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Abstract

This thesis investigates different approaches to enable the use of compressed sensing
(CS)-based acquisition devices in resource-constrained environments relying on cheap,
energy-efficient sensors. We consider the acquisition of structured low-complexity signals
from excessively quantized 1-bit observations, as well as partial compressive measurements
collected by one or multiple sensors. In both scenarios, the central goal is to alleviate the
complexity of sensing devices in order to enable signal acquisition by simple, inexpensive
Sensors.

In the first part of the thesis, we address the reconstruction of signals with a sparse
Fourier transform from 1-bit time domain measurements. We propose a modification
of the binary iterative hard thresholding algorithm, which accounts for the conjugate
symmetric structure of the underlying signal space. In this context, a modification of the
hard thresholding operator is developed, whose use extends to various other (quantized)
CS recovery algorithms. In addition to undersampled measurements, we also consider
oversampled signal representations, in which case the measurement operator is deterministic
rather than constructed randomly. Numerical experiments verify the correct behavior of
the proposed methods.

The remainder of the thesis focuses on the reconstruction of group-sparse signals,
a signal class in which nonzero components are assumed to appear in nonoverlapping
coefficient groups. We first focus on 1-bit quantized Gaussian observations and derive
theoretical guarantees for several reconstruction schemes to recover target vectors with a
desired level of accuracy. We also address recovery based on dithered quantized observations
to resolve the scale ambiguity inherent in the 1-bit CS model to allow for the recovery of
both direction and magnitude of group-sparse vectors.

In the last part, the acquisition of group-sparse vectors by a collection of independent
sensors, which each observe a different portion of a target vector, is considered. Generalizing
earlier results for the canonical sparsity model, a bound on the number of measurements
required to allow for stable and robust signal recovery is established. The proof relies on a
powerful concentration bound on the suprema of chaos processes. In order to establish our
main result, we develop an extension of Maurey’s empirical method to bound the covering
number of sets which can be represented as convex combinations of elements in compact
convex sets.
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Introduction

A fundamental challenge in contemporary data and signal processing applications is the
efficient acquisition of exceedingly high-dimensional signals carrying only a limited amount
of information. This information is usually captured by some low-complexity structure
inherent to a particular signal class. The most common low-complexity structure by far
manifests itself in the form of sparsity of finite-dimensional vectors in a suitable basis
or more generally an overcomplete dictionary [RSV08] or frame [CK12]. The field of
compressed sensing (CS) emerged from the very idea that the number of samples required
to acquire and reconstruct such signals should be on the order of the information-theoretic
rather than the linear-algebraic dimension of the ambient signal space. This was the
result of a series of landmark papers due to Candes, Tao, Romberg [CT06a; CTO05;
CRT06b; CRT06a; CT06b] and Donoho [Don06¢|. Their seminal works showed that
every vector x € C¢ containing at most s nonzero coefficients can be perfectly reconstructed
from m = Q(slog(d/s)) linear measurements y = Ax, provided that the measurement
matrix A € C™*? satisfies certain structural conditions. Unfortunately, the deterministic
construction of such matrices with provably optimal scaling in terms of the information
dimension s remains a yet unsolved problem. The situation changes drastically, however,
if one turns to random measurement ensembles. In this case, it can be shown that certain
random matrices capture just enough information about sparse signals to allow for them
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to be reconstructed by tractable and efficient recovery schemes with overwhelmingly high
probability. In the years since its inception, a vibrant research activity has developed
CS into an elegant and mature theory at the intersection of applied mathematics and
engineering. Today, concepts from CS already have far-reaching consequences in fields like
diagnostic imaging, where compressed sensing is now actively used to provide significant
scan time reductions in magnetic resonance imaging (MRI) systems [Siel6; GenlT;
Phil18|.

A common thread throughout the canonical theory of compressed sensing is the assump-
tion that measurements are essentially available at infinite precision during reconstruction.
Given the prevalence of digital signal processing, however, practical CS-based systems
also have to take into consideration the effects of analog-to-digital converters (ADCs)
used to map continuous measurements to the digital domain by means of quantization.
While the canonical compressed sensing theory accounts for both additive noise and model
uncertainties of the signal class, such robustness properties are generally not sufficient to
appropriately model signal-dependent quantization noise introduced by ADCs operating
at lower bit depths. To reduce the influence of quantization noise, classical quantiza-
tion theory therefore employs the idea of oversampled representations, where signals are
sampled at super-Nyquist rates. Since this increases the signal bandwidth while keeping
the quantization noise fixed, the approach can be used to hide quantization noise in less
relevant frequency bands by means of noise shaping.

The notion of oversampling in compressive sampling systems is slightly at odds with the
key idea of reducing the number of samples by exploiting signal sparsity for reconstruction
from undersampled representations without information loss. Recent years have therefore
seen an increase in research efforts to establish both specially tailored quantization-aware
compressive sampling schemes, as well as efficient reconstruction algorithms to close the gap
between theoretical and practical benefits of CS-based acquisition systems. One particular
line of research, which has attracted particular interest due to its favorable implications
in terms of hardware complexity and energy efficiency, is the so-called 1-bit compressed
sensing measurement model. In this sampling scheme, the only information retained
about the linear measurements Ax = ({(a;,x))™, is the sign of each component (a;, x).
Despite this excessive quantization strategy, it has been demonstrated that faithful signal
estimation is still possible within limits when target signals are sparse. The appeal of this
approach is threefold. First, the simplicity of the 1-bit quantization operation allows for the
utilization of cheap and energy-efficient sampling devices based on comparators operating
at fixed voltage levels. Secondly, the energy-efficient nature of the quantizer enables ADCs
to possibly operate at super-Nyquist rates while still keeping the total bit budget below
comparable sampling devices with higher bit depths. Thirdly, the highly nonlinear nature
of the sign function renders 1-bit quantizers impervious to certain monotone nonlinearities
of the acquisition system. Additionally, pre-quantization noise is only registered by a
memoryless 1-bit sampling device if additive perturbations of the linear measurements
before quantization are significant enough to result in an effective bit flip in the quantized
measurements.

To address the growing demand for efficient and low-cost sensing devices, which are
of central importance in technological advances such as the internet of things (IoT) and
Industry 4.0, we consider various approaches of structured signal recovery with a focus on
energy efficiency. To that end, we investigate different compressive acquisition paradigms
exploiting prior knowledge about certain structural properties of the class of target signals
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or the underlying measurement model. In particular, we consider the recovery of signals
with a sparse Fourier transform from binary measurements, as well as the reconstruction
of group-sparse signals from both quantized and unquantized partial observations. The
Fourier transform represents a ubiquitous sparsity basis in various domains such as wireless
communication, radar localization, medical imaging and speech recognition. Similarly,
group-sparse signal structures are frequently employed to model clustered sparsity phe-
nomena, which typically arise in certain areas of wireless communication, medical and
natural imaging, genetics and facial recognition.

In the following section, we give an overview of the work presented in this thesis. We
then highlight the main contributions of each chapter in Section 1.2.!

1.1 Thesis Outline

We begin by reviewing some of the central results in the theory of compressed sensing in
Chapter 2. We also briefly discuss the comparatively young area of quantized compressed
sensing and conclude the background chapter with an overview of some key results in the
1-bit compressed sensing literature.

We then consider the problem of estimating signals with a frequency-sparse representa-
tion from 1-bit quantized time domain measurements in Chapter 3. Rather than relying
on purely random measurement ensembles drawn, e.g., from the Gaussian distribution,
we instead consider structured measurement matrices based on randomly subsampled
discrete Fourier systems. We review the so-called binary iterative hard thresholding (BIHT)
algorithm and discuss the necessary modifications to extend the algorithm to the setting
of conjugate symmetric sparse signal recovery. We also consider the reconstruction from
oversampled binary measurements, which requires a specialized construction of the mea-
surement matrix that does not rely on random subsampling. The chapter concludes with a
numerical study benchmarking the performance of the proposed algorithms against convex
programming techniques for 1-bit signal recovery, which we adopt for our purposes.

In Chapter 4, we turn our attention to a different low-complexity signal class charac-
terized by signal coefficients which appear in nonoverlapping groups, giving rise to the
so-called group-sparsity model. This signal class forms the basis for the remainder of the
thesis. After introducing the particulars of the signal model, we analyze three recovery
procedures to estimate the direction of group-sparse signals from 1-bit observations of
Gaussian projections. We then compare their empirical performance and benchmark each
method in various scenarios against regular 1-bit recovery schemes, which ignore the
underlying group structure of the signal class.

While the quantization scheme considered in Chapter 3 and the first half of Chapter 4
is scale-invariant, allowing only for the estimation of signals up to a global scale factor,
we also consider the problem of recovery from dithered observations. In this model, one
intentionally introduces a known noise-like offset to the linear measurements prior to
quantization. Surprisingly, this common extension to the 1-bit quantization model provides
sufficient additional information about the measurement process to allow for both direction
and norm estimation subject to an a priori norm constraint on the signal class. In this
context, we present and analyze six different recovery schemes, which relate the problem of

'Parts of this thesis and related works have previously appeared in [KM17; KM18] and [KBM19a)],
while [KBM19b] has been accepted for publication prior to the preparation of this dissertation.
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group-sparse vector recovery to the task of direction recovery in a lifted signal space. We
conclude the chapter with an empirical study of the numerical behavior of the considered
recovery schemes.

Dispensing with quantized observations in Chapter 5, we investigate a measurement
model for the compressive acquisition of high-dimensional group-sparse vectors intended
to reduce the energy consumption of sensors in a distributed setting. More precisely, we
consider a measurement model in which one or more sensors observe distinct portions of a
group-sparse target vector. Such acquisition systems can be conveniently modeled by block
diagonal measurement matrices where the blocks are either identical or independent copies
of a prototype random matrix. Following a common narrative in compressed sensing,
we establish recovery guarantees for the respective acquisition models by appealing to
a group-sparse variant of the restricted isometry property (RIP). This is then used to
establish stable and robust recovery results for group-sparse vector recovery. We first
consider block diagonal measurement matrices with independent subgaussian blocks and
reformulate the condition that such matrices satisfy the group-sparse restricted isometry
property in terms of the supremum of a particular chaos process. We then discuss how
to bound certain geometric objects associated with said chaos process in order to derive
a condition on the number of measurements for the group-sparse RIP to hold with high
probability. The analysis is then repeated with a few minor modifications for measurement
matrices with identical copies of a single subgaussian random matrix. After relating our
obtained bounds to results in the literature, we close out the chapter by numerically
verifying the predicted recovery behavior with a series of phase transition diagrams.

In Chapter 6, we finally conclude the thesis with a summary of the main results
presented in this work, including a discussion of open problems and suggested future
research directions.

1.2 Contributions

In this section, we briefly summarize the main contributions of each chapter.

Chapter 3: Estimation of Frequency-Sparse Signals from Binary Measurements

While a considerable amount of research exists which deals with the recovery of sparse
vectors from 1-bit measurements of Gaussian projections, the body of work on more
structured measurement matrices is severely limited. To address this issue, the main goal
of Chapter 3 is to establish through a series of numerical experiments that recovery of sparse
signals from structured observations is in fact possible. Due to the central importance of
the Fourier basis in engineering domains, we focus our attention on measurement matrices
consisting of randomly subsampled discrete Fourier transform matrices. More precisely,
we consider the recovery of conjugate symmetric sparse vectors from 1-bit measurements
of time domain signals.

While various methods for the recovery of real-valued sparse signals from compressive
1-bit measurements have been proposed in the literature, the BIHT algorithm remains one
of the most accurate ones to date. In order to make sense of the single-bit quantization
operation during reconstruction, we modify the BIHT algorithm to account for the
particular structure of the underlying conjugate symmetric signal space. As a necessary
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byproduct, we propose a variation of the so-called hard thresholding operator to project
vectors on the set of conjugate symmetric sparse vectors. In addition to the BIHT
algorithm, this also enables other well-known algorithms proposed for linear compressed
sensing such as the iterative hard thresholding (IHT) [BDO09], hard thresholding pursuwit
(HTP) [Foull] and compressive sampling matching pursuit (CoSaMP) [NT09] algorithms
to be used for the recovery of frequency-sparse signals from real-valued compressive time
domain measurements.

While we first consider measurements based on random subsampling in discrete Fourier
systems, we also extend the acquisition model to oversampled time domain representations.
Assuming a fixed signal bandwidth, the idea is to remove those frequency coefficients
from the vector of discrete Fourier transform (DFT) coefficients which correspond to
frequencies we know to be absent in the target signal. To that end, we propose to model
the associated measurement matrix based on the idea of exact interpolation, a frequency
domain zero-padding scheme for interpolation in the time domain. Considering that the
resulting measurement operator is purely deterministic, the proposed sampling scheme
is particularly hardware-friendly as it does not rely on any form of randomness in the
acquisition process. While no theoretical results concerning the reconstruction fidelity
are established, we present a series of numerical experiments which validate the correct
behavior of the proposed methods empirically.

Chapter 4: Single-Bit Group-Sparse Signal Recovery

In Chapter 4, we address the problem of group-sparse signal estimation from 1-bit quantized
Gaussian projections. This particular variation of the canonical sparsity model has been
extensively studied in the context of linear compressed sensing, as well as sparse model
selection and regression in the statistics literature. However, the model has not yet been
thoroughly studied within the framework of 1-bit compressed sensing.

In the first part of Chapter 3, we aim to fill this gap in the literature by establishing
recovery guarantees for three different reconstruction schemes modeled after existing
methods for sparse recovery from binary measurements. While the general analysis strategy
for these approaches carries over from the respective theory developed for the canonical
sparsity model, we also point out some new connections. For instance, we establish
a nonuniform recovery guarantee for a simple group hard thresholding algorithm with
robustness to both additive pre-quantization and adversarial post-quantization noise. We
also put a particular emphasis on numerical experiments to confirm some of the theoretical
claims such as robustness to measurement noise, and to assess how close predicted error
decay rates are to those observed empirically. Even in the canonical sparsity setting, such
numerical investigations seem to be entirely absent from the literature.

In the second half of Chapter 4, we consider six different dithering-based reconstruction
schemes, which we relate to direction recovery results established in the first half of the
chapter. Again, we present novel noise robustness results for two group hard thresholding
algorithms, as well as two convex approaches which maximize the correlation between
quantized and unquantized observations. As in the first half of the chapter, we conduct
a thorough numerical study of the proposed recovery schemes to confirm our theoretical
results.
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Chapter 5: Recovery of Group-Sparse Vectors with Block Diagonal
Measurement Operators

In Chapter 5, we establish a particular variant of the restricted isometry property for block
diagonal subgaussian random matrices. This is then used to provide bounds on the number
of measurements required to guarantee robust and stable recovery of group-sparse vectors.
As outlined in Section 1.1, establishing a group-sparse version of the RIP is achieved by
relating the associated group-RIP constant to a particular chaos process. The general
proof strategy follows the example of a closely related result for the canonical sparsity
model [EftT15] by appealing to a powerful tail bound for suprema of chaos processes. The
main difficulty in this context is bounding Talagrand’s vs-functional by means of a metric
entropy integral, which in turn requires estimating the covering number of our signal set
w.r.t. an induced norm depending on the acquisition model. At small scales, we bound the
covering number by means of a standard volumetric estimate. At higher scales, however,
this bound is not effective enough. Instead, one may appeal to alternative tools such as
Sudakov minoration or Maurey’s empirical method. As we will demonstrate in Chapter 5,
the former technique provides the correct scaling of the number of measurements in terms
of the group-sparsity level to establish our recovery result. The resulting bound, however,
is independent of the underlying sparsity basis. Due to the block diagonal nature of the
acquisition model, this is clearly suboptimal. In order to resolve this issue, we develop an
extension of Maurey’s empirical method. While Maurey’s method only applies to convex
polytopes, our extension can be used to bound the covering number of sets whose elements
can be represented as convex combinations of compact subsets. As in the canonical sparsity
setting, our resulting bound on the number of measurements depends on a coherence-like
parameter of the sparsity basis. In the most favorable scenario of sparsity in the discrete
Fourier transform basis, we establish almost optimal scaling in the system parameters up
to logarithmic factors. In this case, our result shows that the number of measurements
per sensor can be reduced without affecting the reconstruction fidelity if more sensors are
added to the system so that the total number of measurements remains fixed.



Background

In this chapter, we discuss some fundamental concepts in the theory of compressed sensing.
We mainly limit ourselves to topics which bear direct relevance to the subsequent chapters
of the thesis and refer interested readers to more general treatments of the subject in
the literature such as [Davt12; Kut13], as well as the extended monograph [FR13]. In
the interest of keeping this introduction short, we delegate a discussion about general
mathematical preliminaries to Appendix A. There we also collect a few common definitions
and well-known results in probability theory, as well as convex and geometric functional
analysis. We begin by fixing notation for the rest of the thesis.

2.1 Notation

Throughout this work, we denote matrices by uppercase boldface letters, vectors by
lowercase boldface letters and scalars by regular type symbols. For an integer d € N, we
use the common shorthand notation [d] := {1,...,d} = [1,d] NN and write |U| for the
cardinality of a set U. We use 15 to denote the binary indicator function of an event
F with 15 = 1 if E occurs and 0 otherwise. The support of a vector x € C? is defined
as supp(x) := {i € [d] : z; # 0}. Given a subset S C U, we denote the complement of S
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w.r.t. U by S:= U\ S. Given a norm ||-||, on C? depending on some abstract parameter
0, we write Bg for the norm ball associated with ||-||,, i.e., B := {x € C*: ||x||, < 1}. For

f = p, we reserve the notation IB%g to denote the closed unit balls of the family of ¢,-norms
on C? defined as

d 1/p
(zmrp) C<pes
=1

max |z, p = oo.

x|, =

Even though we mainly work in C?, we denote by (-,-): C? — C? the bilinear form
defined as (a,b) := S%  a;b; for a,b € C? With this, the i-th entry of the matrix-
vector product Ga for G € C™*¢ and a € C? is (g;,a) where g; € C? denotes the
i-th row of G. The canonical sesquilinear inner product on C? is instead denoted by
(-, Vg d-€., (@a,b)e == 3% a;b;. As such, the canonical fy-norm on C? is induced by
|a]|; = (a,a) = (a,a) = (a,a), where @ denotes the complex conjugate of a € C% We
denote the (complex) unit Euclidean sphere in C? by S%~1. The identity matrix on C? is
generally denoted by Id,, but we sometimes simply write Id for notational brevity. The all
ones and zero vector is denoted by 1 and 0, respectively. Given a matrix G € C™*¢ and an
index set U C [d], we denote by Gy the matrix of size m x |U| consisting of the columns of
G indexed by U. This notation also extends to vectors where—depending on context—we
sometimes abuse notation and write x; for the vector of length |U| corresponding to
the restriction of x to U, or the d-vector x;; € C? agreeing with x on U and vanishing
identically on U. For two vectors x,z € C%, we denote by x oz the Hadamard product with
(x 0z); = z;z;. Moreover, we assume that matrix-vector multiplication binds before o and
write y o Ax to mean y o (Ax) for A € C™*4 and y € C™. Finally, to ease notation, we
will make frequent use of the following asymptotic notation: given two scalars a,b € R, we
write a < b if there exists an absolute constant C' > 0 such that a < Cb holds. Similarly,
we write a 2 b to mean a > Cb. If the implicit constant depends on some parameter 7,
we will sometimes also write a <, b and a 2, b to indicate such a dependence.

2.2 Compressed Sensing

At its core, compressed sensing (CS) is concerned with the question under which conditions
a vector x € C? can be uniquely determined from linear measurements of the form
y = Ax € C™, where the matrix A € C™*9 is assumed to have full rank. For arbitrary
vectors x, linear algebra dictates that this is only possible if rank(A) = d, implying
most crucially that m > d. In the parlance of sampling theory, we say that one has to
acquire more measurements than the dimension of the ambient signal space to undo the
measurement procedure modeled by the measurement or sensing matriz A. Unfortunately,
in many practical applications the signal space containing x might be of very high dimension.
It is therefore highly desirable to establish conditions on the signal space which would
allow for vectors to be recovered from m < d measurements.

The key insight of compressed sensing is that the rank requirement stated above
turns out to be overly pessimistic if the vector one tries to recover from knowledge of the
measurements y and the matrix A exhibits a sparse low-complexity structure. In fact,
if x has at most s nonzero components, then it can be shown that there always exists a
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matrix A € CC+D>4 which uniquely determines x from its measurements y = Ax [FR13,
Theorem 2.16]. Such a result is usually referred to as nonuniform since it does not imply
that the same matrix A also uniquely determines any other vector x’ # x with at most s
nonzero entries. In contrast, a uniform result is one which holds for the entire class of
s-sparse vectors, which we generally denote by

Y= {X eC: x|, < s}

with ||x]|, := [supp(x)| = |{i € [d] : z; # 0}| denoting the so-called ¢y-pseudonorm'. We
will sometimes use the shorthand notation ¥,(V) := ¥, NV for some linear subspace
VY C C? to emphasize the base space of sparse vectors.

Motivated by the above observations, it is natural to formulate the so-called /y-
minimization problem to recover a vector X € ¥, from its linear measurements Ax:

minimize 1%,
st. A% = Ax. (Po)
From this formulation, one immediately concludes that Problem (P() admits a unique
solution if and only if ker(A) N X9, = {0}, meaning that the null space of A must not
contain any other 2s-sparse vectors beside the zero vector. This yields the fundamental
condition m > 2s, which must be satisfied by any matrix A € C™*? to reconstruct every
s-sparse vector (see, e.g., [Don06a, Lemma 2.1] or [FR13, Section 2.2]). Unfortunately,
the combinatorial nature of Problem (P;) renders the recovery strategy computationally
intractable since it requires solving >4 (f) > 3¢ ,(d/i)" linear systems. Luckily, the
story does not end here.

Decades before the advent of compressed sensing, researchers in statistics and seismology
had already observed that sparse solutions to linear systems could be obtained by solving
the following equality-constrained ¢;-minimization problem:

minimize ||x||,
X

P
st A% = Ax. (P1)

This tractable program, which can be solved via linear programming in the real setting and
via second-order cone programming in the complex case, corresponds to the closest convex
relaxation of Problem (Py). It is most commonly referred to as the basis pursuit (BP)
problem, a term originally coined in [CD94]. While the concept of ¢;-regularization found
widespread adoption in a variety of domains such as model selection in statistics and image
denoising, the exact mathematical connections between Problem (P) and Problem (P)
did not become clear until the seminal works of Candes, Romberg, Tao and Donoho. In
the modern theory of compressed sensing, the equivalence between the two programs can
be conveniently established via the so-called null space property introduced in [CDDO09].

Definition 2.1 (Null space property). A matriz A € C™*? is said to satisfy the null
space property (NSP) of order s if for any S C [d] of size |S| < s, one has
lvslly < lvsll, Vv € ker(A)\ {0},

"While |||, can be interpreted as the limit of [|-[|1 for ¢ — 0, it is neither a semi- nor a quasinorm
since it is clearly not homogeneous.
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While this property was not originally used by Candes et al., it can be shown to
be both necessary and sufficient to establish the equivalence between Problem (P() and
Problem (P;). Let us first point out that the null space property implies the previously
stated condition ker(A)N Xy, = {0}, establishing that every s-sparse vector corresponds to
the unique solution of Problem (P;). To that end, let v € ker(A) N Xy, and consider the
decomposition v = vg, + vg, where Sp, 5, C S := supp(v) are arbitrary index sets with
|S1] = |S2| = s. Now assume that v # 0. Then by the NSP we have [|vg, [|; < ||vg | =
versi |1 = [|vs.|l1 and similarly ||vs,|1 < |[vg,||1, which is a contradiction. The NSP of
order s therefore guarantees that the only 2s-sparse vector in the null space of A is the
zero vector.

The following result establishes the equivalence between Problem (Pj) and (P;) condi-
tioned on the null space property.

Theorem 2.2. Let A € C™*? and fir s € [d]. Then every s-sparse vector x € C¢ is the
unique minimizer of Problem (P1) if and only if A satisfies the NSP of order s.

Proof. We first show that the NSP implies uniqueness. To that end, let x # x be feasible
for Problem (P;). Set S = supp(x), and define the vector v := x — x € ker(A) \ {0},
which we decompose as vg = Xg — Xg = X — Xg and vg = Xg. By the null space property,
this implies

%[l =[x =xs +xsll, < [lvslly + sl < l[vsll, + lIxslly = lIxzlly + lxsll, =[x,
This establishes x as the unique minimizer of Problem (P;).

For the opposite direction, let v € ker(A)\{0}, and denote by S C [d] an arbitrary index
set with |S| < s. Since vg is s-sparse, it is also the unique optimal solution of Problem (P;).
Moreover, since Avg = A(—vyg), the vector —vy is feasible for Problem (P;). This implies

Ivslly < l=vsll, = llvsll,,
which is the null space property since the choice of S was arbitrary. O]

While the NSP provides a necessary and sufficient condition to establish perfect recovery
of s-sparse vectors from compressive measurements, it is not general enough to establish
robustness to additive noise in the observations and sparsity defect. For this, one may
either appeal to a generalized version of the NSP (see, e.g., [FR13, Definition 4.21]) or
appeal to the infamous restricted isometry property due to Candes and Tao [CT05].

Definition 2.3 (Restricted isometry property). A matriv A € C™*? is said to satisfy the
restricted isometry property (RIP) of order s with constant 0 < §; < § < 1 if

(1= 8)llx[l; < lAx[l; < (1+0)|xll; vx € ..

To see that this property implies that RIP matrices act injectively on X, consider a
matrix A € C™*? satisfying the RIP of order 2s with constant d, < 1. Now consider two
vectors x,z € X, with Ax = Az such that v := x — z € ker(A). Then the RIP implies
that

(1= 8)lvl; < [[Av]l; = 0.

10
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This only holds for v = 0 and therefore x = z, meaning that no two s-sparse vectors are
mapped to the same element of AY; if the matrix satisfies the RIP of order 2s.

Before stating a stable? and robust recovery guarantee based on the RIP, we require
the so-called best s-term approximation error defined as

o)y = inf [x ],
S

The error o,4(x), quantifies the model mismatch or sparsity defect of a vector x relative to
Ys. Equipped with this definition, one may establish the following recovery result due to
Candes.

Theorem 2.4 ([Can08, Theorem 1.3]). Assume the matriv A € C™*? satisfies the re-
stricted isometry property of order 2s with §y5 < \/2—1. Then under the noisy measurement
model y = Ax + e with x € C? and e € C™ with |el||, < v, every minimizer X of

minimize x|,
s.t. ly — Ax|, <v

satisfies

A os(x
1% — %], < G2 | oy

NG
where Cy, C7 > 0 are universal constants which only depend on do,.

This general result implies perfect recovery in the noiseless setting with v = 0 if x
is exactly s-sparse such that o4(x); = 0. As pointed out before, a similar result can be
established by a generalized version of the null space property (cf. [FR13, Theorem 4.22]).
Moreover, we emphasize that the RIP is only sufficient to guarantee stable and robust
recovery. This means that the RIP implies the NSP while the other direction is not
generally true. Finally, certifying whether a matrix A satisfies the NSP or RIP turns
out to belong to the complexity class NP-hard [TP14]. This unfortunate circumstance
might seem like a considerable roadblock regarding the practical relevance of compressed
sensing. Luckily, however, researchers realized early on that RIP matrices abound if one
turns to random designs. This includes both random matrices whose rows are isotropic
subgaussian random vectors (see Definition A.3), as well as matrices constructed from
randomly subsampled basis functions of bounded orthonormal systems (BOSs). This
includes trigonometric polynomials or discrete orthobases such as the discrete Fourier
transform (DFT), discrete cosine transform (DCT) or Haar basis, as well as wavelet
systems. In general, it suffices to show that a random matrix A satisfies the concentration
inequality

P([lAx = [Ix[3] > tx]3) < 2exp(—ct?m) V¥x € C (2.1)

for t € (0,1) and ¢ > 0 a constant to establish the RIP. This holds, for instance, for
subgaussian random matrices whose rows Y € R? are isotropic subgaussian random vectors
(see, e.g., [FR13, Lemma 9.8]). Most crucially, the isotropy assumption does not require
the entries of Y to be independent. With this, one establishes the following result.

?Informally speaking, a recovery procedure is called stable if it does not go completely astray if the
target vector x € C? is not exactly sparse. In particular, one requires that a stable reconstruction map
recovers x exactly if [|x|[, < s.

11
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Theorem 2.5 ([FR13, Theorem 9.11]). Let A € C™*¢ be a random matriz satisfying
(2.1). Then with probability at least 1 — ), the matriz A satisfies the RIP of order s with
constant 65 < &, provided that

m > CH? {s log(d/s) + log(n’l)}
where the constant C > 0 only depends on c in (2.1).

This result in combination with Theorem 2.4 implies that any vector x € C? can be
stably and robustly recovered from m = (slog(d/s)) measurements with overwhelmingly
high probability. As hinted at in the introduction of this section, the number of mea-
surements depends almost linearly on s, the information dimension of the target signal.
Moreover, the dependence of m on the parameters d and s is known to be optimal, meaning
most crucially that the logarithmic factor cannot be removed. In a sense, this logarithmic
dependence on d and s is the price one has to pay for the fact that the support of the
signal is unknown. This surprising fact was already established in one of Donoho’s earliest
papers on compressed sensing [Don06¢| by appealing to the theory of so-called Gelfand
numbers. As recently argued by Foucart in [Foul6, Section 6.3], however, the theory of
compressed sensing is nowadays largely self-contained in the sense that the optimality
of Q(slog(d/s)) for stable recovery can be established without the concept of Gelfand
numbers. By stable we mean that for a pair (A, A) with A € C™*? a measurement matrix
and A: C™ — C? a (nonlinear) recovery map, one has

os(x
Ix — A(Ax)||, < C \</§)p vx € C?
for some absolute constant C' > 0. In particular, if (A, A) is a stable pair, then m >
cslog(d/s) where ¢ > 0 only depends on C' above [FR13, Proposition 10.7].

In closing, we point out that it is also possible to directly establish the null space property
or its stable and robust variant directly for random ensembles rather than appealing to
the restricted isometry property first. This is sometimes desirable (and necessary) since
for certain ensembles, there exist examples (see, e.g., [Adat11]) which provably lead to
suboptimal RIP-based lower bounds on the required number of measurements for stable
recovery. A probabilistic proof of the stable NSP was first provided for Gaussian random
matrices in [FR13, Section 4.2] by estimating the probability that the least singular value
restricted to a particular cone is bounded away from zero via Gordon’s escape through
a mesh theorem [Gor88]. In order to overcome unfavorable scaling in the number of
measurements for certain random matrices, this result was later extended in [DLR18] to
more heavy-tailed ensembles via Mendelson’s small ball method [Men14].

2.3 Quantized Compressed Sensing

We now turn to the topic of quantized compressed sensing (QCS), an area of research which
has gained a lot of traction in recent years as it sits at the intersection of theory and practice
of compressed sensing. Since its inception, the field of compressed sensing has developed
into an elegant and mature theory for efficient signal acquisition and reconstruction.
However, most theoretical results reported in the literature initially focused exclusively on

12
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measurements belonging to a continuum K" with K = R or K = C. While convenient
from a theoretical perspective, this ignores the fact that the contemporary world of
signal processing is distinctly digital. This means that linear projections Ax € K™
considered by compressive acquisition systems have to be subsequently digitized for further
processing, transmission and storage. To that end, one considers nonlinear quantization
maps @: K™ — A™ which map the individual components of real- or complex-valued
vectors onto a finite set of quantization points A C K, the so-called quantization alphabet.
Naively, the resulting quantization noise Q(Ax) — Ax introduced by this lossy (and
fundamentally irreversible) mapping can be modeled as an additive perturbation, which
can be readily accounted for within the existing theory. Unfortunately, this approach is
only justified under the so-called high-resolution assumption (HRA), which roughly states
that the largest cell width € > 0 of a scalar quantizer is small compared to its dynamic
range. For simplicity, we mainly focus on the case of uniform quantization in this section
and refer the interested reader to the detailed survey [Bou™15], which also features an
in-depth discussion of more advanced quantization schemes. This includes nonuniform
quantization with companding like A- and p-law encoding, as well as a frame-theoretic
treatment of recursive XA quantization schemes in compressed sensing.

Before going any further, we first introduce an important concept in quantized com-
pressed sensing known as quantization consistency and present some fundamental error
bounds which hold for any reconstruction procedure based on quantized compressive
measurements.

Definition 2.6 (Quantization consistency). Given a measurement matriz A € K™% and
a quantization operator Q: K™ — A™, a reconstruction map A: A™ — K? is said to be
quantization-consistent if

Q(AA(Q(AX))) = Q(Ax) Vx e K™

In words, a recovery map A is called quantization-consistent if any estimate X =
A(Q(Ax)) yields the same quantized measurements as the vector x one aims to recover.
It turns out that consistent reconstruction is a key enabler for accurate signal recovery
from quantized observations, at least in the noiseless setting. Such a constraint is natural
as it exploits all available information about the measurement system. Moreover, for
multi-bit quantization schemes with B > 2, quantization consistency is easily guaranteed
by imposing a simple convex constraint in the context of convex programming.

For illustrative purposes, consider a B-bit quantizer () and measurements of the form
y = Q(Ax) with A € K™*¢ and x belonging to an s-dimensional subspace V of K?. Since
the measurement space A) forms an s-dimensional linear subspace of K™, only a fraction
of all possible (28)™ = 2mB quantization cells are actually needed to represent the set
Q(AYV). The same holds true if the subspace V is replaced with a low-complexity signal
set KC such as the set of sparse vectors ¥, = 3, (K%). This observation allows for deriving a
lower bound on the worst-case reconstruction error of x from its quantized measurements
y among all recovery maps A: A™ — K% The key idea is to select a finite subset Q C K
which minimizes the error

= f —_— .
opt. 1= SUP inf [Ix = ql,

13
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For IC = X, it can be shown that this yields [Bou™*15]

2785
€opt 2 — (2.2)
meaning that the reconstruction error ||x — A(Q(Ax))||s for any x € X, decays at
most linearly in the number of measurements. Most crucially, quantization-consistent
reconstruction schemes have previously been shown to achieve the lower bound (2.2) within
logarithmic factors in the Gaussian setting [Jac16].

In the following, we consider a scalar quantizer @): K — A which acts element-wise
on the linear measurements Ax. For simplicity, we assume that the dynamic range
R C R of the quantizer @) is large enough so that the input Ax does not saturate, i.e.,
[min;epy) (a5, X), maX;em (a;,x)] € R. Consider, for instance, a uniform quantizer @) with
dynamic range R and quantization alphabet A = 6(Z+ 1/2) N'R for some fixed cell width
6 > 0. The mapping () takes its input y to the staircase according to the quantization rule
Q(y) = 0(ly/0] +1/2).® Assuming a symmetric dynamic range R = [~¥max, Ymax] With
0 < Ymax < 00, a B-bit uniform quantizer partitions the interval R into 22 quantization cells
of equal width 6 = 24, /28 = ymax2 P71, Since this model constrains the quantization
error to the interval [—0/2,0/2], the error term q := Q(Ax) — Ax € R™ of a uniform
scalar quantizer () acting individually on each coordinate of the linear measurement vector
Ax belongs to the scaled unit ball /2B7 C /mf/2B4". However, this bound actually
turns out to be slightly too pessimistic if B is large enough for @) to satisfy the HRA. In
this case, it is natural to consider a probabilistic model of the quantizer noise in terms of
independent uniformly distributed random variables ¢; ~;;4. U([—0/2,60/2]). It then follows
that B|q3 < (m#?/2 + (v/mb?/\/5)/6 =: € where ¢ > 0 is a small universal constant
[Bou™15]. Both observations suggest to solve the following quadratically-constrained basis
pursuit (QCBP) problem

minimize |[|x||, (Ps)
x 2.1

st JJAx—yl, < e

for eo = £ or e9 = /mb/2 to recover x € K™ from its quantized measurements y = Q(AX).

The recovery quality of a minimizer x* of Problem (P, ;) then follows by Theorem 2.4.

Unfortunately, since minimizers x* of Problem (P ;) are not necessarily feasible for the

problem

minixmize 1,

P
st IAx—yll. <6/2, (F22)

this approach is suboptimal considering the aforementioned importance of quantization
consistency. These observations led to the advent of the so-called basis pursuit dequantizer
framework [JHF11], which considers the family of problems

minixmize x|

P
st. JJAx—y|, <& (P23)

3Such a quantization rule is generally referred to as a mid-rise quantizer due to its behavior around
y = 0 where a mid-rise quantizer exhibits a rising edge.

14
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for an appropriate choice of p > 1 and ¢,. In particular, ¢, is chosen based on a high-
probability bound on ||ql|, under the HRA with ¢; ~i;qa. U([—6/2,60/2]). The analysis of
this problem hinges on a generalized variant of the restricted isometry property suited to
yield error guarantees of the form ||x — x*||, < 04(x)1/v/s + €,. Under these conditions,
it can be shown that the recovery error decays as O(6/y/p+1) [JHF11]. Note that
this result only holds for finite p, meaning that consistent reconstruction is never strictly
enforced by Problem (P, 3). Moreover, this error decay behavior comes at a price. While
Gaussian random matrices can be shown to satisfy the generalized RIP condition with
high probability, the required number of measurements scales exponentially in p. Most

importantly, this means that one sacrifices the linear dependence of m on the sparsity
level s. Expressed in terms of m, one finds that the error decays as O(6/+/log(m)), which

is far from the optimal linear decay rate implied by (2.2).

Sacrificing a recovery error which decays with m, it was shown in [DLR18] that
consistent reconstruction allows for #-accurate signal recovery in the sparse case with
the same number of measurements as required for exact recovery. This result relies on
a generalized null space property for Gaussian random matrices rather than the RIP.
It is shown that for x € ¥, and x* denoting a minimizer of Problem (P,5), one has
|x — x*||2 = O(#) with high probability, provided that m = Q(slog(d/s)).

Appealing to random pre-quantization dithering of the form Q(Ax + 7), it was later
shown in [Mos™*16] that consistent reconstruction based on subgaussian measurement
matrices is possible with an error decay of O(m~'/* 4 k) where £ > 0 denotes a constant
which vanishes if the measurement matrix is Gaussian. While still far from optimal, this
improves upon [DLR18] in the Gaussian setting.

One of the strongest recovery results in QCS to date was first presented in [XJ18].
The work leverages the classical restricted isometry property and combines it with the
so-called limited projection distortion property, establishing that a simple noniterative
recovery procedure achieves an error decay of O((1 + 6)m~'/2). One key observation
in the result is that choosing the dithering vector 7 € R™ in the dithered observation
model y = Q(Ax + 7) as 7; ~i14. U([0,6]), one has that dithering removes the effect of
quantization in expectation, i.e., E;Q(w + T) = w.

In the next section, we turn to an extreme version of QCS, which will feature heavily
in the remainder of this thesis: the 1-bit compressed sensing model.

2.3.1 One-Bit Compressed Sensing

As hinted at in the introduction, the 1-bit compressed sensing model has a number of
convenient benefits over higher-order quantization schemes such as memoryless multi-bit
quantization or more complicated designs like YA quantizers. While 1-bit CS can be
regarded as a special case of multi-bit quantization with B = 1 as discussed above, the
model has its own idiosyncrasies, which require special attention.

The 1-bit CS model for x € R? considers measurements of the form*

y = sgn(Ax) € {£1}"™ (2.3)

where A € R™*? models the linear part of the acquisition system as before, and the
quantization function is chosen as () = sgn. One immediate consequence of this extreme

4By convention, we define sgn(0) = 1.
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quantization model is that there is no hope of recovering anything more than the direction
of x from knowledge of the binary measurements y and the measurement matrix A. This
follows directly from the scale invariance of the sgn-operator since sgn(Ax) = sgn(aAx)
for any a > 0. We immediately point out that this limitation can be lifted by considering
dithered observations y = sgn(Ax+7) as briefly mentioned above. For simplicity, however,
we limit our current discussion to the case 7 = 0 and refer to Section 4.4 for more details.
To remove the scale ambiguity from the problem, we concern ourselves with estimating
vectors x which belong to some structured signal set I C S41.

Geometrically, the measurement procedure amounts to a tessellation of the unit
sphere. More precisely, every row a; of A defines a hyperplane with normal a; which
partitions the sphere S%~! into two distinct spherical caps. A measurement of the form
y; = sgn((a;,x)) therefore determines which side of the hyperplane x lies on. The
collection of all sign measurements (sgn((a;,x))™, consequently yields an encoding of
which sphere patch x belongs to. Intuitively, a new measurement vector a; only provides
any new information if the hyperplane E; := {z € R? : (a;,z) = 0} intersects the set
Cx := {z : sgn(Ax) = sgn(Az)} of quantization-consistent vectors for a fixed vector
x € R?. If the vectors a; are drawn from the Haar measure on S?~!, then the probability
that a new measurement adds new information decreases every time a hyperplane shrinks
the quantization region. This already hints at the fact that the reconstruction error cannot
decay faster than polynomially in m unless one considers adaptive quantization schemes
[Bar™17b].

Before addressing the issue of signal recovery, we first remark on a convenient property
of model (2.3). Apart from its beneficial implications w.r.t. hardware complexity and
energy consumption, the 1-bit CS model has the added advantage of robustness against
gross nonlinearities and saturation effects of the measurement system, as well as additive
perturbations of the measurements [BB08; Boul0]. To demonstrate the error resilience
of the model, consider noisy measurements of the form y = sgn(Ax + e) with e € R™ a
noise vector consisting of i.i.d. N(0,0?) random variables. If we take A to be a standard
Gaussian random matrix and acquire measurements of a fixed signal x € R? we have
yi = (a;,x) +e; ~ N(0, ||x]|5 + 0?). Tt was shown in [Jact13, Lemma 4] that under
these assumptions, the probability P((a;,x)y; < 0) =: p of a sign flip is bounded by
p < o(x|; +0?)~Y2 = 3(1 + dp)~/? with p := ||x[|3/(do?) denoting the signal-to-noise
ratio (SNR). At a signal space dimension of d = 1000 and an SNR of —10dB, this implies
a sign flip probability of less than 0.05. Intuitively, this error robustness is due to the fact
that the noise level has to eclipse the unquantized measurements (in addition to having
opposite sign) to result in an effective bit flip.

Similar to the situation in multi-bit QCS, it is possible to derive a lower bound on
the attainable reconstruction error among all recovery maps by choosing an appropriate
subset Q of ¥, := ¥, (R?) N'S?! which minimizes the worst-case error

€opt = sup inf [|x — q]l,.
Xefis

In particular, it was shown in [JacT13] that for any measurement matrix A € R™*¢, the
union of s-dimensional subspaces AY; of R™ intersects at most |Q| = 2° (i) (T) orthants
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identified by sgn(Ais). Using this, they derive the lower bound

S

> .
Eopt - 2€m + \/553/27 (2 4)

which shows that the reconstruction error of any decoder A again decays at most linearly
in m, ie, ||x — A(sgn(Ax))|l. = O(s/m) for x € ¥, and any reconstruction map
A: {E1}™ — R Moreover, they establish ([Jac™13, Theorem 2]) that any quantization-
consistent reconstruction map A according to Definition 2.6 satisfies |[|[x — A(Q(Ax))|l2 < e
with probability at least 1 — 7 if the entries of A € R™*? are drawn independently from
N(0,1) and

m > i[2slog(d) + 4slog(17/e) + log(n_l)] (2.5)

For a fixed failure probability 7, this corresponds to an error decay of ||x — A(Q(Ax))]||2 =
O(s/mlog(dm/s)), which is optimal up to the logarithmic factor. Additionally, [JDV13]
establishes that with almost the same choice of m and A as before, two s-sparse vec-
tors x and z whose quantized measurements differ in at most ¢ positions are at most
|x — z||, <e(1+1¢/s) apart if m = e 'slog(md). These results emphasize the importance
of quantization consistency in the context of 1-bit compressed sensing.

While [Jac™13] also introduces an efficient recovery procedure—the binary iterative
hard thresholding (BIHT) algorithm—fitting into the above category, a theoretical analysis
of the proposed scheme remains an open problem. The same holds true for a series of
other iterative reconstruction algorithms, which have been proposed over the years, such
as the renormalized fized-point iteration (RFPI) [BBO8], the matched sign pursuit (MSP)
[Bou09], the restricted-step shrinkage (RSS) [Las*11] and the sign-truncated matching
pursuit (STrMP) algorithm [LGX16]. The strongest theoretical guarantees to date are
those established for convex recovery schemes, which we will discuss next.

Given the central importance of the basis pursuit problem in CS to seek sparse solutions
of underdetermined linear systems, a natural recovery approach to reconstruct a sparse
vector x € Y, from its binary measurements is given by the problem

minimize x|l
s.t. sgn(Ax) = sgn(Ax) (P2.4)
I, = 1.

While minimizers of this program are (by construction) quantization-consistent, the problem
is clearly nonconvex due to the sgn-operator in the first constraint and the unit-norm
constraint. Baraniuk and Boufounos therefore suggest to relax the constraint y = sgn(Ax)
to y o Ax > 0 [BB08]. While any feasible vector x € Cx = {x : sgn(Ax) = sgn(Ax)}
clearly satisfies y o Ax > 0, so does the zero vector (and any vector in the null space of A
for that matter). To remove this drawback, one imposes the norm constraint ||x||, = 1,
leading to the program

minimize [|x[;
s.t. yoAx >0 (Pa.s)
[1x[ly = 1.
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While also nonconvex, this program turns out to be more amenable to theoretical analysis.
The formulation, which also forms the starting point for the derivation of the RSS
algorithm [BBO8], was first analyzed theoretically by Plan and Vershynin in [PV 13a]. In
particular, they showed that for A € R™*¢ a standard Gaussian matrix, any minimizer
x* of Problem (P ;) satisfies ||x — x*||2 < & with probability at least 1 — C'exp(—cem),
provided that m > Ce~®slog(2d/s). Moreover, they show that the guarantee extends to
the convex program

minimize [|x|;
s.t. yoAx >0 (P2g)
<Y7 AX) =G

for an arbitrary positive constant ¢ at the expense of m now depending on a polylogarithmic
factor, requiring m = Q(e°slog(d/s)?) for e-accurate recovery. Both results also apply to
the more general signal model &, := {x € S : ||x||, < v/5} of effectively s-sparse vectors
on the unit sphere. To keep this introduction brief, we delay a more detailed discussion of
Problem (P, ) and several related recovery schemes to Chapter 4.

