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1 Motivation

In the early days of integrated circuits, silicon area and circuit performance were the
restricting cost metrics of VLSI design. Continuing advances in CMOS technology have
since lead to ever increasing transistor densities allowing for unprecedented levels of inte-
gration. The resulting challenges of power delivery and heat dissipation on the one hand
as well as the rising demand for mobile computing performance on the other hand have
caused the focus to shift towards power efficiency during VLSI design.

The power consumption is affected by a large number of design decisions on all levels of
abstraction. Starting from architectural optimizations and operation scheduling, examples
for power optimization continue down to clock or even power gating on the gate-level
and device sizing on the physical level. Depending on the design method and the level
of abstraction that is targeted, there are various approaches towards power estimation
that allow evaluation of possible design alternatives leading to well-grounded decisions.
Naturally, the more physical information of the circuit is known, the higher the confidence
in the power estimation can be. At the same time, while the estimation methods allow for
higher accuracy at lower levels of abstraction, the process of power estimation typically
becomes more complex and therefore slower.

Due to this trade-off between estimation accuracy and complexity there is no single
optimal estimation approach but rather a selection of possible methodologies suitable for
a specific design stage and accuracy requirement. These might include coarse spreadsheet
based power budgeting on system level during design specification on one end of the spec-
trum and physical level SPICE-compatible circuit simulation on the other end. Physical
circuit simulation is typically the most reliable source for power estimation prior to actual
measurement of fabricated silicon. It can be applied to any type of circuit without the
need for pre-characterization or knowledge from previous designs since it is based on solv-
ing of differential equations governing the currents and voltages on all circuit nodes. Not
surprisingly, this physical analysis results in huge sets of equations even for medium sized
subcircuits. Full-chip physical simulations for current levels of integration are therefore
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Figure 1.1: Schematic overview of power estimation methodologies on different levels of
abstraction

unfeasible.

Due to the huge complexity of today’s fabricated circuits, sign-off level power estima-
tions are commonly performed on higher levels of abstraction particularly on the gate
level where multiple established estimation flows exist. These analyses on the gate level
are suitable in particular to top-down design flows employing logic synthesis tools because
the precharacterized gate data is required for synthesis optimizations anyway and is dis-
tributed by standard cell developers. The power analysis on gate level abstracts from
actual currents and voltages by simply considering switching events and boolean logic
states. The related power consumption is derived from characterized lookup tables.

With increasing levels of integration even the derivation of meaningful switching activi-
ties for gate-level power estimation is becoming costly in terms of runtime. Consequently,
a large number of power estimation methodologies on even higher levels of abstraction have
been proposed. The general approach is based on encapsulation of larger logic blocks into
macro-models that are characterized for suitable input parameters. On register transfer
level possible model boundaries are function slices like adders or memories and parameters
during power lookup might be statistical metrics of the input vectors. Even higher levels
of abstraction might use models that estimate the power of a System-on-Chip by only
considering the time each processing element spends in each operating state. An overview
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of different approaches towards power estimation is shown in Fig. 1.

Apart from possible runtime benefits, power estimation approaches on higher level of
abstraction also feature the advantage that power consumption can be estimated at early
stages of design implementation even before detailed information is known about lower
levels. This is possible because the pre-characterization that is commonly required for
these methodologies allows for the transfer of knowledge about the power consumption
from earlier designs to new circuits. While considering advantages of high level power esti-
mation it is imperative to keep in mind that they are traded for a general loss in accuracy.
The desired abstraction from numerous physical effects that allows for generalization and
speedup leads to considerable discrepancies with actual power measurements.

This work aims at improving power estimation accuracy on selected levels of abstraction.
The main focus is on including effects due to signal delays that were previously disregarded
during power estimation but often contribute significantly to total power consumption.
Despite the rising influence of leakage power, for most applications the main contribution
to power consumption is still caused by the switching of circuit nodes. An accurate
prediction of switching activities on all nodes therefore holds promise for high accuracy
of power estimation. Unfortunately, due to different delay paths that lead to unaligned
transitions on different inputs of gates, the gate outputs might feature multiple transitions
in the same clock cycle. Depending on circuit topology, these spurious transitions, known
as glitches, can form a significant contribution to the power consumption not least because
once a glitch is created it might propagate through downstream gates. At the same time,
accurately predicting the number and properties of these glitches on higher levels of
abstraction is challenging, as they are strongly dependent on physical circuit properties.

Two novel methodologies for glitch-aware power estimation will be evaluated in this
work. The first approach extends the classic macro-modeling approach on register trans-
fer level or gate level by suitable glitch metrics that allow for the estimation of the effect
on power consumption as well as the prediction of propagated glitch metrics on the macro
outputs. The accurate propagation of glitch metrics is important in order to evaluate the
power model iteratively across the circuit hierarchy. The second approach focuses on the
gate level and demonstrates that more physical information needs to be included in the
precharacterized lookup library in order to allow accurate power estimation considering
real delay effects like glitches. Both approaches are aimed at exploiting the faster estima-
tion runtimes of higher abstraction levels while improving accuracy compared to previous
approaches by utilizing selected information from lower abstraction levels.
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Before these proposed approaches are introduced, the terminology used throughout this
work as well as previous work will be discussed in Chapter 2. Due to its prevalent usage
as signoff-level reference, the accuracy that can be expected from commercial gate-level
power estimation tools as well as shortcomings inherent to these estimation approaches
are determined Chapter 3. Chapter 4 proposes novel glitch metrics to accurately capture
glitch properties and to allow for power estimation as well as propagation of these glitch
metrics by lookup of precharacterized models. An alternative approach is presented in
Chapter 5 which solves inaccuracies of traditional gate level power estimation flows by
substituting logic simulation with concatenation of looked-up analog waveforms and han-
dling transition events that were previously neglected. Finally, the benefits and suitability
of both propositions are evaluated in Chapter 6.
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2 Introduction

When power consumption of digital circuits is to be determined, in the majority of cases
the goal is the estimation of average power consumption. One of the few exceptions is
the design of the power supply network which requires consideration for the tolerable
supply voltage drop and electromigration both of which are determined by the maximum
instantaneous power consumption. For important power related challenges like thermal
package design or battery-constrained low power operation the maximum power consump-
tion is of little concern because it only applies to a negligible amount of operating time.
For these applications the average power consumption for a typical work load or selected
input stimuli needs to be determined. Because of this focus on the mean power, many
approaches in the field of power estimation are of probabilistic nature in order to capture
typical behavior as will become apparent in the following chapter.

This fact is related to the problem of defining how “mean power consumption” is to be
determined. Because of the strong dependence on switching activity, the characterization
of a circuit macro requires the definition of typical workloads which is challenging for
many applications. Changes in the operating environment often result in drastic changes
in workload. On top of that, the trend of growing process variations in deep-submicron
CMOS technologies also affects power consumption which will be discussed in more detail
at the end of this chapter. All of these uncertainties add up to the result that a single
figure for mean power consumption is only marginally valuable if no knowledge about the
spread of the power consumption under expected operating conditions is available. Due
to the strong dependency on workload- and variation-specific switching activity, classical
corner-based characterization is not sufficient to determine this spread. Instead, detailed
characterization of power consumption calls for statistical approaches like Monte-Carlo
simulation and mean estimation. The requirement of analysis for differing input parame-
ters in order to determine power variations increases the need for accelerated evaluation
of power consumption. At the same time, this challenge lends itself to probabilistic ap-
proaches that are inherently capable of handling some form of variation.
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Before discussing previous work related to power estimation and specifically the han-
dling of glitch based contributions, a brief introduction to sources of power estimation of
static CMOS circuits and the related terminology will be given.

2.1 Contributions to CMOS power consumption

The power consumption of a CMOS circuit can be separated into a dynamic and a static
component. While the dynamic power, Pdyn, is caused by the loading and unloading of
circuit nodes during logic evaluation of the circuit, static power, Pstat, is mostly indepen-
dent from switching as it is caused by undesired leakage currents from supply to ground
nodes that are quasi constant during one logic state:

P = Pdyn + Pstat. (2.1)

The main contribution to these leakage currents in technologies below 45 nm is sub-
threshold leakage, which results from the fact that the drain current cannot be fully turned
off in real transistors. Gate leakage which had gained importance due to shrinking gate
oxide thickness resulting in direct tunneling has been reduced again by the adoption of
high-k dielectric materials in recent CMOS technologies [1]. The gradual replacement of
planar transistors by multigate devices at advanced technology nodes offers the promise
of decreased leakage current by regaining control over the channel [2]. While the contribu-
tion of static power can be significant, its estimation complexity is relatively low because
of the sole dependency on logic states.
Dynamic power consumption on the other hand depends on the switching of logic states

over time which leads to both switching power, Pdyn,sw, when charging capacitive loads
and short circuit power, Pdyn,sc, during the short period when both pull-up and pull-down
networks of a CMOS gate are partially conducting:

Pdyn = Pdyn,sw + Pdyn,sc, (2.2)

Pdyn,sw = α · f · Cload · V 2
DD, (2.3)

Pdyn,sc = 2 · α · f ·Qsc · VDD. (2.4)

In this equation f specifies the clock frequency, Qsc is the average charge that is dis-
sipated during each switching window due to short circuit paths and α is the activity
factor which can also be regarded as the probability that the capacitive load, Cload, is
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charged in a clock cycle. This simplified view on dynamic power consumption abstracts
from the effect of internal node capacitances inside the pull-up and pull-down networks
that could be approximated by an average effective increment on the capacitive output
load. Because both components of Pdyn are directly proportional to clock frequency it is
often advantageous to consider the average energy dissipation per clock period Edyn which
eliminates this dependency:

Edyn = Pdyn

f
= α · Cload · V 2

DD + 2 · α ·Qsc · VDD. (2.5)

The dynamic energy dissipation stays constant for varying operating frequencies as long
as the same operations are performed and the maximum operating frequency that still
results in full-swing transitions on all nodes is not exceeded. Because the static power
consumption, in contrast, is only marginally influenced by the frequency of switching
events, this also introduces an elegant way of separating both components. Assuming
that the operating frequency can be manipulated during measurement or simulation, the
power consumption of a circuit macro performing the same work load at two distinct
frequencies f1 and f2 can be determined as

P1 = Edyn · f1 + Pstat, (2.6)

P2 = Edyn · f2 + Pstat. (2.7)

Solving these equations for static power and dynamic energy therefore results in

Pstat = f1 · P2 − f2 · P1

f1 − f2
and (2.8)

Edyn = P1 − P2

f1 − f2
. (2.9)

Dynamic energy dissipation strongly depends on the probability of switching at indi-
vidual circuit nodes which is defined by the switching activity α. This factor is generally
subject to large variation because it strongly depends on the workload which is carried
out by the circuit under test. A clock has an activity factor of α = 1 caused by deter-
ministic rising edges in each cycle while a random signal would feature α = 0.25 resulting
in charging of the load in every fourth clock cycle on average, which is equivalent to a
toggling of the logic state in every second cycle. This consideration indicates that no logic
signal carrying information could feature an activity α > 0.5 because even toggling of the
logic state in every clock cycle would only result in α = 0.5. Unfortunately, for real signals
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Figure 2.1: Generation of a glitch pulse due to unbalanced paths at gate inputs.

featuring transport delays this does not need to be true, because spurious transitions due
to unbalanced path delays can lead to additional switching before a signal settles to its
stable state. The creation of one of these spurious pulses commonly known as glitches
is demonstrated in Fig. 2.1 for a simple circuit example implementing the exclusive OR
function of two inputs, a and b. For simplification, all gates are assumed to feature the
unit delay of τ . When both inputs change at the same time, output f is not supposed to
switch at all according to the logic function. However, due to the circuit structure in the
assumed implementation, the transitions on the inputs d and e of the bottom NOR-gate
are not aligned which results in a rising logic state for f before it settles to the low state
again. Because of such glitches, the switching activity of a circuit node may exceed the
limit of zero-delay evaluation of α = 0.5.

Depending on the circuit topology, glitching can be responsible for a significant amount
of the power consumption ranging from 20 – 30% for a large number of circuits but
even reaching contributions of approximately 70% of the total power for selected circuits
like combinatorial adders or multipliers [3, 4]. These types of circuits typically feature
topologies with a large number of gates that are connected in series, which is measured as
the logic depth of a circuit. Therefore, when a glitch is created in an early state of these
circuit structures it can potentially influence the switching activity of a large number of
gates by propagating through the circuit hierarchy. The contribution of glitching to total
power consumption is therefore becoming even more significant in designs that employ a
high logic depth between register stages in order to mitigate increased variability or in
applications using subthreshold operation for ultra-low power consumption due to growing
delay variations [5, 6].
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2.2 Power estimation methodologies

The development of both fast and accurate power estimation methodologies has been in
the focus of research for more than 20 years to this date. While in the early days little
to no CAD tool support was available for power estimation [7], suitable estimation tools
on different levels of design abstraction have long since been published by all leading
electronic design automation companies. As already stated in the motivation, there is
no single optimal power estimation approach. Instead, the suitable method needs to be
selected regarding the design style and required accuracy.

The most accurate way to evaluate power consumption of digital circuits prior to fab-
rication remains physical SPICE-compatible circuit simulation at transistor level. The
need for accelerated power estimation arises due to the complexity linked to solving the
systems of differential equations that are a fundamental part of physical simulation. Over
the years, computing power has increased exponentially and numerous fast-SPICE simu-
lators have been developed. They rely on techniques like parasitic reduction, partitioning,
isomorphic matching, piecewise linearization or parallelization to deliver results that are
hardly distinguishable from full SPICE accuracy for many applications despite dramati-
cally reduced runtimes [8]. However, at the same time circuit sizes have likewise grown,
following the trend for higher levels of integration, so the challenges of power estimation
remain similar.

The basic principle behind virtually all accelerated power estimation approaches is to
employ knowledge about the power consumption of existing circuit components to esti-
mate the power of a yet to be realized implementation that is build from the same or
similar components. A potentially costly precharacterization step is required to extract
this knowledge and generate the component macromodels. However, once this power
consumption data has been collected, all subsequent power estimations can profit from
accelerated runtimes since evaluation of these macromodels is often as simple as a series
of table lookups. In order to obtain the required accuracy, power models are usually pa-
rameterized which results in an estimation flow that is typically separated into two steps.
During the first step the parameter values that apply in the analyzed implementation
are determined. These values are employed in the second step to look up the power con-
sumption for all macromodels. The granularity of the models and the relevant evaluation
parameters vary in a wide range depending on the targeted abstraction level. Possible
boundaries for these models on different levels of abstraction are exemplified in Fig. 2.2.
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Figure 2.2: Examples for boundaries of macromodels on different levels of abstraction.

2.2.1 Macromodels on gate level

Gate-level power models were the earliest approaches to accelerate power estimation.
Traditionally, dynamic switching power, Pdyn,sw, according to (2.3) was considered the
dominating contribution so the power model was essentially reduced to a switched ca-
pacitance and the goal of power estimation was an accurate estimation of the switching
activity on all nodes of a gate level circuit. This could be achieved by performing logic
simulation while monitoring signal states [7]. Modified simulators improved the handling
of finite signal slopes [9, 10, 11, 12] as well as considering additional power contributions
like short circuit power and internal gate capacitances [13]. These effects are particularly
relevant for gates of higher complexity where internal power consumption can be the dom-
inating contribution compared to charging of the output node. All of these effects can
be easily captured by characterizing the power consumption related to all combinations
of transitions from one set of input states to another [14]. For an N -input gate, this
requires characterization of 22N transitions to be stored in a lookup table. This complex-
ity is further increased when the effect of varying output loads and transition slopes is
considered [15]. Established commercial gate-level power estimation flows used during
sign-off level power estimation are still based on this characterization of transitions but
are limited to events featuring the toggling of only one input in order to balance accuracy
and complexity [16].

Irrespective of the specific modeling approach, the input parameters for gate-level mod-
els always include switching activity on all circuit nodes of the gate-level netlist. When
logic simulations are used to determine these switching events and average power consump-
tion is to be estimated, sequences of input vectors featuring the desired statistics need
to be applied until convergence can be observed [17]. This potentially time-consuming
step can be replaced by probabilistic propagation of signal statistics. Starting from signal
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statistics on the circuit inputs like probabilities for signals to be in high state and proba-
bilities for signals to switch during a specified time interval, the resulting probabilities at
the remaining circuit nodes can be analytically determined in one sweep over the circuit
hierarchy [18, 19]. Improvements to this propagation of signal statistics added support
for handling of temporal [20, 21] and spatial correlation [22, 23] between signals.

2.2.2 Macromodels on register-transfer level

By encapsulating larger circuit blocks in macromodels, low level effects like capacitive cou-
pling or internal timing hazards can be abstracted. Functional blocks like adders, shifters
or register slices are natural boundaries for power macromodels on this abstraction level.
The choice of model parameters that promise the highest accuracy are the individual
states of all macro inputs before and after a switching event. Unfortunately, for typi-
cal macroblocks on register-transfer level the exponential dependency of characterization
complexity on the number of input signals renders this approach infeasible. Efforts have
been made to reduce the size of this characterization table by clustering of selected states
assuming relatedness of neighboring inputs [24] or analyzing similarities in switching of
selected internal nodes [25]. Another approach that is based on switching of individual
inputs (and potentially outputs) without full characterization builds the regression model
in the form of

Power(k) = c0 + c1 ·
(
i1(k − 1)⊕ i1(k)

)
+ c2 ·

(
i2(k − 1)⊕ i2(k)

)
+ . . . , (2.10)

where ij(k) is the logic state of input j at time k and “⊕” is the exclusive-or opera-
tion indicating a change of the logic state per input [26, 27]. The coefficients cj can
be obtained by linear regression analysis from the characterized power consumption of a
representative number of switching cycles applying random input vectors. A number of
refinements to this approach were proposed to automatically determine special inputs [28]
or conditions [29] which select between fundamentally different operating states in order
to build separate regression models for each state. Correlations between switching of
multiple inputs can be captured by expanding of the regression model to include terms
indicating pair- or group-wise simultaneous switching [30]. This promises a significant
gain in accuracy but causes the number of regression coefficients to increase exponen-
tially. A reduction in the number of parameters can be achieved by employing signal
statistics that are averaged over selected inputs. Typical statistical parameters are the
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average probability of all inputs to be in high logic state and the averaged probability
for switching on inputs or outputs in a specified time interval [31, 32, 33]. Due to the
reduced number of parameters, a full characterization of selected input vector streams
featuring all desired statistics can be performed, which allows for direct table lookup pos-
sibly involving interpolation during estimation. Additional dimensions can be added to
the lookup table to consider supplementary statistics like correlation between bits [34].
Due to the averaging of switching statistics over all input bits, information on differing
behavior of individual bits is discarded, which might degrade estimation accuracy. The
observation that input vectors in arithmetic circuits often show strongly correlated behav-
ior for the most-significant bits and quasirandom switching for the lowest bits motivated
an approach that builds separate models for lower and upper bit weights of word-level
models [35]. The boundary between both bit types can be calculated from word-level
statistics like mean, variance and autocorrelation of the input vectors [36]. Alternatively,
these characteristics can directly be used as model parameters for components featuring
inputs that have associated word-level values [37].
Evaluation of these models can be accelerated by employing simulations on the func-

tional level instead of relying on gate-level simulators or probabilistic propagation. Se-
lected high-level metrics can even be propagated throughout the circuit hierarchy by
building of additional lookup tables [38, 37].

