIOn) “has the following upper bound:

N, < 84k\/npny.

b) The computational complezity of all matriz-vector multiplications ®/ - f.,, where
®f RIwn) — RIOGW € TTZ}LH, f., € RI@H) has the following upper bound:

Ny < Cky/npnglog \/nylog\/ng, CeR,.

Proof: Let R € R(k,n,m) be a low-rank matrix and v € R™ a vector. Recall that
the storage S(R) is equal to k(n+m) and the cost N of R-v is less than 2k(n+m),
ie., N(R-v) <2S(R). Then Lemma 7.4.1 yields

Ng < 2- 42/{;\/nhnH.
b) Let M be an H-matrix and v a vector. Due to Lemma 5.10.2, N(M -v) < 2S(M),

where N (M -v) is the cost of the multiplication and S(M) is the storage requirement
of M. From Lemma 7.4.1 follows that

Ny < 25(®7) < 2C"kv/npng log /nylog g, C € R,

Lemma 7.4.3 Let k be the rank which is used in the H-matriz arithmetic. For the
domain from Remark 7.1.2 the computational complexity of the algorithm “Root to
Leaves” on two grids with step sizes h and H has the following upper bound:

N = Ny + Ny < Cky/npnglogy/nplog/ng, C Ry,
Proof: Use the fact Ny > N, and Lemma 7.4.2.

- 122 -

7.4 Modifications of the HDD Method

7.4.2 HDD on Two Grids - Case (c)

We construct W9 and ®9 as in Case (a) (Sections 7.2, 7.3). If the right-hand side
f is smooth, then it is enough to consider the right-hand side f in a coarse space
Vi C Vj,. In this case we construct the mappings W/ : RI@r) — RIGwn) and
P/ RIws) — RIOW) from \I/g; cRI@iH) o RIOwin) 4 =12 w, wy,wy € T, .

Remark 7.4.1 Note that in this modification of HDD the matrices W/ ®/ have a
smaller number of columns (|I(wg)| < |I(wn)|) than the respective matrices in Cases
(a) and (b). The number of degrees of freedom on the fine grid is ny = np Ny, the
number of degrees of freedom on the interface (see Fig. 7.4) is npuy < 2 npoNp s,
where N, < Npy g

Lemma 7.4.4 Let k be the rank which is used in the H-matrixz arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of all mappings
Ul RI@H) — RIGW) () € TTZ}LH, has the following upper bound:

N(\I/f) < CK*\/ngnylog® /nun,, C €R,.

Proof: Due to Lemma 7.2.2, the computational complexity of all mappings ¥/,
w € Ty, is estimated by C'k>nj, log® ny. On the interface (see Fig. 7.4) the number
of nodal points is 2/npng. We substitute ny in C'k?*ny, log3 ny by 2¢/npng and

obtain

N(T) < C'k? - 2/npng log® (2y/mang) < Ck*/ngnpy log® /ngny,.
|

Lemma 7.4.5 Let k be the rank which is used in the H-matriz arithmetic. For the
model domain from Remark 7.1.2 the storage of all mappings ®f : RI@x) — RIO»)
w € TTzhH, has the following upper bound:

S(®)) < Cky/ngnylog? /ngn,, C €R,.

Proof: From Lemma 7.3.4 follows that the storage requirement for all mappings
®f w € Ty, is estimated by C'kny,log?ny,, ¢’ € Ry. Now the number of nodal

w?

points is not ny, but 2,/nyny. Therefore
S(®F) < C'k - 2¢/npng log? (2y/nung) < Chy/npng log® \/nang.
[]

In Table 7.2 we present the dependences of the storage requirements for the mappings
®9, & on h and H (domain © as in Remark 7.1.2). Here

[—all, / fJull, = 107°, flu— @l ~ 1077,

where u is the exact solution and u; the approximated solution. We see that ®9 has
a linear memory requirement and ®/ an almost linear memory requirement. The
memory requirement of HDD on two grids with step sizes H = 0.5 and h is in a
factor ~ 2 smaller (the third column) than the memory requirements of the standard
HDD (the first column). For H = 0.125 the factor is ~ 1.4 (the forth column).

- 123 -

7 Complexity and Storage Requirement of HDD

| b | P9/ H=hkB |99/ H=05kB | P/ D/ H=0.125kB |
1/33 | 245%10% 4% 10% | 9.1 %10, 1.7 % 10 2% 102, 2.8 % 107
1/65 | 1.1%10% 2.4%10% [2.9%10% 1.2%10% | 7.9%10% 1.8 103
1/129 | 5% 103, 1.4 % 10? 6.8 102, 8% 10° | 2.6 %103, 1.2 x 10*
1/256 | 2.1 % 10%, 7.86 % 10% | 1.4 10%, 4.1% 10* | 7.4 % 10%, 6.9 % 10*

Table 7.2: The dependence of the memory requirements for ® and ®/ on the grid
step sizes h, H.

7.4.3 HDD on Two Grids and with Truncation of Small Scales -
Case (d)

This case combines Cases (b) and (c). Suppose that the right-hand side f is given
in the space Vg C Vj,. We prolongate fy € Vg onto the fine space V;, and obtain
fn = Pu_pfu. After that we construct the mappings W7 : RI@r) — RIOwn) and
®f RIWH) — RIOW for all w € TTZ}LH.

Lemma 7.4.6 Let k be the rank which is used in the H-matriz arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of the algorithm
“Leaves to Root” has the following upper bound:

N(¥) = N(W)) + N(W9) < Ck*\/ngny log® /npng, C €R,.

Proof: Analogously to Case (c). See the proof of Lemma 7.4.4.

Lemma 7.4.7 Let k be the rank which is used in the H-matriz arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of the algorithm
“Root to Leaves” has the following upper bound:

N = Ny, + Ny < Cky/npnglogy/nplog/ng, C Ry,
Proof: Analogously to Case (b). See the proof of Lemma 7.4.2.
Lemma 7.4.8 Let k be the rank which is used in the H-matriz arithmetic. For the

model domain from Remark 7.1.2 the storage requirements of the mappings ®9 and
o/ for allw € TTZ}LH have the following upper bounds:

S(®Y) < 42k\/npng and

S(®)) < Chv/mpng log \/ny, log \/ng.

Proof: These storage requirements are the same as in Case (b). See the proof of
Lemma 7.4.1.

- 124 -

8 Parallel Computing

In this chapter we present the parallel HDD algorithm and estimate its complexity.

8.1 Introduction

In this chapter we consider the parallel computers with the shared memory archi-
tecture (although the distributed memory architecture is also possible). We will
consider the parallel RAM (PRAM) model, which consists of ¢ processors and a
global memory which can be accessed simultaneously by all processors. All data
transfers between different processors are handled by this memory system. The
communication time between processors is negligible small in comparison with the
computational time.

To characterize parallel algorithms we introduce the following notation:

Definition 8.1.1 Let t(q) be the execution time of the parallel algorithm A on a
machine with q processors. Then we denote the parallel speedup by S(q) := ig—;; and

- — S _ 1)
the parallel efficiency of A by E(q) := L= T
To parallelize the HDD method one needs to do the following:

1. Perform the triangulation 7} of the domain §2 and construct the hierarchical
decomposition tree 17, in parallel.

2. Perform the parallelization of the H-matrix arithmetic (described by R.Kriemann
in his dissertation [44]).

3. Perform the parallelization of the algorithm “Leaves to Root”.

4. Perform the parallelization of the algorithm “Root to Leaves” (requires the
parallel H-matrix-vector multiplication).

The time for item (1) is much smaller than the time needed for items (3) and (4).
The parallel H-matrix arithmetic is used in items (3) and (4).

- 125 -

8 Parallel Computing

8.2 Parallel Algorithms for H-Matrix Arithmetics

The parallel algorithms for the matrix-vector multiplication, matrix-matrix addition,
matrix-matrix multiplication and LU-decomposition for dense matrices can be found
in [25]. The parallel versions of the respective algorithms for H-matrices can be found
in [44].

Theorem 8.2.1 Let T := Tyx; be a block cluster trees, M, M', M" € H(Ti«s, k),

= |I|, z € R™. Suppose Nyim > k. Let |L(T)],|V(T)| be the numbers of leaves and
of nodes in the block cluster tree Trxy, q = 2" is the number of parallel processors.
Then the computational complexities in Table 8.1 hold.

‘ Operation ‘ Sequential Complexity ‘ Parallel Complexity ‘

building(M) N = O(n logn) N + O(|V(THO\L(T)|)
storage(M) O(knlogn) %

Mz N = O(k;nlogn) %

M & M" N = O(k*nlogn) %

M o M" N = O(k*nlog® n) %+O(C’ (DHV(T)])
M1 N = O(k*nlog® n) % +O(nn2,..)

H-LU N = O(k*nlog?n) N o(Enler)

Table 8.1: Computational complexities for sequential and parallel algorithms.

Proof: For the proof of the estimates from the second column see [27] or [33]. For
the proof of the estimates from the third column see [45] or [44].

Definition 8.2.1 Let v be a vertex of Tr,, then we denote the subtree which has
vertez v as a root by Tr, (v). The set of all nodes at the level | of Tr, we denote by

l
Ty

Remark 8.2.1 Since the parallel efficiency for small matrices is much smaller than
for large matrices, we divide T, into two parts T(Kr nd T(l g (see Fig. 8.1),

(I<r)

where r:=logq. Tz~ contains domains with a large number 0f degrees of freedom

and T%zr) with a small number. The parallel arithmetic is applied only for levels
0,..,7r — 1. The matrices which appear on the levels r,...,2p are small enough and
are computed by one processor.

Assumption 8.2.1 Let wi be a son of w. We suppose that |I(w1)] ~ 3|I(w)],
[1(0wn)] < 311(0w)| and |I1(0w)| < 6]1(v.)I.

- 126 -

8.2 Parallel Algorithms for H-Matrix Arithmetics

I<r
Ty

step size H

>r
5"

RN

by 1 processor

step size h

Figure 8.1: (left) Decomposition of the Tz, into Tc(rffr) and T%zr) and distribution
of ¢ processors. (right) The matrices at the level [€ [0,..,r — 1] are
computed by g processors. The subtree T7,(v) is computed by one
Processor.

The parallel version of the algorithm “Leaves to Root”

On each level | < r of Tz, (the root has level [= 0) every node gets 2"~! processors.
Every subtree T7r, (v), v € T%), is computed by one processor (see Fig. 8.1 (right)).
Lemma 8.2.1 Let S, := Aj; — A1sAyy Ay (see (6.1)), where
A€ H(T](aw)xj(aw), /{Z), Ag € R(/{Z, I(@w), [("}/w)), Aqy € R(/{Z, [("}/w), I(@w)),

Agr € H(T1(vyx1(70): k), w € T, and ny, o := |I(w)|. The parallel complexity of the
computation of S, has the following upper bound:

Cik*np, -, log? T~
q

N(Su,q) <

+ C’gnfmnnhm Cq,Cs € R,. (81)

Proof: Due to Table 5.3 the parallel complexity of the inversion Ay, is

2 2
Cik*ny - log” ny,

+ Congninnh,’ya 007 Cl € R+.

The parallel complexity of the multiplication Ay - Ay is k-times the MV multipli-
2
cation, i.e., m, C5 € R,. The parallel complexity of the multiplication

(A12A5)) - A (product of two low-rank matrices defined in Lemma 5.6.4) is

2]€2 Assum.8.2.1 14k2nh
@+ 1)) = =

The parallel complexity of the subtraction Ay; — A12A521 - Aoy s

Gyl 1(0w) log |1(D)] w821 Cib®ny log i,

, (5,04 eR,.
q q

- 127 -

8 Parallel Computing

Thus,
N(S.,q) < 3(04/’{:271;%7 log . + C1k*ny - log® ny) + ConZonn
< Ckzn"”qlogQ T 4 Cyn2 o, Co,C € Ry (8.2)
|

Lemma 8.2.2 Let Z, := Fy — A1y Ay Fy (see Lemma 6.2.2), where w € Tr,,

A12 S R(k?, I(@w), I(’Yw))v A22 € H(TI(%J)XI(%J)’ k)’
Fy e H(Tl(aw)xl(w)v k)v Fy € H(TI(%J)XI(W)’ k:)’

ny, = [I(w)|. Let the model domain be as in Remark 7.1.2. The parallel complexity
of the computation of Z, on a machine with q processors has the following upper

bound: k1
N(Zuyq) < w C eR;. (8.3)

Proof: Aj,- A, was computed in parallel for U9 (Lemma 8.2.1). The complexity of
the multiplication (A;245,) - Fy (the product of a low-rank matrix and an H-matrix

is k-times the H-matrix-vector multiplication) is estimated by %, C, eR,.
The complexity of the subtraction Fy — Aj5 Ay Fy is %, Cy € R,. Thus,

N(Z,,q) < =(Cik*nplog ny, + Cok®ny logny) <

| =
<

Lemma 8.2.3 Let U9 ¢ RIOw)xI(0w) \If{; € RIOw)xI0@w) =y, € Ty, i = 1,2,
w = w; Uwy. For the model domain from Remark 7.1.2 the parallel computational
complexity of building V¢, from W9 —and W, has the following upper bound:

Ck*ny, log® ny,

N(¥9,q) < p

—+ ClnhﬁnQ C, Cl S RJH Np~ = |[</7w)‘

min)

Proof: Lemma 5.10.8 states that building W9, |/(@w)x/(0) gy |1(0)x1(0) and their
adding on a machine with one processor costs

N(W9 1) < Cok?|1(0w)|log® |1 (0w)| < C'k*nplog® ny, Co, O € Ry

Theorem 8.2.1 states that the parallel complexity of the H-matrix addition is N(¢) =

@. From these two facts follows that adding W9, |/(9«)*1(0w) g g |1(0)x1(0w) costs

/1.2 2
Chnnalog” mis After the elimination of the unknowns with indices from I(7,), we

q
obtain WJ. By Lemma 8.2.1 this elimination costs

2 2
Cok*ny log” ny,

P + C’lnfmnnhm Cl, C, € R+. (84)

- 128 -

8.3 Parallel Complexity of the HDD Method

The total complexity is

N (e, q) < TN 108" e

man

+ Cyn?,; np, with C = Cy + C'. (8.5)

Lemma 8.2.4 Let W/ ¢ RIOxI(w) \II{:Z € RIGwxIw) ¢ o € Tr, i = 1,2,
w=wiUwsy and ny, := |I(w)|. For the model domain from Remark 7.1.2 the parallel
computational complezity of building VI from \I/f:l and \1152 has the following upper
bound:

Ck?ny, log?
N(\Iff,c_nsw, C €R,.