We conclude this section by remarking that the analysis in [PV13a] implies an error
decay of O(m~1/%) if d and s are fixed. This seems to contradict the (almost) linear decay
rate implied by (2.5) since minimizers of Problem (P, ) are in fact quantization-consistent.
The difference is rooted in the fact that the bound (2.5) only holds under the assumption
that target vectors are genuinely s-sparse rather than effectively s-sparse. Since the set
&, is significantly larger than 5,, this discrepancy in the predicted decay rate is to be
expected.
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Frequency-Sparse Signal Recovery from Binary
Measurements

In a variety of domains such as medical imaging and wireless communication, it is natural
to assume that certain signals of interest admit a sparse representation in the frequency
domain. In fact, even some of the earliest works in compressed sensing by Candes, Romberg
and Tao were originally motivated by the observation that diagnostic measurements
acquired by magnetic resonance imaging systems exhibit sparse representations in the 2-
or 3-dimensional Fourier domain, also referred to as k-space [CRT06b; LDP07; Lus™08;
GBKO08]. In wireless communication, sparse structures arise from different aspects of the
underlying communication channel [THO8; Bert09; Ber™10; Baj*t10]. A domain of
particular interest in this context is the field of spectrum sensing [YA09]. Despite the
fact that most of the usable spectrum has been licensed off to dedicated license holders,
resulting in the so-called spectrum scarcity problem, large portions of the available spectrum
remain effectively un- or underused depending on geographical location, carrier frequency
or time of day. This led to the emergence of the concept of the so-called cognitive radio

Parts of this chapter have been published in [KM17].
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and in particular the related notion of opportunistic spectrum access. These methodologies
aim to enable unlicensed users to monitor a wireless channel for communication by a
primary license holder to facilitate unlicensed communication in vacant frequency bands.
Due to exceedingly high bandwidths commonly encountered in wireless communication,
compressed sensing and spectrum sensing are a natural fit to reduce the number of samples
required to assess whether a communication channel is occupied or not [TG07; Pol™09;
Wan™t09; ZLT11; AL12]. Finally, sparsity-aware signal processing finds widespread
adoption in radar imaging and localization [HS09; End10; FSY10] where sparsity
typically arises in the time-frequency plane of the short-time Fourier transform (STET).

While sparsity in the Fourier domain represents a ubiquitous assumption at the heart
of numerous applications, most sensing models operate under the assumption of infinite
precision measurements. As discussed in Section 2.3, this assumption is problematic as
practical sampling devices must subsequently quantize compressive samples for processing,
transmission or storage. This bears the potential to cause significant artifacts during
reconstruction if the high-resolution assumption is violated. On the other hand, rising
demands in energy-efficient sampling devices generally limit the use of high-resolution
analog-to-digital converters (ADCs) as quantizers often constitute the main source of power
draw in analog-to-digital converters [Wal99]. Moreover, the resolution of a quantizer
represents a major limiting factor in its attainable sampling rate, which decays exponentially
in the number of bits per measurement [Let05]. For these reasons, it is desirable to
combine compressive measurement models which exploit sparsity in the frequency domain
with coarse quantization schemes such as recursive YA quantization schemes or the extreme
1-bit quantization paradigm discussed in Section 2.3. While the class of XA quantizers
generally enjoys more favorable error decay behavior [HS18], this improvement comes at
the cost of increased hardware complexity due to the need to track state variables during
quantization. In this chapter, we therefore consider the reconstruction of frequency-sparse
signals from memoryless 1-bit observations.

While there exists a substantial body of research addressing the 1-bit compressed sensing
acquisition model with Gaussian observations, the amount of work dealing with structured
ensembles is significantly more limited. Moreover, existing work on structured ensembles
such as [DJR17; DM18a; DM18b]| focuses almost exclusively on subsampled random
convolutions based on partial circulant matrices generated by Gaussian or subgaussian
random vectors. One notable exception is the recent work by Maly and Palzer [MP19)]
who analyze the distributed compressed sensing (DCS) model with binary observations by
establishing a generalized restricted isometry property for block diagonal Gaussian random
matrices. This is in stark contrast to linear compressed sensing where general recovery
results for a large class of structured random matrices based on bounded orthonormal
system have been established (see, e.g., [Raul0]). In a sense, the situation is akin to
the prevalent gap between sparse recovery results for binary observations from Gaussian
projections and more general subgaussian designs. This gap is fundamentally rooted in
certain unresolvable measurement ambiguities caused by subgaussian observations, which
require appealing to pre-quantization dithering techniques to allow for more sophisticated
analyses as presented in [DM18a; DM18b].

While no theoretical results exist to date which establish guarantees for the recovery
of frequency-sparse signals from memoryless binary measurements, the 1-bit acquisition
model has recently found application in the area of sparse direction of arrival (DOA)
estimation [St61T15; Yut16; LV17; Gaot17; HXL18; CGH18]. In DOA estimation,

20



3.1 | COMPRESSIVE SAMPLING OF FREQUENCY-SPARSE SIGNALS

it is often assumed that a limited number of narrow-band signals impinges on a microphone
or antenna array in the far-field of the respective excitation sources. Under this assumption,
the relative delay of arrival of the superposition of signals on an individual sensor is fully
determined by the incident directions of the individual wavefronts, as well as the relative
position of sensors in the array. The phase shift caused by the delayed arrival of the signal
superposition at each sensor can consequently be modeled as a multiplication by a complex
exponential depending on the so-called spatial frequency, which determines the angle of
arrival (AOA) of each signal. Discretizing the valid range of spatial frequencies then
results in a system of equations where the associated measurement matrix—the so-called
steering or array manifold matriz—is of Fourier type. In this context, [St6T15] proposes
a complex variant of the binary iterative hard thresholding algorithm [Jac™13], which
quantizes real and imaginary parts separately and reconstructs the target signal under a
joint-sparsity assumption on the real and imaginary parts of the signal.

Chapter Outline

The chapter is structured as follows. In Section 3.1, we introduce the frequency-sparse
signal and acquisition model considered throughout, as well as its specialization to conjugate
symmetric signals with a real-valued inverse Fourier transform. We then review the binary
iterative hard thresholding algorithm in Section 3.2 and present our modification for
conjugate symmetric signal recovery in Section 3.3. We also discuss an extension of the
measurement model to oversampled time domain representations. Before concluding the
chapter in Section 3.5, we present several numerical experiments in Section 3.4 to confirm
the correct behavior of the proposed recovery methods. We also empirically investigate the
impact of inaccurate prior information about the sparsity level of target vectors. Finally, we
consider the influence of adversarial post-quantization noise on the recovery performance
and demonstrate how to harden the proposed algorithms to render them noise-resilient,
provided one has access to an estimate on the number of erroneous measurements.

3.1 Compressive Sampling of Frequency-Sparse Signals

The starting assumption in compressed sensing and its extensions is that a vector z € C?
exhibits some type of low-complexity structure, which one aims to exploit in order to
reconstruct z from m < d measurements. Oftentimes, it is further assumed that this
low-complexity structure only reveals itself after expressing z in a suitable basis. Some
of the most prominent examples of low-complexity bases (or more generally frames or
overcomplete dictionaries) are the DFT, DCT or wavelet bases like the Haar basis, as well
as the extended family of *-let transforms such as curvelets [CD99], noiselets [CGMO1] or
shearlets [KL12]. In this chapter, we assume that z represents the discretized version of a
time domain signal after analog-to-digital conversion. Moreover, we assume that signals of
interest have a sparse representation in the (continuous) frequency domain. It will therefore
prove useful for our purposes to first consider the continuous representation of z. Denote
by F: T — T the Fourier transform operator on the space of tempered distributions’

LA tempered distribution is a complex-valued continuous linear functional on the space of Schwartz
functions S(R) :={¢: R - C |¥m,n € N: 2™m92¢(z) — 0 as x — +oo}.
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T ={T: S(R) — C}, and consider the space of complex-valued band-limited functions

Br([~for fo)) = {u: R C| Fu(f) = 0¥|f] > fu}.

According to the Nyquist-Shannon sampling theorem, every function u € Bx([— fu, fu])
can be reconstructed from a discrete-time representation of the signal if it is sampled at a
rate f, > 2f,. To sample functions in Bx([— fy, fu]), we now define the sampling operator
Aayt: Be([—fo, fo]) = C¢ with sampling rate f, = 1/T; to produce vectors of the form
7, = Aqsu(t) = (u(t +nTy))4—4 € C4 In the following, we ignore the time instant ¢ at
which sampling begins and simply write z; = z. Moreover, we assume that we acquire
Nyquist-rate samples of elements in Bx([— fy, fb]), meaning that we choose the sampling
rate f, = 2f, so that Bz([—fv, fo]) = Br([—f:/2, f:/2]). We consider signals u(t) which

are formed as weighted superpositions of s complex exponentials according to

u(t) = Z a,e?™ vt with a, €R, f, € [ ﬁ Jr

- v~ | Fr S 07 2

2 5 2] ¢y € [0,27)

and acquire d samples of u(t) via Agy,. If the frequencies {f,} _, C [—f:/2, f/2] are
integer multiples of the frequency resolution f,/d, then the discrete Fourier transform of z

is s-sparse, i.e., x = Fiz = Fi A, ru(t) € 35(C%) with

F, = \/13<8Xp(i27wy/d))ogu,ugd—1 (3.1)

denoting the orthogonal DFT matrix.

In order to model the action of compressively measuring such vectors z, the bulk of
the literature on compressed sensing considers multiplication of z with a random matrix
following a suitable distribution such as the Gaussian distribution or more generally
subgaussian ensembles. As discussed in Section 2.2, such measurement operators are
generally supported by strong theoretical foundations, establishing high-probability bounds
for stable and robust recovery of sparse vectors. Unfortunately, measurement operators
based on such unstructured random ensembles are generally hard to realize in physical
systems as they significantly complicate the necessary hardware circuitry. However,
randomness in CS acquisition systems has over the years proven an invaluable ingredient
for constructing effective measurement operators with favorable empirical and theoretical
reconstruction performance. If u(t) is known to be band-limited, a natural sensing model
more geared towards practical hardware implementations may assume that a sensing
device randomly selects elements from a sequence of Nyquist-rate samples to produce a
compressively sampled representation of w(¢). This is modeled by a random subsampling
matrix Rq := Idg, € R¥¥*4 where the index set Q C [d] with |Q2] = m is chosen uniformly
at random from [d] without replacement. This results in the measurements

y = RQZ = RQFdX = AX € (Cm,
where the resulting measurement matrix A := RqF, consists of m randomly selected rows
of the DFT matrix F;. This is an example of a measurement matrix generated via random

subsampling in a bounded orthonormal system (see [FR13, Chapter 12]).
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3.1.1 Conjugate Symmetric Frequency-Sparse Signals

In the general setup described above, the band-limited signals u were assumed to be
complex-valued. If we restrict attention to real-valued band-limited functions instead,
then there is an additional structure that one may subsequently exploit in order to reduce
the search space during the recovery of x. This structure arises due to the fact that the
Fourier transform of a real-valued signal exhibits a conjugate symmetric spectrum. This
fact naturally extends to the sampled frequency domain representation x of u(t), leading
to the following definition.

Definition 3.1. An even length vector x = (z1,...,24)" € C? is called conjugate sym-
metric if r1 € R and v;4y =Tg 1 Vi=1,...,d — 1.

Since d is assumed to be even, the coefficient x4/, also known as the Nyquist coefficient,
is always real. Moreover, the set of all conjugate symmetric vectors, which we denote by
Xy, forms a linear subspace of C?. Most importantly, this means that linear combinations
of elements in X; remain in the space. This convenient fact will allow us to define an
iterative recovery procedure which ensures that we never leave the search space X;. Note
that Definition 3.1 implies a particular ordering of the elements of x € X;, where the first
coefficient corresponds to the signal’s DC component, followed by the positive frequency
coefficients, followed in turn by the negative frequency coefficients in reverse order. This
is in line with the definition of the DFT matrix defined in (3.1). Due to the fact that X,
forms a linear subspace of C?, which we may isomorphically identify with a corresponding
subspace of R??, enforcing a membership constraint of X, via convex programming amounts
to a simple linear constraint. This means that any recovery procedure proposed in the
1-bit compressed sensing literature based on convex programming is easily extended to
the problem of conjugate symmetric vector recovery. This class of reconstruction schemes
will form the baseline during our numerical experiments in Section 3.4.

3.2 Binary lterative Hard Thresholding

As outlined in Section 2.3, the concept of quantization consistency is of key importance in
the theory of quantized compressed sensing as it represents a sufficient condition for sparse
vectors with the same quantized compressive measurements to be close to each other in the
Euclidean sense. It is therefore desirable to find a way to express data fidelity in a way that
can be promoted in a tractable manner during recovery. The convex programming approach
due to Plan and Vershynin described in Section 2.3.1 solves this issue by appropriately
relaxing the nonconvex constraint sgn(Ax) = sgn(Ax) into a convex constraint that is
easily enforcible in a convex program. A similar line of research was presented in [PV 16]
for the generalized linear model y = f(Ax) with f: R™ — R™ denoting a (possibly
random) nonlinearity. It is shown that if x belongs to some structure-promoting set
K C R% then the vector ux minimizes the expected error E||Ax — f(A%)||2, provided
that A € R™*9 is a standard Gaussian matrix. The scaling parameter x only depends on
the nonlinearity f. This observation suggests solving the so-called generalized LASSO

minimize |Ax —yl|,

s.t. xe kK (Ps.)
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as analyzed in [PV16]. For f = sgn acting element-wise on vectors, the corresponding
analysis implies that minimizers of the above program are quantization-consistent in
expectation by the scale invariance of the sgn-operator if IC is a linear cone. Unfortunately,
the interpretation of ux as a minimizer of Problem (P;;) breaks down if A is not a
Gaussian random matrix. We will therefore turn to an alternative way to promote
quantization consistency for our purposes, which was initially proposed in [BB08] and
later adopted in [JacT13].

While convex programs such as Problem (P;¢) and Problem (P3;) can be solved in
polynomial time, the respective solvers employed for the task are usually still not efficient
enough to enable time-critical reconstruction unless they are specifically designed for a
particular problem instance. In the broader compressed sensing literature, this fueled
research into more specialized iterative reconstruction schemes based, e.g., on projected
gradient methods like the well-known iterative hard thresholding (IHT) algorithm [BD09].
Given an estimate of the sparsity level s and linear measurements y = Ax € C™ of an
s-sparse vector x € C? the IHT algorithm aims to solve the nonconvex program

minimize |Ax —yl|,
s.t. x € X,(CY).

To that end, IHT repeats the iteration rule

x () (3.2)

= argmin
ueX;(C4)

x™ — X, A"(Ax™ —y) —u

»

which corresponds to the orthogonal projection of the gradient descent update x(™ —
A Vi (3|Ax™ — y[|2) = x( — X, A*(Ax™ —y) with step-size A, on the set of s-sparse
vectors. Despite the nonconvexity of the set 3,(C?) as a union of s-dimensional coordinate
subspaces, the projection admits a closed-form solution via the hard thresholding operator
Hy: C — B,(C%). One way to formalize the construction of H(x), which will be
useful later on, is by considering the nonincreasing rearrangement x of x characterized
by &1 > &y > ... > &g with &; 1= |2,4)| and 7: [d] = [d] a permutation. The vector
‘Hs(x)—the best s-sparse approximation of x—then corresponds to the vector which agrees
with x on the index set S = {7 (1),...,7(s)} and vanishes identically on S = [d] \ S. This
construction also holds if the ¢5-norm in (3.2) is replaced by an arbitrary ¢,-norm with
p > 1. This leads to the IHT update rule

) Z 30, (0 — 0, A%(AX®) ), eR)

We emphasize that general convergence results of the projected gradient (and subgradient)
method rely on the convexity assumption of both the objective function and the feasible
set.? This means that convergence of methods which project on X is not generally
guaranteed and—if possible at all—has to be established by additional assumptions on
the objective function. For the IHT algorithm, this is possible under the assumption that

2Convergence of the projected gradient method can be established via convergence of the prozimal
gradient method [PB14] for functionals of the form f(x) + g(x) where f,g: R — RU {oc} are closed
proper convex functions, and f is differentiable. The proximal gradient method then repeats the update
rule x("tY) = proxAng(x(") — AV f(x(™)), where the proximal operator is defined as prox, (x) =
argmin, {g(u) + 1/(2\)||x — u||§} For g = 1 with ¢¢ denoting the indicator function of a convex set
C C R%, this algorithm reduces to the projected gradient method.
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A satisfies the restricted isometry property with small enough RIP constant 0. In this
case one can show that (3.3) converges to x as n — oo for various different choices of the
step-size parameter A, controlling the convergence rate of the algorithm [Blul2].

Inspired by this reconstruction algorithm, Jacques et al. set out to define an appropriate
data fidelity measure in the 1-bit CS setting which admits a similar iterative algorithm.
To that end, they propose to minimize the so-called one-sided ¢1-norm of the vector
y o Ax = diag {y}Ax serving as a quantization consistency indicator and define the
objective function Jj(x) := ||[y o Ax]|_||; where []_ = min {0, -} denotes the negative
part of a real number.” Given a vector y = sgn(Ax) € {+1}" of binary quantized
measurements, the function J; accumulates all coordinates of the linear measurements
Ax whose signs disagree with the corresponding entries in y. Clearly, the composition of
the nondifferentiable function [-]_ and the ¢;-norm results in a nondifferentiable function.
Since the function J; is convex in x, however, Jacques et al. propose a projected subgradient
method to recover x from its binary observations.

The idea of subgradients and the associated concept of subdifferentials generalize
the notion of gradients to nondifferentiable functions. The definition is motivated by
the first-order convexity condition of smooth convex functions f: D C R? — R, which
states that for a fixed vector x € D, the linear function f(x)+ (Vf(x),z — x) is a global
underestimator of f, i.e.,

f(z) 2 f(x) +(Vf(x),z—x) VzeD.
Dropping the smoothness requirement on f, this leads to the following definition [Roc15].

Definition 3.2 (Subgradient and subdifferential). A vector g € R? is called a subgradient
of f: DCRY R atx e D if

f(z) > f(x)+(g,z—x) VzeD. (3.4)

The collection of all vectors g satisfying condition (3.4), denoted Of(x), is called the
subdifferential of f at x € D:

0f(x) = {g € R": f(2) > f(x) + (8,2 — x) Vz € D}.

Remark 3.3. If f is conver and differentiable at a point x, the gradient V f(x) is the
unique subgradient satisfying condition (3.4), i.e., the subdifferential of f at x is the
singleton set 0f(x) = {V f(x)}. Moreover, while every convex function admits a non-
empty subdifferential set, the same does not hold for arbitrary functions. This is in stark
contrast to smooth nonconvex functions, which always admit a gradient by definition.

Equipped with this concept, Jacques et al. establish the following result in [Jact13]
for which we provide a simple constructive proof in the interest of self-containedness.
Lemma 3.4. The vector p(x) = AT (sgn(Ax) —y) is a subgradient of the functional
Ji(x) = [y o Ax]_[]:.

3When applied to vectors, we use the convention that [-]_ acts element-wise.
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Proof. We start by rewriting the functional J; at a point x € R? as

Ji(x) = H[yOAX H Z‘ yi(ai, x ‘ = _Z yi{ai, x Z —yi(a;, x
=1 =1
where [-], = max{0,-} denotes the positive part. Since one generally has for convex

functions fi,..., fm: R4 — R that O(f1 + ... + fm)(X) = 0f1(X) + ...+ Ofm(x)* (see for
instance [Rocl5, Chapter 23]), this yields

m

dJ1(x) = Za[ yi(ai, x Zyzaz

=1

z—fyi (ai,x)

where the last step follows by the chain rule of subdifferential calculus for affine transfor-
mations [Roc15]. Clearly, the subdifferential of the (convex) function [-], = max {0, -} is
given by

+

{0}, z2<0,
dlz], =4[0,1], z2=0,
{1}, z>0.

It therefore follows that the vector p(x) := — 321" 8,1y, (a; x>0} is an element of the
subdifferential 0.J;(x) where

p(x) = = yiail{_y a; x>0}

i=1

= — Z yiaiﬂ{yi (a;,x)<0}
=1

= —ATdiag {yz}ZL (]l{yi (ai7X><0})i:1

_ —;ATdiag {y} (1 —sgn(y o Ax))
— ;AT(y osgn(y o Ax) —y)
= LA (sen(Ax) —y)
as announced. -

The binary iterative hard thresholding (BIHT) algorithm now proceeds by alternating
between a subgradient step of the objective function J; and a projection step on the set of
s-sparse vectors ,(IR?) by means of the hard thresholding operator H,. The algorithm
automatically terminates once a quantization-consistent vector x(»*1) has been found since
one has p(x(™) = 0 in that case, which means BIHT repeats the iteration x("*1) = #,(x(™).
Considering that any s-sparse vector is a fixed-point of H,, this implies that the algorithm
automatically stalls if the normalized Hamming distance Ay (y,sgn(Ax™)) with

m m 1
Ag: {£1}" x {£1}" — [0,1]: (u,v) — Ap(u,v) —Z fuo = 5 —Jlu—v]||;

4The first sum is to be understood in a pointwise fashion, while the second one corresponds to the
Minkowski sum A+ B:={a+b:a € A,b€ B} of sets.
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vanishes, yielding a natural stopping criterion for the BIHT algorithm. The full algorithm
listing is given in Algorithm 1. Note that the step-size A, > 0 of the subgradient update
ulrt) = x™ — )\ p(x(™) in Algorithm 1 is assumed to be fixed as A\, = A = 2 since the
algorithm appears to be independent of the choice of step-size according to numerical
experiments conducted in [Jact13] and [JDV13]. As pointed out before, the idea of using
the sign-violation vector y o Ax in the objective function goes back to the original work
[BB08] due to Boufounos and Baraniuk. They propose to minimize the smooth convex
objective function Jo(x) := 1||[y o Ax]_||3 with gradient VJy(x) = A "diag {y}[y o Ax]_
in the context of their renormalized fixed-point iteration algorithm. This objective function
has also been considered by Jacques et al. in the formulation of what is commonly
referred to as BIHT-(y [Jact13]. Unfortunately, theoretical performance analyses or even
convergence results of either algorithm have so far eluded researchers. That being said,
overwhelming numerical evidence indicates that the BIHT algorithm generally terminates
after less than 100 iterations in the noiseless setting. The same does not necessarily hold
when one considers either additive pre-quantization noise or adversarial post-quantization
bit flips. However, in this situation one may turn to the so-called adaptive outlier pursuit
(AOP) algorithm [YYO12] to adaptively identify and subsequently correct possibly
erroneous bit positions to regain some of the performance lost due to noise.

Algorithm 1 Binary Iterative Hard Thresholding (BIHT)
Input: A € R™? y =son(Ax) € {—1,1}", s € [d]
Initialize: x(© < 0, n+ 0

do
u™ ) x( — AT (sgn(Ax™) —y) > Subgradient step
x( ) o A (uD) > Projection on ¥,(R%)
n<n+1
while Ag(y,sgn(Ax™)) > 0 and n < Ny
Output: x™ /||x™||, > Projection onto the unit sphere

3.3 Conjugate Symmetric Binary lterative Hard
Thresholding

We now turn to the task of developing an extension of the BIHT algorithm for the recovery
of sparse conjugate symmetric vectors. Again, we assume that we acquire Nyquist-rate
samples of elements in Bx([—fy, fv]), i.e., we fix the sampling rate to be f, = 2f;, so that
Bz([=fv, fv]) = Bx([—f:/2, f:/2]). The signal class of sparse conjugate symmetric vectors
originates from sampling band-limited functions v € Br([—f;/2, f;/2]) of the form

l (d d
u(t) = Za,,cos(27rf,,t+<;§,,), a, €R, f, € “Z{—Q, .. .,2}, ¢, € [0,2m).
v=1

Sampling such signals via the operator Ay, results in time domain vectors z with an
s-sparse representation x = Fjz € ¥,(X,) with s = 2/ due to the symmetry structure on
Xg4. As remarked before, it is easy to verify that X, forms a linear subspace of C%. In that
sense, any iterative algorithm of the form x* = x+ Ap, where x € X} is the current iterate,
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p € Xy a search direction and A > 0 a step-size, will yield a valid conjugate symmetric
vector x*. This will be a crucial property in our conjugate symmetric modification of
the BIHT algorithm. We adopt the idea of subsampled bounded orthonormal systems
to model the acquisition in the time domain as outlined in Section 3.1. This means that
we take measurements of the form RoFyx = Id,Fyx = Ax with Q C [d] denoting a
random index set of size |2| = m on which we conceptually subsample the Nyquist-rate
sequence (z)¢_, represented by the vector z € R? of time domain samples. In order to
ease energy demands of the ADCs employed in the sampling system, we adopt the 1-bit
CS paradigm by only retaining the sign information about the subsampled waveform by
acquiring measurements

y = sgn(RoFx) = sgn(Ax) € {£1}™.

We now turn to the modification of the BIHT algorithm for the recovery of such
vectors x € X, from their corresponding 1-bit time domain measurements. There are two
issues to overcome in this regard. First, the concept of subdifferentials does not directly
translate to real-valued functionals f: C¢ — R defined on C? since one needs to make
sense of statements of the form f(x) > f(z)+ (g,x — z) to define subgradients. This is not
well-defined for vectors x,z,g € C? since C is not totally ordered. Secondly, the iterative
nature of BIHT necessitates that the hard thresholding operator H, is appropriately
modified so as to produce s-sparse vectors belonging to the subspace X rather than C%.
Without such a modification, H, may produce vectors x’ outside of X; such that the
operation sgn(Ax’) may not be well-defined. This is rooted in the fact that A = RoF,
acts as a subsampled inverse DFT, which might result in Ax’ being complex. These issues
are addressed in the following two sections.

3.3.1 Reformulation of the Subgradient Iteration

In order to adapt the BIHT algorithm for the recovery of frequency-sparse signals, we
use the natural vector space identification of C? with R??. The BIHT algorithm aims to
minimize the functional

1) = Iy e Ax]_| = - i ek, %))

by means of the projected subgradient method where the operator [-]_ = min {0, -} is only
defined for real arguments. However, since the measurement matrix considered here is
of the form A = Id;Fg, we have for x € X; and with (-,-) denoting the standard inner
product on R? extended to C? that

(ag, x) = (Re(ayg), Re(x)) — (Im(ag), Im(x)) + i ((Im(ag), Re(x)) + (Re(ag), Im(x)))

=0 since xeXy
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With the lifted objective function
jlt R? 5 R: %+ — Z [yr (&g, X)]_,
k=1

it follows from Lemma 3.4 for A € R"™*2¢ with rows {4, }}-, that

5(%) = JA (sen(A%) —y)

is a subgradient of Ji, which translates to

pi(x) 1= A" (s (Fe(A)Re(x) — Im(A)Im(x)) )
= DA% (s (Ax) )

in the complex domain since x € X; and therefore Ax € R™. Unsurprisingly, this is in
direct accordance to the real-valued case discussed in Section 3.2 where the adjoint operator
A* is replaced with the transpose A'. In the same fashion, the conjugate symmetric
gradient VJ, of the smooth BIHT-/5 objective function extended to the domain X, can be
derived as VJy(x) = A*diag {y}[y o Ax]_. Also note that, given a measurement matrix
of the form A = RoF, = Id,Fy, the subgradient px(x) can be interpreted as the DFT
of the real-valued signal 11dgo(sgn(Ax) — y), which implies px(x) € X,. Again, a similar
argument holds for V.J,(x).

3.3.2 The Hard Thresholding Operator for Conjugate Symmetric Vectors

If the signal of interest x belongs to the set ¥4(Xy), the support of its real and imaginary
parts are identical®, i.e., we are looking for 2s-sparse vectors when minimizing the objective
function J; over X € R2. In other words, we might naively choose the next iterate X"
of the modified BIHT algorithm as the best 2s-sparse approximation of the subgradient
update X — H(%), namely X" = Ha,(X — p(X)). Unfortunately, this strategy does not
respect the conjugate symmetric structure in the solution such that the support of the first
and last d components of X (the real and imaginary parts of x¥) obtained in this way
will rarely agree. Instead, we must find the best s-sparse approximation in the space Xy
explicitly. In this case, we need to modify the thresholding strategy so as not to destroy
the conjugate symmetry of the input vector. Formally, we need to evaluate the operator
HE,: Xyg = 84(Xq) with

HZ,(x) = argmin ||x — ull,.
ueEs(Xd)

Unlike for H, however, the optimum will not be attained at the same x € 34(X,) for every
p > 1, which we indicate by the subscript p in the notation H§p. In the following, we refer
to the element z; and z4/241 of x € X3 as DC and Nyquist coefficient, respectively. Given
the definition of X, both coefficients are always real-valued and therefore do not appear

5This follows immediately from the definition of the space Xg.
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in symmetric pairs. To construct ”Hi‘fp(x), we turn to the nonincreasing rearrangement x
of x with &1 > &y > ... > &g and &; = |x,(;)| for m: [d] — [d].

For even s, it is necessary to guarantee that the permutation 7 of the nonincreasing
rearrangement always maps the DC and Nyquist coefficients to consecutive indices. Since
all other entries appear in conjugate symmetric pairs of equal modulus, selecting the first s
components then guarantees that we either end up with s/2 or (s—2)/2 = s/2—1 conjugate
symmetric pairs in % ,(x). To that end, we start with the nonincreasing rearrangement®
x and change the permutation 7 to 7’ such that the pair (|z1], |z4/241|) appears before
the smallest index i € [d] \ {n(1),7(d/2 + 1)} which satisfies |z1]P + |24/241]" > 22}. This
condition is motivated by the fact that the contribution of the pair (|z1], |z4/241]) to the
best conjugate symmetric s-term approximation error o (x), := infyes, (x,) [|[x — ul| , I8
|21 |P + |24/241|7 if it is not included in the approximation. If no index i exists for which
the above condition holds, the pair of DC and Nyquist coefficients is located at the end
of the rearrangement X such that the permutation 7 does not need to be modified. This
also holds if DC and Nyquist coefficients already happen to be positioned at consecutive
coordinates in X.

For odd s, it is necessary that either the DC or Nyquist coefficient is included in the
approximation but never both. This can be seen as follows. Assume that the indices
ipc = 7(1) and inyq 1= 7(d/2 + 1) of the DC and Nyquist coefficient in the nonincreasing
rearrangement satisfy ipc, inyq < 8 O ipc, inyq > §. Then either both the DC and Nyquist
coefficient will be included in the approximation or neither of them. Since s is odd this
means that we would invariably split up one conjugate symmetric pair by only retaining
the first s coefficients of X, thereby destroying the required conjugate symmetry of the
approximation. It is therefore necessary to modify the permutation 7 as follows. If we
have min{|z1], |€4/241|} = &; with @ < s, then the permutation 7 is changed so that the
element #; is mapped to some index ¢’ > s that is not included in the approximation,
say i = d. On the other hand, if we have max{|zi|, |Ta/241|} = &; with j > s, then 7 is
modified such that the element Z; is located before the smallest index j' € [d] for which
Z; > 2%y holds. This strategy guarantees that we always retain the coefficient in the
approximation that reduces the best s-sparse approximation error the most. Note that the
construction for odd sparsity levels s is independent of the £,-norm used in the definition
of Hifp so that we have ’Hifp = ’H§ Vp > 1.

While the operator Hifp was introduced here for the use in the BIHT algorithm, it is
also immediately applicable to most iterative CS recovery algorithms that rely on hard
thresholding to enforce a certain sparsity level of solutions. While conjugate symmetry is
easily enforced via convex programming (cf. Section 3.4), the same does not necessarily
hold for greedy or iterative algorithms. However, it is easy to see that swapping out the
operator H, for Hifp in the compressive sampling matching pursuit (CoSaMP) [NT09],
quantized iterative hard thresholding (QIHT) [JDV13], IHT [BD09] and hard thresholding
pursuit (HTP) [Foull] algorithms allows them to be used for the recovery of frequency-
sparse signals from compressive time domain measurements without further modifications.

We summarize the resulting algorithm, which we term conjugate symmetric binary
iterative hard thresholding (CS-BIHT), in Algorithm 2. Moreover, we refer to the fo-

5When implementing the operator H§ p» it is vital to only consider the first d/2 + 1 coefficients of x in

the nonincreasing rearrangement. This is necessary to avoid that different conjugate pairs with the same
modulus get mixed up by the sorting algorithm used to construct %.
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smoothed variant of CS-BIHT as CS-BIHT-¢,. This algorithm replaces the subgradient
update u™ = x — AA*(sgn(Ax) — y) in Algorithm 2 with the gradient update ut =
x — AM*diag {y}|y o Ax|_ corresponding to the smooth one-sided objective function
Ja(x) = 5[y o Ax]_|I3.

2

Algorithm 2 Conjugate Symmetric Binary Iterative Hard Thresholding (CS-BIHT)
Input: A = RqoFy € C™*? y = sgn(Ax) € {£1}™, s € [d]
Initialize: x© < 0, n+ 0

do
ul™  x( — A*(sgn(Ax™) —y) > Subgradient step
x ) HE (0 D) > Projection onto X4(Xy)
n<n+1
while Ay(y,sgn(Ax™)) > 0 and n < Nypax
Output: x™ /||x™|| > Projection onto the unit sphere

3.3.3 Extension to Oversampled Time Domain Measurements

While acquiring more measurements than the dimension of the signal space is of no interest
in classical (linear) compressed sensing, the same does not apply to the 1-bit or more
generally the quantized compressed sensing observation model. This is due to the fact
that any nonlinear quantization function ): R™ — R™ acting on the linear measurements
Ax € R™ prevents inversion of the equation system y = Q(Ax) to solve for x € R? even
if m > d. This is precisely the situation we find ourselves in if ) corresponds to the binary
sgn function. Despite the fact that acquiring more than d samples does not imply that the
inverse problem can be solved exactly, adding more sign measurements is still expected to
improve estimation accuracy. This is especially desirable in case of the 1-bit acquisition
model where sampling devices are assumed to be highly energy-efficient such that acquiring
more measurements does not cause an excessive increase in power consumption. For these
reasons, we now consider the reconstruction of frequency-sparse band-limited signals from
super-Nyquist real-valued time domain measurements. In case that measurement matrices
are based on purely random, unstructured ensembles such as Gaussian random matrices,
the idea of oversampling is as simple as drawing independent random vectors from the
respective distribution and appending them as additional rows to an existing measurement
matrix. Unfortunately, the situation is less straightforward if the measurement matrix
A € C™ 4 for m < d is based on a unitary matrix like the DFT matrix. This was the case
in the previous section where the measurement matrix was formed by randomly selecting
m rows from the orthogonal DFT matrix Fy. When m exceeds d, however, it becomes
necessary to reinterpret the measurement process since we cannot simply add more rows
to the DFT matrix F; to create an appropriate oversampling operator A.

As before, we assume that the signal class {u: R — R | u € Bx([—fb, fv])} consists
of superpositions of band-limited sinusoids with f, = f,/2, where f, corresponds to the
Nyquist frequency. In contrast to the previous setting, we now aim to reconstruct the
spectrum of such signals from oversampled representations. To that end, we consider
m > d time domain measurements of u(¢). Conceptually, this means that we sample each
signal u(t) via the sampling operator A, s with sampling rate f; := fym/d. Since u(t)
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is band-limited to |f| < f,/2, this implies that the discrete Fourier transform x € X, of
z = A pu(t) € R™ is sparse if every frequency in u(t) is an integer multiple of f./d and
contains no nonzero coefficients in the index set”

d d m m m m—d
=< —-4+2 = e, =41, —=—4+2,...,—4+1+—— -1
. {2+’2+3’ I I T }
d d m m d

corresponding to frequencies above the Nyquist frequency of u(t). Since the CS-BIHT
algorithm alternates between estimating the spectral representation of u(t) and constructing
an approximation of the corresponding sampled time domain vector, the measurement
operator A € C™*? needs to act as an inverse DFT operator, which produces a time-
interpolated discrete signal.

To construct A, we adopt the notion of ezact interpolation (see, e.g., [Lyo04, Sec-
tion 13.28.1] or [Fra89]). The idea of exact interpolation is to zero-pad a vector x € X,
such that the resulting vector x € X,,, remains conjugate symmetric and passes through
every sampling point of F x in the time domain. This includes splitting the Nyquist
coefficient of x by re-weighting and assigning it to both the positive and negative frequency
spectrum of the interpolated vector X € X,,,. The construction is detailed in Algorithm 3.
Note that unlike the procedure proposed in [Lyo04], we re-weight the Nyquist coefficient
by a factor of 1/4/2 rather than 1/2 so that ||%]|, = ||x]|,. Since the exact interpolation
procedure induces a linear map on Xy, there exists a linear operator Py, € R™*? which
acts on any vector x € X, as described in Algorithm 3. Equipped with this operator, we
now define the matrix A = F,,P;,; and finally the measurement matrix A by normalizing
the columns of A to unit norm. We emphasize that the explicit construction of A is not
necessary for the CS-BIHT algorithm and its variations since one may instead capitalize
on highly optimized implementations of the fast Fourier transform (FFT) algorithm to
implement the action of A. This also applies to modern solvers for convex programs
such as interior-point methods [Van12]. However, highly-tuned implementations of such
algorithms require substantial work and experience while an efficient implementation of
CS-BIHT involving F,, and Py is fairly straightforward.

Algorithm 3 Exact Time Domain Interpolation
Input: x = (21,...,24) € X4, m € N with m > d
Initialize: X < 0 C™

2wy for i e {1,...,d/2} > Copy DC and positive frequency coefficients
Tpdjoti < T = Tqa4q for i € {2,...,d/2} > Copy negative frequency coefficients
Faprr1 < 272240011 > Duplicate Nyquist coefficient

Brn—dajar1 < 27 %20/044
Output: x € X,

"This follows from the arrangement of DFT coefficients in % implied by Definition 3.1.
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3.4 Numerical Evaluation

We now turn to investigating the empirical recovery performance of the conjugate symmetric
binary iterative hard thresholding algorithm and its variants.

3.4.1 Simulation Setup

In all our simulations, we consider a similar setup to the original work [Jac™13] which first
introduced the BIHT algorithm. That is, we consider the recovery of conjugate symmetric
s-sparse vectors in C? with s = 20 and d = 1000. In order to generate the target signals,
we choose an index set S’ with |S'| = s/2 = 10 elements from the set {1,...,d/2} at
random. If S” includes the DC coefficient, the entry d/2+ 1 is added to S’ as well to make
sure that the constructed vector is exactly s-sparse. The nonzero elements supported on
S\ {1,d/2 + 1} are then drawn independently from the circularly symmetric complex
standard Gaussian distribution®, while DC and Nyquist coefficients are drawn from the
real standard Gaussian distribution. The positive frequency coefficients are then mirrored
such that the resulting vector x is conjugate symmetric. We then set x = X/|[|X||2.

For the moment, we limit our attention to the regime m < d. In classical compressed
sensing with linear observations, this is the only regime of interest as acquiring more
measurements than the ambient dimension of the space yields overdetermined systems such
that recovery reduces to a simple least-squares problem. Note, however, that depending on
the application at hand, the oversampled regime m > d still might be of interest in 1-bit
CS, given the assumption of cheap low-complexity 1-bit samplers, which may well be able
to operate at super-Nyquist rates due to the reduced demands on hardware complexity
and data rates. Due to the differences involved in constructing the measurement operator
A for m > d, we defer the numerical analysis of recovery from oversampled measurements
to a separate discussion in Section 3.4.4. Throughout all our experiments, we choose p = 1
for the operator Hifp as initial experiments indicate that the choice is inconsequential to
the overall performance of the CS-BIHT algorithm. For each parameter combination, we
consider nyc = 1000 Monte Carlo (MC) instances for which we independently redraw any
random quantities. As discussed in Section 3.2, the CS-BIHT algorithm is terminated once
a quantization-consistent solution is found or the iteration count exceeds n,., = 3000.

In addition to the regular CS-BIHT algorithm, we also investigate the performance
of the CS-BIHT-/; algorithm. Note that for this ¢;-variant of CS-BIHT, it is necessary
to adjust the step-size \, according to the gradient V.Jy(x) = A*diag {y}[y c Ax]_. In
particular, we choose \, = ||[VJy(x™)||5!, which seems to perform well in practice.
Moreover, while we initialize CS-BIHT with x(©) = 0 (cf. Algorithm 2), this initial value
causes CS-BIHT-/; to stall in the first iteration since V.J5(0) = 0. We therefore initialize
the smoothed version of the algorithm with a randomly drawn (and densely populated)
conjugate symmetric vector. More precisely, the DC an Nyquist coefficients are drawn
independently from N(0, 1), while the positive frequency coefficients xgo), e ,x((j% are
drawn as independent circularly symmetric complex Gaussian random variables with unit
variance. The conjugate complements of these coefficients are then mirrored to create a
conjugate symmetric vector, followed by normalizing the vector to unit fo-norm.

8To construct a circularly symmetric standard Gaussian random variable u one simply sets u =
27Y2(g +ih) with g, h ~i1q4. N(0,1).
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We also benchmark the performance of the two CS-BIHT algorithms against their
respective support-oracle variants which always retain the correct coefficients of the
(sub)gradient update according to the ground truth support set S C [d] of the vector
X € X,(Xy) we aim to recover. In other words, the hard thresholding operator H, in
both algorithms is replaced with the restriction operator Rg which we interpret here with
slight abuse of notation as the identity matrix whose columns indexed by S are replaced
by the zero vector, i.e., Rg acts on a vector x such that (Rgx); = Tiljesy for i € [d].
By removing the issue of support identification, the performance of these support-oracle-
assisted versions gives some insight into how well the individual cost functions manage
to differentiate between more dominating and less pronounced coefficients in the target
vectors.

For comparison, we also consider two convex programs proposed by Plan and Vershynin
which we modify for the recovery of conjugate symmetric signals. The first reconstruction
scheme is based on the convex program proposed in [PV13a] for which uniform recovery
of effectively s-sparse vectors was shown to hold with high probability on the draw of
a standard Gaussian random matrix A. We extend this program to the situation of
conjugate symmetric signal recovery with A = RqFy by solving the program®’

minimize x|,
s.t. yoAx >0
(y,Ax) =1
X € Xd.

(PVy)

As mentioned before, the second constraint in the formulation removes the null space of A
from the feasible set so that most importantly Problem (PV;) does not admit a trivial
solution at x* = 0. The last constraint enforces the conjugate symmetry of solutions.
Due to the subspace nature of X, the constraint is linear and hence easily enforced (cf.
Definition 3.1). Secondly, we consider the maximization problem

maximize (y, Ax)
s.t. x|, <1

ll, < v/'s

X € Xy

(PVy)

as originally proposed in [PV13b] for the recovery of effectively sparse vectors in R? from
Gaussian observations. This time the objective function aims to maximize the quantization
consistency of solutions x*, while the feasible set encodes a membership constraint for
the set of effectively s-sparse vectors'’ inside the unit ball, which is motivated by the
relation ||x||; < \/||x[,]|x|l, due to the Cauchy-Schwarz inequality. We will delay a more
detailed discussion of the program until in Section 4.3.2 where we consider a natural

9The first constraint of Problem (PV) is technically not well-defined for complex A and x since C
is not totally ordered. In practice, we therefore explicitly enforce y o SRe(Ax) > 0 and y o Im(Ax) =0
instead. The latter constraint is also implicit in the constraint (y, Ax) = 1.

10Technically, the set of effectively s-sparse vectors is given by the set & = {x € C?: ||x||; < /5|x[l,}
such that we actually need to constrain the search space of Problem (PV>) to the set £ NBg = {x : [|x||, <
Vs||xl,, [|1%]l, < 1}. However, as we will discuss in Section 4.3.2, the set {x : ||x[|; < +/s,[x[|, < 1} in
Problem (PVs) corresponds to the convex hull of the set £ NBY. Since we are maximizing a linear function
over a compact set, the optimal values of the respective programs therefore coincide (cf. Proposition A.11).
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extension of Problem (PV5) in the context of group-sparse recovery. Instead, we merely
point out that the program can be shown to exhibit a remarkable error resilience when the
entries of the measurement matrix A are again drawn independently from the standard
Gaussian distribution. As in the case of the CS-BIHT variants, we also consider support-
oracle-assisted variants of both programs where we add the linear constraint xg = 0 to
Problem (PV;) and (PV5).

The first criterion we employ to evaluate the performance of the various recovery
strategies is the average reconstruction SNR in dB denoted by p[dB] := 20log,,(p) with

nMcC

1
g LRSIl

nMc ;5 1% — x71],  nae

1 nyc

D

=1

X;

o

% — x5

where %; € X;NS 1 and x? denote the i-th signal (out of nyic draws) and its reconstructed
version by a particular recovery method, respectively. As emphasized earlier, recovery
of sparse vectors from their 1-bit observations is only possible up to a positive scale
factor due to the scale invariance of the sgn-operator. We therefore limit our attention to
the recovery of signals with unit /o-norm. As a result, the normalized geodesic distance
Ag: S¥1 x §*1 — [0, 1] on the complex unit sphere S~ = {x € C¢: ||x||, = 1} with

1
As(x,2z) = — arccos (Re(x,2z)¢)

could serve as a natural measure of similarity between two vectors x,z € S¢~!. However,
since

I —zll5 = %I + llz]l; — 29%e(x, z)c = 2(1 — Re(x, z)),

we have
2
|x — 2|5 = 2(1 — cos(mAs(x,2))) = 4sin (gAg(X, z)>
and therefore
2 At
As(x,z) = — arcsin <||X — z||2)
U 2

given that sin(x) is injective (and nonnegative) on [7/2, 7]. Geodesic distance and SNR as
defined above are therefore directly related by a monotonically increasing function such
that the metric Ag does not reveal any new information about the reconstruction quality.
Instead of the geodesic distance, we will evaluate the support recovery performance by
considering the cardinality of the symmetric set difference between the true support S of
the ground truth signal x and the support S* of its estimate x*:

Awupp(S.87) = [SASH| = [(S\ 57) U (5*\ 5.

Since we assume perfect knowledge of the sparsity level s, we have Agypp(S,S*) < 2s in
the case of CS-BIHT. Unfortunately, Problem (PV;) and (PV,) generally do not produce
genuinely sparse vectors such that we have to employ a thresholding scheme to estimate the
support set S* which contains the majority of a signal’s energy. Given a vector x* produced
by some recovery algorithm, we consider the sequence (pr (x*))%, of progressively more
accurate conjugate symmetric t-sparse approximations of x* and set S* = Supp(”Hﬁp (x*))
where t* denotes the smallest sparsity level ¢ such that
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Figure 3.1: Average reconstruction SNR vs. number of measurements for d = 1000 and s = 20

3.4.2 Noiseless Recovery

In the first experiment, we investigate the recovery of conjugate symmetric sparse vectors
from noiseless 1-bit observations. The average SNR over the number of measurements
normalized to the signal dimension is shown Figure 3.1a. As in the real-valued case,
which we do not present here, the conjugate symmetric version of the BIHT algorithm
generally outperforms Problem (PV;) by 5-7dB on average at even moderate numbers
of measurements. Additionally, the smooth variant CS-BIHT-/; slightly outperforms
CS-BIHT at lower values of m with the gap closing more and more as m increases. This
is in stark contrast to what was previously reported in [Jac™13] in the Gaussian setting
where the /5-smoothed variant generally falls significantly behind the nonsmooth BIHT
algorithm. The performance of Problem (PV5) is generally another 5 to 8 dB lower than
that of Problem (PV), resulting in a gap of as much as 15dB compared to CS-BIHT-/,
when the number of measurements approaches d. For the support-oracle variants of CS-
BIHT and CS-BIHT-¢; (Figure 3.1b), the performance gap almost vanishes entirely, which
suggests that CS-BIHT-/; is slightly more effective at identifying the support of the target
vector. With m approaching d, however, the performance of the regular and support-oracle
versions are almost identical, emphasizing the effectiveness of both CS-BIHT algorithms in
general. While the gap between the individual methods slightly closes when the support is
known a prior, the relative relation of the recovery performance between CS-BIHT(-/5),
Problem (PV;) and (PV5) remains the same. The biggest jump in performance is observed
for Problem (PV,) whose average SNR improves by around 6 dB for m = d.

