ADVANCED WEAKEST PRECONDITION CALCULI
FOR PROBABILISTIC PROGRAMS

Von der FAKULTAT FUR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN der
RWTH AacheN University zur Erlangung des akademischen Grades eines
DoxTors DER NATURWISSENSCHAFTEN genehmigte Dissertation

vorgelegt von

BENJAMIN LUCIEN KAMINSKI, M.SC.

aus

BONN

Berichter: Prof. Dr. Ir. Dr. h. c. JoosT-PIETER KATOEN

Prof. ANNABELLE McIVER

Tag der miindlichen Priifung: 8. Februar 2019

Diese Dissertation ist auf den Internetseiten der Universitatsbibliothek online verfiigbar.

Benjamin Lucien Kaminski. Advanced Weakest Precondition Calculi for Proba-
bilistic Programs. February 15, 2019

ABSTRACT

We study quantitative reasoning about probabilistic programs. In doing so,
we investigate two main aspects: The reasoning techniques themselves and
the computational hardness of that reasoning.

As for the former aspect, we first give a comprehensive introduction to
weakest preexpectation reasoning a la Mclver & Morgan — a reasoning tech-
nique for the verification of probabilistic programs that builds on Dijkstra’s
weakest precondition calculus for programs with nondeterminism and Kozen’s
probabilistic propositional dynamic logic for probabilistic programs. We then
develop advanced weakest-preexpectation-style calculi for probabilistic pro-
grams that enable reasoning about

1. expected runtimes,
2. conditional expected values and conditional probabilities, and
3. expected values of mixed—sign random variables.

As with Dijkstra’s calculus, our calculi are defined inductively on the pro-
gram structure and thus allow for compositional reasoning on source code
level. We put a special emphasis on proof rules for reasoning about loops.

The second aspect we study is the inherent computational hardness of
reasoning about probabilistic programs, which is independent from the em-
ployed analysis technique. In particular, we study the hardness of approx-
imating expected values and (co)variances. We show that lower bounds on
expected values are not computable but computably enumerable, whereas
upper bounds are not computably enumerable. For covariances, we show
that neither lower nor upper bounds are computably enumerable.

Furthermore, we study the hardness of deciding termination of probabilis-
tic programs. While we study different notions of probabilistic termination,
for instance almost—sure termination or termination within finite expected
time (also known as positive almost-sure termination), we show that decid-
ing termination of probabilistic programs is generally strictly harder than
deciding termination of nonprobabilistic programs.

iii

KURZFASSUNG

Wir studieren die quantitative Analyse probabilistischer Programme. Dabei
untersuchen wir vornehmlich zwei Aspekte: Die Analysetechniken selbst,
sowie die komplexitdts- bzw. berechenbarkeitstheoretische Schwere der ent-
sprechenden Analyseprobleme.

In Bezug auf die Analysetechniken geben wir zunichst eine umfassende
Einfithrung in den Kalkiil der Schwichsten Vorerwartungen a la Mclver & Mor-
gan — ein Kalkil fir die Verifikation probabilistischer Programme, der auf
Dijkstras Kalkiil der Schwichsten Vorbedingungen fiir Programme mit Nicht-
determinismus und Kozens Probabilistischer Dynamischer Aussagenlogik fur
probabilistische Programme aufbaut. Anschlieffend entwickeln wir weiterge-
hende Kalkiile fiir probabilistische Programme im Stile Mclver & Morgans,
welche dazu geeignet sind, Analysen tiber

1. erwartete Laufzeiten,
2. bedingte Erwartungswerte und bedingte Wahrscheinlichkeiten, und
3. Erwartungswerte von Zufallsvariablen mit gemischtem Vorzeichen

zu fahren. Wie auch Dijkstras Kalkil sind unsere Kalkiile induktiv iiber die
Programmstruktur definiert und erlauben somit eine modulare Analyse auf
Quelltextebene. Ein besonderes Augenmerk legen wir auf Regeln, welche die
Analyse von Schleifen ermoglichen.

Der zweite Aspekt, den wir untersuchen, ist die inhdrente berechenbar-
keitstheoretische Schwere der Analyse probabilistischer Programme, welche
unabhangig von der verwendeten Analysetechnik selbst ist. Im Speziellen
untersuchen wir dazu die Schwere der Approximation von Erwartungswer-
ten und Kovarianzen. Wir zeigen, dass untere Schranken fiir Erwartungswer-
te nicht berechenbar, aber rekursiv aufzahlbar sind, obere Schranken jedoch
nicht rekursiv aufzdhlbar sind. Fiir Kovarianzen zeigen wir, dass weder obe-
re noch untere Schranken rekursiv aufzahlbar sind.

Desweiteren untersuchen wir die Schwere der Entscheidbarkeit der Termi-
nierung probabilistischer Programme. Wahrend wir dazu zwar unterschied-
liche Auffassungen eines probabilistischen Terminierungsbegriffs untersu-
chen, beispielsweise fast-sichere Terminierung oder Terminierung innerhalb
endlicher erwarteter Zeit (auch positive fast-sichere Terminierung genannt),
zeigen wir, dass die Terminierung probabilistischer Programme im Allge-
meinen echt schwerer zu entscheiden ist als die Terminierung nicht-probabi-
listischer Programme.

ABSTRAKT

Zkoumame kvantitativni analyzu pravdépodobnostnich programi. Pfitom
se zabyvame predevsim dvéma aspekty: Samotnymi technikami analyzy ja-
ko takovymi, jakoz i teoretickou slozitosti rozhodnutelnosti danych analytic-
kych probléma.

Ohledné analytickych technik uvadime nejprve komplexni Gvod do tak-
zvaného Kalkulu nejslabsich predocekdvdni & la Mclverova & Morgan — kal-
kul pro verifikaci pravdépodobnostnich programt, ktery se opira o Dijk-
strv Kalkul nejslabsich vstupnich podminek pro programy s nedeterminis-
mem a Kozenovu Pravdépodobnostni dynamickou vyrokovou logiku pro prav-
dépodobnostni programy. Nasledné vyvijime komplexnéjsi verze tohoto kal-
kulu pro pravdépodobnostni programy ve stylu Mclverové & Morgana, které
jsou vhodné pro analyzu

4 ocekavanych cast,
< podminénych oc¢ekavanych hodnot a podminénych pravdépodobnostia
4 oclekavanych hodnot ndhodnych proménnych se smisenym znaménkem

Stejné jako Dijkstraiv kalkul jsou nase kalkuly vzhledem ke struktufe progra-
mu induktivné definované a umoznuji tak kompozicionalni analyzu na Grov-
ni zdrojového kédu. Zvlastni pozornost vénujeme pravidlm, které umozriu-
ji analyzu cyklu.

Druhym nami zkoumanym aspektem je inherentni teoreticky stuperi ne-
rozhodnutelnosti analyzy pravdépodobnostnich programu, nezavisle na apli-
kované technice analyzy jako takové. K tomu zkoumame zejména slozitost
aproximace oc¢ekavanych hodnot a kovarianci. Dokazujeme, Ze dolni meze
pro ocekavané hodnoty nejsou rekurzivni, ale rekurzivné spocetné, kdezto
horni meze nejsou rekurzivné spocetné. U kovarianci dokazujeme, Ze jak
horni, tak i dolni meze nejsou rekurzivné spocetné.

Dale zkoumame slozitost rozhodnutelnosti terminace pravdépodobnost-
nich programt. Pfi zkoumani rtiznych pojeti pravdépodobnostniho pojmu
terminace, napriklad skoro jisté terminace nebo terminace v ramci konec¢né-
ho oc¢ekavaného casu (také nazyvané pozitivni skoro jista terminace), doka-
zujeme, Ze rozhodnuti o terminaci pravdépodobnostnich programu je obec-
né ostfe tézsi nez terminace nepravdépodobnostnich programd.

vii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Joost-Pieter Katoen for his truly
great supervision. He introduced me to the interesting and vibrant field of
probabilistic program research and I am thankful for his guidance in author-
ing the publications that lead to this thesis. Out of his many good qualities as
a supervisor, I would like to particularly highlight that Joost-Pieter tirelessly
promotes his advisee’s research among experts all across the world, which I
have always found extremely encouraging and which, I believe, should not
be taken for granted! Moreover, Joost-Pieter knows how to create a truly
great work and research environment!

Speaking of that great environment: I had the opportunity to work with
many wonderful people in Aachen. I am grateful that right from the be-
ginning I shared an office with two postdoctoral researchers, Nils Jansen
and Federico Olmedo. Doing research with them was (and still is) great!
Apart from research itself, I am thankful that Nils and Joost-Pieter taught
me about ,non-scientific“ aspects of research very early on (and they con-
tinue to do so). It was also my friend Nils who introduced me to the art of
working-at-a—café (a very effective technique for finishing one’s thesis) as
well as to a delicious regional product called Monschauer Els.

I would like to thank my second examiner Annabelle Mclver. It was great
meeting her at various places all over the world and having really inspir-
ing discussions. I am particularly thankful that Carroll Morgan and her of-
fered the opportunity to collaborate with them. I am also really grateful that
Annabelle came all the way from Sidney to attend my defense in Aachen.
Again something I do not take for granted. I would also like to take this
opportunity and thank the remaining two members of my doctoral exami-
nation committee, Wil van der Aalst and Erich Gradel, for creating a very
friendly and cordial atmosphere during my defense.

So far my most fruitful collaboration was with Christoph Matheja. Ever
since Federico and I initially got him interested in doing research with us,
Christoph and I have successfully continued to work together and I sincerely
hope this will continue in the future. Another collaboration I enjoy very
much is with Kevin Batz, whom I wish all the best for his own PhD studies.

I am grateful to Alexandra Silva for giving me the opportunity to visit her
and her group in London. I have had a truly amazing time and met so many
great people! Thank you Alexandra, Paul Brunet, Fredrik Dahlqvist, Carsten
Fuhs, Gerco van Heerdt, Tobias Kappé, Joshua Moerman, Louis Parlant, Mat-
teo Sammartino, Fabio Zanasi for all the nice discussions and for making my
stay in London such a great experience.

I am grateful to Gilles Barthe for constantly feeding us with interesting
challenges and for the nice collaboration we have had. I am also grate-
ful to my coauthors Alejandro Aguirre, Jirgen Giesl, Marcel Hark, Chris-
tian Hensel, Justin Hsu, Maurice van Keulen, Thomas Noll, Raimondas Sas-
nauskas, and Carsten Weise for many fun and fruitful discussions.

Coming back to the great work environment, I would like to thank Erika
Abraham, Philipp Berger, Helen Bolke-Hermanns, Harold Bruintjes, Florian
Corzilius, Luis Maria Ferrer Fioriti, Predrag Filipovikj, Florian Frohn, Mar-
tin Grohe, Rebecca Haehn, Arnd Hartmanns, Jonathan Heinen, Jera Hensel,
Christina Jansen, Sebastian Junges, Mojgan Kamali, Shahid Khan, Gereon
Kremer, Tim Lange, Francesco Leofante, Anna Lukina, Elke Ohlenforst, Sha-
shank Pathak, Tim Quatmann, Pascal Richter, Stefan Schupp, Jip Spel, Mar-
cin Szymczak, Wolfgang Thomas, Matthias Volk, Birgit Willms, Gerhard
Woeginger, and the many people I surely forgot to mention here. Each and
everyone of them has always been very approachable, helpful, and open for
discussions. I thank them not only for their scientific and non-scientific
input but especially for making my time at i2 (and the computer science
department at RWTH Aachen in general) just great!

I would like to thank my parents Monika and Gustav Kaminski for all
their love and their unconditional support throughout my entire life. My
mum and dad raised me bilingual and my mum introduced me very early
on to higher mathematics. Both helped me a lot for forming an ability of
abstraction and without their influence, I would have probably not done a
PhD. I would also like to thank Stefanie Riske for all her love and support,
especially during my PhD years.

A big ,, Thank you!“ goes out to my super talented cousin Benoit Texier,
who designed the amazing cover art for this thesis. The drawing is just awe-
some and has far exceeded all my expectations!

I would like to thank my dad for translating the abstract of my thesis into
Czech and Petr Novotny for proof reading it with regard to mathematical
and technical terminology.

I would like to especially thank my fellow students, friends, and Gruppe 0
members Johannes van der Giet, Russ Juki¢, and Philipp Kaiser for the years
we have spent studying computer science in Aachen. Without you guys, I
cannot imagine to have pulled this off!

Iwould like to thank my friends Agnes NiefSen, Alexander Hofmann, Anne
Hofmanns, Benedikt Flerus, David Renger, Fabian Klaes, Florian Kratz, Hen-
rik Schwaeppe, Janine Lickgen, Judith Moos, Julian Kemp, Kevin Xiang, Le-
na Sellmeier, Luis Bottcher, Maira Kryschewski, Martin Moos, Max Rauch,
Nicole Kramorz, Pascal Marquardt, Paul Walterscheid, Roland Fischer, Se-
bastian Palm, Sebastian Taron, Stephanie Ulmen, Tobias Haas, Ulla Kriiger,
and Valentin Ziemons for attending and celebrating my defense. You made
it an amazing day! Once again something I do not take for granted!

CONTENTS

OVERVIEW

1.1 Probabilistic Programs
1.2 Formal Verification.
1.3 Verification of Probabilistic Programs
1.4 Contributions and Synopsis of this Thesis
1.5 A Note on Contributions of the Author

CrAssicAL WEAKEST PREEXPECTATION REASONING
WEAKEST PRECONDITION REASONING
2.1 The Guarded Command Language (GCL)
2.2 Reasoning about Predicates
2.2.1 HoareTriples
2.2.2 Weakest Preconditions
2.2.3 The Weakest Precondition Calculus.
2.2.3.1 Continuation-passing

2.2.3.2 Weakest Preconditions of Loop—free Programs

2.2.3.3 Weakest Preconditions of Loops
2.2.4 Reasoning about Nondeterminism
2.2.5 Weakest Liberal Preconditions
2.2.5.1 The Notion of Weakest Liberal Preconditions
2.2.5.2 The Weakest Liberal Precondition Calculus
2.3 Reasoningabout Values
2.3.1 Anticipated Values
2.3.2 An Anticipated Value Calculus
for Deterministic Programs
2.3.3 Anticipated Value Calculi
for Nondeterministic Programs
PROBABILISTIC COMPUTATIONS
3.1 Randomness versus Nondeterminism
3.2 pGCL— A ProbabilisticGCL
3.3 Semanticsof pGCL
3.3.1 Computation Tree Semantics
3.3.2 Distributions over Final States
3.3.3 Markov Decision Process Semantics
WEAKEST PREEXPECTATION REASONING
4.1 Reasoning about Expected Values
4.1.1 Weakest Preexpectations
4.1.2 Weakest Liberal Preexpectations
4.1.3 The Weakest Preexpectation Calculus

21
23
23
26
27
28
29
29

33
37
39
39

45
46

xi

xii

CONTENTS

6

4.1.4 Connection to Operational Semantics
4.2 Healthiness Conditions
4.2.1 Continuity o000
422 Strictness o o
4.2.3 PFeasibility o oo
4.2.4 Monotonicity 0 oL
4.25 Linearity o oo
4.3 Relating Expectation Transformers.
PROOF RULES FOR LOOPS
51 Invariants
5.2 Boundson Expected Values
5.2.1 Induction for Weakest Preexpectations
5.2.2 Coinduction for Weakest Liberal Preexpectations . .
5.2.3 No Coinduction for Weakest Preexpectations
524 w-Rules
5.2.5 LowerBoundsonwp
5.2.6 Upper Bounds vs. Lower Bounds
5.2.7 Bound Refinement
5.2.8 Independent and Identically Distributed Loops . . .
PROBABILISTIC TERMINATION
6.1 Positive Almost—sure Termination
6.2 Almost-sure Termination
6.2.1 The Zero—oneLaw
6.22 AnOIldRule,
6.23 ANewRule
6.2.4 Case Studies in Almost-sure Termination
6.2.4.1 The Demonically Symmetric Random Walk
6.2.4.2 The Symmetric-in-the-Limit Random Walk
6.2.4.3 The Escaping Spline

II ApDvANCED WEAKEST PREEXPECTATION REASONING

7

EXPECTED RUNTIMES

7.1 HurdlesinReasoning

7.2 Unsoundness of the Obvious Approach

7.3 The Expected Runtime Calculus

7.4 Soundness and Completeness.
7.4.1 Relationship to Computation Tree Semantics
7.4.2 Relationship to Nielson’s Hoare Logic for Runtimes .

7.5 Healthiness Conditions
7.5.1 Continuity L.
7.5.2 Cofeasibility and Preservationofoo.
7.5.3 Monotonicity o o000
7.5.4 Affinity and Weakest Preexpectations

105
105
109
109

. 111

114
115
118
120
121

. 122

125
128
131
132
133
134
143

. 143
. 146

149

CONTENTS

7.6 Proof RulesforLoops
7.6.1 Invariants
7.6.2 Induction
7.6.3 Coinduction for Deterministic Programs
7.6.4 No Coinduction for Probabilistic Programs
765 w-Rules 00 .
7.6.6 Bound Refinement
7.6.7 Independent and Identically Distributed Loops
7.7 Case Study: The Coupon Collector
7.8 Other Related Work
CONDITIONING
8.1 c¢pGCL — pGCL with Conditioning
8.2 Conditional Expectation Transformers
8.2.1 Conditional Weakest Preexpectations
8.2.2 Conditional Weakest Liberal Preexpectations
8.3 Conditioningand Loops
8.3.1 The cwp Interpretation for Total Correctness
8.3.2 The Nori Interpretation
8.3.3 The cwlp Interpretation for Partial Correctness
8.3.4 A Fourth Interpretation
8.4 Conditioning and Nondeterminism
8.5 Healthiness Conditions
8.5.1 Continuity
8.5.2 Decoupling
85.3 Strictness. o oo
8.5.4 Conservativity oo 0oL
855 (PFeasibility
8.5.6 Monotonicity o000 oo
8.5.7 Linearity L
8.6 Proof RulesforLoops
8.6.1 Invariants
8.6.2 Induction for Conditional Weakest Preexpectations
8.6.3 Coinduction for Conditional
Weakest Liberal Preexpectations
864 w-Rules,
8.6.5 Bound Refinement
8.7 Futureand Related Work
MIXED—SIGN EXPECTATIONS
9.1 Convergence and Definedness Issues
9.2 integrability—witnessing Expectations
9.3 Expectation Transformers
9.3.1 Preexpectations of While Loops
9.3.2 Soundness of the iwp Calculus

xiii

Xiv

CONTENTS

9.4 Healthiness Conditions
9.4.1 Strictness oo
9.4.2 Feasibility 0 0
9.4.3 Monotonicity
9.4.4 Linearity oo oo
9.5 Proof RulesforLoops
9.6 Futureand Related Work

III ComPUTATIONAL HARDNESS

10
11

12

13

14

THE ARITHMETICAL HIERARCHY
APPROXIMATING PREEXPECTATIONS

11.1 LowerBounds
11.2 UpperBounds
11.3 ExactValues
11.4 Upper Bounds vs. Lower Bounds
11.5 Finiteness e
11.6 Conclusion and Future Work
DECIDING PROBABILISTIC TERMINATION

12.1 Almost-sure Termination
12.2 Positive Almost—sure Termination
12.3 On the Proper Notion of Termination
12.4 Future and Related Work
APPROXIMATING COVARIANCES

13.1 Definedness e e
13.2 Boundson Covariances« ..n...
13.3 ExactValues
13.4 Variances
13.5 Future and Related Work

CONCLUSION AND FUTURE WORK
14.1 Lower BoundsAreHard
14.2 Lower Bounds Should Be Easier
14.3 Future Work e

IV APPENDICES

A

B
C
D

DOMAIN THEORY

MARKOV DECISION PROCESSES

OMITTED CALCULATIONS

A MORE DETAILED NOTE ON CONTRIBUTIONS OF THE AUTHOR

BIBLIOGRAPHY

INDEX

257
259
269
271
272
275
276
277
278
281
282
284
292
294
297
298
299
302
305
306

309
309
310
310

313
315
319
323
325

331
351

—_

OVERVIEW

in software engineering. Today, in times of ever-increasing complex-

ity and omnipresence of software systems, the ability to reason about
programs is becoming more and more important, but already the pioneers
of computing had this problem on their minds some 80 years ago.

In 1941, the civil engineer Konrad Zuse completed building what is today
considered the world’s first programmable computer, the Z3. He deliber-
ately designed it not to be a universal computer [Roj97]: First off, the Z3 fea-
tured no loops (which could be surmounted by literally glueing together the
two ends of the punched tape containing the program). Secondly, the Z3 fea-
tured no conditional branching, effectively rendering the control flow graph of
a Z3 program a straight line. While today we find it hard to imagine any pro-
gramming language being able to get by without conditionals, Zuse himself
even considered conditional branching harmful, as he feared that it would
render programs too difficult to comprehend and understand [Zus90].

Twenty—seven years later, Edsger Dijkstra considered the goto statement
harmful because it is ,too much of an invitation to make a mess of one’s
program” [Dij68]. Instead, he advocated the use of guarded repetition con-
structs like while loops, which would give programs more structure and
thereby open up an angle of attack for reasoning about them.

Both Zuse and Dijkstra explicitly expressed their concern about being able
to comprehend programs and reason about what they compute. Even though
the programming constructs which they discouraged were fully determinis-
tic, they deemed them too complicated to reason about and it was explic-
itly for that reason that they recommended against their use. Given their
concern about comprehensibility of programs, we can only imagine the dis-
comfort they might have experienced when faced with the task of reason-
ing about probabilistic programs which behave randomly in the first place.!
Randomization, however, has always played an important role in comput-
ing, even since its early days. In 1962, Tony Hoare proposed a randomized
variant of his Quicksort algorithm [Hoa62]. A year later, Michael Rabin pre-
sented the notion of probabilistic automata, a randomized variant of finite
automata [Rab63]. Today, probabilistic automata (and their numerous varia-
tions) continue to be subject of intensive research [Kat16].

REASONING about programs is an indispensable but very difficult task

Indeed, Dijkstra even provided written testimony of his discomfort, though in the context of
a different form of uncertain program behavior, namely nondeterminism. He wrote in [Dij75]:
,1 myself had to overcome a considerable mental resistance before I found myself willing to
consider non-deterministic programs seriously.”

1

N

OVERVIEW

In this thesis, we study reasoning about the more general notion of prob-
abilistic programs, which are computational procedures that may condition-
ally branch, depending on the outcome of a random experiment. The initial
spark for formal reasoning about probabilistic programs was given by Dex-
ter Kozen’s seminal work on semantics of probabilistic programs in the late
1970s and early 1980s [Koz79; Koz81]. Subsequently, seminal work on veri-
fication of probabilistic programs was presented by Sergiu Hart, Micha Shar-
ir, and Amir Pnueli [HSP82; HSP83] and, independently, by Kozen [Koz83;
Koz85]. While many advances have been made since then, the repertoire
of techniques for reasoning about probabilistic programs is arguably much
less developed than for deterministic ones. It is likely that part of the rea-
son for this discrepancy is that reasoning about probabilistic programs is
more difficult — a fact which we will make mathematically precise in Part III
of this thesis.

In Parts I and II of this thesis, we endeavor to extend the repertoire of
reasoning techniques for probabilistic programs. To that end, we present
advanced calculi for reasoning about structured probabilistic programs in
a compositional manner. Our calculi are suitable for quantitative reasoning,
which is relevant not only for probabilistic programs but, indeed, also for
deterministic ones, as Thomas Henzinger points out [Hen13]:

The Boolean partition of software into correct and incorrect pro-
grams falls short of the practical need to assess the behavior of
software in a more nuanced fashion against multiple criteria.

Most of the calculi we present in this thesis are applicable to deterministic
programs as well? and hence we see our work in the broader context of quan-
titative verification rather than just probabilistic program verification.

In the remainder of this section, we give a very brief overview of use cases
and analysis problems for probabilistic programs, formal verification of pro-
grams in general, and probabilistic program verification in particular. Fur-
thermore, we provide a short overview of the original contributions covered
in this thesis, as well as an extensive synopsis of the parts and chapters of
this thesis for the reader’s convenience.

1.1 PROBABILISTIC PROGRAMS

opAy, probabilistic programs serve (at least) two purposes: describing
Tmndomized algorithms and encoding complex probability distributions. In
the following, we will survey these two use cases very briefly and point out
why quantitative reasoning is necessary in these cases.

With the exception of the calculus for reasoning about conditional expected values presented in
Chapter 8. While in principle applicable to deterministic programs, the calculus is simply not
very meaningful in that context.

1.1 PROBABILISTIC PROGRAMS

1.1.1 Describing Randomized Algorithms

Randomized algorithms use access to some source of randomness to provide
a more efficient means of solving problems that are computationally difficult
otherwise. Some problems are even impossible to solve without random-
ization, e.g. certain consensus problems [Ben83; FLP83]. Another use case
where deterministic algorithms fail is symmetry breaking. As an example,
the IEEE 802.3 Ethernet standard uses a so—called Exponential Backoff Algo-
rithm for avoiding collisions between two coequal parties communicating on
a single Ethernet line. For achieving collision avoidance, each party runs a
randomized algorithm that lowers the probability of both parties attempting
to occupy the Ethernet line at the same time [Iee].

As an example of speedup through randomization, Hoare’s randomized
Quicksort algorithm selects a pivot element uniformly at random which re-
duces the expected worst-case complexity of Quicksort to O(nlog(n)). In
contrast, Quicksort with deterministic pivot selection has a worst—case com-
plexity of O(nz). Randomized Quicksort is an example of a Las Vegas algo-
rithm which is certainly correct while only probably fast.

Another type of randomized algorithms are Monte Carlo algorithms, which
are certainly fast while only probably correct. A prime example is the ran-
domized matrix multiplication verification algorithm discovered by Rasins
Freivalds, which runs certainly in quadratic time [Fre79], but with probabil-
ity 1/2 fails to refute an incorrect matrix multiplication. The fastest known
deterministic method reduces to performing an actual matrix multiplication,
the fastest known algorithm for which was found by Virginia Williams and
runs in O(n>373) time [Wil14], i.e. certainly slower than Freivalds’ algorithm.

Lastly, there is also a mixed type of randomized algorithms known as At-
lantic City algorithms, which are both probably fast and probably correct. The
nature of the properties that make up the distinction between Las Vegas,
Monte Carlo, and Atlantic City algorithms demonstrates that we have an
intrinsic need for quantitative reasoning when analyzing randomized algo-
rithms: An Atlantic City algorithm, for instance, is not just either correct or
incorrect. Instead, we need to measure the probability of the algorithm yield-
ing correct results in order to asses the correctness of the algorithm.

Furthermore, an Atlantic City algorithm is not just always efficient or not.
It does not suffice to look at a worst-case outcome of random events and
reason about the longest possible runtime in that worst case. Instead, we
need to consider all possible outcomes that may emerge from executing the
randomized algorithm and then average their runtime in order to obtain an
expected runtime. We thus see that not only functional correctness plays a
role for the analysis of randomized algorithms. Nonfunctional and, in partic-
ular, quantitative requirements, such as expected runtimes, are of paramount
importance as well. In this thesis, we present a calculus specifically tailored
to the task of reasoning about expected runtimes.

OVERVIEW

1.1.2 Describing Complex Probability Distributions

Besides describing randomized algorithms, probabilistic programs are used
in machine learning, artificial intelligence, or cognitive sciences, to describe
complex probability distributions. This discipline is commonly known as
probabilistic programming [Pro]. Various languages for probabilistic program-
ming have been proposed, for instance Church (functional) [Goo+08], Figaro
(object oriented) [Pfe09], ProbLog (logic) [RKT07], R2 (imperative) [Nor+14],
Stan (functional) [Car+17], and Tabular (Excel spreadsheets) [Bor+16]. A
key desideratum in probabilistic programming is to be able to describe com-
plex conditional probability distributions, while at the same time achieving
good accessibility of the description.

Before the advent of probabilistic programming, distributions were often
encoded using probabilistic graphical models. However, the most promising
models that have emerged from the machine learning and artificial intel-
ligence communities outstrip the expressive power of such graphical mod-
els. As a workaround, models are encoded using a mixture of graphical and
textual representation [Pro]. Probabilistic programming languages, on the
other hand, provide a unified way to encode distributions in an accessible,
yet mathematically rigorous way. Moreover, probabilistic programs are ac-
cessible to a working programmer who might not be knowledgeable in data
science or probability theory [Gor+14].

As for their expressivity, universal probabilistic programming languages
can encode any (discrete) probability distribution for which probabilities of
events are semi-computable [Ical7]. In addition to their expressivity, proba-
bilistic programs have the advantage of encoding distributions in a structured
manner. They are thus highly amenable to formal reasoning.

A key analysis problem for probabilistic graphical models as well as for
probabilistic programming is inference [Gor+14]: Given an event E (i.e. some
set of outcomes of the probabilistic computation) and possibly some observed
evidence O (again some set of outcomes of the probabilistic computation),
what is the probability that event E will occur, given that O occurs? The infer-
ence problem in probabilistic programming is closely related to determining
the correctness probability of a randomized algorithm. After all, yielding a
correct result is also just some particular event.

In this thesis, we present a calculus for inference on general probabilis-
tic programs with conditioning. Devising inference mechanisms on general
probabilistic programs bears one big advantage: it disconnects the inference
task from the model. Even sampling algorithms for approximate inference
often have to be heavily hand-tuned and have to make use of substantial
domain knowledge about the model at hand, in order to make them effi-
cient [KF09, Chapter 12.3]. A more desirable approach would be to eradi-
cate the need for that domain knowledge altogether and come up with more
general inference methods [LBW17].

1.2 FORMAL VERIFICATION

1.2 FORMAL VERIFICATION

PART from Zuse and Dijkstra, another pioneer of computing, who saw a
Aneed for the ability to reason about programs very early on, was Alan
Turing. In 1949, he presented his paper ,Checking a Large Routine” at the
inaugural conference of the Electronic Delay Storage Automatic Calculator at
the University of Cambridge Mathematical Laboratory [Tur49; MJ84]. Tur-
ing began his paper by asking:

How can one check a routine in the sense of
making sure that it is right?

What Turing back then considered a ,large routine” consists of about 12 lines
of code.> As of 2009, the code base of an average modern high—-end car was
estimated to consist of about 100 million lines of code [Cha09]. Even the size
of the safety—critical parts of that code base alone will exceed what Turing
considered a ,large routine” by multiple orders of magnitude.

With the advent of autonomous car driving during the last decade or two,
the need for guarantees on software correctness has increased significantly,
as the importance of software for such autonomous systems can hardly be
overrated. Elon Musk, founder of the electric car manufacturer Tesla, even
considers Tesla to be a software company. In a 2015 interview [Hir15], he said:

We really designed the [car] to be a very sophisticated
computer on wheels. Tesla is a software company
as much as it is a hardware company.

Between 2016 and 2018 alone, at least four people were killed in car ac-
cidents while autonomous driving systems were engaged. Other software
failures with disastrous consequences include the failed maiden flight of the
European Space Agency’s Ariane 5 carrier rocket (material damage: USD 370
million) [Wika] or overdoses applied by Atomic Energy of Canada Limited’s
Therac-25 radiotherapy unit [Wikl] (at least three fatalities caused directly
by severe radiation overdose, several people seriously injured). More recently,
in 2018, the security vulnerabilities Meltdown [Lip+18] and Spectre [Koc+18]
were made public. They affect almost any modern computer system and the
full extent of their impact can still not be estimated.

So how can we avoid such software failures? One way is testing. In a
nutshell, testing amounts to heuristically selecting a large number of critical
inputs and checking whether the program being tested complies with its
specification on all selected inputs. In general, however, there are infinitely
many or at least too many inputs. Finding an error thus amounts to finding
a needle in an infinitely large haystack. Trying to prove the absence of an

Turing provides his program in the form of a flow chart. A one-to-one translation to Python,
for instance, can be done using 12 lines of code.

OVERVIEW

error amounts to asserting that there is no needle at all in the infinitely large
haystack. As Dijkstra famously put it in his Turing Award Lecture [Dij72],

Testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence.

So, how can we show the absence of bugs? In his 1949 paper, Turing already
outlined a method for systematically and formally verifying software. This
method he outlines anticipated more matured and workable calculi for pro-
gram verification developed later by Bob Floyd [Flo67a], Tony Hoare [Hoa69],
and Edsger Dijkstra [Dij75]. In this thesis, we build directly on the work of
the latter, namely on Dijkstra’s weakest precondition calculus.

In a nutshell, the weakest precondition calculus works as follows: Say we
need to verify the program C. Furthermore, we are given a specification in
the form of a postcondition F on final states. Our goal is to verify that C ter-
minates only in states satisfying the postcondition F. Dijkstra’s calculus now
allows us to obtain a weakest precondition G on initial states (i.e. the largest set
of initial states), so that executing C on any state satisfying precondition G
guarantees that C terminates in a final state satisfying postcondition F. Ex-
pressed graphically, we have the following picture:

C A A~~~ E
o

AV I g

-G Lol \\,’<\\//\\ A ~>e F

Starting from an initial state satisfying the weakest precondition G, the com-
putation of C will terminate in a final state satisfying the specification F.
Starting from an initial state not satisfying G, there are two possibilities: Ei-
ther the computation of C will terminate in a final state not satisfying F, or
the computation of C will not terminate at all. In any case, for all initial
states not satisfying the weakest precondition, the program C does not sat-
isfy the specification. On the other hand, if the weakest precondition hap-
pens to describe the set of all states, then C satisfies its specification from
any initial state.

A principal advantage of the weakest precondition calculus is that it can
be defined inductively on the structure of the programming language itself.
It can thus be applied directly on source code level, which means that it al-
lows for directly verifying the software that is actually going to be deployed.

1.3 VERIFICATION OF PROBABILISTIC PROGRAMS

There is no need to first translate the source code to some abstract model
on which the verification can then be performed. Such translations would
naturally bear the potential for abstraction or translation errors.

Another advantage of the calculus’ inductive nature is that it allows for
compositional reasoning, which constitutes a classical divide—and-conquer
principle. Compositionality allows for proving parts of a program correct
and then inserting those correct parts into a context of a larger program.

1.3 VERIFICATION OF PROBABILISTIC PROGRAMS

One grain of wheat does not constitute a pile, nor do two grains, nor
three and so on. On the other hand, everyone will agree that a
hundred million grains of wheat do form a pile. What then

is the threshold number? Can we say that 325,647 grains

of wheat do not form a pile, but that 325,648 grains do?

If it is impossible to fix a threshold number,

it will also be impossible to know what

is meant by a pile of wheat.

— Emile Borel

EASONING about probabilistic programs is naturally quantitative. For ex-
Rample, we mentioned earlier that efficiency through randomization oft-
en takes its toll in the form of a small error probability. So when is a ran-
domized algorithm correct? We could of course fix thresholds and say, for
instance, that a probabilistic algorithm is sufficiently correct if it yields an
incorrect result with probability at most 1/3. Correctness of a randomized al-
gorithm would then become a Boolean property: Either the error probability
is at most 1/3, or the probability is strictly higher.

Let us compare an exponential-time algorithm with error probability 1/3
to a linear—time algorithm with error probability 5/412. The linear-time algo-
rithm is incorrect according to the fixed threshold since 512 > 1/5. However,
running the linear-time algorithm thrice and taking a majority vote over the
results, reduces the error probability to approximately 1/4 while retaining a
linear runtime. Thus, the linear—time algorithm is arguably preferable.

The little gedankenexperiment above shows that fixing thresholds a priori
is not very helpful, and hence we cannot just state that a randomized algo-
rithm is either correct or incorrect. Instead, we need formal guarantees on
how correct the algorithm is, i.e. we must measure the probability of the algo-
rithm yielding correct results. The same goes for its runtime. We cannot just
state that a randomized algorithm’s runtime is either fast or slow. Instead, we
need a guarantee that it is fast on average, i.e. we must measure the expected
runtime of the algorithm. Simply put, verification of randomized algorithms
comes down to providing guarantees on quantities.

OVERVIEW

So how do we verify probabilistic programs? One way is to execute the pro-
gram a large number of times and check whether or not it satisfies its speci-
fication when averaging over the so-obtained sample set. This approach for
probabilistic programs corresponds in some sense to testing for deterministic
programs and can only ever yield statistical confidence, but no hard guarantees.

Towards providing formal guarantees on probabilistic programs, Dexter
Kozen developed the probabilistic propositional dynamic logic (PPDL) [Koz83;
Koz85] — a modal logic for verification of probabilistic programs, in which
the modalities are annotated with probabilistic programs and the ground
terms are measurable functions. Whereas Dijkstra’s weakest precondition
calculus is a predicate transformer transforming postconditions to precondi-
tions, Kozen generalized to a measurable function transformer. This yields the
following table that Peter Selinger calls ,Kozen’s Rosetta Stone“* [Sel17]:

deterministic probabilistic
state transformer distribution transformer
postcondition F measurable function f
weakest precondition of F expected value of f

A deterministic program is executed on an initial state and (if it terminates)
yields a unique final state. A probabilistic program, on the other hand, yields
in general a probability distribution over final states. If we want to verify a
probabilistic program, we choose as postcondition a measurable function f,
for instance the indicator function [F] of a predicate F. If we can obtain guar-
antees on the expected value of [F] after execution of the program, we have in
effect obtained a formal guarantee on the probability that the program termi-
nates in a state satisfying F. Kozen’s PPDL, however, is more expressive and
allows for answering questions about more general quantities, such as the ex-
pected value of program variable x, a program’s termination probability, etc.

For PPDL, Kozen did not consider nondeterminism as Dijkstra did, but
instead replaced it by probabilistic choice. The work of Kozen was later fur-
thered by Annabelle MclIver and Carroll Morgan [MMS96; MMO05] mainly by
(a) (re)incorporating nondeterminism into the probabilistic programming
language and (B) intensively studying how Hoare’s invariant-based reason-
ing carries over to probabilistic programs.

Referring to Dijkstra’s weakest precondition calculus, Mclver & Morgan
called their calculus the weakest preexpectation calculus. In this thesis, we
build heavily on their calculus, present it in their style, and — constituting
the main contribution of this thesis — present similar but more advanced
and novel calculi for reasoning about quantitative properties of probabilistic
programs, such as expected runtimes, conditional expected values, etc.

The missing , third language” for making up a proper Rosetta Stone [Wikj] is chosen by Selinger
to be the language of quantum programming.

1.4 CONTRIBUTIONS AND SYNOPSIS OF THIS THESIS

1.4 CONTRIBUTIONS AND SYNOPSIS OF THIS THESIS

N this thesis, we attempt to further the line of work that has been devel-
oped over the past 70 years or so by Turing, Floyd, Hoare, Dijkstra, Kozen,
Mclver, and Morgan (amongst others). We advance the analysis of structured
probabilistic programs in the style of Dijkstra’s predicate transformer ap-
proach. A special focus is placed on reasoning about loops using invariant—
based techniques. In short, the main contributions covered in this thesis are:

A. We give a more or less comprehensive and novel introduction to weakest
preexpectation reasoning a la Mclver & Morgan.

B. We survey rules for reasoning about weakest preexpectations and present
a new rule for proving termination of probabilistic loops.

c. We present a novel calculus for compositional reasoning about expected
runtimes of programs. In contrast to a naive approach of annotating a
program with a runtime-counter variable, our approach is sound, even
if the program does not terminate with probability 1.

D. We present a novel calculus for weakest—preexpectation—style inference
for probabilistic programs with conditioning. In contrast to existing ap-
proaches, we explicitly do not assume a priori that programs terminate
with probability 1.

E. We present a novel calculus that extends McIver & Morgan’s weakest
preexpectation calculus for reasoning about expected values of non—
negative random variables to the case for mixed—sign random variables.

r. We investigate the computational hardness of approximating expected
values and covariances and of deciding probabilistic termination.

In the following, we give a more detailed synopsis of this thesis. Further-
more, we list for each chapter the publications that emerged from develop-
ing the contributions of the respective chapter. A graph roughly depicting
the dependencies of the individual chapters on each other is provided for the
reader’s convenience in Figure 1.1.

1.4.1 Part I: Classical Weakest Preexpectation Reasoning

The first part of this thesis is intended to be an introduction to weakest preex-
pectation reasoning for probabilistic programs, which we gradually develop
from the early ideas of Floyd, Hoare, and Dijkstra. It is the base-layer tech-
nique which all the advanced calculi we present later build on. We also
present a variety of techniques for dealing with loops — arguably one of the
most difficult tasks in program verification.

10 OVERVIEW

I ' ||
‘l'Av Chapter 6
Chapter 8
Chapter 9
Chapter 10

Figure 1.1: A rough dependency graph for the chapters of this thesis. A thicker ar-
row symbolizes a stronger dependency. Orange chapters contain original

contributions of the author covered in this thesis.

1.4 CONTRIBUTIONS AND SYNOPSIS OF THIS THESIS

Chapter 2: Weakest Precondition Reasoning. We present Dijkstra’s Guard-
ed Command Language (GCL) and techniques for reasoning about both qualita-
tive and quantitative properties of deterministic GCL programs. As for qualita-
tive reasoning, we explain the notion of Hoare triples and develop from those
Dijkstra’s weakest precondition calculus. We also discuss reasoning about non-
deterministic programs as well as partial correctness. Finally, we show how
the weakest precondition calculus can be generalized from reasoning about
the satisfaction of Boolean-valued predicates to anticipating values of more
general real-valued functions.

Chapter 3: Probabilistic Computations. We present Mclver & Morgan’s
probabilistic Guarded Command Language (pGCL) — a language that features
both probabilistic and nondeterministic uncertainty. We give small-step oper-
ational semantics to pGCL programs in the form of probabilistic computation
trees as well as in the form of Markov decision processes. We also provide a
semantics in the form of probability distributions over final states.

Chapter 4: Weakest Preexpectation Reasoning. We give an introduction
to quantitative reasoning about pGCL programs by means of the weakest pre-
expectation calculus a la Mclver & Morgan. This calculus can be used to rea-
son about probabilities of events as well as more general expected values of
real-valued functions. All the advanced calculi we present later in this thesis
build on the weakest preexpectation calculus.

We also present a liberal calculus for partial correctness. We establish con-
nections between the liberal and the nonliberal calculi, and to the opera-
tional semantics from Chapter 3. We also discuss properties of the calculi,
such as continuity, monotonicity, or linearity.

Chapter 5: Proof Rules for Loops. We present techniques for reasoning
about weakest preexpectations of loops. For that, we recall Hoare’s method
of using invariants and show how these can be lifted to our more general
quantitative setting. Using invariants, we show how one can obtain upper
and lower bounds on preexpectations and how to refine such bounds. We also
discuss how reasoning about lower bounds is conceptually harder than reason-
ing about upper bounds. For loops of a certain form (independent identically
distributed loops), we show how exact preexpectations can be determined. Sec-
tion 5.2.8 is based on:

[Bat+18b] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
and Christoph Matheja. ,How long, O Bayesian network, will
I sample thee? A program analysis perspective on expected
sampling times.” In: Proc. of the European Symposium on Pro-
gramming Languages and Systems (ESOP). vol. 10801. Lecture
Notes in Computer Science. Springer, 2018, pp. 186-213

11

12

OVERVIEW

Chapter 6: Probabilistic Termination. We study rules for proving two
different forms of probabilistic termination: almost—sure termination and pos-
itive almost-sure termination. We then survey dedicated rules for proving
probabilistic termination such as e.g. Chakarov & Sankaranarayanan’s super-
martingale ranking functions, Fioriti & Hermanns’ ranking supermartingales
or Mclver & Morgan’s zero—one law. We also present a new rule for proving
almost—sure termination. Lastly, we present case studies on applying this new
rule. Sections 6.2.3 and 6.2.4 are based on:

[McI+18] Annabelle Mclver, Carroll Morgan, Benjamin Lucien Kamin-
ski, and Joost-Pieter Katoen. ,A New Proof Rule for Almost-
sure Termination.” In: Proc. of the Symposium on Principles of
Programming Languages (POPL) 2.POPL (2018), 33:1-33:28

1.4.2 Part II: Advanced Weakest Preexpectation Reasoning

In the second part of this thesis, we present three advanced weakest precon-
dition calculi for reasoning about probabilistic programs, each tailored to a
different task. All those calculi build upon the weakest preexpectation cal-
culus presented in Chapter 4.

Chapter 7: Expected Runtimes. We present the expected runtime calcu-
Ius made for — as the name suggests — reasoning about expected run-
times of probabilistic programs. We show how an obvious approach an-
notating the program with runtime counters and reasoning about their ex-
pected value is unsound, in general, and thus justify the need for a dedi-
cated calculus. Our ert calculus is sound while still being appealingly sim-
ple. We discuss basic properties of the calculus. Finally, we present proof rules
based on our notion of invariants for reasoning about loops and show their
effectiveness by reasoning about the expected runtime of the well-known
coupon collector’s problem. Chapter 7 is based in part on:

[Kam+18] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Federico Olmedo. ,Weakest Precondition Rea-
soning for Expected Runtimes of Randomized Algorithms.”
In: Journal of the ACM 65.5 (2018), 30:1-30:68

[Kam+16] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Federico Olmedo. ,,Weakest Precondition Rea-
soning for Expected Run-Times of Probabilistic Programs.”
In: Proc. of the European Symposium on Programming Lan-
guages and Systems (ESOP). vol. 9632. Lecture Notes in Com-
puter Science. Springer, 2016, pp. 364-389

1.4 CONTRIBUTIONS AND SYNOPSIS OF THIS THESIS

Chapter 8: Conditioning. We endow pGCL with a conditioning feature
to obtain the probabilistic Guarded Command Language with conditioning
(cpGCL). We present the conditional weakest preexpectation calculus (cwp)
for reasoning about conditional expected values yielded by cpGCL programs.
We also discuss partial correctness, as well as two other alternatives for defin-
ing cwp calculi and discuss how these can be interpreted and how our calcu-
lus is more natural. Furthermore, we discuss nondeterminism and basic prop-
erties of the cwp calculus. Finally, we present invariant-based proof rules for
reasoning about loops. Chapter 8 is based in part on:

[Olm+18] Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lu-
cien Kaminski, Joost-Pieter Katoen, and Annabelle Mclver.
»,Conditioning in Probabilistic Programming.“ In: Trans. on
Programming Languages and Systems 40.1 (2018), 4:1-4:50

[Gre+16] Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, and Federico Olmedo. ,,On the Semantic
Intricacies of Conditioning.” In: Extended Abstracts of the 1st
Workshop on Probabilistic Programming Semantics (PPS) (2016)

[Kat+15] Joost-Pieter Katoen, Friedrich Gretz, Nils Jansen, Benjamin
Lucien Kaminski, and Federico Olmedo. ,Understanding
Probabilistic Programs.” In: Correct System Design — Sympo-
sium in Honor of Ernst-Riidiger Olderog on the Occasion of His
60th Birthday. Vol. 9360. Lecture Notes in Computer Science.
Springer, 2015, pp. 15-32

[Jan+15a] Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
Federico Olmedo, Friedrich Gretz, and Annabelle Mclver.
»Conditioning in Probabilistic Programming.”“ In: Proc. of
the Conference on Mathematical Foundations of Programming Se-
mantics (MEFPS) 319 (2015), pp. 199-216

Chapter 9: Mixed—sign Expectations. The classical weakest preexpecta-
tion calculus can be used to reason about expected values of non—negative
real-valued functions. We extend this calculus to allow for mixed—sign real-
valued functions as well. We carefully discuss problems that arise in reason-
ing about mixed-sign functions and show how these can be mitigated. We
discuss basic properties of the calculus and proof rules for reasoning about
loops. Chapter 9 is based on:

[KK17b] Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,, A Weak-
est Pre—expectation Semantics for Mixed—sign Expectations.”
In: Proc. of the Annual Symposium on Logic in Computer Science
(LICS). IEEE Computer Society, 2017, pp. 1-12

[KK17a] Benjamin Lucien Kaminski and Joost-Pieter Katoen. , A Weak-
est Pre-Expectation Semantics for Mixed-Sign Expectations.”

13

14

OVERVIEW

In: Extended Abstracts of the 2nd Workshop on Probabilistic Pro-
gramming Semantics (PPS). 2017

1.4.3 Part I1I: Computational Hardness

Whereas the subject of the second part of this thesis was techniques for rea-
soning about probabilistic programs, the last part of this thesis is concerned
with the computational hardness of that reasoning.

Chapter 10: The Arithmetical Hierarchy. We present the notion of the
arithmetical hierarchy, originally due to Stephen Kleene and independently
to Andrzej Mostowski. This framework allows us to place decision problems
that are undecidable in the first place in a hierarchy, thereby stating in a
mathematically precise sense ,how undecidable” a decision problem is. We
will place all analysis problems we consider for probabilistic programs in
the arithmetical hierarchy.

Chapter 11: Approximating Preexpectations. We study the hardness of
computing weakest preexpectations, i.e. expected values of random variables
with respect to distributions yielded by executing a probabilistic program.
For that, we study the hardness of approximating lower bounds, approximat-
ing upper bounds, and deciding whether some value equals the exact preex-
pectation. Chapter 11 is based in part on:

[KKM18] Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. ,,On the Hardness of Analyzing Proba-
bilistic Programs.” In: Acta Informatica (2018)

[KK15b] Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,,On the
Hardness of Almost-Sure Termination.” In: Proc. of the Inter-
national Symposium on Mathematical Foundations of Computer
Science (MFCS). vol. 9234. Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 307-318

[KK15a] Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,Analyz-
ing Expected Outcomes and (Positive) Almost-sure Termina-
tion of Probabilistic Programs is Hard.” In: Proc. of the Young
Researchers’ Conference , Frontiers of Formal Methods“ (FFM).
vol. 9234. Aachener Informatik Berichte. 2015, pp. 179-184

Chapter 12: Deciding Probabilistic Termination. We study the hardness
of deciding probabilistic termination. More specifically, we study the hardness
of deciding almost—sure termination and positive almost-sure termination on
a specified input, as well as their universal variants. Based on our findings,

1.4 CONTRIBUTIONS AND SYNOPSIS OF THIS THESIS

we engage in a discussion about the proper notion of probabilistic termination.
Chapter 12 is based in part on:

[KKM18] Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. ,On the Hardness of Analyzing Proba-
bilistic Programs.” In: Acta Informatica (2018)

[KK15b] Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,,On the
Hardness of Almost-Sure Termination.“ In: Proc. of the Inter-
national Symposium on Mathematical Foundations of Computer
Science (MFCS). vol. 9234. Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 307-318

[KK15a] Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,, Analyz-
ing Expected Outcomes and (Positive) Almost-sure Termina-
tion of Probabilistic Programs is Hard.” In: Proc. of the Young
Researchers” Conference ,,Frontiers of Formal Methods“ (FFM).
vol. 9234. Aachener Informatik Berichte. 2015, pp. 179-184

Chapter 13: Approximating Covariances. We study the hardness of com-
puting covariances and variances of random variables with respect to distribu-
tions yielded by executing a probabilistic program. As we did for preexpecta-
tions, we study the hardness of approximating lower bounds, approximating
upper bounds, and deciding whether some value equals the exact covariance
or variance. Chapter 13 is based in part on:

[KKM18] Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. ,On the Hardness of Analyzing Proba-
bilistic Programs.” In: Acta Informatica (2018)

[KKM16] Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. ,Inferring Covariances for Probabilistic
Programs.” In: Proc. of the International Conference on Quanti-
tative Evaluation of Systems (QEST). vol. 9826. Lecture Notes
in Computer Science. Springer, 2016, pp. 191-206

Chapter 14: Conclusion and Future Work. We conclude and summarize
discussions of potential directions for future work which would otherwise
remain scattered in the various chapters of this thesis.

1.4.4 Part IV: Appendices

We provide mathematical preliminaries and calculations that have been omit-
ted in the main text. More specifically, we provide in Appendix A basic pre-
liminaries on domain theory, or rather on the fixed point theory of monotonic
self-maps on complete lattices. In Appendix B, we provide basic preliminar-

15

16

OVERVIEW

ies on Markov chains and Markov decision processes. Finally, we provide in
Appendix C calculations that are omitted in the main text.

1.5 A NOTE ON CONTRIBUTIONS OF THE AUTHOR

N this section, I give a complete list of peer-reviewed publications I coau-
Ithored that emerged from the research done in the course of writing this
thesis. Additionally, I also provide a list of additional peer-reviewed publi-
cations I coauthored, but that are not covered in this thesis. Under current
doctoral regulations of the RWTH Aachen University Faculty of Mathemat-
ics, Computer Science and Natural Sciences, I am required to discuss in de-
tail my own contributions to the publications covered in this thesis. This
discussion is found in Appendix D.

1.5.1 List of Publications Covered in this Thesis

[Kam+18] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Federico Olmedo. ,Weakest Precondition Rea-
soning for Expected Runtimes of Randomized Algorithms.”
In: Journal of the ACM 65.5 (2018), 30:1-30:68

[Bat+18a] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Ka-
toen, and Christoph Matheja. ,,A Program Analysis Perspec-
tive on Expected Sampling Times.“ In: Extended Abstracts
of the International Conference on Probabilistic Programming
(PROBPROG). 2018

[KKM18] Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. , On the Hardness of Analyzing Proba-
bilistic Programs.” In: Acta Informatica (2018)

[Bat+18b] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
and Christoph Matheja. ,How long, O Bayesian network, will
I sample thee? A program analysis perspective on expected
sampling times.” In: Proc. of the European Symposium on Pro-
gramming Languages and Systems (ESOP). vol. 10801. Lecture
Notes in Computer Science. Springer, 2018, pp. 186-213

[McI+18] Annabelle Mclver, Carroll Morgan, Benjamin Lucien Kamin-
ski, and Joost-Pieter Katoen. ,A New Proof Rule for Almost-
sure Termination.” In: Proc. of the Symposium on Principles of
Programming Languages (POPL) 2.POPL (2018), 33:1-33:28

[Olm+18] Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lu-
cien Kaminski, Joost-Pieter Katoen, and Annabelle Mclver.
,Conditioning in Probabilistic Programming.” In: Trans. on
Programming Languages and Systems 40.1 (2018), 4:1-4:50

[KK17b]

[KK17a]

[KKM16]

[Kam+16]

[Gre+16]

[Kat+15]

[KK15b]

[Jan+15a]

[KK15a]

1.5 A NOTE ON CONTRIBUTIONS OF THE AUTHOR

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,A Weak-
est Pre—expectation Semantics for Mixed—sign Expectations.”
In: Proc. of the Annual Symposium on Logic in Computer Science
(LICS). IEEE Computer Society, 2017, pp. 1-12

Benjamin Lucien Kaminski and Joost-Pieter Katoen. , A Weak-
est Pre-Expectation Semantics for Mixed-Sign Expectations.”
In: Extended Abstracts of the 2nd Workshop on Probabilistic Pro-
gramming Semantics (PPS). 2017

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. ,Inferring Covariances for Probabilistic
Programs.” In: Proc. of the International Conference on Quanti-
tative Evaluation of Systems (QEST). vol. 9826. Lecture Notes
in Computer Science. Springer, 2016, pp. 191-206

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Federico Olmedo. ,Weakest Precondition Rea-
soning for Expected Run-Times of Probabilistic Programs.”
In: Proc. of the European Symposium on Programming Lan-
guages and Systems (ESOP). vol. 9632. Lecture Notes in Com-
puter Science. Springer, 2016, pp. 364-389

Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, and Federico Olmedo. ,,On the Semantic
Intricacies of Conditioning.” In: Extended Abstracts of the 1st
Workshop on Probabilistic Programming Semantics (PPS) (2016)

Joost-Pieter Katoen, Friedrich Gretz, Nils Jansen, Benjamin
Lucien Kaminski, and Federico Olmedo. ,Understanding
Probabilistic Programs.” In: Correct System Design — Sympo-
sium in Honor of Ernst-Riidiger Olderog on the Occasion of His
60th Birthday. Vol. 9360. Lecture Notes in Computer Science.
Springer, 2015, pp. 15-32

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,On the
Hardness of Almost-Sure Termination.” In: Proc. of the Inter-
national Symposium on Mathematical Foundations of Computer
Science (MFCS). vol. 9234. Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 307-318

Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
Federico Olmedo, Friedrich Gretz, and Annabelle Mclver.
»,Conditioning in Probabilistic Programming.”“ In: Proc. of
the Conference on Mathematical Foundations of Programming Se-
mantics (MFPS) 319 (2015), pp. 199-216

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,Analyz-
ing Expected Outcomes and (Positive) Almost-sure Termina-
tion of Probabilistic Programs is Hard.” In: Proc. of the Young

17

18

OVERVIEW

Researchers” Conference ,Frontiers of Formal Methods“ (FFM).
vol. 9234. Aachener Informatik Berichte. 2015, pp. 179-184

1.5.2 List of Additional Publications Not Covered in this Thesis

Below I list other peer-reviewed publications that I coauthored during the
time I was writing this thesis or during my undergraduate studies, but whose
contributions are not covered in this thesis:

[Bat+19] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
Christoph Matheja, and Thomas Noll. ,Quantitative Separa-
tion Logic — A Logic for Reasoning about Probabilistic Pro-
grams.” In: Proc. of the Symposium on Principles of Program-
ming Languages (POPL). [to appear]. ACM, 2019

[Keu+18] Maurice van Keulen, Benjamin Lucien Kaminski, Christoph
Matheja, and Joost-Pieter Katoen. ,Rule-based Conditioning
of Probabilistic Data Integration.” In: Proc. of the Interna-
tional Conference on Scalable Uncertainty Management (SUM).
Lecture Notes in Artificial Intelligence. Springer, 2018

[Jan+16] Nils Jansen, Christian Dehnert, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, and Lukas Westhofen. ,, Bounded Model
Checking for Probabilistic Programs.”“ In: Proc. of the Inter-
national Symposium on Automated Technology for Verification
and Analysis (ATVA). vol. 9938. Lecture Notes in Computer
Science. 2016, pp. 68-85

[Olm+16] Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter
Katoen, and Christoph Matheja. ,Reasoning about Recursive
Probabilistic Programs.” In: Proc. of the Annual Symposium on
Logic in Computer Science (LICS). ACM, 2016, pp. 672-681

[Jan+15b] Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
Christoph Matheja, and Federico Olmedo. ,Probabilistic Pro-
grams — A Natural Model for Approximate Computations.”
In: Extended Abstracts of the Workshop on Approximate Comput-
ing (AC 15). 2015

[Sas+11] Raimondas Sasnauskas, Oscar Soria Dustmann, Benjamin
Lucien Kaminski, Klaus Wehrle, Carsten Weise, and Stefan
Kowalewski. ,Scalable Symbolic Execution of Distributed
Systems.” In: Proc. of the International Conference on Dis-
tributed Computing Systems (ICDCS). IEEE Computer Society,
2011, pp. 333-342

Although not covered in this thesis, two of the above papers are closely re-
lated to this thesis. In [Olm+16], we have developed a weakest preexpec-

1.5 A NOTE ON CONTRIBUTIONS OF THE AUTHOR

tation calculus as well as an expected runtime calculus for recursive prob-
abilistic programs. We also discussed proof rules and demonstrated their
effectiveness in a case study, namely a randomized binary search.

In [Bat+19], we have developed a quantitative separation logic for local rea-
soning about probabilistic programs that may allocate dynamic memory. We
extended classical separation logic [IO01; Rey02] in two regards: First off
all, we lifted the two separating connectives * and — from connecting two
predicates to connecting two quantities. Properties of the classical separating
connectives, such as the adjointness of * and —, carry over to the quantita-
tive connectives. Secondly, we developed a weakest preexpectation calculus
for reasoning about probabilistic programs with dynamic memory using the
quantitative versions of * and —¢.

19

Part I

CLASSICAL WEAKEST PREEXPECTATION
REASONING

The first part of this thesis is intended as a more or less compre-
hensive guide to weakest preexpectation reasoning for probabilistic
programs in the style of Mclver & Morgan. While most of the
material presented here are not my original ideas, I believe that
the didactical approach that I take here is new and insightful (at
least it was for me). I first recap Dijkstra’s classical weakest pre-
condition calculus for nonprobabilistic programs before 1 gradu-
ally (with a stopover at quantitative reasoning for nonprobabilis-
tic programs) develop its extension to the weakest preexpectation
calculus for probabilistic programs. Thereafter, I present an ex-
tensive collection of proof rules for reasoning about loops. In par-
ticular, I present reasoning techniques based on quantitative in-
variants, which will be a reoccurring motif in Part II of this thesis.

WEAKEST PRECONDITION REASONING

BAKEST precondition reasoning [Dij75; Dij76] is a technique devel-
Woped by Edsger Wybe Dijkstra for formal reasoning about the cor-

rectness of nonprobabilistic programs. In this chapter, we will in-
troduce this technique and show how it can be generalized to allow for quan-
titative reasoning. Later, in Chapter 4, we will see how those quantitative
techniques can be extended to reasoning about probabilistic programs.

This chapter is organized as follows: We first present the programming
language GCL. This language (as well as probabilistic and recursive exten-
sions of it) will be used throughout this entire thesis. We then recap Dijk-
stra’s original weakest precondition calculus which allows for reasoning at
the level of predicates. Finally, we show how to extend this style of reason-
ing beyond predicates to quantities, e.g. values of program variables.

21 THE GUARDED COMMAND LANGUAGE (GCL)

DI]KSTRA'S Guarded Command Language (GCL) [Dij76] is a very simple,
yet Turing—complete [Wikm], imperative model programming language
that still provides enough structure to produce readable programs. In that
sense the GCL formalism lies between elementary models of computation
like e.g. Turing—machines or the Lambda calculus (very simple formalism,
less readable programs) and higher programming languages like e.g. C++ or
Java (more complex formalism, much more readable programs).

We use GCL to describe ordinary, i.e. nonprobabilistic, programs. There is
thus no access to any source of randomness within GCL. On the other hand,
we will later see that GCL does include features for modeling uncertainty,
namely nondeterministic choices. Later in Chapter 3, we will see how this
language can be extended further to express probabilistic computations as
well. For now, though, let us consider only ordinary, deterministic programs:

DeriniTiON 2.1 (The Guarded Command Language [Dij76]):
A. Let Vars be a countable set of program variables and let Vals be a
countable set of values. If not explicitly stated otherwise, we let
Vals = Q, where Q is the set of rational numbers. For later use, let
N: IN — Vals. be a bijective canonical enumeration of Vals.

B. The set of program states is given by

¥ ={o|o: Vars - Vals} .

23

2

24 WEAKEST PRECONDITION REASONING

c. The set of programs in guarded command language, denoted GCL,
is given by the grammar

C — skip (effectless program)
| diverge (freeze)
| x :=E (assignment)
| CsC (sequential composition)
| if (p){C}else{C} (conditional choice)
| while(@){C}, (while loop)

where x € Vars is a program variable, E is an arithmetic expres-
sion over program variables, and ¢ is a boolean expression over
program variables guarding a choice or a loop.

D. A program containing no diverge or while loops is loop—free.

E. Given a program state o, we denote by o(E) the evaluation of ex-
pression E in o, i.e. the value obtained by evaluating E after re-
placing any occurrence of any program variable x in E by the value
o(x). Analogously, we denote by o(¢) the evaluation of ¢ in o to
either true or false. Furthermore, for a value v € Vals we write
o [x > v] to indicate that in o we set x to v, i.e.!

’ .f =
olx—v] = Ay. v ny=x

o(y), ifyp=x.

r. We use the Iverson bracket notation [Wikg] to associate with each
guard its according indicator function. The Iverson bracket [¢] of
guard @ is thus defined as the function

[p]: {01, [pl(o) =] TolPI=tue
0, if o(p)="false.

Let us examine the computational effects of all GCL constructs. We start with
the atomic programs: The effectless program skip does nothing, meaning
that it terminates immediately in an unaltered program state. Starting in an
initial state o, the program skip will terminate in the same final state o.
The freezing program diverge is a program that immediately enters an
endless busy loop and therefore it does not terminate (diverges) regardless
of the initial state it is started in. It can be thought of as a shorthand notation
for the endless loop while(true){skip} (for the effects of loops, see below).

1 We use A-expressions to construct functions: A&. e stands for the function that, when applied
to an argument «, evaluates to € in which every occurrence of £ is replaced by a.

2.1 THE GUARDED COMMAND LANGUAGE (GCL)

The assignment x := E is the (only) statement that directly alters the pro-
gram state. It evaluates E in the current program state and sets program
variable x to the thusly obtained value. When executed on an initial state o,
the assignment x := E thus terminates in final state o [x — o(E)].

We proceed with the composed statements: The sequentially composed
program Cj § C, has exactly the effect one would expect: First C; is executed
and after its termination C, is executed. So if C; transforms state o into o’
and C, transforms ¢’ into ¢”, then C; § C, transforms o into ¢”. Notice that
if C; diverges on o (e.g. if C; = diverge), then so does C; § C;.

The construct if (¢){C;}else{C,} is a conditional choice. Guard ¢ is
a boolean expression over program variables, thus e.g. of the form x > 0 or
(x+v <z+17) A(z#0). If @ evaluates to true in the current program state,
then C; is executed and if ¢ evaluates to false, then C, is executed.

ExamprE 2.2 (Deterministic GCL Programs):
Consider the following loop—free GCL program:

Cyrp > if(p>0){x:=5}else{x :=2}3
Y :i=x-3%
skip

First, this program checks whether v is strictly larger than 0. If this is the
case, it sets x to 5. Otherwise (i.e. if y < 0) it sets x to 2. After that, the
program sets y to the value of x decreased by 3. Finally, the program does an
effectless operation by performing a skip statement.

The last construct while(¢@){C} is a guarded while loop, that is executed
as follows: If in the current program state o the guard ¢ evaluates to false,
then the whole loop immediately terminates without any effect. If on the
other hand ¢ evaluates to true, then the loop body C is executed. After
C has terminated in some state ¢’ (if C in fact terminates), the whole loop
construct is invoked all over again but now starting from initial state o”: If @
evaluates to false in state ¢”, the loop terminates, otherwise C is executed to
obtain a next state 0”/, and so on. In principle the loop while(¢){C} is thus
equivalent to the infinitely long (thus not well-formed) program

if (p){Csif(@){Cs ---}else{skip}}else{skip}

which is an infinite nesting of simple conditional choices.
Notice that loops need not terminate on all initial states: Consider

while(x=0){x:=x-1},

which is a program that terminates only from those initial states ¢ in which
o(x) is positive and moreover an integer.

25

26

WEAKEST PRECONDITION REASONING

ExampLE 2.3 (Deterministic GCL Programs):
Consider the following GCL program:

Crs > z2:=Y3
while(x>0){
z:=z+13%
x:=x-1

}

C, 3 first sets z to y and then, as long as x is strictly larger than 0, it repeats
the following two steps: It adds 1 to z and subtracts 1 from x. These two
steps (i.e. the effect of the loop body) will be repeated in total [x(] times,
where x is the initial value of x.

Effectively this program therefore adds to y the rounded up value that x
initially had and stores that result in variable z. As a (possibly unwanted)
side—effect, the program also ,forgets“ about the value of x by effectively
setting it to a value between 0 and —1.

22 REASONING ABOUT PREDICATES

WE now develop formal reasoning about correctness of GCL programs
at the level of predicates. For us, a predicate represents simply an
arbitrary subset of program states, i.e. we can think of a predicate F as

FeP(Z)),

where for a set S we denote by P (S) its powerset. The predicate false stands
for the empty set @ and dually true stands for the entire set ¥. Furthermore,
—F stands for the set ¥\ F, and F A G and F V G stand respectively for the
intersection and the union of the sets represented by F and G. We write

ofEF

and say ,o satisfies F“ to indicate that state o is in the set represented by
predicate F and o £ F to indicate that o is not in that set. We write

F1:F2

and say ,F; implies F,“ to indicate that the set represented by predicate F;
is a subset of the set represented by predicate F,.

Our goal will be to associate to each program C and each predicate F (in-
terpreted as a set of final states) a predicate G (interpreted as a set of initial
states) such that if and only if the program C is started in any state o | G,
then C terminates in a state 7 |= F. In the following we will gradually develop
a calculus for achieving this.

2.2 REASONING ABOUT PREDICATES

¢ \/\/\/\\/\”F
o]
>0
PR
/
/—\/
, -
P
o
-G . o[> TN T/ ~>e SF
TN
- \
’4 e
N

Figure 2.1: Hoare triple (G) C (F) is valid: Starting in G, C will terminate in F. Start-
ing in =G, we do not know whether C diverges or terminates in F or —F.

2.2.1 Hoare Triples

Hoare logic is a formal verification method seeded by the works of Robert
(Bob) W Floyd? [Flo67a] and later developed further by Charles Antony
(Tony) Richard Hoare [Hoa69]. It is therefore also called Floyd—Hoare logic.

The crucial concept of this technique are Hoare triples: Given two predi-
cates F and G and a program C, a Hoare triple (G) C (F) is said to be valid
iff the following holds:

If program C is started in some initial state o | G,
then C terminates in a final state T = F.

Notice our notion of validity means ,valid for total correctness“> as pre-

sented by Manna & Pnueli [MP74]. In a more diagrammatic style, the sit-
uation is depicted in Figure 2.1. We call F a postcondition since we interpret
it as a predicate over final states, i.e. F shall hold after (post) the execution
of C. Dually, we call G a precondition since we interpret it as a predicate over
initial states, i.e. G shall hold before (pre) the execution of C.

There are two things we would like to emphasize here: First, the validity
of (G) C (F) still does not tell us anything about what happens when C is

2 Floyd’s middle name is in fact just W: ,,[Floyd] was indeed born with another middle name, but
he had it legally changed to ,W‘—just as President Truman’s middle name was simply ,S‘. Bob
liked to point out that ,W.” is a valid abbreviation for ,W*.“ [Hai04]

3 As opposed to ,valid for partial correctness*.

27

28

WEAKEST PRECONDITION REASONING

executed on some initial state o }£ G. In particular, it might be the case that
C will terminate in a final state T | F nonetheless. This will be different for
the notion of weakest preconditions.

Secondly, if (G) C (F) is valid for some F, then it is guaranteed that C
terminates from any state o E G. This means in particular that the validity of
(G) C (true) simply states that C terminates from every state ¢ = G, but it
does not tell us anything about the final state 7, since Vt: 7 [true.

2.2.2 Weakest Preconditions

To circumvent the dissatisfactory situation that validity of (G) C (F) gives
no information about the states satisfying -G we now introduce the notion
of weakest preconditions [Dij75; Dij76]. Imagine for that a Hoare triple

(.)C(E),

where the precondition is left open just like in a cloze — so to speak: a
Hoare triple with a blank. We would like to fill this blank in a very general
way, namely with the weakest possible predicate G in the following sense: Any
predicate G’ for which (G’) C (F) is valid should imply the more general
(weaker) predicate G. Put more formally:

VG': G = G iff (G')C(F)isvalid (2.1)

Given program C and postcondition F, we call the (unique) predicate G that
satisfies Condition (2.1) the

weakest precondition of C with respect to postcondition F,

denoted as wp [C] (F). As a diagram, the situation is depicted in Figure 2.2:
From any state o | G the program C terminates in some state T | F. More-
over, if C is started in a state o }£ G, then

4 either C terminates in a state 7 }£ F,
<% or C does not terminate at all.

It is easy to see that the Hoare triple (wp [C] (F)) C (F) is always valid and
moreover that the following holds:

(G'YC(F)isvalid iff G = wp][C](F)

We can also see that the situation has now changed in comparison to Hoare
triples in the sense that executing C on initial state o [£ wp [C] (F) will defi-
nitely not terminate in a state 7 5 F.

2.2 REASONING ABOUT PREDICATES

-G [TN T T >e —F

Figure 2.2: G is the weakest precondition of C with respect to postcondition F:
Starting in G, C terminates in F. Starting in -G, C either diverges or
terminates in —F.

2.2.3 The Weakest Precondition Calculus

Though we have defined what weakest preconditions are, given a program
and a postcondition we yet have no method of finding out what the respective
weakest precondition is. In the following we will therefore show how to
obtain weakest preconditions in a systematic way, namely with the aid of a
backward moving continuation—passing style weakest precondition transformer.

2.2.3.1 Continuation—passing

The principle of a continuation—passing style transformer is depicted in Fig-
ure 2.3: Assume we want to know the weakest precondition of the composed
program C; § C, with respect to postcondition F. Then we start from the end
of C; § C, with continuation F and move backward to the position between C;
and C,. While moving that position, we also transition from F to the weakest
precondition of C, with respect to F, i.e. to wp [C,] (F).

Let us denote by G the intermediate predicate wp [C,] (F). Then G rep-
resents by definition exactly those states from which execution of C, will
terminate in F. Therefore, we want precisely G to be the postcondition that
the execution of C; should terminate in, so that the execution of the entire
program C; § C, terminates in F.

29

30 WEAKEST PRECONDITION REASONING

MM

wp [C1] (wp [C2] (F)) G wp [C5] (F) C, F

I

weakest precondition of Cy

with respect to wp [C] (F)
postcondition F

evaluated in final states
after termination of Cp

weakest precondition of Cy

or in other words: with respect to F

weakest precondition of C; § Cy
with respect to F

Figure 2.3: Continuation—passing style weakest precondition transformer.

To the program C; the predicate G is of course just an arbitrary continu-
ation as any other. We can therefore determine the weakest precondition of
C; with respect to postcondition G by moving to the beginning of program
C; while transitioning from G to wp [C{] (G). But since G = wp [C;] (F), we
have wp [C1] (G) = wp [C{] (wp [C;] (F)), and therefore we have effectively
moved from the end of program C; § C, to its beginning while transitioning
from F to the weakest precondition of C; § C, with respect to F.

Now that we have some familiarity with the basic concept of continua-
tion—passing, we will use it to give precise rules on how to obtain weakest
preconditions for any program with respect to any postcondition. It turns
out that this can be done in a very structured way, namely by induction on
the structure of the programs: For every program C, we will show how to
construct a continuation—passing style transformer wp [C] of type

wp[C]: PE)->P(E),

that takes as input a postcondition F and returns the weakest precondition
of C with respect to postcondition F. We first show how to construct these
transformers for loop—free programs and then proceed with loops.

2.2.3.2 Weakest Preconditions of Loop—free Programs

The rules for constructing the wp transformer are given in Table 2.1. Let us
ignore the definition for while loops for the time being and let us go over
the other definitions one by one: Since the program skip has no effect, the
postcondition F has to be transformed to the very same precondition F, i.e.

wp [skip] (F) = F.

2.2 REASONING ABOUT PREDICATES

C wp [C] (F)

skip F

diverge false

x:=E F[x/E]

Ci5C wp [C1] (wp [Co] (F))

if (p){Ci}else(Cy} (@ Awp[Ci](F)) V (= Awp[Co](F))
while(¢p){C’} fp X. (=@ AF) v (¢ Awp[C] (X))

Table 2.1: The weakest precondition transformer acting on predicates.

For the assignment x := E, we essentially replace every occurrence of x in F by
E. However, since E does not actually occur in F, we define

wp [x :=E] (F) = F[x/E],
where F[x/E] is a predicate whose indicator function is given by
Ao. [Fl(o[x+—a(E)]).

Notice that we have again used the Iverson bracket notation [F] above.

ExamrrE 2.4 (Weakest Preconditions of Assignments):
A. wpfx:=5](x<0) = (5<0) = false
B. wpfz:=18](x=0) = (x=0)

c. wplx:=5]((x>2)—>(y=7))

(5>2)= (=7
= true — (y =7)
(¥=7)

In the predicates above, the symbol — (logical implication) is the usual ab-
breviation for —A Vv B. Notice that — is syntactic construct while — is a
semantic one: A — B is one predicate while A = B is a statement concerning
the two predicates A and B.

Next, we turn to sequential composition: We have already seen the principle
of continuation—passing and this very principle is implemented in the def-

31

32

WEAKEST PRECONDITION REASONING

inition of the transformer for sequential composition: Given the two trans-
formers wp [C;] and wp [C,], we define

wp [Cy5 Co] (F) = wp [Ci] (wp [Co] (F)) .

The intuition for the conditional choice if (¢){C;}else {C,} is the follow-
ing: If in the initial state o, the guard ¢ is satisfied, then C; will be executed.
We thus need to associate with that case the weakest precondition of C; with
respect to F. As a predicate, this reads as?

¢ —>wp [Ci] (F).

Dually, if we have o £ ¢, then C, is executed and we thus need to associate
with that case the weakest precondition of C,. As a predicate, this reads as

=@ = wp [C] (F) .

We can now express that both cases (the case for o = G and the case for o £ G)
must hold true in one predicate, namely by

(¢ = wp[Ci] (F)) A (=@ —wp [C] (F)),

which is logically equivalent to

(@ Awp [Ci] (F)) V (=@ Awp [C] (F)) .

We choose the latter over the former representation in Table 2.1 because we
will later associate A with - and Vv with +, whereas an arithmetic representa-
tion of — is more cluttered and inconvenient.?

Before we turn our attention to the definition of wp for while loops, let us
take a look at how we can formally reason about the program from Exam-
ple 2.2 on page 25 by using the wp transformer:

ExampLrE 2.5 (Weakest Preconditions of Loop-Free Programs):
We will reconsider the program C, , from Example 2.2 and reason about the
set of initial states from which the execution of C,, terminates in a state
satisfying postcondition y? > 2.

Throughout this thesis, we will use the notation

G
I/
C

/s

4 As usually, - binds stronger than —.
5 Namely a — p would need to be associated with (1 —a)+ p.

2.2 REASONING ABOUT PREDICATES

to express the fact that G = wp [C] (F) and moreover that G’ is logically equiv-
alent to G. It is thus more intuitive to read annotated programs from bottom
to top, just like the wp transformer moves from the back to the front. Using
this notation, we can annotate the program C,, simply by applying the wp
rules from Table 2.1 as shown in Figure 2.4.

By these annotations, we have established wp [C; 5] (y2 > 0) =(y > 0). This
tells us that from any initial state in which p is larger than 0 the execution of
C,, terminates in some final state 7 in which y? is larger than 2.

Notice that y > 0 and y? > 2 are evaluated in different states, namely in
initial and final states, respectively.

2.2.3.3 Weakest Preconditions of Loops

We now study weakest preconditions of loops. For the freezing program
diverge, notice that for any postcondition F there is no initial state o from
which diverge terminates in some final state T | F (because diverge does
not terminate at all). So whatever precondition we assign to diverge with
respect to F, it may not be satisfiable by any o. Therefore, the weakest pre-
condition of diverge with respect to any postcondition F must be defined as

wp [diverge] (F) = false,

since Yo : o £ false.
If we take a look at the definition of wp for while loops in Table 2.1, we see
that it is defined using a least fixed point operator (Ifp), namely as

Ifp X. (= AF) V (@ Awp[C'] (X)),

= O(X)

by which we mean the least fixed point of the characteristic function ®(X).
This function is of type P(X) — P (X), thus mapping predicates to predicates.
A fixed point of @ is a predicate G such that ®(G) = G. But in what sense can
the fixed point be the least one? For that, we need to introduce some notion
of order on the set of predicates, i.e. on P(X). More concretely, = induces
a complete lattice (see Definition A.1) on P (%), i.e.

Fy ,is smaller than or equal to“ F, iff Fi, = F,.