2.2.3 Macromodels on system level

On system level a model boundary might enclose whole submodules that are simulated
using transaction level modeling. Due to the limited visibility of internal functionality,
especially when components are implemented as black-boxes, possible input parameters
during estimation are the time spent in coarse functional states (e.g. idle/active) [39, 40,
41] or the number of accesses on the outside ports [42, 43, 44]. Without knowledge of
the implementation, power consumption in different power states can be characterized by
measurement or from datasheets. During estimation, a transaction-level simulation that
determines the state of the system component by monitoring its inputs and outputs can
be performed which allows for accumulation of power consumption. When more detailed
information on a module is available, the state of selected internal registers or signals
indicating a specific event can be included in the parameter space [45, 46]. Particularly
for processor cores, a multitude of specialized power models were proposed. They rely
on additional parameters like instruction traces [47, 48, 49], cache hits/misses [50, 51] or
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Figure 2.3: Error of zero-delay characterization of dynamic energy dissipation due to
glitches inside an 8x8 array multiplier for different choices of component
boundaries.

pipeline hazards [52].

2.3 Power estimation considering real delay effects and

glitches

The correct handling of glitches during power estimation is challenging because glitching
is highly dependent on accurate gate delays [53] which are in turn defined by physical
parameters like parasitic capacitances or cross-coupling. The power consumption caused
by glitches that are generated inside of a macromodel is automatically captured during
characterization. Power consumption due to propagation of glitches which appear on
the inputs of the circuit macro on the other hand needs to be estimated accordingly.
Following this reasoning, it would be advantageous with respect to errors due to glitching
to choose the boundaries of macromodels as large as possible, preferable as large as full
pipeline states to guarantee glitch-free inputs. However, macros of this size might not be
generic enough to be reusable in a large number of power estimations. On top of that,
model parameters that still result in feasible characterization effort become increasingly
inaccurate with growing macro size as discussed in the previous section.

Consequently, if glitch-free operation cannot be guaranteed, macromodels need to con-
sider occurrence of glitches on the macro inputs. This need to address glitching on model
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inputs is demonstrated in Fig. 2.3 for different choices of model boundaries when regard-
ing an 8x8 array multiplier macro based on carry-ripple adders where the inputs, X and
Y , are assumed to be glitch-free. This example was specifically chosen due to the high
degree of glitching inside the regular array structure. Nevertheless, characterization of the
whole multiplier array using glitch-free stimuli for both inputs results in perfect power es-
timation because the glitches that appear inside the macro are inherently captured during
the low-level characterization simulation. In contrast, when all constituting adder rows
inside the multiplier macro are stimulated separately using the same zero-delay stimuli
that would result from the original input vectors, a growing error of the dynamic energy
dissipation can be observed starting at the second adder row. When glitches that appear
at the output of the first adder row are neglected while determining the switching activity
at the inputs of the second row, the dynamic energy dissipation of the second row is un-
derestimated by 28%. The error in following adder rows is even larger because a certain
number of glitches at the input of each row propagates to the output resulting in an ad-
ditional increase in switching. Because of the dominating contribution of glitching to the
overall power consumption for the analyzed multiplier macro, the total dynamic energy
is underestimated by 57% compared to the simulation of the full macro. While this error
seems excessive, at least the effect of glitches that are generated inside the carry paths of
the adder rows is captured when characterizing functional slices like adders. When the
model granularity is increased further down to the gate-level not even these glitches are
observed when employing zero-delay switching activity. This results in an overall error of
64% for the estimation of dynamic energy.

Early gate-level estimation approaches that recognized the importance of glitching for
power estimation focused on the use of accurate gate delays during simulative evaluation
of switching activities in order to capture the increase in state toggling [7]. Limited output
slew of circuit components in combination with nonuniform gate delays lead to attenu-
ation of glitch pulses that are shorter in time than a gate-dependent threshold during
propagation through the circuit hierarchy. To consider this glitch filtering characteristic
of circuit gates, postprocessing of logic simulator results [12, 10] or custom event based
simulators considering the finite signal transition times [9, 11, 15] were proposed. The
thresholds for propagated pulse widths or load dependent transition times as well as power
consumption due to partial-swing glitch pulses need to be determined by characterization
or estimated from technology features. If probabilistic analysis is employed to analyze
switching activities instead of logic simulation, similar considerations lead to concepts like
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probability waveforms that consider gate delays during propagation of switching probabil-
ities and consequently allow for filtering of non propagating glitch pulses [22, 6, 54, 23].
Alternatively, empirical correction factors that are calculated from topology properties
or input vector characteristics have been proposed which are used as weighting factors
during calculation of power consumption for individual gates [55, 56]. All of the above
approaches solely focus on the correct analysis of switching activities which only form
the input parameters to the required model lookup translating the switching events into
power consumption. Due to the prevailing digital viewpoint, filtering of pulses is limited
to a binary decision of propagating or blocking. When they are considered at all, partial-
swing transitions are only determined in a postprocessing step to derive scaling factors to
the power consumption of the related full-swing transitions.

By increasing the abstraction of macromodels to register-transfer level, the inherent
consideration of glitches internal to the model boundary might appear to lessen the need
for accurate handling of glitches. However, pure functional simulation which is commonly
employed at this level of abstraction to accelerate model evaluation offers no possibility
for propagation of glitches because only cycle-accurate timing can be observed. Instead,
handling and propagation of metrics determining the glitching activity on input signals
to the macromodel must be performed by means of additional lookup tables. The metric
chosen by Raghunathan et al. [37], denoted glitching activity, defines the rate of glitch
pulses appearing on the inputs of circuit components without specifying their shape or
the time of their appearance. Liu and Papaefthymiou introduce an additional parameter
which specifies both the pulse width of each glitch as well as the spacing between glitch
pulses in case of multiple glitches [57]. However, partial swing glitches are not considered
in their model and all glitches are assumed to occur synchronously at the beginning of
each clock cycle.

Accurate estimation of power consumption due to glitching is clearly more challenging
than estimation of functional switching power. On top of zero-delay functional simula-
tions, interrelated delay effects which are defined by the physical level of the design need
to be taken into account. To determine the state of the art concerning power estimation
intended to capture glitching power, chapter 3 will evaluate established gate-level power
estimation approaches. The insights gained regarding potential shortcomings related to
these methodologies will serve as a motivation for novel estimation techniques proposed
in subsequent chapters.
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2.4 Power consumption and variability

Because of the direct dependency of the threshold voltage on leakage currents, static
power consumption is strongly affected by process and temperature variations. Dynamic
power consumption due to functional circuit evaluation is less susceptible to process vari-
ations or changes in temperature when the dominating contribution can be assumed to
be the charging of capacitances. However, when glitches are considered, the influence of
variability on dynamic power consumption becomes less predictable. This is due to the
fact that the generation and propagation of glitches is determined by the delays of indi-
vidual circuit components which in term might vary considerably due to local or global
variation.

With the notable exception of the introduction of multigate structures, the continuing
technology scaling is accompanied by increasing variability. Therefore, this influence
of process variations on dynamic power consumption forms a considerable challenge for
suitable estimation methodologies.

An early method for calculating coarse bounds of the dynamic energy dissipation when
variation cannot be neglected calculates ambiguity intervals at the outputs of gates based
on minimum and maximum delays of all gates during which the logic state might vary
depending on delay variations [58]. The lower bound of the dynamic energy dissipation is
derived from a gate level estimator supplied with switching activities under the assump-
tion that there is at most one transition during each ambiguity interval. In contrast, for
the estimation of the upper energy bound the maximum number of full-swing transitions
which fits inside the ambiguity interval when spaced by at least the gate delay is assumed.
This simplistic method assumes uniformly distributed gate delays and allows no conclu-
sions regarding the expected distribution of dynamic energy inside the derived bounds.
Higher accuracy for the estimation of switching activity variations can be achieved by
extending the concept of probabilistic transition waveforms that list possible events on
circuit nodes with a given probability. Each event is not only annotated by its (mean)
occurrence time but also by the standard deviation assuming normally distributed gate
delays [54]. The delay and energy dissipation of gates including variation is derived from
a precharacterization employing Monte-Carlo simulations. The effect of spatial correla-
tion of parameters related to dynamic power consumption can be considered in order to
improve estimation accuracy [23]. In order to limit the estimation complexity, no informa-
tion about switching direction or intersignal correlation is considered for this approach. A
fundamentally different approach proposes to employ Monte-Carlo Analyses based on fast
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Figure 2.4: Variation of energy dissipation per cell measured as 1σ quantile bounds relative
to mean energy dissipation per cell for an 8× 8 unsigned array multiplier.

gate-level simulation by annotating precharacterized lookup tables for delays, slopes and
switching energies as well as their sensitivities regarding selected variation parameters to
the descriptions of basic cells [15]. During elaboration phase all instances of each basic
cell are assigned an updated set of lookup tables according to the random variation pa-
rameters. Partial-swing glitch pulses are considered in a postprocessing step by deriving
pulse heights from the assumed linear signal slopes.

The effect of delay variation on energy dissipation is demonstrated by a Monte-Carlo
analysis of an array multiplier which exhibits both a high logic depth and a large number
of reconverging delay paths. For 1000 circuit simulations both global and local variation
parameters are varied for the same stream of input operands. The variation per multiplier
cell is illustrated in Fig. 2.4 by comparing the relative deviation of the lower or upper
1σ quantile bounds from the mean dynamic energy dissipation per cell. This variation
metric specifies the minimum deviation interval around the mean which contains 68.3% of
energy dissipation results. The dependency of the observed variation on delay variations
becomes apparent in the increasing relative variation of the energy dissipation towards
the lower left corner of the array. This effect can be explained by the growing number of
possible delay paths terminating at these multiplier cells. In contrast, static effects like
varying load capacitances or short circuit currents during switching affect all multiplier
cells in the same way. Due to averaging across the multiplier array the 1σ bound of
the total dynamic energy dissipation deviates from the nominal dynamic energy by only
3%. The maximum total dynamic energy dissipation for the full array recorded during
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Monte-Carlo analysis is 7.3% higher than the analysis result employing nominal models.
This result which was obtained without consideration for varying operating voltage and

temperature demonstrates the impact of variations of the propagation delays on dynamic
energy dissipation. The effect is exacerbated by applications which adopt subthreshold
operation in order to increase energy efficiency because of increased delay variations at
these operating points. As a consequence, in addition to the discussion of the accuracy at
the nominal operating point the following discussion of power estimation methodologies
needs to evaluate the ability of each approach to consider and report variation effects.
However, the largest variations in dynamic energy dissipation are caused by the choice

of input stimuli that are applied to the circuit under test. The input stimuli for the
demonstration of variation effects were sampled from uncorrelated uniform distributions
spanning the full wordlength of eight bit. This results in independent toggling of each
input bit in every second cycle on average. This assumption might be far from the work-
load that could actually be observed during functional operation of a certain multiplier
macro. Moderate modifications of the input statistics can result in significant deviations
in energy dissipation. For example, the reduction of the switching activity for input Y
by a factor of two decreases dynamic energy dissipation of the multiplier macro by 10%.
In many applications it is hardly possible to specify a single stream of input stimuli that
captures typical circuit behaviour. In that case, the stimuli-dependend variation of energy
dissipation should be considered in order to derive well-grounded design decisions.
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3 Limits of Commercial Gate Level
Power Estimation

Due to ever increasing levels of integration physical circuit simulation has long since ceased
to be able to support full-chip power estimations. As an alternative, gate level estimation
flows that fit well into top-down design methodologies employing standard cell synthesis
have been developed. A number of commercial tools from established vendors in the field
of electronic design automation on this level of abstraction have reached a reputation
for accuracy that allows their usage as sign-off level estimators. In fact, many proposals
for power estimation methodologies on higher levels employ these gate-level estimations
as a reference to compare against [49, 59, 60]. Because of their importance in digital
circuit design in combination with the lack of comparative studies targeting the accuracy
to expect, the following discussion will focus on the work flow of commercial gate-level
power estimation tools and possible sources of errors related to them. This in turn will
help to identify the requirements for improved power estimation approaches that will be
proposed in subsequent chapters.

Gate-level power estimation as performed by commercial state-of-the-art tools typically
operates by accumulating precharacterized energy values associated with single-signal
switching on individual gate inputs. As discussed previously, the information on signal
switching on all gate inputs that is required for this approach can either be determined
by probabilistic propagation of switching activities throughout the circuit or by logic
simulation using the gate-level netlist and a testbench supplying suitable input stimuli. In
order to be able to consider delay effects like glitches on the input of gates, the evaluation
of switching activity needs to take realistic gate delays into account. These gate delays,
that are strongly dependent on the output loads of the individual gates, can for example
be estimated by static timing analysis (STA) and annotated to the gate-level netlist during
logic simulation or analytical propagation of switching probabilities. This standard work
flow for gate-level power estimation is shown in Fig. 3.1.
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Figure 3.1: Standard gate-level power estimation flow.

The depicted situation is that of postlayout power estimation where information from
the physical level can be annotated to the gate-level view in the form of parasitic capac-
itances of interconnects. While gate-level estimation can also be performed at prelayout
design stages, the accuracy of power consumption estimations will deteriorate accordingly.

While the standard use model of commercial gate-level power estimators is focused on
classic corner-based design, the effect of process variation could be incorporated by a large
number of repeated evaluations of the power consumption for varying gate delays. The
required information on delay variation could for example be determined by statistical
static timing analysis (SSTA). However, since the focus of the chapter is the evaluation of
the overall accuracy of state-of-the-art power estimators for specific operating conditions
and workloads, the effect of variation is not considered in the following discussion. The
potential sources of error which will be discussed remain the same for repeated evaluation
of the work flow.

Deviations of the estimated power consumption compared to physical-level power sim-
ulations might be introduced by any of the steps involved in gate-level power estimation
as depicted in Fig. 3.1 [4]. The following sections will discuss selected steps in the work
flow in order to highlight shortcomings and evaluate their impact on accuracy of gate-level
power estimation.

3.1 Errors due to logic simulation

Power estimation on gate-level requires accurate knowledge of the switching activity on
all circuit nodes. The most common method of determining this switching activity on
all circuit nodes is to perform a logic simulation of the design under test using either the
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Figure 3.2: Example of glitch propagation and related switching power

gate-level netlists themselves or the RTL sources followed by a mapping step. Simulation
on register-transfer level features the advantage of significant speedup compared to the
gate-level but introduces additional errors because accurate timing properties of the gate-
level implementation cannot be considered. In order to reduce the possible error sources,
the following discussion will therefore focus on the gate-level instead. As an alternative
to logic simulation, probabilistic methods for the calculation of switching activity like
tagged probability waveforms [6] or transition waveforms [54, 23] could be used. These
probabilistic propagation approaches suffer from similar problems as logic simulation when
handling glitches but introduce additional sources of error due to the challenge of handling
signal correlation due to reconvergent fanout during propagation of signal statistics.

The main contribution to errors during logic simulation is the handling of gate delays
which lead to glitches on the circuit nodes. In order to be able to observe glitches, it is
necessary to annotate accurate gate delays to the gate-level netlist during simulation. The
gate delays, that are themselves dependent on the transition slopes on the gate inputs and
the capacitive load at the gate outputs, can be estimated using the static timing analysis
functionality that is typically provided by complementary tools to the gate-level power
estimators.

A limitation that is inherent to logic simulation is the restriction to two signal levels
(true and false) and the abstraction from finite signal transition slopes. In contrast,
glitches occurring during actual operation of the circuit do not necessarily feature full-
swing transitions due to limited signal slopes that cause the output to be discharged
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Figure 3.3: Multistage 4-input XNOR gate from a commercial standard-cell library

before it has been fully charged. The second physical effect that is hard to model in logic
simulation is the impact of a glitch on the input of a gate on the output of that gate. In
logic simulators this effect that is known as glitch filtering is commonly implemented by
using inertial gate delays. The effect of this filtering is to prevent pulses that are shorter
than the gate delay from propagating to the gate output. This is a simplification since the
physical effect of a short pulse at the input is often visible as a partial swing pulse at the
output. Fig. 3.2a shows the relationship between the input and output pulse widths for
a simple NAND gate and a more complex multi-stage XNOR gate. As opposed to logic
simulation with glitch filtering, circuit simulation does not feature and abrupt cut-off of
the propagation for short input pulses but shows a smooth transition instead. Fig. 3.2b
demonstrates that pulses that do not feature full swing transitions nevertheless cause
significant power consumption. Inertial glitch filtering as employed in logic simulators
would overestimate power consumption resulting from small glitches applied to the NAND
gate while it would potentially lead to underestimation of the XNOR gate by rejecting a
large number of valid glitches. This is a typical result which demonstrates that the gate
delay is not a good measure for glitch filtering.

The inertial glitch filtering fails completely for complex multistage gates like full-adders
or gates like the 4-input XNOR gate shown in Fig. 3.3. The delay of these gates that is
looked up from the design libraries depends on the sum of stage delays. In contrast, for
correct application of the pulse filtering using the inertial gate delay model the delay of the
slowest stage would be significant. Since no information about the internal structure of
the basic cells is known to the gate-level power estimation flow, the default glitch filtering
tends to be too aggressive for complex multistage gates. This effect is demonstrated in
Fig. 3.4 showing waveforms from physical circuit simulation and logic simulation alongside
cycle accurate power estimations for a compound 4-input XNOR gate that features pulses
of increasing width on a single input. In circuit simulation, the pulse in the second
cycle can already be observed on the internal node X1 and the pulse of the fourth cycle
propagates to the output demonstrating the multistage nature of this gate. In contrast,
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Figure 3.4: Glitch filtering and estimated glitch energy for pulses on a single input of a
4-input XNOR gate (A1 = 1, A3 = A4 = 0)

logic simulation erroneously rejects all pulses until the seventh cycle when the default
pulse filtering depending on the inertial gate delay model is employed.