Next, we turn to the support identification problem, the results of which are depicted
in Figure 3.2. Once again, CS-BIHT and CS-BIHT-/; outperform both convex programs
and manage to accurately identify the correct support at modest numbers of measurements
with the misidentification rate dropping to 0 beyond m > 800 measurements. Even though
the constraint y o Ax > 0 in Problem (PV;) promotes strictly quantization-consistent
solutions, the recovery scheme’s overall ability to identify the true signal support is rather
poor and only improves marginally as the number of measurements increases. Most
importantly, in contrast to both CS-BIHT algorithms, the misidentification rate does
not drop to 0 in the regime considered for m. Unsurprisingly, Problem (PV5) falls even
further behind the three other methods. Even more striking is the fact that the number of
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Figure 3.2: Support recovery error vs. number of measurements for d = 1000 and s = 20
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Figure 3.3: Average reconstruction SNR vs. sparsity offset when recovery methods are provided with
incorrect prior information about the sparsity level of target vectors (d = 1000, s = 20)

erroneously selected support indices seems to increase as more measurements are acquired.
Finally, while one would expect the support error to be fixed at 0 for the support-oracle-
assisted versions of the considered recovery procedures, this is surprisingly not the case for
Problem (PV;) as shown in Figure 3.2b. Since solutions of Problem (PV) are forced to be
identically zero on S for S = supp(x), this implies that the program actually concentrates
the signal energy on fewer than the remaining s = 20 possible nonzero coefficients.

With the exception of the ¢;-minimization approach (PV;), the considered recovery
schemes require prior information about the sparsity level of the target vector. In order
to examine how well these methods cope with inaccurate sparsity information, we now
provide each method with a modified sparsity level s + ¢ with s = 20 as before and ¢
ranging from —19 to 19. The results of this experiment are shown in Figure 3.3. Given
the independence of Problem (PV;) from s + ¢, the recovery performance remains fixed
for all values of ¢ as pointed out above. On the other hand, the reconstruction fidelity
of both versions of the CS-BIHT algorithm deteriorates substantially when no accurate
information about the sparsity level is available. In this case, the algorithms are even
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Figure 3.4: Average reconstruction SNR vs. number of measurements for d = 1000 and s = 20
when 3% of all sign measurements are flipped

outperformed by Problem (PV,) despite the fact that the convex maximization method
relies on the same inaccurate sparsity information. However, since the search space
{xeXy:|Ix|l; £ Vs+t,|x||, <1} of Problem (PV,) is significantly larger than that of
CS-BIHT and CS-BIHT-¢5, namely 3,,,(X,), this is to be expected. Moreover, while the
loss in reconstruction SNR for CS-BIHT and CS-BIHT-/; is significant when the sparsity
level is underestimated, the effect is less detrimental once ¢ moves past the point where
the sparsity level is overestimated. Since the two algorithms outperform Problem (PV)
even when the sparsity level is overestimated by as much as 50 %, this gives the hard
thresholding approaches some leeway in case a lower estimate of the sparsity level is
available.

3.4.3 Noisy Recovery

Next, we investigate how the different recovery strategies fare with noisy observations.
The assumption of noiseless sampling considered in the previous section represents a
highly idealized scenario. While the previous experiments provide some indication of what
kind of reconstruction fidelity to expect, it is also necessary to investigate how well the
respective recovery schemes are able to cope with noisy observations. Unfortunately, the
BIHT algorithm turns out to be highly sensitive to noise in that only a few bit flips can
already lead to significantly slower (empirical) convergence behavior and reconstruction
quality. To combat such effects, Yan, Yang and Osher proposed the so-called adaptive
outlier pursuit (AOP) algorithm—a variant of BIHT which adaptively tries to identify and
subsequently correct potentially erroneous bit positions in a noisy measurement vector
y € {£1}" [YYO12]. Given an upper estimate 3 € [m] on the number of corrupted
entries in the vector y, the AOP algorithm identifies possible bit error positions by solving
a combinatorial optimization problem.

To make the method precise, consider the noisy 1-bit measurement model y = f o
sgn(Ax) for some x € R%. The binary vector f € {£1}" with mAgx(1,f) = 8 € [m] is
used to model adversarial post-quantization bit flips in the quantization device. The idea
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of the AOP method is to estimate and update a vector b € {£1}" to iteratively correct
possible bit errors during reconstruction. This is done in an alternating fashion which
alternates between moving closer to a quantization-consistent solution via a regular BIHT
iteration and—fixing the current estimate x(™—determining a corrected measurement
vector ¥ o b which better matches the measurements sgn(Ax™) of the iterate x™. To
that end, one considers for the current estimate x™ in iteration n of the BIHT algorithm
the combinatorial optimization problem

minibmize LM (3 ob)

st. |I[bl_|L <8 (Ps2)
b e {+1}™
where £ denotes either the nonsmooth loss function 55")(y) = ||[y o Ax™]_||; or the

smooth loss function £5" (y) = ||[y © Ax™]_|2 of the BIHT algorithm. This combinatorial
optimization problem admits a closed-form solution b* established in [YYO12] as

_17 y a;, X(n) > T,
b = A ) (3.6)
1, otherwise

with 7 denoting the -th largest entry of |[§ o Ax™]_| where || is applied element-wise.
The vector b* is then used in the next iteration of the BIHT algorithm to flip the
(hopefully correctly) identified bit error positions in ¥.'' In other words, the update x+1)
is constructed as x(" 1) = H(x™ — \,pp+ (x™)) with pp(x) = AT (sgn(Ax) — § o b*) or
o (x) = ATdiag {y o b*}[§ o b* 0 Ax]_ in the nonsmooth and smooth case, respectively.
The bit error vector b is updated throughout the algorithm if the normalized Hamming
distance Ay between the noisy observations ¥ and the quantized measurements sgn(Ax (™)
of the current estimate x(™ reduces. Since the algorithm assumes that 3 bits are flipped,
the procedure is terminated once said Hamming distance is less f.

We adopt this method for the recovery of sparse conjugate symmetric vectors and
repeat the previous experiment for the AOP versions of CS-BIHT and CS-BIHT-¢, when
3 % of all measurements are flipped. The full algorithm, which we dub conjugate symmetric
adaptive outlier pursuit (CS-AOP), is detailed in Algorithm 4. For simplicity, we provide
both the CS-AOP algorithm and its smooth variant CS-AOP-{; with the exact number
of bit flips. Note that while we had to normalize the gradient update of CS-BIHT-/,
by choosing the step-size as A, = ||VJo(x™)||5", this choice leads to highly suboptimal
performance in case of the CS-AOP-/, algorithm. Instead, we simply choose A\, = 1 as
for CS-BIHT and CS-AOP. Again, we benchmark the performance against the convex
programs (PV;) and (PV5).

The results of this experiment are shown in Figure 3.4. As indicated above, the perfor-
mance of both CS-BIHT variants without bit error corrections deteriorates significantly
with CS-BIHT-/; merely achieving a reconstruction SNR of 3dB when acquiring mea-
surements on the order of the ambient dimension. Despite the fact that the smooth
and nonsmooth version of the CS-BIHT algorithm performed equally well at moderately

HTn the original formulation of the AOP algorithm, the vector b* was used to estimate the uncorrupted
bit positions and ignore the likely corrupted ones when constructing the next iterate x(*1). This reduces
the effective number of measurements used during reconstruction. The variant we discuss here in which
potentially erroneous bits are flipped was instead termed AOP with flips in [YYO12].
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Algorithm 4 Conjugate Symmetric Adaptive Outlier Pursuit (CS-AOP)
Input: A = RqFy € C™*? y =fosgn(Ax) € {+1}", s € [d], B € [m]
Initialize: x(© « 0, b « 1, Yiol — 1, n <0

do
ul™ b xW — A*(sgn(Ax™) —Fob) > Subgradient step
xH) — HE (0 D) > Projection on X, (X,)
if An(y,sgn(Ax)) < v, then > Update b if Ay improved
Yeol AH(S’? Sgn(AX(nJrl)))
b + b* according to (3.6)
end if
n<n-+1
while Ay (¥ o b,sgn(Ax™)) > 0 and i, > 8/m and 1 < Nyayx
Output: x™ /||x(™ |, > Projection on the unit sphere

large numbers of measurements, there now exists a performance gap indicating a slightly
higher noise robustness for the CS-BIHT algorithm compared to its smooth counterpart.
Given the fact that both algorithms do not account for potential bit errors and blindly
pursue solutions which are quantization-consistent with the noisy observations y, such
a significant drop in performance is to be expected. The same argument applies to the
first convex programming approach, which results in the performance of CS-BIHT and
Problem (PV;) to be on par in the noisy regime. On the other hand, the noise robustness
of Problem (PV,), which was theoretically established in the Gaussian setting in [PV13b],
seems to extend to measurement matrices constructed from subsampled Fourier systems
as considered in this chapter. This is due to the fact that while the objective function
of Problem (PV,) promotes solutions whose linear measurements are correlated with the
(noisy) observations y, it does not strictly enforce quantization consistency. Finally, the
conjugate symmetric versions of the AOP algorithm consistently manage to outperform
any competing method for m > 200. While they do not quite catch up to the performance
of CS-BIHT and CS-BIHT-/; in the noiseless setting, they still attain around 26 dB
reconstruction SNR for m = d.

The effectiveness of the conjugate symmetric outlier pursuit algorithms is also reflected
in their empirical support recovery performance depicted in Figure 3.5 whose support
detection error tends to 0 for m — d. The next best methods for noisy support identification
turn out to be the nonsmooth and smooth CS-BIHT algorithms whose performance is
now on par with that of Problem (PV,) in the noiseless case. Note, however, that with an
average of 8 and 16 support elements misidentified for m = d, respectively, this constitutes
a significant error at a sparsity level of s = 20, which renders the two CS-BIHT algorithms
unsuited for support detection at nonnegligible noise levels. The situation is even worse
for Problem (PV;) and (PV,) whose support error increases with m with the amount of
misidentified support indices increasing at an even higher rate for Problem (PV) than for
Problem (PV;). We emphasize though that the behavior of Problem (PV5) is in line with
its support recovery performance in the noiseless setting. A natural explanation for this
phenomenon is the fact that the convex maximization problem does not enforce strictly
sparse but merely effectively sparse solutions, leading to a significant amount of signal
energy being spread across [d]. Since every sparse vector is also effectively sparse by the
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Figure 3.5: Average support identification error vs. number of measurements for d = 1000 and
s = 20 when 3 % of all sign measurements are flipped

Cauchy-Schwarz inequality, the set of effectively sparse vectors is significantly larger than
the set of genuinely sparse vectors such that Problem (PV,) seems to almost always select
an element outside of ¥4(X,).

3.4.4 Recovery from Oversampled Measurements

Before concluding this chapter, we consider the reconstruction of sparse conjugate sym-
metric vectors from oversampled measurements. Based on the signal model described
in Section 3.3, we generate conjugate symmetric vectors X € Xy with [|X[|, < s as in
the previous experiments. Instead of randomly selecting m rows from the orthogonal
DFT matrix, however, we now construct the measurement matrix A according to the
exact interpolation procedure outlined in Section 3.3.3. To implement the two CS-BIHT
variants, we use a fast implementation based on the FFT algorithm, while for the convex
approaches we provide A in full, which considerably increases computational complexity,
especially at higher oversampling rates.

The results of this experiment are shown in Figure 3.6 and Figure 3.7 where we
compare the average reconstruction SNR and support identification error as a function of
m, respectively. The experiments confirm the claim that acquiring samples beyond the
Nyquist rate generally improves reconstruction fidelity for each reconstruction scheme.
While qualitatively, these improvements are universal, the quantitative improvement for
CS-BIHT is considerably higher than for competing methods. This is especially surprising
considering the fact that CS-BIHT and CS-BIHT-¢, appears to converge to the same
reconstruction behavior as m approaches d in the undersampled regime. Instead, at an
oversampling factor of m/d = 4, the CS-BIHT algorithm now outperforms its ¢5-variant by
around 7 dB, the same as Problem (PV), which in turn maintains a consistent performance
gap of around 7 dB to the CS-BIHT algorithm across the entire range m/d € [1,4]. Trailing
furthest behind remains Problem (PV,) whose reconstruction fidelity improves by a mere
2dB from m = d to m = 4d.

The support recovery performance of the individual recovery schemes emphasizes these

41



CHAPTER 3 | FREQUENCY-SPARSE SIGNAL RECOVERY FROM BINARY MEASUREMENTS

40 oo |
PR
—<" - W =
= 0% R ~ CSBIHT |
=S a
~ T ~ CS-BIHT-(,
E/E/ —B— PV1
20 - —— PV, |
P D U DN S W W N e e B N e ey o e §

| | | | | | | | | | | |
1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4

m/d

Figure 3.6: Average reconstruction SNR vs. number of measurements for d = 1000 and s = 20

A\/N-—NYH

:(—\
n —— CS-BIHT
oy 40| | 5 CS-BIHT-4, i
é = PV,

720 PV -
<

&8s saSg g wagag 8 __B88
0 H+§+H%+§—H=Q+Q=H+§+Hi$

| |
1 12 14 16 1.8 2 22 24 26 28 3 32 34 36 38 4

m/d

Figure 3.7: Average support identification error vs. number of measurements for d = 1000 and
s =20

42



3.5 | CONCLUSION

observations with Problem (PV,) erroneously identifying more than 60 support indices
across the considered range of measurements. Despite their considerable performance
gap in terms of reconstruction SNR, the support recovery behavior of CS-BIHT and
CS-BIHT-/5 are virtually identical, almost perfectly identifying all s = 20 active support
elements. Trailing slightly behind with Ag,,, (S, S*) averaging around 4 is Problem (PV).
This reinforces the notion that CS-BIHT—if provided with the correct sparsity level s—is
both highly effective at identifying and estimating (up to global scaling) the individual
elements of sparse conjugate symmetric vectors. Given the fact that the oversampled
acquisition model does not involve any random sampling operations, the proposed approach
is particularly hardware-friendly and admits fast and efficient reconstruction algorithms
which capitalize on fast realizations of the measurement operator A in terms of the FFT
algorithm.

3.5 Conclusion

In this chapter, we proposed a modification of the binary iterative hard thresholding (BIHT)
algorithm for the recovery of conjugate symmetric frequency-sparse vectors from 1-bit
quantized time domain measurements. Such vectors arise from sampling superpositions
of sinusoidal signals, whose frequencies correspond to integer multiples of the frequency
resolution implied by the sampling rate. The underlying acquisition model comes with three
significant advantages over purely randomized designs. First, while linear mixing of analog
signals with random sequences based on, e.g., Gaussian ensembles is difficult to realize
in hardware, the measurement model considered here is based on sub- or oversampled
representations of the analog time domain signals. This renders the acquisition model
particularly hardware-friendly. Secondly, each individual measurement is represented by a
single information bit corresponding to the sign of the corresponding linear time domain
sample. This allows for the analog-to-digital converters of the acquisition system to be
implemented in the form of energy-efficient comparators w.r.t. a fixed voltage threshold.
This in turn enables sensing devices to oversample signals without significantly increasing
the complexity and associated cost of the necessary hardware circuitry. Thirdly, since the
measurement matrix A modeling the acquisition system is based on the DFT matrix, one
may exploit highly efficient implementations of the Cooley-Tukey FFT algorithm and its
extensions during reconstruction.

Our proposed extension of the BIHT algorithm to the conjugate symmetric setting
involves two parts. First, the subgradient update of the objective function, which penalizes
inconsistent sign measurements, was reformulated to account for the complex nature of the
underlying signal space. This subgradient step is intended to move the current iterate into
a direction with improved quantization consistency. Secondly, we proposed a necessary
modification of the so-called hard thresholding operator to project the subgradient update
on the set 34(X) of s-sparse conjugate symmetric vectors to exploit the additional structure
of target vectors. This modification also guarantees that the subgradient update in the
next iteration is well-defined, ensuring that any iterate produced by the algorithm has a
real-valued inverse Fourier transform. In fact, the conjugate symmetric hard thresholding
operator presented in this chapter enables any iterative algorithm that enforces sparsity by
means of hard thresholding to be used during recovery of signals with a sparse conjugate
symmetric discrete Fourier transform. This includes algorithms such as the QIHT algorithm
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(a generalization of BIHT to multi-bit quantization schemes), as well as the IHT and HTP
algorithms.

In order to extend the acquisition model to oversampled measurements, we adopted the
notion of exact interpolation. This represents a simple zero-padding construction, which
can be used to generate a sampling matrix A € C™*¢ with m > d modeling the effects
of oversampling in the time domain. The resulting matrix acts on conjugate symmetric
vectors x € Xy to yield an interpolated representation Ax € R™ of the associated Nyquist-
rate sampled time domain signal z = Fyx € R?. The implied sampling procedure does
not rely on any form of randomness, as samples are assumed to be recorded in regular
intervals, which makes the model particularly favorable for hardware implementations.

To gauge the effectiveness of the proposed conjugate symmetric binary iterative hard
thresholding (CS-BIHT) algorithm, as well as a closely related smooth variant termed
CS-BIHT-/5, we investigated their empirical recovery performance on synthetic data.
In this context, we benchmarked both algorithms against existing convex programming
approaches, which we extended to our setting. The experiments confirm the correct
behavior of the CS-BIHT and CS-BIHT-/, algorithms and demonstrate their superior
performance over convex approaches. This mirrors the behavior of BIHT in the Gaussian
setting. At moderately large numbers of measurements, both algorithms also turn out
to be highly effective at identifying active support indices of target signals. We also
compared the performance of each reconstruction method with their corresponding oracle-
assisted versions, which provide each scheme with the true support of the target signal.
These experiments show that the CS-BIHT algorithms are significantly more effective in
estimating the individual nonzero entries of sparse conjugate symmetric vectors (up to
global scaling) than alternative approaches. While both algorithms rely on an estimate of
the number of nonzero coefficients, they were demonstrated to still outperform competing
convex programming approaches if the sparsity level is not overestimated too much.
Finally, since the BIHT algorithm is highly susceptible to adversarial post-quantization
bit flips, which also extends to our conjugate symmetric formulation, we combined the
proposed CS-BIHT algorithm with the so-called adaptive outlier pursuit (AOP) algorithm.
This method tries to adaptively identify and subsequently correct possibly erroneous bit
positions during reconstruction to reduce the reconstruction task to a noiseless recovery
problem. While the performance does not quite catch up to the noiseless setting, the
availability of prior information about the expected number of erroneous measurements
was shown to be highly valuable in practice to partially combat the performance loss due
to measurement noise.
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One-Bit Compressed Sensing of Group-Sparse
Signals

In Chapter 3, we addressed the issue of estimating vectors with a sparse discrete
Fourier transform from sub- or oversampled binary observations. Such sparsity models
frequently appear in various domains of engineering such as wireless communication, audio
and image signal processing and speech detection. While the numerical experiments of
the previous chapter provide strong evidence that similar guarantees should hold for both
1-bit Gaussian and (random) Fourier measurements (at least on an average-case basis),
theoretical results supporting this claim remain elusive.

In this chapter, we turn our attention to another common low-complexity signal model
with widespread application in a variety of different domains. In particular, we will assume
throughout the rest of this thesis that signals of interest exhibit sparsity not in terms
of individual coefficients but w.r.t. nonoverlapping coefficient groups. Naturally, the
elements of such signal ensembles are generally referred to as group-sparse signals. This
sparsity model arises in various domains of science and engineering such as facial recognition

Parts of this chapter have been published in [KBM19a)].
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[JCM12], magnetic resonance imaging [CH12]|, subspace clustering [EV09], measurement
of gene expression levels [Sim™*13], as well as wireless communication [Qin*18]. To make
the notion of group-sparsity precise, we consider vectors x € R? for which the potential
support set [d] is decomposed into G nonoverlapping coefficient groups according to the
following natural definition.

Definition 4.1 (Group partition). A collection T = {Z;,...,Zc} of subsets Z; C [d] =
{1,...,d} is called a group partition of [d] if Z,NZ; = O Vi # j and UL, Z; = [d]. We
call a group partition T = {Z,,...,Ig} ascending if, for I, = {ji1, ..., jijz,|}, it holds that
Jik+1 = Jix + 1 for all k € [|Z;| — 1] and minZ;; = maxZ; + 1 for alli € [G —1].

Given a group partition Z, we denote as usual by xz, € R? the restriction of x to the
indices in Z;, i.e., (xz,); = @; - Lyjez,y for j € [d]. A signal x is called s-group-sparse (w.r.t.
the group partition Z) if it is supported on at most s groups. Note that Definition 4.1
does not necessarily assume that the elements in Z; are consecutive indices, nor that the
cardinality of each individual subset Z; is identical. Imposing both these restrictions gives
rise to the closely related notion of block-sparsity, where the support set [d] is usually
assumed to be decomposed into equisized groups of the form

T={{1,...,d/G}{d/G+1,...,2d/G},... . {(G—1)d/G +1,...,d}} (4.1)

with G assumed to divide d without remainder. The notion of group-sparsity therefore
generalizes both sparse- and block-sparse signal models.

Lastly, we want to point out a third model which is itself closely related to the block-
sparsity model. Assuming that a vector x € R is partitioned into G nonoverlapping
blocks of size g according to the partition in Equation (4.1), the so-called fusion-frame
sparsity model further assumes that each individual subvector xz, € RY belongs to some
k;-dimensional subspace V; C RY. Fusion-frame sparsity receives its name from a close
connection to fusion frames, which constitute a generalization of the classical frame concept.
In this context, a fusion frame is a collection (V;, w;)%, of subspaces V; C RY and scalar
weights w; which satisfy the fusion frame condition [CK12, Chapter 13]

G
2
Allzlly <> wi[|Tly,z

=1

2< Bllall} VzeR’

for some constants 0 < A < B < oo with II,, denoting the orthogonal projector on V;.
The classical frame definition can be recovered from this generalization for k; = 1 V7 in
which case

2 2
2 _ |pilenz) | _ [(pin2)]
||HV¢ZH2 = HlZQ = 172
leilly lly il
and w; = ||, ||, with ¢, € R9 denoting the i-th frame vector. Given a fusion frame, one

may now define the Hilbert space
Ho={(z), 2 € Vi) CRC =R

with a vector z € H being referred to as s-fusion-frame-sparse if at most s coefficient
vectors z; are different from zero. Note that some works addressing fusion-frame sparsity
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like [ADR16; Ayal8] actually do not require (V;, ;)% to define a proper fusion frame.
Instead, they merely ask that each set V; forms a subspace of dimension k; = k and impose
an additional incoherence assumption between individual subspaces.

The group-sparsity model described above is oftentimes referred to as the nonoverlapping
group-sparsity model to contrast it with models which allow for coefficient groups to
share common indices. Such models are often natural in the context of group model
selection [Balt16]. A classical example application is in genetics, in particular gene
expression analysis, where certain genes might be present in multiple biological pathways
and might therefore contribute to different (not necessarily mutually exclusive) genetic traits
[HBM12]. Other examples include applications in cognitive neuroscience where functional
magnetic resonance imaging (fMRI) is used to identify active regions (represented by voxels)
in the brain associated with different cognitive states due to excitation caused by external
stimuli [Rao*13]. Due to anatomical differences in the subjects’ brains, activation regions
will generally differ yet share common traits, which can be used to identify relevant voxel
neighborhoods in subjects. In contrast, a typical example of nonoverlapping group-sparsity
in wireless communication is in cognitive radio and in particular in dynamic spectrum
sensing. In this context, the spectrum assigned to a single user in a frequency-division
multiple access (FDMA) system might be composed of multiple nonconsecutive frequency
subcarriers, giving rise to a nonoverlapping group sparsity structure of the spectrum. Since
subbands can only be assigned to one individual user at a time in a particular time slot,
the grouping structure is inherently nonoverlapping to avoid signal interference, which
would be caused by multiple users communicating on shared subcarriers [Qin™*18].

Chapter Outline

The remainder of this chapter is structured as follows. In Section 4.1, we introduce some
basic notation for the nonoverlapping group-sparsity model considered in the rest of this
thesis. We also present the acquisition model used in the first half of this chapter. In
Section 4.2, we discuss the surprisingly limited body of pre-existing literature on block-
and group-sparse signal recovery in the context of 1-bit compressed sensing. Similar to
the acquisition model considered in the previous chapter, we will address the problem of
recovering group-sparse signals on the sphere in Section 4.3. In particular, we consider
three different recovery strategies modeled after existing schemes in the literature and
analyze their theoretical performance. The section concludes with a numerical study to
investigate potential performance gaps between the theoretically predicted and empirically
observed behavior of the individual recovery schemes. By appealing to a well-known
dithering strategy, we will lift the restriction of recovering unit-norm group-sparse vectors
in Section 4.4 and address the issue of recovering both norm and direction of vectors inside
scaled unit balls. In particular, we consider six recovery strategies, whose analyses depend
on the guarantees established in Section 4.3. After a numerical study, we finally conclude
the chapter in Section 4.5.

4.1 Signal and Acquisition Model

In the remainder of this thesis, we consider vectors with a group-sparse or approximately
group-sparse representation w.r.t. an arbitrary orthonormal basis. In this chapter in
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particular, we further restrict ourselves to the real setting. To put the notion of group-
sparsity into well-defined terms, we first define the following family of mixed norms w.r.t.
a given group partition Z.

Definition 4.2 (Group ¢,-norms). Let x € RY. Then the group {,-norm on R* with p > 1
is defined as
1/p
)
b :

Given the prevalence of the /;-norm in the canonical theory of compressed sensing,
it comes as no surprise that the group ¢;-norm will take the place of the ¢;-norm in the
group-sparse setting. Naturally, we also extend the notation [|-[|;,, to p = 0 in which
case ||-||z corresponds to the group fy-pseudonorm which merely measures the number
of groupé a vector is supported on. In this context, we will sometimes say that a group
T; € T is active if a vector x € R? has at least one nonzero entry inside group Z;. This
leads to the following definition of the group fy-pseudonorm:

1x[l7,o := {7 € [G] - xz, # O}].

Due to the central importance of this signal ensemble in the remainder of this work,
we introduce the shorthand notation

G
Ixlly, = (ZHXL
=1

Y1, = {x € R: ||x];, < 5}

to denote the set of s-group-sparse vectors w.r.t. the group partition Z. From a practical
perspective, it is oftentimes more realistic, however, to model signals of interest as
approximately group-sparse or group-compressible. An informal definition of this notion
simply requires a signal x € R? to be well-approximated by elements in ¥z ,. With the
definition of the so-called best s-term group approzimation error

702y = int Il
a vector x is called group-compressible if 04(x)z,, rapidly decays as s increases. A notion
closely related to group-compressibility is that of effective group-sparsity. In particular,
we will heavily rely on the signal ensemble

Ers = {x € R : ||x]l; < V5[], }.

Note that by the Cauchy-Schwarz inequality, every s-group-sparse vector is naturally
effectively s-group-sparse and hence X7, C 75 (see also Lemma 4.9). Moreover, note that
neither ¥z ; nor &7 are convex sets, which bears the potential to cause computational
issues when trying to enforce the respective signal structure during recovery. However,
due to the nature of the recovery algorithms considered in this chapter, enforcing such
membership constraints turns out to be a relatively straightforward task.

In general, we consider measurements of the form

y = Q(Ax) = Q(®¥x) € {£1}"
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where @ € R™*? denotes the linear measurement operator modeling the physical acquisition
system (before quantization), ¥ € O(d) := {Q € R”?: Q'Q = QQ" = Idy} denotes the
sparsity basis', and @Q: R™ — {£1}" is a 1-bit quantization map which models both the
quantization process as well as possible measurement noise. Note that in a real system,
one would only have access to the (generally non-group-sparse) expansion z = ¥x through
the measurement operator ®. This was the case in the previous chapter where ¥ = F
was assumed to be an orthogonal DFT matrix, and ® was chosen as a random subsampler.
Sparsity in the frequency domain was then exploited by acquiring 1-bit time domain
samples below (or above the Nyquist rate) since direct access to the frequency domain
representation is not available due to the acoustic or electromagnetic nature of signals
of interest in many engineering applications. For ¥ # Id,, reconstruction of z from its
compressive measurements y € {£1}" therefore proceeds in a two-step process where one
first estimates the group-sparse expansion X before synthesizing the estimate z = ¥x.
However, since we are mainly interested in error estimates of the form ||z — z||, < ¢ for
some prescribed accuracy e, it suffices to consider ||x — x||, due to orthogonality of . For
simplicity, we therefore refer to the composite matrix A = ®W¥ in the sequel of this chapter
as the measurement matrix of the system rather than making a distinction between ®
and A.

4.2 Prior Work

As alluded to in the introduction of this chapter, the number of works in the literature
which address the issue of block- or group-sparse signal reconstruction from 1-bit or
higher-order quantized measurements is surprisingly limited. A notable exception is the
work by Zeng and Figueiredo [ZF14b] who consider the recovery of block-sparse signals
by combining the binary iterative hard thresholding algorithm discussed in the previous
chapter with an intermediate projection on a scaled total variation (TV) (semi)norm ball.
Rather than explicitly exploiting the group structure in the signal support, their method,
termed binary fused compressive sensing (BFCS), instead assumes that only the total
sparsity level is known a priori. The underlying group structure assumed in the target
signal is then enforced by “fusing” neighboring coefficients together by a projection on a
TV-ball vBl, of radius v for some appropriately chosen value v > 0. In particular, they
consider the update equation

)t = (ILgg 0 Hy)(x — uJ(x)) (4.2)

with J(x) denoting either a subgradient of the functional ||[y o Ax|_||; or the gradient
of 3||[y o Ax]_||3 (cf. Section 3.2). Note that in their formulation, s denotes the total
number of nonzero coefficients in a vector rather than the number of active groups. As
pointed out in [ZF14a], the operators H, and I, pa do not commute. However, the
projection on a scaled TV-ball preserves the sparsity structure of a vector such that any
new iterate x* is guaranteed to belong to the set of target signals vB%, N X,. We point
out that projecting on a TV-seminorm ball inherently assumes that signal coefficients
exhibit a certain regularity in the sense that they have the same sign pattern and are close

1We abuse terminology and usually refer to an orthogonal matrix Q € O(d) as a basis for R? rather
than to the collection {%}?:1 of its columns q; which span R9.
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to each other in magnitude. Without this structure in the original signal, the methods
proposed in [ZF14b; ZF14a] fail to accurately recover general group-sparse vectors.

To exploit prior knowledge on the coefficient groups, the authors extended their
method in [ZF14a] by replacing the projection on vB%,, with a projection on a set whose

subvectors belong to scaled TV-balls. In particular, given an ascending group partition
T =A{Zy,...,Zg}, they define the set

Ao
Ty = {X = (XL)iG:1 € RY - X7, € |IZ| — 1Blrvl}

of vectors whose subvectors indexed by the partitions Z; belong to scaled TV-balls. Note
that with the choice of the singleton partition Z = {[d|}, projection on T, coincides with a
projection on B, with v = A/(d — 1) as used in the update rule (4.2). In addition to
explicitly exploiting prior knowledge of possible group structures, the authors also include
a mechanism to correct possible adversarial bit flips of the binary measurements during
signal reconstruction. Their approach combines the modified BFCS algorithm with the
AOP method due to Yan, Yang and Osher [YYO12] previously discussed in Section 3.4.3.
Due to the added noise-robustness, the resulting method is termed robust binary fused
compressive sensing (RoBFCS).

Since both the BFCS and RoBFCS algorithm utilize at their core the BIHT algorithm,
no theoretical recovery guarantee nor convergence results are available for the presented
algorithms. Moreover, the projection on the sets vB%, and T, are nontrivial and do not
admit simple closed-form solutions. As a result, one needs to solve a convex program at each
iteration of the respective algorithm, which significantly impacts performance. While the
authors of [ZF14b; ZF14a] utilize an iterative projection scheme to ease computational
burdens, informal experiments conducted by the present author revealed that the method
is not competitive even if an efficient convex solver such as MOSEK [Mos10] is employed
to solve the projection subproblem. The added time complexity therefore renders the
resulting algorithms intractable for moderately-sized problem instances.

On the theoretical side, results are mainly limited to the work by Rao et al. who consider
classification of group-sparse vectors with overlapping groups from binary measurements
in [Rao"13; Rao™14]. They appeal to the general framework proposed by Plan and
Vershynin in [PV13b] to deal with a large class of measurement nonlinearities and derive
bounds on the mean width of a specifically designed constraint set which models group-
sparse signals with overlapping groups and within-group sparsity. A similar result will
also be presented below in Section 4.3.2 in the case of nonoverlapping group partitions.

4.3 Direction Recovery of Group-Sparse Signals

In this section, we first consider the recovery of (effectively) group-sparse vectors from
quantized measurements of the form

x — sgn(Ax) =y.

We emphasize again that due to the scale invariance of the sgn-operator, there is no hope
to recover anything more than the direction of a vector. For notational convenience, we
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will write

Sroi=Yr. NS = {x e R x|z, < s, ], = 1}
and

Ero=Er, NS = {x eR: [|x|;, < V5, xll, =1}

throughout this chapter to denote the sets of genuinely and effectively group-sparse vectors
with unit Euclidean norm, respectively.

Before considering concrete recovery schemes for the sensing model described above, it
is natural to first revisit the question of the worst-case reconstruction error for arbitrary
(possibly intractable) recovery maps as discussed in Section 2.3.1. In the sparse case, the

proof of (2.4) provided in [Jact13] is based on an intricate covering argument of the (‘j)

s-dimensional unit spheres contained in 5. For the group-sparse signal model with a group
partition Z with |Z| = G, one instead considers (C:) unit spheres in coordinate subspaces
of dimension at most sg. In other words, the number of groups G replaces the ambient
dimension d in the canonical sparsity case. While this changes the maximal number
of quantization cells occupied by the set sgn(AiLs) for an arbitrary matrix A € R™*¢

from 2° (7:) (i) to 2% (:;) (G) (cf. [Jact13, Lemma 1]), the worst-case reconstruction

S
error remains independent of G. In fact, reviewing the arguments presented in [Jact13,

Appendix B], it immediately follows that the worst-case reconstruction error

€opt = sup inf [|x — qll,.
XGELS

for an optimal subset Q C iz,s only depends on the dimension of the individual coordinate
subspaces and is therefore bounded below by

> 59
€opt = e
PEA (59)32 +m

As before, this implies that for a fixed group-sparsity level, the reconstruction error of any
nonadaptive method decays at most linearly in the number of measurements.

4.3.1 Quantization-Consistent Reconstruction

The first recovery approach we consider in this section is inspired by the convex program

minimize x|,
s.t. yoAx >0 (Py1)

(v, Ax) = my/2/x,

which was already briefly discussed in Section 2.3.1. It was originally proposed by Plan
and Vershynin in [PV13a] to estimate effectively s-sparse vectors x € S4! from single-bit
quantized measurements y = sgn(Ax). Moreover, it was the first reconstruction scheme
with provably accurate reconstruction performance with an almost optimal dependence on
d and s. In particular, the authors showed via results on random hyperplane tessellations
that faithful signal recovery of unit-normalized effectively sparse vectors is possible from
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Q(slog(d/s)?) measurements. The dependence on the factor log(d/s)?* was later improved
to log(d/s) by Foucart, which is known to be optimal [Foul6]. In his work, Foucart also
significantly reduces the proof complexity of the result by appealing to a variation of the
classical restricted isometry property which had previously been employed in [JHF11] in
the context of signal recovery from uniformly quantized multi-bit measurements.

Recall from Section 2.3.1 that the first constraint of Problem (P, ;) is motivated by
quantization consistency (cf. Definition 2.6) and is essentially equivalent to the nonconvex
constraint y = sgn(Ax) as we have

{X cR:yoAx > O} = {X € R%: sgn(Ax) = y} Uker(A).

Due to the convention that sgn(z) = —1 if x < 0 and sgn(z) = 1 if > 0, any vector in
the null space of A is mapped to the all-ones vector 1,, under sgn(A-). As a consequence,
vectors in the null space of A can never be distinguished from one another. At first
sight, this suggests that Problem (P, ;) may actually be too optimistic to yield meaningful
estimates since its search space includes the entire null space of A despite the fact that
such vectors are only quantization-consistent with the measurement vector y = 1,,. Since
Problem (P, ;) seeks to minimize a norm (and hence a positive definite function), however,
the only immediately problematic vector in the feasible set is the zero vector. While
enforcing x to be different from zero is difficult in practice, we may instead impose a
constraint that requires x to miss the null space of A altogether if we also impose that
x must not be orthogonal to ATy. This is the purpose of the second constraint of
Problem (P, ), which results in the feasible set

{XERd:yoAXZO,(y,AX):co}:{XERd:yoAx>O,(y,Ax):co}
= {x € R?:y =sgn(Ax), (y, Ax) :co}

for some arbitrary constant ¢y > 0. Since elements in the null space of A cannot be
distinguished based on their binary observations in the first place, the first restriction
that x ¢ ker(A) is clearly justified. On the other hand, the additional condition that
x ¢ (ATy)L is a natural requirement since (y, Ax) = (A"y,x) measures the correlation
between the quantized and unquantized measurements, which naturally should be different
from zero for any minimizer x* (cf. Section 4.3.2). The constant ¢y = m,/2/7 on the
right-hand side of the second constraint of Problem (P, ;) is ultimately arbitrary due to
the scale invariance of the problem as it only affects x* but not x*/||x*||. The particular
choice above can be motivated by the observation that for any x satisfying the condition
y = sgn(Ax), the second constraint is simply (y, Ax) = ||Ax||,. If A consists of i.i.d.
standard Gaussian entries, it follows that E||Ax||, = m\/2/7||x||2, i.e., in expectation,
any solution of Problem (P, ;) lies on a scaled fy-ball.
Motivated by this program, we formulate the following natural recovery procedure

minimize [|x||z;
s.t. yoAx >0 (Py2)
(v, Ax) =1

to estimate group-sparse vectors from their quantized projections with which we associate
the recovery map APV: {+1}™ — R? defined as

ATV (y) = arginf {||x|7, : y = sen(Ax). | Ax], = 1}.
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In keeping with our notation for (effectively) group-sparse vectors on the sphere, we will
generally denote recovery maps for the sets ¥z, and SNI,S by A. Given a measurement
matrix A and quantized measurements y = sgn(Ax) € {£1}", the operator APV can be
realized in the same fashion as Problem (P, ) after rewriting the constraints into convex
form.

The original analysis of Problem (P, ;) by Plan and Vershynin was based on a rather
complicated hyperplane tessellation argument, in addition to a counting argument of the
number of vertices of the feasible polytope. In this work, we will follow the simplified
proof strategy suggested by Foucart in [Foul6]. Due to the close connection between
Problem (P,,) and Problem (P, ), the performance analysis of the recovery map AFY
will therefore heavily rely on the following variation of the restricted isometry property
for genuine or effectively group-sparse vectors. The version we state here also allows for
group-sparsity bases other than the canonical one.

Definition 4.3 (({y, {1)-group restricted isometry property). A matriz A = ®¥ € R™*4
with ® € R™ 4 and ¥ € O(d) = {Q e R : Q'Q = QQ" = 1d,} is said to satisfy the
(0, £1) group restricted isometry property (group-RIP) of order s if

(1 =9)[xl, < [[@¥x|], < (1 +9)x||, Vx € ¥z, (4.3)

for some § € (0,1). The smallest constant 0s < & for which (4.3) holds is called the group
restricted isometry constant (group-RIC) of A.

By replacing the set ¥z, with £z in (4.3), we obtain the definition of the group-RIP
matrices for the set of effectively s-group-sparse vectors. In this case, we also say that A
satisfies the effective group-RIP.

The performance analysis of the recovery strategy will proceed along the lines of the
analysis in the case of sparse vectors as demonstrated by Foucart in [Foul6]. First, we
show in Lemma 4.4 that—given a measurement matrix A € R™*4 satisfying the group-
RIP of order ¢ with constant d;—every convex combination (1 — A\)x + AAYY (sgn(Ax))
with A € [0,1] is effectively ¢-group-sparse for an appropriate choice of ¢t > s. This
will immediately imply an upper bound on the recovery error ||x — APV (sgn(A%))|| in
terms of the isometry constant §; (cf. Lemma 4.6). We then show in Lemma 4.11 that a
scaled version of the matrix A = ®W¥ with ¥ € O(d) and ® consisting of independent
standard Gaussian entries satisfies the ({s, ¢1) group restricted isometry property with
high probability on the draw of ®. The final recovery guarantee will then be a simple
consequence of Lemma 4.6, Lemma 4.11 and Remark 4.5(iii) below.

We want to point out that the above strategy ultimately hinges on the ability to show
that random measurement matrices satisfy the (fz, ¢1)-group-RIP with high probability. In
light of the vast number of results which establish the classical restricted isometry property
for many types of random measurement ensembles in the canonical theory, including
subgaussian designs and measurement matrices constructed from subsampled bounded
orthonormal systems, one might wonder why such results are not readily available in the
1-bit CS setting. In short, the existence of subgaussian, say, ({2, ¢1)-RIP matrices would
contradict the observation that one can easily construct certain distinct sparse vectors
with the same sign pattern when observed by the map u — sgn(Au). The same argument
applies to group-sparse vectors which is why we limit our attention to Gaussian ensembles
in this chapter.
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We begin by first showing the following intermediate result, which we state here in a
slightly more general form than its counterpart for sparse or effectively sparse vectors first
presented in [Foul6].

Lemma 4.4. Let x € i;s, and assume A € R™*4 satisﬁesjhe group-RIP of ordert > s
with constant 0; < (vt —/3)/(Vt+ /3). Let further x = APV (sgn(Ax)). Then it holds
for x = (1 — A% + AXx with A € [0,1] that

[x 71 _ (1+5t)\/§ _ Vst (4.4)

X[l = (L=0)VE—(1+6)vs 155Vt — /s

i.e., X is effectively group-sparse.

Remark 4.5. (i) Note that (4.4) in Lemma /.J shows that the smaller the group-RIP
constant 0; of A, the “more” effectively group-sparse any convex combination X will
become. As usual in compressed sensing, this (desirable) behavior comes at a price
as the number of measurements required for A to satisfy the group-RIP with high
probability scales with 8; > (cf. Lemma /.11 below).

(ii) The statement of Lemma /.J still holds if X is effectively s-group-sparse once A
satisfies the effective group-RIP of order t with constant d;. In fact, the recovery
guarantee in Lemma 4.0 below depends on this exact variation of Lemma /./.

(#ii) In Foucart’s original proof, the parameters t and §; were chosen such that any convex
combination X is effectively t-sparse. Under this requirement and in light of (4.4),
we can express t as a function of s and o, which yields the condition

146,\°
=4 4.
t 5(1_5t> (4.5)

for convex combinations X to be effectively t-group-sparse. For instance, the choice
0 = 1/5 as in [Foul6] yields t = 9s.

Proof of Lemma 4.4. The proof of the result follows the example of Foucart’s original
proof of Lemma 4 in [Foul6]. In order to bound the effective sparsity of a vector
x = (1 — A)x + AX, we aim to establish an upper bound on the group ¢;-norm of x, as
well as a lower bound on its fo-norm (which coincides with the group ¢;-norm). From the
triangle inequality, we immediately have

XMz, < (1= MIXlz; + AlKlz; < (1= Vs + AR]Z,

where the last step follows from the Cauchy-Schwarz inequality |||z, < HH;/(? |7, and

the fact that X € ¥z, C S 1. Next, since X = ALV(sgn(Ax)) and the vector X/||A%||, is
clearly feasible for Problem (P,,), we have

Vs||x
T (1-dy)

X
o x
180, < | e

2 Vs

xl,  1-4

71
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where in the second step we used the fact that A is an (¢3,¢;) group restricted isometry
matrix with constant ;. Overall, this yields

_ S

Il < Vs (1422 ). (16)
’ 1— 515

To construct a suitable lower bound on [|x||,, first note that for a,b € R\ {0}, we have

la+b| = |a] + |b] if sgn(a) = sgn(b). By feasibility of X, we have sgn(Ax) = sgn(Ax).

With the previous observation, this yields

[Ax]ly = (1= N[[A%]|; + AJA%][; > (1 = A)(1 =6) + A =1+8(A = 1) (4.7)

where again we used that A satisfies the group-RIP with constant §;, in combination
with the fact that as a minimizer of Problem (P,,), X satisfies ||AX||; = 1. It remains to
obtain an upper bound on ||Ax||, in terms of ||x||,. To that end, one follows a common
methodology in compressed sensing.

Given a vector x € R?, denote by 77 C T the t groups with largest f,-norms, by 75
the t groups with next largest ¢,-norms and so on. With slight abuse of notation we then
write x7; to mean the vector that agrees with x on the index set Uge7, S and vanishes
identically otherwise. Then we have by the triangle inequality and an application of the
group-RIP condition that

< nls<1+5t>(niﬂn2 )
i>1 i>2

Next, note that we have with ||xgl, < ||>ERH2 for all S € T; and R € T;_; that

%51l < = > Ixal,

[Ax]l,

RET 1
and therefore
| 1/2
%71, = ( ||Xs||2> << 20 Il (Z 1)
RETi—1 SET;
1 1
= 1XRlly = —=|%7 (4.8)
7 2 el =
Overall, this yields
_ _ 1 -
|Ax]l, < (1+4) ( %l + ZH ) <@ +5t>(||x||2 + w-fuxuz,l)-
z>2
Combining this estimate with (4.6) and (4.7), we find
_ 9
146,00 —1) < (146, ||x||2—|—\/§ 122,
t 11—

Solving for ||x||,, this yields with (4.6) that

I, VS+ES) e

Rl = EEED - A1y i) GV Ve
which completes the proof. O
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With effective group-sparsity of convex combinations established, we now turn to
characterizing the recovery performance of the map APV,

Lemma 4.6. Let x € S%! be effectively s-group-sparse, i.e., %[z, < Vs. Fiz a value
8 € (0,1/5], and assume that A € R™* 4 satisfies the effective group-RIP of order t with
constant 0; for t chosen according to (4.5). Then

% — ALY (sgn(A%))||, < 4¢/d:.