The least element of the complete lattice (P(X), =) is false. The supremum
of a chain § € P () is given by

supS = \/P,

FeS

33

34 WEAKEST PRECONDITION REASONING

Jy>0

JJ (>0 A true) V (p <0 A false)
if (p>0){
JJJ] true
JJ (5-3)*>2
x:=5
I (x=3)%>2
Jelse{
/] false
J (2-3)2>2
x:=2
JJ (x=3)*>2
I
I (x=3)2>2
Y :i=x-3%
My >2
skip

I v*>2

Figure 2.4: Weakest precondition annotations for Example 2.5.

2.2 REASONING ABOUT PREDICATES

which is the predicate that corresponds to the union of all sets corresponding
to the predicates in S.

One can now show that @ is a continuous function (Definition A.2) and
we thus know by the Kleene fixed point theorem (Theorem A.5) that ® has a
least fixed point, given by

lfp® = sup ®"(false).
nelN

By the existence of the least fixed point, we have ensured that wp for while
loops is well-defined.

The evaluation of ®°(false), ®!(false), P*(false), ... is called a fixed point
iteration and we call ' (false) the i-th iteration or i-th step of that fixed point
iteration. A very important fact about the fixed point iteration of continuous
functions is that, if started from the least element of the underlying complete
lattice, it converges monotonically to the least fixed point, meaning that in our
particular case we have an ascending chain

D (false) = @!(false) = P?(false) = D3(false) = ...

This follows by induction from continuity of ® which implies monotonicity
of @ (see Definition A.3 and A.4). For the base case, we have

®'(false) = false = O(false)

trivially, since false implies anything. Then, by monotonicity, we can per-
form the induction step. Assuming ®"(false) = ®"*1(0), we get

O™ (false) = D"2(0)

by monotonicity of ®. Let us revisit Example 2.3, and reason about a possibly
unwanted side—effect of that program (setting x to 0) using the wp calculus.

ExamrLE 2.6 (Weakest Preconditions of Loops):
Reconsider the program C, 3 from Example 2.3:

Cos > Z:=Y3
while(x>0){
z:=z+13%
x:=x-1

}

We would like to reason about whether the program sets x exactly to 0, i.e.
about postcondition x = 0. The characteristic function of the while loop with
respect to postcondition x = 0 is given by

35

36

WEAKEST PRECONDITION REASONING

(X)

(x<0Ax=0)V (x>0Awp[z:=z+1lsx:=x—-1] (X))
(x=0) V(x>0Awp[z:=z+1sx:=x-1] (X)) .

Let us do the first three iterations of the fixed point iteration for ®:

(false)
®l(false) = (x=0)
®?(false) = (x=0) V (x=1)
®3(false) = (x=0) V (x=1) V (x=2)

Detailed calculations can be found in Appendix C.1 on page 323.
After three iterations, we can already start seeing a pattern for n > 1:

®"(false) = (x=0) V (x=1) V...V (x=n-1) = (x=1)

We could prove this pattern correct by induction on n, which we however
omit here. The above fixed point iteration will converge to the precondition

sup ®"(false) = \/(x:i) = (xeIN),
nelN i=0

and thus
wp [while(x>0){z:=z+13x:=x-1}] (x=0) = (xeIN). (2.2)

For the whole program, we can finally make these annotations:

[x €N
z:=93
[x €N (by Equation 2.2)
while(x>0){
z:=z+13%
x:=x—-1}
Jf x=0

We have thus proven that from all initial states where x is a natural number,
the program sets x to 0.

While the above reasoning about the while loop was more or less ad-hoc, for-
mal reasoning about such fixed points in a systematic way is one of the most
difficult tasks in program verification. In general, this is not automatable, as

2.2 REASONING ABOUT PREDICATES

this would contradict Rice’s Theorem [Ric53] and therefore ultimately con-
tradict the undecidability of the Halting Problem [Chu36; Tur37]. We show
how to reason about loops in a possibly more automatable way in Chapter 5.

2.2.4 Reasoning about Nondeterminism

So far, all GCL constructs were of deterministic nature: Given an initial state,
the behavior of the program was completely determined. We will now intro-
duce some notion of uncertainty into our GCL programming language: the
nondeterministic choice construct

{C1}O{Cy).

We call programs that contain such nondeterministic choices nondetermin-
istic programs. Analogously, we call programs that do not contain any non-
deterministic choice constructs deterministic programs. The concept of pro-
grams containing nondeterministic choices was already present in Dijkstra’s
original weakest precondition calculus [Dij75], although the idea of ,non-
deterministic algorithms” is due to Floyd and dates back further [Flo67b].
Even earlier, as a precursor to nondeterministic programs, Rabin & Scott in-
troduced nondeterministic finite automata [RS59].

As for the semantics of nondeterministic choice, the program {C; } 0 {C,}
executes either C; or C,. Both scenarios are possible and we simply have no
information on which branch is going to be executed. In particular, we would
like to stress that it is not meaningful to associate a probability to either execut-
ing Cy or C,. Especially assigning the probability of 1/2 to either possibility
is only seemingly self-evident, but not meaningful. Nondeterministic choice
is thus a possibilistic, not a probabilistic construct. For semantics of nonde-
terministic and possibilistic programs based on possibility theory instead of
probability theory, see [CW08; WC12; WC11].

ExamrrE 2.7 (A Nondeterministic Loop—Free GCL Program):
Consider the following program that extends Example 2.2 on page 25:

Co7 1> {y:=1}0{y:=y-1}5
if(p>0){x:=5}else{x :=2}
Y :=x-3%
skip

This program first nondeterministically either sets y to 1 or decreases y by 1.
Then it performs the same steps as the program from Example 2.2, starting
with the check for y > 0. Notice that this check can either evaluate to true,
i.e. in case that the left branch of the nondeterministic choice was executed

37

38

WEAKEST PRECONDITION REASONING

Y Y
G /> F
,/“\/\/\/\
/1‘
Q/'/\\/
-G N TN T > F
L

Figure 2.5: G is the weakest precondition of nondeterministic program C with re-
spect to postcondition F: Starting in G, C will terminate in F. Starting in
-G, we cannot guarantee anything about the computation of C.

and p was set to 1, or it can depend on the initial value of p, i.e. in case that
the right branch was executed.

Let us now look at weakest preconditions of nondeterministic choices: Recall
that we are interested in a precondition that guarantees both termination and
establishment of the postcondition F. In order to guarantee this regardless
whether C; or C, is executed, the weakest precondition of {C; } O {C,} with
respect to F must be a weakest precondition of both C; and C, with respect
to F. The weakest precondition transformer for {C; } O {C, } is thus given by

wp [{C1} O{ G (F) = wp [Ci] (F) A wp [Co] (F) .

We might recall at this point that for a deterministic program C we could
make the following statement:

If o £ wp [C] (F) then we know that executing C on state o will
definitely not terminate in a state 7 = F.

For a nondeterministic C, however, the statement must be:

If o £ wp [C] (F) then it is not guaranteed that executing C on
state o will terminate in a state T E F.

The situation is depicted in Figure 2.5. Notice that this diagram is the same
as the one in Figure 2.1. There is a hidden difference in the possible compu-

2.2 REASONING ABOUT PREDICATES

tation starting in —G and terminating in F, though: For Hoare triples with
deterministic program C, this possible path stems from the fact that valid-
ity of the Hoare triple (G) C (F) is too weak a statement to exclude this
path. For weakest preconditions of nondeterministic programs on the other
hand, the path from -G to F is instead due to the nondeterminism of C: The
path from -G to F might actually be a possible computation of C. However:
computations starting from —G are not guaranteed to terminate in F.

ExamrrE 2.8 (Weakest Preconditions and Nondeterminism):

We will reconsider the program C,; from Example 2.7 and again, as in Ex-
ample 2.2, reason about postcondition y? > 2. Using the annotation style
from earlier, we annotate C, ; as shown in Figure 2.6. By these annotations,
we establish wp [C, 7] (y2 > 2) = (y > 1). This means that from any initial
state in which p is larger than 1, it is guaranteed that execution of C,; will
terminate in a state in which y? is larger than 2.

Notice that even from a state in which y <1 it is still possible that the pro-
gram terminates in a state satisfying y? > 2, namely if in the nondeterminis-
tic choice the left branch y :=1 is executed. However, this is not guaranteed.
This situation is reflected exactly by the path from -G to F in Figure 2.5,
when instantiating G with y > 1 and F with y? > 2.

2.2.5 Weakest Liberal Preconditions

We have already encountered the phenomenon that certain programs do not
terminate from certain initial states. For instance, the program

while(x=0){x:=x—-1}

terminates only on initial states where x € IN. Our notion of weakest pre-
conditions, however, captures only the fact that a program terminates in a
state satisfying a given postcondition. Sometimes (e.g. later in this thesis), it
is necessary, though, to reason about partial correctness, namely that a post-
condition has to be satisfied only in case that the program terminates (but
termination itself is not guaranteed).

2.2.5.1 The Notion of Weakest Liberal Preconditions

The type of reasoning we require here can be carried out using the notion of
weakest liberal preconditions: Given a program C and a postcondition F, we
call the (unique) predicate G the

weakest liberal precondition of C with respect to F,

39

40 WEAKEST PRECONDITION REASONING

My>1
JJ] true A p>1
{
/] true
JJ1>0
y:=1
Jly>0
bof
My>1
My-1>0
y:=y-1
Jy>0
I
M vy>0 (see Example 2.5)
if (p>0){x:=5}else{x :=2}3
Y :i=x-3%
skip

I v*>2

Figure 2.6: Weakest precondition annotations for Example 2.8.

2.2 REASONING ABOUT PREDICATES

-G NN —F

Figure 2.7: G is the weakest liberal precondition of deterministic program C with
respect to postcondition F: Starting in G, C cannot terminate in —F,
i.e. it will either diverge or terminate in F. Starting in -G, C will
terminate in —F.

denoted wlp [C] (F), if it satisfies the following: From any state o F G

¢ either C terminates in a state T E F,
< or C does not terminate at all.

Moreover, if C is started in a state o [£ G, then C terminates in a state 7 }£ F.
As a diagram, the situation is depicted Figure 2.7 for deterministic programs
and in Figure 2.8 for nondeterminstic programs. The difference is only in
those computations starting from —G: For the possible computation path
from —G to F, recall the explanations on page 38. The possible diverging
path emanating from —G is also caused by the nondeterminism of the pro-
gram: It is possible that C diverges from —G but it is not guaranteed.

If F is some correctness property and we can prove the above, then we say
that C is partially correct, whereas if we additionally require termination (as
it was the case with weakest preconditions) we say that C is totally correct. In
that terminology, weakest preconditions are suited for reasoning about total
correctness whereas weakest liberal preconditions are suited for reasoning
about partial correctness.

2.2.5.2 The Weakest Liberal Precondition Calculus

We now show how to obtain weakest liberal preconditions in a way simi-
lar to the weakest precondition transformer, namely by a backward moving

41

42

WEAKEST PRECONDITION REASONING

[N N
\ N =
A\ NS
. by
;
[1 - 7 T>e
G S W F
- v ~ ’ N
[~.- -
>®
RS ’
/!
T~
- lb
, _
e
e
~ - N -
-G T N v>e oF
L
TN
\
/

Figure 2.8: G is the weakest liberal precondition of nondeterministic program C with
respect to postcondition F: Starting in G, C will not terminate in —F.

continuation—passing style weakest liberal precondition transformer.

Weakest Liberal Preconditions of Loop—Free Programs. The rules for con-
structing the wlp transformer are given in Table 2.2. Let us again ignore the
definition for while loops for the time being and inspect the remaining rules:
For the atomic programs skip and x : = E the rules are exactly the same.

For the remaining loop—free programs, the definitions differ only in the
fact that the right hand sides use wlp instead of wp on subprograms. From
that observation, we can easily conclude that wlp and wp coincide for any
loop—free program, i.e.

¥ loop—free C Y F: wlp [C] (F) = wp [C] (F) .

This does not only make sense when looking at the formal definitions, but it
also makes sense intuitively: Differences between wp and wlp occur only for
nontermination, but this cannot occur in loop—free programs.®

Weakest Liberal Preconditions of Loops. We now turn towards weakest
liberal preconditions of loops. As for diverge, consider the following: Ac-

6 Recall that programs containing diverge are not loop—free.

2.2 REASONING ABOUT PREDICATES

C wip[C] (F)

skip F

diverge true

x:=E F[x/E]

Ci5Cy wip [C1] (wip [C2] (F))

if (p){C
{C1}o{C
)

while (@

else (Co} (@ AW [CI](F)) V (=g A wip [Co] (F))
wip [C1] (F) A wip [Co] (F)
c’) g X. (=@ AF) V (@ Awlp [C] (X))

J
J

Table 2.2: The weakest liberal precondition transformer.

cording to the definition of weakest liberal preconditions, the weakest liberal
precondition of diverge with respect to postcondition F must be a predicate
such that either diverge terminates in a state T | F (however, diverge never
terminates, so this is never the case), or diverge does not terminate (this
is always the case). Therefore, the weakest liberal precondition of diverge
with respect to any postcondition can only be true.

Dually to weakest preconditions, we see in Table 2.2 that the weakest lib-
eral precondition of a while loop is defined using a greatest fixed point opera-
tor (gfp) instead of a least one as

gfp X. (=@ A F) V (@ Awlp [C'] (X))

= O(X)

i.e. the greatest fixed point of the characteristic function ®(X).

Dually to least elements and suprema, a complete lattice also always has a
greatest element and every subset also has an infimum. The greatest element
of the complete lattice (P(X), =) is true. The infimum of a subset S C P ()
is given by

inf S = /\F,
FeS

which is the predicate that corresponds to the intersection of all sets corre-
sponding to the predicates in S.

One can now show that @ is continuous and we thus know by the Kleene
fixed point theorem (A.5) that @ has a greatest fixed point, given by

gfp @ = inf ®"(true),
nelN

43

44

WEAKEST PRECONDITION REASONING

and therefore wlp for while loops is well-defined.

Dually to the situation with least fixed points, a very important fact about
the fixed point iteration of continuous functions is that, if started from the
greatest element of the underlying complete lattice, it converges monotoni-
cally to the greatest fixed point. This means in our particular case that we
have a descending chain

@O(true) &= P!(true) &= DP?(true) «

This fact also follows from the monotonicity of @ which is implied by its
continuity (see A.4).

We can now reconsider diverge from a gfp point of view. Recall that
diverge is a shorthand for while(true){skip}. Then the characteristic func-
tional with respect to any postcondition F is given by

D(X) = (false AF) V (true Awp [skip] (X)) = X,

i.e. the identity function on P(X). Its largest fixed point is obviously the
largest element of P (%), namely true. Therefore,

wp [diverge] (F) = wp [while(true){skip}] (F) = true

Let us again revisit an example and prove the partial correctness of a pro-
gram using the wlp calculus:

ExampLE 2.9 (Weakest Liberal Preconditions):
Reconsider the following program from earlier in this section:

Crg > while(x#0){x:=x—-1}

We would like to reason about the fact that if C, ¢ terminates, it sets x to
0. We can do so by reasoning about the weakest liberal precondition of C; g
with respect to postcondition x = 0. The characteristic function of the loop
with respect to postcondition x = 0 is given by

D(X) =(x=0Ax=0) V (xz0Awp[x:=x-1] (X))

(x=0) V (x20Awp[x:=x-1] (X)) .

Let us perform the fixed point iteration for @ (for wlp the fixed point iteration
for the greatest fixed point goes true, @(true), ®%(true), ®3(true), ... instead
of false, @(false), CD2(false), CD3(false), ... as for wp):

D(true) = (x=0) V (x20 Awp [x :=x—1] (true))
=(x=0) V (x=0 A true)
=(x=0) VvV (x=0)

2.3 REASONING ABOUT VALUES

= true

We see that after only one iteration we have reached a fixed point. By mono-
tonicity of @, this is the greatest fixed point and we hence have

wlp [while(x=0){x :=x—1}] (x=0) = true.

We have thus formally proven the partial correctness property that from all
initial states the program C, g sets x to 0 if it terminates.

23 REASONING ABOUT VALUES

P until now, we have recapped Dijkstra’s original weakest precondition
Ucalculus which enables reasoning at the level of predicates over program
states. We will now see how to take this method of reasoning beyond the
level of predicates to more general functions.

Recall for this purpose our notion of predicates: We have identified a pred-
icate F with a subset of program states, i.e. F € P(X). We also introduced
the Iverson bracket [F] which is the indicator function of F and is of type
¥ — {0, 1}. It is obvious that, in principle, predicates F € P(X) and their indi-
cator functions [F]: £ — {0, 1} are the same.

As a first step to go beyond predicates, we reformulate Dijkstra’s weakest
precondition calculus in terms of indicator functions, i.e. functions f of type
¥ — {0, 1}. The resulting definitions are given in Table 2.3. Let us go ex-
emplarily over the rules for assignment, conditional, and nondeterministic
choice: For the assignment, we have

wp [x :=E] (f) = f[x/E],
where f [x/E] is defined analogously to the case for predicates as
flx/E] = Ao. f(x[x—o(E)]).

This mimics the definition of wp of assignments for predicates.
For diverge, we have

wp [diverge] (f) = 0,

This mimics the definition of wp of divergence for predicates since 0 = [false].
For the conditional choice we have

if (p){Ci}else{Cy} = [p]-wp[Ci] (f) + [~@]-wp[Co] (f),

where - and + are to be understood pointwise, i.e.

fi-f = Ao. fi(0)- fo(0) and fi+fo = Ao. fi(o)+ fo(0).

45

46

WEAKEST PRECONDITION REASONING

C wp [C] (f)

skip f

diverge 0

x:=E f[x/E]

Ci5C wp [C1] (wp [Ca] (f))

if (p){Citelse{Cy} [@]-wp[Ci](f) + [~¢] -wp[Co] (f)
(C1}o(Cy) min{wp [C,] (), wp [C2] (f)}
while(@){C’} Ifp X. [~@]-f + [@]-wp [C'] (X)

Table 2.3: The weakest precondition transformer acting on indicator functions. This
transformer serves also as an anticipation transformer acting on more gen-
eral functions of type f: ¥ — RSj,.

The definition of the conditional choice using - and + instead of A and V is
meaningful since for predicates F, G € P(X) we have that

[FAG] = [F]-[G] and [FVG] = [F]+[G],

and thus A corresponds to - and V corresponds to +.
For the nondeterministic choice construct we have

{C1}O{Cy} = min{wp [Ci] (f), wp [C2] (f)},

where min is also to be understood pointwise, i.e.

min{fy, o} = Ao. min{fi(0), f(0)} .
This is meaningful since for predicates F, G € P(X) we have that
[F AG] = min{[F], [G]},

and therefore A not only corresponds to - but also to min. The choice of -
for the conditional choice and min for the nondeterministic is somewhat ar-
bitrary at this point but we will say more about the role of min shortly. A
very high-level intuition at this point is that we want to express by a- b the
logical connective ,,both a and b must be true”, whereas by min{a, b} we want
to select the ,least true option from a and b“.

2.3.1 Anticipated Values

We saw how to reformulate the weakest precondition calculus to act on func-
tions of type f: £ — {0, 1}. In terms of the reformulated calculus, we can

2.3 REASONING ABOUT VALUES

reason about whether program C will terminate in a state satisfying a predi-
cate F by calculating

wp [C] ([F]) -

So from any state o with wp [C] ([F]) (o) = 1 the program C will terminate in
a state 7 F F, and from any state o with wp [C] ([F])(c) = 0 the program C
will either terminate in a state 7 [£ F or not terminate at all. This means that
wp [C] ([F]) is a function that anticipates the truth of F after termination of C,
or in other words:

wp [C] ([F]) is the anticipated value of [F].

Now that we know that we can use wp to anticipate values of functions of
type £ — {0, 1}, a natural question arises:

Can we anticipate values of more general functions?

For example: can we anticipate the value of program variable x after termi-
nation of C; or as another example: can we anticipate the value of y2 +|sin z|?
It turns out that the answer to that question is yes.

2.3.2 An Anticipated Value Calculus for Deterministic Programs

Consider for the moment only deterministic programs. We would now like to
reason about anticipated values of a more general class of functions, namely
functions from the set of anticipations:

DerinTION 2.10 (Anticipations):
A. The set of anticipations is defined as

A= {f|f:Z>RG},

where RS is the set of non-negative real numbers with an ad-
joined oo element which is larger than every real number.

B. A complete lattice on A is induced by the partial order
A =< f iff VYoeX: fi(o) £ frlo).

The least element of the complete lattice (A, <) is the function that
maps every program state to 0, i.e. the function

Ao. 0O,

which we (overloadingly) also denote by 0. The supremum of a
subset S C A is constructed pointwise as

sup S = Ao.sup f(o).
fes

47

48

WEAKEST PRECONDITION REASONING

It turns out that for anticipating values of functions, we can just reuse the
calculus from Table 2.3 but have the f’s be taken from A. In that sense, the
transformer from Table 2.3 also serves as an anticipated value transformer. So
if we want to know the value that an f € A has after executing C, we just use
f as the postanticipation and determine the preanticipation wp [C] (f) accord-
ing to Table 2.3. In that way we obtain the sought-after anticipated value
of f. The completeness of the lattice (A, <) ensures existence of least fixed
points and thereby well-definedness of wp for loops. Notice that functions as

x = Ado.o(x) and y2+|sinz| = /\a.o(y)2+|sina(z)|

are both members of A.” Notice furthermore that the wp calculus acting on
A subsumes Dijkstra’s original calculus since for every predicate F we have
[F] € A and to all intents and purposes, wp [C] (F) = wp [C] ([F]). Even the
order < on anticipations subsumes the order = on predicates since for
predicates F; and F, we have

F, = F, iff [F]=<[F].

ExampLe 2.11 (Anticipated Values of Deterministic Programs):

A. We reconsider the program C,, from Example 2.2 on page 25 and
instead of reasoning whether y? > 2, we will now directly anticipate
the value of y? after execution of C,,. We will reuse our annotation
style from earlier, i.e.

/4
/4
C

qf

expresses the fact that ¢ = wp [C] (f) and moreover that ¢’ = g. Since
we want to anticipate the value of y2, we will use the function y? as
postanticipation and annotate C,, using the rules from Table 2.3 as
shown in Figure 2.9 (again: read from bottom to top).

In words, wp [C] (yz) =[y>0]-4 + [y <0] tells us that from any ini-

tial state o with y > 0 we will end up in some final state with y? = 4,
whereas if initially y < 0 we will end up in some final state with y? = 1.

B. Reconsider the program C, 3 from Example 2.3:

7 We tacitly assume that x takes only positive values. Otherwise Ao. o(x) would technically not be

amember of A. A more appropriate choice would be the function [x > 0]-x = Ao. [x > 0](0)-0(x)
which is a member of A, but we did not want to clutter the presentation above.

2.3 REASONING ABOUT VALUES

Cys > zZ:=73
while (x> 0){
z:=z+1%
x:=x-1
}
We want to reason about the value that program variable z has after

the execution of C, 3, i.e. about postanticipation z. The characteristic
function of the loop with respect to postanticipation z is given by

D(X) = [x<0]-z+ [0<x]-wp[z:=z+1lsx:=x—-1] (X) .
The first three iterations of the fixed point iteration for ® are:
D0) = [x<0]-z + [0<x<0]-[x]

®2(0) = [x<1]-z + [0<x<1]-[x]
®30) = [x<2]-z+ [0<x<2]-[x]

Detailed calculations can be found in Appendix C.2. After three itera-
tions, we can already start seeing a pattern for n > 1:

D"0) = [x<n—-1]-z + [0<x<n-1]-[x]

Again we omit proving the above pattern correct. By inspection of this
pattern, we see that the preanticipation of the loop converges to

wp [while(x>0){...}] (2)

=sup [x<n-1]-z + [0<x<n-1]-[x]
nelN

z + [0<x]-[x]

For the whole program, we can finally make these annotations:

My + [0<x]-Tx]
Z:=9%
J]z + [0<x]-[x] (see above)
while (x> 0){
z:=2z+13
x:=x-1
}
/s

49

50

WEAKEST PRECONDITION REASONING

We have thus proven wp [C, 3] (z) = y+[0 < x]-[x]. This means that from
all initial states C, 3 terminates and the value of z after termination is
the initial value of y plus — in case that x was initially positive — the
initial value of [x].

One issue we have not investigated so far is the anticipated value of a non-
terminating program execution. Since it is not immediately clear, what the
anticipated value should be, a remark on that matter is in order:

Remark 2.12 (Anticipated Values and Nontermination). Evaluation of the weak-
est preexpectation wp [C] (f) at o is (and indeed has to be) 0 if C does not

terminate on ¢. Thus, when observing e.g. wp [C] (x)(c) = 0 alone, we can-

not know offhand whether C terminates on ¢ in a state with x = 0 or whether

C does not terminate on o.

While it might seem somewhat arbitrary at first glance, we can get an in-
tuition for that 0 by looking at the anticipated value of C with respect to
1 = [true]. Recall that wp [C] (1) (o) evaluates to 0 exactly if C does not ter-
minate on ¢ and for reasons of continuity wp [C] (f) (o) has to evaluate to 0
for any f in case C does not terminate on o. A

2.3.3 Anticipated Value Calculi for Nondeterministic Programs

We now turn towards anticipated values of nondeterministic programs. As
we know, the nondeterministic choice {C;} O {C,} executes either C; or C,
and we have no information on what is going to happen. We can therefore
not speak of the anticipated value of a function f since there might be multi-
ple values that a program can yield. For instance, the program

x:=03%
{c:=0}O{c:=1}s
while(c=1){
x:=x+13
{c:=0}O{c:=1}
}

may even yield any natural number for x or not terminate at all. The range
of anticipated values of x is therefore infinite here.

For weakest preconditions of nondeterministic programs it made sense
to choose the least true value min{wp [C;] (F), wp [C;] (F)} as the weakest
precondition of { C; } O {C, } with respect to postcondition F. For anticipated
values, this is a meaningful possible choice as well, i.e. we can define

wp [{C1} {C)] (f) = min{wp [Ci] (f), wp [Co] ()}

2.3 REASONING ABOUT VALUES 51

JI ly>0]-4 + [y<0]
J] ly>0]-4 + [y<0]-1

if (y>0){
4
Jl (5-3)°
%325
I (x-3)°
Jelse|
/!
J (2-3)?
% 3=2
Jl (x-3)°
}s
Jl (x-3)°
Y :i=x-3%
v
skip
a v

Figure 2.9: Anticipated value annotations for Example 2.11 a.

52

WEAKEST PRECONDITION REASONING

where min is again meant pointwise, i.e.

min{f}, f,} = Ac. min{f (o), f2(0)} .

wp [{C1} O {C,}] (f) thus assigns to each initial state the least anticipated
value of f. We call this the demonic model of nondeterminism. This model
enjoys the nice property that it subsumes the weakest precondition calculus
for nondeterministic programs and hence we will continue to use the symbol
wp in the context of demonic nondeterminism.

While we just saw that min is a quite natural choice, there are use cases
where choosing max instead of min is more meaningful, e.g. when reasoning
about expected runtimes (see Chapter 7). In this case, we employ a so—called
angelic model of nondeterminism, which gives us a different transformer awp
for greatest anticipated values. This transformer is defined analogously to wp
except on nondeterministic choice constructs, on which it is given as

awp [{C1} O{C}] (f) = max{awp [Ci] (f), awp [Co] (f)} -

Note that wp and awp obviously coincide on deterministic programs.

Both angelic and demonic nondeterminism are in some sense extremal and
one could certainly think of other models. The advantage of these two mod-
els, however, is that they yield relatively easy definitions and the resulting
calculi enjoy several nice properties.

ExamrpLE 2.13 (Anticipated Values of Nondeterministic Programs):
We will reconsider the program C, ;7 from Example 2.7 and reason about the
least anticipated value of y? as shown in Figure 2.10. By these annotation,
we have established wp [C] (yz) =1+ [y>1]-3. This tells us that from any
initial state in which y is larger than 1, C will terminate in a state where y is
at least 4, and if initially y <1 then in a state T where p is at least 1.

Notice that even from a state in which y < 1 it is still possible that the
program terminates in a state where 2 is at least 4, namely if in the nonde-
terministic choice the left branch y :=1 is executed.

2.3 REASONING ABOUT VALUES

M 1+[y>1]-3
JJ min{4, [y>1]-4+[y<1]}
{
J7 4
JJ[1>0]-4 + [1<0]
y:=1
J ly>0]-4 + [p=<0]
bof
M y>1]-4 + [y<1]
J] ly-1>0]-4 + [y-1<0]
y:=y—-1
[Ty>0]-4 + [p<0]
}5

J][y>0]-4 + [y<0] (see Example 2.11)
if(p>0){x:=5}else{x :=2}s

Y :i=x-33

skip

v

Figure 2.10: Anticipated value annotations for Example 2.13.

53

PROBABILISTIC COMPUTATIONS

Guarded Command Language (pGCL). This model programming language
is a syntactic superset of Dijkstra’s GCL and enriches it by probabilistic
constructs for modeling probabilistic computations.

Semantics of structured probabilistic programs have been first studied by
Kozen in the late 70’s and early 80’s [Koz79; Koz81; Koz83; Koz85]. He did
not consider nondeterministic choice as Dijkstra did in his GCL but instead
replaced it with probabilistic choice. Later, Mclver & Morgan (re)introduced
nondeterministic choices [MMS96; MMO05]. We follow their approach here
and present a variant of their pGCL, i.e. a programming language that fea-
tures both kinds of uncertainties: randomness and nondeterminism.! We
begin with a note on the difference between these two sources of uncertainty.

IN this chapter, we introduce syntax and semantics of the probabilistic

31 RANDOMNESS VERSUS NONDETERMINISM

ONSIDER a fair (random) coin. If we flip the coin, we do not know upfront

what the outcome will be: heads or tails. Since the coin is fair, there
is not even a bias towards one of the two outcomes. We could thus think
that all we know is that the outcome will be either heads or tails. However,
that is actually not quite all we know. We do have an additional grain of
information in knowing that both outcomes are equally likely to occur, each
with probability 1/2.

Suppose a gambler approaches us and proposes the following bet:

»1 bet you a troy ounce of gold that if you flip this fair coin 10
times in a row, it will land on heads each of those times.”

Should we bet on it? By knowing that the coin is fair, we actually have a
tremendous amount of information about this bet, namely that the chance
of winning is

1- % = 99.90234375%,
and we would thus be well-advised to take the chances, unless we are some-
what overly risk-averse.
We now consider a nondeterministic coin that is modeled by the following
mechanism: A fair (random) coin is flipped by us and then a blindfolded

1 We will use the terms random and probabilistic synonymously.

55

56

PROBABILISTIC COMPUTATIONS

oracle is asked to announce the outcome of the coin flip. The outcome of this
nondeterministic coin flip is then either correct (in case the oracle’s announce-
ment is correct) or incorrect (in case the announcement is incorrect) and this
is in fact really all we know about the outcome of the entire experiment. Does
the oracle just randomly (i.e. probabilistically) guess an answer? If yes, is the
oracles guess biased in any way? Would that even matter? Or does the oracle
even have the superhuman ability to correctly announce the outcome of the
coin toss every single time? (Or with high probability?) Is it even possible
that we are being tricked in some way and the oracle is somehow reliably
informed about the outcome of the coin toss? To make a long story short:
There is a myriad of possibilities for the oracle to come to its conclusion and
we have no clue about the underlying mechanism.
Suppose that the gambler approaches us and proposes the following bet:

,»1 bet you a troy ounce of gold that the oracle will make a correct
announcement 10 times in a row.“

Should we bet on it? By knowing basically nothing about the outcomes of the
nondeterministic coin, we can only hope that the oracle fails to make 10 cor-
rect announcements in a row, but we cannot reasonably associate a probability
or even any quantity to this outcome. We can only state that this unfavorable
outcome is possible. If we want to play it reasonably safe, we should perhaps
not take those chances.

To summarize: Randomness is a kind of uncertainty where we can mean-
ingfully assign a quantity — namely a probability — to each of the possible
outcomes, whereas nondeterminism is a kind of uncertainty where we can
only say for each outcome whether there is a possibility for it to occur or not.
Random behavior thus allows for quantitative reasoning, whereas nondeter-
ministic behavior only allows for qualitative reasoning. Mixing both behav-
iors in a single computational process is widely acknowledged to be problem-
atic and is an active area of research (see e.g. [VW06; Var03; TKP09; Mis00;
KP17]). We will later present the calculus of McIver & Morgan that attempts
to do quantitative reasoning about programs in a language which features
both probabilistic and nondeterministic uncertainty by resolving nondeter-
minism in the least favorable way.

3.2 pGCL — APROBABILISTIC GCL

ccgss to some source of randomness is a key ingredient for a program-

ming language that models probabilistic computations. There are dif-
ferent concepts for introducing randomness into the computation, e.g. ran-
dom inputs, internal coin flips, sampling values from predefined probability
distributions, etc. We (and many others) choose for our development two
sources of randomness:

3.2 pGCL — a proBaBILIsTIC GCL

< coin flips, biased according to some rational probability, and

4 sampling of values from discrete probability distributions.

For incorporating the aforementioned two sources of randomness, we endow
Dijkstra’s GCL with a probabilistic choice and a random assignment construct,
thereby obtaining a probabilistic GCL. Formally, this probabilistic program-
ming language is defined as follows:

DeriniTION 3.1 (A Probabilistic Guarded Command Language):

A. A function mt: Vals — [0, 1] is called a probability distribution over
values if) cyas 70(v) = 1. We denote the set of all probability dis-
tributions over values by D (Vals). A distribution expression is a
function

u: X — D(Vals)

that maps every program state to a probability distribution over
values. Recall from Definition 2.1 that Vals is always required
to be countable and therefore every probability distribution over
values is a discrete probability distribution.

B. A probability expression is a function
p:X—-[0,1]1NnQ
that maps every program state to a rational probability.

c. The set of programs in probabilistic guarded command language,
denoted pGCL, is given by the grammar

C — skip (effectless program)
| diverge (freeze)
| x:=E (assignment)
| x =~ p (random assignment)
| CsC (sequential composition)
| if (p){C}else{C} (conditional choice)
| {C}o{C} (nondeterministic choice)
| {C}[p]{C} (probabilistic choice)
| while(@){C}, (while loop)

where x € Vars is a program variable, E is an arithmetic expres-
sion over program variables, y is a distribution expression, ¢ is a
boolean expression over program variables guarding a choice or a
loop, and p is a probability expression.

57

58

PROBABILISTIC COMPUTATIONS

p. A pGCL program containing no diverge statements and no while
loops is called loop—free.

E. A pGCL program that contains neither random assignments nor
probabilistic choices is called nonprobabilistic. A pGCL program
that contains no nondeterministic choices is called tame. A pGCL
program that contains neither constructs of randomness nor con-
structs of nondeterminism is called deterministic.

Every language construct from GCL is also contained in pGCL. Their com-
putational effects are exactly the same in pGCL as they are in GCL (see Sec-
tion 2.1). We thus only go over the probabilistic constructs introduced in
pGCL here, starting with the conceptually simpler one.

Probabilistic choices. The probabilistic choice construct

{C1}[pI{Ca}

behaves as follows: It evaluates probability expression p in the current pro-
gram state o to obtain a probability p(o). Then, it executes C; with probabil-
ity p(o) and C, with probability 1 —p(o).

ExampLE 3.2 (Probabilistic Choices):
A. The program

{x :=x+1}[25]{z :=17}

increments variable x by 1 with probability 2/3 and it assigns the con-
stant 17 to variable z with probability 1 —2/3 = 1/3.

B. If the current program state is o, then the program
{x i=x+ 1} [V/ix+1] {x :=x—1}

increments variable x by 1 with probability /|o(x)+1 and decrements x
by 1 with probability 1 — Vje(x)+1 = l0®)I/|o(x)|+1. Therefore, the further
away from 0 the value of x is, the less likely it is that x is incremented.

Random Assignments. The random assignment construct
Xxp

behaves as follows: It evaluates distribution expression y in tn the current
program state o to obtain a discrete probability distribution 7 = p(0). Then
it samples a value from 7, thus obtaining a sample value v € Vals with prob-
ability 7t(v). This value v is then assigned to variable x.

3.2 pGCL — a proBaBILIsTIC GCL

For denoting distribution expressions, we use bra—ket notation [Wikc]. For
example, distribution expression

L+ 10)+ §-le)

denotes a distribution where value a is sampled with probability 1/2, b with
probability 1/3, and ¢ with probability /6.

ExamrrE 3.3 (Random Assignments):
A. The program

xS x+ 1)+ 5 x-1)

increments or decrements variable x by 1, each with probability 1/.
It does so by first evaluating the distribution expression /2-|x+1) +
1/2-|x —1) in the current program state o. This gives the distribution

n(v) = %, ifv=0(x)+1lorv=0(x)-1
0, otherwise.

Then the program samples from 7. By that, the values o(x)+ 1 and
o(x) — 1 are each sampled with probability 1/2. The sampled value is
then assigned to variable x.

B. Like the program from Example 3.2 B., the program

1

X~ T

X x—1)

|
x4+ 1)+ Ers|

too increments variable x by 1 with probability /js(x)+1 and decre-
ments x by 1 with probability lo)l/|s(x)+ 1. It does so by first evaluating
the distribution expression /|x+1-|x + 1)+ /|x+1-|x — 1) in the current
program state o. This gives the probability distribution

1 ifv=0(x)+1

lo(x)l+1”
= o (x)] oo
n(v) W’ 1fv—0(x)—1
0, otherwise.

Then the program samples from 7. By that, the value o(x)+1 is sampled
with probability 1/|o(x)+1 and the value o(x)— 1 is sampled with proba-
bility lo(®)I/|o(x)|+1. The sampled value is then assigned to variable x.

59

60

PROBABILISTIC COMPUTATIONS

c. The program
k :=~ Unif[1...10]

assigns to program variable k one of the integers between 1 and 10,
each with probability 1/10.

p. If the current program state is o, the program
k :~ Unif[1...n]

assigns to variable k an integer value between 1 and o(n), where n is a
program variable,? each with probability /().

We have just provided a more or less formal intuition on what the two prob-
abilistic choice constructs do computationally. In the following sections, we
will provide several precise semantics to probabilistic programs.

3.3 SEMANTICS OF pGCL

EMANTICS of programming languages are precise mathematical descrip-
Stions of a program’s computational effects. For deterministic (nondeter-
ministic) programs, it often provides a mapping from initial states to (sets
of) final states. It thus tells us what the (possible) outcome(s) of excuting a
program on a given initial state is (are). Such mappings are qualitative in
that a given initial state is either mapped to a given final state or not. In con-
trast to that, probabilistic programs clearly require quantitative information
in order to make for a meaningful semantics.

In this section, we describe two different operational semantics of pGCL.
They are operational in the sense that they describe a step-by-step, i.e. in-
struction-by—instruction, execution of a program and the according evolu-
tion of program states over the course of the execution. Such semantics are
called small-step semantics or structural operational semantics [Plo04]. We will
also show how the two operational semantics are related. Moreover, we will
learn how we can think of the outcome of a probabilistic computation as a
probability distribution over final states. This can be thought of as a big—step
semantics, that maps input states directly to an outcome.

3.3.1 Computation Tree Semantics

Computation trees naturally occur in studies of nondeterministic Turing ma-
chines (e.g. [PZ83]) and alternating Turing machines [CKS81], but also in
studies of deterministic computations like recursive functions [Gri99]. In

2 We tacitly assume that o(n) is a natural number.

3.3 semaNTICcs oF pGCL

the latter, computation trees model multiple subcomputations that may have
to be evaluated. For alternating Turing machines, we can think of computa-
tions as games played on trees, where branching represents alternatives for
the players to choose from. For nondeterministic Turing machines, branch-
ing of their computation tree also represents different alternatives in which
a computation may proceed. Computation trees constitute one of the most
basic and robust representations of computation and we will thus view them
as the base layer small-step semantics of probabilistic computations against
which all our soundness results will be proved.

For pGCL we will present a computation tree semantics in the vein of non-
deterministic Turing machines, where branching represents alternatives in
which the computation may proceed either due to randomness or nonde-
terminism. The nodes of the tree represent current configurations of the
computation and the edges computation steps, i.e. progress in computation.
Formally, this computation tree semantics is defined as follows:

DeriniTION 3.4 (Computation Tree Semantics of pGCL):
A. A configuration « ={C, o, n, 0,1, q) comprises of

4 either a program C € pGCL that is left to be executed or a
symbol C = | indicating successful termination,

4 a program state, i.e. a variable valuation, 0 € ¥,

< the number n € IN of computation steps that have been exe-
cuted in the past over the course of the computation,

% the history 0 € IN* of all probabilistic choices that were made,

< the history 1 € {L, R} of all nondeterministic choices that
were made, and

4 the probability q € [0, 1] N Q of reaching the configuration if
nondeterministic choices are resolved according to 1.

We denote the set of all configurations by IK. Notice that K is
countable, since pGCL, ¥, IN*, {L, R}*, and [0, 1] N Q are countable.

B. A transition relation + C IK x IK between configurations is defined
as the smallest relation satisfying the rules given in Figure 3.1. As
usual, we denote by +* reachability within k applications of - and
by " the reflexive—transitive closure of .

c. The computation tree of executing program C € pGCL on input
o €Y, denoted 7“7, is a tree (ky, K, E) where
+ x9=(C,0,0,¢, ¢, 1) is the root of the tree,
4 K={x|xo+" «x} is the set of nodes in the tree, and

4 E =(K xK)Nt is the set of edges of the tree.

61

62 PROBABILISTIC COMPUTATIONS

ki
kipo,m g r Lo Lo g COP
di
(diverge, o,n,0,1,9) + (diverge,0,n+1,0,1,9) (diverge)
v = o(E) .
(assign)

(x:=E,0,m,0,1,q9) + {l,o[x—>v],n+1,0,n,9)

pulo)v) =a >0 N1lw) =i
(x=p0,n0,nq) F {L,olxmv],n+1,0i,nq-a)

(rnd-assign)

(C1,0,n,0,1,9) + <C|’,ﬁ’, n+1,0, ;]’,q’> cl =1

(seq1)
(C15Cy,0,n,0,1,q) F <C1 $Cy0,n+1,0, 1, q’>
(C,0,1,0,1,9) v {L,o/,n+1,0,1,q") (seq2)
(C15Cy0,n,0,1,q) F {Cy,0,n+1,0",1",9") q
=t
p(o) rue (if1)

(if(@){Ci}else{Cy},0,n,0,1,q9) + {(Cy,0,n+1,0,14,9)

p(o) = false (if2)
(Gf(@){Cilelse{Cy},0,1m,0,1,q) + (Cyo,n+1,0,1,9) '
1
{C1o{C},o,m,6,1,9) + {(C;,0,n+1,6,1L,q) (nondet1)
det2
ACTOIC L o m O,y F (Coro,nal, 0,7k, gy nondet2)
plo) = a
1
{Ci}pl{Ca},0.m60,1,9) F (Ci,0,n+1,00,1,q-a) (probl)
plo) = a
ACHPICa) 06, q) ¥ (Covo, i 1, 0L, g -(1—ay PrOP?)

@(0) = true
(while(@){C},0,n,0,1,q9) + (Ciwhile(@){C},0,1n+1,0,1,9)

(whilel)

¢(o) = false
(while(@){C},0,1,0,1,q) + (L,0,1+1,0,1,9)

(while2)

Figure 3.1: Inference rules for the transition relation + between configurations. Recall
from Definition 2.1 A. that N is a bijective enumeration of Vals.

3.3 semaNTICcs oF pGCL

A configuration represents the current state of a program execution together
with a history of probabilistic and nondeterministic choices that have been
made in past computation steps and together with the resulting probability
with which this configuration is reached. Given a concrete configuration

k=(Co,n6,14q),

component C indicates the rest of the program that is left to be executed.
C thus plays the role of a program counter, except that it does not contain
a line number but instead it contains the entire program that is left to be
executed. Notice that if C is a while loop while(¢@){body} that is about
to perform one more iteration of its loop body (i.e. ¢(o) = true), then the
(whilel)-rule prepends while (@){body} with a copy of body (thus obtaining
bodyiwhile(¢@){body})in order to account for the iteration of the loop body.
As a consequence, the ,program component of the configurations along con-
secutive F—transitions does not necessarily get shorter and shorter just as the
line numbers of a program counter would not grow strictly larger and larger
when performing several iterations through a loop.

Component o is the current program state that contains the variable valu-
ations. We can thus think of ¢ as the memory which the program instructions
can read from and write to.

The component n of configuration « is the number of computation steps
that have been executed in the past. We can think of n as a runtime tracker.

Components 6 and # are the histories of choices that have been made in
the past. Whenever a probabilistic or nondeterministic choice is made, this
choice is recorded by appending it in either to 6 or #, respectively. The
history of nondeterministic choices # is a sequence of letters L and R for
Left and Right. For the history of probabilistic choices 8, we need infinitely
many symbols because for the random assignment it is conceivable that we
can choose a value v from arbitrarily (or even countably infinitely) many val-
ues.> We thus make use of the canonical enumeration N of Vals introduced
in Definition 2.1 a. and record X~!(v) in the history of probabilistic choices
whenever we sample value v at a random assignment.

Lastly, component g is the probability with which configuration x was
reached, i.e. the multiplied probabilities with which all probabilistic choices
on the path from the root of a computation tree to x were made.

The transition relation r represents single computation steps. Thus, if
k + k’, then executing a single atomic instruction, checking a single guard
(of a conditional choice or a while loop), or flipping a single coin (prob-
abilistic or nondeterministic) takes the computation from configuration x
to configuration x’.

The computation tree 7% as a whole is a tree-representation of all com-
putations that can emanate from executing program C on input ¢. The root

3 This is for instance the case for the random assignment x := Unif[0...#n].

63

64

PROBABILISTIC COMPUTATIONS

kg = (C, 0,0, ¢ ¢ 1) of the tree is the initial configuration. It is trivially
reached with probability 1 and no (i.e. 0) execution steps have been exe-
cuted in the past. Also, neither probabilistic nor nondeterministic choices
have been made so far. Both histories are thus the empty word . The set
of nodes K = {«x | kg " x} is the set of all configurations reachable with non—
zero probability under some strategy for resolving nondeterministic choices.
The set of edges E = (K x K) N+ connects the reachable configurations accord-
ing to a small-step execution semantics.

Notice that in case of a deterministic program C, the computation ,tree”
degenerates to a sequential list because branching only occurs when proba-
bilistic or nondeterministic coins are flipped. In particular notice that con-
ditional choices and while loops do not cause branching in the computation
tree, since the current program state either satisfies the guard or not and
the subsequent configuration is therefore completely determined by the cur-
rent configuration (in particular the program state). Let us now look at an
example of a computation tree:

ExampLE 3.5 (Computation Trees of Probabilistic Programs):
Consider the program C given by

while(c=1){
{c :=0}[V2] {skip}
}

and some initial state ¢ with o(c) = 1. Then the computation tree 7<% of
executing C on o is shown in Figure 3.2.

We can observe that the entire computation tree 7<% from Example 3.5 is
isomorphic to its own subtree emanating from (while(---}, g, 3, 1, &, 1/2) and
also to the subtree emanating from (while(---}, o, 6, 1, ¢, 1/4). This is due to
the fact that future progress in computation in general does not depend on
the (histories of) probabilistic and nondeterministic choices that were made
in the past but solely on the current program C that is left to be executed
and the current program state 0. This independence from the histories can
be captured formally by an equivalence of r—transitions as follows:

Prorosition 3.6 (Equivalence of --Transitions):
The following equivalence holds:

(C,o,n,0,1n,9) v (C',o",n+1,0w,nu,q’)
iff (C,0,0,¢6¢6 1) F{(C,o’,1,w,u,d/)

3.3 semaNTICcs oF pGCL

(while(c=1){{c:=0}[12]{skip}},0,0,¢ ¢ 1)

J (whilel)

<{C::()}Ph]{Skip}gyarl,s,e,l>

while(--}
(seql), (pmbu/ \seql (prob2)
<C::0; ,0',2,0,6,'/2> <5k|p9 ,0,2,1,¢, 1/z>
while(--} while
(seql), (assign) J (seql), (skip)
(while(:--},0[c+ 0], 3,0 ¢, 1) (while(---},0,3,1,¢ 1/2)

(while2) J (whilel)

<{C::0}[1/Z]{Skip}3,

(L,olc—0],4,0,¢ 1) o, 4,1,¢, 1/2>

while(:--}
(seql), (probl)/ \(Seql),(probZ)
<C =05 o510, 1/4> <Sk]p" ,0,511,¢, 1/4>
while(:---} while
J (seql), (assign) J (seql), (skip)
(while(:--}, 0[c 0], 6,10, ¢, 1/4) (while(:--},0,6,11, ¢, 1/4)

(while2) J (whilel)

(l,0[c—0],7,10, ¢, /1)

Figure 3.2: Computation tree 7C9 of executing the probabilistic program C =
while(c=1){{c :=0}[1/2] {skip}} on a state ¢ with o(c) = 1. Edge labels
indicate which r—rules are used to derive this transition. Notice that 7¢:@
is infinite since all configurations of the form (while(---}, o, 3n, 1", ¢, 1/27)
for n € IN are reachable along a rightmost path.

65

66

PROBABILISTIC COMPUTATIONS

Proposition 3.6 can be interpreted as a form of reconditioning or rescaling:
If we arrive at some configuration (C, 0, n, 6, 1, q) with probability g and
transition from there to a configuration (C’, 6/, n+ 1, Ow, yu, q’) then this
happens with probability 47;. We can then renormalize g to 1, reset the run-
time tracker, and delete all histories: Given that we have somehow reached
a configuration with program C and state o we can restart from there and
transit with probability 47 to configuration (C’, ¢’, 1, w, u, 9/7). This rescal-
ing can be interpreted as a Markov property showing that the probability of
transiting to a next configuration depends solely on the current state of the
execution (comprising of program and program state) and not on any his-
toric events. In Section 3.3.3, we thus ,quotient out” the runtime tracker,
the histories, and the probability g and by that obtain a Markov decision
process semantics for pGCL.

3.3.2 Distributions over Final States

In the previous section we saw that execution of a probabilistic program can
result in multiple (even infinitely many) possible computation paths since
— in contrast to deterministic programs — the behavior of the program de-
pends not only on the initial state but also on nondeterminism and random-
ness. This goes so far that a program may terminate only with a certain
probability strictly between 0 and 1.

So how can we now conceive of the outcome of a probabilistic computation?
Let us leave nondeterminism out of the picture for the moment, i.e. let us
consider only tame programs. Despite the fact that executing such programs
does not necessarily yield a unique final state, tame probabilistic programs
do yield a unique probability distribution over final states. To be more precise,
we are dealing with subdistributions, i.e. distributions with a total mass that
may be less than 1. The ,,mass defect” of the resulting subdistribution then
represents the probability of nontermination. To see that this is not just a
convenient way for modeling, consider the program

{diverge} [1/3]{x :=5}.

Starting this program in some initial state o will give a proper subdistribu-
tion over final states y given by

ift=0[x+ 5]

2
p(r) = 33
Ol

otherwise.

For each potential final state 7, this subdistribution u gives us by u(7) the
precise, unnormalized probability that the execution of the above program
will terminate in final state 7. The total mass of y is 25 and the missing

3.3 semaNTICcs oF pGCL

(C,o,n,0,1n,q9) + (C',o,n+1,0,4L, q)
(C,o,n,0,n,q9) + (C",0,n+1,0,1R, q)
s(C,o) =L

s—sched1

(C,o,m,0,1n,q) +s (C',o,n+1,0,1L, q) (s-sched1)
(C,o,n,0,1,9) v (C',o,n+1,0,4L,q)
(C,o,n,0,n,q9) + (C",0,n+1,0,1R, q)

s(C,0) = R heds

(C,o,1n,0,1,9) +s (C",0,n+1,0,4R,q) (s-sched2)
Cr o,n, 97 ’ F C’, CJ, n+ 1,0/, , !

< 4 + (o) (s—sched3)

(C,o,n,0,1,q) +s {C,0",n+1,0",1,9")

Figure 3.3: Inference rules for defining the s-scheduled transition relation 4 be-
tween configurations, where s € Scheds is a scheduler.

probability mass of 1/3 is the probability that no final state is reached, i.e. the
probability of nontermination.

Let us now bring nondeterminism back into the picture and see how we
can describe the outcomes of executing general pGCL programs on given ini-
tial states in a systematic way, namely by extracting probability distributions
over final program states from computation trees. For that, we first need a
way to remove nondeterminism from the computation tree so that it becomes
a purely probabilistic transition system, since otherwise there need not exist
a unique probability distribution. We do this by means of restricting the
number of successors in the - transition relation.

DeriniTiON 3.7 (Scheduled +-Transitions):
A scheduler s is a function

s: pGCLx X — {L, R}

mapping pairs of programs and program states to either letter L or R.
The set of all schedulers is denoted by Scheds.

For s € Scheds, the s—scheduled transition relation -, is given by the
inference rules in Figure 3.3.

Schedulers are a means of resolving nondeterminism in systems that feature
both probabilistic and nondeterministic uncertainty [Var85; Put05]. Sched-

67

68

PROBABILISTIC COMPUTATIONS

uled transitions behave just like unscheduled ones (see rule (s—sched3)) with
a single exception (see rules (s—schedl) and (s-sched2)): When program C
executes a nondeterministic choice, the scheduled relation 4 selects a single
successor configuration according to scheduler s, whereas the unscheduled
relation + has to two successors in pari passu.

The single purpose of a scheduler is thus to resolve nondeterministic choices.
The benefit is that this allows for defining a probability distribution over
final states that is established by executing a probabilistic program on some
initial state under a scheduler that resolves nondeterminism.

DEerintTION 3.8 (Probability Distribution Semantics of pGCL):

Let C be a pGCL program, o € ¥ be an initial program state and s €
Scheds be a scheduler. Then the distribution over final states estab-
lished by executing C on input o under scheduler s, denoted [C]3, is a
(sub)probability distribution over program states* given by

[C5(0) = Zq, where

(L, 1,n,6,1,q)eK

K = {(l, T, n,9,f1,q)|(C,a,0,e, g1y Fo (I, T,n,G,n,q)}.

Notice that in case of tame programs, the scheduler is entirely irrelevant and
the programs naturally produce probability (sub)distributions. We thus omit
the scheduler for tame programs and simply write [C] . We conclude this
section with some examples of both nondeterministic and tame programs.

ExamrpLE 3.9 (Probability Distributions of pGCL Programs):
A. Consider the program

{x:=1-x}0O{skip}s
{x:=0}[12]{x:=1},

some initial state o, and any scheduler s. Then the probability distri-
bution [C], is given by

1 .
. 5, ift=o0[x—>0]ort=0[xrH>1]
[Cl5(r) = 42
0, otherwise.
Note that the probability distribution is unique, no matter what sched-
uler is imposed.

4 Le. [C]5: X —10,1], such that } ;5 [C]5 (7) < 1.

3.3 semaNTICcs oF pGCL

B. Consider the program

{x:=0}[V2]{x:=1}s
{x:=1-x}0O{skip},

some initial state o, and scheduler s,,;, given by

L, ifo’(x)=1
Smin(C, OJ) = it otx)

R, otherwise.

Then the probability distribution [C]"" is given by

1, ift=0’ 0
[CI2 (%) = ift=0"[x+—0]
0, otherwise.

c. Consider the program Cg, given by

while(c=1){
{c:=0}[12]{x :=x+1}
}

and some initial state o with o(c) =1 and o(x) = 0. Then the compu-
tation tree 7 %% of executing Cgeo On 0 is shown in Figure 3.4. The
resulting probability distribution [[Cgeoﬂ , s given by

,++, ift=0(c,x+— 0,n], forne N
[[C]]U(T): 2 1 []

0, otherwise.

The program C thus establishes a geometric distribution on x whenever
it is ran on an initial state o with o(c) = 1 and o(x) = 0. Notice that
schedulers are irrelevant and thus omitted since C, is tame.

3.3.3 Markov Decision Process Semantics

In Section 3.3.1, we presented a very basic computation tree semantics of
pGCL programs in which configurations contained histories of choices that
were made in the past. We also noticed that computation steps are indepen-
dent from those histories (see Proposition 3.6). In this section, we present
a semantics for pGCL in which those histories are omitted. The semantics
we are about to present will be based on Markov decision processes (MDPs).
We do not introduce them here but instead refer to Appendix B for basic

69

70 PROBABILISTIC COMPUTATIONS

(while(c=1){{c:=0}[12]{x:=x+1}},0,0,¢ ¢ 1)

J (whilel)

<{c =0} el {x = x b 1)y 5'1>
)

while (-
(Ezgih), (et)/ \(scql), (prob2)
<C2:o; ,0’,2,0,6,1/2> <X =x+13 U,271’5’1/2>
while(---} while(
(seql), (assign) j () ()
(while(---},0[c0],3,0,¢ 1) (while(---}, o[x1],3,1, ¢ 12)
(while2) l (whilel)
=0} [12 = 1
(l,0[cr0],4,0,¢ 1/2) <{C Y] {x i=x+ } ol 14 1, 8’1/2>
while(---}
(seql), (probl)/ \(seql)y (prob2)
c:=03 Xi=x+13
,0[x+—1],5,10,¢, /4 ,o[x—>1],511,¢ V4
while(---} while(---}
j (seql), (assign) l (seql), (skip)
(while(--}, 0 [c, x> 0,1], 6,10, a) (while(---}, o [x 2], 6,11, ¢, 1)

(while2) J (whilel)

(Lole,x—0,1],7,10, ¢, 1/4)

Figure 3.4: The computation tree T Caeor® yielded by executing program Cg =

while(c=1){{c :=0}[1/2]{x :=x+1}} on an initial state ¢ with o(c) = 1
and o(x) = 0. Edge labels indicate which F—rules are used to derive this
transition. Notlce that 7 Ceeo? s infinite since all configurations of the
form (while(---}, o [x > n], 3n,1", ¢, 1/2") for n € N are reachable along
a rightmost path.

3.3 semaNTICcs oF pGCL

s a s P(s, a)(s’)

(oY N (C"o") if (C’,0’,0,¢,6,1) v {(C",0”,1,0,¢,9)

otherwise.

<C,, O_I> L <C”, O_//)
otherwise.

(0 R (VoM if (C,07,0,6,61) F (C”,0',1,¢ R, 1)

otherwise.
{, o ’ Y N (sink)
(sink) N (sink)

— all other cases —

q,

O;

1, if{(C’,0’,0,¢¢61) F (C",0/,1,¢L, 1)
0,

1;

0!

1

1

0

Table 3.1: Definition of the transition probability function of operational MDPs.

definitions, to Baier & Katoen for more details [BK08, Chapter 10], and to
Puterman for a dedicated in—depth treatment [Put05].

A Markov decision process semantics for pGCL was presented by Gretz,
Katoen, and Mclver [GKM12; GKM14]. Earlier work on viewing programs
as Markov decision processes was presented by Monniaux [Mon05]. The se-
mantics we present in the following is basically the one of Gretz et al. and
differs only in minor technical details (e.g. in that Gretz et al. do not con-
sider random assignments).

DEerintTION 3.10 (Operational Markov Decision Processes):
The operational MDP of executing program C € pGCL on input o € ¥ is

the MDP (cf. Definition B.1) M%7 = (S, (C, o), {L, R, N}, P), where

+ S ={(C) I (C,0,0,6¢6 1) (C,a",n,0", 1, 9"y} U{(sink)} is a
set of states,

4+ (C, o) is the initial state,
¢ {L, R, N} is the set of actions, and

4 P is the transition probability function defined according to the
rules in Table 3.1.

A state of an operational MDP represents a collection of all computation tree
configurations that share the same program and program state. A designated

71

72

PROBABILISTIC COMPUTATIONS

(sink) state acts as a sink after reaching a state of the form (|,) indicating
termination of the computation. This sink is needed since in MDPs every
state needs at least one successor state. The actions are given by the let-
ters L, R, and N which stand for Left, Right, and None, respectively. L
and R indicate which branch is chosen when performing a nondeterminis-
tic choice whereas N is the default action when no nondeterministic choice
is to be executed.

The probability P(s, a)(s’) determined by the transition probability func-
tion P is the probability of making a transition from state s to state s’ with ac-
tion a. Let us very briefly go over the definition of the transition probability
function in Table 3.1: The first rule deals with deterministic and probabilis-
tic instructions (i.e. guard evaluations, probabilistic choices, deterministic
assignments, and random assignments) in the self-evident way. The associ-
ated action is N since no nondeterministic choice is performed.

The next two rules cover nondeterministic choices. The transition proba-
bilities are either 1 or 0 since no randomness is involved; the action must be
either L or R in order to determine which branch is chosen.

The rule P({l, ¢’), N)({(sink)) = 1 leads terminated executions into the des-
ignated sink state. Recall that a sink state is necessary since every MDP
state has to have a successor state. Likewise, the sink state has to have a
successor state which is again the sink state. This is captured by the rule
P ({sink), N) ((sink)) = 1.

The operational MDP M is a potentially more compact representation
of the computation tree 7. An example where the representation is more
compact (in fact: finite instead of infinite) is given by reconsidering Exam-
ple 3.5 from an MDP point of view:

ExampLE 3.11 (Operational MDPs of Probabilistic Programs):
Reconsider the program C from Example 3.5 given by

while(c=1){
{c :=0}[2] {skip}
}

and consider some initial state 0 with o(c) = 1. Then the operational MDP
of executing C on o is shown in Figure 3.5. Notice that this MDP can be
translated into a Markov chain, since the program C is tame, i.e. the program
contains no nondeterministic choices.

We notice that the MDP of Figure 3.5 captures nicely the automorphism
on the computation tree of Figure 3.2, namely by the back edge from state
(skipgwhile(---}, o) to the initial state of the MDP. This ,folding” of the
computation tree into itself is what makes the MDP finite whereas the com-

3.3 semaNTICcs oF pGCL

|

(while(c=1){{c:=0}[1/2]{skip}}, o)

l

{c :=0}[12] {ski
p})a
while(

[N}
2
<C:_O9 > <sk|p9 >
,0
while while
(while(-- },()‘[CP—)()])

|

(L, ofe—0])

T

(sink) :)

Figure 3.5: Operational MDP M%? of executing the probabilistic program C =
while(c=1){{c:=0}[/2] {skip}} on some state o with o(c) = 1. Unla-
beled edges are transitions with probability 1. All transitions in this MDP
are associated with action N.

73

74

PROBABILISTIC COMPUTATIONS

putation tree was infinite. An advantage of having an MDP representation of
a pGCL program’s computation readily available is that it makes probabilis-
tic programs amenable to fully automated probabilistic model checking tools,
at least in case of finite operational MDPs. In case of infinite operational
MDPs, bounded model checking is an appropriate technique. A first approach
for bounded model checking of probabilistic programs which builds upon
the Storm probabilistic model checker [Deh+17] was presented in [Jan+16].

Let us finally show how the MDP semantics is related to the distributions
over final states presented in the previous section. We do so by constructing
from an operational MDP an operational Markov chain (MC) that is induced
by a given scheduler.

DEeriniTION 3.12 (Operational Markov Chains Induced by Schedulers):
A. Let M7 =(S,(C, o), {L, R, N}, P’) be the operational MDP of ex-
ecuting C on o and let s € Scheds be a scheduler. Then the oper-
ational MC of executing program C € pGCL on input o € ¥ under
scheduler s is the MC (cf. Definition B.3) /\/lg‘7 = (S,(C,0),P),
where for all s,s’ € S we have’

P(s)(s') = P'(s,5(5))(s) .

B. We denote by Pr c.(0s) the probability of eventually reaching
state s in the operational MC MSC’U (ct. Definition B.4).

Schedulers for MDPs thus play the same role as schedulers in computation
trees: their purpose is to resolve the nondeterminism in order to obtain a
fully probabilistic transition system. Having means of resolving nondeter-
minism in MDPs as well as computation trees, we can now relate reacha-
bility probabilities in operational MCs to the distributions over final states
presented in the previous section.

ProrosiTiON 3.13:

Let s € Scheds be a scheduler, let [C]; be the distribution over final
states established by executing C on input ¢ under scheduler s, and let
MSC'U be the operational MC of executing C on o under scheduler s.
Then for all final statest € Y.,

[CD (7) = Pryco(0(L, 7))

Intuitively the above proposition states that the probability of reaching a cer-
tain final program state 7 in a computation tree under scheduler s is the

5 We are being a little bit sloppy on notation here: a scheduler s is a function of type pGCLx X —
{L, R} and thus takes as argument a pair. However, since an MDP state s for us is a pair from the
set pGCL x X, we can safely write s(s).

3.3 semaNTICcs oF pGCL

same as reaching the same final state in the operational MDP under the
same scheduler s. This ties together all three semantical point of views
that we have presented: computation trees, distributions over final states,
and operational MDPs.

We conclude this section with a remark on the type of schedulers we em-
ploy. These are so—called positional or history—independent, i.e. they base
their decision only on the current state of the MDP, not the history of vis-
ited states (cf. Definition B.2 B). The class of positional schedulers is suffi-
cient to capture minimal and maximal reachability probabilities (see [Put05,
Proposition 4.4.3.a]) as well as minimal and maximal expected rewards (see
[Put05, Theorem 6.10.4]). The notion of expected rewards in MDPs (cf. Def-
inition B.5) is needed for relating weakest preexpectation transformers to
MDP semantics [GKM12; GKM14].

75

WEAKEST PREEXPECTATION REASONING

ing for (non)deterministic programs (see Chapter 2) to probabilistic

programs with nondeterminism (see Chapter 3) is the subject matter
of this chapter. We will present so—called expectation transformer calculi for
quantitative reasoning about partial and total correctness of such programs.
Furthermore, we study some basic properties of these transformers.

The idea of expectation transformers goes back to Kozen’s seminal work on
probabilistic propositional dynamic logic (PPDL) [Koz85]. PPDL is a modal
logic for reasoning about (in our terminology) tame probabilistic programs,
i.e. probabilistic programs without nondeterminism. Later, Mclver & Mor-
gan (re)incorporated nondeterministic choice and developed the weakest
preexpectation calculus [MMS96; MMO05]. We will present the calculus in
the style of Mclver & Morgan here, although it should be noted that —
on fully probabilistic programs — their calculus is very closely related to
PPDL (basically, the two formalisms coincide).

L IFTING weakest precondition reasoning and anticipated value reason-

41 REASONING ABOUT EXPECTED VALUES

N an effort to enable formal reasoning about probabilistic programs, we
Inow lift the notion of anticipated value reasoning (which subsumes rea-
soning about predicates; see Section 2.3.2) to weakest preexpectation reason-
ing (which will subsume reasoning about probabilities of events). As a first
example, consider the program

{x :=5}[45]{x :=10} .

In contrast to a deterministic program, the variable x may have value 5 or 10
after termination of the program. Hence, there is no single anticipated value
of x. That fact renders the whole concept of an anticipated value useless as is
in the context of the above probabilistic program.

The situation is similar to a nondeterministic choice, were we also did
not necessarily have a single anticipated value available. More detrimen-
tally even, we had no information whatsoever on what branch is going to
be executed. We therefore chose the minimal (demonic nondeterminism) or
maximal (angelic nondeterminism) anticipated value of x (see Section 2.3.3).
For the program above, this would be 5 or 10, respectively.

For probabilistic choices, the situation is in some sense better: We do
have some information on the further course of the execution, namely the

77

4

78

WEAKEST PREEXPECTATION REASONING

probability with which each of the two branches is executed. While this
still does not tell us for sure what is going to happen, it does provide us
with quantitative information that we can sensibly incorporate into reasoning
about probabilistic programs.

Imagine in the program above that x is some sort of payoff, penalty, or
something alike. Instead of determining a minimal or maximal anticipated
value of x, a generally accepted and arguably very important concept in the
realm of probability theory is the notion of the expected value of x. For the
case of payoffs, we would then obtain a mean or average payoff.

In order to determine the expected value of x in the program above, we
need to average the anticipated value of x from the left and the right branch,
which is wp [x :=5] (x) =5 and wp [x :=10] (x) = 10, respectively. Weighting
those anticipated values with the probabilities with which the branches are
executed then gives us the expected value

2owp[x:=5](x)+L-wp[x:=10] (x) = 2-5+1-10 = 6.

The explanations above already provide most of the intuition we need for
extending the anticipated value calculus to reasoning about expected values
for probabilistic programs. In the following, we gradually develop the weak-
est preexpectation calculus which allows us to conduct this sort of reasoning
in a systematic way.

4.1.1 Weakest Preexpectations

Similarly to anticipated value reasoning (see Section 2.3), we are given a pro-
gram C, an initial state o, and a function f mapping (final) program states
to positive reals or infinity. Let us first — for now — leave nondeterminism
out of the picture and consider only tame programs C.

For the function f we would like to know its expected value with respect to
the distribution over final states obtained by executing C on ¢ (i.e. the distri-
bution [C],, see Section 3.3.2). Such a function f can thus simply be thought
of as a random variable. We follow a widespread terminology here! and refer
to the class of random variables we use in our setting as to expectations:

DerintTioN 4.1 (Expectations):
A. The set of expectations, denoted E, is defined to coincide with the
set of anticipations (see Definition 2.10), i.e.

E={f|f:2oRY} =A.

Consequently, the complete lattice (E, <), its least element, and
the construction of suprema is defined exactly as for anticipations,

1 See e.g. [CNZ17], [Fen+17], [Cha+16], [CS14], [Coc14], [GKM14], [CS13], [Kat+10], [APM09],
[MMO5], [Mon05], or [MM99].

4.1 REASONING ABOUT EXPECTED VALUES

i.e. the order relation is given by

h=fh it VYoeX: fi(o) < falo);
the least element is

Ao. 0,

which we overloadingly denote by 0; and the supremum of a sub-
set S C E is constructed pointwise by

supS = Ao. sup f(o).
fes

We write f << g to indicate that f is everywhere smaller than g, i.e.

f<g iff VoeX: f(o) < glo).

B. The set of bounded expectations, denoted E-), is defined as®

IESBb = {fE]EleEIRZ(): f =< b} .
(E<qp, <) is a lattice with least element 0 (as above) but it is not
complete since suprema are not guaranteed to exist.’

c. The set of one-bounded expectations, denoted [E. is defined as
Eq = {feE|f=1}.

(E<, <) is a complete lattice with least element 0 (as in A. above)

and greatest element Ao. 1 which we overloadingly denote by 1.
Suprema are constructed as in E.

We remark that Mclver & Morgan’s oeuvre on weakest preexpectation rea-
soning relies in almost its entirety on bounded expectations [MMO05; KM17]
(in particular, see [MMO5, p. 25 (especially Footnote 39) and Section 2.11]).
Bounded expectations do not form a complete lattice and existence of least
fixed points is not a consequence of the Kleene fixed point theorem but has
to be proven by different means [MMO05, Lemma 5.6.8].

We, on the other hand, take a more general view in which expectations
may generally be unbounded and even evaluate to infinity. Indeed, we de-
pend on these more general unbounded expectations because we will later
use expectations to reason about expected runtimes, which in general cannot
bounded by a constant but depend on the input.

2 For b e Ry(, we write f <btomean f <Ao. b.
3 E.g., theset{)o.1, Ao. 2, Ao. 3,...} CE<3; has supremum Ao. oo € E but Ag. co € E<qy.

79

80

WEAKEST PREEXPECTATION REASONING

Reasoning about expected values. Analogously to anticipated value rea-
soning, we will refer to the expectation whose expected value we want to
know as to a postexpectation. Given a postexpectation f € E and a proba-
bilistic program C, we would like to know a function g € E that maps each
(initial) state o to the expected value of f after execution of C on input o.
We call this function g the

weakest preexpectation of C with respect to postexpectation f

and denote it by wp [C] (f). The characterizing equation of a weakest preex-
pectation is given by

w1 () = do. | Falcl,, (4.1)

where we denote by Iz h d p the expected value of expectation (read: random
variable) h with respect to a distribution y over the set of program states X.

ExamrLrE 4.2 (Weakest Preexpectations):
Consider the program

{x :=x+5}[45]{x :=10} .

Suppose we want to know the expected value of x, i.e. the weakest preexpec-
tation of the above program with respect to postexpectation x. This weakest
preexpectation is given by
4x
2 (x+5)+%-10 = —+6.
When executing the above program on initial state o, the expected value of
x is hence 40(*)/5 + 6.

Reasoning about probabilities. An important special case is when the pos-
texpectation given as [F], where F is a predicate. In that case, we can think of
F as an event and wp [C] ([F]) (o) is then the probability that executing C on
input o will terminate in a final state 7 | F, or in other words: wp [C] ([F]) (o)
is the probability that event F occurs after termination of C on input o.

ExampLE 4.3 (Probabilities of Events as Weakest Preexpectations):
Reconsider the program

{x :=x+5}[45]{x :=10}

4.1 REASONING ABOUT EXPECTED VALUES

from Example 4.2 and take predicate (i.e. event) F = (x=10). Then the weak-
est preexpectation of this program with respect to postexpectation [F] is
4-[x=5]+1

z .

2 [x+5=10]+1[true] =

Thus, for any initial state o, the probability that x is 10 after executing the
above program on o is 4-1+1)/5 =1 if o(x) =5, and (4-0+1)/5 = 1/5 otherwise.

Reasoning about Nondeterminism. We now bring nondeterminism back
into the picture. As we have seen in Section 3.3.2, we have to resolve all
nondeterminism occurring along the computation of a pGCL program in or-
der to sensibly obtain a probability distribution over final states. Resolving
nondeterminism was achieved by so—called schedulers that resolve all non-
determinism occurring in the computation tree. We thereby obtained a dis-
tribution [C]; relative to some scheduler s

As we can see in Equation 4.1, for characterizing weakest preexpectations
we need a probability distribution. For programs with nondeterminism, we
will have to choose a scheduler in order to obtain a probability distribution.
A sensible choice is a scheduler that minimizes the preexpectation. The char-
acterizing equation of weakest preexpectations for full pGCL is thus given by

wp [C](f) = Ao. inf J falcl; . (4.2)
$€Scheds

The above minimizing exegesis of weakest preexpectations agrees with Dijk-

stra’s original notion of weakest preconditions of (nonprobabilistic) nonde-

terministic programs. For anticipated value reasoning, we called this inter-

pretation demonic nondeterminism.

Angelic nondeterminism, i.e. a maximizing exegesis, is in some cases an
equally sensible choice: If we think about expected runtimes for instance, a
maximizing scheduler cannot even be conceived as very angelic in the truest
sense of the word, but indeed as a demonic worst—case. The characterizing
equation of angelic weakest preexpectations for full pGCL is given by

awplCl(f) = do. swp | FdlCl;. (43)

seScheds

4.1.2 Weakest Liberal Preexpectations

For deterministic programs, the weakest liberal precondition of a program C
with respect to a postcondition (i.e. a predicate) F is a predicate G such that
the execution of C on an initial state o | G will either diverge or terminate
in a state T | F (cf. Section 2.2.5). Weakest liberal preexpectations are the
probabilistic analog to this concept:

81

82

WEAKEST PREEXPECTATION REASONING

For a predicate F, the weakest liberal preexpectation of C with respect to
postexpectation [F] is an expectation g € [E<; such that g(o) equals the prob-
ability that executing C on input o will either diverge or terminate in a state
T E F. In other words: g(o) is the probability that event F occurs if C termi-
nates on 0. More generally, for any f € E<, the

weakest liberal preexpectation of C with respect to postexpectation f,

denoted by wlp [C] (f), is an expectation in [E<; such that the expected value
of f after execution of C on an initial state o plus the probability that C does
not terminate on o equals wlp [C] (f) (o), formally

s€Scheds

wip [C](f) = Ao. inf Lfd[[cgf; + (1_L1d[[c115;), (4.4)

where the infimum on the right-hand-side accounts for possible demonic
nondeterminism occurring in the program.

ExampLE 4.4 (Weakest Liberal Preexpectations):
A. Consider the program

{diverge} [1/3] {x :=10}

and take predicate (read: event) F = (x=10). Then the weakest liberal
preexpectation of this program with respect to postexpectation [F] is

B. Consider the program
{diverge} [13]{x :=x+5} .

Then the weakest liberal preexpectation of the above program with re-
spect to postexpectation [F] from a. is
1+2-[x=5]

11+% [x+5=10] = 3

c. Consider the program

c:=1

while(c=1){
{diverge} [1/2]{x :=x+1}3
{skip}[1/2]{c:=0}

4.1 REASONING ABOUT EXPECTED VALUES

and take the event that x is even. Then the weakest liberal preexpecta-
tion of this program with respect to postexpectation [x even] is

2 4-[xodd] [xeven]
3 15 15

4.1.3 The Weakest Preexpectation Calculus

So far, we have seen characterizations for (angelic) weakest (liberal) pre-
expectations, but we have not seen how to systematically determine them
given a concrete program and postexpectation. It turns out that for (an-
gelic) weakest preexpectations this can be done analogously to anticipated
value reasoning (see Section 2.3) and for weakest liberal preexpectations this
can be done analogously to weakest liberal precondition reasoning (see Sec-
tion 2.2.5). Thus, we define continuation—passing style, backwards—moving
expectation transformers as follows:

DeriniTioN 4.5 (Expectation Transformers [Koz85; MMO05]):
For C € pGCL we define the following expectation transformers:

A

The weakest preexpectation transformer
wp[C]: E—-E

is defined according to the rules in Table 4.1.

The weakest liberal preexpectation transformer
wip [C]: Eq - Eg

is defined according to the rules in Table 4.2.

. The angelic weakest preexpectation transformer

awp [C]: E-—>IE

is defined according to the rules obtained from Table 4.1 by re-
placing every occurrence of wp by awp and the min by a max.

The angelic weakest liberal preexpectation transformer
awlp [C]]: [Eq — E

is defined according to the rules obtained from Table 4.2 by re-
placing every occurrence of wlp by awlp and the min by a max.

83

84 WEAKEST PREEXPECTATION REASONING

C wp[Cl(f)

skip f

diverge 0

x:=E f[x/E]

Xixu Ao. Lals (/\v. f(cr[xl—m/]))dyg

Ci5C wp [C1] (wp [Ca] (f))
f(p){Citelse{Cy} [@]-wp[Ci](f) + [-@]-wp[Ca] (f)

(C1}O(Cy) min{wp [C1] (f), wp [C2] (f)}

{Ci} [PH G} p-wp[Ci] (f) + (1-p)-wp[C] (f)

while(¢){C’} Ifp X. [~@]-f + [@]-wp [C'] (X)

Table 4.1: The weakest preexpectation transformer.

B. For wp, we call the function
(O PrX) =[] f + []-wp [C](X)

the wp—characteristic function of while(@){C} with respect to
postexpectation f. We define the wlp-, awp , and awlp—character-
.. . wlip awp

istic functions @0 Ps (0,0)Pp and (@, c>q)f analogously. If either
of wp, wlp, awp, awlp, @, C, or f are clear from the context, we
omit them from O.

Notice that by the Kleene Fixed Point Theorem (Theorem A.5) we have

wp [while(@){C}] (f) = Fp , AP, = sup (0O PF(0),
ne

where (@ C>CDf denotes n-fold application of< C>CDf to its argument. The
analogous statement holds for awp. For wlp, since this is defined via a great-
est fixed point, we have a dual statement, namely
. _ wlp wlp
wip [while(@){C}] (f) = gfp (q),C)ch = 7}2}1{] (@ C><Df().
Analogous statements hold for the angelic expectation transformers.

