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Notation

Ω, ω polygonal domains
∂Ω, ∂ω external boundaries of Ω and ω
Γ a part of the external boundary ∂ω
γω, γ interface in ω
C∞0 (Ω) infinitely differentiable functions with compact supports
f right-hand side
h,H mesh sizes
Hk(Ω), Hk

0 (Ω) Sobolev spaces
I, J index sets, e.g., I = {0, 1, 2, ..., n− 1}
L differential operator
A stiffness matrix

h grid step size
Lh, A matrix of a finite system of equations
L∞ space of essentially bounded functions
L2 space of square-integrable functions
O(·) Landau symbol: f(x) = O(g(x)) if |f(x)| ≤ const |g(x)|
R, R+ real numbers, positive real numbers
supp f support of the function f
u analytic solution
uh discrete solution
c discrete right-hand side
Vh finite-element space
∂Ω, ∂ω external boundaries of the domains Ω and ω
∆ the Laplace operator
(·, ·)L2(Ω) scalar product on L2(Ω)
| · |L2(Ω) norm on L2(Ω)
‖ · ‖2 Euclidean norm or spectral norm
‖ · ‖∞ maximum norm
TI , TJ cluster trees
TI×J block cluster tree
H, H(TI×J , k) class of hierarchical matrices with a maximal
A−H H-matrix approximant to the inverse of A

low-rank k and with a block cluster tree TI×J
R(k, n,m) class of low-rank matrices with n rows, m columns and with a rank k
⊕,⊖,⊙ formatted arithmetic operations in the class of hierarchical matrices
⊕k,⊖k,⊙k formatted arithmetic with the fixed rank k
Ph←H prolongation matrix
α(x) coefficients in a differential equation, e.g. jumping or oscillating ones
Fh, FH discrete solution operators, applied to the right-hand side.
GH discrete solution operator, applied to the Dirichlet data
d spatial dimension, e.g. Rd, d = 1, 2, 3
ν frequency, e.g. sin(νx)
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x, y nodal points in Ω, e.g. x = (x1, ..., xd)
u solution vector u = (u1, ..., uN)T

log natural logarithm based 2
dof degree of freedom
nh(ωi) number of nodal points in a domain ωi

with the grid step size h
nh,x,nh,y number of nodal points in ox and oy directions
q number of processors
cond(A) condition number of a matrix A
λmax(A),λmin(A) maximal and minimal eigenvalues of a matrix A
Ψg, Ψg

ω boundary-to-boundary mapping
Ψf , Ψf

ω domain-to-boundary mapping
Φg, Φg

ω boundary-to-interface mapping
Φf , Φf

ω domain-to-interface mapping
Th, TH triangulations with the grid step sizes h and H
TTh

, TTH
domain decomposition trees with the triangulations Th, TH

T≥HTh
, T<HTh

two parts of the domain decomposition tree TTh

Nf , Ng computational complexities of Φf and Φg

S(Φ) storage requirement for a mapping Φ
global k maximal rank of the non-diagonal admissible

subblocks in an H-matrix
ũk solution obtained by the HDD method;

the subindex k indicates that the fixed rank arithmetic
is used (see Def. 5.9.3)

ũε solution obtained by the HDD method; the subindex ε
indicates that the adaptive rank arithmetic is used (see Def. 5.9.3)

ũL solution of Au = c, A = LLT , uL = (LT )−HL−Hc
εcg the value which is used for the stopping criterium in CG
ũcg solution obtained by the PCG method

(with H-Cholesky preconditioner)
εa parameter for the adaptive rank arithmetic
εh discretisation error
εH H-matrix approximation error
nmin minimal size of an inadmissible block

(see Section 5.5.2), by default, nmin = 32
I(ωh) index set of nodal points in ω
I(∂ωh) index set of nodal points on ∂ω
I(γ), I(γω) index set of nodal points on γ and γω respectively
HMM Hierarchical Multiscale Method
HDD Hierarchical Domain Decomposition method
CG conjugate gradient
PCG preconditioned conjugate gradient.
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1 Introduction

Zu neuen Ufern lockt ein neuer Tag,
J.W. von Goethe

In this work we combine hierarchical matrix techniques and domain decomposition
methods to obtain fast and efficient algorithms for the solution of multiscale prob-
lems. This combination results in the hierarchical domain decomposition method
(HDD).

• Multiscale problems are problems that require the use of different length scales.
Using only the finest scale is very expensive, if not impossible, in computer
time and memory.

• A hierarchical matrix M ∈ Rn×m (which we refer to as anH-matrix) is a matrix
which consists mostly of low-rank subblocks with a maximal rank k, where
k ≪ min{n,m}. Such matrices require onlyO(kn log n) (w.l.o.g. n ≥ m) units
of memory. The complexity of all arithmetic operations with H-matrices is
O(kαn logα n), where α = 1, 2, 3. The accuracy of theH-matrix approximation
depends on the rank k.

• Domain decomposition methods decompose the complete problem into smaller
systems of equations corresponding to boundary value problems in subdo-
mains. Then fast solvers can be applied to each subdomain. Subproblems
in subdomains are independent, much smaller and require less computational
resources as the initial problem.

The model problem we shall consider in this thesis is the elliptic boundary value
problem with L∞ coefficients and with Dirichlet boundary condition:

{
Lu = f in Ω,
u = g on ∂Ω,

(1.1)

whose coefficients may contain a non-smooth parameter, e.g.,

L = −
2∑

i,j=1

∂

∂j
αij

∂

∂i
(1.2)
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1 Introduction

with αij = αji(x) ∈ L∞(Ω) such that the matrix function A(x) = (αij)i,j=1,2 satisfies
0 < λ ≤ λmin(A(x)) ≤ λmax(A(x)) ≤ λ for all x ∈ Ω ⊂ R2. This setting allows us
to treat oscillatory as well as jumping coefficients.

This equation can represent incompressible single-phase porous media flow or
steady state heat conduction through a composite material. In the single-phase
flow, u is the flow potential and α is the permeability of the porous medium. For
heat conduction in composite materials, u is the temperature, q = −α∇u is the heat
flow density and α is the thermal conductivity.

Examples of the typical problems

Suppose the solution on the boundary ∂Ω (Fig. 1 (a)) is given. Denote the solu-
tion on the interface γ by u|γ.
In the domain decomposition society a fast and efficient procedure for computing

Ω ΩΩ

a) b) c)

u|∂Ωγ

ω

u|∂ω

u|γ

the solution u|γ, which depends on both the right-hand side and the boundary data
u|∂Ω is of interest. In another problem setup (Fig. 1 (b)) the solution in a small
subdomain ω ⊂ Ω is of interest. For example, the initial domain is an airplane and
for constructive purposes the solution (or flux) in the middle of both wings is of
interest. At the same time, to compute the solution in the whole airplane is very
expensive. To solve the problem in ω the boundary values on ∂ω are required. How
do we produce them efficiently from the global boundary data u|∂Ω and the given
right-hand side f? To solve the initial problem in parallel (e.g., on a machine with
eight processors) the solution on the interface (see Fig. 1 (c)) is required. How do
we compute the solution on this interface effectively? The last problem setup is also
required for multiscale problems. E.g., the interface in Fig. 1 (c) may be considered
as a coarse grid. In multiscale problems often only the solution on a coarse grid is
of interest. The subdomains can be considered as “cells” with periodic structures.
In this work we explain how the offered method (HDD) can be applied for solving
such problems.

Review of classical methods

After an FEM discretisation of (1.1), we obtain the system of linear equations

Au = c, (1.3)
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where the stiffness matrix A is large and sparse (e.g., A ∈ R106×106
for the Laplace

operator). There exist different methods for solving this system, for example, direct
methods (Gauss elimination, method of H-matrices, direct domain decomposition),
iterative methods (multigrid, Conjugate Gradients), and combinations of the previ-
ous methods (CG with the hierarchical LU factorization as a preconditioner).

The direct methods (Gauss, LU) do not have convergence problems, but they
require a computational cost of O(n3), where n is the number of unknowns. For
the same reason, they are insufficient if the coefficients of the operator L belong
to different scales. Iterative methods produce approximations un converging to the
exact solution u∗, but do not compute the matrix A−1. Multigrid methods compute
the solution on the coarsest grid and then extend the solution from the coarse to
a fine grid. The multigrid iterations use a smoothing procedure to decrease the
approximation error from one grid to another.

The H-matrix method takes into account the structure and properties of the
continuous operator and builds a special block matrix where almost all blocks are
approximated by low-rank matrices. The method of H-matrices was developed by
Hackbusch and others [33]. Papers [9], [46] have shown that H-matrices can be
used as preconditioners (e.g., the hierarchical LU factorisation, denoted by H-LU).
The preconditioners based on the H-matrices are fast to compute (the cost being
O(n log2 n)). As the accuracy of the H-matrix approximation increases fewer iter-
ation steps are required. The H-matrix approximation with high accuracy can be
used as a direct solver.

Domain decomposition methods together with H-matrix techniques were applied
in [35], [38].

A brief description of the HDD method

The idea of the HDD method belongs to Hackbusch ([34]). Let k be the maximal
rank which is used for H-matrices (see Chapter 5), nh and nH the numbers of
degrees of freedom on a fine grid and on a coarse grid, respectively. In order to
better understand the HDD method, we now list its properties:

1. The complexities of the one-grid version and two-grid version of HDD are

O(k2nh log3 nh) and O(k2√nhnH log3√nhnH)

respectively.

2. The storage requirements of the one-grid version and two-grid version of HDD
are

O(knh log2 nh) and O(k
√
nhnH log2√nhnH)

respectively.

3. HDD computes two discrete hierarchical solution operators Fh and Gh such
that:

uh = Fhfh + Ghgh, (1.4)
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1 Introduction

where uh(fh, gh) is the FE solution of (1.1), fh the FE right-hand side, and gh
the FE Dirichlet boundary data. Both operators Fh and Gh are approximated
by H-matrices.

4. HDD allows one to compute two operators FH and Gh such that:

uh = FHfH + Ghgh, (1.5)

where FH := FhPh←H, Ph←H is the prolongation matrix (see Section 4.3.6),
fH the FE right-hand side defined on a coarse scale with step size H and FH
requires much less computational resources as Fh.

5. A very low cost computation of different functionals of the solution is possible,
for example:

a) Neumann data ∂uh

∂n
at the boundary,

b) mean values
∫
ω
uhdx, ω ⊂ Ω, solution at a point or solution in a small

subdomain ω,

c) flux
∫
C
∇u−→n dx, where C is a curve in Ω.

6. It provides the possibility of finding uh restricted to a coarser grid with reduced
computational resources.

7. Because of (1.4), HDD shows big advantages in complexity for problems with
multiple right-hand sides and multiple Dirichlet data.

8. HDD is easily parallelizable.

9. If the initial problem contains repeated patterns then the computational re-
sources can be drastically reduced.

In particular, the HDD method is well-suited for solving multiscale problems.
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The diagram in Fig. 1.1 represents the content of this work.

Variational formulation

           of the problem

Discrete problem cluster tree

clusters

FEM

block cluster tree

admissibility

    condition
Solution of multiscale problems,

computing functionals of the 

solution, etc.

Hierarchical Domain

Decomposition Method

Domain Decomposition

             Methods 

DDtree

subdomain

boundary

Implementation

Hierarchical Matrices

Figure 1.1: Diagram of the dissertation. A→ B means that A is applied to B.

This dissertation is structured as follows:

Chapter 2. Multiscale Problems and Methods for their Solution

The L∞ coefficients in (1.2) may exhibit multiscale (e.g., jumping as well as oscil-
latory) behaviour. We give a short introduction to multiscale problems and briefly
describe well established methods for their solution. We consider the homogeniza-
tion method and the multiscale finite element method (MsFEM). To explain the
resonance effect which appears in MsFEM we provide the error estimates. At the
end of the chapter we offer two examples of multiscale problems.

Chapter 3. Classical Theory of the FE Method

We describe important notation, methods and theorems from numerical analysis.
We repeat the definitions of Sobolev spaces Hk, Hk

0 and properties of these spaces.
We give a brief introduction to the variational formulation of the initial problem.
Then we explain how to apply the finite element method to get a system of linear
equations. We also recall error estimates for the chosen triangulation and chosen
basis functions.

Chapter 4. Hierarchical Domain Decomposition Method

The HDD method includes two recursive algorithms: “Leaves to Root” and “Root
to Leaves”. The first one creates a set of auxiliary boundary-to-boundary and
domain-to-boundary mappings and then the set of main boundary-to-interface and
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1 Introduction

domain-to-interface mappings. The second algorithm applies the main mappings to
compute the solution. There are three modifications of the HDD method: HDD
with the right-hand side fh ∈ VH ⊂ Vh, HDD with truncation of the small scales
and a combination of the first and the second modifications. One may see the com-
parison of HDD with truncation of the small scales with the known MsFEM method
[40]. We show that HDD is appropriate for the problems with repeated patterns.
In conclusion we show how to apply HDD to compute different functionals of the
solution.

Chapter 5. Hierarchical Matrices

The hierarchical matrices (H-matrices) have been used in a wide range of appli-
cations since their introduction in 1999 by Hackbusch [33]. They provide a format
for the data-sparse representation of fully-populated matrices. The main idea in
H-matrices is the approximation of certain subblocks of a given matrix by low-rank
matrices. At the beginning we present two examples of H-matrices (see Fig. 5.1).
Then we list the main steps which are necessary for building hierarchical matrices:
construction of the cluster tree, choice of the admissibility condition and construc-
tion of the block cluster tree. We introduce the class of low-rank matricesR(k, n,m),
where k, n, m are integers, k ≪ min{n,m}, and then the low-rank arithmetic. We
briefly describe how to perform the hierarchical matrix operations efficiently (with
almost linear complexity). It will be shown that the cost of the basic H-matrix
arithmetic (matrix-matrix addition, matrix-matrix multiplication, inversion of ma-
trices) is not greater than O(n logα n), α = 1, 2, 3 (see Theorem 5.10.1). We then
present two procedures for extracting a part of a hierarchical matrix (see Algorithm
5.9.3) and converting one H-matrix format to another one. The last two procedures
are needed for adding two hierarchical matrices with different block structures (see
Lemma 5.10.8).

Chapter 6. Application of H-Matrices to HDD

The exact matrix arithmetic in the HDD method can be replaced by the approx-
imate H-matrix arithmetic to improve efficiency. Here we will explain the construc-
tion of H-matrix approximations for the domain-to-boundary (denoted by Ψf) and
boundary-to-boundary (denoted by Ψg) mappings, which are essential for the defini-
tion of the HDD method. It will be shown that the boundary-to-interface mapping
(denoted by Φg) can be approximated by a low-rank matrix and the domain-to-
interface mapping (denoted by Φf ) by an H-matrix. Letting ω = ω1 ∪ ω2, where
ω, ω1, ω2 ⊂ Ω, we also provide the algorithms for building Ψg

ω from Ψg
ω1

and Ψg
ω2

(see
Algorithms 6.3.1 and 6.3.2) and the algorithms for building Ψf

ω from Ψf
ω1

and Ψf
ω2

(see Algorithms 6.3.3 and 6.3.4).

Chapter 7. Complexity and Storage Requirement of HDD

The HDD method consists of two algorithms “Leaves to Root” and “Root to
Leaves”. Using the costs of the standard H-matrix operations, we estimate the
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computational complexities of both algorithms. The first algorithm produces a set
of domain-to-interface mappings and boundary-to-interface mappings. The second
algorithm applies this set of mappings to compute the solution (only matrix-vector
multiplications are required).

Let nh, nH be the respective numbers of degrees of freedom of the fine grid Th and
of the coarse grid TH . We prove that the complexities of the algorithms “Leaves to
Root” and “Root to Leaves” are

O(k2nh log3 nh) and O(knh log2 nh),

respectively (cf. Lemmas 7.2.3 and 7.3.3) and the storage requirement isO(knh log2 nh)
(see Lemma 7.3.4). As we show in Lemmas 7.4.4 and 7.4.3, the complexities of the
same algorithms for the two-grid modification are

O(k2√nhnH log3√nhnH) and O(k
√
nhnH log

√
nh log

√
nH)

The storage requirement for the two-grid modification of HDD is (cf. Lemma 7.4.1)

O(k
√
nhnH log

√
nh log

√
nH).

Chapter 8. Parallel Computing

We present the parallel HDD algorithm and estimate parallel complexities of the
algorithms “Leaves to Root” and “Root to Leaves”. We consider the parallel model,
which consists of q processors and a global memory which can be accessed by all
processors simultaneously. The communication time between processors is negligible
in comparison with the computational time. For a machine with q processors the
parallel complexity of the algorithm “Leaves to Root” is estimated (Lemma 8.3.3)
by

C ′k2√nh log2√nh + C̃k2nh
q0.45

+ C ′′(1− 3r

4r
)
√
nhn

2
min + Ck2nh

q
log3 nh

q

where C̃, C ′, C ′′, C ∈ R+.
The parallel complexity of the algorithm “Root to Leaves” on a machine with q
processors is estimated (Lemma 8.3.6) by

Ck2nh
q

log2 nh
q

+
28k
√
nh

q0.45
, C ∈ R+.

Chapter 9. Implementation of the HDD Package

The result of the implementation is a package of programs which uses the fol-
lowing libraries: HLIB, LAPACK, BLAS and external triangulators (for complex
geometry). We present the data structures for the triangulation, the grid hierarchy
and the HDD method. We describe the connection between the data structures
“vertex”, “triangle”, “edge”, “subdomain”, “boundary” and “hierarchical decompo-
sition tree”. Then, we present the algorithms of the hierarchical decomposition and
of the mesh refinement.
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1 Introduction

Four modifications of HDD (numbered by subindex) which require less computa-
tional resources than the original HDD were implemented. HDD1 works with the
right-hand side defined only on a coarse scale (see Section 4.3.6). HDD2 computes
the solution in all ω with diam(ω) ≥ H , and the mean value of the solution inside
all ω with diam(ω) < H . The mean value is a functional of the right-hand side and
the Dirichlet data (see Section 4.4.5). HDD3 is a combination of HDD1 and HDD2.
HDD4 is developed for problems with a homogeneous right-hand side (see Section
4.4.8).

Chapter 10. Numerical Results

We demonstrate numerical experiments to confirm the estimates of the H-matrix
approximation errors (Chapter 5), the computational times and the needed storage
requirements (Chapter 7).

We demonstrate almost linear complexities of the algorithms “Leaves to Root”
and “Root to Leaves”. We also show an almost linear dependence of the memory
requirement and the executing time on the number of degrees of freedoms. Next,
we apply HDD to the problem with highly jumping coefficients (e.g., skin problem)
and to problems with strong oscillatory coefficients, e.g.,

α(x, y) = 2 + sin(ν · x) sin(ν · y),

where ν is the frequency (see Table 10.17).
The solution, obtained by the HDD method, is compared with the solutions ob-

tained by the preconditioned conjugate gradient (PCG) method and the direct H-
Cholesky method. It is shown that the HDD method requires less memory than
the direct H-matrix inverse and a little bit more than the PCG method with H-
Cholesky preconditioner. But note that HDD computes the solution operators Fh
and Gh in (1.4) whereas PCG only the solution. Other experiments demonstrate the
possibility of obtaining a solution on a coarse scale and the possibility of truncation
of the small scales. Finally, it will be shown that HDD is very efficient for problems
with many right-hand sides.
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2 Multiscale Problems and Methods
for their Solution

2.1 Introduction

In the last years, we have seen large growth of activities in multiscale modeling
and computating, with applications in material sciences, fluid mechanics, chemistry,
biology, astronomy and other branches of science.

The basic set-up of a multiscale problem is as follows. We have a system whose
microscopic behaviour, denoted by the state variable u, is described by a given
microscopic model. This microscopic model is too expensive to be used in dense
detail. Instead, we are interested in the macroscopic behaviour of the system. We
want to use the microscopic model to extract all microscale details to build a good
approximation for the macroscale behaviour of the system. Our purpose is not
to solve dense microscale problems in detail, but to use a more efficient combined
macro-micro modeling technique.

There has been a long history of studying multiscale problems in applied math-
ematics and computational science (see [7]). Multiscale problems are multiphysical
in nature; namely, the processes at different scales are governed by physical laws
of different characters: for example, quantum mechanics at one scale and classical
mechanics at another. Well-known examples of problems with multiple length scales
include turbulent flows, mass distribution in the universe, weather forecasting and
ocean modeling. Another example is an elliptic equation with a highly oscillatory
coefficient arising in material science or flow through porous media.

On the computational side, several numerical methods have been developed which
address explicitly the multiscale nature of the solutions. These include the upscal-
ing method ([21]), the averaging method, the homogenization method, the hetero-
geneous multiscale method [18], [4] the finite difference heterogeneous multiscale
method [3] (see also [19], [20]).

Another interesting approach is offered in [39]. The authors consider an elliptic
homogenization problems in a domain Ω ⊂ Rd with n+1 separated scales and reduce
it to elliptic one-scale problems in dimension (n+ 1)d.

Example 2.1.1 An example in Fig. 2.1 shows the solution of a multiscale problem.
On the fine scale we see a complex behaviour of the solution, but on the coarse scale
the solution looks like the function sin(x). For many practical applications, the fine
properties of the solution are of no interest and it suffices to find the macro properties
of the solution.

Despite significant progress, purely analytical techniques are still very limited when
it comes to problems of practical interest.
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Figure 2.1: An example of a multiscale solution (wavy curve) and its macroscopic
approximation.

2.2 Multiscale Methods

Homogenization

There exist a lot of composite materials with a large number of heterogeneties
(inclusions or holes). One can try to characterise the properties of such a mate-
rial locally, i.e., on the microscale. But in practice, it is much more important to
know macroscale characteristics. In the frame of the heterogenization theory, the
heterogeneous material is replaced by a fictitious one - the homogenized material.
The behaviour of this homogenized material should be as close as possible to the
behaviour of the composite itself. One tries to describe the global properties of the
composite by taking into account the local properties of its constituents.
Homogenization is a way of extracting an equation for the coarse scale behaviour
that takes into account the effect of small scales (see [12], [42]). The fine scales
cannot be just ignored because the solution on the coarser scales depends on the
fine scales. After homogenization the initial equation does not contain fine scales
and is therefore much easier to solve.
For the periodic case, the homogenization process consists in replacing the initial
partial differential equation with rapidly oscillating coefficients that describe the
composite material by a partial differential equation with the fictitious homogenized
coefficients. The homogenized coefficients are obtained by solving a non oscillating
partial differential equation on a period of reference.
Let Ω = (0, 1)× (0, 1) and f ∈ L2(Ω). Let α ∈ L∞(Ω) be a positive function such
that

0 < α ≤ α(
x

ε
) ≤ α < +∞,

where α and α are constants. We denote the nodal point in Ω by the bold shrift
(e.g., x, y). Assume α = α(x

ε
) is periodic with period ε. ε characterizes the small

scale of the problem. We assume α(y) is periodic in Y and smooth. The model
problem is:

−∇α(x)∇u = f in Ω,
u = 0 on ∂Ω.

(2.1)

Definition 2.2.1 We denote the volume average over Y as 〈·〉 = 1
‖Y ‖
∫
Y
dy.
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2.2 Multiscale Methods

For an analysis of this and many other equations see [12], [17].
With classical finite element methods, one can obtain a good approximation only
if the mesh size h is smaller than the finest scale, i.e., h ≪ ε. But the memory
requirements and CPU time grow polynomially with h−1 and soon become too large.
One of the homogenization methods is the so-called multiple-scale method. Recently
there have been many contributions on multiscale numerical methods, including the
papers [6] and [17]. It seeks an asymptotic expansion of uε of the form

uε(x) = u0(x) + εu1(x,
x

ε
)− εθε +O(ε2), (2.2)

where x
ε

is the fast variable. The value of uε at the point x depends on two scales.
The first one corresponds to x, which describe the position in Ω. The other scale
corresponds to x

ε
, which describe the local position of the point. The first variable,

x, is called the macroscopic (or slow) variable. The second one, x
ε
, is called the

microscopic (or rapidly oscillating) variable. u0 is the solution of the homogenized
equation

∇α∗∇u0 = f in Ω, u0 = 0 on ∂Ω, (2.3)

α∗ is the constant effective coefficient, given by (see Def. 2.2.1)

α∗ij = 〈αik(y)(δkj −
∂

∂yk
χj)〉,

and χj is the periodic solution of

∇yα(y)∇yχ
j =

∂

∂yi
αij(y)

with zero mean, i.e., 〈χj〉 = 0. It is known that α∗ is symmetric and positive definite.
Moreover, we have

u1(x,y) = −χj ∂u0

∂xj
.

Since in general u1 6= 0 on ∂Ω, the boundary condition u|∂Ω = 0 is enforced through
the first-order correction term θε, which is given by

∇α(
x

ε
)∇θε = 0 in Ω, θε = u1(x,

x

ε
) on ∂Ω.

Under certain smoothness conditions, one can also obtain point-wise convergence of
u to u0 as ε → 0.The condition can be weakened if the convergence is considered
in the L2(Ω) space. In [41] the authors use the asymptotic structure (2.2) to reveal
the subtle details of the multiscale method and obtain sharp error estimates.

Heterogeneous multiscale method and multiscale finite element method

The heterogeneous multiscale method (HMM) [18],[19], [4] and the multiscale fi-
nite element method (MsFEM) [15] have been developed during the last time for
solving, in particular, elliptic problems with multiscale coefficients. Comparison of
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2 Multiscale Problems and Methods for their Solution

these two methods is done in [50]. Three examples when HMM can fail, are illus-
trated in [22] pp.105-107.
The main idea behind the Multiscale Finite Element Method is to build the local
behaviour of the differential operator into the basis functions in order to capture the
small scale effect while having a relative coarse grid over the whole domain. This is
done by solving the equation on each element to obtain the basis functions, rather
than using the linear basis functions. In [55], the authors apply MsFEM to the
singularly perturbed convection-diffusion equation with periodic as well as random
coefficients. They also consider elliptic equations with discontinuous coefficients and
non-smooth boundaries. Both methods (HMM and MsFEM) solve only a subclass
of the common multiscale problem. For example, HMM works like a fine scale solver
without scale separation or any other special assumptions of the problem. Both
methods for problems without scale separation do not give an answer with reason-
able accuracy. In [50] the authors show that MsFEM incurs an O(1) error if the
specific details of the fine scale properties are not explicitly used. They show also
that for problems without scale separation HMM and MsFEM may fail to converge.
HMM offers substantially savings of cost (compared to solve the full fine scale prob-
lems) for problems with scale separation. The advantage of both methods is their
parallelizability.

Resonance Effect in MsFEM

For more information see please the original [40]. The variational problem of (2.1)
is to seek u ∈ H1

0 (Ω), such that

a(u, v) = f(v), ∀v ∈ H1
0(Ω), (2.4)

where

a(u, v) =

∫

Ω

αij
∂v

∂xi

∂u

∂xj
dx and f(v) =

∫

Ω

fvdx. (2.5)

A finite element method is obtained by restricting the weak formulation (2.4) to
a finite-dimensional subspace of H1

0 (Ω). Let an axi-parallel rectangular grid Th be
given (Fig. 3.1). In each element K ∈ Th, we define a set of nodal basis {φiK , i =
1, ..., d} with d being the number of nodes of the element. Let xi = (xi, yi) (i =
1, ..., d) be the nodal points in K. We neglect the subscript K when bases in one
element are considered. The function φi satisfies

∇α(x)∇φi = 0 in K ∈ Th. (2.6)

Let xj ∈ K (j = 1, ..., d) be the nodal points of K. As usual the author requires
φi(xj) = δij . One needs to specify the boundary conditions to make (2.6) a well-
posed problem. The authors assume in [40] that the basis functions are continuous
across the boundaries of the elements, so that Vh = span{φi : i = 1, ..., N} ⊂ H1

0 (Ω).
Then they rewrite the problem (2.4): find uh ∈ Vh such that

a(uh, v) = f(v), ∀v ∈ Vh. (2.7)

In [40] the authors describe two methods how to set up the boundary conditions for
(2.6). We do not describe these methods here because there are many other variants
and this is technical. In [41] the authors proved the following result.
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2.2 Multiscale Methods

Theorem 2.2.1 Let u be the solution of the model problem (2.1) and uh the solution
of the corresponding equation in weak form (2.7). Then, there exist positive constants
C1 and C2 independent of ε and h, such that

‖u− uh‖1,Ω ≤ C1h‖f‖0,Ω + C2(ε/h)
1
2 , (ε < h). (2.8)

Proof: see [15], [40], [55].
To prove (2.8) the authors use the fact that the base functions defined by (2.6) have
the same asymptotic structure as that of u; i.e.,

φi = φi0 + εφi1 − εθi + ... (i = 1, ..., d),

where φi0, φ
i
1, and θi are defined similarly as u0, u1, and θε (see (2.2)), respectively.

Note that applying the standard finite element analysis to MsFEM gives an pes-
simistic estimate O(h

ε
) in the H1 norm, which is only useful for h ≪ ε. In [40] the

authors prove that in the case of periodic structure the MsFEM method converges
to the correct effective solution as ε→ 0 independent of ε.
The following L2-norm error estimate

‖u− uh‖0,Ω ≤ C1h
2‖f‖0,Ω + C2ε+ C3‖uh − uh0‖l2(Ω), (2.9)

is obtained from (2.8) by using the standard finite element analysis (see [40]). Here
uh0 is the solution of (2.3), Ci > 0, (i = 1, 2, 3) are constants and ‖uh‖l2(Ω) =
(
∑

i u
h(xi)

2h2)1/2. It is also shown that ‖uh − uh0‖l2(Ω) = O(ε/h). Thus, we have

‖u− uh‖0,Ω = O(h2 + ε/h). (2.10)

It is clear that when h ∼ ε, the multiscale method attains large errors in both H1

and L2 norms. This fact is called the resonance effect, the effect between the grid
scale h and the small scale ε. To learn more about the resonance effect see [40].
In the same work, the authors propose an over-sampling technique to remove the
resonance effect. After application of this over-sampling technique, the convergence
in L2 norm is O(h2 + ε| log(h)|) for ε < h.
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2 Multiscale Problems and Methods for their Solution

2.3 Applications

Below we briefly consider two examples of multiscale problems to show that usual
numerical approaches are unsufficient and other efficient multiscale methods are
required. We hope that the HDD method, offered in this work, after some modifi-
cations can be applied for solving such types of problems.

A multiple scale model for porous media

Very important in modeling porous media is the use of different length scales.
Figure 2.2 shows an example of porous media consisting of different types of stones
on two length scales. Figure (a) demonstrates macroscale (the order is 10 meters),
figure (b) microscale (10−3 meters). On the large scale, we identify different types
of sand (stones). On the microscale, grains and pore channels are visible. In the
figure we see the transition zone from a fine sand to a coarse sand. The void space
is supposed to be filled with water. The behaviour of the liquid flow is influenced
by effects on these different length scales.
On each scale different physical processes are appearing and different mathematical
equations, which describe this processes are being used. More about the solving of
this problem see [8], [21].

(a)macroscopic scale (b)microscopic scale 

Figure 2.2: Two scales in a porous medium (see [8]).

A multiple scale model for tumor growth

In spite of the huge amount of resources that have been devoted to cancer research,
many aspects remain obscure for experimentalists and clinicials, and many of the
currently used therapeutic strategies are not entirely effective. One can divide the
models for modeling cancer into two approaches: continuum models, mathematically
formulated in terms of partial differential equations, and cellular automation (CA)
models. Significant progress in developing mathematical models was done with the
introduction of multiscale models. The tumor growth has an intrinsic multiple scale
nature. It involves processes occurring over a variety of time and length scales: from
the tissue scale to intracellular processes. The scheme of time and length scales is
figured in Fig. 2.3. The multiscale tumor model include: blood flow, transport into
the tissue of bloodborne oxygen, cell division, apoptosis etc. In the paper [5] the
authors have proposed a multiple scale model for vascular tumor growth in which
they have integrated phenomena at the tissue scale (vascular structural, adaptation,
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Figure 2.3: Example of time and length scales for modeling tumor growth.

and blood flow), cellular scale (cell-to-cell interaction), and the intracellular scale
(cell-cycle, apoptosis). To get more details see [5].
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3 Classical Theory of the FE Method

This Chapter contains classical results [31], [14]. We will hold on the original nota-
tion as in [31].

3.1 Sobolev Spaces

In this section we describe well known classical notation. Almost all material is
taken from the book [31].
Let Ω be a open subset of Rn. L2(Ω) consists of all Lebesque-measurable functions
whose squares on Ω are Lebesque-integrable.

3.1.1 Spaces Ls(Ω)

L1(Ω) = {f : Ω→ R measurable | ‖f‖L1(Ω) =
∫
Ω
|f |dx <∞}.

Let 1 < s <∞. Then

Ls(Ω) = {f : Ω→ R | |f |s ∈ L1, ‖f‖Ls(Ω) = (

∫

Ω

|f |sdx)1/s <∞}.

Let s =∞ and f : Ω→ R be measurable. Then define

‖f‖L∞(D) := inf{sup{|f(x)| : x ∈ D\A} : A is a set of measure zero }.

The definition of the space L∞(Ω) is:

L∞(Ω) = {f : Ω→ R measurable | ‖f‖L∞ <∞}

Theorem 3.1.1 L2(Ω) forms a Hilbert space with the scalar product

(u, v)0 := (u, v)L2(Ω) :=

∫

Ω

u(x)v(x)dx

and the norm

|u|0 := ‖u‖L2(Ω) :=

√∫

Ω

|u(x)|2dx.

Definition 3.1.1 u ∈ L2(Ω) has a weak derivative v := Dαu ∈ L2(Ω) if for the
latter v ∈ L2(Ω) holds:

(w, v)0 = (−1)|α|(Dαw, u)0 for all w ∈ C∞0 (Ω).
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3 Classical Theory of the FE Method

3.1.2 Spaces Hk(Ω), Hk
0
(Ω) and H−1(Ω)

Let k ∈ N ∪ {0}. Let Hk(Ω) ⊂ L2(Ω) be the set of all functions having weak
derivatives Dαu ∈ L2(Ω) for |α| ≤ k:

Hk(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for |α| ≤ k}.

Theorem 3.1.2 Hk(Ω) forms a Hilbert space with the scalar product

(u, v)k := (u, v)Hk(Ω) :=
∑

|α|≤k
(Dαu,Dαv)L2(Ω)

and the (Sobolev) norm

‖u‖k := ‖u‖Hk(Ω) :=

√∑

|α|≤k
‖Dαu‖2L2(Ω). (3.1)

Definition 3.1.2 The completion of C∞0 (Ω) in L2(Ω) with respect to the norm (3.1)
is denoted by Hk

0 (Ω).

Theorem 3.1.3 H0
0 (Ω) = H0(Ω) = L2(Ω).

Proof: see p.117 in [31].

The Sobolev space denoted here by Hk(Ω) is denoted by W k
2 (Ω) in other sources.

Definition 3.1.3 H−1(Ω) is the dual of H1
0 (Ω), i.e., H−1(Ω) = {f |f is a bounded

linear functional on H1
0(Ω)}.

and the norm is

|u|−1 = sup{|(u, v)L2(Ω)|/|v|1 : 0 6= v ∈ H1
0 (Ω)}.

3.2 Variational Formulation

Let us consider the following elliptic equation

Lu = f in Ω, (3.2)

L =
∑

|α|≤m

∑

|β|≤m
(−1)|β|Dβaαβ(x)Dα. (3.3)

We assume the homogeneous Dirichlet boundary conditions

u = 0,
∂u

∂n
= 0 , ..., (

∂

∂n
)m−1u = 0 on Γ = ∂Ω, (3.4)

which are only meaningful if Γ is sufficiently smooth. Let u ∈ C2m(Ω) ∩ Hm
0 (Ω)

be a classical solution of (3.2) and (3.4). To derive the variational formulation of
(3.2)-(3.4) we multiply equation (3.2) by v ∈ C∞0 (Ω) and integrate the result over
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3.3 Inhomogeneous Dirichlet Boundary Conditions

the domain Ω.
Since v ∈ C∞0 (Ω), the integrand vanishes in the proximity of Γ. After integration
by parts we obtain the variational formulation (the so-called ’weak’ formulation):

∑

|α|,|β|≤m

∫

Ω

aαβ(D
αu(x))(Dβv(x))dx =

∫

Ω

f(x)v(x)dx (3.5)

for all v ∈ C∞0 (Ω).

Definition 3.2.1 The bilinear form and the functional are

a(u, v) :=
∑

|α|,|β|≤m

∫

Ω

aαβ(D
αu(x))(Dβv(x))dx, (3.6)

ϕ(v) :=

∫

Ω

f(x)v(x)dx.

Theorem 3.2.1 Let aαβ ∈ L∞(Ω). The bilinear form defined by (3.6) is bounded
on Hm

0 (Ω)×Hm
0 (Ω).

Proof: see p.146 in [31].

Definition 3.2.2 The variational formulation ( or weak formulation) of the bound-
ary value problem (3.2)-(3.4) is:

find u ∈ Hm
0 (Ω) with a(u, v) = ϕ(v) for all v ∈ C∞0 (Ω). (3.7)

The existence and uniqueness of the solution in the weak form can be proved by the
Lax-Milgram Lemma.

Theorem 3.2.2 (Lax-Milgram lemma)
Let V be a Hilbert space, let a(·, ·) : V × V → R be a continuous V-elliptic bilinear
form, and let ϕ : V → R be a continuous linear form. Then the abstract variational
problem: Find an element u such that

u ∈ V and ∀v ∈ V, a(u, v) = ϕ(v),

has one and only one solution.

Proof: see [16].

3.3 Inhomogeneous Dirichlet Boundary Conditions

Let us consider the boundary value problem

Lu = f in Ω, u = g on Γ, (3.8)

where L is a differential operator of second order. The variational formulation of
the boundary value problem reads:

find u ∈ H1(Ω) with u = g on Γ such that (3.9)

a(u, v) = ϕ(v) for all v ∈ H1
0 (Ω). (3.10)
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3 Classical Theory of the FE Method

Remark 3.3.1 For the solvability of Problem (3.9),(3.10) it is necessary that:

there exists a function u0 ∈ H1(Ω) with u0|Γ = g. (3.11)

If such function u0 is known, then we obtain the following weak formulation:

Let u0 satisfy (3.11); find w ∈ H1
0(Ω), such that (3.12)

a(w, v) = ϕ̃(v) := ϕ(v)− a(u0, v) for all v ∈ H1
0 (Ω). (3.13)

The advantage of this formulation is that the functions w and v are from the same
space H1

0 (Ω).

Remark 3.3.2 In this work we assume that g and Ω are such that u0 from the above
remark exists.

Theorem 3.3.1 (Existence and uniqueness)
Let the following problem

find u ∈ Hm
0 (Ω) with a(u, v) = ϕ(v) for all v ∈ Hm

0 (Ω) (3.14)

(with homogeneous boundary values) be uniquely solvable for all ϕ ∈ H−1(Ω). Then
Condition (3.11) is sufficient, and necessary, for the unique solvability of Problem
(3.9),(3.10).

Proof: see Theorem 7.3.5 in [31].

The variational formulation is the foundation of the Ritz-Galerkin discretisation
method.

3.4 Ritz-Galerkin Discretisation Method

Suppose we have a boundary value problem in its variational formulation:

Find u ∈ V, so that a(u, v) = ϕ(v) for all v ∈ V, (3.15)

where we are thinking, in particular, of V = Hm
0 (Ω) or V = H1(Ω).

We assume that a(·, ·) is a bounded bilinear form defined on V × V , and that ϕ is
from the dual space V ′:

|a(u, v)| ≤ Cs‖u‖V ‖v‖V for u, v ∈ V, Cs ∈ R+

|ϕ(v)| ≤ C‖v‖V for v ∈ V, Cs ∈ R+.
(3.16)

The Ritz-Galerkin discretisation consists in replacing the infinite-dimensional space
V with a finite-dimensional space VN :

VN ⊂ V, dimVN = N <∞. (3.17)

Since VN ⊂ V , both a(u, v) and ϕ(v) are defined for u, v ∈ VN . Thus, we pose the
following problem:

Find uN ∈ VN , so that a(uN , v) = ϕ(v) for all v ∈ VN . (3.18)
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Definition 3.4.1 The solution of (3.18), if it exists, is called the Ritz-Galerkin
solution (belonging to VN) of the boundary value problem (3.15).

To calculate a solution we need a basis of VN . Let {b1, b2, ..., bN} be such a basis,

VN = span{b1, ..., bN}. (3.19)

For each coefficient vector v = {v1, ..., vN}T we define

P : Rn → VN ⊂ V, Pv :=

N∑

i=1

vibi. (3.20)

Thus, we can rewrite the problem (3.18):

Find uN ∈ VN , so that a(uN , bi) = ϕ(bi) for all i = 1, ..., N. (3.21)

Proof: see [31], p.162.

We now seek u ∈ RN so that uN = Pu.

Theorem 3.4.1 Assume (3.19). The N × N-matrix A = (Aij) and the N-vector
c = (c1, ..., cN)T are defined by

Aij := a(bj , bi) (i, j = 1, ..., N), (3.22)

ci := ϕ(bi) (i = 1, ..., N), (3.23)

Then the problem (3.18) and
Au = c (3.24)

are equivalent.