Proof: In Lemma 5.10.8 we proved that the building of U/, |/(%)*/() and g/ |1(9)x1()

and their truncated addition on a machine with one processor cost N(¥/ 1) <

Cik*nplog*ng,, C; € Ry. Theorem 8.2.1 states that the parallel complexity of
N(1)

the H-matrix addition is N(¢q) = =~. From these two facts follows that adding

Of [JO I gyl |H0x1) cogts %log%h. The computation of Z,, from Lemma
8.2.2 costs @, Cy eR,.
Thus, the total complexity is

Cyk*ny, log? Cok?ny 1 C'k2ny, log?
N(¥/,q) < = nhqog oz "’; 28T < nhqog T CeRy. (8.6)

8.3 Parallel Complexity of the HDD Method

8.3.1 Complexity of the Algorithm “Leaves to Root”

Lemma 8.3.1 Let q be the number of parallel processors. The model domain and
the domain decomposition tree T, is the same as in Remark 7.1.2. The parallel
computational complexity of all mappings V9, w € T, , has the following upper
bound:

37 C'k2 /iy log?® /nn + Ck2 3" By
N(09,q) < > np log ; np + nh+0”(1_Z) /_nh”inm ' C" CeR,.

Proof: We decompose N (WY, ¢) into two terms (see the reason in Remark 8.2.1)

—

r—

q "
N(W9q) =Y N(W,.) + S ON@Wg 1), veTy (8.7)
l

I
=)

weTr, (v)

- 129 -

8 Parallel Computing

Note that if w = wy Uws then |I(0w)| < [I(Ow)] + |I(Ows)|. The first term can be
estimated as follows:

r—1 2
q Lem.8.2.3]{;2',’Lh7 log Np,
N(\I/Zﬂ E) Cy . T+ Cinhn/nzm'n
1=0
J220a o2 Shy 3n
+ Cy—1 qg NNy q it s P ST
) 4
k:2 3 rfln lo 3\r 1’/’L 37’71
Tyekatt LBRIEC X e A
27"—1
3" k 1 3"
<2 (2— - 1) max C; Thoy 08 Thy | 4m?x Cl- (1= =)npnin,
1=1..r q 1=1..r
37 k. log? ny, 3"
< /7 : . T+ C"(1 - Z)nhﬁniﬂn?
where C' := 2max;_; , C; and C” := 4max;— . C/. Note that for each subtree

Ty, (v), v € T%), we have just one processor and therefore (see Definition 8.2.1,
Assumption 8.2.1)

Lemma7.21 . _37
<

> N1 Ck:QZnh,

weTr, (v)

where 2-ny, is the number of nodal points in the root of 77, (v), C' € R,. Taking
into account the facts ¢ = 2", ny, < /0y, we obtain

3t C'k2/ng log? /s + Ck? 3"
N(\I'g,q) < ?) Nnp 10g ; ny + np, I C"(l . Z) /_nh”inn-

Lemma 8.3.2 Let q be the number of parallel processors. The model domain and
the domain decomposition tree T, is the same as in Remark 7.1.2. The parallel

computational complexity of all mappings W/ w € Tr, has the following upper
bound:

9

N q) < O™ 10g* ™ CeR,.
q q

Proof: We decompose N(¥/ ¢) into two terms (see the reason in Remark 8.2.1)

r—1
q r
NW) =D N o)+ Y, N1, very (8.8)
=0 weTr, (v)

- 130 -

8.3 Parallel Complexity of the HDD Method

Recall that |I(w:)] & 3|I(w)]. The first term can be estimated as follows:

-1

Lem824 _ k2n, log? k2mn Jog? k2t 1 =
Z g:qu e nhognh+02 25g2+...+0 :gg
_ 2 q 2 or—1
1=0
C = max C; o2
=L1.r np np
< 1 log” —* log”
< . (ognh+og2+ -+ log” o)
Ck*n
<— "(2p+ 1)+ (2p)2 + o 4 (20— 7+ 2)%)
Ck2
< G+ 1) - 1))
Ck?
3 T (4(2p 12— 42p + 1))
q
< C'k*ny,(logny, — log q) logny, - log q

q

Note that for each w € Ty, (v) we have just one processor and therefore (see Definition
8.2.1 and Assumption 8.2.1)

Lem. 7.2.2
Z N 1) < Ck*npu(v)log® ny(v)

weTT, (v)

np np
SC]CQ?lOgg?, C€R+

We take into account the following inequality

C'k?*ny,(logny, — log) logny, - log q
q

< Ok 1og3 M
q q
and obtain the statement of the lemma.

Lemma 8.3.3 Let q be the number of parallel processors. The model domain and
the domain decomposition tree T7, is the same as in Remark 7.1.2. The parallel
computational complexity of all mappings ¥, w € Tr,, has the following upper
bound:

C'k*/ny log” /iy, + Ck? 3"
N(¥,q) < YT T €1 —)+ ORI log

where C,C",C",C € R...

Proof: Using Lemmas 8.3.1, 8.3.2, compute N(¥,q) = N(¥/,q) + N(¥9,q). Note
that i—: ~ qo%s and np 4 < (/1.

- 131 -

8 Parallel Computing

8.3.2 Complexity of Algorithm “Root to Leaves”

The input data for this algorithm is a set of mappings ®J and &7 for all w € Tr, .
The algorithm “Root to Leaves” performs the multiplications ®9 - g,, and ®/ - f,.

Notation 8.3.1 The cost of the multiplication ®9, - g, on a computer with q proces-
sors we denote by Ny(w,q). The cost of all multiplications ®9, - g, w € Ty, on a
computer with q processors we denote by Ny(q). Similarly, we define N¢(w,q) and

N¢(q)-

Lemma 8.3.4 Let q be the number of parallel processors. The model domain and
the domain decomposition tree T7, is the same as in Remark 7.1.2. The parallel
computational complezity of all matriz-vector products ®9, - g,,, where ®9 : RI %) —
RIOW) g, € RIOY) ¢ T, , has the following upper bound:

< 28k1/nh§+ 21k‘nh
- q 7 q

Ng(Q)

Proof: We divide N,(g) into two terms (see the reason in Remark 8.2.1)

N,(q) = ZNg(wl, %) + Z Ny(w, 1), where v € T%). (8.9)

1=0 wETT, (v)

®9 is approximated in the low-rank format and belongs to R(k, I(7,), [(0w)). As-
sumption 8.2.1 gives [[(Ow)| < 6ny,, where [[(7,)| = npy < npp = /n. The
parallel complexity of the multiplication ®Y - g, can be estimated as follows:

2k - (| 1(0w)| + [I(7w)]) < 2k - (6npz + npg) _ 14knp, »(w)
q - q q '

(8.10)

Suppose that the number of external boundary points decreases by a factor % after
cach division, i.e., |I(0w;)| < 3|I(0w)|. Taken into account (8.10), the first term in
(8.9) can be estimated as follows:

r—

gqr—1
q g 27‘qfl
- 3 37’—1
A
q

14kny,, | 14k¥0e 1452t
< 4 +ot —

1
q
Ng(wla 5) <
=0

2 2“1)

—9or r r

QS 28]43«/%}1(3_ _ 1) S 28]43«/%}13_.
q 2r q 2

The second term in (8.9) can be estimated by Lemma 7.3.1 as follows

21k
Z Ng<w71> S nh7

weTr, (v) q

where "7’1 is the number of degrees of freedom in the root of T, (v).

- 132 -

8.3 Parallel Complexity of the HDD Method

Lemma 8.3.5 Let q be the number of parallel processors. The model domain and
the domain decomposition tree T7, is the same as in Remark 7.1.2. The parallel
computational complexity of the matriz-vector products ®7 - f.,, where ®f : RI) —
RIOW) | f e RIW ¢ T, has the following upper bound:

Ny(q) < C/’{:Qﬁlog2 @, C e R;.
q q

Proof: Each level i € [0,2p — 3] of the tree Ty, contains 2° matrices and every
matrix is to be multiplied by vector f. The parallel arithmetic is applied only for
levels 0, .., — 1 (see Figure 8.1). The matrices which appear on the levels [> r are
small enough and are computed by one processor. Suppose that [I(w;)] < $|I(w)|
(see Assumption 8.2.1). We divide N¢(q) into two parts

r—1
N¢(q) = ZNf(wl, %) + Z Nf(w, 1), where v € T%). (8.11)
1=0

w€TT, (v)

The first term in (8.11) can be estimated as follows

Lem.732 k2m, 1 k2% |og o k? ho log b
ZNf(Wu% e e =
q q

=0 2

or—1
c¢'= max C}
i=l.r , kny,
< c'- . 2p+1+2p+...+2p—r+2)

r=loga C,k;th((2p +1)(2p+2)—2p—7+1)2p -7 +2))

2q
2 2
< ék: ny(4dpr — %)
< 2%
r=lo _ k2 — ~
quck; ny(2logny, logq)logq7 G eR,.

q

By Lemma 7.3.2 the second term in (8.11) can be estimated as follows

Y Npw,1) < Ok 10g? ™2
q q

weTr, (v)
We take into account the inequality

R (2logny, —log g) logg < 2 g2
q q q

and obtain the statement of the lemma.

- 133 -

8 Parallel Computing

Lemma 8.3.6 Let q be the number of parallel processors. The model domain and
the domain decomposition tree T, is the same as in Remark 7.1.2. The parallel

computational complezity of the algorithm “Root to Leaves” has the following upper
bound:

N(q) = N¢(q) + Ny(q)

< Ck2@log2 i + 28k 3
- q q qg 27

C eR,.

Proof: See Lemmas 8.3.4, 8.3.5 and use the inequality

2RI 2 g2 1

q q q

- 134 -

9 Implementation of the HDD
package

The result of the implementation is a package of programs which uses the following
libraries: HLIB, LAPACK, BLAS, external triangulators (for complex geometry).
This implementation is done in C language (ANSI/ISO standard). The hierarchical
matrix library HLIB (see [28]) is used for the H-matrix arithmetic. HLIB uses
the linear algebra packages LAPACK (see [2]) and BLAS (see [1]) for the standard
matrix-vector arithmetic. The scheme of the implementation is shown in Fig. 9.1.
See more about the HDD package in [49].

HLIB | —| HDD package]*—| Triangulation

Nt

LAPACK
BLAS

Figure 9.1: The libraries needed for the HDD package.

0.1 Data Structures

Before the application of the hierarchical domain decomposition, a triangulation
of the domain €2 has to be made. There are many algorithms which can do this.
The triangulation has to satisfy the Definition 3.5.1. The set of vertices with their
coordinates is the input data for building a triangulation. The cost of the triangu-
lation algorithm is O(nlogn) (see [56]). The triangulation includes the following
information:

1. List of internal and boundary vertices.
2. List of triangles.
3. For each vertex the list of the adjoint triangles.

4. List of edges.

The HDD method needs a hierarchy of grids. To build this hierarchy we divide each
triangle of the coarse grid recursively into four triangles (see Fig. 9.2). We stop the
division when all triangles are small enough (see Fig. 9.5). This process provides
the hierarchy of grids.

- 135 -

9 Implementation of the HDD package

Triangle Structure
Vertex Structure index Edge Structure
Tdex vertices[3] inde};
list of adjoining triangles edges(3] SOHS'
property (internal, external) pr'operty : vertices|2]
coordinates|2] stiffness matrix|[3][3] property

father* father*

sons™®

Table 9.1: Fields of the basic structures (see Remark 9.1.1).

Remark 9.1.1 The notation x[N] means that x is an array, which contains N
elements. The notation yx means that y s either a pointer or an array. The notation
z[N][M] means that matriz z € RN*M,

Remark 9.1.2 Note that the structure grid contains only pointers to the real ver-
tices, triangles and edges.

