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Abstract— The share of power converter based renewable 

generation is steadily increasing at the expense of rotating inertia. 

Virtual Synchronous Machines are deemed to ensure system stability, 

however, there are no widely accepted criteria for the design of their 

controllers. In converter-dominated power systems, one of the main 

challenges will be to analyze power angle stability, because of the large 

number (and possibly divergent design) of converters. Converters, 

however, also offer the possibility to shape system dynamics in a way 

that was impossible with synchronous machines. In this paper we 

elaborate the new concept of Linearized and Uniform Swing 

Dynamics. This allows the linearization of the nonlinear swing 

behavior over almost the entire power range, thereby extending the 

validity of the small-signal stability analysis techniques for larger 

disturbances. By properly choosing the controller parameters, the 

dynamics of the large number of converters expected in the system can 

be made unified and predictable. 

Index Terms— Converters, power system control, power system 

dynamics, power system stability, renewable energy sources. 

NOMENCLATURE 

Symbol Description 

𝐵 ,𝐵𝑖 , 𝐵𝑖𝑗 Susceptance matrix, its ith row, its elements 

D Damping constant 

E Nominal voltage or the ideal remote source 

Ek, Ep Kinetic and potential energy components of TE 

LSD Linear and uniform Swing Dynamics 

M Moment of inertia 

NL Nonlinearity measure 

Pref, P  Power reference, actual electrical power output 

R Real part of the system equivalent impedance 

SG Synchronous generator 

SMIB Single machine infinite bus 

𝑆𝑠𝑐 Short circuit power at the grid connection point 

TE Total Energy (Lyapunov function) 

V Terminal voltage of SG or VSM 

VSM Virtual synchronous machine 

X Imaginary part of the equivalent impedance 

b see (17) 

γ D/(2M) 

δ Angle between E and V 

ε Voltage tolerance (e.g. 0.1 for +/- 10%) 

𝜃𝑉𝑆𝑀 Phase angle of VSM 

ω, ωs Rotational speed, synchronous speed 
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I. INTRODUCTION

he increasing share of electricity from renewables (mainly
wind and solar) leads to a growing number of converters
connected to the power system. Scenarios exist for 100% 

renewable-based energy supply in Germany by 2050 [1].  
Several research efforts therefore aim at the proper 
establishment of requirements for the design and control of 
these converters.  
Inertia-less system operation is one of the critical challenges for 
future power systems: disturbances will induce new types of 
dynamic behavior, which are faster than conventional power 
system dynamics. These might lead to instability problems and 
have to be considered in system operation, stability analysis, 
and control [2], [3]. 
Moreover, the number of generating units is increasing by 
several orders of magnitude, as compared to the “conventional” 
power systems, for which stability concepts are well 
established. Without a coherent design of converters and their 
controllers, power system dynamics will be very hard to predict 
and analyze. 
The up-to-date solutions for the inertia problem are Virtual 
Synchronous Machines (VSM), see [2], [4], [5], [6]. These 
VSMs are based on the classical representation of the swing 
equation (SE), which is not the only meaningful option.  
With this paper we aim to contribute to the establishment of the 
requirements for the future, converter-based (VSM-dominated) 
power systems. Our goal is to tackle the nonlinearity that is 
inherent to the SE and originating in the power transfer 
equation. We are doing so by developing the concept of Linear 
and uniform Swing Dynamics (LSD), which is an improvement 
of the classical SE-based VSM. It provides: a linear SE 
dynamics, enhanced system stability and uniform and 
predictable swing dynamic performance. This concept makes it 
possible to perform system stability analysis and capture 
information for the whole state space, i.e. small and larger 
disturbances, as well. It also provides the same swing-related 
eigenvalues for almost the whole power range, and therefore it 
will not be necessary to recalculate the dynamics (eigenvalues, 
modes etc.) at different operating points. 
Power electronic systems provide several degrees of freedom in 
control system design to implement the LSD concept. However, 
in this paper we are only assessing a subset of the possible 
functionalities, namely the voltage-control based LSD. 
The disturbances we consider in this paper are the same that are 
usually considered for small-signal stability analysis [7], e.g. 
power reference changes or system frequency disturbances, in 
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other words: disturbances that do not bring the inverter close to 
its current-limited mode. We show that by using our approach 
the linearity assumption holds not only for a small power range 
around the actual operating point, but over almost the whole 
power range. We are not focusing on disturbances that are 
traditionally categorized as large-signal (or transient) stability 
issues, i.e. faults, because in case of faults the inverters are 
working in a current-limited mode of operation, to prevent their 
damage.  
We outlined the basic concept of LSD in [10], in which we 
focused on a single-machine-infinite-bus (SMIB) system, 
where the grid impedance was represented by a series reactance 
only. The main contributions of the underlying paper are: 

 We provide a Lyapunov stability analysis of the LSD 
concept 

 We derive the concept for a more general class of SMIB 
systems, where the grid is represented by a resistive-
inductive series impedance – mainly typical for 
distribution systems. 

