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1 Abstract 

Digitalization is becoming more and more important in the wind industry. All stakeholders 

in the value chain have realized that profound analyses of available datasets produce 

valuable information for increasing the efficiency both of processes and assets – which 

leads to an increase in compatibility. As the analysis of operational data is suited to cover 

as much as possible of available datasets, it needs to be conducted broadly automated. 

This again can only be realized meaningfully, if the data to be analyzed are as homoge-

neous as possible. The present paper describes a data model for data from wind turbines 

(WTs) and wind farms (WFs), which is one of the key enablers for a completely auto-

mated data evaluation process. 

Keywords: Wind turbine SCADA data, database, data evaluation, data model, technical 

requirements, smart service platform 

2 Introduction 

Throughout the past years there have been intense activities related to collection and 

processing of operational data of WTs. Methods for analysing data from the supervisory 

control and data acquisition systems (SCADA) of WFs and the related WTs have been 

described in literature and are still in the focus of many research activities (see e.g. 

[BAC17, KUS10]). Mainly the big players in the wind industry are able to integrate eval-

uation of their assets’ data in the processes of monitoring and maintenance. There are 

several activities aiming at enabling smaller operators to continuously monitor their tur-

bines, detect anomalies in real-time, and thereby increase their competitiveness [JUN15, 

PAG18]: The possibility of quick reaction to underperformance of individual WTs leads 

to an increase in the assets’ availability. 

Why do we need a well-structured and universal data model? 

The report on “Wind farm data collection and reliability assessment for operation and 

maintenance (O&M) optimization” issued by the International Energy Association (IEA) 

in May 2017 [IEA2017] states that there is a huge need for independent platforms and 

databases operated by neutral trustees. Especially collections of data from different as-

sets allow for detailed and statistically profound analyses. Results of overarching anal-

yses are beneficial for all stakeholders in the value chains of wind industry. [JUS17] 

shows the need for a standardised, independent and safe communication network for 

transferring operational data for the purpose of providing remote and predictive services 

in the energy supply networks. [PAG18] gives an overview of the most important design 

parameters for an independent smart services platform that collects and evaluates op-

erational data from WTs. 

Evaluating heterogeneous operational data at large scale (i.e. automated and for many 

WTs/WFs at a time) is only meaningful if algorithms do not have to be adjusted for the 
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application to individual assets. On the one hand, the effort would be much too high; on 

the other hand, results from evaluations of data from different WTs would not be com-

parable. Basically this is an interface problem (between source data and evaluation al-

gorithms) which can be resolved by converting the original data into a generic and uni-

versal data model before storing and evaluating them. Thereby, source data for algo-

rithms are always equally structured. The quality of evaluation results is strongly de-

pendent on the quality of source data, which can comparatively easily be ensured for 

homogeneous data sets. The Center for Wind Power Drives (CWD) aims at establishing 

a smart services platform for WTs together with its partners, which is capable of per-

forming complex operations on heterogeneous datasets (i. e. by combining SCADA and 

maintenance data with the technical documentation). Therefore, a comprehensive and 

yet extensible data model based on existing guidelines and standards has been devel-

oped. A consistent data model comprising all kinds of data related to WTs (see sec. 3) 

is not yet known. 

3 Development of the data model 

In [IEA17], existing standards for operational data (not only wind-specific) have been 

analysed. None of those standards fulfils the requirements for a data model suitable for 

the collection of data in an overarching database. Some of the existing data models do 

not cover WTs as well as WFs, others are not consistently extensible by signals that 

have initially not been thought of. According to the report, WT data can be classed in 

four main groups: 

 Equipment data: technical information on the WTs 

 Operating data: data from the SCADA system and additional sensors 

 Event data: data describing exceptional events, e.g. failures 

 Maintenance data: documentation of maintenance activities 

This structure provides the base for the CWD data model, which will be described in the 

following sections. A possible implementation in a database management system will be 

suggested. For reasons of brevity the paper focuses on the structure of and the system-

atic behind the model. 

