
SoftwareX 10 (2019) 100253

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

DPsim—A dynamic phasor real-time simulator for power systems
Markus Mirz ∗, Steffen Vogel, Georg Reinke, Antonello Monti
Institute for Automation of Complex Power Systems, RWTH Aachen University, Aachen, Germany

a r t i c l e i n f o

Article history:
Received 17 December 2018
Received in revised form 12 April 2019
Accepted 21 May 2019

Keywords:
Real-time simulation
Dynamic phasors
Co-simulation

a b s t r a c t

DPsim is a real-time capable solver for power systems that operates in the dynamic phasor and
electromagnetic transient (EMT) domain. This solver primarily targets co-simulation applications and
large-scale scenarios since dynamic phasors do not require sampling rates as high as EMT simulations
do. Due to the frequency shift introduced by the dynamic phasor approach, the sampling rate and rate
of data exchange between simulators can be reduced. DPsim supports the Common Information Model
(CIM) format for the description of electrical network topology, component parameters and power flow
data and it is closely integrated with the VILLASframework to support a wide range of interfaces for
co-simulation. Simulation examples demonstrate the accuracy of DPsim and its real-time performance
for increasing system sizes.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0.0
Permanent link to code/repository used for this code
version

https://github.com/ElsevierSoftwareX/SOFTX_2018_244

Legal Code License GPLv3
Code versioning system used git
Software code languages, tools, and services used C++, python
Compilation requirements, operating environments &
dependencies

DPsim can be compiled for Linux, OSX and Windows. The main dependencies are: gcc, Eigen,
Python, CIM++, VILLASnode, Sundials. A Dockerfile with all dependencies is included in the
repository.

If available Link to developer documentation/manual https://fein-aachen.org/projects/dpsim/
Support email for questions mmirz@eonerc.rwth-aachen.de

Software metadata

Current software version v1.0.0
Permanent link to executables of this version https://hub.docker.com/r/rwthacs/dpsim
Legal Software License GPLv3
Computing platforms/Operating Systems Linux docker container
Installation requirements & dependencies Only a docker installation is required.
If available, link to user manual https://fein-aachen.org/projects/dpsim/
Support email for questions mmirz@eonerc.rwth-aachen.de

∗ Corresponding author.
E-mail address: mmirz@eonerc.rwth-aachen.de (M. Mirz).

1. Motivation and significance

DPsim introduces the dynamic phasor (DP) approach to real-
time power system simulation. The motivation is to remove the
requirement of proportionality between the simulation time step

https://doi.org/10.1016/j.softx.2019.100253
2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2019.100253
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.100253&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2018_244
https://fein-aachen.org/projects/dpsim/
mailto:mmirz@eonerc.rwth-aachen.de
https://hub.docker.com/r/rwthacs/dpsim
https://fein-aachen.org/projects/dpsim/
mailto:mmirz@eonerc.rwth-aachen.de
mailto:mmirz@eonerc.rwth-aachen.de
https://doi.org/10.1016/j.softx.2019.100253
http://creativecommons.org/licenses/by/4.0/

2 M. Mirz, S. Vogel, G. Reinke et al. / SoftwareX 10 (2019) 100253

and the highest frequency of simulated signals. Especially for
power electronics and geographically distributed real-time simu-
lation, this is an interesting feature. Currently, the focus of DPsim
is more on the application in distributed real-time co-simulation
than power electronics. The idea is that the larger the simulation
step, the smaller the impact of the communication delay between
simulators, which are geographically distributed.

Distributed real-time co-simulation is motivated by large sys-
tem simulations requiring more simulation capacity than is lo-
cally available and by the possibility of Hardware-In-the-Loop
(HIL) testing with hardware under test and simulators at different
locations. Using dynamic phasors for this application is a fairly re-
cent development although the dynamic phasor, or the envelope
function concept, is well known and was introduced in power
electronics analysis in [1] as a generalized state space averaging
method.

The authors of [2] have developed a distributed real-time
simulation laboratory by applying a communication platform as
a simulator-to-simulator interface in order to enable remote and
online monitoring of interconnected transmission and distribu-
tion systems. Each simulator carries out simulations in time do-
main, while the variables exchanged at the interconnected nodes,
i.e. decoupling point, are in the form of time-varying Fourier
coefficients. The electromagnetic transient (EMT) values cannot
be exchanged at every simulation step due to the communication
delay. This delay may be directly incorporated into the physi-
cal power system model using traveling wave transmission line
models [3]. However, electromagnetic waves travel about 15km
in 50µs, a time which equals the typical step time in real-time
EMT power system simulation. This means that a communication
delay in the range of milliseconds would have to be compen-
sated with a line length of several hundred kilometers which
may require large and unrealistic changes to the original system
model. Therefore, this method is suited for applications on local
simulation clusters where the delay is only few simulation steps,
but not for internet-distributed simulation, where the expected
delay is often tens of milliseconds. In the latter case, the insertion
of a transmission line model with the required parameters into
the model would have a severe impact on the behavior of the
system. Without compensation, the communication delay might
cause large errors and even instability of the simulation as shown
in [4] for a delay of more than 30ms.