Figure 9.2: Coarse and fine triangulations. Each triangle and each edge of the fine
grid contains data about their father.

The structures vertex, triangle and edge are present in Table 9.1. The Diagram
in Fig. 9.3 shows the connection between these structures.

- 136 -

9.2 Implementation of the Hierarchy of Grids

GRID DATA BASE

vertexlist vertexlistel) vertex le—
L
size next* i ndex
firsts previ ous* thist*
last* v coor di nat es[2
property
property

tlist tlistel) | telenent
7
size nextf i ndex
first previ ous* ver[3]
| ast * el enent property —

edges| 3]
L1l bij[3][3]

/ father*
edges

i ndex \
father* q
sznsfr ™| array of edges

vertices[2]
property

Figure 9.3: Implementation of the structures for storing vertices, triangles and edges.

9.2 Implementation of the Hierarchy of Grids

Until now we had one or two grids. Below we discuss how to implement the hierarchy
of grids 7, C Tpj2 C ... C Tpy2a. All grids must be connected with each other. It
means that each finite element has to know his father and vice versa. We build a
grid 7, with step size h, refine it, obtain a grid 7;,, refine it again and so on.

In this work we use two grids 7}, /9 and 7p,/0;, 0 < 4,5 < ¢ but for more difficult
problems more scales should be used. If we are only interested in two scales with
H/h > 2, we refine the given scale recursively and do not store intermediate grids.
After each recursive step, we reorganize the connections sons« father. The scheme
of this process is shown in Figures 9.4 and 9.5.

grid with the step size H grid with the step size H/2 grid with the step size h
List of vertices 1 <« > List of vertices 2 ~<—— —> List of vertices

List of triangles 1 < > List of triangles 2 <—— """""—» List of triangles

Array of edges 1 < > Array of edges2 ~<—— —»| Array of edges

Figure 9.4: Connection of the grids Ty, Tp/2,..., T

- 137 -

9 Implementation of the HDD package

Figure 9.5: All elements of the finest grid have links to the elements of the coarsest
grid and vice versa.

Let 7, be the initial grid, 7y the current grid which has to be refined, 7; the
fine grid which we obtain after refinement of 7. Let ¢ be the index of the current
refinement and 4,,,, the maximal number of refinements (i.e., 0 < 7 < 4,,4,). Then
the algorithm of the recursive mesh refinement will be as follows:

Algorithm 9.2.1 (Refinement of the grid Ty imqe. times)
[x Ty is given, Tpy =Ty, 1 =0, fpax > 1. %/
build_fine_grid(71;,,, Ty, i, imaz)
begin

Tn:=new_grid();
if (i=0)and(imne = 1) then
Ty :=refine_grid(Ty);
else
if (i <imezx — 1) then
T, :=new_grid();
T, :=refine_grid(Ty);
copy-links(Tyy, T, 1,));
delete_grid(Ty);
build_fine_grid(Tr,, T, Th, i 4+ 1, imaz);
else
if (i = imas — 1)
refine_grid(Ty, Tp);
copy_links(Ty,, T, Tr);
delete_grid(Ty);
end if;
end if;
return 7y;
end

Here

e new_grid() allocates memory for a new grid.

- 138 -

9.2 Implementation of the Hierarchy of Grids

e refine_grid(7y) performs one refinement of 7 and writes the resulting grid to
75, (see Algorithm below).

o copy_links(7p,, Tr, Tp,) copies all links “father-to-son” and “son-to-father” from
Th, to Tp.

Algorithm 9.2.2 (One step of the mesh refinement procedure)
refine_grid(coarse grid Ty)
begin
Th, :=new_grid();
for all vertices of Ty do
add vertex to Ty;
for all edges of Ty do
add the midpoint of this edge to Ty;
dwide the edge into 2 edges and add them to Ty;
end for;
for all triangles of Ty do
divide triangle in 4 triangles;
add these /4 triangles to Tp;
add new edges to Ty;
end for;
return 7y;
end;

- 139 -

9 Implementation of the HDD package

9.3 Implementation of the HDD Method

Suppose that the triangulation 7, of the domain €2 is constructed. In this section
we describe how to perform the hierarchical decomposition of €2 (see Fig. 4.1) and
implement the HDD method. The scheme of the structures, which are involved in
the implementation of the HDD method is shown in Fig. 9.6.

The recursive procedure which performs the hierarchical decomposition is named
divide(...) (see Algorithm 9.3.1). The input data for the procedure divide(...) are
the root of T';; and the domain 2. This procedure divides the set of all triangles,
the set of all nodes, the external and internal boundary nodes into two parts (left
son and right son).

As it was mentioned in Chapter 5, for building an H-matrix we need a cluster tree,
but to build this cluster tree we need to know the coordinates of the nodal points
x; € Q. At the same time the admissibility condition requires knowledge about the
distance between two clusters and diameters of the clusters (see Section 5.4).

- 140 -

9.3 Implementation of the HDD Method

Gid structure

HDD structures tlist

L3

edges

/ subdormai n
DDt r ee \\ ¢
V\‘\ boundary |~ vertexlist

H matri x structures

/4

supermatri x [« rkmatrix

RN

bl .clustertree

f

clustertree

*

cluster

fullmatrix

Figure 9.6: The scheme of the structures, which are used for the implementation of
the HDD method.

Algorithm 9.3.1 (Hierarchical decomposition)
divide(DDtree* T,,, subdomain™ w);
begin
wy :=new-domain();
wy :=new-domain();
if (w contains more than 3 vertices) then
divide_vertices(w, wy, wa);
divide_elements(w, wq, ws);
T., —leftson := new-DDtree(w;);
T., —rightson := new_DDlree(ws);
divide(T,, —leftson, wy);
divide(T,, —rightson, ws);
else
T, —leftson=9;
T, —rightson=92;
end if;
end;

Here

o divide_vertices(w, wy, wy) divides the set of all nodal points of w into two
subsets V} := {v|v € wy } and V, := {v|v € wy}. Note that ViNVy = {v|v € v, }.

- 141 -

9 Implementation of the HDD package

o divide_elements(w, wy, wy) divides the set of all triangles in w into two subsets
Ty :=A{t|t € 7(w1)} and T; := {t|t € 7(w2)}. Note that Ty N T, = @.

We use the structure subdomain to store the data of w € T7 (see below). This
structure contains the list of all vertices, list of all triangles (on both scales), its
boundary box and lists of internal and external boundary vertices (on both scales).
The boundary boxes are used for an easier division of a domain into two parts.

To store the data about the interface and the external boundary we use the struc-
ture boundary (see below). This structure contains the following fields: lists of
vertices (v1, cvl) on both scales and a pointer to the right-hand side matrix (frhs).
Since each vertex contains the list of joint triangles we can compute its support
((£1)).

The main structure for the hierarchical domain decomposition is DDtree. This
structure combines the information about the current level, the “father” level and
its children. DDtree is used in both algorithms “Leaves to Root” and “Root to
Leaves”.

The fields of the structure DDtree are shown below. For describing a subdomain
w € T, the structure domain is used.

Program 9.3.1
typedef struct _domain domain;

typedef _domain* pdomain;

struct _domain{

long index; /* Index of the domain */

tlist* tl; /* List of triangles at the fine scale */
tlist* ctl; /* List of triangles at the coarse scale */
vertexlist* vl; /* List of vertices at the fine grid */
vertexlistx cvl; /* List of vertices at the coarse grid */
double area; /* Area of the domain */

double minx,maxx,miny,maxy; /* Describe the boundary box */

For describing the external dw and internal 7, boundaries the structure boundary
is used.

Program 9.3.2
typedef struct _boundary boundary;
typedef _boundary* pboundary;

struct _boundary{

vertexlist* vl; /% List of vertices at the fine grid */
vertexlist* cvl; /* List of vertices at the coarse grid */
tlist* tl; /% List of triangles at the fine scale */

psupermatrix frhs; /* To store the corresponding hierarchical matrix */

For describing the HDD tree 17, the structure DDTree is used.

- 142 -

9.3 Implementation of the HDD Method

Program 9.3.3

typedef struct _DDTree DDTree;
typedef _DDTree* pDDTree;

struct _DDTree{

the corresponding domain *\

*\

long index; /* Index of the subdomain *\
pDomain clus; /* Pointer to

pDDTree leftTree; /* Pointer to the left son *\
pDDTree rightTree; /* Pointer to the right son
pDDTree father; /* Pointer to father x\
pDDTree brother; /* Pointer to brother *\
psupermatrix invA22;

prkmatrix phi_g;

psupermatrix psi;

double *functional_g, *functional_f;

ind_removerow[2], ind_insertrow[2];

/* =1 if for this domain matrices are computed, =0 else *\
/* strategy of building H-matrix (=1 or =2) *\

Cluster tree
tree
tree
tree
tree

tree

Cluster
Cluster
Cluster
Cluster
Cluster

for
for
for
for
for
for

the
the
the
the
the
the

internal boundary (fine grid) */
domain (coarse grid)*/

external boundary (fine grid) */
external boundary (coarse grid) */
domain (fine grid) */

domain (coarse grid) */

Auxiliary cluster tree */

Auxiliary cluster tree */

Pointer to the domain*/
Pointer to the external boundary */

int *father2sonl, *father2sonR;
int

int *dof2idx;

int compute;

int simple;

pclustertree interct; /*
pclustertree cinterct; /*
pclustertree ect; /*
pclustertree cect; /%
pclustertree ct; /*
pclustertree cct; /*
pclustertree cl_Gamma; /*
pclustertree cl_gamma; /*
pdomain clus; /*
pboundary eclus; /*
pboundary interclus; /%

int

To store the inverse of the mapping W |,

*cf_index;

/*

Pointer to the internal boundary */
Auxiliary array. Used for the mesh refinement*/

c RIO — RIM the field invA22 is

used, to store the mapping ®9 : R/ — RO the field phi_g is used. To store
the mapping W9 : R1?) — RO the field psi is used. The fields functional_g,
functional f are needed to store the functionals A\ and A/. The fields father2sonL,
father2sonR are used for storing the mappings [(w) — I(w;) and I(w) — I(wy).
The fields ind_removerow[2], ind_insertrow[2] store indices from I(0w) and de-
fine which rows should be removed from an H-matrix. The field dof2idx maps the
set of degrees of freedom on dw Uy to the set of indices (0w U 7).

- 143 -

9 Implementation of the HDD package

9.4 Conclusion

The main steps of the implementation of HDD are:

. Read the coarse grid 7.
. Refine 7y by Algorithm 9.2.1 7,,,, times.
. Build the HDD tree T7;, by Algorithm 9.3.1.

. Execute “Leaves to Root” by Algorithm 7.2.1. For each w € T7;,

a) build ¥¢ and W/ for leaves of Ty, ,

b) build ¥ from ¥ and W9 by Algorithms 6.3.1 and 6.3.2,

¢) build U7 from ¥/ and ¥/ by Algorithms 6.3.3 and 6.3.4,

d) build ®¢ and ®/ by Algorithm 7.3.1,

e) compute the functionals A9, A/ by Algorithms 4.4.1 and 4.4.2.

. Execute “Root to Leaves” by Algorithm 7.3.1:

a) compute u., = ®9 - g, + &L - f, we Ty,
b) compute (e.g., the mean value) A\, (d,) = (X, f.) + (N9, g.), w € T, .

6. Compute solution by the PCG method and compare it with the solution com-

puted by HDD.

The following modifications of the HDD method were implemented:

1.

HDD; works with the right-hand side from Vy C V},. For this modification the
prolongation matrix Pj. gz was applied.

. HDD; computes the solution on all internal boundaries 7, diam(w) > H, and

the mean value of the solution inside all domains w with diam(w) < H. In

this modification the algorithm “Root to Leaves” works only for domains with
diam(w) > H.

. HDDj is a combination of HDD; and HDDs,.

. HDD, for problems with the homogeneous right-hand side (the mappings W/

and ®/ are not computed at all).

. HDDj for problems with periodic coefficients (see Section 4.4.4).

- 144 -

10 Numerical Results

Numerical experiments are used for the confirmation of the theoretical results and
for the discovering of the invisible patterns of relationships.

In this Chapter we

compare the solution, obtained by the HDD method, with the solutions ob-
tained by the PCG-method and by the H-Cholesky factorization (see Tables
10.12, 10.13, 10.15, 10.16);

demonstrate the dependence of the solution u; on the maximal H-matrix rank
k (see Tables 10.5, 10.6, 10.8).

research the needed computational time and the storage requirement (see Ta-
bles 10.14, 10.19, 10.20);

show the accuracy of the solution for different oscillatory coefficients (see Ta-
bles 10.9, 10.10, 10.11, 10.17, 10.18);

research the accuracy of the H-matrix approximation of ®7 and ®/ on different
levels of the tree T, (Tables 10.21, 10.22);

show the absolute and relative errors for the solution of the so-called skin
problem with discontinuous coefficients (see Tables 10.25, 10.26, 10.27);

solve a problem with many right-hand sides by the HDD method and compare
the computational time with the time required by PCG (see Table 10.28).