Logic simulation without glitch filtering on the other hand results in gross overestima-
tion of switching power as demonstrated in Fig. 3.4 despite efforts of power estimation
tools to recognize glitches in the logic waveforms and apply a scaling factor to the power
consumption of related events. The threshold for glitch detection is typically derived from
the transition times, trise and tfall, at the gate output as a pulse width

tpulse <
trise + tfall

2 . (3.1)

Once a glitch has been detected the power associated with the pair of constituting tran-
sitions, Ptrans, is reduced by a factor to approximate the power consumption of a partial-
swing pulse as

Pglitch =
(

2 · tpulse

trise + tfall

)2

· Ptrans. (3.2)

This approximation clearly fails for the considered XNOR gate where the short transi-
tion times of the output stage are only marginally related to the minimum propagating
pulse width. Consequently, the scaling factor is only applied to the power related to the
erroneously predicted glitch in the first cycle of Fig. 3.4 during the logic simulation with-
out glitch filtering. All subsequent pulses are not recognized as glitches and are therefore
estimated as separate transitions.
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While for complex gates the default glitch filtering routinely rejects valid pulses which
leads to an underestimation of switching power, the opposite can be true for simple gates
with gate delays that may well be shorter than the transition time of the output. This
is demonstrated in Fig. 3.5 for a 2-input NAND gate featuring pulses of increasing width
on one input. Inertial gate delay filtering predicts the third pulse to propagate to the
output while in physical circuit simulation the first output pulse to show 90% output
swing is in cycle nine. Due to the steep transition slopes of the output, no pulses are
recognized as glitches during power estimation preventing any possibility of correction of
this overestimation.

3.2 Errors due to energy lookup

Apart from the errors caused by inaccurate switching activities that serve as inputs to the
gate-level power estimation tools, there are shortcomings which are directly dependent on
the estimation methodology itself. While in general it is hard to separate the contributions
to the total error observed during power estimation, during an analysis of benchmark
circuits from the ISCAS85 suite the power estimation tools were supplied with switching
activities that were extracted from outputs of low-level circuit simulations [4]. The power
estimation using these “perfect” switching activities still showed deviations of up to 16%
from circuit simulation references.
These errors are mainly caused by simplifications in the format of the characterized cell

libraries that were introduced to reduce the characterization complexity and the size of the
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library itself. Apart from the restriction to full-swing transitions, the most fundamental
simplification is the omission of multiple-input events from the library [61]. Because of
this, the cell library used during lookup only contains power values related to the toggling
of a single input. Power consumption related to the simultaneous or quasisimultaneous
switching of multiple inputs can only be approximated. The situation is even more severe
for gates where switching of the individual inputs always results in switching of the output
while quasisimultaneous switching of multiple inputs does not cause the output state to
change. The 4-input XNOR gate which has already been regarded in the last section
can again be used as an example to demonstrate this shortcoming. In Fig. 3.6 the cycle
accurate power estimation for selected events on single or multiple inputs is compared to
the circuit simulation reference. The power consumption of the single-input event in the
second cycle is estimated perfectly but for switching of three inputs in the fifth cycle the
power is underestimated by 20%. The lookup based power estimation fails completely in
the third and fourth cycle that both show two input events which cancel out the output
effect that would have been related to each single-input event. As the lookup tables in
the cell library that are dependent on both the transitions on the input and output do
not contain events for switching of inputs without activity on the output, no matching
power values can be found for either of the input switching events and power cannot be
estimated at all. Consequently, this effect is most pronounced for gates like XOR gates or
full adders where all single input events result in output switching while quasisimultaneous
switching of multiple inputs might not cause the output state to change.
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name circuit function number of gates
CMOS40 CMOS28a CMOS28b

C432 Interrupt Controller 87 75 75
C499 SEC 154 185 157
C880 ALU 150 158 153
C1355 SEC 131 194 149
C1908 SEC/DED 180 190 184
C2670 ALU/Controller 342 352 358
C3540 ALU 454 477 444
C5315 ALU 586 635 639
C6288 16-bit Multiplier 599 623 609
C7552 Adder/Comparator 729 766 693

Table 3.1: Characteristics of the ISCAS85 circuits

3.3 Benchmarking of estimation accuracy

In order to evaluate the accuracy of gate-level power estimation, a range of typical cir-
cuits was analyzed using two commercial gate-level power estimation flows. The reference
power consumption data against which the estimations are compared was generated us-
ing physical-level circuit simulation running the same testbench as during estimation. In
order to be independent of discrepancies caused by specific technologies or library files,
this analysis was carried out using three different advanced commercial CMOS technolo-
gies: CMOS40 is a 40-nm CMOS technology while CMOS28a and CMOS28b are both
28-nm CMOS technologies from two different foundries. All benchmark circuits were
implemented using the foundry-supplied general purpose standard cell libraries.

3.3.1 ISCAS85 circuits

One of the most widely used benchmark suites which is commonly known as ISCAS85
stems from the International Symposium of Circuits and Systems in 1985 [62]. This pack-
age consists of 10 purely combinatorial industrial designs that were originally published
as flattened gate netlists without description of the implemented function. Over the years
these circuits have been used in a variety of fields from logic synthesis to test pattern
generation. Because of their wide acceptance, individual circuits from this benchmark
set have also quite commonly been used to demonstrate power estimation methodologies.
For the purpose of this comparison, the original netlists where implemented using stan-
dard cell synthesis. The characteristics of the results after place and route for all three
technologies are summarized in Table 3.1.
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The ISCAS85 circuits were analyzed using both physical circuit simulation and gate-
level power estimation using two different commercial tool suites. The power consumption
observed during circuit simulation is regarded as the reference in the following comparison.
As no realistic testbenches are published for the ISCAS85 circuits, the circuit simulation as
well as the gate-level power estimations assume the same stream of uniformly distributed
random vectors on the circuit inputs for a duration of 1000 cycles. The main focus of this
analysis is the handling of effects due to real gate delays which have little to no impact
on the static power consumption. Therefore, the total power consumption was separated
into dynamic and static power. Gate-level power estimation reports separate figures for
dynamic and static power by default. In circuit simulation this separation was performed
according to (2.8) and (2.9) by varying the operating frequency while executing the same
testbench.

The estimates for dynamic energy dissipation of both commercial tool suites, denoted
as Tool A and Tool B, are compared to the reference from SPICE-level circuit simulation
in Fig. 3.7a. The mean deviation from the circuit simulation result is as high as 14.6% or
15.2% for Tool A and Tool B respectively. Even more interestingly the dynamic energy
is overestimated by up to 23% for some circuits while it is underestimated by up to 43%
for others. The highest errors can be observed for circuits c499, c1355 and c6288. Upon
closer analysis it is found that this error is mainly caused by the use of large XNOR gates
with three or four inputs for c499 and c1355, which implement error detection functions,
and full-adders in c6288, which represents a 16-bit multiplier. These types of gates are
examples for compound gates that suffer both from excessive pulse filtering when using
the default inertial gate delay model as described in section 3.1 as well as from missing
library table entries for multi-input events as elaborated in section 3.2.

While the errors due to simplifications of the provided library are inherent to the state-
of-the-art power estimators, the misestimation of switching activities can be reduced by
more complex glitch filtering. Since no information on the minimum pulse width on gate
inputs that leads to propagation is included in the default characterization library, a cus-
tom precharacterization of all cells used in the netlist is required in order to determine the
propagation properties. This additional information can be used to pre- and postprocess
the data related to the logic simulator, resulting in more realistic glitch filtering [4]. As
shown in Fig. 3.7b, the estimation error can be reduced for most circuits by inclusion
of extended glitch filtering. In particular, the errors during the original estimation of
circuit c6288 appear to be almost exclusively caused by over-aggressive pulse filtering



30 3 Limits of Commercial Gate Level Power Estimation

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

d
y
n
a
m
ic
en
er
g
y
er
ro
r

co
m
p
a
re
d
to
S
P
IC
E

c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

CMOS40 CMOS28a CMOS28b

(a) default inertial delay pulse filtering

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

d
y
n
a
m
ic
en
er
g
y
er
ro
r

co
m
p
a
re
d
to
S
P
IC
E

c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

CMOS40 CMOS28a CMOS28b

(b) extended glitch filtering based on custom precharacterization

Figure 3.7: Estimation error of dynamic energy dissipation for two commercial gate-level
power estimators (filled bars: Tool A, empty bars: Tool B) compared to
SPICE-level circuit simulation for three CMOS technologies.

in the inertial delay model. In contrast, the estimation for the problematic circuits con-
taining large XNOR gates still shows underestimation of up to 34.5% despite significant
improvements. An explanation of this discrepancy is found when the maximum logic
depth, which measures the number of gates that are connected in series, is compared for
both circuit types. For the multiplier circuit c6288 the logic depth is found to be 36 or
37 for all technologies while a maximum of only 14 gates are connected in series for the
error detection circuits. Resulting from the three times higher logic depth, the accurate
propagation of glitches becomes critical for c6288, because a large number of gates are
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name number of gates (number of registers)
CMOS40 CMOS28a CMOS28b

s27 14 (3) 20 (3) 13 (3)
s208 45 (8) 52 (8) 56 (8)
s298 76 (14) 88 (14) 86 (14)
s344 87 (15) 126 (15) 100 (15)
s349 89 (11) 117 (15) 105 (15)
s382 126 (21) 148 (21) 128 (21)
s386 78 (6) 80 (6) 74 (6)
s400 127 (21) 136 (21) 124 (21)
s420 101 (16) 105 (16) 110 (16)
s444 128 (21) 143 (21) 128 (21)
s510 123 (6) 126 (6) 130 (6)
s526 119 (21) 129 (21) 134 (21)
s641 111 (14) 127 (14) 110 (14)
s713 110 (14) 130 (14) 108 (14)
s820 136 (5) 137 (5) 127 (5)
s832 129 (5) 132 (5) 131 (5)
s838 183 (32) 208 (32) 215 (32)
s1196 271 (18) 270 (18) 271 (18)
s1238 288 (18) 274 (18) 272 (18)
s1423 458 (74) 592 (74) 475 (74)
s1488 284 (6) 301 (6) 294 (6)
s1494 296 (6) 297 (6) 297 (6)
s5378 776 (162) 966 (162) 911 (162)
s9234 655 (132) 898 (132) 705 (132)
s13207 1009 (213) 1365 (213) 1111 (213)
s15850 585 (128) 675 (128) 655 (128)
s35932 8096 (1728) 12427 (1728) 9488 (1728)
s38417 6589 (1462) 8912 (1462) 8200 (1462)
s38584 7166 (1159) 9428 (1159) 7498 (1159)

Table 3.2: Characteristics of the ISCAS89 circuits

potentially affected by glitch pulses propagating along logic paths. Quasisimultaneous
switching resulting in errors during energy lookup on the other hand is more likely for
shorter and more balanced signal paths as found in the error detecting circuits.

3.3.2 ISCAS89 circuits

In order to extend the complexity of the ISCAS85 benchmarks as well as to provide the
opportunity to benchmark scan-based test generation algorithms, during the International
Symposium of Circuits and Systems in 1989 a set of sequential circuits was distributed [63]
that was compiled from industrial and university sources and is commonly known as
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Figure 3.8: Estimation error of dynamic energy dissipation for two commercial gate-level
power estimators (filled bars: Tool A, empty bars: Tool B) compared to
SPICE-level circuit simulation for two CMOS technologies.

ISCAS89. As with the ISCAS85 circuits, the benchmark circuits were published as gate-
level netlists without logical hierarchy and mostly without functional description. The
gate counts resulting from implementation of the ISCAS89 benchmark circuits in the
analyzed technologies as well as number of internal states are summarized in Table 3.2.
In addition to the inclusion of sequential cells, this benchmark set contains significantly
more complex circuits than could be found in the ISCAS85 set.

Analogous to the analysis of the purely combinatorial circuits the placed and routed
netlists including parasitic components were employed in an evaluation of the dynamic
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energy estimated using two leading gate-level estimators. The resulting deviations from
the reference obtained by physical-level circuit simulation, which are plotted in Fig. 3.8a,
show considerably smaller maximum errors than could be observed for the ISCAS85 cir-
cuits. In particular, the implementations in technology CMOS28a seem to exhibit a high
estimation accuracy, while circuits implemented in technology CMOS28b are seemingly
prone to underestimation of about 10%. Upon closer analysis of the estimation results
these observations can be attributed to the fact, that the energy dissipation of the reg-
isters contained in the ISCAS89 circuits is generally underestimated for all technologies.
This cancels out part of the overestimation of combinatorial gates for implementations
in technology CMOS28a which is common for this technology as shown in Fig. 3.8b. In
addition, the maximum overestimation of up to 23% of combinatorial gates which is ob-
served for the implementation of circuit s35932 only marginally contributes to the overall
estimation error because the power of sequential cells dominates the overall energy dissi-
pation for this circuits. This effect can also be observed for the maximum underestimation
of combinatorial gates of 27% for the same circuit in technology CMOS40.
The compensation of overestimation of the energy dissipation for some components or

modules of a circuit with underestimation of other parts is a typical feature which can be
observed for the power estimation of larger digital circuits. However, this averaging effect
which results in apparently good estimation accuracy for a majority of circuits cannot
be guaranteed. As a worst case assumption the possibility of mutual reinforcement of
individual errors needs to be considered.
This consideration motivates the search for modifications or full replacements of the

prevalent gate-level power estimation methodologies. A major goal will be an improved
handling of delay effects which enable glitch creation and propagation in order to mitigate
one of the biggest deficiencies that was identified in this chapter.
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4 Probabilistic macromodels
considering glitch parameters

Motivated by the challenge of accounting for glitches using logic simulation, this chapter
explores alternative ways of representing the underlying increase in switching activity. In
the scope of macromodels as defined in section 2.2 this requires the definition of suitable
parameters that can be used as inputs to a precharacterized lookup table to determine
the effect of glitches at the input of the circuit macro of interest. Switching induced by
the desired evaluation of the logic function is thereby separated from glitches caused by
unbalanced delays. As depicted in Fig. 4.1 a general power estimation flow following the
macromodeling approach starts by extracting these glitch parameters from the primary
inputs of the circuit to be analyzed. Using the precharacterized models of circuit com-
ponents, the power consumption induced by the evaluated values for glitch parameters
can be looked up. At the same time, the model can be used to look up the values for
the selected glitch parameters that could be observed at the output of the circuit compo-
nent if the inputs would be stimulated according to the extracted input parameters. This

input 
signals

model

glitch 
parameters

feature extraction

power 
consumptioncharacterization table lookup

glitch 
parameters

model

power 
consumption

table lookup

glitch 
parameters

characterization

Figure 4.1: Schematic view of macromodel evaluation with integrated propagation of pa-
rameter values.
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method of parameter propagation replaces time-consuming delay annotated logic simula-
tion and holds promise for high accuracy because the parameter responses stored in the
characterization library are based on accurate circuit simulation. The propagated glitch
parameters subsequently form inputs to the power models of downstream components in
the circuit hierarchy allowing for iterative analysis of all circuit components.
As glitching is accounted for by specialized model parameters, the amount of switching

activity due to logic evaluation can easily be determined by high-level functional simu-
lation without consideration of variable gate delays. This activity can for example be
captured by traditional metrics like zero-delay switching activity, D0, which specifies the
probability of toggling on a circuit node during a switching period excluding the effect of
glitches. When information on lower levels of abstraction is available, the transition slopes
of signals, tslope, or the capacitive output load, Cload, of macros can be included as model
parameters to increase accuracy. A macromodel based on the proposed propagation of
glitch parameters could therefore be implemented by a lookup table approximating the
function

Pmacro = f(D0, tslope, Cload,mglitch), (4.1)

which depends on additional parameters, mglitch, capturing the glitching activity on the
inputs of the macro that are yet to be determined. The derivation of suitable glitch param-
eters as well as challenges arising from their inclusion into the macromodeling approach
will be discussed in the following sections.

4.1 Definition of quantitative glitch metrics

Previously proposed macromodel parameters which capture the effect of glitches at macro
inputs on the power consumption are limited to counting the number of glitches in selected
time windows [37, 57]. This metric, denoted as glitching activity or glitch frequency, shares
the deficiencies of logic simulation in that glitch pulses are assumed to span the full signal
swing. This prohibits realistic glitch filtering and neglects the effect of partial-swing
glitches on power consumption. In addition, time offsets between switching on different
macro inputs which are the major source of glitch generation are not taken into account.
To counteract these shortcomings, more detailed glitch metrics that capture the essen-

tial characteristics of switching pulses are required. The following discussion will focus on
metrics promising the highest accuracy with only limited regard for associated complexity
in order to determine the possible benefits of such an approach. Subsequent sections will
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Figure 4.2: Example of extraction of glitch parameters from a signal waveform.

focus on the analysis of complexity and illustrate selected methods in particular for the
reduction of characterization complexity.

The derivation of accurate glitch characteristics will be demonstrated using the wave-
form example in Fig. 4.2a. The depicted segment spanning four clock cycles features
excessive glitching activity consisting of both partial-swing and full-swing pulses in ad-
dition to two nonglitch transitions. By subtracting the assumed glitch-free activity of
Fig. 4.2b from the original signal, the glitch pulses are isolated from desired node tran-
sitions as shown in Fig. 4.2c. Successive approximation of this waveform results in the
glitch pulses plotted in Fig. 4.2d. Each pulse can be unambiguously characterized by
its position in time relative to the start of the clock cycle and its width, which is pro-
portional to the signal swing for partial-swing glitches, if constant transitions slopes can
be assumed. The switching direction of each glitch pulse on the other hand can be de-
ducted from information on the glitch-free transitions. Simply counting the number of
glitches exceeding a signal swing threshold per period would result in a metric comparable
to glitching activity as introduced previously. To retain essential information on smaller
partial-swing pulses and on the occurrence time, additional metrics could record the mean
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Figure 4.3: Example of characterized probability distributions for proposed glitch metrics.
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Figure 4.4: Demonstration of waveform synthesis results of glitch metric distributions for
inputs a and b as well as for output y of 2-input XOR gate.

signal swing and mean time offset of glitches relative to the clock signal. However, the
reduction to averaged parameters discards all information about the spread of these met-
rics. As a consequence, waveforms featuring only half-swing pulses would feature the same
glitch parameter as waveforms with both full-swing and extremely small glitches despite
the fact that power consumption and glitch propagation probability for both waveforms
differs considerably. This deficiency is solved by the introduction of glitch metrics that
are defined by probability distributions for all parameters.