Starting from the concept presented in [2], we propose in-
terfaces and system-wide simulation state variables based on
dynamic phasors. This approach has two benefits explained in [5],
which presents a comparison of DP and EMT simulations con-
ducted in DPsim. First, it takes advantage of the computational
efficiency of dynamic phasors in scenarios that involve bandpass
signals with large center frequencies, as in the case of switching
power electronics. Secondly, it increases the simulation time step
thus reducing the difference between the local simulation time
step size and the round trip time between simulators.

The approach employed in [2] requires the extraction of pha-
sor information from the EMT signals. Therefore, the transparency
of the interface is not guaranteed since the interface algorithm
may alter the exchanged signals. This extraction step is elimi-
nated by using dynamic phasors as state variables. Because of
these features, DPsim is now part of the distributed real-time co-
simulation platform described in [6], which is also the base for
the experiment described in [2]. A first example of distributed
real-time co-simulation using DPsim is presented in [7]. This ex-
ample shows the impact of the latency in geographical distributed
simulation on the results and how the latency can be modeled a
priori to running actual simulations.

Besides, there are other relevant open-source initiatives in the
field of power system simulation to be mentioned. In particular

the Modelica community is very active in adapting Modelica en-
vironments for large scale power system cases [8,9] and providing
comprehensive libraries of models [10,11]. These initiatives aim
to enable large scale, fast simulation of power systems using
open-source components but the focus is slightly different com-
pared to the work presented here. The primary objective of DPsim
is to assure a deterministic time step in terms of simulated and
computation time to provide real-time capability required for
Hardware-in-the-Loop (HIL) experiments. This is why in DPsim
higher order solver methods are avoided and the system is split
into subsystems, which are solved separately. The aforemen-
tioned related work does not seem to rely on such compromises
since a deterministic time step is not required. While Modelica
allows a convenient definition of physical models, DPsim does not
intend to provide a solution in this regard. The idea is rather to
extend the set of available models in DPsim by generating C-code
from Modelica models to represent components connected to the
network. These can be linked to DPsim and solved by the ODE
solver that was integrated into DPsim for this purpose.

Another related work which is not open-source but also DP
based is described in [12]. Similarly to DPsim, the authors have
developed a simulator based on the DP approach. However, the
focus does not seem to be fast simulation or real-time simu-
lation since the simulator was developed in Python and there
are no measures described in order to speed up the simulation.
Furthermore, the validation is focusing on the correctness of the
simulation rather than simulation speed.

2. Software description

The main theoretical building blocks of DPsim are the dy-
namic phasor concept and the modified nodal analysis (MNA).
Dynamic phasors [13] have various names in scientific literature.
Depending on the field and application, they are known as gen-
eralized averaging method [1], shifted frequency analysis [14],
equivalent envelope [15,16] or baseband signal [17]. Here, the
term dynamic phasors is selected because it is widely known in
the power system community. The basic idea of dynamic phasors
is to approximate a time domain signal x with a Fourier series
representation as shown in (1)

x(τ) =

∑
k

Xk(t)ejkws(τ) (1)

where τ ∈ (t − T , t]. The kth coefficient is determined by

Xk(t) = ⟨x⟩k(t) =
1
T

∫ t

t−T
x(τ)e−jkws(τ)dτ (2)

where ωs is the fundamental system frequency and kωs are its
harmonics.

MNA is used for the representation of the network as a linear
equation system, whereas complex components, such as electrical
machines, connected to the network are treated by a separate
ODE solver. Depending on the simulation scenario, the admit-
tance matrices of the required network topologies can be pre-
processed, i.e. factorized, before simulation start to guarantee a
deterministic simulation time step.

The simulation kernel of DPsim is extended with interfaces to
support different use cases such as circuit or system simulation,
batch simulation, co-simulation and HIL testing. DPsim supports
the Common Information Model (CIM) [18] as native input for the
description of electrical network topologies, component parame-
ters and load flow data, which is used for initialization. Users can
interact with the simulation kernel via Python bindings, which
can be used to script the execution, schedule events, change
parameters and retrieve results. Python scripts have been proven
an easy and flexible way to codify the complete workflow of a

M. Mirz, S. Vogel, G. Reinke et al. / SoftwareX 10 (2019) 100253 3

Fig. 1. Overview of DPsim’s main components and dependencies on external
libraries.

simulation from modeling to analysis and plotting, for example
in Jupyter notebooks using Numpy and Matplotlib. Furthermore,
DPsim supports co-simulation and interfaces to a variety of com-
munication protocols of commercial hardware via the integration
of DPsim with the VILLASframework [19], that enables large-scale
co-simulations and HIL experiments.

2.1. Software architecture

2.1.1. Module structure
The DPsim simulation kernel and its component models are

implemented in the C++ programming language. The availability
of good compilers and highly optimized software libraries, such
as Eigen [20], Sundials [21] and VILLASnode, which is part of the
VILLASframework, for C++ were key factors for this decision.