 We extend the concept for multimachine systems and 
show simulation results. 

We note here, that throughout this paper we use two distinct 
meanings of the word “linearization”. On the one hand, it is a 
mathematical tool for the simplified analysis of an inherently 
nonlinear phenomenon. On the other hand, as it represents the 
goal of the LSD concept, it is a special control technology that 
allows a truly linear physical behavior of a system, which, 
without LSD, would have behaved in a nonlinear way. The 
context clearly indicates, which definition we actually mean.  

II.  POWER SYSTEM DYNAMIC BEHAVIOR 

In rotor angle stability studies of classical – synchronous 

generator (SG)-based – power systems, the swing equation (SE) 

is often used as a low order approximate representation of the 

electro-mechanical dynamics.  

Let us consider a SG connected to a network, represented by its 

Thévenin equivalent, as shown in Fig. 1. The network equivalent 

model consists of a constant voltage source (E) and an 

impedance. Since rotor angle stability analysis is usually 

performed for transmission systems, the impedance is often 

approximated by a series reactance only. 

    
Fig. 1. Simple model for demonstration of the SE 

The dynamic behavior of this SMIB system is governed by the 

following equations [11]: 

𝑀𝜔̇ = 𝑃𝑟𝑒𝑓 − 𝑃 − 𝐷𝛿̇ (1) 

𝑃 =
𝐸𝑉

𝑋
sin 𝛿 (2) 

𝛿̇ = 𝜔 − 𝜔𝑠 (3) 

with M: inertia constant, ω: rotational speed, ωs: synchronous 

speed, Pref: reference (“mechanical”) power, P: actual power 

output, E and X: (nominal) voltage and reactance of the 

equivalent system, V: SG terminal voltage, δ: angle between E 

and V, D: damping constant. 

The SE is usually linearized with specific assumptions around 

an operating point to simplify the stability analysis, but then it 

is applicable only for small disturbances, to capture system 

stability information for limited operation conditions.  

Linearizing (1) – (3) around an operating point (see [11]), we 

obtain (4) that describes the small-signal behavior of the VSM: 

[∆𝛿̇
∆𝜔̇

] = [
0 1

−
𝐸𝑉

𝑋𝑀
cos 𝛿 −

𝐷

𝑀

] [
∆𝛿
∆𝜔

] (4) 

The eigenvalues of this system can be easily obtained as 

−𝛾 ± √𝛾2 −
𝐸𝑉

𝑀𝑋
𝑐𝑜𝑠𝛿 (5) 

with 

𝛾 =
𝐷

2𝑀
 (6) 

From (2), (4) and (5) it can be observed, that  

 the dynamic behavior of this system depends on the 

actual operating point (P or δ), and  

 it has a nonlinear dependence on δ; 

 the eigenvalues and the oscillation frequency (if any) 

can be shaped by controlling V. 

There are also other possibilities for shaping the system 

dynamics, but in this paper we will first analyze the most 

straightforward concept: voltage control. An inverter’s voltage 

control loop can be made significantly faster than excitation 

control of SGs, which opens new possibilities in designing 

VSMs. 

III.  VIRTUAL SYNCHRONOUS MACHINE (VSM) 

There are several implementation proposals for VSMs in the 

literature [13].  

For the presentation of the LSD concept using time-domain 

simulations, we will use the so-called “Conceptual Model”, 

which comprises a simple controlled voltage source as VSM. 

A.  Conceptual Model 

The first model is shown in Fig. 4. The VSM is modeled as a 

controlled voltage source. Its voltage is controlled by 

𝑉(t) = √2 𝑉 𝑠𝑖𝑛 𝜃𝑉𝑆𝑀 (7) 

where V is the desired voltage RMS value, and 𝜃𝑉𝑆𝑀 is obtained 

from (1) and (3) according to the following control structure: 

 
Fig. 2. Control structure underlying the Conceptual Model 

Here, 𝜔𝑛 corresponds to the nominal frequency, which is the 

constant frequency of the voltage source E, and P is the actual 

output active power at the connection point of the VSM. 
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B.  Cascaded VSM Model 

We also mention here, that in [10] we have used a more detailed 

model, suitable for more realistic simulations. There we chose 

a VSM concept that had a cascaded control structure for the 

following reasons: 

 we needed a simple design structure, in which the 

dynamics of each control loop could be designed fairly 

independently; 

 we found it convenient to have easy access to the 

voltage reference signal. 

Therefore we used the VSM concept presented in [8] and [9]. 

The configuration is shown in Fig. 3.  

We are referring to that model here to show that the LSD 

concept can be easily embedded into realistic control schemes, 

in this case for example as an additional block (dashed line) that 

provides the voltage reference, based on the active power 

reference. (We have shown in [10] that there is also a possibility 

to realize LSD behavior by means of a virtual impedance.)  

