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Abstract—Power system stability has become a critical 

aspect with increasing integration of converter-interfaced gen-

erators (CIGs). The power system is evolving from synchronous 

generators, with high inertia and slow nature, to CIGs, with 

little or no-inertia and very fast dynamics. The challenge lies in 

the smooth transition from reliable operation with synchronous 

machines to operating dynamic power-electronics based genera-

tors (up to 100%). The idea is to explore the flexibility offered 

by Power Electronics (PE) to develop control strategies such 

that a linear and uniform system dynamics (LSD) can be 

achieved. In this paper, inertia-control is proposed to achieve 

LSD. This linearizes the behavior of converters and hence 

enables stability analysis using simple tools for linear system. 

Following which, a novel control law based on delta-based 

linearized swing equation is proposed to achieve LSD. It trans-

forms the control problem from regulation of power to regula-

tion of power-angle. A new constant, namely rocof constant, is 

defined. The dynamics equations are presented with the stability 

analysis. Time-domain simulation results, using MATLAB, are 

presented for these control strategies for a Single Machine 

Infinite Bus (SMIB). 
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I. INTRODUCTION

Today’s power system is undergoing major changes due 
to environmental and sustainability concerns. This has re-
sulted in transition of the power system from the classical 
Synchronous Generators (SGs) towards a converter-based 
power system in order to integrate Renewable energy sources 
(RES). The operation of the power system with the SG is well 
understood but the regulation and interaction of the Converter-
interfaced generator (CIG) with the rest of the network is not 
yet fully known [1]. The difference are due to the characteris-
tics of a CIG and a SG. The high inertia, damping-effect and 
self-synchronization property of a SG is responsible for 
operating huge inter-connected power systems with system 
security. The CIG with no rotating part, fast dynamics gives a 
different possibility to operate a fully or partial converter-
based power system. This transition poses a lot of challenges 
and requires a new scientific basis to be developed for a 
converter-based power system. Out of the various challenges, 
this paper focuses on challenges in frequency stability because 
of low inertia power systems. 

A PE-based CIG lacks physical inertia which makes a 
converter-based power system a low-inertia system. Conse-
quently, new challenges regarding the system stability need to 
be addressed [2], [3]. One of the most advocated solution for 
smooth transition into the future inverter-based power system 
is to develop control strategies to provide synthetic inertia (SI) 
or virtual inertia and hence, design converters to mimic the 
behavior of a SG in terms of inertial response and its control 
behavior. The first converter mimicking the behavior of SG is 
proposed as Virtual Synchronous Machine (VSM) [4]. It is 
labeled as VISMA. Since then various other inertia emulation 
schemes have been proposed. These schemes can be classified 
on the basis of their implementation as Synchronous generator 
model-based, Swing equation-based, and Frequency-power 
response-based [5]. 

Other control approaches include matching control [6]. 
This approach tries to match the electro-mechanical energy 
exchange of a SG with energy exchange at the inverter 
between the grid-side and the DC-link. Another area of inter-
est is virtual oscillator control. This control strategy controls 
the inverter to behave like a non-linear oscillator [7]. These 
techniques, with advantages and disadvantages, try to provide 
solution for the smooth transition. 

For power system engineers, the challenge is to address the 
stability of the network when there is a vast amount of CIGs, 
(among them high voltage direct current transmission sys-
tems, HVDCs, [9]) with different control structures, from 
different manufactures and different dynamic behavior. The 
flexibility provided by the PE can be utilized to address these 
challenges. One of the approaches which addresses this con-
cern is [8]. The motivation is to develop  linear and uniform 
system dynamics such that the dynamics of a CIG is predicta-
ble and controllable. This could also help in addressing the 
multi-machine stability analysis with a simpler approach. 

