
New Results On Probabilistic Verification:

Automata, Logic and Satisfiability

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der RWTH Aachen University zur

Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt

von

Souymodip Chakraborty

aus

Kolkata, India

Berichter: Prof. Dr. Ir. Dr. h. h. Joost-Pieter Katoen

Prof. Dr. Lijun Zhang

Tag der mündlichen Prüfung: 2019-05-27

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek

verfügbar.

2

Abstract

Probabilistic (or quantitative) verification is a branch of formal methods

dealing with stochastic models and logic. Probabilistic models capture the

behavior of randomized algorithms and other physical systems with certain

uncertainty, whereas probabilistic logic expresses the quantitative measure

on the probabilistic space defined by the models.

Most often, the formal techniques used in studying the behavior of these

models and logic are not just mundane extension of its non-probabilistic

counterparts. The complexity of these mathematical structures is surpris-

ingly different. The thesis is an effort at improving our continued under-

standing of these models and logic.

We will begin by looking at few interesting formal representations of

discrete stochastic models. Namely, we will address the parameter synthesis

problem for parametric linear time temporal logic and model checking of

convex Markov decision processes with open intervals.

The primary focus of the thesis is however on the satisfiability (or va-

lidity) problem of different probabilistic logics. This includes a bounded

fragment of probabilistic logic and a simple quantitative (probabilistic) ex-

tension of mu-calculus. Decision procedures for the satisfiability problems

are developed and a detailed complexity analysis of these problems is pro-

vided.

The study of automata has been very effective in understanding logic.

We will look at the newly conceived notion of p-automata, which are a prob-

abilistic extension of alternating tree automata. As we will see, probabilis-

tic logic exhibits both non-deterministic and stochastic behavior. The se-

mantics of p-automata are extended to capture non-determinism and hence

model Markov decision processes.

3

4

Zusammenfassung

Probabilistische (oder quantitative) Verifikation ist ein Teilgebiet der For-

malen Methoden, das sich mit stochastischen Modellen und Logiken beschä-

tigt. Probabilistische Modelle beschreiben das Verhalten randomisierter Al-

gorithmen und anderer physikalischer Systeme, die einer gewissen Unsicher-

heit unterworfen sind, während probabilistische Logik quantitative Maße

über dem Wahrscheinlichkeitsraum eines solchen Modells spezifiziert.

In den allermeisten Fällen sind die formalen Techniken, die zur Anal-

yse des Verhaltens probabilistischer Modelle und Logiken eingesetzt wer-

den, mehr als einfache Erweiterungen ihrer nicht-quantitativen Varianten.

Vielmehr weisen die resultierenden mathematischen Strukturen eine überra-

schende Komplexität auf. Das Ziel dieser Arbeit besteht darin, das Verständ-

nis dieser Strukturen grundlegend zu verbessern.

Wir beginnen mit der Vorstellung einiger interessanter formaler Darstel-

lungen diskreter stochastischer Modelle. Insbesondere werden wir uns dem

Problem der Parametersynthese für parametrische Linearzeit-Temporallogik

sowie des Model Checking für konvexe Markov-Entscheidungsprozesse mit

offenen Intervallen widmen.

Der Schwerpunkt der Arbeit liegt auf dem Erfüllbarkeits- und Gültigkeit-

sproblem für verschiedene probabilistische Logiken. Letztere umfassen ein

beschränktes Fragment der probabilistischen Logik sowie eine einfache quan-

titative (probabilistische) Erweiterung des mu-Kalküls. Wir entwickeln Entsch-

eidungsprozeduren für die zugehörigen Erfüllbarkeitsprobleme und führen

eine detaillierte Komplexitätsanalyse durch.

Automaten haben sich als ein äußerst effektives Hilfsmittel für das Verst-

ändnis von Logiken erwiesen. Wir führen das neue Konzept der p-Automaten

ein, welche eine probabilistische Erweiterung alternierender Baumautomaten

darstellen. Wie sich zeigen wird, weist probabilistische Logik sowohl nichtde-

terministisches als auch stochastisches Verhalten auf. Daher wird die Seman-

tik von p-Automaten um die Behandlung von Nichtdeterminismus erweitert,

so dass auch Markov-Entscheidungsprozesse modelliert werden können.

5

6

For Priyanka,

without her I couldn’t have finished this.

Acknowledgement

I thank Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen for his continued supervi-

sion and guidance towards my doctoral studies. He was gracious to call me

for research visit during my masters and subsequently offered me a position

of research assistant at the chair of informatik 2 in RWTH Aachen univer-

sity. He provided me with projects and financial support without which my

thesis would not be possible.

My four years of stay at Aachen have been a quite memorable. I have

grown not only as a researcher but also as person. It will definitely have

an ever lasting impression on my life. During by little journey there have

been many who accompanied me. I sincerely thank Friedrich Gretz and Viet

Yen Nguyen to make me feel at home. I thank Friedrich, Christian, Arpit,

Christoph, Harold, Stephen and many other colleagues and friends at the

chair for always lending me an ear when I had things to discuss. I specially

thank apl. Prof. Dr. Thomas Noll for translating my abstract.

My work was financially supported by the MoVeS (Modeling, Verification

and control of complex Systems: From the foundations to power network

applications) EU FP7 project SENSATION and the EU FP7 IRSES project

MEALS and RWTH Aachen University, Germany.

One of the perks as a PhD student was traveling to various universities

and conferences. I also thank, Prof. Dr. Nir Piterman for the interesting

discussion we had on my visit to Oxford.

7

8

Publications

Following is a complete list of technical papers and journal. We will give a

brief introduction to the contribution of these publications.

• On the Satisfiability of Some Simple Probabilistic Logic. [23]

The paper solves the satisfiability problems for two important frag-

ments of probabilistic CTL (PCTL). Namely, a bounded fragment

of PCTL(called bounded PCTL) and an extension of the modal µ-

calculus with probabilistic with probabilistic quantification over next-

modalities (called PµTL). Firstly, the paper shows that bounded PCTL

has small model property where the model size is independent from

the probability bounds in the formula. An NEXP-TIME algorithm for

deciding satisfiability of that the bounded PCTL is developed. The

paper also establishes that the satisfiability problem of a simple sub-

logic of bounded PCTL is PSPACE-complete.

Secondly, the paper proves that PµTL too has a small model property

and employs a decision procedure using 2 player parity games, showing

that the satisfiability problem is decidable. These results have signifi-

cant ramification as it goes to shows that PµTL and qualitative PCTL

are incomparable. The paper also contrasts PCTL by showing that

every satisfiable PµTL formula has a rational model, i.e. a model with

only rational probabilities.

• P-Automata for Markov Decision Processes. [22]

P-automata provide an automata-theoretic approach to probabilistic

verification. Similar to alternating tree automata which accepts la-

beled transition systems, p-automata accept labeled Markov chains.

The paper extends the syntax of p-automata to accept the set of all

Markov chains (modulo bisimulation) obtained from a Markov decision

process under various schedulers. The aim is to enrich the semantics

of the automata to capture various probabilistic tree logic.

• Model Checking of Open Interval Markov Chains [21]

The paper solves the model checking problem for interval Markov

9

10

chains with open intervals. Interval Markov chains are generaliza-

tions of discrete time Markov chains where the transition probabilities

are intervals, instead of constant values. The focus of the paper is

the singular case of open intervals (where the boundaries of the in-

terval are not included). Open intervals is semantically challenging,

as optimal (min, max) value for reachability does not always exist.

The paper solves the model checking (and reachability) problem with

minor modification to existing algorithms for model checking Markov

chains against PCTL formulas.

• Parametric LTL on Markov Chains. [20]

The paper tackles the verification problem of finite Markov chains

against parametrized LTL(pLTL) formulas. In pLTL, the until-modality

is equipped with a variable bound. For example, ◇⩽xϕ asserts that ϕ

holds within x time steps, where x is a variable on natural numbers.

Given a Markov chain, a pLTLformula ϕ and a threshold ≺ p (where ≺
is a comparison on reals and p is some probability), the problem is to

determining the set of parameter valuations, represented by V≺p(ϕ),
for which the probability of satisfying the ϕ in the Markov chain meets

a given threshold ≺ p. As determining the emptiness of V≥0(ϕ) is un-

decidable, we consider several fragments of the logic with increasing

expressiveness. Namely, we consider parametric reachability logic, a

sub-logic of pLTL restricted to next and eventually operator, paramet-

ric Büchi properties and finally, a maximal subclass of pLTL for which

emptiness of V≥0(ϕ) is decidable.

• Modeling and statistical model checking of a micro-grid. [24]

The journal provides a use case study of statistical model checking of

micro-grids. A micro-grid with wind, micro-turbines, and the main

grid as generation resources . The micro-grid is modeled as a parallel

composition of various stochastic hybrid automata. Extensive simu-

lation of the behaviour of the individual components give insight into

the complex dynamics of the system and provide useful information

to determine adequate parameter settings. The study focuses on the

application of statistical methods in determining the probability of lin-

ear temporal logic properties expressed in the logic LTL. The statistical

model checker Uppaal-SMC was used to perform numerical analysis.

Contents

1 Introduction 13

1.1 Survey of the chapters . 20

2 Preliminaries 21

2.1 Important complexity classes . 21

2.2 Probability and stochastic processes 23

2.3 Temporal logic . 29

2.3.1 Linear temporal logic . 30

2.3.2 Branching-timetime temporal logic 32

2.3.3 Probability and logic . 35

3 PLTL 39

3.1 Introduction . 39

3.2 pLTL . 40

3.3 Parameter synthesis for Markov chains 44

3.3.1 Parametric reachability 44

3.3.2 The fragment pLTL(F,X) 46

3.3.3 Qualitative parametric Büchi 51

3.3.4 The fragment pLTLF . 54

3.3.5 Parametric (0/1)-counter automata 58

3.4 Related work and conclusion . 59

3.4.1 Summary . 60

4 PCTL and Interval Markov Chains 61

4.1 Introduction . 61

4.2 Interval Markov chains . 63

4.2.1 ε-Approximate Scheduler for Reachability 65

4.2.2 Model checking interval Markov chains with open in-

tervals . 70

4.3 Strategy synthesis for MDPs for PCTL objectives 73

4.3.1 Scheduler Synthesis problem for MDPs. 74

11

12 CONTENTS

4.4 Conclusion . 75

5 Fragments of PCTL 77

5.1 Introduction . 77

5.2 Bounded PCTL . 78

5.3 Complexity of satisfiability problem for bounded PCTL 83

5.3.1 Complexity of Pxω satisfiability 83

5.3.2 Complexity of bounded PCTL satisfiability 85

5.4 Related discussion . 88

5.4.1 Safety and co-Safety . 88

5.4.2 Safety and co-Safety PCTL 90

5.5 Conclusion . 93

6 PµTL 95

6.1 Introduction . 95

6.2 Preliminaries . 97

6.2.1 Motivation and examples 99

6.3 Ordinal, Ranks and Signature 99

6.4 Pre-Model and derivations . 102

6.5 Decision procedure for satisfiability 105

6.5.1 Discussion . 110

6.6 Conclusion . 112

7 P-automata 113

7.1 Introduction . 113

7.2 Weak P-automata⊕ . 114

7.2.1 Acceptance game of the extended p-automata 117

7.2.2 Properties of p-automata 122

7.2.3 Simulation game . 129

7.3 Conclusion . 139

8 Conclusions and Discussion 141

Appendices

Appendix A Parametric (0/1)-counter automata 147

1.1 Preliminaries . 147

1.2 Three Parametric (0/1) Counter Automata 148

Appendix B EXPTIME-hardness of bounded PCTL 153

Appendix C Variable elimination 157

Chapter 1

Introduction

Since the time of antiquity, logic has been an integral part of mathematics.

Logic, typically consists of a formal language used for writing the statements

of the logic, a deductive systems to deduce new statement from a given set

of statements and (or) a model-theoretic semantics to define meaning of

each sentence. Loosely speaking, logic is the study of the truthfulness of

statements. The language (syntax) of the logic is simply a collection of

statements (also called formulas) recursively defined by a grammar. On its

own it has no meaning, the meaning is given by the deductive system and

(or) by the semantics. In a model-theoretical framework, the semantics of

the logic defines (inductively) the set of structures for which a given formula

is true. These structures are called the models of the formula. A formula

is said to be valid iff every structure is a model of the formula. The two

fundamental questions of any logic are:

1. Given a formula f and a model M , whether f is true at M .

2. Given formula f , whether f is valid.

We call the first, the model checking problem and the second the validity

problem (or its complement the satisfiability problem).

Logic was envisaged as to mitigate the problem of ambiguity in the

meaning of sentences of natural languages. Logic allows us to unambiguously

express properties (formulas of the logic) and formally verify if the property

is (true) fulfilled by a given system (model). Directed graphs are the natural

mathematical structures for abstracting the behaviour of physical systems.

First order logic was found to be unsatisfactory for describing the dynamic

behaviour of systems. Modal logic, on the other hand, are reasoned over

directed graphs, also called Kripke structure, named after Saul Kripke who

gave the possible world semantics [69]. Thus, modal logic and its many

extensions have become the most widely studied logic for verification.

13

14 CHAPTER 1. INTRODUCTION

Modal logic paved the way for different kinds of (more expressible) tem-

poral logics, which are useful in describing the change in behaviour with

time. Temporal logic extends modal logic, specially K [83] logic where only

local properties of a Kripke structure can be defined, with temporal con-

structs for expressing global properties. This allows us to express things

like reachability and invariants, which are sine qua non for program veri-

fication. Temporal logic was introduced around 1960 by Arthur Prior [85]

under the name of Tense Logic and developed further by many logicians

and computer scientists, most prolifically by, Amir Pnueli [82], E. Allen

Emerson [36], Moshe Y. Vardi [95] and Dexter Kozen [65], to name a few.

Temporal logic are broadly classified on the basis of how passage of time

is perceived. The school of linear temporal logics, as the name suggests,

perceives time to flow linearly. Thus the models of these kind of temporal

logic formulas are totally ordered sequences of events. Prior’s original se-

mantics for Tense logic assumed a linear time flow. One of the most popular

and widely used linear temporal logic in computer science is the linear time

temporal logic LTL, proposed in the seminal paper by Pnueli (1977) [82]

and first explicitly axiomatized and studied by Gabbay et al. (1980) [45].

LTL has ⟨N,<⟩ as models, and is very useful for expressing safety, liveness,

fairness, and precedence properties of infinite computations in reactive sys-

tems (Manna and Pnueli (1992) [75]). For example, reachability is expressed

with the operator F. A linear sequence (also called path) satisfies Fa if it

eventually reaches a state satisfying a. Invariant is expressed with the oper-

ator G. A path satisfies Ga if at every state of the path a holds. Statement,

“Every time when a message is sent, an acknowledgment of receipt will even-

tually be returned”, can be easily expressed in LTL as G(msg→ F(ack)).
The other school of temporal logics considered branching future, where

time does not follow deterministically as in linear temporal logics, rather

non-deterministically with many possible future extensions. It is based on

the assumption that while the past cannot be changed, the future can take

different possible courses from the present moment. Formally, this means

that the natural flows of time for branching time temporal logic semantics

are tree-like rather than linear. A models of any branching time temporal

logic formula is a tree ⟨T,≺⟩, where ≺ is a partial order (contrast to the total

order for linear temporal logics) on T , and T is a collection of observable

time instances. These structures in computer science are called computa-

tion trees, and are naturally obtained by unfoldings of Kripke structures.

Computation tree logic CTL introduced by Clarke and Emerson (1982) [37],

CTL∗ introduced by Emerson and Halpern (1985) [38] and Modal µ calculus

(Lµ), introduced by Dexter Kozen [65] are some of the popular branching

15

time logics used in computer science. In CTL formulas alternate between

path formula and state formula. The path formulas are interpreted over

paths of the tree (and hence are formulas of linear temporal logic). State

formulas are obtained by universally (∀) or existentially (∃) quantifying path

formulas. For example, ∀Fa, is a CTL state formula, where Fa is a path for-

mula (also an LTL formula), which is quantified by ∀. A state of the tree

satisfies ∀Fa, if every path from that state satisfies Fa. It is important to

note that in CTL, there is strict alternation between the linear temporal

formulas and the quantifiers. CTL∗ is CTL without this restriction. The

logic Lµ extends standard K modal logic with greatest and least fixed point

operators. This allows us to define properties recursively, whose semantics is

obtained inductively by relying on fixed point theory over complete lattices.

Lµ was proved to be the most expressive fragment of second order logic

which cannot distinguish between bisimilar models [59], and hence includes

CTL and CTL∗.

So far we have only talked about logics whose semantics are defined in

an absolute sense. That is, given a formula f and a model M , there are

only two possibilities, either f is true for M (M satisfies f) or f is false

for M (M does not satisfies f). The Branching time semantics opened the

door for quantitative satisfaction of formulas. These logic are equipped with

constructs which can reason about the number (or the measure) of possible

future branches where the formula holds. Hence, they are useful in represent-

ing important aspects of computations such as probabilistic behaviour [52],

timing behaviour [64] and other quantitative aspect involving counting [40].

The kind of quantitative models that we will extensively talk in this the-

sis are probabilistic systems. Broadly classified as probabilistic transition

systems, these transitions systems are mathematical objects that generalize

standard transition systems. Each state of the transition system is equipped

with (one or more) probability distribution(s) on the set of states. Labeled

Markov chains, concurrent Markov chains, probabilistic automata, among

others are some of the well known probabilistic transition systems.

One of the major direction of research in the past few decades has been

the development of appropriate structure for expressing qualitative proper-

ties, and modeling probabilistic behaviour. Probabilistic aspect are essential

for:

1. Randomized algorithms. They are modeled by probabilistic programs.

Study of sequential programs essentially culminates to the analysis of

Markov chains, and concurrent programs to Markov decision processes.

2. Modeling unreliable system behaviour. Phenomena like message loss,

16 CHAPTER 1. INTRODUCTION

processes failure can be quantified and used to develop a more accurate

model of the system.

Once such a model has been chosen, it is necessary to have logics that

are able to express the interesting properties of the model catering to its

quantitative aspect, since for such systems absolute guarantee of correctness

make little sense. For example, in a client-server setting we may want to

know whether: “50% of the time a request sent by a client is serviced by

the server”, or in sequential randomized program, “the program terminates

with probability 1 ”, or in a randomized distributed leader election protocol

“every member has equal probability of being the leader”.

The initial approaches to develop probabilistic logics were to extend ex-

isting branching time temporal logics, primarily CTL and CTL∗ with thresh-

old operators for specifying quantitative properties. For instance, consider

the CTL formula ∀Fa which is true for a state s of a transition system if

every path from s satisfy Fa. In the probabilistic version we have [Fa]≤ 1
3
,

which is true for a state of a probabilistic transition system if the probability

of the set of paths from s satisfying Fa has a measure ≤ 1
3 (the definition of

measure vary from system to system). This method of extending traditional

temporal logics led to probabilistic computation tree logic (PCTL) and prob-

abilistic CTL∗ (PCTL∗) [52]. The semantics of such logics are still boolean,

either a state of probabilistic transition system satisfies a formula or it does

not satisfies a formula. Only qualitative aspect lies in the measure of the

set of paths that satisfies a given linear temporal formula.

Earliest works where the satisfaction of a formula f by a model M was

lifted from a boolean valued function to a real valued function were done

by M. Huth and M. Kwiatkowska [57], and independently by A. McIver and

C. Morgan [78]. Both works extend the interpretation of Lµ to the proba-

bilistic models. The principal insight is to lift the satisfaction of a formula

on a model from a boolean function to a real valued function with range

[0,1]. For example, in the case of M. Huth and M. Kwiatkowska [57], the

formulas are interpreted over the set of states of a Markov chains. For each

formula f and state s, the satisfaction relation JfK(s) is the value of the a

function JfK ∶ S → [0,1], where S is the set of states of the probabilistic sys-

tem. Subsequently, many different interpretation of probabilistic µ calculus

has been proposed [43, 79, 34]. The central difference lies in the choice of

interpretation of different logical operators.

Unlike Lµ which includes CTL and CTL∗, quantitative interpretation of µ

calculus over probabilistic systems, are not comparable to PCTL and PCTL∗.

The probabilistic µ calculus (pLµ⊙ and pLµ⊙⊕) proposed by Matteo Mio [80]

remedies this shortcoming, by equipping the logic pLµ⊙ with ⊙ operator,

17

called the independent product and pLµ⊙⊕ with ⊕. The logic pLµ⊙ is expres-

sive enough to capture qualitative fragment of PCTL∗ and pLµ⊙⊕ can capture

the full PCTL∗. Fragments of pLµ⊙⊕ have also been studied by restricting

the syntax of the logic [18].

The Probabilistic µ calculus and its various fragments have been sub-

jected to great scrutiny to illicit correct meaning to its syntax. The most

interesting concept that emerged from these investigations is the represen-

tation of the semantics of these logics as a two player game. The idea draws

from Lµ where satisfaction of Kripke structure by a formula is seen as two

player parity game (player 1 and player 2) [39] (which in turn was inspired

by the seminal work of Hentikka[56] on game semantics for logics). A Kripke

structure satisfies a formula if there exists a winning strategy for player 1

in the corresponding game. Similarly, the semantics of probabilistic µ cal-

culus is defined by a 2 player stochastic parity game [78]. The value of the

satisfaction function for a formula f at a state s, i.e., JfK(s), thus becomes

the value of certain configuration in the corresponding 2 player stochastic

game.

The main focus of the research in probabilistic logics has been on the

development of efficient algorithm for the model checking problem. The

model checking problem of finite Markov chain for Probabilistic computa-

tion tree logic or PCTL, has been extensively studied [52, 5]. Many variant

of PCTL have been proposed for Markov decision processes (MDPs) [54, 88]

as well. Subsequently, the model checking problem of PCTL and PCTL∗ for

MDPs was solved by Bianco and de Alfaro [9]. Furthermore, the complexity

of the model checking problem of probabilistic µ calculus was shown to be in

NP∩co-NP [18]. Complexity result for the model checking problem for differ-

ent fragments of probabilistic µ calculus has also been investigated [18]. A

detailed analysis of the algorithmic complexity of calculating the the prob-

ability measure of a set of paths that satisfies a LTL property was done by

Courcoubetis and Yannakakis (1995) [31]. Researchers have also developed

algorithms for parametric model checking. In parametric model checking

the models under scrutiny are parametrized, where the transition proba-

bility of the models (such as Markov chains or MDPs) are defined using

parameters. One of the contribution of this thesis is related to qualitative

model checking of parametric linear time properties. Instead of considering

parametric models, here we consider parametrized version of LTL, where the

integer bounds on bounded finally (F) operators are parameters. Thus, given

a Markov chain and a probability bound, the problem is to identify the set

of parameter valuations for which the required probability bound is achiev-

able. The problem is thus the dual of quantitative model checking on LTL.

18 CHAPTER 1. INTRODUCTION

We show that the general problem is undecidable, and investigate various

restriction on the parametrized logic which makes the problem decidable.

In contrast to model checking of probabilistic logics, very few result exist

on the satisfiability problem (or the validity problem) for these logics. Hart

and Sharir [55] and Lehmann and Shelah [73], were one of the first to consider

the validity problem for the probabilistic branching time logic. These logics

were probabilistic extensions of Branching time logics like CTL, and can be

categorized as the qualitative fragment of PCTL. Their focus was mainly

providing a deductive system in the same spirit as was provided by Ben-Ari

and Manna [6] for various branching time temporal logics. More recently,

Kucera et al [13], has shown that the satisfiability problem for qualitative

PCTL is decidable and is 2-EXPTIME complete.

s1 s2 s3 sn

t

1
2

1
2

1
4

3
4

1
8

1
2n

{a}
M

Figure 1.0.1: The Markov chain M satisfies f ∶= [G[∼a ∧ [Fa]>0]]>0 at state

s1.

One of the main obstacle in obtaining the a decision procedure for prob-

abilistic logics is the fact that there are formulas for which there exists no

finite probabilistic transition system that satisfies the formula but are satis-

fiable by infinite transition systems. The problem already exists for qualita-

tive fragment of PCTL as demonstrated by Hart and Sharir [55] and Kucera

et al [13]. For example, consider the PCTL formula f ∶= [G[∼a∧[Fa]>0]]>0. It

can be shown that no finite Markov chain satisfy f . But an infinite Markov

chain as shown in Figure 1.0.1 is a model of f . The crux of the matter is

that at each state sn (for n > 0), there is a non-zero probability of satisfying

Fa, albeit small, and the path which satisfies G(∼a), i.e., (s1, s2,⋯) also has

a non-zero probability, since the product of the sequence Π∞
n=1(1 − 1

2n) > 0.

Observe that the exact choice of the sequence Π∞
n=1(1 − 1

2n) is immaterial.

Any sequence with non-zero infinite product would suffice. This is pos-

sible since we are dealing with qualitative PCTL, the exact values of the

19

probability distributions are of little consequence. However, this problem

is compounded if we were considering general PCTL. Not only the models

could be infinite, but we have to deal with sequences of real number where

the sum of the infinite product satisfies a given threshold of the sub-formula.

The contribution of this thesis is to forward our understanding of the

complexity of the satisfiability problem for some of the fragments of proba-

bilistic µ calculus. Though the satisfiability problem for PCTL still remains

open in general, but as we will see later, we can discern some useful infor-

mation about logics various fragments of probabilistic µ calculus. We will

consider a bounded fragments of PCTL. These logics are endowed with small

model property (a fact which is reproachfully absent in PCTL as demon-

strated by Figure 1.0.1). This means that given any formula f of the logic,

f is satisfiable if and only if there exists a (canonical) model of f whose size

is exponential in the size of the description of f . In this thesis we establish

the exact complexity classes in which the satisfiability problem for these

logics belong.

We will also consider a simple probabilistic extension of modal µ calcu-

lus (PµTL). PµTL is expressively incomparable to PCTL but is subsumed in

probabilistic µ calculus. We show that PµTL has a small model property

in the sense that every satisfiable formula f has a model of size exponen-

tial in ∣f ∣ (and has a bounded out-degree at most ∣f ∣ + 1. These results

imply (using []) that PµTL and qualitative PCTL are incomparable. The

constructive proof uses (ordinary) parity games the satisfiability problem of

PµTL. Similar to results for the modal µ-calculus, we obtain that a PµTL-

formula f is satisfiable iff player zero has a winning strategy in the game

arena that corresponds to f . Using these results we establish that every

satisfiable PµTL-formula has a rational model, i.e., a model with rational

probabilities only. Our results show that one needs to solve a parity game of

exponential size in order to decide PµTL satisfiability. This is the strongest

possible bound since PµTL can encode µ-calculus, and the result shows that

satisfiability of PµTL lies in the same complexity class as the satisfiability

of µ-calculus.

Treating the models of logics as languages of automata is a very effective

and well studied mechanism for understanding the properties of the logic.

For example, finite regular languages correspond to finite state machines,

ω-regular and MSO on infinite words correspond to Büchi automata, modal

µ calculus corresponds to alternating tree automata, etc. Similar strides

had been made in probabilistic logic in the form of p-Automata [] . The

language of a p-automaton is a set of Markov chains. This gives us a uniform

framework for a language theoretic treatment to the set of Markov chains.

20 CHAPTER 1. INTRODUCTION

For example, we can consider a formula of any probabilistic logic as the set of

Markov chain satisfying the formula. We can even consider any MDP as a set

of Markov chains induced by its various schedulers. The final contribution of

the thesis is to extend the theory of p-automata so that we can represent the

set of Markov chains defined by any MDP as the language of a p-automaton.

1.1 Survey of the chapters

Chapter 2, introduces some preliminary mathematical concepts and defini-

tions that would be used through out the thesis. The definitions are neither

elaborate nor exhaustive. Interested reader can follow the provided citations

for a more in-depth analysis of the topics.

In chapter 3, we will learn about parametric linear time temporal logic.

Parametric linear time temporal can be thought as a description of linear

temporal behaviour (the set of infinite words) that is partially define. We

get the exact description of the set only when we know the values of the pa-

rameters. In this chapter, we will primarily study the synthesis of the values

of these parameters for which the probability of the linear time property in

a Markov Chain reaches certain threshold.

In chapter 4, we will study interval Markov chains. They differ from

Markov chains, as they allow transition probabilities to be intervals. We

will see how to model check interval Markov chains against PCTL properties

even in the presence of open intervals.

In chapter 5, we explore various fragments of PCTL with finite model

property (unlike the general PCTL). We will study the complexity of the

decision problems for these logics.

In chapter 6, we will study probabilistic logic with recursion, which

extends modal µ-calculus with quantified next operators. These logic are

broadly classified under probabilistic µ-calculus. We will see that this logic

are orthogonal to PCTL in terms of expressibility and is decidable and pos-

sess small model property.

In chapter 7, we will visit the recently developed theory of p-automata.

P-automata are reminiscent of tree automata, as they take labeled Markov

chains as inputs. We will see how to represent a Markov decision process as

p-automata and study the acceptance and language inclusion algorithms.

Chapter 2

Preliminaries

2.1 Important complexity classes

This section will review some of the important concepts and notation for

classification of problems according to their complexity. We start with the

familiar definition of Turing machine.

Definition 2.1.1. A non-deterministic one-tape Turing machine is a 9-tuple

M = (Q,Σ,Γ,△,⊢, δ, I, F,R) where

• Q is a finite set of states.

• Σ is a finite input alphabet.

• Γ is a finite tape alphabet containing Σ as a subset.

• △ ∈ Γ ∖Σ is the blank symbol.

• ⊢ is the left marker.

• δ ⊆ Q × Γ ×Q × Γ × {L,R} is the transition relation.

• I ⊆ Q is the set of start states.

• F ⊆ Q is the set of accepting states.

• R ⊆ Q is the set of rejecting states, F ∩R = ∅.

Intuitively, (q, σ, q′, σ′, d) ∈ δ means, “When in state q scanning symbol σ,

write σ′ on that tape cell, move the head in direction d, and enter state q′.

The symbols L and R stand for left and right, respectively.

A configuration is a tuple (xqay), where x, y ∈ Γ∗, a ∈ Σ and q ∈ Q. This

means that the string xay is on the tape, the head is on the cell containing

a and the current state is q. Thus for a configuration σ = xqay ∈ Γ∗×Q×Γ+,

21

22 CHAPTER 2. PRELIMINARIES

the tape content is xay = tape(σ) ∈ Γ+ with a ∈ Γ, the head is at position

∣x∣ + 1, presently reading input a and the current state is q = state(σ). The

successor configuration c′ = (x′q′a′y′) of c = (xqay) is defined as follows:

• If (q, a, q′, b,L) ∈ δ then x′a′ = x and y′ = by.

• If (q, a, q′, b,R) ∈ δ then x′ = xb and y = a′y′.

A trace ρ is a sequence of successor configurations. A trace is accepting

(or rejecting) iff it ends in a configuration xaqy where q ∈ F (or q ∈ R). A

finite word w is accepted (or rejected) iff the there is an accepting trace (or

rejecting trace) from the configuration (q ⊢ w) for some q ∈ I. The set of

word with an accepting run constitute the language of the Turing machine

M . Denote it by L(M).

Important variations of non-deterministic Turing machines are:

1. Deterministic machine: Each word w has exactly one trace. The

transition relation is thus a function δ ∶ (Q ×Σ) → (Q ×Σ × {L,R}).

2. Unambiguous machine: Each word w has at most one accepting trace.

3. Alternating Turing machine: (ATM) [25] is similar to a non-deterministic

Turing machine except there is a function in the specification of the

machine called type. The function type tells us whether a state is an

and-state or an or-state, where type ∶ Q → {∧,∨}. A trace (or a com-

putation) ρ of an ATM A for an input xin is a set of configuration

such that, (q0 ⊢ xin) ∈ ρ and for every σ ∈ ρ with state(σ) /∈ F , if

type(state(σ)) = ∨ then one of the successor configurations σ′ of σ is

in ρ, if type(state(σ)) = ∧ then every successor configuration of σ is

in ρ. Pictorially, ρ is a tree where each node is a configuration and

edges are defined by the successor relation. A trace ρ is accepting for

an input x if ρ is finite and only configurations without a successor

configuration in ρ are accepting. The language of an ATM A is thus:

L(A) = {x ∈ Σ∗ ∶ there exists an accepting trace ρ for x }

Let T ∶ N→ N and S ∶ N→ N be numeric functions, which serve as asymptotic

time and space bounds for Turing machine computations. Generally, these

functions are written as a functions of the length of the input word. For

example, logn,n,n logn,n2,2n, n!,22n , etc.

Definition 2.1.2. A Turing machine TM traces in time T (n) (or is T (n)
time-bounded) if for all (but finitely many) inputs x, all traces of x are of

length T (∣x∣), where ∣x∣ denotes the length of x.

2.2. PROBABILITY AND STOCHASTIC PROCESSES 23

Similarly, a Turing machine TM traces in space S(n) (or is S(n) space-

bounded) if for all (but finitely many) inputs x, every configuration of every

trace of x uses at most S(∣x∣) work-tape cells.

Now we can define the basic time and space complexity classes:

Definition 2.1.3. Elementary complexity classes:

DTIME(T (n)) = {L(M) ∶M is a deterministic T (n) time bounded TM }
NTIME(T (n)) = {L(M) ∶M is a non-deterministic T (n) time bounded TM }
UTIME(T (n)) = {L(M) ∶M is a unambiguous T (n) time bounded TM }
ATIME(T (n)) = {L(M) ∶M is an alternating T (n) time bounded TM }

DSPACE(S(n)) = {L(M) ∶M is a deterministic S(n) space bounded TM }
NSPACE(S(n)) = {L(M) ∶M is a non-deterministic S(n) space bounded TM }
ASPACE(S(n)) = {L(M) ∶M is an alternating S(n) space bounded TM }

If A is a complexity class, the set of complements of the sets in A is denoted

by co-A. Note that co-A is not the complement of A.

Some common complexity classes are as follows:

Example 2.1.1.

LOGSPACE = DSPACE(logn)
NLOGSPACE = NSPACE(logn)
P = DTIME(nO(1)) = ⋃

i>0

DTIME(ni)

UP = UTIME(nO(1)) = ⋃
i>0

UTIME(ni)

NP = NTIME(nO(1)) = ⋃
i>0

NTIME(ni)

PSPACE = DSPACE(nO(1)) = ⋃
i>0

DSPACE(ni)

NPSPACE = NSPACE(nO(1)) = ⋃
i>0

NSPACE(ni)

EXPTIME = DTIME(2nO(1)) = ⋃
i>0

DTIME(2n
i

)

NEXPTIME = NTIME(2nO(1)) = ⋃
i>0

NTIME(2n
i

)

2EXPTIME = DTIME(22n
O(1)

) = ⋃
i>0

DTIME(22n
i

)

ATIME(T (n)O(1)) = DSPACE(T (n)O(1))
ASPACE(S(n)) = DTIME(2O(S(n))).

2.2 Probability and stochastic processes

Let X and Y be two non-empty sets. The set of functions from X to Y is

denoted by Y X . For ϕ ∈ Y X , let img(ϕ) ⊆X be the image and dom(ϕ) = Y

24 CHAPTER 2. PRELIMINARIES

be the domain of the function ϕ. The set of all subsets (called the power

set) of X is defined as 2X . Any subset Z ⊆ 2X is called a collection of X. A

topology on a set X is a collection T ⊆ 2X such that:

1. ∅ ∈ T and X ∈ T .

2. For every U,V ∈ T , U ∩ V ∈ T .

3. For any collection U ⊆ T , ⋃
U∈U

U ∈ T .

The elements of T are called open set, and any set whose complement is in

T is called closed. In that respect, the sets X,∅ are closed and open at the

same time. The pair (X,T) is called a topological space. A collection C ⊆ T
is a base of T , iff for every V ∈ T , V = ⋃{U ∈ C ∶ U ⊆ V }.

Definition 2.2.1 ((Weighted) cover). Let H be a set of objects. A cover c

is a set of sets of objects of H, such that ⋃e∈c e =H. The cardinality of c is

called the width of the cover c. A weighted cover of H is a cover c with a

mapping w ∶ c→ (0,1], such that ∑e∈cw(c) = 1.

For weighted cover (c,w) of H = {o1,⋯, on}, let H(oi) = {e ∈ c ∶ oi ∈ e}
and with little abuse of notation, let w(oi) = ∑e∈H(oi)w(e).

Definition 2.2.2. A σ-algebra on a set X is a collection F of X which

obeys the following properties:

1. (Empty set) ∅ ∈ F .

2. (Complement) If E ∈ F , then the complement Ec ∶= X ∖ E also is in

F .

3. (Countable unions) If E1,E2,⋯ ∈ F then
∞

⋃
n=1

En ∈ F .

We refer to the pair (X,F) of a set X together with the σ-algebra on that

set as a measurable space. Elements of F are called events.

A σ-algebra can be constructed from any collection F with the notion

of generation.

Definition 2.2.3. Let F be any family of sets in X. We define ⟨F⟩ to be

the intersection of all σ-algebra that contains F .1 Equivalently, ⟨F⟩ is the

coarsest σ-algebra that contains F .

We now turn to an important example of a σ-algebra .

1Fact that the intersection of a collection of σ-algebra is σ-algebra can be proved, easily.

2.2. PROBABILITY AND STOCHASTIC PROCESSES 25

Definition 2.2.4. Let (X,T) be a topological space. The Borel σ-algebra

B[X] of X is defined to be the σ-algebra generated by the open sets of X,

i.e., B[X] = ⟨T ⟩. Elements of B[X] are called Borel measurable.

We define a the concept of measure on the σ-algebra . We endow these

structures with countably additive measure µ.

Definition 2.2.5. Let (X,B) be a measurable space. A countable additive

measure µ on B, or measure for short, is a map µ ∈ [0,+∞]B that obey the

following axioms:

1. (Empty set) µ(∅) = 0.

2. (Countable additivity) Whenever E1,E2,⋯ ∈ B are countable sequence

of disjoint measurable set, then µ(
∞

⋃
n=1

En) =
∞

∑
n=1

(En).

A triplet (X,B, µ) where (X,B) is a measurable space and µ ∈ [0,+∞]B is

a countable additive measure, is known as a measure space.

We are interested in a particular class of measures:

Definition 2.2.6. Let (X,B) be a measurable space. A probability measure

(also called distribution) is a countable additive finite measure µ ∈ [0,1]B,

with µ(X) = 1. If (X,B) is a discrete space (i.e. X is countable and B
is a discrete topology) then the set of probability measure over the set X

is denoted by DX where d⃗ ∈ DX iff d⃗ ∈ [0,1]X and d⃗T ⋅1⃗ = 1. For µ ∈ DX ,

let supp(µ) = {x ∈ X ∶ µ(x) > 0} be the support of the distribution µ. If

∣supp(µ)∣ = 1 then µ is called a Dirac distribution.

We can construct a new space from existing spaces by product opera-

tions.

Definition 2.2.7. For each i ∈ N, let (Xi,Fi) be measurable spaces, and let

X = ∏∞
i=1Xi be the set of tuples (of infinite length), such that (x1, x2,⋯) ∈X

whenever xi ∈Xi. A cylinder set for a measurable set A ∈ ∏n
i=1Fi is defined

as Cyl(A) = {(x1,⋯, xn,⋯) ∈X ∶ (x1,⋯, xn) ∈ A}.

Consider the topology X of X = ∏∞
i=1Xi formed by all infinite union of

all cylinder sets. Observe that every cylinder set is both open and close. As

we will see subsequently, the Borel σ-algebra of X, B[X] is of particular

interest to us.

Next we use the above definitions to define the probability measure space

generated by stochastic processes.

26 CHAPTER 2. PRELIMINARIES

{a} {b} {a}⋯ ⋯

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure 2.2.1: The Markov chain M defines a random walk. The set of atomic

propositions are {a, b}.

Definition 2.2.8. A labeled Markov chain (MC) M is a quintuple (S,P,
AP, L, sin) where S is a (countable) set of states, P(s) ∈ DS for all s ∈ S, AP

is a set of atomic propositions, L ∶ (2AP)S is a labeling function, and sin ∈ S
is the initial state.

An example of a Markov chain is given in Figure 2.2.1. An infinite

path σ of MC M is a sequence of states σ = {σi}i≥0, where for all i ≥ 0,

P(σi, σi+1) > 0. Let path(s) denote the set of (finite or infinite) paths starting

from state s. For a path σ, let σ↓ denote the last state of σ if this exists

(i.e., if σ is finite) and ∣σ∣ denote the length of σ. The trace of a σ is defined

as the sequence of sets of atomic propositions trace(σ) = (L(σ0), L(σ1),⋯).
Let succ(s) = {t ∶ P(s, t) > 0} be the direct successors of state s.

Each state s defines a probability measure space on the set of states,

Xs = (S,2S , µs), where µs(A) = ∑s′∈A P(s, s′). A probability measure on

sets of infinite paths is obtained in the following way. Let Ωs be an infinite

cross product of spaces Xs ×∏∞
i=1⋃s′∈SXs′ . Any finite path σ = (σ0,⋯, σn)

is measurable in the finite product space Xs ×∏n
i=1⋃s′∈SXs′ . The collection

C = {Cyl(σ) ∶ σ is a finite path}, the set of cylinder sets, is the base of

the topology generated by the countable union and finite intersections of

elements in C. The measurable space (Ωs,F ,Pr), where F = B[Ωs] is the

Borel σ-algebra generated from topology with C as base. Pr is the probability

measure on F is deduced from the measure of cylinder sets. A finite path

σ = (σ0,⋯, σn), has a measure Pr(Cyl(σ)) = ∏0<i≤∣σ∣ P(σi−1, σi).
We will often define a property as a set of words in Σ∗, where Σ = 2AP.

The set of paths corresponding to a property f is the set trace−1(f) = {σ ∶
trace(σ) ∈ f}. When trace−1(f) is measurable in (Ωs,F ,Pr), then Pr(s ⊧
f) = Pr(trace−1(f)).

Definition 2.2.9. A Markov decision process D is a quintuple (S,∆,AP, L, sin)
where S, AP, L, and sin are as before, and ∆ ∶ (2DS)S such that ∆(s) is a

finite set of distributions. We assume S and ∆(s) for each s ∈ S to be finite

(unless the contrary is explicitly specified).

2.2. PROBABILITY AND STOCHASTIC PROCESSES 27

{a} {b} {a}⋯ ⋯

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

{c}

{c} {c}

Figure 2.2.2: A sample MDP D with countable number of states. At each

state has two distributions.

A finite path of an MDP is a sequence of states σ = σ0 . . . σn such for each

0 < i ≤ n σi ∈ supp(µ) for some µ ∈ ∆(σi−1). Let path(s) be the set of (finite

and infinite) paths from the state s. Let succ(s) = {t ∶ t ∈ ⋃µ∈∆(s) supp(µ)}
be the set of successors of s. As usual, we use schedulers to resolve the

possible non-determinism in a state.

Definition 2.2.10. A scheduler of MDP D = (S,∆,AP, L, sin) is a func-

tion η ∶ (DDS)S
+

with η(σ) ∈ D∆(σ↓). The scheduler η induces the MC Dη =
(S+,P,AP, L′, sin) with L′(σ) = L(σ↓), and P(σ,σ⋅t) = ∑µ∈∆(σ↓) η(σ)(µ)⋅µ(t).

These schedulers are history-dependent and randomized. Let HR(D)
denote the set of history-dependent randomized schedulers of MDP D. If

for all σ,η(σ) is a Dirac distribution on ∆(σ↓), then η is a history dependent

deterministic scheduler. Let HD(D) be the set of all such schedulers of D.

Definition 2.2.11. A stochastic game G is a tuple (V,E,V0, V1, Vp,P,Ω),
where (V,E) is a directed graph and (V0, V1, Vp) is a partition of V . V0 is

the set of Player 0 configurations, V1 is the set of Player 1 configurations

and Vp is the set of stochastic (or probabilistic) configurations. P is a

probability transition function P ∈ (DV)Vp and Ω is an acceptance property

that determines whether a path of the directed graph (V,E) is accepting.

A path (also called a play) in the graph (V,E) is winning for Player 0 if it

is finite and ends in Player 1 configuration, or it is infinite and satisfies the

acceptance property Ω.

The 2-player game proceeds from a configuration u by the following rule.

If u is a Player 0 (or Player 1) configuration, then Player 0 (or Player 1,

resp.) chooses a configuration v such that (u, v) ∈ E. If no configurations can

28 CHAPTER 2. PRELIMINARIES

{a} {b} {a}⋯ ⋯

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

{c}

{c} {c}

Figure 2.2.3: A two player stochastic game G. The Player 0 configurations

are represented by circular nodes, Player 1 configurations are represented by

rectangular nodes and probabilistic nodes are denoted by rhombus nodes.

A co-Büchi acceptance condition is Ω0 = {v ∶ L(v) = {c}}.

be reached from u then u is losing for Player 0 (or Player 1, resp.). On the

other hand, if u is a probabilistic configuration then the next configuration

v is chosen with probability P(u, v). If this process continues ad infinitum,

we get a sequence of configuration which forms an infinite path (also called

a play) of the game. The path is winning for Player 0 iff it satisfies the

property Ω. Different acceptance properties define various 2-player games.

The acceptance property that will be of particular interest to us (in Chapter

7) is called co-Büchi property. It is represented by a set of configurations

Ω0 ⊆ V of G. An infinite path is accepting iff there is a suffix (tail) of the

path which lies in Ω0, i.e., a path σ = (v0, v1,⋯) is winning for Player 0, iff

there exists n ∈ N, such that for all m ≥ n, vm ∈ Ω0.

A subset C of V is called strongly connected component if for any two

configurations u, v ∈ S, v is reachable from u. A strongly connected com-

plement C is maximal (MSCC, for short) iff there is no superset of C that

is strongly connected. A stochastic game is called a weak stochastic game

iff it has a co-Büchi acceptance condition and for all maximal connected

components (MSCC) C, either C ⊆ Ω0 or C ∩ Ω0 = ∅. If Vp = ∅ then it

is a weak game. A strategy of a Player 0 is a function ρ ∶ (DV)(V ∗×V0),

with ρ(w⋅u)(v) > 0 implies (u, v) ∈ E. A play w = v0v1⋯ is consistent with

strategy ρ if for every i ≥ 0, vi ∈ V0 implies ρ(v0⋯vi)(vi+1) > 0. Strategies

of Player 1 are similarly defined. Let Υ and Π be the set of all strategies

2.3. TEMPORAL LOGIC 29

for Player 0 and Player 1, respectively. A player 0 strategy ρ is memoryless

iff ρ(w⋅v) = ρ(w′⋅v), for any w,w′ ∈ V ∗, and it pure iff ρ is Dirac (similarly

definitions apply to strategies of player 1).

A pair of strategies (ρ, π) ∈ Υ × Π of a game G determines a MC Mρ,π

(configurations without an out-going transition are made absorbing) whose

paths are plays of G according to ρ, π. The measure of the set of win-

ning plays of Player 0 starting from a configuration c in Mρ,π, is denoted by

valρ,π0 (c). We have valρ,π1 (c) = 1−valρ,π0 (c). Let val0(c) = supρ∈Υ infπ∈Π valρ,π0 (c)
and val1(c) = supπ∈Π infρ∈Υ valρ,π1 (c). If a strategy achieves these values then

it is called optimal.

Theorem 2.2.1. [77, 30, 27] Let G be a stochastic game and c be one of

its configurations. Then G is determined, that is val0(c)+val1(c) = 1. If G

is finite and weak, then optimal strategies for both players exist and they

are memoryless and pure. If G is a stochastic weak game, then the problem

whether val0(c) exceeds than a given quantity v ∈ Q can be decided in NP∩co-

NP, and if G is weak game then val0(c) = 1 can be decided in linear time.

Stochastic games (the structure rather than acceptance properties) gen-

eralizes both Markov chains and Markov decision processes. A stochastic

game without Player 1 states (i.e., V1 = ∅) is called 11
2 -player game and its

stochastic behaviour is identical a to MDP. Similarly, a stochastic game with

only probabilistic states (i.e., V0 = V1 = ∅) behaves like a Markov chain.

