
The RWTH Aachen University English-German and German-English
Unsupervised Neural Machine Translation Systems for WMT 2018

Miguel Graça, Yunsu Kim, Julian Schamper, Jiahui Geng and Hermann Ney
Human Language Technology and Pattern Recognition Group

Computer Science Department
RWTH Aachen University
D-52056 Aachen, Germany

{graca,kim,schamper,jgeng,ney}@i6.informatik.rwth-aachen.de

Abstract
This paper describes the unsupervised neu-
ral machine translation (NMT) systems of the
RWTH Aachen University developed for the
English ↔ German news translation task of
the EMNLP 2018 Third Conference on Ma-
chine Translation (WMT 2018). Our work
is based on iterative back-translation using a
shared encoder-decoder NMT model. We ex-
tensively compare different vocabulary types,
word embedding initialization schemes and
optimization methods for our model. We also
investigate gating and weight normalization
for the word embedding layer.

1 Introduction

Unsupervised NMT was recently investigated in
(Artetxe et al., 2017; Lample et al., 2017, 2018)
and has shown promising results in language pairs
like German to English. For the WMT 2018 unsu-
pervised learning track, we combine the concepts
proposed in previous research and perform a thor-
ough comparison of the main components of each
method. Additionally, we augment the word em-
bedding initialization with weight normalization
to improve its integration in the model and with
a gating technique to allow the model to learn task
specific information.

The main findings of this paper are: (i) the it-
erative method (Lample et al., 2017) outperforms
the online training method (Artetxe et al., 2017),
(ii) cross-lingual embedding initialization is re-
quired in the online method and (iii) byte-pair en-
coding (BPE)-based vocabularies (Sennrich et al.,
2016) outperform word-based vocabularies in on-
line training.

This paper is organized as follows: Section 2
describes pre- and postprocessing pipelines, cor-
pora selection and vocabularies used in our exper-
iments. Section 3 details the models used in this
work together with the embedding augmentation

techniques. The experimental evaluation is pre-
sented in Sections 4 and 5 and finally we conclude
with Section 6.

2 Pre- and Postprocessing

Our preprocessing pipeline consists of a tokeniza-
tion with a script from the Moses toolkit (Koehn
et al., 2007), lower-casing, and the introduction of
a number category token which replaces all occur-
rences of numbers. We use joint BPE in our exper-
iments and apply it at this stage of preprocessing.

After the search procedure, we first monoton-
ically replace number tokens with their original
content, and unknown words to the target hypoth-
esis by their order of occurrence in the source sen-
tence. This method is very restrictive, as it fails
when, e.g., more unknown tokens are hypothe-
sized than there are in the source sentence due to
an unknown token being attended twice. Since, to
our knowledge, there are no well-founded meth-
ods of pin-pointing which source words are at-
tended during the generation of a target word in
the Transformer (Vaswani et al., 2017), we de-
cided for the forementioned method.

As postprocessing, we first convert subwords
to words. Lower-cased words are then frequent-
cased using the tools provided in the Jane toolkit
(Vilar et al., 2010). As a final step, the text is
detokenized using the detokenizer from Moses and
punctuation is normalized.

2.1 Corpora Selection
We use monolingual News Crawl articles from
2014 to 20171 as our training corpora for both
German and English languages. 100M sentences
are sub-sampled for pre-training word embeddings
and 5M sentences are used for translation model
training.

1http://www.statmt.org/wmt18/
translation-task.html

http://www.statmt.org/wmt18/translation-task.html
http://www.statmt.org/wmt18/translation-task.html

German English
sentences 5M 5M
Vocabulary 1.3M 577K
OOV rate 6.9% / 8.9% 1.73% / 3.3%
Effective voc. 50K / 46.3K 50K / 31.2K

Table 1: Corpus statistics for the German and English
monolingual corpora. OOV word rates and effective
vocabulary sizes are given for unshared and shared, re-
spectively displayed, vocabularies limited to the most
frequent 50k words.

Table 1 shows the corpus statistics for the
model training. The reported out-of-vocabulary
(OOV) word rates and effective vocabulary sizes
are shown for our word-level experiments, which
use either top frequent 50k words for each lan-
guage or a shared vocabulary with a total of 50k
words.