 
Fig. 3. Structure of the cascaded VSM control concept [10][9] 

In this paper, however, we are not focusing on controller 

implementation and parameter– tuning, but on further 

development of the concept itself – therefore we will not present 

here simulation results using the above model. 

IV.  IMPROVED VSM FOR FUTURE INERTIA-LESS SYSTEMS 

In this Section we will outline the LSD concept, which provides 

the voltage reference, based on the active power reference. 

Throughout the paper we assume, that the dynamic processes 

shown here can be examined separately from other dynamics, 

such as PLL or voltage-, current- or DC link control loops. We 

assume, that the timescales of different control loops are not 

overlapped.  

A. Linear Swing Dynamics (LSD) for the SMIB system 

In order to derive the LSD concept, first we analyze the 

simplified system shown in Fig. 4.  

     
Fig. 4. The inspected system 

Our first goal is to linearize (2) with respect to δ, in order to 

eliminate the dependence of the eigenvalues (5) on the actual 

operating point or δ.  

Since E and X are constant, this linearization can only be done 

by an appropriate control of V (considering that V usually has 

to be within a 5% or 10% tolerance band around the nominal 

voltage). 

B. Voltage control-based LSD 

The control law can be derived by expressing the expected P(δ) 

relationship as in (8) and solving for V: 

𝑃 =
𝐸𝑉

𝑋
𝑠𝑖𝑛 𝛿 =

𝐸

𝑋
 (1 − ε) 𝐸 𝛿 (8) 

where ε is the voltage tolerance. The solution of (8) will yield 

𝛿(𝑃) =
𝑃𝑋

(1 − 𝜀) 𝐸2
 (9) 

and 

𝑉(𝛿) =
(1 − 𝜀) 𝐸

𝑠𝑖𝑛 𝛿
𝛿 (10) 

By analyzing the above equations, it can be shown that for 

ε = 0.1 and by using (9) and (10) the P(δ) relationship will be 

linear in the angle range [0°, 62°], the corresponding power 

range [0, 0.97] and voltage range [0.9, 1.1]. 

 
Fig. 5. Linearization with ε = 0.1 

This means that the power transfer equation can be made linear 

up to 97% of the original transfer capacity. 

C. LSD based Improved VSM 

Since (see (8)) 𝑃 =
𝐸2

𝑋
 (1 − ε) 𝛿, the linearization of P with 

respect to 𝛿 will yield 
𝜕𝑃

𝜕𝛿
 = 

𝐸2

𝑋
 (1 − ε). 

This means, that by using (9) and (10) the VSM dynamics will 

be governed by: 

[∆𝛿̇
∆𝜔̇

] = [
0 1

−
(1 − 𝜀)𝑆𝑠𝑐

𝑀
−

𝐷

𝑀

] [
∆𝛿
∆𝜔

] (11) 

where 𝑆𝑠𝑐 = 𝐸2/𝑋 is the short-circuit power at the grid 

connection point of the VSM. The eigenvalues of (11) are 

−𝛾 ± √𝛾2 −
(1 − 𝜀)𝑆𝑠𝑐

𝑀
 (12) 

It can be observed from (12) and (6), that the two parameters M 

and D can be freely chosen, and that these parameters are 

responsible for shaping the eigenvalues in (12). (Other, e.g. 

system-level requirements or VSM ratings might pose 
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limitations on these parameters, but for the derivation of the 

concept these constraints are not yet considered.) 

One goal in shaping the dynamics could be to achieve uniform 

eigenvalues and oscillation-free dynamics for all inverters. (The 

motivation for placing the eigenvalues at certain values can be 

seen e.g. from [15], where virtual inertia constants M and 

damping D – those govern also the eigenvalues  – are 

determined based on required dynamic performance. 

Further benefits would be seen in estimating system stability 

margins and transient behavior of the future power system with 

a very large number of converter-based generation units). To 

achieve this, parameters D and M have to fulfil the following 

conditions: 

 𝑆𝑠𝑐/𝑀 has to be uniform, 

 𝛾 has to be uniform (same constant for each inverter) 

 and 𝛾2 ≥ (1 − ε) 𝑆𝑠𝑐/𝑀 for oscillation-free 

dynamics. 

D. Stability analysis 

Chapter 6.3.2 in [11] presents and analyzes an energy-type 

Lyapunov function for the system described by (1), (2) and (3). 