Proof. Denote as before by & = AlV(sgn(A%)). From the parallelogram identity, we
immediately have that

° A 112 o A2 Al12
% — %[5+ %+ %Il = 2(1+ [1%]3)
and thus

%+ x|

o A 12 A2
— |2 =2(1 —4
I - %13 = 2(1+ I1%113) - 4) =2

(4.9)

Moreover, since A satisfies the effective group-RIP of order ¢, the average (x + X)/2 is
effectively t-group-sparse by Lemma 4.4. We therefore have
[AG+, %]+ JAZ], _ (1 -0, +1 _ 16,2

= 20144 20+6,) —  200+6) 146

X+ X
2

2
Next, observe that by Lemma 4.4, the vector X is effectively ¢-group-sparse and therefore
by the definition of the group-RIP condition for effectively group-sparse vectors we find
JAX], 1

A < _
||X||2 - 1= 5t 1 — 5t

where the last step follows from the fact that x is feasible for Problem (P,,). Combining
the previous two estimates with (4.9) therefore yields

° A2 ]. ]-_515/2 2
sl <21 ) (g

83 + 662 — 150, + 16

=9
L=y
One easily verifies that the fractional polynomial is monotonically decreasing in d; on
(0,1/5] so that overall we find ||%x — X[, < 41/0; as claimed. O

Remark 4.7. Note that in general the estimator A;V does not produce unit-normalized
vectors. Since undithered sign-measurements do not carry any information about the signal
enerqgy, we are therefore mainly interested in quantifying the reconstruction quality based
solely on the estimated direction of the signal. To that end, note that by the triangle
inequality, it follows immediately from the conclusion of Lemma 4.6 that

A

A

X —

<2
2

X — <|x =%, +

2

% — %[, < 8/0,

1%l

which holds because X/||X||, is a better ly-normalized approximation of X than % since
X/||%ll, = argmin,egi-s [|x = x|, = Hsa-1(X).

1%l
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The results so far have only been concerned with the deterministic group restricted
isometry property of the measurement matrix A. As is by now a well-established fact,
verifying whether a matrix satisfies the classical RIP and by extension the group-RIP is
known to be an NP-hard problem [TP14]. This unfortunate fact quickly led researchers
to consider certain classes of random measurement ensembles for which the restricted
isometry property can be shown to hold with overwhelmingly high probability. Of
particular importance in this context are measurement matrices whose rows are drawn
independently from isotropic subgaussian distributions, which include any discrete or
bounded distribution such as the Bernoulli or uniform distribution, as well as Gaussian and
Steinhaus? distributions. Random matrices A € R™*? formed from such random ensembles
require m = €)(slog(d/s)) measurements to satisfy the classical RIP (cf. Definition 2.3)
characterized by

(1= )lxl; < [Axl; < L +0)|xl; vx €%, (4.10)

for § € (0,1) with high probability. As alluded to before, however, the same conclusion
does not hold if we ask instead for restricted isometric embeddings of ¢4 := (R, ||-||,) into
the space (5" via the (¢, ¢1)-RIP defined by

(1 =9)lxll, < l[Ax[l, < (T +d)llx[l, Vx e . (4.11)

This is rooted in the fact that irregardless of A satisfying the ({5, ¢1)-RIP (or more generally
the ({5, ¢1)-group-RIP), one can easily construct distinct sparse or group-sparse vectors that
are mapped to the same quantization cell. A classical adversarial example in this context
are the 2-sparse vectors x = (1 1/2 0 ... 0)Tandx'=(1 —1/2 0 ... 0)". If the
rows of A are Bernoulli random vectors a;, then both vectors produce the measurements
v = (a;,x) = sgn(ag + an/2) = sgn(a;1) = sgn(a;; — a;p/2) = (a;,x’), independent of the
realization of A. This simple counterexample demonstrates why probabilistic results of the
form (4.11) are unattainable for general subgaussian ensembles. Similar counterexamples
can be constructed for measurement matrices constructed from subsampled basis functions
of bounded orthonormal systems. We want to point out, however, that under additional
(local) requirements on vectors x € ¥, N S which prevent X from being too sparse,
recovery of x from subgaussian measurements can still be achieved by an alternative
convex programming approach we will discuss in Section 4.3.2. In particular, it was shown
in [AFN12] that in this case the reconstruction error ||%x — %||3 is additively bounded by

||x||i</)2 such that accurate recovery of sparse vectors from 1-bit observations via subgaussian
measurement matrices is still possible if ||x|| < 1.

For the reasons outlined above, we limit our discussion to Gaussian measurement
matrices in this chapter and show that measurement matrices of the form A = ®W¥ with
©ij ~iida. N(0,1) and ¥ € O(d) satisfy the (¢s,¢1) group restricted isometry property both
w.r.t. group-sparse and effectively group-sparse vectors. We will use the following result
due to Plan and Vershynin, which is a simplified version of Lemma 2.1 in [PV 14], to assert
the (effective) group-RIP of A. Equipped with this result, establishing the group-RIP of a
Gaussian random matrix amounts to estimating the mean width w (Definition A.20) of
the respective low-complexity signal set.

2A Steinhaus random variable is a complex random variable which is uniformly distributed on the
complex unit circle.
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Lemma 4.8. Let A € R™*? be a standard Gaussian random matriz, and let KK C S1.
Fix 6 € (0,1). Then it holds with probability at least 1 — n that

1 /7
—[Slaxl, -1 <3

m 2 67 w(K)? +log(n ™).

sup
xeX

provided that

To see how this result implies the (effective) (¢2, ¢1)-group-RIP, consider an arbitrary
set U C R Then the condition

1
(1= 8)lxl, < | /Fax| <@+ o), vxeu
m 2 1
is equivalent to
Lom s < d—1
(1-4) < \/;HAle <(146) VReuUns*,
m
which in turn can be written as
1
‘fHAinl - 1‘ <5 VReUns.
mV 2
Recall that the mean width of a set U C R? is defined as

w(U) = Eg sup (g, x) (4.12)

xeU

where g € R? denotes a standard Gaussian random vector. Note that by Proposition A.11,
this definition immediately implies that w is invariant under application of the convex hull
such that

w(U) = w(conv(U)). (4.13)

In order to estimate the mean width of the sets iz,s and gz,s, respectively, we will make
use of the following connection between the two sets, which extends an earlier result due
to Plan and Vershynin to the group-sparse setting.

Lemma 4.9. It holds that
conv(iz,s) C gz,s C 2 conv(iz,s).
Proof. The proof follows the example of the proof of Lemma 2.1 in [PV13a]. For the first

inclusion, let x € conv(Xz ), and write

k k
X:Z/\l‘xi with ]{ZEN,/\Z‘ZO,Z)\Z':LXZ' GEI’S.

i=1 =1

Then

”X”L1 =

k k k
Z)\ixi < ZAZ'HXiHI’l < \/EZ N =+
i—1 i=1 i=1

Z1
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by Cauchy-Schwarz.

To establish the second inclusion, one reuses the technique already employed in the
proof of Lemma 4.4. Let x € éN’LS, and denote again by 77 C Z the set of s groups of
largest /5-norm of x, 75 the next s largest fo-norm groups and so on. Moreover, we abuse
notation and write x7; := XUger, s € R?¢. With these definitions in place, we decompose

x € E7,5 as

X7
x =3 x5 =3 Ix7ly

i>1 i>1 [x7; 2
——

GZI,S

where by convention we terminate the summation at the first index ¢ > i’ with x7,, = 0.
To complete the proof, it now remains to show that

> Il < 2.

i>1

To that end, first note that

Yolxzlly = lIx7lly + Do lx7lly < 14+ lIxr

i>1 i>2 i>2

29

which immediately follows from ||x7 ||, < |||, = 1 since x € &7, C S*!. Next, recall
from (4.8) that

%7

1
< —Hx .
2 — \/g Ti—1 .1

and consequently

> lIxr,

i>1

1
71 <1+ %”X”Z,l <2

1
2 <1+ E ;HXTil

since x € &7, and therefore [x[l7, < +/s. The claim follows. O

By homogeneity of the mean width in combination with (4.13), this result immediately
implies that

w(Er,) < w(2conv(Ery)) = 2w(Xz.,). (4.14)

The scaling requirements on m for a standard Gaussian random matrix A € R™*9 to
satisfy, with high probability, either the genuine or effective group-RIP will consequently
both be determined by the mean width of f];s. We establish a bound on this crucial
quantity in the following result.

Lemma 4.10 (Mean width of group-sparse vectors). It holds that

w(Xz,) < \/251og(2eG/s) + /59
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Proof. First, note that

w(3z;) =Eg sup (x,g) = Emax sup (x,g) = Emax grll,

d—1
XEEI73 XGST

< max Elgrl, + Emax||gr(l, — Ellgrll,|

where the subsequent maxima are taken over all possible group index sets 7 C Z with
|T| = s. For the first term, we have by Jensen’s inequality that maxs E|g;|l, < /59
For the second term note that ||-||, is 1-Lipschitz continuous by definition. The Gaussian
concentration inequality therefore shows that the centered random variable

X7 = lgrl, —Elgrl,
is subgaussian since by Theorem A.5, we have for A € R that
1
E exp(AX7) < exp <2>\2>.

By a common bound on the expected maximum of a sequence of independent subgaussian
random variables (Proposition A.7), this implies

G 2eG
Em7a><|XT|=Em7ax|||g7||—1a||g¢||2|sng@( )) = sion (26,
S S

which yields the announced result. [

The following result which establishes the group-RIP for standard Gaussian random
matrices now follows from Lemma 4.8 and Lemma 4.10, as well as rotation invariance of
the Gaussian distribution.

Lemma 4.11. Let A = ®¥ ¢ R™? with & € R™*? denoting a standard Gaussian
random matriz and ¥ € O(d). Then with probability at least 1 — n, the scaled matriz

m~Y /7w /2A satisfies the ({y, (1)-group-RIP with constant §; < &, provided that

m 26?2 {s log(G/s) + sg + log(n’l)}.

Remark 4.12. The dependence of m on the parameters s, g and G matches recent results
in the theory of Gelfand numbers, which are commonly used in the theory of compressed
sensing to establish lower bounds on the number of measurements required among arbitrary
encoder-decoder pairs to guarantee stable recovery of sparse vectors. More concretely,
Dirksen and Ullrich establish in [DU18] that m = Q(slog(G/s) + sg) measurements are
necessary to guarantee stable recovery of block-sparse vectors for any linear measurement
and (generally nonlinear) recovery map. Since the (2,¢1)-RIP (which is a special case
of the (02, 01)-group-RIP) can be used to establish such stable recovery guarantees in the
canonical CS theory (see for instance [JHF11, Theorem 2]), the bound in Lemma 4.11 is
optimal in terms of s,q and G.

We will also frequently require the (¢3,¢;) group restricted isometry property for
matrices acting on effectively group-sparse vectors. As pointed out above, barring a trans-
formation of the implicit constant hidden in the notation, the following result establishes
the group-RIP for £ ; with the same scaling requirement on m as in Lemma 4.11.
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Lemma 4.13. Let A = ®¥ ¢ R™¢ with ® and ¥ as in Lemma 4.11. Then with

probability at least 1 —n, the scaled matriz m=\/7/2A satisfies the effective (L5, {1)-group-
RIP with constant 6, < 6§, provided that

m>6? [s log(G/s) + sg + log(n_l)]

At this point, we are prepared to establish the following probabilistic recovery guarantee
characterizing the performance of Problem (P,5) in the Gaussian setting.

Theorem 4.14. Let A € R™*% pe q standard Gaussian random matriz. Fix a value
e < 8/V5, and assume

m>e ! {s log(G/s) + sg + log(n_l)}.

Then with probability at least 1 — n, the following event occurs: every vector X € 5}75
can be approximated from its measurements'y = sgn(Ax) by the normalized minimizer

z =x/[x[|, of
minimize [|x|z
s.t. yoAx >0 (Py3)
(y,Ax) =1

with

x—z||, <e.

Proof. We invoke Lemma 4.6 with 6, = £2/64, which implies for §; < 1/5 (and thus
£ < 8/+/5) that every minimizer % of Problem (P, ;) satisfies

§8\/5::€.

2

A

X —

1%l

For the matrix A to satisfy the group-RIP on gl"t as required by Lemma 4.6, it suffices to
choose

m>e ! [t log(G/t) +tg + 1og(77_1)]

with ¢ = 4s((1+6;)/(1 —6;))* = 4s((64 + £?) /(64 — £2))? < 9s according to Theorem 4.14.
Absorbing the constants in the notation therefore yields the claim. O]

The dependence of m on 6; 2 to satisfy the group-RIP implies that the optimal error
decay rate of e = O(m™!) established in [JacT13] can only be obtained from Lemma 4.6
if the error could be improved from ||x — X[, < V/9; to ||x — %||, < 67. Whether this is
possible remains an open problem. However, the dependence of m on € in Theorem 4.14
can be improved by appealing to a particular result on random hyperplane tessellations
from [BL15]. To make this precise, we introduce the following property of a measurement
matrix acting on a subset of the unit Euclidean sphere.

Definition 4.15 (Hyperplane tessellation). A matriz A € R™*? js said to induce an
e-tessellation on a set K C S if

Vx,z € K with sgn(Ax) =sgn(Az) : [|x —z|, <e.
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This property guarantees that A uniformly tessellates subsets of the unit Euclidean
sphere in the sense that any pair of vectors x,z € K with identical measurements under the
map u — sgn(Au) are at most € apart from one another. Considering that measurement
consistency is enforced by the first constraint of Problem (P,3), the definition of e-
tessellations immediately yields a recovery guarantee for Problem (P, 3). More precisely,
if A induces an e-tessellation on gz,s, then we have that x € 51,8 and #y-normalized
minimizers z of Problem (P, 3) are at most € apart (in the Euclidean sense), provided that
z is effectively group-sparse. Since Lemma 4.4 establishes the effective group-sparsity of
minimizers of Problem (P, ;) under the group-RIP, one immediately obtains a uniform
recovery guarantee of the sets XWII’S and gz,S, respectively, under the assumption that A
additionally induces an e-tessellation on EW]I,S or 5178. We record the result in the following
lemma.

Lemma 4.16. Let X € gz,s. Fiz 6; € (0,1), and assume A € R™*? satisfies the (fa, (1)-
group-RIP on &z, with t = 4s(1 + 6;)*/(1 — 6;)>. Moreover, assume that A induces an
e-tessellation on Ez;. Then every minimizer X of Problem (P,3) satisfies

X

<e.

2

X —

1%l

While testing whether a matrix induces an e-tessellation on a particular set remains an
open problem, tessellation matrices exist in abundance if we pass to random measurement
ensembles. These results are fully determined by geometric summary parameters of a
signal set K such as the Gaussian mean width w(K) or the covering number N(/, ||-||, )
(Definition A.15). The first instance of such a probabilistic guarantee goes back to the
work of Plan and Vershynin in [PV14]. In particular, they demonstrate for K C S?! that
m 2 e %w(K)? measurements suffice for a standard Gaussian random matrix A € R™*¢
to induce an e-tessellation on K with probability at least 1 — 2exp(—ce?m). In this work,
we appeal to the following tightened result due to Bilyk and Lacey, which improves the
dependence of m on ¢ and instead requires an estimate of the covering number of I rather
than its mean width.

Theorem 4.17 ([BL15, Theorem 1.5]). Let A € R™*? be a standard Gaussian random
matriz. Then there exist constants 0 < ¢ < 1 < C' such that with probability at least
1 — (2N(K, || |ly, ce)) 72, the matriz A induces an e-tessellation on the set K C S?71,
provided that m > Ce~log M(KC, ||||,, ce).

Estimating the covering number N(IC, u) = N(L, ||-||,, v) of a set K usually proceeds
in one of three ways or a combination thereof: a volume comparison argument, Maurey’s
empirical method or (dual) Sudakov minoration (cf. Lemma A.21). Since we are concerned
with estimating ’ﬁ(gz’s, u) in order to establish a tessellation on the set of effectively group-
sparse vectors, the first two techniques cannot be applied to our scenario. This is due to the
fact that ENLS can neither be written as a union of spheres restricted to lower-dimensional
coordinate subspaces as required for the volume comparison argument, nor represented as
the convex hull of a finite set to apply Maurey’s empirical method (see also the discussion
in Section 5.3.3). This leaves us with Sudakov’s inequality, which relates the covering
number of a set to its mean width.
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Lemma 4.18. The covering number of gz,s w. 1. t. the metric induced by the {y-norm is
bounded by

‘ﬁ(gz,s, -1y, u) S exp <4u2( 2slog(2eG/s) + @) 2)
< exp (cu_2(23 log(2eG/s) + sg)).

Proof. Denote by N C gz’s the smallest u-net of gz,s w.r.t. the Euclidean metric such that
IN| = N(Ers, |||ly, w). By Sudakov minoration and (4.14), it then immediately follows

that
(w(gls))Q < o 4(\/2slog(26G/s) —l—\/@)2 |

u
We are now ready to state the improved recovery guarantee for Problem (P 3).

N < exp

Theorem 4.19. Fiz e < 1/3, and let A € R™*¢ be a standard Gaussian random matriz
with

m > e 3(slog(G/s) + sg).

Then with probability at least

. G
1—cexp <—c(slog (16$> + sg)),

the following holds: for all X € &z, every normalized minimizer 2 = %/||%||, of (P1s) with
y = sgn(Ax) satisfies ||x — 2|, < .

Proof. Set 75 :== ((1+6)/(1 — d))* According to Lemma 4.16, it suffices to show that for

1+6\°
t=14 =4
5(1_5) .

t~he matrix A both acts as a group-RIP on the set th and induces an e-tessellation on
&1+ with the announced probability. For the former, we have by Lemma 4.13 that

m > 52 <t log (f) + tg>
= § %4 (s log <G> + sg)
4575

measurements suffice for A to satisfy the group-RIP on gZ,t with failure probability at

most
G
exp | —4vs| slog| — | +sg] |-
4575
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On the other hand, Theorem 4.17 establishes that m 2 5_3w(gz7t)2 measurements suffice
for A to induce an e-tessellation on &7, with failure probability at most

o exp(—clsfzw(g’zﬁtf).

By a union bound over both events, this implies that for

m 2 max {(5’275, 5’3%} (s log (G) + sg)

S

> max {6 25| slog i + 59,37, slog G +sg| ¢,
455 457e

the matrix A satisfies the group-RIP and e-tessellation property with failure probability
at most

G _9 G
exp | —4vs| slog | —— | +sg | | +coexp | —cie 7| slog + sg
4575 4576
/ / G
< ¢y exp (—clfy(; (s log (43%> + 39)).

With the choice 6 = ¢ and the required restriction that e < 1/3, we have that 1 <, <4
due to monotonicity of 7. as a function of €. It therefore follows that the conclusion of
Theorem 4.19 holds with failure probability at most

: / G / / G
coexp | —c17:| slog 5 +5sg] | <cyexp (—cl (s log (168) + sg)),

provided that

m > 43 (5 log <G> + sg>
s
> 73, (s log (f) + 3g>
—2 -3 G
e %max{e ,E }(slog () + sg).
s

This concludes the proof. O

Remark 4.20. (i) In order for the failure probability in the proof of Theorem /.19 to
yield useful values, it is necessary for g — log(4sv./G) to remain positive. This
implies the very mild condition

<1 afon (g (E) + o) +1)

(ii) The failure probability in Theorem /.19 does not directly depend on the recovery qual-
ity €. This slightly counterintuitive behavior is rooted in the result by Bilyk and Lacey
from [BL15], which suffers from the same drawback. Note, however, that this is not
too different from the previous group-RIP result established in Theorem 4.1/, which,
for the choice n = exp(—[slog(G/s) + sg]), implies that Q(e~*[slog(G/s) + sg])
measurements suffice for e-accurate recovery of effectively group-sparse vectors with
probability at least 1 —exp(—[slog(G/s)+sg]). In that sense, Theorem 4.19 therefore
improves upon the previous group-RIP-based result by improving the dependence of
m one.
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The results discussed up until this point have one significant drawback in that they do
not establish the behavior of APV in the presence of noise in the observations. In fact, it
remains an open problem how to modify the recovery technique defined by Problem (P, 3)
in order to harden it against additive pre-quantization and adversarial post-quantization
noise. As we will discuss in the next section, the situation can be remedied by reversing, as
it were, the roles of the objective function and the constraint set of Problem (P, 3). More
precisely, the recovery strategy discussed in the sequel will enforce the desired group-sparse
signal structure via an appropriate choice of the feasible set, while promoting quantization
consistency in the objective function.

4.3.2 Correlation Maximization

As pointed out in Section 2.3.1, the concept of quantization or measurement consistency
is of key importance in 1-bit compressed sensing as it guarantees that target vectors and
their estimates which fall into the same quantization cell are also close in the Euclidean
sense. However, recovery schemes which enforce quantization-consistent solutions come
with a fundamental drawback. If instead of the measurements y = sgn(Ax) € {£+1}"
one observes the corrupted vector y with Ag(y,y) > 0, the effects of bit errors on the
reconstruction quality when using y in place of y can be detrimental. Recall from the
definition of e-tessellations, that a matrix A inducing an e-tessellation on a set K C S9!
ensures that no quantization cell has Euclidean diameter exceeding . This in turn implies
that in the worst case even a single erroneous bit in the measurements y could result in a
recovery error exceeding €. As a natural remedy to circumvent issues concerning noise
robustness, a few recovery strategies have been proposed over the years which aim to
minimize an appropriate data fidelity measure, subject to set membership constraints which
enforce the assumed signal structure (see, e.g., [PV13b; PV16; PVY17]). One approach
of particular importance proposed in this context aims at minimizing the Hamming distance
Ax(y,sgn(Ax)) between the (possibly noise corrupted) measurements y and sgn(Ax) for
some estimate x of X, subject to x € K C S%~!. Unfortunately, due to the nonlinear and
nonconvex nature of the Hamming metric Ay, this naive recovery approach is intractable.
To relax the problem into a tractable form, note that the normalized Hamming distance
may also be expressed as

1 m m

. 1 .
Au(y,sgn(Ax)) = — Y Apgtsen(an)y = 5— > (1 — gisgn((a;, x))).
=1

2m =

Given the last identity, a natural way to convexify this function is by replacing the sgn-
operator by the identity map since sign violations will make —g;(a;, x) large and therefore
penalize solutions which disagree with the sign measurements y too much. Dropping any
remaining constant terms from the penalty function obtained by this convexification and
imposing that x belong to some structure-promoting set X C S? !, one arrives at the
problem

maximize (y, Ax)

P
s.t. x e (Py.a)

where we also expressed the problem in a more natural formulation as a maximization
problem. In a sense, this particular objective function measures the correlation between
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the quantized measurements y and the linear observations Ax. Since the formulation
does not enforce strict adherence to the sign information postulated by y, the program
instead seeks for a vector in K which explains the data with as few sign violations as
possible. Rather than explicitly incorporating a mechanism to correct possible bit errors
as for instance pursued in the AOP algorithm [YYO12], Problem (P, ,) instead employs
a type of inherent majority voting strategy in which less importance is placed on sign
observations which go against the majority of other consistent measurements.

Problem (P, ) was first proposed by Plan and Vershynin in [PV 13b] and at the time
was the first recovery scheme with provable robustness to both pre-quantization and
adversarial post-quantization noise in the acquisition system. In particular, the authors
consider arbitrary nonlinear observations of the form

yi = Q((ai, %))

for independent standard Gaussian random vectors a; and require that, conditioned on a;,
the map () satisfies the condition

Equi = O((ai, x))

for some function ©: R — [—1,1] where Eg denotes expectation w.r.t. any random
clements of @ independent from the ensemble {a;};",. This general formulation includes
a variety of interesting special cases, including most prominently the 1-bit observation

model, as well as pre- and post-quantization noise, and the logistic regression model where

@ has the form

Given a standard Gaussian random variable g, the recovery performance of each of these
models depends on the constant

A= E[gO(g)],

which, roughly speaking, measures the average correlation between the linear and nonlinear
observations. For instance, if @) is a function taking a constant value in [—1, 1], then
Q((a;,x)) carries no information about the linear observation (a;,x), which is reflected in
the fact that E[gQ(g)] = 0.

Adopted to the setting of group-sparse recovery, we suggest to solve the program

maximize (y, Ax)

8.t HXHZ,l < Vs (Pus)
Ix[ly < 1,

which now maximizes the correlation between quantized and unquantized observations over
the set of effectively s-group-sparse vectors. For simplicity of notation, we will sometimes
express solutions of Problem (P,5) using the recovery map AL™: {£1}™ — R which
maps quantized vectors y to maximizers X of Problem (P,5). Note that the program
above actually considers the bigger set \/5183%1 N BY rather than the set of effectively
s-group-sparse vectors inside the unit ¢s-ball. However, since Problem (P, 5) maximizes a
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linear function on a compact set, we may replace the feasible set by its convex hull without
changing the solution. In light of the following result which establishes that the feasible
set of Problem (P, 5) corresponds to the convex hull of gz,s, the recovery guarantee we
will establish below will therefore also hold true for the bigger set \/sBf , N BY.

Proposition 4.21. The set \/E]B%%1 NBY is the convex hull of the set of effectively group-
sparse vectors with unit Euclidean norm.

Proof. We need to establish that
conv(€z,) = conv {x € R : [[x]|z; < Vs|x], x[l, < 1}

= {x e R : |Ixllz; <5, Ixll, < 1}
= \/EBI,I ﬂEg
=:U.

Clearly, every vector x € conv(gzys) is contained in U by the Cauchy-Schwarz inequality,
hence conv(Ezr,,) C U. Tt therefore remains to show the reverse inclusion U C conv(Ez.,)
to establish equality of both sets. To that end, it is enough to consider the extreme points
of COHV(gLS) and U. This follows because by [Roc15, Corollary 18.5.1], every compact
convex set C' C RY can be expressed as the convex hull of its extreme points. An extreme
point of C' is a vector x € C' which is not contained in an open line segment in C'. We
therefore need to show that the extreme points of U are included in conv(€z,). From the
definition of extreme points, it clearly follows that no extreme point of U can belong to
the interior of U. This means that we only need to consider vectors x € U satisfying either
[x[|z,, = +/s or ||x||, = 1. However, any vector x € U with [[x]|, = 1 is certainly contained

in conv(€z,). To complete the proof, we now claim that no vector x with ||x||;, = v/s
and ||x||, < 1 can be an extreme point of U. To see this, note that every vector x with
|x[|z; = /s can be written as a convex combination of G vectors in /sBf ; since

\/_XI

Vs |

<=3

with

\/EXL'

“XL' ”2

_ /5.

7,1

X
y ¥l
NG

Since extreme points are points which cannot be written as convex combination of two
other points of a set, we have that every extreme point of \/EIEB%1 is 1-group-sparse w.r.t.
Z. In other words, we have [|x||;, = [[x[|, = /5. Since this violates our assumption that
|x]|, < 1, no point x € U with ||x[|;; = /s and ||x||, < 1 can be an extreme point. The
claim follows. 7 [

The performance of A%’” is again determined by the mean width of the signal set
VsBzi N IB%;’ (which is identical to the mean width of E,N’I’s due to invariance of the mean
width w.r.t. the convex hull). We will make repeated use of the following result due to
Plan and Vershynin, which we state here in a form with simplified failure probability.
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Theorem 4.22 ([PV13b, Theorem 1.1]). Let x € K C S*'. Denote by A € R™*¢ g
standard Gaussian random matriz. Then with probability at least 1 —n, any solution X of
Problem (P,5) with y = Q(AX) satisfies |x — X||, < €, provided that

m > e A2 [w(/C)2 + log(n‘l)}.

We will apply Theorem 4.22 to analyze the performance of Problem (P, 5) subject to
the noisy measurement model

y = Q(Ax) = f osgn(Ax + v) (4.15)

where f = (f;), ~ B,.(p) denotes an i.i.d. random Bernoulli vector with P(f; =1) =p >
1/2, and v ~ N(0, 0%1d,,) denotes an additive pre-quantization noise vector independent
from both f and A. To that end, one first needs to determine the function © and the
associated correlation parameter A, which was already done by Plan and Vershynin in
[PV13b, Section 3.1] (see also Section 4.4.2). In particular, one easily verifies that

Eqyi = Ey, fiE., sgn((a;, X) + ;)
= (2p—1(1 - P < —(a;,x)))
=: O((a;, %)),

A=E[gO(g)] = (2p — 1)\/7T(022+1)~

The following result is now a simple consequence of Theorem 4.22, as well as Lemma 4.9
in combination with Lemma 4.10.

which therefore yields

Theorem 4.23. Let x € gz,s, and denote by A € R™*4 q standard Gaussian random ma-
triz. Sety = Q(AX) with Q corresponding to the noisy measurement operator (4.15). Then
with probability at least 1 — ), every normalized minimizer z = X/||X||, of Problem (P,5)
with X = AL (y) satisfies |x — z||, < €, provided that

m 2 e o +1)(2p — 1) *(slog(G/s) + sg + log(n")).

4.3.3 Group Hard Thresholding

In this section, we briefly discuss a simple recovery procedure adopted from [Foul6]
for group-sparse signal reconstruction, which does not rely on convex programming. In
particular, Foucart establishes that

% =H,(ATy)

is an accurate estimator for genuinely sparse vectors x € Y, = 2, NS from their binary
measurements y = sgn(Ax) conditioned on the mixed (s, ¢1) restricted isometry property
of A (cf. [Foul6, Theorem 8]). Recall from Section 3.2 that the binary iterative hard
thresholding algorithm repeats the update equation

X" = 3, (x") — AT (sgn(Ax™) - y))
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until either the Hamming distance between y and sgn(Ax™*+") vanishes or some predefined
iteration count is reached. Applying this procedure to the shifted measurement vector
y :=y + 1 with starting point x(*) = 0, the first iteration of the algorithm therefore yields

xt =H,(~A T (sgn(0) — ¥)) = H,(AT(y — 1)) = Ho(ATy) (4.16)

where we used the fact that sgn(0) = 1 by convention.

Another interpretation of the recovery procedure can be given from the convex pro-
gramming formulation considered in the previous section. Assume for the moment that
we aim to solve the problem

maximize (y, Ax)

s.t. xeK (Pa)

for a structure-promoting set X C R? which corresponds to the unit ball of an arbitrary
norm ||-|| on R% Then the optimal value of Problem (P,¢) coincides with the dual norm
||l of ||]] (cf. Definition A.13), i.e., given a maximizer X of Problem (P,g), we have

(v, Ax) = <ATy, )2> = sup <ATy,z> = HATy

=] <1

*

If the target vector x € S9! we aim to recover is known to be s-sparse, one would ideally
choose K = ¥ to enforce exact sparsity of solutions of Problem (P,¢). The nonconvexity
of I, however, renders the resulting optimization problem intractable. On the other hand,
due to the linearity of the objective function and compactness of I, the optimal value of

the problem remains unchanged if one replaces the constraint x € ¥ with x € conv(X;).
Considering that Conv(is) is a symmetric convex body?, a classical result in convex analysis
now states that the associated gauge function of conv(X,) defines a norm on R? [Ver12,
Proposition 2.1]. To determine which norm exactly the Minkowski gauge corresponds to,
we first define the set Uy := {I C [d] : |I| < s} of all subsets of [d] of size at most s. This

allows us to rewrite the gauge function as

Veony(5,) (X) = inf {L‘ >0:x€ tconV(Zs)}

=inf{t>0:x €tconv | |J S¢-1
IeUs

:inf{t>OZX:tZ )\[V[,V[GScll_l,)\]ZO, Z )\[:1}

Iels Tels
=inf{ Y fluslly i x= > upu; €RY
ITely Iels

= xl

with R4 denoting the coordinate subspace of R? supported on the index set I C [d]. The
norm |||, is also known as the s-support-norm [AFN12]. Since every convex body is

3A convez body is a compact convex set C C R? with non-empty relative interior. If the set C' is also
origin-symmetric, i.e., x € C' if and only if —x € C, then C is called a symmetric convex body.
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a star domain’, the gauge function allows one to write the set conv(3,) in terms of its
1-sublevel set [Rocl5]:

conv(,) = {X cR%:y ~5)(x) < 1}

conv (X
= {xeR: x|, < 1}
__. Td
—_— B(S)

This in turn implies that we may replace the set membership constraint x € conv(3;) in
Problem (P4) by the norm constraint ||x|| ;) < 1. Note, however, that an implementation
of Problem (P4¢) is still intractable in terms of ||-|| ,) since it requires an enumeration of

all 77 4 (‘j) subsets contained in U. Fortunately, despite the complicated and intractable

formulation of the s-support-norm, its dual norm ||||?S) admits a simple expression in terms
of the best s-term approximation of a vector. Denote by x the nonincreasing rearrangement
of a vector x characterized by &1 > Z, > ... > &4 with &; := |2,¢)| and 7: [d] — [d] a
permutation. Then the norm |||, is given by

s 1/2
I, = (sz) — e,
1=1

(see [AFN12, Section 2.1]). Equipped with this identity, it follows that Problem (P,)
with I = X, admits a closed-form solution as

HS(ATY) .
[H(aTy),

X =

(4.17)

Up to normalization, this corresponds precisely to the hard thresholding scheme considered
in [Foul6]. Normalizing reconstructed vectors to unit norm, however, is natural in this
context due to the fact that any norm information is irrevocably lost in the acquisition
process. This connection between the hard thresholding approach and Problem (P, ) was
first made in [CB15]. In particular, it suggests that the recovery performance of the
estimator (4.17) and solutions to Problem (P,4) when benchmarked on vectors X € ¥,
should be roughly equivalent.

To see why (4.17) holds and in order to extend the idea to the group-sparse setting,

we choose K = ¥z ¢ in Problem (P,4). Denoting by
Gs:={T CT:[T|<s}

the collection of subpartitions of Z of size at most s, we then find for the dual gauge

4A set S € R? is called a star domain (or star-shaped or star-conver) if there exists a point % € S such
that for every x € S, the closed line segment A% + (1 — A\)x with A € [0,1] lies in S.
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function of conv(¥z,) that
’y:onv(iz,s)(u) = Sup {<11, X> : ’Yconv(iz,s)(x) < 1}

= sup{(u,x) xe | SdT_l}

TeGs

= sup{<u, U7 > T € QS}
[ur,

=sup {[lurll,: T € Gs}
= [[Hzs ()],

From the derivation, it immediately follows that the vector

7‘[178(11)
[Hz.s ()]l

attains the supremum in the definition of the dual gauge function and is therefore a
maximizer of Problem (P,4) for K = X7 ,. In other words, to solve Problem (P,) with
K = i;s, we replace the regular hard thresholding operator H by its group-sparse
counterpart Hzs: R? — Y7, namely the so-called group hard thresholding operator which
only retains the entries belonging to the s groups in Z with largest ¢,-norm. Given a
group-sparse vector X € X7 and its quantized projections y = sgn(Ax), we therefore
define the recovery map

X =

A?(y) =Hz,(ATy) = argmin Hx — ATyHLl. (4.18)

XEEI’S

The performance of this procedure is summarized in the following result, which was first
shown by Foucart for the case of sparse vectors [Foul6]. The proof of the result is identical
to the proof of Theorem 8 in [Foul6] as soon as one replaces the sets S and T by the
respective group support sets S :={l € Z:x; # 0} and T :={[ € T : x; # 0}.

Lemma 4.24. Let x € iz,m and assume the matriz A € R™ % satisfies the group-RIP of
order 2s with constant d,s. Then it holds for * = A (sgn(A%)) that

% — %, < 2v5/d2s  and < 4V/54/bas.

2

As in the case of Lemma 4.6 and Lemma 4.16, the analysis of Lemma 4.24 assumes that
one has access to the noise-free measurements y = sgn(Ax). Similar to the performance
analysis of Problem (P,3), it remains an open problem how to modify the proof of
Lemma 4.24 to harden the result against pre- and/or post-quantization noise. In light
of the previous discussion which connects A% with solutions of Problem (P,¢), however,
we may simply reuse the analysis of Theorem 4.23 to establish a noise-robust recovery
guarantee of the hard thresholding procedure A% at the expense of losing uniformity of
the result over the set conv(gz,s). To that end, we consider again the noisy observation
model

X

1%l

o

X —

Q(A%) = f o sgn(A% + v) (4.19)
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Figure 4.1: SNR vs. number of measurements. The dashed lines represent the performance when
the group-sparsity structure is ignored. In this case, each algorithm assumes the trivial group partition

7={{1},...,{d}}.

with f ~ B,,(p) and v ~ N(0,0%Id,,) as before. Due to invariance of the mean width
w.T.t. the convex hull and the fact that

w(Xz,,) < y/2slog(2eG/s) + /59

according to Lemma 4.10, the scaling requirements on m to guarantee e-accurate recon-
struction quality of the recovery map Al are identical to the requirements of Theorem 4.23
up to a multiplicative constant. For completeness, we repeat the statement of the result
for the recovery map A%t below.

Theorem 4.25. Let x € izys, and denote by A € R™* ¢ standard Gaussian random
matriz. Then with probability at least 1 — 0, every normalized vector z = X/||X||, with
X = A%t(Q(AX)) and Q) denoting the noisy measurement operator defined by (4.19) satisfies
|1x — 2|, < e, provided that

m 2 e (0* + 1)(2p — 1) (s1og(G/s) + sg + log(n 1)).

4.3.4 Numerical Evaluation

In this section, we conduct a numerical study to compare the recovery performance of the
discussed methods in terms of their estimation accuracy of group-sparse vectors on the unit
sphere. In particular, we aim to gain an insight as to how the dependence of the number
of measurements on € compares to the theoretical behavior. Throughout, we consider a
signal dimension of d = 1000 and split the support set [d] into G = 100 nonoverlapping
groups. Moreover, we consider s = 5 active groups chosen uniformly at random such
that each realization contains g - s = 10 - 5 = 50 nonzero coefficients with each individual
nonzero entry drawn i.i.d. from the standard Gaussian distribution. Finally, we project
each vector on S*! by normalizing it to unit norm. For each parameter combination,
we run 1000 Monte Carlo trials. We compare the three presented group-sparse recovery

72



4.3 | DIRECTION RECOVERY OF GROUP-SPARSE SIGNALS

methods with their sparse counterparts which we obtain by replacing Z with the trivial
partition Z := {{1},...,{d}}. Note that since AZ™ and A%t require an estimate of the
sparsity level, we provide each recovery method with the total sparsity level s - g.

Noiseless Reconstruction Performance

In the first experiment, we consider the recovery performance in terms of the average
SNR according to p [dB] = —201log;, [|x — X/||X]|2]|2 where X denotes the output of some
recovery method. The average of the Monte Carlo trials is evaluated in the linear domain.
The results are shown in Figure 4.1. Unsurprisingly, each method’s performance improves
with increasing m with A;V clearly outperforming its competitors. More surprisingly,
however, is the fact Agv starts to outperform both the hard thresholding approach and

A%O” for m > 1000. In general, the experiments confirm the relation between the different
scaling behaviors required for each method as established in Theorem 4.19, 4.23 and 4.25.
More precisely, the dependence on € is most favorable for AEV, while A%O” and A%t fall
slightly behind due to their dependence on 5_4~rather than e73. B N

While the experiment already confirms that APV outperforms A%™ and A%, we are not
able to infer the exact decay rate of each method from Figure 4.2. To that end, we display
the normalized /y-error as a function of m on a doubly-logarithmic scale in Figure 4.2.
In this representation, the polynomial decay rate of the normalized reconstruction error
for APV, A and AL is clearly visible. Moreover, as predicted by Theorem 4.23 and
Theorem 4.25, the performance of AL™ and AY is almost identical. This is explained by
the fact that both algorithms are connected to each other through the problem

maximize (y, Ax) (Pyr)
s.t. xek
with A%O” corresponding to the choice K = ENI’S and K = iz,s for A%t (cf. Section 4.3.3).
As indicated by the annotations in Figure 4.2a, the empirical decay rate of A%O” and A?
is O(m~'/2) rather than the slower rate of O(m~/*) predicted by Proposition 4.44. While
the predicted decay rate of O(m~1/3) is also slightly off for ALV, its empirical rate of
O(m~%/%) is closest to the provably optimal rate of O(m™") for nonadaptive measurements
among all possible reconstruction maps as established in [Jact13]. The situation changes,
however, when trying to estimate the empirical error rate of the recovery maps Agv, A%O”

and A%t, which all operate under a model mismatch. As depicted in Figure 4.2b, the error
no longer decays linearly in m (in the logarithmic representation). This is due to the fact
that no method exploits the true underlying signal structure and is therefore governed by
a different error decay than predicted by Proposition 4.44.

Group Support Identification

In many practical applications, rather than aiming at recovering the individual components
of a vector, one might instead only be interested in identifying the active groups of a
signal. Historically, this problem has only received limited attention in the compressed
sensing literature due to the fact that in the absence of quantization, support recovery
and vector recovery are equally hard. More precisely, once the support of a signal is
known, vector recovery reduces to a simple least-squares projection. In the presence of

73



CHAPTER 4 | ONE-BIT COMPRESSED SENSING OF GROUP-SPARSE SIGNALS

/1%l

A

X — X
—

S
—

APV A COTT A ht Q-%‘%S(
—o— APV - Acorr —a- Ay >

| | | | | | | | | | | | |
100 126 159 200 251 316 398 501 631 795 1000 1260 1590 2000
m

(a) Performance of group-sparse direction recovery methods and their associated empirical error decay rates

_«
_o |
™ *
< : ~ EanTA~Az): |

T L R S R 1\ 1 ]
ol ) \

—— APV Acorr —g— Aht \‘\)
T 7 A
| | | | | | | |

| | | |
100 126 159 200 251 316 398 501 631 795 1000 1260 1590 2000

m

(b) Performance of sparse direction recovery methods applied to group-sparse signal estimation when the
group-sparsity structure is treated as regular signal sparsity

Figure 4.2: Normalized /5-error vs. number of measurements on a doubly-logarithmic scale. The
dashed lines correspond to the linear regression line of each respective curve in combination with their
slopes indicating the decay rate of the reconstruction error. The fact that each graph in Figure 4.2a is
close to its regression line suggests that the dependence of each method's performance on the system
parameters s, g and G is accurately captured by the theory. This is in contrast to Figure 4.2b where
the error does not decay log-linearly since there is a mismatch between the recovery schemes and the
underlying signal set. As predicted by Theorem 4.23 and Theorem 4.25, the performance of A%Orr
and A%t are virtually identical. However, both methods exhibit a faster error decay rate than their
predicted rate of 1/4. Similarly, the real decay rate of AEV is closer to the provably optimal rate of 1
among all nonadaptive recovery schemes than to its predicted rate of 1/3 according to Theorem 4.19.
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Figure 4.3: Support estimation error. Dashed lines correspond to the performance w.r.t. 7=

{{1},...,{d}}.

quantization or any other type of nonlinearity in the acquisition system, the situation
changes since knowing the support still does not enable us to perfectly recover sparse
or group-sparse vectors. We therefore conduct a simple experiment to gauge how well
the individual recovery schemes fare in the context of support identification from highly
nonlinear observations of low-complexity signals. For simplicity, we restrict our attention
to genuinely group-sparse vectors again.

To investigate how well the individual reconstruction methods manage to identify
the group support set S = suppz(X) := {i € [G] : Xz, # 0}, we consider the symmetric
set difference SAS := (§\ 8) U (S\ S) between the ground truth S and the estimated
group index set Sc [G], respectively. This metric captures both the false alarm and
missed detection rate by quantifying how many groups were erroneously selected by a
recovery method and how many nonzero groups in the ground truth signal x € ¥z
were missed. Despite the fact that Problem (P, 3) employs the group ¢;-norm to promote
group-sparse quantization-consistent solutions, empirical experiments show that minimizers
are mostly not exactly group-sparse but rather compressible in the sense that the best
s-term group approximation error oz ;(%)s decays quickly with s. This is also mirrored
in Lemma 4.4, which predicts that the estimator A;V produces merely effectively rather
than genuinely group-sparse vectors. The same holds true for estimates produced by
A" which explicitly allows for effectively group-sparse solutions. In order to properly
compare the group support identification performance, we therefore need a way to estimate
the dominant groups of a vector. To that end, we employ the following thresholding
strategy. Given an estimator X, we denote by 7= {fl, e ,ig} the nonincreasing group
rearrangement of X such that ||z [|2 > ... > ||z |2 with Zi = Try and 7: [G] — [G] a
permutation. Next, define the group index set J™ := {fl, . ,ZL} With slight abuse
of notation, we write X ;) for the restriction of X to the index set U;c ;) J. We then
iterate over n = 1,...,G — 1 until the stopping criterion

H)A(j(nﬁ»l) — )A(J(n

)HQ
<
Kyool,
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Figure 4.4: Group support error vs. group-sparsity level for m = 1000. The dashed lines represent
the performance when the group-sparsity structure is ignored. In this case, each algorithm assumes
the trivial group partition Z = {{1},...,{d}}.

is satisfied at some iteration n* for the prescribed tolerance p = 1072. We then set

S ={x(1),...,m(n*)}.

The results of this experiment are shown in Figure 4.3. While both APV and Al
manage to almost perfectly recover the exact group support for m > 400, A%"” consistently
misidentifies around 6 groups even as the number of measurements increases. On the
other hand, despite outperforming both A% and A% in the previous experiment, A;V
fails to properly identify the group support if the inherent group structure is not explicitly
exploited. This can be explained as follows. Despite being oblivious to the underlying
group structure, the estimator Agv manages to identify the most important coefficients
inside each active group. However, on average the program also selects several coefficients
which do not belong to one of the active groups, which in turn leads to a large group
misidentification rate.

We also consider the behavior when the number of measurements is fixed at m = 1000
and we in turn vary the group-sparsity level s. The results depicted in Figure 4.4 reveal
that both A and A are very competitive and accurate up to s = 15 active groups
correspondmg tos-g = 150 nonzero coefficients. This is a substantial increase over standard
methods which treat the group-sparsity structure as canonical sparsity and are only accurate
at very low group-sparsity levels. Surprisingly, the support recovery performance of A%O”
deteriorates much faster than expected considering its similar performance toNA%t in
terms of the attained SNR. However, the finding explains the constant bias of AP™ i
estimating the support for a fixed group-sparsity level as considered in Flgure 4.3. Smce
Aco” optimizes over the set 515, a blgger set than EIS as considered by A , it suggests
that despite the fact that ZLS - 5173, 51,5 contains vectors whose linear measurements
are more strongly correlated with the quantized measurements than elements in iz,s
exclusively.
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Figure 4.5: SNR vs. number of measurements when measurements are disturbed by additive Gaussian
pre-quantization noise with standard deviation ¢ = 0.2, corresponding to around 10 % of all sign
measurements being flipped. The dashed lines represent the performance when the group-sparsity
structure is ignored, i.e., each algorithm assumes the trivial group partition Z = {{1},...,{d}} while
being provided with the total sparsity level (if required).