Even though the News Crawl corpora contain
mostly clean data, we noticed that common En-
glish words are found in the German corpus and
vice-versa, which causes an overlap in the effec-
tive vocabulary.

2.2 Vocabulary

In this work we consider different kinds of vocab-
ularies for the unsupervised translation systems.
Lample et al. (2017) use word-level vocabular-
ies due to the initialization with a word-by-word
model. Artetxe et al. (2017) perform experiments
on both word- and BPE-level and report that the
model has difficulties translating rare sub-word
codes. We perform experiments with both BPE
and word vocabularies to find the best setting for
unsupervised NMT.

For the BPE vocabularies, we consider only the
joint variant, performing 20k and 50k merge op-
erations. The word-level vocabulary is restricted
to a 50k-word shared vocabulary or two seperate
50k-word German and English vocabularies.

3 Unsupervised Neural Machine
Translation

The models proposed in Lample et al. (2017);
Artetxe et al. (2017) follow a recurrent attention-
based encoder-decoder architecture (Bahdanau
et al., 2015). As a follow-up work Lample et al.
(2018) make use of the Transformer (Vaswani
et al., 2017) architecture, which we also utilize for
our systems.

3.1 Model Description
We closely follow the model architecture in (Lam-
ple et al., 2017), but with a Transformer encoder-
decoder. It is able to translate in both source to
target and target to source translation directions
via joint training and parameter sharing of com-
ponents, therefore we denote it further as a shared
architecture. In this section, we describe how
the model functions for an input source sentence
fJ1 = f1, ..., fj , ..., fJ and output target sentence
eI1 = e1, ..., ei, ..., eI .

The model consists of an self-attentive encoder
and decoder, word embeddings and output layers,
where the encoder and decoder share parameters
in both translation directions. The output layer
may additionally be shared when the output vo-
cabularies are also shared between both directions.

Word embeddings: Each word is encoded in a
continuous space of dimension D via a lookup ta-
ble functionE : V → RD, where V represents the
source or target vocabulary, scaled up by

√
D as

in the original formulation (Vaswani et al., 2017).
Fixed positional embeddings pos : N0 → RD

(Vaswani et al., 2017), which encode the absolute
position j of a word fj in the source sentence, are
added to the word vectors to represent a word em-
bedding:

f̄j = Ef (fj) ·
√
D + pos(j) (1)

Source word embeddings are applied whenever
the model reads a source sentence or outputs a
source sentence. All of the above hold analo-
gously for the target word embeddings.

Encoder: The input source embeddings are
read by a self-attentive encoder module and out-
puts a sequence of hidden states hJ1 with hj ∈ RD

having the same dimensionality as the input em-
beddings.

hJ1 = H(f̄ J
1 ; θenc) (2)

A noise model as described in (Lample et al.,
2017) is applied to the encoder inputs.

Decoder: Target word predictions are condi-
tioned on the sequence of previously seen embed-
ded target words ē i−1

0 and the encoder outputs
hJ1 . The decoder outputs a single hidden state
si ∈ RD, which is then propagated to an output
layer. Note that in our setup encoder and decoder
outputs have the same dimensionality.

si = S(hJ1 , ē
i−1
0 ; θdec) (3)

The target sentence is augmented with a sen-
tence start symbol e0, which is an identifier for
the output language. In our setup the decoder is
shared between languages.

Output layer: The hidden state si is projected
to the size of the output vocabulary and normal-
ized with a softmax operation resulting in a prob-
ability distribution over target words.

p(ei|ei−1
1 , fJ1) = softmax(W · si + b)ei (4)

As mentioned in Section 2.2, the output layer
may or may not be shared depending on the type
of vocabularies.

Optimization: The model is trained via cross-
entropy on both translation directions. Addition-
ally, we include auto-encoding losses for both lan-
guages for a total of four optimization criteria as
in both approaches (Artetxe et al., 2017; Lample
et al., 2017).

Finally, we include an adversarial loss term
(Lample et al., 2017) in a feature study experi-
ment, where the model is trained to fool a separate
model that attempts to discriminate the language
of the input sentence after the encoder module.
Each component of the loss function is equally
weighted.