We follow this approach for the system described by (1), (8) 

and (3). This system has one equilibrium point:  

𝛿𝑠 =
𝑃𝑋

(1 − 𝜀) 𝐸2
 

∆𝜔 = 0 

(13) 

Let TE denote the total energy of the system, consisting of the 

kinetic energy Ek and the potential energy Ep: 

𝑇𝐸 =  𝐸𝑘 + 𝐸𝑝  (14) 

 where 

𝐸𝑘 =
1

2
𝑀∆𝜔2 (15) 

and 

𝐸𝑝 =
1

2
𝑏(𝛿2 − 𝛿𝑠

2) − 𝑃(𝛿 − 𝛿𝑠) (16) 

with 

𝑏 =
𝐸2

𝑋
(1 − 𝜀) (17) 

We now show that the function TE satisfies the definition of a 

Lyapunov function, i.e. that  

(i) it has stationary point at (13) 
(ii) it is positive definite in the vicinity of (13) 
(iii) its derivative is not positive. 

Condition (i) can be checked by calculating 

𝑔𝑟𝑎𝑑 𝑇𝐸 = [

𝜕𝑇𝐸

𝜕∆𝜔
𝜕𝑇𝐸

𝜕𝛿

] = [

𝜕𝐸𝑘

𝜕∆𝜔
𝜕𝐸𝑝

𝜕𝛿

] = [
𝑀∆𝜔

−(𝑃 − 𝑏𝛿)
] (18) 

The gradient is equal to zero at (13). 
The second condition can be checked by determining the 

Hessian matrix given by 

𝐻 =

[
 
 
 

𝜕2𝑇𝐸

𝜕∆𝜔2

𝜕2𝑇𝐸

𝜕∆𝜔 𝜕𝛿
𝜕2𝑇𝐸

𝜕𝛿 𝜕∆𝜔

𝜕2𝑇𝐸

𝜕𝛿2 ]
 
 
 

= [
𝑀 0
0 𝑏

] (19) 

This matrix is always positive definite if 𝑀 > 0 and if 𝑏 > 0, 

both of which are always true. 
The third condition can be checked by determining  

𝑑𝑇𝐸

𝑑𝑡
=  

𝑑𝐸𝑘

𝑑𝑡
+

𝑑𝐸𝑝

𝑑𝑡
 (20) 

Since (using (1) and (3)) 

𝑑𝐸𝑘

𝑑𝑡
= [𝑀

𝑑∆𝜔

𝑑𝑡
] ∆𝜔 = [𝑃 − 𝑏𝛿]∆𝜔 − 𝐷∆𝜔2 (21) 

and 

𝑑𝐸𝑝

𝑑𝑡
=

𝜕𝐸𝑝

𝜕𝛿

𝑑𝛿

𝑑𝑡
= −[𝑃 − 𝑏𝛿]∆𝜔 (22) 

it follows that  

𝑑𝑇𝐸

𝑑𝑡
=  −𝐷∆𝜔2 (23) 

and this is always negative. 
This means that 𝑇𝐸(𝛿, ∆𝜔) is a Lyapunov function, and the 

equilibrium point (13) is asymptotically stable. (In practice, the 

voltage magnitude is limited at 1±ε, but for short times these 

limits can be exceeded, as defined e.g. by CBEMA or ITIC 

curves. These limitations have to be further investigated.) 

E. LSD for a network with resistive Thévenin impedance 

In this Section we derive the LSD concept for a more general 

class of SMIB systems, where the grid is represented by a 

resistive-inductive series impedance, instead of a pure reactive 

impedance that is shown in Fig. 4. 

Instead of (2), the power transfer across the network equivalent 

impedance can now be written as 

𝑃 =
𝑅𝑉(𝑉 − 𝐸𝑐𝑜𝑠𝛿) + 𝐸𝑉𝑋𝑠𝑖𝑛𝛿

𝑅2 + 𝑋2
 (24) 

In order to be consistent with the pure reactive case, it is 

straightforward to use the following expressions to define the 

expected behavior of the linearized system: 

𝑉 = 𝐸(1 − 𝜀) (25) 

𝑠𝑖𝑛𝛿 ≈ 𝛿 (26) 

In (8) and (26) we used the first term of the Fourier series of the 

sine function for linear approximation. However, this approach 

is not feasible in case of the cosine function. If we use 

𝑐𝑜𝑠𝛿 ≈ 1 (27) 

then we obtain for the linearized P(δ) relation: 

𝑃 =
𝐸2(1 − 𝜀)(𝑋𝛿 − 𝑅𝜀)

𝑅2 + 𝑋2
 (28) 

For 𝐸 = 1, 𝑅/𝑋 = 1 and |𝑅 + 𝑗𝑋| = 1 this results in an 

approximation as shown in an example below: 
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Fig. 6. Linearization for 𝑅/𝑋 = 1 and using 𝑐𝑜𝑠𝛿 ≈ 1 

This approximation is inappropriate, since we want the P(δ) 

function be a linear relation in between the “lower” und “upper” 

limit curves determined by (1 − 𝜀) and (1 + 𝜀).  