10.1 Notation

Let us introduce the following notation:

u is an analytic solution;

u is the FE exact solution, u; = u(x;);

Q) is the model domain and the model grid is shown in Fig. 10.1;
A is the global stiffness matrix computed for §2;

c is the discrete right-hand side, Au = c;

k is the maximal rank used in Definition 5.7.2 of H-matrices. If the rank &k in
H(Trxs, k) is fixed then we call this rank the H-matrix rank;

- 145 -

10 Numerical Results

e 1y is the solution obtained by the HDD method. The subindex k indicates
that the fixed rank arithmetic is used (see Def. 5.9.3);

e u. is the solution obtained by the HDD method. The subindex ¢ indicates
that the adaptive rank arithmetic is used (see Def. 5.9.3);

e 1y is the solution obtained by the H-Cholesky decomposition (Au = ¢ =
ity — (LLT) lc);

® ¢, is the value which is used for the stopping criterium for PCG, i.e., PCG
stops as soon as ||Aa™ — ¢y < .

e 1., is the solution obtained by the PCG method (with the H-Cholesky pre-
conditioner). As stopping criterium we use the residual ||Al., — cl|ls < e¢y;

e ¢, is the parameter for the adaptive rank arithmetic with the property
k = min{i : 0; < g,01}, where o; is the i-th singular value;

e ¢ is the discretisation error;
e ¢, is the H-matrix approximation error;

® 71,,:n 1s the minimal size of an inadmissible block. n,,:, tells us when we should
stop divide subblocks further (see Section 5.5.2). By default, the minimal size
Nmin, = 32 18 used for inadmissible blocks;

e A~ is the H-matrix approximant to the inverse of A.

N,y

Figure 10.1: The model grid on = (0,1)2. The number of degrees of freedom is
Nha " Mhy, Nha = Nhy-

The model elliptic boundary value problem to be solved is

—div(a(x)Vu) = f inQ=(0,1)2

u=gq on 0f2. (10.1)

Further, in all experiments, we will use the grid shown in Fig. 10.1.

All numerical experiments were performed on the computers from Table 10.1.
The notebook was used for small applications and Kepler for large ones. In order to
compute a double integral in a triangle we apply the 12 points quadrature rule (see

Table (3.2)).

- 146 -

10.2 Preconditioned Conjugate Gradient Method

Name Model OS Speed, Ghz | Memory, Gb
Notebook | Celeron M | Fedora 1.3-1.9 0.5
Kepler Intel PC | Linux 2.4 3.0 2.0

Table 10.1: Used computers.

We use the domain decomposition as in Proposition 7.1.2. The error € = ||u — Gx||2
(or € = ||u— 0g||oo) Which we obtain after applying the HDD method is contributed
by two errors: the discretization error ¢, and the H-matrix approximation error
£x. From the definition of H-matrices it is clear that €5y — 0, when the rank £ is
increasing. In the standard case the discretisation error is €, = O(h) (see Section
3.5.2). It is sensible to take the maximal rank & for H-matrices in a way to have the
same order of errors €, and e3. There is no sense to take larger rank & (or smaller
g, for the adaptive rank arithmetic) to decrease €3, because ¢, stays the same and
will dominate.

Remark 10.1.1 Note that to approximate a weak admissible block (see Section
5.5.2) we use the rank 3 - k.

Remark 10.1.2 Contrary to the fized rank arithmetic, in the adaptive rank arith-
metic the needed rank k is chosen as follows k = min{i : 0; < g,01}.

10.2 Preconditioned Conjugate Gradient Method

Usually, the exact solution of the problem (10.1) is unknown. We use the PCG
method to estimate the accuracy of the HDD method.

Lemma 10.2.1 The minimal and mazximal singular values of the stiffness matriz
of the Poisson-model problem on the rectangular quasi-uniform grid (Fig. 10.1) are:

Amin = 8h™2sin?(mh/2),
Anaz = 8h™2cos*(mh/2).

The matriz A is positive definite and the condition number is

)\ma:v
cond(A) = [|A]l2]| A2 = or

Amin

cond(A) = % ~0 (%) |

The discontinuous coefficients a(x) of the operator div(a(x)V) for the domain as in
Fig. 10.8 can increase the condition number of the stiffness matrix dramatically and
as a consequence increase the number of iterations. To estimate the upper bound of
the condition number one can use the following inequality ([26]):

2oy (G5)

- 147 -

10 Numerical Results

where A;, A € Tp,.

Table 10.2 shows the dependence of the condition number of the operator div(a(x)V)
(for domain as in Fig. 10.8) on the jumping coefficient a. One can see an exponen-
tial increasing of cond(A) with decreasing of a. Table 10.3 shows the dependence
of the condition number of the operator div(a(x)V) on the number of degrees of
freedom.

Remark 10.2.1 To compute the condition number of A we need the minimal and
the maximal eigenvalues. It is easy to estimate the mazimal eigenvalue and difficult
the minimal eigenvalue. For small matrices (Tables 10.2, 10.3) we compute the
eigenvalues exact.

a | cond(A)
1071 | 8.4 %103
1072 | 3.4 % 10*
1073 | 2.8 x 10°
1074 | 2.7 % 10°
1072 | 2.7 % 107

Table 10.2: Dependence of the condition number cond(A) on «. The domain €2 is
shown in Fig. 10.8 with 3 = 1, a = 4h and 65 dofs.

dofs | cond(A)
92 | 6.8 % 10%
17% [5.1 10°
332 | 6.1 % 10°
652 | 2.7 % 107

Table 10.3: Dependence of the condition number on the number of degrees of free-
dom. The domain € is shown in Fig. 10.8 with o = 107°, 8 = 1,
a = 4h.

Remark 10.2.2 The disadvantage of the CG method is its slow convergence because
of a possibly large the condition number of A.

The next theorem describes the convergence speed of the CG method.

Theorem 10.2.1 Let ® be a symmetric iteration. Its matriz W of the third normal
form (i.e., W(u™! —u™) = Au™ — c) is assumed to satisfy

AW < A<AW (A>0).

Then the iterates u™ of the CG method applied to ® fulfil the energy norm estimate

2c™

m
<
s < T

le°[La,

- 148 -

10.2 Preconditioned Conjugate Gradient Method

_ — VATl VAmas =V Amin
with ¢ := VEFL T VAmaz V2 min
system.

and €™ = u"™ — u*, u* is the exact solution of the

Proof: see [32] p.274.
PCG Algorithm

We introduce the following notation: p™ is the search direction, r™ = ¢ — Au™,
m =0,1,...,n — 1, is the residual. We stop the CG iterations when |7y = €.4. If
the matrix A is symmetric (4 = AT) and positive definite, i.e., (Av,v) > 0, the CG
method can be applied. Let W1 be a preconditioning.

Remark 10.2.3 It is possible that AW ™! is not symmetric and therefore we ap-
ply the CG method to the system W12AW =120 = W=12b. If A and W~ are

symmetric, then W=Y2AW =12 is also symmetric.
1. Start: u®:=0, 7% :=c— Au®, p° := W10, p:= (p°, 1%,
2. Iteration for m = 0,1, ...(as long as m < n and ||r"™||2 < eqy):
a™ = Ap™, Aopt i= pm/(a™, ™),

m+1l . ..m m
u =u" A+ A",

m+1 . ..m m
r =" = Aopr@™,
m+1 . —1_m+1 o m+1 _m+1
q =Wr) Pm41 = <q y T >7
m+1 . m+l Pm+1 _m
p =q + p .
Pm

Remark 10.2.4 One step u™ — u™t! of the CG method requires one multiplication
Ap™ and, in addition, only simple vector operations and scalar products. The matriz
A, the vectors u™, r™ and p™ have to be stored.

An implementation of the PCG method for the model problem is available in HLIB
[28].

Remark 10.2.5 The number of iterations of the CG method without precondition-
ing is proportional to \/cond(A) and the number of iterations with preconditioning

is proportional to \/cond(W—1A). If the preconditioning is chosen successfully, then
Veond(W-1A) < /cond(A).

To demonstrate how the CG method solves the problem (10.1) with f =1, g =0
and o(z,y) = 1+ $sin(20z)sin(20y) on the model grid (Fig. 10.1) we offer Table
10.4. The stiffness matrix A was approximated by an H-matrix with the adaptive
rank arithmetic (¢, = 107*). Table 10.4 shows the preparation time (in sec.), the
computational time (in sec.), the residual and the number of iterations for different
numbers of degrees of freedom.

- 149 -

10 Numerical Results

| dofs | Preparation time | Computational time | [[At., — clls | #iter |

332 0.2 1.9 7.7%107° 82
65 0.92 18.8 9.3%107° 178
1292 50.23 165.0 9.3%107° 381

Table 10.4: Computational time, residual and number of iterations for different num-
bers of degrees of freedom.

10.3 Smooth Coefficients

Table 10.5 shows that the HDD method works very well on the model Poisson
problem (frequency v = 0). The analytic solution v = x? + 32 is given. The relative
and absolute errors show exponential decay with increasing the rank k in the H-
matrix arithmetic.

Table 10.6 shows that for different numbers of degrees of freedom (1292 and 257?)
the relative and absolute errors decrease when the rank k increases. In the rows
k = 7,8 the sum of the discretisation error ¢, and the quadrature error becomes
comparable with the H-matrix approximation error.

k| fu =gl /ufl, | - afl,]
2 72% 1071 86101
3 4.8 %102 1.2%10°1
4 3.3%x 1073 1.5% 102
5 3.6 % 10~* 20%103
8 41%10°7 3.92x 106
12 1.2%10°10 3.1%107°

Table 10.5: Dependence of the relative and absolute errors on the rank k. 1292 dofs,
a=1, f=4,u=2a2>+19%

- 150 -

10.3 Smooth Coefficients

Tu—ty[[2

Tu—ty[[2

Bl T | e -l Gl | 19— Ul
1 1.6 1.31 2.65 1.61

2 57%107 | 6610 104 | 98#10°
3 28102 | 612 | 24=107 | 33!

1 19107 | 71#10° | 1.2+10 7 | 32107
5| 27+10 T | 86#10 7 | 93#10 1 | 37%10°
G| 54%10° | 1L1#10 7 | 1610 % | 7.0%10 "
7 T17%10° |3.15%10° || 4.12%10° | 1.2 102
S| 82%10° | L0510 ° | 1.6%10° | 3.6%107

Table 10.6: Dependence of the relative and absolute errors on the rank k for 1292
(columns 2,3) and 257% (columns 4-5) dofs, u = z* + ¢?, f = 122% + 1,
a=1.

HDD Time

Table 10.7 shows the computational time of the HDD method with f, € Vi C V},,
% = 2, for different numbers of degrees of freedom. The number of degrees of
freedom is always increased by a factor 4 and the time increased by a factor not
greater than 6 (note that the quadratic dependence results factor 16). After an
appropriate optimization of the data structures and Algorithms 6.3.1 and 6.3.3 in
the HDD method, it is possible to decrease the time-factor to achieve an almost

linear dependence.

| dofs in Q | HDD time(sec) |

332 0.19
652 0.96
1292 5.6

2572 36.1
5132 218.4

Table 10.7: Dependence of the HDD computing time on the number of degrees of
freedom. Performed on Kepler (see Tab. 10.1), n;, = 48, k = 5.

- 151 -

10 Numerical Results

10.4 Oscillatory Coefficients

In this subsection we consider the model problem (10.1) with f =1, ¢ =0, a(z,y) =
1+ Asin(vx)sin(vy). The aim is to show how the accuracy of the solution produced
by HDD depends on the frequency v and the amplitude A. Note that we research
approximation properties of HDD and we do not care about the discretisation error.
We suppose that the enough accurate discretisation is already done.

Example 10.4.1 To demonstrate the oscillatory effect we plotted (Figure 10.2) the
solution of the problem

—div(a(x)Vu) =1 in Q= (0,1)%

u=0 on 0f2 (10-2)

1
1.0014sin(150x)sin(150y)

with a =

Very often the small details of the solution is out of interest and only the global
behaviour of the solution is wanted!

Surface: u (u) Height: u (u) Max: 0.0386

0.035

0.025
0.02

0.015

0.01

0.005

0 Min: 0

Figure 10.2: The solution of the problem (10.2).

- 152 -

10.4 Oscillatory Coefficients

Example 10.4.2 Figures 10.3, 10.4 show the function a(z,y) = 1+3sin(vz)sin(vy)
forv =2 and v = 20.

N

S—

S
=
—

—
—

—

=—

—

=
==

—

——
T —
==~

——

S—

—
=7

Figure 10.4: The coefficient function a(z,y) = 1 + 1sin(20x)sin(20y)

- 153 -

10 Numerical Results

Since sin(vz) has period 2 (see Fig. 10.5), the interval [0, 2Z] should contain at

least 5 points, i.e., 27” > 4h, where h = (; Thus, for v < w there are more

N-T)°
than 5 points in the interval [0, 2%] (upper figure) and for v > w less then 5

points (lower figure).

___"

Figure 10.5: An P! approximation of sin(x) on [0, L] by 5 points (up) and by 3
points (bottom). In the last case, the approximating function is = 0
and the discretisation error is large.