Note that, in contrast to (Artetxe et al., 2017),
we do not alternate between loss functions during
optimization and instead optimize the summation
of them. We noticed the same translation quality
when comparing both sum and alternating variants
in preliminary experiments.

3.2 Batch Optimization
Proposed by Lample et al. (2017), the batch opti-
mization method trains the model iteratively: the
model trained on iteration n − 1 is used to gen-
erate back-translations to train the model at itera-
tion n. The initial model is an unsupervised word-
by-word translation model based on cross-lingual
word vectors (Conneau et al., 2017).

The workflow of this method for the n-th itera-
tion is as follows:

1. Translate monolingual corpora with the
model at iteration n− 1

2. Train for one epoch on the back-translated
and monolingual corpora

Throughout this work, we denote an iteration
as the forementioned steps. We restrict ourselves
to only one epoch for model training per iteration,

but it is also possible to train for a different amount
of updates.

3.3 Online Optimization
Leveraging the model’s ability to translate in both
translation directions, Artetxe et al. (2017); Lam-
ple et al. (2018) generate back-translations for
each mini-batch using the currently trained param-
eters. This method is not initialized with a word-
by-word translation.

We noticed that with the original implementa-
tion training was slow due to the generation of
back-translations with a smaller batch size than
what fit in our device’s memory. Therefore, we
implement online optimization by generating 10
mini-batches of back-translations at once. We no-
ticed no loss of translation quality when doing this.

3.4 Gated Word Embeddings
The initialization of the word embeddings with
pre-trained word vectors allows the model to start
from a much more informative state and exploit
information from a larger corpus. Indeed it is a
crucial component of the shared architecture, as
shown empirically in Section 5.2. As an alterna-
tive to just training the initialized vector, we con-
sider a gating mechanism, shown in Equation 5
and introduced in (Yang et al., 2016):

f̄j =
(

g(fj)� Ef,pre−train(fj)

+ (1− g(fj))� Ef,random(fj)
)

·
√
D + pos(j)

(5)

with the interpolation weights g(fj) ∈ RD

being defined as a feed-forward projection to
the word embeddings’ dimensionality with a sig-
moidal output:

g(fj) = σ(b+W ·
[
Ef,pre−train(fj),

Ef,random(fj)
]
)

(6)

� denotes element-wise multiplication. This al-
lows the model to learn task-specific information
and interpolate it with the pre-trained parameters.
When using this approach, the pre-trained vectors
are not updated during training.

Ding and Duh (2018) perform a simpler ap-
proach to combine both kinds of embeddings, in
which they concatenate the word vectors and, as in
this work, keep the pre-trained embeddings fixed
during training.

Our idea is most similar to the concept in (Yang
et al., 2018), where the authors also employ a gat-
ing mechanism on the embeddings, but combine it
with the output of the encoder in order to reinforce
a language-independent encoder representation.

3.5 Embedding Weight Normalization
The training criteria for word embeddings does not
enforce normalization constraints on the continu-
ous output values and therefore might cause very
high or low gradient values in the encoder and de-
coder parameters, especially at the beginning of
training.

Weight normalization (Salimans and Kingma,
2016), as shown in Equation 7, normalizes each
word embedding by its L2-norm and introduces
an additional tunable parameter vfj for each word,
that rescales the vector. It is initialized with the
value of 1.

f̄j =
vfj · Ef (fj) ·

√
D

||Ef (fj)||2
+ pos(j) (7)

4 Experimental Setup

All processing steps and experiments were orga-
nized with Sisyphus (Peter et al., 2018) 2 as work-
flow manager.

4.1 Model Hyperparameters
Our models use the Transformer architecture
(Vaswani et al., 2017) implemented in Sockeye
(Hieber et al., 2017), based on MXNet (Chen
et al., 2015). The encoder and decoder both have
4 layers of size 300 with the internal feed-forward
operation having 2048 nodes. The multi-head at-
tention mechanism uses 6 heads. For each encoder
and decoder layer, 10% dropout (Srivastava et al.,
2014) and layer normalization (Ba et al., 2016)
are used as preprocessing3 operations and a resid-
ual connection (He et al., 2016) is additionally in-
cluded in the postprocessing operations.