An immediate corollary about preexpectations of loops which can be de-
rived by a close inspection of the characteristic function is the following:

4.1 REASONING ABOUT EXPECTED VALUES

C wip[C] (f)

skip f

diverge 1

x:=E fx/E]

X x Ao. J;als (/\v. f(a[xn—n/]))dya
Ci5Cy wip [C1] (wip [C2] ()

if (p){Ci}else{Cy} [@]-wip [Ci](f) + [=@]-wip [Co] (f)
(C1}oi(G) min{wlp [C] (f), wip [C2] ()]
{Ci}pIHCa) p-wip[Ci] (f) + (1=p)-wip [Co] ()
while(¢){C’} gfp X. [~@l-f + []-wip [CT(X)

Table 4.2: The weakest liberal preexpectation transformer.

CoroLLARY 4.6 (Postexpectation Strengthening for Loops):
Let C € pGCL and T € {wp, wlp, awp, awlp}. Then

T [while(@){C} (f) = T [while(@){C} ([=¢]-f),
for an appropriate choice of f € E or f € E.; (depending on T).

Proof. The T —characteristic function of while (¢){C} with respect to post-
expectation f is given by

AXo [=@]-f + [¢]- T [C] (X)
= AX. [=@]-[-@]-f + []- T [C](X),

which is the 7 —characteristic function with respect to [-¢]- f. Since the
characteristic functions coincide, so do their fixed points.

Intuitively, the above corollary can be interpreted as the fact that a loop can
only ever terminate in a state which satisfies the negation of the loop guard.

Notice that all rules for the anticipated value transformer in Table 2.3 are
also found in Table 4.1. For the weakest preexpectation transformer, we have
merely added rules for the probabilistic constructs. The conceptually easier
one, namely the rule for probabilistic choice, reads

wp [{Ci} PG (f) = p-wp [Ci] (f) + (1=p)-wp [Co] (f)

The intuition behind this definition is straightforward: Since we cannot sin-
gle out a value of f which is established by either C; or C,, we simply average

85

86

WEAKEST PREEXPECTATION REASONING

these two values according to the probabilities with which C; and C, are ex-
ecuted, respectively, thus obtaining the expected value of f after executing C;
with probability p and C, with probability 1 —p.

The rule for random assignments is technically more involved and reads

wp [x == p] (f) = Ao. f (/\v. f(a[xl—m/]))dyg .

Vals

The mechanics of the right-hand-side are as follows: Instead of averaging
only over two options, we average now over updated versions of f according
to a probability distribution. In more detail, the right-hand-side takes as
input a state o and averages the values of f(o [x — v]) (i.e. f updated accord-
ing to assignment x := v), where the values v are distributed according to
probability distribution p,;.

ExamrpLE 4.7 (Reasoning about Expected Values):
Reconsider the program

{x :=x+5}[45]{x :=10} .

Suppose we want to know the expected value of x, i.e. the weakest preexpec-
tation of the above program with respect to postexpectation x. We will reuse
our annotation style from earlier (see Example 2.11), i.e.

/4

/¥4
C

i f

expresses the fact that g = wp [C] (f) and moreover that g’ = g. We can then
annotate the above program as shown in Figure 4.1 (read from bottom to top).
When executing the above program on initial state o, the expected value of
x is hence 4o(x)/5 + 6.

ExamrpLE 4.8 (Reasoning about Probabilities):

Reconsider the program from Example 4.7. Suppose we want to know the
probability that x has value 10 after execution of that program. Then we can
annotate this program as shown in Figure 4.2. When executing the above
program on initial state ¢ with o(x) = 5, then the probability that x equals
10is 45+ 1/5 = 1. Otherwise, it is 1/.

4.1 REASONING ABOUT EXPECTED VALUES

] Z+6
]ﬂ%-(x+5)+%-10

[x+5
x:=x+5
a7 =

) (451
Jj 10
x:=10
a7 =

}

/s

Figure 4.1: Weakest preexpectation annotations for Example 4.7.

m
a

=
I
Ul

Uil Uil
— =
®
I
6]
el
+ o+
gil= yi|=
[y

I [x=5]
JJ [x+5=10]
xX:=x+5
Jf [x =10]

RN
8
JJ Ttrue]

J/ 110=10]
x:=10
Jl] [x =10]
}
/i [x =10]

Figure 4.2: Weakest preexpectation annotations for Example 4.8.

87

88 WEAKEST PREEXPECTATION REASONING

ExamrpLE 4.9 (Weakest Liberal Preexpectations):
Reconsider the program

{diverge} [1/3]{x :=10} .

Suppose we want to know the probability that either the program termi-
nates in a state where x has value 10 after execution of that program or
the program diverges, i.e. the weakest liberal preexpectation of that program
with respect to postexpectation [x = 10]. Then we can annotate this program
as shown in Anticipated Values and Nontermination 4.9. The sought-after
probability is thus 1.

ExampLe 4.10 (Weakest Liberal Preexpectations of While Loops):
Reconsider the program

c:=1g
while(c=1){
{diverge} [I/2] {x :=x+1}3
{skip}[1/2] {c :=0}
}.
Suppose we want to reason about the weakest liberal preexpectation of event

»x is even”. The characteristic function of the loop with respect to postexpec-
tation [x even] is given by

O(X) = [c=1]-[xeven]

. [CZI]‘(%+X[x/x+1]+i([c,x/0,x+1])'

The first four iterations of the fixed point iteration for @ are:

O(1) = [c#1]-[xeven]+[c=1]

®3(1) = [c=1]-[xeven] + [Czl]_(%+ [x i&;en] . [x (:de])

®*(1) = [c#1]-[x even]
43 [xodd] [xeven] [xodd]
+[c:1]-(a+ 1 ' 16 T 2)

4.1 REASONING ABOUT EXPECTED VALUES 89

/s
] ‘5—1-1+%-1
{
M1
diverge
JJ [x =10]
4514
/R
Il Ttrue]
JJ 110 =10]
x:=10
J Tx=10]
}
Jl Tx=10]

Figure 4.3: Weakest liberal preexpectation annotations for Example 4.9.

90 WEAKEST PREEXPECTATION REASONING

More detailed calculations are left as an exercise. After four iterations, we
can slowly start seeing a somewhat complicated pattern for n > 2:

®"(1) = [c=1]-[xeven]

_ 2"l 41 [x even] [x odd]
+ [c=1]:
[C] + z+1 Z 421+1

We omit proving the above pattern correct. By taking the limit (i.e. n — w),
we see that the sought-after weakest liberal preexpectation converges to

wp [while(x>0){...}] (2)

= Ilfp®
= sup ®"(0) (by Theorem A.5)
nelN
= sup [c#1]-[x even]
nelN
n=2 n=3
¥ [e=1]- 2141 J} - J[xodd] +[- J[xevem]
- 4n-1 42i+1 42(i+1)
i=0 i=0

[c#1]-[xeven] + [c=1]- (

2 4-[xodd] [xeven]
+ + .
3 15 15

For the whole program, we can finally make these annotations:

4 odd x even
ii [x | + [x =]

c:=13%

[[e=1]-[xeven] + [c=1]- (% —4[x1(5)dd]+—[xi\;n])
while(c=1){
{diverge} [I/2] {x :=x+ 1}
{skip}[l/2] {c :=0}
}
JJ] [x even]

We have thus proven

z N 4-[x odd] [x even]
3 15 15

wlp [...] ([x even]) =

This means that if we start the program in a state where x is odd, then there
is a probability of 2/3 + 4/15 = 14/15 that the program either not terminates or

4.2 HEALTHINESS CONDITIONS

terminates in a state where x is even. If we start the program in a state where
x is even, this probability is 11/15. Notice in particular that 14/15+11/15 =5/3> 1.

4.1.4 Connection to Operational Semantics

Recall the characterizing equations of wp (Equation 4.2, p. 81), awp (Equa-
tion 4.3, p. 81), and wlp (Equation 4.4, p. 82). The next theorem states for-
mally that those expectation transformers actually satisfy those equations:

Tueorem 4.11 (Operational vs. Expectation Transformer Semantics):
Let CepGCL, f €E, and g € [E<;. Then:

A wp[C](f) = Ao. inf ;fd[[C]]f}

$€Scheds J

5. awp[Cl(f) = Ao sup | FdICIZ

s€Scheds JX

c¢. wip[Cl(f) = Ao. inf ;fd[[C]]g+(1_L1d[[C]]§)

$€Scheds J

p. awlp [C] (f) = Ao. sup ;fd[[C]]; + (1_L 1d[[C]]f})

$€Scheds J
Proof. By induction on the structure of C.

Theorem 4.11 establishes a connection between the expectation transformers
and the probability distribution over final states obtained by the operational
semantics [C]S under some scheduler (see Definition 3.8). A connection
between the distribution transformer semantics of Kozen [Koz79; Koz81]
and a Markov process semantics was shown earlier by Sharir, Pnueli, and
Hart [SPH84]. A formal connection between Markov chains and weakest
preexpectations with an emphasis on invariants was studied more recently
by Gretz, Katoen, and Mclver [GKM12; GKM14].

42 HEALTHINESS CONDITIONS

XPECTATION transformers enjoy several properties like continuity, mono-

tonicity, etc. In the literature, some of these properties are called health-
iness conditions [MMO05; Keil5; Hin+16] or homomorphism properties [BW98].
Informally speaking, healthiness conditions are a collection of properties
that characterize those backward-moving predicate (or expectation) trans-
formers that are the dual of a forward—-moving state (or distribution) trans-
former that arises from an actual (probabilistic) program.

91

92

WEAKEST PREEXPECTATION REASONING

Many of the properties we present here will be used in our proofs. In their
own right, they aid in concrete reasoning about probabilistic programs, for
instance by forming a foundation for compositional reasoning.

4.2.1 Continuity

Continuity is perhaps one of the most fundamental properties that expec-
tation transformers enjoy because it ensures for instance well-definedness
of expectation transformer semantics of while loops. An expectation trans-
former 7 : [E — [E is continuous iff for any chain of expectations S = {s; <
51 <sp <...} CE we have

T (supS) = sup 7(S);

see Definition A.2 for more details. All expectation transformers we have
presented in this thesis are continuous:

Tueorem 4.12 (Continuity of Expectation Transformers):
Let C be a pGCL program. Then the associated expectation transformers
wp [C], wip [C], awp [C], and awlp [C] are continuous.

Proof. By induction on the structure of C.

The importance of continuity for well-defined semantics of loops can be
sketched as follows: For any loop-free program C, continuity of wp [C] en-
sures that the characteristic function of the loop while(¢){C} (that has C as
its loop body) is also continuous. This ensures by the Kleene fixed point the-
orem (Theorem A.5) that the characteristic function has a least fixed point,
which in turn ensures that wp [while (¢){C}] is well-defined. The fact that
the transformer wp [while(¢@){C}] itself is also continuous ensures well-
defined expectation transformer semantics of nested loops.

4.2.2 Strictness

Strictness is a healthiness condition that Dijkstra calls , Law of the Excluded
Miracle” [Dij75]. For his weakest precondition calculus, this law states that
there exists no initial state from which the execution of a program C can ter-
minate in a state satisfying the predicate false. In terms of wp, this law reads

wp [C] (false) = false.

For weakest liberal preconditions a dual law (that we call costrictness) would
state that for all initial states the execution of a program C either terminates
(in some state state satisfying true) or does not terminate. In terms of wlp,

4.2 HEALTHINESS CONDITIONS

this can be expressed as
wlp [C] (true) = true.

In our quantitative setting, strictness and costrictness are defined as follows:

DEerintTION 4.13 (Strictness and Costrictness):
Let C € pGCL and let T : E — E be an expectation transformer. Then:

A. T is called strict, iff

7(0) = 0.

B. 7 is called costrict, iff

T(1) =1.

Analogously to Dijkstra’s predicate transformers, liberal expectation trans-
formers are costrict and their nonliberal versions are strict:

Tueorem 4.14 (Strictness of Expectation Transformers):
Let C € pGCL. Then:

A. wp [C] and awp [C] are strict.

8. wlp [C] and awlp [C] are costrict.*

Proof. Strictness of wp and awp follows from feasibility of wp and awp, re-

spectively; see Section 4.2.3.

The quantitative version of strictness tells us that the expected value of the
constantly 0 random variable after executing a program C is 0. Alterna-
tively stated: the probability that C terminates in a state satisfying false
is 0. Costrictness tells us that the probability to either terminate or not is 1.

4.2.3 Feasibility

The property that Mclver & Morgan call feasibility states that preexpectations
cannot become ,,too large“ [MMO5]. The notion of feasibility makes sense for
bounded expectations f € E.g;, only. Formally, it is stated as follows:

Tueorem 4.15 (Feasibility of Expectation Transformers®):
Let C € pGCL. Moreover, let f € [E<3;, be an expectation bounded by
beRyg,ie. f<b. Then

wp[C](f) = b and awp[C](f) < D.

4 For costrictness of wlp, see [MMO5, Fact B.3.4 on p. 331].
5 See [MMO5, Lemma 5.6.4 and p. 228].

93

94

WEAKEST PREEXPECTATION REASONING

Feasibility of wp implies its strictness and can thus be seen as a quantitative
generalization of strictness. To see that feasibility implies strictness observe
that 0 is a 0O-bounded expectation and feasibility of wp states that

wp [C](0) < O,

which implies wp [C] (0) = 0 by expectations being non-negative. An analo-
gous argument applies to awp.

4.2.4 Monotonicity

The distinct feature of everything extant is its monotony.

— Vladimir Nabokov

Monotonicity is another fundamental property of expectation transformers.
According to Back and von Wright, monotonicity is , the only healthiness cri-
teria [sic] that has gone unquestioned” [BW89]. An expectation transformer
7 is monotonic iff for any two expectations f, g € [E, we have that

f < ¢ implies T(f) < 7(g);
see Definition A.3 for more details. All expectation transformers we have

presented so far are monotonic:

Tueorem 4.16 (Monotonicity of Expectation Transformers):
Let C € pGCL. Then the associated expectation transformers wp [C],
wlp [C], awp [C], and awlp [C] are monotonic. Furthermore, all wp-,
wlp—, awp—, and awlp—characteristic functions are monotonic.

Proof. Every continuous function is monotonic, see Theorem A.4.

Monotonicity is not just a healthiness condition but plays an important role
in reasoning about programs. In the following we present two implications
of the monotonicity property.

Compositionality. Monotonicity is useful for compositional reasoning in
the following sense: Imagine two programs C; and C, and a postexpecta-
tion f such that

wp [Ci] (f) = wp[C] (f) .

Then monotonicity ensures that if we put the components C; and C, into
some context C3 , then we can be certain that

wp [C3 Ci] (f) <= wp[C5Ca] (),

since wp [C3 C;] (f) =wp [C] (wp [Ci] (), for i € {1, 2).

=)}

4.2 HEALTHINESS CONDITIONS

Relation to the consequence rule. Monotonicity is closely related to the

consequence rule of Hoare logic. This rule reads

G =G (G"YC(F") FF = F
(G)C(F)

(cons)

It weakens precondition G to G’ and strengthens postcondition F to F’ in
order to prove validity of (G) C (F) by proving validity of (G") C (F’).

The analogy to weakest preexpectation reasoning is as follows: In order to
prove g <wp [C] (f) it suffices to

1. choose ¢" > g,
2. choose f’ < f,and
3. prove ¢’ <wp [C] (f),

since this gives

g§=¢ (by 1. above)
< wp[C](f) (by 3. above)
< wp[C](f), (by 2. above and monotonicity, Theorem 4.16)

which in turn implies g < wp [C] (f). The “consequence rule of weakest precon-
dition reasoning” thus reads

g<g g=wp[C](f) f'=f
g <wp [C] (f)

(wp—cons)

4.2.5 Linearity

Linearity of expectation transformers plays a prominent role in the develop-
ment of McIver & Morgan as they show that superlinearity® alone already
characterizes their wp and thus implies monotonicity, strictness, continuity,
and so on. However, as mentioned before, McIver & Morgan heavily rely
on the fact that their expectations are bounded (see Definition 4.1 B.). For
showing that superlinearity implies continuity they even need to restrict to
a finite state space X [MMO5, p. 148].

While this allows Mclver & Morgan to nicely characterize all ,healthy”
expectation transformers by means of just a single healthiness condition, we
cannot make the restriction of boundedness and do not wish to restrict to
a finite state space. Another point is that we make use of the angelic awp

Note that Mclver & Morgan use the term sublinear for superlinear transformers [MMO05].
However, the super—/sub-nomenclature we use here is more in accordance with the stan-
dard mathematics terminology [Wikk; KM17].

95

96

WEAKEST PREEXPECTATION REASONING

transformer which is sub- instead of superlinear and while we saw that awp
is monotonic, this fact does not follow from sublinearity.

Since our setting differs from that of Mclver & Morgan, we will conduct
our own linearity studies here. Linearity is made up of two properties: ho-
mogeneity and additivity. We study the former first:

DerintTion 4.17 (Positive Homogeneity):

Let f € E, r € Ryg, and let 7: IE — [E be an expectation transformer.
Then 7 is called positively homogeneous” iff

We consider positive homogeneity (i.e. our scaling factor r is positive) instead
of general homogeneity since we need to stay within the realm of expecta-
tions which are non-negative. Both nonliberal expectation transformers we
have presented are positively homogeneous:

Tueorem 4.18 (Positive Homogeneity of Expectation Transformers):
For any C € pGCL, wp [C] and awp [C] are positively homogeneous.

Proof. By induction on the structure of C.

Positive homogeneity of wp implies its strictness by the following reasoning:

wp [C] (0)

wp [C] (2-0)
= 2-wp[C] (0) (by positive homogeneity, Theorem 4.18)

which implies that wp [C] (0) = 0. The proof for awp is analogous.

Positive homogeneity and monotonicity together also suffice to prove for
expectation transformers Markov’s well-known inequality:

Tueorem 4.19 (Markov’s Inequality):
Let C e pGCL, f € E, and a € Rsq with a> 0. Then:

~ wplc]((f za) = "PLAV)
b awp [C] ([f 2a)) = 2PLAY)

7 This property is called “scaling" by McIver and Morgan [MMO05].

4.2 HEALTHINESS CONDITIONS 97

Proof. For A., consider the following:

a-[fza] < f

implies wp [C] (a-[f > a)) < wp [C] (/)
(by monotonicity, Theorem 4.16)

implies a-wp [C] ([f > a]) < wp [C] (/)
(by positive homogeneity, Theorem 4.18)

it wp[C] ([f za)) < PRI (by a>0)

The proof for awp is analogous.

wlp and awlp are not positively homogenous as the following example shows:
wlp [diverge] (% : 0) =1> 1 = 1. wip[diverge] (0)

Neither wlp nor awlp satisfy Markov’s inequality.
In order to study linearity, we now study additivity of our expectation
transformers. Together with homogeneity this yields the notion of linearity.

DeriniTiON 4.20 (Linearity of Expectation Transformers):
Letf,g€E,r€Rsg,and7T: E — [E be an expectation transformer. Then:

a. T is called sublinear® iff
T(r-f+8) =r-T(f)+T(g).
B. 7 is called superlinear iff
rT()+T(Q) =T(r-f+g).
c. T is called linear iff
T(r-f+8) =r-T(f)+T(g).
All our expectation transformers satisfy one of the above notions of linearity:

Tueorem 4.21 (Linearity of Expectation Transformers®):
Let C € pGCL. Then:

A. wp [C] is superlinear.!?

B. awp [C] is sublinear.

8 Recall Footnote 6 on page 95.
9 See [Koz83; MMO5].
10 Recall Footnote 6 on page 95.

98 WEAKEST PREEXPECTATION REASONING

Suppose moreover that C is tame. Then angelic and demonic expecta-
tion transformers coincide, and

c. wp [C] and awp [C] are linear.

p. wlp [C] and awlp [C] are superlinear.

Proof. As for a. and B, the proof is by induction on the structure of C.

As for c., linearity of wlp follows from the fact that wp and awp obviously
coincide on tame programs. But since wp is superlinear and awp is sublinear,
wp and awp have to be linear.

As for p., superlinearity of wlp follows from the connection of wlp and wp
(see Corollary 4.26) as discussed in Section 4.3.

Sublinearity of awp is not a mere theoretical observation. It has a concrete
impact, for instance on the development of Kura et al. on reasoning about
higher moments of expected runtimes [KUH19].

Superlinearity of wp implies monotonicity of wp by the following reason-
ing: Let f and g be two expectations such that f < g. Then there exists an
expectation € € [E such that g = f + €. By superlinearity of wp we then have

wp [C] (f) = wp [C] (f)+wp [C] ()
<wp[C](f+e) (by superlinearity, Theorem 4.21 a.)
= wp[C] (g)

The above reasoning fails for awp as it is sublinear instead of superlinear and
the inequality is hence in the wrong direction. Still, awp is monotonic.
A useful corollary for expectation subtraction is the following:

CoroLrLary 4.22 (Linearity and Subtractions):
Let C € pGCL and let f, g € E such that f < g, thus g— f is a well-defined
(non-negative) expectation. Then:

A wplCl(g-f) = wplCl(9)— wplCl ().
B. awp [C] (g - f) = awp [C] (g) —awp [C] (f).
Suppose moreover that C is tame. Then:

c. wp [C] = awp [C] and wp [C] (g~ f) = wp [C] (g)~wp [C] (f).
Proof. For wp consider the following:

wp [Cl(g=f) = wp[C] (g=f)+wp [C] (f)-wp [C] (f)

wp [Cl (g = f+f)-wp [C] (f)
(by superlinearity, Theorem 4.21 a.)

wp [C] (8) —wp [C] (f)
The reasoning for awp and for the case of tame programs is analogous.

IA

4.3 RELATING EXPECTATION TRANSFORMERS

Thus, we see that for subtractions wp behaves sublinearly instead of super-
linearly whereas awp behaves superlinearly instead of sublinearly.

We can make use of Corollary 4.22 to show that — in addition to mono-
tonicity — superlinearity of wp also implies feasibility of wp: For showing
this, let f € [E<q; be an expectation bounded by b € R5(. Then f < b and

0

IA

wp [C] (b f) = wp[C] (b)—wp [C] (f)
(by Corollary 4.22 a.)

implies 0 < wp [C] (b)—wp [C] (f)
implies wp [C] (f) < wp [C] (b)

IA

Again, the above reasoning fails for awp as awp is sublinear instead of super-
linear and the inequality is therefore in the wrong direction. Nevertheless,
awp is feasible.

43 RELATING EXPECTATION TRANSFORMERS

HE definitions of the different expectation transformers we studied in this
Tchapter are quite similar and it is not surprising that the transformers are
closely related. The most elementary and most obvious relationship between
angelic (awp and awlp) and demonic preexpectations (wp and wlp) is that
demonic preexpectations are never greater than angelic preexpectations:

CoroLLARY 4.23 (Angelic Bound Demonic Preexpectations):
Let CepGCL, f €E, and g€ E.;. Then

IA

A. wp [C] (f) awp [C] (f), and

B. wip [C] (§) < awlp [C] (g).

The most elementary relationship between liberal (wlp and awlp) and nonlib-
eral preexpectations (wp and awp) is that weakest preexpectations are never
greater than weakest liberal preexpectations:

CoroLLArY 4.24 (Liberal Bound Nonliberal Preexpectations):
Let C e pGCL and f € E<y. Then

A wp[Cl(f) < wip[C](f), and

B. awp [C] (f) =< awlp [C] (f).

IA

Proof. Follows immediately from the fact that nonliberal preexpectations
are defined as a least fixed point whereas liberal preexpectations are defined

as a greatest fixed point.

99

100 WEAKEST PREEXPECTATION REASONING

Intuitively, we can understand Corollary 4.24 as the fact that a program is
more likely to be partially correct as it is likely to be totally correct.

In addition to the above, we can make a more precise statement relating
liberal and nonliberal preexpectations. In there, some care regarding non-
determinism must be taken — liberal transformers become nonliberal and
angelic ones become demonic; and vice versa:

Tueorem 4.25 (Relationship between Expectation Transformers):
Let C € pGCL be tame and let f € E<;. Then

A wp[C](f) = 1-awlp [C] (1-f)
B. awp [C](f) = 1- wlp [C](1-f)
c. wip[C](f) = 1-awp[C](1-f)
p. awlp [C] (f) = 1—- wp[C](1-f)

Proof. For proving a., consider the following:
1—awlp [C] (1 f)
= 1-Xo. sup f 1-fd[C]; + 1—j 1d[C[;
$€Scheds JX z
(by Theorem 4.11 p.)

=1-Ao. sup le[{Cﬂg—Lfd[[C]]i + 1—L 1d[C];

s€Scheds
(by linearity of I)
= 0-Ao. sup —J- fd[Cl:
s€Scheds b
= Ao. inf a[c]?
“ 5€§31eds L f [[]]a
= wp [C] (f) (by Theorem 4.11 a.)
The proofs for B., c., and p. are analogous.

Let us gain some intuition on the above by considering Theorem 4.25 a. and
choosing as postexpectation a predicate [¢]. Then we get

wp [C] ([¢]) = 1-awlp [C[(1 -[¢]) = 1-awlp [C] ([~¢]) .

wp [C] ([@]) tries to minimize the probability of C terminating in a state
satisfying ¢. How can wp achieve that? It can either drive C towards di-
verging or terminating but satisfying —¢, i.e. the opposite of ¢. So wp will
maximize the probability of either of these two events. But this is precisely
what awlp [C] ([-¢]) does.

4.3 RELATING EXPECTATION TRANSFORMERS

For tame programs, the angelic and demonic transformers coincide and
the nonliberal transformers are linear. We hence get from linearity (Theo-
rem 4.21 c.) and Theorem 4.25 c. the following corollary:

CoroLrrary 4.26 ([Koz83]):
Let C € pGCL be tame and let f € E<y. Then

wip [C] (f) = wp [C] (f)+1-wp[C] (1)

Thus, wlp [C] (f) is expressible as the sum of wp [C] (f) and the probability
that C does not terminate, i.e. 1 —wp [C] (1). This connection between wp
and wlp allows us to study linearity of wlp: We have

wip [C] (r- f +¢)
=1-wp[C](1)+wp[C](r-f+g) (by Corollary 4.26)

1-wp [C] (1) +7-wp [C] (f)+wp [C] (g)
(by linearity, Theorem 4.21 c.)

N

r-wp [C] (f) +wp [C] (g)

for any tame C € pGCL, f,g € E<y, and r € Ry, such that r- f + g € E.;. Thus,
wlp is in general not linear for tame programs but superlinear instead.

An even closer connection between wp [C] and wlp [C] can be established
in case that C terminates almost-surely. We first note that

wp [C] (1)

is an expectation, such that wp [C] (1) (o) gives the (minimal) probability that
C terminates on input o. Dually, awp [C] (1) (o) gives the maximal probability
of C terminating on o.

Yet dually,

awlp [C] (0)

is an expectation such that awlp [C] (0) (o) gives the maximal probability
that C diverges on o, whereas wlp [C] (0) (o) gives the minimal probability
of C terminating on o.

If we know a predicate T, such that C terminates almost-surely (i.e. with
probability 1) from every initial state satisfying T, we can express this by

(T] < wp[C] (1) .

In fact, if we know such a predicate T, we can , sandwich” weakest preexpec-
tations by means of weakest liberal preexpectations:

Tueorem 4.27 ((Non)liberal Preexpectations under Termination):
Let C € pGCL, let f € E<4, let T be a predicate, and let C terminate from
any state satisfying T, i.e. let [T] <wp [C] (1). Then

101

102

WEAKEST PREEXPECTATION REASONING

A [TI-wip[Cl(f) = wp[Cl(f) < wip[C](f), and
5. [T]-awlp [C] (f) < awp [C] (f) < awlp [C] ()

IA

Proof. For A., consider the following: Let f © g be defined as max{f —g, 0}
and consider the following:

(wip [CT (f)+wp [C] (1))o1 < wp[C]((f+1)o1)
(by [MMO5, Fact B.3.2 on p.331])

implies ([T]-wip [C] (f)+[T]-wp [C] (1))e[T] < wp[C] (f +1)&1)
(Multiply left-hand side by [T])
implies ([T]-wip [C] (f)+[T]-[T])e[T] = wp[C]((f+1)e1)
(by assumption [T] <wp [C] (1))
iff ([T]-wip [C] (F)+[T])e[T] = wp[C]((f+1)o1)
ifft [T]-wlp[C](f) =< wp[C](f)

For B., we exploit Theorem 4.27 A. and Theorem 4.25 a. and B. as follows:

awp [C] (f)
=1-wlp[C](1-f) (by Theorem 4.25 8.)

[T]-[T]-wlp [C] (1 -)

\%

> [T)-(1=[T]-wlp [C] (1 - £)

> [T]- (1 —wp [C] (1 —f)) (by assumption and Theorem 4.27 a.)
= [T]- (1 —(1 —awlp [C] (1-(1 —f)))) (by Theorem 4.25 a.)
= [T]-awip [C] (f)

In the case of universally almost—surely terminating programs (i.e. programs
that terminate almost-surely on every input), we even get that liberal and
nonliberal expectation transformers coincide entirely, which implies that
(on E.q) least and greatest fixed points coincide:

COROLLARY 4.28:
Let C € pGCL, let f € [E<y, and let C terminate universally almost-surely,
ie. letwp [C] (1) =1. Then

A wip[CI(f) = wp[C](f), and
5. awlp [C] (f) = awp [C] ()

Proof. For a., we have by Corollary 4.24 that wp [C] (f) < wlp [C] (f). It
is left to show that wlp [C] (f) < wp [C] (f) holds which is an immediate

4.3 RELATING EXPECTATION TRANSFORMERS

consequence from Theorem 4.27 a. by choosing T = true. The proof for the

angelic transformers is analogous.

We will see later in Chapter 5 that Theorem 4.27 and Corollary 4.28 have
important consequences for reasoning about loops, as they makes reasoning
about lower bounds of expected values considerably easier. Reasoning about
the precondition of Corollary 4.28 however, namely almost-sure termina-
tion, is often difficult, as we will discuss in Chapter 6.

103

PROOF RULES FORLOOPS

tasks in verification. For nonprobabilistic programs, this is usually

done using loop invariants and loop variants. Roughly speaking, loop
invariants allow proving partial correctness, meaning the algorithm is cor-
rect if it terminates. Loop variants, on the other hand, enable proving termi-
nation. Partial correctness and termination together give total correctness.

For probabilistic programs, neither correctness nor termination are strictly
binary properties: Monte Carlo algorithms, for instance, typically trade off
100% correctness for runtime efficiency, thus giving correct answers to oth-
erwise difficult problems only with high probability but make up for it with
short expected runtime. In order to account for those quantitative aspects,
techniques for reasoning about the correctness of randomized algorithms
need to naturally also be of quantitative nature. Amongst others, Kozen,
Mclver & Morgan, Jones, and also ourselves have provided quantitative ana-
logs to invariant-style reasoning about probabilistic loops. In this chapter,
we survey those proof rules.

After recapping how to lift invariant-style reasoning from nonprobabilis-
tic to probabilistic loops, we survey and discuss proof rules for proving
bounds (both upper and lower) on weakest preexpectations and weakest lib-
eral preexpectations. In particular, we discuss in some detail the problem
of obtaining lower bounds on weakest preexpectations, i.e. lower bounds on
least fixed points. All proof rules have been translated into our weakest pre-
expectation setting so that we can give a unified overview and comparison.

REASONING about loops is one of the most — if not the most — difficult

51 INVARIANTS

LL proof rules we present in this chapter make in one way or another
Ause of a probabilistic, or rather quantitative, notion of invariants. In
order to transit from Boolean to quantitative reasoning, let us briefly recap
invariant-style reasoning about partial correctness of nonprobabilistic while
loops: Given a precondition G and a postcondition F, say we want to prove
that if executing while(¢@){C} on an initial state 0 | G terminates, then it
does so in a final state 7 |= F. For that, we have to find a predicate I such that

G=1 and -9 AI = F and (@ AI)YC(I)isvalid, (5.1)

where we mean validity for partial correctness. Any I for which the Hoare
triple (@ A T) C (I)is valid for partial correctness is called a loop invariant:

105

106

PROOF RULES FOR LOOPS

If the loop while(¢@){C} is started in a state satisfying both loop guard ¢
and invariant I and one execution of the loop body C terminates from that
state, then the execution of C terminates in a state that again satisfies I. Thus,
satisfaction of I is invariant under (guarded) iteration of the loop body.1

Why do invariants do the trick? Because we can now apply the while rule
for partial correctness of Hoare logic which reads as follows:

(9 ATYC(I)
(Tywhile(9)(C](~p A T)

We can now combine the while—partial rule above with the consequence rule
of Hoare logic (see Section 4.2.4, Relation to the consequence rule) into a
single proof tree and so obtain the full proof of partial correctness, namely

(pAI)C(I)
G=1 (INwhile(@){C} (=@ AT) - ANl = F
(G)while(@){C}(F) ,

(while—partial) (5.2)

which can be stated as a single inference rule:

G=1 (pANI)C(I) @Al = F
(G)while(@){C}(F)

(while—partial2)

In the realm of weakest precondition reasoning, the premises (¢ A I)C (I)
and -¢ A I = F together are equivalent to
{
[I] = v pcD[F]([I]) ’
where WlpCD[F] is the wlp—characteristic function of while (¢){C} with respect

to postcondition [F] (see Definition 4.5 .). This can be seen by

iff [~p]-[I] = [F]
iff [-@]-[I] 2 [~@]-[F] (by case distinction) (1)
and
(p AT)CLI)

iff oAl = wip[C](I)

iff [o]-[I] = wip [C] ([T])

iff [@]-[I] < [@]-wlp [C] ([I]) (by case distinction)
iff [~e]-[U]+[@]-[I] = [=@]-[F]+[e]-wip [C] ([I]) (by (1) above)
ifft [I] =< WIPCD[F]([I]) . (by definition of Wlp(D[F], Definition 4.5 E)

1 By “guarded iteration" we mean iterating the loop body only if the loop guard is true.

5.1 INVARIANTS

In the language of our weakest precondition calculi, the (while—partial2)-
rule thus reads as follows:
wlp
[G] < [1] =, 00, (1)
[G] < wip [while(@){C]] ([F])

For our definition of quantitative invariants, we lift the above rule to weak-
est preexpectations in a straightforward way. Furthermore, we distinguish
between super- and subinvariants.

DeriniTION 5.1 (Invariants):
Let @y be the wp—characteristic function of while(¢){C} with respect
to postexpectation f € E and let I € E. Then:

A. I is called a wp—superinvariant of while(¢){C} with respect to
postexpectation f, iff

() < I.

B. [is called a wp—subinvariant of while (¢){C} with respect to pos-
texpectation f, iff

I < dp().

c. Super- and subinvariants for wlp, awp, and awlp are defined analo-
gously by means of wlp—, awp—, and awlp—characteristic functions,
respectively. Notice that wlp— and awlp-invariants are of type [E<;
rather than E.

The I we used to illustrate the while-rule for partial correctness (Rule 5.2
above) would be a wlp-subinvariant in the terminology of Definition 5.1.

Remark 5.2 (On Terminology in Related Literature). Our subinvariants corres-
pond to probabilistic invariants in the terminology of Mclver & Morgan (see
[MMO5, Definition 2.2.1, p. 39]) up to a slight technical difference: Mclv-
er & Morgan call I a probabilistic invariant iff

[@]-I < wp[C](I),

which is implied by I < ®¢(I), but the converse implication is not true in
general for arbitrary postexpectations f. However, Mclver & Morgan do not
consider arbitrary postexpectations f, but instead argue only about weakest
preexpectations of loops with respect to postexpectation [-¢]-I and we have

[p]-1 < wp[C](I) iff I < Ppg(l),

107

108

PROOF RULES FOR LOOPS

as the following reasoning shows:
I < q)[ﬂ(p]-l(l)

ifft [~@l-I+[p]-I < [-@] [-@]-I+[p] -wp[C] ()

ifft — [~@l-I+[p]-I < [-@]-I+[@]-wp[C] ()

ifft [-@]-I < [-@]-] and [¢]-I < +[p] -wp[C](I)
ifft [e]-I < +[e]-wp[C](I)

Our definition of subinvariants is therefore not a restriction compared to
Mclver & Morgan’s probabilistic invariants.

Our superinvariants correspond to supermartingales in the terminology used
by Chakarov & Sankaranarayanan [CS14], Fioriti & Hermanns [FH15], and
Chatterjee et al. [CFG16; Cha+16; CF17; CNZ17; ACN18] with basically the
same technical difference as above.

Generally speaking, sub— and superinvariants in our terminology can be
conceived of, respectively, as sub— and supermartingales of the stochastic
process that can naturally be associated to a probabilistic loop. A

Next, we introduce a concept we call w—invariants. These are basically se-
quences of expectations that are invariants relative to each other. We will
make use of those for reasoning about lower bounds on least fixed points
and dually upper bounds on greatest fixed points.

DeriniTION 5.3 (w-Invariants):
A. Let @ be the wlp—characteristic function of while(¢){C} with re-
spect to postexpectation f and let (I,),en C E<; be a monotoni-
cally decreasing® sequence with Iy = 1.

Then (I,),en is called a wlp—w—superinvariant of while(¢){C}
with respect to postexpectation f € E<y, iff

VneN: @, < I, .

B. Let O be the wp—characteristic function of while(¢){C} with re-
spect to postexpectation f and let (I,),cn C [E be a monotonically
increasing® sequence with I = 0.

Then (I,,) e is called a wp—w—subinvariant of while (¢){C} with
respect to postexpectation f, iff

VneN: Iy, < ().

c. awlp—w-superinvariants and awp—w—subinvariants are analogously
defined by means of awlp— and awp—-characteristic functions.

2 But not necessarily strictly decreasing.
3 But not necessarily strictly increasing.

5.2 BOUNDS ON EXPECTED VALUES

Using such sequences to reason about the correctness of programs is to the
best of our knowledge originally due to Jones [Jon90, p. 124]. In her the-
sis, she basically used what we here call wp—w-subinvariants for a total-
correctness logic. Audebaud & Paulin—-Mohring later build upon Jones’ ideas
and use monotonically increasing sequences to reason about total correct-
ness of randomized algorithms in Coq [APM09, Section 4.4].

52 BOUNDS ON EXPECTED VALUES

oUNDs on expected values, i.e. bounds on preexpectations, are a key con-
Bcept in reasoning about probabilistic programs. Several correctness prop-
erties can be expressed as either upper or lower bounds on preexpectations.
For example, we have already seen that the probability of event A can be
coded as the expected value of the event’s characteristic function [A]. Ver-
ifying bounds on probabilities is also the main task of the model checking
problem of probabilistic logics like PCTL [HJ94].

Reasoning loop—free programs is mostly straightforward. Weakest preex-
pectations can be computed in practice.* For while loops, the situation is
more difficult: Weakest (liberal) preexpectations of loops are defined as fixed
points and those are in general non-computable. All non-trivial approxima-
tions of the fixed points are non—-computable as well (see Part III).

In this section, we thus describe proof rules that can aid in reasoning
about weakest (liberal) preexpectations of loops. We first describe induc-
tive proof rules that allow for reasoning about upper bounds on wp and awp
and coinductive proof rules that are suitable for lower bounds on wlp and
awlp. We also briefly discuss the problem of coinduction for lower bounds
on wp. Thereafter, we describe what we call w-rules for reasoning about
lower bounds on wp and awp, and upper bounds on wlp and awlp. We then
survey proof rules by Mclver & Morgan for lower bounds on wp and finally
show how any bound can potentially be tightened.

5.2.1 Induction for Weakest Preexpectations

Induction on natural numbers is a well-known proof principle which can
be traced back to classical antiquity, e.g. Euclid’s proof that the number of
primes is infinite. The induction principle states that in order to prove that
a predicate F is true for all natural numbers, it suffices to prove that both

A. 0 F, and
B. nfE Fimpliesn+1EF

are true. We can reformulate induction over the natural numbers in the set-
ting of continuous functions on complete lattices [Rot16, Section 2.1]: We

4 Le. in case the postexpectation is computable.

109

110

PROOF RULES FOR LOOPS

choose the complete lattice (P (IN), C), the continuous function
D(X) = {0ju{n+1|neX}, (5.3)

and conceive of the predicate F as a set F € P (IN). We can easily convince our-
selves that IN is the least fixed point of ® and that checking a. and B. above
together amounts to checking whether ®(F) C F. The induction principle for
the natural numbers then tells us that

O(F) € F implies Ifp® C F. (5.4)

Since Ifp @ =N, thus N C F, and IN is the greatest element in P (IN), we can
conclude that F = IN and thus F holds for all numbers.

Implication 5.4 above is a special case of a more general principle (see
Lemma A.6): Let (D, E) be any complete lattice and let ®: D — D be any
continuous self-map on D. Then

VdeD: O(d)Cd implies lfpd C d.

The above general principle is called Park’s Lemma, Scott induction or sim-
ply induction [Rot16, Section 2]. Since weakest preexpectations are defined
as least fixed points of continuous functions on complete lattices, we can
make use of the induction principle in order to reason about upper bounds
on weakest preexpectations:

Tueorem 5.4 (Induction for Upper Bounds on wp and awp®):
Let I € E be a wp-superinvariant of while (¢){C} with respect to post-
expectation f (see Definition 5.1 a.). Then

wp [while(9){CI] (f) < I.

The analogous result for awp holds as well.

Proof. Thisis aninstance of Park’s Lemma (see Lemma A.6): Simply choose
complete lattice ([E, <) and continuous function (@ g';(l)f.

ExamrpLE 5.5 (Upper Bounds on wp):
Consider the program C,, given by

c:=1g

while(c=1){
{c:=0}[12]{x :=x+1}

b

5 For induction for tame programs, see [Koz85, the while rule on p. 168]

5.2 BOUNDS ON EXPECTED VALUES

and suppose we want to reason about an upper bound on the expected value
of x after execution of Cg,. To this end, we propose the wp-superinvariant

I = x+[c=1]

and check its wp-superinvariance by applying the wp—characteristic function
D(X) = [c=1]-x+[c=1]3(X[c/0]+ X [x/x+1]),

to I, which gives us

D(I) = D(x+[c=1])

[c=1]-x+[c=1]-3(x+[0=1]+x+1+[c=1])

x+[c=1]-3(0+1+1)

x+[c=1]
=1=<1T.

Thus the induction rule (Theorem 5.4) gives us that
wp [while (...}] (x) < x+[c=1] (t)
and hence we get

wp [[Cgeo]] (x) = wp[c:=13while (...}] (x)
wp [c :=1] (wp [while (...}] (x))
wp c:=1] (x+[c=1])
(by T and monotonicity, Theorem 4.16)

IA

= x+[1=1]
=x+1

and therefore x + 1 (evaluated in the initial state) is an upper bound on the
expected value of x (evaluated in the final states) after executing Cg,.

5.2.2 Coinduction for Weakest Liberal Preexpectations

The principle of coinduction is the dual of the induction principle and reads
as follows [Rotl6, Section 2]: Let (D, E) be any complete lattice and let
®: D — D be any continuous function. Then

VYdeD: dC ®(d) implies d C gfp®d.

For our example of the natural numbers, coinduction is not very interesting,
since IN is not only the least but also the greatest fixed point of ® as defined

111

112

PROOF RULES FOR LOOPS

in Equation 5.3. For a predicate F € P(IN), we thus get by coinduction

F C O(F) implies F € IN,

which, however, does not provide any information on F as the right-hand-
side of the implication is vacuously true for any F € P(IN).

The particular problem we encounter with @ here is that IN is not only the
greatest fixed point of @ but indeed the greatest element in P (IN) altogether.
This is not the situation, however, for weakest liberal preexpectations: Those
are defined as greatest fixed points and they may very well be below 1 —
the greatest element in ([E<;, <). We may thus make use of the coinduction

principle to reason about lower bounds on weakest liberal preexpectations:

TueoreM 5.6 (Coinduction for Lower Bounds on wip®):
Let I € [E.; be a wip—subinvariant of while (¢){C} with respect to post-
expectation f (see Definition 5.1 B.). Then

I < wip [while(@){C] (f).

The analogous result for awlp holds as well.

Proof. Thisis an instance of Park’s Lemma (see Lemma A.6): Simply choose
complete lattice (E<;, <) and continuous function ((pwclg’CD Iz

ExampirE 5.7 (Lower Bounds on wlp):
Reconsider the program C, given by

c:=1g

while(c=1){
{diverge} [1/2] {x :=x+1}3
{skip}[1/2] {c :=0}

b

and suppose we want to reason about a lower bound on the probability that
x is even after execution of C (if C terminates at all). To this end, we propose

I = [cz1]-[xeven] + [c=1] §+4.[ﬁgdd]+[xi‘;en]

as wlp—subinvariant and check wlp—subinvariance by applying the wlp—-char-
acteristic function

6 See [MMO5, Lemma 7.2.2, p. 185].

5.2 BOUNDS ON EXPECTED VALUES

OX) = [c# 1] [x even] + [c = l]'(%4_X[x/x+1] +X[c,x/O,x+1]) ’

4 4

to I, which gives us

()

[c#1]-[xeven] + [c = 1]- (+I[x/x+1]+1[c,x/0,x+1])

2 4 4

[c¢1]-[xeven]+[c=1]-(%+[C¢1]':

1
B 2 4-[x+1o0dd] [x+1 even]
tle=1]- (34+ 154 ' 15.4)

+[0¢1]-W+[o:1].(...))

[c#1]-[xeven]

+[c=1] (

2 4-[xeven] [xodd] [xodd]
347 154 154 ' 4)
= [c#1]-[xeven]+[c=1]- (3+[X<;\;en]+4-[gi50dd])

=1=<1T.

Thus the coinduction rule (Theorem 5.6) gives us that

[c21]-[xeven] + [c=1]- (; 4. [i;)dd] [xei\;en])

< wp [while (...}] ([x even])
and hence we get

wp [C] ([x even])
= wp[c:=135while (...}] ([x even])

wp [c :=1] (wp [while (...}] ([x even]))

1\

wp [c :=1] ([c:tl] [x even]+[c=1]- (§ 4. [ﬁ;)dd] [xi\;en]))

(by t above and monotonicity, Theorem 4.16)
= [1=1]-[.] + [1=1] (2 4-[xodd] | [Xeven])

15 15
2 4-[xodd] [xeven]
-+ +
3 15 15

and therefore 2/3+4:[xodd}/15+ [xeven)/i5 (evaluated in the initial state) is a lower

113

114

PROOF RULES FOR LOOPS

bound on the probability that C either diverges or terminates in a state where
X is even.

5.2.3 No Coinduction for Weakest Preexpectations

We have seen in the previous subsection that induction allows us to get above
a least fixed point whereas coinduction allows to get below a greatest fixed
point. Unfortunately, getting below a least fixed point — and dually: getting
above a greatest fixed point — is not associated with such elegant proof princi-
ples as induction or coinduction. In particular, for a complete lattice (D,)
and a continuous function ®: D — D, the supposedly evident rules

VdeD: dC ®(d) implies dC lip®, 5
and
VdeD: @(d) Cd implies gfp® C d f

are both unsound, not only in general but also in our particular use case of
preexpectations as the following counterexample demonstrates:

CounTerexaMPLE 5.8 (Unsoundness of Coinduction for wp):
Consider the program C, given by

while(c=1){
{c:=0}[12]{x:=x+1}
k:=k+1

b

and suppose we want to incorrectly reason about a lower bound on the ex-
pected value of x after execution of C by coinduction. The wp—characteristic
function of the while loop with respect to postexpectation x is given by

O(X) = [c#1]-x+[c=1]-5(X[kc/k+1,0]+ X [k,x/k+1,x+1]).
We now propose infinitely many fixed points of @, namely for every a > 0
I, = x+[c=1](2""+1)

is a fixed point of @, as one can easily check. However, for any d < b, we
clearly have I; < I;,. Thus, if we prove I, < ®(I,) we cannot have proven that
I, is a lower bound on the least fixed point of @, since I; is a fixed point
strictly smaller than I. In fact, none of the I,’s are the least fixed point of ®.
The intuitive reason is that the expected value of x is completely independent
of k but k has an influence on the value that the I,’s assume.

5.2 BOUNDS ON EXPECTED VALUES

It is important to note that unsoundness of coinductive premises in order to ob-
tain lower bounds on wp is absolutely not evident. We will see later in Chapter 7,
that for deterministic programs Frohn et al. have shown that one can prove
lower bounds on runtimes of programs from wp-subinvariants, which Frohn et
al. call metering functions [Fro+16b]. This allows to lower bound a least fixed
point from a coinductive premise (i.e. from a premise of the form d T ®(d)).
Transferring the metering function method to probabilistic programs, how-
ever, unfortunately fails in a way similar to the above counterexample, as we
will see later in this thesis.

5.2.4 w-Rules

In light of our just described inability to obtain lower bounds on weakest pre-
expectations, and dually upper bounds on weakest liberal preexpectations,
by simple means such as coinduction or induction, we now present two alter-
native proof rules for obtaining precisely such desired bounds. These proof
rules will be conceptually less elegant and consequently more difficult to
apply, as they make use of w—invariants. In particular, it will be necessary
to find the limit of such w-invariants in order to actually gain some insights
from applying these rules. That basically just shifts the problem of obtaining
bounds into the realm of real analysis. The rule for lower bounds on weakest
preexpectations (getting below a least fixed point) reads as follows:

TuroreMm 5.9 (Lower Bounds on wp and awp from w-Invariants?):
A. Let (I,),en be a wp—w—subinvariant of while (@){C} with respect
to postexpectation f (see Definition 5.3 B.). Then

sup I, < wp [uhile (@) [CI](f)

B. Let (I,),en be a wlp—w-superinvariant of while(¢){C} with re-
spect to postexpectation f (see Definition 5.3 a.). Then

wip [while(@){C)] (f) = inf I,.

c. Analogous results for awp and awlp hold as well.

Proof. We only prove a., because the proofs for B. and c. are analogous. Let
® be the wp—characteristic function of while(¢@){C} with respect to postex-
pectation f. We first prove by induction that

VneN: I, < ®"L(0).

7 See also [Jon90, p. 124] and [APMO09, Section 4.4].

115

116

PROOF RULES FOR LOOPS

For the induction base we have
Iy = 0 < ®(0)

trivially, since 0 is the least element in [E. For the induction step we assume
induction hypothesis I, < ®"*1(0) and prove

I = D(1,) (by (I;;)nen being a wp—w-subinv., Definition 5.3 B.)
<o (@””(0)) (by I.H. and monotonicity of ®, Theorem 4.16)
— q)n+2(0))

Since I,, < ®"*1(0) holds for all n and ®°(0) = 0, we may take the supremum
on both sides and conclude:

supl, < sup®"*(0)
nelN nelN
= sup®@”(0) (by ®%(0) = 0 being the least element in lE)
nelN
= Ilfp®d

= wp [while(@){C}] (f)

ExampLE 5.10 (Bounds from w-rules):
Recall Example 2.6, Example 2.9, Example 2.11 B., and Example 4.10. In all
of those examples we performed a fixed point iteration. The ,patterns“ — as
we called them — which we learned by inspecting the evolution of the first
few iterations were in fact w—-invariants.

Proving the pattern correct would correspond to the induction on 7 in the
w-rule. Finding the limit of a pattern would correspond to finding a closed
form for a sup or an inf, accordingly.

Let us briefly reflect on the usability of w-rules. Recall that verification of
loops by means of the induction and the coinduction rule (Theorem 5.4 and
Theorem 5.6) was conceptually very simple. Informally, the steps we had to
take are the following:

1. Find an appropriate invariant I.
2. Push I through the characteristic function of the loop once.

3. Check whether Step 2. took us down (for induction) or up (for coinduc-
tion) in the partial order <.

Often, the ,only” difficulty that we encounter in practice is with Step 1:
Finding an appropriate invariant (even though this can admittedly be very
difficult in practice).

5.2 BOUNDS ON EXPECTED VALUES

Verification of loops using w-rules (Theorem 5.9) on the other hand is
much more involved. In summary, the steps we have to take are as follows:

1. Find an appropriate w—-invariant, i.e. a sequence (I,),cnN-

2. Check that (I,,),en is indeed an w-invariant, e.g. by induction on n:
a) Push I, through the characteristic function.

b) Check whether performing Step a) took us above I,,,; (for wp) or
below I,,,1 (for wlp) in the partial order <.

3. Find the supremum (for wp) or the infimum (for wlp) of (I,,),eN-

Steps 2.a) and 2.b) for the w-rules basically correspond to Steps 2. and 3. for
(co)induction. However, for w-rules we have to perform an additional induc-
tion on the natural numbers.

The second — and probably more significant — extra effort we have to
take is reasoning about the limits of the w—invariants. For wp, for instance,
one might very well argue that we may then just as well directly infer the
supremum sequence ®”(0) in order to obtain the exact expected value. As a
matter of fact, in my personal experience, we have never encountered a case
where we found a wp—w-subinvariant I, that truly underapproximated ®"(0).
Instead, we were always able to prove I,, = ®"(0). The difficulty with find-
ing the supremum of the sequence, however, remains. Personally, I there-
fore believe that both the usability as well as the gain of w-rules is very
limited in practice.

Despite the extra difficulties that come with using w-rules, a natural ques-
tion that arises is whether an w-rule for upper bounds on weakest preex-
pectations, and dually an w-rule for lower bounds on weakest liberal preex-
pectations, could be of any advantage. Luckily, the following remark gives a
negative answer to this question.

Remark 5.11 (Expendability of w—rules for upper bounds on wp). Let us formu-
late the w-rule for wp-reasoning: Let ® be the wp—characteristic function
of while(¢@){C} with respect to postexpectation f and let (I,,),en C [E be a
monotonically decreasing sequence. Then

(I,) < I implies wp [while(@){C}] (f) < inf I,.

neN
The soundness proof for this rule goes as follows:
YnelN: O(I,) < I,
implies ;1211{1 D(I,) = ;2}1{1 L1
implies ,1211{1 D(I,) < 2211{1 I,
implies) (;gﬂg Iﬂ) < inf I, (by continuity, Theorem 4.12)

117

118

PROOF RULES FOR LOOPS

implies wp [while(@){C}] (f) = inf I,
(by induction rule, Theorem 5.4)
As a byproduct of our proof, we have shown that inf,c I, itself is a wp-
superinvariant. Since, ultimately, we have to find the infimum I= inf,en L
anyway in order to gain some insights from the w-rule, we could have just
as well applied the induction rule immediately to I and could therefore have
dispensed with the extra induction on n imposed by the w-rule.

Dually to the above, an w-rule for lower bounds on weakest liberal preex-
pectations is expendable as well. A

5.2.5 Lower Bounds on wp

There is a genuine and legitimate interest in reasoning about lower bounds
on weakest preexpectations, namely when it comes to giving total correct-
ness guarantees which amounts to lower-bounding the probability of total cor-
rectness. Yet, we saw that applying w-rules is quite involved. Mclver & Mor-
gan came up with interesting total correctness rules that mitigate this un-
pleasant situation to the extent that their rules do not rely on w-invariants.
One of the most important rules on which a larger part of their oeuvre on
proof rules for probabilistic loops builds upon reads as follows:

Tueorem 5.12 ([MMO05]8):
Let f € E<3; be a bounded postexpectation. Furthermore, let I’ € E.3;
be a bounded expectation such that expectation I € [E given by

I = [=¢]-f+[p]-T
is a wp-subinvariant of while(¢){C} with respect to f. Finally, let
T = wp [while(g){C}] (1)
be the termination probability of while (¢){C}. Then:
A. IfI =[G] for some predicate G, then
T < wp[while(@){CI] (f) .
B. If [G] < T for some predicate G, then
[G]-1 < wp [while(¢)(C)] (f).
c. Ife-1<T for some € >0, then

I < wp [while(q)(C)](f) -

8 More specifically, this theorem combines Lemma 2.4.1 on p. 43, its relaxation described on p. 54,
Lemma 7.7.6 on p. 203, Theorem 7.3.3 on p. 188, and Theorem B.2.2 on p. 329 in [MMO5].

5.2 BOUNDS ON EXPECTED VALUES

Intuitively, Theorem 5.12 provides lower bounds on wp [while(¢@){C}] (f)
in the following scenarios:

1. If the invariant [is the indicator function of a predicate G, then I mul-
tiplied by the termination probability T is a lower bound.

2. If the termination probability T is lower-bounded by the indicator
function of some predicate G, then the invariant I multiplied by that
indicator function [G] is a lower bound.

3. If the termination probability T is lower-bounded by some non-ze-
ro constant fraction € of the invariant I, then the invariant I itself is
a lower bound.

While at first glance Theorem 5.12 seems easier to apply than w-rules, it has
several drawbacks of its own: For one, it is only applicable to bounded expec-
tations which renders reasoning about general expected values (as opposed
to reasoning e.g. about probabilities) difficult, if not impossible.

Another major drawback of Theorem 5.12 is that it requires substantial
knowledge about the termination probability wp [while(¢@){C}] (1). Rea-
soning about this probability is quite involved too, although we will later
present proof rules (some more, some less involved) that can render reason-
ing about probabilistic termination feasible (see Chapter 6).

Despite the just mentioned difficulties of applying Theorem 5.12 in prac-
tice, expecially Theorem 5.12 c. is an important theoretical device for prov-
ing the correctness of several other proof rules. In particular, several of the
termination rules in Chapter 6 ultimately build upon Theorem 5.12 c.

If by some means we already known that while (¢){C} terminates univer-
sally almost-surely, then for one-bounded expectations f € [E.; we know by
Corollary 4.28 that wp [while(¢@){C}] (f) and wlp [while(¢@){C}] (f) coin-
cide. Thus, in that case there exists only one fixed point and we hence obtain
the following corollary:

CoroLrLARrY 5.13 (Bounds on Almost-surely Terminating Loops):
Let the loop while (¢){C} terminate universally almost-surely, i.e.

wp [while(@){C] (1) = 1
and let I € E.q. Then:

A. If I is a wp—subinvariant of while (¢){C} with respect to postex-
pectation f, then

I < wp[while(@){C]] (f) -

B. If I is a wlp—superinvariant of while (¢){C} with respect to post-
expectation f, then

wip [while (@) {CI] (f) < I.

119

120 PROOF RULES FOR LOOPS

Another rule by Mclver & Morgan allows — interestingly — for reasoning
about weakest preexpectations by means of wlp—subinvariants:

Tueorem 5.14 ([MMO5, Lemma 7.3.1 on p. 186]):
Let I’ € [E; be a one-bounded expectation such that I € [E.; given by

I = [-p]-f+]e]-I

is a wlp—subinvariant of while (¢){C} with respect to postexpectation f.
Furthermore, let

T = wp [uhile(p){C}] (1),
and let g©h be defined as max{g—h, 0}, for any g,h € E. Then

(I+T)el =< wp[while(@){C}] (f).

While this rule is methodologically interesting since it derives a total correct-
ness property (a weakest preexpectation) from a partial correctness invariant
(a wlp—invariant), it still has the potentially severe drawback that we need
substantial knowledge about the termination probability of the loop at hand.

5.2.6 Upper Bounds vs. Lower Bounds

Generally speaking (and perhaps slightly over—simplified), we saw that rea-
soning about upper bounds of least fixed point (and dually reasoning about
lower bounds of greatest fixed points) is easy, whereas reasoning about lower
bounds of least fixed points (and dually reasoning about upper bounds of
greatest fixed points) is more involved.

We will learn later in Part III that from a computational hardness perspec-
tive, the exact opposite to what we just stated should be expected. This consti-
tutes a seemingly paradoxical situation to which to the best of our knowledge
no good explanation is known.

An unsatisfactory explanation why lower bounds for weakest preexpecta-
tions are in fact computationally tractable is the following: Suppose we want
to reason about a lower bound for wp [while(@){C}] (f) and @ is the associ-
ated characteristic function. Then (®"(0)),c is trivially an w-invariant. But
then for some fixed k > 2, the sequence

(0, (0), D2(0), ..., P*71(0), @*(0), @*(0), @*(0), ...) _
i.e. the so to speak forced stabilization of (P"(0)),en after k iterations, is also
an w-invariant with an easy-to-find (i.e. computable) limit: @k(0).

This method is of course unsatisfactory, since we had to perform k itera-
tions, i.e. applications of @, in order to obtain some lower bound. In fact, the

5.2 BOUNDS ON EXPECTED VALUES

tighter a bound we want to obtain, the more effort we have to invest. This
is not the case for induction or coinduction. So while the sequence (9"(0)),,en
successively indeed enumerates all lower bounds, a major problem in proba-
bilistic program verification remains open:

Oren ProsrLeM 1 (One-shot Verification of Lower Bounds on wp):
Find a , one-shot”“ method as elegant as the induction or coinduction
rule (Theorems 5.4 and 5.6), which, given a loop while(¢){C}, a post-
expectation f € E, and a specific hypothesis L € E, allows for checking
whether L is in fact a lower bound on wp [while (@){C}] (f).

In Section 6.2, we will present a rule that can be regarded as a partial solution
to the above problem, namely for the special case of almost—sure termination,
which amounts to proving that 1 is a (non-strict) lower bound on the termi-
nation probability. However, for lower bounds on arbitrary preexpectations,
to the best of our knowledge, no sufficiently elegant method is known.

5.2.7 Bound Refinement

We saw that obtaining a bound on a weakest (liberal) preexpectation of a
loop can be quite difficult. However, once we have obtained some bound —
be it upper or lower — by any means (e.g. by application of one of the proof
rules presented in the previous sections), we have a chance of refining and
thereby tightening this bound fairly easily:

TueoreMm 5.15 (Bound Refinement):

Let @ be the wp—characteristic function of while(¢){C} with respect
to f and let I be an upper bound on wp [while(¢@){C}] (f), such that
d(I) <1I.

Then @©(I) is also an upper bound on wp [while(¢@){C}] (f). More-
over, whenever ©(I) = I, then ®(I) is an even tighter upper bound on
wp [while(@){C}] (f) thanI.

Dually, if I is a lower bound, such that I < ®(I), then ®(I) is also a
lower bound; and whenever ®(I) # I, then ®(I) is an even tighter lower
bound than I.

Analogous results hold for awp, wlp, and awlp as well.

Proof. Let I be an upper bound on wp [while(¢@){C}] (f). To see that O(I)
is also an upper bound on wp [while(¢){C}] (f), consider the following:

wp [while(@)(CI] (f) < 1
iff Ifp® <1
implies @(lfp @) < D(I) (by monotonicity, Theorem 4.16)

121

122

PROOF RULES FOR LOOPS

implies Ifp © < d(I) (Ifp @ is a fixed point of D)
iff wp [while(){C}] (f) = D(I)

By the assumption ®(I) < I, ®(I) is at least as tight an upper bound as I.
Thus if ®(I) = I, ®(I) must be an even tighter upper bound.

The reasoning for awp, wlp, awlp, and lower bounds is analogous.

The particular bound refinement of Theorem 5.15 can of course be continued
ad infinitum: For instance, if I is an upper bound on wp [while(¢){C}] (f)
with ®(I) < I, then so is ®(I) but also ®2(I), ®3(I), and so on. In fact, for
increasing n, the sequence ®"(I) is decreasing and converges to a fixed point,
more precisely the greatest fixed point that is below (or equal to) I. This is
called the Tarski—Kantorovich principle [JGP00]. The so—obtained fixed point
itself is then also an upper bound, thus

wp [while(@){C}] (f) = inf ®™(I).

Dually, if I is a lower bound on wp [while(¢@){C}] (f) with I < ®(I), then so
are O(I), (DZ(I), <I)3(I), and so on, and moreover

sup @'(1) < wp [uhile(¢)(CI] (/)

5.2.8 Independent and Identically Distributed Loops

We have learned in the previous sections that obtaining bounds — especially
lower bounds —, on weakest preexpectations of while loops can be a very
difficult task. Obtaining exact weakest preexpectations obviously cannot be
any easier in principle. Under certain conditions, however, we are able to de-
rive the exact weakest preexpectation of a while loop with respect to a given
postexpectation. Informally, these conditions can be described as follows:

1. For each loop iteration, the probability to immediately terminate after
that iteration is equal.

2. There is no information flow across different loop iterations with respect
to any program variable that has an influence on the value of the post-
expectation f.

In the following, we will make the above two conditions more formal. A
central notion for achieving this formalization is the concept of a loop being
f-independent identically distributed (f—i.i.d. for short):

5.2 BOUNDS ON EXPECTED VALUES 123

DEeriniTION 5.16 (f—i.i.d. Loops [Bat+18b]):
Let f € [E and C € pGCL.

A. The set of variables occurring in f, denoted Vars(f), is defined as

Vars(f) = {x € Vars ‘ dv,v" eVals: f[x/v] = f[x/v']}.

B. The set of variables modified by C, denoted Mod (C), is defined as
the set of all variables x € Vars, such that x appears on the left—
hand-side of an assignment occurring in C.

c. We say that C cannot influence f, denoted C @ f, if the set of vari-
ables occurring in f is disjoint from the set of variables modified
by C, i.e.

cCnhf iff Mod(C) N Vars(f) = 0.

D. A loop while(¢){C} is called f-independent identically distrib-
uted (f —i.i.d. for short), iff

Cawp[Cl(el) and C @ wp[C]([-¢]-f).

Notice that Mod(_...) is a purely syntactic notion. On the other hand, the def-
inition of Vars(..) has more of a semantic flavor as it speaks about a prop-
erty of a potentially arbitrary function of type ¥ — RRY,. However, if we are
given a closed form syntactic expression for the expectation f, we can at least
overapproximate Varsf by the set of all variables that actually occurr in f,
syntactically. Nevertheless, because of the semantic flavor of Vars(), the
relation ¢ and the notion of f—i.i.d.—ness is not purely syntactic

The definition of f—i.i.d.—ness is very technical and providing an intuition
for it is not an easy task. A more pleasant aspect about the definition is
that in practice it can often be checked in a quite straightforward and even
automatable manner, despite not being a purely syntactic notion [Bat+18b].
The most important aspect, however, is that for f-independent identically
distributed loops we can obtain exact weakest preexpectations:

Tueorem 5.17 (Weakest Preexpectations of f—i.i.d. Loops [Bat+18b]):
Let while(@){C} be f-i.i.d. Then the weakest preexpectation of the
loop with respect to f is given by

wp [C] ([=¢]-f)

wp [while(@){CI)[(f) = [~¢]-f + [¢]: 1-wp [C] ([¢]) ’

where we define %0 = 0.

124

PROOF RULES FOR LOOPS

Intuitively, as the expected value of f can be determined by just a single
iteration of the loop body, the fraction appearing in Theorem 5.17 can be un-
derstood as the conditional expected value of f given that the loop terminates.

It is worthwhile to note that in order to apply Theorem 5.17 it is not re-
quired to find or guess in any way an invariant, w—invariant, martingale, or
alike. Instead, only f—i.i.d.—ness of f — the very postexpectation one is inter-
ested in — needs to be checked. Our theorem then immediately yields the
exact sought—after preexpectation — not just a bound.

Finally, we would like to mention that Theorem 5.17 is obviously not a
free-lunch-theorem: Checking f-i.i.d.-ness can potentially become a non—
trivial and in general undecidable task. Also, once the expected value of
postexpectation f depends in some way on the number of iterations a loop
makes, i.e. once the loop performs some sort of counting and the value of
the counter influences the value of f, the theorem fails to be applicable al-
together. On the other hand, Theorem 5.17 has been successfully applied to
reason about massively large Bayesian networks from the Bayesian Network
Repository [Scu] with more than a thousand nodes [Bat+18b].

PROBABILISTIC TERMINATION

abilistic programs and is naturally an active area of research [HSP83;

SPHS84; APZ03; BG05; BG06; SS11; EGK12; CS13; FH15; KK15b;
CFG16; Cha+16; CNZ17; CF17; DLG17; ACN18; McI+18]. Already the very
notion of termination is much more nuanced and subtle for probabilistic pro-
grams than it is for nonprobabilistic ones. Whereas a deterministic program
either terminates on a given input with certainty or not at all, the following
two forms of probabilistic termination are mainly considered in the literature:

T ERMINATION is one of the most fundamental liveness properties of prob-

4 Almost—sure termination: Termination with probability 1.
< Positive almost—sure termination: Termination in finite expected time.

In this chapter, we survey and discuss proof rules for proving the different
forms of probabilistic termination. In particular, we present a more recent
proof rule for proving almost—sure termination of loops that do not necessar-
ily terminate in finite expected time — a notoriously difficult task in proba-
bilistic program verification.

Let us first develop the differences between different forms of termination.
As a first example, consider the probabilistic program

while(x>0){
{x:=x—-1}[12]{x :=x-2}

}.
This program terminates universally certainly, meaning that every possible
computation path of the program terminates. And indeed, even though there
are probabilistic choices and the time until termination depends on the out-
come of the coin tosses, every possible computation path of this program on
a given input terminates after at most max {[x], 0}, thus finitely many, loop
iterations. The probabilistic nature of the program has thus no effect on ter-
mination itself, but only on the time until termination.

As a second example, consider the program

while(x>0){
{x :=x—-1}[12]{skip}
).

This program admits a single diverging run (namely the one in which in-
finitely often skip is executed). Even though the diverging path has proba-

125

126

PROBABILISTIC TERMINATION

bility 0, this path does exist and because of this, the program does not ter-
minate certainly. The program does, however, terminate universally almost—
surely, i.e. with probability 1. Moreover, the program terminates universally
positively almost—surely as it needs on average max{2[x], 0} loop iterations
until it terminates, which for a given input x is a finite number. If we were
to execute the program on an initial state with x = 10, we could thus expect
to witness termination of the program within 20 loop iterations. Formally,
positive almost—sure termination is defined as follows:

DEeriniTION 6.1 (Expected Runtimes and Positive A.—s. Termination):
A. Let C € pGCL and let 0 € ¥ be a program state. Then the worst—
case expected runtime of C on input o is given by!

w
ERT[C], = sup Zl - Zq , where
se€Scheds 7 <ly 1,0, 'Irq>€Ks<i

K = {(l,r,n,e,n,tn'(C,0,0,6,6,1> re (Lt n0,1,49), n<i}.

B. C terminates positively almost—surely on input o iff its expected
runtime on input o is finite, i.e. ERT [C], < co.

c. C terminates universally positively almost-surely iff C terminates
positively almost-surely on all inputs, i.e. YV 0 € X: ERT[C], < 0.

The intuition for the formula for ERT[C] above is that we can express the
expected value of a non-negative (IN U {oo})—valued random variable X as

[

EV(X) = ZPr(Xzi).

i=1

As we have no direct access to the probability that a probabilistic program
runs for at least i steps, we compute 1 minus the probability that the program
runs for less than i steps.

The terminology positive almost—sure termination was introduced by Bour-
nez & Garnier [BG05]. Their inspiration for the term ,positive” came from
Markov chain theory, more specifically from the distinction between posi-
tively recurrent states (states that are revisited with probability one and the
expected time until a revisit is finite) and null recurrent states (states that
are revisited with probability one but the expected time to revisit is infi-
nite) [Put05, Section A.2, p. 588]. Adapting this line of thought, almost-
surely terminating programs that do not terminate positively almost—surely
could be called null almost—surely terminating. We consider such cases next.

As our third example, consider the program

1 Recall Definition 3.4 and Definition 3.7.

PROBABILISTIC TERMINATION

while(x>0){
{x :=x-1}[1V2]{x :=x+1}
}

This program admits infinitely many diverging runs but their aggregated
probability is 0. In contrast to the second example, however, this third pro-
gram does not terminate within an expected finite number of loop iterations.
Its expected runtime is infinite. Thus, the notion under which we can speak
of termination of the above program is weaker: It terminates almost-surely,
i.e. with probability 1. Formally, almost-sure termination of programs is
defined as follows:

DEerINITION 6.2 (Almost-sure Termination):
Let C be a pGCL program and let o € X be an initial program state. Then
C terminates almost-surely on input ¢ iff

wp [C] (1)(0) = 1.

C terminates universally almost-surely iff C terminates almost-surely
on all inputs, i.e.

wp[C] (1) = 1.2

C terminates (universally) null almost-surely iff C terminates (univer-
sally) almost-surely but not (universally) positively almost-surely.

The example program above terminates universally null almost—surely, since
it terminates with probability 1 but requiring infinite expected runtime. In-
tuitively, if we were to execute the program on a state with x = 10, we would
expect the program to terminate, but we cannot expect to witness its termi-
nation within our lifespan.

Proving universal almost-sure termination of a program C amounts to
proving that 1 is a (non-strict) lower bound on the termination probability of
C, i.e. proving 1 < wp [C] (1). Proving universal positive almost-sure termi-
nation of C amounts to proving a finite upper bound on the expected runtime
of C (for a calculus for reasoning about expected runtimes, see Chapter 7).
From our experience in Section 5.2 and in particular from our considerations
in Section 5.2.6 we can expect positive almost—sure termination proofs to be
easier in practice, since they constitute an upper bound proof. And indeed,
we will see that the methodology for positive almost—sure termination is eas-
ier than the one for almost-sure termination proofs.

Besides certain, positive almost-sure, and almost-sure termination, an-
other notion that is sometimes considered are so—called tail bounds or tail

Notice that the two 1’s on the right hand sides of the two equations in this definition are of differ-
ent type. The first 1 is the real number 1, whereas the second 1 is an expectation, namely Ao. 1.

127

128

PROBABILISTIC TERMINATION

probabilities [CF17; CNZ17]. For a given program and input, tail bounds
map each number n € IN to the probability that the program performs at
least n computation steps on the given input. We will, however, not con-
sider tail bounds in this thesis but instead focus on positive almost-sure and
almost-sure termination, starting with the former.

6.1 POSITIVE ALMOST-SURE TERMINATION

or a nonprobabilistic loop while (@){C}, one way to prove termination is
Fby use of loop variants [Flo67a, p. 30 et seqq.]. A loop variant is a mapping
from program states to a well-founded set, i.e. a set together with an order
relation in which no infinite descend is possible, such that iteration of the
loop body strictly decreases the value of the variant. Existence of a loop
variant then proves termination of the loop.
A particular form of loop variants are ranking functions [Dij75, p. 455]. A
ranking function R maps program states to real numbers and satisfies the
following two constraints for every state o

A. If 0 | @, then execution of C on ¢ terminates in a state 7 such that

for some fixed € > 0, and
B. if R(0) <0, then o [£ .

Constraint a. ensures that, from any state ¢ satisfying the loop guard, the
execution of the loop body reaches a successor state whose ranking is at least
by e smaller than ¢’s ranking, thus ensuring a strict descent. Constraint s.
ensures that if the ranking hits 0 or drops below, this falsifies the loop guard
and thus causes the loop to terminate. Therefore, from any state o, no infi-
nite chain of successor states with ever decreasing ranking can be formed by
iterated execution of the loop body without eventually falsifying the loop
guard and thus terminating the loop, since the length of such a chain is
bounded by [Rlo)/]. This ensures certain termination of the loop within at
most [R(e)/e] loop iterations.
For instance, for the program

while(x>0){
x:=x—1

)

we can choose the ranking function R = x or more formally

R = do. o(x).

6.1 POSITIVE ALMOST—-SURE TERMINATION

~

Loop Iterations

Figure 6.1: Evolution of the values of a ranking function R over the iterations of a
loop. oy is the initial state and o7, 07, 03, ... are the states reached after
1,2, 3,... loop iterations, respectively. One iteration decreases the ranking
by at least € which guarantees eventually hitting 0 (or dropping below).

Then R is a ranking function as every iteration of the loop body decreases x
by € =1 and the loop body will not be executed again once x < 0.
For probabilistic programs, this reasoning fails. The loop body of

while(x>0){
{x :=x—-1}[12]{skip}
b

for instance, is not guaranteed to decrease x due to the possibility of execut-
ing skip instead of x := x — 1. However, every iteration of the loop body
decreases x by 1/2 in expectation and thus x is ranking in expectation.

Existence of a function that is ranking in expectation indeed suffices to
prove positive almost-sure termination. Translated into our weakest preex-
pectation setting, we have the following theorem:

TueoreMm 6.3 (PAST from Ranking Superinvariants [CS13; FH15]):
Letwhile(¢@){C} be a loop where the loop body C itself terminates uni-
versally certainly.? Furthermore, let I € E be a ranking superinvariant?

3 E.g. let C be loop—free.
4 Ranking superinvariants correspond to ranking super martingales in the terminology of [CS13].

129

130

PROBABILISTIC TERMINATION

of while(¢@){C} with respect to postexpectation 0, i.e. I << co and there
exist constants € and K with 0 < € < K, such that

[~¢]-I < K and [¢]-K << [p]-I+[-¢]
and Dy(I) < [p]-(I-¢),

where @ is the awp—characteristic function of while(¢){C} with re-
spect to postexpectation 0.
Then while (@){C} terminates universally positively almost-surely.

Notice that we use awp because we want to guarantee that I is decreased in
expectation by at least e through one iteration of the loop body.

The two extra conditions involving the constant K are a technical neces-
sity in order to avoid the need for our ranking superinvariants to map to
negative values (as ranking functions do): The loop body should decrease I
by € in expectation, so I can drop by at most € into the negative. We miti-
gate this by pulling everything up by K > € and let a drop below K (instead
of 0) indicate termination.

Theorem 6.3 is basically a reformulation of [CS13, Theorem 4] or [FH15,
Theorem 5.6] but translated into our weakest preexpectation setting. It is
also very similar and basically equivalent to Theorem 3 of [Kam+16], which
we present in Chapter 7. The main difference is that [Kam+16] needs less
preconditions and always uses € = 1, while still being complete.

ExamrpLE 6.4 (PAST from Ranking Superinvariants):
Reconsider the program

while(x>0){
{x :=x—-1}[12]{skip}
b

for which the awp—characteristic function with respect to 0 is given by

Dy(X) = [x<0]-0 + [x>0]-wp[{x:=x—1}[Y2] {skip}] (X)

[x>0]-%(X[x/x—1]+X)

Then I =[x >-1]-x+1 is a ranking superinvariant with K = 1 and € = /2. To
see that I is indeed a ranking superinvariant, consider

[x<0]-T = [x<0]-([x>-1]-x+1) < 1 = K

and

6.2 ALMOST—SURE TERMINATION

[x>0]-K = [x>0]-1
< [x>0]-(x+1)+[x<0]

< [x>0]-([x2-1]-x+1)+[x<0]

[

x>0]-I+[x<0]

and
Dy(I) = [x>0]-%(1[x/x 1]+1)

= [x>0]-%([x 12-1]-(x=1)+1+[x2-1]-x+1)
= [x>0]é([(x=1)+1+[x>-1]-x+1)
= [x>0]é(x 1+1+x+1)
:[x>0]-%(—1+1+x+1)
= [x>0]- @+1—%)
:[x>0]ﬁx>oyx+1-%)
= [x>0]-(I-¢).

This proves that I is a ranking superinvariant which by Theorem 6.3 proves
universal positive almost-sure termination of the loop under consideration.

A technically less involved, yet complete, method (no need for choosing K or
€) for proving a finite expected runtime (and thereby positive almost-sure
termination) is presented in Chapter 7.

6.2 ALMOST-SURE TERMINATION

s mentioned earlier, proving almost—sure termination of null almost—
Asurely terminating programs (i.e. programs that terminate with proba-
bility 1 but with infinite expected time until termination, cf. Definition 6.2),
appears notoriously difficult, because it requires proving a lower bound on
a least fixed point, namely that 1 is a (non-strict) lower bound on the ter-
mination probability. The lack of a finite upper bound on the expected
runtime renders the coinductive proof technique of ranking supermartin-
gales (Theorem 6.3) unavailable.