If u is a solution of (3.24), then uN =

N∑

j=1

ujbj solves the problem (3.18). In the

opposite direction, if uN is a solution of (3.18), then u := P−1uN is a solution of
(3.24).
Proof: see [31], p.162.
The following theorem estimates the Ritz-Galerkin solution.

Theorem 3.4.2 (Cea) Assume that (3.16),(3.17) and

inf{sup{|a(u, v)| : v ∈ VN , ‖v‖V = 1} : u ∈ VN , ‖u‖V = 1} = ǫN > 0 (3.25)

hold. Let u ∈ V be a solution of the problem (3.15), and let uN ∈ VN be the Ritz-
Galerkin solution of (3.18). Then the following estimate holds:

‖u− uN‖V ≤ (1 +
Cs
ǫN

)infw∈VN
‖u− w‖V (3.26)

with Cs from (3.16). Note that infw∈VN
‖u− w‖V is the distance from the function

u to VN .

Proof: see [31], p.168.
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3.5 FE Method

3.5.1 Linear Finite Elements for Ω ⊂ R2

The method of finite elements (FE) is very common for the numerical treatment of
elliptic partial differential equations. This method is based on the variational formu-
lation of the differential equation. Alternative methods to FE are finite difference
methods and finite volume methods, but FE can be applied to the problems with
more complicated geometry.

First, we partition the given domain Ω into (finitely many) subdomains (elements).
In 2D problems we use triangles.

Definition 3.5.1 A partition τ = {T1, T2, ..., TM} of Ω into triangular elements is
called admissible (see an example in Fig. 3.1) if the following conditions are fulfilled:

1. Ti (1 ≤ i ≤ N) are open triangles.

2. Ω = ∪Mi=1T i.

3. If T i ∩ T j consists of exactly one point, then it is a common vertex of Ti and
Tj.

4. If for i 6= j, T i∩T j consists of more than one point, then T i∩T j is a common
edge of Ti and Tj.

Examples of inadmissible triangulations:

1. Two triangles have a common edge, but in one triangle this edge is smaller
than in another.

2. The intersection of two triangles is not empty.

An inadmissible triangulation is not allowed, because it is not clear how to require
continuity from one triangle to other.

Figure 3.1: An example of an admissible triangulation.

Let τ be an admissible triangulation. The point x is called a node (of τ) if x is
a vertex of one of the Ti ∈ τ .
We define VN as the subspace of the piecewise linear functions:

VN := {u ∈ C0(Ω) : u = 0 on ∂Ω; on each Ti ∈ τ the function u
agrees with a linear function, i.e., u(x, y) = ai1 + ai2x+ ai3y on Ti}.

(3.27)
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Remark 3.5.1 In the case of inhomogeneous boundary conditions, e.g. u = g on
∂Ω we delete the requirement u = 0 on ∂Ω.

Let xi (1 ≤ i ≤ N) be the nodes of τ . For an arbitrary set of numbers {ui}i=1..N

there exists exactly one u ∈ VN with u(xi) = ui. It may be written as u =

N∑

i=1

uibi,

where the basis functions bi are characterised by

bi(x
i) = 1, bi(x

j) = 0 j 6= i. (3.28)

If T ∈ τ is a triangle with the vertices xi = (xi, yi) and x′ = (x′, y′), x′′ = (x′′, y′′),
then

bi(x, y) =
(x− x′)(y′′ − y′)− (y − y′)(x′′ − x′)
(xi − x′)(y′′ − y′)− (yi − y′)(x′′ − x′)

on T. (3.29)

We are interested in the bilinear form, associated to the initial equation:

a(u, v) =

∫

Ω

α(x)〈∇u,∇v〉dx. (3.30)

The coefficients of the stiffness matrix A are computed by the following formula:

Aij = a(bj , bi) =
∑

k

∫

Tk

α(x)〈∇bj ,∇bi〉dx. (3.31)

1. If i = j, we have to integrate by all triangles which meet the vertex xi.

2. If i 6= j, we have to integrate by all triangles which contain both vertices xi

and xj .

3. Aij = 0 if xi and xj are not directly connected by the side of a triangle.

Thus, we obtain a data-sparse matrix.

Example 3.5.1 If we choose the basis functions as in (3.29) and the bilinear form
by a(u, v) =

∫
Ω
〈∇u,∇v〉dx, then for inner nodes

Lii = 4, Aij = −1 xi−xj = (0,±h) or (±h, 0), Aij = 0 otherwise; (3.32)

Remark 3.5.2 To calculate Aij =

∫

Tk

α(x)〈∇bj ,∇bi〉dx numerically we use the

basic three points quadrature formula on a triangle (see Table 3.1).
If bi ∈ P 1, then ∇bi = const,∇bj = const and the coefficients Aij are

Aij =

∫

Tk

α(x)〈∇bj,∇bi〉dx = 〈∇bj ,∇bi〉 ·
3∑

k=1

α(vk)wk, where

vk = vk(x, y) from (3.35), wk from Tables (3.1),(3.2)

(3.33)
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i weights wi di1 di2 di3

1 0.33(3) 0.5 0.5 0.0
2 0.33(3) 0.0 0.5 0.5
3 0.33(3) 0.5 0.0 0.5

Table 3.1: The coefficients of the basic 3-point quadrature rule for a triangle (used
in (3.35) and (3.33)). This rule calculates exactly the value of integrals
for polynomial degree 2 (see [16], [54]).

Remark 3.5.3 We compute the FE right-hand side c by the following formula:

cj :=

∫

supp bj

fbjdx, (3.34)

where j = 1, ..., N and f is the right-hand side in (3.8). For non-zero Dirichlet
boundary data see (3.13).

Remark 3.5.4 It makes sense to apply 12-point quadrature rule if the discretisation
error is smaller than the quadrature error. If the discretisation error is larger than
the quadrature error, it is reasonable to apply the 3-point quadrature rule.

i weights wi di1 di2 di3

1 0.050844906370207 0.873821971016996 0.063089014491502 0.063089014491502
2 0.050844906370207 0.063089014491502 0.873821971016996 0.063089014491502
3 0.050844906370207 0.063089014491502 0.063089014491502 0.873821971016996
4 0.116786275726379 0.501426509658179 0.249826745170910 0.249826745170910
5 0.116786275726379 0.249826745170910 0.501426509658179 0.249826745170910
6 0.116786275726379 0.249826745170910 0.249826745170910 0.501426509658179
7 0.082851075618374 0.636502499121399 0.310352451033785 0.053145049844816
8 0.082851075618374 0.636502499121399 0.053145049844816 0.310352451033785
9 0.082851075618374 0.310352451033785 0.636502499121399 0.053145049844816
10 0.082851075618374 0.310352451033785 0.053145049844816 0.636502499121399
11 0.082851075618374 0.053145049844816 0.310352451033785 0.636502499121399
12 0.082851075618374 0.053145049844816 0.636502499121399 0.310352451033785

Table 3.2: The coefficients of the basic 12-point quadrature rule for a triangle (used
in (3.35) and (3.33)). This rule calculates exactly the value of integrals
for polynomial degree 6 (see [16], [54]).

If (x1, y1), (x2, y2), (x3, y3) are coordinates of the vertices of triangle, then we define
the new quadrature points:

vi(x, y) := (di1x1 + di2x2 + di3x3, di1y1 + di2y2 + di3y3), i = 1, 2, 3, (3.35)

where the coefficients dij are defined in Table 3.2.
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3.5.2 Error Estimates for Finite Element Methods

In this subsection we use the notation uh besides uN in (3.18).
We suppose that

τ is an admissible triangulation of Ω ⊂ R2,
VN is defined by (3.27), if V = H1

0 (Ω),
VN is as in Remark (3.5.1), if V = H1(Ω),

(3.36)

There are two important theorems which allow to estimate |u− uh|.

Theorem 3.5.1 Assume that conditions (3.36) hold for τ , VN , and V . Let α0 be
the smallest interior angle of all Ti ∈ τ , while h is the maximum length of the sides
of all Ti ∈ τ . Then

infv∈VN
‖u− v‖Hk(Ω) ≤ C ′(α0)h

2−k‖u‖H2(Ω) for k = 0, 1 and all u ∈ H2(Ω) ∩ V.
(3.37)

Proof: see [31], pp.187-188.
For the next theorem we need a new regularity condition on the adjoint problem to
(3.15).

Definition 3.5.2 The following problem is called the adjoint problem to (3.15).

Find u ∈ V, so that a∗(u, v) = ϕ(v) for all v ∈ V, (3.38)

where a∗(u, v) := a(v, u).

The new regularity condition is:

For each ϕ ∈ L2(Ω) the problem (3.38)
has a solution u ∈ H2(Ω) ∩ V with |u|2 ≤ CR|ϕ|0.

(3.39)

Theorem 3.5.2 (Aubin-Nitsche)
Assume (3.39), (3.16),

inf{sup{|a(u, v)| : v ∈ VN , ‖v‖V = 1} : u ∈ VN , ‖u‖V = 1} = ǫN ≥ ǫ̃ > 0, (3.40)

and
infv∈VN

|u− v|1 ≤ C0h|u|2 for all u ∈ H2(Ω) ∩ V. (3.41)

Let the problem (3.15) have the solution u ∈ V . Let uh ∈ VN ⊂ V be the finite-
element solution and VN is the space of finite elements of an admissible triangulation.
With a constant C1 independent of u and h, we get:

|u− uh|0 ≤ C1h|u|1. (3.42)

If the solution u also belongs to H2(Ω)∩V , then there is a constant C2, independent
of u and h, such that

|u− uh|0 ≤ C2h
2|u|2. (3.43)

Proof: see [31], pp.190-191.
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4 Hierarchical Domain
Decomposition Method

The idea of the HDD method belongs to Hackbusch ([34]). This Chapter contains
the main results of this work: the HDD method and its modifications.

4.1 Introduction

We repeat the initial boundary value problem to be solved:




−

2∑
i,j=1

∂
∂j
αij

∂
∂i
u = f in Ω ⊂ R2,

u = g on ∂Ω,

(4.1)

with αij = αji(x) ∈ L∞(Ω) such that the matrix function A(x) = (αij)i,j=1,2 satisfies
0 < λ ≤ λmin(A(x)) ≤ λmax(A(x)) ≤ λ for all x ∈ Ω ⊂ R2.
After a FE discretisation we obtain a system of linear equations Au = c.
In the past, several methods have been developed to combine theH-matrix technique
with the domain decomposition (DD) method (see [35], [38], [47]).

In [35] Hackbusch applies H-matrices to the direct domain decomposition (DDD)
method to compute A−1. In this method he decomposes the initial domain Ω into
p subdomains (proportional to the number of parallel processors). The respective
stiffness matrix A ∈ RI×I , I := I(Ω), is represented in the block-matrix form:

A =





A11 0 ... 0 A1Σ

0 A22 ... 0 A2Σ
...

...
. . .

...
...

0 0 ... App ApΣ
AΣ1 AΣ2 ... AΣp AΣΣ




. (4.2)

Here Aii ∈ RIi×Ii, where Ii is the index set of interior degrees of freedom in Ωi.
AiΣ ∈ RIi×IΣ, where IΣ := I \∪pi=1Ii is the index set of the degrees of freedom on the
interface. E.g., in the case of finite elements. Assume that A and all submatrices
Aii are invertible, i.e., the subdomain problems are solvable. Let S := AΣΣ −∑p

i=1AΣiA
−1
ii AiΣ. Then the inverse of A−1 can be defined by the following formula:

A−1 =





A−1
11 0 0 0

0
. . . 0 0

0 0 A−1
pp 0

0 0 0 0



+





A−1
11 A1Σ

...
A−1
pp ApΣ
−I



 [S−1AΣ1A
−1
11 , · · · , S−1AΣpA

−1
pp ,−S−1].

(4.3)
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This DDD method is easily parallelizable. Let d be the spatial dimension. Then the
complexity will be

O(
n

p
log np) +O(p1/dnd−1/d), or

O(nd/d+1 log nd/d+1), for p = O(1/d+ 1).

In [38], the authors start with the representation (4.2), apply the so-called direct
Schur complement method, which is based on the H-matrix technique and the do-
main decomposition method to compute the inverse of the Schur complement matrix
associated with the interface. Building the approximate Schur complements corre-
sponding to the subdomains Ωi costs O(NΩ logq NΩ) for an FEM discretisation,
where NΩ is the number of degrees of freedom in the domain Ω.

In [47] the authors introduce the so-called H-LU factorization which is based on
the nested dissection method [24]. The initial domain Ω is decomposed hierarchically
into three parts: Ωleft, γ and Ωright, such that

Ωleft ∩ Ωright = ∅ and Ωleft ∪ Ωright ∪ γ = Ω.

Such a decomposition yields a block structure in which large off-diagonal subblocks
of the finite element stiffness matrix are zero and remain zero during the computation
of the H-LU factorization. In this approach the authors compute the solution u as
follows u = U−1L−1c, where the factors L and U are approximated in the H-matrix
format.

The HDD method, unlike the methods described above, has the capability to
compute the solution on different scales retaining the information from the finest
scales. HDD in the one-scale settings performs comparable to the methods from
[35], [38], [47] with regards to the computational complexity.

4.2 Idea of the HDD Method

After Galerkin FE discretisation of (4.1) we construct the solution in the following
form

uh(fh, gh) = Fhfh + Ghgh, (4.4)

where uh(fh, gh) is the FE solution of the initial problem (1.1), fh the FE right-hand
side, and gh the FE Dirichlet boundary data. The hierarchical domain decomposi-
tion (HDD) method computes both operators Fh and Gh. .

Domain decomposition tree (TTh
)

Let Th be a triangulation of Ω. First, we decompose hierarchically the given
domain Ω (cf. [24]). The result of the decomposition is the hierarchical tree TTh

(see
Fig. 4.1). The properties of the TTh

are:

• Ω is the root of the tree,

• TTh
is a binary tree,
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4.2 Idea of the HDD Method

• If ω ∈ TTh
has two sons ω1, ω2 ∈ TTh

, then
ω = ω1 ∪ ω2 and ω1, ω2 have no interior point in common,

• ω ∈ TTh
is a leaf, if and only if ω ∈ Th.

The construction of TTh
is straight-forward by dividing Ω recursively in pieces. For

practical purposes, the subdomains ω1, ω2 must both be of size ≈ |ω|/2 and the
internal boundary

γω := ∂ω1\∂ω = ∂ω2\∂ω (4.5)

must not be too large (see Fig. 4.2).
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Figure 4.1: An example of the hierarchical domain decomposition tree TTh
.

Set of nodal points

Let I := I(Ω) and xi, i ∈ I, be the set of all nodal points in Ω (including nodal
points on the boundary). We define I(ω) as a subset of I with xi ∈ ω = ω. Similarly,

we define I(
◦
ω), I(Γω), I(γω), where Γω := ∂ω,

◦
ω = ω\∂ω, for the interior, for the

external boundary and for the internal boundary.

Idea

We are interested in computing the discrete solution uh of (4.1) in Ω. This is
equivalent to the computation of uh on all γω, ω ∈ TTh

, since I(Ω) = ∪ω∈TTh
I(γω).

These computations are performed by using the linear mappings Φf
ω, Φg

ω defined for
all ω ∈ TTh

. The mapping Φg
ω : RI(∂ω) → RI(γω) maps the boundary data defined on

∂ω to the data defined on the interface γω. Φf
ω : RI(ω) → RI(γω) maps the right-hand

side data defined on ω to the data defined on γω.

Notation 4.2.1 Let gω := u|I(∂ω) be the local Dirichlet data and fω := f |I(ω) be the
local right-hand side.

The final aim is to compute the solution uh along γω in the form uh|γω = Φf
ωfω +

Φg
ωgω, ω ∈ TTh

. For this purpose HDD builds the mappings Φω := (Φg
ω,Φ

f
ω), for all
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ω ∈ TTh
. For computing the mapping Φω, ω ∈ TTh

, we, first, need to compute the
auxiliary mapping Ψω := (Ψg

ω,Ψ
f
ω) which will be defined later.

Thus, the HDD method consists of two steps: the first step is the construction
of the mappings Φg

ω and Φf
ω for all ω ∈ TTh

. The second step is the recursive
computation of the solution uh. In the second step HDD applies the mappings Φg

ω

and Φf
ω to the local Dirichlet data gω and to the local right-hand side fω.

Notation 4.2.2 Let ω ∈ TTh
and

dω :=
(
(fi)i∈I(ω) , (gi)i∈I(∂ω)

)
= (fω, gω) (4.6)

be a composed vector consisting of the right-hand side from (4.1) restricted to ω and
the Dirichlet boundary values gω = uh|∂ω (see also Notation 4.2.1).

Note that gω coincides with the global Dirichlet data in (4.1) only when ω = Ω. For
all other ω ∈ TTh

we compute gω in (4.6) by the algorithm “Root to Leaves” (see
Section 4.3.5).

Assuming that the boundary value problem (4.1) restricted to ω is solvable, we
can define the local FE solution by solving the following discrete problem in the
variational form (see (3.7)):

{
aω(Uω, bj) = (fω, bj)L2(ω) , ∀ j ∈ I(

◦
ω),

Uω(xj) = gj, ∀ j ∈ I(∂ω).
(4.7)

Here, bj is the P 1-Lagrange basis function (see (3.29)) at xj and aω(·, ·) is the bilin-
ear form (see (3.30)) with integration restricted to ω and (fω, bj) =

∫
ω

fω bj dx.

Let Uω ∈ Vh be the solution of (4.7) in ω. The solution Uω depends on the Dirichlet
data on ∂ω and the right-hand side in ω. Dividing problem (4.7) into two subprob-
lems (4.8) and (4.9), we obtain Uω = Uf

ω + Ug
ω, where Uf

ω is the solution of

{
aω(U

f
ω , bj) = (fω, bj)L2(ω) , ∀ j ∈ I(

◦
ω),

Uf
ω (xj) = 0, ∀ j ∈ I(∂ω)

(4.8)

and Ug
ω is the solution of

{
aω(U

g
ω, bj) = 0, ∀ j ∈ I( ◦ω),

Ug
ω(xj) = gj, ∀ j ∈ I(∂ω).

(4.9)

If ω = Ω then (4.7) is equivalent to the initial problem (4.1) in the weak formulation.

4.2.1 Mapping Φω = (Φg
ω,Φ

f
ω)

We consider ω ∈ TTh
with two sons ω1, ω2. Recall that we used γω to denote the

interface in ω (see (4.5)). Considering once more the data dω from (4.6), Uf
ω from

(4.8) and Ug
ω from (4.9), we define Φf

ω(fω) and Φg
ω(gω) by

(
Φf
ω(fω)

)
i
:= Uf

ω (xi) ∀i ∈ I(γω) (4.10)
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and
(Φg

ω(gω))i := Ug
ω(xi) ∀i ∈ I(γω). (4.11)

Since Uω = Uf
ω + Ug

ω, we obtain

(Φω(dω))i := Φg
ω(gω) + Φf

ω(fω) = Uf
ω (xi) + Ug

ω(xi) = Uω(xi) (4.12)

for all i ∈ I(γω).
Hence, Φω(dω) is the trace of Uω on γω. Definition in (4.12) says that if the data dω
are given then Φω computes the solution of (4.7). Indeed, Φωdω = Φggω + Φffω.
Note that the solution uh of the initial global problem coincide with Uω in ω, i.e.,
uh|ω = Uω.

4.2.2 Mapping Ψω = (Ψg
ω,Ψ

f
ω)

Let us, first, define the mappings Ψf
ω from (4.8) as

(
Ψf
ω(dω)

)
i∈I(∂ω)

:= aω(U
f
ω , bi)− (fω, bi)L2(ω) , (4.13)

where Uf
ω ∈ Vh, Uf

ω |∂ω = 0 and

a(Uf
ω , bi)− (f, bi) = 0, for ∀i ∈ I( ◦ω).

Second, we define the mapping Ψg
ω from (4.9) by setting

(Ψg
ω(dω))i∈I(∂ω) := aω(U

g
ω, bi)− (fω, bi)L2(ω) = aω(U

g
ω, bi)− 0 = aω(U

g
ω, bi), (4.14)

where Ug
ω ∈ Vh and (Ψg

ω(dω))i = 0 for ∀i ∈ I( ◦ω).
The linear mapping Ψω, which maps the data dω given by (4.6) to the boundary

data on ∂ω, is given in the component form as

Ψω(dω) = (Ψω(dω))i∈I(∂ω) := aω(Uω, bi)− (fω, bi)L2(ω) . (4.15)

By definition and (3.11)-(3.13), Ψω is linear in (fω, gω) and can be written as
Ψω(dω) = Ψf

ωfω + Ψg
ωgω. Here Uω is the solution of the local problem (4.7) and

it coincides with the global solution on I(ω).

4.2.3 Φω and Ψω in terms of the Schur Complement Matrix

Let the linear system Au = Fc for ω ∈ TTh
be given. In Sections 4.3.1 and 4.3.3

we explain how to obtain the matrices A and F . A is the stiffness matrix for the

domain ω after elimination of the unknowns corresponding to I(
◦
ω \γω). The matrix

F comes from the numerical integration.
We will write for simplicity γ instead of γω. Thus, A : RI(∂ω∪γ) → RI(∂ω∪γ), u ∈
RI(∂ω∪γ), F : RI(ω) → RI(∂ω∪γ) and c ∈ RI(ω). Decomposing the unknown vector u
into two components u1 ∈ RI(∂ω) and u2 ∈ RI(γ), obtain

u =

(
u1

u2

)
.
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4 Hierarchical Domain Decomposition Method

The component u1 corresponds to the boundary ∂ω and the component u2 to the
interface γ. Then the equation Au = Fc becomes

(
A11 A12

A21 A22

)(
u1

u2

)
=

(
F1

F2

)
c, (4.16)

where
A11 : RI(∂ω) → RI(∂ω), A12 : RI(γ) → RI(∂ω),

A21 : RI(∂ω) → RI(γ), A22 : RI(γ) → RI(γ),

F1 : RI(ω) → RI(∂ω), F2 : RI(ω) → RI(γ).

The elimination of the internal points is done as it is shown in (4.17). To eliminate
the variables u2, we multiply both sides of (4.16) by A12A

−1
22 , subtract the second

row from the first, and obtain
(
A11 − A12A

−1
22 A21 0

A21 A22

)(
u1

u2

)
=

(
F1 − A12A

−1
22 F2

F2

)
c. (4.17)

We rewrite the last system as two equations

Ãu1 := (A11 − A12A
−1
22 A21)u1 = (F1 − A12A

−1
22 F2)c,

A22u2 = F2c− A21u1.
(4.18)

The unknown vector u2 is computed as follows

u2 = A−1
22 F2c− A−1

22 A21u1. (4.19)

Equation (4.19) is analogous to (4.43). The explicit expressions for the mappings
Ψω and Φω follow from (4.18):

Ψg
ω := A11 − A12A

−1
22 A21, (4.20)

Ψf
ω := F1 − A12A

−1
22 F2, (4.21)

Φg
ω := −A−1

22 A21, (4.22)

Φf
ω := A−1

22 F2. (4.23)

4.3 Construction Process

4.3.1 Initialisation of the Recursion

Our purpose is to get, for each triangle ω ∈ Th, the system of linear equations

A · u = c̃ := F · c,

where A is the stiffness matrix, c the discrete values of the right-hand side in the
nodes of ω and F will be defined later. The matrix coefficients Aij are computed by
the formula

Aij =

∫

ω

α(x)〈∇bi · ∇bj〉dx (4.24)

- 42 -



4.3 Construction Process

For ω ∈ Th, F ∈ R3×3 comes from the discrete integration and the matrix coefficients
Fij are computed using (4.28). The components of c̃ can be computed as follows:

c̃i =

∫

ω

fbidx ≈
f(x1)bi(x1) + f(x2)bi(x2) + f(x3)bi(x3)

3
· |ω|, (4.25)

where xi, i ∈ {1, 2, 3}, are three vertices of the triangle ω ∈ TTh
, bi(xj) = 1 if i = j

and bi(xj) = 0 otherwise. Rewrite (4.25) in matrix form:

c̃ =




c̃1
c̃2
c̃3



 ≈ 1

3




b1(x1) b1(x2) b1(x3)
b2(x1) b2(x2) b2(x3)
b3(x1) b3(x2) b3(x3)








f(x1)
f(x2)
f(x3)



 · |ω|, (4.26)

where f(xi), i = 1, 2, 3, are the values of the right-hand side f in the vertices of ω.
Let

F :=
1

3




b1(x1) b1(x2) b1(x3)
b2(x1) b2(x2) b2(x3)
b3(x1) b3(x2) b3(x3)



 . (4.27)

Using the definition of basic functions, we obtain



c̃1
c̃2
c̃3



 ≈ 1

3




1 0 0
0 1 0
0 0 1








f(x1)
f(x2)
f(x3)



 · |ω|. (4.28)

Thus, Ψg
ω corresponds to the matrix A ∈ R3×3 and Ψf

ω to F ∈ R3×3.

4.3.2 The Recursion

The coefficients of Ψω can be computed by (4.15). Let ω ∈ TTh
and ω1, ω2 be two

sons of ω. The external boundary Γω of ω splits into (see Fig. 4.2)

Γω,1 := ∂ω ∩ ω1, Γω,2 := ∂ω ∩ ω2. (4.29)

For simplicity of further notation, we will write γ instead of γω.

Notation 4.3.1 Recall that I(∂ωi) = I(Γω,i) ∪ I(γ). We denote the restriction of
Ψωi

: RI(∂ωi) → RI(∂ωi) to I(γ) by γΨω := (Ψω)|i∈I(γ).

Suppose that by induction, the mappings Ψω1 , Ψω2 are known for the sons ω1, ω2.
Now, we explain how to construct Ψω and Φω.

Lemma 4.3.1 Let the data d1 = dω1, d2 = dω2 be given by (4.6).
d1 and d2 coincide w.r.t. γω, i.e.,
• (consistency conditions for the boundary)

g1,i = g2,i ∀i ∈ I(ω1) ∩ I(ω2), (4.30)

• (consistency conditions for the right-hand side)

f1,i = f2,i ∀i ∈ I(ω1) ∩ I(ω2). (4.31)
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ω1 ω2

ω
γω

Γω,1 Γω,2

Γω

Figure 4.2: The decomposition of ω into ω1 and ω2. Here γω is the internal boundary
and Γω,i, i = 1, 2, parts of the external boundaries, see (4.29).

If the local FE solutions uh,1 and uh,2 of the problem (4.7) for the data d1, d2 satisfy
the additional equation

γΨω1(d1) + γΨω2(d2) = 0, (4.32)

then the composed solution uh defined by assembling

uh(xi) =

{
uh,1(xi) for i ∈ I(ω1),
uh,2(xi) for i ∈ I(ω2)

(4.33)

satisfies (4.7) for the data dω = (f, g) where

fi =

{
f1,i for i ∈ I(ω1),
f2,i for i ∈ I(ω2),

(4.34)

gi =

{
g1,i for i ∈ I(Γω,1),
g2,i for i ∈ I(Γω,2).

(4.35)

Proof: Note that the index sets in (4.33)-(4.35) overlap. Let ω1 ∈ TTh
, f1,i = fi,

i ∈ I(ω1), and g1,i = gi, i ∈ I(∂ω1). Then the existence of the unique solutions of

(4.7) gives uh,1(xi) = uh(xi), ∀i ∈ I(
◦
ω1).

In a similar manner we get uh,2(xi) = uh(xi) , ∀i ∈ I( ◦ω2). Equation (4.15) gives

( γΨω1(d1))i∈I(γ) = aω1(uh, bi)− (fω1, bi)L2(ω1) (4.36)

and
( γΨω2(d2))i∈I(γ) = aω2(uh, bi)− (fω2 , bi)L2(ω2) . (4.37)

The sum of the two last equations (see Figure 4.3) and (4.32) give

0 = γΨω(dω)i∈I(γ) = aω(uh, bi)− (fω, bi)L2(ω). (4.38)

We see that uh satisfies (4.7). �

Note that

uh,1(xi) = g1,i = g2,i = uh,2(xi) holds for i ∈ I(ω1) ∩ I(ω2).

Next, we use the decomposition of the data d1 into the components

d1 = (f1, g1,Γ, g1,γ), (4.39)
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ω

ω

ω

1

2

xj
γω

xj

Figure 4.3: The supports of bj , xj ∈ ω1 and xj ∈ ω2.

where
g1,Γ := (g1)i∈I(Γω,1), g1,γ := (g1)i∈I(γ) (4.40)

and similarly for d2 = (f2, g2,Γ, g2,γ).
The decomposition g ∈ RI(∂ωj) into gj,Γ ∈ RI(Γω,j) and gj,γ ∈ RI(γ) implies the
decomposition of Ψg

ωj
: RI(∂ωj) → RI(∂ωj) into ΨΓ

ωj
: RI(Γω,j) → RI(∂ωj) and Ψγ

ωj
:

RI(γ) → RI(∂ωj), j = 1, 2. Thus,

Ψg
ω1
gω1 = ΨΓ

ω1
g1,Γ + Ψγ

ω1
g1,γ and Ψg

ω2
gω2 = ΨΓ

ω2
g2,Γ + Ψγ

ω2
g2,γ.

The maps Ψω1, Ψω2 become

Ψω1d1 = Ψf
ω1
f1 + ΨΓ

ω1
g1,Γ + Ψγ

ω1
g1,γ, (4.41)

Ψω2d2 = Ψf
ω2
f2 + ΨΓ

ω2
g2,Γ + Ψγ

ω2
g2,γ. (4.42)

Definition 4.3.1 We will denote the restriction of Ψγ
ωj

: RI(γ) → RI(∂ωj) to I(γ) by

γΨγ
ωj

: RI(γ) → RI(γ),

where j = 1, 2 and ∂ωj = Γω,j ∪ γ.
Restricting (4.41), (4.42) to I(γ), we obtain from (4.32) and g1,γ = g2,γ =: gγ that

(
γΨγ

ω1
+ γΨγ

ω2

)
gγ = (−Ψf

ω1
f1 −ΨΓ

ω1
g1,Γ −Ψf

ω2
f2 −ΨΓ

ω2
g2,Γ)|I(γ).

Next, we set M := −( γΨγ
ω1

+ γΨγ
ω2

), and after computing M−1, we obtain:

gγ = M−1(Ψf
ω1
f1 + ΨΓ

ω1
g1,Γ + Ψf

ω2
f2 + ΨΓ

ω2
g2,Γ)|I(γ). (4.43)

Remark 4.3.1 The inverse matrix M−1 exists since it is the sum of positive definite
matrices corresponding to the mappings γΨγ

ω1
, γΨγ

ω2
.

Remark 4.3.2 Since gγ,i = uh(xi), i ∈ I(γ), we have determined the map Φω (it
acts on the data dω composed by f1, f2, g1,Γ, g2,Γ).

Remark 4.3.3 We have the formula Ψω(dω) = Ψω1(d1) + Ψω2(d2), where

dω = (fω, gω), d1 = (f1, g1,Γ, g1,γ), d2 = (f2, g2,Γ, g2,γ),
g1,γ = g2,γ = M−1(Ψf

ω1
f1 + ΨΓ

ω1
g1,Γ + Ψf

ω2
f2 + ΨΓ

ω2
g2,Γ)|I(γ).

(4.44)

Here (fω, gω) is build as in (4.34)-(4.35) and (4.30),(4.31) are satisfied.

Conclusion:
Thus, using the given mappings Ψω1 , Ψω2 , defined on the sons ω1, ω2 ∈ TTh

, we can
compute Φω and Ψω for the father ω ∈ TTh

. This recursion process terminates as
soon as ω = Ω.
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4.3.3 Building of Matrices Ψω and Φω from Ψω1
and Ψω2

Let ω, ω1 and ω2 ∈ TTh
where ω1, ω2 are sons of ω. Recall that ∂ωi = Γω,i ∪ γ.

Suppose we have two linear systems of equations for ω1 and ω2 which can be written
in the block-matrix form:

(
A

(i)
11 A

(i)
12

A
(i)
21 A

(i)
22

)(
u

(i)
1

u
(i)
2

)
=

(
F

(i)
11 F

(i)
12

F
(i)
21 F

(i)
22

)(
c

(i)
1

c
(i)
2

)
, i = 1, 2, (4.45)

where γ := γω,

A
(i)
11 : RI(Γω,i) → RI(Γω,i), A

(i)
12 : RI(γ) → RI(Γω,i),

A
(i)
21 : RI(Γω,i) → RI(γ), A

(i)
22 : RI(γ) → RI(γ),

F
(i)
11 : RI(ωi\γ) → RI(∂ωi), F

(i)
12 : RI(γ) → RI(∂ωi),

F
(i)
21 : RI(ωi\γ) → RI(γ), F

(i)
22 : RI(γ) → RI(γ).

Both the equations in (4.45) are analogous to (4.41) and (4.42). Note that c
(1)
2 = c

(2)
2

and u
(1)
2 = u

(2)
2 because of the consistency conditions (see (4.30),(4.31)) on the

interface γ. The system of linear equations for ω be




A

(1)
11 0 A

(1)
12

0 A
(2)
11 A

(2)
12

A
(1)
21 A

(2)
21 A

(1)
22 + A

(2)
22








u

(1)
1

u
(2)
1

u
(1)
2



 =




F

(1)
11 0 F

(1)
12

0 F
(2)
11 F

(2)
12

F
(1)
21 F

(2)
21 F

(1)
22 + F

(2)
22








c

(1)
1

c
(2)
1

c
(1)
2



 .

(4.46)
Using the notation

Ã11 :=

(
A

(1)
11 0

0 A
(2)
11

)

, Ã12 :=

(
A

(1)
12

A
(2)
12

)

,

Ã21 := (A
(1)
21 , A

(2)
21 ), Ã22 := A

(1)
22 + A

(2)
22 ,

ũ1 :=

(
u

(1)
1

u
(2)
1

)
, ũ2 := u

(1)
2 = u

(2)
2 ,

F̃1 :=

(
F

(1)
11 0 F

(1)
12

0 F
(2)
11 F

(2)
12

)

, F̃2 :=
(
F

(1)
21 , F

(2)
21 , F

(1)
22 + F

(2)
22

)
,

c̃1 :=

(
c

(1)
1

c
(2)
1

)
, c̃2 := c

(1)
2 = c

(2)
2 , c̃ :=

(
c̃1

c̃2

)
.

The system (4.46) can be rewritten as

(
Ã

(i)
11 Ã

(i)
12

Ã
(i)
21 Ã

(i)
22

)(
ũ1

ũ2

)
=

(
F̃1

F̃2

)
c̃. (4.47)

The system (4.47), indeed, coincides with (4.16).
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4.3.4 Algorithm “Leaves to Root”

The scheme of the recursive process of computing Ψω and Φω from Ψω1 and Ψω2 for
all ω ∈ TTh

is shown in Fig. 4.4. We call this process “Leaves to Root”.

..... .....

..... .....

L
e
a
v
e
s
 t
o
 R

o
o
t

Ψω11 Ψω12

Ψω1
Ψω2

Figure 4.4: Recursive process “Leaves to Root”. A mapping Ψω1 is a linear function
of the mappings Ψω11 ,Ψω12 , ω1 = ω11 ∪ ω12.

“Leaves to Root”:

1. Compute Ψf
ω ∈ R3×3 and Ψg

ω ∈ R3×3 on all leaves of TTh
(triangles of Th) by

(4.24) and (4.28).

2. Recursion from the leaves to the root:

a) Compute Φω and Ψω from Ψω1 ,Ψω2.

b) Store Φω. Delete Ψω1 ,Ψω2.

3. Stop if ω = Ω.

Remark 4.3.4 The result of this algorithm will be a collection of mappings {Φω :
ω ∈ TTh

}. The mappings Ψω, ω ∈ TTh
, are only of auxiliary purpose and need not

stored.

4.3.5 Algorithm “Root to Leaves”

This algorithm applies the mappings Φω = (Φg
ω,Φ

f
ω) to compute the solution. Since

this algorithm starts from the root and ends on the leaves, we will use the name
“Root to Leaves”. Figure 4.5 presents the scheme of this algorithm.
Let the set {Φω : ω ∈ TTh

} already be computed and the data dω = (fω, gω), ω = Ω,
be given. We can then compute the solution uh of the initial problem as follows.
Recursion from the root to the leaves:

1. Given dω = (fω, gω), compute the solution uh on the interior boundary γω by
Φω(dω).
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4 Hierarchical Domain Decomposition Method

2. Build the data dω1 = (fω1 , gω1), dω2 = (fω2, gω2) from dω = (fω, gω) and
gγω := Φω(dω).

3. Repeat the same for the sons of ω1 and ω2.

4. End if ω does not contain internal nodes.

Since uh(xi) = gγ,i, the set of values (gγω), for all ω ∈ TTh
, results the solution of the

initial problem (4.1) in the whole domain Ω.

..... .....

..... .....

R
o
o
t to

 L
e
a
v
e
s

Φω1 Φω2

Φω11 Φω12

uγ1 uγ2

uγ

Figure 4.5: The algorithm ’Root to Leaves’. Φωi
is applied for computing the solution

on the interior boundary γi.

4.3.6 HDD on Two Grids

In (4.4) the operator Fh requires larger computational resources compared to Gh.
To reduce these requirements we compute uh in the following way

uh(fH , gh) = FHfH + Ghgh,
where FH := FhPh←H, H and h are two different scales and Ph←H is a prolongation
matrix.
Now, FH requires less resources (computational time and storage requirement) than
Fh. If the coefficients α(x) oscillate, the grid step size should be small enough to
catch these oscillations (denote this step size by ”h” and corresponding finite space
by Vh). At the same time the right-hand side f(x) is often smooth and therefore
can be discretised on a coarse grid with step size H , where H > h (see Fig. 4.6).
Another possible problem setup is when the right-hand side is only given at the
nodes of the coarse grid.

The algorithm of computing the prolongation matrix P := Ph←H

Note that we compute prolongation matrices only for triangles of TH . For sim-
plicity we write P instead of Ph←H. Let h = H

2
. To compute fh = PfH we perform

the following steps.
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1. In each vertex vj , j = 0, 1, 2, of ω ∈ TH we compute the piecewise linear basis
function bHj (x) by (3.29).

2. We compute the prolongation matrix P ∈ R3×3, where Pij = bHj (xi), xi are
nodes of the fine grid Th in ω (e.g., middle points of edges). The value of the
right-hand side f at a node of Th is defined as a linear combination of the
values f at the nodes of TH (see an example in Fig. 4.7).

Remark 4.3.5 Now, we compute the solution by (cf. 4.43):

gγ = M−1(Ψ̃f
ω1
f1 + ΨΓ

ω1
g1,Γ + Ψ̃f

ω2
f2 + ΨΓ

ω2
g2,Γ)|I(γ), (4.48)

where Ψ̃f
ωi

:= Ψf
ωi
Pi, i = 1, 2, and Pi is a prolongation matrix. The size of the

matrix Ψ̃f
ωi

is smaller than the size of the matrix Ψf
ωi

, i = 1, 2. The size of the
matrix Φf

ωi
Pi is smaller than the size of Φf

ωi
, i = 1, 2. The matrices P1 and P2 are

data-sparse, since basis functions have a local support. Thus, memory requirements
can be strongly diminished.

hH

TH Th

Figure 4.6: The right-hand side f is given at the grid points of TH (marked by (◦))
and has to be interpolated at the nodes of the fine grid Th (right).

H

h

x

y

z

x0

Figure 4.7: ω ∈ TH and a basis function at x0. For example, the value of f at the
point z a linear combination on the values of f at the vertices x,y of ω
(e.g., f(z) = 0.75f(y) + 0.25f(x)).
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4.4 Modifications of HDD

4.4.1 Truncation of Small Scales

The standard version of HDD deals with one grid with step size h. In this subsection
we consider HDD on two grids with step sizes h and H , h < H. Often, only the
solution on the coarse scale is of interest, but to build this solution accurately one
should take into account the fine scale details.

Notation 4.4.1 Let us denote the pruned domain decomposition tree by T≥HTh
and

the part removed by pruning by T<HTh
(for this part diam(ω) ≤ H). Thus, we have

TTh
= T<HTh

∪ T≥HTh
(see Fig. 4.8).

Ω

h

H

T≥HTh

TTh

T<HTh

Figure 4.8: Truncation of the small scales.

Remark 4.4.1 The algorithm “Root to Leaves” determines uh in all ω ∈ T≥HTh
and

terminates on the level corresponding to a medium scale H (see Fig. 4.8). The
mappings Φω, ω ∈ T<HTh

, are not computed and not stored. This truncation of the

small scales does not imply any additional error to the solution in ω ∈ T≥HTh
.

Remark 4.4.2 In Chapter 10, we compute the complexities of the algorithms “Leaves
to Root”, “Root to Leaves” and their modifications.

Now, we compare our method with the multiscale finite element method (MsFEM)
(see [50], [40]):

• MsFEM requires two different triangulations. The first triangulation is needed
for solving the appropriate homogenized problem inside a cell and the second
one for solving the macroscale problem. HDD requires one coarse triangulation
and its refinement.