This paper is organized as follows. The second section 
explains the concept of inertial control to achieve LSD. The 
dynamic equations with stability analysis are presented in this 
section. Following, the next section introduces the novel 
control strategy based on the delta-based linear swing equa-
tion (DLSE). The system overview is presented along with 
operation and implementation of the controller called as delta-
based linearized swing controller (DLSC). The dynamic 
equations are presented along with the stability analysis. A 
generalized stability criterion is developed for its operation. 
The next section explains the voltage-based LSD-SV in brief. 
The implementation in a SV is presented. In the simulation 
results section, first all the simulation parameters are pre-
sented, and then time-domain responses are presented with 
voltage-based LSD, inertial based LSD and delta-based LSD 
for power injection into the grid. 
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II. INERTIAL CONTROL 

A. System Dynamics 

Swing equation is the fundamental equation governing 
rotor dynamics for a synchronous generator and is given by 
(1) [10].  

𝐽
𝑑ω𝑚

𝑑𝑡
= 𝑇𝑚 − 𝑇𝑒 − 𝐷𝑝(𝜔 − 𝜔𝑟𝑒𝑓) (1) 

where 𝐽 is the combined moment of inertia, 𝜔𝑚 is angular 
velocity, 𝜃𝑚 is angular displacement of rotor, 𝑇𝑚is mechanical 
torque, 𝑇𝑒 is electrical torque, 𝐷𝑝 is damping coefficient, and 

𝜔𝑟𝑒𝑓  is nominal or reference velocity. Equation (1) can be 

written in terms of electrical angle, 𝛿 and is given by (2). 

𝑀
𝑑2𝛿

𝑑𝑡2
= 𝑃𝑚 − 𝑃𝑒 − 𝐷(𝜔 − 𝜔𝑟𝑒𝑓) (2) 

Here 𝑃𝑒 is the power exchange between the generator and 
the grid and is given by (3). 

𝑃𝑒 =
𝑉𝑐𝑉𝑔

𝑋𝑔

𝑠𝑖𝑛δ (3) 

where 𝑉𝑐 is generator output voltage and 𝑉𝑔 is grid voltage with 

𝑋𝑔 ≫ 𝑅𝑔 grid reactance, 𝛿 is phase-angle between 𝑉𝑐 and 𝑉𝑔. 

The non-linearity is present in (3) between 𝑃𝑒 and 𝛿 with 𝛿 
being the state variable. This makes the behavior of SG non-
linear. 

B. Inertial Control 

The CIGs using PE give us additional degrees of freedom 
to choose 𝑀 and 𝐷 to achieve desired control response from 
the converter. The swing equation, in different forms of imple-
mentation, is the heart of different inertia-emulation schemes 
[9]. The desired dynamic equation for inertial-control based 
LSD is given by (4). The derivation of this form of equation is 
given in Appendix. 

𝑑2δ

𝑑𝑡2
= 𝐾2δ𝑟𝑒𝑓 − 𝐾2𝛿 − 2𝐾(ω − ω𝑟𝑒𝑓) (4) 

where, K is the desired eigenvalue, 𝛿𝑟𝑒𝑓 is reference power-

angle, 𝛿𝑒 is actual power-angle. The swing equation is given 
in (2). By comparing (2) and (4), the expression for adaptive 
inertial constant, 𝑀𝑖 can be calculated. The expression for  𝑀𝑖 
is given by (5). 

𝑀𝑖 =
𝑃𝑚 − 𝑃𝑒 − 𝐷(ω − ω𝑟𝑒𝑓)

𝐾2δ𝑟𝑒𝑓 − 𝐾2𝛿 − 2𝐾(ω − ω𝑟𝑒𝑓)
(5) 

Similarly, the expression for adaptive inertial constant, 𝐽𝑖 
is given by (6). 

𝐽𝑖 =
𝑇𝑚 − 𝑇𝑒 − 𝐷𝑝(ω − ω𝑟𝑒𝑓)

𝐾2δ𝑟𝑒𝑓 − 𝐾2δ𝑒 − 2𝐾(ω − ω𝑟𝑒𝑓)
(6) 

By using the adaptive inertial constant, 𝑀𝑖 and 𝐽𝑖 given by 
(5) and (6), respectively, linearizes the system dynamics. The 
dynamic equation for the system becomes as given by (4) 
which is linear with respect to power-angle, 𝛿.  