A new proof rule that does allow for proving almost-sure termination,
even of null almost-surely terminating loops, is presented in Section 6.2.3.
Although this method will clearly appear to be more involved than the rank-

131

132

PROBABILISTIC TERMINATION

ing supermartingale approach of Theorem 6.3, it often allows for relatively
easy (sometimes even surprisingly easy) proofs of almost-sure termination.

Before we present the new proof rule, we recap some earlier rules by
Mclver & Morgan for proving almost-sure termination. These theorems,
in particular a zero—one law for probabilistic termination, will form the
bedrock on which the new proof rule is built.

6.2.1 The Zero—one Law

Zero-one laws in probability theory typically state that under certain con-
ditions certain events occur either with probability 0 or 1, but this proba-
bility cannot lie properly in-between. Notable examples include the Borel-
Cantelli Lemma [Bor09; Can17; Wikb], Kolmogorov’s zero—one law [Wikh],
or the Hewitt-Savage zero—one law [HS55; Wikf]. The law considered here
is due to Mclver & Morgan and is a zero—one law on the termination proba-
bility of probabilistic while loops. It reads as follows:

TueorREM 6.5 (Zero—One Law of Probabilistic Termination®):

Let I be a predicate such that [I] is a wp—subinvariant of while(¢){C}
with respect to postexpectation [I]. Furthermore, let € > 0 be a fixed
constant such that

e-[I] < wp[while(p){C}](1).
Then
[1] < wp [while(@){C}]([~p A T]).

Proof. We invoke Theorem 5.12 for obtaining lower bounds on preexpec-
tations: For that, let I’ = [I] and f = [-¢@ A I]. Then [-@]-f +[@]-I'is a
wp-subinvariant of while (¢){C} with respect to postexpectation f, since

[I] < Dy([I]) (by [I] being a subinvariant with respect to 0)
= [~@]-0+[@]-wp [C]([I])
< [-e]-f+lel-wp [CI([I]) (by 0 < f)
= O¢([1]) (by definition of @)

By assumption € - [I] <wp [while(¢@){C}] (1), we have that

e-([-@]- f+[@]-I) = e-[I] < wp[while(p){C]](1)

holds, so all preconditions of Theorem 5.12 c. are met and the theorem yields

[1] = [-¢]-f+[e]-I'

5 This theorem subsumes [MMO05, pp. 53 and 54] and [Hur03, Theorem 41].

6.2 ALMOST—SURE TERMINATION

IA

wp [while(@){C}] (f) (by Theorem 5.12 c.)
= wp [while(@){C]] ([~ A T]) .

While the zero—one law of Theorem 6.5 allows for proving almost-sure ter-
mination relative to an invariant, we obtain as a special case (choose true as
invariant) the following corollary for universal almost-sure termination:

COROLLARY 6.6:
Let C € pGCL terminate universally almost-surely. Furthermore, let € >
0 be a fixed constant such that

e < wp [while(@){C)] (1)
Then while(@){C} terminates universally almost-surely, i.e.
wp [while(@)(C) (1) = 1.
6.2.2 An Old Rule

Building on the zero—one law for probabilistic termination (Theorem 6.5),
Mclver & Morgan have formulated a more practically oriented proof rule
for proving almost-sure termination. Whereas the zero—one law needed as
a precondition a lower bound € on the overall termination probability of a
loop (which is potentially as difficult to establish as almost-sure termination
itself), the following rule makes use of a ranking function that is decreased
with at least some constant probability by one iteration of the loop body. This
fact is potentially much easier to check.

Tueorem 6.7 (AST from Bounded Integer Variants [MM05]°):
Let I be a predicate such that [I] is a wp—subinvariant of while (1){C}
with respect to postexpectation [I]. Furthermore, let Z: ¥ — Z such that

A. there exist constants L, H € Z such that
[WAIl < [LLZ<H], and
B. there exists a constant € € (0, 1] such that

e-[p AT] = Ao wp[C]([Z<Z(0)])(0).

Then the loop while(){C} terminates almost-surely from any initial
state satisfying the invariant I, i.e.

[I] < wp [while(){C}] (1) .
6 This theorem combines Lemma 2.7.1 on p. 55 and Lemma 7.5.1 on p. 191 in [MMO5].

133

134

PROBABILISTIC TERMINATION

Proof. The full proof of Theorem 6.7 can be found in [MMO5, p. 191 et seq.,
proof of Lemma 7.5.1]. The key idea to exploit the zero—one law of proba-
bilistic termination (Theorem 6.5). In order to understand the importance
of that law for this rule, we rephrase here Mclver & Morgan’s sketch of the
proof of Theorem 6.7 [MMO5, p. 55 et seq., proof of Lemma 2.7.1]:

Recall that the variant Z is integer—valued, bounded from below by L, and
bounded from above by H. Furthermore, the probability to strictly decrease
Z (by at least 1, as Z is integer-valued) through one iteration of the loop body
is at least € from any starting state. Then after at most H — L loop iterations,
the value of the variant Z will have dropped to L or below with probability
at least e’~L. This in turn implies falsification of the loop guard or violation
of the invariant. But since satisfaction of the invariant is invariant under
guarded iteration of the loop, violation of the invariant can be ruled out and
so the loop terminates by falsification of the loop guard with probability at
least e/~ from any initial state.

Since e!'~! is a constant strictly larger than 0, we can appeal to the zero—
one law of probabilistic termination (Theorem 6.5) which asserts that if the
loop terminates from any state with at least some (universally) constant non—
zero probability, then the loop terminates in fact almost-surely. We can thus
conclude that the loop terminates not only with probability at least ef/=L but
in fact almost-surely from any initial state satisfying invariant I.

While Theorem 6.7 allows for proving almost—sure termination by relatively
simple means, its disadvantages are also evident: Integer-valuedness together
with boundedness of the variant function clearly restricts its use cases. For
instance, in order to prove almost—sure termination of a symmetric 1-dim-
ensional random walk using Theorem 6.7, a substantial number of ad—hoc
arguments are necessary and the termination proof becomes somewhat in-
volved [MMO5, Section 3.3]. Nevertheless, Theorem 6.7 can arguably be seen
as an important precursor to the new rule which we present next.

6.2.3 A New Rule

I like your result.
Let’s make it a joint paper
and I’ll write the next one.

— Stefan Bergmann

Reconsider the symmetric 1-dimensional random walk modeled by the loop

while(x>0){
{x :=x-1}[12]{x:=x+1}

6.2 ALMOST—SURE TERMINATION

We can easily convince ourselves that x is indeed a superinvariant of the loop,
although it is not ranking.” In fact, the expected value of x is precisely x itself
— in expectation the particle does not move. However, we can also easily
convince ourselves that the probability that the particle moves a distance of
1 closer to 0 is 1/2. As we will see, witnessing this fact indeed already suffices
in order to prove almost-sure termination by our new proof rule.

Just like the proof rule of Theorem 6.7, the new rule involves a variant
function which decreases by some amount with some probability through
one iteration of the loop body. In contrast to Theorem 6.7, however, the
variant function need neither be bounded nor integer-valued. In addition
and also in contrast to Theorem 6.7, the minimum amount and probability
of the variant’s decrease need not be lower-bounded by some constants (for
Theorem 6.7, those constants were 1 and some € > 0).

Before we state the new proof rule and give a detailed proof, I would sin-
cerely like to acknowledge that the core idea of the new rule is entirely due
to Annabelle Mclver and Carroll Morgan, see [MM16] for their early sketch.
My contribution was (a) to formalize the proof rule in terms of weakest pre-
expectations and (b) give a rigorous soundness proof of the new proof rule.
The version of the proof rule provided here differs slightly from the pub-
lished version ([McI+18, Theorem 4.1]) both in its formulation as well as in
its proof as I personally find the presentation at hand more natural.

TreoreM 6.8 (AST from Progressing Variants [McI+18]):
Let I be a predicate and moreover let

4+ V: X — Ry (for variant),

<+ p: Rsg — (0, 1] (for probability) be antitone?,

4+ d: Rsg — Ry (for decrease) be antitone.
Suppose further that the following conditions hold:

A. [I] is a wp—subinvariant of while (¢){C} with respect to [I], i.e.
1 = ,&y() = [~@l-[1] + [¢]-wp [C] (1))
B. V = 0 indicates termination, i.e.

[-¢] = [V=0].

7 As mentioned earlier, this loop terminates null almost-surely. Thus, there cannot exist a rank-
ing supermartingale for this loop as this would by Theorem 6.3 imply positive almost-sure
termination of this loop.

8 Antitonicity is the dual notion to monotonicity [Wiki]: A function f is called antitone iff

a <b implies f(a) > f(b).

135

136

PROBABILISTIC TERMINATION

c. V is a awp-superinvariant of while(¢){C} with respect to V, i.e.

V = <<2VCV§)®V(V) = [~9]-V + [pl-wp [C] (V).

p. V satisfies a progress condition, namely®
poV-[p]-lI] < Ao. wp[C] ([Vs V(a)—d(V(a))])(U).

Then the loop while(@){C} terminates almost-surely from any initial
state satisfying the invariant I, i.e.

[1] < wp [uhile(){C}] (1)

The intuitive mechanics of the new proof rule is illustrated in Figure 6.2.
Amount and probability of the variant V’s decrease are neither fixed nor
bounded bounded by the progress condition, but instead adjustable by an-
titone functions d and p, which take as inputs not the current state, but
rather the value of the variant in the current state. The progress condition
now ensures that if the current state is o and the loop body will be iterated
once more, then the probability to decrease V by at least d(V (o)) is at least
(poV)(o) =p(V(g)). For any successor state in which the value of V has
decreased, the amount and probability of decrease for the next iteration will
both have increased due to antitonicity of p and d. In a nutshell and to put
it very simply:

The closer the loop comes to termination (V = 0),
the more V is decreased by iteration of the loop body (antitone d)
and the more likely becomes this decrease (antitone p).

Antitonicity of p and d rule out a sort of Zeno behavior where the variant does
indeed strictly decrease but by an ever decreasing amount. This would allow
for V to ,converge” to a value strictly larger than 0, making it less and less
likely to terminate and thus causing the loop to diverge.

ExampLE 6.9 (Almost-sure Termination of the Random Walk):
Consider the symmetric 1-dimensional random walk, modeled by

while(x>0){
{x:=x-1}[12]{x:=x+1}
}.

For reasons of readability, let us suppose that x is of type IN. We choose

p o V denotes functional composition (read: p after V), i.e. poV = Ao. p(V(o)), and binds
stronger than multiplication.

6.2 ALMOST—SURE TERMINATION

K with probability > p(V(oy))

V(oy) / p(V(m)) < p(V((n))

by antitone p

. with probability > p(\/((m)) (Vo) < d(V(oy))

by antitone d

} d(V(oy))

~

Loop iterations

Figure 6.2: Evolution of the values of a variant V over the iterations of a probabilis-
tic loop. og is the initial state and oy, 03, 03, ... are states reached with
non-zero probability after 1, 2, 3,... iterations, respectively. Iteration de-
creases the variant by an ever increasing (or constant) amount (d(V(o;)))
with with ever increasing (or constant) probability (p(V(o7))).

I = true, V = x, pzz, and d=1.

as witnesses of almost—sure termination. p and d are constant and thus obvi-
ously antitone. true is a wp—subinvariant of any loop that terminates almost-
surely. This is especially the case when the loop body itself is loop—free.
V =0 indicates termination since V = 0 iff x < 0 (because x is of type IN).
Next, we provide a detailed check that x is an awp—supermartingale:

awp,
(x>0,body)q)x =X

iff [x<0]-x + [x>0]-wp[body] (x) < x

N | =

iff [x<0]-x+ [x>0]-=-(x—1+x+1) < x

iff [x<0]-x+ [x>0]-x < x
iff x <x

Finally, we check that the progress condition is satisfied:
poV-[pl-l1] = Ao. wp[C]([V<V(0)-d(V(0))])(0)

iff %ox-[x>0]-[true]

137

138

PROBABILISTIC TERMINATION

<A

Q

.+ wp [body] ([x < x(0) = (Av. 1)(x(0))]) (@)

iff %[x>0] < Ao. wp [body] ([x < x(0)—1])(0)

iff %[x>0] < Ao. %-([x—lSx(a)—1]+[x+1§x(a)—1])
iff %[x>0] < %-([x—le—1]+[x+1§x—1])

iff %[x>0] < %-(1+0)

iff %[x>0] < %

The last line is obviously true, thus concluding our proof, and thus we have
proven almost-sure termination.

Notice that for the 1-dimensional symmetric random walk our termination
witnesses were very simple functions, namely constant functions, and that
checking the supermartingale property and the progress condition was quite
simple. In particular, we did not have to reason ourselves about any limit
whatsoever. This is different for the book proof of almost—sure termination of
the random walk (see e.g. [Durl0, Theorem 4.2.3, p. 163]): There, one finds
a formula for the termination probability and then proves ad-hoc that the
limit is in fact 1.

Now that we have some intuition on the mechanics and we have seen an
example on how to use the new rule in practice, we give a rigorous proof. In
this proof, we will show precisely why we need a superinvariant and how the
progress condition is used.

Proof (Theorem 6.8). Because the proof of Theorem 6.8 is somewhat in-
volved, we will first give an outline of our proof strategy:

We fix an arbitrary constant i € R,y and prove that the modified loop
while(0 <V <h){C} terminates almost—surely from any state satisfy-
ing I by exploiting Theorem 6.7.

Notice that only the loop guard is changed from ¢ to 0 < V < h. We
have merely introduced a cap h on V and if V exceeds h, we force ter-
mination. Condition B. states that the original loop while(@){C} ter-
minates when V hits 0. Thus, if V hits 0, the modified loop terminates
for the same reason as the original loop while(¢){C} would have ter-
minated. Only if V exceeds h, then the modified loop prematurely ter-
minates, whereas the original loop would still continue to be executed.

We prove that the supermartingale property on V implies that the mod-
ified loop while(0 <V < h){C} does not increase V in expectation, i.e.
the expected value of V after execution of the modified loop on initial

6.2 ALMOST—SURE TERMINATION

state o is bounded by V(o). Intuitively, the consequence of this is that
the modified loop is more likely to terminate because of V hitting 0
than because of V exceeding h.

Using , we prove that the nontermination probability of the origi-
nal loop is bounded from above by the probability that execution of the
modified loop terminates because of V exceeding h. By Markov’s In-
equality, the latter probability is bounded from above by the expected
value of V divided by h. By , we then get that this fraction is itself
bounded by V/i. Finally, we take the limit i — oo to conclude that the
nontermination probability of the original loop is bounded from above
by 0 and thus the original loop terminates almost—surely.

Let us now conduct the proof. Let h € R, be arbitrary but fixed, and let
while(0<V <h){C}

be the modified loop. Then we perform the proof steps we described above.

The modified loop while(0<V <h){C} term. almost-surely. We
prove that the modified loop with guard
P = (0<V<h)

terminates almost—surely by applying Theorem 6.7 to that loop. Let us first
prove that [I] is a wp—subinvariant of while () {C} with respect to [I]. We
start our reasoning from condition a.:

[I] is a wp-subinvariant of while(¢){C} w.r.t. [I]

iff (1] <, Vgg’cp ([1])
(by deﬁmtlon of wp—subinvariance, Definition 5.1 B.)
iff [I] < [~e]-[I]+[@]-wp [C]([I])
(by definition of< C><D[I], Definition 4.5 E.)
implies [@]-[I] = [¢]-wp[C] ([I]) (multiply both sides by [¢])

iff (V> 0] [1] < [V>0]-wp [C] (1)
(by V =0 indicating termination, condition B.)
implies [V >0]-[V <h|-[I] < [V>0]-[V <h]-wp[C] ([I])
iff [0<V <h]-[I] < [0<V <h]-wp[C]([I])
i [0]-[1] < [¢]-wp [C] (1) (by definition of)

iff [=g]-[I]+ []-[I] < [ﬁlP]'U]Jr ¥]-wp [CT([1])
iff [I] < [=¢]- U]+ [¢]-wp [C](]
i (1] =< 0 P(D

(by definition of W, C><I)[I], Definition 4.5 E.)

139

140 PROBABILISTIC TERMINATION

iff [I]isa wp-subinvariant of while(¢){C}w.r.t. [I]
(by definition of wp—subinvariance, Definition 5.1 B.)

Next, we have to choose for Theorem 6.7 a bounded integer-valued variant Z.
Notice that we have with / an upper bound for the value of V. By antitonicity
of p and d, we have with p(h) and d(h) lower bounds on the probability and
the amount of V’s decrease. We can thus use as integer variant Z the number
of times that we can subtract d(h) from V until we hit 0. The probability
to decrease Z by at least 1 is then at least p(h) — just as the probability to
decrease V by at least d(h). Formally, we discretize V as follows:

1%
Z{m}

As bounds for Z we choose the lower bound L = 0 and upper bound H =
[Wam]. To see that Z is appropriately bounded (i.e. in the sense of Theo-
rem 6.7), consider that 0 < V < himplies 0 > [V/an)] < [Wa(n] and thus

0=V < o<z
05 | = o |

implies [0<V <hAI] < [OS{%}S{%H

iff [pAI]l < [L<Z<H] (by definition of i, Z, L, and H)

implies [0SV <hAI] <

The last precondition we need in order to be able to apply Theorem 6.7 is
that there exists an € > 0 such that

e-[wAIl < do. wp[C]([Z < Z(0)]) .
When choosing € = p(h), we have by the progress condition b.:

p(V(0))-[p ATl £ Ao. wp[C] ([v < V(a)—d(V(a))])

(@)
iff p() [V>0AI] < do. wp[C] ([V<V o)— d(V(a))])
(by V = 0 indicating termination, condition B.)
implies () [0<V <hAI]

< Ao, wp [C]([V < V(0)-d(V(0))])

iff p(V(0))-[p AT] = Aow wp[C]([V < V(0)-d(V(e))])
(by definition of ¥)

Since for all states o with V(o) < h we have p(h) < p(V(0)), we obtain:

implies p(h)-[p A 1] < Aow wp [C]([V < V(0)-d(V(0))])

6.2 ALMOST—SURE TERMINATION

iff p(h)-[p AT] < Ao. wp [[C]]([dz/) < ‘;((Z; d%‘)’”])

Since V/any < V()i — d(V(o)/an) implies [V/am] < [VI(0)am) —4(V(e)an)], we ob-
tain by monotonicity of wp, Theorem 4.16:

<

implies p(h)-[AT] < Ao. wp [[C]](H o) d“""””)

14
d(h) |~ | d(h) d(h)
)

For all states ¢ with V(o) < h we have that d(h) < d(V (o)) by antitonicity of
d. Thus [V/am] < [V(e)am) —dV @) am)] implies [V/am)] < [V(e)an —17 and we
get by monotonicity of wp, Theorem 4.16:
V(o)
d(h)

e
o

v i[5
by|'V() Aty — 17 < [V(e)am])

iff p(h)-[p AIl =2 Ao. wp[C] ([Z < Z(0)]) (by definition of Z)

IA
IA

implies p(h)-[p A I]

IA

(h)-[AT]

A

We conclude by Theorem 6.7 that while(0 <V <h){C} terminates almost—
surely from any state satisfying I, i.e.

[I] < wp[while(0<V <h){C}](1). (1)

The modified loop while (0 <V < h){C} does not increase V in expec-
tation. Since, by condition c., V is a awp-superinvariant of while (¢){C}
with respect to postexpectation V, we know that

B,V = v
iff [~@]-V + [p]-awp [C] (V) = V
(by deﬁmtlon of (@, C>CDV, Definition 4.5 E.)
i [p]-awp [C] (V) < V
iff [0<V]-awp [[C]](V) =V
(by V =0 indicating termination, condition B.)
implies [0<V <h]-awp[C](V) = V
implies ([0: V]+ [h<V])~\/ + [0<V <h]-awp [C] (V) = V
iff D, <V

(0<V<h,C)
(by definition of (O<V<;\g)q)V’ Definition 4.5 E.)

implies awp [while(0<V <h){C}](V) =V (1)
(by induction rule, Theorem 5.4)

Thus we have concluded that the modified loop while(0 <V <h){C} does
not increase V in expectation.

141

142

PROBABILISTIC TERMINATION

The original loop while (@){C} terminates almost-surely. ~We first
prove that the original loop while(0< V){C} is more likely to terminate
with V =0 than the modified loop while(0 <V <h){C}. This is intuitively
clear, because whenever the modified loop exceeds h and thus terminates
with V = 0, the original loop does not terminate and has still a chance of
»returning” and dropping down to 0. For a rigorous proof, consider the fol-
lowing for all X € [E:

[0<V<h] < [0<V]
implies [V =0] + [0<V <h]-awp [C] (X)
< [V=0] + [0<V]-awp [C] (X)
iff ([0=V]+[h<V])-[V=0] + [0<V <h]-awp [C] (X
<[0=V]-[V=0] + [0<V]-awp [C] (X)
iff <0<vsh,v(;§q)[v:0](x) (0<V, gsq)[vzo](x)
(by definition of (o<vgh,vcv) [v=0] and (0<V,g[>)q)[vzo]' Definition 4.5 E)
implies wp [while(0<V <h){C}]([V =0]) (1)
< wp [while(0< V){C}]([V =0])

We are now in a position to gradually develop a lower bound on the termina-
tion probability of the original loop. For that, consider the following;:

wp [while(@){C}] (1)
wp [while (@){Cl] ([~¢])
(by postexpectation strengthening, Corollary 4.6)
= wp [while(0< V){C}]([V =0])
(by V = 0 indicating termination, condition B.)

Since the original loop while(0< V){C} is more likely to terminate with
V = 0 than the modified loop while(0 <V <h){C}, see 1 above, we can
lower-bound the above by:

\'%

wp [while(0<V <h){C}] ([V =0])
1—awlp [while(0<V <h){C}J(1-[V =0]) (by Theorem 4.25 a.)
1-—awlp [while(0<V <h){C}]([0<V])

[1]- (l—awlp[[whlle 0<V <h){C}] [0<V])

\'%

[1]-(1 - [1]-awlp [while (0 <V <h){C]] ([0 < V]))

Since the modified loop while(0 <V <h){C} terminates from every state
satisfying the invariant I, see t in| 1. |, we conclude by Theorem 4.27 B. that
[I]-awlp [while (...}] ([0 < V]) < awp ﬂwhlle .}] ([0 < V]) and we can thus
lower-bound the above by:

6.2 ALMOST—SURE TERMINATION

\%

1-awp [while(0 <V <h){C}] ([0<V])

[11-(

[I]~(1—awp [while(0<V <h){C}](([V =0]+[V>h])-[0< V]))
(by postexpectation strengthening, Corollary 4.6)

[1]-(1-awp [while(0 <V <h){C)] ([V > /)

\%

[1]-(1-awp [while(0 <V <h){C}] ([V = h]))
(by [V > h] <[V = h] and monotonicity, Theorem 4.16)
_awp [while(0<V <h){C}] (V))

(s g
(by Markov’s inequality, Theorem 4.19)
|4 .
m-(1-) (by $in[2.])

To summarize, we have until now established

\%

v

[1]-(1-%) < wp [while(@){C}] (1).

Since this inequality holds for an arbitrary h > 0, we can take the limit h — oo
and thus obtain

lim [1]-(1- 1) < wp [wnite()(CI] (1)
implies [I]-(1-0) < wp [while(¢){C}] (1)
implies [I] < wp[while(@){C}] (1),

which finally proves that while(@){C} terminates almost—surely from any
initial state satisfying the invariant I.

6.2.4 Case Studies in Almost—sure Termination

We now study a few more cases of almost—surely terminating loops and their
termination proofs by means of Theorem 6.8 whose correctness we have just
proved. We have already seen in Example 6.9 how easy it is to prove almost—
sure termination of a symmetric 1-dimensional random walk. For some
of the case studies we show in the following, it is much less obvious that
they terminate almost—surely.

6.2.4.1 The Demonically Symmetric Random Walk

In order to demonstrate the capability of Theorem 6.8 to reason about non-
determinism and take loop invariants into account, we consider a while loop
that contains both probabilistic and nondeterministic choice and terminates
only from a certain set of states.

143

144

PROBABILISTIC TERMINATION

while(x = 0){
{x :=x—1}[1/2]{{x :=x+1}D{skip}}
}

The execution of the loop is illustrated in Figure 6.3. The difference to the
symmetric 1-dimensional random walk is that instead of incrementing x,
the while loop above can also do nothing. The demonic behavior (in terms
of termination) is of course to perform the increment. Furthermore, the loop
guard is x = 0 instead of x > 0. Thus, the particle must hit exactly 0, which is
only possible if x was initially an integer.

Apart from the integer issue, the motivation for this loop is the recursive
procedure P inspired by an example of [Olm+16]; its definition is

P> {skip}[l/z]{call P; {call P} O {skip}} .

Above, we have rewritten this recursive program as a loop by viewing it as
a random walk of a particle x whose position represents the height of the
call stack. Intuitively, the loop keeps moving x in a random and demonic
fashion until the particle hits the origin 0 (empty call stack, all procedure
calls have terminated). For that, at each stage it either with probability 1/2
decrements the position of x by one (procedure call terminates after skip;
call stack decremented by one), or with probability 1/2 it performs a demonic
choice between incrementing the position of x by one (perform two consecu-
tive procedure calls, then terminate; call stack in effect incremented by one
(+2—-1= +1)) or letting x remain at its position (perform one procedure call,
then terminate; call stack in effect unchanged (+1-1=0)).

Proof of almost—sure termination. We choose the witnesses

I=(xeN), V = [xeN]-x+[xe¢N], d=1, and p = %
Intuitively, I, V, p, and d tell us that x decreases with probability at least 1/2
by at least 1 through one iteration of the loop body if initially x is an natural
number unequal to zero.

Let us now check that all premises of Theorem 6.8 are satisfied: p and d
are constant and thus obviously antitone. V = 0 indicates termination since
V=0iff x=0.

Next, we check in detail that [I] is a wp-subinvariant with respect to [I]:

(x:tO,bodv;?q)[I] ([I])

= (xe0,body) Ppren (X €N)
[x=0]-[xeN] + [x=0]-wp [body] ([x € N])

[x=0]-[xeN]

6.2 ALMOST—SURE TERMINATION 145

Figure 6.3: Execution of the demonically symmetric random walk. The 0O nodes with
the dashed arrows represent nondeterministic choices. The values of p
and d are constantly 1/2 and 1, respectively. The fact that x is not integer—
valued is invariant under iteration of the loop body and thus that set
reaches itself with probability 1.

+ [x#0]-3-([x—1 € N]+max{[x+1€eN], [xeNJ})
= [x=0]-[xeN] + [x=0]-}-([xeN]+[xeN])
= [x=0]-[xeN] + [x=0]-[x €]
= [xeIN]
=[] = [1]

We also check that x is an awp—superinvariant with respect to x:

(x:tO,boadv;)Dq)V(V)
= [x=0]-V + [x=0]-awp [body] ([x € N]-x+ [x ¢ N])
< [x=0]-V + [x=0]-awp [body] ([x € N]-x)
+ [x#0]-awp [body] ([x ¢ IN])
(sublinearity of awp, Theorem 4.21 B.)
= [x=0]-V + [x=0]- 5
[x—1eN]-(x—1)+max{[xeN]-x, [x+1 IN]-(x+1)}

+ [x-1eN]+max{[xeN], [x+1&N]})

[x=0]-V + [x#0]-([x—1€N]-(x~1)+[x e N]-(x+1)
+ [x—1¢N]+[xeN])

[x=0]-V + [x=0]-3([xeN]- (x= 1) +[x € N]- (x+1)
+ [xeN]+[xeN])

= [x=0]-V + [x#0]-}(2[xeN]-x+2[x ¢ N])

= [x=0]-V + [x#0]-([xeN]-x+[x e N])

= [x=0]-V + [x20]-V =V

146

PROBABILISTIC TERMINATION

Lastly, we show that V, p, and d satisfy the progress condition:
poV-[pl-lI] = Ao. wp[body] ([V < V(e)-d(V(0))])(0)
iff %o()-[x:tO]-[xeN]
< Ado. wp [body] ([V < V(o)-1])(0)

iff J-[xeN.;] < Ado. wp [body] ([V < V(o)-1])(0)

iff %-[xGINzl] < %([V[x/x—l]gV—1]+max{...})
implied by 3:[xe€Ny;] < [V [x/x-1]<V -1]

iff 1-[x€Ny] < [xe€Ny] 3 [V[x/x-1]<V-1]

iff 5-[xeNy] < [xeNy] F[x-1<x-1]

(by careful analysis of V [x/x—1] and V given x € N5)

iff %'[XENZl] =< [XENZl]'%

The last inequality is obviously true. This shows that all preconditions of
Theorem 6.8 are satisfied and as a consequence the demonically symmet-
ric random walk terminates almost—surely from any initial state where x is
integer-valued.

Coming back to our motivation, the procedure P’ given by

P’ > ({skip}[/2]{call P’; call P’; {call P’} O {skip}},

i.e. potentially three consecutive procedure calls instead of just two proce-
dure calls, interestingly is not almost-surely terminating: it terminates only
with probability (vs-1)/2< 1 [Olm+16].

6.2.4.2 The Symmetric-in-the-Limit Random Walk

While so far we have considered only constant probability and decrease func-
tions, we now consider a while loop requiring a non—constant decrease func-
tion d. For that, consider the following while loop:!°

while(x>0){
q :=%2x+1;
{x:=x-1}[g]{x :=x+1}
}

In order not to clutter the reasoning below, we assume that x is of type IN.
The execution of the loop is illustrated in Figure 6.4.

Intuitively, the loop models an asymmetric random walk of a particle x,
terminating when the particle hits the origin 0. In one iteration of the loop

10 This example is due to Mclver & Morgan [MM16].

6.2 ALMOST—SURE TERMINATION

23 3/5 47

s 3/7 4/

Figure 6.4: Execution of the symmetric-in-the-limit random walk. Inside the nodes
we give the valuations of variable x as well as the values of the variant V
and the decrease function d. The value of p is constantly 1/3.

body, the program either with probability */2x+1 decrements the position of x
by one, or with probability »+1/2x+1 increments the position of x by one. The
further the particle x is away from 0, the more symmetric becomes the ran-
dom walk since ¥2x+1 approaches 1/2 asymptotically. Yet, it is not so obvious
that this random walk indeed also terminates with probability 1.

Proof of almost-sure termination. We choose the witnesses

I = tue, V= H, d@v)= i, ifv>0andve(H,, Hy]
= true, V = H, =

1, ifv=0,

1
and p(v) = 3

where H, is the x-th harmonic number.!! Intuitively, these witnesses tell us
that the variant V, i.e. the harmonic number of the value of x, decreases with
probability at least 1/5 by at least 1 through one loop iteration if initially x > 0.

Notice furthermore that while d measures precisely the potential decrease
of V, the real probability to decrease V is monotonically increasing whereas
Theorem 6.8 calls for an antitone, thus monotonically decreasing, p. The rem-
edy here is that the decrease probability is globally lower-bounded by the
constant !/3 and thus an antitone probability function exists.

Let us now check that all premises of Theorem 6.8 are met: p is constant
and thus obviously antitone. true is a wp—subinvariant of any loop that ter-
minates almost—surely. This is especially the case when the loop body itself
is loop—free. V = 0 indicates termination since V = 0 iff x < 0 (because x is
assumed to be of type IN).

Next, we provide a detailed check that V is an awp—supermartingale:

awp,
(x>0,body) CDV (V)

11 Formally, He = Y*_, L. Notice that Hy = 0.

n=1mn*

147

148 PROBABILISTIC TERMINATION

_ awp,
~ (x>0,body) cI)Hx

[x <0]-H, + [x>0]-awp [body] (Hy,)

- X

=V =V

[x <0]-H,
[x <0]-H,

[x <0]-H,

[x <0]-H,

(Hy)

; [x>0]-(

N [x>0]~(

X
2x+1

2x+1

+ [x>0]-H,

X
2x+1.(
+ [x>0]-((*

'Hx—l +(1 -

x+1

+
2x+1

1 X+
L)+
X

Hx+1)
1
(H(X+ —))
1 x+1
1

1
il 2x+1)

X
2x+1
1

).
).

2x+

) b,

Lastly, we show that V, p, and d satisfy the progress condition. For that, note
that d(H,,) = /» and consider the following:

iff

iff

iff

iff

implied by
iff

iff

poV-[¢]-[I]

W= W=

3

< Ao wp [body] ([V < V(0)-d(V(0))])(0)

oH, -[x>0]-[true]

< Ao. wp [body] ([Hx < Hy(o) _d(HX(ﬁ))])(G)

-[x>0]

-[x> 0]

-[x>0]

;'[x>0]
;-[x>0]

1-[x>0]

IA

IA

=<

=<

Ao. wp [body] ([Hx <Hyo)—

+ (1— al
2x+1
X
|H,_
2x+1 x-l
+ x+1
2x+1
[x>0] —>
2x+1
X
>0]-
x>0l 377
X
>0]-
>0l 377

The last line is true for all natural numbers x > 0. This shows that all precon-
ditions of Theorem 6.8 are satisfied and as a consequence the symmetric-in-
the-limit random walk terminates almost—surely.

12
13

14

6.2 ALMOST—SURE TERMINATION

Non-existence of an affine variant. For this program, note that our variant
was non—dffine, i.e. not of the form a+ bx + cq. In fact, there exists no affine
variant that satisfies the superinvariant property. Such affine variants are
used e.g. by [CNZ17]. Any affine!? variant V would be of the form

V=a+bx+cq,

for some (positive) coefficients a, b, c. 1> Now we attempt to check the super-
invariant property for a variant of that form:
awp
(x>0,body)q)V(V)

_ awp,
~ (x>0,body) (Daerercq(a +bx+ Cq)

[x<0]-x + [x>0]-awp [body] (a+bx +cq)

X x
<0]-x + Aa=20b- .
[x<0]-x + [x>0] (a b 5 1+bx+b+c 5 1)

|A._.

a+bx+cqg =V

For x < 0 this is trivially satisfied. For x > 0, the above is satisfied iff

X x
—2b- . <
a-2b 2x+1+bx+b+c T2l < a+bx+cq
iff -2b- X +b+c- < cq,
2x+1 2x+1

which is only satisfiable for all possible valuations of g and x > 0 iff b = ¢ = 0.
Thus, if V is required to be affine, then V has to be constantly a, for a > 0.
Indeed, a is a superinvariant. However, it is clear that the constant a cannot
possibly indicate termination, i.e. clearly

[a=0] = [x<0].
Thus, there cannot exist an affine superinvariant that proves termination of
symmetric—in—the-limit while loop.
6.2.4.3 The Escaping Spline

We now consider a while loop where we will make use of a non—constant
probability function p. Consider the following while loop:'4
while (x> 0){
q:=1x+1;
{x:=0}[g]{x :=x+1}

Some authors call this a linear variant.

Coefficients need to be positive because otherwise V > 0 cannot be ensured. However, this is
not crucial in this proof.

This example is due to McIver & Morgan [MM16].

149

150

PROBABILISTIC TERMINATION

)

Assume again that x € IN. The execution of the loop is illustrated in Fig-
ure 6.5. Intuitively, the loop models a random walk of a particle x that termi-
nates when the particle hits the origin 0. The random walk either with prob-
ability 1/x+1 immediately terminates or with probability x4 +1 increments the
position of x by one. This means that for each iteration where the loop does
not terminate, it becomes even more likely not to terminate in the next itera-
tion. Thus, the longer the loop runs, the less likely it will terminate since the
probability to continue looping approaches 1 asymptotically. Yet this loop
terminates almost-surely, as we will now prove.

Proof of almost-sure termination. We choose witnesses

1

I =true, V =%, d(v) =1, and p(v)=v+1'

Intuitively this tells us that x decreases with probability at least 1/x+1 by at
least 1 through one loop iteration if initially x > 0.

Notice that while the variant function measures precisely the potential
decrease in each state, the actual decrease is monotonically increasing the
further we move away from x = 0, whereas Theorem 6.8 calls for an antitone,
thus monotonically decreasing decrease function. The remedy here is that the
decrease is globally lower-bounded by 1 and thus a constant — and hence
antitone — decrease function exists.

Let us now check that all premises of Theorem 6.8 are met: d is constant
and thus obviously antitone. true is a wp-subinvariant of any loop that ter-
minates almost-surely. This is especially the case when the loop body itself
is loop—free. V = 0 indicates termination since V = 0 iff x < 0 (since x € IN).

Next, we provide a detailed check that V is an awp-supermartingale:

awp
(x>0,body) CDV (V)

_ awp
- <x>0,body)q)x (X)

[x<0]-x + [x>0]-awp [body] (x)

[x<0]-x + [x>0]-(%~0+(1—%)'(x+1))

X+ +1
1 x
= [xSO]-x+[x>O]-(—-O+ -(x+1))
x+1 x+1
= [x<0]-x + [x>0]-x
= X
=V <V

Finally, we show that V, p, and d satisfy the progress condition:

poV-[p]-[I] = Ao. wp [body] ([V < V(0)-d(V(0))])(0)

6.2 ALMOST—SURE TERMINATION

Figure 6.5: Execution of the escaping spline loop. The value of the variant V is equal
to the value of the variable x in each state. Inside the nodes we give the
valuations of variable x as well as the values of the probability function p
and the decrease function d in each state.

. 1
iff (/\v.)ox-[x>0]-[true]
v+1
< Ao. wp [body] ([x <x(o)=(Av. 1)(3(((7))])(0)
iff 1 [x>0] = Ao. wp [body] ([x < x(0)-1])(0)
X
iff -[x>0]
x+1
< o | L 0sxo)-1]+ = [x+1<x(0) 1))
o. . o)— —_— o)— o
x+1 - x+1 -
. 1 1 X
iff [x>0] < Jo<x—-1]+ — - [x+1<x-1]
x+1 x+1 x+1
. 1 1 b
iff [x>0] < -[x>0]-[0<x—-1]+ —— -[false]
x+1 x+1 x+1
1 1
iff [x>0] =
x+1 x+1

This shows that all preconditions of Theorem 6.8 are satisfied and as a con-

sequence

the escaping spline loop terminates almost—surely.

151

Part I1

ADVANCED WEAKEST PREEXPECTATION
REASONING

In the second part part of this thesis, I present three different
advancements of the classical weakest preexpectation calculus.
The first one is for reasoning about expected runtimes. The sec-
ond calculus enables weakest preexpectation reasoning for prob-
abilistic programs with conditioning. The third calculus enables
weakest preexpectation reasoning about mixed—sign random vari-
ables. For all three calculi, I present dedicated proof rules for
reasoning about loops. I also discuss in which way they are novel
and how they solve reasoning problems that could not so easily
be handled using existing calculi.

EXPECTED RUNTIMES

rithms in which he describes a method for solving the closest—pair problem

in computational geometry [Rab76]. This work is today considered to
be the seminal paper on randomized algorithms [Smi00]. While a naive de-
terministic brute—force approach takes quadratic time, Rabin’s randomized
algorithm solves the closest—pair problem in expected linear time.

One year later, in 1977, Robert Martin Solovay and Volker Strassen pre-
sented a randomized primality test that decides in polynomial time whether
a given number is either composite or probably prime, thus proving that
primality testing is in the complexity class coRP! [SS77]. In 1992, Leonard
Adleman and Ming-Deh Huang further reduced the complexity of primality
testing to ZPP2, thus proving that primality testing can be solved efficiently
in expectation [AH92]. Turning an inefficient deterministic algorithm into a
randomized algorithm that is either

IN 1976, Michael Oser Rabin published his paper titled Randomized Algo-

A. certainly more efficient, yielding the correct result with high probabil-
ity (Monte Carlo algorithm: certainly fast and probably correct), or

B. more efficient in expectation, yielding the correct result with certainty
(Las Vegas algorithm: probably fast and certainly correct), or

c. more efficient in expectation, yielding the correct result with high prob-
ability (Atlantic City algorithm: probably fast and probably correct)

is a principal motivation of introducing randomization into the computation.
Other prime examples are Freivalds’ matrix multiplication [Fre79] or Hoare’s
randomized variant of quicksort with random pivot selection [Hoa62].
Besides describing randomized algorithms, providing precise encodings of
complex probability distributions is another use for probabilistic programs.

—_

coRP is the class of decision problems for which there is a randomized algorithm that [Gil77]
< certainly terminates in polynomial time,
4 outputs yes if the correct answer is yes with probability 1, and
< outputs no if the correct answer is no with probability > 1/2.

Thus, if a coRP algorithm outputs no, this answer is always correct. On the other hand, if it
outputs yes, this answer is correct only with high probability.
2 ZPP is the class of decision problems for which there are randomized algorithms that [Gil77]

¢ terminate in expected polynomial time, and

4 certainly output the correct answer.

155

156

EXPECTED RUNTIMES

For this use case, too, expected runtimes are of paramount importance. They
can here be interpreted as the expected time that is needed to obtain a single
sample from the encoded probability distribution.

In general, the runtime of a probabilistic program is affected not only by
the input but also by the internal randomness of the program. Technically
speaking, the runtime is hence a random variable, i.e. it is #; with probability
p1, t, with probability p, and so on. Reasoning about expected runtimes
of probabilistic programs is surprisingly subtle and full of nuances which
underlines the desire for formal methods suited for reasoning about expected
runtimes. We will develop such methods in this chapter.

After discussing some particular intricacies that make reasoning about ex-
pected runtimes difficult and after discussing why an obvious approach em-
ploying a runtime—counter ghost variable is unsound, we will develop the
ert calculus — a weakest precondition style calculus specifically tailored
to sound and complete reasoning about expected runtimes of probabilistic
programs. We also discuss some basic properties of our ert transformers,
such as continuity, monotonicity, and the relationship of expected runtime
transformers to the expectation transformers studied in Chapter 4. We then
present proof rules for reasoning about expected runtimes of while loops,
which are expressed as least fixed points, and finally conclude with a case
study and a discussion of related work.

71 HURDLES IN REASONING

EASONING about the expected runtime of probabilistic programs is a diffi-
Rcult task, partly because such programs exhibit unexpected and some-
times counterintuitive behavior. In classical sequential programs, for in-
stance, a single diverging program run yields the program to have an infinite
runtime. For a randomized algorithm, on the other hand, it is perfectly fine
to admit infinite runs while still having an expected, say polynomial, runtime.

For demonstration purposes, consider the simple program

while(x>0){
{x :=x—=1}[12] {skip}
}

from Chapter 6. This program terminates within O(x) steps in expectation.
However, the program does admit an infinite run, namely the one where
infinitely often skip is executed (though this happens only with probabil-
ity 0). The program

while(x>0){
{x :=0}[12]{skip}

7.1 HURDLES IN REASONING

even terminates in O(1), i.e. constantly many, steps in expectation, while still
admitting an infinite run.

The above examples show that in order to determine the worst—case (ex-
pected) runtime of a probabilistic program, it does not suffice to consider
the length of the longest computation path, but instead the averaged length
of (almost) all paths has to be accounted for. This circumstance stands in
stark contrast to the case for deterministic programs.

Another problem occurs when it comes to reasoning about termination. If
two deterministic programs C and C’ each terminate after a finite number of
steps on arbitrary inputs, then the sequential composition C¢ C’ obviously
also terminates after a finite number of steps on any arbitrary input.

For probabilistic programs this does not hold in general: Even universal
positive almost-sure termination?® is not closed under sequential composition
of programs. Consider for instance the following two programs:

Ci> x:=13 C, > while(y>0){
y =13 yi=y-1
while(x>0){ }

{x:=0}[12]{y :=p-2}
}

The program C; terminates within O(1) steps in expectation, whereas the
program C, needs in expectation O(y) steps until it terminates. Individu-
ally, they thus both terminate universally positively almost-surely. Yet the
expected value of y after executing the first program is co and thus the se-
quential composition of the two programs, i.e. the program C; 5 C,, does not
terminate universally positively almost—surely.

A last subtlety we would like to address is that expected runtimes are ex-
tremely sensitive to variations in the probabilities occurring in the program.
Consider for instance the (possibly biased) 1-dimensional random walk

while (x> 0){
{x :=x-1}[1o+e]{x:=x+1}

b

where 0 < € <1/2. For € = 0, the random walk is symmetric and its expected
runtime is infinite. However, for any arbitrarily small 0 < €, the expected
number of loop iterations drops from infinity to 1/2¢ - x, thus from infinite
to linear expected runtime. This demonstrates formidably how sensitive ex-
pected runtimes and in particular positive almost-sure termination is to the
probabilities occurring in the programs.

A program terminates universally positively almost—surely if it terminates on all inputs within
an expected finite number of steps (see Definition 6.1 c.).

157

158

EXPECTED RUNTIMES

7.2 UNSOUNDNESS OF THE OBVIOUS APPROACH

BEFORE we go on to develop a calculus specifically tailored to reasoning
about expected runtimes, let us address the concerns of a hypothetical
critic who might ask:

Why even develop a dedicated calculus?
Why not annotate the program with a runtime—counting program
variable and reason about the expected value of that variable?

Besides that one may rightfully argue that the above is a somewhat inelegant
way of approaching this problem, there is an even more convincing reason
why reasoning about the expected value of a runtime counter is a bad idea:
it is unsound! Consider for example the program

x:=13
while(x>0){

{x :=0}[V2] {skip}
}.

which we annotate with a runtime counter as follows:

rtc :=rtc+ 13
{x :=0}[V2] {skip}
}

Here, the variable rtc counts only the number of loop iterations. The ex-
pected value of rtc after executing the above program is 2. In more detail,
the wp—characteristic function of the while loop above with respect to post-
expectation rtc is given by

O(X) = [x<0]-rtc + [x>0]-%-(X[x,rtc/O,rtc+1]+X[rtc/rtc+1]).

By checking

DO(rtc+[x>0]-2) < rtc+[x>0]-2, (1)

the induction rule (Theorem 5.4) yields that rtc+[x > 0]- 2 is an upper bound
on the expected value of rtc after executing the while loop. Prepending the
loop with the initialization of x and rtc finally gives 2 as expected value of
rtc for the whole program.

7.2 UNSOUNDNESS OF THE OBVIOUS APPROACH

Consider now the program

x:=1g%
while(x>0){
{x :=0}[12]{while(true){skip}}

}.

which we also annotate with a runtime counter as follows:

x:=13%

rtc :=03%

while(x>0){
rtc :=rtc+ 13

{x :=0}[V2] {while(true){rtc :=rtc+1¢skip}}
}

Here, rtc also counts only loop iterations, but notice that since we have a
nested loop we also have to account for the inner loop iterations. Now, for
any postexpectation f, we have

wp [while(true){rtc :=rtc+15skip}](f) = 0,

because this while loop terminates with probability 0. Thus, the inner loop
while(true){rtc :=rtc+ 1§ skip} is semantically equivalent to diverge and
hence the whole annotated program above is semantically equivalent to
x:=1%
rtc :=03
while(x>0){
rtc :=rtc+13%
{x :=0}[V2]{diverge}
}.
The characteristic function of the while loop above with respect to postex-
pectation rtc is given by

Y(X) = [x<0]-rtc + [x>0]- -(X[x,rtc/O,rtc+1]+O),

N =

and we can clearly see that

Y(X) < O(X), 1)

for all X € [E. But this means that by

by f by t
‘I’(rtc+[x>0]-2) < (D(rtc+[x>0]-2) < rtc+[x>0]-2

159

160

EXPECTED RUNTIMES

the induction rule yields that rtc+[x > 0]- 2 is also an upper bound on the ex-
pected value of rtc after executing the while loop with the diverge statement.

This is now very problematic, since after prepending the loop with the ini-
tializations for x and rtc we get that 2 is an upper bound on the expected
value of the runtime counter, whereas the actual expected runtime is infinite,
because the loop diverges with strictly positive probability (in fact the prob-
ability of divergence is 2/3). This example rigorously demonstrates that the
obvious but naive approach of annotating a program with a runtime counter
and reasoning about its expected value is in general unsound for reasoning
about expected runtimes of probabilistic programs.

Of course, the critic may now argue that this situation would perhaps not
occur, if the program at hand terminates with probability 1. But while non-
termination of the inner loop was obvious in this example, this need not
always be so obvious, and we learned in Chapter 6 that reasoning about
almost-sure termination can be quite involved as no straightforward induc-
tion rule for proving almost-sure termination is available. The calculus we
will develop in the following, on the other hand, does allow for sound induc-
tive reasoning about positive almost—sure termination.

7.3 THE EXPECTED RUNTIME CALCULUS

owARDs formal and systematic reasoning about expected runtimes on
Tsource code level, we propose a method similar to weakest preexpecta-
tion reasoning. Recall that we studied in Chapter 4 an expectation trans-
former (read: random variable transformer) wp that would associate with
each program C € pGCL a function

wp[C]: E-—E,

where [E was the set of random random variables mapping program states to
non-negative reals or infinity. The transformer wp was defined in a way such
that wp [C] (f) (o) gives the expected value of f after executing C on input o.
Consequently, wp [C] (f) is a function mapping each initial state o to the
expected value of f after executing C on input o.

We now lift this principle to reasoning about expected runtimes. Our goal
is thus to associate to any program C a function that maps each state o to the
expected runtime of executing C on initial state 0. Whereas runtimes of de-
terministic programs take values in the natural numbers, expected runtimes
of probabilistic programs can take values in the non-negative reals, even irra-
tional, non-algebraic, and non-computable values. A runtime in the setting
of probabilistic programs is thus again a function mapping (initial) program
states to non—negative reals (interpreted as expected runtimes):

7.3 THE EXPECTED RUNTIME CALCULUS

DeriniTioN 7.1 (Runtimes [Kam+16; Kam+18]):
A. The set of runtimes, denoted T, is defined to coincide with the set
of expectations (see Definition 4.1), i.e.

T = {t|2oRS) = E.

Consequently, the complete lattice (T, <), its least element, and
the construction of suprema is defined exactly as for expectations,
i.e. the order relation is given by

s <t iff YoeX: s(o) < tlo);
the least element is
Ao. 0,

which we overloadingly denote by 0; and the supremum of a sub-
set S C T is constructed pointwise by

sup S = Ao. sug t(o).
te

We write s << t to indicate that s is everywhere smaller than t, i.e.

s Kt iff YoeX: s(o) < t(o).

For formal reasoning about expected runtimes, we will describe a runtime
transformer ert that associates with each program C € pGCL a function

ert[C]: T->T,

The transformer ert will be defined in a way such that ert [C] (¢) (o) gives the
expected time it takes to

1. execute C on input o (yielding some final state 7), and then
2. let time #(7) pass.

Consequently, ert [C] (¢) will be a function mapping each initial state o to
the respective expected time needed to execute C on ¢ and let time ¢ pass af-
ter termination of C. Because t represents time that is spent after executing
C and in an analogy to pre- and postanticipations and pre- and postexpecta-
tions, we call t a postruntime and consequently ert [C] () a preruntine.

A function that maps to each initial state o the expected time it takes to
just execute C on o (and be done afterwards) is given by

ert [C] (0) .

The reason we need a continuation t at all is that we want to allow for com-
positional reasoning of sequentially composed programs. This situation is

161

162

EXPECTED RUNTIMES

PP Y M

ert [Cq] (ert [Co] (t)) Cy ert [C,] (1) C, t

I

expected time needed to execute C;
and then let time ert [C;] (t) pass
postruntime ¢
evaluated in final states
after termination of Cy

expected time needed to execute Cp

or in other words: -
w and then let time ¢ pass

expected time needed to execute C1 § Ca
and then let time ¢ pass

Figure 7.1: Continuation—passing style expected runtime transformer.

depicted in Figure 7.1. If we would like to reason about the expected run-
time of C; § C,, then we want to express this as

ert [Cq] (ert [C)] (0)) .

Intuitively, this is nothing else than saying: The expected runtime of execut-
ing Cy § C; is equal to the expected time it takes to first execute C; and then
let the expected time it takes to execute C, pass.

Just like the expectation transformers studied in Chapter 4, the ert trans-
former can be defined in a very systematic way, namely by induction on the
structure of the program. Furthermore, we can observe that ert’s definition
is very close to the definition of the awp transformer.

DeriniTioN 7.2 (The Expected Runtime Transf. [Kam+16; Kam+18]):
For C € pGCL, the expected runtime transformer

ert[C]l: T->T

is defined according to the rules in Table 7.1.
We call the function

<q),eCr>tht(X) =1+ [_‘(P] ot [(P] -ert [[CH (X)

the ert—characteristic function of while (@){C} with respect to postrun-
timet. If ert, @, C, or t are clear from the context, we omit them from ®.

The rules for the ert transformer in Table 7.1 are very similar to those for
the wp transformer in Table 4.1 and we thus assume familiarity of the reader
with the latter and focus mostly on the differences. If you feel unfamiliar
with the rules for wp, please refer to Chapters 2 and 4, in particular Sec-
tion 2.3 (especially Section 2.3.2) and Section 4.1 (especially Section 4.1.3).

7.3 THE EXPECTED RUNTIME CALCULUS

Cc ert[C] (¢)

skip 1+t

diverge [eS)

x:=E 1+t[x/E]

X R 1+ Ao. Lals (/\v. t(o[x»—mz]))dyg
Ci:Cy ert [Cq] (ert [C7] (t))

if (p){Cilelse{Cy} 1+ [p]-ert[Ci](t) + [~¢]-ert[Co] (1)
(C1)O{Cy) 1+ max{ert [C] (¢), ert [C] (1)}
{Ci}pl{Ca) 1L+ p-ert[Ci] (1) + (1-p)-ert[C] (1)
while(@){C’} fpX.1 + [—~@]-t + [@]-ert[C'] (X)

Table 7.1: Rules for defining the expected runtime transformer ert.

The main difference between ert and wpisa 1+ _occurring in most of the
rules for ert. The skip statement, for instance, does not alter the program
state. The associated weakest preexpectation transformer is thus defined as

wp [skip] (f) = f,

for any postexpectation f. But even if skip has no effect on the program
state, we still assume that skip does have some effect, namely consuming
one unit of time. Thus, we need

ert [skip] (t) = 1+¢.

units of time to execute skip and then let time ¢ pass.
The most obvious difference is for diverge — the certainly diverging pro-
gram. The associated weakest preexpectation transformer is defined as

wp [diverge] (f) = 0,

for any postexpectation f, since the resulting distribution over final states is
the nulldistribution (no final state is reached at all) and the expected value
of any f with respect to the nulldistribution is 0. On the other hand, we have

ert [diverge] (t) = oo,

because the expected (and in fact certain) runtime of diverge is infinite.
Assignments behave similarly to skip in that they consume one unit of
time, but in addition, they alter the program state: If we need, for instance,

163

164

EXPECTED RUNTIMES

x? units of time after an assignment x := 5 and the assignment itself con-

sumes one unit of time, then the overall time needed to execute the assign-
ment and then let time x? pass is

ert [x :=5] (x*) = 1+(x*)[x/5] = 1+5° = 26.

Random assignments behave similarly to assignments: the overall time we
need to execute the random assignment x :x~ u and then let time ¢ pass
is 1 plus the expected value that ¢ has after sampling a value from g and
assigning it to program variable x. This is expressed by the rule for ran-
dom assignments. The rule for random assignments in Table 7.1 can thus
be rewritten as

ert [x i~ p] (1) = 1+ Ao. J (Av. t(o[x - v])) dp, (see Table 7.1)
Vals
= 1+wp[x:=pu](t). (see Table 4.1)

For a more detailed explanation on the integral above, please refer to the
explanation of wp [x :~ u] in Section 4.1.3 (right before Example 4.7).
The expected runtime transformer for probabilistic choice, defined as

ert [{Ci} [pPHCII (1) = 1 + prert[Ci] (1) + (1-p)-ert[Co] (1),

also adds one unit of time for flipping the random coin with bias p and then
averages the runtimes of the left and the right branch with weights p and
1-p, respectively. Here (and at the rule for random assignments), ert enables
reasoning about actual expected runtimes of probabilistic programs.

The expected runtime transformer for conditional choice, defined as

ert[if (¢){C;}else{Cy}](t)
=1+ [p]-ert[Ci] (1) + [~@]-ert[Co] (1),

is analogous to the one for probabilistic choice: It also adds one unit of time,
here for evaluating the loop guard and conditionally jumping to the accord-
ing branch which is to be executed next. Then it adds to that the runtimes
of either the left or the right branch, depending on whether the guard ¢
evaluates to true or false.

Similarly to probabilistic or conditional choice, the nondeterministic choice
transformer, defined as

ert [{C1} O (Co}] (1) = 1 + max{ert [C1] (1), ert[Co] (1)},

also adds one unit of time for flipping the nondeterministic coin, but then
chooses the pointwise maximum among the runtimes of the left and the right
branch in order to model a demonic, i.e. worst—case, behavior. Reasoning
with ert therefore means reasoning about the worst—case expected runtime of
a program in the presence of nondeterministic choices.

7.3 THE EXPECTED RUNTIME CALCULUS

The expected runtime transformer for the while loop while(¢){C} with
respect to postruntime f is defined as a least fixed point, namely of the asso-
ciated ert—characteristic function

O(X) = 1+ [~@]-t + [p]-ert[C](X),
which informally captures the expected runtime of the ,,program*
if (@){
o
let time X pass

Jelse{

let time ¢ pass

).

CDt(q)t(X)) hence captures the expected runtime of the , program”

if (@)
Cs
let the time needed to execute the following program pass:
if (@) {
Cs
let time X pass
Jelse{
let time ¢ pass
}
Jelse{

let time ¢ pass
}.

By the Kleene Fixed Point Theorem (Theorem A.5) we have

fp @, = sup {o, (0), D,(D,(0)), @t(d)t(q)t(o))), }

From the above considerations, we obtain the intuition that if we plug for X
the least fixed point of @y, this captures precisely the expected time needed
to iterate C as long as ¢ is true and then let time ¢ pass. This is precisely
what we would expect for the expected time needed to execute the loop
while(¢@){C} and then let time ¢ pass.

Remark 7.3 (Our Runtime Model). Overall, we note that we assume a runtime
model, where a skip, an assignment, a random assignment, evaluating the

165

166

EXPECTED RUNTIMES

guard of a conditional choice, evaluating the guard of a while loop, and flip-
ping a nondeterministic coin, and flipping a random coin each consume one
unit of time. Sequential composition of two programs, i.e. the § operator
itself, is assumed to not consume any time.

We would like to stress that this runtime model is a design decision for the
sake of concreteness and simplicity. Our calculus can easily be adapted to
capture alternative models, such as for instance the model where we count
only the number of assignments in a program run, a model where the run-
time of an assignment may depend on the complexity of the expression, or
the model where only the number of loop iterations is of relevance.

Another design choice we made is that we consider worst—case expected
runtimes with regard to nondeterministic choice. By using min instead of
max in the rule for nondeterministic choice, we would obtain an angelic ver-
sion of the ert calculus for reasoning about best—case expected runtimes. A

ExampLE 7.4 (ert-reasoning for Probabilistic Programs):
Consider the program C; 4 given by

Cyy> {x :=2}[12]{x :=5}3
if (x>3){skip}else{skipsskip§skip}s
skip

and suppose we want to reason about the expected runtime of Cy 4, i.e. about
ert [Cy 4] (0). Analogously to Chapter 4, we will use the annotation style

/e
J s
C

/s

to express the fact that s = ert [C] () and moreover that s’ = s. It is thus
more intuitive to read annotated programs from bottom to top, just like the
ert transformer moves from the back to the front. Using this notation, we can
annotate the program C; 4 simply by applying the ert rules from Table 7.1
starting with 0 as postruntime as shown in Figure 7.2.

By these annotations, we have established ert [C; 4] (0) = 6. This tells us
that from any initial state the execution of C; 4 terminates within 6 compu-
tation steps in expectation.

7.3 THE EXPECTED RUNTIME CALCULUS 167

/A
J]1+12-6+112-4
{
/i 6
] 2+[2>3]-2+[2<3]-4
x:=2
M 1+[x>3]-2+[x<3]-4
b 2] 4
J] 4
J]2+[5>3]-2+[5<3]-4
x:=5
JJ1+[x>3]-2+[x<3]-4
b
JJ1+[x>3]-2+[x<3]-4
if (x>3)
i 2
skip
/!
Jelse|
i 4
skip
/S
skip
12
skip
&
I
/B
skip

Jro

Figure 7.2: Runtime annotations for Example 7.4.

168 EXPECTED RUNTIMES

74 SOUNDNESS AND COMPLETENESS

N the previous section, we have developed a calculus which is intended
Ifor reasoning about expected runtimes of probabilistic programs, but no-
where have we stated in which way this calculus actually and formally cap-
tures expected runtimes. In this section, we will thus state the relationship of
the ert calculus to the notion of expected runtimes (Definition 6.1 a.) defined
on the computation tree semantics of probabilistic programs introduced in
Section 3.3.1. Furthermore, we will compare the ert calculus to a Floyd—
Hoare—style logic developed by Hanne Riis Nielson for reasoning about run-
times of deterministic programs [Nie87].

7.4.1 Relationship to Computation Tree Semantics

For a given program C and initial state o, we defined in Definition 6.1 a.
operationally the (worst—case) expected runtime of a program C on input o,
denoted ERT[C],, in terms of the corresponding computation tree of execut-
ing C on o (cf. Definition 3.4). Recall that the configurations in the computa-
tion tree have a runtime counter which is increased with every computation
step. This makes the runtime model that is assumed in the computation tree
coincide with the runtime model that is assumed by the ert calculus.

It is important to note that ERT[C], indeed captures the expected run-
time of C on ¢ and that this number is not equal to the expected value of
a runtime—counting variable as discussed in Section 7.2. The intuitive rea-
son is that ERT[C], captures the average length of the computation paths
that occur during execution of C, whereas the expected value of a runtime-
counting variable is with respect to the distribution over states reached after
execution of C.

The ert calculus is sound and complete with respect to our operational
computation tree model in the sense that expected runtimes defined on the
computation tree are equal to expected runtimes obtained from the ert calculus:

Tueorem 7.5 (Operational Soundness and Completeness of ert):
Let C € pGCL and 0 € ¥. Then ert [C] (0) (o) is the expected runtime of
C oninputo, i.e.

ERT[C], = ert[C](0)(o).

Proof. By induction on the structure of C.

A similar result can be stated by comparing the runtimes obtained from
the ert calculus to (maximal) expected rewards in operational reward MDPs
(cf. Section 3.3.3), where all states (except for the final states) have reward 1.

7.4 SOUNDNESS AND COMPLETENESS

Visiting a state (thereby collecting the reward of 1) then corresponds to con-
suming 1 unit of time. It can be shown that the results from ert-reasoning
coincide with expected rewards in the operational MDP [Kam+16].

Operational MDPs can be employed to effectively perform bounded model
checking for expected runtimes [Jan+16], whereas expected runtimes are not
computable in general (cf. Part III). The disadvantage of working on an
operational MDP, however, is that the initial program state o needs to be
fixed in general. ert, on the other hand, allows for symbolic reasoning on all
initial states simultaneously.

7.4.2 Relationship to Nielson’s Hoare Logic for Runtimes

In 1987, Hanne Riis Nielson presented a Floyd—Hoare-style logic for reason-
ing about runtimes of deterministic programs [Nie87]. Since our ert calculus
can of course also be used to reason about deterministic programs and Hoare
logics are closely related to weakest preconditions, it makes sense to compare
the ert calculus to Nielson’s Hoare logic. I would like to acknowledge that
this comparison was mainly done by my colleague Christoph Matheja and I
will therefore only briefly touch upon this comparison in this thesis.
Nielson’s judgements, which we shall call Nielson triples, are of the form

(GYC(tlF)

where F € P(X) is a postcondition, G € P(X) is a precondition and t is of type
¥ — IN. A Nielson triple (G) C (t || F) is valid iff there exists a constant k € IN,
such that from any initial state 0 G the program C terminates within at
most k - t(o) steps (i.e. in O(t) many steps) in a state T | F.

Nielson also presents a proof system for proving validity of Nielson triples,
which we shall call Nielson logic. Her rule for the skip statement, for in-
stance, is an axiom in the proof system and reads

(skip) .

(F)skip(1|F)

So for any state satisfying precondition F, the program skip terminates in
O(1) many steps in a state also satisfying F. In comparison to that, we have

ert [skip] (0) = 1+0 =1

For a more difficult example, consider her treatment of sequential composi-
tion. The according rule reads

(Gath=u)Ci{hUHAt;<u) (H)Cy(t IF)
<G>C18C2<t1+téup>

where u is an (implicitly) universally quantified fresh logical variable. The
key to understanding this rule is that in a Nielson triple (G) C (t || F), the t

(comp) ,

169

170

EXPECTED RUNTIMES

is evaluated in the initial state on which C is executed. The problem with
sequential composition is now that f, is evaluated in the intermediate state
on which C, is executed after termination of C;, but we would like to obtain
an expression on the entire time needed to execute C;§ C, evaluated in an
initial state before executing C;. The first premise

(GAty=u)Ci{(t; JHAth)<u)

ensures that starting from a state 0 | G, the execution of C; terminates
within #; (o) steps in an intermediate state 7t. The second premise

(H)YCy(t2 J F)

ensures that from 7, the execution of C, terminates within f,(7) steps in a
final state 7 |= F. In total we thus need t (o) + t,(7) steps to execute C; § C,.

So how can we measure t, in the initial state o rather than in the interme-
diate state 71? We have to anticipate the value that t, will have after executing
Cy on o (cf. Section 2.3). This anticipated value is captured by t;. In Hoare
logic, however, reasoning about anticipated values cannot be done without
using universally quantified logical variables. This role is played by the u: it
ensures that (an upper bound on) the value of t;, measured in the intermedi-
ate state is expressible as t, measured in the initial state.

In contrast to Nielson’s somewhat involved rule for sequential composi-
tion, ert reasoning for this case would simply read

ert [C15C,] (0) = ert[Cq] (ert [Co] (O)) .

The intuitive reason why Nielson’s rule has to be so involved is that her logic
does not allow for continuation passing on the level of runtimes: Nielson
triples speak only about preruntimes but no postruntimes can be taken into
account without encoding them into a logical postcondition.

As for the advantages of Nielson logic over our ert calculus, we note that
ert does not allow for explicitly considering pre- or postconditions. It is, for
instance, very well conceivable that the runtime of a program C is a very
complicated expression, but that the runtime of C restricted only to those
paths which start in some state 0 = G and terminate in some state t | F is
a very simple expression. Incorporating the possibility of explicitly restrict-
ing to given pre— and postconditions in ert is thus an interesting direction
for future work.

With regard to soundness and completeness of the ert calculus relative

to Nielson logic, we can state that our ert calculus conservatively extends
Nielson’s approach. More formally, we can state the following:

7.5 HEALTHINESS CONDITIONS

Trueorem 7.6 (ert vs. Nielson Logic* [Kam+16; Kam+18]):
Let C € pGCL be deterministic and F,G € P(X). Then:

A. Soundness: If (G) C (F) is valid for total correctness, then
(P)C(ert[C](0)UF)
is provable in Nielson logic.

B. Completeness: If (P) C (t || F) is provable in Nielson logic, then
there exists a constant k € IN, such that for all initial states o0 € ¥

ert [C] (0)(0) < k-t(0).

Intuitively, soundness of ert with respect to Nielson logic means that all ert
judgements can be proven correct using Nielson logic. Completeness on the
other hand states that for every runtime judgement provable in Nielson logic,
we can make a runtime judgement at least as tight using the ert calculus.

7.5 HEALTHINESS CONDITIONS

XPECTED runtime transformers, just like the transformers we studied in

Chapter 4, satisfy several so—called healthiness conditions, like continuity,
monotonicity, etc., which can aid in concrete reasoning about probabilistic
programs, for instance by forming a foundation for compositional reasoning.
We will study some of these properties in this section.

7.5.1 Continuity

Just like for the expectation transformers we studied in Chapter 4, continu-
ity perhaps the most fundamental property that runtime transformers enjoy
because it ensures well-definedness of runtime transformers of while loops.
A runtime transformer 7 : T — T is called continuous iff for any chain of
expectations S = {sg <s; <s, <...} C T we have

T (supS) = sup 7(S);

see Definition A.2 for more details. The runtime transformers we have pre-
sented in this chapter are continuous:

Tueorem 7.7 (Continuity of ert [Kam+16; Kam+138]):
Let C be a pGCL program. Then the associated expected runtime trans-
former ert [C] is continuous.

Proof. By structural induction on C, see some Appendix for details.

4 This theorem is mainly due to Christoph Matheja.

171

172

EXPECTED RUNTIMES

The importance of continuity for well-defined transformers of loops can be
sketched as follows: For any loop—free program C, continuity of ert [C] en-
sures that the ert—characteristic function of the loop while(¢@){C} (that has
C as its loop body) is also continuous. This ensures by the Kleene fixed
point theorem (Theorem A.5) that the characteristic function has a least fixed
point, which in turn ensures that ert [while(¢@){C}] is well-defined. The
fact that the transformer ert [while(@){C}] itself is also continuous ensures
well-defined expected runtime transformers of nested loops.

7.5.2 Cofeasibility and Preservation of co

While feasibility of expectation transformers expresses that preexpectations
cannot become too large (see Section 4.2.3), the cofeasibility (or constant prop-
agation) property of runtime transformers states that preruntimes cannot
become too small:

Tueorem 7.8 (Cofeasibility of ert [Kam+16; Kam+18]):
Let CepGCL,teTandk e RS, Then

ert [C] (k+t) = k+ert[C] (¢) .

Proof. By structural induction on C.

Intuitively, if we definitely let at least some constant time k pass after execut-
ing C, then for executing C and then letting at least time k pass, we will in
total also need at least time k. As a consequence of Theorem 7.8, we get

k<t implies k < ert[C](¢),

wich rephrases Theorem 7.8 in a way that makes it look more like a dual of
the original feasibility property (cf. Section 4.2.3).

A special case of cofeasibility is when we choose k = co. We then obtain
the preservation of co property:

CoroLLarY 7.9 (Preservation of co for ert [Kam+16; Kam+18]):
Let C € pGCL. Then

ert [C] (o) = 0.

Intuitively this means that if after executing C we let infinitely much time
pass, then prepending this with the execution of C cannot prevent that we
will need infinite time. We can thus think of preservation as an analogon to
Dijkstra’s ,,Law of the Excluded Miracle” (cf. Section 4.2.2).

7.5 HEALTHINESS CONDITIONS

7.5.3 Monotonicity

Monotonicity is a fundamental property. A runtime transformer ert [C] is
monotonic iff for any two runtimes s, t € T, we have that

s <t implies ert[C](s) < ert[C](¢);
see Definition A.3. The ert transformers we have presented are monotonic:

Tueorem 7.10 (Monotonicity of ert [Kam+16; Kam+18]):

Let C € pGCL. Then the associated expected runtime transformer ert [C]
is monotonic. Furthermore, for any while loop and any postruntime, the
associated ert—characteristic function is monotonic.

Proof. Every continuous function is monotonic, see Theorem A.4.

As for weakest preexpectations, monotonicity plays an important role for
compositional reasoning: Imagine two programs C; and C, such that

ert [C1] (0) < ert[C,] (0),

i.e. C; needs on average at least as long to execute as C;. Then monotonicity
ensures that if we put the components C; and C, into some context C§
then we can be certain that

ert [CsC] (0) < ert[CsC,] (0),

since ert [C3 C;] (0) = ert [C] (ert [C;] (0)), for i € {1, 2}, and thus we can be
certain that C§ C, needs on average at least as long to execute as C§ Cj.

7.5.4 Affinity and Weakest Preexpectations

We saw in the introduction to this chapter that using weakest preexpecta-
tions of runtime—counting variables for reasoning about expected runtimes
is not sound, whereas using the ert calculus is sound. Nevertheless, we can
also observe that ert [C] (¢) is closely related to the expected value of t after
executing C. Therefore, it seems natural that ert [C] (t) and wp [C] (¢) are
closely related, too. And indeed, at least for tame programs (recall Defini-
tion 3.1 E.) this connection can be made formal in the following way:

Tueorem 7.11 (Decomposition of ert [Olm+16; Kam+18]):
Let C € pGCL be tame and t € T. Then

ert [C] (t) = ert[C] (0)+wp [C] (¢) .

Proof. By structural induction on C. Q.E.D.

173

174

EXPECTED RUNTIMES

Thus, the expected time needed for executing C and then letting time ¢ pass
is the expected runtime of C plus the expected value of t. By linearity of wp
(see Theorem 4.21 c.) we get that ert is an affine map for tame programs:

Treorem 7.12 (Affinity of ert for Tame Programs):
Let C € pGCL be tame, let s,t € T, and let r € IR‘;’O. Then

ert [C](r-s+t) = ert[C](0) + r-wp[C] (s)+wp [C] (¢) .

Another interesting observation is that cofeasibility together with the rela-
tionship between ert and wp yield for tame programs a very short proof
of the well-known fact that positive almost-sure termination (see Defini-
tion 6.1 B.) implies almost—sure termination (Definition 6.2):

Tueorem 7.13 (Positive A.—s. Termination implies A.—s. Termination):
Let C € pGCL be tame and o € ¥ be any initial state. Then positive
almost—sure termination of C on input o implies almost-sure termina-
tion of C on input o, i.e.

ert [C] (0)(0) < o implies wp[C](1)(c) = 1.

Moreover, universal positive almost—sure termination of C implies uni-
versal almost-sure termination of C, i.e.

ert [C] (0) << co implies wp[C] (1) = 1.
Proof (adapted from [Olm+16]°). Consider the following:

ert [C] (1) = ert[C] (1)
iff ert[C](1) = ert[C](0)+1 (by cofeasibility, Theorem 7.8)
iff ert[C](0)+wp[C] (1) = ert[C](0)+1
(by tameness of C and decomposition of ert, Theorem 7.11)
implies ert [C] (0)(c)+wp[C](1)(c) = ert[C] (0)(c)+1
iff wp[C](1)(0) = 1 (by ert [C] (0) () < o)

iff C terminates almost surely on ¢

The universal version of the theorem follows immediately from the above

proof by requiring ert [C] (0)(0) < oo for all o € X.

76 PROOF RULES FORLOOPS

EASONING about loops is one of the most — if not the most — difficult
tasks in probabilistic program verification. We have seen in Chapter 5,

5 The idea for this short proof is mainly due to Federico Olmedo.

7.6 PROOF RULES FOR LOOPS

how invariants can help with this sort of reasoning. In particular, we saw
that invariants precisely capture the principles of induction and coinduction.

In this section, we will show how we can reason about expected runtimes
of loops by means of runtime invariants, which basically capture the same no-
tion of invariance as for weakest preexpectations. We will present inductive
methods for proving upper bounds on expected runtimes of loops as well as
w-rules for proving lower bounds. We will also discuss coinductive premises
for obtaining lower bounds on runtimes of deterministic programs and how
this method fails on probabilistic programs. Furthermore, we will discuss
runtime-bound refinement as well as a method for obtaining exact expected
runtimes of independent and identically distributed loops.

7.6.1 Invariants

The concept of invariants that we employ for the proof rules we present in
this section is the same as for weakest preexpectation reasoning, see Sec-
tion 5.1. The notion of a runtime invariant is defined as follows:

DeriniTiON 7.14 (Runtime Invariants [Kam+16; Kam+138]):
Let @, be the ert—characteristic function of while(¢@){C} with respect
to postruntime t € T and let I € T. Then:

A. I is called a runtime invariant of while(¢@){C} with respect to
postruntime t, iff

() < 1.

B. I is called a runtime subinvariant of while (¢){C} with respect to
postruntime t, iff

I < o).

Next, we introduce a concept we call runtime w-subinvariants. These are
basically sequences of expectations that are runtime subinvariants relative
to each other. We will make use of those for reasoning about lower bounds
on expected runtimes.

DeriniTION 7.15 (Runtime w-subinvariants [Kam+16; Kam+18]):
Let @, be the ert—characteristic function of while(¢@){C} with respect
to postruntime t € T and let (I,,),en C T be a monotonically increasing®
sequence with Iy = 0.

Then (I,),en Is called a runtime w-subinvariant of while (@) {C} with
respect to postexpectation t, iff

VnelN: I, < Q).

6 But not necessarily strictly increasing.

175

176

EXPECTED RUNTIMES

7.6.2 Induction

Since expected runtimes are defined as least fixed points of continuous func-
tions on complete lattices, we can make use of the induction principle that
we discussed in Section 5.2.1 in order to reason about upper bounds on ex-
pected runtimes. Formally, the induction principle states that if (D,C) is a
complete lattice and ®: D — D is a continuous self-map on D, then

VdeD: ®(d)Ed implies lfpd C d.

Applied to the ert calculus, the induction principle immediately gives us the
following proof rule:

Tueorem 7.16 (Induct. for Upper Bounds on ert [Kam+16; Kam+18]):
Let] € T be a runtime invariant of while (¢){C} with respect to postrun-
time t (see Definition 7.14 a.). Then

ert [while(@){C}] () < I.

Proof. Thisis an instance of Park’s Lemma (see Lemma A.6): Simply choose
complete lattice (T, <) and continuous function ((p"ér;(bt.

Before we proceed with an example, we note that the induction rule is com-
plete, since ert [while(¢){C}] (¢) itself is trivially a runtime invariant of
while(¢@){C} with respect to postruntime ¢.

ExampLE 7.17 (Upper Bounds on ert):
Recall the program C from Section 7.1, given by

while(x>0){
{x :=x—1}[1/2] {skip}
b

where for simplicity we assume that x ranges over natural numbers only.
Suppose we want to reason about its expected runtime using the ert calculus,
i.e. we would like to reason about ert [C] (0). To this end, we propose the
runtime invariant

I =1+6x

and check its invariance by applying the ert—characteristic function of the
while loop with respect to postruntime 0, given by

D(X) =1+ [x<0]-0 + [x>0]-ert[{x :=x—-1}[12] {skip}] (X)

1+ [x>0]-ert[{x :=x—1}[12] {skip}] (X)

7.6 PROOF RULES FOR LOOPS

=1+ [x>0]-(1+% ert [x ::x—l]](X)+%-ert[[skip]} (X))
=1+ [x>0]-(% (1+X[x/x-1]) + %(1+X))
=1+ [x>0]-(% (X [/x— 1]+X))

to I = 1 + 6x, which gives us

(1) = O(1+6x)
=1+ [x>0] (2+% (1+6x)[x/x— 1]+1+6x))
=1+ [x>0] (% 1+6(x— 1)+1+6x))
=1+ [x>0]-(2 % (12x—4))
=1+ [x>0]-6x

=1+6x=1<1.
Thus the induction rule for ert (Theorem 7.16) gives us that
ert [while (...}] (0) < 1+6x.

and hence the loop needs on average at most 1 + 6x steps until it terminates.

As for an intuitive explanation, the loop needs to check whether x > 0 at
least once, hence the 1+ . If x > 0, then the loop is iterated 2x times in ex-
pectation and in each iteration 3 steps are performed: (1) flipping a fair coin,
(2) either performing an assignment or a skip, and (3) rechecking the loop
guard. In total, we thus get 1+2x-3 = 1+6x computation steps in expectation.

