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Abstract

Probabilistic (or quantitative) verification is a branch of formal methods
dealing with stochastic models and logic. Probabilistic models capture the
behavior of randomized algorithms and other physical systems with certain
uncertainty, whereas probabilistic logic expresses the quantitative measure
on the probabilistic space defined by the models.

Most often, the formal techniques used in studying the behavior of these
models and logic are not just mundane extension of its non-probabilistic
counterparts. The complexity of these mathematical structures is surpris-
ingly different. The thesis is an effort at improving our continued under-
standing of these models and logic.

We will begin by looking at few interesting formal representations of
discrete stochastic models. Namely, we will address the parameter synthesis
problem for parametric linear time temporal logic and model checking of
convex Markov decision processes with open intervals.

The primary focus of the thesis is however on the satisfiability (or va-
lidity) problem of different probabilistic logics. This includes a bounded
fragment of probabilistic logic and a simple quantitative (probabilistic) ex-
tension of mu-calculus. Decision procedures for the satisfiability problems
are developed and a detailed complexity analysis of these problems is pro-
vided.

The study of automata has been very effective in understanding logic.
We will look at the newly conceived notion of p-automata, which are a prob-
abilistic extension of alternating tree automata. As we will see, probabilis-
tic logic exhibits both non-deterministic and stochastic behavior. The se-
mantics of p-automata are extended to capture non-determinism and hence
model Markov decision processes.






Zusammenfassung

Probabilistische (oder quantitative) Verifikation ist ein Teilgebiet der For-
malen Methoden, das sich mit stochastischen Modellen und Logiken bescha-
tigt. Probabilistische Modelle beschreiben das Verhalten randomisierter Al-
gorithmen und anderer physikalischer Systeme, die einer gewissen Unsicher-
heit unterworfen sind, wahrend probabilistische Logik quantitative Mafe
iiber dem Wahrscheinlichkeitsraum eines solchen Modells spezifiziert.

In den allermeisten Féllen sind die formalen Techniken, die zur Anal-
yse des Verhaltens probabilistischer Modelle und Logiken eingesetzt wer-
den, mehr als einfache Erweiterungen ihrer nicht-quantitativen Varianten.
Vielmehr weisen die resultierenden mathematischen Strukturen eine iiberra-
schende Komplexitat auf. Das Ziel dieser Arbeit besteht darin, das Verstand-
nis dieser Strukturen grundlegend zu verbessern.

Wir beginnen mit der Vorstellung einiger interessanter formaler Darstel-
lungen diskreter stochastischer Modelle. Insbesondere werden wir uns dem
Problem der Parametersynthese fiir parametrische Linearzeit-Temporallogik
sowie des Model Checking fiir konvexe Markov-Entscheidungsprozesse mit
offenen Intervallen widmen.

Der Schwerpunkt der Arbeit liegt auf dem Erfiillbarkeits- und Giiltigkeit-
sproblem fiir verschiedene probabilistische Logiken. Letztere umfassen ein
beschrinktes Fragment der probabilistischen Logik sowie eine einfache quan-
titative (probabilistische) Erweiterung des mu-Kalkiils. Wir entwickeln Entsch-
eidungsprozeduren fiir die zugehorigen Erfiillbarkeitsprobleme und fiithren
eine detaillierte Komplexitatsanalyse durch.

Automaten haben sich als ein duflerst effektives Hilfsmittel fiir das Verst-
andnis von Logiken erwiesen. Wir filhren das neue Konzept der p-Automaten
ein, welche eine probabilistische Erweiterung alternierender Baumautomaten
darstellen. Wie sich zeigen wird, weist probabilistische Logik sowohl nichtde-
terministisches als auch stochastisches Verhalten auf. Daher wird die Seman-
tik von p-Automaten um die Behandlung von Nichtdeterminismus erweitert,
so dass auch Markov-Entscheidungsprozesse modelliert werden kénnen.
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Publications

Following is a complete list of technical papers and journal. We will give a
brief introduction to the contribution of these publications.

e On the Satisfiability of Some Simple Probabilistic Logic. [23]
The paper solves the satisfiability problems for two important frag-
ments of probabilistic CTL (PCTL). Namely, a bounded fragment
of PCTL(called bounded PCTL) and an extension of the modal u-
calculus with probabilistic with probabilistic quantification over next-
modalities (called PuTL). Firstly, the paper shows that bounded PCTL
has small model property where the model size is independent from
the probability bounds in the formula. An NEXP-TIME algorithm for
deciding satisfiability of that the bounded PCTL is developed. The
paper also establishes that the satisfiability problem of a simple sub-
logic of bounded PCTL is PSPACE-complete.

Secondly, the paper proves that PuTL too has a small model property
and employs a decision procedure using 2 player parity games, showing
that the satisfiability problem is decidable. These results have signifi-
cant ramification as it goes to shows that PuTL and qualitative PCTL
are incomparable. The paper also contrasts PCTL by showing that
every satisfiable PuTL formula has a rational model, i.e. a model with
only rational probabilities.

e P-Automata for Markov Decision Processes. [22]

P-automata provide an automata-theoretic approach to probabilistic
verification. Similar to alternating tree automata which accepts la-
beled transition systems, p-automata accept labeled Markov chains.
The paper extends the syntax of p-automata to accept the set of all
Markov chains (modulo bisimulation) obtained from a Markov decision
process under various schedulers. The aim is to enrich the semantics
of the automata to capture various probabilistic tree logic.

e Model Checking of Open Interval Markov Chains [21]
The paper solves the model checking problem for interval Markov
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chains with open intervals. Interval Markov chains are generaliza-
tions of discrete time Markov chains where the transition probabilities
are intervals, instead of constant values. The focus of the paper is
the singular case of open intervals (where the boundaries of the in-
terval are not included). Open intervals is semantically challenging,
as optimal (min, max) value for reachability does not always exist.
The paper solves the model checking (and reachability) problem with
minor modification to existing algorithms for model checking Markov
chains against PCTL formulas.

Parametric LTL on Markov Chains. [20]

The paper tackles the verification problem of finite Markov chains
against parametrized LTL(pLTL) formulas. In pLTL, the until-modality
is equipped with a variable bound. For example, o<, asserts that ¢
holds within z time steps, where x is a variable on natural numbers.
Given a Markov chain, a pLTLformula ¢ and a threshold < p (where <
is a comparison on reals and p is some probability), the problem is to
determining the set of parameter valuations, represented by V.,(¢),
for which the probability of satisfying the ¢ in the Markov chain meets
a given threshold < p. As determining the emptiness of V5(¢) is un-
decidable, we consider several fragments of the logic with increasing
expressiveness. Namely, we consider parametric reachability logic, a
sub-logic of pLTL restricted to next and eventually operator, paramet-
ric Biichi properties and finally, a maximal subclass of pLTL for which
emptiness of V5o(¢p) is decidable.

Modeling and statistical model checking of a micro-grid. [24]
The journal provides a use case study of statistical model checking of
micro-grids. A micro-grid with wind, micro-turbines, and the main
grid as generation resources . The micro-grid is modeled as a parallel
composition of various stochastic hybrid automata. Extensive simu-
lation of the behaviour of the individual components give insight into
the complex dynamics of the system and provide useful information
to determine adequate parameter settings. The study focuses on the
application of statistical methods in determining the probability of lin-
ear temporal logic properties expressed in the logic LTL. The statistical
model checker Uppaal-SMC was used to perform numerical analysis.
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Chapter 1

Introduction

Since the time of antiquity, logic has been an integral part of mathematics.
Logic, typically consists of a formal language used for writing the statements
of the logic, a deductive systems to deduce new statement from a given set
of statements and (or) a model-theoretic semantics to define meaning of
each sentence. Loosely speaking, logic is the study of the truthfulness of
statements. The language (syntaz) of the logic is simply a collection of
statements (also called formulas) recursively defined by a grammar. On its
own it has no meaning, the meaning is given by the deductive system and
(or) by the semantics. In a model-theoretical framework, the semantics of
the logic defines (inductively) the set of structures for which a given formula
is true. These structures are called the models of the formula. A formula
is said to be walid iff every structure is a model of the formula. The two
fundamental questions of any logic are:

1. Given a formula f and a model M, whether f is true at M.
2. Given formula f, whether f is valid.

We call the first, the model checking problem and the second the wvalidity
problem (or its complement the satisfiability problem).

Logic was envisaged as to mitigate the problem of ambiguity in the
meaning of sentences of natural languages. Logic allows us to unambiguously
express properties (formulas of the logic) and formally verify if the property
is (true) fulfilled by a given system (model). Directed graphs are the natural
mathematical structures for abstracting the behaviour of physical systems.
First order logic was found to be unsatisfactory for describing the dynamic
behaviour of systems. Modal logic, on the other hand, are reasoned over
directed graphs, also called Kripke structure, named after Saul Kripke who
gave the possible world semantics [69]. Thus, modal logic and its many
extensions have become the most widely studied logic for verification.

13



14 CHAPTER 1. INTRODUCTION

Modal logic paved the way for different kinds of (more expressible) tem-
poral logics, which are useful in describing the change in behaviour with
time. Temporal logic extends modal logic, specially K [83] logic where only
local properties of a Kripke structure can be defined, with temporal con-
structs for expressing global properties. This allows us to express things
like reachability and invariants, which are sine qua non for program veri-
fication. Temporal logic was introduced around 1960 by Arthur Prior [85]
under the name of Tense Logic and developed further by many logicians
and computer scientists, most prolifically by, Amir Pnueli [82], E. Allen
Emerson [36], Moshe Y. Vardi [95] and Dexter Kozen [65], to name a few.

Temporal logic are broadly classified on the basis of how passage of time
is perceived. The school of linear temporal logics, as the name suggests,
perceives time to flow linearly. Thus the models of these kind of temporal
logic formulas are totally ordered sequences of events. Prior’s original se-
mantics for Tense logic assumed a linear time flow. One of the most popular
and widely used linear temporal logic in computer science is the linear time
temporal logic LTL, proposed in the seminal paper by Pnueli (1977) [82]
and first explicitly axiomatized and studied by Gabbay et al. (1980) [45].
LTL has (N,<) as models, and is very useful for expressing safety, liveness,
fairness, and precedence properties of infinite computations in reactive sys-
tems (Manna and Pnueli (1992) [75]). For example, reachability is expressed
with the operator F. A linear sequence (also called path) satisfies Fa if it
eventually reaches a state satisfying a. Invariant is expressed with the oper-
ator G. A path satisfies Ga if at every state of the path a holds. Statement,
“FEvery time when a message is sent, an acknowledgment of receipt will even-
tually be returned”, can be easily expressed in LTL as G(msg — F(ack)).

The other school of temporal logics considered branching future, where
time does not follow deterministically as in linear temporal logics, rather
non-deterministically with many possible future extensions. It is based on
the assumption that while the past cannot be changed, the future can take
different possible courses from the present moment. Formally, this means
that the natural flows of time for branching time temporal logic semantics
are tree-like rather than linear. A models of any branching time temporal
logic formula is a tree (T, <), where < is a partial order (contrast to the total
order for linear temporal logics) on 7', and T is a collection of observable
time instances. These structures in computer science are called computa-
tion trees, and are naturally obtained by unfoldings of Kripke structures.
Computation tree logic CTL introduced by Clarke and Emerson (1982) [37],
CTL” introduced by Emerson and Halpern (1985) [38] and Modal pu calculus
(Ly), introduced by Dexter Kozen [65] are some of the popular branching
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time logics used in computer science. In CTL formulas alternate between
path formula and state formula. The path formulas are interpreted over
paths of the tree (and hence are formulas of linear temporal logic). State
formulas are obtained by universally (V) or existentially (3) quantifying path
formulas. For example, VFa, is a CTL state formula, where Fa is a path for-
mula (also an LTL formula), which is quantified by V. A state of the tree
satisfies VFa, if every path from that state satisfies Fa. It is important to
note that in CTL, there is strict alternation between the linear temporal
formulas and the quantifiers. CTL* is CTL without this restriction. The
logic Ly extends standard K modal logic with greatest and least fixed point
operators. This allows us to define properties recursively, whose semantics is
obtained inductively by relying on fixed point theory over complete lattices.
Ly was proved to be the most expressive fragment of second order logic
which cannot distinguish between bisimilar models [59], and hence includes
CTL and CTL*.

So far we have only talked about logics whose semantics are defined in
an absolute sense. That is, given a formula f and a model M, there are
only two possibilities, either f is true for M (M satisfies f) or f is false
for M (M does not satisfies f). The Branching time semantics opened the
door for quantitative satisfaction of formulas. These logic are equipped with
constructs which can reason about the number (or the measure) of possible
future branches where the formula holds. Hence, they are useful in represent-
ing important aspects of computations such as probabilistic behaviour [52],
timing behaviour [64] and other quantitative aspect involving counting [40].
The kind of quantitative models that we will extensively talk in this the-
sis are probabilistic systems. Broadly classified as probabilistic transition
systems, these transitions systems are mathematical objects that generalize
standard transition systems. Each state of the transition system is equipped
with (one or more) probability distribution(s) on the set of states. Labeled
Markov chains, concurrent Markov chains, probabilistic automata, among
others are some of the well known probabilistic transition systems.

One of the major direction of research in the past few decades has been
the development of appropriate structure for expressing qualitative proper-
ties, and modeling probabilistic behaviour. Probabilistic aspect are essential
for:

1. Randomized algorithms. They are modeled by probabilistic programs.
Study of sequential programs essentially culminates to the analysis of
Markov chains, and concurrent programs to Markov decision processes.

2. Modeling unreliable system behaviour. Phenomena like message loss,
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processes failure can be quantified and used to develop a more accurate
model of the system.

Once such a model has been chosen, it is necessary to have logics that
are able to express the interesting properties of the model catering to its
quantitative aspect, since for such systems absolute guarantee of correctness
make little sense. For example, in a client-server setting we may want to
know whether: “50% of the time a request sent by a client is serviced by
the server”, or in sequential randomized program, “the program terminates
with probability 17, or in a randomized distributed leader election protocol
“every member has equal probability of being the leader”.

The initial approaches to develop probabilistic logics were to extend ex-
isting branching time temporal logics, primarily CTL and CTL* with thresh-
old operators for specifying quantitative properties. For instance, consider
the CTL formula YFa which is true for a state s of a transition system if
every path from s satisfy Fa. In the probabilistic version we have [Fa]_1,
which is true for a state of a probabilistic transition system if the probability
of the set of paths from s satisfying Fa has a measure < % (the definition of
measure vary from system to system). This method of extending traditional
temporal logics led to probabilistic computation tree logic (PCTL) and prob-
abilistic CTL* (PCTL*) [52]. The semantics of such logics are still boolean,
either a state of probabilistic transition system satisfies a formula or it does
not satisfies a formula. Only qualitative aspect lies in the measure of the
set of paths that satisfies a given linear temporal formula.

Earliest works where the satisfaction of a formula f by a model M was
lifted from a boolean valued function to a real valued function were done
by M. Huth and M. Kwiatkowska [57], and independently by A. Mclver and
C. Morgan [78]. Both works extend the interpretation of Ly to the proba-
bilistic models. The principal insight is to lift the satisfaction of a formula
on a model from a boolean function to a real valued function with range
[0,1]. For example, in the case of M. Huth and M. Kwiatkowska [57], the
formulas are interpreted over the set of states of a Markov chains. For each
formula f and state s, the satisfaction relation [f](s) is the value of the a
function [f] : S — [0,1], where S is the set of states of the probabilistic sys-
tem. Subsequently, many different interpretation of probabilistic p calculus
has been proposed [43, 79, 34]. The central difference lies in the choice of
interpretation of different logical operators.

Unlike Ly which includes CTL and CTL*, quantitative interpretation of p
calculus over probabilistic systems, are not comparable to PCTL and PCTL*.
The probabilistic p calculus (pLu® and pLug) proposed by Matteo Mio [80]
remedies this shortcoming, by equipping the logic pLu® with ® operator,
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called the independent product and pLug with @. The logic pLu® is expres-
sive enough to capture qualitative fragment of PCTL* and pLu$ can capture
the full PCTL*. Fragments of pLu$ have also been studied by restricting
the syntax of the logic [18].

The Probabilistic i calculus and its various fragments have been sub-
jected to great scrutiny to illicit correct meaning to its syntax. The most
interesting concept that emerged from these investigations is the represen-
tation of the semantics of these logics as a two player game. The idea draws
from Lp where satisfaction of Kripke structure by a formula is seen as two
player parity game (player 1 and player 2) [39] (which in turn was inspired
by the seminal work of Hentikka[56] on game semantics for logics). A Kripke
structure satisfies a formula if there exists a winning strategy for player 1
in the corresponding game. Similarly, the semantics of probabilistic u cal-
culus is defined by a 2 player stochastic parity game [78]. The value of the
satisfaction function for a formula f at a state s, i.e., [f](s), thus becomes
the value of certain configuration in the corresponding 2 player stochastic
game.

The main focus of the research in probabilistic logics has been on the
development of efficient algorithm for the model checking problem. The
model checking problem of finite Markov chain for Probabilistic computa-
tion tree logic or PCTL, has been extensively studied [52, 5]. Many variant
of PCTL have been proposed for Markov decision processes (MDPs) [54, 88|
as well. Subsequently, the model checking problem of PCTL and PCTL* for
MDPs was solved by Bianco and de Alfaro [9]. Furthermore, the complexity
of the model checking problem of probabilistic u calculus was shown to be in
NPnco-NP [18]. Complexity result for the model checking problem for differ-
ent fragments of probabilistic p calculus has also been investigated [18]. A
detailed analysis of the algorithmic complexity of calculating the the prob-
ability measure of a set of paths that satisfies a LTL property was done by
Courcoubetis and Yannakakis (1995) [31]. Researchers have also developed
algorithms for parametric model checking. In parametric model checking
the models under scrutiny are parametrized, where the transition proba-
bility of the models (such as Markov chains or MDPs) are defined using
parameters. One of the contribution of this thesis is related to qualitative
model checking of parametric linear time properties. Instead of considering
parametric models, here we consider parametrized version of LTL, where the
integer bounds on bounded finally (F) operators are parameters. Thus, given
a Markov chain and a probability bound, the problem is to identify the set
of parameter valuations for which the required probability bound is achiev-
able. The problem is thus the dual of quantitative model checking on LTL.
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We show that the general problem is undecidable, and investigate various
restriction on the parametrized logic which makes the problem decidable.

In contrast to model checking of probabilistic logics, very few result exist
on the satisfiability problem (or the validity problem) for these logics. Hart
and Sharir [55] and Lehmann and Shelah [73], were one of the first to consider
the validity problem for the probabilistic branching time logic. These logics
were probabilistic extensions of Branching time logics like CTL, and can be
categorized as the qualitative fragment of PCTL. Their focus was mainly
providing a deductive system in the same spirit as was provided by Ben-Ari
and Manna [6] for various branching time temporal logics. More recently,
Kucera et al [13], has shown that the satisfiability problem for qualitative
PCTL is decidable and is 2-EXPTIME complete.

Figure 1.0.1: The Markov chain M satisfies f := [G[~a A [Fa]so]]s0 at state
S1.

One of the main obstacle in obtaining the a decision procedure for prob-
abilistic logics is the fact that there are formulas for which there exists no
finite probabilistic transition system that satisfies the formula but are satis-
fiable by infinite transition systems. The problem already exists for qualita-
tive fragment of PCTL as demonstrated by Hart and Sharir [55] and Kucera
et al [13]. For example, consider the PCTL formula f := [G[~aA[Fa]so]]s0- It
can be shown that no finite Markov chain satisfy f. But an infinite Markov
chain as shown in Figure 1.0.1 is a model of f. The crux of the matter is
that at each state s, (for n > 0), there is a non-zero probability of satisfying
Fa, albeit small, and the path which satisfies G(~a), i.e., (s1, s2,---) also has
a non-zero probability, since the product of the sequence I3, (1 - 2%) > 0.
Observe that the exact choice of the sequence II7°, (1 - 5) is immaterial.
Any sequence with non-zero infinite product would suffice. This is pos-
sible since we are dealing with qualitative PCTL, the exact values of the
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probability distributions are of little consequence. However, this problem
is compounded if we were considering general PCTL. Not only the models
could be infinite, but we have to deal with sequences of real number where
the sum of the infinite product satisfies a given threshold of the sub-formula.

The contribution of this thesis is to forward our understanding of the
complexity of the satisfiability problem for some of the fragments of proba-
bilistic 4 calculus. Though the satisfiability problem for PCTL still remains
open in general, but as we will see later, we can discern some useful infor-
mation about logics various fragments of probabilistic p calculus. We will
consider a bounded fragments of PCTL. These logics are endowed with small
model property (a fact which is reproachfully absent in PCTL as demon-
strated by Figure 1.0.1). This means that given any formula f of the logic,
f is satisfiable if and only if there exists a (canonical) model of f whose size
is exponential in the size of the description of f. In this thesis we establish
the exact complexity classes in which the satisfiability problem for these
logics belong.

We will also consider a simple probabilistic extension of modal u calcu-
lus (PuTL). PuTL is expressively incomparable to PCTL but is subsumed in
probabilistic p calculus. We show that PuTL has a small model property
in the sense that every satisfiable formula f has a model of size exponen-
tial in |f| (and has a bounded out-degree at most |f|+ 1. These results
imply (using []) that PuTL and qualitative PCTL are incomparable. The
constructive proof uses (ordinary) parity games the satisfiability problem of
PuTL. Similar to results for the modal p-calculus, we obtain that a PuTL-
formula f is satisfiable iff player zero has a winning strategy in the game
arena that corresponds to f. Using these results we establish that every
satisfiable PuTL-formula has a rational model, i.e., a model with rational
probabilities only. Our results show that one needs to solve a parity game of
exponential size in order to decide PuTL satisfiability. This is the strongest
possible bound since Py TL can encode p-calculus, and the result shows that
satisfiability of PuTL lies in the same complexity class as the satisfiability
of p-calculus.

Treating the models of logics as languages of automata is a very effective
and well studied mechanism for understanding the properties of the logic.
For example, finite regular languages correspond to finite state machines,
w-regular and MSO on infinite words correspond to Biichi automata, modal
i calculus corresponds to alternating tree automata, etc. Similar strides
had been made in probabilistic logic in the form of p-Automata [] . The
language of a p-automaton is a set of Markov chains. This gives us a uniform
framework for a language theoretic treatment to the set of Markov chains.
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For example, we can consider a formula of any probabilistic logic as the set of
Markov chain satisfying the formula. We can even consider any MDP as a set
of Markov chains induced by its various schedulers. The final contribution of
the thesis is to extend the theory of p-automata so that we can represent the
set of Markov chains defined by any MDP as the language of a p-automaton.

1.1 Survey of the chapters

Chapter 2, introduces some preliminary mathematical concepts and defini-
tions that would be used through out the thesis. The definitions are neither
elaborate nor exhaustive. Interested reader can follow the provided citations
for a more in-depth analysis of the topics.

In chapter 3, we will learn about parametric linear time temporal logic.
Parametric linear time temporal can be thought as a description of linear
temporal behaviour (the set of infinite words) that is partially define. We
get the exact description of the set only when we know the values of the pa-
rameters. In this chapter, we will primarily study the synthesis of the values
of these parameters for which the probability of the linear time property in
a Markov Chain reaches certain threshold.

In chapter 4, we will study interval Markov chains. They differ from
Markov chains, as they allow transition probabilities to be intervals. We
will see how to model check interval Markov chains against PCTL properties
even in the presence of open intervals.

In chapter 5, we explore various fragments of PCTL with finite model
property (unlike the general PCTL). We will study the complexity of the
decision problems for these logics.

In chapter 6, we will study probabilistic logic with recursion, which
extends modal p-calculus with quantified next operators. These logic are
broadly classified under probabilistic p-calculus. We will see that this logic
are orthogonal to PCTL in terms of expressibility and is decidable and pos-
sess small model property.

In chapter 7, we will visit the recently developed theory of p-automata.
P-automata are reminiscent of tree automata, as they take labeled Markov
chains as inputs. We will see how to represent a Markov decision process as
p-automata and study the acceptance and language inclusion algorithms.



Chapter 2

Preliminaries

2.1 Important complexity classes

This section will review some of the important concepts and notation for
classification of problems according to their complexity. We start with the

familiar definition of Turing machine.

Definition 2.1.1. A non-deterministic one-tape Turing machine is a 9-tuple
M = (Q727F7A7'_75317F,R) where

e () is a finite set of states.

e Y is a finite input alphabet.

I" is a finite tape alphabet containing ¥ as a subset.
e A cI'\ Y is the blank symbol.

~ is the left marker.

dc@QxTxQxT x{L,R} is the transition relation.

I € @ is the set of start states.
e ' c (@ is the set of accepting states.
e R c (@ is the set of rejecting states, Fn R = @.

Intuitively, (q,0,q¢',0’,d) € 6 means, “When in state g scanning symbol o,
write o’ on that tape cell, move the head in direction d, and enter state ¢’.
The symbols L and R stand for left and right, respectively.

A configuration is a tuple (zqay), where z,y € I'*, a € ¥ and ¢ € Q. This
means that the string xay is on the tape, the head is on the cell containing
a and the current state is g. Thus for a configuration o = zgay e I'* xQ xT'",

21
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the tape content is xay = tape(o) € I'" with a € T', the head is at position
|z| + 1, presently reading input a and the current state is ¢ = state(o). The
successor configuration ¢’ = (z'¢’a’y’) of ¢ = (xqay) is defined as follows:

e If (¢q,a,q¢',b,L) € then 2'a’ = x and ¢ = by.
hd If (q7a’7ql7baR) € 5 then x, = xb and y = aly"

A trace p is a sequence of successor configurations. A trace is accepting
(or rejecting) iff it ends in a configuration xaqy where g € F' (or ¢ € R). A
finite word w is accepted (or rejected) iff the there is an accepting trace (or
rejecting trace) from the configuration (g + w) for some g € I. The set of
word with an accepting run constitute the language of the Turing machine
M. Denote it by L(M).

Important variations of non-deterministic Turing machines are:

1. Deterministic machine: Each word w has exactly one trace. The
transition relation is thus a function §: (Q x X) - (Q x X x {L, R}).

2. Unambiguous machine: Each word w has at most one accepting trace.

3. Alternating Turing machine: (ATM) [25] is similar to a non-deterministic
Turing machine except there is a function in the specification of the
machine called type. The function type tells us whether a state is an
and-state or an or-state, where type : Q — {A,V}. A trace (or a com-
putation) p of an ATM A for an input z;, is a set of configuration
such that, (go + in) € p and for every o € p with state(o) ¢ F, if
type(state(o)) = v then one of the successor configurations ¢’ of o is
in p, if type(state(c)) = A then every successor configuration of o is
in p. Pictorially, p is a tree where each node is a configuration and
edges are defined by the successor relation. A trace p is accepting for
an input x if p is finite and only configurations without a successor
configuration in p are accepting. The language of an ATM A is thus:

L(A) ={x e X" : there exists an accepting trace p for x }

Let T:N - Nand S : N — N be numeric functions, which serve as asymptotic
time and space bounds for Turing machine computations. Generally, these
functions are written as a functions of the length of the input word. For
example, logn,n,nlogn,n? 2" n!,2%" etc.

Definition 2.1.2. A Turing machine TM traces in time 7'(n) (or is T'(n)
time-bounded) if for all (but finitely many) inputs z, all traces of = are of
length T'(|z|), where |x| denotes the length of x.
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Similarly, a Turing machine TM traces in space S(n) (or is S(n) space-

bounded) if for all (but finitely many) inputs z, every configuration of every

trace of = uses at most S(|z|) work-tape cells.

Now we can define the basic time and space complexity classes:

Definition 2.1.3. Elementary complexity classes:

DTIME(T'(n))
NTIME(T'(n))
UTIME(T'(n))
ATIME(T'(n))

DSPACE(S(n))
NSPACE(S(n))
ASPACE(S(n))

{L(M) : M is a deterministic T'(n) time bounded TM }
{L(M): M is a non-deterministic 7'(n) time bounded TM }
{L(M) : M is a unambiguous T'(n) time bounded TM }
{L(M): M is an alternating 7'(n) time bounded TM }

{L(M): M is a deterministic S(n) space bounded TM }
{L(M): M is a non-deterministic S(n) space bounded TM }
{L(M): M is an alternating S(n) space bounded TM }

If 2 is a complexity class, the set of complements of the sets in 2 is denoted

by co-2. Note that co-2l is not the complement of 2.

Some common complexity classes are as follows:

Example 2.1.1.

LOGSPACE
NLOGSPACE
P

up

NP
PSPACE
NPSPACE
EXPTIME
NEXPTIME

2EXPTIME

ATIME(T(n)°™M)
ASPACE(S(n))

2.2 Probability

= DSPACE(logn)

= NSPACE(logn)

= DTIME(nM) = | JDTIME(n")
1>0 )

= UTIME(n®M) = |JUTIME(n")
1>0 .

= NTIME(nPM) = |UNTIME(n")
1>0 )

= DSPACE(n®M) = | JDSPACE(n")
>0 )

= NSPACE(n®M) = | JNSPACE(n")
>0 )

= DTIME(2"°") = |UDTIME(2")
>0 )

= NTIME(2"°") = UNTIME2™)

>0 )
LDTIME(2®" )

>0

RO
= DTIME(2*" )

DSPACE(T'(n)°(M)
DTIME(20(5(m)),

and stochastic processes

Let X and Y be two non-empty sets. The set of functions from X to Y is
denoted by YX. For ¢ e Y let img(¢) € X be the image and dom(y) =Y
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be the domain of the function ¢. The set of all subsets (called the power
set) of X is defined as 2%. Any subset Z ¢ 2% is called a collection of X. A
topology on a set X is a collection T ¢ 2% such that:

1. deT and X eT.
2. Forevery UV eT,UnVeT.
3. For any collection Y < T, | JU€T.

Ueld

The elements of T are called open set, and any set whose complement is in
T is called closed. In that respect, the sets X, @ are closed and open at the
same time. The pair (X, 7)) is called a topological space. A collection C ¢ T
is a base of T, iff for every VeT, V=U{UeC:UcV}.

Definition 2.2.1 ((Weighted) cover). Let H be a set of objects. A cover ¢
is a set of sets of objects of H, such that Ue.e = H. The cardinality of c is
called the width of the cover c. A weighted cover of H is a cover ¢ with a
mapping w : ¢ - (0,1], such that ¥ .. w(c) = 1.

For weighted cover (¢, w) of H = {01,--,0,}, let H(0;) ={e€c:0; €e}
and with little abuse of notation, let w(0;) = Yeecri(o;) w(e)-

Definition 2.2.2. A g-algebra on a set X is a collection F of X which
obeys the following properties:

1. (Empty set) @ e F.

2. (Complement) If E € F, then the complement E:= X \ E also is in
F.

3. (Countable unions) If Ey, Ey,--- € F then | E, € F.
n=1

We refer to the pair (X,F) of a set X together with the o-algebra on that
set as a measurable space. Elements of F are called events.

A o-algebra can be constructed from any collection F with the notion
of generation.

Definition 2.2.3. Let F be any family of sets in X. We define (F) to be
the intersection of all o-algebra that contains F.! Equivalently, (F) is the
coarsest o-algebra that contains F.

We now turn to an important example of a o-algebra .

'Fact that the intersection of a collection of o-algebra is o-algebra can be proved, easily.
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Definition 2.2.4. Let (X,7) be a topological space. The Borel o-algebra
B[X] of X is defined to be the o-algebra generated by the open sets of X,
i.e.,, B[X]=(T). Elements of B[X] are called Borel measurable.

We define a the concept of measure on the o-algebra . We endow these
structures with countably additive measure p.

Definition 2.2.5. Let (X, B) be a measurable space. A countable additive
measure £ on B, or measure for short, is a map u € [0, +oo]3 that obey the
following axioms:

1. (Empty set) u(@) = 0.

2. (Countable additivity) Whenever E1, Es,--- € B are countable sequence
of disjoint measurable set, then p(|J E,) = Y (En).

n=1 n=1
A triplet (X, B, ) where (X,B) is a measurable space and p € [0, +00]? is
a countable additive measure, is known as a measure space.

We are interested in a particular class of measures:

Definition 2.2.6. Let (X, B) be a measurable space. A probability measure
(also called distribution) is a countable additive finite measure y € [0,1]5,
with u(X) = 1. If (X,B) is a discrete space (i.e. X is countable and B
is a discrete topology) then the set of probability measure over the set X
is denoted by Dx where d € Dy iff d € [0,1]% and d'1=1. For € Dy,
let supp(p) = {x € X : p(x) > 0} be the support of the distribution p. If
|supp(u)| =1 then p is called a Dirac distribution.

We can construct a new space from existing spaces by product opera-
tions.

Definition 2.2.7. For each i € N, let (X, F;) be measurable spaces, and let
X =TI72,X; be the set of tuples (of infinite length), such that (x1,z2,---) € X
whenever z; € X;. A cylinder set for a measurable set A € []i; F; is defined
as Cyl(A) = {(z1,, xn, ) € X : (x1,,x,) € A}.

Consider the topology X of X = []Z; X; formed by all infinite union of
all cylinder sets. Observe that every cylinder set is both open and close. As
we will see subsequently, the Borel o-algebra of X, B[X] is of particular
interest to us.

Next we use the above definitions to define the probability measure space
generated by stochastic processes.
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Figure 2.2.1: The Markov chain M defines a random walk. The set of atomic

propositions are {a,b}.

Definition 2.2.8. A labeled Markov chain (MC) M is a quintuple (S,P,
AP, L, s;,) where S is a (countable) set of states, P(s) € Dg for all s € S, AP
is a set of atomic propositions, L : (2AP)% is a labeling function, and s;,, € S
is the initial state.

An example of a Markov chain is given in Figure 2.2.1. An infinite
path o of MC M 1is a sequence of states o = {0;}i>0, where for all i > 0,
P(0i,0i+1) > 0. Let path(s) denote the set of (finite or infinite) paths starting
from state s. For a path o, let o] denote the last state of ¢ if this exists
(i.e., if o is finite) and |o| denote the length of o. The trace of a o is defined
as the sequence of sets of atomic propositions trace(o) = (L(0¢), L(01),**).
Let succ(s) = {t: P(s,t) >0} be the direct successors of state s.

Each state s defines a probability measure space on the set of states,
X, = (8,25 1), where pg(A) = Yyea P(s,s"). A probability measure on
sets of infinite paths is obtained in the following way. Let 25 be an infinite
cross product of spaces X x [172; Ugres Xo7- Any finite path o = (o9, -, 0p)
is measurable in the finite product space X x [Ti2 Uses Xs. The collection
C = {Cyl(o) : o is a finite path}, the set of cylinder sets, is the base of
the topology generated by the countable union and finite intersections of
elements in C. The measurable space (Qs, F,Pr), where F = B[] is the
Borel o-algebra generated from topology with C as base. Pr is the probability
measure on F is deduced from the measure of cylinder sets. A finite path
o = (00,",04), has a measure Pr(Cyl(c)) = [To<igjo| P(0i-1,0%)-

We will often define a property as a set of words in ¥*, where 3 = 2AP,
The set of paths corresponding to a property f is the set trace™ (f) = {0 :
trace(o) € f}. When trace '(f) is measurable in (Qg, F,Pr), then Pr(s &

f) = Pr(trace ' (f)).

Definition 2.2.9. A Markov decision process D is a quintuple (S, A, AP, L, s;,)
where S, AP, L, and s;, are as before, and A : (2P5)% such that A(s) is a
finite set of distributions. We assume S and A(s) for each s € S to be finite
(unless the contrary is explicitly specified).
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Figure 2.2.2: A sample MDP D with countable number of states. At each
state has two distributions.

A finite path of an MDP is a sequence of states o = 0y ... o, such for each
0<i<n o;esupp(p) for some p e A(o;—1). Let path(s) be the set of (finite
and infinite) paths from the state s. Let succ(s) = {t : t € U ea(s) supp(i)}
be the set of successors of s. As usual, we use schedulers to resolve the
possible non-determinism in a state.

Definition 2.2.10. A scheduler of MDP D = (S, A, AP, L, s;,) is a func-
tion 7 : (DDS)S+ with 7(0) € Da(sy)- The scheduler n induces the MC D, =
(S*,P,AP, L', 5;,) with L'(0) = L(0l), and P(0,0°t) = ¥ en(04) 1(0) (1) 1(2).

These schedulers are history-dependent and randomized. Let HR(D)
denote the set of history-dependent randomized schedulers of MDP D. If
for all o,n(o) is a Dirac distribution on A(o}), then n is a history dependent
deterministic scheduler. Let HD(D) be the set of all such schedulers of D.

Definition 2.2.11. A stochastic game G is a tuple (V, E, Vp, V1,V,, P, ),
where (V, E) is a directed graph and (Vp,V1,V},) is a partition of V. 1§ is
the set of Player 0 configurations, V; is the set of Player 1 configurations
and V), is the set of stochastic (or probabilistic) configurations. P is a
probability transition function P e (Dy )" and Q is an acceptance property
that determines whether a path of the directed graph (V, E) is accepting.
A path (also called a play) in the graph (V, F) is winning for Player 0 if it
is finite and ends in Player 1 configuration, or it is infinite and satisfies the
acceptance property 2.