Definition 2.2.12 (Probabilistic bisimulation [72]). Let MCM = (S,P,AP, L,
sin) and H ⊆ AP. The equivalence relation RH ⊆ S × S is a probabilistic

bisimulation iff for every (s, s′) ∈ RH it holds:

1. L(s) ∩H = L(s′) ∩H, and

2. for every C ∈ S/RH , we have ∑t∈C P (s, t) = ∑t′∈C P (s′, t′).

Let ≈H denote the largest probabilistic bisimulation on S. The MCs M1 and

M2 are probabilistically bisimilar, denoted M1 ≈H M2, if s1
in ≈H s2

in in the

disjoint union of M1 and M2.

2.3 Temporal logic

Temporal logic broadly covers reasoning about temporal events within a

logical framework. Temporal logic is an important class of modal logic.

Temporal logic can have both dense and discrete models, in this thesis we

are interested in discrete models. Next we introduce two different notion of

perceiving the flow of time.

30 CHAPTER 2. PRELIMINARIES

2.3.1 Linear temporal logic

Linear temporal logic, as the name suggests, considers a linear flow of time.

The (forward) models of this logic are totally ordered structures (w, i), where

w ∈ N2AP (called a word), AP is the set of atomic propositions, 2AP is some-

times referred as the alphabet (Σ) and i ∈ N (called a time instance). If N

is finite (i.e., N = {0,1,⋯, n}) then w is a finite word, and if N = N then w

is an infinite word. Next, we will describe few important linear time logics.

ω-regular languages ω-regular languages generalize the definition of reg-

ular languages to infinite words. Similar to regular expression, the formulas

of ω-regular languages are defined by ω-regular expressions. Consider the

following operations on sets of words:

• Concatenation: Let L1 be a set of finite words and L2 be a set of finite

or infinite words. Then L1⋅L2 = {w⋅w′ ∶ w ∈ L1,w
′ ∈ L2}.

• *-iteration: Let L be a finite set of finite words. L∗ = ⋃
n∈N

Ln, where

Ln = {w1⋅w2⋯wn ∶ wi ∈ L,1 ≤ i ≤ n}, and L0 = {ε}.

• ω-iteration: Let L be a finite set of finite words. Lω = {w1⋅w2⋅w3⋯ ∶
wi ∈ L ∖ {ε}}. Observe that {ε}ω = ∅, where as {ε}∗ = {ε}.

The syntax of ω-regular expressions is defined as follows:

Definition 2.3.1.
s ∶∶= ∅ ∣ rω ∣ r⋅s ∣ s + s
r ∶∶= ε ∣ r ⋅ r ∣ r∗ ∣ r + r

where r defines regular expression and s defines ω-regular expression. The

language L(s) of a ω-regular expression is defined inductively as follows:

• L(∅) = ∅.

• L(rω) = (L(r))ω.

• L(r⋅s) = L(r)⋅L(s).

• L(t1 + t2) = L(t1) ∪ L(t2), where t1, t2 are either regular expressions

or ω-regular expressions.

• L(r∗) = (L(r))∗.

A language L is ω-regular iff there is an ω-regular expression s, such that

L = L(s).

2.3. TEMPORAL LOGIC 31

ω-automata are generalizations of finite automata, which are acceptors

infinite words. A non-deterministic Büchi automaton, introduced by J.R.

Büchi [15], is an ω-automaton defined as follows:

Definition 2.3.2. Non-deterministic Büchi automaton A = (Q,Σ, δ, I, F).

• Q is a finite set of states.

• Σ is the finite alphabet set.

• δ ⊆ Q ×Σ ×Q is the transition relation.

• I ⊆ Q is the set of initial states.

• F ⊆ Q is the set of accepting states.

A run is a sequence of states of the automaton, ρ = q0q1q2⋯, such that q0 ∈ I
and for all i ≥ 0, (qi, σ, qi+1) ∈ δ for some σ ∈ Σ. inf(ρ) is the set of states

in ρ that occur infinitely often. A run ρ is accepting iff inf(ρ) ∩ F ≠ ∅. An

infinite word w = σ0σ1⋯ has a run ρ = q0q1q2⋯ if for all i ≥ 0, (qi, σi, qi+1) ∈ δ.
The language of a Büchi automaton is defined as follows:

L(A) = {w ∈ Σω ∶ w has an accepting run}

The equivalence of expressive power of ω-regular languages and Büchi

automata was established by the following theorem.

Theorem 2.3.1. ([15]) An ω-language is recognized by a Büchi automaton

iff it is an ω-regular language.

There are many other ω-regular automata with equivalent expressive

power. These include, Muller, Street, Rabin, parity, etc. They all differ

in their accepting condition. Deterministic parity automata is of particular

interest to us.

Definition 2.3.3. A deterministic parity automaton A = (Q,Σ, δ, I,Ω).

• Q is a set of states.

• Σ is the alphabet.

• δ ∶ Q ×Σ→ Q is the transition function.

• I ⊆ Q is the set of initial states.

• Ω ∶ Q→ C, where C = {0,1,⋯, n} for some n ∈ N.

An infinite run ρ is accepting iff max
q∈inf(ρ)

{Ω(q)} is even.

Theorem 2.3.2. ([81])From a nondeterministic Büchi automaton A with

n states a deterministic parity automaton B with n2n+2 states and an index

of size 2n can be constructed such that L(A) = L(B).

32 CHAPTER 2. PRELIMINARIES

Linear-time temporal logic (LTL)

Definition 2.3.4. Linear-time temporal logic [75] is defined by the following

grammar:

f ∶= a ∣ ∼f ∣ f ∧ f ∣ Xf ∣ f U f,

where a ∈ AP. The semantics is inductively defined as follows:

(w, i) ⊧ a iff a ∈ w(i),
(w, i) ⊧ ∼f iff (w, i) /⊧ f,
(w, i) ⊧ f ∧ g iff (w, i) ⊧ f and (w, i) ⊧ g,
(w, i) ⊧ Xf iff (w, i + 1) ⊧ f,
(w, i) ⊧ f U g iff ∃k ∶ ∀j < k ∶ (w,k) ⊧ g and (w, j) ⊧ f.

As a convention, the time instance i is not specified when i = 0, i.e.,

we write w ⊧ f instead of (w,0) ⊧ f . The language of a LTL formula f is

L(f) = {w ∶ w ⊧ f}. When there is no ambiguity, a formula also denotes a

set of models where it is true.

Theorem 2.3.3. ([92]) ω-regular languages are strictly more expressive

than LTL.

We can define sets of infinite paths of a labeled Markov chain as lin-

ear temporal properties, using LTL formulas, ω-regular expressions or ω-

automata. Let M be a Markov chain, s be a particular state and f be

a temporal property. We are generally interested in the measure of the

following set:

{π ∈ path(s) ∶ trace(π) ∈ L(f)}

It was shown in [5] that when f is an ω-regular property then the set {π ∈
path(s) ∶ trace(π) ⊧ f} is measurable. Hence we can write:

Pr(s ⊧ f) = Pr{π ∈ path(s) ∶ trace(π) ∈ L(f)}

2.3.2 Branching-timetime temporal logic

Branching-time logic revel in the assumption that, “the future can take

different possible courses from the present moment”. Thus the models of

branching-time temporal logic are not linear as in linear temporal logics,

but partially ordered tree like structure.

Kripke structures forms the natural models for branching-time logic

(though they were conceived to give possible world semantics to Modal

logic [69]). A Kripke structure K is a tuple (S,P,L), where S is a (count-

able) set of states, P ⊆ S × S is the transition relation and L ∈ ΣS is a

2.3. TEMPORAL LOGIC 33

labeling function. A path of a Kripke structure π ∈ SN is a sequence of

states (s1, s2,⋯) such that for all i > 1, (si, si+1) ∈ P . Let path(s) denote

the set of paths starting from the state s.

Computation tree logic (CTL)

We will now define an important branching-time logic called Computation

Tree Logic (CTL).

Definition 2.3.5. The syntax of computation tree logic is as follows. The

state formula is defined by the following grammar:

f ∶= a ∣ ∼f ∣ f ∧ f ∣ ∃g,

where g is a path formula and path formulas are defined by the following

grammar:

g ∶= Xf ∣ f U f.

where f is a state formula. The pointed satisfaction relation is define on a

Kripke structure K and one of its state s.

(K,s) ⊧ a iff a ∈ L(s),
(K,s) ⊧ ∼f iff (K,s) /⊧ f,
(K,s) ⊧ f1 ∧ f2 iff (K,s) ⊧ f1 and (K,s) ⊧ f2

(K,s) ⊧ ∃g iff ∃π ∈ path(s) ∶ (π,0) ⊧ g.

A path π satisfies a path formula iff:

(π, i) ⊧ Xf iff π(i + 1) ⊧ f,
(π, i) ⊧ f1 U f2 iff ∃k ∶ ∀j < k ∶ π(k) ⊧ f2 and π(j) ⊧ f.

For a given Kripke structure K and formula f , let JfKK = {s ∶K,s ⊧ f}.

JfKK can also be viewed as a function in {0,1}S , where JfKK(s) = 1 if and

only if K,s ⊧ f . We will call JfKK the satisfaction function.

Modal µ-calculus

Modal µ-calculus (Lµ), introduced by Dexter Kozen [65], is a more ex-

pressive logic that encompasses CTL. In simplest terms, modal µ-calculus is

modal logic augmented with greatest and least fixed point operators (here

we only consider unimodal operators). The models of Lµ are Kripke struc-

tures. Let V = {x, y,⋯} be an enumerable set of variables. These variables

are interpreted over functions, i.e., a function from the set of states (say S

of a Kripke structure) to a real set (in this case it is {0,1}). The syntax of

the logic is as follows:

f ∶= x ∣ ∼x ∣ f ∧ f ∣ f ∨ f ∣ �f ∣ ♦f ∣ µx.f ∣ νy.f

34 CHAPTER 2. PRELIMINARIES

where the variable x in µx.f and νx.f occur only positively in f . The fixed

point operators are viewed as quantifiers, and the standard terminology

and notation used with quantifiers are used. Variables occurring freely in

a formula f is denoted by free(f). Normal scope-rule for quantifiers is

adopted. A fixed point formula is a Lµ formula where a fixed point operator

is the outermost connective.

It is instructive to view a Lµ formula f as a function which assigns values

to each state of a Kripke structure for a given interpretation of the free

variables in f . For defining the semantics of Lµ, we will need the following

mathematical constructs. Let f, f1,⋯, fn be Lµ formula with {x1,⋯, xn} ⊆
free(f), where each xi occurs positively in f . Then

f[f1/x1,⋯, fn/xn]

denotes the formula that is obtained from f by simultaneously substituting

fi for xi in f . We will sometimes use the lambda notation for a function

description, i.e, a function ϕ(x) with parameter x can be written as λx.ϕ.

Let ϕ be a function in XY , where X and Y are partial orders. ϕ is monotonic

if for all a, a′ ∈ Y , a ≺ a′ implies ϕ(a) ≺ ϕ(a′). Let ϕ be a monotone

function over a complete lattice L, i.e., ϕ ∈ LL. By Knaster-Tarski fixed

point theorem we have:

Theorem 2.3.4. If ϕ is monotonic then:

1. ⊔{a ∶ a ≺ ϕ(a)} is the greatest fixed point of ϕ.

2. ⊓{a ∶ a ≻ ϕ(a)} is the least fixed point of ϕ.

Observe that the set of functions from the set of states S to the real

set {0,1} forms a complete lattice. That is, for ϕ,ϕ′ ∈ {0,1}S , ϕ ⊓ ϕ′ =
λs.min{ϕ(s), ϕ′(s)} and ϕ ⊔ ϕ′ = λs.max{ϕ(s), ϕ′(s)}. We are now ready

to define the semantics of a Lµ formula. Let I be an interpretation of

variables and K = (S,P,L):

JxKIK = I(x) J∼xKIK = 1−I(x)
Jf1 ∧ f2KIK = Jf1KIK ⊓ Jf2KIK Jf1 ∨ f2KIK = Jf1KIK ⊔ Jf2KIK
J♦fKIK = λs.max(s,s′)∈P JfKIK(s′) J�fKIK = λs.min(s,s′)∈P JfKIK(s′)
Jµx.fKIK = ⊓{ϕ ∶ JfKI[ϕ/x]K ≤ ϕ} Jνx.fKIK = ⊔{ϕ ∶ ϕ ≤ JfKI[ϕ/x]K }

We state without proof that each of the logical operators which can be

viewed as functions on the set {0,1}S are monotonic (it is thus necessary

for fixed point variables to occur positively in its scope). Hence from The-

orem 2.3.4, we know that greatest and the least fixed points exist and the

semantics is well defined.

2.3. TEMPORAL LOGIC 35

Note that, if f has no free variable then the choice of the interpretation

is immaterial. The pointed satisfaction of a Lµ formula f at a state s of a

Kripke structure K with interpretation I, is defined as

(K,I, s) ⊧ f iff JfKIK(s) = 1

If K is understood from the context and f has no free variable then we

simply write s ⊧ f .

Example 2.3.1. Consider the following formula f = νx.(�x ∧ ♦true). A

state s ⊧ f if and only if s cannot reach any deadlock state. Whereas, the

formula νx.(�x) is satisfied by every state s.

Next we define the alternation depth of a formula. The alternation depth

is an index of complexity of a Lµ formula. Let f = δx.f ′, where δ ∈ {µ, ν}.

A sub-formula g of f is a active sub-formula, iff g ≠ f and the variable x

appears in g.

• For a least fixed point formula f , the alternation depth of f is alt(f) = 0

if it does not have any greatest fixed point sub-formula. Otherwise,

alt(f) = 1 +max{alt(g) ∶ g is an active greatest fixed point formula of

f}.

• For a greatest fixed point formula f , the alternation depth of f is

alt(f) = 0 if it does not have any least fixed point sub-formula. Oth-

erwise, alt(f) = 1 +max{alt(g) ∶ g is a active least fixed point formula

of f}.

• For any formula f , alt(f) = max{alt(g) ∶ g is a fixed point sub-formula

of f}.

Example 2.3.2. For f = νx.(µy.(p ∨ ♦y) ∧ �x), alt(f) = 0, whereas for

f ′ = νx.(µy.(�x ∨♦y)), alt(f ′) = 1.

2.3.3 Probability and logic

The logic that we have studied so far are qualitative in the sense, that

the satisfaction function returned value either 0 or 1. Even when we were

measuring the set of paths that satisfies a given linear temporal property,

we where only considering paths for which the satisfaction function returned

1. In this section we consider logic where the satisfaction function can have

real values in [0,1]. To prepare for this paradigm shift, we first consider

Probabilistic CTL (or PCTL) where the quantitative aspects are hidden and

the satisfaction function is still boolean.

36 CHAPTER 2. PRELIMINARIES

Probabilistic Computation Tree Logic Probabilistic CTL (PCTL) [53]

is a probabilistic extension of the well-known branching-time logic for speci-

fying properties of stochastic systems. In PCTL, the existential and universal

path quantifiers of CTL are replaced with the probabilistic operator which

allows to quantify the probability of all runs that satisfy a given path for-

mula. The syntax of PCTL is built upon atomic propositions, using Boolean

connectives and operators next and until of the form [Xf]&p and [f U g]&p,
respectively, where & ∈ {≤,<,≥,>}, and p ∈ [0,1] is a rational constant. Other

operators such as F,G and W can be derived from U . It has the following

syntax:
f ∶∶= a ∣ ∼f ∣ f ∧ f ∣ [g]&p
g ∶∶= Xf ∣ f U f

where a ∈ AP , f is called a state formula, g is called a path formula, & ∈
{<,≤,>,≥} and p is a rational number in [0,1]. The qualitative fragment

of PCTL allows sub-formulas with only two kinds of probability operators,

[g]>0 and [g]=1. The PCTL semantics is define on Markov chains. An MC

M = (S,P,AP, L) satisfies a state formula f at a state s if:

M,s ⊧ a iff a ∈ L(s)
M,s ⊧ ∼f iff M,s /⊧ f
M, s ⊧ f1 ∧ f2 iff M,s ⊧ f1 and M,s ⊧ f2

M,s ⊧ [g]&p iff Pr{s ⊧ g} & p,

where {s ⊧ g} = {w ∶ w0 = s and M,w ⊧ g}. A path formula g is true for a

path w of M if:

M,w ⊧ Xf iff M,w1 ⊧ f
M,w ⊧ f1 U f2 iff ∃i ∶M,wi ⊧ f2 and ∀j < i ∶M,wj ⊧ f1

We will denote the satisfaction relation by s ⊧ f (and w ⊧ g) when M is

fixed. Observe that satisfaction function is still boolean, i.e., for any state

s and formula f , JfKM(s) ∈ {0,1}. Let us consider path sub-formulas in

little more detail. Path formulas are linear temporal formulas and hence

have linear sequence (traces of a paths) as models. But observe that, path

formulas are always quantified by a probabilistic operator [g]&p, and the

satisfaction function is defined on [g]&p. We can enrich the satisfaction

function by defining JgKM(s) as the probability of set of paths from s that

satisfies g. That is:

JgKM(s) = Pr{s ⊧ g}

The satisfaction function can now have value in [0,1]. We will extend this

idea to give a quantitative semantics to probabilistic µ-calculus.

2.3. TEMPORAL LOGIC 37

Probabilistic µ-calculus

The probabilistic µ-calculus presented in the thesis is a generalization of

modal µ-calculus by allowing quantification over path formulas. Though this

a subset of the probabilistic µ-calculus pLµ⊙⊕ proposed by Matteo Mio [80],

the semantics is almost identical to Lµ and is easier to understand. It also

gives a clean separation of formulas with boolean valued satisfaction function

from formulas with real valued satisfaction function.

Let M = (S,P,AP, L) be a Markov chain. As before, let V = {x, y, z,⋯}
be an enumerable set of variables, where the variables are interpreted over

set of function [0,1]S . The syntax of the logic is given by the following

grammar, where f is a state formula and g is a path formula.

f ∶∶= a ∣ ∼a ∣ f ∧ f ∣ f ∨ f ∣ [Xf]&p ∣ νx.f ∣ µx.f
g ∶∶= f ∣ x ∣ f ∧ f ∣ f ∨ f ∣ ♦f ∣ �f ∣ νx.f ∣ µx.f

The semantics of the logic is inductively defined as follows:

JaKIM = 1L−1(a) J∼aKIM = 1−JaKIM
Jf1 ∧ f2KIM = min{Jf1KIM , Jf2KIM} Jf1 ∨ f2KIM = max{Jf1KIM , Jf2KIM}
J♦fKIM = λs. max

(s,s′)∈P
JfKIM(s′) J�fKIM = λs. min

(s,s′)∈P
JfKIM(s′)

JxKIM = I(x) JXfKIM = λs. ∑
s′∈S

P(s, s′)⋅JfKIM(s)

Jµx.fKIM = ⊓{ϕ ∶ JfKI[ϕ/x]M ≤ ϕ} Jνx.fKIM = ⊔{ϕ ∶ ϕ ≤ JfKI[ϕ/x]M }

It is not difficult to see that the satisfaction function for a state formula will

have value in {0,1}, whereas for path formula it can have any real value in

the range [0,1]. PCTL can be easily encoded in this logic. For example, aU b

can be defined as µy.b ∨ (a ∧ Xy). Similar to Lµ, for a state formula f , we

say M,I, s ⊧ f if and only if JfKIM(s) = 1. If the formula has no free variable

and the Markov chain is understood from the context, then we simply write

s ⊧ f . We conclude this section with the following important theorem.

Theorem 2.3.5. [18] The problem whether s ⊧ f for a state s of a finite

Markov chain M and a state formula f can be decided in NP∩co-NP.

38 CHAPTER 2. PRELIMINARIES

Chapter 3

Parametric Linear Time

Temporal Logic

In this chapter we will consider the parameterized version of linear time tem-

poral logic (pLTL). We determine the set of parameter valuations V≺p(ϕ)
for which the probability of the set of paths of a Markov chain that satisfies

the pLTL-formula ϕ is above (or below) some threshold p, where is some

rational in [0,1]. Since determining the emptiness of V>0(ϕ) for any arbi-

trary pLTL formula ϕ is undecidable, we look at several fragments of the

logic. We consider parametric reachability properties, then a sub-logic of

pLTL restricted to next and F⩽x, parametric Büchi properties and finally, a

maximal subclass of pLTL for which emptiness of V>0(ϕ) is decidable.

3.1 Introduction

Parameterization of the quantitative specifications is a type of abstraction

which allows the system designer to express quantitative information about

the system under study. Parametrized specifications may be necessary when

the quantitative aspects of the specifications change over different environ-

mental conditions, (thus instilling robustness to the system design), or when

the precise information is absent in the initial phases of the system develop-

ment. For example, consider the request-response property of a server-client

model. We want to verify that: “For every request sent by the client it is ul-

timately received, the server eventually responses to every received request”.

This can be easily represented in LTL as:

G(req→ F(rec)) → G(rec→ F(res))

But realistically, we expect the response to happen within a certain time

period of the received request, where the precise length of the time period

39

40 CHAPTER 3. PLTL

may vary. This type of specifications can be expressed in parametric linear

time temporal logic (pLTL, for short).

G(req→ F(rec)) → G(rec→ F≤x(res))

This says that whenever a request (req) is sent, it is received (rec) and the

response (res) happens within x-steps of the received request.

In pLTL [2], temporal operators can be subscripted by variables ranging

over the natural numbers. The formula ‘F⩽x a’ means that in at most x steps

‘a’ occurs, and ‘GF⩽y a’ means that at every index ‘a’ occurs within y steps.

Note that x and y are variables whose value is not fixed in advance. The

central problem of this chapter is to determine the values of x and y such

that the probability of the set of paths of a given Markov chain satisfying

a given pLTL-formula ϕ meets a certain threshold p. This is referred to as

the valuation set V≺p(ϕ) for comparison operator ≺. This problem has both

a qualitative (threshold > 0 and = 1) and a quantitative variant (0 < p < 1).

Since determining the emptiness of V>0(ϕ) for any arbitrary pLTL formula

ϕ is undecidable, we look at several fragments of the logic. We consider

parametric reachability properties, then a sub-logic of pLTL restricted to

next and F⩽x, parametric Büchi properties and finally, a maximal subclass

of pLTL for which emptiness of V>0(ϕ) is decidable.

3.2 Parameter synthesis Problem for pLTL

In this section we define the syntax and semantics of pLTL. We describe the

parameter synthesis problem for pLTL on labeled Markov chains.

Parametric LTL.

Parametric LTL extends propositional LTL with bounded temporal modal-

ities, for which the bound is either a constant or a variable. Let Var be a

finite set of variables ranged over by x, y, and AP be a finite set of proposi-

tions ranged over by a and b. Let c ∈ N. Parametric LTL formulas adhere

to the following syntax:

ϕ ∶∶= a ∣ ∼ϕ ∣ ϕ ∧ ϕ ∣ Xϕ ∣ ϕUϕ ∣ F≺x ϕ ∣ F≺c ϕ

where ≺ ∈ {=,⩽,<,>,⩾}. A pLTL structure is a triple (w, i,v) where w ∈ Σω

with Σ = 2AP is an infinite word over sets of propositions, i ∈ N is an index,

and v ∶ Var→ N is a variable valuation. Analogously, we consider a valuation

v as a vector in Nd, where d for a pLTL formula ϕ is the number of variables

occurring in ϕ. We compare valuations v and v ′ as v ⩽ v ′ iff v(x) ⩽ v ′(x)

3.2. PLTL 41

for all x. Let w[i] denote the i-th element of w. The satisfaction relation ⊧
is defined by structural induction over ϕ as follows:

(w, i,v) ⊧ a iff a ∈ w[i]
(w, i,v) ⊧∼ϕ iff (w, i,v) /⊧ ϕ
(w, i,v) ⊧ ϕ1 ∧ ϕ2 iff (w, i,v) ⊧ ϕ1 and (w, i,v) ⊧ ϕ2

(w, i,v) ⊧ F≺xϕ iff (w, j,v) ⊧ ϕ for some j ≺ v(x)+i.

For the sake of brevity, we have omitted the semantics of the standard LTL

modalities, which can be found in the preliminaries. As usual, ϕ1Rϕ2 ≡
∼(∼ϕ1 U ∼ϕ2), Fϕ ≡ trueUϕ and Gϕ ≡ ∼F∼ϕ. The language of ϕ is defined

by L(ϕ) = {(w,v) ∶ (w,0,v) ⊧ ϕ}. Alur et al. [2] have shown that other

modalities such as U⩽x, F>x, G>x, U>x, R⩽x and R>x, can all be encoded in

our syntax. For instance, the following equivalences hold:

F>xϕ ≡ G⩽x FXϕ, G>xϕ ≡ F⩽xGXϕ,

ϕU⩽xψ ≡ (ϕUψ) ∧ F⩽xψ, ϕU>xψ ≡ G⩽x (ϕ ∧ X(ϕUψ))
(3.1)

For valuation v and pLTL-formula ϕ, let v(ϕ) denote the LTL formula

obtained from ϕ by replacing variable x by its valuation v(x); e.g., v(Fxϕ)
equals Fv(x) v(ϕ).

Valuation set.

The central problem addressed in this chapter is to determine the valu-

ation set of a pLTL formula ϕ. Let M = (S,P, s0, L) be an MC, p ∈ [0,1]
a probability bound, and ≺ ∈ {=,⩽,<,>,⩾}. Then we are interested in deter-

mining:

V≺p(ϕ) = {v ∶ Pr(M,s0 ⊧ v(ϕ)) ≺ p},

where Pr(M,s0 ⊧ v(ϕ)) = Pr{π ∈ Path(s0) ∶ (trace(π),v) ⊧ ϕ}. i.e., the set

of valuations under which the probability of satisfying ϕ meets the bound

≺ p. In particular, we will focus on the decidability and complexity of the

emptiness problem for V≺p(ϕ), i.e., the decision problem whether V≺p(ϕ) = ∅
or not, on algorithms (if any) determining the set V≺p(ϕ), and on the size of

the minimal representation of V≺p(ϕ). In the qualitative setting, the bound

≺ p is either > 0, or = 1.

Proposition 3.2.1. For ϕ ∈ pLTL and MC M , the problem if V>0(ϕ) = ∅
is undecidable.

Proof. The proof is based on [2, Th. 4.1], where the problem of deciding

the existence of a halting computation of a two-counter machine1 is reduced

1Formal description of two counter machine can be found in the appendix A.

42 CHAPTER 3. PLTL

q0
0 q1

0 q0
0

(q−01 , q01 , q
+0
1) (q−02 , q02 , q

+0
2) (q−11 , q11 , q

+1
1) (q−12 , q12 , q

+1
2)

x + 1

x − 1

c1

c2

c1

c2

Figure 3.2.1: Shows a word satisfying the formula ϕT .

to the emptiness problem of L(ϕ) (i.e. whether there exists a path and a

valuation pair that satisfies the formula).

Let T be a counter machine with two counters {c1, c2} and k + 1 states

{s0, s1,⋯, sk}, s0 being the initial state and sk the halting state. We con-

struct a pLTL formula ϕT with a single parameter x such that any satisfiable

structure (w,v), represents a sequence of configurations of T that constitute

a halting computation. In other words, the sequence of letters in the word

w, will encode a halting computation of T for the valuation v . Crux of the

reduction is that, the parameter x is used to guess the maximum value of

each counter in any halting computation of T . Thus, each configuration of

a halting computation can be stored in length x.

We have propositions pj for each state sj and propositions

{q−bi , qbi , q+bi , q−b̄i , qb̄i , q+b̄i }

to keep track of the value of counter ci, for i ∈ {1,2}, and {qb0, qb̄0} to keep

track of the start and end of the encodings of the configurations, where if

b is 0 (or 1) and b̄ is 1 (or 0, respectively). A configuration of the counter

machine, is stored in a substring of a word w, and {q0
0, q

1
0} denoting the start

and end of a configuration. To be precise, if the encoding of a configuration

starts with q0
0 at position i and ends with q1

0 at position j, then the encoding

of the next configuration starts with q1
0 at position j and ends with q0

0 in

some position k (so on and so forth) (see Figure 3.2.1). The distance between

q0
0, q1

0 is exactly x. This is imposed by the formula:

ϕ1 ∶= ⋀
b

(qb0 → X(∼qb̄0 U=x q
b̄
0) ∧X(qb0 U qb̄0)).

3.2. PLTL 43

The propositions {q−0
1 , q0

1, q
+0
1 } (or {q−1

1 , q1
1, q

+1
1 }) will be used to keep track

of counter c1 in the configuration starting with q0
0 (or q1

0, respectively).

Similarly, {q−0
2 , q0

2, q
+0
2 }, {q−1

2 , q1
2, q

+1
2 } do the same for counter c2. We impose

the condition that all these propositions occur exactly once between q0
0 and

q1
0, and {q−bi , qbi , q+bi } (i = 1,2) always occur consecutively.

ϕbi ∶= ((qb0 → ∼qb̄i U q
b
i) ∧ (qbi → X(∼qbi U qb0)) ∧ (q+bi → X(∼q+bi U qb0))

∧ (q−bi → X(∼q−bi U qb0)) ∧ (qbi → Xq+bi) ∧ (q−bi → Xqbi)).

Let ϕ2 ∶= ⋀b,i=1,2ϕ
bi. Consider configuration (si, c1, c2) of T . If this con-

figuration occurs in a halting computation, then it is encoded in w as a

sub-sequence of propositions (of length x) between q0
0 and q1

0. Exactly one

of the state propositions, pi in this case is true at the start of the configura-

tion qb0. This is imposed by:

ϕ3 ∶= ⋀
b

(qb0 → P ∧X(P ′U qb0))

where P ∶= (p1 ∧ ∼p2 ∧⋯ ∧ ∼pk) ∨ ⋯ ∨ (∼p1 ∧⋯ ∧ ∼pk−1 ∧ pk) and P ′ ∶= (∼p1 ∧
⋯∧ ∼pk). The distance of qb1 from qb0 will be used to keep track of the value

of c1. To be precise, at a distance c1 from qb0 the sequence q−b1 , qb1, q
+b
1 occurs

(Figure 3.2.1). Similarly, for the second counter.

Consider a transition e = (si
c1∶=c1+1ÐÐÐÐ→ sj). So if we are in a configuration

where the distance of q−b1 from qb0 is c1 then in the next configuration, the

distance of q−b̄1 from qb̄0 is c1 + 1 or the distance of qb1 to q−b̄1 is x. This can

be encoded as:

ϕe ∶= ⋀
b

((qb0 ∧ pi) → (∼qb̄0 Upj ∧ ∼qb̄0 U (qb1 → X(∼qb1 U =xq
−b̄
1))))

A similar formula can be defined for transitions where the counter is decre-

mented. For a transition where a counter value is compared to 0, the the

proposition denoting the start of a configuration, say qb0 is followed by q−b1 .

That is for, e = (si
c1=0ÐÐ→ sj) is encoded as:

ϕe ∶= ⋀
b

((qb0 ∧ pi) → (∼qb̄0 Upj ∧Xq−b1)).

Thus, the entire transition relation of T can be encoded as ϕ4 ∶= ⋁eϕe.

ϕT ∶= q0
0 ∧ (

4

⋀
i=1

ϕi)Upk.

44 CHAPTER 3. PLTL

As a satisfiable structure of ϕT encodes a halting computation of T (vice-

versa), satisfiability of ϕT becomes undecidable. Furthermore, if (w,v)
satisfies ϕT then pk is true at some finite length of w. We can easily construct

a Markov chain M such that the set of finite traces of M is Σ∗ (Σ∗ is the

set of sets of propositions used). We know that the probability measure of

any finite trace of M is greater than 0. Thus, we can decide whether ϕT is

satisfiable iff we can decide Pr(M ⊧ v(ϕT)) > 0 for some valuation v . Hence,

we conclude that the emptiness problem of V>0(ϕ) is undecidable.

Since V>0(ϕ) = ∅ iff V=1(∼ϕ) ≠ ∅, it follows that deciding whether

V=1(ϕ) = ∅ is undecidable. As a combination of F⩽x and G⩽x modalities

can encode U=x, e.g.,

∼a ∧X(∼aU=x a) ≡ X(∼aU⩽x a) ∧ (∼aU>x a),

where U>x and U⩽x can be expressed by F⩽x and G⩽x (Equations 3.1), we

will restrict ourselves to fragments of pLTL where each formula is in negative

normal form and the only parametrized operator is F⩽xϕ. We refer to this

fragment as pLTLF:

ϕ ∶∶= a ∣ ∼a ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ Xϕ ∣ ϕUϕ ∣ ϕRϕ ∣ Gϕ ∣ F⩽xϕ ∣ F⩽cϕ ∣ G⩽cϕ. (3.2)

We show it is a sub-logic of pLTL for which the emptiness problem for

V>0(ϕ) is decidable. The logic has a favourable monotonicity property, i.e.,

Remark. For every pLTLF-formula ϕ, infinite word w and valuations v ,v ′,

v ⩽ v ′ implies (w,v) ⊧ ϕ Ô⇒ (w,v ′) ⊧ ϕ.

Here (w,v) ⊧ ϕ is a shorthand for (w,0,v) ⊧ ϕ.

3.3 Parameter synthesis for Markov chains

We start off briefly with (only) parametric reachability and then consider

the sub-logic pLTL(F,X) restricted to X and Fx. Later on, we also consider

parametric Büchi formulas, and finally, pLTLF.

3.3.1 Parametric reachability

In this section, we consider pLTL-formulas of the form Fx a, where a ∈ AP,

and MC M = (S,P, s0, L). Define the set of target states T = {s ∈ S ∶ a ∈
L(s)}. We consider bounds of the form ⩾ p with 0 < p ⩽ 1, and we are

interested in V⩾p(Fx a). Let µi be the probability of reaching T within i

steps; the sequence {µi}i∈ω is ascending. There can be two cases: (a) the

3.3. PARAMETER SYNTHESIS FOR MARKOV CHAINS 45

sequence reaches a constant value in m steps (m = ∣S∣) or (b) the sequence

monotonically increases and converges to µ∞. This gives us an algorithm

for checking emptiness of V⩾p(Fx a). In the first case, we check µm ⩾ p, and

in the second case, emptiness can be checked in time polynomial in the size

of the MC, by determining µ∞ = Pr(s0 ⊧ Fa) which can be done by solving

a system of linear equations with at most m variables. Then, V⩾p(Fx a) ≠ ∅
iff p < µ∞.

Assume in the sequel that T is non-empty. Let minV⩾p(Fx a) = n0, then

the valuation set can be represented by n0 (this gives a minimal representa-

tion of the set). A membership query, i.e., does n ∈ V⩾p(Fx a), then simply

boils down to checking whether n0 ⩽ n, which can be done in constant time

(modulo the size of n0). The only catch is that n0 can be very large if p is

close to µ∞. A simple example elucidates this fact.

Example 3.3.1. Consider the MC M with S = {s0, t}, L(t) = {a}, L(s0) =
∅, P(s0, s0) = 1

2 = P(s0, t) and P(t, t) = 1. Then Pr(M ⊧ Fn a) = 1 − (1
2
)n. It

follows that minV⩾p(Fx a) goes to infinity when p approaches one.

An upper bound for n0 can nonetheless be provided. This bound allows

for obtaining the minimum value n0 by a binary search.

Proposition 3.3.1. For MC M , minV⩾p(Fxa) ⩽ logγ(1 − (1 − γ)pb), where

0 < γ < 1 and b > 0, when p < Pr(s0 ⊧ Fxa).

Proof. Collapse all a-states into a single state t and make it absorbing (i.e.,

replace all outgoing transitions by a self-loop with probability one). Let t be

the only bottom strongly connected component (BSCC) of M (other BSCCs

can be safely ignored). Let {1,⋯,m} be the states of the modified MC

M , with the initial state s0 and the target state t represented by 1 and m,

respectively. Let Q be the (m−1)× (m−1) transition matrix of the modified

MC without the state t. That is, Q(i, j) = P(i, j) iff j ≠ m where P is the

transition probability matrix of M . We have the following observation:

1. Let the coefficient of ergodicity τ(Q) of Q defined as

τ(Q) = 1 −min
i,j

(∑
k

min{Q(i, k),Q(j, k)}) .

As Q is sub-stochastic and no row of Q is zero, it follows 0 < τ(Q) < 1.

2. Let vector rT = (r1,⋯, rm−1) with ri = P(i,m), rmax be the maximum

element in r and iT be (1,0,⋯,0). The probability of reaching the state

m from the state 1 in at most n+1 steps is the probability of being in

some state i <m within n steps and taking the next transition to m:

46 CHAPTER 3. PLTL

µn+1 =
n+1

∑
j=0

iTQjr ⩽
n+1

∑
j=0

τ(Q)jrmax.

Let τ(Q) = γ and rmax = b. The integer n0 is the smallest integer such that

µn0 ⩾ p. Using the above results this is equivalent to b⋅1−γ
n0

1−γ ⩾ p. This yields

n0 ⩽ logγ(1 − (1 − γ)pb).

As in the non-parametric setting, it follows that (for finite MCs) the val-

uation sets V>0(Fx a) and V=1(Fx a) can be determined by a graph analysis,

i.e. no inspection of the transition probabilities is necessary for qualitative

parametric reachability properties.

Proposition 3.3.2. The problem V>0(Fx a) = ∅ is NL-complete.

Proof. The problem is the same as reachability in directed graphs.

Proposition 3.3.3. The sets V>0(Fx a) and V=1(Fx a) can be determined in

polynomial time by a graph analysis of MC M .

Proof. Collapse all the a-states into a target state t and make t absorbing. If

V>0(Fx a) is non-empty, it suffices to determine minV>0(Fx a) which equals

the length of a shortest path from s0 to t. To determine whether V=1(Fx a)
is empty or not, we proceed as follows. If a cycle without t is reachable from

s0, then no finite n exists for which the probability of reaching t within n

steps equals one. Thus, V=1(Fx a) = ∅. If this is not the case, then the graph

of M is a DAG (apart from the self-loop at t), and minV=1(Fx a) equals the

length of a longest path from s0 to t.

3.3.2 The fragment pLTL(F,X)

This section considers the fragment pLTL(F,X) which is defined by:

ϕ ∶∶= a ∣ ¬a ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ Xϕ ∣ Fϕ ∣ F⩽xϕ ∣ F⩽cϕ

Our first result is a necessary and sufficient condition for the emptiness of

V>0(ϕ).

Theorem 3.3.4. For ϕ ∈ pLTL(F,X) and MC M with m states, V>0(ϕ) ≠
∅ iff v̄ ∈ V>0(ϕ) with v̄(x) =m⋅∣ϕ∣.

Proof. The direction from right to left is trivial. Consider the other direc-

tion. Let ϕ be a pLTL(F,X)-formula and assume V>0(ϕ) ≠ ∅. By mono-

tonicity, it suffices to prove that v ∈ V>0(ϕ) with v /⩽ v̄ implies v̄ ∈ V>0(ϕ).
The proof proceeds in a number of steps. (1) We show that it suffices to

3.3. PARAMETER SYNTHESIS FOR MARKOV CHAINS 47

consider formulas without disjunction. (2) We show that if path fragment

π[0..l] ⊧ ϕ̄, (where LTL(F,X)-formula ϕ̄ is obtained from ϕ by omitting all

parameters from ϕ) then π[0..l] ⊧ v l(ϕ) with v l(x) = l for every x. (3) We

construct a deterministic Büchi automaton (DBA) Aϕ̄ for ϕ̄ such that its

initial and final state are at most ∣ϕ̄∣ transitions apart. (4) We show that

reachability of a final state in the product of MC M and DBA Aϕ̄ implies

the existence of a finite path in M of length at most m⋅∣ϕ∣ satisfying ϕ̄.

1. As disjunction distributes over ∧,X,F, and Fx, each formula can be

written in disjunctive normal form. Let ϕ ≡ ϕ1 ∨ . . . ∨ ϕk, where each

ϕi is disjunction-free. Evidently, ∣ϕi∣ ⩽ ∣ϕ∣. Assume v ∈ V>0(ϕ). Then,

v ∈ V>0(ϕi) for some 0 < i ⩽ k. Assuming the theorem holds for ϕi (this

will be proven below), v̄ i ∈ V>0(ϕi) with v̄ i(x) = ∣ϕi∣⋅m. Since v̄ ⩾ v̄ i,

it follows by monotonicity that v̄ ∈ V>0(ϕi), and hence, v̄ ∈ V>0(ϕ). It

thus suffices in the remainder of the proof to consider disjunction-free

formulas.

2. For pLTL(F,X)-formula ϕ, let ϕ̄ be the LTL(F,X)-formula obtained

from ϕ by replacing all occurrences of Fx by F, e.g., for ϕ = Fx(a∧Fyb),
ϕ̄ = F(a ∧ Fb). We claim that π[0...l] ⊧ ϕ̄ implies π[0...l] ⊧ v l(ϕ) with

v l(x) = l for all x. This is proven by induction on the structure of

ϕ. The base cases a and ¬a are obvious. For the induction step,

conjunctions, Xϕ and Fϕ are straightforward. It remains to consider

Fxϕ. Assume π[0...l] ⊧ F ϕ̄. Thus, for some i ⩽ l, π[i...l] ⊧ ϕ̄. By

induction hypothesis, π[i...] ⊧ v il(ϕ) with v il(y) = l−i for each variable

y in ϕ. Thus, π[0..l] ⊧ v l(Fxϕ) with v l(x) = l and for all y in ϕ,

v l(y) = l.

3. We provide a DBAAϕ̄ = ⟨Q,Σ, δ, q0, F ⟩ with Σ = 2AP for each LTL(F,X)-

formula ϕ̄ using the construction from [4]. We first treat ϕ̄ = a and

ϕ̄ = Fa. As every LTL(F,X)-formula can be obtained from F(a ∧ ϕ),
ϕ1 ∧ ϕ2 and Xϕ, we then treat these inductive cases. (Negations

are treated similarly.) For ϕ̄ = a, Aa = ⟨{q0, q1},Σ, δ, q0,{q1}⟩ with

δ(q0, a) = q1 and δ(q1, true) = q1, cf. Figure 3.3.2. For ϕ̄ = Fa , the

DBA AFa = ⟨{q0, q1},Σ, δ, q0,{q1}⟩, where δ(q0, a) = q1, δ(q0,¬a) = q0

and δ(q1, true) = q1. cf. Fig. 3.3.3. This completes the base cases. For

the three inductive cases, the DBA is constructed as follows.

(a) Let Aϕ̄ = ⟨Q,Σ, δ, q0, F ⟩. AF(a∧ϕ̄) = ⟨Q ∪ {q′0},Σ, δ′, q′0, F ⟩ where

q′0 is fresh, δ′(q, ⋅) = δ(q, ⋅) if q ∈ Q, δ′(q′0, a) = δ(q0, a), and

δ′(q′0,¬a) = q′0. (Figure 3.3.4).

48 CHAPTER 3. PLTL

q0start q1
a

Σ

Figure 3.3.2: DBA for ϕ̄ = a

q0start q1
a

¬a true

Figure 3.3.3: DBA for ϕ̄ = Fa

q′0start

q0 q1 qk

Aϕ

p ∈ a0

¬p

p ∈ a1
p ∈ ak

a0

a1

ak

Figure 3.3.4: The DBA AF(a∧ϕ)

(b) For ϕ̄1 ∧ ϕ̄2, the DBA is a standard synchronous product of the

DBA for ϕ̄1 and ϕ̄2.

(c) Let Aϕ̄ = ⟨Q,Σ, δ, q0, F ⟩. AXϕ̄ = ⟨Q ∪ {q′0},Σ, δ′, q′0, F ⟩ where q′0 is

fresh, δ′(q′0, a) = q0 for all a ∈ Σ and δ′(q, a) = δ(q, a) for every

q ∈ Q.

A few remarks are in order. The resulting DBA have a single final

state. In addition, the DBA enjoy the property that the reflexive

and transitive closure of the transition relation is a partial order [4].

Formally, q ⪯ q′ iff q′ ∈ δ∗(q,w) for some w ∈ Σω. The diameter of Aϕ̄
is the length of a longest simple path from the initial to the final state.

This implies that the diameter of AF(a∧ϕ̄) and AXϕ̄ is n+1 where n is

this diameter of Aϕ̄, and the diameter of Aϕ̄1∧ϕ̄2 is n1 +n2 where ni is

the diameter of Aϕ̄i , i ∈ {1,2}.

4. Let ϕ ≡ ϕ1 ∨ . . .∨ϕk, where each ϕi is disjunction-free, with DBA Aϕ̄i .

Evidently, V>0(ϕ) ≠ ∅ iff V>0(ϕi) ≠ ∅ for some disjunct ϕi. Consider

the product of MC M and DBA Aϕ̄i , denoted M ⊗ Aϕ̄i ; see, e.g.,

[5, Def. 10.50]. By construction, M ⊗ Aϕ̄i is partially ordered and

has diameter at most m⋅∣ϕi∣. We have that Pr(M ⊧ ϕ̄i) > 0 iff an

accepting state in M ⊗ Aϕ̄i is reachable. Thus, there exists a finite

path π[0..m⋅∣ϕi∣] in M with π[0..m⋅∣ϕi] ⊧ ϕ̄, or, π[0..m⋅∣ϕ∣] ⊧ v̄(ϕ).
This concludes the proof.

M ⊗Aϕ̄i can also be used to show that, if we have a valuation v such that

3.3. PARAMETER SYNTHESIS FOR MARKOV CHAINS 49

v(x) > m⋅∣ϕ∣ and for all other variables y ≠ x, v(x) ⩽ m⋅∣ϕ∣ and v ∈ V>0(ϕ)
then v ′ ∈ V>0(ϕ), where v ′(x) = m⋅∣ϕ∣ and for y ≠ x, v ′(y) = v(y). The

argument proceed by induction on ϕ̄i.

The above Theorem 3.3.4 leads to the following proposition.

Proposition 3.3.5. For ϕ ∈ pLTL(F,X), deciding if V>0(ϕ) = ∅ is NP-

complete.

Proof. Similar to the NP-hardness proof of satisfiability of LTL(F,X) formu-

las [90, Th. 3.7], we give a polynomial reduction from the 3-SAT problem.

For a 3-CNF formula φ with boolean variables {x1,⋯, xn}, we define MC

M and pLTL(F,X) formula ϕ such that φ is satisfiable iff V>0(ϕ) is not

empty. Let 3-CNF formula φ = C1 ∧ ⋯ ∧Ck with Ci = di1 ∨ di2 ∨ di3, where

literal dil is either xj or ∼xj (for 1 ≤ j ≤ n). Let MC M = (S,P, s0, L) and

⋯⋯⋯⋯⋯
s0 s1 s2 sn−1 sn

x1 x2 xn

¬xn¬x1 ¬x2

Figure 3.3.5: The Markov chain M used for reducing 3-CNF satisfiability

problem to a pLTL(F,X) model checking problem. Observe that there are

exponentially many orders in which Cis can be visited by a path in M

satisfying, ϕ = Fy1 C1 ∧ . . . ∧ Fyk Ck.

AP = {Ci ∶ 0 < i ⩽ k} (Figure 3.3.5):

• S = {si ∶ 0 ⩽ i ⩽ n} ∪ {xi ∶ 0 < i ⩽ n} ∪ {∼xi ∶ 0 < i ⩽ n}. Thus for

each variable x we have two states x and ∼x.

• The non-zero probabilities are given by: P(si, xi+1) > 0, P(si, ∼xi+1) > 0

for 0 ⩽ i < n, P(xi, si) > 0 and P(∼xi, si) > 0 for 0 < i ⩽ n, and

P(sn, sn) = 1 (the actual probabilities are not relevant),

• Ci ∈ L(xj) iff dil = xj for some 0 < l ⩽ 3, and Ci ∈ L(∼xj) iff dil = ∼xj
for some 0 < l ⩽ 3, and L(sj) = ∅ for all 0 ⩽ j ⩽ n.