3.1 Base of the data model: IEC 61400-25-2 

The standard DIN EN 61400-25-2 [DIN07] specifies the communication interfaces for 

monitoring and control of WTs and provides a substantial basis for the CWD data model. 

According to other standards as DIN EN 61850-7 [DIN04] it classes the signals from the 

SCADA system into so-called logical nodes (i. e. categories) guided by the logical struc-

ture of a WT. Each of the nodes contains signals (“attributes”) describing the state of the 

respective component (rotor, transmission, generator, etc.). The names of the signals in 

the nodes are constructed from abbreviations for assemblies, parts, and physical sig-

nals. Table 1 lists some examples. 
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Logical Node Attribute 

Name Explanation Name Explanation 

WROT Rotor RotSpd Rotor speed 

  HubTmp Temperature in rotor hub 

  PtAngSpBl1 Setpoint of pitch angle in blade 1 

WTRM Transmission BrkOpMod Status of shaft break 

  GbxOilLev Gearbox oil sump level 

  GsLev Main bearing grease level 

WGEN Generator Spd Generator speed 

  W Generator active power 

  GnTmpSta Temperature of generator stator 
 

Table 1: Examples of the taxonomy provided by [DIN07] 

As can be seen in Table 1, there are several inconsistencies in the taxonomy which lead 

to ambiguities and need to be resolved. 

 The logic of the signal names does not follow consistent rules (Oil sump level = 

WTRM:GbxOilLev whereas grease level in main bearing = WTRM:GsLev. The 

declaration “main bearing” is missing. This deteriorates the human readability of 

the signal names and facilitates errors.) 

 In some cases the attribute’s name contains information on the superordinated 

logical node (“WGEN:GnTmpSta”), in most cases it does not. 

 Symbols for physical quantities and the respective units are mixed up (generator 

speed = WGEN:Spd whereas active power = WGEN:W) 

However, the taxonomy provides an easy and well-applicable method for structuring and 

labelling physical signals from WTs. Ideally, the result is both machine and human read-

able. The logic used in the CWD data model is closely related to the template provided 

by the standard. 

Starting from the definition in the standard, the model has been extended to be capable 

of taking the data from different SCADA configurations. As sample datasets by some 

major companies have been taken into account, the model can be seen as “validated by 

design”. Furthermore, many data providers are able to make data available in the IEC 

format. Therefore it is to be expected, that only minor modifications/extensions of the 

data model will be necessary if new datasets are encountered. 

Another approach for designing a data model could be to keep the original structures of 

given datasets and avoid conversion into a generic model. Aggregation could be taken 

care of not on database level, but rather in an additional software layer. However, this 

would increase complexity immensely. “Clean” data on database level allow for simple 

data retrieval by evaluation algorithms, thus the approach presented in this paper has 

been chosen. 

3.2 Structure of the CWD data model 

The CWD data model combines the structure postulated by [IEA17] (different classes of 

datasets) and the logic of [DIN07] (logical nodes, descriptive taxonomy) introduced 
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above. It has been developed based on sample datasets provided by different operators 

and extends the amount of signals listed in [DIN07]. By avoiding inconsistencies as far 

as possible, it guarantees for high comprehensibility and extensibility. Parameters de-

scribing the WTs, signals from the SCADA system, alarm and status information, and 

data on maintenance activities are assigned to logical nodes. The composition of the 

signals’ names follows the hierarchy of the system construction from standardised ab-

breviations: System – component – machine element – function. The name of each sig-

nal contains information on its origin as well as on its physical properties, which renders 

the names intuitively understandable. Complementing the list of abbreviations allows for 

easy extension of the data model without facing new inconsistencies. 

Figure 1 gives an overview of the logical nodes contained in the data model. The light 

blue nodes contain time-dependent data from turbines. Respective data from WF con-

trollers are assigned to the grey nodes. The dark blue nodes comprise time-independent 

data describing WFs and turbines (not contained in [DIN07]). Journal-like information 

(chronological status and alarm logs, documentation of maintenance activities) are con-

tained in the petrol coloured nodes. The logical nodes’ relation to the structure from 

[IEA17] and their content is described in the following paragraphs. 