The metric distributions resulting from characterization of an example waveform are
plotted in Fig. 4.3. The probability distribution for glitch occurrence specifies the prob-
ability of any single cycle to feature a specific number of glitches. For any glitch that
occurs, the distributions of glitch width and glitch time indicate the probabilities for the
pulse width assuming a fixed transitions slope or the occurrence time relative to the start
of a switching cycle to fall in any particular interval.

An indication whether these proposed metrics based on probability distributions are
suitable for capturing glitching characteristics can be obtained by the comparison of the
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Figure 4.5: Parameter extraction by fitting of different distribution templates.

effect of two unrelated sets of waveforms that exhibit the same metric distributions as
demonstrated in Fig. 4.4. The first set, denoted as reference signals consists of two
signals a and b that were recorded during the simulation of an arithmetic macro as well
as of the output signal y of a gate evaluating the exclusive-OR operation of a and b.
Using random sampling techniques it is possible to synthesize two signals that share the
statistical metrics of the reference signals a and b without showing any correlation to the
original signals. When these two synthesized signals are applied to the same XOR gate
as the reference signals, the metric distributions at the output closely matches the effect
caused by the original signals. The related dynamic power consumption measured during
both simulations differs by 2.8%.

4.2 Extraction of power macromodel parameters

While the proposed metric distributions allow detailed characterization of glitching ac-
tivity on circuit nodes, their original representation is not suitable for macromodel-based
power estimation which links combinations of scalar parameters to the related power con-
sumption. Because both characterization and lookup costs are exponentially dependent
on the number of model parameters, the probability distributions proposed as glitch met-
rics need to be specified with as few scalar parameters as possible while maintaining the
desired level of accuracy. A possible approach would be to approximate each metric distri-
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bution using a fitted normal distribution as demonstrated in Fig. 4.5a. These probability
distributions can be uniquely defined by the mean µm and variance σ2

m for each metric:

F (glitch occurrence) = F1 = N
(
µ1, σ

2
1

)
, (4.2)

F (glitch width) = F2 = N
(
µ2, σ

2
2

)
, (4.3)

F (glitch time) = F3 = N
(
µ3, σ

2
3

)
. (4.4)

Following a precharacterization of the macro library encompassing a sufficient large
number of combinations for these six glitch parameters (µ1, σ1, µ2, σ2, µ3, σ3), the effect
of glitching on the power consumption and the output glitching activity can be deter-
mined in two steps. First, the input metric distributions need to be determined and fitted
to normal distributions. The resulting set of parameters can subsequently be fed into the
macromodel to simultaneously look up the power consumption and the related glitch met-
ric distributions at the outputs of the component. However, by using statistical moments
of fitted normal distributions as parameters, this approach assumes a certain normality
of the metric distributions which does not appear to be appropriate for the example dis-
tributions of glitch width and time in Fig. 4.5a. Experimental experience shows that
the empirical probability distributions obtained by characterization of circuit nodes vary
significantly in shape precluding accurate fitting of any standard distribution template.
Instead, the fitting accuracy can be improved considerably by employing templates based
on mixture distributions that consist of weighted sums of standard distribution kernels.
Fig. 4.5b demonstrates the increased accuracy when fitting is based on mixture distribu-
tions consisting of three normal component distributions. Each mixture distribution is
specified by

Fm =
nm∑
i=1

πmi · N
(
µmi, σ

2
mi

)
with

nm∑
i=1

πmi = 1, m = 1, 2, 3, (4.5)

where the weights πmi define the mixing proportions of the nm component distributions
of each metric m. This increasing goodness of fit which can intuitively be evaluated based
on the plotted probability distributions in Fig. 4.5b can formally be derived by suitable
metrics like the Kolmogorov-Smirnov statistic. The fitting of these mixture distributions is
performed using the Expectation-Maximization algorithm [64] which finds the maximum
likelihood estimates for the means µmi and variances σmi as well as the weights πmi for a
mixture model given a fixed number of component distributions.
The obvious disadvantage of this approach is the considerable increase in the number of
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Figure 4.6: Lookup of glitch metric distribution based on segmentation of single compo-
nent distributions.
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Figure 4.7: Synthesized waveform example reordered into segments that are defined by
single component distributions.

model parameters. Instead of six parameters, fitting using mixture distributions results
in 2 · (n1 + n2 + n3) scalar parameters that would need to be swept during building of
the library in order to span the characterization space. As this results in an exponential
increase in required low-level simulation runs, direct characterization based on mixture
distributions remains unfeasible. However, this can be worked around by the introduction
of an approach that is inspired by the way a hypothetical characterization waveform
defined by metrics based on mixture distributions would be synthesized. To determine
the number of glitches to generate in an individual period of the synthesized waveform one
of the component distributions is randomly selected with a probability proportional to its
mixing weight π1i. In a second step, the actual number of required glitches is then drawn
from this selected normal distribution. Afterwards, the shape and time parameters of each
glitch are randomly chosen in the same way by first selecting a component distribution
and then drawing a random sample from this distribution. Because it is reasonable to
assume that the effect of glitches is only weakly dependent on the order they appear in,
the synthesized waveform could just as well be reordered into segments that are defined by
only one of the component distributions per metric. This approach will be demonstrated
for a gate with one glitching input. Fig. 4.6a shows the metric distributions at the input
of the gate as well as the fitted mixture distributions consisting of two normal components
each (n1 = n2 = n3 = 2). Each glitch is defined by one of the 23 = 8 combinations of
single component distributions that are plotted in Fig. 4.6b where the distribution F̃m(k)
for metric m and combination k is defined by

F̃1(k) = N
(
µ1xk

, σ2
1xk

)
, with x = {1, 2, 1, 2, 1, 2, 1, 2}, (4.6)

F̃2(k) = N
(
µ2yk

, σ2
2yk

)
, with y = {1, 1, 2, 2, 1, 1, 2, 2}, (4.7)

F̃3(k) = N
(
µ3zk

, σ2
3zk

)
, with z = {1, 1, 1, 1, 2, 2, 2, 2}. (4.8)
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Figure 4.8: Schematic workflow of proposed power and glitch metric estimation.

The sequences x, y and z determine which component distribution contributes to each
combination. Each of these combinations describes the metrics of one segment in a hypo-
thetical synthesized waveform as plotted in Fig. 4.7. The glitching in the first segment is
defined by the first component distribution of each of the metrics (F̃1(1) = N (µ11, σ

2
11),

F̃2(1) = N (µ21, σ
2
21), F̃3(1) = N (µ31, σ

2
31)) whereas the glitch occurrence in the next seg-

ment follows the second component distribution (F̃1(2) = N (µ12, σ
2
12)) while glitch width

and glitch time are still defined by their first component distributions. The weight of
each combination k, which corresponds to the length of each segment in the synthesized
waveform of Fig. 4.7 is calculated as the product π̃k = π1xk

· π2yk
· π3zk

of the weights of
participating component distributions (e.g. π̃2 = π12 ·π21 ·π31). Separate characterization
of all individual waveform segments results in metric distributions at the output of the
gate as depicted in Fig. 4.6c which can be superimposed according to their associated
combination weight π̃k. The resulting estimated metric distributions at the output, which
are plotted in Fig. 4.6d, closely match the results of circuit simulation stimulated by the
reference waveform.

This method of decomposition into combinations of single normal distributions can
directly be applied to the proposed estimation of power consumption and output glitch
metrics. As shown in Fig. 4.8, the combinations of normal metric distributions resulting
from the described decomposition of input metric distributions are used as input pa-
rameters to the precharacterized lookup tables stored in the library. After lookup, the
individual effects are combined by weighted superposition to arrive at the estimated met-
ric distributions at the outputs and the power consumption of the circuit macro. The
generation of the characterization library using synthesized waveform stimuli and accu-
rate circuit simulations at transistor level depicted in the right side of the workflow needs
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to be performed only once for all relevant circuit blocks. The lookup accuracy can be
considerably increased by employing a suitable interpolation scheme during lookup.

The proposed power macromodel based on the lookup of decomposed mixture distribu-
tions does not need to make any assumption about the shape of metric distributions and
still retains the lookup complexity of single normal distributions. However, the decom-
position described so far neglects correlations between glitch metrics when combination
weights π̃k are simply calculated as the product of component weights. As an intuitive
example of this shortcoming, compare segments 3 and 4 in Fig. 4.6, which feature the
same component distributions for glitch width and glitch time but different distributions
for glitch occurrence. The decomposition approach so far assumed that the width and
time attributes of glitches could be assumed to be the same irrespective of the numbers
of glitches that occur during a period. This assumption can easily be refuted by showing
that the number of distinguishable wide glitches that can physically occur during a short
time window is limited which would result in a higher probability for narrow glitches
in periods featuring a large number of glitches. Without increasing the complexity of
the estimation approach by accurate handling of correlation between glitch metrics, this
inaccuracy can be mitigated by empirical correction factors modifying the combination
weights based on the intuitive interrelation of glitch count, glitch width and duration of
switching time window.

4.3 Building of the characterization library

Like all power estimation methodologies following the macromodeling approach, the pro-
posed power model requires preparatory characterization of the regarded library com-
ponents on lower levels of abstraction. To capture the influence of the proposed glitch
parameters based on moments of normal metric distributions, physical level implemen-
tations of the components need to be stimulated with input vector streams that were
synthesized to follow certain combinations of input parameters. For each combination
of input parameters a circuit simulation is required to determine the dynamic energy
dissipation and the output glitch metrics related to the glitching activity at the inputs.
As the synthesized simulation stimuli are randomly sampled from the selected metric
distributions, the energy dissipation and the output glitch metrics analyzed from simu-
lation are statistical properties and the characterization becomes a Monte-Carlo process.
Therefore, the quality of the predictions for the output metrics and energy dissipation
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can be expected to increase with growing number of considered characterization stimuli.
The length of the characterization simulation required to estimate the desired parameters
with desired confidence cannot accurately be determined beforehand, because it strongly
depends on circuit structure and shape of input distributions. However, statistical infer-
ence theory enables the calculation of confidence intervals for selected parameters after a
specified number of samples have been collected.

As an indicator that approximate convergence has been reached the sample mean of
dynamic energy dissipation is tracked until convergence can be assumed with a certain
level of confidence. Assuming that N independent normally distributed energy samples
E1, E2, . . . , EN have been observed without knowledge about the variation, statistical
estimation theory predicts the mean energy dissipation Eµ underlying the sampling dis-
tribution to fall within the interval

Ē − tα/2
s√
N
< Eµ < Ē + tα/2

s√
N

(4.9)

with 100 · (1− α) % confidence [65]. This interval depends on the number of samples N ,
the sample mean Ē = 1

N

∑N
k=1 Ek, the sample variance s2 = 1

N−1
∑N
k=1

(
Ek − Ē

)2
and the

t-value with N − 1 degrees of freedom tα/2 leaving an area of α
2 to the right under the

t-distribution.

If each sample Ei is obtained from the energy dissipation caused by an individual period
during circuit simulation applying randomly sampled stimuli, it can hardly be assumed
to be normally distributed. However, by using energy samples that are averaged over sev-
eral subsequent periods, according to the Central Limit Theorem approximate normality
can be assumed. As a general guideline, the averaging of energy dissipation over n ≥ 30
periods provides samples for which the distribution is reasonably close to normal [65].
Statistical independence of the individual samples can be enforced by insertion of setup
intervals between sampling periods that are long enough to ensure that any potential
internal states of the characterized component are uncorrelated between subsequent sam-
ples.

From (4.9) the relative error of the sample mean Ē can be calculated as

εE =
∣∣∣∣∣Eµ − ĒĒ

∣∣∣∣∣ < tα/2 · s
Ē ·
√
N
. (4.10)

As a consequence, during characterization of the model library, glitching input stimuli
are applied until the estimated relative error εE of the mean dynamic energy dissipation
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Figure 4.9: Error bounds during estimation of mean energy dissipation from simulation
of random input samples (confidence: 99%).

is smaller than a predefined threshold for the chosen confidence level. This approach is
demonstrated in Fig. 4.9, which plots the estimations of mean energy dissipation resulting
from increasing numbers of energy samples as well as the error bounds derived from (4.9).
Assuming a targeted error threshold of 2.5%, and a confidence level of 99% this simulation
could have been terminated after 42 samples. The sample mean ĒN=42 at this point would
be stored in the characterization library with the knowledge that it is highly unlikely that
it deviates from true mean Eµ of the underlying energy distribution by more than 2.5%.

4.4 Application example

The proposed probabilistic macromodel approach will be demonstrated using regular mul-
tioperand adder macros as shown in Fig. 4.10 which can represent the essential part of
array multipliers. These circuits were chosen due to the high glitching activity which can
be expected at the adder outputs. Both circuits were implemented in a 40-nm CMOS
technology and the analysis is performed on post-layout data including parasitic circuit
components. The inputs xi,j are expected to be glitch-free sequences of uncorrelated bits
with a mean probability of toggling of 50% per cycle that might for example be directly
driven by registers. During a circuit simulation on physical level both the power consump-
tion of each adder row as well as the glitch metrics of the adder outputs were analyzed.
These simulation results will form the reference against which the proposed macromodel
approach is compared.

The first circuit shown in Fig. 4.10a is based on adder rows built from carry-ripple
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Figure 4.10: Schematics of testbenches for the proposed probabilistic macromodel.

adders. The macromodel analysis is based on the characterization of one of these rows
for a sufficient number of combinations of normal metric distributions as described in the
previous section. Thereby the effect of glitching generated and propagated inside the adder
row is intrinsically captured during characterization. To simplify the characterization, all
bits of one input word, yi, are assumed to feature the same glitch parameters. Because at
least one of the adder inputs is connected to a primary input that is assumed to be glitch-
free, this results in six glitch parameters that need to be varied during characterization.

Two sets of estimation results are compared to the circuit simulation reference. The
first set, called propagated glitch metrics, is derived from the proposed macromodel based
estimation that determines the glitch metrics at the adder outputs by table lookup allow-
ing for iterative estimation of the circuit hierarchy. The second set of results, which will
be denoted exact synthesized stimuli, serves as a means to distinguish errors introduced
by the propagation of glitch metrics from errors related to the simplifications introduced
during characterization. It is generated by synthesizing glitching stimuli that adhere to
the glitch metrics observed at the adder inputs of each row during circuit simulation.
These synthesized stimuli are subsequently applied to a single adder row featuring the
same capacitive output load as the reference circuit. The two sets of dynamic energy esti-
mations per adder row for the carry-ripple based adder array are compared to the circuit
simulation reference in Fig. 4.11a. The proposed approach based on propagation of glitch
metrics by table lookup shows a maximum error of 11.7% in the last adder row. The
results based on reproduction of the averaged glitch metric distributions per adder row
are only slightly better at a maximum error of 9% indicating that the largest contribution
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Figure 4.11: Average dynamic energy dissipation per row for multioperand adder bench-
marks.

to the estimation error is caused by the simplifying assumption that all adder inputs per
row share the same metric distributions. It is also worth noting that the dynamic energy
consumed in the last row is four times higher than that of the first row which means that
the energy dissipation would have been underestimated by a factor of 3 if glitching on
the adder inputs had not been considered. The metric distributions at the adder outputs
resulting from both sets of estimations plotted in Fig. 4.12a for every second row show
a close match of both estimations to the reference distributions observed during circuit
simulation.

In a second experiment, the adder array was modified as shown in Fig. 4.10b to feature
carry-save arithmetic. In contrast to the carry-ripple based multioperand adder, two in-
put words to each adder row might exhibit glitching and the related metric distributions
might not be correlated. Consequently, the characterization effort increases dramatically
because a total of twelve parameters need to be varied during building of the macro li-
brary. The estimation of dynamic energy dissipation performed according to the proposed
macromodel results in a maximum error of 11.1% as shown in Fig. 4.11b. The estimated
glitch metrics of both outputs words for every second row are compared to the observed
metrics during circuit simulation if Fig. 4.12b confirming the high degree of correlation
to circuit simulation that can be expected of the proposed approach.
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Figure 4.12: Demonstration of glitch metric propagation for multioperand adder test-
benches.
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4.5 Challenges of the proposed approach

While the results discussed in the previous section attest a general suitability of the
proposed probabilistic macromodel for capturing glitching effects on energy dissipation,
the approach is limited by the complexity of its precharacterization. Before an attempt
is made to mitigate this disadvantage, in this section its impact as well as other factors
potentially limiting accuracy are identified.

4.5.1 Size of parameter space

Even the simpler of both testbenches in the previously discussed application example fea-
tures a six-dimensional parameter space. This complexity severely restricts the number of
different values which can be characterized per parameter due to the exponential growth
of possible parameter combinations. This situation can be somewhat mitigated by intelli-
gently selecting the parameter combinations to be characterized based on prior knowledge
about inter-parameter correlations but even such sparse characterization results in up to
4000 parameter combinations for the characterization of the single adder macro of the
application example. Due to the statistical nature of the proposed parameters, each cir-
cuit simulation evaluating a single combination needs to be continued until convergence
to typical results can confidently be assumed which takes several hundred simulation cy-
cles. To make matters worse, this complexity is not restricted to the one-time effort of
precharacterization but also affects the storage requirements for the lookup table and the
runtime of the actual energy estimation due to the increased interpolation complexity
when considering large numbers of dimensions. When estimating arbitrary circuits that
are not as regular as the multioperand adders chosen in the previous section, the num-
ber of parameters and therefore characterization dimensions is even further increased by
crucial metrics like transition slope and capacitive output load.

For such a circuit block with N independent inputs the exhaustive number of parameter
combinations can be given as

ncomb = n(Cload) ·
[
n(tslope) ·

3∏
m=1

n(µm) · n(σm)
]N

(4.11)

where the operator n(·) denotes the number of possible values for each parameter, tslope
and Cload specify the transition slope and the capacitive output load, respectively, and µm
and σm are the moments of the three glitch metric distributions. If only three possible
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values for each parameter were selected, this would result in over 14 million possible
combinations for a circuit block with two independent inputs when no pruning to sensible
combinations is considered.