The 2-player game proceeds from a configuration u by the following rule.
If w is a Player 0 (or Player 1) configuration, then Player 0 (or Player 1,
resp.) chooses a configuration v such that (u,v) € E. If no configurations can
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O%O\%f)l

Figure 2.2.3: A two player stochastic game G. The Player 0 configurations
are represented by circular nodes, Player 1 configurations are represented by
rectangular nodes and probabilistic nodes are denoted by rhombus nodes.
A co-Biichi acceptance condition is Qy = {v: L(v) = {c}}.

be reached from wu then w is losing for Player 0 (or Player 1, resp.). On the
other hand, if u is a probabilistic configuration then the next configuration
v is chosen with probability P(wu,v). If this process continues ad infinitum,
we get a sequence of configuration which forms an infinite path (also called
a play) of the game. The path is winning for Player 0 iff it satisfies the
property €). Different acceptance properties define various 2-player games.
The acceptance property that will be of particular interest to us (in Chapter
7) is called co-Biichi property. It is represented by a set of configurations
Qo ¢V of G. An infinite path is accepting iff there is a suffix (tail) of the
path which lies in Qg, i.e., a path o = (vg,v1, ) is winning for Player 0, iff
there exists n € N, such that for all m >n, v, € Q.

A subset C of V is called strongly connected component if for any two
configurations u,v € S, v is reachable from u. A strongly connected com-
plement C' is maximal (MSCC, for short) iff there is no superset of C' that
is strongly connected. A stochastic game is called a weak stochastic game
iff it has a co-Biichi acceptance condition and for all maximal connected
components (MSCC) C, either C' € Qy or CnQy = @. If V, = & then it
is a weak game. A strategy of a Player 0 is a function p : (DV)(V*xV0)7
with p(w-u)(v) > 0 implies (u,v) € E. A play w = vgv;--- is consistent with
strategy p if for every i > 0, v; € Vp implies p(vo---v;)(vi+1) > 0. Strategies
of Player 1 are similarly defined. Let T and II be the set of all strategies
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for Player 0 and Player 1, respectively. A player O strategy p is memoryless
iff p(wv) = p(w'v), for any w,w’ € V*, and it pure iff p is Dirac (similarly
definitions apply to strategies of player 1).

A pair of strategies (p,7m) € T x IT of a game G determines a MC M#7™
(configurations without an out-going transition are made absorbing) whose
paths are plays of G according to p, m. The measure of the set of win-
ning plays of Player 0 starting from a configuration ¢ in M#7 is denoted by
valg™(c). We have valy™(c) = 1-val§™ (¢). Let valg(c) = sup ey infrer valf ™ (c)
and valy (¢) = sup e inf ey val{™ (¢). If a strategy achieves these values then
it is called optimal.

Theorem 2.2.1. [77, 30, 27] Let G be a stochastic game and ¢ be one of
its configurations. Then G is determined, that is valpy(c)+vali(c) =1. If G
s finite and weak, then optimal strategies for both players exist and they
are memoryless and pure. If G is a stochastic weak game, then the problem
whether valy(c) exceeds than a given quantity v € Q can be decided in NP co-
NP, and if G is weak game then valy(c) =1 can be decided in linear time.

Stochastic games (the structure rather than acceptance properties) gen-
eralizes both Markov chains and Markov decision processes. A stochastic
game without Player 1 states (i.e., V] = @) is called 1%—player game and its
stochastic behaviour is identical a to MDP. Similarly, a stochastic game with
only probabilistic states (i.e., Vp = V4 = @) behaves like a Markov chain.

Definition 2.2.12 (Probabilistic bisimulation [72]). Let MC M = (S, P,AP, L,
sin) and H ¢ AP. The equivalence relation Ry € S x S is a probabilistic
bisimulation iff for every (s,s’) € Ry it holds:

1. L(s)nH = L(s")n H, and
2. for every C' € S/Rpy, we have Y. P(s,t) = Ypec P(s',t).

Let ~ denote the largest probabilistic bisimulation on S. The MCs M; and
Ms are probabilistically bisimilar, denoted My ~p Mo, if s}n NE s?n in the
disjoint union of M; and M>.

2.3 Temporal logic

Temporal logic broadly covers reasoning about temporal events within a
logical framework. Temporal logic is an important class of modal logic.
Temporal logic can have both dense and discrete models, in this thesis we
are interested in discrete models. Next we introduce two different notion of
perceiving the flow of time.
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2.3.1 Linear temporal logic

Linear temporal logic, as the name suggests, considers a linear flow of time.
The (forward) models of this logic are totally ordered structures (w, i), where
we N?¥ (called a word), AP is the set of atomic propositions, 2AP {5 some-
times referred as the alphabet (X) and i € N (called a time instance). If N
is finite (i.e., N ={0,1,---,n}) then w is a finite word, and if N = N then w

is an infinite word. Next, we will describe few important linear time logics.

w-regular languages w-regular languages generalize the definition of reg-
ular languages to infinite words. Similar to regular expression, the formulas
of w-regular languages are defined by w-regular expressions. Consider the
following operations on sets of words:

o (Concatenation: Let L1 be a set of finite words and L9 be a set of finite
or infinite words. Then Li-Lo = {w-w': w € Ly, w’ € Lo}.

e *teration: Let L be a finite set of finite words. L* = | J L", where
neN

L™ = {wy-wy-wy s w; € L,1 <i<n}, and LY = {€}.

e w-iteration: Let L be a finite set of finite words. L* = {wy-wa-ws-- :
w; € L~ {e}}. Observe that {e}* = @, where as {e}* = {e}.

The syntax of w-regular expressions is defined as follows:

Definition 2.3.1.

g|r|rs|s+s
elr-r|r|r+r

S

r

where r defines regular expression and s defines w-regular expression. The
language L(s) of a w-regular expression is defined inductively as follows:

o L(2)=0.
o L(r¥) = (L(r))~.
o L(rs)=L(r)L(s).

e L(t1 +t3) = L(t1) U L(tz), where t1,ts are either regular expressions
or w-regular expressions.

o L(r*) = (L(r))".

A language L is w-regular iff there is an w-regular expression s, such that
L=L(s).
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w-automata are generalizations of finite automata, which are acceptors
infinite words. A non-deterministic Biichi automaton, introduced by J.R.
Biichi [15], is an w-automaton defined as follows:

Definition 2.3.2. Non-deterministic Biichi automaton A = (Q,%,0,1, F).

e () is a finite set of states.

e X is the finite alphabet set.

e ) C @ xXx(Q is the transition relation.
e [ c( is the set of initial states.

o F'c (@ is the set of accepting states.

A run is a sequence of states of the automaton, p = gopq1go---, such that ¢g € I
and for all i > 0, (¢;,0,¢+1) € d for some o € ¥. inf(p) is the set of states
in p that occur infinitely often. A run p is accepting iff inf(p) N F + @. An
infinite word w = ogo1--- has a run p = qoq1qe--- if for all i > 0, (¢;, 04, qi+1) €96.
The language of a Biichi automaton is defined as follows:

L(A) = {w e £ : w has an accepting run}
The equivalence of expressive power of w-regular languages and Biichi
automata was established by the following theorem.
Theorem 2.3.1. ([15]) An w-language is recognized by a Bichi automaton
iff it is an w-regular language.

There are many other w-regular automata with equivalent expressive
power. These include, Muller, Street, Rabin, parity, etc. They all differ
in their accepting condition. Deterministic parity automata is of particular
interest to us.

Definition 2.3.3. A deterministic parity automaton A = (Q,%,0,1,).

e () is a set of states.

e Y is the alphabet.

e §:(@Q xX — (@ is the transition function.
e [ c (@ is the set of initial states.

e 0:Q — C, where C ={0,1,---,n} for some n € N.

An infinite run p is accepting iff m?(x){Q(q)} is even.
qeinf(p

Theorem 2.3.2. ([81])From a nondeterministic Biichi automaton A with

2n+2

n states a deterministic parity automaton B with n states and an index

of size 2n can be constructed such that L(A) = L(B).
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Linear-time temporal logic (LTL)

Definition 2.3.4. Linear-time temporal logic [75] is defined by the following
grammar:

fo=al~flFAFIXFIFUS,

where a € AP. The semantics is inductively defined as follows:

(w,i) Ea iff aew(i),

(wyi) =~f M (w,i)# f,

(wyi)E fag iff (w,i)Efand (w,i)Eg,

(wy, i) eXf iff (w,i+1)Ef,

(w,i)e fUg iff Fk:Vj<k:(w,k)E=gand (w,j)E f.

As a convention, the time instance i is not specified when ¢ = 0, i.e.,
we write w E f instead of (w,0) = f. The language of a LTL formula f is
L(f) ={w:wE f}. When there is no ambiguity, a formula also denotes a
set of models where it is true.

Theorem 2.3.3. ([92]) w-regular languages are strictly more expressive
than LTL.

We can define sets of infinite paths of a labeled Markov chain as lin-
ear temporal properties, using LTL formulas, w-regular expressions or w-
automata. Let M be a Markov chain, s be a particular state and f be
a temporal property. We are generally interested in the measure of the
following set:

{m e path(s) : trace(w) € L(f)}

It was shown in [5] that when f is an w-regular property then the set {7 €
path(s) : trace(w) E f} is measurable. Hence we can write:

Pr(sEe f) = Pr{m e path(s) :trace(m) € L(f)}

2.3.2 Branching-timetime temporal logic

Branching-time logic revel in the assumption that, “the future can take
different possible courses from the present moment”. Thus the models of
branching-time temporal logic are not linear as in linear temporal logics,
but partially ordered tree like structure.

Kripke structures forms the natural models for branching-time logic
(though they were conceived to give possible world semantics to Modal
logic [69]). A Kripke structure K is a tuple (S, P, L), where S is a (count-
able) set of states, P ¢ S x S is the transition relation and L € ¥ is a
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labeling function. A path of a Kripke structure 7 € SV is a sequence of
states (s1,s2,+++) such that for all i > 1, (s;,8;41) € P. Let path(s) denote
the set of paths starting from the state s.

Computation tree logic (CTL)
We will now define an important branching-time logic called Computation
Tree Logic (CTL).

Definition 2.3.5. The syntax of computation tree logic is as follows. The
state formula is defined by the following grammar:

fo=al~f1fAf]3g,

where ¢ is a path formula and path formulas are defined by the following
grammar:

g = XflfUf.
where f is a state formula. The pointed satisfaction relation is define on a
Kripke structure K and one of its state s.

(K,s)Ea iff aelL(s),

(K,S)I:~f iff (Kas)'iéf,

(K,s)E finfo iff (K,s)Efi1and (K,s)E fa
(K,s)E3g iff 37 epath(s):(m,0)Eg.

A path 7 satisfies a path formula iff:

(m,i) EXf iff w(i+1)Ef,
(myi) = fiUfo it 3Fk:Vj<k:m(k)E fy and 7(j) E f.

For a given Kripke structure K and formula f, let [f]x ={s: K,sE f}.
[f]x can also be viewed as a function in {0,1}°, where [f]x(s) = 1 if and
only if K, sk f. We will call [f]x the satisfaction function.

Modal p-calculus

Modal p-calculus (L, ), introduced by Dexter Kozen [65], is a more ex-
pressive logic that encompasses CTL. In simplest terms, modal p-calculus is
modal logic augmented with greatest and least fixed point operators (here
we only consider unimodal operators). The models of L,, are Kripke struc-
tures. Let V = {z,y,---} be an enumerable set of variables. These variables
are interpreted over functions, i.e., a function from the set of states (say S
of a Kripke structure) to a real set (in this case it is {0,1}). The syntax of
the logic is as follows:

fo=ala| fAfIfVFIOf1Of [ pa f vy f
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where the variable x in px.f and va.f occur only positively in f. The fixed
point operators are viewed as quantifiers, and the standard terminology
and notation used with quantifiers are used. Variables occurring freely in
a formula f is denoted by free(f). Normal scope-rule for quantifiers is
adopted. A fized point formula is a L, formula where a fixed point operator
is the outermost connective.

It is instructive to view a L, formula f as a function which assigns values
to each state of a Kripke structure for a given interpretation of the free
variables in f. For defining the semantics of L,, we will need the following
mathematical constructs. Let f, fi,-, fn be L, formula with {z1,-,2,} €
free(f), where each x; occurs positively in f. Then

f[fl/xla 7fn/$n]

denotes the formula that is obtained from f by simultaneously substituting
fi for z; in f. We will sometimes use the lambda notation for a function
description, i.e, a function ¢(x) with parameter z can be written as Ax.p.
Let ¢ be a function in XY, where X and Y are partial orders. ¢ is monotonic
if for all a,a’ € Y, a < a’ implies ¢(a) < ¢(a’). Let ¢ be a monotone
function over a complete lattice L, i.e., ¢ € L. By Knaster-Tarski fixed
point theorem we have:

Theorem 2.3.4. If ¢ is monotonic then:
1. | {a:a<(a)} is the greatest fixed point of .
2. [{a:a>e(a)} is the least fixed point of .

Observe that the set of functions from the set of states S to the real
set {0,1} forms a complete lattice. That is, for ¢,¢’ € {0,1}°, pn¢’ =
As.min{p(s),p’'(s)} and pu ' = As.max{p(s),¢'(s)}. We are now ready
to define the semantics of a L, formula. Let I be an interpretation of
variables and K = (S, P, L):

[2]% = I(z) [~2]% = 1-I(x)

[finfolie = DALk n[flk [f1vfalk = [Alkulflk

Hof]]é( = As'max(s,s’)epﬂf]]ﬁ((sl) HDfM( = AS'Inin(s,s’)ep[[f]]}_((sl)
el = Mo U <oy efly = Ulpros< PN

We state without proof that each of the logical operators which can be
viewed as functions on the set {0,1}* are monotonic (it is thus necessary
for fixed point variables to occur positively in its scope). Hence from The-
orem 2.3.4, we know that greatest and the least fixed points exist and the
semantics is well defined.
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Note that, if f has no free variable then the choice of the interpretation
is immaterial. The pointed satisfaction of a L, formula f at a state s of a
Kripke structure K with interpretation I, is defined as

(KaIaS)':f iff [[f]]%{(s)zl

If K is understood from the context and f has no free variable then we
simply write s E f.

Example 2.3.1. Consider the following formula f = vz.(Oz A Otrue). A
state s E f if and only if s cannot reach any deadlock state. Whereas, the
formula vz.(Oz) is satisfied by every state s.

Next we define the alternation depth of a formula. The alternation depth
is an index of complexity of a L, formula. Let f = dx.f’, where § € {u,v}.
A sub-formula g of f is a active sub-formula, iff g # f and the variable z
appears in g.

e For aleast fixed point formula f, the alternation depth of fisalt(f) =0
if it does not have any greatest fixed point sub-formula. Otherwise,
alt(f) = 1 + max{alt(g) : g is an active greatest fixed point formula of

f}.

e For a greatest fixed point formula f, the alternation depth of f is
alt(f) = 0 if it does not have any least fixed point sub-formula. Oth-
erwise, alt(f) = 1 + max{alt(g) : g is a active least fixed point formula

of f}.

e For any formula f, alt(f) = max{alt(g) : g is a fixed point sub-formula

of f}.

Example 2.3.2. For f = vaz.(uy.(p v Oy) A Ozx), alt(f) = 0, whereas for
fr=ve.(py.(Ox v Oy)), alt(f) = 1.

2.3.3 Probability and logic

The logic that we have studied so far are qualitative in the sense, that
the satisfaction function returned value either 0 or 1. Even when we were
measuring the set of paths that satisfies a given linear temporal property,
we where only considering paths for which the satisfaction function returned
1. In this section we consider logic where the satisfaction function can have
real values in [0,1]. To prepare for this paradigm shift, we first consider
Probabilistic CTL (or PCTL) where the quantitative aspects are hidden and
the satisfaction function is still boolean.
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Probabilistic Computation Tree Logic Probabilistic CTL ( PCTL) [53]
is a probabilistic extension of the well-known branching-time logic for speci-
fying properties of stochastic systems. In PCTL, the existential and universal
path quantifiers of CTL are replaced with the probabilistic operator which
allows to quantify the probability of all runs that satisfy a given path for-
mula. The syntax of PCTL is built upon atomic propositions, using Boolean
connectives and operators next and until of the form [Xf]., and [f U glup,
respectively, where x € {<,<,>,>}, and p € [0, 1] is a rational constant. Other
operators such as F,G and W can be derived from U. It has the following
syntax:

f al~flfrfllglw

g XfLfUf

where a € AP, f is called a state formula, g is called a path formula, » €

{<,<,>,>} and p is a rational number in [0,1]. The qualitative fragment
of PCTL allows sub-formulas with only two kinds of probability operators,
[g]>0 and [g]=1. The PCTL semantics is define on Markov chains. An MC
M = (S,P,AP, L) satisfies a state formula f at a state s if:

M,sE=a iff aelL(s)

M,s e ~f iff M, st f

M;se finfo iff M,sE fi and M, sk fo
M,sEe[glxp iff Pr{seg}=p,

where {sE g} ={w : wy=sand M,wE g}. A path formula g is true for a
path w of M if:

M,w = Xf iff M,wi e f
M,we fiUfy iff 3i:Mw; = foand Vj<i:M,w;E fi

We will denote the satisfaction relation by s E f (and w = ¢g) when M is
fixed. Observe that satisfaction function is still boolean, i.e., for any state
s and formula f, [f]ar(s) € {0,1}. Let us consider path sub-formulas in
little more detail. Path formulas are linear temporal formulas and hence
have linear sequence (traces of a paths) as models. But observe that, path
formulas are always quantified by a probabilistic operator [g].,, and the
satisfaction function is defined on [g].,. We can enrich the satisfaction
function by defining [¢g]as(s) as the probability of set of paths from s that
satisfies g. That is:

[9lm(s) = Pr{seg}

The satisfaction function can now have value in [0,1]. We will extend this
idea to give a quantitative semantics to probabilistic p-calculus.
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Probabilistic p-calculus

The probabilistic p-calculus presented in the thesis is a generalization of
modal p-calculus by allowing quantification over path formulas. Though this
a subset of the probabilistic p-calculus pLug proposed by Matteo Mio [80],
the semantics is almost identical to L, and is easier to understand. It also
gives a clean separation of formulas with boolean valued satisfaction function
from formulas with real valued satisfaction function.

Let M = (S,P,AP, L) be a Markov chain. As before, let V' = {z,y, z,---}
be an enumerable set of variables, where the variables are interpreted over
set of function [0,1]%. The syntax of the logic is given by the following
grammar, where f is a state formula and ¢ is a path formula.

f al~a|fAfIfVITIX g v f | pe.f
g Flalfaf I v lof10f fve.f|pe.f

The semantics of the logic is inductively defined as follows:

[l = 110 [all, = 1-[a]},

[finfolhy = min{[fi], [0 LAV ol = max{[fil};, [fl4s}
[0/13 = s max [Ty (sH O}, = s min [7](s")
[]4, = I(x) X5 = As.%P(s,s’)-ﬂfﬂ&(s)
e fTh, = Mo <ol sl = W e< I

It is not difficult to see that the satisfaction function for a state formula will
have value in {0,1}, whereas for path formula it can have any real value in
the range [0,1]. PCTL can be easily encoded in this logic. For example, aUb
can be defined as py.b v (a A Xy). Similar to L,, for a state formula f, we
say M,I,s & f if and only if [f]4,(s) = 1. If the formula has no free variable
and the Markov chain is understood from the context, then we simply write
s E f. We conclude this section with the following important theorem.

Theorem 2.3.5. [18] The problem whether s = f for a state s of a finite
Markov chain M and a state formula f can be decided in NPnco-NP.
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Chapter 3

Parametric Linear Time
Temporal Logic

In this chapter we will consider the parameterized version of linear time tem-
poral logic (pLTL). We determine the set of parameter valuations V.,(¢)
for which the probability of the set of paths of a Markov chain that satisfies
the pLTL-formula ¢ is above (or below) some threshold p, where is some
rational in [0,1]. Since determining the emptiness of Vio(y) for any arbi-
trary pLTL formula ¢ is undecidable, we look at several fragments of the
logic. We consider parametric reachability properties, then a sub-logic of
pLTL restricted to next and F¢,, parametric Biichi properties and finally, a
maximal subclass of pLTL for which emptiness of V() is decidable.

3.1 Introduction

Parameterization of the quantitative specifications is a type of abstraction
which allows the system designer to express quantitative information about
the system under study. Parametrized specifications may be necessary when
the quantitative aspects of the specifications change over different environ-
mental conditions, (thus instilling robustness to the system design), or when
the precise information is absent in the initial phases of the system develop-
ment. For example, consider the request-response property of a server-client
model. We want to verify that: “For every request sent by the client it is ul-
timately received, the server eventually responses to every received request”.
This can be easily represented in LTL as:

G(req — F(rec)) - G(rec — F(res))

But realistically, we expect the response to happen within a certain time
period of the received request, where the precise length of the time period

39
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may vary. This type of specifications can be expressed in parametric linear
time temporal logic (pLTL, for short).

G(req — F(rec)) - G(rec — F<,(res))

This says that whenever a request (req) is sent, it is received (rec) and the
response (res) happens within x-steps of the received request.

In pLTL [2], temporal operators can be subscripted by variables ranging
over the natural numbers. The formula ‘F¢, a’ means that in at most x steps
‘a’ occurs, and ‘GF¢, a’ means that at every index ‘a’ occurs within y steps.
Note that = and y are variables whose value is not fixed in advance. The
central problem of this chapter is to determine the values of x and y such
that the probability of the set of paths of a given Markov chain satisfying
a given pLTL-formula ¢ meets a certain threshold p. This is referred to as
the valuation set V., () for comparison operator <. This problem has both
a qualitative (threshold >0 and = 1) and a quantitative variant (0 < p < 1).
Since determining the emptiness of Vg(¢) for any arbitrary pLTL formula
@ is undecidable, we look at several fragments of the logic. We consider
parametric reachability properties, then a sub-logic of pLTL restricted to
next and F¢,, parametric Biichi properties and finally, a maximal subclass
of pLTL for which emptiness of Vi(p) is decidable.

3.2 Parameter synthesis Problem for pLTL

In this section we define the syntax and semantics of pLTL. We describe the
parameter synthesis problem for pLTL on labeled Markov chains.

Parametric LTL.

Parametric LTL extends propositional LTL with bounded temporal modal-
ities, for which the bound is either a constant or a variable. Let Var be a
finite set of variables ranged over by x,y, and AP be a finite set of proposi-
tions ranged over by a and b. Let ¢ € N. Parametric LTL formulas adhere
to the following syntax:

o = al|l~p|one|Xe|loUp|Fqp|Fep

where <€ {=,<,<,>,>}. A pLTL structure is a triple (w,4,v) where w € ¥*
with ¥ = 2AP is an infinite word over sets of propositions, i € N is an index,
and v : Var —» N is a variable valuation. Analogously, we consider a valuation
v as a vector in N, where d for a pLTL formula ¢ is the number of variables
occurring in ¢. We compare valuations v and v’ as v < v iff v(z) < v'(x)
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for all . Let w[i] denote the i-th element of w. The satisfaction relation =
is defined by structural induction over ¢ as follows:

(w,i,v) Fa iff aewli]

(w,i,v) E~p iff (w,i,v)# e

(w,i,v) E 1 Ao iff (w,i,v)Ep; and (w,i,v) E @2
(w,i,v) EFq e iff (w,j,v)E ¢ for some j < v(z)+i.

For the sake of brevity, we have omitted the semantics of the standard LTL
modalities, which can be found in the preliminaries. As usual, p1Ryp9 =
~(~p1 U~p2), Fp = trueUp and Gy = ~F~p. The language of ¢ is defined
by L(¢) = {(w,v) : (w,0,v) = ¢}. Alur et al. [2] have shown that other
modalities such as Ug;, Fsz, Gsz, Usz, Rep and Rs;, can all be encoded in
our syntax. For instance, the following equivalences hold:

Fizo = Ggr FXo, Gszp F<: GXo,
U = (@U¥) AFq, oUs = Ge (o A X(eU))

For valuation v and pLTL-formula ¢, let v(¢) denote the LTL formula

(3.1)

obtained from ¢ by replacing variable x by its valuation v(x); e.g., v(Fz ¢)
equals Fy ;) v(p).

Valuation set.

The central problem addressed in this chapter is to determine the valu-
ation set of a pLTL formula ¢. Let M = (S,P,s0,L) be an MC, p € [0,1]
a probability bound, and <€ {=,<,<,>,>}. Then we are interested in deter-
mining:

V() = {v = Pr(M,s0 v(9)) <p},

where Pr(M, sg E v(p)) = Pr{mr € Path(sg) : (trace(w),v) = ¢}. i.e., the set
of valuations under which the probability of satisfying ¢ meets the bound
< p. In particular, we will focus on the decidability and complexity of the
emptiness problem for V., (), i.e., the decision problem whether V_,(¢) = @
or not, on algorithms (if any) determining the set V., (), and on the size of
the minimal representation of V.,(¢). In the qualitative setting, the bound
< p is either >0, or = 1.

Proposition 3.2.1. For ¢ € pLTL and MC M, the problem if Vso(p) = @
s undecidable.

Proof. The proof is based on [2, Th. 4.1], where the problem of deciding
the existence of a halting computation of a two-counter machine® is reduced

!Formal description of two counter machine can be found in the appendix A.
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I
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Figure 3.2.1: Shows a word satisfying the formula ¢7.

to the emptiness problem of L(y) (i.e. whether there exists a path and a
valuation pair that satisfies the formula).

Let T be a counter machine with two counters {c1,c2} and k + 1 states
{s0,81,", Sk}, so being the initial state and s; the halting state. We con-
struct a pLTL formula ¢ with a single parameter x such that any satisfiable
structure (w, v), represents a sequence of configurations of 7' that constitute
a halting computation. In other words, the sequence of letters in the word
w, will encode a halting computation of T" for the valuation v. Crux of the
reduction is that, the parameter = is used to guess the maximum value of
each counter in any halting computation of T". Thus, each configuration of
a halting computation can be stored in length z.

We have propositions p; for each state s; and propositions

-b b b -b b +b
{6:°,4},4°,4;". ¢}, 4"}

to keep track of the value of counter ¢;, for i € {1,2}, and {qg,qg} to keep
track of the start and end of the encodings of the configurations, where if
bis 0 (or 1) and b is 1 (or 0, respectively). A configuration of the counter
machine, is stored in a substring of a word w, and {q8, qé} denoting the start
and end of a configuration. To be precise, if the encoding of a configuration
starts with q8 at position ¢ and ends with qé at position 7, then the encoding
of the next configuration starts with q(l) at position j and ends with q8 in
some position k (so on and so forth) (see Figure 3.2.1). The distance between
q8 , qé is exactly x. This is imposed by the formula:

oy = /\(qg > X(~gd Uy ¢b) AX(QSUQS))-
b
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The propositions {¢;°,¢?,¢;°} (or {g7', ¢}, ¢i}) will be used to keep track
of counter c¢; in the configuration starting with qg (or qé, respectively).
Similarly, {¢5°,¢9,43°}, {¢5%, a3, ¢35} do the same for counter ca. We impose
the condition that all these propositions occur exactly once between qg and
¢, and {q; b qf . q; b1 (i = 1,2) always occur consecutively.

o = ((qS > ~q?Ug?) A (g} = X(~¢? Ugh)) A (¢i° = X(~¢;" U g}))
A (g7 = X(~q;"Ugh)) A (¢ > Xgi?) A (g — X(J?))-

Let @2 = Api-12 ©". Consider configuration (s;,c1,cp) of T. If this con-
figuration occurs in a halting computation, then it is encoded in w as a
sub-sequence of propositions (of length x) between qg and qé. Exactly one
of the state propositions, p; in this case is true at the start of the configura-
tion qg. This is imposed by:

3= N\ (qS - PAX(P'U qlo’))
b

where P := (p1 A~pa A - A~pg) VoV (~p1 A - A~p_1 Apg) and P’ := (~p1 A

- A~pg). The distance of qll’ from qg will be used to keep track of the value

of ¢1. To be precise, at a distance ¢; from qg the sequence ql_b, qll’, qu occurs

(Figure 3.2.1). Similarly, for the second counter.

Consider a transition e = (s; ararl sj). So if we are in a configuration
where the distance of ql_b from qg is ¢; then in the next configuration, the
distance of ¢ b from qg is ¢ + 1 or the distance of ¢} to gy bis z. This can
be encoded as:

Pe = /b\ ((qg /\pi) — (~q8 Upj A ~q8 U (qlf - X(qul) U —xQIb))))

A similar formula can be defined for transitions where the counter is decre-
mented. For a transition where a counter value is compared to 0, the the
proposition denoting the start of a configuration, say q8 is followed by ¢;°.

That is for, e = (s; a0, s;) is encoded as:
. b b -b
pei= N\ ((qO Api) = (~go Upj A Xqp ))-
b
Thus, the entire transition relation of T' can be encoded as 4 := V. @e.

4
o1 :=q0 A (/\ #i) Upy.
=1
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As a satisfiable structure of ¢ encodes a halting computation of 7' (vice-
versa), satisfiability of ¢p becomes undecidable. Furthermore, if (w,v)
satisfies (o then py, is true at some finite length of w. We can easily construct
a Markov chain M such that the set of finite traces of M is ¥* (X* is the
set of sets of propositions used). We know that the probability measure of
any finite trace of M is greater than 0. Thus, we can decide whether or is
satisfiable iff we can decide Pr(M = v (7)) > 0 for some valuation v. Hence,
we conclude that the emptiness problem of V5y(¢) is undecidable. ]

Since Vio(p) = @ iff Voi(~p) # @, it follows that deciding whether
V_1(¢) = @ is undecidable. As a combination of F¢, and Gg, modalities
can encode U_., e.g.,

~aAX(~aU-za) = X(~aUga) A (~aUsza),

where U, and Ug, can be expressed by F¢, and G¢, (Equations 3.1), we
will restrict ourselves to fragments of pLTL where each formula is in negative
normal form and the only parametrized operator is F¢, ¢. We refer to this
fragment as pLTLg:

¢ = al~alorplove|XelpUp|pRe|Go | Fap|Fep|Gep. (3.2)

We show it is a sub-logic of pLTL for which the emptiness problem for
Vao(p) is decidable. The logic has a favourable monotonicity property, i.e.,

Remark. For every pLTLg-formula ¢, infinite word w and valuations v, v’,
v < v implies (w,v) Ep = (w,v") E .

Here (w,v) E ¢ is a shorthand for (w,0,v) & ¢.

3.3 Parameter synthesis for Markov chains

We start off briefly with (only) parametric reachability and then consider
the sub-logic pLTL(F, X) restricted to X and F,. Later on, we also consider
parametric Biichi formulas, and finally, pLTLg.

3.3.1 Parametric reachability

In this section, we consider pLTL-formulas of the form F, a, where a € AP,
and MC M = (S,P,sg,L). Define the set of target states T = {se€ S : ae€
L(s)}. We consider bounds of the form > p with 0 < p < 1, and we are
interested in V5, (Fza). Let p; be the probability of reaching 7" within i
steps; the sequence {u;}ew is ascending. There can be two cases: (a) the
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sequence reaches a constant value in m steps (m = |S|) or (b) the sequence
monotonically increases and converges to pie. This gives us an algorithm
for checking emptiness of V5, (F;a). In the first case, we check pi,, > p, and
in the second case, emptiness can be checked in time polynomial in the size
of the MC, by determining p = Pr(sg = Fa) which can be done by solving
a system of linear equations with at most m variables. Then, V5,(F;a) # @
iff p < fhoo.

Assume in the sequel that T is non-empty. Let min V5,(F, a) = ng, then
the valuation set can be represented by ng (this gives a minimal representa-
tion of the set). A membership query, i.e., does n € V5, (F; a), then simply
boils down to checking whether ng < n, which can be done in constant time
(modulo the size of ng). The only catch is that ng can be very large if p is
close t0 poo- A simple example elucidates this fact.

Example 3.3.1. Consider the MC M with S = {so,t}, L(t) = {a}, L(so) =
@, P(so0,50) = % =P(so,t) and P(t,t) =1. Then Pr(M EFpa)=1- (%)n It
follows that min V5,(F, a) goes to infinity when p approaches one.

An upper bound for ng can nonetheless be provided. This bound allows
for obtaining the minimum value ng by a binary search.

Proposition 3.3.1. For MC M, minV;,(Fza) <log, (1 - (1-v)%), where
0<y<1andb>0, when p<Pr(sgE Fza).

Proof. Collapse all a-states into a single state ¢t and make it absorbing (i.e.,
replace all outgoing transitions by a self-loop with probability one). Let ¢ be
the only bottom strongly connected component (BSCC) of M (other BSCCs
can be safely ignored). Let {1,---,m} be the states of the modified MC
M, with the initial state sg and the target state ¢t represented by 1 and m,
respectively. Let Q be the (m—1) x (m—1) transition matrix of the modified
MC without the state t. That is, Q(i,7) = P(¢,7) iff j # m where P is the
transition probability matrix of M. We have the following observation:

1. Let the coefficient of ergodicity 7(Q) of Q defined as
"(Q) - 1= Luin(Q(ih). QU b}
b k

As Q is sub-stochastic and no row of Q is zero, it follows 0 < 7(Q) < 1.

2. Let vector r7 = (71, -+, 7m_1) with r; = P(i,m), rmax be the maximum
element in r and i’ be (1,0, ---,0). The probability of reaching the state
m from the state 1 in at most n+1 steps is the probability of being in
some state ¢ < m within n steps and taking the next transition to m:
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n+1 n+1

HUn+1 = Z iTer < z 7-((Q)j""max-
=0 =0

Let 7(Q) =+ and rmax = b. The integer ng is the smallest integer such that
Iy = p- Using the above results this is equivalent to b-% > p. This yields
no <log, (1-(1-7)%). O

As in the non-parametric setting, it follows that (for finite MCs) the val-
uation sets V5o(F,a) and V_1(F, a) can be determined by a graph analysis,
i.e. no inspection of the transition probabilities is necessary for qualitative
parametric reachability properties.

Proposition 3.3.2. The problem V.o(F,a) = @ is NL-complete.
Proof. The problem is the same as reachability in directed graphs. O

Proposition 3.3.3. The sets Voo(Fya) and V_1(F, a) can be determined in
polynomial time by a graph analysis of MC M.

Proof. Collapse all the a-states into a target state ¢ and make ¢ absorbing. If
Vo0(Fz a) is non-empty, it suffices to determine min V5o(F; a) which equals
the length of a shortest path from sg to t. To determine whether V_;(F, a)
is empty or not, we proceed as follows. If a cycle without ¢ is reachable from
S0, then no finite n exists for which the probability of reaching ¢ within n
steps equals one. Thus, V_1(F; a) = @. If this is not the case, then the graph
of M is a DAG (apart from the self-loop at t), and min V_; (F, a) equals the
length of a longest path from sg to t. O

3.3.2 The fragment pLTL(F,X)

This section considers the fragment pLTL(F, X) which is defined by:

¢ i=al-alonplove|Xo|FolFae|Fep

Our first result is a necessary and sufficient condition for the emptiness of
Vao().

Theorem 3.3.4. For ¢ € pLTL(F,X) and MC M with m states, V5o(yp) #
@ iff ve Vip(p) with v(xz) = m-|p|.

Proof. The direction from right to left is trivial. Consider the other direc-
tion. Let ¢ be a pLTL(F,X)-formula and assume Vg(¢) # @. By mono-
tonicity, it suffices to prove that v € Vio(p) with v £ v implies v € V5o(ip).
The proof proceeds in a number of steps. (1) We show that it suffices to
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consider formulas without disjunction. (2) We show that if path fragment
7[0..1] £ ¢, (where LTL(F, X)-formula ¢ is obtained from ¢ by omitting all
parameters from ) then 7[0..1] £ v;(¢) with v;(x) =1 for every z. (3) We
construct a deterministic Biichi automaton (DBA) Ag for ¢ such that its
initial and final state are at most |@| transitions apart. (4) We show that
reachability of a final state in the product of MC M and DBA A implies
the existence of a finite path in M of length at most m-|y| satisfying @.

1. As disjunction distributes over A, X,F, and F,, each formula can be
written in disjunctive normal form. Let ¢ = @1 Vv ...V @, where each
¢; is disjunction-free. Evidently, |¢;| < |¢|. Assume v € Vo(p). Then,
v € Vio(g;) for some 0 < i < k. Assuming the theorem holds for ¢; (this
will be proven below), v; € Vio(¢;) with v;(z) = |p;|-m. Since v > v;,
it follows by monotonicity that v € Vio(p;), and hence, v € Vog(p). It
thus suffices in the remainder of the proof to consider disjunction-free
formulas.