Direction Recovery and Support ldentification from Noisy Observations

We now repeat the previous two experiments in the presence of additive pre-quantization
noise. In particular, we consider measurements of the form y = sgn(Ax + v) with
v ~ N(0,0%ld,,) and 0 = 0.2. Note that according to [Jac™13, Lemma 4], a noise
standard deviation of o = 0.2 implies that roughly 10 % of all sign measurements are
flipped, which bears the potential to substantially degrade the performance of each recovery
method. In particular, Jacques et al. show that the expected Hamming distance between
noiseless and noisy quantized measurements is bounded by

. . 1 o
EAg(sgn(Ax),sgn(Ax +v)) < W)
for X € S! and A a standard Gaussian random matrix. By the Chernoff bound, the
binomial random variable mAg(sgn(Ax), sgn(Ax + v)) then concentrates sharply around
its mean.

The results of the experiment are shown in Figure 4.5. While the relative performance
of each method w.r.t. other methods remains the same with AEV outperforming both
AL and A the performance of APV drops off by around 5 dB compared to the noiseless
case. On the other hand, the SNR of both A®™ and A in the noisy setting remains
almost unchanged compared to the noiseless setting, emphasizing the error resilience
of both methods whose performance is once again on par due to their close connection
through Problem (P, ;) and their corresponding performance analyses.

We also consider the support identification accuracy in the noisy setting whose results
are depicted in Figure 4.6. As one would expect, the performance of both A%™ and A
once again remain unchanged. This means that even in highly noisy scenarios the group
hard thresholding approach yields surprisingly accurate support detection performance
considering the simplicity of its implementation. We also once again observe the constant
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Figure 4.6: Support estimation error in the noisy regime. Dashed lines correspond to the performance

w.rt. Z={{1},...,{d}}.

bias of A%"”, which consistently misidentifies around 5 to 6 groups according to our
thresholding rule to determine active groups in a reconstructed vector. On the other hand,
while surprisingly accurate at smaller m, the performance of AEV quickly deteriorates as
m increases to the point where as many as 40 groups are erroneously selected. Again,
one likely explanation for this phenomenon is rooted in the fact that while APV correctly
identifies the active groups, resulting in a competitive reconstruction performance as
shown in Figure 4.5, the scheme also selects a substantial number of other groups with
considerably lower but nonnegligible energy.

In the last experiment, we repeat the above investigation in the case of adversarial
post-quantization noise. This means that we now consider measurements of the form
y = f osgn(Ax) where f ~ B,,(p) with p = 0.9, meaning that again on average 10 % of all
measurements are flipped. Both the performance in terms of average SNR and support
identification are presented in Figure 4.7. The graphs tell a familiar story with one crucial
exception: the performance of ATV in the face of adversarial post-quantization noise drops
considerably compared to its behavior in the presence of pre-quantization noise. While
both AS™ and AR also exhibit slightly worse performance compared to the previous
setting, they generally perform on par with A%t again slightly edging out A%O” both in
terms of average reconstruction error and support detection.

4.4 Recovery from Dithered Observations

In this section, we lift the restriction that signals of interest belong to the unit Euclidean
sphere. This change alone has no effect on the recovery results presented in the previous
section as the sgn-operator is invariant under positive scaling of its argument. However,
as is a well-established fact in the literature of 1-bit compressed sensing at this point,
we can circumvent this shortcoming in the measurement procedure by shifting the linear
projections by a so-called dithering vector 7 € R™ prior to quantization. In particular, we
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Figure 4.7: SNR and support detection error performance in the presence of adversarial post-
quantization noise with a sign-flip probability of 1 — p = 0.1.
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Figure 4.8: Recovery of vectors in R? from 1-bit observations when the measurement matrix A is
populated with i.i.d. Bernoulli random variables.

now consider for x € R? and A € R™*? measurements of the form
y =sgn(Ax + 7). (4.20)

Clearly, the only way we can hope to sensibly estimate the norm of x in addition to its
direction is by choosing the (nonadaptive) threshold vector 7 as a function of the norm of
x. As such, we assume that vectors of interest are contained in a scaled unit Euclidean
ball of radius 7, 7.e., we now consider recovery over the sets ¥z N r]Bﬁg and &7 N r]B%‘Qj,
respectively.

The idea of dithering was also recently used to overcome the problems outlined in
Section 4.3.1 when the underlying measurement matrix is drawn from a subgaussian
distribution, which could potentially lead to distinct sparse vectors that are mapped to
the same bit string (see, e.g., [DM18a]). Conceptually, it is easy to see why dithering
can be used to overcome the problem of too little variation in the choice of hyperplanes
used to partition a signal set into quantization cells. Consider for instance the recovery
of sparse vectors in R? from binary observations of Bernoulli projections as depicted in
Figure 4.8. In two dimensions, there are only four possible hyperplanes which tessellate
the unit sphere into four® disjoint quantization cells (Figure 4.8a). As a result, the size of
the quantization cell containing x in Figure 4.8a cannot be further reduced by taking more
measurements.’ The situation changes drastically, however, if one incorporates dithering

®Note that one hyperplane alone always defines two quantization cells (i.e., half-spaces) so the two
hyperplanes depicted in Figure 4.8a define all possible quantization cells since the other two hyperplanes
are collinear to the ones depicted.

6Note that in two dimensions this is not an issue since there are only four distinct 1-sparse vectors on
the unit sphere S'. In higher dimensions, however, it causes issues when sparse vectors are not separated
by at least one hyperplane. In the Gaussian setting, this happens with high probability on the draw of
the vectors a; (cf. [PV13a, Theorem 4.2]) but not in the Bernoulli setting.
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of the form y; = sgn((a;,x) + 7;). By adding a (known) offset 7; prior to quantization
and thus shifting the quantization point, it becomes possible to tessellate the signal set
in a more meaningful way when the choice of hyperplanes is limited. As demonstrated
in Figure 4.8b, shifting the two hyperplanes from Figure 4.8a by varying offsets from
the origin not only allows to reduce the size of the quantization region containing x (or
any other 1-sparse vector on the boundary of S') but also opens up the possibility to
approximate the length of a vector.

4.4.1 Reconstruction via Quantization Consistency

In this section, we consider the recovery of group-sparse vectors by means of various convex
programming techniques. Most of the results to follow build on guarantees previously
established for undithered observations. The first theoretical result of this type which
established an error bound under the measurement model (4.20) goes back to the work of
Knudson, Saab and Ward [KSW16] who suggest to solve an augmented convex program
to recover sparse vectors from dithered 1-bit observations for A € R™*? with standard
normal rows a; ~j; 4. N(0,1d;). To gain an additional degree of freedom when estimating
vectors outside of the unit sphere, they introduce an auxiliary variable by replacing the
linear measurements Ax + 7 with Ax + w7 /6 during recovery where 7 ~ N(0, #%Id,,) is
assumed to be a Gaussian dithering vector.” The motivation for this step is obvious: if A
consists of independent copies of a standard Gaussian random variable, then by introducing
the variable w, the dithered measurements y = sgn(Ax + w7t /0) can be expressed as
the undithered measurements of an augmented low-complexity vector with an additional
nonzero entry. In other words, one relates the problem of estimating a vector X € rB¢ to
the problem of estimating the extended vector (x' 6)7 with the same measurements y by
lifting the problem into a slightly higher-dimensional space. This transformation will be a
common theme throughout the remainder of this chapter. Before turning our attention to
the analysis of a dithered variant of Problem (P, 3) using the technique outlined above,
however, we first address recovery of group-sparse vectors inside scaled Euclidean balls
by a more straightforward approach. This particular formulation of the problem was also
used in [Bar™17a] to prove a similar result in the case where signals are analysis-cosparse
w.r.t. a tight frame.

Norm-Constrained Cone Programming

Recall from the discussion at the beginning of Section 4.3.1 that our main motivation in
the formulation of Problem (P, 3) for the constraint (y, Ax) = 1 was to remove the null
space of A from the feasible set. In fact, the constraint not just removes ker(A) but also
the subspace (A"y)! from the search space. This step was necessary as the relaxation of
the set of quantization-consistent vectors {x : y = sgn(Ax)} to {x:y o Ax > 0} would
otherwise render the resulting optimization problem trivial given the optimal solution of
x* = 0. Under the dithered observation model, however, the zero vector is not trivially
feasible. Moreover, a constraint of the form (y, Ax 4+ 7) = ¢ for some constant ¢q > 0

"Technically, as we will see below, it suffices for the matrix (A 7/6) to satisfy certain deterministic
properties such as the group-RIP or the e-tessellation property. However, by requiring 7 to be a Gaussian
random vector we may immediately appeal to the probabilistic results from Section 4.3 to characterize
the probability for these events to hold.
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already imposes an energy constraint on x by forcing it to belong to the affine hyperplane
{x:(ATy,x) = ¢g — (y,7)}. In other words, the constant ¢, would have to be tuned
according to the unknown norm of target vector x. Inspired by previous results in this
direction [Bart17a; Bar™17b; DJR17], we therefore consider the problem

minimize [[x||z;
s.t. yo(Ax+7)>0 (Pys)
Il <7,

which corresponds to Problem (P, ;) with the constraint (y, Ax) = 1 replaced by ||x||, < r.
Again, we associate with Problem (P ;) a recovery map A: {£1}™ — R? of the form

Af(y) = arginf {|xl|z, + y = san(Ax +7), [x], < r}

where the notation A%° is used as a hint that the operator is based on the norm-constrained
second-order cone program (SOCP) (P,g). We point out that while Problem (P,g) does
not in general have a trivial solution at x* = 0, the program still outputs the zero vector
with nontrivial probability. To see this, one needs to estimate the probability that O is
feasible for Problem (P,s), which happens to be the case if y o 7 < 0. By independence
of the entries of 7, this means

P(roy <0)=][][P(riys <0) (T)O.
i=1 mmee
In other words, while nontrivial, the probability that Problem (P,g) has a trivial solution
is exponentially small, which in turn justifies not including a constraint of the form
(y, Ax + T) = ¢ in the problem.
Note that since 7 has independent Gaussian entries with variance 62, the first constraint
of the above problem is equivalent to

(4 g)(3)) =5 (0 9)(3))

where g € R™ is a standard Gaussian random vector independent of A. As alluded to
before, the performance analysis of Problem (P,g) will consequently rely on the ({5, (1)
group restricted isometry property of matrices of size m x (d + 1). In general, the analysis
proceeds along the lines of the proof of Lemma 4.4. Given an (effectively) s-group-sparse
vector X € R? with [|x||, < 7 and a minimizer % of Problem (P,g), we start by establishing
that certain convex combinations of the augmented vectors

a= (g) and U= (?) (4.21)

Lemma 4.26. Let x € K NrBS with K = Xz, or K = &7, and assume A = (A g) e
R™* 4+ satisfies the (€9, £1) group restricted isometry property of order

t:4(s+1)<1+gz><i§t> (4.22)

are effectively group-sparse.
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with constant 0;. Denote by X a minimizer of Problem (Pyg) given the measurements
y = sgn(Ax + 1) with 7 = 0g. Then with G and G as defined in (4.21) and X € [0, 1], the
convex combination

i=(1—\)—— + A € RIH!
[afl,

is effectively t-group-sparse w. r.t. the extended group partition T := T U {{d +1}}.

Proof. We begin the proof by establishing that &1 and 1 are effectively group-sparse. To
that end, note that by definition of 1, we have

[allz, = lIxlz, +0

< Vslxl, + 6
<rys+0

<((7)-())
<Vs+ IV 462

where we invoked the Cauchy-Schwarz inequality in the last step. Since we trivially have

|ally, [, > 6, it follows that
ul|~ 2
I OHIJ < VIl + -
[l 0

Hence, 1 is effectively (s + 1)(1 4 r2/6%)-group-sparse w.r.t. Z. Moreover, optimality of X
for Problem (P,s) implies that

[allz, = I%llz, +7 < %z, +7 = lalz,

so that 1 is also effectively (s + 1)(1 + 72/6?)-group-sparse. From the triangle inequality,
it therefore follows for u that

= ull= 2
[z, < (1- ) | GH“ Y J'I’l <Vs+ 1P. (4.23)
’ [l Il 0

Next we bound |[u]|, from below by the same technique as employed in the proof of
Lemma 4.4. Since A was assumed to satisfy the ({s, (1)-group-RIP of order

7‘2 1+6t 2
(o 2) (8’

we have by feasibility of X and X for Problem (P,s), i.e., sgn(Ax + 7) = sgn(Ax + 7)
and hence sgn(Au) = sgn(At), that

At Ad

[l

> (1= A1 —6)+A1—d)=1-4,

1

A

JAa],=a- A)| [l

A

1
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Next, we bound |Ati); from above in terms of the £y-norm of 4. With the usual notation
where 77 C Z denotes the ¢t groups with largest f>-norm of u, 75 the t next largest groups,
and so on, we find with the triangle inequality and the group-RIP condition of A that

s, < o], < 150 1o, + Sl
i>1 i>2

< (100l + ’fﬁ”)

< (1+0y)lal, + <r+@vs+ J1+

where again we invoked (4.8), followed by (4.23) in the last step. In combination with the
lower bound on ||Aul|; and solving for |[ul|,, this yields

|| _ H S 1— 6t VS +
u \/1

S ) 92
With (4.23), we arrive at

Jullz, I
) < _
[al, = = «ﬁ* e

1+40¢

Substituting in our choice for ¢, it then follows that the vector u is effectively ¢-group-sparse,
which concludes the proof. O]

Remark 4.27. Note that the previous result only holds for x belonging to Er.s N rBY (or
Y1.sNrBE) rather than the more general signal set r\/EIBﬁ%’l NrBS. This means that & is not
just effectively r-group-sparse with r := (s+1)(1+712/6?) but actually (s + 1)-group-sparse
since

ull= b'e +6 92
| HI,1 %z fllx||2+ ST

lall, %2+ 62

by Cauchy-Schwarz. However, since the same does not hold for G, the proof of Lemma 4.26
simplifies if one instead uses that both 1 and G are effectively k-group-sparse.

To establish the recovery guarantee of Problem (P,g), we will also need the following
technical lemma from [Bar™17a], which will also be crucial to establish several other
recovery guarantees in this chapter.

Lemma 4.28 ([Bar™17a, Lemma 8]). Let a,b € R" and a, 8 € R with «, § # 0. Denote
by a and b the extended versions of a and b in R™™ with o and 3 as their last coordinates,
respectively. Then

)
lalla |[b]|s

1a]l> - [[bll5
, ol 18]

a

a f

2

84
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Lemma 4.29. Let % € &, with |||, <7, and assume A = (A g) € R™*@HD) sqtisfies
the effective group-RIP of order t with constant t for t > s chosen according to (4.22).
Given measurements of the form y = sgn(Ax + 7) with ™ = 0g, every minimizer X of
Problem (P,g) satisfies

r? + 62

1% = x|, < 44/0¢

Proof. We immediately invoke Lemma 4.28 for the vectors x and x with o = 5 = 6. With
the naming convention established in (4.21), this yields

x x| _llal,- @l &
o 0),> 2 |4l [k,
VIR 62 Il + 0| i
z lafs |,
r2+ 6% ua i
< — —— . (4.24)
> |1l k|,

For the right-hand side, we find by the parallelogram identity that

2 1/ a a \|?
\ = o3 w)L)
) 2\ [[ally, ~ fally /1,

Since the argument of the {>-norm on the right-hand side is a convex combination with
A = 1/2 as required by Lemma 4.26, the (¢, ¢1)-group-RIP condition of A yields
A a

o o A(-8 . o A
’F( @ @ ) |AGwE + mi)l, il HIARE]L 14
2\ [[afl,  [fafl, B 2(1+5¢) - 2(1+4y) 140
Rearranging (4.24) for ||x — x||2 and combining the previous estimates, we finally arrive at
2+ 0? AN
- xl, < 2 5 1= (155

0\ 1+,

T2 + 92 (1 + 6t)2 — (1 — (St)Q
0 (14 6;)2

- 4r2 + 6% /o,

N 0 146,

r? + 62
<4 .
LN

The claim follows. O]

u u

[afla [l

a
llally

2

=2

With Lemma 4.29 established, we are now prepared to state a corresponding proba-
bilistic recovery result for Problem (P,g).
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Theorem 4.30. Let (A g) € R™*@Y be g standard Gaussian random matriz. Then
the following holds with probability at least 1 — n: given a vector x € Er, NrBY and its
measurements y = sgn(Ax + 0g), every minimizer X of Problem (P,g) satisfies

[x —x[[, <e,
provided that

2 1 p2\* 2
m>e? (7’2) (1 + ;) [3 log(G/s) + sg + log(n_l)}

with

2 | p2
f<9 \/ﬁr +0 '
0
Proof. According to Lemma 4.29, the recovery error of Problem (P,s) is bounded by

. r? + 62
1% - &, < 45 —

L€, (4.25)

provided that A satisfies the effective group-RIP on &7, with constant d; and

7'2 1+5t 2
t—4(s+1)<1+92><1_5t> .

With Lemma 4.13, this event occurs with probability at least 1 — n if

m > 6,2 {t log(G/t) +tg + log(n_l)].

Solving for ¢; in (4.25) and substituting it into the expression for ¢ means that t is upper

bounded by
2
t=36(8—|—1)<1—|—02>

if ¢ < 2v/2(r? 4 6?)/0 since in that case

L0 1602+ 0% +6%° _ (2 +6%)°

1—6, 16(2+02)2 — 622 = 8(r2 + 02)2

This implies that

2 p2\* 2
m35_4<r Z ) (1+;) |s10g(G/s) + 59+ log(n™)]

measurements suffice for the conclusion of Theorem 4.30 to hold with probability at least
1—n. O

Remark 4.31. The optimal choice 0 = r implies that m scales with r*. This dependence
on 1 if the standard deviation 6 of the quantization thresholds is chosen on the order of r
is common to most recovery guarantees we will discuss in the remainder of this chapter.
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Quantization-Consistent Recovery via Lifting

As previously announced, we now turn to the analysis of the following recovery procedure
based on a lifting reformulation of Problem (P, 3) for dithered measurements. In particular,
we consider the program

minimize [|x|, + o]

s.t. y = sgn (AX + %T) (Pag)
HAX + %‘THl = 1.

Note that in the undithered setting, the constant on the right-hand side of the last
constraint was ultimately arbitrary and only chosen as 1 for convenience of analysis.
However, without the additional variable w, the above problem could potentially become
infeasible if the constraint were replaced by ||Ax + 7||; = 1 as it would indirectly impose
a norm on minimizers X. The variable w is therefore used to remedy this restriction
such that no explicit constraint involving an estimate of the radius r of the ¢5-ball which
contains X is necessary. Given a minimizer (X, @) of Problem (P,4), we associate with it
for convenience the recovery map implicitly defined as

0.
AzY(y) = % (4.26)

The following result establishes a reconstruction quality of AYV conditioned on the effective
group-RIP.

Lemma 4.32. Let X € &, with ||X||, < r, and assume that A = (A g) € R™*(@+D
satisfies the effective group-RIP on Er; with constant §/1024 for some § € (0,1) and

t—4(3+1)<itg>2.

Given measurements of the form 'y = sgn(Ax + 1) with T = 0g, every minimizer (X, W)
of Problem (P,q) satisfies

% — gx < 6V,
W lg
provided that
2 2)2
5 < (30% —r*)
0%(r? + 6?)

with 0 > r//3.

Proof. The proof proceeds along the lines of the proof of Theorem 9 in [Bar™17a]. Given
an optimal solution (X, ), we begin by defining the vectors

. (X . [x
u—<w> and u—<0>.
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We then have by feasibility of (x,) for Problem (P,q) that

A

y = sgn (Afc + ZT) = sgn(Ax + 0g) = sgn(Ai)
and

HA)A(—i—wT = 1.

0

\Aﬁ

~ Jaa,
This means that the vector 1 is feasible for Problem (P, 3). Next, note that the normalized
augmented vector a/||@||y is also feasible for Problem (P,3). Since by Remark 4.27,
the vector u is effectively (s + 1)-group-sparse w.r.t. the augmented group partition
7 = ZTU{{d+1}} and the matrix A satisfies the effective group-RIP of order ¢ with
constant 6/1024, Lemma 4.6 and Remark 4.7 imply that

‘ LU SNV )
[ally [l f, 1024 4
which in turn yields
b o | V8
lafl,  flafly] — 4

An application of the reverse triangle inequality therefore implies

)| 0 Vo 0 Vo 40— VoV + 62
. = .

lall, = Jlal, 4 = Virge 4 INGENE

With Lemma 4.28, it now follows that

[l

X X

0 w

o

4 u u

X =X
S an

0 0

[[afl, - [[afl, 3
01| [llally, [l
< Vr2 4+ 62 4412 + 62 ﬁ
T 0 40— VoVrT 2 4

S5 r? 4 62
(40 — Vo6v1? + 6%)

With our required assumption on ¢, the fractional term is now bounded from above by 1.
The recovery error of the estimator %/ is consequently bounded by

2

2

x—ﬁx < Vs,
Wy

which concludes the proof. O]

Remark 4.33. The condition on § in Lemma 4.32 seems rather unwieldy. However, the
condition turns out to be very mild. For instance, the optimal choice 0 = r yields the
trivial condition § < 2.
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4.4 | RECOVERY FROM DITHERED OBSERVATIONS

Based on Lemma 4.32, we may now derive the following probabilistic recovery guarantee
for minimizers of Problem (P, ).

Theorem 4.34. Let A = (A g) € R™ D be o standard Gaussian random matriz, and
fix

< . 16\/59 302—7"2
£ < min ,ﬁ .

Then with probability at least 1 — 1, every vector x € Er., NrBI can approxvimated from its
measurements y = sgn(Ax + 0g) by a minimizer (X,w) of Problem (P,9) such that

provided that
m > e 40t [5 log(G/s) + sg + log(n’l)}.

Proof. Given that the vector 0%/ approximates x with accuracy 0+/6 (in terms of the
Euclidean distance) if A satisfies the effective group-RIP of order

1 2

it suffices to choose m large enough for this event to occur with the desired probability. To

that end, we set § = (¢/6)? in Lemma 4.32. By Lemma 4.13, we then have with probability
1 —n that the matrix m_lmﬁ; satisfies the effective group-RIP of order ¢ with constant

8/ =e?/(v6?%) for v = 1024, provided that
S\ 2 (1+35/v\ G
m 2 () ( i M) {(s +1)log <S+1) + 59 + log(n_l)]

gl 1—6/~y
2
o a0t { (G) 1}
=% 9(762—52> (s +1)log P +(s+1)g+log(n—)|.

With the condition £ < 64/7/2 = 161/26, the fractional term is bounded by 9 so that the
conclusion of Theorem 4.34 holds with probability at least 1 — n if

m > e 464 {s log (f) + sg + log(n_l)}

> 19 [(s + 1) log < G 1) + (s +1)g +log(n™)

s+
where we absorbed the constant 72 in the notation. ]

The implicit constant 4% in the number of measurements is certainly not optimal
and may be substantially improved by other techniques. It is ultimately rooted in the
proof technique employed for Lemma 4.6, as well as Remark 4.7. However, the asymptotic
behavior of m in terms of €, 60,7, s, g and G is as expected by other techniques. One way to
circumvent this issue is by following the same strategy as in the proof of Lemma 4.16 and
require A to simultaneously satisfy the group-RIP and e-tessellation property. The same
strategy was also employed in [Bart17a] to establish the recovery of dictionary-sparse
vectors from random dithered measurements.
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Lemma 4.35. Let x € &7, NrBE, and assume A e Rm*+Y) satisfies the group-RIP on
Ez+ with constant 6 and

t:4(s+1)<ig>.

Assume further that A induces an (¢/4)-tessellation on ENI,t. Then with

30% —r?
e <

O+ 02

every minimizer (X, W) of Problem (P4g) satisfies

x — —X|| < fe.

0
Wl

Proof. We begin as in the previous proof and note that the normalized augmented vector
u/|[al], is effectively (s + 1)-group-sparse w.r.t. Z = Z U {{d+1}}. Since (%,1) is
a minimizer of Problem (P,g), it is also a minimizer of Problem (P,3). Moreover, A
simultaneously satisfies the group-RIP and the e-tessellation property on &z,, which

implies with Lemma 4.16 that

From here on, the proof is identical to the proof of Lemma 4.32 with v/d replaced by . [

u a

A

[afly — [fafl,

£
<=
, 4

The following result now establishes that every vector x € £z ,NrBJ can be e-estimated
by minimizers of Problem (P, 5) with high probability on the draw of the measurement
matrix A and the dithering vector 7. The result follows by combining Lemma 4.35 and
Theorem 4.17, using the same arguments as in the proof of Theorem 4.19. As in the last
application of the tessellation property, the dependence of m improves from =% to ¢73.
Additionally, the technique also allows us to reduce the scaling w.r.t. r from r* as before
to 3.

Theorem 4.36. Let A € R™*¢ be a standard Gaussian random matriz and denote by
T ~ N(0,6%1d,,) a random dithering vector. Fiz a value ¢ < (36% —r?)/(0v/0% + 1?), and

assume that
m > e *0%(slog(G/s) + sg).

Then with probability at least

G
1 —cexp (—c{s log (165) + sgD,

the following holds: every vector x € Ez.s NrBY can be estimated from its measurements
y = sgn(Ax + 1) by minimizers X of Problem (P,3) with

% —xl, <e.
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4.472 Correlation Maximization

Before moving on to the group hard thresholding approach, we first extend the correlation
maximization strategy outlined in Section 4.3.2 to dithered measurements. In this context,
we will discuss two different approaches. The first one is based on the familiar lifting
technique which embeds the dithered measurement model into a (d + 1)-dimensional
undithered setting. The second approach instead uses a regularization technique to deal
with issues arising in the proof of an appropriate variant of Theorem 4.23 when the target
vector X no longer belongs to the Euclidean unit sphere. We begin with the lifting approach.

Recovery via Lifting

Motivated by the approach taken in Problem (P,q), we consider the problem

-
maxnnlze y, Ax + wy

Qe

)=

Similar to the recovery map ALV discussed in the previous section, we associate with
maximizers (X, ) of Problem (P, ;) the recovery map

r2 + 62,

AP (y) = %, (127
W
where the notation A$™ indicates that optimal solutions of Problem (P, ;) aim to maxi-
mize the correlation between quantized and unquantized observations. The motivation
for the constraints is obvious from the previous discussion of the dithered measurement
model: given a dithering vector 7 = fg, the extended vector

o b
-~ \d
has the same sign pattern under the map u — sgn((A g)u) as the original measurements
y = sgn(Ax + 7) since

y =sgn(Ax + 7) = sgn <(A 5) <;{>> = sgn(Aq)

where we defined A := (A g). Moreover, by Remark 4.27, the vector 1 is effectively (s41)-
group- Z = (%[5 +6*)"? <
(T2 + 02)1/2'

As before, the main idea in the analysis is to relate the recovery performance for
the vector u to the performance of Problem (P,5) in d + 1 dimensions. The following
recovery guarantee for Problem (P, o) then follows from Theorem 4.23. We emphasize
again that the considered signal set is actually the bigger set \/ETB%I N rBY rather
than £z, N rBY. This is due to the fact that x € &, N rBY is not a convex constraint
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and can therefore not be directly imposed in a convex program. However, by the same
arguments as in Section 4.3.3, the solution of Problem (P, ;) does not change if we replace

the constraint by (x,w) € Sf o1 VT2 + 02B3™ since conv(E Fep1 NV + 02B3T) =
Vs + 1V 4 2BE 0 Vit B

Theorem 4.37. Let A = (A g) € R™@D be g standard Gaussian random matriz, and
denote by T = 0g a dithering vector. Given a vector X € \/srBS., NrBY and the quantized
measurements y = sgn(Ax + 7), any solution (X,®0) of Problem (P4y) satisfies

. 0%

X——
w

<e
2

with probability at least 1 —n, provided that

2 p2\*
m 2, 54<T —g ) [S log(G/s) + sg + log(nfl)}

and € < /1?2 4+ 62.

Proof. First note that solving Problem (P4 ,) is—up to scaling of the optimal point—
equivalent to solving the problem

X

w

<Vvs+1 (Pan1)

maxnmze <y, A
X
w

In particular, any solution (X’,%’) of Problem (P4,11) implies that the vector

o (;ﬁ) - m(z) N

is a solution of Problem (P, ). Next, recall that the measurement map u + sgn(Au) is
invariant under positive scaling of its argument. We may therefore invoke Theorem 4.22 for
the vectors u/[[af, and @'/|[Q[|2 in combination with (4.14), which immediately implies
that with probability at least 1 — n, we have

m 2z 574{(3 +1)log(G/(s+ 1))+ (s+1)g + log(n’l)]

o ~/
u u

[l

A

u 1

o [l

< (4.28)

2

>

/

u

u

212

provided that

In particular, if the event in (4.28) occurs, the bound implies for the last coordinate that

0 W

u

S <z
2 Hqu
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and therefore by the reverse triangle inequality that

| 0 0—2lll,  0—evim+ 7

T
[all, — [fa

2 lall, —  Vr2+6?

An application of Lemma 4.28 thus yields

o

X

:0——
0

. ox u u
X— =

w

ol [lall,

2 0 [
) 2

< e ex/Nr + 6 .
0 —Er? 462

Choosing & = &’ /v/12 + 62 and requiring that ¢/ < 0/2, we arrive at

X
w

) [all, — flafly ],

,_OR| _dVIPE 28V
X — — =E.
o, 6—¢ — 4

Eliminating £ and ¢’, this means that for ¢ < v/r? + #?, any maximizer (X, ) of (P, 19)
satisfies
ox

X— —
w

<e
2

with probability at least 1 — n, provided that

2 4 g2 4
m26_4<r Z ) [s10g(G/s) + sg +log(n™")].

]

Remark 4.38. (i) It is easy to check that the choice = r is optimal in terms of the
number of measurements. This particular choice for the standard deviation of the
quantization thresholds therefore implies that m scales with r*, which is slightly worse
than what was established in Theorem 4.56.

(ii) While the formulation of Problem (P,10) appears to require exact knowledge of the
radius v of the f3-ball which contains X to estimate X, this is in fact not the case.
As pointed out in the proof of Theorem 4.37, solving Problem (P,10) is equivalent to
solving Problem (Py11) up to appropriate rescaling of the optimal point. However,
since we use OX /1w as estimator for X, the scaling constant is ultimately irrelevant
as it gets canceled out in the division by w. In other words, it suffices to solve
Problem (Py11) for which no explicit estimate of r is required. Nevertheless, as
mentioned in Remark 4.38(1), we would ideally choose 6 = r to obtain optimal error
decay in terms of m. The original constraint would therefore still be justified under
the assumption that an estimate of r is available in any real-world application.

As before, we may extend the previous result to the noisy observation model

y=QAx+7)=fosgn(Ax+ 1+ ) (4.29)
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where as usual v ~ N(0, ¢%Id,,) and f ~ B,,(p) are independent pre- and post-quantization
noise vectors, respectively. However, in the analysis of the associated recovery program we
now have to consider the scaled noise vector v/|[l]|, to mimic measurement of the normal-
ized vector u/[[t||,. More precisely, if @ denotes an optimal solution of Problem (P, )
under the noisy observation model, then we have as before that the normalized vector
/||y is feasible and @' := /v/r2 + 62 is optimal for the program

maximize <f osgn(At + v), Au>
s.t. lullz, <Vs+1 (P12)
Jull, < 1.

In order to invoke Theorem 4.23 for the vectors 0/|[{]]; and @'/||Q||2, however, we have
to match the vector which generated the measurements y to a/||@||. In other words, when
invoking Theorem 4.23, we have to interpret the objective function as

<fosgn(A1°1—|— V),Au> = <fosgn <AH1:1H + H:H ),Au>
2 2

o

and consider the scaled noise vector v/||l]; ~ N(0,0?/|[a||3Id,,) in place of the random
vector v. With this change, Theorem 4.23 then implies that

a u

o [l

2

u

2

a + 1) [s log(G/s) + sg + log(n_l)}

o2
> e 42p—1)72 (HH2 + 1) [s log(G/s) + sg + log(n’l)].
Ully
From here on the argument follows the proof of Theorem 4.37. We therefore arrive at the
following noise-robust version of the lifted recovery program.

Theorem 4.39. Let A and T be as defined in Theorem 4.37. Given a vector X € \/ETB%JH
rBY and noisy quantized measurements of the form y = Q(Ax + 7) according to (4.29),
any solution (X,w) of Problem (P41o) satisfies

. ox
X—= -
w

<e¢

with probability at least 1 —n, provided that

mz =0 (S5 ) (G ) otu(@r + oo

and e < /1?2 + 02,
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Remark 4.40. Unlike in the noiseless case, the optimal choice for 0 is not as straight-
forward as before. However, it is easy to verify that the bound on m depends on 6 in a
convex fashion and that it attains its optimum at

1
0= 2\/27“2 — 02 4+ Vot + 4rt 4+ 200272

1
> 2\/27“2 — 02+ Vot + 4rt + do2r2

=T.

Due to convexity of the map

r? +6? L2

m= Q<5_4(2p - 1)_27“4((;; + 1) [s log(G/s) + sg + log(n‘l)D

this means that

measurements suffice to accurately recover effectively s-group-sparse vectors contained in
rBY via Problem (Py10) from noisy observations. In that sense, the term o?/r% in the
choice for m roughly acts as a reciprocal signal-to-noise ratio (SNR), i.e., for a fized r and
accuracy €, the number of measurements required to obtain an e-accurate reconstruction
increases as r*/a? decreases.

Regularized Recovery via Projection

Given the quantized measurements y = sgn(Ax + 7), we now aim to maximize the correla-
tion (y, Ax + 1) = (y, Ax) + (y, 7) between the quantized and unquantized observations.
Since (y,T) is constant w.r.t. x, one option would be to solve the problem

maximize (y, Ax)

s.t. ||X||I,1 < /st
Il <

However, the proof technique employed in [PV13b] breaks down when trying to adopt it
to the dithered observation setting. We will therefore consider the following ¢s-regularized
problem instead, which was recently proposed by Dirksen and Mendelson in [DM18a] to
make the problem amenable to the proof technique of [PV13b]. In particular, we solve
the problem

max}cmize (y, Ax) — M”XH§

s.t. [x/l7, < Vo7 (Pa13)
Ix[ly <

where 11 > 0 is a regularization parameter. Due to the fact that the objective function
contains both a quadratic and linear term in x, the problem above can be rewritten in
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terms of the orthogonal projector Il on the set K = /srBz; NrBY (see also Section 4.4.3).
For this reason, we also denote maximizers of Problem (P, 3) by

A7 = argsup {{y, Ax) — pl|x|; : x € v/srBg , N 7B}

The following result establishes a recovery guarantee for maximizers of Problem (P, 3)
from dithered observations.

Theorem 4.41. Let x € R? with ||X||;, < \/sr and ||%||, < r. Let further A € R™ be a
standard Gaussian random matriz, and denote by T ~ N(0, 621d,,) a random vector inde-
pendent from A. Then with probability at least 1 —n, every mazimizer X of Problem (P3)

with y = sgn(Ax + 1) and p > m/v/2mw0? satisfies
1% — x|, <e,
provided that
m 2 e (0% +r?) [7‘2(3 log(G/s) + sg) + log(n‘l)}.

Remark 4.42. Choosing the threshold standard deviation 6 on the order of r as usual,
Theorem 4.4 1 establishes that effectively s-group-sparse vectors can be estimated up to a
fidelity of € from m = Q(e~*rt(slog(G/s) + sg)) measurements with probability at least
1 —exp(—r?(slog(G/s)+sg)). Note that this result exhibits worse scaling dependence of m
on € and r than Theorem 4.50. However, unlike in Theorem /.36, the failure probability

additionally decays exponentially in r2.

We point out that Problem (P, 3) does not require explicit knowledge of the quantiza-
tion thresholds 7. According to Theorem 4.41, it suffices to have access to the threshold
variance 02, which is needed to appropriately choose the regularization parameter p. This
is in stark contrast to the lifted reconstruction scheme (P, 1,), where the exact threshold
vector T has to be known at the decoder.

Note that the results in [DM18a] could also be used to derive a similar result to
Theorem 4.41 in a more general setting where the rows of A are allowed to be isotropic
subgaussian random vectors, and one can account for both pre- and post-quantization
noise. However, the quantization thresholds in Theorem 1.7 in [DM18a] are uniformly
distributed in the interval [—1/(2u), 1/(2u)] rather than drawn from the Gaussian distri-
bution where the regularization parameter p depends on unspecified constants, which are
hard to calculate explicitly. As a consequence, employing their recovery technique requires
experimentation to appropriately tune the parameter u, while in our setting the choice for
1 is simple.

In general, the proof of Theorem 4.41 proceeds along the lines of [PV13b, Theorem 1.1].
We begin by defining the scaled loss function

La(x) = 1y, Ax) = plx]2)

- ?711(<sgn(A)°< +7), Ax) — MHXHS)
- 7}1 i (sen((as, %) +7) (s, x) — pua}).
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where the index x indicates the dependence of Ly on x through y = sgn(Ax + 7). We will
then use a result which establishes that the random variable Lg(x) concentrates sharply
around its mean as demonstrated in [PV13b]. To that end, we first calculate Ly(x) in
expectation.

Lemma 4.43. Let X,x € R%. Then
o [ 2
ELq(x) = Ag(x, %) — 2
() = defe.5) = L

2
Ax = |
m (0% + [1x112)

Proof. Since the rows of A are identically distributed and independent from 7, we imme-
diately have

with

E L (x) = Elsen((a;, %) +7){ai, x)] - £ ||

where i € [m] is an arbitrary index. Next, we decompose x into orthogonal components,
i.e., we write x = (X, x)%/||%||> + x* with (x,%) = 0. Substituting this decomposition
into the previous expression for E Ly (x) therefore yields

BLx() = B seal (o) + ) (a0 30 S+ (a0x) ) | = Ll
ey

112
B3]

7
Elgsgn(g+ 7)) — %HXHi

where g ~ N(0, [|x]|3) is independent from 7 ~ N(0, 2), and the last term in the parentheses
disappears due to independence of (a;,x) and (a;, x) by orthogonality of x and x*.
Conditioning on g, we now have

E,[9E, sgn(g+7)] =E,[g(P(¢g+7>0) —P(g+ 7 < 0))]
=Ey[gP(g+7>0) —g(1 =P(g+7 > 0))]
= 2E,[gP(T > —g)]
=2 /_ O:o gog(9)P(T > —g)dg

where ¢, denotes the density function of g. Denote by ¢, the corresponding density

. . 00 . o2 . .
function of 7, i.e., P(1 > —g) = [% ¢-(u)du. Since ¢}(g) = —gpy(g)/lXl3, integration by
parts in combination with Leibniz’s rule yields

Elgsgn(g + 7)) = ~2(X3[05(0)P(r = )5+ 20K [~ 6ul(9)6-(~g)dg

\Fn"n?/w | ( 92[1 Lt Dd
=/ =lx —e= e OXP | = [ 5 g
=Xl | el ST

2

Ny — g |
= — || X — eX —_——
70 L Vamgxl, D\ e |

02+[|%]|3
ST
= s~ 11X l2-
(02 + [|%]]5)
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This concludes the proof. O

The following result due to Plan and Vershynin now establishes the desired concentration
behavior of Lg(x). Note that the result in [PV13b] is technically concerned with the
concentration behavior of the unregularized loss function x — (y, Ax)/m rather than
Lx(x). However, since the regularizer p|x||5 is deterministic, linearity of expectation and
Ly implies that the result also holds for Ly (x), which is the version we state below.

Proposition 4.44 ([PV13b, Proposition 4.2]). Let K C R%, and fir x € R, Then for
each t > 0, it holds that

w(k) mt2>
Plsup |Lg(z) —ELi(z)| <4——+t| >1—4dexp|——|.
(sup xta) ~ L) < 4228 1) (-
Proof of Theorem 4.41. We apply Proposition 4.44 for the vector x € K := conv(Ezs N
rBY) = /srBf, N rBj and a maximizer X € K of Problem (Py13). This means that with
probability at least 1 — 4 exp(—mt?/8), we have from optimality of X for Problem (P 3)
that

< Lx(f{ - X)
< ELi(% - %) 4“’(’3_;’0 +t
< (6% — I13) — £ (IR — 1%02) + 8%) it (430)

where in the last step we invoked Lemma 4.43. Next, note that we have

A% (a2 o2 ..
2% 2+ 2552 — Ael %)

Ax s
A o o 12 X 1Al12 X || 12
= =A%, %) — 1%113) + SRl — S5

Ak

Ak yn o2
?HX_XHz:

In light of (4.30), this implies

~—

>\5’< N o 12 o ~ 112 M A 112 o112 U)(’C)
0< ?(HXHQ =[xz = % XHQ) m(”XH2 HXHQ) 8 Jm t
Mo anz . qw(K)
< _EHX _XHQ 8 m t

since by our assumption on p we have

k: 1 < 1

2 2m(0% + ||x||3) — V2m6?

<K
m

Rearranging for ||% — || therefore yields

16 w(IC 2t
% - &2 < 000 |

A VMo Ak

!
- 2
= £ y
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which, after solving for ¢, gives

Ax K
t= "¢ — SM.
2 vm
Substituting this expression into the failure probability of Proposition 4.44 and requiring
this probability to be bounded by 7, we find by solving for m that

m > CA e [w(K)? + log(n~")]

8w (KC) + J 8log [(Z)lu 2

measurements suffice for the conclusion of Theorem 4.41 to hold with probability at least
1 — n for an appropriately chosen absolute constant C' > 0.

It remains to bound the mean width of the set K = conv(Er, N rBE). Since K is
compact, the supremum sup,.x (g, x) for a fixed vector g is attained on the boundary of
K. We therefore have

> 4N

w(K) = w(conv(Er,s NrBY))
=E sup (g.x)

XE(C;I’SQT]B%Z

=rE  sup (g.x)

xESI,SﬂSd*

= rw(gls)
< r(\/slog(2eG/s) + \/s_g)

where the last estimate follows from Lemma 4.10. Noting that for x € K C rBZ, we have
A? < Z(6% + %), choosing m according to

m 2> e 40 +r?) [rQ(slog(G/s) +sg) + log(n_l)}

thus ensures the conclusion of Theorem 4.41 holds with the announced success probability.
O

From the proof above, it is immediately obvious that if we consider the noisy mea-
surement model y = f o sgn(Ax + 7 + v) with v ~ N(0,021d,,) and f ~ B,,(p) denoting
again a pair of independent pre- and post-quantization noise vectors, respectively, we
obtain the following straightforward extension of Theorem 4.41. The influence of the
post-quantization bit flip probability 1 —p on the required number of measurements follows
from the discussion in Section 4.3.2.

Theorem 4.45. Let X € \/srBf , NrB]. Let further A € R™*? be a standard Gaussian
random matriz, £ € {1} a Bernoulli random vector with f; ~iiq. B(p), and 7 ~
N(0, #%1d,,) and v ~ N(0,01d,,) two Gaussian random vectors with A, T,f and v pairwise
independent from each other. Then with probability at least 1 — n, every maximizer X of

Problem (Py13) fory =fosgn(Ax+ 1+ v) and > m(2p — 1)/4/2m(0? + 02) satisfies

% —xl, <e,
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provided that

m 2 e (2p—1)72(0% + 0” +1%) [r(slog(G/s) + sg) + log(n )]

Remark 4.46. (i) In addition to an estimate of the signal energy r, one now also

(i)

100

requires information about the noise level o and bit flip probability 1 — p in order to
choose the reqularization parameter p when solving Problem (P,.3). This stands in
contrasts to Problem (P410) where we only required an estimate of r and knowledge
of the variance of the quantization thresholds. While this seems like a significant
drawback of Problem (Py13), it is a common assumption that prior knowledge on the
noise enerqy is available. Consider for instance the QCBP problem

minimize ||x||,
X
s.t. ly — Ax|[, <

fory = Ax + v from classical compressed sensing, which also requires prior in-
formation about the likely noise energy in the form of an upper bound |v|, < U.
Depending on the application, estimates on the noise level are oftentimes fairly easy
to obtain in a reliable fashion. For instance, in wireless communication, estimates of
the background noise energy can be obtained by sounding a communication channel
during transmission pauses at reqular intervals to update the current estimate of the
channel state. Similarly, since the bit flip probability of a 1-bit quantizer is usually
independent of the input and mostly determined by intrinsic hardware characteristics,
the bit flip probability may be estimated empirically by feeding a known input to the
device and observing how many times the output of the quantizer disagrees with the
ground truth input.

Eliminating the failure probability n from the lower bound on m by choosing n =
exp(—r?(slog(G/s) + sg)), we find that

= (14 (2) "+ (5) ) tstontcrs) +0)

measurements suffice for e-accurate reconstruction of effectively s-group-sparse vectors
from noisy 1-bit observations. The term (r/c)? corresponds to the SNR between
the (unquantized) linear measurements Ax and the noise vector v. A lower SNR
therefore implies that an acquisition system has to take more measurements to
obtain a constant reconstruction fidelity. Eliminating €, we furthermore see that the
reconstruction error is bounded by

(1 + (g)_2 + (g)”) (slog(G/s) + sg) v

=%, S 7 —

This shows that regardless of the noise level or the mismatch between the upper bound
r on the signal energy and the standard deviation 6 of the dithering vector, one can
always compensate for inaccurate quesses of r and o by increasing the number of
measurements.
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The nonuniform nature of Theorem 4.41 is rooted in the fact the supremum in the
concentration bound in Proposition 4.44 is only taken over z but not over x. In order to
extend the result to hold uniformly over the entire signal ensemble, we could appeal to
another more general result from [PV13b]. Note, however, that this result significantly
worsens the scaling dependency on the reconstruction fidelity e, which is why we skip the
result here.