4.5.2 Averaging of glitch metrics for word-level signals

While the proposed macromodeling approach allows the handling of different glitch statis-
tics on individual input bits of word-level component, this possibility is not even considered
in the application example presented before because of its implications regarding the num-
ber of input parameters. Instead, the input parameters to the presented macromodel are
chosen as the averaged glitch metric distributions of all bit weights to keep the number of
parameter combinations in a manageable range. This simplification inevitable decreases
accuracy especially for low bit weights. Again focusing on the carry-ripple adder, it can be
shown that glitching activity saturates relatively fast due to averaging effects. In contrast,
applying averaged glitch statistics to the lowest bits, which often show different activity
statistics, will result in significant errors for those bit weights which may then propagate
to higher weights of the adder. Additionally, the shift of occurrence times to higher values
along the adder weights cannot be captured by averaged statistics.

One possible strategy to solve this problem could be an approach similar to the dual bit
type modeling [35] where low bit weights and high bit weights are handled separately. On
the other hand this approach would again increase the number of parameters. Another
possibility would be to reduce the size of the characterized macros in order to reduce the
potential differences of its inputs. This can in an extreme case lead to the modeling of
single gates where no averaging is required but the advantage of encapsulating physical
effects of internal interconnects is mostly lost.

A related problem is the fact that glitches on neighboring inputs and outputs in word-
level signals are often correlated in time. This can easily be demonstrated by the example
of the carry-ripple adder where glitches tend to ripple though multiple full adders which
results in delayed glitches along neighboring outputs.

4.5.3 Correlation between glitch metrics

An additional source of errors is caused by the decomposition of mixture distributions
into their components in order to build combinations of single normal distributions for
table look-up. Since no correlation between glitch metrics is recorded, this routinely leads
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Figure 4.13: Example of decomposition of glitch metrics that results in physically impos-
sible combinations.

to combinations that are physically impossible. Considering for example the metrics from
Fig. 4.13 where each metric was fitted using two normal components, during table look-
up, these mixture distributions are decomposed into eight combinations of single normal
distributions. One of the problematic combinations is highlighted in red in Fig. 4.13.
This combination specifies that approximately 2 glitches with a mean width of 0.2 ns are
expected to occur within 0.2 ns from each other. While this in itself is highly unlikely,
the tails of these distributions contain combinations that are virtually impossible. This
problem increases with the number of components in each mixture distribution, as the
components themselves tend to get narrower.
For the case of few component distributions it is possible to post-process the combina-

tions to reduce the effect of the unlikely combinations. This post-processing step follows
an algorithm that tries to retain the total probability for each component but distribute
the probability of wide glitches towards combinations with small number of transitions
and wide time distributions. That way improbable combinations are assigned less weight
and are ideally ignored in the final recombination step of glitch estimation.
A more accurate alternative is to consider additional parameters that record correlation

between the chosen metrics. As this would further increase the modeling complexity, this
approach does not seem attractive. Instead, a desired feature is a reduced significance of
correlation between different glitch metrics.

4.6 Reduction of modeling complexity

Obviously, while the proposed glitch metrics are accurate at capturing the characteristics
of glitching, the huge complexity related to their direct implementation in macromodels
calls for simplifications that trade accuracy for modeling complexity. There are several
options, some of which will be discussed in the following chapter.
The most basic option is to discard the additional information resulting from the usage

of distributions as metrics and use simple mean parameters instead. While this allows
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a drastic reduction of parameters, the resulting accuracy would be poor. Depending on
the metrics, it might be possible to use this simplification only on some (less important)
metrics, but the benefit seems small nevertheless when compared to the expected impact
on accuracy.

Instead, if selected metrics are determined to be marginally important, it might be a
better choice to discard them completely. Unfortunately for the glitch metrics presented in
the last sections all three metrics have significant influence on the energy dissipation and
especially on the glitch metrics at the outputs of a macro block, so there is no potential for
reducing parameters. A transformation of the parameter space using principal component
analysis which tries to utilize the correlation between glitch metrics also fails at providing
simplified metrics.

Therefore, one strategy is to find alternative metrics that might not be as accurate
as the original ones but allow easier simplification. Such approximate metrics will be
discussed in the next section.

Section 4.6.2 presents a simplification for discrete distributions which does not require
fitting of mixture distributions and manages to improve accuracy while at the same time
reducing the number of parameters.

An approach that keeps most of the information of the original distributions while
requiring far less parameters tries to describe the distributions as a sequence of discrete
windows that are uniformly distributed each. This method will be discussed in more
detail in Section 4.6.3.

4.6.1 Alternative glitch metrics

The metrics presented so far are based on glitches, which consist of (undesired) signal
pulses. The activity due to glitches increases the dynamic power consumption that would
be observed if each node would flip at most once during each period. In order to estimate
the total power consumption not only the glitch parameters have to be varied during char-
acterization but the switching activity due to desired logic evaluation has to be considered
as well which adds another dimension to the characterization space.

Therefore, a way to reduce the number of required parameters is to extend the metrics
to include both desired and undesired logic switching. This can be accomplished by
considering transitions instead of glitches, where two transitions that are close enough
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can be regarded as a glitch. This means, that the original power function

Pmacro = f(D0, tslope, Cload,mglitch) (4.12)

is simplified to
P ′macro = f(tslope, Cload,mtransition), (4.13)

where D0 is the zero delay transition probability at the input nodes, tslope is the signal
slope at the inputs, Cload specifies the capacitive loading at the output and the remaining
parameters describing the glitches or transitions are summarized as mglitch and mtransition

respectively. As an additional benefit the generation of glitches due to delayed arrival of
inputs can be modeled more intuitively if the characteristics of desired logic switching are
captured by distributions as well.

Possible parameters based on transitions closely relate to the parameters introduced
for glitches. Probably the most important parameter is the number of transitions per
period which will be called transition occurrence and combines the glitch occurrence with
transitions due to logic evaluation. The transition time is measured as the point in time
the transition starts relative to the start of the period and is equivalent to the glitch time.
The third parameter which was previously defined as the glitch width can be replaced
by the signal swing of each transition which for the case of a glitch pulse is defined by
the distance between neighboring transitions, assuming an approximately constant signal
slope.

An alternative to counting the number of transitions in each period is to accumulate
the total signal swing traversed in each period or alternatively only the total signal swing
of rising transitions. This metric would directly relate to the power consumed due to
loading and unloading of node capacitances

Pnode,i = α · f · Cnode · VDD ·∆Vi, (4.14)

where ∆Vi is the accumulated signal swing of rising transitions.

Fig. 4.14 gives examples for extracted distributions of all proposed metrics for the same
input signal. Both the distribution of signal swing and that of accumulated signal swing
per period feature the disadvantage of narrow peaks. These peaks are caused by transi-
tions due to logic evaluation which are included in the statistic predominantly feature the
full signal swing. These peaks cannot be modeled adequately by mixture distributions
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Figure 4.14: Example glitch and transition metrics for the same signal.

which tend to feature low pass characteristics. This disadvantage in combination with the
overall goal to minimize the amount of parameters considered in the macromodel moti-
vates the decision to completely ignore the parameters related to the signal swing. This
does not necessarily hurt accuracy if there is a strong correlation between the metrics.
This correlation that led to errors during decomposition of the glitch-based metrics can
reasonably be assumed to determine the signal swing of transitions to a certain degree
when transition occurrence and transition time are known.

4.6.2 Simplification of occurrence metrics

The metric distributions proposed so far are approximated using fitted mixture distribu-
tions. This is appropriate for occurrence times or glitch widths, which feature continuous
distributions. In contrast, glitch or transition occurrence specify the discrete number of
glitches or transitions that occur in a specified period. While it is possible to handle these
discrete distributions in the same way as the continuous distributions by fitting normal
components and averaging over intervals of width “1” as has been done in Fig. 4.15, this
might not be the most efficient method.

If both signals from Fig. 4.15 are applied to a characterized gate, according to the
decomposition approach described in Section 4.2 all combinations of single normal dis-
tributions are assembled and the resulting power consumption and glitch metrics at the
output of the gate are looked up (or interpolated) from the characterization table. In
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Figure 4.15: Example of occurrence distributions for a two-input gate.

µa σa µb σb % cycles
0.86 0.70 0.49 0.5 54.3%
0.07 0.25 0.49 0.5 45.7%
(a) combinations based on fitted normal distributions

# transitions a # transitions b % cycles
0 0 30.6%
0 1 29.4%
1 0 15.3%
1 1 14.7%
2 0 5.1%
2 1 4.9%

(b) combinations based on number of transitions

Table 4.1: Comparison of transition parameter combinations.

order to simplify this example, only the transition occurrence distribution is considered.
As shown in the figure, input a is fitted using two normal components while input b
can accurately be described by only one component. This results in the two combina-
tions consisting of four parameters (two parameters per metric) as shown in Table 4.1a.
The weight of each combination is computed as the product of the mixing factors of the
normal components used in the combination. This weight is equivalent to the percent-
age of switching cycles in a synthesized waveform that would feature the given normal
distributions.
As the distributions are discrete, a more intuitive way of representing them is to simply

list the full probability mass function (PMF). The PMF of input a consists of three states
(0, 1 or 2 transitions) with their respective probabilities while the PMF of signal b has
only two possible states (0 or 1 transition). Building combinations of possible numbers of
transitions on input a and input b as shown in Table 4.1b results in the joint probability
for the inputs to feature the specified number of transitions in the same period under the
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Figure 4.16: Dependence of number of transitions on output cout on signal state of non-
switching inputs a and cin for a full-adder.

assumption that they are uncorrelated.

Compared to the representation using fitted mixture distributions this results in more
combinations. On the other hand, each combination is defined by only two instead of
four parameters. Due to the exponential dependency of the characterization space on the
number of parameters this advantage results in huge savings during precharacterization.
In addition, because the parameters based on the PMF are discrete values on a very limited
range, all possible parameter states can be characterized exhaustively. During evaluation
table lookup can be performed without requiring interpolation which increases accuracy
and speeds up the runtime. This compensates the disadvantage of more combinations.
In contrast, the parameters resulting from fitted mixture distributions feature rational
values which require interpolation in virtually all lookups because only a selected number
of parameter values are included in the characterization library.

Another advantage of PMF-based parameters is the fact that the exact probabilities
can be used during evaluation. Fitting of mixture distributions (with a limited number
of components) always leads to some fitting errors that degrade accuracy.

An important point which has to be considered for characterization using PMF-based
parameters is the signal state of the inputs during characterization simulations. Contrary
to characterization using fitted distributions, the number of transitions of each signal is
constant in each period for the characterization of PMF-based parameters. This means
that a signal remains in the same steady state for the whole simulation, if an even number
of transitions (or no transitions at all) are performed in each period. This can lead to
significant errors if the steady signal state during evaluation differs from that assumed
during characterization as both the power consumption and the output transitions might
depend on the state of the inputs. Fig. 4.16 demonstrates this dependency for a single full
adder where only input b is switching according to the distribution shown in Fig. 4.16a
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while the remaining inputs a and cin remain constant. Depending on the state of the con-
stant inputs, the distribution of the transitions on output cout is fundamentally different
as can be seen in Figs. 4.16b and 4.16c.

Simply assuming equal probability for steady signal states of all signals and partition-
ing the characterization simulations accordingly will lead to errors for all cases where the
probability for either one state is significantly higher than for the other. This can easily
be accommodated into the modeling approach by introducing a new parameter per input
that defines the steady state for this signal. Even though this increases the size of the
characterization space, the overhead is acceptable because each of the additional parame-
ters can only assume two distinct values (steady state of “0” or “1”). The characterization
can even be optimized further as the definition of a steady state is only required for an
even number of transitions per period.

In order to generate reliable estimates, these steady state probabilities are also required
during evaluation of the model. Fortunately, steady state probabilities can easily be
calculated in a simple zero delay analysis of the circuit under investigation.

To demonstrate the improvement in terms of complexity due to PMF-based occurrence
parameters, Table 4.2 lists example parameters for both fitted normal distributions and a
PMF-based analysis of a 3-input gate. Each input is assumed to exhibit at most four tran-
sitions in one period. In order to span this region with mixture distributions, four values
for mean as well as for standard deviation have been selected. As it is most unlikely that
a fitted distribution matches these parameters exactly, interpolation techniques are used
during look-up to evaluate points in the characterization space that were not simulated
directly. For PMF-based parameters on the other hand only one parameter is required
to determine the fixed number of transitions per period, but the unlikely case of four
transitions per period has to be considered in a separate characterization run resulting in
five possible values. The signal states of each signal form additional parameters that can
assume two values each. Signal states as additional parameters could also be introduced
for parameters based on fitted distributions but are not as important as for PMF-based
parameters because in most characterizations the input nodes feature varying numbers of
transitions in different periods.

In order to populate the complete look-up table for this simple example, four times
the number of simulations are required for fitted distributions than for PMF-based pa-
rameters. At the same time the characterized grid for fitted distributions remains coarse
and thus requires interpolation schemes during evaluation while the characterization for
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fitted normal distributions fixed number of transitions
occurrence distribution µ transitions per time interval

signal a: 0, 0.5, 1, 2 signal a: 0, 1, 2, 3, 4
signal b: 0, 0.5, 1, 2 signal b: 0, 1, 2, 3, 4
signal c: 0, 0.5, 1, 2 signal c: 0, 1, 2, 3, 4

occurrence distribution σ signal state
signal a: 0, 0.25, 0.5, 1 signal a: 0, 1
signal b: 0, 0.25, 0.5, 1 signal b: 0, 1
signal c: 0, 0.25, 0.5, 1 signal c: 0, 1

⇒ 4096 parameter combinations ⇒ 1000 parameter combinations

Table 4.2: Comparison of transition occurrence parameter spaces.

PMF-based parameters includes all possible combinations.

4.6.3 Simplification of time metrics

The discrete nature of the transition metric allows for considerable reduction of the model
complexity without sacrificing accuracy by focusing on the probability mass function. In
contrast, the occurrence time of a transition is a continuous metric which precludes the
simplification using an analogous approach. Instead, an alternative approximation of
the transition time distribution is introduced which allows further simplification of the
characterization process. The accurate approximation using fitted normal mixture distri-
butions which was introduced at the beginning of this chapter is replaced by a piecewise
linearization of the cumulative probability function. This results in an approximation of
the probability density function by segments that are uniformly distributed. In conse-
quence, transition times are assumed to be evenly distributed inside each time window
which results in a simplified representation of the original distribution as demonstrated
in the upper row of Fig. 4.17.

While the linearization of the probability function itself does not feature significant
advantages, this representation allows for separate analysis of each time window. Only
transitions that occur very close the window borders might cause correlations between
consecutive time windows. Therefore, a separate lookup of energy dissipation and output
transitions for each window appears to be a reasonable simplification. Instead of a single
distribution of transition occurrence for the complete switching cycle, separate distribu-
tions are defined for each time window as shown in the lower row of Fig 4.17. When
the width of the time windows is fixed, this only requires characterization of different
transition counts which considerably limits the size of the model library that needs to be
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Figure 4.17: Demonstration of simplified statistics where transition time distribution is
approximated by windows in which occurrence times are assumed to be uni-
formly distributed.

generated.

Challenges for windowed time statistics

The assumption of uniformly distributed occurrence times during a time window will not
be satisfied in most cases. Fig. 4.18a demonstrates the important case that the original
time distribution plotted in black is significantly narrower than the assumed uniform time
window plotted as a solid blue line. This problem occurs in an extreme case for signals that
switch at quasiconstant points in time which is the case for primary inputs and outputs
of registers. Because only a limited number of window widths can be characterized,
this problem will also occur for windows that feature widths in-between characterization
points. However, this problem can be mitigated by characterizing different window widths
in a representative range as suggested by the narrower time window plotted as a dashed
blue line and interpolating the results during look-up.

A challenge that is more severe is the fact that the transition time distribution at the
output typically does not share the same shape as the transition time distribution at the
input as demonstrated in Fig. 4.18b. This transformation generally consists of a time
shift τgate depending on the gate delay and a widening of the window by an offset δgate
due to delay variations for different input combinations. As the signal statistics which are
looked up for one component are inputs to another model in a subsequent iteration of the
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Figure 4.18: Challenges for separation of the transition time distribution into windows

estimation, consecutive widening can result in time windows that exceed the characterized
range. This needs to be prevented by splitting of wide windows into smaller parts.

The more dramatic effect of these transformations of time windows is the observation
that windows on different inputs of the same gate cannot be expected to be aligned
as exemplified in Fig. 4.18c for two signals A and B. This results in the need for a
preprocessing algorithm that splits and merges windows on the individual inputs until
the assumption of matching windows on all inputs is met as shown for the modified
windows for A′ and B′.

One important limitation of the windowed approach follows directly from the assump-
tion that the effect of each window can be handled separately. In order to satisfy this
assumption, the size of the macro to be modeled is severely restricted. The worst case
delay needs to be relatively small compared to the window width because this limits the
overlapping of transition time windows at the output due to signal delay variations. On
the other hand, the window width needs to be kept small to allow for accurate approx-
imation of the original distributions. These restrictions lead to the conclusion, that the
approach based on windowed statistics is particularly useful if applied to individual gates
instead of compound macros.

4.6.4 Demonstration of simplified macromodels

To demonstrate the modified estimation approach using occurrence parameters based
directly on the probability mass functions and transition time distributions split into
windows, the same multioperand adder that was evaluated for the original glitch metrics
is analyzed. In contrast to the estimation based on fitted mixture distributions of glitch
parameters, the size of the characterized macro was reduced to a single full-adder to
restrict the influence of overlapping windows for the looked up statistics at the macro
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Figure 4.19: Estimation results for a single carry-ripple adder using windowed statistics

outputs.

Analysis of a single carry-ripple adder

The first demonstration focuses on the topmost carry-ripple adder row of the multi-
operand adder shown in Fig. 4.10a. All bits of both input operands are assumed to switch
independently with a probability of 50% per cycle in a short time window of width 50 ps at
the start of each period. This way, the inputs are two uncorrelated streams of uniformly
distributed numbers spanning the full wordlength. The results of this experiment are
displayed in Fig. 4.19 for both the reconstructed transition time distributions of the sum
outputs and the resulting energy dissipation of each full adder. The time distributions of
higher bit weights exhibit transitions at increasingly later times due to carry propagation
which is closely matched in the proposed estimation. The maximum error of the dynamic
energy dissipation on cell-level is −5.1% for bit 1 while the full row is underestimated by
only 0.7%.
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Figure 4.20: Simulated and estimated distributions of transition occurrence time for every
second bit weight of sum output in a multioperand array adder.

Analysis of multioperand adder

In the next step, instead of a single carry-ripple adder, the full multioperand adder for 8
input words is analyzed. In addition to the number of rows, the wordlength is increased
to 16 bit. Due to the higher logic depth the accurate propagation of transition metrics
becomes more important.