Let pLTL(F,X)-formula ϕ = Fy1 C1 ∧ . . . ∧ Fyk Ck. Then φ is satisfiable iff

V>0(ϕ) is not empty. Evidently, M and ϕ are obtained in polynomial time.

It remains to show membership in NP. By the proof of Theorem 3.3.4,

V>0(ϕ) ≠ ∅ iff there is a finite path of M of length m⋅∣ϕ∣ satisfying ϕ̄. Thus,

we non-deterministically select a path of M of length m⋅∣ϕ∣ and check (using

standard algorithms) in polynomial time whether it satisfies ϕ̄.

50 CHAPTER 3. PLTL

x1 x2 x3

5 10 14
5 9 15
5 8 16
5 7 17

4 11 15
4 10 16
4 9 17
4 8 18

x1 x2 x3

3 10 16
3 11 17
3 10 18
3 9 19

2 13 17
2 12 18
2 11 19
2 10 20

Figure 3.3.6: MC and minV>0(ϕ) for pLTL(F,X)-formula ϕ = Fx1 r∧Fx2 b∧
Fx3 g

For almost sure properties, a similar approach as for V>0(ϕ) suffices.

Theorem 3.3.6. For ϕ ∈ pLTL(F,X) and MC M with m states, V=1(ϕ) ≠
∅ iff v̄ ∈ V=1(ϕ̄) with v̄(x) =m⋅∣ϕ∣.

Proof. The proof goes along similar lines as the proof of Theorem 3.3.4.

Theorem 3.3.4 suggests that minV>0(ϕ) lies in the hyper-cubeH = {0,⋯,N}d,
where N = m⋅∣ϕ∣. A possible way to find minV>0(ϕ) is to apply the bisec-

tion method in d-dimensions. We recursively choose a middle point of the

cube, say v ∈ H —in the first iteration v(x) = N/2— and divide H in 2d

equally sized hypercubes. If v ∈ V>0(ϕ), then the hypercube whose points

exceed v is discarded, else the cube whose points are below v is discarded.

The asymptotic time-complexity of this procedure is given by the recurrence

relation:

T (k) = (2d − 1) ⋅ T (k⋅2−d) + F (3.3)

where k is the number of points in the hypercube and F is the complexity

of checking v ∈ V>0(ϕ) where ∣v ∣ ⩽ N . Section 3.3.4 presents an algorithm

working in O(m⋅Nd⋅2∣ϕ∣) for a somewhat more expressive logic. From (3.3),

this yields a complexity of O(m⋅Nd⋅2∣ϕ∣⋅ logN). The size of a set of minimal

points can be exponential in the number of variables, as shown below.

Proposition 3.3.7. ∣minV>0(ϕ)∣ ⩽ (N ⋅d)d−1.

Proof. Let H = {0, . . . ,N}d. (H,⩽) is a partially ordered set where ⩽ is

element-wise comparison. A subset S(k) of H has rank k if the summation

of the coordinates of every element of S is k. By [61], the largest set of

incomparable elements (anti-chain) is given by Z(k) where k is N ⋅d/2 if

even, else k is (N ⋅d−1)/2. Then ∣Z ∣ = (⌊N ⋅d/2⌋+d−1
d−1

).

3.3. PARAMETER SYNTHESIS FOR MARKOV CHAINS 51

a ana,B is infinite na,B ∶= 1

Figure 3.3.7: naB in the left BSCC B is infinity, while naB for the right one

is 1

Example 3.3.2. There exist MCs for which ∣minV>0(ϕ)∣ grows exponen-

tially in d, the number of parameters in ϕ, whereas the number m of states

in the MC grows linearly in d. For instance, consider the MC M in Fig. 3.3.6

and ϕ = Fx1 r∧Fx2 b∧Fx3 g, i.e., d=3. We have ∣minV>0(ϕ)∣ = 42 as indicated

in the table.

We conclude this section by briefly considering the membership query: does

v ∈ V>0(ϕ) for pLTL(F,X)-formula ϕ with d parameters? Checking member-

ship of a valuation v ∈ V>0(ϕ) boils down to deciding whether there exists

a v ′ ∈ minV>0(ϕ) such that v ⩾ v ′. A representation of minV>0(ϕ) facili-

tating an efficient membership test can be obtained by putting all elements

in this set in lexicographical order. This involves sorting over all d coordi-

nates. A membership query then amounts to a recursive binary search over

d dimensions. This yields:

Proposition 3.3.8. For pLTL(F,X)-formula ϕ with d parameters, v ∈ V>0(ϕ)?
takes O(d⋅ logN ⋅d) time, provided a representation of minV>0(ϕ) is given.

3.3.3 Qualitative parametric Büchi

In this section, we consider pLTL-formulas of the form ϕ = GFx a, for propo-

sition a. We are interested in V>0(ϕ), i.e., does the set of infinite paths

visiting a-states that are maximally x apart infinitely often, have a positive

measure? Let MC M = (S,P, s0, L). A bottom strongly-connected compo-

nent (BSCC) B ⊆ S of M is a set of mutually reachable states with no edge

leaving B. For BSCC B, let na,B = max{∣π∣ ∶ ∀i ⩽ ∣π∣, π[i] ∈ B∧a ∉ L(π[i])}.

Proposition 3.3.9. Let B be a BSCC and s ∈ B. Then, ∀n ∈ N, n > na,B⇔
Pr(s ⊧ GFn a) = 1 and n ⩽ na,B⇔ Pr(s ⊧ GFn a) = 0.

Proof. If n > na,B, then each path π from any state s ∈ B will have at

least one a-state in finite path fragment π[i,⋯, i+n] for all i. Hence, Pr(s ⊧
GFn a) = 1. If n ⩽ na,B, then there exists a finite path fragment ρ of B,

such that, for all i ⩽ n, a ∉ L(ρ[i]). Consider an infinite path π starting

from any arbitrary s ∈ B. As s ∈ B, π will almost surely infinitely often visit

the initial state of ρ. Therefore, by [5, Th.10.25], π will almost surely visit

52 CHAPTER 3. PLTL

every finite path fragment starting in that state, in particular ρ. Path π

thus almost surely refutes GFn a, i.e. Pr(s ⊧ GFn a) = 0.(Figure 3.3.7)

For any BSCC B and GFx a, na,B < ∞ iff every cycle in B has at least

one a-state. Hence, na,B can be obtained by analysing the digraph of B

(in O(m2), the number of edges). BSCC B is called accepting for GFx a if

na,B < ∞ and B is reachable from the initial state s0. Note that this may

differ from being an accepting BSCC for GFa. Evidently, V>0(GFx a) ≠ ∅
iff na,B < ∞. This result can be extended to generalized Büchi formula

ϕ = GFx1 a1 ∧⋯ ∧GFxd ad, by checking nai,B < ∞ for each ai.

As a next problem, we determine minV>0(GFx a). For the sake of sim-

plicity, let MC M have a single accepting BSCC B. For states s and t in

MC M , let d(s, t) be the distance from s to t in the graph of M . (Recall, the

distance between state s and t is the length of the shortest path from s to

t.) For BSCC B, let da,B(s) = mint∈B,a∈L(t) d(s, t), i.e., the minimal distance

from s to an a-state in B. Let the proposition aB hold in state s iff s ∈ B
and a ∈ L(s). Let Ga = (V,E) be the digraph defined as follows: V contains

all a-states of M and the initial state s0 and (s, s′) ∈ E iff there is path

from s to s′ in M . Let c be a cost function defined on a finite path s0 . . . sn
in graph Ga as: c(s0 . . . sn) = maxi d(si, si+1), (d is defined on the graph of

M). Using these auxiliary notions we obtain the following characterization

for minV>0(GFx a):

Theorem 3.3.10. minV>0(GFx a) = n0 where n0 = max(na,B, min
π=s0...sn,sn⊧aB

c(π))
if na,B < da,B(s0) and n0 = na,B otherwise.

Proof. We show for n ⩾ n0, Pr(GFn a) > 0, and for n < n0, Pr(GFn a) = 0.

Distinguish:

1. na,B ⩾ da,B(s0). Then, from s0 an a-state in B can be reached within

na,B steps, i.e., Pr(s0 ⊧ Fna,B aB) > 0. For this aB-state, s, say, by

Proposition 3.3.9 it follows Pr(s ⊧ GFna,B a) = 1. Together this yields

Pr(s0 ⊧ GFn a) > 0 for each n ⩾ na,B = n0. For n < n0 = na,B, it follows

by Proposition 3.3.9 that Pr(s ⊧ GFn a) = 0 for every aB-state s. Thus,

Pr(s0 ⊧ GFn a) = 0.

2. na,B < da,B(s0). As B is accepting, da,B(s0) ≠ ∞. Consider a simple

path π from s0 to an a-state inB. Let c(π) be the maximal distance be-

tween two consecutive a-states along this path. Then it follows Pr(s0 ⊧
GFk a) > 0 where k = max(c(π), na,B). By taking the minimum cmin
over all simple paths between s0 and B, it follows Pr(s0 ⊧ GFn a) > 0

for each n ⩾ n0 = max(na,B, cmin) with cmin = minπ∈Paths(s0⊧FaB) c(π),

3.3. PARAMETER SYNTHESIS FOR MARKOV CHAINS 53

where Paths(s ⊧ ϕ) = {w ∶ w ∈ Paths(s),w ⊧ ϕ} . For n < n0, distin-

guish between n0 = na,B and n0 = cmin. In the former case, it follows

(as in the first case) by Proposition 3.3.9 that Pr(s0 ⊧ GFn a) = 0 for

all n ⩾ n0. Consider now n0 = cmin ⩾ na,B. Let n < n0. By contrapo-

sition. Assume Pr(s0 ⊧ GFn a) > 0. Let π = s0 . . . s1,a . . . s2,a sk,a
be a finite path fragment in M where si,a ⊧ a and sk,a is the first

a-state along π which belongs to B. Then, by definition of the di-

graph Ga, the sequence π = s0s1,as2,a . . . sk,a is a path in Ga satisfying

c(si,a, si+1,a) ⩽ n for all 0 ⩽ k < n. But then cmin ⩽ n. Contradiction.

This concludes the proof.

If MC M has more than one accepting BSCC, say {B1, . . . ,Bk} with k > 1,

then n0 = mini n0,Bi , where n0,Bi for 0 < i ⩽ k is obtained as in Theorem

3.3.10.

Proposition 3.3.11. The sets V>0(GFx a) and V=1(GFx a) can be deter-

mined in polynomial time by a graph analysis of MC M .

Proof. We argue that minV>0(GFx a) can be determined in polynomial time.

The proof for V=1(GFx a) goes along similar lines and is omitted here. We

can determine both na,B and da,B(s0) in linear time. It remains to obtain

cmin = minπ=s0...sn,sn⊧aB c(π) in case na,B < da,B(s0). This can be done

as follows. The distances d(s, s′), required for the function c in the digraph

Ga = (V,E), can be obtained by applying Floyd-Warshall’s all-pairs shortest

path algorithm on the graph of M . This takes O(m3). To obtain cmin, we

use a cost function F ∶ V → N which is initially set to 0 for initial state s0 and

∞ otherwise. Let pQ be a min priority queue, initially containing all vertices

of Ga, prioritized by the value of F . Algorithm 1 finds cmin in O(m2⋅ logm).
Its correctness follows from the invariant F (v) ⩽ max(F (u), c(u, v)). Using

Algorithm 1 Input: MC M Output: cmin
1: Initialize F , found ∶= false and pQ.

2: while (¬found and pQ ≠ ∅) do

3: u ∶= pop(pQ); found ∶= (aB ∈ L(u));
4: for v ∈ pQ do F (v) ∶= min (F (v),max(F (u), c(u, v)))
5: end for

6: end while

this we can find the minimum n for which we can reach an accepting BSCC

via a finite path satisfying GFn a.

Determining minV⩾p(GFx a) for arbitrary p reduces to reachability of ac-

cepting BSCCs. In a similar way as for parametric reachability (cf. Sec-

54 CHAPTER 3. PLTL

tion 3.3.1), this can be done by searching. For generalized Büchi for-

mula ϕ = GFxi ai ∧ ⋯ ∧ GFxd ad and BSCC B, naiB is at most m. Thus,

minV>0(ϕ) ∈ {0,⋯,m⋅d}d and can be found by the bisection method, similar

to the procedure described in Section 3.3.2.

Example 3.3.3. Rusty decides to represents the frequency of repeated

reachability of guards as parametric Büchi properties. Danny then uses

the algorithm described above to elicit the parameter values for which there

is non-zero probability of failure. He then identifies possible targets based

on this information.

3.3.4 The fragment pLTLF

This section is concerned with the logical fragment pLTLF, as defined in

(Eq. 3.2 pg. 44):

ϕ ∶∶= a ∣ ¬a ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ Xϕ ∣ ϕUϕ ∣ ϕRϕ ∣ Gϕ ∣ F⩽xϕ.2

We will focus on the emptiness problem: is V>0(ϕ) = ∅. The decision prob-

lem whether V=1(ϕ) is very similar. Similar as for pLTL(F,X), we obtain

necessary and sufficient criteria for both cases. The proofs for these criteria

depend on an algorithm that checks whether v ∈ V>0(ϕ). This algorithm is

presented first.

Automata constructions. Let ϕ be a pLTLF-formula, and v a variable

valuation. W.l.o.g. we assume that each variable occurs once in ϕ. We

will extend the classical automaton-based approach for LTL by constructing

a nondeterministic Büchi automaton for ϕ that is amenable to treat the

variables occurring in ϕ. To that end, inspired by [99], we proceed in a

number of steps:

1. Construct an automaton Gϕ for ϕ, independent from the valuation v ,

with two types of acceptance sets, one for treating until and release-

modalities (as standard for LTL [94]), and one for treating the param-

eter constraints.

2. Establish how for a given valuation v , a Büchi automaton Bϕ(v) can

be obtained from Gϕ such that for infinite word w, (w,v) ∈ L(ϕ) iff

w is an accepting run of Bϕ(v).

3. Exploit the technique advocated by Couvreur et al. [32] to verify MC

M versus Bϕ(v).
2The modalities F⩽c and G⩽c can be removed with only quadratic blow up.

3.3. PARAMETER SYNTHESIS FOR MARKOV CHAINS 55

We start with constructing Gϕ. Like for the LTL-approach, the first step is

to consider consistent sets of sub-formulas of ϕ. Let cl(ϕ) be the set of all

sub-formulas of ϕ. Set H ⊆ cl(ϕ) is consistent, when:

• a ∈H iff ¬a /∈H,

• ϕ1 ∧ ϕ2 ∈ H iff ϕ1 ∈ H and ϕ2 ∈
H,

• ϕ1∨ϕ2 ∈H iff ϕ1 ∈H or ϕ2 ∈H,

• ϕ2 ∈H implies ϕ1 Uϕ2 ∈H,

• ϕ1, ϕ2 ∈H implies ϕ1Rϕ2 ∈H,

• ϕ1 ∈H implies Fxϕ1 ∈H.

We are now in a position to define Gϕ, an automaton with two acceptance

sets. For ϕ ∈ pLTLF, let Gϕ = (Q,2AP,Q0, δ,AccB,AccP) where

• Q is the set of all consistent sub-sets of cl(ϕ) and Q0 = {H ∈ Q ∶ ϕ ∈
H}.

• (H,a,H ′) ∈ δ, where a ∈ 2AP whenever:

– H ∩AP = {a},

– Xϕ1 ∈H ⇐⇒ ϕ1 ∈H ′,

– ϕ1 Uϕ2 ∈H ⇐⇒ ϕ2 ∈H or (ϕ1 ∈H and ϕ1 Uϕ2 ∈H ′),
– ϕ1Rϕ2 ∈H ⇐⇒ ϕ2 ∈H and (ϕ1 ∈H or ϕ1Rϕ2 ∈H ′),
– Fxϕ1 ∈H ⇐⇒ ϕ1 ∈H or Fxϕ1 ∈H ′,

• (generalized) Büchi acceptance AccB and parametric acceptance AccP :

– AccB = {Fϕ′ ∶ ϕ′ ∈ cl(ϕ) ∧ (ϕ′ = ϕ1 Uϕ2 ∨ ϕ′ = ϕ1Rϕ2)} where

∗ Fϕ′ = {H ∶ ϕ′ ∈H ⇒ ϕ2 ∈H} if ϕ′ = ϕ1 Uϕ2, and

∗ Fϕ′ = {H ∶ ϕ2 ∈H ⇒ ϕ′ ∈H} if ϕ′ = ϕ1Rϕ2,

– AccP = {Fxi ∶ Fxi ϕi ∈ cl(ϕ)} with Fxi = {H ∣Fxi ϕi ∈ H ⇒ ϕi ∈
H}.

A run ρ ∈ Qω of Gϕ is accepting under valuation v if it visits each set in

AccB infinitely often and each Fxi ∈ AccP in every infix of length v(xi).
L(Gϕ) contains all pairs (w,v) such that there is an accepting run of w

under the valuation v . Gϕ is unambiguous if q
aÐ→ q′ and q

aÐ→ q′′ implies

L(q′) ∩ L(q′′) = ∅, where L(q) is the language starting from the state q.

Proposition 3.3.12 ([99]). For ϕ ∈ pLTLF, the automaton Gϕ is unam-

biguous and L(Gϕ) = L(ϕ).

The automaton Gϕ can be constructed in O(2∣ϕ∣). Apart from the para-

metric acceptance condition, Gϕ behaves as a generalized Büchi automa-

ton (GNBA) if we consider only the accepting set AccB. Let AccB be

56 CHAPTER 3. PLTL

{F1, . . . , Fk}. In order to obtain a non-deterministic automaton, we first

apply a similar transformation as for GNBA to NBA [5]. We convert Gϕ to

Uϕ = (Q′,2AP,Q′
0, δ

′,Acc′B,Acc
′
P) where Q′ = Q × {1, . . . , k}, Q′

0 = Q0 × {1}.

If (q, a, q′) ∈ δ, then ((q, i), a, (q′, i′)) ∈ δ′ with i=i′ if q /∈ Fi else i′ = (i
mod k)+1. AccB = F1 × {1} and Acc′P = {F ′

xi ∶ Fxi ∈ AccP }, where

F ′
xi = Fxi × {1, . . . , k}. Note that the construction preserves unambiguity

and the size of Uϕ is in O(∣ϕ∣⋅2∣ϕ∣).
For a given valuation v , Uϕ can be converted into an NBA Bϕ(v). This

is done as follows. Let Uϕ = (Q′,2AP ,Q′
0, δ

′,Acc′B,Acc
′
P) and v a valuation

of ϕ with d parameters. Then Bϕ(v) = (Q′′,2AP ,Q′′
0 , δ

′′,Acc) with:

• Q′′ ⊆ Q′ × {0,⋯,v(x1)} ×⋯ × {0,⋯,v(xd)},

• ((q,n), a, (q′,n′)) ∈ δ′′ if (q, a, q′) ∈ δ′ and for all xi:

– if q′ ∈ F ′
xi and n(xi) < v(xi) then n′(xi) = 0,

– if q′ ∉ F ′
xi and n(xi) < v(xi) then n′(xi) = n(xi) + 1.

• Q′′
0 = Q′

0 × 0d and Acc = Acc′B × {0,⋯,v(x1)} ×⋯ × {0,⋯,v(xd)}.

It follows that Bϕ(v) is unambiguous for any valuation v . Furthermore,

every run of Bϕ(v) is either finite or satisfies the parametric acceptance

condition for valuation v . Thus we have:

Proposition 3.3.13. An infinite word w ∈ L(Bϕ(v)) if and only if (w,v) ∈
L(ϕ).

The size of Bϕ(v) is inO(cv ⋅∣ϕ∣⋅2∣ϕ∣) where cv = ∏xi (v(xi)+1). As a next

step, we exploit the fact thatBϕ(v) is unambiguous, and apply the technique

by Couvreur et al. [32] for verifying MC M against Bϕ(v). Let M ⊗Bϕ(v)
be the synchronous product of M and Bϕ(v) [5], Π1 the projection to M and

Π2 the projection to Bϕ(v). Let L(s, q) = {π ∈ Paths(s) ∶ trace(π) ∈ L(q)}
and Pr(s, q) = Pr(L(s, q)). Let Pr(M ⊗ Bϕ(v)) = ∑q0∈Q0

Pr(s0, q0). As

Bϕ(v) is unambiguous, we have for any (s, q):

Pr(s, q) = ∑
(t,q′)∈δ(s,q)

P(s, t) ⋅Pr(t, q′),

where δ is the transition relation of M ⊗Bϕ(v) and P(s, t) is the one-step

transition probability from s to t in MC M . A (maximal) strongly connected

component (SCC, for short) C ⊆ S is complete if for any s ∈ Π1(C) :

Paths(s) = ⋃
(s,q)∈C

LC(s, q)

3.3. PARAMETER SYNTHESIS FOR MARKOV CHAINS 57

where LC(s, q) restricts runs to C (runs only visits states from C). The

SCC C is accepting if Acc ∩ Π2(C) ≠ ∅ (where Acc is the set of accepting

states in Bϕ(v)).

Proposition 3.3.14 ([32]). Let C be a complete and accepting SCC in

M ⊗Bϕ(v). Then for all s ∈ Π1(C):

Pr(⋃
(s,q)∈C

LC(s, q)) = 1.

Moreover, since Bϕ(v) is unambiguous, Pr(M ⊗ Bϕ(v)) > 0 implies there

exists a reachable, complete and accepting SCC.

Finding complete and accepting SCC in M ⊗Bϕ(v) is done by standard

graph analysis. Altogether, v ∈ V>0(ϕ) is decided in O(m⋅cv ⋅∣ϕ∣⋅2∣ϕ∣). The

space complexity is polynomial in the size of the input (including the val-

uation), as M ⊗Bϕ(v) can be stored in O(logm + ∣ϕ∣ + log cv) bits. In the

sequel, we exploit these results to obtain a necessary and sufficient criterion

for the emptiness of V>0(ϕ) for ϕ in pLTLF.

Theorem 3.3.15. For ϕ ∈ pLTLF, V>0(ϕ) ≠ ∅ iff v̄ ∈ V>0(ϕ) s.t. v̄(x) =
m⋅∣ϕ∣⋅2∣ϕ∣.

Proof. Consider the direction from left to right. The only non-trivial case is

when there exists a valuation v /⩽ v̄ such that v ∈ V>0(ϕ) implies v̄ ∈ V>0(ϕ).
In the model checking algorithm described above, we first construct Gϕ, and

then Uϕ with a single Büchi accepting set Acc′B and d parametric accepting

sets F ′
xi , one for each variable xi in ϕ. For the sake of clarity, assume d = 1,

i.e., we consider valuation v. The explanation extends to the general case

in a straightforward manner. For valuation v, consider M ⊗ Bϕ(v). We

show that, for r < v, Pr(M ⊗Bϕ(v)) > 0 implies Pr(M ⊗Bϕ(r)) > 0, where

r =m⋅∣Uϕ∣, which is in O(m⋅∣ϕ∣⋅2∣ϕ∣).
Note that every cycle in M ⊗ Bϕ(r) contains a state (s, q, i) with i =

0. Moreover, the graph of M ⊗ Bϕ(r) is a sub-graph of M ⊗ Bϕ(v). We

now prove that, if a (maximal) SCC C of M ⊗ Bϕ(r) is not complete (or

accepting) then any SCC C ′ of M⊗Bϕ(v) containing C is also not complete

(or accepting, respectively).

(a) Suppose C is not complete. Then there exists a finite path σ =
s s1 . . . sk of M , such that from any q, with (s, q,0) ∈ C, the run ρ =
(s, q,0)(s1, q1,1) . . . (sj , qj , j) leads to a deadlock state. This can have two

causes: either (sj , qj , j) has no successor for any j. Then, C ′ is not com-

plete. Or, the path ρ terminates in (sj , qj , j) where j = r. This means,

for all (s′, q′, j+1) ∈ δ(sj , qj , j) in C ′, q′ /∈ Fx. As the length of ρ exceeds

58 CHAPTER 3. PLTL

r, there are states in the run whose first and second component appear

multiple times. Thus, we can find another path σ′ (possibly longer than

σ) for C ′ which goes through states where the first and the second com-

ponent of some of its states are repeated sufficiently many times to have a

run (s, q,0)(s1, q1,1) . . . (sj , qj , v) which is a deadlock state. Thus, C ′ is not

complete.

(b) Suppose C ′ is accepting. Then there exists (s′, q′, i′) with q′ ∈ Acc.
Since C ′ is an SCC and C ⊆ C ′, there is a path from (s, q,0) ∈ C to (s′, q′, i′).
If the length of the path is less than r, then we are done. If i′ > r, then

some (s′′, q′′) pair in the path must be repeated. Thus, we can find another

path of length less than r to a state (s′, q′, i), where i ⩽ r. Therefore, C is

accepting. The rest of the proof follows from Proposition 3.3.14.

For almost sure properties, a similar approach as for V>0(ϕ) suffices.

Theorem 3.3.16. For ϕ ∈ pLTLF, V=1(ϕ) ≠ ∅ iff v̄ ∈ V=1(ϕ̄) with v̄(x) =
m⋅∣ϕ∣⋅2∣ϕ∣.

Let NϕM =m⋅∣ϕ∣⋅2∣ϕ∣. Note that cv̄ equals (NϕM)d. Thus, we have:

Proposition 3.3.17. For ϕ ∈ pLTLF, deciding if V>0(ϕ) = ∅ is PSPACE-

complete.

Proof. Theorem 3.3.15 gives an algorithm in PSPACE, as M⊗Bϕ(v̄) can be

stored in O(logm+∣ϕ∣+d logNϕM) bits. PSPACE hardness follows trivially,

as for LTL formula ϕ and MC M , deciding Pr(M ⊧ ϕ) > 0 (which is known

to be a PSPACE complete problem) is the same as checking the emptiness

of V>0(ϕ).

Just as for pLTL(F,X), we can use the bisection method to find minV>0(ϕ).
The search procedure invokes the model checking algorithm multiple times.

We can reuse the space each time we check Pr(M ⊧ v(ϕ)) > 0. Hence,

minV>0(ϕ) can be found in polynomial space. The time complexity of find-

ing minV>0(ϕ) is O(m⋅(NϕM)d⋅2∣ϕ∣⋅ logNϕM). Membership can also be sim-

ilarly solved.

Proposition 3.3.18. For pLTLF-formula ϕ, v ∈ V>0(ϕ)? takes O(d⋅ log
NϕM
d)

time, provided a representation of V>0(ϕ) is given.

3.3.5 Parametric (0/1)-counter automata

We have seen that pLTLF formula can be converted to an equivalent Büchi

automata with parametrized acceptance condition. We can implement the

parametrized repeated reachability by parametric 0/1-counter automata with

3.4. RELATED WORK AND CONCLUSION 59

Büchi acceptance condition. 0/1-counters automata are counter automata

were the counter can either increase or reset to zero (similar to clocks of

timed automata). A counter is said to be parametric if it is compared with

a parameter. Parametric 0/1-counter automata has one or more parametric

counters. The principal problem for parametric 0/1-counter is the language

emptiness. They were first studied by Alur et al. [3], where the class of 0/1

counter automata with one parametric counter was shown to be decidable.

It was also shown that large classes of parametric automata have undecid-

able emptiness problem. Recently, in [14] the class of 0/1-counter automata

with two parametric counter was shown to be decidable as well.

The language emptiness of parametric (0/1) counter automata is anal-

ogous to the language emptiness of parametric LTL. We can improve the

undecidability result of [3], where the reachability problem for automata

with three (0/1) parametric counters was shown to be undecidable, using

the proof technique used in showing undecidability of language emptiness

of pLTL. Closer scrutiny of the demonstration given by [3] reveals that the

number of parameters (six in total) plays a crucial part in the encoding to

the halting problem of a two counter machine. We show that the reachability

problem is still undecidable with three (0/1) counters and one parameter.

We also show undecidability for two (0/1) parametric counters which can

only be compared with a non-parametric (0/1) counter using a single pa-

rameter. The details can be found in the appendix A.

3.4 Related work and conclusion

The verification of parametric probabilistic models in which certain transi-

tion probabilities are given as parameters (or functions thereof) has recently

received considerable attention. Most of these works are focused on param-

eter synthesis: for which parameter instances does a given (LTL or PCTL)

formula hold? To mention a few, Han et al. [49] considered this problem

for timed reachability in continuous-time MCs, Hahn et al. [47] and Pugelli

et al. [86] for Markov decision processes (MDPs), and Benedikt et al. [7]

for ω-regular properties of interval MCs. Hahn et al. [48] and Dehnert et

al. [35] provide an algorithm for computing the rational function expressing

the probability of reaching a given set of states in a parametric (reward)

MDPs and Markov chains based on exploiting regular expressions as ini-

tially proposed by Daws [33]. Other related work includes the synthesis of

loop invariants for parametric probabilistic programs [62]. To the best of

our knowledge, verifying parametric properties on MCs has not been consid-

ered so far. The closest related works are on parametrized computation tree

60 CHAPTER 3. PLTL

logic by Emerson et al. [40] and the computation of quantiles by Ummels

and Baier [93].

3.4.1 Summary

In this chapter we considered the verification of finite MCs against para-

metric LTL. The main problem of this chapter was, given a pLTL formula

f and a finite Markov chain M , how to synthesize parameter values V>0(f)
for which the resultant LTL formula has non-zero probabilities. We saw

that deciding the emptiness of the set of parameter values V>0(f) for any

arbitrary pLTL formula is undecidable. Thus, we looked at various frag-

ments of pLTL for which the emptiness problem is decidable. We obtained

several results on the necessary and sufficient conditions for emptiness of

V>0(f), as well as studied the complexity of the emptiness problem for var-

ious fragments. The necessary and sufficient conditions are in the form of

specific parameter values that V>0(f) contains if and only if V>0(f) is non-

empty. We used these results to define algorithms for synthesizing the set

V>0(f), which basically searches the maximal set of non-dominating param-

eter values. Future work consists of devising more efficient algorithms for

the quantitative verification problems, and lifting the results to extended

temporal logics [96] and stochastic games, possibly exploiting the results of

optimal bounds on parametric LTL games [99].

Chapter 4

PCTL and Interval Markov

Chains

In this chapter we recall model checking of PCTL formulas on uncertain

stochastic models whose probability distributions are not exactly know.

These uncertain models are commonly referred as convex Markov chains,

where the transition probabilities are known to lie within a convex set. Most

often these sets are represented by intervals. We will study the technical

problem that arises with open intervals. The main focus of this chapter is

on model checking of uncertain models, some of whose transition probability

intervals are not closed intervals, against PCTL formulas.

4.1 Introduction

Formal verification is the exhaustive validation of the functionalities of a sys-

tem. Once a model (a representation of the system) has been fixed, the next

step is to check whether a property is satisfied by every possible behaviour of

the model. Hence, model-checking is the heart of formal verification. The be-

haviour of many (physical) systems are not completely deterministic rather

they exhibit uncertainties, i.e. they have stochastic characteristics. There

are many well studied mathematical models that can be used to model such

systems. For example, discrete time Markov chain (MCs), they has emerged

as an useful stochastic model for analyzing the reliability and performance

for system with stochastic behaviour.

But the next immediate question is, what are the values of the probability

distributions? Most often than not, the precise definition of these values

may not be always available [60, 89, 97]. This is precisely the case when

transition probabilities are obtained by statistical methods. It is ironic since

we not only know that the system behaves uncertainly, but also that we are

61

62 CHAPTER 4. PCTL AND INTERVAL MARKOV CHAINS

uncertain even about the degree of uncertainty in its behaviour.

This leads us to Interval Markov chains (IMCs) [60, 100] where the value

of the transition probabilities are not stated precisely. IMCs generalize dis-

crete time Markov chains by allowing intervals of possible probabilities on

the state transitions in order to capture the system uncertainty more faith-

fully. For example, instead of specifying that the probability of moving from

state s to t is 0.5, one can specify an interval [0.3,0.7] which captures the

uncertainty in the probability of moving from state s to t. There are many

cases where it is beneficial to be able to specify an interval [97]. In some

cases, the transition probabilities may depend on an unknown environment,

and are approximately known, in other cases the interval may be introduced

to make the model more robust.

There are two prevalent semantics of interval Markov chains. Uncertain

Markov Chains (UMC) [60, 89] semantics interprets an interval Markov

chain as a set of (possibly uncountably many) discrete time Markov chains

where each element of the set is a DTMC whose transition probabilities lie

within the interval range defined by the IMC. In Interval Markov Decision

Processes semantics (IMDP) [89], the uncertainty of the transition probabil-

ities are resolved non-deterministically. It requires the notion of scheduler,

which chooses a distribution from a (possibly uncountable) set of distribu-

tions defined by the intervals on the transitions, each time a state is visited

in an execution.

The problem of model-checking PCTL properties for IMCs was stud-

ied in [89]; it provides PSPACE algorithms for both UMC and IMDP se-

mantics for interval Markov chains. Furthermore, NP and co-NP hardness

was shown for model-checking in UMC semantics and PTIME hardness for

IMDP semantics which follows from PTIME hardness of model-checking

PCTL formulas on DTMCs. [26] improved the upper bound and showed

that model-checking problem for IMDP semantics is in co-NP. This result

is shown for a richer class of logic, called ω-PCTL, which allow Büchi and

co-Büchi properties in the formula. These results rely on the construction

of an MDP which encodes all the behaviours of the IMDP under analysis.

For each state in the new MDP, the set of possible distribution is mapped to

the Basic Feasible Solutions (BFS) of the set of inequalities specifying the

transition probabilities of the IMDP. Since, in the worst case, the number

of BFS is exponential in the number of states in the IMDP, the equivalent

MDP can have size exponential in the size of the IMDP. Recently, in [86] a

polynomial time algorithm for PCTL verification was presented. The cen-

tral idea was to represent the reachability problem in IMDP as a linear

programming problem.

4.2. INTERVAL MARKOV CHAINS 63

In the literature, the intervals of IMCs are always assumed to be closed.

This assumption is sensible from the model-checking perspective, since a

model with open interval may not have an optimal value of satisfying a

temporal property (in IMDP semantics). The focus of this chapter is to

study IMDP semantics of IMCs with open intervals. We will later contrast

the result with the UMC semantics, and see that the outcome may differ

from IMDP semantics. The main intuition is that the (optimal) value of the

reachability probability in a IMC with open intervals can be made arbitrarily

close to the (optimal) value of the property obtained by closing the intervals.

4.2 Interval Markov chains

Definition 4.2.1. Let I be the set of intervals (open or closed) in the range

[0,1]. The subsets I0 ≜ {(a, b] ∣ 0 ≤ a < b ≤ 1}, I1 ≜ {(a, b) ∣ 0 ≤ a < b ≤ 1},

I2 ≜ {[a, b) ∣ 0 ≤ a < b ≤ 1} and I3 ≜ {[a, b] ∣ 0 ≤ a ≤ b ≤ 1}. I = ⋃i∈{0,1,2,3} Ii.
Let I ≜ ⟨a, b⟩ be an interval in I, where ⟨∈ {(, [} and ⟩ ∈ {),]}. The lower

bound I↓ = a 1 and upper bound is I↑ = b. Point intervals ([a, a]) are closed

intervals where the upper and lower bounds are equal. The closure of an

interval I, denoted by Ī, is the smallest closed interval that includes I.

Definition 4.2.2. An Interval Markov chain (IMC) is a tupleM≜ (S,L, δ),
where S is a (finite) set of states and L is a labeling function L ∶ S → 2AP ,

where AP is the set of atomic propositions. δ is a function δ ∶ S → D, where

D is the set of functions from the set of states to the set of intervals I, i.e.,

D = S → I.

We will use the un-Curry notation δ(s, t) for δ(s)(t). For a state s, the

probability of a single step from s to t lies in the interval δ(s, t). Thus an

IMC defines a collection of Markov chains, where the single step transition

probability of moving from state s to t lies in the interval δ(s, t). Not every

IMC defines a collection of Markov chains. Thus, we have the notion of

realizability.

Definition 4.2.3. LetM= (S,L, δ) be an IMC with states S = {s1,⋯, sm}.

Let DM be the set of m × 1 vectors d⃗, such that d⃗T ⋅1⃗ = 1, which represents

the set of distributions on states ofM. WhereM is fixed we denote the set

as D.

M is said to be realizable if for each set of intervals defined by δ(s),
there exists a distribution d⃗ such that for all i ∈ [1,m] d⃗i (the ith component

1Recall, for a sequence σ, σ↓ denotes the last element of the sequence if σ is finite. The

meaning of ↓ should be clear from the contex.

64 CHAPTER 4. PCTL AND INTERVAL MARKOV CHAINS

of d⃗) is in δ(s, si). The distribution d⃗ is said to be a solution of δ(s). Let

sol(s) be the set of solutions of δ(s).

Next we give two semantics of IMCs: 1) Uncertain Markov Chains

(UMC), 2) Interval Markov Decision Process (IMDP).

Definition 4.2.4. (Uncertain Markov chain semantics) An IMCM=
(S,L, δ) represents a set of DTMCs, denoted by [M]u, such that for each

DTMC M = (S,L, δM) in [M]u, δM(s) is a solution of δ(s) for every state

s ∈ S.

In UMC semantics, we assume that nature non-deterministically picks a

solution of δ(s) for each state s ∈ S, and then all transitions behave according

to the chosen transition probability matrix.

To define interval Markov decision process semantics, we need the notion

of schedulers. The schedulers resolve the non-determinism at each state s

by choosing a particular distribution from sol(s).

Definition 4.2.5. A scheduler of an IMC M = (S,L, δ) is a function η ∶
S+ → DM, such that for every finite sequence of states π⋅s of M, η(π⋅s) is

a solution of δ(s).

A path w = s0s1s2⋯ of an IMC M is an infinite sequence of states. A

path w starting from a state s (i.e., w0 = s) is said to be according to the

scheduler η if for all i ≥ 0, η(w0,⋯,wi)(wi+1) > 0. A scheduler is memoryless

if the choice of the distribution depends solely on the current state, that is,

η ∶ S →DM.

Definition 4.2.6. (Interval Markov decision process semantics) In

IMDP semantics, before every transition from a state s of a IMC M =
(S,L, δ), nature chooses a solution of δ(s) and then takes a one-step prob-

abilistic transition according to the chosen distribution. In other words,

nature chooses a scheduler η which then defines a DTMC M . The set of all

DTMC in this semantics is denoted by [M]d.

Obviously, for any IMC M we have:

[M]u ⊆ [M]d.

Given an IMC M and a state s, let σ-algebra (Ωs,F) be the smallest σ-

algebra on the cylinder sets of Ωs, where Ωs is the set of infinite paths

starting from s. For each scheduler η we have a probability measure Prη

(also denoted by µη
M

) on the events in F .

4.2. INTERVAL MARKOV CHAINS 65

Next, we define the satisfaction relation of a PCTL formula f for an

IMC M for the two semantics. In UMC semantics,

M, s ⊧u f iff for every DTMCM ∈ [M]u,M, s ⊧ f

Note that for a PCTL formula f , M, s ⊧u f does not imply M, s /⊧u ∼f . In

IMDP semantics, the satisfaction of a PCTL formula f by a state s of M
(M, s ⊧d f) is as follows:

M,s ⊧ a iff a ∈ L(s)
M,s ⊧ ∼f iff M,s /⊧ f
M, s ⊧ f1 ∧ f2 iff M,s ⊧ f1 and M,s ⊧ f2

M, s ⊧ [g]&p iff ∀η ∶ Prη
M

{s ⊧ g} & p

(4.1)

Particularly,

M,s ⊧ [g]≤c iff supη Pr
η{s ⊧ g} ≤ c

M, s ⊧ [g]<c iff supη Pr
η{s ⊧ g} < c

M, s ⊧ [g]≥c iff infη Pr
η{s ⊧ g} ≥ c

M, s ⊧ [g]>c iff infη Pr
η{s ⊧ g} > c

where, (s ⊧ g) = {w ∣ w0 = s and M,w ⊧ g}. Thus for an event E ∈ F ,

defining a set of paths, we are interested in the values:

inf
η
Prη
M

(E) and sup
η
Prη
M

(E)

Open intervals present a problem for model checking in IMDP semantics.

There might not exist a scheduler that gives the optimal values. Consider

the reachability problem for IMCs in the following example:

Example 4.2.1. It is possible that an optimal scheduler may not exist for

IMCs with open intervals. Consider the following example Figure 4.2.1, E is

the set of paths that eventually reach the state s1 from s0. infη Pr
η(E) = 0.6,

but no scheduler gives the probability of reaching s1 from s0 as 0.6. The

reason for this is the open lower bound of (0.3,1].

4.2.1 ε-Approximate Scheduler for Reachability

In this section we consider the reachability problem in IMDP semantics for

IMCs with open intervals. As observed in the previous example, an optimal

scheduler may not exists, thus we will construct ε-approximate schedulers.

An IMC is called a closed IMC if the probability interval of every transi-

tion is closed. We can obtain a closed IMC from an arbitrary IMC by taking

the closure of the probability intervals.

66 CHAPTER 4. PCTL AND INTERVAL MARKOV CHAINS

s0s1 s2

[0.5,1]

(0.3,1] (0.1,4]

[1,1][1,1]

Figure 4.2.1: A interval Markov chain

s0s1 s2

[0.5,1]

[0.3,1] [0.1,4]

[1,1][1,1]

Figure 4.2.2: A closed interval Markov

chain

Definition 4.2.7. Given an IMDP M ≜ (S,L, δ), a closed IMDP M̄ is

defined as (S,L, δ′), where for every s, t, δ′(s, t) = δ̄(s, t).

Example 4.2.2. The closed IMC M̄ for M in the example 4.2.1 is shown

below:

Evidently, if an IMC M is realizable then M̄ is also realizable.

Definition 4.2.8. Basic feasible solution (BFS). Given a set of closed in-

tervals R ≜ {I1,⋯, Im} a basic feasible solution d⃗ is an m × 1 vector, such

that there exists a set H ⊆ R with ∣H ∣ ≥ ∣R∣ − 1 and for all Ii ∈H, d⃗i = Ii↓ or

d⃗i = Ii↑, and d⃗T ⋅1⃗ = 1.

BFSs of a set of intervals J that contains open intervals are the BFSs of the

set of closed intervals J̄ . We have the following observation.

Proposition 4.2.1. Every solution of a set of (open or closed) intervals,

can be represented as the convex combination of the BFSs.

Proposition 4.2.2 ([26]). LetM be a closed IMC, and E be an event defin-

ing the reachability of some set of states T ⊆ S. There exists a memoryless

scheduler η such that the probability of the event E is optimal.

The proposition says that, ifM is closed then we have a scheduler η ∶ S →
DM such that Prη(E) = infη′ Pr

η′(E) (or supη′ Pr
η′(E)), and η chooses at

each state s one of the BFSs of δ(s) (pure scheduler). The proposition

follows directly from the existence of an optimal scheduler for reachability

in Markov Decision Processes [9].

The main theorem of this chapter is as follows:

Theorem 4.2.3. Let E be the event describing the set of paths of an IMC

M starting from a state s and eventually reaching some goal states T . Then:

∀ε > 0 ∃η̂ ∶ ∣min
η
Prη
M̄

(E) − Prη̂
M

(E)∣ ≤ ε

and

∀ε > 0 ∃η̂ ∶ ∣max
η
Prη
M̄

(E) − Prη̂
M

(E)∣ ≤ ε

4.2. INTERVAL MARKOV CHAINS 67

Proof. LetM≜ (S,L, δ) and M̄ ≜ (S,L, δ′). M̄ is closed, thus by Prop. 4.2.2

an optimal scheduler exists. Let
∗
η be an optimal scheduler that minimizes

Prη
M̄

(E). Furthermore,
∗
η is memoryless, deterministic and chooses one of

the BFS of δ′(s) at each state s. Hence,
∗
η induces a DTMC on M̄, and

∗
η(s, t) defines the single step transition probability from a state s to a state

t.

Let the stochastic matrix
∗

P be such that each row is identified with a

state of M̄. We have :

∗

P (s, t) = ∗
η(s, t) if s /∈ T and

∗

P (s, s) = 1 if s ∈ T (4.2)

Let A = (1 +
∗

P + (
∗

P)2 + (
∗

P)3⋯), A is well-defined stochastic matrix as the

series converges. Let γ = ∥A∥∞.

Now we are in a position to define a scheduler η̂ for the IMC M. The

scheduler η̂ is a function, η̂ ∶ S × N → DM. We assume that there are no

positive point intervals. (We can set the value of η̂ if point intervals are

present.) Define the following:

Qs = {t ∣ ∗η(s, t) > 0,
∗
η(s, t) /∈ δ(s)}

Ls = {t ∣ ∗η(s, t) ∈ δ(s, t), ∗
η(s, t) = δ(s, t)↓}

Rs = {t ∣ ∗η(s, t) ∈ δ(s, t), ∗
η(s, t) = δ(s, t)↑}

Is = {t ∣ ∗η(s, t) ∈ δ(s, t), ∗
η(s, t) ≠ δ(s, t)↑, ∗

η(s, t) ≠ δ(s, t)↓}
ρ = min{{x ∣ ∃s,∃t ∈ Ls ∪ Is ∶ x =

∗
η(s, t) − δ(s, t)↓},

{x ∣ ∃s,∃t ∈ Rs ∪ Is ∶ x = δ(s, t)↑ −
∗
η(s, t)},

{x ∣ ∃s,∃t ∈ Qs ∶ x = δ(s, t)↑ = δ(s, t)↓}}

Observe that ρ is a constant of the model M. Let η̂ be defined as follows:

• Let t ∈ Qs. This implies
∗
η(s, t) = δ(s, t)↑ or

∗
η(s, t) = δ(s, t)↓. If

∗
η(s, t) =

δ(s, t)↑ then δ(s, t) is open from above and η̂(s, n, t) = ∗
η(s, t)−2−n κρ

∣Qs∣
,

where κ = ε
1+γ . Similarly, if

∗
η(s, t) = δ(s, t)↓ then δ(s, t) is open from

below and η̂(s, n, t) = ∗
η(s, t)+2−n κρ

∣Qs∣
.

• Let t ∈ Rs and α ≜ ∑
t∈Qs

η̂(s, n, t)− ∗
η(s, t). If α < 0 then for all t ∈ Rs∪Is,

η̂(s, n, t) = ∗
η(s, t) + α

∣Rs∪Is∣
and for t ∈ Ls, η̂(s, n, t) =

∗
η(s, t). If α > 0

then for all t ∈ Ls ∪ Is, η̂(s, n, t) = ∗
η(s, t) + α

∣Ls∪Is∣
and for t ∈ Rs,

η̂(s, n, t) = ∗
η(s, t). If α = 0 then for all t ∈ Ls∪Is∪Rs, η̂(s, n, t) =

∗
η(s, t).

It remains to prove that d⃗ = ∗
η(s, n), defined above, is a solution to δ(s).

From the construction it follows that ∑t∈S d⃗t = 1 and hence it is a valid

68 CHAPTER 4. PCTL AND INTERVAL MARKOV CHAINS

distribution on the states of the IMC M. Consider the following cases:

t ∈ Qs and
∗
η(s, t) = δ(s, t)↑, the upper bound of δ(s, t) is open. The lower

bound of δ(s, t) is strictly smaller than 2−nκρ for any n ∈ N i.e., δ(s, t)↓ < κρ
since ρ is at the most as large as the smallest interval inM. Thus d⃗t ∈ δ(s, t).
Similarly, for every t ∈ Qs, d⃗t ∈ δ(s, t). Suppose α < 0, then Rs ∪ Is is not

empty, else δ(s) will not be realizable. The changes to the probability for a

transition s to t, where t ∈ Rs ∪ Is is small enough so that d⃗t ∈ δ(s, t). Thus,

for every t, d⃗t ∈ δ(s, t), or equivalently d⃗ is a solution to δ(s, t). Identical

argument holds when α > 0.