Therefore, we will use the approximation 

𝑐𝑜𝑠𝛿 ≈ 1 −
𝛿

𝜋
2⁄

 (29) 

 
Fig. 7. Linearization concept according to (29) 

This way (24) becomes 

𝑃 =
𝐸2(1 − 𝜀)(

2
𝜋

𝑅𝛿 − 𝑅𝜀 + 𝑋𝛿)

(𝑅2 + 𝑋2)
 (30) 

For 𝐸 = 1, 𝑅/𝑋 = 1 and |𝑅 + 𝑗𝑋| = 1 this results in an 

approximation as shown in an example below: 

 
Fig. 8. Linearization for 𝑅/𝑋 = 1 and using (29) 

For high R/X ratios (above approx. 7) and in a specific power 

interval, the voltage control will set a voltage reference lower 

than (1-ε) pu, as can be seen in Fig. 9 between P = 1 and 1.5. 

 
Fig. 9. Linearization for 𝑅/𝑋 = 10 and using (29) 

In such cases (for R/X ratios above 7), the linear curve can be 

adjusted. We show in the APPENDIX, that it is possible to find 

(numerically) a linear curve even for a pure resistive network, 

as long as ε is not smaller than 10%. For distribution systems, 

(where R/X values are significantly above 0) usually 10% 

voltage tolerance is allowed. (In transmission systems, ε = 5% 

is usually applied, but in these systems R/X values are much 

smaller than 1, and therefore (9) and (10) can be used.) 

For the ease of further analysis, we will assume R/X <7 and use 

(25), (26) and (29). 

Solving (29) for 𝛿 we obtain 

𝛿(𝑃) =
𝑃(𝑅2 + 𝑋2) − 𝑅𝐸2𝜀(1 − 𝜀)

(1 − 𝜀) 𝐸2 (
2
𝜋

𝑅 + 𝑋)
 (31) 

and then the solution for V gives: 

𝑉(𝛿) = 𝐸 (𝐾 + √𝐾2 + (1 − 𝜀) (
2𝛿

𝜋
+

𝛿

𝜌
− 𝜀)) (32) 

with  

K =
1

2
(𝑐𝑜𝑠𝛿 −

𝑠𝑖𝑛𝛿

𝜌
) (33) 

and 

𝜌 = 𝑅/𝑋 (34) 

(In fact, there are two solutions for V, and the above one is the 

stable solution. The above analytical expressions have been 

checked with the Symbolic Math Toolbox of Matlab.) 

V.  CONVERTER CAPACITY LIMIT 

In this Chapter we will briefly discuss the rated power 

requirements. Let 𝛿𝑚𝑎𝑥 and 𝑃𝑚𝑎𝑥 denote the angle and power at 
∂P

∂δ
= 0. For 𝐸 = 1 and |𝑅 + 𝑗𝑋| = 1 we calculated the apparent 

power of the inverter for all angles between 0 and 𝛿𝑚𝑎𝑥 with 

different R/X ratios. The required converter capacity (i.e. the 

maximal apparent power 𝑆𝑚𝑎𝑥  for each R/X ratio) related to 

𝑃𝑚𝑎𝑥  is shown in TABLE I. 

TABLE I Required inverter oversizing 

R/X 0.001 0.01 0.1 1 10 100 

𝑆𝑚𝑎𝑥

/𝑃𝑚𝑎𝑥  
1.25 1.24 1.18 1 1 1.03 
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It can be observed that a maximal oversizing of 25% is 

sufficient for all conditions, however, at distribution networks 

with larger R/X ratios practically no oversizing is necessary. It 

has to be stressed that no further reactive power is required for 

voltage control purposes, since the voltage control is already 

taken charge of by the LSD scheme. 

VI.  MULTIMACHINE SYSTEM 

We use a centralized approach to derive the control rules and 

analyze their behavior in a multimachine system. In this 

approach, all voltages and angles are assumed to be known, 

which makes it more suitable for theoretical analysis, than a 

control method based on local information only.  

If branch conductances can be neglected, the active power 

injections at node i can be expressed as 

𝑃𝑖 = ∑𝑉𝑖𝑉𝑗 𝐵𝑖𝑗𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑗)

𝑗≠𝑖

 (35) 

where 𝐵𝑖𝑗 is the respective element of the susceptance matrix 

𝐵. Analogously to (9), we seek a voltage control law to achieve 

𝑃𝑖 = 𝐸2(1 − 𝜀)∑ 𝐵𝑖𝑗(𝛿𝑖 − 𝛿𝑗)

𝑗≠𝑖

 (36) 

or, equivalently 

𝑃 = −𝐸2(1 − 𝜀)𝐵 𝛿 (37) 

where 𝑃 is the column vector of the node injection powers 𝑃𝑖  

and 𝛿 is the column vector of the nodal voltage angles 𝛿𝑖.  

