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1 Introduction 

The wind power industry is experiencing significant pressure to reduce the levelized cost 

of energy. Predictive maintenance is a promising technology for offshore applications. 

As an operator of several GWs of wind power worldwide, the company E.ON Climate & 

Renewables (EC&R) is developing predictive maintenance solutions to support its busi-

ness. In a pursuit to exploit all available data sources, the company has partnered with 

the Center for Wind Power Drives (CWD) at RWTH Aachen University to conduct re-

search on the usability of high-frequency turbine controller data for predictive mainte-

nance applications.  

The wind power industry uses state of the art SCADA technology to remotely monitor its 

wind turbines, thereby storing 10-minute measurements of signal data as prescribed by 

the IEC 61400-12 Norm [IEC15]. EC&R has access to the wind turbines’ controller data 

at high sampling rates. More than 9 months’ worth of high-frequency SCADA data, in-

cluding several thousand channels, are available at sample rates of approximately 0.05 

to 8 Hz ready to be explored and analyzed. As the analysis and storage of the vast 

increase in data come at a cost, the industry requires insight as to which signals are 

relevant, their respective use cases, storage, and costs. 

The used wind farm has reoccurring issues with the converter system (e.g. bus bar and 

cables, and delta modules) as well as the hydraulics and oil system, which account for 

the majority of faults at Amrumbank West, one of EC&R’s offshore wind farm, making 

up 45% and 9% of the losses respectively [EON18]. 

EC&R’s primary goal in this research is to explore the usability of turbine controller data 

for predictive maintenance, thus asking whether high-frequency wind turbine controller 

data can be used to predict failure modes. Specifically: 

 Can the faults be detected in the data? 

 How far in advance can they be detected? 

The hypothesis of this research is that the use of high-frequency signal data, as opposed 

to the otherwise used 10-minute averages, yields predictive insight and an improved 

capacity of conditions monitoring, and can be deployed in the company’s predictive 

maintenance tool in the future. This hypothesis is being put to the test by developing 

normal behavior models to detect pitch tracking faults with the help of data driven mod-

elling based on varying sample rates of the turbine controller data and is furthermore 

tested on multiple models. 

2 State of the Art 

A normal behavior model (NBM) is an example of a condition monitoring system that 

can be used for predictive applications. Typically, non-parametric models such as ma-

chine learning (ML) algorithms are used to monitor features that are associated with 
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normal operational behavior [SHO14]. The flexibility offered by these models enables 

the creation of NBMs at the component level to monitor performance, health, or other 

conditions that the model intends to reveal [GON17].  

For technical systems, time series data extracted from the IoT network is used as input 

for NBMs. In a first development step data associated with normal or healthy behavior 

is used to train a ML algorithm. The developed models can be deployed to monitor data 

and evaluate how much the signals deviate from the expected behavior. If the prediction 

error deviates past a certain control value, a warning can be issued. The technology 

comes at a cost, the initial investment costs are usually significant and therefore require 

long-term planning to amortize over the lifetime of a given system’s project [GRO17, 

GOD15]. Data analytics is often named in the context of big data as more and more data 

is being produced in industrial infrastructures, i.e. sensor and log data from SCADA sys-

tems [DOR15]. The data on wind turbines is measured at critical major and minor com-

ponents, e.g. the gearbox, generator, and pitch and yaw system [MCM15, GOD15]. 

In ML, preprocessing time series data can have a big impact on the subsequent fore-

casting performance. Pre-processing includes filtering noise, dealing with missing data, 

as well as transforming and scaling data. The process aims at uncovering features that 

can be “learned” by a model, thereby improving its performance [AHM14]. In the first few 

steps of data pre-processing, filtering and cleaning. The aim of this step is to omit 

incomplete data points [SHO14] and consider only relevant data points, thus reducing 

data that can either be regarded as noise [EST96], or for NBM, considering only faultless 

operation by omitting any abnormal behavioral data [GON17] (e.g. abnormal pitch angle 

or transient situations, such as ramp up or shut down). Filtering can be done either man-

ually or with the help of unsupervised algorithms, e.g. a density-based clustering algo-

rithm. The algorithm searches for clusters that have a higher density of data points than 

outside of the cluster. Therefore “outliers” that aren’t contained in any of the thresholds 

are considered noise. The idea behind the algorithm is that each point within a cluster 

must contain a minimum number of samples in its neighborhood [EST96]. 