2. For pLTL(F, X)-formula ¢, let @ be the LTL(F, X)-formula obtained
from ¢ by replacing all occurrences of F, by F, e.g., for ¢ = F,(anFyb),
@ =F(anFb). We claim that 7[0...]] £ ¢ implies 7[0...l] £ v;(¢) with
vi(x) =1 for all . This is proven by induction on the structure of
. The base cases a and -a are obvious. For the induction step,
conjunctions, Xy and Fy are straightforward. It remains to consider
Fz . Assume 7[0...1] = F@. Thus, for some ¢ < I, n[i...l] = . By
induction hypothesis, 7[i...] £ v;;(¢) with v;;(y) = [-i for each variable
y in . Thus, 7[0..l] £ v;(F; ) with v;(z) =1 and for all y in ¢,
vi(y) =1

3. We provide a DBA A; = (Q, %, 8, qo, F) with X = 2AP for each LTL(F, X)-
formula ¢ using the construction from [4]. We first treat @ = a and
@ = Fa. As every LTL(F, X)-formula can be obtained from F(a A ¢),
©1 A o and Xy, we then treat these inductive cases. (Negations
are treated similarly.) For ¢ = a, Aq = ({g0,q1},%,9,q0,{q1}) with
d(qo,a) = ¢1 and §(q1,true) = qq1, cf. Figure 3.3.2. For @ = Fa , the
DBA Ar, = ({90,q1},%,0,q0,{q1}), where 6(qo,a) = q1, 6(q0,-a) = qo
and §(qi,true) = q1. cf. Fig. 3.3.3. This completes the base cases. For
the three inductive cases, the DBA is constructed as follows.

(a) Let A@ = <Q72767 QO7F>- AF(a/\ng) = (Q U {Q6}’276,7Q67F> where
qp is fresh, §'(q,-) = 0(q,-) if ¢ € Q, &'(¢),a) = 6(qo,a), and
8" (gb, —a) = ¢} (Figure 3.3.4).
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Figure 3.3.2: DBA for p=a Figure 3.3.3: DBA for ¢ = Fa

Figure 3.3.4: The DBA Af(any)

(b) For @1 A @2, the DBA is a standard synchronous product of the
DBA for @1 and @s.

(c) Let Ay =(Q,%,6,q0, F). Axz = (Qu{qy},%,d,q), F') where ¢ is
fresh, ¢'(qf,a) = qo for all a € ¥ and ¢'(q,a) = 6(g,a) for every
q€Q.

A few remarks are in order. The resulting DBA have a single final
state. In addition, the DBA enjoy the property that the reflexive
and transitive closure of the transition relation is a partial order [4].
Formally, ¢ < ¢" iff ¢’ € §* (g, w) for some w € ¥“. The diameter of Ag
is the length of a longest simple path from the initial to the final state.
This implies that the diameter of Ap(,np) and Axg is n+1 where n is
this diameter of Ag, and the diameter of Az Az, is n1 +n2 where n; is
the diameter of Ag,, i € {1,2}.

. Let ¢ = p1 V...V, where each ¢; is disjunction-free, with DBA Ag,.

Evidently, Vso(p) # @ iff Vio(g;) # @ for some disjunct ¢;. Consider
the product of MC M and DBA Ag,, denoted M ® Ag,; see, e.g.,
[5, Def. 10.50]. By construction, M ® Ag, is partially ordered and
has diameter at most m-|p;|. We have that Pr(M £ @;) > 0 iff an
accepting state in M ® Ay, is reachable. Thus, there exists a finite
path 7[0..m:|¢;]] in M with 7[0..m-|p;] & @, or, 7[0..m-|p|] & v(p).
This concludes the proof.

M ® Ag, can also be used to show that, if we have a valuation v such that
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v(x) > m-|p| and for all other variables y # z, v(x) < m:|p| and v € V5o(p)
then v" € Vo(¢), where v'(x) = m-|¢| and for y # x, v'(y) = v(y). The
argument proceed by induction on @;. ]

The above Theorem 3.3.4 leads to the following proposition.

Proposition 3.3.5. For ¢ € pLTL(F,X), deciding if Voo(p) = @ is NP-
complete.

Proof. Similar to the NP-hardness proof of satisfiability of LTL(F, X) formu-
las [90, Th. 3.7], we give a polynomial reduction from the 3-SAT problem.
For a 3-CNF formula ¢ with boolean variables {z1,---, 2y}, we define MC
M and pLTL(F,X) formula ¢ such that ¢ is satisfiable iff Vo(p) is not
empty. Let 3-CNF formula ¢ = Cy A --- A Cy, with C; = d;1 V djo Vv d;3, where
literal dj; is either z; or ~x; (for 1 < j <n). Let MC M = (S,P,s9,L) and

Figure 3.3.5: The Markov chain M used for reducing 3-CNF satisfiability
problem to a pLTL(F,X) model checking problem. Observe that there are
exponentially many orders in which Cjs can be visited by a path in M
satisfying, o = F,, C1 A ... AFy, C}.

AP ={C; : 0<i<k} (Figure 3.3.5):

e S={s; : 0<ig<nju{x; : 0<ig<nju{~z; : 0<i<n}. Thus for

each variable x we have two states x and ~x.

e The non-zero probabilities are given by: P(s;,z;4+1) >0, P(s;,~2i+1) >0
for 0 < ¢ < n, P(x;,8;) > 0 and P(~x;,s;) > 0 for 0 < ¢ < n, and
P(sn,sn) =1 (the actual probabilities are not relevant),

o C;e L(xy) iff dj = z; for some 0 <1< 3, and C; € L(~z;) iff dj = ~z;
for some 0 <1< 3, and L(s;) =@ for all 0 < j < n.

Let pLTL(F, X)-formula ¢ = F,, Cy A ... AFy, Ci. Then ¢ is satisfiable iff
Voo() is not empty. Evidently, M and ¢ are obtained in polynomial time.

It remains to show membership in NP. By the proof of Theorem 3.3.4,
Voo(p) # @ iff there is a finite path of M of length m-|¢| satisfying ¢. Thus,
we non-deterministically select a path of M of length m-|p| and check (using
standard algorithms) in polynomial time whether it satisfies . O
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T X2 z3 Xy ) I3

5 10 14 3 10 16

*——e o——e 5 9 15 3 11 17
5 8 16 3 10 18

5 7 17 3 9 19

o— e o— e 4 11 15 2 13 17

4 10 16 2 12 18

4 9 17 2 11 19

u*w\\ ||*>n\\ 4 8 18 2 10 20

Figure 3.3.6: MC and min V5o(y) for pLT L(F, X)-formula ¢ = F,, rAF;, bA
Fes g

For almost sure properties, a similar approach as for V() suffices.

Theorem 3.3.6. For ¢ € pLTL(F,X) and MC M with m states, V.1(p) #
@ iff ve V(@) with v(x) = m-|yp|.

Proof. The proof goes along similar lines as the proof of Theorem 3.3.4. [

Theorem 3.3.4 suggests that min V. () lies in the hyper-cube H = {0, -, N }¢,
where N = m-|p|. A possible way to find min Vi(p) is to apply the bisec-
tion method in d-dimensions. We recursively choose a middle point of the
cube, say v € H —in the first iteration v(z) = N/2— and divide H in 2¢
equally sized hypercubes. If v € V.o(¢), then the hypercube whose points
exceed v is discarded, else the cube whose points are below v is discarded.
The asymptotic time-complexity of this procedure is given by the recurrence

relation:

T(k)=(29-1) - T(k2) + F (3.3)

where k is the number of points in the hypercube and F is the complexity
of checking v € V5o(yp) where |v] < N. Section 3.3.4 presents an algorithm
working in O(m-N?2¥l) for a somewhat more expressive logic. From (3.3),
this yields a complexity of O(m-N%2/#l.1og N'). The size of a set of minimal
points can be exponential in the number of variables, as shown below.

Proposition 3.3.7. |min Vio(y)| < (N-d)41.

Proof. Let H = {0,...,N}¢. (H,<) is a partially ordered set where < is
element-wise comparison. A subset S*) of H has rank k if the summation
of the coordinates of every element of S is k. By [61], the largest set of
incomparable elements (anti-chain) is given by Z®*) where k is N-d/2 if

even, else k is (N-d-1)/2. Then |Z]| = (lN'dé%de—l). 0
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m Ne p is infinite m Nap =1

Figure 3.3.7: ngp in the left BSCC B is infinity, while n,p for the right one
is 1

Example 3.3.2. There exist MCs for which |min Vio(¢)| grows exponen-
tially in d, the number of parameters in ¢, whereas the number m of states
in the MC grows linearly in d. For instance, consider the MC M in Fig. 3.3.6
and ¢ = Fy, 7 AF,, bAF,, g, i.e., d=3. We have | min V5o(¢)| = 42 as indicated
in the table.

We conclude this section by briefly considering the membership query: does
v € V5o(¢p) for pLTL(F,X)-formula ¢ with d parameters? Checking member-
ship of a valuation v € V() boils down to deciding whether there exists
a v’ € minVig(p) such that v > v’. A representation of minV.o(y) facili-
tating an efficient membership test can be obtained by putting all elements
in this set in lexicographical order. This involves sorting over all d coordi-
nates. A membership query then amounts to a recursive binary search over
d dimensions. This yields:

Proposition 3.3.8. For pLTL(F,X)-formula ¢ with d parameters, ve Vso(p)?
takes O(d-log N-d) time, provided a representation of minVig(p) is given.

3.3.3 Qualitative parametric Biichi

In this section, we consider pLTL-formulas of the form ¢ = GF, a, for propo-
sition a. We are interested in Vig(p), i.e., does the set of infinite paths
visiting a-states that are maximally x apart infinitely often, have a positive
measure? Let MC M = (S,P,sop,L). A bottom strongly-connected compo-
nent (BSCC) B ¢ S of M is a set of mutually reachable states with no edge
leaving B. For BSCC B, let ng g = max{|r| : Vi <|n|,7[i] € BAa ¢ L(w[i])}.

Proposition 3.3.9. Let B be a BSCC and s € B. Then, YneN,n>n, p <
Pr(s = GF, a) =1 and n<n,p < Pr(s k= GF, a) =0.

Proof. If n > n, p, then each path 7 from any state s € B will have at
least one a-state in finite path fragment 7[i,---,i+n] for all i. Hence, Pr(s =
GF, a) = 1. If n < ng p, then there exists a finite path fragment p of B,
such that, for all i < n, a ¢ L(p[i]). Consider an infinite path 7 starting
from any arbitrary s € B. As s € B, m will almost surely infinitely often visit
the initial state of p. Therefore, by [5, Th.10.25], 7= will almost surely visit
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every finite path fragment starting in that state, in particular p. Path =
thus almost surely refutes GF,, a, i.e. Pr(skE GF,, a) = 0.(Figure 3.3.7) [

For any BSCC B and GF, a, n,p < oo iff every cycle in B has at least
one a-state. Hence, n,p can be obtained by analysing the digraph of B
(in O(m?), the number of edges). BSCC B is called accepting for GF, a if
ng,p < o and B is reachable from the initial state sg. Note that this may
differ from being an accepting BSCC for GFa. Evidently, V5o(GF,a) # &
iff ng B < co. This result can be extended to generalized Biichi formula
¢ = GFg, a1 A--- AGFy, aq, by checking n,, p < oo for each a;.

As a next problem, we determine min V5o(GF, a). For the sake of sim-
plicity, let MC M have a single accepting BSCC B. For states s and ¢ in
MC M, let d(s,t) be the distance from s to ¢ in the graph of M. (Recall, the
distance between state s and t is the length of the shortest path from s to
t.) For BSCC B, let do,p(s) = mingep ger, (1) (s, 1), i.e., the minimal distance
from s to an a-state in B. Let the proposition ag hold in state s iff s € B
and a € L(s). Let G, = (V, E) be the digraph defined as follows: V' contains
all a-states of M and the initial state sy and (s,s’) € E iff there is path
from s to s’ in M. Let ¢ be a cost function defined on a finite path sq...s,
in graph G, as: ¢(sg...S,) = max; d(s;, si+1), (d is defined on the graph of
M). Using these auxiliary notions we obtain the following characterization
for min V5o (GF; a):

Theorem 3.3.10. min V.o(GF, a) = ng where ny = max (na,B, min c(ﬂ'))
T=50...Sn,SnFap

if ng,B < dq,B(S0) and ny = ng p otherwise.

Proof. We show for n > ng, Pr(GF,, a) > 0, and for n < ng, Pr(GF,a) = 0.
Distinguish:

1. ng,B > dq,B(S0). Then, from sy an a-state in B can be reached within
na B steps, i.e., Pr(so & Fy, ;ag) > 0. For this ap-state, s, say, by
Proposition 3.3.9 it follows Pr(s & GF,, ; a) = 1. Together this yields
Pr(so £ GF,, a) > 0 for each n > ny g =ng. For n <ng =n, p, it follows
by Proposition 3.3.9 that Pr(s £ GF,, a) = 0 for every ap-state s. Thus,
Pr(so E GF,a) = 0.

2. ng g < dqp(s0). As B is accepting, dq p(sp) # co. Consider a simple
path 7 from s¢ to an a-state in B. Let ¢(7) be the maximal distance be-
tween two consecutive a-states along this path. Then it follows Pr(sg E
GF;a) > 0 where k = max(c(m),ne,p). By taking the minimum ¢y,
over all simple paths between sy and B, it follows Pr(sg = GF,a) >0

for each n > ng = max(nq B, Cmin) With cpnin = MiN epaths(soeFay) ¢(T),
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where Paths(s = ¢) = {w : w € Paths(s),w £ ¢} . For n < ng, distin-
guish between ng = n, g and ng = ¢pin. In the former case, it follows
(as in the first case) by Proposition 3.3.9 that Pr(so £ GF, a) =0 for
all n > ng. Consider now ng = ¢min > ne,B. Let n < ng. By contrapo-
sition. Assume Pr(sp = GFpa)>0. Let m=50...514...524------ Sk.a
be a finite path fragment in M where s;, F a and sj, is the first
a-state along 7 which belongs to B. Then, by definition of the di-
graph G, the sequence m = 5051 452, .. - Sk,q is @ path in G, satisfying
c(Sia:Si+1,0) <n for all 0 <k <n. But then ¢, <n. Contradiction.

This concludes the proof. O

If MC M has more than one accepting BSCC, say {Bi,..., By} with k> 1,
then ng = min; ng p,, where ng g, for 0 < i < k is obtained as in Theorem
3.3.10.

Proposition 3.3.11. The sets Voo(GF,a) and V-1(GF,a) can be deter-
mined in polynomial time by a graph analysis of MC M.

Proof. We argue that min V.¢(GF, a) can be determined in polynomial time.
The proof for V_1(GF, a) goes along similar lines and is omitted here. We
can determine both n, p and d, p(so) in linear time. It remains to obtain
Cmin = Milgog, s, s eap (M) I case ng p < dgqp(sg). This can be done
as follows. The distances d(s,s"), required for the function ¢ in the digraph
Go = (V, E), can be obtained by applying Floyd-Warshall’s all-pairs shortest
path algorithm on the graph of M. This takes O(m?). To obtain ¢, we
use a cost function F': V' — N which is initially set to 0 for initial state sg and
oo otherwise. Let p@Q be a min priority queue, initially containing all vertices
of Gy, prioritized by the value of F. Algorithm 1 finds ¢, in O(m? logm).
Its correctness follows from the invariant F(v) < max(F(u),c(u,v)). Using

Algorithm 1 Input: MC M Output: ¢pmin

1: Initialize F', found := false and pQ).

2: while (-found and pQ + @) do

3: u = pop(pQR); found := (ap € L(u));

4: for v € pQ do F(v) := min (F(v), max(F(u),c(u,v)))
5: end for

6: end while

this we can find the minimum n for which we can reach an accepting BSCC
via a finite path satisfying GF,, a. O

Determining min V5, (GF, a) for arbitrary p reduces to reachability of ac-
cepting BSCCs. In a similar way as for parametric reachability (cf. Sec-
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tion 3.3.1), this can be done by searching. For generalized Biichi for-
mula ¢ = GFg, a; A -+ A GF,, aq and BSCC B, ng,p is at most m. Thus,
min Vao(¢) € {0,---,m-d}¢ and can be found by the bisection method, similar
to the procedure described in Section 3.3.2.

Example 3.3.3. Rusty decides to represents the frequency of repeated
reachability of guards as parametric Biichi properties. Danny then uses
the algorithm described above to elicit the parameter values for which there
is non-zero probability of failure. He then identifies possible targets based
on this information.

3.3.4 The fragment pLTL¢

This section is concerned with the logical fragment pLTLg, as defined in
(Eq. 3.2 pg. 44):

¢ = al-aloneleve|X|eUep|pRe|Gp|Fep.?

We will focus on the emptiness problem: is V5o(¢) = @. The decision prob-
lem whether V_i(p) is very similar. Similar as for pLTL(F,X), we obtain
necessary and sufficient criteria for both cases. The proofs for these criteria
depend on an algorithm that checks whether v € V5¢(¢). This algorithm is
presented first.

Automata constructions. Let ¢ be a pLTLg-formula, and v a variable
valuation. W.l.o.g. we assume that each variable occurs once in ¢. We
will extend the classical automaton-based approach for LTL by constructing
a nondeterministic Biichi automaton for ¢ that is amenable to treat the
variables occurring in . To that end, inspired by [99], we proceed in a
number of steps:

1. Construct an automaton G, for ¢, independent from the valuation v,
with two types of acceptance sets, one for treating until and release-
modalities (as standard for LTL [94]), and one for treating the param-
eter constraints.

2. Establish how for a given valuation v, a Biichi automaton By,(v) can
be obtained from G, such that for infinite word w, (w,v) € L(yp) iff
w is an accepting run of B, (v).

3. Exploit the technique advocated by Couvreur et al. [32] to verify MC
M versus B,(v).

2The modalities F<. and G¢. can be removed with only quadratic blow up.
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We start with constructing G . Like for the LTL-approach, the first step is
to consider consistent sets of sub-formulas of . Let cl(¢) be the set of all
sub-formulas of ¢. Set H ¢ cl(p) is consistent, when:

eacHiff ~a¢H, e vy € H implies 1 Upg € H,

Ao € H iff o1 € H and €
) g SOQ S e ® 1,2 € H implies ¢1Rp € H,
° € H implies F eH.
e pivyee Hiff oy e H or poe H, w1 P z¥1
We are now in a position to define G, an automaton with two acceptance

sets. For ¢ € pLTLF, let G, = (Q, 2AP Qo, 8, Accp, Accp) where

e ( is the set of all consistent sub-sets of cl(p) and Qy={H €@ : p¢

o (H,a,H') €8, where a € 2*P whenever:

HnAP ={a},

— Xp1e H <= p1 e H',

—p1Upre H = poeHor (p1e€H and p1 Ups e H),
— p1Rpg € H < o€ H and (p1 € H or ¢1Rps € H'),
— Fyop1eH < 1€ Hor Fop € H,

e (generalized) Biichi acceptance Accp and parametric acceptance Accp:

— Accg ={Fy : ¢ ed(@) A (¢ =p1Upa vy’ =p1Rpy)} where
x« Fo={H : ¢'e H=>pye H} if ¢' = ¢1 U, and
* Foo={H : pae H=¢" e H} if ¢’ = ¢1Rpy,
— Accp ={Fy, : Fgpiecl(p)} with Fy, = {H|Fy, ¢; € H= @, €

A run p € Q¥ of G, is accepting under valuation v if it visits each set in
Accp infinitely often and each F,, € Accp in every infix of length v(z;).
L(G,) contains all pairs (w,v) such that there is an accepting run of w
under the valuation v. G is unambiguous if ¢ % ¢ and ¢ 5 ¢” implies
L(¢")n L(¢") =@, where L(q) is the language starting from the state g.

Proposition 3.3.12 ([99]). For ¢ € pLTLf, the automaton G, is unam-
biguous and L(Gy) = L(¢).

The automaton G, can be constructed in O(2|‘p|). Apart from the para-
metric acceptance condition, G, behaves as a generalized Biichi automa-
ton (GNBA) if we consider only the accepting set Accg. Let Accp be
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{Fi,...,F;}. In order to obtain a non-deterministic automaton, we first
apply a similar transformation as for GNBA to NBA [5]. We convert G, to
U, = (Q',2°% Q) 0", Accly, Acclp) where Q' = Q x {1,...,k}, Q) = Qo x {1}.
If (q,a,q") € 6, then ((q,7),a,(q’',i")) € & with i=i' if q ¢ F; else i’ = (i
mod k)+1. Accg = Fy x {1} and Accp = {F,. : F, € Accp}, where
F,. = Fy; x{1,...,k}. Note that the construction preserves unambiguity
and the size of U, is in O(|g-2!9h.

For a given valuation v, U, can be converted into an NBA B, (v). This
is done as follows. Let U, = (Q’,24F,Q}, ", Accly, Acclp) and v a valuation
of ¢ with d parameters. Then B,(v) = (Q",247,QY, 5", Acc) with:

° QII C Q/ x {07...’ 'U(.',Ul)} X oo X {07...’ v(ajd)}7
e ((¢,n),a,(¢',n'"))ed"” if (¢,a,q") € &' and for all x;:

— if ¢" € F, and n(x;) < v(x;) then n'(z;) = 0,
— if ¢' ¢ Fy, and n(z;) < v(x;) then n'(z;) = n(z;) + 1.

e Q) =Q)x 0% and Acc = Accly x {0, v(z1)} x - x {0, v(24)}.

It follows that By,(v) is unambiguous for any valuation v. Furthermore,
every run of B,(v) is either finite or satisfies the parametric acceptance
condition for valuation v. Thus we have:

Proposition 3.3.13. An infinite word w € L(B,(v)) if and only if (w,v) €
L(¢)-

The size of B,(v) is in O(co|p]-219) where ¢, = 1., (v(z;)+1). Asanext
step, we exploit the fact that B, (v) is unambiguous, and apply the technique
by Couvreur et al. [32] for verifying MC M against B,(v). Let M ® By, (v)
be the synchronous product of M and By (v) [5], II; the projection to M and
II, the projection to B,(v). Let L(s,q) = {m € Paths(s) : trace(n) € L(q)}
and Pr(s,q) = Pr(L(s,q)). Let Pr(M ® By,(v)) = Xgeq, Pr(50,q0). As
B, (v) is unambiguous, we have for any (s,q):

PI‘(S,q) = Z P(S’t) 'PI‘(t,q,)7
(t,q")€d(s,q)

where 0 is the transition relation of M ® B,(v) and P(s,t) is the one-step
transition probability from s to ¢t in MC M. A (maximal) strongly connected
component (SCC, for short) C ¢ S is complete if for any s € I1;(C) :

Paths(s) = |UJ Lec(s,q)
(s,9)eC



3.3. PARAMETER SYNTHESIS FOR MARKOV CHAINS 57

where Lo(s,q) restricts runs to C (runs only visits states from C). The
SCC C is accepting if Acc nIIa(C) # @ (where Acc is the set of accepting
states in B, (v)).

Proposition 3.3.14 ([32]). Let C be a complete and accepting SCC in
M ® B,(v). Then for all s e I1;(C):

Pr( U Ec(s,q)) =1.
(s,q)eC

Moreover, since By(v) is unambiguous, Pr(M ® By(v)) > 0 implies there
exists a reachable, complete and accepting SCC.

Finding complete and accepting SCC in M ® B,(v) is done by standard
graph analysis. Altogether, v € Vio(p) is decided in O(m-cy-|p]-21¥). The
space complexity is polynomial in the size of the input (including the val-
uation), as M ® B,(v) can be stored in O(logm + |¢| +logc,) bits. In the
sequel, we exploit these results to obtain a necessary and sufficient criterion
for the emptiness of Vig(p) for ¢ in pLTLE.

Theorem 3.3.15. For ¢ € pLTLg, Vio(p) # @ iff v € Voo(p) s.t. v(z) =
me|p|-2141.

Proof. Consider the direction from left to right. The only non-trivial case is
when there exists a valuation v £ v such that v € Vio(¢) implies v € Vio(p).
In the model checking algorithm described above, we first construct G, and
then U, with a single Biichi accepting set Acclz and d parametric accepting
sets F:{:w one for each variable x; in ¢. For the sake of clarity, assume d =1,
i.e., we consider valuation v. The explanation extends to the general case
in a straightforward manner. For valuation v, consider M ® B,(v). We
show that, for r <v, Pr(M ® B,(v)) > 0 implies Pr(M ® B,(r)) > 0, where
r = m|U,|, which is in O(m-|¢p|-21).

Note that every cycle in M ® B,(r) contains a state (s,q,%) with i =
0. Moreover, the graph of M ® B,(r) is a sub-graph of M ® B,(v). We
now prove that, if a (maximal) SCC C' of M ® B,(r) is not complete (or
accepting) then any SCC C' of M ® B,,(v) containing C'is also not complete
(or accepting, respectively).

(a) Suppose C' is not complete. Then there exists a finite path o =
$81...8; of M, such that from any ¢, with (s,¢,0) € C, the run p =
(s,4,0)(s1,q1,1)...(s4, gj,7) leads to a deadlock state. This can have two
causes: either (sj,q;,j) has no successor for any j. Then, C’ is not com-
plete. Or, the path p terminates in (sj,q;,j) where j = r. This means,
for all (s',¢’,j+1) € 0(sj,q5,7) in C', ¢' ¢ Fy. As the length of p exceeds
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r, there are states in the run whose first and second component appear
multiple times. Thus, we can find another path ¢’ (possibly longer than
o) for C" which goes through states where the first and the second com-
ponent of some of its states are repeated sufficiently many times to have a
run (s,q,0)(s1,q1,1)...(sj,¢;,v) which is a deadlock state. Thus, C' is not
complete.

(b) Suppose C’ is accepting. Then there exists (s',q’,i") with ¢’ € Acc.
Since C" is an SCC and C < C’, there is a path from (s, ¢,0) € C to (s',4',i").
If the length of the path is less than 7, then we are done. If i’ > r, then
some (s”,q") pair in the path must be repeated. Thus, we can find another
path of length less than r to a state (s',q’,4), where i < r. Therefore, C' is
accepting. The rest of the proof follows from Proposition 3.3.14. O

For almost sure properties, a similar approach as for V() suffices.

Theorem 3.3.16. For ¢ € pLTLg, V_1(p) # @ iff v € Vo (@) with v(x) =
me|p|-2141.

Let Ny = m-|<p|-2|“". Note that ¢z equals (N¢M)d. Thus, we have:

Proposition 3.3.17. For ¢ € pLTLg, deciding if Vso(p) = @ is PSPACE-
complete.

Proof. Theorem 3.3.15 gives an algorithm in PSPACE, as M ® B,(v) can be
stored in O(logm + || +dlog Nypr) bits. PSPACE hardness follows trivially,
as for LTL formula ¢ and MC M, deciding Pr(M & ¢) > 0 (which is known
to be a PSPACE complete problem) is the same as checking the emptiness
of V>()((p). O

Just as for pLTL(F,X), we can use the bisection method to find min V5o ().
The search procedure invokes the model checking algorithm multiple times.
We can reuse the space each time we check Pr(M = v(y)) > 0. Hence,
min V.o (p) can be found in polynomial space. The time complexity of find-
ing min Vo(yp) is (’)(m-(NS(,M)dQ""'-log Ngar). Membership can also be sim-
ilarly solved.

Proposition 3.3.18. For pLTLg-formula ¢, ve Vio(p)? takes O(d-log %)
time, provided a representation of Vao(p) is given.

3.3.5 Parametric (0/1)-counter automata

We have seen that pLTLg formula can be converted to an equivalent Biichi
automata with parametrized acceptance condition. We can implement the
parametrized repeated reachability by parametric 0/1-counter automata with
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Biichi acceptance condition. 0/1-counters automata are counter automata
were the counter can either increase or reset to zero (similar to clocks of
timed automata). A counter is said to be parametric if it is compared with
a parameter. Parametric 0/1-counter automata has one or more parametric
counters. The principal problem for parametric 0/1-counter is the language
emptiness. They were first studied by Alur et al. [3], where the class of 0/1
counter automata with one parametric counter was shown to be decidable.
It was also shown that large classes of parametric automata have undecid-
able emptiness problem. Recently, in [14] the class of 0/1-counter automata
with two parametric counter was shown to be decidable as well.

The language emptiness of parametric (0/1) counter automata is anal-
ogous to the language emptiness of parametric LTL. We can improve the
undecidability result of [3], where the reachability problem for automata
with three (0/1) parametric counters was shown to be undecidable, using
the proof technique used in showing undecidability of language emptiness
of pLTL. Closer scrutiny of the demonstration given by [3] reveals that the
number of parameters (six in total) plays a crucial part in the encoding to
the halting problem of a two counter machine. We show that the reachability
problem is still undecidable with three (0/1) counters and one parameter.
We also show undecidability for two (0/1) parametric counters which can
only be compared with a non-parametric (0/1) counter using a single pa-
rameter. The details can be found in the appendix A.

3.4 Related work and conclusion

The verification of parametric probabilistic models in which certain transi-
tion probabilities are given as parameters (or functions thereof) has recently
received considerable attention. Most of these works are focused on param-
eter synthesis: for which parameter instances does a given (LTL or PCTL)
formula hold? To mention a few, Han et al. [49] considered this problem
for timed reachability in continuous-time MCs, Hahn et al. [47] and Pugelli
et al. [86] for Markov decision processes (MDPs), and Benedikt et al. [7]
for w-regular properties of interval MCs. Hahn et al. [48] and Dehnert et
al. [35] provide an algorithm for computing the rational function expressing
the probability of reaching a given set of states in a parametric (reward)
MDPs and Markov chains based on exploiting regular expressions as ini-
tially proposed by Daws [33]. Other related work includes the synthesis of
loop invariants for parametric probabilistic programs [62]. To the best of
our knowledge, verifying parametric properties on MCs has not been consid-
ered so far. The closest related works are on parametrized computation tree
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logic by Emerson et al. [40] and the computation of quantiles by Ummels
and Baier [93].

3.4.1 Summary

In this chapter we considered the verification of finite MCs against para-
metric LTL. The main problem of this chapter was, given a pLTL formula
f and a finite Markov chain M, how to synthesize parameter values Vo (f)
for which the resultant LTL formula has non-zero probabilities. We saw
that deciding the emptiness of the set of parameter values V5o(f) for any
arbitrary pLTL formula is undecidable. Thus, we looked at various frag-
ments of pLTL for which the emptiness problem is decidable. We obtained
several results on the necessary and sufficient conditions for emptiness of
Vao(f), as well as studied the complexity of the emptiness problem for var-
ious fragments. The necessary and sufficient conditions are in the form of
specific parameter values that V5o(f) contains if and only if V5o(f) is non-
empty. We used these results to define algorithms for synthesizing the set
V2o(f), which basically searches the maximal set of non-dominating param-
eter values. Future work consists of devising more efficient algorithms for
the quantitative verification problems, and lifting the results to extended
temporal logics [96] and stochastic games, possibly exploiting the results of
optimal bounds on parametric LTL games [99].



Chapter 4

PCTL and Interval Markov
Chains

In this chapter we recall model checking of PCTL formulas on uncertain
stochastic models whose probability distributions are not exactly know.
These uncertain models are commonly referred as convex Markov chains,
where the transition probabilities are known to lie within a convex set. Most
often these sets are represented by intervals. We will study the technical
problem that arises with open intervals. The main focus of this chapter is
on model checking of uncertain models, some of whose transition probability
intervals are not closed intervals, against PCTL formulas.

4.1 Introduction

Formal verification is the exhaustive validation of the functionalities of a sys-
tem. Once a model (a representation of the system) has been fixed, the next
step is to check whether a property is satisfied by every possible behaviour of
the model. Hence, model-checking is the heart of formal verification. The be-
haviour of many (physical) systems are not completely deterministic rather
they exhibit uncertainties, i.e. they have stochastic characteristics. There
are many well studied mathematical models that can be used to model such
systems. For example, discrete time Markov chain (MCs), they has emerged
as an useful stochastic model for analyzing the reliability and performance
for system with stochastic behaviour.

But the next immediate question is, what are the values of the probability
distributions? Most often than not, the precise definition of these values
may not be always available [60, 89, 97]. This is precisely the case when
transition probabilities are obtained by statistical methods. It is ironic since
we not only know that the system behaves uncertainly, but also that we are

61
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uncertain even about the degree of uncertainty in its behaviour.

This leads us to Interval Markov chains (IMCs) [60, 100] where the value
of the transition probabilities are not stated precisely. IMCs generalize dis-
crete time Markov chains by allowing intervals of possible probabilities on
the state transitions in order to capture the system uncertainty more faith-
fully. For example, instead of specifying that the probability of moving from
state s to ¢ is 0.5, one can specify an interval [0.3,0.7] which captures the
uncertainty in the probability of moving from state s to t. There are many
cases where it is beneficial to be able to specify an interval [97]. In some
cases, the transition probabilities may depend on an unknown environment,
and are approximately known, in other cases the interval may be introduced
to make the model more robust.

There are two prevalent semantics of interval Markov chains. Uncertain
Markov Chains (UMC) [60, 89] semantics interprets an interval Markov
chain as a set of (possibly uncountably many) discrete time Markov chains
where each element of the set is a DTMC whose transition probabilities lie
within the interval range defined by the IMC. In Interval Markov Decision
Processes semantics (IMDP) [89], the uncertainty of the transition probabil-
ities are resolved non-deterministically. It requires the notion of scheduler,
which chooses a distribution from a (possibly uncountable) set of distribu-
tions defined by the intervals on the transitions, each time a state is visited
in an execution.

The problem of model-checking PCTL properties for IMCs was stud-
ied in [89]; it provides PSPACE algorithms for both UMC and IMDP se-
mantics for interval Markov chains. Furthermore, NP and co-NP hardness
was shown for model-checking in UMC semantics and PTIME hardness for
IMDP semantics which follows from PTIME hardness of model-checking
PCTL formulas on DTMCs. [26] improved the upper bound and showed
that model-checking problem for IMDP semantics is in co-NP. This result
is shown for a richer class of logic, called w-PCTL, which allow Biichi and
co-Biichi properties in the formula. These results rely on the construction
of an MDP which encodes all the behaviours of the IMDP under analysis.
For each state in the new MDP, the set of possible distribution is mapped to
the Basic Feasible Solutions (BFS) of the set of inequalities specifying the
transition probabilities of the IMDP. Since, in the worst case, the number
of BFS is exponential in the number of states in the IMDP, the equivalent
MDP can have size exponential in the size of the IMDP. Recently, in [86] a
polynomial time algorithm for PCTL verification was presented. The cen-
tral idea was to represent the reachability problem in IMDP as a linear
programming problem.
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In the literature, the intervals of IMCs are always assumed to be closed.
This assumption is sensible from the model-checking perspective, since a
model with open interval may not have an optimal value of satisfying a
temporal property (in IMDP semantics). The focus of this chapter is to
study IMDP semantics of IMCs with open intervals. We will later contrast
the result with the UMC semantics, and see that the outcome may differ
from IMDP semantics. The main intuition is that the (optimal) value of the
reachability probability in a IMC with open intervals can be made arbitrarily
close to the (optimal) value of the property obtained by closing the intervals.

4.2 Interval Markov chains

Definition 4.2.1. Let Z be the set of intervals (open or closed) in the range
[0,1]. The subsets Zy = {(a,b] | 0<a<b<1}, Iy =2 {(a,b) | 0<a<b< 1},
o2 {[a,b) |0<a<b< 1} and Z3 = {[a,b] | 0<a<b<1}. T = Uieo,1,2,3} Zi-
Let I = (a,b) be an interval in Z, where (€ {(,[} and ) € {),]}. The lower
bound I} = a ! and upper bound is It = b. Point intervals ([a,a]) are closed
intervals where the upper and lower bounds are equal. The closure of an
interval I, denoted by I, is the smallest closed interval that includes I.

Definition 4.2.2. An Interval Markov chain (IMC) is a tuple M = (S, L, J),
where S is a (finite) set of states and L is a labeling function L : § — 247
where AP is the set of atomic propositions. ¢ is a function § : S — D, where
D is the set of functions from the set of states to the set of intervals Z, i.e.,

D=S5->1.

We will use the un-Curry notation d(s,t) for §(s)(t). For a state s, the
probability of a single step from s to t lies in the interval §(s,¢). Thus an
IMC defines a collection of Markov chains, where the single step transition
probability of moving from state s to ¢ lies in the interval d(s,t). Not every
IMC defines a collection of Markov chains. Thus, we have the notion of
realizability.

Definition 4.2.3. Let M = (S, L,6) be an IMC with states S = {s1,, S }.
Let DM be the set of m x 1 vectors J, such that d7-1 = 1, which represents
the set of distributions on states of M. Where M is fixed we denote the set
as D.

M is said to be realizable if for each set of intervals defined by d(s),
there exists a distribution d such that for all i € [1,m] d; (the i component

'Recall, for a sequence o, o} denotes the last element of the sequence if o is finite. The
meaning of | should be clear from the contex.
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of d) is in 0(s, s;). The distribution d is said to be a solution of §(s). Let
sol(s) be the set of solutions of ().

Next we give two semantics of IMCs: 1) Uncertain Markov Chains
(UMCQC), 2) Interval Markov Decision Process (IMDP).

Definition 4.2.4. (Uncertain Markov chain semantics) An IMC M =
(S,L,0) represents a set of DTMCs, denoted by [M],, such that for each
DTMC M = (S,L,dpr) in [M]y, 0ar(s) is a solution of §(s) for every state
ses.

In UMC semantics, we assume that nature non-deterministically picks a
solution of §(s) for each state s € S, and then all transitions behave according
to the chosen transition probability matrix.

To define interval Markov decision process semantics, we need the notion
of schedulers. The schedulers resolve the non-determinism at each state s
by choosing a particular distribution from sol(s).