Our runtime invariants are closely related to the notion of ranking functions
for deterministic programs (cf. Section 6.1 and [Fro+16b]). A ranking func-
tion R for a loop while(¢){C} maps program states to real numbers and
satisfies the following two constraints for every state o

A. If 0 @, then execution of C on ¢ terminates in a state 7 such that

R(t) < R(o)-¢€,

for some fixed € > 0, and

B. if 0 | ¢, then R(0) > 0.

So from any state satisfying the loop guard, the execution of the loop body
decreases the ranking by at least €, and as long as the ranking is above 0, the
loop guard is true. Thus, if the ranking hits 0 or drops below, this falsifies
the loop guard and causes the loop to terminate.

177

178

EXPECTED RUNTIMES

We can note that the 0 in condition B. is arbitrary and we can also choose 1
as lower threshold instead of 0. We just have to fix some threshold such that
if the ranking drops below that threshold, the loop terminates.

Using the threshold 1, we can translate the above two conditions into the
setting of anticipated value reasoning (see Section 2.3), which then reads

A. [@]wp[C] (R) < R—g¢, for some fixed € > 0, and”
B. [p] < [R>1].

Runtime invariants resemble a very similar behavior: A runtime I is a run-
time invariant of while (¢){C} with respect to postruntime 0, iff

1+[p]-ert[C](I) < I. (1)
This can be rewritten as
[p]-ert[C](I) < I-1,

which looks closely related to condition a. above when fixing € = 1.

Furthermore, it follows from t that 1 <I and therefore, by the cofeasibility
property® of ert (see Theorem 7.8), we can also deduce that 1 < ert [C] (I).
From the latter, it follows that

[o] < [I>1].
This is because o | ¢ implies
I >1+ert[C](I) =141 = 2.
In total we get that runtime invariants satisfy the following two conditions:
A [plert[C](I) < I-1,and
B. [p] < [I>1]

Since ert and wp are closely connected (see Theorem 7.11), we can intuitively
think of a runtime invariant as follows: From any state satisfying the loop
guard, the execution of the loop body decreases the runtime invariant by at
least € = 1 in expectation, and as long as the ranking is above 1, the loop guard
is true. Thus, if the runtime invariant hits 1, this falsifies the loop guard and
causes the loop to terminate.

Besides the fact that every runtime invariant satisfies the above two con-
ditions, the converse is also true: Condition A. alone is equivalent to t and
thus to the fact that I is a runtime invariant of while (¢){C} with respect to

7 We tacitly assume here that wp could handle functions R that may map into negative values.
8 This property states that ert [C] (k +t) = k + ert [C] (#) for any constant k € RZ},.

7.6 PROOF RULES FOR LOOPS

postruntime ¢. This demonstrates the close connection of runtime invariants
and ranking functions.

The remarks above also demonstrate the close relationship of runtime in-
variants to ranking supermartingales for proving positive almost-sure termi-
nation (cf. Theorem 6.3): Ranking supermartingales are essentially ranking
functions that decrease by € in expectation. A runtime invariant can thus be
thought of as a ranking supermartingale wich decreases in expectation by
€ = 1. We also notice that the constant K > 0 that was needed for the ranking
supermartingale reasoning of Theorem 6.3 in order not to have ranking su-
permartingales map into negative numbers is not needed for runtime invari-
ants, which renders runtime invariants conceptually easier. Since runtime
invariants are complete for reasoning about expected runtimes’, there is no
case where a ranking supermartingale but no runtime invariant exits.

7.6.3 Coinduction for Deterministic Programs

The runtime invariants we introduced in Section 7.6.1 are in the spirit of in-
ductive superinvariants as introduced in Section 5.1, whereas runtime subin-
variants are in the spirit of coinductive subinvariants. Runtime subinvari-
ants are closely related to the notion of metering functions for deterministic
programs (see [Fro+16b]). A metering function M for a loop while(¢){C}
maps program states to real numbers and satisfies the following two con-
straints for every state o

A. If 0 E @, then execution of C on ¢ terminates in a state 7 such that
R(t) > R(o0)-1, and
B. if 0 }£ @, then R(0) < 0.

So from any state satisfying the loop guard, the execution of the loop body
decreases the metering by at most 1, and as as soon as the guard is false, the
metering hits 0 or drops below. Thus, as long as the metering is larger than
0, the loop cannot terminate.

Similarly to the situation with ranking functions discussed in the previous
section, we can again note that the 0 in condition B. is arbitrary and we can
also choose 1 as lower threshold instead of 0. We just have to fix some value
such that if the ranking drops below that value, the loop terminates.

Using threshold 1 instead of 0, we can translate conditions a. and B. above
to the setting of anticipated value reasoning (see Section 2.3), which reads

A. [@]wp[C] (R) = R-1,and!?

B. [—|(P] =< [RSl].

9 Though not in an algorithmic sense, since expected runtimes are in general not computable.
10 We tacitly assume here that wp could handle functions R that may map into negative values.

179

180

EXPECTED RUNTIMES

Runtime subinvariants resemble a very similar behavior: A runtime I is a
runtime subinvariant of while (¢){C} with respect to postruntime 0, iff

1+[@]-ert[C](I) = I. (1)
This can be rewritten as
[p]-ert[C](I) = I-1,

which looks closely related to condition a. above when fixing e = 1.

Furthermore, it follows from t that 1 > I(o) if o }£ ¢, which can be ex-
pressed as [-@] < [I <1]. In total we get that runtime subinvariants satisfy
the following two conditions:

A. [plert[C](I) = I-1,and
B. [—|(p] < [ISl].

Since ert and wp are closely connected (see Theorem 7.11), we can intuitively
think of a runtime subinvariant as follows: From any state satisfying the loop
guard, the execution of the loop body decreases the runtime invariant by at
most € = 1 in expectation, and as soon as the loop guard becomes false, the
subinvariant hits 1 or drops below.

Besides the fact that every runtime subinvariant satisfies the above two
conditions, the converse is also true: Condition a. alone is equivalent to t
and thus to the fact that I is a runtime subinvariant of while(¢){C} with
respect to postruntime ¢. This demonstrates the close connection of runtime
subinvariants and metering functions.

While we learned in Chapter 5 that subinvariants are in general not suit-
able for reasoning about lower bound on weakest preexpectations, it was
proven by Frohn et al., that if M is a metering function of a loop while(¢){C}
then the loops needs at least M (o) iterations to terminate on input o. Hence,
metering functions do prove lower bounds on runtimes of deterministic pro-
grams by means of a coinductive premise [Fro+16b]. The same holds for run-
time subinvariants in case of deterministic loops:

Tueorem 7.18 (Coinduction for Lower Bounds on ert!!):

Letwhile (¢){C} be aloop with deterministic loop body and let I € T be
a runtime subinvariant of while (@){C} with respect to postruntime 0
(see Definition 7.14 B.). Then

I < ertwhile(@){C}](0).

Proof (inspired by [Fro+16a]). We proceed by induction on the number n
of guarded loop iterations needed until termination. A single guarded loop

11 The idea for this theorem was developed together with Florian Frohn and Christoph Matheja.

7.6 PROOF RULES FOR LOOPS

iteration comprises of (1) checking whether the loop guard ¢ evaluates to
true or false and (2a) either terminating the loop in case ¢ evaluates to false
or (2b) executing the loop body C once in case ¢ evaluates to true.

Let o be some arbitrary but fixed initial state. If while(¢@){C} needs n
guarded loop iterations until it terminates on o, then

(fp @)(0) = (@"(0))(0), ($)

where @ is the ert—characteristic function of the loop with respect to postrun-
time 0. We will proceed by induction on # to show that

I{o) < (©"(0))(0).

A first case we have to consider is when n = w, i.e. the loop does not terminate
on ¢ and the time needed to execute the loop is co. Then I(0) is obviously a
lower bound on the units of time needed to execute while(¢@){C} on o, as
I €T and thus I < co.

We now proceed with the actual induction: For the induction base, we have
n = 1. This means that exactly one guarded loop iteration is performed, i.e.
the loop must immediately terminates after checking the loop guard. This
implies that the loop guard must have evaluated to false in the initial state
0, since otherwise at least one more guarded iteration would be performed.
Since o £ @, we have

(©(0))(0) = (1+[@]-ert[C] (0))(0) = 1.

Furthermore,
I(o) < (®(I))(0) (by subinvariance of I)

= (1+[p]-ert [C] (D))(0) (by Definition of @)

=1. (by o ¥ @)

Hence we get

I(o) < 1 = ("(0))(0),
which completes the proof for the induction base.

Now suppose — as our induction hypothesis — that whenever while (¢){C}
terminates on some arbitrary but fixed initial state 7 within n guarded loop
iterations, then we have

I(r) < (®"(0))(r).

As our induction step, assume that while(¢){C} terminates on some arbi-
trary but fixed initial state o within # + 1 guarded loop iterations. Then

181

182 EXPECTED RUNTIMES

while(¢@){C} performs at least one guarded loop iteration and moreover o [¢.
This single guarded iteration alone hence needs

L+ert [C](0)(0) = (1+[p]-ert [C](0))(0),

units of time. Suppose — without loss of generality — that the loop body C
terminates on o in state t. Thereafter, the loop needs by assumption of the
induction step n more guarded loop iterations until it terminates on 7. By in-
duction hypothesis, the entire execution of while(¢){C} on o takes at least

(1+[go] ert [C] (0))+ I(7)

units of time. We can now express I(7) in o by anticipating the value of I in t.
This gives (cf. Section 2.3)

I(r) = (wp [C](D))(0)

The entire execution of while(¢){C} on o hence takes at least

(1+[p]-ert [C] (0))(0)+I(7)

(
= (1+[p]-ert [C] (0))(0) + (wp [C] (1))(0)
= (1+[p]-ert [C] (0) +wp [C] (1))(0)
= (1 +[@]-ert[C] (I)) (by decomposition of ert, Theorem 7.11)
= (CD I)) (by definition of @)
> I(o) (by subinvariance of I)

units of time. We have thus proven by induction on # that
I(o) < (®"(0))(0) (by induction)
< (lfp CD)(G) (by £ above)

for all o and hence

I < Ufp @ = ert]while(¢@){C}](0).

ExamrLE 7.19 (Lower Bounds on ert for Deterministic Programs):
Consider the program C, given by

while(x>0){
x:=x-1

b

7.6 PROOF RULES FOR LOOPS

where for simplicity we assume that x ranges over natural numbers only.
Suppose we want to prove that C needs at least linear runtime. To this end,
we propose the runtime subinvariant

I =x

and check its subinvariance by applying the ert—characteristic function of
the while loop with respect to postruntime 0, given by

D(X) =1+ [x<0]-0 + [x>0]-ert]x:=x-1] (X)
1+ [x>0]-ertx:=x-1](X)
1+ [x>0]-(1+X[x/x—1])

to I, which gives us

D(I) = D(x)
=1+ [x>0]~(1+x[x/x—1])
=1+ [x>0]-(1+x-1)
=1+ [x>0]-x
=1+x
>x=1.

Thus, the coinduction rule for ert (Theorem 7.18) gives us that
x < ert[while (...}] (0) .

and hence the loop needs at least x steps until it terminates.

Theorem 7.18 shows that for deterministic loops, we can use a coinductive
premise, i.e. a premise of the form I < ®(I), in order to establish a lower
bound on a least fixed point — in this particular case: on the runtime of a
loop. As a consequence, this allows for basically guessing a runtime I, check-
ing whether (a) I < D(I) or (b) ®(I) < I. In case of (a) I is a lower bound on
the runtime and in case of (b) I is an upper bound. However, since < is only
a partial order, nothing ensures that either case (a) or (b) occurs, i.e. I and
@(I) might very well be incomparable.

7.6.4 No Coinduction for Probabilistic Programs

It is worthwhile to point out where the proof we gave for Theorem 7.18 fails
in case of probabilistic loops. The point where this happens is at the very be-
ginning of the proof where we stated that for deterministic programs, there

183

184

EXPECTED RUNTIMES

exists some n € IN, such that
(tfp @)(@) = (2"(0))(0),

in case that the loop terminates on ¢. This is not true for probabilistic pro-
grams: We may well have the situation that we need n = w, so that

(ifp @)(0) = (@“(0))(0),

even for a fixed initial state o. Indeed, for probabilistic programs, the meter-
ing function approach is unfortunately unsound. The following counterex-
ample shows that runtime subinvariants cannot provide lower bounds on
expected runtimes in general:

CounTerexamPLE 7.20 (Unsoundness of Coinduction for ert):
Consider the program C, given by

while(c=1){
{c:=0}[12]{x :=x+1}
b

where we assume that x ranges over IN for simplicity. Suppose we want to
incorrectly reason about a lower bound on the expected runtime of C by
coinduction. The ert—characteristic function of the while loop with respect
to postruntime 0 is given by

O(X) =1+ [c:1]-(2+%(X[C/O]+X[x/x+1])).

We now propose infinitely many fixed points (thus also runtime subinvari-
ants) of @, namely for every a >0

I, = x+[c=1](6+2"")

is a fixed point of @, as one can easily check. However, for any d < b, we
clearly have I; < I,. Thus, if we prove I, < ®(I,) we cannot have proven that
I, is a lower bound on the least fixed point of @, since I; is a fixed point
strictly smaller than I;. In fact, none of the I,’s are the least fixed point of
@. The intuitive reason is that the expected runtime of C is independent of
x, but x has an influence on the value that the I,’s assume.

Frohn et al.’s proof of soundness of the metering function approach [Fro+16a]
goes by induction on the number of loop iterations, which are natural num-
bers for deterministic programs. Expected runtimes or expected numbers of
loop iterations, however, need not be natural numbers, thus standard induc-
tion is not a viable method in the realm of expected runtimes. An important

7.6 PROOF RULES FOR LOOPS

I < @(I) D(I) <1
C deterministic I < ertwhile(@){C}](t) ert[while(¢@){C}](t) < I
C probabilistic — 7 — ert [while(@){C}] () < I

Table 7.2: Rules for proving upper bounds and lower bounds on (expected) runtimes
of deterministic and probabilistic loops.

direction for future work is thus to understand what method instead of stan-
dard induction on the natural numbers could help for obtaining proof rules
for lower bounds on expected runtimes.

To summarize, we have the situation described in Table 7.2. If I is a su-
perinvariant, then I is an upper bound on the (expected) runtime of the loop,
regardless of whether the loop is deterministic or probabilistic. If I is a subin-
variant and the loop is deterministic, then I is a lower bound on the loop’s run-
time. If I is a subinvariant and the loop is probabilistic, on the other hand,
then we know nothing about the loop’s expected runtime. Thus, the follow-
ing problem in probabilistic program verification remains open:

Oren ProBLEM 2 (One-shot Verification of Lower Bounds on ert):
Find a ,one-shot” method as elegant as the induction or coinduction
rule (Theorems 7.16 and Frohn et al.’s metering functions), which, given
a loop while(¢@){C} and a specific hypothesis L € T, allows for check-
ing whether L is in fact a lower bound on ert [while(¢){C}] (0).

7.6.5 w-Rules

As is the case for weakest preexpectations, reasoning about lower bounds of
expected runtimes is difficult since no inductive or coinductive proof princi-
ple is available. For weakest preexpectation reasoning, we thus resorted to
so—called w-rules which employ w-invariants (see Section 5.2.4). The same
principle is applicable to expected runtime reasoning;:

TueoreMm 7.21 (Low. Bounds on ert from w-Inv. [Kam+16; Kam+18]):

Let (I;),en C T be a runtime w-subinvariant of while(¢@){C} with re-
spect to postruntime t (see Theorem 7.21). Then

sup I, < ert[while(¢@){C}](¢).
nelN

Proof. Analogous to the proof of Theorem 5.9 a. Q.E.D.

185

186

EXPECTED RUNTIMES

Just like for weakest preexpectations, it is necessary to find the limit of such
an w-invariant in order to actually gain some insights from applying Theo-
rem 7.21. That basically just shifts to problem of obtaining bounds into the
realm of real analysis. For further remarks on the — in my personal opin-
ion — poor usability and usefulness and on the expendability of w-rules
for upper bounds, see the remarks on w-rules for weakest preexpectation
reasoning in Section 5.2.4.

7.6.6 Bound Refinement

We saw in Section 5.2.7 that once we have obtained by some means some
bound — be it upper or lower — on a preexpectation of a loop, we have a
chance of refining and thereby tightening this bound fairly easily. Since this
technique is rooted in fixed point theory and expected runtimes of loops are
defined as least fixed points, the same technique can be applied to ert:

Tueorem 7.22 (Bound Refinement for ert [Kam+16; Kam+18]):

Let ®@ be the ert—characteristic function of while(¢){C} with respect
to postruntime t and let I be an upper bound on ert [while(¢@){C}] (¢),
such that ®(I) < I.

Then ®(I) is also an upper bound on ert [while(¢@){C}] (t). More-
over, whenever ®(I) # I, then ®(I) is an even tighter upper bound on
ert [while(¢@){C}] (t) thanI.

Dually, if I is a lower bound, such that I < ®(I), then ®(I) is also a
lower bound; and whenever ®(I) = I, then ®(I) is an even tighter lower
bound than I.

Proof. Analogous to the proof of Theorem 5.15.

The particular bound refinement of Theorem 7.22 can of course be continued
ad infinitum: For instance, if I is an upper bound on ert [while(¢@){C}] (¢)
with ®(I) < I, then so is ®(I) but also ®*(I), ®3(I), and so on. In fact, for
increasing n, the sequence ®"(I) is decreasing and converges to an upper
bound on ert [while(@){C}] (¢) that is below (or equal to) I. For more de-
tails, see Section 5.2.7.

7.6.7 Independent and Identically Distributed Loops

We have learned in the previous sections that, similarly to the case for weak-
est preexpectations (see Chapter 5), obtaining bounds — especially lower
bounds — on expected runtimes of while loops can be a very difficult task.
Obtaining exact expected runtimes obviously cannot be any easier in prin-
ciple. Under certain conditions, however, we are able to derive the exact

7.6 PROOF RULES FOR LOOPS 187

expected runtime of a while loop with respect to a given postruntime. Infor-
mally, these conditions can be described as follows:

1. For each loop iteration, the probability to immediately terminate after
that iteration is equal.

2. There is no information flow across different loop iterations with re-
spect to any program variable that has an influence on the value of
the postruntime t.

3. For each loop iteration, the expected runtime of that iteration is equal.

A central notion for capturing conditions 1. and 2. above formally is the con-
cept of a loop being t-independent identically distributed (t—i.i.d. for short);
for more details on i.i.d.—ness, see Definition 5.16. Similarly to Theorem 5.17
for weakest preeexpectations of independent identically distributed loops,
for t—independent identically distributed loops with almost-surely terminat-
ing loop body, we can obtain exact expected runtimes:

Tueorem 7.23 (Expected Runtimes of t—i.i.d. Loops [Bat+18b]):
Let t € T. Moreover, let the following hold:

A. while(¢@){C} is t—independent identically distributed.
B. The loop body C terminates almost-surely, i.e. wp [C] (1) = 1.

c. Each loop iteration of while (¢){C} takes equal expected runtime,

ie. Cpert[C](0).

Then the expected time needed to first execute while (¢){C} and then
let time t pass, i.e. ert [while(¢@){C}] (¢), is given by

1+ert [C] ([-p]-1)
L-wp[C] ([¢]) ’

ert [while(@){C}](t) = 1 + [—~@]-t + (@]
where we define % = 0 and %0 = oo, for a # 0.

Intuitively, the fraction

L+ert [C] ([~¢] - 1)
1—wp[Cl (@]

appearing in Theorem 7.23 can be understood as follows: If the loop guard is
true, the expected runtime of a single (guarded) loop iteration'? is given by

1+ert [C] ([-¢]-t) .

12 Recall that a guarded loop iteration comprises of (1) checking the loop guard and, in case the
loop guard is true, (2) executing the loop body.

188

13

EXPECTED RUNTIMES

Furthermore, since wp [C] ([¢]) is the probability to continue iteration, 1 —
wp [C] ([¢]) is the probability to terminate in each iteration. Because of the
termination probability being the same for each iteration, the loop estab-
lishes in effect a geometric distribution on the number of loop iterations. The
expected number of loop iterations is hence given by the closed form for
corresponding geometric series, namely by

1
1-wp [C] ([¢])

The fraction appearing in Theorem 7.23 can thus be understood as the ex-
pected runtime of each loop iteration multiplied by the expected number
of loop iterations.

Similarly to Theorem 5.17, it is worthwhile to note that in order to ap-
ply Theorem 7.23 it is not required to find or guess in any way an invari-
ant, w—-invariant, martingale, or alike. Instead, only ¢-i.i.d.-ness of t — the
very postruntime one is interested in — needs to be checked. Our theo-
rem then immediately yields the exact sought-after preexpectation — not
just a bound.

Finally, we would like to mention that Theorem 7.23 is also not a free—
lunch-theorem: Checking t—i.i.d.—ness can potentially become a non-trivial
and in general undecidable task. Also, once the expected value of postrun-
time t depends in some way on the number of iterations a loop makes, i.e.
once the loop performs some sort of counting and the value of the counter
influences the value of ¢, the theorem fails to be applicable altogether. On
the other hand, Theorem 7.23 has been successfully applied to reasoning
about expected sampling times for massively large Bayesian networks from
the Bayesian Network Repository [Scu] exceeding a thousand nodes [Bat+18b].
In this work, it has been shown that expected sampling times of millions of
years can be reasoned about within less than a second.

7.7 CASESTUDY: THE COUPON COLLECTOR

WE now demonstrate the effectiveness of our our ert calculus by apply-
ing it to the well-known Coupon Collector’s Problem [MUO05]: Sup-
pose there are N different types of coupons and we can buy one uniformly
randomly sampled coupon at a time, i.e. each time we buy a random coupon,
we get a coupon of type i € {1, ..., N} with probability I/N. Once we have col-
lected at least one coupon of each type, we can trade them for a prize. The
aim of the Coupon Collector’s Problem is to determine the expected number
of random coupons we have to buy in order to have collected at least one
coupon of each type. The problem can be modeled by program C,, below:!3

For describing C.. we use an array variable cp. We assume that the content of an array is encoded
as a single number z and we abstract from this encoding. For instance the assignment cp[i] := 1

7.7 CASE STUDY: THE COUPON COLLECTOR

cp :=[0,...,0]3
1:=13
x:=Nj3g
while(x>0){
while(cp[i]#0){
i~ Uniform[l...N]

All cells in the array cp are initialized to 0 and whenever we obtain the first
coupon of type i, the program C, sets cp[i] to 1. The outer loop is iterated N
times and in each iteration we collect a new — uncollected — coupon. The
inner loop models the buying of new random coupons until an uncollected
coupon is bought.

We begin the runtime analysis of C.. by introducing some notation. Let Cj,
and C,; denote the inner and the outer loop, respectively. Furthermore, let

N
#eol = Z[cp[i] 0]
i=1

denote the number of coupons that have already been collected.

Analysis of the inner loop. In order to later analyze the runtime of the
outer loop we need to find a runtime invariant I for the outer loop. In order
to check invariance of I, we will have to push I through the loop body of the
outer loop which itself contains the inner loop as a subprogram. It will thus
be necessary at some point to calculate ert [C;,] (s), for some s € T, and we
hence first analyze the runtime of the inner loop.

For analyzing the inner loop, we note that the body of the inner loop ob-
viously terminates almost-surely (as it consists only of a single assignment).
Furthermore, we observe that the inner loop is s—-independent identically
distributed for any s (see Section 7.6.7 for more details on i.i.d.—ness). The
intuitive reason is that once i is sampled and replaced by some value in s,
the variable i does not occur in s anymore. More formally, we can check that
all preconditions of Theorem 7.23 are met. The loop body of the inner loop
i :~ Uniform[1l...N]influences only the variable i, since it consists only of a
single assignment and i is the variable that appears on the left-hand-side of
that assignment. Consider now the following:

then corresponds to an arithmetic expression encoding an update of the number z in a way such
that the array represented by z is updated at position i to value 1.

189

190

EXPECTED RUNTIMES

N
wp [i :~ Uniform[1...N]] ([ep[i] = 0]) = %'Z[Cp[j]iO] _ #CTOZ (*)
j=1

On the right-hand-side of %, the variable i does not occur anymore and thus
it is not influenced by the loop body of the inner loop. Next, we calculate

wp [i = Uniform[1...N]] ([cp[i] = 0]-s)

N
=) leplj1=0-s1ifj] (i)
=1

for any arbitrary s € T. On the right-hand-side of %, the variable i does
not occur anymore, since in s it has been replaced by a constant j. Thus,
the right-hand-side is not influenced by the loop body of the inner loop.
* and #k together constitute s—i.i.d.—ness of the inner loop with respect to
any postruntime s.

The last precondition for Theorem 7.23 is that each loop iteration takes
equal expected runtime. For this, we calculate

N
ert [i :~ Uniform[1...N]] (0) = 1+ZO[i/j] =1,
=1

which is a constant and can thus trivially not be influenced by the body of
the inner loop. Since all preconditions of Theorem 7.23 are met, we can ap-
ply this theorem to obtain a closed form for ert of the inner loop with respect
to an arbitrary postruntime s:

ert [Ci,] (s)

=1+ [cp[i]=0]-s + [cp[i] =0]-

Analysis of the outer loop. Using our analysis of the inner loop, the ex-
pected runtime of the body of the outer loop with respect to an arbitrary
postruntime t € T is given by

ert [Cinscep[i] :=15x:=x-1] (t) = 2+ert[Ci] (f[x/x—1, cp[i]/1]) .

Since the program C.. terminates right after the execution of the outer loop
Cout» we analyze the runtime of the outer loop C,,; with respect to continua-
tion 0, i.e. ert [C,,¢] (0). To this end we propose

=1+ i[x>€].[3+2.i(#c‘x]+€)k]
=0

k=0

7.7 CASE STUDY: THE COUPON COLLECTOR 191

, Q. (4ol *
-2 (el =0 [x>0)-)_(%F)
k=0

as runtime invariant of C,,; with respect to postruntime 0. We omit here
the tedious verification that I is indeed a runtime invariant of the outer loop
(for more details, see [Kam+16]). After one has checked runtime invariance
of I, Theorem 7.16 yields

ert [Coue] (0) < I, (1)

Analysis of the overall program. To obtain the overall expected runtime
of program C,. we have to account for the initialization instructions before
the outer loop. The calculations go as follows:
ert [[CCC]] (0)
ertep :=1{0,...,0]3i :=15x := N ¢ Coyut] (0)
ert [cp :=10,...,0]¢i :=15x :=NJ (ert [Cyu] (0))
ertep :=[0,...,0]¢i :=1sx :=N] (I)
(by f and monotonicity, Theorem 7.10)
3+I[x,4,cp[l],...,cp[N]/N,1,0,...,0]

IA

w

- 3+1+i[N>€]'[3+2'i(OTM)k]_2'[OZ0]'[N>0]'Z(%)k

=0 k=0 k=0
N-1 w 1 p\k
_4+[N>0]-Z[3+2~Z(ﬁ)]—2-1-[N>0]-0
=0 k=0
N-1{ w Y, k
= 4+[N>0]-|3N + 2Z[Z(ﬁ)]]
=0 \k=0
N-1 1
=4+[N>0]-|3N+2- g] (by closed form for geom. series)
=l-w
N-1
= 4+[N>0]- 3N+2-Zm
=0
N-1
= 44[N>0]-[3N+2N.]

1
¢
N-
:4+[N>0]-N(3+2-]
=1
= 4+[N>0]-N(3+2-Hy_1),
where Hy_1 = 1/1+1/2+13+---+1/N-1 denotes the (N—1)-st harmonic number.
Since the harmonic numbers approach the natural logarithm in the limit, we

192

EXPECTED RUNTIMES

can conclude that the coupon collector program C,, takes in expectation time
O(N . log(N)) until termination.

7.8 OTHER RELATED WORK

NALYSES of expected runtime of randomized algorithms are typically ob-

tained by ad-hoc arguments exploiting classical probability and martin-
gale theory [Fra98; MR95]. Typically, those ,book proofs“ do not argue on
source code level but instead abstract away from the code and argue on the
level of stochastic processes. Our approach is different: We argue on source
code level using a calculus that proves runtimes directly on the programs,
not on an abstraction of them.

Apart from the numerous references to related work we have made in this
chapter, the work that is perhaps closest to our ert calculus is by Celiku
and Mclver [CMO05]. They provide a wp calculus for obtaining performance
properties of probabilistic programs, including upper bounds on expected
runtimes. Their focus is on refinement. Neither do they provide a soundness
result of their approach nor do they consider lower bounds. Moreover, we
believe that the ert calculus is simpler to work with in practice.

Arthan et al. [Art+09] provide a general framework for sound and com-
plete Hoare-style logics, and show that a particular instantiation of their
framework can be used to obtain upper bounds on the runtime of while
loops. They do not consider probabilistic programs.

Deriving space and time consumption of deterministic programs has also
been considered by Hehner [Heh98]. For deriving time bounds, Hehner pro-
poses to use a runtime—counting ghost variable as we have studied in Sec-
tion 7.2. We saw in that section that the ghost variable technique is unsound
for reasoning about probabilistic programs in general.

Hickey and Cohen [HC88] automate the average—case analysis of deter-
ministic programs by generating and solving a system of recurrence equa-
tions derived from the program that is to be analyzed. Average—case analysis
considers the expected runtime of a deterministic program with respect to a
random distribution of inputs. We, on the other hand, consider deterministic
inputs for (inherently) randomized algorithms.

Berghammer and Miiller—-Olm [BM04] show how Hoare—style reasoning
can be extended to obtain bounds on the closeness of results obtained using
approximate algorithms to the optimal solution. In contrast to randomized
algorithms, approximate algorithms deterministically give solutions that are
close to the optimum in terms of some approximation factor.

Monniaux [Mon01] exploits abstract interpretation to automatically prove
the probabilistic termination of programs using exponential bounds on the
tail of the distribution. His technique yields upper bounds only and can
be used to prove the soundness of experimental statistical methods to deter-

7.8 OTHER RELATED WORK

mine the expected runtime of probabilistic programs.

Brazdil et al. [Bra+15] study the runtime of probabilistic programs with
unbounded recursion by modelling them as probabilistic pushdown auto-
mata. They show (using martingale theory) that for every pPDA the prob-
ability of performing a long run decreases exponentially (polynomially) in
the length of the run, iff the pPDA has a finite (infinite) expected runtime.
As opposed to program verification using the ert calculus, [Bra+15] consid-
ers reasoning at an operational level. This becomes problematic if the state
space of the program becomes infinite and this infinity is not caused only
by the call stack needed to implement recursion, but genuinely by infinitely
many program states. The program then cannot be modeled by a pPDA, but
this fact is in general undecidable.

Finally, we would like to mention that our calculus has been implemented
in the interactive theorem prover Isabelle/HOL by Hoélzl [H6116]. Holzl
proved that our calculus is indeed sound and complete and that the theo-
rems listed in this chapter are correct.

More recently, Ngo et al. developed a fully automatic approach for deriving
polynomial runtime bounds [NCHI18]. Ngo et al. use our ert calculus as an
underlying theoretical framework for proving soundness of their approach.

As for future work, another direction — besides finding elegant proof
methods for lower bounds, as mentioned earlier — would be to develop a
calculus for reasoning about expected space consumption. This poses a chal-
lenge, because it is not clear (at least to us) how to formulate this as a least or
greatest fixed point. Intuitively, the reason is that if a program does not ter-
minate with a certain probability, it will still consume space in those cases,
an this space can very well be finite.

193

CONDITIONING

cult problems more efficiently on average is a classical use case of

probabilistic programs. A more recent use case is found in machine
learning: There, probabilistic programs conveniently describe complex prob-
ability distributions. The main goal is to have a mathematically rigorous
description that is yet easily accessible to a working programmer [Gor+14].
A key ingredient in such descriptions is conditioning, which — as the name
suggests — allows to describe conditional probability distributions.

As a simple example of such a conditional distribution, suppose that we
would like to model that variable x is distributed according to a geometric
distribution with parameter 12, conditioned on the event that x is odd. In
standard mathematical notation, the probability mass function

D ESCRIBING randomized algorithms for solving computationally diffi-

3 ifkisodd,
P(x =k|xisodd) = {2 ifkiso

0, if k is even.

describes the probability that x has value k, given that x is odd. Notice that
the mathematical representation above completely hides both the compu-
tational aspects underlying a geometric distribution as well as the event on
which we want to condition. As for the underlying computational aspect, an
(unconditioned) geometric distribution can be described by the following al-
gorithm: Keep flipping a fair coin until you throw, say, heads. Count in x the
number of coin flips you had to perform in order to achieve that goal.

On the positive side, the above mathematical representation is compact
and explicit. Questions, for instance, about probabilities of certain events or
about the expected value of x can easily be answered. On the negative side,
if we are merely presented with the above mathematical representation of
the conditional distribution, it is rather difficult to extract the underlying
algorithm that constructed that distribution. That in turn makes it rather
difficult to understand the distribution and in particular difficult to adjust
it: Say we wanted to adjust the parameter of the geometric distribution to 1/3
instead of /2. Then the resulting probability mass function is

2k.5 R
. ifkisodd,
P'(x=k|xisodd) = {372 11O

0, if k is even.

However, it is not at all obvious how to obtain P’ from P.

195

196

CONDITIONING

Another negative aspect of representing distributions by probability mass
functions is that it is not so obvious how to sample from a distribution given
only its probability mass function. Instead, general purpose sampling al-
gorithms have to be employed. The probability of a specific sample being
returned by the sampling algorithm corresponds to the probability speci-
fied by the probability mass function it gets as input, however often only up
to some precision.

As an alternative, the probabilistic program

x:=0
c:=1

00 o

while(c=1){
x:=x+1%
{c:=0}[12]{c:=1}
3

observe (xis odd)

N O O b= WO N =

describes the same conditional distribution P while not hiding the details of
its construction: Both the repeated coin flips (Lines 3 to 6) as well as the
event on which we condition (Line 7) are explicitly typed out in the above
program. We can even explicitly see the individual coin flips (Line 5) and
the counting (Line 4). We also notice that in the program representation it
is completely obvious how to adjust the parameter of the geometric distribu-
tion from 1/2 to 1/3: We simply replace the 1/2 by 1/3 in the program.

As another positive aspect of the program representation, each probability
distribution described by a probabilistic program comes with its own special
purpose sampling algorithm: the program itself! By executing the program
once, we effectively obtain one sample from the probability distribution that
it implicitly describes.

While the program representation above is easy to understand and easy to
sample from, the probability mass function it represents is not as explicitly
given as with the probability mass function representation. A main task
for probabilistic programs, in particular with conditioning, is thus inference,
i.e. determining an ,explicit representation of the probability distribution
implicitly specified by the probabilistic program [Gor+14].

A workable approach to inference is determining the expected value of
some function f after executing a probabilistic program [Gor+14]. We have
already studied in Chapter 4 how this can be accomplished for programs
without conditioning by means of the weakest preexpectation calculus. In
this chapter, we will extend the weakest preexpectation calculus to reasoning
about probabilistic programs with conditioning. We will show how previous
approaches to the inference task are inferior when it comes to dealing with
nontermination and present rules for reasoning about loops.

8.1 cpGCL — pGCL WITH CONDITIONING

81 cpGCL — pGCL WITH CONDITIONING

N this section, we present syntax and operational semantics of the proba-
Ibilistic guarded command language with conditioning. As for the syntax, we
endow pGCL (cf. Section 3.2) with an additional observe statement, as we
have already done tacitly in the introductory example.

DeriniTioN 8.1 (pGCL with Conditioning [Jan+15a; Olm+18]):

Recall Definition 3.1 which defines all notions related to the probabilis-
tic guarded command language pGCL. The set of programs in proba-
bilistic guarded command language with conditioning, denoted cpGCL,
is given by the grammar

C — skip (effectless program)
| diverge (freeze)
| x:=E (assignment)
| x = p (random assignment)
| observe (@) (conditioning)
| CsC (sequential composition)
| if (p){C}else{C} (conditional choice)
| {C}[p]{C} (probabilistic choice)
| while(@){C}, (while loop)

where x € Vars is a program variable, E is an arithmetic expression over
program variables, p is a distribution expression, ¢ is a boolean ex-
pression over program variables guarding a choice or a loop, and p is
a probability expression. Recall Definition 3.1 for the meaning of the
above technical terms.

Note that cpGCL programs are by definition tame, i.e. they contain no
nondeterministic choices.

Operationally, all instructions of a cpGCL program are executed exactly the
same way as pGCL instructions (cf. Section 3.3). The obvious exception are
observe statements, since these are not part of the pGCL language. The
observe statements are executed as follows:

When an observe (¢) instruction is encountered and the current program
state is o, it is checked whether o satisfies the observation ¢, i.e. whether
0 E ¢. If so, the computation proceeds as if the observe (@) instruction was
a skip instruction. If, however, o }£ ¢, the computation terminates unsuc-
cessfully in a designated observation violation state 4.

Formally, the operational behavior of a cpGCL program is given by ex-
tending the computation tree semantics of pGCL (see Definition 3.4). In
particular, the SOS rules in Figure 3.1 are complemented by two rules for

197

198

CONDITIONING

the observe statement, namely:

=t
(o) e (observel)
(observe (@), 0,n,0,1,9) + {l,0,n+1,0,1,q)
= fal
9(0) ase (observe2)

(observe (@), 0,1n,0,1n,q9) + {L,%n+1,0,1,9)

For a given cpGCL program C and input ¢, any computation path in the
computation tree of executing C on input ¢ has exactly one of three forms:

A. The path terminates successfully in some final state 7 # 4.
B. The path terminates unsuccessfully in 4.
c. The path does not terminate but also does not violate any observation.

Executing C on o thus gives rise to three disjoint sets of paths which we de-
note for illustrational purposes by 4, B, and c, respectively. A diagrammatic
depiction of this situation is shown in Figure 8.1.

Besides a computation tree semantics, we also described the semantics
of pGCL programs as inducing a (sub)distribution over final states (see Sec-
tion 3.3.2). Using the extension of the computation tree semantics described
above, we obtain from a cpGCL program a (sub)distribution [C] over XU {%}
by applying Definition 3.8. However, for cpGCL programs, we would rather
like to describe the conditional distribution [C], _, over terminal states, con-
ditioned on the event —B, i.e. on the event that no observation violation oc-
curred during computation [Gor+14]. Note that the event —8 coincides with
the event AUc, i.e. the event that either the program terminates successfully
or not at all. The conditional distribution [[C]]GL$ can be described by

0, iftr=%and [C], (9 <1

[C],]_,(0) = 1@%%, if t=4%and [C], (4) <1

undefined, if [C],(4)=1.

As we can see, the distribution [[C]]UL% is a rather unwieldy object and some-
times even undefined, namely whenever we would have to deal with a di-
vision by zero. The expectation transformer based approach to reasoning
about cpGCL programs which we present in the remainder of this chapter is
more satisfactory in that aspect: It always gives well-defined, meaningful,
and expected results, even in the problematic division-by-zero case.

8.2 CONDITIONAL EXPECTATION TRANSFORMERS

EXTENDING weakest preexpectation reasoning for pGCL a la Chapter 4 to
cpGCL is the subject matter of this section. This technique will allow us

8.2 CONDITIONAL EXPECTATION TRANSFORMERS

/\/\/\//\”

o«

*/\ A
/\/\/\/\.
e
? q\
B
C

Figure 8.1: Executing a cpGCL program can lead to either one of three outcomes: (a)
the program does not violate any observation along its computation and
terminates successfully in some final state, (B) the program violates an ob-
servation along its computation and terminates unsuccessfully in the obser-

vation failure state 4, or (c) the program does not violate any observation
along its computation but also does not terminate.

to reason about conditional expected values and conditional probabilities. As
we did with pGCL, we will present two calculi: the conditional weakest pre-
expectation calculus for total correctness and the conditional weakest liberal
preexpectation calculus for partial correctness.

8.2.1 Conditional Weakest Preexpectations

For a given postexpectation f € [E and program C € cpGCL, we are interested
in the conditional expected value of f after successful termination of C on a
given input o, given that no observation that is encountered along the com-
putation is violated. More precisely, we are interested in a mathematical
object that maps every input o to the respective conditional expected value.
Put in terms of the three sets a, B, and c we described in Section 8.1, we are
interested in the quantity

EV(f-[-8)) EV(f-[al+f-lc]) Ev(f-[a)

Pr(—B) Pr(aUc) Pr(aUc)

s

199

200

CONDITIONING

i.e. the expected value of f, given that no observation is violated. The last
equality comes about because all paths in the set c are infinite and hence
there exists no path in c that reaches a final state in which f could be eval-
uated with non-zero probability. The conditional expected value of f de-
scribed above constitutes our notion of conditional weakest preexpectations.
By choosing f = [F], i.e. f is the indicator function of an event F, we see
that reasoning about conditional weakest preexpectations subsumes reason-
ing about conditional probabilities.

Our general approach will be to calculate the numerator and denominator
of the fraction above separately, in order not to run into trouble with problem-
atic cases such as for instance ,00". Keeping a pair, we can just pair 0 and 0
without running into problems with undefinedness. We also notice that the
numerator is a general expected value, whereas the denominator represents
a probability. We will hence reason about pairs of expectations in E x [E;.
We call such pairs conditional expectations.

DeriniTION 8.2 (Conditional Expectations [Jan+15a; Olm+18]):
A. The set of conditional expectations, denoted C, is defined as the
set of pairs comprising of a general expectation in [E and a one-
bounded expectation in E<y (cf. Definition 4.1), i.e.

C = IEXIEsl .

We denote a pair in C consisting of first component f and second
component g by

I
to indicate that it represents a fraction.

A complete lattice on C is induced by the partial order <, given by

f/gﬂi’/? iff f<f and g>g¢ .

Notice that the order on the second components is the reversed
order of the first components. The least and the greatest element
in the complete lattice (C, <) is given by

0/7 and ~7,

respectively, where 0,1,00 € E. The supremum of a subset S C C
(with respect to the order <) is given pointwise by

sup, S = supg {f|I/§€S}/inf5 {g|f/§65} ,

where the supremum and the infimum on the right-hand-side are
understood with respect to the order <.

8.2 CONDITIONAL EXPECTATION TRANSFORMERS

B. For f/5,f /¢ € Cand h € E.;, we define an addition & by

A Tirrre

and likewise a scalar multiplication © by
ho f/g = hi/ig .

Notice that there is a crucial difference between f/; and /5 : The expression
f/g is a pointwise fraction, i.e.

f

- = lo. —=

g g(o)’

On the other hand, a conditional expectation f 3 is merely a pair of expecta-
tions, which is interpreted as a fraction:

~n

(9)

o)

, if g(o)=0

f/g isinterpreted as Ao. {8
undefined, if g(o)=0.

However, formally, a conditional expectation is not a fraction. In particular,

VT = Yy

As conditional expectations are just pairs, 05 is a perfectly well-defined
mathematical object, whereas the definedness of 0/ is at least controversial.

The partial order < on conditional expectations enables monotonic rea-
soning about total correctness. The order corresponds naturally to our ,frac-
tional interpretation” in the sense that for all states ¢ we have that

frg 2 f)/¢ implies —— <

in case that both fractions are defined (i.e. in case that g’(c) > 0, which by
¢ > ¢’ implies that g(o) > 0). This means that overapproximations in the
sense of the partial order < are indeed overapproximations of the sought—
after conditional expected value.

For reasoning about conditional expected values yielded by cpGCL pro-
grams, we define an expectation transformer that acts on conditional expec-
tations, i.e. on C, as follows:

201

202 CONDITIONING

C cwp [C] (f/3)

skip I/g

diverge o7

X p 1. fis (10- f(fflxw}))dﬂa/;m. Frats (10 glolx01)) dg
observe (@) (plof/g

C15C cwp [C] (CWP [Ca] (I/?))

if (p){Ci)else (G} [plocwp[Ci](f/z) @ [~plocwp [Co] (f/z)
(Ci) PG} pocwp [Ci] (f/g) & (1-p)ocwp [Co] (f/g)
while(p){C’} fps X/7. [~¢lof/z @ [plocwp [C](X/Y)

Table 8.1: The conditional weakest preexpectation transformer. The least fixed point
for the while loop is understood in terms of the partial order <.

DeriniTION 8.3 (Conditional wp [Jan+15a; Olm+18]):
A. The conditional weakest preexpectation transformer

cwp [C]: C€—-C
is defined according to the rules in Table 8.1.

B. We call the function

W50, (X7) = elosE @ lol-oup (] (4/7)

the cwp—characteristic function of while(¢){C} with respect to
postexpectation f,5. If either of cwp, @, C, or f/g are clear from
the context, we omit them from ®.

The rules for the cwp transformer basically calculate wp in the first compo-
nent and wlp in the second component (cf. Section 4.1). For the observe (¢)
statement, the indicator function of the observed evidence ¢ is multiplied
to both components. In effect that reduces the expected value in the first
component (the numerator) as well as the normalization factor in the second
component (the denominator). We will study how these rules behave for
loops in more detail later in this chapter.

If we want to use the cwp calculus to reason about the conditional expected
value of f after executing program C, given that no observation is violated,
we have to determine cwp [C] (fﬁ) Below, we give an example:

8.2 CONDITIONAL EXPECTATION TRANSFORMERS

ExamrrE 8.4 (Conditional Weakest Preexpectation Reasoning [Olm+18]):
Assume we want to compute the expected value of the expression 10+x after
executing program C given by

{x:=0}[12]{x =1}

if(x=1){
{y:=0}[12]{y :=2}
Jelse|

{p := 0} [*5]{y :=3)
3
observe (y=0)

That means, we have to reason about cwp [C] (10+X/1) Reusing our annota-
tion style from earlier in this thesis (see Example 2.11), i.e. we write

/e
7 /g
C

I trg

to expresses that f'/ = cwp [C] (f/g) and moreover that f"/g7 = f'/7, we
can annotate the above program as shown in Figure 8.2 (read from bottom

to top). The calculation of cwp [C] (10+XF1) gives ¥A/1y,. As for an interpre-
tation, we can say that the conditional expected value of 10+x, given that the
observation is not violated, is for any initial state

27

2z 27-20 135

% = = —~ ~10.38.
e 13-4 13

8.2.2 Conditional Weakest Liberal Preexpectations

While we considered total correctness above, we now consider partial cor-
rectness: Given event F and program C, we ask: What is the conditional
probability that C either diverges or terminates in a state satisfying F, given
that no observation encountered along the computation is violated. Put in
terms of the three sets a, B, and c (see Section 8.1), we are interested in

Pr((FUc)N-B) PrFuUC)
Pr(—B) Pr(aUc)

203

204 CONDITIONING

WAE
TN Ve
J] 50197 @ lolyyg
Jjiotelyr @ joteolyy
//%G([Ozl]Q%OMGB [OII]Q%QM)
® %G([lzl]Q%GM@ [1::1]@%@%)
{x:=0}[12]{x:=1}3
M) [x=1]101010+x7 @ [x21]0f©10+x/7
if(x=1){
J] 3 ©10+x/7
Jl 30[0=01010+x7T @ ;0[2=0]010+x/T
{p :=0} 1] {y :=2)
M ly=0]010+x/7
Jelse{
J $@10+x/7
J] to0=01010+x7 @ Lo[3=0]010+x/T
{p:=0}[*]{y :=3)
J] ly=0]010+x/7
I
J] ly=0]010+x/7
observe (y=0)
J 0+x/1

Figure 8.2: Conditional weakest preexpectation annotations for Example 8.4.

8.2 CONDITIONAL EXPECTATION TRANSFORMERS

The equality comes about because all computation paths that terminate suc-
cessfully do not terminate in the 4 state. The conditional probability above
constitutes our notion of conditional weakest liberal preexpectations.

Again, our approach will be to calculate the numerator and the denom-
inator of the above fraction separately. We notice that both the numera-
tor as well as the denominator represent probabilities. We will hence rea-
son about pairs of expectations in [E<; x [E<;. We call such pairs one-boun-
ded conditional expectations.

DeriniTiON 8.5 (One-bounded Cond. Expect. [Jan+15a; Olm+18]):
A. The set of one-bounded conditional expectations, denoted C.1, is
defined as the set of conditional expectations, where both compo-
nents are one-bounded expectations, i.e.

Ca = Eqi xEg .

Obviously, we have C.; C C. We use the same notation for pairs in
C.; as for pairs in C. A complete lattice on C<; is induced by the
partial order 4, given by

frg « fl/g iff f<f and g<¢’.

Notice that (in contrast to the order < on C) the order on the sec-
ond components is the same as the order of the first components.
The least and the greatest element in the complete lattice (C<q, «)
are given by

0/0 and 1/7,

respectively, where 0,1 € E<;. The supremum of a subset S C C«;
(with respect to the order «) is constructed pointwise by

sup, S = Supg {f‘f/?es}/sups {g|f/§65} ’

where the two suprema on the right-hand-side are understood
with respect to the partial order <.

The partial order €« will be used for defining conditional weakest liberal pre-
expectations as greatest fixed points. Unfortunately, the partical order «
does not correspond as naturally to our ,fractional interpretation” as the
partial order < on C did. This is because we have that

f/¢ < f'/g neither implies 7o) < 7o) "

205

206 CONDITIONING

C cwlp [C] (f/g)

skip f/g

diverge 1

x:=E SI/E) /g Tx/E]

X~ p A0 Sy (A0 ot o) dno fag. - (aw. glotxm o)) apo

observe (@) (plof/g

C15Cy cwlp [C1] (ewlp [C2] (f/))

if (¢){Ci})else(Cy) [plocwip [Ci] (f/7) @ [~plocwlp [C] (/)
(C1) P {Ca) pocwp [C1] (f/g) ® (1-p)ocwlp [Co] (f/z)

while(@){C’) gfp« X/V. [~plof/g [plocwip [C'](X/T)

Table 8.2: The conditional weakest liberal preexpectation transformer. The greatest
fixed point for the while loop is understood in terms of the partial order «.

Thus, the partial order « is not as suitable for monotonic reasoning about
conditional probabilities. While the transformer we present shortly will in-
deed be <—monotonic, this is hardly of any use because over- or underap-
proximating a result with respect to € does not necessarily give an over— or
underapproximation of the sought-after conditional probability.

We now present the conditional weakest liberal preexpectation transformer
that acts on C<; and enables reasoning about conditional probabilities.

DeriniTION 8.6 (Conditional wlp [Jan+15a; Olm+18]):
The conditional weakest liberal preexpectation transformer

cwlp [C]: €< — Cq

is defined according to the rules in Table 8.2.

The rules for the cwlp transformer basically calculate wlp in both components
(cf. Section 4.1.2). As with cwp, for the observe (@) statement, the indicator
function of ¢ is multiplied to both components, which in effect reduces the
probability in the first component (the numerator) as well as the normaliza-
tion factor in the second component (the denominator). We will study how
cwlp behaves for loops in more detail in the next section.

If we want to use the cwlp calculus to reason about the conditional proba-
bility that an event F is established after executing program C, given that no
observation is violated, we have to determine cwlp [C] ([j]ﬁ)

8.3 CONDITIONING AND LOOPS

8.3 CONDITIONING AND LOOPS

HE interplay of conditioning and loops is a particularly intricate matter
Twhen attempting to give semantics to probabilistic programs with con-
ditioning. Particular care must be taken, for instance, when conditioning
inside a loop. However, even by syntactically forbidding conditioning inside
loops we do not mitigate all problems.

8.3.1 The cwp Interpretation for Total Correctness

We first turn our attention to how our cwp transformer for total correctness
behaves for loops. As an admittedly pointed — but on the other hand very
demonstrative — example, consider the program C, given by

x:=13%

while(x=1){
{x:=1}[V2]{x :=0}
observe (x=1)

],

This program has exactly one diverging run, namely the one in which x is set
to 1 infinitely often. This run occurs with probability 0. Inside the loop, x is
set to 1 or 0 each with probability a half, but thereafter, we condition on the
event that x was set to 1. In effect, we thus condition on the only diverging
run, i.e. on an event that occurs with probability 0.

If we now ask, for instance, for the conditional probability that the above
program terminates, given that no observation is violated, we would expect
this to be the undefined fraction ,%“. To see that our transformer indeed
behaves as expected, let us reason about cwp [C] (1f1) Since the cwp trans-
former is backward-moving, we first need to study how our transformer be-
haves on the loop of program C. For that, we will perform the fixed point
iteration for the cwp—characteristic function @ of the loop with respect to
postexpectation 1/7, given by

cp(m) = [xz1]oL/T & [x=1]0 50 X[x/1]/y[x/1] .

Iterating @ on the least element 0/7 then gives:

D(0/7) = [x21]oLT @ [x=1]010 0/1)/1H/1]
= [xz1]lol7 @ [x:l]@y;
@2(%) = [xz1]loL/7

e [r=1]oto(1=1]oLT e [1:1]@9/;)

207

208

CONDITIONING

= x=1loVT @ [x=1]00/]

O} (0/7) = [x=1]oL/T

® x=1]oto([1+1loLT o [1=1]00/T)

= [xz1]ol7 & [x:l]@Q/g

?"(0/1) = [x=1]oLT @ [x=1]00/L, forn>1
= D2 x21] + x=1]- 4%

o (0/7) = =11

The last line is the conditional weakest preexpectation of the loop. Finally,
we have to calculate

cwp [x ;:1]]([x¢1] [x¢1]) =07,

which is the conditional weakest preexpectation of the whole program C.
As we can see, we get the conditional expectation 0 as the result of our
calculations, which corresponds exactly to what we would expect, namely
,0/0“, except that our preexpectation is a a perfectly well-defined mathemat-
ical object. Our conditional preexpectation 07 tells us on the one hand that
the probability of terminating and not violating any observations is 0, and on
the other hand that the probability to not violate any observations is also 0.
In order to understand how the cwp transformer behaves for loops on a
more abstract level, let us revisit our definition of the cwp transformer for
loops and our definition of the order <. By closer inspection, we can notice
that for the fixed point iteration of the cwp-characteristic function we have

cwp WP W
POP] L (VT) = (9000 (O Pg() -
Thus, the first components of the chain

v o< (;gs@% (%) = <¢C,VC”>)(D12(ﬁ (%) =

give the ascending chain

wp wp
< O ®p(0) = (, BDL0) < ([, FDF(0) <

8.3 CONDITIONING AND LOOPS 209

and the second components give the descending chain

wlp wlp s 2 wlp 1 3
L2 6,0P1) 2 (5,0 P (1) Z (0P (1) = -

For the above to make sense and be well-defined, we need to define both

transformers wp [observe (¢)] and wip [observe (¢)]. We can do this by

wp [observe (@)] (f) = [@]-f = wlp [observe ()] (f).

When taking the limits of the latter two chains above, we see that our defini-
tion of cwp corresponds to a

wp [C] (f)
wip [C] (1)

interpretation of conditional expected values, i.e. we indeed normalize only
on the probability of not violating any observations and explicitly account
for diverging runs that do not violate any observations.

Because of the difficulties that arise when trying to understand condition-
ing within loops, some authors have the opinion that conditioning within
loops should be forbidden altogether. This, however, does not eradicate the
need to exercise great caution when combining loops and conditioning. Con-
sider for that the, again very unsubtle yet descriptive, program C’, given by

{x :=2}[12] {diverge} .

This program has exactly one diverging run, namely the one in which diverge
is executed. This run occurs with probability /2. As the program is observe—
free, the probability to not violate any observation is 1.

If we now for instance ask for the conditional expected value of x, given
that no observation is violated, we would thus expect this to be

EV of x in non-diverging run EV of x in diverging run
3 2 + 3 0 _ l _ 1
1 1
——

Probability of no observation violation

Indeed, if we use the cwp transformer and calculate cwp [C’] (Xfl), this yields
cwp [C'] (%) = %@(%@%) =17

Since the program C’ is observe-free, we would expect that the result from
our cwp transformer is backward—compatible to what the standard wp trans-
former would yield. And indeed, the interpretation of 1/7, namely as 11 =1,
agrees with wp [C'] (x) = 1.

210

CONDITIONING

8.3.2 The Nori Interpretation

While we just saw that our cwp transformer gives a reasonable, expected,
and backward—compatible result when combining conditioning and loops,
previous attempts to give semantics to probabilistic programs would have
yielded a different result. The semantics of Nori et al. [Nor+14] follows a

wp [C] (f)
wp [C] (1)

interpretation (in fact: Nori et al. define the semantics of a probabilistic pro-
gram with conditioning to be the fraction above), i.e. Nori et al. normalize
on the probability of not violating any observations and successfully terminat-
ing. We call this the Nori interpretation of conditional expected values. Put
in terms of the three sets A, B, and ¢ we described in Section 8.1, the Nori
interpretation expresses the quantity

EV(f-[-8]) EV(f-[al+f-[c]) EV(f-[a]

Pr(-Na) Pr((A uc)N A) Pr(a)

’

which as we can see does not renormalize to the event that no observation
was violated, but instead to the potentially less likely event that the pro-
gram terminates successfully.

For the above-mentioned program C’, given by

{x :=2}[2]{diverge},

the Nori interpretation would yield

EV of x in non-diverging run EV of x in diverging run
1 — 1 —
7 2 + 7 0 _ 1 _)
1 B 1 h
2 2
~——

Probability of no observation violation and termination

as the conditional expected value of x. The semantics of Nori et al. is hence
not backward-compatible on observe—free programs, since

wp[C](x) =1 = 2.

Instead, the Nori semantics is only conditionally backward—compatible, namely
whenever the program in question terminates almost—surely. We believe that
this is undesirable. If we believe that conditioning should renormalize to all
runs that do not violate any observation, the cwp interpretation should be
preferred over the Nori interpretation.

8.3 CONDITIONING AND LOOPS

Another undesirable fact is that the Nori interpretation impedes mono-
tonic reasoning: Overapproximating wp [C] (f)fwp [c] (1) calls for overapproxi-
mating wp [C] (f) and underapproximating wp [C] (1). The latter, however,
is difficult, as we have extensively discussed through Sections 5.2.3 to 5.2.6.

Overapproximating the result of the cwp interpretation, on the other hand,
is easier: Overapproximating wp[C] (f)wp[c] (1) calls for overapproximating
wp [C] (f) and underapproximating wlp [C] (1), both of which can be done
by means of simple invariant-based techniques, see Sections 5.2.1 and 5.2.2.
We discuss this further in Section 8.6.

As another descriptive example, consider the program diverge. We have

cwp [diverge] (Iﬁ) =0/7.

The 0 comes from the fact that the program diverges and hence cannot pro-
duce any mass contributing to an expected value of f evaluated in a final
state. The 1 on the other hand also comes from the fact that diverge is a
shorthand for while(true){skip}, which is observe—free and thus the prob-
ability to not violate any observation while executing this loop is 1. Our
approach thus yields a %i—interpretation for the conditional expected value
of f, given that no observation is violated, whereas the Nori interpretation
would leave us with the problematic ,0/0“ case. Indeed, Nori et al. would in
this case define the semantics of diverge to be the undefined fraction 0/.

8.3.3 The cwlp Interpretation for Partial Correctness

Besides total correctness, we also address partial correctness by means of
the cwlp transformer. Nori et al. do not consider this. Again revisiting the
program diverge, our cwlp transformer yields

cwlp [diverge] ([i]ﬁ) =17.

The first 1 now comes from the fact that the probability that diverge either
yestablishes F“ or diverges while at the same time not violating any obser-
vations is 1. The second 1 comes just from the probability to not violate
any observation. Our approach thus yields a !/i-interpretation for the con-
ditional probability to either diverge or terminate successfully and establish
event F, given that no observation is violated.

Again, in order to understand how the cwlp transformer behaves for loops
on a more abstract level, let us revisit our definition of the cwlp transformer
for loops and our definition of the order 4. By closer inspection, we can
notice that the fixed point iteration of the cwlp—characteristic function gives

cwlp [Py wl
@O P (VT) = (%O ety .

211

212

CONDITIONING

Thus, the first component of the chain

17 < cwlp(D lﬁ < cwlpq)2 lﬁ <
L2 o f/g() B f/§(T)

gives the descending chain

Lz 00,1) = JE0r1) = JBei(1) = -

Z (p,C) Z (0P Z (0%

and the second component gives the descending chain

wlp wlp 1.2 wlp 1.3
Lz, o@,(1) = O (1) = 5P (1) = -

When taking the limits of the latter two chains, we see that our definition of
cwlp corresponds to a

wlp [C] (f)
wip [C] (1)

interpretation of conditional weakest liberal preexpectations, i.e. we indeed
consider the probability to either diverge or establish some event and nor-
malize only on the probability of not violating any observations, explicitly
accounting for diverging runs that do not violate any observations.

8.3.4 A Fourth Interpretation

So far, we have seen three possibilities to combine wp and wlp into a frac-
tion. We have also studied under which circumstances they make sense and
how the quantity they express should be interpreted. There exists a fourth
possibility to combine wp and wlp into a fraction, namely

wip [C] ()

wp [C] (1)
We have not studied that possibility yet — and for a good reason: This fourth
interpretation is not meaningful. As for an illustration, consider the program

{skip}[l/2] {diverge} .

If we now ask, for instance, for the conditional probability of diverging or
terminating, given that the program does not violate any observations and
terminates, the above interpretation would yield

Prob. of div. or term. in non—div. run Prob. of div. or term. in div. run
2 1 + 2 1 _ L _)
1 a 1 B !
2 2
~——

Probability of no observation violation and termination

8.4 CONDITIONING AND NONDETERMINISM

The cwp interpretation: The Nori interpretation:
wp [C] (f) wp [C] (f)
wip [C] (1) wp [C] (1)

(for general total correctness) (for total correctness, only for
a.—s. terminating programs)

The cwlp interpretation: The fourth interpretation:
wip [C] (f) wlp [C] (f)
wlp [C] (1) wp [C] (1)

(for partial correctness) (nonsensical, can

yield probabilities > 1)

Figure 8.3: The four possibilities of combining wp and wlp in order to make up a
conditional expected value of f after executing program C.

which is a ,,probability” larger than 1 and hence nonsensical.
Put in terms of the three sets a, B, and c we described in Section 8.1, the
fourth interpretation expresses the quantity

Pr((FUc)n-s) _ Pr(Fuc)
Pr(=BNa) ~ Pr(a)

s

which does not describe a conditional probability.

An overview of all possible interpretations can be found in Figure 8.3. To
summarize, all four interpretations agree on almost-surely terminating pro-
grams. This, however, is hard to ask from a programmer, as the halting prob-
lem is already undecidable for deterministic programs. For non-almost—
surely terminating programs, the Nori interpretation is not backward-com-
patible to the standard wp calculus for observe—free programs, which is ar-
guably undesirable. The fourth interpretation is not at all meaningful.

The cwp and the cwlp interpretation are suitable for reasoning about total
and partial correctness of probabilistic programs with conditioning, regard-
less of the program’s termination behavior. Moreover, the two transformers
are backward-compatible with wp and wlp, respectively.

84 CONDITIONING AND NONDETERMINISM

ONDETERMINISM is a powerful means for underspecifying program be-
havior. By a nondeterministic choice, we can state that a program should
behave either in this or that way, but definitely in one of the two specified

213

214

CONDITIONING

ways. However, while underspecified program behavior might be good for
modeling purposes, a nondeterministic program cannot be executed, i.e. it
does not describe a single algorithm but rather a set of algorithms.

Probabilistic programs, as understood in this section, describe algorithmic
procedures that construct complex probability distributions. Nondetermin-
ism does not quite fit into this picture. A probabilistic program with non-
determinism would give a set of probability distributions and may thus not
be very relevant for modeling probability distributions. In fact, Gordon et
al. state that ,the use of nondeterminism as a modeling tool for representing
unknown quantities in probabilistic programs is not common” [Gor+14].

Combining nondeterministic and probabilistic behavior is well-known to
be problematic [Pan01; MOW04; Mis06; VWO06; AR08; CS09; Bai+14]. For
probabilistic programs with observations, we add yet another problem.

There are (at least) two ways to interpret nondeterministic choice: As an
adversary or as alternative implementations. If we take upon the latter point
of view, we take the stance that a nondeterministic choice {C;} O {C;,} can
be replaced by either C; or C,, which is a standard assumption in program
refinement [BW89]. Under this mild assumption, and even for loop—free
programs, we can show that we cannot define a demonic expectation trans-
former by induction on the program structure, i.e. we cannot simply add a line
to Table 8.1 in order to have a cwp rule for nondeterministic choice. We will
not treat the proof of this result in this thesis as it is somewhat technical, but
refer to [Jan+15a] and [Olm+18] for a detailed treatment.

85 HEALTHINESS CONDITIONS

usr like the classical expectation transformers we studied in Chapter 4,
]conditional expectation transformers too enjoy several properties like con-
tinuity, monotonicity, etc. (often called healthiness conditions, cf. Section 4.2).
In the following, we present some of those.

8.5.1 Continuity

Continuity is perhaps one of the most fundamental properties that condi-
tional expectation transformers enjoy because it ensures for instance well-
definedness of the conditional expectation transformer semantics of while
loops. A conditional expectation transformer 7 : C — C is called <—continu-
ous iff for any chain of expectations S = {sy < s; <5, g...} C C we have

T (supg, S) = sup,7(S);

see Definition A.2 for more details. <—continuity is defined analogously.
Both conditional expectation transformers we have presented in this chap-
ter are continuous with respect to their associated partial order.

8.5 HEALTHINESS CONDITIONS

TueoreMm 8.7 (Continuity of cwp and cwlp [Olm+138]):
Let C be a cpGCL program. Then:

A. cwp [C] is S—continuous.

B. cwlp [C] is «—continuous.

Proof. By induction on the structure of C.

The importance of continuity for well-defined semantics of loops can be
sketched as follows: For any loop—free program C, continuity of cwp [C] en-
sures that the characteristic function of the loop while(¢){C} (that has C as
its loop body) is also continuous. This ensures by the Kleene fixed point the-
orem (Theorem A.5) that the characteristic function has a least fixed point,
which in turn ensures that cwp [while (@){C}] is well-defined. The fact that
the transformer cwp [while(¢){C}] itself is also continuous ensures well-
defined expectation transformer semantics of nested loops.

8.5.2 Decoupling

In Section 8.3 have already hinted at the fact that cwp and cwlp can in some
way be decoupled into wp and wlp. If we define

wp [observe ()] (f

(/) = lol-f
wlp [observe (@)] (g) = [¢@

l-g,
then we can make this statement more formal:

TueoreMm 8.8 (Decoupling of cwp and cwlp [Jan+15a; Olm+138]):
Let C € pGCL. Then:

A. cwp [C] (I/g)
B. cwlp [C] (I/g)

wp [C] (f) /wip [C] (g)
wip [CT () /wip [C] (g)

Proof. By induction on the structure of C. Q.E.D.

8.5.3 Strictness

The strictness property of weakest preexpectation transformers states that
wp [C](0) = 0;

see Theorem 4.14 a. More abstractly, the least element 0 in the complete
lattice (E, <) is mapped to itself. Dually, the costrictness property of weakest
liberal preexpectation transformers states that

wip [C] (1) = 1;

215

216

CONDITIONING

see Theorem 4.14 B. Again put more abstractly, the greatest element 1 in the
complete lattice ([E<;, <) is mapped to itself.

Conditional expectation transformers are strict and costrict only in a more
concrete sense. The following theorem holds:

Tueorem 8.9 ((Co)strictness of cwp and cwlp [Jan+15a; Olm+18]):
Let C € pGCL. Then:

A. cwp [C] (Ofl) = 0/g, where g = wlp [C] (1). Thus, the interpreta-
tion of cwp [C] (M) in any state o, i.e. the fraction %o), is either
0 or undefined.

B. cwlp [C] (M) = &/5, where g = wip [C] (1). Thus, the interpre-
tation of cwlp [C] (1f1) in any state o, i.e. the fraction £(0)/s(0), is
either 1 or undefined.

Proof. For proving the strictness of cwp in the sense of Theorem 8.9 a.,
consider the following:

cwp [C] (0/7)
= wp [C1(0) /wip [C] (1) (by decoupling, Theorem 8.8 a.)

For proving the costrictness of cwlp in the sense of Theorem 8.9 B., con-
sider the following:

cwlp [C] (M)

= wip [CT (1) /wip [C] (1) (by decoupling, Theorem 8.8 B.)

The above version of strictness tells us that the conditional expected value
of the constantly 0 random variable after executing a program C, given that
no observation is violated is either 0, or the probability to not valuate any
observations is 0. Costrictness on the other hand tells us that the conditional
probability to either terminate or not, given that no observation is violated
is either 1, or the probability to not valuate any observations is 0.

Notice that cwp is not strict in the more abstract sense we have mentioned
in the beginning, i.e. the least element in the underlying partial order is
mapped to itself: In particular, the transformer cwp [observe (¢)] is not
strict in that sense, since

cwp [observe (¢)] (M) = [p]- 0/T = 0/[p] = O/T.

Dually, the transformer cwlp is not costrict in the more abstract sense, i.e. the
greatest element in the underlying partial order is mapped to itself: Again,
the transformer cwlp Jobserve ()] is not costrict in that sense, since

cwlp [observe (@)] (M) = [p]- L1 = [@l/[p] = L/T.

8.5 HEALTHINESS CONDITIONS

8.5.4 Conservativity

A main advantage of the cwp interpretation of conditional weakest preexpec-
tations (see Section 8.3.1) over the Nori interpretation (see Section 8.3.2) is
that the cwp interpretation is backward compatible with classical weakest
preexpectations (see Section 4.1.1) for programs that do not contain any ob-
servations. Dually, the cwlp interpretation (see Section 8.3.3) is backward
compatible with classical weakest liberal preexpectations (see Section 4.1.2).
Formally, we can state this as follows:

Tueorem 8.10 (Conservativity of cwp and cwlp [Jan+15a; Olm+18]):
Let C € cpGCL be a an observe—free program. Then:

A. cwp [C] (Iﬁ) = f/¢’ implies L = wp[C] (f).
B. cwlp [C] (fﬁ) = f/¢ implies 7 = wip [CT ()

Proof. For the proof of Theorem 8.10 A. consider

cwp €T (£/1)
= wp [C] (f) wlp [C] (1) (by decoupling, Theorem 8.8 a.)
= wp[Cl(f)/7 (by costrictness, Theorem 4.14 B.)

and

Wl wppep).

For the proof of Theorem 8.10 B. consider

cwip [C] (£/7)
= wip [C] (f)/wip [C] (1) (by decoupling, Theorem 8.8 B.)
= wip [C] (f)/7 (by costrictness, Theorem 4.14 B.)

and

wip [C] (f)
1

Note that conservativity holds for the Nori interpretation only if the program
C terminates almost-surely, which can be nontrivial to assert (see Chapter 6).

= wlp [C] (f) . Q.E.D.

8.5.5 Feasibility

The property that Mclver & Morgan call feasibility states that preexpectations
cannot become ,,too large” [MMO5]. The notion of feasibility makes sense for

217

218

CONDITIONING

bounded expectations f € [Ecg;, only (cf. Section 8.5.5). A similar property
holds for conditional expectations, too.

A first property we observe for that is that — informally speaking — when-
ever a conditional postexpectation is not of the form 40, for a > 0, then the
corresponding preexpectation is also not of that form. This means that if a
conditional preexpectation results in a division by zero, it is always of the
form ,zero divided by zero“. Formally, we have the following lemma:

LemmMma 8.11:
Let C € pGCL. Then

YoeX:g(o)=0 = f(0)=0 and cwp[[C]](fJg) = /g
implies VYoeX:¢'(0)=0 = f(0)=

Proof. By induction on the structure of C.

The second property is more closely related to the notion of feasibility as
studied in Section 4.2.3. Informally speaking, it states that if the interpreta-
tion f/¢ of a conditional postexpectation f /g is bounded by a constant b then
the interpretation of the corresponding preexpectation is also bounded by b.
Formally, we have the following theorem:

Tueorem 8.12 (Feasibility of cwp):
Let C € pGCL. Then

VoeX: g(o)>0 = La;sb and cwp[[C]](f/g) = /g

g(o
f'(o)
g'(0) <t

implies VoeX:¢g'(o)>0 =

Proof. By induction on the structure of C. The only case that is not straight-
forward is the case for probabilistic choice. Let

cwp [C] (I/g) = f'/¢ and cwp[C,] ([/g) = [/

By the induction hypothesis, we have

YVoeX:¢g'(o0)>0 =

and YoeX:¢"(0)>0 =

implies YVoeX:¢g'(0)>0 = f ¢'(0)-b (1)
and VYoeX: g¢"(o) f 0)<g¢"(0)-b.

8.5 HEALTHINESS CONDITIONS

For the induction step for probabilistic choice we have

cwp [{C1} [P (C2)] (/%)
= p-cwp [Ci] (f/§)+ (1-p)-cwp [C] (I/E)

We now fix a state o in which we interpret the above conditional expectation.
If ¢’(0) = 0, then by Lemma 8.11 we also have f’(0) = 0. In this case, we can
immediately appeal to the induction hypothesis for C, as we then have

p-fllo)+(1=p)-f"(e) _ p-0+(1-p)-f"(0)
p-g(o)+(1-p)-g”(c) p-0+(1-p)-g”(0)

< (by IL.H. on C,)

The reasoning is analogous if either ¢”(0)=0,p=0,0orp=1.
In the remaining cases we reason as follows:

p f(0>+(1—p)'f”(cr) Ly
g'(o)+(1-p)-g”(o) —
iff p- f(0)+(1—p)-f”(cr) < p-g0)b+(1-p)-g’(0)-b
implied by p-f'(o)+(1-p)-f"(0) < p-f'(o)+(1-p)-f"(0) (by1)

iff 0<0

8.5.6 Monotonicity

Monotonicity is another fundamental property of conditional expectation
transformers. A conditional expectation transformer 7 is called <—monoto-
nic iff for any two conditional expectations f/g, f'/¢” € C, we have that

f/g 2 f'/¢ implies T(I/g) g T(L’/?);

see Definition A.3 for more details. €«-monotonicity is defined analogously.
All conditional expectation transformers we have presented are monotonic

with respect to their associated partial order:

TueoreMm 8.13 (Monotonicity of cwp and cwlp [Jan+15a; Olm+18]):
Let C € pGCL. Then:

1. cwp is <—monotonic.

219

220

CONDITIONING

2. cwlp is «—=monotonic.

Proof. Every continuous function is monotonic, see Theorem A.4.

Monotonicity is not just a healthiness condition but plays an important role
in reasoning about programs, namely for compositional reasoning: Imagine
two programs C; and C, and a postexpectation f such that

cwp [C] (fﬁ) < cwp [C] (fﬁ) :

Then monotonicity ensures that if we put the components C; and C, into
some context C3 , then we can be certain that

cwp [Cs Cq] (fﬁ) < cwp [C5 Gy (M) ’

since cwp [C3 C;] (fjg) =cwp [C] (cwp [Ci] (Iﬁ)), for i € {1, 2}. Note that
by construction of < this implies that the conditional expected value of f,
given that no observations fail, is higher after executing C§ C, than it is after
executing C§ C;. 9<-monotonicity of cwlp — unfortunately — does not come
with such a meaningful interpretation, see Section 8.2.2.

8.5.7 Linearity

Linearity of expectation transformers plays a prominent role in Mclver &
Morgan’s studies on the classical expectation transformer wp. Our cwp trans-
former is not linear in the sense that

cwp [C] (a@f@@ﬂ/?) # a®cwp [C] ([/?)Gacwp [C] (i//?) §

However, by decoupling of cwp and linearity of wp, we can see that cwp is
linear in the interpretation of its result, i.e. we have [Jan+15a; Olm+18]:

cwp [[C]] ((l-f+g/g/)
wp [C] (@ f +8)/wip [C] (£ (by decoupling, Theorem 8.8 a.)

a-wp [C] (f) +wp [C](&)/wip [C] () -
(by linearity of wp, Theorem 4.21 c.)

8.6 PROOF RULES FORLOOPS

s for weakest preexpectations and expected runtimes, reasoning about

loops is a difficult tasks in probabilistic program verification. We have
seen in Chapter 5, how invariants can help with this sort of reasoning. In
particular, we saw that invariants precisely capture the principles of induc-
tion and coinduction.

8.6 PROOF RULES FOR LOOPS

In this section, we will show how we can reason about conditional preex-
pectations of loops by means of conditional invariants, which basically cap-
ture the same notion of invariance as for weakest preexpectations. We will
present inductive methods for proving upper bounds on conditional weakest
preexpectations of loops, w-rules for proving lower bounds, and a method
for refining obtained bounds.

8.6.1 Invariants

The concept of invariants that we employ for the proof rules we present in
this section is the same as for weakest preexpectation reasoning, see Sec-
tion 5.1. The notion of conditional invariants is defined as follows:

DeriniTION 8.14 (Conditional Invariants [Olm+18]):

Let © be the cwp—characteristic function of while (¢){C} with respect
to postexpectation f /g € C. Then I/Ff € C is called a conditional invari-
ant ofwhile (¢@){C} with respect to conditional postexpectation f /g, iff

o(LVH) < V.

8.6.2 Induction for Conditional Weakest Preexpectations

Since conditional weakest preexpectations are defined as least fixed points of
continuous functions on complete partial orders, we can make use of the in-
duction principle that we discussed in Section 5.2.1 in order to reason about
upper bounds on conditional expected values. Formally, the induction prin-
ciple states that if (D, C) is a complete partial order and ®: D — D is a con-
tinuous self-map on D. Then

VdeD: @(d) Cd implies Ufpd C d.

Applied to the cwp calculus, the induction principle immediately gives us
the following proof rule:

TueoreMm 8.15 (Induction for Upper Bounds on cwp [Olm+18]):
Let I/H € C be a conditional superinvariant of while(¢){C} with re-
spect to postexpectation f /g (see Definition 8.14). Then

cwp [while(¢@){C}] (f/g) 1 I’g.

Proof. Thisis an instance of Park’s Lemma (see Lemma A.6): Simply choose
complete partial order (C, <) and continuous function (pcgcp fre

It is worthwhile to repeat here that the conclusion of Theorem 8.15, namely

cwp [while(¢@){C}] (j/g) < g,

221

222

CONDITIONING

expectations, i.e. I/ approximates cwp [while(@){C}] (f/g) from above.
Also the interpretation 1/H as an actual quotient approximates the interpre-
tation of cwp [while(¢@){C}] (f/g) as a quotient from above, i.e.

is not only meaningful in the sense of the partial order < on conditional

(L) @ UVE and f/g = cwp[while(9){C}](f/3)

flo) _ Io)
go) = Ho)’

implies

for all o with g’(0) > 0. This demonstrates that conditional invariants are a
useful notion for overapproximating the actual conditional expected value.

8.6.3 Coinduction for Conditional Weakest Liberal Preexpectations

Analogously to the coinduction rule for classical weakest liberal preexpecta-
tions (see Section 5.2.2), there is in theory a coinduction rule for obtaining
lower bounds on conditional weakest liberal preexpectations since those are
defined as greatest fixed points. However, the lower bound obtained from
this theoretically existent coinduction rule would be a lower bound with re-
spect to the partial order €. Unfortunately, this partial order does not give
us an lower bound on the actual conditional probability that we seek for (see
Section 8.2.2). We will thus not discuss the coinduction rule for cwlp any
further as it is of little practical use.