In the carry-ripple adder analyzed in the last section, only the transition metrics of
the carry signal needed to be propagated. When analyzing the full multioperand adder,
the accumulated sum of each row features glitches and delayed transitions as well. In
order to align the transition windows of signals on multiple inputs of the same gate, an
algorithm that tries to minimize the error introduced due to splitting and merging of
overlapping windows was implemented. This algorithm needs to consider both the case
that two windows of the same input overlap due to widening of the windows in previous
gates as well as the case that multiple inputs feature windows that are misaligned in time.

Fig. 4.20 shows the transition time distributions resulting from the approach employing
windowed time statistics. This figure demonstrates the major weakness of the presented
approach to capture the propagation of transition metrics over a sufficient logic depth.
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Figure 4.21: Relative error of estimated dynamic energy per full adder between estimation
result and reference simulation.

While the estimated distributions of the first bit weights and the first adder rows closely
match the reference statistics, starting at the third row the differences start to exceed the
tolerable range. This is mainly due to the fact that the maximum transition occurrence
time is continuously overestimated resulting in a self-accelerating flattening of the distri-
butions. This overestimation of transitions also results in an excessive overestimation of
dynamic energy dissipation for cells in higher adder rows and bit weights of up to 89% as
demonstrated in Fig. 4.21. These propagation failures cause the overall estimation error
of the full multioperand adder to be as high as 33%.

4.7 Handling of variability

The discussion of extended macromodels in this chapter did not consider variation so
far. However, due to the probabilistic nature of the chosen parameters, these models
lend themselves perfectly to the estimation of energy dissipation under the influence of
process variation or variation of operating conditions. In fact, the estimation methodology
itself does not need to be changed at all. The main changes are concerned with the
characterization phase. Instead of determining the output signal parameters and energy
dissipation only for the selected corner case, this characterization simulation needs to
involve a number of separate runs for different choices of variation parameters. The
output signal parameter distributions can be merged to reflect the possible variations
in glitches or transitions without requiring changes in the internal representation. In
contrast, the dynamic energy dissipation which was previously characterized as a scalar
value needs to be replaced by a probability distribution as well under the influence of
variations. These energy distributions can be handled in the same way as the parameter
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distributions and, therefore, benefit from the full set of interpolation and transformation
algorithms which are already developed.
This modified estimation approach results in a probability distribution for the energy

dissipation of each analyzed macro block. From these individual energy distributions the
bounds of dynamic energy dissipation of the full circuit can be calculated.

4.8 Comparison of probability macromodel approaches

The goal of this chapter was to improve library lookup based macromodels by the inclu-
sion of accurate glitching parameters. Because of the statistical nature of glitches, these
parameters themselves need to be probabilistic. The identified glitch metrics based on
probability distributions of occurrence count per cycle, occurrence time and glitch width
proved to allow accurate characterization. In combination with parameters based on fit-
ted mixture distributions that where decomposed during library lookup this approach was
shown to enable accurate estimation of dynamic energy dissipation considering glitches.
However, generalization is hampered by the high complexity induced by the large number
of model parameters which affects both model characterization as well as library lookup
employing interpolation.
Aiming for a reduction of complexity, alternative metrics based on transitions instead

of glitches were proposed. Additional simplifications targeting the representation of the
probability distributions allowed further reduction of complexity at the cost of restricting
the model size to individual gates. While simplifying both the characterization process
as well as the estimation flow, these simplified metrics representations were shown to be
applicable to the estimation of small macros. However, when targeting larger macros
exhibiting higher logic depths, the accumulation of inaccuracies caused the proposed sim-
plifications to fail at achieving sufficient estimation accuracy.
The consequent approach at this point would be to try to balance the simplifications

with regard to the achievable accuracy by applying only selected changes as proposed in
the last section. However, instead of this incremental improvement of the probabilistic
macromodels, the next chapter will focus on a fundamentally different approach which is
more closely related to conventional gate-level power estimation but aims at improving
the handling of glitches.
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5 Event-based lookup of power
waveforms

As shown in chapter 3, current state-of-the-art gate-level power estimation flows suffer
from a number of limitations that result in inaccuracies compared to physical circuit
simulation. The main reasons for these inaccuracies are:

• Logic simulation which is performed to capture switching activity cannot account
for partial swing glitches.

• Glitch filtering, especially for complex multistage gates, cannot accurately be im-
plemented using standard logic simulators.

• Multi-input events are not included in the characterization library and therefore
their effect can only be coarsely approximated.

The last shortcoming could be mitigated by the adoption of a more complex character-
ization that would not be restricted to single-input events but would include multi-input
events as well. Because the timing offset between switching on multiple inputs is of cru-
cial importance when estimating the energy consumed by such a multi-input event, a
significant number of different offsets would have to be considered during characteriza-
tion. This change would be costly in terms of characterization runtime and resulting size
of the lookup library but could potentially reduce the estimation errors with only a small
overhead in estimation runtime.
In contrast the simplified handling of glitches cannot be fully corrected by pre- or post-

processing of the data relevant to the logic simulator. A method proposed by Dietrich
and Haase [15] appends information on the transition slopes to each change of the signal
states which requires deep changes to the hardware description of the circuit as well as the
logic simulator. Using a customized precharacterization of the fundamental gates, this
allows for more accurate filtering of glitch pulses. In addition, pulses that are prevented
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Figure 5.1: Output response of a two-input XOR gate to different input events demon-
strating the need for multi-input characterization.

from propagation during logic simulation are nevertheless stored and used in a post-
processing step which considers the energy consumed due to partial swing pulses. While
this method significantly slows down the logic simulation due to the custom handling of
signal transitions it still cannot adequately handle correlations between multiple quasi-
simultaneous transitions on different inputs especially when one of the inputs features a
partial swing glitch pulse. This problem is demonstrated in Fig. 5.1, which shows the
inputs A and B of a two-input XOR gate along with the output Y for three different
event combinations on the inputs. The first and second column show the gate response
to a full transition or a short pulse on one of the inputs, respectively. The third column
demonstrates that the response to near-simultaneous stimulation with both input events
differs significantly from the superposition of the individual responses.

In order to capture complex delay effects leading to partial masking of output switching
or the generation of glitches, more physical information on the switching waveforms is re-
quired than can be produced by purely logic simulation. On the other hand, physical-level
circuit simulation at SPICE-level accuracy is much too time-consuming to be applicable
to realistic circuit sizes. The approach proposed in this section [66] combines the run-
time advantages of lookup-based power estimation relying on precharacterization with
the accuracy of analog signal waveforms. It extends the power lookup tables by including
multi-input events with varying switching offsets as well as events involving glitches on
selected inputs. In addition, the analog waveform response at the output is stored in the
library for each input event combination along with the supply current waveform which



5.1 Lookup-based estimation of output waveforms and gate power 69

N1

X1
X2

N2
N3

logic
level 0

logic
level 1

logic
level 2

primary
inputs

D

B

A

S

C

Figure 5.2: Decomposition of a simple circuit into logic levels.

defines the power consumption. This output waveform can be used as an accurate input
to the power estimation of the next gate, thereby allowing iterative progression of the
estimation across the whole circuit. This completely removes logic simulation from the
estimation flow and, therefore, avoids all error sources related to suboptimal handling of
glitch creation and propagation during simulation.

5.1 Lookup-based estimation of output waveforms and

gate power

Once the characterization library is generated for a selected number of gates, it can be
used for power estimation of all circuits that are constructed from any combination of
gates in the library. While the following discussion will focus on purely combinatorial
circuits, this approach can easily be extended to general circuits containing sequential
cells, as will be demonstrated in chapter 5.5. For the proposed approach to work, the
signal waveforms at the primary inputs need to be known. If only statistical information
is known about primary inputs, suitable input waveforms can easily be constructed using
random sampling before applying the estimation approach. This is the same requirement
that is necessary for meaningful calculation of switching activity as performed during
commercial gate-level power estimation.

Prior to the estimation, the circuit to be analyzed is preprocessed and all gates are
sorted into logic levels depending on the signals connected to their input ports. Fig. 5.2
shows an example of this decomposition of a simple circuit. Gates in logic level 0 are
only dependent on primary inputs. Logic level 1 contains gates with at least one input
port connected to an output port of a gate in logic level 0. This scheme is continued until
all gates have been assigned a logic level. This way, gates in the same logic level can be
estimated in parallel while the logic levels are processed sequentially.



70 5 Event-based lookup of power waveforms

The estimation for each gate is performed in multiple steps:

1. The signal characteristics of all nets connected to the inputs of the current gates are
retrieved from the local database. These characteristics list switching times together
with the respective signal slope and the width of glitch pulses.

2. Switching events on different inputs that occur in close temporal proximity are
grouped into event combinations.

3. The supply current as well as the output voltage response related to each event
combination is looked up from the characterization library.

4. The potentially overlapping voltage and current responses are superimposed. The
resulting supply current waveform can be used to calculate the dynamic power
consumption of the current gate.

5. The voltage waveform at the output is analyzed to retrieve the relevant signal char-
acteristics which are stored in the local database for use in subsequent iterations.

In the following section, these individual steps will be discussed in more detail.

5.1.1 Signal characteristics of event-based power waveform lookup

Contrary to the probabilistic approach described in chapter 4, the method discussed here
is similar to the functionality of logic simulators in that individual events on circuit nodes
are considered sequentially. However, in contrast to logic simulation, an event is not purely
defined by a change in the logic state at a specific time, te, but is annotated with more
detailed characteristics. One shortcoming of logic simulation that prevents accurate pulse
filtering is the abstraction from the finite transition slope, se. In the proposed approach
this information is retained and annotated to each switching event. When considering
glitch propagation, the second important property is the shape of a pulse. In the proposed
approach, the pulse shape is characterized by its width, we, because this way partial-swing
glitches and full-swing glitches can be equally described and the pulse height can easily be
determined if the transition slope is already known. The signal characteristics recorded for
each event therefore consist of the logic state prior to the event, le, the time offset relative
to a defined reference, te, the transition slope, se, and the pulse width, we, if applicable
and will be denoted by the 4-tuple (le, we, te, se) where we is set to “−1” for full-swing
transitions to differentiate from a glitch pulse with negligible width. An example of this
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Figure 5.3: Annotated characteristics for two switching events.

annotation of characteristics to each switching event is depicted in Fig. 5.3 for both a
full-swing transition and a partial-swing pulse. Event times are defined at 50% signal
swing or at the maximum of the pulse respectively, pulse widths are measured at 10% of
full signal swing and slopes are considered from 10% to 90% thresholds.

During the analysis of a signal, it is decomposed into switching events that correspond to
the events considered during library characterization. A crucial parameter is the threshold
that determines whether two consecutive full-swing transitions are considered as part of
one glitch pulse or as two separate events. Especially for complex multistage gates and
multi-input events the consideration of full-swing glitches compared to the concatenation
of two separate transitions can result in a large gain in accuracy due to the increasing
importance of interactions. This threshold must therefore be chosen carefully to achieve
the desired accuracy without exceeding the tolerated characterization effort. A suitable
compromise was found to be an upper glitch width of the maximum of either the gate
delay or four times the transition time.

5.1.2 Grouping into event combinations

For a gate with multiple inputs all combinations of individual events on different inputs
could be considered. Since the influence of each input event on the gate output and supply
current is limited in time to a gate-specific interval δt, such interdependencies between
events on multiple inputs only need to be considered for events with occurrence times
within a maximum distance of δt from each other. Each event combination, Ke, is then
defined as the ordered list of events on all N gate inputs

Ke =
(
(le,0, we,0, te,0, se,0), (le,1, we,2, te,1, se,1), . . . , (le,N−1, we,N−1, te,N−1, se,N−1)

)
(5.1)

The case that input i remains in a stable state during an event combination can be
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conveniently denoted as we,i = 0 without changing the notation. In order to derive a
unique representation of the event combination that corresponds to the characterized
library, all time offsets are defined relative to the earliest event in the combination with
the event combination offset, τe, defined as

τe = min
i=0,...,N−1

te,i, (5.2)

t′e,i =


te,i − τe if we,i 6= 0

0 if we,i = 0
i = 0, . . . , N − 1. (5.3)

Instead of N individual transition slopes, se,i, annotated to each event, the average
transition slope, se, of all switching inputs during an event combination is used for library
lookup. This simplification results in a certain loss of accuracy for inputs featuring large
differences in signal slope but allows for a significant reduction in the dimension of the
lookup tables. Since the logic states, le,i, at the beginning of the event combination are
limited to the parameter values “0” or “1”, they can be used as coefficients in a binary
weight vector to form the combined decimal equivalent input state

Le =
N−1∑
i=0

le,i · 2i. (5.4)

The simplified event combination used during library lookup is therefore defined as

K ′e =
[
τe, se, Le,

(
(we,0, t′e,0), (we,1, t′e,1), . . . , (we,N−1, t

′
e,N−1)

)]
, (5.5)

where the last parameter is a list of tuples specifying the pulse width, we,i, and event time
offset, t′e,i, for each of the N inputs.

For the example depicted in Fig. 5.3 the event combination features a time offset τe =
min{te,0, te,1} = 0.1 ns with t′e,0 = te,0 − τe = 0ns and t′e,1 = te,1 − τe = 0.05 ns. The
average transition slope for the example is calculated as se = 1

2(se,0 + se,1) = 28.5 V
ns and

the combined logic state is Le = le,0 · 20 + le,1 · 21 = 1 which results in

K ′e =
[
0.1, 28.5, 1,

(
(−1, 0), (0.06, 0.05)

)]
, (5.6)

where the units of all times and slopes are omitted for the sake of brevity.
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Figure 5.4: Comparison of methods for interpolation between two waveforms

5.1.3 Library lookup of event combination effects

The effect of each event combination K ′e on the supply current as well as on the gate
output voltage can be looked up from the characterization library. Both effects are stored
as piecewise linear approximation waveforms where the position and number of supporting
points is optimized for accuracy and storage size. In addition to the event combination
parameters (with exception of τe), both waveforms exhibit a strong dependency on the
capacitive load, Cload, at the gate output which forms an additional lookup parameter.
In order to accelerate library lookup, for all parameters except for the mean transition
slope, se, and the capacitive output load, Cload, nearest neighbor interpolation is used,
which leads to acceptable deviations compared to more complex interpolation methods.
In contrast to these slight inaccuracies due to time offsets and pulse widths, the values

used for gate output load or the transition slopes on the input nets during lookup of
output effects require more care. Both parameters have a major influence on the supply
current waveform and nearest neighbor interpolation would lead to significant errors.
The simplest method for interpolation of two waveforms would sample both waveforms

at the same time grid and use the weighted sum of both values at each sample time as
the result. This approach that is closely related to linear interpolation does not result
in the desired properties as shown in Fig. 5.4 when trying to interpolate an intermediate
state between two given waveforms. Fig. 5.4b shows two pulses that could have been
observed at the same gate output for two different capacitive output loads. For an output
load that falls in-between the characterized values, one would still expect a single pulse
that is shifted in time and enlarged compared to pulse A towards pulse B. Instead, linear
interpolation predicts two smaller pulses at the same position as the original pulses. In
order to obtain a more suitable interpolation, an approach developed for the interpolation
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of probability distributions called distribution interpolation [67] or histogram matching [68]
is extended to general waveforms. The main advantage of this method that will be called
advecting interpolation is that it morphs the waveform features instead of cross-fading
them as in the linear interpolation. This method leads to the same results as a one-
dimensional application of displacement interpolation [69], which is based on Lagrangian
mass transport, but is significantly faster because no initial fitting of Gaussian kernels is
required.

5.1.4 Superposition of looked up waveforms

The waveform segments of the gate output net and the supply current that correspond
to the event combinations need to be superimposed in order to obtain the full waveforms
spanning the whole estimation time. First, all looked up waveform segments are moved
in time according to the offset, τe, corresponding to the respective event combination,
K ′e. In case the resulting segments are nonoverlapping in time, the output and supply
current waveforms can be obtained by simple concatenation of the segments. For closely
spaced events it is possible for consecutive waveform segments to overlap in selected time
windows. In that case the output waveform is constructed using the first intersection
of both waveforms as the time where control over the output state switches from one
segment to the next.
Due to this concatenation of analog signal waveforms this estimation retains full in-

formation about glitch creation and propagation. In order to perform analysis for gates
in subsequent logic levels, the output voltage waveform is analyzed in the same way as
the gate inputs before, resulting in a number of event tuples (le, we, te, se), consisting of
the logic state, le, at the beginning of the event, the potential pulse width, we, the event
time, te, and the signal slope, se. These events are stored in the local signal database
until needed. The supply current waveform on the other hand can be integrated in order
to obtain the power consumption of the current gate.

5.2 Characterization complexity

The description of the estimation approach using event-based lookup of waveform seg-
ments assumes that a sufficiently accurate characterization library containing information
on all gates of the circuits of interest exists. The generation of this library is a one-time
cost but nevertheless requires some attention in order not to restrict the overall accuracy
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Figure 5.5: Combination of event type and event offset for single gate input (n(we) =
n(te) = 3, n(se) = 1).

and keep the storage size of the characterization library in manageable limits.

For a gate with multiple inputs all combinations of input events with different time
offsets, te, on all inputs need to be considered. As discussed earlier, an event can either
be a single full-swing transition (we = −1) or a pulse featuring a certain width (we > 0).
Additionally, it is possible for an input to remain in a stable state (we = 0). Fig. 5.5
shows possible events on a single input starting at logic state “0” for n(we) = n(te) = 3
and a single transition slope, se, where the operator n(·) denotes the number of possible
parameter values (not considering the special case we = 0). For the case of no transition
on an input port the time offset becomes meaningless and does not need to be varied.
The number of combinations of pulse widths, time offsets and transition slopes for a gate
with N inputs that drives a capacitive output load, Cload, can be written as

n′comb = 2N · n(Cload) ·
(

n(we) · n(te) · n(se) + 1
)N
. (5.7)

This calculation considers that for the special cases where any signal remains in its
stable state during an event combination, neither time offset nor transition slope need to
be varied for this signal. Additionally, for each combination of pulse width, time offset
and transition slope the N -input gate can be in any of 2N input states at the start of
the event combination. The actual number of physically distinct combinations is slightly
reduced because a number of event combinations according to (5.7) will only differ in a
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global time offset. The reasonable restriction to event combinations that feature at least
one event at te = 0 and the simplification of only using the average signal slope se, which
was introduced before, reduce the number of event combinations to

ncomb = 2N · n(Cload) · n(se)
[(

n(we) · n(te) + 1
)N
−
(

n(we) · (n(te)− 1) + 1
)N

+ 1
]
.