3.2.1 Equipment data 

Those logical nodes comprise information on the WTs and WFs themselves, such as 

manufacturer, location, nominal power, rotor diameter, or nominal power curve. 

 WFDS: Wind farm description; time-independent parameters of the wind farm 

 

Figure 1: Logical nodes in the CWD data model 
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 WTDS: Wind turbine description; time-independent parameters of the WTs 

3.2.2 Operating data 

“Operating data” comprise status information from main components and the course of 

physical quantities such as rotational speed, active and reactive power production, tem-

peratures, wind speed measured by the WT, or orientation. 

 WTUR: Wind turbine general information; time-dependent data describing the 

general operation of the WT 

 WNAC: Wind turbine nacelle information; time-dependent data describing the 

state of the nacelle 

 WROT: Wind turbine rotor information; time-dependent data describing the oper-

ation of the rotor 

The further logical nodes not mentioned in this list contain data describing state and 

operation of subsystems of the WTs accordingly. 

3.2.3 Event data 

“Event data” are lists of events as provided by the turbine and farm controllers. Further-

more, they can contain the history of commands received by the controllers. 

 WALM: Wind power plant alarm information; alarm log of wind farm and turbines 

 WSLG: Wind turbine state log information; condensed information on the operat-

ing state of WTs; history of commands and setpoints 

3.2.4 Maintenance data 

“Maintenance data” is a digital representation of the maintenance log. 

 WMLG: Wind turbine maintenance log information; documentation of mainte-

nance activities 

3.3 The structure below using the example of WTRM 

“WTRM” is the logical node containing all data of the WT transmission, i. e. all signals 

from the section of the mechanical drivetrain starting at the rotor flange and ending at 

the generator input shaft. Presumably this is the logical node with the highest heteroge-

neity in available source data: There are different drivetrain configurations and gearbox 

concepts which make it hard to standardise the signals. As a full description of the node 

would exceed the scope of this paper, the logic for temperature signals is explained in 

the following paragraphs. 

“SftBrg1Tmp” and “SftBrg2Tmp” are temperature signals from the main bearing(s) car-

rying the main shaft. The numbering order of the measuring points is intended to follow 

the power flow increasingly. If there are more than two measuring points at the main 

shaft bearing(s), further numbers can be added accordingly. 
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The same system applies for the temperatures of the gearbox bearings (“GbxBrg1Tmp”, 

“GbxBrg2Tmp”, etc.), with one exception: Almost every SCADA dataset contains the 

temperature value of the gearbox bearing located next to the generator. As this bearing 

is subjected to failure more often than other bearings, its temperature is always being 

monitored. In the presented data model, the signal is named “GbxHSSBrgTmp”. The 

position of all other temperature signals cannot be exactly defined, as gearbox configu-

rations and the availability of bearing temperatures vary widely among available da-

tasets. However, the importance of those bearing temperatures is subordinate as com-

pared to “GbxHSSBrgTmp”. 

Usually, there are only few more temperature values in the transmission system: “Gbx-

OilTmp” is describing the oil sump temperature of the gearbox, “SftBrkTmp” denotes the 

temperature of the shaft break. 

3.4 Implementation in a database management system 

As explained in previous publications [PAG18] the right choice of an appropriate data-

base management system is built on Brewer’s CAP-theorem [BRE12]. According to that 

theorem, only two out of three main features (C – consistency, A – high availability, P – 

tolerance to network partitions) can be completely fulfilled by database management 

systems. In the present use case, reading processes (queries by evaluation algorithms) 

will constitute the prevailing load on the database, thus the establishment of consistency 

is not a problem. Availability and partition tolerance, on the other hand, guarantee for 

high scalability. Apache Cassandra is a widely used AP system and therefore recom-

mended as the system of choice. 