Many ML algorithms only take input data within a certain range. Neural networks, for 

instance, require input between the values -1 and 1, which requires the data to be scaled 

between these two values [AHM06]. When features for ML contain data that varies on 

the order of magnitude, scaling the features within a similar range typically yields better 

results. Various types of scaling methods exist, the most common of which will be pre-

sented in the following paragraphs: normalization and standardization. Standardization 

scales every sample around zero while considers the mean and standard deviation of 

the data set [GOD15]. Standardization is commonly used and recommended when work-

ing with ML algorithms such as a multi-layer perceptron [PED11]. Many ML algorithms 

struggle with non-linear relationships or heavily skewed data.  

Data/ dimensionality reduction techniques are another class of predictor-transfor-

mations. These types of transformations reduce the data by generating smaller sets of 
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predictors that seek to capture most of the information contained in the original variables, 

thereby reducing the computational load. The process is often called signal or feature 

extraction [KUH16] and a common method is called a principal component analysis 

(PCA), which drastically reduces dimensionality while preserving the maximum amount 

of variance (statistical information) [JOL16].  

For time series prediction problems, other more manual forms of feature engineering 

exist, including several methods that are applied to the data to improve prediction re-

sults. The simplest approach is called lagging values, the process of which includes is 

shifting time series values by 1 or n-number of timestamps to provide information on 

expected values when preceded by another value. Time series differencing takes the 

gradients of preceding values into consideration. This type of feature engineering can 

be especially well-suited at capturing the dynamics of a technical system, e.g. a wind 

turbine’s transient conditions. Data can be smoothed out (moving averages), thereby 

reducing noise, allowing the model to focus on global properties of a time series 

[AHM06]. 

3 Methodology 

The question in the scope of this paper is whether high-frequency turbine controller data 

can be used for predictive maintenance at wind turbines. To answer this question sys-

tematically, the question is broken down into several more manageable questions which 

can be evaluated independently and are specific demands by the industry partner. The 

questions can be evaluated with the help of other available data and by applying some 

of the methods found in today’s literature.  

This publication deploys various NBMs with varying data input and ML models to gener-

ate a matrix of solutions. These can be analyzed and evaluated answering the questions 

in scope. After that, various NBMs can be developed with a variation of the chosen data 

input, e.g. the sample rate of the time series. Turbine controller data from one turbine is 

resampled at various rates – in this case every 10 minutes (IEC standard) and 10 sec-

onds – and used as input for various models that are designed for NBM. Three regres-

sion models are used: a random forest regressor (RF), a support vector machine regres-

sor (SVM), and a multi-layer perceptron regressor (MLP).  

Active power, wind speed, pitch position, set-point, and hydraulic pressures for all blades 

are considered in this paper. Figure 1 shows a flow chart that depicts the processing 

steps and intermediary objects created along the way on the data pre-processing, train-

ing and testing steps for a normal behavior model for specific wind turbine components. 

The data processing flow follows the standard data science steps of developing and 

training models, evaluating these, and last but not least testing the model. 
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Figure 1: Processing flow chart 

The control values (CV) used in this thesis are based on the standard deviation and 

mean of the prediction error. Three times the RMSE of the prediction error was used to 

determine an upper and a lower control bound scaled by the mean. Any value that is 

predicted within these intervals is considered as normal behavior. With respect to a nor-

mal distribution these control values will include 99.7 % of the data.  

4 Data Analysis 

A first smart step in ML is to evaluate over- and underfitting which can be done with the 

help of the RMSE values of the training and evaluation set. When the difference between 

the RMSEs on the training and evaluation data is small there is a low probability that the 

model is overfitted. The SVM showed the best results, although overall its RMSE was 

among largest. This was true for both high frequency and low frequency data (Figure 2).  
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Figure 2: RMSE using training and evaluation data, and the difference between the two 

The prediction error distribution is analyzed in the next step (Figure 3 & Figure 4). In 

addition to the models’ characteristic of producing predictable error values (i.e. a normal 

distribution), the suitability of the method for determining the control values can be eval-

uated. Figure 3 and Figure 4 show the distributions for both sample rates using the SVM. 