C. Calculation of 𝑀𝑖 and 𝐽𝑖 

The expression for adaptive inertia constant contains 𝛿𝑒 
and 𝛿𝑟𝑒𝑓. The angle  𝛿𝑒 is calculated using (3) and is given by 

(7) 

𝛿 = sin−1 (
𝑃𝑒𝑋𝑔

𝑉𝑐𝑉𝑔

) (7) 

By replacing the 𝑃𝑒 with 𝑃𝑚 the 𝛿𝑟𝑒𝑓 is calculated using (8) 

𝛿𝑟𝑒𝑓 = sin−1 (
𝑃𝑚𝑋𝑔

𝑉𝑐𝑉𝑔

) (8) 

The 𝑉𝑔 and 𝑋𝑔 are estimated values of grid voltage and grid 

impedance, respectively. 

D. Stability Analysis 

Using the expression of 𝑀𝑖 and 𝐽𝑖 and substituting it in 
swing equation given by (2) and (1), the updated state-space 
equations become as given by (4). The state-space representa-
tion is given by (9) 

[𝛿̇
𝜔̇

] = [
0 1

−𝐾2 −2𝐾
] [

𝛿
𝜔

] (9) 

The eigenvalues can be calculated from (9) to be 

𝜆1,2 = −𝐾, −𝐾 (10) 

where, 𝐾 is a positive number. 𝐾 can be chosen to achieve the 
desired response of converter. This is the advantage offered by 
the PE-based generators. 

E. Implementation of Inertial Control 

The expression for 𝑀𝑖 and 𝐽𝑖 are of the form 0/0 in steady 
state. This results in a numerical error for the controller. 
Hence, the adaptive inertia control is enabled using the 
tolerance in the error of the power which is given here as 

Δ = |𝑃𝑚 − 𝑃𝑒 − 𝐷(𝜔 − 𝜔𝑟𝑒𝑓)| (11) 

Based on the value of Δ selected, the inertia control is 
enabled. Also, the value of 𝑀𝑖 and 𝐽𝑖 are passed through a low-
pass filter in order to prevent oscillations when converter is 
returning to the equilibrium point as also mentioned in [11]. 
In this paper, the inertial control is implemented in a 
Synchronverter (SV) [10] with the voltage loop decoupled 
from the power-frequency control loop and no reactive power 
control. This is further explained in section for voltage-based 
LSD-SV. 

III. DELTA BASED LINEARIZED SWING CONTROLLER 

Any power converter can be defined as static power-
electronics device that regulates power by controlling the 
voltage magnitude and angle at its output. The power-angle is 
used to control active power keeping the voltage magnitude 
constant. The regulation of power by controlling power-angle 
makes the control non-linear because there exists a non-linear 
relation between the power-angle, 𝛿 and 𝑃𝑒, as can be seen in 
(3). The idea is to regulate power-angle directly. This control 
law makes this control problem a linear control problem. 



A. Control Law 

The swing equation in terms of power is given by (2). The 
power is replaced with power-angle, 𝛿 in (2) and the new 
equation is given here. 

𝑑2δ

𝑑𝑡2
= 𝑅𝑐𝑓 (δ𝑟𝑒𝑓 − δ − 𝐷δ(ω − ω𝑟𝑒𝑓)) (12) 

This equation is named as Delta-based Linear Swing 
Equation (DLSE). 

All the quantities in this equation are electrical. The 
constant, 𝑅𝑐𝑓 is named as rocof constant whose dimension is 

same as for ROCOF, ‘1/s2’. It is the integral gain for the 
control law which controls the inertial response of the 
converter. 𝐷𝛿  is the angle-frequency droop constant, 𝛿𝑟𝑒𝑓 is 

power-angle reference, 𝛿 is power-angle, 𝜔 is angular fre-
quency and 𝜔𝑟𝑒𝑓  is reference angular frequency. 

B. System Configuration 

The overview structure for Delta-based Swing Controller 
(DLSC) is given in Fig. 1. The control and the power circuit 
are marked in the figure. The control signals are marked in 
blue-color, while controller references are marked in red-
color. The power circuit is shown in black color.  

 
Fig. 1. System overview for DLSC.  