8.6.4 w-Rules

As is the case for weakest preexpectations or expected runtimes, reasoning
about lower bounds of conditional weakest preexpectations is difficult since
no inductive or coinductive proof principle is available. For weakest preex-
pectation reasoning and expected runtimes, we thus resorted to so—called w—
rules which employ w-invariants (see Section 5.2.4 and Section 7.6.5). The
same principle is applicable to conditional weakest preexpectations:

TueoreMm 8.16 (Lower Bounds on cwp from w-Invariants [Kam+16]):
Let @ be the cwp—characteristic function of while(¢){C} with respect
to postexpectation f,5 and let

Iyay, € h/m; < L/, 2 ..,

with lo/g, = 97 be a monotonically increasing sequence of conditional
expectations such that for all n e N

Lit/Hyyy 2 ©(/m,) -

8.6 PROOF RULES FOR LOOPS

Then

sup Iy/H, < cwp [while(@){C)](f/g)-

nelN

Proof. Analogous to the proof of Theorem 5.9 a. Q.E.D.

Just like for weakest preexpectations or expected runtimes, it is necessary to
find the limit of such an w-invariant in order to actually gain some insights
from applying Theorem 7.21. That basically just shifts to problem of obtain-
ing bounds into the realm of real analysis. For further remarks on the —
in my personal opinion — poor usability and usefulness and on the expend-
ability of w-rules for upper bounds, see the remarks on w-rules for weakest
preexpectation reasoning in Section 5.2.4.

8.6.5 Bound Refinement

We saw in Section 5.2.7 that once we have obtained by some means some
bound — be it upper or lower — on a preexpectation of a loop, we have a
chance of refining and thereby tightening this bound fairly easily. Since this
technique is rooted in fixed point theory and conditional weakest preexpec-
tations of loops are defined as least fixed points, the same technique can be
applied to cwp:

Tueorem 8.17 (Bound Refinement for cwp):

Let @ be the cwp—characteristic function of while(¢){C} with respect
to postexpectation f,g. Moreover, let /g be an upper bound on the
preexpectation cwp [while (¢){C}] (ff) such that ®(L) < I'g.

Then ®(1/7) is also an upper bound on cwp [while(¢@){C}] (f/g)
Moreover, whenever ®(L 1) # L', then O (1) is an even tighter upper
bound on cwp [while(@){C}] () than L.

Dually, if 15 is a lower bound, such that L'y < O(LF), then D(Lg) is
also a lower bound; and whenever ®(1/g) # 1/, then ®(1/g) is an even
tighter lower bound than 1/ g.

Proof. Analogous to the proof of Theorem 5.15. Q.E.D.

The particular bound refinement of Theorem 8.17 can of course be contin-
ued ad infinitum: For instance, if 1/ is an upper bound on the preexpecta-
tion cwp [while(@){C}] (f) with ®(L) < /g, then so is (L 7) but also
®?(1/37), ®3(17), and so on. In fact, for increasing 1, the sequence ®"(L/7)
is decreasing and converges to an upper bound on cwp [while(¢@){C}] (f/g)
that is below (or equal to) L . For more details, see Section 5.2.7.

223

224

CONDITIONING

87 FUTURE AND RELATED WORK

sSERTIONS from classical programming languages correspond to the tests
Ain Kozen’s probabilistic propositional dynamic logic [Koz85] and are
probably the most closely related concept to observations in probabilistic
programming. Both observe (@) and assert (¢) block all program execu-
tions violating ¢. However, observe (¢) normalizes the unblocked execu-
tions with respect to the total probability mass of all non-violating execu-
tions. assert (@), on the other hand, does not renormalize, yielding a sub-
distribution with a total probability mass of possibly less than one.

A different — more quantitative — interpretation of assertions in prob-
abilistic programming is studied by Sampson ef al. [Sam+14]. There, asser-
tions are accompanied by a confidence value ¢ and a probability value p. The
meaning of such a quantitative assertion is that with confidence c, the asser-
tion holds with probability (at least) p. Assertions in probabilistic program-
ming have also been considered by Chakarov & Sankaranarayanan [CS13].

Beyond assertions, Bichsel et al. have extended our work by considering
exceptions [BGV18]. These result in error states that are neither due to ob-
servation violation nor nontermination but rather due to other undesired
program behavior, which can explicitly be witnessed. Furthermore, Bichsel
et al. extend pGCL by a score statement, which allows to increase or decrease
the probability of specific program executions. The score statement can be
regarded as a generalization of the observe statement and in fact renders
observe statements obsolete. In the following, we list other related work,
sorted by topic, and point to directions for future work.

Measure vs. expectation transformers. Giving semantics to probabilistic
programs can be done either in terms of forward moving measure transform-
ers or in terms of backward moving expectation transformers. One of the
first measure transformer semantics for probabilistic programs with condi-
tioning was given by Borgstrom et al. [Bor+11]. We, on the other hand, have
presented in this chapter an expectation transformer semantics. A semantics
similar to ours has been provided by Nori et al. [Nor+14].

Nontermination. The main difference between our work and the work of
Nori et al. is that our expectation transformers explicitly account for nonter-
minating program behavior, whereas Nori et al. normalize only to terminat-
ing runs. We presented a thorough comparison in Section 8.3.

Several works on probabilistic programs assume almost-sure or even cer-
tain termination, see e.g. [Bor+11; CMR13; Hur+14; Sam+14]. For some
applications, restricting to almost—sure termination is understandable. In
general, this restriction should not be made: For instance, Icard argues that
cognitive models based on probabilistic programs should not be restricted
to almost—surely terminating programs, for both theoretical and practical rea-

8.7 FUTURE AND RELATED WORK

sons [Ical7]. Therefore, semantics of a general-purpose probabilistic pro-
gramming language with conditioning should account for nontermination.

Computability. Inference for probabilistic programs is obviously undecid-
able, once we consider programs with loops (on the degree of undecidability,
see Part III). For probabilistic programs with conditioning, the situation is
even more subtle: Ackerman et al. have shown that one can construct two
computable random variables X and Y, such that the conditional probabil-
ity Pr(X | Y) is not computable [AFR11]. In other words: The operation of
conditioning itself is what already introduces noncomputability.

In light of the above results, probabilistic inference in the presence of con-
ditioning is arguably a difficult task, which renders overapproximations us-
ing our invariant-based rules even more useful.

Nondeterminism. In Section 8.4, we have sketched that we cannot come
up with a conditional expectation transformer for nondeterministic programs
that is constructed by induction on the structure of the program (for more
details, see [Jan+15a; Olm+18]). Intuitively, an inductive expectation trans-
former can only look into the future (from a program execution time line
point of view), but not into the past. For conditional expected values, how-
ever, looking into the past appears to be necessary, as, amongst many others,
Chen & Sanders noticed [CS09]:

[S]tudies have revealed an unsuspected subtlety in the interac-
tion between nondeterministic and probabilistic choices that can
be summarised: the demon resolving the nondeterministic choice
has memory of previous state changes, whilst the probabilistic
choice is made spontaneously.

This insight is also related to the fact that for conditional probabilities in
Markov decision processes, memoryless schedulers (schedulers that on ev-
ery visit to a state always take the same decision) are insufficient. Instead,
history—dependent schedulers are needed, see [AR08; Bai+14].

Program transformation and slicing. Most program transformations for
probabilistic programs, such as slicing [Hur+14] aim to accelerate the Markov
Chain Monte Carlo analysis. In [Jan+15a] and [Olm+18], the two papers this
chapter is based upon, two program transformations that eliminate and one
that introduces observe statements are presented:

The first transformation ,hoists“ the observe statements upwards through
the program while updating the probabilistic choices. This technique is sim-
ilar in spirit to [Nor+14]. The result of the hoisting process is a semantically
equivalent observe—free program.

The second transformation basically recreates rejection sampling: It intro-
duces one outer while loop around the original program. This while loop

225

226

CONDITIONING

executes the original program and sets a flag if an observation is violated
during execution. If an observation has been violated, the outer loop reruns
the original program. This process is repeated until no observation has been
violated. The idea to rerun a program until all observations are passed is also
used by [Bai+14] to automate the verification of conditioned temporal logic
formulas in Markov models.

The second program transformation has been successfully applied in rea-
soning about expected sampling times of Bayesian networks [Bat+18b]. It
was found that for certain large networks, obtaining a single sample can take
millions of years in expectation using rejection sampling. Since rejection sam-
pling is the de facto semantics for inference on most practical probabilistic
programming languages, this connection shows that our cwp semantics is a
real alternative to rejection sampling.

A third transformation is to replace an independent and identically dis-
tributed loop by an observe statement, i.e. in principle reversing the second
transformation. This has strong resemblances with arguments made in text-
books on randomized algorithms, see e.g., [Sho09, Theorem 9.3.(iii)].

Random assignments from continuous distributions. The measure trans-
former semantics of Borgstrom et al. [Bor+11] includes sampling from con-
tinuous distributions like Gaussians, etc., and also the consequential pos-
sibility of conditioning on zero—probability events. However, Borgstrom et
al. do not consider unbounded loops or unbounded recursion. We believe
it would be a promising direction for future work to develop an expecta-
tion transformer semantics that can cope with both sampling from continu-
ous distributions and possible nontermination. Such an endeavor will most
likely involve in some way the disintegration theorem [Wike]|. This theo-
rem is already subject to intensive research on semantics of probabilistic
programs [SR17; CJ17; Koz18].

Conditional expected runtimes. A second direction for future work we
propose is to marry the ert calculus from Chapter 7 for reasoning about ex-
pected runtimes and the cwp calculus from this chapter in order to obtain
a calculus for reasoning about conditional expected runtimes. This would en-
able reasoning about expected runtimes of randomized algorithms restricted
to certain situations of interest.

Questions like these can lead to extremely counterintuitive situations. As
a simple example, consider how often in expectation we need to throw a die
in order to get a 6, given that all throws yield an even number. Surprisingly,
the answer is 1.5, which is twice as fast as throwing a 3-sided die with num-
bers 2, 4, and 6 [Jin18].

MIXED-SIGN EXPECTATIONS

probabilistic programs, including all techniques presented so far in

this thesis, make an important — though restrictive — assumption:
the postexpectations, i.e. the random variables whose expected value we are
interested in, map program states to the non—negative reals, cf. Chapter 5 and
the various references therein. In other words, those approaches cannot han-
dle mixed—sign postexpectations, i.e. expectations that can potentially map
into both the positive and negative reals. Mclver & Morgan even explicitly
forbid mixed-sign expectations altogether and argue [MMOS5, pp. 70]:

T HE vast majority of expectation-based techniques for reasoning about

For mixed—sign or unbounded expectations |...] well-definedness
is not assured: such cases must be treated individually. [...] That
is, although [a program] prog itself may be well defined, the [weak-
est] preexpectation wp.prog.(—2)" is not — and that is a good rea-
son for avoiding mixed signs in general.

A workaround is to assume bounded negative values [MMO1], but this is not
always possible and thus provides no general solution.

At first sight, avoiding mixed-sign expectations looks like a minor tech-
nical restriction. In practice it is not: For instance, program variables may
become negative during program execution, having a negative impact of f’s
value. As another example, analyzing the efficiency of data structures such
as randomized splay trees [AK02] is typically done using amortized anal-
ysis. Such an analysis is similar to expected runtime analysis, but is con-
cerned with the cost averaged over a sequence of operations. In the account-
ing method and in the potential method in amortized analysis, a decrease in
potential (or credit) , pays for” particularly expensive operations whereas in-
creases model cheap operations. The amortized cost during the execution
of a probabilistic routine may thus become arbitrarily negative. Finally, we
mention that negative expectations or even negative probabilities have appli-
cations in quantum computing and finance [Dir42; Hau04; BM12].

Previously to [KK17b] and [KK17c], on which this chapter is based on,
expectation-based approaches could not handle the aforementioned scenar-
ios off-the—shelf. A workaround is to perform a Jordan decomposition of f into

f="r-"rf

where *f = max{f, 0} and “f = min{f, 0} are both non-negative expecta-
tions, and analyze *f and ~f individually using the classical wp calculus.

227

228

MIXED—SIGN EXPECTATIONS

This, however, can easily become quite involved, for example when trying to
reason about the expected value of x after execution of

c:=1g
while(c=1){

{c :=0}[12] {x := —x—sign(x)}
}.

In every iteration, a fair coin is flipped to decide whether to terminate the
loop or change the sign of x and increase its distance to 0, followed by a re-
cursive execution of the entire loop. Intuitively, this program computes a
variant of a geometric distribution on x where the sign alternates with in-
creasing absolute value of x. The expected value of x after execution of the
above program is given by

3 9

x sign(x)

A detailed comparison between tackling this analysis by the methods pre-
sented in this chapter and a Jordan-decomposition-based approach is pro-
vided in [KK17c, Appendix B]. To summarize the comparison: using Jordan—
decomposition takes considerably more effort.

Despite the existence of a mathematical theory of signed random variables,
there are good reasons why they are avoided in current expectation-based
approaches: the notion of expectation needs to be revisited, and a complete
lattice on these adapted expectations — the de facto gold standard of giving
semantics to loops — is required. It turns out that this is not trivial.

In this chapter, we present a sound weakest preexpectation calculus for
probabilistic programs that directly acts on mixed—sign expectations f with-
out decomposing them. In particular, our semantics is always defined regard-
less of whether classical preexpectations [Koz85; MMO5; Heh11] exist or not. We
start by redefining what an expectation that can be negative in fact is. The
crux of our approach is to keep track of the integrability of the mixed-sign
random variable f by accompanying f with a non-negative (but possibly in-
finite) expectation g that bounds |f|. Notice that we do not require f to be
integrable as we want our semantics to be well-defined regardless of whether
f is integrable or not.

We will start by showing some instances that exemplify the issues that
would occur with mixed-sign postexpectations when naively letting the clas-
sical wp calculus act on mixed—sign expectations. Thereafter, we present a
new notion of mixed-sign expectations called integrability—witnessing expec-
tations, which incorporate the aforementioned bookkeeping for the integra-
bility of the expectations and then develop a weakest preexpectation calculus
which acts on integrability-witnessing expectations. As with other calculi

9.1 CONVERGENCE AND DEFINEDNESS ISSUES 229

presented in this thesis, we also present some basic properties of the new
calculus and rules for reasoning about loops.

In order not to clutter the presentation and in order to put a focus on the
issues that arise from mixing positive and negative values, we consider in
this entire chapter only tame programs, cf. Definition 3.1 E.

91 CONVERGENCE AND DEFINEDNESS ISSUES

HE classical expectation transformers we have studied in Chapter 4 act on

expectations that map program states to positive real numbers or infinity.
If we wish to reason about a postexpectation f that may also assume negative
values, the corresponding preexpectation wp [C] (f), i.e. the expected value
of f after termination of C, might not be defined for several reasons. In the
following, we present two problematic cases.

Indefinite divergence. As afirst example, we adopt a counterexample from
Mclver & Morgan [MMO05]: Consider the mixed-sign postexpectation

f=20
The expected value of f after executing the program Cg,,, given by

Coeo > x:=1%
c:=1g
while(c=1){
{c:=0}[V2]{x :=x+1}
b

on an arbitrary initial state is described by the series!

—2)i
S = Z(z—l) = —1+1-1+1-1+-,

w
i=1
which is indefinitely divergent, i.e. it neither converges to any real value nor
does it tend to +o0o or —oo. Furthermore, the summands of this series can be
reordered in such ways that the series tends to +co or that it tends to —co.
In any case, there exists no meaningful and in particular no unique expected
value of f and thus no classical weakest preexpectation wp [[Cgm] (f)-

If we were to naively apply the classical weakest preexpectation calculus

anyway, we would first obtain a preexpectation for the loop, by constructing
the corresponding wp-characteristic function

O(X) = [e=1]-(-2)" + [c:1]-%-(X[c/O]+X[x/x+1])

_9yi
1 Y pevals [[ng]] Y @)-flv) = X, %, for any initial state o, cf. Definition 3.8.

230 MIXED—SIGN EXPECTATIONS

and then doing fixed point iteration, i.e. iteratively apply ® to 0. In doing so,
we get the sequence

©(0) = [c#1]-(-2)"

@0) = [e=1]- (-2 + [e=1]. 2
(D?)(O) — [C?ﬁl]-(—2)x + [C=1]-((_22)x+(_zix+l)
@4(0) — [C¢ 1] '(—Z)x i [C _ 1] ((_22)x . (—Zierl . (_2)x+2)

and so on. Notice, that the sequence (QD”(O))HE]N is not monotonically in-
creasing, so iteratively applying ® to 0 does not yield an ascending chain. If
we nevertheless took the formal limit of this sequence—naively assuming it
exists—, we would get

DY(0) = [c=1]-(-2)* + [c:l]Z(_zzlz l .
i=0

Finally, we have to apply the wp transformers of the assignments preceding
the while loop to ®“(0), i.e. we have to calculate

wp [x:=15c:=1] (CD“’(O))

= wp[[x:=13CZ=1]][[C¢1]'(_2)X + [c=]Z 2i+1

= wp [x:=1] [[1 £1]-(=2)" + [1 = 1].2(—ZziJ)rj+z]
i=0

I
<
he]
=
=
1
—
. =
—_—
.ME
IR
He
L=
X
N~——

i=0
-1+1-1+1-1+---.

The above is not well-defined and hence we see that the standard weakest
preexpectation calculus cannot be applied to this example as is.

Non-absolute convergence. As a second example, consider the expected
value of the mixed-sign postexpectation

9.1 CONVERGENCE AND DEFINEDNESS ISSUES 231

after executing the above program C,,,, where we assume that x ranges over

the natural numbers. It is described by the series?
© ,
) (=2) 1 1 1 1 1
S’ = ——— = — ottt
Z421-(1'+1) 2 3 4 5 6

The partial sums of the above series converge to In(2) — 1.

Again, if we were to naively apply the classical weakest preexpectation
calculus, we would first obtain a preexpectation for the loop by constructing
the corresponding wp-characteristic function

W(X) = [c=1]- (x_f):

+ [c:1].%.(X[c/O]+X[x/x+1])

and then do fixed point iteration, i.e. iteratively apply W to 0. This yields

w(0) = [c¢1]-(x_+2);
w2(0) = [c¢1]-(x_+2); + [c:1].2((;2+));)
\PS(O) — [Ci].]' (_Z)X) (2)X+1)

(-2

pru R](Z(x D) 4(x+2)
(2)x (2)x+1 (_2)x+2)
2(

4 _ (_)X
H0) = [c=1]- + [c= 1](x+1) 4(x+2) B8(x+3)

and so on. Notice that, again, the sequence (\I/”(O))nelN is not monotonically
increasing, so iteratively applying W to 0 does not yield an ascending chain.
If we nevertheless take a formal limit of this sequence — again just assuming
it exists —, we get

W (0) = [c:tl]-% Fle=1]- Zm

Finally, we have to apply the wp transformers of the assignments preceding
the while loop to ©“(0), i.e. we have to calculate

wp[x:=1¢c:=1] (‘I’“’(O))

wp[[x::l;c::lﬂ[[c:tl]'(x_ + Zzlﬂ x+l+1)]

i=0

wp[[x::1]][[17t1]-(x_72)1 + [1:1]'2#)_”4_1)]

i=0

2 Y vevals [[ng]] o @)-f'v)=L<, 2511,24111) , for any initial state o, cf. Definition 3.8.

232

MIXED—SIGN EXPECTATIONS

wp [x :=1] [Zzl+i.(x+i+1)]

|
[}

which converges to In(2) - 1.

The reason that this example is nevertheless problematic is that even though
the series does converge, it does not converge absolutely. We say that a series

w w
Zai is absolutely convergent iff Z|ai| converges.
i=0 i=0

If a series is absolutely convergent, then the series is also unconditionally con-
vergent, meaning that the partial sums of the series converge to a unique
value regardless of how the summands are ordered. If, however, a series con-
verges non—absolutely, then the well-known Riemann Series Theorem states
that its summands can always be reordered in such a way that the series
converges to an arbitrary value or that it tends to +co or that it tends to —co.

Tuaeorem 9.1 (Riemann Series Theorem [Rie67]):
Let) ¥ ya; be a convergent but not absolutely convergent series, i.e.

lim a; =ceR and lim la;| = +oo.
n—-w n—-w 4

i:O l:O

Then for any r € RU {+co, —co} there exists a permutation of the natural
numbers t: N — N, such that

n
lim Apiiy = 7.
n—w £

=0

The behavior of non-absolutely convergent series under reordering is highly
undesirable in connection with the notion of expected values. This is be-
cause the outcomes of random events are only assigned a probability, and
in particular there exists no natural ordering of the summands in which
their weighted masses should be summed up to an expected value. Absolute
convergence is thus a desirable principle we want our preexpectations to be
based upon. Next, we investigate how to incorporate the notion of absolute
convergence into a new notion for mixed-sign expectations.

9.2 INTEGRABILITY-WITNESSING EXPECTATIONS

9.2 INTEGRABILITY-WITNESSING EXPECTATIONS

To overcome the issue of non-absolute convergence, in the field of prob-
ability theory the expected value J f dp of a mixed—sign random vari-
able f with respect to a probability distribution y is only defined if

[1rdn <o,

i.e. if the expected value of the absolute value of f with respect to distribu-
tion p is finite. In that case, f is called integrable. A good reason to demand
integrability is that, e.g. integrability of a discrete random variable f is equiv-
alent to absolute convergence of the series representing I f dp, which in
turn makes the series converge independently of the summand ordering.

Our goal is to formally incorporate the bookkeeping whether f is inte-
grable or not into the objects on which a mixed—sign weakest preexpectation
calculus acts in order to obtain a sound calculus for reasoning about mixed—
sign postexpectations. The very first step on our path to achieving this goal
is to alter our expectation space to allow for random variables to evaluate to
both positive and negative reals.

DeriniTION 9.2 (Mixed-sign Expectations [KK17b]):
The set of mixed—sign expectations, denoted [E,, is defined as

E. = (fIf: >R},

Notice that, in contrast to the definition of non—negative expectations (see
Definition 4.1 A.), we have dropped the co element from the codomain of an
expectation, since if a random variable is integrable, then its expected value
is finite anyway.

Next, we present our integrability bookkeeping approach. The idea is
to keep a pair of expectations f and g, denoted (f < g), where f is the
mixed-sign expectation we are actually interested in and g is an ordinary
non—negative expectation that bounds |f| and hence acts as an integrability
witness. We call such a pair an integrability-witnessing pair. Preexpectations
will later be computed for both components simultaneously.

DEeriniTION 9.3 (Integrability-witnessing Pairs [KK17b]):
The set of integrability-witnessing pairs, denoted P, is defined as

P={(fog|fek, geE Ifl<g}.

We define an addition of two integrability—witnessing pairs by

(fog+(f<g) =(f+f<g+5),

233

234

MIXED—SIGN EXPECTATIONS

and a multiplication by a mixed-sign expectation h € E, by
h-(f<g) = (h-f<ll-g).

A visual intuition on integrability—witnessing pairs is provided in Figure 9.1.
The X-axis represents the set of program states which is idealized to a lin-
ear representation. The Y-axis represents the extended real number line.
Roughly in the middle of the graphs, the bounding expectation g escapes
to co. f, does too, but we do not require the first components of integrability—
witnessing pairs to be bounded at those points where the second component
itself is unbounded, which is why (f, < g) is a valid integrability—witnessing
pair. On the other hand, (f; < g) is not a valid integrability—witnessing pair,
because g does not bound |f3| in the left part of the graph.

Next, we would like to define an order on integrability-witnessing pairs.
We would like to compare pairs componentwise, i.e. (f < g) should be less or
equal (f’ < ¢’)if both f < f” and g < ¢’. This would naturally lift the partial
order < on [E to IP. There is, however, a catch:

Recall that the intuition behind keeping a pair (f < g) is that whenever
the expected value of g is finite, then the expected value of |f], too, is finite
by monotonicity of the expected value operator. If the expected value of g is
not finite, however, then the expected value of f cannot be ensured to be de-
fined. (In particular, if g = |f|, then the expected value of f should definitely
be undefined.) Therefore, if g’ is the preexpectation of ¢ and for a state 0 € ¥
we have ¢g’(0) = oo, then we should not care about the preexpectation of f in
state o since definedness cannot be ensured for that state. This consideration
should be reflected in our order on IP: For states where the second compo-
nent evaluates to oo, the first component should not be compared. This gives
rise to the following definition:

DeriniTION 9.4 (The Quasiorder < on P [KK17b]):
A quasiorder on the set IP of integrability—witnessing pairs is given by

(fog) 2 (f/<g)
iffforalloc ey,

g'(0) < o0 implies f(o) < f'(0) and g(o) < ¢(0).

In contrast to a partial order which is reflexive, transitive and antisymmetric,
a quasiorder is not required to be antisymmetric. Notice that, indeed, < is
only a quasiorder since the two integrability—witnessing pairs (f < oo) and
(f” < oo) with f = f’ satisfy

(fQo) 2 (f/90) and (f Qo) = (f' Q)

~

but not (f Q o0) = (f’ < o0). This shows that < is not antisymmetric.

9.2 INTEGRABILITY-WITNESSING EXPECTATIONS 235

WA\

Figure 9.1: Two examples (top and middle) and one non—example (bottom) of inte-
grability—witnessing pairs. The X-axis is a ,linearized” visualization of
the program state space . The Y-axis is the extended real number line.

236

MIXED—SIGN EXPECTATIONS

On the other hand, two integrability-witnessing pairs (f < g)and (f' < ¢’),
for which f (o) # f’(0) holds only for those states in which g(o) = co = g’(0),
should be considered equivalent, even though they are not equal. This is
because for states o in which g(o) = co = ¢g’(0), the evaluations of f(o) and
f’(0) should be ignored since integrability is not ensured. Consequently, we
need a notion of equivalence of integrability—witnessing pairs:

DEeriniTION 9.5 (Integrability-witnessing Expectations [KK17b]):
The quasiorder < induces a canonical [A]94] equivalence relation =,
given by~ =<Nx,ie.

iffforalloc e,
g(o) # 00 or g'(0) # oo
implies f(o) = f'(0) and g(o) = ¢'(0).
We denote by { f < ¢§ the equivalence class of (f < g) under =, i.e.

(fog) ={(fag)er|(f2g)~(f29)},

and call such an equivalence class an integrability-witnessing expecta-
tion. We denote by IIE the set of integrability—witnessing expectations
(which is the set of all equivalence classes of =), i.e.

]:[IE/ = IP/:.

A visual intuition on integrability-witnessing expectations is provided in
Figure 9.2. Roughly in the middle of the graphs, say at point?® ¢,,, the bound-
ing expectation g escapes to oo, i.e. we have g(o,,) = . fi, f, and f; all
coincide almost everywhere, except for at point ¢,,. However, since g is un-
bounded at this point, the values of the first components are irrelevant and
hence (f; 9 g), (f, € g), and (f; < g) are all member of the same integrabili-
ty-witnessing expectation, i.e.

128 =1L=g =1/<¢}

As for a different intuition, { f < g§ can be thought of as a particular pair
(f < g) such that g maps each state either to a non—negative real number or
oo and f maps each state, that is not mapped to co by g, to a real number.*

Notice that we call the equivalence classes and not the pairs ,expectations”
as we consider IE and not PP to be a suitable domain to calculate preexpec-
tations on and thus we consider IIE to be the mixed-sign counterpart to [E.
Next, we define a partial order on the equivalence classes:

3 Recall that a ,,point” in this context is a state o € X.
4 This intuition was suggested by an anonymous reviewer of an earlier version of [KK17b] and,
personally, I found it quite well-put and insightful.

9.2 INTEGRABILITY-WITNESSING EXPECTATIONS 237

=85 =1L=8) = /328

Figure 9.2: Three different integrability—witnessing pairs. All three are in the same
equivalence class, i.e. the corresponding integrability—witnessing expecta-
tions are equal.

238

MIXED—SIGN EXPECTATIONS

DeriniTION 9.6 (The Partial Order on IIE [KK17b]):

The quasiorder < on the set IP of integrability—witnessing pairs induces
a canonical [A]J94] partial order 3 on the set IIE of integrability-wit-
nessing expectations by

(12865 2 1L28) iff (198) 3 (L98).
As for an intuitive interpretation of this partial order, we note that if

120 3 (L2

holds, then for all (ff @ g/) €{fi < &5, (f; < &) €2 < &S, and all states o
in which g,(0) < oo holds, we have

filo) = filo) < falo) = fi(0).

Thus if integrability in o is witnessed, the first components compare in o,
which is the comparison we are actually interested in.

The lattice (IE, g) is complete in the sense that every non—empty subset
S CIIE has a supremum given by

supS = (f <45, where

8(0) = sup{g(0) e RS | (fog)elf @g5es)

sup{f(o) eR|(f @g)e{f ©gf€S}, ifg(o)<oo,

5

flo)

0, otherwise.

An unfortunate fact about the lattice (IE, g) is that it has no least element. In
particular, even though the element

(00§

will play an important role in our later development, it is not a least element
of IIE since, for example

(00§ g (-1=<1§.

This fact prevents us from applying the Kleene Fixed Point Theorem (see
Theorem A.5) — as we did in Section 4.1.3 — in our later development.

In the next section, we investigate a weakest preexpectation calculus act-
ing on integrability—witnessing expectations, i.e. the calculus will feature ex-
pectation transformers of type IE — IE.

5 Notice that the 0 for this case is an arbitrary choice of a value in R since any (f’ < §), where
f’(0) = 0 for any o € X with ¢(0) = oo, is in the same equivalence class as (f < §).

9.3 EXPECTATION TRANSFORMERS

9.3 EXPECTATION TRANSFORMERS

ON our way to developing a weakest preexpectation calculus acting on
integrability—witnessing expectations, we first observe that certain op-
erations on an integrability—witnessing pair (f < g) preserve ~—equivalence
and thus lifting such operations to the integrability—witnessing expectation
{f < g§ can be done by performing the operation on the representative
(f © g) and then taking the equivalence class of the resulting pair.

For instance, the assignment x := E preserves ~—equivalence, because if
(f ©g) = (f’ < ¢’) holds, then for all o € X we have

g(o) < 00 or g'(0) < o
implies f(o)=f"(c) and g(o)=¢'(0).

But then this is in particular true for all updated states which are of the form
o[x + o(E)] and thus ~—equivalence is preserved by the assignment, i.e.

(f=g) ~ (f<8)
implies (f[x/E] < g[x/E]) = (f'[x/E]< ¢’[x/E]).

Moreover this allows for defining a transformer

iwp [x :=E] {f ©g§ = {f[x/E] < g[x/E]S.

Furthermore, one can show that both our addition of integrability-witness-
ing pairs as well as our scalar multiplication of integrability—witnessing pairs
by mixed-sign expectations also preserve ~—equivalence, i.e. we have

fo8S+Uf/ =g = Uf+f <2g+¢'§, and
h-if 85 = h-f<ln-g5.
This puts us in a position to formally define a weakest preexpectation trans-

former acting on IE:

DerintTION 9.7 (Integrability-witnessing Expect. Transf. [KK17b]):
1. For all tame programs C € pGCL, the weakest integrability—wit-
nessing preexpectation transformer

iwp [C] : TE — I[E,
is defined according to the rules in Table 9.1.
2. We call the function
iwp,
o, L (XY = (=] f 285+ [p]-wp [Cl X 2 Y

the iwp—characteristic function of while(¢){C} with respect to
postexpectation [f < g§. Whenever either iwp, @, C, or {f < g§
are clear from the context, we omit them from ®.

239

240

MIXED—SIGN EXPECTATIONS

C iwp [C] {f <&

skip f=gs

diverge {0<0§

x:=E Uf [x/E] < g[x/E]S

X Lo [, b stote)ane © ao. [{aslotsevi)ans)
C13Cy iwp [C1] (iwp [Ca] Uf < ¢5)

if (p){Ci}else{Cy} [@]-iwp[Ci]lf =¢S5 + [-@]-iwp[Co] {f < ¢S
{C1}p]{Co} p-iwp [Ci] {f <¢5 + (1-p)-iwp [Co] {f < ¢§

while(¢p){C’} lim W‘Cvig’q:{’f@gszo 205§

<q>,icw’[>3¢)zf<>ggzx QYS§ = [~@]-Uf «g5+[p]-iwp [C] XY

Table 9.1: The weakest preexpectation transformer acting on IIE.

Let us briefly go over some of the rules in Table 9.1 in order to get an intu-
ition: Just like wp [skip], iwp [skip] is an identity since skip does not mod-
ify the program state. iwp [diverge] {f < ¢§ returns the integrability-wit-
nessing expectation {0 < 0§ which is in fact the singleton set {(0 < 0)}. This
is meaningful, since the probability of termination of diverge is 0, and so
no mass whatsoever can be contributed to the expected value of any expecta-
tion f € [E, or g € [E after termination of diverge. iwp [x := E] {f < g§ takes
a representative (f < g) € {f < ¢§, performs the assignment x := E on both
components to obtain (f [x/E] < g[x/E]) and then returns the corresponding
equivalence class { f [x/E] < g[x/E]S. As described earlier, assignments pre-
serve ~—equivalence, so doing the update on the representative is a sound
and sufficient course of action.

Before we turn our attention to the definitions of iwp for while loops, let
us illustrate the effects of the iwp transformer by means of an Example:

ExamrpLE 9.8 (Truncated Alternating Geometric Distribution [KK17b]):

Consider the probabilistic program Cjtyyc:

Caittrunc > {skip} [1/2] {
x 1= —x—sign(x)s {skip} [I/2] {x := —x —sign(x)}

9.3 EXPECTATION TRANSFORMERS

It establishes on x a truncated variant of a geometric distribution where in ad-
dition the sign of x alternates. Suppose we want to know the expected value
of x after termination of C,j,c. The according integrability—witnessing
postexpectation for obtaining an answer to this question is {x < |x|§. Notice
that in this example, the need for mixed—sign random variables arises not
from some artificially constructed mixed-sign postexpectation but directly
from the program code. In order to reason about the expected value of x af-
ter termination, we calculate iwp [Ciunc] (X < |x|5. Reusing our annotation
style from earlier in this thesis (see Example 2.11), i.e. we write

i’ =8"5
Mif=gs
C

U <gS

to expresses the fact that { f' < ¢’§ = cwp [C] ({f < ¢§) and moreover the fact
that { f” < g”{={f" < ¢’§, we can annotate the program C_js,,,;,c as shown in
Figure 9.3 (read from bottom to top).

Let us now interpret the results of the program annotation: The first obser-
vation we can make is that the expected value of x is defined after execution
of Cyitrunc, since in every initial state we have

|X| + M < 00
1 .
The second observation we can make is that this expected value is for every
initial state given by

2x + sign(x)
4 ’
which is to be evaluated in the initial state in which Cj sty is started. In
particular, the above expression gives the correct expected value, regardless

of whether the program is started with a positive, negative, or zero variable
valuation for x.

9.3.1 Preexpectations of While Loops

While the calculation of iwp in the above example was straightforward (al-
though tedious) as the program Cgj,,,,c is loop—free, iwp of while loops is de-
fined using a limit construct. For that, we first need to formally define what
a limit of a sequence of integrability—witnessing expectations, i.e. a limit of a
sequence of equivalence classes, is.

241

242 MIXED—SIGN EXPECTATIONS

Vi Z2x+s£i1gn(x) 9 x|+ 3-[x=0]

4
I L 1x <1l + %.Zs‘g;(") < |x|+3-[x2==0]S
{

J/RERSEEL

skip

J/RERSEELD
} V2] {

sign(x) 3-[x=0]
{252 < w2l

p Zsign(—(—xz—sign(x))) 9 |—x—sign(x)|+"‘S

X :=—x—sign(x)g

sign(—x) [x = 0]
W { 52 o w5

ik % Ax Qx| + % -{—x —sign(x) < [x| + [x = 0]§
{
I == x5
skip
7 == 1x15
b [2] |
] 1=x —sign(x) < |x]| + [x = 0]§
Ml =x = sign(x) < | -x —sign(x)|§
X :=—x—sign(x)
M 1x = 1«5
}
I == x5

)
M = 1x1§

Figure 9.3: integrability—witnessing weakest preexpectation annotations for the pro-
gram Cpjstryync of Example 9.8.

9.3 EXPECTATION TRANSFORMERS

DeriniTioN 9.9 (Limits of Sequences in IIE [KK17b]):
Let (an < g”S)ne]N C IIE be a sequence in IE. Then

(f<gS isalimitof ({f,<g5),eN -

if there exists a sequence ((f, < £,))neN Of representatives (meaning for
allneNN, (f, < g) € lfu <) with

o, otherwise,
where oo is assumed to be a valid limit for g, (o).

The intuition behind this definition is that a limit of a sequence in IIE is a
pointwise limit (in each state o € ¥).

If a limit exists, we note the following: For each integrability-witnessing
pair in any ~—equivalence class, the second component is unique. Thus the
sequence (g;)qen i uniquely determined by (g,),en-

Now, if lim,,_,,, g,(0) = oo, then the limit in state o does not depend on
the sequence (f,),en and is uniquely determined. If on the other hand
lim, ,,£,(0) < oo, then for almost all g; we have g;(0) < co and thus also
almost all f are uniquely determined by f;. All in all this leads to the fact
that if a limit of ({ f, < g,), exists, then we can reason about the existence
by means of the sequence of representatives ((f,, < g,,))nenN-

The iwp transformer of while loops is defined as the limit of a sequence of
integrability—witnessing expectations, but in order to speak of the limit, such
limits must be unique if they exist. This is ensured by the following theorem:

Tueorem 9.10 (Uniqueness of Limits in IIE [KK17b]):
Let ({fy < €1 5),en € IE and let a limit of that sequence exist. Then that
limit is unique, i.e. if

(f<gSand {f'<g¢’§ both being a limit of [f, < g,$
implies {f<g§ = {f'2g’S.
Proof. Suppose for a contradiction that { f < g§ = {f’ < ¢’§ are both a limit
of the sequence ({ f,; < £,5),,en € IE. Recall that we can reason about such a

limit entirely by the sequence of representatives ((f,, < g,))nen- Because of
f <g5#{f < g¢'§wehave (f © g) # (f < ¢’). Hence, there must exist a

Notice that this 0 is again an arbitrary choice of a value in R since any (f’ < g), where f’(c) # 0
for any o € ¥ with g(o) = oo, is in the same equivalence class as (f < g). See also Footnote 5.

243

244

MIXED—SIGN EXPECTATIONS

state o such that

g(o) < 00 or g¢'(0) < o
and g(o)zg'(0) or f(o)=f'(0).

But if that were the case, then for that state o either

lim g,(0) = g(0) # g'(0) = lim g,(0), or

lim £,(0) = f(0) = f(0) = lim f, (o)

should hold, both of which is a contradiction to the fact that limits of real
numbers are unique if they exist. Therefore, the assumption {f @ ¢§= {f’' <

g’y cannot be true and the limit of ({f,, < g,5),,epy Mmust be unique.

Due to the limit’s uniqueness, we are now in a position to write
li < = QLg),
lmify <8, = Uf <85

if a limit exists and { f < g§ is the limit of lim,,_,,{ f, < g, §.

Using the limit construct, the iwp transformer of the loop while(¢){C’}
is defined as the limit of iteratively applying the iwp—characteristic function
of while(¢@){C’}, given by

oord, L AXSYS = [pl-Uf 93+ [g]-mp [CTIX Y5,

to {0 < 0§. Formally, we have defined in Table 9.1

. . ’ T iwp w71
iwp [while(@){C}[{f <@¢§ = lim oD (0205,

where , "P@/" denotes the n-fold application of , ™Pd to its ar-
(p.C’) 1f g5 e PP (p.C’) 1f g5 .
gument. This is somewhat similar to the wp-semantics for non-negative

expectations, where we basically have

wp [uhile(p){C'1](f) = lim , 2P@7(0)

since the Kleene Fixed Point Theorem gives

wp [while(@){C'}] (f)

= Ifp, “PD
(@ C)H™f
= sup, CV\C?Q);(O) (Kleene Fixed Point Theorem, Theorem A.5)
n
= lim <(PICYV,‘;(D?(O) , (mg,g’@?(o) increases monotonically in n)

and ensures existence of this limit. This, however, works only because 0 is
the least element in the complete lattice (IE, <). Because of monotonicity of

9.3 EXPECTATION TRANSFORMERS

(@ C“fg’fbf (see Theorem 4.16), we automatically obtain the ascending chain

wp, WP, 1. 2 wp 1. 3
for which a supremum exists by completeness of the underlying lattice.

In contrast to that, {0 < 0§ is not the least element in the partial order
(IE, g) and therefore, the sequence

iwp 1+ 1
(105002 05),

is not necessarily an ascending chain. It is because of that, that the Kleene
Fixed Point Theorem fails to be applicable in the context of integrability—wit-
nessing expectations. We have to ensure the existence of the limit defining
the semantics of while loops by other means. Obviously, it is desired that this
limit always exists in order for iwp to be a well-defined transformer for all
possible programs together with all possible postexpectations, and indeed, we
can establish the following result:

Tueorem 9.11 (Well-definedness of iwp for While Loops [KK17b]):
Let C’ € pGCL be tame and let { f < g§ € IIE. Then the limit

wp [while(@){C']]{f ©g§ = lim P (020§

exists and hence the iwp transformer of any while loop with respect to
any postexpectation is well-defined.

The core idea for proving this theorem is adopted from a well-known proof
proving that every absolutely convergent series is also convergent. Let us go
over this particular proof: If a series

o0

Sa; = Zai converges absolutely
i=0
this means that

(o]
Sip| = la;| converges to some value a,
la;] i
i=0

which implies that it does so unconditionally and monotonically since all
summands are positive. This, in turn, implies that

Soja = ZZ la;
i=0

converges unconditionally and monotonically to 2 - a. Since

245

246

MIXED—SIGN EXPECTATIONS

0 < ai+|a,-| < 2-|ai|

holds, we obtain

(o) oo
0< Zlail +a; < ZZ . |ai| =
i=0 i=0
By that, we can see that the series
(o]
Slajl+a; = Zlail +a; is bounded.
i=0

Furthermore, since |4;| + a; must be positive, the partial sums of the series
S|a;|+a; are monotonically increasing and therefore
1 1

Slal+a; = Zlail +a; converges unconditionally.
i=0
Since S, is the difference of two unconditionally convergent series, namely
Sai = Slal+a; = Slai

the series S, must also converge. This basic idea of

,express Zui as Zlai|+a,~—Z|a,~|"

in case that the latter two infinite sums converge, is the underlying principle
of the following proof of Theorem 9.11.

Proof (Theorem 9.11). First, we need to show by induction on the nesting
depth of while loops and by induction on # that

|wp wp wp wp.
(oo P g5l 0205 = L5100 =, R0 (0) 9, P0(0)

holds for all n and any C’. This induction is straightforward and thus omit-
ted here. It is then left to show that the limit of the right-hand-side exists
for n - w. We can see that the second component of that sequence con-
verges monotonically towards

sup . cr®g (0) = wp [while(p){C'}] (g)
nelN
Then for any state o for which wp [while (¢){C’}] (g)(0) < oo holds, we have

P,y Pl £ (0)(0)
= wp [while(@){CJ] (If]+ f) (o)

9.3 EXPECTATION TRANSFORMERS

< wp [while(@){C'}] (2-If])(c) (by monotonicity, Theorem 4.16)
< wp [while(@){C’'}] (2-g)(0) (by monotonicity, Theorem 4.16)
< 2-wp [while(@){C"}] (g)(0) (by linearity, Theorem 4.21)

N

2-00 = c0, and

sup (P (0)(0)

= wp [while(@){C"}] (If])(o)
< wp [while(@){C"}] (g)(0) (by monotonicity, Theorem 4.16)

< 0.

Hence, the limit for both , “P®’. (0)(o)and , “Pd(0)(0)exists, thus also

- o (@,C") |f|+\{Vp (@,C") "If
the limit for {(p,C’>(D|f|+f()(o)— (@,CY <D|f|()(0) exists, and therefore

. wp. wp 3, 11 wp.
tim, (z«pc 170~ (,ch P (0) 2 ¢, C/>q)g(0)5)nelN

exists, too.

Let us revisit the two examples we presented in Section 9.1, i.e. the program

Cyeo > x:=13
c:=13
while(c=1){

1
{c:=0}[12]{x :=x+1}

together with postexpectations f = (=2)* and f’ = (-2/x+1, respectively. In
the iwp calculus, the respective weakest preexpectations are indeed well-
defined, namely they are given by

iwp [[geoﬂ ((=2)"=2|(=2)"I§ = {02 f

(=2)*

x+1

and iwp geoﬂ2x+1 < S = (09 .

So the preexpectations of these two examples are well-defined and therefore
these examples are not at all pathological in our presented calculus.

9.3.2 Soundness of the iwp Calculus

An important property of the iwp calculus that we have not established so
far is its soundness, meaning that if we can establish

247

248

MIXED—SIGN EXPECTATIONS

iwp [C]{f<g§=1f<g§ and g'(0) < 0,

then f’(0) is in fact the expected value of f after termination of C on initial
state 0. For that, we first generalize the fact that we have established in the
proof of Theorem 9.11:

Lemma 9.12 ([KK17b]):
LethQgSelﬂEandlwp[[C}]ZngS U’ <>g$w1thwp[[C]]) < c0.
Then f’(o) =wp [C] (If|+ f) (o) —wp [C] (If]) (o

Proof. By induction on the structure of C, using the first equation from the

proof of Theorem 9.11.

In standard probability theory any mixed-sign random variable f can be
decomposed into a positive part

“f = do. max{0, f(0)} € E
and a negative part
“f = Ao.—-min{0, f(0)} € E,

with f = *f —~f. This decomposition is called Jordan decomposition. Notice
that *f and ~f are both non—negative expectations. The expected value of f
is then defined as the expected value of *f minus the expected value of ~f,
i.e. as

[raw= wan-| rau

if both f): *f dp<ooand Iz ~f dp < co. Using the Jordan decomposition of
f, we can now establish the following lemma:

LemMma 9.13 ([KK17b]):
Letlf 283 €T wpICILf = 5= 1f7 @ 5 with wp [C] ()(0) <
and = *f ~f. Then (0} + wp [C] (-£)(@) = wp IC] (*)(o

Proof. Consider the following:

fle)+wp [CT(f)(o) = wp[C](*f)(o
iff wp [[C]](|f|+f)(—wp [[Cﬂ (1D (o) +wp [[C]] (o)
= wp [C] (*f)(o (by Lemma 9.12)

iff wp [C] (If+ f) (o +prC]] e
= wp [C] (*f) (o) +wp [C] (If])(c
(by wp [[Cﬂ (1) () <wp [C] (8)(0) <o)

ifft wp [C](If1+f+"f)(o) = wp[CI (°f +IfD)(0)
(by linearity, Theorem 4.16)

9.4 HEALTHINESS CONDITIONS

iff wp [C](IfI+7f) (o) = wp [C] ("f +1fD) (o)
by f="f-"fiff*f =f+7f)

iff true

The soundness of the iwp transformer is a special case of Lemma 9.13.

Tuaeorem 9.14 (Soundness of iwp [KK17b]):

Let f € E, with wp [C] (If])(0) < oo and let iwp [C]{f < IfIS ={f" <
¢’S. Then f’(o) is the expected value of f after termination of the tame
program C on state o, i.e. if f =*f —~f, then

f'lo) = wp [C] (") (o) =wp [C] ("f)(o).

Proof. In principle by setting ¢ =|f|in Lemma 9.13.

94 HEALTHINESS CONDITIONS

NTEGRABILITY-WITNESSING expectation transformers are closely connected

with the classical expectation transformers we studied in Chapter 4 and
hence share several of their properties. These can aid in reasoning about
probabilistic programs, for instance by forming a foundation for composi-
tional reasoning. We will study some of these properties in this section.

9.4.1 Strictness

Strictness is what Dijkstra calls ,,Law of the Excluded Miracle“ [Dij75]. The
strictness property of weakest preexpectation transformers states that

wp [C] (0) = 0;

see Theorem 4.14 A. More abstractly, the least element 0 in the complete
lattice (EE, <) is mapped to itself.

In our integrability—witnessing setting, there is no least element in IE and
hence the question whether the iwp transformer is strict in this more abstract
sense is nonsensical. Nevertheless, the iwp transformer maps the ,zero ele-
ment“ {0 < 0§ to itself.

Tuaeorem 9.15 (Strictness of iwp):
Let C € pGCL be tame. Then iwp [C] {0<0§={0<0§.

Proof. By induction on the structure of C. Q.E.D.

The above version of strictness tells us that — as expected — the expected
value of the constantly 0 random variable after executing a program C is 0.

249

250

MIXED—SIGN EXPECTATIONS

9.4.2 Feasibility

The property that Mclver & Morgan call feasibility states that preexpecta-
tions cannot become ,too large” [MMO05] (cf. Section 4.2.3). The notion of
feasibility makes sense for bounded expectations f only and states that pre-
expectations cannot become ,,too large®, formally

f < b, forsome b eRyy implies wp[C](f) < b.

In a mixed-sign setting, a natural generalization of feasibility would read

< f < b, forsomeabeR and inﬂCﬂZf Q |f|S =
implies ¢’ << oo and a < f ' <b

However, there is a simple counterexample: Consider f = —1 which is obvi-
ously upper— and lower-bounded by a = b = —1. But for the freezing program
diverge, we have

iwp [diverge] {-1<|-1]§ = {0=<0§,

and while indeed 0 << oo, we find that -1 < 0 ¥ -1. Therefore, strict-

ness does not generalize to integrability—witnessing preexpectations, at least
when generalizing as described above.

9.4.3 Momnotonicity

Perhaps the single most useful property of the iwp transformer is mono-
tonicity, as that is what enables compositional reasoning: It enables to con-
tinue reasoning soundly using overapproximations. For more details, see
Section 4.2.4. Our integrability—witnessing transformer is monotonic with
respect to the partial order Z:

Tueorem 9.16 (Monotonicity of iwp [KK17b]):
The iwp transformer is monotonic with respect to g, i.e. for all tame
programs C € pGCL and postexpectations [f < g§,{f' < ¢’§ € IE,

=85 3 U'=¢S
implies iwp [C[{f <g§ 5 wp[C]{f'=¢g'S.
Proof. By induction on the structure of C. All cases are straightforward,

except for the while loop. Let { f © ¢§ S {f’ < ¢’§. Now consider

|Wp wp WP 1. 11 wp.
i) Q0905 = (PRl (0)-, P (0) 9, P (0)

9.4 HEALTHINESS CONDITIONS 251

from the proof of Theorem 9.11. Given that fact, the proof boils down to
showing by induction on n that the inequality

WP 3. 11 WP 1
(0.1 £ (00(0) =, cn Py (0)(0))
Wp 1. 11 WP 11
< (@ P (0(0) =, cn Py (0)(0)

holds if wp [while(@){C’}] (¢')(0) < oo (and therefore by monotonicity also
wp [while(@){C’}] (g)(0) < o) holds. In that case, both

wp n+1 WP n+1 wp,
(R (0)(@) <, FRTH0)(0) < (Ufp (, P)(0) < oo

and

n+l n+l
(0N 0)(0) < () BT (0)(0) < (i, 5P,) (0) < o

holds, and we can thus rewrite inequality (1) as

D (0)(o) +<(P’CW,§®|'},|(O)(O~)

(@,C) I I+f
= (‘P’g};q)l;'|+f’(o)(a)+<(p,cw";q)|;}|(0)(0') ,

and prove this above statement instead by induction on n. For the induction
step, consider the following:

wpq)n+l (0)(0) qu3n+1(0)((7)

(@.C) TIfl+f . P
wp g, 11+1 wp . 1+1
< (0.0 Qe (00) Py (0)(0)

iff
([=@]- (f1+ £ +1£D)(o)
+([91-wp [C] (14, Pl 10+, 5 0(f4(0))) (@)
< ([~@]-(f 1+ £ +1fD)(0)

Vi Wp 1 Wp 1
+ ([(P] wp [C] (((P,C’)(le’|+f’(0) + <(p'cf>q)|f|(0))) (o)
(by definition of wp—characteristic function and linearity of wp)

The above follows from the induction hypothesis on # and from monotonic-

ity of wp, Theorem 4.16.

9.4.4 Linearity

Linearity of the classical wp transformers plays a prominent role in the de-
velopment of Mclver & Morgan on bounded expectations. We have studied
linearity in our slightly more general model using unbounded expectations
in Section 4.2.5. Not surprisingly, our integrability—witnessing expectation
transformers are linear as well:

252 MIXED—SIGN EXPECTATIONS

Tueorem 9.17 (Linearity of iwp):
Let C € pGCL be tame, {f < ¢§,{f' < ¢’'S €E, and r € R. Then

wp [C] (r-Uf 25 +1f = ¢'5)
= r-iwp [C] {f < g§+iwp [C] Zf/@gls'

Proof. Follows from Lemma 9.12 and linearity of wp.

9.5 PROOF RULES FORLOOPS

HEREAS reasoning about non-loopy programs is mostly straightforward,
Wreasoning about the iwp of a loop is more complicated as it involves
reasoning about limits of integrability-witnessing expectation sequences. To
help overcoming this difficulty, we present now an invariant-based approach
that allows for overapproximating those limits.

We have already seen that the fact

|wp n wp WP 1 1 wp
(00 Prroggl0205 = LR (00—, PO (0) <, P07 (0)

from the proof of Theorem 9.11 was vital to proving monotonicity of iwp. It
will also allow us to reason about integrability—witnessing preexpectations
through reasoning about standard weakest preexpectations, which is simpler
since we have an easy—to—apply invariant rule for these.

If we take a closer look at the sequence

WP g1 WP+ 1 wp
(z<‘P:C’)®|f|+f(0)_((p,C’)q)lﬂ(O) < c'>®g(0)8)neN

we see that in order to overapproximate the limit of that sequence, we can

1. overapproximate lim,,_,,, (@, ng)(I)g()

2. overapproximate lim,_,,, (, CW,D<D|f|+f(), and

3. underapproximate lim,_,, , - Wp(D"}l().

Notice that these over- and underapproximations are over- and under-ap-
proximations of classical weakest preexpectations. Furthermore, recall that
by Theorem 5.4 and Theorem 5.9 a. we have invariant rules for those approx-
imations. This immediately leads us to the following proof rule for loops:

Tueorem 9.18 (Upper Bounds on iwp [KK17b]):
Let | f © ¢S €IE, C’ € pGCL be tame, and moreover let

A. I € E be a wp—superinvariant of while (¢){C} with respect to pos-
texpectation |f|+ f, cf. Definition 5.1 a.,

9.5 PROOF RULES FOR LOOPS

B. (H,)new € [E be a wp—w-subinvariant of while(¢){C} with re-
spect to postexpectation |f|, cf. Definition 5.3 B., and

c. G € E, with G(0) < oo, be a wp—superinvariant of while(¢){C}
with respect to postexpectation g.

Then iwp [while(@){C'}]{f<¢f 5 ZI—supneNH,, < 2-GS.
By similar considerations, we can find a dual theorem for lower bounds:

Tueorem 9.19 (Lower Bounds on iwp [KK17c¢]):
Let{f © g§€IE, C’ € pGCL be tame, and moreover let

A. (Hy)uew € E be a wp—w—subinvariant of while(¢){C} with re-
spect to postexpectation |f|+ f, cf. Definition 5.3 B.,

B. I € E be a wp—superinvariant of while (¢){C} with respect to pos-
texpectation |f|, cf. Definition 5.1 a., and

c. G € E, with G(0) < oo, be a wp—superinvariant of while(¢){C}
with respect to postexpectation g.

Then ZsupneNHn—I < 2~GS 3 iwp [while(@){C'}] {f < g§.

Notice that we have to use 2 - G in the second component of the over- and
underapproximation of iwp [while(¢@){C’}] {f < ¢§ in the above two theo-
rems. This is just to ensure that the second component really bounds the
absolute value of the first component. Using G instead might not yield a
proper member of IIE. Notice that using 2 - G does not effect the integrabili-
ty—witnessing property of the second component.

ExampLE 9.20 (Towards Amortized Expected runtime Analysis [KK17b]):
Suppose we want to perform an amortized analysis of a randomized data
structure by means of a potential function. Suppose further that a certain
operation Op first increases the potential by 1 and thereafter keeps flipping
a coin until the first heads. With every flip of tails though, the potential
is decreased by 3. We can model this situation by means of the follow-
ing probabilistic program:

Cop> A:i=A+1;
c:=13
while(c=1){
{c:=0}[12]{A :=A-3}

253

254

MIXED—SIGN EXPECTATIONS

Here A represents the change in the potential function. Notice that the
change in potential might very well be positive (in fact with probability 1/2)
as well as negative, so both possibilities have to be accounted for.

Even though an application of the operation Op might increase the poten-
tial, we now want to prove that an application of Op decreases the potential in
expectation. This amounts to proving that the preexpectation of A evaluated
in any initial state o with 0(A) = 0 is negative. For that, we need to calculate

iwp [[COp]] (A< |AlS
= iwp[A:=A+15c:=135while(c A <AlS

So the first thing we need to do is to reason about the preexpectation of the
while loop. Appealing to Theorem 9.18, we propose following invariants:

w .
A-3-
I=A+[c21]-]A] + [c=1] M—3],
21+1
i=0
|A=3-1
H, = [c21]-1Al + [c=1]- Z i and
3 [A-=3-1]
G = [cz1]|Al + [c=1] Z —

Indeed, one can verify that these loop invariants satisfy the preconditions of
Theorem 9.18. Furthermore, we observe that sup, . H,, = G holds. Applying
Theorem 9.18 therefore yields

iwp [while(c=1){...}J{A<IAl§ 5 U-G=<2-GS.

Because G and I are absolutely convergent for any valuation of A (e.g. by the
ratio test), we can calculate | -G = A—[c=1]- 3, and so we get

iwp [while(c=1){...}]J{A<IA|§ 5 (A-[c=1]-3<2-G§.

Since iwp is monotonic (see Theorem 9.16), we can now safely continue our
reasoning with the overapproximation {A—[c=1]-3 < 2-G§ and calculate

iwp [A :=A+15c:=1]{A-[c=1] 392G

w
[A+1-3i|
ZA 2 <) 5 21+1
=

By that, we get in total an overapproximation of the sought-after preexpec-

9.6 FUTURE AND RELATED WORK

tation iwp [[Cop]] (A < |AlS. If we instantiate the second component of that
overapproximation in an initial state o with o(A) = 0, we get

- 0+1-3-1]

- 3 < .
21+1

i=0

So the expected value at o was integrable and thus it makes sense to evaluate
the first component in ¢ (which is what we are really interested in). This
gives 0 — 2 = -2 and thus executing Op decreases the potential in expectation
by at least 2.

Note that the above analysis would not have been possible using either the
deduction rules of PPDL [Koz85] or the invariant-based approaches pre-
sented in Section 5.2 off-the—shelf. Instead, a tailor-made argument would
be needed for reasoning about the mixed-sign postexpectation A.

9.6 FUTURE AND RELATED WORK

N exception to the widespread and generally condoned neglect of un-
bounded mixed-sign expectations is Kozen’s PPDL [Koz85] as it pro-
vides an expectation transformer semantics for probabilistic programs with
respect to general measurable postexpectations f and thus does not forbid
mixed-sign expectations altogether. PPDL’s proof rule for reasoning about
while loops, however, again requires f to be non-negative [Koz85, Section
4, page 168: the “while rule"]. This proof rule is hence unfit for reasoning
about mixed-sign expectations. In fact, three out of four rules of the de-
duction system of PPDL that deal with iteration (and therefore with loops)
require the postexpectation to be non-negative and are hence not applicable
to reasoning about mixed-sign postexpectations f [Koz85, Section 4: Rules
(8), (9), and the “while rule"]. The only exception to this is a rule that allows
for upper bounding the preexpectation by a non—negative function, even if f
is mixed-sign [Koz85, Section 4: Rule (10)]. This rule, however, is insuffi-
cient for upper-bounding the preexpectation by a negative value, which in
practice can be desirable and is possible in our calculus, see Example 9.20.
Another drawback of PPDL is that reasoning even about simple programs
and properties can become quite involved, requiring a fairly high degree of
mathematical reasoning, i.e. to say that PPDL requires a lot of reasoning in-
side the program semantics while the approach of Mclver & Morgan and the
approach we present in this chapter constitutes more of a syntactic reasoning
on the source code level. For example, [Koz85, Section 7] gives a circa two-
page proof sketch of the expected runtime of a “simple random walk" carried
out in PPDL. It requires a fair amount of domain—specific knowledge about
integers and combinatorics and is thus not easily amenable to automation. A

255

256

MIXED—SIGN EXPECTATIONS

full proof of the expected runtime in the wp calculus a la McIver & Morgan
requires only a fraction of the effort (see [KK17c, Appendix Al).

As for future research directions, automations of wp-style proofs in the-
orem provers such as Isabelle/HOL have been developed [Hur02; Cocl4].
A partial automation of the ert calculus from Chapter 7 has been carried
out by Holzl [Ho116]. The wp-style calculus for mixed-sign expectations we
present here is closely related to these wp-style calculi and so we believe that
existing automation techniques are likely to carry over easily.

Another promising direction for future work is, as already touched upon
earlier in this chapter, amortized expected runtime analysis. In particular, it
would be interesting to combine the ert calculus for reasoning about ex-
pected runtimes from Chapter 7 with the iwp calculus from this chapter and
incorporate a potential function, in order to obtain a calculus for reasoning
about amortized expected runtimes. A first step towards this was taken re-
cently by Ngo et al. [NCH18].

Part III

COMPUTATIONAL HARDNESS

Did you implement this?

— Joél Ouaknine’

While the purpose of first two parts of this thesis was to develop
methods for reasoning about probabilistic programs, I present in
this third part results on the computational hardness of probabilis-
tic program analysis. I first briefly recap the notion of the arith-
metical hierarchy. Thereafter, I present results on the computa-
tional hardness of approximating weakest preexpectations and de-
ciding probabilistic termination. Finally, I present hardness results
on approximating variance and covariance.

7 On two occasions when I gave a presentation on the contents of Chapter 11 and Chapter 12.

THE ARITHMETICAL HIERARCHY 10

For every sensible question there is an answer;
for every answer there is a sensible question.

— Borut Robi¢ [Rob15]

probabilistic programs in some mathematically rigorous sense even

harder, given the fact that the halting problem of deterministic pro-
grams is already undecidable? How would we even sensibly capture nuances
of computational complexity for undecidable decision problems, which evade
any computable decision—-making in the first place?

How undecidable is the halting problem? Is deciding termination of

A solution to the just described classification task presents itself in the
form of the arithmetical hierarchy — a non-collapsing double-stranded hier-
archy for classifying sets of natural numbers according to the least amount
of syntactic complexity required for defining them. What is this syntactic
complexity that we speak of here? It will be the number of quantifier alter-
nations needed to define a set using a formula in the language of first-order
Peano arithmetic. The arithmetical hierarchy, originally independently due
to Stephen Cole Kleene and Andrzej Mostowski, is defined as follows:

DeriniTioN 10.1 (Arithmetical Hierarchy [Kle43; Mos47; Odi92]):
A. For every n € N, the class X0 is defined as!

5 = (A A= (x| 391 V92 TpsVya i (591, 90) €R),

R is a decidable relation} .

Multiple consecutive quantifiers of the same type can be contract-
ed into one quantifier of that type, so the number n refers to the
number of necessary quantifier alternations rather than to the ac-
tual number of quantifiers occurring in a defining formula. In
other words, the 0 sets are definable by a formula with n—1 quan-
tifier alternations, where the first quantifier is an existential one.

1 The last quantifier is universal if # is even and existential if # is odd.
Note that we allow the values of the quantified variables to be drawn from a computable
domain other than IN that could be encoded in the natural numbers such as Q, the set of syntac-
tically correct programs, etc.

259

260 THE ARITHMETICAL HIERARCHY

0 0
E71):‘n+l
0
An+1
0 0
Hn 1_[n+1

Figure 10.1: Strict inclusion relations between classes in the arithmetical hierarchy.
Note that additionally ©9 = I19 and ZO+1 #T1% . holds.

n n+1

B. For every n € N, the class Hg is defined as?

I = {A(AZ{X|V?13}}2V}/33314"'1 (X 91, yu) ER},

R is a decidable relation} .

Again, multiple consecutive quantifiers of the same type can be
contracted. In other words, the T19 sets are definable by a for-
mula with n—1 quantifier alternations, where the first quantifier
is a universal one.

c. For every n € N, the class AY is defined as
0 0
AV =30 N1,

In other words, the AJ sets are definable by two formulas with n—1
quantifier alternations, namely by one formula starting with an
existential quantifier as well as by another formula starting with
a universal quantifier.

D. A set A is called arithmetical, iff A is a member of T,?, for some
I'e{%,I1,A} and n € N.

E. The inclusion diagram depicted in Figure 10.1 holds for every n >
1, thus the arithmetical sets form a strict non-collapsing hierarchy.

. The classes ¥ = 1_[8 = Ag =AY all coincide and form precisely the
class of the decidable sets. XY forms the class of the computably
enumerable sets and Ag the class of the limit-computable sets.

A schematic depiction of the arithmetical hierarchy is shown in Figure 10.2.

2 The last quantifier is existential if # is even and universal if # is odd.

THE ARITHMETICAL HIERARCHY 261

0 0
E6 l_[6
0
A6
0 0
Z5 I 5
0
A 5
0 0
E4 H4
0
A4
0 0
E3 H3
0
A 3
0 0
EZ HZ
0
A2
limit-computable
0 0
X:1 1-[l
semi-decidable 0
A 1
decidable

Figure 10.2: The infinite, double-stranded, non—collapsing arithmetical hierarchy.

262

THE ARITHMETICAL HIERARCHY

The arithmetical hierarchy is of utter utility: Besides establishing a strong
connection between computability and logic, stating precisely at which level
in the arithmetical hierarchy a decision problem lies amounts to giving a
measure of just ,how unsolvable” the decision problem is [Dav58].

In order to make mathematically rigorous statements of the form

,Problem A is at least as hard to solve as problem 3.“

we make use of two notions originally introduced by Emil Leon Post, nowa-
days called many-one reducibility and many—one completeness.

DEeriniTiON 10.2 (Reducibility and Completeness [Pos44; Odi92]):

Let A and B be arithmetical sets and let X and Y be some appropriate
universes such that AC X and B C Y. A is called many—one reducible
(or simply reducible) to B, denoted

A <, B,

iff there exists a computable function r: X — Y, such that
VxeX: xe A iff r(x)eB.

If r is a function such that r reduces A to B, we denote this by
r: A<, B.

Note that <., is transitive.
ForT € {¥,T1, A}, a set A is called many-one complete for I (or sim-
ply IV ~complete) iff both

A. Ais a member of T, and

B. AisT)~hard, meaning C <, A, for any set C € [0.

The double—strandedness of the arithmetical hierarchy gives rise to the fol-
lowing duality between many-one complete sets and their complements.

CoroLrARY 10.3:
Let AC X and let A= X \ A be the complement of A. Then:

1. If A is X)-complete, then A is [19—complete.

2. If A is T19—complete, then 4 is X—complete.

An important fact about X0- and TT9-complete sets is that they are in some
sense the most complicated sets in X9 and I1Y, respectively: Formally, we
have the following theorem:

THE ARITHMETICAL HIERARCHY

Figure 10.3: A is ©)—complete and hence sits properly at level 1 of the arithmetical
hierarchy. In particular, A cannot be placed within the shaded area.

Tueorem 10.4 ([Dav58]):
a. If Ais X)—complete, then A € X9\ T1

B. If A is T19~complete, then A € T19\ 20,

Theorem 10.4 implies in particular that if A is 20—complete or TT9—complete,
then A is neither a member of 2271 nor of 1_[271, but A really ,sits at level
n“ in the arithmetical hierarchy. A graphical depiction of this situation is
provided in Figure 10.3.

Many well-known and natural problems are complete for some level of
the arithmetical hierarchy. Arguably one of the most prominent problems is
the halting problem for deterministic programs, most prominently studied
by Alan Mathison Turing [Tur37] and Alonzo Church [Chu36]. Below, we
give a definition of the problem as well as a classification in terms of a level

in the arithmetical hierarchy.

263

264 THE ARITHMETICAL HIERARCHY

DeriniTioN 10.5 (The Halting Problem):
A. For a program C € pGCL, the set X is defined as

Yc ={o|o:V —>Vals, Visthe setof program

variables occurring in C},

ie. X¢ is the set of variable valuations that give only those vari-
ables a valuation, that actually occur in the program C. We call
Y the set of valid inputs for C. Note in particular that the indi-
vidual Vs are finite for each C and thus ¥ is countable, whereas
the set ¥ (see Definition 2.1 B.) is not countable.

In order to pair programs with valid inputs, we define the set

GCL®Y = {(C,0)|CeGCL, oeXc}).

B. The halting problem is the problem whether a deterministic pro-
gram terminates on a given valid input. The according problem
set H C GCL® X is defined as

(C,o)e H iff
Jk3Ar: (C,0,0,¢ ¢ 1) H At keel)y,
ie. o is a valid input for C and there exists a number k and a

state T, such that the program C terminates on input ¢ within k
computation steps in final state T3, see Definition 3.4.

c. The complement of the halting problem is the problem whether a
program does not terminate on a given valid input. It is given by

7 = (GCLOX)\ M.

Tueorem 10.6 (Hardness of the Halting Problem [Odi92; Odi99]):
A His Z(l)—complete.

B. H is [T9—complete.

The halting problem is the problem of whether a given program terminates
on a specific valid input. Its universal version is the problem of whether a
given program terminates on all valid inputs. Below, we also define the uni-
versal version and classify it in terms of a level in the arithmetical hierarchy.

3 Without having to make any probabilistic or nondeterministic choices (because the program
is deterministic), hence the two ¢’s and the 1 on the right-hand—side of the -X. We reuse the
definitions we made for probabilistic programs (cf. Definition 3.4), though, because they apply
to deterministic programs as well and we have them readily available.

THE ARITHMETICAL HIERARCHY

not
semi-decidable;
even with
jump in complexity access to

H-oracle

H A?

1

semi-decidable
decidable

Figure 10.4: The jump in complexity when moving from the halting problem for a
specific input to the universal halting problem for all inputs.

DeriniTioN 10.7 (The Universal Halting Problem):
A. The universal halting problem is the problem whether a determin-
istic program terminates on all possible valid inputs. The accord-
ing problem set UH C GCL is defined as

CeUH iff VoeXe: (Co)eH.

B. The complement of the universal halting problem is the problem
whether there exists an input on which a program does not termi-
nate. It is given by

UH = GCL\ UH .

Tueorem 10.8 (Hardness of the Universal Halting Problem [Odi99]):
A. UH is TIS—complete.

B. UH is X9-complete.

We observe that — as one would naturally expect — we have a complexity
jump from H to UM, namely from XY to I19, i.e. a jump one level up and
to the ,other strand” of the hierarchy, see Figure 10.4. In other words, it is

265

266

THE ARITHMETICAL HIERARCHY

strictly harder to decide whether a program halts on all inputs than it is to
decide whether a program halts on a specific input.

Since we will later need to climb up to the third level of the arithmeti-
cal hierarchy in order to classify certain types of probabilistic program ter-
mination, we introduce another complete arithmetical problem, originally
studied by Hartley Rogers [Rog59], that sits at level three of the arithmetical
hierarchy: the problem of whether the set of valid inputs on which a deter-
ministic program diverges is finite.

Tueorem 10.9 (The Cofiniteness Problem [Rog59; Odi99]):
A. The cofiniteness problem is the problem of deciding whether the
set of valid inputs on which a deterministic program C terminates
is cofinite.* The according problem set COF c GCL is given by

CeCOF iff {o0e¥c|(C,o)eH)}is cofinite.”

COF is £3-complete.

B. The complement of the cofiniteness problem is defined by
cOF = GCL\COF .
COF is T13-complete.

In Figure 10.5, we provide an overview of the lower levels of the arithmetical
hierarchy and depict precisely for which level in the arithmetical hierarchy
the problems we have presented in this chapter are complete.

Finally, we need to note a rather peculiar fact about the A)—sets: many—one
completeness of a AY problem is not a well-behaved notion, as the following
hard—to—find® theorem demonstrates:

Treorem 10.10 ([Rog67, Exercise 14-14, p. 332]):
For n > 2, there exists no A)—complete set.”

The above theorem will be relevant to classifying problems about approxi-
mating covariances (see Chapter 13).8

4 In this context, a set is cofinite iff its relative complement, i.e. its complement with respect to

some appropriate universe, is finite.

5 ie iff 2o\ {o €Xc | (C, 0) € H} is finite.

6 Many thanks to Wolfgang Thomas for pointing us to this Theorem.

7 In the sense of many-one completeness.

8 More forthrightly, it will be our excuse for not providing a completeness result.

THE ARITHMETICAL HIERARCHY

0
EZ

with access to
H-oracle:

semi-decidable

0
X:1

semi-decidable

COF A?

decidable

COF

UH

x|

not

semi-decidable;

even with
access to

UH-oracle

not

semi-decidable;

even with
access to

H-oracle

Figure 10.5: The complexity landscape of analysis problems for deterministic pro-
grams. All problems are complete for the respective level at which they

lie in the arithmetical hierarchy.

267

APPROXIMATING PREEXPECTATIONS

dedicated calculi was the subject matter of Parts I and II of this thesis.

Arguably the most difficult task in reasoning about programs is dealing
with loops. For deterministic programs, loops are what brings about unde-
cidability in reasoning about the programs.

S YSTEMATIC reasoning about properties of probabilistic programs using

In Chapter 5, we have presented rules that allowed us to tackle reasoning
about loops in probabilistic programs. Our reasoning techniques were based
on the concept of weakest preexpectations. Recall from Chapter 4 that the
weakest preexpectation of program C with respect to postexpectation f evaluated
in o is the expected value of f evaluated in the final states reached after
executing C on input o.

A particular verification task that we came across was to obtain upper
and/or lower bounds on weakest preexpectations, see Section 5.2. We ar-
gued that reasoning about lower bounds seems to be rather difficult, whereas
reasoning about upper bounds seems to be easier. In this chapter, we will
classify precisely how hard it really is to approximate weakest preexpecta-
tion from above and from below. To our surprise, we will find that the exact
opposite is true from a computational hardness perspective: Though both
algorithmically intractable, obtaining upper bounds is strictly harder than
obtaining lower bounds.

In order to keep our analyses simple, we will restrict in this entire chapter
(and the chapters to come) to tame probabilistic programs (see Definition 3.1 &.)
whose only source of randomness are binary probabilistic choices, i.e. we do
neither consider random assignments, nor nondeterminism. Thus, when-
ever we speak of pGCL programs in this entire part of the thesis, we mean
programs of the just-described form.

Omitting random assignments from our programming lanugage does not
really restrict our formalism. In principle, we could even restrict to fair prob-
abilistic choices, i.e. choices with a probability of 1/2, because a biased choice
can be simulated by a program having only access to fair choices in expected
constant time [AB09, Lemma 7.14]. One can even show that every enumer-
able semi—measure, i.e. every discrete probability distribution for which lower
bounds on probabilities are computably enumerable, corresponds exactly
to a probabilistic Turing machine having access only to fair probabilisitic
choices [Ical7]. Thus anything we could hope to compute exploiting some
source of randomness is also computable from just fair coin flips.

269

11

270

APPROXIMATING PREEXPECTATIONS

Towards analyzing the complexity of approximating weakest preexpecta-
tions, recall Definition 3.8, in which we defined the distribution [C], over
final states yielded by executing a probabilistic program C on input ¢ as

[Cl,(r) = Zq , where

y€eK
K = {y‘(C,a,O,e,e,l) [(l,T,n,Q,q,q):y},

Since we are interested in approximating weakest preexpectations, we will
now construct computable approximations of the distribution [C], as well as
computable approximations of weakest preexpectations, namely by restrict-
ing the number of allowed computation steps, i.e. by restricting n above.

DerinITION 11.1:

A. Let C be a tame pGCL program and o € ¥ be an initial program
state. Then the distribution over final states estabhshed by execut-
ing C on input o for exactly k steps, denoted [C]>", is a (sub)prob-
ability distribution over program states! given by

[Cl;" (x) = Zq, where

yeK

-y o0 eety v (Lnnong =y 1=k,

B. Based on [[C]];k, we define an approximation of the weakest preex-
pectation wp [C] (f) as

wp [C] (o) =) ICl

TEZC

As a consequence of the Kleene Normal Form Theorem [Kle43],
[[C}];k is computable and hence wp=F [C] (f) (o) is also computable,
provided that f is computable. Moreover, note that

wp[C](f)(0) =) wp™ [C] (f)(0)
k=0

Even though weakest preexpectations will turn out not to be computably
approximable, restricting to computable postexpectations is perfectly sensi-
ble because there is no hope of determining the value of a non-computable
postexpectation in a final state.

In order to investigate the complexity of approximating weakest preexpec-
tations, we define three sets: LEXP, which relates to the set of rational lower
bounds on wp [C] (f)(0), REXP, which relates to the set of ratlonal upper
bounds, and EXP Wthh relates to the exact value of wp [C] (f

1 Le. [C]5*: £ -0, 1], such that ¥ .y [C]5¥ (1) < 1.

11.1 LOWER BOUNDS

DeriniTioN 11.2 (Approximation Problems for wp [KK15b; KKM18]):
Analogously to Definition 10.5 a., in order to pair probabilistic pro-
grams with valid inputs and a countable space of computable postex-
pectations, we define the set?

pGCLRYQE = {(c, o, f)|CepGCL, o eXc,
f:2c—>Qs0 f computable} .
The sets LEXP,REXP,EXP C pGCLO® X Q E x Qs are defined as
(C,o,f,q) € LEXP iff g < wpl[C](f)(o),
(C,o,f,q) € REXP iff qg > wp[C](f)(o), and
(Co, f,q) € EXPiff g = wp[C](f)(0).

AVARRVAN

The computational hardness of approximating weakest preexpectations co-
incides with the hardness of deciding these problem sets.

11.1 LOWER BOUNDS

HE first hardness result we establish is the Z?—completeness of LEXP.

For that, we show that LEXP is a):(1)—problem and then show by a reduc-
tion from the (non-universal) halting problem for deterministic programs
that LEX'P is £¢-hard.

Tueorem 11.3 (Hardness of Lower Bounds on wp [KK15b; KKM138]):
LEXP is E?—complete.

Proof. For showing that LEX'P is a member of XY, consider the following:

(C,o,f,q) € LEXP

iff g < wp[C](f)(o) (by Definition 11.2)
iff g < Z wp=* [C] (f)(o) (by Definition 11.1)
k=0

%
iff dy: g < Z wpF [C] (f)(0) (all summands positive)
k=0

implies LEXP e 2(1) (the above is a E?—formula)

Figure 11.1 gives an intuition on the resulting X%—formula: With increasing
maximum computation length y, more and more mass of the expected value
can be accumulated until eventually an expected value mass strictly larger
than the threshold g has been accumulated.

We let computable postexpectations map to Q¢ instead of, say, computable reals with an infin-
ity element for simplicity of the presentation.

271

272

APPROXIMATING PREEXPECTATIONS

](c, o, f, q)ezgxp\

wp [C] (f)(0) frmmrmmemimimimim e

~

dy —

Figure 11.1: Schematic depiction of the formulae defining LEXP. The solid line
represents the monotonically increasing graph of ZLO wp=* [C] (f)(0)
plotted over increasing .

It remains to show that LEXP is Z(l)—hard. For that, we construct a reduc-
tion function r: H <, LEX'P that reduces the E?—complete non-universal
halting problem (see Theorem 10.6 aA.) to LEXP. This function r takes a
deterministic program Q € GCL and a state o as its input and computes

I"(Q, (7) = (C) o,1,]/2) ’
where C is the probabilistic program

{skip} [*2]{Q} .
Correctness of the reduction. There are two cases:

A. Q terminates on input 0. Then C terminates on ¢ with probability 1
and the expected value of 1 after executing the program C on input ¢
is thus 1. As 12 < 1, we have that (C, o, 1, 12) € LEXP.