In order to prove that (36) equals (37), recall that 𝐵𝑖𝑖 =
−∑ 𝐵𝑖𝑗𝑗≠𝑖 , and therefore, if 𝐵𝑖  denotes the ith row of 𝐵: 

−𝐵𝑖  𝛿 = 𝐵𝑖  

[
 
 
 
 
⋮
𝛿𝑗

⋮
𝛿𝑖

⋮ ]
 
 
 
 

= −(⋯+ 𝐵𝑖𝑗𝛿𝑗 + ⋯+𝐵𝑖𝑖𝛿𝑖 + ⋯)

= −(…+𝐵𝑖𝑗𝛿𝑗 + ⋯− 𝛿𝑖 ∑𝐵𝑖𝑗

𝑗≠𝑖

+ ⋯)

= ∑𝐵𝑖𝑗

𝑗≠𝑖

(𝛿𝑖 − 𝛿𝑗) 

(38) 

The required angles can now be calculated by solving the linear 

set of equations (37) for the vector of phase angles. Then the 

voltage references can be calculated by solving (35) for all 

voltages. Eq. (35) is nonlinear, and a closed-form solution could 

not be found for node numbers 𝑁 > 3. In such cases, (35) can 

be solved numerically. 

(An analytical solution for N = 3 can be found, however, the 

obtained formulae are too complicated and of little practical 

relevance, therefore they are not presented here.)  

To obtain the eigenvalues of the multimachine LSD-controlled 

system, we have to derive the expressions 
𝜕𝑃𝑖

𝜕𝛿𝑗
 (see again[11], 

eqs. (12.102) to (12.108)). From (36) it can be seen, that 

𝜕𝑃𝑖

𝜕𝛿𝑗

 = −𝐸2(1 − 𝜀)𝐵𝑖𝑗  (39) 

Therefore, the elements of the state-space matrix are constant: 

[
[∆𝛿̇]

[∆𝜔̇]
] = [

[0]     𝐼  [−1]

[−𝐸2(1 − 𝜀)
𝐵𝑖𝑗

𝑀𝑗

] 𝑑𝑖𝑎𝑔(−
𝐷𝑖

𝑀𝑖

)
] [

[∆𝛿]

[∆𝜔]
] (40) 

where [.] indicates a matrix structure of appropriate size, 

composed of the shown elements, I is the identity matrix of 

appropriate size, and diag(.) indicates a diagonal matrix, 

composed of the shown elements. 

This in turn means, that the eigenvalues will be independent of 

the actual power flows or voltage angles. 

Let us consider the following 4-bus system as a demonstration 

example.  

 
Fig. 10. Four-bus system 

The line reactances are assumed to be: 

TABLE II Reactance values in the sample system 

Pair of nodes (ij) 12 13 23 14 34 

Xij, pu. 1 1.05 0.9 1.1 1.2 

Line resistances are assumed to be zero. 

The voltage magnitude at all nodes is kept 1 pu. in all cases 

shown below. We set for all four VSMs the values M = 0.05 

and D = 1, and we use E = 1 and ε = 10%. The system 

eigenvalues are calculated in four power flow cases (defined by 

four sets of voltage angles), both without and with LSD. 

TABLE III Definition of the cases for eigenvalue calculation: nodal 

voltage angles 

Node i   1 2 3 4 

Case 1 δi, ° 5 0 5 0 

  Pi, pu. 0,2 -0,2 0,2 -0,2 

Case 2 δi, ° 60 0 -60 0 

  Pi, pu. 2,5 0,1 -2,5 -0,1 

Case 3 δi, ° 60 0 60 0 

  Pi, pu. 1,6 -1,8 1,7 -1,5 

Case 4 δi, ° 90 0 90 0 

  Pi, pu. 1,9 -2,1 1,9 -1,7 

TABLE IV Eigenvalues in the four cases without and with LSD 

Case 1 Case 2 Case 3 Case 4 LSD (1..4) 

-20,00 -20,00 -20,00 -20,00 -20,00 

-17,92 -19,99 -19,01 -20,00 -18,14 

-14,95 -19,01 -17,84 -20,00 -15,65 

-14,79 -17,84 -16,57 -17,89 -15,51 

-5,21 -2,16 -3,43 -2,11 -4,49 

-5,05 -0,99 -2,16 0,00 -4,35 

-2,08 -0,01 -0,99 0,00 -1,86 

In all four test cases the eigenvalues with LSD remain the same, 

as seen in the last column of TABLE IV. 
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VII.  DYNAMIC SIMULATION AND RESULTS 

In this Section we present time domain simulation results to 

underpin the theoretical analysis shown in previous chapters. 

A. SMIB – Conceptual model 

First, we present simulation results obtained with the 

Conceptual Model. We use E = 231 V, X = 0.19 Ω, M = 2000 

and D = 40000 (R = 0.19 Ω, where applicable). In all our 

simulations, the nominal frequency is 50 Hz. The P(δ) curves 

have been obtained by stepping Pref from 0.1 to 0.5 and finally 

to 0.9 fraction of the power P = E2/X = 276 kW. The simulation 

results with a pure inductive equivalent network can be seen in 

Fig. 11, without LSD (left side), and with LSD (right side). 