The power-part of the converter consists of an inverter, 
along with the LCL-filter. The circuit breaker (CB) connects 
or disconnects the DLSC to the grid. The grid is a three-phase 
three-wire (3P3W) system. Three-phase balanced conditions 
are assumed for the power-circuit.  

The control circuit is in the left-side of the Fig. 1. The 
voltage and current measurements are fed into the controller, 
where the DLSC is implemented. The measurement block 
receives the measurement from the current and the voltage 
sensors. The calculated power is fed into the power to delta-
calculator, in which (7) and (8) are implemented. The voltage 
amplitude, 𝑉 is fed into the voltage control loop. The input to 
delta-frequency loop is 𝛿ref and 𝛿. The output of delta-fre-
quency loop is 𝜔 which is integrated to give 𝜃. The droop in 
the delta-frequency loop is implemented in the similar way as 
for the power-frequency droop in the synchronverter [10]. The 
difference in converter frequency and reference frequency is 

multiplied with 𝐷𝛿 to provide droop-angle, 𝛿𝛿 which is fed 
back into the input as shown in Fig. 2. In the voltage control 
loop, the voltage amplitude is calculated from the measured 
capacitor voltage, 𝑉c. The calculated amplitude of 𝑉c is com-
pared with reference voltage and is fed to the I-controller as 
shown in Fig. 2. The output of the voltage control loop is 
amplitude of back-emf, 𝐸. 

The 𝜃 is converted into three sinusoidal functions (13) and 
is multiplied with 𝐸 to generate three- phase reference modu-
lation signals. This is then fed into the modulation block to 
generate gate-pulses for the power converter.  

δ ⟹ [𝑠𝑖𝑛θ, 𝑠𝑖𝑛(θ − 2π/3), 𝑠𝑖𝑛(θ + 2π/3)] (13) 

The power-angles, 𝛿 and 𝛿ref, are calculated from 𝑃ref and 
𝑃e, respectively. The control structure with the calculation of 
power-angles can be seen Fig. 2. 

C. Operation 

In the normal operation of the DLSC, the 𝑃ref is increased 
to inject the power into the grid. From the 𝑃ref, 𝛿ref is calculated 
using (8) and is the input for the controller. The output power, 
𝑃𝑒, is measured and 𝛿 is calculated using (7). The error due to 
𝛿 and 𝛿ref is fed into the integrator with the gain, 𝑅cf and the 
frequency is modulated to inject the power into the grid. The 
voltage reference is kept constant. There is no reactive power 
control in DLSC.  

During the disturbance in the grid-frequency, the converter 
increases or decreases its output power as per the frequency 
droop. The frequency-droop is angle-based. It means that for 
a change in the frequency, the converter changes 𝛿 and power 
corresponding to droop angle, 𝛿𝛿, is exchanged with the grid. 
The output power in case of grid-frequency disturbance 
becomes 

𝑃𝑒 = 𝑃𝑚𝑎𝑥  𝑠𝑖𝑛(𝛿 + 𝛿𝛿) (14) 

where, 𝑃𝑚𝑎𝑥 = 𝑉𝑐 ∗ 𝑉𝑔/𝑋𝑔, and 𝛿𝛿 is the droop-angle and is 

given by (15).  

𝛿𝛿 = 𝐷𝛿(ω − 𝜔𝑟𝑒𝑓) (15) 

The droop-power is dependent on the operating point as 
given by (14). This means that the droop-power reduces as the 
power-angle for the converter increases. 

 
Fig. 2. Control diagram for DLSC. 



The voltage loop is a simple 𝐼-controller with the fixed 
voltage reference. The voltage loop is designed faster than the 
delta-frequency loop and hence, its dynamics are de-coupled 
from delta-frequency loop. 