4.4.3 Group Hard Thresholding

In this section, we derive a recovery guarantee for a group hard thresholding method from
dithered observations inspired once again by [Bar™17a]. The method naturally extends
the ideas from Section 4.3.3 to analyze the hard thresholding scheme in the presence of pre-
and post-quantization noise at the expense of losing the uniform nature of the recovery
guarantee over the entire signal ensemble. In particular, we consider the recovery map

AR(Y) = oM (ATY). (4:31)

Too see why this formulation is natural in the current context, we consider similar to
Section 4.3.2 and Section 4.4.2 the (nonconvex) program

maximize <sgn(A)°< +7), Ax + w79->

(Ps14)
s.t. <X> €eXz Nvri+ 62Bat1
w sS
with 7 = fg and g € R™. The motivation for the constraint follows immediately from the
fact that the extended vector
Q= @) (4.32)

is (s+1)-group-sparse w.r.t. the augmented group partition Z = ZU{{d + 1}} if x € ¥z,
in addition to the assumption that ||x||, < r. As before, the above program is not
tractable in its current form. However, due to linearity of the cost function, we may
replace the feasible set by its convex hull (cf. Proposition A.11), turning the constraint
set into a symmetric convex body whose Minkowski functional induces a norm on R4*! in
the form of the (s + 1)-group-support-norm. By the same arguments as in Section 4.3.3,
Problem (P4 4) therefore admits a closed-form solution as

T

u = (;) = Vr2 462 H;IV,SH(iAT y)
HHZ,sH(A Y)Hz

where again we set A = (A g). Assuming for the moment that @ # 0, we claim that the
vector

(4.33)

/72 ¥ 02 Hz(ATy)

m _ 02 HI,S (ATy)

0
ARV - N 27— (v.7)

T
Iz, (A D)2

is a good approximation for vectors in X7, N rBY.
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Lemma 4.47. Let x € Y7, with |%||, < r, and assume that A = (A g) € R™*(@+D
satisfies for t = 2(s + 1) the group-RIP on X1, with constant §; = €*/1280 for ¢ <
40/ 60? + r2. Given measurements of the form y = sgn(Ax + 1) with T = 6g, the vector

)2—0727-[ (ATy)
(r,y) *

satisfies
5 — 5|, < 0=

Proof. The proof once again follows ideas from [Bart17a]. In particular, we appeal to
the representation of the recovery problem in terms of the augmented vector

o= X
\0
in which case we have y = sgn(Ax + 7) = sgn(Aw1). Since & € R*! is (s + 1)-sparse and

A satisfies the (s, {1)-group-RIP of order ¢ = 2(s + 1), we have by Lemma 4.24 with the
augmented group partition Z =Z U {{d + 1}} and

that
a
‘ lall,
As in the proof of Lemma 4.32, this ylelds for the last coordinate that
|| 40 — evVr? + 602
lall, = Vr2+ez

8
< 4v/5/6, = 4 -
< 4VBy/0 = 4V/5 128 T4

For
< 460
€S —F7——m,
., /T2 + 02

this implies that the last entry of ATy survives the hard thresholding step such that

u= HisH(ATY) = (H?%(:§,>Y)>

With this, Lemma 4.28 yields

A

u 1

[afly ey,

X X

X X )0( HLS(ATY)
0 0

f <5’ y> 2

< VrE+02  r2+602 ¢

- 0 49—5\/7“24—024_
provided that ¢ < (362 —r?)/(6+/02 + r?), which is guaranteed by our previous assumption

that ¢ < 460/v/6% +r2. Multiplying both sides of the inequality by € completes the
proof. O

[, -

0 - |tg1]

2

eb,
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Appealing to the group-RIP, the following result, which we state without proof, is
immediate with Lemma 4.47 and Lemma 4.11.

Theorem 4.48. Let A € R™*? be a standard Gaussian matriz, and denote by T = 0g a
dithering vector with g ~ N(0,6%1d,,). Fir a value ¢ < 40/v/0% + 12, and assume

m 2 e [s log(G/s) + sg + log(n_l)}-

Then it holds with probability at least 1 — n that every vector X € Xz, with ||X||2 < r can
be approximated from its quantized measurements y = sgn(Ax + 1) by A% such that

- Afy)|, <=

To close out this section, we now turn to establishing a noise-robust recovery guarantee
for the group hard thresholding algorithm, reusing ideas from Section 4.4.2. To that end,
assume for x € R? that we aim to solve the problem

maximize <f osgn(Ax + 7+ v), Ax + wg>

(Pa15)
s.t. <X> €Xz ,NVri+ 62Ba+?
w s+l

corresponding to a noisy variant of Problem (P, ,) under the noisy measurement model
y=QAx+7)=fosgn(Ax+ 1+ v) (4.34)

with f € B,,,(p) and v ~ N(0,0?%Id,,) as usual. By the discussion at the beginning of this
section, Problem (P, 5) admits a closed-form solution given by (4.33). Once again, before
invoking Theorem 4.22 with

2

A=(2p-1) A2+ 1)

(see Section 4.3.2), we have to frame the objective function in the correct context. In
particular, we need to treat the problem as if we were to estimate a unit-normalized vector
from its measurements

X

0 v

9>\/ §+02+\/ 2462

i.e., we scale down the noise variance according to the true norm of the augmented vector
u given in (4.32). The rest of the proof then follows the example of Theorem 4.39 and
Lemma 4.47. The only difference is that instead of an estimate of the mean width of &z ¢

y =fosgn(Ax+7+v)="Ffosgn (A

X

X

we instead require an estimate of w(iz,s). However, due to the fact that il,s C gI,s and
consequently w(iz,s) < w(gz,s), the scaling requirements for m in terms of the system
parameters are identical to Theorem 4.39. As a consequence, we obtain the following
result, which is now a mere corollary of Theorem 4.39. We emphasize again the nonuniform
nature of the result in contrast to Theorem 4.48, which holds uniformly over the entire
signal ensemble Y7, N rB.
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Theorem 4.49. Let A and T be as defined in Theorem 4.48. Given a vector X € Xz,
with ||x||, < 7 and its noisy measurements y = Q(Ax + T) according to (4.34), it holds
with probability at least 1 —n that

€,

2

HX _ PHz(Ay)
(T.y)

provided that

m > e 4 (2p—1)72 (TQ _g 92) (gi + 1) [s log(G/s) + sg + 10g(’fl>]

for e < \r? + 62

Regularized Group Hard Thresholding

As alluded to in Section 4.4.2, it was recently pointed out in [DIM[18b] that the regularized
correlation maximization problem discussed in Section 4.4.2 can be reformulated as a
simple projection problem. To that end, consider the program

maximize (y, Ax) — NHXHg

P
s.t. xe X (Pao)

for some structure-promoting signal set X C RY. Factoring out p, we may rewrite the
objective function as

1
(v, Ax) — plx]]? = M<<MATy7x> _ uxui)
1, r » 1,1 ’
=pl (A Yx) = xl,— |5 ATy
u 7 )
2
o egeol)
20 )

Since the first term in the parentheses is constant, this means that Problem (P, 4) can be
rewritten without changing the optimal point as

21
+ HATy
o 21

? 1
x— —A'ly
21

2

1
minimize |x — —A'y
X 2:“

2
s.t. x € K.

This corresponds to the orthogonal projection of A'y/(2x) on the set K. If we now have
K = Y7, NrB¢ the optimal point X admits a closed-form solution given by the group
hard thresholding operator. Without the restriction to the ball rB¢, the optimal point is
given by the vector attaining the best s-group approximation error. With the additional
requirement that ||x||, < r, we subsequently need to project Hz (A y/(2u)) on rBZ. This
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allows us to define the recovery map

1
Ag_ht (y) — Hng (HI,S (2“ATy>>

1 1
HI,S *ATY ) HI,S *ATY ST,
2u 2u 9
_ AT
TM, otherwise
[z a7y
1 r
=min{ —, ———— ¢ Hr(ATy) (4.35)
{2u |HI,S(ATy)H2}

where the notation Ag'ht emphasizes the fact that the map constitutes a projected hard
thresholding scheme. We point out that the regularization term u|/x||3 in Problem (P, 4)
is only useful in case IC is not just the set of group-sparse vectors on the boundary of a
scaled f>-ball as the term would otherwise be constant. For this reason, the formulation
above does not extend to the undithered setting considered in Section 4.3 as we limit our
attention to the signal sets X7 5 and gz,s due to the scale invariance of the problem. The
performance analysis of AT™ proceeds—up to estimating the mean width of the assumed
signal set—in the same way as the analysis of Problem (P, 3) in Section 4.4.2. Since the
mean width of \/srBz; NrB¢ and Xz, NrB¢ differs only by a constant, the following result
is therefore a direct corollary of Theorem 4.45.

Theorem 4.50. Let x € Xz ,NrB3. Assume that A and T are as defined in Theorem /.48,
and assume we acquire measurements' y = Q(Ax + 1) according to the noisy measurement
model (4.34). Then with the same assumption on m and p as in Theorem 4./5, it holds
with probability at least 1 — n that

- o], <

4.4.4 Numerical Evaluation

In this section, we conduct a few empirical experiments for dithered recovery similar to
the ones carried out earlier in the context of direction recovery of group-sparse vectors.
We begin by assessing the error decay rates of the five recovery schemes discussed for this
purpose. Due to the fact that all recovery guarantees share a polynomial dependence
of the number of measurements on r, we already expect performance to fall behind
substantially compared to the direction recovery problem. Inspired by the numerical
evaluation in [KSW16], we therefore reduce the ambient dimension to d = 300 to allow
for oversampling by a factor of 16 without increasing the computational load too much.
Moreover, we now consider G = 60 groups of size g = 5. We still consider s = 5 active
groups such that in total every vector x has 25 nonzero entries drawn from a standard
Gaussian distribution. We then rescale % such that its norm is distributed uniformly over
the interval [rg,r] = [10,20]. Each recovery strategy is provided with the upper bound
r = 20 if necessary. Moreover, we choose # = r as this choice is optimal for most methods
considered in our experiments.
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Figure 4.9: Performance of dithered group-sparse recovery methods and their associated empirical
error decay rates

Noiseless Signal Estimation

We first consider the reconstruction of group-sparse vectors from noiseless dithered obser-
vations. The results of the first experiment, the normalized /s-error as a function of m,
are shown in Figure 4.9. Considering that both A and ALV are based on an augmented
version of Problem (P, 3), they inherit the decay behavior of Agv. In particular, they
exhibit empirical error decay rates of approximately O(m~=%?) and O(m~%19), respectively,
which are again close to the optimal behavior O(m™!). Surprisingly, there now exists a
gap between the performance of AX™ and A despite their connection pointed out in
the discussion in Section 4.4.3 and the fact that both methods are based on the same
analysis strategy. More precisely, the lifted group hard thresholding method exhibits a
slightly better error decay in the dithered setting, while the decay rate of AP™ reduces to
O(m=2/5).

Note that Figure 4.9 does not include the performance profiles of AT or AT introduced
at the end of Section 4.4.2 and Section 4.4.3, respectively. This is due to the fact that
both recovery maps turn out to be highly sensitive to the choice of the regularization
parameter p. According to the proof of Theorem 4.41, it suffices to choose

m

Z 2
2m(6° + [1%]2)

for the conclusion of Theorem 4.41 and in turn the conclusion of Theorem 4.50 to hold.
Since [|%]|, is unknown, we first choose = m/v276? in our simulations. This choice is
clearly satisfactory for A as shown by the empirical error decay show in Figure 4.10a.
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Figure 4.10: Error decay of the projection and projection-based group hard thresholding strategy for
different choices of the hyperparameter p
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Figure 4.11: Group support detection vs. number of measurements

However, for Ag'ht, this particular choice of p leads to a suboptimal error behavior which
does not show the polynomial error decay. Since we choose the norm of x uniformly from
the interval [rg, 7] = [10, 20] for each draw of x, a better choice for ;1 would be

m

2 27 (r2 +13)

As depicted in Figure 4.10b, this choice slightly improves the decay behavior of both
methods with the graph corresponding to AT™ flattening out as desired. In other words,
if a sensible lower bound on the expected signal energy is available in practice, the
performance of A} and AT™ can be improved by a tighter choice of the regularization
parameter p. On the other hand, if we assume for the moment that ||x||, were known
beforehand and choose instead

= m (4.36)

V2 (02 + %))

the decay behavior of both recovery schemes improves as depicted in Figure 4.10c. In
particular, the decay rate of the regularized group hard thresholding algorithm Ag'ht now
coincides with the empirical error decay of O(m=63) of the lifted group hard thresholding
scheme AD as shown in Figure 4.9. The empirical behavior of AT on the other hand moves
closer to the behavior observed by A$™, exhibiting an error decay of O(m~%37). This
dependence on the hyperparameter u constitutes a significant drawback of both recovery
schemes. Considering that the lifted hard thresholding algorithm does not require any
additional parameter tuning, the method always exhibits the same error decay. Moreover,
since both methods merely rescale the group hard thresholding estimate HI,S(ATy) their
performance in terms of group support recovery is identical. Overall, this means that
the regularized group hard thresholding scheme is generally not competitive and should
therefore not be chosen over Al in practice.

Next, we turn our attention to the support recovery problem whose results are presented
in Figure 4.11. Since A and AT™ only differ in their scaling of Hz (A y), they yield
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the same performance for the task at hand, which is why we only include results for
A Once again, we note the significant performance gap that now exists between A™
and A" with the latter one achieving almost perfect group support recovery at even
moderate numbers of measurements. Despite its almost optimal error decay rate, A% falls
behind APV, which is once again in line with Lemma 4.26, establishing that estimates
produced by A% are merely effectively rather than genuinely group-sparse. This goes
along with the difference in their empirical error decay rates as estimated in the previous
experiment. Surprisingly, AYY now takes the role of A®™ in the undithered setting by
closely following behind A" with APV consistently misidentifying around 2 to 3 groups on
average but generally performing well. Trailing behind the most by far is the regularized
correlation maximization strategy AY. This is also consistent with the previous findings
which show that A} suffers from a slower empirical error decay of around O(m~2/%) if the
regularization parameter p is not properly adjusted to the unknown norm of x.

Recovery from Noisy Observations

In the last experiment, we investigate the noise resilience of the proposed recovery schemes.
To that end, recall from [Jac*13] that in expectation,

1 o

= = —
2112+ 62 + o?

measurements are flipped due to the influence of pre-quantization noise if we consider
observations of the form y = sgn(Ax + 7 + v) with v ~ N(0, 0?Id,,) as usual. Solving for
o, we therefore choose the noise variance according to

2011112 2
o A0+ )
1—4p62

where 3 € [0, 1] now corresponds to the expected normalized Hamming distance between
sgn(Ax + 7) and sgn(Ax + 7 4+ v). As in Section 4.3.4, we choose § = 0.1 so that on
average 10 % of all sign measurements are flipped. Unfortunately, the convex programs
Problem (P,5) and Problem (P,g) associated with A and ALV respectively, turned
out to be highly sensitive to noise to the point where both programs became unstable,
consistently resulting in infeasible problem instances. For this reason, we were unable
to complete a proper benchmark of A2 and APV in the noisy regime. This unfortunate
circumstance severely limits the usefulness of both recovery methods in any practical
context. We point out that such stability issues were not encountered in Section 4.3.4
when testing the methods’ counterpart Problem (P,3) in the context of group-sparse
recovery on the sphere from undithered observations. Based on the previous discussion,
we also consider oracle variants of A} and AT by choosing the regularization parameter
p according to (4.36). We emphasize again that this choice of p is impossible in practice
since the problem of estimating the norm of x lies at the heart of the dithered observation
model. We merely assume knowledge of ||x||s here to obtain a best-case performance
profile of recovery maps based on the regularized recovery program (P, i5).

The simulations, whose results are shown in Figure 4.12, confirm again that the error
decay of A" does not change in the noisy setting as predicted by Theorem 4.41. Similarly,
choosing the regularization parameter p in an oracle-optimal way according to (4.36) by
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Figure 4.12: Normalized recovery error vs. number of measurements for noisy observations with an
average of 10 % of all bits flipped

assuming exact knowledge of ||X||2, the error decay of AY matches the previous behavior
in the noiseless setting. Unlike AS™ and A}, however, the recovery error of the hard
thresholding algorithms AR and Ag'ht now visibly deviates from their expected log-linear
behavior. For AR this might be rooted in the fact that according to Theorem 4.49 and
Remark 4.40, the optimal choice of # depends not only on r but also on the noise variance
o?. While this observation technically also applies to AY™ according to Theorem 4.39, the
situation is comparable to the previous discussion about the discrepancy between Ag and
Ag’ht. Overall, these observations suggest that hard thresholding schemes are generally
more sensitive to slightly suboptimal parameter configurations. We point out, however,
that with more than m = 1500 measurements, the lifted hard thresholding algorithm A
outperforms any competing algorithms with its empirical error decay matching its rate in
the noiseless setting.

To close out this chapter, we benchmark the group support detection performance in
the noisy regime. Once again, the results shown in Figure 4.13 confirm the noise resilience
of the group hard thresholding scheme AL, As in the undithered case, both correlation
maximization strategies (excluding AR) are not competitive even at considerably higher
values of m. In fact, the number of misidentified groups increases the more measurements
we acquire, which is in stark contrast to the hard thresholding approach whose detection
error drops to zero beyond m = 1500 measurements. Overall, its simple and numerically
efficient implementation, noise robustness and support detection accuracy render A% the
most promising recovery scheme.
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Figure 4.13: Group support detection rate vs. number of measurements when roughly 10 % of all
sign measurements are wrong

4.5 Conclusion

In this chapter, we considered the reconstruction of group-sparse vectors from 1-bit
observations of the form sgn(Ax) € {£1}"™. Since any information about the norm of x
is lost in the acquisition process due to the scale invariance of the sgn-operator, we first
limited ourselves to the direction recovery problem on the Euclidean unit sphere. We
established theoretical reconstruction guarantees for three recovery strategies modeled after
existing schemes in the 1-bit compressed sensing literature. In particular, we established
that Q(e~*(slog(G/s) + sg)) measurements suffice to estimate group-sparse signals up
to e-fidelity, where the integer power a € {3,4} depends on the choice of the recovery
procedure.

We complemented our theoretical findings with a series of numerical experiments to
gauge how close the predicted error decay rates are to their empirical rates. Overall, we
found that every method exhibits slightly faster empirical error decay than predicted by
the accompanying theory with the group-sparse variant AEV of a recovery strategy due
to Plan and Vershynin coming closest to the provably optimal rate of O(m™!) among all
possible decoding maps.

We also considered the performance in the noisy regime and found that two of the
considered methods—a correlation maximization scheme AP™ and an efficient group
hard thresholding algorithm AY-—exhibit remarkable robustness to both additive pre-
quantization noise, as well as adversarial post-quantization bit flips. On the other hand,
the performance of AEV, while still competitive, was shown to deteriorate substantially in
the presence of noise. Lastly, we considered the problem of identifying the active support
of group-sparse vectors. In this context, it was observed that ALYV was only competitive at
moderate group-sparsity levels despite its generally accurate signal estimation performance.
_ Opverall, the numerical results put the inexpensive group hard thresholding strategy
A above its competitors, which both rely on more complicated convex programming
techniques and are therefore not suited for use in time-critical real-time applications. With
as many as 10 % of all measured bits flipped, the group hard thresholding algorithm still
managed to almost always perfectly identify the active groups of group-sparse vectors,
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even in highly undersampled regimes. The main drawback of the algorithm is its seemingly
slow error decay rate of O(m~'/2), as well as the fact that A% requires prior information
on the group-sparsity level of the vector one aims to recover.

Next we considered the problem of estimating both the direction of a signal as well
as its fo-norm under the assumption that signals of interest are contained in a ball of
radius r. To that end, we considered a well-known dithering strategy from quantization
theory, which had previously been adopted in the quantized compressed sensing literature
to overcome the problem of limited variation in random measurement ensembles. We
presented six different reconstruction schemes and analyzed their theoretical performance
by appealing to results established in the undithered setting. As in the direction recovery
problem, we complemented the theoretical results with a numerical study to test how
close the performance of each recovery scheme comes to its predicted accuracy. Once
again we found the performance of the two strategies based on the idea of enforcing
quantization consistency to outperform its competitors in the noiseless regime, exhibiting
almost optimal error decay. We point out, however, that due to the predicted polynomial
dependence on the radius of the signal ensemble, one generally has to acquire significantly
more measurements than in the previous setting to appropriately tessellate the signal set
into small enough quantization cells.

In the noisy regime, we once again confirmed the remarkable error resilience of four of
the six considered reconstruction approaches. Unfortunately, the two approaches based on
enforcing strict quantization consistency turned out to be highly sensitive to even moderate
levels of noise, resulting in consistently infeasible program instances, which could therefore
not be included in our experiments. This unfortunate circumstance, which severely limits
the usefulness of the respective recovery schemes in practical applications, had previously
not been reported in the literature. Overall, the lifted group hard thresholding strategy
modeled after its undithered counterpart outperformed any other method considered in
our experiments. Due to the fact that the algorithm is highly efficient in terms of its
numerical complexity, in addition to its accurate group support identification performance
in the presence of both pre- and post-quantization noise, the group hard thresholding
strategy remains one of the most promising reconstruction methods to date.

Open Problems

In closing, we would like to point out some open problems and potential future research di-
rections. As established in our numerical experiments, there remains a distinct performance
gap between the predicted and empirically observed error decay of most methods discussed
in this chapter. While the theoretical decay behavior of most methods is predicted to be
O(m~Y?) for a € {3,4}, the numerical experiments indicate that at least some methods
are close to the optimal rate of O(m™!). Up until this point, however, it is not clear how
to close this gap even for well-studied ensembles like Gaussian distributions.

As demonstrated by the numerical experiments carried out in this work, accurate signal
recovery does not necessarily go hand in hand with accurate support detection. In fact,
arguably the most accurate method based on enforcing strict quantization consistency
exhibits rather unsatisfactory support identification performance. Despite the fact that
many of the reconstruction methods considered in this chapter provide accurate group
support recovery, there are currently no theoretical results corroborating this behavior. As
pointed out before, the problem of identifying the active support and reconstructing sparse
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or group-sparse vectors are equally hard in linear compressed sensing. This is not true,
however, when one considers nonlinear observations such as single-bit measurements. While
the pertinent literature includes a handful of results which address the support recovery
problem in the context of 1-bit CS (see, e.g., [GNR10; HB11; Gop™13; ABK17]), all
of these works require specialized (random) constructions of measurement matrices to
allow for theoretical analyses to be carried out. It is therefore highly desirable to close the
current gap in the literature by establishing support recovery guarantees for more classical
measurement ensembles such as Gaussian or subgaussian distributions.®

Finally, the group-sparsity structure considered in this chapter was limited to nonover-
lapping group partitions. Conceptually, this restriction is justified in various applications
while in others, the need to allow for overlapping groups is of central importance to
enable more realistic signal modeling. Unfortunately, in these situations, even selecting
an appropriate objective function to promote group-sparsity is a nontrivial task since the
decomposition of a vector into subvectors supported on individual groups is no longer
unique. For instance, simply minimizing ||-||;, w.r.t. an overlapping group partition Z
may lead to degenerate minimizers, which are supported on the complement of a union
of groups [JOV09; OJV11]. In other words, minimizing [|-||;, with overlapping groups
may lead to sparse rather than group-sparse solutions. In order to circumvent such issues,
one typical approach is to appeal to more advanced group penalty functions such as the
graph least-absolute shrinkage selection operator (LASSO) [JOV09], the group LASSO
with overlap or the latent group LASSO [OJV11]. It would therefore be of significant
interest to extended the results presented in this chapter to the recovery of group-sparse
signals with overlapping groups based on these alternative group penalty functions.

81n the latter case, such results would naturally require an additional dithering step as pointed out
several times throughout this chapter.
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Group-Sparse Signal Recovery with Block
Diagonal Matrices

While unstructured random matrices as considered in the previous chapter are highly
desirable from a theoretical perspective, system designers are usually not free to choose
measurement operators at a whim. Instead, in most engineering applications, the fun-
damental structural properties of a measurement system are generally predetermined by
the particular problem domain. This was the original motivation for the sensing model
considered in Chapter 3, where it was assumed that elements of the signal class exhibit a
sparse representation in the frequency domain. A natural way to compressively sample
such signals is by acquiring randomly selected samples of their time domain expansion,
followed by exploiting sparsity in the DFT basis during reconstruction. The limiting
factor in scenarios like this is often the energy consumption of high-resolution sensing
devices. Assuming that the signal bandwidth is so high as to render even sub-Nyquist
sampling impractical, this led us to consider coarsely quantized randomly subsampled
time domain measurements to keep energy consumption at bay. A classic application

Parts of this chapter have been accepted for publication and will appear in [KBM19b)].
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area where energy efficiency is of key importance is in wireless sensor networks (WSNs)
[Aky™02]. Such networks commonly rely on low-power (and often more importantly
low-cost) sensing devices in order to reliably observe certain environmental phenomena
at different geographical locations. Typical applications of WSNs are in healthcare mon-
itoring, wildfire and earthquake detection, flood early warning systems, smart grids, as
well as quality control in manufacturing plants. In all these applications, the sensors
deployed in a WSN face the challenge of continuously acquiring potentially high-rate
data streams, which subsequently need to be analyzed or forwarded to a dedicated fusion
center. Moreover, in many applications, sensing nodes of WSNs are commonly subjected
to extreme environmental conditions. In such situations, it is desirable to deploy sensors
in a redundant fashion to reduce the need for system maintenance, while ensuring reliable
system operability. For these reasons, cheap and energy-efficient sensing devices are of
central importance for the successful utilization of wireless sensor networks.

In this chapter, we consider an alternative strategy to reduce energy demands of sensors
without resorting to extreme quantization paradigms such as 1-bit compressed sensing as
considered in the first two chapters of this thesis. To that end, we consider a particular
class of structured random matrices at the intersection of purely random ensembles and
highly structured matrices such as those generated by subsampled basis functions of
bounded orthonormal systems. More precisely, we consider block diagonal measurement
matrices whose blocks are either independent or identical copies of a dense subgaussian
random matrix. These measurement ensembles play a central role in applications where
global data aggregation may be prohibitive due to the underlying data rates required to
reliably reconstruct a signal. Such rate regimes are typically encountered in streaming
applications, where it might be necessary to operate on lower-dimensional data chunks
rather than the entire data stream at once [Asit10; BA10a; BA10b; WC17|. For
instance, in reconstruction of video sequences, it is natural to operate either on individual
or a limited number of consecutive frames rather than treating the entire video as one
high-dimensional vector [PW09].

Block diagonal measurement operators also appear naturally in various acquisition
models like distributed compressed sensing (DCS) [Sart05] and the so-called multiple
measurement vector (MMV) model. In the latter case, one obtains multiple independent
snapshots of a signal, whose low-complexity structure is assumed to be stationary in time
[REC04; CHO06]. Consider for instance an s-sparse ground truth target signal x € C¢
observed by L spatially distributed sensors. Due to environmental effects or propagation
characteristics of the communication channel between the location X originates from and
the individual sensor nodes, it is natural to assume that each of the L sensors observes
a potentially different vector x;, which all share the inherent low-complexity structure
of x. Assuming that each sensor implements the same measurement procedure modeled
by the linear operator ® € C™*“, one obtains the collection {yl}lL:1 = {cI)xl}lel ccCcm
of measurement vectors. Under the assumption that x € C? is s-sparse and supp(x;) =
supp(x) = S C [d], one may compactly express this measurement system as

Y::(y1 yL):q)(xl XL>::<I>X,

where X € C™! is a row-sparse matrix since at most s rows of X feature nonzero entries.!

!The concept of row-sparsity naturally extends to row-compressibility, which assumes that the energy
contained in any rows indexed by [d] \ S is negligible.
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This is known as the multiple measurement vector model. Alternatively, one may vectorize
the above equation by stacking the columns of Y and X into vectors of size mL and dL,
respectively, leading to

A g P X1
YL P Xy,
where the vector on the right-hand side now exhibits a periodic sparsity pattern. Such
periodicities in the nonzero support indices (or equivalently the row-sparsity structure) can
then be exploited via mixed-norm minimization to reconstruct the ensemble {x;}, C C*
[BF09].
In the image processing literature, the block diagonal measurement model has garnered
a lot of attention under the name block-based compressed sensing (BCS) [MF09; Luo™09;
Yan™09; MF11; MF12; FMT12; AdI*T16; Cui™ 18], originally introduced in [Gan07].
The central idea in BCS is to consider one measurement operator ®5 € R™5*5* for image
patches of size B x B and acquire measurements of the form y, = ®5x; € R, where
x; € RB”* denotes the vectorized version of the i-th image block (according to a particular
scanning pattern), and mp denotes the number of compressive measurements of each
image patch. Due to the prevalence of most modern image and video codecs operating
on rectangular image patches of possibly varying sizes [Sul™12], block-based acquisition
models are a natural fit. Moreover, in so-called hybrid video codecs, which combine spatial

and motion-compensated temporal prediction methods to reduce redundancy in weighted
differences between individual frames, residual blocks are inherently sparse or compressible.

Chapter Outline

The theoretical performance of the block diagonal acquisition model for sparse recovery
was previously addressed in [Yapt11; EftT15]. These works establish lower bounds on
the number of measurements for subgaussian block diagonal matrices to satisfy the classical
restricted isometry property, implying stability and robustness guarantees for recovery
of sparse vectors. In this chapter, we extend the results of [Eft*15] to more structured
signal sets, namely those whose nonzero coefficients appear in groups as considered in
the previous chapter. To establish recovery guarantees in this setting, we appeal to the
so-called group restricted isometry property (group-RIP), a generalization of the restricted
isometry property for matrices acting on group-sparse vectors. Unlike the isometry
property considered in the previous chapter, the group-RIP considered here constitutes an
embedding between two complex Euclidean spaces rather than one from Euclidean space
into /7.

We consider two distinct variations of block diagonal measurement matrices. First, we
assume that each block of a measurement matrix is an independent copy of a subgaussian
random matrix. In the second scenario, only a single block is drawn randomly from a
subgaussian distribution. This block is then copied to each block entry, resulting in a
block diagonal random matrix with constant block diagonal. Appealing to the group
restricted isometry property, it is shown that group-sparse vectors can be stably and
robustly reconstructed from partial observations obtained via block diagonal measurement
operators. Like the results in [EftT15], the obtained bounds depend on parameters
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which control the coherence between the underlying sparsity basis and the canonical basis
of the ambient space. If the sparsity basis is highly incoherent, we establish that the
scaling behavior required for subgaussian block diagonal matrices to satisfy the group-RIP
almost matches, up to logarithmic factors, fundamental lower bounds on the number
of measurements required to establish instance-optimal stability results for block-sparse
signal recovery. Furthermore, we show that our bounds reduce to the results reported
in [Eft*15] when interpreting genuinely sparse as group-sparse vectors w.r.t. a trivial
group partition. We relate the problem of establishing the group-RIP to estimating certain
geometric quantities associated with the suprema of chaos processes involving Talagrand’s
yo-functional. Since the methods employed in [Eft*15] do not directly apply to the
group-sparse setting, we propose an alternative technique to estimate the covering number
of a specific matrix set at higher scales. In particular, we extend Maurey’s empirical
method to sets which do not admit a polytope representation. As a side effect of our
bound on the vs-functional, we provide a generalization of Maurey’s lemma to provide
new bounds on the covering number of sets that consist of finite convex combinations of
compact sets.

The rest of the chapter is organized as follows. In Section 5.1, we detail the signal and
acquisition model considered in this chapter, while also fixing notation for the remainder
of the thesis. Additionally, we introduce the version of the group restricted isometry
property used to establish stable and robust recovery via general group-RIP matrices. In
Section 5.2, we summarize a few relevant results from the pertinent literature. Focusing on
general subgaussian block diagonal matrices first, we derive a lower bound on the number
of measurements for measurement matrices to satisfy the group-RIP with high probability
in Section 5.3. The case of block diagonal matrices with constant block diagonal is treated
in Section 5.4. In Section 5.5, we discuss our obtained bounds and put them in context of
earlier results presented in the literature. Before concluding the chapter in Section 5.7,
we present a series of numerical experiments in Section 5.6 to empirically investigate the
effect of the number of sensors on the reconstruction quality in an average case analysis.

5.1 Signal Recovery with Block Diagonal Group-RIP
Matrices

As in the previous chapter, we consider the problem of recovering signals with a low-
complexity structure in the form of group-sparsity w.r.t. a nonoverlapping group partition
Z. However, we now consider linear rather than excessively quantized observations collected
by different sensors which each observe a different portion of the signal. These partial
observations are modeled by means of block diagonal measurement matrices. In particular,
we assume a vector x € CP which we decompose into G nonoverlapping groups is observed
by L sensors. For simplicity, we require D to be an integer multiple of L such that D = dL
with d € N, giving rise to the decomposition of x into L signal blocks:

X1

x=|:|eC? xeC?vie[L].

XL
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Moreover, we redefine the set of group-sparse vectors w.r.t. a group partition Z as
Sz ={x € C” 1 xgy < 5}

where we adjusted the dimension and now consider elements over the complex base field.
We consider a measurement system in which we observe an s-group-sparse or compressible
signal x by means of a block diagonal matrix A consisting of L blocks, namely

P,
A=
¢

However, we assume that we only have access to the signal x € ¥z 5 in terms of its basis
expansion z in a unitary basis ¥ € U(D) where

U(D)={QeC””:Q'Q=QQ" =1dp}
denotes the unitary group. The measurement model therefore reads
y = diag {®,}_,z = diag {®,}_, ¥x = APx. (5.1)

We will also consider an alternative measurement model in which each sensor is equipped
with a copy of the same matrix ® € R™*? je., & = & VI € [L]. Ultimately, our
goal in this chapter is to provide a sufficient condition for stable and robust recovery of
group-sparse signals by establishing a suitable RIP property of block diagonal matrices
acting on group-sparse vectors.

The analysis of both sensing models relies on the so-called group restricted isometry
property—a generalization of the well-known restricted isometry property modeled on the
block-sparse RIP first introduced in [EMO09].

Definition 5.1 (Group restricted isometry property). A matriz A® € CM*P with
A € RMXP gnd W € U(D) is said to satisfy the group restricted isometry property
(group-RIP) of order s if, for § € (0,1),

(1= 0)llx[l; < [A®x|; < (1+0)|xl; Vx € Bz. (5:2)

The smallest constant 65 < § for which (5.2) holds is called the group restricted isometry
constant (group-RIC) of AW.

In combination with the above definition, a result due to Gao and Ma established in
[GM17], which we will introduce next, then implies stable and robust recovery of group-
sparse signals. While the signal model employed in [GM17] assumes that Z is an ascending
group partition with equisized groups (see Definition 4.1), meaning that the signals are
assumed to be block- rather than group-sparse, the proof of Theorem 1 in [GM17] does
not explicitly rely on this structure. Furthermore, the result was originally proven in the
real setting, but the proof is easily extended to the complex case. These results therefore
also extend to more general group partitions as defined in Definition 4.1. Note that such
a stability and robustness result in the block-sparse case had previously been established
in the seminal work of Eldar and Mishali [EMO09], albeit with the necessary condition
025 < v/2 — 1 on the block-RIP constant. The precise statement of our generalization is
stated in the following result. For the sake of self-containedness, we provide a proof in
Appendix B.
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Theorem 5.2. Let A € CM*P be o matriz satisfying the group restricted isometry property
of order 2s with constant 6y, < 4/\/41. Then for any x € CP and y = A% + e with

lell, < v, any solution x* of the program
minimize ||X
gnize [z o
s.1. HAX — yH2 <v ’

satisfies

os(X)z,1
Vs

where the constants Cy, C7 > 0 only depend on do.

5 = %"l < Co +Cy

Remark 5.3. (i) In the noiseless setting with v = 0, the above result immediately
implies perfect recovery of all group-sparse signals as the s-term approximation error
0s(X)z1 vanishes as soon as X € Xz .

(ii) If desired, it is also possible to characterize the recovery quality in terms of the group
l1-norm in which case one obtains

1% — 3y < Choa(Eza + Cl/av
for Cf, C1 > 0 which still only depend on 0y5 [GM17].

5.2 Prior Work

A common technique to show that the classical restricted isometry property holds with
high probability for dense measurement matrices populated by independent copies of a
subgaussian random variable is by establishing concentration results of the form

P(|IAx[13 — [x[13] > t]x]I3) < Cexp(—ct*m) ¥x € C? (5.3)

with A € C™*? and universal constants C, ¢ > 0 (see Theorem 2.5). Such concentration
results can in turn be established by appealing to Bernstein’s inequality for subexponential
random variables (see, e.g., [FR13, Chapter 9]).

The earliest efforts to establish concentration results for block diagonal random matrices
go back to the work in [Wak™10] and [Roz'10]. In particular, Wakin et al. [Wak™ 10|
consider block diagonal matrices

¢,
A = . c RMXD
@,
with independent copies ®; of a dense subgaussian random matrix with E(@l)?j =1 and
show that for x € RP,

P(| M A% — [x]l3| > #lx[13)

oo (o2 P A3
p(tﬂﬁx>m> ! SN

<2 HE)H A
o (-enriG5L). ¢ e s

N

t <
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with A(x) denoting the vector

a3
Ax) = : c RE.

2
1%Ll

Unlike the concentration inequality (5.3) for dense operators, the concentration result
above depends on the local properties of the individual component signals through the
vector A(x). More precisely, when ¢ is small as assumed in most applications, the speed at
which the tail probability decays is controlled by the ratio A(x) == [|A(x)||3/||M(x)]||5 which
measures how much the signal energy concentrates on individual signal blocks x; € R,
The behavior is most favorable in case each component signal x; contains the same energy
Ix:ill2 = |Ixk||2 V&, € [L] in which case A(x) = L. This behavior is intuitively expected
since the signal energy is uniformly spread across the entire signal x such that each sensor
always captures a certain portion of the signal energy, implying that each measurement
vector y, = ®;x; contributes information about the compound signal x. At the other
extreme where x; = 0 for all but one index [ € [L] and thus A(x) = 1, the decay behavior
is least favorable since only a single vector y, carries information about x which has
to be compensated for by acquiring more measurements. This behavior is confirmed in
[Wak™10] via numerical experiments.

Assuming that the elements ®; of the block diagonal matrix A are replaced by a copy
of the same subgaussian random matrix ® € R™*¢ drawn once, Rozell et al. establish in
[Roz™10] the almost identical concentration bound

P(|2 [ Axly — [1x]5] > tlx3)

exp —ctQMUX)’% L 0<t< ; 6")\();)“2
LU ) S ool el
exp (—c’tM ~>\(x) )1 )7 > ¢ )\(X}H2
peal.)” ool el

where the term A(x) € R? corresponds to the vector of eigenvalues of the matrix XX =
S xx] € R with

X
X = . c RLXd
.T
L

T
1

X

Similar to before, we consider the scenario in which ¢ is small so that the tail decay
is controlled by A(x) := [|A(x)||?/||A\(x)]|2. The least favorable scenario corresponds to
the case where each x; is identical up to scaling, i.e., x; = a;z with 0 # z € R? and
o; € R. This implies that the matrix X' X = SF | x;x/ = zz' ¥~ o? has rank 1 and
thus A(x) = 1 since the vector A\(x) is l-sparse. On the other hand, if L < d and
the L leading eigenvalues of X are nonzero and identical, then A(x) = L. Since the
nonzero eigenvalues of X' X and XX coincide and tr(X'X) = tr(XX") = 2F | [|x|2,
this requires x; L x; Vk # [ with ||x;|| = ||xx| Vk,l € [L]. Barring the orthogonality
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condition, this is the same requirement leading to the most favorable tail decay behavior
as in the previous setting where each sensor was equipped with an independent copy of
a subgaussian random matrix. Unsurprisingly, the restrictions on the signal ensemble
yielding the most favorable tail decay are more demanding when each sensor shares the
same measurement matrix since each measurement vector y, potentially yields less diversity
if the underlying component signals are too similar. Most importantly, the numerical
experiments confirm that the parameters A(x) and A(x) capture precisely the required
“oversampling” rate required to match the concentration behavior between the most and
least favorable scenarios. These phenomena were further investigated in [Par™11] where it
was also pointed out that the obtained results are not strong enough to provide RIP-type
results for block diagonal matrices by appealing to covering arguments as employed in
[Bar*08] or [MPTO08].

While [Wak™10; Roz110; Par™11] already give some indication about the expected
reconstruction behavior based on the energy distribution of the types of signal ensembles
one aims to recover, the work did ultimately not result in a proof of the restricted isometry
property for block diagonal random matrices. Instead, such a result, which was obtained
via independent methods, was first reported for block diagonal matrices A = diag {i’l}le
populated by independent copies ®; of a standard Gaussian random matrix ® € R™*9
in [Yap™11]. In particular, given a sparsity basis ¥ € U(D), the authors reduce the
problem of establishing the restricted isometry property of A to the problem of asserting the
concentration behavior of the random variable || A®)*AW¥ — Idp|| where [||-||: CP*P — R
denotes the matrix norm defined as

B[l := sup |(x, Bx)|

xEX,NBY

with (-, )¢ corresponding to the standard sesquilinear inner product on C”. Using this
formulation, they show that s-sparse vectors can be stably and robustly recovered from
M =mL = Q(sii(®)?log(s)*log(D)*) measurements with probability at least 1 — 8D !
where

() = win VD s 0l VE| = VEwin (Vs 1) 5
1,J€ 1,)€

measures the coherence of the sparsity basis with the canonical basis for C”. This coherence
parameter reduces to 1 in case ¥ corresponds to the orthogonal DFT matrix and to v/L
if ¥ = Idp. This corresponds to the situation previously discussed where the energy of
the target signal x is either uniformly spread across the index set [D], or (potentially)
completely concentrated in a single component vector x;, respectively (see also Section 5.5).
Unfortunately, this probability bound does not exhibit the desired exponential decay in
the failure probability one usually aims for in compressed sensing to assert that the RIP
holds with high probability on the draw of A.

Inspired by a novel powerful technique for deriving probability bounds on the RIP
constants of sensing matrices by means of concentration results for the suprema of
chaos processes established in [KIMR14], Eftekhari et al. eventually managed to remove
the aforementioned drawbacks in [EftT15]. In addition to establishing the RIP for
subgaussian block diagonal matrices, the work improves the failure probability from
1—8D7!to1— Cexp(—log(D)?log(s)?), provided that the number of measurements is
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chosen according to
M Z sii(®)log(s)*log(D)?, (5.5)

which also improves upon the earlier result by removing the polylogarithmic factor log(D)?.
Moreover, by replacing the coherence parameter ji with an alternative quantity measuring

roughly the orthogonality between partial basis expansion matrices ¥q,..., ¥, € C*dL
with
v,
v=|
v,

a similar result is established in the setting where A is a subgaussian block diagonal
random matrix with constant block diagonal, i.e., every sensor is assumed to be equipped
with the same random matrix.

A similar result was later obtained in [CA 18] by Chun and Adcock who recover the
block diagonal sensing model as a special case of so-called parallel acquisition systems.
This model assumes that L sensors acquire L different snapshots of a target signal x € C”
of the form

y,=BxeC™"

with B; := A;H; ¥ where A; € C™*P are densely populated subgaussian measurement ma-
trices and H; € CP*P denote so-called sensor profile matrices which model environmental
properties of the sensing problem. Appealing to the same proof technique employed in
[EftT15], they establish the so-called asymmetric restricted isometry property (ARIP) of
the compound sensing matrix

B,

codified as
2 2 2
afx|l; < [Bx|l; < Blx|; vx e

as initially proposed by Foucart and Lai in [FL09]. This generalization reduces to the
canonical RIP for the choice « =1 — 6 and § = 1 + ¢, while allowing for more flexibility
in the choice of sensor profile matrices. In particular, the classical RIP requires that
E(m 'A*A) = Idp. For the measurement matrix B of the parallel acquisition system,
this implies (after rescaling) that

1 &,
7 Z H/H, = Idp,

=1
which represents a rather stringent condition on the profile matrices H;. Instead, under
the asymmetric restricted isometry property, it suffices that the sensor profile matrices
satisfy the so-called joint near-isometry condition:

1 L
aldp = 7 > HH, = Bldp. (5.6)

=1
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The notation A < B for two self-adjoint matrices A, B denotes a generalized matrix
inequality which signifies that the matrix B — A belongs to the cone of positive semidefinite
matrices. If P := L'}, H/H; is nondegenerate, then condition (5.6) always holds
with o = Apin(P) and 8 = A\pax(P) where Ay, and M. denote the smallest and largest
eigenvalue of a quadratic matrix, respectively (see also the discussion in [CA 18, Section 2.2
and 2.3]). In the block diagonal setting where the I-th sensor profile matrix corresponds
to a block diagonal matrix with Id, as its [-th block and 0, otherwise, Chun and Adcock
obtain the condition

M 2 5 2sT(®)? log(s)* log(D) log(m)

for the RIP of a general subgaussian block diagonal matrix to hold with high probability.
This improves upon the work by Eftekhari et al. by replacing the coherence parameter
f(¥) with the smaller parameter

I(®):= \/Zg&;]( [®eill, < A(P)

1€[D]

with e; € CP denoting the i-th canonical basis vector. Moreover, the bound replaces
the factor log(D) in (5.5) by log(m). Note, however, that this only constitutes a minor
improvement since Eftekhari et al. technically establish the condition

M Z 6 25(®)*log(s)* log(D) log(M),
which they subsequently simplify to
M 2 5-2si(W)? log(s)? log(D)?

to remove the dependence of M on log(mL) = log(M).

More recently, the block diagonal measurement model was analyzed by Maly and
Palzer in the context of distributed compressed sensing from 1-bit observations using a
back-projected hard thresholding strategy [MP19]. Given the issues related to subgaussian
observations in the 1-bit acquisition model (cf. Section 4.4), they consider Gaussian block
diagonal measurement matrices A = diag {Gl}lel € RmEXAL where each G; € R™*¢
denotes an independent copy of a standard Gaussian random matrix. As outlined in the
introduction of this chapter, the distributed compressed sensing model assumes that each
sensor observes a different signal x; € R? supported on the same index set S C [d] of size
s, giving rise to the set of s-row-sparse matrices

O, = {X = (x1 XL) € R |rowsupp(X)| < s}

where rowsupp: R%L — [d] denotes the index set of nonzero rows of a matrix. To avoid
adversarial row-sparse matrices, the authors of [MP19] additionally assume that each
signal contains the same energy, modeled by the signal set

Ko={X=(x1 ... x)€0.:|xl,=|X[p/VLViel[L]}.

Given the fact that their work addresses the recovery of jointly-sparse vectors from binary
observations of the form y, = sgn(Gyx;) € {£1}", this requirement is rather mild due to
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the scale invariance of the sgn-operator. In order to establish the recovery guarantee for
their proposed row hard thresholding algorithm, they introduce the following variant of
the restricted isometry property:

HX||2,1 —3|X|lp < [|A vee(X)|), < X 2,1 + 60| X[ VX € O, (5.7)
VI - - VL

with vec: R*F — R denoting the isomorphism which stacks the columns of a matrix
into a single column vector and ||-||,, corresponding to the matrix norm which sums up
the fo-norms of the individual rows of a matrix. Equipped with this property, they show
that every matrix X € K, can be approximated from its quantized measurements?

Y = (yl yL) = sgn(A vec(X))
by the matrix
X =t ((GTv o Glyv.)

where HV: R™*E — ©, denotes the row hard thresholding operator which only retains
the s rows with largest ¢o-norm. In particular, they establish that

e
holds with probability at least 1 — 2 exp(—cd*mL), provided that
mL > 6 %s(log(d/s) + L).

We point out that X does not result from a projection of vec ' (AT vec(Y)) on the set
ICs but rather on ©,. A projection on K, would substantially complicate the proposed
algorithm since it is not clear whether fast projections on Ky are possible. However, using
similar arguments as in the proof of Theorem 8 in [Foul6], the authors show that for any
matrix X € K, the back-projected vector X is at most a constant multiple of the RIP
constant o apart from X (w.r.t. the squared Frobenius norm). The main effort of the
work in [MP19] is therefore concerned with establishing that Gaussian block diagonal
random matrices satisfy condition (5.7) with high probability.