Monolingual word embeddings have a dimen-
sionality of 300 and are trained as a skip-gram
model using FastText (Bojanowski et al., 2017),
only for words that have occured at least 10 times.
Cross-lingual word embeddings are trained with
MUSE (Conneau et al., 2017) for 10 epochs with
the adversarial setting and 10 steps of the re-
finement procedure using the learned monolingual
embeddings.

2https://github.com/rwth-i6/sisyphus
3Pre- and postprocessing terminology is described in

(Hieber et al., 2017).

Model optimization is performed with the
AdaM (Kingma and Ba, 2014) algorithm using
a learning rate of 10−4 and a momentum param-
eter β1 = 0.5. Training sequences are limited
to 50 words or subwords. Parameters are initial-
ized with Glorot initialization (Glorot and Bengio,
2010). The batch method is trained for 5 iterations,
800K updates, for a total of 6 days and the online
method is trained for roughly the same amount of
time for 500K updates.

Translation is performed using beam search
with beam size 5 and the best hypothesis is the
one with the lowest length normalized negative
log-probability. Length normalization divides the
sentence score by the number of words.

4.2 Evaluation

We constrain our results to the newstest2017 and
newstest2018 data sets in the German → English
translation direction. BLEU (Papineni et al.,
2002), computed with mteval from the Moses
toolkit (Koehn et al., 2007), and TER (Snover
et al., 2006), computed with TERCom, are used
as evaluation metrics. BLEU scores are case-
sensitive and TER is scored lower-cased. All pre-
sented scores are percentages. For the experiments
in Sections 5.3 and 5.4 we additionally test for
statistical significance with MultEval (Clark et al.,
2011).

Lample et al. (2017) propose a model selec-
tion criterion based on round-trip BLEU scores,
however we do not notice a correlation of this
measure and BLEU between experiments. The
more expressive the model is, the better round-trip
BLEU scores it will get, whereas BLEU itself does
not change. Therefore we choose to validate on
newstest2015 on the German → English transla-
tion direction for the feature study.

For our final submission, we select optimization
method, embedding initialization and vocabulary
types based on BLEU on the German → English
direction of newstest2017 and select the best hy-
perparameter settings using the metric from Lam-
ple et al. (2017). In this case, we only consider
models that have trained exactly 6 iterations.

5 Experimental Results

5.1 Translation Units

We experiment with both words and BPE sub-
words as initial work (Artetxe et al., 2017; Lample

https://github.com/rwth-i6/sisyphus

newstest2017 newstest2018
method BLEU TER BLEU TER

words batch 14.9 72.7 18.1 67.1
unshared 14.5 73.3 17.2 67.8

words online 11.9 75.7 14.2 71.0
unshared 10.6 77.7 13.2 73.1

BPE 20k 11.8 77.9 13.6 73.9
BPE 50k 13.1 75.5 15.4 70.8

Table 2: Vocabulary comparison between different op-
timization methods for German → English. All sys-
tems are initialized with cross-lingual word embed-
dings.

et al., 2017) focuses primarily on words and only
briefly discuss the effects of sub-word units.

Table 2 shows the effect of different vocabu-
lary sizes and units on both online and batch op-
timization methods. The best performing exper-
iments are trained with batch optimization and a
word-based vocabulary, even though they face an
OOV word problem during both training and test-
ing. Furthermore restricting the vocabulary to the
top-50k most common words in both vocabularies
and sharing an output layer performs up to 0.9%
BLEU and 0.7% TER better than using sepa-
rate top-50k vocabularies (different output layers).
The same effect is noticeable with the online opti-
mization method.

The online optimization method is additionally
run with joint BPE codes trained with 20k and 50k
merge operations, which improves over the word-
based vocabulary by up to 1.2% BLEU and 0.2%
TER when using 50k operations.

We do not present results with the batch method
and BPE-based vocabularies, because the initial
word-by-word translation is designed to work on
the word-level.

5.2 Embedding Initialization

Initializing word embeddings with pre-trained
vectors was a component in both original works
(Artetxe et al., 2017; Lample et al., 2017). Two
kinds of embeddings are considered, monolingual
and cross-lingual, both serving the role of initial-
izing the model with prior knowledge to aid the
training of the model. Cross-lingual embeddings
further add the property of language abstraction to
pre-trained monolingual vectors.