• The solution which MsFEM computes on the coarse scale with step size H does
not coincide with the solution which the standard FEM with step size h would
produce. In MsFEM the accuracy of the solution on the coarse scale depends
on the accuracy of the solver in the cell (different from HDD). The solution,
produced by HDD with truncation of the small scales, does not contain any
additional error.
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• In MsFEM it is not obvious how to build the boundary data for the homoge-
nized problem in 2D and 3D cases in a non-periodic case.

• The offered version of HDD is applicable only in 2D. In the present time the
3D version of HDD is under construction.

• MsFEM requires periodicity (unlike HDD) and as a sequence the complexity of
MsFEM is O(nH+ns), where nH is the number of cells (equal to the number of
degrees of freedom on the coarse grid) and ns the number of degrees of freedom
in the cell. HDD with repeated patterns (see Section 4.4.4) has complexity
O(nH log3 nH) + O(ns log3 ns). Note that MsFEM applies multigrid method
and computes a particular solution, whereas HDD computes the mappings,
i.e., HDD is appropriate for the many right-hand sides.

• HDD can compute different functionals of the solution.

• HDD has linear complexity for homogeneous problems (Section 4.4.8).

Both HDD and MsFEM have the advantage that they are easy parallelizable.

4.4.2 Two-Grid Modification of the Algorithm “Leaves to Root”

The purposes of this modification are:

1. to decrease the memory requirements of the matrices Ψf
ω and Φf

ω,

2. to speed up the construction of the matrix Ψf
ω from the matrices Ψf

ω1
and Ψf

ω2
,

where ω = ω1 ∪ ω2.

Let us introduce some new notation:

1. The subindex h indicates a fine grid.

2. The subindex H indicates a coarse grid.

3. The numbers of grid points in ω are denoted by nh(ω) := |I(ωh)| and nH(ω) :=
|I(ωH)| respectively.

4. The index sets of indices in ωi are denoted by I(ωi,h) and I(ωi,H) respectively.

5. Pi : RI(ωi,H) → RI(ωi,h), i = 1, 2, are the prolongation matrices.

Compression of the Mapping Ψf
ω

The algorithm “Leaves to Root” computes the mappings:

Ψf
ω : RI(ωh) → RI(∂ωh), for all ω ∈ TTh

.

Taking into account the results from Section 4.3.6, the modified version of the algo-
rithm computes the new mappings:

Ψ̃f
ω : RI(ωH) → RI(∂ωh), for all ω ∈ TTh

.
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4 Hierarchical Domain Decomposition Method

. .Ψf
ω1

Ψf
ω2

Ψ̃f
ω1

Ψ̃f
ω2

Ψ̃f
ω

P1 P2

Figure 4.9: The matrix Ψ̃f
ω is constructed from the matrices Ψ̃f

ω1
and Ψ̃f

ω2
(one step

of the algorithm “Leaves to Root”).

The new scheme of the construction of Ψ̃f
ω from Ψ̃f

ω1
and Ψ̃f

ω2
is shown in Fig. 4.9.

The number of columns in Ψ̃f
ω is by a factor nH(ω)

nh(ω)
smaller than the number of

columns in Ψf
ω.

Remark 4.4.3 In practice, we construct prolongation matrices only for leaves of
TTh

. Then we construct Ψ̃f
ω directly from Ψ̃f

ω1
and Ψ̃f

ω2
.

Compression of the mapping Φf
ω

The algorithm “Leaves to Root” computes also the mappings:

Φf
ω : RI(ωh) → RI(γh), for all ω ∈ TTh

.

Taking into account the results from Section (4.3.6), we compute the new mappings:

Φ̃f
ω : RI(ωH) → RI(γh), for all ω ∈ TTh

.

The idea of the compression is shown in Fig. 4.10. There an additional prolongation
matrix P is applied. As a result the number of columns in the new matrix Φ̃f

ω is in

a factor nH(ω)
nh(ω)

smaller than in Φf
ω.

.
=

Φf
ωΦ̃f

ω P

Figure 4.10: Compression of the matrix Φf
ω.

4.4.3 HDD on two grids and with Truncation of Small Scales

An application of HDD on two grids with truncation of the small scales results in
the optimal performance. The realization of the HDD method stays the same with
the difference that the domain of definition of both mappings Ψf

ω and Φf
ω is RI(ωH),

instead of RI(ωh).
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4.4 Modifications of HDD

4.4.4 Repeated Patterns

Elliptic partial differential equations with periodically oscillating coefficients were
considered in [23, 52, 53, 42]. For solving such equations the authors used the
theory of homogenization and different modifications of multigrid methods.
The domain with repeated patterns can be decomposed into subdomains (we call
them cells), where the computations are equivalent up to translation. In this case,
only one cell has to be considered in the computation (see Fig. 4.12 (a)). This
reduces the work required in the part T<HTh

(see Fig. 4.8) significantly. For simplicity,
suppose that the decomposition into cells forms a coarse scale with the grid step size
H .
The modified HDD method is as follows:

1. Build a triangulation of the domain Ω so that the repeated cells have an
identical triangulation.

2. Build the hierarchical domain decomposition tree T≥HTh
(for each subdomain

its internal and external boundary nodes must be known). The leaves of this
tree are cells.

3. Build the hierarchical domain decomposition tree Tv := TTh
(v) just for one cell

v.

4. Run algorithm “Leaves to Root” for the tree Tv (see Fig. 4.12(a)). This
algorithm computes the mappings Φf

ω and Φg
ω for all ω ∈ Tv.

5. If the symmetry allows, we compute Ψω and Φω on each level l of T≥HTh
only

for one node and then copy them to other nodes at the same level (see Fig.
4.12(b)).

6. Taking into account translation of indices, “Root to Leaves ” computes the
solution in all ω ∈ TTh

.

cells

Figure 4.11: The given domain is decomposed into m cells and then each cell is
decomposed independently into nc finite elements. The oscillatory co-
efficients inside cells are equal.
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Ω

v

T

repeated cells

Ω

v

(a) (b)

v

Figure 4.12: HDD with repeated patterns. (a) Φf
ω and Φg

ω, ω ∈ Tv, are computed

only for the tree Tv; (b) Φf
ω and Φg

ω, ω ∈ T≥HTh
, are computed only once

on each level and then copied to other nodes.

4.4.5 Fast Evaluation of Functionals

In this subsection we describe how to use the mappings Φf
ω and Φg

ω for building
different linear functionals of the solution (see examples below). Indeed, λ is deter-
mined in the same way as Ψω.
If the solution u in a subdomain ω ∈ TTh

is known, the mean value µ(ω) can be
computed by the following formula

µ(ω) =

∫
ω
u(x)dx

|ω| =

∑
t∈Th(ω)

|t|
3
(u1 + u2 + u3)

|ω| , (4.49)

where u is affine on each triangle t with values u1, u2, u3 at the three corners and
Th(ω) is the collection of all triangles in ω. If the solution u is unknown, we would
like to have a linear functional λω(f, g), ω ∈ TTh

, which computes the mean value µω
of the solution in ω.
Below we list some examples of problems which can be solved by using linear func-
tionals.

Example 4.4.1 Dirichlet data on ∂ω, ω ⊂ Ω, are given and one needs to evaluate
the Neumann data ∂uh

∂n
on ∂ω.

Example 4.4.2 The given domain Ω is decomposed into p subdomains Ω =
⋃p
i=1 Ωi

(see (4.2)). We denote the set of nodal points on the interface by IΣ. The computa-
tion of the solution in the whole domain Ω can be expensive (or even impossible in
a reasonable time) and, therefore, as an alternative, HDD offers the solution on the
interface IΣ and the mean values inside Ωi, i = 1, ..., p.

Example 4.4.3 To compute the FE solution uh(xi) in a fixed nodal point xi ∈ Ω,
i.e., to define how the solution uh(xi) depends on the given FE Dirichlet data gh ∈
RI(∂Ω) and the FE right-hand side fh ∈ RI(Ω).

Let ω = ω1 ∪ ω2, ω1 ∩ ω2 6= ∅, with ω, ω1, ω2 ∈ TTh
. To simplify the notation we

will write di := dωi
and (fi, gi) instead of (fωi

, gωi
), i = 1, 2. Recall the following
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4.4 Modifications of HDD

notation (see (4.39), (4.40)):

Γ := ∂ω, Γω,1 := ∂ω ∩ ω1, Γω,2 := ∂ω ∩ ω2, then

d1 = (f1, g1) = (f1, g1,Γ, g1,γ), d2 = (f2, g2) = (f2, g2,Γ, g2,γ), where (4.50)

g1,Γ = (g1)|Γω,1, g1,γ = (g1)|γ,
g2,Γ = (g2)|Γω,2, g2,γ = (g2)|γ. (4.51)

We consider a linear functional λω with the properties:

λω(dω) = (λgω, gω) + (λfω, fω), (4.52)

λω(dω) = c1λω1(dω1) + c2λω2(dω2), (4.53)

where λgω : RI(∂ω) → R, λfω : RI(ω) → R and (·, ·) is the scalar product of two vectors.

Definition 4.4.1 Let ω1 ⊂ ω, λfω1
: RI(ω1) → R. a) We define the following exten-

sion of λfω1

(λfω1
|ω)i :=

{
(λfω1

)i for i ∈ I(ω1),
0 for i ∈ I(ω \ ω1),

where (λfω1
|ω) : RI(ω) → R. b) The extension of the functional λg1,Γ : RI(Γω,1) → R is

defined as

(λg1,Γ|Γ)i :=

{
(λg1,Γ)i for i ∈ I(Γω,1),
0 for i ∈ I(Γ \ Γω,1),

where (λg1,Γ|Γ) : RI(Γ) → R.

Definition 4.4.2 Using (4.51), we obtain the following decompositions
λgω1

= (λg1,Γ, λ
g
1,γ) and λgω2

= (λg2,Γ, λ
g
2,γ), where λg1,Γ : RI(Γω,1) → R, λg1,γ : RI(γ) → R,

λg2,Γ : RI(Γω,2) → R, λg2,γ : RI(γ) → R.

Lemma 4.4.1 Let λω(dω) satisfy (4.52) and (4.53) with ω = ω1 ∪ω2. Let λgω1
, λgω2

,
λfω1

and λfω2
be the vectors for the representation of the functionals λω1(dω1) and

λω2(dω2). Then the vectors λfω, λ
g
ω for the representation

λω(dω) = (λfω, fω) + (λgω, gω), where fω ∈ RI(ω), gω ∈ RI(∂ω), (4.54)

are given by

λfω = λ̃fω + (Φf
ω)
Tλgγ,

λgω = λ̃gω + (Φg
ω)
Tλgγ,

λ̃fω := c1λ
f
ω1
|ω + c2λ

f
ω2
|ω, (4.55)

λ̃gΓ := c1λ
g
1,Γ|Γ + c2λ

g
2,Γ|Γ, (4.56)

λgγ = c1λ
g
1,γ + c2λ

g
2,γ . (4.57)
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4 Hierarchical Domain Decomposition Method

Proof: Let dω1, dω2 be the given data and λω1 and λω2 be the given functionals.
Then the functional λω satisfies

λω(dω)
(4.53)
= c1λω1(dω1) + c2λω2(dω2)

(4.52)
= c1((λ

f
ω1
, f1) + (λgω1

, g1)) + c2((λ
f
ω2
, f2) + (λgω2

, g2)).

Using the decomposition (4.50), we obtain

λω(dω) = c1(λ
f
ω1
, f1) + c2(λ

f
ω2
, f2) + c1((λ

g
1,Γ, g1,Γ) + (λg1,γ, g1,γ)) (4.58)

+c2((λ
g
2,Γ, g2,Γ) + (λg2,γ, g2,γ)).

The consistency of the solution implies g1,γ = g2,γ =: gγ. From the Definition 4.4.1
follows

(λfω1
, f1) = (λfω1

|ω, fω), (λfω2
, f2) = (λfω2

|ω, fω),
(λg1,Γ, g1,Γ) = (λg1,Γ|Γ, gω), (λg2,Γ, g2,Γ) = (λg2,Γ|Γ, gω).

Then, we substitute last expressions in (4.58) to obtain

λω(dω) = (c1λ
f
ω1
|ω + c2λ

f
ω2
|ω, fω) + (c1λ

g
1,Γ|Γ + c2λ

g
2,Γ|Γ, gω) (4.59)

+(c1λ
g
1,γ + c2λ

g
2,γ , gγ).

Set λ̃fω := c1λ
f
ω1
|ω + c2λ

f
ω2
|ω, λ̃gΓ := c1λ

g
1,Γ|Γ + c2λ

g
2,Γ|Γand λgγ := c1λ

g
1,γ + c2λ

g
2,γ.

From the algorithm “Root to Leaves” we know that

gγ = Φω(dω) = Φg
ω · gω + Φf

ω · fω. (4.60)

Substituting gγ from (4.60) in (4.59), we obtain

λω(dω) = (λ̃fω, fω) + (λ̃gω, gω) + (λgγ,Φ
g
ωgω + Φf

ωfω)

= (λ̃fω + (Φf
ω)
Tλgγ , fω) + (λ̃gω + (Φg

ω)
Tλgγ, gω).

We define λfω := λ̃fω + (Φf
ω)
Tλgγ and λgω := λ̃gω + (Φg

ω)
Tλgγ and obtain

λω(dω) = (λfω, fω) + (λgω, gω). (4.61)

�

Example 4.4.4 Lemma 4.4.1 with c1 = |ω1|
|ω| , c2 = |ω2|

|ω| can be used to compute the
mean values in all ω ∈ TTh

.
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4.4 Modifications of HDD

4.4.6 Functional for Computing the Mean Value

Below we describe two algorithms which are required for computing mean values.
These algorithms compute λgω and λfω respectively.

Algorithm
The initialisation is λgω := (1

3
, 1

3
, 1

3
), λfω := (0, 0, 0) for all leaves of TTh

. For all
ω ∈ TTh

which have internal nodes the algorithms for building λgω and λfω, ω ∈ TTh
,

are the following:

Algorithm 4.4.1 (Building of λgω)
build functional g(λg1, λ

g
2, Φg

ω,...)
begin

allocate memory for λgω;
for all i ∈ I(Γω,1) do
λgω[i]+ = c1λ

g
1[i];

for all i ∈ I(Γω,2) do
λgω[i]+ = c2λ

g
2[i];

for all i ∈ I(γ) do
z[i] = c1λ

g
1[i] + c2λ

g
2[i];

v := (Φg
ω)
T · z;

for all i ∈ I(∂ω) do
λgω[i] := λgω[i] + v[i];

return λgω;
end;

Algorithm 4.4.2 (Building of λfω)
build functional f(λf1 , λ

f
2 , Φf

ω,...)
begin

for all i ∈ I(ω1\γ) do
λfω[i]+ = c1λ

f
1 [i];

for all i ∈ I(ω2\γ) do
λfω[i]+ = c2λ

f
2 [i];

for all i ∈ I(γ) do
z[i] = c1λ

f
1 [i] + c2λ

f
2 [i];

v := (Φf
ω)
T · z;

for all i ∈ I(ω) do
λfω[i] := λfω[i] + v[i];

return λfω;
end;

Remark 4.4.4 a) If only the functionals λω, ω ∈ TTh
, are of interest, the maps Φω

need not be stored.
b) For functionals with local support in some ω0 ∈ TTh

, it suffices that Φω is given for
all ω ∈ TTh

with ω ⊃ ω0, while λω0(dω0) is associated with ω0 ∈ TTh
. The computation

of Λ(uh) = λ(d) starts with the recursive evaluation of Φω for all ω ⊃ ω0. Then the
data dω0 are available and λω0 can be applied.
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4 Hierarchical Domain Decomposition Method

4.4.7 Solution in a Subdomain

Suppose that the solution is only required in a small subdomain ω ∈ TTh
. For

this purpose the HDD method requires much less computational resources as usual.
An example is shown in Fig. 4.13. The algorithm “Leaves to Root” is performed
completely, but the algorithm “Root to Leaves” computes the solution only on the
internal boundaries (dotted lines) which are necessary for computing the solution
in ω. The storage requirements are also significantly reduced. We only store the
mappings Φf

ω and Φg
ω for all ω ∈ TTh

that belong to the path from the root of TTh

to ω. The storage requirement is O(nh log nh), where nh is the number of degrees of
freedom in Ω. The computational cost of the “Root to Leaves” is O(nh lognh) be-
cause the storage of an H-matrix and as well as the H-matrix - vector multiplication
requires O(nh lognh)) (see Table 5.3).

ω

Figure 4.13: The solution in a subdomain ω ∈ TTh
is required. HDD computes the

solution only on the dotted lines.

4.4.8 Homogeneous Problems

In the case of a zero right-hand side in (4.1), the mappings Ψf
ω and Φf

ω, ω ∈ TTh
, do

not need to be computed at all. Thus, only the mappings Ψg
ω and Φg

ω are of interest.
The complexity of the HDD method in this case is O(k2nh) and storage requirements
O(knh), where nh is the number of degrees of freedom in Ω. The application of the
weak admissibility condition (see Subsection 5.5.2) results in multiplications of low-
rank matrices and vectors for the algorithm “Root to Leaves”. Numerical examples
confirm the linear cost of the HDD method with a homogeneous right-hand side,
instead of the “almost” linear cost O(nh logq nh) for an inhomogeneous right-hand
side. In particular, for the discrete problem the CPU times for computing the
solution on grids of sizes 257 × 257 and 513× 513 with the relative error 10−3 are
37.0 sec. and 176.0 sec., correspondingly. The rate is 176.0

37.0
= 4.76 (factor 4 means a

linear dependence).
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Almost all results of this Chapter were already published in [33], [30], [27], [11], [37],
[29]. The new material is presented in Sections 5.9.5, 5.9.6, 5.9.7 and 5.10.

5.1 Introduction

The difficulty with the exact matrix arithmetic is that except for the diagonal matri-
ces (or diagonal after a certain cheap transformation), there isn’t a class of matrices
which allows the standard matrix operations: Ax, A + B, A · B, A−1 in O(N) op-
erations.

The hierarchical matrices (H-matrices) were introduced in 1999 by Hackbusch [33]
and since then H-matrices have been applied in a wide range of applications. They
provide a format for the data-sparse representation of fully-populated matrices. The
main idea in the H-matrices is to approximate certain subblocks of a given matrix
M by low-rank matrices. Let R ∈ Rn×m be a subblock of M and rank(R)=k,
k ≪ min(n,m). Suppose that we find matrices A ∈ Rn×k and B ∈ Rm×k so that
R = ABT . The storage requirement for matrices A and B is k(n+m) instead of n·m
for matrix R. Later on will be shown that the cost of the basic matrix arithmetic
(matrix-matrix addition, matrix-matrix multiplication, inversion of matrices) is not
greater than O(n logα n). One of the biggest advantages of H-matrices is the almost
linear complexity of the H-matrix addition, multiplication and inversion.
In this section we give two examples of H-matrices (see Fig. 5.1). The dark blocks
are dense matrices and the light blocks are low-rank matrices. The steps in the
grey blocks show the decay of the singular values in a logarithmic scale. The size of
both matrices is 4096 × 4096. The first example is an H-matrix approximation of
the stiffness matrix of the Poisson problem for the grid as shown in Fig. 3.1. The
second matrix is an H-matrix approximation of the inverse of the stiffness matrix of
the Poisson problem. The approximation error is ‖M−1

H M − I‖2 = 2.1 · 10−3.
In Section 5.4 we define auxiliary structures: clusters, cluster trees and the block
cluster trees. After that we introduce the admissibility criterion and explain how to
build a cluster tree and a block cluster tree. We give the definition of H-matrices
and define the low-rank arithmetic and the H-matrix arithmetic. We describe how
to convert one H-matrix into another with a different block cluster tree. Finally, we
estimate the computational complexities of the main arithmetic operations.
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5 Hierarchical Matrices

5.2 Notation

In this section we describe the most important notation which are used in the text.
The finite index set I := {0, ..., n − 1} contains the indices of the basis functions
bi which are used in the Galerkin discretisation. We denote the cardinality of I by
n = |I|.

5.3 H-Matrix for an Elliptic Boundary Value Problem.

Let M be the stiffness matrix which comes from the problem (4.1). M is a data-
sparse matrix, but M−1 is already a dense matrix. The next theorem proves the
existence of the H-matrix approximation of M−1.

Theorem 5.3.1 Let εh > 0 be the finite element error and L = O(logn) the depth
of the block cluster tree. Then there exists a hierarchical matrix M−1

H with maximal
rank k = L2C1 logd+1(LC2

εh
) of the low-rank subblocks, such that

‖M−1 −M−1
H ‖2 ≤ C(1 + θ)εh,

where C1, C are two constants, d the spatial dimension and θ ∈ (0, 1).

Proof: see [13], [36].
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Figure 5.1: The H-matrix approximation of the stiffness matrix of the Poisson prob-
lem (left) and its inverse (right). 642 dofs, |M−1

H M − I|2 = 2.1 · 10−3.
The dark blocks are dense matrices. The light blocks are low-rank ma-
trices with maximal rank kmax = 5.

5.4 Building of H-Matrices

In order to build an H-matrix, we first need to introduce some auxiliary structures:
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5.4 Building of H-Matrices

1. the cluster tree (denoted by TI),

2. the block cluster tree (denoted by TI×I),

3. the admissibility condition (denoted by Admη or AdmW ).

5.4.1 Cluster Tree

We consider different partitions of I into disjoint subsets including coarse and fine
partitions. The set of these partitions is hierarchically structured and is uniquely
defined by the tree T = TI , which is called cluster tree.

Notation 5.4.1 We denote all vertices of a tree T by V (T ) and all sons of a vertex
t by S(t).

Definition 5.4.1 A vertex v ∈ V (T ) is a leaf if sons(v) = ∅ and we define

L(T ) := {v ∈ V (T )| v is a leaf}.

Notation 5.4.2 The uniquely determined predecessor (father) of a non-root vertex
v ∈ TI is denoted by F(v).

Definition 5.4.2 We define the levels l ∈ N0 of T recursively

T
(0)
I = {I}, T (l) := {t ∈ TI |F(v) ∈ T l−1

I }

and we write level(v)=l if v ∈ T (l)
I .

The leaves of T on level l are denoted by

L(T, l) := T (l) ∩ L(T ).

Let the mappingˆ : TI → {r | r ⊆ I} labels vertices of the tree TI , i.e., if t ∈ TI
and t̂ ⊆ I thenˆ : t 7→ t̂.
Thus, for each t ∈ TI , we denote its label by t̂ ⊆ I.

Definition 5.4.3 A finite tree TI is a cluster tree over the index set I if the following
conditions hold:

• I is the root of T and t̂ ⊆ I holds for all t ∈ TI .

• If t ∈ TI is not a leaf, then S(t) contains disjoint subsets of I and t̂ is the

disjoint union of its sons, t̂ =
⋃

s∈S(t)

ŝ.

• If t ∈ TI is a leaf, then |t̂| ≤ nmin for a fixed number nmin.

Definition 5.4.4 If |S(t)| = 2 for all t ∈ TI \L(TI), then TI is called a binary tree.
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5 Hierarchical Matrices

{0,1,2,3,4,5,6,7}

{0,1,2,3} {4,5,6,7}

{0,1} {2,3} {4,5} {6,7}

Figure 5.2: An example of a cluster tree over the index set I = {0, 1, 2, 3, 4, 5, 6, 7}.
Each leaf contains nmin = 2 elements.

Definition 5.4.5 The vertices t ∈ V (T ) of a cluster tree are called clusters.

A cluster tree for I is usually denoted by TI . We write t ∈ TI for t ∈ V (TI).
In [27], [13], [36] the reader can find two different algorithms for building cluster trees
for a given set of basis functions. The first one is based on a geometrical splitting
and the second one on a cardinality splitting. Which one to choose depends, for
example, on the discretisation of a given problem.
Each index i ∈ I is associated with the basis function bi of the Galerkin ansatz

space Vh := span{bi}i∈I , so that the support of the basis functions is denoted by

Ωi := supp(bi) for i ∈ I.

We generalize Ωt to cluster t ∈ TI by setting

Ωt :=
⋃

i∈t̂

Ωi, t ∈ TI . (5.1)

Construction of a cluster tree

Since dealing directly with the supports will be too complicated, we choose a point
xi ∈ Ωi for each index i ∈ I and work with these points instead of the supports. This
simplification will not significantly harm the performance of the algorithm, since the
supports of the typical finite element basis function is small.
Our construction of the cluster tree starts with the dense index set I, which is the
root of the cluster tree by definition. After that we apply a suitable technique to
find a disjoint partition of the index set and use this partition to create the son
clusters. We apply the procedure recursively to the sons until the index sets are
small enough. To make the partition easier we define for the given domain Ωt from
(5.1) a minimal axes-parallel bounding box Qt =

∏d
i=1[ai, bi], where Qt ⊃ Ωt. The

coordinates ai and bi can be defined as following

for i=1 to d
{
ai := minj∈t̂ xj,i
bi := maxj∈t̂ xj,i
}

(5.2)

Each index i ∈ t̂ corresponds to a point xi ∈ Rd. There are some variants of
splitting the boundary box Qt. For example, we can choose the coordinate direction
of the maximal extent and split the box perpendicular to this direction into two
subdomains. This gives us the partition {t̂0, t̂1} of t̂ (respectively Qt = Qt1 ∪Qt2).
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5.4 Building of H-Matrices

Remark 5.4.1 See the algorithms of splitting based on the geometry of Ωt and the
cardinality in Sections 5.5.2 , 5.5.3 in [36] and [13].

The building of the special cluster tree TI

The input data for the building of the cluster tree TI is the index set I. In this work
we use the geometrically balanced clustering (see other variants of the clustering in
[28], [27]). This means that for building cluster trees we use the geometry of the
given domain.
Let I, I11, I12 and I2 be given index sets such that I = I11 ∪ I12 ∪ I2. Let TI11 , TI12 ,
TI2 be given cluster trees, based on I11, I12 and I2. We want to build the binary
cluster tree TI such that I11, I12, I2 ∈ TI (see Fig. 5.3). For this purpose we build
cluster I1 which has two sons I11, I12 and cluster I which has sons I1 and I2.

...

......

TI

TI1 TI2

TI11 TI12

Figure 5.3: The structure of the cluster tree TI .

5.4.2 Block Cluster Tree

While the vector components are indexed by i ∈ I, the entries of a matrix have
indices from the index set I × J . The block-cluster tree is nothing but a special
cluster tree over the product index set I × J . The vertices (“blocks”) b ∈ TI×J are
of the form b = (t, s) with t ∈ TI , s ∈ TJ .

Definition 5.4.6 Let TI and TJ be cluster trees over the index sets I and J . A
finite tree T is a block cluster tree based on TI and TJ if the following conditions
hold:

• root(T ) = I × J .

• Each vertex b ∈ V (T ) has the form b = (t, s) for cluster t ∈ TI and s ∈ TJ .

• For each vertex (t, s) ∈ V (T ) with sons(t, s) 6= ∅, we have

sons(t, s) =






(t, s′) : s′ ∈ sons(s), if sons(t) = ∅ ∧ sons(s) 6= ∅

(t′, s) : t′ ∈ sons(t), if sons(t) 6= ∅ ∧ sons(s) = ∅

(t′, s′) : t′ ∈ sons(t), s′ ∈ sons(s), otherwise
(5.3)

• The label of a vertex (t, s) ∈ V (T ) is given by (̂t, s) = t̂× ŝ ⊆ I × J .
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A block cluster tree based on TI and TJ is denoted by TI×J . We will use the

abbreviation (t, s) ∈ TI×J for (t, s) ∈ V (TI×J). We can see that ̂root(TI×J) = I × J .
This implies that the set of leaves L(TI×J) is a partition of I×J . An implementation
of the block cluster tree can be found in [28].

Definition 5.4.7 Let TI×J be a block cluster tree. We call P a partition (or a block
partition) of I × J if:

P ⊂ TI×J ,
b, b′ ∈ P ⇒ (b = b′ or b ∩ b′ = ∅),⋃

b∈P = I × J.
(5.4)

5.5 Admissibility

The admissibility condition helps us to find a balance between the storage require-
ments of an H-matrix and its approximation accuracy. It also helps us to identify
the blocks which can be approximated well by a low-rank matrices. Let t ∈ TI ,
s ∈ TJ and t× s ∈ TI×J .

Definition 5.5.1 The admissibility condition is a Boolean function

Adm : TI×J 7→ {true, false} (5.5)

with the consistency requirement

Adm(b)⇒ Adm(b′) for all sons b′ of b ∈ TI×J

and the property Adm(b)=true for all leaves b ∈ TI×J .

5.5.1 Standard Admissibility Condition (Admη)

Definition 5.5.2 The standard admissibility criterion for b = (t, s) is

min{diam(Ωt), diam(Ωs)} ≤ ηdist(Ωt,Ωs), (5.6)

where η > 0 is a fixed parameter.
The admissibility condition (5.5) now takes the form of

Admη(b) = true for b = (t, s) ∈ TI×J :⇐⇒
(b is a leaf) or (5.6) holds.

In practice it is difficult to define the Euclidean diameter diam(Ωt) and the Euclidean
distance of two clusters dist(Ωt,Ωs). This is the reason why we rewrite the standard
admissibility criterion for the bounding boxes.
We define a minimal axis-parallel box Qt ⊆ R2 such that Ωt ⊆ Qt holds.
This box will be called the bounding box of the cluster t.

Definition 5.5.3 The standard admissibility criterion for Qt and Qs is:
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5.5 Admissibility

min{diam(Qt),diam(Qs)} ≤ η dist(Qt, Qs).

Let d be the spatial dimension. We can compute the distances and diameters as
follows:
If Qt = [a1, b1]× ...× [ad, bd] and Qs = [c1, d1]× ...× [cd, dd] then

diam(Qt) =
√∑d

l=1 (bl − al)2, diam(Qs) =
√∑d

l=1 (dl − cl)2 and

dist(Qs, Qt) =
√∑d

l=1 dist([al, bl], [cl, dl])
2.

Where does the admissibility condition come from?
Suppose the following propositions are true:

• B1 ⊂ Rd and B2 ⊂ Rd are compact.

• χ(x, y) is defined for (x, y) ∈ B1 × B2 with x 6= y.

Let K be an integral operator with an asymptotic smooth kernel K in the domain
B1 × B2:

(Kv)(x) =

∫

B2

χ(x, y)v(y)dy (x ∈ B1).

Suppose that χ(k)(x, y) is an approximation of χ in B1 × B2 of the separate form:

χ(k)(x, y) =

k∑

ν=1

ϕ(k)
ν (x)ψ(k)

ν (y),

where k is the rank of separation (index (k) is not a derivative!).
Then, under some conditions (see Paragraph 4.6.3 [36],[13]) we have

‖χ− χ(k)‖∞,B1×B2 ≤ c1

[
c2 min{diam(B1), diam(B2)}

dist(B1, B2)

]k
. (5.7)

Proof: See Paragraph 4.6.3 in [36].
Now, if

min{diam(B1), diam(B2)} ≤
1

c2
dist(B1, B2). (5.8)

there is an exponential convergence in (5.7).

Definition 5.5.4 Let η > 0 and t, s be two clusters, Ωt and Ωs are supports of t
and s. The block b = (t, s) is called η-admissible, if

min{diam(t), diam(s)} ≤ dist(t, s). (5.9)

5.5.2 Weak Admissibility Condition (AdmW )

Definition 5.5.5 In the 1D case AdmW (b) = true for b = (t, s) ∈ TI×J :⇔ ((b is a
leaf) or t and s are different clusters.

In the following remark we list properties of the weak admissibility condition.
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Remark 5.5.1

1. The partitioning PW , obtained with the weak admissibility criterion AdmW

is simpler than the partitioning Pη obtained with the standard admissibility
criterion Admη, i.e., subblocks are coarser and the number of subblocks is less
(see example in Fig. (5.4)).

2. The weak admissibility yields a cheaper H-matrix arithmetic (e.g. H-matrix
multiplication, H-matrix inverse) compare with the standard admissibility.

3. Admη =⇒ AdmW , i.e., if a block b = (t, s) ∈ TI×J is admissible w.r.t. the
standard admissibility criterion, then block b is also admissible w.r.t. the weak
admissibility criterion.

4. If b = (t, s) ∈ TI×J is a weakly admissible block then the domains Ωt =⋃|bt|
i=1 supp bi and Ωs =

⋃|bs|
i=1 supp bi can touch each other at most at a point.

13 4

4 4
5

5 8 5

5 8
2

2
8 5

5 16 5

5 8
5

5

8 5

5

16 5

5 8
1

1
8 5

5

8 5

5 15

5

5
16 5

5 15

Figure 5.4: An example of a hierarchical matrix with weak admissible blocks.

Example 5.5.1 Figure 6.1 shows an example of an H-matrix which is obtained with
the weak admissibility condition.

Example 5.5.2 Fig. 5.5 demonstrates three examples of clusters t and s. The block
(t, s) in the cases (a) and (b) is weak admissible and in the case (c) inadmissible.

See more about the weak admissibility condition in [37].

....... . . . ..
.

...
t s . . . . . . . . . . .. . .. . .. . .

. . .

. . .. . .. . .

. . .

. . .

(a) (b) (c)

t s
t s

Figure 5.5: In (a),(b) the block (t, s) is weakly admissible and in (c) it is inadmissible.

- 66 -



5.5 Admissibility

Admissible Blocks
Let nmin be a given constant (in our numerical experiments nmin = 32).

Definition 5.5.6 A block cluster tree TI×J which is based on I and J , is called
admissible with respect to an admissibility criterion if the following two conditions
hold

• (t, s) is admissible,

• min{|t̂|, |ŝ|)} ≤ nmin

for all (t, s) ∈ L(TI×J).

Notation 5.5.1 We denote all admissible blocks by L+(TI×J).

The construction of an admissible block cluster tree from the index sets I and J and
a given admissibility condition is done in a straightforward recursion.

Algorithm 5.5.1 (Building a block cluster tree)
build block cluster tree(t, s)
begin

if (check admissibility(t,s)=true) then
if (min{|t̂|, |ŝ|} > nmin) then
b :=create admissible node (t, s);

else
b :=create admissible leaf (t, s);

else
for each block (t′, s′) ∈ sons(t, s) do

build block cluster tree(t′, s′);
end if;

end;

Example 5.5.3 Figure 5.6 shows two index sets t̂ = I(∂ω) and ŝ = I(γω). These
index sets do not have any common points. Let Ωt := ∪i∈t̂ supp bi and Ωs =
∪i∈ŝ supp bi. The intersection of the supports Ωt and Ωs is not empty (see dark
regions), but nevertheless the block (t, s) is weakly admissible (see [37]).
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∂ω

γω

Figure 5.6: The intersection of supports Ωs and Ωt of two clusters t and s, where

t̂ = I(∂ω) and ŝ = I(γω) is not empty (see dark regions), but nevertheless
the weak admissible criterion can be applied and the block b = (t, s) is
weakly admissible.

Inadmissible Blocks

Definition 5.5.7 A block (t, s) for which an admissibility criterion (standard, weak
or some other) is false, is called inadmissible. We denote the set of all inadmissible
blocks in L(TI×J) by L−(TI×J).

Recall that parameter nmin is responsible for the maximal size of inadmissible blocks.
If a block b = (t, s) does not satisfy to the first condition in Def. 5.5.6, but
min{|t̂|, |ŝ|)} ≤ nmin, then b is approximated by a dense matrix. If the parame-
ter nmin is small (e.g. nmin < 16), then the matrix has a deeper hierarchy and the
complexity of all arithmetic operations increases. On the other hand, if nmin is too
large, the fully-populated matrix arithmetic begins to dominate.

5.6 Low-rank Matrix Format

Sometimes the name rank-k matrix format is used.
The rank-k matrices are very important for the construction of H-matrices. We give
the definition of rank-k matrices and we describe the low-rank arithmetic. Then we
estimate the complexity of arithmetic operations and their implementation.

Let M ∈ RI×J be a matrix, I, J two index sets. Consider the factorization

M = ABT where A ∈ RI×{1,...,k}, B ∈ RJ×{1,...,k}, k ∈ N0. (5.10)

Definition 5.6.1 We say that matrix M is a rank-k matrix if the representation
(5.10) is given. We denote the class of all rank-k matrices for which factors A
and BT in (5.10) exist by R(k, I, J) or R(k, n,m), where n := |I|, m := |J |. If
M ∈ R(k, I, J) we say that M has a low-rank representation.

Remark 5.6.1 If A,B and C are matrices and A := B · C then
Rank(A) ≤ min{Rank(B), Rank(C)}. As a sequence we have Rank(M) = Rank(ABT ) ≤
k for matrices from (5.10).

Remark 5.6.2 Note that we do not state that the matrix M from the representation
(5.10) has a rank k, but if Rank(M) = k0 then there exists a factorization (5.10)
with k := k0.
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Proof: see Remark 2.2.2 in [36].

Definition 5.6.2 M ∈ R(k, I, J) :⇐⇒M ∈ RI×J is represented in format (5.10).

Remark 5.6.3 To store a matrix M ∈ R(k, n,m) we need k(n+m) units of mem-
ory. A dense matrix M ∈ Rn×m requires n ·m units of memory. For k ≪ min{n,m}
the profit nm− k(n+m) is especially remarkable.

To introduce an approximate arithmetic in R(k, I, J) we recall the singular value
decomposition.

Definition 5.6.3 A dense matrix M ∈ Rn×m has a singular value decomposition
(SVD) M = UΣV T , if U ∈ Rn×n, V ∈ Rm×m are unitary and Σ ∈ Rn×m is diagonal
with singular values Σii (w.l.o.g. we can suggest that Σ11 ≥ Σ22 ≥ ... ≥ Σnn,
n = min{n,m}).

To get the reduced singular value decomposition we omit all singular values, which
are smaller than some level ε or we leave a fixed number of singular values (see
Figure 5.7). After truncation we speak about reduced singular value decomposition
(denoted by rSVD) M̃ = Ũ Σ̃Ṽ T , where Ũ ∈ Rn×k contains the first k columns of U ,
Ṽ ∈ Rm×k contains the first k columns of V and Σ̃ ∈ Rk×k contains the k-biggest
singular values of Σ (see Fig. 5.7).

U VΣ T=M

U
VΣ∼

∼ ∼ T

=M
∼

Figure 5.7: Reduced SVD, only k biggest singular values are taken.

Lemma 5.6.1 Let M ∈ Rn×m and M = UΣV T (U,V orthogonal, Σ diagonal with
singular values σi = Σii and σ1 ≥ σ2 ≥ ...). Then

R := Ũ Σ̃Ṽ T with Σ̃ij =

{
σi for i = j ≤ min{k, n,m},
0 otherwise,

(5.11)

Ũ := U |n×k, Ṽ := V |m×k is the solution of the following two problems:

min
Rank(R)≤k

‖M −R‖2 and min
Rank(R)≤k

‖M −R‖F . (5.12)

The errors are

‖M − R‖2 = σk+1 and ‖M − R‖F =

√√√√
min{n,m}∑

i=k+1

σ2
i . (5.13)
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Proof: see [51] or [25].

Let M = ABT ∈ Rn×m be a matrix in the rank-k matrix format, i.e. A and B
are given. An rSVD M = UΣV T can be computed efficiently in three steps:

1. Compute (reduced) a QR-factorization of A = QARA and B = QBRB, where
QA ∈ Rn×k, QB ∈ Rm×k, and upper triangular matrices RA, RB ∈ Rk×k.

2. Compute an rSVD of RAR
T
B = U ′ΣV ′T .

3. Compute U := QAU
′, V := QAV

′T .

For the realization of these steps the linear algebra packages LAPACK and BLAS
are used. The first and third steps need O((n + m)k2) operations and the second
step needs O(k3). The total complexity of rSVD is O((n + m)k2 + k3). Hence, we
can compute rSVD of M with a linear complexity.
In HLIB one can find an implementation of this algorithm.
Now we introduce the rank-k matrix arithmetic. Later on we will use these opera-
tions for the definition of the H-matrix arithmetic.

Lemma 5.6.2 The product of a rank-k matrix and a dense matrix is again a rank-k
matrix. Let R ∈ R(k, n,m), N ∈ Rn′×n and M ∈ Rm×m′

. Then

NR ∈ R(k, n′, m), RM ∈ R(k, n,m′). (5.14)

Proof: If R = ABT then NR = (NA)BT and RM = A(MTB)T .

Lemma 5.6.3 Let R1 ∈ R(k1, n,m) and R2 ∈ R(k2, n,m). Then R1+R2 ∈ R(k1+
k2, n,m).

Proof: If R1 = ABT and R1 = CDT then R1 + R2 = [AC][BD]T , where matrix
[AC] ∈ Rn×(k1+k2) and matrix [BD] ∈ Rm×(k1+k2). Adding two rank-k matrices does
not require arithmetic operations, but the result matrix has a larger rank. This is
why we introduce the operation truncation.

Definition 5.6.4 (Truncation Tk)
Let k′ < k and M ∈ R(k, n,m) be a rank-k matrix. We define the truncation

operator
T Rk′←k : R(k, n,m)→R(k′, n,m) by M̃ = T Rk′←k(M),

where M̃ is a best approximation of M in the set R(k, n,m) (not necessarily unique).