The core of DPsim consists of models and solvers as depicted
in Fig. 1. Interfaces to other software, hardware or data are
supported through external libraries. Grid data in CIM standard
format is imported using the CIM++ library [22]. Communica-
tion with other software, e.g. real-time simulators, control and
monitoring software, as well as hardware is provided by the
VILLASframework. For linear algebra operations, DPsim uses the
Eigen library. The MNA solver of DPsim uses the Eigen LU fac-
torization and Eigen::Dense/Sparse::Matrix are the standard data
types for all matrix variables. The Sundials solver package is
included in DPsim to provide more complex ODE solvers for
components connected to the network.

Compilation from source code requires a Git, a C++11 compiler
and CMake 3.6. Tested compilers are Clang, GCC, MSVC and Intel’s
ICC. As a base operating system Ubuntu 18.04 LTS or Fedora 29 are
recommended. For real-time execution a Linux 4.9 kernel with
the PREEMPT_RT patch-set is recommended.

2.1.2. Class hierarchy
Simulation is the main interface class for users to control the

simulation state. The attributes of a Simulation instance hold all
the information that specifies one simulation scenario in DPsim.
The Simulation holds references to the solvers, interfaces and the
power system model information. This hierarchy is presented in
Fig. 2. The complete class hierarchy diagram can be found in
the developer’s documentation of DPsim [23]. All solvers inherit
from Solver, e.g. MNASolver and ODESolver, and all interfaces
from Interface, e.g. for VILLASnode. All component models, power
system, signal etc., derive from the class IdentifiedObject. The main

Fig. 2. Diagram of the main classes of DPsim.

attribute of this class is a unique identifier, which is equivalent to
the mRID in CIM.

2.1.3. Parallelization
In order to utilize the multiple processor cores of modern

computer systems and speed up the simulation, the computation
of one time step is split up into multiple tasks. These tasks are
defined by the various parts of the simulation (like instances
of Solver and Interface). An internal scheduler creates a task
graph by analyzing which variables are modified and used by
the tasks. This task graph is a directed acyclic graph with nodes
representing tasks and edges representing data dependencies.
The scheduler uses this graph to distribute the tasks onto mul-
tiple threads such that these dependencies are upheld. DPsim
implements different scheduling algorithms for this purpose, the
simplest of which being level scheduling as used in [24]. This
algorithm divides the tasks into ordered levels such that each task
only depends on tasks in a previous level. To simulate a time step,
these levels are then executed in order by distributing all tasks of
one level evenly among the available threads.

To further optimize the simulation performance for large net-
works when using multiple processors, a decoupling transmission
line model can be introduced. In this model a transmission line is
represented using equivalent current sources and resistances at
the line ends that are not topologically connected as described
in [25, ch. 6.2]. Instead, the ends are indirectly connected by
updating the values of the sources based on the values on the
other end only after a delay τ , which depends on the line’s
parameters. As subsystems that are connected using this line
model are not connected in a strict topological sense, they can
be solved independently and in parallel. This significantly reduces
the computational effort to simulate large systems.

2.2. Software functionalities

DPsim supports both dynamic phasor and EMT simulation.
Furthermore, DPsim is optimized for real-time simulation but it is
also possible to run the same simulation scenario offline meaning
that the simulation is executed as fast as possible. These different
simulation modes are compatible with the user and simulation
interface which are covered in the following.

2.2.1. User interface
Network models can be directly defined in the C++ code.

This technique is complemented by a CIM importer, which al-
lows the user to directly load network models from CIM-XML
files. This proves to be an adequate form to describe network
topology and component parameters, which are required by the
solver. This CIM importer relieves the user from defining the
model in plain C++ code. However, CIM-XML is not suitable for

4 M. Mirz, S. Vogel, G. Reinke et al. / SoftwareX 10 (2019) 100253

the definition of more complex simulation scenarios with time
varying parameters or topology changes caused by contingencies
in the system (e.g. breaker events or faults). Therefore, DPsim
features Python bindings to most parts of the C++ program-
ming interface. A scripting language like Python is used to define
scenarios by leveraging the flexibility of a general purpose im-
perative language. This allows the user to write a single Python
script to:

• Describe the network topology and parameters
• Load a network from CIM data and optionally extend it
• Define a simulation scenario with events or parameter
changes

• Execute the simulation and analyze or plot the simulation
results

2.2.2. Simulation interface
Interfacing the simulation kernel is desirable for multiple rea-

sons:

• Real-time exchange of simulation signals for co-simulation
or HIL testing

• User interface for online monitoring and control of the sim-
ulation

• Logging of simulation results for offline analysis
• Import of time series data, for example load and production
profiles

For commercial simulation tools these interfaces are a major
selling point as new protocols and standards and DAQ cards are
introduced continuously. Their implementation and maintenance
is time consuming and seemingly never ending. By design, DP-
sim tries to avoid this pitfall by leaving the implementation of
interfaces, data formats and protocols to a separate project. VIL-
LASnode, a component of the VILLASframework project, handles
input/output as well as translation between different protocols.
DPsim focuses on solving the system model and provides only
a single type of interface, shared memory, to the VILLASnode
gateway. Interfaces to external systems, databases, files or the
web interface are then handled by the wide range of supported
interfaces of the VILLASnode gateway, which in this case acts as
a proxy between the shared-memory interface to DPsim and the
outside world. Responsibilities are clearly separated. This allows
the development of new interfaces without having to modify the
simulation kernel itself.