Definition 4.2.5. A scheduler of an IMC M = (S,L,d) is a function 7 :
S* - DM such that for every finite sequence of states m-s of M, n(ms) is
a solution of d(s).

A path w = sps189--- of an IMC M is an infinite sequence of states. A
path w starting from a state s (i.e., wo = s) is said to be according to the
scheduler 7 if for all ¢ > 0, n(wo, -+, w;)(wis+1) > 0. A scheduler is memoryless
if the choice of the distribution depends solely on the current state, that is,
n:S - DM,

Definition 4.2.6. (Interval Markov decision process semantics) In
IMDP semantics, before every transition from a state s of a IMC M =
(S, L,0), nature chooses a solution of §(s) and then takes a one-step prob-
abilistic transition according to the chosen distribution. In other words,
nature chooses a scheduler n which then defines a DTMC M. The set of all
DTMC in this semantics is denoted by [M]g.

Obviously, for any IMC M we have:
[M]u € [M]a.

Given an IMC M and a state s, let o-algebra (£25,F) be the smallest o-
algebra on the cylinder sets of s, where €)s is the set of infinite paths
starting from s. For each scheduler n we have a probability measure Pr"
(also denoted by p},) on the events in F.
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Next, we define the satisfaction relation of a PCTL formula f for an
IMC M for the two semantics. In UMC semantics,

M, s &, fiff for every DTMCM € [M]y, M, s & f

Note that for a PCTL formula f, M, sk, f does not imply M, s #, ~f. In
IMDP semantics, the satisfaction of a PCTL formula f by a state s of M
(M, s Eq f) is as follows:

M,sEa iff aeL(s)

M,se=~f it M,s# f

M,se finfo iff M,se fi and M,sE fo
M,se gl iff Vn:Pri {seg}wp

(4.1)

Particularly,
M,s & [gl<e iff sup, Pr'{skg}<c
M,s & [gle iff sup, Pri{skg}<c
[g]se iff inf, Pri{sE g} >c
M, s [g]se iff inf, Pri{seg}>c

where, (s £ g) = {w | wp = s and M,w = g}. Thus for an event E € F,
defining a set of paths, we are interested in the values:

iI%fPryvl(E) and S%pPryw(E)

Open intervals present a problem for model checking in IMDP semantics.
There might not exist a scheduler that gives the optimal values. Consider
the reachability problem for IMCs in the following example:

Example 4.2.1. It is possible that an optimal scheduler may not exist for
IMCs with open intervals. Consider the following example Figure 4.2.1, E is
the set of paths that eventually reach the state s; from sq. inf,) Pr"(E) = 0.6,
but no scheduler gives the probability of reaching s; from sy as 0.6. The
reason for this is the open lower bound of (0.3,1].

4.2.1 e-Approximate Scheduler for Reachability

In this section we consider the reachability problem in IMDP semantics for
IMCs with open intervals. As observed in the previous example, an optimal
scheduler may not exists, thus we will construct e-approximate schedulers.

An IMC is called a closed IMC if the probability interval of every transi-
tion is closed. We can obtain a closed IMC from an arbitrary IMC by taking
the closure of the probability intervals.
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L1 [0.5,1] L1

Figure 4.2.1: A interval Markov chainFlgure 4.2.2: A closed interval Markov

chain

Definition 4.2.7. Given an IMDP M 2 (S,L,d), a closed IMDP M is
defined as (S, L,0"), where for every s,t, 6'(s,t) = 6(s,t).

Example 4.2.2. The closed IMC M for M in the example 4.2.1 is shown
below:
Evidently, if an IMC M is realizable then M is also realizable.

Definition 4.2.8. Basic feasible solution (BFS). Given a set of closed in-
tervals R = {I,---,I,,,} a basic feasible solution d is an m x 1 vector, such
that there exists a set H ¢ R with |H| > |R| -1 and for all I; € H, d; = I;} or
(L’ = IZT, and CZTI =1.

BFSs of a set of intervals J that contains open intervals are the BFSs of the
set of closed intervals 7. We have the following observation.

Proposition 4.2.1. FEvery solution of a set of (open or closed) intervals,
can be represented as the convex combination of the BFSs.

Proposition 4.2.2 ([26]). Let M be a closed IMC, and E be an event defin-
ing the reachability of some set of states T € S. There exists a memoryless
scheduler n such that the probability of the event E is optimal.

The proposition says that, if M is closed then we have a scheduler n: S —
DM such that Pr'(E) = inf,, Pr" (E) (or sup, Pr(E)), and 7 chooses at
each state s one of the BFSs of d(s) (pure scheduler). The proposition
follows directly from the existence of an optimal scheduler for reachability
in Markov Decision Processes [9].

The main theorem of this chapter is as follows:

Theorem 4.2.3. Let E be the event describing the set of paths of an IMC
M starting from a state s and eventually reaching some goal statesT'. Then:

Ve>0 31: |mninP7“7\;l(E) -Pri(E)<e

and
Ve>0 3n: ‘mTE]iXPTZ;l(E) -Pri (E)|<e
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Proof. Let M = (S,L,5) and M = (S,L,8"). M is closed, thus by Prop. 4.2.2
an optimal scheduler exists. Let 73 be an optimal scheduler that minimizes
Pr”M(E). Furthermore, 7 is memoryless, deterministic and chooses one of

the BFS of §'(s) at each state s. Hence, 7 induces a DTMC on M, and
7)3(5, t) defines the single step transition probability from a state s to a state
t. .

Let the stochastic matrix P be such that each row is identified with a
state of M. We have :

P(s,)=(s,t) its¢T and P(s,s)=1 ifseT  (42)

Let A=(1+ P+ (]*3)2 + (;’)3), A is well-defined stochastic matrix as the
series converges. Let v = || Al -

Now we are in a position to define a scheduler 7 for the IMC M. The
scheduler 7 is a function, 77 : S x N - D™, We assume that there are no
positive point intervals. (We can set the value of 7 if point intervals are
present.) Define the following:

Qs = {tIn(s,t)>0, n(s,t) ¢6(s)}

Ly = {t|n(st)ed(s,t), n(s,t)=05(st)l}
Ry = {t|n(s,t)ed(s,t), n(s,t)=6(s,t)1}
I, = {t|n(s,t)€d(s,t), n(s,t) #6(s,t)1, n(s,t) # (s, 1)1}

min{{z | 3s,3t € Ly UL, : 2 = n(s,t) - 0(s,t)l},
{z|3s,It e RyUl,:x=06(s,t)t—n(s,t)},
{z]3s,FteQs:z=0(s,1)1=05(s, )l }}

Observe that p is a constant of the model M. Let 7 be defined as follows:

s}
I

e Let ¢ € Q,. This implies (s, t) = 8(s, )1 or 1)(s, t) = 6(s, t)|. I n(s,t) =

§(s,t)1 then 8(s,t) is open from above and A(s,n,t) = 7(s,t)—2" ”|gp|,
where K = L Similarly, if 7(s,t) = 6(s,t){ then §(s,t) is open from

below and n(s n,t) =n(s,t)+27" |Q E

e LetteRsandaz ) fi(s,n,t)=1(s,t). If a < 0 then for all t € R,U T,
teQs

i(s,n,t) = (s, t) + TRoT] uI| and for t € Ly, 7(s,n,t) = 7(s,t). If a >0
then for all t € Ly U I,, f(s,n,t) = 1(s,t) + Toor] uI| and for t € R,
fi(s,n,t) =1(s,t). If @ = 0 then for all t € LyUI,UR,, A(s,n,t) = 1(s, ).

It remains to prove that d = 7)(s,n), defined above, is a solution to (s).
From the construction it follows that Y ,.g d; = 1 and hence it is a valid
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distribution on the states of the IMC M. Consider the following cases:
te@s and ;}(s,t) =d(s,t)1, the upper bound of §(s,t) is open. The lower
bound of §(s,t) is strictly smaller than 27" kp for any n € N i.e., §(s,t)} < Kp
since p is at the most as large as the smallest interval in M. Thus d; € (s,t).
Similarly, for every t € Qs, d, € d(s,t). Suppose a < 0, then R; U I is not
empty, else d(s) will not be realizable. The changes to the probability for a
transition s to ¢, where ¢ € R, U I is small enough so that d; € 0(s,t). Thus,
for every t, d; € 6(s,t), or equivalently d is a solution to d(s,t). Identical
argument holds when « > 0.

Let P, be a sub-stochastic matrix defined as follows: P, (s,t) = 7i(s,t) if
]t"(s,t) > 0 else P,(s,t) = 0. In other words, P,(s,t) > 0 if the state t is in
support(7)(s)).

B, -P+P, (4.3)
where |P,(s,t)| <27 "kp for every (s,t).
Let 7 and 7 induce DTMCs M’ and M on the IMCs M and M, re-

spectively. Let the corresponding o-algebra be & = (4, F ,ZL) and &’ =
(Qs,F, 1), where s is some state of M and Qg is the set of paths start-

ing from state s. Define R = {w € Q, | w is according to 7} and R 2 {w €
Qg | w is according to 7}, i.e., R and R are set of paths in M’ and M, respec-

tively. Let B € F be the event of reaching the goal states T', and F = ]*% nB
and E' = Rn B. It follows from the construction that E ¢ E’. Define
A; = {w | Ju e B wy-w; = ug---u; and ﬁ(wi,wiﬂ) = O,ﬁ(wi,i,wiﬂ) > O}.
Let A =U; A;. It is easy to see that, E'n A = E. We will first show that the
event A has a very small probability measure in S’:

(A) = Prl (A) = ZQP%AZ-)

If we A; then 6(w;, wi+1)1 >0 and ﬁ(s,t) =0. Thus,
Pr}@(Ai) <27'%p or Pr}@(A) <Kp
Thus,
fi(A) < kp (4.4)

We will now show that the probability of E’ can be made infinitesimally
close to the probability of E. Formally, we will show, |i(E’) - a(E)| < €.
The left hand side can be written as:

a(E") - i(E)|

(B 0 A) + (B 0 A) - ()

A(E) - 1) + rp (4.5)

IN
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That is, we restrict to the paths that belong to E. Let z. denote the
probability of reaching the goal states T at the n® step in M’ from the
state s. Let E, be the event of reaching the goal states T' at the n'" step in
the Markov chain M such that E, ¢ E and thus U, E,, = E. Let y” = i(E,,).
Thus, we can write the following:

a:?” = Z P(s,t)zy,
tesupport(1(s))

y;“l = Z P.(s,t)y".
tesupport(1(s))

* A
Or, using vector notation, Z,.1 = PZ, and §,+1 = Pnyn. Therefore:

*

P(4n — Zn) + Puin from equation (4.3)
P(gn - Ifn) + 2_nl-€pi

gn+1 - -i'nJrl

27"kp(1+ P+ P +--)1
27"k pry.

IN N

Thusa Hgn+1 - jn+1 Hoo

We have,
W(E) - (B)] < |X -l < $2py < rpy
n n

Combining this with equation (4.5) we can conclude:

(B - i(E)| < (L+7)rp < €

By similar argument we conclude Ve > 0 37 : |max,, Pr},(E) - PTX/[(E)| <
K. O

Corollary. Let E be the set of paths that reach some goal states T of IMC
M. Then:

mnin Pri(E) = iJ%f Pri(E) and mT?XPT’Z;( (E) = sg}p Pri (E).

Proof. We need to show Vs > 0 37 : |min, Pri,(E) - PT’X/[(EN < k. Ob-
serve that, 7 is also a scheduler of M’ thus, PTZ/I(E) - min, Pri ,(E) <
k. Similarly, for all x > 0 there exists a scheduler 71 of M such that
max, Pri, (E) - Prf](/[(E) < K. O

Example 4.2.3. In UMC semantics, the nature picks the probability tran-
sition matrix and the model behaves according to it. The infimum (or
supremum) probability of reaching some state is different than the infimum
probability in IMDP semantics. This becomes apparent in the following
IMC with an open interval:
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The minimum and maximum probability of reaching state s3 from sg in the
UMC semantics is 0.5. But for any € > 0 there exists a scheduler for which
the probability of reaching ss is smaller than e. That is, the infimum of the
probability of reaching state s3 is 0.

4.2.2 Model checking interval Markov chains with open in-
tervals

In this section we briefly recall PCTL model checking on DTMC and IMCs
with closed intervals (for the two semantics), and then show how to use the
result of previous section to do model checking for IMCs with open intervals.

Model checking of PCTL [31, 5] formula f on DTMC M proceeds much
like the CTL model checking on Kripke structures [29]. The satisfiability
of a (state) sub-formula f’ of f for a state s of M is iteratively calculated
and the labeling functions are updated accordingly. For example, for the
until formula f = P.,(fi1U f2) and a state s, the formula f is added to
the label of s iff the probability of reaching states with label fs, via states
with label f; satisfies mp. This can be done in polynomial time by solving
linear constraints. Finally, a state s = f if f € L(s) and the model checking
problem can be solved in polynomial time.

Model checking in UMC semantics uses the existential theory of the
reals [87]. An IMC M,s &, f in UMC semantics iff for all DTMC M ¢
[M]u, M,s = f, or equivalently, M,s #, f iff there exists a M € [M],
such that M, s = ~f. Basically, we use parameters to encode the transition
probabilities which are constrained by the intervals and construct a formula
I' in existential theory of reals such that I' is satisfiable iff there exists a
M e [M], such that M, s & ~f [26]. Observe, that the presence (or absence)
of open intervals does not affect the algorithm and the algorithm operates
in PSPACE.

Model checking in IMDP semantics is done by first transforming the
IMC into an MDP and then doing model checking on the MDP [9]. Let
M = (S,L,6) be a closed IMC and for each state s € S, let Bs be the set
of basic feasible solution of d(s). Let Dy = (S,L, 1) be the MDP with
p:S - S - [0,1], where pu(s) = Bs. From Proposition 4.2.1, we can
deduce that, a DTMC M € [M]y iff M is induced by some scheduler 7 of
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D . Model checking of MDP proceeds the same way as model checking
of DTMC. We iteratively update the labels of the state with (state) sub-
formulas. Conjunctions and disjunctions are handled as in the DTMC model
checking. Interesting cases are formulas with probabilistic operator and
negations. Let g be a path formula and P,,g (or P,g) is added to the label
of a state s e S, iff

Ir%inPr"DM(s Eg)>p (or IH;?XPT’%M(S Eg)<p)

where >e {>,>} (<e {<,<}). This is done by solving a linear optimization
problem. We use the following proposition to handle formulas with nega-
tions.

Proposition 4.2.4. For any E € F of (5, F) on MDP M,

inf Pr'"(E) = 1-sup Pr'"(E)
n n

Thus, model checking MDPs boils down to solving successive reachability
optimization problems. Note that direct application of this method to IMCs
with open interval is not possible since no scheduler exists which may yields
the value inf,, PrnDM (sE=g).

In the rest of the section we use the above mentioned model checking
mechanism to show that model checking IMCs with open interval in IMDP
semantics, reduces to model checking its closure.

Theorem 4.2.5. Given a PCTL formula f and an IMC M,
M,sef iff M,sef

Proof. We assume that M has open intervals. We proceed by induction on
the structure of the formula f. We have the following cases:

1. Let f := a. The labeling function of s in M and M are identical.
Thus, M,sE f iff M,sE f.

2. Let f = ~f’. From the induction hypothesis, M, s # f"iff M, s # f'.
Thus, M, s & f iff M,sE f.

3. Let f := fi A fo. From the induction hypothesis, M, s £ fi iff M,sE fi
and M, sk fp iff M,sE fy. Thus, M,s& fiff M,sE f.

4. Let f := [Xf']ue. Consider the case m € {>,>}. Suppose 7 be the
optimal scheduler of M such that Pr'C (Xf') = min, Pr't, (Xf").
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We show that for every € we can construct a scheduler % of M such
that X
Pl (Xf') = Pri(Xf") <e.

Observe that, any scheduler of M is also a scheduler of M, since for
any states s,t € S 0(s,t) € (s,t). Thus, Corollary 4.2.1. is applicable.
Let Qs = {t | n(s,t) >0,7(s,t) ¢ 3(s)} and Ry = {t | n(s,t) > 0,7(s,t) €
0(s,t)}. We assume that @s, Rs are not empty and there are no point
intervals. Let 7j(s) = d, where d is defined as follows:

e Let t € Q,. This implies (s, t) = 8(s,t)1 or n(s,t) = 6(s,t)}. If
n(s,t) = 6(s,t)1 then 6(s,t) is open from above and dy = (s, t) -
%p', where p is the minimum of the length of the non-zero interval
in M and the 7(s,t) for t € Ry. Similarly, if 7(s,t) = 6(s,t)| then
(s, t) is open from below and d; = ﬁ(s,t)+%.

o Lette Ryanda21- Y d;— 3 7(s,t). We have d; = ﬁ(s,t)+ﬁ.
tEQs teRs

It follows that d is a distribution on the states of M and is a so-
lution to 6(s). Let E 2 {w | n(we,w1) > 0 and M, w; £ f'} and
E" = {w | H(wg,w1) >0 and M,w; E f'}.

n i ep
|Pr(E)-Pr(E)|< Y @
M M tesupport(f(s)) |S’

Thus we can conclude that inf, Pr'y (Xf') = min,Pr’y (Xf’). By
similar argument:

sup Pril (Xf") = max PTZ;I(Xf').
n n

M, s & [Xf' e iff M, sE [Xf]ue, where » € {<, <}

. Let f:=[fiU fo]ue. Suppose x € {>>}. By induction hypothesis,

for every s, M,skE f1iff M,s & fi and M,s & fo iff M,s E fy. Let
S12{s|ssME fi} and T =2 {s | s, M & fa}. The IMC M’ is
obtained from M by omitting states not present in the set S; u T.
It is easy to see that, if F is the event of reaching T in M’, then
inf, Pr'’l;,(E) = inf, Pr’  (f).

From Corollary 4.2.1 it follows that for any 0 < £ < 1 we can find 7 such
that Pr}l,(E)-min, Pr’c (E) <, where E is the event of reaching T
in M’. Thus inf, Pr’ (f) = min, Prx;l( f). Similar argument holds for
noe {<,<}.
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Figure  4.2.3: An  interval

i 4.24: Th di
Markov chain, where the result ofF sure ¢ cortesponcing

PCTL model  checking result for
UMC semantics differ from the
IMDP semantics.

closed interval Markov chain where
model checking results are identical
for the two semantics.

This concludes the proof. ]

Example 4.2.4. Consider PCTL model checking of IMCs in UMC seman-
tics. This involves existentially quantifying the transition probabilities and
creating a formula in closed real field [26]. This captures a strict set of
DTMC as compared to IMDP semantics, i.e, [M], ¢ [M]4. For example,
DTMC where the transition probability between two states s,¢ change over
time cannot be represented in UMC semantics. This is exemplified by the
IMC M in Figure 4.2.3.

The probability of satisfying the path formula g = G(~a A [Xa]sg) in
the UMC semantics is 0. But we can find schedulers which can make the
probability of going to a-state arbitrarily close to 1. The scheduler has
the freedom to defines an infinite Markov chain by assigning monotonically
increasing probabilities for the transition sy — sg).

The model checking of the open IMC M is done by first closing it (Fig-
ure 4.2.4). This gives us the closed IMC M:

The maximum probability of satisfying g in M is 1. Which implies,
for every 0 < € < 1, there exists a scheduler 7, for which the probability of
staying in a state that satisfies ~a A [Xa]so (so) is greater than 1 —¢, by
Theorem 4.2.5.

4.3 Strategy synthesis for MDPs for PCTL objec-
tives

We have seen that an IMC is useful for model with uncertainties. Topologi-
cally, an IMC is a set of Markov chains and the actual system behaviour can
be any one of the many Markov chains in the set. We have also seen that
we can model check an IMC (even in the presence of not closed intervals)
against a PCTL formula. The natural question to ask is: whether every
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Markov chain defined by an IMC is satisfies a given PCTL formula? Or the
complement problem of scheduler synthesis, is to find a scheduler such that
the induced Markov chain satisfies a given PCTL formula.

Let us first consider the UMC semantics. By definition, the satisfaction
relation in UMC semantics decides whether all Markov chains defined by
the UMC semantics satisfies a PCTL formula. Thus, strategy synthesis is
just model checking the negation of the given formula in UMC semantics.
Form [89] we know that the problem is solvable in PSPACE. But strategy
synthesis in IMDP semantics is not so trivial. Let M = (S, L,d) be an IMC
and D = (S, L,A) is a Markov decision process where, for each s € S, A(s)
if the set of basic feasible solutions of §(s). We have seen that, M is behav-
iorally identical to D, that is, for any MC M, M € [M]y if and only if there
exists a scheduler 7, such that D, = M. To be precise, [M], corresponds
to all memoryless randomized (MR) schedulers and [M]; corresponds to
all history dependent randomized schedulers (HR) of D. Thus, scheduler
synthesis in IMC naturally leads to the scheduler synthesis in MDPs.

4.3.1 Scheduler Synthesis problem for MDPs.

The scheduler synthesis problem is defined as follows: Given a MDP D
and PCTL formula f, does there exist a scheduler n such that D, satisfies
f?7 The first guess would be: Doesn’t the model checking algorithm of a
PCTL formula on MDPs (as defined in § 4.2) gives us a method to solve the
scheduler synthesis problem? After all, in the semantics (equation 4.1) we
explicitly define that the probability measure of the set of paths satisfying
a path (sub)formula is the optimal (supremum or infimum) over all sched-
ulers. Unfortunately, this is not always the case, and the following example
elucidates this fact. Consider the MDP D (as shown in Figure 4.3.5), and

Figure 4.3.5: The state s; of the MDP D satisfies f = [F [Xa]s1]. 1.
-2
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a PCTL formula f = [F [Xa]zl]sé. The sy satisfies [Xa]s1, and s3 does not
satisfies [Xa]s1, since there are schedulers for which the probability measure
of Xa is zero. The state s; the maximum probability of reaching a state
satisfying [Xa]s1 (state so in this case) is > % But observe that there exists
a scheduler 7, which induces the MC D,, (shown in Figure 4.3.6) where the
state s1 does not satisfy f. So there exists MDPs D and PCTL formulas f

Figure 4.3.6: The MC D,, induced by n on MDP D which does not satisfy
f=1[F [Xa]a1].z-

N[

where, D,s = f (according to Equations 4.1), yet there exists scheduler 7
such that Dy, s # f (according to Equation 4.1). The problem is obviously
the presence of non-determinism of the probability distribution at each state.
In the above example only state with non-deterministic choice over the dis-
tribution is se. It is interesting to note that neither the formulas [Xa]s;
nor its negation ([X~a]so) are satisfied at so. This causes the problem since,
we are assuming if so does not satisfies [Xa]s1, then sg satisfies ([X~a]so),
which is not the case here.

The example shows that scheduler synthesis problem in MDP for a given
PCTL formula may not be as simple as model checking. It turns out that,
this problem is indeed very hard, E%—hard in the analytic hierarchy.

Theorem 4.3.1 ([12]). The scheduler synthesis problem in MDPs for PCTL for-
mula is X} -hard.

4.4 Conclusion

We studied the problem of model checking Interval Markov chains with
open intervals, and seen how to model check them against PCTL formulas.
Interval Markov chains are but special cases of more complex Markovian
models, called constraint Markov chains (CMC) [16]. Transition probabil-
ities in these models are defined as a solution to linear equations. A con-
straint Markov chain is a tuple M = (S, L,d), where the transition function
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8 (2Fv)®, maps each state to a set of linear in-equations, where Fy is the
set of linear in-equations on variables V. Thus IMCs are a strict sub-class
of convex Markov decision process. The behaviour of a CMC can again
be defined in the UMC and IMDP semantics. Model checking CMCs with
non-strict inequalities in the system on linear equations, suffers from the
same kinds of problems as described for open IMCs. Theorem 4.2.5 can be
easily extended to CMCs as well. We can define basic feasible solutions for
a system of linear in-equations as follows. For a state s of a CMC M, the
transition §(s) forms a convex hull and its BFSs are the vertices of the con-
vex hull. The same argument as in the proof of Theorem 4.2.5 shows that,
model checking of PCTL formulas on CMCs can be done by first closing
the system of in-equations, this is done by replacing the strict inequalities
(<,>) with non-strict inequalities (<,>), and then model checking the closed
model.

Our study of interval Markov chain with open interval was motivated by
the investigation into the Hintikka game semantics for PCTL. Hentikka game
semantics for PCTL on labeled Markov chain [42] “gives an operational ac-
count of the denotational semantics of PCTL”. Given a denumerable Markov
chain M, a state s and a PCTL formula f, a 2-player game G, ¢ is obtained
with Biichi acceptance property, such that M, s = f iff Player 0 has a win-
ning strategy. This perspective of defining the meaning of a logical formula
in terms of the existence of a winning strategy of a 2-player game can be
found as early as 1959 in the works of Henkin (where the game semantics
was implicit) and formally presented in 1982 in the seminal work of Jaakko
Hintikka [56] for first order logic.

We can define the semantics of PCTL for MDPs (or an IMC) as follows.
An MDP D satisfies a PCTL formula f iff there exists a scheduler n such
that the induced MC D,, satisfies f. We can easily envisage a similar 2-
player game with Biichi acceptance property for defining the acceptance of
PCTL formula for an MDP. We can immediately show that D satisfies f if
and only if there exists a winning strategy for Player 0, by relying on the
Martin’s determinacy theorem [77]. It is important to note that this point
of view, though intuitive, cannot be used to fashion an decision algorithm,
as the game thus formed may have uncountably many configurations.



Chapter 5

Decidable Fragments of
PCTL

In this chapter, we give a decision procedure for the satisfiability problems
for a bounded fragment of probabilistic CTL (called bounded PCTL). We
provide an NEXPTIME-algorithm for the satisfiability problem and show
that the logic has small model property where the size of a canonical model
is independent from the probability bounds in the formula. We show that
the satisfiability problem of a simple sub-logic of bounded PCTL is PSPACE-
complete. In this chapter we will also discuss some of the reason what makes
the satisfiability problem for PCTL difficult.

5.1 Introduction

The synthesis problem for a specification language (or a logic) is to create a
model from a given sentence. Synthesis of models of a logic can be viewed
as the functional equivalent of the satisfiability decision problem. From a
practical point of view, the model one wants to synthesize from a speci-
fication need to be finite (or at least finitely representable). As we have
discussed in the introduction of this thesis, this is generally not the case
for PCTL. Even qualitative PCTL fail to possess finite model property. In
our attempts to tackle the satisfaction problem, we have found that the
difficulty of providing a decision procedure for probabilistic logics primarily
lies in the presence of recursively defined path formulas with probabilities.
This includes formulas of the form [a Ub], 1 expressing that a b-state is to

be reached via a-states with probability at least % This chapter therefore
considers probabilistic logics in which syntactic restrictions are imposed on
recursively defined path formulas.

7
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Bounded PCTL is a PCTLfragment in which until-modalities are bounded
by the number of steps that can be taken; e.g., [aU ”b]% expresses that a
b-state is to be reached within n steps. Bounded PCTL thus abandons the
unbounded until-modality. We will see that the logic has a finite (tree) model
property where the size of the model is independent from the probability
bounds (like %) in the formula. To study the computational complexity of
bounded PCTL satisfiability, we will first show that the satisfiability problem
of a simpler sub-logic of bounded PCTL that (besides propositional logic)
only contains nested quantified next-modalities is PSPACE-complete. The
main result is an NEXPTIME-algorithm for the entire bounded PCTL sat-
isfiability. This is based on a novel variable elimination method for solving
the satisfiability problem for specific class of formulas in the theory of the
reals. Finally, we show that the satisfiability of bounded PCTL-formula f
is EXPTIME-hard in the encoding of f.

5.2 Bounded PCTL

We consider the sub-logic bounded PCTL which contains the next operator
X and bounded until U™. The syntax of bounded PCTL is as follows:

Definition 5.2.1 (Bounded PCTL).

fou=al~f1frfllg]p
g = Xflfuny.

where a € AP, >¢ {>, >} is the comparison operator, p € [0,1]nQ is a rational
number and n € N is an integer.

For an MC M, and state s, the pointed satisfaction is defined as:

M,sEa iff aelL(s)

M,sEe~f ifft M,s# f

M,sEe finfo it M,ske fi and M,sE fo

M,se[gl.p iff Pr{weQs|M,wEg}>p.
For an infinite path w, the satisfaction relation for the path formulas is
defined as:
M,weXf if M,wiEef
M,we fU% if M,wyEeg
M,we fU% iff M,woEgor (M,wyE fand M,w; = fU"1g) ifn>0
Thus, an infinite path w satisfies fU"g iff M, w; = g for some i <n and for

every j <i, M,w;j = f. Note that, [f U"g]., cannot be expressed in PCTL.!
Let F"g denote trueU"g and G"g = ~F"~g.

'[fU"g].p can be easily represented in PCTL*.
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Figure 5.2.1: A finite-depth probabilistic computation tree.

Example 5.2.1. The sentence [F3[G'°b]_1].1 in bounded PCTL expresses
3

that the probability to reach a state within three steps from which almost

surely b holds for at least the next ten steps exceeds %

Next we define the structure of canonical models of bounded PCTL.
These notions are inspired by [76].

Definition 5.2.2. A probabilistic computation tree (PT) is a tuple T =
(W, P,L) where W + @&, and:

e W c N* is an unlabeled tree, i.e., prefix-closed,

e P: W — Dy, which is a partial function satisfying P(7)(7") > 0 iff
7' =mn e W for some n € N. Furthermore, ¥, P(m,mn) = 1.

o L:W — 2P is a node labeling function.

The node 7 = 0 is called the root, while all nodes 7 such that P(7) is
undefined are referred to as the leaves. A PT T has a finite depth if there
exists a n € N such that for all # € W, |r| < n, and T is total if for every
m € W there exists a 7’ # m € W, such that 7 < 7’ (7 is a proper prefix
of ’). Let T* and T* denote the sets of all finite depth and total trees,
respectively. T =T« uT*.

Example 5.2.2. Consider a PT T = (W, P, L), shown in Figure 5.2.1. The
set of nodes of the tree W = {0, 00,01, 02,000,001, 010,020, 021}, the labeling
function L and probability distribution is defined as shown in the figure.

Topologically a property P ¢ T% is a set of total PTs.

Observation 1. A labeled Markov chain M satisfies a property P means that
the PT created from the unrolling of M belongs to P.
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N[
Wl

Figure 5.2.2: Markov chain M can be unfolded to probabilistic tree My ;.

For a MC M and a state s, M, is a finite probabilistic tree that is ob-
tained from M by unfolding M starting from s, such that the length of any
path from s to a leaf is of length less than n (Figure 5.2.2). The satisfiabil-
ity of bounded PCTL over finite trees obey the monotonicity property, i.e.,
M, = f implies M, = f for every m > n (can be easily proved by struc-
tural induction). For bounded PCTL-formula f, let ord(f) be recursively
defined as follows:

ord(a) = 1 forae AP

ord(f1 A f2) = max{ord(f1),ord(f2)}
ord(~f) = ord(f)

ord([fiU"f2].p) = n+max{ord(fi),ord(f2)}
ord([Xf]sp) = 1+ord(f)

The function ord(f) give us a handle on the depth of the tree models of
bounded PCTL formula f. This is proved by the following proposition.

Proposition 5.2.1. For every bounded PCTL formula f and MC M: M, s =
f implies My, s & f with n = ord(f).

Proof. If Mgy,,s & f with n = ord(f) then obviously M,s &= f. For the
other direction, we proceed by induction on the structure of the sentence f.
Assume M, s = f, we will see that M, ,,sE f.

1. f:=a Then, n = ord(f) = 1. By definition, M,, consists of a single
node s equipped with a self-loop. If M,s = f then a € L(s). Hence,
M, sE f.

2. f:= fin fo. Let n = max{ord(f1),ord(f2)}. By induction hypothesis
and monotonicity, it follows M, ,,s £ fi and M,,,s E fo. Thus,
M, sE f.
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3. f:=~g. For f =~a the argument is similar to case 1. If M, s = ~g then
M, s # g, which implies M ,,, s ¥ g.

4. f = [Xglsp. Let M,s e f, S" ={t| M,t £ g and P(s,t) > 0} and
m = ord(g). By induction hypothesis, M;,,t E g for every ¢t € S’
By construction, M;,, is a subtree of Mj,,+1 for every ¢ ¢ S’ and
Yiesr P(s,t) > p. Thus, Mg pme1,5E f.

5. f ==[gU"h],p. Suppose M,s = f, ny = ord(g) and ny = ord(h). If
M,s £ h then 1 > p and the statement follows from the induction
hypothesis. Assume M, s # h. Consider a path w starting in s with
w = gU™h. Thus, there exists a 0 < ¢ < n such that M,w; £ h and
for every j < i, M,w; £ g. By induction hypothesis, My, n,,w; & h
and for any predecessor wj My, n,,wj E g. Or, My, |, wi-1 E g
and My, | m/,w; = h, where m' = max{ord(g) + 1,ord(h)}. For m =
m’ +mn, My, | m is a sub-tree of Mj ,, therefore M ,,, w1 £ g and
My 1, w; E h. This is true for any path w from s, that satisfies gU™h.
Thus, My m,sE f.

This concludes the proof. ]

The set of sub-formulas of bounded PCTL-formula f is denoted by sub(f).

sub(a) = 1 for ae AP

sub(f1 A f2) = {fi A fo} usub(f1)usub(fs)
sub(~f) = {~f}usubf

sub([f1U"fa]sp) = {[f1U"fa]sp} usub(f1)usub(fa)
sub([Xf]-p) = {[Xfl-p} usub(f)

Let subpath(f) = {gU*h,Xg | [gU™h].p, [Xglsp € sub(f),0 < k < n}. These
definitions are lifted to sets of formulas in the usual way, i.e., sub(H) =
Userrsub(f) and subpatn(H) = Ufeqr subpath(f). We will now prove that
bounded PCTL-formulas can be satisfied by MCs of bounded width. A
similar result has been obtained in [13], though the argument here is simpler
on the account that we are dealing with bounded until. First we appeal to
an elementary result from linear algebra.

Proposition 5.2.2 (Dual of Helly’s theorem). Let T be a countable set of
vectors in an n-dimensional space (R™). If a vector v is a convex combina-
tion of vectors from T, then there exists a set T' €T such that ¥ is a convex
combination of vectors from T' and |T'| < n+1.

Proof. The vector ¥ is inside the convex polytope defined by T. A triangu-
lation of a polytope is a partitioning of the space inside the convex polytope
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using (n+1)-simplexes (tetrahedrons) in n-dimensions. Such a triangulation
always exists even if the convex polytope is generated by a countable set of
points. Thus, ¢ is inside (or on) some n + 1-simplex whose vertices are in
T’ cT. Thus, ¥ can also be defined as a convex combination of vectors in
T'. O

Proposition 5.2.3. Every satisfiable bounded PCTL-sentence f has a tree
model with bounded out-degree at most |sub(f)|+1.

Proof. Let M be a model of f. As the statement trivially holds for propo-
sitional formulas, we focus on path sentences. Consider state s in M and
let H = {g esub(f):skE g}. Assume w.lo.g. that no two sub-sentences
are syntactically identical. Let {1,---,n} be an enumeration of H, i.e., each
formula in sub(f) is assigned a unique index. Assume s has more than n+1
descendants, i.e., succ(s) = {t1,,tx} for k > n+1. Let for path sentence g,
Pr(s E g) abbreviate Pr{w € Q, : w £ g}. Define the vectors {3,113} in
the Euclidean space [0,1]" as follows:

1. for [Xg],p with index 4, 5(i) = p where Pr(s = Xg) =p, and t(i) = 1 if
t =g else t(i) = 0, for each t € succ(s).

2. for [ f1 U¥ fo],, with index i and s # fa, 3(i) = p where Pr(s & f1 U fo) =
p, and t(i) = g with ¢ = Pr(t = f; UF71£,), for each t € succ(s).

3. for any other index 4, 5(i) = #(i) = 0.

For the semantics of a path sentence of the form [g¢].,, we obtain the fol-
lowing relation:
§= > P(st)t
tesucc(s)
That is, 5 is a linear combination of the vectors {t1,---,#z}. By Proposi-
tion 5.2.2 (see page 81), there exists a set G < succ(s) with |G| < n+1 and a
distribution P’(s) such that:

§ =) Pl(s,t)-L.
teG
It is easy to see that using G as set of direct successors (rather than succ(s))
s still satisfies H. Applying this procedure to every state of M yields a model
with out-degree at most n+1. O

Form Propositions 5.2.1 and 5.2.3, we obtain the small model theorem of
bounded PCTL.



5.3. COMPLEXITY OF SATISFIABILITY PROBLEM FOR BOUNDED PCTL83

Theorem 5.2.4. If a bounded PCTL formula f is satisfiable then it is sat-
isfiable by a finite probabilistic tree of depth ord(f) and degree |sub(f)|+ 1.

The size of a bounded PCTL formula f is defined as size(f) = |ord(f)| +
|sub(f)|. Note that the small model theorem states that every satisfiable
sentence f, there exists a probabilistic tree model of f whose number of
nodes is exponential in size(f) (but not the space needed to encode f).

5.3 Complexity of satisfiability problem for bounded
PCTL

In this section we give a hierarchical complexity analysis for various frag-
ments of bounded PCTL.