(5.8)

This exponential growth of combinations severely limits the number of pulse widths
and event times that could be characterized in reasonable time for gates with a larger
number of inputs. Commercial standard cell libraries often feature combinatorial gates
with up to six inputs, which even for the restriction of only three possible values per pa-
rameter would require the evaluation of approximately 5.6 ·1012 event combinations. This
number is prohibitory high, even when considering that event combinations are indepen-
dent from each other and characterization could therefore apply arbitrary large degrees of
parallelization. In order to enable the handling of high-fanin gates, the proposed estima-
tion approach limits the number of inputs that are assumed to feature quasisimultaneous
switching events to a parameter nsw. This simplification is motivated by the reasoning
that it becomes increasingly improbable for larger number of inputs to switch at the same
time. This way, the number of event combinations to characterize for a gate with N ≥ nsw

inputs is reduced to

ncomb,nsw = 2N · n(Cload) · n(se) ·
nsw∑
k=1

(
N
k

)
·
(

n(we)k · n(te)k − n(we)k ·
(

n(te)− 1
)k)

. (5.9)

For the choice of nsw = 3, that is used for the results presented here, (5.9) can be
evaluated to

ncomb,3 = 2N · n(Cload) · n(se) ·
(
N3 − 3N2 + 2N

6 · n(we)3 ·
(
3 n(te)2 − 3 n(te) + 1

)
+

N2 −N
2 · n(we)2 ·

(
2 n(te)− 1

)
+

n(we) ·N + 1
)
, (5.10)

which demonstrates the reduction of the inner term from exponential complexity to cubic
complexity.

Each combination is simulated analogous to conventional library characterization using
an automated process. The resulting waveforms can be compressed using the same base
curve technology that is employed for compact-CCS models which already require analysis
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Figure 5.6: Example input signals to 4-input XNOR gate with annotated event charac-
teristics.

and storage of current waveforms [70]. Although the number of switching events that need
to be characterized is increased by up to four orders of magnitude, a large number of com-
binations result in either highly similar output waveforms or negligible output switching.
This can be exploited for intelligent selection of switching combinations to characterize
and for further reductions of the storage requirements. Without employing these com-
pression techniques, the prototype implementation results in a characterization library
that is approximately 800 times larger than a conventional library. As with conventional
library characterization, the process can be parallelized to arbitrary degrees.

5.3 Demonstration of estimation flow

As a demonstration of the proposed power estimation based on waveform lookup, the
workflow during estimation of a single gate will be examined in detail in the following
example. The signals shown in Fig. 5.6 are assumed to be connected to the 4-input XNOR
gate discussed in section 3.1. These signal waveforms could either form primary inputs to
the circuit under test or could result from the concatenation of waveform segments in the
estimation of a previous logic level. In both cases, prior to the actual estimation all wave-
forms are decomposed into switching events that can be written as 4-tuples (le, we, te, se)
as defined in section 5.1.1, specifying the logic state, le, prior to the event, the pulse
width, we, in nanoseconds, which is set to “-1” by definition for single transitions, the
event time, te, in nanoseconds and the transition slope, se, in volts per nanosecond. The
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lists of switching events for the example waveforms are given as

A1 : {(0,−1, 3.38, 6.24)} , (5.11)

A2 : {(1,−1, 0.27, 8.56), (0,−1, 3.86, 10.5), (1,−1, 6.52, 9.82)} , (5.12)

A3 : {(0,−1, 0.28, 7.77), (1,−1, 3.44, 7.97), (0, 0.2, 6.39, 11.7)} , (5.13)

A4 : {(1,−1, 3.61, 10.7)} . (5.14)

In the next step, combinations of events within a maximum distance of δt are formed.
The switching events of the individual inputs can be separated into three intervals that
feature switching activity, which results in the following event combinations:

Ke,0 =
(
(0, 0, 0, 0), (1,−1, 0.27, 8.56), (0,−1, 0.28, 7.77), (1, 0, 0, 0)

)
,

Ke,1a =
(
(0,−1, 3.38, 6.24), (0, 0, 0, 0), (1,−1, 3.44, 7.97), (1,−1, 3.61, 10.7)

)
,

Ke,1b =
(
(1, 0, 0, 0), (0,−1, 3.86, 10.5), (1, 0, 0, 0), (1,−1, 3.61, 10.7)

)
,

Ke,2 =
(
(1, 0, 0, 0), (1,−1, 6.52, 9.82), (0, 0.2, 6.39, 11.7), (0, 0, 0, 0)

)
.

(5.15)
As the combinations Ke,0 and Ke,2 only feature switching on two of the inputs, the re-
maining input events are set to we = 0. The second switching interval features switching
on all four inputs. As only event combinations with three switching inputs were included
in the characterization library in order to reduce complexity, this interval is separated into
two event combinations. Combination Ke,1a contains the earlier three switching events
and assumes a stable state on input A2, while combination Ke,1b includes the last event
on input A2 in addition to the event on A4 that was already included in the previous
combination but is within the time window of influence, δt, for this combination as well.
The earlier events on A1 and A3 can be assumed to have settled on their final value during
Ke,1b.

Prior to library lookup all event combinations are shifted in time according to (5.2) and
(5.3), the combined input state, Le,j, at the start of the event combination is calculated
from all le,i according to (5.4) and the mean transition slope of all switching inputs, se,j,
is defined, which results in

K ′e,0 =
[
0.27, 8.17, 10,

(
(0, 0), (−1, 0), (−1, 0.01), (0, 0)

)]
,

K ′e,1a =
[
3.38, 8.30, 12,

(
(−1, 0), (0, 0), (−1, 0.06), (−1, 0.23)

)]
,

K ′e,1b =
[
3.61, 10.6, 9,

(
(0, 0), (−1, 0.25), (0, 0), (−1, 0)

)]
,

K ′e,2 =
[
6.39, 10.8, 3,

(
(0, 0), (−1, 0.13), (0.2, 0), (0, 0)

)]
.

(5.16)
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Figure 5.7: Waveforms at the output Y of the XNOR gate for each event combination in
the estimation example as well as resulting output and supply current wave-
form (individual event contributions not shown) after concatenation in com-
parison to SPICE-level reference.

The first three entries per event combination specify the event combination offset, τe,j,
the mean transition slope, se,j, and the input state, Le,j, followed by event widths and
times on individual inputs.

These normalized event combinations in combination with the capacitive output load,
Cload, which is estimated from the netlist and parasitic extraction, correspond to the
scenarios characterized in the library. This allows lookup of the voltage waveform at the
gate output as well as of the supply current waveform for each combination. In order
to balance runtime complexity and estimation accuracy, interpolation using the proposed
advecting algorithm introduced in section 5.1.3 is only performed for output load and
signal slope while event width and time parameters are fitted to the closest characterized
scenario. This way, at most four data points need to be looked up per event combination.
The first four rows in Fig. 5.7 correspond to the effect on the output waveform of each
of the four event combinations which have already been shifted by τe,j in time to reverse
the normalization. The estimation result of the full output waveform is obtained by
concatenation of these looked up segments. For the effects of K ′e,1a and K ′e,1b this requires
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additional attention since the looked up waveform segments are overlapping in time. This
case is resolved by using the first intersection of both waveforms as the time when control
over the output switches from the first to the second event combination. The resulting
estimation waveform in the fifth row of Fig. 5.7 is compared to the result of a SPICE-level
circuit simulation stimulated by the same input waveforms. After analysis of the switching
events on this output node, which results in signal statistics to be used in a subsequent
logic level, this voltage waveform is no longer required in the estimation flow. The supply
current waveform that can be integrated to obtain the actual power estimation is plotted
in the sixth row of the figure. It is constructed from looked-up waveform segments related
to all event combinations in the same way as the voltage response and shows the same
high level of estimation accuracy. In this admittedly tiny example the estimation error
of the dynamic energy consumption compared to the circuit-level simulation is as low as
1.2%.

5.4 Evaluation of estimation accuracy

To demonstrate the accuracy of the proposed power estimation methodology and allow
a comparison to other approaches, the event-based waveform lookup is applied to repre-
sentative benchmark circuits. Because the introduction of the proposed approach aims at
mitigating shortcomings that are inherent to state-of-the-art gate-level power estimators,
the implementations of the ISCAS85 benchmark set, which was discussed in detail in sec-
tion 3.3.1 during the evaluation of commercial gate-level power estimators, are selected
for the accuracy evaluation. Fig. 5.8 compares the accuracy of the proposed approach to
that of a state-of-the-art gate-level power estimator for three different commercial CMOS
technologies. Both estimation approaches as well as the physical SPICE-level circuit
simulation which serves as the reference for the comparison employ the same stream of
input stimuli and have access to postlayout parasitic data. With exception of the custom
precharacterization library employed by the event-based waveform lookup both estimation
approaches require the same set of input files.

Fig. 5.8 demonstrates a considerable increase of accuracy of the proposed event-based
approach compared to state-of-the-art power estimation which becomes apparent in the
mean error of only 4.7% for all circuits and technologies compared to 13.1% for state-
of-the-art tools. Even more important is the reduction of the maximum error observed
for this benchmark set to be 12.6% for the proposed approach in contrast to 38.6% for
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Figure 5.8: Comparison of estimation accuracy of proposed event-based waveform lookup
compared to state-of-the-art commercial power estimator (results of Tool A
as shown in Fig. 3.7a).

commercial power estimators. The highest gains in accuracy can be observered for circuits
which exhibit complex signal delay effects that are handled poorly in current gate-level
estimators. The circuits c499 and c1355, where energy consumption is dominated by
compound XNOR gates, can be shown to suffer from dramatic underestimation when
handled by commercial power estimators mainly because of the importance of quasisi-
multaneous switching of multiple gate inputs that cannot be considered in current library
formats. The circuit c6288 on the other hand, which implements a 16-bit multiplier, fea-
tures a high logic depth requiring accurate estimation of glitch propagation which cannot
be provided by standard estimation workflows. Both of these shortcomings are mitigated
by the proposed estimation approach which is demonstrated by the dramatic reduction
of estimation errors for these circuits.

5.5 Estimation of sequential circuits

The introduction of the proposed power estimation methodology assumed purely combi-
natorial circuits. However, it can be generalized to circuits containing sequential cells.
The extensions which need to be considered as well as the resulting accuracy will be
discussed in the following section.

In contrast to combinatorial gates, the power consumption and output switching wave-
forms of registers or latches are not solely dependent on the input events but also on the
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Figure 5.9: Assignment of logic levels for sequential circuit featuring a loop in the con-
nectivity.

stored output state. This dependency needs to be considered during cell characterization
by simulating each event combinations for both possible output states. Compensating this
increasing characterization complexity is the fact that the clock input can be assumed to
be free of glitches. During estimation the stored state at the outset of an event combina-
tion can be included in the combined state parameter, Le, without modifying the lookup
procedure.

A second point that needs to be addressed is the decomposition of the circuit under
analysis into logic levels. The algorithm proposed in section 5.1 assumed a gate netlist
without loops in the connectivity in order to assign unambiguous levels to all gates.
While this assumption is valid for virtually all combinatorial circuits with the exception
of oscillators, sequential circuits routinely feature internal states as part of feedback loops.
Notable examples are state machines or the calculation of iterative algorithms. A simple
example is depicted in Fig. 5.9. For the proposed estimation approach to handle these
circuits, potential loops need to be broken. The solution to this challenge lies in the
distinctive property of register outputs to toggle at most once during a clock cycle. In
addition, the time offsets of these full-swing transitions at register outputs are determined
with sufficient accuracy by the switching events on the clock input.

As a consequence, the preprocessing step which assigns an unique logic level to each
gate is modified as given in Algorithm 1. When a loop in the connectivity prevents further
assignment of logic levels, a register taking part in such a loop is heuristically selected from
the set of gates which are not assigned a level yet by the procedure SelectRegister.
By assuming that the switching at the circuit node connected to this register output
was estimated in a previous iteration, a deadlock in the algorithm is prevented. In the
example depicted in Fig. 5.9, neither of the NOR gates can be assigned a logic level by
linearly parsing the hierarchy because the register output, e, is fed back thereby creating
a loop. By assuming that the switching events on e were known, the remaining gates can
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Algorithm 1 Assignment of logic levels
for all gate ∈ G do . initialize levels of gates to undefined value

lg(gate) =∞
end for
for all net ∈ N do . initialize levels of nets to undefined value

ln(net) =∞
end for
Ninputs ← PrimaryInputs(N)
for all net ∈ Ninputs do . assign primary input nets to level 0

ln(net)← 0
end for
Gunassigned ← G
Gassumed ← ∅ . registers for which output is assumed to be known to break loop
level← 0
while |Gunassigned| > 0 do . continue until all gates are assigned a level

for all gate ∈ Gunassigned do
Ngate ← InputNets(gate) . fetch set of current input nets
if ln(net) ≤ level ∀ net ∈ Ngate then . when all input nets are defined

lg(gate)← level . assign gate to current level. . .
ln(OutputNets(gate))← level+1 . . . . and output nets to next level
remove gate from Gunassigned

end if
end for
if @ lg(gate) = level ∀ gate ∈ G then . if no gate was assigned to current level

gatereg ← SelectRegister(Gunassigned) . select suitable register to break loop
ln(OutputNets(gatereg))← level+1 . assume output to be defined
add gatereg to Gassumed . remember assumed register outputs

else
level← level + 1 . continue for next level

end if
end while

be assigned suitable logic levels.

The switching events on the outputs of all registers in the set of gates, Gassumed, which
were selected to break connectivity loops, need to be approximated prior to actual esti-
mation of the register gate. The heuristic employed during loop-breaking guarantees that
switching events on the clock input of the selected registers are estimated prior to the
iteration during which the approximated register output is required. The gate delays and
transition slopes of the registers in Gassumed can be estimated from the default charac-
terization library while considering parasitic node capacitances and circuit connectivity.
The zero-delay switching activity at these nodes is recorded during the execution of the
testbench that is required in any case to determine switching on the primary inputs. The
recorded switching events are shifted in time by an offset depending on the estimated
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Figure 5.10: Comparison of estimation accuracy of proposed event based approach to
commercial gate-level estimator for sequential circuits.

gate delay and the timing of the clock input events. In addition, the looked-up transi-
tion slopes are annotated to these approximated full-swing switching events. This way,
an accurate estimation of switching activity at the output of registers is available prior
to the processing of the register themselves using the event based waveform lookup ap-
proach. However, the supply current waveforms needed to calculate the dynamic power
consumption are still generated in a later iteration of the estimation algorithm once all
input nodes have been annotated with accurate switching events.
The accuracy of the proposed event-based waveform lookup compared to circuit sim-

ulation resulting from this generalization to sequential circuits is evaluated using the
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ISCAS89 benchmark set that was introduced in section 3.3.2. As before, the accuracy
achieved by the proposed estimation approach is put into perspective by comparison to
a state-of-the-art gate-level estimator. As shown in Fig. 5.10a the mean error of 4.8%
achieved by the proposed approach seems high compared to the apparently perfect esti-
mation for a large number of circuits using the commercial estimation tool which results
in a mean error of 2.9%. However, as discussed in chapter 3.3.2, this seemingly good esti-
mation accuracy results from compensation of relatively high error components featuring
opposite signs. The higher dependability of the proposed approach is demonstrated in
Fig. 5.10b which compares the estimation accuracy of the combinatorial circuit compo-
nents. The relative energy errors for the proposed approach are in the same range as
for the total error whereas the commercial state-of-the-art tool exhibits errors of up to
19.6% which did not show up in the analysis of the total dynamic energy error due to
compensation with underestimated sequential components.

5.6 Analysis of runtime complexity

Since the proposed algorithm traverses the circuit hierarchy by logic levels and performs
power estimation for each logic gate separately, the computational complexity of the algo-
rithm grows linearly with circuit size, similar to conventional gate-level power estimators.
Concepts like caching of interpolated waveform results can be applied to further reduce
the required runtime while the fact that all estimations at the same logic level are uncor-
related lends itself to parallel implementations.
The linear runtime complexity of the prototype implementation of the proposed algo-

rithm based on MATLAB is demonstrated in Fig. 5.11. It outperforms highly optimized
commercial circuit simulators by a factor of 50 for circuits with 1000 gates. The speedup
increases with growing circuit size as expected. State-of-the-art gate-level power estima-
tors exhibit runtimes that are faster by a factor of approximately 200. However, due to
similar computational complexity it can be assumed that runtime-optimized implemen-
tations of the proposed approach will significantly reduce this gap without sacrificing the
superior accuracy.
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6 Conclusion

The analysis of state-of-the-art gate-level power estimators that are commonly employed
in current digital design work flows revealed considerable accuracy deficits when effects
due to signal delays need to be considered. In particular, the generation and propagation
of glitches cannot accurately be represented by the underlying digital switching activities.
Further errors are caused by the restriction to the handling of single input events which
become most pronounced for complex compound gates where switching of internal nodes
is significant.

Motivated by these deficiencies of existing power estimation methodologies this work ex-
plores alternative approaches towards power estimation of digital circuits while considering
complex delay effects like glitches. The stochastic nature of average power consumption
analysis serves as the basis for macromodeling approaches that link statistical proper-
ties of input signals to the power consumption of circuit components without requiring
error-prone analysis of switching activities on all nodes. This class of power estimators
allows analysis on various levels of abstraction by relying on libraries of circuit compo-
nents which were characterized on a lower level of abstraction in a preparatory phase. In
order to accurately consider the increase of dynamic energy dissipation due to glitches
on circuit nodes, novel metrics as additional parameters to circuit macromodels were in-
troduced which capture the essential properties of glitching. The proposed glitch metrics
are defined by probability distributions to retain information about their spread which is
essential for accurate propagation of metrics. The parameters required for library lookup
are defined as the moments of normal distributions obtained by fitting of mixture distri-
butions to the empirical metric distributions. The resulting estimation methodology was
shown to achieve good accuracy under the influence of glitches but was hampered by the
high characterization complexity resulting from the large number of model parameters.