Notation 5.6.1 If in Def. 5.6.4 the rank of the source matrix is not important we
will write Tk′.
Lemma 5.6.4 (Multiplication of rank-k matrices).
Let M1 ∈ R(k1, I, J) and M2 ∈ R(k2, J,K) be given:

M1 = A1B
T
1 , M2 = A2B

T
2 .

The product M := M1M2 can be represented as
1. M ∈ R(k2, I,K) with A = A1B

T
1 A2 and B = BT

2 . The computation of A costs
2k1k2(|I|+ |J |)− k2(|I|+ k1);
2. M ∈ R(k1, I,K) with A = A1 and B = B2A

T
2B1. The computation of A costs

2k1k2(|J |+ |K|)− k1(|K|+ k2).
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Proof: see ,e.g., [36].

Definition 5.6.5 The formatted addition ⊕ in the set R(k, n,m) is

A⊕ B := Tk(A+B), A,B ∈ R(k, n,m).

Remark 5.6.4 Note that ⊕ is commutative, but in general not distributive (i.e.,
(A⊕ B)⊕ C and A⊕ (B ⊕ C) may differ).

Theorem 5.6.1 Let k ∈ N be a maximal rank, and I, J , K be index sets. Table
5.1 shows storage requirements and computational complexities for rank-k matrices.

Operation Description Complexity

storage(M) M ∈ R(k, I, J), M = ABT k(|I|+ |J |)
Mx M ∈ R(k, I, J),M = ABT , x ∈ RJ 2k(|I|+ |J |)− |I| − k
M ′ +M ′′ M ′ ∈ R(k′, I, J),M ′′ ∈ R(k′′, I, J) (|I|+ |J |)(k′ + k′′)
M ′M ′′ M ′ ∈ R(k′, I, J),M ′′ ∈ R(k′′, I, J) 2k′k′′(|I|+ |J |)− k′′(|I|+ k′)
rSVD(M) M = ABT ∈ R(k, I, J) 6k2(|I|+ |J |) + 22k3

T Rk′←k(M) T Rk′←k : R(k, I, J)→R(k′, I, J) 6k2(|I|+ |J |) + 22k3

M ′ ⊕k M ′′ M ′,M ′′ ∈ R(k, I, J) 24k2(|I|+ |J |) + 176k3

Table 5.1: Storage requirements and computational complexities for rank-k matrices.

Proof: see [33], [27], [13], [36].

5.7 Hierarchical Matrix Format

Definition 5.7.1 Let M ∈ RI×J and I ′×J ′ be a subset of I×J , then the submatrix
M |I′×J ′ := (Mi,j)(i,j)∈I′×J ′. For a superset I

′′ × J
′′ ⊃ I × J we define the matrix

M
′′

:= M |I
′′×J ′′

∈ RI
′′×J ′′

such that

M
′′

ij :=

{
Mij if (i, j) ∈ I × J,
0 otherwise.

(5.15)

Definition 5.7.2 Let I and J be two finite index sets, T := TI×J a block cluster
tree, P a block partition, k : P → N a given mapping, nmin a small integer. The set
of H-matrices H(T, k) ⊂ RI×J (with the partition P and the mapping k) consists of
all M ∈ RI×J with

rank(M |b) ≤ k(b) for all b ∈ L+(T ) and (5.16)

for all b ∈ L+(T ) the factors A, B in M |b = ABT are given explicitly. The matrix
blocks b ∈ L−(T ) are given in the standard full matrix representation and are small
(the rank is smaller than nmin).
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If ∀b ∈ T k(b) = k then we speak about fixed rank, otherwise, about adaptive rank.

Let us write A ∈ H(TI×J , k,P) if we want to underline that matrix A has the
partitioning P (we denote the weak partitioning by the subindex W and the standard
partitioning by the subindex η).

Definition 5.7.3 Let TI×J be a block cluster tree for the index sets I and J . A
matrix M ∈ H(TI×J , k) is said to be stored in the H-matrix representation if the
submatrices corresponding to inadmissible leaves are stored as dense matrices and
those corresponding to admissible leaves are stored in the rank-k matrix representa-
tion.

To measure the sparsity property of a block cluster tree we introduce the following

Definition 5.7.4 Let TI×J be a block cluster tree based on TI and TJ . We define
the sparsity constant Csp of TI×J by

Csp := max{max
t∈TI

|{s|(t, s) ∈ L(T )}|,max
s∈TJ

|{t|(t, s) ∈ L(T )}|}.

Remark 5.7.1 The complexities of all H-matrix arithmetic operations depend on
Csp. For a model integral equation, which is discretised by BEM with the standard
admissibility criterion, the constant Csp takes values 3, 27, 189 for 1D, 2D, 3D
problems accordingly.

Remark 5.7.2 Numerical experiments show that matrices from H(TI×J , k,Pη) and
H(TI×J , 3k,PW ) give approximate similar accuracy. The storage and computational
time for the matrices from H(PW , 3k) are smaller than the corresponding storage
and time for H(Pη, k) .

Lemma 5.7.1 1. Let A ∈ H(TI×J , kA,PW ) and B ∈ H(TI×J , kB,PW ), then the
exact product A · B belongs to H(TI×J , kA + kB,PW ).

2. Let A ∈ H(TI×J , k,PW ) be invertible, then A−1 ∈ H(TI×J , k,PW ).

3. Let A ∈ H(TI×I , k,PW ) and I ′ ⊂ I, then the Schur complement is
SI′ = A|I′×I′−A|I′×I′′ ·(A|I′′×I′′)−1·A|I′′×I′, I ′′ = I\I ′, provided that (A|I′′×I′′)−1

exists.

Proof: See [37].

Remark 5.7.3 In HLIB we use the structures supermatrix forH-matrices, rkmatrix
for rank-k matrices and fullmatrix for dense matrices.
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5.8 Filling of Hierarchical Matrices

Suppose we have cluster trees TI , TJ , |I| > |J |, a block cluster tree TI×J and an
admissibility criterion. Below we show how we compute elements of M ∈ H(TI×J , k)
with complexity O(|I| log |I|) (see more in [33], [29], [28]). Depending on the defini-
tion of M , different algorithms for the determinations of the matrix representations
are needed.

Example 5.8.1 1. The matrix M comes from an integral equation.

2. The matrix M comes from a partial differential equation.

3. The matrix M is built from the H-matrices M1 and M2 (our case).

5.8.1 H-Matrix Approximation of BEM Matrix

Consider the following integral equation

∫ 1

0

log |x− y|U(y)dy = F (x), x ∈ (0, 1).

After discretisation by Galerkin’s method we obtain

∫ 1

0

∫ 1

0

φi(x) log |x− y|U(y)dydx =

∫ 1

0

φi(x)F (x)dx, 0 ≤ i < n,

in the space Vn := span{φ0, ..., φn−1}, where φi, i = 1, ..., n − 1, are some basis
functions in BEM. The discrete solution Un in the space Vn is Un :=

∑n−1
j=0 ujφj with

uj being the solution of the linear system

Gu = f, Gij :=

∫ 1

0

∫ 1

0

φi(x) log |x− y|φj(y)dydx, fi :=

∫ 1

0

φi(x)F (x)dx.

(5.17)
We replace the kernel function g(x, y) = log |x− y| by a degenerate kernel

g̃(x, y) =

k−1∑

ν=0

gν(x)hν(y). (5.18)

Then we substitute g(x, y) = log |x− y| in (5.17) for g̃(x, y)

G̃ij :=

∫ 1

0

∫ 1

0

φi(x)

k−1∑

ν=0

gν(x)hν(y)φj(y)dydx.

After easy transformations

G̃ij :=

k−1∑

ν=0

(

∫ 1

0

φi(x)gν(x)dx)(

∫ 1

0

hν(y)φj(y)dy).
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Now, all admissible blocks G|(t,s) can be represented in the form

G|(t,s) = ABT , A ∈ R|t|×k, B ∈ R|s|×k,

where the entries of the factors A and B are

Aiν :=

∫ 1

0

φi(x)gν(x)dx, Bjν :=

∫ 1

0

φj(y)hν(y)dy.

We use the fact that the basis functions are local and obtain for all inadmissible
blocks:

G̃ij :=

∫ (i+1)/n

i/n

∫ (j+1)/n

j/n

log |x− y|dydx.

5.8.2 H-Matrix Approximation of FEM Matrix

The finite element discretisation of a partial differential equation leads to a data-
sparse matrix with O(n) elements. For an elliptic equation

−△u = g, in Ω ⊂ Rd

u = 0, on ∂Ω

the linear system is (see Section 3.4)

Au = c, Aij :=

∫

Ω

〈∇bi(x),∇bj(x)〉dx, ci :=

∫

Ω

bigdx,

where A is sparse. If the LU decomposition of A or A−1 is required, then A is
converted to the H-matrix format and the efficient H-matrix arithmetic is applied
(see HLIB).

5.8.3 Building of an H-Matrix from other H-Matrices

Let I ′, I ′′ ⊂ I and J ′, J ′′ ⊂ J be index sets, T ′I′×J ′, T ′′I′′×J ′′ and TI×J be three block
cluster trees. Let M1 ∈ H(T ′I′×J ′, k1), M2 ∈ H(T ′′I′′×J ′′, k2) and M ∈ H(TI×J , k),
then we can define

M := M1|I×J +M2|I×J .
For more details see Subsection 5.9.8.

5.9 Arithmetics of Hierarchical Matrices

In this section we describe the algorithms that perform the addition, multiplication
and inversion in the hierarchical matrix format. The reader can get more infor-
mation in [33], [29], [13] (English) and [27], [36] (German). Here, we also explain
how to sum and multiply hierarchical matrices which have different block structures.
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Remark 5.9.1 In this Section and further, for simplicity of the notation, we pose
that t and t̂ are equivalent and we do not separate between t and t̂. For instance,
|t| = |t̂|, M |t×s = M |(t,s).

In Section 5.6 we have defined the operator T Rk′←k, which truncates a rank-k matrix
to the rank-k′ matrix, k′ < k. An extension of this operator to H-matrices is as
follows:

Definition 5.9.1 (truncation of H-matrices)
Let T := TI×J be a block cluster tree and n := |I|, m := |J |. Let M ∈ Rn×m,
M ′ ∈ H(T, k). We define the truncation operator

T Hk : Rn×m → H(T, k), M 7→M ′,

where M ′ = T Hk (M) and M ′|(r,s) = T Rk (M |(r,s)) for all (r, s) ∈ L+(T ) and M ′|(r,s) =
M |(r,s) for all (r, s) ∈ L−(T ).

Definition 5.9.2 An alternative truncation operator Tε is defined in the following
way:

Tε(M) := argmin{rank(R)|‖R−M‖2‖M‖2
≤ ε},

where the parameter ε is a desired accuracy.

Definition 5.9.3 If the rank k of M ∈ H(TI×J , k) (see Definition 5.7.2) is fixed
a priory then we speak about fixed rank arithmetic. If the rank k depends on a
block b ∈ TI×J and is chosen as follows

k = min{i : σi ≤ εaσ1},

where {σi} are the singular values of M |b then we speak about adaptive rank
arithmetic (see [13] or Section 6 in [27]).

The use of both truncation operators makes the matrix arithmetic more flexible.

Definition 5.9.4 (Formatted addition of two hierarchical matrices)
Let A,B,C ∈ H(TI×J , k), k ∈ N. The formatted addition of the matrices A and B
is defined by

C := A⊕B := Tk(A+B).

If the rank k under consideration is not evident then we write ⊕k instead of ⊕.

Definition 5.9.5 (Formatted multiplication of two hierarchical matrices)
Let A ∈ H(TI×J , k), B ∈ H(TJ×K , k), C ∈ H(TI×K , k), k ∈ N. The formatted
multiplication of the matrices A,B is defined by

C = A⊙ B := Tk(A · B).
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The block structure of theH-matrix product A·B does not retain either the structure
of matrices A or B and can become rather complicated. See more details about H-
matrix multiplication in [13], [36] and [27].
Let J , J1 and J2 be three index sets and J = J1 ∪ J2, J1 ∩ J2 = ∅. Let M ∈ RI×J ,
M1 ∈ RI×J1 and M2 ∈ RI×J2 be three matrices and M = [M1M2] ∈ RI×J . The
formatted agglomeration of matrices M1 and M2 is defined by:

[M1M2] := M1|I×J +M2|I×J . (5.19)

Definition 5.9.6 Let k1, k2 ∈ N0, M1 ∈ R(k1, I, J1),M2 ∈ R(k2, I, J2) and J =
J1∪J2, J1∩J2 = ∅. Then M = T Rk←k1+k2([M1M2]) = M1|I×J⊕kM2|I×J ∈ R(k, I, J)
is called formatted agglomeration.

In the general case there are more than two terms of the agglomeration.

Definition 5.9.7 Let Mi ∈ R(ki, I, J), i = 1, ..., q. The operation

M := T Rk←Pq
i=1 ki

(

q∑

i=1

Mi) (5.20)

is the truncated agglomeration of q terms.

Lemma 5.9.1 If in (5.20) k1 = k2 = ... = kq = k, then the complexity of the
truncated agglomeration of q terms is O(k2q2n), n = max{|I|, |J |}.
Proof: The cost of the truncation Tk←2k is O((2k)2n). For q terms the cost is
O((kq)2)n) = O(k2q2n).

Remark 5.9.2 A second possibility of a truncated agglomeration for q > 2 is the
pairwise truncation:

M = T Rk←k1+kM1 + ...+ T Rk←kq−2+k
(Mq−2 + T Rk←kq−1+kq

(Mq−1 +Mq))...). (5.21)

Lemma 5.9.2 The complexity of the truncated addition as in (5.21) is

O(k2
max(q − 1)n), (5.22)

where k′max := max{ki + k| i = 1, ..., q − 2} and kmax := max{k′max, kq−1 + k}.
Proof: The cost of the truncation Tki←ki+1+ki+2

is O((ki+1 + ki+2)
2n).

Let kmax := ki + ki+1, i = 1, ..., q − 1. For q terms the cost is O(k2
max(q − 1)n).

Remark 5.9.3 The pairwise truncated addition of q terms is cheaper than the direct
truncated addition (5.20) of q terms. For k1 = ... = kq the profit is

(q2 · k2 − (2k)2 · (q − 1))n = (q2 − 4q + 4)k2n.

But practical experiments show that the accuracy of the pairwise truncated addition
is worse than the truncated addition of q terms.

Remark 5.9.4 It is also may be possible that the following truncated addition

M = T Rk←k1+k2+k(M1 +M2 + ... + T Rk←kq−4+kq−3+k
(Mq−4 +Mq−3

+T Rk←kq−2+kq−1+kq
(Mq−2 +Mq−1 +Mq))...).

is cheaper than the pairwise truncated addition.

- 76 -



5.9 Arithmetics of Hierarchical Matrices

5.9.1 Matrix - Vector Multiplication

Let M ∈ H(TI×J , k), n = |I|, m = |J |, v ∈ Rm and w ∈ Rn. The matrix-vector
(denote by MV) multiplication w = Mv is realized in a recursive way. The procedure
MV (M [i], v[i], w[i]), where M [i], v[i] and w[i] are corresponding parts of M , v and
w calls itself recursively.

Remark 5.9.5 Implementation of MV multiplication in HLIB is
eval supermatrix(M, v, w).

5.9.2 Matrix - Matrix Multiplication

The H-matrix multiplication (denote by MM) A · B = C, where A ∈ H(TI×J , k),
B ∈ H(TJ×K , k) and C ∈ H(TI×K , k) is realized block-wise recursively. Suppose
that A and B are 2× 2 blocks matrices, then

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
= Tk

(
A11 ⊙B11 ⊕ A12 ⊙ B21 A11 ⊙ B12 ⊕ A12 ⊙B22

A21 ⊙B11 ⊕ A22 ⊙ B21 A22 ⊙ B22 ⊕ A21 ⊙B12

)
.

Remark 5.9.6 In the case when the matrices A and B have different block struc-
tures the H-matrix multiplication of A and B is possible after conversion of A or B
to the respective format.

Thus, the product of two H-matrices or their sum can require the truncation of
the rank.

Lemma 5.9.3 (complexity of the H-matrix truncation)
Let T := TI×J be a block cluster tree, based on the cluster trees TI and TJ . A
truncation T Hk′←k(M) of M ∈ H(TI×J , k) can be computed with the complexity

Nk′←k ≤ 6kNSt(T, k) + 23k3|L(T )|,

where NSt is the storage requirement for M .

Proof: see Lemma 2.9 in [29].

5.9.3 Hierarchical Approximation T R←Hk

The hierarchical approximation is applied for the MM multiplication and for the
MM conversion.

Notation 5.9.1 We denote an operator which truncates a dense matrix M ∈ RI×J

to a rank-k matrix by T R←Fk .

Note that T R←Fk (M) is done by the singular value decomposition (see Section 5.6).

Notation 5.9.2 We denote the operator, which hierarchically convertM ∈ H(TI×I , k)
to a rank-k matrix in p+ 1 steps (see Fig. 5.8) by T R←Hk .

- 77 -



5 Hierarchical Matrices

Definition 5.9.8 (Hierarchical Approximation) Let TI×I be a block cluster tree, p :=
depth(TI×I), M ∈ H(TI×I , k). Let P be a partitioning. We define the hierarchical
approximation MH of M in p+ 1 steps as follows:

T R←Hk :=






T R←Fk (M |b) if b ∈ L(TI×J) ∧ b is inadmissible,
T Rk (M |b) if b ∈ L(TI×J) ∧ b is admissible,
T Rk←k·|S(b)|(M |b) if b ∈ P ∧ b /∈ L(TI×J),

where |S(b)| is the number of sons of b.

The hierarchical approximation (see Fig. 5.8) contains two subprocedures:

1. The conversion a given dense matrix to a rank-k matrix
(addfull2 rkmatrix(..) in HLIB).

2. Adding two or more rank-k matrices with truncation to a rank-k matrix
(addparts2 rkmatrix(..) in HLIB).

Lemma 5.9.4 Let M ∈ H(TI×J , k), R ∈ R(k, I, J). The complexity of the trunca-
tion R = T R←Hk (M) is O(k2n logn), where n = max{|I|, |J |}.

Proof: see Lemma 6.4.4 in [36].

F R
R R

R R

R
R

R
R R

R

R

Figure 5.8: Three steps of the hierarchical approximation. The first step is the con-
version of a dense matrix F to a rank-k matrix R. In the second step
four rank-k matrices are converted to a larger rank-k matrix. In step
three two low-rank matrices are converted to a global rank-k matrix.

Lemma 5.9.5 (Hierarchical Approximation Error)
Let p := depth(TI×J), M ∈ H(TI×J , k) and MH be a hierarchical approximation of
M , then

‖M −MH‖F ≤ (2p+1 + 1)‖M − T Hk (M)‖F . (5.23)

‖M −MH‖2 ≤ (2
3p
2

+1 + 2
p
2 )‖M − T Hk (M)‖2.

Proof: see [27], [13], [36].
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5.9.4 H-Matrix Inversion

Theorem 5.9.1 Let M ∈ H(TI×I , k) be an H-matrix with parameter nmin = k. The
block cluster tree TI×I is based on a binary cluster tree TI and for all (r, s) ∈ TI×I
we define

S(r × s) =

{
{r′ × s′|r′ ∈ S(r), s′ ∈ S(s)} if r = s,
∅ otherwise.

(5.24)

Let M be invertible and p := depth(TI×I). Then the exact inverse M−1 to M fulfils

M−1 ∈ H(TI×I , kp).

Proof: see Section 3.1 in [29].

Recursive formula

Let A ∈ H(TI×I , k) be given as a 2 × 2 block matrix. Let A and A11 be regular
matrices. Then the inversion of

A =

(
A11 A12

A21 A22

)
(5.25)

can be computed by the following recursive formula:

A−1 =

(
A−1

11 + A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

)
, (5.26)

where S := A22−A21A
−1
11 A12. This formula is obtained by block Gauss-elimination.

Here all arithmetic operations are done in the H-matrix format. See more [36], [13].

Remark 5.9.7 The matrix inversion is cheaper if the partitioning is obtained with
the weak admissibility criterion. The reason is that the Schur complement S−1 in
(5.26) can be computed with the use of the Sherman-Morrison-Woodbury formula
(see more in [37]).

H-matrix Inversion by the DD Method

One can use the domain decomposition idea for the inversion (see Section 4.1).

H-matrix Inversion by LU decomposition

Numerical results show that inversion by a hierarchical LU decomposition (denote
by H-LU) is faster than the recursive formula (5.26). Here we briefly describe the
H-LU decomposition of a matrix A (see [48],[9],[47]). Assume that all minors of A
are non-zero, then A can be decomposed in a product of a lower triangular matrix L
and an upper triangular matrix U . L and U can be approximated by the H-matrices
LH and UH if any Schur complement in matrix A has this property (see proof in
[10]).
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A ≈ LHUH implies A−1 ≈ U−1
H L−1

H .
Suppose that

A =

[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
.

If A is a small dense matrix we use the standard pivoted LU decomposition. Other-
wise we proceed as follows:

1. Compute L11 and U11 as H-LU decomposition of A11.

2. Compute U12 from L11U12 = A12 (use a recursive block forward substitution).

3. Compute L21 from L21U11 = A21 (use a recursive block backward substitution).

4. Compute L22 and U22 as H-LU decomposition of L22U22 = A22 − L21U12.

All steps are executed in the class of H-matrices.
The complexity of the H-LU decomposition is O(n log2 n). See for more theory
and numerical experiments in [9]. One can find realizations of the H-LU and the
H-Cholesky decompositions in HLIB.

Remark 5.9.8 If the initial matrix A is symmetric (i.e., L = UH) then we compute
the H-Cholesky decomposition.

5.9.5 Other Operations With an H-Matrix

Let M ∈ H(TI×J , k), n := |I| and m := |J |. The following operations can be
performed recursively.
1) Extracting a column (row) from M ,
2) The removal of a column (row) from M ,
3) Adding a rank-1 matrix to M .

Remark 5.9.9 In order to delete a column i from a rank-k matrix R = ABT , one
should delete the column i from the matrix BT .

5.9.6 Extracting a Part of an H-Matrix

Let I, J , I ′ and J ′ be four index sets, TI and TJ be two cluster trees, T := TI×J ,
M ∈ H(TI×J , k). Let t ∈ TI , s ∈ TJ two clusters such that I ′ ⊆ t and J ′ ⊆ s. The
problem is to extract M |I′×J ′.

M |I′×J ′ can be a) a fully populated matrix, b) a rank-k matrix, and c) an H-
matrix (see an example in Fig. 5.10).
In Case (a) a part of a fully populated submatrix should be copied (is evident).
Case (b). Let M |t×s = ABT ∈ R(k, t, s) be a rank-k matrix. The restriction R′ =
R|I′×J ′ of the matrix R is also a rank-k matrix with the rank k′ = min(k, |I ′|, |J ′|)
(see Figure 5.9) and R′ := A|I′B|TJ ′.
Case (c). If M |t×s is an H-matrix, then the index sets I ′ and J ′ define the restriction
of the block cluster tree T̃ := T |I′×J ′ (see Section 5.9.7).

- 80 -



5.9 Arithmetics of Hierarchical Matrices

Remark 5.9.10 The following procedures are used in HLIB for extracting a part of
an H-matrix:
1. addpart fullmatrix(..) copies a part of a dense matrix (see HLIB).
2. addpart2 rkmatrix(..) copies a part of a rank-k matrix (see HLIB).
3. cut Hmatrix(..) copies a part of an H-matrix (see HDD package).

=

A

B
T

*

R

k

k

n

m

n

m

R’

Figure 5.9: A part R′ of a rank-k matrix R = ABT is the product of A|I′ and BT |J ′.
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Figure 5.10: Starting from the position (130,120), we take 205 rows and 360 columns
from H ∈ R639×639. H ′ ∈ R205×360 is a part of the matrix H .

Another way of extracting a submatrix M ′ ∈ RI′×J ′

from an H-matrix M ∈ RI×J ,
I ′ ⊆ I, J ′ ⊆ J , is demonstrated in Fig. 5.11. The idea is to multiply the original H-
matrixM from left and from right on the special matrices T1 ∈ RI′×J and T2 ∈ RI×J ′

.
The lack of this method is that the result matrix will be in the dense matrix format.
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Figure 5.11: The submatrix M ′ := M |I′×J ′ = T1 ·M · T2, where I ′ ⊆ I and J ′ ⊆ J
.

5.9.7 Matrix - Matrix Conversion

Let T := TI×J , I
′ ⊆ I and J ′ ⊆ J . First, we introduce the restricted block cluster

tree T̃ := T |I′×J ′. We build the tree T̃ in two steps:

1. Create copy T̃ of T .

2. Each block b := t × s ∈ T becomes b̃ = (t ∩ I ′, s ∩ J ′). Note that the root of
T̃ is I ′ × J ′. T̃ may contain nodes with the empty index set.

Algorithm 5.9.1 becomes the matrix M ∈ H(TI×J , k) and two index sets I ′ and J ′

and computes the matrix M̃ := M |I′×J ′.

Algorithm 5.9.1 (Computing M |I′×J ′, where M ∈ H(TI×J , k))
extract part Hmatrix(M , I ′, J ′)
begin

if (M is a dense matrix) then
allocate memory for a new dense matrix F ∈ RI′×J ′

;
F := M |I′×J ′;
return F ;

end if;
if (M is a rank-k matrix) then

allocate memory for a new rank-k matrix R ∈ R(k, I ′, J ′);
R := M |I′×J ′ = A|I′B|TJ ′;
return R;

end if;
if (M is an H-matrix) then
for each subblock b = t× s of M do

if (I ′ ∩ t 6= ∅) and (J ′ ∩ s 6= ∅) then
P := extract part Hmatrix(M |b, I ′ ∩ t, J ′ ∩ s);
return P;

end if;
end if;

end;
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5.9 Arithmetics of Hierarchical Matrices

Consider a more difficult case. Suppose M ∈ H(TI×J , k),

I ⊇ I ′ =

p⋃

i=1

Ii, Ij ∩ Ik = ∅, j 6= k, (5.27)

J ⊇ J ′ =

q⋃

j=1

Jj , Ji ∩ Jk = ∅, i 6= k (5.28)

and n = max{|I|, |J |}, n′ = max{|I ′|, |J ′|}. Let M̃ ∈ H(T ′I′×J ′, k). The problem is

to convert M to M̃ . We set up M̃ by Algorithm 5.9.2.

Algorithm 5.9.2 (Conversion M ∈ H(TI×J , k) to M ′ := M |I′×J ′ ∈ H(T ′I′×J ′, k))
h2h(M , M ′,

⋃p
i=1 Ii,

⋃q
j=1 Jj)

begin
if (M ′ is a dense matrix) then

h2f(M , M ′,
⋃p
i=1 Ii,

⋃q
j=1 Jj);

if (M ′ is a rank-k matrix) then
h2r(M , M ′,

⋃p
i=1 Ii,

⋃q
j=1 Jj);/∗see Algorithm 5.9.3∗/

if (M ′ is an H-matrix) then
for each subblock b = t× s of M ′ do

h2h(M , M ′|b,
⋃p
i=1(Ii ∩ t),

⋃q
j=1(Jj ∩ s));

end if;
end;

The conversion of an H-matrix to a dense matrix (procedure h2f(..) in Algorithm
5.9.2) is done elementwise. The conversion of an H-matrix to a rank-k matrix
(procedure h2r(..) in Algorithm 5.9.2) is done by Algorithm 5.9.3.
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Algorithm 5.9.3 (Converting M ∈ H(TI×J , k) to R ∈ R(k, I ′, J ′))
h2r(M , R,

⋃p
i=1 Ii,

⋃q
j=1 Jj)

begin
if (M is a dense matrix)

allocate memory for F ∈ RI′×J ′

;
for all i ∈ I ′ and j ∈ J ′ do
Fij := Mij;

convert F to R; /∗ SVD is used ∗/
end if;
if (M is a rank-k matrix, i.e. M = ABT ) then

allocate memory for R = CDT ∈ R(k, I ′, J ′);
C := A, D := B;

end if;
if (M is an H-matrix) then
l = 0;
for each subblock b = t× s of M do
R[l]:=h2r(M |b,

⋃p
i=1(Ii ∩ t),

⋃q
j=1(Jj ∩ s));

l + +;
end for
R:=(R[0]⊕k (R[1]⊕k ...⊕k (R[l − 2]⊕k R[l − 1])..);
/∗see pairwise truncation in (5.21)∗/

end if;
end;
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5.9.8 Adding Two H-Matrices With Different Block Cluster
Trees

The addition of two hierarchical matrices with compatible block cluster trees has
been described in [33]. Let I, J , I ′, J ′, I ′′ and J ′′ be given index sets such that
I ′, I ′′ ⊆ I, J ′, J ′′ ⊆ J , and M ∈ H(TI×J , k). Let TI′×J ′ and TI′′×J ′′ be block cluster
trees. The sum of M1 ∈ H(TI′×J ′, k1) and M2 ∈ H(TI′′×J ′′ , k2) with the result matrix
M is defined as follows (see Fig. 5.12):

M = M ′ ⊕M ′′, where M ′ := M1|I×J and M ′′ := M2|I×J (see Def. 5.7.1).

The adding procedure applies the list of procedures from Table 5.2.

Remark 5.9.11 Note that M1|I×J and M2|I×J have the block cluster tree TI×J . To
compute M ′ := M1|I×J and M ′′ := M2|I×J we apply Algorithm 5.9.2.

+ + =

Figure 5.12: Transformation of H-matrices M1, M2 to H-matrices M1|I×J , M2|I×J
and their addition.

procedure description

add fullmatrix(F, F1, F2) Adding two dense matrices
add rkmatrix(R,R1, R2) Adding two rank-k matrices
addfullpart2 rkmatrix(F ,R) Addition of a dense matrix to a rank-k matrix
addrk2 fullmatrix(R,F ) Addition of a rank-k matrix to a dense matrix
addfull2 supermatrix(F,M) Addition of a dense matrix to an H-matrix
addrk2 supermatrix(R,M) Addition of a rank-k matrix to an H-matrix
add supermatrix(M,M1,M2) Adding of H-matrices M := M1 ⊕M2

h2h(M1,M2,...) Conversion of an H-matrix M1 to the H-matrix M2

h2r(M,R,...) Conversion an H-matrix to an rank-k matrix
h2f(M,F ,...) Conversion an H-matrix to an dense matrix

Table 5.2: The procedures which are applied for adding two H-matrices with differ-
ent block structures. M , Mi are H-matrices, R, Ri are rank-k matrices,
F , Fi are dense matrices, i = 1, 2.

5.10 Complexity Estimates

Lemma 5.10.1 Let I be an index set, n := |I| and TI a balanced, binary cluster
tree and T := TI×I a block cluster tree. Let the depth of the tree is p(T ) = O(logn).

Then the number of clusters on the level i is |T (i)
I | = 2i for 0 ≤ i ≤ p(T ) and

|V (TI)| = 2|T | − 1 = O(n).
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Proof: see [27].

Theorem 5.10.1 Let n := max{|I|, |J |, |K|}, m := |J |, n ≥ m. Let T := TI×J ,
TI×K, TK×J be block cluster trees, depth(T ) = log n, M ∈ H(T, k), k := max{k, nmin}.
The storage requirement and the computational costs of H-matrix operations are
given in Table 5.3.

Operation Description Complexity

storage(M) M ∈ H(TI×J , k) O(Cspkn log n

Mx M ∈ H(TI×J , k), x ∈ R|J | O(Cspkn log n)
M ′ ⊕M ′′ M ′,M ′′ ∈ H(TI×J , k) O(Cspk

2n logn)

M ′ ⊙M ′′ M ′ ∈ H(TI×K , k), O(C3
spk

2n log2 n)
M ′′ ∈ H(TK×J , k)

M−1 M ∈ H(TI×I , k) O(C3
spk

2n log2 n)

H-LU M ∈ H(TI×I , k) O(C3
spk

2n log2 n)

M ⊕R M ∈ H(TI×J , k), R ∈ R(k, I, J) O(k2(n+m))

Table 5.3: The costs of H-matrix arithmetical operations, n := max{|I|, |J |, |K|}.

Proof: See Lemma 5.13 for the MV multiplication and the MM addition. See
Lemmas 2.10, 2.17, 2.19 in [29] for the MM multiplication. See also [33], [27].

Lemma 5.10.2 Let T := TI×J be a block cluster tree. The cost of the multiplication
of a matrix M ∈ H(T, k) and a vector v ∈ R|J | is

NH·v(T, k) ≤ 2NSt(T, k), (5.29)

where NSt(T, k) is the storage requirement for M .

Proof: The scalar product of two vectors u, v ∈ Rm costs m+ (m− 1) < 2m (there
aremmultiplications andm−1 additions). The storage of a rank-k matrix R = ABT

is NSt,R(k, n,m) = k(n+m) and the cost of R·v is 2k(n−1)+2k(m−1) ≤ 2k(n+m).
The storage requirement of a dense matrix F ∈ Rn×m is n ·m and the computational
cost of F · v is (2m − 1) · n ≤ 2n ·m. Summing the costs for all admissible blocks
we prove the lemma.

Lemma 5.10.3 Let T := TI×J , n := |I| ≥ |J |. The removal of i-th row from a
matrix M ∈ H(T, k) costs 2Cspkn.

Proof: This removal procedure updates the old data structure. Let p := depth(TI×J).
algorithm goes through the whole tree TI×J and removes i-th row from blocks
{(t, s) ∈ L(T ), i ∈ t}. Therefore, the complexity is

p∑

l=0

∑

(t,s)∈L(T,l),i∈t
(|t| − 1)kCsp

|t|=2p−l

≤ Cspk

p∑

l=0

(2p−l − 1) (5.30)
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≤ Cspk

p∑

l=0

2l ≤ 2Cspkn. (5.31)

Similarly, the cost of the removal of a column is bounded by 2Cspkn.

Lemma 5.10.4 Let TI be a cluster tree. Adding a rank-1 matrix R ∈ R(1, I, I) to
the hierarchical matrix M ∈ H(TI×I , k) costs O(k2n), where n = |I|.

Proof: Let p := depth(TI×I). We know that the truncated addition of two rank-k
matrices M |t×s and R|t×s costs O(k2(|t|+ |s|)). Thus, the complexity is

N =
∑

t∈TI

O(k2|t|) = O(k2|I|). (5.32)

Lemma 5.10.5 Extracting a column j from a matrix M ∈ H(TI×J , k) costs O(k|I|).

Proof: Let n := |I| ≥ |J |. Extracting a column j from M is equivalent to the
multiplication M · ej , ej = (0, 0, ...0, 1, 0..., 0) and costs O(kn log n). But it can be
done with the complexity O(kn). Let TJ be a cluster tree, L(TJ) the set of all
leaves of TJ and s0 the biggest cluster, such that j ∈ s0 ∈ TJ . Denote the set of all
successors of s0 by S ′(s0). Let

L′(TI×J) := {(t, s) ∈ L(TI×J)|t ∈ TI , s ∈ TJ and s ∈ S ′(s0)}. (5.33)

Then the complexity is

N =
∑

t×s∈L′(TI×J ),

k(|t|+ |s|) ≤
∑

t∈L(TI )

2k|t| = O(k|I|). (5.34)

Similarly, the extraction of a row costs O(k|J |).

Lemma 5.10.6 Let M ∈ H(TI×J , k), I
′ ⊆ I, J ′ ⊆ J , n′ = max{|I ′|, |J ′|}. The

hierarchical conversion (see (5.21)) of M |I′×J ′ to R ∈ R(k, I ′, J ′) is of complexity

N ≤ O(k2qn′ log n), where q := max
l

∑

(I ′ × J ′) ∩ (t× s) 6= ∅

(t× s) ∈ T (l)
I×J

1. (5.35)

Proof: Here q is the maximal number of subblocks on the same level which have
to be summed. The conversion (see Section 5.9.3) at one level is of complexity
O(k2qn′). There are log n levels and the total complexity is N ≤ O(k2qn′ log n).
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Definition 5.10.1 Let I ′ ⊆ I, J ′ ⊆ J be index sets, T := TI×J , T
′ := T ′I′×J ′

block cluster trees. Let q be the maximal number of subblocks which form a block
(t′ × s′) ∈ L(T ′I′×J ′). The value q is defined as following

q := max
(t×s)∈L(T )

∑

(t× s) ∩ (t′ × s′) 6= ∅

(t′ × s′) ∈ L(T ′)

1. (5.36)

Lemma 5.10.7 Let I ′ ⊆ I, J ′ ⊆ J be index sets, T := TI×J , T
′ := TI′×J ′ the block

cluster trees, p := depth(T ), M ∈ H(T, k) and M ′ ∈ H(T ′, k). The complexity of
computing M := M ′|I×J is

N = O(k2qn log n logn′),

where n := max{|I|, |J |}, n′ := max{|I ′|, |J ′|}, depth(T ′) = log n′ and q is defined
in (5.36).

Proof: Suppose that for each leaf b = (t× s) ∈ L(T ) there are q(b) subblocks in T ′

which contain elements from M |b. The search of q(b) subblocks costs in the worst
case q(b) · depth(T ′) = q(b) logn1 ≤ q logn1.
By Lemma 5.10.6 the cost of the hierarchical conversion R|t×s = T R←H(M) is
C1qk

2(|t|+ |s|) logn′.
Using Lemma 5.10.6 and decomposing all leaves of T on admissible and inadmissible
leaves, we obtain

N ≤
∑

(t×s)∈L+(T )

Cqk2(|t|+ |s|) logn′ +
∑

(t×s)∈L−(T )

C1(|t| · |s|)

≤
∑

(t×s)∈L+(T )

Cqk2(|t|+ |s|) logn′ +
∑

(t×s)∈L−(T )

C1nmin(|t|+ |s|)

≤
p∑

i=0

∑

(t×s)∈T (i)

max{Cqk2 logn′, C1nmin}(|t|+ |s|)

Cqk2 logn′>C1nmin
= Cqk2 logn′(

p∑

i=0

∑

(t×s)∈T (i)

|t|+
p∑

i=0

∑

(t×s)∈T (i)

|s|)

≤ 2Cqk2 logn′
p∑

i=0

∑

t∈T (i)

|t|

≤ 2Cqk2 logn′
p∑

i=0

|I|

= 2Cqk2(p+ 1) logn′|I| = O(k2qn logn logn′).

�

Lemma 5.10.8 Let I ′ ⊆ I, I ′′ ⊆ I, J ′ ⊆ J , J ′′ ⊆ J be index sets, T := TI×J ,
T ′ := TI′×J ′, T ′′ := TI′′×J ′′ the block cluster trees, p := depth(T ), n := max{|I|, |J |}.
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Let M ∈ H(T, k), M1 ∈ H(T ′, k) and M2 ∈ H(T ′′, k) two H-matrices with different
block cluster trees. The complexity of computing

M = M1|I×J ⊕M2|I×J

is O(qk2n log2 n), where q is defined in (5.36).

Proof: Let depth(T ′) = log n1 and depth(T ′′) = log n2. From Lemma 5.10.7 follows
that the cost of computing M ′ := M1|I×J and M ′′ := M2|I×J is

O(q(log n1 + log n2)k
2n log n).

The cost of adding M ′ ⊕k M ′′ is O(k2n log n). Taken into account that n1 ≃ n
2

and
n2 ≃ n

2
the total cost is

O(q(logn1 + logn2)k
2n log n) +O(k2n logn) ≤ O(qk2n log2 n).

- 89 -



5 Hierarchical Matrices

- 90 -



6 Application of H-matrices to HDD

The HDD method from Chapter 4 requires the exact matrix arithmetic, which is
expensive. To avoid it we approximate all matrices by the corresponding H-matrices
and then apply the efficient H-matrix technique. Thus, we reduce the computational
cost and storage requirements extremely.

In this section we explain how to apply H-matrices for the approximation of
Ψω and Φω. We explain the algorithm “Leaves to Root” in terms of the Schur
complements defined on ω1, ω2 and ω.

6.1 Notation and Algorithm

In Table 6.1 we recall four types of mappings which are present in the HDD method.
All of them will be approximated in the H-matrix format.

Name Mapping

domain-to-boundary Ψf
ω : RI(ω) → RI(∂ω)

boundary-to-boundary Ψg
ω : RI(∂ω) → RI(∂ω)

domain-to-interface Φf
ω : RI(ω) → RI(γ)

boundary-to-interface Φg
ω : RI(∂ω) → RI(γ)

Table 6.1: Four mappings, which are used in HDD. ω ∈ TTh
.

The properties of these mappings are:

1. The mappings Ψf
ω and Φf

ω are approximated by H-matrices with the standard
admissibility condition (see Section 5.5.1).

2. The mapping Ψg
ω is approximated by an H-matrix with the weak admissibility

condition (see Section 5.5.2).

3. The mapping Φg
ω is approximated by a low-rank matrix (as a consequence of

using the weak admissibility condition).

4. The algorithm “Leaves to Root” builds the mappings Ψg
ω and Ψf

ω. The map-
pings Ψg

ω and Ψf
ω are computed automatically.

5. If the global stiffness matrix after discretisation of the initial problem (4.1) is
self-adjoint, then all matrices Ψg

ω, ω ∈ TTh
, are positive definite and symmetric.