Table 10.8 shows how the HDD method solves the problems with oscillatory right-
hand side. The analytic solution to the problem with oscillatory coefficients has
been chosen to be non-oscillatory u = 22 4+ 2. The discrete analytic solution u is
compared with the solution g, obtained by the HDD method. One can see that for
k = 2,3,4,5 the both relative and absolute errors decrease. But for k£ = 8,12 the
quadrature errors (see (3.33)) and discretisation errors come into play and become
to dominate.

| k] o= afly /ally | [lu— ol |
2 741071 88x 1071
3 491072 1.3% 107!
4 6.7% 1073 3% 102
5 8.7%10* 49%1073
8 281074 6.9 %107
12 281074 6.9 %107

Table 10.8: Dependence of the absolute and relative errors on the rank k. 1292
dofs, a(z,y) = 1+ Lisin(vx)sin(vy), f = 4 + 2sin(vx)sin(vy) +
zvcos(vx)sin(vy) + yvsin(vz)cos(vy), v = 50, u = 22 + y*

- 154 -

10.4 Oscillatory Coefficients

Recall that the solution obtained by HDD with the maximal H-matrix rank £ is
denoted by ug. The solution obtained by HDD with the maximal rank 40 be ty4g.
Such large rank 40 results the almost exact matrix arithmetic. Tables 10.9, 10.10,
10.11 show how the accuracy of the HDD method depends on the accuracy of the
‘H-matrix approximation. Table 10.9 contains the relative and absolute errors of the
solution to the problem 10.1 with v = 1+ 1sin(50z)sin(50y) for 129% dofs (columns
2-3) and for 257% dofs (columns 4-5). One can see an exponential decay of both

errors with increasing the H-matrix rank k.

k| 00 — i lly / [[0uolly | (1040 — Ol || (1040 — Wl / [0l | [[00 — W]
2 1.3 4.8 %1072 6.1 6.8 % 102
3 5.0 % 102 4.2%1073 0.6 3.2%10°2
4 4.5% 1073 7.9% 1077 1.7 %102 24%1073
6 1.8%107% 1.9%107° 22%x1073 3.1%1074
7 7.3%107° 7.76 % 1076 5.7% 1077 5.6 %1077
8 1.6 %107 1.8% 1076 1.5%10°* 1.6%10°°
9 4.9% 1076 5.3% 1077 5.8 % 1075 5.5% 1076
10 1.36 % 1076 2.0%10°7 6% 10°F 6.5 %107
12 1077 1.6 %1078 7.1%10°7 86108
14 6.9%10°° 1.2% 1079 481078 821077

Table 10.9: Dependence of the absolute and relative errors on the rank k. f = 1,
a(z,y) = 1+ 3sin(50x)sin(50y). (2-3 columns) 1292 dofs, |[tu|l,
5.4, (4-5 columns) 2572 dofs, ||y, = 11.0.

Tables 10.10, 10.11 demonstrate an exponential decay of both relative and ab-
solute errors for the problem (10.1) with the oscillatory coefficient a(x,y) = 1 +
1sin(10z)sin(10y). The experiments in Table 10.10 are done for 332, 65% degrees of

freedom and in Table 10.11 for 1292, 2572 degrees of freedom.

k| 100 — Glly / [[9olly | [[0a0 — tfl o || [[040 — Wefly / [|0aoll5 | [[0a0 — 0|l
2 1.88 % 1072 1.95% 1073 1.7%10° ¢ 1.37 % 102
3 6.4 %1073 6.6 1074 86103 74%x10712
4 1.74 % 1073 1.9% 10714 3.1%1073 29%10°7
5 1.6% 1071 22%107° 48 %104 5.4%107°
6 1.14 % 107° 2.27% 1076 6.73%107° 89 %106
7 2.43 %1076 491077 1.8%10°° 254 %1076
8 2.64 %1077 461078 4.34 %1076 6.9 %107
9 7.55 % 10~10 1.65% 10710 1.1%1076 1.9%10°7

Table 10.10: Dependence of the absolute and relative errors on the rank k. f =1,

a(z,y) = 1+ $sin(10z)sin(10y). (2-3 columns) 33% dofs, ||ay||, =
1.36; (4-5 columns) 652 dofs, ||Uyl|, = 2.74.

- 155 -

10 Numerical Results

k| ltuo — welly /{[0uolly | [0 — el || (1040 — 0l /[0aoll5 | (040 — il
3 2.5% 102 23%1073 2.7%10°1 2% 1072
4 5.1% 1073 43%x10°% 21%10°2 2% 1073
5 7.3%x1074 6.8 10° 1.2% 1073 1.3%x10°*
6 1.65%10~* 1.76 % 107° 29% 1074 2.6%10°°
7 6.3%107° 1076 1.1%1071 1.1%10°°
8 1.94 % 107° 23%10°° 461077 45%10°6
9 4.67 %1076 6.2% 107 1.2%10°° 1.4%10°6
10 1.0 1076 1.6% 1077 3.3%x10°6 41%10°7
12 1.0% 1077 1.7% 1078 43% 1077 5.5%10°°
14 1.1x10°8 2.1%107° 5.9 %1078 9.5% 1077
16 9.0 % 10~ 10 213 %1010 7.4%107° 1.3%107°

Table 10.11: Dependence of the absolute and relative errors on the rank k. f =1,
a(z,y) = 1+ 1sin(10z)sin(10y). (2-3 columns) 1292 dofs, ||Tpl, =
5.5; (4-5 columns) 2572 dofs, |[ty|, = 11.0.

In Table 10.12 we compare the solution of the initial problem (10.1), obtained
by the HDD method with the solution obtained by the PCG method. The maxi-
mal number of iterations for the PCG method is 600, the admissible value of the
residual ||Au,., — c|lo = 107°. Thus, we can assume that the PCG method gives an
‘exact’ FE solution. The errors in columns 2 and 3 increase because the H-matrix
approximation error 1, becomes larger. As a preconditioner we use the H-Cholesky
factorization.

dofs | ||ty —]l | =2 [[Aw, — ¢l | timennp, (sec)
172 | 44210710 1 43451077 | 9.1%10"" 0.06
332 8.56 % 1077 5.1%107° 72% 1077 0.27
652 421 %107 3.3%107° 9.6 1077 1.6
1292 | 1.32%107° 1.3% 1074 9.7% 1077 10.0

Table 10.12: Comparison of the HDD solution u. with the PCG solution .,
a(z,y) =14 3sin(50z)sin(50y), £, = 107°.
In Table 10.13 we consider the problem (10.1) with

2 + Psin(2nz/¢)
2 + Psin(2my/e)

2 + Psin(2my/e)
2+ Psin(2wz/e)’

a(r,y) =

f=1 P =18 ¢ =1/512 and ¢ = 0. The domain) and its triangulation are
shown in Proposition 7.1.2. We assume that the solution, obtained by the PCG-
method with the H-Cholesky preconditioning is the exact solution (of course, up to
the discretisation error). The residual for the PCG-method is ||At,., — ¢l = 107°
and the number of iterations is shown in brackets. The H-matrix computations were

- 156 -

10.5 Comparison of HDD With H-Matrix Inverse and Inverse by Cholesky Decomposition

done with the adaptive rank arithmetic e, = 107° (see Def. 5.9.3). One can see that
HDD achieves the same accuracy as PCG with a similar computational time. Note
that both methods does not take into account the discretisation error.

| dofs | [[aeg — Uz | JUeg — 0l | PCG sec.(iter) | HDD sec. |

332 [5.7%10 1 | 45%10° 0.17(4) 0.39
652 | 28107 | 1.1%10° 1.18(4) 1.84
1202 14107 | 28610 9.6(6) 10.5

Table 10.13: Dependence of the absolute error on the number of degrees of freedom.
£, = 1075,

10.5 Comparison of HDD With H+-Matrix Inverse and
Inverse by Cholesky Decomposition

In this section we compare the computational time and memory requirement of
HDD with the times and memory requirements of the H-Matrix inverse and the
H-Cholesky decomposition.

Table 10.14 demonstrates the dependence of memory requirements and the compu-
tational times on the parameter ¢, (see the adaptive rank arithmetic in Def. 5.9.3).
One can see that the computational time and storage requirement of the H-Cholesky
factorisation are the best. The HDD method shows the sligtly larger time than the
‘H-Cholesky factorisation and a much better time as the direct H-matrix inverse.
HDD requires more memory than the H-Cholesky factorisation and much less than
the direct H-matrix inverse. The memory requirements for HDD can be decreased
after optimization of the Algorithms 6.3.1 and 6.3.3. Note that HDD computes the
solution operators, but after the H-Cholesky factorization one still needs to solve
two systems of linear equations Lv = ¢ and LTu = v.

‘ Eq ‘ H-Cholesky time;size ‘ HDD-time;size ‘ time(A~");size ‘

10-° 2.1;(13.3) 9.2;(19.7) 21.4;(51.0)
107 2.6,(14.7) 9.8;(20.1) 29.6;(64.0)
107 3.0;(16.0) 10.6;(20.4) 37.3;(75.2)
10°° 3.4;(17.2) 11.6;(20.6) A7 4;(87.4)

Table 10.14: Comparison of the H-Cholesky factorisation, HDD and the H-matrix
inverse. Dependence of time (in sec.) and memory requirements (in
MB) on &,, 1292 dofs.

- 157 -

10 Numerical Results

Table 10.15 shows the dependence of the computational time for the H-Cholesky
factorisation on the number of degrees of freedom. The complexity of the H-matrix
arithmetic (see Table 5.3) depends on the factor k% and it is why we do not see
almost linear factor in time. It is shown ([46], [47]) that for a smaller H-matrix
rank k£ an almost linear complexity can be achieved. Note that it is not enough
memory for computing H-Cholesky factorization with 513% dofs and k = 8. The
error H(LLT)_lA — I H , grows up because the H-matrix approximation error grows

up.

‘ dofs ‘ [(LLT")TA — IH2 ‘ |lu—1a.l,/llacl, ‘ t, sec
332 2.03 %107 1.5%10°% 0.08
652 5.6 x 101 6.1 10713 0.8
1292 9.0 % 10719 1.1x107 6.68
2572 6.7 %1077 9.9 %10~ 75.0
5132 n.e.m. n.e.m. not enough memory

Table 10.15: The computational time and accuracy of the solution uy, obtained by
the H-Cholesky decomposition, v = (2% — 1)(y* — 1), k = 8.

Table 10.16 compares the computational times of the HDD method and the PCG

method with H-Cholesky preconditioner. Column 3 contains the measurements
of times for: (a) computing the stiffness matrix A in the data-sparse format; (b)
computing the H-Cholesky decomposition of A (used as a preconditioner); (c¢) PCG
iterations.
Note that for 5132 dofs there is not enough memory to compute the stiffness matrix
A and perform its H-Cholesky factorization. The advantage of the HDD method is
that it does not require agglomeration of the whole stiffness matrix. The memory is
dynamically allocated and deallocated.

‘ dofs ‘ HDD ‘ PCG ‘
332 | 0.19 | 0.1=0.03+0.044+0.02
652 | 0.96 0.6=0.24-0.26+0.1
129° | 5.6 5=2.6+1.840.6
2572 | 36.1 53=38.0+11.4+3.4
5132 | 218 n.e.m.

Table 10.16: Comparison of times for the skin problem with o = 107°, g, = 1078,
Ecg = 1078, % = 2. Performed on Kepler from Table 10.1.

Table 10.17 shows how the absolute and relative errors depends on the frequency
v. One can see the errors of the same order, i.e., the HDD method is stable with
respect to the frequency v. Here uyg is the solution computed by HDD in the class of
‘H-matrices with the maximal rank 40. Since the exact solution is unknown, we use

- 158 -

10.5 Comparison of HDD With H-Matrix Inverse and Inverse by Cholesky Decomposition

uy as a good approximation of the exact solution (up to the discretisation error).
Here it is quite appropriate to quote the work [11] about existence of H-matrix
approximants to the inverse FE-matrix of elliptic operators with L*°-coefficients. In

| v | uao — welly / [usolly | [Juse — agll, |
10 1.65 % 1074 1.76 * 10~°
50 1.8 1074 1.9%10°°

Table 10.17: Dependence of the relative and absolute errors on the frequency v, 2572
dofs, f =1, a(z,y) = 1 + isin(vx)sin(vy), e, = 107°.

Table 10.18 we compare the HDD method with the PCG method. Here u. is the
HDD solution, 1.4 the solution obtained by the PCG method with the H-Cholesky
preconditioner. The fourth and fifth columns present the computational times. The
HDD time is comparable with the PCG time, but for 5132 dofs PCG requires too
much memory.

| dofs | [[aey — Uz | [[Geg — Uefloc | PCG with LL” sec.(iter) | HDD sec.

332 | 4.16%1077 | 6.68%10°° 0.22(2) 0.35
652 | 2.28 x107° | 1.42%10°° 1.66(2) 2.5
1292 | 2.38%x107% | 9.35%10°° 17(2) 13
2572 | 2.35% 1073 | 2.85%107° 63(11) 60.6
5132 n.e.m. n.e.m. not enough memory 270.3

Table 10.18: Dependence of the absolute errors on the number of dofs, f = 1,
a(z,y) = 1/(1.0001+ sin(500z)sin(500y)). All computations were per-
formed on Notebook (see Table 10.1) with the adaptive rank arithmetic
(see Def. 5.9.3), e, = 1077, £ =2,

Remark 10.5.1 Note that the computational time of the H-Cholesky factorisation
depends on the rank k used in the H-matriz arithmetic (see [47], [46]). If k becomes
smaller than the computational time and the accuracy decreases also.