5.3.1 Complexity of Px, satisfiability

We will now show that the satisfiability problem for bounded PCTL without
the bounded until is PSPACE-complete. We distinguish the following sub-
logics. Let Pxg be the set of formula defined by the syntax:

fa=al fAfl-f

where a € AP. Pxg is identical to Propositional logic. The logic Px; is defined
inductively as follows:

fe=al|lfafl~flgl[Xglp

where g € Px;_1, >¢ {>,>} and p € [0,1]. With little abuse of notation, we
will denote the set of all formulas of the logic Px;, by the set Px;. Thus, Px,,
is the set of formulas with an unbounded number of nested next operators.
Px,, coincides with bounded PCTL without bounded until.

We will show PSPACE-hard of the satisfiability problem of Px,. The
reduction follows the exact line of reasoning for proving PSPACE-hardness
for K-systems in modal logics. The hardness proof uses only the operator
[Xg]=1. The semantics of [Xg]-; is then similar to the [J operator of modal
logic K [83]?. Henceforth, we will use g to denote [Xg]-; and (g to denote
~[X~g]=1 (which is equivalent to [Xg]s0). We can now directly use the results
of K-logic. In the sequel we present the construction.

Proposition 5.3.1. The satisfiability problem for Px, is PSPACE-hard.

2The more appropriate modal logic system would be with K and serial axioms.
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Proof. The main idea behind the reduction ([70]) is to give a logspace trans-
ducer to convert every instance of a QBF to a formula in Px,. Let f be
a QBF Qz1--Qmame(x1, -, Tm), where Q; € {3,V}, x; is a boolean vari-
able (1 <i<m) and p(z1, -, Ty) is a quantifier free boolean formula with
variables x1, -, Ty,-

We will use new propositions yg, -+, ¥m to uniquely encode the index 0 <
i <m. For that purpose, let 21, z,,, where n = [logm] be new propositions
such that y; = ;121 A+ A Binz, for 0 <4 <m, where 3; ; = ~ if the Gt bit
of (binary) i is zero else f3; ; is a empty string (1 < j <n). Let g; represent
the conjunction of all such equivalences. Next we define the Px, formula
g which uses propositions x1, -, i, Y0, *, Ym, 21, ", 2n. Lhe formula g is a
conjunction of the following formulas:

O™g1 (F1)

Yo (F2)

O™ (y; = Oyiv1) for each 0<i<m (F3)

O™ (i » (25 > O™ ziq) A (~; > O™ ezi01))) for each 0 <i<m (F4)
O"(ys = (O(Yis1 Axiv1) A (O(Yis1 A~xi41)))) if Qi =V, 0<i<m (F5H)
O™ (ym — ) (F6)

where O™h = h AO(O™'h) and 0% = h. Intuitively, O™h is true at s if
h is true at every state reachable from s within m steps. The idea behind
the reduction is that any model of g simulates the formula f. Suppose s
satisfies g, the variable y; marks the states of the tree (rooted at s) at depth
i, (implemented by (F1), (F2) and (F3)). If the i*" quantifier is universal,
then (F5) guarantees that there are two descendants, one of which makes
x; true and the other makes ~z; true. Once, z; (or ~x;) is chosen at a
branch, it remains unaltered for every descendant, this is guaranteed by
(F4). Finally, we want to evaluate the quantifier free boolean formula .
This is implemented by (F6).

To see that only logspace is sufficient to produce the output g, observe
that at each step we need to be able to count the index ¢ (0 <4 < m), which
can be stored in logspace of the working tape, and write the corresponding
string (the formula as defined by (F1), (F2), (F3), (F4), (F5) and (F6)) in
the output tape. ]

Next we show that the satisfiability problem can be decided in PSPACE.
Proposition 5.3.2. The satisfiability problem for Px, is in PSPACE.

Proof. We show that the satisfiability problem for sentences in Px, is in
P of the polynomial-time hierarchy. Let T}, be a non-deterministic Turing
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machine (NTM) with an oracle €2,,_;. Oracle ,, can foretell whether a set
of sentences in Px, is satisfiable?. W.lo.g. we assume that Px,, sentences
are in negated normal form. Let H be the set of Px, sentences that the
input to NTM T,,. T}, proceeds as follows:

1. If f=f1A foe H, then remove f from H and add f; and f> to H.

2. If f=~(f1 A f2) € H, then remove f from H and non-deterministically
choose i € {1,2} and add ~f; to H.

3. If f =~[Xg]sp and f € H, then remove f from H and add [Xg]s, to H.

This takes linear time in the size of the input set H. In the end, H only
contains atomic propositions a, negated atomic propositions ~a or formulas
with next operator, [Xi]., € Px;. The machine T; executes the following
steps:

1. H nPxq is unsatisfiable then T; rejects.

2. Otherwise, T;, selects a weighted cover (see Def. 2.2.1) (¢, w) of {g:
[Xg]sp € H} with

(a) w(g) > p for each [Xg].p € H, and
(b) Agec g # false for each G ¢ c.

By Proposition 5.2.3, we restrict to covers whose widths are at most |H|+1.
Checking (1) can be done by solving linear equations, and (2) satisfiability
of formulas for each G € ¢ is delegated to the oracle €,_1. This is possible
since the set G only contains sentences in Px,_1. The NTM T,, accepts if
such a weighted cover exists, else it rejects.

The correctness of the above algorithm is straightforward. The algorithm
generates a model (and accepts H) iff H is satisfiable. We omit the details.
The satisfiability of a set of Px, sentences can thus be solved by an NTM
with an oracle €2,_1 in polynomial time. Hence, the satisfiability problem
for Px,, is in NPNPNPM, and hence in PSPACE. O

From propositions 5.3.1 and 5.3.2, we get the following theorem.

Theorem 5.3.3. The satisfiability for Px, is PSPACE-complete.
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Algorithm 2 closure(H)
1: for each f e H do

2: if f=a€e AP or f =~a then skip

3 if f=finfothen H:=(H{f})u{fi, fo}

4: if f= f1v f2 then

5: H:=(H~{f})u{fi}, where i=1or 2

6: if f =[Xg]>p then skip

7. if f=[f1U%s],, then H := (Hu{fa})\ {f}
8: if f=[f1U"f2],p and n >0 then

9: either H := (Hu{fo})~{f} or H:=Hu{f1}
10: end for

11: return H

5.3.2 Complexity of bounded PCTL satisfiability

Now we consider the full bounded PCTL logic (with bounded until). We will
need the following machinery to solve the satisfiability problem.

Proposition 5.3.4. Given a finite tree T and a bounded PCTL formula
f, we can decide in NP-time whether there exists a probabilistic tree M
satisfying f, with T as the underlying graph.

Proof. Let tree T = (V, E,sg), where V is a set of vertices, E ¢V xV a
set of directed edges, and sg is the root. Every edge e € E is assigned
a variable z. denoting the weight of e. Let P = {x. : e € E} be the set
of weights in T. To construct an MC M with 7" as underlying graph, we
non-deterministically select a labelling function L using Alg. 3. Function L
labels every vertex in T with a set of bounded PCTL-formulas. This goes
as follows. We initialize L(sin) to {f}, and invoke label(s;,) (see Alg. 3.).
Line 2 covers the case when s is only labeled with propositional formulas. If
s is labeled with a non-propositional formula, its labelling is adapted to the
Hintikka set of L(s) (line 3). The computation of the Hintikka set is done
using Alg. 2. This procedure is non-deterministic (see lines 5 and 9). After
labelling s, a non-deterministic selection of its direct successors is labeled
in the for-loop (line 5-22). During this loop, a set H (initially empty) of
multi-variate polynomial inequations is computed over the variables x. and
newly introduced variables p; for vertex ¢ (line 16-17). Each vertex of T' is
visited twice: once to calculate the polynomial inequations and once in the
recursive call. Thus, the labelling algorithm is in NP.

3See [67] for background information on oracle Turing machines and the polynomial
time-hierarchy.
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Algorithm 3 label(s)
1. if L(s) € Pxo then

2: return true iff L(s) is satisfiable

3: else L(s) = closure(L(s))

4: end if;

5. for each f e L(s) do

6: if f=[Xg],p then

7: choose non-deterministically S” € succ(s)
8: for each t € S’ do

9: L(t)=L(t)u{g}

10: H:=HU (X5 T(s1t) > P)

11: extend H with constraint for s and S’
12: end for

13: elseif f = [fl Unf2]>p

14: choose non-deterministically S’ ¢ succ(s);
15: for each t € 5" do

16 (L(8) = L) U {Lf1 U™ ol )

17: or (L(t):=L(t)u{f2} and p; = 1)

18: where p; is a new variable
19: H = H U (Ltes T(s,t)Pt > P)

20: end for

21: end if

22: end for

23: for each t € succ(s) do label(t) od

Formula f holds in s;, iff the set of (real non-linear) inequations H, with
variables in P is satisfiable. The number of inequations is in O(|V|-|sub(f)])
and the number of variables is |E|, i.e., polynomial in the size of the input.
Using the ezistential theory of the reals [17], we can determine the feasi-
bility of the inequations in PSPACE. This complexity can be improved by
exploiting the special structure of the inequations. Observe that after some
simplification (and removal of new variables introduced in lines 16-17 of
Alg. 3 %) every equation has the following form: ag-0q +ay-o1 + -+ a0y > b,
where ag, -+, ar,b € Q and o; (0 <4 < k) is a term of a polynomial of the type

Tey ;Tey ;" Te, ; Where €1 ;€9 ;+-€y; is a path in the tree T'. Furthermore, the

n,i

edges e ; for every 0 < i < k (Figure 5.3.3) have the same source vertex. In
Appendix C we show how to solve the satisfiability problem of such a system

4Note that the variable p; is the lvalue of a single equation of the form p; = ---. Thus
p¢ can be easily substituted.
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of (in)equations in NP. O

T1T4T6 + x126 > 0.6
T3T11212 + Toxg > 0.3
Tg +T10 = 1
r11+T13=1

Tg+x7=1

Figure 5.3.3: A typical example of set of equations generated by algorithm 3.

The complexity for the satisfiability problem for bounded PCTL is now
straightforward.

Proposition 5.3.5. The satisfiability problem for bounded PCTL is in NEX-
PTIME in the size of the formula.

Proof. Let f be a bounded PCTL-formula. Theorem 5.2.4 and Proposi-
tion 5.3.4 suggest the following algorithm to solve the satisfiability problem.
We non-deterministically guess a tree T of size 2062¢(/)) " Then we check
whether there is an MC with the underlying graph T that satisfies f. The
algorithm works in NTIME(20¢2¢(/)*)) ¢ NEXPTIME in the size of the for-
mula. O

Proposition 5.3.6. The satisfiability of bounded PCTL formula is EXPTIME-
hard in the encoding of the formula.

Proof. The details of the reduction from the acceptance problem for an
alternating polynomial space Turing machine to the satisfiability of bounded
PCTL formula can be found in the appendix. O

5.4 Related discussion

We have seen that satisfiability problem for bounded PCTL decidable. T'wo
important observations that make bounded PCTL satisfiable are, first the
models are bounded and second the bound on the size of the model is not
(intricately) related to the probabilities present in the sentence. Can we find
other fragments of PCTL that share this property? In this section we will
discuss other fragments of PCTL that are studied in literature. From here
on we will consider PTs as models of a logic.
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5.4.1 Safety and co-Safety

Alpern and Schneider [1], defined safety and liveness for infinite words. The
idea can be carried to define safety for PTs [63]. First, we need to extend
the definition of prefix to probabilistic trees.

Definition 5.4.1. Let T; = (W;, L;, P;) for i = 1,2, and 77 € T* and T € T*.
Ty is a prefix of Ty, denoted as Ty < T, iff:

W1 S Wy and Ve Wy, Ly (7) = Lo(w), and Vr, 7" € Wy, Py(7r,7") = Po(m,7").
Let Pregin(T) ={T":T" <T} denote the set of prefixes of T'.

Definition 5.4.2. Let T; = (W;, L;, P;) with T; € T*, i = 1,2 is a suffix of
T iff there exists w1 € Wy such that

o {Wl'TFQIWQEWQ}EWh
(] LQ(?TQ):Ll(ﬂ'l'TFQ) for each 7T2€W2,
o Py(mo,mh) = Py(my-me, m1-mh) for any o, m) € Wa.

Definition 5.4.3. P ¢ T% is a safety property iff for all T € P every T €
Prefin(T') there exists a T5 € P such that Ty < Tp.

Thus a safety property P only consists of PTs for which any finite depth
prefix can be extended to a PT in P. Contrapositively, if T' ¢ P then there is
a finite depth prefix of T that cannot be extended to PTs in P. This finite
prefix is colloquially known as the “bad prefix”. Dual of safety is co-safety.

Definition 5.4.4. P is a co-safety property iff T \ P is a safety property.
The co-safety properties are of special interest to us since they have finite

model property by construction.

Observation 2. If P is a co-safety property then for any T € P there exists
a finite prefix 71 < T, such that for all 15 € T% T7-T5 € P.

Another important class of properties are called liveness.

Definition 5.4.5. P ¢ TY is a liveness property iff VT € T*, there exists
To e P:T) <Th.

Example 5.4.1. Consider the following PCTL formulas.

1. f:= [an]S% is a safety property. Thus, [’ := [an]% is a co-safety

property. Since, for any PT that satisfies f’, the probabilistic measure
of the set of paths satisfying a Ub must cross % after certain depth.
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2. f:=[aUb].1 is neither safe nor co-safe. It is also not live. Consider
=3

a finite-depth PT whose every path satisfies aUb or F~a, and the

probability measure of paths satisfying a Ub is strictly less than %

Then no infinite extension of such a tree can satisfy [a Ub]. 1.
=3

3. Most importantly (and vacuously) false is a safety as well as co-safety
property. Else satisfiability problem for these fragments would be re-
dundant.

The semantics of PCTL(and its fragments) are defined on Markov chains,
that is total PTs. We can extend the definition of satisfiability to finite PTs
as follows:

Definition 5.4.6. A formula f is satisfiable by a finite depth tree T iff for
any 1" € T% with T <T", T' satisfies f.

5.4.2 Safety and co-Safety PCTL

Now we will define the safety fragment of PCTL.

Definition 5.4.7. Let PCTL
as the smallest set satisfying:

safe denote the safe fragment of PCTL, defined

1. aor ~a PCTLsafe'

2. If fin PCTL then [Xf]sp in PCTL

safe’ safe-

3. If f,g in PCTLg,f0, then fAg, fvg, [fWglsy in PCTLg g0

4. If ~f,~g ePCTL_ ¢, then [fUg]e, in PCTL

safe’ safe-

We will also consider the co-safety fragment.

Definition 5.4.8. Let PCTL., ¢.f0
defined as the smallest set satisfying:

denote the co-safe fragment of PCTL,

1. a or ~ain PCTL._qafe-

2. If f PCTL then [Xf]s, in PCTL

co-safe> co-safe-

3. If f,g in PCTL,_cafer then fAg, fvg, [fUglsy in PCTL o gafe-

4. If ~f,~g in PCTL then [fW g, in PCTL

co-safe’ co-safe-

If a Markov chain M satisfies a PCTL_g,foformula f, then there exists
a finite prefix T of the unrolling of M such that for all 7" € T with T' < T",
T’ also satisfies f. We can now relate Px, and bounded PCTLwith safety
and co-safety properties. Recall:
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Observation 3. (Finite tree property) Let f be a Px, formula and g be a
bounded PCTLformula.

e A Markov chain M satisfies f if and only if there is a finite depth
prefix 1" of the unrolling of M, which satisfies f. The depth of T is at
the most |f]|.

e A Markov chain M satisfies g if and only if there is a finite depth prefix
T of the unrolling of M, which satisfies g. The depth of T is at the
most size(g).

It has the following consequences.
1. Px, and bounded PCTL are both safety and co-safety property.

2. To check a formula is satisfiable or NOT, it suffices only to look at a
finite depth PT.

3. And most importantly, the depth is linear in the size of the input for-
mula. That is, it does not depend on the exact values of the probability
bounds.

With these properties in mind we could consider co-safe PCTL restricted to
F and G operators (reciprocally, safe-PCTL restricted to F and G).

Definition 5.4.9. Let PCTL., cofc(F,G) denote the co-safe fragment of
PCTL, defined as the smallest set satisfying:

1. a or ~a in PCTL F.G) .

co-safe (

2. If f PCTL (F,G) , then [Xf]s, in PCTL (F,G) .

co-safe

F,G), then fAag, fvg, [Ff]spin PCTL

co-safe

3. If f,gin PCTL F.G)

co—safe( co—safe(

4. If ~f in PCTL (F,G) , then [Gf]., in PCTL (F,G) .

co-safe co-safe

Proposition 5.4.1. f € PCTLCO_Safe(F,G) is satisfiable iff and only there
exists a finite-depth PT of depth |f| that satisfies f.

Proof. First note that it only suffices to consider formulas a,~a, [Xg]s, and
[Fglsp. Next observe that following: Consider two formulas [Fgi].p, and
[Fg2]5p, such that g and go are satisfiable by a finite depth probabilistic
trees T7 and 75, respectively. Now we construct a finite-depth probabilistic
tree T in the following way. Select leaves of 77 such that the probability of
reaching these leaves is > po and make as many copies of T as the number of
leaves selected. From each of these selected leaves of 17, add an edge to the
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roots of a copy of T5. It is easy to conclude that, if g; and go are satisfiable
then [Fgi]sp, A [Fg2]sp, is also satisfiable. In the sequel we generalize this
observation.

We proceed in an inductive manner. But we must observe caution, it may
be the case that for a formula of the type fi A fo, fi and fo are individually
satisfiable, but their conjunction is not. For example consider [Xa]sp¢ and
[X~a]s0.6. Both of these formulas are satisfiable but their conjunction is
unsatisfiable. Thus we will follow induction on the nesting depth of the
formula. For example, [X[Fb]sq]sp A [Fa]sr has a nesting depth 2, whereas
[Xa]sp A [Falsr A [Xc]sr has a nesting depth 1.

Suppose all formulas of nesting depth less than n satisfy the proposition.
We consider f = g1 A« A gy Ahy A Ay where g; = [X@i]sp,, by = [Fj]sq,
and formulas ¢;,1; have nesting depth at most n—1. If H = {g1,--,gn} is
satisfiable, then a weighted cover (C,w) € 92" Do must exist, such that
for all g; € H, ¥gecigies w(s) 2 pi, and for all s € C, s is satisfiable. Formulas
present in every s € C' has formula depth strictly less than n, thus the induc-
tion hypothesis is applicable. Let T be the finite-depth probabilistic tree
that satisfies s. Construct a finite PT T, whose root has an probabilistic
transition to the root of each T of weight w(s). This takes care of formulas
in H.

Each 1; has formula depth less than n. By induction hypothesis v; is
satisfiable by a probabilistic tree T of depth [¢j|. Now we generalize the
observation. We start with Ty = Ty and add T} to the leaves of Ty such that
set of path satisfying Fi1 is > ¢;. This will yield a new tree and we set T
to it. Continuing this procedure of adding T} to for each ; to the current
Ty, would yield the necessary PT for f.

The other cases of the induction are trivial. If for instance, we have
disjunct f1 Vv fo, we can select either fi; or fo, and apply our induction. If
[ = [Xg]sp then Ty is the probabilistic tree satisfying g, then the required
probabilistic tree of f has a root with a transition to the root of T, with
probability mass at least p. For f = [Fg]s,, the probabilistic tree of f is
same as that of g.

For the base case when n = 0, we have conjunction only atomic proposi-
tion or their negation. Thus, if a conjunction of atomic proposition (or their
negation) is satisfiable then the depth of the satisfying PT is 1. O

Note that the above demonstration didn’t use the fact that the compari-
son of the probability bounds are strict, thus the proof is also applicable for
formulas with non-strict comparisons. We see that the finite tree property
does not depend on it on the strictness of the comparison operator, even
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Figure 5.4.4: The model for the formula f = [[Xa]so/3U~a]sp A a. In this

case the depth of the PT can be calculated a priori, which is %. But

a mechanism for finding such formula for any co-safe formula is not known.

Logic Finite tree Property | finite-depth SAT
Px. yes linear PSPACE
bounded PCTL yes linear EXPTIME
PCTL.o-safe(F;G) yes linear PSPACE
PCTL o safe yes ? r.e.

Table 5.1: Comparison of various fragments of PCTL with finite PT prop-
erty.

though a formula is safe or co-safe depends on the strictness of the com-
parison (see the example in pg 89). The unifying feature of Px,, bounded

PCTL, and PCTL F,G) is as follows:

co-safe (

Observation 4. The depth of the PT does not depend on the exact values
of the probability bounds.

This is not the case for the general co-safety fragment of PCTL. There
are formulas which have finite tree property but the depth of the finite-depth
PT depends on the probability bounds.

Example 5.4.2. Let f = [[Xa]yo/3U~a]sp A a. First observe that f is a
co-safety property. That is for any value of p € [0,1) f is satisfiable by a
finite depth PT. But the depth of the PT becomes larger as p tends towards
1 (Figure 5.4.4).

Thus, co-safe formulas even though have finite tree property, gives us
only a semi-decidable fragment of PCTL. Table 5.1 summarizes various frag-
ments.
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5.5 Conclusion

We have presented the sub-logic bounded PCTL which possesses the small
model property. This implies that the satisfiability problem for bounded
PCTL is decidable and we have given an NEXPTIME algorithm in the size
of the formula. We have also considered fragments (Pxg, -+, Px,,) of bounded
PCTL and shown the hierarchical complexity of their satisfiability problem.

We observe that if a bounded PCTL formula is satisfiable then it is satisfi-
able in an MC with rational transition probabilities (the variable elimination
procedure works on rationals). Surprisingly, this statement does not hold
for Bertrand et al. [8], bounded satisfiability (a priori fixing the number of
states of a model). We have mentioned that the EXPTIME hardness in the
encoding (space) of the formula, but our algorithm runs in NEXPTIME in
the size of the formula. Reducing this gap is an open problem. The major
bottle neck of the algorithm is the variable elimination method, which we
believe is NP-hard.

We have also discussed on some of the reasons why these fragments have
small model property and why the argument fails for other fragments of
PCTL, namely co-safe fragment of PCTL. Interesting direction of research
would be exploring other decidable fragments of PCTL and the inter-relation
between them.



Chapter 6

Simple Probabilistic
Extensions of pu-calculus

This chapter considers a modal pu-calculus extended with a probabilistic
next-modality. After introducing the logic, we define the notions of rank and
signature. We then show that satisfiable PuTL-sentences have a model of
bounded out-degree. Finally, we provide a decision procedure for PuTL sat-
isfiability using parity games—in the same vein as for the modal p-calculus—
and yield a small model as well as a rational model property.

6.1 Introduction

In the previous chapter we have studied the satisfiability problem for the
bounded fragments of PCTL, shown that it is decidable and discussed the
algorithmic complexity of the problem. In this chapter we will follow suit
for yet another probabilistic logic called PuTL. PuTL is an extension of
p-calculus with probabilistic quantification over next formulas. The logic,
called PuTL was first studied by [74], were the model checking and satisfia-
bility problem were discussed.

Like PCTL, the models of PuTL are labeled Markov chains. Given a finite
labeled Markov chain, one can easily reduce the model checking problem for
a PuTL formula to a 2-player parity game, such that the game is winning for
Player 0 if the Markov chain satisfies a given PuTL formula. The size of the
resulting game is polynomial in the size of the formula and Markov chain.
The existence of a winning strategy can be decided in PTIME. For more
details, please refer to [18]. The topic of discussion of this chapter is however
the satisfiability problem of PuTL. Even though the decidability issue of this
problem was settled in [74], we will see some original contribution that will
further our understanding on the subject.

95
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Figure 6.1.1: Expressiveness of different probabilistic logic. Logics with
shades have finite model property.

In terms of expressive power, PuTL is orthogonal to PCTL. That is there
are PCTL formulas which can not be represented as PuTL formula, and
vice-versa. Naturally, PuTL is included in other probabilistic logic with
recursion like, y-PCTL [18], pP-calculus [18], and Lu$ [80]. Figure 6.1.1
gives a pictorial view of relative expressiveness of various probabilistic logics.

We believe that PuTL is very closely related to modal p-calculus, thus
any decidability proof for PuTL, can be made to work for modal u-calculus.
In this chapter we will see that the reasoning paradigm [91] used for deciding
modal p-calculus is applicable to PuTL. In this chapter, we address the
following important properties of PuTL were.

1. PuTL has small model property (Exponential Size). That is, a satisfi-
able sentence always has a model of exponential size.

2. PuTL has bounded branching (linear). That is, a satisfiable sentence
always has a model with linear branching degree.

3. A satisfiable sentence always has a model where weight of the edges
are rational. It is interesting note that in PuTL we can (asymptoti-
cally) bound the size of the model a priori, since we have small model
property, and still we can find a model where transition probabilities
are rational. This is contrary to PCTL [8], where it is shown that there
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are PCTL formulas which are only satisfiable by models with irrational
weight when we bound the size of the model (a priori). We don’t know
that such a property holds for PCTL in general.

4. Satisfiability is obtained by playing 2 player parity game, whose size
is exponential in the size of the input formula.

5. Finally, satisfiability is EXPTIME-hard. This follows directly from
EXPTIME-hardness of the satisfiability problem of modal u-calculus,
which in turn follows from PDL [44].

All the above listed properties are shared by modal p-calculus (except 3.
which is not applicable). We will conclude that PuTL cannot capture qual-
itative PCTL, and the probability bounds play no major role on the com-
plexity of the decision procedure for PuTL. That is, the asymptotic size
of the model is not affected by the exact values of the probability bounds.
Recall, we have witnessed similar properties for Px,, bounded PCTL and

PCTLeo safe(F: G).

6.2 Preliminaries

Definition 6.2.1. Let H be a set of objects. A cover c is a set of sets of
objects of H, such that e e = H. The cardinality of ¢ is the width of the
cover c. A weighted cover of H is a cover ¢ with a mapping w : ¢ — (0, 1],
such that ¥ .. w(c) = 1.

Proposition 6.2.1. A set of cardinality n has at most % different

covers of width at most k.

Proof. Let H be a set with |[H| = n, and ¢ a cover of H with width i < k.
An object of H can be placed in every set of ¢. Given that ¢ covers H,
there are 2°~1 possibilities. This holds for every object of H. The number
of different covers of width i thus is (2¢~1)" (or, < 2™%). (Figure 6.2.2,
page 98). Summing over all 1 <i <k gives the desired bound. O

Given a weighted cover ¢ of H = {o01,-,0,}, H(0;) = {e €c:o0; € e} and with
little abuse of notation w(0;) = Yeepi(o,) w(e)-

Definition 6.2.2. The syntax of PuTL is given by the grammar:

fe=al~al ZIfAfLEV X p | 02.5(2) [ vZ.f(Z)
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y [ ]
o ’
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Figure 6.2.2: We have n distinguishable balls and ¢ distinguishable urns. A
ball is thrown, and in mid air it duplicates itself and each urn receives at
the most one copy. But the order in which balls are received is immaterial.

We have represented the logic in negative normal form, where negation
are applied only to the atomic propositions. We also restrict > to {>,>} and
p to rational numbers in [0,1]. An occurrence of a variable Z is bounded in a
sentence (or formula) f, if that occurrence of Z stands within a subformula
of f having one of the two forms: uZ.f or vZ.f, else Z occurs freely in f. A
sentence f is closed if all variables occurring in f are bounded. In the sequel,
all sentences are assumed to be closed unless stated explicitly. A u-sentence
has the form pZ.f(Z), similarly a v-sentence has the form vZ.f(2).

The semantics of the logic is defined on labeled Markov chains. The
pointed satisfaction of a PuTL sentence for a labeled Markov chain M at a
state s is defined by the following rules:

Definition 6.2.3.

sEa iff ae L(s) SE~a iff a¢ L(s)

sEgAh iff segandskeh sEgVh iff sEgorseh

sepZ.g(Z) iff senN{S:9(S)cS} sevZg(Z) iff seU{S:Scg(S)}

sE[Xgl, it ) P(s,s")>p

s':s'=g
With little abuse of notation, a sentence f is also a set of states which

satisfy f. It should be clear from the context, when f is considered as a
sentence and when a set of states.
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6.2.1 Motivation and examples

Though the absence of quantified recursively defined path sentences is a
severe restriction, none-the-less we can capture many interesting properties

in simple probabilistic logics.

e The logic PuTL can be used to model probabilistic programs where
probability distributions are fixed and variables have a finite domain.
Consider the probabilistic program

while(c == H)
Toss(c);

where c is a fair coin that initially equals heads or tails. The following
PuTL sentence where proposition t stands for tails and h abbreviates
heads:

(t > [Xt]a) A (h - vZ.([Xt],1 A[XhA Z]Z%)).

expresses that ¢ being initially t implies ¢ stays t almost surely, and
that ¢ being initially h implies that it turns into t with at least prob-
ability % or stays h and continues with the same threshold.

e Application in motion planing [74] and validation of specification for
faulty systems, using model checking algorithms.

6.3 Ordinal, Ranks and Signature

Let f be a function on subsets of a universe U, i.e., f:2V - 2V, If f is
monotonic, then by the Knaster-Tarski theorem, least and greatest fixed
points of f exist. For ordinal «, the least fixed point u(f) = Uq tta(f), and
the greatest fixed point v(f) = Na Va(f), where:

po(f) =2 and piaai(f) = f(pa(f)) and
w(f)=U and vau(f) = f(va(f))-

We can view a PuTL sentence f as characterising a set of states satisfying

f. Hence, we denote 1o+1(f) = {s: s & f(na(f))} for n € {u,v} where
to(f) =1 and vp(f) = T. With little abuse of notation, we denote s k& 1,( f)
iff s € o (f). The satisfaction relation of PuTL (see Def. 6.2.3) can now be
rephrased as follows:

sE pZ.f(Z) iff for some ordinal «, s E pq(f)
sevZ.f(Z) iff for all ordinals a, s E v, (f).

No state satisfies po(f), and every state satisfies vo(f).
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Definition 6.3.1 (Rank). The p-sentence pZ.f(Z) has rank o at state s if
« is the least ordinal such that s & uq(f). If there is no ordinal a < w such
that s & jo(f), then the rank of uZ.f(Z) at s is w. !

Example 6.3.1. Consider the following Markov chain:

1 1 1 1
S§1 —> 89 —> 83 —> S4 — -
where s4 satisfies a and s; satisfies ~a for i < 4. The sentence Y. (a v [XY]s0)
has rank 4 at s1, 3 at s9, 2 at s3 etc.

Definition 6.3.2 (Signature). A signature is a sequence of ordinals. Let <
be the lexicographical ordering on signatures. Over a set of bounded length
signatures, the lexicographical ordering is total and well defined.

Definition 6.3.3 (u-height). The p-height of PuTL-sentence f is the nest-
ing depth of closed p-sub-sentences (including f) of f.

Example 6.3.2. Formula uZ.([XZ]s0 v uY.(bA[XY]50)) has p-height 2.
The p-height of puZ.(avpY.(bA[X Z]-1V[XY ]s0)) is 1, since pY.(bA[X Z]-1 v
[XY]s0) is not closed.

Definition 6.3.4. Let f be a PuTL-sentence of u-height n. Sentence f has
the signature o = aq,--, oy at state s if o is the (lexicographically) least
signature such that s & f’ where f’ is obtained by replacing every pu-sub-
sentence pZ.g in f of p-height i by pa,(9).

Observe that ordinal «; is used only for least fixed point sentences of p-height
1. Greatest fixed point sentences play no role for this notion.

Example 6.3.3. Let the sentence f=puZ.([XZ]soV (bAuY.(av[XY]s0)))
with p-height 2. Consider the MC:

1 1 1 1 1
S§1 —> 89 —> 83 —> S84 —> S5 —> -

where only s5 satisfies a and only s3 satisfies b. Sentence f has signature
(3,3) at s1, (3,2) at s9, (3,1) at s3, (2,w) at s4, and (1,w) at ss.

Proposition 6.3.1. Signatures of PuTL sentences satisfy:
1. If f v g has signature o at s, then either f or g has signature < o at s.

2. If f Ag has signature o at s, then f and g both have signatures < o at
s.

1w denotes the first infinite ordinal.
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3. If [Xglsp has signature o at s, then there is a set H of successors of
s, such that Yy P(s,t) > p, and g has a signature < o at t, for every
teH.

4. If uZ.f(Z) has signature o at s, then f(uZ.f(Z)) has signature o’ < o
at s.

5. If vZ.f(Z) has signature o at s, then f(vZ.f(Z)) has signature o’
with prefir o at s.

Proof. Cases 1 and 2. Suppose ¢ = f Vv g has a signature o = (ay,-, ay)
at s. Let ¢’ be the formula obtained by replacing each occurrence of u-
sentence pZ.f(Z) of p-height i by ps,(f). Then s ¢’. Observe that each
p-sub-sentence of ¢ belongs either to f or g. Thus the sentence obtained
by replacing every pu-sub-sentence uZ.f(Z) of either f or g of height j by
to; (f) is also satisfied by s. Thus, either f or g has signature o’ at most o.
Similar arguments hold for f A g.

Case 3. Assume [Xg]., has signature o = (aq,-,a,). Let ¢’ be the
sentence obtained by replacing every occurrence of p-sentence uZ.f(Z) of
height ¢ by pe,(f) in g. Then s & [Xg'],p. This implies that there exists a
set H of successors of s such that Y, 5 P(s,t) > p and for each ¢ € H, either
tE ¢', or g has a signature at most o at t.

Case 4. Let p = uZ.f(Z), and the signature at s be o = (g, -, ap). We
assume without loss of generality that ¢ is the only formula with p-height
n. Let ¢ be a u-sub-sentence in f(yp). We distinguish:

1. ¢ occurs either properly inside ¢ or does not contain Z. Then the
p-height of ¥ in ¢ and f(¢) coincide. Thus, the rank «;, say, of ¢ in
¢ is the rank of ¢ in f() too.

2. ¢ = ¢. The p-height of ¢ in f(¢) remains n. By definition of pq(f),
the rank of sub-sentence ¢ (of f(¢)) is ayp—-1.

3. ¢ contains Z. Let j be the p-height of ¢ (when occurring) in .
Then it has p-height n+j in f(¢). The signature of f(p) at s is thus
o' ={a1, ", an-1, (an-1), a1, .}, where n+k is the p-height of
f(p). Lexicographically, ¢’ < o.

Case 5. concerns greatest fixed points, which does not change the signature
of any sub-sentence of f(vZ.f(Z)) whose p-height is < n. O
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6.4 Pre-Model and derivations

Throughout the rest of this section, we will assume that every sub-sentence

of a given sentence is unique.

Definition 6.4.1 (FL closure). The Fisher-Ladner closure of Py TL-sentence
f is the smallest set FL(f) satisfying:

1. f e FL(¥).

2.1f g v he FL(f) then g,h € FL(f).
3.1f g AheFL(f) then g,h e FL(f).
4.1f [Xg]sp € FL(f) then g € FL().

5.1f nZ.g e FL(f) then g(nZ.g) e FL(f) for ne {u,v}.

Example 6.4.1. For ¢ =vZ.(an[X Z]-1), we have FL(p) = {p,an[X (vZ.an
[(XZ]z1)]=1,0, [ X(vZ.an[XZ])1)]1}-

Remark ([44]). For every PuTL-formula f, |[FL(f)| € O(|f]).

We now introduce the notion of pre-model of formula f.

Definition 6.4.2 (Pre-model). A pre-model of PuTL sentence f is an MC
My = (S, P,2FY ) L. ;) satisfying:

1. feL(sm).
9. If f € L(s) then ~f ¢ L(s).

3. If fvgeL(s) then f e L(s) or ge L(s) .
4. If f Age L(s) then f,g e L(s).

5. If [Xg]sp € L(s) then > P(s,s")>p.
s':geL(s")

6. If nZ.f € L(s) then f(nZ.f) e L(s) with n € {u,v}.
Each pre-model defines a specific choice of derivation rules.

Definition 6.4.3 (Derivation). The derivation relation induced by pre-
model My = (S, P,2FL(f),L,sm) of PuTL sentence f is defined by:

1. if o=hvgeL(s) and h € L(s), then ¢ derives h (at s). Similar holds
if g € L(s).
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2. If p=hnAgeL(s), then ¢ derives h and g (at s).

3. If o= [Xglsp € L(s) and g € L(t) for some successor t of s, then ¢ (at
s) derives g (at t).

4. If o =nZ.h € L(s) with n € {u,v}, then ¢ derives h(nZ.h) (at s).

The derivation relation of f is the union of derivation relations induced by
all pre-models of f, i.e., g derives h iff for some states s,t of a pre-model of
f, g in s derives h in t.

Note that the derivation relation of f only relates sentences in FL(f). An
intuitive way to understand the derivation relation is to consider it as a
logical implication. Also note that, not all pre-models of f are models of
f. For instance, sentence ¢ = uZ.f(Z) could be derived forever (by clause
4 of Def. 6.4.3). For a pre-model to be a model, a p-sentence cannot be
derived over and over again without ever satisfying it. But it is possible
that a u-sub-sentence appears infinitely often in a derivation sequence. So
we have to be careful about which derivation sequences we are referring to.
We will use the following definition.

Definition 6.4.4 (Regeneration). The p-sentence ¢ is regenerated by a
sequence of derivations, if starting from ¢ we end up again with ¢, and ¢ is
a p-sub-sentence for every sentence in any intermediate derivation.