- 91 -



6 Application of H-matrices to HDD

Notation 6.1.1 Let us denote an H-matrix approximation of a mapping χ by (χ)H.

Later on, for simplicity of the notation, we will omit ()H.
Further, we will assume that ω = ω1 ∪ ω2, ω, ωi ∈ TTh

, Γω,i = ∂ω ∩ ωi and
γ = γω = ∂ωi\∂ω, i = 1, 2.

6.2 Algorithm of Applying H-Matrices

1. We start with computing the systems of linear equations for all leaves of TTh
as

it is done in Section 4.3.1 (leaves of TTh
are triangles). Note that only in this step

we apply formulae from Section 4.3.1. As a result we have a system Au = Fc for
each leaf ω ∈ TTh

, where A ∈ R3×3 and F ∈ R3×3.

2. Suppose the systems A(1)u = F (1)c and A(2)u = F (2)c for subdomains ω1

and ω2, respectively, are given. Now, we would like to construct the matrices A
and F which appear in the system Au = Fc for the domain ω. We construct A
from the matrices A(1), A(2) and F from F (1) and F (2) as it was shown in Section
4.3.3. “Construct” means that we simply sum the elements which correspond to the
common points in ω1 and ω2 and copy the elements which correspond to the unique
points. As soon as the matrices A and F become large, we compute their H-matrix
approximations.

3. Let the system of linear equations Au = Fc for ω ∈ TTh
be given. A

is the stiffness matrix for the domain ω after elimination of the unknowns corre-
sponding to I(

◦
ω \γω). The matrix F comes from the numerical integration. Here

A : RI(∂ω∪γ) → RI(∂ω∪γ), u ∈ RI(∂ω∪γ), F : RI(ω) → RI(∂ω∪γ) and c ∈ RI(ω). Decom-
pose the unknown vector u into two components u1 ∈ RI(∂ω) and u2 ∈ RI(γ). Then
the system of linear equations Au = Fc takes on form

(
A11 A12

A21 A22

)(
u1

u2

)
=

(
F1

F2

)
c, (6.1)

where
A11 : RI(∂ω) → RI(∂ω), A12 : RI(γ) → RI(∂ω), A21 : RI(∂ω) → RI(γ),
A22 : RI(γ) → RI(γ), F1 : RI(ω) → RI(∂ω), F2 : RI(ω) → RI(γ), u1 ∈ RI(∂ω), u2 ∈ RI(γ),
c ∈ RI(ω).

4. Now we eliminate the unknown vector u2 as shown in (6.2). We multiply both
sides of (6.1) on A12A

−1
22 and subtract the second row from the first row

(
A11 −A12A

−1
22 A21 0

A21 A22

)(
u1

u2

)
=

(
F1 − A12A

−1
22 F2

F2

)
c. (6.2)

Note that we do not multiply the matrices A−1
22 and F2 in (6.2). We rewrite the last

system as two equations

Ãu1 := (A11 − A12A
−1
22 A21)u1 = (F1 − A12A

−1
22 F2)c,

A22u2 = F2c− A21u1.
(6.3)
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The unknown vector u2 is computed as follows (compare with (4.43))

u2 = A−1
22 F2c−A−1

22 A21u1.

The explicit expressions for the mappings Ψω and Φω follow from (6.3):

Ψg
ω := A11 − A12A

−1
22 A21, (6.4)

Ψf
ω := F1 − A12A

−1
22 F2, (6.5)

Φg
ω := −A−1

22 A21, (6.6)

Φf
ω := A−1

22 F2, (6.7)

As soon as the rank of A22 is larger than parameter nmin (see Section 5.5.2), we
apply SVD to convert A and F from the dense matrix format to the H-matrix
format. Denote the standard operations − and · in the class of H-matrices by ⊖
and ⊙. After approximation of all matrices in (6.4)-(6.7) by H-matrices we obtain

(Ψg
ω)
H := (A11)

H ⊖ (A12)
H ⊙ (A−1

22 )H ⊙ (A21)
H, (6.8)

(Ψf
ω)
H := (F1)

H ⊖ (A12)
H ⊙ (A−1

22 )H ⊙ (F2)
H, (6.9)

(Φg
ω)
H := −(A−1

22 )H ⊙ (A21)
H, (6.10)

(Φf
ω)
H := (A−1

22 )H ⊙ (F2)
H. (6.11)

Note that we multiply H-matrices only in (6.8) and (6.9). In (6.10) and (6.11) we
store the multipliers and later on perform only two times matrix-vector multiplica-
tions.

5. We repeat steps 2-5 for all other ω ∈ TTh
and stop when ω = Ω.

Remark 6.2.1 The matrices A−1
22 , F1, F2, A11 are approximated in the H-matrix

format, A12 and A21 are approximated in the low-rank matrix format. For simplicity
of the further notation we omit the superscript H.

Example 6.2.1 Examples of the matrices A and F (Ψg
ω and Ψf

ω) from (6.1) are
shown in Figures 6.1 and 6.2. In Fig. 6.1 one can see that off-diagonal blocks are
low-rank matrices (grey blocks). In Fig. 6.2 the off-diagonal blocks are H-matrices.
The white blocks indicate zero matrices and the dark blocks indicate dense matrices.

Remark 6.2.2 The fact that the matrix A is approximated by an H-matrix with
weakly admissible blocks plays an important role. From this fact follows that the
matrices A12 and A21 are low-rank matrices and multiplications in A12 ⊙ A−1

22 and
in A−1

22 ⊙ A21 are therefore quite cheap.

The following Theorem 6.2.1 (see [47]) is important for the application of the H-
matrix technique to HDD. This theorem proves the existence of an H-matrix ap-
proximation of the Schur complement.
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6 Application of H-matrices to HDD

Notation 6.2.1 Let t, s ∈ TI be two clusters, TI×I a block cluster tree and s× t ∈
TI×I. We denote the restriction of the block cluster tree TI×I to s× t by T |s×t

Assumption 6.2.1 (Existence of an H-matrix approx. to the inverse)
Let A ∈ H(TI×I , k), n := |I|. For any ε > 0 and r := {1, ..., n1}, n1 ≤ n, the minor
B := A|r×r is invertible and there exists an H-matrix B−1

H ∈ H(T |r×r, kinv) with

kinv := (log2 n)| log ε|3 and ‖B−1 −B−1
H ‖2 ≤ Cinvε, Cinv ∈ R+. (6.12)

Proof: See Assumption 2 in [47].

Theorem 6.2.1 (Approximation of Schur complements)
Let TI be a cluster tree, T := TI×I and p be depth of T . Let A ∈ H(T, kinv) with
kinv from (6.12), b := s× t ∈ T and r ∈ TI . Then the Schur complement

S(s, t) = A|s×t − A|s×r(A|r×r)−1A|r×t

can be approximated by SH(s, t) ∈ H(T |s×t, k′) where k′ . (p+ 1)2kinv, such that

‖S(s, t)− SH(s, t)‖2 < Cinv‖A‖22ε, Cinv ∈ R+.

Proof: See Theorem 1 in [47].
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Figure 6.1: An H-matrix approximation to Ψg
ω ∈ RI×I , I := I(∂ω). The dark blocks

are dense matrices and grey blocks are low-rank matrices. The numbers
inside the blocks indicate ranks of these blocks.
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Figure 6.2: An H-matrix approximation to (Ψf
ω)
H ∈ RI×J , I := I(∂ω), J := J(ω),

|I| = 256, |I| = 4225. The dark blocks are dense matrices and grey
blocks are low-rank matrices. The numbers inside the blocks are ranks
of these blocks. The white blocks are zero blocks.

Remark 6.2.3 In order to build a rank-k approximation of the matrix Φg
ω we use

the fact that the singular values σ1 ≥ σ2 ≥ ... ≥ σk ≥ σk+1 ≥ ... ≥ σn of Φg
ω

decay exponentially (see Fig. 6.3). We only consider the k largest singular values
σ1 ≥ σ2 ≥ ... ≥ σk (see Section 5.6).

Recall that for simplicity of the notation we write γ instead of γω.

Lemma 6.2.1 We denote the Schur complement A11 −A12A
−1
22 A21 by Sω, where

A11 ∈ H(TI(∂ω)×I(∂ω), k), A12 ∈ R(I(∂ω), I(γ), k), A21 ∈ R(I(γ), I(∂ω), k),
A22 ∈ H(TI(γ)×I(γ), k). Let nh,γ := |I(γ)|. Let the model domain be as in Remark
7.1.2. The computation of Sω, ω ∈ TTh

, costs

N(Sω) ≤ Ck2nh,γ log2 nh,γ, C ∈ R+. (6.13)

Proof: Due to Table 5.3 the complexity of the inversion A−1
22 is C1k

2nh,γ log2 nh,γ,
C1 ∈ R+. The complexity of the multiplication A12 · A−1

22 is k-times the MV multi-
plication, i.e., C2k

2nh,γ log nh,γ, C2 ∈ R+.
We assume that for the domain in Remark 7.1.2 |I(∂ω)| ≤ 6 · |I(γ)| hold. The
complexity of the multiplication (A12A

−1
22 ) · A21 (product of two low-rank matrices)

is
2k2(|I(∂ω)|+ |I(γ)|) +O(k3) ≤ 14k2nh,γ +O(k3).

The complexity of the subtraction A11 −A12A
−1
22 · A21 is

C3k
2|I(∂ω)| log |I(∂ω)| ≤ C4k

2nh,γ lognh,γ, C3, C4 ∈ R+.

Thus,

N(Sω) ≤ (C1+C2+C4)k
2nh,γ lognh,γ+14k2nh,γ+O(k3) ≤ Ck2nh,γ log2 nh,γ, C ∈ R+.

(6.14)

�
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Algorithm 6.2.1 (Elimination of ui, i ∈ I(γ))
elimination( H-matrix M , index set I(γ))
begin
M11 := M [0];
M21 := M [1];
M12 := M [2];
M22 := M [3]; /∗ Corresponds to I(γ) ∗ /
M̃11 := M11 ⊖M12 ⊙M−1

22 ⊙M21;
return M̃11;

end;

Lemma 6.2.2 Let Zω := F1 − A12A
−1
22 F2, where A12 ∈ R(I(∂ω), I(γ), k),

F1 ∈ H(TI(∂ω)×I(ω), k), F2 ∈ H(TI(γ)×I(ω), k), A22 ∈ H(TI(γ)×I(γ), k), nh,γ := |I(γ)|
and nh := |I(ω)|. Let the model domain be as in Remark 7.1.2. The computation of
Zω, ω ∈ TTh

, costs
N(Zω) ≤ Ck2nh log2 nh, C ∈ R+. (6.15)

Proof: The complexity of the multiplication A12 · A−1
22 is k-times the MV mul-

tiplication, i.e., C1k
2nh,γ lognh,γ, C1 ∈ R+. The complexity of the multiplica-

tion (A12A
−1
22 ) · F2 (the product of a low-rank matrix and an H-matrix) is equal

to C2k
2nh lognh, C2 ∈ R+. The complexity of the subtraction F1 − A12A

−1
22 F2 is

C3k
2nh log nh, C3 ∈ R+. Thus,

N(Zω) = C1k
2nh,γ lognh,γ +C2k

2nh lognh+C3k
2nh log nh ≤ Ck2nh lognh, C ∈ R+.

�
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Figure 6.3: Exponential decay of the singular values σi of the matrix (Φg
ω)
H in a log

scale. The index i is shown on the horizontal axis and the singular values
σi on the vertical logarithmic axis, e.g., σ20 ≈ 10−7.
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6.2 Algorithm of Applying H-Matrices

In Table 6.2 we compute the singular values of the matrix Φf
ω, ω = Ω, with 1292

degrees of freedom. One can see that, in contrast to Φg
ω, the singular values do not

decay exponentially.

σ1 3.48 ∗ 10−4

σ10 1.27 ∗ 10−4

σ20 9.24 ∗ 10−5

σ50 6.84 ∗ 10−5

Table 6.2: A very slow decay of singular values σi of (Φf
ω)
H.

Remark 6.2.4 This very slow decay of singular values of Φf
ω results in a very large

rank k in the rank-k approximation. By this reason Φf
ω is approximate in the class

of H-matrices.

- 97 -



6 Application of H-matrices to HDD

6.3 Hierarchical Construction on Incompatible Index

Sets

This Section contains technical details about H-matrix constructions of (Ψg
ω)
H from

(Ψg
ω1

)H, (Ψg
ω2

)H and (Ψf
ω)
H from (Ψf

ω1
)H, (Ψf

ω2
)H.

Let TTh
be a domain decomposition tree (the root has level 0). Let us suppose

that we have a domain ω on level l−1 with two sons ω1 and ω2 on level l. In the next
two subsections we show the efficient constructions of (Ψg

ω)
H from (Ψg

ω1
)H, (Ψg

ω2
)H

and (Ψf
ω)
H from (Ψf

ω1
)H, (Ψf

ω2
)H.

Let us change the notation:

I(Γ1) := I(Γω,1) = I(∂ω ∩ ω1),

I(Γ2) := I(Γω,2) = I(∂ω ∩ ω2).

Now, we have the following decompositions:

I(∂ω1) = I(Γ1) ∪ I(γ) and I(∂ω2) = I(Γ2) ∪ I(γ).

6.3.1 Building (Ψg
ω)H from (Ψg

ω1
)H and (Ψg

ω2
)H

Let H̃ ∈ H(TI(∂ω∪γ)×I(∂ω∪γ), k). Define the following matrices:

H1 := (Ψg
ω1

)H ∈ H(TI(∂ω1)×I(∂ω1), k), H2 := (Ψg
ω2

)H ∈ H(TI(∂ω2)×I(∂ω2), k), (6.16)

H := (Ψg
ω)
H ∈ H(TI(∂ω)×I(∂ω), k), (6.17)

where I(∂ω∪γ) = I(∂ω1∪∂ω2) (see Remark 4.3.3 and Figures 6.4, 6.5). We want to
construct the matrix H from H1 and H2. First, we build a new cluster tree TI(∂ω∪γ)
from the clusters TI(∂ω) and TI(γ). There are many variants of how to build it, but
we want such a cluster tree, which makes it easier to eliminate the unknowns xi,
i ∈ I(γ), i.e, one of the sons of the cluster I(∂ω ∪ γ) should coincide with the index
set I(γ). As soon as the cluster tree TI(∂ω∪γ) is built, we build the block cluster tree
TI(∂ω∪γ)×I(∂ω∪γ). The block cluster tree TI(∂ω∪γ)×I(∂ω∪γ) defines the block structure

of H̃. We consider two variants of the block structures:

I(Γi)× I(Γi), I(γ)× I(γ) ∈ TI(∂ωi)×I(∂ωi), i = 1, 2. (6.18)

I(Γi)× I(Γi) /∈ TI(∂ωi)×I(∂ωi) or I(γ)× I(γ) /∈ TI(∂ωi)×I(∂ωi), i = 1, 2. (6.19)
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Building algorithm in case (6.18):
Let H1 and H2 be defined as in (6.16) and H as in (6.17).

Algorithm 6.3.1 Building H := (Ψg
ω)
H from H1 := (Ψg

ω1
)H and H2 := (Ψg

ω2
)H

build Ψg(H1, H2,... )
begin

allocate memory for H̃;
H̃|I(Γ1)×I(Γ1) := H1|I(Γ1)×I(Γ1);

H̃|I(Γ2)×I(Γ2) := H2|I(Γ2)×I(Γ2);

H̃|I(Γ1)×I(Γ2) := 0;

H̃|I(Γ2)×I(Γ1) := 0;
/∗ in Fig. 6.4 denoted by d+ h ∗/
H̃|I(γ)×I(γ) := H1|I(γ)×I(γ) ⊕H2|I(γ)×I(γ);
H̃|I(γ)×I(Γ1)∪I(Γ2) := (H1|I(γ)×I(Γ1) ⊕H2|I(γ)×I(Γ2)); /∗ Sum of two low-rank ma-

trices ∗/
/∗ in Fig. 6.4 denoted by b+ f ∗/

H̃|I(Γ1)∪I(Γ2)×I(γ) := H1|I(Γ1)×I(γ) ⊕ H2|I(Γ2)×I(γ); /∗ Sum of two low-rank ma-
trices ∗/

H̃:=extract rows(H̃, r1, r2, i1, i2); /∗ The output is r1, r2 ∗/
H̃:=extract columns(H̃, c1, c2, j1, j2); /∗ The output is c1, c2 ∗/
H̃:=add rows(H̃, r1, r2, i3, i4);
H̃:=add columns(H̃, c1, c2, j3, j4);
H:=elimination(H̃, I(γ)); /∗ see Algorithm 6.2.1∗/
return H;

end;

Remark 6.3.1 Since I(Γ1)∩I(Γ2) = I({x, y}) 6= ∅, we should remove two repeated
columns and two repeated rows from H̃. The indices i1, i2, j1, j2 indicate the posi-
tions of two rows and two columns which have to be extracted. i3, i4 and j3, j4 are
positions of two rows and two columns to which the removed rows and columns r1,
r2, c1 and c2 have to be added.
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I(Γ2)
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Figure 6.4: Building H := (Ψg
ω)
H ∈ RI(∂ω)×I(∂ω) from H1 := (Ψg

ω1
)H ∈ RI(∂ω1)×I(∂ω1)

and H2 := (Ψg
ω2

)H ∈ RI(∂ω2)×I(∂ω2), where I(∂ωi) = I(Γi)∪ I(γ), i = 1, 2,

I(∂ω) = I(Γ̂1)∪ I(Γ2), x, y are two common points and I(Γ̂1) := I(Γ1) \
I({x, y}). The small letters show the appearance of blocks in different
matrices. The dotted lines in H̃ present 2 rows and 2 columns.

Remark 6.3.2 Figure 6.4 illustrates Algorithm 6.3.1. The first step is the con-
struction of H̃ and then, according to (6.4),

(Ψg
ω)
H = H11 ⊖H12 ⊙H−1

22 ⊙H21,

with H11 := H̃|I(∂ω)×I(∂ω), H12 := H̃|I(∂ω)×I(γ),

H21 := H̃|I(γ)×I(∂ω), H22 := H̃|I(γ)×I(γ).
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Lemma 6.3.1 The cost of building theH-matrixH (see (6.17)) from theH-matrices
H1 and H2 (see (6.16)) in case (6.18) by Algorithm 6.3.1 is

N ≤ Ck2nγ lognγ , where nγ = |I(γ)|, C ∈ R+.

Proof: We follow Algorithm 6.3.1 (see the scheme in Fig. 6.4). Let n1 := |I(∂ω1)|,
n2 := |I(∂ω2)|, n := |I(∂ω)|.

1. From Table 5.3 follows that the complexity of addingH1|I(γ)×I(γ) andH2|I(γ)×I(γ)
(in Fig. 6.4 denoted by d+ h) is O(k2nγ lognγ).

2. From Table 5.1 follows that the complexity of adding the low-rank matri-
ces H1|I(γ)×I(Γ1) and H2|I(γ)×I(Γ2) as well as H1|I(Γ1)×I(γ) and H2|I(Γ2)×I(γ) is
O(k2|I(∂ω)|) = O(k2n) (see Table 5.1).

3. The removal of two columns and two rows from H1 by Lemma 5.10.3 costs
O(k log n1).

4. Adding four rank-1 matrices to H̃ by Lemma 5.10.4 costs O(k2n2).

5. Adding four elements to the matrix H̃|I(Γ2)×I(Γ2) in general by Lemma 5.10.4
costs O(k2|I(Γ2)|). In our case these elements belong to diagonal blocks and
should be added to dense matrices. The cost is O(1).

6. The cost of computing the Schur complement by Lemma 6.2.1 isO(k2nγ log2 nγ).

Since the complexity of adding two H-matrices dominates, the total complexity is

N ≤ Ck2nγ log nγ, C ∈ R+.

�

Building algorithm in case (6.19):
Let H1 and H2 be defined as in (6.16), H as in (6.17) and I := I(∂ω).

Algorithm 6.3.2 Building H := (Ψg
ω)
H from H1 := (Ψg

ω1
)H and H2 := (Ψg

ω2
)H

build Ψg(H1, H2,...)
begin

allocate memory for H̃, H;
H ′:=copy block structure(H);
H ′′:=copy block structure(H);
h2h(H1, H

′,...);/∗ Convert H1 to H ′ ∗ /
h2h(H2, H

′′,...);/∗ Convert H2 to H ′′ ∗ /
H̃ := H ′′ ⊕H ′; /∗ See (6.17) ∗/
H:=elimination(H̃, I(γ12)); /∗ see Algorithm 6.2.1 ∗/
return H;

end;
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I(γ12)
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H̃ := H ′ ⊕H ′′

H

Figure 6.5: Building H := (Ψg
ω)
H ∈ RI(∂ω)×I(∂ω) from H1 := (Ψg

ω1
)H ∈ RI(∂ω1)×I(∂ω1)

and H2 := (Ψg
ω2

)H ∈ RI(∂ω2)×I(∂ω2), I(∂ωi) = I(Γi) ∪ I(γ12), i =
1, 2, I(∂ω) = I(Γ) ∪ I(γ). We obtain H after computing H ′ ⊕ H ′′

and the Schur complement, where H ′ := H1|I(∂ω∪γ12)×I(∂ω∪γ12), H ′′ :=
H2|I(∂ω∪γ12)×I(∂ω∪γ12).

Remark 6.3.3 Figure 6.5 illustrates Algorithm 6.3.2. First, it shows how H̃ is
constructed. Here

H ′ := H1|I(∂ω∪γ12)×I(∂ω∪γ12), H ′′ := H2|I(∂ω∪γ12)×I(∂ω∪γ12), and H̃ = H ′ ⊕H ′′

with γ12 := ∂ω1 \ ∂ω. Then, according to (6.4),

(Ψg
ω)
H = H11 ⊖H12 ⊙H−1

22 ⊙H21,

with H11 := H̃|I(∂ω)×I(∂ω), H12 := H̃|I(∂ω)×I(γ12),

H21 := H̃|I(γ12)×I(∂ω), H22 := H̃|I(γ12)×I(γ12).
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Lemma 6.3.2 The cost of building the H-matrix H (see (6.17)) from H-matrices
H1 and H2 (see (6.16)) in case (6.19) by Algorithm 6.3.2 is

N ≤ Ck2n log2 n, where n = |I(∂ω)|, C ∈ R+.

Proof: We follow the scheme in Fig. 6.5. Let I := I(∂ω), H ′ := H1|I×I and
H ′′ := H2|I×I , where H ′ and H ′′ have the same block cluster structure as H . We
convert H1 to the matrix H ′ and H2 to the matrix H ′′. The block structure of H
is important and is shown in Fig. 6.5. As soon as the matrices H ′ and H ′′ are
ready, we consider the construction of the matrix H as the addition H ′ ⊕H ′′ with
further elimination of the unknowns with indices i ∈ I(γ12). Using the inequality
n ≤ 2 · |I(∂ω1)| and Lemma 5.10.8 we obtain that the complexity of this addition
is O(k2n log2 n). By Lemma 6.2.2 the elimination costs O(k2n logn). The term
O(k2n log2 n) dominates.

�

Example 6.3.1 Figure 6.6 shows an example of building (Ψg
ω)
H ∈ R512×512 from

(Ψg
ω1

)H ∈ R384×384 and (Ψg
ω2

)H ∈ R384×384. Let I := I(∂ω ∪ γ). The construction is
performed in three steps: 1) build H ′ := (Ψg

ω1
)H|I×I and H ′′ := (Ψg

ω2
)H|I×I,

2) compute H̃ = H ′ ⊕H ′′,
3) compute the Schur complement as in Statement 6.3.3.
Note that H ′, H ′′, H̃ have the same block structures. The symmetries of (Ψg

ω1
)H,

(Ψg
ω2

)H and (Ψg
ω)
H are used.
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Figure 6.6: Building (Ψg
ω)
H ∈ R512×512 from (Ψg

ω1
)H and (Ψg

ω2
)H from R384×384. H̃ ∈

R639×639 is an auxiliary matrix. The maximal size of the diagonal blocks
is 32× 32. The grey blocks indicate low-rank matrices. The steps inside
the grey blocks show an exponential decay of the corresponding singular
values. The white blocks indicate zero blocks. For the acceleration of
building the symmetry of Ψg

ω is used.
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6.3.2 Building (Ψf
ω)H from (Ψf

ω1
)H and (Ψf

ω2
)H

Denote

H1 := (Ψf
ω1

)H ∈ H(TI(∂ω1)×I(ω1), k), H2 := (Ψf
ω2

)H ∈ H(TI(∂ω2)×I(ω2), k) (6.20)

and
H̃ ∈ H(TI(∂ω∪γ)×I(ω), k), H := (Ψf

ω)
H ∈ H(TI(∂ω)×I(ω), k). (6.21)

Let T := TI(∂ω∪γ)×I(ω). We want to construct the matrix H from H1 and H2 (see
Remark 4.3.3). Note that ∂ω ∪ γ = ∂ω1 ∪ ∂ω2, I(∂ωi) = I(Γi)∪ I(γ), Γ1 ∪Γ2 = ∂ω.
To build the matrix H we need two cluster trees TI(∂ω∪γ) and TI(ω). The first cluster
tree was already built for (Ψg

ω)
H. There are many possibilities of how to build TI(ω),

but we want a tree which makes a further elimination of unknowns xi, i ∈ I(γ)
easier, i.e., one of the sons of the block cluster tree T has to coincide with the block
I(γ)× I(γ). Therefore we choose the following decomposition:

I(ω) = I(ω1 \ γ) ∪ I(ω2 \ γ) ∪ I(γ).

There are two cases:

I(Γi)× I(ωi \ γ) ∈ TI(∂ωi)×I(ωi) and I(γ)× I(γ) ∈ TI(∂ωi)×I(ωi), i = 1, 2. (6.22)

I(Γi)× I(ωi \ γ) /∈ TI(∂ωi)×I(ωi) or I(γ)× I(γ) /∈ TI(∂ωi)×I(ωi), i = 1, 2. (6.23)

Building algorithm in case (6.22):
Let H1 and H2 be defined as in (6.20), H as in (6.21) and A12A

−1
22 as in (6.1).

Algorithm 6.3.3 Build H := (Ψf
ω)
H from H1 := (Ψf

ω1
)H and H2 := (Ψf

ω2
)H

build Ψf(H1, H2, A12A
−1
22 )

begin
allocate memory for H̃, H;
H̃|I(γ)×I(γ) := H1|I(γ)×I(γ) ⊕H2|I(γ)×I(γ);
H̃|I(Γ1)×I(ω1\γ) := H1|I(Γ1)×I(ω1\γ);

H̃|I(Γ2)×I(ω2\γ) := H2|I(Γ2)×I(ω2\γ);

H̃|I(Γ1)×I(ω2\γ) := 0;

H̃|I(Γ2)×I(ω1\γ) := 0;
/∗ in Fig. 6.7 denoted by [cg] ∗/
H̃|I(γ)×I(ω\γ) := H1|I(γ)×I(ω1\γ) ⊕H2|I(γ)×I(ω2\γ);

/∗ in Fig. 6.7 denoted by b+ f ∗/
H̃|I(Γ1)∪I(Γ2)×I(γ) := H1|I(Γ1)×I(γ)⊕H2|I(Γ2)×I(γ); /∗sum of two low-rank matrices∗/
H̃:=extract rows(H̃, r1, r2, i1, i2);/∗ The output is r1, r2 ∗/
H̃:=extract columns(H̃, c1, c2, j1, j2);/∗ The output is c1, c2 ∗/
H̃:=add rows(H̃, r1, r2, i3, i4);
H̃:=add columns(H̃, c1, j3, c2, j4);
H̃1 := H̃|I(∂ω)×I(ω));

H̃2 := H̃|I(γ)×I(ω));

return H := H̃1 ⊖ A12 ⊙A−1
22 ⊙ H̃2;

end;

- 105 -



6 Application of H-matrices to HDD

Again, I(Γ1) ∩ I(Γ2) = I({x, y}) 6= ∅. This is the reason why we, first, remove
two columns and two rows from H̃ and then add them to other blocks of H̃. The
indices i1, i2, j1, j2 are the positions of two rows and two columns which have to be
extracted. The indices i3, i4 and j3, j4 indicate the positions of two rows and two
columns to which the extracted rows and columns r1, r2, c1 and c2 have to be added.

Lemma 6.3.3 The cost of building theH-matrixH (see (6.21)) from theH-matrices
H1 and H2 (see (6.20)) in case (6.22) by Algorithm 6.3.3 is

N ≤ Ck2n logn, where n = |I(ω)|, C ∈ R+.

Proof: We follow the scheme in Fig. 6.7. Let n0 = |I(∂ω)| and ni = |I(ωi)|,
i = 1, 2.

1. From Table 5.3 follows that the complexity of addingH1|I(γ)×I(γ) andH2|I(γ)×I(γ)
(denoted by d+ h in Fig. 6.7) is O(k2nγ lognγ).

2. From Table 5.1 follows that the complexity of adding two low-rank matrices
b := H1|I(Γ1)×I(γ) and f := H1|I(Γ2)×I(γ) (see Fig. 6.7) is O(k2n0).

3. Building the newH-matrix [cg] ∈ H(TI(γ)×I(ω1\γ)∪I(ω2\γ), k) from twoH-matrices
c := H1|I(γ)×I(ω1\γ), g := H2|I(γ)×I(ω2\γ) costs O(1).

4. The removal of two columns and two rows from H1 (see dotted lines in Fig.
6.7) by Lemma 5.10.3 costs O(k log n1).

5. Adding two columns and two rows to matrixH by Lemma 5.10.4 costs O(k2n2)
units. After that the 0-blocks become rank-2 matrices (denoted by R2).

6. Adding four elements to the matrix H|I(Γ2)×I(ω2\γ) in the general case by
Lemma 5.10.4 costs O(k2n2). In our case these elements are added to the
dense matrices and the cost is O(1).

7. The cost of computing F1 − A12A
−1
22 F2 by Lemma 6.2.2 is O(k2n logn).

Since the complexity O(k2n logn) dominates, the total complexity is O(k2n logn).

�

- 106 -



6.3 Hierarchical Construction on Incompatible Index Sets
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Γ1

Γ2

Γ2

γ

γ

ω

I(ω \ γ)

I(Γ2)

I(Γ2)

I(∂ω)

H̃ H̃

I(ω1 \ γ)

I(ω1 \ γ) I(ω2 \ γ)

I(ω2 \ γ)

I(Γ1)

I(Γ1)

H

I(γ)

I(γ)I(γ)

I(γ)I(γ)

I(γ)

I(γ)

H1 H2

ω1 ω2

Figure 6.7: Building (Ψf
ω)
H ∈ RI(∂ω)×I(ω) from (Ψf

ω1
)H ∈ RI(∂ω1)×I(ω1) and (Ψf

ω2
)H ∈

RI(∂ω2)×I(ω2), I(Γi) ∪ I(γ) = I(∂ωi), i = 1, 2, I(Γ1) ∩ I(Γ2) = I({x, y}).
The small letters show the appearance of blocks in different matrices.
The dotted lines in H̃ correspond to 2 rows and 2 columns, which were
removed from H̃ and then added to other positions.

Remark 6.3.4 Figure 6.7 illustrates Algorithm 6.3.3. First, it shows the construc-
tion of H̃, and then, according to (6.5),

(Ψf
ω)
H = F1 ⊖A12 ⊙ A−1

22 ⊙ F2

with A12, A22 from (6.1) and F1 := H̃|I(∂ω)×I(ω) and F2 := H̃|I(γ12)×I(ω).
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6 Application of H-matrices to HDD

Building algorithm in case (6.23):
Let I := I(∂ω), J := J(ω) be two index sets and H1 and H2 be defined as in (6.20),
H as in (6.21) and A12A

−1
22 as in (6.1).

Algorithm 6.3.4 Build H := (Ψf
ω)
H from H1 := (Ψf

ω1
)H and H2 := (Ψf

ω2
)H

build Ψf(H1, H2, A12A
−1
22 )

begin
allocate memory for H̃, H;
H ′:=copy block structure(H);
H ′′:=copy block structure(H);
h2h(H1, H

′,...); /∗convert H1 to H ′ by Algorithm 5.9.2∗/
h2h(H2, H

′′,...);
H̃ := H ′′ ⊕H ′;
H̃1 := H̃|I(∂ω)×I(ω));

H̃2 := H̃|I(γ12)×I(ω));

return H := H̃1 ⊖A12 ⊙ A−1
22 ⊙ H̃2;

end;

H2

H̃ = H ′ ⊕H ′′

I(ω \ γ)

I(ω \ γ)

I(ω \ γ)

ω1 ω2

∂ω1 ∂ω2

γ12

Γ
γ

I(γ12)I(γ12)

I(γ)

I(γ)

I(γ)

I(γ)

I(γ)

I(γ)

H ′′

H1

I(ω1) I(ω2)

I(Γ)

I(Γ)

I(Γ)

H ′

I(∂ω1) I(∂ω2)

Figure 6.8: Building H := (Ψf
ω)
H ∈ RI×J , I := I(Γ) ∪ I(γ), J := I(ω \ γ) ∪ I(γ),

from H1 := (Ψf
ω1

)H ∈ RI(∂ω1)×I(ω1) and H2 := (Ψf
ω2

)H ∈ RI(∂ω2)×I(ω2).

Remark 6.3.5 Figure 6.8 illustrates Algorithm 6.3.4. First, it shows the construc-
tion of H̃. H̃ = H ′ ⊕H ′′ with

H ′ := H1|I(∂ω∪γ12)×I(∂ω∪γ12), H ′′ := H2|I(∂ω∪γ12)×I(∂ω∪γ12) and γ12 := ∂ω1 \ ∂ω.

Then, according to (6.5),

(Ψf
ω)
H = F1 ⊖ A12 ⊙A−1

22 ⊙ F2,
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where A12, A22 are defined in (6.1) and F1 := H̃|I(∂ω)×I(ω) and F2 := H̃|I(γ12)×I(ω).

Lemma 6.3.4 The cost of building theH-matrixH (see (6.21)) from theH-matrices
H1 and H2 (see (6.20)) in case (6.23) using Algorithm 6.3.4 is

N ≤ Ck2n log2 n, where n = |I(ω)|, C ∈ R+.

Proof: We follow the scheme in Fig. 6.8. Let I := I(∂ω), J := J(ω), n := |I(ω)|.
Building of H is equivalent to the addition H ′ ⊕ H ′′, where H ′ := H1|I×J and
H ′′ := H2|I×J and the further elimination of the unknowns xi, i ∈ I(γ12). It follows
from Lemma 5.10.8 that adding H ′ and H ′′ costs O(k2n log2 n). It follows from
Lemma 6.2.2 that the cost of the elimination is O(k2n logn).

�

Building (Ψf
ω)
H from (Ψf

ω1
)H and (Ψf

ω2
)H for the two-grid modification

The index h indicates the quantities of the fine grid and the index H of the coarse
grid. Denote

H1 := (Ψf
ω1

)H ∈ H(TI(∂ω1,h)×I(ω1,H ), k), (6.24)

H2 := (Ψf
ω2

)H ∈ H(TI(∂ω2,h)×I(ω2,H ), k). (6.25)

We want to construct the matrix

H := (Ψf
ω)
H ∈ H(TI(∂ωh)×I(ωH), k). (6.26)

Note that I(∂ωh) ∪ I(γh) = I(∂ω1,h) ∪ I(∂ω2,h), I(∂ωi,h) = I(Γi,h) ∪ I(γh). We
construct the tree TI(ωH) so that the further elimination of the unknowns ui, i ∈
I(γH) becomes easier, i.e., we want that I(γh) × I(γH) ∈ TI(∂ωh)×I(ωH). We choose
the following decomposition

I(ω) = I(ω1,H \ γH) ∪ I(ω2,H \ γH) ∪ I(γH),

I(∂ωh) = I(Γ1,h) ∪ I(Γ2,h).

There are two cases:

I(Γi,h)× I(ωi,H\ωH), I(γh)× I(γH) ∈ TI(∂ωi,h)×I(ωH), i = 1, 2, (6.27)

I(Γi,h)× I(ωi,H\ωH) /∈ TI(∂ωi,h)×I(ωH) or I(γh)× I(γH) /∈ TI(∂ωi,h)×I(ωH ), i = 1, 2.
(6.28)

Algorithms 6.3.3, 6.3.4 with small modifications are used for cases (6.27) and (6.28)
accordingly.

Lemma 6.3.5 Let matrix H be as in (6.26) and H1 and H2 as in (6.24), (6.25),
then the cost of building H from H1 and H2 is

N = O(k2n log n) in case (6.27)
N = O(k2n log2 n) in case (6.28),

where n = max{|I(∂ωh)|, |I(ωH)|}.
Proof: Analogous to the proofs of Lemmas 6.3.3, 6.3.4.
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)H
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Figure 6.9: Building (Ψf
ω)
H ∈ RI(∂ωh)×I(ωH ) from (Ψf

ω1
)H ∈ RI(∂ω1,h)×I(ω1,H ) and

(Ψf
ω2

)H ∈ RI(∂ω2,h)×I(ω2,H ) for two grids with step sizes H and h.

I(Γ̂1,h) = I(Γ1,h) \ I({x, y}), I(∂ωh) = I(Γ̂1,h) ∪ I(Γ2,h), I(ωH) =
I(ω1,H \ γH) ∪ I(ω2,H \ γH) ∪ I(γH). The small letters show the ap-
pearance of blocks in different matrices.

Remark 6.3.6 Figure 6.9 illustrates Algorithm 6.3.3, but for the two-grid modifi-
cation of HDD. First, it shows the construction of H̃, and then, according to (6.5),

(Ψf
ω)
H = F1 ⊖A12 ⊙ A−1

22 ⊙ F2

with A12, A22 from (6.1) and F1 := H̃|I(∂ωh)×I(ωH) and F2 := H̃|I(γh)×I(ωH).
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7 Complexity and Storage
Requirement of HDD

Let us recall four types of mappings which are present in the HDD method: domain-
to-boundary Ψf

ω, boundary-to-boundary Ψg
ω, domain-to-interface Φf

ω and boundary-
to-interface Φg

ω, for all domains ω ∈ TTh
. In this Chapter we estimate the compu-

tational complexities of HDD and its modifications. We estimate also the storage
requirements of Φf

ω and Φg
ω. Finally, in the conclusion, we consider a special case,

namely, when the right-hand side is equal to 0.

7.1 Notation and Auxiliary Lemmas

Let x ∈ D ⊂ Rn, y ∈ Rm. Let ψ : x 7→ y be a given mapping. An algorithm
for computing ψ(x) is a sequence of elementary operations. The computational
complexity of the algorithm is characterised by the number of elementary operations
Nψ. We take into account only the addition and the multiplication of real numbers,
but in some special cases (e.g., the removal of a column from an H-matrix) we also
take the cost of the coping into account.

Definition 7.1.1 If the computational complexity depends linearly on the data size
n, the algorithm has a linear computational complexity.

Definition 7.1.2 If the storage requirement depends linearly on the data size n, the
algorithm has a linear storage complexity.

Definition 7.1.3 We call the complexity O(n logq n), where q = 1, 2, 3, an almost
linear complexity.

Remark 7.1.1 For large input vectors (e.g., n = 1000000 is very common nowa-
days) the time for an algorithm with linear complexity can be one hour and for an
algorithm with quadratic complexity one month. This is the reason why it is impor-
tant to develop and to use the algorithms with a linear complexity.

There is an empirical observation that says that there is a linear dependence be-
tween the computer memory and the processor frequency. To get the optimal ratio
(productivity) / (computational resources) the complexity of the algorithm must
be a linear function of the computer memory and the processor frequency. This is
another reason to develop and to use algorithms with linear complexity.

In this section we show that the HDD method (Case (a)) and its three modifica-
tions (Cases (b),(c),(d)) have almost linear complexity. We characterise each case
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by the domain of definition and range of Ψω and Φω.

Case (a) - The standard HDD method
Ψf
ω : RI(ωh) → RI(∂ωh), ω ∈ TTh

,
Ψg
ω : RI(∂ωh) → RI(∂ωh), ω ∈ TTh

,
Φf
ω : RI(ωh) → RI(γh), ω ∈ TTh

,
Φg
ω : RI(∂ωh) → RI(γh), ω ∈ TTh

.

Case (b) - HDD with truncation of the small scales
Ψf
ω : RI(ωh) → RI(∂ωh), ω ∈ TTh

,
Ψg
ω : RI(∂ωh) → RI(∂ωh), ω ∈ TTh

,
Φf
ω : RI(ωh) → RI(γh), ω ∈ T≥HTh

,

Φg
ω : RI(∂ωh) → RI(γh), ω ∈ T≥HTh

.

Let P : RI(ωH) → RI(ωh) be a prolongation matrix as it is defined in Section 4.3.6.

Case (c) - HDD on two grids
Ψf
ω := Ψ̃f

ωPh←H , where Ψ̃f
ω : RI(ωh) → RI(∂ωh), Ψf

ω : RI(ωH) → RI(∂ωh), ω ∈ TTh
,

Ψg
ω : RI(∂ωh) → RI(∂ωh), ω ∈ TTh

,
Φf
ω := Φ̃f

ωPh←H, where Φ̃f
ω : RI(ωh) → RI(γh), Φf

ω : RI(ωH) → RI(γh), ω ∈ TTh
,

Φg
ω : RI(∂ωh) → RI(γh), ω ∈ TTh

.