Let P̂n be a sub-stochastic matrix defined as follows: P̂n(s, t) = η̂(s, t) if
∗

P (s, t) > 0 else P̂n(s, t) = 0. In other words, P̂n(s, t) > 0 if the state t is in

support(∗η(s)).
P̂n =

∗

P + Pn (4.3)

where ∣Pn(s, t)∣ ≤ 2−nκρ for every (s, t).
Let

∗
η and η̂ induce DTMCs M ′ and M on the IMCs M̄ and M, re-

spectively. Let the corresponding σ-algebra be S ≜ (Ωs,F ,
∗
µ) and S ′ ≜

(Ωs,F , µ̂), where s is some state of M and Ωs is the set of paths start-

ing from state s. Define
∗

R ≜ {w ∈ Ωs ∣ w is according to
∗
η} and R̂ ≜ {w ∈

Ωs ∣ w is according to η̂}, i.e.,
∗

R and R are set of paths in M ′ and M , respec-

tively. Let B ∈ F be the event of reaching the goal states T , and E =
∗

R ∩B
and E′ = R̂ ∩ B. It follows from the construction that E ⊆ E′. Define

Ai ≜ {w ∣ ∃u ∈ E ∶ w0⋯wi = u0⋯ui and
∗
η(wi,wi+1) = 0, η̂(wi, i,wi+1) > 0}.

Let A = ⋃iAi. It is easy to see that, E′ ∩ Ā = E. We will first show that the

event A has a very small probability measure in S ′:

µ̂(A) = Prη̂M(A) = ∑
i=0

Prη̂M(Ai)

If w ∈ Ai then δ(wi,wi+1)↑ > 0 and
∗
η(s, t) = 0. Thus,

Prη̂M(Ai) ≤ 2−iκρ or Prη̂M(A) ≤ κρ

Thus,

µ̂(A) ≤ κρ (4.4)

We will now show that the probability of E′ can be made infinitesimally

close to the probability of E. Formally, we will show, ∣µ̂(E′) − µ̄(E)∣ ≤ ε.
The left hand side can be written as:

∣µ̂(E′) − µ̄(E)∣ = ∣µ̂(E′ ∩A) + µ̂(E′ ∪ Ā) − µ̄(E)∣
≤ ∣µ̂(E) − µ̄(E)∣ + κρ

(4.5)

4.2. INTERVAL MARKOV CHAINS 69

That is, we restrict to the paths that belong to E. Let xns denote the

probability of reaching the goal states T at the nth step in M ′ from the

state s. Let En be the event of reaching the goal states T at the nth step in

the Markov chain M such that En ⊆ E and thus ⋃nEn = E. Let yns = µ̂(En).
Thus, we can write the following:

xn+1
s = ∑

t∈support(
∗
η(s))

∗

P (s, t)xnt ,

yn+1
s = ∑

t∈support(
∗
η(s))

P̂n(s, t)ynt .

Or, using vector notation, x⃗n+1 =
∗

Px⃗n and y⃗n+1 = P̂ny⃗n. Therefore:

y⃗n+1 − x⃗n+1 =
∗

P (y⃗n − x⃗n) + Pny⃗n from equation (4.3)

≤
∗

P (y⃗n − x⃗n) + 2−nκρ1⃗

≤ 2−nκρ(1 +
∗

P +
∗

P
2

+⋯)1⃗
Thus, ∥y⃗n+1 − x⃗n+1∥∞ ≤ 2−nκργ.

We have,

∣µ̂(E) − µ̄(E)∣ ≤ ∣∑
n

(yns − xns)∣ ≤ ∑
n

2−nκργ ≤ κργ

Combining this with equation (4.5) we can conclude:

∣µ̂(E′) − µ̄(E)∣ ≤ (1 + γ)κρ ≤ ε

By similar argument we conclude ∀ε > 0 ∃η̂ ∶ ∣maxη Pr
η
M ′(E) − Prη̂M(E)∣ ≤

κ.

Corollary. Let E be the set of paths that reach some goal states T of IMC

M. Then:

min
η
Prη
M̄

(E) = inf
η
Prη
M

(E) and max
η
Prη
M̄

(E) = sup
η
Prη
M

(E).

Proof. We need to show ∀κ > 0 ∃η̂ ∶ ∣minη Pr
η
M ′(E) − Prη̂M(E)∣ ≤ κ. Ob-

serve that, η̂ is also a scheduler of M ′, thus, Prη̂M(E) − minη Pr
η
M ′(E) ≤

κ. Similarly, for all κ > 0 there exists a scheduler η̂ of M such that

maxη Pr
η
M ′(E) − Prη̂M(E) ≤ κ.

Example 4.2.3. In UMC semantics, the nature picks the probability tran-

sition matrix and the model behaves according to it. The infimum (or

supremum) probability of reaching some state is different than the infimum

probability in IMDP semantics. This becomes apparent in the following

IMC with an open interval:

70 CHAPTER 4. PCTL AND INTERVAL MARKOV CHAINS

s0s1 s2s3
[0.5,0.5] [0.3,1](0,0.1]

[0,1]

[1,1][1,1]

The minimum and maximum probability of reaching state s3 from s0 in the

UMC semantics is 0.5. But for any ε > 0 there exists a scheduler for which

the probability of reaching s3 is smaller than ε. That is, the infimum of the

probability of reaching state s3 is 0.

4.2.2 Model checking interval Markov chains with open in-

tervals

In this section we briefly recall PCTL model checking on DTMC and IMCs

with closed intervals (for the two semantics), and then show how to use the

result of previous section to do model checking for IMCs with open intervals.

Model checking of PCTL [31, 5] formula f on DTMC M proceeds much

like the CTL model checking on Kripke structures [29]. The satisfiability

of a (state) sub-formula f ′ of f for a state s of M is iteratively calculated

and the labeling functions are updated accordingly. For example, for the

until formula f = P&p(f1 U f2) and a state s, the formula f is added to

the label of s iff the probability of reaching states with label f2, via states

with label f1 satisfies &p. This can be done in polynomial time by solving

linear constraints. Finally, a state s ⊧ f if f ∈ L(s) and the model checking

problem can be solved in polynomial time.

Model checking in UMC semantics uses the existential theory of the

reals [87]. An IMC M, s ⊧u f in UMC semantics iff for all DTMC M ∈
[M]u, M,s ⊧ f , or equivalently, M, s /⊧u f iff there exists a M ∈ [M]u
such that M,s ⊧ ∼f . Basically, we use parameters to encode the transition

probabilities which are constrained by the intervals and construct a formula

Γ in existential theory of reals such that Γ is satisfiable iff there exists a

M ∈ [M]u such that M,s ⊧ ∼f [26]. Observe, that the presence (or absence)

of open intervals does not affect the algorithm and the algorithm operates

in PSPACE.

Model checking in IMDP semantics is done by first transforming the

IMC into an MDP and then doing model checking on the MDP [9]. Let

M = (S,L, δ) be a closed IMC and for each state s ∈ S, let Bs be the set

of basic feasible solution of δ(s). Let DM = (S,L,µ) be the MDP with

µ ∶ S → S → [0,1], where µ(s) = Bs. From Proposition 4.2.1, we can

deduce that, a DTMC M ∈ [M]d iff M is induced by some scheduler η of

4.2. INTERVAL MARKOV CHAINS 71

DM. Model checking of MDP proceeds the same way as model checking

of DTMC. We iteratively update the labels of the state with (state) sub-

formulas. Conjunctions and disjunctions are handled as in the DTMC model

checking. Interesting cases are formulas with probabilistic operator and

negations. Let g be a path formula and P≻pg (or P≺pg) is added to the label

of a state s ∈ S, iff

min
η
PrηDM(s ⊧ g) ≻ p (or max

η
PrηDM(s ⊧ g) ≺ p)

where ≻∈ {≥,>} (≺∈ {≤,<}). This is done by solving a linear optimization

problem. We use the following proposition to handle formulas with nega-

tions.

Proposition 4.2.4. For any E ∈ F of (Ωs,F) on MDP M ,

inf
η
Prη(E) = 1 − sup

η
Prη(Ē)

Thus, model checking MDPs boils down to solving successive reachability

optimization problems. Note that direct application of this method to IMCs

with open interval is not possible since no scheduler exists which may yields

the value infη Pr
η
DM

(s ⊧ g).
In the rest of the section we use the above mentioned model checking

mechanism to show that model checking IMCs with open interval in IMDP

semantics, reduces to model checking its closure.

Theorem 4.2.5. Given a PCTL formula f and an IMC M,

M, s ⊧ f iff M̄, s ⊧ f

Proof. We assume that M has open intervals. We proceed by induction on

the structure of the formula f . We have the following cases:

1. Let f ∶= a. The labeling function of s in M and M̄ are identical.

Thus, M, s ⊧ f iff M̄, s ⊧ f .

2. Let f ∶= ∼f ′. From the induction hypothesis, M, s /⊧ f ′ iff M̄, s /⊧ f ′.
Thus, M, s ⊧ f iff M̄, s ⊧ f .

3. Let f ∶= f1∧f2. From the induction hypothesis,M, s ⊧ f1 iff M̄, s ⊧ f1

and M, s ⊧ f2 iff M̄, s ⊧ f2. Thus, M, s ⊧ f iff M̄, s ⊧ f .

4. Let f ∶= [Xf ′]&c. Consider the case & ∈ {≥,>}. Suppose
∗
η be the

optimal scheduler of M̄ such that Pr
∗
η

M̄
(Xf ′) = minη Prη

M̄
(Xf ′).

72 CHAPTER 4. PCTL AND INTERVAL MARKOV CHAINS

We show that for every ε we can construct a scheduler η̂ of M such

that

Prη̂
M

(Xf ′) − Pr
∗
η

M̄
(Xf ′) ≤ ε.

Observe that, any scheduler of M is also a scheduler of M̄, since for

any states s, t ∈ S δ(s, t) ⊆ δ̄(s, t). Thus, Corollary 4.2.1. is applicable.

Let Qs ≜ {t ∣ ∗η(s, t) > 0,
∗
η(s, t) /∈ δ(s)} and Rs ≜ {t ∣ ∗η(s, t) > 0,

∗
η(s, t) ∈

δ(s, t)}. We assume that Qs,Rs are not empty and there are no point

intervals. Let η̂(s) = d⃗, where d⃗ is defined as follows:

• Let t ∈ Qs. This implies
∗
η(s, t) = δ(s, t)↑ or

∗
η(s, t) = δ(s, t)↓. If

∗
η(s, t) = δ(s, t)↑ then δ(s, t) is open from above and d⃗t =

∗
η(s, t) −

ερ
∣S∣ , where ρ is the minimum of the length of the non-zero interval

inM and the
∗
η(s, t) for t ∈ Rs. Similarly, if

∗
η(s, t) = δ(s, t)↓ then

δ(s, t) is open from below and d⃗t =
∗
η(s, t)+ ερ

∣S∣ .

• Let t ∈ Rs and α ≜ 1− ∑
t∈Qs

d⃗t− ∑
t∈Rs

∗
η(s, t). We have d⃗t =

∗
η(s, t)+ α

∣Rs∣
.

It follows that d⃗ is a distribution on the states of M and is a so-

lution to δ(s). Let E ≜ {w ∣ ∗
η(w0,w1) > 0 and M̄,w1 ⊧ f ′} and

E′ ≜ {w ∣ η̂(w0,w1) > 0 and M,w1 ⊧ f ′}.

∣
∗
η

Pr
M̄

(E) −
η̂

Pr
M

(E′)∣ ≤ ∑
t∈support(η̂(s))

ερ

∣S∣
≤ ε

Thus we can conclude that infη Prη
M

(Xf ′) = minη Prη
M̄

(Xf ′). By

similar argument:

sup
η
Prη
M

(Xf ′) = max
η
Prη
M̄

(Xf ′).

M, s ⊧ [Xf ′]&c iff M̄, s ⊧ [Xf ′]&c, where & ∈ {≤,<}.

5. Let f ∶= [f1 U f2]&c. Suppose & ∈ {≥,>}. By induction hypothesis,

for every s, M, s ⊧ f1 iff M̄, s ⊧ f1 and M, s ⊧ f2 iff M̄, s ⊧ f2. Let

S1 ≜ {s ∣ s,M ⊧ f1} and T ≜ {s ∣ s,M ⊧ f2}. The IMC M′ is

obtained from M by omitting states not present in the set S1 ∪ T .

It is easy to see that, if E is the event of reaching T in M′, then

infη Prη
M′(E) = infη Prη

M
(f).

From Corollary 4.2.1 it follows that for any 0 < ε ≤ 1 we can find η̂ such

that Prη̂
M′(E)−minη Prη

M̄′(E) ≤ ε, where E is the event of reaching T

inM′. Thus infη Prη
M

(f) = minη Prη
M̄

(f). Similar argument holds for

& ∈ {<,≤}.

4.3. STRATEGY SYNTHESIS FOR MDPS FOR PCTL OBJECTIVES73

s0 s1

{a}

[0.5,1]

(0,1]
[1,1]

Figure 4.2.3: An interval

Markov chain, where the result of

PCTL model checking result for

UMC semantics differ from the

IMDP semantics.

s0 s1

{a}

[0.5,1]

[0,1]
[1,1]

Figure 4.2.4: The corresponding

closed interval Markov chain where

model checking results are identical

for the two semantics.

This concludes the proof.

Example 4.2.4. Consider PCTL model checking of IMCs in UMC seman-

tics. This involves existentially quantifying the transition probabilities and

creating a formula in closed real field [26]. This captures a strict set of

DTMC as compared to IMDP semantics, i.e, [M]u ⊊ [M]d. For example,

DTMC where the transition probability between two states s, t change over

time cannot be represented in UMC semantics. This is exemplified by the

IMC M in Figure 4.2.3.

The probability of satisfying the path formula g = G(∼a ∧ [Xa]>0) in

the UMC semantics is 0. But we can find schedulers which can make the

probability of going to a-state arbitrarily close to 1. The scheduler has

the freedom to defines an infinite Markov chain by assigning monotonically

increasing probabilities for the transition s0 → s0).

The model checking of the open IMC M is done by first closing it (Fig-

ure 4.2.4). This gives us the closed IMC M̄:

The maximum probability of satisfying g in M̄ is 1. Which implies,

for every 0 < ε ≤ 1, there exists a scheduler η̂, for which the probability of

staying in a state that satisfies ∼a ∧ [Xa]>0 (s0) is greater than 1 − ε, by

Theorem 4.2.5.

4.3 Strategy synthesis for MDPs for PCTL objec-

tives

We have seen that an IMC is useful for model with uncertainties. Topologi-

cally, an IMC is a set of Markov chains and the actual system behaviour can

be any one of the many Markov chains in the set. We have also seen that

we can model check an IMC (even in the presence of not closed intervals)

against a PCTL formula. The natural question to ask is: whether every

74 CHAPTER 4. PCTL AND INTERVAL MARKOV CHAINS

Markov chain defined by an IMC is satisfies a given PCTL formula? Or the

complement problem of scheduler synthesis, is to find a scheduler such that

the induced Markov chain satisfies a given PCTL formula.

Let us first consider the UMC semantics. By definition, the satisfaction

relation in UMC semantics decides whether all Markov chains defined by

the UMC semantics satisfies a PCTL formula. Thus, strategy synthesis is

just model checking the negation of the given formula in UMC semantics.

Form [89] we know that the problem is solvable in PSPACE. But strategy

synthesis in IMDP semantics is not so trivial. Let M= (S,L, δ) be an IMC

and D = (S,L,∆) is a Markov decision process where, for each s ∈ S, ∆(s)
if the set of basic feasible solutions of δ(s). We have seen that,M is behav-

iorally identical to D, that is, for any MC M , M ∈ [M]d if and only if there

exists a scheduler η, such that Dη = M . To be precise, [M]u corresponds

to all memoryless randomized (MR) schedulers and [M]d corresponds to

all history dependent randomized schedulers (HR) of D. Thus, scheduler

synthesis in IMC naturally leads to the scheduler synthesis in MDPs.

4.3.1 Scheduler Synthesis problem for MDPs.

The scheduler synthesis problem is defined as follows: Given a MDP D

and PCTL formula f , does there exist a scheduler η such that Dη satisfies

f? The first guess would be: Doesn’t the model checking algorithm of a

PCTL formula on MDPs (as defined in § 4.2) gives us a method to solve the

scheduler synthesis problem? After all, in the semantics (equation 4.1) we

explicitly define that the probability measure of the set of paths satisfying

a path (sub)formula is the optimal (supremum or infimum) over all sched-

ulers. Unfortunately, this is not always the case, and the following example

elucidates this fact. Consider the MDP D (as shown in Figure 4.3.5), and

s1

s2

s3

s4
1
3

1
3

1
3

1

1

1

{a}
1 D

Figure 4.3.5: The state s1 of the MDP D satisfies f = [F [Xa]≥1]≤ 1
2
.

4.4. CONCLUSION 75

a PCTL formula f = [F [Xa]≥1]≤ 1
2
. The s2 satisfies [Xa]≥1, and s3 does not

satisfies [Xa]≥1, since there are schedulers for which the probability measure

of Xa is zero. The state s1 the maximum probability of reaching a state

satisfying [Xa]≥1 (state s2 in this case) is ≥ 1
2 . But observe that there exists

a scheduler η, which induces the MC Dη (shown in Figure 4.3.6) where the

state s1 does not satisfy f . So there exists MDPs D and PCTL formulas f

s1

s2

s3

s4
1
3

1
3

1
3

1

1

{a}
1 Dη

Figure 4.3.6: The MC Dη induced by η on MDP D which does not satisfy

f = [F [Xa]≥1]≤ 1
2
.

where, D,s ⊧ f (according to Equations 4.1), yet there exists scheduler η

such that Dη, s /⊧ f (according to Equation 4.1). The problem is obviously

the presence of non-determinism of the probability distribution at each state.

In the above example only state with non-deterministic choice over the dis-

tribution is s2. It is interesting to note that neither the formulas [Xa]≥1

nor its negation ([X∼a]>0) are satisfied at s2. This causes the problem since,

we are assuming if s2 does not satisfies [Xa]≥1, then s2 satisfies ([X∼a]>0),

which is not the case here.

The example shows that scheduler synthesis problem in MDP for a given

PCTL formula may not be as simple as model checking. It turns out that,

this problem is indeed very hard, Σ1
1-hard in the analytic hierarchy.

Theorem 4.3.1 ([12]). The scheduler synthesis problem in MDPs for PCTL for-

mula is Σ1
1-hard.

4.4 Conclusion

We studied the problem of model checking Interval Markov chains with

open intervals, and seen how to model check them against PCTL formulas.

Interval Markov chains are but special cases of more complex Markovian

models, called constraint Markov chains (CMC) [16]. Transition probabil-

ities in these models are defined as a solution to linear equations. A con-

straint Markov chain is a tuple M= (S,L, δ), where the transition function

76 CHAPTER 4. PCTL AND INTERVAL MARKOV CHAINS

δ ∶ (2FV)S , maps each state to a set of linear in-equations, where FV is the

set of linear in-equations on variables V . Thus IMCs are a strict sub-class

of convex Markov decision process. The behaviour of a CMC can again

be defined in the UMC and IMDP semantics. Model checking CMCs with

non-strict inequalities in the system on linear equations, suffers from the

same kinds of problems as described for open IMCs. Theorem 4.2.5 can be

easily extended to CMCs as well. We can define basic feasible solutions for

a system of linear in-equations as follows. For a state s of a CMC M, the

transition δ(s) forms a convex hull and its BFSs are the vertices of the con-

vex hull. The same argument as in the proof of Theorem 4.2.5 shows that,

model checking of PCTL formulas on CMCs can be done by first closing

the system of in-equations, this is done by replacing the strict inequalities

(<,>) with non-strict inequalities (≤,≥), and then model checking the closed

model.

Our study of interval Markov chain with open interval was motivated by

the investigation into the Hintikka game semantics for PCTL. Hentikka game

semantics for PCTL on labeled Markov chain [42] “gives an operational ac-

count of the denotational semantics of PCTL”. Given a denumerable Markov

chain M , a state s and a PCTL formula f , a 2-player game Gs,f is obtained

with Büchi acceptance property, such that M,s ⊧ f iff Player 0 has a win-

ning strategy. This perspective of defining the meaning of a logical formula

in terms of the existence of a winning strategy of a 2-player game can be

found as early as 1959 in the works of Henkin (where the game semantics

was implicit) and formally presented in 1982 in the seminal work of Jaakko

Hintikka [56] for first order logic.

We can define the semantics of PCTL for MDPs (or an IMC) as follows.

An MDP D satisfies a PCTL formula f iff there exists a scheduler η such

that the induced MC Dη satisfies f . We can easily envisage a similar 2-

player game with Büchi acceptance property for defining the acceptance of

PCTL formula for an MDP. We can immediately show that D satisfies f if

and only if there exists a winning strategy for Player 0, by relying on the

Martin’s determinacy theorem [77]. It is important to note that this point

of view, though intuitive, cannot be used to fashion an decision algorithm,

as the game thus formed may have uncountably many configurations.

Chapter 5

Decidable Fragments of

PCTL

In this chapter, we give a decision procedure for the satisfiability problems

for a bounded fragment of probabilistic CTL (called bounded PCTL). We

provide an NEXPTIME-algorithm for the satisfiability problem and show

that the logic has small model property where the size of a canonical model

is independent from the probability bounds in the formula. We show that

the satisfiability problem of a simple sub-logic of bounded PCTL is PSPACE-

complete. In this chapter we will also discuss some of the reason what makes

the satisfiability problem for PCTL difficult.

5.1 Introduction

The synthesis problem for a specification language (or a logic) is to create a

model from a given sentence. Synthesis of models of a logic can be viewed

as the functional equivalent of the satisfiability decision problem. From a

practical point of view, the model one wants to synthesize from a speci-

fication need to be finite (or at least finitely representable). As we have

discussed in the introduction of this thesis, this is generally not the case

for PCTL. Even qualitative PCTL fail to possess finite model property. In

our attempts to tackle the satisfaction problem, we have found that the

difficulty of providing a decision procedure for probabilistic logics primarily

lies in the presence of recursively defined path formulas with probabilities.

This includes formulas of the form [aU b]⩾ 1
2

expressing that a b-state is to

be reached via a-states with probability at least 1
2 . This chapter therefore

considers probabilistic logics in which syntactic restrictions are imposed on

recursively defined path formulas.

77

78 CHAPTER 5. FRAGMENTS OF PCTL

Bounded PCTL is a PCTLfragment in which until-modalities are bounded

by the number of steps that can be taken; e.g., [aU nb]⩾ 1
2

expresses that a

b-state is to be reached within n steps. Bounded PCTL thus abandons the

unbounded until-modality. We will see that the logic has a finite (tree) model

property where the size of the model is independent from the probability

bounds (like 1
2) in the formula. To study the computational complexity of

bounded PCTL satisfiability, we will first show that the satisfiability problem

of a simpler sub-logic of bounded PCTL that (besides propositional logic)

only contains nested quantified next-modalities is PSPACE-complete. The

main result is an NEXPTIME-algorithm for the entire bounded PCTL sat-

isfiability. This is based on a novel variable elimination method for solving

the satisfiability problem for specific class of formulas in the theory of the

reals. Finally, we show that the satisfiability of bounded PCTL-formula f

is EXPTIME-hard in the encoding of f .

5.2 Bounded PCTL

We consider the sub-logic bounded PCTL which contains the next operator

X and bounded until U n. The syntax of bounded PCTL is as follows:

Definition 5.2.1 (Bounded PCTL).

f ∶∶= a ∣ ∼f ∣ f ∧ f ∣ [g]≻p
g ∶∶= Xf ∣ f U nf.

where a ∈ AP, ≻∈ {>,≥} is the comparison operator, p ∈ [0,1]∩Q is a rational

number and n ∈ N is an integer.

For an MC M , and state s, the pointed satisfaction is defined as:

M,s ⊧ a iff a ∈ L(s)
M,s ⊧ ∼f iff M,s /⊧ f
M, s ⊧ f1 ∧ f2 iff M,s ⊧ f1 and M,s ⊧ f2

M,s ⊧ [g]≻p iff Pr{w ∈ Ωs ∣M,w ⊧ g} ≻ p.
For an infinite path w, the satisfaction relation for the path formulas is

defined as:

M,w ⊧ Xf iff M,w1 ⊧ f
M,w ⊧ f U 0g iff M,w0 ⊧ g
M,w ⊧ f U ng iff M,w0 ⊧ g or (M,w0 ⊧ f and M,w1 ⊧ f U n−1g) if n > 0

Thus, an infinite path w satisfies f U ng iff M,wi ⊧ g for some i ≤ n and for

every j < i, M,wj ⊧ f . Note that, [f U ng]≻p cannot be expressed in PCTL.1

Let Fng denote trueUng and Gng ≡ ∼Fn∼g.

1
[f Ung]≻p can be easily represented in PCTL∗.

5.2. BOUNDED PCTL 79

a,0

b,0 a,1 c,2

c,0

a,1 a,0 b,0

c,1

1
3 2

9

4
9

2
3

1
3

1
2

1
2

Figure 5.2.1: A finite-depth probabilistic computation tree.

Example 5.2.1. The sentence [F3[G10 b]=1]> 1
3

in bounded PCTL expresses

that the probability to reach a state within three steps from which almost

surely b holds for at least the next ten steps exceeds 1
3 .

Next we define the structure of canonical models of bounded PCTL.

These notions are inspired by [76].

Definition 5.2.2. A probabilistic computation tree (PT) is a tuple T =
(W,P,L) where W ≠ ∅, and:

• W ⊆ N+ is an unlabeled tree, i.e., prefix-closed,

• P ∶ W → DW , which is a partial function satisfying P (π)(π′) > 0 iff

π′ = π⋅n ∈W for some n ∈ N. Furthermore, ∑n P (π,π⋅n) = 1.

• L ∶W → 2AP is a node labeling function.

The node π = 0 is called the root, while all nodes π such that P (π) is

undefined are referred to as the leaves. A PT T has a finite depth if there

exists a n ∈ N such that for all π ∈ W , ∣π∣ ≤ n, and T is total if for every

π ∈ W there exists a π′ ≠ π ∈ W , such that π ≺ π′ (π is a proper prefix

of π′). Let T∗ and Tω denote the sets of all finite depth and total trees,

respectively. T∞ = Tω ∪T∗.

Example 5.2.2. Consider a PT T = (W,P,L), shown in Figure 5.2.1. The

set of nodes of the tree W = {0,00,01,02,000,001,010,020,021}, the labeling

function L and probability distribution is defined as shown in the figure.

Topologically a property P ⊆ Tω is a set of total PTs.

Observation 1. A labeled Markov chain M satisfies a property P means that

the PT created from the unrolling of M belongs to P .

80 CHAPTER 5. FRAGMENTS OF PCTL

s

u v

s

u v

v sv

v s v s u s

M M ′
s,3

1
2

1
3

1
2

1
3

1
2

1
3

1
2

Figure 5.2.2: Markov chain M can be unfolded to probabilistic tree M ′
s,3.

For a MC M and a state s, Ms,n is a finite probabilistic tree that is ob-

tained from M by unfolding M starting from s, such that the length of any

path from s to a leaf is of length less than n (Figure 5.2.2). The satisfiabil-

ity of bounded PCTL over finite trees obey the monotonicity property, i.e.,

Ms,n ⊧ f implies Ms,m ⊧ f for every m ⩾ n (can be easily proved by struc-

tural induction). For bounded PCTL-formula f , let ord(f) be recursively

defined as follows:

ord(a) = 1 for a ∈ AP
ord(f1 ∧ f2) = max{ord(f1),ord(f2)}
ord(∼f) = ord(f)
ord([f1 U

nf2]≻p) = n +max{ord(f1),ord(f2)}
ord([Xf]≻p) = 1 + ord(f)

The function ord(f) give us a handle on the depth of the tree models of

bounded PCTL formula f . This is proved by the following proposition.

Proposition 5.2.1. For every bounded PCTL formula f and MC M : M,s ⊧
f implies Ms,n, s ⊧ f with n = ord(f).

Proof. If Ms,n, s ⊧ f with n = ord(f) then obviously M,s ⊧ f . For the

other direction, we proceed by induction on the structure of the sentence f .

Assume M,s ⊧ f , we will see that Ms,n, s ⊧ f .

1. f ∶= a Then, n = ord(f) = 1. By definition, Ms,n consists of a single

node s equipped with a self-loop. If M,s ⊧ f then a ∈ L(s). Hence,

Ms,n, s ⊧ f .

2. f ∶= f1 ∧ f2. Let n = max{ord(f1),ord(f2)}. By induction hypothesis

and monotonicity, it follows Ms,n, s ⊧ f1 and Ms,n, s ⊧ f2. Thus,

Ms,n, s ⊧ f .

5.2. BOUNDED PCTL 81

3. f ∶= ∼g. For f = ∼a the argument is similar to case 1. If M,s ⊧ ∼g then

M,s /⊧ g, which implies Ms,n, s /⊧ g.

4. f ∶= [X g]≻p. Let M,s ⊧ f , S′ = {t ∣ M, t ⊧ g and P (s, t) > 0} and

m = ord(g). By induction hypothesis, Mt,m, t ⊧ g for every t ∈ S′.
By construction, Mt,m is a subtree of Ms,m+1 for every t ∈ S′ and

∑t∈S′ P (s, t) ≻ p. Thus, Ms,m+1, s ⊧ f .

5. f ∶= [gU nh]≻p. Suppose M,s ⊧ f , n1 = ord(g) and n2 = ord(h). If

M,s ⊧ h then 1 ≻ p and the statement follows from the induction

hypothesis. Assume M,s /⊧ h. Consider a path w starting in s with

w ⊧ gU nh. Thus, there exists a 0 < i ≤ n such that M,wi ⊧ h and

for every j < i, M,wj ⊧ g. By induction hypothesis, Mwi,n2 ,wi ⊧ h
and for any predecessor wj Mwj ,n1 ,wj ⊧ g. Or, Mwi−1,m′ ,wi−1 ⊧ g

and Mwi−1,m′ ,wi ⊧ h, where m′ = max{ord(g) + 1,ord(h)}. For m =
m′ + n, Mwi−1,m′ is a sub-tree of Ms,m, therefore Ms,m,wi−1 ⊧ g and

Ms,m,wi ⊧ h. This is true for any path w from s, that satisfies gU nh.

Thus, Ms,m, s ⊧ f .

This concludes the proof.

The set of sub-formulas of bounded PCTL-formula f is denoted by sub(f).

sub(a) = 1 for a ∈ AP
sub(f1 ∧ f2) = {f1 ∧ f2} ∪ sub(f1) ∪ sub(f2)
sub(∼f) = {∼f} ∪ subf

sub([f1 U
nf2]≻p) = {[f1 U

nf2]≻p} ∪ sub(f1) ∪ sub(f2)
sub([Xf]≻p) = {[Xf]≻p} ∪ sub(f)

Let subpath(f) = {gU kh,Xg ∣ [gU nh]≻p, [Xg]≻p ∈ sub(f),0 ≤ k ≤ n}. These

definitions are lifted to sets of formulas in the usual way, i.e., sub(H) =
⋃f∈H sub(f) and subpath(H) = ⋃f∈H subpath(f). We will now prove that

bounded PCTL-formulas can be satisfied by MCs of bounded width. A

similar result has been obtained in [13], though the argument here is simpler

on the account that we are dealing with bounded until. First we appeal to

an elementary result from linear algebra.

Proposition 5.2.2 (Dual of Helly’s theorem). Let T be a countable set of

vectors in an n-dimensional space (Rn). If a vector v⃗ is a convex combina-

tion of vectors from T , then there exists a set T ′ ⊆ T such that v⃗ is a convex

combination of vectors from T ′ and ∣T ′∣ ≤ n+1.

Proof. The vector v⃗ is inside the convex polytope defined by T . A triangu-

lation of a polytope is a partitioning of the space inside the convex polytope

82 CHAPTER 5. FRAGMENTS OF PCTL

using (n+1)-simplexes (tetrahedrons) in n-dimensions. Such a triangulation

always exists even if the convex polytope is generated by a countable set of

points. Thus, v⃗ is inside (or on) some n + 1-simplex whose vertices are in

T ′ ⊆ T . Thus, v⃗ can also be defined as a convex combination of vectors in

T ′.

Proposition 5.2.3. Every satisfiable bounded PCTL-sentence f has a tree

model with bounded out-degree at most ∣sub(f)∣+1.

Proof. Let M be a model of f . As the statement trivially holds for propo-

sitional formulas, we focus on path sentences. Consider state s in M and

let H = {g ∈ sub(f) ∶ s ⊧ g}. Assume w.l.o.g. that no two sub-sentences

are syntactically identical. Let {1,⋯, n} be an enumeration of H, i.e., each

formula in sub(f) is assigned a unique index. Assume s has more than n+1

descendants, i.e., succ(s) = {t1,⋯, tk} for k > n+1. Let for path sentence g,

Pr(s ⊧ g) abbreviate Pr{w ∈ Ωs ∶ w ⊧ g}. Define the vectors {s⃗, t⃗1,⋯, t⃗k} in

the Euclidean space [0,1]n as follows:

1. for [X g]≻p with index i, s⃗(i) = p where Pr(s ⊧ X g) = p, and t(i) = 1 if

t ⊧ g else t(i) = 0, for each t ∈ succ(s).

2. for [f1 U
kf2]≻p with index i and s /⊧ f2, s⃗(i) = p where Pr(s ⊧ f1 U

kf2) =
p, and t(i) = q with q = Pr(t ⊧ f1 U

k−1f2), for each t ∈ succ(s).

3. for any other index i, s⃗(i) = t⃗(i) = 0.

For the semantics of a path sentence of the form [g]≻p, we obtain the fol-

lowing relation:

s⃗ = ∑
t∈succ(s)

P (s, t) ⋅ t⃗.

That is, s⃗ is a linear combination of the vectors {t⃗1,⋯, t⃗k}. By Proposi-

tion 5.2.2 (see page 81), there exists a set G ⊆ succ(s) with ∣G∣ ⩽ n+1 and a

distribution P ′(s) such that:

s⃗ = ∑
t∈G

P ′(s, t) ⋅ t⃗.

It is easy to see that using G as set of direct successors (rather than succ(s))
s still satisfies H. Applying this procedure to every state of M yields a model

with out-degree at most n+1.

Form Propositions 5.2.1 and 5.2.3, we obtain the small model theorem of

bounded PCTL.

5.3. COMPLEXITY OF SATISFIABILITY PROBLEM FOR BOUNDED PCTL83

Theorem 5.2.4. If a bounded PCTL formula f is satisfiable then it is sat-

isfiable by a finite probabilistic tree of depth ord(f) and degree ∣sub(f)∣ + 1.

The size of a bounded PCTL formula f is defined as size(f) = ∣ord(f)∣ +
∣sub(f)∣. Note that the small model theorem states that every satisfiable

sentence f , there exists a probabilistic tree model of f whose number of

nodes is exponential in size(f) (but not the space needed to encode f).

5.3 Complexity of satisfiability problem for bounded

PCTL

In this section we give a hierarchical complexity analysis for various frag-

ments of bounded PCTL.

5.3.1 Complexity of Pxω satisfiability

We will now show that the satisfiability problem for bounded PCTL without

the bounded until is PSPACE-complete. We distinguish the following sub-

logics. Let Px0 be the set of formula defined by the syntax:

f ∶∶= a ∣ f ∧ f ∣ ∼f

where a ∈ AP. Px0 is identical to Propositional logic. The logic Pxi is defined

inductively as follows:

f ∶∶= a ∣ f ∧ f ∣ ∼f ∣ g ∣ [Xg]≻p

where g ∈ Pxi−1, ≻∈ {>,≥} and p ∈ [0,1]. With little abuse of notation, we

will denote the set of all formulas of the logic Pxi, by the set Pxi. Thus, Pxω
is the set of formulas with an unbounded number of nested next operators.

Pxω coincides with bounded PCTL without bounded until.

We will show PSPACE-hard of the satisfiability problem of Pxω. The

reduction follows the exact line of reasoning for proving PSPACE-hardness

for K-systems in modal logics. The hardness proof uses only the operator

[Xg]=1. The semantics of [Xg]=1 is then similar to the � operator of modal

logic K [83]2. Henceforth, we will use �g to denote [Xg]=1 and ♦g to denote

∼[X∼g]=1 (which is equivalent to [Xg]>0). We can now directly use the results

of K-logic. In the sequel we present the construction.

Proposition 5.3.1. The satisfiability problem for Pxω is PSPACE-hard.

2The more appropriate modal logic system would be with K and serial axioms.

84 CHAPTER 5. FRAGMENTS OF PCTL

Proof. The main idea behind the reduction ([70]) is to give a logspace trans-

ducer to convert every instance of a QBF to a formula in Pxω. Let f be

a QBF Q1x1⋯Qmxmϕ(x1,⋯, xm), where Qi ∈ {∃,∀}, xi is a boolean vari-

able (1 ≤ i ≤ m) and ϕ(x1,⋯, xm) is a quantifier free boolean formula with

variables x1,⋯, xm.

We will use new propositions y0,⋯, ym to uniquely encode the index 0 ≤
i ≤m. For that purpose, let z1,⋯, zn, where n = ⌈logm⌉ be new propositions

such that yi ≡ βi,1z1 ∧ ⋯ ∧ βi,nzn for 0 ≤ i ≤ m, where βi,j = ∼ if the jth bit

of (binary) i is zero else βi,j is a empty string (1 ≤ j ≤ n). Let g1 represent

the conjunction of all such equivalences. Next we define the Pxω formula

g which uses propositions x1,⋯, xm, y0,⋯, ym, z1,⋯, zn. The formula g is a

conjunction of the following formulas:

�mg1 (F1)
y0 (F2)

�m(yi → ♦yi+1) for each 0 ≤ i <m (F3)
�m(yi → ((xi → �m−ixi+1) ∧ (∼xi → �m−i

∼xi+1))) for each 0 < i <m (F4)
�m(yi → (♦(yi+1 ∧ xi+1) ∧ (♦(yi+1 ∧ ∼xi+1)))) if Qi = ∀, 0 ≤ i <m (F5)

�m(ym → ϕ) (F6)

where �mh = h ∧�(�m−1h) and �0h = h. Intuitively, �mh is true at s if

h is true at every state reachable from s within m steps. The idea behind

the reduction is that any model of g simulates the formula f . Suppose s

satisfies g, the variable yi marks the states of the tree (rooted at s) at depth

i, (implemented by (F1), (F2) and (F3)). If the ith quantifier is universal,

then (F5) guarantees that there are two descendants, one of which makes

xi true and the other makes ∼xi true. Once, xi (or ∼xi) is chosen at a

branch, it remains unaltered for every descendant, this is guaranteed by

(F4). Finally, we want to evaluate the quantifier free boolean formula ϕ.

This is implemented by (F6).

To see that only logspace is sufficient to produce the output g, observe

that at each step we need to be able to count the index i (0 ≤ i ≤m), which

can be stored in logspace of the working tape, and write the corresponding

string (the formula as defined by (F1), (F2), (F3), (F4), (F5) and (F6)) in

the output tape.

Next we show that the satisfiability problem can be decided in PSPACE.

Proposition 5.3.2. The satisfiability problem for Pxω is in PSPACE.

Proof. We show that the satisfiability problem for sentences in Pxn is in

ΣP
n of the polynomial-time hierarchy. Let Tn be a non-deterministic Turing

5.3. COMPLEXITY OF SATISFIABILITY PROBLEM FOR BOUNDED PCTL85

machine (NTM) with an oracle Ωn−1. Oracle Ωn can foretell whether a set

of sentences in Pxn is satisfiable3. W.l.o.g. we assume that Pxn sentences

are in negated normal form. Let H be the set of Pxn sentences that the

input to NTM Tn. Tn proceeds as follows:

1. If f = f1 ∧ f2 ∈H, then remove f from H and add f1 and f2 to H.

2. If f = ∼(f1 ∧ f2) ∈H, then remove f from H and non-deterministically

choose i ∈ {1,2} and add ∼fi to H.

3. If f = ∼[Xg]≻p and f ∈H, then remove f from H and add [Xg]≻̄p to H.

This takes linear time in the size of the input set H. In the end, H only

contains atomic propositions a, negated atomic propositions ∼a or formulas

with next operator, [Xψ]≻p ∈ Pxi. The machine Ti executes the following

steps:

1. H ∩ Px0 is unsatisfiable then Ti rejects.

2. Otherwise, Tn selects a weighted cover (see Def. 2.2.1) (c,w) of {g ∶
[X g]≻p ∈H} with

(a) w(g) ≻ p for each [X g]≻p ∈H, and

(b) ⋀g∈G g /≡ false for each G ∈ c.

By Proposition 5.2.3, we restrict to covers whose widths are at most ∣H ∣+1.

Checking (1) can be done by solving linear equations, and (2) satisfiability

of formulas for each G ∈ c is delegated to the oracle Ωn−1. This is possible

since the set G only contains sentences in Pxn−1. The NTM Tn accepts if

such a weighted cover exists, else it rejects.

The correctness of the above algorithm is straightforward. The algorithm

generates a model (and accepts H) iff H is satisfiable. We omit the details.

The satisfiability of a set of Pxn sentences can thus be solved by an NTM

with an oracle Ωn−1 in polynomial time. Hence, the satisfiability problem

for Pxω is in NPNPNP⋯

, and hence in PSPACE.

From propositions 5.3.1 and 5.3.2, we get the following theorem.

Theorem 5.3.3. The satisfiability for Pxω is PSPACE-complete.

86 CHAPTER 5. FRAGMENTS OF PCTL

Algorithm 2 closure(H)

1: for each f ∈H do

2: if f = a ∈ AP or f = ∼a then skip

3: if f = f1 ∧ f2 then H ∶= (H ∖ {f}) ∪ {f1, f2}
4: if f = f1 ∨ f2 then

5: H ∶= (H ∖ {f}) ∪ {fi}, where i = 1 or 2

6: if f = [X g]≻p then skip

7: if f = [f1 U
0f2]≻p then H ∶= (H ∪ {f2}) ∖ {f}

8: if f = [f1 U
nf2]≻p and n > 0 then

9: either H ∶= (H ∪ {f2}) ∖ {f} or H ∶=H ∪ {f1}
10: end for

11: return H

5.3.2 Complexity of bounded PCTL satisfiability

Now we consider the full bounded PCTL logic (with bounded until). We will

need the following machinery to solve the satisfiability problem.

Proposition 5.3.4. Given a finite tree T and a bounded PCTL formula

f , we can decide in NP-time whether there exists a probabilistic tree M

satisfying f , with T as the underlying graph.

Proof. Let tree T = (V,E, s0), where V is a set of vertices, E ⊆ V × V a

set of directed edges, and s0 is the root. Every edge e ∈ E is assigned

a variable xe denoting the weight of e. Let P = {xe ∶ e ∈ E} be the set

of weights in T . To construct an MC M with T as underlying graph, we

non-deterministically select a labelling function L using Alg. 3. Function L

labels every vertex in T with a set of bounded PCTL-formulas. This goes

as follows. We initialize L(sin) to {f}, and invoke label(sin) (see Alg. 3.).

Line 2 covers the case when s is only labeled with propositional formulas. If

s is labeled with a non-propositional formula, its labelling is adapted to the

Hintikka set of L(s) (line 3). The computation of the Hintikka set is done

using Alg. 2. This procedure is non-deterministic (see lines 5 and 9). After

labelling s, a non-deterministic selection of its direct successors is labeled

in the for-loop (line 5–22). During this loop, a set H (initially empty) of

multi-variate polynomial inequations is computed over the variables xe and

newly introduced variables pt for vertex t (line 16–17). Each vertex of T is

visited twice: once to calculate the polynomial inequations and once in the

recursive call. Thus, the labelling algorithm is in NP.

3See [67] for background information on oracle Turing machines and the polynomial

time-hierarchy.

5.3. COMPLEXITY OF SATISFIABILITY PROBLEM FOR BOUNDED PCTL87

Algorithm 3 label(s)

1: if L(s) ⊆ Px0 then

2: return true iff L(s) is satisfiable

3: else L(s) = closure(L(s))
4: end if ;

5: for each f ∈ L(s) do

6: if f = [X g]≻p then

7: choose non-deterministically S′ ⊆ succ(s)
8: for each t ∈ S′ do

9: L(t) ∶= L(t) ∪ {g}
10: H ∶=H ∪ (∑t∈S′ x(s,t) ≻ p)
11: extend H with constraint for s and S′

12: end for

13: elseif f = [f1 U
nf2]≻p

14: choose non-deterministically S′ ⊆ succ(s);
15: for each t ∈ S′ do

16: (L(t) ∶= L(t) ∪ {[f1 U
n−1f2]=pt})

17: or (L(t) ∶= L(t) ∪ {f2} and pt = 1)

18: where pt is a new variable

19: H ∶=H ∪ (∑t∈S′ x(s,t)⋅pt ≻ p)
20: end for

21: end if

22: end for

23: for each t ∈ succ(s) do label(t) od

Formula f holds in sin iff the set of (real non-linear) inequations H, with

variables in P is satisfiable. The number of inequations is in O(∣V ∣⋅∣sub(f)∣)
and the number of variables is ∣E∣, i.e., polynomial in the size of the input.

Using the existential theory of the reals [17], we can determine the feasi-

bility of the inequations in PSPACE. This complexity can be improved by

exploiting the special structure of the inequations. Observe that after some

simplification (and removal of new variables introduced in lines 16–17 of

Alg. 3 4) every equation has the following form: a0⋅σ0 +a1⋅σ1 +⋯+ak⋅σk ≻ b,
where a0,⋯, ak, b ∈ Q and σi (0 ≤ i ≤ k) is a term of a polynomial of the type

xe1,ixe2,i⋯xen,i where e1,ie2,i⋯en,i is a path in the tree T . Furthermore, the

edges e1,i for every 0 ≤ i ≤ k (Figure 5.3.3) have the same source vertex. In

Appendix C we show how to solve the satisfiability problem of such a system

4Note that the variable pt is the lvalue of a single equation of the form pt = ⋯. Thus

pt can be easily substituted.

88 CHAPTER 5. FRAGMENTS OF PCTL

of (in)equations in NP.

x1

x2

x3

x4

x5

x6 x7

x8

x9 x10

x11

x12

x1x4x6 + x1x6 ≥ 0.6

x3x11x12 + x2x8 ≥ 0.3

x9 + x10 = 1
x13 x11 + x13 = 1

⋅⋅⋅
x6 + x7 = 1

Figure 5.3.3: A typical example of set of equations generated by algorithm 3.

The complexity for the satisfiability problem for bounded PCTL is now

straightforward.

Proposition 5.3.5. The satisfiability problem for bounded PCTL is in NEX-

PTIME in the size of the formula.

Proof. Let f be a bounded PCTL-formula. Theorem 5.2.4 and Proposi-

tion 5.3.4 suggest the following algorithm to solve the satisfiability problem.

We non-deterministically guess a tree T of size 2O(size(f)). Then we check

whether there is an MC with the underlying graph T that satisfies f . The

algorithm works in NTIME(2O(size(f)2)) ⊆ NEXPTIME in the size of the for-

mula.

Proposition 5.3.6. The satisfiability of bounded PCTL formula is EXPTIME-

hard in the encoding of the formula.

Proof. The details of the reduction from the acceptance problem for an

alternating polynomial space Turing machine to the satisfiability of bounded

PCTL formula can be found in the appendix.

5.4 Related discussion

We have seen that satisfiability problem for bounded PCTL decidable. Two

important observations that make bounded PCTL satisfiable are, first the

models are bounded and second the bound on the size of the model is not

(intricately) related to the probabilities present in the sentence. Can we find

other fragments of PCTL that share this property? In this section we will

discuss other fragments of PCTL that are studied in literature. From here

on we will consider PTs as models of a logic.