From left to right they contain a prediction error histogram, a Q-Q-plot and a scatter plot 

of the prediction errors vs. the actual values. All contain horizontal green lines for the 

upper and lower CV. The red line in the Q-Q-plot represents the theoretical quantiles vs. 

the expected values for a theoretical normal distribution. The distributions are quite nor-

mally distributed, and few data points are classified as outliers. With distributions as 

these, the chosen method for the CV certainly makes sense and can be expected to 

produce meaningful classifications of abnormal behavior. Both sample rates produce 

similar and reliable error distributions. 

 

Figure 3: Evaluation plots (PC1: turbine: A18, model: SVM, sampling rate: 10min) 
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Figure 4: Evaluation plots (PC1: turbine: A18, model: SVM, sampling rate: 10s) 

Table 1 shows the average coefficient of determination for all three ML models at both 

sample rates for a theoretical normal distribution (red diagonal line in Q-Q-plot) and is 

treated as a measure of normality on a scale of 0 to 1. It shows that the SVM produces 

the most normal prediction errors and therefore is most suitable for the CV method be-

cause it produces the most reliable prediction errors. 

  10 min 10s  

 RF 0,69 0,32  

 SVM 0,94 0,97  

 MLP 0,70 0,78  
 

Table 1: Coefficient of determination of the Q-Q plot prediction 

The NBM can be deployed on test data. The test set includes two pitch tracking events 

that are associated with abnormal operational behavior. The idea is that predicted values 

that are associated with normal behavior will show no deviation greater than the deter-

mined CV (purple horizontal lines in each of the following figures). If the NBM ingests 

data associated with abnormal behavior, the prediction errors will be larger.If the devia-

tion exceeds the CV a deviation can be registered by the system. (Exceeding the CV 

are marked with a red vertical line). 

The next two figures (Figure 5 and Figure 6) are zoomed-in plots of the fault detection 

on March 24. At both resolutions, the plots reveal that the detection of pitch tracking 

faults is possible in real-time (green line). The prediction error (blue line) seems to cross 

the lower control value before the fault occurs. It must be denoted that the blue line is, 

in fact, not a true representation of the values, but merely a linearly interpolated line 

connecting individual measurements which are plotted. While this detection is significant 

and a valuable insight, the lack of predictive insight leading up to the fault over the pre-

vious hours makes this detection more a case of a reverse engineered alarm. 
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Figure 5: Prediction error plot (PC1, turbine: A18, model: SVM, sampling rate: 10min) 

 

Figure 6: Prediction error plot (PC1, turbine: A18, model: SVM, sampling rate: 10s) 

The figures show that the detections are independent of the sample rate. Both sample 

rates can make the detection equally well and do not show trend behavior leading up 

the fault. 

5 Conclusion 

The results of this thesis do not support the assumptions that higher frequency data 

would yield better results in predictive modeling. The assumption was that sample rates 

greater than 10-minute averages of the operational data that includes a larger selection 

of signals would greatly improve predictive insight and more accurately detect failure 

modes of wind turbines.  

The paper showed that while detections can be made, there are no significant differ-

ences between the 10-minute averages and the higher resolution 10-second averages. 

For the higher resolution NBM, abnormal deviations were detected in real-time while the 

alarms occurred. There was a slightly delayed detection with 10-minute average given 

the nature of averaging data. Given the right signal data, pre-processing, model selec-

tion, and tuning higher frequency data can be used to detect known failures. The predic-

tion error is viewed as a level of deviation from the norm. The CV show when that ab-

normality threshold is met. The detections made in this paper exceeded CV were sudden 

and showed no previous trend that could be interpreted or used. Therefore, no predictive 

insight could be shown in this research. 

It could not be shown that predictive insight can be gained by deploying NBMs with 

higher- frequency turbine controller data, that is, by using the methods used in this the-

sis. Alternative methods could be tested, but the more plausible solution is that the failure 

modes in this paper either occur rapidly with no symptoms leading up to them, or the 
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available signal data is simply a strong limitation to accurately detecting the root-cause 

of the faults. In future cases, additional 10-minute averages can be used to create pre-

dictive applications. If a solid case can be made for higher-frequency data, e.g. vibra-

tional data, a new study would be required. 
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