Example 6.4.2. Sentence f = uZ. (vY.(aAY) Vv Z) derives vY.(a AY) v
uZ.(vY. (a AY) v Z) that contains f, and which can derive uZ. (vY.(a AY) v Z)
which equals f. Thus the u-sentence f is regenerated (See Fig. 6.4.3, left).

Example 6.4.3. Let p =vZ. (uY.(bVv [XY]1) A[XZ]21). @ derives puY.(bv
[XY]-1) A [X ¢]z1. This derives a formula containing pY.(bv [XY].1) A
[X¢]z1 (see Fig. 6.4.3, right). This in turn derives b A [X¢]-1 which derives
¢. Though the u-sentence pY.(bv [XY].1) is witnessed again. However it
is not regenerated, since it is not a sub-sentence of every derived sentence.

Definition 6.4.5 (Well-foundedness). A pre-model My of PuTL-sentence f
is well-founded if every p-sub-sentence ¢ of f is regenerated finitely often.

Theorem 6.4.1. FEvery model of PuTL-sentence f is a well-founded pre-
model of f.

Proof. Let M be a model of f. We first generalize the state-labeling; V f €
FL(p): sE f <= f e L(s). Note that with the generalized labeling, the
model satisfies the conditions in Def. 6.4.2. The rest of the reasoning is as
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p=vZ.(uY.bv[X Y]a)A[X Z]

p=pZvY(anY)v
pY-bv [X Ve A[X(9)]=

vY.(anY) vy bv [X pYbv [XY]q]a A [X(p)]a

bA Xl

Figure 6.4.3: Derivation sequence for two formulas. The derivation sequence
in the upper part shows a regeneration sequence; the derivation in the lower
part is not a regeneration sequence.

follows: If M, s;, E ¢, then ¢ has a signature at initial state s;,, and we can
ensure that every p-sub-sentence of ¢ is regenerated finitely often.

Let ¢ = uZ.f(Z) be a sub-sentence of ¢ with p-height n that is regener-
ated following a sequence of derivations from s to ¢ (s and ¢ can be identical).
We will show that the signature o = (aq, -, ay,) of ¥ from s to ¢t decreases.
As per definition, the derivation step begins by deriving f(uZ.f(Z)) from
uZ.f(Z). By Proposition 6.3.1, the sentence f(uZ.f(Z)) has lexicograph-
ically smaller signature at s. It remains to show that this decrease is not
violated by other derivation rules between s and t.

For disjunction hv g, suppose (w.l.o.g.) s & g. By Def. 6.4.3, g is derived.
By Proposition 6.3.1, the signature cannot increase. As the derivation rela-
tion for a conjunction does not affect the signature, for this case no decrease
occurs. The derivation rule for [Xg],, derives g at some successor state t.
If f(v) is a sub-sentence, then the signature at ¢ cannot increase; the other
case is trivial.

A derivation may involve other fixed point sentences. Derivations of fixed
point sentences that are sub-sentences of ¢ do not affect the p-height of f ().
For example, consider ¢ = uZ.f(Z, uY.g(Y')) with p-height n. Applying the
derivation for ¢ yields ¢’ = f(p,uY.g(Y)) which has p-height n too. The
derivation steps for pY.g(Y) in f(p,uY.g(Y)) give f(v,9(nY.g(Y))). The
p-height of uZ.f(Z,g(uY.g(Y))) does not change, hence the ordinal a,, in
the signature of f() is unaffected.

Now, consider ¢ = nY.g(Y") (where n € {u,v}) with p-subsentence ) =
uZ.f(Z). Distinguish two cases:

1. The derivation of ¢ does not affect the u-height of ¥. In such a case,
deriving uY.g(Y') decreases the signature (by Proposition 6.3.1). For
example, consider the derivation steps for ¢ = uY.g(Y, uZ.f(Z)). This
gives g(uY.g(Y,uZ.f(2)),uZ.f(Z)). The p-height of uZ.f(Z) is not
affected, and the signature of ¢ decreases.
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2. The derivation of ¢ increases the p-height of . For example, ¢ =
nY.g(¢), where ¢ = uZ.f(Z,Y). Observe that a derivation of ¢ can
only occur after a derivation of ¢. That would make ¢ a subsentence
of ¥, namely uZ.f(Z,$). The case where ¢ is a subsentence of 1) has
already been considered.

Thus, we have derivations where each u-sentence reduces its corresponding
rank. Since the derivation sequence from ¢ has bounded length (by Obser-
vation 6.4, pp. 102), a regeneration can only happen finitely often. Thus the
pre-model is well-founded. O

Theorem 6.4.2. FEach well-founded pre-model of PuTL-sentence f is a
model of f.

Proof. (sketch) Let MC M be a well-founded pre-model of f. Then the re-
generation relation for every p-subsentence of f terminates. Each p-sentence
thus has a (finite) rank at every state in M, and hence there exists a signa-
ture for ¢ € FL(f) at each state. Let o = aq, -+, ay, be the lexicographically
smallest such signature. Replace each occurrence of the p-sentence puZ. f(2)
of height i by pq,(f). It follows by structural induction on sentences that
@ € L(s) implies s & ¢. O

Theorem 6.4.3. If PuTL-sentence f is satisfiable, then it has a model of
bounded out-degree at most |f|+1.

Proof. Similar to the proof of Proposition 5.2.3 (pp. 82). O

6.5 Decision procedure for satisfiability

This section presents a decision procedure for determining the satisfiability
of PuTL sentence f. The procedure is based on a parity game obtained as
cross-product of a game graph and a deterministic parity automaton.

Deterministic parity automaton

We first focus on the parity automaton. The starting point is a Biichi-
automaton A, for each pu-sentence ¢ of f. The automaton A, accepts
the regeneration sequences for ¢, i.e., derivation sequences that derive ¢
infinitely often and for which ¢ is a sub-sentence of every sentence in the
derivation.

Definition 6.5.1 (Biichi automaton for an p-sentence). Let f be a PuTL-
sentence with ¢ a p-sentence in FL(f). The non-deterministic Biichi au-
tomaton (NBA) A, is a quintuple (Qy, Xy, Qy,in, 0y, F,) where:
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[

. Qp={Y e FL(f) : ¢ is a pu-sentence of 1}, the state-set

[\]

EDIRES 2FL(S) | the alphabet

w

. Qy,in = Qy, the set of initial states,

W

. 0,(q,4") = ¢, if ¢’ is obtained from ¢ by a derivation
5. F,=(Q,, the set of final states.

The transition relation is represented in a compressed form, that is,
d,(g,a) = ¢’ implies that for all A e with ae A, 0,(¢q,A) =¢".

For Py TL-sentence f, let As be a deterministic parity automaton (DPA)
which is the complement of the union of the automata A, for p-sentence ¢
of f:

L{A)) - U L(4,)

@eFL(f):p is a p-sentence

Ay thus accepts all terminating regeneration sequences for every p-sentence
in FL(f). The union of L(A,) can be described by an NBA of maximal size
in O(kn) where k is the number of p-sentences in FL(f) and |FL(f)| = n.
The DPA Ay then has size at most 0(2(k”)2) [81].

A two-player game

Our next aim is to define a two-player game where player 0 aims to show
that PuTL-sentence f is satisfiable, while its opponent wants to refute this
claim. The vertices of the game graph are sets of subsets of FL(f). A vertex
v is called transitive iff:

e For all gv h ewv either gewv or hew.
e Forallganhew, g,hew.

e For all nX.g(X) ev, g(nX.g(X)) €.
e There exists [Xg].p € v.

Definition 6.5.2 (Two-player game). The two-player game Gy for PuTL-
sentence f is the triple (V, E, vo) where V = VowV; with Vg € 2F4(F) the set of
Player 0 vertices, V; the set of Player 1 vertices (defined below), vy = {f} € Vo
the starting vertex, and E is defined by:

1. (v,ou{g;}) e E fori=1,2,if g=g1 Vga v

2. (v,vu{g1,92})eE)ifg=giAgacv
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(t = [Xt]-) A (h > (vZ.0(2)))

(v [Xt]er), (+h v v Z.p(2))

~t, ~hvvZ.9o(Z) [Xt]e1, ~hvvZ.o(Z)
“tA~h -, uz‘.@(z) -, D‘“]:l [Xt]1 A ‘UZ.QQ(Z)
J b [Xths A[XhAvZo(2)],s n [Xt]-1, [Xh],1 A [Xh AvZ.o(Z)],
>3 >
Hﬁ S e e
] || | |
| | |
/ \ ‘ Each branch will be closed since
hAavZ.p(Z) t t,ha V’Z~‘P(Z) [Xt]-1 and [Xh]zé cannot be true
h,[Xt]Z%,[Xh/\uZ.cp(Z)])% L

Figure 6.5.4: The satisfiability game for (t - [Xt].1) A (h = (vZ.0(2))),
where ¢ = [Xt], 1A [XhAZ], 1 The black squares indicate Player 1 vertices,
others are Player 0 vertices. Since there are no p sub-sentences, any infinite
path (or ending in no 1-vertex) is winning for Player 0.

3. (v,ovu{g(pX.9)}) e Eif uX.g€v, and

4. (v,v.) € E if v is a transitive vertex and v, represents weighted cover
(c,w) of V;, ={g: [Xg]sp € v} with w(g) > for all g € V,,. In addition,
(ve,v") € E for each v’ € e. If no such cover ¢ exists, then (v, 1) € E.
Let V4 = {v.: (v,v.) € E} with v, as above.

Example 6.5.1. Consider the game in Figure 6.5.4. Let us clarify one of
its weighted covers. Consider the vertex (=t, [Xt],1 A [XhAvZ.p(Z)],1).
There are two possible weighted covers: (c,w;) and (c2,w2). Let ¢ = {v1,v2}
and ¢y = {vs}, where vy = (hAvZ.p(Z)), va = (t) and v3 = (hAVZ.p(Z),1).
The weights are wq(v1) = w1 (ve) = % and wo(vs) = 1.

Let V| be the set of vertices which contain propositional contradictions
(like a and ~a). The game graph Gy is of size at most 20n*) where n =
|[FL(f)|. Player 0 looses if the finite play reaches V,. An infinite play is
winning for player 0 if it is accepted by the DPA A;. To accomplish this,
we define the parity game G; as the (synchronous) cross product of game
Gy and DPA Ay (Definition 6.5.3).
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Definition 6.5.3. The cross product between the deterministic parity au-
tomaton Ay = (Q,%,q,d,F) and game graph Gy = (V,E,vg) yields the
parity game Gy = (U, R, ug,2) where

e UcV xQ@Q

® Ug = (UOa qO)
e The transition relation R is defined by:

— If v is not a transitive vertex then: (v,q),(v',q") € R iff ¢’ =
6(q;v).

— Ifvis a transition vertex then: (v,q), (v', A) € Rand (v', &), (v",q") €
Riff ¢ =6(q,v").

e Q:U - Img(F) such that (v, q) = F(q). Recall F is a parity condition
of Af.

Note that A is simply used as a placeholder and has no special meaning.

Remark. There are some crucial differences between the game Gy and the
tree-automaton construction for PuTL in [74]. For vertices with formula
g A h, the set of formulas is not split into two vertices (one containing g and
one containing h); instead they are kept together. The key difference is the
distribution of formulas as solutions of weighted covers.

Proposition 6.5.1. Player 0 has a winning strategy in parity game Gy for
every satisfiable PuTL-sentence f.

Proof. Let f be satisfiable. By Theorem 6.4.1, f has a well-defined pre-
model, say MC My = (S,P,AP,L,s;,). The proof is by constructing a
winning strategy = : V" — V in game G for player 0 against any strategy
of player 1. This is done using the auxiliary function I' : V" — S that maps
finite plays in Gy onto states of M. Define I'(vg) = si,. Consider a finite
play p of G with s =I'(p) and v = last(p). Distinguish the following cases:

e v is a vertex with g1 v gs € v. If g; € L(s) then let w(p) = v; (see
Def. 6.5.2) and I'(p-v;) = s, for i € {1,2}.

e v is a transitive vertex. Assume s has direct successors {t1,-, tx}. By
Theorem 6.4.3, it follows k < |FL(f)|+1. Define 7(p) = v, (i.e., a cover
vertex, see Def. 6.5.2) for cover ¢ = {L(t1),--, L(t;)}. (Note that such
cover always exists.) If player 1 selects L(t;), then let I'(p-ve-L(;)) =
t;.
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e in any other case, v has at the most one successor, say v’. Define
m(p) =v" and T'(p-v’) = s.

It remains to show that 7 is a winning strategy. For any strategy o of
Player 1, consider the resulting path p from the pair of strategies (m,0).
Path p cannot terminate in a 1-vertex, as otherwise the label of I'(p) should
contain a propositional contradiction. If p is infinite, then every regenerating
p-sub-sentence in the vertices of p is terminating. Hence p e L(Ay). O

Proposition 6.5.2. If there exists a winning strategy for player 0 in parity
game Gy, then f is satisfiable.

Proof. Let m be a winning strategy of player 0 in G;. Applying the strategy
7 to the game G; yields the digraph g}f. Let II be the set of all finite paths
o = (090y) in GF such that

1. og is a player 0 configuration, and it is either the initial configuration
or has a player 1 configuration as a parent.

2. o, is a player 1 configuration.

Consider a path o € II. Observe that each configuration except the last
configuration (o) of o has at most one descendant. Path o is said to lead
to o', if the last configuration of o has an edge to every configuration of
o'. Let pre-model My = (S, P,AP, L, so) be obtained from digraph g7 in the
following way:

o S={s,:0¢€ll}.

o P(s4,8,7) >0, if o leads to o’. The exact value is the weight defined
by the weighted cover o,, (see also Example 6.5.1).

o L(s,)=UM 0i, where k = |o].

® 50 = S5, where o = (09,++,0,,) such that o¢ is the initial configuration
of the game.

It is easy to see that the pre-model M is well-founded. From Proposi-

tion 6.4.2 it follows that f is satisfiable. O

Theorem 6.5.3. FEvery satisfiable PuTL sentence f has a model of size
exponential in |f|.
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v
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Figure 6.5.5: Two models generated by two different winning strategies of
Player 0 in the game given in Fig. 6.5.4

Proof. By Propositions 6.5.1 and 6.5.2 it follows that PuTL-sentence f is
satisfiable iff Player 0 has a winning strategy in Gy. It is well-known that
if a winning strategy for a parity game exists, then there exists a pure
memoryless winning strategy [46]. The size of the well-founded pre-model
defined by a pure memoryless strategy is 90((kn)?), O

Remark. Our last result together with the fact that qualitative PCTL has

no finite model property [13] yields that qualitative PCTL and PuTL have
incomparable expressive power. The PuTL-formula Y. (a A [XY]59) cannot

be expressed in qualitative PCTL. Vice versa, the PCTL-formula [G ([Xa]s0 A ~a)]s0
cannot be expressed in PuTL.

Corollary. Fvery satisfiable PuTL sentence has a model whose transition
probabilities are rational.

Proof. The weight function for the weighted cover is determined by linear
constraints. Thus if it is satisfiable, then it has a rational solution (recall
that the probability bounds on the formula are rational). O

6.5.1 Discussion

Compared to the alternating tree automaton approach in [18], our game-
based approach has the following advantages:

e It provides a clear separation of recursive sub-sentences and sentences
with probability bounds. The probability bounds in the decision pro-
cedure only affect the existence of the cover vertices (v,v.) in the
game.

e An (ordinary) non-stochastic parity game was used for the satisfiability
of a probabilistic logic.
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e The game graph of a PuTL-sentence f captures all models of f.

The latter property enables querying some quantitative properties, e.g., the
maximum probability of reaching certain states in the models of f. For
instance, consider the game graph Gy = (V,E,vg) in Fig. 6.5.4, where all
vertices that are losing for player 0 are omitted. The maximum probabil-
ity of reaching specific vertices can then be obtained as follows. The cover
vertices (player 1 vertices) act as probabilistic vertices whose transition re-
lations are defined by linear equations. Using algorithms for determining
reachability probabilities in convex MDPs [86, 21]%, we can calculate the
maximum probability of reaching certain vertices.

This observation is a step towards considering an extension of PuTL with
until-modalities (that do neither occur as sub-sentence of another until-
modality nor as part of a p-sentence). Our decision procedure can be ex-
tended as follows for [f1 U f2].,. We first extend the transition relation in
Def. 6.5.2 by:

5.1 (v,0") e Eif [f1U fa]sp € v and fo v (f1 A[XU*(f1, f2)]s0) € v/, where
U*(f1, f2) denotes [ f1 U fa]s, for some p’ (which is not relevant here).

52 (v,v") e Eif U*(f1,f2) evand fav (fi A[XU(f1,f2)]s0) €v'.

Intuitively, [f1 U fa].p is dealt as puZ. (fa v (fi A[XZ]50)). This yields the
game graph Gy = (V,E,v) and the winning condition is obtained as in
Section 6.5. We remove all vertices that are not winning for player 0 and
the sentence is satisfiable if for each (remaining) vertex w with [f; U fa].p €
w, the supremum probability of reaching vertices with fo only via vertices
containing f; is > p.

This raises the question whether this technique can be extended to nested
until-modalities. By a similar mechanism as above we annotate vertices with
sentences [ f1 U f2]., with obligation > p. This then amounts to decide the

reachability problem for MDPs with obligations.?

To our knowledge, such
obligatory games can only be solved under strong structural restrictions.
Nonetheless we believe this indicates that tying the satisfiability problem of
a recursive probabilistic logic (with unbounded until) to a finite obligatory

game is a promising avenue.

*Even in the presence of non-strict in-equalities [21].
3Formal definition of obligatory games is beyond the scope of this paper.
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Logic Finite Small SAT
model model checking
Pxe, yes o(fh PSPACE-c.
bounded PCTL yes | 206z(/) NEXPTIME
EXPTIME-hard
qualitative PCTL no — EXPTIME-c.
PCTL no - ?
PuTL yes 2005 UTIME(2°U D)
co-UTIME(2°0(/D)
uPCTL no - ?

Table 6.1: Overview of known satisfiability results (where size(f) equals
lord(f)|+|sub(f)]). The first two rows and the fifth row summarise this
paper.

6.6 Conclusion

This chapters considered the satisfiability problem of PuTL. The logic pos-
sesses the small model property, is shown to also have the rational model
property. Our results for PuTL show that PuTL and qualtitative PCTL
have incomparable expressive power. The satisfiability problem for PuTL is
shown to be in the same complexity class as the satisfiability problem for the
modal p-calculus, i.e., in UTIME(20/D)nco-UTIME(20(/D). This improves
the 2-EXPTIME algorithm recently provided in [74]. Table 6.1 summarises
the current situation. The satisfiability of PCTL [53] and u-PCTL [18] re-
main open problems.



Chapter 7

P-automata for MDPs

P-automata provide an automata-theoretic approach to probabilistic verifi-
cation. Similar to alternating tree automata which accept labelled transition
systems, p-automata accept labelled Markov chains (MCs). In this chap-
ter we proposes an extension of p-automata that accept the set of all MCs
(modulo bisimulation) obtained from a Markov decision process under its
schedulers.

7.1 Introduction

Model checking of p-calculus [66] formulas on a (finite) Kripke structure (also
know as labeled translation system) is a well studied verification technique
of discrete state systems [41]. The problem entails whether every execu-
tion (infinite tree) of a Kripke structure satisfies a given p-calculus formula.
The satisfiability problem for p-calculus, on the other hand, is to decide
whether there exists an infinite tree which satisfies a given p-calculus for-
mula. Both these problems are algorithmically feasible, and the key method
is the translation to alternating tree automata [98].

The notion of p-automata was introduced in [58] to provide a similar
automata-theoretical foundation for the verification of probabilistic systems
as alternating tree automata provide for Kripke structures. As alternating
tree automata describe a complete framework for abstraction with respect
to branching-time logic like, p-calculus, CTL and CTL* [98], p-automata,
similarly give a unifying framework for different probabilistic logics.

Every p-automaton defines a set of labeled Markov chains, that is, a p-
automaton reads an entire Markov chain as input and it either accepts the
Markov chain or rejects it. Analogous to alternating tree automata where
acceptance of a Kripke structure is decided by solving 2-player games [98],
the acceptance of a labeled Markov chain by a p-automaton is decided by

113
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solving stochastic 2-player games. The language of p-automata are sets of
labeled Markov chains.

We view a Markov decision process (MDP) as a set of Markov chains
defined by different schedulers. In this chapter we revisit p-automata defined
by [58] and extend it with a new construct and semantics for representing
set of Markov chains defined by the Markov decision processes.

The chapter deals with the following topics:

e We extend the p-automata with a construct that captures the non-
determinism in the choice of probability distribution. This allows us
to model Markov decision processes as p-automata. We show that
the extended p-automata are closed under bisimulation, union and
intersection, (though, in contrast to [58], the language is no longer
closed under negation).

o We show that the language of the p-automaton obtained from an MDP
accepts exactly those Markov chains that are bisimilar to the Markov
chains induced by the schedulers of the MDP.

e We define a simulation relation between p-automata, that approxi-
mates the language inclusion. The simulation relation is complete in
the sense of Segala’s [88] simulation relation defined for probabilistic
automata.

7.2 Weak P-automata®

In this section, we extend p-automata as defined in [58]. In the rest of the
thesis, when we refer to p-automata we will assume the extended p-automata
(as defined in Definition 7.2.2 below), unless the contrary is explicitly stated.

Definition 7.2.1 (Boolean formulas on T"). Let T" be any arbitrary set, then
B*(T) is the set of positive boolean formulas generated by the following
syntax:

pu=t|true |false [ pA@ |V (7.1)

where t € T'.

The closure of ¢ € B(T') is defined as cl(y), where ¢ € cl(p) and if @109 €
cl(¢) then ¢1,p2 € cl(p), for o € {A,v}. Let @ be any set of states, the
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following sets are derived from Q:

QI = {lalwp = ¢e@,xe{>>},pe[0,1]nQ}
jQI* = {x(t1,tn) : neN,Vit;e|Q|>}
jQI" = {v(tr, -+ tn) : neN,Vit; € |Q]>}
HQH® = {69(7”1,'”,7“”) : nEN’VivTiE“Q”*}
el = lel*viQl*vlel®

We will call the elements of |Q|> as guarded states and elements of |Q]®
as terms. Note that the closure of a formula f € B*(||Q|) only in includes
elements from Q.

Example 7.2.1. Consider ¢ € B*(|Q|), where ¢ = @(t1,t2) A *(||qH2%), t1 =
c(laahy. el o) and to = *(lal 3. lasl2)- Then cl(g) = {@(tr,t2). L lal,)}-

For brevity, we will write (¢ : ¢t € X) for «(¢1,-++,t,) where X = {t1,--,t,},
(similarly for p € [Q[® or |QY). For ¢ = x(|q1uyp1s - |@n | unp, ) let the set
of guarded states be g5(¢) = {q1, - gn} (similarly for V(|1 s [dn lenpn )
We can lift the definition to sets of formulas, gs(®) = Uyea g5(¢). If ¢ =
@®(ry,--+, 1) then the set of terms is gt(yp) = {r1,---,7,}. In particular, if
lst(p)| =1 then ¢ = &(r) is the same as r where r = x(t1,--+,t,). Thus, |Q]*
is a special case of |Q|®.

Definition 7.2.2. A p-automaton A is a tuple (@, %, §, pin, ), where Q is a
finite set of states, . is a finite alphabet (2A7), 6: Qx X — B*(Q)uB*(||Q|)
is the transition function, y;, € B*(||@Q|) is an initial condition, and © ¢ @

is an accepting set of states.

Example 7.2.2. Let the p-automaton A = (Q,X,0,4,Q) be defined as
follows: @ = {Q17"'7Q5}7 Y= {a7b7c}7 ¥ = @(*(quuzéﬂ Hq5Hzé)7*(Hq2H21))7
0(q1,a) = *[asl>1, 6(a2,a) = *[qa]>1, 0(as,b) = *lgsl>1, 9(qa,c) = *[aa]1,
6(gs,a) = ¢ and Q = Q.

As a convention, p-automata have states, MCs have locations, and weak
stochastic games have configurations. We will make the following simplifi-
cation, from hereon we assume that for each ¢ € |Q[® and r,r" € gt(y),
if a state ¢ € gs(r) and ¢ € gs(r’') then r = r'.
and 7" in gt(p) do not have any common guarded state. A p-automaton
A= (Q,%,0,0in, Q) defines a labeled directed graph G4 = (Q', E, Ey, E,,)
(called the game graph):

Q" = Qud(((Q,%))

E = {(pr1rw2,p) 0ieQ ~Q,1<i<2} u {(q,0(q,0)) : ¢eQ,0€X}
U{(p1 Ve, pi) pieQ NQ,1<i<2}

By, = {(prg,0):(ar9,0):(pVva,q),(qVe.q) « ¢eQqeQ}

By, = {(p,0) 9e|Q,qees(p)} v {(v,q) :9e|Q|® qegs(egt(p))}

That is, two term r
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Figure 7.2.1: Game graph G 4 without unbounded edges.

a a

where §(Q,%) ={d6(q,0) : ¢e@Q and o € T} U{pi,}.

Example 7.2.3. The game graph of p-automaton A defined in example 7.2.2
is shown in Figure 7.2.1 (page 116).

We add markings on the edges to distinguish them. Edges in F, and E
are unmarked and are called unbounded and simple transitions, respectively.
Edge (¢,q) € Ep is called a bounded transition and is marked with & if
¢ € | Q|®, else it is marked with v. For example in the Figure 7.2.1, the
edges (*H% ”=17 Q)7 (907 Q1)7 (907 q2), (907 Q5)7 (*HQ4H=17 Q4) are marked ®.

Two formulas ¢, ¢’ € Q' are related as ¢ <4 ¢’ iff there is a path from
¢ to ¢’ in G4. For example in Figure 7.2.1 (page 116), ¢ <4 g3. Let =4 be
defined as <4 N <3'. The equivalence class [¢] of ¢ with respect to =4 forms
a maximal strongly connected component (MSCC) in G 4. In Figure 7.2.1,
© =4 g5, but © #4 q3. An MSCC is bounded iff every edge in an MSCC of
G 4, is either in F u Ey, and an MSCC is unbounded iff every edge of the
MSCCisin FuUE,.

Example 7.2.4. Referring to the example 7.2.2 (page 115), we get the fol-
lowing partial order: ®~ =4= {[gs], [q4], [¢]; [a1], [g2] }, and <4 is the reflex-
ive transitive closure of the relation {([¢], [¢1]), ([¢], [a2]), ([q1], [gs]), ([a2], [ga]) }-

Definition 7.2.3 (Uniform weak p-automata). A p-automaton A is called
uniform if:

1. Every MSCC of G4 is either bounded or unbounded.

2. For every bounded MSCC, all marked edges are either marked with @
or (exclusively) with v.

3. The set of equivalence classes {[¢] : p € Q'} is finite.

A (not necessarily uniform) p-automaton A is called weak if for all ¢ € Q,
either [¢]n@ c F or [¢]nF = @.

In the rest of the chapter we will only consider uniform weak p-automata.



7.2. WEAK P-AUTOMATA® 117

7.2.1 Acceptance game of the extended p-automata

Let A = (Q,%,0,in, ) be a p-automaton and M = (S, P,L,AP,s;,) be
an Markov chain. The acceptance of M by A depends on the results of
a sequence of (stochastic) weak games, called the acceptance games. The
acceptance games have configurations from the set 29 x cd(Q,%) or 25 x
c(Q,X) x F® ( where @ is either & or v. Meaning of F® will soon become
clear). Important point to note is that, each configuration is defined over a
set of states of the Markov chain, in contrast to a single state in alternating
tree automata (or in [58]).

Let ® =Qucl(0(Q,X)) be the set of formulas appearing in the vertices
of the game graph G 4. Consider the partial order (®\ =4,<4) defined over
the nodes of the game graph of G 4. Consider the following set of sets of
states of the Markov chain M.

S={TcS:Vs,seT, L(s)=L(s")},

that is, for each set T € S, every state in T" has the same label. We extend
the labeling function as follows; L : S - 2P where L(T') is L(s) for some
s €T. For a formula ¢ € @, val(T,p) is calculated for each MSCC [¢] in-
ductively, according to the partial order <4. val(T, ¢) is the value valy (T, ¢)
of Player 0 in the game G(M, [¢]) = (V, E,Vp, V1, V,, P,Q2) (defined below).
When calculating val(T', ), the value of val(T", ¢') is pre-calculated for every
©" € [¢'], such that [¢] <a [¢']. Initially, we set val(T,¢) = 1. Depending
on the type of MSCC [¢], we have the following cases:

Case 1. Let [¢] be a non-trivial bounded MSCC where marked edges have
marking @. For ¢ = &(r1,--,1ry), let I, = {q:qegs(r),r egt(p)}, and p; 4
be the probability bound on the state ¢ in the term 7y, i.e., r; = *(|lq]sp, , :
q € gs(r;)). Consider T € S, and let the label of every state of T be 0. We
define the set Ry, which is the set of successor configurations of (T',¢),
and Valr ,, which is the set of possible values of val(T, ¢).

Rr, = LIJ T, ¢") : T" e succ(T) and ¢’ € cl(6(q, L(T)))}
qele (7.2)
Valp, = {0,1} u{val(T",¢") : (T",¢") € Ry, val(T',¢") # 1}

Where succ(T) = {T" € S : T" € Usersucc(s)}. Thus, Ry, is the set of all
Player 0 descendant configurations of (T',¢) (refer to the table 7.1 for the
definition of successors), and Valr, is the set of possible values Player 0
can obtain from the configuration (T',¢). Observe, Ry, is finite and hence
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VT (T} 0 (T7¢s0) € By x Valr, - L2 val(T', ) < 0} 0
{{T", 1V p2,v) € Ry, x Valp, s val(T', o1 V p2) = 1}

V= (T, f): feFg ) u
{<T7907v> € RT,@ X Va|T7<p Tl # Val(T,gp) > U} U
{<T7901 A 90252}) € RT,(p X ValT’@ : Val(T,ng A 902) = J_}

ET? = {({T,@) (T, ¢, f)): fe FR} U
{({T", p1rop2,v), (T", pi,v)) o e {A, v}, 1<i<2,
(T", p1op2,v) € Ry, x Valr 4, val(T', p1op) = L} U
{({(T", ", 0) (T",¢")) : T" € succ(T), ¢ € [¢],v € Valr,,val(T,¢") = 1} u
{({T, 0, f):(T",6(q,0), f(q,T"))) : T" < succ(T'), q € Iy, f(q,T") >0, } U
{UT,p, f),({s'},0(q,0), f(q,8"))) : 8" esuce(T'), q € Iy, (g, T") > 0,
6(g,0) € B'(Q)}

Table 7.1: Acceptance game G(M, [¢]), Case 1. o = L(T), and f(q,T") =

minger f(q, ).

Valr , ¢ Q is also finite. It is instructive to ask oneself why Player 0 can have
only finite number of values at (T, p). Observe that the game G(M, [¢]) has
no stochastic branches. Thus any configuration of the game can only take
value of some descendant configuration (which is 0 or 1 if all the descendant
are in the same MSCC).

Let ]—'%p be a set of functions I, x S — Valp, where f € .7-'5‘3’@ iff there
exists a d € Dygy() and {aqs'} € RI#*S for each g € I, and s’ € succ(T) such
that: R

Vg,VseTel,: Y agef(q,s)P(s,s") > piqdr,,

s'esucce(s)
7.3
Vs' esucc(s): Y. agy =1 (7:3)

qely,
d and {a, ¢} are called witness of the function f. Note that, the set Foo
is finite, since for each f ¢ ffip the domain and the range are finite sets,

though its cardinality is exponential in the size of the domain and range.
The game G(M, [¢]) = (V, Vo, V1,V},, E, P,Q) is defined as follows:

Vo= U V™ wvi= U W¥ V-0

Ty'ele] ) Tp'ele]
E= U E™ Q=gaV
Tp'el¢]

where VOT"P, VIT’SO, and ET*% are defined in Table 7.1, and Q =V if for some
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s0,q1 =0 s, 1 s2,1-0 so,q1 =1 s1,q1~>0 s2,10
50, P, 50, P

$0,q5 > 1 51,45 >0 S2,q5>0 | $0,q5> 0 s1,¢5 > 1 2,050
$50,q2> 0 $1,q2>0 2,21 $0,G2+> 0 $1,q2~>0 2,21

s1, *[lgs[1, (s1,93) = 1 l \ / l l
50, [g3ll>1 S\ID
'\51,*\|q3\|21 (v % T

false

52, %[l qall>1, (s2,94) > 1 o

Figure 7.2.2: 2-player game (case 1.) generated by p-automaton A in Exam-
ple 7.2.2 and MC M in Figure 7.2.3. The oval states are Player 0 states and
the rectangle states are Player 1 states. State ({s1}, ) belongs to another
game and val({s1},¢) has been pre-computed.

qe ], ge F else Q=a.

From the configuration (T,¢) (where ¢ € |Q|®), the game progresses
as follows: At (T, ), Player 0 selects a function f € F3 o (which implicitly

assumes some witnesses {a, ¢} and d), and moves to a Player 1 configuration
(T, e, f). Player 1 first chooses a q € I,, and then decides to move to a
configuration depending on the following cases:

e If §(q,0) € B*(|Q|). Player 1 can select any subset T" € succ(T"), and
move to a configuration (T",6(q,c),v), where v = minger f(s',q).

e If0(q,0) ¢ B (|Q]). Player 1 can only select 77 = {s'}, and move to a
configuration (7”,8(q,0), f(s',q)).

The intuition is as follows: When §(q,0) € BT (|Q]®) then the descendant
configuration belongs to a MSCC that is categorized as Case 1. In such a
situation, Player 1 has the possibility of selecting a set of states T (as de-
fined above), and move to (T",8(q,0),v). When §(q,0) ¢ B*(||Q|) then the
descendant configuration belongs to a MSCC that is categorized differently
(presented below) than case 1. In such a situation Player 1 can only select a
singleton set. For convenience, we will write (s, ) (or (s, p,v)) for ({s}, )

(or ({s},¢,v), respectively).

Example 7.2.5. Suppose, ¢ = EB(*HCHHZ%,*”(D”Z%)-, and §(q1,0) = ¢’ €
|Q|®. Player 0 at configuration ({s},y) decided upon f € .7-'{31} » Where
f(s1,q1) = f(s2,q2) = 1, s1 and s are successors of s. In such a situation,
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Player 1 can decide to go to the configuration ({s1,s2},¢’,1). On the other
hand, suppose 6(g2,0) = ¢’ € B*(Q). Then Player 1 can either move to

configurations ({s1},¢’, f(s1,¢2)) or ({s2},¢’, f(s2,¢2)).

A winning play of the game (see Figure 7.2.2) for Player 0 is determined
by the following rules:

1. Consider a finite play that reaches a configuration (1", ¢’,v) such that
val(s’,¢") # 1, that is, the value of the configuration (s, '), was al-
ready been determined. Recall (Table 7.1, page 118), configuration
(T, ¢, v) where val(T’, ) # 1 has no successor configurations. Player
0 wins if v < val(T”,¢") else player 1 wins. This is enforced by making
(T, ¢, v) a player 1 configuration if 1 # v < val(T”,¢), and a player 0
configuration if L # v > val(T”,¢").

2. If at (T',¢',v), val(T’,¢") = 1 then the play continues with (7", ¢").
An infinite play is winning if it satisfies the weak acceptance condition
Q. That is, if the second component of an infinite play stays in V' (the
set of configuration of the game G(M, [¢])) then player 0 wins if and
V < Q else player 1 wins.

Case 2. [¢] is a non-trivial unbounded MSCC of G4. The configurations
of G(M, [¢]) are of the type (T, ) where |T| = 1. So we will write (s, )
instead of writing ({s}, ¢). Let [¢] be a nontrivial MSCC such that all the
transitions in ] of G4 are in E, u E. This gives rise to a weak stochastic

game.

V={{s,¢) : seSand o' e[p]} Vo={(s,p1ve)eV}
Vp=(5xQ)nV Vi={{s,o1np2) eV}
P((s,q),(s",0(q. L(5)))) = P(s,8") Q=@orV

where 2 is V' if some ¢ in [¢] is in F else Q = @.

E = {(<3’301/\902>)<5790i>)evxv : 1Si§2}u
{({s;o1Vep2),(s,0i)) eV xV : 1<i<2} U
{({s,q),(s",0(q,L(5)))) e V xV : P(s,s") > 0}

By Theorem 2.2.1 (pg 29) a value valy(s, ¢) of any configuration (s, ) e V'

exists. We set val(s, @) to this value.