Remark 10.5.2 The later exzperiments for discontinuous coefficients [43] show that
it is better (in the sense of timing performances) to take a smaller rank k with
a larger number of PCG iterations as a larger k with a smaller number of PCG
iterations.

- 159 -

10 Numerical Results

10.6 Memory Requirements for & and ¢/

Tables 10.19, 10.20 show the total storage requirements for all matrices ®9 and &/,
w € T, in the case of one grid and two grids. In Table 10.19 we see an almost linear
dependence of the storage requirements on the number of degrees of freedom. The
columns S(®9) and S(®/) present memory requirements for all mappings ®Y and
®f w € Tz, respectively. We see a factor ~ 4 in the column S(®9) and a factor
~ 5.6 in S(®/). Here the factor 4 shows a linear dependence. The numbers in this
table are in accordance with the theoretical estimates in Lemma 7.3.4. We do not

see a linear factor because there is an additional log factor.

[dofs [S(@), Kb | S(7), Kb | Ju— gl / [l | u —]

0 ‘

332 | 2.45 % 102 4 % 102 3.3%107° 8.47 % 107°
65 1.1%10° 2.4 %103 5.75% 107° 1.0+ 1074
1292 5% 10° 1.4 % 10 7.4%107° 1.1x1074
2572 | 2.1%10* | 7.86 % 10* 8.3%107° 1.3%1074

Table 10.19: Dependence of the total memory requirements for all 9 and ®/ on the
number of degrees of freedom, k = 7, u = 22 + 3%

Table 10.20 shows the storage requirements for all ®9 and ®/ in dependence
on the compression factor % The storage requirement for all 9 stays the same
(column S(®7)) since for all mappings ®9 we use only one scale with step size h.
Lemmas 7.3.4 and 7.4.5 state that S(®) < C1kny, log®ny, for one grid and S(®/) <
Coky/mnpny, log2 V/nany for two grids.

All computations in Table 10.20 were performed with the adaptive rank arithmetic
£, = 1078,

Table 10.20: The computational time and the total storage requirements for all
®9 and ®f. 257 dofs, e, = 1075, a(z,y) = 1 + isin(50z)sin(50y),

| [5(99), MB | S(®/), MB | time, sec |
1] 22x10! 2.9 % 102 218
2 2.2 % 10! 8.7 % 10! 83
4 1 2.2x%10°7 3.2 % 10! 41
8 | 2.2x10°7 1.8 % 10! 32
16 | 2.2%10°7 1.5 10! 26

fl,y)=z(x—1) +yly—1).

- 160 -

10.7 Approximation of ®9 and &

10.7 Approximation of ®¢ and @/

To estimate the accuracy of the H-matrix approximation to the inverse of the global
stiffness matrix A we compute the error [|[A- A" — I||y. But in the HDD method
we do not have the global matrix A, we have a set of matrices ®J and &/, w € Ty, .
The matrices 9, (as well as ®7) on the I-th level of Tr, are equivalent. It is why
we consider the accuracy of the H-matrix approximation only for one of them. The
mappings ®9 := &9, and &/ := (13{27 are computed with the H-matrix rank k£ = 127
(up to almost machine precision 1071¢). Tables 10.21, 10.22 show the maximal
operator errors |[®9 — ®% ||, and ||®/ — ®f||, on different levels of T, @9, and
(I%C are the H-matrix approximations of ®9 and ®/ with the maximal ranks 21 and
7 correspondingly. The second column shows the size of the matrix and the third
column shows the corresponding level of the hierarchical domain decomposition tree
Tr,. The maximal error appears at O-level (root). It can be explained by the fact
that the chosen maximal rank is insufficient for larger matrices. Note that the errors
in Tables 10.21, 10.22 do not depend on the right-hand side.

Tables 10.21, 10.22 show that it is a nice idea to choose an adaptive rank for each

| [[©9 — @4, [|2 | size of @9 | level of T, |

48101 | 255 x 1024 0
5.5% 1072 | 127 x 512 1
422%107° | 63 x 256 2
455%107% | 31 x 128 3
25810717 | 15 x 64 4

Table 10.21: The error ||®9— P, ||» on different levels of T, . @3, is an approximation
of ®9 by a rank-21 matrix. The matrix size is |1(7,,)| x| (0w)|, a(z,y) =
1+ Lsin(50z)sin(50y), 127% dofs.

‘ |/ — o], ‘ size of &7

level of 17,

2.1% 1077 | 255 x 2577 0
3.6%107Y | 127 x 1297 1
1.04% 107 | 63 x 657 2
2.04% 1071 | 31 x 332 3
1.47%1072Y | 15 x 172 4

Table 10.22: The error ||®/ — ®Z]|, on different levels of T, , ®/ is an approximation
of ®/ by rank-7 matrix. The matrix size is |I(v,)| x |[(w)|, a(z,y) =
1+ Lsin(50z)sin(50y), 127* dofs.

level of T, . For example, if T, has L levels, than one may take kg > k1 > ka... >
kr_1, where k; is the H-matrix rank on the i-th level. The adaptive rank arithmetic
(see Def. 5.9.3) realizes this idea.

- 161 -

10 Numerical Results

10.8 Jumping Coefficients

In this section we consider the class of problems with jumping coefficients. Such
problems appear in the material sciences (electrical fields through materials with
different conductivities), in medicine (the so-called skin problem) etc. An simple
example is shown in Fig. 10.6. This domain {2 has areas with jumping coefficients:
a=10and 3 = 1072

O.ll (.).2
Figure 10.6: Domain © = (0,1)? with jumping coefficients o and £3.

Table 10.23 shows that the parameter ¢, (for the adaptive rank arithmetic) has to
be smaller for problems with jumping coefficients than the corresponding parameter

(denote by ™) for the model problem. A priori one can take

Qy,
4 i= Max —= x gmodel
wi Wi €Th Qg

Here max_ describes the maximal jump between two finite elements w; and w;
wi,w;€lp

(leaves of the tree 17,).

| eo [[[AAT" — I | time (sec.) |

10-¢ 1.2 63.7
1078 3.0% 107! 87.1
10719 3.4% 1074 111.6
10712 3.7%107° 156.8

Table 10.23: Dependence of the H-matrix approximation error ||[AA™" — I, on g,
for the domain as in Fig. 10.6 with coefficients a = 10 and g = 0.01,
1292 dofs.

Table 10.23 shows the total time for the H-matrix approximation (denoted by
A7) to the inverse A~!. Here the time of building the block cluster tree is negli-
gible small in comparison with the time of computing A=*. We see also that the
accuracy of the H-matrix approximation to A~! increases with decreasing the pa-
rameter &,.

- 162 -

10.8 Jumping Coefficients

Table 10.24 compares the HDD method with the PCG method for different &,.
The domain €2 is shown in Fig. 10.6. Such domains are typical, for instance, in elec-
trostatics. The jumping coefficients « and (3 model electroconductivity in different
materials. This table compares also the computational times. We see that the HDD
time is larger. The reason is that HDD computes the solution operators, but PCG
only the solution.

ca | [Atiy — c|lz | PCG-time (sec) | HDD-time | M=l [ja,, — a1
10~* 2% 1071 5.3 8.9 6.7 1071 14
1076 | 4.8%1077 5.0 10.1 1.8%x107*] 9.5%10*
1078 | 1.4%10°8 5.7 11.5 1.1%x107% | 1.48%107°
1070] 1.45%10°8 6.7 12.3 5.3%10°7 107°
1072 1.2%10°8 7.4 13.5 5.2% 1077 107°

Table 10.24: Dependence of the relative and the absolute errors on ¢, for the model
problem on the domain as in Fig. 10.6 with coefficients a = 10, § =
0.01 and 129? dofs.

- 163 -

10 Numerical Results

10.9 Skin Problem

The problem in Fig. 10.7 models a more difficult problem (so-called the skin prob-
lem). In this problem an ointment penetrates through the skin. The diffusion process
is very slow inside the cells and much faster in the channels in between (so-called
the lipid layer). We choose a rectangular quasi-uniform grid on € = (0,1)? which
is compatible with the lipid layer. The condition number cond(A) in problems with
L L . L a(w;)
jumping coefficients is proportional to h™> max

wi,w;i €Ty Oé((x)j)
coefficient in w;, h the grid step size and w;, w; € 7.

, where a(w;) is the jumping

/ Lipid layer

||
Jee i

Figure 10.7: Model of a skin fragment Q = (0,1)2. The coefficient of the penetration
inside the cells is very small (a), but is large in between (/3).

We model this difficult geometry by a simpler one as it shown in Fig. 10.8.

0 o0.25 0.75 1

Figure 10.8: Model domain ©Q = (0,1)%. The coefficient of penetration inside the
cells is very small (a), but is large in between (5 = 1).

- 164 -

10.9 Skin Problem

Table 10.25 shows the accuracy of the HDD method for different jumping coeffi-
cients a (Fig. 10.8). We compare the solution, obtained by the HDD method, with
the solution, obtained by PCG. For a small a (e.g., a = 107°) the adaptive rank
parameter £, = 107° (Def. 5.9.3) is not good enough. For highly jumping coefficient
one should choose very small parameter ¢,.

« ||Aﬁ09_c||2 % ||ﬁ69_ﬁ6||oo

1077] 14%1071° [8.0%10°%] 45%10°F
10°2] 3110719 [16%10°| 62%107°
1073] 7.7%107% [5.7%x10°| 2.8%107°
1074 | 1.3%107° [7.0%x1073 1.5

1075 | 89x%107° | 7.7x107! 8.8 x 102

Table 10.25: Dependence of the absolute and relative errors on the coefficient «.
1292 dofs, e, = 1075, domain as in Fig. 10.8 with 3 = 1 and thickness
a = 4h.

- 165 -

10 Numerical Results

Table 10.26 shows that the larger the jump is (~ the smaller « is) the larger are the
relative and the absolute errors in the infinity, energy and spectral norms. We recall
that A is the stiffness matrix for the whole domain (2, 1, is the solution computed
by the PCG method and 1. is the solution computed by the HDD method.

o | Bl T — | | e — 8l | [JAfe, — At | (1A
1.0 [66%107°] 71%10°19 | 23%1077 2.8%107° 1.27 % 10°
1071 1 2.0%x107% | 14%1078 2.0x106 1.1x107% 1.22 % 10°
10°2]66%x10°%| 2.6%x1077 1.7%107° 6.9 % 1077 1.22 % 10°
102 74%x1077 | 1.8%x107° 421071 8.8% 1073 1.22 % 10°
1074]142%x10%] 1.8%x1073 1.4 %1072 7.5% 102 1.22 % 10°
10°° [7.0%«10° | 23%10°! 9.0% 1071 1.0 1.22 % 10°

Table 10.26: Dependence of the absolute and relative errors on the jumping coef-
ficient . € as in Fig. 10.8, 129? dofs, thickness a = 4h, /8 = 1.
g, = 1078, residual [|At,, — c|ls = 1071,

The accuracy of the solution u. depends on the accuracy of the H-matrix ap-
proximation. We use the adaptive rank arithmetic, i.e., we choose the rank for each
submatrix as follows & = min{i : 0; < g,01}, where 01 < 09 < ... < 0y < ... are the
singular values.

Table 10.27 shows the dependence of the absolute and relative errors on the param-
eter ¢, (for the adaptive rank arithmetic). One can see that the accuracy of HDD
can be improved by decreasing ¢,.

The comparison of the solution u;, computed by the direct H-Cholesky with u,
(computed by PCG) is given in the last column. We assume that PCG after a large
number of iteration steps produces the ’exact’ FE solution u,.

€a ”uHcg;lﬁZHQ ”ﬁcg - ﬁsHoo Hﬁcg - ﬁsHA HAﬁcg - AﬁsHZ Huﬁ%:;ﬁ;'b
107% | 4.4%107¢ 6.67 * 10? 1.1%103 1.8 * 10? 4.7%107%
1078 | 7.27%107° | 2.3%107¢ 9.0 107 ¢ 1.0 6107
107191 5.1%1077 1.0x1073 3.0%1073 6.1% 1073 1.1x10°8
10712 39%107° 1.2%107° 2.9%107° 3.8% 107 1%107H
107 1.2%10°" | 6.6%1077 | 1.2x10°7 37«10 | 1510 "
10711 1.6%1072 | 1.1%1078 1.7%1078 5.3% 1077 2.1%107H

Table 10.27: Dependence of the absolute and relative errors on ¢,. 2 as in Fig.

10.8, 1292 dofs, thickness a = 4h, o = 107°, 3 = 1. The residual is
| At — cll2 = 10719, ||All2 = 1.22 % 10°.