5.4. RELATED DISCUSSION 89

5.4.1 Safety and co-Safety

Alpern and Schneider [1], defined safety and liveness for infinite words. The

idea can be carried to define safety for PTs [63]. First, we need to extend

the definition of prefix to probabilistic trees.

Definition 5.4.1. Let Ti = (Wi, Li, Pi) for i = 1,2, and T1 ∈ T∗ and T2 ∈ T∞.

T1 is a prefix of T2, denoted as T1 ⪯ T2, iff:

W1 ⊆W2 and ∀π ∈W1, L1(π) = L2(π), and ∀π,π′ ∈W1, P1(π,π′) = P2(π,π′).

Let Prefin(T) = {T ′ ∶ T ′ ⪯ T} denote the set of prefixes of T .

Definition 5.4.2. Let Ti = (Wi, Li, Pi) with Ti ∈ T∞, i = 1,2 is a suffix of

T1 iff there exists π1 ∈W1 such that

• {π1⋅π2 ∶ π2 ∈W2} ⊆W1,

• L2(π2) = L1(π1⋅π2) for each π2 ∈W2,

• P2(π2, π
′
2) = P1(π1⋅π2, π1⋅π′2) for any π2, π

′
2 ∈W2.

Definition 5.4.3. P ⊆ Tω is a safety property iff for all T ∈ P every T1 ∈
Prefin(T) there exists a T2 ∈ P such that T1 ⪯ T2.

Thus a safety property P only consists of PTs for which any finite depth

prefix can be extended to a PT in P . Contrapositively, if T /∈ P then there is

a finite depth prefix of T that cannot be extended to PTs in P . This finite

prefix is colloquially known as the “bad prefix”. Dual of safety is co-safety.

Definition 5.4.4. P is a co-safety property iff Tω ∖ P is a safety property.

The co-safety properties are of special interest to us since they have finite

model property by construction.

Observation 2. If P is a co-safety property then for any T ∈ P there exists

a finite prefix T1 ⪯ T , such that for all T2 ∈ Tω T1⋅T2 ∈ P .

Another important class of properties are called liveness.

Definition 5.4.5. P ⊆ Tω is a liveness property iff ∀T ∈ T∗, there exists

T2 ∈ P ∶ T1 ⪯ T2.

Example 5.4.1. Consider the following PCTL formulas.

1. f ∶= [aU b]≤ 1
3

is a safety property. Thus, f ′ ∶= [aU b]> 1
3

is a co-safety

property. Since, for any PT that satisfies f ′, the probabilistic measure

of the set of paths satisfying aU b must cross 1
3 after certain depth.

90 CHAPTER 5. FRAGMENTS OF PCTL

2. f ∶= [aU b]≥ 1
3

is neither safe nor co-safe. It is also not live. Consider

a finite-depth PT whose every path satisfies aU b or F∼a, and the

probability measure of paths satisfying aU b is strictly less than 1
3 .

Then no infinite extension of such a tree can satisfy [aU b]≥ 1
3
.

3. Most importantly (and vacuously) false is a safety as well as co-safety

property. Else satisfiability problem for these fragments would be re-

dundant.

The semantics of PCTL(and its fragments) are defined on Markov chains,

that is total PTs. We can extend the definition of satisfiability to finite PTs

as follows:

Definition 5.4.6. A formula f is satisfiable by a finite depth tree T iff for

any T ′ ∈ Tω with T ⪯ T ′, T ′ satisfies f .

5.4.2 Safety and co-Safety PCTL

Now we will define the safety fragment of PCTL.

Definition 5.4.7. Let PCTLsafe denote the safe fragment of PCTL, defined

as the smallest set satisfying:

1. a or ∼a PCTLsafe.

2. If f in PCTLsafe, then [Xf]≥p in PCTLsafe.

3. If f, g in PCTLsafe, then f ∧ g, f ∨ g, [fW g]≥p in PCTLsafe.

4. If ∼f, ∼g ∈PCTLsafe, then [f U g]≤p in PCTLsafe.

We will also consider the co-safety fragment.

Definition 5.4.8. Let PCTLco-safedenote the co-safe fragment of PCTL,

defined as the smallest set satisfying:

1. a or ∼a in PCTLco-safe.

2. If f PCTLco-safe, then [Xf]≥p in PCTLco-safe.

3. If f, g in PCTLco-safe, then f ∧ g, f ∨ g, [f U g]>p in PCTLco-safe.

4. If ∼f, ∼g in PCTLco-safe, then [fW g]<p in PCTLco-safe.

If a Markov chain M satisfies a PCTLco-safeformula f , then there exists

a finite prefix T of the unrolling of M such that for all T ′ ∈ Tω with T ⪯ T ′,
T ′ also satisfies f . We can now relate Pxω and bounded PCTLwith safety

and co-safety properties. Recall:

5.4. RELATED DISCUSSION 91

Observation 3. (Finite tree property) Let f be a Pxω formula and g be a

bounded PCTLformula.

• A Markov chain M satisfies f if and only if there is a finite depth

prefix T of the unrolling of M , which satisfies f . The depth of T is at

the most ∣f ∣.

• A Markov chain M satisfies g if and only if there is a finite depth prefix

T of the unrolling of M , which satisfies g. The depth of T is at the

most size(g).

It has the following consequences.

1. Pxω and bounded PCTL are both safety and co-safety property.

2. To check a formula is satisfiable or NOT, it suffices only to look at a

finite depth PT.

3. And most importantly, the depth is linear in the size of the input for-

mula. That is, it does not depend on the exact values of the probability

bounds.

With these properties in mind we could consider co-safe PCTL restricted to

F and G operators (reciprocally, safe-PCTL restricted to F and G).

Definition 5.4.9. Let PCTLco-safe(F,G) denote the co-safe fragment of

PCTL, defined as the smallest set satisfying:

1. a or ∼a in PCTLco-safe(F,G) .

2. If f PCTLco-safe(F,G) , then [Xf]≥p in PCTLco-safe(F,G) .

3. If f, g in PCTLco-safe(F,G) , then f∧g, f∨g, [Ff]>p in PCTLco-safe(F,G)

4. If ∼f in PCTLco-safe(F,G) , then [Gf]<p in PCTLco-safe(F,G) .

Proposition 5.4.1. f ∈ PCTLco-safe(F,G) is satisfiable iff and only there

exists a finite-depth PT of depth ∣f ∣ that satisfies f .

Proof. First note that it only suffices to consider formulas a, ∼a, [Xg]≥p and

[Fg]>p. Next observe that following: Consider two formulas [Fg1]>p1 and

[Fg2]>p2 such that g1 and g2 are satisfiable by a finite depth probabilistic

trees T1 and T2, respectively. Now we construct a finite-depth probabilistic

tree T in the following way. Select leaves of T1 such that the probability of

reaching these leaves is > p2 and make as many copies of T2 as the number of

leaves selected. From each of these selected leaves of T1, add an edge to the

92 CHAPTER 5. FRAGMENTS OF PCTL

roots of a copy of T2. It is easy to conclude that, if g1 and g2 are satisfiable

then [Fg1]≻p1 ∧ [Fg2]≻p2 is also satisfiable. In the sequel we generalize this

observation.

We proceed in an inductive manner. But we must observe caution, it may

be the case that for a formula of the type f1 ∧ f2, f1 and f2 are individually

satisfiable, but their conjunction is not. For example consider [Xa]≥0.6 and

[X∼a]≥0.6. Both of these formulas are satisfiable but their conjunction is

unsatisfiable. Thus we will follow induction on the nesting depth of the

formula. For example, [X[Fb]≥q]≥p ∧ [Fa]≥r has a nesting depth 2, whereas

[Xa]≥p ∧ [Fa]≥r ∧ [Xc]≥r has a nesting depth 1.

Suppose all formulas of nesting depth less than n satisfy the proposition.

We consider f = g1 ∧⋯ ∧ gn ∧ h1 ∧⋯ ∧ hm where gi = [Xϕi]≥pi , hj = [Fψj]>qj
and formulas ϕi, ψj have nesting depth at most n − 1. If H = {g1,⋯, gn} is

satisfiable, then a weighted cover (C,w) ∈ 22H × D2H must exist, such that

for all gi ∈H, ∑s∈C ∶gi∈sw(s) ≥ pi, and for all s ∈ C, s is satisfiable. Formulas

present in every s ∈ C has formula depth strictly less than n, thus the induc-

tion hypothesis is applicable. Let Ts be the finite-depth probabilistic tree

that satisfies s. Construct a finite PT TH , whose root has an probabilistic

transition to the root of each Ts of weight w(s). This takes care of formulas

in H.

Each ψj has formula depth less than n. By induction hypothesis ψj is

satisfiable by a probabilistic tree Tj of depth ∣ψj ∣. Now we generalize the

observation. We start with Tf = TH and add T1 to the leaves of Tf such that

set of path satisfying Fψ1 is > q1. This will yield a new tree and we set Tf
to it. Continuing this procedure of adding Tj to for each ψj to the current

Tf , would yield the necessary PT for f .

The other cases of the induction are trivial. If for instance, we have

disjunct f1 ∨ f2, we can select either f1 or f2, and apply our induction. If

f = [Xg]≥p then Tg is the probabilistic tree satisfying g, then the required

probabilistic tree of f has a root with a transition to the root of Tg with

probability mass at least p. For f = [Fg]≥p, the probabilistic tree of f is

same as that of g.

For the base case when n = 0, we have conjunction only atomic proposi-

tion or their negation. Thus, if a conjunction of atomic proposition (or their

negation) is satisfiable then the depth of the satisfying PT is 1.

Note that the above demonstration didn’t use the fact that the compari-

son of the probability bounds are strict, thus the proof is also applicable for

formulas with non-strict comparisons. We see that the finite tree property

does not depend on it on the strictness of the comparison operator, even

5.4. RELATED DISCUSSION 93

a a a

¬a ¬a ¬a

a

¬a

2
3

2
3

a

2
3

Figure 5.4.4: The model for the formula f = [[Xa]≥2/3 U ∼a]>p ∧ a. In this

case the depth of the PT can be calculated a priori, which is
log(1−p)
log(2/3) . But

a mechanism for finding such formula for any co-safe formula is not known.

Logic Finite tree Property finite-depth SAT

Pxω yes linear PSPACE

bounded PCTL yes linear EXPTIME

PCTLco-safe(F,G) yes linear PSPACE

PCTLco-safe yes ? r.e.

Table 5.1: Comparison of various fragments of PCTL with finite PT prop-

erty.

though a formula is safe or co-safe depends on the strictness of the com-

parison (see the example in pg 89). The unifying feature of Pxω, bounded

PCTL, and PCTLco-safe(F,G) is as follows:

Observation 4. The depth of the PT does not depend on the exact values

of the probability bounds.

This is not the case for the general co-safety fragment of PCTL. There

are formulas which have finite tree property but the depth of the finite-depth

PT depends on the probability bounds.

Example 5.4.2. Let f = [[Xa]≥2/3 U ∼a]>p ∧ a. First observe that f is a

co-safety property. That is for any value of p ∈ [0,1) f is satisfiable by a

finite depth PT. But the depth of the PT becomes larger as p tends towards

1 (Figure 5.4.4).

Thus, co-safe formulas even though have finite tree property, gives us

only a semi-decidable fragment of PCTL. Table 5.1 summarizes various frag-

ments.

94 CHAPTER 5. FRAGMENTS OF PCTL

5.5 Conclusion

We have presented the sub-logic bounded PCTL which possesses the small

model property. This implies that the satisfiability problem for bounded

PCTL is decidable and we have given an NEXPTIME algorithm in the size

of the formula. We have also considered fragments (Px0,⋯,Pxω) of bounded

PCTL and shown the hierarchical complexity of their satisfiability problem.

We observe that if a bounded PCTL formula is satisfiable then it is satisfi-

able in an MC with rational transition probabilities (the variable elimination

procedure works on rationals). Surprisingly, this statement does not hold

for Bertrand et al. [8], bounded satisfiability (a priori fixing the number of

states of a model). We have mentioned that the EXPTIME hardness in the

encoding (space) of the formula, but our algorithm runs in NEXPTIME in

the size of the formula. Reducing this gap is an open problem. The major

bottle neck of the algorithm is the variable elimination method, which we

believe is NP-hard.

We have also discussed on some of the reasons why these fragments have

small model property and why the argument fails for other fragments of

PCTL, namely co-safe fragment of PCTL. Interesting direction of research

would be exploring other decidable fragments of PCTL and the inter-relation

between them.

Chapter 6

Simple Probabilistic

Extensions of µ-calculus

This chapter considers a modal µ-calculus extended with a probabilistic

next-modality. After introducing the logic, we define the notions of rank and

signature. We then show that satisfiable PµTL-sentences have a model of

bounded out-degree. Finally, we provide a decision procedure for PµTL sat-

isfiability using parity games—in the same vein as for the modal µ-calculus—

and yield a small model as well as a rational model property.

6.1 Introduction

In the previous chapter we have studied the satisfiability problem for the

bounded fragments of PCTL, shown that it is decidable and discussed the

algorithmic complexity of the problem. In this chapter we will follow suit

for yet another probabilistic logic called PµTL. PµTL is an extension of

µ-calculus with probabilistic quantification over next formulas. The logic,

called PµTL was first studied by [74], were the model checking and satisfia-

bility problem were discussed.

Like PCTL, the models of PµTL are labeled Markov chains. Given a finite

labeled Markov chain, one can easily reduce the model checking problem for

a PµTL formula to a 2-player parity game, such that the game is winning for

Player 0 if the Markov chain satisfies a given PµTL formula. The size of the

resulting game is polynomial in the size of the formula and Markov chain.

The existence of a winning strategy can be decided in PTIME. For more

details, please refer to [18]. The topic of discussion of this chapter is however

the satisfiability problem of PµTL. Even though the decidability issue of this

problem was settled in [74], we will see some original contribution that will

further our understanding on the subject.

95

96 CHAPTER 6. PµTL

P0

Pω

PµTL

Bounded PCTL

PCTL∗

µ-PCTL

Lµ⊕⊙

Figure 6.1.1: Expressiveness of different probabilistic logic. Logics with

shades have finite model property.

In terms of expressive power, PµTL is orthogonal to PCTL. That is there

are PCTL formulas which can not be represented as PµTL formula, and

vice-versa. Naturally, PµTL is included in other probabilistic logic with

recursion like, µ-PCTL [18], µp-calculus [18], and Lµ⊕⊙ [80]. Figure 6.1.1

gives a pictorial view of relative expressiveness of various probabilistic logics.

We believe that PµTL is very closely related to modal µ-calculus, thus

any decidability proof for PµTL, can be made to work for modal µ-calculus.

In this chapter we will see that the reasoning paradigm [91] used for deciding

modal µ-calculus is applicable to PµTL. In this chapter, we address the

following important properties of PµTL were.

1. PµTL has small model property (Exponential Size). That is, a satisfi-

able sentence always has a model of exponential size.

2. PµTL has bounded branching (linear). That is, a satisfiable sentence

always has a model with linear branching degree.

3. A satisfiable sentence always has a model where weight of the edges

are rational. It is interesting note that in PµTL we can (asymptoti-

cally) bound the size of the model a priori, since we have small model

property, and still we can find a model where transition probabilities

are rational. This is contrary to PCTL [8], where it is shown that there

6.2. PRELIMINARIES 97

are PCTL formulas which are only satisfiable by models with irrational

weight when we bound the size of the model (a priori). We don’t know

that such a property holds for PCTL in general.

4. Satisfiability is obtained by playing 2 player parity game, whose size

is exponential in the size of the input formula.

5. Finally, satisfiability is EXPTIME-hard. This follows directly from

EXPTIME-hardness of the satisfiability problem of modal µ-calculus,

which in turn follows from PDL [44].

All the above listed properties are shared by modal µ-calculus (except 3.

which is not applicable). We will conclude that PµTL cannot capture qual-

itative PCTL, and the probability bounds play no major role on the com-

plexity of the decision procedure for PµTL. That is, the asymptotic size

of the model is not affected by the exact values of the probability bounds.

Recall, we have witnessed similar properties for Pxω, bounded PCTL and

PCTLco-safe(F,G).

6.2 Preliminaries

Definition 6.2.1. Let H be a set of objects. A cover c is a set of sets of

objects of H, such that ⋃e∈c e = H. The cardinality of c is the width of the

cover c. A weighted cover of H is a cover c with a mapping w ∶ c → (0,1],
such that ∑e∈cw(c) = 1.

Proposition 6.2.1. A set of cardinality n has at most 2n⋅(k+1)−2n

2n−1 different

covers of width at most k.

Proof. Let H be a set with ∣H ∣ = n, and c a cover of H with width i ≤ k.

An object of H can be placed in every set of c. Given that c covers H,

there are 2i−1 possibilities. This holds for every object of H. The number

of different covers of width i thus is (2i−1)n (or, ⩽ 2n⋅i). (Figure 6.2.2,

page 98). Summing over all 1 ≤ i ≤ k gives the desired bound.

Given a weighted cover c of H = {o1,⋯, on}, H(oi) = {e ∈ c ∶ oi ∈ e} and with

little abuse of notation w(oi) = ∑e∈H(oi)w(e).

Definition 6.2.2. The syntax of PµTL is given by the grammar:

f ∶∶= a ∣ ∼a ∣ Z ∣ f ∧ f ∣ f ∨ f ∣ [Xf]≻p ∣ µZ.f(Z) ∣ νZ.f(Z)

98 CHAPTER 6. PµTL

⋯⋯

i

Figure 6.2.2: We have n distinguishable balls and i distinguishable urns. A

ball is thrown, and in mid air it duplicates itself and each urn receives at

the most one copy. But the order in which balls are received is immaterial.

We have represented the logic in negative normal form, where negation

are applied only to the atomic propositions. We also restrict ≻ to {>,≥} and

p to rational numbers in [0,1]. An occurrence of a variable Z is bounded in a

sentence (or formula) f , if that occurrence of Z stands within a subformula

of f having one of the two forms: µZ.f or νZ.f , else Z occurs freely in f . A

sentence f is closed if all variables occurring in f are bounded. In the sequel,

all sentences are assumed to be closed unless stated explicitly. A µ-sentence

has the form µZ.f(Z), similarly a ν-sentence has the form νZ.f(Z).
The semantics of the logic is defined on labeled Markov chains. The

pointed satisfaction of a PµTL sentence for a labeled Markov chain M at a

state s is defined by the following rules:

Definition 6.2.3.

s ⊧ a iff a ∈ L(s) s ⊧ ∼a iff a /∈ L(s)
s ⊧ g ∧ h iff s ⊧ g and s ⊧ h s ⊧ g ∨ h iff s ⊧ g or s ⊧ h
s ⊧ µZ.g(Z) iff s ∈ ⋂{S ∶ g(S) ⊆ S} s ⊧ νZ.g(Z) iff s ∈ ⋃{S ∶ S ⊆ g(S)}
s ⊧ [Xg]≻p iff ∑

s′∶s′⊧g

P (s, s′) ≻ p

With little abuse of notation, a sentence f is also a set of states which

satisfy f . It should be clear from the context, when f is considered as a

sentence and when a set of states.

6.3. ORDINAL, RANKS AND SIGNATURE 99

6.2.1 Motivation and examples

Though the absence of quantified recursively defined path sentences is a

severe restriction, none-the-less we can capture many interesting properties

in simple probabilistic logics.

• The logic PµTL can be used to model probabilistic programs where

probability distributions are fixed and variables have a finite domain.

Consider the probabilistic program

while(c == H)

Toss(c);

where c is a fair coin that initially equals heads or tails. The following

PµTL sentence where proposition t stands for tails and h abbreviates

heads:

(t→ [Xt]=1) ∧ (h→ νZ.([Xt]≥ 1
2
∧ [Xh ∧Z]≥ 1

2
)) .

expresses that c being initially t implies c stays t almost surely, and

that c being initially h implies that it turns into t with at least prob-

ability 1
2 or stays h and continues with the same threshold.

• Application in motion planing [74] and validation of specification for

faulty systems, using model checking algorithms.

6.3 Ordinal, Ranks and Signature

Let f be a function on subsets of a universe U , i.e., f ∶ 2U → 2U . If f is

monotonic, then by the Knaster-Tarski theorem, least and greatest fixed

points of f exist. For ordinal α, the least fixed point µ(f) = ⋃α µα(f), and

the greatest fixed point ν(f) = ⋂α να(f), where:

µ0(f) = ∅ and µα+1(f) = f(µα(f)) and

ν0(f) = U and να+1(f) = f(να(f)).

We can view a PµTL sentence f as characterising a set of states satisfying

f . Hence, we denote ηα+1(f) = {s ∶ s ⊧ f(ηα(f))} for η ∈ {µ, ν} where

µ0(f) = � and ν0(f) = ⊺. With little abuse of notation, we denote s ⊧ ηα(f)
iff s ∈ ηα(f). The satisfaction relation of PµTL (see Def. 6.2.3) can now be

rephrased as follows:

s ⊧ µZ.f(Z) iff for some ordinal α, s ⊧ µα(f)
s ⊧ νZ.f(Z) iff for all ordinals α, s ⊧ να(f).

No state satisfies µ0(f), and every state satisfies ν0(f).

100 CHAPTER 6. PµTL

Definition 6.3.1 (Rank). The µ-sentence µZ.f(Z) has rank α at state s if

α is the least ordinal such that s ⊧ µα(f). If there is no ordinal α < ω such

that s ⊧ µα(f), then the rank of µZ.f(Z) at s is ω. 1

Example 6.3.1. Consider the following Markov chain:

s1
1Ð→ s2

1Ð→ s3
1Ð→ s4

1Ð→ ⋯

where s4 satisfies a and si satisfies ∼a for i < 4. The sentence µY. (a ∨ [XY]>0)
has rank 4 at s1, 3 at s2, 2 at s3 etc.

Definition 6.3.2 (Signature). A signature is a sequence of ordinals. Let <
be the lexicographical ordering on signatures. Over a set of bounded length

signatures, the lexicographical ordering is total and well defined.

Definition 6.3.3 (µ-height). The µ-height of PµTL-sentence f is the nest-

ing depth of closed µ-sub-sentences (including f) of f .

Example 6.3.2. Formula µZ.([XZ]>0 ∨ µY.(b ∧ [XY]>0)) has µ-height 2.

The µ-height of µZ.(a∨µY.(b∧[XZ]=1∨[XY]>0)) is 1, since µY.(b∧[XZ]=1 ∨
[XY]>0) is not closed.

Definition 6.3.4. Let f be a PµTL-sentence of µ-height n. Sentence f has

the signature σ = α1,⋯, αn at state s if σ is the (lexicographically) least

signature such that s ⊧ f ′ where f ′ is obtained by replacing every µ-sub-

sentence µZ.g in f of µ-height i by µαi(g).

Observe that ordinal αi is used only for least fixed point sentences of µ-height

i. Greatest fixed point sentences play no role for this notion.

Example 6.3.3. Let the sentence f = µZ.([XZ]>0 ∨ (b∧µY.(a∨ [XY]>0)))
with µ-height 2. Consider the MC:

s1
1Ð→ s2

1Ð→ s3
1Ð→ s4

1Ð→ s5
1Ð→ ⋯

where only s5 satisfies a and only s3 satisfies b. Sentence f has signature

(3,3) at s1, (3,2) at s2, (3,1) at s3, (2, ω) at s4, and (1, ω) at s5.

Proposition 6.3.1. Signatures of PµTL sentences satisfy:

1. If f ∨ g has signature σ at s, then either f or g has signature ≤ σ at s.

2. If f ∧ g has signature σ at s, then f and g both have signatures ≤ σ at

s.

1ω denotes the first infinite ordinal.

6.3. ORDINAL, RANKS AND SIGNATURE 101

3. If [X g]≻p has signature σ at s, then there is a set H of successors of

s, such that ∑t∈H P (s, t) ≻ p, and g has a signature ≤ σ at t, for every

t ∈H.

4. If µZ.f(Z) has signature σ at s, then f(µZ.f(Z)) has signature σ′ < σ
at s.

5. If νZ.f(Z) has signature σ at s, then f(νZ.f(Z)) has signature σ′

with prefix σ at s.

Proof. Cases 1 and 2. Suppose ϕ = f ∨ g has a signature σ = (α1,⋯, αn)
at s. Let ϕ′ be the formula obtained by replacing each occurrence of µ-

sentence µZ.f(Z) of µ-height i by µσi(f). Then s ⊧ ϕ′. Observe that each

µ-sub-sentence of ϕ belongs either to f or g. Thus the sentence obtained

by replacing every µ-sub-sentence µZ.f(Z) of either f or g of height j by

µσj(f) is also satisfied by s. Thus, either f or g has signature σ′ at most σ.

Similar arguments hold for f ∧ g.

Case 3. Assume [X g]≻p has signature σ = (α1,⋯, αn). Let g′ be the

sentence obtained by replacing every occurrence of µ-sentence µZ.f(Z) of

height i by µσi(f) in g. Then s ⊧ [X g′]≻p. This implies that there exists a

set H of successors of s such that ∑t∈H P (s, t) ≻ p and for each t ∈H, either

t ⊧ g′, or g has a signature at most σ at t.

Case 4. Let ϕ = µZ.f(Z), and the signature at s be σ = (α1,⋯, αn). We

assume without loss of generality that ϕ is the only formula with µ-height

n. Let ψ be a µ-sub-sentence in f(ϕ). We distinguish:

1. ψ occurs either properly inside ϕ or does not contain Z. Then the

µ-height of ψ in ϕ and f(ϕ) coincide. Thus, the rank αi, say, of ψ in

ϕ is the rank of ψ in f(ϕ) too.

2. ψ = ϕ. The µ-height of ϕ in f(ϕ) remains n. By definition of µα(f),
the rank of sub-sentence ϕ (of f(ϕ)) is αn−1.

3. ψ contains Z. Let j be the µ-height of ψ (when occurring) in ϕ.

Then it has µ-height n+j in f(ϕ). The signature of f(ϕ) at s is thus

σ′ = {α1,⋯, αn−1, (αn−1), α′n+1,⋯α′n+k}, where n+k is the µ-height of

f(ϕ). Lexicographically, σ′ < σ.

Case 5. concerns greatest fixed points, which does not change the signature

of any sub-sentence of f(νZ.f(Z)) whose µ-height is ≤ n.

102 CHAPTER 6. PµTL

6.4 Pre-Model and derivations

Throughout the rest of this section, we will assume that every sub-sentence

of a given sentence is unique.

Definition 6.4.1 (FL closure). The Fisher-Ladner closure of PµTL-sentence

f is the smallest set FL(f) satisfying:

1. f ∈ FL(f).

2. If g ∨ h ∈ FL(f) then g, h ∈ FL(f).

3. If g ∧ h ∈ FL(f) then g, h ∈ FL(f).

4. If [Xg]≻p ∈ FL(f) then g ∈ FL(f).

5. If ηZ.g ∈ FL(f) then g(ηZ.g) ∈ FL(f) for η ∈ {µ, ν}.

Example 6.4.1. For ϕ = νZ.(a∧[XZ]=1), we have FL(ϕ) = {ϕ,a∧[X (νZ.a∧
[XZ]=1)]=1, a, [X (νZ.a ∧ [XZ]=1)]=1}.

Remark ([44]). For every PµTL-formula f , ∣FL(f)∣ ∈ O(∣f ∣).

We now introduce the notion of pre-model of formula f .

Definition 6.4.2 (Pre-model). A pre-model of PµTL sentence f is an MC

Mf = (S,P,2FL(f), L, sin) satisfying:

1. f ∈ L(sin).

2. If f ∈ L(s) then ∼f /∈ L(s).

3. If f ∨ g ∈ L(s) then f ∈ L(s) or g ∈ L(s) .

4. If f ∧ g ∈ L(s) then f, g ∈ L(s).

5. If [X g]≻p ∈ L(s) then ∑
s′∶g∈L(s′)

P (s, s′) ≻ p.

6. If ηZ.f ∈ L(s) then f(ηZ.f) ∈ L(s) with η ∈ {µ, ν}.

Each pre-model defines a specific choice of derivation rules.

Definition 6.4.3 (Derivation). The derivation relation induced by pre-

model Mf = (S,P,2FL(f), L, sin) of PµTL sentence f is defined by:

1. If ϕ = h∨ g ∈ L(s) and h ∈ L(s), then ϕ derives h (at s). Similar holds

if g ∈ L(s).

6.4. PRE-MODEL AND DERIVATIONS 103

2. If ϕ = h ∧ g ∈ L(s), then ϕ derives h and g (at s).

3. If ϕ = [X g]≻p ∈ L(s) and g ∈ L(t) for some successor t of s, then ϕ (at

s) derives g (at t).

4. If ϕ = ηZ.h ∈ L(s) with η ∈ {µ, ν}, then ϕ derives h(ηZ.h) (at s).

The derivation relation of f is the union of derivation relations induced by

all pre-models of f , i.e., g derives h iff for some states s, t of a pre-model of

f , g in s derives h in t.

Note that the derivation relation of f only relates sentences in FL(f). An

intuitive way to understand the derivation relation is to consider it as a

logical implication. Also note that, not all pre-models of f are models of

f . For instance, sentence ϕ = µZ.f(Z) could be derived forever (by clause

4 of Def. 6.4.3). For a pre-model to be a model, a µ-sentence cannot be

derived over and over again without ever satisfying it. But it is possible

that a µ-sub-sentence appears infinitely often in a derivation sequence. So

we have to be careful about which derivation sequences we are referring to.

We will use the following definition.

Definition 6.4.4 (Regeneration). The µ-sentence ϕ is regenerated by a

sequence of derivations, if starting from ϕ we end up again with ϕ, and ϕ is

a µ-sub-sentence for every sentence in any intermediate derivation.

Example 6.4.2. Sentence f = µZ. (νY.(a ∧ Y) ∨Z) derives νY.(a ∧ Y) ∨
µZ.(νY. (a ∧Y) ∨ Z) that contains f , and which can derive µZ. (νY.(a ∧ Y) ∨Z)
which equals f . Thus the µ-sentence f is regenerated (See Fig. 6.4.3, left).

Example 6.4.3. Let ϕ = νZ. (µY.(b ∨ [XY]=1) ∧ [XZ]=1). ϕ derives µY.(b∨
[XY]=1) ∧ [X ϕ]=1. This derives a formula containing µY.(b ∨ [XY]=1) ∧
[Xϕ]=1 (see Fig. 6.4.3, right). This in turn derives b∧ [Xϕ]=1 which derives

ϕ. Though the µ-sentence µY.(b ∨ [XY]=1) is witnessed again. However it

is not regenerated, since it is not a sub-sentence of every derived sentence.

Definition 6.4.5 (Well-foundedness). A pre-model Mf of PµTL-sentence f

is well-founded if every µ-sub-sentence ϕ of f is regenerated finitely often.

Theorem 6.4.1. Every model of PµTL-sentence f is a well-founded pre-

model of f .

Proof. Let M be a model of f . We first generalize the state-labeling; ∀f ∈
FL(ϕ) ∶ s ⊧ f ⇐⇒ f ∈ L(s). Note that with the generalized labeling, the

model satisfies the conditions in Def. 6.4.2. The rest of the reasoning is as

104 CHAPTER 6. PµTL

ϕ = µZ.νY.(a ∧ Y) ∨Z

νY.(a ∧ Y) ∨ ϕ

ϕ = νZ.(µY.b ∨ [X Y]=1) ∧ [X Z]=1

µY.b ∨ [X Y]=1 ∧ [X(ϕ)]=1

b ∧ [Xϕ]=1

b ∨ [X µY.b ∨ [XY]=1]=1 ∧ [X(ϕ)]=1

Figure 6.4.3: Derivation sequence for two formulas. The derivation sequence

in the upper part shows a regeneration sequence; the derivation in the lower

part is not a regeneration sequence.

follows: If M,sin ⊧ ϕ, then ϕ has a signature at initial state sin, and we can

ensure that every µ-sub-sentence of ϕ is regenerated finitely often.

Let ψ = µZ.f(Z) be a sub-sentence of ϕ with µ-height n that is regener-

ated following a sequence of derivations from s to t (s and t can be identical).

We will show that the signature σ = (α1,⋯, αn) of ψ from s to t decreases.

As per definition, the derivation step begins by deriving f(µZ.f(Z)) from

µZ.f(Z). By Proposition 6.3.1, the sentence f(µZ.f(Z)) has lexicograph-

ically smaller signature at s. It remains to show that this decrease is not

violated by other derivation rules between s and t.

For disjunction h∨g, suppose (w.l.o.g.) s ⊧ g. By Def. 6.4.3, g is derived.

By Proposition 6.3.1, the signature cannot increase. As the derivation rela-

tion for a conjunction does not affect the signature, for this case no decrease

occurs. The derivation rule for [Xg]≻p derives g at some successor state t.

If f(ψ) is a sub-sentence, then the signature at t cannot increase; the other

case is trivial.

A derivation may involve other fixed point sentences. Derivations of fixed

point sentences that are sub-sentences of ψ do not affect the µ-height of f(ϕ).
For example, consider ψ = µZ.f(Z,µY.g(Y)) with µ-height n. Applying the

derivation for ϕ yields ψ′ = f(ϕ,µY.g(Y)) which has µ-height n too. The

derivation steps for µY.g(Y) in f(ϕ,µY.g(Y)) give f(ϕ, g(µY.g(Y))). The

µ-height of µZ.f(Z, g(µY.g(Y))) does not change, hence the ordinal αn in

the signature of f(ϕ) is unaffected.

Now, consider φ = ηY.g(Y) (where η ∈ {µ, ν}) with µ-subsentence ψ =
µZ.f(Z). Distinguish two cases:

1. The derivation of φ does not affect the µ-height of ψ. In such a case,

deriving µY.g(Y) decreases the signature (by Proposition 6.3.1). For

example, consider the derivation steps for ϕ = µY.g(Y,µZ.f(Z)). This

gives g(µY.g(Y,µZ.f(Z)), µZ.f(Z)). The µ-height of µZ.f(Z) is not

affected, and the signature of ϕ decreases.

6.5. DECISION PROCEDURE FOR SATISFIABILITY 105

2. The derivation of φ increases the µ-height of ψ. For example, φ =
ηY.g(ψ), where ψ = µZ.f(Z,Y). Observe that a derivation of ψ can

only occur after a derivation of φ. That would make φ a subsentence

of ψ, namely µZ.f(Z,φ). The case where φ is a subsentence of ψ has

already been considered.

Thus, we have derivations where each µ-sentence reduces its corresponding

rank. Since the derivation sequence from ϕ has bounded length (by Obser-

vation 6.4, pp. 102), a regeneration can only happen finitely often. Thus the

pre-model is well-founded.

Theorem 6.4.2. Each well-founded pre-model of PµTL-sentence f is a

model of f .

Proof. (sketch) Let MC M be a well-founded pre-model of f . Then the re-

generation relation for every µ-subsentence of f terminates. Each µ-sentence

thus has a (finite) rank at every state in M , and hence there exists a signa-

ture for ϕ ∈ FL(f) at each state. Let σ = α1,⋯, αn be the lexicographically

smallest such signature. Replace each occurrence of the µ-sentence µZ.f(Z)
of height i by µαi(f). It follows by structural induction on sentences that

ϕ ∈ L(s) implies s ⊧ ϕ.

Theorem 6.4.3. If PµTL-sentence f is satisfiable, then it has a model of

bounded out-degree at most ∣f ∣+1.

Proof. Similar to the proof of Proposition 5.2.3 (pp. 82).

6.5 Decision procedure for satisfiability

This section presents a decision procedure for determining the satisfiability

of PµTL sentence f . The procedure is based on a parity game obtained as

cross-product of a game graph and a deterministic parity automaton.

Deterministic parity automaton

We first focus on the parity automaton. The starting point is a Büchi-

automaton Aϕ for each µ-sentence ϕ of f . The automaton Aϕ accepts

the regeneration sequences for ϕ, i.e., derivation sequences that derive ϕ

infinitely often and for which ϕ is a sub-sentence of every sentence in the

derivation.

Definition 6.5.1 (Büchi automaton for an µ-sentence). Let f be a PµTL-

sentence with ϕ a µ-sentence in FL(f). The non-deterministic Büchi au-

tomaton (NBA) Aϕ is a quintuple (Qϕ,Σϕ,Qϕ,in, δϕ, Fϕ) where:

106 CHAPTER 6. PµTL

1. Qϕ = {ψ ∈ FL(f) ∶ ϕ is a µ-sentence of ψ}, the state-set

2. Σϕ = 2FL(f), the alphabet

3. Qϕ,in = Qϕ, the set of initial states,

4. δϕ(q, q′) = q′, if q′ is obtained from q by a derivation

5. Fϕ = Qϕ, the set of final states.

The transition relation is represented in a compressed form, that is,

δϕ(q, a) = q′ implies that for all A ∈ Σ with a ∈ A, δϕ(q,A) = q′.
For PµTL-sentence f , let Af be a deterministic parity automaton (DPA)

which is the complement of the union of the automata Aϕ for µ-sentence ϕ

of f :

L(Af) = ⋃
ϕ∈FL(f)∶ϕ is a µ-sentence

L(Aϕ)

Af thus accepts all terminating regeneration sequences for every µ-sentence

in FL(f). The union of L(Aϕ) can be described by an NBA of maximal size

in O(kn) where k is the number of µ-sentences in FL(f) and ∣FL(f)∣ = n.

The DPA Af then has size at most O(2(kn)2) [81].

A two-player game

Our next aim is to define a two-player game where player 0 aims to show

that PµTL-sentence f is satisfiable, while its opponent wants to refute this

claim. The vertices of the game graph are sets of subsets of FL(f). A vertex

v is called transitive iff:

• For all g ∨ h ∈ v either g ∈ v or h ∈ v.

• For all g ∧ h ∈ v, g, h ∈ v.

• For all ηX.g(X) ∈ v, g(ηX.g(X)) ∈ v.

• There exists [Xg]≻p ∈ v.

Definition 6.5.2 (Two-player game). The two-player game Gf for PµTL-

sentence f is the triple (V,E, v0) where V = V0⊎V1 with V0 ⊆ 2FL(f) the set of

Player 0 vertices, V1 the set of Player 1 vertices (defined below), v0 = {f} ∈ V0

the starting vertex, and E is defined by:

1. (v, v ∪ {gi}) ∈ E for i=1,2, if g = g1 ∨ g2 ∈ v

2. (v, v ∪ {g1, g2}) ∈ E) if g = g1 ∧ g2 ∈ v

6.5. DECISION PROCEDURE FOR SATISFIABILITY 107

(t→ [Xt]=1) ∧ (h→ (νZ.ϕ(Z)))

(∼t ∨ [Xt]=1), (∼h ∨ νZ.ϕ(Z))

∼t, ∼h ∨ νZ.ϕ(Z) [Xt]=1, ∼h ∨ νZ.ϕ(Z)

∼t ∧ ∼h ∼t, νZ.ϕ(Z)

∼t, [Xt]⩾ 1
2
∧ [Xh ∧ νZ.ϕ(Z)]⩾ 1

2

∎ ∎

h ∧ νZ.ϕ(Z)

h, [Xt]⩾ 1
2
, [Xh ∧ νZ.ϕ(Z)]⩾ 1

2

t t,h ∧ νZ.ϕ(Z)

�

∼h, [Xt]=1

∎

t

[Xt]=1 ∧ νZ.ϕ(Z)

[Xt]=1, [Xh]⩾ 1
2
∧ [Xh ∧ νZ.ϕ(Z)]⩾ 1

2�

∎ ∎ ∎ ∎

Each branch will be closed since
[Xt]=1 and [Xh]⩾ 1

2
cannot be true

Figure 6.5.4: The satisfiability game for (t → [Xt]=1) ∧ (h → (νZ.ϕ(Z))),
where ϕ = [Xt]⩾ 1

2
∧[Xh∧Z]⩾ 1

2
. The black squares indicate Player 1 vertices,

others are Player 0 vertices. Since there are no µ sub-sentences, any infinite

path (or ending in no �-vertex) is winning for Player 0.

3. (v, v ∪ {g(µX.g)}) ∈ E if µX.g ∈ v, and

4. (v, vc) ∈ E if v is a transitive vertex and vc represents weighted cover

(c,w) of Vv = {g ∶ [X g]≻p ∈ v} with w(g) ≻ for all g ∈ Vv. In addition,

(vc, v′) ∈ E for each v′ ∈ c. If no such cover c exists, then (v,�) ∈ E.

Let V1 = {vc ∶ (v, vc) ∈ E} with vc as above.

Example 6.5.1. Consider the game in Figure 6.5.4. Let us clarify one of

its weighted covers. Consider the vertex ⟨¬t, [Xt]⩾ 1
2
∧ [Xh ∧ νZ.ϕ(Z)]⩾ 1

2
⟩.

There are two possible weighted covers: (c,w1) and (c2,w2). Let c1 = {v1, v2}
and c2 = {v3}, where v1 = ⟨h ∧ νZ.ϕ(Z)⟩, v2 = ⟨t⟩ and v3 = ⟨h ∧ νZ.ϕ(Z), t⟩.
The weights are w1(v1) = w1(v2) = 1

2 and w2(v3) = 1.

Let V� be the set of vertices which contain propositional contradictions

(like a and ∼a). The game graph Gf is of size at most 2O(n2) where n =
∣FL(f)∣. Player 0 looses if the finite play reaches V�. An infinite play is

winning for player 0 if it is accepted by the DPA Af . To accomplish this,

we define the parity game Gf as the (synchronous) cross product of game

Gf and DPA Af (Definition 6.5.3).

108 CHAPTER 6. PµTL

Definition 6.5.3. The cross product between the deterministic parity au-

tomaton Af = (Q,Σ, q0, δ, F) and game graph Gf = (V,E, v0) yields the

parity game Gf = (U,R,u0,Ω) where

• U ⊆ V ×Q

• u0 = (v0, q0)

• The transition relation R is defined by:

– If v is not a transitive vertex then: (v, q), (v′, q′) ∈ R iff q′ =
δ(q, v).

– If v is a transition vertex then: (v, q), (v′,▲) ∈ R and (v′,▲), (v′′, q′) ∈
R iff q′ = δ(q, v′).

• Ω ∶ U → Img(F) such that Ω(v, q) = F (q). Recall F is a parity condition

of Af .

Note that ▲ is simply used as a placeholder and has no special meaning.

Remark. There are some crucial differences between the game Gf and the

tree-automaton construction for PµTL in [74]. For vertices with formula

g ∧h, the set of formulas is not split into two vertices (one containing g and

one containing h); instead they are kept together. The key difference is the

distribution of formulas as solutions of weighted covers.

Proposition 6.5.1. Player 0 has a winning strategy in parity game Gf for

every satisfiable PµTL-sentence f .

Proof. Let f be satisfiable. By Theorem 6.4.1, f has a well-defined pre-

model, say MC Mf = (S,P,AP, L, sin). The proof is by constructing a

winning strategy π ∶ V + → V in game Gf for player 0 against any strategy

of player 1. This is done using the auxiliary function Γ ∶ V + → S that maps

finite plays in Gf onto states of Mf . Define Γ(v0) = sin. Consider a finite

play ρ of Gf with s = Γ(ρ) and v = last(ρ). Distinguish the following cases:

• v is a vertex with g1 ∨ g2 ∈ v. If gi ∈ L(s) then let π(ρ) = vi (see

Def. 6.5.2) and Γ(ρ⋅vi) = s, for i ∈ {1,2}.

• v is a transitive vertex. Assume s has direct successors {t1,⋯, tk}. By

Theorem 6.4.3, it follows k ≤ ∣FL(f)∣+1. Define π(ρ) = vc (i.e., a cover

vertex, see Def. 6.5.2) for cover c = {L(t1),⋯, L(tk)}. (Note that such

cover always exists.) If player 1 selects L(ti), then let Γ(ρ⋅vc⋅L(ti)) =
ti.

6.5. DECISION PROCEDURE FOR SATISFIABILITY 109

• in any other case, v has at the most one successor, say v′. Define

π(ρ) = v′ and Γ(ρ⋅v′) = s.

It remains to show that π is a winning strategy. For any strategy σ of

Player 1, consider the resulting path ρ from the pair of strategies (π,σ).
Path ρ cannot terminate in a �-vertex, as otherwise the label of Γ(ρ) should

contain a propositional contradiction. If ρ is infinite, then every regenerating

µ-sub-sentence in the vertices of ρ is terminating. Hence ρ ∈ L(Af).

Proposition 6.5.2. If there exists a winning strategy for player 0 in parity

game Gf , then f is satisfiable.

Proof. Let π be a winning strategy of player 0 in Gf . Applying the strategy

π to the game Gf yields the digraph Gπf . Let Π be the set of all finite paths

σ = (σ0⋯σn) in Gπf such that

1. σ0 is a player 0 configuration, and it is either the initial configuration

or has a player 1 configuration as a parent.

2. σn is a player 1 configuration.

Consider a path σ ∈ Π. Observe that each configuration except the last

configuration (σn) of σ has at most one descendant. Path σ is said to lead

to σ′, if the last configuration of σ has an edge to every configuration of

σ′. Let pre-model Mf = (S,P,AP, L, s0) be obtained from digraph Gπf in the

following way:

• S = {sσ ∶ σ ∈ Π}.

• P (sσ, sσ′) > 0, if σ leads to σ′. The exact value is the weight defined

by the weighted cover σn (see also Example 6.5.1).

• L(sσ) = ⋃k−1
i=0 σi, where k = ∣σ∣.

• s0 = sσ, where σ = (σ0,⋯, σn) such that σ0 is the initial configuration

of the game.

It is easy to see that the pre-model M is well-founded. From Proposi-

tion 6.4.2 it follows that f is satisfiable.

Theorem 6.5.3. Every satisfiable PµTL sentence f has a model of size

exponential in ∣f ∣.

110 CHAPTER 6. PµTL

H

T

T

T

1
2

1
2

1

Figure 6.5.5: Two models generated by two different winning strategies of

Player 0 in the game given in Fig. 6.5.4

Proof. By Propositions 6.5.1 and 6.5.2 it follows that PµTL-sentence f is

satisfiable iff Player 0 has a winning strategy in Gf . It is well-known that

if a winning strategy for a parity game exists, then there exists a pure

memoryless winning strategy [46]. The size of the well-founded pre-model

defined by a pure memoryless strategy is 2O((kn)2).

Remark. Our last result together with the fact that qualitative PCTL has

no finite model property [13] yields that qualitative PCTL and PµTL have

incomparable expressive power. The PµTL-formula νY. (a ∧ [XY]>0) cannot

be expressed in qualitative PCTL. Vice versa, the PCTL-formula [G ([Xa]>0 ∧ ∼a)]>0

cannot be expressed in PµTL.

Corollary. Every satisfiable PµTL sentence has a model whose transition

probabilities are rational.

Proof. The weight function for the weighted cover is determined by linear

constraints. Thus if it is satisfiable, then it has a rational solution (recall

that the probability bounds on the formula are rational).

6.5.1 Discussion

Compared to the alternating tree automaton approach in [18], our game-

based approach has the following advantages:

• It provides a clear separation of recursive sub-sentences and sentences

with probability bounds. The probability bounds in the decision pro-

cedure only affect the existence of the cover vertices (v, vc) in the

game.

• An (ordinary) non-stochastic parity game was used for the satisfiability

of a probabilistic logic.

6.5. DECISION PROCEDURE FOR SATISFIABILITY 111

• The game graph of a PµTL-sentence f captures all models of f .

The latter property enables querying some quantitative properties, e.g., the

maximum probability of reaching certain states in the models of f . For

instance, consider the game graph Gf = (V,E, v0) in Fig. 6.5.4, where all

vertices that are losing for player 0 are omitted. The maximum probabil-

ity of reaching specific vertices can then be obtained as follows. The cover

vertices (player 1 vertices) act as probabilistic vertices whose transition re-

lations are defined by linear equations. Using algorithms for determining

reachability probabilities in convex MDPs [86, 21]2, we can calculate the

maximum probability of reaching certain vertices.