In addition, DPsim can use the VILLASnode interfaces for co-
simulation with other simulators or remote DPsim instances. In
such a scenario, DPsim is usually coupled using an Ideal Trans-
former Model (ITM). Fig. 3 shows a decoupled model, which
exchanges voltages in one and current signals in the opposite
direction to control respective sources. For a phasor simulation,
the exchanged signals are complex-valued attributes which are
passed via the shared-memory interface to VILLASnode which
further sends them to a remote simulator using one of VILLAS’
supported protocols (e.g. MQTT, UDP, ZeroMQ, . . .). For geograph-
ically distributed simulations, VILLASnode can implement inter-
face algorithms to compensate for the inherent communication
latencies when executed in real-time over a high latency con-
nection such as the internet. Alternatively, the implementation
of a Discrete Fourier Transform (DFT) in VILLASnode allows for
a coupling of the phasor-based DPsim with other EMT-based
simulation tools like OPAL-RT or RTDS.

DPsim exchanges simulation data with the VILLASnode gate-
way via a shared-memory region. The execution of DPsim and
VILLASnode as independent processes is crucial in real-time sim-
ulation scenarios as the main simulation kernel must not be
interrupted by background activities such as data logging to a
possibly blocking database.

Furthermore, DPsim has its own simple logging module to
write results to CSV files for archival and post processing. This
method is easy to setup and convenient for small simulations
where post processing and analysis of simulation results is done
in MATLAB or Python. In the long term, the internal CSV logging
functionality is planned to be incorporated into VILLASnode and
enhanced by the support of additional data formats like HDF5 as
used by MATLAB.

3. Implementation and empirical results

To complement the previous overview of DPsim’s architec-
ture, the next subsection explains implementation specifics af-
fecting the real-time performance of DPsim. The real-time per-
formance of DPsim is demonstrated in the following subsection.
The remaining two subsections demonstrate the correctness of
the solution computed by DPsim against Matlab Simulink. The
first simulation validates only the network solution, which is
computed by the MNA solver. The second simulation features
a combination of the MNA solver for the network solution and
an ODE solver for the numerical integration of the synchronous
generator equations.

3.1. Implementation details

Only a compiled language like C++ with minimal runtime over-
head is suitable for the implementation since DPsim is targeting
simulation time steps in the range of milliseconds to microsec-
onds on off the shelf computing hardware. Great care was taken
to avoid memory allocation during the actual simulation. When-
ever possible, DPsim utilizes low order integration methods and
avoids iterative solver strategies to minimize computation time.
That is why the network part is handled by the MNA solver
specifically developed for DPsim.

DPsim is compatible with Windows, macOS and Linux operat-
ing systems. Eventually, the operating system configuration can
have a large impact on the real-time performance. To guarantee
real-time execution, DPsim leverages several Linux real-time fea-
tures such as the real-time capable SCHED_FIFO scheduler, real-
time signals, the timerfd interface, or control groups (cgroups).
Many of these features are nowadays incorporated in the stan-
dard Linux kernel but have their origin in the PREEMPT_RT patch-
set. The patch-set is slowly integrated into the mainline kernel
but still exists and can be applied to further improve the real-time
performance by enabling preemption of critical sections such as
interrupt handlers. The capability to preempt critical sections in
the operating system kernel reduces the overall system latency
and therefore helps to ensure strict deadlines at each time-step
interval.

Real-time execution on Windows or macOS is not supported.
Best real-time performance was achieved on a recent Intel x86_64
multi-core machine with optimized BIOS settings to avoid inter-
ruptions of the system by the System Management Mode (SMM).
To do so, DPsim execution threads are isolated from remain-
ing system processes using Linux’s cgroup feature. This reduces
the impact of background jobs in the system on the real-time
performance.

As a good start for real-time optimizations, we recommend
Redhat’s Real-time Guide [26] with its tuned tool and the realtime
profile. An updated list of optimization options can be found in
the DPsim documentation [23].

To control the time step, DPsim is using timerfd interface in
Linux environments. The timerfd interface allows for the config-
uration repetitive interval and one-off timers. It uses blocking
file descriptors to suspend the execution of the simulation loop
until the beginning of the next interval. This approach is more

M. Mirz, S. Vogel, G. Reinke et al. / SoftwareX 10 (2019) 100253 5

Fig. 3. VILLASnode as a gateway for distributed co-simulation with DPsim.

efficient than the use of the more common timer interface, which
relies on signals. At the same time, timerfd is more accurate
as calls to sleep or nanosleep as they suffer of a lingering drift
to non-equidistant execution intervals. The timerfd is also used
to schedule the synchronized start of distributed simulations as
described in the introduction.