- 166 -

10.9 Skin Problem

In the figure below one can see the spectra of the operator div(a(x)V) for 5 =1,
a=1a=10"2 and a = 107 (three curves in log-scale). The number of degrees
of freedom is 332. This Figure helps us to understand why the condition number of
the stiffness matrix for the skin problem (Figure 10.8) is large. All three maximal
eigenvalues are almost the same and the minimum eigenvalues are differ by a factor
proportional to the jump.

alpha=0.01

10" b

values

10"

alpha=1e-4

10 "k E

10

1 1 1
0 50 100 150 200 250
eigenvalues Iambda|

Decay of singular values of the stiffness matrix A for « =1, a = 1072 and
a=10"%

- 167 -

10 Numerical Results

10.10 Problems With Many Right-Hand Sides

In the following experiment we show that the HDD method is well suited to problems
with many right-hand sides. We consider the following problem

—div(aVu) = f@ in Q,

u =g on 052, (10.3)

where i = 1, ..., imqe and €2 shown in Fig. 10.8. The number of degrees of freedom
is 2572. There are two grids with step sizes h and H := 2h. The right-hand side

O € Viy (see Sec. 4.3.6), i.e., f¥ € R, The solution v’ € V, and u\” € R®™,
The HDD method computes all the mappings ®/, and &9, w € Tr,, once and then
applies them in order to compute the solution u}f).
As an alternative approach we choose the PCG method with the H-Cholesky pre-
conditioner (see Remark 5.9.8). The discretisation of (10.3) produces the system of
linear equation Au = c¢®. The number of degrees of freedom is 1292, The stiffness
matrix A and its H-Cholesky factorisation (the preconditioner) are computed only
once. Then for each c', i = 1, ..., %4, we perform the PCG method. The total
computational times for i,,,, = 10,100, 1000 are shown in Table 10.28. We denote
the computational time of the algorithm “Leaves to Root” by t;, the computational
time of the algorithm “Root to Leaves” by t,, the computational time of PCG by
ton. We see that for 4,4, = 100, 4,4, = 1000 HDD is much more efficient than

Tmaz | t1 + T2, sec. | top, sec.
10 38+2.8 29
100 38+27 117

1000 38+240 1048

Table 10.28: The total computational times of HDD and PCG for i,,,, right-hand
sides.

PCG. Note that we compare the two-grid modification of HDD (steps H = % and

h = 5i=) with the PCG method with one scale (step h = 13z). For the computa-
tional complexity and storage requirement of this HDD version, see Section 7.4.2.
The HDD method with many right-hand sides can be applied, for example, to prob-
lems in electroencephalography and magnetoencephalography (EEG/MEG) or in

Monte Carlo simulations.

- 168 -

10.11 Computing the Functionals of the Solution

10.11 Computing the Functionals of the Solution

Very often dimension of the initial multiscale problem is huge, the geometry is com-
plex and not the whole solution is of interest, but the solution in a small subdomain
w €). Moreover it is interesting how the solution in w changes when the right-hand
side f and the Dirichlet boundary data g are changed. For this purposes one may
compute different functionals of the solution (see Section 4.4.5). These functionals
depend on f, g and the mappings ® and ®/. Below we give an example.

10.11.1 Computing the Mean Value in w € T,

In this section we realize the algorithm from Section 4.4.6 and compare the computed
mean value of the solution v in a subdomain w € 77, with the exact mean value
in w. We choose scales H = 1/4 and h = 1/256. The scale H = 1/16 gives a
decomposition of the initial domain € into 16 cells (see Fig. 10.9). The problem to

H

13| 14| 15| 16

9 10 11| 12

5 6 7 8

1 2 3 4

Figure 10.9: Model domain © = (0,1)? and its subdivision into 16 subdomains.

be considered is:
—div(a(x)Vu) =1 in Q= (0,1)%,
u=0 on 0f).

We compute the exact mean value by the following formula:

t
u:/udx: Z %(m—i—uz-i‘us)’

tGTh (w)

where u;, © = 1,2, 3, is the solution computed by the PCG-method in vertices of the
triangle t.

We compute the exact mean value p and the approximate mean value pgpp (see
Section 4.4.6) in each cell. Tables 10.29 and 10.30 compare these both values. We
see from the second column (Tables 10.29, 10.30) that there are three patterns of
subdomains: internal (6,7,10,11), angular (1,4,13,16) and border (2,3,5,8,9,12,14,15).

- 169 -

10 Numerical Results

\upp — | | |tapp — p|/|ppp| | N of subdomain in Fig. 10.9
1.73% 1073 1.38 % 107! 6
1.71 %1073 1.4% 1071 7
1.71 %1073 1.4% 107! 10
1.71 %1073 1.4% 107! 11
1.71 %1073 3.3% 1072 1
1.71 %1073 3.3% 1072 4
1.71 %1073 3.3%x1072 13
1.71% 1073 3.3%x1072 16
1.71 %1073 7% 1072 2
1.71 %1073 7% 1072 3
1.70 % 1073 7% 1072 5!
1.71 %1073 7% 1072 8
1.71% 1073 6.9 % 1072 9
1.71 %1073 7% 1072 12
1.71 %1073 7% 1072 14
1.71 %1073 7% 1072 15

Table 10.29: Comparison of the approximate mean value with the exact mean value.

a = 1.0/(1.0014 sin(50x)sin(50y)), 257 dofs, |G —Ugyll2 = 1.43%1077,

[0 — Beglloe = 3.72% 1071

\rpp — | | |trpp — pl/|trpp| | subdomain in Fig. 10.9
2.21 %1073 1.38 % 107! 6
2.23 %1073 1.38 % 1071 7
2.23 %1073 1.4% 107! 11
2.23 %1073 1.39 % 107! 10
2.22 %1073 3.4%1072 1
2.22 %1073 3.4%1072 4
2.23 %1073 3.4%1072 13
2.23 %1073 3.4%1072 16
2.22 %1073 7.06 % 1072 2
2.22 %1073 7.07 % 1072 3
2.22 %1073 7.04 % 1072 8
2.23 %1073 7.07 % 1072 5
2.23 %1073 7.07 % 1072 9
2.23 %1073 7.07 % 1072 12
2.23 %1073 7.07 % 1072 14
2.23 %1073 7.07 % 1072 15

Table 10.30: Comparison of the approximate mean value with the exact mean value.

o = 1.0 + 1sin(50z)sin(50y), 257 dofs, |0, — Geyls = 7.97 % 1071,

||1~1€ - ﬁcy”

o =2.37% 10711,

- 170 -

10.12 Conclusion to Numerics

10.12 Conclusion to Numerics

By default we use the H-Cholesky preconditioner in the PCG method.

1. The computational time of HDD is smaller than the time required for the direct
H-matrix inverse and slightly larger than the time of the PCG method (Tables
10.13, 10.14, 10.18, 10.24). But HDD solves problems with multiple right-hand
side and multiple Dirichlet data faster than PCG does (Table 10.28).

2. For a smooth right-hand side f the HDD method with f € Vi C V}, (Sections
4.3.6, 7.4.2) is very efficient (Tables 10.28, 10.20). In fact, this modification
of HDD requires less memory (Table 10.16) and smaller computational time
than the PCG method for large numbers of degrees of freedom (Section 10.6).

3. The accuracy of the H-matrix approximation increases with increasing the H-
matrix rank & (Tables 10.5, 10.6, 10.8, 10.9, 10.10, 10.11). Here it is important
to have a balance between the discretisation error, the quadrature error and
the H-matrix approximation error because the total error depends on all of
them.

4. The HDD method is stable for problems with oscillatory and jumping coef-
ficients (Section 10.4). HDD is in the state to achieve the same accuracy as
the accuracy of the exact PCG scheme (Tables 10.18, 10.25, 10.26). But the
computation of the H-Cholesky preconditioner is expensive or even impossible
for a large number of degrees of freedom (Table 10.18).

5. The accuracy of the solution of problems with highly jumping coefficients can
be improved (Tables 10.23, 10.24, 10.27) by decreasing the H-matrix approxi-
mation error (by decreasing the parameter ¢, or by increasing the rank k).

6. HDD solves the simplified skin problem with highly jumping coefficients up to
the discretisation error (Tables 10.25,10.26,10.27).

7. The HDD method may compute different functionals of the solution with small
computational resources and a required accuracy (Tables 10.29, 10.30). If only
the functionals are of interest, then there is no need to store the mappings ®¢
and ®/ w € Ty, , and the storage requirements of HDD will even be fewer.

8. The computational time of HDD depends on many factors: a) the accuracy of
the H-matrix approximation, b) the ratio %, c¢) whether one or two grids are
used, d) whether small scales are truncated or not.

- 171 -

10 Numerical Results

- 172 -

11 Appendix

Lemma 11.0.1)

1
> it = gpg +O0(p?).

i=0
Proof: Let S(p) =" ,i* = ap® + bp* + ¢p + d. Then

p+1

Sp+1) =Y *=Sp) +(@+1)

i=0

We compare the corresponding coefficients in
ap* +bp*+cep+d+(p+1)2=alp+1)° +blp+1)°*+e(p+1) +d.

and obtain a =

Lemma 11.0.2

1
3

Proof: Consider
9z(p+1) _ q

p (
S = R —
() 2; T
Then the derivative is ,
S'(x) = Z 2" log, 2,
i=0

or

() = 2¢HD=IN" (p 4 1)2¢ P+ Jog, 2 — 27(2°¢ D) — 1) log, 2
e\) T (27 — 1)
Comparing the expressions for the derivatives in x = 1
S'(1) = (p+1)2?*V]og, 2 — 2(2°TY — 1) log, 2
and
p .
S'(1) = Z i2'log, 2,
i=0
we obtain
p .
(p+1)27 " 1og, 2 — 227+) — 1)log, 2 = > i2'log, 2,
i=0

p

D it =(p—1)20 42
=0

- 173 -

11 Appendix

[|
Lemma 11.0.3)
(p—i)2t =2t —p—2.
=0
Proof:
dlp—i)2=pY 2= i2t=p2rt —p—(p—1)2T —2=2"—p_2
i=0 i=0 i=0
Lemma 11.0.4)
(p—0)%2"=3- 271+ O(p?)
=0
Proof:
p p

(p—i)°2' =) (p"2' — 2pi2’ +°2")
=0 =0

< PPt —2p(p — 1)2PF 4 (p® — 2p + 3)2°F! = 3. 277 + O(p?).
Lemma 11.0.5 »
> 2 = (pP = 2p+3)2" —6.
=0

- 174 -

Conclusion

The hierarchical domain decomposition method is a flexible tool for solving 2D
elliptic boundary value problems with L* coefficients. HDD computes the hierar-
chical solution operators F;, and G;, and allows the representation of the FE solution
of the initial problem in the form

up, = Fnfn + Grgn, (11.1)

where f, is the FE right-hand side, and g;, is the FE Dirichlet boundary data. The
operators Fj and G, are efficiently approximated in the H-matrix format.
Representation (11.1) allows HDD to solve problems with multiple right-hand side
and multiple Dirichlet data with reduced computational costs.

HDD may compute different functionals of the solution (the solution on the skeleton
or at a single point and a mean value fw updr, w C Q C R?, or a flux fVuﬁdx
etc.) with less resources.

The application of the H-matrix technique to HDD (see Chapter 5) results in the
computational cost O(k?ny,log®ny) and the storage cost O(kny log® ny,), where ny,
is the number of degrees of freedom on a fine scale. In the case of two grids the
estimates are O(k%\/npng log” \/npng) and O(ky/mpng log” /nnnar), respectively,
where ny is the number of degrees of freedom on a coarse scale.

The accuracy of the H-matrix approximation depends on the maximal rank k.
The cost of solving homogeneous problems (f;, = 0) is O(k*ny,), i.e., linear because
in this case the HDD method does not compute the more expensive discrete operator
Fp in (11.1). Thus, only the operator G, is computed.

HDD was successfully applied to problems with the right-hand side from a coarser
subspace Vy C V},, to problems with strongly oscillatory coefficients and to problems
with highly jumping coefficients.

As we mentioned in Chapter 8, the hierarchical background of the HDD method
provides its effective parallelization. For a machine with ¢ = 2" processors, the
parallel complexity of the algorithm “Leaves to Root” is estimated (Lemma 8.3.3)

by

C'k2 /iy log? /iy + Ck> 3"
np quo.45nh + np + C//(l - E) /_”hnfm‘n + ij%log?: %

where C',C,C",C € R,.
The parallel complexity of the algorithm “Root to Leaves” on a machine with ¢
processors is estimated (Lemma 8.3.6) by

oMy 9 Ny, 28/<;w/nh
Ck ?log ?—Fw, CeR,.

11 Appendix

Future work

1. Further optimization. In regards to the H-matrix conversion, the computa-
tional complexity O(nlog®n) can be reduced to O(nlogn). This, in turn, can
be shown to reduce the computational complexity of HDD to O(nlog®n).

2. 3D case. The application of the HDD method to 3D problems is possible. The
differences with the 2D case are:

e For the approximation of the mapping VY, w € Ty, , the standard admis-
sibility condition should be applied instead of the weak one. This trans-
forms the approximation of the mapping ®9 to an H-matrix, instead of
a low-rank matrix as in 2D.

e Since constants in the complexity estimates of the H-matrix technique
are dependent on the spatial dimension, the constants in estimates of the
computational complexities and storage requirements of HDD in 3D will
be larger compared to those in 2D, yet almost linear.

e The data structures in the implementation must be modified.