Case 3. Let [¢] be a nontrivial bounded MSCC with v marked edges. We
will not make use of this case in this exposition on p-automata. Hence,
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Vosmo _ {(S,QD)} U {(8',(,0’,1)) € Rs,gp X Vals,so 1l # val(s"wr) < v} U
{{s', 01V 92,0) € Ry x Valy i val(s', 01 v 92) = L}

‘/13790: {(‘sﬂpvf):fefsv’w}u
{<3a 9071]) € Rs,go X VaISW Ll # Val(S, (p) > 2}} U
{(3, ¥1 A SD27’U> € RS,QO X Vals,gp : VaI(S, ©1 AN ()02) = J_}

B2 = {((s,0), (s, 0. f)) s feFJ,} U
{({s, prowa, v}, (s, i, v)) o€ {A, v}, 1<i<2,
(s',p1002,v) € Ry, x Valg o, val(s’, propg) = L} U
{((s", ", v), (8", ¢")) + 8" esucc(s), ¢’ € [¢],v € Valg ,,val(s,¢") =L} U
{({s, 0, f),(s",6(q,0), f(q,8"))) : ' csucc(s),q € I, f(g,8") >0, } U
{(s;, f), ({s"},0(q.0), f(g.8"))) : 8" e suce(s),q € Iy, f(g, ") > 0,
6(g,0) € B*(Q)}

Table 7.2: Acceptance game G(M, [¢]), Case 2. o = L(s).

the semantics of the acceptance game is kept identical to [58]. Let ¢ =

V(|1 llsrprs s |@nlunp, ). The sets Ry, Val, , are defined as follows:
R, = U {(s', ") : 5" e succ(s) and ¢’ € cl(d(q, L(s)))}
qely, (74)

Vals, = {0,1}u{val(s’, ") : (s',¢") € Ry s, val(s', ") # 1}

w= U WY w= U W¥ V=0

T,p'ep] ) Tp'e[e]
E= U ETY Q=gorV
Tp'ele]

where VOT’W, VIT’@, and ET¢ are defined in Table 7.2, and Q = V if for some
g€ [p], g€ F else Q =@. Observe that the configurations of the game are
of the set S x6(Q,X)u S x§(Q,X) x F¥ (as contrast to case 1.)

Another notable difference is the set of functions F;, = I, x succ(s) —
Vals, (rather than F2,) (See Table 7.2). A function f e Fy, if there exists
a € R x R such that:

o there is a g € I, with ¥ yequcc(s) tq,sf(q,5)P(s,5") 2 p; or,
e there is a s € succ(s) with Yoer, ags # 1.

The winning condition is same as case 1. As mentioned before, we will not
need the terms in |@Q]" and present it here only for completeness.
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Case 4. Let [¢] be a trivial MSCC. It is handled as one of the above cases.
The value of the configurations val(7T’, ¢) is obtained from the values of the
successor configurations, which have already been calculated in G(M, [¢']).

Definition 7.2.4. A Markov chain M is accepted by a p-automaton A, iff
val({sin},vin) = 1. The language of A, L(A) ={M : A accepts M}.

The p-automata defined here has two notable difference than p-automata
in [58]. First is the syntactic difference due to the presence of construct
®(p1,-,¢n). Second is the semantic difference were the configurations of
the acceptance game is defined over sets of states of the Markov chains for a
bounded MSCC (case 1.). AS we will see presently, this is crucial for proving
correctness of Theorem 7.2.3. For unbounded MSCC the description of the
acceptance game is same as the original definition.

The number of configurations of the weak game G(M, [¢]) when ¢ is a
bounded MSCC is exponential in the size of [¢] and the Markov chain(case
1.). The exponential blowup is due to the different function f € F, §?¢ and the
cardinality of §. For the other cases the size of the game is polynomial in
the size of the automaton and the Markov chain. Since, weak games can be
solved in polynomial time in the size of the game and the weak stochastic
game can be solved in NPnco-NP, the problem whether a finite Markov chain
is accepted by a p-automaton can be decided in exponential time.

7.2.2 Properties of p-automata

Closure Properties: We will first show that the language of a p-automaton
is closed under probabilistic bi-simulation.

Proposition 7.2.1. For a p-automaton A and MCs My and My with My ~
MQ, M1 € ,C(A) Zﬁ M2 € ,C(A)

Proof. Let My = (S1,P,L,s1,,) and My = (S, P, L, s2;,), with S disjoint
from S5, hence we use the same function P and L for both MCs with im-
punity. Let A be (Q,%,0,vin, ), G; and Gz be the acceptance game for
MCs My and My, respectively.

Consider any two configurations (T, ¢) and (T, ) in Gy and Gg, re-
spectively, such that Vs; € T, sy € Ty : 81 ~ so. We show that val(T},¢) =
val(Ty, ). Equivalently, we construct a wining strategy mo for Player 0 in
Gy from the winning strategy m; of Player 0 in G;. By symmetry of the
argument (presented below), it also follows that we can construct a wining
strategy for Player 0 in G; from the winning strategy of Player 0 in Gs.

Consider the case when [¢] is unbounded MSCC. G;(M;, [¢]) is a stochas-
tic weak game (for ¢ € {1,2}). We start from the configurations c¢; = (s1, ¢)
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and cg = (s2,p) where s1 € S1 and sy € So and s1 ~ s2. The claim is, at each
step of any play of the games, we move to configurations (s}, ') and (s}, ¢')
in Gy and Gg (according to strategy 7 and m2), respectively, where s} ~ s.

When ¢ is of the form @1 A @9, ¢1 and co are Player 1 configurations. If
Player 1 chooses (s2,¢;) in Gy then we make Player 1 in Gy choose (1, ;)
for i € {1,2}. When ¢ is of the form ¢; Vv 2, ¢; and ¢y are Player 0
configuration, Player 0 in Gg follows the choice of Player 0 in Gy, i.e., if
Player 0 chose (s1, ;) in Gy then Player 0 in Gy chooses (s2, ;) in Gy (for
i€{1,2}). For ¢ = q € Q, the play is resolved by a probabilistic choice. We
know that P(s1,C1) = P(s2,C2) where C; € S; (for i € {1,2}) and C;uCy is
an equivalence class of ~. Thus, for any play that ends in (s],d(g,0)) in Gy,
there is a corresponding play in Gy that ends in (s5,d(g,0)), and we have
s1 ~ s, where o = L(s1) = L(s2). Hence the set of plays that are winning
in G; have the same probability measure as the set of corresponding play in
G2. Consequently, val(s1,p) = val(se, ).

Let [¢] be a bounded MSCC of G 4 where the only marked edges have &
as markings. Consider 17 € S7 and Ts €S2, such that for each sy € T, there
exist sg € Ty such that s; ~ s9 and vice-versa. We show that if val(71, ) =1
then val(7», ¢) = 1. Disjunction and conjunctions are handled as before. Let
¢ € |Q]®, and consider s; € T} and s9 € Tb, such that s; ~ so. We have a
function fi € 5, , with witness d and {ag,s'}ger, s'esucc(s) for the play in Gy.
Define f3 : I, x succ(s2) — [0,1] with fa(g,s5) = fi(q,s}) for s} € succ(s;)
(7 € {1,2}) for some s ~ sh. It remains to show that fo € F& . That is,

N $2,p°
we need to find suitable witnesses d’ and {a;,s,2 Yael, shesuce(sy) for fa, that

satisfies the equation 7.3 (page 118). Let d’ = d and choose {a;, o} such that
for each ¢ € I,, whenever f(q,s}) = f(q,s}), a;sé = ag,¢,- This implies that
for each equivalence class C'

Z aq7511P(51,s’1) = Z a;,sép(8275,2) (7.5)

! !
s1eC sheC

There could be many possible solution for {afL «}, we need to find one solu-
tion such that f, € F7,. For each g € I

Sl Pls2sh) falash) - 3 (B asrennes)

shesucc(sz) CeSauSin~ \ sheC
= ( Z aq,s’lp(slvsll)fl(q’sll)) = Z a/q7511P(81,8,1)f1(q, 5,1) = pi,qJI(Ti)'
CeSauSin~ \ 57 eC s} esucc(s1)

Thus any value of {a; , } satisfying the constraint (7.5) also satisfies the first
»So
condition of equation (7.3). If now Player 1 in G chooses (Ty,8(q,0),v),
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1

o <
v

v
@ B @ @

Figure 7.2.3: A Markov chain M,
with S = {80, 51,52} and P(50,50) = cess D. A(so) = {u1,p2}, where

1
P(50781) = P(80752) =3 ,ul(SO) = %a,ul(sl) = % and MQ(SZ) =1.
P(sl,sl) = P(SQ,SQ) =1.

N

Figure 7.2.4: A Markov decision pro-

Player 1 in G is made to choose Ti, such that for each s, in T3 there exist
s €Ty, such that s} ~ s5. O

Proposition 7.2.2. Language of p-automata are closed under union and

intersection.

Proof. Follows trivially from the construction of p-automata. O

Embedding of MDPs:

Definition 7.2.5 (p-automata for an MDP). The p-automaton Ap = (Q, 3, J, ©in, 2)

is defined as follows: !

Q=5x5 ; Q=0 ;

8((s,s"),L(s)) = vy and 6((s,s’),0) = false if o+ L(s)
Pin = @(T‘i | i € A(Sm),?‘z‘ = *(”(Sinvﬂivsl)HZM(s’) | :ui(sl) >O))
ps = ©(ri | pi € A(s) and ri = *([| (s, i, 8") [y (sr) | (") > 0))

Example 7.2.6. The MDP in the Figure 7.2.4 is embedded in the automa-
ton A defined in the Example 7.2.2 and the MC of Figure 7.2.3 is induced
by a scheduler of the MDP and is accepted by A.
Theorem 7.2.3. Let D be an MDP and Ap be its p-automaton.

1. For every scheduler n, the induced Markov chain D, € L(Ap).

2. For every MC M € L(Ap) there exists an € HR(D) such that M ~ D,,.

Tt could be the case that there is some state g € Q which a guarded state of more than

one term of a formula ¢ € |Q||®. This can be resolved by renaming and introducing new
states.
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Proof. 1.) Let the MDP D be (S,A,%, L, s;,). We will first show that for
any scheduler n € HR(D), D, = (S*,%, P', L, si5) is in L(Ap). The accep-
tance game of D, is a weak game and any configuration of the game has
value either 0 or 1. We fix the following strategy for Player 0. At ({w}, pw)
(where w is a state of D,, and a finite path of D), Player 0 chooses a function
f i1y, xsucc(w) — {0,1} with witnesses {aq7w.5’}qelw,¢1ﬂl’w.slesucc(w) and
d such that, f(q,ws') =1, agus = 1 iff ¢ = (wl,s') and d(i) = n(u,), for
wi € A(wl). It follows immediately, that equation (7.3) is satisfied. That is,
for all ¢ = (wl,s") € I,,,: aguws f(q, ws")P' (w,ws") = pi(s")n(p:). Note
that there is exactly one successor of w, say u = w-s, such that f(u,q) = 1.
Thus Player 1 can only move to configurations of the type ({w-s'}, vy, 1),
and Player 0 can always continue from ({w}, @) to ({w-s'}, ps). Since the
set of accepting configurations €2 is ), any finite play according to the cho-
sen strategy can be extended indefinitely, and hence is winning for Player 0.

2.) Suppose MC M’ is not accepted by A. This implies, that a finite path
(To,©s0) s (T, s, ) is winning for Player 1, with Ty = {to} which is the
initial state of M'. Since every infinite path is winning for Player 0. Hence

at (Ty, s, ) it is not the case that Player 0 can find witnesses
bd and {aq s} such that,

1. Vriegt(ps,) Vges(r;) VseT,: Z aq.s P(s, sV f(q,s') = pi,qd;-

s’esucc(s)

2. for each ¢q € >(gt(ys,)) and any set T” ¢ succ(7},), where Vs' € T" :
f(q,s") =1, (T", ps,) is winning for Player 0.

Take any other (arbitrary) play (7§, ¢so), - (T, ©s,) (With Ty =Ty = {to}).
Then (To U Ty, ©so)s - (T U T}, @5, ) is also winning for Player 1. So Player
1 plays rationally, she will choose 7} as large as possible.

Let M = (T,%,P,L,ty), and M € L(Ap). The value of configura-
tion ({to},¢s,) is 1, and assume Player 1 plays optimally, i.e., she chooses
a set as large as possible. We will construct a map n* < (S* x Dp,).
For any possible finite run, p, = (To,9sy)s s (Tn, @s, ), With To = {so},
(505, Sn,s J) e n*, where d is the distribution chosen by Player 0 at (T, ©s,,)-
Since, Player 1 plays optimally, it cannot be the case that two distinct play
Pn = <T07 908())7 T <Tn7 ‘psn> and p’:’], = (T[;v 9080)7 T <TTIL7 ‘P8n> exists. Thus, we
see that n* € HR(D).

Now consider an unrolling of M (recall this gives us a probabilistic tree
pg 79). Thus, states of M are subsets of 7. It suffices to show a bisimulation
relation between, D+ and the unrolled M. Let R < (T"uS*) x (T uS") be
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the smallest transitive, reflexive and symmetric relation with the following
property:

e toRsg.

e For each pla’y Pn = <T(),Q050),"',(Tn,@sn>(Tn+1,§05>, all tn+1 € Tn+17
vRw, where v = tg, -+, t,+1, such that ¢;,1 € succ(t;) for all 0 > i < n and

W = 80, ", Sp.
We will show that R is a bi-simulation relation.

o If uRw then L(u) = L'(w). If L(u) # L'(w) then (T, ;) cannot
be winning for Player 0, where ul € T. [Recall for a sequence p

(ag,---,an), p} is the last element a,,.]

e Let t =ul. For each q € I, , we know, ¥yresucc(ry P (¢, )ag f(q;t")
peidi. Let C be the set of successors of u and w such that C' e (T* U
S*) N R. From this we can deduce,

> Pu,ut’) = ) Pl(w,ws).

ut'eC w-s'eC

where P’ is the probability distribution function of the Markov chain
D,». For each equivalence class C, let Q(C) = {q = (w, p,w-s") 1 w-s" €
C'}. Now consider any arbitrary q € Q(C') where g = (w, p, w-s"). We
know for each ge I, :

>, Plu,uaguf(gu) = P'(w,ws)

u'esucc(u)

If u ¢ C then f(u',q) =0. Thus, we can be rewrite as:

Z P(uvu,)aq,u’f(%ul)

u’esucc(u)ueC

P'(w,w-s")

Summing over all ¢ € Q(C') gives us:

2 > Pu,u)aguf(g,u) > Pl(w,ws")

qeQ(C) u'esucc(u):ueC q€Q(C)

Changing the order of summation:

5 P(u,u'>( 5 aq,u'f(q,u'))

u/esucc(u):ueC q€Q(C)

Z P(u,u’)

u'esucc(u):ueC

As f(q,u") =0 for q ¢ C, we can deduce:

> P(u,u') = > P'(w,ws).

u/esucc(u):ueC qeQ(C)
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centering

{v} {b}
e {a} 0.5 @ 777777

Figure 7.2.5: The MDP (left) does not induces the Markov chain (right).

Thus, R is a bi-simulation relation , and M ~ D,,. ]

The embedding of MDP relies on the construct ¢ € |Q[®. Consider the
MDP in Figure 7.2.3. At the state sp there are two choices of distribution.
If we limit the definition of the p-automata to [58] then we have only dis-
junction (or conjunction) to define the non-determinism at the state sg and
we cannot accept the MC in Figure 7.2.3.

We also keep track of the subset of states T that were induced by the
same ¢ € I,. This is the crucial feature of the extended p-automata. Refer to
the Figure 7.2.5, observe that, at t,, and ¢], the formula ¢y, is satisfied. Player
0 can select with probability 1 the d branch for ¢, and with probability 1
the ¢ branch for ¢/. But the resulting Markov chain will not be induced
by any scheduler of MDP. Thus, we need to remember that states ¢; and
t} were induced by the same distribution. So, at ({to}, ) Player 1 can
change the current configuration of the acceptance game to ({t1,t]}, vp)-
This will eventually lead to a configuration ({t,,¢,},¢p). At this point
Player 0 cannot find a distribution such that both ¢, and ], satisfy ¢, and
looses.

Embedding of PCTL formulas: PCTL can be embedded into p-automata.
That is, given a PCTL formula f over AP, there exists a p-automaton A,
such that for any Markov chain M, f satisfies M if and only if M is ac-
cepted by A. The algorithm for this translation from PCTL to p-automata
was provided in [58]. In this section we recall the construction.

Definition 7.2.6. From PCTL formula ¢ over APin negative normal form,
we construct a p-automaton A, = (Q, %, 6, @i, F') as follows:
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Figure 7.2.6: The game graph of p-automaton embedding [aUb]. 1.

1
3
1. Let cl,(¢) be the set of path sub-formula of ¢. @ =cl,(¢) UAP.

2. F consists of AP, their negations, and all ¢ € cl,(¢) not of the form
1 Upo.

3. The alphabet ¥ = 2AP.

4. The definition of the translation relation ¢ needs a little preparation.
We define the function 7:

7(a) = a where a € AP,

7(~a) = ~a,

7(1 0 3) = 7(¥1) o 7(h2) where o € {A,V},

T([X¢]up) = *([X¢]up)

([ U¢2lip) = (7(1) A*([1 Udalup) ) v 7(3h2)

T Wehalup) = (7(1) A*([1 Wea|up) ) v 7(22)
¢ is defined as follows:

0(a,o0) = (a€o) where a € AP and o € 3.

0(~a,o) = (a¢X)

0(Xeh, o) = 7(¢») where 7(1) is defined above.

61U, o) = (7(¥1) AUt ) vr(eh2)

S(1Wahg,0) = (7(h1) APt Wepa ) v 7(2h2)

5. The initial formula ¢, = 7(¢).

Example 7.2.7. Figure 7.2.6 shows the game graph of the p-automaton
that encodes the PCTLformula [aUb]. 1.
3

Observe that in the game graph of any p-automaton obtained from a
PCTL formula by the definition 7.2.6, all bounded MSCCs are trivial. Thus
the acceptance game of such a p-automaton is same as in [58]. The following
theorem establishes the correctness of the translation.
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Theorem 7.2.4 ([58]). For any MC M and PCTL formula ¢, M = ¢ if
and only if M € L(A,).

7.2.3 Simulation game

In the previous section we have seen how Markov chain induced by an MDP
can be captured by a p-automaton. To accomplish this, acceptance game
of the extended p-automata have configurations which keep track of sets
of states of the input Markov chain. This increase in power comes at the
cost that emptiness and hence language inclusion cannot be decidable. This
follows from [12] where the scheduler synthesis problem (recall pg 75) for
PCTL winning condition was shown to be undecidable.

In this section we present a simulation relation that resembles Roberto
Segala’s [88] simulation relation on probabilistic automata. We will con-
sider simulation game G< for two p-automata where game graphs of the
p-automata do not have unbounded MSCCs marked with v marked edges.
The technique reuses the method presented in [58], the only notable differ-
ence being the formulas in |Q|®.

Let G and G5 be the game graphs of the p-automata Ay = (Q, X, 6, pin, F)
and Ag = (U, %, 9, Yin, F) (Q is disjoint from U), and <1 and <5 be the partial
orders for their respective game graphs. The partial order <c Q' x U’, where
Q' =Qucd(@,X) and U = U ucl(U,Y), is defined as the lexicographical
ordering on <1 and <9. Formally, (¢, 1) < (¢',9") if either ¢ <1 ¢" or ¢ = ¢’
and 1) <o ¢'. The equivalence relation < n <! is denoted by =. A formula ¢
is said to be simulated by 1), if the value of the configuration (p,) in the
game G<([¢], [¥]) (defined below) is 1.

Similar to the acceptance games, the values of configurations in ([¢], [¢])
are calculated after the value of all configurations in ([¢'], [¢']) has already
been calculated, where ([¢], [¢]) = ([¢'], [#']). We have the following cases:

Case 1. Let [¢] and [¢] are non-trivial unbounded and bounded MSCCs,
respectively. We set val(p, 1) = 0, formulas from unbounded MSCCs cannot
be simulated by formulas from bounded MSCCs.

Case 2. Let [¢] and [¢/] be unbounded MSCCs. G<([¢], [#]) is defined in
Table 7.3. The winning condition Q =V if [ n@Q ¢ F' implies [¢[nU c F
else 2 = 2.

Case 3. Let [¢] and [¢/] be bounded MSCCs. Suppose ¢ € |Q||® and
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V= {¢9) o190 <y’} Vp
Vo= U {{p1 A2, 1 vabe) o ;€] s € []}

Vi= {{¢,u') + eQ,u' €U} u {{p1 Ve, d) : piele], v €]}
U {01 Atha) ¢ " e[l i € [T}

E= {({¢1Aga,11 V), (0 t;) e VxV : 1<i,j<2} U
{({d" 1 vaba), (¢ i) + 1<i<2} U
{({p1 A2, '), (i, 0/) eV XV 1 1<i<2} U
{({¢",u'),(0(q",0),0(u',0)) eV xV : aeX}u

(

= {}

U {{prapa,uf) s ueUpiefel} v {{d 1 vi) + ¢ €Q¢ie Y]}

{({p1 v p2,9), (i, ) = 1<i<2} U {({p, 1 Aa), (pi,9) + 1<i<2}

Table 7.3: Simulation game G<([¢], [#]), where [¢] and [¢] are unbounded
MSCCs (Case 2).

ve|U]®.

R,y = U U U{{a,B):aec(d(g,0)),Becl(d(u,0))}

qelp uely oe¥l

Valyy = {0,1} u{val(a, B) : (o, B) € Ry 5, val(er, B) # L}

Let ¢ = &(r1,+,7) and ¥ = &(t1,+, ty ), where r; € |Q|* and #; € |U|*.
Let fﬁfﬂl} be a set (1f functions I, x I, - Valg, . [ € fsﬂ/) iff there exist
{aq,u}qehi wer, and d € Dgy(yy such that:

o for all uely, Soer, aqupigf(g,u) 2 dipju,
e Forall gel,,, Zue[w agu = 1.

The game is defined in the Table 7.4, where a, «; € [¢] and S, ; € [¢], and
~ and € belong to [¢] N [Q]® and [¢] n |U||®, respectively. The winning
condition Q =V if [¢] n@ ¢ F implies [¢p] nU < F else 2 = @.

Most of the transitions are similar to Table 7.1 (page 118). The im-
portant difference is at configuration (v,¢€), where v € |Q|® and € € |U|®.
Player 1 in such a configuration selects a letter o and a term r € gt(v),
and Player 0 tries to win from the configuration (r,e, o). Intuitively, the
idea is reminiscent of Segala’ simulations on probabilistic automata [88],
where state s is simulated by state s’, iff every probabilistic transition from
s is simulated by a combined (weighted) probabilistic transition of the other.
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V= {{(¢\ o) ¢ elp], ¥ €[], 0eX} U
{(r,e,0,f) + regt(y),tegt(e),oeX, feF2} U
{<(p/7¢,>7 <S0,7wluv) S| <P,71/1 <2 W’U € Valtp’,w'}

‘/0 = {<901 A 90271/)1 v w7v>7 <<)01 A ()027671))7 <77¢1 4 1/}271))} U
{{a, B,v) = L#val(a,B) <v} u {{r,e,0) : regt(y),0eX}

Vi= {{a,f,v) : L#val(o, B) 2v} U {(r,e0,f) + regt(y),feF}
U {(’77€>7 <7’6a0->? (al v OZQ,B,U>, <aa61 A BQ,’U)}

E= {({a1 nag, BV B2, v), (s, Bj,v) :1<4,j<2} U

U {((7,6,0), (7€) : val(y,e) =1} u {({v,€),{v,€,0))} U
{({(v,e,0)(re,0)) = regt(v)} u{({reo) (reo. f)) : feFi}u
{({r,e, 0, f):(d(q,0),6(u,0), f(q,u))) : f(g,u) >0} v

{({aq v ag, B,v),{ay, B,v)) : 1<i<2} U

{({a, B1 A B2, v),{a, Bi,v)) = 1<i<2}

{({a1 A ag,e,0), (i, e,0)) = 1<i <2} U{({v, 81V B2),(7,6:)) : 1<i<2}

Table 7.4: Simulation game G<([¢], [¢]), where [¢] and [¢)] are bounded
MSCCs (Case 3).

V= {¢¢) ez =y} u{{ruo) s Iyvele]n|Q®:regt(v)}
U {(v,u,0) + ye|QI®n[pl,ueUn[y],oeX}

Vo= {{aarnaz), (o Anaz,u),(v,B1V B2)}

Vi= {{eavag,f){e,B1aB2)} v {{y,u) + yelQI®nlel,uelnly]}
u{(yuo) s velQI°nfel,ueUn[y] oeX}

Vo= (IQIFxUxx)nV

E= {({xnag, frv ) (ai,a;) + 1<d,j<2} U
{({a1 A ag,u), (as,u)) = 1<i<2} U
{({(vsB1V B2), (7, 8:)) = 1<i<2} u{({a,B1ABa) (e, i) + 1<i<2}
{({(v,u), (v, u,0)) = ve|Q® 0eX} U
{(¢
{({

r,u,0),(0(q,0),6(u,0))) | gelmep.gt(r)} U
U, 0),(ru,o)) + ye|Q[% re-(y),ae s}

Table 7.5: Simulation game G<([¢], [¢/]), where [¢] is bounded and [¢/] is
unbounded MSCCs (Case 4).



132 CHAPTER 7. P-AUTOMATA

Case 4. Let [¢] be a bounded MSCC of G and [¢/] be unbounded MSCC of
G2. The game G<([¢], [¢/]) is a stochastic weak game, it is defined in the Ta-
ble 7.5. The probability distribution is defined as: P({r;,u,c),(0(q,0),0(u,0))) =

Figure 7.2.7: Simulation game of the p-automaton A of example 7.2.2 by
automaton A’ (on the left). The MSCCs of A" are unbounded and the
MSCCs (Figure 7.2.1) of A are bounded. val(p,u1) =0 is pre-calculated.

Pi.q» where 7; € gt(7) for some v € |Q]® n[¢]. The wining condition Q =V if
[l n@Q c F implies [¢] nU ¢ F else Q = @. Conjunctions and disjunctions
are handled as in previous cases. Player 1 at configuration (v,u) selects
(similar to case 3.) a letter o and a term r € gt(y) and move to a probabilis-
tic configuration (r,u, o). The bounds on the guarded states of r determine
the distribution on the configurations of the game (Figure 7.2.7). If the
bounds do not add to 1, sink states are added, which are losing for Player
0.

Case 5. The case when one or both [¢] and [¢] are trivial MSCC is
subsumed in at least one of the above cases.

Automaton As = (U, 3, 0,0, F) simulates automaton Ay = (Q, X%, 0, pin, F)
(also denoted by Ay < Ag) if the value of the configuration (in, Yin)
computed by the simulation game is 1.

The weak game generated by bounded MSCC [¢] and [¢], of the game
graphs, can be exponential in size of the graphs. This is due to the expo-
nential number of functions f € ‘7:7?1/1 (r € gt(p)). But the size stochastic
games is polynomial in the size of the game graph. Thus, the simulation
procedure can be implemented by an exponential time algorithm.

Theorem 7.2.5. Let Ay and As be p-automata. Then:

Ay < Ay implies L(A1) € L(A2).
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Proof. Let M = (S, P,X, L, s;,) be an arbitrary MC and A;, A2 be p-automata
(Q,%,0,0in, F), (U X, 0,0, F), respectively. We assume that @ and U are
disjoint and hence use the same symbol for the transition relations and final
states for the two automata.

We show that, if val({s;,}, pin) = 1 in the acceptance game of M by Ay
and val(@;n, Vi) = 1 in the simulation game of A by Ag, then val({sn}, ¥in) =
1 in the acceptance game of M by As. Let the acceptance games of M by
Aj and Ay be G; and G, respectively, and the simulation game of Ay by As
be G<. Equivalently, we show that the claim: val(T, ¢)-val(p, ) <val(T,v),
is true for any arbitrary ¢ € Qucl(d(Q,%)), v e Uucl(6(U,X)), and T € S.

A triplet of configurations ¢y, co and cg is said to be matching, where ¢y, co
and c3 are configurations of the game Gy, G< and Gg, respectively, if the first
component of ¢; is equal to the first component of c3, the second component
of ¢1 is equal to the second component of ¢ and the second component of ¢ is
equal to the second component of c3 (i.e., c1 = (T, ¢),ca = (p, 1), c3 = (T, 1))

We proceed by induction on the partial order <, and when considering
configurations in ([¢], [¢]), we assume that the claim holds for every config-
uration in the pair ([¢'], [¢']), where ([¢], [#]) = ([¢'],[¢']). Effectively,
we construct a winning strategy for Player 0 in Go from the strategies of the
Players in G; and G<. We have the following cases:

Case 1. If p € Q and ¢ € |U|® then val(p,) = 0, and the claim follows
trivially.

Case 2. Let [¢] and [¢/] be unbounded MSCCs, where Gi(M, [¢]) and
Go (M, [¢]) are weak stochastic game and G<([¢], [¢/]) is stochastic game.
The configurations of game Gy (M, [¢]) and Go(M, 1)) are of the form (T, ')
and (T,v'), respectively, where T is a singleton set. As before, we will

write ({s},¢') as (s, ¢’). Consider three matching configurations ¢; = (s, a),
c2 = (o, B) and c3 = (s, 3), such that « € [] and S € [¢].

1. If @ = a1 Ag and S is not a conjunction then cg is a Player 0 configura-
tion. Suppose Player 0 at co chose («;, ), then Player 1 at ¢; is made
to choose (s, ;). Else if 8 = 51 A B2 then c3 is a Player 1 configuration
and if he chose (s, 8;) then Player 1 at co chooses (o, ;).

2. If o = oy Vg then ¢y is a Player 0 configuration, and if she chose (s, ;)
at ¢ then Player 1 at ¢y chooses (g, 8). If 5= 31 v B2 and Player 0
chooses («, f;) at ¢o then Player 0 in ¢3 chooses (s, §;).



134 CHAPTER 7. P-AUTOMATA

3. If a = qand 8 = u then ¢; and c3 are stochastic configurations and ¢ is
a Player 1 configuration. Player 1 is made to select the action o = L(s)
and reach a configuration (4(q,0),0(u,0)) and next configuration in
Gy and Gg is (s',0(q,0)) and (s',6(u, o)), respectively.

Note that these choices of moves always ensures that we move from one
matching triplet to the next. Consider three matching paths in the games
G1, G< and Go. If the path in Gc is infinite then, and the corresponding path
in G; is winning, then by the winning condition of G., the respective path
in Gg is also winning. If it is finite then the triplet of paths end in configura-
tion ((s”,a'), (o', ), (s", #')), where {a’, ) ¢ ([ie], [¥]). Since, ([l [])
is a weak game val(a/, 5) > val(«, 8). By assumption val(s”,a’) - val(o/, 5")
< val(s”,8") or val(s”,a’)- val(a, 8) < val(s”,8"). The inequality holds for
every matching paths in all three games thus, val(s, a) - val(«, 8) < val(s, 3).

Case 3. Suppose [¢] and [¢/] are bounded MSCCs, G1 (M, [¢]), G<([¢], [¥])
and Go(M,[¢]) are all weak games. Consider a triplet of configurations
(T, ), {(a, B),(T,B)). We assume val(T,a) = 1 and val(e, ) = 1, else
val(T, ) val(a, 8) < val(T, B) follows immediately.

The cases of conjunctions and disjunctions are handled as in case 2. The
interesting case is when « € |Q||® and 8 € |[U|®, where a = &(r1,-+-,7,,) and
B =&(t1, -, tm). It follows that (T, a) and (T, 3) are Player 0 configurations
and («, B) is a Player 1 configuration. Suppose Player 0 at (T, «) selects a
function f with witness d and {a,«}, such that:

Vr; e gt(a),qegs(ri) Z aq,s’f(sla q)P(s, 3,) 2 pi,qd;“i

s’esucc(s)
Vs esuce(s) > agy =1
qeln
We make Player 1 at (o, ) (of G<) choose an action ¢ = L(7T) and move
to Player 0 configuration («,3,0). Configuration (r;, 3,0) is winning for
Player 0, for each r; € gt(c), in the game Ge. Let f% e .7-"2 5 be the function
chosen by Player 0 in G< with witnesses {osz}qe Iy, uely and i e Dygi(s)- Thus
for each r; we have:

o Vue I/B Z aq,ufi(%u)pi,q 2 éffj'pj,m
qelr,

o Vgel, Z agu = 1.
ue[5

Player 0 in game Gg selects a function f” such that f”(u,s’) is then the
minimum value in Valr g that is at least maxgegs(r,),reqt(a) f(q,s")f(q,u).
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The reason for choosing such a f” will soon become clear. The witness of f”
are as follows: ayu s = ¥, cat(a) Lgegs(r:) aq7sra27u and for each t; € gt(f), J,'jj =
Yriegt(a) dm-éltj. Intuitively, Player 0 in G;, Player 0 gives the distribution d
on the guarded terms 7y € gt(a) and in the game G< gives the distribution
to simulate each r; by 3. This determines the distribution d for the game
Gs.

We will now show that f” € F2,. For each s’ € succ(s):

PRI VDY aq,s/( D aq,u) =Y gy =1.

uelg riegt(a) gegs(r;) uelg qeln

Consider any u € gs(t;), where t; € gt(3):

Z au,s’f”(u73,)P(sasl)

s'esucc(s)

Z aq,sra;u)f"(u,s')P(s,s')

s'esucc(s) ( riegt(a) gegs(r;)
- S (S8 ) me ) G0P)
s'esucc(s) \ regt(a) gegs(r;) qegs(ri),riegt(o)

Z aqu’aé,uf(qySl)fi(q,u)P(s,3’)

s'esucc(s) riegt(a) qegs(r;)

= 2 2 )afwfi(q,u) Z aq,s’f(stl)P(Svsl)

riegt(a) qegs(r; s'esucc(s)

E E af],ufi(qau)Jn‘pi,q
riegt(a) gegs(ri)

= Z J’f’i Z aq,uf,(q7 u)pz’q

riegt(a)  qegs(ri)
(]
Z dri Ctjpj,’u,

riegt(a)

v

v

v

!
- dtjpjzu

If Player 1 in Gy chooses (T7,6(u,0),v1), where v; = mingcr f(q,s")),
we make Player 1 in G; choose a state g € Iz (and hence a term r; such
that ¢ € gs(r;)) such that minger f(q,s")f*(q,u) is maximal and move
to (T7,6(q,0),v1). Correspondingly, we make Player 1 in G< to move to
(0(q,0),8(u,0), f'(q,u)).

Consider a triplet of matching paths from Gi, G< and Gs. Suppose the
play continues inside of the MSCC pair of G, indefinitely. Then the play in
(71 is winning because the play is according to a winning strategy of Player 0
in Gy, for the same reason the play in G< is winning. Because of the winning
condition of G, the corresponding play in G is also winning.

Suppose the plays in G< reach a triplet of configurations ((7", ", v1),

(o, 8", v), (T", 8", v3)), where ([&"], [8"]) # ([¢], [¢]). We have val(T",a"")-
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val(a”, 8") < val(T”,5") from the induction hypothesis. We have to show
val(T", ") > vs. Let the triplet of configurations ((T",a/),(c/, 5'),(T", 5'))
be the last configurations such that (o', ') is inside the MSCC pair ([¢], [¢])
and o € |Q|®, and B’ € |[U|®. Player 1 in G; at configuration (T’,a/)
chooses a ¢ such that f(q,T7")f'(q,v) is maximum, thus vz > vi-ve. As
the plays in G; and G¢ are winning for Player 0, val(T”,a’) > v; and
val(a”,8") > vy. This makes val(T",3") > vivy. Observe that vs is the
minimum value in Valyr g which is at least maxger, f*(q,u)f(q,T") thus
maXges fi(q,u)f(q,T") <vs <z € Valg g. Since, Valyr g includes val(T”, 3"),
therefore, val(T", 5") > vs.

Case 4. Let [¢] is bounded and [[¢] is unbounded MSCCs. Gi(M, [¢])
is a weak game, whereas G<([¢], [v)]) and Go(M, [¢/]) are weak stochastic
games. Recall that configurations of Go(M,[¢]) are of the form (T,v’),
where T is a singleton set. In order to reason with matching triplets of
configurations we restrict Player 1 in Gi(M,[¢]) to configurations (T, ¢’),
where T is singleton.

Consider a matching triplet of configurations ((s, ¢}, (@, %), (s,¥)). The
interesting case is when val(s, ¢) = 1, else the claim follows trivially.

1. If ¢ is a conjunction of the form 1 A 1, then Player 1 in Gy chooses
the next configuration (s,;), then Player 1 in G< chooses (p,;) in
G<.

2. Suppose 1) =1 Viha. If @ = o1 Apa, then (¢, 1) is Player 0 configuration
in G. If Player 0 chooses (¢;, 1) then Player 1 in G; is made to choose
(s,0i). If @ = 1 V2, and Player 0 in G7 moves to configuration
(s, i), then Player 1 in G< moves to (p;,1). If ¢ € |Q|® then (p,v)
is a Player 0 configuration. If she chooses (¢,%;) then Player 0 in Go
chooses (s, ;).

The remaining case is ¢ € |Q|® and ¢ € U, where ¢ = &(ry,-+,7,) and
Y = wu. (s,¢) in Gy is Player 0 configuration and she chooses a function
f e F$, with witness de Digt() and {aq,s fger, s'esucc(s) and moves to the
configuration (s, ¢, f). Player 1 at configuration (,u) in G chooses the
action o = L(s) and then chooses a configurations (r,u) such that val(y, )
is minimum (i.e., he plays his best possible move).