The data model described above can easily be implemented by use of only seven tables 

as shown in Figure 2. The figure describes how the data behind the individual logical 

nodes are combined in different tables. The primary keys of each table (unique identifiers 

for individual connected datasets) are denoted in brackets. Structurally equal parts of 

the dataset are stored in the same table, whereas parts differing in structure (e.g. by 

having timestamps that are not equidistant: SCADA datasets are usually recorded in 

intervals of ten minutes. Status or alarm logs, on the other hand, are not being collected 

at equidistant time intervals) are written to different tables in order to keep the structure 

of each table as simple as possible. Time-dependent values are stored with a primary 

key combined from the timestamp and the id of the respective asset for guaranteeing 

efficient queries of the database tables. 
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Figure 2: Table structure of the data model in the database  

Some of the time-dependent SCADA data are often collected as a statistical distribution 

per time interval, denoted by mean value (avg), standard deviation (std), minimal (min), 

and maximal (max) value. In order to cope with that, most of the signal names in the 

SCADA tables exist four times with the abbreviations “avg”, “std”, “min”, and “max” as 

suffixes. If no information on the distribution is available, the signals are assigned to the 

respective “avg” name. 

All physical quantities are stored in SI units. Values which are more but mere numbers, 

such as timestamps and information on geographical locations, are converted into for-

mats that are easily processible by algorithms: For timestamps, the recommendations 

given in Date and Time on the Internet: Timestamps (RFC 3339) by The Internet Society 

[KLY02] are pursued. Locations are stored in the format defined in DIN EN ISO 6709 

[DIN09]. Many programming languages have implementations of these standards and 

allow for easy conversion or basic operations on the data with next to no effort. 

4 Benefits of the presented data model 

The following sections give a short overview on the advantages yielded by application 

of the presented data model on database level. 

4.1 Simplification of complex queries 

By specifying and standardizing names and properties (such as physical units) of a huge 

number of signals, inhomogeneous datasets from different sources are homogenized 

and can easily be included in joint analyses. Therefore the data model forms the base 

for complex evaluations of huge volumes of data by relatively simple queries: 

 Quantity (total amount of data) and quality (number of available signals) of da-

tasets from different sources can easily be compared. 
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 All necessary data for detecting serial defects of individual machine elements in 

turbines of different manufacturers with a special gearbox configuration could be 

extracted. 

 If event and/or maintenance data are available, the description of the events resp. 

maintenance activities can be used to generate annotated data for the training of 

artificial neural networks for failure prediction in a completely automated way. 

The items in the list above are only meant to be examples for the impact generated by 

a well-structured pool of data. 

4.2 Easy data retrieval and assessment by evaluation algorithms 

All algorithms designed for working with the described data model, independently from 

their evaluation target, can be applied to any dataset without modification, provided that 

all required data are available. The quality of evaluation results calculated by specialised 

algorithms is highly dependent on the quality of the source data, therefore the algorithms 

deployed in the smart services platform need a certain awareness data quality. In order 

to facilitate the development of suchlike features, a guideline has been defined: Before 

performing the actual data evaluation, every algorithm assesses the quality of its source 

data and analyses the impact on the quality of its results. Three basic modes are distin-

guished: 

 Source data ok, no restrictions 

 Low quality and/or partial incompleteness in source data; algorithm operates with 

limitations. The quality of its result is scored with respect to the first case. 

 Insufficient quality and/or incompleteness in source data; no calculations. 

Assessing the quality of source data can be done with respect to different criteria such 

as quantity of available data, availability of statistical parameters, or plausibility. This 

process is dependent on the requirements of the regarded algorithms. 

5 Summary 
The pool of raw data is the core of a smart services platform. Good quality in the structure 

of the data is provided by a well-structured data model and guarantees for easy acces-

sibility for evaluation algorithms and future viability due to extensibility. The data model 

used by the CWD is able to deal with heterogeneous datasets from turbines of different 

manufacturers and operators. 

Database and algorithms are coordinated with respect to best quality of evaluation re-

sults or – as a fallback – the possibility of generating information on the loss of quality 

due to gaps in the input data. 

By application of these principles – well-structured raw data and assessment of the qual-

ity of source data for algorithms – evaluations can be designed with high accuracy and 

confidentiality. This allows for providing valuable results, which contribute to gain deep 

insights in the WT’s operation and help to increase their effectivity. 
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