Shared-memory is a common method for inter-process com-
munication (IPC) used on symmetric multi-processing (SMP) ma-
chines. It enables user processes to exchange data without the
involvement of the OS kernel. Shared-memory IPC allows both
processes, the solver and the gateway, to be executed in parallel
while streaming their data with minimal latency over a queue
in the shared memory region. The queue is implemented as a
lock free multiple producer/multiple consumer (MPMC) queue
and relies on atomic operations of the processor to facilitate
synchronization of the DPsim and VILLASnode processes. The
lockfree queue is a thread safe data structure. It is used to pass
samples of simulation data between the involved processes. As
such message passing is used as the main paradigm to avoid data
races. During the initialization phase, semaphores are used to
avoid race conditions in the setup of the shared-memory regions.
The absence of the operating system in the communication is
crucial to avoid costly context switches, which have to be avoided
in a real-time context. Using the shared-memory interface, the
DPsim simulation loop can run uninterrupted in a high priority
process. At the same time, VILLASnode gets assigned a lower pri-
ority for handling of possibly blocking disk or database accesses.
In a hardware-in-the-loop simulation it might be necessary to
have hard real-time capable interfaces to the real world. For
this purpose, DPsim supports an arbitrary number of shared-
memory interfaces at the same time. This allows the user to
configure one VILLASnode process with a high priority for the
control of PCIe FPGA or DAQ cards, and at the same time another
VILLASnode process for low priority logging of simulation data in
the background.

3.2. Real-time performance evaluation

DPsim is specifically designed for real-time simulation. To
assess the effect of system size on the real-time performance of
DPsim, a simple test network was copied multiple times and con-
nected with additional transmission lines. Fig. 4a shows the WSCC
9-bus system, which was used for this purpose. The copies were
connected in a ring-like topology using additional transmission
lines at the nodes 5, 6, and 8. The average wall clock time needed
to simulate one time step was measured for a simulation time
period of 0.1 s with a time step of 100µs. Each measurement
was further averaged over ten simulations of the same system.
The measurements were performed on a system running Ubuntu
16.04 on an Intel Xeon Silver 4114 processor featuring ten cores
clocked at 2.2GHz. The results are shown in Fig. 4b for two dif-
ferent configurations: For the normal simulation, the additional
transmission lines were modeled using the Pi model and only

one thread was used. For the parallel simulation, the decoupling
transmission line model was used for the additional lines and ten
threads were employed. As it can be seen, the use of multiple
threads and the special transmission line model greatly reduces
the wall clock time necessary for simulating a single time step.
Even for 40 copies of the original system (resulting in a system
size of 360 nodes), the wall clock time per step stays under
the simulation time step of 100µs, thus allowing for real-time
simulation. For a small number of system copies, DPsim supports
simulation time steps of about 10µs, which is a typical time
step for commercial EMT simulators. However, it should be noted
that such small time steps are not the aim of DPsim since the
simulation is conducted in DP and not EMT.

3.3. Validation of the MNA network solver

The next simulation case demonstrates the accuracy of the
MNA network solver compared to Simulink results. Both simu-
lators DPsim and Simulink are run with a simulation time step
of 100µs. It can be seen that for such small time steps DP
simulations yield the same results as EMT. The larger the time
step, the more will the results degrade. It is shown in [5] that the
degradation of the results with larger time steps is smaller when
using the DP approach compared to EMT.

Fig. 5a shows the simulated circuit, which is composed of
one current source of 10 A, two resistors of 1�, an inductor of
1mH and a capacitor of 1mF. The voltage source is set to its
nonzero peak value at the beginning because it is following a
cosine with zero phase shift. Therefore, the system is not starting
from steady-state and a transient can be observed. The DPsim
dynamic phasor results are transformed to time domain values
and compared against Simulink EMT results. As can be seen from
Fig. 5b, the results match.

3.4. Validation of the ODE solver for components

The following example compares the results of Simulink and
DPsim for a three phase synchronous generator fault. Here, the
simulation time step is 50µs for DPsim and Simulink. As in
the previous simulation case, the DP approach would allow for
larger time steps than EMT. A comprehensive study investigat-
ing this property and featuring synchronous generator models
is presented in [27]. Initially, the load is 300MW and the fault
is applied at 0.1 s. The generator parameters are taken from
example 3.1 in [28]. As in the previous example, the dynamic
phasor results are transformed to time domain values before the
comparison. Again, it is visible that the DPsim results match the
Simulink results except when the fault is cleared (see Fig. 6).
In contrast to DPsim, the fault in Simulink is not immediately
cleared but at the next zero-crossing.

6 M. Mirz, S. Vogel, G. Reinke et al. / SoftwareX 10 (2019) 100253

Fig. 4. WSCC 9-bus system (a) and average wall clock time per step (b).

Fig. 5. Example circuit (a) and DPsim dynamic phasor and Simulink EMT simulation results for node 1 (b).