Results on the embedding initialization are re-
ported in Table 3 for both batch and online opti-
mization methods.

newstest2017 newstest2018
method BLEU TER BLEU TER

random online 4.9 92.7 4.9 91.7
monolingual 7.5 88.2 8.2 85.7
cross-lingual 13.1 75.5 15.4 70.8

+ frozen 12.7 76.3 15.1 71.6
random batch 14.5 73.6 17.6 68.2
monolingual 14.3 73.3 17.2 68.0
cross-lingual 14.9 72.7 18.1 67.1

+ frozen 14.0 75.8 16.9 71.5

Table 3: Embedding initialization comparison between
different optimization methods for German→ English.
Online systems use joint BPE with 50k merge opera-
tions, whereas batch systems use seperate word-based
vocabularies. Word-by-word initialization is only used
for the batch optimized system.

First considering the online optimization sce-
nario, both random and monolingual initializa-
tions fail to produce proper results. This is due
to the differing word distributions for source and
target embeddings that are given as an input to
the encoder and decoder modules. Once the em-
beddings are language-independent, the model is
able to achieve much better values. This follows
the same motivation as the adversarial feature pro-
posed by Lample et al. (2017), where the authors
argue that the decoder must be fed with language-
independant inputs in order to function effectively.
Freezing the embeddings during training is also
detrimental to translation quality.

Examining the initialization with the batch opti-
mization method results in similar behaviours for
a cross-lingual initialization. Here the initializa-
tion has a slight, albeit significant, influence on the
translation quality. This is due to the cross-lingual
signal already being strongly present in the word-
by-word initialization, replacing the prior infor-
mation that one gets from the word embedding
initialization. Random and monolingual initial-
izations perform roughly the same, which shows
again the problem with the differing representation
distributions. Overall, the cross-lingual initializa-
tion performs best for both methods.

Recently, Lample et al. (2018) have noted that it
is possible to share embeddings across languages
and initialize them with monolingual word vec-
tors. We leave this for future work.

5.3 Embedding Features
Considering the empirical results of the previous
section, we focus on improving upon the integra-

newstest2017 newstest2018
BLEU TER BLEU TER

baseline 14.9 72.7 18.1 67.1
+ frozen emb. 14.0∗ 75.8∗ 16.9∗ 71.5∗

+ gating 14.4∗ 72.5 17.6∗ 67.3
+ emb. WN 14.5∗ 73.4∗ 17.5∗ 68.4∗

+ emb. WN 14.7 72.8 18.2 67.1

Table 4: Results for different embedding initialization
on systems optimized with the online strategy for Ger-
man→ English. The baseline system uses batch opti-
mization, cross-lingual embeddings and shared vocab-
ularies. WN stands for weight normalization. ∗ denotes
a p-value of < 0.01 w.r.t. the baseline.

0 5 10 15

updates in steps of 100,000

8

10

12

14

16

18

20

B
L
E
U

[%
]

60

65

70

75

80

85

90

T
E
R

[%
]

Online (BLEU)

Batch (BLEU)

Online (TER)

Batch (TER)

Figure 1: BLEU and TER values on newstest2017
German → English for checkpoint models of online
and batch optimization methods. The initial step of
the batch method uses the word-by-word translation
scores.

tion of pre-trained embeddings on top of the best
system, namely a word-based batch optimized sys-
tem with cross-lingual embeddings and a shared
output layer. Experiments are presented in Table
4.

As seen in Table 3, freezing embeddings dur-
ing training worsens translation quality. One can
conclude that the model learns task-specific infor-
mation via the embedding component.

As a first step, we apply the gating mechanism
as presented in Section 3.4 and observe an in-
crease in performance of up to 0.7% BLEU . How-
ever, results show that the model performs up to
0.5% BLEU worse than the baseline and achieves
roughly the same TER performance.

Afterwards, we apply weight normalization as
presented in Section 3.5 on top of both trainable
and frozen embeddings. When applied on top of
frozen embeddings, the normalization helps, but
still lags behind the baseline. Adding it on top of
the baseline does not worsen, but also does not im-
prove translation quality.

These experiments allow one to conclude that
fine-tuning embeddings to the task at hand per-
forms better than the implemented techniques. Al-
ternative embedding features could be considered,
as for example the works mentioned in Section
3.4.