3. Parallelization. For a parallel implementation of HDD, the recent work [44]
can be used.

- 176 -

Bibliography

1]
2]
3]

[4]

[5]

[6]

[10]

[11]

[12]

[13]

Basic linear algebra subroutines. www.netlib.org/blas/.
Linear algebra package. www.netlib.org/lapack/.

Assyr Abdulle and Weinan E. Finite difference heterogeneous multi-scale
method for homogenization problems. J. Comput. Phys., 191(1):18-39, 2003.

Assyr Abdulle and Christoph Schwab. Heterogeneous multiscale FEM for diffu-
sion problems on rough surfaces. Multiscale Model. Simul., 3(1):195-220 (elec-
tronic), 2004/05.

T. Alarcon, H. M. Byrne, and P. K. Maini. A multiple scale model for tumor
growth. Multiscale Model. Simul., 3(2):440-475 (electronic), 2005.

Grégoire Allaire and Robert Brizzi. A multiscale finite element method for
numerical homogenization. Multiscale Model. Simul., 4(3):790-812 (electronic),
2005.

Ivo Babuvska. Homogenization and its application. Mathematical and com-
putational problems. In Numerical solution of partial differential equations,
IIT (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md.,
1975), pages 89-116. Academic Press, New York, 1976.

P. Bastian. Numerical computation of multiphase flow in porous media. Habil-
itationsschrift, Heidelberg, Germany, 1999.

M. Bebendorf. Hierarchical LU decomposition-based preconditioners for BEM.
Computing, 74(3):225-247, 2005.

M. Bebendorf. Why approximate (u decompositions of finite element discreti-
sations of elliptic operators can be computed with almost linear complexity.
Technical report in Max-Planck-Institut MIS www.mis.mpg.de, Leipzig, Ger-
many, 8, 2005.

M. Bebendorf and W. Hackbusch. Existence of H-matrix approximants to the
inverse FE-matrix of elliptic operators with L*>-coefficients. Numer. Math.,
95(1):1-28, 2003.

Lions J-L. Bensoussan, A. and G. Papanicolaou. Asymptotic analysis for peri-
odic structures. 1978.

S. Borm, L. Grasedyck, and W. Hackbusch. Hierarchical Matrices, vol-
ume 21 of Lecture Note. Max-Planck Institute for Mathematics, Leipzig, 2003.
www.mis.mpg.de.

- 177 -

Bibliography

[14]

[15]

[16]

[17]

[21]

22]

Dietrich Braess. Finite elements. Cambridge University Press, Cambridge,
second edition, 2001. Theory, fast solvers, and applications in solid mechanics,
Translated from the 1992 German edition by Larry L. Schumaker.

Zhiming Chen and Thomas Y. Hou. A mixed multiscale finite element method
for elliptic problems with oscillating coefficients. Math. Comp., 72(242):541-576
(electronic), 2003.

Philippe G. Ciarlet. The finite element method for elliptic problems. North-
Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its
Applications, Vol. 4.

Doina Cioranescu and Jeannine Saint Jean Paulin. Homogenization of reticu-
lated structures, volume 136 of Applied Mathematical Sciences. Springer-Verlag,
New York, 1999.

Weinan E and Bjorn Engquist. The heterogeneous multiscale methods. Com-
mun. Math. Sci., 1(1):87-132, 2003.

Weinan E and Bjorn Engquist. Multiscale modeling and computation. Notices

Amer. Math. Soc., 50(9):1062-1070, 2003.

Weinan E, Xiantao Li, and Eric Vanden-Eijnden. Some recent progress in
multiscale modeling. In Multiscale modelling and simulation, volume 39 of
Lect. Notes Comput. Sci. Eng., pages 3—21. Springer, Berlin, 2004.

Jens Eberhard. Upscaling und mehrgitterverfahren fiir stromungen in hetero-
genen porosen medien. Ph.D. Thesis, University of Heidelberg, Germany, 2003.

Bjorn Engquist, Per Lotstedt, and Olof Runborg, editors. Multiscale methods in
science and engineering, volume 44 of Lecture Notes in Computational Science
and Engineering. Springer-Verlag, Berlin, 2005. Papers from the conference
held in Uppsala, January 26-28, 2004.

Bjorn Engquist and Erding Luo. Convergence of a multigrid method for el-
liptic equations with highly oscillatory coefficients. SIAM J. Numer. Anal.,
34(6):2254-2273, 1997.

Alan George. Nested dissection of a regular finite element mesh. SIAM J.
Numer. Anal., 10:345-363, 1973. Collection of articles dedicated to the memory
of George E. Forsythe.

Gene H. Golub and Charles F. Van Loan. Matriz computations. Johns Hop-
kins Studies in the Mathematical Sciences. Johns Hopkins University Press,
Baltimore, MD, third edition, 1996.

[.G. Graham, P. Lechner, and R. Scheichl. Domain decomposition for multiscale
pdes. Bath Institute for Complex Systems, Preprint 11, www.bath.ac.uk/math-
sci/BICS, 2006.

- 178 -

Bibliography

[27] L. Grasedyck. Theorie und anwendungen hierarchischer matrizen. Ph.D. Thesis,
University of Kiel, Germany, 2001.

[28] L. Grasedyck and S. Bérm. H-matrix library: www.hlib.org.

[29] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices.
Computing, 70(4):295-334, 2003.

[30] Khoromskij B. N. Hackbusch, W. A sparse H-matrix arithmetic. II. Application
to multi-dimensional problems. Computing, 64(1):21-47, 2000.

[31] W. Hackbusch. Elliptic differential equations, volume 18 of Springer Series
in Computational Mathematics. Springer-Verlag, Berlin, 1992. Theory and
numerical treatment, Translated from the author’s revision of the 1986 German
original by Regine Fadiman and Patrick D. F. Ton.

[32] W. Hackbusch. Iterative solution of large sparse systems of equations, volume 95
of Applied Mathematical Sciences. Springer-Verlag, New York, 1994. Translated
and revised from the 1991 German original.

[33] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. I. Introduction
to H-matrices. Computing, 62(2):89-108, 1999.

[34] W. Hackbusch. H-matrix techniques and multi-scale problems. Workshop:
Numerical methods for multiscale Problems, MPIMS, Leipzig, Germany, 2002.

[35] W. Hackbusch. Direct domain decomposition using the hierarchical matrix
technique. In Domain decomposition methods in science and engineering, pages
39-50 (electronic). Natl. Auton. Univ. Mex., México, 2003.

[36] W. Hackbusch. Hierarchical Matrizen - Algoritmen und Analysis, volume 22.
Max-Planck-Institut fr Mathematik, Leipzig, 2004. www.mis.mpg.de.

[37] W. Hackbusch, B. N. Khoromskij, and R. Kriemann. Hierarchical matrices
based on a weak admissibility criterion. Computing, 73(3):207-243, 2004.

[38] W. Hackbusch, B.N. Khoromskij, and R. Kriemann. Direct Schur complement
method by domain decomposition based on H-matrix approximation. Comput.
Vis. Sci., 8(3-4):179-188, 2005.

[39] Viet Ha Hoang and Christoph Schwab. High-dimensional finite elements for
elliptic problems with multiple scales. Multiscale Model. Simul., 3(1):168-194
(electronic), 2004/05.

[40] Thomas Y. Hou and Xiao-Hui Wu. A multiscale finite element method for
elliptic problems in composite materials and porous media. J. Comput. Phys.,
134(1):169-189, 1997.

[41] Thomas Y. Hou, Xiao-Hui Wu, and Zhigiang Cai. Convergence of a multiscale
finite element method for elliptic problems with rapidly oscillating coefficients.
Math. Comp., 68(227):913-943, 1999.

- 179 -

Bibliography

[42]

[43]

[44]

[45]

V. V. Jikov, S. M. Kozlov, and O. A. Olewinik. Homogenization of differential
operators and integral functionals. Springer-Verlag, Berlin, 1994. Translated
from the Russian by G. A. Yosifian.

B.N Khoromskij and A. Litvinenko. Domain decomposition based H-matrix
preconditioner for the skin problem in 2d and 3d. Maz-Planck Institute, online
preprint www.mis.mpg.de/preprints, (95), 2006.

R. Kriemann. Parallele algorithmen fiir H-matrizen. Ph.D. Thesis, University
of Kiel, Germany, 2004.

R. Kriemann. Parallel H-matrix arithmetics on shared memory systems. Com-
puting, 74(3):273-297, 2005.

S. Le Borne and L. Grasedyck. “H-matrix preconditioners in convection-
dominated problems. SIAM J. Matriz Anal. Appl., 27(4):1172-1183 (elec-
tronic), 2006.

S. Le Borne, L. Grasedyck, and R. Kriemann. Parallel black box domain de-
composition based ‘H — lu preconditioning. Max-Planck-Institut MIS, Leipzig,
www.mis.mpg.de, Preprint 115:(electronic), 2005.

M. Lintner. The eigenvalue problem for the 2D Laplacian in H-matrix arith-
metic and application to the heat and wave equation. Computing, 72(3-4):293—
323, 2004.

A. Litvinenko. Documentation for the HDD method. Technical report in Maz-
Planck-Institut MIS, www.mis.mpg.de/preprints/tr/index.html, Leipzig, Ger-
many, 5, 2006.

Pingbing Ming and Xingye Yue. Numerical methods for multiscale elliptic
problems. J. Comput. Phys., 214(1):421-445, 2006.

L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart. J.

Math. Ozford Ser. (2), 11:50-59, 1960.

N. Neuss, W. Jager, and G. Wittum. Homogenisierung und mehrgitter. Ph.D.
Thesis, Universiteat of Heidelberg, Heidelberg, Germany, 1995.

N. Neuss, W. Jager, and G. Wittum. Homogenization and multigrid. Comput-
ing, 66(1):1-26, 2001.

Jeff Ovall. Duality-based adaptive refinement for elliptic pdes. Ph.D. Thesis,
University of California at San Diego, 2004.

Peter J. Park and Thomas Y. Hou. Multiscale numerical methods for singularly
perturbed convection-diffusion equations. International Journal of Computa-
tional Methods, 1(1):17-65, 2004.

A.V. Skvorcov. Review of algorithms for delaunay triangulation building. Com-
putation methods and programming, T.3, 2002.

- 180 -

Index

H*(Q), HE(Q) and H~(Q), 28
S(t), Sons of t, 61

Tl(i) i-th level of 17, 61

Tr«, block cluster tree, 63

Ty, Ty, cluster trees, 61

V(T), Vertices of T, 61
‘H-matrix, 71

‘H-matrix format, 71

L(T,1) leaves of T at level I, 61
t, subset of indices, 61

t, s, clusters, 61

adaptive rank arithmetic, 75
admissibility, standard, 64
admissibility, weak , 65
admissible blocks, 67

algorithm “Leaves to Root”, 47
algorithm “Root to Leaves”, 47
Aubin-Nitsche’s theorem, 35

block cluster tree, 63
Building of A/, Algorithm, 57
Building of A7, Algorithm, 57

cluster tree, 61

data d, 40
Data structures, 135
domain decomposition tree Tz, , 38

FE method, 32

fixed rank arithmetic, 75
formatted addition, 75
formatted multiplication, 75
functional A/, 55

functional A9, 55

functional A, 54

HDD method, 38
HDD on two grids, 52

- 181 -

HDD with repeated patterns, 53

HDD with truncation of small scales,

52
HMM, 21
homogenization, 20

Implementation of HDD, 140
inadmissible blocks, 68

low-rank matrix, 68

mapping ®,, = (®9, /), 40
mapping W, = (¥4, V), 41
MsFEM, 21

parallel H-matrix arithmetics, 126
parallel efficiency, 125

parallel speedup, 125

PCG, 147

rank-k matrix, 68
resonance effect, 22

Ritz-Galerkin discretisation method, 30

Sobolev spaces L*(f?),, 27
sparsity constant Cj,, 72
structure boundary, 142
structure DDTree, 142
structure domain, 142

truncation 7y, 70
Truncation operator 7;, 75

variational formulation, 28

Lebenslauf

Alexander Litvinenko

Geboren am 31.08.1979 in Almaty, Kasachstan
1986 bis 1994 Besuch der Schule 90 in Almaty.
1994 bis 1995 Besuch der Physikalische-Mathematische Schule von NSU in Akadem-
gorodok, Novosibirsk, Abitur 1996.
1996 bis 2000 Studium an der Staatlichen Universitdt Novosibirsk (NSU).
2000 Bachelor Diplom in Mathematik.
2000 bis 2002 Studium an der Staatlichen Universitat Novosibirsk und Sobolev In-
stitut fiir Mathematik.
2002 Magister Diplom in Mathematik.
2002 bis 2006 Doktorand am Max-Planck-Institut fiir Mathematik in den Naturwis-
senschaften.

Hiermit erklare ich, die vorliegende Dissertation selbstandig und ohne unzulassige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angefiihrten
Quellen und Hilfsmittel benutzt und samtliche Textstellen, die wortlich oder sin-
ngemés aus veroffentlichten oder unverdffentlichten Schriften entnommen wurden,
und alle Angaben, die auf miindlichen Auskiinften beruhen, als solche kenntlich
gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialen oder
erbrachten Dienstleistungen als solche gekennzeichnet.

10.04.2006

(Unterschrift)