Fig. 6. DPsim dynamic phasor and Simulink EMT results for the synchronous
generator three-phase fault example.

4. Illustrative examples

As mentioned in Section 2.2, there are two ways to define a
circuit topology for DPsim: coding the topology using Python or
C++ or importing it from CIM. The two options are presented by
means of two examples: a circuit and a small power system. The

first example presented in this section demonstrates the defini-
tion utilizing Python while the second example takes advantage
of the CIM import function.

4.1. Defining a circuit simulation in python

The circuit of the previous section, Fig. 5, is taken as an
example to demonstrate how circuits can be defined using DP-
sim’s Python interface. The topology can be created in Python as
depicted by Listing 1.

Listing 1: Python code to define a circuit.
Nodes
gnd = dpsim.dp.Node.GND()
n1 = dpsim.dp.Node('n1')
n2 = dpsim.dp.Node('n2')

Components
cs = dpsim.dp.ph1.CurrentSource('cs')
cs. I_ref = complex(10,0)
r1 = dpsim.dp.ph1.Resistor('r_1')
r1.R = 1
c1 = dpsim.dp.ph1.Capacitor('c_1')
c1.C = 0.001
l1 = dpsim.dp.ph1.Inductor('l_1')
l1 .L = 0.001
r2 = dpsim.dp.ph1.Resistor('r_2')
r2.R = 1

M. Mirz, S. Vogel, G. Reinke et al. / SoftwareX 10 (2019) 100253 7

Fig. 7. WSCC 9-bus system mechanical speed simulation results after fault.

Connections
cs.connect([gnd, n1])
r1.connect([n1, gnd])
c1.connect([n1, n2]);
l1 .connect([n2, gnd]);
r2.connect([n2, gnd]);

system = dpsim.SystemTopology(50, [gnd, n1, n2], [cs, r1, c1, l1, r2]);
sim = dpsim.Simulation('circuit', system, timestep=0.0001, duration=0.1)
sim.start()

First, the nodes and components are declared and parameterized.
Then, the connections between components and nodes are set
and in the following step all network objects are added to the
system topology. Finally, the system topology and parameters
such as time step and final time can be used to create a simulation
instance, which can be started, stopped and stepped through.
Optionally, initial voltages could be assigned to the nodes. Since
this is not the case here, the initial voltages are set to zero.

4.2. Simulating a power system defined in CIM

The next example presents the CIM loading functionality,
which is used to read the data of the WSCC 9-bus system as
displayed in Fig. 4a. The objects defined in the CIM file, e.g. Termi-
nal, TopologicalNode, SynchronousMachine, are mapped to DPsim
objects according to the CIM::Reader class of DPsim. The system
frequency, 60Hz, is not defined in the CIM file. Therefore, it needs
to be specified before loading the CIM file. Furthermore, a fault
is applied to node 9 of the imported system. To implement the
fault, the system is extended by a switch connected to node 9,
which connects the node to ground with a small resistance after
0.2 s. The switching action is created as an object of type Event
and added to the Simulation instance.

Listing 2: Python code to import a topology from CIM.
Read from CIM
files = glob.glob(' ../../ dpsim/Examples/CIM/WSCC09_RX_Dyn/∗.xml')
system = dpsim.load_cim('WSCC9bus', files, frequency=60)

Get existing nodes
gnd = dpsim.dp.Node.GND()
bus9 = system.nodes['BUS6']

Add switch
sw = dpsim.dp.ph1.Switch('Switch')
sw.R_open = 1e9
sw.R_closed = 0.1
sw.is_closed = False
sw.connect([bus9, gnd])
system.add_component(sw)

sim = dpsim.Simulation('WSCC9bus', system,
timestep=0.0001, duration=2, init_steady_state=True)

sim.add_event(0.2, sw, 'is_closed', True)
sim.start()

In Fig. 7, it can be seen how the rotational speed of the gener-
ators starts to oscillate after the fault. The oscillation frequency
depends on the mechanical inertia and as expected the generator
with the largest inertia has the lowest oscillation frequency.

5. Impact

Since DPsim is open source, it can serve as a reference im-
plementation for real-time power system simulators and a com-
mon basis for users working with different real-time simulation
solutions. Having a common basis facilitates discussions on dif-
ferences in simulation results of different tools. Besides, DPsim
allows for real-time simulation on standard computing hard-
ware, making real-time applications available to a wider range
of researchers.

Thanks to its design, DPsim facilitates distributed real-time
co-simulation, which promotes collaboration and allows the use
of the simulation capacity of geographically distributed labora-
tories to support large scale scenarios [5]. Distributed real-time
co-simulation allows also for better data privacy, enabling coop-
eration because, in a co-simulation, each entity can keep its data
confidential and only exchange boundary variables. This could
be interesting for confidential grid data but also black box de-
vice models where manufacturers cannot share implementation
details.

The dynamic phasor approach is used here in a system level
simulation in contrast to component level power electronics ap-
plications as in [1]. With an increasing share of power electronics
in power systems, this approach supports the investigation of
future grids.