Case (d) - HDD on two grids and with truncation of the small scales
Ψf
ω := Ψ̃f

ωPh←H , where Ψ̃f
ω : RI(ωh) → RI(∂ωh), Ψf

ω : RI(ωH) → RI(∂ωh), ω ∈ TTh
,

Ψg
ω : RI(∂ωh) → RI(∂ωh), ω ∈ TTh

,
Φf
ω := Φ̃f

ωPh←H, where Φ̃f
ω : RI(ωh) → RI(γh), Φf

ω : RI(ωH) → RI(γh), ω ∈ T≥HTh
,

Φg
ω : RI(∂ωh) → RI(γh), ω ∈ T≥HTh

.

h h h

H

h

H

one scale two scales

(a) (b) (c) (d)

Ψf

ΨfΨf

Ψf Ψg ΨgΨgΨg

Figure 7.1: Four cases of the HDD method: (a) the standard HDD method with a
fine scale h, (b) HDD with a fine scale h and with truncation of the small
scales, (c) HDD on two grids, (d) HDD on two grids and with truncation
of the small scales.

We consider four modifications of the HDD method (see Figure 7.1). Case (a) is
HDD without any modifications, i.e., there is only one scale h and no truncation.
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In Case (b) there is one scale, but the algorithm “Root to Leaves” stops at a coarse
scale H . Case (c) is HDD on two grids and a right-hand side f given at a coarse
scale H . The fourth Case (d) is the same as the third case, but the algorithm “Root
to Leaves” truncates the scales smaller than H . Case (d) is the cheapest one.
The long arrows show the algorithms “Leaves to Root” and “Root to Leaves”, the
short arrow in (c) indicates that the algorithm starts not with the smallest scale h,
but with a scale H . The short arrow in (d) indicates that there is truncation of the
small scales. The dotted lines mean that in the corresponding parts of the domain
decomposition tree TTh

the right-hand side is given on the coarse space VH ⊂ Vh and
the prolongation matrix is used.
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Figure 7.2: Model domain Ω = (0, 1)2 with rectangular grid and its hierarchical
decomposition. nh,x and nh,y are the numbers of grid points in 0x and
0y directions.

Remark 7.1.2 (Model Domain)
To keep further theoretical calculations simple, we consider the model domain Ω =

(0, 1)2 with the rectangular grid and its hierarchical decomposition as in Fig. 7.2.

Consider the model problem as in Remark 7.1.2.
Let nh,x(ω) and nh,y(ω) be the numbers of grid points in ω ∈ TTh

in the 0x and 0y
directions.
The number of grid points in the domain ω ∈ TTh

is nh(ω) = nh,x(ω) · nh,y(ω).
A domain ω on the level i of TTh

we denote by ωi. The root of TTh
has level 0.

Suppose that nh,x(Ω) = nh,y(Ω) = 2p + 1 and nH,x(Ω) = nH,y(Ω) = 2q + 1. Then the
number of nodal points in Ω is nh := nh(Ω) = (2p + 1)2 and if the grid step size is
H , then nH := nH(Ω) = (2q + 1)2.
The number of nodal points on the interface (see Fig. 7.4) is denoted by nh,H and
nh,H ≤ 2nh,xnH,x = 2

√
nhnH .

Suppose that |I(∂ωi)| ≤ 6nh,x(ωi) and
nγωi

:= |I(γωi
)| = nh,x(ωi)− 2.

The number of subdomains on each level i of TTh
is 2l, i = 0, ..., 2p.
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The depth of TTh
is not larger than log2 nh(Ω) + 2.

Note that 2p ≤ log2 nh(Ω) ≤ 2p+ 1, p ≥ 2.
The depth of the domain decomposition tree with scale H (denoted by T≥HTh

) is

2q ≤ depth(T≥HTh
) := log2 nH(Ω) ≤ 2q + 1.

level 0

level 1

level 2

level 2p

..................

leaves are triangles

level 2qH

.

.

.

.

.

..................h

.

Figure 7.3: Two levels 2q and 2p of the domain decomposition tree TTh
.

Definition 7.1.4 The storage for all mappings Φω, ω ∈ TTh
, is denoted by

S(Φ) :=
∑

ω∈TTh

S(Φω).

Definition 7.1.5 The number of arithmetic operations for computing all mappings
Ψω, ω ∈ TTh

, is denoted by

N(Ψ) :=
∑

ω∈TTh

N(Ψω).

For further estimates we will need the following equalities (proofs of these facts see
in Appendix):

p∑

i=0

i2 =
1

3
p3 +O(p2), (7.1)

p∑

i=0

i2i = (p− 1)2p+1 + 2, (7.2)

p∑

i=0

(p− i)2i = 2p+1 − p− 2, (7.3)

p∑

i=0

(p− i)22i ≤ 3 · 2p+1, (7.4)
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p∑

i=0

i22i = (p2 − 2p+ 3)2p+1 − 6. (7.5)

Remark 7.1.3 In the following we will assume that

|I(∂ωi)| ≈ 2|I(∂ωi+2)| and

|I(ωi)| ≈ 2|I(ωi+1)|.

7.2 Complexity of the Recursive Algorithm ”Leaves

to Root”

Now we would like to compute the computational cost of the algorithm ”Leaves to
Root”. The Algorithm 7.2.1 computes recursively the mappings Φg

ω and Φf
ω for all

ω ∈ TTh
. The domain decomposition tree TTh

(Ω) is an input parameter.

Algorithm 7.2.1 (Leaves to Root)
leaves to root(structure TTh

(ω))
begin

T1 :=get left son(TTh
(ω));

T2 :=get right son(TTh
(ω));

if (T1! = ∅) and (T2! = ∅) then
if (T1 is not computed) then

leaves to root(T1);
if (T2 is not computed) then

leaves to root(T2);
Ψg
ω := build Ψg(Ψg

ω1
,Ψg

ω2
); /∗ See Algorithms 6.3.1, 6.3.2 ∗/

Ψf
ω := build Ψf(Ψf

ω1
,Ψf

ω2
); /∗ See Algorithms 6.3.3, 6.3.4 ∗/

Φg
ω := compute Φg(..);

Φf
ω := compute Φf (..);

delete(Ψω1);
delete(Ψω2);

end if;
end;

Lemma 7.2.1 Let k be the rank which is used in the H-matrix arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of all mappings
Ψg
ω : RI(∂ω) → RI(∂ω), ω ∈ TTh

, has the following upper bound:

N(Ψg) ≤ Ck2nh, C ∈ R+.

Proof: Let N(Ψg
ω) be the cost of building Ψg

ω from Ψg
ω1

and Ψg
ω2

, where ω, ω1, ω2 ∈
TTh

and ω1, ω2 are sons of ω. Note that all ω at a fixed level of TTh
have the same
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number of degrees of freedom. The total complexity is

N(Ψg) :=
∑

ω∈TTh

N(Ψg
ω)

= N(Ψg
ω0

) + 2N(Ψg
ω1

) + 4N(Ψg
ω2

) + 8N(Ψg
ω3

) + ... + 22p+1N(Ψg
ω2p+1

)

≤ 3N(Ψg
ω0

) + 12N(Ψg
ω2

) + ...+ (22p + 22p+1)N(Ψg
ω2p

)

≤
p∑

i=0

(22i+1 + 22i)N(Ψg
ω2i

)

Lem.6.2.1
=

p∑

i=0

(22i+1 + 22i)(C2ik
2nh,x(ω2i) log2 nh,x(ω2i))

≤ 3 max
i
C2ik

2

p∑

i=0

2i · 2inh,x
2i

log2 nh,x
2i

C′:=maxi C2i= 3C ′k2nh,x

p∑

i=0

2i · (log nh,x − i)2

≤ 3C ′k2nh,x

p∑

i=0

2i(p+ 1− i)2 = 6C ′k2nh,x

p−1∑

i=−1

2i(p− i)2

(7.4)

≤ Ck2nh,x · 2p ≤ Ck2nh, C ∈ R+.

�

Lemma 7.2.2 Let k be the rank which is used in the H-matrix arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of all mappings
Ψf
ω : RI(ω) → RI(∂ω), ω ∈ TTh

, has the following upper bound:

N(Ψf ) ≤ Ck2nh log3 nh, C ∈ R+.

Proof: Let N(Ψf
ω) be the complexity of building Ψf

ω from Ψf
ω1

and Ψf
ω2

, where
ω, ω1, ω2 ∈ TTh

and ω1, ω2 are sons of ω. Lemma 6.3.4 yieldsN(Ψf
ωi

) ≤ Cik
2nh(ωi) log2 nh(ωi).

Since all ω at a fixed level of TTh
are equal, the following estimate holds

N(Ψf ) :=
∑

ω∈TTh

N(Ψf
ω)

= N(Ψf
ω0

) + 2N(Ψf
ω1

) + 4N(Ψf
ω2

) + 8N(Ψf
ω3

) + ... + 22pN(Ψf
ω2p

)

≤
2p∑

i=0

2i(Cik
2nh(ωi) log2 nh(ωi))

≤
2p∑

i=0

2iC ′ik
2nh
2i

log2 nh
2i

C′:=maxi C′
i≤ C ′k2nh

2p∑

i=0

(2p+ 1− i)2

(7.1)

≤ C ′k2nh(
1

3
(2p+ 1)3) ≤ Ck2nh log3 nh, C ∈ R+.
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Lemma 7.2.3 Let k be the rank which is used in the H-matrix arithmetic. For the
model domain from Remark 7.1.2 the computational complexity of all mappings Ψω,
ω ∈ TTh

, has the following upper bound:

N(Ψ) = N(Ψf) +N(Ψg) ≤ Ck2nh log3 nh, C ∈ R+.

Proof: See Lemmas 7.2.1 and 7.2.2.

7.3 Complexity of the Recursive Algorithm ”Root to

Leaves”

The Algorithm 7.3.1 computes recursively the solution u|I(γω) for all ω ∈ TTh
. The

input data are the domain decomposition tree TTh
(Ω), the mappings Φg

ω and Φf
ω for

all ω ∈ TTh
, and the solution u|I(∂ω) for a current subdomain ω.

u(x) =

{
g(x) for all x ∈ ∂ω,
0 otherwise.

(7.6)

Note that in the Algorithm 7.3.1 gω and fω are the Dirichlet data and the right-hand
side for the local problem, defined on ω ∈ TTh

.

Algorithm 7.3.1 (Root to Leaves)
root to leaves(TTh

(ω), u)
begin
T1 :=left son(TTh

(ω));
T2 :=right son(TTh

(ω));
uγω := Φg

ω · gω + Φf
ω · fω;

for all i ∈ I(γω) do
u[local to global[i]]:=uγω [i];

if (T1! = ∅) then
root to leaves(T1, u);

if (T2! = ∅) then
root to leaves(T2, u);

end;

Here local to global[...] is an auxiliary index mapping, which for each global index
in I(Ω) returns its local index in I(ω). Note that we computed the mappings Φg

ω

and Φf
ω, ω ∈ TTh

, during the computation of the auxiliary mappings Ψf
ω and Ψg

ω.
Below we estimate the complexity of computing the solution u.

Notation 7.3.1 We denote by Ng the complexity of all matrix-vector multiplications
Φg
ω · gω, where Φg

ω ∈ RI(γω)×I(∂ω), g ∈ RI(∂ω).
We denote by Nf the complexity of all matrix-vector multiplications Φf

ω · fω, where
Φf
ω ∈ RI(γω)×I(ω), f ∈ RI(ω).

Lemma 7.3.1 Let k be the rank which is used in the H-matrix arithmetic. For the
model domain from Remark 7.1.2 the computational complexity of all matrix-vector
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multiplications Φg
ω · gω, where Φg

ω : RI(∂ω) → RI(γ), ω ∈ TTh
, g ∈ RI(∂ω), has the

following upper bound:
Ng ≤ 21knh.

Proof: We have nh,γ ≤ nh,x(ω) for the model problem as in Remark 7.1.2. The
matrix Φg

ω is approximated in the low-rank format and belongs to R(k, I(γ), I(∂ω)).
The complexity of the matrix-vector multiplication can be estimated as follows:

Ng(ω) ≤ 2k · (|I(γ)|+ |I(∂ω)|) ≤ 2k(nh,x(ω) + 6nh,x(ω)) = 14knh,x(ω).

The total complexity is

Ng =
∑

ω∈TTh

Ng(ω)

≤
p−2∑

i=0

(22i+1 + 22i)(14knh,x(ωi))

≤ 42k

p−2∑

i=0

22inh,x
2i

= 42knh,x

p−2∑

i=0

2i ≤ 21knh,x2
p ≤ 21knh.

�

Lemma 7.3.2 Let k be the rank which is used in the H-matrix arithmetic. For the
model domain from Remark 7.1.2 the computational complexity of all matrix-vector
products Φf

ω · fω, where Φf
ω : RI(ω) → RI(γ), ω ∈ TTh

, fω ∈ RI(ω), has the following
upper bound:

Nf ≤ Cknh log2 nh, C ∈ R+.

Proof: Each level i ∈ [0, 2p−3] of the tree TTh
contains 2i matrices and each matrix

is multiplied by a vector fω. The complexity is

Nf =

2p−3∑

i=0

2iNf (ωi)

=

2p−3∑

i=0

2i(Ciknh(ωi) lognh(ωi))

≤ k ·
2p−3∑

i=0

2i(C ′i
nh
2i

log
nh
2i

)

C′:=maxi C′
i≤ C ′nhk

2p−3∑

i=0

(2p+ 1− i) ≤ C ′nhkp(2p+ 4).

We recall that 4p2 ≤ log2 nh, and obtain Nf ≤ Cknh log2 nh.
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�

Lemma 7.3.3 Let k be the rank which is used in the H-matrix arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of the algorithm
“Root to Leaves” has the following upper bound:

N = Nf +Ng ≤ Cknh log2 nh, C ∈ R+.

Proof: See Lemmas 7.3.1, 7.3.2.

Lemma 7.3.4 Let k be the rank which is used in the H-matrix arithmetic. For the
model domain from Remark 7.1.2 the storage of all mappings Φω, ω ∈ TTh

, has the
following upper bound:

S(Φ) := S(Φg) + S(Φf) ≤ Cknh log2 nh.

Proof: From Φg
ω : RI(∂ω) → RI(γ), Φf

ω : RI(ω) → RI(γ), |I(∂ω)| ≤ |I(ω)| follows that
S(Φg

ω) ≤ S(Φf
ω). Therefore it is enough to estimate only the second term

S(Φf ) =
∑

ω∈TTh

S(Φf
ω)

=

2p∑

i=0

2iS(Φf
ωi

)

=

2p∑

i=0

2i(Ciknh(ωi) lognh(ωi))

≤
2p∑

i=0

2iC ′ik
nh
2i

log
nh
2i

C′:=maxi C′
i≤ C ′knh

2p∑

i=0

(2p+ 1− i)

≤ C ′knhp(2p+ 2) ≤ Cknh log2 nh, C ∈ R+.

�

Table 7.1 compares the memory requirement of HDD with the memory requirements
of H-Cholesky factorisation and the direct H-matrix inverse. The memory needed
for HDD is close to the memory needed for H-Cholesky and much smaller than the
memory for the direct H-matrix inverse.

Let us in Lemma 7.3.5 estimate the storage requirements of HDD if only the
functionals which compute the mean values in all ω ∈ TTh

are of interest (see Section
4.4.6).

Lemma 7.3.5 Let k be the rank which is used in the H-matrix arithmetic. Let the
model domain be as in Remark 7.1.2. HDD requires S ≤ Cknh log nh, C ∈ R+,
units of memory for storing all functionals λfω : RI(ω) → R and λgω : RI(∂ω) → R.
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εa H-Cholesky(MB) HDD(MB) (A−1)H(MB)

10−3 13.3 19.7 51.0
10−4 14.7 20.1 64.0
10−5 16.0 20.4 75.2
10−6 17.2 20.6 87.4

Table 7.1: Dependence of memory requirements on the adaptive rank arithmetic
parameter εa, where rank k = argmin{σk ≤ εaσ1}. The number of degrees
of freedom is 1292.

Proof: Since the functional λfω requires more resources than λgω, we, therefore,
perform estimates only for λfω:

S =
∑

ω∈TTh

S(λfω) ≤
2p∑

i=0

2i · S(λfωi
)

=

2p∑

i=0

2inh(ωi) ≤
2p∑

i=0

2i
nh
2i

= (2p+ 1)nh ≤ Cnh log nh, C ∈ R+.

7.4 Modifications of the HDD Method

7.4.1 HDD with Truncation the Small Scales - Case (b)

The algorithm “Leaves to Root” starts with the leaves of TTh
and goes until the

root, while the algorithm “Root to Leaves” starts with the root of TTh
and stops

when diam(ω) ≤ H , H ≥ h. The mappings Φg
ω and Φf

ω are stored only for ω ∈ T≥HTh

(see Fig. 4.8).

Lemma 7.4.1 Let k be the rank which is used in the H-matrix arithmetic. For the
model domain from Remark 7.1.2 the storage requirements for all mappings Φg

ω and
Φf
ω, ω ∈ T≥HTh

, have the following upper bounds:

S(Φg) ≤ 42k
√
nhnH ,

S(Φf) ≤ Ck
√
nhnH log

√
nh log

√
nH , C ∈ R+.

Proof: The matrix Φg
ω, ω ∈ T≥HTh

, is approximated in the low-rank format and
belongs toR(k, I(γω), I(∂ω)). The storage requirement of Φg

ω is less than k(nh,x(ω)+
6nh,x(ω)) = 7k · nh,x(ω). The total storage of all Φg

ω, ω ∈ T≥HTh
, can be estimated as
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follows

S(Φg) :=
∑

ω∈T≥H
Th

S(Φg
ω)

= S(Φg
ω0

) + 2S(Φg
ω1

) + 4S(Φg
ω2

) + 8S(Φg
ω3

) + ...+ 22q+1S(Φg
ω2q+1

)

≤ 3S(Φg
ω0

) + 12S(Φg
ω2

) + ...+ (22q + 22q+1)N(Φg
ω2q

)

≤
q∑

i=0

(22i+1 + 22i)S(Φg
ω2i

)

≤
q∑

i=0

(22i+1 + 22i)(7k · nh,x(ω2i))

= 21k

q∑

i=0

22i(
nh,x
2i

)

= 21knh,x

q∑

i=0

2i < 21knh,x2
q+1

≤ 42knh,xnH,x = 42k
√
nhnH .

The total storage of all Φf
ω, ω ∈ T≥HTh

, can be estimated as follows

S(Φf
ω) =

∑

ω∈T≥H
Th

S(Φf
ω)

=

2q∑

i=0

2i(Ci · 2knh,x(ωi) · nH,x(ωi) log 2nh,x(ωi) · nH,x(ωi))

≤
2q∑

i=0

2i(C ′i2k
nh,x · nH,x

2i
log(

2nh,x · nH,x
2i

))

C′:=maxi C′
i= 2C ′knh,xnH,x

2q∑

i=0

(log(nh,xnH,x)− i+ 1)

≤ 2C ′knh,xnH,x

2q∑

i=0

(p+ 1 + q + 1− i+ 1)

≤ 2C ′knh,xnH,x(p+ 3)(2q + 1) ≤ Ck
√
nhnH log

√
nh · log

√
nH , C ∈ R+.

�
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H

h

Figure 7.4: An example with two grids. Level 2q corresponds to the scale H and
level 2p to the scale h. The solution in ω ∈ TTh

with diam(ω) ≥ H is of
interest.

Lemma 7.4.2 Let k be the rank which is used in the H-matrix arithmetic. For the
domain from Remark 7.1.2 the following two statements hold. a) The computational
complexity of all matrix-vector multiplications Φg

ω · gω, where Φg
ω : RI(∂ωh) → RI(γh),

ω ∈ T≥HTh
, gω ∈ RI(∂ωh), has the following upper bound:

Ng ≤ 84k
√
nhnH .

b) The computational complexity of all matrix-vector multiplications Φf
ω · fω, where

Φf
ω : RI(ωh) → RI(γh), ω ∈ T≥HTh

, fω ∈ RI(ωh), has the following upper bound:

Nf ≤ Ck
√
nhnH log

√
nh log

√
nH , C ∈ R+.

Proof: Let R ∈ R(k, n,m) be a low-rank matrix and v ∈ Rm a vector. Recall that
the storage S(R) is equal to k(n+m) and the cost N of R · v is less than 2k(n+m),
i.e., N(R · v) ≤ 2S(R). Then Lemma 7.4.1 yields

Ng ≤ 2 · 42k
√
nhnH .

b) Let M be an H-matrix and v a vector. Due to Lemma 5.10.2, N(M ·v) ≤ 2S(M),
where N(M ·v) is the cost of the multiplication and S(M) is the storage requirement
of M . From Lemma 7.4.1 follows that

Nf ≤ 2S(Φf) ≤ 2C ′k
√
nhnH log

√
nh log

√
nH , C ′ ∈ R+.

�

Lemma 7.4.3 Let k be the rank which is used in the H-matrix arithmetic. For the
domain from Remark 7.1.2 the computational complexity of the algorithm “Root to
Leaves” on two grids with step sizes h and H has the following upper bound:

N = Nf +Ng ≤ Ck
√
nhnH log

√
nh log

√
nH , C ∈ R+.

Proof: Use the fact Nf > Ng and Lemma 7.4.2.
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7.4.2 HDD on Two Grids - Case (c)

We construct Ψg
ω and Φg

ω as in Case (a) (Sections 7.2, 7.3). If the right-hand side
f is smooth, then it is enough to consider the right-hand side f in a coarse space
VH ⊂ Vh. In this case we construct the mappings Ψf

ω : RI(ωH) → RI(∂ωh) and
Φf
ω : RI(ωH) → RI(γh) from Ψf

ωi
: RI(ωi,H) → RI(∂ωi,h), i = 1, 2, ω, ω1, ω2 ∈ TTh

.

Remark 7.4.1 Note that in this modification of HDD the matrices Ψf
ω, Φf

ω have a
smaller number of columns (|I(ωH)| ≤ |I(ωh)|) than the respective matrices in Cases
(a) and (b). The number of degrees of freedom on the fine grid is nh = nh,xnh,x, the
number of degrees of freedom on the interface (see Fig. 7.4) is nh,H ≤ 2 · nh,xnH,x,
where nH,x ≤ nh,x.

Lemma 7.4.4 Let k be the rank which is used in the H-matrix arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of all mappings
Ψf
ω : RI(ωH) → RI(∂ωh), ω ∈ T≥HTh

, has the following upper bound:

N(Ψf) ≤ Ck2√nHnh log3√nHnh, C ∈ R+.

Proof: Due to Lemma 7.2.2, the computational complexity of all mappings Ψf
ω,

ω ∈ TTh
, is estimated by C ′k2nh log3 nh. On the interface (see Fig. 7.4) the number

of nodal points is 2
√
nhnH . We substitute nh in C ′k2nh log3 nh by 2

√
nhnH and

obtain

N(Ψf) ≤ C ′k2 · 2√nhnH log3(2
√
nhnH) ≤ Ck2√nHnh log3√nHnh.

�

Lemma 7.4.5 Let k be the rank which is used in the H-matrix arithmetic. For the
model domain from Remark 7.1.2 the storage of all mappings Φf

ω : RI(ωH) → RI(γh),
ω ∈ T≥HTh

, has the following upper bound:

S(Φf ) ≤ Ck
√
nHnh log2√nHnh, C ∈ R+.

Proof: From Lemma 7.3.4 follows that the storage requirement for all mappings
Φf
ω, ω ∈ TTh

, is estimated by C ′knh log2 nh, C
′ ∈ R+. Now the number of nodal

points is not nh, but 2
√
nhnH . Therefore

S(Φf
ω) ≤ C ′k · 2√nhnH log2(2

√
nhnH) ≤ Ck

√
nhnH log2√nhnH .

�

In Table 7.2 we present the dependences of the storage requirements for the mappings
Φg, Φf on h and H (domain Ω as in Remark 7.1.2). Here

‖u− ũk‖2 / ‖u‖2 ≈ 10−5, ‖u− ũk‖∞ ≈ 10−5,

where u is the exact solution and ũk the approximated solution. We see that Φg has
a linear memory requirement and Φf an almost linear memory requirement. The
memory requirement of HDD on two grids with step sizes H = 0.5 and h is in a
factor ∼ 2 smaller (the third column) than the memory requirements of the standard
HDD (the first column). For H = 0.125 the factor is ∼ 1.4 (the forth column).
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h Φg,Φf ,H = h,kB Φg,Φf ,H = 0.5,kB Φg,Φf ,H = 0.125,kB

1/33 2.45 ∗ 102, 4 ∗ 102 9.1 ∗ 10, 1.7 ∗ 102 2 ∗ 102, 2.8 ∗ 102

1/65 1.1 ∗ 103, 2.4 ∗ 103 2.9 ∗ 102, 1.2 ∗ 103 7.9 ∗ 102, 1.8 ∗ 103

1/129 5 ∗ 103, 1.4 ∗ 104 6.8 ∗ 102, 8 ∗ 103 2.6 ∗ 103, 1.2 ∗ 104

1/256 2.1 ∗ 104, 7.86 ∗ 104 1.4 ∗ 103, 4.1 ∗ 104 7.4 ∗ 103, 6.9 ∗ 104

Table 7.2: The dependence of the memory requirements for Φg and Φf on the grid
step sizes h,H .

7.4.3 HDD on Two Grids and with Truncation of Small Scales -

Case (d)

This case combines Cases (b) and (c). Suppose that the right-hand side f is given
in the space VH ⊂ Vh. We prolongate fH ∈ VH onto the fine space Vh and obtain
fh := Ph←HfH . After that we construct the mappings Ψf

ω : RI(ωH) → RI(∂ωh) and
Φf
ω : RI(ωH) → RI(γh) for all ω ∈ T≥HTh

.

Lemma 7.4.6 Let k be the rank which is used in the H-matrix arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of the algorithm
“Leaves to Root” has the following upper bound:

N(Ψ) = N(Ψf
ω) +N(Ψg

ω) ≤ Ck2√nHnh log3√nhnH , C ∈ R+.

Proof: Analogously to Case (c). See the proof of Lemma 7.4.4.

�

Lemma 7.4.7 Let k be the rank which is used in the H-matrix arithmetic. For
the model domain from Remark 7.1.2 the computational complexity of the algorithm
“Root to Leaves” has the following upper bound:

N = Ng +Nf ≤ Ck
√
nhnH log

√
nh log

√
nH , C ∈ R+.

Proof: Analogously to Case (b). See the proof of Lemma 7.4.2.

Lemma 7.4.8 Let k be the rank which is used in the H-matrix arithmetic. For the
model domain from Remark 7.1.2 the storage requirements of the mappings Φg

ω and
Φf
ω for all ω ∈ T≥HTh

have the following upper bounds:

S(Φg
ω) ≤ 42k

√
nhnH and

S(Φf
ω) ≤ Ck

√
nhnH log

√
nh log

√
nH .

Proof: These storage requirements are the same as in Case (b). See the proof of
Lemma 7.4.1.
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In this chapter we present the parallel HDD algorithm and estimate its complexity.

8.1 Introduction

In this chapter we consider the parallel computers with the shared memory archi-
tecture (although the distributed memory architecture is also possible). We will
consider the parallel RAM (PRAM) model, which consists of q processors and a
global memory which can be accessed simultaneously by all processors. All data
transfers between different processors are handled by this memory system. The
communication time between processors is negligible small in comparison with the
computational time.
To characterize parallel algorithms we introduce the following notation:

Definition 8.1.1 Let t(q) be the execution time of the parallel algorithm A on a

machine with q processors. Then we denote the parallel speedup by S(q) := t(1)
t(q)

and

the parallel efficiency of A by E(q) := S(q)
q

= t(1)
q·t(q) .

To parallelize the HDD method one needs to do the following:

1. Perform the triangulation Th of the domain Ω and construct the hierarchical
decomposition tree TTh

in parallel.

2. Perform the parallelization of theH-matrix arithmetic (described by R.Kriemann
in his dissertation [44]).

3. Perform the parallelization of the algorithm “Leaves to Root”.

4. Perform the parallelization of the algorithm “Root to Leaves” ( requires the
parallel H-matrix-vector multiplication).

The time for item (1) is much smaller than the time needed for items (3) and (4).
The parallel H-matrix arithmetic is used in items (3) and (4).
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8.2 Parallel Algorithms for H-Matrix Arithmetics

The parallel algorithms for the matrix-vector multiplication, matrix-matrix addition,
matrix-matrix multiplication and LU-decomposition for dense matrices can be found
in [25]. The parallel versions of the respective algorithms forH-matrices can be found
in [44].

Theorem 8.2.1 Let T := TI×I be a block cluster trees, M,M ′,M ′′ ∈ H(TI×I , k),
n := |I|, x ∈ Rn. Suppose nmin > k. Let |L(T )|, |V (T )| be the numbers of leaves and
of nodes in the block cluster tree TI×I , q = 2r is the number of parallel processors.
Then the computational complexities in Table 8.1 hold.

Operation Sequential Complexity Parallel Complexity

building(M) N = O(n logn) N
q

+O(|V (T )\L(T )|)
storage(M) N = O(kn logn) N

q

Mx N = O(kn logn) N
q

M ′ ⊕M ′′ N = O(k2n log n) N
q

M ′ ⊙M ′′ N = O(k2n log2 n) N
q

+O(Csp(T )|V (T )|)
M−1 N = O(k2n log2 n) N

q
+O(nn2

min)

H-LU N = O(k2n log2 n) N
q

+O(k
2n log2 n
n1/d )

Table 8.1: Computational complexities for sequential and parallel algorithms.

Proof: For the proof of the estimates from the second column see [27] or [33]. For
the proof of the estimates from the third column see [45] or [44].

Definition 8.2.1 Let v be a vertex of TTh
, then we denote the subtree which has

vertex v as a root by TTh
(v). The set of all nodes at the level l of TTh

we denote by

T
(l)
Th

.

Remark 8.2.1 Since the parallel efficiency for small matrices is much smaller than
for large matrices, we divide TTh

into two parts T
(l<r)
Th

and T
(l≥r)
Th

(see Fig. 8.1),

where r := log q. T
(l<r)
Th

contains domains with a large number of degrees of freedom

and T
(l≥r)
Th

with a small number. The parallel arithmetic is applied only for levels
0, .., r − 1. The matrices which appear on the levels r, ..., 2p are small enough and
are computed by one processor.

Assumption 8.2.1 Let ω1 be a son of ω. We suppose that |I(ω1)| ≈ 1
2
|I(ω)|,

|I(∂ω1)| ≤ 3
4
|I(∂ω)| and |I(∂ω)| ≤ 6|I(γω)|.
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r

[0,...,q-1]

[q/2,...,q-1][0,...,q/2-1]

[0,...,q/4-1] [3q/4,...,q-1]

0 1 2 q-1step size H

step size  h

q/2

q/4

1

q .
.

.

.

computed 

by 1 processor

number of processors 

per node

[..][..]
T

(l<r)
Th

T
(l≥r)
Th

TTh
(v)

Figure 8.1: (left) Decomposition of the TTh
into T

(l<r)
Th

and T
(l≥r)
Th

and distribution
of q processors. (right) The matrices at the level l ∈ [0, .., r − 1] are
computed by q

2l processors. The subtree TTh
(v) is computed by one

processor.

The parallel version of the algorithm “Leaves to Root”

On each level l < r of TTh
(the root has level l = 0) every node gets 2r−l processors.

Every subtree TTh
(v), v ∈ T (r)

Th
, is computed by one processor (see Fig. 8.1 (right)).

Lemma 8.2.1 Let Sω := A11 − A12A
−1
22 A21 (see (6.1)), where

A11 ∈ H(TI(∂ω)×I(∂ω), k), A12 ∈ R(k, I(∂ω), I(γω)), A21 ∈ R(k, I(γω), I(∂ω)),
A22 ∈ H(TI(γω)×I(γω), k), ω ∈ TTh

, and nh,γ := |I(γω)|. The parallel complexity of the
computation of Sω has the following upper bound:

N(Sω, q) ≤
C1k

2nh,γ log2 nh,γ
q

+ C2n
2
minnh,γ, C1, C2 ∈ R+. (8.1)

Proof: Due to Table 5.3 the parallel complexity of the inversion A−1
22 is

C1k
2nh,γ log2 nh,γ

q
+ C0n

2
minnh,γ, C0, C1 ∈ R+.

The parallel complexity of the multiplication A12 · A−1
22 is k-times the MV multipli-

cation, i.e.,
C2k2nh,γ lognh,γ

q
, C2 ∈ R+. The parallel complexity of the multiplication

(A12A
−1
22 ) · A21 (product of two low-rank matrices defined in Lemma 5.6.4) is

2k2

q
(|I(∂ω)|+ |I(γω)|)

Assum. 8.2.1
≤ 14k2nh,γ

q
.

The parallel complexity of the subtraction A11 − A12A
−1
22 ·A21 is

C3k
2|I(∂ω)| log |I(∂ω)|

q

Assum. 8.2.1

≤ C4k
2nh,γ lognh,γ

q
, C3, C4 ∈ R+.
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Thus,

N(Sω, q) ≤
1

q
(C4k

2nh,γ log nh,γ + C1k
2nh,γ log2 nh,γ) + C0n

2
minnh,γ

≤ Ck2nh,γ log2 nh,γ
q

+ C0n
2
minnh,γ, C0, C ∈ R+. (8.2)

�

Lemma 8.2.2 Let Zω := F1 − A12A
−1
22 F2 (see Lemma 6.2.2), where ω ∈ TTh

,

A12 ∈ R(k, I(∂ω), I(γω)), A22 ∈ H(TI(γω)×I(γω), k),

F1 ∈ H(TI(∂ω)×I(ω), k), F2 ∈ H(TI(γω)×I(ω), k),

nh := |I(ω)|. Let the model domain be as in Remark 7.1.2. The parallel complexity
of the computation of Zω on a machine with q processors has the following upper
bound:

N(Zω, q) ≤
Ck2nh log nh

q
, C ∈ R+. (8.3)

Proof: A12 ·A−1
22 was computed in parallel for Ψg

ω (Lemma 8.2.1). The complexity of
the multiplication (A12A

−1
22 ) ·F2 (the product of a low-rank matrix and an H-matrix

is k-times the H-matrix-vector multiplication) is estimated by C1k2nh lognh

q
, C1 ∈ R+.

The complexity of the subtraction F1 − A12A
−1
22 F2 is C2k2nh lognh

q
, C2 ∈ R+. Thus,

N(Zω, q) ≤
1

q
(C1k

2nh log nh + C2k
2nh log nh) ≤

Ck2nh lognh
q

, C ∈ R+.

�

Lemma 8.2.3 Let Ψg
ω ∈ RI(∂ω)×I(∂ω), Ψf

ωi
∈ RI(∂ωi)×I(∂ωi), ω, ωi ∈ TTh

, i = 1, 2,
ω = ω1 ∪ ω2. For the model domain from Remark 7.1.2 the parallel computational
complexity of building Ψg

ω from Ψg
ω1

and Ψg
ω2

has the following upper bound:

N(Ψg, q) ≤ Ck2nh,γ log2 nh,γ
q

+ C1nh,γn
2
min, C, C1 ∈ R+, nh,γ := |I(γω)|.

Proof: Lemma 5.10.8 states that building Ψg
ω1
|I(∂ω)×I(∂ω), Ψg

ω2
|I(∂ω)×I(∂ω) and their

adding on a machine with one processor costs

N(Ψg, 1) ≤ C0k
2|I(∂ω)| log2 |I(∂ω)| ≤ C ′k2nh,γ log2 nh,γ, C0, C

′ ∈ R+.

Theorem 8.2.1 states that the parallel complexity of theH-matrix addition isN(q) =
N(1)
q

. From these two facts follows that adding Ψg
ω1
|I(∂ω)×I(∂ω)⊕Ψg

ω2
|I(∂ω)×I(∂ω) costs

C′k2nh,γ log2 nh,γ

q
. After the elimination of the unknowns with indices from I(γω), we

obtain Ψg
ω. By Lemma 8.2.1 this elimination costs

C2k
2nh,γ log2 nh,γ

q
+ C1n

2
minnh,γ, C1, C2 ∈ R+. (8.4)
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The total complexity is

N(Ψg, q) ≤ Ck2nh,γ log2 nh,γ
q

+ C1n
2
minnh,γ with C = C2 + C ′. (8.5)

Lemma 8.2.4 Let Ψf
ω ∈ RI(∂ω)×I(ω), Ψf

ωi
∈ RI(∂ωi)×I(ωi), ω, ωi ∈ TTh

, i = 1, 2,
ω = ω1 ∪ω2 and nh := |I(ω)|. For the model domain from Remark 7.1.2 the parallel
computational complexity of building Ψf

ω from Ψf
ω1

and Ψf
ω2

has the following upper
bound:

N(Ψf , q) ≤ Ck2nh log2 nh
q

, C ∈ R+.

Proof: In Lemma 5.10.8 we proved that the building of Ψf
ω1
|I(∂ω)×I(ω) and Ψf

ω2
|I(∂ω)×I(ω)

and their truncated addition on a machine with one processor cost N(Ψf , 1) ≤
C1k

2nh log2 nh, C1 ∈ R+. Theorem 8.2.1 states that the parallel complexity of
the H-matrix addition is N(q) = N(1)

q
. From these two facts follows that adding

Ψf
ω1
|I(∂ω)×I(ω)⊕Ψf

ω2
|I(∂ω)×I(ω) costs C1k2nh log2 nh

q
. The computation of Zω from Lemma

8.2.2 costs C2k2nh lognh

q
, C2 ∈ R+.

Thus, the total complexity is

N(Ψf , q) ≤ C1k
2nh log2 nh
q

+
C2k

2nh log nh
q

≤ Ck2nh log2 nh
q

, C ∈ R+. (8.6)

8.3 Parallel Complexity of the HDD Method

8.3.1 Complexity of the Algorithm “Leaves to Root”

Lemma 8.3.1 Let q be the number of parallel processors. The model domain and
the domain decomposition tree TTh

is the same as in Remark 7.1.2. The parallel
computational complexity of all mappings Ψg

ω, ω ∈ TTh
, has the following upper

bound:

N(Ψg, q) ≤ 3r

2r
·C
′k2√nh log2√nh + C̃k2nh

q
+C ′′(1− 3r

4r
)
√
nhn

2
min, C ′, C ′′, C̃ ∈ R+.

Proof: We decompose N(Ψg, q) into two terms (see the reason in Remark 8.2.1)

N(Ψg, q) =

r−1∑

l=0

N(Ψg
ωl
,
q

2l
) +

∑

ω∈TTh
(v)

N(Ψg
ω, 1), v ∈ T (r)

Th
. (8.7)
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Note that if ω = ω1 ∪ ω2 then |I(∂ω)| ≤ |I(∂ω1)|+ |I(∂ω2)|. The first term can be
estimated as follows:

r−1∑

l=0

N(Ψg
ωl
,
q

2l
)

Lem.8.2.3

≤ C1
k2nh,γ log2 nh,γ

q
+ C ′1nh,γn

2
min

+ C2

k2 3nh,γ

4
log2 3nh,γ

4
q
2

+ C ′2
3nh,γ

4
n2
min + ...

+ Cr
k2(3

4
)r−1nh,γ log2(3

4
)r−1nh,γ

q
2r−1

+ C ′r
3r−1

4r−1
nh,γn

2
min

≤ 2 · (3
r

2r
− 1) max

i=1..r
Ci ·

k2nh,γ log2 nh,γ
q

+ 4 max
i=1..r

C ′i · (1−
3r

4r
)nh,γn

2
min

≤ C ′
3r

2r
· k

2nh,γ log2 nh,γ
q

+ C ′′(1− 3r

4r
)nh,γn

2
min,

where C ′ := 2 maxi=1..r Ci and C ′′ := 4 maxi=1..r C
′
i. Note that for each subtree

TTh
(v), v ∈ T

(r)
Th

, we have just one processor and therefore (see Definition 8.2.1,
Assumption 8.2.1)

∑

ω∈TTh
(v)

N(Ψg
ω, 1)

Lemma 7.2.1
≤ C̃k23r

4r
nh,

where 3r

4rnh is the number of nodal points in the root of TTh
(v), C̃ ∈ R+. Taking

into account the facts q = 2r, nh,γ ≤
√
nh, we obtain

N(Ψg, q) ≤ 3r

2r
· C
′k2√nh log2√nh + C̃k2nh

q
+ C ′′(1− 3r

4r
)
√
nhn

2
min.

�

Lemma 8.3.2 Let q be the number of parallel processors. The model domain and
the domain decomposition tree TTh

is the same as in Remark 7.1.2. The parallel
computational complexity of all mappings Ψf

ω, ω ∈ TTh
, has the following upper

bound:

N(Ψf , q) ≤ Ck2nh
q

log3 nh
q
, C ∈ R+.