D. Stability Analysis 

The dynamic equations controlling the behavior of the 
DLSC are 

𝑑𝛿

𝑑𝑡
= (𝜔 − 𝜔𝑟𝑒𝑓) (16) 

𝑑𝜔

𝑑𝑡
= 𝑅𝑐𝑓 (𝛿𝑟𝑒𝑓 − 𝛿 − 𝐷𝛿(𝜔 − 𝜔𝑟𝑒𝑓)) (17) 

𝑑𝑉

𝑑𝑡
=

𝜔𝑟𝑒𝑓

𝐾
(𝑉𝑟𝑒𝑓 − 𝑉𝑐) (18) 

The voltage loop is decoupled from the power-angle 
control and is designed faster than the delta-based linearized 
swing equation. Hence, for stability analysis only the critical 
or slow eigenvalues from DLSE are considered. 

The state-space representation for DLSC is given by 

[𝛿̇
𝜔̇

] = [
0 1

−𝑅𝑐𝑓 −𝑅𝑐𝑓 ∗ 𝐷𝛿
] [

𝛿
𝜔

] (19) 

The eigenvalues from (19) can be calculated to be 

𝜆1,2 =
−𝑅𝑐𝑓 ∗ 𝐷𝛿 ± √(𝑅𝑐𝑓 ∗ 𝐷𝛿)2 − 4𝑅𝑐𝑓

2
(20) 

If for an inverter, 𝛾 = (𝑅𝑐𝑓 ∗ 𝐷𝛿)/2, then the eigenvalues 

are given by 

𝜆1,2 = −𝛾 ± √𝛾2 − 𝑅𝑐𝑓 (21) 

For controller parameters, 𝑅𝑐𝑓 and 𝐷𝛿  can be chosen to 

control the response of the inverter. For oscillation free 
response of converter following condition is to be fulfilled: 

𝛾2 > 𝑅𝑐𝑓 (22) 

IV. VOLTAGE BASED LSD-SYNCHRONVERTER 

The voltage-based approach to achieve LSD is explained 
in [8]. In this paper, the voltage-based approach is imple-
mented in a synchronverter (SV) naming it as voltage-based 
LSD-SV. 

The control law for the voltage loop is given by (23) 

𝑃𝑒 ⇒ 𝛿(𝑃𝑒) =
𝑃𝑒𝑋𝑔

(1 − 𝜀)𝑉2
⇒ 𝑉𝑟𝑒𝑓(𝛿) =

(1 − 𝜀)𝑉

sin𝛿
𝛿 (23) 

The LSD is implemented in the SV by making changes in 
the control structure of the SV. The steps are given below: 

1. The reactive power control is eliminated and hence 
the voltage control loop as voltage is directly con-
trolled at the converter terminal. 

2. The voltage control loop is decoupled from the power-
frequency control loop by replacing 𝜔 with 𝜔𝑟𝑒𝑓  in 

calculation of the back-emf voltage. 

3. The dynamic equation for the voltage control loop 
becomes (18). 

4. The voltage reference is calculated using the control 
law designed in [8] from 𝑃𝑒 using (23). 

The voltage-based LSD-SV control structure is given in 
Fig. 6. in the Appendix. 

V. SIMULATIONS AND RESULTS 

The test system is SMIB system as shown in Fig. 3. The 
system is 400 V, 50 Hz, 3P3W. The converter is connected 
with the grid through a LCL-filter. Parameters of the system 
are given in TABLE I. The inertia-control is implemented using 
the synchronverter technology with modification and control 
structure is given in Fig. 7. in the Appendix. The simulation is 
done for power injection into the grid by the converter. The 
results are presented for power injection into the grid. The 
results are shown for three controllers, voltage-based LSD-
SV, inertia-based LSD-SV and DLSC. LSD-SV. 

 
Fig. 3. Test system overview. 

All the converters are connected to the grid at t = 0.5 s. The 
synchronization logic is not explained in this paper. The Pref 
for converter is increased from t = 1 s. At every second, the Pref 
is increased by 0.2 p.u. until 1.0 p.u. at t = 5 s. 