This observation is a step towards considering an extension of PµTL with

until-modalities (that do neither occur as sub-sentence of another until-

modality nor as part of a µ-sentence). Our decision procedure can be ex-

tended as follows for [f1 U f2]≻p. We first extend the transition relation in

Def. 6.5.2 by:

5.1 (v, v′) ∈ E if [f1 U f2]≻p ∈ v and f2 ∨ (f1 ∧ [XU ∗(f1, f2)]>0) ∈ v′, where

U ∗(f1, f2) denotes [f1 U f2]≻p′ for some p′ (which is not relevant here).

5.2 (v, v′) ∈ E if U ∗(f1, f2) ∈ v and f2 ∨ (f1 ∧ [XU ∗(f1, f2)]>0) ∈ v′.

Intuitively, [f1 U f2]≻p is dealt as µZ. (f2 ∨ (f1 ∧ [XZ]>0)). This yields the

game graph Gf = (V,E, v0) and the winning condition is obtained as in

Section 6.5. We remove all vertices that are not winning for player 0 and

the sentence is satisfiable if for each (remaining) vertex w with [f1 U f2]≻p ∈
w, the supremum probability of reaching vertices with f2 only via vertices

containing f1 is ≻ p.
This raises the question whether this technique can be extended to nested

until-modalities. By a similar mechanism as above we annotate vertices with

sentences [f1 U f2]≻p with obligation ≻ p. This then amounts to decide the

reachability problem for MDPs with obligations.3 To our knowledge, such

obligatory games can only be solved under strong structural restrictions.

Nonetheless we believe this indicates that tying the satisfiability problem of

a recursive probabilistic logic (with unbounded until) to a finite obligatory

game is a promising avenue.

2Even in the presence of non-strict in-equalities [21].
3Formal definition of obligatory games is beyond the scope of this paper.

112 CHAPTER 6. PµTL

Logic Finite Small Sat

model model checking

Pxω yes O(∣f ∣) PSPACE-c.

bounded PCTL yes 2O(size(f)) NEXPTIME

EXPTIME-hard

qualitative PCTL no – EXPTIME-c.

PCTL no – ?

PµTL yes 2O(∣f ∣) UTIME(2O(∣f ∣))∩

co-UTIME(2O(∣f ∣))

µPCTL no – ?

Table 6.1: Overview of known satisfiability results (where size(f) equals

∣ord(f)∣+∣sub(f)∣). The first two rows and the fifth row summarise this

paper.

6.6 Conclusion

This chapters considered the satisfiability problem of PµTL. The logic pos-

sesses the small model property, is shown to also have the rational model

property. Our results for PµTL show that PµTL and qualtitative PCTL

have incomparable expressive power. The satisfiability problem for PµTL is

shown to be in the same complexity class as the satisfiability problem for the

modal µ-calculus, i.e., in UTIME(2O(∣f ∣))∩co-UTIME(2O(∣f ∣)). This improves

the 2-EXPTIME algorithm recently provided in [74]. Table 6.1 summarises

the current situation. The satisfiability of PCTL [53] and µ-PCTL [18] re-

main open problems.

Chapter 7

P-automata for MDPs

P-automata provide an automata-theoretic approach to probabilistic verifi-

cation. Similar to alternating tree automata which accept labelled transition

systems, p-automata accept labelled Markov chains (MCs). In this chap-

ter we proposes an extension of p-automata that accept the set of all MCs

(modulo bisimulation) obtained from a Markov decision process under its

schedulers.

7.1 Introduction

Model checking of µ-calculus [66] formulas on a (finite) Kripke structure (also

know as labeled translation system) is a well studied verification technique

of discrete state systems [41]. The problem entails whether every execu-

tion (infinite tree) of a Kripke structure satisfies a given µ-calculus formula.

The satisfiability problem for µ-calculus, on the other hand, is to decide

whether there exists an infinite tree which satisfies a given µ-calculus for-

mula. Both these problems are algorithmically feasible, and the key method

is the translation to alternating tree automata [98].

The notion of p-automata was introduced in [58] to provide a similar

automata-theoretical foundation for the verification of probabilistic systems

as alternating tree automata provide for Kripke structures. As alternating

tree automata describe a complete framework for abstraction with respect

to branching-time logic like, µ-calculus, CTL and CTL∗ [98], p-automata,

similarly give a unifying framework for different probabilistic logics.

Every p-automaton defines a set of labeled Markov chains, that is, a p-

automaton reads an entire Markov chain as input and it either accepts the

Markov chain or rejects it. Analogous to alternating tree automata where

acceptance of a Kripke structure is decided by solving 2-player games [98],

the acceptance of a labeled Markov chain by a p-automaton is decided by

113

114 CHAPTER 7. P-AUTOMATA

solving stochastic 2-player games. The language of p-automata are sets of

labeled Markov chains.

We view a Markov decision process (MDP) as a set of Markov chains

defined by different schedulers. In this chapter we revisit p-automata defined

by [58] and extend it with a new construct and semantics for representing

set of Markov chains defined by the Markov decision processes.

The chapter deals with the following topics:

• We extend the p-automata with a construct that captures the non-

determinism in the choice of probability distribution. This allows us

to model Markov decision processes as p-automata. We show that

the extended p-automata are closed under bisimulation, union and

intersection, (though, in contrast to [58], the language is no longer

closed under negation).

• We show that the language of the p-automaton obtained from an MDP

accepts exactly those Markov chains that are bisimilar to the Markov

chains induced by the schedulers of the MDP.

• We define a simulation relation between p-automata, that approxi-

mates the language inclusion. The simulation relation is complete in

the sense of Segala’s [88] simulation relation defined for probabilistic

automata.

7.2 Weak P-automata⊕

In this section, we extend p-automata as defined in [58]. In the rest of the

thesis, when we refer to p-automata we will assume the extended p-automata

(as defined in Definition 7.2.2 below), unless the contrary is explicitly stated.

Definition 7.2.1 (Boolean formulas on T). Let T be any arbitrary set, then

B+(T) is the set of positive boolean formulas generated by the following

syntax:

ϕ ∶∶= t ∣ true ∣ false ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ (7.1)

where t ∈ T .

The closure of ϕ ∈ B+(T) is defined as cl(ϕ), where ϕ ∈ cl(ϕ) and if ϕ1 ○ϕ2 ∈
cl(ϕ) then ϕ1, ϕ2 ∈ cl(ϕ), for ○ ∈ {∧,∨}. Let Q be any set of states, the

7.2. WEAK P-AUTOMATA⊕ 115

following sets are derived from Q:

∥Q∥> = {∥q∥&p ∶ q ∈ Q,& ∈ {≥,>}, p ∈ [0,1] ∩Q}
∥Q∥∗ = {⋆(t1,⋯, tn) ∶ n ∈ N,∀i, ti ∈ ∥Q∥>}
∥Q∥∨ = {∨(t1,⋯, tn) ∶ n ∈ N,∀i, ti ∈ ∥Q∥>}
∥Q∥⊕ = {⊕(r1,⋯, rn) ∶ n ∈ N,∀i, ri ∈ ∥Q∥∗}
∥Q∥ = ∥Q∥∗ ∪ ∥Q∥∨ ∪ ∥Q∥⊕

We will call the elements of ∥Q∥> as guarded states and elements of ∥Q∥⊕

as terms. Note that the closure of a formula f ∈ B+(∥Q∥) only in includes

elements from ∥Q∥.

Example 7.2.1. Consider ϕ ∈ B+(∥Q∥), where ϕ = ⊕(t1, t2)∧⋆(∥q∥≥ 1
3
), t1 =

⋆(∣q1∣≥ 1
3
, ∥q2∥≥ 4

5
) and t2 = ⋆(∥q∥≥ 1

2
, ∥q3∥≥ 2

3
). Then cl(ϕ) = {⊕(t1, t2),⋆(∥q∥≥ 1

3
)}.

For brevity, we will write ⋆(t ∶ t ∈X) for ⋆(t1,⋯, tn) whereX = {t1,⋯, tn},

(similarly for ϕ ∈ ∥Q∥⊕ or ∥Q∥∨). For ϕ = ⋆(∥q1∥&1p1 ,⋯, ∥qn∥&npn) let the set

of guarded states be gs(ϕ) = {q1,⋯, qn} (similarly for ∨(∥q1∥&1p1 ,⋯, ∥qn∥&npn)).
We can lift the definition to sets of formulas, gs(Φ) = ⋃ϕ∈Φ gs(ϕ). If ϕ =
⊕(r1,⋯, rn) then the set of terms is gt(ϕ) = {r1,⋯, rn}. In particular, if

∣gt(ϕ)∣ = 1 then ϕ = ⊕(r) is the same as r where r = ⋆(t1,⋯, tn). Thus, ∥Q∥∗

is a special case of ∥Q∥⊕.

Definition 7.2.2. A p-automaton A is a tuple (Q,Σ, δ, ϕin,Ω), where Q is a

finite set of states, Σ is a finite alphabet (2AP), δ ∶ Q×Σ→ B+(Q)∪B+(∥Q∥)
is the transition function, ϕin ∈ B+(∥Q∥) is an initial condition, and Ω ⊆ Q
is an accepting set of states.

Example 7.2.2. Let the p-automaton A = (Q,Σ, δ, ϕ,Ω) be defined as

follows: Q = {q1,⋯, q5}, Σ = {a, b, c}, ϕ = ⊕(⋆(∥q1∥≥ 1
2
, ∥q5∥≥ 1

2
),⋆(∥q2∥≥1)),

δ(q1, a) = ⋆∥q3∥≥1, δ(q2, a) = ⋆∥q4∥≥1, δ(q3, b) = ⋆∥q3∥≥1, δ(q4, c) = ⋆∥q4∥≥1,

δ(q5, a) = ϕ and Ω = Q.

As a convention, p-automata have states, MCs have locations, and weak

stochastic games have configurations. We will make the following simplifi-

cation, from hereon we assume that for each ϕ ∈ ∥Q∥⊕ and r, r′ ∈ gt(ϕ),
if a state q ∈ gs(r) and q ∈ gs(r′) then r = r′. That is, two term r

and r′ in gt(ϕ) do not have any common guarded state. A p-automaton

A = (Q,Σ, δ, ϕin,Ω) defines a labeled directed graph GA = (Q′,E,Eb,Eu)
(called the game graph):

Q′ = Q ∪ cl(δ(Q,Σ))
E = {(ϕ1 ∧ ϕ2, ϕi) ∶ ϕi ∈ Q′ ∖Q,1 ≤ i ≤ 2} ∪ {(q, δ(q, σ)) ∶ q ∈ Q,σ ∈ Σ}

∪ {(ϕ1 ∨ ϕ2, ϕi) ∶ ϕi ∈ Q′ ∖Q,1 ≤ i ≤ 2}
Eu = {(ϕ ∧ q, q), (q ∧ ϕ, q), (ϕ ∨ q, q), (q ∨ ϕ, q) ∶ ϕ ∈ Q′, q ∈ Q}
Eb = {(ϕ, q) ∶ ϕ ∈ ∥Q∥∨, q ∈ gs(ϕ)} ∪ {(ϕ, q) ∶ ϕ ∈ ∥Q∥⊕, q ∈ gs(gt(ϕ))}

116 CHAPTER 7. P-AUTOMATA

ϕ

q5

q1

∗∥q3∥

q3 q2

∗∥q4∥

q4

aa a

cb

Figure 7.2.1: Game graph GA without unbounded edges.

where δ(Q,Σ) = {δ(q, σ) ∶ q ∈ Q and σ ∈ Σ} ∪ {ϕin}.

Example 7.2.3. The game graph of p-automatonA defined in example 7.2.2

is shown in Figure 7.2.1 (page 116).

We add markings on the edges to distinguish them. Edges in Eu and E

are unmarked and are called unbounded and simple transitions, respectively.

Edge (ϕ, q) ∈ Eb is called a bounded transition and is marked with ⊕ if

ϕ ∈ ∥Q∥⊕, else it is marked with ∨. For example in the Figure 7.2.1, the

edges (⋆∥q3∥=1, q), (ϕ, q1), (ϕ, q2), (ϕ, q5), (⋆∥q4∥=1, q4) are marked ⊕.

Two formulas ϕ,ϕ′ ∈ Q′ are related as ϕ ⪯A ϕ′ iff there is a path from

ϕ to ϕ′ in GA. For example in Figure 7.2.1 (page 116), ϕ ⪯A q3. Let ≡A be

defined as ⪯A ∩ ⪯−1
A . The equivalence class JϕK of ϕ with respect to ≡A forms

a maximal strongly connected component (MSCC) in GA. In Figure 7.2.1,

ϕ ≡A q5, but ϕ /≡A q3. An MSCC is bounded iff every edge in an MSCC of

GA, is either in E ∪ Eb, and an MSCC is unbounded iff every edge of the

MSCC is in E ∪Eu.

Example 7.2.4. Referring to the example 7.2.2 (page 115), we get the fol-

lowing partial order: Φ∖ ≡A= {Jq3K, Jq4K, JϕK, Jq1K, Jq2K}, and ≤A is the reflex-

ive transitive closure of the relation {(JϕK, Jq1K), (JϕK, Jq2K), (Jq1K, Jq3K), (Jq2K, Jq4K)}.

Definition 7.2.3 (Uniform weak p-automata). A p-automaton A is called

uniform if:

1. Every MSCC of GA is either bounded or unbounded.

2. For every bounded MSCC, all marked edges are either marked with ⊕
or (exclusively) with ∨.

3. The set of equivalence classes {JϕK ∶ ϕ ∈ Q′} is finite.

A (not necessarily uniform) p-automaton A is called weak if for all q ∈ Q,

either JqK ∩Q ⊆ F or JqK ∩ F = ∅.

In the rest of the chapter we will only consider uniform weak p-automata.

7.2. WEAK P-AUTOMATA⊕ 117

7.2.1 Acceptance game of the extended p-automata

Let A = (Q,Σ, δ, ϕin,Ω) be a p-automaton and M = (S,P,L,AP, sin) be

an Markov chain. The acceptance of M by A depends on the results of

a sequence of (stochastic) weak games, called the acceptance games. The

acceptance games have configurations from the set 2S × cl(Q,Σ) or 2S ×
cl(Q,Σ) × F⊙ (where ⊙ is either ⊕ or ∨. Meaning of F⊙ will soon become

clear). Important point to note is that, each configuration is defined over a

set of states of the Markov chain, in contrast to a single state in alternating

tree automata (or in [58]).

Let Φ = Q ∪ cl(δ(Q,Σ)) be the set of formulas appearing in the vertices

of the game graph GA. Consider the partial order (Φ∖ ≡A,≤A) defined over

the nodes of the game graph of GA. Consider the following set of sets of

states of the Markov chain M .

S = {T ⊆ S ∶ ∀s, s′ ∈ T, L(s) = L(s′)},

that is, for each set T ∈ S, every state in T has the same label. We extend

the labeling function as follows; L ∶ S → 2AP, where L(T) is L(s) for some

s ∈ T . For a formula ϕ ∈ Φ, val(T,ϕ) is calculated for each MSCC JϕK in-

ductively, according to the partial order ≤A. val(T,ϕ) is the value val0(T,ϕ)
of Player 0 in the game G(M, JϕK) = (V,E,V0, V1, Vp, P,Ω) (defined below).

When calculating val(T,ϕ), the value of val(T ′, ϕ′) is pre-calculated for every

ϕ′ ∈ Jϕ′K, such that JϕK ≤A Jϕ′K. Initially, we set val(T,ϕ) = �. Depending

on the type of MSCC JϕK, we have the following cases:

Case 1. Let JϕK be a non-trivial bounded MSCC where marked edges have

marking ⊕. For ϕ = ⊕(r1,⋯, rn), let Iϕ = {q ∶ q ∈ gs(r), r ∈ gt(ϕ)}, and pi,q
be the probability bound on the state q in the term ri, i.e., ri = ∗(∥q∥≥pi,q ∶
q ∈ gs(ri)). Consider T ∈ S, and let the label of every state of T be σ. We

define the set RT,ϕ, which is the set of successor configurations of ⟨T,ϕ⟩,
and ValT,ϕ, which is the set of possible values of val(T,ϕ).

RT,ϕ = ⋃
q∈Iϕ

{(T ′, ϕ′) ∶ T ′ ∈ succ(T) and ϕ′ ∈ cl(δ(q,L(T)))}

ValT,ϕ = {0,1} ∪ {val(T ′, ϕ′) ∶ ⟨T ′, ϕ′⟩ ∈ RT,ϕ, val(T ′, ϕ′) ≠ �}
(7.2)

Where succ(T) = {T ′ ∈ S ∶ T ′ ⊆ ⋃s∈T succ(s)}. Thus, RT,ϕ is the set of all

Player 0 descendant configurations of ⟨T,ϕ⟩ (refer to the table 7.1 for the

definition of successors), and ValT,ϕ is the set of possible values Player 0

can obtain from the configuration ⟨T,ϕ⟩. Observe, RT,ϕ is finite and hence

118 CHAPTER 7. P-AUTOMATA

V T,ϕ
0 = {⟨T,ϕ⟩} ∪ {⟨T ′, ϕ′, v⟩ ∈ RT,ϕ ×ValT,ϕ ∶ � ≠ val(T ′, ϕ′) < v} ∪

{⟨T ′, ϕ1 ∨ ϕ2, v⟩ ∈ RT,ϕ ×ValT,ϕ ∶ val(T ′, ϕ1 ∨ ϕ2) = �}

V T,ϕ
1 = {⟨T,ϕ, f⟩ ∶ f ∈ F⊕T,ϕ} ∪

{⟨T,ϕ, v⟩ ∈ RT,ϕ ×ValT,ϕ ∶ � ≠ val(T,ϕ) ≥ v} ∪
{⟨T,ϕ1 ∧ ϕ2, v⟩ ∈ RT,ϕ ×ValT,ϕ ∶ val(T,ϕ1 ∧ ϕ2) = �}

ET,ϕ = {(⟨T,ϕ⟩, ⟨T,ϕ, f⟩) ∶ f ∈ F⊕T,ϕ} ∪
{(⟨T ′, ϕ1○ϕ2, v⟩, ⟨T ′, ϕi, v⟩) ∶ ○ ∈ {∧,∨},1 ≤ i ≤ 2,

(T ′, ϕ1○ϕ2, v) ∈ RT,ϕ ×ValT,ϕ, val(T ′, ϕ1○ϕ2) = �} ∪
{(⟨T ′, ϕ′, v⟩, ⟨T ′, ϕ′⟩) ∶ T ′ ∈ succ(T), ϕ′ ∈ JϕK, v ∈ ValT,ϕ, val(T,ϕ′) = �} ∪
{(⟨T,ϕ, f⟩, ⟨T ′, δ(q, σ), f(q, T ′)⟩) ∶ T ′ ⊆ succ(T), q ∈ Iϕ, f(q, T ′) > 0,} ∪
{(⟨T,ϕ, f⟩, ⟨{s′}, δ(q, σ), f(q, s′)⟩) ∶ s′ ∈ succ(T), q ∈ Iϕ, f(q, T ′) > 0,

δ(q, σ) ∈ B+(Q)}

Table 7.1: Acceptance game G(M, JϕK), Case 1. σ = L(T), and f(q, T) =
mins∈T f(q, s).

ValT,ϕ ⊆ Q is also finite. It is instructive to ask oneself why Player 0 can have

only finite number of values at ⟨T,ϕ⟩. Observe that the game G(M, JϕK) has

no stochastic branches. Thus any configuration of the game can only take

value of some descendant configuration (which is 0 or 1 if all the descendant

are in the same MSCC).

Let F⊕T,ϕ be a set of functions Iϕ × S → ValT,ϕ where f ∈ F⊕T,ϕ iff there

exists a d⃗ ∈ Dgt(ϕ) and {aq,s′} ∈ RIϕ×S for each q ∈ Iϕ and s′ ∈ succ(T) such

that:
∀q,∀s ∈ T ∈ Iϕ ∶ ∑

s′∈succ(s)

aq,s′f(q, s′)P (s, s′) ≥ pi,qd⃗ri ,

∀s′ ∈ succ(s) ∶ ∑
q∈Iϕ

aq,s′ = 1
(7.3)

d⃗ and {aq,s′} are called witness of the function f . Note that, the set F⊕s,ϕ
is finite, since for each f ∈ F⊕s,ϕ the domain and the range are finite sets,

though its cardinality is exponential in the size of the domain and range.

The game G(M, JϕK) = (V,V0, V1, Vp,E,P,Ω) is defined as follows:

V0 = ⋃
T,ϕ′∈JϕK

V T,ϕ′

0 V1 = ⋃
T,ϕ′∈JϕK

V T,ϕ′

1 Vp = ∅

E = ⋃
T,ϕ′∈JϕK

ET,ϕ
′

Ω = ∅ or V

where V T,ϕ
0 , V T,ϕ

1 , and ET,ϕ are defined in Table 7.1, and Ω = V if for some

7.2. WEAK P-AUTOMATA⊕ 119

s0, ϕ

s0, ϕ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s0, q1 ↦ 0 s1, q1 ↦ 1 s2, q1 ↦ 0

s0, q5 ↦ 1 s1, q5 ↦ 0 s2, q5 ↦ 0

s0, q2 ↦ 0 s1, q2 ↦ 0 s2, q2 ↦ 1

⋯⋯ s0, ϕ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s0, q1 ↦ 1 s1, q1 ↦ 0 s2, q1 ↦ 0

s0, q5 ↦ 0 s1, q5 ↦ 1 s2, q5 ↦ 0

s0, q2 ↦ 0 s1, q2 ↦ 0 s2, q2 ↦ 1

s1,∗∥q3∥≥1
s2,∗∥q4∥≥1

s0, ∥q3∥≥1 s1, ϕ

s1,∗∥q3∥≥1, (s1, q3) ↦ 1

s2,∗∥q4∥≥1, (s2, q4) ↦ 1 false

Figure 7.2.2: 2-player game (case 1.) generated by p-automaton A in Exam-

ple 7.2.2 and MC M in Figure 7.2.3. The oval states are Player 0 states and

the rectangle states are Player 1 states. State ⟨{s1}, ϕ⟩ belongs to another

game and val({s1}, ϕ) has been pre-computed.

q ∈ JϕK, q ∈ F else Ω = ∅.

From the configuration ⟨T,ϕ⟩ (where ϕ ∈ ∥Q∥⊕), the game progresses

as follows: At ⟨T,ϕ⟩, Player 0 selects a function f ∈ F⊕T,ϕ (which implicitly

assumes some witnesses {aq,s′} and d⃗), and moves to a Player 1 configuration

⟨T,ϕ, f⟩. Player 1 first chooses a q ∈ Iϕ, and then decides to move to a

configuration depending on the following cases:

• If δ(q, σ) ∈ B+(∥Q∥). Player 1 can select any subset T ′ ∈ succ(T), and

move to a configuration ⟨T ′, δ(q, σ), v⟩, where v = mins′∈T ′ f(s′, q).

• If δ(q, σ) /∈ B+(∥Q∥). Player 1 can only select T ′ = {s′}, and move to a

configuration ⟨T ′, δ(q, σ), f(s′, q)⟩.

The intuition is as follows: When δ(q, σ) ∈ B+(∥Q∥⊕) then the descendant

configuration belongs to a MSCC that is categorized as Case 1. In such a

situation, Player 1 has the possibility of selecting a set of states T ′ (as de-

fined above), and move to ⟨T ′, δ(q, σ), v⟩. When δ(q, σ) /∈ B+(∥Q∥) then the

descendant configuration belongs to a MSCC that is categorized differently

(presented below) than case 1. In such a situation Player 1 can only select a

singleton set. For convenience, we will write ⟨s,ϕ⟩ (or ⟨s,ϕ, v⟩) for ⟨{s}, ϕ⟩
(or ⟨{s}, ϕ, v⟩, respectively).

Example 7.2.5. Suppose, ϕ = ⊕(⋆∥q1∥≥ 1
3
,⋆∥q2∥≥ 2

3
)., and δ(q1, σ) = ϕ′ ∈

∥Q∥⊕. Player 0 at configuration ⟨{s}, ϕ⟩ decided upon f ∈ F⊕
{s},ϕ

, where

f(s1, q1) = f(s2, q2) = 1, s1 and s2 are successors of s. In such a situation,

120 CHAPTER 7. P-AUTOMATA

Player 1 can decide to go to the configuration ⟨{s1, s2}, ϕ′,1⟩. On the other

hand, suppose δ(q2, σ) = ϕ′ ∈ B+(Q). Then Player 1 can either move to

configurations ⟨{s1}, ϕ′, f(s1, q2)⟩ or ⟨{s2}, ϕ′, f(s2, q2)⟩.

A winning play of the game (see Figure 7.2.2) for Player 0 is determined

by the following rules:

1. Consider a finite play that reaches a configuration ⟨T ′, ϕ′, v⟩ such that

val(s′, ϕ′) ≠ �, that is, the value of the configuration ⟨s′, ϕ′⟩, was al-

ready been determined. Recall (Table 7.1, page 118), configuration

⟨T ′, ϕ′, v⟩ where val(T ′, ϕ) ≠ � has no successor configurations. Player

0 wins if v ≤ val(T ′, ϕ′) else player 1 wins. This is enforced by making

⟨T ′, ϕ′, v⟩ a player 1 configuration if � ≠ v ≤ val(T ′, ϕ), and a player 0

configuration if � ≠ v > val(T ′, ϕ′).

2. If at ⟨T ′, ϕ′, v⟩, val(T ′, ϕ′) = � then the play continues with ⟨T ′, ϕ′⟩.
An infinite play is winning if it satisfies the weak acceptance condition

Ω. That is, if the second component of an infinite play stays in V (the

set of configuration of the game G(M, JϕK)) then player 0 wins if and

V ⊆ Ω else player 1 wins.

Case 2. JϕK is a non-trivial unbounded MSCC of GA. The configurations

of G(M, JϕK) are of the type ⟨T,ϕ⟩ where ∣T ∣ = 1. So we will write ⟨s,ϕ⟩
instead of writing ⟨{s}, ϕ⟩. Let JϕK be a nontrivial MSCC such that all the

transitions in JϕK of GA are in Eu ∪E. This gives rise to a weak stochastic

game.

V = {⟨s,ϕ′⟩ ∶ s ∈ S and ϕ′ ∈ JϕK} V0 = {⟨s,ϕ1 ∨ ϕ2⟩ ∈ V }
Vp = (S ×Q) ∩ V V1 = {⟨s,ϕ1 ∧ ϕ2⟩ ∈ V }
P (⟨s, q⟩, ⟨s′, δ(q,L(s))⟩) = P (s, s′) Ω = ∅ or V

where Ω is V if some q in JϕK is in F else Ω = ∅.

E = {(⟨s,ϕ1 ∧ ϕ2⟩, ⟨s,ϕi⟩) ∈ V × V ∶ 1 ≤ i ≤ 2} ∪
{(⟨s,ϕ1 ∨ ϕ2⟩, ⟨s,ϕi⟩) ∈ V × V ∶ 1 ≤ i ≤ 2} ∪
{(⟨s, q⟩, ⟨s′, δ(q,L(s))⟩) ∈ V × V ∶ P (s, s′) > 0}

By Theorem 2.2.1 (pg 29) a value val0(s,ϕ) of any configuration ⟨s,ϕ⟩ ∈ V
exists. We set val(s,ϕ) to this value.

Case 3. Let JϕK be a nontrivial bounded MSCC with ∨ marked edges. We

will not make use of this case in this exposition on p-automata. Hence,

7.2. WEAK P-AUTOMATA⊕ 121

V s,ϕ
0 = {⟨s,ϕ⟩} ∪ {⟨s′, ϕ′, v⟩ ∈ Rs,ϕ ×Vals,ϕ ∶ � ≠ val(s′, ϕ′) < v} ∪

{⟨s′, ϕ1 ∨ ϕ2, v⟩ ∈ Rs,ϕ ×Vals,ϕ ∶ val(s′, ϕ1 ∨ ϕ2) = �}

V s,ϕ
1 = {⟨s,ϕ, f⟩ ∶ f ∈ F∨s,ϕ} ∪

{⟨s,ϕ, v⟩ ∈ Rs,ϕ ×Vals,ϕ ∶ � ≠ val(s,ϕ) ≥ v} ∪
{⟨s,ϕ1 ∧ ϕ2, v⟩ ∈ Rs,ϕ ×Vals,ϕ ∶ val(s,ϕ1 ∧ ϕ2) = �}

Es,ϕ = {(⟨s,ϕ⟩, ⟨s,ϕ, f⟩) ∶ f ∈ F∨s,ϕ} ∪
{(⟨s′, ϕ1○ϕ2, v⟩, ⟨s′, ϕi, v⟩) ∶ ○ ∈ {∧,∨},1 ≤ i ≤ 2,

(s′, ϕ1○ϕ2, v) ∈ Rs,ϕ ×Vals,ϕ, val(s′, ϕ1○ϕ2) = �} ∪
{(⟨s′, ϕ′, v⟩, ⟨s′, ϕ′⟩) ∶ s′ ∈ succ(s), ϕ′ ∈ JϕK, v ∈ Vals,ϕ, val(s,ϕ′) = �} ∪
{(⟨s,ϕ, f⟩, ⟨s′, δ(q, σ), f(q, s′)⟩) ∶ s′ ⊆ succ(s), q ∈ Iϕ, f(q, s′) > 0,} ∪
{(⟨s,ϕ, f⟩, ⟨{s′}, δ(q, σ), f(q, s′)⟩) ∶ s′ ∈ succ(s), q ∈ Iϕ, f(q, s′) > 0,

δ(q, σ) ∈ B+(Q)}

Table 7.2: Acceptance game G(M, JϕK), Case 2. σ = L(s).

the semantics of the acceptance game is kept identical to [58]. Let ϕ =
∨(∥q1∥&1p1 ,⋯, ∥qn∥&npn). The sets Rs,ϕ,Vals,ϕ are defined as follows:

Rs,ϕ = ⋃
q∈Iϕ

{⟨s′, ϕ′⟩ ∶ s′ ∈ succ(s) and ϕ′ ∈ cl(δ(q,L(s)))}

Vals,ϕ = {0,1} ∪ {val(s′, ϕ′) ∶ ⟨s′, ϕ′⟩ ∈ Rs,ϕ, val(s′, ϕ′) ≠ �}
(7.4)

V0 = ⋃
T,ϕ′∈JϕK

V T,ϕ′

0 V1 = ⋃
T,ϕ′∈JϕK

V T,ϕ′

1 Vp = ∅

E = ⋃
T,ϕ′∈JϕK

ET,ϕ
′

Ω = ∅ or V

where V T,ϕ
0 , V T,ϕ

1 , and ET,ϕ are defined in Table 7.2, and Ω = V if for some

q ∈ JϕK, q ∈ F else Ω = ∅. Observe that the configurations of the game are

of the set S × δ(Q,Σ) ∪ S × δ(Q,Σ) × F∨ (as contrast to case 1.)

Another notable difference is the set of functions F∨s,ϕ = Iϕ × succ(s) →
Vals,ϕ (rather than F⊕s,ϕ) (See Table 7.2). A function f ∈ F∨s,ϕ if there exists

a ∈ RIϕ ×RS such that:

• there is a q ∈ Iϕ with ∑s′∈succ(s) aq,sf(q, s)P (s, s′) ≥ pi or,

• there is a s ∈ succ(s) with ∑q∈Iϕ aq,s′ ≠ 1.

The winning condition is same as case 1. As mentioned before, we will not

need the terms in ∥Q∥∨ and present it here only for completeness.

122 CHAPTER 7. P-AUTOMATA

Case 4. Let JϕK be a trivial MSCC. It is handled as one of the above cases.

The value of the configurations val(T,ϕ) is obtained from the values of the

successor configurations, which have already been calculated in G(M, Jϕ′K).

Definition 7.2.4. A Markov chain M is accepted by a p-automaton A, iff

val({sin}, ϕin) = 1. The language of A, L(A) = {M ∶ A accepts M}.

The p-automata defined here has two notable difference than p-automata

in [58]. First is the syntactic difference due to the presence of construct

⊕(ϕ1,⋯, ϕn). Second is the semantic difference were the configurations of

the acceptance game is defined over sets of states of the Markov chains for a

bounded MSCC (case 1.). AS we will see presently, this is crucial for proving

correctness of Theorem 7.2.3. For unbounded MSCC the description of the

acceptance game is same as the original definition.

The number of configurations of the weak game G(M, JϕK) when ϕ is a

bounded MSCC is exponential in the size of JϕK and the Markov chain(case

1.). The exponential blowup is due to the different function f ∈ F⊕s,ϕ and the

cardinality of S. For the other cases the size of the game is polynomial in

the size of the automaton and the Markov chain. Since, weak games can be

solved in polynomial time in the size of the game and the weak stochastic

game can be solved in NP∩co-NP, the problem whether a finite Markov chain

is accepted by a p-automaton can be decided in exponential time.

7.2.2 Properties of p-automata

Closure Properties: We will first show that the language of a p-automaton

is closed under probabilistic bi-simulation.

Proposition 7.2.1. For a p-automaton A and MCs M1 and M2 with M1 ∼
M2, M1 ∈ L(A) iff M2 ∈ L(A).

Proof. Let M1 = (S1, P,L, s1,in) and M2 = (S2, P,L, s2,in), with S1 disjoint

from S2, hence we use the same function P and L for both MCs with im-

punity. Let A be (Q,Σ, δ, ϕin,Ω), G1 and G2 be the acceptance game for

MCs M1 and M2, respectively.

Consider any two configurations ⟨T1, ϕ⟩ and ⟨T2, ϕ⟩ in G1 and G2, re-

spectively, such that ∀s1 ∈ T, s2 ∈ T2 ∶ s1 ∼ s2. We show that val(T1, ϕ) =
val(T2, ϕ). Equivalently, we construct a wining strategy π2 for Player 0 in

G2 from the winning strategy π1 of Player 0 in G1. By symmetry of the

argument (presented below), it also follows that we can construct a wining

strategy for Player 0 in G1 from the winning strategy of Player 0 in G2.

Consider the case when JϕK is unbounded MSCC. Gi(Mi, JϕK) is a stochas-

tic weak game (for i ∈ {1,2}). We start from the configurations c1 = ⟨s1, ϕ⟩

7.2. WEAK P-AUTOMATA⊕ 123

and c2 = ⟨s2, ϕ⟩ where s1 ∈ S1 and s2 ∈ S2 and s1 ∼ s2. The claim is, at each

step of any play of the games, we move to configurations ⟨s′1, ϕ′⟩ and ⟨s′2, ϕ′⟩
in G1 and G2 (according to strategy π1 and π2), respectively, where s′1 ∼ s′2.

When ϕ is of the form ϕ1 ∧ϕ2, c1 and c2 are Player 1 configurations. If

Player 1 chooses (s2, ϕi) in G2 then we make Player 1 in G1 choose (s1, ϕi)
for i ∈ {1,2}. When ϕ is of the form ϕ1 ∨ ϕ2, c1 and c2 are Player 0

configuration, Player 0 in G2 follows the choice of Player 0 in G1, i.e., if

Player 0 chose ⟨s1, ϕi⟩ in G1 then Player 0 in G2 chooses ⟨s2, ϕi⟩ in G2 (for

i ∈ {1,2}). For ϕ = q ∈ Q, the play is resolved by a probabilistic choice. We

know that P (s1,C1) = P (s2,C2) where Ci ⊆ Si (for i ∈ {1,2}) and C1 ∪C2 is

an equivalence class of ∼. Thus, for any play that ends in ⟨s′1, δ(q, σ)⟩ in G1,

there is a corresponding play in G2 that ends in ⟨s′2, δ(q, σ)⟩, and we have

s′1 ∼ s′2 where σ = L(s1) = L(s2). Hence the set of plays that are winning

in G1 have the same probability measure as the set of corresponding play in

G2. Consequently, val(s1, ϕ) = val(s2, ϕ).
Let JϕK be a bounded MSCC of GA where the only marked edges have ⊕

as markings. Consider T1 ⊆ S1 and T2 ⊆ S2, such that for each s1 ∈ T1, there

exist s2 ∈ T2 such that s1 ∼ s2 and vice-versa. We show that if val(T1, ϕ) = 1

then val(T2, ϕ) = 1. Disjunction and conjunctions are handled as before. Let

ϕ ∈ ∥Q∥⊕, and consider s1 ∈ T1 and s2 ∈ T2, such that s1 ∼ s2. We have a

function f1 ∈ F⊕s1,ϕ with witness d⃗ and {aq,s′}q∈Iϕ,s′∈succ(s) for the play in G1.

Define f2 ∶ Iϕ × succ(s2) → [0,1] with f2(q, s′2) = f1(q, s′1) for s′j ∈ succ(sj)
(j ∈ {1,2}) for some s′1 ∼ s′2. It remains to show that f2 ∈ F⊕s2,ϕ. That is,

we need to find suitable witnesses d⃗′ and {a′q,s′2}q∈Iϕ,s′2∈succ(s2) for f2, that

satisfies the equation 7.3 (page 118). Let d⃗′ = d⃗ and choose {a′q,s′} such that

for each q ∈ Iϕ, whenever f(q, s′2) = f(q, s′1), a′q,s′2 = aq,s′1 . This implies that

for each equivalence class C:

∑
s′1∈C

aq,s′1P (s1, s
′
1) = ∑

s′2∈C

a′q,s′2
P (s2, s

′
2) (7.5)

There could be many possible solution for {a′q,s′}, we need to find one solu-

tion such that f2 ∈ F⊕s,ϕ. For each q ∈ Iϕ:

∑
s′2∈succ(s2)

a′q,s′2
P (s2, s

′
2)f2(q, s′2) = ∑

C∈S2∪S1∖∼

(∑
s′2∈C

a′q,s′2
P (s2, s

′
2)f2(q, s′2))

= ∑
C∈S2∪S1∖∼

(∑
s′1∈C

aq,s′1P (s1, s
′
1)f1(q, s′1)) = ∑

s′1∈succ(s1)

a′q,s′1
P (s1, s

′
1)f1(q, s′1) = pi,qd⃗

′(ri).

Thus any value of {a′q,s′2} satisfying the constraint (7.5) also satisfies the first

condition of equation (7.3). If now Player 1 in G2 chooses ⟨T ′2, δ(q, σ), v⟩,

124 CHAPTER 7. P-AUTOMATA

s0

s1 s2

1
3

1
3

1
3

{a}

{b} {c}

Figure 7.2.3: A Markov chain M,

with S = {s0, s1, s2} and P (s0, s0) =
P (s0, s1) = P (s0, s2) = 1

3 ,

P (s1, s1) = P (s2, s2) = 1.

s0

s1 s2

1
2

1
2

{a}

{b} {c}

Figure 7.2.4: A Markov decision pro-

cess D. ∆(s0) = {µ1, µ2}, where

µ1(s0) = 1
2 , µ1(s1) = 1

2 and µ2(s2) = 1.

Player 1 in G1 is made to choose T1, such that for each s′2 in T ′2 there exist

s′1 ∈ T1, such that s′1 ∼ s′2.

Proposition 7.2.2. Language of p-automata are closed under union and

intersection.

Proof. Follows trivially from the construction of p-automata.

Embedding of MDPs:

Definition 7.2.5 (p-automata for an MDP). The p-automatonAD = (Q,Σ, δ, ϕin,Ω)
is defined as follows: 1

Q = S × S ; Ω = Q ;

δ((s, s′), L(s)) = ϕs′ and δ((s, s′), σ) = false if σ ≠ L(s)
ϕin = ⊕(ri ∣ µi ∈ ∆(sin), ri = ∗(∥(sin, µi, s′)∥≥µi(s′) ∣ µi(s′) > 0))
ϕs = ⊕(ri ∣ µi ∈ ∆(s) and ri = ∗(∥(s, µi, s′)∥≥µi(s′) ∣ µi(s′) > 0))

Example 7.2.6. The MDP in the Figure 7.2.4 is embedded in the automa-

ton A defined in the Example 7.2.2 and the MC of Figure 7.2.3 is induced

by a scheduler of the MDP and is accepted by A.

Theorem 7.2.3. Let D be an MDP and AD be its p-automaton.

1. For every scheduler η, the induced Markov chain Dη ∈ L(AD).

2. For every MC M ∈ L(AD) there exists a η ∈ HR(D) such that M ∼Dη.
1It could be the case that there is some state q ∈ Q which a guarded state of more than

one term of a formula ϕ ∈ ∥Q∥
⊕. This can be resolved by renaming and introducing new

states.

7.2. WEAK P-AUTOMATA⊕ 125

Proof. 1.) Let the MDP D be (S,∆,Σ, L, sin). We will first show that for

any scheduler η ∈ HR(D), Dη = (S+,Σ, P ′, L, sin) is in L(AD). The accep-

tance game of Dη is a weak game and any configuration of the game has

value either 0 or 1. We fix the following strategy for Player 0. At ⟨{w}, ϕw↓⟩
(where w is a state of Dη and a finite path of D), Player 0 chooses a function

f ∶ Iϕw↓.w × succ(w) → {0,1} with witnesses {aq,w⋅s′}q∈Iw,ϕw↓ ,w⋅s′∈succ(w) and

d⃗ such that, f(q,w⋅s′) = 1, aq,w⋅s′ = 1 iff q = (w↓, s′) and d⃗(i) = η(µi), for

µi ∈ ∆(w↓). It follows immediately, that equation (7.3) is satisfied. That is,

for all q = (w↓, s′) ∈ Iϕw↓ : aq,w⋅s′f(q,w⋅s′)P ′(w,w⋅s′) = µi(s′)η(µi). Note

that there is exactly one successor of w, say u = w⋅s, such that f(u, q) = 1.

Thus Player 1 can only move to configurations of the type ⟨{w⋅s′}, ϕs′ ,1⟩,
and Player 0 can always continue from ⟨{w}, ϕw↓⟩ to ⟨{w⋅s′}, ϕs′⟩. Since the

set of accepting configurations Ω is Q, any finite play according to the cho-

sen strategy can be extended indefinitely, and hence is winning for Player 0.

2.) Suppose MC M ′ is not accepted by A. This implies, that a finite path

⟨T0, ϕs0⟩,⋯, ⟨Tn, ϕsn⟩ is winning for Player 1, with T0 = {t0} which is the

initial state of M ′. Since every infinite path is winning for Player 0. Hence

at ⟨Tn, ϕsn⟩ it is not the case that Player 0 can find witnesses

bd and {aq,s′} such that,

1. ∀ri ∈ gt(ϕsn) ∀q ∈ >(ri) ∀s ∈ Tn ∶ ∑
s′∈succ(s)

aq,s′P (s, s′)f(q, s′) = pi,qd⃗i

2. for each q ∈ >(gt(ϕsn)) and any set T ′ ⊆ succ(Tn), where ∀s′ ∈ T ′ ∶
f(q, s′) = 1, ⟨T ′, ϕsn⟩ is winning for Player 0.

Take any other (arbitrary) play ⟨T ′0, ϕs0⟩,⋯, ⟨T ′n, ϕsn⟩ (with T0 = T ′0 = {t0}).

Then ⟨T0 ∪ T ′0, ϕs0⟩,⋯, ⟨Tn ∪ T ′n, ϕsn⟩ is also winning for Player 1. So Player

1 plays rationally, she will choose T ′i as large as possible.

Let M = (T,Σ, P,L, t0), and M ∈ L(AD). The value of configura-

tion ⟨{t0}, ϕs0⟩ is 1, and assume Player 1 plays optimally, i.e., she chooses

a set as large as possible. We will construct a map η⋆ ⊆ (S+ × DDs).
For any possible finite run, ρn = ⟨T0, ϕs0⟩,⋯, ⟨Tn, ϕsn⟩, with T0 = {s0},

(s0,⋯, sn, d⃗) ∈ η⋆, where d⃗ is the distribution chosen by Player 0 at ⟨Tn, ϕsn⟩.
Since, Player 1 plays optimally, it cannot be the case that two distinct play

ρn = ⟨T0, ϕs0⟩,⋯, ⟨Tn, ϕsn⟩ and ρ′n = ⟨T ′0, ϕs0⟩,⋯, ⟨T ′n, ϕsn⟩ exists. Thus, we

see that η⋆ ∈ HR(D).
Now consider an unrolling of M (recall this gives us a probabilistic tree

pg 79). Thus, states ofM are subsets of T+. It suffices to show a bisimulation

relation between, Dη⋆ and the unrolled M . Let R ⊆ (T +∪S+)×(T+∪S+) be

126 CHAPTER 7. P-AUTOMATA

the smallest transitive, reflexive and symmetric relation with the following

property:

• t0Rs0.

• For each play ρn = ⟨T0, ϕs0⟩,⋯, ⟨Tn, ϕsn⟩⟨Tn+1, ϕs⟩, all tn+1 ∈ Tn+1,

vRw, where v = t0,⋯, tn+1, such that ti+1 ∈ succ(ti) for all 0 ≥ i ≤ n and

w = s0,⋯, sn.

We will show that R is a bi-simulation relation.

• If uRw then L(u) = L′(w). If L(u) ≠ L′(w) then ⟨T,ϕw↓⟩ cannot

be winning for Player 0, where u↓ ∈ T . [Recall for a sequence ρ =
(a0,⋯, an), ρ↓ is the last element an.]

• Let t = u↓. For each q ∈ Iϕw↓ , we know, ∑t′∈succ(t) P (t, t′)aq,t′f(q, t′) =
pq,id⃗i. Let C be the set of successors of u and w such that C ∈ (T+ ∪
S+) ∖R. From this we can deduce,

∑
u⋅t′∈C

P (u,u⋅t′) = ∑
w⋅s′∈C

P ′(w,w⋅s′).

where P ′ is the probability distribution function of the Markov chain

Dη⋆ . For each equivalence class C, let Q(C) = {q = (w,µ,w⋅s′) ∶ w⋅s′ ∈
C}. Now consider any arbitrary q ∈ Q(C) where q = (w,µ,w⋅s′). We

know for each q ∈ Iϕw⇂ :

∑
u′∈succ(u)

P (u,u′)aq,u′f(q, u′) = P ′(w,w⋅s′)

If u /∈ C then f(u′, q) = 0. Thus, we can be rewrite as:

∑
u′∈succ(u)∶u∈C

P (u,u′)aq,u′f(q, u′) = P ′(w,w⋅s′)

Summing over all q ∈ Q(C) gives us:

∑
q∈Q(C)

∑
u′∈succ(u)∶u∈C

P (u,u′)aq,u′f(q, u′) = ∑
q∈Q(C)

P ′(w,w⋅s′)

Changing the order of summation:

∑
u′∈succ(u)∶u∈C

P (u,u′)(∑
q∈Q(C)

aq,u′f(q, u′)) = ∑
u′∈succ(u)∶u∈C

P (u,u′)

As f(q, u′) = 0 for q /∈ C, we can deduce:

∑
u′∈succ(u)∶u∈C

P (u,u′) = ∑
q∈Q(C)

P ′(w,w⋅s′).

7.2. WEAK P-AUTOMATA⊕ 127

centering

a

b

c d

t0

{a}
t1

{b}

t′1

{b}

{b}

tn

t′n

{b′}
{c}

{d}
0.5

0.5

Figure 7.2.5: The MDP (left) does not induces the Markov chain (right).

Thus, R is a bi-simulation relation , and M ∼Dη.

The embedding of MDP relies on the construct ϕ ∈ ∥Q∥⊕. Consider the

MDP in Figure 7.2.3. At the state s0 there are two choices of distribution.

If we limit the definition of the p-automata to [58] then we have only dis-

junction (or conjunction) to define the non-determinism at the state s0 and

we cannot accept the MC in Figure 7.2.3.