(s, ¢, f) in the game G; is a Player 1 configuration and there could be
more than one way for the game to evolve to the next matching triplet
configurations. For example, if f(q,s") > 0 and f(¢',s") > 0, ¢,¢" € I,
then it possible to have the next matching triplets as (s,d(q,0), f(q,s')),
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(6(a,0),6(u,0)), and {',8(u, @) or (5,6(d', 7). £(d ")), (5(d', ), 6(u, ),
and (s’,0(u,0)). We prove that the claim holds for any of the matching
triplets arising from different choice of g € I,, i.e., it holds in the worst case.
Equivalently, we show that the claim holds for a choice of q for which the
value val(s, «)-val(«, 3) is maximum. Consider the triplet of matching plays
(where the configurations are step wise matching) from matching configura-
tions (s, a), («, B) and (s, 5). We have the following cases:

4.a. The triplet of configurations (s, a), (a, 8) and (s, 3) where (a, 8) is not
in the pair of equivalence classes ([¢], [¥]). The claim follows from induc-
tion hypothesis val(s, a)-val(«, 8) < val(s, ).

4.b. For every choice of matching of triplets during the evolution of the
game, every play from («, ) stays in ([¢], [¢]) and are winning for Player
0 in G<. If the matching play in G; starting from (s, «) is winning, then the
matching play in Gy from (s, 3) are also winning for Player 0. Suppose this
is not the case and there is a play from (s, $) that is not winning. Consider
any corresponding matching play in G<, together they define a matching
play in G;. If the play is not winning in Go then the matching play in G;
is also not winning, which cannot happen as val(s,«) = 1 and G is a weak
game.

4.c. For every choice of matching of triplets the play stays in ([¢], [¢]) and
are not winning for Player 0 in G<. Then val(a, 8) = 0 and the claim follows
trivially.

4.d. The triplet of configurations (s, a), (o, 3) and (s, 3) such that not all
the plays in ([¢], []) are winning for Player 0 in G< but probability of the
set of winning plays is greater than zero. Here we explicitly assume that the
MC M and automata Aj, Ag are finite. Every time a configuration (s, a)
is revisited, the same function f ¢ .7-'5’9& is chosen. Hence, the number of
different matching configurations is finite.

We show that the claim, val(s, «)P(«, 8) < P(s,3), holds, where P(s, 3)
and P(«, 3) is the worst case probability of reaching one of the three types
of configurations covered in the previous three cases. Let P,(«a, ) and
P, (s,8) be the probability of reaching one of the three types of configu-
rations (defined in case 4.a, 4.b and 4.c) in n steps from («, §) and (s, 3),
respectively by matching paths, when matching triplet are chosen such that,
P, (a, B)val(s, @) is maximum. We show that P,(s,3) > P,(a, 5)-val(s,a)
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for any n. We proceed by induction on n.

If (s, a), («, B), (s, ) is one of the three configurations from case 4.a, 4.b
and 4.c then Py(a, ) = val(a, ) and Py(s, ) = val(s,3), else zero. From
the definition (case 4.a, 4.b, 4.c) the claim holds for n = 0. We will prove
the hypothesis for n = 1. Consider the triplet (s, a), (o, u) and (s,u), where
a=(ry,,r,) and Py(a,u) =0 and Py(s,u) =0, i.e., the triplet belongs to
case 4.d. But for some successor s’ € succ(s) and q € I, Py(s’,0(u,0)) >0
and Py(8(q,0),6(u,0)) >0 (0 = L(s)). Let f e FZ, be the function chosen
by Player 0 at (s, a) with witnesses {a, s }ger. s7es and d. We have:

Pi(s,u) = Z P(s, s')-Po(s/,(S(u,a)). (7.6)
s’esucc(s)
And,
Pl(a7u) = min Z P0(5(Q7 O'), (5('&, U))pk,q

"ke8H) gegs(ry)

< Z Jri Z Po(0(q,0),0(u,0))pig

riegt(a)  gegs(ri)

(7.7)

For each s’ € succ(s) let gy be the choice of ¢ such that val(s’,0(qs,0))-
val(6(gs,0),0(u,0)) is maximum. By construction, Py(s’,6(u,0)) > Py(5(gq,0),0(u,0))-
val(s’, (g, 0)), since val(s',d(u,0)) > val(d(q,0),0(u,o))val(s’,d(q,0)). From
Equation 7.6.

Pi(s,u) > >, P(s,8)Py(0(q,0),0(u,0))val(s",6(q,0))  (7.8)

s'esucc(s)

Since f € f;’?a, Yriegt(a) 2qegs(ri) Gg,s' = 1. Therefore:

Pi(s,u) > Z P(s,s')( Z Z aq,sf)-Po(é(q,a),5(u,a))-va|(s',5(q,a))

s’esucc(s) riegt(a) qegs(r;)

Since the configuration (s’,d(q,c)) is winning for Player 0, val(s’,d(q,0)) >

f(a,8").
Pl(S,’LL) 2 Z P(Svsl)( Z Z aq,s’)'PO((S(QS’aU)a6(u70))'f(5,>qs')

s’esucc(s) riegt(a) qegs(ry)

We can distribute a4+ according to the following:

Pu(s,u)> >, ) ), Po(0(q,0),0(u,0))P(s, s )aqs f(s,q)
s’esucc(s) riegt(a) gegs(r;)

Z Z PO((S((LO-)?(S(U)U))’ Z P(S7Sl)aq,8’f(8/7Q)
riegt(a) gegs(r;) s’esucc(s)

Z Z PO(5(Q7U)75(u’0))’pi7qdri
riegt(a) gegs(ri)
Pl(av u)

I\

v

v
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Assume now that the claim holds for every matching triplets, for n steps.
Consider the matching triplets (s, «), («, u) and (s, 3) where a = ®(r1,-+,7y,)
and u € U. As before, let f € .7:0?5 be the function chosen by Player 0 at
the configuration (s, ), with witnesses {ag s }ger, sres and d € Dgy(a)- (For
configurations with conjunction and disjunction, the matching paths are
determined in their respective game by the strategies defined before.) We

have:
Poii(s,u) = > P(s,8)-Py(s',0(u,0))
s’esucc(s):3gia, >0
Pn+1(Oé,U) = min Z pi7an(5(q,0),5(u,a)) (79)
ri€8H) egs(ry)

< S dypigPa(8(q,0),8(u,0))
riegt(a) gegs(r;)

By induction hypothesis :
P,(s",0(u,0)) > Py(0(qs,0),0(u,0))-val(s',d(qs,0)) (7.10)
From equation 7.9:

Ppa(s,u)> Y P(s,s")val(s',0(qs,0))Po(6(gs,0),6(u,0))

s’esucc(s)

Choose gy for each s’ such that val(s’,6(gs,0))Pn(6(gs,0),6(u,0) is max-
imum.

Pn+1(37 U) =
Z P(s,8")( Z Z aq,sr)val(s', 0(qs',0))Pn(0(qs,0),0(u,0))
s'esucc(s) riegt(a) qegs(r;)
2 Z P(S7S,)( Z Z aq,£')f(Qs’7S/)Pn((s(QS'aa)aé(uaa))
s'esucc(s) riegt(a) qgegs(r;)
2 Z Z PTL((S((LO-)’(S(UHO-)) Z P(S’S,)aq,s'f(qa S,)
riegt(a) gegs(ri) s'esucc(s)

2 Z Z Pn(d(%a—)?6(“70—))191',(]&(”)
riegt(a) gegs(ri)
= n+1(057 u)

This concludes the proof. O

7.3 Conclusion

We have presented an extension of p-automata [58], and used it to represent
the set of MCs which are bisimilar to the MCs induced by the schedulers
of an MDP. We have seen that the languages of the p-automata are closed
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p-Automata (Huth et. al.) | p-Automta®
Accepts Markov Chains Markov Chains
Complexity of acceptance EXP-TIME EXP-TIME 2
Inclusion Not known Y9-hard
Emptiness Not known ¥0-hard

Table 7.6: Summary of p-automata

under bi-simulation (union and intersection). We have addressed the is-
sue of non-determinism of the probability distribution, and shown that the
extended p-automata are powerful enough to represent various probabilis-
tic systems and logics. One of the salient aspect in which the extended
p-automata differs from the original p-automata is that the number of con-
figurations has become exponential in the size of the Markov chain (though
the acceptance problem is still EXPTIME). Furthermore, the emptiness and
hence language inclusion problem have become undecidable. In the wake
of this undecidability results, we have provided a simulation relation which
resembles the simulation relation of probabilistic automata. A comparison
of the extended p-automata with the p-automata of [58] is presented in the
Table 7.6.
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Conclusions and Discussion

Probabilistic logics embellish temporal logics with mechanism that can rea-
son about probabilities of events. Probabilistic logics allow us to specify
complex temporal properties over the probability space defined by the sys-
tem under scrutiny. Probabilistic computation tree logic (or PCTL), one of
the most widely recognized probabilistic logic, has been successfully used
in expressing properties of probabilistic systems and efficient model check-
ing algorithm have been developed in literature. But we still know next to
nothing about what it means for a logical sentence to be true. Consequently
we have no decision procedure for determining whether the specifications
expressed in the logic are collectively contradictory, or whether one specifi-
cations implies the other, etc. This gap in our knowledge springs from our
lack of understanding of the satisfiability problem (or the validity problem)
of probabilistic logics. This is indeed a very hard problem and we are at the
very primal stage of understanding its various intricacy.

In this thesis we have made attempts at tackling the satisfiability prob-
lem by considering various simple fragments of various probabilistic logics.
One of the major challenges was to identify important fragments of proba-
bilistic logics which fashion themselves to known techniques used for solving
the validity problem. In that endeavour, we have focused our attention on
bounded PCTL and PuTL. The relative expressive power of these logics is
represented by the Hesse diagram in Figure 8.0.1. Bounded PCTL is a re-
striction on PCTL, where until formulas are replaced by bounded wuntils,
whereas PuTL extends modal p-calculus with probabilistic next operators.

e Bounded PCTL: The satisfiability problem is in the class NEXPTIME.
The problem is at least EXPTIME-hard. Since the formulas are closed
under negation, this implies that the problem is in

NEXPTIMEnco-NEXPTIME.
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pLg

puP-calculus

N\
N TN

PuTL PCTL bounded PCTL

\/

Propositional logic

Px.,

Figure 8.0.1: The relative expressive power of various logics.

e PuTL : The satisfiability problem is in the class
UTIME(2°"))nco-UTIME(20(™).

Chapter 5 (page 5) also considers other fragments of PCTL based on the
classification such as safety or co-safety.

In a model-theoretical framework a sentence of a logic can be viewed
as a set of models that satisfies the sentence. A decision procedure, gener-
ally involves devising a finite representation of these sets. Tableau method
and subset construction are the usual methods that follow this paradigm of
reasoning. In our investigation into the tableau method it was instructive
to consider the tableau (which literally means a collection of models) as an
Markov decision process, and the models of the sentences defined by the
tableau as the Markov chains induced by different schedulers of the MDP.
This lead to further investigation of model checking of convex MDPs with
open intervals (Chapter 4, page 61).

Unfortunately, deciding whether an arbitrary MDP D has a scheduler
7, such that the induced Markov chain D,, satisfies a given PCTL formula
is equivalent to deciding the existence of a winning strategy for an 1%—
player game with PCTL winning objective. This problem cannot be solved
by model checking (as discussed in Chapter 4) and is highly undecidable.
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In the face of the above observation, it is natural to ask, if constructing
tableau for probabilistic logics leads to instances of 1%-player games with
PCTL winning objective, then can any instance of the lé—player game be
encoded as a satisfiability problem for some probabilistic logic? In other
words, can we capture the set of Markov chains induced by an MDP as the
satisfiability set of a sentence of some probabilistic logic?

The investigation into the representation of the set of Markov chains
induced by various schedulers of an MDP lead to the study of p-automata.
Automata theoretic approach to logics has proved itself quite useful in as-
certaining decidability of various temporal logics. In the same spirit, p-
automata were developed to provide automata theoretical understanding
for probabilistic logics. In a recent work [19], an equivalence between p-
automata and pP-calculus was formally established. However we were un-
successful in capturing the sets of MDPs by any known logics (figure 8.0.1)
and p-automata. In Chapter 7 (page 113) we were able to model MDPs,
only after considerable tweaking of the semantics of p-automata.

Thus, the decidability of probabilistic logics is still very much an open
problem, we were able to give definite answer only for few fringe cases.
The subject has immense potential for new discoveries. For example, in
the concluding remark of Chapter 6, we talked about the relation between
the logic and obligatory games. The consequence of different restriction on
obligatory games on the decidability of determining winning strategy would
give us a handle on the decidability of corresponding probabilistic logics [28].
Recent workn in [68] fleshes out the difficulty in many of these decidability
problems.

In a related research direction, there is quantitative logic [50], which is
use to reason about minimal and maximal values of the weights of transitions
in a weighted transition system. A complete axiomatization of the logics is
also created, which is carried to PuTL in [71, 51]. A good introduction
to the application of qualitative verification for Aerospace Systems can be
found in [11].
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Appendix A

Parametric (0/1)-counter
automata

In this chapter we improve the undecidability result of [3], where the reacha-
bility problem for automata with three (0/1) parametric counters was shown
to be undecidable. Closer scrutiny of the proof reveals that the number of
parameters (six in total) plays a crucial part in the encoding to the halting
problem of a two counter machine. We can improve this result by showing
that the reachability problem is still undecidable with three (0/1) counters
and one parameter and two (0/1) parametric counters which can only be
compared with a non-parametric (0/1) counter.

1.1 Preliminaries

Let C be a set of counters. The counters will be denoted by capital letters
C := {C1,---,Ck} and their values by small letters. For example, if C; is a
counter then its value is ¢1, a non-negative integer. A tuple of counter values
is denoted by a vector, ¢ := (c1,c¢2,-,¢x) and ¢; is the counter value of the
it" counter in c.

The set of operations and guards are denoted by O and G, respec-
tively. We consider the following types of operations on a counter C|
O = {+a(C),0(C),a}. The operation +a(C) adds a positive integer a to
the current value of the counter C, 0(C) resets the value of the counter to
zero and @ keeps the value of the counter unchanged. The set of guards
G:={C ~a,C ~z,C~C'}, where a is a positive integer, = is a parameter
and ~e {<,=,>}.

A (0/1) counter automaton A is a tuple (S, so,C,0,G,d, F), where S is a
set of states, sp € S is the initial state, I is the set of accepting states (F' ¢ 5)
and C is the set of counters. The operation set O = {+a(C),0(C), 2}, the
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guard set is G = {C ~ a}, where a is a positive integer and ~e {<,=,>}. J is
the transition relation, § € S x O x G x S.

A configuration of the automaton is a tuple (s, ¢), where s is a state and
¢ is a vector of counter values. A computation (or a path) is a sequence of
configurations 7 : (sg,c") = (s1,c!) = - = (s,,c"), where for each 0 < i < n,
(8i,0,9,8i+1) €0, c? = o(céfl) and g(cz) is true for each j < |C|. m; is the it
configuration (s;,c"). The length of 7 is denoted by |r|. The reachability
predicate R4(s, c,t,c’) defines the relation 3 7 : (s9,c’) - (s1,¢) - -+ —
(8n,c™) where (s,¢) = (s0,c) and (¢,¢') = (s0,¢”) (More succinctly 3 7 :
(s,€) >* (t,c")). M4 be the maximum value of the constants in the guard.
If H € then A\ H is the automaton obtained from A after removing H
from the set of transitions.

A parametric (0/1) counter automaton A is a tuple (S, so,C,0,G, 6, F),
where all definitions are the same as the (0/1) counter automaton except
for the guard set G = {C' ~ a,C ~ x} where a € N, z is a parameter and
~e {=,<,>}. A counter C is called a parametric counter if A has a guard
of the type C ~ z, else it is non-parametric. A valuation ¢ assigns to each
parameter an integer value. Aj; is the counter automaton obtained from A by
giving values to every parameter according to ¥. A has a computation under
the valuation ¥, denote as (sg,c”) =% (s,,c"), if there is a computation
(s0,c%) =* (sp,¢") in A. Given two configurations (s,c) and (t,c’), the
reachability predicate R4(s,c,t,c’) is defined as 36,7 : (s,¢) =% (¢,¢').

1.2 Three Parametric (0/1) Counter Automata

Theorem 1.2.1. Let A be a counter automaton with three parametric (0/1)

counters and a single parameter p. The reachability problem for A is unde-
cidable.

Proof. The undecidability of the reachability problem is shown by reducing
a two counter machine U to an instance of a counter automaton A with
three parametric (0/1) counters, two non-parametric (0/1)-counters and a
single parameter p. Let U := (S5,0,50,C,s¢), where S is the set of states,
so and sy are the initial and final states, respectively, the set of counters
C:={C1,C5}. § is the transition relation, where 6 € SxOx G x S and sg € S
is the starting state and sy € S is the final state. Since U is a two counter
machine C7,Cy can increase as well as decrease. On the other hand, the
counters of A (defined shortly) can only increase or reset to 0.

Consider the (0/1)-counter automaton A = (S’,6',s0,C’,sf), where C' =
{C],C{,C",Cy,CY} are (0/1) counters and a single parameter z. The set
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o1 +1(C)), +1(CY), +1(C"") | ;1 true
09 0(Cc™) g (C" = 1),
(If a = {Cj = 0} then (C} =x))
o3 +1(C}),+1(CY),+1(C") | g3 true
04 0(cy) 914 (If a=+1(Cj) then gy = {C] = x+1})
(If a = -1(Cy) then g4 = {C] = 2-1})

Table A.1: For each transition s — s’ we have the gadget as shown above,
where a can be +1(C};), -1(Cj), or C; =0, for j € {1,2}.

S’ contains a state for each state in S. To simplify notation, we use the
same symbol for states s € S and the corresponding state in S’. S’ contains
other states as well for book keeping, which will be mentioned as we use
them.

Fach transition of U is mimicked by a gadget of A. Take a transition
s 5 s of U, where a stands for either (+1(Cy)), (-1(C}j)) or (C;j = 0) for
j =1,2. The corresponding part of A is given by the following gadget:

01,91 03,93

O

Depending on a, the description of o; and g; for ¢ <4 and counter Cj, j = 1,2
is presented below.

The construction gives us two disjoint subsets of S’, namely Q,T ¢ S’.
States in set () has one-to-one mapping with the set of states S of U and
the states in T are the ¢ states added in the construction of the gadget. It
follows that every sequence of states sg, si1,-, sp of U has a corresponding
sequence of states sg---tg---S1---t1+-Sp_1--tp_1---Sp of A, where s; € Q, t; €T
for 0 < ¢ < k and vice-versa. Assume p : (so,c0) = (s1,¢1) = (Sk,Ck)
is a valid computation of U. We show that there exists a computation
p"+ (s0,¢0) =5 (to,cg) =, (51,¢1) =5 (sg,¢),) of A for some value p of the
parameter.

We will use the following functions: ng: C xN — N, gives the value of the
counter C; at state s; in p. Similarly, n,: C'xN - Nand n; : C'xN - N give
the value of the counter C]’~ at the states s; and ¢; in the computations p’,
respectively. We have n,.(C,0) =0 for all » € {s,¢,t} and C e CuC'~{C{,C}}
and ny(C7,0) = p for j € {1,2}. (That is we start with initial value p for
C1,C3.)
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The value of C; in p’ mimics the rise and fall of the value of the counter
Cj in p, for j = 1,2. When the value of C} increases by 1, the value of CJ’- in
the corresponding gadget increases by p+1. When the value of C; decreases
by 1, the value of C]'- increases by p-1 and CJ'~ increases by p when C; remains
unchanged. The value counter C"" is p at every ¢ state.
For an appropriate value p the following relation is imposed by the construc-
tion for ¢ > 0:

n(I(C],"Z.) ZZ:O(HS(CJ’]{)_’_p)’

n‘](c‘;lai) = 07 (Al)
n,(C",i) = ng(C},i) mod p.

We show that the above equation holds for every i*" step of a computation
0 <7< k. For i =0 the statement follows from the initial values of the

counters. We have the following cases:
. .. . .. +1(C5) .
(i) The counter Cj is incremented in the transition s; —5 541 in P

The corresponding part of p’ is s; =* t; =¥ s;,1. Let the value of C’j'~ at s;
be n, thus value n,(C7,4) = 0 and n,(C"”,4) =n mod p (by equation A.1).
At state t;, the value of counter C" is n;(C"",i) = p, owing to the guard
g2. Hence the values of other counters are ni(C7,i) = p—(n mod p) and
nt(CJ’»,z') = n+p—(n mod p). By the construction, the value of the counter
CJ’»’ just before arriving at the state s;;1 is p+1 (it is reseted after reaching
si+1). This is imposed by the guard g4 and hence the value of the coun-
ters C7, C"" at sii1 is n(C},i+1) = p+l+n and n'(C"",i + 1) = p+1-((p-n)
mod p) = (n+1) mod p. Thus the equation (A.1) holds at s;41.

(ii) Similar argument holds for the transition where the counter value

decreases or remains unchanged.

(iii) The value of the counter is compared with zero (s; o7, Si+1). When
the value of the counter Cj in the computation p becomes zero at the state
si, 1.e., ng(Cj,1) = 0, the value of C] at the state s; in p’, is a multiple of
p, ie., nq(CJ’-,i) = 0 mod p (equation A.1). This is deduced by checking
g2 : (C = p) at state t;.

Finally, observe that the counters C{ and C) are non-parametric and can
be removed (similar to region construction for timed automata). This gives
us the automaton A with 3 counters such that each halting computation of
U has a corresponding halting computation of A and vice-versa. O

Corollary. Let A be counter automaton with one non-parametric counter
(whose value can increase or decrease) and two parametric (0/1) counters
with a parameter p. The reachability problem for A is undecidable.
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. $ j € ()
+1(Cl);+1(02)@ : Ci=p,Cy=p

Figure 1.2.1: Counter automaton that solves PCP for two symbols ag and
ai.

Proof. Let C{,C% be the parametric (0/1) counters of A and C4 be the non-
parametric counter (whose value can increase or decrease). Consider any
two counter machine with counters C4,C>. Using similar construction as
described in proof of the Theorem 1.2.1, the (0/1) counters C7,C} along
with a parameter p can mimic the behaviour of Cy. C% can mimic the
behaviour of Cs. O]

We conclude this chapter by showing that the reachability problem for
a counter automaton with two (0/1) parametric counters which can only be
compared with a non-parametric (0/1) counter is also undecidable with one
parameter.

Theorem 1.2.2. Let A be counter automaton with two parametric (0/1)
counters C1,Co and one non-parametric (0/1) counter C', with a guard set
G:={C'<(C1,C"<Cy, Cy =p,Cy =p}. The language emptiness problem for
A is undecidable.

Proof. We provide a reduction from Post’s correspondence problem [84].
Given two maps, ¢1 : ¥ — [0,1]* and ¢ : ¥ — [0,1]*, the problem is to
decide whether there exists a word w € ¥*, such that ¢ (w) = ¢p2(w), where
¢i(w.a) = ¢;(w)-¢;(a) (for i € {1,2}). Define I}, to be the length of the string
¢i(a). An equivalent formulation is as follows: Whether there exists a word
w := $ag-ar--ax$, such that ¢1(ao).d1(a1)¢1(ar) = d2(ao).d2(a1)-d2(ax).

The counter automaton A behaves the following way. For an input string
$w$, the automaton adds 1 to the counter C; and Cs with input $ and then
stores the decimal representation of ¢;(w) in the counter C; (for i € {1,2}).
E.g. consider w := apa; and ¢;(ap) := 010, ¢;(a1) := 01. At the end of the
execution, the value of C; should be 41 which is equivalent to 1 010 01 in
binary (a leading 1 is introduced by the first $ symbol).
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The automaton is constructed the following way. Whenever a letter a € &
is read by the automaton, the current value in the counter C; is shifted to
the left to accommodate ¢;(a). This is accomplished by shifting the bits of
C; by 1! places to the left or equivalently, the value of C; is multiplied with
2la and then ¢i(a) is added to it.

The gadget, Read, for the letter a € X, does exactly this. It is always
entered with an symbols a and all its internal symbols are €. The following
part of the gadget shifts one bit of the value stored in C; by doubling it.

e C'<C;
€ /_\ € Cl > Cv,
@ @
0(C") +1(C") +1(C");+(Cy) 0(C)

The counter C’ starts with value 0. Each time the loop is executed, the
value of C' increases by 2 and C; increases by 1. Suppose the value of C;
before entering the loop was k, hence the loop is exited after k times. Thus
the value of C; is 2k when the execution exists the loop. The Read, first
repeats this process [/ times for each C;, then it adds the constant (¢;(a))10
(the decimal value of ¢;(a)) to each C; (for i =1,2).

The automaton A for two symbols ag and a; is presented in Figure 1.2.1.
When the symbol $ is read for the second time, the automaton checks

whether the two counter values are equal with a help of the parameter
D- O



Appendix B

EXPTIME-hardness of
bounded PCTL

Proposition 2.0.1. The satisfiability of bounded PCTLformula is EXPTIME-
hard in the encoding of the formula.

Proof. We will show EXPTIME-hardness by encoding computations of an
alternating Turing machine in bounded PCTL. Similar technique was also
used in [44] to show EXPTIME harness for PDL. An alternating Turing
machine (ATM) [25] is just like a non-deterministic Turing machine except
there is a function in the specification of the machine called type. The
function type tells us whether a state is an and-state or an or-state. An
ATM with only or-states behaves exactly like a non-deterministic Turing
machine. Formally, an ATM is a seven tuple A = (Q,0,T,4, qo,type, F'). Q
is a finite set of states, @ is a finite set of input symbols, I' is a finite set
of tape symbols (O cT), §c@xT'xQ xT x {L, R} is a transition relation,
go € Q is a initial state, type : @ — {A,Vv}, F € @ is the set of accepting
states.

Configurations o = zgay € I'* x Q x I'", where the tape content is zay =
tape(o) € I'" with a € ', the head is at position |z|+ 1, presently reading
input a and the current state is ¢ = state(o). A configuration o is an and-
configuration (or-configuration) iff type of state(o) is A (v, resp.). o is
accepting iff state(c) € F. For o = xqay the next configuration o’ = 2'q'a’y’
is defined as follows:

hd If (q7 a, qla b7 L) € 5 then x,a, =z and y, = by
o If (Q7 a, q,, b, R) €0 then .T, =xb and Yy = a’y’,

A trace (or a computation) C of A for an input x;, is a set of configuration
such that, gozi, € C and for every o € C with state(o) ¢ F, if type(state(o)) =
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v then one of the next configurations o’ of o is in C, if type(state(o)) = A
then every next configuration of ¢ is in C. Pictorially, C is a tree where each
node is a configuration and edges are defined by the next relation. A trace
C is accepting for an input z if C is finite and only configurations without
a next configuration in C' are accepting. Let:

L(A) ={x e ©®" | there exists an accepting trace C for = }

For some function S: N - N, an ATM A is in ASPACE(S(n)) iff for every
input x € ©F, and every configuration of every trace of z requires at most
S(Jx|) space. Furthermore, we assume that no configuration is repeated in
any trace C of . This is ensured by enumerating every reachable configura-
tion and the numbering can be encoded into S(|z|) cells of the tape. Thus,
the number of steps is less than [T or in 2005(")  where n = |z]. We
will need the following identity [25]:

ASPACE(S(n)) = |J DTIME(2"5(™). (B.1)
k

Now consider an input = of length n to an ATM A € ASPACE(S(n)), where
m =S(n) +2 and the maximum number of steps needed by the machine to
accept (or reject) is k = 2™. Observe that k can be encoded in m space.
We will construct a bounded PCTLformula from A and z such that every
model of the formula encodes a computation of A with input x iff z € L(A).
Each node of the model will encode a configuration of the computation and
the relation nexzt will be simulated by Of or Of (i.e., [Xf]z1 or [Xf]so,
respectively). We will use the following set of propositions AP:

1. Cell proposition: for each a €I and 0 <i<m, Cy; € AP.
2. State proposition: for each g € @), Q4 € AP.
3. Head proposition: for each 0 <7 <n, H; € AP.

Intuitively, C,; denotes that the it" cell of the tape contains symbol a, Qq
denotes that the current state is ¢ and H; denotes that the head is on the "
cell. We will use the following formula to correctly capture the behaviour of
A.

e One state proposition @) is true at every node of the model:

g1 = \/(Qq/\ VAN ~qu)

qeQ q'eQ~{q}
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e One cell proposition is true for any particular ¢ < m.

g2 = 7\ \/(Ca,i/\ A ”Ca’,i)

=0 ael’ a’el'\{a}

e One head proposition is true at any node of the model. Head cannot
cross the first and the last cells.

m-1
g3 =\ (Hi/\/\NHj)/\NHO/\NHm

i=1 j#i

e Unread cell propositions remain unchanged in the next node of the
model.

g1 = NN\ (NHZ' ANCqyi— DCa,i)

1=0 ael’

e Transition relation for and-states.

m-1

gs = /\ /\ /\ (HZ A Ca,i A Qq - /\ Q(H’Hl A Ci,b A Qq’)

=1 ael’ type(q)=n (¢,a,9',b,R)ed

A A\ O(Hizy /\Ci,b/\Qq'))

(¢,a,9',b,L)eé

e Transition relation for or-states.

m-1

ws=AN N A (HZ-/\C',M-/\QQ% V'  O(HiarCip A Qq)

i=1 ael’ type(q)=v (¢,a,9',b,R)ed

vV O(Hin /\Ci,b/\Qq’))

(g,a,9',b,L)ed
e The accepting nodes of the model satisfy the following formula:

gr = \/Qq

qeF

e Let the input x = ag, -+, a,, and b be the symbol for blank space. The
initial configuration is defined as follows:

n m
gin = Qo AL A N~Hi AN \Cayi nCron \ Cog

=1 i=1 i=n+1

6

Let g = /\ ¢;. Thus, the required bounded PCTL formula is defined as
=1

follows: Z

f = ginnlgU%gp]or.
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The correctness of the translation can be checked by inspection, since there
is a one-to-one correspondence between the models of f and computations
of A on input z. Observe that the encoding takes O((|T'| + |Q] + [0])S(n))
time. If S(n) is a polynomial function then f is constructed in polynomial
time of the size of A and z. Furthermore, if S(n) is polynomial in n then
A € EXPTIME (equation (B.1)). This leads to the Proposition 2.0.1. O



Appendix C

Variable elimination

Consider the ring of polynomials D[ X] in the integral domain D, where X
is the set of indeterminates (or variables). A polynomial p(z1,--, x,), with

variables x1, -, x, € X, is seen as a sum of products with nonzero coefficients

dn

o is called a term; together with its coefficient it is

in D, where each a:flmx
called a monomial; the degree of the term :Ucll1~--xzn is dy + -+ +dy; degree of a
polynomial is the maximum degree of its terms. A polynomial is multivariate
if | X| > 1. The ring of multivariate polynomials D[X ] can be viewed as a
ring of univariate polynomials D[ X \ {z}][z] with coefficients in the integral
domain D[X \ {z}] ([10] page 63, Theorem 2.). Particularly, the degree of

a term of a polynomial in D[X \ {x}][z] is the power of z in that term.

E(D[X]) is the set of (in)equations (e.g 2 — zo > 0.4) where the left
hand side (lhs) is a polynomial (e.g. #% —z2) in D[X] and the right hand
side (e.g. 0.4) is in D. A variable z is independent of H ¢ E(D[X]) iff
H=HnE(D[X ~{z}]) else it is dependent. The quotient domain Q(D) is

the rational form of the type 5 where f,ge D.

A weighted tree T is a triple (V, E,w), where V is the set of vertices,
E ¢V xV is the set of edges and w is an injective weight function from
E -V, where V is a set of variables. Let X = img(w). Define relations
next and parent as follows; for ,y € X, v,v/,v1,v3 € V, with w™(2) = (v1,v)
and wt(y) = (v',v2), (z,y) € next iff v = v', and (z,y) € parent iff v; = v'.
next™ is the transitive closure of next. Consider a term o = x1---x such
that for every 1 <i <k, (z;,x;+1) € next. Define head(o) = 1, tail(o) = xx
and x;--x) as a suffix of o, for 1 <i < k. Let H ¢ E(Q[X]) be a set of
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(in)equations with the following properties. For each § € H :

P1. For all x € X, lhs(&) € Q[X \ {z}][x] — degree(§) < 1
P2. For each term o = zq---xy in &, (x;,Ti+1) € next.
P3. If Ihs(§) = ayo1 + -+ + a0y, where a; € Q and o; are terms,

then for all 1 <4,j <k, (head(o;),head(c;)) € parent.

Suppose H ¢ E(Q[X]) satisfies properties PI, P2 and P3 and let n
be the number of variables and m be the number of (in)equations in H.
We only consider positive variable valuations. Thus for every variable x we
have the in-equation = > 0 in H. We present a non-deterministic algorithm
to decide whether H is satisfiable. We begin by setting Hy = H and at
each iteration i, we eliminate a (particular) variable, say x and transform
the set of equations from H; ¢ E(Q[X]) to Hi1 € E(Q[X ~\ {x}]). We
consider comparisons x to be of the type {>,=,<}. (Strict inequalities can
be removed by adding very small positive quantity e. For example f < g can
be transformed to f+e€ < g.) The algorithm proceeds in the following steps:

1. If H; is independent of all variables, then each (in)equation, involves
only rational numbers (and e —* 0)!. Return true iff each (in)equality
in H; is true.

2. Choose a variable x such that every variable y with (z,y) € next™, is
independent of H;.

3. H, is the largest subset of H; such that every formula in H, is de-
pendent on x. If H, is empty then H;,; = H;. Suppose H, is
not empty, every inequation £ € H, can be transformed to a form
(cxmag+aor+---+agoy), where 0,01, -+, o are terms in Q[ X\ {z}] and
ag, -+, ar € Q. We will denote this form by f-xxg. Set H; 11 = H; \ H,.

4. Define A, € Q(Q[X ~ {z}]), for m € {<,=,>} as follows:

=
7A\
I

«x<g)eHy} u{l}, quotients that are at least as large as x

i
A -
Qe e

| (f=
| (frx=g)eH,}, quotients that are equal x
| (fx

=
Voo
1l

x>g)e Hy} u{e}  quotients that are at least as small as z,

where g = ag + a101 + -+ arog and f =o.

¢ tends to 0 from the positive side.
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5. Non-deterministically choose an ordering of elements in A< and A..
Then we have the following set of (in)equations:

91 << Inq < I+l _  _ Gno < Ina+1

Ins
<. < < = < <<= C.1
fl fm fn1+1 hng fn2+1 fng ( )

where, 9 is in Acfor 1 <i<ng,in A- for ny +1<i<ny and in A, for

i
no+1<17<ns.

6. For each 1 < j <ns, we have §; := (gj fj+1 ¥ gj+1fj)- 5 is obtained from
&; by canceling variables that are common divisors of the polynomials
in the left hand side and in the right hand side of §;. Add f; to Hiyq
for each &; (1 <j <ng). Go to step 1.

First we will show that H;,; created in step 6, satisfies P1, P2 and P3.

Consider,
/ /
ap+ai101] + -+ apog b0+b10'1+"'+b10'l
X

(C.2)

o o’

Let & = (o-x ™ ag + a1o1 + -+ + agoy), ' = (o"x x by + bio] + -+ + bjo]) and
&,&" € H; satisfy P1, P2 and P3. From the choice of the variable x (step 2),
it is evident that either olo’ or ¢o’|o (a|b means a divides b). W.lo.g let us

assumed oo’

= 0. The crucial observation is that if ¢’|c then ¢’ is a suffix
of o, lest there should exist a variable y, such that (z,y) € next and y is not
independent of H;.

Therefore, equation (C.2) can be rewritten as:
agp +ayoq + - +agop x boo' +byo’ o] + -+ b’ o). (C.3)

P3 holds for equation (C.3), this follows trivially, as head(c) = head(o;) =
head(c”) for 1 < i < k. (tail(¢”),head(c”)) € next, since o = ¢”¢’ and
(head(o;),head(07})) € parent for all 1 <i,5 <. Thus, the new equations
added to H;i1 (after canceling common variables) also satisfy P1 and P2
(cancellation is valid since variables can only take positive value).
Correctness of the algorithm is due to the following arguments:

1. Suppose H; is feasible and let v be a satisfying valuation of the vari-
ables. Then there exists some order among the rational numbers

obtained by substituting the values of the variables in the quotients
g(x1,
{ (:017

dering in the equation (C.1) and obtain H;,; subsequently, then v is

UC”)} present in Ac and As. If we choose this order as the or-

also a satisfying valuation for (in)equations Hj.1.

2. If H;.; is satisfiable then the (in)equations (C.1) are true for some
value of X ~ {z}. If A_ is not empty then set x = ?&, else choose a
n2
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value for x such that fcﬂ <z < “}Li. The value thus chosen is strictly
ny no

greater than 0, since € € A,.(Hence, rational form and cancellation of

variables defined in step 5 and step 6, respectively is valid.) This gives

us a satisfying valuation of H;.

Observe that at each iteration 4, the size of H; is O(|H|) and in every iter-
ation we remove one variable and spend O(mn) in obtaining H;,1 (modulo
division of rational numbers). The maximum number of iteration is n and
total time complexity of the non-deterministic algorithm is O(mn?). Thus
satisfiability of a set of polynomial equation with properties P1, P2 and P3
is in NP.
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