5.3 The Group-RIP for General Block Diagonal
Matrices

In this section, we establish the group-RIP for general subgaussian block diagonal matrices.
We will make use of a powerful bound on the suprema of chaos processes first established
in [KMR14, Theorem 3.1] to demonstrate that the block diagonal matrix A¥ € C**P
satisfies the group restricted isometry property with high probability on the draw of A.
The same technique was also employed in [EftT15] to prove the canonical restricted
isometry property for block diagonal matrices consisting of subgaussian blocks. In the

2As usual, the operator sgn is assumed to act element-wise on vectors and matrices.
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present work, we make use of an improved version of the bound due to Dirksen [Dirl5].
Before stating the result, we first define the following objects. Let M C C™*™ be a
bounded set. Then the radii of M w.r.t. the Frobenius and operator norm are defined as

pr(M) = sup [[Tfly and  payse(M) = sup [T,
rem reM

respectively. Lastly, we require the so-called ~o-functional of M w.r.t. the operator norm.

Definition 5.4. An admissible sequence of a metric space (T, A) is a collection of subsets
{T, C T :r >0} where |T,| < 2% for every r > 1 and |To| = 1. The vo-functional is then
defined by

Y2(T,A) = infsup > 2"2A(t, T))

teT r=0
where the infimum is taken over all admissible sequences.

Characterizing the ~o-functional directly is generally a difficult undertaking. It is there-
fore customary to appeal to a classical result due to Talagrand which bounds vo(M, [|-||,_,5)
in terms of the following entropy integral of the metric space® (M, ||[|,_,,) [Tal10]:

M [[la) S [ Viog UM, g0 9)de (5.8)

where 91 denotes the internal covering number, i.e., the cardinality of the smallest subset
N C M such that every point in M is at most € apart from N w.r.t. the operator norm
|-l5_,5 (cf. Definition A.15). Mathematically, N' C M is called an e-net of M if VI' € M
ATy € N : [T —To|lyy < e with MM, ||-|ly5,€) = [N if N is the smallest such net.
Note that the integrand of the entropy integral (5.8) vanishes as soon as € > py_,5(M)

since M can then be covered by a single ball B5S' centered at an (arbitrary) element of

M.
Theorem 5.5 ([Dirl5, Theorem 6.5]). Let M be a matriz set, and denote by & a zero-

mean, unit-variance subgaussian random vector with independent entries and subgaussian
norm 7 = |&ll,,- Then, foru>1,

P(sup IT¢ |13 — E|T€]l5] > E) <e™
'eM
where

By = 52(M, [ l00)° + pp(M)12(M, [-,5)
+ Vupe(M) paa (M) + upy—a(M)?,

and c; > 0 is a constant that only depends on 7.

3The metric on M is the one canonically induced by the norm ||-||,_,,.
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5.3.1 Chaos Process for Block-Diagonal Group-RIP Matrices

In order to apply Theorem 5.5 to estimate the probability that AW as in (5.1) satisfies
the group restricted isometry property, first note that we can equivalently express the
group-RIP condition in (5.2) for x € ¥z \ {0} as

‘HA‘I’XHQ
Il

-1|<s

With the definition of the set
Q=3NS ={xesP": x|, < s}

of s-group-sparse vectors on the unit Euclidean sphere, we may therefore express the group
restricted isometry constant of AW as

ds = sup ’||Alle||§ - 1‘. (5.9)
x€e)

Next, we transform the above expression into the form required by Theorem 5.5 following
the ideas in [EftT15], i.e., we rewrite the equation so that the supremum is taken over
a matrix set. To that end, recall the definition of the partial basis expansion matrices
U, € C> with @ = (¥, ... ¥])T. In light of (5.1), we may now express the [-th
measurement vector y; € C™ of y € C™% as

(1)1, ¥ix)
vy, =®¥x = :
<<(I)l)m> ‘I’lx>
(Ex)" (Pi)1
= . : (5.10)
(x)") \(®)m
=Vi(x)eCmxmd i€, cRM

where (®;); € C? denotes the i-th row of the matrix ®;. If the blocks ®; are populated
by independent copies of a 7-subgaussian random variable with unit-variance, then the

vector £ = (&] ... £])T is a unit-variance 7-subgaussian random vector. Defining the
operator V : C¥ — CmExmdl with

x — V(x) = diag {Vl(x)}le, (5.11)
we therefore have AUx < V(x)& where < denotes equality in distribution. Now note that
E[|A®x|; = x"TE[ATA|¥x = m|x|]3,
which follows from the fact that the rows of the matrices A; are independent unit-variance

random m-vectors with independent entries, as well as from unitarity of ¥. With (5.9),
the group restricted isometry property of the matrix 1/,/mAW can therefore be expressed
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as
5( ! A\If) PN
o —= =sup ||| —=A¥x| —
vm xeg v m 9
= sup *||A‘I’X||2
x€€)

1
= —sup || AWx]|; - B[ AWx|3)
m xeQ
1 2 2
= sup ||V (x)€]|5 — E[|V (x)&]l3
m xeQ
1
= — sup ||T¢||; — ETE]3] (5.12)
m rem
where we set M :=V(Q) = {V(x) : x € Q}. In order to apply Theorem 5.5, it remains to
estimate the radii of M w.r.t. the Frobenius and operator norm, respectively, as well as

to compute the 7,-functional of M w.r.t. ||-||,_,. These issues are addressed in the next
two sections.

5.3.2 Radii Estimates
We begin with the estimation of pp(M). To that end, first note that

IVE)IE = |[ding Vi), va I

~

2 2 2
= > m[ x|y = m|Tx|; = mlfx|s.

Since Q C SP~!, this immediately implies
pr(M) = sup ||T|[p = sup [V (x)[p = Vmsup x|, = vm.
'em x€eN x€e

In order to estimate the radius py_,o(M), we require a simple generalization of Holder’s
inequality to group £,-norms on CP as defined in Definition 4.2. We state here a special-
ization to the conjugate pair p =1, ¢ = 00

Lemma 5.6. Let a,b € CP, and let T be a group partition of [D]. Then
[(a,b)] < lallz; - [bllz
where (-,-) denotes the bilinear form (a,b) = >2 a;b; on CP.

Proof. By the triangle and Hélder’s inequality, we have

<Z| aIiv

G
(a,b)| = > (az,, bz,)

i 1

< Zuaz I - max [br, |,

§|

= llallz, - IPllz o0
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We proceed as before and calculate

IV )l = [|diag {Vi(x) 1y |, = max [[Vi(x) ;s

’2—>2 le[L]

= max V() Vi(x)" 123, = ma | x| (5.13)

lell]

where the second step follows from the fact that the operator norm of a block diagonal
matrix corresponds to the maximum operator norm of the individual blocks. The last step
follows because V;(x)Vj(x)* is a diagonal matrix with m copies of || ¥;x||3 on its diagonal
whose largest singular value is simply || ®,;x||5. Next, we invoke the bound |[ul], < v/nlu|
for u € C", followed by an application of Lemma 5.6. This yields

1@, < V|| Ex|, = \/Efzrg[gf [((P1)i, %)
< ﬂrirg[g 1(®0)ill7 o - 12

where (¥;); denotes the i-th row of ;. Overall, we find

V(&) e < \/EHXHZ,I;Q&? 1(®0)illz o0
1€[d]

—Vd .
\/—HXHZ,l ?el[al;}( |‘¢z”2,oo

where 1p, € CP denotes the i-th row of ¥. This bound turns out to be too loose when
¥ = Idp in which case we have vd maxie(p) [|9,]|7 .. = V/d. To obtain a more effective
bound, we therefore also consider the simple bound

VGl = ma [ ix], < [

= [xlly = [Ixllzo < [1xllz,, (5.14)

which follows from |||, < ||-||, for p > ¢ > 1. By defining the parameter

() = i { Vs 91
i€[D] ’
we therefore arrive at

IV ()gp < pz(P)Ixllz, (5.15)

after combining both estimates for ||V (x)||,_,, which in turn yields
p2-52(M) = Slelg V&)l
< pz(¥)sup ”X”I,l
x€eq)

< pz(P)Vs.

The last inequality holds since for x € Q = X7, N SP~!| we have

G 12, q
2
”X”I,l = < < 2) <Z]l{x1ﬂé0}>
i—1 i=1 i—1
< ||X||I,2\/§ = Vslxll, = Vs

1/2
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by the Cauchy-Schwarz inequality.

Since the parameter uz(¥) will play a central role later on, some comments are in
order. First, let us point out that with the trivial group partition Z = {{1},...,{D}}, the
parameter 1i=(¥) reduces to the coherence parameter (up to scaling by v/L) considered in
[EftT15]. In that case, the term max;ep) [|9;]|,, corresponds to the constant associated
with the bounded orthonormal system generated by the columns of the unitary matrix ¥
as defined in [FR13, Chapter 12]. In general, the term pz(¥) measures how coherent the
sparsity basis is with the canonical basis for CP. For instance, we clearly have puz(Idp) = 1.
At the other end of the spectrum, we have for the orthogonal DFT matrix

Fp=—=|e
that puz(Fp) = min{,/g/L, 1} since every entry of Fp has constant modulus and hence
|¥illz o = \/9/D Vi € [D]. This implies that the bound on ps (M) becomes more

effective the more sensors one considers.

iQW/LV/D)
0<p,v<D-1

5.3.3 Metric Entropy Bound

Establishing a bound on the ~o-functional via (5.8) will proceed in two steps. At small

scales, we estimate the covering number by means of a standard volume comparison

argument for norm balls covered in their respective metric. At larger scales, however, this

bound is not be effective enough to yield optimal scaling behavior in s. To circumvent the

problem, we employ a variation of Maurey’s empirical method, which we develop below.
To start with, note that with ||x||;, := ||V (x)]|,_,5, We have for u > 0 that

MM, [[-llys g5 w) = UL, (|-l )

since M = V() by definition. With this we decompose the metric entropy integral as

p2—2(M)
[ oM ], 2)ae

A Vspz(P)
= [ Viog @ [Flly.e)de + [T \log M [l 2)de (5.16)

where the parameter A € [0, v/suz(¥)] will be chosen later.

Estimation at Small Scales

At smaller covering radii, we use a common technique to estimate the covering number of
a set which can be expressed as the union of simpler sets restricted to lower-dimensional
coordinate subspaces. In particular, we express the set Q = X7, N SP~! of s-group-sparse

signals on the unit sphere as the union of (f) unit Euclidean spheres supported on s

groups of a group partition Z. Denote for 7 C Z the coordinate subspace of CP supported
on the index set Uger S C [D] by C2, i.e.,

CP={xeC”:xs=0vS¢ T}
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Then we can write

0= |J 6> 'nc)c U @ nch).
TCI, TCI,
ITl=s IT]=s

The linear-algebraic dimension of the sets in this union is at most sg where g denotes
the largest group of the partition Z considered in 7. From the volume comparison
argument for norm balls covered in their associated metrics (see Lemma A.19), one has
that ‘ﬁ( e ety < (@ +2/0)" With |-y, < [[-[[; (£ (5.14)), this yields for an arbitrary
group index set 7 as above that

G
Ry < () RBE N 102

G\* 4\ %59
< <€> (1 + ) (5.17)
s u
where the factor 1/2 in the covering radius of the first estimate is due to the fact that the
internal covering numbers are only almost increasing by inclusion, i.e., if U C W, then
N, -, t) <N(W,-,t/2) (cf. Proposition A.18). The factor 2 in the exponent of the last

estimate is due to the isomorphic identification of C* with R?". Finally, we invoked the
standard bound (Z) < (en/k)* for binomial coefficients.

Estimation at Higher Scales

To estimate 9U(€, ||-||,,, w) at higher scales, one possible strategy might be to appeal to
Sudakov’s inequality, relating the covering number of a superset of €2 to its mean width.
As it turns out, this will yield the correct dependence on s albeit with a significant
caveat, namely that v2(M, ||-||,_,,) will not depend on pz(¥) in a linear fashion but only
logarithmically. This in turn means that we do not profit from nonlocalized unitary bases
as we will see later.

To make matters concrete, we assume for the moment that we are working in R”
rather than CP. Next, note that we have by the Cauchy-Schwarz inequality that

Q

NG

as argued before, and recall from (5.14) that ||-|[,, < ||-|,. By a change of variable, this
yields for the entropy integral that

pa—s2(M) Vuz(¥) Q U
[ o m@ ey du < [ log (= s S

pz(¥)
< s /W Jlogm(ﬁgl,n-ug,g)du (5.18)

pr(¥) D
<Vs w u” w(Bz,)du (5.19)

c B2,
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where the last step follows due to Sudakov minoration” (cf. Lemma A.21). To estimate
the mean width of the norm ball BI |, note that we have with g € R? denoting a standard
Gaussian random vector as usual that

wB?) =E sup (x,g) =Elglz,

lIx[lz,, <1

= Elglz.. = Emax ez,

since ||-||; ., is the dual norm of [|-[|;, (see, e.g., [Sral2, Lemma 2]). By the same
arguments as in the proof of Lemma 4.10, we further have

Sgg[egEngiH +E{2%X‘Hgf |, — Ellez],

< /g +/21og(2G)

where the first term in the last estimate is due to Jensen’s inequality, and the second one
follows by Theorem A.5 and Proposition A.7. Invoking this estimate in (5.19) therefore
yields

El;relég ng

[ g @, Ty win 5 (55 +/s1os(G >)log(“§“§<‘1’)).

As we will see in Section 5.3.4, the term FE, in Theorem 5.5 is dominated by the -
functional v5(M, [|-||,_.,)?, which implies with the above bound that m depends linearly
on s. This is known to be optimal to yield stable recovery guarantees in the block-sparse
setting (see Section 5.5.3). This bound is still not effective enough, however, since we
cannot capitalize on the effect of p7(¥) in the acquisition model.

Apart from the volume comparison argument discussed above and Sudakov’s inequality,
a third commonly used technique to estimate covering numbers is Maurey’s lemma, also
known as Maurey’s empirical method. In general, Maurey’s lemma is concerned with the
following question. Given a vector x in the convex hull of a finite set U C R", how many
elements of U are needed to approximate x within a desired level of accuracy? Maurey’s
empirical method answers this question by constructing a sequence of random vectors
and estimating the number of elements required for the expected average to fall below a
specific distance to x. Unfortunately, unless the number of groups in the partition Z is
identical to the ambient dimension D, the group ¢; unit ball can not be expressed as the
convex hull of a finite set.” We will circumvent this problem by an additional covering
argument.

Let x € B2, such that i, [xz,]|, < 1, and denote by S C [G] the index set of nonzero
groups of x. Then we can express x as

X7,
X = szj = ZHXIJ ) —t (5.20)
jeS jeS HXIj 9
——
GSID]?l

4The covering radius of u/2 in (5.18) rather than u as assumed in Sudakov’s inequality merely amounts
to a multiplicative constant in (5.19), which we absorb in the notation.
SFor instance, the group ¢;-ball in R? for G = 1 (and therefore g = 2) corresponds to the fo-ball B3.

132



5.3 | THE GROUP-RIP FOR GENERAL BLOCK DIAGONAL MATRICES

where ng ~! denotes the subset of the complex unit sphere in C” supported on an index
set Z;. Since Maurey’s lemma is concerned with the estimation of the covering number
of the convex hull of a finite point cloud w.r.t. an arbitrary metric, the argument does
not immediately extend to the current setting. This is due to fact for every x € IB%% 1, the

dictionary
Uy := {ij :jGS}
HXIJ' 2

such that x € conv(Uyx) depends on the particular choice of x. In other words, since IB%% 1
does not generally admit a polytope representation, there exists no finite set U C CP such
that B, = conv(U).

To deal with the issue outlined above, we establish the following result, which generalizes
Maurey’s lemma to more complicated sets. With some abuse of notation, we first introduce
the following generalization of the convex hull of a set. Let {L{i}il be a collection

of compact subsets in a normed space. Then we denote by convg(Ui,...,Up) the set
of convex combinations with each U; contributing exactly one element to each vector
x € convg(Uy,...,Up). More precisely, we set

B B
COHVB(ul, c. 7Z/{B) = {Z [0 718 VI ZO{Z' = 1,0(1' Z O,LLL' € Z/{z Vi € [B]}
i=1 i=1
where we use the index B in the notation convg to emphasize the fact that each element of
convg(U,...,Up) consists of exactly B vectors drawn from a different set ;. If U C RP
is a compact subset, then by the Carathéodory theorem, we recover the usual notion of
the convex hull of U as

conv(U) = convp1 (U, ..., U).
————

D+1
copies of U

We point out that the result below also holds if we assume the sets U; to be both compact
and convex in which case we may replace convg (U, . .., Ug) by conv(UZ, U;).

Proposition 5.7 (Maurey’s extended lemma). Let (X, ||-|| ) be a normed space, and let
Uy, ..., Ug C X be compact sets. Assume that for every K € N and z; € Ule U; with
1=1,..., K the following holds:

E < AVK

K
Z €,Z;
i=1

where (¢;)K, is an independent Rademacher sequence, and A > 0 is a constant. Then for
every u > 0,

X

i=1

log N(convp(Ui,...,Us), |||y, u) S (A/u)?log (Z N(U;, ||||X,u/2)>

Proof. We first equip each set U; with its own net N; with covering radius u/2 w.r.t. the
canonical metric induced by ||| . Next, denote by

mi: X — N x — argmin ||x — z||
zZEN;
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the projection on N; in terms of ||-||, and set for x € X,

T(x) = argmin [x— x|y € [JN.
xo€{m;(x):i€[B]}

Consider now a vector x € convg (U, ...,Up) such that
X =qou; +...+apup

with w; € U; and «o; € [0,1] for i € [B] with 2, a; = 1. Since the convex multipliers
{o}; define a discrete probability distribution on [B], this allows us to construct a random
vector z € X with

]P(Z = ul-) = g,
such that Ez = x. Consider now K independent copies zi,...,zx of z. Then we have by
the triangle inequality that
1 & 1 & 1 &
E X—E;W<Zi) <E X—E;Zi +]E”KZ(ZZ»—7T(zi))
1= X 1= X

1 K

E X—?ZZZ + = ZE“Z,— 7(2i)|| - (5.21)
i=1

For the summands of the second term we find

El|z; — 7 (z; HX_ZO‘JHU-J U-J HX<ZO‘JU/2—U/2

7=1

since ™ maps every vector u; € U; to its respective (u/2)-net N;. Next, we focus on the
first term in (5.21) for which we find

K

Z(Zi —Ez,;)

=1

1
— _E
K

1 K
_ Z;
K2

X

since Ez, = x for all z;. Fixing randomness by conditioning on {z;}, C Ule U; and
invoking the Giné-Zinn symmetrization principle [GZ84] then yields

1 K
E x—?;zi

<

2 2A
< AVK = —
- K VK

where (¢;); is an independent Rademacher sequence, and the last step follows by the
assumption of Proposition 5.7. We therefore find by collecting our estimates that

1 K
Elx—— ) z
K5,

which implies for

K >16>
u
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that there exists at least one realization of the random vector
1 K
7= — m(z
[

such that [[x —Z||, < w. To complete the proof, it remains to count the number of
possible realizations of z. Choosing the nets N; as the smallest (u/2)-nets, we have
\Ni| = N(U, |||, u/2). Since T maps any element of X on one of the B nets N, there
are exactly

K

(i N, ||-|rX,u/2>)

i=1

realizations of z. Since the above argument holds for any x € convg(U, ..., Up), we
conclude that

A?
log N(convp (Ui, ... ,Us), |||l x,u) < 16— log (E N(U;, ||- HX,u/Q))
i=1

as claimed. 0

From our previous discussion, we have that every vector x € Bg , can be decomposed
for S = suppz(x) = {i € [G] : xz, # 0} as

ZHXI ||2||

€S

where each vector w; := xz,/||Xz,||2 is 1-group-sparse w.r.t. the group partition Z with
|u;ll, = 1 and therefore u; € S7~'. Note, however, that the choice ¢; = SP~" in
Proposition 5.7 does not work since for points x € 1nt(IB 1), we have

G
2 = ZOQ' = HXHI,I <1

=1

G
D |
i=1

and hence x ¢ convg(SL ™, ..., S22 ") since the definition of conve(S2, ..., ST as-

sumes that its elements COHSlst of convex combinations of exactly G elements with

> a; = 1. Instead, we may either choose U; = S 'u{o}or; =BY N (CD = IB%{I} 1

We choose the latter option here since the volume comparlson argument we will use below

to bound the covering number of each U; (w.r.t. ||-||,) yields the same bound for both
U {0} and BY N CL since SP~' U{0} Cc BY NCL.

Proposition 5.8. The covering number of the group {1 unit ball w.r.t. the canonical
metric induced by ||-||,, is bounded according to

Viog RBR,. ) $ () log(D) (y/108(G) + /29 10g(1 + 4/u)).
Proof. As discussed above, we choose U; = BY N CZ in Proposition 5.7 and equip each

unit ball in the coordinate subspace (Cg_ supported on Z; with a net N; of covering
radius u/2. Given a vector x € BY| = convg(Uy, ..., Ug), it merely remains to find an
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appropriate bound on the expected norm of the Rademacher sum E| S5, ¢z, for K
vectors zy,...,zx € U, U;. To that end, first note that we have by the definition of
-1l = IV (-)|l_,, and linearity of the operator V' (cf. Equation (5.11)) that

K
E Z eiV Z
i=1

K

E Z €iZ;
i=1 v 252

Next, we invoke the following noncommutative Khintchine inequality for operator norms

due to Eftekhari et al.

Lemma 5.9 ([Eft*15, Lemma 9]). Let {V;}i, be a collection of matrices with the same

dimension and rank at most r. Denote by (¢;)K, an independent Rademacher sequence.

Then

K

Z EiVi

i=1

E

< Vi) (SIV, ||H)1/2.

Since the operator V yields for any x € CP a matrix of size mL x mdL, we have
rank V' (z;) < mL = M. An application of Lemma 5.9 therefore yields

1/2
< Jiog(M (va ||H)
1%

1/2
< y/log(M <ZMI 117, 1>
< pz(P)y/log(M) VK

where the second step is due to (5.15), and the last step follows since each vector z; € U;
is 1-group-sparse w.r.t. Z by construction.

To complete the proof, we need to bound the covering numbers of the coordinate-
restricted unit balls BY N CZ. Assuming that we have for each net N; that |N;| =
NBY NCL, |||y u/2), we denote by v := max;e(g) |NV;| the cardinality of the biggest net.
To estimate ||, we return to the volume comparison argument (Lemma A.19) and find
with (5.14) that

2—2

K
E Z €;Z;
1=1

il =By NCZ, [y, u/2)
< NBY, -1l u/2)

and therefore

4N\ %9
y§<1+>
u

with g = max;c(g ¢; as usual. The factor 2 in the exponent is again due to isomorphic
identification of C% with R*:. Combining this estimate with A < uz(¥),/log(M) <
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pz(¥)/log(D), we finally find by invoking Proposition 5.7 that

VIog R(B2,, [l w) = y/log M(conva(BY N CZ,... . BY N CR), |||y, )

|
=
=
s
S I~
o
AN
S
7 N
S
AN
q
S
N————"

This completes the proof. O

To establish our final bound on the vo-functional of M, we split the entropy integral in
two parts according to (5.16). We then control the first part via the volume comparison
estimate (5.17) and bound the second integral via (5.18), followed by an application of
Proposition 5.8. For the first integral, this yields®

by A
/ \/log N, |||y, e)de < / \/s log(eG/s) + 2sglog(1l +4/¢e)de
0 0

< )\\/5 log(eG/s) + )\\/259 log(5e/\). (5.23)

For the second integral, we find
Vuz(®)
L7 loe @ [y e)ae

z(¥)/2 z(¥)/2
< 2v/suz(®)y/log(D) (//\M e 1y/log(G)de + ' e 1y/glog(1 + 8/5)d5>

/(2V/s) A/ (2V/s)

For the last integral, note that \/log(1 + ¢~!) is monotonically decreasing in ¢t. Hence, we

have that
b
/ t~1y/log(1 + t=1)dt < log(b/a)y/log(1 + a=1).

This yields

Vsuz ()
L7 loe M@ [y e)ae

< Vonr(W) /g (D) log(v/51iz(%)/3) (1og(G) + /g log(1 + 16V5/) ). (520

Compared with our previous estimate based on Sudakov’s inequality for which we found

[ og (@ e 5 Vilos(vauz()/ ) Vios(@) + va).

6The last estimate follows from the bound [ \/log(1 + t=1)dt < a\/log(e(1 + 1)) for @ > 0 (see,
e.g., [FR13, Lemma C.9]).
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our new bound differs by an additional log-factor in D, as well as another logarithmic
factor depending on A\. However, we also obtain the desired linear dependence on puz(W¥).
Simplifying (5.23) and (5.24) by absorbing numerical constants into the implicit constant
in the notation and collecting both estimates, we eventually find

(M, [ll25) S My/s108(G/s) + Ay/sglog(1/)
+V/31z(W)log(D) log syiz(%)/3) (108(G) + /g log(s/3) ).

which, for the choice A = uz(¥), ultimately results in

Yo (M, [ ly0) S 1z (®)y/s10g(G/s) + pz(®)y/sglog(1/uz(¥))

+Vaz(®)y/log(D) og(s) (y/108(G) + /g log(s/ uz())
< Voria(®)log(D) og(s) (0g(G) + /g log(s/1z(¥)) ). (5.25)

5.3.4 Stable and Robust Group-Sparse Recovery with General Block Diagonal
Operators

At this point, we are prepared to derive our main result by invoking Theorem 5.5 and
collecting our obtained estimates for pp(M), pa—y2(M) and o (M, ||-||o_,5)-

Theorem 5.10. Let A = diag {®,}/, € R™¥ be g block diagonal random matriz with
subgaussian blocks ®; whose entries are independent subgaussian zero-mean, unit-variance
random variables (&;); with subgaussian norm T = max; [|§|l,,. Let further ¥ € U(dL) be
a unitary matriz, and assume that

m 2, 6 2spiz(®)?|log(D) log(s)?[log(G) + glog(s/uz(W))] + log(n )]

with
pz(¥) := min {\/c_iﬂel[ag]i ||¢i||z,oo’ 1}

and v, € CP denoting the i-th row of ¥. Set A = m~Y2AW. Then with probability at
least 1 — 1, every vector x € CP acquired as y = Ax + e with |le||, < v is approzimated
by a minimizer x* of

minimize [|x||z,

S.1. HAX — yH2 <v (Pz1)

with

Os ()O()I,l
\/E

where Cy, Cy > 0 are constants which only depend on §.

|x — x|, < Co + Chv,
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Proof. Invoking Theorem 5.5 in combination with Equation (5.12), we have that for u > 1,

e E,
m

1
P(sup IT¢)); - E(rgl3] > E) = P( sup |[T€|3
TeM mrem

SERSRE

<e ¥

and hence

P, > 6) <P(6, > CTE") <e
m

if § > ¢, E,/m. To that end, we bound the term E, with pp = pp(M) = /m, pas =
p2—>2(M) < \/EMI(\I’> and Yo = '72<M7 H'”2a2):

E, . Vs + PEY2 + Vuprpase +ups s

m

m
o, BV Vaymy/sur () + uspr (%)

T

<f<f>w<w>>
m = 52 max {73, usyiz(¥)2} =

such that 75 /v/m < & and /uy/spuz(®)//m < § with

i:(%%ﬁ) \/_fuz <\/_fuz >)

Now choose
—

623
6 < 1. Then

e ng“’))
<0
=0

with ¢; := 4c;. For u > 1, we conclude that with probability at least 1 —e™ =: 1 —n), the
matrix A satisfies the group-RIP of order 2s with constant d, provided that

m > C.5 *spz(W)? [log(D) log(s)?[log(G) + g log(s/pz(¥))] + log(n )]

> 50072 [ V) fou( D) 08(6)(Vion(G) + ton(s/ns(®)) )|+ s

1~2

71 (M, [[ly0)* + uspz(®)?]

with C; := € = 16C¢, and C > 0 denoting the implicit constant in (5.25). The claim
then follows by Theorem 5.2. O]

Before discussing the attained bound, we first turn to the second acquisition model
considered in this chapter in which we assume that each sensor is equipped with an
identical copy of the same random matrix drawn once.
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5.4 The Group-RIP for Block Diagonal Matrices with
Repeated Blocks

5.4.1 Formulation as a Chaos Process

Intuitively, sharing the same measurement matrix between individual sensors should not
to lead to wildly different conditions for the resulting block diagonal measurement matrix
to satisfy the group restricted isometry property. As we will establish in this section, this
intuition is confirmed up to substitution of the coherence parameter uz of the sparsity
basis by a more involved complexity parameter, which we derive below. To make matters
precise, we now consider measurements of the form

P P¥, x
P PW;x

where ¥; € C?™?L are the partial basis expansion matrices as before. Once again our
goal is to reformulate the group-RIP constant of a measurement matrix of this form to
be amenable to the probabilistic analysis of Theorem 5.5. While we could use the same
transformations V; as in the case of unique per-sensor matrices (cf. Equation (5.10)) and
set

Vi(x)
ATx 2 = V(x)€
VL<X)

with € € R™? now denoting a unit-variance T-subgaussian random vector of size md
instead of mdL, the lack of a (block) diagonal structure in the elements of the image of
V' complicates the calculation of both py_,» and 5 as we cannot concisely express the
operator norm in terms of a mixed ({, ¢3) vector norm as in Equation (5.13). However,
since we only require ||A®x]|> and [|[V'(x)&]|> to be identical in distribution to apply
Theorem 5.5, we are free to reorder the rows of V/(x) as we choose. To that end, we define
the alternative operator V: CP — CL*? with

(1x) "
x = V(x) = : c Cclxd,
(Trx)"
With this, we define the map
V(x)
V(X) — L c (CmLxmd7
V(x)

which maps a vector x € C? to a block diagonal matrix with m copies of V(X) on its

diagonal such that || AWx|| 4 |V (x)€||2 as desired. Similar to Section 5.3, we also define
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the set M := V(Q) as the image of the set Q = 37, N SP~! of s-group-sparse vectors on
the unit sphere so that

P (sup
x€eN

It remains to estimate the radii of M , as well as its metric entropy integral. Unsurprisingly,
we mostly proceed in the same way as before. For convenience of notation, we associate
with V' the norm |[|-||; on C? induced by |||l := [V (-)[|2=2-

2
-1
2

1
—AU
m X

rem

1
> 5) = (m sup || D¢ 5 — E||T€[13] > 6).

5.4.2 Estimation of Radii and the Metric Entropy

We begin by calculating the radius of M w.r.t. the Frobenius norm. First, note that
~ 2 LT 2 ~ -
V)| =X [VE) |, =mu(VE)vVx))
i=1
L 2 2
=m)_[[¥x|; = mlx|;
=1

and therefore

pe(M) = sup [Tl = sup|[V(x)| = sup v/ml[x], = v/m.
I‘eX/l\ x€e€) xeN

Next, denote as before by S C [G] the index set of nonzero groups of x € CP w.r.t. Z.
Then we have due to linearity of V' and consequently linearity of V' that

[76l,.., = V6., =

259 2592

G ~

Z V(XL')

1=1 22
< ZHXL‘

i€S HXL' 2 22

()
HXL' 2

< [[xllz,, max

€S 22
< |1/l max supAHV(u)\ . (5.26)

[G] uegg

In the edge case where the number of groups G coincides with the ambient dimension
D (i.e., in case of regular sparsity rather than group-sparsity), the supremum in (5.26)
can be easily computed as each coordinate-restricted unit sphere Sg_l reduces w.l.0.g.
to a two-element” set {+e;} where e; € R” denotes the i-th canonical unit vector. In
other words, if the vectors u in the supremum in the last line only take finitely many
values, estimating the bound amounts to taking the maximum of the operator norms of
the matrices produced by V. However, the same does not hold for G < D, which does
not allow one to evaluate (5.26) numerically. To circumvent this computability issue, we
estimate the supremum as follows.

In light of the linearity of ‘7, this in turn implies the supremum in (5.26) is taken over a singleton set.
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Denote by u an arbitrary unit-normalized 1-group-sparse vector w.r.t. the group
partition Z. Then

e

22 ZEB%

= V'L sup max|(¥u, z)| = VL sup max’<11, lIIlTZ>‘

ax|
zeBd LEL] zeBd (EIL]

XN/(u)zH2 < VL sup

ZEBg

V(u)zHoo

lIlszH

< VIL|ul|;, sup maxH\IlszH — /L max sup
' ZEIBg lelr] L0

Z,00 le[L] 2€BY

where in the last inequality we invoked Lemma 5.6 and used the fact that ||u||;, = 1 since
u is a unit-norm vector supported on a single group of Z. Expanding the supremum, we

find

sup|| ¥, z = sup max||(¥, z)7.|| = max su U))7) z
sepal ! 2o zeéz‘emH( e A iel6] e (®)z)"],
— T J—
= grel%H((‘I’z)zi) l,., = max||(¥o)z.lly-,

where (¥;)7, € C™%l denotes the submatrix of ¥, restricted to the columns indexed by

Z;, and we used the fact that
|All,,, = sup [|[Ax| = sup sup [(Ax,z)c[= sup sup [(x,A%z)c|

p—q
[, <1 [, <1 [|z][ <1 [zl <1 Ixll, <1

= sup sup ‘M‘: sup - st ‘<§’FZ>C‘

2]l <1 1]l <1 [zl <1 I, <1

o a7, =47

llzlly <1

= sup sup ‘<X,ATZ>C’:

/4) /
2]l <1 lIx||, <1 q'—p

for p,p',q,¢ > 1 with 1/p+1/p' =1 and 1/g+ 1/¢ =1 (see also Example A.14). This
chain of estimates therefore yields

[V 6,y < ellzy VI max (20l (5.27)
le[L]

Unfortunately, this bound is too loose in the previously discussed edge case where G = D
with vectors x € CP being s-sparse as it does not reduce to

|76, < Il max [ (e

252’

which we would obtain from (5.26). In other words, the estimate does not reduce to
the natural bound in the sparse setting. To remedy the situation, we also consider the
following simpler bound. Note that for i € S = suppz(x) = {i € [G] : xz, # 0}, we have

-
”)QE 2

< sup
232 uesgfl

Z\%’\V(ea’)

JE€T;

V(u)H = sup

2—2 D—1
uESIi

2—2

< 1-[Veen],., < [V(e)]
_uesgg_l];i\ujl (e;) QAZ_UGSQ;?_lHulllgleag (e5)]|,_.,

<Vl Ve, < vomax |Vie)|

22
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where the second to last estimate follows by Cauchy-Schwarz. Substituting this estimate
into (5.26) and defining the parameter

wr(P) := min \/_maXHV(ez‘)

7\/3%8% (%1750

1€
= min§vgmax (B0 (P, VEmax (@], .
1€[G]
we find
V||, < wr(®)xllz,y,
which yields
pa-2(M) = sup [T, = supl[V(x) [, , < wr(®) supllxllz, < Viwr(¥).
rem x€Q

Lastly, we need to estimate the vo-functional of the set M w.r.t. the operator norm.
To that end, we point out that

[76oll,, = Ve, = Ve[, < Ve
L
= [wx . \I’Lx)Hi:ZH\Pleg
— [[ex]? = x]3 < [Ix]2,.

A careful review of the arguments presented in Section 5.3.3 then reveals that the difference
in derivation amounts to replacing the induced norm ||-[|;, with [|-||;. In particular, since
we established that [|-|; < wz(®)|-||z, and ||-[[; < [|-||,, estimating the yo-functional of

M by means of the metric entropy integral

M) £ [ " Vo, [y e

_/ " Soa R [Tige)de

proceeds identically to the derivation in Section 5.3.3. We therefore immediately conclude

M, |l) S Vor(®)ylog(D) log(s) (y/log(G) + /g log(s/wx()) ).

As in the case of Theorem 5.10, Theorem 5.11 below now follows by invoking Theorem 5.5
with the respective estimates for pp(M), pa2(M) and v (M, ||-[[5_5)-

Theorem 5.11. Let A = diag {®}, € R be q block diagonal random matriz
generated by the random matriz ® € R™*? whose entries are independent subgaussian
zero-mean, unit-variance random variables with subgaussian norm . Let ¥ € U(dL) be a
unitary matriz, and assume that

m >, 6 2swr(W)? [log(D) log(s)*[log(G) + glog(s/wz(®))] + log(n_l)]
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Define the scaled measurement matriz A ::~m_1/2A\Il. Then with probability at least
1 —n, every vector x € CP acquired as' y = Ax + e with ||e||, < v is approzimated by a
minimizer X* of Problem (Pz.) with

Og (30()1',1
NG

where the constants Cy, Cy > 0 only depend on 9.

Ix —x*[|, < Co +Civ

5.5 Discussion

In this section, we comment on a few connections of our attained bounds by putting them
in context with related signal and acquisition models.

5.5.1 Influence of the Coherence Parameter

We focus on the general block diagonal setup first in which every sensor is equipped with
an independent copy of a subgaussian random matrix. For simplicity, we choose the failure
probability 7 in Theorem 5.10 such that the condition on m simplifies to

m 2, 6 2spur()*log(D)log(s)*[log(G) + glog(s/uz(P))]. (5.28)

Moreover, we assume that the number of sensors L exceeds the group size g. As discussed

in Section 5.3.2, the parameter uz(W¥) ranges between the extreme points (/g/L and 1
corresponding to the choices ¥ = Fp and ¥ = Idp, respectively. We may therefore also

lower bound pz(¥) by 1/¢/L in the last log-factor of (5.28), which yields

m 2. 0 2suz(¥)?log(D) log(s)? [log(G) + glog (Sjﬂ : (5.29)

For ¥ = Fp, this shows that the number of measurements per sensor decreases almost
linearly in L. This in turn implies that roughly the same recovery fidelity can be maintained
if the number of measurements per sensor is reduced by adding more sensors to the
acquisition system. However, since each sensor takes fewer samples in this scenario, this
ultimately results in a net gain since the energy consumption per sensor is reduced. On the
other hand, if target signals are group-sparse w.r.t. the canonical basis, such a reduction
does not seem possible. This is due to the fact that in the worst case scenario, all active
groups might be restricted to a single chunk x;. In this case, each measurement operator
®, has to act as a group-RIP matrix. This drawback is fundamental to the acquisition
model and cannot be overcome by a refined proof technique.

5.5.2 Reduction to Sparse Vector Recovery

We now consider the edge case of group-sparse recovery in which the size of each group
tends to 1 and therefore G = D. This corresponds to the setting of sparse recovery via
block diagonal operators addressed in [Eft™15] and [CA18]. With (5.29), the required
number of measurements for G = D reduces to

m 2, 6 2spuz(®)*log(D)log(s)*[log(D) + log(sL)].
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Since s < D and L = D/d < D, it consequently suffices to choose
m 2, 6 2suz(¥)* log(D)? log(s)?.

Recalling the definition of the coherence parameter
) = i { Vs 91|
1€[D] ’
we have for Z = {{1},...,{D}} that [|-[|; =[]l and therefore

) = i (VD e . VE @)

NG eih) } - Jlfﬁ

where i(¥) denotes a rescaled coherence parameter in accordance with the definition used
by Eftekhari et al. (cf. Equation (5.4) and Equation (5) in [EftT15]). This now implies
that the conclusion of Theorem 5.10 holds if

mL 2, 6 %sfi(¥)?log(D)? log(s)?,

which is precisely the statement of Theorem 1 in [EftT15]. A similar argument yields the
specialization to the situation in which each sensor is equipped with the same random
matrix ® € R™*?. As discussed in Section 5.4, the parameter wz(¥) w.r.t. the trivial
group partition Z = {{1},...,{D}} reduces to

wr(¥) = max [V (e)

252"

In this case, one has that 1/vL < wr(¥) < 1 [Eft*15]. Defining the so-called block-
coherence parameter &(W) := v/Lwz(¥) to borrow terminology from Eftekhari et al. (cf.
[EftT15, Equation (9)]), this yields the condition

mL 2. 6 %s0(W)?log(D)*log(s)?,

which reproduces the statement of Theorem 2 in [EftT15].

5.5.3 Comparison to Dense Measurement Matrices

As alluded to several times throughout this thesis, it is by now a well-established fact that
O(slog(D/s)) nonadaptive measurements based on subgaussian random ensembles are
sufficient to stably reconstruct sparse or compressible vectors from their linear projections.
Moreover, this bound is fundamental in that it is known to be optimal among all encoder-
decoder pairs (A, A) with measurement matrix A € CM*? and decoding map A: CM —
CP such that

C
Ix — A(Ax)||, < — vx € CP

\/gas(x)l

for C' > 0 [FR13, Chapter 10]. Such a fundamental lower bound on the required number
of measurements was recently also established for the case of block-sparse vectors by
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Dirksen and Ullrich [DU18] (see also [ADR16, Theorem 2.4]). In particular, using new
results on Gelfand numbers, the authors show that stability results of the form

C
Ix = AAX)[, < Zzou(x)zs Vx € cP

for arbitrary encoder-decoder pairs (A, A) require at least
M > ci(slog(eG/s) +sg) with s> ¢

measurements where the constants ¢; and ¢y only depend on C' > 0 (cf. [DU18, Corol-
lary 1.2]). Perhaps most surprisingly about this result is the linear dependence on the total
number of nonzero coefficients sg. In light of (5.29), we almost recover this scaling behavior
in the total number of measurements M for the block diagonal measurement setup, albeit
with an additional logarithmic factor log(sL/g), which is an artifact of the proof technique
employed in Section 5.3.3. The other polylogarithmic factors, as well as the dependence on
pz(¥), on the other hand, are due to the particulars of the measurement setup compared
to the situation in which we employ one densely populated measurement matrix to observe
the entire signal. Note, however, that by the discussion in Section 5.5.1, the total number
of measurements becomes

L
L 2. 672 og( D) og(s |s106(G) + sglox (°F )

if ¥ is chosen as the DFT matrix. This means that the resulting bound scales quadratically
in g. We point out that the multiplicative dependence on g in (5.25) originates from the
volume comparison argument invoked in the context of our extension of Maurey’s lemma
(see Section 5.3.3). We conjecture that this dependence on g is suboptimal and should
be improvable by a more sophisticated proof technique. Whether the dependence on the
additional log-factors can be improved any further remains an open problem.

5.5.4 Distributed Compressed Sensing

As mentioned in the introduction, the measurement model (5.1) frequently appears in the
context of recovering multiple versions of a vector sharing a common low-complexity struc-
ture. This model appears for instance in the context of distributed sensing where one aims
to estimate the structure of a ground truth signal observed by spatially distributed sensors
which each observe a slightly different version of the signal due to channel propagation
effects. Another classic example is that of the so-called MMV model in which a single
sensor acquires various temporal snapshots of a signal whose low-complexity structure is
assumed to be stationary® with the intent of reducing the influence of measurement noise
in a single-snapshot model. This particular model can be cast in the setting of Section 5.4
where we interpret each observation in the MMV model as an independent observation by
a distinct sensor equipped with the same measurement matrix ® € R™*?¢. Assuming that
the ground truth signal is s-sparse, we can interpret both situations as trying to recover
an s-group-sparse vector w.r.t. the group partition Z = {Z;,...,Z;} with

Z,={i,d+1i,...,(L—1)d+i}. (5.30)

81n particular, this model assumes the support set to be constant, while amplitudes and phases of the
coefficients of each vector are allowed to change between different observations.
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In both situations, we assume that each signal z; = Ux, € C4 is sparse in the same basis

¥ € U(d). We can therefore choose ¥ = diag{@}le € U(D) in Theorem 5.10. This
setup, however, is not able to cope with certain adversarial vectors. More precisely, due
to the particular group partition structure, the knowledge about the periodicity in the
support structure can not necessarily be exploited in all recovery scenarios. To see this,
consider the situation in which only a single vector x; is different from 0. The vector
x=(0" ... 07 x/ 0" ... 0")7 is then by definition s-group-sparse (w.r.t. the
group partition Z) if x; is s-sparse. Regardless of the sparsity basis W e U(d), only the
vector y,; carries information about x;, which implies that each matrix ®; should satisfy
the classical restricted isometry property to recover x. This happens with high probability
as soon as m = {)(slog(d/s)). In this case, instead of solving Problem (P7 ;) directly, it is
more favorable to solve for each | € [L] the problem

minimize [[ulf;
s.t. y, = ®,Tu.

Unfortunately, this behavior is not accurately captured by Theorem 5.10 since we have by
(5.28) with G = d and g = L that

m 2, 0 uz(®)*slog(D) log(s)*[log(d) + Llog(s/uz(¥))].

This predicts a much worse scaling behavior than what is required for each matrix &,V to
satisfy the canonical RIP. The problem is ultimately rooted in the fact that independent of
U e U(d), only the measurements y, carry information about x;. Since uniform recovery
guarantees based on the restricted isometry property or variants thereof represent worst-
case analyses, such adversarial examples are unavoidable in general. It would therefore be
of interest to establish an average case error bound in the spirit of [BKR10] since such
bounds are often more relevant from a practical perspective.

Adversarial situations in joint-sparse recovery had previously been discussed by van
den Berg and Friedlander [BF09] who consider sufficiency conditions for noiseless joint-
sparse recovery based on dual certificates. Instead of considering signals with only one
s-sparse nonzero signal x;, they consider signals x in which every x; is at most 1-sparse with
supp(x;) # supp(xy) for any [ # I'. In this setting, they show that there are signals x € R”
which—given the linear measurements y = diag{q)}lefi—can provably be recovered by
the program

minimize [x|/;
s.t. y = diag {®}" x

but not via group ¢;-minimization, i.e., as solutions of Problem (P7 ;) with ¥ = Idp and
v=20.

As briefly commented on in Section 5.2, the problem of distributed compressed sensing
was also recently addressed in the context of quantized compressed sensing with binary
observations by Maly and Palzer [MP19] who impose an additional norm constraint on
each signal to avoid adversarial scenarios as outlined above. However, even with this
modified signal model, the adversarial example discussed above still applies if one signal
x; is exactly s-sparse, while any other signal x; with I’ # [ is 1-sparse with the entire
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signal energy concentrated on the same coordinate in each vector x;. The resulting signal
is therefore s-group-sparse as in the previous example. In that case, each measurement
vector y, only carries information about a single nonzero coordinate of x;, which implies
that each ®; must itself be able to recover every (s — 1)-sparse vector for the entire vector
X to be recovered as desired.

To summarize, without further restrictions on the particular signal model, it is not
clear how adversarial examples as discussed above can be dealt with in order to obtain
nontrivial uniform recovery guarantees. However, the conclusion of the work in [EftT15]
and our results is that sparsity or group-sparsity in a nonlocalized unitary basis such as
the DFT basis bears the potential to reduce the number of measurements required for
stable and robust signal recovery by distributing the energy of nonzero coefficients across
the entire signal support. As pointed out above, however, this requires that the unitary
matrix corresponding to the sparsity basis of the signal class does not itself exhibit a block
diagonal structure.