TABLE I.  MODEL PARAMETERS FOR SMIB SIMULATIONS 

Nominal Voltage 𝑉𝑛 400 V 

Nominal angular frequency 𝜔𝑟𝑒𝑓 314.14 rad/s 

Converter Power rating 𝑆𝑛 80.00 KVA 

DC-link Voltage 𝑉𝐷𝐶 750.00 V 

Converter-side filter inductance 𝐿𝑓 1.00 mH 

Filter capacitor 𝐶𝑓 10.96 𝜇F 

Grid-side filter inductance 𝐿𝑓𝑔 0.30 mH 

Grid impedance 𝑋𝑔 0.31 Ω 

Moment of inertia 𝐽 0.96 Kg/m2 

Frequency-Droop constant 𝐷𝑝 38.52 W/rad/s 

Voltage-Intergal gain 𝐾 0.025 rad 

Rocof constant 𝑅𝑐𝑓 400.00 1/s2 

Delta-Droop constant 𝐷𝛿 0.10 1/s 

Tolerance for inertia control Δ 0.1 Nm 

A. Power Response 

Fig. 4 shows the power response for all the three control-
lers implementing LSD characteristics. As it can be seen that 
rise time and settling time for each step-change in Pref for all 
the three controllers are approximately same. The response is 
over-damped in all the step-changes for all the controller. 



 
Fig. 4. Power response for LSD-based converters. 

B. Frequency Response 

The frequency response is shown in Fig. 5. The frequency 
response inertia-based LSD-SV and DLSC is slower at t = 5 s 
and this is because the regulation of power is replaced with 
regulation of angle and hence, increase in power-angle is 
more to achieve the same step-increase in the power due to 
the sinusoidal P- 𝛿 characteristics. But for the voltage-based 
LSD-SV, the increase in 𝛿 is the same because the P- 𝛿 curve 
is linearized by manipulating the voltage reference for the 
controller. This is the same reason for difference in the fre-
quency response for the controllers. The response of all the 
three controllers is over-damped because of the real eigen-
values. 

  
Fig. 5. Frequency response for LSD-based converters. 

VI. CONCLUSIONS 

The inertia control is presented with the stability analysis 
and the time-domain response for inertial control imple-
mented in the SV. The inertia-based LSD-SV achieves LSD 
with the voltage control decoupled from power-frequency 
control. With the generalized expression for inertia constant 
𝑀, it can be included in any of the grid inertia emulation 
schemes. The advantage is that LSD characteristic can be 
achieved independent of power-angle limit, but it is enabled 
using tolerance based on error in the power. 

Based on the inertia-based control developed, a novel 
control strategy, named as delta-based linearized swing 
controller (DLSC) is proposed. A new constant, named as 
rocof constant, is also defined. A generic stability condition 
is derived by expressing it in terms of damping or droop 
constant and rocof constant with no dependency on the grid 
parameters. For the above implementations, the time-domain 
simulation results are presented for the step-increase in the 
power. The authors are working on implementing the control 
using local measurements and possible solution for imple-
mentation of LSD in multi-machine system.  
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APPENDIX 

A. Desired Linear system dynamics in case of inertial 

control 

The dynamic equation from the voltage-based LSD 
approach is given by [8] 

𝑀
𝑑𝜔

𝑑𝑡
= 𝑃𝑚 − 𝑃𝑒 − 𝐷(𝜔 − 𝜔𝑟𝑒𝑓) (A1) 

The eigenvalues are given by  

−
𝐷

2𝑀
± √

𝐷2

4𝑀2
− 

(1 − 𝜀) 𝑉𝑔
2

𝑀 𝑋
(𝐴2) 

To place the eigenvalues at -K and -K, the expression for 
D and M becomes 

𝑀 =
(1 −  𝜀) 𝑉𝑔

2

𝐾2 𝑋
(A3) 

𝐷 =
2 (1 −  𝜀) 𝑉𝑔

2

𝐾   𝑋
(A4) 

Using the expression for D and M from (A3) and (A4), 
(A1) becomes  

𝑑𝜔

𝑑𝑡  
= 𝐾2𝛿𝑟𝑒𝑓 − 𝐾2𝛿 − 2𝐾(𝜔 − 𝜔𝑟𝑒𝑓) (A5) 



B. Control Diagram of Voltage- and Inertia-Based LSD-SV 

 
Fig. 6. Control diagram for voltage-based LSD-SV. 

 
Fig. 7. Control diagram for inertia-based LSD-SV. 
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