We also keep track of the subset of states T that were induced by the

same q ∈ Iϕ. This is the crucial feature of the extended p-automata. Refer to

the Figure 7.2.5, observe that, at tn and t′n the formula ϕb is satisfied. Player

0 can select with probability 1 the d branch for tn and with probability 1

the c branch for t′n. But the resulting Markov chain will not be induced

by any scheduler of MDP. Thus, we need to remember that states t1 and

t′1 were induced by the same distribution. So, at ⟨{t0}, ϕa⟩ Player 1 can

change the current configuration of the acceptance game to ⟨{t1, t′1}, ϕb⟩.
This will eventually lead to a configuration ⟨{tn, t′n}, ϕb⟩. At this point

Player 0 cannot find a distribution such that both tn and t′n satisfy ϕb and

looses.

Embedding of PCTL formulas: PCTL can be embedded into p-automata.

That is, given a PCTL formula f over AP, there exists a p-automaton A,

such that for any Markov chain M , f satisfies M if and only if M is ac-

cepted by A. The algorithm for this translation from PCTL to p-automata

was provided in [58]. In this section we recall the construction.

Definition 7.2.6. From PCTL formula ϕ over APin negative normal form,

we construct a p-automaton Aϕ = (Q,Σ, δ, ϕin, F) as follows:

128 CHAPTER 7. P-AUTOMATA

[aU b]≥ 1
3

a ∧ ⋆JaU bK≥ 1
3

aU b (a ∧ aU b) ∨ b

b

a ∧ aU b

a

σ

trueb

true a

0

1

0

1

Figure 7.2.6: The game graph of p-automaton embedding [aU b]> 1
3
.

1. Let clp(ϕ) be the set of path sub-formula of ϕ. Q = clp(ϕ) ∪AP.

2. F consists of AP, their negations, and all ψ ∈ clp(ϕ) not of the form

ϕ1 Uϕ2.

3. The alphabet Σ = 2AP.

4. The definition of the translation relation δ needs a little preparation.

We define the function τ :

τ(a) = a where a ∈ AP,

τ(∼a) = ∼a,

τ(ψ1 ○ ψ2) = τ(ψ1) ○ τ(ψ2) where ○ ∈ {∧,∨},

τ([Xψ]&p) = ∗(∥Xψ∥&p)
τ([ψ1 Uψ2]&p) = (τ(ψ1) ∧ ∗(∥ψ1 Uψ2∥&p)) ∨ τ(ψ2)
τ([ψ1 Wψ2]&p) = (τ(ψ1) ∧ ∗(∥ψ1 Wψ2∥&p)) ∨ τ(ψ2)

δ is defined as follows:

δ(a, σ) = (a ∈ σ) where a ∈ AP and σ ∈ Σ.

δ(∼a, σ) = (a /∈ Σ)
δ(Xψ,σ) = τ(ψ) where τ(ψ) is defined above.

δ(ψ1 Uψ2, σ) = (τ(ψ1) ∧ ψ1 Uψ2) ∨ τ(ψ2)
δ(ψ1 Wψ2, σ) = (τ(ψ1) ∧ ψ1 Wψ2) ∨ τ(ψ2)

5. The initial formula ϕin = τ(ϕ).

Example 7.2.7. Figure 7.2.6 shows the game graph of the p-automaton

that encodes the PCTLformula [aU b]> 1
3
.

Observe that in the game graph of any p-automaton obtained from a

PCTL formula by the definition 7.2.6, all bounded MSCCs are trivial. Thus

the acceptance game of such a p-automaton is same as in [58]. The following

theorem establishes the correctness of the translation.

7.2. WEAK P-AUTOMATA⊕ 129

Theorem 7.2.4 ([58]). For any MC M and PCTL formula ϕ, M ⊧ ϕ if

and only if M ∈ L(Aϕ).

7.2.3 Simulation game

In the previous section we have seen how Markov chain induced by an MDP

can be captured by a p-automaton. To accomplish this, acceptance game

of the extended p-automata have configurations which keep track of sets

of states of the input Markov chain. This increase in power comes at the

cost that emptiness and hence language inclusion cannot be decidable. This

follows from [12] where the scheduler synthesis problem (recall pg 75) for

PCTL winning condition was shown to be undecidable.

In this section we present a simulation relation that resembles Roberto

Segala’s [88] simulation relation on probabilistic automata. We will con-

sider simulation game G≤ for two p-automata where game graphs of the

p-automata do not have unbounded MSCCs marked with ∨ marked edges.

The technique reuses the method presented in [58], the only notable differ-

ence being the formulas in ∥Q∥⊕.

LetG1 andG2 be the game graphs of the p-automataA1 = (Q,Σ, δ, ϕin, F)
and A2 = (U,Σ, δ, ψin, F) (Q is disjoint from U), and ⪯1 and ⪯2 be the partial

orders for their respective game graphs. The partial order ⪯⊆ Q′×U ′, where

Q′ = Q ∪ cl(Q,Σ) and U ′ = U ∪ cl(U,Σ), is defined as the lexicographical

ordering on ⪯1 and ⪯2. Formally, (ϕ,ψ) ⪯ (ϕ′, ψ′) if either ϕ ⪯1 ϕ
′ or ϕ = ϕ′

and ψ ⪯2 ψ
′. The equivalence relation ⪯ ∩ ⪯−1 is denoted by ≡. A formula ϕ

is said to be simulated by ψ, if the value of the configuration ⟨ϕ,ψ⟩ in the

game G≤(JϕK, JψK) (defined below) is 1.

Similar to the acceptance games, the values of configurations in (JϕK, JψK)
are calculated after the value of all configurations in (Jϕ′K, Jψ′K) has already

been calculated, where (JϕK, JψK) ⪯ (Jϕ′K, Jψ′K). We have the following cases:

Case 1. Let JϕK and JψK are non-trivial unbounded and bounded MSCCs,

respectively. We set val(ϕ,ψ) = 0, formulas from unbounded MSCCs cannot

be simulated by formulas from bounded MSCCs.

Case 2. Let JϕK and JψK be unbounded MSCCs. G≤(JϕK, JψK) is defined in

Table 7.3. The winning condition Ω = V if JϕK ∩Q ⊆ F implies JψK ∩U ⊆ F
else Ω = ∅.

Case 3. Let JϕK and JψK be bounded MSCCs. Suppose ϕ ∈ ∥Q∥⊕ and

130 CHAPTER 7. P-AUTOMATA

V = {⟨ϕ′, ψ′⟩ ∶ ϕ ⪯1 ϕ
′, ψ ⪯2 ψ

′} Vp = {}
V0 = ∪ {⟨ϕ1 ∧ ϕ2, ψ1 ∨ ψ2⟩ ∶ ϕi ∈ JϕK, ψi ∈ JψK}

∪ {⟨ϕ1 ∧ ϕ2, u
′⟩ ∶ u′ ∈ U,ϕi ∈ JϕK} ∪ {⟨q′, ψ1 ∨ ψ2⟩ ∶ q′ ∈ Q,ψi ∈ JψK}

V1 = {⟨q′, u′⟩ ∶ q; ∈ Q,u′ ∈ U} ∪ {⟨ϕ1 ∨ ϕ2, ψ
′⟩ ∶ ϕi ∈ JϕK, ψ′ ∈ JψK}

∪ {⟨ϕ′, ψ1 ∧ ψ2⟩ ∶ ϕ′ ∈ JϕK, ψi ∈ JψK}

E = {(⟨ϕ1 ∧ ϕ2, ψ1 ∨ ψ2⟩, ⟨ϕi, ψj⟩) ∈ V × V ∶ 1 ≤ i, j ≤ 2} ∪
{(⟨q′, ψ1 ∨ ψ2⟩, ⟨q′, ψi⟩) ∶ 1 ≤ i ≤ 2} ∪
{(⟨ϕ1 ∧ ϕ2, u

′⟩, ⟨ϕi, u′⟩) ∈ V × V ∶ 1 ≤ i ≤ 2} ∪
{(⟨q′, u′⟩, ⟨δ(q′, σ), δ(u′, σ)⟩) ∈ V × V ∶ a ∈ Σ} ∪
{(⟨ϕ1 ∨ ϕ2, ψ⟩, ⟨ϕi, ψ⟩) ∶ 1 ≤ i ≤ 2} ∪ {(⟨ϕ,ψ1 ∧ ψ2⟩, ⟨ϕi, ψ⟩) ∶ 1 ≤ i ≤ 2}

Table 7.3: Simulation game G≤(JϕK, JψK), where JϕK and JψK are unbounded

MSCCs (Case 2).

ψ ∈ ∥U∥⊕.

Rϕ,ψ = ⋃
q∈Iϕ

⋃
u∈Iψ

⋃
σ∈Σ

{⟨α,β⟩ ∶ α ∈ cl(δ(q, σ)), β ∈ cl(δ(u,σ))}

Valϕ,ψ = {0,1} ∪ {val(α,β) ∶ ⟨α,β⟩ ∈ Rϕ,ψ, val(α,β) ≠ �}

Let ϕ = ⊕(r1,⋯, rn) and ψ = ⊕(t1,⋯, tm), where ri ∈ ∥Q∥∗ and tl ∈ ∥U∥∗.

Let F⊕ri,ψ be a set of functions Iri × Iψ → Valϕ,ψ. f ∈ F⊕ri,ψ iff there exist

{aq,u}q∈Iri ,u∈Iψ and d⃗ ∈ Dgt(ψ) such that:

• for all u ∈ Iψ, ∑q∈Iri aq,upi,qf(q, u) ≥ d⃗tjpj,u,

• For all q ∈ Iri , ∑u∈Iψ aq,u = 1.

The game is defined in the Table 7.4, where α,αi ∈ JϕK and β,βi ∈ JψK, and

γ and ε belong to JϕK ∩ ∥Q∥⊕ and JψK ∩ ∥U∥⊕, respectively. The winning

condition Ω = V if JϕK ∩Q ⊆ F implies JψK ∩U ⊆ F else Ω = ∅.

Most of the transitions are similar to Table 7.1 (page 118). The im-

portant difference is at configuration ⟨γ, ε⟩, where γ ∈ ∥Q∥⊕ and ε ∈ ∥U∥⊕.

Player 1 in such a configuration selects a letter σ and a term r ∈ gt(γ),
and Player 0 tries to win from the configuration ⟨r, ε, σ⟩. Intuitively, the

idea is reminiscent of Segala’ simulations on probabilistic automata [88],

where state s is simulated by state s′, iff every probabilistic transition from

s is simulated by a combined (weighted) probabilistic transition of the other.

7.2. WEAK P-AUTOMATA⊕ 131

V = {⟨ϕ′, ψ′, σ⟩ ∶ ϕ′ ∈ JϕK, ψ′ ∈ JψK, σ ∈ Σ} ∪
{⟨r, ε, σ, f⟩ ∶ r ∈ gt(γ), t ∈ gt(ε), σ ∈ Σ, f ∈ F⊕r,ε} ∪
{⟨ϕ′, ψ′⟩, ⟨ϕ′, ψ′, v⟩ ∶ ϕ ⪯1 ϕ

′, ψ ⪯2 ψ
′, v ∈ Valϕ′,ψ′}

V0 = {⟨ϕ1 ∧ ϕ2, ψ1 ∨ ψ, v⟩, ⟨ϕ1 ∧ ϕ2, ε, v⟩, ⟨γ,ψ1 ∨ ψ2, v⟩} ∪
{⟨α,β, v⟩ ∶ � ≠ val(α,β) < v} ∪ {⟨r, ε, σ⟩ ∶ r ∈ gt(γ), σ ∈ Σ}

V1 = {⟨α,β, v⟩ ∶ � ≠ val(α,β) ≥ v} ∪ {⟨r, ε, σ, f⟩ ∶ r ∈ gt(γ), f ∈ F⊕r,ε}
∪ {⟨γ, ε⟩, ⟨γ, ε, σ⟩, ⟨α1 ∨ α2, β, v⟩, ⟨α,β1 ∧ β2, v⟩}

E = {(⟨α1 ∧ α2, β1 ∨ β2, v⟩, ⟨αi, βj , v⟩ ∶ 1 ≤ i, j ≤ 2} ∪
{(⟨α1 ∧ α2, ε, v⟩, ⟨αi, ε, v⟩) ∶ 1 ≤ i ≤ 2} ∪ {(⟨γ, β1 ∨ β2⟩, ⟨γ, βi⟩) ∶ 1 ≤ i ≤ 2}
∪ {(⟨γ, ε, v⟩, ⟨γ, ε⟩) ∶ val(γ, ε) = �} ∪ {(⟨γ, ε⟩, ⟨γ, ε, σ⟩)} ∪
{(⟨γ, ε, σ⟩, ⟨r, ε, σ⟩) ∶ r ∈ gt(γ)} ∪ {(⟨r, ε, σ⟩, ⟨r, ε, σ, f⟩) ∶ f ∈ F⊕r,ε} ∪
{(⟨r, ε, σ, f⟩, ⟨δ(q, σ), δ(u,σ), f(q, u)⟩) ∶ f(q, u) > 0} ∪
{(⟨α1 ∨ α2, β, v⟩, ⟨αi, β, v⟩) ∶ 1 ≤ i ≤ 2} ∪
{(⟨α,β1 ∧ β2, v⟩, ⟨α,βi, v⟩) ∶ 1 ≤ i ≤ 2}

Table 7.4: Simulation game G≤(JϕK, JψK), where JϕK and JψK are bounded

MSCCs (Case 3).

V = {⟨ϕ′, ψ′⟩ ∶ ϕ ⪯1 ϕ
′, ψ ⪯2 ψ

′} ∪ {⟨r, u, σ⟩ ∶ ∃γ ∈ JϕK ∩ ∥Q∥⊕ ∶ r ∈ gt(γ)}
∪ {⟨γ, u, σ⟩ ∶ γ ∈ ∥Q∥⊕ ∩ JϕK, u ∈ U ∩ JψK, σ ∈ Σ}

V0 = {⟨α1 ∧ α2⟩, ⟨α1 ∧ α2, u⟩, ⟨γ, β1 ∨ β2⟩}

V1 = {⟨α1 ∨ α2, β⟩, ⟨α,β1 ∧ β2⟩} ∪ {⟨γ, u⟩ ∶ γ ∈ ∥Q∥⊕ ∩ JϕK, u ∈ U ∩ JψK}
∪ {⟨γ, u, σ⟩ ∶ γ ∈ ∥Q∥⊕ ∩ JϕK, u ∈ U ∩ JψK, σ ∈ Σ}

Vp = (∥Q∥∗ ×U ×Σ) ∩ V

E = {(⟨α1 ∧ α2, β1 ∨ β2⟩, ⟨αi, αj⟩) ∶ 1 ≤ i, j ≤ 2} ∪
{(⟨α1 ∧ α2, u⟩, ⟨αi, u⟩) ∶ 1 ≤ i ≤ 2} ∪
{(⟨γ, β1 ∨ β2⟩, ⟨γ, βi⟩) ∶ 1 ≤ i ≤ 2} ∪ {(⟨α,β1 ∧ β2⟩, ⟨α,βi⟩) ∶ 1 ≤ i ≤ 2}
{(⟨γ, u⟩, ⟨γ, u, σ⟩) ∶ γ ∈ ∥Q∥⊕, σ ∈ Σ} ∪
{(⟨r, u, σ⟩, ⟨δ(q, σ), δ(u,σ)⟩) ∶ ∥q∈∥&∈p∈gt(r)} ∪
{(⟨γ, u, σ⟩, ⟨r, u, σ⟩) ∶ γ ∈ ∥Q∥⊕, r ∈ >(γ), a ∈ Σ}

Table 7.5: Simulation game G≤(JϕK, JψK), where JϕK is bounded and JψK is

unbounded MSCCs (Case 4).

132 CHAPTER 7. P-AUTOMATA

Case 4. Let JϕK be a bounded MSCC of G1 and JψK be unbounded MSCC of

G2. The game G≤(JϕK, JψK) is a stochastic weak game, it is defined in the Ta-

ble 7.5. The probability distribution is defined as: P (⟨ri, u, σ⟩, ⟨δ(q, σ), δ(u,σ)⟩) =

u1∨
u2

u1

u2

¬a

a

ϕ,u1 ∨ u2

ϕ,u2

∗(∥q1∥≥ 1
2
, ∥q5∥≥ 1

2
), u2

∗(∥q2∥≥1), u2

∥q3∥≥1, u1 ∨ u2 ∥q4∥≥1, u1 ∨ u2
σ

false

1
2

1
2A′

1

ϕ,u1

Figure 7.2.7: Simulation game of the p-automaton A of example 7.2.2 by

automaton A′ (on the left). The MSCCs of A′ are unbounded and the

MSCCs (Figure 7.2.1) of A are bounded. val(ϕ,u1) = 0 is pre-calculated.

pi,q, where ri ∈ gt(γ) for some γ ∈ ∥Q∥⊕∩ JϕK. The wining condition Ω = V if

JϕK ∩Q ⊆ F implies JψK ∩ U ⊆ F else Ω = ∅. Conjunctions and disjunctions

are handled as in previous cases. Player 1 at configuration ⟨γ, u⟩ selects

(similar to case 3.) a letter σ and a term r ∈ gt(γ) and move to a probabilis-

tic configuration ⟨r, u, σ⟩. The bounds on the guarded states of r determine

the distribution on the configurations of the game (Figure 7.2.7). If the

bounds do not add to 1, sink states are added, which are losing for Player

0.

Case 5. The case when one or both JϕK and JψK are trivial MSCC is

subsumed in at least one of the above cases.

Automaton A2 = (U,Σ, δ, ψin, F) simulates automaton A1 = (Q,Σ, δ, ϕin, F)
(also denoted by A1 ≤ A2) if the value of the configuration ⟨ϕin, ψin⟩

computed by the simulation game is 1.

The weak game generated by bounded MSCC JϕK and JψK, of the game

graphs, can be exponential in size of the graphs. This is due to the expo-

nential number of functions f ∈ F⊕r,ψ (r ∈ gt(ϕ)). But the size stochastic

games is polynomial in the size of the game graph. Thus, the simulation

procedure can be implemented by an exponential time algorithm.

Theorem 7.2.5. Let A1 and A2 be p-automata. Then:

A1 ≤ A2 implies L(A1) ⊆ L(A2).

7.2. WEAK P-AUTOMATA⊕ 133

Proof. LetM = (S,P,Σ, L, sin) be an arbitrary MC andA1,A2 be p-automata

(Q,Σ, δ, ϕin, F), (U,Σ, δ, ψin, F), respectively. We assume that Q and U are

disjoint and hence use the same symbol for the transition relations and final

states for the two automata.

We show that, if val({sin}, ϕin) = 1 in the acceptance game of M by A1

and val(ϕin, ψin) = 1 in the simulation game ofA1 byA2, then val({sin}, ψin) =
1 in the acceptance game of M by A2. Let the acceptance games of M by

A1 and A2 be G1 and G2, respectively, and the simulation game of A1 by A2

be G≤. Equivalently, we show that the claim: val(T,ϕ)⋅val(ϕ,ψ) ≤ val(T,ψ),
is true for any arbitrary ϕ ∈ Q ∪ cl(δ(Q,Σ)), ψ ∈ U ∪ cl(δ(U,Σ)), and T ∈ S.

A triplet of configurations c1, c2 and c3 is said to be matching, where c1, c2

and c3 are configurations of the game G1,G≤ and G2, respectively, if the first

component of c1 is equal to the first component of c3, the second component

of c1 is equal to the second component of c2 and the second component of c2 is

equal to the second component of c3 (i.e., c1 = ⟨T,ϕ⟩, c2 = ⟨ϕ,ψ⟩, c3 = ⟨T,ψ⟩)
.

We proceed by induction on the partial order ⪯, and when considering

configurations in (JϕK, JψK), we assume that the claim holds for every config-

uration in the pair (Jϕ′K, Jψ′K), where (JϕK, JψK) ⪯ (Jϕ′K, Jψ′K). Effectively,

we construct a winning strategy for Player 0 in G2 from the strategies of the

Players in G1 and G≤. We have the following cases:

Case 1. If ϕ ∈ Q and ψ ∈ ∥U∥⊕ then val(ϕ,ψ) = 0, and the claim follows

trivially.

Case 2. Let JϕK and JψK be unbounded MSCCs, where G1(M, JϕK) and

G2(M, JψK) are weak stochastic game and G≤(JϕK, JψK) is stochastic game.

The configurations of game G1(M, JϕK) and G2(M,ψ) are of the form ⟨T,ϕ′⟩
and ⟨T,ψ′⟩, respectively, where T is a singleton set. As before, we will

write ⟨{s}, ϕ′⟩ as ⟨s,ϕ′⟩. Consider three matching configurations c1 = ⟨s,α⟩,
c2 = ⟨α,β⟩ and c3 = ⟨s, β⟩, such that α ∈ JϕK and β ∈ JψK.

1. If α = α1∧α2 and β is not a conjunction then c2 is a Player 0 configura-

tion. Suppose Player 0 at c2 chose ⟨αi, β⟩, then Player 1 at c1 is made

to choose ⟨s,αi⟩. Else if β = β1 ∧β2 then c3 is a Player 1 configuration

and if he chose ⟨s, βi⟩ then Player 1 at c2 chooses ⟨α,βi⟩.

2. If α = α1∨α2 then c1 is a Player 0 configuration, and if she chose ⟨s,αi⟩
at c1 then Player 1 at c2 chooses ⟨αi, β⟩. If β = β1 ∨ β2 and Player 0

chooses ⟨α,βi⟩ at c2 then Player 0 in c3 chooses ⟨s, βi⟩.

134 CHAPTER 7. P-AUTOMATA

3. If α = q and β = u then c1 and c3 are stochastic configurations and c2 is

a Player 1 configuration. Player 1 is made to select the action σ = L(s)
and reach a configuration ⟨δ(q, σ), δ(u,σ)⟩ and next configuration in

G1 and G2 is ⟨s′, δ(q, σ)⟩ and ⟨s′, δ(u,σ)⟩, respectively.

Note that these choices of moves always ensures that we move from one

matching triplet to the next. Consider three matching paths in the games

G1, G≤ and G2. If the path in G≤ is infinite then, and the corresponding path

in G1 is winning, then by the winning condition of G≤, the respective path

in G2 is also winning. If it is finite then the triplet of paths end in configura-

tion (⟨s′′, α′⟩, ⟨α′, β′⟩, ⟨s′′, β′⟩), where ⟨α′, β′⟩ /∈ (JϕK, JψK). Since, (JϕK, JψK)
is a weak game val(α′, β′) ≥ val(α,β). By assumption val(s′′, α′) ⋅ val(α′, β′)
≤ val(s′′, β′) or val(s′′, α′)⋅ val(α,β) ≤ val(s′′, β′). The inequality holds for

every matching paths in all three games thus, val(s,α) ⋅ val(α,β) ≤ val(s, β).

Case 3. Suppose JϕK and JψK are bounded MSCCs, G1(M, JϕK), G≤(JϕK, JψK)
and G2(M, JψK) are all weak games. Consider a triplet of configurations

(⟨T,α⟩, ⟨α, β⟩, ⟨T,β⟩). We assume val(T,α) = 1 and val(α,β) = 1, else

val(T,α) ⋅val(α,β) ≤ val(T,β) follows immediately.

The cases of conjunctions and disjunctions are handled as in case 2. The

interesting case is when α ∈ ∥Q∥⊕ and β ∈ ∥U∥⊕, where α = ⊕(r1,⋯, rn) and

β = ⊕(t1,⋯, tm). It follows that ⟨T,α⟩ and ⟨T,β⟩ are Player 0 configurations

and ⟨α,β⟩ is a Player 1 configuration. Suppose Player 0 at ⟨T,α⟩ selects a

function f with witness d⃗ and {aq,s′}, such that:

∀ri ∈ gt(α), q ∈ gs(ri) ∑
s′∈succ(s)

aq,s′f(s′, q)P (s, s′) ≥ pi,qd⃗ri

∀s′ ∈ succ(s) ∑
q∈Iα

aq,s′ = 1

We make Player 1 at ⟨α,β⟩ (of G≤) choose an action σ = L(T) and move

to Player 0 configuration ⟨α,β, σ⟩. Configuration ⟨ri, β, σ⟩ is winning for

Player 0, for each ri ∈ gt(α), in the game G≤. Let f i ∈ F⊕ri,β be the function

chosen by Player 0 in G≤ with witnesses {aiq,u}q∈Iri ,u∈Iβ and c⃗i ∈ Dgt(β). Thus

for each ri we have:

• ∀u ∈ Iβ ∑
q∈Irk

aq,uf
i(q, u)pi,q ≥ c⃗itj ⋅pj,u,

• ∀q ∈ Iri ∑
u∈Iβ

aq,u = 1.

Player 0 in game G2 selects a function f ′′ such that f ′′(u, s′) is then the

minimum value in ValT,β that is at least maxq∈gs(ri),ri∈gt(α) f(q, s
′)f i(q, u).

7.2. WEAK P-AUTOMATA⊕ 135

The reason for choosing such a f ′′ will soon become clear. The witness of f ′′

are as follows: au,s′ = ∑ri∈gt(α)∑q∈gs(ri) aq,s′a
i
q,u and for each tj ∈ gt(β), d⃗′tj =

∑ri∈gt(α) d⃗ri ⋅c⃗
i
tj . Intuitively, Player 0 in G1, Player 0 gives the distribution d⃗

on the guarded terms rk ∈ gt(α) and in the game G≤ gives the distribution

to simulate each ri by β. This determines the distribution d⃗′ for the game

G2.

We will now show that f ′′ ∈ F⊕s,β. For each s′ ∈ succ(s):

∑
u∈Iβ

au,s′ = ∑
ri∈gt(α)

∑
q∈gs(ri)

aq,s′(∑
u∈Iβ

aq,u) = ∑
q∈Iα

aq,s′ = 1.

Consider any u ∈ gs(tj), where tj ∈ gt(β):

∑
s′∈succ(s)

au,s′f
′′(u, s′)P (s, s′)

= ∑
s′∈succ(s)

(∑
ri∈gt(α)

∑
q∈gs(ri)

aq,s′a
i
q,u)f ′′(u, s′)P (s, s′)

= ∑
s′∈succ(s)

(∑
ri∈gt(α)

∑
q∈gs(ri)

aq,s′a
i
q,u) max

q∈gs(ri),ri∈gt(α)
f(u, s′)f i(q, u)P (s, s′)

≥ ∑
s′∈succ(s)

∑
ri∈gt(α)

∑
q∈gs(ri)

aq,s′a
i
q,uf(q, s′)f i(q, u)P (s, s′)

= ∑
ri∈gt(α)

∑
q∈gs(ri)

aiq,uf
i(q, u) ∑

s′∈succ(s)

aq,s′f(q, s′)P (s, s′)

≥ ∑
ri∈gt(α)

∑
q∈gs(ri)

aiq,uf
i(q, u)d⃗ripi,q

= ∑
ri∈gt(α)

d⃗ri ∑
q∈gs(ri)

aq,uf
′(q, u)pi,q

≥ ∑
ri∈gt(α)

d⃗ri c⃗
i
tjpj,u

= d⃗′tjpj,u

If Player 1 in G2 chooses ⟨T ′, δ(u,σ), v1⟩, where v1 = mins′∈T f(q, s′)),
we make Player 1 in G1 choose a state q ∈ Iβ (and hence a term ri such

that q ∈ gs(ri)) such that mins′∈T ′ f(q, s′)f i(q, u) is maximal and move

to ⟨T ′, δ(q, σ), v1⟩. Correspondingly, we make Player 1 in G≤ to move to

⟨δ(q, σ), δ(u,σ), f i(q, u)⟩.
Consider a triplet of matching paths from G1, G≤ and G2. Suppose the

play continues inside of the MSCC pair of G≤, indefinitely. Then the play in

G1 is winning because the play is according to a winning strategy of Player 0

in G1, for the same reason the play in G≤ is winning. Because of the winning

condition of G≤, the corresponding play in G2 is also winning.

Suppose the plays in G≤ reach a triplet of configurations (⟨T ′′, α′′, v1⟩,
⟨α′′, β′′, v2⟩, ⟨T ′′, β′′, v3⟩), where (Jα′′K, Jβ′′K) ≠ (JϕK, JψK). We have val(T ′′, α′′)⋅

136 CHAPTER 7. P-AUTOMATA

val(α′′, β′′) ≤ val(T ′′, β′′) from the induction hypothesis. We have to show

val(T ′′, β′′) ≥ v3. Let the triplet of configurations (⟨T ′, α′⟩, ⟨α′, β′⟩, ⟨T ′, β′⟩)
be the last configurations such that ⟨α′, β′⟩ is inside the MSCC pair (JϕK, JψK)
and α′ ∈ ∥Q∥⊕, and β′ ∈ ∥U∥⊕. Player 1 in G1 at configuration ⟨T ′, α′⟩
chooses a q such that f(q, T ′′)f i(q, u) is maximum, thus v3 ≥ v1⋅v2. As

the plays in G1 and G≤ are winning for Player 0, val(T ′′, α′′) ≥ v1 and

val(α′′, β′′) ≥ v2. This makes val(T ′′, β′′) ≥ v1v2. Observe that v3 is the

minimum value in ValT ′,β′ which is at least maxq∈I′α f
i(q, u)f(q, T ′′) thus

maxq∈Iα′ f
i(q, u)f(q, T ′′) ≤ v3 ≤ x ∈ Vals′,β′ . Since, ValT ′,β′ includes val(T ′′, β′′),

therefore, val(T ′′, β′′) ≥ v3.

Case 4. Let JϕK is bounded and JψK is unbounded MSCCs. G1(M, JϕK)
is a weak game, whereas G≤(JϕK, JψK) and G2(M, JψK) are weak stochastic

games. Recall that configurations of G2(M, JψK) are of the form ⟨T,ψ′⟩,
where T is a singleton set. In order to reason with matching triplets of

configurations we restrict Player 1 in G1(M, JϕK) to configurations ⟨T,ϕ′⟩,
where T is singleton.

Consider a matching triplet of configurations (⟨s,ϕ⟩, ⟨ϕ,ψ⟩, ⟨s,ψ⟩). The

interesting case is when val(s,ϕ) = 1, else the claim follows trivially.

1. If ψ is a conjunction of the form ψ1 ∧ ψ2, then Player 1 in G2 chooses

the next configuration ⟨s,ψi⟩, then Player 1 in G≤ chooses ⟨ϕ,ψi⟩ in

G≤.

2. Suppose ψ = ψ1∨ψ2. If ϕ = ϕ1∧ϕ2, then ⟨ϕ,ψ⟩ is Player 0 configuration

in G≤. If Player 0 chooses ⟨ϕi, ψ⟩ then Player 1 in G1 is made to choose

⟨s,ϕi⟩. If ϕ = ϕ1 ∨ ϕ2, and Player 0 in G1 moves to configuration

⟨s,ϕi⟩, then Player 1 in G≤ moves to ⟨ϕi, ψ⟩. If ϕ ∈ ∥Q∥⊕ then ⟨ϕ,ψ⟩
is a Player 0 configuration. If she chooses (ϕ,ψi) then Player 0 in G2

chooses (s,ψi).

The remaining case is ϕ ∈ ∥Q∥⊕ and ψ ∈ U , where ϕ = ⊕(r1,⋯, rn) and

ψ = u. ⟨s,ϕ⟩ in G1 is Player 0 configuration and she chooses a function

f ∈ F⊕s,ϕ with witness d⃗ ∈ Dgt(ϕ) and {aq,s′}q∈Iϕ,s′∈succ(s) and moves to the

configuration ⟨s,ϕ, f⟩. Player 1 at configuration ⟨ϕ,u⟩ in G≤ chooses the

action σ = L(s) and then chooses a configurations ⟨rk, u⟩ such that val(ϕ,u)
is minimum (i.e., he plays his best possible move).

⟨s,ϕ, f⟩ in the game G1 is a Player 1 configuration and there could be

more than one way for the game to evolve to the next matching triplet

configurations. For example, if f(q, s′) > 0 and f(q′, s′) > 0, q, q′ ∈ Iϕ,

then it possible to have the next matching triplets as ⟨s, δ(q, σ), f(q, s′)⟩,

7.2. WEAK P-AUTOMATA⊕ 137

⟨δ(q, σ), δ(u,σ)⟩, and ⟨s′, δ(u,σ)⟩ or ⟨s, δ(q′, σ), f(q′, s′)⟩, ⟨δ(q′, σ), δ(u,σ)⟩,
and ⟨s′, δ(u,σ)⟩. We prove that the claim holds for any of the matching

triplets arising from different choice of q ∈ Iϕ, i.e., it holds in the worst case.

Equivalently, we show that the claim holds for a choice of q for which the

value val(s,α)⋅val(α,β) is maximum. Consider the triplet of matching plays

(where the configurations are step wise matching) from matching configura-

tions ⟨s,α⟩, ⟨α,β⟩ and ⟨s, β⟩. We have the following cases:

4.a. The triplet of configurations ⟨s,α⟩, ⟨α,β⟩ and ⟨s, β⟩ where ⟨α,β⟩ is not

in the pair of equivalence classes (JϕK, JψK). The claim follows from induc-

tion hypothesis val(s,α)⋅val(α,β) ≤ val(s, β).

4.b. For every choice of matching of triplets during the evolution of the

game, every play from ⟨α,β⟩ stays in (JϕK, JψK) and are winning for Player

0 in G≤. If the matching play in G1 starting from ⟨s,α⟩ is winning, then the

matching play in G2 from ⟨s, β⟩ are also winning for Player 0. Suppose this

is not the case and there is a play from ⟨s, β⟩ that is not winning. Consider

any corresponding matching play in G≤, together they define a matching

play in G1. If the play is not winning in G2 then the matching play in G1

is also not winning, which cannot happen as val(s,α) = 1 and G1 is a weak

game.

4.c. For every choice of matching of triplets the play stays in (JϕK, JψK) and

are not winning for Player 0 in G≤. Then val(α,β) = 0 and the claim follows

trivially.

4.d. The triplet of configurations ⟨s,α⟩, ⟨α,β⟩ and ⟨s, β⟩ such that not all

the plays in (JϕK, JψK) are winning for Player 0 in G≤ but probability of the

set of winning plays is greater than zero. Here we explicitly assume that the

MC M and automata A1,A2 are finite. Every time a configuration ⟨s,α⟩
is revisited, the same function f ∈ F⊕s,α is chosen. Hence, the number of

different matching configurations is finite.

We show that the claim, val(s,α)P (α,β) ≤ P (s, β), holds, where P (s, β)
and P (α,β) is the worst case probability of reaching one of the three types

of configurations covered in the previous three cases. Let Pn(α,β) and

Pn(s, β) be the probability of reaching one of the three types of configu-

rations (defined in case 4.a, 4.b and 4.c) in n steps from ⟨α,β⟩ and ⟨s, β⟩,
respectively by matching paths, when matching triplet are chosen such that,

Pn(α,β)⋅val(s,α) is maximum. We show that Pn(s, β) ≥ Pn(α,β)⋅val(s,α)

138 CHAPTER 7. P-AUTOMATA

for any n. We proceed by induction on n.

If ⟨s,α⟩, ⟨α,β⟩, ⟨s, β⟩ is one of the three configurations from case 4.a, 4.b

and 4.c then P0(α,β) = val(α,β) and P0(s, β) = val(s, β), else zero. From

the definition (case 4.a, 4.b, 4.c) the claim holds for n = 0. We will prove

the hypothesis for n = 1. Consider the triplet ⟨s,α⟩, ⟨α,u⟩ and ⟨s, u⟩, where

α = ⊕(r1,⋯, rn) and P0(α,u) = 0 and P0(s, u) = 0, i.e., the triplet belongs to

case 4.d. But for some successor s′ ∈ succ(s) and q ∈ Iα, P0(s′, δ(u,σ)) > 0

and P0(δ(q, σ), δ(u,σ)) > 0 (σ = L(s)). Let f ∈ F⊕s,α be the function chosen

by Player 0 at ⟨s,α⟩ with witnesses {aq,s′}q∈Iα,s′∈S and d⃗. We have:

P1(s, u) = ∑
s′∈succ(s)

P (s, s′)⋅P0(s′, δ(u,σ)). (7.6)

And,

P1(α,u) = min
rk∈gt(α)

∑
q∈gs(rk)

P0(δ(q, σ), δ(u,σ))pk,q

≤ ∑
ri∈gt(α)

d⃗ri ∑
q∈gs(ri)

P0(δ(q, σ), δ(u,σ))pi,q
(7.7)

For each s′ ∈ succ(s) let qs′ be the choice of q such that val(s′, δ(qs′ , σ))⋅
val(δ(qs′ , σ), δ(u,σ)) is maximum. By construction, P0(s′, δ(u,σ)) ≥ P0(δ(q, σ), δ(u,σ))⋅
val(s′, δ(q, σ)), since val(s′, δ(u,σ)) ≥ val(δ(q, σ), δ(u,σ))val(s′, δ(q, σ)). From

Equation 7.6.

P1(s, u) ≥ ∑
s′∈succ(s)

P (s, s′)P0(δ(q, σ), δ(u,σ))val(s′, δ(q, σ)) (7.8)

Since f ∈ F⊕s,α, ∑ri∈gt(α)∑q∈gs(ri) aq,s′ = 1. Therefore:

P1(s, u) ≥ ∑
s′∈succ(s)

P (s, s′)(∑
ri∈gt(α)

∑
q∈gs(ri)

aq,s′)⋅P0(δ(q, σ), δ(u,σ))⋅val(s′, δ(q, σ))

Since the configuration ⟨s′, δ(q, σ)⟩ is winning for Player 0, val(s′, δ(q, σ)) ≥
f(q, s′).

P1(s, u) ≥ ∑
s′∈succ(s)

P (s, s′)(∑
ri∈gt(α)

∑
q∈gs(ri)

aq,s′)⋅P0(δ(qs′ , σ), δ(u,σ))⋅f(s′, qs′)

We can distribute aq,s′ according to the following:

P1(s, u) ≥ ∑
s′∈succ(s)

∑
ri∈gt(α)

∑
q∈gs(ri)

P0(δ(q, σ), δ(u,σ))⋅P (s, s′)aq,s′f(s′, q)

≥ ∑
ri∈gt(α)

∑
q∈gs(ri)

P0(δ(q, σ), δ(u,σ))⋅ ∑
s′∈succ(s)

P (s, s′)aq,s′f(s′, q)

≥ ∑
ri∈gt(α)

∑
q∈gs(ri)

P0(δ(q, σ), δ(u,σ))⋅pi,qd⃗ri

≥ P1(α,u)

7.3. CONCLUSION 139

Assume now that the claim holds for every matching triplets, for n steps.

Consider the matching triplets ⟨s,α⟩, ⟨α,u⟩ and ⟨s, β⟩ where α = ⊕(r1,⋯, rn)
and u ∈ U . As before, let f ∈ F⊕α,s be the function chosen by Player 0 at

the configuration ⟨s,α⟩, with witnesses {aq,s′}q∈Iα,s′∈S and d⃗ ∈ Dgt(α). (For

configurations with conjunction and disjunction, the matching paths are

determined in their respective game by the strategies defined before.) We

have:

Pn+1(s, u) = ∑
s′∈succ(s)∶∃q∶aq,s′>0

P (s, s′)⋅Pn(s′, δ(u,σ))

Pn+1(α,u) = min
ri∈gt(α)

∑
q∈gs(ri)

pi,qPn(δ(q, σ), δ(u,σ))

≤ ∑
ri∈gt(α)

∑
q∈gs(ri)

d⃗ripi,qPn(δ(q, σ), δ(u,σ))

(7.9)

By induction hypothesis :

Pn(s′, δ(u,σ)) ≥ Pn(δ(qs′ , σ), δ(u,σ)) ⋅ val(s′, δ(qs′ , σ)) (7.10)

From equation 7.9:

Pn+1(s, u) ≥ ∑
s′∈succ(s)

P (s, s′)val(s′, δ(qs′ , σ))Pn(δ(qs′ , σ), δ(u,σ))

Choose qs′ for each s′ such that val(s′, δ(qs′ , σ))Pn(δ(qs′ , σ), δ(u,σ) is max-

imum.

Pn+1(s, u) =
∑

s′∈succ(s)

P (s, s′)(∑
ri∈gt(α)

∑
q∈gs(ri)

aq,s′)val(s′, δ(qs′ , σ))Pn(δ(qs′ , σ), δ(u,σ))

≥ ∑
s′∈succ(s)

P (s, s′)(∑
ri∈gt(α)

∑
q∈gs(ri)

aq,s′)f(qs′ , s′)Pn(δ(qs′ , σ), δ(u,σ))

≥ ∑
ri∈gt(α)

∑
q∈gs(ri)

Pn(δ(q, σ), δ(u,σ)) ∑
s′∈succ(s)

P (s, s′)aq,s′f(q, s′)

≥ ∑
ri∈gt(α)

∑
q∈gs(ri)

Pn(δ(q, σ), δ(u,σ))pi,qd⃗(ri)

= Pn+1(α,u)

This concludes the proof.

7.3 Conclusion

We have presented an extension of p-automata [58], and used it to represent

the set of MCs which are bisimilar to the MCs induced by the schedulers

of an MDP. We have seen that the languages of the p-automata are closed

140 CHAPTER 7. P-AUTOMATA

p-Automata (Huth et. al.) p-Automta⊕

Accepts Markov Chains Markov Chains

Complexity of acceptance EXP-TIME EXP-TIME 2

Inclusion Not known Σ0
1-hard

Emptiness Not known Σ0
1-hard

Table 7.6: Summary of p-automata

under bi-simulation (union and intersection). We have addressed the is-

sue of non-determinism of the probability distribution, and shown that the

extended p-automata are powerful enough to represent various probabilis-

tic systems and logics. One of the salient aspect in which the extended

p-automata differs from the original p-automata is that the number of con-

figurations has become exponential in the size of the Markov chain (though

the acceptance problem is still EXPTIME). Furthermore, the emptiness and

hence language inclusion problem have become undecidable. In the wake

of this undecidability results, we have provided a simulation relation which

resembles the simulation relation of probabilistic automata. A comparison

of the extended p-automata with the p-automata of [58] is presented in the

Table 7.6.

Chapter 8

Conclusions and Discussion

Probabilistic logics embellish temporal logics with mechanism that can rea-

son about probabilities of events. Probabilistic logics allow us to specify

complex temporal properties over the probability space defined by the sys-

tem under scrutiny. Probabilistic computation tree logic (or PCTL), one of

the most widely recognized probabilistic logic, has been successfully used

in expressing properties of probabilistic systems and efficient model check-

ing algorithm have been developed in literature. But we still know next to

nothing about what it means for a logical sentence to be true. Consequently

we have no decision procedure for determining whether the specifications

expressed in the logic are collectively contradictory, or whether one specifi-

cations implies the other, etc. This gap in our knowledge springs from our

lack of understanding of the satisfiability problem (or the validity problem)

of probabilistic logics. This is indeed a very hard problem and we are at the

very primal stage of understanding its various intricacy.

In this thesis we have made attempts at tackling the satisfiability prob-

lem by considering various simple fragments of various probabilistic logics.

One of the major challenges was to identify important fragments of proba-

bilistic logics which fashion themselves to known techniques used for solving

the validity problem. In that endeavour, we have focused our attention on

bounded PCTL and PµTL. The relative expressive power of these logics is

represented by the Hesse diagram in Figure 8.0.1. Bounded PCTL is a re-

striction on PCTL, where until formulas are replaced by bounded untils,

whereas PµTL extends modal µ-calculus with probabilistic next operators.

• Bounded PCTL: The satisfiability problem is in the class NEXPTIME.

The problem is at least EXPTIME-hard. Since the formulas are closed

under negation, this implies that the problem is in

NEXPTIME∩co-NEXPTIME.

141

142 CHAPTER 8. CONCLUSIONS AND DISCUSSION

Propositional logic

PCTLPµTL bounded PCTL

Pxω

µ-PCTL

PCTL∗

µp-calculus

µL⊕⊙

Figure 8.0.1: The relative expressive power of various logics.

• PµTL : The satisfiability problem is in the class

UTIME(2O(n))∩co-UTIME(2O(n)).

Chapter 5 (page 5) also considers other fragments of PCTL based on the

classification such as safety or co-safety.

In a model-theoretical framework a sentence of a logic can be viewed

as a set of models that satisfies the sentence. A decision procedure, gener-

ally involves devising a finite representation of these sets. Tableau method

and subset construction are the usual methods that follow this paradigm of

reasoning. In our investigation into the tableau method it was instructive

to consider the tableau (which literally means a collection of models) as an

Markov decision process, and the models of the sentences defined by the

tableau as the Markov chains induced by different schedulers of the MDP.

This lead to further investigation of model checking of convex MDPs with

open intervals (Chapter 4, page 61).

Unfortunately, deciding whether an arbitrary MDP D has a scheduler

η, such that the induced Markov chain Dη satisfies a given PCTL formula

is equivalent to deciding the existence of a winning strategy for an 11
2 -

player game with PCTL winning objective. This problem cannot be solved

by model checking (as discussed in Chapter 4) and is highly undecidable.

143

In the face of the above observation, it is natural to ask, if constructing

tableau for probabilistic logics leads to instances of 11
2 -player games with

PCTL winning objective, then can any instance of the 11
2 -player game be

encoded as a satisfiability problem for some probabilistic logic? In other

words, can we capture the set of Markov chains induced by an MDP as the

satisfiability set of a sentence of some probabilistic logic?

The investigation into the representation of the set of Markov chains

induced by various schedulers of an MDP lead to the study of p-automata.

Automata theoretic approach to logics has proved itself quite useful in as-

certaining decidability of various temporal logics. In the same spirit, p-

automata were developed to provide automata theoretical understanding

for probabilistic logics. In a recent work [19], an equivalence between p-

automata and µp-calculus was formally established. However we were un-

successful in capturing the sets of MDPs by any known logics (figure 8.0.1)

and p-automata. In Chapter 7 (page 113) we were able to model MDPs,

only after considerable tweaking of the semantics of p-automata.

Thus, the decidability of probabilistic logics is still very much an open

problem, we were able to give definite answer only for few fringe cases.

The subject has immense potential for new discoveries. For example, in

the concluding remark of Chapter 6, we talked about the relation between

the logic and obligatory games. The consequence of different restriction on

obligatory games on the decidability of determining winning strategy would

give us a handle on the decidability of corresponding probabilistic logics [28].

Recent workn in [68] fleshes out the difficulty in many of these decidability

problems.

In a related research direction, there is quantitative logic [50], which is

use to reason about minimal and maximal values of the weights of transitions

in a weighted transition system. A complete axiomatization of the logics is

also created, which is carried to PµTL in [71, 51]. A good introduction

to the application of qualitative verification for Aerospace Systems can be

found in [11].

144 CHAPTER 8. CONCLUSIONS AND DISCUSSION

Appendices

145

Appendix A

Parametric (0/1)-counter

automata

In this chapter we improve the undecidability result of [3], where the reacha-

bility problem for automata with three (0/1) parametric counters was shown

to be undecidable. Closer scrutiny of the proof reveals that the number of

parameters (six in total) plays a crucial part in the encoding to the halting

problem of a two counter machine. We can improve this result by showing

that the reachability problem is still undecidable with three (0/1) counters

and one parameter and two (0/1) parametric counters which can only be

compared with a non-parametric (0/1) counter.

1.1 Preliminaries

Let C be a set of counters. The counters will be denoted by capital letters

C ∶= {C1,⋯,Ck} and their values by small letters. For example, if C1 is a

counter then its value is c1, a non-negative integer. A tuple of counter values

is denoted by a vector, c⃗ ∶= (c1, c2,⋯, ck) and ci is the counter value of the

ith counter in c.

The set of operations and guards are denoted by O and G, respec-

tively. We consider the following types of operations on a counter C,

O ∶= {+a(C),0(C),∅}. The operation +a(C) adds a positive integer a to

the current value of the counter C, 0(C) resets the value of the counter to

zero and ∅ keeps the value of the counter unchanged. The set of guards

G ∶= {C ∼ a,C ∼ x,C ∼ C ′}, where a is a positive integer, x is a parameter

and ∼∈ {<,=,>}.