DPsim is already used in the EU H2020 research project RE-
SERVE [29] and it was developed as a solution to decrease the
difference between communication delay and simulation time
step in previous co-simulation projects, e.g. RT-Superlab [2]. DP-
sim is promoted by the FEIN association that also hosts its code
and documentation [23].

6. Conclusions

The presented software project, DPsim, exploits the dynamic
phasor approach to overcome the requirement for EMT simula-
tion that the simulation time step needs to be proportional to the
highest signal frequency. In doing so, DPsim facilitates distributed
real-time simulation and lets users exploit simulation resources
in different geographical locations. For this purpose, DPsim is
programmed in the C++ language and has its own MNA based
network solver. Despite having a C++ core, the DPsim allows for
scripting simulations via the python interface and reading grid
topologies in the standard CIM format via the CIM++ library.
These features are demonstrated in two simulation examples, a
circuit and a grid simulation. Likewise, the computational correct-
ness of DPsim and its real-time performance are demonstrated
by means of simulation examples. Furthermore, DPsim is tightly
integrated with the VILLASframework that offers many interfaces
to commercial real-time simulators and hardware.

Declaration of competing interest

We confirm that there are no known conflicts of interest
associated with this publication.

8 M. Mirz, S. Vogel, G. Reinke et al. / SoftwareX 10 (2019) 100253

Acknowledgments

This work was partly funded by the European Unions Horizon
2020 Framework Programme for Research and Innovation under
grant agreement no 727481.

References

[1] Sanders SR, Noworolski JM, Liu XZ, Verghese GC. Generalized averag-
ing method for power conversion circuits. IEEE Trans Power Electron
1991;6(2):251–9.

[2] Monti A, Stevic M, Vogel S, De Doncker RW, Bompard E, Estebsari A,
Profumo F, Hovsapian R, Mohanpurkar M, Flicker JD, et al. A global real-
time superlab: enabling high penetration of power electronics in the
electric grid. IEEE Power Electr Mag. 2018;5(3):35–44.

[3] Schutt-Ainé JE. Latency insertion method (LIM) for the fast transient
simulation of large networks. IEEE Trans Circuits Syst I 2001;48(1):81–9.

[4] Stevic M, Monti A, Benigni A. Development of a simulator-to-simulator
interface for geographically distributed simulation of power systems in real
time. In: Industrial electronics society, IECON 2015-41st annual conference
of the IEEE. IEEE; 2015, p. 005020–5.

[5] Mirz M, Estebsari A, Arrigo F, Bompard E, Monti A. Dynamic phasors to
enable distributed real-time simulation. In: Clean electrical power (ICCEP),
2017 6th international conference on. IEEE; 2017, p. 139–44.

[6] Vogel S, Mirz M, Razik L, Monti A. An open solution for next-generation
real-time power system simulation. In: Energy internet and energy system
integration (EI2), 2017 IEEE conference on. IEEE; 2017, p. 1–6.

[7] Mirz M, Vogel S, Monti A. First interconnection test of the nodes in
pan-european simulation platform. RESERVE Library; 2017.

[8] Braun W, Casella F, Bachmann B, et al. Solving large-scale modelica models:
new approaches and experimental results using openmodelica. In: 12
international modelica conference. Linkoping University Electronic Press;
2017, p. 557–63.

[9] Guironnet A, Saugier M, Petitrenaud S, Xavier F, Panciatici P. Towards an
open-source solution using modelica for time-domain simulation of power
systems. In: 2018 IEEE PES innovative smart grid technologies conference
Europe. IEEE; 2018, p. 1–6.

[10] Casella F, Leva A, Bartolini A. Simulation of large grids in openmodelica:
reflections and perspectives. In: Proceedings of the 12th international
modelica conference, vol. 132. Linköping University Electronic Press; 2017,
p. 227–33.

[11] Baudette M, Castro M, Rabuzin T, Lavenius J, Bogodorova T, Vanfretti L.
OpenIPSL: Open-Instance power system library—Update 1.5 to ‘‘iTesla
Power Systems Library (iPSL): A modelica library for phasor time-domain
simulations’’. SoftwareX 2018;7:34–6.

[12] Martí AT, Jatskevich J. Transient stability analysis using shifted frequency
analysis (SFA). In: 2018 power systems computation conference. IEEE;
2018, p. 1–7.

[13] Demiray T, Andersson G, Busarello L. Evaluation study for the simulation of
power system transients using dynamic phasor models. In: Transmission
and distribution conference and exposition: Latin America, 2008 IEEE/PES.
IEEE; 2008, p. 1–6.

[14] Martí JR, Dommel HW, Bonatto BD, Barrete AF. Shifted frequency analysis
(SFA) concepts for EMTP modelling and simulation of power system
dynamics. In: Power systems computation conference. IEEE; 2014, p. 1–8.

[15] Strunz K, Shintaku R, Gao F. Frequency-adaptive network modeling for in-
tegrative simulation of natural and envelope waveforms in power systems
and circuits. IEEE Trans Circuits Syst I Regul Pap 2006;53(12):2788–803.