B. Q does not terminate on input o. Then C terminates with probability
1/2 and the expected value of 1 after executing the program C on input
o is thus 1/2-1 = 1/2 since the right branch contributes 0 to the expected

value of 1. As 1/2 « 1/2, we have that (C, o, 1, 12) ¢ LEXP.

11.2 UPPER BOUNDS

s an immediate consequence of Theorem 11.3, LEX'P is computably enu-
merable, see Definition 10.1 . This means that all lower bounds for

11.2 UPPER BOUNDS

\(c, o, f,q) eRSXP\

q _________________________
6> OI
wWp [C] (f)(0) Frmrmrmrmrmmemimemimem e N
Yho wpr[CT(f)(0)

~

—Vy—

Figure 11.2: Schematic depiction of the formulae defining REXP. The solid line
represents the monotonically increasing graph of):izo wp=k [C] (f) (o)
plotted over increasing y.

preexpectations (with respect to a fixed initial state) can be effectively enu-
merated by some algorithm. Now, if upper bounds were computably enu-
merable as well, then preexpectations would be computable reals. However,
we show that the contrary holds, because REXP is ©5-complete. Thus, by
Theorem 10.4, we have REXP ¢ £¢, which means that upper bounds on pre-
expectations are not computably enumerable.

Tueorem 11.4 (Hardness of Upper Bounds on wp [KK15b; KKM18]):
REXP is £9-complete.

Proof. For showing that REXP is a member of X9, consider the following:

(C,o,f,q) € REXP

iff g >wp[C](f)(o) (by Definition 11.2)
iff g > Z wp* [C] (f) (o) (by Definition 11.1)
k=0

y
iff Jo>0Vy: gq-0> pr:k [C] (f) (o)
k=0

implies REXP e 22 (the above is a Eg—formula)

Figure 11.2 gives an intuition on the resulting ¥-formula: No matter what
maximum computation length y we allow and thereby no matter how much
probability mass of the actual expected value we accumulate, this probability
mass is strictly smaller than g (ensured by the safety margin 9).

273

274

APPROXIMATING PREEXPECTATIONS

It remains to show that REXP is £Y-hard: We do this by constructing
a reduction function r: WH <, REXP that reduces the Z9-complete com-

plement of the universal halting problem (see Theorem 10.8 B.) to REXP:
This function r takes a deterministic program Q € GCL as its input and com-
putes the tuple

r(Q) = (C,o,v,1),

where ¢ is an arbitrary but fixed valid input for C, and C € pGCL is the
following probabilistic program:

i:=08

{c:=0}[12]{c:=1}3

while(c=1){
i=i+13
{c:=0}[2]{c:=1}

while(c=1){
k:=k+1g
{c:=0}[2]{c:=1}

—
©o

v :=wp™ [Q] (1)(gq(i))- 2"+,

where go: IN — X, is some computable enumeration of valid inputs for Q.
The last assignment of this program is a shortcut for the program that com-
putes the right-hand-side of the assignment, which is computable (see Def-
inition 11.1 B.), and stores the result of the computation in variable v. Re-
calling that wp [Q] (1) (o) is the ,probability” of Q terminating on input o,
variable v takes value 28! if and only if Q terminates on input goli) after
exactly k steps (otherwise it returns 0).

Correctness of the reduction. The two while loops generate independent
geometric distributions with parameter /2 on i and k, respectively. Thus, the
probability of generating exactly the numbers i and k is

1 1 1

i+l ’ 2k+1 T pivk+2

The expected valuation of v after executing the program C is hence indepen-

11.3 EXACT VALUES

dent of the input ¢ and given by

) 2k+1

= & wp™ [Q] (> & wp [Q] (1)(g0(0)
ZZ - 2z+£+2 Z,Z, ” 21+1()

=0 k=0 i=0 k=0

For each input, the number of steps until termination of Q is either unique
or does not exist. Therefore wp=* [Q] (1)(gQ(i)) is either 1 for exactly one k
and 0 for all other k’s, or 0 for all k’s. Hence, the formula for the expected
outcome reduces to

21+1

[\/]8

i=0

if and only if Q terminates on every input (valid for Q) after some finite
number of steps. Thus, if there exists an input on which Q does not eventually
terminate, then (C, 0, v, 1) € REAP as then the preexpectation of v is strictly
less than 1. If, on the other hand, Q does terminate on every input, then this
preexpectation is exactly 1 and hence (C, 0, v, 1) 2 REXP.

11.3 EXACT VALUES

s mentioned before, a consequence of Theorem 11.3 and Theorem 11.4

for approximating preexpectations is that upper bounds are not com-
putable at all whereas lower bounds are at least computably enumerable.
Upper bounds would be computably enumerable if we had access to an or-
acle for the (non-universal) halting problem H for deterministic programs.
Given a rational g it would then be semi-decidable whether g is an upper
bound when provided access to an oracle for H. Next, we establish that this
is not the case for the problem of deciding whether q equals the value of the
preexpectation. Formally, we establish the following hardness result:

Tueorem 11.5 (Hardness of Exact Values for wp [KK15b; KKM138]):
EXP is Hg—complete.

Proof. For showing that EXP is a member of T1), consider the following:
By Theorem 11.4 there exists a decidable relation R, such that

(C,o,v,q9) € REXP iff Ar Vry: (1,1, Cov,9eR. (1)
Furthermore, by Theorem 11.3 there exists a decidable relation £, such that

(C,o,v,q) € LEXP iff AL (6,Co,v,q)el. 1)

275

276

APPROXIMATING PREEXPECTATIONS

Let =R and —L be the (decidable) negations of R and L, respectively. Then:

(C,o,v,q) € EXP

iff g =wp[C](()(o) (by Definition 11.2)
iff qg <wp[C](v)(c) and gq = wp[C] (v)(o)
iff —(q >wp[C](®)(0)) and =(q < wp[C] (@)(0))
iff —|(EI rVr: (r,1n,Co,vq)€ R) (by t and f above)

and ~(3¢: ((,C,0,v,9)€L)
iff Vrydry: (r,1,C,0,v,9)€-R

and V¢: ((,C,0,v,9)e-L
iff VYryV{3Ary: (r,1,C 0,v,9)€-R

and (¢{,C,0,v,q)e-L
implies EXPe Hg (the above is a Hg—formula)

It remains to show that EXP is T1)-hard. We do this by reducing the T1)-
complete universal halting problem (see Theorem 10.8 A.) to EXP. Recon-
sider for that the reduction function r from the proof of Theorem 11.4: Given
a deterministic program Q, r computes the tuple (C, o, v, 1), where C is a
probabilistic program with jz 1d[C], =1 if and only if Q terminates on all
inputs. Thus Q € UH iff (C, 0, v, 1) € EXP and hence r: UH <, EXP.

114 UPPER BOUNDS VS. LOWER BOUNDS

N Section 5.2, we argued that obtaining lower bounds on weakest preex-
Ipectations seems to be more difficult than obtaining lower bounds. In this
chapter, we saw that the exact opposite is true: approximating weakest preex-
pectations (with respect to a given initial state) from above is strictly harder
than from below. There is a slight discrepancy inherent in this comparison:
In Section 5.2, we argued about non-strict expectation bounds which map
each initial state to some value, whereas in this chapter we argued only about
strict bounds with respect to specified initial states.

This mismatch could be rectified by considering for lower bounds instead
of LEXP the problem LEXPE C pGCL x ¥ x E x E, defined by

(C,f,g) € LEXPE iff
YoeXc: (C, o, f, g(a)) € LEXP or (C, o, f, g(a)) €e&EXP,

which is a universal quantification over the disjunction of a ¥;-formula and
a Hg—formula, which gives a Hg—formula. Intuitively,

(C, f,g9) € LEXPE iff g = wp[C](f),

11.5 FINITENESS

i.e. if g(0) is a non-strict lower bound on the expected value of f measured
in the final states reached after executing C on input o, for all inputs o.

An analogous lifting of REXP to REX Py would yield a [19—formula. It
would be an interesting direction for future work to obtain lower bounds on
the hardness of LEX P and REX P as well. However, we strongly conjecture
that LEXPE and REX Py are l‘[g— and Hg—complete, respectively, although we
did not investigate LEXPg and REX Py, as part of this thesis.

Under the working hypothesis that LEXPE and REX Py, are I19-complete
and Hg—complete, respectively, we would still be left with the situation that
obtaining an upper bound on preexpectations is strictly harder than obtain-
ing a lower bound, even though from a reasoning perspective the oppo-
site should be expected, as we have extensively discussed in Section 5.2.
We are not aware of any solution or explanation to this complexity mis-
match, and this issue is thus an interesting, though intricate, direction for
future work. We expect that resolving this complexity discrepancy might
give new insights either into the computational complexity of probabilistic
program analysis or into new techniques for reasoning about probabilistic
programs (or both).

11.5 FINITENESS

PART from approximating preexpectations, we also consider the question

whether preexpectations are finite. This problem is closely related to
the definedness of covariances (see Chapter 13) and also to the finiteness of
expected runtimes (see Chapter 12). The finiteness problem is formalized by
the problem set FEXP:

DeriniTioN 11.6 (Finiteness Problem for wp [KKM18]):
The problem set FEXP c pGCLR X Q E is defined as

(C,o,f) € FEXP ifft wp[C](f)(o) < oo.

Since deciding whether a given rational number is an upper bound of a pre-
expectation is X)-complete (cf. Theorem 11.4), it is not surprising that de-
ciding finiteness of preexpectations is also in X9, since we just have to exis-
tentially quantify an upper bound. In fact, it is Zg—complete as well.

Tuaeorem 11.7 (Hardness of Finiteness of wp [KKM18]):
FEXP is X9-complete.

Proof. For proving the membership FEXP € Zg, consider the following:

(C,0,f) € FEXP
iff wp[C](f)(0) < oo

277

278

APPROXIMATING PREEXPECTATIONS

iff Jq: wp[C](f)(o) <q
iff dgq: (C,o0,f,q) e REXP (Definition 11.2)
implies FEXP € Zg (Theorem 11.4, the above is a Eg—formula)

The proof that FEXP is Zg—hard is deferred to Lemma 12.7, because we
use a reduction from the positive almost-sure termination problem (Defini-
tion 12.5), which is studied in detail in the next section.

By showing FEX'P € XY and by (for now just) believing that FEXP is £

hard, we get that FEXP is X9-complete.

11.6 CONCLUSION AND FUTURE WORK

UR findings on the computational hardness of approximating preexpec-

tations are summarized in Figure 11.3. Besides resolving the discrep-
ancy in the difficulty of handling lower and upper bounds from a reasoning
perspective on the one hand and from the computational hardness perspec-
tive on the other hand (see Section 11.4), we would like to mention three
more directions for future work.

One direction would be to study the effect of reintroducing nondetermin-
ism, i.e. considering a potentially non—-tame program C. One would then
study the hardness of approximating wp [C] (f) and contrast it with the hard-
ness of approximating awp [C] (f) (cf. Definition 4.5). We conjecture that all
of our results are preserved under both interpretations of nondeterminism,
although there is also evidence that the complexity under angelic nondeter-
minism is different from the complexity under demonic nondeterminism, at
least for questions of probabilistic termination [Cha+16].

Another direction for future work would be to study the impact of con-
ditioning (see Chapter 8) on approximating preexpectations. We have cur-
rently no strong conjecture as to whether approximating conditional exp-
ected values is computationally harder or not. However, Ackerman, Freer,
and Roy have shown that the operation of conditioning itself already intro-
duces undecidability: Conditioning a computable random variable X with
computable distribution P(X) on another random variable Y with computable
distribution P(Y), yields a new random variable with non—computable distri-
bution P(X|Y) [AFR11]. We view this as weak evidence that approximating
conditional expected values might in fact be computationally harder than
approximating non—conditional ones.

A final direction for future work would be to study the hardness of ap-
proximating weakest liberal preexpectations. Thereby, we would understand
whether reasoning about partial correctness is really easier than reasoning
about total correctness. In the next chapter, we study computational hard-
ness aspects of analyzing the termination behavior of probabilistic programs.

11.6 CONCLUSION AND FUTURE WORK

0
Z2

with access to
H-oracle:

semi-decidable

0
X:1

semi-decidable

UH

FEXP

REXP

LEXP

0
A1

decidable

EXP

UH

not

semi-decidable;

even with
access to

‘H-oracle

Figure 11.3: The complexity landscape of approximating weakest preexpectations.
All problems are complete for the respective level at which they lie in
the arithmetical hierarchy.

279

DECIDING PROBABILISTIC TERMINATION

lyze an algorithm for. Almost a century ago, as early as 1920, Emil

Leon Post had already anticipated the impossibility of finding effec-
tive procedures for perfoming such an analysis for nonprobabilistic algo-
rithms [Pos04]. Soon after the advent of Alonzo Church’s and Alan Mathison
Turing’s seminal undecidability results on the Entscheidungsproblem [Chu36;
Tur37] — a decision problem posed by David Hilbert in 1928, which Turing
then reduced to the termination problem for Turing machines —, scholars
started to explore degrees of unsolvability for different decision problems re-
lated to the termination of algorithms. In this chapter, we explore the degree
of unsolvability of probabilistic termination.

In Chapter 6, we presented methods for reasoning about two notions of
probabilistic termination: almost-sure termination and positive almost—sure
termination. The former describes that a probabilistic program terminates
with probability 1, the latter that it terminates within finite expected time.
In particular, we have presented in Chapter 7 the ert calculus for reason-
ing about expected runtimes. Naturally, this calculus can be used to reason
about positive almost-sure termination. We also saw that reasoning about
positive almost-sure termination using the induction rule of the ert calculus
is conceptually rather simple (see Section 7.6.2), whereas reasoning about
almost—sure termination appears much more involved (see Section 6.2).

TERMINATION is one of the most elementary properties one can ana-

In this chapter, we will classify precisely and rigorously how hard it really
is to decide almost-sure termination and positive almost-sure termination
of probabilistic programs. Similarly to the situation for approximating pre-
expectations (see Chapter 11), we will find to our surprise that — at least
for the universal versions of the probabilistic termination problems — the
opposite of what we described above is true from a computational hard-
ness perspective: Though both algorithmically intractable, deciding univer-
sal positive almost—sure termination is strictly harder than deciding univer-
sal almost-sure termination. Furthermore, we will argue based on our find-
ings why perhaps positive almost-sure termination and not almost-sure ter-

mination should be considered the proper notion of probabilistic termination.

Recall from Chapter 11 that — in order to keep our analyses simple —
we restrict pGCL in this entire part of the thesis to tame probabilistic pro-
grams (see Definition 3.1 £.) whose only source of randomness are binary
probabilistic choices, i.e. we neither consider random assignments, nor do
we consider nondeterminism.

281

12

282

DECIDING PROBABILISTIC TERMINATION

121 ALMOST-SURE TERMINATION

N order to investigate the complexity of deciding almost-sure termina-

tion, we define two sets: AS7T, which relates to almost—sure termination
of a probabilistic program on a specific input, and UAST, which relates to
almost—sure termination on all valid inputs:

DeriNiTION 12.1 (A.-s. Termination Problem Sets [KK15b; KKM138]):
The sets AST Cc pGCL® Y. and UAST cC pGCL are defined as

(C,0) € AST iff wp [C] (1)(o) = 1, and
C € UAST iff YoeXc: (C,0) € AST .

As a first hardness result on probabilistic termination, we establish that de-
ciding almost-sure termination on a specific input is [1)-complete:

Tueorem 12.2 (Hardness of A.—s. Termination [KK15b; KKM18]):
AST isT1-complete.

Proof. For proving AST eT19, we show AST <., EXP. For that, consider
the following reduction function r: AST <, EXP which takes a probabilis-
tic program C and a state ¢ as its input and computes r(C, 0) = (C, 0, 1, 1).

Correctness of the reduction. Recall that wp [C] (1) (o) is precisely the prob-
ability of C terminating on input o. Thus

(C,0,1,1) € EXP iff (Q,0) € AST

and therefore r: AST <, EXP. Since EXP is [19-complete by Theorem 11.5,
it follows that AST € TI.

It remains to show that AST is Hg—hard. For that, we reduce the Hg—
complete universal halting problem (see Theorem 10.8 a.) to AST by means
of the reduction function r": UH <, AST. r’ takes a deterministic program
Q as its input and computes the pair (C’,), where o is some fixed arbitrary
valid input for C’ and C’ is the probabilistic program

i:=03

{c:=0}[12]{c:=1}3

while(c=1){
ii=i+1%
{c:=0}[12]{c:=1}

I

5Q(ga(i))

12.1 ALMOST—SURE TERMINATION

where SQ(gQ(i)) is a deterministic program that simulates the deterministic
program Q on input gu(i), and go: IN — X, is some computable enumera-
tion of valid inputs for Q.

Correctness of the reduction. The loop in C’ establishes a geometric distribu-
tion with parameter 12 on i and hence a geometric distribution on all valid
inputs for Q. After the while loop, the program Q is simulated on the prob-
abilistically sampled input go(i). The entire program C’ then terminates
almost—surely on any arbitrary input o, if and only if the simulation of Q ter-

minates on every input. Thus Q € YH if and only if (C’, 0) € AST.

While for deterministic programs there is a complexity gap between the
halting problem and the universal halting problem (X-complete vs. T1)-
complete, see Figure 10.4), we establish that there is no such gap for almost—
sure termination, i.e. UAST is exactly as hard to decide as AST:

Tueorem 12.3 (Hardness of Universal A.—s. Term. [KK15b; KKM138]):
UAST isT1)-complete.

Proof. For proving the membership UAST € I19, consider that, by Theo-
rem 12.2, there exists a decidable relation R, such that

(C, 0) e AST iff Vy13y2: (yl,yz, C, O') eR.
By that we have that
C € UAST iff YoeXcVyidy: (w1, v2,C 0) €R

which is a [19-formula and therefore UAST € T19.

It remains to show that UAST is [19-hard. We do this by reducing the
I19-complete almost-sure termination problem AS7 (see Theorem 12.2) to
UAST as follows: On input (C, o) the reduction function r: AST <, UAST
computes a probabilistic program C’ that first initializes all variables accord-
ing to 0 and then executes C. This reduction is clearly correct.

As mentioned above, Theorem 12.3 stands in some contrast to the corre-
sponding results for deterministic programs. With deterministic programs,
a Zg—formula expressing their termination on a specified input is prepended
with a universal quantifier over all valid inputs, yielding a [19—formula. The
reason for the missing complexity gap between non-universal and universal
almost—sure termination is that non-universal almost-sure termination is al-
ready a I19-property, basically due to the inherent universal quantification
over all resolutions of probabilistic choices. Prepending this I19—formula
with another universal quantifier over all valid inputs does not increase the
complexity, as two universal quantifiers can computably be contracted to a
single one, yielding again a I[19-formula.

283

284 DECIDING PROBABILISTIC TERMINATION

122 POSITIVE ALMOST-SURE TERMINATION

TOWARDS analyzing the complexity of deciding almost-sure termination,
we get from combining Definition 6.1 and Theorem 7.5, and from re-
stricting to tame programs that

ert [C] (0)(0) = Z 1 - Zq , where

i=1 (L,7,n,0,17,q)eK<

K< = {(l,T,n,G,q,q)|(C,U,O,e‘,e,1> H (l,r,n,e,q,q),n<i}-

Since we will need to approximate expected runtimes, we will now construct
computable approximations of expected runtimes, namely by restricting the
maximum number of allowed computation steps.

DErINITION 12.4:
Let C € pGCL and o € X¢. Then the expected runtime of executing C on

input o for at most k steps, denoted ert=F [C] (o), is defined as

k

et [ClO)(0) = Y [T - Y g ,

i=1 <l, T,n,0, r],q>eK<i

where K<' as above. Due to the Kleene Normal Form Theorem [Kle43],
ert=k [C] (0) (o) is computable. Moreover, note that

ert [C] (f)(0o) = sup ertsk [C] (0)(o).
kelN

In order to investigate the complexity of deciding positive almost-sure termi-
nation, we define two sets: RPAS7, which relates to positive almost—sure ter-
mination of a probabilistic program on a specific input, and Y PAST , which
relates to positive almost—sure termination on all valid inputs:

DeriniTiON 12.5 (Positive A.—s. Term. Problem Sets [KK15b; KKM138]):
The sets PAST C pGCL® Y. and UPAST C pGCL are defined as

(C,0) € PAST iff ert [C] (0)(0) < oo, and
C € UPAST iff VYVoeXc: (C,0) € PAST .

Notice that both PAST c AST and UPAST c UAST hold.

We now investigate the computational hardness of deciding positive almost—
sure termination: It turns out that deciding PAST is Zg—complete. Thus,
PAST becomes semi—decidable when given access to an H-oracle whereas

12.2 POSITIVE ALMOST—-SURE TERMINATION

AST does not. We establish £)-hardness by a reduction from /#. The impli-
cations of this reduction are rather counterintuitive: the reduction function
effectively transforms each deterministic program that does not terminate on
all inputs into a probabilistic program that does terminate within an expected
finite number of steps.

Tueorem 12.6 (Hardness of Positive A.—s. Term. [KK15b; KKM18]):
PAST is X5-complete.

Proof. For proving the membership PAST € XY, consider the following:

(C,0)e PAST
iff ert[C](0)(0) < o0 (by Definition 12.5)
iff dc¢: ert[C](0)(0o) < ¢
iff de: iup ert=F [C] (0)(0) < ¢ (by Definition 12.4)
€N
iff 3cve: erts [C](0)(0) < ¢
implies PAST ¢ Zg (the above is a Eg—formula)

It remains to show that PAST is Zg—hard. For that, we reduce the Zg—
complete complement of the universal halting problem (see Theorem 10.8 B.)
UH to PAST by the reduction function r(Q) = (C, o), where o is an arbitrary
valid input for C and C is the probabilistic program

c:=13i:=05x:=03term :=03
initQ(go(i))3
while(c=1){
stepQs
if (term=1){
Cheer(x)
i:=i+1g5term :=03%
initQ(gq(i))3
Jelse{skip}
x:=x+13
{c:=0}[12]{c:=1}
}

where InitQ(gQ(i)) is a deterministic program that initializes a simulation
of the deterministic program Q on input gg(i) (recall the enumeration gg
from Theorem 11.4), StepQ is a deterministic program that does one single

285

286

DECIDING PROBABILISTIC TERMINATION

Ml |

last cheering on termination of Q on input ggo(i —1)

~

Figure 12.1: The cheering behavior of the program C from the proof of Theorem
12.6 in case that program Q does not terminate on every input. Or-
ange bars correspond to loop iterations with cheering. The expected
runtime of C corresponds to the integral over the bars. gg(i) is the in-
put with minimal 7, such that Q does not terminate on gp(i). Conse-
quently, go(i — 1) is the input with maximal i, such that Q terminates on
all inputs gg(0), ..., go(i — 1). Cheering occurs only finitely often, so the
integral over the bars converges to a finite value.

(further) step of that simulation and sets term to 1 if that step has led to
termination of Q, and Cheer(x) is a deterministic program that executes 2*
many effectless computation steps. We refer to this as ,cheering“.!

Correctness of the reduction. Intuitively, the program C starts by simulat-
ing Q on input go(0). During the simulation, it — figuratively speaking —
gradually looses interest in further simulating Q by tossing a coin after each
simulation step to decide whether to continue the simulation or not. In vari-
able x, the program C counts the number of coin tosses it has made.

If eventually C finds that Q has terminated on input g5(0), it ,,cheers” for
a number of steps exponential in the number of coin tosses that were made
so far, namely for 2* steps. C then continues with the same procedure for the
next input go(1), and so on.

The variable x keeps track of the number coin tosses, and thus in effect also
of the number of loop iterations (starting from 0). The x—th loop iteration
takes place with probability 1/2+.

Notice that the simulation of a single step of the deterministic program Q,
i.e. the program StepQ, requires (in our runtime model) at most a number
linear in the number of instructions in program Q. Since the size of program
Q is fixed in the construction of program C, we consider the time required
to execute Step(Q to be constant.

1 The program C cheers as it was able to prove the termination of Q on input go(i).

12.2 POSITIVE ALMOST—-SURE TERMINATION

MILInL

cheering occurs infinitely often

Figure 12.2: The cheering behavior of the program C from the proof of Theorem 12.6
in case that program Q does terminate on every input. Orange bars cor-
respond to loop iterations with cheering. The expected runtime of C cor-
responds to the integral over the bars. Cheering occurs infinitely often,
so the integral diverges to co

One loop iteration then consists of a constant number ¢; of steps in case
Q did not terminate on input go(7) in the current simulation step. Such an
iteration therefore contributes ¢1/2* to the expected runtime of C. In case Q
did terminate, a loop iteration takes a constant number ¢, of steps plus 2*
additional ,cheering” steps. Such an iteration therefore contributes

X
% = ;—i +1>1
to the expected runtime of C. Overall, the expected runtime ert [C] (0)(0)
roughly resembles a geometric series with exponentially decreasing sum-
mands. However, for each time the program Q terminates on an input, a
summand of the form c2/2*+1 appears in this series. There are now two cases:

A. Q € UH, so there exists some valid input o with minimal i such that
go(i) = 0 on which Q does not terminate. This situation is depicted
in Figure 12.1. Since Q € UH, summands of the form ¢/>* + 1 appear
only i — 1 times in the series and therefore, the series converges—the
expected runtime is finite, so (C, o) € PAST .

B. Q € UH, so Q terminates on every input. This situation is depicted
in Figure 12.2. Since Q ¢ U, summands of the form c/>* + 1 appear
infinitely often in the series and therefore, the series diverges—the ex-
pected runtime is infinite, so (C, o) ¢ PAST .

We now have the prerequisites to present the missing part of the proof of
Theorem 11.7: We show that deciding FEXP, i.e. the question whether a pre-

287

288

DECIDING PROBABILISTIC TERMINATION

expectation computed by a probabilistic program for a given input is finite,
is Zg—hard by reduction from the positive almost—sure termination problem.

Lemma 12.7 (Hardness of Finiteness of wp [KKM138]):
FEXP is Eg—hard.

Proof. We reduce the):g—complete positive almost—sure termination prob-
lem PAST (see Theorem 12.6) to FEX'P by the reduction function

r(C,0) = (C,o’,v),
where ¢’ is an arbitrary valid input for C’ and C’ is the probabilistic program
c:=1%k:=03

while(c=1){
k:=k+1
{c:=0}[12]{c:=1}

I

v i=wp¥ [C] (1)(0)-k-2F.

Recall that wp=F [C] (1)(0) is the probability that C terminates on input o
after exactly k computation steps. For any concrete k, this is clearly com-
putable (see also Definition 11.1 B.).

Correctness of the reduction. Regardless of its input ¢’, the while loop of
program C’ establishes a geometric distribution on variable k such that the
probability that k = i is given by 1/2/. This while loop terminates almost-
surely. Thereafter, the program computes the assignment to v. Due to the
geometric distribution on k, the program in effect stores for any i € IN the
value wp= [C] (1) () -i - 2" in variable v with probability 1/2. The expected
value of variable v is thus given by

iwpﬂ‘ [C] (1)(0) i -2
i

1=0

Y wpT [C](1)(0)-i
i=0

ert [C] (0)(0) .

We see that the expected value of v after executing C’ on an arbitrary input
equals exactly the expected runtime of C on input ¢ and this expected value
is infinite if and only if the expected runtime is infinite. Thus, we have

(C,0) € PAST iff r(C,0) = (C),0’,v) € FEXP

and hence r: PAST <, FEXP.

12.2 POSITIVE ALMOST—-SURE TERMINATION 289

It is noteworthy that — as discussed in Section 7.2 — we cannot just an-
notate the given program C with a runtime counter and determine the ex-
pected value of that runtime counter. Therefore, we need the more involved
construction presented in the proof of Lemma 12.7.

Coming back to termination problems, the last problem we study is univer-
sal positive almost—sure termination. In contrast to the non—positive version,
we do have a complexity gap between non—universal and universal positive
almost-sure termination. We will establish that YPAST is T13-complete and
thus strictly harder to decide than UAST. We do this by a reduction from
COF, the complement of the cofiniteness problem (see Theorem 10.9):

Tuaeorem 12.8 (Hardness of Univ. Pos. A.—s. Term. [KK15b; KKM18]):
UPAST is I15-complete.

Proof. By Theorem 12.6, there exists a decidable relation R, such that
(C,0) € PAST iff Iy Vyr (W v, Co)eR.
Therefore UPAST is definable by
C € UPAST iff VoeXcdyi Vo (¥1,92,C0) e R,

which is a Hg—formula and therefore UPAST € 1_1(3).

It remains to show that UPAST is Hg—hard. For that we reduce the Hg—
complete complement of the cofiniteness problem (see Theorem 10.9 B.) to
UPAST using the following reduction function r: r takes a deterministic
program Q as its input and computes the probabilistic program C given by

c:=15x:=05term :=03%
initQ(gq(i))3
while(c=1){
stepQs
if (term=1){
Cheer(x)
i:=i+15term :=03
initQ(go(i));3
Jelse{skip}

where i assumed to range over the natural numbers, InitQ(i) is a determin-
istic program that initializes a simulation of the program Q on input gg(7)

290

DECIDING PROBABILISTIC TERMINATION

(recall the enumeration g from Theorem 11.4), StepQ is a deterministic pro-
gram that does one single (further) step of that simulation and sets term to
1 if that step has led to termination of Q, and Cheer(x) is a deterministic
program that executes 2* many effectless computation steps.

Note that program C is the same program as in the proof of Theorem 12.6
with one exception: The variable 7 is not initialized with 0, but instead left
uninitialized. Thus, for every input o, the program C skips all inputs for Q
(in the order given by gp) up to the o(i)-th input. After that, program C
simulates Q on all remaining inputs starting from input gQ(J(i)).

This ability to skip any number of inputs for some input state ¢ is crucial
for the correctness of the reduction. Intuitively, program C terminates in
finite expected time on all inputs, i.e. C € UPAST, if it is impossible to
find an input state o (and thus a value ¢ € IN determined by o(7)) such that
executing C on ¢ skips all inputs on which Q does not terminate. Otherwise,
C (when executed on such an input o) keeps simulating terminating runs of
Q and thus ,cheers” infinitely often. In this case, the expected runtime of C
on input ¢ becomes infinite, i.e. C ¢ UPAST .

Correctness of the reduction. COF can alternatively be defined as

Qecor iff {a €Xp | (Q,0) eﬁ} is infinite .
There are now two cases:

1. Q ¢ COF. Then there are only finitely many inputs on which Q does not
terminate. Say € € IN is a minimal value such that Q does not terminate
on input go(¢), i.e. the program Q terminates on all inputs gg(j) with
j > €. Now, consider the execution of program C on some input o
with ¢(i) > £. Then the ,cheering” steps in the if-branch of the while
loop of C are executed infinitely often. Consequently, the runtime of C
on that input ¢ is infinite (analogously to the proof of Theorem 12.6).
Hence, C ¢ UPAST .

2. Q € COF. Then there are infinitely many inputs on which Q does not
terminate. For every input o of C (and thus regardless of the number
of skipped inputs for Q, i.e. the value ¢ that is initially assigned to
variable i), the variable i will eventually be incremented to some value
j > € such that Q does not terminate on input go(j). From this point
on, the ,cheering” steps in the if-branch of the while loop of C are
not executed anymore. Consequently, for every input o, the expected

runtime of C on o is finite. Hence, C € UPAST .

Our hardness results are summarized in Figure 12.3. In the next section, we
discuss possible implications and interpretations of our results.

12.2 POSITIVE ALMOST—-SURE TERMINATION

0
EZ

with access to
H-oracle:

semi-decidable

0
Z1

semi-decidable

PAST

LEXP

UPAST

AST

0
Al

decidable

o
o

UAST

XY'P
UH

not

semi-decidable;

even with
access to

UH-oracle

not

semi-decidable;

even with
access to

H-oracle

Figure 12.3: The complexity landscape of deciding probabilistic termination. All
problems are complete for the respective level at which they lie in

the arithmetical hierarchy.

291

292

DECIDING PROBABILISTIC TERMINATION

123 ON THE PROPER NOTION OF TERMINATION

HAT should be the probabilistic analogon to termination of a program?

Termination with probability 1? Or termination within finite expected
time? In this section, we will argue why perhaps the latter should be consid-
ered the proper notion of probabilistic termination, even though our argu-
ments are more of a philosophical and informal nature.

We have seen in Chapter 10, in particular Figure 10.4, that there is a jump
in complexity when moving from the non-universal halting problem for de-
terministic programs to its universal variant. More specifically, we go from
Z(l)—complete, which is not decidable but semi-decidable, to Hg—complete,
which is not even semi-decidable.

With probabilistic termination, we have two different situations: For al-
most-sure termination, which is often considered the probabilistic counter-
part to deterministic termination, there is no complexity jump when com-
paring the non-universal to the universal variant. Both variants are IT9-
complete, which seems somewhat counterintuitive.

For positive almost-sure termination, we have a different situation: when
moving from the non—universal to the universal variant, there is a complexity
jump, namely from Eg—complete, which is not decidable but semi-decidable
when having access to an oracle for the halting problem, to Hg—complete,
which is not semi-decidable, even if we did have access to an oracle for
the halting problem.

In Figure 12.4, we have summarized the different complexity jumps. We
can see that the complexity jump that presents itself for the positive almost—
sure termination problem very closely resembles the complexity jump of the
halting problem for deterministic programs — everything is just shifted up
one level in the arithmetical hierarchy. The missing jump for the almost—sure
termination problem, on the other hand, appears not to fit in as naturally
into the diagram. We thus believe that the problem of (universal) positive
almost-sure termination is maybe a more natural probabilistic analog to the
(universal) halting problem for deterministic programs.

Another argument in favor of preferring the notion of positive almost-sure
termination is concerned with the quantifier ordering and the type of objects
that are quantified: For deterministic programs, we can define the halting
problem by existentially quantifying over a witness computation length and
then running the (unique) computation of at most that length on a given in-
put. For the universal halting problem, we additionally universally quantify
over all valid inputs.

Somewhat analogously, for probabilistic programs, we can define the prob-
lem of positive almost—sure termination by existentially quantifying over a
witness expected computation length, then running all computations on a
given input (captured by a Y—quantifier), and seeing whether their accumu-
lated expected computation length stays below the witness expected com-

12.3 ON THE PROPER NOTION OF TERMINATION

0
E2

with access to
H-oracle:

semi-decidable

0
X:1

semi-decidable

UPAST

no jump .-7vc-

not

semi-decidable;

even with
access to

UH-oracle

not

semi-decidable;

even with
access to

H-oracle

Figure 12.4: Complexity jumps that do or do not occur when moving from non-uni-

versal to universal termination problems.

293

294

DECIDING PROBABILISTIC TERMINATION

putation length. For the universal version of the problem, we additionally
universally quantify over all valid inputs.

A third argument pro positive almost—sure termination stems more from a
user perspective: For a user, the expected runtime of an algorithm might be
more relevant than its termination probability. After all, an algorithm whose
runtime can at least be estimated to some finite value is likely more useful
in practice than an algorithm for which one has to expect to wait forever until
the algorithm finishes its computation (even if it does so with probability 1).
Along this line of thought, the expected runtime of an algorithm is also a
key notion in defining probabilistic complexity classes such as ZPP — the
class of decision problems that can be decided by a probabilistic program
that always gives the correct answer within expected polynomial time [Gil77].

124 FUTURE AND RELATED WORK

HERE are very few results on computational hardness in connection with
Tprobabilistic programs in general, like non—-semi—decidability results for
probabilistic rewriting logic by Bournez & Garnier [BG05] and decidability
results for restricted probabilistic programming languages by Murawski &
Ouaknine [MOO05]. Precise classifications of the computational hardness of
almost—sure termination, however, have received little attention. As a no-
table exception, Tiomkin established that deciding almost-sure termination
of certain concurrent probabilistic programs is in ITJ [Tio89]; a result which
is in accordance with what we have established in the absence of concurrency.

As for the applicability of the work presented in this chapter, our results
on the hardness of deciding almost—sure termination have been utilized by
Breuvart & dal Lago [BDL18]. They define a type system for a probabilistic
A-calculus in which type derivations correspond to termination probabili-
ties of A-terms. They exploit our Hg—completeness result to show that it is
impossible to define a type system in which the exact termination probability
of a A-term is provable by a finite derivation.

A direction for future work would be to study the effect of reintroduc-
ing nondeterminism. For instance, will positive almost-sure termination
still)-complete under angelic and/or demonic nondeterminism? We con-
jecture that all of our results are preserved under both interpretations of
nondeterminism, although there is also evidence that the complexity of de-
ciding probabilistic termination under angelic nondeterminism is different
from the complexity under demonic nondeterminism [Cha+16].

The most interesting2 source for future insights, however, is the current
mismatch between the conceptual complexity of reasoning about and the arith-
metical computational complexity of deciding probabilistic termination: While
universal almost-sure termination is strictly easier to decide than universal

2 According to the author, that is.

12.4 FUTURE AND RELATED WORK

positive almost—sure termination, reasoning about the former seems much
more involved than reasoning about the latter (compare e.g. Theorem 6.8
with Theorem 7.16). In this thesis, we were neither able to resolve this
enigma nor develop any intuition on why this complexity discrepancy ex-
ists. We do, however, strongly believe that resolving this mystery will yield
either a more fine—grained view on the computational complexity of proba-
bilistic program analysis or lead us to new techniques for reasoning about
probabilistic programs (or both).

295

APPROXIMATING COVARIANCES

measures of their correlation. If the covariance of f and g is positive,

then f and g tend to be monotonically correlated, i.e. high values of f
tend to correspond with high values of g. If the covariance is negative, on
the other hand, then f and g tend to be antitonically correlated. Many other
measures are ultimately built up on the notion of covariance, e.g. the corre-
lation coefficient, the variance, or the standard deviation. Applications of the
covariance range from biology over finance to meterology [Wikd].

In this chapter, we study the hardness of approximating the covariance
of two postexpectations f and g (read: random variables) under the distri-
bution [C], obtained by executing a probabilistic program C on input ¢
(cf. Definition 3.8). Like we did for approximating preexpectations (read: ex-
pected values; cf. Chapter 4) in Chapter 11, we will give hardness results
for approximating covariances from below, from above, and for deciding
whether a given rational is equal to the sought-after covariance.

We show that obtaining bounds on covariances is computationally more
difficult than for preexpectations. In particular, we prove that computing
upper and lower bounds on covariances is both Eg—complete, thus not com-
putably enumerable. In contrast to that, lower bounds on preexpectation are
computable enumerable, thus preexpectations can be computably approxi-
mated from below, whereas covariances can not. We also show that deter-
mining the precise values of covariances is in Ag and both Zg— and Hg—hard.
The covariance problem is thus a problem that lies ,properly in AY. Fi-
nally, we show how our findings carry over to approximating the variance of
a single postexpectation.

The textbook definition of the covariance of two random variables f and g
under distribution y (see e.g. [ADDO00, Definition 4.10.10, Lemma 4.10.6]
or [Klel3, Definition 5.1]) is given by

[l [l o ool
[r-gdu= [ran | gan,

provided that all integrals are finite. Note that jhdﬂ is the expected value of
random variable h under distribution y. Recalling that the wp transformer
yields precisely expected values (see Section 4.1), we obtain the following
definition of covariance in the context of probabilistic programs:

T HE covariance of two random variables f and g is one of the most basic

Cov(f, g)

297

13

298

APPROXIMATING COVARIANCES

DeriniTioN 13.1 (Covariance [KKM16; KKM18]):
Let C € pGCL, 0 € £, and f,g € E. Then the covariance of f and g after
executing C on o is given by

Covcy, (f, 8) = wp[C] (f-g) (o)
-wp [C] (f)(0)-wp [C] (g)(0),

if wp[C] (f-¢)(o), wp[C] (f)(o), and wp [C] (g)(o) are finite; other-
wise, the covariance is undefined.

Since obtaining bounds on undefined covariances is not meaningful, we first
need to deal with the definedness problem.

13.1 DEFINEDNESS

INcE definedness of the covariance can generally not just be assumed bona

fide, we first address the hardness of deciding whether a covariance is de-
fined. According to Definition 13.1, the covariance Cov|c)_(f, g) is defined if
and only if all preexpectations occurring on the right-hand-side of this defi-
nition are finite. Hence, we are concerned with the following problem set:

DeriniTION 13.2 (Definedness of Covariance [KKM138]):

Analogously to Definition 11.2, in order to pair probabilistic programs
with valid inputs and a countable space of pairs of computable postex-
pectations, we define the set

PGCLeY @ E®E = {(C,0, f,8)| CepGCL, o€Xg,
f,8:2c—>Qs0 f.8 computable}.

The problem set DCOVAR C pGCL® X ®EQ®[E is defined as

(C,0,f,8) € DCOVAR iff
wp [C] (f)(0) < oo and wp [C] (g)(0) < oo
and wp[C] (f -g)(0) < oo.

The definition of DCOVAR is a conjunction of assertions that an expected
value of a random variable is finite. As a consequence of the hardness of
deciding whether a preexpectation is finite (Theorem 11.7), we obtain the
following result on the hardness of deciding definedness of covariances:

Tueorem 13.3 (Hardness of Definedness of Covariances [KKM16]):
DCOVAR is £-complete.

13.2 BOUNDS ON COVARIANCES

Proof. By Theorem 11.7, there is a decidable relation F such that
(C,0,f)e FEXP iff wp [C] (f)(0) < oo (by Definition 11.6)

iff Ay Vy2: 91,92, C oo, f) € F (1)
Now consider the following:
(C,0o,f,g) e DCOVAR
iff wp [C] (f) (o) < oo (by Definition 13.2)

and wp[C](g)(0) < o
and wp[C](f-g)(0) < o

iff Ay Vy: (y1,9v2,C,0,f) € F (by t above)
and 3y VYy,: (¥,v5,C 0,9 € F
and 3p'Vyy: (91,9,,Coo f-g) € F

iff Iy Iy IV Yy Vs (91,92,Coo f) € F
and (y;,v5,C, 0,8 € F
and (y1,3;,C 0, f-g) € F

implies DCOVAR € Zg (the above is a Eg—formula)

It remains to show that DCOVAR is Zg—hard. For showing this, we reduce
the Eg—complete problem FEXP (see Theorem 11.7) to DCOVAR by means
of the reduction function r(C, o, f) = (C, o, f, 0).

Correctness of the reduction. Consider the following:

(C,0, f) € FEXP

iff wp[C](f)(o) (by Definition 11.6)
iff wp [C] (f)(a and 0 < oo and 0 < oo
iff wp [C] (f) (o) (by strictness, Theorem 4.14 A.)

and wp [[Cﬂ (0)(0) < oo and wp[C](0)(0) < oo
it wp[C](f)(0) < o
and wp[C](0)(c) < 0 and wp[C](f-0)(c) < oo
iff (C,o,f,0) € DCOVAR (by Definition 13.2)

Thus, we have that
(C,o,f) e FEXP ifft r(C,0,f) € DCOVAR
and hence r: FEXP <, DCOVAR. Q.E.D.

13.2 BOUNDS ON COVARIANCES

Now that we know the computational complexity of deciding the defined-
ness of a covariance, we can study the hardness of approximating covari-

299

300

APPROXIMATING COVARIANCES

ances. Analogously to our studies on the hardness of approximating preex-
pectations in Chapter 11, we define three problem sets: one for lower bounds,
one for upper bounds, and one for the exact value of Cov(cy_(f,).

DEeriniTION 13.4 (Approx. Prob. for Covariances [KKM16; KKM138]):
The three sets LCOVAR, RCOVAR,COVAR C pGCLR® Y QERIE x Q are
defined as

(C,o,f,89) € LCOVAR iff
(C,0,f,8g) € DCOVAR and gq < Covic) (f,8),

(C,o,f,89) € RCOVAR iff
(C,o,f,8) € DCOVAR and g > Covc] (f,8),

(C,0,f,9,9) € COVAR iff
(C,0,f,8g) € DCOVAR and q = Covcy (f,8)-

Thus, for instance (C, o, f, g, q) € LCOVAR if the covariance of f and g after
executing C on o is defined and g is a strict lower bound on that covariance.

The first fact we establish on the computational hardness of approximat-
ing covariances is that approximating lower bounds is ©5-complete:

Tueorem 13.5 (Hardn. of Lower Bounds on Cov. [KKM16; KKM138]):
LCOVAR is T5-complete.

Proof. The proof of the membership LCOVAR € X is very similar to the
membership proof in Theorem 11.4 and thus omitted here. For more details,
refer to [KKM18].

For proving the X9-hardness of LCOVAR we reduce the complement of
the almost-sure termination problem AST — which as a consequence of The-
orem 12.2 and Corollary 10.3 is £)-complete — to LCOVAR. Consider for
that the reduction function r: AST <, LCOVAR withr(C,0)=(C’,0,1,1,0),
where C’ is given by

{skip} [12]{C} .

Correctness of the reduction. First, note that by the feasibility property (The-
orem 4.15), we have that wp [C’] (1) (o) = wp [C] (12)(0) must be bounded
from above by 1 and is hence finite. Thus, the covariance Cov[[cf]]v(l, 1) is
defined and given by

wp [C'] (12)(0)—wp [C'] (1)(0)?* (by Definition 13.1)
wp [C'] (1) (0)—wp [C] (1)(0)? .

COV[[C']]G (1, 1)

13.2 BOUNDS ON COVARIANCES

Figure 13.1: Plot of the termination probability of a program C’ on input ¢ against
the resulting variance. The curve is the one of the polynomial x — x2.

Recall that wp [C’] (1) (o) is precisely the probability of C’ terminating on
input 0. Covcy, (1,1)= Varjcr, (1) is hence the variance of the termination
probability of C’. The result of plotting this termination probability against
the termination variance is shown in Figure 13.1. We observe that

Coviery, (1, 1) = wp[C' (1)(0) ~wp [C'] (1)(0)? > 0

holds iff C’ terminates neither with probability 0 nor with probability 1. But
since C’ terminates by construction at least with probability 1/2, we have here
that Cover (1, 1) > 0 iff C’ terminates with probability less than 1, which is
the case iff C terminates with probability less than 1. Thus,

r(C,o0) = (C’,0,1,1,0) € LCOVAR iff (C,0) € AST
and therefore r: AST <., LCOVAR. Q.E.D.

Next, we show that approximating upper bounds for covariances is exactly
as hard as approximating lower bounds, namely ¥)-complete:

TueoreMm 13.6 (Hardn. of Upper Bounds on Cov. [KKM16; KKM18]):
RCOVAR is £9-complete.

Proof. Again, the proof of the membership RCOVAR € ¥ is very similar
to the membership proof in Theorem 11.4 and thus omitted here. For more
details, refer to [KKM138].

For proving the X9-hardness of RCOVAR, we reduce the X9-complete
AST to RCOVAR. Consider the reduction function r(C, o) = (C’, 0, 1, 1, 1/4),
with C’ being the program

{diverge} [12]{C} .

301

302

APPROXIMATING COVARIANCES

Analogously to the situation in the proof of Theorem 13.5, Covjcr (1,1) is
defined and we have

Covicr, (L, 1) = wp [C'T (1)(0) ~wp [C'] (1)(0)? .

Recall that wp [C’] (1) (o) is exactly the probability of C’ terminating on in-
put o. By reconsidering Figure 13.1, we observe that

Covier, (1,1) = wp [CT (1)(0) ~wp [C'] (o) <

holds iff C” does not terminate with probability 1/2. Since by construction C’
terminates with a probability of at most 1/2, it follows that Cov[[cfﬂa (v,v)<1a
holds iff C” terminates with probability less than 1/2, which is the case iff C
terminates with probability less than 1. Thus,

HC, o) = (C',0,1,1,1/s) € RCOVAR iff (C,o) € AST
and therefore we have r: AST <, RCOVAR.

As a consequence of Theorems 13.5 and 13.6, computing upper bounds and
computing lower bounds for covariances is equally difficult. This stands in
contrast to the case for preexpectations: While computing upper bounds on
preexpectations is =9-complete, we have seen that computing lower bounds
is ,only“ 0—complete, thus lower bounds are computably enumerable. We
can even computably enumerate a sequence that converges monotonically to
the sought-after preexpectation. By Theorems 13.5 and 13.6 this is not possi-
ble for a covariance as £)-sets are in general not computably enumerable.

An approach to overcome this problem and reason about both lower and
upper bounds on covariances bases on using a mixture of superinvariants
and w-subinvariants (see Section 5.1) and is outlined in [KKM16]. In a nut-
shell, the idea is to (a) overapproximate wp [C] (f - ¢) using the induction rule
(see Theorem 5.4), and (B) underapproximate both wp [C] (f) and wp [C] (g)
using w-rules (see Theorem 5.9) in order to overapproximate

Covicy, = wp [C] (f-8)—wp [C] (f)-wp [C] (g) -

A dual approach works for underapproximating covariances. The approach
outlined in [KKM16] also extends to reasoning about runtime variances, which
can be useful to exclude timing side—channel attacks.

13.3 EXACT VALUES

egarding the hardness of deciding whether a given rational is equal to

the covariance, we establish that COVAR € Ag = Eg N Hg, COVAR is Hg—
hard, and COVAR is Zg—hard. COVAR is therefore at least as hard as decid-
ing whether a deterministic program terminates on all inputs or deciding
whether a probabilistic program terminates positively almost-surely. Let us
first establish membership of COVAR in Aj.

13.3 EXACT VALUES

Lemma 13.7 ([KKM138]):
COVAR is in AY.

Proof. To prove that COVAR is a member of AY = Zg N Hg, consider that we
have (C, o, f, g, q) € COVAR if and only if

(C,0,f,8) € DCOVAR and
(C,0,f,8,9) € LCOVAR and (C, o0, f,g q) € RCOVAR.

Now, by Theorem 13.3, Theorem 13.5, and Theorem 13.6 there exist decidable
relations D, £, and R such that

(C,0,f, g 9) € COVAR
iff dx; Vxp: (x1,%,C,0,f,8) € D
and -3y, Vv: (v, 92, C o0, f,89) € L
and -dzy Vz: (21,2,,C,0,f,89) € R
iff dxy Vxp: (x1,%,C,0,f,8) € D
and Yy dy: (v1,92,Co0,f,89) € £
and Vzydz: (21,2,C,0,f,99) ¢ R
iff dx; Vx, Vyy Vzy Ay, Azo0 (x,%x,C,0,f,8) € D (t)
and (y1,v2,C,0,f,849) ¢ L
and (z1,25,C,0,f,89) ¢ R
iff Yy, Vzy Ay, dzp dxy Vao: (x,%,C,0,f,8) € D (1)
and (y]l y2y Cr g, f; g; q) & E
and (z1,25,C,0,f,89) € R

Note that tis a Eg—formula, whereas fis a Hg—formula. Hence, there exists

a)Zg—formula and a Hg—formula, which each define COVAR, and therefore
: 0 0 0

COVAR is a member of X3 NTII3 = A3.

With COVAR € Ag, we have an upper bound on the computational hardness
of COVAR. In particular, we immediately get the following corollary:

Cororrary 13.8:
COVAR is neither Zg—hard nor I13-hard.

As for a lower bound on the computational hardness of deciding COVAR, we
establish that COVAR is both Zg—hard and Hg—hard.

Lemma 13.9 ([KKM16; KKM18]):
COVAR is I13-hard.

303

304

APPROXIMATING COVARIANCES

Proof. We reduce the [1)-complete almost-sure termination problem AST
(see Theorem 12.2) to COVAR. Let (C, o) be an instance of AS7 . Consider
the reduction function r(C, o) = (C’, 0, 1, 1, 1/4), with C’ being the program

{diverge} [1/2]{C} .

Again, since wp [C’] (1) is bounded by 1, the covariance Covic, (1, 1) is de-
fined and we have

Covicr, (1, 1) = wp [C'] (1) (o) ~wp [C'] (1) (0)*,

of which the plot is depicted in Figure 13.1. Recall that wp [C’] (1)(0) is
exactly the probability of C’ terminating on input 0. We can see that

Covier, (1,1) = wp [C'T(1)(0) —wp [C'] (1)(0)* = 1

iff C’ terminates with probability 1/2. Since C’ terminates at most with proba-
bility 1/2, we obtain that Covjc/ (1, 1) = 14 iff C” terminates with probability
1/2, which is the case iff C terminates almost—surely. Thus

r(Co) = (C,o,1,1,1) € COVAR iff (C,0) € AST,
and therefore r: AS7T <., COVAR.

Lemma 13.10 ([KKM18]):
COVAR is £9-hard.

Proof. We reduce the Eg—complete FEXP (see Theorem 11.7) to COVAR.
For that, consider the reduction function #(C, o, f) = (C, o, f, 0, 0).
Correctness of the reduction. The covariance of f and 0 is defined if and only
if the expected value of f is finite, the expected value of 0 is finite (which is
trivially satisfied), and the expected value of f -0 = 0 is finite (which is again
trivially satisfied). In case that this covariance is defined, it is equal to 0
by definition of the covariance of any random variable f and 0. Thus, the
covariance is defined and its value is 0 if and only if the expected value of f
after executing C on input o is finite. Hence, r: FEXP <., COVAR.

Our results on the computational hardness of deciding whether a given ra-
tional equals the covariance of two postexpectations after executing a proba-
bilistic program on a given input are summarized in the following theorem:

Tueorem 13.11 (Hardness of Exact Values for Covariances):
A. COVAR is a member of Ag.

B. COVAR is ¥9-hard.
c. COVAR is I19-hard.

13.4 VARIANCES

We have not classified the computational hardness of COVAR as precisely as
we have classified the other decision problems we studied in this dissertation.
By COVAR € A3 and COVAR being both Zg—hard and Hg—hard, we know
that COVAR must lie ,properly” in A}, more precisely

COVAR € AJ\ (=5 U T19).

For all other problems we studied, we established completeness for the respec-
tive X— or I'I-level at which they lie in the arithmetical hierarchy. Intuitively,
this means that those problems lie at the top of their respective - or [1-level.
We do not know, however, where precisely COVAR lies in Ag.

Part of the reason that we do not have a completeness result for COVAR
is that by Theorem 10.10 there exist no Al—complete sets, for n > 2, at least
in the sense of many-—one reducibility. There is, however, a plethora of other
other reducibility notions which we did not investigate, e.g. truth—table re-
ducibility or Turing reducibility [Rog67]. Indeed, there are e.g. A)—complete
sets in the sense of Turing reducibility, for instance the halting problem,
which is A2—complete by Post’s Theorem [Pos48; Odi92], but we did not
study those other notions of reducibility in this thesis.

Another approach towards locating COVAR within Ag is refining the Ag—
class itself. Indeed, there is for instance a hierarchy within the Ag—sets,
called the Ershov hierarchy [SYY10], which can likely be relativized to the
AJ-sets [Sch17]. It would be a good direction for future work to see where
COVAR lies within such a relativized Ershov hierarchy.

13.4 VARIANCES

HE variance of a random variable is a measure of how much the values

that a random variable f assumes are spread out from the average value
of f. It plays a central role in statistics, particle physics, and finance, to name
only a few fields. Formally, the variance of a random variable f is defined
as the covariance of f with itself. Recalling Definition 13.1, we obtain the
following definition of a variance in the context of probabilistic programs:

DeriniTioN 13.12 (Variance [KKM16; KKM18]):
Let C € pGCL, 0 € X, and f,g € [E. Then the variance of f after execut-
ing C on o is given by

Vargey, (f) = wp [Cl (£2)(0) - (wp [C] (/) (@)

if wp [C] (f) (o) is finite; otherwise, the variance is undefined. In partic-
ular, if wp [C] (f2) (0) is also finite, then

Var(cy, (f) = Covicy, (f, f)-

305

306

APPROXIMATING COVARIANCES

As for the computational hardness of variance approximation, we can state
that this problem is not easier than covariance approximation, i.e. the same
hardness results as in Theorems 13.5 through 13.11 hold for analogous vari-
ance approximation problems. In fact, we have always reduced to approxi-
mating a variance — the variance of termination — for obtaining our hard-
ness results on covariances. The only exception is the proof of Lemma 13.10,
where two different expectations are used.

We note furthermore that variance approximation is not harder than covari-
ance approximation. The proofs are analogous to the corresponding proofs
for covariances presented in this section. The main difference is that we ad-
ditionally have to consider the case that wp [C] (f?) (o) is infinite (otherwise,
we have Var|c (f) = Covicy_(f, f))-

Considering approximation of lower bounds of a variance, it suffices in
this case to drop the finiteness check for wp [C] (f2) (o) from DCOVAR. This
does not change the complexity, because we still have to check that the ex-
pected value of f is finite. With regard to approximating upper bounds, no
change is required: If wp [C] (f?) (o) is infinite, so is the variance and no con-
stant g is an upper bound of the variance. As for exact variances, we argue
as we did in Lemma 13.7.

135 FUTURE AND RELATED WORK

UR complexity results on the computational hardness of approximating
Ocovariances are summarized in Figure 13.2. Each of the examined prob-
lems — except for COVAR — is complete for their respective level of the
arithmetical hierarchy. For COVAR we have established that it is both Eg—
and I19-hard but in Ag.

An interesting issue that is raised by our results is the following: Obtain-
ing upper bounds on covariances is computationally exactly as hard as ob-
taining upper bounds on preexpectations. Yet, while we do have an induc-
tion rule for proving upper bounds on preexpectations (see Theorem 5.4),
we only know of a proof rule that additionally involves w-invariants (see
Theorem 5.9) for proving upper bounds on covariances [KKM16]. This adds
yet another conundrum to our ,upper vs. lower bounds” theme: Computa-
tionally, it should be exactly as difficult to obtain upper bounds on preex-
pectations as it is on covariances. From a reasoning perspective, however,
proving upper bounds on preexpectations seems conceptually rather simple,
while proving upper bounds on covariances seems to be as involved as prov-
ing lower bounds on preexpectations. It would be a promising direction for
future research to study the connection between the computational hardness
of obtaining bounds and the conceptual intricacy of reasoning about bounds.

Another direction for future research would be to study the hardness of
obtaining bounds on covariances for mixed—sign expectations as studied in

13.5 FUTURE AND RELATED WORK

0
EZ

with access to
H-oracle:

semi-decidable

0
X:1

semi-decidable

COF

LCOVAR
DCOVAR
REXYP PAST
FEXP

RCOVAR

LEXP

decidable

UPAST
COF
AST UAST
EXP
UH

not

semi-decidable;

even with
access to

UH-oracle

not

semi-decidable;

even with
access to

H-oracle

Figure 13.2: The complexity landscape of approximating covariances. All analysis
problems — except for COVAR — are complete for the respective level

at which they lie in the arithmetical hierarchy.

307

308 APPROXIMATING COVARIANCES

Chapter 9. Yet another direction for future research is to study the computa-
tional hardness of obtaining bounds on runtime variances. An approach for
reasoning about runtime variances was presented in [KKM16].

CONCLUSION AND FUTURE WORK

conclusion as well as directions for future work. We will not repeat
those conclusions here. Instead, we aim to draw a bigger picture and
extract the essence of some of the conclusions that share a common motif.

F or most chapters in this thesis, we have already provided an individual

141 LOWER BOUNDS ARE HARD

N Part II of this thesis, we have presented advanced calculi tailored to

specific tasks of compositional reasoning about quantitative properties of
probabilistic programs on source code level. In particular, we have presented
calculi for reasoning about

A. expected runtimes,
B. conditional expected values and conditional probabilities, and

c. expected values of mixed-sign random variables.

A recurring observation we made for these calculi is that reasoning about
upper bounds on the desired quantities appears conceptually easy and can
be carried out by simple induction. In more detail, the quantities of in-
terest were expressed as least fixed points of some monotonic function @.
The induction rule

dd)C d implies fp ® Cd

provides a simple rule for proving that some 4 is in fact an upper bound on
the least fixed point of ®. By simple we mean that we have to apply ® only
once to d in order to assert that d is an upper bound. In particular, we do
not require infinitary means such as, for example, finding the limit of some
sequence or iterating ® ad infinitum.

While the induction rule does not provide us with much insight on how
to find inductive upper bounds, at least it provides us with simple means to
prove them. Reasoning about lower bounds, on the other hand, is conceptually
more involved and we do not know proof rules as simple as the induction rule
above. A direction for future work is thus to discover rules for proving lower
bounds which are conceptually as simple (or nearly as simple) as induction.

There is evidence that such simple proof rules for lower bounds might
indeed exist: For proving lower bounds on runtimes of deterministic pro-
grams, Frohn et al. have provided a proof rule as simple as the induction rule
above [Fro+16b]. For probabilistic programs, their rule fails to be sound.

309

14

310

CONCLUSION AND FUTURE WORK

For proving almost—sure termination of probabilistic programs, i.e. prov-
ing that 1 is a (non-strict) lower bound on the termination probability of a
program, a reasonably simple rule is presented in Section 6.2.3. Unfortu-
nately, it is not known whether this rule is complete. Induction for upper
bounds on termination probabilitities, on the other hand, is complete.

For reasoning about lower bounds of general expected values, there ex-
ist results in probability theory on proving lower bounds on limit processes,
most notably the optional stopping theorem. This theorem can be used to find
a reasonably simple, but again incomplete, proof rule for lower bounds on
probabilities, expected values and expected runtimes [Gie+19]. An unpleas-
ant drawback, however, is that it requires almost-sure termination of the an-
alyzed program and it can hence not be used to reason about lower bounds
on termination probabilities.

142 LOWER BOUNDS SHOULD BE EASIER

HILE in Part II we investigated techniques for actual reasoning, we in-
erstigated in Part IIT of this thesis the computational hardness of that
reasoning. Our results are summarized in Figure 14.1. Surprisingly, we can
see that from a computational hardness perspective, the exact opposite of
what we found in Part II should be expected: Lower bounds should be eas-
ier to obtain than upper bounds. For instance, approximating expected val-
ues from below (LEX'P) is computationally strictly easier than approximating
them from above (REXP). This constitutes a paradoxical mismatch between

1. the conceptual complexity of reasoning and
2. the arithmetical computational complexity of that reasoning.

To the best of our knowledge, no good explanation for this discrepancy is
known (an unsatisfactory explanation is provided in Section 5.2.6), but we be-
lieve that studying this discrepancy is a promising source for future insights:
Ideally, we would either obtain a more fine-grained view on the computa-
tional complexity of probabilistic program analysis or we would discover
new techniques for reasoning about probabilistic programs (or both).

Another conclusion we draw from our hardness considerations is that pos-
itive almost-sure termination, i.e. termination of a probabilistic program
within finite expected time might be a more natural notion of probabilistic ter-
mination than almost-sure termination, i.e. termination with probability 1.
See Section 12.3 for a more detailed discussion.

143 FUTURE WORK

EGARDING the development of further calculi for reasoning about proba-
bilistic programs, a direction we believe is quite promising is to endow

14.3 FUTURE WORK

0 0
E3 UPAST H3
A 0 not
COF 3 — semi-decidable;
COF .
even with
COVAR access to
UH-oracle
Y| MR comar AST UAST IT)
DCOVAR
Rexp PAST Ag not
with access to FEXP EXP semi-decidable;
H-oracle: UH even with
semi-decidable uH access to
‘H-oracle
0 0
Z:1 LEXP 1_[1
0
Aj B
H H
semi-decidable
decidable

LEXP
REXP

EXP
FEXP

AST
UAST
PAST
UPAST

LCOVAR
RCOVAR

COVAR
DCOVAR

ProBLEM DESCRIPTIONS:

Lower bounds on expected values
Upper bounds on expected values
Exact expected values

Finiteness of expected values

Almost-sure termination
Universal almost-sure termination
Positive almost—sure termination

Universal positive almost-sure termination

Lower bounds on covariances
Upper bounds on covariances
Exact covariances

Definedness of covariances

Figure 14.1: The complexity landscape of analyzing probabilistic programs within
the arithmetical hierarchy. All analysis problems — except for COVAR
— are many-one complete for the respective level at which they lie.

311

312

CONCLUSION AND FUTURE WORK

the expectation-based weakest preexpectation calculus with the local rea-
soning capabilities of separation logic in order to perform reasoning about
probabilistic programs with pointers. A first attempt at this is quantitative
separation logic [Bat+19], but there remain many unanswered questions with
this approach. For one, quantitative separation logic’s frame rule allows for
local reasoning on lower bounds on partial correctness properties. Finding a
corresponding frame rule for upper bounds on expected values, i.e. (quantita-
tive) total correctness properties, poses a problem. Another issue is to devise
a calculus for local reasoning about expected runtimes, i.e. marrying quantita-
tive separation logic with the ert calculus. In this context, an ,,upper bound
frame rule” would be very useful since it would allow for local reasoning
about upper bounds on expected runtimes.

Another direction for future work is relational reasoning: Given two pro-
grams and a relation R on initial states, one would like to prove relational
properties about the final states. Relational reasoning about probabilistic
programs using couplings has been studied [Bar+12; Bar+15; Hsul7; Agu+18].
This style of reasoning can be used to reason about the probability that some
relation over final states holds. It would be interesting, however, to study
how relational weakest preexpectations could enable reasoning over expected
differences of the outputs of two programs or the covariance of two programs.

Further directions for future work emerge from combining the calculi we
have presented in this thesis. For instance, could we combine the ert calculus
for expected runtimes with the cwp calculus for conditional expected values
to obtain a calculus for conditional expected runtimes? Or could we combine
the ert calculus with the iwp calculus for mixed-sign expectations to reason
about amortized expected runtimes?

Part IV

APPENDICES

DOMAIN THEORY

In this thesis, we make heavy use of the basic concepts underlying
this theory, although we will really just make use of the part that
Samson Abramsky and Achim Jung call a ,first step towards Domain The-
ory“. For a comprehensive treatment, we refer to their introduction in the
Handbook of Logic in Computer Science [A]J94]. We will here only briefly recall
here some concepts, so that this thesis is somewhat self-contained.
The first concept we recall is that of a complete lattice: a set equipped
with an order in which ascending and descending sequences in some sense
converge. Indeed, Abramsky and Jung speak of ,convergence spaces”.!

D oMaIN theory is a field created in 1969 by Dana Steward Scott [Sco69].

DeriniTiON A.1 (Complete Lattices [AJ94]):
A. Let D be some universe. Then (D, E), where C is a binary relation
C c DxD, is a partial order, iffC is

a) reflexive, i.e. for alla € D

alCa,

b) transitive, i.e. for all a,b,c € D

aEb and bCc implies atec,

¢) and antisymmetric, i.e. for all a,b € D

aCb and bCa implies a="=.

Whenever the universe D is evident from the context, we may omit
the D from (D, E) and simply speak of the partial order E.

B. A partial order (D, C) is called a complete lattice, if every subset
S €D has a supremum sup S € D.

Note that every complete lattice (D, C) has a least element 1 and dually a
greatest element T which satisfy

YaeD: 1 CaCT.

1 Strictly speaking, Abramsky and Jung speak of directed—complete partial orders as convergence
spaces, which make up a slightly more general notion. We, however, do not require this level of
generality for our theory. In any case, any complete lattice is a directed complete partial order.

315

316

DOMAIN THEORY

Note furthermore that every ascending or descending sequence forms a sub-
set and we can thus ensure that ascending and descending sequences con-
verge within a complete lattice in the sense that they will have a least upper
or greatest lower bound, respectively.

The sets on which the transformers we have presented in this thesis act
are equipped with some partial order and (mostly) form complete lattices.
This is important for us, because it ultimately ensures that certain functions
admit least fixed points. The class of those functions is the class of so called
Scott—continuous or just continuous functions.

DeriniTiON A.2 (Continuity [AJ94]):
Let (D,C) be a complete lattice and let ©: D — D. Then ® is called
continuous, iff for every chain S ={spEs; Es, C...} CD

D (supS) = sup D(S),
where ©(S) is the standard shorthand for the set {®(a) |ac S}.

The notion of continuity we choose here is what Abramsky and Jung call w-
continuity because it requires the functions to preserve suprema of chains of
length w. The more general notion of continuity is based on directed sets. We,
choose w—continuity because we find it more demonstrative, but we could
have build our theory on the more general notion of continuity as well.

A notion, that is uncontestedly equal in both flavors of the theory is the
notion of monotonicity of functions:

DEerINITION A.3 (Monotonicity [AJ94]):
Let (D, C) be a complete lattice and let ©: D — D. Then @ is called
monotonic, iff for all a,b € D

a £ b implies P(a) E O(b).

General continuity, i.e. continuity with respect to directed sets, requires that
continuous functions are by definition monotonic. For the notion of continu-
ity we use, i.e. continuity with respect to w—chains, however, monotonicity
follows from continuity.

THEOREM A .4:
Every continuous function is monotonic.

Proof. LetaCb. Then {a C b} is a chain with
sup {a, b} = b, (1)

because b is greater than or equal to a.

DOMAIN THEORY

Now, let ® be continuous. Then

D(a) T sup {(a), D(b)}
= fD(sup {a, b}) (by continuity of @)
= ©(b) (by 1)
and hence @ is monotonic. Q.E.D.

We now have all notions readily available to formulate the two fixed point
theorems of which we make heavy use in this thesis. The origins of the fixed
point theorems date back at least to 1928, namely to Bronistaw Knaster, who
proved a closely related theorem in set theory [Kna28; LNS82]. The version
we use here is often attributed to Kleene, though the origins are somewhat
unclear. It it thus considered a folk theorem [LNS82].

TueoreMm A.5 (Kleene Fixed Point Theorem [AJ94; LNS82]):
Let (D, C) be a complete lattice with least element | and greatest ele-
ment T. Moreover, let ®: D — D be continuous (thus monotonic).

Then @ has a least fixed point lfp @ and a greatest fixed point gfp @,
respectively given by

lfp®@ = sup (L) and gfp® = inf ®"(T).
nelN nelN

We will use the Kleene Fixed Point Theorem to establish existence of least
fixed point, which we use heavily in our definitions of transformers for while
loops. The theorem due to Knaster’s [Kna28] is actually more similar to a
principle that is today called Park’s Lemma, Park’s Theorem, or Park induction,
attributed to David Park.

Lemma A.6 (Park’s Lemma [Par69]):
Let (D, C) be a complete lattice, let d € D, and let ®: D — D be a mono-
tonic function. Then

O(d) ©E d implies Ufpd C d
and dually

d C ®(d) implies d C gfp®.
The correctness of most of the proof rules for loops presented in this thesis
are a direct consequence of Park’s Lemma. This concludes our overview of
domain-theoretical notions needed for this thesis.

317

MARKOV DECISION PROCESSES

Markov decision processes, see Section 3.3.3 or [GKM12; GKM14] for
more details. We recap here very briefly basics on Markov decision
processes. For an in—depth treatment, see [Put05]; for a more gentle intro-
duction with an emphasis on verification, see [BK08, Chapter 10].
Markov decision processes are extensions of Markov chains by nondeter-
minism. We go here the other way: we first define Markov decision processes
and define Markov chains as special cases.

G IVING semantics to probabilistic programs can be done by means of

DeriniTiON B.1 (Markov Decision Processes):
A Markov decision process (MDP) M = (S, 1, A, P) comprises of

< a countable set of states S,
< an initial state 1€ S,

< a set of actions A, and
&

a transition probability function P: Sx A — S — [0, 1] mapping
each state-action pair to a probability distribution over successor
states, thus obeying Va,s:) o P(s, a)(s’) = 1.

We are mostly interested in reachability probabilities. An MDP, however,
does not necessarily give rise to a unique probability measure. In fact, in
general it will not. The reason is the inherent nondeterminism in the MDP
which gives rise to many probability measures. In order to resolve the non-
determinism, we introduce schedulers.

DerintTiON B.2 (Schedulers):
Let M = (S, 1, A, P) be an MDP.

A. A scheduler s of M is a function
s:S"—> A
mapping a sequence of states of M to an action.

B. A scheduler s is called positional or history—independent, iff for
all prefixes of state sequences p € S* and all statess € S,

s(ps) = s(s),

319

320 MARKOV DECISION PROCESSES

i.e. the action chosen by the scheduler depends solely on the cur-
rent state and not on the history of visited states.

Once a scheduler resolves the nondeterminism in a Markov decision process,
there are no nondeterministic decisions left to be made. All decisions that
are left are due to randomness. Such Markov decision processes are called
Markov chains. Any given scheduler thus induces from a Markov decision
process a Markov chain.

DeriniTiON B.3 (Markov Chains Induced by Schedulers):
A. A Markov chain (MC) M = (S, 1, P) comprises of

< a countable set of states S,
< an initial state 1 € S,
4 a transition probability matrix P: S — S — [0, 1] mapping

each state to a probability distribution over successor states,
thus obeying Vs:) ., P(s)(s’)=1.

B. Let M = (S, 1, A, P’) be an MDP and let s be a scheduler of M. Then
the Markov chain of M induced by scheduler s, denoted Mj, is
given by (S, 1, P), where for all s,s’ € S

P(s)(s') = P'(s,5(5))(s) .
In MC'’s, we can now sensibly define unique reachability probabilities.

DeriniTiON B.4 (Reachability Probabilities):

Let M = (S, 1, P) be a Markov chain and let BC S be a set of states of in-
terest. Then the probability of eventually reaching B, denoted Pr);(0B),
is given by

Pry(0B) =)]_[P (sis1)

so-sy € (S\B)*B, i=0
So=1

Another concept we will use are expected rewards. Intuitively, each state in an
MC is associated with a non-negative real-valued reward which is collected
upon visiting the state. The expected reward is the expected accumulated
reward that is collected along the paths through a Markov chain, weighted
by the probabilities associated with the according path.

DEeriniTION B.5 (Expected Rewards):
Let M = (S, 1, P) be a Markov chain.

A. A reward function is a function

rew: S — R,

MARKOV DECISION PROCESSES 321

B. Let B C S be a set of states of interest. The expected reward of
eventually reaching B, denoted ExpRew,,(0B) is given by

n—1

ExpRewy (0B) =)]‘[[P(s»(smmw(si)]

so--sy € (S\B)*B, =0
So=1

OMITTED CALCULATIONS

C.1 DETAILED FIXED POINT ITERATION FOR
EXAMPLE 2.6

The first three iterations of the fixed point iteration for @ in Example 2.6 are:

O(false)

=(x=0)V (x>0Awp[z:=z+15x:=x—1] (false))
=(x=0)V (x>0Awp[z:=z+1] (wp [x :=x—1] (false)))
= (x=0) V (x>0Awp[z:=z+1] (false))

= (x=0)V (x>0 A false)

= (x=0) V false

= (x=0)

@ (false)

=(x=0)V (x>0Awp[z:=z+1gx:=x-1] (x=0))
=(x=0)V (x>0Awp[z:=z+1] (wp[x :=x—-1] (x =0)))
=(x=0)V (x>0Awp[z:=z+1] (x-1=0))
=(x=0)V (x>0Awp[z:=z+1] (x=1))

=(x=0)V (x>0Ax=1)

=(x=0)V(x=1)

@3 (false)

=(x=0)V (x>0Awp[z:=z+1lsx:=x—-1] (x=0Vvx=1))
=(x=0)

V(x>0Awp[z:=z+1](wp[x:=x-1] (x =0V x=1)))
=0)V(x>0Awp[z:=z+1](x—-1=0vx-1=1))
0 (x>0Awp[z:=z+1](x=1Vx=2))

0) V(x>0A(x=1Vvx=2))

0) V(x>0Ax=1)V(x>0Ax=2)

0) V(x=1)V (x=2)

X

X

—_~ o~~~ —~

) Vv
)
)
)

X

323

324

OMITTED CALCULATIONS

C.2 DETAILED FIXED POINT ITERATION FOR
EXAMPLE 2.11 8

The first three iterations of the fixed point iteration for ® in Example 2.11 .
are:

D0) =[x<0]-z+ [0<x]-wp[z:=z+15x:=x—1] (0)
=[x<0]-z+ [0<x]-wp[z:=z+1] (wp[x :=x—1] (0))
=[x<0]-z+ [0<x]-wp[z:=2+1](0)
=[x<0]-z+ [0<x]-0

—_—

=[x<0]-z (1)
=[x<0]-z+ [0<x<0]x]
=0
=0

D2(0) = [x<0]-z+ [0<x]-wp[z:=z+1gx :=x—1] (D(0))
=[x<0]-z+ [0<x]-wp[z:=z+1] (wp [x :=x—1] (D(0)))
=[x<0]-z+ [0<x]-wp[z:=z+1] ([x—-1<0]-2) (see T)
=[x<0]-z+ [0<x]-wp[z:=z+1] ([x<1]-2)
=[x<0]-z+ [0<x]-[x<1]-(z+1)
=[x<0]-z+ [0<x<1]-(z+1)
=[x<1]-z+ [0<x<1]-[x]

®30) = [x<0]-z+ [0<x]-wp[z:=z+15x:=x—1] ((1)2(0))
=[x<0]-z
+ [0<x]-wp [z ::z+1]](wp [x :=x-1] (CDZ(O)))
=[x<0]-z + [0<x]
cwpz:i=z+1]([x-1<1]-z + [0<x-1<1]-[x-17)
=[x<0]-z + [0<x]
(2]-z + [1<x<2]-([x]-1))
=[x<0]-z+ [0<x]-([x<2]-(z+1) + [I<x<2]-([x]-1))
=[x<0]-z+ [0<x<2]-(z+1) + [1 <x<2]-([x]-1)
=[x<0]-z+ [0<x<1]-(z+1)
+ [1<x<2]-(z+1+[x]-1)
=[x<2]-z+ [0<x<1]-[x] + [1 <x<2]-[x]
=[x<2]-z + [0<x<2]-[x]

cwp [z:=z+1] ([x <
([x

A MORE DETAILED NOTE ON
CONTRIBUTIONS OF THE AUTHOR

Es gibt immer die juristische Seite
und die Seite des gesunden Menschenverstandes.
Wir sind nun in dem langwierigen und schwierigen Prozess,

den gesunden Menschenverstand durch juristische Regelungen zu ersetzen.

— A faculty member

Aachen University Faculty of Mathematics, Computer Science and

THIS note is mandatory under doctoral regulations of the RWTH

Natural Sciences. Below, I give in reverse chronological order a com-
plete list of peer-reviewed publications I coauthored that emerged from the
research done in the course of writing this thesis. I then (have to) discuss in
detail my own contributions to these publications.