5.4 Training Variations

In this Section, we consider additional experi-
ments that do not fit in a specific category and
present them in Table 5.

Firstly, we add an adversarial loss term as in
(Lample et al., 2017) on top of a batch optimized
model with cross-lingual embeddings and a shared
output layer. We report that performance drops by
up to 1.2% BLEU and we hypothesize that the
feature does not integrate well in the Transformer
architecture. Specifically, the encoder outputs of
an LSTM (Hochreiter and Schmidhuber, 1997) are
bounded between -1 and 1, whereas the Trans-
former encoder outputs can take on any real value.
The effect of the feature was not reproducible in
separate experiments with the setup described in
the original publication.

Secondly, we separate both output layer and de-
coder components from the model to obtain a set-
ting similar to the one in (Artetxe et al., 2017).
Translation quality drops by up to 0.8% BLEU and
0.9% TER . Note that in Section 5.1, we already
saw a drop of roughly the same amount when not
sharing the output layer.

We investigate whether noisy input sentences
and auto-encoding are necessary at later stages of
the training. Hence, these features are disabled af-
ter the 3rd iteration. The improvements are not sta-
tistical significant, but at the very least the compar-
ison shows that the model does not worsen from
focusing solely on the translation task after its ini-
tial learning period. This is due to it already being
able to generate decent translations after the first
few iterations.

Finally, we train the batch and online meth-
ods for a larger number of iterations, see Table 6,
reaching 19.2% BLEU with the batch method af-

newstest2017 newstest2018
BLEU TER BLEU TER

baseline 14.9 72.7 18.1 67.1
+ adversarial 13.9∗ 74.2∗ 16.9∗ 69.0∗

+ unshared decoder 14.3∗ 73.3∗ 17.3∗ 68.0∗

+ drop AE & noise 15.2 72.6 18.3 66.9

Table 5: Results for training variations on German →
English. The baseline system uses batch optimization,
cross-lingual embeddings and shared vocabularies. ∗

denotes a p-value of < 0.01 w.r.t. the baseline.

newstest2018
De→ En En→ De

BLEU TER BLEU TER

online method 15.4 70.8 12.0 79.5
1M updates 16.8 69.3 13.2 77.7

batch method 18.1 67.1 14.0 77.0
10th iteration 19.2 64.6 15.4 74.3

Table 6: Results for longer training iterations for Ger-
man↔ English. The baseline system uses batch opti-
mization, cross-lingual embeddings and shared vocab-
ularies.

ter 10 iterations and 16.8% BLEU with the online
method after 1M updates on newstest2017. The
extended training for the online and batch method
trained for 14 and 12 days respectively. Figure 1
shows the training of the models on newstest2017
German→ English. The initial TER spike occurs
because hypotheses are 13% longer than the ones
of the word-by-word system. Considering the re-
sults of these experiments, one should look into
better optimization algorithm tuning for the online
method.

5.5 Final Submission

The model in the final submission, shown in Ta-
ble 7, consists of a word-based model with sepa-
rate vocabularies, trained with the batch optimiza-
tion method, initialized with cross-lingual embed-
dings, applies embedding weight normalization
and is trained with a learning rate of 3 · 10−4.
The ensemble system consists of 4 variations of
the single-best model, varying in learning rate val-
ues (3 · 10−4 → 10−4), feed-forward projection
hidden sizes (2048→ 1024) and monolingual, in-
stead of cross-lingual, embedding initialization.

For reference, we include our supervised sub-
mission system for the German → English con-
strained task. As expected, there is a large perfor-
mance gap between both our systems. The most

crucial point of improvement in our submission
is the amount of data used. We used a small
amount of the available data, even smaller than
for our supervised submission, since we noted that
the models took a long time to converge as por-
trayed in Figure 1. We suggest to invest efforts
into tuning of optimization algorithm hyperparam-
eters and using more data.