   
Fig. 11. Simulation results with the Conceptual Model, pure inductive grid 

Results with a pure resistive equivalent network can be seen in 

Fig. 12, without LSD (left side), and with LSD (right side). 

   
Fig. 12. Results of the Conceptual Model, with a pure resistive grid 

It can be observed, that the steady-state P(δ) value pairs are 

found at the theoretically determined (sinusoidal and LSD-

linearized) curves, and these curves are closely followed during 

transients, too. 

B. Multimachine system 

For the simulation of the LSD concept applied to a 

multimachine system, we used the same four-bus system as 

shown in Fig. 10. The active power references were set to the 

values shown in TABLE V. 

TABLE V Active power reference values for the 4-bus system 

pu. Pref,1 Pref,2 Pref,3 Pref,4 

t = 0 s 1.9 -2 1.95 -1.85 

t = 5 s 1.5 -1 1.2 -1.7 

t = 10 s 1 -0.5 0.5 -1 

The voltage references were calculated periodically (at every 

10 ms) by first solving (37) for 𝛿 (we will denote the resulting 

vector of time functions 𝛿 𝑠𝑖𝑚(𝑡) later) and then solving (35) for 

𝑉 numerically. To prevent numerical instabilities, Pref,i(t) values 

were used in these equations for t < 3 s, instead of the actual 

output powers Pi(t), which were used after t = 3 s. 

The reference and actual power outputs are presented in Fig. 13. 

 
Fig. 13. Reference and actual active power outputs in the multimachine 

system 

In order to prove the linear 𝑃(𝛿) behavior, we construct  

𝑃𝑐𝑎𝑙𝑐(𝑡) = −𝐸2(1 − 𝜀)𝐵 𝛿 𝑠𝑖𝑚(𝑡) (41) 

This is the ideal, expected linear relationship between the 

angles and the nodal powers. In Fig. 14 we present that the error 

between the ideal active powers 𝑃𝑐𝑎𝑙𝑐(𝑡) and the simulated 

output powers 𝑃(𝑡) is sufficiently small. We construct a 

measure for nonlinearity as follows: 

𝑁𝐿𝑖(𝑡) =
𝑃𝑐𝑎𝑙𝑐,𝑖(𝑡) − 𝑃𝑖(𝑡)

𝑃𝑖(𝑡)
 (42) 

It can be observed that NLi(t) is close to zero in steady state, and 

below 2% during transients (except for the first 3 s period, 

which we explained earlier). 

 
Fig. 14. Measure of 𝑃(𝛿) nonlinearity in the multimachine system 

VIII.  CONCLUSIONS 

In this paper we further developed the LSD concept, which was 

first outlined in [10]. We have shown, that it is applicable not 

only to pure inductive equivalent networks, but also inductive-

resistive (and also pure resistive) SMIB networks, which are 

typical representations of distribution systems.  

We have shown, that it is possible to control the voltage of 

VSMs in a way that the 𝑃(𝛿) relation becomes a linear function 

of the power angle. This in turn means that the small-signal 

dynamics can be made independent on the actual operating 

point. We have also demonstrated, that this is possible for 

multimachine systems, too. We claim that for systems with high 

VSM penetration, this concept makes it possible to perform 

system stability analysis and capture information for the whole 
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power range, i.e. small and large disturbances (that do not bring 

the converter into current-limited mode). 

IX.  FUTURE WORK 

Several issues have to be clarified regarding the theory and 

practical applicability of the LSD concept. Some of these are 

shortly discussed here, though they do not constitute the main 

contributions of this paper. 

A. Controller design 

When implementing LSD in a real inverter control structure 

(e.g. the one in Fig. 3), particular attention has to be paid to 

parameter tuning.  The VSM dynamics should be decoupled 

from other control loops, their bandwidth should not be 

overlapped. This might be a challenge in case of some PLL 

methods. However – since this is a general problem for VSCs 

that provide services to the grid – there is significant ongoing 

research effort in developing fast, linear and accurate 

synchronization/frequency tracking solutions [14]. Another 

direction of further investigations is the analysis of different 

VSM structures for which the controller tuning process might 

be less challenging (e.g. PLL-less Synchronverters [12]).  

B. DC voltage control 

So far we have assumed a constant DC-link voltage. In a real-

case application the back-end subsystem will be some power 

source, and in this case the DC voltage dynamics should also be 

considered and the control loops complemented accordingly. 

C. Voltage stability 

Since the presented LSD scheme is integrating voltage control, 

it has to be investigated, how voltage stability will be affected. 

We performed a network feasibility assessment for the system 

shown in Fig. 15. 