[16] Suárez A. Analysis and design of autonomous microwave circuits, vol. 190.
John Wiley & Sons; 2009.

[17] Proakis JG. Digital communications. New York: McGraw-Hill; 1995.
[18] Energy management system application program interface (EMS-API) - Part

301: Common information model (CIM) base. International Electrotechnical
Commission; 2016.

[19] FEIN Aachen e. V., VILLAS framework. http://www.fein-aachen.org/
projects/villas-framework. [Accessed 23 November 2018].

[20] Guennebaud G, Jacob B, et al. Eigen v3. 2010, http://eigen.tuxfamily.org.
[21] Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE,

Woodward CS. SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers. ACM Trans Math Softw 2005;31(3):363–96.

[22] Razik L, Mirz M, Knibbe D, Lankes S, Monti A. Automated deserializer
generation from CIM ontologies: CIM++ - an easy-to-use and automated
adaptable open-source library for object deserialization in C++ from
documents based on user-specified UML models following the Common
Information Model (CIM) standards for the energy sector. Comput Sci Res
Dev 2018;33(1–2):93–103.

[23] FEIN Aachen e. V., DPsim. https://www.fein-aachen.org/projects/dpsim/.
[Accessed 23 November 2018].

[24] Walther M, Waurich V, Schubert C, Gubsch I. Equation based parallelization
of modelica models. In: Proceedings of the 10th international modelica
conference. p. 1213–20.

[25] Watson N, Arrillaga J. Power systems electromagnetic transients
simulation. IET; 2003.

[26] Red hat enterprise Linux for Real Time 7: Tuning Guide; 2018. https:
//access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_
real_time/7/pdf/tuning_guide/Red_Hat_Enterprise_Linux_for_Real_Time-7-
Tuning_Guide-en-US.pdf.

[27] Zhang P, Marti JR, Dommel HW. Synchronous machine modeling based on
shifted frequency analysis. IEEE Trans Power Syst 2007;22(3):1139–47.

[28] Kundur P, Balu NJ, Lauby MG. Power system stability and control, vol. 7.
New York: McGraw-hill; 1994.

[29] RESERVE. http://www.re-serve.eu/. [Accessed 23 November 2018].

http://refhub.elsevier.com/S2352-7110(18)30276-0/sb1
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb1
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb1
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb1
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb1
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb2
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb2
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb2
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb2
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb2
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb2
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb2
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb3
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb3
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb3
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb4
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb4
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb4
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb4
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb4
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb4
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb4
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb5
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb5
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb5
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb5
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb5
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb6
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb6
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb6
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb6
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb6
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb7
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb7
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb7
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb8
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb8
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb8
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb8
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb8
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb8
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb8
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb9
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb9
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb9
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb9
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb9
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb9
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb9
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb10
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb10
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb10
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb10
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb10
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb10
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb10
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb11
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb11
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb11
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb11
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb11
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb11
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb11
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb12
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb12
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb12
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb12
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb12
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb13
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb13
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb13
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb13
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb13
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb13
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb13
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb14
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb14
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb14
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb14
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb14
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb15
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb15
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb15
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb15
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb15
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb16
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb16
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb16
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb17
http://www.fein-aachen.org/projects/villas-framework
http://www.fein-aachen.org/projects/villas-framework
http://www.fein-aachen.org/projects/villas-framework
http://eigen.tuxfamily.org
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb21
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb21
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb21
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb21
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb21
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb22
https://www.fein-aachen.org/projects/dpsim/
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb25
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb25
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb25
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/pdf/tuning_guide/Red_Hat_Enterprise_Linux_for_Real_Time-7-Tuning_Guide-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/pdf/tuning_guide/Red_Hat_Enterprise_Linux_for_Real_Time-7-Tuning_Guide-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/pdf/tuning_guide/Red_Hat_Enterprise_Linux_for_Real_Time-7-Tuning_Guide-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/pdf/tuning_guide/Red_Hat_Enterprise_Linux_for_Real_Time-7-Tuning_Guide-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/pdf/tuning_guide/Red_Hat_Enterprise_Linux_for_Real_Time-7-Tuning_Guide-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/pdf/tuning_guide/Red_Hat_Enterprise_Linux_for_Real_Time-7-Tuning_Guide-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/pdf/tuning_guide/Red_Hat_Enterprise_Linux_for_Real_Time-7-Tuning_Guide-en-US.pdf
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb27
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb27
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb27
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb28
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb28
http://refhub.elsevier.com/S2352-7110(18)30276-0/sb28
http://www.re-serve.eu/

	DPsim—A dynamic phasor real-time simulator for power systems
	Motivation and significance
	Software description
	Software architecture
	Module structure
	Class hierarchy
	Parallelization

	Software functionalities
	User interface
	Simulation interface

	Implementation and empirical results
	Implementation details
	Real-time performance evaluation
	Validation of the MNA network solver
	Validation of the ODE solver for components

	Illustrative examples
	Defining a circuit simulation in python
	Simulating a power system defined in CIM

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