A (0/1) counter automaton A is a tuple (S, s0,C,O,G, δ,F), where S is a

set of states, s0 ∈ S is the initial state, F is the set of accepting states (F ⊆ S)

and C is the set of counters. The operation set O = {+a(C),0(C),∅}, the

147

148 APPENDIX A. PARAMETRIC (0/1)-COUNTER AUTOMATA

guard set is G = {C ∼ a}, where a is a positive integer and ∼∈ {<,=,>}. δ is

the transition relation, δ ⊆ S ×O ×G × S.

A configuration of the automaton is a tuple (s, c⃗), where s is a state and

c⃗ is a vector of counter values. A computation (or a path) is a sequence of

configurations π ∶ (s0,c
0) → (s1,c

1) → ⋯ → (sn,cn), where for each 0 < i < n,

(si, o, g, si+1) ∈ δ, cij = o(ci−1
j) and g(cij) is true for each j ≤ ∣C∣. πi is the ith

configuration (si,ci). The length of π is denoted by ∣π∣. The reachability

predicate RA(s,c, t,c′) defines the relation ∃ π ∶ (s0,c
0) → (s1,c

1) → ⋯ →
(sn,cn) where (s,c) = (s0,c

0) and (t,c′) = (s0,c
n) (More succinctly ∃ π ∶

(s,c) →∗ (t,c′)). MA be the maximum value of the constants in the guard.

If H ⊆ δ then A ∖H is the automaton obtained from A after removing H

from the set of transitions.

A parametric (0/1) counter automaton A is a tuple (S, s0,C,O,G, δ,F),
where all definitions are the same as the (0/1) counter automaton except

for the guard set G = {C ∼ a,C ∼ x} where a ∈ N, x is a parameter and

∼∈ {=,<,>}. A counter C is called a parametric counter if A has a guard

of the type C ∼ x, else it is non-parametric. A valuation v⃗ assigns to each

parameter an integer value. Av⃗ is the counter automaton obtained from A by

giving values to every parameter according to v⃗. A has a computation under

the valuation v⃗, denote as (s0,c
0) →∗

v⃗ (sn,cn), if there is a computation

(s0,c
0) →∗ (sn,cn) in Av⃗. Given two configurations (s,c) and (t,c′), the

reachability predicate RA(s,c, t,c′) is defined as ∃v⃗, π ∶ (s,c) →∗
v⃗ (t,c′).

1.2 Three Parametric (0/1) Counter Automata

Theorem 1.2.1. Let A be a counter automaton with three parametric (0/1)

counters and a single parameter p. The reachability problem for A is unde-

cidable.

Proof. The undecidability of the reachability problem is shown by reducing

a two counter machine U to an instance of a counter automaton A with

three parametric (0/1) counters, two non-parametric (0/1)-counters and a

single parameter p. Let U ∶= (S, δ, s0,C, sf), where S is the set of states,

s0 and sf are the initial and final states, respectively, the set of counters

C ∶= {C1,C2}. δ is the transition relation, where δ ⊆ S ×O×G×S and s0 ∈ S
is the starting state and sf ∈ S is the final state. Since U is a two counter

machine C1,C2 can increase as well as decrease. On the other hand, the

counters of A (defined shortly) can only increase or reset to 0.

Consider the (0/1)-counter automaton A = (S′, δ′, s0,C′, sf), where C′ =
{C ′

1,C
′′
1 ,C

′′′,C ′
2,C

′′
2 } are (0/1) counters and a single parameter x. The set

1.2. THREE PARAMETRIC (0/1) COUNTER AUTOMATA 149

o1 +1(C ′
j), +1(C ′′

j), +1(C ′′′) g1 true

o2 0(C ′′′) g2 (C ′′′ = x),
(If a = {Cj = 0} then (C ′′

j = x))
o3 +1(C ′

j),+1(C ′′
j),+1(C ′′′) g3 true

o4 0(C ′′
j) g4 (If a = +1(Cj) then g4 = {C ′′

j = x+1})

(If a = −1(Cj) then g4 = {C ′′
j = x−1})

Table A.1: For each transition s
aÐ→ s′ we have the gadget as shown above,

where a can be +1(Cj), −1(Cj), or Cj = 0, for j ∈ {1,2}.

S′ contains a state for each state in S. To simplify notation, we use the

same symbol for states s ∈ S and the corresponding state in S′. S′ contains

other states as well for book keeping, which will be mentioned as we use

them.

Each transition of U is mimicked by a gadget of A. Take a transition

s
aÐ→ s′ of U , where a stands for either (+1(Cj)), (−1(Cj)) or (Cj = 0) for

j = 1,2. The corresponding part of A is given by the following gadget:

s u t u′ s′

o1, g1

o2, g2

o3, g3

o4, g4

Depending on a, the description of oi and gi for i ≤ 4 and counter Cj , j = 1,2

is presented below.

The construction gives us two disjoint subsets of S′, namely Q,T ⊆ S′.
States in set Q has one-to-one mapping with the set of states S of U and

the states in T are the t states added in the construction of the gadget. It

follows that every sequence of states s0, s1,⋯, sk of U has a corresponding

sequence of states s0⋯t0⋯s1⋯t1⋯⋯sk−1⋯tk−1⋯sk of A, where si ∈ Q, ti ∈ T
for 0 ≤ i ≤ k and vice-versa. Assume ρ ∶ (s0,c0) → (s1,c1) →∗ (sk,ck)
is a valid computation of U . We show that there exists a computation

ρ′ ∶ (s0,c0) →∗
p (t0,c′0) →∗

p (s1,c
′
1) →∗

p (sk,c′k) of A for some value p of the

parameter.

We will use the following functions: ns ∶ C ×N→ N, gives the value of the

counter Cj at state si in ρ. Similarly, nq ∶ C′×N→ N and nt ∶ C′×N→ N give

the value of the counter C ′
j at the states si and ti in the computations ρ′,

respectively. We have nr(C,0) = 0 for all r ∈ {s, q, t} and C ∈ C∪C′∖{C ′
1,C

′
2}

and nq(C ′
j ,0) = p for j ∈ {1,2}. (That is we start with initial value p for

C ′
1,C

′
2.)

150 APPENDIX A. PARAMETRIC (0/1)-COUNTER AUTOMATA

The value of C ′
j in ρ′ mimics the rise and fall of the value of the counter

Cj in ρ, for j = 1,2. When the value of Cj increases by 1, the value of C ′
j in

the corresponding gadget increases by p+1. When the value of Cj decreases

by 1, the value of C ′
j increases by p-1 and C ′

j increases by p when Cj remains

unchanged. The value counter C ′′′ is p at every t state.

For an appropriate value p the following relation is imposed by the construc-

tion for i ≥ 0:

nq(C ′
j , i) = ∑ik=0(ns(Cj , k) + p),

nq(C ′′
j , i) = 0,

nq(C ′′′, i) = nq(C ′
j , i) mod p.

(A.1)

We show that the above equation holds for every ith step of a computation

0 ≤ i ≤ k. For i = 0 the statement follows from the initial values of the

counters. We have the following cases:

(i) The counter Cj is incremented in the transition si
+1(Cj)ÐÐÐÐ→ si+1 in ρ.

The corresponding part of ρ′ is si →∗ ti →∗ si+1. Let the value of C ′
j at si

be n, thus value nq(C ′′
j , i) = 0 and nq(C ′′′, i) = n mod p (by equation A.1).

At state ti, the value of counter C ′′′ is nt(C ′′′, i) = p, owing to the guard

g2. Hence the values of other counters are nt(C ′′
j , i) = p−(n mod p) and

nt(C ′
j , i) = n+p−(n mod p). By the construction, the value of the counter

C ′′
j just before arriving at the state si+1 is p+1 (it is reseted after reaching

si+1). This is imposed by the guard g4 and hence the value of the coun-

ters C ′
j ,C

′′′ at si+1 is n(C ′
j , i+1) = p+1+n and n′(C ′′′, i + 1) = p+1−((p−n)

mod p) ≡ (n+1) mod p. Thus the equation (A.1) holds at si+1.

(ii) Similar argument holds for the transition where the counter value

decreases or remains unchanged.

(iii) The value of the counter is compared with zero (si
Cj=0
ÐÐÐ→ si+1). When

the value of the counter Cj in the computation ρ becomes zero at the state

si, i.e., ns(Cj , i) = 0, the value of C ′
j at the state si in ρ′, is a multiple of

p, i.e., nq(C ′
j , i) ≡ 0 mod p (equation A.1). This is deduced by checking

g2 ∶ (C ′′
i = p) at state ti.

Finally, observe that the counters C ′
1 and C ′

2 are non-parametric and can

be removed (similar to region construction for timed automata). This gives

us the automaton A with 3 counters such that each halting computation of

U has a corresponding halting computation of A and vice-versa.

Corollary. Let A be counter automaton with one non-parametric counter

(whose value can increase or decrease) and two parametric (0/1) counters

with a parameter p. The reachability problem for A is undecidable.

1.2. THREE PARAMETRIC (0/1) COUNTER AUTOMATA 151

s0 s1

Reada0

Reada1

s2 sf
$

+1(C1);+1(C2)

a0

a1

a0

a1

a1

a0

$

$

ε

C1 = p,C2 = p

Figure 1.2.1: Counter automaton that solves PCP for two symbols a0 and

a1.

Proof. Let C ′
1,C

′
2 be the parametric (0/1) counters of A and C ′

3 be the non-

parametric counter (whose value can increase or decrease). Consider any

two counter machine with counters C1,C2. Using similar construction as

described in proof of the Theorem 1.2.1, the (0/1) counters C ′
1,C

′
2 along

with a parameter p can mimic the behaviour of C1. C ′
3 can mimic the

behaviour of C2.

We conclude this chapter by showing that the reachability problem for

a counter automaton with two (0/1) parametric counters which can only be

compared with a non-parametric (0/1) counter is also undecidable with one

parameter.

Theorem 1.2.2. Let A be counter automaton with two parametric (0/1)

counters C1,C2 and one non-parametric (0/1) counter C ′, with a guard set

G ∶= {C ′ < C1,C
′ < C2, C1 = p,C2 = p}. The language emptiness problem for

A is undecidable.

Proof. We provide a reduction from Post’s correspondence problem [84].

Given two maps, φ1 ∶ Σ → [0,1]∗ and φ2 ∶ Σ → [0,1]∗, the problem is to

decide whether there exists a word w ∈ Σ∗, such that φ1(w) = φ2(w), where

φi(w.a) = φi(w)⋅φi(a) (for i ∈ {1,2}). Define lia to be the length of the string

φi(a). An equivalent formulation is as follows: Whether there exists a word

w ∶= $a0⋅a1⋯ak$, such that φ1(a0).φ1(a1)⋯φ1(ak) = φ2(a0).φ2(a1)⋯φ2(ak).
The counter automaton A behaves the following way. For an input string

w, the automaton adds 1 to the counter C1 and C2 with input $ and then

stores the decimal representation of φi(w) in the counter Ci (for i ∈ {1,2}).

E.g. consider w ∶= a0a1 and φi(a0) ∶= 010, φi(a1) ∶= 01. At the end of the

execution, the value of Ci should be 41 which is equivalent to 1 010 01 in

binary (a leading 1 is introduced by the first $ symbol).

152 APPENDIX A. PARAMETRIC (0/1)-COUNTER AUTOMATA

The automaton is constructed the following way. Whenever a letter a ∈ Σ

is read by the automaton, the current value in the counter Ci is shifted to

the left to accommodate φi(a). This is accomplished by shifting the bits of

Ci by lia places to the left or equivalently, the value of Ci is multiplied with

2l
i
a and then φi(a) is added to it.

The gadget, Reada for the letter a ∈ Σ, does exactly this. It is always

entered with an symbols a and all its internal symbols are ε. The following

part of the gadget shifts one bit of the value stored in Ci by doubling it.

ε

0(C ′)
ε

+1(C ′)
ε

+1(C ′);+(Ci)

ε; C ′ < Ci
ε;C ′ ≥ Ci

0(C ′)

The counter C ′ starts with value 0. Each time the loop is executed, the

value of C ′ increases by 2 and Ci increases by 1. Suppose the value of Ci
before entering the loop was k, hence the loop is exited after k times. Thus

the value of Ci is 2k when the execution exists the loop. The Reada first

repeats this process lia times for each Ci, then it adds the constant (φi(a))10

(the decimal value of φi(a)) to each Ci (for i = 1,2).

The automaton A for two symbols a0 and a1 is presented in Figure 1.2.1.

When the symbol $ is read for the second time, the automaton checks

whether the two counter values are equal with a help of the parameter

p.

Appendix B

EXPTIME-hardness of

bounded PCTL

Proposition 2.0.1. The satisfiability of bounded PCTLformula is EXPTIME-

hard in the encoding of the formula.

Proof. We will show EXPTIME-hardness by encoding computations of an

alternating Turing machine in bounded PCTL. Similar technique was also

used in [44] to show EXPTIME harness for PDL. An alternating Turing

machine (ATM) [25] is just like a non-deterministic Turing machine except

there is a function in the specification of the machine called type. The

function type tells us whether a state is an and-state or an or-state. An

ATM with only or-states behaves exactly like a non-deterministic Turing

machine. Formally, an ATM is a seven tuple A = (Q,Θ,Γ, δ, q0, type, F). Q
is a finite set of states, Θ is a finite set of input symbols, Γ is a finite set

of tape symbols (Θ ⊆ Γ), δ ⊆ Q × Γ ×Q × Γ × {L,R} is a transition relation,

q0 ∈ Q is a initial state, type ∶ Q → {∧,∨}, F ⊆ Q is the set of accepting

states.

Configurations σ = xqay ∈ Γ∗ ×Q × Γ+, where the tape content is xay =
tape(σ) ∈ Γ+ with a ∈ Γ, the head is at position ∣x∣ + 1, presently reading

input a and the current state is q = state(σ). A configuration σ is an and-

configuration (or-configuration) iff type of state(σ) is ∧ (∨, resp.). σ is

accepting iff state(σ) ∈ F . For σ = xqay the next configuration σ′ = x′q′a′y′

is defined as follows:

• If (q, a, q′, b,L) ∈ δ then x′a′ = x and y′ = by.

• If (q, a, q′, b,R) ∈ δ then x′ = xb and y = a′y′.

A trace (or a computation) C of A for an input xin is a set of configuration

such that, q0xin ∈ C and for every σ ∈ C with state(σ) /∈ F , if type(state(σ)) =

153

154 APPENDIX B. EXPTIME-HARDNESS OF BOUNDED PCTL

∨ then one of the next configurations σ′ of σ is in C, if type(state(σ)) = ∧
then every next configuration of σ is in C. Pictorially, C is a tree where each

node is a configuration and edges are defined by the next relation. A trace

C is accepting for an input x if C is finite and only configurations without

a next configuration in C are accepting. Let:

L(A) = {x ∈ Θ∗ ∣ there exists an accepting trace C for x }

For some function S ∶ N → N, an ATM A is in ASPACE(S(n)) iff for every

input x ∈ Θ∗, and every configuration of every trace of x requires at most

S(∣x∣) space. Furthermore, we assume that no configuration is repeated in

any trace C of x. This is ensured by enumerating every reachable configura-

tion and the numbering can be encoded into S(∣x∣) cells of the tape. Thus,

the number of steps is less than ∣Γ∣2S(n) or in 2O(S(n)), where n = ∣x∣. We

will need the following identity [25]:

ASPACE(S(n)) = ⋃
k

DTIME(2kS(n)). (B.1)

Now consider an input x of length n to an ATM A ∈ ASPACE(S(n)), where

m = S(n) + 2 and the maximum number of steps needed by the machine to

accept (or reject) is k = 2m. Observe that k can be encoded in m space.

We will construct a bounded PCTLformula from A and x such that every

model of the formula encodes a computation of A with input x iff x ∈ L(A).
Each node of the model will encode a configuration of the computation and

the relation next will be simulated by �f or ♦f (i.e., [Xf]=1 or [Xf]>0,

respectively). We will use the following set of propositions AP:

1. Cell proposition: for each a ∈ Γ and 0 ≤ i ≤m, Ca,i ∈ AP.

2. State proposition: for each q ∈ Q, Qq ∈ AP.

3. Head proposition: for each 0 ≤ i ≤ n, Hi ∈ AP.

Intuitively, Ca,i denotes that the ith cell of the tape contains symbol a, Qq
denotes that the current state is q and Hi denotes that the head is on the ith

cell. We will use the following formula to correctly capture the behaviour of

A.

• One state proposition Qq is true at every node of the model:

g1 ∶= ⋁
q∈Q

(Qq ∧ ⋀
q′∈Q∖{q}

∼Qq′)

155

• One cell proposition is true for any particular i ≤m.

g2 ∶=
m

⋀
i=0

⋁
a∈Γ

(Ca,i ∧ ⋀
a′∈Γ∖{a}

∼Ca′,i)

• One head proposition is true at any node of the model. Head cannot

cross the first and the last cells.

g3 ∶=
m−1

⋁
i=1

(Hi ∧⋀
j≠i

∼Hj) ∧ ∼H0 ∧ ∼Hm

• Unread cell propositions remain unchanged in the next node of the

model.

g4 ∶=
m

⋀
i=0
⋀
a∈Γ

(∼Hi ∧Ca,i → �Ca,i)

• Transition relation for and-states.

g5 ∶=
m−1

⋀
i=1

⋀
a∈Γ

⋀
type(q)=∧

(Hi ∧Ca,i ∧Qq → ⋀
(q,a,q′,b,R)∈δ

♦(Hi+1 ∧Ci,b ∧Qq′)

∧ ⋀
(q,a,q′,b,L)∈δ

♦(Hi−1 ∧Ci,b ∧Qq′))

• Transition relation for or-states.

g6 ∶=
m−1

⋀
i=1

⋀
a∈Γ

⋀
type(q)=∨

(Hi ∧Ca,i ∧Qq → ⋁
(q,a,q′,b,R)∈δ

♦(Hi+1 ∧Ci,b ∧Qq′)

∨ ⋁
(q,a,q′,b,L)∈δ

♦(Hi−1 ∧Ci,b ∧Qq′))

• The accepting nodes of the model satisfy the following formula:

gF ∶= ⋁
q∈F

Qq

• Let the input x = a0,⋯, an, and b be the symbol for blank space. The

initial configuration is defined as follows:

gin ∶= Qq0 ∧H1 ∧ ⋀
i≠1

∼Hi ∧
n

⋀
i=1

Cai,i ∧Cb,0 ∧
m

⋀
i=n+1

Cb,i

Let g =
6

⋀
i=1

gi. Thus, the required bounded PCTL formula is defined as

follows:

f ∶= gin ∧ [gU kgF]=1.

156 APPENDIX B. EXPTIME-HARDNESS OF BOUNDED PCTL

The correctness of the translation can be checked by inspection, since there

is a one-to-one correspondence between the models of f and computations

of A on input x. Observe that the encoding takes O((∣Γ∣ + ∣Q∣ + ∣δ∣)S(n))
time. If S(n) is a polynomial function then f is constructed in polynomial

time of the size of A and x. Furthermore, if S(n) is polynomial in n then

A ∈ EXPTIME (equation (B.1)). This leads to the Proposition 2.0.1.

Appendix C

Variable elimination

Consider the ring of polynomials D[X] in the integral domain D, where X

is the set of indeterminates (or variables). A polynomial p(x1,⋯, xn), with

variables x1,⋯, xn ∈X, is seen as a sum of products with nonzero coefficients

in D, where each xd11 ⋯xdnn is called a term; together with its coefficient it is

called a monomial ; the degree of the term xd11 ⋯xdnn is d1+⋯+dn; degree of a

polynomial is the maximum degree of its terms. A polynomial is multivariate

if ∣X ∣ > 1. The ring of multivariate polynomials D[X] can be viewed as a

ring of univariate polynomials D[X∖{x}][x] with coefficients in the integral

domain D[X ∖ {x}] ([10] page 63, Theorem 2.). Particularly, the degree of

a term of a polynomial in D[X ∖ {x}][x] is the power of x in that term.

E(D[X]) is the set of (in)equations (e.g x2
1 − x2 ≥ 0.4) where the left

hand side (lhs) is a polynomial (e.g. x2
1 − x2) in D[X] and the right hand

side (e.g. 0.4) is in D. A variable x is independent of H ⊆ E(D[X]) iff

H =H ∩E(D[X ∖ {x}]) else it is dependent. The quotient domain Q(D) is

the rational form of the type f
g where f, g ∈D.

A weighted tree T is a triple (V,E,w), where V is the set of vertices,

E ⊆ V × V is the set of edges and w is an injective weight function from

E → V, where V is a set of variables. Let X = img(w). Define relations

next and parent as follows; for x, y ∈X, v, v′, v1, v2 ∈ V , with w−1(x) = (v1, v)
and w−1(y) = (v′, v2), (x, y) ∈ next iff v = v′, and (x, y) ∈ parent iff v1 = v′.
next+ is the transitive closure of next. Consider a term σ = x1⋯xk such

that for every 1 ≤ i < k, (xi, xi+1) ∈ next. Define head(σ) = x1, tail(σ) = xk
and xi⋯xk as a suffix of σ, for 1 ≤ i ≤ k. Let H ⊆ E(Q[X]) be a set of

157

158 APPENDIX C. VARIABLE ELIMINATION

(in)equations with the following properties. For each ξ ∈H ∶

P1. For all x ∈X, lhs(ξ) ∈ Q[X ∖ {x}][x] → degree(ξ) ≤ 1

P2. For each term σ = x1⋯xk in ξ, (xi, xi+1) ∈ next.
P3. If lhs(ξ) = a1σ1 +⋯ + akσk, where ai ∈ Q and σi are terms,

then for all 1 ≤ i, j ≤ k, (head(σi),head(σj)) ∈ parent.

Suppose H ⊆ E(Q[X]) satisfies properties P1, P2 and P3 and let n

be the number of variables and m be the number of (in)equations in H.

We only consider positive variable valuations. Thus for every variable x we

have the in-equation x > 0 in H. We present a non-deterministic algorithm

to decide whether H is satisfiable. We begin by setting H0 = H and at

each iteration i, we eliminate a (particular) variable, say x and transform

the set of equations from Hi ⊆ E(Q[X]) to Hi+1 ⊆ E(Q[X ∖ {x}]). We

consider comparisons & to be of the type {≥,=,≤}. (Strict inequalities can

be removed by adding very small positive quantity ε. For example f < g can

be transformed to f + ε ≤ g.) The algorithm proceeds in the following steps:

1. If Hi is independent of all variables, then each (in)equation, involves

only rational numbers (and ε→+ 0)1. Return true iff each (in)equality

in Hi is true.

2. Choose a variable x such that every variable y with (x, y) ∈ next+, is

independent of Hi.

3. Hx is the largest subset of Hi such that every formula in Hx is de-

pendent on x. If Hx is empty then Hi+1 = Hi. Suppose Hx is

not empty, every inequation ξ ∈ Hx can be transformed to a form

(σx&a0+a1σ1+⋯+akσk), where σ,σ1,⋯, σk are terms in Q[X∖{x}] and

a0,⋯, ak ∈ Q. We will denote this form by f ⋅x& g. Set Hi+1 =Hi ∖Hx.

4. Define Λ& ⊆ Q(Q[X ∖ {x}]), for & ∈ {≤,=,≥} as follows:

Λ≤ ∶= { gf ∣ (f ⋅x ≤ g) ∈Hx} ∪ {1}, quotients that are at least as large as x

Λ= ∶= { gf ∣ (f ⋅x = g) ∈Hx}, quotients that are equal x

Λ≥ ∶= { gf ∣ (f ⋅x ≥ g) ∈Hx} ∪ {ε} quotients that are at least as small as x,

where g = a0 + a1σ1 +⋯ + akσk and f = σ.

1ε tends to 0 from the positive side.

159

5. Non-deterministically choose an ordering of elements in Λ≤ and Λ≥.

Then we have the following set of (in)equations:

g1

f1
≤ ⋯ ≤ gn1

fn1

≤ gn1+1

fn1+1
= ⋯ = gn2

hn2

≤ gn2+1

fn2+1
≤ ⋯ ≤ gn3

fn3

(C.1)

where,
gi
fi

is in Λ≤ for 1 ≤ i ≤ n1, in Λ= for n1 + 1 ≤ i ≤ n2 and in Λ≥ for

n2 + 1 ≤ i ≤ n3.

6. For each 1 ≤ j ≤ n3, we have ξj ∶= (gjfj+1 &gj+1fj). ξ′j is obtained from

ξj by canceling variables that are common divisors of the polynomials

in the left hand side and in the right hand side of ξj . Add ξ′j to Hi+1

for each ξj (1 ≤ j ≤ n3). Go to step 1.

First we will show that Hi+1 created in step 6, satisfies P1, P2 and P3.

Consider,
a0 + a1σ1 +⋯ + akσk

σ
&
b0 + b1σ′1 +⋯ + blσ′l

σ′
(C.2)

Let ξ ∶= (σ⋅x & a0 + a1σ1 + ⋯ + akσk), ξ′ ∶= (σ′⋅x & b0 + b1σ′1 + ⋯ + blσ′l) and

ξ, ξ′ ∈Hi satisfy P1, P2 and P3. From the choice of the variable x (step 2),

it is evident that either σ∣σ′ or σ′∣σ (a∣b means a divides b). W.l.o.g let us

assumed σ′′σ′ = σ. The crucial observation is that if σ′∣σ then σ′ is a suffix

of σ, lest there should exist a variable y, such that (x, y) ∈ next and y is not

independent of Hi.

Therefore, equation (C.2) can be rewritten as:

a0 + a1σ1 +⋯ + akσk & b0σ
′′ + b1σ′′σ′1 +⋯ + blσ′′σ′l . (C.3)

P3 holds for equation (C.3), this follows trivially, as head(σ) = head(σi) =
head(σ′′) for 1 ≤ i ≤ k. (tail(σ′′),head(σ′)) ∈ next, since σ = σ′′σ′ and

(head(σ′i),head(σ′j)) ∈ parent for all 1 ≤ i, j ≤ l. Thus, the new equations

added to Hi+1 (after canceling common variables) also satisfy P1 and P2

(cancellation is valid since variables can only take positive value).

Correctness of the algorithm is due to the following arguments:

1. Suppose Hi is feasible and let ν be a satisfying valuation of the vari-

ables. Then there exists some order among the rational numbers

obtained by substituting the values of the variables in the quotients

{ g(x1,⋯,xn)f(x1,⋯,xn)
} present in Λ≤ and Λ≥. If we choose this order as the or-

dering in the equation (C.1) and obtain Hi+1 subsequently, then ν is

also a satisfying valuation for (in)equations Hi+1.

2. If Hi+1 is satisfiable then the (in)equations (C.1) are true for some

value of X ∖ {x}. If Λ= is not empty then set x = gn2
fn2

, else choose a

160 APPENDIX C. VARIABLE ELIMINATION

value for x such that
gn1
fn1

≤ x ≤ gn2+1
fn2+1

. The value thus chosen is strictly

greater than 0, since ε ∈ Λ≥.(Hence, rational form and cancellation of

variables defined in step 5 and step 6, respectively is valid.) This gives

us a satisfying valuation of Hi.

Observe that at each iteration i, the size of Hi is O(∣H ∣) and in every iter-

ation we remove one variable and spend O(mn) in obtaining Hi+1 (modulo

division of rational numbers). The maximum number of iteration is n and

total time complexity of the non-deterministic algorithm is O(mn2). Thus

satisfiability of a set of polynomial equation with properties P1, P2 and P3

is in NP.

Bibliography

[1] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.

Distributed Computing, 2(3):117–126, 1987.

[2] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron Peled.

Parametric temporal logic for ”model measuring”. ACM Trans. Com-

put. Log., 2(3):388–407, 2001.

[3] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric

real-time reasoning. In In Proceedings of the 25th Annual Symposium

On Theory Of Computing, pages 592–601. ACM Press, 1993.

[4] Rajeev Alur and Salvatore La Torre. Deterministic generators and

games for LTL fragments. ACM Trans. Comput. Log., 5(1):1–25, 2004.

[5] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking

(Representation and Mind Series). The MIT Press, 2008.

[6] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The temporal

logic of branching time. Acta Inf., 20:207–226, 1983.

[7] Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL model

checking of interval Markov chains. In TACAS, volume 7795 of LNCS,

pages 32–46. Springer, 2013.

[8] Nathalie Bertrand, John Fearnley, and Sven Schewe. Bounded satisfi-

ability for PCTL. In CSL, volume 16 of LIPIcs, pages 92–106. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[9] Andrea Bianco and Luca de Alfaro. Model checking of probabalistic

and nondeterministic systems. In FSTTCS, volume 1026 of LNCS,

pages 499–513. Springer, 1995.

[10] Garrett Birkhoff and Saunders Mac Lane. A Survey of Modern Alge-

bra. AKP classics. A.K. Peters, 1997.

161

162 BIBLIOGRAPHY

[11] Marco Bozzano, Harold Bruintjes, Alessandro Cimatti, Joost-Pieter

Katoen, Thomas Noll, and Stefano Tonetta. Formal Methods for

Aerospace Systems, pages 133–159. Springer Singapore, Singapore,

2017.

[12] T. Brazdil, V. Brozek, V. Forejt, and A. Kucera. Stochastic games with

branching-time winning objectives. In 21st Annual IEEE Symposium

on Logic in Computer Science, pages 349–358, 2006.

[13] Tomás Brázdil, Vojtech Forejt, Jan Kret́ınský, and Antońın Kucera.

The satisfiability problem for probabilistic CTL. In LICS, pages 391–

402. IEEE CS, 2008.

[14] Daniel Bundala and Joel Ouaknine. Advances in parametric real-time

reasoning. Mathematical Foundations of Computer Science, 2014.

[15] J.Richard Büchi. On a decision method in restricted second order

arithmetic. In Saunders Mac Lane and Dirk Siefkes, editors, The

Collected Works of J. Richard Büchi, pages 425–435. Springer New

York, 1962.

[16] Benôıt Caillaud, Benôıt Delahaye, Kim G. Larsen, Axel Legay,

Mikkel L. Pedersen, and Andrzej Wasowski. Constraint Markov

chains. Theoretical Computer Science, 412(34):4373 – 4404, 2011.

[17] John Canny. Some algebraic and geometric computations in PSPACE.

In STOC, pages 460–467. ACM, 1988.

[18] Pablo F. Castro, Cecilia Kilmurray, and Nir Piterman. Tractable

probabilistic mu-calculus that expresses probabilistic temporal logics.

In STACS, volume 30 of LIPIcs, pages 211–223. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2015.

[19] Claudia Cauli and Nir Piterman. Equivalence of probabilistic mu-

calculus and p-automata. In Implementation and Application of Au-

tomata, pages 64–75. Springer International Publishing, 2017.

[20] Souymodip Chakraborty and Joost-Pieter Katoen. Parametric LTL on

markov chains. In Theoretical Computer Science - 8th IFIP TC 1/WG

2.2 International Conference, TCS 2014, Rome, Italy, September 1-3,

2014. Proceedings, pages 207–221, 2014.

[21] Souymodip Chakraborty and Joost-Pieter Katoen. Model checking of

open interval Markov chains. In ASMTA, volume 9081 of LNCS, pages

30–42. Springer, 2015.

BIBLIOGRAPHY 163

[22] Souymodip Chakraborty and Joost-Pieter Katoen. P-automata for

markov decision processes. In 3rd International Workshop on Strategic

Reasoning, St Catherine’s College, University of Oxford, Sep 17, 2015.

[23] Souymodip Chakraborty and Joost-Pieter Katoen. On the satisfia-

bility of some simple probabilistic logics. In Proceedings of the 31st

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

’16, New York, NY, USA, July 5-8, 2016, pages 56–65, 2016.

[24] Souymodip Chakraborty, Joost-Pieter Katoen, Falak Sher, and Mar-

tin Strelec. Modelling and statistical model checking of a microgrid.

STTT, 17(4):537–554, 2015.

[25] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Al-

ternation. J. ACM, 28(1):114–133, 1981.

[26] Krishnendu Chatterjee, Tom Henzinger, and Koushik Sen. Model-

checking omega-regular properties of interval Markov chains. In

Roberto M. Amadio, editor, Foundations of Software Science and

Computation Structure (FoSSaCS) 2008, pages 302–317, March 2008.

[27] Krishnendu Chatterjee, Marcin Jurdziński, and Thomas A. Henzinger.

Quantitative stochastic parity games. In Proceedings of the Fifteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04,

pages 121–130, 2004.

[28] Krishnendu Chatterjee and Nir Piterman. Obligation blackwell games

and p-automata. J. Symb. Log., 82(2):420–452, 2017.

[29] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model

Checking. MIT Press, Cambridge, MA, USA, 1999.

[30] Anne Condon. The complexity of stochastic games. Information and

Computation, 96:203–224, 1992.

[31] Costas Courcoubetis and Mihalis Yannakakis. The complexity of prob-

abilistic verification. J. ACM, 42(4):857–907, July 1995.

[32] J.-M. Couvreur, N. Saheb, and G. Sutre. An optimal automata ap-

proach to LTL model checking of probabilistic systems. In LPAR,

volume 2850 of LNCS, pages 361–375. Springer, 2003.

[33] Conrado Daws. Symbolic and parametric model checking of discrete-

time Markov chains. In ICTAC, volume 3407 of LNCS, pages 280–294.

Springer, 2005.

164 BIBLIOGRAPHY

[34] Luca de Alfaro and Rupak Majumdar. Quantitative solution of omega-

regular games. J. Comput. Syst. Sci., 68(2):374–397, 2004.

[35] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzil-

ius, Matthias Volk, Harold Bruintjes, Joost-Pieter Katoen, and Erika

Ábrahám. Prophesy: A probabilistic parameter synthesis tool. In

Computer Aided Verification - 27th International Conference, CAV

2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part

I, pages 214–231, 2015.

[36] E. Allen Emerson. Temporal and modal logic. In Handbook of The-

oretical Computer Science, Volume B: Formal Models and Sematics

(B), pages 995–1072. 1990.

[37] E. Allen Emerson and Edmund M. Clarke. Using branching time

temporal logic to synthesize synchronization skeletons. Sci. Comput.

Program., 2(3):241–266, 1982.

[38] E. Allen Emerson and Joseph Y. Halpern. Decision procedures and

expressiveness in the temporal logic of branching time. J. Comput.

Syst. Sci., 30(1):1–24, 1985.

[39] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus

and determinacy (extended abstract). In 32nd Annual Symposium

on Foundations of Computer Science, San Juan, Puerto Rico, 1-4

October 1991, pages 368–377, 1991.

[40] E. Allen Emerson and Richard J. Trefler. Parametric quantitative

temporal reasoning. In 14th Annual IEEE Symposium on Logic in

Computer Science, Trento, Italy, July 2-5, 1999, pages 336–343, 1999.

[41] E.Allen Emerson, Charanjit S. Jutla, and A.Prasad Sistla. On model

checking for the µ-calculus and its fragments. Theoretical Computer

Science, 258(1–2):491 – 522, 2001.

[42] Harald Fecher, Michael Huth, Nir Piterman, and Daniel Wagner. Hin-

tikka games for PCTL on labeled markov chains. In Fifth International

Conference on the Quantitative Evaluaiton of Systems (QEST 2008),

14-17 September 2008, Saint-Malo, France, pages 169–178, 2008.

[43] Diana Fischer, Erich Grädel, and Lukasz Kaiser. Model check-

ing games for the quantitative µ-calculus. Theory Comput. Syst.,

47(3):696–719, 2010.

BIBLIOGRAPHY 165

[44] Michael J. Fischer and Richard E. Ladner. Propositional dynamic

logic of regular programs. J. of Comput. and Syst. Sci., 18(2):194 –

211, 1979.

[45] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi.

On the temporal basis of fairness. In Conference Record of the Seventh

Annual ACM Symposium on Principles of Programming Languages,

Las Vegas, Nevada, USA, January 1980, pages 163–173, 1980.

[46] Yuri Gurevich and Leo Harrington. Trees, automata, and games. In

STOC, pages 60–65. ACM, 1982.

[47] Ernst Moritz Hahn, Tingting Han, and Lijun Zhang. Synthesis for

PCTL in parametric Markov decision processes. In NFM, volume

6617 of LNCS, pages 146–161. Springer, 2011.

[48] Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic

reachability for parametric Markov models. STTT, 13(1):3–19, 2011.

[49] Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre. Approx-

imate parameter synthesis for probabilistic time-bounded reachability.

In IEEE Real-Time Systems Symposium (RTSS), pages 173–182. IEEE

Computer Society, 2008.

[50] Mikkel Hansen, Kim Guldstrand Larsen, Radu Mardare, Mathias Rug-

gaard Pedersen, and Bingtian Xue. A complete approximation theory

for weighted transition systems. In Martin Fränzle, Deepak Kapur,

and Naijun Zhan, editors, Dependable Software Engineering: Theo-

ries, Tools, and Applications, pages 213–228, Cham, 2016. Springer

International Publishing.

[51] Mikkel Hansen, Kim Guldstrand Larsen, Radu Mardare, Mathias Rug-

gaard Pedersen, and Bingtian Xue. Reasoning about bounds in

weighted transition systems. CoRR, abs/1703.03346, 2017.

[52] Hans Hansson and Bengt Jonsson. A framework for reasoning about

time and reliability. In Proceedings of the Real-Time Systems Sympo-

sium - 1989, Santa Monica, California, USA, December 1989, pages

102–111, 1989.

[53] Hans Hansson and Bengt Jonsson. A logic for reasoning about time

and reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

[54] Hans A. Hansson. Time and Probability in Formal Design of Dis-

tributed Systems. Elsevier Science Inc., New York, NY, USA, 1994.

166 BIBLIOGRAPHY

[55] Sergiu Hart and Micha Sharir. Probabilistic propositional temporal

logics. Inf. and Control, 70(2/3):97–155, 1986.

[56] Jaakko Hintikka. Game-theoretical semantics: insights and prospects.

Notre Dame Journal of Formal Logic, 23(2):219–241, 1982.

[57] Michael Huth and Marta Z. Kwiatkowska. Comparing CTL and

PCTL on labeled markov chains. In Programming Concepts and Meth-

ods, IFIP TC2/WG2.2,2.3 International Conference on Programming

Concepts and Methods (PROCOMET ’98) 8-12 June 1998, Shelter

Island, New York, USA, pages 244–262, 1998.

[58] Michael Huth, Nir Piterman, and Daniel Wagner. p-automata: New

foundations for discrete-time probabilistic verification. Performance

Evaluation, 69(7–8):356 – 378, 2012. Selected papers from {QEST}
2010.

[59] David Janin and Igor Walukiewicz. On the expressive completeness of

the propositional mu-calculus with respect to monadic second order

logic. In CONCUR ’96, Concurrency Theory, 7th International Con-

ference, Pisa, Italy, August 26-29, 1996, Proceedings, pages 263–277,

1996.

[60] Bengt Jonsson and Kim Guldstrand Larsen. Specification and re-

finement of probabilistic processes. In LICS, pages 266–277. IEEE

Computer Society, 1991.

[61] N.N. Katerinochkina. Sets containing a maximal number of pair-

wise incomparable n-dimensional k-ary sets. Mathematical notes of

the Academy of Sciences of the USSR, 24(3):696–700, 1978.

[62] Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Car-

roll C. Morgan. Linear-invariant generation for probabilistic programs.

In Static Analysis Symposium (SAS), volume 6337 of LNCS, pages

390–406. Springer, 2010.

[63] Joost-Pieter Katoen, Lei Song, and Lijun Zhang. Probably safe or

live. In Joint Meeting of the Twenty-Third EACSL Annual Confer-

ence on Computer Science Logic (CSL) and the Twenty-Ninth Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-

LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 55:1–55:10, 2014.

[64] Ron Koymans. Specifying real-time properties with metric temporal

logic. Real-Time Systems, 2(4):255–299, 1990.

BIBLIOGRAPHY 167

[65] Dexter Kozen. Results on the propositional µ-calculus. In Automata,

Languages and Programming, 9th Colloquium, Aarhus, Denmark, July

12-16, 1982, Proceedings, pages 348–359, 1982.

[66] Dexter Kozen. Results on the propositional µ-calculus. Theoretical

Computer Science, 27(3):333 – 354, 1983. Special Issue Ninth In-

ternational Colloquium on Automata, Languages and Programming

(ICALP) Aarhus, Summer 1982.

[67] Dexter C. Kozen. Theory of Computation. Springer, 2006.

[68] Jan Kret́ınský and Alexej Rotar. The satisfiability problem for un-

bounded fragments of probabilistic CTL. CoRR, abs/1806.11418,

2018.

[69] Saul Kripke. A completeness theorem in modal logic. J. Symb. Log.,

24(1):1–14, 1959.

[70] Richard E. Ladner. The computational complexity of provability in

systems of modal propositional logic. SIAM J. Comput., 6(3):467–480,

1977.

[71] Kim G. Larsen, Radu Mardare, and Bingtian Xue. Probabilistic Mu-

Calculus: Decidability and Complete Axiomatization. In Akash Lal,

S. Akshay, Saket Saurabh, and Sandeep Sen, editors, 36th IARCS

Annual Conference on Foundations of Software Technology and The-

oretical Computer Science (FSTTCS 2016), volume 65 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 25:1–25:18,

Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer In-

formatik.

[72] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic

testing. Information and Computation, 94(1):1 – 28, 1991.

[73] Daniel Lehmann and Saharon Shelah. Reasoning with time and

chance. Information and Control, 53(3):165 – 198, 1982.

[74] Wanwei Liu, Lei Song, Ji Wang, and Lijun Zhang. A simple prob-

abilistic extension of modal mu-calculus. In IJCAI, pages 882–888.

AAAI Press, 2015.

[75] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and

Concurrent Systems - specification. Springer, 1992.

168 BIBLIOGRAPHY

[76] Panagiotis Manolios and Richard J. Trefler. Safety and liveness in

branching time. In 16th Annual IEEE Symposium on Logic in Com-

puter Science, Boston, Massachusetts, USA, June 16-19, 2001, Pro-

ceedings, pages 366–374, 2001.

[77] Donald A. Martin. Borel determinacy. Annals of Mathematics,

102(2):pp. 363–371, 1975.

[78] Annabelle McIver and Carroll Morgan. Games, probability and the

quantitative µ-calculus qmµ. In Logic for Programming, Artificial In-

telligence, and Reasoning, 9th International Conference, LPAR 2002,

Tbilisi, Georgia, October 14-18, 2002, Proceedings, pages 292–310,

2002.

[79] Annabelle McIver and Carroll Morgan. Results on the quantitative

mu-calculus qmu. CoRR, cs.LO/0309024, 2003.

[80] Matteo Mio. Probabilistic modal µ-calculus with independent prod-

uct. In Martin Hofmann, editor, Foundations of Software Science and

Computational Structures, volume 6604 of Lecture Notes in Computer

Science, pages 290–304. Springer Berlin Heidelberg, 2011.

[81] Nir Piterman. From nondeterministic Büchi and Streett automata to

deterministic parity automata. Logical Methods in Computer Science,

3(3), 2007.

[82] Amir Pnueli. The temporal logic of programs. In 18th Annual Sympo-

sium on Foundations of Computer Science, Providence, Rhode Island,

USA, 31 October - 1 November 1977, pages 46–57, 1977.

[83] Sally Popkorn. First Steps in Modal Logic. Cambridge University

Press, 1994.

[84] Emil L. Post. A variant of a recursively unsolvable problem. Bulletin

of the American Mathematical Society, 52(4):264–268, 04 1946.

[85] A. N. Prior. Time and Modality. Oxford, 1957.

[86] Alberto Puggelli, Wenchao Li, Alberto Sangiovanni-Vincentelli, and

Sanjit Seshia. Polynomial-time verification of PCTL properties of

MDPs with convex uncertainties. In CAV, volume 8044 of LNCS,

pages 527–542. Springer, 2013.

[87] James Renegar. On the computational complexity and geometry of the

first-order theory of the reals. part i: Introduction. preliminaries. the

BIBLIOGRAPHY 169

geometry of semi-algebraic sets. the decision problem for the existen-

tial theory of the reals. Journal of Symbolic Computation, 13(3):255

– 299, 1992.

[88] Roberto Segala and Nancy Lynch. Probabilistic simulations for prob-

abilistic processes. Nordic J. of Computing, 2(2):250–273, June 1995.

[89] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-checking

Markov chains in the presence of uncertainties. In Holger Hermanns

and Jens Palsberg, editors, Tools and Algorithms for the Construction

and Analysis of Systems, volume 3920 of Lecture Notes in Computer

Science, pages 394–410. Springer Berlin Heidelberg, 2006.

[90] A. Prasad Sistla and Edmund M. Clarke. The complexity of proposi-

tional linear temporal logics. J. ACM, 32(3):733–749, 1985.

[91] Robert S. Streett and E.Allen Emerson. An automata theoretic de-

cision procedure for the propositional mu-calculus. Information and

Computation, 81(3):249 – 264, 1989.

[92] Wolfgang Thomas. Handbook of formal languages, vol. 3. chapter

Languages, Automata, and Logic, pages 389–455. Springer-Verlag New

York, Inc., New York, NY, USA, 1997.

[93] Michael Ummels and Christel Baier. Computing quantiles in Markov

reward models. In FoSSaCS, volume 7794 of LNCS, pages 353–368.

Springer, 2013.

[94] Moshe Y. Vardi. An automata-theoretic approach to linear temporal

logic. In Logics for Concurrency: Structure versus Automata, volume

1043 of LNCS, pages 238–266. Springer, 1996.

[95] Moshe Y. Vardi. Why is modal logic so robustly decidable? In De-

scriptive Complexity and Finite Models, Proceedings of a DIMACS

Workshop, January 14-17, 1996, Princeton University, pages 149–184,

1996.

[96] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite compu-

tations. Information and Computation, 115:1–37, 1994.

[97] Peter Walley. Measure of uncertainty in expert systems. In Artificial

Intelligence, 83.1, pages 1–58, 1996.

[98] Thomas Wilke. Alternating tree automata, parity games, and modal

µ-calculus. Bull. Belg. Math. Soc. Simon Stevin, 8(2):359–391, 2001.

170 BIBLIOGRAPHY

[99] Martin Zimmermann. Optimal bounds in parametric LTL games.

Theor. Comput. Sci., 493:30–45, 2013.

[100] Damjan Škulj. Discrete time Markov chains with interval probabilities.

International Journal of Approximate Reasoning, 50(8):1314 – 1329,

2009. Special Section on Interval/Probabilistic Uncertainty.

BIBLIOGRAPHY 171

Prior Publications

• On the Satisfiability of Some Simple Probabilistic Logic. Souy-

modip Chakraborty and Joost-Pieter Katoen. In Proceedings of the

31st Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS ’16, New York, NY, USA, July 5-8, 2016, pages 56–65, 2016.

• P-automata for markov decision processes. Souymodip Chakraborty

and Joost-Pieter Katoen. In 3rd International Workshop on Strategic

Reasoning, St Catherine’s College, University of Oxford, Sep 17, 2015.

• Model Checking of Open Interval Markov Chains. Souymodip

Chakraborty and Joost-Pieter Katoen. In ASMTA, volume 9081 of

LNCS, pages 30–42. Springer, 2015.

• Parametric LTL on Markov Chains. Souymodip Chakraborty

and Joost-Pieter Katoen. n Theoretical Computer Science - 8th IFIP

TC 1/WG 2.2 International Conference, TCS 2014, Rome, Italy, Septem-

ber 1-3, 2014. Proceedings, pages 207–221, 2014.

• Modeling and statistical model checking of a micro-grid. Souy-

modip Chakraborty, Joost-Pieter Katoen, Falak Sher, and Mar- tin

Strelec. STTT, 17(4):537–554, 2015.

172 BIBLIOGRAPHY