5.6 Empirical Phase Transition Evaluation

We now turn to an empirical investigation of the group-sparse recovery problem from
block diagonal observations in terms of the so-called phase transition phenomenon. Such
phenomena collectively describe the sudden change in behavior of a system when certain
parameters cross a critical threshold. In the compressed sensing literature, it has been
observed early on that such a critical line exists where recovery of s-sparse vectors in R?
from m measurements changes from almost certain success to almost certain failure when
the number of measurements and the sparsity level varies over the half-open unit square
(m/d,s/m) € (0,1]2. A substantial body of research has since been dedicated to explain,
predict and quantify both the position, as well as the width of the transition region [DT05;
Don06b; DT09b; DT09a; DT10a; DT10b]. The first result to rigorously ascertain
the phase transition behavior in the nonasymptotic regime for Gaussian measurement
ensembles was reported by Amelunxen et al. in [Ame™14]. Their work, which exposes a
deep connection between successful recovery via ¢;-minimization and the concentration
behavior of so-called intrinsic volumes in the theory of conic integral geometry, first
managed to not only establish that recovery succeeds in one region, but also that recovery
will fail with high probability in the other. This is in stark contrast to previous results
which were only able to predict the position of the success region but otherwise could not
assess whether recovery would succeed or fail in the other.

Throughout our experiments, we consider vectors x € CP with D = 1000. For a fixed
number of L sensors, we draw L random matrices ®; € R%? populated by independent
standard Gaussian random variables. These matrices are then fixed throughout the
process of generating one phase transition diagram. Given a pair (m,s), we construct
the individual sensing matrices ®; € R™*? by retaining the first m rows of each square
matrix ®; to form the compound block diagonal sensing matrix A = diag {m~ 1‘I’l}l 1
We partition the index set [D] into G = 100 nonoverlapping groups Z = {Z,...,Zio0}
such that every group Z; contains ¢ = 10 elements. To that end, we shuffle the elements of
the set [D] and split them into G groups, which we fix throughout all experiments. For
each of the 50 x 50 parameter combinations (m, s), we draw 20 s-group-sparse vectors
x € CP, which we recover via Problem (Pz;). Given the group partition Z, we draw the
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Figure 5.1: Phase transition diagrams for different numbers of sensors (L) with ¥ = Idp when the
group-sparsity level s and the number of measurements m per sensor vary, and the number of groups
G and the signal dimension per block d is fixed

set of active groups uniformly at random from [G]. The nonzero entries in each group are
then populated by circularly symmetric Gaussian random variables. In other words, given
an active group index k € S = suppz(X), we set Xz~ = 0 and Xz, = 27'/%(g;, + ihy) where
g, hy € RY denote two independent standard Gaussian random vectors and i = /—1.

We then measure how many vectors are successfully recovered according to the success
criterion

||)°( - X*||2 S 10—3

X

2

with x* denoting the optimal solution of Problem (P ;) for y = diag {®;},_,¥x. We
repeat this experiment for two different sparsity bases ¥ € U(D) at the low and high end
of the coherence spectrum, namely the DFT and the canonical basis.

The results of the first set of experiments in which we investigate the recovery of
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Figure 5.2: Phase transition diagrams for different numbers of sensors with ¥ = Fp

group-sparse vectors w.r.t. the canonical basis are shown in Figure 5.1.° Despite the fact
that our bound does not predict that the number of measurements required per sensor for
A to satisfy the group-RIP decreases linearly with L, the differences in performance are
much less dramatic than one might anticipate. The biggest differences are observed for
small values of m. More precisely, for L = 1, the transition line tapers off slightly more
for m — 0 compared to the scenario where A contains L = 20 blocks. Additionally, it
appears that the transition zone where the empirical recovery rate changes from successful
recovery with probability 1 to 0 slightly widens as L increases.

We repeat the same experiment for group-sparse signals in the frequency domain, i.e.,
we set W = Fp. The results are shown in Figure 5.2. As predicted by Theorem 5.10, the
effects of varying L are even less pronounced than in case of the canonical basis since
neither the previous behavior around m = 0.1d, nor the widening of the transition zone can

9Note that we normalize abscissa and ordinate by D and G, respectively. In phase transition diagrams
for sparse recovery, it is often more desirable to normalize the ordinate by M to magnify the transition
behavior at lower values of M. This is motivated by the fact that there is no hope to recover an s-sparse
vector in CP from fewer than s observations. In other words, for a fixed M, it suffices to consider the
range s € (0, M]. In our case, however, this would severely limit resolution since an s-group-sparse vector
has s - g rather than s nonzero entries. By considering 50 uniformly spaced values for s, this implies for
g = 10 that the lowest value we can consider on the abscissa would be M/D = m/d = 0.5. Considering
that this excludes half the range for m, we therefore opt to consider the full range of values for s between
1 and G for every fixed m.
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Figure 5.3: Sectional cuts through the phase transition diagrams in Figure 5.1 and 5.2 demonstrating
the effects of varying numbers of sensors on the recovery performance for different sparsity bases

be observed. This confirms the intuition that the incoherence of the Fourier basis with the
canonical basis allows for a reduction in the number of measurements per sensor without
affecting the overall reconstruction performance. To inspect this behavior a little closer,
we additionally plot two sections through each phase transition diagram for M = 500
and M = 740 in Figure 5.3. This representation clearly demonstrates the diminishing
performance with an increased number of measurements for canonically group-sparse

vectors. For frequency group-sparse vectors, however, the performance is invariant under
the choice of L.

Finally, we conduct the same experiments as before for the scenario in which each
sensor is equipped with a copy of the same random matrix ® € R™*¢ which is drawn once
and then fixed throughout all subsequent experiments. The results are shown in Figure 5.4.
The phase transition diagrams confirm the assumption that the general recovery behavior
is comparable to the previous setting given the identical dependence of m on s, g, D and G
predicted by Theorem 5.11. More precisely, we observe a similar widening of the transition
zone as the number of sensors increases both for the canonical and the Fourier basis, as
well as a reduced tapering of the phase transition diagrams for small m. In contrast to the
scenario in which we equip each sensor with an independent sensing matrix, the sectional
cuts through the individual diagrams depicted in Figure 5.5 further reveal a slight drop in
recovery performance for the DF'T basis as the number of sensors L increases. This effect
is likely captured by the parameter wz(¥), which—due to its complicated nature—does
not admit a straightforward calculation and interpretation for ¥ = F as the coherence
parameter uz(W¥) in the previous setting. Finding a more meaningful bound for wz(¥)
therefore remains an interesting open problem in this context.
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Figure 5.4: Phase transition diagrams for different numbers of sensors and sparsity bases when

each sensor is equipped with an identical copy of the prototype subgaussian measurement matrix
b c Rmxd
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Figure 5.5: Sectional cuts through the phase transition diagrams in Figure 5.4 demonstrating the
effects of varying numbers of sensors on the recovery performance for different sparsity bases

5.7 Conclusion

In this chapter, we established conditions on the number of measurements required to
stably and robustly recover group-sparse vectors by means of block diagonal measurement
matrices whose blocks either consist of independent or identical copies of a subgaussian
random matrix. Appealing to a powerful concentration bound on the suprema of chaos
processes, we derived conditions on the number of measurements required for subgaussian
block diagonal random matrices to satisfy the so-called group restricted isometry property.
This generalizes an earlier result due to Eftekhari et al. who first established a similar
result for the canonical sparsity model. As a side effect of our proof, we established a
generalization of Maurey’s lemma, which allows estimating the covering number of sets
which can be expressed as the convex combination of elements drawn from compact sets.

Although certain adversarial group partitions, which includes the distributed sensing
model, may lead to suboptimal predictions on the number of measurements for stable and
robust recovery, such cases are generally avoided if signals are group-sparse in nonlocalized
sparsity bases, whose basis matrices are in turn not block diagonal. In this case, our results
predict almost optimal scaling behavior up to logarithmic factors. If target signals admit
a group-sparse representation in terms of the discrete Fourier transform basis, the number
of measurements per sensor decreases linearly in L. This implies that reducing the number
of measurements in each sensor can be compensated for by adding more sensors to the
acquisition system without affecting the reconstruction quality too much. This in turn
reduces both the storage requirements and energy consumption of each sensor, allowing
for the deployment of less sophisticated and hence cheaper sampling devices.
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Open Problems

As alluded to in the discussions in Section 5.5, there remain several open problems,
which deserve further attention in order to provide a more comprehensive theoretical
understanding of the block diagonal measurement model for group-sparse signal recovery.
Most prominently, these issues include answering the question whether the dependence
on the group size g can be improved to match more closely the fundamental lower bound
on the number of measurements established for general sensing matrices. We point out
that one potential avenue might be the consideration of a group-sparse variant of the
asymmetric restricted isometry property considered by Chun and Adcock in [CA18|.
However, the general analysis follows the same strategy employed in [EftT15] and our
work. The improvements we expect from such an undertaking are therefore in terms of
the coherence parameter uz(W¥) as discussed in Section 5.2, not in an improved estimate
of the ~,-functional since the problem of bounding the covering number of the matrix set
M remains.

Given the pessimistic nature of RIP-based recovery guarantees, it is highly desirable
to complement our findings with an average case analysis along the lines of [BKR10],
which can be expected to paint a much more optimistic picture. This assessment is also
reinforced by our numerical experiments, which empirically demonstrate that the gap
between recovery of canonically and Fourier group-sparse signals is much less pronounced
than what might be expected from the recovery bounds established in this chapter.

Similar to the previous chapter, we emphasize again that in certain applications, it
is of vital importance to allow for overlapping group structures to facilitate satisfactory
signal modeling. So far, we categorically excluded such models. In the future, however, it
would be desirable to examine whether our results can also be extended to groups with
overlapping coefficients. The main issue in this context is finding a suitable formulation
of a recovery problem in the spirit of Problem (P7 ;). For instance, naively minimizing
the sum of /5-norms of each group to generalize the group ¢;-norm leads to unwanted
side effects such as selecting all groups which contain one index if it is present in one
of the groups [HBM12]. This issue is rooted in the fact that with overlapping groups,
there no longer exists a unique decomposition of each vector into individual 1-group-sparse
vectors. It is therefore necessary to consider alternative formulations of group-sparsity
priors, which are much less studied than formulations based on the group ¢;-norm in the
nonoverlapping case. A starting point might be the recent work by Ahsen and Vidyasagar
[AV17], which provides a general framework to study the recovery performance of various
group-sparsity priors.

Finally, despite the fact that the block diagonal acquisition system allows for a reduction
in computational complexity by reducing the number of measurements per sensor, it does
not address the issue that implementing purely random measurement operators in a
practical system is difficult in general. To overcome such issues, it would therefore be
desirable to combine the block diagonal measurement model with other more structured
designs such as random Toeplitz matrices [Hau™10] or circulant matrices generated by
subgaussian random vectors [RRT12], giving rise to random convolution operators with
efficient hardware implementations. In the latter case, one might be able to reuse the
analysis presented in [KMR14], which also introduced the chaos bound in the spirit of
Theorem 5.5 used to establish the recovery guarantees in this chapter.
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Conclusion

The vast majority of theoretical works on compressed sensing operate under the assumption
that measurements are essentially available during recovery at infinite precision. Given
the importance of digital signal processing, however, practical CS-based measurement
devices are required to transfer analog signals into the finite-valued digital domain for
subsequent processing, analysis, storage or transmission. This step generally introduces
a nonnegligible amount of signal-dependent quantization noise in the measurements,
which can only be appropriately accounted for within the classical theory under a high-
resolution assumption. Moreover, in certain areas such as wireless communication or
image processing, which commonly involve exceedingly high-dimensional signals, acquiring
compressive measurements might still be prohibitive if ADCs of an acquisition system are
required to record high-resolution measurements. Since there exists an inverse relationship
between the bit depth of an ADC and its attainable sampling rate, acquiring high-precision
measurements at exceedingly high sampling rates therefore often necessitates the use of
costly specialized and energy-demanding hardware circuitry.

In this thesis, we explored several different avenues to recover low-complexity signals
from excessively quantized measurements or partial compressive observations acquired by
one or more distinct sensors. These problems are motivated by technological advances
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towards cheap and energy-efficient sensing devices in emerging communication and moni-
toring methodologies such as the internet of things, Industry 4.0, as well as more general
wireless sensor networks. The main focus in this context was on the 1-bit compressed
sensing acquisition model, in which each component of a measurement vector is represented
by a single information bit representing the sign of the associated linear measurement. This
simplistic, memoryless quantization scheme is particularly well-suited for use in low-cost
sensing devices due to the ability to implement each quantizer in the system by means of
simple comparators operating at a fixed voltage level.

Our second main focus was on a measurement paradigm in which either a single or
multiple sensors observe distinct portions of a particular target vector. In the first case,
this measurement model is motivated by applications such as video streaming or imaging,
which commonly necessitate the acquisition of low-complexity signals in chunks due to
exceedingly high dimensions of the respective signal space. Moreover, in multi-sensor
networks, the acquisition model can be used to reduce the amount of data that individual
sensors have to acquire and transmit to a dedicated fusion center to reconstruct low-
complexity target signals. Assuming that it is possible to compensate a potential loss in
reconstruction fidelity due to a reduction in the number of measurements per sensor by
adding more sensors to the network, this model allows to trade off reconstruction fidelity
for cost reduction of the sensor nodes, as well as transmission load between individual
sensors and the fusion center.

In the following, we summarize the results of the three main chapters of this thesis.

6.1 Summary

Chapter 3: Estimation of Frequency-Sparse Signals from Binary Measurements

While sparsity represents a ubiquitous signal characteristic in various domains of science
and engineering, such low-complexity signal structures usually only reveal themselves
after transforming elements of a signal class into a suitable representation in terms of an
orthonormal basis or more generally an overcomplete dictionary or frame. Due to its central
importance in fields like medical imaging, wireless communication, radar and seismology,
which abound with periodic, oscillatory phenomena, the Fourier basis represents one of
the most important sparsity bases in CS-based engineering applications.

In Chapter 3, we considered the acquisition of frequency-sparse signals from 1-bit
quantized real-valued time domain measurements. Rather than considering random mixing
of compressive measurements with purely random ensembles, which is generally difficult
to realize in a physical system, we instead considered hardware-friendly subsampling
or oversampling schemes. Adopting various reconstruction schemes proposed in the
literature on 1-bit compressed sensing, we demonstrated empirically that faithful signal
recovery is possible by exploiting the symmetric nature of the conjugate symmetric signal
space. In particular, we developed a modification of the binary iterative hard thresholding
algorithm geared towards sparse conjugate symmetric signal recovery. Most importantly,
this modification requires a conjugate symmetric version of the hard thresholding operator
to guarantee that the algorithm always yields solutions with a real-valued inverse discrete
Fourier transform. Appealing to a noise-adaptive reconstruction scheme proposed in the
literature, it was also shown that the proposed method can be hardened against noisy
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1-bit observations, provided that an estimate of the number of bit flips is available.

While the concept of oversampling (i.e., acquiring more measurements than the
dimension of the signal space) is of no interest in the classical linear CS theory, the same
does not apply in the nonlinear setting. This is rooted in the fact that an overdetermined
system of linear equations always admits a unique solution, while a nonlinear system
does not.! Considering the assumption of cheap and energy-efficient 1-bit quantizers,
we therefore also considered super-Nyquist sampling of conjugate symmetric vectors.
The measurement operator proposed in this context is based on the concept of exact
interpolation, a simple frequency domain zero-padding scheme for interpolation in the
time domain, which does not rely on random sampling. It was demonstrated numerically
that the proposed oversampling scheme improves reconstruction fidelity beyond the level
attainable for compressive 1-bit observations. Moreover, since the oversampling scheme
does not rely on random sampling, the proposed method is particularly hardware-friendly.

Chapter 4: Single-Bit Group-Sparse Signal Recovery

In Chapter 4, we turned our attention to the recovery of group-sparse signals from 1-
bit quantized measurements of Gaussian linear projections. This generalized sparsity
model assumes that nonzero coefficients in a signal are always confined to nonoverlapping
coefficient groups instead of appearing in isolated positions. Group-sparse modeling finds
widespread adoption in areas such as wireless communication, facial recognition, speech
detection and model selection in statistics.

Generalizing several recovery schemes proposed in the 1-bit CS literature to the group-
sparse setting, we showed that group-sparse vectors can be estimated up to a desired fidelity.
The required number of measurements depends optimally on the group-sparsity level, the
group size and the ambient signal space dimension. In this context, we also established a
novel noise robustness result for a simple noniterative group hard thresholding scheme.
The correct behavior of the individual reconstruction methods was further confirmed in a
series of numerical experiments.

While the sign operator used to model the 1-bit quantization step is invariant under
positive scaling of its input, leading to an unresolvable global scale ambiguity during
reconstruction, this ambiguity can be removed by adding a known pre-quantization dither
to each coordinate of the linear part of the acquisition model. Under this model, it was
also demonstrated in Chapter 4 that both direction and norm of group-sparse vectors can
be estimated if target vectors are confined to scaled unit balls, whose radius is known a
priori. In this context, we analyzed six different reconstruction strategies by relating them
to results previously established in the undithered setting. Again, we complimented our
theoretical analysis with various numerical experiments on synthetic data to confirm the
behavior of each recovery scheme empirically.

'We abuse terminology here and refer to a nonlinear equation system of the form y = f(Ax) with
x € R4, A ¢ R™*? and f: R™ — R™ an arbitrary nonlinearity as overdetermined if m > d.

157



CHAPTER 6 | CONCLUSION

Chapter 5: Recovery of Group-Sparse Vectors with Block Diagonal
Measurement Operators

In the last main chapter of this thesis, the problem of recovering group-sparse vectors
from partial compressive observations was considered. This model gives rise to two
distinct sensing scenarios. In the first scenario, it is assumed that a single sensor acquires
measurements of a high-dimensional group-sparse vector in lower-dimensional chunks such
that individual linear measurements only capture partial information about the target
vector. The second scenario assumes that multiple sensors, which are each equipped with
their own subgaussian random sensing matrix, observe distinct portions of a vector. In
both cases, the resulting measurement operator is modeled as a block diagonal subgaussian
random matrix whose block diagonal elements are either identical or independent copies
of a prototype random matrix.

In order to establish conditions under which stable and robust recovery is possible,
we appealed to a group-sparse version of the restricted isometry property. Our resulting
bound depends linearly on the group-sparsity level (up to polylogarithmic factors). Due
to the block diagonal structure of the measurement operator, it is to be expected that any
bound on the number of measurements also depends locally on the considered sparsity
basis. This had previously been demonstrated in the canonical sparsity setting and extends
to the group-sparse case. In particular, the respective coherence parameter yields the most
favorable scaling in case of the discrete Fourier basis in which case our bound shows that
the number of measurements per sensor can be reduced if more sensors are added to the
system. In the case of the canonical basis, this reduction does not seem possible. These
observations were also confirmed during numerical experiments. More precisely, it was
demonstrated that the phase transition behavior remains almost unchanged in case of
the Fourier basis when the total number of measurements M = mL is fixed and the ratio
M/ L varies. In case of the canonical basis on the other hand, the success region of the
phase transition diagram visibly shrinks as the number of sensors increases when the total
number of measurements is fixed.

6.2 Outlook and Future Work

In addition to the open problems discussed in the conclusions of the individual main
chapters, we single out the following problems in particular.

The signal model considered in Chapter 3 is admittedly highly idealized in that fre-
quencies making up the conjugate symmetric signals are assumed to be integer multiples
of the frequency resolution. If this assumption is violated, target signals do not admit
a sparse representation w.r.t. the discrete Fourier basis, nor are they compressible in
the sense that nonzero coefficients decay as i~!/? for some p € (0, 1), where i denotes the
i-th largest entry of a vector in absolute value. One approach to address this issue is
by replacing the DF'T basis by an overcomplete DFT frame as previously considered in
[DB13] for the recovery of frequency-sparse signals from linear Gaussian observations.
This approach should be contrasted with the construction of the measurement operator in
the context of 1-bit recovery from oversampled time domain measurements, which, up to
scaling of the columns, also corresponds to a DFT frame. A second option could be via
the so-called atomic norm minimization framework, which allows to lift any integrality
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constraint on the frequencies of target signals. This was recently considered in [FC18]
for measurement matrices composed of circularly symmetric standard Gaussian random
variables.

While the bound on the number of measurements to guarantee stable and robust
recovery of group-sparse vectors from block diagonal observations established in Chapter 5
is optimal w.r.t. the sparsity level, it scales quadratically in the group size when the
group-sparsity basis corresponds to the orthogonal DFT matrix. This artifact can be
traced back to our bound on the covering number at higher scales, which we established by
generalizing Maurey’s empirical method to sets that do not admit a polytope representation.
Since it is unlikely that this dependence is optimal, it is highly desirable to remove this
additional factor. Moreover, it is unknown whether the logarithmic factors in our bound
can be improved. In both cases, establishing a fundamental lower bound on the number of
measurements required to guarantee the existence of stable encoder-decoder pairs bears the
potential to resolve both questions. A natural starting point would be the work in [DU18],
which establishes lower bounds on the Gelfand numbers of mixed-norm embeddings, leading
to optimal lower bounds on the number of measurements to guarantee stable recovery of
block-sparse signals.
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Mathematical Preliminaries

In this section, we introduce some common definitions and properties of random variables.
We also collect some useful concepts and results from convex analysis and geometric
functional analysis used throughout this thesis.

A.1 Random Variables and Subgaussian Distributions

Let (€2, %, P) be a probability space consisting of the sample space €2, the Borel measurable
event space represented by the o-algebra ¥ C 2 and a probability measure P: ¥ — [0, 1].
The elements of the space of matrix-valued Borel measurable functions from € to R™*¢
are called random matrices. This space inherits a probability measure as the pushforward
of the measure P, i.e., given a Borel measurable set A € B C R™*?, we have

px(A) =PHw € Q: X(w) € A}) =P(XH(A)) 2 P(X € A)

such that the triple (R™*? B, ux) is again a probability space. For d = 1, we obtain
the space of random vectors; the space of random variables corresponds to the choice
m = d = 1. Given a scalar random variable X, the expected value of X is defined as

EX = / Xdp 2 /Q X (w)P(dw)
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if the integral exists. Moreover, if Ee!* exists for all |[t| < h for some h € R, then the map
Myx:R = R: ¢ s Mx(t) = EeX = /eth]P’,

known as the moment generating function (MGF), fully determines the distribution of X.
Finally, the p-th absolute moment of X is defined as

EIXP = [ |X (@) P(dw).
Q
This leads to the notion of the so-called LP-norm
X | == (B|XP)P

for p > 1, which turns the space of random variables equipped with |-||;, into a normed
vector space.

A particular class of random variables, which finds widespread use throughout the
theory of compressed sensing, are so-called subgaussian random variables whose LP norm
increases at most as ,/p. The name subgaussian is owed to the fact that subgaussian
random variables have tail probabilities which decay at least as fast as the tails of the
Gaussian distribution [Ver18, Section 2.5]. This leads to the following definition.

Definition A.1 (Subgaussian random variables). A random variable X is called subgaus-
sian if it satisfies one of the following equivalent properties.

(i) The tails of X satisfy
P(|X| >t) < 2exp(—t*/K}) Vit >0.

(ii) The absolute moments of X satisfy
HX”Lp < K2\/ﬁ Vp > 1.

(iii) The super-exponential moment of X satisfies

E exp(X?/K2) < 2.
(iv) IfEX =0, then the MGF of X satisfies
Eexp(tX) < exp(K;t*) VteR.

The constants K1, ..., Ky are universal.

Note that the constants K; > 0 for ¢« = 1,2, 3,4 differ from each other at most by
a constant factor, which in turn deviate only by a constant factor from the so-called
subgaussian norm ||-||,, introduced next.

Definition A.2 (Subgaussian norm). Given a random variable X, the subgaussian norm

of X is defined as
[ X1l,, == inf {s > 0: Ety(X/s) < 1},

where ¥y(t) 1= exp(t?) — 1 is called an Orlicz function.
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The set of subgaussian random variables defined on a common probability space
equipped with the norm [|-[|,,, forms a normed space known as Orlicz space. Note that
some authors instead define the subgaussian norm as

1
X||,,. ==sup —||X||;,. Al
X1y, pzlf\/ﬁ” I (A1)

In light of Definition A.1, these definitions are—up to multiplicative constants—equivalent.
As a consequence of (A.1) and Definition A.1(ii) above, a random variable is subgaussian
if its subgaussian norm is finite. For instance, the subgaussian norm of a Gaussian random
variable g ~ N(0, 0?) is multiplicatively bounded above by ¢ times a constant: ||g|| vy SO
On the other hand, the subgaussian norm of a Rademacher' random variable ¢ is given
by [lell,, = 1/4/log(2). Gaussian and Bernoulli random variables are therefore typical
instances of subgaussian random variables. Other examples include random variables
following the Steinhaus? distribution, as well as any bounded random variables in general,
which includes all discrete distributions.

It is oftentimes convenient to extend the notion of subgaussianity from random variables
to random vectors.

Definition A.3. Let X be a random vector on R<.

(i) The random vector X is said to be subgaussian if the random variable (X, 0) is
subgaussian for all @ € R%.

(ii) The vector X is called isotropic if B|(X,0)|* = ||0]|5 for all & € R?.

Taking the supremum of the subgaussian norm of (X, 8) in the previous definition
over all unit directions 0 then leads to the definition of the subgaussian norm for random
vectors.

Definition A.4 (Subgaussian vector norm). The subgaussian norm of a d-dimensional
random vector X is

X, = sup [[(X.6)]),

Next, we introduce an important result about the concentration behavior of Lipschitz
continuous functions acting on Gaussian random vectors. In light of Definition A.1(iv),
the following result establishes that random variables defined by such Lipschitz mappings
are subgaussian.

Theorem A.5 ([BLM13, Theorem 5.5]). Let g € RY be a standard Gaussian random
vector, and denote by f: R? — R an L-Lipschitz function. Then, for all § € R, it holds
that

E exp (0(f(g) — Ef(g))) < exp (ZL)

'A Rademacher random variable takes on values in {£1} with equal probability.
2A Steinhaus random variable is a complex random variable distributed uniformly on the complex unit
circle.
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Remark A.6. With X = f(g) — Ef(g), Markov’s inequality tP(X > t) < EX immedi-
ately yields

P(X > t) =P(exp(0X) > exp(6t))
E exp(0X)
exp(6t)

62
< exp EL —0t).

Optimizing w. r. t. 0 therefore yields with 0 = t/L* that

PUIte) ~ E1(e) > 0) < x5

for t > 0. This result, which establishes that Lipschitz functions acting on Gaussian
random vectors concentrate sharply around their mean, is known as the concentration of
measure inequality.

Lastly, we will sometimes require a bound on the maximum of subgaussian random
variables. The following result shows that, in expectation, this maximum depends loga-
rithmically on the number of variables.

Proposition A.7 ([FR13, Proposition 7.29]). Let Xi,...X,, be a sequence of zero-mean
subgaussian random variables with E exp(6X;) < exp(c;0?) V0 € R,i € [n]. Then

E max | X;| < +/4clog(2n
nax || < \/dclog(2n)

for ¢ := max;cp) ¢;.

A.2 Convex Analysis and Geometric Functional Analysis

In this section, we collect a few standard definitions in convex analysis and geometric
functional analysis. We begin with the definition of convex sets and convex functions.

Definition A.8 (Convex set). A set C' C R? is called convex if every line segment between
two points x,y € C of the form Ax + (1 — \)y with X € [0,1] is contained in C.

Definition A.9 (Convex function). A function f: R? — R is called convex if, for
x,y € dom(f) :={x € R?: f(x) < oo} and X € [0, 1],

PO+ (1= N)y) £ AF(x) + (1= N f(y).
A convex function is called closed if its epigraph

epi(f) == {(x,t) € R™ : x € dom(f), f(x) < t}
s a closed set.
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Oftentimes, it will be convenient to “convexify” a nonconvex set C' C R?. A natural
way to do this is by considering the smallest convex set in R? which contains C'. This
gives rise to the definition of the convex hull.

Definition A.10 (Convex hull). The convex hull of a set C C R?, denoted by conv(C),
is the set of all convexr combinations

conv(C) = {Z AiX; i x; € O\ > O,Z)\i = 1}.

Equipped with this concept, we will make frequent use of the following well-known
result about the supremum of linear functions over compact sets.

Proposition A.11. Let C C R? be a compact set and u € R?. Then

sup (u,x) = sup (u,x).

xeC x€conv(C)
Proof. Denote by x* a vector in conv(C') which attains the supremum on the right-hand
side. Since x* is a convex combination of elements in C', we have

k k
X*>:<u,2)\ixi> Z)\ u, X;) gz (u,x*) = (u,x*)
i=1 i=1

with x; € C' and A\; > 0, Zle A; = 1 for some k € N. For the above inequality to hold
with equality, we therefore must have that every x; € C' is optimal as claimed. O]

Remark A.12. By the same argument, Proposition A.11 also holds for the infimum of a
linear function on a compact set.

By the triangle inequality and homogeneity of norms, it immediately follows that the
norm ball BICII-H = {x € R?: ||x|| < 1} of an arbitrary norm |[-|| on R? is a convex set. The
supremum of a linear function over a norm ball has a special meaning in convex analysis.
This is the content of the following definition.

Definition A.13 (Dual norm). Let ||-|| be a norm. Then its dual norm ||-||, is defined as
|x||, == sup (z, x).
llzll<1

Example A.14. For p € [1,00), the dual norm of the £,-norm on R is |||, where
1/p+1/p' =1. For p = oo, one has the special pair p = oo, p' =1, i.e., |||, is the dual
norm of ||-||... The tuple (p,p') is sometimes called a conjugate pair.

Next, we introduce a geometric parameter which measures the complexity of a bounded
set in a metric space. This complexity parameter is based on the idea of discretizing a
set by approximating it with finitely many balls of a given radius whose union covers the
original set.

Definition A.15 (Nets and covering numbers). Let (X, A) be a metric space, and let
U C X be bounded. Then a set N C U is called an e-net or e-cover of U w.r.t. A if for
every x € X there exists at least one point o € N such that A(x,x¢) < e. The cardinality
of the smallest such net, denoted by M(U, A, ¢), is called the covering number of U. If
(X, ||]]) is a normed space, and A is the canonical metric induced by ||-||, we also write
N, ||-|l,e). Moreover, if ||-|| = ||-|l,, we sometimes simply write WU, €) for short.
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A concept closely related to the covering numbers are the so-called packing numbers.

Definition A.16 (Packing numbers). Let (X,A) be a metric space and U C X. The
cardinality of the largest subset P C U such that all distinct points X,y € P are e-separated
w. . t. the metric A is called the packing number of U. It is denoted by P(U, A, ¢).

The following useful relation exists between covering and packing numbers.

Lemma A.17 ([Verl8, Lemma 4.2.8)). For any subset U of a metric space (X, A), the
following relation holds:

BU,A,2) <NU,Ae) <P(U,A,e) Ve>D0.
The following properties of covering numbers will prove useful throughout this thesis.

Proposition A.18. The following properties hold for the covering number of a set V C X
in a metric space (X, A).

(i) It holds that W(V,A,e) = N(V/a, A e/a) for any a > 0.
(ii) For a >0, it holds that W(aV,Ae) = N(V, A, e/a).

(iii) If A" is another metric on X with A(x,y) < A'(x,y) Vx,y € X, then NV, A, ¢) <
NV, A e).

(iv) If U C V, then WU, A,e) <N(V,A,e/2).

Proof. The first three properties are immediate.

To establish A.18(iv), we use Lemma A.17. To that end, first note that if P C U is a
maximal e-packing of U, then it is also an e-packing of V. However, since V' is a bigger set,
the packing number can only increase, hence P(U, A, &) < P(V,A,e). By Lemma A.17,
we therefore have

NU, A, ) <PU A,e) <PB(V,Ae) <NV, A, e/2),
which completes the proof. O]

Calculating the covering number of a set explicitly is generally a difficult task. A
classical bound on the covering number of norm balls w.r.t. their associated metrics is
the following estimate based on the comparison of volumes.

Lemma A.19 (Volume comparison, [FR13, Proposition C.3]). Let ||-|| be a norm on R?
with Bﬁ\\ denoting its associated unit ball. Denote by A the metric induced by ||-||. Then
fort >0,

(B A1) < (14 i)d

While the covering number is a purely geometric complexity parameter of a set, the
following quantity represents a stochastic measure of complexity. Intuitively speaking,
it is roughly equivalent to the average width of a set between two parallel supporting
hyperplanes whose normals are drawn uniformly from the Haar measure on the unit sphere
Sd-1,
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Definition A.20. The Gaussian mean width (or simply mean width for short) of a set
K c RY is defined as

w(K) = Eq sgg (g,u)

for g ~ N(0,1d).

The mean width of a set and its covering number are closely related by the following
convenient result due to Sudakov. Considering that the mean width is oftentimes easily
bounded, it provides us with an easy way to bound the covering number w.r.t. the
Euclidean norm.

Lemma A.21 (Sudakov minoration, [Ver18, Theorem 8.1.13]). Let U C R be a bounded
set. Then

Sggs\/log‘ﬁ(U, [-ll5,€) < w(U).
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Stable and Robust Recovery via Group-RIP
Matrices

In general, necessary and sufficient conditions for stable and robust recovery depend on
the null space property as discussed in Section 2.2. In its most basic form, the NSP of
a matrix A ensures that the null space of A does not contain any sparse vectors of a
certain order besides the zero vector, implying uniqueness of sparse vectors under the
linear map defined by A. In this section, we provide a similar condition for group-sparse
recovery. The particular group-sparse NSP is a natural generalization of the block-sparse
NSP originally introduced in [GM17]. Similar to the proof in the block-sparse case, the
structure of our proof follows the example of the proof in the canonical sparsity setting
presented in Chapter 4 and 6 of [FR13].

B.1 Robust Group-NSP

We first introduce the group null space property and show how it implies Theorem 5.2. We
then show that the group-RIP implies the group null space property. We start by fixing
some notation for the remainder of this appendix. Given a group partition Z = {Z;,...,Zg}
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and a group index set S C [G], we denote by Zg the subpartition {Z; : ¢ € S}. Moreover,
we denote by Zg the partition consisting of the groups indexed by S = [G] \ S. Finally,
with slight abuse of notation, we write xz, for the vector x € C” restricted to the index
set Ujes Tiy 1-€., X7g = Yieg X7,

Definition B.1 (fy-robust group-NSP). A matriz A € CM*P s said to satisfy the -
robust group null space property (group-NSP) of order s w.r.t. an arbitrary norm |-|| and
constants p € (0,1) and 7 > 0 if for all v.€ CP and for all S C {1,...,G} with |S| = s,

P
Ivslly < J2|va|, + AV
Given a matrix which satisfies the fs-robust group-NSP, one may now establish the

following result, which immediately implies Theorem 5.2.

Theorem B.2. Suppose that the matriv A € CM*D satisfies the ly-robust group null
space property of order s w.r.t. ||-||, and constants p € (0,1) and 7 > 0. Then for any
x,z € CP,

C
Iz = xlly < = (lellz, = Ixllz, +20.(x)za) + Cill Az =)

where

2
o el ) S SR C R )

I—p IL—p

Proof. The f;-robust group-NSP directly implies that for any x,z € C” and v := z — x,
we have

Ivlly < Ivzelly + v,

vr |+ TlIAv] + vz, (B.1)

T,

p
<
J— \/g

for an arbitrary index set S C [G] with [S| < s. We first provide a bound for [[vz» in

terms of [|-[|7 ;. Denote by {Z,,...,1¢g} the nonincreasing group rearrangement of Z such
that
vzl = Val, 2 - = vz,

We now choose S as the index set of the best s-term group approximation of v, which
implies that

1.8 G
< ;ZHV:@ RIS HVL. )
j=1 Jj=s+1
L2
< - .
> S”VHI,I
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Applying this inequality in (B.1) therefore yields
1
lvlly < —=

1vilz, + 7l AV]. (B.2)

Next we bound the term ||v||;,. First note that if the fo-robust group-NSP holds, the
Cauchy-Schwarz inequality implies the following bound on the group ¢;-norm:

IVallzy < VaIval, < ova),, + 7v5IAv] (B.3)

This immediately implies that

iz, = lIvzs .

+ HV _
7,1 T 71

< (L+p)|va,, +v5lAv]. (B.4)

In order to bound [|vz_||z1, we apply (B.3) once again in combination with the following
result, which is easily adopted to the group-sparse setting from [FR13, Lemma 4.15].

Lemma B.3. Consider a group partition T = {Z,,...,Zg}. Then for T C [G] and any
two vectors x,z € CP, we have for v := z — x that

[vel,, < Males = Iz, + Vel +2)xe, ],

Invoking (B.3) in Lemma B.3 with 7' = S, we obtain

[vaelly , < Nzllzy = el + Ivaelizy +2|xz .,

Z1 T T\/EHAVH T QHXZ§H

< HZHL1 - ”X”z,1 + pHVI§ 71

which implies that

vl < 1 (el = Il + 2] ) + 75 vl

and consequently from (B.4) that

1+p
IVlizy < 7=

- P

274/
(el =il +2per ) + T2 A
Since the group support S corresponds to the s groups with largest fo-norm, it minimizes

the term [xz_[|z,1 on the right-hand side and therefore ||xz_|lz1 = 05(x)z,1. Combined
with (B.2), the claim follows. O

Since the result above holds for any x and z, choosing x = %X and z = x* with
x* denoting a minimizer of Problem (P7 ;) immediately implies the following theorem.
More precisely, by optimality of x* for Problem (P7 ), we have ||x*||z1 — ||%[/z1 < 0 and
|A(x —x¥)||, = ||y — Ax*||, < v by feasibility of x*.
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Theorem B.4. Suppose that A € CM*P satisfies the ly-robust group-NSP of order s with
constants 0 < p < 1 and 7 > 0. Then for all X € CP and y = Ax + e with |le|, < v, any
solution x* of Problem (Pz.) approzimates x with error

Og ()O()Z,l

NG

1% — x*||, < 2C; + Oy

with Cy, C1 > 0 as in Theorem B.2.

The /5-robust group-NSP provides a necessary and sufficient condition for recovery
of group-sparse vectors. In the next section, we establish that the group-RIP implies
the /5-robust group-NSP and therefore yields a sufficient condition for stable and robust
recovery of group-sparse vectors.

B.2 The Group-RIP Implies the />-Robust Group-NSP

In light of the previous section, it suffices to prove that the group-RIP of order 2s with
constant ¢ implies the fy-robust group-NSP to establish Theorem 5.2 according to the
following result.

Proposition B.5. Assume that the matriz A € CM*P satisfies the group-RIP of order s
with constant § < 4/+/41. Then A satisfies the ly-robust group-NSP with constants

0 and T = Lo (B.5)

SV SRy VI— 02— o/4

We follow the general proof strategy in [FR13, Chapter 6], which employs a common
splitting technique prominently used throughout the compressed sensing literature.

Proof of Proposition B.5. Consider the group index sets Sp, Si,... such that S; C [G]
corresponds to the group indices of the s groups with largest {;-norms in U,; S;. If the
group-NSP is established for Sy, yielding the largest possible [|vzy |2, then it also holds
for any other S; with 4 > 0. Assuming the group-RIP holds, we can write [[Avz [|5 =
(L +1)[[vzg, I3 with [¢[ < &. We can therefore bound the term [|Avz ||3 by

2
, = <AVISO,A(V - ZVISk) >
k>1 C

- <AVISO’AV><C B ];<AV1507AV151«><C

JAV], +C Y v,
k>1

HAVISO

< HAVISO

2HVISk 2

where the last inequality follows from Lemma B.6 given at the end of this section with
Cy := V02 — 1. Using ||Avz, [l2 = V1 + t]|lvzg |2, we arrive at an expression similar to
the group-NSP, namely

(1+1)||vzg,

<O Y o |vag, ||, + VI EIAV],. (B.6)
E>1
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Although we trivially have

= ||v
.= vz

So ’

7,1

ZHVISk
k>1

we require an additional factor of 1/4/s to obtain the fs-robust group-NSP according to
Definition B.1. To that end, we invoke [FR13, Lemma 6.14] and find

ZHVISk
k>1

Applying this inequality in (B.6) now yields

2

1
< Zlaslz, + 3l
2 = \/5 s, 7,1 + 4 sy

A VI+t
vz, < = Vil T e AV,
o2 = s 4 - B2z g gy VR
<l b A
VI v|,.
_\/51_%\/?17 T5llza ,/1+t1_i\/§2+? 2

Next, note that since [t| < J, one has 1/v/1+t < 1/4/1 — . Moreover, it holds that
Vo2 —12/(1+t) <§/v1— 0% Invoking these estimates, we therefore find

1 5 V1+46
< — 5 HVIS— + 3 [AV],.
27 /sy/1—62—6/4 "Sollzn - 1 —62—§/4

This means that A satisfies the fo-robust group-NSP with constants p and 7 as in (B.5).
Since we require p < 1, this in turn implies § < 4/4/41 as claimed. O

HVISO

It remains to establish the following lemma used in the proof of Proposition B.5, which
we extract from the proof of Theorem 6.13 in [FR13].

Lemma B.6. Suppose that the matriz A € CM*P satisfies the group-RIP of order 2s
with constant § € (0,1). Then for any two disjoint sets Sy, S1 C [G] with cardinality s, it
holds for |t| < § that

AVISO s _AVZS1 § 02 — 2 VZSO
< el <V

Proof. To start with, we normalize the two vectors to have unit f,-norm by defining the
auxiliary vectors u:= vz, /[|vzy, [l2 and w := vz, /|vzg [[2 where 6 € C with |0 =1 is
chosen such that Sie(Au, w). = [(Au, w).|. Denote further by «, 8 > 0 two parameters
to be chosen later. Then

QHVIsl 2°

1
2|(Au, Aw)c| = m(I\A(&u + w3 — |A(Bu = w)[; - (a” = 5%)[|Aul)

1
< [0+ Dllaw s wl = (1= B)5u - wl ~ (@ = #)(1 + )l
<= i 5 [(1 + )@+ 12— (1 =8B +1)*—(a® = *)(1 + t)]
1
< m[oﬂ(a— 1)+ 82(6 +1) + 24].
Choosing a = (6 +t)/+/6? —t? and = (0 — t)/v/0% — 2 completes the proof. O
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List of Symbols
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fe
sgn
Re, Tm

Proper subset, i.e., AC Bifandonlyif A#0), A# Bandae€ A =
a€B

Regular subset

The set {1,2,...} of natural numbers

The set of integers from 1 to d € N, i.e., [d] = [1,d NN ={1,...,d}
The set of real numbers

The set of complex numbers

Either the field R or C

The vector space K? over K = R or K = C of dimension d

The coordinate subspace of K¢ restricted to coordinates indexed by
IC[d]

The subspace of conjugate symmetric vectors of C¢

The orthogonal group

The unitary group

The cardinality of a discrete set .S

The complement of a subset, e.g., S = [d] \ S for S C [d]

The identity matrix of size d x d

The orthogonal discrete Fourier transform matrix of size d x d

A change of basis matrix associated with a sparsity basis

The all ones vector

The zero vector

Usually the measurement vector

A measurement matrix of size m x d (Chapter 3 and 4) or a block
diagonal measurement matrix of size M x D (Chapter 5)

The transpose of a matrix

The adjoint operator of the linear map induced by a matrix

The null space of a matrix

The complex conjugate of a complex number z € C (applies element-wise
to vectors and matrices)

The Fourier transform operator

The Nyquist frequency, i.e., the highest frequency of a band-limited
signal

The sampling rate of an ADC

The sign function of a real number (acts element-wise on vectors)

The real and imaginary parts of a matrix, vector or scalar
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v

X
aob
111,

11l

| -U|l|IHq
Bp

Sdfl
St
supp(x)

s?p

HZ,S

EX

The nonincreasing rearrangement of a vector

The element-wise product (Hadamard product) of two vectors

The ¢,-norm

The fy-pseudonorm, i.e., the number of nonzero entries of a vector
The operator norm between the normed spaces (K7, [|-||,)) and (K™, [|-)
The unit ball of |-, in K4

The unit Euclidean sphere in K¢, i.e., the boundary of B¢

The unit sphere in the coordinate subspace K%

The support of a vector x

The canonical inner product on R?

The canonical inner product on C¢

The normalized Hamming distance

The support error, i.e., the cardinality of the symmetric set difference
between the support sets of two vectors

A sparse or group-sparse target vector to be recovered

The optimal solution of an optimization problem

Usually the vector produced by a reconstruction map

The sparsity or group-sparsity level, i.e., the number of nonzero entries
or groups of a vector

Usually the number of sensors in Chapter 5

The restricted isometry constant associated with a particular type of
restricted isometry property

The number of groups

A group partition, i.e., a set of index sets partitioning a set into G
nonoverlapping groups

Usually the trivial partition Z = {{1},...,{d}} of [d]

The size of the largest group in a group partition Z

The group ¢,-norm

The set of s-sparse vectors in a vector space V

The sparse vectors with unit Euclidean norm

The set of s-group-sparse vectors w.r.t. Z: Y7, = %7 ((RY) (Chapter 4)
or X7, = X7 ,(CP) (Chapter 5)

The set of group-sparse vectors on the unit sphere

The set of effectively group-sparse vectors w.r.t. Z

The set of effectively group-sparse vectors on the unit sphere

The best s-term approximation error w.r.t. |-,

The best conjugate symmetric s-term approximation error w.r.t. |-,
The best s-group approximation error w.r.t. Z and |||,

The hard thresholding operator, 7.e., the projection operator on ¥
The conjugate symmetric hard thresholding operator, 7.e., the projector
on Xy(Xg) w.r.t. [|-[],

The group sparse hard thresholding operator, i.e., the projection operator
on EI,S

The indicator function of an event E

The probability measure of a probability space

The expectation of a random variable X
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The multivariate Gaussian distribution with mean vector p and covari-
ance matrix C

The uniform distribution over an interval [

The m-dimensional Bernoulli distribution with independent entries
Usually a standard Gaussian random vector

The convex hull of a set

The Minkowski gauge function of a set U

An e-net of a set

The covering number

The packing number

The Gaussian mean width

Usually a failure probability

Usually the reconstruction error of a recovery scheme

Usually the variance of a random quantization dither

Usually the variance of an additive noise term

The group-sparse direction recovery map associated with Problem (P5)
The group-sparse direction recovery map associated with Problem (P, 5)
The group-sparse hard thresholding direction reconstruction map (cf.
Equation (4.18))

The norm-constrained group-sparse reconstruction map associated with
Problem (P, g)

The group-sparse reconstruction map associated with Problem (P,) (cf.
Equation (4.26))

The group-sparse recovery map associated with Problem (P, 3)

The projection-based group-sparse reconstruction map associated with
Problem (P4 9) (cf. Equation (4.27))

The group-sparse hard thresholding recovery map (cf. Equation (4.31))
The projection-based group-sparse hard thresholding recovery map (cf.
Equation (4.35))
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