 
Fig. 15. Assessment of network feasibility  

We assumed 𝑋 = 1 and the load resistance 𝑅𝑙𝑜𝑎𝑑  was varied 

between 0.1 and 20. For the LSD algorithm, 𝐸 = 1 was 

assumed, and for the sake of comparability with the non-LSD 

case, 𝑉 = 1 was set. " 

 
Fig. 16. Voltage stability assessment 

It can be observed, that by using LSD the stable region was 

extended, i.e. larger loads can be supplied without voltage 

collapse. A complete proof and dynamic investigations will be 

reported in subsequent publications. 

D. Other topics 

It was shown (see Fig. 5) that LSD can linearize the power 

transfer behavior and thus the dynamics, up to 97% of the 

maximum non-LSD transfer capacity (in a pure reactive 

network). It has to be investigated how the system will behave 

in case when this limit is passed. The voltage cannot be 

increased further (though this might be allowed for a limited 

time interval), and the shift between different control modes 

might pose a challenge.  

Also the behavior under fault conditions has to be defined and 

analyzed. 

Further research is needed for the extension of the method to 

multimachine systems with resistive-inductive impedances, and 

also to handle negative relative angles.  

Finally, a decentralized approach has to be developed, where 

the local control parameters are determined based on locally 

available measurements only (e.g. by using some equivalent 

dynamic model of the network – as seen from an inverter 

connection point). This is relevant from the practical 

applicability point of view. 

X.  APPENDIX 

In this Section we will show that for all values of R/X and 

ε = 10% there exists a linear 𝐿(𝛿,𝑚) curve as well as 𝑚1, 𝑚2, 

𝛿1 and 𝛿2 positive scalars with the following properties: 

𝐿(𝛿,𝑚) =  𝑃𝑙𝑜𝑤𝑒𝑟(0) + 𝑚𝛿 (43) 

𝐿(𝛿1, 𝑚1) =  𝑃𝑢𝑝𝑝𝑒𝑟(𝛿1) (44) 

𝐿(𝛿2, 𝑚2) =  𝑃𝑙𝑜𝑤𝑒𝑟(𝛿2) (45) 
𝜕𝑃𝑢𝑝𝑝𝑒𝑟

𝜕𝛿
(𝛿1) = 𝑚1 (46) 

𝜕𝑃𝑙𝑜𝑤𝑒𝑟

𝜕𝛿
(𝛿2) = 𝑚2 (47) 

𝑚1 ≥ 𝑚2 (48) 

𝛿2 ≥ 𝛿1 > 0 (49) 

where 

 𝑃𝑙𝑜𝑤𝑒𝑟 = 𝑃 𝑤𝑖𝑡ℎ 𝑉 = 𝐸(1 − 𝜀) in (24) 

 𝑃𝑢𝑝𝑝𝑒𝑟 = 𝑃 𝑤𝑖𝑡ℎ 𝑉 = 𝐸(1 + 𝜀) in (24) 

In other words, we will show that there exists a linear curve (𝐿) 

in between two tangents to the two tolerance curves 𝑃𝑙𝑜𝑤𝑒𝑟(𝛿) 

and 𝑃𝑢𝑝𝑝𝑒𝑟(𝛿), with a starting point at 𝑃𝑙𝑜𝑤𝑒𝑟(0). This is 

illustrated for R = 1, X = 0 in Fig. 17. 

From (24) we can obtain  

𝜕𝑃

𝜕𝛿
=  

𝐸𝑉(𝑋𝑐𝑜𝑠𝛿 + 𝑅𝑠𝑖𝑛𝛿)

𝑅2 + 𝑋2
 (50) 

Substituting (44) and (46) into (43), and using (46), we obtain 

𝑃𝑢𝑝𝑝𝑒𝑟(𝛿1) =  𝑃𝑙𝑜𝑤𝑒𝑟(0) + 𝛿1

𝜕𝑃𝑢𝑝𝑝𝑒𝑟

𝜕𝛿
(𝛿1) (51) 

We can solve this numerically for 𝛿1, by using (24) and 𝑉 =
𝐸(1 + 𝜀). From 𝛿1 we can determine 𝑚1 using (46). 

Similarly, we can obtain 𝛿2 and 𝑚2 using (24), (45), (47) and 

𝑉 = 𝐸(1 − 𝜀). 
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Fig. 17. Illustration of eq. (35) – (49) 

In TABLE VI we show exemplary results for 𝐸 = 1, ε = 10% and 

|𝑅 + 𝑗𝑋| = 1. 

TABLE VI Slopes of the tangents to the 𝑃(𝛿) curves 

R/X 𝑚1 𝑚2 

10 0.7514 0.6796 

50 0.6730 0.6577 

infinite 0.6526 0.6522 

Since in all cases (48) holds, we can conclude, that in all cases 

it is possible to find a linear curve between 𝑃𝑙𝑜𝑤𝑒𝑟(𝛿) and 

𝑃𝑢𝑝𝑝𝑒𝑟(𝛿), with a starting point at 𝑃𝑙𝑜𝑤𝑒𝑟(0). Its slope can be 

chosen between 𝑚1 and 𝑚2. 
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