6 Conclusion

The RWTH Aachen University has participated in
the WMT 2018 German→ English and English→
German unsupervised news translation tasks. We
focus on reproducing related work and infer em-
pirically that the batch optimization method from
(Lample et al., 2017) performs best on our con-
strained setting, i.e. 5M sentences for each lan-
guage. An initialization with cross-lingual word
embeddings performs best for both optimization
strategies. Sharing vocabularies is important for
a shared model architecture. BPE-based vocab-
ularies outperform word-based ones with the on-
line optimization method. The noise model and
auto-encoding losses are not needed in later stages
of training in batch optimization. Freezing the
word embedding layer during training hurts. Sim-
ply initializing and training the embeddings per-
forms better than performing weight normaliza-
tion or applying a gating mechanism on top of a
frozen embedding layer.

Acknowledgements

This work has received
funding from the Euro-
pean Research Council
(ERC) (under the Euro-
pean Union’s Horizon
2020 research and in-
novation programme,
grant agreement No

694537, project ”SEQCLAS”) and the Deutsche
Forschungsgemeinschaft (DFG; grant agreement
NE 572/8-1, project ”CoreTec”). The GPU com-
puting cluster was supported by DFG (Deutsche
Forschungsgemeinschaft) under grant INST
222/1168-1 FUGG.
The work reflects only the authors’ views and
none of the funding agencies is responsible for
any use that may be made of the information it
contains.

German→ English English→ German
newstest2016 newstest2017 newstest2018 newstest2016 newstest2017 newstest2018
BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Single-best 17.2 68.7 14.5 72.9 18.1 66.9 13.7 77.0 11.2 82.0 14.5 75.8
Ensemble of 4 17.6 68.3 14.9 72.1 18.5 67.0 14.1 76.4 11.5 81.6 15.0 74.7
WMT 2018 Supervised submission 46.0 41.0 39.9 47.6 48.4 38.1 - - - - - -

Table 7: Submission systems for the WMT 2018 German↔ English news translation task.

References
Mikel Artetxe, Gorka Labaka, Eneko Agirre, and

Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. arXiv preprint arXiv:1710.11041.
Version 2.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450. Version 1.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In International
Conference on Learning Representations, pages 1–
14, San Diego, California, USA.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan
Zhang, and Zheng Zhang. 2015. Mxnet: A flex-
ible and efficient machine learning library for het-
erogeneous distributed systems. arXiv preprint
arXiv:1512.01274. Version 1.

Jonathan H Clark, Chris Dyer, Alon Lavie, and Noah A
Smith. 2011. Better hypothesis testing for statisti-
cal machine translation: Controlling for optimizer
instability. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies: Short Papers,
volume 2, pages 176–181.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv
preprint arXiv:1710.04087. Version 3.

Shuoyang Ding and Kevin Duh. 2018. How do
source-side monolingual word embeddings impact
neural machine translation? arXiv preprint
arXiv:1806.01515. Version 2.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics, pages 249–256.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
770–778.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A Toolkit for Neural Machine
Translation. arXiv preprint arXiv:1712.05690. Ver-
sion 2.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980. Version 9.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 177–180.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora
only. CoRR, abs/1711.00043. Version 2.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018.
Phrase-based & neural unsupervised machine trans-
lation. arXiv preprint arXiv:1804.07755. Version
1.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, pages 311–318.

Jan-Thorsten Peter, Eugen Beck, and Hermann Ney.
2018. Sisyphus, a workflow manager designed for
machine translation and automatic speech recogni-
tion. In Conference on Empirical Methods in Natu-
ral Language Processing, Brussels, Belgium.

Tim Salimans and Diederik P Kingma. 2016. Weight
normalization: A simple reparameterization to ac-
celerate training of deep neural networks. In Ad-
vances in Neural Information Processing Systems,
pages 901–909.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
1715–1725.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of Association for Machine Transla-
tion in the Americas, volume 200.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

David Vilar, Daniel Stein, Matthias Huck, and Her-
mann Ney. 2010. Jane: Open source hierarchi-
cal translation, extended with reordering and lexi-
con models. In Proceedings of the Joint Fifth Work-
shop on Statistical Machine Translation and Metric-
sMATR, pages 262–270.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu.
2018. Unsupervised neural machine translation with
weight sharing. arXiv preprint arXiv:1804.09057.
Version 1.

Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu,
William W Cohen, and Ruslan Salakhutdinov. 2016.
Words or characters? fine-grained gating for reading
comprehension. arXiv preprint arXiv:1611.01724.
Version 2.