Proof: We decompose N(Ψf , q) into two terms (see the reason in Remark 8.2.1)

N(Ψf , q) =

r−1∑

l=0

N(Ψf
ωl
,
q

2l
) +

∑

ω∈TTh
(v)

N(Ψf
ω, 1), v ∈ T (r)

Th
. (8.8)
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Recall that |I(ω1)| ≈ 1
2
|I(ω)|. The first term can be estimated as follows:

r−1∑

l=0

N(Ψf
ωl
,
q

2l
)

Lem.8.2.4
≤ C1

k2nh log2 nh
q

+ C2

k2 nh

2
log2 nh

2
q
2

+ ...+ Cr
k2 nh

2r−1 log2 nh

2r−1

q
2r−1

C̃ = max
i=1..r

Ci

≤ C̃k2nh
q

(log2 nh + log2 nh
2

+ ... + log2 nh
2r−1

)

≤ C̃k2nh
q

((2p+ 1)2 + (2p)2 + ...+ (2p− r + 2)2)

≤ C̃k2nh
q

(
1

3
((2p+ 1)3 − (2p− r + 1)3)

≤ C̃k2nh
3q

· (4(2p+ 1)2r − 4(2p+ 1)r2 + r3)

≤ C ′k2nh(lognh − log q) lognh · log q

q
.

Note that for each ω ∈ TTh
(v) we have just one processor and therefore (see Definition

8.2.1 and Assumption 8.2.1)

∑

ω∈TTh
(v)

N(Ψf
ω, 1)

Lem. 7.2.2
≤ Ck2nh(v) log3 nh(v)

≤ Ck2nh
2r

log3 nh
2r
, C ∈ R+.

We take into account the following inequality

C ′k2nh(log nh − log q) lognh · log q

q
≤ C2k

2nh
q

log3 nh
q

and obtain the statement of the lemma.

�

Lemma 8.3.3 Let q be the number of parallel processors. The model domain and
the domain decomposition tree TTh

is the same as in Remark 7.1.2. The parallel
computational complexity of all mappings Ψω, ω ∈ TTh

, has the following upper
bound:

N(Ψ, q) ≤ C ′k2√nh log2√nh + C̃k2nh
q0.45

+ C ′′(1− 3r

4r
)
√
nhn

2
min + Ck2nh

q
log3 nh

q
,

where C̃, C ′, C ′′, C ∈ R+.

Proof: Using Lemmas 8.3.1, 8.3.2, compute N(Ψ, q) = N(Ψf , q) +N(Ψg, q). Note
that 3r

4r ≈ 1
q0.45 and nh,γ ≤

√
nh.
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8.3.2 Complexity of Algorithm “Root to Leaves”

The input data for this algorithm is a set of mappings Φg
ω and Φf

ω for all ω ∈ TTh
.

The algorithm “Root to Leaves” performs the multiplications Φg
ω · gω and Φf

ω · fω.

Notation 8.3.1 The cost of the multiplication Φg
ω · gω on a computer with q proces-

sors we denote by Ng(ω, q). The cost of all multiplications Φg
ω · gω, ω ∈ TTh

, on a
computer with q processors we denote by Ng(q). Similarly, we define Nf(ω, q) and
Nf(q).

Lemma 8.3.4 Let q be the number of parallel processors. The model domain and
the domain decomposition tree TTh

is the same as in Remark 7.1.2. The parallel
computational complexity of all matrix-vector products Φg

ω · gω, where Φg
ω : RI(∂ω) →

RI(γω), gω ∈ RI(∂ω), ω ∈ TTh
, has the following upper bound:

Ng(q) ≤
28k
√
nh

q

3r

2r
+

21knh
q

.

Proof: We divide Ng(q) into two terms (see the reason in Remark 8.2.1)

Ng(q) =
r−1∑

l=0

Ng(ωl,
q

2l
) +

∑

ω∈TTh
(v)

Ng(ω, 1), where v ∈ T (r)
Th
. (8.9)

Φg
ω is approximated in the low-rank format and belongs to R(k, I(γω), I(∂ω)). As-

sumption 8.2.1 gives |I(∂ω)| ≤ 6nh,x, where |I(γω)| = nh,γ ≤ nh,x ≃
√
n. The

parallel complexity of the multiplication Φg
ω · gω can be estimated as follows:

2k · (|I(∂ω)|+ |I(γω)|)
q

≤ 2k · (6nh,x + nh,x)

q
=

14knh,x(ω)

q
. (8.10)

Suppose that the number of external boundary points decreases by a factor 3
4

after
each division, i.e., |I(∂ω1)| ≤ 3

4
|I(∂ω)|. Taken into account (8.10), the first term in

(8.9) can be estimated as follows:

r−1∑

l=0

Ng(ωl,
q

2l
) ≤ 14knh,x

q
+

14k
3nh,x

4
q
2

+ ...+
14k

3r−1nh,x

4r−1

q
2r−1

= 14k
nh,x
q

(1 +
3

2
+ ... +

3r−1

2r−1
)

q=2r

≤ 28k
√
nh

q
(
3r

2r
− 1) ≤ 28k

√
nh

q

3r

2r
.

The second term in (8.9) can be estimated by Lemma 7.3.1 as follows

∑

ω∈TTh
(v)

Ng(ω, 1) ≤ 21knh
q

,

where nh

q
is the number of degrees of freedom in the root of TTh

(v).
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Lemma 8.3.5 Let q be the number of parallel processors. The model domain and
the domain decomposition tree TTh

is the same as in Remark 7.1.2. The parallel
computational complexity of the matrix-vector products Φf

ω · fω, where Φf
ω : RI(ω) →

RI(γω), fω ∈ RI(ω), ω ∈ TTh
, has the following upper bound:

Nf(q) ≤ Ck2nh
q

log2 nh
q
, C ∈ R+.

Proof: Each level i ∈ [0, 2p − 3] of the tree TTh
contains 2i matrices and every

matrix is to be multiplied by vector f . The parallel arithmetic is applied only for
levels 0, .., r− 1 (see Figure 8.1). The matrices which appear on the levels l ≥ r are
small enough and are computed by one processor. Suppose that |I(ω1)| ≤ 1

2
|I(ω)|

(see Assumption 8.2.1). We divide Nf(q) into two parts

Nf(q) =

r−1∑

l=0

Nf(ωl,
q

2l
) +

∑

ω∈TTh
(v)

Nf(ω, 1), where v ∈ T (r)
Th
. (8.11)

The first term in (8.11) can be estimated as follows

r−1∑

l=0

Nf (ωl,
q

2l
)
Lem.7.3.2
≤ C1

k2nh log nh
q

+ C2

k2 nh

2
log nh

2
q
2

+ ... + Cr
k2 nh

2r−1 log nh

2r−1

q
2r−1

C′= max
i=1..r

Ci

≤ C ′ · k
2nh
q

(2p+ 1 + 2p+ ...+ 2p− r + 2)

r=log q

≤ C ′
k2nh((2p+ 1)(2p+ 2)− (2p− r + 1)(2p− r + 2))

2q

≤ C̃
k2nh(4pr − r2)

2q
r=log q

≤ C̃
k2nh(2 lognh − log q) log q

q
, C̃ ∈ R+.

By Lemma 7.3.2 the second term in (8.11) can be estimated as follows

∑

ω∈TTh
(v)

Nf (ω, 1) ≤ Ck
nh
q

log2 nh
q
.

We take into account the inequality

C̃
k2nh(2 lognh − log q) log q

q
≤ C ′′k2nh

q
log2 nh

q

and obtain the statement of the lemma.
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Lemma 8.3.6 Let q be the number of parallel processors. The model domain and
the domain decomposition tree TTh

is the same as in Remark 7.1.2. The parallel
computational complexity of the algorithm “Root to Leaves” has the following upper
bound:

N(q) = Nf (q) +Ng(q)

≤ Ck2nh
q

log2 nh
q

+
28k
√
nh

q

3r

2r
, C ∈ R+.

Proof: See Lemmas 8.3.4, 8.3.5 and use the inequality

21knh
q
≤ Ck2nh

q
log2 nh

q
.

- 134 -



9 Implementation of the HDD
package

The result of the implementation is a package of programs which uses the following
libraries: HLIB, LAPACK, BLAS, external triangulators (for complex geometry).
This implementation is done in C language (ANSI/ISO standard). The hierarchical
matrix library HLIB (see [28]) is used for the H-matrix arithmetic. HLIB uses
the linear algebra packages LAPACK (see [2]) and BLAS (see [1]) for the standard
matrix-vector arithmetic. The scheme of the implementation is shown in Fig. 9.1.
See more about the HDD package in [49].

BLAS

LAPACK

HLIB HDD package Triangulation

Figure 9.1: The libraries needed for the HDD package.

9.1 Data Structures

Before the application of the hierarchical domain decomposition, a triangulation
of the domain Ω has to be made. There are many algorithms which can do this.
The triangulation has to satisfy the Definition 3.5.1. The set of vertices with their
coordinates is the input data for building a triangulation. The cost of the triangu-
lation algorithm is O(n logn) (see [56]). The triangulation includes the following
information:

1. List of internal and boundary vertices.

2. List of triangles.

3. For each vertex the list of the adjoint triangles.

4. List of edges.

The HDD method needs a hierarchy of grids. To build this hierarchy we divide each
triangle of the coarse grid recursively into four triangles (see Fig. 9.2). We stop the
division when all triangles are small enough (see Fig. 9.5). This process provides
the hierarchy of grids.
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Vertex Structure
index
list of adjoining triangles
property (internal, external)
coordinates[2]

Triangle Structure
index
vertices[3]
edges[3]
property
stiffness matrix[3][3]
father*
sons*

Edge Structure
index
sons*
vertices[2]
property
father*

Table 9.1: Fields of the basic structures (see Remark 9.1.1).

Remark 9.1.1 The notation x[N ] means that x is an array, which contains N
elements. The notation y∗ means that y is either a pointer or an array. The notation
z[N ][M ] means that matrix z ∈ RN×M .

Remark 9.1.2 Note that the structure grid contains only pointers to the real ver-
tices, triangles and edges.

h

H

e1 e2

e10

e11

e20

e21

Figure 9.2: Coarse and fine triangulations. Each triangle and each edge of the fine
grid contains data about their father.

The structures vertex, triangle and edge are present in Table 9.1. The Diagram
in Fig. 9.3 shows the connection between these structures.
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vertexlistel

next*

previous*

v*

vertexlist

size

first*

last*
property

vertex

index

tlist*

coordinates[2] 

property

tlistel

next*

previous*

element

tlist

size

first*

last*

telement

index

ver[3]

property

edges[3]

bij[3][3]

DATA BASE

father*
edges

index

vertices[2]

father*

sons*

property

array of edges

GRID

Figure 9.3: Implementation of the structures for storing vertices, triangles and edges.

9.2 Implementation of the Hierarchy of Grids

Until now we had one or two grids. Below we discuss how to implement the hierarchy
of grids Th ⊂ Th/2 ⊂ ... ⊂ Th/2q . All grids must be connected with each other. It
means that each finite element has to know his father and vice versa. We build a
grid Th with step size h, refine it, obtain a grid Th/2, refine it again and so on.
In this work we use two grids Th/2i and Th/2j , 0 ≤ i, j ≤ q but for more difficult
problems more scales should be used. If we are only interested in two scales with
H/h > 2, we refine the given scale recursively and do not store intermediate grids.
After each recursive step, we reorganize the connections sons↔ father. The scheme
of this process is shown in Figures 9.4 and 9.5.

List of vertices 1

List of triangles 1

Array of edges 1

grid with the step size H

..... 
List of vertices 2

List of triangles 2

Array of edges 2

grid with the step size H/2

 
List of vertices 

List of triangles

Array of edges 

grid with the step size h

 

Figure 9.4: Connection of the grids TH , TH/2,..., Th.
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H

h

...

Figure 9.5: All elements of the finest grid have links to the elements of the coarsest
grid and vice versa.

Let Th0 be the initial grid, TH the current grid which has to be refined, Th the
fine grid which we obtain after refinement of TH . Let i be the index of the current
refinement and imax the maximal number of refinements (i.e., 0 ≤ i < imax). Then
the algorithm of the recursive mesh refinement will be as follows:

Algorithm 9.2.1 (Refinement of the grid TH imax times)
/∗ TH is given, Th0 := TH , i = 0, imax ≥ i. ∗/
build fine grid(Th0, TH , i, imax)
begin
Th:=new grid();
if (i = 0)and(imax = 1) then
Th:=refine grid(TH);

else
if (i < imax − 1) then
T ′h:=new grid();
T ′h:=refine grid(TH);
copy links(Th0, TH , T ′h);
delete grid(TH);
build fine grid(Th0, T ′h, Th, i+ 1, imax);

else
if (i = imax − 1)

refine grid(TH , Th);
copy links(Th0, TH , Th);
delete grid(TH);

end if;
end if;
return Th;

end

Here

• new grid() allocates memory for a new grid.
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• refine grid(TH) performs one refinement of TH and writes the resulting grid to
Th (see Algorithm below).

• copy links(Th0, TH , Th) copies all links “father-to-son” and “son-to-father” from
Th0 to Th.

Algorithm 9.2.2 (One step of the mesh refinement procedure)
refine grid(coarse grid TH)
begin
Th :=new grid();
for all vertices of TH do

add vertex to Th;
for all edges of TH do

add the midpoint of this edge to Th;
divide the edge into 2 edges and add them to Th;

end for;
for all triangles of TH do

divide triangle in 4 triangles;
add these 4 triangles to Th;
add new edges to Th;

end for;
return Th;

end;
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9.3 Implementation of the HDD Method

Suppose that the triangulation Th of the domain Ω is constructed. In this section
we describe how to perform the hierarchical decomposition of Ω (see Fig. 4.1) and
implement the HDD method. The scheme of the structures, which are involved in
the implementation of the HDD method is shown in Fig. 9.6.
The recursive procedure which performs the hierarchical decomposition is named
divide(...) (see Algorithm 9.3.1). The input data for the procedure divide(...) are
the root of TTh

and the domain Ω. This procedure divides the set of all triangles,
the set of all nodes, the external and internal boundary nodes into two parts (left
son and right son).
As it was mentioned in Chapter 5, for building an H-matrix we need a cluster tree,
but to build this cluster tree we need to know the coordinates of the nodal points
xi ∈ Ω. At the same time the admissibility condition requires knowledge about the
distance between two clusters and diameters of the clusters (see Section 5.4).

- 140 -



9.3 Implementation of the HDD Method

DDtree

subdomain

vertexlist

tlist

supermatrix rkmatrix

clustertree

fullmatrix

boundary

cluster

bl.clustertree

edges

H-matrix structures

Grid structure

HDD structures

Figure 9.6: The scheme of the structures, which are used for the implementation of
the HDD method.

Algorithm 9.3.1 (Hierarchical decomposition)
divide(DDtree* Tω, subdomain* ω);
begin

ω1 :=new domain();
ω2 :=new domain();
if (ω contains more than 3 vertices) then

divide vertices(ω, ω1, ω2);
divide elements(ω, ω1, ω2);
Tω →leftson := new DDtree(ω1);
Tω →rightson := new DDtree(ω2);
divide(Tω →leftson, ω1);
divide(Tω →rightson, ω2);

else
Tω →leftson=∅;
Tω →rightson=∅;

end if;
end;

Here

• divide vertices(ω, ω1, ω2) divides the set of all nodal points of ω into two
subsets V1 := {v|v ∈ ω1} and V2 := {v|v ∈ ω2}. Note that V1∩V2 = {v|v ∈ γω}.
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• divide elements(ω, ω1, ω2) divides the set of all triangles in ω into two subsets
T1 := {t|t ∈ τ(ω1)} and T2 := {t|t ∈ τ(ω2)}. Note that T1 ∩ T2 = ∅.

We use the structure subdomain to store the data of ω ∈ TTh
(see below). This

structure contains the list of all vertices, list of all triangles (on both scales), its
boundary box and lists of internal and external boundary vertices (on both scales).
The boundary boxes are used for an easier division of a domain into two parts.

To store the data about the interface and the external boundary we use the struc-
ture boundary (see below). This structure contains the following fields: lists of
vertices (vl, cvl) on both scales and a pointer to the right-hand side matrix (frhs).
Since each vertex contains the list of joint triangles we can compute its support
((tl)).

The main structure for the hierarchical domain decomposition is DDtree. This
structure combines the information about the current level, the “father” level and
its children. DDtree is used in both algorithms “Leaves to Root” and “Root to
Leaves”.

The fields of the structure DDtree are shown below. For describing a subdomain
ω ∈ TTh

the structure domain is used.

Program 9.3.1
typedef struct _domain domain;

typedef _domain* pdomain;

struct _domain{

long index; /* Index of the domain */

tlist* tl; /* List of triangles at the fine scale */

tlist* ctl; /* List of triangles at the coarse scale */

vertexlist* vl; /* List of vertices at the fine grid */

vertexlist* cvl; /* List of vertices at the coarse grid */

double area; /* Area of the domain */

double minx,maxx,miny,maxy; /* Describe the boundary box */

}

For describing the external ∂ω and internal γω boundaries the structure boundary

is used.

Program 9.3.2
typedef struct _boundary boundary;

typedef _boundary* pboundary;

struct _boundary{

vertexlist* vl; /* List of vertices at the fine grid */

vertexlist* cvl; /* List of vertices at the coarse grid */

tlist* tl; /* List of triangles at the fine scale */

psupermatrix frhs; /* To store the corresponding hierarchical matrix */

}

For describing the HDD tree TTh
the structure DDTree is used.
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Program 9.3.3
typedef struct _DDTree DDTree;

typedef _DDTree* pDDTree;

struct _DDTree{

long index; /* Index of the subdomain *\

pDomain clus; /* Pointer to the corresponding domain *\

pDDTree leftTree; /* Pointer to the left son *\

pDDTree rightTree; /* Pointer to the right son *\

pDDTree father; /* Pointer to father *\

pDDTree brother; /* Pointer to brother *\

psupermatrix invA22;

prkmatrix phi_g;

psupermatrix psi;

double *functional_g, *functional_f;

int *father2sonL, *father2sonR;

int ind_removerow[2], ind_insertrow[2];

int *dof2idx;

int compute; /* =1 if for this domain matrices are computed, =0 else *\

int simple; /* strategy of building H-matrix (=1 or =2) *\

pclustertree interct; /* Cluster tree for the internal boundary (fine grid) */

pclustertree cinterct; /* Cluster tree for the domain (coarse grid)*/

pclustertree ect; /* Cluster tree for the external boundary (fine grid) */

pclustertree cect; /* Cluster tree for the external boundary (coarse grid) */

pclustertree ct; /* Cluster tree for the domain (fine grid) */

pclustertree cct; /* Cluster tree for the domain (coarse grid) */

pclustertree cl_Gamma; /* Auxiliary cluster tree */

pclustertree cl_gamma; /* Auxiliary cluster tree */

pdomain clus; /* Pointer to the domain*/

pboundary eclus; /* Pointer to the external boundary */

pboundary interclus; /* Pointer to the internal boundary */

int *cf_index; /* Auxiliary array. Used for the mesh refinement*/

}

To store the inverse of the mapping Ψg
ω|I(γ) : RI(γ) → RI(γ) the field invA22 is

used, to store the mapping Φg
ω : RI(∂ω) → RI(γ) the field phi g is used. To store

the mapping Ψg
ω : RI(∂ω) → RI(∂ω) the field psi is used. The fields functional g,

functional f are needed to store the functionals λgω and λfω. The fields father2sonL,
father2sonR are used for storing the mappings I(ω) → I(ω1) and I(ω) → I(ω2).
The fields ind removerow[2], ind insertrow[2] store indices from I(∂ω) and de-
fine which rows should be removed from an H-matrix. The field dof2idx maps the
set of degrees of freedom on ∂ω ∪ γ to the set of indices I(∂ω ∪ γ).
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9.4 Conclusion

The main steps of the implementation of HDD are:

1. Read the coarse grid TH .

2. Refine TH by Algorithm 9.2.1 imax times.

3. Build the HDD tree TTh
by Algorithm 9.3.1.

4. Execute “Leaves to Root” by Algorithm 7.2.1. For each ω ∈ TTh

a) build Ψg
ω and Ψf

ω for leaves of TTh
,

b) build Ψg
ω from Ψg

ω1
and Ψg

ω2
by Algorithms 6.3.1 and 6.3.2,

c) build Ψf
ω from Ψf

ω1
and Ψf

ω2
by Algorithms 6.3.3 and 6.3.4,

d) build Φg
ω and Φf

ω by Algorithm 7.3.1,

e) compute the functionals λgω, λ
f
ω by Algorithms 4.4.1 and 4.4.2.

5. Execute “Root to Leaves” by Algorithm 7.3.1:

a) compute uγω := Φg
ω · gω + Φf

ω · fω, ω ∈ TTh
,

b) compute (e.g., the mean value) λω(dω) = (λfω, fω) + (λgω, gω), ω ∈ TTh
.

6. Compute solution by the PCG method and compare it with the solution com-
puted by HDD.

The following modifications of the HDD method were implemented:

1. HDD1 works with the right-hand side from VH ⊂ Vh. For this modification the
prolongation matrix Ph←H was applied.

2. HDD2 computes the solution on all internal boundaries γω, diam(ω) ≥ H , and
the mean value of the solution inside all domains ω with diam(ω) < H . In
this modification the algorithm “Root to Leaves” works only for domains with
diam(ω) ≥ H .

3. HDD3 is a combination of HDD1 and HDD2.

4. HDD4 for problems with the homogeneous right-hand side (the mappings Ψf
ω

and Φf
ω are not computed at all).

5. HDD5 for problems with periodic coefficients (see Section 4.4.4).
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Numerical experiments are used for the confirmation of the theoretical results and
for the discovering of the invisible patterns of relationships.

In this Chapter we

• compare the solution, obtained by the HDD method, with the solutions ob-
tained by the PCG-method and by the H-Cholesky factorization (see Tables
10.12, 10.13, 10.15, 10.16);

• demonstrate the dependence of the solution uh on the maximal H-matrix rank
k (see Tables 10.5, 10.6, 10.8).

• research the needed computational time and the storage requirement (see Ta-
bles 10.14, 10.19, 10.20);

• show the accuracy of the solution for different oscillatory coefficients (see Ta-
bles 10.9, 10.10, 10.11, 10.17, 10.18);

• research the accuracy of theH-matrix approximation of Φg
ω and Φf

ω on different
levels of the tree TTh

(Tables 10.21, 10.22);

• show the absolute and relative errors for the solution of the so-called skin
problem with discontinuous coefficients (see Tables 10.25, 10.26, 10.27);

• solve a problem with many right-hand sides by the HDD method and compare
the computational time with the time required by PCG (see Table 10.28).

10.1 Notation

Let us introduce the following notation:

• u is an analytic solution;

• u is the FE exact solution, ui = u(xi);

• Ω is the model domain and the model grid is shown in Fig. 10.1;

• A is the global stiffness matrix computed for Ω;

• c is the discrete right-hand side, Au = c;

• k is the maximal rank used in Definition 5.7.2 of H-matrices. If the rank k in
H(TI×J , k) is fixed then we call this rank the H-matrix rank;
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• ũk is the solution obtained by the HDD method. The subindex k indicates
that the fixed rank arithmetic is used (see Def. 5.9.3);

• ũε is the solution obtained by the HDD method. The subindex ε indicates
that the adaptive rank arithmetic is used (see Def. 5.9.3);

• ũL is the solution obtained by the H-Cholesky decomposition (Au = c ⇒
ũL = (LLT )−1c);

• εcg is the value which is used for the stopping criterium for PCG, i.e., PCG
stops as soon as ‖Aũ(m) − c‖2 ≤ εcg;

• ũcg is the solution obtained by the PCG method (with the H-Cholesky pre-
conditioner). As stopping criterium we use the residual ‖Aũcg − c‖2 ≤ εcg;

• εa is the parameter for the adaptive rank arithmetic with the property
k = min{i : σi ≤ εaσ1}, where σi is the i-th singular value;

• εh is the discretisation error;

• εH is the H-matrix approximation error;

• nmin is the minimal size of an inadmissible block. nmin tells us when we should
stop divide subblocks further (see Section 5.5.2). By default, the minimal size
nmin = 32 is used for inadmissible blocks;

• A−H is the H-matrix approximant to the inverse of A.

nh,x

nh,y

Figure 10.1: The model grid on Ω = (0, 1)2. The number of degrees of freedom is
nh,x · nh,y, nh,x = nh,y.

The model elliptic boundary value problem to be solved is

− div(α(x)∇u) = f in Ω = (0, 1)2,
u = g on ∂Ω.

(10.1)

Further, in all experiments, we will use the grid shown in Fig. 10.1.
All numerical experiments were performed on the computers from Table 10.1.

The notebook was used for small applications and Kepler for large ones. In order to
compute a double integral in a triangle we apply the 12 points quadrature rule (see
Table (3.2)).
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Name Model OS Speed, Ghz Memory, Gb
Notebook Celeron M Fedora 1.3-1.9 0.5

Kepler Intel PC Linux 2.4 3.0 2.0

Table 10.1: Used computers.

We use the domain decomposition as in Proposition 7.1.2. The error ε = ‖u− ũk‖2
(or ε = ‖u− ũk‖∞) which we obtain after applying the HDD method is contributed
by two errors: the discretization error εh and the H-matrix approximation error
εH. From the definition of H-matrices it is clear that εH −→ 0, when the rank k is
increasing. In the standard case the discretisation error is εh = O(h) (see Section
3.5.2). It is sensible to take the maximal rank k for H-matrices in a way to have the
same order of errors εh and εH. There is no sense to take larger rank k (or smaller
εa for the adaptive rank arithmetic) to decrease εH, because εh stays the same and
will dominate.

Remark 10.1.1 Note that to approximate a weak admissible block (see Section
5.5.2) we use the rank 3 · k.

Remark 10.1.2 Contrary to the fixed rank arithmetic, in the adaptive rank arith-
metic the needed rank k is chosen as follows k = min{i : σi ≤ εaσ1}.

10.2 Preconditioned Conjugate Gradient Method

Usually, the exact solution of the problem (10.1) is unknown. We use the PCG
method to estimate the accuracy of the HDD method.

Lemma 10.2.1 The minimal and maximal singular values of the stiffness matrix
of the Poisson-model problem on the rectangular quasi-uniform grid (Fig. 10.1) are:

λmin = 8h−2sin2(πh/2),
λmax = 8h−2cos2(πh/2).

The matrix A is positive definite and the condition number is

cond(A) = ‖A‖2‖A−1‖2 =
λmax
λmin

or

cond(A) =
cos2(πh/2)

sin2(πh/2)
= O

(
1

h2

)
.

The discontinuous coefficients α(x) of the operator div(α(x)∇) for the domain as in
Fig. 10.8 can increase the condition number of the stiffness matrix dramatically and
as a consequence increase the number of iterations. To estimate the upper bound of
the condition number one can use the following inequality ([26]):

cond(A) ≤ max
i,j

(
α(△i)

α(△j)

)
h−2,
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where △i, △j ∈ Th.
Table 10.2 shows the dependence of the condition number of the operator div(α(x)∇)

(for domain as in Fig. 10.8) on the jumping coefficient α. One can see an exponen-
tial increasing of cond(A) with decreasing of α. Table 10.3 shows the dependence
of the condition number of the operator div(α(x)∇) on the number of degrees of
freedom.

Remark 10.2.1 To compute the condition number of A we need the minimal and
the maximal eigenvalues. It is easy to estimate the maximal eigenvalue and difficult
the minimal eigenvalue. For small matrices (Tables 10.2, 10.3) we compute the
eigenvalues exact.

α cond(A)
10−1 8.4 ∗ 103

10−2 3.4 ∗ 104

10−3 2.8 ∗ 105

10−4 2.7 ∗ 106

10−5 2.7 ∗ 107

Table 10.2: Dependence of the condition number cond(A) on α. The domain Ω is
shown in Fig. 10.8 with β = 1, a = 4h and 652 dofs.

dofs cond(A)
92 6.8 ∗ 104

172 5.1 ∗ 105

332 6.1 ∗ 106

652 2.7 ∗ 107

Table 10.3: Dependence of the condition number on the number of degrees of free-
dom. The domain Ω is shown in Fig. 10.8 with α = 10−5, β = 1,
a = 4h.

Remark 10.2.2 The disadvantage of the CG method is its slow convergence because
of a possibly large the condition number of A.

The next theorem describes the convergence speed of the CG method.

Theorem 10.2.1 Let Φ be a symmetric iteration. Its matrix W of the third normal
form (i.e., W (um+1 − um) = Aum − c) is assumed to satisfy

λW ≤ A ≤ ΛW (λ > 0).

Then the iterates um of the CG method applied to Φ fulfil the energy norm estimate

‖em‖A ≤
2cm

1 + c2m
‖e0‖A,
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with c :=
√
κ−1√
κ+1

=
√
λmax−

√
λmin√

λmax+
√
λmin

and em = um − u∗, u∗ is the exact solution of the
system.

Proof: see [32] p.274.
PCG Algorithm

We introduce the following notation: pm is the search direction, rm = c − Aum,
m = 0, 1, ..., n− 1, is the residual. We stop the CG iterations when ‖rm‖2 = εcg. If
the matrix A is symmetric (A = AT ) and positive definite, i.e., (Av, v) > 0, the CG
method can be applied. Let W−1 be a preconditioning.

Remark 10.2.3 It is possible that AW−1 is not symmetric and therefore we ap-
ply the CG method to the system W−1/2AW−1/2u′ = W−1/2b. If A and W−1 are
symmetric, then W−1/2AW−1/2 is also symmetric.

1. Start: u0 := 0, r0 := c−Au0, p0 := W−1r0, ρ := 〈p0, r0〉,

2. Iteration for m = 0, 1, ...(as long as m < n and ‖rm‖2 ≤ εcg):

am := Apm, λopt := ρm/〈am, pm〉,

um+1 := um + λoptp
m,

rm+1 := rm − λoptam,
qm+1 := W−1rm+1, ρm+1 := 〈qm+1, rm+1〉,

pm+1 := qm+1 +
ρm+1

ρm
pm.

Remark 10.2.4 One step um → um+1 of the CG method requires one multiplication
Apm and, in addition, only simple vector operations and scalar products. The matrix
A, the vectors um, rm and pm have to be stored.

An implementation of the PCG method for the model problem is available in HLIB
[28].

Remark 10.2.5 The number of iterations of the CG method without precondition-
ing is proportional to

√
cond(A) and the number of iterations with preconditioning

is proportional to
√
cond(W−1A). If the preconditioning is chosen successfully, then√

cond(W−1A)≪
√
cond(A).

To demonstrate how the CG method solves the problem (10.1) with f = 1, g = 0
and α(x, y) = 1 + 1

2
sin(20x)sin(20y) on the model grid (Fig. 10.1) we offer Table

10.4. The stiffness matrix A was approximated by an H-matrix with the adaptive
rank arithmetic (εa = 10−4). Table 10.4 shows the preparation time (in sec.), the
computational time (in sec.), the residual and the number of iterations for different
numbers of degrees of freedom.
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dofs Preparation time Computational time ‖Aũcg − c‖2 #iter

332 0.2 1.9 7.7 ∗ 10−5 82
652 0.92 18.8 9.3 ∗ 10−5 178
1292 50.23 165.0 9.3 ∗ 10−5 381

Table 10.4: Computational time, residual and number of iterations for different num-
bers of degrees of freedom.

10.3 Smooth Coefficients

Table 10.5 shows that the HDD method works very well on the model Poisson
problem (frequency ν = 0). The analytic solution u = x2 + y2 is given. The relative
and absolute errors show exponential decay with increasing the rank k in the H-
matrix arithmetic.

Table 10.6 shows that for different numbers of degrees of freedom (1292 and 2572)
the relative and absolute errors decrease when the rank k increases. In the rows
k = 7, 8 the sum of the discretisation error εh and the quadrature error becomes
comparable with the H-matrix approximation error.

k ‖u− ũk‖2 / ‖u‖2 ‖u− ũk‖∞
2 7.2 ∗ 10−1 8.6 ∗ 10−1

3 4.8 ∗ 10−2 1.2 ∗ 10−1

4 3.3 ∗ 10−3 1.5 ∗ 10−2

5 3.6 ∗ 10−4 2.0 ∗ 10−3

8 4.1 ∗ 10−7 3.92 ∗ 10−6

12 1.2 ∗ 10−10 3.1 ∗ 10−9

Table 10.5: Dependence of the relative and absolute errors on the rank k. 1292 dofs,
α = 1, f = 4, u = x2 + y2.
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k ‖u−ũk‖2
‖u‖2 ‖u− ũk‖∞

‖u−ũk‖2
‖u‖2 ‖u− ũk‖∞

1 1.6 1.34 2.65 1.61
2 5.7 ∗ 10−1 6.6 ∗ 10−1 1.04 9.8 ∗ 10−1

3 2.8 ∗ 10−2 6.1−2 2.4 ∗ 10−1 3.3−1

4 1.9 ∗ 10−3 7.1 ∗ 10−3 1.2 ∗ 10−2 3.2 ∗ 10−2

5 2.7 ∗ 10−4 8.6 ∗ 10−4 9.3 ∗ 10−4 3.7 ∗ 10−3

6 5.4 ∗ 10−5 1.1 ∗ 10−4 1.6 ∗ 10−4 7.9 ∗ 10−4

7 1.17 ∗ 10−5 3.15 ∗ 10−5 4.12 ∗ 10−5 1.2 ∗ 10−4

8 8.2 ∗ 10−6 1.05 ∗ 10−5 1.6 ∗ 10−5 3.6 ∗ 10−5

Table 10.6: Dependence of the relative and absolute errors on the rank k for 1292

(columns 2,3) and 2572 (columns 4-5) dofs, u = x4 + y2, f = 12x2 + 1,
α = 1.

HDD Time

Table 10.7 shows the computational time of the HDD method with fh ∈ VH ⊂ Vh,
H
h

= 2, for different numbers of degrees of freedom. The number of degrees of
freedom is always increased by a factor 4 and the time increased by a factor not
greater than 6 (note that the quadratic dependence results factor 16). After an
appropriate optimization of the data structures and Algorithms 6.3.1 and 6.3.3 in
the HDD method, it is possible to decrease the time-factor to achieve an almost
linear dependence.

dofs in Ω HDD time(sec)

332 0.19
652 0.96
1292 5.6
2572 36.1
5132 218.4

Table 10.7: Dependence of the HDD computing time on the number of degrees of
freedom. Performed on Kepler (see Tab. 10.1), nmin = 48, k = 5.
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10.4 Oscillatory Coefficients

In this subsection we consider the model problem (10.1) with f = 1, g = 0, α(x, y) =
1+Asin(νx)sin(νy). The aim is to show how the accuracy of the solution produced
by HDD depends on the frequency ν and the amplitude A. Note that we research
approximation properties of HDD and we do not care about the discretisation error.
We suppose that the enough accurate discretisation is already done.

Example 10.4.1 To demonstrate the oscillatory effect we plotted (Figure 10.2) the
solution of the problem

− div(α(x)∇u) = 1 in Ω = (0, 1)2,
u = 0 on ∂Ω

(10.2)

with α = 1
1.001+sin(150x)sin(150y)

.

Very often the small details of the solution is out of interest and only the global
behaviour of the solution is wanted!

Figure 10.2: The solution of the problem (10.2).
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Example 10.4.2 Figures 10.3, 10.4 show the function α(x, y) = 1+1
2
sin(νx)sin(νy)

for ν = 2 and ν = 20.
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Figure 10.3: The coefficient function α(x, y) = 1 + 1
2
sin(2x)sin(2y).
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Figure 10.4: The coefficient function α(x, y) = 1 + 1
2
sin(20x)sin(20y).
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Since sin(νx) has period 2π
ν

(see Fig. 10.5), the interval [0, 2π
ν

] should contain at

least 5 points, i.e., 2π
ν
≥ 4h, where h = 1

(N−1)
. Thus, for ν ≤ 2π(N−1)

4
there are more

than 5 points in the interval [0, 2π
ν

] (upper figure) and for ν > 2π(N−1)
4

less then 5
points (lower figure).

h L

Lh

Figure 10.5: An P 1 approximation of sin(x) on [0, L] by 5 points (up) and by 3
points (bottom). In the last case, the approximating function is ≡ 0
and the discretisation error is large.

Table 10.8 shows how the HDD method solves the problems with oscillatory right-
hand side. The analytic solution to the problem with oscillatory coefficients has
been chosen to be non-oscillatory u = x2 + y2. The discrete analytic solution u is
compared with the solution ũk, obtained by the HDD method. One can see that for
k = 2, 3, 4, 5 the both relative and absolute errors decrease. But for k = 8, 12 the
quadrature errors (see (3.33)) and discretisation errors come into play and become
to dominate.

k ‖u− ũk‖2 / ‖u‖2 ‖u− ũk‖∞
2 7.4 ∗ 10−1 8.8 ∗ 10−1

3 4.9 ∗ 10−2 1.3 ∗ 10−1

4 6.7 ∗ 10−3 3 ∗ 10−2

5 8.7 ∗ 10−4 4.9 ∗ 10−3

8 2.8 ∗ 10−4 6.9 ∗ 10−4

12 2.8 ∗ 10−4 6.9 ∗ 10−4

Table 10.8: Dependence of the absolute and relative errors on the rank k. 1292

dofs, α(x, y) = 1 + 1
2
sin(νx)sin(νy), f = 4 + 2sin(νx)sin(νy) +

xνcos(νx)sin(νy) + yνsin(νx)cos(νy), ν = 50, u = x2 + y2.
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Recall that the solution obtained by HDD with the maximal H-matrix rank k is
denoted by ũk. The solution obtained by HDD with the maximal rank 40 be ũ40.
Such large rank 40 results the almost exact matrix arithmetic. Tables 10.9, 10.10,
10.11 show how the accuracy of the HDD method depends on the accuracy of the
H-matrix approximation. Table 10.9 contains the relative and absolute errors of the
solution to the problem 10.1 with α = 1+ 1

2
sin(50x)sin(50y) for 1292 dofs (columns

2-3) and for 2572 dofs (columns 4-5). One can see an exponential decay of both
errors with increasing the H-matrix rank k.

k ‖ũ40 − ũk‖2 / ‖ũ40‖2 ‖ũ40 − ũk‖∞ ‖ũ40 − ũk‖2 / ‖ũ40‖2 ‖ũ40 − ũk‖∞
2 1.3 4.8 ∗ 10−2 6.1 6.8 ∗ 10−2

3 5.0 ∗ 10−2 4.2 ∗ 10−3 0.6 3.2 ∗ 10−2

4 4.5 ∗ 10−3 7.9 ∗ 10−4 1.7 ∗ 10−2 2.4 ∗ 10−3

6 1.8 ∗ 10−4 1.9 ∗ 10−5 2.2 ∗ 10−3 3.1 ∗ 10−4

7 7.3 ∗ 10−5 7.76 ∗ 10−6 5.7 ∗ 10−4 5.6 ∗ 10−5

8 1.6 ∗ 10−5 1.8 ∗ 10−6 1.5 ∗ 10−4 1.6 ∗ 10−5

9 4.9 ∗ 10−6 5.3 ∗ 10−7 5.8 ∗ 10−5 5.5 ∗ 10−6

10 1.36 ∗ 10−6 2.0 ∗ 10−7 6 ∗ 10−6 6.5 ∗ 10−7

12 10−7 1.6 ∗ 10−8 7.1 ∗ 10−7 8.6 ∗ 10−8

14 6.9 ∗ 10−9 1.2 ∗ 10−9 4.8 ∗ 10−8 8.2 ∗ 10−9

Table 10.9: Dependence of the absolute and relative errors on the rank k. f = 1,
α(x, y) = 1 + 1

2
sin(50x)sin(50y). (2-3 columns) 1292 dofs, ‖ũ40‖2 =

5.4, (4-5 columns) 2572 dofs, ‖ũ40‖2 = 11.0.