In an effort to reduce the model complexity alternative metrics were proposed that
targeted single transitions instead of glitches and therefore allowed the unified handling
of switching due to logic evaluation and undesired glitching. Further reductions of the
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number of model parameters were achieved by piecewise linearization of the probability
distribution of transition occurrence time which allowed the separate analysis of segments
in time. During analysis of the modified modeling approach it was demonstrated to allow
fast estimation that capture the power dependency on glitching for small circuit macros.
However, this simplifying assumption of weakly correlated time windows was revealed to
cause fatal estimation errors for large logic depths.
Subsequently, a second, fundamentally different approach towards accurate consider-

ation of glitching effects during power estimation was introduced. Instead of applying
statistical parameters to a fitted macromodel, this proposed approach targets individual
switching events. In an effort to retain the runtime advantages of lookup-based power
estimation while benefiting from the accuracy of analog switching waveforms as obtained
during physical circuit simulation, this approach replaces inaccurate digital simulation
by the lookup of precharacterized waveform segments related to switching events on the
inputs of gates. By including partial-swing glitches as well as multi-input events in the
characterization library, the complex behavior of glitch generation and propagation is
accurately handled. The comparison of estimation accuracy of this approach based on
lookup of waveform segments and a state-of-the-art gate-level power estimation demon-
strates the significant improvements. In particular, the benchmark circuits which suffered
from complex signal delay effects that cannot be modeled well in existing methodologies
are handled well by the proposed approach.
The two methodologies proposed in this work demonstrate two distinct approaches

aiming at the same goal. The probabilistic macromodels fit naturally into the statistical
view of mean power estimation and could allow for the evaluation of power consumption
in a single step without the need for lengthy input sequences. However, the derivation
of simplified model parameters and the balancing of accuracy and evaluation complexity
requires additional work. The fundamental idea underlying the event-based lookup of
waveform segments on the other hand is closer to current gate-level estimators which
facilitates incorporation into existing work flows. By targeting the known limitations
of state-of-the-art estimators, the event-based approach achieves high accuracy even for
circuits that are highly dependent on complex delay effects.



89

Bibliography
[1] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective.

Pearson Education, 2011.

[2] A. N. Bhoj and N. K. Jha, “Design of Logic Gates and Flip-Flops in High-
Performance FinFET Technology,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 21, no. 11, pp. 1975–1988, Nov 2013.

[3] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer, “On average power dissipation and
random pattern testability of CMOS combinational logic networks,” in International
Conference on Computer-Aided Design. Santa Clara, CA , USA: IEEE Comput.
Soc. Press, 1992, pp. 402–407.

[4] M. Meixner and T. G. Noll, “Limits of gate-level power estimation considering real
delay effects and glitches,” in International Symposium on System-on-Chip. IEEE,
Oct 2014.

[5] D. Kamel, C. Hocquet, F.-X. Standaert, D. Flandre, and D. Bol, “Glitch-induced
within-die variations of dynamic energy in voltage-scaled nano-CMOS circuits,” in
European Solid-State Circuits Conference. IEEE, Sep 2010, pp. 518–521.

[6] F. Hu and V. D. Agrawal, “Enhanced dual-transition probabilistic power estimation
with selective supergate analysis,” in International Conference on Computer Design.
IEEE Comput. Soc, 2005, pp. 366–369.

[7] C. M. Huizer, “Power Dissipation Analysis of CMOS VLSI Circuits by means of
Switch-Level Simulation,” in European Solid-State Circuits Conference, 1990, pp.
61–64.

[8] M. Rewienski, “Simulation and Verification of Electronic and Biological Systems,”
in Simulation and Verification of Electronic and Biological Systems, P. Li, L. M.
Silveira, and P. Feldmann, Eds. Springer Netherlands, 2011, ch. A Perspect, pp.
23–43.

[9] D. Rabe and W. Nebel, “New approach in gate-level glitch modelling,” in European
Design Automation Conference. IEEE Comput. Soc. Press, 1996, pp. 66–71.

[10] W.-C. Tsai, C. B. Shung, and D. C. Wang, “Accurate logic-level power simulation
using glitch filtering and estimation,” in Asia Pacific Conference on Circuits and
Systems. Seoul, South Korea: IEEE, 1996, pp. 314–317.

[11] S. Gavrilov, A. Glebov, S. Rusakov, D. Blaauw, L. Jones, and G. Vijayan, “Fast
power loss calculation for digital static CMOS circuits,” in Proceedings European
Design and Test Conference. IEEE Comput. Soc. Press, 1997, pp. 411–415.



90 Bibliography

[12] P. Israsena and S. Summerfield, “Novel pattern-based power estimation tool with ac-
curate glitch modeling,” in International Symposium on Circuits and Systems, vol. 4,
2000, pp. 721–724.

[13] A. Bogliolo, B. Ricco, L. Benini, and G. De Micheli, “Accurate logic-level power
estimation,” in Symposium on Low Power Electronics. IEEE, 1995, pp. 40–41.

[14] J. Lee, B. Vinnakota, and L. Lucke, “Power estimation using input/output transition
anaylsis (IOTA),” in International Symposium on Circuits and Systems. Monterey,
CA, USA: IEEE, 1998, pp. 49–52.

[15] M. Dietrich and J. Haase, Process Variations and Probabilistic Integrated Circuit
Design. Springer, 2012.

[16] Synopsys, “CCS Power Technical White Paper,” Tech. Rep., 2006.

[17] R. Burch, F. N. Najm, P. Yang, and T. N. Trick, “A Monte Carlo approach for power
estimation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 1, no. 1, pp. 63–71, Mar 1993.

[18] F. N. Najm, “Transition density: a new measure of activity in digital circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12,
no. 2, pp. 310–323, 1993.

[19] T.-L. Chou and K. Roy, “Estimation of activity for static and domino CMOS circuits
considering signal correlations and simultaneous switching,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 10, pp. 1257–
1265, 1996.

[20] R. Marculescu, D. Marculescu, and M. Pedram, “Probabilistic modeling of depen-
dencies during switching activity analysis,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 17, no. 2, pp. 73–83, 1998.

[21] L. Wang, M. Olbrich, E. Barke, T. Buchner, M. Buhler, and P. Panitz, “A theoretical
probabilistic simulation framework for dynamic power estimation,” in International
Conference on Computer-Aided Design. IEEE, Nov 2011, pp. 708–715.

[22] C.-S. Ding, C.-Y. Tsui, and M. Pedram, “Gate-level power estimation using tagged
probabilistic simulation,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 17, no. 11, pp. 1099–1107, 1998.

[23] Z. Hao, R. Shen, S. X.-D. Tan, B. Liu, G. Shi, and Y. Cai, “Statistical full-chip
dynamic power estimation considering spatial correlations,” in International Sympo-
sium on Quality Electronic Design. Santa Clara, CA , USA: IEEE, Mar 2011, pp.
1–6.

[24] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization based on clus-
tering,” in Design Automation Conference. Las Vegas, NV, USA: ACM, 1996, pp.
702–707.

[25] J.-Y. Lin, W.-Z. Shen, and J.-Y. Jou, “A structure-oriented power modeling technique
for macrocells,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 7, no. 3, pp. 380–391, 1999.



Bibliography 91

[26] S. Ravi, A. Raghunathan, and S. T. Chakradhar, “Efficient RTL power estimation
for large designs,” in International Conference on VLSI Design. IEEE Comput.
Soc, 2003, pp. 431–439.

[27] B. Carrion Schafer and K. Wakabayashi, “Precision tunable RTL macro-modelling
cycle-accurate power estimation,” Computers & Digital Techniques, vol. 5, no. 2,
p. 95, 2011.

[28] L. Benini, A. Bogliolo, M. Favalli, and G. De Micheli, “Regression Models for Behav-
ioral Power Estimation,” Integrated Computer-Aided Engineering, vol. 5, no. 2, pp.
95–106, Apr 1998.

[29] N. R. Potlapally, A. Raghunathan, G. Lakshminarayana, M. S. Hsiao, and S. T.
Chakradhar, “Accurate power macro-modeling techniques for complex RTL circuits,”
in International Conference on VLSI Design. IEEE, 2001, pp. 235–241.

[30] Q. Wu, Q. Qinru, M. Pedram, and C.-S. Ding, “Cycle-accurate macro-models for
RT-level power analysis,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 6, no. 4, pp. 520–528, 1998.

[31] S. Gupta and F. N. Najm, “Power Macromodeling For High Level Power Estimation,”
in Design Automation Conference. IEEE, 1997, pp. 365–370.

[32] M. Barocci, L. Benini, A. Bogliolo, B. Ricco, and G. De Micheli, “Lookup table
power macro-models for behavioral library components,” in Alessandro Volta Memo-
rial Workshop on Low-Power Design. Como , Italy: IEEE, 1999, pp. 173–181.

[33] M. Anton, I. Colonescu, E. Macii, and M. Poncino, “Fast characterization of RTL
power macromodels,” in International Conference on Electronics, Circuits and Sys-
tems. IEEE, 2001, pp. 1591–1594.

[34] S. Gupta and F. N. Najm, “Power modeling for high-level power estimation,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 1, pp.
18–29, 2000.

[35] P. E. Landman and J. M. Rabaey, “Architectural power analysis: The dual bit type
method,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 3,
no. 2, pp. 173–187, Jun 1995.

[36] B. Jovanovic, R. Jevtic, and C. Carreras, “Binary Division Power Models for High-
Level Power Estimation of FPGA-based DSP Circuits,” IEEE Transactions on In-
dustrial Informatics, pp. 1–1, 2013.

[37] A. Raghunathan, S. Dey, and N. K. Jha, “High-level macro-modeling and estimation
techniques for switching activity and power consumption,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 11, no. 4, pp. 538–557, Aug 2003.

[38] G. Bernacchia and M. C. Papaefthymiou, “Analytical macromodeling for high-level
power estimation,” in International Conference on Computer-Aided Design. San
Jose, CA , USA: IEEE, 1999, pp. 280–283.



92 Bibliography

[39] A. Ahmadinia, B. Ahmad, and T. Arslan, “Efficient High-Level Power Estimation
for Multi-standard Wireless Systems,” in Symposium on VLSI. Montpellier: IEEE,
2008, pp. 275–280.

[40] W.-T. Hsieh, J.-C. Yeh, S.-C. Lin, H.-C. Liu, and Y.-S. Chen, “System power analysis
with DVFS on ESL virtual platform,” in International SOC Conference. IEEE, Sep
2011, pp. 93–98.

[41] L. Kosmann, D. Lorenz, A. Reimer, and W. Nebel, “Enabling energy-aware design
decisions for behavioural descriptions containing black-box IP-components,” in In-
ternational Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS). IEEE, Sep 2013, pp. 51–58.

[42] N. Dhanwada, I.-C. Lin, and V. Narayanan, “A power estimation methodol-
ogy for systemC transaction level models,” in International Conference on Hard-
ware/Software Codesign and System Synthesis. New York, New York, USA: ACM
Press, 2005, pp. 142–147.

[43] S. Schürmans, Diandian Zhang, D. Auras, R. Leupers, G. Ascheid, Xiaotao Chen,
and Lun Wang, “Creation of ESL power models for communication architectures
using automatic calibration,” in Design Automation Conference, 2013, pp. 1–6.

[44] K. Gruttner, P. A. Hartmann, T. Fandrey, K. Hylla, D. Lorenz, S. Stattelmann,
B. Sander, O. Bringmann, W. Nebel, and W. Rosenstiel, “An ESL timing & power
estimation and simulation framework for heterogeneous SoCs,” in International Con-
ference on Embedded Computer Systems: Architectures, Modeling, and Simulation,
2014, pp. 181–190.

[45] C.-W. Hsu, J.-L. Liao, S.-C. Fang, C.-C. Weng, S.-Y. Huang, W.-T. Hsieh, and J.-C.
Yeh, “PowerDepot: Integrating IP-based power modeling with ESL power analysis
for multi-core SoC designs,” in Design Automation Conference, 2011, pp. 47–52.

[46] D. Lorenz, K. Gruettner, and W. Nebel, “Data-and State-Dependent Power Char-
acterisation and Simulation of Black-Box RTL IP Components at System Level,” in
Euromicro Conference on Digital System Design. IEEE, Aug 2014, pp. 129–136.

[47] R. Dochia, D. Bogdan, and C. Burileanu, “Model for software power estimation of
an 8-bit microcontroller,” in International Semiconductor Conference. IEEE, Oct
2011, pp. 443–446.

[48] S.-A. Wen, H.-L. Lin, C. Wu, C.-C. Chen, K.-H. Tsai, and W.-M. Cheng, “Power-
aware design technique for PAC Duo based embedded system,” in International SOC
Conference. IEEE, Sep 2011, pp. 132–135.

[49] S. Hesselbarth, T. Baumgart, and H. Blume, “Hardware-assisted power estimation
for design-stage processors using FPGA emulation,” in International Workshop on
Power and Timing Modeling, Optimization and Simulation. IEEE, Sep 2014, pp.
1–8.

[50] R. Ben Atitallah, S. Niar, and J.-L. Dekeyser, “MPSoC power estimation framework
at transaction level modeling,” in Internatonal Conference on Microelectronics, Cairo,
2007, pp. 245 – 248.



Bibliography 93

[51] W. L. Bircher and L. K. John, “Complete System Power Estimation Using Processor
Performance Events,” IEEE Transactions on Computers, vol. 61, no. 4, pp. 218–227,
2012.

[52] C.-K. Chen and R.-S. Tsay, “AROMA: A highly accurate microcomponent-based
approach for embedded processor power analysis,” in Asia and South Pacific Design
Automation Conference. IEEE, Jan 2015, pp. 761–766.

[53] M. Favalli and L. Benini, “Analysis of glitch power dissipation in CMOS ICs,” in
International symposium on Low power design. New York, New York, USA: ACM
Press, 1995, pp. 123–128.

[54] Q. Dinh, D. Chen, and M. D. F. Wong, “Dynamic power estimation for deep submi-
cron circuits with process variation,” in Asia and South Pacific Design Automation
Conference. IEEE, Jan 2010, pp. 587–592.

[55] C. Henning and T. G. Noll, “A new power modeling approach for transversal filters
based on physically oriented design,” in International ASIC/SOC Conference. IEEE,
2002, pp. 114–118.

[56] J. H. Anderson and F. N. Najm, “Power estimation techniques for FPGAs,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 10, pp.
1015–1027, Oct 2004.

[57] X. Liu and M. C. Papaefthymiou, “Incorporation of input glitches into power macro-
modeling,” in International Symposium on Circuits and Systems, vol. 4. IEEE, 2002,
pp. IV–846–IV–849.

[58] J. D. Alexander and V. D. Agrawal, “Algorithms for Estimating Number of Glitches
and Dynamic Power in CMOS Circuits with Delay Variations,” in Symposium on
VLSI. IEEE, 2009, pp. 127–132.

[59] J. Yang, L. Ma, Zhaom Kang, Y. Cai, and T.-F. Ngai, “Early stage real-time SoC
power estimation using RTL instrumentation,” in Asia and South Pacific Design
Automation Conference. IEEE, Jan 2015, pp. 779–784.

[60] D. Lee, L. K. John, and A. Gerstlauer, “Dynamic power and performance back-
annotation for fast and accurate functional hardware simulation,” in Design, Au-
tomation & Test in Europe, 2015, pp. 1126–1131.

[61] Synopsys, “CCS Power Liberty Syntax,” Synopsys, Tech. Rep., 2006.

[62] F. Brglez and H. Fujtwara, “A neutral netlist of 10 combinational benchmark circuits
and a target translator in fortran,” in IEEE International Symposium on Circuits and
Systems, Jan 1985.

[63] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential bench-
mark circuits,” in IEEE International Symposium on Circuits and Systems. IEEE,
1989, pp. 1929–1934.

[64] M. R. Gupta and Y. Chen, “Theory and Use of the EM Algorithm,” Foundations
and Trends in Signal Processing, vol. 4, no. 3, pp. 223–296, 2010.



94 Bibliography

[65] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability & Statistics for
Engineers & Scientists, 9th ed. Prentice Hall, 2012.

[66] M. Meixner and T. G. Noll, “Accurate estimation of CMOS power consumption
considering glitches by using waveform lookup,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 64, no. 7, pp. 787–791, July 2017.

[67] A. Read, “Linear interpolation of histograms,” Nuclear Instruments and Methods in
Physics Research, vol. 425, no. 1-2, pp. 357–360, Apr 1999.

[68] W. Matusik, M. Zwicker, and F. Durand, “Texture design using a simplicial complex
of morphable textures,” in ACM SIGGRAPH, vol. 24, no. 3. New York, New York,
USA: ACM Press, Jul 2005, p. 787.

[69] N. Bonneel, M. van de Panne, S. Paris, and W. Heidrich, “Displacement interpolation
using Lagrangian mass transport,” ACM Transactions on Graphics (TOG), vol. 30,
no. 6, p. 158, Dec 2011.

[70] Synopsys, “Liberty User Guide, Volume 1,” 2013.


	Title
	Contents
	1 Motivation
	2 Introduction
	2.1 Contributions to CMOS power consumption
	2.2 Power estimation methodologies
	2.2.1 Macromodels on gate level
	2.2.2 Macromodels on register-transfer level
	2.2.3 Macromodels on system level

	2.3 Power estimation considering real delay effects and glitches
	2.4 Power consumption and variability

	3 Limits of Commercial Gate Level Power Estimation
	3.1 Errors due to logic simulation
	3.2 Errors due to energy lookup
	3.3 Benchmarking of estimation accuracy
	3.3.1 ISCAS85 circuits
	3.3.2 ISCAS89 circuits


	4 Probabilistic macromodels considering glitch parameters
	4.1 Definition of quantitative glitch metrics
	4.2 Extraction of power macromodel parameters
	4.3 Building of the characterization library
	4.4 Application example
	4.5 Challenges of the proposed approach
	4.5.1 Size of parameter space
	4.5.2 Averaging of glitch metrics for word-level signals
	4.5.3 Correlation between glitch metrics

	4.6 Reduction of modeling complexity
	4.6.1 Alternative glitch metrics
	4.6.2 Simplification of occurrence metrics
	4.6.3 Simplification of time metrics
	4.6.4 Demonstration of simplified macromodels

	4.7 Handling of variability
	4.8 Comparison of probability macromodel approaches

	5 Event-based lookup of power waveforms
	5.1 Lookup-based estimation of output waveforms and gate power
	5.1.1 Signal characteristics of event-based power waveform lookup
	5.1.2 Grouping into event combinations
	5.1.3 Library lookup of event combination effects
	5.1.4 Superposition of looked up waveforms

	5.2 Characterization complexity
	5.3 Demonstration of estimation flow
	5.4 Evaluation of estimation accuracy
	5.5 Estimation of sequential circuits
	5.6 Analysis of runtime complexity

	6 Conclusion
	Bibliography