[Kam+18]

[Bat+18a]

[KKM138]

[Bat+18b]

[MclI+18]

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Federico Olmedo. ,Weakest Precondition Rea-
soning for Expected Runtimes of Randomized Algorithms.”
In: Journal of the ACM 65.5 (2018), 30:1-30:68

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Ka-
toen, and Christoph Matheja. ,A Program Analysis Perspec-
tive on Expected Sampling Times.“ In: Extended Abstracts
of the International Conference on Probabilistic Programming
(PROBPROG). 2018

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. , On the Hardness of Analyzing Proba-
bilistic Programs.” In: Acta Informatica (2018)

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
and Christoph Matheja. ,, How long, O Bayesian network, will
I sample thee? A program analysis perspective on expected
sampling times.” In: Proc. of the European Symposium on Pro-
gramming Languages and Systems (ESOP). vol. 10801. Lecture
Notes in Computer Science. Springer, 2018, pp. 186-213

Annabelle Mclver, Carroll Morgan, Benjamin Lucien Kamin-
ski, and Joost-Pieter Katoen. ,, A New Proof Rule for Almost—
sure Termination.” In: Proc. of the Symposium on Principles of
Programming Languages (POPL) 2.POPL (2018), 33:1-33:28

325

D

326

A MORE DETAILED NOTE ON CONTRIBUTIONS OF THE AUTHOR

[Olm+18]

[KK17b]

[KK17a]

[KKM16]

[Kam+16]

[Gre+16]

[Kat+15]

[KK15b]

[Jan+15a]

Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lu-
cien Kaminski, Joost-Pieter Katoen, and Annabelle Mclver.
»,Conditioning in Probabilistic Programming.” In: Trans. on
Programming Languages and Systems 40.1 (2018), 4:1-4:50

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,A Weak-
est Pre—expectation Semantics for Mixed—sign Expectations.”
In: Proc. of the Annual Symposium on Logic in Computer Science
(LICS). IEEE Computer Society, 2017, pp. 1-12

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,A Weak-
est Pre-Expectation Semantics for Mixed-Sign Expectations.”
In: Extended Abstracts of the 2nd Workshop on Probabilistic Pro-
gramming Semantics (PPS). 2017

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. ,Inferring Covariances for Probabilistic
Programs.” In: Proc. of the International Conference on Quanti-
tative Evaluation of Systems (QEST). vol. 9826. Lecture Notes
in Computer Science. Springer, 2016, pp. 191-206

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Federico Olmedo. ,Weakest Precondition Rea-
soning for Expected Run-Times of Probabilistic Programs.”
In: Proc. of the European Symposium on Programming Lan-
guages and Systems (ESOP). vol. 9632. Lecture Notes in Com-
puter Science. Springer, 2016, pp. 364-389

Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, and Federico Olmedo. ,,On the Semantic
Intricacies of Conditioning.” In: Extended Abstracts of the 1st
Workshop on Probabilistic Programming Semantics (PPS) (2016)

Joost-Pieter Katoen, Friedrich Gretz, Nils Jansen, Benjamin
Lucien Kaminski, and Federico Olmedo. ,Understanding
Probabilistic Programs.” In: Correct System Desigh — Sympo-
sium in Honor of Ernst-Riidiger Olderog on the Occasion of His
60th Birthday. Vol. 9360. Lecture Notes in Computer Science.
Springer, 2015, pp. 15-32

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,On the
Hardness of Almost-Sure Termination.” In: Proc. of the Inter-
national Symposium on Mathematical Foundations of Computer
Science (MFCS). vol. 9234. Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 307-318

Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
Federico Olmedo, Friedrich Gretz, and Annabelle Mclver.
,Conditioning in Probabilistic Programming.“ In: Proc. of

A MORE DETAILED NOTE ON CONTRIBUTIONS OF THE AUTHOR

the Conference on Mathematical Foundations of Programming Se-
mantics (MFPS) 319 (2015), pp. 199-216

[KK15a] Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,, Analyz-
ing Expected Outcomes and (Positive) Almost-sure Termina-
tion of Probabilistic Programs is Hard.” In: Proc. of the Young
Researchers” Conference ,,Frontiers of Formal Methods“ (FFM).
vol. 9234. Aachener Informatik Berichte. 2015, pp. 179-184

The doctoral regulations of the RWTH Aachen University Faculty of Math-
ematics, Computer Science and Natural Sciences require that I state explic-
itly what contributions I made to the individual publications. I have had
many discussions with colleagues and representatives of the faculty about
the sense and nonsense of this regulation. At the end of the day, I strongly
believe that this regulation does not harmonize at all with the everyday re-
ality of research in theoretical computer science, at least not in my case: In
general, lots of ideas emerge naturally from discussions and one would more
often than not be wrong to want to attribute a specific idea to a specific per-
son. I would also like to note that for some of these publications I am at
this point in time supposed to state explicitly what my contributions were
some four years after the research was conducted. 1 made the following state-
ments to the best of my knowledge and belief and tried my best not to do
injustice to anyone in stating my own contributions to the publications listed
above. In order to give any additional value whatsoever to this note, I will
also describe briefly how we (or I) came up with the ideas for conducting
the research covered in the respective publications. I proceed in what is
roughly chronological order.

The technical contributions of the hardness results for approximating ex-
pected values and deciding probabilistic termination covered in [KK15a] and
[KK15b] are exclusively due to me, although I did occasionally discuss mi-
nor details with others; I also came up with the ideas and the initiative for
conducting this particular research myself (inspired by a fantastic lecture
on Recursion Theory given by Wolfgang Thomas) and the publications were
for the most part authored by me. I would, however, like to take this op-
portunity to thank my supervisor Joost-Pieter Katoen once again for his ex-
tremely thorough proofreading efforts and his invaluable feedback (this goes
not only for the just-mentioned publications but also for the ones I cover
below). In addition, Joost-Pieter often authored major parts of the intro-
ductions of the papers or at least helped greatly to bring them into shape.
He also helped me by suggesting appropriate venues for publication. With-
out his assistance, I would certainly have had a much harder time getting
these papers published.

The initiative for conducting the research covered in [Jan+15a], [Kat+15],
[Gre+16], and [Olm+18] (the conditional weakest preexpectation calculus)
came from Joost-Pieter Katoen. The cwp and cwlp calculus itself (see Sec-

327

328

A MORE DETAILED NOTE ON CONTRIBUTIONS OF THE AUTHOR

tion 8.2) was jointly developed in the course of numerous discussions by
Nils Jansen, Friedrich Gretz, Federico Olmedo, and myself. The issues that
occur when adding nondeterminism to the language (see Section 8.4) were
mainly investigated by me. The invariant-based reasoning for cwp and cwlp,
at least the non-w-rules were also suggested by me. If I remember correctly,
I also came up with the small examples given in [Kat+15] showing the in-
tricacies that arise when bringing together conditioning and loops, but I am
almost certain, that we had discussions about those as well, even though I
honestly do not remember anymore. I contributed substantially to the writ-
ing of all four papers.

The idea for conducting the research covered in [Kam+16] and [Kam+18]
(the expected runtime calculus) emerged from an idea by Nils Jansen and
Joost-Pieter Katoen to investigate techniques for reasoning about approxi-
mate computing. Federico Olmedo and I soon came to the conclusion that
for that we would need a calculus for reasoning about expected resource
consumption and got Christoph Matheja on board. The expected runtime
calculus itself was jointly developed in the course of numerous discussions
by Christoph, Federico, and myself. It would seem to me that the simple idea
of adding a 1+ __ to the weakest preexpectation calculus (compare Table 4.1
on p. 84 with Table 7.1 on p. 163) is due to me, but I specifically remem-
ber that this idea first came to me in the middle of a discussion we had. As
such, I feel it is absolutely impossible to attribute the calculus to any single
person. The connection of the calculus to an operational model was estab-
lished by Christoph and me. The invariant-based proof rules and the bound
refinement were developed by me. The Coupon Collector case study was
suggested to us by Gilles Barthe and then conducted by Christoph, Federico,
and me. The connection to the Nielsen logic was established by Christoph;
the idea to investigate this connection is due to Christoph and Federico, in-
spired by a lecture of Thomas Noll. I contributed substantially to the writing
of the two papers.

The initiative for conducting the research covered in [KKM16] (hardness
of approximating covariances) came from me. I got Christoph Matheja on
board and we conducted much of the research together. My original idea
was to develop a weakest—preexpectation-style calculus for reasoning about
variances, but that did not work out as neatly as hoped for and, as such, only
the hardness aspects are covered in this thesis. The reductions covered in this
thesis and the invariant-based reasoning techniques are due to me. We were
nudged towards the definedness issues about the covariances by an anony-
mous referee of [KKM18] to whom I would once again like to express my
deepest gratitude for their thorough and extremely constructive feedback.
Christoph and I resolved the issues together. The part about runtime vari-
ances is due to Christoph. [KKM18] summarizes all hardness-related contri-
butions in [KK15a], [KK15b], and [KKM16]. I contributed substantially to
the writing of the papers.

A MORE DETAILED NOTE ON CONTRIBUTIONS OF THE AUTHOR

The idea of extending the weakest preexpectation calculus to mixed—sign
random variables covered in [KK17a] and [KK17b]is due to me and emerged
from trying to extend the expected runtime calculus developed in [Kam+16]
to a calculus for amortized expected runtimes. I authored the papers myself
for the most part. I would like, however, to repeat what I said above about
Joost-Pieter Katoen’s invaluable help.

The main idea for the new proof rule for almost-sure termination covered
in [McI+18] is solely due to Annabelle Mclver & Carroll Morgan, see [MM16]
for their early draft. I discussed their draft with Annabelle at a workshop
organized by Prakash Panangaden at the Bellairs Research Institute and sug-
gested to formalize their proof rule in terms of the weakest preexpectation
calculus. My contribution was thus the formalization of the rule and the
case studies as well as providing a formal soundness proof. I participated in
intensive discussions and also contributed to writing the paper.

The goal of the research covered by [Bat+18b] and [Bat+18a] was to make
substantial progress towards automating the Coupon Collector case study
we had studied earlier in [Kam+16]. The initiative came from Christoph
Matheja and me and we were lucky having Kevin Batz do his Bachelor’s the-
sis on this topic. Kevin, Christoph, and I regularly had intensive and fruitful
discussions, but the bulk of the work was done by Kevin. To study a connec-
tion with Bayesian networks was suggested by Christoph, but, once again, it
was Kevin who did most of the work, both with regard to theory as well as to
implementation. The papers that emerged were authored by Christoph and
myself for the most part.

329

BIBLIOGRAPHY

[AJ94]

[AFR11]

[AH92]

[ACN18]

[Agu+18]

[AKO02]

[ARO8]

[APZ03]

Samson Abramsky and Achim Jung. ,Domain Theory.” In: Hand-
book of Logic in Computer Science. Ed. by Samson Abramsky, Dov
M. Gabbay, and Thomas Stephen Edward Maibaum. Vol. 3. Cor-
rected and expanded version available at http://www.cs.bham.
ac.uk/~axj/pub/papers/handy1.pdf. Oxford University Press,
1994, pp. 1-168.

Nathanael Leedom Ackerman, Cameron E. Freer, and Daniel M.
Roy. ,Noncomputable Conditional Distributions.” In: Proc. of
the Annual Symposium on Logic in Computer Science (LICS). IEEE
Computer Society, 2011, pp. 107-116.

Leonard Max Adleman and Ming-Deh Huang. ,Primality Test-
ing and Abelian Varieties over Finite Fields.” In: Lecture Notes in
Mathematics 1512 (1992).

Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotny.
,Lexicographic Ranking Supermartingales: An Efficient Ap-
proach to Termination of Probabilistic Programs.” In: Proc. of
the Symposium on Principles of Programming Languages (POPL)
2.POPL (2018), 34:1-34:32.

Alejandro Aguirre, Gilles Barthe, Lars Birkedal, Ales Bizjak,
Marco Gaboardi, and Deepak Garg. ,Relational Reasoning for
Markov Chains in a Probabilistic Guarded Lambda Calculus.”
In: Proc. of the European Symposium on Programming Languages
and Systems (ESOP). Vol. 10801. Lecture Notes in Computer Sci-
ence. Springer, 2018, pp. 214-241.

Susanne Albers and Marek Karpinski. ,Randomized Splay
Trees: Theoretical and Experimental Results. In: Information
Processing Letters 81.4 (2002), pp. 213-221.

Miguel E. Andrés and Peter van Rossum. ,,Conditional Probabil-
ities over Probabilistic and Nondeterministic Systems.“ In: Proc.
of the International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). Vol. 4963. Lecture
Notes in Computer Science. Springer, 2008, pp. 157-172.
Tamarah Arons, Amir Pnueli, and Lenore D. Zuck. ,,Parameter-
ized Verification by Probabilistic Abstraction.” In: Proc. of the
International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS). Vol. 2620. Lecture Notes in
Computer Science. Springer, 2003, pp. 87-102.

331

http://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
http://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf

332

BIBLIOGRAPHY

[AB09]

[Art+09]

[ADDO0O0]

[APMO09]

[BW89]

[BW98]

[BKOS]

[Bai+14]

[Bar+12]

[Bar+15]

[Bat+18a]

Sanjeev Arora and Boaz Barak. Computational Complexity — A
Modern Approach. Cambridge University Press, 2009.

Rob Arthan, Ursula Martin, Erik Arne Mathiesen, and Paulo
Oliva. ,,A General Framework for Sound and Complete Floyd-
Hoare Logics.” In: Trans. on Computational Logic 11.1 (2009).

Robert B. Ash and Catherine Doleans-Dade. Probability and Mea-
sure Theory. Academic Press, 2000.

Philippe Audebaud and Christine Paulin-Mohring. ,Proofs of
randomized algorithms in Coq.“ In: Science of Computer Pro-
gramming 74.8 (2009), pp. 568-589.

Ralph-Johan Back and Joakim von Wright. ,Refinement Calcu-
lus, Part I: Sequential Nondeterministic Programs.” In: Stepwise
Refinement of Distributed Systems, Models, Formalisms, Correct-
ness, REX Workshop. Vol. 430. Lecture Notes in Computer Sci-
ence. Springer, 1989, pp. 42-66.

Ralph-Johan Back and Joakim von Wright. Refinement Calculus
— A Systematic Introduction. Graduate Texts in Computer Sci-
ence. Springer, 1998.

Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing. MIT Press, 2008.

Christel Baier, Joachim Klein, Sascha Kliippelholz, and Steffen
Marcker. ,Computing Conditional Probabilities in Markovian
Models Efficiently.“ In: Proc. of the International Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS). Vol. 8413. Lecture Notes in Computer Science.
Springer, 2014, pp. 515-530.

Gilles Barthe, Boris Kopf, Federico Olmedo, and Santiago
Zanella Béguelin. ,Probabilistic Relational Reasoning for Differ-
ential Privacy.” In: Proc. of the Symposium on Principles of Pro-
gramming Languages (POPL). ACM, 2012, pp. 97-110.

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu,
Léo Stefanesco, and Pierre-Yves Strub. ,Relational Reasoning
via Probabilistic Coupling.” In: Proc. of the International Con-
ference on Logic for Programming, Artificial Intelligence, and Rea-
soning (LPAR). Vol. 9450. Lecture Notes in Computer Science.
Springer, 2015, pp. 387-401.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
and Christoph Matheja. ,A Program Analysis Perspective on
Expected Sampling Times.” In: Extended Abstracts of the Inter-
national Conference on Probabilistic Programming (PROBPROG).
2018.

[Bat+18b]

[Bat+19]

[Ben83]

[BMO04]

[BGV18]

[Bor09]

[Bor+11]

[Bor+16]

BIBLIOGRAPHY

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. ,How long, O Bayesian network, will I sam-
ple thee? A program analysis perspective on expected sampling
times.” In: Proc. of the European Symposium on Programming Lan-
guages and Systems (ESOP). Vol. 10801. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 186-213.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
Christoph Matheja, and Thomas Noll. ,,Quantitative Separation
Logic — A Logic for Reasoning about Probabilistic Programs.“
In: Proc. of the Symposium on Principles of Programming Lan-
guages (POPL). [to appear]. ACM, 2019.

Michael Ben-Or. , Another Advantage of Free Choice: Com-
pletely Asynchronous Agreement Protocols (Extended Ab-
stract).” In: Proc. of the Annual Symposium on Principles of Dis-
tributed Computing (PODC). ACM, 1983, pp. 27-30.

Rudolf Berghammer and Markus Miiller-Olm. ,Formal Devel-
opment and Verification of Approximation Algorithms Using
Auxiliary Variables.” In: Proc. of the International Symposium
on Logic—Based Program Synthesis and Transformation (LOPSTR).
Vol. 3018. Lecture Notes in Computer Science. Springer, 2004,
pp- 59-74.

Benjamin Bichsel, Timon Gehr, and Martin T. Vechev. ,Fine—
grained Semantics for Probabilistic Programs.” In: Proc. of
the European Symposium on Programming Languages and Sys-
tems (ESOP). Vol. 10801. Lecture Notes in Computer Science.
Springer, 2018, pp. 145-185.

Félix Bdouard Justin Emile Borel. ,Les probabilités dénom-
brables et leurs applications arithmétiques.” In: Rendiconti del
Circolo Matematico di Palermo 27.2 (1909), pp. 247-271.

Johannes Borgstrom, Andrew D. Gordon, Michael Greenberg,
James Margetson, and Jurgen Van Gael. ,Measure Transformer
Semantics for Bayesian Machine Learning.” In: Proc. of the Euro-
pean Symposium on Programming Languages and Systems (ESOP).
Vol. 6602. Lecture Notes in Computer Science. Springer, 2011,
pp. 77-96.

Johannes Borgstrom, Andrew D. Gordon, Long Ouyang, Clau-
dio V. Russo, Adam Scibior, and Marcin Szymczak. ,Fabular:
regression formulas as probabilistic programming.“ In: Proc. of
the Symposium on Principles of Programming Languages (POPL).
ACM, 2016, pp. 271-283.

333

334

BIBLIOGRAPHY

[BGO5]

[BGO6]

[Bré+15]

[BDL18]

[BM12]

[Can17]

[CMR13]

[Car+17]

[CMO5]

[CS13]

Olivier Bournez and Florent Garnier. ,Proving Positive Almost—
Sure Termination.“ In: Proc. of the International Conference on
Term Rewriting and Applications (RTA). Vol. 3467. Lecture Notes
in Computer Science. Springer, 2005, pp. 323-337.

Olivier Bournez and Florent Garnier. , Proving Positive Almost
Sure Termination Under Strategies.” In: Proc. of the International
Conference on Term Rewriting and Applications (RTA). Vol. 4098.
Lecture Notes in Computer Science. Springer, 2006, pp. 357-
371.

Tomas Brazdil, Stefan Kiefer, Antonin Kucera, and Ivana
Hutarova Varekova. ,Runtime Analysis of Probabilistic Pro-
grams with Unbounded Recursion.” In: Journal of Computer and
System Sciences 81.1 (2015), pp. 288-310.

Flavien Breuvart and Ugo Dal Lago. ,On Intersection Types
and Probabilistic Lambda Calculi.“ In: Proc. of the International
Symposium on Principles and Practice of Declarative Programming
(PPDP). ACM, 2018, 8:1-8:13.

Mark Burgin and Gunter Meissner. ,Negative Probabilities in
Financial Modeling.” In: Wilmott 2012.58 (2012), pp. 60-65.

Francesco Paolo Cantelli. ,Sulla probabilita come limite della
frequenza.” In: Atti Della Accademia Nazionale Dei Lincei 26.1
(1917), pp. 39-45.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. , Verify-
ing Quantitative Reliability for Programs that Execute on Un-
reliable Hardware.” In: Proc. of the International Conference on
Object Oriented Programming Systems Languages & Applications
(OOPSLA). ACM, 2013, pp. 33-52.

Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee,
Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jigiang
Guo, Peter Li, and Allen Riddell. ,Stan: A Probabilistic Program-
ming Language.” In: Journal of Statistical Software 76.1 (2017).

Orieta Celiku and Annabelle Mclver. ,,Compositional Specifi-
cation and Analysis of Cost-Based Properties in Probabilistic
Programs.” In: Proc. of the International Symposium on Formal
Methods (FM). Vol. 3582. Lecture Notes in Computer Science.
Springer, 2005, pp. 107-122.

Aleksandar Chakarov and Sriram Sankaranarayanan. ,Proba-
bilistic Program Analysis with Martingales.“ In: Proc. of the
International Conference on Computer—Aided Verification (CAV).
Vol. 8044. Lecture Notes in Computer Science. Springer, 2013,
pp- 511-526.

[CS14]

[CKS81]

[Cha09]

[CF17]

[CFG16]

[CNZ17]

[Cha+16]

[CS09]

[CWO08]

[CJ17]

[Chu36]

BIBLIOGRAPHY

Aleksandar Chakarov and Sriram Sankaranarayanan. ,Expecta-
tion Invariants for Probabilistic Program Loops as Fixed Points.”
In: Proc. of the Static Analysis Symposium (SAS). Vol. 8723. Lec-
ture Notes in Computer Science. Springer, 2014, pp. 85-100.

Ashok Kumar Chandra, Dexter Campbell Kozen, and Larry
Joseph Stockmeyer. ,Alternation.” In: Journal of the ACM 28.1
(1981), pp. 114-133.

Robert N. Charette. , This Car Runs on Code.” In: IEEE Spectrum
46.3 (2009), p. 3.

Krishnendu Chatterjee and Hongfei Fu. , Termination of Non-
deterministic Recursive Probabilistic Programs.“ In: CoRR
abs/1701.02944 (2017). arXiv: 1701.02944. urL: http://arxiv.
org/abs/1701.02944.

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Go-
harshady. ,Termination Analysis of Probabilistic Programs
Through Positivstellensatz’s.“ In: Proc. of the International Con-
ference on Computer—Aided Verification (CAV). Vol. 9779. Lecture
Notes in Computer Science. Springer, 2016, pp. 3-22.

Krishnendu Chatterjee, Petr Novotny, and Dorde Zikelic.
»Stochastic Invariants for Probabilistic Termination.” In: Proc. of
the Symposium on Principles of Programming Languages (POPL).
ACM, 2017, pp. 145-160.

Krishnendu Chatterjee, Hongfei Fu, Petr Novotny, and Rouzbeh
Hasheminezhad. ,Algorithmic Analysis of Qualitative and
Quantitative Termination Problems for Affine Probabilistic Pro-
grams.“ In: Proc. of the Symposium on Principles of Programming
Languages (POPL). ACM, 2016, pp. 327-342.

Yifeng Chen and Jeff W. Sanders. , Unifying Probability with
Nondeterminism.” In: Proc. of the International Symposium on
Formal Methods (FM). Vol. 5850. Lecture Notes in Computer Sci-
ence. Springer, 2009, pp. 467-482.

Yixiang Chen and Hengyang Wu. ,Domain Semantics of Pos-
sibility Computations.” In: Information Sciences 178.12 (2008),
pp. 2661-2679.

Kenta Cho and Bart Jacobs. ,Disintegration and Bayesian Inver-
sion, Both Abstractly and Concretely. In: CoRR abs/1709.00322
(2017). arXiv: 1709.00322. urL: http://arxiv.org/abs/1709.
00322.

Alonzo Church. ,A Note on the Entscheidungsproblem.” In:
Journal of Symbolic Logic 1.1 (1936), pp. 40-41.

335

https://arxiv.org/abs/1701.02944
http://arxiv.org/abs/1701.02944
http://arxiv.org/abs/1701.02944
https://arxiv.org/abs/1709.00322
http://arxiv.org/abs/1709.00322
http://arxiv.org/abs/1709.00322

336

BIBLIOGRAPHY

[Cocl4]

[DLG17]

[Dav58]

[Deh+17]

[Dij68]

[Dij72]

[Dij75]

[Dij76]

[Dir42]

[Dur10]

[EGK12]

[Fen+17]

David Cock. ,pGCL for Isabelle.” In: Archive of Formal Proofs
2014 (2014).

Ugo Dal Lago and Charles Grellois. ,Probabilistic Termina-
tion by Monadic Affine Sized Typing.“ In: Proc. of the Euro-
pean Symposium on Programming Languages and Systems (ESOP).
Vol. 10201. Lecture Notes in Computer Science. Springer, 2017,
pp- 393-419.

Martin David Davis. Computability and Unsolvability. McGraw—
Hill Series in Information Processing and Computers. McGraw-
Hill, 1958.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and
Matthias Volk. ,,A Storm is Coming: A Modern Probabilistic
Model Checker.” In: Proc. of the International Conference on
Computer—Aided Verification (CAV). Springer, 2017, pp. 592-600.

Edsger Wybe Dijkstra. ,Letters to the Editor: Go To Statement
Considered Harmful.“ In: Communications of the ACM 11.3
(1968), pp. 147-148

Edsger Wybe Dijkstra. ,,The Humble Programmer.“ In: Commu-
nications of the ACM 15.10 (1972), pp. 859-866.

Edsger Wybe Dijkstra. ,Guarded Commands, Nondeterminacy
and Formal Derivation of Programs.” In: Communications of the
ACM 18.8 (1975), pp. 453-457.

Edsger Wybe Dijkstra. A Discipline of Programming. Prentice—
Hall, 1976.

Paul Adrien Maurice Dirac. ,Bakerian Lecture. The Physical
Interpretation of Quantum Mechanics.” In: Proc. of the Royal
Society of London. Series A, Mathematical and Physical Sciences
180.980 (1942), pp. 1-40.

Rick Durrett. Probability: Theory and Examples. Cambridge Uni-
versity Press, 2010.

Javier Esparza, Andreas Gaiser, and Stefan Kiefer. ,Proving Ter-
mination of Probabilistic Programs Using Patterns.” In: Proc.
of the International Conference on Computer-Aided Verification
(CAV). Vol. 7358. Lecture Notes in Computer Science. Springer,
2012, pp. 123-138.

Yijun Feng, Lijun Zhang, David Nicolaas Jansen, Naijun Zhan,
and Bican Xia. ,Finding Polynomial Loop Invariants for Prob-
abilistic Programs.” In: Proc. of the International Symposium on
Automated Technology for Verification and Analysis (ATVA). Lec-
ture Notes in Computer Science. 2017.

[FH15]

[FLP83]

[Flo67a]
[Flo67b]

[Fra98]

[Fre79]

[Fro+16a]

[Fro+16b]

[Gie+19]

[Gil77]

BIBLIOGRAPHY

Luis Maria Ferrer Fioriti and Holger Hermanns. ,Probabilistic
Termination: Soundness, Completeness, and Compositionality.”
In: Proc. of the Symposium on Principles of Programming Lan-
guages (POPL). ACM, 2015, pp. 489-501.

Michael John Fischer, Nancy Ann Lynch, and Mike Paterson.
,Impossibility of Distributed Consensus with One Faulty Pro-
cess.“ In: Proc. Symposium on Principles of Database Systems
(PODS). ACM, 1983, pp. 1-7.

Robert W Floyd. , Assigning Meanings to Programs.” In: Mathe-
matical Aspects of Computer Science 19.19-32 (1967), p. 1.

Robert W Floyd. , Nondeterministic Algorithms.” In: Journal of
the ACM 14.4 (1967), pp. 636-644.

Gudmund Skovbjerg Frandsen. ,,Randomised Algorithms.“ Lec-
ture notes of the Lecture ,Randomised Algorithms” held at Uni-
versity of Aarhus, Denmark. Accessed online March 22, 2018.
1998. UrL: http: / /www.cs . au. dk / ~gudmund / Documents /
randompearlnotes.pdf.

Rasins Martin$ Freivalds. ,Fast Probabilistic Algorithms.” In:
Proc. of the International Symposium on Mathematical Foundations
of Computer Science (MFCS). Vol. 74. Lecture Notes in Computer
Science. Springer, 1979, pp. 57-69.

Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt,
and Jurgen Giesl. ,Lower Runtime Bounds for Integer Pro-
grams.” In: Aachener Informatik-Berichte AIB-2016-03 (2016).
URL: http://aib.informatik.rwth-aachen.de/2016/2016-
03.pdf.

Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt,
and Jirgen Giesl. ,Lower Runtime Bounds for Integer Pro-
grams.” In: Proc. of the International Joint Conference on Auto-
mated Reasoning (IJCAR). Vol. 9706. Lecture Notes in Computer
Science. Springer, 2016, pp. 550-567.

Jirgen Giesl, Marcel Hark, Benjamin Lucien Kaminski, and
Joost-Pieter Katoen. ,,Aiming Low is Harder — Inductive Lower
Bounds in Probabilistic Program Verification.” [under review].
2019.

John Gill. ,,Computational Complexity of Probabilistic Turing
Machines.” In: SIAM Journal on Computing 6.4 (1977), pp. 675-
695.

337

http://www.cs.au.dk/~gudmund/Documents/randompearlnotes.pdf
http://www.cs.au.dk/~gudmund/Documents/randompearlnotes.pdf
http://aib.informatik.rwth-aachen.de/2016/2016-03.pdf
http://aib.informatik.rwth-aachen.de/2016/2016-03.pdf

338

BIBLIOGRAPHY

[Goo+08]

[Gor+14]

[GKM12]

[GKM14]

[Gre+16]

[Gri99]

[Hai04]

[H]94]

[HSP82]

[HSP83]

[Hau04]

[Heh98]

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith
Bonawitz, and Joshua B. Tenenbaum. ,Church: A Language for
Generative Models.” In: Proc. of the Conference in Uncertainty in
Artificial Intelligence (UAI). AUAI Press, 2008, pp. 220-229.

Andrew D. Gordon, Thomas A. Henzinger, Aditya Vithal Nori,
and Sriram K. Rajamani. ,Probabilistic programming.” In:
Proc. of Future of Software Engineering (FOSE). ACM, 2014,
pp- 167-181.

Friedrich Gretz, Joost-Pieter Katoen, and Annabelle Mclver.
»Operational Versus Weakest Precondition Semantics for the
Probabilistic Guarded Command Language.” In: Proc. of the
International Conference on Quantitative Evaluation of Systems
(QEST). IEEE Computer Society, 2012, pp. 168-177.

Friedrich Gretz, Joost-Pieter Katoen, and Annabelle Mclver.
»Operational versus Weakest Pre-Expectation Semantics for the
Probabilistic Guarded Command Language.” In: Performance
Evaluation 73 (2014), pp. 110-132.

Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-
Pieter Katoen, and Federico Olmedo. ,,On the Semantic Intrica-
cies of Conditioning.” In: Extended Abstracts of the 1st Workshop
on Probabilistic Programming Semantics (PPS) (2016).

Edward Ronald Griffor. Handbook of Computability Theory.
Vol. 140. Studies in Logic and the Foundations of Mathematics.
Elsevier, 1999.

Thomas Haigh. ,Biographies: Robert W Floyd, in Memoriam.”
In: Annals of the History of Computing 26.2 (2004), pp. 75-83.

Hans Hansson and Bengt Jonsson. ,A Logic for Reasoning about
Time and Reliability.” In: Formal Aspects of Computing 6.5 (1994),
pp- 512-535.

Sergiu Hart, Micha Sharir, and Amir Pnueli. , Termination of
Probabilistic Concurrent Programs.” In: Proc. of the Symposium
on Principles of Programming Languages (POPL). ACM Press,
1982, pp. 1-6.

Sergiu Hart, Micha Sharir, and Amir Pnueli. ,Termination of
Probabilistic Concurrent Program.” In: Trans. on Programming
Languages and Systems 5.3 (1983), pp. 356-380.

Espen Gaarder Haug. ,Why so negative to negative probabili-
ties?“ In: Wilmott Magazine (2004), pp. 34-38.

Eric Charles Roy Hehner. ,Formalization of Time and Space.”
In: Formal Aspects of Computing 10.3 (1998), pp. 290-306.

[Heh11]

[Hen13]

[HS55]

[HC388]

[Hin+16]

[Hir15]

[Hoa62]

[Hoa69]

[Ho116]

[Hsul7]

[Hur+14]

[Hur02]

[Hur03]

[Tee]

BIBLIOGRAPHY

Eric Charles Roy Hehner. ,, A Probability Perspective.” In: Formal
Aspects of Computing 23.4 (2011), pp. 391-419.

Thomas A. Henzinger. ,,Quantitative Reactive Modeling and Ver-
ification.” In: Computer Science — R&D 28.4 (2013), pp. 331-
344,

Edwin Hewitt and Leonard Jimmie Savage. ,Symmetric Mea-
sures on Cartesian Products.” In: Transactions of the American
Mathematical Society 80.2 (1955), pp. 470-501.

Timothy Hickey and Jacques Cohen. ,Automating Program
Analysis.” In: Journal of the ACM 35.1 (1988), pp. 185-220.

Wataru Hino, Hiroki Kobayashi, Ichiro Hasuo, and Bart Jacobs.
,Healthiness from Duality.” In: Proc. of the Annual Symposium
on Logic in Computer Science (LICS). ACM, 2016, pp. 682-691.

Jerry Hirsch. Elon Musk: Model S not a car but a ’sophisticated
computer on wheels’. Accessed online April 18, 2015. 2015. ure:
http://www.latimes.com/business/autos/la-fi-hy-musk-
computer-on-wheels-20150319-story.html.

Charles Antony Richard Hoare. , Quicksort.” In: The Computer
Journal 5.1 (1962), pp. 10-15.

Charles Antony Richard Hoare. ,,An Axiomatic Basis for Com-
puter Programming.” In: Communications of the ACM 12.10
(1969), pp. 576-580.

Johannes Holzl. ,Formalising Semantics for Expected Running
Time of Probabilistic Programs.” In: Proc. of the International
Conference on Interactive Theorem Proving (ITP). Vol. 9807. LNCS.
Springer, 2016, pp. 475-482.

Justin Hsu. ,Probabilistic Couplings for Probabilistic Reason-
ing.“ PhD thesis. University of Pennsylvania, USA, 2017.

Chung-Kil Hur, Aditya Vithal Nori, Sriram K. Rajamani, and
Selva Samuel. ,Slicing Probabilistic Programs.” In: Proc. of the

Conference on Programming Language Design and Implementation
(PLDI). ACM, 2014, pp. 133-144.

Joe Hurd. ,, A Formal Approach to Probabilistic Termination.”
In: Theorem Proving in Higher Order Logics (TPHOL). Vol. 2410.
LNCS. Springer Berlin Heidelberg, 2002, pp. 230-245.

Joe Hurd. ,Formal Verification of Probabilistic Algorithms.”
PhD thesis. University of Cambridge, UK, 2003.

IEEE 802.3-2015 — IEEE Standard for Ethernet. Accessed online
September 15, 2018. 2016. urL: https://standards.ieee.org/
standard/802_3-2015.html.

339

http://www.latimes.com/business/autos/la-fi-hy-musk-computer-on-wheels-20150319-story.html
http://www.latimes.com/business/autos/la-fi-hy-musk-computer-on-wheels-20150319-story.html
https://standards.ieee.org/standard/802_3-2015.html
https://standards.ieee.org/standard/802_3-2015.html

340

BIBLIOGRAPHY

[Tcal7]

[1001]

[JGPOO]

[Jan+15a]

[Jan+15b]

[Jan+16]

[Jin18]

[Jon90]

[KK15a]

Thomas Icard. ,Beyond Almost-sure Termination.” In: Proc. of
the Annual Meeting of the Cognitive Science Society. Cognitive Sci-
ence Society, 2017.

Samin S. Ishtiaq and Peter William O’Hearn. ,BI as an Asser-
tion Language for Mutable Data Structures.” In: Proc. of the Sym-
posium on Principles of Programming Languages (POPL). ACM,
2001, pp. 14-26.

Jacek Jachymski, Leslaw Gajek, and Piotr Pokarowski. , The
Tarski-Kantorovitch Prinicple and the Theory of Iterated Func-
tion Systems.” In: Bulletin of the Australian Mathematical Society
61.2 (2000), pp. 247-261.

Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
Federico Olmedo, Friedrich Gretz, and Annabelle Mclver. ,Con-
ditioning in Probabilistic Programming.“ In: Proc. of the Con-
ference on Mathematical Foundations of Programming Semantics
(MFPS) 319 (2015), pp. 199-216.

Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
Christoph Matheja, and Federico Olmedo. ,Probabilistic Pro-
grams — A Natural Model for Approximate Computations.” In:
Extended Abstracts of the Workshop on Approximate Computing
(AC 15). 2015.

Nils Jansen, Christian Dehnert, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, and Lukas Westhofen. ,Bounded Model
Checking for Probabilistic Programs.” In: Proc. of the Interna-
tional Symposium on Automated Technology for Verification and
Analysis (ATVA). Vol. 9938. Lecture Notes in Computer Science.
2016, pp. 68-85.

Jimmy Jin. Elchanan Mossel’s Dice Problem. Accessed online July
15, 2018. 2018. urL: http : / [www . yichijin . com/ files /
elchanan.pdf.

Claire Jones. ,Probabilistic Non-Determinism.”“ PhD thesis.
University of Edinburgh, UK, 1990.

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,Analyz-
ing Expected Outcomes and (Positive) Almost—sure Termina-
tion of Probabilistic Programs is Hard.” In: Proc. of the Young
Researchers’ Conference ,Frontiers of Formal Methods“ (FFM).
Vol. 9234. Aachener Informatik Berichte. 2015, pp. 179-184.

http://www.yichijin.com/files/elchanan.pdf
http://www.yichijin.com/files/elchanan.pdf

[KK15b]

[KK17a]

[KK17b]

[KK17c]

[KKM16]

[KKM138]

[KM17]

[Kam+16]

[Kam+18]

[Kat16]

BIBLIOGRAPHY

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,,On the
Hardness of Almost-Sure Termination.” In: Proc. of the Inter-
national Symposium on Mathematical Foundations of Computer
Science (MFCS). Vol. 9234. Lecture Notes in Computer Science.
Springer, 2015, pp. 307-318.

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,,A Weak-
est Pre-Expectation Semantics for Mixed-Sign Expectations.”
In: Extended Abstracts of the 2nd Workshop on Probabilistic Pro-
gramming Semantics (PPS). 2017.

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,, A Weak-
est Pre—expectation Semantics for Mixed-sign Expectations.”
In: Proc. of the Annual Symposium on Logic in Computer Science
(LICS). IEEE Computer Society, 2017, pp. 1-12.

Benjamin Lucien Kaminski and Joost-Pieter Katoen. ,, A Weak-
est Pre—expectation Semantics for Mixed—sign Expectations.” In:
CoRR abs/1703.07682 (2017). arXiv: 1703.07682. urL: http://
arxiv.org/abs/1703.07682.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph
Matheja. , Inferring Covariances for Probabilistic Programs.” In:
Proc. of the International Conference on Quantitative Evaluation of
Systems (QEST). Vol. 9826. Lecture Notes in Computer Science.
Springer, 2016, pp. 191-206.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph
Matheja. ,On the Hardness of Analyzing Probabilistic Pro-
grams.” In: Acta Informatica (2018).

Benjamin Lucien Kaminski and Carroll Morgan. [unpublished
personal email communication]. 2017.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Federico Olmedo. , Weakest Precondition Reason-
ing for Expected Run-Times of Probabilistic Programs.“ In: Proc.
of the European Symposium on Programming Languages and Sys-
tems (ESOP). Vol. 9632. Lecture Notes in Computer Science.
Springer, 2016, pp. 364-389.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Federico Olmedo. , Weakest Precondition Reason-
ing for Expected Runtimes of Randomized Algorithms.” In: Jour-
nal of the ACM 65.5 (2018), 30:1-30:68.

Joost-Pieter Katoen. ,The Probabilistic Model Checking Land-
scape.” In: Proc. of the Annual Symposium on Logic in Computer
Science (LICS). ACM, 2016, pp. 31-45.

341

https://arxiv.org/abs/1703.07682
http://arxiv.org/abs/1703.07682
http://arxiv.org/abs/1703.07682

342

BIBLIOGRAPHY

[Kat+10]

[Kat+15]

[Keil5]

[KP17]

[Keu+18]

[Kle43]
[Kle13]

[Kna28]

[Koc+18]

[KF09]

[Koz79]

[Koz81]

Joost-Pieter Katoen, Annabelle Mclver, Larissa Meinicke, and
Carroll Morgan. ,Linear-invariant Generation for Probabilistic
Programs: Automated Support for Proof-based Methods.” In:
Proc. of the Static Analysis Symposium (SAS). Vol. 6337. Lecture
Notes in Computer Science. Springer, 2010, pp. 390-406.

Joost-Pieter Katoen, Friedrich Gretz, Nils Jansen, Benjamin Lu-
cien Kaminski, and Federico Olmedo. , Understanding Proba-
bilistic Programs.” In: Correct System Design — Symposium in
Honor of Ernst-Riidiger Olderog on the Occasion of His 60th Birth-
day. Vol. 9360. Lecture Notes in Computer Science. Springer,
2015, pp. 15-32.

Klaus Keimel. ,,Healthiness Conditions for Predicate Transform-
ers.“ In: Proc. of the Conference on Mathematical Foundations of
Programming Semantics (MFPS) 319 (2015), pp. 255-270.

Klaus Keimel and Gordon David Plotkin. ,,Mixed Powerdomains
for Probability and Nondeterminism.“ In: Logical Methods in
Computer Science 13.1 (2017).

Maurice van Keulen, Benjamin Lucien Kaminski, Christoph
Matheja, and Joost-Pieter Katoen. ,Rule-based Conditioning
of Probabilistic Data Integration.” In: Proc. of the International
Conference on Scalable Uncertainty Management (SUM). Lecture
Notes in Artificial Intelligence. Springer, 2018.

Stephen Cole Kleene. ,Recursive Predicates and Quantifiers.”
In: Transactions of the AMS 53.1 (1943), pp. 41-73.

Achim Klenke. Probability Theory: A Comprehensive Course.
Springer, 2013.

Bronistaw Knaster. ,Un Théoréeme sur les Functions
D’ensembles.” In: Annales de la Societe Polonaise de Mathe-
matique 6 (1928), pp. 133-134.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. ,Spectre Attacks: Exploit-
ing Speculative Execution.” In: CoRR (2018). arXiv: 1801.01203.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models
— Principles and Techniques. MIT Press, 2009.

Dexter Kozen. ,Semantics of Probabilistic Programs.” In: Proc.
of the Annual Symposium on Foundations of Computer Science
(FOCS). 1979, pp. 101-114.

Dexter Kozen. ,,Semantics of Probabilistic Programs.” In: Journal
of Computer and System Sciences 22.3 (1981), pp. 328-350.

https://arxiv.org/abs/1801.01203

[Koz83]
[Koz85]
[Koz18]

[KUH19]

[LNS82]

[LBW17]

[Lip+18]

[MP74]

[MMO1]

[MMO5]

[MM16]

[McI+18]

BIBLIOGRAPHY

Dexter Kozen. ,A Probabilistic PDL.” In: Proc. of the Annual
Symposium on Theory of Computing (STOC). 1983, pp. 291-297.

Dexter Kozen. ,, A Probabilistic PDL.“ In: Journal of Computer
and System Sciences 30.2 (1985), pp. 162-178.

Dexter Kozen. On Disintegration in Probabilistic Semantics. Tech.
rep. [withdrawn]. 2018.

Satoshi Kura, Natsuki Urabe, and Ichiro Hasuo. ,Tail Proba-
bilities for Randomized Program Runtimes via Martingales for
Higher Moments.” In: Proc. of the International Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS). Lecture Notes in Computer Science. [to appear].
Springer, 2019.

Jean-Louis Lassez, V. L. Nguyen, and Liz Sonenberg. ,Fixed
Point Theorems and Semantics: A Folk Tale.” In: Information Pro-
cessing Letters 14.3 (1982), pp. 112-116.

Tuan Anh Le, Atilim Gunes Baydin, and Frank D. Wood. , Infer-
ence Compilation and Universal Probabilistic Programming.”
In: Proc. of the International Conference on Artificial Intelligence
and Statistics (AISTATS). Vol. 54. Proceedings of Machine Learn-
ing Research. PMLR, 2017, pp. 1338-1348.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yu-
val Yarom, and Mike Hamburg. ,Meltdown.” In: CoRR (2018).
arXiv: 1801.01207.

Zohar Manna and Amir Pnueli. ,Axiomatic Approach to Total
Correctness of Programs.” In: Acta Informatica 3 (1974), pp. 243-
263.

Annabelle McIver and Carroll Morgan. ,Partial Correctness for
Probabilistic Demonic Programs.” In: Theoretical Computer Sci-
ence 266.1-2 (2001), pp. 513-541.

Annabelle Mclver and Carroll Morgan. Abstraction, Refinement
and Proof for Probabilistic Systems. Monographs in Computer Sci-
ence. Springer, 2005.

Annabelle Mclver and Carroll Morgan. ,A New Rule for
Almost—certain Termination of Probabilistic and Demonic Pro-
grams.” In: CoRR abs/1612.01091 (2016). arXiv: 1612 . 01091.
URL: http://arxiv.org/abs/1612.01091.

Annabelle MclIver, Carroll Morgan, Benjamin Lucien Kaminski,
and Joost-Pieter Katoen. ,,A New Proof Rule for Almost—sure Ter-
mination.” In: Proc. of the Symposium on Principles of Program-
ming Languages (POPL) 2.POPL (2018), 33:1-33:28.

343

https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1612.01091
http://arxiv.org/abs/1612.01091

344

BIBLIOGRAPHY

[MOWO04]

[Mis00]

[Mis06]

[MUO5]

[Mon01]

[Mon05]

[MM99]

[MMS96]

[MJ84]

[Mos47]

[MR95]

[MOO05]

Michael W. Mislove, Joél Ouaknine, and James Worrell. ,Ax-
ioms for Probability and Nondeterminism.“ In: Electronic Notes
in Theoretical Computer Science 96 (2004), pp. 7-28.

Michael William Mislove. ,,Nondeterminism and Probabilistic
Choice: Obeying the Laws.” In: Proc. of the International Confer-
ence on Concurrency Theory (CONCUR). 2000, pp. 350-364.

Michael William Mislove. ,,On Combining Probability and Non-
determinism.” In: Electronic Notes in Theoretical Computer Sci-
ence 162 (2006), pp. 261-265.

Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, 2005.

David Monniaux. ,,An Abstract Analysis of the Probabilistic Ter-
mination of Programs.” In: Proc. of the Static Analysis Symposium
(SAS). Vol. 2126. Lecture Notes in Computer Science. Springer,
2001, pp. 111-126.

David Monniaux. ,Abstract Interpretation of Programs as
Markov Decision Processes.” In: Science of Computer Program-
ming 58.1-2 (2005), pp. 179-205.

Carroll Morgan and Annabelle Mclver. ,An Expectation—
Transformer Model for Probabilistic Temporal Logic.“ In: Logic
Journal of the Interest Group in Pure and Applied Logics 7.6 (1999),
pp- 779-804.

Carroll Morgan, Annabelle Mclver, and Karen Seidel. ,,Proba-
bilistic Predicate Transformers.” In: Trans. on Programming Lan-
guages and Systems 18.3 (1996), pp. 325-353.

Francis Lockwood Morris and Cliff B. Jones. ,,An Early Program
Proof by Alan Turing.” In: IEEE Annals of the History of Comput-
ing 6.2 (1984), pp. 139-143. por: 10. 1109 /MAHC . 1984 . 10017.
URL: https://doi.org/10.1109/MAHC. 1984.10017.

Andrzej Mostowski. ,,On Definable Sets of Positive Integers.” In:
Fundamenta Mathematicae 34.1 (1947), pp. 81-112.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-
rithms. Cambridge University Press, 1995.

Andrzej S. Murawski and Joél Ouaknine. ,,On Probabilistic Pro-
gram Equivalence and Refinement.” In: Proc. of the International
Conference on Concurrency Theory (CONCUR). Vol. 3653. Lecture
Notes in Computer Science. Springer, 2005, pp. 156-170.

https://doi.org/10.1109/MAHC.1984.10017
https://doi.org/10.1109/MAHC.1984.10017

[NCH18]

[Nie87]

[Nor+14]

[0di92]

[0di99]

[Olm+16]

[Olm+18]

[Pro]

[Pan01]

[PZ83]

[Par69]

[Pfe09]

[Plo04]

BIBLIOGRAPHY

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann.
»,Bounded Expectations: Resource Analysis for Probabilistic Pro-
grams.” In: Proc. of the Conference on Programming Language De-
sign and Implementation (PLDI). ACM, 2018, pp. 496-512.

Hanne Riis Nielson. ,,A Hoare-like Proof System for Analysing
the Computation Time of Programs.” In: Science of Computer
Programming 9.2 (1987), pp. 107-136.

Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva
Samuel. ,R2: An Efficient MCMC Sampler for Probabilistic Pro-
grams.” In: Proc. of the AAAI Conference on Artificial Intelligence
(AAAI). AAAI Press, 2014.

Piergiorgio Odifreddi. Classical Recursion Theory: The Theory of
Functions and Sets of Natural Numbers. Elsevier, 1992.

Piergiorgio Odifreddi. Classical Recursion Theory, Volume II. El-
sevier, 1999.

Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Ka-
toen, and Christoph Matheja. ,Reasoning about Recursive Prob-
abilistic Programs.” In: Proc. of the Annual Symposium on Logic
in Computer Science (LICS). ACM, 2016, pp. 672-681.

Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien
Kaminski, Joost-Pieter Katoen, and Annabelle Mclver. ,,Condi-
tioning in Probabilistic Programming.“ In: Trans. on Program-
ming Languages and Systems 40.1 (2018), 4:1-4:50.

PROBABILISTIC-PROGRAMMIN.org. Accessed online August
20, 2018. urL: http : / / probabilistic - programming . org/
wiki/Home.

Prakash Panangaden. ,Does Combining Nondeterminism and
Probability Make Sense? In: Bulletin of the EATCS 75 (2001),
pp- 182-189.

Christos Harilaos Papadimitriou and Stathis Zachos. ,Two Re-
marks on the Power of Counting.” In: Proc. of the GI Symposium
on Theoretical Computer Science. Vol. 145. Lecture Notes in Com-
puter Science. Springer, 1983, pp. 269-276.

David Park. ,Fixpoint Induction and Proofs of Program Proper-
ties.” In: Machine intelligence 5 (1969).

Avi Pfeffer. ,Figaro: An Object—oriented Probabilistic Program-
ming Language.” In: Charles River Analytics Technical Report 137
(2009), p. 96.

Gordon David Plotkin. , The Origins of Structural Operational
Semantics.” In: Journal of Logic and Algebraic Programming 60—
61 (2004), pp. 3-15.

345

http://probabilistic-programming.org/wiki/Home
http://probabilistic-programming.org/wiki/Home

346

BIBLIOGRAPHY

[Pos44]

[Pos48]

[Pos04]

[Put05]
[Rab63]

[Rab76]

[RS59]

[RKTO07]

[Rey02]

[Ric53]

[Rie67]

[Rob15]

[Rog59]

Emil Leon Post. ,Recursively Enumerable Sets of Positive Inte-
gers and their Decision Problems.” In: Bulletin of the American
Mathematical Society 50.5 (1944), pp. 284-316.

Emil Leon Post. ,Degrees of Recursive Unsolvability.” In: Bul-
letin of the American Mathematical Society 54.7 (1948), pp. 641-
642.

Emil Leon Post. ,Absolutely Unsolvable Problems and Rela-
tively Undecidable Propositions. Account of an Anticipation.”
In: The Undecidable: Basic Papers on Undecidable Propositions, Un-
solvable Problems and Computable Functions. Ed. by Martin David
Davis. Courier Corporation, 2004.

Martin Lee Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, 2005.

Michael Oser Rabin. ,Probabilistic Automata.” In: Information
and Control 6.3 (1963), pp. 230-245.

Michael Oser Rabin. ,,Probabilistic Algorithms.” In: Algorithms
and Complexity: New Directions and Recent Results. Ed. by Joseph
Frederick Traub. Academic Press, 1976, pp. 21-39.

Michael Oser Rabin and Dana Stewart Scott. ,Finite Automata
and Their Decision Problems.” In: IBM Journal of Research and
Development 3.2 (1959), pp. 114-125.

Luc de Raedt, Angelika Kimmig, and Hannu Toivonen.
,ProbLog: A Probabilistic Prolog and Its Application in Link Dis-
covery.” In: Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI). 2007, pp. 2462-2467. urL: http://ijcai.
org/Proceedings/07/Papers/396.pdf.

John Charles Reynolds. ,Separation Logic: A Logic for Shared
Mutable Data Structures.” In: Proc. of the Annual Symposium on
Logic in Computer Science (LICS). IEEE Computer Society, 2002,
pp. 55-74.

Henry Gordon Rice. ,Classes of Recursively Enumerable Sets
and Their Decision Problems.” In: Trans. of the American Mathe-
matical Society 74.2 (1953), pp. 358-366.

Bernhard Riemann. Ueber die Darstellbarkeit einer Function durch
eine trigonometrische Reihe. Konigliche Gesellschaft der Wis-
senschaften zu Goéttingen, 1867.

Borut Robi¢. The Foundations of Computability Theory. Springer,
2015.

Hartley Rogers. ,Computing Degrees of Unsolvability.“ In:
Mathematische Annalen 138.2 (1959), pp. 125-140.

http://ijcai.org/Proceedings/07/Papers/396.pdf
http://ijcai.org/Proceedings/07/Papers/396.pdf

[Rog67]

[Roj97]

[Rot16]

[Sam+14]

[Sas+11]

[Sch17]

[Sco69]

[Scu]

[Sel17]

[SR17]

[SPH84]

BIBLIOGRAPHY

Hartley Rogers. Theory of Recursive Functions and Effective Com-
putability. Vol. 5. McGraw-Hill New York, 1967.

Ratul Rojas. ,Konrad Zuse’s Legacy: The Architecture of the Z1
and Z3.“ In: IEEE Annals of the History of Computing 19.2 (1997),
pp. 5-16.

Jurriaan Roth. ,Coalgebra, Lecture 13: Induction; Coinduction
in Lattices and Categories.” Lecture notes of the Lecture ,,Coal-
gebra“ held at Radboud University, The Netherlands. Accessed
online December 12, 2017. 2016. URL: http://www.cs.ru.nl/
~jrot/coalgebra/coalg-lect13.pdf.

Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn
S. McKinley, Dan Grossman, and Luis Ceze. ,Expressing and
Verifying Probabilistic Assertions.” In: Proc. of the Conference on
Programming Language Design and Implementation (PLDI). ACM,
2014, pp. 112-122.

Raimondas Sasnauskas, Oscar Soria Dustmann, Benjamin Lu-
cien Kaminski, Klaus Wehrle, Carsten Weise, and Stefan
Kowalewski. ,Scalable Symbolic Execution of Distributed Sys-
tems.” In: Proc. of the International Conference on Distributed
Computing Systems (ICDCS). IEEE Computer Society, 2011,
pp- 333-342.

Noah Schweber. Ad—complete sets in the arithmetical hierarchy.
Mathematics Stack Exchange. Accessed online August 1, 2018.
2017. urL: https://math.stackexchange.com/q/2174728.

Dana Stewart Scott. A Type—theoretical Alternative to ISWIM,
CUCH, OWHY. Manuscript. 1969.

Marco Scutari. Bayesian Network Repository. Accessed online
April 23, 2018. urRL: http://www.bnlearn.com.

Peter Selinger. ,Quantum Programming.” Slides of the Lecture
,Quantum Programming” held at the 1st School on Foundations
of Programming and Software Systems (FoPSS) — Probabilistic Pro-
gramming. Accessed online September 7, 2018. 2017. URL: http:
[/alfa.di.uminho.pt/~nevrenato/probprogschool_slides/
Peter.pdf.

Chung-chieh Shan and Norman Ramsey. , Exact Bayesian Infer-
ence by Symbolic Disintegration.” In: Proc. of the Symposium
on Principles of Programming Languages (POPL). ACM, 2017,
pp. 130-144.

Micha Sharir, Amir Pnueli, and Sergiu Hart. , Verification of

Probabilistic Programs.” In: SIAM Journal of Computing 13.2
(1984), pp. 292-314.

347

http://www.cs.ru.nl/~jrot/coalgebra/coalg-lect13.pdf
http://www.cs.ru.nl/~jrot/coalgebra/coalg-lect13.pdf
https://math.stackexchange.com/q/2174728
http://www.bnlearn.com
http://alfa.di.uminho.pt/~nevrenato/probprogschool_slides/Peter.pdf
http://alfa.di.uminho.pt/~nevrenato/probprogschool_slides/Peter.pdf
http://alfa.di.uminho.pt/~nevrenato/probprogschool_slides/Peter.pdf

348

BIBLIOGRAPHY

[Sho09]

[Smi00]

[SS11]

[SS77]

[SYY10]

[Tio89]

[TKP09]

[Tur37]

[Tur49]

[Var03]

[VWO06]

[Var85]

Victor Shoup. A Computational Introduction to Number Theory
and Algebra. Cambridge University Press, 2009.

Michiel Smid. ,Closest-Point Problems in Computational Ge-
ometry.” In: Handbook of Computational Geometry. Ed. by Jorg-
Rudiger Sack and Jorge Urrutia. North-Holland, 2000, pp. 877-
935.

Jon Sneyers and Danny De Schreye. , Probabilistic Termination
of CHRiSM Programs.” In: Proc. of the International Symposium
on Logic—Based Program Synthesis and Transformation (LOPSTR).
Vol. 7225. Lecture Notes in Computer Science. Springer, 2011,
pp- 221-236.

Robert Solovay and Volker Strassen. ,, A Fast Monte—Carlo Test
for Primality.” In: SIAM Journal on Computing 6.1 (1977), pp. 84—
85.

Frank Stephan, Yue Yang, and Liang Yu. , Turing Degrees and
the Ershov Hierarchy.” In: Proc. of the Asian Logic Conference.
World Scientific. 2010, pp. 300-321.

Michael L. Tiomkin. ,Probabilistic Termination Versus Fair Ter-
mination.” In: Theoretical Computer Science 66.3 (1989), pp. 333—
340.

Regina Tix, Klaus Keimel, and Gordon David Plotkin. ,,Semantic
Domains for Combining Probability and Non-Determinism.”
In: Electronic Notes in Theoretical Computer Science 222 (2009),
pp- 3-99.

Alan Mathison Turing. ,,On computable numbers, with an ap-
plication to the Entscheidungsproblem.” In: Proc. of the London
Mathematical Society 2.1 (1937), pp. 230-265.

Alan Mathison Turing. ,Checking a Large Routine.” In: Report
of a Conference on High Speed Automatic Calculating Machines.
Univ. Math. Lab., Cambridge, 1949, pp. 67-69.

Daniele Varacca. ,Probability, Nondeterminism and Concur-
rency. Two Denotational Models for Probabilistic Computa-
tion.” PhD thesis. BRICS — Aarhus University, 2003. URL: www .
brics.dk/DS/03/14/.

Daniele Varacca and Glynn Winskel. ,Distributing Probability
over Non-Determinism.“ In: Mathematical Structures in Com-
puter Science 16.1 (2006), pp. 87-113.

Moshe Ya’akov Vardi. ,, Automatic Verification of Probabilistic
Concurrent Finite-State Programs.” In: Proc. of the Annual Sym-
posium on Foundations of Computer Science (FOCS). IEEE Com-
puter Society, 1985, pp. 327-338.

www.brics.dk/DS/03/14/
www.brics.dk/DS/03/14/

[Wika]

[Wikb]

[Wikc]
[Wikd]

[Wike]

[Wikf]

[Wikg]

[Wikh]

[Wiki]

[Wikj]
[Wikk]
[Wikl]

[Wikm]

[Wil14]

[WC11]

BIBLIOGRAPHY

Wikipedia. Ariane 5. Accessed online August 22, 2018. urL:
https://en.wikipedia.org/wiki/Ariane_5.

Wikipedia. Borel-Cantelli Lemma. Accessed online December
27, 2017. urL: https: / /en.wikipedia.org/wiki /Borel -
Cantelli_lemma.

Wikipedia. Bra—ket Notation. Accessed online September 5, 2017.
URL: https://en.wikipedia.org/wiki/BraaASket_notation.

Wikipedia. Covariance. Accessed online August 1, 2018. uUrL:
https://en.wikipedia.org/wiki/Covariance.

Wikipedia. Disintegration Theorem. Accessed online July 15,
2018. urL: https : / [/ en . wikipedia . org [/ wiki /
Disintegration_theorem.

Wikipedia. Hewitt-Savage Zero—One Law. Accessed online De-
cember 27, 2017. urL: https: //en.wikipedia.org/wiki /
Hewitt-Savage_zero-one_law.

Wikipedia. Iverson Bracket. Accessed online April 15, 2017. urt:
https://en.wikipedia.org/wiki/Iverson_bracket.

Wikipedia. Kolmogorov’s Zero—One Law. Accessed online Decem-
ber 27, 2017. urL: https : / [/ en . wikipedia . org [wiki /
Kolmogorov’s_zero-one_law.

Wikipedia. Monotonic Function. Accessed online December 28,
2017. urL: https://en.wikipedia.org/wiki /Monotonic_
function.

Wikipedia. Rosetta Stone. Accessed online September 13, 2018.
URL: https://en.wikipedia.org/wiki/Rosetta_Stone.

Wikipedia. Sublinear Function. Accessed online July 20, 2017.
URL: https://en.wikipedia.org/wiki/Sublinear_function.

Wikipedia. Therac—25. Accessed online August 22, 2018. ure:
https://en.wikipedia.org/wiki/Therac-25.

Wikipedia. Turing Completeness. Accessed online May 13, 2017.
UrRL: https : / / en . wikipedia . org / wiki / Turing _
completeness.

Virginia Vassilevska Williams. Multiplying Matrices in O(n*373)
Time. Accessed online August 27, 2018. 2014. urL: http: / /
theory.stanford.edu/~virgi/matrixmult-f.pdf.

Hengyang Wu and Yixiang Chen. ,The Semantics of wlp and
slp of Fuzzy Imperative Programming Languages.” In: Proc. of
the International Conference on Nonlinear Mathematics for Uncer-
tainty and its Applications (NL-MUA). Vol. 100. Advances in In-
telligent and Soft Computing. Springer, 2011, pp. 357-364.

349

https://en.wikipedia.org/wiki/Ariane_5
https://en.wikipedia.org/wiki/Borel-Cantelli_lemma
https://en.wikipedia.org/wiki/Borel-Cantelli_lemma
https://en.wikipedia.org/wiki/Bra–ket_notation
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Disintegration_theorem
https://en.wikipedia.org/wiki/Disintegration_theorem
https://en.wikipedia.org/wiki/Hewitt-Savage_zero-one_law
https://en.wikipedia.org/wiki/Hewitt-Savage_zero-one_law
https://en.wikipedia.org/wiki/Iverson_bracket
https://en.wikipedia.org/wiki/Kolmogorov's_zero-one_law
https://en.wikipedia.org/wiki/Kolmogorov's_zero-one_law
https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Rosetta_Stone
https://en.wikipedia.org/wiki/Sublinear_function
https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness
http://theory.stanford.edu/~virgi/matrixmult-f.pdf
http://theory.stanford.edu/~virgi/matrixmult-f.pdf

350 BIBLIOGRAPHY

[WC12] Hengyang Wu and Yixiang Chen. ,Semantics of Non-
Deterministic Possibility Computation.” In: Fuzzy Sets and Sys-
tems 199 (2012), pp. 47-63.

[Zus90] Konrad Zuse. Der Computer — Mein Lebenswerk (2. Auflage).
Springer, 1990.

INDEX

N, see entries for letter A

A, see entries for letter D

0, see entries for letter E

@, see entries for letter P

I, see entries for letter P

¥, see entries for letter S

o0, see entries for letter S

0, see entries for letter T

tf,248

~f, 248

=, 26

—, 26

1,61

E, 26

F, 61,63

ks, see s—scheduled transition relation
H, 61

3, see sequential composition

1=, see assignment

:=x, see random assignment
<<,79,161

<,47,78, 161

<, 200

«, 205

<, see quasiorder on integrability-witnessing pairs
%, see partial order on integrability-witnessing expectations
<m, see many—one reducibility

=, see integrability—witnessing expectation
1,315

T, 315

M, 123

4,197

0,201

6,102,120

@, 201

®, 264, 271, 298

[CI5, see distribution over final states
[C],, see distribution over final states

351

352 INDEX

], see Iverson bracket
—], 24
/..1,31,45
Y .. {_.), see Hoare triple
0 {....}, see nondeterministic choice
[..1{...} see probabilistic choice
<Q), see integrability-witnessing pair
< _§, see integrability—witnessing expectation
_/—, see conditional expectation

[
[
[
(
{
{
(
L

0,47,79,161

A, see anticipation
N, see canonical enumeration of Vals
Abramsky, Samson, 315
absolute convergence, 230, 232, 245
abstract interpretation, 192
accounting method, 227
affine variant, 149
affinity of ert, 174
almost-sure termination, 101, 119, 127, 131, 135, 143, 174, 187, 210, 213,
217,224, 282, 292, 294
positive, see positive almost—sure termination
problem, see AST
amortized analysis, 227, 253
amortized expected runtime, 253, 256
angelic nondeterminism, 52, 81, 83, 166, 278
angelic weakest liberal preexpectation, 83
angelic weakest preexpectation, 81, 83, 96, 130, 136, 162, 278
annotation style, 32, 48, 86, 166
anticipated value, 46, 77, 170, 178, 179
calculus for deterministic programs, 47
calculus for nondeterministic programs, 50
anticipation, 47
antisymmetry, 234, 315
antitonicity, 135
arithmetical hierarchy, 259, 261
arithmetical set, 260
assignment, 25
AST, 282
Atlantic City algorithm, 3, 155
awlp [...] (...), see angelic weakest liberal preexpectation
awlp—characteristic function, 84
awp [] (), see angelic nondeterminism, see angelic weakest precondition

INDEX

awp—-characteristic function, 84

Borel-Cantelli Lemma, 132
bound refinement, 121, 186, 223
bounded expectation, 79, 93, 118

C, see conditional expectation
C.4, see one-bounded conditional expectation
canonical enumeration of Vals, 23
certain termination, 125
characteristic function, 33, 43, 84, 162, 202, 239
cheering, 286
Church, Alonzo, 263
COF, see cofiniteness problem
COF, see complement of the cofiniteness problem, 289
cofeasiblity, 172
cofiniteness problem, 266
coinduction, 111, 114
for awlp, 112
for cwlp, 222
for ert, 179, 183
for wlp, 112
for runtimes of deterministic programs, 180
complement
of the cofiniteness problem, 266
of the halting problem, 264
of the universal halting problem, 265
complete
many-one, see many-one completeness
complete lattice, 33, 43, 47, 78, 79, 109, 111, 114, 161, 176, 200, 205, 238,
315
complexity jump, 265, 292, 293
compositionality, 94, 157, 173, 220, 250
computably enumerable set, 260
computation
in the limit, see limit-computable set
probabilistic, see probabilistic computation
computation tree, 61, 63, 168
computational hardness, 262
conditional choice, 1, 25
conditional expectation, 200
conditional expectation transformer, 198
conditional expected runtime, 226
conditional expected value, 199

353

354 INDEX

conditional invariant, 221
conditional probability, 199
conditional weakest liberal preexpectation, 203
conditional weakest liberal preexpectation transformer, 206
conditional weakest preexpectation, 200
conditional weakest preexpectation transformer, 202
conditioning, 278
configuration, 61
consequence rule, 95
constant propagation, 172
continuation passing, 29, 161
continuity, 92, 109, 111, 316
of awlp, 92
of awp, 92
of cwlp, 215
of cwp, 215
ofert, 171
of wlp, 92
of wp, 92
continuous, 35, 43
coRP, 155
costrictness, 92
of awlp, 93
of cwlp, 215
of wlp, 93
countable set, 264
coupon collector, 188
COVAR, 300, 303
covariance, 297, 298
definedness, see DCOVAR
COV[[C]]U(f, g), 298
cpGCL, see probabilistic guarded command language with conditioning
cwlp interpretation, 211
cwip [(/) 206
cwp interpretation, 207
cwp—characteristic function, 202

cwp [J(/) 202

D (Vals), see distribution expression
A9, 260

A—complete, 262, 266, 305
A%-hard, 262

DCOVAR, 298

decidable set, 260

INDEX

decomposition of ert, 173
decoupling

of cwlp, 215

of cwp, 215
demonic nondeterminism, 52
deterministic program, 37, 58
Dijkstra, Edsger Wybe, 23
directed set, 316
distribution expression, 57
distribution over final states, 66, 68
diverge, 24
domain theory, 315
duality of expectation transformers, 99

[E, see expectation
E,, 233
[E.,, see one-bounded expectation
[E.qp, see bounded expectation
IE, 236
1, 61,63
Edsger Wybe Dijkstra, 1, 5, 23, 92
enumeration of Vals, see canonical enumeration of Vals
equivalence relation, 236
on integrability-witnessing pairs, see integrability—witnessing expecta-
tion
Ershov hierarchy, 305
ert [] (), see expected runtime transformer
ert—characteristic function, 162
ERT[C],, 126, 168
escaping spline, 149
EXP, 271,275
expectation, 78
expected reward, 320
expected runtime, 126, 155, 284
expected runtime calculus, 160
expected runtime transformer, 162
expected space consumption, 193
expected value, 77, see weakest preexpectation, 80, 109, 227, 248, 269
conditional, 199

f-ii.d. loop, see f-independent and identically distributed loop
f-independent and identically distributed loop, 123

false, 26

feasibility, 93, 172

355

356 INDEX

of awp, 93
of cwp, 217
of iwp, 250
of wp, 93
FEXP, 277,288,299
fixed point iteration, 35, 44, 120, 207, 208, 211, 230, 231
F[./] 31
fl/ 145

GCL, see Guarded Command Language

GCLRZ, 264

gfp , see greatest fixed point

greatest fixed point, 43, 99,102,108, 111, 114, 120, 205, 222, 317
Guarded Command Language, 23

H, see halting problem
H, see complement of the halting problem
halting problem, 37, 264
universal, see universal halting problem
hardness, 262
healthiness condition, 91, 214
Hewitt-Savage zero—one law, 132
hierarchy
arithmetical, see arithmetical hierarchy
Ershov, see Ershov hierarchy
history independent scheduler, see positional scheduler
Hoare logic, 27, 95, 105, 169, 192
Hoare triple, 27, 39, 105
homomorphism property, see healthiness condition

I[E, see entries for Letter E
ii.d. loop, see independent and identically distributed loop
if(..){. . }else{ _} seeconditional choice
indefinite divergence, 229
independent and identically distributed loop, 122, 186
induction, 109, 176

see also coinduction, 109

for awp, 110

for cwp, 221

forert, 176

for wp, 110
integer variant, 133, 140
interactive theorem prover, 193
invariant, 105, 175, 221, 252

INDEX

integrability—witnessing expectation, 233, 236
integrability-witnessing pair, 233

integrability—witnessing preexpectation transformer, 239, 239
Isabelle/HOL, 193

Iverson bracket, 24

iwp—characteristic function, 239

iwp [Jl. <. 5, 239

Jordan decomposition, 227, 248
Jung, Achim, 315

K, 61

K, see configuration

Kleene Fixed Point Theorem, 35, 43, 84, 165, 244, 317
Kleene, Stephen Cole, 259

Knaster, Bronistaw, 317

Kolmogorov’s zero—one law, 132

Kozen, Dexter Campbell, 2, 8, 55, 77, 91, 224, 255

A . , see lambda expression
lambda expression, 24
Las Vegas algorithm, 3, 155
LCOVAR, 300
least fixed point, 33, 44, 48, 79, 102, 108, 110, 114, 120, 165, 176, 202, 221,
309, 317
LEXTP, 271
LEXPE, 276
lfp , see least fixed point
limit-computable set, 260
linearity, 95, 97
see also sublinearity, 97
see also superlinearity, 97
of awp, 98
of cwp, 220
of iwp, 251
of wp, 98
loop, see while loop
loop variant, 128, 133, 135
loop—free, 58
lower bound, 108, 109,112,114, 115,118,120, 122,127,131, 133,175, 180,
184-186, 222, 253, 271, 276, 300, 303, 309

m—completeness, see many—one completeness
many-one completeness, 262
many-one reducibility, 262

357

358 INDEX

Markov chain, 74, 320
Markov decision process, 69, 319
Markov’s inequality, 96, 143
Mclver, Annabelle, 8, 55, 71, 77, 79, 91, 93, 95,107, 118, 132, 133, 135, 192,
227,229, 255, 329
ME9, 71
GO 74

MDP, see Markov decision process
metering function, 115, 179
mixed-sign expectation, 227, 233, 306
Mod(_), 123
monotonicity, 94, 316

of awlp, 94

of awp, 94

of cwlp, 219

of cwp, 219

of ert, 173

of iwp, 250

of wlp, 94

of wp, 94

of characteristic functions, 94, 173
Monte Carlo algorithm, 155
Morgan, Carroll, 8, 55, 77, 79, 93, 95, 107, 118, 132, 133, 135, 227, 229, 255,

329

Mostowski, Andrzej, 259

Nielson logic, 169
Nielson triple, 169
non-absolute convergence, 230
nondeterminism, 37, 50, 55, 213, 278
angelic, 52
demonic, 52
nondeterministic choice, 37
nondeterministic program, 37
nonprobabilistic program, 58
nontermination, 50, 81, 207
Nori interpretation, 210
null almost-sure termination, 127

w-continuity, 316

w-invariant, 108, 115, 222, 252, 306
w-rule, 115, 185, 222, 306
observation, 197

observe (), see observe statement

INDEX

observe statement, 197

one-bounded conditional expectation, 205

one-bounded expectation, 79, 120

operational Markov chain, 74

operational Markov decision process, 71, 169

operational MC, see operational Markov chain

operational MDP, see operational Markov decision process
operational semantics, 60, 91, 168, 197

P, 233

P(), see powerset

awlp o L. .
<(P,C>® f(X), see awlp—characteristic function

awp .. .
<(P,C>CD f(X), see awp—characteristic function

cwp

(p.C) f/g

(@ %r;CDt(X), see ert—characteristic function

(l(ﬁy), see cwp—characteristic function

P X 9 Y§, see iwp—characteristic functi
(.0 Zf@gﬁz §, see iwp—characteristic function

<(ptNCl§)(Df(X), see wlp—characteristic function
<(p’vcvs®f(X), see wp—characteristic function
119, 260
[19—complete, 262
I19-hard, 262
Park induction, 317
Park’s Lemma, 317
Park’s Theorem, 317
Park, David, 317
partial correctness, 278
partial order, 315
on integrability-witnessing expectations, 238
PAST, 284, 285
pGCL, see probabilistic guarded command language
pGCL®XEQE, 271
pGCLR®YXK®EQRIE, 298
positional scheduler, 75, 319
positive almost-sure termination, 126, 128, 174, 284, 292
problem, 284
positive homogeneity, 96
possibility theory, 37
Post, Emil Leon, 262
postanticipation, 48
postcondition, 27
postexpectation, 80
postexpectation strengthening, 85, 143

359

360

INDEX

postruntime, 161
potential method, 227
powerset, 26
pPDA, see probabilistic pushdown automata
PPDL, see probabilistic propositional dynamic logic
preanticipation, 48
precondition, 27
predicate, 26
preexpectation, 80
preruntime, 161
preservation of co, 172
Png,o (0s), 74
prol;abilistic choice, 58, 85
probabilistic computations, 55
probabilistic guarded command language, 57
probabilistic guarded command language with conditioning, 197
probabilistic invariant, 107
probabilistic propositional dynamic logic, 8, 255
probabilistic pushdown automata, 193
probabilistic termination, 125, 281
probabilistic Turing machine, 269
probability expression, 57
probability of eventually reaching a state in a Markov chain, 320
program, 23
deterministic, 37, 58
nondeterministic, 37
nonprobabilistic, 58
ordinary, 23
tame, 58
program state, 23
program variable, 23
progress condition, 136

quantifier alternation, 259, 260
quasiorder, 234
on integrability—witnessing pairs, 234
RS, 47
random assignment, 58, 86
random walk, 134, 143, 157
randomized algorithm, 155
ranking function, 128, 177
ranking superinvariant, 129
ranking supermartingale, see ranking superinvariant, 179

RCOVAR, 300, 301
reachability probability in Markov chains, 320
reducibility, 262
many-one, 262
truth—table, 305
Turing, 305
reflexivity, 315
relationship between expectation transformers, 99
reward function, 320
REXP, 271,273
REXPE, 277
Rice’s Theorem, 37
Riemann Series Theorem, 232
Rogers, Hartley, 266
runtime, 161
runtime annotation, 166
runtime annotations, 166
runtime counter, 158, 192
runtime invariant, 175
runtime model, 165
runtime subinvariant, 175
runtime variance, 308
runtime—w-subinvariant, 175

Y, see program state
Y ¢, see valid input
0, see program state
o(.) 24
o[.] 24
¥9, 259
¥ _complete, 262
¥9-hard, 262
g, see scheduler
Scheds, see scheduler
scheduler, 67
history independent, see positional scheduler
of a Markov decision process, 319
positional, see positional scheduler
Scott, Dana Steward, 315
Scott-continuity, 316
semi—decidable set, see computably enumerable set
sequential composition, 25, 169
skip, 24
s—scheduled transition relation, 67

INDEX

361

362 INDEX

strictness, 92

see also costrictness, 92

of awp, 93

of cwp, 215

of iwp, 249

of wp, 93
subinvariant, 107, 135, 175
sublinearity, 97

of awp, 97
superinvariant, 107, 136, 252
superlinearity, 95, 97

of awlp, 98

of wlp, 98

of wp, 97
supermartingale, 108

T, see runtime

0, 61,63

tail bound, 127

tame program, 58
Tarski—-Kantorovich principle, 122
79,61, 63

termination, 27, 50, 207
total correctness, 27
transitivity, 315

true, 26

truth—table reducibility, 305
Turing reducibility, 305
Turing, Alan Mathison, 263

UAST, 282, 283

U'H, see universal halting problem

UM, see complement of the universal halting problem

unconditional convergence, 245

universal almost—sure termination, 127

universal halting problem, 265

universal positive almost—sure termination, 126

UPAST, 284, 289

upper bound, 109, 115, 117, 120, 127, 176, 221, 252, 272, 301, 303, 309

valid input, 264
Vals, 23

Var(cy, (f), 305
variance, 297, 305

INDEX

variant, see loop variant
Vars, see program variable
Vars(f), 123

weakest liberal precondition, 39

weakest liberal precondition calculus, 41

weakest liberal precondition transformer, 43

weakest liberal preexpectation, 82, 83, 85

weakest precondition, 28

weakest precondition calculus, 29

weakest precondition transformer, 30

weakest preexpectation, 80, 83, 84, 269

while loop, 25

while (.){..} see while loop

wlp—characteristic function, 84

wlp [..] (), see weakest liberal precondition calculus, see weakest liberal
precondition transformer, see weakest liberal precondition, see weak-
est liberal preexpectation

wp—characteristic function, 84

wp [..] (), see weakest precondition calculus, see weakest precondition trans-
former, see weakest precondition, see weakest preexpectation, see
anticipated value, see weakest preexpectation

Zeno behavior, 136
zero—one law, 132, 134
ZPP, 155, 294

363

EIDESSTATTLICHE ERKLARUNG

Ich erklare eidesstattlich, dass ich die Dissertation selbststandig verfasst und
alle in Anspruch genommenen Hilfen in der Dissertation angegeben habe.

Aachen, 15. Februar 2019

Benjamin Lucien Kaminski

	Abstract
	Abstract
	Abstract
	Acknowledgements
	Contents
	1 Overview
	-.55exClassical Weakest Preexpectation Reasoning
	2 Weakest Precondition Reasoning
	3 Probabilistic Computations
	4 Weakest Preexpectation Reasoning
	5 Proof Rules for Loops
	6 Probabilistic Termination

	-.55exAdvanced Weakest Preexpectation Reasoning
	7 Expected Runtimes
	8 Conditioning
	9 Mixed–Sign Expectations

	-.55exComputational Hardness
	10 The Arithmetical Hierarchy
	11 Approximating Preexpectations
	12 Deciding Probabilistic Termination
	13 Approximating Covariances
	14 Conclusion and Future Work

	-.55exAppendices
	A Domain Theory
	B Markov Decision Processes
	C Omitted Calculations
	D A More Detailed Note on Contributions of the Author
	Bibliography
	index
	Eidesstattliche Erklärung