Tables 10.10, 10.11 demonstrate an exponential decay of both relative and ab-
solute errors for the problem (10.1) with the oscillatory coefficient α(x, y) = 1 +
1
2
sin(10x)sin(10y). The experiments in Table 10.10 are done for 332, 652 degrees of

freedom and in Table 10.11 for 1292, 2572 degrees of freedom.

k ‖ũ40 − ũk‖2 / ‖ũ40‖2 ‖ũ40 − ũk‖∞ ‖ũ40 − ũk‖2 / ‖ũ40‖2 ‖ũ40 − ũk‖∞
2 1.88 ∗ 10−2 1.95 ∗ 10−3 1.7 ∗ 10−1 1.37 ∗ 10−2

3 6.4 ∗ 10−3 6.6 ∗ 10−4 8.6 ∗ 10−3 7.4 ∗ 10−4

4 1.74 ∗ 10−3 1.9 ∗ 10−4 3.1 ∗ 10−3 2.9 ∗ 10−4

5 1.6 ∗ 10−4 2.2 ∗ 10−5 4.8 ∗ 10−4 5.4 ∗ 10−5

6 1.14 ∗ 10−5 2.27 ∗ 10−6 6.73 ∗ 10−5 8.9 ∗ 10−6

7 2.43 ∗ 10−6 4.9 ∗ 10−7 1.8 ∗ 10−5 2.54 ∗ 10−6

8 2.64 ∗ 10−7 4.6 ∗ 10−8 4.34 ∗ 10−6 6.9 ∗ 10−7

9 7.55 ∗ 10−10 1.65 ∗ 10−10 1.1 ∗ 10−6 1.9 ∗ 10−7

Table 10.10: Dependence of the absolute and relative errors on the rank k. f = 1,
α(x, y) = 1 + 1

2
sin(10x)sin(10y). (2-3 columns) 332 dofs, ‖ũ40‖2 =

1.36; (4-5 columns) 652 dofs, ‖ũ40‖2 = 2.74.
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k ‖ũ40 − ũk‖2 / ‖ũ40‖2 ‖ũ40 − ũk‖∞ ‖ũ40 − ũk‖2 / ‖ũ40‖2 ‖ũ40 − ũk‖∞
3 2.5 ∗ 10−2 2.3 ∗ 10−3 2.7 ∗ 10−1 2 ∗ 10−2

4 5.1 ∗ 10−3 4.3 ∗ 10−4 2.1 ∗ 10−2 2 ∗ 10−3

5 7.3 ∗ 10−4 6.8 ∗ 10−5 1.2 ∗ 10−3 1.3 ∗ 10−4

6 1.65 ∗ 10−4 1.76 ∗ 10−5 2.9 ∗ 10−4 2.6 ∗ 10−5

7 6.3 ∗ 10−5 10−6 1.1 ∗ 10−4 1.1 ∗ 10−5

8 1.94 ∗ 10−5 2.3 ∗ 10−6 4.6 ∗ 10−5 4.5 ∗ 10−6

9 4.67 ∗ 10−6 6.2 ∗ 10−7 1.2 ∗ 10−5 1.4 ∗ 10−6

10 1.0 ∗ 10−6 1.6 ∗ 10−7 3.3 ∗ 10−6 4.1 ∗ 10−7

12 1.0 ∗ 10−7 1.7 ∗ 10−8 4.3 ∗ 10−7 5.5 ∗ 10−8

14 1.1 ∗ 10−8 2.1 ∗ 10−9 5.9 ∗ 10−8 9.5 ∗ 10−9

16 9.0 ∗ 10−10 2.13 ∗ 10−10 7.4 ∗ 10−9 1.3 ∗ 10−9

Table 10.11: Dependence of the absolute and relative errors on the rank k. f = 1,
α(x, y) = 1 + 1

2
sin(10x)sin(10y). (2-3 columns) 1292 dofs, ‖ũ40‖2 =

5.5; (4-5 columns) 2572 dofs, ‖ũ40‖2 = 11.0.

In Table 10.12 we compare the solution of the initial problem (10.1), obtained
by the HDD method with the solution obtained by the PCG method. The maxi-
mal number of iterations for the PCG method is 600, the admissible value of the
residual ‖Aũcg − c‖2 = 10−6. Thus, we can assume that the PCG method gives an
‘exact’ FE solution. The errors in columns 2 and 3 increase because the H-matrix
approximation error εH becomes larger. As a preconditioner we use the H-Cholesky
factorization.

dofs ‖ũcg − ũε‖∞ ‖ũcg−ũε‖2
‖uε‖2 ‖Aũcg − c‖2 timeHDD, (sec)

172 4.42 ∗ 10−10 4.34 ∗ 10−9 9.1 ∗ 10−7 0.06
332 8.56 ∗ 10−7 5.1 ∗ 10−6 7.2 ∗ 10−7 0.27
652 4.21 ∗ 10−6 3.3 ∗ 10−5 9.6 ∗ 10−7 1.6
1292 1.32 ∗ 10−5 1.3 ∗ 10−4 9.7 ∗ 10−7 10.0

Table 10.12: Comparison of the HDD solution ũε with the PCG solution ũcg,
α(x, y) = 1 + 1

2
sin(50x)sin(50y), εa = 10−6.

In Table 10.13 we consider the problem (10.1) with

α(x, y) =
2 + P sin(2πx/ε)

2 + P sin(2πy/ε)
+

2 + P sin(2πy/ε)

2 + P sin(2πx/ε)
,

f = 1, P = 1.8, ε = 1/512 and g = 0. The domain Ω and its triangulation are
shown in Proposition 7.1.2. We assume that the solution, obtained by the PCG-
method with the H-Cholesky preconditioning is the exact solution (of course, up to
the discretisation error). The residual for the PCG-method is ‖Aũcg − c‖2 = 10−6

and the number of iterations is shown in brackets. The H-matrix computations were
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done with the adaptive rank arithmetic εa = 10−5 (see Def. 5.9.3). One can see that
HDD achieves the same accuracy as PCG with a similar computational time. Note
that both methods does not take into account the discretisation error.

dofs ‖ũcg − ũε‖2 ‖ũcg − ũε‖∞ PCG sec.(iter) HDD sec.

332 5.7 ∗ 10−4 4.5 ∗ 10−5 0.17(4) 0.39
652 2.8 ∗ 10−4 1.1 ∗ 10−5 1.18(4) 1.84
1292 1.4 ∗ 10−4 2.86 ∗ 10−6 9.6(6) 10.5

Table 10.13: Dependence of the absolute error on the number of degrees of freedom.
εa = 10−5.

10.5 Comparison of HDD With H-Matrix Inverse and

Inverse by Cholesky Decomposition

In this section we compare the computational time and memory requirement of
HDD with the times and memory requirements of the H-Matrix inverse and the
H-Cholesky decomposition.
Table 10.14 demonstrates the dependence of memory requirements and the compu-
tational times on the parameter εa (see the adaptive rank arithmetic in Def. 5.9.3).
One can see that the computational time and storage requirement of theH-Cholesky
factorisation are the best. The HDD method shows the sligtly larger time than the
H-Cholesky factorisation and a much better time as the direct H-matrix inverse.
HDD requires more memory than the H-Cholesky factorisation and much less than
the direct H-matrix inverse. The memory requirements for HDD can be decreased
after optimization of the Algorithms 6.3.1 and 6.3.3. Note that HDD computes the
solution operators, but after the H-Cholesky factorization one still needs to solve
two systems of linear equations Lv = c and LTu = v.

εa H-Cholesky time;size HDD-time;size time(A−H);size

10−3 2.1;(13.3) 9.2;(19.7) 21.4;(51.0)
10−4 2.6;(14.7) 9.8;(20.1) 29.6;(64.0)
10−5 3.0;(16.0) 10.6;(20.4) 37.3;(75.2)
10−6 3.4;(17.2) 11.6;(20.6) 47.4;(87.4)

Table 10.14: Comparison of the H-Cholesky factorisation, HDD and the H-matrix
inverse. Dependence of time (in sec.) and memory requirements (in
MB) on εa, 1292 dofs.
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Table 10.15 shows the dependence of the computational time for the H-Cholesky
factorisation on the number of degrees of freedom. The complexity of the H-matrix
arithmetic (see Table 5.3) depends on the factor k2 and it is why we do not see
almost linear factor in time. It is shown ([46], [47]) that for a smaller H-matrix
rank k an almost linear complexity can be achieved. Note that it is not enough
memory for computing H-Cholesky factorization with 5132 dofs and k = 8. The
error

∥∥(LLT )−1A− I
∥∥

2
grows up because the H-matrix approximation error grows

up.

dofs
∥∥(LLT )−1A− I

∥∥
2
‖u− ũL‖2 / ‖ũL‖2 t, sec

332 2.03 ∗ 10−14 1.5 ∗ 10−15 0.08
652 5.6 ∗ 10−11 6.1 ∗ 10−13 0.8
1292 9.0 ∗ 10−10 1.1 ∗ 10−11 6.68
2572 6.7 ∗ 10−9 9.9 ∗ 10−11 75.0
5132 n.e.m. n.e.m. not enough memory

Table 10.15: The computational time and accuracy of the solution ũL, obtained by
the H-Cholesky decomposition, u = (x2 − 1)(y2 − 1), k = 8.

Table 10.16 compares the computational times of the HDD method and the PCG
method with H-Cholesky preconditioner. Column 3 contains the measurements
of times for: (a) computing the stiffness matrix A in the data-sparse format; (b)
computing the H-Cholesky decomposition of A (used as a preconditioner); (c) PCG
iterations.
Note that for 5132 dofs there is not enough memory to compute the stiffness matrix
A and perform its H-Cholesky factorization. The advantage of the HDD method is
that it does not require agglomeration of the whole stiffness matrix. The memory is
dynamically allocated and deallocated.

dofs HDD PCG

332 0.19 0.1=0.03+0.04+0.02
652 0.96 0.6=0.2+0.26+0.1
1292 5.6 5=2.6+1.8+0.6
2572 36.1 53=38.0+11.4+3.4
5132 218 n.e.m.

Table 10.16: Comparison of times for the skin problem with α = 10−5, εa = 10−8,

εcg = 10−8, H
h

= 2. Performed on Kepler from Table 10.1.

Table 10.17 shows how the absolute and relative errors depends on the frequency
ν. One can see the errors of the same order, i.e., the HDD method is stable with
respect to the frequency ν. Here u40 is the solution computed by HDD in the class of
H-matrices with the maximal rank 40. Since the exact solution is unknown, we use
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u40 as a good approximation of the exact solution (up to the discretisation error).
Here it is quite appropriate to quote the work [11] about existence of H-matrix
approximants to the inverse FE-matrix of elliptic operators with L∞-coefficients. In

ν ‖u40 − ũk‖2 / ‖u40‖2 ‖u40 − ũk‖∞
10 1.65 ∗ 10−4 1.76 ∗ 10−5

50 1.8 ∗ 10−4 1.9 ∗ 10−5

Table 10.17: Dependence of the relative and absolute errors on the frequency ν, 2572

dofs, f = 1, α(x, y) = 1 + 1
2
sin(νx)sin(νy), εa = 10−6.

Table 10.18 we compare the HDD method with the PCG method. Here ũε is the
HDD solution, ũcg the solution obtained by the PCG method with the H-Cholesky
preconditioner. The fourth and fifth columns present the computational times. The
HDD time is comparable with the PCG time, but for 5132 dofs PCG requires too
much memory.

dofs ‖ũcg − ũε‖2 ‖ũcg − ũε‖∞ PCG with LLT sec.(iter) HDD sec.

332 4.16 ∗ 10−7 6.68 ∗ 10−8 0.22(2) 0.35
652 2.28 ∗ 10−5 1.42 ∗ 10−6 1.66(2) 2.5
1292 2.38 ∗ 10−4 9.35 ∗ 10−6 17(2) 13
2572 2.35 ∗ 10−3 2.85 ∗ 10−5 63(11) 60.6
5132 n.e.m. n.e.m. not enough memory 270.3

Table 10.18: Dependence of the absolute errors on the number of dofs, f = 1,
α(x, y) = 1/(1.0001+sin(500x)sin(500y)). All computations were per-
formed on Notebook (see Table 10.1) with the adaptive rank arithmetic
(see Def. 5.9.3), εa = 10−5, H

h
= 2.

Remark 10.5.1 Note that the computational time of the H-Cholesky factorisation
depends on the rank k used in the H-matrix arithmetic (see [47], [46]). If k becomes
smaller than the computational time and the accuracy decreases also.

Remark 10.5.2 The later experiments for discontinuous coefficients [43] show that
it is better (in the sense of timing performances) to take a smaller rank k with
a larger number of PCG iterations as a larger k with a smaller number of PCG
iterations.
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10.6 Memory Requirements for Φg and Φf

Tables 10.19, 10.20 show the total storage requirements for all matrices Φg
ω and Φf

ω,
ω ∈ TTh

in the case of one grid and two grids. In Table 10.19 we see an almost linear
dependence of the storage requirements on the number of degrees of freedom. The
columns S(Φg) and S(Φf) present memory requirements for all mappings Φg

ω and
Φf
ω, ω ∈ TTh

, respectively. We see a factor ≈ 4 in the column S(Φg) and a factor
≈ 5.6 in S(Φf). Here the factor 4 shows a linear dependence. The numbers in this
table are in accordance with the theoretical estimates in Lemma 7.3.4. We do not
see a linear factor because there is an additional log factor.

dofs S(Φg), Kb S(Φf), Kb ‖u− ũk‖2 / ‖u‖2 ‖u− ũk‖∞
332 2.45 ∗ 102 4 ∗ 102 3.3 ∗ 10−5 8.47 ∗ 10−5

652 1.1 ∗ 103 2.4 ∗ 103 5.75 ∗ 10−5 1.0 ∗ 10−4

1292 5 ∗ 103 1.4 ∗ 104 7.4 ∗ 10−5 1.1 ∗ 10−4

2572 2.1 ∗ 104 7.86 ∗ 104 8.3 ∗ 10−5 1.3 ∗ 10−4

Table 10.19: Dependence of the total memory requirements for all Φg
ω and Φf

ω on the
number of degrees of freedom, k = 7, u = x2 + y2.

Table 10.20 shows the storage requirements for all Φg
ω and Φf

ω in dependence
on the compression factor H

h
. The storage requirement for all Φg

ω stays the same
(column S(Φg)) since for all mappings Φg

ω we use only one scale with step size h.
Lemmas 7.3.4 and 7.4.5 state that S(Φ) ≤ C1knh log2 nh for one grid and S(Φf ) ≤
C2k
√
nHnh log2√nHnh for two grids.

All computations in Table 10.20 were performed with the adaptive rank arithmetic
εa = 10−8.

H
h

S(Φg), MB S(Φf), MB time, sec

1 2.2 ∗ 101 2.9 ∗ 102 218
2 2.2 ∗ 101 8.7 ∗ 101 83
4 2.2 ∗ 101 3.2 ∗ 101 41
8 2.2 ∗ 101 1.8 ∗ 101 32
16 2.2 ∗ 101 1.5 ∗ 101 26

Table 10.20: The computational time and the total storage requirements for all
Φg
ω and Φf

ω. 2572 dofs, εa = 10−8, α(x, y) = 1 + 1
2
sin(50x)sin(50y),

f(x, y) = x(x− 1) + y(y − 1).
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10.7 Approximation of Φg and Φf

To estimate the accuracy of the H-matrix approximation to the inverse of the global
stiffness matrix A we compute the error ‖A · A−H − I‖2. But in the HDD method
we do not have the global matrix A, we have a set of matrices Φg

ω and Φf
ω, ω ∈ TTh

.
The matrices Φg

ω (as well as Φf
ω) on the l-th level of TTh

are equivalent. It is why
we consider the accuracy of the H-matrix approximation only for one of them. The
mappings Φg := Φg

127 and Φf := Φf
127 are computed with the H-matrix rank k = 127

(up to almost machine precision 10−16). Tables 10.21, 10.22 show the maximal
operator errors ‖Φg − Φg

21‖2 and ‖Φf − Φf
7‖2 on different levels of TTh

. Φg
21 and

Φf
7 are the H-matrix approximations of Φg and Φf with the maximal ranks 21 and

7 correspondingly. The second column shows the size of the matrix and the third
column shows the corresponding level of the hierarchical domain decomposition tree
TTh

. The maximal error appears at 0-level (root). It can be explained by the fact
that the chosen maximal rank is insufficient for larger matrices. Note that the errors
in Tables 10.21, 10.22 do not depend on the right-hand side.
Tables 10.21, 10.22 show that it is a nice idea to choose an adaptive rank for each

‖Φg − Φg
21‖2 size of Φg level of TTh

4.8 ∗ 10−1 255× 1024 0
5.5 ∗ 10−3 127× 512 1
4.22 ∗ 10−5 63× 256 2
4.55 ∗ 10−8 31× 128 3
2.58 ∗ 10−17 15× 64 4

Table 10.21: The error ‖Φg−Φg
21‖2 on different levels of TTh

. Φg
21 is an approximation

of Φg by a rank-21 matrix. The matrix size is |I(γω)|×|I(∂ω)|, α(x, y) =
1 + 1

2
sin(50x)sin(50y), 1272 dofs.

‖Φf − Φf
7‖2 size of Φf level of TTh

2.1 ∗ 10−7 255× 2572 0
3.6 ∗ 10−9 127× 1292 1
1.04 ∗ 10−9 63× 652 2
2.04 ∗ 10−10 31× 332 3
1.47 ∗ 10−20 15× 172 4

Table 10.22: The error ‖Φf −Φf
7‖2 on different levels of TTh

, Φf
7 is an approximation

of Φf by rank-7 matrix. The matrix size is |I(γω)| × |I(ω)|, α(x, y) =
1 + 1

2
sin(50x)sin(50y), 1272 dofs.

level of TTh
. For example, if TTh

has L levels, than one may take k0 > k1 > k2... >
kL−1, where ki is the H-matrix rank on the i-th level. The adaptive rank arithmetic
(see Def. 5.9.3) realizes this idea.

- 161 -



10 Numerical Results

10.8 Jumping Coefficients

In this section we consider the class of problems with jumping coefficients. Such
problems appear in the material sciences (electrical fields through materials with
different conductivities), in medicine (the so-called skin problem) etc. An simple
example is shown in Fig. 10.6. This domain Ω has areas with jumping coefficients:
α = 10 and β = 10−2.

Ω

α

β

0.1 0.2 0.8 0.9

0.1

0.2

0.8
0.9

Figure 10.6: Domain Ω = (0, 1)2 with jumping coefficients α and β.

Table 10.23 shows that the parameter εa (for the adaptive rank arithmetic) has to
be smaller for problems with jumping coefficients than the corresponding parameter
(denote by εmodel

a ) for the model problem. A priori one can take

εa := max
ωi,ωj∈Th

αωi

αωj

∗ εmodel
a .

Here max
ωi,ωj∈Th

describes the maximal jump between two finite elements ωi and ωj

(leaves of the tree TTh
).

εa ‖AA−H − I‖2 time (sec.)

10−6 1.2 63.7
10−8 3.0 ∗ 10−1 87.1
10−10 3.4 ∗ 10−4 111.6
10−12 3.7 ∗ 10−6 156.8

Table 10.23: Dependence of the H-matrix approximation error ‖AA−H − I‖2 on εa
for the domain as in Fig. 10.6 with coefficients α = 10 and β = 0.01,
1292 dofs.

Table 10.23 shows the total time for the H-matrix approximation (denoted by
A−H) to the inverse A−1. Here the time of building the block cluster tree is negli-
gible small in comparison with the time of computing A−H. We see also that the
accuracy of the H-matrix approximation to A−1 increases with decreasing the pa-
rameter εa.
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10.8 Jumping Coefficients

Table 10.24 compares the HDD method with the PCG method for different εa.
The domain Ω is shown in Fig. 10.6. Such domains are typical, for instance, in elec-
trostatics. The jumping coefficients α and β model electroconductivity in different
materials. This table compares also the computational times. We see that the HDD
time is larger. The reason is that HDD computes the solution operators, but PCG
only the solution.

εa ‖Aũcg − c‖2 PCG-time (sec) HDD-time ‖ũcg−ũε‖2
‖ũε‖2 ‖ũcg − ũε‖∞

10−4 2 ∗ 10−4 5.3 8.9 6.7 ∗ 10−1 1.4
10−6 4.8 ∗ 10−7 5.0 10.1 1.8 ∗ 10−4 9.5 ∗ 10−4

10−8 1.4 ∗ 10−8 5.7 11.5 1.1 ∗ 10−6 1.48 ∗ 10−5

10−10 1.45 ∗ 10−8 6.7 12.3 5.3 ∗ 10−7 10−5

10−12 1.2 ∗ 10−8 7.4 13.5 5.2 ∗ 10−7 10−5

Table 10.24: Dependence of the relative and the absolute errors on εa for the model
problem on the domain as in Fig. 10.6 with coefficients α = 10, β =
0.01 and 1292 dofs.
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10 Numerical Results

10.9 Skin Problem

The problem in Fig. 10.7 models a more difficult problem (so-called the skin prob-
lem). In this problem an ointment penetrates through the skin. The diffusion process
is very slow inside the cells and much faster in the channels in between (so-called
the lipid layer). We choose a rectangular quasi-uniform grid on Ω = (0, 1)2 which
is compatible with the lipid layer. The condition number cond(A) in problems with

jumping coefficients is proportional to h−2 max
ωi,ωj∈Th

α(ωi)

α(ωj)
, where α(ωi) is the jumping

coefficient in ωi, h the grid step size and ωi, ωj ∈ Th.

a b

Lipid layer

α

β

Figure 10.7: Model of a skin fragment Ω = (0, 1)2. The coefficient of the penetration
inside the cells is very small (α), but is large in between (β).

We model this difficult geometry by a simpler one as it shown in Fig. 10.8.

0 10.25 0.75

0.5

1

4h

Figure 10.8: Model domain Ω = (0, 1)2. The coefficient of penetration inside the
cells is very small (α), but is large in between (β = 1).
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10.9 Skin Problem

Table 10.25 shows the accuracy of the HDD method for different jumping coeffi-
cients α (Fig. 10.8). We compare the solution, obtained by the HDD method, with
the solution, obtained by PCG. For a small α (e.g., α = 10−5) the adaptive rank
parameter εa = 10−6 (Def. 5.9.3) is not good enough. For highly jumping coefficient
one should choose very small parameter εa.

α ‖Aũcg − c‖2 ‖ũcg−ũε‖2
‖ũε‖2 ‖ũcg − ũε‖∞

10−1 1.4 ∗ 10−10 8.0 ∗ 10−6 4.5 ∗ 10−6

10−2 3.1 ∗ 10−10 1.6 ∗ 10−5 6.2 ∗ 10−5

10−3 7.7 ∗ 10−8 5.7 ∗ 10−5 2.8 ∗ 10−3

10−4 1.3 ∗ 10−9 7.0 ∗ 10−3 1.5
10−5 8.9 ∗ 10−9 7.7 ∗ 10−1 8.8 ∗ 102

Table 10.25: Dependence of the absolute and relative errors on the coefficient α.
1292 dofs, εa = 10−6, domain as in Fig. 10.8 with β = 1 and thickness
a = 4h.
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10 Numerical Results

Table 10.26 shows that the larger the jump is (∼ the smaller α is) the larger are the
relative and the absolute errors in the infinity, energy and spectral norms. We recall
that A is the stiffness matrix for the whole domain Ω, ũcg is the solution computed
by the PCG method and ũε is the solution computed by the HDD method.

α ‖ũcg−ũε‖2
‖ũcg‖2 ‖ũcg − ũε‖∞ ‖ũcg − ũε‖A ‖Aũcg − Aũε‖2 ‖A‖2

1.0 6.6 ∗ 10−9 7.1 ∗ 10−10 2.3 ∗ 10−7 2.8 ∗ 10−5 1.27 ∗ 105

10−1 2.0 ∗ 10−8 1.4 ∗ 10−8 2.0 ∗ 10−6 1.1 ∗ 10−4 1.22 ∗ 105

10−2 6.6 ∗ 10−8 2.6 ∗ 10−7 1.7 ∗ 10−5 6.9 ∗ 10−4 1.22 ∗ 105

10−3 7.4 ∗ 10−7 1.8 ∗ 10−5 4.2 ∗ 10−4 8.8 ∗ 10−3 1.22 ∗ 105

10−4 4.2 ∗ 10−6 1.8 ∗ 10−3 1.4 ∗ 10−2 7.5 ∗ 10−2 1.22 ∗ 105

10−5 7.0 ∗ 10−5 2.3 ∗ 10−1 9.0 ∗ 10−1 1.0 1.22 ∗ 105

Table 10.26: Dependence of the absolute and relative errors on the jumping coef-
ficient α. Ω as in Fig. 10.8, 1292 dofs, thickness a = 4h, β = 1.
εa = 10−8, residual ‖Aũcg − c‖2 = 10−10.

The accuracy of the solution ũε depends on the accuracy of the H-matrix ap-
proximation. We use the adaptive rank arithmetic, i.e., we choose the rank for each
submatrix as follows k = min{i : σi ≤ εaσ1}, where σ1 ≤ σ2 ≤ ... ≤ σk ≤ ... are the
singular values.
Table 10.27 shows the dependence of the absolute and relative errors on the param-
eter εa (for the adaptive rank arithmetic). One can see that the accuracy of HDD
can be improved by decreasing εa.

The comparison of the solution ũL computed by the direct H-Cholesky with ũcg
(computed by PCG) is given in the last column. We assume that PCG after a large
number of iteration steps produces the ’exact’ FE solution ũcg.

εa
‖ũcg−ũε‖2
‖ũcg‖2 ‖ũcg − ũε‖∞ ‖ũcg − ũε‖A ‖Aũcg − Aũε‖2 ‖ũcg−uL‖2

‖ũcg‖2
10−6 4.4 ∗ 10−1 6.67 ∗ 102 1.1 ∗ 103 1.8 ∗ 102 4.7 ∗ 10−4

10−8 7.27 ∗ 10−5 2.3 ∗ 10−1 9.0 ∗ 10−1 1.0 6 ∗ 10−7

10−10 5.1 ∗ 10−7 1.0 ∗ 10−3 3.0 ∗ 10−3 6.1 ∗ 10−3 1.1 ∗ 10−8

10−12 3.9 ∗ 10−9 1.2 ∗ 10−5 2.9 ∗ 10−5 3.8 ∗ 10−5 1 ∗ 10−11

10−14 1.2 ∗ 10−11 6.6 ∗ 10−7 1.2 ∗ 10−7 3.7 ∗ 10−7 1.5 ∗ 10−13

10−16 1.6 ∗ 10−12 1.1 ∗ 10−8 1.7 ∗ 10−8 5.3 ∗ 10−7 2.1 ∗ 10−14

Table 10.27: Dependence of the absolute and relative errors on εa. Ω as in Fig.
10.8, 1292 dofs, thickness a = 4h, α = 10−5, β = 1. The residual is
‖Aũcg − c‖2 = 10−10, ‖A‖2 = 1.22 ∗ 105.
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10.9 Skin Problem

In the figure below one can see the spectra of the operator div(α(x)∇) for β = 1,
α = 1, α = 10−2 and α = 10−4 (three curves in log-scale). The number of degrees
of freedom is 332. This Figure helps us to understand why the condition number of
the stiffness matrix for the skin problem (Figure 10.8) is large. All three maximal
eigenvalues are almost the same and the minimum eigenvalues are differ by a factor
proportional to the jump.
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Decay of singular values of the stiffness matrix A for α = 1, α = 10−2 and
α = 10−4.

- 167 -



10 Numerical Results

10.10 Problems With Many Right-Hand Sides

In the following experiment we show that the HDD method is well suited to problems
with many right-hand sides. We consider the following problem

− div(α∇u) = f (i) in Ω,
u = g(i) on ∂Ω,

(10.3)

where i = 1, ..., imax and Ω shown in Fig. 10.8. The number of degrees of freedom
is 2572. There are two grids with step sizes h and H := 2h. The right-hand side
f

(i)
H ∈ VH (see Sec. 4.3.6), i.e., f

(i)
H ∈ R1292

. The solution u
(i)
h ∈ Vh and u

(i)
h ∈ R2572

.
The HDD method computes all the mappings Φf

ω and Φg
ω, ω ∈ TTh

, once and then

applies them in order to compute the solution u
(i)
h .

As an alternative approach we choose the PCG method with the H-Cholesky pre-
conditioner (see Remark 5.9.8). The discretisation of (10.3) produces the system of
linear equation Au = c(i). The number of degrees of freedom is 1292. The stiffness
matrix A and its H-Cholesky factorisation (the preconditioner) are computed only
once. Then for each ci, i = 1, ..., imax, we perform the PCG method. The total
computational times for imax = 10, 100, 1000 are shown in Table 10.28. We denote
the computational time of the algorithm “Leaves to Root” by t1, the computational
time of the algorithm “Root to Leaves” by t2, the computational time of PCG by
tCh. We see that for imax = 100, imax = 1000 HDD is much more efficient than

imax t1 + t2, sec. tCh, sec.
10 38+2.8 29
100 38+27 117
1000 38+240 1048

Table 10.28: The total computational times of HDD and PCG for imax right-hand
sides.

PCG. Note that we compare the two-grid modification of HDD (steps H = 1
128

and
h = 1

256
) with the PCG method with one scale (step h = 1

128
). For the computa-

tional complexity and storage requirement of this HDD version, see Section 7.4.2.
The HDD method with many right-hand sides can be applied, for example, to prob-
lems in electroencephalography and magnetoencephalography (EEG/MEG) or in
Monte Carlo simulations.
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10.11 Computing the Functionals of the Solution

10.11 Computing the Functionals of the Solution

Very often dimension of the initial multiscale problem is huge, the geometry is com-
plex and not the whole solution is of interest, but the solution in a small subdomain
ω ∈ Ω. Moreover it is interesting how the solution in ω changes when the right-hand
side f and the Dirichlet boundary data g are changed. For this purposes one may
compute different functionals of the solution (see Section 4.4.5). These functionals
depend on f , g and the mappings Φg and Φf . Below we give an example.

10.11.1 Computing the Mean Value in ω ∈ TTh

In this section we realize the algorithm from Section 4.4.6 and compare the computed
mean value of the solution u in a subdomain ω ∈ TTh

with the exact mean value
in ω. We choose scales H = 1/4 and h = 1/256. The scale H = 1/16 gives a
decomposition of the initial domain Ω into 16 cells (see Fig. 10.9). The problem to

13

10

14
h

H

11

6 7

16

41

15

12

8

32

5

9

Figure 10.9: Model domain Ω = (0, 1)2 and its subdivision into 16 subdomains.

be considered is:
− div(α(x)∇u) = 1 in Ω = (0, 1)2,

u = 0 on ∂Ω.

We compute the exact mean value by the following formula:

µ =

∫

ω

udx =
∑

t∈Th(ω)

|t|
3

(u1 + u2 + u3),

where ui, i = 1, 2, 3, is the solution computed by the PCG-method in vertices of the
triangle t.
We compute the exact mean value µ and the approximate mean value µHDD (see
Section 4.4.6) in each cell. Tables 10.29 and 10.30 compare these both values. We
see from the second column (Tables 10.29, 10.30) that there are three patterns of
subdomains: internal (6,7,10,11), angular (1,4,13,16) and border (2,3,5,8,9,12,14,15).
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10 Numerical Results

|µHDD − µ| |µHDD − µ|/|µHDD| N of subdomain in Fig. 10.9
1.73 ∗ 10−3 1.38 ∗ 10−1 6
1.71 ∗ 10−3 1.4 ∗ 10−1 7
1.71 ∗ 10−3 1.4 ∗ 10−1 10
1.71 ∗ 10−3 1.4 ∗ 10−1 11

1.71 ∗ 10−3 3.3 ∗ 10−2 1
1.71 ∗ 10−3 3.3 ∗ 10−2 4
1.71 ∗ 10−3 3.3 ∗ 10−2 13
1.71 ∗ 10−3 3.3 ∗ 10−2 16

1.71 ∗ 10−3 7 ∗ 10−2 2
1.71 ∗ 10−3 7 ∗ 10−2 3
1.70 ∗ 10−3 7 ∗ 10−2 5
1.71 ∗ 10−3 7 ∗ 10−2 8
1.71 ∗ 10−3 6.9 ∗ 10−2 9
1.71 ∗ 10−3 7 ∗ 10−2 12
1.71 ∗ 10−3 7 ∗ 10−2 14
1.71 ∗ 10−3 7 ∗ 10−2 15

Table 10.29: Comparison of the approximate mean value with the exact mean value.
α = 1.0/(1.001+sin(50x)sin(50y)), 257 dofs, ‖ũε−ũcg‖2 = 1.43∗10−9,
‖ũε − ũcg‖∞ = 3.72 ∗ 10−11.

|µHDD − µ| |µHDD − µ|/|µHDD| subdomain in Fig. 10.9
2.21 ∗ 10−3 1.38 ∗ 10−1 6
2.23 ∗ 10−3 1.38 ∗ 10−1 7
2.23 ∗ 10−3 1.4 ∗ 10−1 11
2.23 ∗ 10−3 1.39 ∗ 10−1 10

2.22 ∗ 10−3 3.4 ∗ 10−2 1
2.22 ∗ 10−3 3.4 ∗ 10−2 4
2.23 ∗ 10−3 3.4 ∗ 10−2 13
2.23 ∗ 10−3 3.4 ∗ 10−2 16

2.22 ∗ 10−3 7.06 ∗ 10−2 2
2.22 ∗ 10−3 7.07 ∗ 10−2 3
2.22 ∗ 10−3 7.04 ∗ 10−2 8
2.23 ∗ 10−3 7.07 ∗ 10−2 5
2.23 ∗ 10−3 7.07 ∗ 10−2 9
2.23 ∗ 10−3 7.07 ∗ 10−2 12
2.23 ∗ 10−3 7.07 ∗ 10−2 14
2.23 ∗ 10−3 7.07 ∗ 10−2 15

Table 10.30: Comparison of the approximate mean value with the exact mean value.
α = 1.0 + 1

2
sin(50x)sin(50y), 257 dofs, ‖ũε − ũcg‖2 = 7.97 ∗ 10−10,

‖ũε − ũcg‖∞ = 2.37 ∗ 10−11.
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10.12 Conclusion to Numerics

By default we use the H-Cholesky preconditioner in the PCG method.

1. The computational time of HDD is smaller than the time required for the direct
H-matrix inverse and slightly larger than the time of the PCG method (Tables
10.13, 10.14, 10.18, 10.24). But HDD solves problems with multiple right-hand
side and multiple Dirichlet data faster than PCG does (Table 10.28).

2. For a smooth right-hand side f the HDD method with f ∈ VH ⊂ Vh (Sections
4.3.6, 7.4.2) is very efficient (Tables 10.28, 10.20). In fact, this modification
of HDD requires less memory (Table 10.16) and smaller computational time
than the PCG method for large numbers of degrees of freedom (Section 10.6).

3. The accuracy of the H-matrix approximation increases with increasing the H-
matrix rank k (Tables 10.5, 10.6, 10.8, 10.9, 10.10, 10.11). Here it is important
to have a balance between the discretisation error, the quadrature error and
the H-matrix approximation error because the total error depends on all of
them.

4. The HDD method is stable for problems with oscillatory and jumping coef-
ficients (Section 10.4). HDD is in the state to achieve the same accuracy as
the accuracy of the exact PCG scheme (Tables 10.18, 10.25, 10.26). But the
computation of the H-Cholesky preconditioner is expensive or even impossible
for a large number of degrees of freedom (Table 10.18).

5. The accuracy of the solution of problems with highly jumping coefficients can
be improved (Tables 10.23, 10.24, 10.27) by decreasing the H-matrix approxi-
mation error (by decreasing the parameter εa or by increasing the rank k).

6. HDD solves the simplified skin problem with highly jumping coefficients up to
the discretisation error (Tables 10.25,10.26,10.27).

7. The HDD method may compute different functionals of the solution with small
computational resources and a required accuracy (Tables 10.29, 10.30). If only
the functionals are of interest, then there is no need to store the mappings Φg

ω

and Φf
ω, ω ∈ TTh

, and the storage requirements of HDD will even be fewer.

8. The computational time of HDD depends on many factors: a) the accuracy of
the H-matrix approximation, b) the ratio H

h
, c) whether one or two grids are

used, d) whether small scales are truncated or not.
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11 Appendix

Lemma 11.0.1
p∑

i=0

i2 =
1

3
p3 +O(p2).

Proof: Let S(p) =
∑p

i=0 i
2 = ap3 + bp2 + cp+ d. Then

S(p+ 1) =

p+1∑

i=0

i2 = S(p) + (p+ 1)2.

We compare the corresponding coefficients in

ap3 + bp2 + cp+ d+ (p+ 1)2 = a(p+ 1)3 + b(p + 1)2 + c(p+ 1) + d.

and obtain a = 1
3
.

Lemma 11.0.2
p∑

i=0

i2i = (p− 1)2p+1 + 2.

Proof: Consider

S(x) =

p∑

i=0

2ix =
2x(p+1) − 1

2x − 1
.

Then the derivative is

S ′(x) =

p∑

i=0

i2ix loge 2,

or

S ′(x) =

(
2x(p+1)−1

2x − 1

)′
=

(p+ 1)2x(p+1) loge 2− 2x(2x(p+1) − 1) loge 2

(2x − 1)2
.

Comparing the expressions for the derivatives in x = 1

S ′(1) = (p+ 1)2(p+1) loge 2− 2(2(p+1) − 1) loge 2

and

S ′(1) =

p∑

i=0

i2i loge 2,

we obtain

(p+ 1)2(p+1) loge 2− 2(2(p+1) − 1) loge 2 =

p∑

i=0

i2i loge 2,

p∑

i=0

i2i = (p− 1)2(p+1) + 2.
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�

Lemma 11.0.3
p∑

i=0

(p− i)2i = 2p+1 − p− 2.

Proof:

p∑

i=0

(p− i)2i = p

p∑

i=0

2i −
p∑

i=0

i2i = p2p+1 − p− (p− 1)2p+1 − 2 = 2p+1 − p− 2.

Lemma 11.0.4
p∑

i=0

(p− i)22i = 3 · 2p+1 +O(p2).

Proof:
p∑

i=0

(p− i)22i =

p∑

i=0

(p22i − 2pi2i + i22i)

≤ p22p+1 − 2p(p− 1)2p+1 + (p2 − 2p+ 3)2p+1 = 3 · 2p+1 +O(p2).

Lemma 11.0.5
p∑

i=0

i22i = (p2 − 2p+ 3)2p+1 − 6.
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Conclusion

The hierarchical domain decomposition method is a flexible tool for solving 2D
elliptic boundary value problems with L∞ coefficients. HDD computes the hierar-
chical solution operators Fh and Gh and allows the representation of the FE solution
of the initial problem in the form

uh = Fhfh + Ghgh, (11.1)

where fh is the FE right-hand side, and gh is the FE Dirichlet boundary data. The
operators Fh and Gh are efficiently approximated in the H-matrix format.
Representation (11.1) allows HDD to solve problems with multiple right-hand side
and multiple Dirichlet data with reduced computational costs.
HDD may compute different functionals of the solution (the solution on the skeleton
or at a single point and a mean value

∫
ω
uhdx, ω ⊂ Ω ⊂ R2, or a flux

∮
∇u−→n dx

etc.) with less resources.
The application of the H-matrix technique to HDD (see Chapter 5) results in the

computational cost O(k2nh log3 nh) and the storage cost O(knh log2 nh), where nh
is the number of degrees of freedom on a fine scale. In the case of two grids the
estimates are O(k2√nhnH log3√nhnH) and O(k

√
nhnH log2√nhnH), respectively,

where nH is the number of degrees of freedom on a coarse scale.
The accuracy of the H-matrix approximation depends on the maximal rank k.
The cost of solving homogeneous problems (fh ≡ 0) is O(k2nh), i.e., linear because
in this case the HDD method does not compute the more expensive discrete operator
Fh in (11.1). Thus, only the operator Gh is computed.

HDD was successfully applied to problems with the right-hand side from a coarser
subspace VH ⊂ Vh, to problems with strongly oscillatory coefficients and to problems
with highly jumping coefficients.

As we mentioned in Chapter 8, the hierarchical background of the HDD method
provides its effective parallelization. For a machine with q = 2r processors, the
parallel complexity of the algorithm “Leaves to Root” is estimated (Lemma 8.3.3)
by

C ′k2√nh log2√nh + C̃k2nh
q0.45

+ C ′′(1− 3r

4r
)
√
nhn

2
min + Ck2nh

q
log3 nh

q

where C ′, C̃, C ′′, C ∈ R+.
The parallel complexity of the algorithm “Root to Leaves” on a machine with q
processors is estimated (Lemma 8.3.6) by

Ck2nh
q

log2 nh
q

+
28k
√
nh

q0.45
, C ∈ R+.



11 Appendix

Future work

1. Further optimization. In regards to the H-matrix conversion, the computa-
tional complexity O(n log2 n) can be reduced to O(n logn). This, in turn, can
be shown to reduce the computational complexity of HDD to O(n log2 n).

2. 3D case. The application of the HDD method to 3D problems is possible. The
differences with the 2D case are:

• For the approximation of the mapping Ψg
ω, ω ∈ TTh

, the standard admis-
sibility condition should be applied instead of the weak one. This trans-
forms the approximation of the mapping Φg

ω to an H-matrix, instead of
a low-rank matrix as in 2D.

• Since constants in the complexity estimates of the H-matrix technique
are dependent on the spatial dimension, the constants in estimates of the
computational complexities and storage requirements of HDD in 3D will
be larger compared to those in 2D, yet almost linear.

• The data structures in the implementation must be modified.

3. Parallelization. For a parallel implementation of HDD, the recent work [44]
can be used.
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(i)
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adaptive rank arithmetic, 75
admissibility, standard, 64
admissibility, weak , 65
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block cluster tree, 63
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Data structures, 135
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FE method, 32
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functional λfω, 55
functional λgω, 55
functional λω, 54

HDD method, 38
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HDD with truncation of small scales,
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HMM, 21
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low-rank matrix, 68
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MsFEM, 21

parallel H-matrix arithmetics, 126
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parallel speedup, 125
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rank-k matrix, 68
resonance effect, 22
Ritz-Galerkin discretisation method, 30

Sobolev spaces Ls(Ω),, 27
sparsity constant Csp, 72
structure boundary, 142
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structure domain, 142

truncation Tk, 70
Truncation operator Tε, 75
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fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten
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